
H. M. Ledbetter and R. P. Reed

Cryogenics Division, Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302

A comprehensive compilation is given of elastic properties of iron-nickel alloys. When sufficient data exist, preferred values are recommended. This compilation covers, besides pure iron and pure nickel, the entire binary composition range, both b.c.c. and f.c.c. phases. Elastic constants included are:

Young’s modulus, shear modulus, bulk modulus (reciprocal compressibility), Poisson’s ratio, and single-crystal elastic stiffnesses, both second-order and higher-order. Data are compiled for variation of elastic constants with composition, temperature, pressure, magnetic field, mechanical deformation, annealing, and crystallographic transitions. An overview is given from the vantage points of the electron theory of metals, elasticity theory, and crystallographic theory. Also included are discussions of isothermal and adiabatic elastic constants, interrelationships among engineering elastic constants, computation of the latter from single-crystal elastic stiffnesses, and similar topics. Where key data have not been measured, they were generated if possible from existing data using standard formulae. Other gaps, both theoretical and experimental, in the elastic properties of iron-nickel alloys are indicated. A few theoretical results are included where experimental data are nonexistent or scarce. A semantic scheme is proposed for distinguishing elastic constants of solids.

Key words: Bulk modulus; compressibility; elastic constants; Debye temperatures; iron; iron alloys; Lamé constants; nickel; nickel alloys; Poisson’s ratio; shear modulus; single-crystal elastic coefficients; Young’s modulus.

Contents

<table>
<thead>
<tr>
<th>List of Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>532</td>
</tr>
<tr>
<td>Principal Notations</td>
<td>532</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>533</td>
</tr>
<tr>
<td>2. Perspective on Elastic Constants</td>
<td>534</td>
</tr>
<tr>
<td>3. Terminology</td>
<td>535</td>
</tr>
<tr>
<td>4. Definitions of Elastic Constants</td>
<td>536</td>
</tr>
<tr>
<td>5. Relationships Among Elastic Coefficients and Engineering Elastic Constants</td>
<td>537</td>
</tr>
<tr>
<td>6. Measurement Methods and Errors</td>
<td>538</td>
</tr>
<tr>
<td>7. Isothermal and Adiabatic Elastic Constants</td>
<td>539</td>
</tr>
<tr>
<td>8. Elements Iron and Nickel</td>
<td>540</td>
</tr>
<tr>
<td>10. Compositional Dependence of Elastic Constants</td>
<td>541</td>
</tr>
<tr>
<td>11. Effects of Mechanical Deformation, Annealing, Recovery and Lattice Defects</td>
<td>542</td>
</tr>
<tr>
<td>11.1. Mechanical Deformation</td>
<td>542</td>
</tr>
<tr>
<td>11.2. Annealing</td>
<td>543</td>
</tr>
<tr>
<td>11.3. Lattice Defects</td>
<td>543</td>
</tr>
<tr>
<td>12. Higher-Order Elastic Coefficients</td>
<td>544</td>
</tr>
</tbody>
</table>

List of Tables

1. Connecting Identities $X = X(Y, Z)$ for Elastic Constants of Quasi-Isotropic Solids
2. Expressions for Engineering Elastic Constants of Cubic Single Crystals
3. Conversions Between Elastic Stiffnesses c_{ij} and Elastic Compliances s_{ij} for Cubic Crystals
4. Selected Properties of Iron and Nickel
5. Second-Order Elastic Stiffnesses c_{ij} of Iron
6. Second-Order Elastic Stiffnesses c_{ij} of Nickel
7. Second-Order Elastic Stiffnesses c_{ij} of Iron-Nickel Alloys
8. Young’s Modulus E of Iron

531

9. Young’s Modulus E of Nickel
10. Young’s Modulus E of Iron-Nickel Alloys
11. Shear Modulus G of Iron
12. Shear Modulus G of Nickel
13. Shear Modulus G of Iron-Nickel Alloys
14. Bulk Modulus B and Compressibility B^{-1} of Iron
15. Bulk Modulus B and Compressibility B^{-1} of Nickel
16. Bulk Modulus B and Compressibility B^{-1} of Iron-Nickel Alloys
17. Poisson Ratio ν of Iron
18. Poisson Ratio ν of Nickel
19. Poisson Ratio ν of Iron-Nickel Alloys

20. Third-Order Elastic Stiffnesses c_{ijl} of Iron
21. Third-Order and Fourth-Order Elastic Stiffnesses c_{ijk} and c_{ijkl} of Nickel
22. Pressure Derivatives dc_{ij}/dP of Elastic Stiffnesses of Iron and Nickel
23. Relative Elastic Constants Based on a Hard-Sphere Model, $B = 1$ Arbitrarily
25. Conversions Among Commonly Used Stress Units

List of Figures

1. Schematic Interconnectivity of Elastic Parameters of Solids
2. Chronological Variation of Observed Elastic Properties of Iron
3. Iron-Nickel Phase Diagram
4. Compositional Variation of Elastic Stiffnesses c_{ij} of Iron-Nickel Alloys
5. Compositional Variation of Young’s Modulus E of Iron-Nickel Alloys
6. Compositional Variation of Shear Modulus G of Iron-Nickel Alloys
7. Compositional Variation of Compressibility B^{-1} of Iron-Nickel Alloys
8. Compositional Variation of Poisson ratio ν of Iron-Nickel Alloys
9. Cold-Work Dependence of Young’s Modulus E of Iron
10. Cold-Work Dependence of Shear Modulus G of Iron
11. Cold-Work Effect on Young’s Modulus E of Nickel
12. Cold-Work Effect on Shear Modulus G of Nickel
13. Cold-Work Effect on Young’s Modulus E of Face-Centered Cubic Iron-Nickel Alloys
14. Annealing Effect on Young’s Modulus E of Nickel
15. Temperature Variation of Elastic Stiffnesses c_{ij} of Iron
16. Temperature Variation of Elastic Stiffnesses c_{ij} of Iron-Nickel Alloys
17a. Temperature Variation of Elastic Stiffness c_{ij} of Iron-Nickel Alloys
17b. Temperature Variation of Elastic Stiffness c_{ij} of Iron-Nickel Alloys
17c. Temperature Variation of Elastic Stiffness c_{ij} of Iron-Nickel Alloys
17d. Temperature Variation of Elastic Stiffness c_{ij} of Iron-Nickel Alloys
18. Temperature Variation of Young’s Modulus E of Iron

19. Temperature Variation of Young’s Modulus E of Nickel
20. Temperature Variation of Young’s Modulus E of Iron-Nickel Alloys—Face-Centered Cubic
22. Relative Temperature Variation of Young’s Modulus E of Some Iron-Nickel Alloys
23. Temperature Variation of Shear Modulus G of Iron
24. Temperature Variation of Shear Modulus G of Nickel
25. Temperature Variation of Shear Modulus G of Iron-Nickel Alloys
26. Relative Temperature Variation of Shear Modulus G of Some Iron-Nickel Alloys
27. Temperature Variation of Compressibility B^{-1} of Iron
28. Temperature Variation of Compressibility B^{-1} of Nickel
29. Temperature Variation of Compressibility B^{-1} of Iron-Nickel Alloys
30. Temperature Variation of Poisson Ratio ν of Iron-Nickel Alloys
31. Temperature Variation of Poisson Ratio ν of Nickel
32. Temperature Variation of Poisson Ratio ν of Iron-Nickel Alloys
33. Magnetic Field and Temperature Effects on Young’s Modulus E of Nickel
34. Magnetic Field and Temperature Effects on Young’s Modulus E of Iron-Nickel Alloys
35. Magnetic Field and Temperature Effects on Shear Modulus G of an Iron-Nickel Alloy
37. Magnetic Field Effect on Young’s Modulus E of Nickel and Iron-Nickel Alloys
38. Phase Transformation (bcc to fcc on Heating) Effect on Young’s Modulus E of Iron-Nickel Alloys

Principal Notations

A elastic anisotropy (after Zener)
A^* elastic anisotropy (after Chung and Buessem)

R bulk modulus
c_{ij}, c_{ijkl} second-order elastic stiffnesses (contracted, full)
ELASTIC PROPERTIES OF METALS AND ALLOYS

1. Introduction

In this century, solid state physics has advanced dramatically. Essential to this advance was the accumulation of vast quantities of data describing properties of solids. As much as any set of properties, elastic properties were central in this advance. Similarly, technologies such as metallurgy and ultrasonics have matured only through a necessary knowledge and understanding of elastic properties of solids that provide their basis.

Most solids are crystalline, therefore elastically anisotropic, and are either single crystals or polycrystalline aggregates. Thus, crystalline studies form a large part of solid-state physics, which attempts generally to relate properties of atoms and atom groupings to macroscopic properties of solids at various temperatures, pressures, etc.

While most phenomenological crystalline elasticity was developed by late 19th century, systematic studies and practical applications of crystalline elasticity emerged only recently. Uses of crystals in solid-state devices and engineering applications of elastic solids increased substantially since about 1945. Measurement of elastic properties by ultrasonic techniques facilitated these applications.

With the view that elasticity of solids will be increasingly important in both science and technology, a beginning is made here toward a comprehensive compilation and critical review of elastic properties of selected systems that hold high interest for both of these communities. For examples of practical applications of elastic properties one need only consult any standard reference on strength of materials. Perusal of various formulae for describing states of stress such as compression or bending shows that elastic constants are key design parameters. Indeed, few stress-bearing members can be designed adequately in ignorance of the elastic properties of the constitutive material.

Engineering materials that are macroscopically isotropic are completely defined elastically by two parameters. Parameter selection is arbitrary, varying with application. As examples: pressure vessel design requires knowing the bulk modulus, design of rotating shafts requires knowing the rigidity modulus, and design of flexed beams or support columns requires knowing Young's modulus.

For some special scientific purposes it is sufficient to know the elastic properties of a material in some reference state; for example—a pure, annealed, defect-free, single crystal at 0 K and 1 atmosphere. However, for ordinary purposes the elastic properties of a material must be known in other, non-reference, states. Departure from the state of reference usually involves varying one or more of—composition, temperature, pressure, mechanical deformation, magnetic field, or degree of polycrystallinity. Thus, an understanding is sought as to how these variables affect elastic properties. These topics are discussed in sections 10–11 and 13–16.

The purpose of this paper is to present a comprehensive compilation and a critical overview of the elastic properties of alloys of the binary system iron-nickel. These alloys hold much interest for both engineers and scientists, for both metallurgists and physicists. Iron-nickel alloys also provide fertile ground for probing relationships between elastic constants and phase transitions, an area of physics and metallurgy now ripe for both theoretical and experimental study. Since both iron and nickel are ferro-

magnetic, their alloys show a variety of curious magnetic effects, many of which are important technologically; and magnetic effects are frequently coupled to elastic constants, as for example in magnetostriction. Similarly, Invar\(^1\) is an alloy of Fe-36Ni\(^2\) where magnetic effects combine with thermal expansion such that virtually no thermal expansivity is exhibited over a wide temperature range, one of the curious exceptions to the almost universal thermal expansion of solids.

Other materials such as Covar (thermal expansion coefficient similar to that of glass) and Permalloy (exceptionally high magnetic permeability) are based on iron-nickel binary alloys. Metallic meteorites, also scientific curiosities, are iron alloys containing as much as 60 percent nickel. Extensive meteorite metallography has been done to deduce the thermal-mechanical history of meteorites to elucidate the problem of planetary genesis. Finally, the earth's core is generally assumed to be an alloy of iron and nickel, and elastic constants enter many geophysical calculations, notably those dealing with seismic-wave propagation. The many technological applications of Fe-Ni alloys are discussed by Chickazumi \[1,2\] Rosenberg \[2,3\], and Everhart \[3\].

This review collects, for the first time, all available data on the elastic properties of iron-nickel alloys. Data are discussed from the viewpoints of the modern theory of metals, elasticity, and crystallography in an attempt to understand, as much as possible, in a unified way the elastic properties of iron-nickel alloys. This is useful because: (1) most of the literature on the subject is purely experimental, and (2) an overview facilitates semi-quantitative extrapolation of existing information to conditions where neither experimental nor theoretical data are available.

Most data are available as engineering elastic constants: Young's modulus, shear modulus, bulk modulus, and Poisson's ratio. Single-crystal data exist also, but less abundantly. Relationships between single-crystal data and engineering data are discussed in section 5. Besides the compositional variation of the elastic constants, data on the effects of temperature, pressure, magnetic field, mechanical deformation, and annealing are also included and discussed. This review is intended to provide a convenient source of information on the elastic properties of iron-nickel alloys and to stimulate further research, both theoretical and experimental. Gaps in the knowledge and understanding of the elastic properties of iron-nickel alloys are delineated.

Since the present article is seen as the first of a series, the discussion herein is more general and more extensive than is necessary for treating only the elastic properties of iron-nickel alloys. Remarks special to iron-nickel are so designated whenever appropriate. Mainly, the elastic properties of metals and alloys are described in general terms. Much of the discussion necessarily applies also to other types of solids such as ionic or covalent crystals. However, readers should make such extrapolations only cautiously.

2. Perspective on Elastic Constants

Invoking three realms of knowledge of solids—pure science, phenomenology, and engineering—elastic parameters of solids are distributed among these realms as shown schematically in figure 1. As far as elastic properties of solids are concerned, objects of interest in these realms are, respectively—discrete atoms or molecules, anisotropic continua, and quasi-isotropic continua.

The \(\alpha\) and \(\beta\) can be taken to represent extensions (or contractions) and bendings of valence bonds between atoms in solids; subscript \(i\) denotes the various sets of atomic neighbors. The \(c_{ij}\) represent elastic stiffness coefficients that relate stresses to strains; both stress and strain are specified with respect to a set of axes denoted by indices \(i\) and \(j\) and usually chosen to coincide with crystallographic axes. \(E, G, B,\) and \(\nu\) denote the Young's modulus, shear modulus, bulk modulus, and Poisson ratio, parameters arising naturally in characterizing, respectively, uniaxial loading, shear loading, hydrostatic loading, and transverse strain under uniaxial loading. (In section 4 all of the elastic constants are defined. In section 5 relationships between single-crystal and polycrystal constants are discussed.)

Many properties of solids are related to elastic coefficients. The most important of these properties is Debye's characteristic temperature \(\theta\). Several techniques exist for computing \(\sigma\) from the \(c_{ij}\). In turn, \(\sigma\) relates directly to such properties of solids as heat capacity, intensities of Bragg diffractions, Mössbauer emission, thermal conductance, electrical resistivity, superconducting transition temperature, etc. Many of these relationships are discussed in section 18.

Elastic coefficients are central in considering defects in solids such as vacancies, interstitials, substitutional impurities, dislocations, twin boundaries, and grain boundaries. Being related to the second spatial derivative of the intratomic potential, elastic coefficients relate intimately to the problem of cohesion in solids, an especially important problem for metals. In this regard, pure-shear elastic coefficients allow for volume effects to be separated from non-volume effects. Many crystalline phenomena—thermal expansion, temperature and pressure derivatives of the second-order elastic coefficients, thermal conductivity of insulators, sound wave attenuation, etc.—are anharmonic effects related directly to the existence of third-order, and higher-order, elastic constants. Thus, better understanding, both experimental and theoretical, of elastic constants of solids pays dividends in diverse ways, often unsuspected. (Section 11.3 treats briefly the topic of lattice defects and elastic constants.)
3. Terminology

Despite several proposals, there is no generally accepted, rational and consistent terminology for describing the elastic parameters of solids that form the subject of this review. This problem becomes especially acute when semantic distinctions are required among: (1) the general class of all elastic parameters, (2) the sub-class of the parameters used commonly to describe quasi-isotropic or engineering solids, and (3) the sub-class of parameters used to describe anisotropic single crystals. Therefore, a scheme of usage is proposed here that corresponds closely to that usually accepted but makes useful semantic distinctions:

\[
\begin{align*}
E &= \text{Young's modulus} \\
G &= \text{shear modulus} \\
B &= \text{bulk modulus} \\
p &= \text{Poisson's ratio} \\
c_{ij} &= \text{elastic stiffnesses} \\
s_{ij} &= \text{elastic compliances}
\end{align*}
\]

Adoption of this, or a similar, semantic scheme in the literature of elastic phenomena of solids should allow for a more logical and a more lucid description of the subject than has resulted previously. In much of the existing literature the \(c_{ij} \) are referred to simply as “elastic constants”. Thus, an alternative to the present proposal would be to substitute “constants” for “coefficients” and perhaps “parameters” for “constants”. Also, some authors prefer “technical”, “practical”, or “bulk” to “engineering”.

4. Definitions of Elastic Constants

Elastic materials obey Hooke’s law

\[
\sigma_{ij} = c_{ijkl} \epsilon_{kl},
\]

where repeated indices are summed from 1 to 3, \(\sigma_{ij} \) are stress components given by

\[
f_i = \sigma_{ij} n_j,
\]

where \(f_i \) are the components of a force acting internally on an imaginary plane (with normal \(n \)) of a body, and \(\epsilon_{kl} \) are the (infinitesimal) strain components given by

\[
\epsilon_{kl} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right),
\]

and \(u_k, u_l \) are components of the displacement.

While Hooke’s law emerged experimentally, it can be derived in various ways. For example, Lanczos [4] showed that Hooke’s law is the necessary stress-strain relationship when Hamilton’s variational principle is invoked.

Equation (4.1) means that the strain response of an elastic material is instantaneous, independent of rate or history. Removal of force restores the original reference configuration; no strain exists in the un-stressed state and vice versa. If non-mechanical (electrical, magnetic, thermal, etc.) effects are incorporated, then stress and strain may not vanish simultaneously unless the non-mechanical effects are subtracted from the total stress and strain. Metals approximate Hookean behavior within their elastic limit; plastic deformation frequently begins before non-linear elastic behavior becomes significant.

Except for third-order elastic constants, the elastic constants described herein are either those \(c_{ijkl} \) in eq (4.1) or can be derived simply from them.

The \(c_{ijkl} \) are components of a fourth-rank tensor and are called the elastic stiffness coefficients. Generally, there are \(3^4 = 81 \) such components. However, thermodynamic and symmetry considerations show for all crystal systems that

\[
c_{ijkl} = c_{iklj} = c_{ijlk} = c_{jilk} = c_{jikl}.
\]

Complete commutativity of indices occurs only when Cauchy’s relations, based on central forces between atoms and inversion symmetry, hold. In metals these relations are broken because of the conduction electrons acting through electron-electron and electron-ion interactions.

From eq (4.4) it follows that in general only 21 \(c_{ijkl} \) are independent. If Voigt’s contracted notation is invoked, then the \(c_{ijkl} \) can be represented as a symmetric \(6 \times 6 \) matrix, and Hooke’s law becomes

\[
\sigma_{ij} = c_{ijkl} \epsilon_{kl},
\]

where repeated indices are summed from 1 to 6 and

\[
c_{ijkl} = c_{iklj} \quad \sigma_{ij} = \sigma_{ji} \quad \epsilon_{kl} = \epsilon_{lk}, \quad \beta = 1, 2, 3
\]

\[= 2 \epsilon_{kl}, \quad \beta = 4, 5, 6.\]

For cubic symmetry, which is the case for iron, nickel, and all iron-nickel alloys, the 21 \(c_{ab} \) components reduce to three:

\[
c_{11} = c_{22} = c_{33},
\]

\[
c_{12} = c_{21} = c_{13} = c_{31} = c_{23} = c_{32},
\]

and

\[
c_{44} = c_{55} = c_{66}.
\]

The Voigt contraction scheme is summarized as follows:

\[
\begin{array}{ccccccc}
\varphi, k & 1 & 2 & 3 & 3 & 2 & 3 \\
\alpha, \beta & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\]

all other \(c_{ij} \) are zero.

The elastic compliance coefficients \(s_{ij} \) have the same symmetry as the \(c_{ij} \) and their relationship is inverse

\[
c_{ijkl} s_{ij} s_{kl} = I_6 \times 6 \quad (4.9)
\]

where \(I \) denotes the identity matrix. Formulae for converting \(c_{ijkl} \) to \(s_{ij} \) and vice versa are collected in table 3.

For cubic symmetry, Hooke’s law in matrix form is

\[
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3 \\
\sigma_4 \\
\sigma_5 \\
\sigma_6 \\
\end{bmatrix} = \begin{bmatrix}
c_{11} & c_{12} & c_{12} & 0 & 0 & 0 \\
c_{12} & c_{11} & c_{12} & 0 & 0 & 0 \\
c_{12} & c_{12} & c_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{44} \\
\end{bmatrix} \begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3 \\
\varepsilon_4 \\
\varepsilon_5 \\
\varepsilon_6 \\
\end{bmatrix} \quad (4.10)
\]

The choice of three independent elastic constants is not unique. For example, a useful alternative set advocated by Zener [3] is

\[
C = c_{ij}, \quad (4.11)
\]

\[
C' = (c_{11} - c_{12})/2, \quad (4.12)
\]

and

\[
B = (c_{11} + 2c_{12})/3. \quad (4.13)
\]

A set arising frequently in ultrasonic experiments is \(C, C', \) and

\[
C'' = (c_{11} + c_{12} + 2c_{44})/2. \quad (4.14)
\]

It can be shown that \(B \) is the bulk modulus for cubic symmetry. Thus, when a hydrostatic pressure

\[
P = -\sigma_1 = -\sigma_2 = -\sigma_3 (\sigma_4 = \sigma_5 = \sigma_6 = 0), \quad (4.15)
\]

is applied to a cubic crystal the strains are

\[
\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = -\Delta V/3V (\varepsilon_4 = \varepsilon_5 = \varepsilon_6 = 0), \quad (4.16)
\]

and eq (4.1) becomes

\[
B = -P/(\Delta V/V). \quad (4.17)
\]

For cubic symmetry the compressibility

\[
\kappa = -\frac{1}{V} \left(\frac{\Delta V}{\Delta P} \right) \quad (4.18)
\]

is given by

\[
\kappa = 3(s_{11} + 2s_{12}) = 1/B. \quad (4.19)
\]

The constant \(C = c_{44} \) relates a shear stress on a \(\{100\} \) plane to the shear strain in any direction in that plane. For a shear stress \(\sigma \) acting along \(\{100\} \{010\} \) and effecting a shear angle \(\gamma \)

\[
\sigma_0 = \sigma, \quad (4.20)
\]

\[
\varepsilon_0 = \gamma. \quad (4.21)
\]

All other stress and strain components are zero. Thus, eq (4.1) becomes

\[
c_{44} = \sigma/\gamma = c_{44} = C. \quad (4.22)
\]

The constant \(C' = (c_{11} - c_{12})/2 \) relates a shear stress on a \(\{110\} \) plane to a shear strain along \(\{110\} \). This is equivalent to the \(c_{44} \) case just described, but rotated \(\pm 45^\circ \) about \([001] \). In this case the non-vanishing stress components are

\[
\sigma_1 = -\sigma_2 = \sigma \quad (4.23)
\]

and the non-vanishing strains are

\[
\varepsilon_1 = -\varepsilon_2 = \gamma/2 \quad (4.24)
\]

so that eq (4.1) becomes in this case

\[
(c_{11} - c_{12})/2 = \sigma/\gamma = C' = c_{44} \quad \text{rotated} \pm 45^\circ \text{about [001]}. \quad (4.25)
\]

For isotropic materials there are only two independent elastic constants. The Lamé constants \(\lambda \) and \(\mu \) were the first set to be used. For isotropic media, Hooke’s law in a reduced matrix form is

\[
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3 \\
\sigma_4 \\
\sigma_5 \\
\sigma_6 \\
\end{bmatrix} = \begin{bmatrix}
\lambda + 2\mu & \lambda & 0 & 0 & 0 \\
\lambda & \lambda + 2\mu & \lambda & 0 & 0 \\
\lambda & \lambda & \lambda + 2\mu & 0 & 0 \\
0 & 0 & 0 & \mu & 0 \\
0 & 0 & 0 & 0 & \mu \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3 \\
\varepsilon_4 \\
\varepsilon_5 \\
\varepsilon_6 \\
\end{bmatrix} \quad (4.26)
\]

Clearly, for isotropic media

\[
c_{11} = \lambda + 2\mu, \quad (4.27)
\]

\[
c_{12} = \lambda, \quad (4.28)
\]

and

\[
c_{44} = \mu. \quad (4.29)
\]
ELASTIC PROPERTIES OF METALS AND ALLOYS

Much recent work on isotropic media uses, instead of \(\lambda \) and \(\mu \), such constants as the bulk modulus \(B \), Young's modulus \(E \), the shear modulus \(G \), and Poisson's ratio \(\nu \). \(B \) is defined by eqs (4.13) and (4.17).

Young's modulus is defined as the ratio of uniaxial stress (tensile or compressive) to strain measured along the same axis. Thus, eq (4.1) becomes for stress along [100]

\[
E = \frac{\sigma_1}{\varepsilon_1} = \frac{1}{\varepsilon_1}. \quad (4.30)
\]

There can be only one shear modulus in the isotropic case, so that

\[
G = c_{44}^0 = \frac{1}{2} (c_{11}^0 - c_{12}^0). \quad (4.31)
\]

Poisson's ratio is defined as the negative of the ratio of transverse strain to longitudinal strain for the case of uniaxial stress. For stress along [001],

\[
\nu = -\frac{\varepsilon_3/\varepsilon_1}{s_3/s_1}. \quad (4.32)
\]

Zener [5] introduced an additional parameter, a dimensionless ratio

\[
A = C/C' = 2c_{44}/(c_{11} - c_{12}), \quad (4.33)
\]

called the elastic anisotropy factor.\(^4\) Clearly, \(A = 1 \) for isotropy since all shear moduli, including \(C \) and \(C' \), are equal. Aluminum and tungsten are the only cubic metals with known elastic coefficients where \(A = 1 \). Zener's anisotropy concept has been very useful in discussing b.c.c. lattice instabilities. In fact, Barrett [7] was led by this consideration to discover low-temperature martensitic transformations in both lithium and sodium.

Iron-nickel alloys have moderate to high elastic anisotropy. As discussed below, martensitic transitions in iron-nickel alloys can be characterized by a high value of \(A \), even though the parent phase is f.c.c. as opposed to b.c.c. for lithium and sodium.

Energetic considerations show that \(B, E, G \) (both \(C \) and \(C' \) for cubic crystals) are all positive. Bounds on \(\nu \) are 1/2 and \(-1\). No negative values of \(\nu \) have ever been observed for isotropic media. Typically, \(\nu \) ranges from 0.25 to 0.45 for metals. Lacking any data, the best guess for metals is \(\nu \sim 0.1/3 \).

Connecting identities among \(E, G, B, \) and \(\nu \) are given in table 1. Other variables included there are Lamé's constants \(\lambda \) and \(\mu \), longitudinal and transverse sound velocities \(v_1 \) and \(v_0 \), quasi-isotropic elastic stiffnesses \(c_{ij}^0 \), and quasi-isotropic elastic compliances \(s_{ij}^0 \). The sound wave velocities considered here refer to waves in an infinite medium, that is to the so-called body or volume waves.

The operational definitions of \(E, B, G, \) and \(\nu \) for isotropic media apply also to single crystals. If these measurement operations are applied to single crystals, results depend on the crystal axis \((hkl)\) along which the crystal is tested. Elastic constants so obtained are designated \(E_{hkl}, G_{hkl}, \) and \(\nu_{hkl} \) and are related to the \(c_{ij} \) and \(s_{ij} \) by formulae summarized in table 2 for cubic symmetry. (Note that \(B_{hkl} = B \) for all possible \(hkl \).) Thus, by measuring engineering constants on single crystals along three independent directions \((100, 110, \) and \(111 \) are the simplest) \(c_{ij} \) and/or \(s_{ij} \) can be determined. Before the advent of ultrasonic measurement methods, this method was used extensively to determine \(c_{ij} \); it is still used occasionally.

5. Relationships Among Elastic Coefficients and Engineering Elastic Constants

As described above, cubic crystals are characterized by three elastic coefficients while isotropic and quasi-isotropic solids are characterized elastically by two constants. The relationship between the constants \(E, G, B, \) and \(\nu \) of a quasi-isotropic material and the \(c_{ij} \) of a single crystal of the same substance is considered here.

5.1. Isotropic Case \((A = 1)\)

The isotropy condition for cubic crystals is

\[
c_{11} - c_{12} = 2c_{44} \quad (5.1)
\]

When this relationship is satisfied, identities in table 1 hold among various constants for both single crystals and polycrystals.

5.2. Anisotropic Case \((A \neq 1)\)

In computing two constants from three, the problem is generally overdetermined. The overdeterminacy was eliminated in the case \(A = 1 \) by eq (5.1). Many different approaches have been suggested for the anisotropic case. A general review of this subject has apparently not been made, although comparisons of many of the methods were made by Ledbetter [8]. Two of the proposed methods are discussed here since they are important historically, and their basic assumptions establish upper and lower limits for the correct result. A compromise averaging method is then discussed that gives good results with quite simple formulae.

The problem is one of averaging a tensor property over all possible spatial orientations, that is,

\[
\langle c_{ij} \rangle = \frac{1}{2\pi} \int_{\phi = 0}^{\pi} \int_{\theta = 0}^{2\pi} f(\phi, \theta) \sin \theta \, d\theta \, d\phi \quad (5.2)
\]

where \(f(\phi, \theta) \) contains the directional dependence of the \(c_{ij} \). Many schemes have been proposed for solving eq (5.2) or its equivalent, but these have not been reviewed critically.

\(^4\) There is no unique definition of crystalline elastic anisotropy. For example, Cheng and Beecher [6] proposed an improved form, although slightly more complicated. Their factor \(A^* \) is zero for isotropy, gives better relative magnitudes of elastic anisotropies than does \(A \), and is especially useful in interpreting \(A \leq 1 \) cases, which occur frequently for non-metals and also for metals such as vanadium and chromium.

