Journal of Physical and Chemical Reference Data

Monograph No. 2

Gas-phase Tropospheric Chemistry of Organic Compounds

Roger Atkinson

Statewide Air Pollution Research Center and Department of Soil and Environmental Sciences University of California Riverside, California 92521

Published by the American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology Gas-phase Tropospheric Chemistry of Organic Compounds

JOUTHAL OF

Physical and Chemical Reference Data

Jean W. Gallagher, Editor

The Journal of Physical and Chemical Reference Data (ISSN 0047-2689) is published bimonthly by the American Chemical Society (1155 16th St., N.W., Washington, DC 20036-9976) and the American Institute of Physics (500 Sunnyside Blvd., Woodbury, NY 11797-2999) for the National Institute of Standards and Technology. Secondclass postage paid at Washington, DC and additional mailing offices. POSTMASTER: Send address changes to *Journal of Physical and Chemical Reference Data*, Membership and Subscription Services, P.O. Box 3337, Columbus, OH 43210-0012.

The objective of the Journal is to provide critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation. Critical reviews of measurement techniques, whose aim is to assess the accuracy of available data in a given technical area, are also included. Papers which report new estimation or prediction techniques and test these techniques against existing databases are also accepted. The journal is not intended as a publication outlet for original experimental measurements such as those that are normally reported in the primary research literature, nor for review articles of a descriptive or primarily theoretical nature.

Monographs are published at irregular intervals and are not included in subscriptions to the Journal. They contain compilations which are too lengthy for a journal format.

The Editor welcomes appropriate manuscripts for consideration as Journal articles or monographs. Potential contributors who are interested in preparing a compilation are invited to submit an outline of the nature and scope of the proposed compilation, with criteria for evaluation of the data and other pertinent factors, to:

> Jean W. Gallagher, Editor J. Phys. Chem. Ref. Data Bldg. 221/A323 National Institute of Standards and Technology Gaithersburg, MD 20899-0001

One source of contributions to the Journal is The National Standard Reference Data System (NSRDS), which was established in 1963 as a means of coordinating on a national scale the production and dissemination of critically evaluated reference data in the physical sciences. Under the Standard Reference Data Act (Public Law 90-396) the National Institute of Standards and Technology of the U.S. Department of Commerce has the primary responsibility in the Federal Government for providing reliable scientific and technical reference data. The Standard Reference Data Program of NIST coordinates a complex of data evaluation centers, located in university, industrial, and other Government laboratories as well as within the National Institute of Standards and Technology, which are engaged in the compilation and critical evaluation of numerical data on physical and chemical properties retrieved from the world scientific literature. The participants in this NIST-sponsored program, together with similar groups under private or other Government support which are pursuing the same ends, comprise the National Standard Reference Data System.

The primary focus of the NSRDS is on well-defined physical and chemical properties of well-characterized materials or systems. An effort is made to assess the accuracy of data reported in the primary research literature and to prepare compilations of critically evaluated data which will serve as reliable and convenient reference sources for the scientific and technical community.

Information for Contributors

Manuscripts submitted for publication must be prepared in accordance with *Instructions for Preparation of Manuscripts for the Journal of Physical and Chemical Reference Data,* available on request from the Editor.

Term ending 31 December 1994 Leonard V. Interrante, John C. Light, Wing Tsang Term ending 31 December 1995 David W. Bonnell, Peder J. Estrup, Sokrates Pantelides Term ending 31 December 1996 Joseph J. Villafranca, Ronald N. Lee

Management Board

Charles R. Bertsch, Malcolm W. Chase, Jr., John T. Scott

Editorial Staff at NIST: Julian M. Ives, Constance L. Seymour, Judith T. Calabrese, Jeanne R. Bride

Editorial Staff at AIP: *Lin Miller*, Editorial Supervisor; *Andrea Witt*, Journal Coordinator; *Rosalind Nissim*, Chief Production Editor

New and renewal subscriptions should be sent with payment to the Office of the Controller at the American Chemical Society, 1155 Sixteenth Street, N.W., Washington, DC 20036-9976. Address changes, with at least six weeks advance notice, should be sent to *Journal of Physical and Chemical Reference Data*, Membership and Subscription Services, American Chemical Society, P.O. Box 3337, Columbus, OH 43210-0012. Changes of address must include both old and new addresses and ZIP codes and, if possible, the address label from the mailing wrapper of a recent issue. Claims for missing numbers will not be allowed: if loss was due to failure of the change-of-address notice to be received in the time specified; if claim is dated (a) North America: more than 90 days beyond issue date, (b) all other foreign: more than one year beyond issue date.

Members of AIP member and affiliate societies requesting member subscription rates should direct subscriptions, renewals, and address changes to American Institute of Physics, Circulation and Fulfillment Division, 500 Sunnyside Blvd., Woodbury, NY 11797-2999.

Subscription Prices (1994)

Subscription Prices (1994)				Air Freight	
	U.S.A.	Canada and Mexico	Other Foreign	Europe, Mideast, Asia Africa and Oceania	
Members (of ACS, AIP, or affiliated society)	\$90.00	\$100.00	\$100.00	\$110.00	
Regular rate	\$460.00	\$470.00		\$480.00†	

[†]Regular rate subscriptions to Europe, Mideast, Asia, Africa, Oceania, and Central and South America include air freight services.

Rates above do not apply to nonmember subscribers in Japan, who must enter subscriptions orders with Maruzen Company Ltd., 3-10 Nihonbashi 2-chrome, Chuo-ku, Tokyo 103, Japan. Tel. (03) 272-7211.

Current 1994 single-issue price: \$85.00.

Back numbers are available at a cost of \$85 per single copy of 1990 and later issues, \$130 for single copies of 1989 and previous years, and \$460 per volume.

Orders for reprints, supplements, monographs and back numbers should be addressed to the American Chemical Society, 1155 Sixteenth Street, N.W., Washington, DC 20036-9976. Prices for reprints and supplements are listed at the end of this issue

Copying Fees: The code that appears on the first page of articles in this journal gives the fee for each copy of the article made beyond the free copying permitted by AIP. (See statement under "Copyright" elsewhere in this journal.) If no code appears, no fee applies. The fee for pre-1978 articles is \$0.25 per copy. With the exception of copying for advertising and promotional purposes, the express permission of AIP is not required provided the fee is paid through the *Copyright Clearance Center, Inc. (CCC), 222 Rosewood Dr., Danvers, MA 01923.* Contact the CCC for information on how to report copying and remit payment.

Microfilm subscriptions of the *Journal of Physical and Chemical Reference Data* are available on 16mm and 35 mm. This journal also appears in Sec. I of *Current Physics Microfilm* (CPM) along with 32 other journals published by the American Institute of Physics and its member societies. A *Microfilm Catalog* is available on request.

Copyright 1994 by the U.S. Secretary of Commerce; copyright assigned to the American Institute of Physics (AIP) and the American Chemical Society (ACS). Individual teachers, students, researchers, and libraries acting for them are permitted to make copies of articles in this journal for their own use in research or teaching, including multiple copies for classroom or library reserve use, provided such copies are not sold. Copying for sale is subject to payment of copying fees. (See "Copying Fees" paragraph elsewhere in this journal.) Permission is granted to quote from this journal with the customary acknowledgment of the source. To reprint a figure, table, or other excerpt requires in addition the consent of one of the original authors and notification to AIP. Reproduction for advertising or promotional purposes, or republication in any form, is permitted only under license from AIP, which will normally require that the permission of one of the authors also be obtained. Direct inquiries to Office of Rights and Permissions, American Institute of Physics, 500 Sunnyside Boulevard, Woodbury, NY 11797-2999. The right of the U.S. Government to unrestricted copying for its own use of copyrighted material originating in its laboratories or under its contracts is specifically recognized.

Journal of Physical and Chemical Reference Data

Monograph No. 2

Gas-phase Tropospheric Chemistry of Organic Compounds

Roger Atkinson

Statewide Air Pollution Research Center and Department of Soil and Environmental Sciences University of California Riverside, California 92521

Published by the American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology

Copyright © 1994 by the U.S. Secretary of Commerce on behalf of the United States. This copyright will be assigned to the American Institute of Physics and the American Chemical Society, to whom all requests regarding reproduction should be addressed.

Library of Congress Catalog Card Number 94-70937

International Standard Book Number 1-56396-340-X

American Institute of Physics 500 Sunnyside Boulevard Woodbury, New York 11797-2999

Printed in the United States of America

Foreword

The Journal of Physical and Chemical Reference Data is published jointly by the American Institute of Physics and the American Chemical Society for the National Institute of Standards and Technology. Its objective is to provide critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation. One of the principal sources of material for the journal is the National Standard Reference Data System (NSRDS), a program coordinated by NIST for the purpose of promoting the compilation and critical evaluation of property data.

The regular issues of the Journal of Physical and Chemical Reference Data are published bimonthly and contain compilations and critical data reviews of moderate length. Longer works, volumes of collected tables, and other material unsuited to a periodical format have previously been published as Supplements to the Journal. Beginning in 1989 the generic title of these works has been changed to Monograph, which reflects their character as independent publications. This volume, "Gas-Phase Tropospheric Chemistry of Organic Compounds" by Roger Atkinson, is presented as Monograph No. 2 of the Journal of Physical and Chemical Reference Data.

Jean W. Gallagher, Editor Journal of Physical and Chemical Reference Data

Gas-Phase Tropospheric Chemistry of Organic Compounds

Roger Atkinson

Statewide Air Pollution Research Center and Department of Soil and Environmental Sciences, University of California, Riverside, CA 92521

Received May 29, 1992; revised manuscript received December 2, 1992

The gas-phase reactions of selected classes of organic compounds (alkanes, alkenes (including isoprene and monoterpenes), alkynes, aromatic hydrocarbons and oxygen-containing organic compounds and their degradation products) under tropospheric conditions are reviewed and evaluated. The recommendations of the most recent IUPAC evaluation [J. Phys. Chem. Ref. Data 21, 1125 (1992)] are used for the $\leq C_3$ organic compounds, unless more recent data necessitates reevaluation. In addition to the review of the gas-phase tropospheric chemistry of these classes of organic compounds, the previous reviews and evaluations of Atkinson [J. Phys. Chem. Ref. Data 20, 459 (1991)] for OH radical reactions, Atkinson [J. Phys. Chem. Ref. Data 20, 459 (1991)] for NO₃ reactions with organic compounds are updated.

Keywords: atmospheric chemistry; hydroxyl radical; nitrate radical; organic compounds; ozone; reaction kinetics; reaction mechanisms.

