Property Index to Volumes 1 – 4 (1972 – 1975)

This cumulative index to Volumes 1–4 covers both articles that have appeared in the journal and compilations listed in the section Data Compilation Abstracts. A complete citation is given for each entry. Property terms have been chosen to correspond to common usage; cross references are given for synonymous or closely related terms.

Absorption

See: Spectral emissivity, reflectance, and other radiative properties

Absorption coefficient

See: Optical transmission coefficient

Absorption coefficient, spectral

See: Transition probabilities for atoms and molecules

Activation energies of chemical reactions

Activity coefficients

Atomic energy levels and spectra

First Spectra of Neon, Argon, and Xenon 136 in the 1.2–4.0µm Region – Curtis J. Humphreys. 2, 519 (1973).

Atomic form factor

Azeotropic composition

Band gap

See: Energy bands of solids

Band spectra

See: Electronic molecular spectra

Binding energy

See: Bond dissociation energy

Electron affinity

Boiling point

Critical temperature, pressure (see also Equation of state)

Cross section
See: Compton scattering cross section
Dissociation cross section
Electron impact cross section
Excitation cross section
High energy reaction cross section
Neutron cross section
Photon cross section
Rayleigh scattering cross section

Crystal lattice frequencies
See: Phonon spectra

Crystal structure

Debye characteristic temperature
Density

Dielectric constant (see also Electric dipole moments of molecules)

(Abstract) Thermophysical Properties of Helium-4 from 2 to 1,500 K with Pressures to 1,000 Atmospheres (NBS Technical Note 631) — Robert D. McCarty. 2, 439 (1973).

Diffusion coefficient

Diffusivity
See: Thermal conductivity

Dipole moment
See: Electric dipole moments of molecules

Dissociation cross section

Dissociation energy
See: Bond dissociation energy

Effective mass
See: Semiconductor properties

Elastic constants

Property Index

Electric dipole moments of molecules

Electrical conductance

Electrical resistivity

Electron affinity

Electron impact cross section

Electron swarm parameters

Electronic molecular spectra

Emissivity

- See: Special emissivity, reflectance, and other radiative properties.

Energy, activation

- See: Activation energies of chemical reactions.

Energy bands of solids

Energy, binding

- See: Bond dissociation energy

Energy, dissociation

- See: Bond dissociation energy

Energy gap

- See: Energy bands of solids
- Semiconductor properties.
Energy levels
See: Atomic energy levels and spectra
Molecular energy levels and constants

Enthalpy
See: Thermodynamic properties

Enthalpy of formation
See: Heat of formation
Thermodynamic properties

Entropy
See: Thermodynamic properties

Equation of state
(abstract) Equilibrium Compositions and Thermodynamic Properties of Mixed Plasmas, \(\text{He} \sim \text{N}_2 \), \(\text{Ar} \sim \text{N}_2 \), and \(\text{Xe} \sim \text{N}_2 \) Plasmas at One Atmosphere between 5000 K and 35,000 K—M. Capitelli, E. Ficocelli, and E. Molinari. 1, 578 (1972).
(abstract) Tables of Collision Integrals and Second Virial Coefficients for the \(\text{m} \sim \text{m} \) Intermolecular Potential Function (NSRDS-NBS—47)—Max Klein, H. J. M. Hanley, Francis J. Smith, and Paul Holland. 3, 1019 (1974).

Equilibrium constant (see also Thermodynamic properties)

Equivalent conductance
See: Electrical conductance

Evaporation and condensation coefficients
Selected Values of Evaporation and Condensation Coefficients for Simple Substances—G. M. Pound. 1, 135 (1972).

Excitation cross section

Excitation potential
See: Atomic energy levels and spectra

f-Values
See: Transition probabilities for atoms and molecules

Formation, heat of
See: Heat of formation
Thermodynamic properties

Franck-Condon factor
See: Transition probabilities for atoms and molecules

Free energy
See: Thermodynamic properties

Frequencies, vibrational
See: Vibrational frequencies of molecules

Fundamental particle properties
(abstract) Review of Particle Properties—Particle Data Group, Lawrence Radiation Laboratory, Berkeley, California. 1, 576 (1972).