Voigt [9] assumed constant strain and averaged the c_{ij} with the result

$$G_v = \frac{1}{3} (c_{11} - c_{12} + 3c_{44}).$$ \hspace{1cm} (5.3)

Reuss [10], on the other hand, assumed constant stress and averaged the s_{ii} with the result

$$G_R = \frac{5}{4(s_{11} - s_{12}) + 3s_{44}}. \hspace{1cm} (5.4)$$

For both cases, the bulk modulus is given by eq (4.13). Thus, all engineering elastic constants can be determined from G and B by using equations in table 1. Hill [11] showed on thermodynamic grounds that eqs (5.3) and (5.4) represent upper and lower limits on the shear modulus and proposed either an arithmetic or a geometric average, that is,

$$G_{H_A} = \frac{1}{2} (G_V + G_R), \hspace{1cm} (5.5)$$

or

$$G_{H_G} = (G_V G_R)^{1/2}, \hspace{1cm} (5.6)$$

where subscripts V and R refer to Voigt’s and Reuss’s approximations. Hill’s method, owing to both its simplicity and its reliability, is used widely and was used here. While Hill’s average has no theoretical or physical basis, it agrees closely (particularly for low elastic anisotropy) with averages that have such bases. As discussed by Landau and Lifshitz [12], the problem of averaging the c_{ij} to obtain E, C, ν, etc., cannot be solved uniquely.

6. Measurement Methods and Errors

6.1. Measurement Methods

The subject of measuring elastic constants has been reviewed extensively by several authors, [13]–[22]. Thus, only those experimental aspects essential to understanding and interpreting the data herein will be described briefly.

Direct, indirect, and derived methods are distinguished first. Direct methods are based on definitions of elastic constants. For example, measuring Young’s modulus directly requires measuring simultaneously stress and strain along a uniaxial loading direction. Indirect methods are based on calculations using other measured elastic constants as input. Thus, an indirect measurement of Young’s modulus could be made by measuring B and ν and using the formula $E = 3B/(1-2\nu)$. A derived method involves a physical relationship between an elastic constant and some nonelastic parameters, the latter being measured and the elastic constant then being calculated. For example, Young’s modulus is a simple and well-known function of longitudinal and transverse sound-wave velocities and mass density. Both direct and indirect methods measure elastic constants while derived methods measure nonelastic parameters.

Secondly, static and dynamic methods are distinguished. Static methods are characterized by time-independent or, at least, slowly-varying (quasi-static) applied stresses. Slow deformation rates ensure heat exchange with surroundings. Thus, static methods are constant temperature, or isothermal. Dynamic methods are characterized by time-dependent, rapidly-varying stresses that preclude heat transfer between a specimen and its environment. Thus, dynamic methods are isentropic or adiabatic. Static methods have been important historically, but have been largely pre-empted by dynamic methods. (Distinctions between isothermal and adiabatic elastic constants are discussed in section 7.)

Emergence of high-frequency (ultrasonic) experimental methods has been accompanied naturally by smaller specimen sizes, about one centimeter. For efficiency and accuracy in the case of single crystals, specimens are cut and oriented on specific crystallographic planes.

Thirdly, relaxed and unrelaxed moduli are distinguished. Usually, measuring an elastic constant involves imposing a vibrational frequency on a specimen. Relaxation processes due to interstitial impurities, dislocations, grain boundaries, residual stresses, etc., can occur within the specimen. A measurement frequency lower than the natural frequency of the relaxation events measures a relaxed elastic constant. Conversely, a measurement frequency exceeding the relaxation frequency measures unrelaxed elastic properties. If super-imposed and relaxation frequencies are about equal, then considerable internal friction or energy dissipation results, and measured elastic constants fall somewhere between relaxed and unrelaxed values. Differences between relaxed and unrelaxed constants are usually less than a few percent.

Relative merits of various experimental methods for specific materials, conditions, and elastic constants are discussed in references [13]–[22].

Aside from magnetic effects, which are discussed below, there are two additional problems in measuring elastic properties of iron-nickel alloys.

First, impurities. Effects of substitutional impurities can be estimated from the work of Speich, et al. [23] who determined the variation of E and G for Fe due to alloying elements. Carbon is the principal interstitial impurity, and small concentrations have negligible effect on elastic properties of iron-nickel alloys. Whether large concentrations of carbon increase [24] or decrease [25] elastic stiffnesses is still unresolved. Most theory predicts an increase. But most experiments reveal a decrease due to carbon [25].

Secondly, b.c.c. phases that contain twins as a result of the f.c.c. to b.c.c. transition may show spuriously low elastic stiffnesses due to a twin-boundary contribution to the strain. This problem becomes acute near \sim35Ni where the martensite is heavily twinned, but it can be...
overcome by using high-frequency measurement methods.

6.2. Measurement Errors

The emergence of dynamic methods, particularly ultrasonic techniques in the meghertz region, has allowed such high precision that elastic constants are now among the most accurately measurable properties of solids. Static methods are limited mainly by the imprecision of measuring stress and strain, and extensive calibrations are usually required. Dynamic methods employ relatively small stresses and strains, namely those produced by a piezoelectric transducer. Whereas static methods claim accuracies of about one percent, dynamic methods can detect relative elastic modulus changes as small as 10^{-8} (see Holder [26]). Absolute values of elastic moduli are restricted primarily by transducer-specimen bond corrections, phase-shift corrections (see McSkimin [27]), non-flatness and misorientation of specimen facets (see Waterman [28]), and transducer misorientation. Careful specimen preparation and proper experimental techniques can result in absolute errors being as small as 10^{-4}.

Chronological variations of the engineering elastic constants of iron are shown in figure 2. While more recent values are more self-consistent, none of the older values can be excluded on the basis of deviations from the mean.

7. Isothermal and Adiabatic Elastic Constants

Distinctions between isothermal and adiabatic elastic constants are discussed here. (These constants are denoted herein by subscripts T and S denoting constant temperature and constant entropy, respectively.) The distinction arises naturally from measurement methods. Slow or static loading gives isothermal constants while rapid or dynamic loading gives adiabatic constants. For most engineering purposes, differences between the two cases are negligible, being a few percent or less. However, for detailed comparisons between elastic constants, this difference becomes important. Using thermodynamic relations generalized to include elastic strain energy it can be shown that [29]

$$s_{ijkT} - s_{ijkS} = -\alpha_{ij} \alpha_{kl} T / C_p$$

(7.1)

where $\varepsilon_{ijkl} = \text{elastic compliances}; \alpha_{ij}, \alpha_{kl} = \text{thermal expansion coefficients}; T = \text{temperature},$ and $C_p = \text{heat capacity per unit volume at constant stress}. \alpha$. Since solids have, almost invariably, positive thermal expansion coefficients, adiabatic compliances are smaller than isothermal compliances. Differences were computed for a few cases by Hearmon [29].

A similar relationship exists between the isothermal and adiabatic stiffnesses, c_{ijkl}. Thus, after Mason [30],

$$c_{ijkl} - c_{ijklT} = \lambda_{ij} \lambda_{kl} T / C_T$$

(7.2)

where $\lambda_{ij} = \text{the temperature coefficients of stress at constant strain, and } C_T = \text{heat capacity per unit volume at constant strain}.$ For cubic symmetry

$$\alpha_{11} = \alpha_{22} = \alpha_{33} = \alpha,$$

(7.3)

$$\alpha_{12} = \alpha_{13} = \alpha_{23} = 0,$$

(7.4)

$$\lambda_{11} = \lambda_{22} = \lambda_{33} = \lambda,$$

(7.5)

and

$$\lambda_{12} = \lambda_{13} = \lambda_{23} = 0;$$

(7.6)

thus

$$\lambda = 3aB_T,$$

(7.7)

so that in the cubic case, in compact notation:

$$s_{11S} - s_{11T} = s_{12S} - s_{12T} = \frac{\alpha^2 T}{C_p},$$

(7.8)

$$s_{44S} - s_{44T} = 0,$$

(7.9)

$$c_{11S} - c_{11T} = c_{12S} - c_{12T} = B_S - B_T = 9\alpha^2 T^2 / C_V,$$

(7.10)

and

$$c_{44S} - c_{44T} = 0.$$

(7.11)

For completeness, relationships between isothermal and adiabatic engineering elastic constants are given also:

$$E_S = \frac{E_T}{1 - E_T (T \beta^2 / 9C_P)} = E_T + (E_T)^2 \frac{T \beta^2}{9C_P},$$

(7.12)

$$\frac{1}{B_S} = \frac{1}{B_T} + \frac{9\beta^2 V}{C_P},$$

(7.13)

$$\nu_S = \nu_T + \frac{E_T (T \beta^2 / 9C_P)}{1 - E_T (T \beta^2 / 9C_P)} \approx \nu_T + (1 + \nu_T) E_T \frac{T \beta^2}{9C_P},$$

(7.14)

and

$$G_S = G_T.$$

(7.15)

where $T = \text{temperature}$, $\beta = \text{volume thermal expansion coefficient}$, $V = \text{volume}$, and $C_P = \text{heat capacity per unit volume at constant pressure}$. Derivations of these relationships were given by Landau and Lifshitz [31] and Bhatia [32], for example. Approximations in eqs (7.12) and (7.14) assume that $E_T \beta^2 / C_P$ is small. Isothermal and adiabatic shear moduli are equivalent since shear at constant volume, and entropy, leaves temperature unaffected.

Finally, the relationship of the isothermal and adiabatic moduli to the thermodynamics of elastic deformation is indicated. The first law of thermodynamics is, including an elastic energy term,

$$dU = TdS + \sigma d\varepsilon,$$

(7.16)

The increment of Helmholtz free energy $F = U - TS$ is

$$dF = -SdT + \sigma d\varepsilon,$$

(7.17)

so that the stress tensor is given by

$$\sigma_i = (\partial U/\partial \varepsilon_i)_T = (\partial F/\partial \varepsilon_i)_T,$$

(7.18)

for the isothermal and adiabatic cases, respectively. And finally,

$$c_{ik} = (\partial \sigma_i/\partial \varepsilon_k)_T,$$

(7.19)

where ε denotes constancy of all strains except ε_k so that

$$c_{ik} = (\partial^2 U/\partial \varepsilon_i \partial \varepsilon_k)_T,$$

(7.20)

and

$$c_{ik} = (\partial^2 F/\partial \varepsilon_i \partial \varepsilon_k)_T.$$

(7.21)

8. Elements Iron and Nickel

The purpose here is to collect data for both Fe and Ni that relate to their elastic properties and to the elastic properties of their alloys. Table 4 summarizes the data.

Both elements are transition metals (incomplete 3d electronic shells) and occur in the first long period of Mendeleev's table, separated in that row only by Co. As shown in table 4, Fe and Ni are quite similar in most of their properties. As discussed below, this similarity is reflected in many aspects of the elastic properties of Fe-Ni alloys.

Properties of solids that are determined largely by orbital electrons must vary periodically with atomic number according to Mendeleev's table of elements. This subject is an important part of the phenomenology and science of solids. However, since this review treats only two elements that are closely related in both the periodic table and in their basic properties, periodic variation of elastic and related properties will not be discussed here in any detail. Interested readers should see Mack [33], Dorn and Tietz [34], Vereshchagin and Lichter [35], Ryabinin [36], Köster and Franz [37], and Gschneidner [38].

9. Iron-Nickel Phase Diagram

Since elastic properties of alloys are related intimately to the corresponding constitution diagram, some cursory considerations of Fe-Ni phase equilibria are appropriate. One of the first proposals for an Fe-Ni phase diagram was made on the basis of meteorite metallography [39]. A currently accepted phase diagram is shown in figure 3, adapted from Hansen and Andersen [40], Elliott [41], and Shunk [42]. This diagram is relatively simple, reflecting similar atomic sizes, melting points, heats of fusion, etc. of Fe and Ni. Hume-Rothery's criteria [43] for solid solubility are favorable: atomic size difference is small, electronegativities and valences are identical. Difference in crystal structures at room and lower temperatures precludes complete solid solubility. Complete mutual miscibility does occur at higher temperatures where both crystal structures are f.c.c.

Nickel is f.c.c. at all temperatures and is complicated only by a paramagnetic-to-ferromagnetic transition, the Curie temperature being 627 K. Iron has two allotropic phase transitions: b.c.c. (α)-f.c.c. (γ) at 1183 K, and f.c.c. (γ)-to-b.c.c. (δ) at 1663 K. Also, Fe undergoes a paramagnetic-to-ferromagnetic transition at 1043 K. The lower allotropic transition in iron is unusual since a b.c.c. phase becomes stable at lower temperatures. Because of vibrational entropies, b.c.c. phases are stable usually at higher temperatures. The upper allotropic transition γ-to-δ is also unusual. As first explained by Seitz [44], f.c.c. γ would be expected to be stable up to its melting point since its Debye temperature is lower than that of the b.c.c. phase. Debye temperatures are measures of lattice vibrational energies. According to Seitz, the γ-to-δ transition occurs because the electronic energy becomes large, on the order of kT. This happens because the electronic specific heat, which increases linearly with T, becomes relatively large due to partly filled d shells; the d shells have a high density of states; therefore a large number of electrons are available at the top of the unfilled band to absorb thermal energy.

Polymorphic transitions of iron were interpreted differently by Zener [5]. He ascribed the upper transition δ-to-γ to a low value of $C = (c_{11} - c_{12})/2$, the $\{110\}$ or $\{110\}_a$ shear modulus. Absence of elastic data of any kind for δ Fe precludes experimental confirmation of this proposal. He ascribed the lower transition γ-to-α to a spontaneous magnetization (ferromagnetism) of b.c.c. Fe. The difference between the Curie temperature and the allotropic transition temperature was ascribed to a local correlation of electron spins, ferromagnetism being a long-range correlation.

The γ-to-α transition that occurs on cooling has martensitic character in the range of about 18 to 34 Ni and “massive” character for compositions up to about 18 Ni [45]. Some evidence suggests that very rapid cooling of γ prevents a diffusion mechanism and gives a martensitic transformation in alloys of lower Ni content, even Fe [46].

Curie temperatures representing paramagnetic-to-ferromagnetic transitions are shown in figure 3 as dotted lines; data were taken from the recent compilation of
ELASTIC PROPERTIES OF METALS AND ALLOYS

Connolly and Copenhaver [47]. Possible relevance of Curie temperatures to structural transitions was discussed by Davies and Magee [48].

An order-disorder transition occurs in the FeNi region, the critical temperature at stoichiometry being about 776 K. Some evidence also exists that order-disorder transitions occur near the stoichiometric compositions Fe$_3$Ni and FeNi [49]. Because of strong similarities between Fe and Ni atoms, occurrence of Fe-Ni superlattices is surprising and not understood completely, though magnetic interactions between atoms are surely important.

Thermodynamic equilibrium in Fe-Ni alloys is not established readily, and the final form of the equilibrium diagram has probably not yet emerged. For present purposes, metastable states corresponding to continuous heating and cooling are more important than the equilibrium states since man-made Fe-Ni alloys are metastable. In figure 3 the two long-short dashed curves are so-called realization curves representing boundaries of the α and γ phases for Fe-rich alloys. Thus, in practice the b.c.c. phase exists at room temperature up to about 30 Ni, beyond the 10 Ni predicted by "equilibrium" phase boundaries.

Recent experimental and theoretical work on meteorites has suggested modifications of existing Fe-Ni phase diagrams; for example, see Goldstein and Ogilvie [50] and Kaufman and Ringwood [51].

For further details on Fe-Ni phase equilibria readers can consult refs. [40, 41, and 42].

10. Compositional Dependence of Elastic Constants

Compositional variation data, including iron and nickel, are given in figures 4–8 and in tables 5–19. Many earlier data (pre-1945) are based on poorly characterized materials, and data variation is due probably to non-identical specimens and test conditions. Trace impurities influence elastic constants through an impurity-dislocation interaction; dislocations contribute an additional strain upon stress application. Similarly, small residual stresses affect measured elastic constants. Thus, measurements made on low-purity, well-annealed specimens are much preferred. Both residual stresses and dislocation density are reduced by annealing. As discussed in section 11, the effects of some types of defects are useful for minimizing dislocation effects.

Changes in elastic constants due to alloying are usually considered to consist of three parts: (1) change in valency or electron/atom ratio; (2) change in interatomic spacing, and (3) change in interatomic potential. A fourth contribution—change in band structure energy—is complicated, not generally understood, and is treated usually either by simple approximations or by neglecting it.

For Fe-Ni alloys valence is invariant if d electrons are neglected; both elements have two $4s$ electrons. As shown by Reed and Schramm [52], lattice parameters of both Fe and Ni are reduced only slightly by alloying; thus, the lattice parameter effect is small and possibly negligible. The interatomic potential may change significantly; this effect has apparently never been estimated. An estimation could be made by assuming a Born-Mayer, or similar, ion-core repulsive potential and evaluating the Born-Mayer parameters from the ϵ_0. Similarly, contributions from $3d$ and $4s$ band structure energies are undoubtedly important but apparently have never been evaluated. Thus, the theory of alloying effects on the elastic properties of transition metals is presently inadequate for treating the problem even qualitatively. Since both valence and lattice parameter effects are negligible, the Fe-Ni system provides an opportunity for studying effects of band structure and/or effects of changing interatomic potential on elastic properties.

An alternative model by Zener [53] explains lowering of elastic moduli by alloying such as shown in figures 5 and 6. Zener's model is based on residual strain energy arising from the atomic size difference of solvent and solute atoms. Since relative sizes also affect the mutual solubility of species, the effect is related crudely to the limits of maximum solubility; a lower solubility giving a larger effect on the modulus per unit solute. It can be shown simply that strain energy associated with uniaxial tension is largely shear-strain energy rather than dilatation-strain energy. For the shear modulus Zener was able to relate the composition coefficient to the temperature coefficient. Thus,

$$1/G(dG/dx) = 4Nk(\delta r/r)^3(dG/dT),$$

where x = compositional variable, N = Avogadro's number, k = Boltzmann's constant, r = radius of solvent atom, and δr = radius difference between solvent and solute atoms. As shown in section 13, (dG/dT) is usually negative so that (dG/dx) is negative also. Since behaviors of E and G are usually parallel, compositional dependence of E is also accounted for, albeit crudely. Magnetic effects are involved in the minima of elastic stiffnesses near 30 Ni; these effects are discussed in section 15.

Poisson's ratio ν is a poorly characterized elastic constant, both experimentally and theoretically. Especially, the effect of alloy composition on ν cannot be predicted a priori. Observed variations of ν with composition for Fe-Ni alloys are shown for both b.c.c. and f.c.c. phases in figure 8. While data are sparse, certain trends seem to be established. The b.c.c. data, obtained by indirect methods, increase monotonically with increasing Ni content, extrapolating to $\nu = 0.52$ at about 40 Ni, indicating that b.c.c. Fe-Ni is unstable at higher Ni contents. The large magnitude of $(d\nu/dx)$ for the b.c.c. phase is surprising, and reflects a significant change in the interatomic interaction as Ni is alloyed with Fe. This may be the largest change in ν now known for any primary solid solution and reflects
undoubtedly the transition-metal aspect (unfilled 3d electronic shell) of the two species. For comparison, \(\nu \) is constant within experimental error for alloys of Cu, 0–38 percent Zn [37].

For the f.c.c. phase (the open symbols in figure 8), \(\nu \) changes in a more complicated manner with composition, having a maximum at about 40 Ni. Köster and Franz [37] interpreted the compositional variation of \(\nu \) for the f.c.c. phase in terms of magnetostriction, which is discussed in section 15.

Decreases in \(E \) and \(G \) with increasing Ni content shown in figures 5 and 6 are relatively large, about 1 percent modulus change per atomic percent of solute up to \(-35\) Ni. Drastic changes of \(E \) and/or \(G \) with alloying are typical of systems that have limited mutual solid solubility and that tend to form intermetallic phases. Strong compositional variations in Fe-Ni alloys are unexpected because Fe and Ni have similar properties. Magnetic effects are probably important. This subject is ripe for theoretical study. Additional references on alloy effects were given by Speich, Schwobele, and Leslie [23].

Studies of effects of alloying on elastic constants in systems other than iron-nickel were summarized by Hearmon [54]. Some additional studies include:

- Cu, Ag + many solutes: Hopkin, Pursey, Markham [55]
- Cu-Al: Cain, Thomas [56]
- Cu-Al, Cu-Sn: Moment [57]
- Mg-Ag, -Sn, -In: Eros, Smith [58]
- Fe-Al: Leamy, Gibson, Kayser [59]
- Ni-Co: Leamy, Warlimont [60]
- Ni-Cu: Sskurai, et al. [61]
- Pd-Rh, Pd-Ag: Walker, et al. [62]
- Cu, Ag, Au + B-metals: Köster [63]

Friedel [64] correlated deviations from Vegard's law with difference in compressibilities of solute and solvent. (Vegard's law states that, in substitutional alloys, lattice parameters are related linearly to concentration.) As discussed by Mott [65], Friedel [64] extended these considerations to elastic constants. His correlations are most appropriate when atomic volume changes rapidly with composition but Fermi energy is constant. Oriani [67] criticized some aspects of the elastic approach. Muñoz [68] showed that if \(\delta v / v \) exceeds about 1 percent then second-order terms become important but that second order theory breaks down if \(\delta v / v \) exceeds about 7 percent.

11. Effects of Mechanical Deformation, Annealing, Recovery, and Lattice Defects

Crystals and crystal aggregates described above were assumed tacitly to be perfect except for substitutional impurities, thermal vibrations, free surfaces, and (in the case of aggregates) grain boundaries. In this section the small but important effect on elastic constants due to various lattice defects is discussed, both implicitly in terms of macroscopic mechanical states and explicitly in terms of defect contributions per se.

11.1. Mechanical Deformation

Since mechanical loading beyond the elastic limit causes plastic deformation and increases a solid's volume, one expects a lowering of elastic stiffnesses by cold-working. Few data exist for testing this hypothesis for Fe-Ni alloys. Most available experimental data are given in figures 9 and 10 for iron, figures 11 and 12 for nickel, and in figure 13 for their alloys. Properties of deformed metals are difficult to understand because of preferred orientations that may be introduced by working, that is, a mechanically induced anisotropy whose degree and nature are usually unknown. For example, such anisotropy may account for the non-parallel behavior of \(E \) and \(G \) of Ni with plastic deformation as shown in figures 11 and 12. Usually, highly anisotropic mechanical states arise from severe plastic deformation.

Effects of mechanical deformation on elastic properties are difficult problems both experimentally and theoretically. As discussed below, full understanding is inaccessible since it depends on detailed interactions among various species of lattice defects that are deformation induced. These interactions vary with material and depend on composition, crystal structure, mechanical and thermal histories, etc., that is, on any variable which affects the character and/or number of deformation-induced defects. An obviously important variable is method of deformation; whether loading is tensile, compressive, hydrostatic, torsional, slow, impulsive, etc. In short, the relationship between plastic deformation and elastic properties is complicated and will remain so. Additional well-characterized experimental data would illumine the subject somewhat. Interested readers may find some solace in Zener's [69] study where the latent energy of cold-work is related to the lattice expansion accompanying lattice distortion.

A good example of effects of preferred orientations on elastic properties is shown in figure 8 where the upper curve gives the compositional variation of \(\nu \) for 44 percent cold-worked alloys. In several cases, values of \(\nu \) exceeding \(\frac{1}{2} \) were found. As described in section 4, \(\frac{1}{2} \) is the upper limit for an isotropic aggregate. Thus, \(\nu \) can provide a fairly sensitive index for presence of strong preferred orientations. The problem of correcting elasticity measurements for slightly anisotropic aggregates was discussed in detail by Bradfield and Pursey [70] and by Pursey and Cox [71].

Effects on elastic constants due to mechanical deformation can be correlated to a certain extent with effects due to radiation damage since both methods introduce large numbers of lattice point defects. Many fundamental studies, both experimental and theoretical, have been made on radiation damage effects. For a review see Seitz and Koehler [72]. Additional data on deformation and elastic constants are included in figures 14, 18, 19, 20, 30, and 32.
11.2. Annealing

When deformed materials are heated, lattice defects and distortions induced by cold-work are eliminated; that is, lattices recover to unstrained and unstressed states. If both amount of cold-work and annealing temperature are sufficiently high, recrystallization occurs; a new set of strain-free grains grows from the deformed matrix material. Preferred orientations can arise also from recrystallization and subsequent grain growth. Thus, interpretation of the elasticity of a recrystallized material can also be complicated by an anisotropic aspect or annealing texture just as in the case of a material with a deformation texture. Some annealing data for nickel are given in figure 14. For nickel, the Young's modulus for a heavily deformed specimen is close to that of the magnetically saturated state; and higher annealing temperatures produce lower moduli. As also shown in figure 14, rapid cooling from the annealing temperature to room temperature (quenching) tends to increase the modulus, presumably because of stresses induced by temperature gradients during quenching.

11.3. Lattice Defects

Since both deformation and annealing processes must be described ultimately by creation and annihilation of lattice defects, effects on elastic constants due to four types of lattice imperfections—vacancies, interstitials, dislocations, and grain boundaries—will be discussed briefly. Effects due to presence of lattice defects are expected to be especially strong in systems where core-core repulsion energies contribute significantly to elastic constants, for example in noble and in transition metals. Of various energy terms that contribute to elastic constants (see section 17), exchange repulsion terms are probably most affected by displacements of atoms from equilibrium positions.

Since creation of vacancies decreases mass density, one expects vacancies to lower elastic stiffnesses. Theoretical verification of this was obtained by Bruggeman [73] and by Mackenzie [74], and by Dienes [75] who used the Fuchs [76] extended Wigner-Seitz approach with a Morse potential for sodium and a Born-Mayer potential for copper.

In the presence of thermal or static defects, Schoknecht and Simmons [77] showed that

\[\nu B_T^+ = \left(\frac{\partial V(P, T)}{\partial P} \right)_T = \nu B_T^+ \]

\[- \sum_{i,j} \left[n_j \left(\frac{\partial \nu_j(P, T)}{\partial P} \right)_T + \nu_i \left(\frac{\partial \nu_j(P, T)}{\partial P} \right)_T \right], \tag{11.1} \]

where \(\nu_i = (\partial \nu_i / \partial P)_T \) is the free volume of formation of the defect \(j \), \(\nu = \) partial Gibbs energy of defect, \(n_j = \) number of defects of species \(j \), and superscript \(\circ \) denotes the defect-free case. For thermal monovacancies eq (11.1) becomes

\[B_T^+ - B_T^+ = \frac{n \nu^2}{N_k T \nu_a} \tag{11.2} \]

since \(\left(\partial V(P, T)/\partial P \right)_T \) is small; \(\nu_a = \) atomic volume. Thus, the bulk modulus \(B \) is decreased by thermal vacancies.

Conversely, interstitials increase mass density, and higher elastic stiffnesses are expected. Theoretical calculations by Bruggeman [73] and by Dienes [75] also predict this effect. Considering copper and sodium, Dienes showed that a 1 percent vacancy concentration decreases all of the elastic stiffnesses by about 1 percent, while a 1 percent interstitial concentration increases all elastic stiffnesses by about 10 percent. The large difference between effects of vacancies and interstitials is related directly to relaxation of lattices around defects. Dienes found for copper that the percent change in interatomic distance upon relaxation was 2 and 9 percent for vacancies and interstitials, respectively.

Dienes also concluded that interatomic relaxation is much larger in a b.c.c. (more open) crystal structure than in a f.c.c. (close-packed) crystal structure. Melngailis [78] considered how Frenkel defects (vacancy-interstitial pairs) affect elastic properties of copper and concluded that an elastic softening results. This is consistent with the observation that Frenkel defects decrease mass density. Point defects can alter elastic stiffnesses by another mechanism, dislocation pinning. This phenomenon is discussed next.

In discussing effects of dislocations on elastic constants, two types of dislocations are distinguished—those which move freely upon stress application and those which are immobile or pinned. That dislocations should lower elastic stiffnesses was noted apparently first by Eshelby [79]. Subsequently the problem was treated theoretically by Kochler and DeWit [80] for the case of pinned dislocations in f.c.c. crystals. Elastic stiffnesses are altered because reversible dislocation motions contribute a reversible elastic strain component to the total strain. Thus, total strain is increased for a given stress and observed elastic stiffnesses are lower. Kochler and DeWit found approximately that

\[\Delta E/E = -K \rho L^2, \tag{11.3} \]

where \(E = \) Young's modulus, \(K = \) constant, \(\rho = \) dislocation density, and \(L = \) average dislocation loop length. For annealed copper they concluded that pinned dislocations contribute only a few percent to elastic constants, but that for slightly deformed materials (where dislocation densities are much higher) the contribution to elastic constants can be 10 percent or
higher. Because of dilatational components in their strain fields, edge dislocations are about ten times as effective as screw dislocations (which have only a shear strain field) in decreasing elastic stiffnesses. Granato and Lücke [81] gave a detailed vibrating string model for pinned dislocations where damping is related to elastic modulus change; this work was initiated by Koehler [82].

A related subject—anisotropic dislocation theory—has become within recent years a flourishing area of solid-state physics with many intriguing applications for single-crystal elastic data. Interested readers should see chapter 13 of the text by Hirth and Lothe [83].

If thermal oscillations (phonons) are considered crystalline defects, then phonon contributions to elastic stiffness can be computed from statistical thermodynamics. Holder [84] did such a calculation for the bulk modulus with the result for large \(T \) that

\[
\frac{\Delta B}{B} = \frac{3NT}{B} \left(-\gamma - V \frac{\partial (\gamma)}{\partial V} \right) \quad (11.4)
\]

where \(B = \text{modulus} \), \(N = \text{Avogadro's number} \), \(k = \text{Boltzmann's constant} \), \(V = \text{volume} \), \(T = \text{temperature} \), and \(\gamma = \text{Grüneisen's constant} \). According to Holder, substitution of appropriate experimental values into eq (11.4) predicts approximately the observed thermal variation of the bulk modulus. Extension of this, or a similar, approach to \(dB/dT \) would be quite useful.

Grain boundaries can affect elastic constants at higher temperatures when a static or slowly-varying load is applied such that stress relaxation occurs across grain boundaries [5]. At higher temperatures, the viscous aspect of grain boundaries becomes more important. grain-boundary sliding occurs as a Le Chatelier accommodation, and the elastic moduli are effectively lowered. This effect is often seen as a departure from linear temperature dependence and varies with the stress frequency.