Contents

1.		oduction	11
2.	Gas	Phase Tropospheric Chemistry of Organic Compounds	13
	2.1.	Alkanes	13
	2.2.	Alkenes	28
	2.3.	Alkynes	45
	2.4.	Aromatic Compounds	47
	2.5.	Oxygen-Containing Organic Compounds	59
	2.6.	Nitrogen-Containing Organic Compounds	72
3.		etics and Mechanisms of the Gas-Phase Reactions of the OH Radical	
- •		Organic Compounds	75
	3.1.	Alkanes	75
	3.2.	Haloalkanes	88
	3.3.	Alkenes	109
	3.4.	Haloalkenes	112
	3.5.		112
		Alkynes	118
	3.6.	Oxygen-Containing Organics	
		3.6.1. Aldehydes.	118
		3.6.2. Ketones	119
		3.6.3. Ketenes	131
		3.6.4. Alcohols	131
		3.6.5. Ethers	132
		3.6.6. Carboxylic Acids	134
	3.7.	Sulfur-Containing Organic Compounds	135
	3.8.	Nitrogen-Containing Organic Compounds	138
		3.8.1. Nitrates	138
		3.8.2. Alkyl nitrites	139
		3.8.3. Nitroalkanes	145
		3.8.4. Nitriles	145
		3.8.5. Miscellaneous	146
	3.9.	Silicon-Containing Organic Compounds	147
		Selenium-Containing Organic Compounds	147
	3 11	Aromatic Compounds	147
		Organometallic Compounds	150
		Organic Radicals	150
4.			150
4.		tics and Mechanisms of the Gas-Phase Reactions of the NO ₃ Radical	151
		Organic Compounds	151
		Alkanes	151
		Haloalkanes	154
	4.3.	Alkenes	154
	4.4.	Haloalkenes	157
	4.5.	Alkynes	157
	4.6.	Oxygen-Containing Organic Compounds	157
	4.7.	Sulfur-Containing Organic Compounds	157
	4.8.	Nitrogen- and Silicon-Containing Organic Compounds	158
	4.9.	Aromatic Compounds	158
5.	Kine	tics and Mechanisms of the Gas-Phase Reactions of Ozone with	
	Orga	inic Compounds	161
	5.1.	Haloalkanes	161
	5.2.	Alkenes	161
	5.3.	Haloalkenes.	174
	5.4.	Oxygen-Containing Organic Compounds	174
	5.5.	Nitrogen-Containing Organic Compounds	175
	5.5. 5.6.	Phosphorus-, Silicon- and Selenium-Containing Organic	175
	5.0.		175
	57	Compounds	175
	5.7.	Aromatic Compounds	176

6.	Acki	nowledgements	180
7.	Add	endum	180
	7.1.	Gas-Phase Tropospheric Chemistry of Organic Compounds	180
		7.1.1. Alkanes	180
		7.1.2. Alkenes	182
		7.1.3. Aromatic Compounds	184
		7.1.4. Oxygen-Containing Organic Compounds	185
		7.1.5. Nitrogen-Containing Organic Compounds	186
	7.2	Kinetics and Mechanisms of the Gas-Phase Reactions of the OH	
		Radical with Organic Compounds	186
		7.2.1. Alkanes	186
		7.2.2. Haloalkanes	188
		7.2.3. Haloalkenes	200
		7.2.4. Alkynes	200
		7.2.5. Oxygen-Containing Organic Compounds	202
		7.2.6. Aromatic Compounds	209
		7.2.7. Organic Radicals	209
	7.3	Kinetics and Mechanisms of the Gas-Phase Reactions of the NO ₃	
		Radical with Organic Compounds	211
		7.3.1. Alkanes	211
		7.3.2. Alkenes	211
		7.3.3. Oxygen-Containing Organic Compounds	211
		7.3.4. Aromatic Compounds	211
	7.4	Kinetics and Mechanisms of the Gas-Phase Reactions of Ozone with	
		Organic Compounds	212
		7.4.1. Alkenes	212
		7.4.2. Oxygen-Containing Organic Compounds	212
		7.4.3. Nitrogen-Containing Organic Compounds	214

List of Tables

1.	Rate constants k at 298 K and parameters C and D in $k = CT^2 e^{-D/T}$ for	
	the reaction of OH radicals with alkanes	14
2.	Rate constants k at 298 K and temperature dependent parameters, $k =$	
	$Ae^{-B/T}$, for the reaction of NO ₃ radicals with alkanes	15
3.	High-pressure rate constants k_{∞} for the addition reactions of alkyl radicals	
	(\dot{R}) with O ₂ at around room temperature	16
4.	Absolute room temperature rate constants for the reactions of RO ₂ radi-	
	cals with NO	17
5.	Recommended rate constant parameters k_0 , k_{∞} and F for the gas-phase reac-	
	tions of RO ₂ radicals with NO ₂ , together with calculated rate constants at 298	
	K and 760 Torr total pressure	18
6.	Rate constants, k, at 298 K and temperature-dependent parameters, $k =$	
	$Ae^{-B/T}$, for the gas-phase combination reactions of RO_2 radicals	19
7.	Recommended 298 K rate constants and temperature dependent expres-	
	sions, $k = A e^{-B/T}$, for the reactions of O ₂ with alkoxy (RO) radicals	21
8.	Estimated Arrhenius parameters, $k = A e^{-E_{a}/RT}$, and room temperature	
	rate constants for 1,5-H shift isomerizations of alkoxy radicals	24
9.	Calculated rates (s ⁻¹) of competing alkoxy radical reactions at 298 K and 760	
	Torr total pressure of air	24
10.	Rate constant parameters for the gas-phase combination reactions of RO rad-	
	icals with NO	24
11.	Recommended rate constant parameters for the combination reactions of	
	RO radicals with NO ₂	25
12.	Rate constants k at 298 K and 760 Torr total pressure of air and Arrhenius	
	parameters for the reaction of OH radicals with alkenes at 760 Torr total	
	pressure of air	29

13.	Rate constants for the gas-phase reactions of β -hydroxyalkyl radicals with O_2	29
14.	Room temperature rate constants k for the actions of α -hydroxy radicals with O ₂	31
15.	Products observed and their molar formation yields from the reactions of the OH radical with monoterpenes in the presence of NO_x	34
16.	Rate constants k at 298 K and Arrhenius parameters, $k = A e^{-B/T}$, for the gas-phase reactions of O ₃ with alkenes, cycloalkenes and dialkenes	35
17.	Yields of stabilized biradicals from the gas-phase reactions of O ₃ with alkenes at room temperature and atmospheric pressure	
18.	OH radical formation yields from the gas-phase reactions of O ₃ with alke-	35
19.	nes at room temperature and atmospheric pressure Carbonyl products observed, and their formation yields, from the gas- phase reactions of O_3 with monoterpenes at room temperature and atmo-	38
20.	spheric pressure Room temperature rate constants k and temperature-dependent parame- ters, $k = A e^{-B/T}$, for the gas-phase reactions of the NO ₃ radical with a	39
21.	series of alkenes Products and their yields observed from the gas-phase reactions of the NO ₃ radical with a series of alkenes at room temperature and atmospheric	41
22.	pressure Room temperature rate constants, k , for the gas-phase reactions of NO ₂ with selected ellected ellected end diameter at eterographenic processing of eigenvectors.	42
23.	with selected alkenes and dienes at atmospheric pressure of air Rate constants k_{∞} at 298 K and temperature-dependent parameters, $k = Ae^{-B/T}$, for the reaction of OH radicals with alkynes at the high-pressure	43
24.	limit Room temperature rate constants k and temperature-dependent param- eters, $k = A e^{-B/T}$, for the gas-phase reactions of NO ₃ radicals with	46
25.	alkynes Room temperature rate constants for the gas-phase reactions of the NO ₃	46
	radical with benzene and alkyl-substituted benzenes \dots Rate constants k for the gas-phase reactions of the OH radical with aro- matic hydrocarbons at 298 K and atmospheric pressure and rate constant	47
27.	ratios $k_a/(k_a + k_b)$ obtained from kinetic data Rate constants k for the gas-phase reactions of benzyl and substituted-	48
28.	benzyl radicals with O_2 , NO and NO_2 Rate constants k for the gas-phase reactions of hydroxycyclohexadienyl and alkyl-substituted hydroxycyclohexadienyl radicals with O_2 , NO and	49
	NO ₂ Observed ring-retaining product yields from the OH radical-initiated reac-	49
	tions of aromatic hydrocarbons under atmospheric conditions $\dots \dots \alpha$ -Dicarbonyl yields from the OH radical-initiated reactions of a series of	51
	aromatic hydrocarbons under atmospheric conditions	53
	NO_3 radicals and O_3 with the styrenes Room temperature rate constants for the gas-phase reactions of OH and NO_3 radicals and O_3 with phenol, the cresols and the dimethylphenols,	54
33.	and with 2-nitrophenol Nitrophenol formation yields from the gas-phase reactions of OH and NO ₃	56
34.	radicals with phenol and the cresols, in the presence of NO _x Rate constants k at 298 K and Arrhenius parameters, $k = CT^n e^{-D/T}$, for	58
	the reaction of OH radicals with selected oxygenated compounds Room temperature rate constants k for the gas-phase reactions of the OH	62
36.	radical with alkyl nitrates and peroxyacetyl nitrate \dots Rate constants k and temperature-dependent parameters for the gas-	73
37.	phase reactions of the OH radical with alkanes Rate constants k and temperature-dependent parameters for the gas-	78
	phase reactions of the OH radical with haloalkanes	91

38.	Rate constants k at, or close to, the high pressure limit for the gas-phase	111
39.	reactions of the OH radical with alkenes Rate constants k and temperature-dependent parameters for the gas-	111
	phase reactions of the OH radical with haloalkenes	114
40.	Rate constants k for the gas-phase reactions of the OH radical with alkynes	117
41.	Rate constants k and temperature-dependent parameters for the gas-	11/
40	phase reactions of the OH radical with oxygen-containing organics \dots	120
42.	Rate constants k and temperature-dependent parameters, $k = Ae^{-B/T}$, for the gas-phase reactions of the OH radical with sulfur-containing	
	organics	137
43.	Rate constants k and temperature-dependent parameters at, or close to,	
	the high-pressure limit for the gas-phase reactions of the OH radical with	
	nitrogen-containing organics	140
44.	Rate constants k at, or close to, the high-pressure limit for the gas-phase	
45	reactions of the OD radical with nitrogen-containing organics	145
45.	Rate constants k for the gas-phase reactions of the OH radical with silicon containing organic compounds	1 47
46	silicon-containing organic compounds \dots Rate constants k for the gas-phase reactions of the OH radical with	147
40.	selenium-containing organics	148
47.	Rate constants k for the gas-phase reactions of the OH radical with aro-	140
	matic compounds at, or close to, the high-pressure limit	149
48.	Rate constants k for the gas-phase reactions of the OH radical with organometallic	
	compounds	150
49.	Rate constants k for the gas-phase reactions of the OH radical with or-	
50	ganic radicals at ~ 1 atmosphere total pressure	151
50.	Rate constants k and temperature-dependent parameters, $k = A e^{-B/T}$, for the gas-phase reactions of the NO ₃ radical with alkanes	152
51.	Rate constants for the gas-phase reactions of the NO ₃ radical with	152
	haloalkanes	154
52.	Rate constants and temperature-dependent parameters for the gas-phase	
	reactions of the NO ₃ radical with alkenes	155
53.	Rate constants k for the gas-phase reactions of the NO ₃ radical with haloalkenes.	159
54.	Rate constants k for the gas-phase reactions of the NO ₃ radical with	139
	alkynes	160
55.	Rate constants k for the gas-phase reactions of the NO ₃ radical with	
	oxygen-containing organic compounds	160
56.	Rate constants k for the gas-phase reactions of the NO ₃ radical with	1.00
57	nitrogen- and silicon-containing organic compounds Rate constants k for the gas-phase reactions of the NO ₃ radical with	160
57.	aromatic compounds	161
58.	Rate constants k and temperature-dependent parameters, $k = A e^{-B/T}$, for	101
	the gas-phase reactions of O ₃ with alkenes	164
59.	Rate constants k and temperature-dependent parameters, $k = A e^{-B/T}$, for	
	the gas-phase reactions of O ₃ with haloalkenes	177
60.	Rate constants k and temperature-dependent parameters for the gas-	1
61	phase reactions of O_3 with oxygen-containing organic compounds Rate constants k for the gas-phase reactions of O_3 with nitrogen-contain-	177
01.	ing organic compounds	178
62.	Rate constants k for the gas-phase reactions of O ₃ with phosphorus-, sele-	±70
	nium- and silicon-containing organic compounds	178
63.	Rate constants k and temperature dependent parameters, $k = A e^{-B/T}$, for	
	the gas-phase reactions of O ₃ with aromatic compounds	179
64.	Rate constants k for the gas-phase reactions of the OH radical with	100
65	Pate constants k and temperature dependent perometers for the gas	187
05.	Rate constants k and temperature-dependent parameters for the gas- phase reactions of the OH radical with haloalkanes	191
		171