Fundamental physical constants
Fundamental vibrational frequencies

See: Vibrational frequencies of molecules

g-Factor

See: Magnetic moments of molecules

Gamma-ray spectra

Gaseous diffusion coefficient

See: Diffusion coefficient

Gibbs energy

See: Thermodynamic properties

Half-lives of radioactive nuclides

Heat capacity (see also Thermodynamic properties)

Heat of combustion (see also Thermodynamic properties)

Heat of formation (see also Thermodynamic properties)

High energy reaction cross section

(Abstract) A Collection of Pion Photoproduction Data, I—From the Threshold to 1.5 GeV (CERN/HERA 70—1)—P. Spillantini and V. Valente. 1, 575 (1972).

Abstract) Compilation of Cross Sections, I—Proton Induced Reactions (CERN/HERA 70-2)—J. D. Hansen, D. R. O. Morrison, N. Tovey, and E. Flaminio. 1, 575 (1972).

(Property) Compilation of Cross Sections, IV—π+ Induced Reactions (CERN/HERA 70-5)—E. Flaminio, J. D. Hansen, D. R. O. Morrison, and N. Tovey. 1, 575 (1972).

Abstract) Compilation of Cross Sections, VI—π− Induced Reactions (CERN/HERA 70-7)—E. Flaminio, J. D. Hansen, D. R. O. Morrison, and N. Tovey. 1, 575 (1972).

Index of refraction

See: Refractive index

Infrared spectra

See: Vibrational spectra (Infrared, Raman)

Intensities, spectral

See: Transition probabilities for atoms and molecules

Interatomic distances

See: Molecular structure

Ionization potentials (see also Atomic energy levels and spectra)

The Spectrum of Molecular Oxygen—Paul H. Krupenie. 1, 423 (1972).

Energy Levels of Iron, Fe I through Fe XXVI—Joseph Reader and Jack Sugar. 4, 353 (1975).

Abstract) Ionization Potentials and Ionization Limits Derived From the Analyses of Optical Spectra (NSRDS—NBS—34)—Charlotte E. Moore. 1, 217 (1972).

Kinetic rate constants

See: Rate constants of chemical reactions

Lattice constants

PROPERTY INDEX

- Abstract) Structure Data of Organic Crystals, Part A: C
 Part B: C

Lattice frequencies

See: Phonon spectra

Lifetimes

See: Half-lives of radioactive nuclides Transition probabilities for atoms and molecules

Line strengths

See: Transition probabilities for atoms and molecules

Line widths

See: Spectral line widths

Loss tangent

See: Dielectric constant

Magnetic moments of molecules

The Spectrum of Molecular Oxygen – Paul H. Krupenie. 1, 423 (1972).

Magnetic susceptibility

Mass spectra

Melting point

- Abstract) Structure Data of Organic Crystals, Part A: C
 Part B: C

Micelle concentration

See: Critical micelle concentration

Microwave spectra

See: Rotational spectra

Mobility of electrons and holes

See: Electron swarm parameters Semiconductor properties

Molecular energy levels and constants

- The Spectrum of Molecular Oxygen – Paul H. Krupenie. 1, 423 (1972).

- Microwave Spectra of Molecules of Astrophysical Interest. I. Formaldehyde, Formamide, Thioformaldehyde – Donald R. Johnson,

(Abstract) Spectroscopic Data Relative to Diatomic Molecules—B. Rosen. 1, 218 (1972).

Molecular spectra
See: Electronic molecular spectra
Rotation spectra
Vibrational spectra (Infrared, Raman)

Molecular structure

(Abstract) Spectroscopic Data Relative to Diatomic Molecules—B. Rosen. 1, 218 (1972).

Nuclear magnetic resonance spectra

Nuclear reaction energies

Nuclear structure data

Neutron cross section

Optical spectra
See: Electronic molecular spectra

Optical transmission coefficient

Oscillator strengths
See: Transition probabilities for atoms and molecules
Osmotic coefficient

Particle data

See: Fundamental particle properties

Phase diagrams

Phase transition pressures

Phase transition temperatures

Phonon spectra

Photon cross section

(Abstract) A Collection of Pion Photoproduction Data. I—From the Threshold to 1.5 GeV (CERN/HERA 70–1)—P. Spillantini and V. Valente. 1, 575 (1972).

Potential energy curves for atoms and molecules

The Spectrum of Molecular Oxygen—Paul H. Krupenie. 1, 423 (1972).

Prandtl number

(ABSTRACT) Thermophysical Properties of Helium 4 from 2 To 1,500 K with Pressures to 1,000 Atmospheres (NSRDS Technical Note 631)—Robert D. McCarty. 2, 439 (1973).