12. Higher-Order Elastic Coefficients

Deviations from Hooke’s law (stress is proportional linearly to strain) require the concept of elastic coefficients higher than second-order. These coefficients arise naturally from a Taylor expansion of the elastic internal energy about the unstrained or reference state. Thus,

\[
U = U_0 + a(x-x_0)^2 + b(x-x_0)^3 + c(x-x_0)^4 + \ldots
\]

and the \(n \)th order elastic constant is the \(n \)th derivative of the energy evaluated at the reference spacing. For example

\[
\frac{\partial^2 U}{\partial (x-x_0)^2} = 2a = \text{second-order elastic coefficient}
\]

\[
\frac{\partial^3 U}{\partial (x-x_0)^3} = 6b = \text{third-order elastic coefficient}
\]

and so on.

Identifying elastic stiffnesses with coefficients in a series expansion of energy in terms of strains was first discussed in detail by Birch [85]. More recently, Brugger [86] gave definitions of \(n \)th order isothermal and adiabatic elastic coefficients:

\[
c_{ijkl}^{\theta} = \rho_0 \left(\frac{\partial^2 U}{\partial \eta_0 \partial \eta_k} \right) \theta
\]

\[
c_{ijkl}^{\tau} = -\rho_0 \left(\frac{\partial F}{\partial \eta_0 \partial \eta_k} \right) \tau
\]

\[
s_{ijkl}^{\theta} = \rho_0 \left(\frac{\partial H}{\partial t_0 \partial t_k} \right) \theta
\]

\[
s_{ijkl}^{\tau} = \rho_0 \left(\frac{\partial G}{\partial t_0 \partial t_k} \right) \tau
\]

where \(\eta_0 = [\partial \xi_0 \partial \alpha_0] - \delta_{00} \) (19.8) are Lagrangian strain components. \(F = \text{Helmholtz elastic energy} \), \(S = \text{entropy} \), \(H = \text{enthalpy} \), \(G = \text{Gibbs elastic energy} \). \(\tau = \text{temperature} \), \(\alpha_0 \) and \(\xi_0 \) are Cartesian components of a material particle in unstrained and strained states, and \(\rho_0 = \text{mass density of undeformed state} \). The \(t_0 \) represent thermodynamic tensions conjugate to the variables \(\eta_0 \) for example

\[
t_0 = \rho_0 \left(\frac{\partial F}{\partial \eta_0} \right) \tau = \rho_0 \left(\frac{\partial U}{\partial \eta_0} \right) \theta
\]

Currently there is much activity, both theoretical and experimental, on third-order elastic constants of metals. Fourth-order and higher-order elastic constants were explored experimentally only recently.

The primary significance of third-order elastic coefficients is that they relate directly to anharmonic properties of lattices such as thermal expansion, thermal conductivity, differences between adiabatic and isothermal elastic constants, and temperature and pressure coefficients of elastic constants. Anharmonic crystal properties were discussed by Leibfried and Ludwig [87].

Anharmonic properties of solids can be described conventionally by invoking Grüneisen’s \(\gamma \). Brugger [86] gave a generalized isothermal Grüneisen parameter

\[
\gamma_i^{\theta} = \left(\frac{1}{\omega_i} \left(\frac{\partial \omega_i}{\partial \eta_0} \right) \eta_0 \right)^{-1}
\]

where \(\omega_i = \text{angular frequency of ith normal mode} \). By differentiating the wave equation Brugger related this parameter to second-order and third-order elastic stiffnesses \(c_{\text{klmn}} \) and \(c_{\text{klmnop}} \):

\[
\gamma_i^{\theta}(n) = -\left(\frac{1}{2 \omega_i} \right) \left[2 \omega_i \eta_k \eta_l + c_{\text{klmn}}(n) \eta_0 \eta_n \right]
\]

(12.11)
ELASTIC PROPERTIES OF METALS AND ALLOYS

where

\[w_i = c_i k \text{ in } n \text{ in } n \text{ in } \text{ in } u \text{ in } u \text{, } n = \text{ propagation vector,} \]

and \(u \) = polarization vector.

Gr"uneisen's parameter figures prominently in equations of state for solids. For example

\[P + dU/dV = \gamma E_{\text{vib}}/V \] \hspace{1cm} (12.12)

is the Mie-Gr"uneissen equation of state, which is a special case (all \(\gamma_i \) are equal) of the more general form

\[P + dU/dV = \frac{1}{V} \sum_i \gamma_i \left(h\nu_i/2 + \frac{h\nu_i}{\exp (h\nu_i/kT) - 1} \right) \] \hspace{1cm} (12.13)

that follows simply from the thermodynamic partition function for an array of oscillators.

Gr"uneisen's model succeeds for two reasons. First, while the \(\gamma_i \) are not equal the assumption describes macroscopic thermodynamic properties fairly well. Secondly, while \(\gamma \) depends on volume the dependence is slight; thus, treating \(\gamma \) as a constant, independent of temperature, leads to theoretical predictions that are largely verified by observation. Section 18 discusses a few anharmonic properties. Interested readers should see Gr"uneisen [89] and Slater [90] for further discussion of \(\gamma \) and its applications to theory of solids.

For tetrahedral cubic symmetry (point groups \(T = 23 \), \(T_h = m3 \)) there are eight independent third-order elastic constants as shown by Birch [85], Fumi [91], and Hearmon [92].

\[c_{111} = c_{222} = c_{333} \] \hspace{1cm} (12.14)
\[c_{112} = c_{121} = c_{223} \] \hspace{1cm} (12.15)
\[c_{113} = c_{131} = c_{323} \] \hspace{1cm} (12.16)
\[c_{122} \] \hspace{1cm} (12.17)
\[c_{144} = c_{255} = c_{366} \] \hspace{1cm} (12.18)
\[c_{155} = c_{266} = c_{344} \] \hspace{1cm} (12.19)
\[c_{456} \]

and

\[c_{456} \] \hspace{1cm} (12.20)

All other coefficients are zero.

For octahedral cubic symmetry (point groups \(T_d = 43m \), \(O = 432 \), and \(O_h = m3m \)) there are two additional relationships:

\[c_{112} = c_{113} \] \hspace{1cm} (12.21)
\[c_{155} = c_{166} \] \hspace{1cm} (12.22)

and therefore only six independent third-order elastic coefficients. Both b.c.c. and f.c.c. crystal structures have \(O_h \) point symmetry.

The Cauchy (central-force) conditions for cubic third-order elastic constants are:

\[c_{112} = c_{166} \] \hspace{1cm} (12.23)

Thus, cubic Cauchy crystals have three independent third-order elastic constants. Like second-order constants, Cauchy conditions for third order constants are not expected to hold in metals because of free-electron effects. However, for Cu, Ag, and Au, Hiki and Granato [93] showed that Cauchy conditions are more closely followed for third-order than for second-order constants. This is because ion-ion overlap forces, which are central forces, contribute more strongly to higher-order elastic constants. Similar considerations should apply also to the transition metals.

For isotropy, there are three relationships among third-order constants corresponding to eq (5.1) for second-order constants:

\[c_{112} = c_{123} + 2c_{144} \] \hspace{1cm} (12.24)
\[c_{144} = c_{155} + 2c_{166} \] \hspace{1cm} (12.25)
\[c_{111} = c_{123} + 6c_{144} + 9c_{166} \] \hspace{1cm} (12.26)

Thus, for isotropic crystals there are three independent third-order elastic constants.

Available \(c_{12} \) data for iron and nickel are collected in tables 20 and 21. No third-order elastic constants have been measured or calculated for Fe-Ni alloys.

Elastic coefficients are invaluable for testing the validity of model interatomic potentials. Such tests are quite sensitive since second- and third-order elastic coefficients relate to second and third derivatives of the potential. These coefficients describe changes not only with respect to various shear deformation, but also with respect to volume deformations. Such detailed comparisons have borne out, for example, the validity of pseudopotentials as applied to the simple metals, [94] [97]. In many cases, a knowledge of the experimentally determined coefficients gives directly information on the interatomic forces. For example, if Cauchy relations are satisfied one expects a central-force type model to successfully predict the elastic coefficients. Hiki and Granato [93] observed that the third-order elastic coefficients of Cu, Ag, and Au followed the Cauchy relations much more closely than did the second-order elastic coefficients. From this observation they concluded that short-range central forces, in this case arising from d-shell overlap, become increasingly more important as one considers...
higher-order derivatives of the total energy. As shown in tables 5 and 6, second-order Cauchy relationships are violated for both iron and nickel, as expected. However, the deviations are small, about 20 percent. The data in table 21 show that for nickel the deviations from third-order Cauchy relationships are quite small, and also that the deviation from the condition for first-nearest-neighbor interactions is very small. The situation for iron is more ambiguous, and additional experimental third-order data would be very valuable.

Several proposals have been made for averaging the \(c_{ij} \) to obtain the quasi-isotropic coefficients \(c_{ij}^* \). Most of the considerations discussed in section 5 for obtaining \(c_{ij}^* \) apply also to the \(c_{ij} \) case. Hamilton and Parrott [98] pointed out that the difference between Voigt's and Reuss's averages are even more important for the \(c_{ij} \) than for the \(c_{ij}^* \). Whether a Hill-type average is also appropriate for the \(c_{ij} \) has not yet been established. The problem of averaging \(c_{ij} \) is ripe for both theoretical and experimental study. Interested readers should see Barsch [99], Nran'yan [100], Cousins [101], and Chang [102].

Some authors have reported quasi-isotropic third-order elastic constants as Lamé coefficients \(v_1, v_2, \) and \(v_3 \) or as Murnaghan's constants \(l, m, \) and \(n. These these are related to the \(c_{ij}^* \) as follows:

\[
\begin{align*}
c_{122}^* &= v_1 = l, \\
c_{144}^* &= v_2 = m, \\
c_{445}^* &= v_3 = n, \\
c_{112}^* &= v_1 + 2v_2, \\
c_{112}^* &= v_1 + 6v_2 + 8v_3.
\end{align*}
\]

(12.27)

(12.28)

(12.29)

(12.30)

(12.31)

(12.32)

13. Temperature Dependence of Elastic Constants

Temperature (and as discussed in section 14, also pressure) variations of elastic constants are an important part of the subject of equations of state of solids. If equations of state were known precisely, then elastic constants and their temperature and pressure coefficients could be calculated immediately. Large parts of both theoretical and experimental solid-state physics would then be obviated. In fact, equations of state of solids are known only crudely, and such parameters as \(\partial c_{ij} / \partial T \) and \(\partial c_{ij} / \partial P \) are measured and used to test and to improve the equations.

The problem of temperature dependence of elastic constants of solids was first considered carefully by Born and co-workers [103]. Zener [104] discussed the problem in terms of an oscillator model of solids. Discussion here is purely thermodynamic and therefore more general.

It is easy to show that temperature coefficients of elastic stiffnesses, or any linear combination of elastic stiffnesses, should approach zero as \(T \) approaches zero. Invoking Nernst's heat theorem that the entropy \(S \) of all crystalline solids approaches zero as \(T \) approaches zero, then

\[
\lim_{T \to 0} \frac{\partial S}{\partial x_i} = 0,
\]

(13.1)

where \(x_i \) is any usual thermodynamic variable that preserves crystallinity. Physically this means that the entropy change in an isothermal physical process goes to zero as \(T \) approaches zero, that is all crystalline states of a solid have zero entropy at zero temperature. Also,

\[
\lim_{T \to 0} \frac{\partial^2 S}{\partial x_i \partial x_j} = \lim_{T \to 0} \frac{\partial}{\partial x_i} \frac{\partial S}{\partial x_j} = 0.
\]

(13.2)

If \(x_i \) and \(x_j \) are strains \(\varepsilon_i \) and \(\varepsilon_j \) and if a Maxwell relation in elasticity variables

\[
(\partial \sigma_{ij} / \partial T)_{\varepsilon} = (\partial S / \partial \varepsilon_i)_{T},
\]

(13.3)

is invoked, then

\[
\lim_{T \to 0} \frac{\partial^2 S}{\partial x_i \partial \varepsilon_j} = \lim_{T \to 0} \frac{\partial}{\partial x_i} \frac{\partial S}{\partial \varepsilon_j} = 0,
\]

(13.4)

and

\[
\lim_{T \to 0} \frac{\partial}{\partial \varepsilon_i} \frac{\partial S}{\partial (\sigma_{ij})} = 0,
\]

(13.5)

since

\[
\sigma_{ij} = (\partial S / \partial \varepsilon_i)_{T, \varepsilon}.
\]

(13.6)

Thus, elastic stiffnesses \(c_{ij} \) approach constant values with vanishing slope when plotted versus temperature as \(T \) approaches zero. This feature must be considered when extrapolating elastic data at cryogenic temperatures.

Temperature dependence of elastic stiffness at higher temperatures cannot be demonstrated so simply since the effect is anharmonic. Like thermal expansion, it relates to higher-order elastic coefficients, which were described in section 12. Any discussion of higher-order or anharmonic effects is simplified by introducing Grüneisen's parameter

\[
\gamma = \frac{V}{v_i} \left(d v_i / d V \right) = -d \ln v_i / d \ln V
\]

(13.7)

where \(V \) = volume of the crystal and \(v_i \) = frequency of \(i \)th normal vibrational mode. Grüneisen's \(\gamma \) is actually a tensor property, but its isotropic form is sufficient for many purposes. In the quasi-harmonic model, \(\gamma \) does not depend explicitly on temperature [105]. And it is related directly to various thermodynamic properties, for example [106].

\[
\gamma = \beta P B_i / C_v
\]

(13.8)
ELASTIC PROPERTIES OF METALS AND ALLOYS

where \(\beta \) = volume thermal expansion coefficient, \(V \) = volume, \(B_T \) = isothermal bulk modulus and \(C_v \) = specific heat at constant volume. Thus, \(\gamma \) can be determined from a set of macroscopic thermodynamic parameters. For metals \(\gamma \) has a range of 1 to 3 and is usually about 2 \([107]\). This limited range of \(\gamma \) is expected since by integration of eq (13.7)

\[
v_1 = V'^{-1}, \tag{13.9}
\]

that is the volume dependence of vibrational frequencies is weak and is roughly similar for all materials. If an Einstein oscillator model of solids is invoked, then

\[
v_1 = \nu = k\theta/\hbar \tag{13.10}
\]

where \(\theta \) = characteristic temperature, \(k \) = Boltzmann’s constant and \(\hbar \) = Planck’s constant. Substitution into eq (13.7) gives

\[
y = -d/\theta \log V = -(V/\theta) (d\theta/dV). \tag{13.11}
\]

Invoking the well-known relationship

\[
C_v - C_p = 3V\beta^2B, \tag{13.12}
\]

for quasi-isotropic solids, combining this with eq (13.8) and rearranging terms,

\[
C_p/C_v = 1 + \gamma T\beta - 1 + \gamma (d\gamma/dT)_p T/V. \tag{13.13}
\]

Substituting from eq (13.11)

\[
C_p/C_v = 1 - T(d\theta/dT)_p/\theta. \tag{13.14}
\]

Thus, since \(C_p > C_v \), the characteristic temperature decreases with increasing temperature. The characteristic temperature \(\theta \) can be related to the elastic moduli, e.g., \(E \), by invoking relationships introduced originally by Madelung \([108]\) and by Einstein \([109]\).

\[
\theta = KE^{1/2}f(\nu), \tag{13.15}
\]

where \(f(\nu) \) depends upon Poisson’s ratio. Assuming that \(\nu \neq \nu(T) \), which is only crudely true, then

\[
d\theta/\theta = (1/2)dE/E, \tag{13.16}
\]

and

\[
(1/E) (dE/dT)_p = (2/T) (1 - C_p/C_v). \tag{13.17}
\]

Thus, in this model elastic stiffnesses behave exactly as the characteristic temperature; their coefficients are negative.

Since elastic coefficients \(c_{ij} \) are given by the second spatial derivative of the elastic potential energy, one expects a priori a slow decrease of \(c_{ij} \) with increasing temperature due to the interatomic potential becoming more shallow as atomic vibration amplitudes increase.

In fact, it has been shown experimentally \([54]\) for a wide variety of materials that \(dc_{ij}/dT \) is zero at \(T = 0 \text{ K} \), is constant and negative at high temperatures \((T > \theta) \), and changes rapidly at low temperatures. The exact low temperature dependence of \(c_{ij} \) remains an unsettled problem; several suggestions have been made on either theoretical or empirical grounds for the low-temperature dependence of \(c_{ij} \). These include

\[
c_{ij}(T) = c_{ij}(0) [1 - KT^4], \tag{13.18}
\]

and

\[
c_{ij}(T) = c_{ij}(0) - AT \exp (-T/\theta). \tag{13.19}
\]

\[
c_{ij}(T) = c_{ij}(0) - B/\exp (C/T - 1). \tag{13.20}
\]

All these functions fit selected data quite well, indicating that the exact form of the interpolation from \(T > \theta \) to \(T = 0 \) is unimportant for most purposes.

Since no fourth-order elastic stiffness have yet been measured, it is attractive to attempt a derivation of fourth-order constants from the temperature derivatives of second-order constants. Hiki, Thomas, and Granato \([110]\) derived expressions among \(dc_{ij}/dT \), \(c_{ij} \), and \(c_{ij} \) in the high-temperature limit of a continuum model. This approach to the \(c_{ij} \) has been made for \(\beta \) Cu-Zn \([111]\), NaCl \([112]\), and the noble metals \([93]\) and was discussed by Holder and Granato \([113]\).

Temperature variation data are given mainly in figures 15–32 and also in 33–6 and 38. The only really anomalous temperature data are shown in figure 17 where for Fe-Ni alloys containing about 30 percent Ni, most elastic stiffnesses have positive temperature coefficients over a wide temperature range. Positive coefficients, while unusual, occur also in other systems; for example Mo(c), Pd(c11, c12, c44), and Th(c12) \([54]\). However, no single theory accounts for occurrences of positive coefficients; separate explanations must be sought for anomalies in individual cases. In the case of Fe-Ni alloys, apparently no explanation has been proposed in the literature. Usual magnetic effects can be disregarded since Curie temperatures (see figure 3) lie well below temperature regions where anomalies occur. It is interesting to note that alloys in this composition range show also curious “invar” effects and phase transition effects. Both these aspects are discussed below.

For additional discussion on the temperature variation of elastic constants, readers should see refs. \([87]\) and \([114–116]\).

At low temperatures where the internal energy is given approximately by

\[
U = U_0 + aT^2 + bT^4, \tag{13.21}
\]

it follows that a general elastic stiffness \(M \) is

\[
M(T) = \frac{\partial^2 U}{\partial \varepsilon^2} = M(0) + \frac{\partial^2 a}{\partial \varepsilon^2} T^2 + \frac{\partial^2 b}{\partial \varepsilon^2} T^4 + \beta \varepsilon V \frac{\partial M(0)}{\partial \varepsilon} T \tag{13.22}
\]
where $\epsilon =$ appropriate strain, $\beta =$ volume expansion coefficient, and the linear term allows for thermal expansion. Abers [22] described the validity of eq (13.22) for several metals and pointed out that for transition metals the quadratic term, which arises from the electron gas, dominates the quartic term that arises from lattice vibrations.

Sutherland [117] suggested eighty years ago that reduced shear modulus $G(T)/G(0)$ plotted versus reduced temperature T/T_m gave a universal curve for all metals and that G becomes zero at $T=T_m$. While Sutherland’s correlation of reduced G’s remains valid and valuable, it is now known that G need not vanish at the melting point [118].

In figures 18 and 23 anomalous increases both in E and G are shown that result from crystallographic phase transitions. Generally, elastic properties are discontinuous through first-order phase transitions. This topic is discussed in section 16.

In absence of a saturating magnetic field, ferromagnetic materials may show anomalous elastic behavior as a function of temperature due to motion of magnetic domains upon stress application. As shown in figures 14 and 19, mobility of ferromagnetic domain walls leads to an effective elastic softening because domain walls can contribute an additional strain. When materials are heated through the ferromagnetic-to-paramagnetic transition, then they usually behave normally since in the paramagnetic state there are no magnetic domain walls that can move under applied stress. Applying a strong magnetic field to the ferromagnetic state has a similar effect: domain walls take positions that are most favorable for minimizing the total energy of the system, and they are effectively immobile until the magnetic field is removed. These topics are discussed further in section 15.

Apparently, no theory has been proposed to explain the variation of ν with T. For many purposes this variation can be ignored since it is small for most solids. As discussed by Slater [119], dv/dT should be positive since the upper limit of $\nu = 1/2$ corresponds to a liquid, and heating metals increases their volume and their behavior becomes more liquid-like. Köster and Franz [37] discussed some experimental and a few analytical aspects of dv/dT. As shown in figures 30 and 31, dv/dT is positive and small for both iron and nickel.

14. Pressure Dependence of Elastic Constants

Most existing data for the pressure variation of the elastic constants are for the bulk modulus (reciprocal compressibility). This is because compressibility can be determined directly as a volume change under pressure as shown by eq (4.18). Extensive data for metallic elements were acquired in the pioneering experiments of Bridgman [120]. Following Bridgman, compressibility data are expressed frequently in the form

$$V = V_0 (1 - aP + bP^2),$$

(14.1)

where V is the volume at pressure P, V_0 is the original volume, and a and b depend on temperature. The compressibility is

$$B^{-1} = -(1/V) (\partial V/\partial P) = (a - 2bP)/(1 - aP + bP^2).$$

(14.2)

Coefficient a is the initial (zero-pressure) isothermal compressibility, and b is related to the pressure derivative of the isothermal bulk modulus by the relationship

$$b = 1/(2B_{0}^2) (1 + \alpha B_{0} P)_{P=0},$$

(14.3)

The first expressions for the pressure dependence of the elastic stiffnesses were given by Röch [85]:

$$c_{111}(P) = c_{111}(0) + \phi(2c_{112} + 2c_{122} + 6c_{111} + 4c_{111}),$$

(14.4)

$$c_{112}(P) = c_{112}(0) + \phi(-c_{112} + c_{111} + 4c_{111} + 4c_{111}),$$

(14.5)

and

$$c_{114}(P) = c_{114}(0) + \phi(c_{114} + 2c_{112} + 2c_{44} + 4c_{112} + 4c_{111}),$$

(14.6)

where ϕ is defined by

$$V/V_0 = (1 + 2\phi)^{3/2}$$

(14.7)

with $V_0 =$ original volume and $V =$ volume at pressure P. Conversion of ϕ to ϕ is accomplished by eqs (14.1) and (14.7). The third-order coefficients appearing in eqs (14.4)-(14.6) are related to the third-order coefficients defined by Brugger [86] as follows:

$$c_{111}^3 = c_{111}/6,$$

(14.8)

$$c_{112}^3 = c_{112}/2,$$

(14.9)

$$c_{113}^3 = c_{112},$$

(14.10)

and

$$c_{114}^3 = 2c_{114},$$

(14.11)

It follows that the pressure derivatives of the second-order elastic coefficients may be written as

$$-(\partial c_{11}/\partial P)_{P=0} = (2c_{11} + 2c_{12} + c_{111} + 2c_{112})/3B,$$

(14.13)

Much confusion exists concerning Bridgman’s compressibility values because the compressibility standard, iron, was re-evaluated. Different corrections have been used, and old and new values are sometimes not distinguished. (Koster [37] discussed this problem in detail, and his recommendations are adopted here.)
ELASTIC PROPERTIES OF METALS AND ALLOYS

\[-(\partial c_{12}/\partial P)_{P=0} = (-c_{11} - c_{12} + c_{123} + 2c_{112})/3B,\]
\[(14.14)\]

\[-(\partial c_{44}/\partial P)_{P=0} = (c_{11} + 2c_{12} + c_{44} + c_{144} + 2c_{126})/3B,\]
\[(14.15)\]

and

\[-(\partial B/\partial P)_{P=0} = (c_{11} + 6c_{12} + 2c_{126})/9B,\]
\[(14.16)\]

where the bulk modulus \(B\) is

\[B = \frac{1}{3}(c_{11} + 2c_{12}).\]
\[(14.17)\]

By using the finite strain theory of Murnaghan [121] and Birch [85], Chate [122] derived theoretical expressions for the pressure dependence of second-, third-, and fourth-order elastic constants. For the second-order case, he obtained the general form

\[c_{ij}(P) = c_{ij}(0) + A\eta + B\eta^2\]
\[(14.18)\]

where \(\eta\) is the Lagrangian strain and the parameters \(A\) and \(B\) are linear combinations of \(c_{ij}\) and \(c_{ijkl}\). Chate’s second-order equations are identical to Birch’s when the third-order elastic coefficients are defined identically.

It is interesting to note that no expressions comparable to eqs (14.15)–(14.16) have yet been derived for the temperature derivatives in terms of higher-order elastic coefficients, even from simple models.

Both the temperature and pressure dependence of the elastic constants can be deduced qualitatively very simply by assuming a linear anharmonic oscillator model. In the harmonic approximation the energy per atom is

\[U = U_0 + \frac{1}{2}k(x - x_0)^2,\]
\[(14.19)\]

where \(U_0\) = energy in unstrained (reference) state, \(k\) = “spring” constant, and \(x_0\) = position of atom corresponding to \(U_0\). In the simplest anharmonic model, a single asymmetric term appears. Thus,

\[U = U_0 + \frac{1}{2}k(x - x_0)^2 - \frac{1}{6}l(x - x_0)^3,\]
\[(14.20)\]

is the energy when a particle is displaced from \(x_0\) to \(x\). (The negative sign of the cubic term assures positive thermal expansion coefficients.)

The second-order elastic constant is

\[c_2 = (\partial^2 U/\partial (x - x_0)^2) = k - l(x - x_0).\]
\[(14.21)\]

Thus, when the linear chain is compressed (e.g., by increasing the pressure) \(x < x_0\) and \(c_2\) is increased. Similarly, when the chain is expanded (e.g., by increasing the temperature) \(x > x_0\) and \(c_2\) is decreased. In this model, both temperature and pressure effects are simply related to changes in \(x\), the linear lattice parameter.

The influence of pressure on the elastic constants of Fe-Ni alloys is shown in tables 14, 15, and 22.

15. Magnetic Field Dependence of Elastic Constants

Since magnetic interactions between atoms contribute to the total energy of a ferromagnet, there must be a corresponding contribution to the elastic constants, which are second derivatives of the total energy with respect to appropriate strains. Direct observation of this contribution would elucidate the nature of the magnetic exchange energy, particularly its derivatives with respect to atomic spacing. However, except in the presence of a saturating magnetic field, this contribution is overridden by effects due to magnetic domain boundaries.

In the domain theory of ferromagnets the demagnetized state corresponds to an array of domains, each of which is permanently magnetized to saturation. The domains are oriented randomly so that a specimen has no net magnetization. Net magnetization is achieved by applying an external magnetic field so that magnetization vectors within domains tend to align with the external field.

Magnetic effects on elastic constants were first observed in 1902 by Honda [123] who termed the phenomenon the “ΔE” effect; ΔE refers to the difference in Young’s modulus \(E_\sigma - E_\delta\) between saturated and demagnetized states. In the demagnetized state, elementary magnetic domains can change their magnetization direction under applied stress and grow at the expense of neighboring domains that have different orientations that are energetically unfavorable in the applied stress field. Growth consists of motion of domain boundaries (Bloch walls). At magnetic saturation domain walls are immobile, and a “true” or maximum value of \(E\) is obtained.

Stress plays a role similar to magnetic field in determining a specimen’s magnetization. In effect, stress alters magnetization, which alters a ferromagnet’s elastic constants. If domain redistribution does not occur, then different elastic constants are observed. Domain redistribution is prevented, for example, by superimposing a saturating magnetic field or by a high magnetic anisotropy energy.

The following brief analysis follows closely that given by Lee [124].

Assuming that the total strain \(\epsilon_t\) consists of nonmagnetic and magnetic parts, Kornetski [125] showed empirically that

\[\epsilon_t = \epsilon_0 + \epsilon_m = \sigma(1/E_\sigma + 1/E_1 + E_2),\]
\[(15.1)\]

where numerical subscripts indicate derivatives of \(1/E\) with respect to stress. In the demagnetized state

\[1/E_\sigma = 1/E_0 + 1/E_1,\]
\[(15.2)\]

And at saturation $\varepsilon_m = 0$ so that $E = E_0$. From eq (15.1) it follows that $E = a / \varepsilon$ first decreases, passes through a minimum, and then approaches E_0 as stress is increased. Figure 19.17 in Chickazumi [1] shows this behavior; see also figures 13.123 and 13.124 in Bozorth [126].

As shown in figures 18 and 19, the ΔE effect for annealed Ni is several percent and for Fe less than one percent. For alloys, as shown in figures 34 and 37, the effect is strongly composition dependent.

Clearly, the ΔE effect should be related to the magnetostriction constant, λ, the strain due to magnetic saturation. Chickazumi [1] has given relationships of the form

$$ (\Delta E/E^*)_{\text{NET}} = \lambda_{\text{NET}} $$

(15.3)

and for Fe-Ni a plot of λ versus composition (his fig. 19.14). The ΔE effects shown in figures 34 and 37 correlate remarkably well with the variations of λ with composition, being zero at about 98 and 82 nickel and with maxima at about 40 and 100 nickel.

Taking $\Delta B = 0$, it can be shown from table 1 that the change in the shear modulus is related to the change in the Young’s modulus by the relationship

$$ \Delta G/G = (3G/E) \Delta E/E. $$

(15.4)

This effect is shown in figures 34 and 35. Clearly, the bulk modulus is unaffected by magnetic fields since hydrostatic pressures do not cause domain boundary movements.

The importance of the ΔE effect is well-illustrated by the Elinvar alloys (Fe \sim 35 Ni \sim 10 Cr) where the decrease in E due to increased temperature is largely compensated for by a smaller $\Delta E/E$ effect with increasing temperature. Thus, a good approximation E is independent of T for Elinvar alloys below their Curie temperatures.