66.	Rate constants k and temperature-dependent parameters, $k = A e^{-B/T}$, for the gas-phase reactions of the OH radical with haloalkenes at,	
	or close to, the high pressure limit.	201
67.	Rate constants k and temperature-dependent parameters for the gas- phase reactions of the OH radical with oxygen-containing organic	
	compounds	204
68.	Rate constants k and temperature-dependent parameters, $k = A e^{-B/T}$, for the gas-phase reactions of the OH radical with aromatic	
	compounds.	210
69.	Rate constants k for the gas-phase reactions of the OH radical with or-	
	ganic radicals at, or close to, the high-pressure limit	211
70.	Rate constants for the gas-phase reactions of the NO ₃ radical with	
	alkenes.	212
71.	Rate constants k and temperature-dependent parameters, $k = A e^{-B/T}$,	
	for the gas-phase reactions of the NO ₃ radical with oxygen-containing	212
72	organic compounds	213
12.	the gas-phase reactions of the NO ₃ radical with aromatic compounds at	
	297 ± 2 K.	214
73.	Rate constants k for the gas-phase reactions of O ₃ with alkenes	215
	Rate constants k for the gas-phase reactions of O_3 with oxygen-containing	
	organic compounds	216

List of Figures

1.	Plot of the values of ΔH (decomposition) against ΔH (O ₂ reaction) for a	
	series of alkoxy radicals	22
2.	Arrhenius plot of selected rate constants for the reaction of the OH	
	radical with methane	76
3.	Arrhenius plot of selected rate constants for the reaction of the OH	
	radical with ethane	82
4.	Arrhenius plot of selected rate constants for the reaction of the OH	
	radical with propane	82
5.	Arrhenius plot of selected rate constants for the reaction of the OH	
	radical with <i>n</i> -butane	83
6.	Arrhenius plot of selected rate constants for the reaction of the OH	
	radical with 2-methylpropane	84
7.	Arrhenius plot of selected rate constants for the reaction of the OH radical	
	with <i>n</i> -pentane	84
8.	Arrhenius plot of selected rate constants for the reaction of the OH	
	radical with 2,3-dimethylbutane	85
9.	Arrhenius plot of selected rate constants for the reaction of the OH	
	radical with 2,2,4-trimethylpentane	85
10.	Arrhenius plot of selected rate constants for the reaction of the OH	
	radical with 2,2,3,3-tetramethylbutane	86
11.	Arrhenius plot of selected rate constants for the reaction of the OH	
	radical with cyclopentane	86
12.	Arrhenius plot of selected rate constants for the reaction of the OH rad-	
	ical with CH_2F_2	89
13.	Arrhenius plot of rate constants for the reactions of the OH radical with	
	CHF_2Br	89
14.	Arrhenius plot of rate constants for the reaction of the OH radical with	
	CH ₃ CH ₂ Cl.	90
15.	Arrhenius plot of selected rate constants for the reaction of the OH rad-	
	ical with CH ₃ CHF ₂	90
16.	Arrhenius plot of rate constants for the reaction of the OH radical with	
	CH_2ClCH_2Cl .	90
17.	Arrhenius plot of rate constants for the reaction of the OH radical with	
	CH ₂ BrCH ₂ Br	102

18.	Arrhenius plot of selected rate constants for the reaction of the OH rad- ical with CH ₃ CF ₃	102
19.	Arrhenius plot of selected rate constants for the reaction of the OH radical	
20.	with CH ₃ CF ₂ Cl Arrhenius plot of rate constants for the reaction of the OH radical with	103
21.	CH ₃ CFCl ₂ Arrhenius plot of selected rate constants for the reaction of the OH rad-	103
	ical with CH ₃ CCl ₃	104
22.	Arrhenius plot of rate constants for the reaction of the OH radical with CH ₂ ClCHCl ₂	105
23.	Arrhenius plot of selected rate constants for the reaction of the OH rad- ical with CH ₂ FCF ₃	105
24.	Arrhenius plot of selected rate constants for the reaction of the OH rad-	106
25.	ical with CHF_2CF_3 Arrhenius plot of rate constants for the reaction of the OH radical with	
26.	CHFClCF ₃ Arrhenius plot of selected rate constants for the reaction of the OH radical	107
	with $CHCl_2CF_3$ Arrhenius plots of rate constants for the reactions of the OH radical with	107
	CHCl ₂ CF ₂ CF ₃ and CHFClCF ₂ CF ₂ Cl	108
28.	Arrhenius plot of selected absolute rate constants for the reaction of the OH radical with ethene at temperatures > 625 K	109
29.	Arrhenius plot of absolute rate constants for the reaction of the OH rad- ical with propene at temperatures > 625 K	110
30.	Arrhenius plot of rate constants for the reaction of the OH radical with	112
31.	$CH_2 = CHCl$ at, or close to, the high-pressure limit Arrhenius plot of rate constants for the reaction of the OH radical with	
32.	$CH_2 = CCl_2$ Arrhenius plot of rate constants for the reaction of the OH radical with	113
33	<i>cis</i> -CHCl = CHCl Arrhenius plot of rate constants for the reaction of the OH radical with <i>trans</i> -	113
	CHCl = CHCl	116
	Arrhenius plot of selected absolute rate constants for the reaction of the OH radical with acetylene at temperatures > 625 K	117
35.	Arrhenius plot of selected rate constants for the reaction of the OH rad- ical with formaldehyde	118
36.	Arrhenius plot of selected rate constants for the reaction of the OH rad-	119
37.	ical with acetoneArrhenius plot of selected rate constants for the reaction of the OH rad-	
38.	ical with methanol Arrhenius plot of selected rate constants for the reaction of the OH radical	131
	with 2-propanol Arrhenius plot of selected rate constants for the reaction of the OH rad-	132
	ical with diethyl ether	133
	Arrhenius plots of selected rate constants for the reactions of the OH rad- ical with di- <i>n</i> -propyl ether and methyl <i>tert</i> -butyl ether	133
41.	Arrhenius plot of selected rate constants for the reaction of the OH rad- ical with dimethyl sulfide, obtained in the absence of O_2	136
42.	Arrhenius plot of rate constants for the reaction of the OH radical with	-
43.	dimethyl disulfide Arrhenius plot of selected rate constants for the reaction of the OH rad-	136
44.	ical with CH ₃ CN Arrhenius plot of rate constants for the reaction of the NO ₃ radical with	146
	2-methylpropane Arrhenius plot of selected rate constants for the reaction of the NO ₃ rad-	153
	ical with propene	156
46.	Arrhenius plot of selected rate constants for the reaction of the NO ₃ rad- ical with 1-butene	156

Arrhenius plot of selected rate constants for the reaction of O ₃ with	
ethene	162
Arrhenius plot of selected rate constants for the reaction of O ₃ with	
	162
	163
Arrhenius plots of selected rate constants for the reactions of O ₃ with 2- methylpropene, <i>cis</i> -2-butene, 2-methyl-2-butene and 2,3-dimethyl-2-	
	172
butadiene (isoprene)	173
	ethene Arrhenius plot of selected rate constants for the reaction of O ₃ with propene Arrhenius plots of selected rate constants for the reactions of O ₃ with 1-butene and <i>trans</i> -2-butene Arrhenius plots of selected rate constants for the reactions of O ₃ with 2-

1. Introduction

Organic chemicals are introduced into the atmosphere in large quantities from a variety of anthropogenic and biogenic sources,¹⁻⁴ with estimated biogenic and anthropogenic non-methane organic compound emissions of ~1000 million ton vr^{-1} and ~100 million ton vr^{-1} , respectively.⁴ These emissions of organic compounds lead to a complex series of chemical and physical transformation and removal processes in the atmosphere which result in such effects as ozone formation in urban^{5,6} and rural^{7,8} areas and in the global troposphere,⁹ stratospheric ozone depletion,⁴ long range transport of chemicals,¹⁰ acid deposition,¹¹ and global climate change.¹² A large amount of experimental data concerning the chemical and physical processes of emitted organic compounds has been obtained from laboratory and ambient air studies over the past two decades, and there is now an understanding, at varying levels of detail, of the atmospheric chemistry of the various classes of organic compounds emitted into the troposphere.¹³⁻¹⁹ Because of the complexity of the physical and chemical processes involved and the often non-linear response of the parameters of interest to changes in the input(s), the use of computer models incorporating the emissions, atmospheric chemistry and atmospheric transport processes is generally necessary to elucidate the effects of emissions of chemicals of anthropogenic and biogenic origin on the atmosphere.

Chemical mechanisms of varying levels of detail have been formulated and used as components of these computer modeling studies. For the more complex nonmethane organic compounds, the chemical mechanisms are often compared with experimental data obtained from environmental chambers during their development (see, for example, references 20–24) and hence under the concentration conditions of these experimental data the predictions of the chemical mechanisms are constrained to be in reasonable agreement with experimental data. However, these environmental chamber data are of somewhat limited utility due to the difficulties of working at the low reactant concentrations characteristic of the ambient atmosphere and of monitoring product species which are present in low concentrations and/or readily deposit at the chamber walls. The accuracies of chemical mechanisms used in the computer models designed to simulate the troposphere and/or stratosphere are then dependent on the accuracy of the individual rate constants, reaction mechanisms and product distributions for the multitude of elementary reactions which actually occur in the atmosphere.

It is evident that, together with experimental laboratory, ambient air and theoretical studies of the kinetics, mechanisms and products of the atmospheric reactions of organic compounds, there must also be an ongoing parallel effort to critically review and evaluate these data. These evaluation efforts serve to present the current status of knowledge of atmospheric chemistry, in part for modelers, and to point out the areas of uncertainty for designing future experimental and/or theoretical studies. The reactions of interest for modeling the chemistry occurring in the stratosphere have been reviewed and evaluated for several years by the National Atmospheric and Space Administration (NASA) Panel for Data Evaluation [with the most recent evaluation being Number 10, published in 1992^{18} and by the IUPAC (formerly CODATA) Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry (with the most recent evaluation being Supplement IV¹⁹). While these two data evaluation panels were originally concerned largely with stratospheric chemistry, due to the potential for stratospheric ozone depletion by inputs of ClO_x and NO_x into the stratosphere, tropospheric chemistry is now being included to an increasing degree in both evaluations through the tropospheric chemistry of the hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) proposed as alternatives to the chlorofluorocarbons and, especially in the more recent IUPAC evaluations, ^{19,25} by the inclusion of the reactions of $\leq C_3$ alkanes, alkenes, alkynes, aldehydes, ketones, alcohols, carboxylic acids and organosulfur species. The gas-phase atmospheric reactions of the HFCs and HCFCs have been dealt with in detail recently,^{14,18,19} and the atmospheric chemistry of reduced organosulfur compounds has been reviewed by Tyndall and Ravishankara.¹⁷

However, the troposphere contains at least several hundred organic compounds, with the vast majority of them being $\ge C_4$ species, and there is an obvious need for the review and evaluation of the chemical reactions which occur in the troposphere for these chemicals. To date, several critical reviews and evaluations of the kinetics and mechanisms of the gas-phase reactions of organic compounds with OH radicals,²⁶⁻²⁸ NO₃ radicals^{15,16} and O₃²⁹ have been carried out, with the most recent of these being those of Atkinson and Carter²⁹ for O₃ reactions and Atkinson^{16,28} for OH and NO₃ radical reactions. In addition to these reviews of specific (and important) reaction pathways, the tropospheric chemistry of selected organic compounds has been reviewed by Atkinson and Lloyd,³⁰ Atkinson¹³ and Roberts.³¹ The review of Atkinson and Llovd³⁰ focused on the tropospheric reactions of eight hydrocarbons (n-butane, 2,3-dimethylbutane, ethene, propene. 1-butene, trans-2-butene, toluene and m-xylene) and their degradation products, while that of Atkinson¹³ dealt in a more global sense with the tropospheric chemistry of the alkanes, alkenes, alkynes, oxygenates (including those formed during the atmospheric degradations of the hydrocarbon species), nitrogen-containing organics, and aromatic hydrocarbons.

The present article serves to update and extend the Atkinson¹³ review to take into account more recent data. In the previous article,¹³ the reactions of alkyl, alkyl peroxy and alkoxy radicals, and their substituted analogs, were dealt with as single entities, regardless of the chemical structure of the alkyl radical, alkyl peroxy radical, or alkoxy radical. A somewhat different approach than used by Atkinson¹³ is employed here, since recent data for organic radicals indicate that there are significant differ-

ences between the reaction pathways occurring in the troposphere, depending on the structures of the radicals.