PVT surface

See: Equation of state

Quantum yield

Raman spectra

See: Vibrational spectra (Infrared, Raman)

Rate constants of chemical reactions

Rayleigh scattering cross section

Reflectance

See: Spectral emissivity, reflectance, and other radiative properties

Refractive index

Resistivity, electrical

See: Electrical resistivity

Rotational constants

See: Molecular energy levels and constants

Rotational spectra

The Spectrum of Molecular Oxygen—Paul H. Krapenjie. 1, 423 (1972).

Semiconductor properties: mobility, effective mass, energy gap, etc.

Sound velocity

(Abtract) Thermophysical Properties of Helium-4 from 2 to 1,500 K with Pressures to 1,000 Atmpospheres (NBS Technical Note 631) – Robert D. McCarty. 2, 439 (1973).

Specific conductance

See: Electrical conductance

Specific gravity

See: Density

Specific heat

See: Heat capacity

Thermodynamic properties

Spectra

See: Atomic energy levels and spectra

Electronic molecular spectra

Gamma-ray spectra

Mass spectra

Nuclear magnetic resonance spectra

Rotational spectra

Vibrational spectra (Infrared, Raman)

Spectral emissivity, reflectance, and other radiative properties

Spectral line widths

The Spectrum of Molecular Oxygen – Paul H. Krupenie. 1, 423 (1972).

Structure, crystal

See: Crystal structure

Structure, molecular

See: Molecular structure

Superconducting transition temperature

Supersaturation ratio

See: Critical supersaturation ratio

Surface tension

Thermal conductivity

(Abtract) Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1,000 Atmospheres (NBS Technical Note 631) – Robert D. McCarty. 2, 439 (1972).

Thermal diffusivity

See: Thermal conductivity

Thermal expansion coefficient

Thermodynamic properties: enthalpy, entropy, Gibbs energy, heat capacity (see also Heat of formation, Heat capacity, and other individual properties)

Ideal Gas Thermodynamic Properties of Ethylene and Propylene — Jing Chao and Bruno J. Zvolinsky. 4, 251 (1975).

(Ref) Thermodynamic Properties of Freon 22 — A. V. Kleetskii. 1, 578 (1972).

(Ref) Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1,000 Atmospheres (NBS Technical Note 631) — Robert D. McCarty. 2, 439 (1973).

(Ref) Thermochromic Properties of the Rare Earths: Part 1. Rare Earth Oxides: Part 2, Rare Earth Oxysulfides; Part 3, Rare Earth Compounds with B, Sn, Pb, P, As, Sb, Bi, Cu, and Ag — Karl A. Schneidner, Jr., Nancy Kippenhan, and D. Dale McMasters. 3, 310 (1974).

Thresholds for nuclear reactions

See: Nuclear reaction energies

Transition probabilities for atoms and molecules

The Spectrum of Molecular Oxygen — Paul H. Krupenie. 1, 423 (1972).

Transmission coefficient
See: Optical transmission coefficient

Transmittance
See: Spectral emissivity, reflectance and other radiative properties

Transport properties
See: Diffusion coefficient, Thermal conductivity, Viscosity

Vapor pressure (see also Equation of state)

Vibrational frequencies of molecules (see also Molecular energy levels and constants)
Tables of Molecular Vibrational Frequencies, Part 5—T. Shimanouchi. 1, 189 (1972).

(abstract) Spectroscopic Data Relative to Diatomic Molecules—B. Rosen. 1, 218 (1972).

Vibrational spectra (Infrared, Raman)
Tables of Molecular Vibrational Frequencies, Part 5—T. Shimanouchi. 1, 189 (1972).

(abstract) Evaluated Infrared References Spectra, Volumes 6, 7, and 8 and Index to Cobinet Spectra, Volumes 1 to 8—The Cobinet Society, Editors. 1, 838 (1972).

Virial coefficients
See: Equation of state

Viscosity

(abstract) Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1,000 Atmospheres (NBS Technical Note 631)—Robert D. McCarty. 2, 439 (1973).

Wavelengths of spectral lines
See: Atomic energy levels and spectra, Electronic molecular spectra, Rotational spectra, Vibrational spectra (Infrared, Raman)
Property Index

Work function

X-ray diffraction powder patterns

Young's modulus

See: Elastic constants