16. Effects of Crystallographic Transitions on Elastic Constants

When metals or alloys undergo crystallographic transitions, their elastic constants change for several possible reasons: (1) change of lattice type, (2) change of specific volume, (3) change of electronic or Brillouin zone structure, (4) change of relative positions of atoms in the unit cell (even when lattice type is invariant, for example, hexagonal-to-hexagonal with a change in c/a ratio). In most cases, there is also a non-physical effect, namely a change of co-ordinate axes. The effect can be eliminated by a suitable co-ordinate transformation or alternatively by considering force constants, for example—the spring constant between atoms in closest-packed directions in both phases. In short, any parameter that affects vibrational spectra must also influence elastic constants. No a priori basis exists for predicting effects of phase transitions on elastic constants. Each case must be considered individually since both energetics and mechanisms of solid-solid transitions vary widely.

If a phase transition can be characterized completely by lattice considerations, then clearly the lower temperature phase must be elastically harder than the high temperature phase since it must have a higher Debye characteristic temperature in order to be the phase of lowest free energy at lower temperatures. As shown in figures 18, 23, 26, and 30, in Fe-Ni alloys, with one exception at low Ni contents, low temperature phases are elastically softer. Thus, in this system strong electronic effects are undoubtedly involved in the f.c.c.-to-b.c.c. phase transition. Volume increase during the f.c.c.-to-b.c.c. transition may also account partially for the observed elastic softening.

Phase transitions characteristically show a marked increase in damping in the region of the transition temperature. Thus, materials should deform readily in the temperature regions of their phase transitions since deformation mechanisms are augmented by damping mechanisms. In fact, some superplastic phenomena are due directly to phase-transition softening. Spurious elastic measurements can be obtained near a phase change, and such data should be interpreted carefully.

It is attractive to consider a simple explanation for crystallographic transitions, namely, mechanical and therefore also thermodynamic instability of lattices. In 1940, Born [127] derived mechanical, thermodynamic stability conditions that apply to all cubic crystals regardless of unit-cell size and regardless of the type of interatomic forces. These conditions follow from the requirement that elastic strain energy

$$ U_e = c_{ij} \varepsilon_i \varepsilon_j / 2, $$

(16.1)

is positive-definite, that is

$$ U_e > 0. $$

(16.2)

In other words, any elastic strain or combination of strains must increase elastic energy. Stability conditions can be derived readily by considering the matrix array of elastic coefficients for a cubic crystal, eq (4.10), and requiring that each principal minor of this matrix is positive. After some algebra, it results that

$$ c_{11} > 0, $$

(16.3)

$$ c_{11} > |c_{12}| \text{ or } (c_{11} - c_{12}) > 0, $$

(16.4)

and

$$ c_{11} + 2c_{12} > 0, $$

(16.5)

$$ c_{44} > 0. $$

(16.6)

If any of these conditions are violated, then crystals are unstable with respect to long-wavelength phonons and a transition to another crystal structure or to a liquid phase must occur. Of course, such transitions may occur for other reasons since phase equilibria are determined.
by relative stabilities of competing structures and eqs (16.3)–(16.6) describe conditions of absolute instabilities. These conditions may be summarized by saying that c_{11}, the bulk modulus $(c_{11} + 2c_{12})/3$, and the two shear moduli $(c_{11} - c_{12})/2$ and c_4 must all be positive.

Since elastic stiffnesses for cubic crystals are found experimentally to be always positive, eq (16.4) is usually the strongest stability constraint.

The following assumptions are implicit in deducing eqs (16.3)–(16.6):

(a) Lattices undergo homogeneous deformations. According to Born and Huang [128] this means that only long-wavelength vibrational modes are important.

(b) Elastic strain energy density is expanded only to second-order terms in deformation parameters.

Equations (16.3)–(16.6) also imply inequalities for the wave velocities, which are related to the c_{ij} by the Christoffel equations (see eq (18.3)).

By assuming a Mie Grüneisen form of interatomic potential

$$\varphi(r) = -\frac{a}{r^n} + \frac{b}{r^m},$$

(16.7)

where $n > m$ for a minimum energy to exist, and $m > 3$ for cohesive energy to be finite, Born [127] proved that:

(a) simple cubic lattices are never stable;

(b) face centered lattices are always stable;

(c) body-centered lattices are unstable except for small exponents m and n in the force law.

For an interatomic potential given by eq (16.7), the concept of mechanical instability applies only to b.c.c. lattices. Zener [129] extended the concept of mechanical instability to include ideas on shear anisotropy and vibrational entropy. While Zener’s ideas were proposed originally to explain instability of higher-temperature b.c.c. phases on cooling, they can be applied to any phase instability on cooling or heating. (For example, as shown by Fisher and Renken [130], the hexagonal-to-b.c.c. transitions in Ti, Zr, and Hf seem to show an unusual temperature dependence of vibrational entropy near the transformation temperatures.) Despite success claimed for Zener’s criteria, they are not universal. Many phase transformations occur without shear constants becoming small or elastic anisotropies becoming large. Conversely, some systems with small shear constants and/or high elastic anisotropies exhibit no phase transitions.

Thus, while Zener’s criteria are useful for testing for possible occurrence of phase transitions, they are neither necessary nor sufficient. (As discussed above, the limit of vanishing $(c_{11} - c_{12})/2$ and c_4, while the latter gives the bulk modulus $(c_{11} + 2c_{12})/3$. Fuchs considered three principal contributions to shear constants: (1) electrostatic energy of positive ions in a negative, charge-compensating electron gas, (2) exchange energy due to ion-core overlap and repulsion, and (3) Fermi or kinetic energy of the valence electrons. A minor contribution also considered by Fuchs was the van der Waals or dipole-dipole energy.

Recently, so-called pseudopotential methods have been calculated successfully by methods of Fuchs [76] and Fröhlich [134]. The former gives shear constants $(c_{11} - c_{12})/2$ and c_4, while the latter gives the bulk modulus $(c_{11} + 2c_{12})/3$. Fuchs considered three principal contributions to shear constants: (1) electrostatic energy of positive ions in a negative, charge-compensating electron gas, (2) exchange energy due to ion-core overlap and repulsion, and (3) Fermi or kinetic energy of the valence electrons. A minor contribution also considered by Fuchs was the van der Waals or dipole-dipole energy.

Recently, so-called pseudopotential methods have been calculated successfully by methods of Fuchs [76] and Fröhlich [134]. The former gives shear constants $(c_{11} - c_{12})/2$ and c_4, while the latter gives the bulk modulus $(c_{11} + 2c_{12})/3$. Fuchs considered three principal contributions to shear constants: (1) electrostatic energy of positive ions in a negative, charge-compensating electron gas, (2) exchange energy due to ion-core overlap and repulsion, and (3) Fermi or kinetic energy of the valence electrons. A minor contribution also considered by Fuchs was the van der Waals or dipole-dipole energy.
elastic constants, this method has been fairly successful for simple metals. But, to date, no pseudopotential calculation of elastic constants has been made for transition metals (incomplete d shells). It would be very valuable to extend pseudopotential theory to this case, which includes both iron and nickel.

Johnson [136] constructed an interatomic potential for iron based on experimentally observed elastic constants. That is, in effect, the reverse problem; but it is useful to consider the results because they decompose the elastic constants into various contributing energies. The Fermi energy contribution was neglected and only electrostatic and ionic terms were considered. By computing the electrostatic contribution it was deduced by difference that the ionic term makes the dominant contribution to iron’s elastic constants. This reflects the large ion-core size of iron compared to its interatomic spacing.

To determine the applicability of a Morse potential to studies of atomic properties of crystals, Girifalco and Weizer [137] calculated second-order elastic coefficients for several cubic metals including iron and nickel. Morse’s potential for a pair of atoms is

$$\varphi(r_{ij}) = D [e^{-2\alpha (r_{ij} - r_0)} - 2e^{-\alpha (r_{ij} - r_0)}]$$ (17.1)

where $r_{ij} =$ center-to-center spacing of ion pair, $r_0 =$ equilibrium separation of two ions. $\varphi(r_0) = -D =$ dissociation energy, and α is an adjustable “hardness” parameter evaluated from the compressibility.

These results are in only fair agreement with observation considering how the three Morse parameters were evaluated. $B = (c_{12} + 2c_{13})/3$ was input, and an elaborate (1000 neighboring atoms) lattice sum was performed. And, of course, the fundamental defect of a Morse, or similar, interatomic potential is that it permits only central pair-wise interactions, neglecting non-central and many-body forces. Central forces demand in the cubic case that $c_{12} = c_{44}$, and this condition is rarely observed experimentally. Lincoln, Kolwad and Ghate [138] used a Morse potential to calculate third-order elastic constants of several cubic metals and some of their results disagree strongly with experiment. Iron and nickel were not included in their calculations. Third-order elastic stiffnesses as well as the pressure coefficients of the second-order elastic stiffnesses were recently calculated by Mathur and Sharma [139] using a Morse potential; their results are given in tables 20 and 21. All of these results should be considered cautiously since Milstein [140] recently criticized application of Morse potentials to b.c.c. crystals since such potentials cannot predict values of c_{ij} in the b.c.c. case that are within stability limits imposed by Born’s criteria (see section 16). Use of a Morse potential for f.c.c. metals was recently criticized on experimental grounds [141].

Ducastelle [142] studied theoretically the elastic coefficients of transition metals assuming the total energy to consist of a d band contribution (using a tight binding approximation) and a Born-Mayer repulsion term. His model accounted for the variation in c_{ij} along a transition series for f.c.c. and b.c.p. crystal structures. Failure to account for the b.c.c. case was attributed to d band details not included in his model. For both Fe and Ni, his calculated c_{ij} agreed surprisingly well with observation.

Lieberman [143] recently carried out a self-consistent-field band calculation for zero temperature and pressure with a potential incorporating both exchange and correlation contributions. For iron a good result was obtained for the bulk modulus.

Rosenstock and Blanken [144] considered interatomic forces in several cubic solids, including nickel, on the basis of experimentally observed dispersion of lattice vibrations.

Zwikker [145] showed for metals that the bulk modulus is given by

$$B = \frac{mn}{9} \cdot \frac{I}{V}$$ (17.2)

where $I =$ ionization energy, $V =$ volume, and m, $n =$ exponential factors in the Mie-Grüneisen potential energy, eq (16.7). Values of m and n were tabulated by Fürth. However, application of a Mie-Grüneisen potential to metals is quite approximate since it does not contain non-central forces.

17.2. Hard-Sphere Model

Much metallurgy and crystal physics can be understood, albeit crudely, by considering a hard-sphere model of solids. In this model, atoms are represented as incompressible spheres in contact along close-packed lattice directions, (111) b.c.c. and (110) f.c.c. This model assumes implicitly that only ion-ion repulsion energies contribute to elastic constants. This approximation is reasonably good for both noble metals and transition metals. Table 22 gives relative elastic constants for both b.c.c. and f.c.c. crystals based on a hard-sphere model; B was set arbitrarily to unity. Considering the model’s crudeness, predicted relative quantities correlate surprisingly well with observation in many aspects. For example:

1. $c_{11} > c_{12} > c_{44}$
2. $B \sim E$,
3. $G \sim 3/8E$,
4. high A for b.c.c. case, and
5. low (110) (110) shear resistance for b.c.c. case.

Additional aspects of hard-sphere models were discussed by Mott [146].
18. Relationship of Elastic Constants to Other Physical Parameters

The purpose here is to indicate briefly how elastic properties of crystals relate to a wide variety of solid-state phenomena, many of which might appear to be independent of elasticity. While some of the relationships described here are empirical and not understood altogether, they have proven useful in interpreting behavior of solids.

Elastic properties of solids are related intimately to atomic vibrational, or phonon, spectra. Vibrational spectra link elastic properties with most other phenomena that are discussed here.

Frequency distributions of atomic vibrations in crystals have intrigued scientists since Debye’s parabolic approximation to the problem was proposed in 1912. Despite intense efforts, theorists have failed to either devise an exact mathematical solution for frequency spectra or to explain why Debye’s crude model is effective; obviously, for many purposes the exact shape of frequency distributions is relatively unimportant. Thus, many lattice vibrational problems in many branches of solid-state physics are discussed meaningfully in terms of Debye’s theta.

While the main purpose of this section is to relate elastic properties to other solid-state phenomena, this can be done most conveniently by invoking Debye’s θ. Thus, for present purposes θ should be considered an elastic stiffness parameter.

The Debye thetas calculated by several authors from their elastic data are given in table 24.

Sound Velocities

Sound waves in solids differ from sound waves in gases or liquids in two vital ways. First, solids transmit transverse or shear waves as well as longitudinal or dilatational waves. Secondly, sound waves in solids are polarized, and in the anisotropic case polarization vectors are not simply related (orthogonal) to the propagation vector.

Debye’s θ is linearly related to a mean sound velocity v_m, that is

$$\theta = Kv_m,$$ \hspace{1cm} (18.1)

where $K = (h/k)(3/4\pi\theta^3)$, where $h =$ Planck’s constant, $k =$ Boltzmann’s constant, and $\theta =$ atomic volume.

For single crystals, v_m is obtained from elastic constants by the integration over all space

$$3v_m^{-3} = \int \sum_{\alpha=1,4,3} v_\alpha^{-3} d\Omega/4\pi,$$ \hspace{1cm} (18.2)

where $v_1 =$ quasi-longitudinal wave velocity, v_2 and $v_3 =$ quasi-transverse wave velocities, $d\Omega =$ increment of solid angle, and $4\pi =$ normalization factor. Velocities v_α are roots of Christoffel’s equations.

det \((c_{ijkl}x_jx_k - \rho^2\delta_{ij}) = 0, \) \hspace{1cm} (18.3)

which follow from the equations of motion of plane, monochromatic waves where $\rho =$ mass density, $c_{ijkl} =$ fourth-rank elastic stiffness tensor, $x_i =$ components of unit wave vector relative to cubic axes, and $\delta_{ij} =$ Kronecker delta.

For polycrystals these equations simplify to

$$\rho v_1^2 = R + 4C/3,$$ \hspace{1cm} (18.4)

and

$$\rho v_2^2 = G,$$ \hspace{1cm} (18.5)

where $v_1 =$ longitudinal wave velocity and $v_2 =$ transverse wave velocity. The mean velocity is obtained by averaging over v^{-3}, that is

$$3v_m^{-3} = v_1^{-3} + 2v_2^{-3}.$$ \hspace{1cm} (18.6)

As shown in table 1, v_1 and v_2 can be computed from any two polycrystalline elastic constants together with the mass density.

Some authors prefer to regard v_1 as the velocity of sound in solids while others prefer v_2; either concept is valid in context.

For further discussion of these relationships the reader should consult Blackman [147], for example.

Sound velocities for Fe, Ni, and Fe-Ni alloys have been computed from elastic coefficients by Anderson [148] and by Simmons and Wang [149].

Specific Heats

Historically, lattice specific heats have been most frequently used to determine the Debye temperature θ_D.

Debye [150] showed that

$$C_v = 9Nk \left[\frac{T}{\theta_D} \right]^3 \int_0^{\theta_D} \frac{T^2e^{2\theta_D^2}}{\cos \theta_D^2} d\theta_D$$ \hspace{1cm} (18.7)

where $C_v =$ specific heat at constant volume, $N =$ Avogadro’s number, $k =$ Boltzmann’s constant, $T =$ absolute temperature. Electronic contributions to C_v, which are linear in T, must be separated from measured values of C_v. Measurements of T by specific heats have been summarized by DeSorbo [151] and by Holm [152]. The relationship between θ and θ_{elastic} was discussed by Alers and Neighbors [153] and by Alers [154]. From existing data, errors in θ are smaller than those in θ_{elastic}.

Many authors [155]-[157] have discussed the equivalence of θ and θ_{elastic} at $T = 0$.

Entropies

Vibrational entropies S can be calculated from Boltzmann’s relationship

$$S = k \ln w,$$ \hspace{1cm} (18.8)

where $w =$ randomness. For a system of three-dimensional oscillators Lumdson [158] showed for a Debye frequency spectrum that

\[S = Nk \left[4 - 3 \ln \frac{\theta}{T} + \frac{3}{40} \left(\frac{\theta}{T} \right)^2 - \frac{3}{2240} \left(\frac{\theta}{T} \right)^4 + \ldots \right]. \]

(18.9)

Again, \(S \) calculated by eq (18.9) contains only vibrational terms; electronic and other non-vibrational terms must be determined separately.

All other usual thermodynamic quantities can be calculated from \(\theta \) by invoking the thermodynamic partition function, as discussed by Fowler and Guggenheim [159], for example.

Zero Point Energy

Behavior of many substances at low temperatures is influenced by zero point energy, which arises as a quantum effect; the energy of a linear oscillator in its ground state of energy at \(T = 0 \) K is \(h\nu/2 \) where \(\nu \) is the vibrational frequency of the oscillator. Integration over a Debye spectrum gives for zero point energy

\[E_0 = \frac{9}{8} Nh_\nu_{\text{max}} = \frac{9}{8} R \theta \]

(18.10)

since \(h_\nu_{\text{max}} = k\theta^2 \). Details concerning eq (18.10) were given by Domb and Salter [160].

Thermal Conductivity

While thermal conductivity occurs by many mechanisms and the theories of these are difficult and disputed, \(\theta \) is a pervasive parameter for describing these mechanisms. For example, Klemens [161] discussed a relationship due to Leibfried and Schloemann for lattice thermal conductivity of non-metals at high temperatures, \(T > \theta \):

\[K = \text{constant} \frac{\theta^2}{\gamma^2 T}, \]

(18.11)

where \(\gamma = \text{Gr{"u}neisen parameter}. \) A similar expression was derived on a different basis by Dugdale and MacDonald [162]. While \(\gamma^2 \) is relatively constant from one material to another, \(\theta^3 \) changes considerably. By comparing theoretical and observed values of \(KT \) at room temperatures, Klemens established the approximate validity of the \(\theta^3 \) dependence of \(K \).

Electrical Resistivity

The most convenient point of departure here is Bloch and Gr{"u}neisen’s relationship that describes for many metals the temperature variation of their electrical resistivity \(\rho \) over a wide temperature range:

\[\rho(T) = \frac{C}{A} \frac{T^2}{\theta_T^3} \int_0^\theta \frac{\theta}{(e^\theta - 1)} (1 - e^{-\theta}) \, d\theta, \]

(18.12)

where \(C = \text{constant}, A = \text{atomic weight}, \) and \(\theta_T = \text{characteristic temperature for lattice resistivity}. \)

Since in Bloch’s theory only longitudinal lattice vibrations affect \(\rho \), no agreement between \(\theta \) and \(\theta \) would be expected; in Debye’s theory there are two transverse vibrational modes for each longitudinal mode. Since \(\theta_T > \theta \), it would be expected that \(\theta_T > \theta \). However, Gr{"u}neisen showed that \(\theta_T \approx \theta \) for a large number of cases. Blackman [163] considered the problem by calculating \(\theta_T \) both by averaging wave velocities as \(v^3 \), as is conventional, and as \(v^2 \), as is suggested by eq (18.12); no correlations between these thetas and \(\theta_T \) were found. A recent experimental study by Cullen [164] for Cu-Au alloys showed that \(\theta_T \) (from elastic coefficients) exceeds \(\theta \), but that \(\theta_T \) and \(\theta \) have the same compositional dependence, which differs from that of \(\theta \). This implies that transverse phonons contribute to \(\theta_T \) in a way not now known.

The general problem of \(\theta_T \) was discussed at length by Kelly and MacDonald [165] and by Meaden [166] who gave a compilation of \(\theta_T \) values.

Bragg Intensities

As shown early in this century by Debye and by Waller, change in intensities of Bragg scattering of x-rays by crystals with increasing temperature due to change of the atomic structure factor is given by

\[I(T) = I_0 e^{-\mu}. \]

(18.13)

The Debye-Waller factor \(2M \) is simply related to Debye’s theta:

\[2M = \frac{12h^2}{mk\theta_T^3} \sin^2 \phi \frac{D(x)}{\lambda^2} \frac{1 + \frac{1}{4}}{x}, \]

(18.14)

where \(h = \text{Planck’s constant}, k = \text{Boltzmann’s constant}, m = \text{mass of atom}, \phi = \text{Bragg angle}, \lambda = \text{x-ray wavelength}, \) and \(D(x) = \text{Debye function where} x = \theta_T/T, T \) being absolute temperature. The factor 1/4 allows for zero point energy.

As shown by Zener and Bilinsky [167] \(\theta_T \) in eq (18.14) is obtained by the average

\[3\theta_T^2 = \theta_T^2 + 2\theta_T^4, \]

(18.15)

rather than the usual average

\[3\theta_T^2 = \theta_T^3 + 2\theta_T^4. \]

(18.16)

Thus, \(\theta_T \) is always slightly larger than \(\theta \) by a few percent.

This topic was discussed extensively by Lonsdale [168], by James [169], and by Herbstin [170].

For both Fe and Ni, Singh and Sharma [171] recently reported Debye-Waller factors computed from elastic stiffnesses.

Vibration Amplitudes

This subject relates closely to the preceding section.
in that the Debye-Waller factor can be expressed as
\[
2M = \frac{16\pi^2 \sin^2 \phi}{3\lambda^2} \langle u^2 \rangle, \tag{18.17}
\]
where \(\langle u^2 \rangle \) = mean square atomic vibrational amplitude parallel to diffracting plane. Thus, one has
\[
\langle u^2 \rangle = \frac{3h^2 T}{\pi^2 m k_B T} \left(D(x) + \frac{x}{4} \right). \tag{18.18}
\]

Lonsdale [168] tabulated \(\langle u^2 \rangle \) values for many elements. She emphasized that vibration amplitudes are anisotropic even for cubic symmetry and that vibrational anisotropy can be calculated from elastic coefficients.

For Fe-Ni alloys, \(\langle u^2 \rangle \) were computed from \(E \) and \(G \) by Tanji and Shirakawa [172] and by Tanji [173] to interpret thermal expansion, electrical resistivity, and abnormal volume expansion of \emph{Invar} alloys. For Fe and Ni, \(\langle u^2 \rangle \) were recently computed from elastic stiffnesses by Singh and Sharma [171].

Melting

As discussed in section 16, if a material is heated and elastic constants change with temperature such that any of Dorn's stability criteria are violated, then a phase change must occur—either to another solid phase or to a liquid. Of course, phase changes can occur for other reasons—generally a lowering of free energy. Lindemann [174] believed that melting occurred when atomic vibration amplitudes reached critical magnitudes. This topic was developed extensively by Pines [175] who showed that
\[
\theta = C \left(\frac{KT_m}{AP_{50}^2} \right)^{1/2}, \tag{18.19}
\]
where \(C = \) constant, \(A = \) atomic weight, \(k = \) Boltzmann's constant, \(T_m = \) absolute melting temperature, and \(V_p = \) atomic volume. Pines concluded that melting occurs when the root-mean-square atomic displacement becomes roughly \(r_0 / \theta \) where \(2r_0 \) = interatomic spacing.

Thermal Expansivity

As is well known, thermal expansion is an anharmonic effect inconsistent with Debye's model of solids. However, Grüneisen showed for most temperatures that volume expansivity \(\beta \) is proportional to specific heat \(C_p \), and at low temperatures
\[
\gamma = \frac{\beta B}{\rho C_v}, \tag{18.20}
\]
where \(C_v = \) specific heat at constant volume, \(\rho = \) mass density, \(B = \) bulk modulus, and \(\gamma = \) Grüneisen constant with a value of about \(9 \) for all solids. Clearly then at low temperatures

\[
\theta = K \frac{\gamma P}{\beta R}, \tag{18.21}
\]
where \(K = \) constant. This equation is also important because it allows computation of \(\theta \) from a single elastic constant plus thermal data. Manipulation of thermodynamic equalities yields many alternative expressions for \(\theta \), related generally to Grüneisen's equation of state

\[
\gamma = \frac{V}{C_v} \left(\frac{\partial P}{\partial T} \right)_V = \frac{\frac{V}{C_p} \left(\frac{\partial P}{\partial T} \right)_S}{C_v \left(\frac{\partial P}{\partial T} \right)_T}. \tag{18.22}
\]

Atomic Diffusivity

Diffusion coefficients for metallic self-diffusion or for substitutional diffusion of different metals are well known to be given by Arrhenius's empirical relationship

\[
D = A \exp \left(- \frac{\Delta H}{RT} \right), \tag{18.23}
\]
where \(A \) and \(\Delta H \) are temperature-independent constants, \(R = \) universal gas constant, and \(T = \) temperature.

Assuming a vacancy mechanism for diffusion, then

\[
\Delta H = \Delta H_f + \Delta H_m, \tag{18.24}
\]
where \(\Delta H_f = \) formation energy of a vacancy and \(\Delta H_m = \) motion energy of a vacancy. Realizing from thermodynamics that

\[
\Delta G = \Delta H - T \Delta S, \tag{18.25}
\]
where \(G = \) Gibbs free energy and \(S = \) entropy, then elastic constants are related to diffusion coefficients through a model given by Zener [176] and independently by LeClaire [177], which shows that

\[
\Delta G_m = KE, \tag{18.26}
\]
where \(E = \) Young's modulus appropriate to \(\Delta H_m \), and \(K \) has units of volume. Substitution into eq (18.23) gives after rearrangement

\[
\ln D + KE/RT = \ln D_0 - \Delta G_f/RT, \tag{18.27}
\]
where

\[
\ln D_0 = \ln A - \Delta S_f/R - \Delta S_m/R.
\]

Since in single crystals \(E \) varies with direction, its choice is not unique. Reasonable choices are \(E_{111} \) for b.c.c. lattices and \(E_{110} \) for f.c.c. lattices. Along with its directionality, the temperature dependence of \(E_{110} \) must also be considered.

Mechanical Plasticity

Some empirical and semi-empirical relationships between elastic and plastic properties of solids were
suggested by Pugh [178]. While this topic is now only embryonic, it is discussed briefly here because it has high potential importance but has received little emphasis in the scientific literature.

That elastic-plastic relationships should exist is expected from microplastic theories where most all dislocation equations contain explicitly various elastic constants.

Advantages of such relationships include: (1) relating plasticity more intimately to interatomic forces; (2) possibility of correlating plastic properties with other parameters via elastic properties, for example with atomic number, melting temperatures, or Debye thetas; and (3) a higher degree of correlation among plastic properties themselves.

Some relationships suggested by Pugh include: (1) for $T < T_d/\beta$ resistance to plastic deformation is proportional to Gb, where $G =$ shear modulus and $\beta =$ magnitude of Burgers vector; (2) fracture strength is proportional to Ba, where $B =$ bulk modulus and $a =$ lattice parameter; (3) range of plasticity is proportional to B/G, so that a high value of B/G indicates malleability and a low value indicates brittleness.

Besides Pugh, interested readers should see also Crutchley and Reid [179].

Diatomic Molecular Vibration Frequencies

Relationships between interatomic force constants determined from ultrasonic wave velocities in solids and force constants determined spectroscopically from gas molecules might appear at first to be vague and complicated. However, rough empirical relationships between θ_{solid} and θ_{gas} were demonstrated by Baughan [180]; and Waser and Pauling [181] demonstrated the relevance of Badger’s rule to solids. Badger [182] discovered for diatomic gases that $k = d^{-3}$ where $k =$ force constant and $d =$ interatomic distance. Recent work by Haussühl [183] and by Gilman [184] suggests that $k = d^{-1}$ is a better correlation for most solids, a dependence first predicted theoretically by Fuchs [76].

These studies suggest strong correspondences between vibrational properties of atoms in solid and gaseous forms. Since better and more complete experimental data now exist, both elastic and spectroscopic, a re-examination of the problem would be appropriate to determine its synergistic aspects. Both iron and nickel were included in the studies of Baughan, and Waser and Pauling.

Other Properties

Elastic Debye temperatures correlate with many other solid-state phenomena that are not discussed here, for example— Theoretical strength, Mössbauer emission, superconducting transition temperatures, infra-red reststrahlen, diffuse x-ray scattering, and neutron scattering. For discussion of some of these phenomena with respect to θ and/or elastic constants the reader should see Partington [185], Cartz [186], Neshpor [187], and Herbstein [170] as examples.

19. Concluding Remarks

As evidenced by over 200 references to the experimental literature, elastic properties of iron, nickel, and iron-nickel alloys have been much studied with the result that most are now well characterized.

Despite this intensity of effort, a few of the elastic properties have been studied experimentally only cursorily, and the general subject would be strengthened by further studies. These properties include: (1) temperature dependence of the bulk modulus of nickel, (2) pressure dependence of properties other than single-crystal coefficients or the bulk modulus, and (3) explicit dependence of properties on magnetic field.

Other properties have not yet been studied experimentally; these include: (1) pressure derivatives of alloys, (2) third-order elastic stiffnesses of alloys, and (3) fourth-order elastic stiffnesses of both iron and nickel.

From existing single-crystal data it would be useful to derive averaged elastic constants and sound velocities.

Ripe problems for theoretical study include: (1) relationship of elastic constants to phase transitions, particularly martensitic transitions, (2) effects of ferromagnetism on elastic properties, (3) contributions of d electrons to bonding and to elasticity, (4) thermal dependence of elastic properties, and (5) the existence and role of atomic ordering on elasticity.

Since iron-nickel alloys are of much interest both scientifically and technologically, one might expect many of these areas to be studied intensively within the next few years.

Dr. G. Speich of the U.S. Steel Corp., and Drs. G. Hau and H. Warlimont of the Max-Planck Institut für Metallforschung graciously supplied preprint versions of their work.

Dr. E. R. Nakahara of NOS contributed greatly to the final stages of constructing the manuscript.

This work was supported in part by the NBS Office of Standard Reference Data. Dr. R. S. Marvin of OSRD made many valuable comments on the manuscript.

20. References for Text

[31] Reference [12], p. 17.