The reactions of organic compounds under tropospheric conditions are dealt with in Sec. 2:

- 2.1. Alkanes
- 2.2. Alkenes
- 2.3. Alkynes
- 2.4. Aromatic hydrocarbons and aromatic compounds formed during the tropospheric photooxidations of the aromatic hydrocarbons.
- 2.5. Oxygen-containing organic compounds, including those formed as photooxidation products of the alkanes, alkenes, alkynes and aromatic hydrocarbons.
- 2.6. Nitrogen-containing organic compounds formed as photooxidation products of the alkanes and alkenes.

Only gas-phase reactions are discussed, since while highly important under many tropospheric conditions, the reactions occurring in the particle and/or aqueous phase (for example, in fog, cloud and rain droplets), on surfaces (heterogeneous reactions) and gas-to-particle conversion (see, for example, Refs. 32-38) are beyond the scope of the present article. As in the previous review,¹³ the most recent NASA¹⁸ and, especially, IUPAC¹⁹ evaluations are used for the $\leq C_3$ reactions, generally without reevaluation or detailed discussion. The present article is in essence an extension of the IUPAC evaluation¹⁹ to more complex organic compounds characteristic of the lower troposphere and, in particular, polluted air masses. Thus the present article and the most recent IUPAC evaluation¹⁹ are complementary and both are necessary for an in-depth coverage of the chemistry of organic compounds in the troposphere. In addition, the previous articles^{16,28,29} dealing with the kinetics and mechanisms of the gas-phase reactions of OH and NO₃ radicals and O₃ with organic compounds have been updated, with the data reported since these reviews^{16,28,29} being tabulated, discussed and evaluated in Secs. 3, 4 and 5. In these sections, discussion is limited to those organic compounds for which new information has become available since these previous review articles^{16,28,29} were prepared. Previous data are not included in the tables of rate constants, and hence the previous reviews^{16,28,29} must be consulted for rate constant and mechanistic information available and used at the times of their finalization. The literature through mid-1992 has been included in this article. (See Addendum, Sec. 6 for data through early/ mid-1993.)

Rate constants k determined as a function of temperature are generally cited using the Arrhenius expression, $k = A e^{-B/T}$, where A is the Arrhenius pre-exponential factor and B is in K. In some cases rate constants have been obtained over extended temperature ranges and the simple Arrhenius expression, as expected, does not hold, with curvature in the Arrhenius plots being observed.²⁸ In these cases, a three-parameter equation, $k = CT^n e^{-D/T}$ has been used,²⁸ generally with n = 2 ($k = CT^2 e^{-D/T}$). The equation, $k = CT^n e^{-D/T}$, can be transformed into the Arrhenius expression, $k = A e^{-B/T}$, centered at a temperature T, with $A = C e^n T^n$ and B = D + nT.

Reactions which are in the fall-off region between second- and third-order kinetics or between first- and second-order kinetics are dealt with by using the Troe fall-off expression,³⁹ with

$$k = \left(\frac{k_{0}[M]}{1 + \frac{k_{0}[M]}{k_{\infty}}}\right) F^{\{1 + (\log_{10}k_{0}[M]/k_{\infty})^{2\}^{-1}}}$$
(1)

where k_0 is the limiting low-pressure rate constant, k_{∞} is the limiting high-pressure rate constant, M is the concentration of the third-body gas (generally air in this article) and F is the broadening coefficient. In general, the rate constants k_0 and k_{∞} have T^n temperature dependencies. The temperature dependence of F is given by $F \approx e^{-T/T^*}$ for temperatures appropriate to the troposphere, where T^* is a constant for a given reaction.^{19,40} All rate constants are given in cm molecule s units, and pressure are given in Torr (1 Torr = 133.3 Pa).

References

- ¹J. A. Logan, M. J. Prather, S. C. Wofsy, and M. B. McElroy, J. Geophys. Res. **86**, 7210 (1981).
- ²T. E. Graedel, D. T. Hawkins, and L. D. Claxton, "Atmospheric Chemical Compounds: Sources, Occurrence, and Bioassay," Academic Press, Orlando, FL (1986).
- ³B. Lamb, A. Guenther, D. Gay, and H. Westberg, Atmos. Environ. 21, 1695 (1987).
- ⁴"Scientific Assessment of Ozone Depletion: 1991," World Meteorological Organization Global Ozone Research and Monitoring Project – Report No. 25, Geneva, Switzerland (1992).
- ⁵W. L. Chameides, R. W. Lindsay, J. Richardson, and C. S. Kiang, Science 241, 1473 (1988).
- ⁶J. H. Seinfeld, Science 243, 745 (1989).

 ⁷M. Trainer, E. J. Williams, D. D. Parrish, M. P. Buhr, E. J. Allwine, H. H. Westberg, F. C. Fehsenfeld, and S. C. Liu, Nature **329**, 705 (1987).
 ⁸S. Sillman, J. A. Logan, and S. C. Wofsy, J. Geophys Res. **95**, 1837 (1990).

- ⁹J. A. Logan, J. Geophys. Res. 90, 10463 (1985).
- ¹⁰T. Bidleman, E. L. Atlas, R. Atkinson, B. Bonsang, K. Burns, W. C. Keene, A. H. Knap, J. Miller, J. Rudolph, and S. Tanabe, "The Long-Range Transport of Organic Compounds" in "The Long-Range Atmospheric Transport of Natural and Contaminant Substances," A. H. Knap, Ed., NATO ASI Series C: Mathematical and Physical Sciences, Vol. 297, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 259–301 (1990).
- ¹¹S. E. Schwartz, Science 243, 753 (1989).
- ¹²"Climate Change," The Intergovernmental Panel on Climate Change Assessment, J. T. Houghton, G. J. Jenkins, and J. J. Ephraums, Eds., Cambridge Univ. Press, Cambridge (1990).
- ¹³R. Atkinson, Atmos. Environ. 24A, 1 (1990).
- ¹⁴"Scientific Assessment of Stratospheric Ozone: 1989," Volume II, Appendix: AFEAS Report. World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 20, Geneva, Switzerland (1990).
- ¹⁵R. P. Wayne, I. Barnes, P. Biggs, J. P. Burrows, C. E. Canosa-Mas, J. Hjorth, G. Le Bras, G. K. Moortgat, D. Perner, G. Poulet, G. Restelli, and H. Sidebottom, Atmos. Environ. 25A, 1 (1991).

- ¹⁶R. Atkinson, J. Phys. Chem. Ref. Data, 20, 459 (1991).
- ¹⁷G. S. Tyndall and A. R. Ravishankara, Int. J. Chem. Kinet. 23, 483 (1991).
- ¹⁸W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling." NASA Panel for Data Evaluation, Evaluation No. 10, Jet Propulsion Laboratory Publication 92–20, August 15 (1992).
- ¹⁹R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and J. Troe, J. Phys. Chem. Ref. Data 21, 1125 (1992).
- ²⁰R. Atkinson, A. C. Lloyd, and L. Winges, Atmos. Environ. 16, 1341 (1982).
- ²¹F. W. Lurmann, A. C. Lloyd, and R. Atkinson, J. Geophys. Res. **91**, 10905 (1986).
- ²²M. W. Gery, G. Z. Whitten, J. P. Killus, and M. C. Dodge, J. Geophys. Res. 94, 12925 (1989).
- ²³W. R. Stockwell, P. Middleton, J. S. Chang, and X. Tang, J. Geophys. Res. **95**, 16343 (1990).
- ²⁴W. P. L. Carter and F. W. Lurmann, Atmos. Environ. 25A, 2771 (1991).
- ²⁵R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and J. Troe, J. Phys. Chem. Ref. Data 18, 881 (1989).
- ²⁶D. L. Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman, J. Phys. Chem. Ref. Data 15, 465 (1986).
- ²⁷R. Atkinson, Chem. Rev. 86, 69 (1986).
- ²⁸R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ²⁹R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ³⁰R. Atkinson and A. C. Lloyd, J. Phys. Chem. Ref. Data 13, 315 (1984).
- ³¹J. M. Roberts, Atmos. Environ. **24A**, 243 (1990).
- ³²W. L. Chameides, J. Geophys. Res. **89**, 4739 (1984).
- ³³D. J. Jacob, J. Geophys. Res. **91**, 9807 (1986).
- ³⁴D. J. Jacob, E. W. Gottlieb, and M. J. Prather, J. Geophys. Res. 94, 12975 (1989).
- ³⁵S. N. Pandis and J. H. Seinfeld, J. Geophys. Res. 94, 1105 (1989).
- ³⁶J. Lelieveld and P. J. Crutzen, Nature 343, 227 (1990).
- ³⁷S. N. Pandis, S. E. Paulson, J. H. Seinfeld, and R. C. Flagan, Atmos. Environ. **25A**, 997 (1991).
- ³⁸J. Lelieveld and P. J. Crutzen, J. Atmos. Chem. 12, 229 (1991).
- ³⁹J. Troe, J. Phys. Chem. 83, 114 (1979).
- ⁴⁰D. L. Baulch, R. A. Cox, P. J. Crutzen, R. F. Hampson, Jr., J. A. Kerr, J. Troe, and R. T. Watson, J. Phys. Chem. Ref. Data 11, 327 (1982).

2. Gas-Phase Tropospheric Chemistry of Organic Compounds

2.1. Alkanes

The atmospheric chemistry of the alkanes has been reviewed and discussed previously,^{1,2} and the kinetics and mechanisms of the reactions with OH and NO₃ radicals and with O₃ have been reviewed and evaluated³⁻⁵ and these reviews and evaluations are updated in Secs. 3, 4, and 5, respectively. The gas-phase reactions of the alkanes with O₃ are of negligible importance as an atmospheric loss process, since the available data⁵ show that the room temperature rate constants for these reactions are <10⁻²³ cm³ molecule⁻¹ s⁻¹. Under atmospheric conditions, the potential loss processes for the alkanes involve gas-phase reactions with OH and NO₃ radicals.

OH Radical Reactions

The kinetics and mechanisms of the reactions of the OH radical with alkanes have been reviewed and evalu-

ated by Atkinson,³ and that evaluation is updated in Sec. 3.1. Rate constants have been determined over significant temperature ranges for a number of alkanes and, as expected from theoretical considerations, the Arrhenius plots exhibit curvature. Accordingly, the threeparameter expression $k = C T^2 e^{-D/T}$ was generally used³ (see also Sec. 3.1). The 298 K rate constants and the parameters C and D recommended [from Ref. 3 and Sec. 3.1] are given in Table 1 for alkanes of relevance to tropospheric chemistry. Room temperature rate constants for other alkanes for which recommendations have not been given (generally due to only single studies being carried out) are also given in Table 1.