[61] Sakurai, J., Mitsuhiro, F., Nakamura, Y., and Takaki, H., Elastic...
[66] Friedel, J., Nuovo Cim. (Suppl.) Ispr Conf. on Radiation Damage, reported in ref. [65].
[104] Ref. [61], p. 277 ff.
[105] Ref. [94], eq. (4.16) in chapter 13.
[106] Ref. [38], table 24.
[118] Ref. [90], p. 239.
128 Ref. [109], p. 149 ff.
129 Ref. [5], p. 22.
153 Holm, M. W., Debye characteristic temperatures-table and determined from elastic constants and calorimetry, Rev. Mod. Phys. 31, 675 (1959).
160 Domb, C., and Salter, L., The zero point energy and θ values of metals, Phil. Mag. 43, 1083 (1959).
In Japanese.
178 Pugh, S. F., Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Phil. Mag. 45, 623 (1954).
181 Waser, J., and Pauling, L., Compressibilities, force constants,

21. Bibliography of Reviews and Compilations

Bridgman, P. W., Recent work in the field of high pressures, Rev. Mod. Phys. 18, 1 (1946).

Dorn, J. E., The modulus of elasticity—a review of metallurgical factors, Metal Progr. 58, 81 (1950).

McCaín, W. S., and Martin, R. E., Mechanical and physical properties of invar and invar-type alloys, DIME Memo. 207, Battelle Mem. Inst. Columbus, Ohio, (1965).

Simmons, C., Single crystal elastic constants and calculated aggregate properties, J. Grad. Res. Cent. 34, 1 (1965).

22. Older References

22.1. Iron, Young’s Modulus

Kupffer, A., Mon. Iss. Acad. Ed. Petersburg (VI series), 6, 202 (1867).

Pisati, G., Sulla elasticità dei metalli a diverse temperature, Nuovo Cimento 1, 181 (1877); 2, 137 (1877); 4, 152 (1878); 5, 34, 135, 145 (1879).

Kieviet, H., Wiedemann’s Ann. 29, 617 (1886).

Noyes, Phys. Rev. 2, 277 (1895); 3, 432 (1896).

Shakespeare, Phil. Mag. 47, 539 (1899).

22.2. Iron, Shear Modulus

Piastr, Nuovo Cimento, Ser III. 1, 181 (1877); 2, 137 (1877); 4, 152 (1880); 5, 135, 145 (1879).

22.3. Iron, Poisson Ratio

Bauschinger, J., Der Zivilingenieur 25, 81 (1879).
Katznelson, N., Ina Diss., Berlin (1887).
Cardani, P., Z. Physik 4, 449 (1900).

22.4. Nickel, Young’s Modulus

22.5. Nickel, Shear Modulus

See references in section 22.2.

22.6. Iron-Nickel Alloys, Young’s Modulus

Barnes, C., Amer. J. 34, 175 (1887); Phys. Rev. 13, 257 (1901).
Day, Electrician 39, 480 (1897).
Stevens, J. S., Phys. Rev. 10, 111 (1900).

23. Notes on Tables

The following shorthand notations are used in the tables:

\[f(A) = \text{function of aging}, \]
\[f(GR) = \text{function of cooling rate}, \]
\[f(D) = \text{function of plastic deformation}, \]
\[f(GS) = \text{function of grain size}, \]
\[f(H) = \text{function of magnetic field}, \]
\[f(O) = \text{function of atomic ordering}, \]
\[f(P) = \text{function of pressure}, \]
\[f(Ph) = \text{function of phase (transition)}, \]
\[f(R) = \text{function of recovery}, \]
\[f(S) = \text{function of stress}, \]
\[f(T) = \text{function of temperature}, \]
\[f(X) = \text{function of composition (of nickel),} \]

and

\[x(E) = \text{function of composition (of element } E). \]

“Best values” represent arithmetic means without weighting factors. “Uncertainties” represent computed standard deviations, and they include variations of samples, experimental methods, etc. Systematic error is believed negligible compared to imprecision. All data were included in the averages with the following exceptions. Data corresponding to severely deformed specimens were omitted as being non-representative. When the “same” materials were tested by different experimental methods, only a single average data point was included. “Different” materials measured by the same experimental method and by the same investigator were included as multiple data points.
24. Tables and Figures

Table 1. Connecting identities $X = X(Y, Z)$ for elastic constants of quasi-isotropic solids

<table>
<thead>
<tr>
<th>X</th>
<th>E, G</th>
<th>l, B</th>
<th>E, ν</th>
<th>C, B</th>
<th>G, ν</th>
<th>B, ν</th>
<th>λ, μ</th>
<th>σ_1, σ_2</th>
<th>σ_{11}, σ_{33}</th>
<th>$w_{11, 11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>$2G/3B$</td>
<td>$2G(1+\nu)$</td>
<td>$3B(1-2\nu)$</td>
<td>$\frac{\mu(1+2\mu)}{\lambda+\mu}$</td>
<td>$\frac{(c_1 - c_2)(c_4 + 2c_5)}{c_1 + c_2}$</td>
<td>$\frac{1}{s_{11}^2}$</td>
<td>$3\rho\beta^2\gamma^2 - \frac{4}{3}\rho\beta^2\gamma^2 - \nu\beta^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G \equiv \mu = \rho \beta^2$</td>
<td>$\frac{BE}{2(1+\nu)}$</td>
<td>E</td>
<td>$\frac{2G(1+\nu)}{1+\nu}$</td>
<td>$\frac{3B}{2}$</td>
<td>$\frac{1-2\nu}{1+\nu}$</td>
<td>$\frac{1}{2}(c_1 - c_2) = c_6$</td>
<td>$\frac{1}{2}(\sigma_{11} - \sigma_{33}) = \frac{1}{s_{11}^2}$</td>
<td>$\frac{1}{s_{11}^2}$</td>
<td>$\rho\beta^2(\nu^2 - \frac{4}{3}\nu^2)$</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>$\frac{GE}{3(3G-E)}$</td>
<td>E</td>
<td>$\frac{2G(1+\nu)}{3(1-2\nu)}$</td>
<td>$\frac{2G}{1+\nu}$</td>
<td>$\frac{1}{3}c_1 + \frac{2\mu}{3}$</td>
<td>$\frac{1}{3}s_{11}^2 + 2s_{33}$</td>
<td>$\rho\beta^2(\nu^2 - \frac{4}{3}\nu^2)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>$\frac{E}{2G} - 1$</td>
<td>$\frac{1}{2} - \frac{6B}{E}$</td>
<td>$\frac{1}{2}c_1 - \frac{2G}{3B+C}$</td>
<td>$\frac{1}{3}\lambda + \mu$</td>
<td>$\frac{c_1^2}{c_1 + c_2}$</td>
<td>$\frac{1}{s_{11}^2}$</td>
<td>$\frac{1}{2}\beta^2 - 2\nu^2 + \frac{1}{s_{11}^2}$</td>
<td>$\frac{1}{s_{11}^2}$</td>
<td>$\frac{1}{s_{11}^2}$</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>$E - 2G$</td>
<td>$\frac{3B}{3G - E}$</td>
<td>$\frac{1}{1+\nu}(1-2\nu)$</td>
<td>$B - \frac{1}{2}G$</td>
<td>$\frac{2\nu G}{1-2\nu}$</td>
<td>$\frac{3\beta^2}{1+\nu}$</td>
<td>$\frac{c_1}{s_{11}^2}$</td>
<td>$\frac{c_1}{s_{11}^2}$</td>
<td>$\frac{3\beta^2}{1+\nu}$</td>
<td>$\rho(\nu^2 - 2\nu^2)$</td>
</tr>
<tr>
<td>ρ^2</td>
<td>$\frac{3G - E}{3G - E}$</td>
<td>$\frac{3B}{3G - E}$</td>
<td>$\frac{E(1-\nu)}{(1+\nu)(1-2\nu)}$</td>
<td>$B + \frac{4}{3}G$</td>
<td>$\frac{2(1-\nu)}{1+\nu}$</td>
<td>$\frac{3B}{1+\nu}$</td>
<td>$\frac{c_1^2}{c_1^2 + c_2}$</td>
<td>$\frac{c_1^2}{c_1^2 + c_2}$</td>
<td>$\frac{c_1 + c_2}{c_1^2 - c_2^2}$</td>
<td></td>
</tr>
</tbody>
</table>

Besides the symbols already defined in the text, ρ = mass density, v_1 = velocity of longitudinal elastic wave, and v_2 = velocity of transverse elastic wave. The c_5^2 satisfy the isotropy condition $c_{11} - c_{33} = 2c_{44}$. Similarly, the c_6^2 satisfy the isotropy condition $2(s_{11} - s_{22}) = s_{44}$.
Table 2. Expressions for engineering elastic constants of cubic single crystals

- Young's modulus
 \[E' = E_s = \frac{E}{1 - \nu^2} \]

- Shear modulus
 \[G' = G_s = \frac{G}{1 - \nu^2} \]

- Bulk modulus
 \[B = \frac{1}{(E_s + 2G_s)} = \frac{(C_{11} + 2C_{12})}{3C_{12}} \]

- Poisson ratio
 \[\nu_s = -\frac{\nu_s}{E_s} = \frac{(1 + \nu)(1 - \nu)}{(1 + \nu)(1 - 2\nu)} \]

where

- \(s = (\nu_s, \nu, \nu, \ldots) \)
- \(\Gamma = l_x^2 + l_y^2 + l_z^2 \)
- \(\Lambda = m_x^2 l_x^2 + m_y^2 l_y^2 + m_z^2 l_z^2 \)

Table 3. Conversions between elastic stiffnesses \(c_{ij} \) and elastic compliances \(s_k \) for cubic crystals

<table>
<thead>
<tr>
<th>(c_{11})</th>
<th>(c_{12})</th>
<th>(c_{44})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{s_{11} + s_{12}}{(s_{11} - s_{12})(s_{11} + 2s_{12})})</td>
<td>(\frac{s_{11} + s_{12}}{(s_{11} - s_{12})(s_{11} + 2s_{12})})</td>
<td>(\frac{1}{4s_{44}})</td>
</tr>
</tbody>
</table>

And, by derivation:

<table>
<thead>
<tr>
<th>(c_{11})</th>
<th>(c_{12})</th>
<th>(c_{44})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{s_{11} - s_{12}})</td>
<td>(\frac{1}{s_{11} - s_{12}})</td>
<td>(\frac{1}{c_{11} + 2c_{12}})</td>
</tr>
</tbody>
</table>

Table 4. Selected properties of iron and nickel

<table>
<thead>
<tr>
<th>Property</th>
<th>Fe</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic number</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>Atomic weight, mkel/mol</td>
<td>55.85</td>
<td>58.71</td>
</tr>
<tr>
<td>Electronic structure</td>
<td>[Ar]3d²4s²</td>
<td>[Ar]3d³4s²</td>
</tr>
<tr>
<td>Ionic (Goldschmidt, 12-fold)</td>
<td>0.127</td>
<td>0.124</td>
</tr>
<tr>
<td>Coordination radius, nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance of closest approach, nm</td>
<td>0.24823</td>
<td>0.24919</td>
</tr>
<tr>
<td>Lattice parameter, nm, 293 K</td>
<td>0.28664</td>
<td>0.35236</td>
</tr>
<tr>
<td>Density, kg/m³, 293 K</td>
<td>7.87</td>
<td>8.91</td>
</tr>
<tr>
<td>Melting point, K</td>
<td>1810</td>
<td>1726</td>
</tr>
<tr>
<td>Boiling point, K</td>
<td>3106</td>
<td>3059</td>
</tr>
<tr>
<td>Heat of fusion, kJ/mol</td>
<td>15.3</td>
<td>17.7</td>
</tr>
<tr>
<td>Heat of vaporization, MJ/mol</td>
<td>0.416</td>
<td>0.430</td>
</tr>
</tbody>
</table>

Table 5. Second-order elastic stiffnesses \(c_{ij} \) of iron

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>(c_{11}) (10¹⁸ dyn/cm²)</th>
<th>(c_{12}) (10¹⁸ dyn/cm²)</th>
<th>(c_{44}) (10¹⁸ dyn/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gumma, Okada (1931)</td>
<td>99.05 Fe (0.025 Mn, 0.083 C, 0.01 P, 0.08 S, 0.06 Cu, trace Si)</td>
<td>Trans. res. freq.</td>
<td>Single-crystalline crystals, no field</td>
<td>2.57</td>
<td>1.41</td>
<td>1.10</td>
</tr>
<tr>
<td>Kimura, Ohno (1934)</td>
<td></td>
<td>Bending, torsion opt. microscope</td>
<td>Recrystallized. No field.</td>
<td>2.41</td>
<td>1.46</td>
<td>1.12</td>
</tr>
<tr>
<td>Kimura (1930)</td>
<td></td>
<td>a) Long res. freq. b) Long. res. freq. c) Bending, torsion.</td>
<td>No field.</td>
<td>2.00</td>
<td>1.14</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Saturated field.</td>
<td>2.10</td>
<td>1.13</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No field.</td>
<td>2.28</td>
<td>1.33</td>
<td>1.11</td>
</tr>
<tr>
<td>Yamamoto (1941, 1943)</td>
<td>Fe (0.03 C, 0.01 Si, 0.04 Mn, 0.01 P, 0.04 S, 0.06 Cu)</td>
<td>Magnetostriuctive oscillation. Bridgman (1940) compressibility data.</td>
<td>No field.</td>
<td>2.34</td>
<td>1.35</td>
<td>1.176</td>
</tr>
<tr>
<td>Moller, Brasse (1955)</td>
<td>Fe (0.02–0.2 Mn, 0.01–0.06 Si, 0.015 C, 0.01 P, 0.02 S, 0.15 O)</td>
<td>Tension, induction.</td>
<td>H₂ ann., 1223 K; 3–10% strain; vac. ann., 1153 K, 72 h.</td>
<td>2.28</td>
<td>1.40</td>
<td>1.12</td>
</tr>
<tr>
<td>Markham (1955)</td>
<td></td>
<td></td>
<td>One crystal. No field.</td>
<td>2.330</td>
<td>1.392</td>
<td>1.162</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>(c_{11})</th>
<th>(c_{12})</th>
<th>(c_{44})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(10^11 dyn/cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rayne, Chandrasekhar (1961)</td>
<td>99.99 Fe</td>
<td>10 MHz pulse-echo.</td>
<td>Strain-ann. crystal. No field, (f(T)) in figure 15.</td>
<td>2.331</td>
<td>1.354</td>
<td>1.178</td>
</tr>
<tr>
<td>Lord, Beshers (1965)</td>
<td>99.8 Fe</td>
<td>7, 10 MHz pulse-echo.</td>
<td>11 kOe field (saturated) [100], [110] crystals ann., wet (H_d), 998 K, 216 h, slow cool. [111] crystal vac. ann. 1123 K, 176 h, slow cool. Strain-ann. crystals, (f(T)) in figure 15.</td>
<td>2.28</td>
<td>1.32</td>
<td>1.165</td>
</tr>
<tr>
<td>Truell (1965)</td>
<td></td>
<td>Pulse-echo.</td>
<td>Specimens from crystal of Rayne, Chandrasekhar (1961); no field, (f(P)).</td>
<td>2.23</td>
<td>1.27</td>
<td>1.15</td>
</tr>
<tr>
<td>Rotter, Smith (1966)</td>
<td>99.99 Fe (Cr, Mn traces)</td>
<td>10 MHz pulse-echo.</td>
<td>Specimens from crystal of Rayne, Chandrasekhar (1961); no field, (f(P)).</td>
<td>2.314</td>
<td>1.346</td>
<td>1.164</td>
</tr>
<tr>
<td>Leamy, Gibson, Kayser (1967)</td>
<td>Fe, 1–25 Al alloys</td>
<td>10 MHz pulse-echo.</td>
<td>Bridgman technique crystals, ann. 1173 K, 72 h, extremely slowly cooled (60 days), argon atmos.; (f(T)) in figure 15.</td>
<td>2.338</td>
<td>1.378</td>
<td>1.186</td>
</tr>
<tr>
<td>Leese, Lord (1968)</td>
<td>99.8 Fe</td>
<td>30–60 MHz pulse-echo.</td>
<td>Specimens and treatment from Lord, Beshers (1965); no field; (f(T)) in figure 15.</td>
<td>2.26</td>
<td>1.40</td>
<td>1.16</td>
</tr>
<tr>
<td>Guinan, Beshers (1968)</td>
<td>99.8 Fe</td>
<td>10 MHz pulse-echo.</td>
<td>Specimens from Lord, Beshers (1965), no field, (f(P)).</td>
<td>2.301</td>
<td>1.346</td>
<td>1.167</td>
</tr>
<tr>
<td>Dever (1972)</td>
<td>Ferrovac</td>
<td>40, 70 MHz phase comparison</td>
<td>Two crystals, no field, (f(T)) in figure 15.</td>
<td>2.322</td>
<td>1.356</td>
<td>1.170</td>
</tr>
</tbody>
</table>

Table 6. Second-order elastic stiffnesses \(c_{ij}\) of nickel

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>(c_{11})</th>
<th>(c_{12})</th>
<th>(c_{44})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(10^11 dyn/cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honda, Shirakawa (1947, 1950)</td>
<td></td>
<td>Bending, opt. microscope.</td>
<td>Bridgman method crystals.</td>
<td>2.52</td>
<td>1.51</td>
<td>1.04</td>
</tr>
<tr>
<td>Bozorth, Mason, McSkimin, Walker (1940)</td>
<td>99.95 Ni</td>
<td>10 MHz pulse-echo.</td>
<td>Bridgman method, dry H₂, crystals.</td>
<td>2.50</td>
<td>1.60</td>
<td>1.185</td>
</tr>
</tbody>
</table>
| Bozorth, Mason, McSkimin (1951) | 99.95 Ni | 10 MHz pulse-echo. | Bridgman method, dry H₂, crystals; \(f(\text{freq.); a) no field.}
| | | | \(b) saturated field. | 2.17 | 1.574 | 1.226 |
| Neighbours, Bratten, Smith (1959) | 99.9 Ni | 10 MHz pulse-echo. | Bridgman method crystals. annealed 2 h in H₂, 5 kOe transv. field. | 2.55 | 1.52 | 1.24 |
| Yamamoto (1942, 1950, 1951) | Ni0.02–0.19 Fe, 0.01 P, S, Al, 0.03 C, Si, Mn, 0.01–0.20 Co, Cu | Magnetostrictive oscillation. | Bridgman method crystals; vac. ann. 1273 K, 1 h. | 2.44 | 1.58 | 1.02 |
| Levy, Truell (1953) | 99.9 Ni | 27, 30 MHz pulse-echo. | Bridgman method crystals; \(f(H, \text{freq.); saturated field.} | 2.47 | 1.52 | 1.21 |

Table 6. Second-order elastic stiffnesses c_{ij} of nickel—Continued

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>c_{11}</th>
<th>c_{12}</th>
<th>c_{44}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(10^12 dyn/cm²)</td>
</tr>
<tr>
<td>DeKlerk, Musgrave</td>
<td>Ni(0.06 C, 0.02 Si, 0.05 Fe, 0.02 Co)</td>
<td>2–10 MHz pulse-echo.</td>
<td>a) No field, b) saturated field.</td>
<td>2.40</td>
<td>1.49</td>
<td>1.19</td>
</tr>
<tr>
<td>(1955)</td>
<td></td>
<td></td>
<td>X(Cu)</td>
<td>2.46</td>
<td>1.47</td>
<td>1.24</td>
</tr>
<tr>
<td>Shirakawa, Numakura</td>
<td></td>
<td>Tension, opt. microscope.</td>
<td></td>
<td>2.55</td>
<td>1.69</td>
<td>0.902</td>
</tr>
<tr>
<td>(1957)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeKlerk (1959)</td>
<td></td>
<td>2–10 MHz pulse-echo.</td>
<td>F(freq.), a) No field, b) saturated field</td>
<td></td>
<td>[001].</td>
<td>2.459</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.461</td>
<td>1.475</td>
<td>1.220</td>
</tr>
<tr>
<td>Alera, Neighbours, Sato</td>
<td></td>
<td>10 MHz pulse-echo.</td>
<td>Bridgman method crystals, 10 kOe field, $f(T)$ in figure 16.</td>
<td>2.508</td>
<td>1.500</td>
<td>1.235</td>
</tr>
<tr>
<td>(1960)</td>
<td>Electrolytic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sakurai (1964)</td>
<td>99.95 Ni</td>
<td>1–5 MHz pulse-echo.</td>
<td>Bridgman method crystals, 10 kOe field.</td>
<td>2.51</td>
<td>1.53</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sakurai, Fuji, Nakamura,</td>
<td>99.95 Ni</td>
<td>1–5 MHz pulse-echo.</td>
<td>Bridgman method crystals, X(Cu, Fe). $\Delta c_{11} - c_{12}$</td>
<td>2.51</td>
<td>1.53</td>
<td>1.24</td>
</tr>
<tr>
<td>Takaki (1964)</td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epstein, Carlson,</td>
<td>99.95 Ni</td>
<td>10 MHz pulse-echo.</td>
<td>Bridgman method crystals; ann. 1373 K, 200 h, X(Cu); a) no field, b) saturated field.</td>
<td>2.461</td>
<td>1.54</td>
<td>1.242</td>
</tr>
<tr>
<td>(1966)</td>
<td></td>
<td></td>
<td></td>
<td>2.504</td>
<td>1.57</td>
<td>1.256</td>
</tr>
<tr>
<td>Vintaikin (1966)</td>
<td></td>
<td>X-ray, thermal diffuse</td>
<td>Bridgman method crystals; ann. 1173 K, 3 h.</td>
<td>2.47</td>
<td>1.44</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>scattering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salama, Alera</td>
<td></td>
<td>Pure</td>
<td>Change of sound velocity under uniaxial stress.</td>
<td>2.516</td>
<td>1.544</td>
<td>1.220</td>
</tr>
<tr>
<td>(1969)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shirakawa, et al.</td>
<td>Ni (0.012 Fe, 0.007 Si, 0.008 Cu,</td>
<td>Single-crystal resonant</td>
<td>Saturated field.</td>
<td>2.88</td>
<td>1.81</td>
<td>1.24</td>
</tr>
<tr>
<td>(1969)</td>
<td>0.003 Mn)</td>
<td>frequency.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Best values</td>
<td></td>
<td></td>
<td>2.49</td>
<td>1.55</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>(no field)</td>
<td></td>
<td></td>
<td>2.54</td>
<td>1.55</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>(sat. field)</td>
<td></td>
<td></td>
<td>0.04</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Uniaxial stress</td>
<td></td>
<td></td>
<td>0.12</td>
<td>0.10</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 7. Second-order elastic stiffnesses c_{ij} of iron-nickel alloys

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>c_{11}</th>
<th>c_{12}</th>
<th>c_{44}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(10^12 dyn/cm²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alera, Neighbours, Sato</td>
<td>Fe-30.0 Ni</td>
<td>10 MHz pulse-echo.</td>
<td>Bridgman method crystals, $f(T)$ in figure 17, a) $H=0$, b) $H=10$ kOe.</td>
<td>1.473</td>
<td>0.888</td>
<td>1.135</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.463</td>
<td>0.881</td>
<td>1.132</td>
</tr>
<tr>
<td>Einspruch, Clairborne</td>
<td>Fe-73.8 Ni</td>
<td>Pulse-echo.</td>
<td>Bridgman method crystals, no field and saturated field.</td>
<td>2.304</td>
<td>1.444</td>
<td>1.192</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sakurai, Fuji, Nakamura,</td>
<td>a) Fe-59 Ni</td>
<td>1–5 MHz pulse-echo.</td>
<td>Bridgman method crystals, 2–4 kOe field, $\Delta c_{11} - c_{12}$</td>
<td>2.47</td>
<td>0.72</td>
<td>1.22</td>
</tr>
<tr>
<td>Takaki (1964)</td>
<td>b) Fe-75 Ni</td>
<td></td>
<td></td>
<td>2.47</td>
<td>0.89</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>c) Fe-90 Ni</td>
<td></td>
<td></td>
<td>2.49</td>
<td>0.95</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>d) 100 Ni</td>
<td></td>
<td></td>
<td>2.47</td>
<td>0.94</td>
<td>1.24</td>
</tr>
<tr>
<td>Salama, Alera</td>
<td>Fe-30.0 Ni</td>
<td>10 MHz pulse-echo.</td>
<td>Specimens from Alera, Neighbours, Sato (1960); 10 kOe field; $f(T)$ in figure 17.</td>
<td>1.474</td>
<td>0.894</td>
<td>1.134</td>
</tr>
</tbody>
</table>

Table 7. Second-order elastic stiffnesses c_{ij} of iron-nickel alloys—Continued

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>c_{11}</th>
<th>c_{12}</th>
<th>c_{44}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bower, Claridge, Tsong (1968)</td>
<td>a) Fe-35.1 Ni, b) Fe-38.2 Ni, c) Fe-60.8 Ni, d) Fe-61.8 Ni, e) Fe-78.6 Ni, f) Fe-89.8 Ni, g) Ni</td>
<td>10 MHz pulse-echo.</td>
<td>Bridgman method crystals (quenched), measured at $T = 4$K.</td>
<td>1.573</td>
<td>1.935</td>
<td>1.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.545</td>
<td>1.211</td>
<td>0.992</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.283</td>
<td>1.501</td>
<td>1.176</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.286</td>
<td>1.300</td>
<td>1.184</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.476</td>
<td>1.512</td>
<td>1.777</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.627</td>
<td>1.528</td>
<td>1.300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.614</td>
<td>1.548</td>
<td>1.309</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.57</td>
<td>1.09</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.96</td>
<td>1.42</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.12</td>
<td>1.55</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.24</td>
<td>1.51</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.33</td>
<td>1.46</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.41</td>
<td>1.43</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.52</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.98</td>
<td>1.81</td>
<td>1.24</td>
</tr>
<tr>
<td>Diesborg (1971)</td>
<td>a) Fe-28.2 Ni, b) Fe-30.0 Ni, c) Fe-34.4 Ni</td>
<td>10 MHz pulse-echo. overlap.</td>
<td>Bridgman method crystals, homog. 1473 K, $f(T)$ in figure 17. no field.</td>
<td>1.6080</td>
<td>0.9578</td>
<td>1.1598</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5258</td>
<td>0.9347</td>
<td>1.1313</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3929</td>
<td>0.8570</td>
<td>1.0943</td>
</tr>
<tr>
<td>Hausch, Warlimont (1973)</td>
<td>a) Fe-31.5 Ni</td>
<td>10 MHz pulse-echo.</td>
<td>Bridgman method crystals, 6kOe field, $f(T)$ in figure 17.</td>
<td>1.040</td>
<td>0.840</td>
<td>1.121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.362</td>
<td>0.852</td>
<td>1.086</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.379</td>
<td>0.999</td>
<td>1.058</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.356</td>
<td>0.910</td>
<td>1.042</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.507</td>
<td>1.077</td>
<td>1.020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.592</td>
<td>1.162</td>
<td>1.024</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.713</td>
<td>1.261</td>
<td>1.029</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.860</td>
<td>1.372</td>
<td>1.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.053</td>
<td>1.459</td>
<td>1.059</td>
</tr>
</tbody>
</table>