These OH radical reactions proceed via H-atom abstraction from the C-H bonds

$$OH + RH \rightarrow H_2O + R$$

to generate an alkyl radical and, as discussed previously,^{3,6} the rate constants for these OH radical reactions with alkanes can be fit to within a factor of ~ 2 over the temperature range 250–1000 K from consideration of the CH₃-, -CH₂- and >CH- groups in the alkane, and the neighboring substituent groups. Thus

$$k(CH_3-X) = k_{prim} F(X)$$
$$k(X-CH_2-Y) = k_{sec} F(X) F(Y)$$

and

$$k(X-CH < Y) = k_{tert} F(X) F(Y) F(Z)$$

where k_{prim} , k_{sec} and k_{tert} are the OH radical rate constants per -CH₃, -CH₂- and > CH- group, respectively, for X = Y = Z = -CH₃ as the standard substituent group, and F(X), F(Y) and F(Z) are the substituent factors for X, Y and Z substituent groups. As derived by Atkinson,⁶

 $k_{\text{prim}} = 4.47 \times 10^{-18} T^2 e^{-303/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$ $k_{\text{sec}} = 4.32 \times 10^{-18} T^2 e^{233/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$ $k_{\text{tert}} = 1.89 \times 10^{-18} T^2 e^{711/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$

 $F(-CH_3) = 1.00$, and $F(-CH_{2^-}) = F(>CH_{-}) = F(>C<) = e^{76/T}$. For cycloalkanes, the effects of ring strain are taken into account by means of ring factors.⁶⁻⁸ This estimation technique not only allows the calculation of OH radical reaction rate constants for alkanes for which experimental data do not exist, but also allows the initially formed isomeric alkyl radical distribution to be calculated for a given alkane.²

NO₃ Radical Reactions

The NO₃ radical reacts with the alkanes with rate constants at room temperature in the 10^{-17} to 10^{-16} cm³ molecule⁻¹ s⁻¹ range (Ref. 4 and Sec. 4.1). The recommended 298 K rate constants and temperature

ROGER ATKINSON

TABLE 1. Rate constants k at 298 K and parameters C and D in $k = CT^2 e^{-D/T}$ for the reaction of OH radica	ils with alkanes	(from Ref. 3 and Sec. 3.)
--	------------------	---------------------------

Alkane	$10^{12} \times k \text{ (cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	$\frac{10^{18} \times C \text{ (cm}^3}{\text{molecule}^{-1} \text{ s}^{-1}})$	D (K)
Methane	0.00686	7.44	1361
Ethane	0.257	15.1	492
Propane	1.15	15.0	44
1-Butane	2.54	15.1	- 190
2-Methylpropane	2.33	11.1	- 256
-Pentane	3.94	21.0	- 223
-Methylbutane	3.9		
,2-Dimethylpropane	0.849	17.9	187
-Hexane	5.61		
-Methylpentane	5.6		
-Methylpentane	5.7		
,2-Dimethylbutane	2.32	а	а
,3-Dimethylbutane	5.99	12.1	- 512
-Heptane	7.15		
,2-Dimethylpentane	3.4		
,4-Dimethylpentane	5.2		
,2,3-Trimethylbutane	4.23	9.04	- 495
-Octane	8.68	b	b
,2-Dimethylhexane	4.8	Ū.	Ċ,
,2,4-Trimethylpentane	3.59	20.6	- 201
,3,4-Trimethylpentane	7.0	2010	201
,2,3,3-Tetramethylbutane	1.06	19.0	139
-Nonane	10.2	1210	107
-Methyloctane	10.1		
-Methyloctane	9.7		
,3,5-Trimethylhexane	7.9		
-Decane	11.6		
-Undecane	13.2		
-Dodecane	13.2		
-Tridecane	16		
-Tetradecane	19		
-Pentadecane	22		
-Hexadecane	25		
yclopropane	0.084		
yclobutane	1.5		
lyclopentane	5.08	25.5	- 241
yclohexane	7.49	26.6	- 344
lycloheptane	12.5	20.0	- 344
Aethylcyclohexane	12.3		
is - and	20		
ans-Bicyclo[4.4.0]decane	20		

^aArrhenius expression of $k = 2.84 \times 10^{-11} e^{-747/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ recommended (245-330 K)}.$

^bArrhenius expression of $k = 3.15 \times 10^{-11} \text{ e}^{-384/T} \text{ cm}^3$ molecule⁻¹ s⁻¹ recommended (300-500 K).

dependent parameters, taken from Ref. 4 and Sec. 4.1, are given in Table 2, which also includes the room temperature rate constants for alkanes for which only a single study has been carried out and for which no recommendations are given. Under atmospheric conditions, the nighttime reactions of the alkanes with the NO₃ radical can be calculated to be typically two orders of magnitude less important as an atmospheric loss process than are the daytime OH radical reactions (although the relative importance of the NO₃ radical reactions may vary widely, depending on the OH and NO₃ radical concentrations⁴).

Similar to the OH radical reactions, these NO₃ radical reactions proceed via H-atom abstraction from the C-H bonds

 $NO_3 + RH \rightarrow HONO_2 + \dot{R}$

For alkanes for which no experimental data presently exist, the overall 298 K rate constants and the distribution of initially formed alkyl radical isomers can be calculated by the use of $-CH_3$, $-CH_2$ - and >CH- group rate constants and substituent factors, as discussed above for the corresponding OH radical reactions. Atkinson⁴ derived group rate constants (in cm³ molecule⁻¹ s⁻¹ units) at 298 K of $k_{prim} = 7.0 \times 10^{-19}$, $k_{sec} = 1.5 \times 10^{-17}$, and $k_{tert} = 8.2 \times 10^{-17}$, and substituent factors at 298 K of $F(-CH_3) = 1.00$ and $F(-CH_2-) = F(>CH-) = F(>C<) = 1.5$, and these can be used to calculate the room tem-

Alkane	$10^{12} \times A$ (cm ³ molecule ⁻¹ s ⁻¹)	<i>B</i> (K)	$10^{17} \times k$ (cm ³ molecule ⁻¹ s ⁻¹)
Methane	· · · ·	<u></u>	< 0.1
Ethane			0.14ª
Propane			1.7ª
n-Butane	2.76	3279	4.59
2-Methylpropane	3.05	3060	10.6
n-Pentane			8.1
2-Methylbutane			16
n-Hexane			10.5
2,3-Dimethylbutane			43
Cyclohexane			13.5
n-Heptane			14.5
n-Octane			18.2
n-Nonane			24.1

TABLE 2. Rate constants k at 298 K and temperature dependent parameters, $k = A e^{-B/T}$, for the reaction of NO₃ radicals with alkanes (from Ref. 4 and Sec. 4.1)

*Estimated from group rate constants, see text.

perature rate constants for the NO₃ radical reactions with the alkanes and the distribution of alkyl radicals formed.

Reactions of Alkyl (R) Radicals

The available kinetic and mechanistic data show that under tropospheric conditions the alkyl radicals react with O_2 to form an alkyl peroxy radical.

$$R' + O_2 \xrightarrow{M} RO_2'$$

The room temperature kinetic data presently available for O₂ addition to alkyl radicals are given in Table 3. For methyl and ethyl radicals at room temperature, these reactions are in the fall-off region at and below atmospheric pressure, and the IUPAC recommended values of k_0 , k_∞ and F for these O₂ reactions are:⁹ methyl, $k_0 = 1.0 \times 10^{-30} (T/300)^{-3.3}$ cm⁶ molecule⁻² s⁻¹ (200–300 K), $k_\infty = 2.2 \times 10^{-12} (T/300)$ cm³ molecule⁻¹ s⁻¹ (200–300 K) and F = 0.27 at 298 K; ethyl, $k_0 = 5.9 \times 10^{-29} (T/300)^{-3.8}$ cm⁶ molecule⁻² s⁻¹ (200–300 K), $k_\infty = 7.8 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ (200–300 K) and F = 0.54 at 298 K. In addition, Xi *et al.*¹² have determined a rate constant of $k_\infty = 2.1 \times 10^{-12} (T/300)^{-2.1}$ cm³ molecule⁻¹ s⁻¹ for the reaction of O₂ with the 2,2-dimethyl-1-propyl (neopentyl) radical over the temperature range 266–374 K.

At elevated temperatures, these reactions of alkyl radicals with O_2 have been assumed to also occur by an Hatom abstraction pathway, for example

$$C_2H_5 + O_2 \rightarrow CH_2 = CH_2 + HO_2$$

However, this is now recognized not to be a parallel reaction route, but to occur from the activated RO₂ radical¹³

$$R' + O_2 \rightleftharpoons [RO_2^2]^* \to HO_2 + \text{alkene}$$

$$\downarrow M$$
RO₂

At the high pressure limit, peroxy radical formation is therefore the sole reaction process. At 760 Torr and 298 K, the formation yield of $C_2H_4 + HO_2$ from the reaction of the ethyl radical with O_2 is ~0.05%.⁹

Hence, for the alkyl radicals studied to date, under atmospheric conditions the reactions with O_2 proceed via addition to form a peroxy radical, with a room temperature rate constant of $\geq 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at atmospheric pressure. For the smaller alkyl radicals these reactions are in the fall-off regime between second- and third-order kinetics, but are reasonably close to the highpressure rate constant at 760 Torr of air. Under atmospheric conditions, these reactions with O_2 are the sole loss process of these alkyl radicals, and other reactions need not be considered.

Alkyl Peroxy (RO₂) Radicals

As discussed above, these radicals are formed from the addition of O_2 to the alkyl radicals. Under tropospheric conditions, RO_2 radicals react with NO (by two pathways),

$$RO_2^{-} + NO \xrightarrow{M} RO^{-} + NO_2$$

with HO₂ radicals,

$$RO_2 + HO_2 \rightarrow ROOH + O_2$$

with RO₂ radicals (either self-reaction or reaction with other alkyl peroxy radicals),

$$RO_2^{\bullet} + RO_2^{\bullet} \rightarrow products$$

and with NO₂.

TABLE 3. High-pressure rate constants k_{∞} for the addition reactions of alkyl radicals (R) with O₂ at around room temperature

	$10^{12} \times k_{\infty}$		
Ŕ	$(cm^3 molecule^{-1} s^{-1})$	<i>T</i> (K)	Reference
Methyl	$2.2^{+2.2}_{-1.1}$	298	Atkinson et al.9
	1.0 ^a	298	
Ethyl	7.8± 2:9	298	Atkinson et al.9
	7.0ª	298	
1-Propyl	8+5	298	Atkinson et al.9
2-Propyl	$11 \pm \frac{11}{5.5}$	298	Atkinson et al.9
1-Butyl	7.5 ± 1.4	300	Lenhardt et al. ¹⁰
2-Butyl	16.6 ± 2.2	300	Lenhardt et al. ¹⁰
2-Methyl-2-propyl	23.4 ± 3.9	300	Lenhardt et al. ¹⁰
2-Methyl-1-propyl	2.9 ± 0.7	298 ± 3	Wu and Bayes ¹¹
2,2-Dimethyl-1-propyl	2.4 ± 0.4	293 ± 1	Xi et al. ¹²
Cyclopentyl	17 ± 3	293	Wu and Bayes ¹¹
Cyclohexyl	14 ± 2	298 ± 3	Wu and Bayes ¹¹

^aValue at 760 Torr total pressure calculated from the fall-off expression.

$$RO_2^{\circ} + NO_2 \xrightarrow{M} RO_2NO_2$$

The reaction pathways which occur depend on the NO to HO₂ and/or RO₂ radical concentration ratios, and in the troposphere the reaction with NO is expected to dominate for NO concentrations $\geq 7 \times 10^8$ molecule cm^{-3,14,15} The reaction of RO₂ radicals with NO₂ to form alkyl peroxynitrates is generally unimportant under lower tropospheric conditions due to the rapid thermal decomposition of the alkyl peroxynitrates back to reactants (see Sec. 2.6).

Reaction with NO

The recommended NASA¹⁶ and IUPAC⁹ room temperature rate constants for the reactions of alkyl peroxy radicals with NO and the absolute literature data of Peeters et al.¹⁷ and Anastasi et al.¹⁸ for the (CH₃)₂CHO₂¹⁷ and $(CH_3)_3CO_2^{17,18}$ radicals are given in Table 4. Both the NASA¹⁶ and IUPAC⁹ evaluations recommend a rate constant for the reaction of CH₃O₂ radicals with NO of $k(CH_3O_2^{-} + NO) = 4.2 \times 10^{-12} e^{(180 \pm 180)/T} cm^3$ molecule⁻¹ s⁻¹, with k (CH₃O₂ + NO) = 7.6 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K. The NASA and IUPAC recommended rate constants for the reaction of the $C_2H_5O_2$ radical with NO^{9,16} are both based on the measurement of Plumb et al.¹⁹ Although no experimental temperaturedependent data are available, the NASA evaluation¹⁶ recommends a temperature independent rate constant for the reaction of the C₂H₅O₂ radical with NO. Furthermore, the IUPAC⁹ recommendations for the reactions of the CH₃CH₂CH₂O₂ and (CH₃)₂CHO₂ radicals with NO assume that the overall rate constants for these reactions are identical to that for the corresponding C₂H₅O₂ radical reaction. Recently, however, Peeters et al.¹⁷ have measured significantly lower rate constants for the reactions of the (CH₃)₂CHO₂ and (CH₃)₃CO₂ radicals with NO at 290 K of $(5.0 \pm 1.2) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ and (4.0 \pm 1.1) \times 10⁻¹² cm³ molecule⁻¹ s⁻¹, respectively. Unfortunately, no measurements for the CH₃O₂ or C₂H₅O₂ radical reactions were carried out by Peeters *et al*.¹⁷ for comparison with the previous literature data.

Hence, it is recommended that the rate constant for the reaction of the CH_3O_2 radical with NO is given by

$$k(CH_3O_2^2 + NO) = 4.2 \times 10^{-12} e^{180/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

= 7.6 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K

and that the overall rate constants for the higher $(\geq C_2)$ alkyl peroxy radicals with NO are identical, with

$$k(\text{RO}_2^2 + \text{NO}) = 4.9 \times 10^{-12} \text{ e}^{180/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

= 8.9 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K.

The reaction of CH_3O_2 with NO has been shown to proceed primarily by^{9,16,20,21}

$$CH_3O_2^{\cdot} + NO \rightarrow CH_3O^{\cdot} + NO_2$$

and Plumb *et al*.¹⁹ have shown from direct measurements that the reaction of $C_2H_5O_2$ radicals with NO forms NO_2 with a yield of ≥ 0.80 .

However, for the larger alkyl peroxy radicals, Darnall et al.,²² Takagi et al.,²³ Atkinson et al.^{24–27} and Harris and Kerr²⁸ have shown that the reaction pathway to form the alkyl nitrate becomes important. At room temperature and atmospheric pressure, the product data of Atkinson et al.^{24–27} and Harris and Kerr²⁸ show that for the secondary alkyl peroxy radicals the rate constant ratio $k_a/(k_a + k_b)$, where k_a and k_b are the rate constants for the reaction pathways (a) and (b), respectively,

$$RO_2^{i} + NO$$
 (a)
 $RO_2^{i} + NO_2$ (b)

RÒ₂	$10^{12} \times k$ (cm ³ molecule ⁻¹ s ⁻¹)	<i>T</i> (K)	Reference
CH ₃ Ò ₂	7.6	298	DeMore et al.; ¹⁶
			Atkinson et al.9
C₂H₅Ó₂	8.9	298	DeMore et al.; ¹⁶
			Atkinson et al.9
CH ₃ CH ₂ CH ₂ O ₂	8.9ª	298	Atkinson et al.9
(CH ₃) ₂ CHO ₂	8.9ª	298	Atkinson et al.9
	5.0 ± 1.2	290	Peeters et al. ¹⁷
(CH ₃) ₃ CO ₂	> 1	298	Anastasi et al.18
	4.0 ± 1.1	290	Peeters et al. ¹⁷

TABLE 4. Absolute room temperature rate constants for the reactions of RO₂ radicals with NO

^aAt 760 Torr total pressure (see text).

increases monotonically with the carbon number of the RO₂ radical. Furthermore, for a given alkyl peroxy radical the rate constant ratio $k_a/(k_a + k_b)$ is pressure- and temperature-dependent, increasing with increasing pressure and with decreasing temperature.^{25,27,28}

The pressure and temperature-dependent rate constant ratios k_a/k_b for secondary alkyl peroxy radicals^{24–27} are fit by the fall-off expression²⁹

$$\frac{k_{\rm a}}{k_{\rm b}} = \left(\frac{Y_{\rm o}^{300} \,[{\rm M}](T/300)^{-m_{\rm o}}}{1 + \frac{Y_{\rm o}^{300} \,[{\rm M}](T/300)^{-m_{\rm o}}}{Y_{\rm o}^{300} \,(T/300)^{-m_{\rm o}}}}\right) F^{\rm Z}$$
(II)

where

$$z = \left\{ 1 + \left[\log \left(\frac{Y_o^{300} [M](T/300)^{-m_o}}{Y_x^{300} (T/300)^{-m_x}} \right) \right]^2 \right\}^{-1}$$

and $Y_0^{300} = \alpha e^{\beta n}$, *n* is the number of carbon atoms in the alkyl peroxy radical, and α and β are constants. The most recent evaluation²⁹ of the experimental data of Atkinson *et al.*²⁴⁻²⁷ leads to $Y_{\infty}^{300} = 0.826$, $\alpha = 1.94 \times 10^{-22}$ cm³ molecule⁻¹, $\beta = 0.97$, $m_o = 0$, $m_{\infty} = 8.1$ and F = 0.411. The experimental data of Harris and Kerr²⁸ for the heptyl nitrates formed from the OH radical reaction with *n*-heptane at 730 Torr total pressure over the temperature range 253–325 K are in good agreement with predictions from this equation.

Although the rate constant ratios k_a/k_b at room temperature and atmospheric pressure for secondary RO₂ radicals depend primarily on the number of carbon atoms in the RO₂ molecule, the corresponding rate constant ratios for primary and tertiary RO₂ radicals are significantly lower, by a factor of ~2.5 for primary and a factor of ~3.3 for tertiary alkyl peroxy radicals.^{27,29} Accordingly,

and

$$(k_{\rm a}/k_{\rm b})_{\rm tertiary} \approx 0.3 \ (k_{\rm a}/k_{\rm b})_{\rm secondary}$$

 $(k_{\rm a}/k_{\rm b})_{\rm primary} \approx 0.40 \ (k_{\rm a}/k_{\rm b})_{\rm secondary}$

It should be noted that the use of the above equations to calculate rate constant ratios k_a/k_b is solely applicable to

alkyl peroxy radicals. Thus, although no definitive data exist, computer modeling data suggest¹ that the rate constant ratios for δ -hydroxyalkyl peroxy radicals (for example, the RCH(OH)CH₂CH₂CH(OO)R₁ radical) are much lower than those for the corresponding alkyl peroxy radicals.

These reactions of RO_2 radicals with NO are postulated²⁵ to occur by

and it is therefore expected that the overall rate constant is independent of total pressure, but that the rate constant ratio k_a/k_b is pressure (and temperature) dependent, as observed.

Reaction with NO₂

The reactions of alkyl peroxy radicals with NO₂ all proceed via combination to yield the corresponding peroxynitrates⁹

$$RO_2^{\cdot} + NO_2 \xrightarrow{M} ROONO_2$$

The IUPAC recommendations⁹ for the values of k_o , k_∞ , Fand the rate constant, k, at 298 K and 760 Torr total pressure of air for the reactions of NO₂ with CH₃ \dot{O}_2 and C₂H₅ \dot{O}_2 radicals are given in Table 5. The rate constant at 298 K and 760 Torr total pressure of air calculated from the IUPAC recommendation for the reaction of the CH₃O₂ radical with NO₂ (Table 5) is in excellent agreement with that of $(4.4 \pm 0.4) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ measured by Bridier *et al.*³⁰ at 298 \pm 1 K and 760 Torr total pressure of air. These reactions are in the fall-off

TABLE 5. Recommended^a rate constant parameters k_0 , k_{∞} and F for the gas-phase reactions of \dot{RO}_2 radicals with NO₂, together with calculated rate constants at 298 K and 760 Torr total pressure

RO ²	k_{o} (cm ⁶ molecule ⁻² s ⁻¹)	k_{∞} (cm ³ molecule ⁻¹ s ⁻¹)	F(298 K)	$10^{12} \times k$ (298 K, 760 Torr)
CH ₃ O ₂	$2.5 \times 10^{-30} (T/300)^{-5.5}$	7.5×10^{-12}	0.4	4.1
$C_2H_5O_2$	$1.3 \times 10^{-29} (T/300)^{-6.2}$	8.8×10^{-12}	0.31	6.1

^aFrom Atkinson et al.⁹

regime between second- and third-order kinetics at and below atmospheric pressure at room temperature, and this is in agreement with the thermal decomposition data for the corresponding peroxynitrates CH_3OONO_2 and $C_2H_5OONO_2$.⁹

Absolute rate constants have also been obtained at room temperature for the reactions of NO₂ with $(CH_3)_2CHO_2^{31}$ and $(CH_3)_3CO_2^{18}$ radicals, of $(5.65 \pm 0.17) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ and $\geq 5 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹, respectively. The rate constant of Adachi and Basco³¹ for the $(CH_3)_2CH\dot{O}_2$ radicals is anticipated to be erroneously low, by analogy with the rate constant of Adachi and Basco³² for reaction of the C₂H₅ \dot{O}_2 radical with NO₂, for which they measured a rate constant of $(1.25 \pm 0.07) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at room temperature, independent of total pressure over the range 44-676 Torr.³²

Based upon the data for the CH₃O₂ and C₂H₅O₂ radicals, it is recommended that the limiting high-pressure rate constants for the $\ge C_2$ alkyl peroxy radicals are identical to that for the C₂H₅O₂ radical,

$$k(\text{RO}_2 + \text{NO}_2) = 9 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

approximately independent of temperature over the range $\sim 250-350$ K. This recommendation is consistent with the kinetic data of Zabel et al.33 for the thermal decompositions of a series of alkyl peroxynitrates $(ROONO_2, where R = CH_3, C_2H_5, C_4H_9, C_6H_{13} and$ C_8H_{17}) at 253 K and 600 Torr total pressure of N₂, which showed that the thermal decomposition rates for the C_2 - C_8 alkyl peroxynitrates were reasonably similar. In particular, the thermal decomposition rates for the C_4 - C_8 alkyl peroxynitrates were within $\pm 30\%$ of the calculated high pressure thermal decomposition rate of $C_2H_5OONO_2$ ³³ The pressures at which these $R\dot{O}_2$ + NO₂ reactions will exhibit kinetic fall-off behavior from the second- to third-order regime will decrease as the size of the RO₂ radical increases, and it is expected that at room temperature and 760 Torr total pressure the $\geq C_3$ alkyl peroxy radical reactions are close to the limiting high-pressure region. The thermal decomposition reactions of the alkyl peroxynitrates are discussed in Sec. 2.6.

Reaction with HO₂ Radicals

Relatively few data exist for the reactions of HO₂ radicals with alkyl peroxy radicals. Absolute rate con-

stants have been determined only for the CH₃O₂, C₂H₅O₂, cyclopentylperoxy and cyclohexylperoxy radicals. The Arrhenius expressions recommended by the IUPAC panel for the CH₃O₂ and C₂H₅O₂ reactions are⁹: k (CH₃O₂ + HO₂) = 3.8 × 10⁻¹³ e^{780/7} cm³ molecule⁻¹ s⁻¹ (5.2 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K); and k (C₂H₅O₂ + HO₂) = 6.5 × 10⁻¹³ e^{650/7} cm³ molecule⁻¹ s⁻¹ (5.8 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K). For the reactions of the cyclopentylperoxy and cyclohexylperoxy radicals with the HO₂ radical, Rowley *et al*.³⁴ have measured rate constants over the temperature range 249–364 K of (2.1 ± 1.3) × 10⁻¹³ e^{(123 ± 185)/7} cm³ molecule⁻¹ s⁻¹ and (2.6 ± 1.2) × 10⁻¹³ e^{(1245 ± 124)/7} cm³ molecule⁻¹ s⁻¹, respectively. At 298 K, the rate constants for these two reactions are both (1.7-1.8) × 10⁻¹¹ cm³ molecule⁻¹ s^{-1.34}

Based upon the recommendations⁹ for the CH₃O₂ and C₂H₅O₂ reactions and the rate constants for the cyclopentylperoxy and cyclohexylperoxy radicals,³⁴ a rate constant at 298 K for the reactions of HO₂ radicals with RO₂ radicals of

$$k(\text{HO}_2 + \text{RO}_2) = 1.0 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

is indicated, with a likely overall uncertainty of a factor of 2. The temperature dependencies of the reactions studied to date are negative. A mean value of B = -1000 K is chosen in the expression $k = A e^{-B/T}$ to yield the recommendation of

$$k(HO_2 + RO_2) = 3.5 \times 10^{-13} e^{1000/T} cm^3 molecule^{-1} s^{-1}$$

The IUPAC recommendations⁹ should be used for the reactions of the CH₃O₂ and C₂H₅O₂ radicals with HO₂. The reaction of the HOCH₂CH₂OO' radical with the HO₂ radical also has a rate constant of $\sim 1 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at room temperature (see Sec. 2.2).