Table 8. Young's modulus E of iron

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>E (10¹⁰ dyn/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guillaume (1897)</td>
<td></td>
<td>Spring tension.</td>
<td></td>
<td>1.96</td>
</tr>
<tr>
<td>Schaefer (1901)</td>
<td></td>
<td>Res freq</td>
<td></td>
<td>1.80</td>
</tr>
<tr>
<td>Benton (1903)</td>
<td>Steel</td>
<td>Tension</td>
<td>$F(T, 76-300$ K), relative to 300 K.</td>
<td>2.06</td>
</tr>
<tr>
<td>Morrow (1903)</td>
<td>“Wrought iron”</td>
<td>Compression, opt. lever.</td>
<td>Range of values: 2.01–2.12.</td>
<td>2.21</td>
</tr>
<tr>
<td>Carpenter, Hadfield, Longmuir (1905)</td>
<td>Fe(0.95 Mn, 0.17 Si, 0.47 Cr, 0.04 S, 0.02 P)</td>
<td>Tension, extensometer.</td>
<td>Ann. 1023 K, x(Ni).</td>
<td></td>
</tr>
<tr>
<td>Grüniesen (1907)</td>
<td>99.5 Fe(0.1 C, 0.2 Si, 0.1 Mn)</td>
<td>a) Tension, opt. lever.</td>
<td>Ann, $f(S)$, x(Ni).</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Transv. res. freq.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honda, Terada (1907)</td>
<td>“Swedish steel”</td>
<td>Tension opt. lever.</td>
<td>Ann, f(S), x(Ni).</td>
<td>2.09</td>
</tr>
<tr>
<td>Grüniesen (1908)</td>
<td>a) “Steel”</td>
<td>Res freq.</td>
<td></td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) “Iron”</td>
<td>Res freq.</td>
<td>2.10</td>
</tr>
<tr>
<td>Grüniesen (1919)</td>
<td></td>
<td>Deburring</td>
<td>Range of values: 2.05–2.11.</td>
<td>2.00</td>
</tr>
<tr>
<td>Honda (1919)</td>
<td></td>
<td>Bending, opt. lever.</td>
<td>Ann. 1171 K, x(Ni).</td>
<td>2.05</td>
</tr>
<tr>
<td>Honda (1919)</td>
<td>Fe(0.20 Cu, 0.31 Mn, 0.11 Si, 0.09 C, 0.3 P, S)</td>
<td>Deburring, opt. lever.</td>
<td>$X(T)$</td>
<td>2.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>E (108 dyn/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bach, Baumann (1921)</td>
<td>Fe(0.18 C, 0.20 Mn+Si)</td>
<td>Bending, opt. lever.</td>
<td>$F(T, 293–773 \text{ K})$.</td>
<td>2.03</td>
</tr>
<tr>
<td>Koeh, Dietelre (1922)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lea (1922)</td>
<td>“Armco iron”</td>
<td>Res. freq.</td>
<td>$F(T, 285–873 \text{ K})$.</td>
<td>1.4</td>
</tr>
<tr>
<td>Carrington (1924)</td>
<td>a) “Wrought iron”</td>
<td>Tension, opt. lever.</td>
<td>$F(T, 293–573 \text{ K})$.</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>b) Fe(0.19 C)</td>
<td>Tension.</td>
<td>Ann. 1183 K, slow cool, $f(T, 293–590 \text{ K})$.</td>
<td>2.00</td>
</tr>
<tr>
<td>Kimball, Lovell (1925)</td>
<td>Fe(0.15 C)</td>
<td>Res. freq.</td>
<td>$F(T, 290–790 \text{ K})$.</td>
<td>1.98</td>
</tr>
<tr>
<td>Honda, Tanaka (1926)</td>
<td>a) Fe(0.31 Mn, 0.29 Cu, 0.09 C, 0.11 Si, 0.03 P, S) b) Fe(0.38 Mn, 0.1 C, 0.02 P, S)</td>
<td>Bending, opt. lever.</td>
<td>Ann. 1173 K, 2 h, slow cool. Ann. 1173 K, 1/2 h, slow cool. Ann. 1173 K, 1/2 h, oil quench. X(Ni, Co, Cr, Ni).</td>
<td>2.12</td>
</tr>
<tr>
<td>Nishiyama (1929)</td>
<td>a) Fe(0.1 C)</td>
<td>Bending, opt. lever.</td>
<td>Ann. 1173 K in vac., 1 h, furnace cooled; v(Si, V, Al, W, Mn, Cr, Co, Ni).</td>
<td>2.11 2.13</td>
</tr>
<tr>
<td></td>
<td>b) “Armco iron” c) “Electrolytic iron”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kawai (1930)</td>
<td>“Armco iron”</td>
<td>Tension.</td>
<td>Ann. 1273 K, $f(D)$ in figure 9.</td>
<td>2.13</td>
</tr>
<tr>
<td>Jacquerod, Mogeli (1931)</td>
<td></td>
<td>Bending.</td>
<td>Ann., $f(T, 273–390 \text{ K})$, relative to 272 K.</td>
<td>2.09</td>
</tr>
<tr>
<td>Everett (1931)</td>
<td>Fe(0.35 C, 0.80 Mn, 0.10 Si, 0.02 P, 0.03 S)</td>
<td>Tension, opt. lever.</td>
<td>a) Ann. 1173 K, 1/2 h, slow cool. b) Unannealed.</td>
<td>2.01 2.11</td>
</tr>
<tr>
<td>Kruegelen, Houseman (1933)</td>
<td>Fe(0.66 C, 0.8 Mn, 0.01 P)</td>
<td>Loaded helical springs.</td>
<td>Deltm. temp. coeff., 223–323 K.</td>
<td>–</td>
</tr>
<tr>
<td>Bez-Bardili (1935)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verse (1935)</td>
<td>a) Fe(0.43 C, 0.86 Mn, 0.04 S, 0.02 P, 0.14 Si) b) Fe(0.34 C, 0.85 Mn, 0.10 Si, 0.02 P, 0.03 S)</td>
<td>Tension, cathometer.</td>
<td>$f(T, 298–733 \text{ K})$.</td>
<td>2.06 2.08</td>
</tr>
<tr>
<td>Forster, Köster (1937)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engler (1938)</td>
<td></td>
<td>Transv. res. freq.</td>
<td>Ann. 1200 K, 1 h, air cool.</td>
<td>2.13</td>
</tr>
<tr>
<td>Yamamoto (1938)</td>
<td>“Armco iron”</td>
<td>Long. res. freq.</td>
<td>$F(H)$ 0–0.575kOe, $f(T)$ in figure 18.</td>
<td>2.12</td>
</tr>
<tr>
<td>Hamura (1939)</td>
<td>“Armco iron”</td>
<td>Long. res. freq.</td>
<td>Ann., H$_2$ atmos.; $f(U)$, $f(I)$ in figure 18.</td>
<td>2.17</td>
</tr>
<tr>
<td>Köster (1940)</td>
<td>“Armco iron”</td>
<td>Transv. res. freq.</td>
<td>$X(Co, Cr, C, Ni), f(D)$ in figure 9.</td>
<td>2.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamamoto (1941, 1943)</td>
<td>a) “Electrolytic” b) Fe(0.003 C, 0.01 Si, 0.39 Mn, 0.01 P, 0.04 S, 0.06 Cu)</td>
<td>Magnetostriuctive oscillation.</td>
<td>Vac. ann. 1203 K, 1.5 h, furnace cool. Vac. ann. 1203 K, 1 h, furnace cool. $F(H)$.</td>
</tr>
<tr>
<td>Köster (1943)</td>
<td></td>
<td>Transv. res. freq.</td>
<td>Ann. 1273 K, 1 h, $H=0$. a) Bcc crystal structure. b) Fcc crystal structure (extrapolated). $F(Ni), f(T)$ in figure 18, $f(H), f(T)$.</td>
</tr>
<tr>
<td>Smith, Wood (1941)</td>
<td>99.95 Fe</td>
<td>Tension, x-ray spectrometer.</td>
<td>Vac. ann. 0.505 in. sheet.</td>
</tr>
<tr>
<td>Seager, Thompson (1943)</td>
<td>a) Fe(0.8 Mn, 0.06 Si, 0.18 C, 0.08 S, 0.02 P) b) “Armco iron”</td>
<td>Bending, interferometer.</td>
<td>Hot rolled, $f(T)$, 295–500 K, $f(\text{Impurities})$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bending, interferometer.</td>
<td>Cold rolled, ann., $f(T)$ in figure 18.</td>
</tr>
<tr>
<td>Everett, Mihlovits (1944)</td>
<td>Fe(0.15-0.26 C, 0.3-0.6 Mn, 0.04 P, 0.05 S)[SAE1020]</td>
<td>Damping, opt. k-res.</td>
<td>$F(T)$, 293–310 K.</td>
</tr>
<tr>
<td>Schell, Reinacher (1944)</td>
<td></td>
<td>Res. freq.</td>
<td>$X (Ni), f(T)$ in figure 18.</td>
</tr>
<tr>
<td>Roberts, Nortcliffe (1947)</td>
<td>Fe(0.09 Ni, 0.22 Mn, 0.21 Si, 0.06 Cr, 0.09 C)</td>
<td>a) Transv. res. freq. b) “Static”.</td>
<td>Ann. 1200 K, $f(T)$ in figure 18.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ann. 1200 K, $f(T)$, 293–673 K.</td>
</tr>
<tr>
<td>Köster (1948)</td>
<td></td>
<td>Transv. res. freq.</td>
<td>Worked, ann. 1273 K, $f(T)$ in figure 18.</td>
</tr>
<tr>
<td>Bennett, Davies (1949)</td>
<td>99.75 Fe</td>
<td>Res. freq.</td>
<td>Ann. 973 K, 6 h; $f(T)$; relative values, 273–850 K.</td>
</tr>
<tr>
<td>Andrews (1950)</td>
<td>99.97 Fe(0.01 C, 0.02 Mn)</td>
<td>Transv. res. freq.</td>
<td>0.03 in. sheet; $f(T)$ in figure 18.</td>
</tr>
<tr>
<td>Frederick (1947)</td>
<td>“Armco iron”</td>
<td>0.5–15 MHz pulse-echo.</td>
<td>$F(T)$.</td>
</tr>
<tr>
<td>Gastilof, Malcom, Coast (1952)</td>
<td>Fe(0.05 Mn, 0.17 Si, 0.13 C, 0.01 P, 0.02 S)[SAE1015]</td>
<td>Tension, opt. k-res.</td>
<td>Ann. 1173 K, 1 h, mix cold, $f(P)$ in figure 18.</td>
</tr>
<tr>
<td>Hughes, Kelly (1953)</td>
<td>“Armco iron”</td>
<td>Pulse-echo.</td>
<td>$F(P)$.</td>
</tr>
<tr>
<td>Yamamoto, Taniguchi (1954)</td>
<td>Fe(0.02 Al)</td>
<td>Magnetostriuctive.</td>
<td>Ann. $\chi(Al, f(H))$.</td>
</tr>
<tr>
<td>Burnett (1956)</td>
<td>99.9 Fe</td>
<td>Res. freq., bending.</td>
<td>$F(T)$ in figure 18.</td>
</tr>
<tr>
<td>Yamamoto (1959)</td>
<td>Fe(0.06 Mn, 0.03 Si, C, S, 0.02 P)</td>
<td>Magnetostriuctive oscillation.</td>
<td>Ann. 1273 K, 2 h, H atmos.; $\chi(Ni)$; $f(H)$, $a) H=0$, $b) H$ sat.</td>
</tr>
<tr>
<td>Hill, Shinmin, Wilcos (1961)</td>
<td>Fe(0.30 Mn, 0.24 C, 0.01 Si; P, 0.04 S)[SAE1029]</td>
<td>a) Long. res. freq. b) Tension, opt. strain gauges.</td>
<td>“Warm rolled”; $f(T)$ in figure 18.</td>
</tr>
<tr>
<td>Voronov, Vereshchagin (1961)</td>
<td>Fe(0.02 Mn, 0.01 C, 0.01 P, 0.01 S)[SAE1015]</td>
<td>10 MHz pulse-echo.</td>
<td>Ann. 1173 K, 1 h, oil quench, 655 K, 1 h, mix cool, $f(P)$ in figure 18.</td>
</tr>
<tr>
<td>Durham, et al. (1963)</td>
<td>Fe(0.00 C, 0.3 Mn, 0.15 Si)</td>
<td>Tension, strain gage extensometer.</td>
<td>Ann. 1060 K, 1 h, oil quench, 655 K, 1 h, mix cool, $f(P)$ in figure 18.</td>
</tr>
<tr>
<td>Kamber (1963)</td>
<td>Fe(0.002 C, P, S, Mn, 0.001 Cr, V, 0.003 Mo, Al, 0.004 Ni, 0.011 Mn, 0.001 Cu, 0.001 Fe)</td>
<td>1 MHz, transv. res. freq.</td>
<td>a) 1 mm GS, $H=0$, 0.04 b) 1 mm GS, $H=1.5$ kOe. Strained 30%, ann. 1173 K, 2 h c) 30 mm GS, $H=0$, 1.94 d) 30 mm GS, $H=1.5$ kOe. $F(T)$ in figure 18.</td>
</tr>
<tr>
<td>Masamoto, Sato, Kobayashi (1965)</td>
<td>“Electrolytic”</td>
<td>Long. res. freq.</td>
<td>Vac. ann. 1273 K, 1 h, slow cool; $\chi(\text{Fe})$.</td>
</tr>
</tbody>
</table>

Table 8. Young's modulus E of iron—Continued

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>E (10^11 dyn/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shved (1964)</td>
<td>“Armco iron”</td>
<td>X-ray scattering, uniaxial tension.</td>
<td></td>
<td>2.21</td>
</tr>
</tbody>
</table>
| Smith, Stern, Stephens (1966) | a) Fe(0.4 C, 0.35i, 0.8 Mn)
b) Fe(0.6 C, 0.25 i, 0.8 Mn) | Long. transv. pulse-echo. | $F(P)$. | 2.11
| Masumoto, Sawaya, Kikuchi (1971) | “Electrolytic” Fe(0.004 Cu, trace Al, 0.005 Mn, 0.005 Si, 0.005 C, 0.005 S, 0.004 P) | Resonance frequency, 700-900 Hz. | Vac. ann. 1 h at 1273 K, cooled at ~ 573 K/hr; $f(T)$ in figure 18. | 1.97 |
| Speich, Schwoebel, Leslie (1972) | Fe(0.057 C) | 80 kHz pulse-echo. | Austenitized 1 h at 1273 K and water quenched. | 2.082 |

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>E (10^11 dyn/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guillaume (1897)</td>
<td></td>
<td>Spring tension.</td>
<td></td>
<td>1.92</td>
</tr>
<tr>
<td>Schaefer (1901)</td>
<td></td>
<td>Res. freq.</td>
<td></td>
<td>2.31</td>
</tr>
</tbody>
</table>
| Honda, Terada (1907) | a) “Pure”
b) “Commercial” | Tension, opt. lever. | | 1.9
| Grünwelen (1907) | 97.0 Ni(0.4 Co, 0.4 Fe, 1.0 Mn, 0.1 Cu, Si) | a) Transv. res. freq.
b) Tension, opt. lever. | Hard drawn. | 1.95
| Kurnakov, Rapke (1914) | 99.9 Ni | Tension, opt. | | 2.01 |
| Harrison (1915) | | Tension, opt. mic. | Ann. 773 K, $f(T)$, 293–740 K. | 2.16 |
| Koch, Dieterle (1922) | | Res. freq. | $F(T)$, 285–1273 K. | 1.7 |
| Honda, Tanaka (1926) | Ni(0.145 C, 0.05 Si, 0.01 Cu, 0.15 Fe, 0.04 S) | Bending, opt. lever. | Ann. 1173 K, ½ h; x(Fe. Co. C); $f(H)$. | 1.93 |
| Mudge, Luff (1928) | 99.18 Ni(0.01 C, 0.16 Cu, 0.06 Si, Mn, 0.4 Fe, 0.01 S) | Tension. | a) Hot rolled.
b) Ann. 1030 K, 4 h. | 2.13
| Nishiyama (1929) | Ni(0.10 Fe, 0.03 Co, 0.05 Si, 0.02 P, 0.01 S) | Bending, opt. lever. | Vac. ann. 1173 K, 2 h, furnace cool. | 1.99 |
| Kawai (1930) | | Tension, opt. lever. | Ann. 1173 K; $f(D(tension))$, $f(T$anneal)). | 2.10 |
| Giese, Blechschmidt (1931) | | Res. freq. | a) Cold worked, $H = 0$;
b) Cold worked, $H = 6.2$ kOe;
c) Ann. 973 K, 12 h, slow cool;
d) Ann. 973 K, 12 h, slow cool, $H = 6.2$ kOe;
e) Ann. 973 K, 2 h quenched, $H = 0$;
f) Ann. 973 K, 2 h, quenched, $H = 6.2$ kOe. | 2.259
| Jacquierod, Mugel (1931) | “Pure” | Bending. | a) As received.
b) Ann. 858 K, 16 h; $f(T)$ in figure 19. | 2.17

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>(E (10^{12} \text{ dyn/cm}^2))</th>
</tr>
</thead>
</table>
| Zacharias (1935) | Ni(0.41 Fe, 0.13 Cu, 0.02 Mn, 0.09 Si, 0.11 C, 0.3–0.4 Co, 0.01 S) 99.9 Ni(< 0.003 Cu, 0.11 Mo) | Long. res. freq. | a) Ann. 973 K, slow cool.
b) Ann. 1173 K, 2 h, slow cool.
c) Ann. 1573 K, 2 h, slow cool.
d) Ann. 1573 K, 2 h, reheated 1573 K, H₂O quench.
a) Single crystal from melt, ann. 1373 K, H₂O quench.
b) Single crystal from melt, slow cool from 1723 K. \(F(T) \) in figure 19. | 2.141
1.986
2.077
2.301
2.138
2.076 |
| Nakamura (1935) | 99.84 Ni | Long. res. freq. | Vac. ann. 1373 K, 1 h, slow cool; \(x(Fe) \).
a) \(H = 0 \).
b) \(H = 0.325 \) kOe. | 1.940
2.275 |
| Nakamura (1936) | | Long. res. freq. | \(F(Cu), f(T, 288–743 \text{ K}) \). | 1.950 |
| Siegel, Quimby (1936) | 99.715 Ni(0.01 Si, 0.02 Cu, 0.11 Fe, Mg 0.05 C) | Long. res. freq. | Ann. 1373 K, 4 h, H₂O at., slow figure 33. cool; \(GS = 0.4 \) mm.; \(f(H, T) \) in \(a) H = 0 \).
b) \(H = \text{sat.} \).
a) Unannealed. \(x(Fe) \).
b) Unannealed. \(x(Fe) \). | 2.055
2.218
1.937
1.918 |
| Davies, Thomas (1937) | 99.2 Ni | Res. freq. | Ann. 973 K, \(1 \) h, \(x(Fe), f(T, 293–745 \text{ K}) \). | 2.15 |
| Förster, Köster (1937a, 1938) | | Transv. res. freq. | Ann. 973 K, \(1 \) h, slow cool; \(x(Fe); f(\text{vibr. ampl.}) \). | 2.193 |
| Förster, Köster (1937b) | | Transv. res. freq. | Ann. 973 K, \(1 \) h, slow cool; \(x(Fe) \).
a) \(H = 0 \).
b) \(H = 0.575 \) kOe. | 2.06
2.21 |
| Engler (1938) | 99 Ni | Long. res. freq. | Ann. 1223 K, \(3 \) h, slow cool; \(f(T, H) \) in figure 33; \(a) H = 0 \).
b) \(H = \text{sat.} \). | 1.921
2.174 |
| Kimura (1939) | “Electrolytic” | Long. res. freq. | Ann. 1223 K, \(3 \) h, slow cool; \(f(T, H) \) in figure 33; \(a) H = 0 \).
b) \(H = \text{sat.} \). | 2.11 |
| Köster (1940) | | Transv. res. freq. | Ann. 973 K, \(1 \) h, slow cool; \(x(Fe) \). | 2.11 |
| Aoyama, Fukuroi (1941) | 98.9 Ni(0.3 Mn, 0.05 Fe) | “Dynamic”. | Vac. ann. 1173 K, \(6 \) h, \(f(Cu) \);
a) \(T = 289 \) K.
b) \(T = 78 \) K. | 1.70
1.95 |
| Yamamoto (1941, 1943) | “Electrolytic” | Magnetoscillation. | Vac. ann. 1273 K, \(2 \) h, slow cool; \(f(H) \). | 2.012 |
| Yamamoto (1942, 1954) | 99.6 Ni(0.08 Fe, 0.32 Co, 0.01 Si, 0.02 C) | Magnetoscillation. | Vac. ann. 1173 K, \(2 \) h, \(x(Cu); f(H) \);
a) \(H = 0 \).
b) \(H = 0.6 \) kOe. | 1.86
2.17 |
| Köster (1943a) | Ni(0.5 Mn) | Transv. res. freq. | a) Ann. 1273 K; cold rolled 80%.
b) Vac. ann. 973 K
c) Vac. ann. 1173 K
d) Vac. ann. 1573 K, \(H = 0 \)
e) Vac. ann. 1573 K, \(H = \text{sat.} \).
\(F(T, GS, T \text{ anneal). in figure 14.} \) | 2.15
2.00
1.92
1.82
2.19 |
| Köster (1943b) | Ni(0.5 Mn) | Transv. res. freq. | Vac. ann. 913 K, \(1 \) h, slow cool; \(x(Fe); f(H); f(T, 293–973 \text{ K}) \); |
Table 9. Young's modulus E of nickel—Continued

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>E (10^8 dyn/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masumoto, Saito (1944)</td>
<td>Ni(0.02 Fe, 0.02 C, 0.01 Si)</td>
<td>“Static”, helical coils</td>
<td>Vac. ann. 1273 K, 1 h, x(Cu).</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transv. res. freq.</td>
<td></td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a) $H = 0$, b) $H = 0.5$ kOe. (Extrapolated paramagnetic fce phase to 293 K.)</td>
<td>(2.16)</td>
</tr>
<tr>
<td>Köster (1948)</td>
<td></td>
<td></td>
<td>Ann. 1173 K; $f(T)$ in figure 19; a) $H = 0$, b) H sat.</td>
<td>1.93</td>
</tr>
<tr>
<td>Köster, Hauscher (1948)</td>
<td></td>
<td></td>
<td>X(Cu); a) $H = 0$, b) H sat.</td>
<td>2.01</td>
</tr>
<tr>
<td>Bennett, Davies (1949)</td>
<td>Ni, 99.2 Ni</td>
<td>Transv. res. freq.</td>
<td>923 K ann. 8–98 h, $f(T)$, 273–850 K relative values, x(Fo).</td>
<td>2.16</td>
</tr>
<tr>
<td>Fukuroi, Shibuya (1958)</td>
<td>Ni(0.3 Mn, 0.05 Fe)</td>
<td>Bending, interferometer.</td>
<td>Vac. ann. 1173 K, 1 h x(Cu).</td>
<td>1.65</td>
</tr>
<tr>
<td>Back, Kouvelites, McKeenan (1951)</td>
<td>“Commercially pure”</td>
<td>Long res. freq</td>
<td>Ann. at 923 K 3 h. in H.; a) Unannealed. $F(H)$ in figure 37. $\Delta E/E$ data in Kouvelites, McKeenan (1952)</td>
<td>1.875</td>
</tr>
<tr>
<td>Frederick (1947)</td>
<td></td>
<td></td>
<td></td>
<td>2.010</td>
</tr>
<tr>
<td>Yamamoto, Taniguchi (1951, 1955)</td>
<td>0.5–15 MHz pulse-echo.</td>
<td>Magnetostriuctive oscillation.</td>
<td>Vac. ann. 1273 K, 2 h; f(Co conc.). $\Delta E/E$ data in Kouvelites, McKeenan (1952)</td>
<td>1.875</td>
</tr>
<tr>
<td>Umekawa (1954)</td>
<td>Ni(0.04 Fe, 0.03 Mn, 0.11 Si, 0.01 Cu, C)</td>
<td>Transv. res. freq.</td>
<td>923 K ann. 8–98 h, x(Cu, Co).</td>
<td>1.72</td>
</tr>
<tr>
<td>Burnett (1956)</td>
<td>Ni(0.04 Fe, 0.03 Mn, 0.11 Si, 0.01 Cu, C)</td>
<td>Res. freq. in bending.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavlov, Kiroitchkov, Fedorov (1957)</td>
<td>Ni(0.99 Ni</td>
<td>0.7 MHz transv. res. freq.</td>
<td>Vac. ann. 1073 K, 3 h; x(Cu); $f(T)$ in figure 19.</td>
<td>1.89</td>
</tr>
<tr>
<td>Shirakawa, Numakura (1958)</td>
<td>Ni(0.09 Mn, 0.01 C)</td>
<td>Bending.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a) Vac. ann. 973 K, 1 h, GS = 0.060 mm. b) Vac. ann. 1073 K, 1 h, GS = 0.069 mm. c) Vac. ann. 1173 K, 1 h, GS = 0.082 mm. d) Vac. ann. 1273 K, 1 h, GS = 0.111 mm. e) Vac. ann. 1373 K, 1 h, GS = 0.110 mm.</td>
<td>2.00</td>
</tr>
<tr>
<td>Yamamoto (1959)</td>
<td>Ni(0.1 Fe, 0.01 Si, Cu, 0.04 C, 0.02 S)</td>
<td>Magnetostriuctive oscillation.</td>
<td>Ann. 1273 K, H₀ atmos., 1 h; annealed 1273 K, vac., H; x(Fe); $f(H)$, a) $H = 0$, b) H sat.</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.749</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.915</td>
</tr>
<tr>
<td>Hill, Shimmin, Wilcox (1961)</td>
<td>Ni(0.01 C, Si, P)</td>
<td>Long. res. freq.</td>
<td>$F(T)$, 293–920 K.</td>
<td>2.02</td>
</tr>
<tr>
<td>Durham, et al. (1963)</td>
<td>Ni(0.3 Mn, 0.1 Fe, 0.06 C, 0.1 S)</td>
<td>Tension, strain-gauge extensometer.</td>
<td>Ann. 1213 K, 1 h; $f(T)$ in figure 19.</td>
<td>1.96</td>
</tr>
</tbody>
</table>

Table 9. Young's modulus E of nickel—Continued

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>E (10^12 dyn/cm²)</th>
</tr>
</thead>
</table>
| Kamber (1963) | "A" Nickel; Ni:0.1 Cu, C: 0.15 Fe, 0.20 Mn, 0.05 Si, 0.005 S | 1.2 MHz transv. res. freq. | a) ann. 1623 K, He atmos., H = 1 mm; no field.
 b) ann. 1623 K, He atmos., H = 1 mm; saturated field.
 c) ann. 1173 K, He atmosphere, 1 h, GS = 0.13 mm.
 $F(T)$ in figure 19. | 1.90
 2.16
 2.10 |
| Tino, Maeda (1963) | Electrolytic Ni | Res. freq., 20-30 kHz | a) $H = 0$.
 b) $H = 320$ Oe.
 $F(T)$, H in figure 33. | 2.06
 2.17 |
| Armstrong, Brown (1964)| Ni(0.55 metallic, 0.05 C, 0.005 S + 0) | Long. res. freq. | Ann. 1173, $f(T)$ in figure 19. | 2.06 |
| Orlov, Fedotov (1966) | 9.988 Ni | Trans., long. res. freq. | Vac. electron arc melting, x(Cu), $f(T)$ in figure 19. | 2.08 |
| Masumoto, Saito, Murakami, Kikuchi (1968) | Ni(0.19 Co, 0.01 Fe, Al, 0.02 C) | Res. freq. | $F(T)$ in figure 19. | 1.95 |
| Faninger (1969) | 9.99 Ni | Tension, x-rav. | $X(Cu)$, $f(H)$. | 2.15 |
| Masumoto, Saito, Sawaya (1970) | Electrolytic 99.98 Ni (0.016 Co, 0.001 Cu, 0.001 Fe, 0.002S, 0.000 Si, Mn, Pb, C) | 600–800 Hz oscillator. | Vac. ann. 30 min. at 1173 K, cooled 300°C/3h. | 1.96 |

Best values (no field)
(sat. field)
Uncertainties (no field)
(sat. field)
1.97
2.18
0.15
0.09

Table 10. Young's modulus E of iron-nickel alloys

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>E (10^12 dyn/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guillaume (1897, 1898, 1927)</td>
<td>15 alloys</td>
<td>Spring tension</td>
<td>X(Cr, C), $f(T)$, 243–313 K.</td>
<td>Figure 5</td>
</tr>
</tbody>
</table>
| Angenheister (1903) | Fe-24.1 Ni (0.36 C, 0.41 Mn) | Tension. | a) Ann. "non-magnetic",
 b) Cooled to 76 K, "magnetic". | 1.74
 1.53 |
| Carpenter, Hadfield, Longmuir (1905) | 6 alloys, impurities (0.40–0.52 C, 0.8–0.18 Si, 0.01–0.04 S, P)
 | | Tension extensometer. | Ann. 1030 K, slow cool. | Figure 5 | |
| Honda, Terada (1907) | 6 alloys | Tension, opt. lever. | $F(S)$. | Figure 5 |
| Honda (1919) | 14 alloys | Bending, opt. lever. | Ann. 1173 K. | Figure 5 |
| Müller (1922) | 12 alloys, impurities (0.12–0.73 C, 0.24–1.24 Mn, 0.13–0.27 Si, < 0.07 P, < 0.04 S)
 | | Tension, opt. microscope. | Ann. 813–1073 K. | Figure 5 | |
| Carrington (1924) | Fe-3.41 Ni (0.19 C, 0.55 Mn, 0.03 P, S, 0.10 Si) | Bending. | Ann. 1160 K, H = 1 h, slow cool; $f(T)$ in figure 21. | 2.07 |
| Kimball, Lovell (1925) | Fe-3.5 Ni (0.35 C, 0.21 Si, 0.02 P, 0.58 Mn) | Transv. res. freq. | Ann. 1123 K, oil quench, drawn 923 K, $f(T)$ in figure 22. | Figure 5 |
| Honda, Tanaka (1926) | 12 alloys | Bending, opt. lever. | Ann. 1173 K, 2 h, slow cool; $f(H)$. | Figure 5 |