The reactions of the CH₃ \dot{O}_2 , C₂H₅ \dot{O}_2 , cyclopentylperoxy and cyclohexylperoxy radicals with the HO₂ radical have been shown to proceed by H-atom abstraction to form the hydroperoxide³⁴⁻³⁷

$$RO_2 + HO_2 \rightarrow RO_2H + O_2$$

Reaction with RO₂ Radicals

Numerous studies of the self-reactions of RO₂ radicals have been carried out.^{38,39} These reactions can proceed by the three pathways

 $2 R_1 R_2 CHO_2^{\circ} \rightarrow 2 R_1 R_2 CHO^{\circ} + O_2$ (a)

 $2 R_1 R_2 CHO_2^{\circ} \rightarrow R_1 R_2 CHOH + R_1 R_2 CO + O_2$ (b)

$$2 R_1 R_2 CHO_2^{\circ} \rightarrow R_1 R_2 CHOOCHR_1 R_2 + O_2 \qquad (c)$$

with pathway (b) not being accessible for tertiary RO₂ radicals. At around room temperature, product studies of the self-reactions of $CH_3\dot{O}_2$,⁴⁰⁻⁴² $C_2H_5O_2^{43,44}$ and $(CH_3)_3C\dot{O}_2$ radicals⁴⁵ show no evidence for the occurrence of reaction pathway (c). In the following discussion, pathway (c) is taken to be of negligible importance and only pathways (a) and (b) are assumed to occur.

The IUPAC panel recommendations⁹ for the overall rate constants $(k = k_a + k_b)$ and the rate constant ratio k_a/k for the $\leq C_3 \operatorname{RO}_2$ radicals are given in Table 6, together with the literature data for the $\geq C_4 \operatorname{RO}_2$ radicals. For the self-reaction of the tert-butyl peroxy radical, the rate constants reported by Anastasi et al.,¹⁸ Kirsch et al.48 and Lightfoot et al.46 at room temperature and above are in good agreement.⁴⁶ Because of the wider temperature range studied, the Arrhenius expression of Lightfoot et al.⁴⁶ is preferred. Although an Arrhenius expression is given in Table 6 for the self-reaction of neopentyl peroxy radicals,⁴⁶ the rate constants measured by Lightfoot et al.⁴⁶ exhibit non-Arrhenius behavior (note that the three parameter expression of $k = 3.02 \times 10^{-19}$ $(T/298)^{9.46} e^{4260/T} cm^3 molecule^{-1} s^{-1}$ cited by Lightfoot et al.⁴⁶ does not fit their data, and the expression k = 3.02

 $\times 10^{-19} (T/298)^{9.46} e^{4530/T}$ cm³ molecule⁻¹ s⁻¹ appears to be a better fit). The overall rate constant k and branching ratio k_a/k determined by Wallington *et al.*⁴⁹ at 297 K for the self-reaction of neopentyl peroxy radicals are in excellent agreement with the more extensive measurements of Lightfoot *et al.*⁴⁶

The Arrhenius expressions for k_a/k are only applicable over the cited temperature ranges, since over extended temperature ranges the calculated values exceed unity. The more correct temperature-dependent format uses the ratio k_a/k_b (see, for example, Carter and Atkinson²⁹ for alkyl nitrate formation from the RO₂ + NO reactions), and Lightfoot *et al.*⁴⁶ have derived the rate constant ratio $k_a/k_b = 197 e^{-(1658 \pm 98)/T}$ for the self-reaction of neopentyl peroxy radicals over the temperature range 248–373 K.

For all of the alkyl peroxy radicals for which data are available and for which both reaction pathways (a) and (b) are allowed, the reaction pathway (a) to yield the alkoxy radicals increases in importance as the temperature increases (Table 6 and Lightfoot *et al.*⁴⁶), with this pathway accounting for 30–60% of the overall reaction at 298 K. For the self-recombination reaction of CH₃O₂ radicals, Kan and Calvert⁵⁰ and Kurylo *et al.*⁵¹ have shown that, in contrast to the combination reaction of HO₂ radicals, ⁹ H₂O vapor has no effect on the measured room temperature rate constant.

In addition to these RO₂ self-combination reaction studies, rate constants have been obtained for the reac-

RÖ ₂ + RÖ ₂	$10^{12} \times A$ (cm ³ molecule ⁻¹ s ⁻¹)	B) (K)	$10^{13} \times k (298 \text{ K})$ (cm ⁻³ molecule ⁻¹ s ⁻¹)	k _a /k	Reference
$CH_3\dot{O}_2 + CH_3\dot{O}_2$	0.11	-365 ± 200	$3.7 \pm \frac{1.2}{0.9}$	$5.4 e^{-870/T}$	Atkinson et al.9
$C_2H_5\dot{O}_2 + C_2H_5\dot{O}_2$	0.098	$110 \begin{array}{c} + 300 \\ - 100 \end{array}$	$0.68 \pm 0.22 \\ -0.17$	0.62 ± 0.10	Atkinson et al.9
CH ₃ CH ₂ CH ₂ O ₂ + CH ₃ CH ₂ CH ₂ O ₂			3+2	(298 K)	Atkinson et al.9
$(CH_3)_3CCH_2\dot{O}_2 + (CH_3)_3CCH_2\dot{O}_2$	0.0016	-1961 ± 100	10.4 ± 0.9	0.40 (298 K)	Lightfoot et al.46
(CH ₃) ₂ CHO ₂ + (CH ₃) ₂ CHO ₂	1.6	2200 ± 300	$0.010 \pm 0.000 \\ 0.005$	2.0 e ^{-380/T} (300–400 K)	Atkinson et al.9
cyclo- $C_6H_{11}\dot{O}_2$ + cyclo- $C_6H_{11}\dot{O}_2$	0.074	274	0.284 ± 0.016	0.29 ± 0.02 (298 K)	Rowley et al.47
(CH ₃) ₃ CO ₂ + (CH ₃) ₃ CO ₂	10	3894	0.00021		Lightfoot et al. ⁴⁶
CH ₃ O ₂ + (CH ₃) ₃ CO ₂	0.37	1420	0.032	5.9 e ^{-1130/T} (313–393 K)	Osborne and Waddington ⁴⁵
(CH ₃) ₃ CCH ₂ O ₂ + (CH ₃) ₃ CO ₂			0.3 ± 0.1 (373 K)		Lightfoot et al. ⁴⁶
CH ₃ O ₂ + CH ₃ CO ₃			110	0.5 (298 K)	Atkinson et al.9

TABLE 6. Rate constants, k, at 298 K and temperature-dependent parameters, $k = A e^{-B/T}$, for the gas-phase combination reactions of RO₂ radicals

tions of the CH₃O₂ radical with $(CH_3)_3CO_2^{45,52}$ and CH₃C(O)O₂. radicals^{53,54} and for the reaction of the $(CH_3)_3CO_2$. radical with the $(CH_3)_3CCH_2O_2$. radical.⁴⁶ The rate data obtained or recommended⁹ are given in Table 6, with those of Osborne and Waddington⁴⁵ being used for the temperature-dependent expressions k and k_a/k given in Table 6 for the CH₃O₂. + $(CH_3)_3CO_2$. reaction. For the reaction of the CH₃O₂ radical with CH₃CO₃.

$$CH_{3}\dot{O_{2}} + CH_{3}\dot{CO_{3}} \longrightarrow CH_{3}\dot{O} + CH_{3}\dot{CO_{2}} + O_{2} \qquad (a)$$

$$CH_{3}\dot{O_{2}} + CH_{3}\dot{CO_{3}} \longrightarrow CH_{3}COOH + HCHO + O_{2} \qquad (b)$$

are of approximately equal importance at 298 K.9

In the absence of further experimental data for a wider variety of RO₂ radicals, the following rate constants are recommended as being reasonably representative for primary, secondary and tertiary alkyl peroxy radicals at 298 K:

all with uncertainties at 298 K of at least a factor of 5. For the self-reactions of primary and secondary RO₂ radicals, the rate constant ratio $k_a/k \sim 0.45 \pm 0.2$ at 298 K. For the self-reactions of tertiary RO₂ radicals, only reaction pathway (a) can occur.

For the reactions of non-identical alkyl peroxy radicals,

$$R_1\dot{O}_2 + R_2\dot{O}_2 \rightarrow \text{products}$$

the sparse data set indicates that the rate constants are approximately given by the geometric mean equation,⁵⁵ with $k_{12} \sim 2(k_1k_2)^{0.5}$, where k_{12} is the rate constant for the $R_1O_{2^*} + R_2O_{2^*}$ reaction and k_1 and k_2 are the rate constants for the self-reactions of $R_1O_{2^*}$ and $R_2O_{2^*}$ radicals, respectively. Clearly, a much wider data base is required concerning the reactions of the HO₂ radical with alkyl peroxy (RO₂) radicals and, to a lesser extent, for crosscombination reactions of RO₂ radicals.

Alkoxy (RO) Radical Reactions

Under atmospheric conditions the major alkoxy radical removal processes involve reaction with O_2 , unimolecular decomposition and unimolecular isomerization (see, for example, Carter and Atkinson¹ and Atkinson and Carter⁵⁶). For the case of the 2-pentoxy radical, these reactions are shown in Reaction Scheme (1) below where the isomerization reaction proceeds by a (generally) 6-member ring transition state. In addition, reactions with NO and NO₂, though minor under most conditions, must be considered.

*Reaction with O*₂. Absolute rate constants for the reactions of alkoxy radicals with O₂ have been determined for CH₃ \dot{O} ,^{57–60} C₂H₅ \dot{O} ^{58,61} and (CH₃)₂CH \dot{O} ⁶² radicals, and the IUPAC recommendations⁹ for the rate constants for these reactions are given in Table 7.

Based on the recommended rate constants for the reactions of $C_2H_5\dot{O}$ and $(CH_3)_2CH\dot{O}$ radicals with O_2 , it is recommended that for the primary $(RCH_2\dot{O})$ and secondary $(R_1R_2CH\dot{O})$ alkoxy radicals formed from the alkanes

 $k(\text{RCH}_2\dot{\text{O}} + \text{O}_2) = 6.0 \times 10^{-14} \text{ e}^{-550/7} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ = 9.5 × 10⁻¹⁵ cm³ molecule s⁻¹ at 298 K, and

 $k(R_1R_2CH\dot{O} + O_2) = 1.5 \times 10^{-14} e^{-200/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ = 8 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 298 K.

Baldwin et al.⁶³ and Balla et al.⁶² have derived relationships between the rate constants for the reactions of the alkoxy radicals with O₂ and the exothermicities of these reactions, and such a relationship has also been suggested by Atkinson and Carter.⁵⁶ Based on the three reactions for which recommendations are given (Table 7), a unitweighted least-squares analysis leads to (ΔH_{O_2} in kcal mol⁻¹)

$$k(\dot{RO} + O_2) = 1.3 \times 10^{-19} n e^{-(0.32\Delta H_{O_2})} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
(I)

at 298 K, where *n* is the number of abstractable H atoms in the alkoxy radical. While this equation differs from those of Baldwin *et al.*⁶³ ($k(\text{RO} + \text{O}_2) = 6.1 \times 10^{-22} n$

Reaction Scheme (1)

RÒ	$\frac{A}{(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})}$	В (К)	k(298 K) (cm ³ molecule ⁻¹ s ⁻¹)
CH₃Ò	7.2×10^{-14}	1080	1.9×10^{-15}
CH₃CH₂Ò	6.0×10^{-14}	550	9.5×10^{-15}
(CH₃)₂CHÖ	1.5×10^{-14}	200	8×10^{-15}

TABLE 7. Recommended 298 K rate constants and temperature dependent expressions, $k = A e^{-B/T}$, for the reactions of O₂ with alkoxy (RO) radicals^a

*From Atkinson et al.9

 $e^{-(0.49\Delta H_{O_2})}$ cm³ molecule⁻¹ s⁻¹ or 3.3 × 10⁻²¹n $e^{-(0.42\Delta H_{O_2})}$ cm³ molecule⁻¹ s⁻¹ at 298 K) and Balla *et al*.⁶² (k (RO⁺ + O₂) = 1.0 × 10⁻²² n e^{-0.51\Delta H_{O_2}} cm³ molecule⁻¹ s⁻¹ at 298 K), these expressions give reasonably similar rate constants for values of $\Delta H_{O_2} \sim -32$ kcal mol⁻¹ (corresponding to the C₂H₅O⁻ radical). At 760 Torr total pressure of air and 298 K, Eq. (I) leads to

$$k_{\rm O_2}[{\rm O_2}] = 0.67 \ n \ {\rm e}^{-(0.32\Delta H_{\rm O_2})} \ {\rm s}^{-1}$$
 (II)

The above recommendations for primary and secondary alkoxy radicals are slightly different than those recommended by Atkinson.² The rate constants for the reactions of O_2 with substituted alkoxy radicals formed from, for example, the alkenes after initial OH radical reaction (for example, the HOCH₂CH₂O radical) are discussed in the respective sections below.