ELASTIC PROPERTIES OF METALS AND ALLOYS

Table 10. Young’s modulus E of iron-nickel alloys—Continued

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>E (10^9 dyne/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevenard (1927, 1943) also Chevenard, Crussard (1943)</td>
<td>33 alloys</td>
<td>Bending, torsion.</td>
<td>Ann. 1173 K.</td>
<td>Figure 5</td>
</tr>
<tr>
<td>Nishiya (1929)</td>
<td>9 alloys from electrolytic Fe, Mond Ni</td>
<td>Bending, opt. levels.</td>
<td>Ann. 1173 K, 2 h, furnace cooled.</td>
<td>Figure 6</td>
</tr>
<tr>
<td>Kawai (1930)</td>
<td>Fe-3 Ni (0.3 C)</td>
<td>Tension.</td>
<td>a) Ann. 1133 K, b) tensile elongation = 2.1%, c) tensile elongation = 5.3%, d) tensile elongation = 8.0%, e) tensile elongation = 12.9%.</td>
<td>2.07, 2.01, 1.99, 1.97, 2.02</td>
</tr>
<tr>
<td>Hanegger (1932)</td>
<td>a) Fe-5 Ni b) Fe-3 Ni</td>
<td>Transv. res. freq.</td>
<td></td>
<td>1.99, 1.94</td>
</tr>
<tr>
<td>Keulegan, Houseman (1933)</td>
<td></td>
<td>Tension, torsion.</td>
<td>$F(T)$, 295–906 K in Fe-3.5–5.0 Ni, ann. 4 h, furnace cooled or water quenched; Fe-35 Ni as received; $F(T)$, temp. coeff. at 273 K.</td>
<td>Figure 5</td>
</tr>
<tr>
<td>Nakamura (1935)</td>
<td>10 alloys from 99.94 Fe, Ni</td>
<td>Long. res. freq.</td>
<td>Vac. ann. 1273 K, 1 h, slow cool. $f(H)$.</td>
<td>Figure 5</td>
</tr>
<tr>
<td>Moller, Barbers (1936)</td>
<td>Fe-0.02 C, Si, S, 0.37 Mn, 0.03 P</td>
<td>a) X-ray, b) Tension.</td>
<td>Vac. ann. 873 K, 1 h, slow cool.</td>
<td>1.79, 1.98</td>
</tr>
<tr>
<td>Förster, Köster (1937)</td>
<td>Fe-12.4 Ni</td>
<td>Transv. res. freq.</td>
<td>$F(T)$, in figure 58.</td>
<td>1.49</td>
</tr>
<tr>
<td>Förster, Köster (1937)</td>
<td>6 alloys</td>
<td>Transv. res. freq.</td>
<td>$F'(vibr. ampl.)$.</td>
<td>Figure 5</td>
</tr>
<tr>
<td>Davies, Thomas (1937)</td>
<td>Fe-48 Ni</td>
<td>Res. freq. a) Ann. 1173 K, 7 h. b) As received.</td>
<td>1.365, 1.529</td>
<td></td>
</tr>
<tr>
<td>Dürring (1938)</td>
<td>Fe-42 Ni</td>
<td>Res. freq. a) $H = 0$, b) $H = 0.575$ kOe.</td>
<td>1.575, 1.62</td>
<td></td>
</tr>
<tr>
<td>Engler (1950)</td>
<td>4 alloys (0.4 Mn, 0.1 Si)</td>
<td>Long. res. freq.</td>
<td>$F(T)$ in figure 20. $f(H, X)$ in figure 20; $f(D, X)$ in figure 21.</td>
<td>Figure 5</td>
</tr>
<tr>
<td>Sckoch, Thielsch (1959)</td>
<td>Fe-22.4 Ni (0.9 Mn, 0.28 Si, 0.08 C, 0.01 P, S)</td>
<td>Res. freq.</td>
<td>Ann. 1006 K, $H_{sat}, f(T)$ in figure 21.</td>
<td>1.60</td>
</tr>
<tr>
<td>Williams, Bozorth, Christiansen (1941)</td>
<td>Fe-68 Ni (0.3 Mn)</td>
<td>Long. res. freq.</td>
<td>a) Rolled (83% red. thick.), b) Ann. 1273 K, 1 h, H_{sat}, c) Treatment (b), then 873 K, rapid cool, d) Treatment (b), then 873 K, H_{sat} cool in 0.01 kOe long. field, e) Treatment (b), then</td>
<td>2.181</td>
</tr>
<tr>
<td>Chevenard, Crussard (1946)</td>
<td>a) Fe-49 Ni b) 12 alloys</td>
<td>Bending, torsion.</td>
<td>Cold worked 44%; $f(T)$ in figure 20.</td>
<td>1.93</td>
</tr>
<tr>
<td>Seager, Thompson (1945)</td>
<td>Fe-3.1 Ni (0.51 Mn, 0.16 Si, 0.2 C, 0.01 S, P)</td>
<td>Bending, interferometric.</td>
<td>$f(T)$ in figure 21.</td>
<td>1.92</td>
</tr>
<tr>
<td>Köster (1943b)</td>
<td>11 alloys</td>
<td>Transv. res. freq.</td>
<td>Ann. 1273 K, 1 h; $f(Ni), f(H)$.</td>
<td>Figure 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>E (10^11 dyn/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheil, Reinacher (1944)</td>
<td>7 alloys (0.1-0.9 Mn, 0.1-0.3 Si)</td>
<td>Transv. res. freq.</td>
<td>Ann. 1173 K, H₂ atm., 1 h, slow cool; $f(T)$ in figure 20.</td>
<td>1.91</td>
</tr>
<tr>
<td>Fontana (1948)</td>
<td>Fe-8.6 Ni (0.77 Mn, 0.23 Si, 0.05 Al, 0.05 Ti, 0.01 C, P 0.02 S)</td>
<td>Tension, strain gauges.</td>
<td>Ann. 1173 K, 1 h, air cool then 1063 K, 1 h, air cool; then 838 K, 2 h, air cool; $f(T)$ in figure 21.</td>
<td></td>
</tr>
<tr>
<td>Fine, Ellis (1950)</td>
<td>13 alloys (0.4 Co, 0.07 Mn)</td>
<td>Long. res. freq.</td>
<td>Cold swaged 74%; ann. 1223 K, 1 h; $f(T)$ in figure 20. Cold swaged 41%, 55%; ann. 673 K, not plotted.</td>
<td>Figure 5</td>
</tr>
<tr>
<td>Deck, Kouvettes, McKeehan (1951)</td>
<td>3 alloys (90.2, 0.91, 9.9, 0.05, 10 Ni)</td>
<td>Long. res. freq.</td>
<td>Ann. at 923 K, 3 h, m Hz. $F(H)$ in figure 37. $\Delta E/E$ in Kouvettes, McKeehan (1952).</td>
<td></td>
</tr>
<tr>
<td>Ochse, Gold (1956)</td>
<td>Fe-60 Ni</td>
<td>Res. freq.</td>
<td>a) No field, b) Saturated field.</td>
<td>1.70</td>
</tr>
<tr>
<td>Markham (1957)</td>
<td>Fe-3 Ni</td>
<td>a) Tension, b) 10 MHz pulse-echo.</td>
<td></td>
<td>2.01</td>
</tr>
<tr>
<td>Yamamoto (1959)</td>
<td>12 alloys from Armco iron, Mond nickel</td>
<td>Magnetostrictive vibration.</td>
<td>Ann. 1273 K, 1 h, H₂; then vac. ann. 1273 K, H₂; $f(H, x)$.</td>
<td>2.96</td>
</tr>
<tr>
<td>Durham, et al. (1963)</td>
<td>Fe-36 Ni (0.8 Mn, 0.4 Si, 0.2 Se, 0.08 C, 0.01 P, S)</td>
<td>Torsion, opt. lever.</td>
<td>Cold drawn 12-15%, $f(T)$ in figure 30.</td>
<td>1.45</td>
</tr>
<tr>
<td>Tino, Maeda (1963)</td>
<td>6 alloys, 26.2-100 Ni</td>
<td>Res. freq., 20-30 kHz.</td>
<td>$F(T, H)$ in figure 34, $f(U)$ in figure 13.</td>
<td></td>
</tr>
<tr>
<td>Goldman, Robertson (1964)</td>
<td>Fe-20.9 Ni (0.004 C) Fe-25.1 Ni (0.26 C)</td>
<td>Long. res. freq.</td>
<td>Vac. ann. 1173 K, 1 h; 0.035 mm GS; $f(T)$ in figure 38.</td>
<td></td>
</tr>
<tr>
<td>Doroshek (1964)</td>
<td>6 alloys (0.4-0.5 Mn, 0.14-0.48 Si, 0.17-0.38 Cr, 0.01 Al, 0.02-0.03 C, 0.02-0.04 P, S)</td>
<td>Res. freq.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, Stern, Stephens (1966)</td>
<td>Fe-2.5 Ni (0.4 C, 0.6 Cr, 0.5 Mo)</td>
<td>Long, transv. pulse-echo.</td>
<td>$F(P)$, third-order stiffnesses.</td>
<td>2.10</td>
</tr>
<tr>
<td>Eganyan, Selisikiy (1967)</td>
<td>Fe-75 Ni</td>
<td>Res. freq.</td>
<td>$F(H)$; a) $H = 0$, b) $H = 1$ kOe.</td>
<td>2.06</td>
</tr>
<tr>
<td>Kototayev, Koneva (1968)</td>
<td>Fe-75 Ni</td>
<td>Res. freq.</td>
<td>$F(T)$ in figure 22, relative values.</td>
<td>2.16</td>
</tr>
<tr>
<td>Khomenko, Tseytlin (1969)</td>
<td>9 alloys, 30.2-46.4 Ni</td>
<td>Res. freq.</td>
<td>Vac. ann. at 1173 K, 2 h, cooled at 100°F.</td>
<td></td>
</tr>
<tr>
<td>Maeda (1971)</td>
<td>Fe-35 Ni</td>
<td>Res. freq.</td>
<td>Vac. ann. at 1273 K, 10 h,</td>
<td></td>
</tr>
</tbody>
</table>

Table 10. Young's modulus E of iron-nickel alloys—Continued

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>E (10^{11} dyn/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesburg (1971)</td>
<td>3 alloys</td>
<td>10 MHz pulse-echo-overlap.</td>
<td>Calculated from c_p by V-R-H method. Figure 5</td>
<td>1.26</td>
</tr>
<tr>
<td>Haussch, Warlimont (1972)</td>
<td>9 alloys</td>
<td>10 MHz pulse-echo.</td>
<td>Calculated from c_p by V-R-H method. Figure 5</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Table 11. Shear modulus G of iron

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>G (10^{12} dyn/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earlier reports (1853-1900)</td>
<td></td>
<td></td>
<td>Range = 0.68 - 0.83.</td>
<td>average = 0.76</td>
</tr>
<tr>
<td>Schaefer (1901)</td>
<td></td>
<td>Torsional res. freq.</td>
<td></td>
<td>0.719</td>
</tr>
<tr>
<td>Benton (1903)</td>
<td>"Steel"</td>
<td>Torsion</td>
<td>$F(T, 76-300 \text{ K})$, relative to 300 K.</td>
<td>0.826</td>
</tr>
<tr>
<td>Horton (1905)</td>
<td></td>
<td>Res. freq.</td>
<td>$F(T, f(A))$.</td>
<td>0.812</td>
</tr>
<tr>
<td>Grüneisen (1908)</td>
<td>a) "Steel" b) "Iron"</td>
<td>Long. res. freq.</td>
<td></td>
<td>0.031</td>
</tr>
<tr>
<td>Guye, Fredericksz (1909)</td>
<td></td>
<td>Torsion pendulum.</td>
<td>$F(T)$ in figure 23.</td>
<td>0.805</td>
</tr>
<tr>
<td>Koch, Dannecker (1915)</td>
<td></td>
<td>Torsion</td>
<td>$F(T)$ in figure 23.</td>
<td>0.79</td>
</tr>
<tr>
<td>Honda (1919)</td>
<td>Fe (0.22 Cu, 0.31 Mn, 0.11 Si, 0.09 C, 0.03 P, S)</td>
<td>Torsion, opt. lever.</td>
<td>X (Co).</td>
<td>0.84</td>
</tr>
<tr>
<td>Honda (1919)</td>
<td></td>
<td>Torsion</td>
<td>Ann. 1173 K, $f(X)$.</td>
<td>0.834</td>
</tr>
<tr>
<td>Honda, Hasimoto (1921)</td>
<td>Fe (0.18 C, 0.2 Si + Mn)</td>
<td>Torsion, opt. lever.</td>
<td>Ann. 1173 K, a) slow cool, b) oil quench.</td>
<td>0.806</td>
</tr>
<tr>
<td>Iokibe, Sakai (1921)</td>
<td>Fe (0.08 Fe, 0.008 C)</td>
<td>Torsional oscillations</td>
<td>Ann. 1973 K, $f(T)$ in figure 20.</td>
<td>0.70</td>
</tr>
<tr>
<td>Kikuta (1921)</td>
<td>Fe (0.35 C)</td>
<td>Res. freq.</td>
<td>Ann. 1173 K, $f(T)$ in figure 23.</td>
<td>0.807</td>
</tr>
<tr>
<td>Honda, Tanaka (1926)</td>
<td>Fe (0.38 Mn, 0.1 C, 0.09 P, S) Fe (0.31 Mn, 0.11 Si, 0.09 C, 0.29 Cu, 0.03 P, S)</td>
<td>Torsion, opt. lever.</td>
<td>X (Ni, Cr, Cu), $f(H)$. a) Ann. 1173 K, 1 h slow cool. b) Ann. 1173 K, 1 h oil quench. c) Ann. 1173 K, 2 h, slow cool.</td>
<td>0.813</td>
</tr>
<tr>
<td>Chevenard (1927)</td>
<td></td>
<td>Torsion.</td>
<td>X (Ni, Cr, C).</td>
<td>0.85</td>
</tr>
<tr>
<td>Goens (1930)</td>
<td></td>
<td>a) Res. freq. b) Torsion.</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>Gutenberg, Schlechtweg (1930)</td>
<td></td>
<td>Res. freq., torsion.</td>
<td></td>
<td>0.78</td>
</tr>
<tr>
<td>Everett (1931)</td>
<td>Fe (0.35 C, 0.80 Mn, 0.10 Si, 0.02 P, 0.83 S)</td>
<td>Torsion, dial gauge, mech. lever.</td>
<td>Ann. 1173 K, 1 h, slow cool $F(T, 295-773K)$.</td>
<td>0.794</td>
</tr>
<tr>
<td>Kawai (1931)</td>
<td>"Armco iron"</td>
<td>Torsion, opt. lever.</td>
<td>Ann. 1273 K, $f(D)$ in figure 10.</td>
<td>0.012</td>
</tr>
<tr>
<td>M'Farlene (1931)</td>
<td>"Soft iron"</td>
<td>Torsion pendulum.</td>
<td>$F(D)$ in figure 10.</td>
<td>0.078</td>
</tr>
</tbody>
</table>
Table 11. Shear modulus \(G \) of iron—Continued

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>(G) (10¹² dyn/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keeble, Houseman (1933)</td>
<td>Fe (0.66 C, 0.8 Mn, 0.01 P, 0.04 S)</td>
<td>Helical loaded springs.</td>
<td>Temp. coeff. 223–323 K.</td>
<td>0.796</td>
</tr>
<tr>
<td>Verse (1935)</td>
<td>a) Fe (0.4 C, 0.86 Mn, 0.04 S, 0.02 P, 0.14 Si)</td>
<td>Torsion.</td>
<td>Ann., (f(T)), 290–773 K.</td>
<td>0.796</td>
</tr>
<tr>
<td></td>
<td>b) Fe (0.34 C, 0.80 Mn, 0.10 Si, 0.02 P, 0.03 S)</td>
<td>Long. torsional res. freq.</td>
<td>Ann. 1173 K, (f(T)) in figure 23.</td>
<td>0.798</td>
</tr>
<tr>
<td>Bez Bordill (1935)</td>
<td></td>
<td>Long., transv. sound-wave velocities, 1–20 MHz.</td>
<td></td>
<td>0.845</td>
</tr>
<tr>
<td>Brown (1936)</td>
<td>"Armco iron"</td>
<td>Long. (56 MHz), torsional (39 MHz) res. freq.</td>
<td>Ann., (f(H)).</td>
<td>0.846</td>
</tr>
<tr>
<td>Glocker, Schaaber (1938)</td>
<td>Fe (0.06 C)</td>
<td>Torsion, x-ray</td>
<td></td>
<td>0.796</td>
</tr>
<tr>
<td>Everett, Miklowitz (1944)</td>
<td>Fe (0.15–0.25 C, 0.3–0.6 Mn, 0.04 P, 0.05 S); SAE 1020</td>
<td>Torsion, opt. lever.</td>
<td>(F(T)) in figure 23.</td>
<td>0.78</td>
</tr>
<tr>
<td>Garofalo, Malenock, Smith (1952)</td>
<td>Fe (0.45 Mn, 0.19 Si, 0.13 C, 0.02 P, 0.02 Si); (SAE 1015)</td>
<td>Torsion, opt. lever.</td>
<td>Ann. 1170 K, 1 h air cooled; (f(T)) in figure 23.</td>
<td>0.80</td>
</tr>
<tr>
<td>Hughes, Kelly (1953)</td>
<td>"Armco iron"</td>
<td>Pulse-echo.</td>
<td>(F(P)).</td>
<td>0.820</td>
</tr>
<tr>
<td>Burnett (1956)</td>
<td>99.8 Fe</td>
<td>"Free-free sonic vibration", res. freq. in torsion.</td>
<td>(F(T)) in figure 23.</td>
<td>0.78</td>
</tr>
<tr>
<td>Hughes, Maurette (1956)</td>
<td>"Armco iron"</td>
<td>Pulse-echo.</td>
<td>(F(P)), (f(T)) in figure 23.</td>
<td>0.814</td>
</tr>
<tr>
<td>Voronov, Vereshchagin (1961)</td>
<td>99.8 Fe (0.02 Mn, 0.02 Si, 0.012 C, 0.03 P, S)</td>
<td>10 MHz pulse-echo.</td>
<td>Ann.; (f(P)).</td>
<td>0.812</td>
</tr>
<tr>
<td>Durham, McClintock, Reed, Warren, Gunther (1963)</td>
<td>Fe (0.8 C, 0.3 Mn, 0.15 Si)</td>
<td>Torsion, opt. lever.</td>
<td>Ann. 1056 K, 1 h, oil quench, temper 655 K, 1 h, air cool; (f(T)) in figure 23.</td>
<td>0.795</td>
</tr>
<tr>
<td>Smith, Stern, Stephens (1966)</td>
<td>a) Fe (0.8 Mn, 0.3 Si, 0.4 C)</td>
<td>Long. and transv. pulse-echo.</td>
<td>(X(\text{Ni}), f(P)), third-order polycrystaline moduli.</td>
<td>0.821</td>
</tr>
<tr>
<td></td>
<td>b) Fe (0.8 Mn, 0.2 Si, 0.6 C)</td>
<td></td>
<td></td>
<td>0.820</td>
</tr>
<tr>
<td>Frederick (1947)</td>
<td>"Armco iron"</td>
<td>0.5–15 MHz pulse-echo.</td>
<td>(F(T)).</td>
<td>0.808</td>
</tr>
<tr>
<td>Speich, Schwoebel, Leslie (1972)</td>
<td>Fe (0.057 C)</td>
<td>80 kHz pulse-echo.</td>
<td>Austenitized 1 h at 1000 °C and water quenched.</td>
<td>0.806</td>
</tr>
</tbody>
</table>

Table 12. Shear modulus \(G \) of nickel

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>(G) (10¹² dyn/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earlier reports (1853–1900)</td>
<td></td>
<td></td>
<td>Range: 0.68–0.83</td>
<td>average 0.76</td>
</tr>
<tr>
<td>Schaefer (1901)</td>
<td></td>
<td>Torsion, res. freq.</td>
<td></td>
<td>0.933</td>
</tr>
<tr>
<td>Gruneisen (1908)</td>
<td></td>
<td>Long. res. freq.</td>
<td>Hard drawn.</td>
<td>0.770</td>
</tr>
<tr>
<td>Gaye, Schapper (1910)</td>
<td></td>
<td>Torsional oscillations.</td>
<td>(F(T)) in figure 24.</td>
<td>0.762</td>
</tr>
<tr>
<td>Koch, Dannecker (1915)</td>
<td></td>
<td>Res. freq.</td>
<td>(F(T)) in figure 24.</td>
<td>0.716</td>
</tr>
</tbody>
</table>

ELASTIC PROPERTIES OF METALS AND ALLOYS

Table 12. Shear modulus G of nickel—Continued

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>G (10^12 dyne/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iokibe, Sakai (1921)</td>
<td>Torsional oscillations under tensile load</td>
<td>Vac. ann. 1073 K, $f(T)$ in figure 24.</td>
<td>0.723</td>
<td></td>
</tr>
<tr>
<td>Kikuta (1921)</td>
<td>Torsional oscillations under tensile load</td>
<td>Ann., $f(T)$ in figure 24.</td>
<td>0.782</td>
<td></td>
</tr>
<tr>
<td>Honda, Tanaka (1926)</td>
<td>Ni (0.15 Fe, 0.14 C, 0.01 Cu, 0.05 Si, 0.04 S)</td>
<td>Torsion, opt. lever.</td>
<td>0.750</td>
<td></td>
</tr>
<tr>
<td>Chevenard (1927)</td>
<td>Torsion.</td>
<td>$X(Fe, Cr)$.</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Mudge, Luff (1928)</td>
<td>Ni (0.1 C, 0.16 Cu, 0.06 Si, 0.015 S, 0.4 Fe, 0.05 Mn)</td>
<td>Torsion.</td>
<td>a) Hot rolled. 0.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b) Ann. 1030 K, 4 h. 0.758</td>
<td></td>
</tr>
<tr>
<td>Gutenberg, Schechtweg (1930)</td>
<td>Res. freq. in torsion.</td>
<td></td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Kawai (1931)</td>
<td>Ni (0.15 Fe, 0.14 C, 0.01 Cu, 0.05 Si, 0.04 S)</td>
<td>Torsion, opt. lever.</td>
<td>0.785</td>
<td></td>
</tr>
<tr>
<td>Mohlern (1922, 1934)</td>
<td>Res. freq.</td>
<td>$F'(H)$; $f(T)$ 293–673 K.</td>
<td>0.710</td>
<td></td>
</tr>
<tr>
<td>Kikuchi (1936)</td>
<td>Torsion.</td>
<td>$X(Cu)$.</td>
<td>0.800</td>
<td></td>
</tr>
<tr>
<td>Landon, Davies (1938)</td>
<td>Res. freq. in torsion.</td>
<td>a) Ann. 1133 K, 1 h, cold rolled, Brinnell hardness = 210. 0.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Ann. 1133 K, 1 h, cold rolled, anneal.</td>
<td>0.827</td>
<td></td>
</tr>
<tr>
<td>Burnett (1956)</td>
<td>Ni (0.04 Fe, 0.03 Mn, 0.12 Si, 0.01 Cu, 0.1 C)</td>
<td>Res. freq. in torsion.</td>
<td>0.738</td>
<td></td>
</tr>
<tr>
<td>Susse (1956)</td>
<td>Ni (0.04 Fe, 0.03 Mn, 0.12 Si, 0.01 Cu, 0.1 C)</td>
<td>Res. freq. in torsion.</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>Orlov, Fedotov (1966)</td>
<td>Long., transv., torsional res. freq.</td>
<td>$F(T)$ in figure 24.</td>
<td>0.705</td>
<td></td>
</tr>
<tr>
<td>Faninger (1969)</td>
<td>Ni (0.012 Fe, 0.007 Si, 0.008 Cu, 0.003 Mn)</td>
<td>Res. freq. in torsion.</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Shirakawa, et al. (1969)</td>
<td>Electrolytic Ni</td>
<td>$X(Cu)$, $f(H)$.</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Frederick (1947)</td>
<td>0–15 MHz pulse-echo.</td>
<td></td>
<td>0.808</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Best value 0.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uncertainty 0.05</td>
<td></td>
</tr>
</tbody>
</table>

Table 13. Shear modulus G of iron-nickel alloys

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>G (10^12 dyne/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angerheuser (1903)</td>
<td>Fe-24.1 Ni (0.36 C, 0.41 Mn)</td>
<td>Tension, torsion, res. freq.</td>
<td>a) Ann. “non-magnetic”, fcc. b) Coated with 76K, "magnetic", bcc.</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.56</td>
</tr>
<tr>
<td>Gaye, Woelfle (1907)</td>
<td>Fe-36.118 Ni (0.02 Cu)</td>
<td>Res. freq.</td>
<td>$F(T)$ in figure 25.</td>
<td>0.563</td>
</tr>
<tr>
<td>Hooda (1919)</td>
<td>Cu alloys</td>
<td>Torsion, opt. lever.</td>
<td>Ann. 1175K.</td>
<td>Figure 6</td>
</tr>
<tr>
<td>Chevenard (1920)</td>
<td>Fe-36 Ni</td>
<td>Res. freq. in torsion.</td>
<td>Ann. 973K, cold worked, tempered, Ann. $F(T)$ in figure 25.</td>
<td>Figure 6</td>
</tr>
<tr>
<td>Honda, Tanaka (1926)</td>
<td>Cu alloys</td>
<td>Torsion, opt. lever.</td>
<td>Ann. 1173 K, 1 h, $f(H)$.</td>
<td>Figure 6</td>
</tr>
</tbody>
</table>

Table 13. Shear modulus \(G \) of iron-nickel alloys—Continued

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>(G) (10^11 dyn/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevenard (1927)</td>
<td>35 alloys</td>
<td>Res. freq. in torsion.</td>
<td>Ann. 1023K, (x(\text{Cr})); (f(T)), relative in figure 20.</td>
<td>Figure 6</td>
</tr>
<tr>
<td>Landon, Davies (1938)</td>
<td>Fe-48 Ni</td>
<td>Res. freq. in torsion.</td>
<td>a) Unannealed 1173K, 20 min., rolled 40%. (\frac{0.601}{0.596}) b) Ann. 1173K, 20 min., rolled 40%, (\frac{0.58}{0.797}); ann. 1173K, 20 min.</td>
<td></td>
</tr>
<tr>
<td>Burnett (1956)</td>
<td>66.97 Fe, 31.95 Ni (0.81 Mn, 0.14 Si, 0.05 Cr, 0.09 C)</td>
<td>Res. freq. in torsion.</td>
<td>(F(T)) in figure 25.</td>
<td></td>
</tr>
<tr>
<td>Markham (1957)</td>
<td>Fe-3 Ni</td>
<td>a) 10 MHz pulse-echo. b) Torsion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bungardt, Preisendanz, Brandis (1956)</td>
<td>a) 90.68 Fe, 9.21 Ni (0.05 Mn, 0.02 C, 0.01 P, S, N) b) 82.74 Fe, 17.14 Ni (0.05 Mn, 0.09 C, 0.01 P, S, N)</td>
<td>Res. freq. in torsion.</td>
<td>Ann. 1173 K, 1 h; (F(T)), 100–1100 K, relative, in figure 26.</td>
<td></td>
</tr>
<tr>
<td>Durham, McClintock, Gunther, Warren (1963)</td>
<td>Fe-36 Ni (0.8 Mn, 0.2 Se, 0.08 C, 0.01 P, S)</td>
<td>Torsion, opt. lever.</td>
<td>Cold drawn 12-15%, (f(T)) in figure 25.</td>
<td>0.565</td>
</tr>
<tr>
<td>Goldman, Robertson (1964)</td>
<td>a) Fe-29.9 Ni (0.004 C) b) Fe-25.1 Ni (0.26 C)</td>
<td>Long., torsional res. freq.</td>
<td>Vac. ann. 1173 K, 1 h, 0.035 mm GS; (F(T)) in figure 25. i) fcc ii) bcc i) fcc ii) bcc</td>
<td>0.68 ii) 0.54 ii) 0.72 iii) 0.625</td>
</tr>
<tr>
<td>Smith, Stern, Stephens (1966)</td>
<td>Fe-2.5 Ni (0.4 C, 0.6 Cr, 0.5 Mo)</td>
<td>Long., transv. pulse-echo.</td>
<td>(F(P)), third-order stiffnesses.</td>
<td>0.818</td>
</tr>
<tr>
<td>Roberts, Owen (1967)</td>
<td>6 alloys (50 ppm C)</td>
<td>Res. freq. in torsion.</td>
<td>Ann. 1198K, 1 h, 2% H₂ atmos., quenched.</td>
<td>Figure 6</td>
</tr>
<tr>
<td>Meincke, Litva (1969)</td>
<td>Fe-35 Ni</td>
<td>Sound velocity measurements. Res. freq.</td>
<td>Ann. 1273K, air cool. (F(T)) in figure 25. Vac. ann. 1273 K, 10 h, a) (H = 0) b) (H = 100) Oe, c) (H = 1900) Oe. (F(T, H)) in figure 3.</td>
<td>0.56 ii) 0.407 iii) 0.458 iii) 0.473</td>
</tr>
<tr>
<td>Shirakawa, et al. (1969)</td>
<td>9 alloys, 26.2-100 Ni</td>
<td>Res. freq.</td>
<td>(H) sat. Polycrystal and (100), (110), (111) single crystals.</td>
<td>Figure 6</td>
</tr>
<tr>
<td>Diesburg (1971)</td>
<td>3 alloys</td>
<td>10 MHz pulse-echo-overlap.</td>
<td>Calculated from (c_0) by V-R-H method.</td>
<td>Figure 6</td>
</tr>
<tr>
<td>Hausch, Warlimont (1972)</td>
<td>9 alloys</td>
<td>10 MHz pulse-echo</td>
<td>Calculated from (c_0) by V-R-31 method.</td>
<td>Figure 6</td>
</tr>
<tr>
<td>Investigator(s) (Year)</td>
<td>Composition</td>
<td>Technique</td>
<td>Specimen, Test Conditions</td>
<td>B_s</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Richards (1907)</td>
<td></td>
<td>Res. freq., $\Delta l/l$ measurements.</td>
<td>Range 0.570–0.64l, $f(T)$ in figure 27.</td>
<td>0.40</td>
</tr>
<tr>
<td>Grüneisen (1908)</td>
<td></td>
<td>$\Delta l/l$ measurements.</td>
<td>$f(T)$ in figure 27.</td>
<td>0.62</td>
</tr>
<tr>
<td>Grüneisen (1908)</td>
<td></td>
<td>$\Delta V/V$ measurements, Hg butt.</td>
<td>$100 < P < 500$ bar.</td>
<td>0.61</td>
</tr>
<tr>
<td>Richards, Bartlett (1915)</td>
<td></td>
<td>$\Delta l/l$ of rod under hydrostatic pressure.</td>
<td>$P < 10$ k bar. a) 303 K b) 346 K</td>
<td>3.61</td>
</tr>
<tr>
<td>Bridgman (1923)</td>
<td>99.97 Fe</td>
<td>$\Delta l/l$ of rod, comparative.</td>
<td>Single crystal, $P < 5$ kbar.</td>
<td>0.612</td>
</tr>
<tr>
<td>Ebert (1935)</td>
<td></td>
<td>Pressure dep. in magnetic field.</td>
<td>$X(Ni), f(H)$, saturated field.</td>
<td>0.599</td>
</tr>
<tr>
<td>Ebert, Kussmann (1937)</td>
<td>99.99 Fe</td>
<td>$\Delta l/l$ of rod, comparative.</td>
<td>Single crystal, $P < 5$ kbar.</td>
<td>0.603</td>
</tr>
<tr>
<td>Bridgman (1940a, 1940b)</td>
<td></td>
<td>$\Delta l/l$, ever piezometer.</td>
<td>$P < 30$ kbar, Slater (1940) correction, a) 297 K, b) 346 K</td>
<td>0.612</td>
</tr>
<tr>
<td>Birch (1947)</td>
<td></td>
<td>Correction to Bridgman data.</td>
<td>$T = 297$ K.</td>
<td>0.5941</td>
</tr>
<tr>
<td>Bridgman (1949)</td>
<td>7e(0.008 Ni, C, 0.002 l, 0.001, < 0.001 Co, Cr Mo, Mn, C < 0.005 Cé</td>
<td>$\Delta l/l$, ever improved piezometer; Compared to Fe, Bridgman (1948).</td>
<td>P < 30 kbar, $T = 296–299$ K.</td>
<td>1.641</td>
</tr>
<tr>
<td>Hughes, Kelly (1953)</td>
<td>"Armco Iron"</td>
<td>Pulsed ultrasound velocities.</td>
<td>Simple compression and hydrostatic pressure > 9 kbar.</td>
<td>0.590</td>
</tr>
<tr>
<td>Hughes, Maurette (1956)</td>
<td>"Armco iron"</td>
<td>Pulseecho.</td>
<td>Polycrystals; $f(T)$ in figure 27; isothermal data calculated; a) $P = 1$ bar, $T = 303$ K; b) $P = 1$ bar, $T = 373$ K; c) $P = 9$ kbar, $T = 303$ K; d) $P = 9$ kbar, $T = 373$ K.</td>
<td>1.667</td>
</tr>
<tr>
<td>Investigator(s)</td>
<td>Composition</td>
<td>Technique</td>
<td>Specimen, Test Conditions</td>
<td>B_s</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Veronov, Vereshchagin (1961)</td>
<td>99.8 Fe(002 Mn, Si, 0.01 C, 0.03 P, S)</td>
<td>10 MHz pulse-echo</td>
<td>Ann. polycrystals, up to 10 kbar, isothermal data calculated.</td>
<td>1.669</td>
</tr>
<tr>
<td>Rotter, Smith (1966)</td>
<td>99.99 Fe(Cr, Mn traces)</td>
<td>10 MHz pulse-echo</td>
<td>Specimens from crystals of Rayne, Chandrasekhar (1961), $f(P)$.</td>
<td></td>
</tr>
<tr>
<td>Alev, Lazarev, Sudovtsov</td>
<td>“Armco iron”</td>
<td>Bimetallic helix</td>
<td>$T = 4.2$ K.</td>
<td></td>
</tr>
<tr>
<td>Geinan, Beshers (1968)</td>
<td></td>
<td>10 MHz pulse-echo</td>
<td>Specimens from Loret, Beshers (1965), single crystals, $f(P)$; isothermal data calculated.</td>
<td>1.644</td>
</tr>
<tr>
<td>Takahashi, Bassett, Mao</td>
<td></td>
<td>High pressure X-ray diffraction, NaCl standard.</td>
<td>a) From Murnaghan molar volume eqn.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b) From 1st-order Birch molar volume eqn.</td>
<td></td>
</tr>
</tbody>
</table>

*a and b are coefficients in the equation $\Delta V/V_o = aP + bP^2$.

Best values

<table>
<thead>
<tr>
<th></th>
<th>B_s</th>
<th>dB_s/dP</th>
<th>$B_r^{-1} = a^*$</th>
<th>B_r</th>
<th>b^*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.64</td>
<td>468</td>
<td>0.606</td>
<td>1.649</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Uncertainties

<table>
<thead>
<tr>
<th></th>
<th>B_s</th>
<th>dB_s/dP</th>
<th>$B_r^{-1} = a^*$</th>
<th>B_r</th>
<th>b^*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.015</td>
<td>126</td>
<td>0.009</td>
<td>0.025</td>
<td>0.43</td>
</tr>
</tbody>
</table>
ELASTIC PROPERTIES OF METALS AND ALLOYS

Table 15. Bulk modulus B and compressibility B^{-1} of nickel

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>B (\times 10^{12}) cm(^2) dyn (^{-1})</th>
<th>B (\times 10^{24}) cm(^3) dyn (^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr"uneisen (1908)</td>
<td>Fe standard, piezometer, hydrostatic P.</td>
<td>Res. freq., $\Delta l/l$ measurements.</td>
<td>Ann. 2 h. $F(P, \leq 1$ kbar). i) $T=303$ K, ii) $T=348$ K.</td>
<td>0.57</td>
<td>1.75</td>
</tr>
<tr>
<td>Bridgman (1928)</td>
<td>Ni, Fe, Si, Co, Cu</td>
<td>$\Delta l/l$ tensile.</td>
<td>Drawn, ann. to "bright red" i) $T=303$ K, ii) $T=348$ K.</td>
<td>0.535</td>
<td>1.869</td>
</tr>
<tr>
<td>Ebert, Kussmann (1937)</td>
<td>Ni, Fe, M0, Si, Co</td>
<td>A/M in magnetic field.</td>
<td>Saturated field. $F(H), \chi(Ni), P \leq 10$ kbar.</td>
<td>0.544</td>
<td>1.845</td>
</tr>
<tr>
<td>Aliiev, Lazarev (1967)</td>
<td>Bi, Al</td>
<td>Bimetallic helix, differential, compared to Pb</td>
<td>$T=4.2$ K.</td>
<td>0.49</td>
<td>2.02</td>
</tr>
<tr>
<td>Tanji, et al. (1970), reported also in Shirakawa, et al. (1969)</td>
<td>Fe, Co, Cr</td>
<td>Calc. from E, G data.</td>
<td>Ann. 1273 K, 3 h. a) $H=0$, b) H sat.</td>
<td>0.46</td>
<td>2.17</td>
</tr>
</tbody>
</table>

* a and b are coefficients in the equation $\Delta V/V_0 = aP + bP^2$. **Normal values** corrected according to Bridgman (1940, 1949).

Table 16. Bulk modulus B and compressibility B^{-1} of iron-nickel alloys

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>B (\times 10^{12}) cm(^2) dyn (^{-1})</th>
<th>B (\times 10^{24}) cm(^3) dyn (^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ebert, Kussmann (1937)</td>
<td>Fe-Ni alloys</td>
<td>Pressure dependence in magnetic field.</td>
<td>$X($Co, Cr, Pt).</td>
<td>Figure 7</td>
<td></td>
</tr>
<tr>
<td>Takahashi, Bassett, Mao (1900)</td>
<td>Fe-15 Ni</td>
<td>P to 300 kbars, H to 15 kOe, x-ray diffraction, NaCl standard, molar volume detn.</td>
<td>a) Using Murnaghan eqn. b) Using 1st order Birch eqn.</td>
<td>0.645</td>
<td>1.55</td>
</tr>
<tr>
<td>Meincke, Litva (1969)</td>
<td>Fe-35 Ni</td>
<td>Sound velocity measurements.</td>
<td>Ann. 1273 K, air cool; $f(T)$ in figure 29.</td>
<td>0.90</td>
<td>1.11</td>
</tr>
<tr>
<td>Meade (1971)</td>
<td>Fe-35 Ni</td>
<td>Flexural and torsional resonance of a bar specimen. Calc. from E and G data.</td>
<td>Vae. ann. at 72.73 for 10 k. a) $H=0$, b) H=1900 Oe.</td>
<td>0.813</td>
<td>1.23</td>
</tr>
<tr>
<td>Diesburg (1971)</td>
<td>3 alloys</td>
<td>10 MHz pulse-echo-overlap</td>
<td>Calculated from c_p by V-R-H method.</td>
<td>Figure 7</td>
<td></td>
</tr>
<tr>
<td>Hausch, Warlimont (1972)</td>
<td>Fe-35 Ni</td>
<td>10 MHz pulse-echo.</td>
<td>Calculated from c_p by V-R-H method.</td>
<td>Figure 7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investigator(s) (Year)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>(\nu)</th>
</tr>
</thead>
</table>
| Earlier publications (1879–1903) | a) "Steel"
b) "Iron" | Interference microscope. | Range = 0.27 – 0.30.
Range = 0.26 – 0.32. | average 0.29
average 0.28 |
| Benton (1901) | "Iron" | Torsion, res. freq. | 0.29 |
| Schaefer (1901) | "Wrought iron" | Meas. of lateral and long. strains under compression. | Range = 0.270 – 0.289. | 0.275 |
| Morrow (1903) | a) "Steel"
b) "Iron" | Res. freq. | 0.287
0.280 |
| Grüneisen (1908) | | Bending, torsion. | Range = 0.28 – 0.293. | average 0.284 |
| Grüneisen (1910) | | Flexure. | 0.23
0.27 |
| Carrington (1924) | a) "Wrought iron"
b) Fe(0.19 C) | Bending torsion. | Ann. 1183 K, slow cool, \(f(T) \) in figure 30.
Ann. 1183 K, slow cool, \(f(T) \) in figure 30. |
| Honda, Tanaka (1926) | Fe(0.15 C, 0.11 Si, 0.31 Mn, 0.03 P, S, 0.29 Cu) | Loaded helical springs | Ann. 1173 K, \(1/2 \) h, \(f(H) \), x(Ni). | 0.27 |
| Keulez, House- man (1933) | Fe(0.66 C, 0.8 M, 0.01 P, 0.04 S) | | Dext. temp. coeff., 223–323 K. |
| Verse (1935) | a) Fe(0.43 C, 0.96 Mn, 0.04 S, 0.02 P, 0.14 Si)
b) Fe(0.34 C, 0.98 Mn, 0.10 Si, 0.02 P, 0.03 S) | Tension cathometer, torsion.
Long., torsional res. freq. | Ann. \(f(T) \), 908–753 K.
Ann. 1173 K, \(f(T) \) in figure 30. | 0.307 |
| Bez-Bardili (1935) | | Long., transv. sound-wave velocities, 1–20 MHz. | Calc. from meas. E, G. | 0.290 |
| Smith, Wood (1941) | 99.95 Fe | Tension, x-ray spectrometer. | Vac. ann. 0.050 in. sheet. | 0.27 |
| Everett, Miklowitz (1944) | Fe(0.15–0.25 C, 0.3–0.6 Mn, 0.04 P, 0.05 S) [SAE 1020] | Bending, torsion. | a) Hot rolled,
b) Cold rolled.
\(f(T) \) in figure 30. | 0.313
0.286 |
| Garofalo, Malenock, Smith (1952) | Fe(0.45 Mn, 0.19 Si, 0.13 C, 0.01 P, 0.02 S) [SAE 1015] | Bending, torsion. | Ann. 1170 K, \(1/2 \) h, air cooled, \(F(T) \) in figure 30. | 0.265 |
| Burnett (1956) | 99.8 Fe | "Free-free sonic vibration," res. freq. in torsion. | \(F(T) \) in figure 30. | 0.275 |
| Voronov, Vereshchagin (1961) | 99.8 Fe(0.01 C, 0.02 Si, Mn, 0.03 P, S) | 10 MHz pulse-echo. | Ann., a) Hydrostatic \(P = 0 \),
b) Hydrostatic \(P = 9.8 \) bar. | 0.290
2.292 |
| Shved (1964) | "Armco iron" | X-ray scattering, uniaxial tension. | | 0.283 |

Best value \(0.294 \)

Uncertainty \(0.019 \)
Table 18. Poisson ratio ν of nickel

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaefer (1901)</td>
<td></td>
<td>Torsion, res. freq.</td>
<td></td>
<td>0.240</td>
</tr>
<tr>
<td>Benton (1901)</td>
<td></td>
<td>Interference microscope.</td>
<td>0.96 Diam. wire.</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.49 diam. wire.</td>
<td>0.271</td>
</tr>
<tr>
<td>Grüneisen (1908)</td>
<td></td>
<td>Static.</td>
<td></td>
<td>0.309</td>
</tr>
<tr>
<td>Honda, Tanaka (1926)</td>
<td>Ni0.05 Si, 0.01 Ca, 0.15 Fe,</td>
<td>Bending, torsion.</td>
<td>Ann. 1173 K, $\frac{1}{2}$ h; $f(H)$; $X(Fe)$.</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>0.04 S, 0.14 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burnett (1956)</td>
<td>99.8 Ni0.04 Fe, 0.03 Mn, 0.11</td>
<td>Res. freq. in bending, torsion.</td>
<td></td>
<td>0.280</td>
</tr>
<tr>
<td></td>
<td>Si, 0.01 Cu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koster (1991)</td>
<td></td>
<td>Calculated from Koster's c, c' data.</td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Best value</td>
<td>0.296</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uncertainty</td>
<td>0.029</td>
</tr>
</tbody>
</table>

Table 19. Poisson ratio ν of iron-nickel alloys

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Composition</th>
<th>Technique</th>
<th>Specimen, Test Conditions</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angenheister (1903)</td>
<td>Fe-24.1 Ni(0.36 C, 0.41 Mn)</td>
<td>Torsion, torsion, res. freq.</td>
<td>Ann., non-magnetic, fcc. Cooled to 76 K, magnetic, bcc.</td>
<td>0.298</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.358</td>
</tr>
<tr>
<td>Carrington (1924)</td>
<td>Fe-3.4 Ni(0.19 C, 0.55 Mn, 0.03 P, S, 0.01 Si)</td>
<td>Bending.</td>
<td>Ann. 1180 K, $\frac{1}{2}$ h, slow cool; $f(T)$ in figure 32.</td>
<td>0.27</td>
</tr>
<tr>
<td>Honda, Tanaka (1926)</td>
<td>12 alloys</td>
<td>Torsion, bending.</td>
<td>Ann. 1173 K, $\frac{1}{2}$ h; $f(H)$.</td>
<td>Figure 8</td>
</tr>
<tr>
<td>Chevenard, Crussard (1945)</td>
<td>a) Fe-6 Ni</td>
<td>Torsion-flexure.</td>
<td>i) Cold worked.</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>b) Fe-36 Ni</td>
<td></td>
<td>ii) Ann. 1073 K.</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ann. 1073 K; $f(T)$ in figure 32.</td>
<td>0.28</td>
</tr>
<tr>
<td>Chevenard, Crussard (1945)</td>
<td>a) Fe-49 Ni</td>
<td>Torsion-flexure.</td>
<td>Cold worked 44%; $f(T)$ in figure 32.</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>b) 12 alloys</td>
<td></td>
<td>Ann. 1173 K, cold worked 44%.</td>
<td>Figure 8</td>
</tr>
<tr>
<td>Goldman, Robertson (1964)</td>
<td>a) Fe-29.9 Ni(0.004 C)</td>
<td>Long., torsional res. freq.</td>
<td>Vac. ann. 1173 K, $\frac{1}{2}$ h, 0.035 mm GS; $f(T)$ in figure 32.</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>b) Fe-25.1 Ni(0.26 C)</td>
<td></td>
<td>fcc. 903 K; bcc. 298 K; fcc. 217 K; bcc. 217 K.</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Diesburg (1971)</td>
<td>3 alloys</td>
<td>10 MHz pulse-echo-overlap.</td>
<td>Calculated from c_0 by V–R–H method.</td>
<td>Figure 8</td>
</tr>
<tr>
<td>Hanachi, Warlimont (1972)</td>
<td>9 alloys</td>
<td>10 MHz pulse-echo</td>
<td>Calculated from c_0 by V–R–H method.</td>
<td>Figure 8</td>
</tr>
</tbody>
</table>
Table 20. Third-order elastic stiffnesses c_{123} of iron

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Technique</th>
<th>c_{111}</th>
<th>c_{112}</th>
<th>c_{122}</th>
<th>c_{144}</th>
<th>c_{166}</th>
<th>c_{444}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hughes, Kelly (1953)*</td>
<td>Ultrasound velocities under tension and hydrostatic pressure.</td>
<td></td>
<td></td>
<td></td>
<td>-3.48</td>
<td>-10.31</td>
<td>9.81</td>
</tr>
<tr>
<td>Seeger, Buck (1960)*</td>
<td>Poynting effect.</td>
<td></td>
<td></td>
<td></td>
<td>-1.67</td>
<td>-7.55</td>
<td>-14.9</td>
</tr>
<tr>
<td>Tiets (1969)*</td>
<td>Ultrasound velocities under tension and hydrostatic pressure.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Determined isotropic constants c_{111}, c_{112}, and c_{222}: see text for relationship of these to other c_{111}.

Table 21. Third-order and fourth-order elastic stiffnesses c_{111} and c_{112} of nickel

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Technique</th>
<th>c_{111}</th>
<th>c_{112}</th>
<th>c_{122}</th>
<th>c_{144}</th>
<th>c_{166}</th>
<th>c_{222}</th>
<th>c_{111}</th>
<th>c_{112}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salama, Alers (1969)</td>
<td>Change of sound velocity under uniaxial stress, specimens neutron irradiated to pin dislocations, saturated, 10 kOe held.</td>
<td>-20.32</td>
<td>-10.43</td>
<td>-2.20</td>
<td>-1.38</td>
<td>-9.10</td>
<td>-0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarma, Mathur (1969)</td>
<td>Calc. from 9 mN Morse potential.</td>
<td>-17.896</td>
<td>-11.420</td>
<td>0.814</td>
<td>0.814</td>
<td>-11.420</td>
<td>0.814</td>
<td>-15.366</td>
<td>-0.741</td>
</tr>
<tr>
<td>Sarma, Reddy (1973)</td>
<td>Change of sound velocity under uniaxial stress, specimens neutron irradiated to pin dislocations, saturated, 8 kOe held.</td>
<td>-21.04</td>
<td>-13.45</td>
<td>0.59</td>
<td>-1.80</td>
<td>-7.57</td>
<td>-0.42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELASTIC PROPERTIES OF METALS AND ALLOYS

Table 22. Pressure derivatives dc_i/dP of elastic stiffnesses of iron and nickel

<table>
<thead>
<tr>
<th></th>
<th>c_{11}</th>
<th>c_{12}</th>
<th>c_{44}</th>
<th>$(c_{11} + 2c_{12})/3$</th>
<th>$(c_{11} - c_{12})/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe: Rotter, Smith (1966)</td>
<td>7.51</td>
<td>5.19</td>
<td>2.66</td>
<td>5.97</td>
<td>1.16</td>
</tr>
<tr>
<td>Fe: Guinan, Beshers (1968)</td>
<td>6.72</td>
<td>4.58</td>
<td>2.39</td>
<td>5.29</td>
<td>1.07</td>
</tr>
<tr>
<td>Ni: Salama, Alers (1967)</td>
<td>6.03</td>
<td>4.87</td>
<td>2.38</td>
<td>5.26</td>
<td>0.58</td>
</tr>
<tr>
<td>Ni: Surma, Matluk (1969)</td>
<td>6.70</td>
<td>4.58</td>
<td>2.65</td>
<td>4.95</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Table 23. Relative elastic constants based on a hard-sphere model, $B = 1$ arbitrarily

<table>
<thead>
<tr>
<th></th>
<th>c_{11}'</th>
<th>c_{12}'</th>
<th>c_{44}'</th>
<th>C'</th>
<th>B'</th>
<th>G'</th>
<th>E'</th>
<th>ν</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. c. c.</td>
<td>1.000</td>
<td>1.000</td>
<td>0.667</td>
<td>0.000</td>
<td>1.000</td>
<td>0.200</td>
<td>0.563</td>
<td>0.406</td>
<td>∞</td>
</tr>
<tr>
<td>Fe (obs.)</td>
<td>1.375</td>
<td>0.838</td>
<td>0.726</td>
<td>0.481</td>
<td>1.000</td>
<td>0.489</td>
<td>1.246</td>
<td>0.282</td>
<td>2.43</td>
</tr>
<tr>
<td>f. c. c.</td>
<td>1.333</td>
<td>0.833</td>
<td>0.500</td>
<td>0.250</td>
<td>1.000</td>
<td>0.379</td>
<td>1.000</td>
<td>0.333</td>
<td>2.00</td>
</tr>
<tr>
<td>Ni (obs.)</td>
<td>1.350</td>
<td>0.825</td>
<td>0.666</td>
<td>0.486</td>
<td>1.000</td>
<td>0.413</td>
<td>1.145</td>
<td>0.296</td>
<td>2.54</td>
</tr>
</tbody>
</table>

Table 24. Debye characteristic temperatures θ of iron, nickel, and iron-nickel alloys calculated from single-crystal elastic data

<table>
<thead>
<tr>
<th>$\omega_{\alpha\beta\gamma}$</th>
<th>$\theta_{\alpha\beta\gamma}$, K</th>
<th>Ref.</th>
<th>$\omega_{\alpha\beta\gamma}$</th>
<th>$\theta_{\alpha\beta\gamma}$, K</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-temperature</td>
<td>Room-temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>472</td>
<td>Lord, Beshers (1965)</td>
<td>29.82</td>
<td>435</td>
<td>Tanji (1971)</td>
</tr>
<tr>
<td>35.3</td>
<td>351</td>
<td>Hausch, Warlimont (1972)</td>
<td>35.7</td>
<td>405</td>
<td>Tanji (1971)</td>
</tr>
<tr>
<td>38.1</td>
<td>358</td>
<td>Hausch, Warlimont (1972)</td>
<td>44.43</td>
<td>410</td>
<td>Tanji (1971)</td>
</tr>
<tr>
<td>38.2</td>
<td>346</td>
<td>Bower, et al. (1968)</td>
<td>49.96</td>
<td>425</td>
<td>Tanji (1971)</td>
</tr>
<tr>
<td>40.0</td>
<td>369</td>
<td>Hausch, Warlimont (1972)</td>
<td>60.7</td>
<td>450</td>
<td>Tanji (1971)</td>
</tr>
<tr>
<td>42.5</td>
<td>383</td>
<td>Hausch, Warlimont (1972)</td>
<td>70.02</td>
<td>465</td>
<td>Tanji (1971)</td>
</tr>
<tr>
<td>45.2</td>
<td>396</td>
<td>Hausch, Warlimont (1972)</td>
<td>78.5</td>
<td>478</td>
<td>Tanji (1971)</td>
</tr>
<tr>
<td>51.4</td>
<td>419</td>
<td>Hausch, Warlimont (1972)</td>
<td>89.6</td>
<td>475</td>
<td>Tanji (1971)</td>
</tr>
<tr>
<td>60.8</td>
<td>436</td>
<td>Hausch, Warlimont (1972)</td>
<td>99.98</td>
<td>474</td>
<td>Tanji (1971)</td>
</tr>
<tr>
<td>61.9</td>
<td>437</td>
<td>Hausch, Warlimont (1972)</td>
<td></td>
<td></td>
<td>See tables 5-7 for details.</td>
</tr>
<tr>
<td>78.5</td>
<td>463</td>
<td>Hausch, Warlimont (1972)</td>
<td></td>
<td></td>
<td>See tables 5-7 for details.</td>
</tr>
<tr>
<td>89.7</td>
<td>468</td>
<td>Hausch, Warlimont (1972)</td>
<td></td>
<td></td>
<td>See tables 5-7 for details.</td>
</tr>
<tr>
<td>100.0</td>
<td>472</td>
<td>Hausch, Warlimont (1972)</td>
<td></td>
<td></td>
<td>See tables 5-7 for details.</td>
</tr>
<tr>
<td>100.0</td>
<td>476</td>
<td>Alers, et al. (1960)</td>
<td></td>
<td></td>
<td>See tables 5-7 for details.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N/m²</th>
<th>dyn/cm²</th>
<th>bar</th>
<th>kbar</th>
<th>kg/cm²</th>
<th>kg/mm²</th>
<th>atm</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Newton/sq. meter (N/m²)</td>
<td>1</td>
<td>10⁴</td>
<td>10⁻¹</td>
<td>10⁻⁸</td>
<td>1.01972 × 10⁻⁸</td>
<td>1.01972 × 10⁻⁷</td>
<td>0.96692 × 10⁻⁴</td>
<td>1.45038 × 10⁻⁷</td>
</tr>
<tr>
<td>1 dyne/sq. cm. (dyn/cm²)</td>
<td>10⁻¹</td>
<td>1</td>
<td>10⁻⁸</td>
<td>10⁻⁶</td>
<td>1.01972 × 10⁻⁶</td>
<td>1.01972 × 10⁻⁵</td>
<td>0.96692 × 10⁻³</td>
<td>1.45038 × 10⁻⁵</td>
</tr>
<tr>
<td>1 bar</td>
<td>10⁰</td>
<td>10⁶</td>
<td>1</td>
<td>10⁻³</td>
<td>1.01972</td>
<td>1.01972 × 10⁻²</td>
<td>0.96692</td>
<td>1.45038 × 10⁰</td>
</tr>
<tr>
<td>1 kilobar (kbar)</td>
<td>10⁰</td>
<td>10⁶</td>
<td>10⁰</td>
<td>1</td>
<td>1.01972 × 10⁰</td>
<td>1.01972 × 10⁰</td>
<td>0.96692 × 10⁰</td>
<td>1.45038 × 10⁰</td>
</tr>
<tr>
<td>1 kilogram/sq. cm. (kg/cm²)</td>
<td>0.98066 × 10⁴</td>
<td>0.98066 × 10⁴</td>
<td>0.98066</td>
<td>0.98066 × 10⁻³</td>
<td>1</td>
<td>10⁻³</td>
<td>0.96784</td>
<td>1.42235 × 10⁴</td>
</tr>
<tr>
<td>1 kilogram/sq. mm. (kg/mm²)</td>
<td>0.98066 × 10⁷</td>
<td>0.98066 × 10⁷</td>
<td>0.98066 × 10⁷</td>
<td>0.98066 × 10⁻¹</td>
<td>10²</td>
<td>1</td>
<td>0.96784 × 10⁷</td>
<td>1.42235 × 10⁷</td>
</tr>
<tr>
<td>1 atmosphere (atm)</td>
<td>1.01325 × 10⁴</td>
<td>1.01325 × 10⁴</td>
<td>1.01325</td>
<td>1.01325 × 10⁻⁵</td>
<td>1.03323</td>
<td>1.03323 × 10⁻⁵</td>
<td>1</td>
<td>1.469595 × 10⁴</td>
</tr>
<tr>
<td>1 pound/sq. in. (psi)</td>
<td>0.68948 × 10⁴</td>
<td>0.68948 × 10⁴</td>
<td>0.68948 × 10⁻¹</td>
<td>0.68948 × 10⁻⁴</td>
<td>0.70307 × 10⁻¹</td>
<td>0.70307 × 10⁻³</td>
<td>0.68046 × 10⁻¹</td>
<td>1</td>
</tr>
</tbody>
</table>

The S.I. unit for pressure and stress is the pascal (Pa), 1 Newton/sq. meter (N/m²).
Figure 1. Schematic interconnectivity of elastic parameters of solids

Figure 2. Chronological variation of observed elastic properties of iron
Figure 3. Iron-nickel phase diagram.
Figure 4. Compositional variation of elastic stiffnesses c_{ij} of iron-nickel alloys
Figure 5. Compositional variation of Young's modulus E of iron-nickel alloys.
FIGURE 6. Compositional variation of shear modulus G of iron-nickel alloys
Figure 7. Compositional variation of compressibility B^{-1} of iron-nickel alloys.
Figure 8. Compositional variation of Poisson ratio ν of iron-nickel alloys.

Figure 9. Cold-work dependence of Young's modulus E of iron.

Figure 10. Cold work dependence of shear modulus G of iron.

Figure 11. Cold work effect on Young's modulus E of nickel.
Figure 12. Cold work effect on shear modulus G of nickel

Figure 13. Cold work effect on Young's modulus E of face-centered cubic iron-nickel alloys
Figure 14. Annealing effect on Young's modulus E of nickel.
FIGURE 15. Temperature variation of elastic stiffnesses c_{ij} of iron

Figure 16. Temperature variation of elastic stiffnesses c_{ij} of nickel
Figure 17a. Temperature variation of elastic stiffnesses c_{ij} of iron-nickel alloys.
Figure 17b. Temperature variation of elastic stiffness c_{11} of iron-nickel alloys

Figure 17c. Temperature variation of elastic stiffness c_{12} of iron-nickel alloys

Figure 17d. Temperature variation of elastic stiffness c_{44} of iron-nickel alloys.
Figure 18. Temperature variation of Young's modulus E of iron

Figure 19. Temperature variation of Young's modulus E of nickel
Figure 20. Temperature variation of Young’s modulus E of iron-nickel alloys—face-centered cubic

Figure 21. Temperature variation of Young’s modulus E of iron-nickel alloys—body-centered cubic
Figure 22. Relative temperature variation of Young's modulus E of some iron-nickel alloys.

Figure 23. Temperature variation of shear modulus G of iron.
Figure 24. Temperature variation of shear modulus G of nickel

Figure 25. Temperature variation of shear modulus G of iron-nickel alloys
Figure 26. Relative temperature variation of shear modulus G of some iron-nickel alloys.
Figure 27. Temperature variation of compressibility B^{-1} of iron

Figure 28. Temperature variation of compressibility B^{-1} of nickel
Figure 29. Temperature variation of compressibility B^{-1} of iron-nickel alloys

Figure 30. Temperature variation of Poisson ratio ν of iron

Figure 31. Temperature variation of Poisson ratio ν of nickel
Figure 99. Temperature variation of Poisson ratio ν of iron-nickel alloys.
Figure 33. Magnetic field and temperature effects on Young's modulus E of nickel

Figure 34. Magnetic field and temperature effects on Young's modulus E of iron-nickel alloys

Figure 35. Magnetic field and temperature effects on shear modulus G of an iron-nickel alloy

Figure 36. Magnetic field and temperature effects on bulk modulus B of an iron-nickel alloy
Figure 37. Magnetic field effect on Young's modulus E of nickel and iron-nickel alloys.

Figure 38. Phase transformation (bcc to fcc on heating) effect on Young's modulus E of iron-nickel alloys.

References for Tables and Figures

[19] Bridgman, P. W., Absolute measurements in the pressure range up to 30,000 kg/cm², Phys. Rev. 57, 235 (1940b).

[54] Förster, F., and Köster, W., Elasticity and damping in relation to the state of the material, Engineer 166, 626 (1938).

[105] Köster, W., Beitrag zur Kenntnis der Grösse σ_ϵ auf Grund der Messung des ΔE-Effektes von Nickel, Z. Metallik. 33, 57 (1940).

[126] McElhinney, W. S., and Naranja, R. E., Mechanical and physical properties of iron and iron-type alloys, D.M.C Memo. 207, Battelle Memorial Institut, Columbus, Ohio (1965).

[128] M'Farlane, D., as quoted in Kawai (1931).

[134] Morrow, J., On an instrument for measuring the lateral construction of tie-bars, and on the determination of Poisson’s ratio, Phil. Mag. 6, 417 (1903).

[140] Ochtenfeld, R., Über die magneto-elastischen Eigenschaften

(147) Richards, T. W., and Bartlett, E. P., Compressibilities of mercury, copper, lead, molybdenum, tantalum, tungsten, and silver bromide, J. Amer. Chem. Soc. 27, 470 (1915).