Alkoxy Radical Decompositions. The gas-phase decomposition reactions of alkoxy radicals formed from the OH radical-initiated reactions of alkanes have been the subject of several previous reviews and discussions.^{1,2,56,63-68} These previous articles have derived relationships between the measured Arrhenius activation energies for the alkoxy radical decompositions (E_d) and the heats of the decomposition reaction (ΔH_d), with the Arrhenius preexponential factors for these decomposition reactions all being of a similar magnitude. Most of these relationships have assumed, or shown, that a single relationship between E_d and ΔH_d exists, with

$$E_{\rm d} = {\rm a} + {\rm b}\Delta H_{\rm d}$$

irrespective of the structure of the alkoxy radical or the leaving alkyl group.^{1,2,63,65,66} Choo and Benson,⁶⁷ however, presented data indicating that the parameter "a" in the above relationship depends on the leaving alkyl group, with this parameter decreasing monotonically along the alkyl leaving-group series $\dot{C}H_3$, \dot{C}_2H_5 , $(CH_3)_2C\dot{H}$ and $(CH_3)_3\dot{C}$.

Many of the rate constant data for the alkoxy radical decomposition reactions have been determined relative to the alkoxy radical combination reaction with NO^{65,66,68}

$$\dot{R}O + NO \xrightarrow{M} RONO$$

and changes in the RO + NO rate constants and, especially, in the heats of the alkoxy radical reactions (ΔH_d) over the past decade makes a reanalysis necessary. Using recent data for the alkyl radical heats of formation,^{9,69-72} the recommended Arrhenius parameters for selected alkoxy radical decompositions [those of CH₃O, C₂H₅O, (CH₃)₂CHO, CH₃CH₂CH(O)CH₃, (CH₃)₃CO and CH₃CH₂C(CH₃)₂O radicals]^{68,73,74} and the present recommendation for the temperature-dependent rate constants for the RO + NO reactions of k_{∞} (RO + NO) = 2.3 × 10⁻¹¹ e^{150/T} cm³ molecule⁻¹ s⁻¹ (see below), then

$$E_{\rm d} = 11.2 + 0.79 \Delta H_{\rm d},$$

with the energies in kcal mol^{-1} , and

$$A_{\rm d} = (2 \times 10^{14} {\rm d}) {\rm s}^{-1}$$

where d is the reaction path degeneracy for the alkoxy radical decomposition reactions.

This relationship, however, is derived from only a few alkoxy radical decomposition reactions, and the recent data of Lightfoot et al.46 for the decomposition and reacwith O_2 of the 2,2-dimethyl-1-propoxy tion $[(CH_3)_3CCH_2O]$ radical shows that the above relationship between E_d and ΔH_d does not hold for this particular alkoxy radical. Specifically, Lightfoot et al.46 obtained a rate constant ratio of $k_{\rm d}/k_{\rm O_2} = (2.0 \pm 0.2) \times 10^{20}$ molecule cm⁻³ at 298 K, consistent with the lower limit derived by Wallington *et al*.⁴⁹ With a value of $k_{0_2} = 4.7 \times$ 10^{-15} cm³ molecule⁻¹ s⁻¹ calculated from Eq. (I) with $\Delta H_{O_2} = -30.6$ kcal mol⁻¹ (as obtained from group additivity calculations), this leads to $k_d = 9.4 \times 10^5 \text{ s}^{-1}$ at 298 K, in close agreement with the value derived by Lightfoot et al.⁴⁶ Since $\Delta H_d = 9.8$ kcal mol⁻¹ from group additivity calculations (which can be compared with the heat of reaction of 8.2 (± 2.1) kcal mol⁻¹ calculated by Lightfoot et al.⁴⁶), the expressions given above would predict that $k_d \sim 2 \text{ s}^{-1}$, some six orders of magnitude in error.

It is therefore clear that the alkoxy radicals formed from the OH radical reactions with the alkenes and ethers⁵⁶ are not the only alkoxy radicals for which the rates of the various reaction processes cannot be accurately predicted.

The empirical method of assessing the relative importance of decomposition versus O₂ reaction for alkoxy radicals proposed by Atkinson and Carter⁵⁶ is thus extended further and an attempt is made to place it on a numerical basis. Figure 1 shows a plot of the values of ΔH_d and ΔH_{O_2} for the alkoxy radicals dealt with by Atkinson and Carter,⁵⁶ plus the (CH₃)₃CCH₂O radical formed from neopentane, with the dominant reaction pathways at 298 K and atmospheric pressure of air being denoted by (0) for decomposition, (•) for O_2 reaction, and (Δ) for those cases where both decomposition and O_2 reaction are observed to occur at 298 K and 760 Torr total pressure of air. The line drawn separates dominant decomposition from dominant O₂ reaction, and is defined by the data for the HOCH₂CH₂O and CH₃CH₂CH(O)CH₃ radicals, with allowance being made for the fact that the decomposition/O₂ reaction ratios for these alkoxy radicals differ from unity at 298 K and 760 Torr total pressure of air. Within the uncertainties of the heats of reaction for the (CH₃)₃CCH₂O' radical, the position of this radical on the plot is consistent with decomposition and O₂ reaction being competitive.

FIG. 1. Plot of the values of ΔH(decomposition) against ΔH(O₂ reaction) for a series of alkoxy radicals. (○) Alkoxy radicals reacting dominantly by decomposition at 298 K and atmospheric pressure of air; (●) alkoxy radicals reacting dominantly by reaction with O₂ at 298 K and atmospheric pressure of air; (△) alkoxy radicals reacting by both decomposition and O₂ reaction at 298 K and atmospheric pressure of air; (一) line separating dominant decomposition from O₂ reaction.

The boundary line is given by

$$\Delta H_{\rm d}^{\rm line} = 30.3 + 0.69 \Delta H_{\rm O_2}$$

with the energies being in kcal mol⁻¹. By definition, on this line $k_d^{\text{line}} = k_{O_2}[O_2]$. For most alkoxy radicals, the values of ΔH_d and ΔH_{O_2} are such that the alkoxy radical does not fall on this boundary line. By making the approximate (and probably incorrect) assumption that,

$$k_{\rm d}/k_{\rm d}^{\rm line} = e^{-[0.79(\Delta H_{\rm d} - 30.3 - 0.69\Delta H_{\rm O_2}) \times 10^3/RT]}$$

then

 $k_{\rm d} = \{2.4 \times 10^{17} \ nd \ e^{(0.60\Delta H_{\rm O_2} - 1.33\Delta H_{\rm d})}\} \ {\rm s}^{-1} \ {\rm at} \ 298 \ {\rm K}, ({\rm III})$

where the energies are again in kcal mol^{-1} .

These two expressions for $k_{O_2}[O_2]$ and k_d at 298 K and atmospheric pressure of air (Eqs. (II) and (III), respectively) appear to give semi-quantitatively correct data for the alkoxy radicals, and allow the alkoxy radical decompositions and reactions with O₂ to be (semi)-quantitatively compared with the alkoxy radical isomerizations (see below). With regards to the situation at temperatures other than 298 K, as an approximation it is reasonable to use a temperature independent rate constant for the O₂ reaction (but of course the correct O₂ concentration must be taken into account) [a temperature dependence of 1000 K corresponds to a variation of the rate constant by a factor of 2.3 over the temperature range 250–300 K]. The value of k_d at 298 K can be combined with a pre-exponential factor of $A_d = (2 \times 10^{14} \text{ d}) \text{ s}^{-1}$ to derive approximate values of k_d at other temperatures. Clearly, this postulated, and empirical, method for assessing the relative importance of the various alkoxy radical reactions under atmospheric conditions needs to be tested against a wider data base.

The alkoxy radical decomposition reactions may be in the fall-off region between first-order and second-order kinetics at room temperature and atmospheric pressure.^{63,65,74-77} For the two alkoxy radicals for which pressure dependent decomposition rate constants have been observed [2-propoxy⁷⁷ and 2-methyl-2-propoxy (*t*-butoxy)⁷⁴⁻⁷⁶], the rate constants at room temperature and atmospheric pressure are reasonably close to the limiting high pressure values⁷⁵⁻⁷⁷ [see also Table II in Baldwin *et al.*,⁶³ which predicts that the corrections for fall-off behavior are small for C₃ and higher alkoxy radicals, being less than a factor of 2 at room temperature and atmospheric pressure].

Alkoxy Radical Isomerizations. No direct experimental data are available, but isomerization rate constants have been estimated initially by Carter et al.78 and subsequently, and in more detail, by Baldwin et al.63 The major relevant experimental data available concern measurements of the rate constant ratio for the reactions shown in Reaction Scheme (2), obtained from product yields determined in *n*-butane-NO_x-air,⁷⁹ HONO-*n*-butane-air⁸⁰ and *n*-butyl nitrite-air⁸¹ photolyses. Rate constant ratios of k_a/k_b of 1.65 \times 10¹⁹ molecule cm⁻³ at 303 K,⁷⁹ 1.5 \times 10^{19} molecule cm⁻³ at 295 K⁸⁰ and 1.9 \times 10¹⁹ molecule cm^{-3} at 298 \pm 2 K⁸¹ were derived from these studies. These rate constant ratios are in good agreement, with an average value of $k_a/k_b = 1.7 \times 10^{19}$ molecule cm⁻³ at \sim 299 K. Using the rate constant estimated as described above for reaction (b), k_{O_2} , this leads to a rate constant of

 $k_a = 6.7 \times 10^4 \text{ s}^{-1}$ at 299 K, a factor of ~8 lower than the estimate of Baldwin *et al.*⁶³ Considering the large uncertainties in the estimation technique, this estimate is probably in fairly good agreement with the experimental data. However, the data of Dóbé *et al.*⁸² for the isomerization of the 2-pentoxy radical lead to an isomerization rate of ~4 × 10³ s⁻¹ at 298 K, significantly lower than the thermochemical estimates. The reasons for this discrepancy are not presently known, but may be due to the difficulties in quantitatively monitoring the end products of this isomerization reaction.⁸²

Analogous to the procedure carried out by Carter and Atkinson,¹ the estimated Arrhenius parameters of Baldwin *et al*.⁶³ have been modified to yield values of k_a which are a factor of 8 lower at 298 K, and the resulting Arrhenius parameters are given in Table 8 for 1,5-H shift isomerizations of alkoxy radicals (the isomerizations expected to be of importance under atmospheric conditions). These estimates, however, must still be considered to be highly uncertain, and further studies of these isomerization rate constants are needed.

The rate constants for alkoxy radical isomerization given in Table 8 can be combined with the estimated alkoxy radical decomposition rates [Eq. (III)] and rates of reaction with O_2 [Eq. (II)] to assess the relative importances of these three reaction pathways at 298 K and 760 Torr total pressure of air. Table 9 gives calculated rates of removal due to decomposition, unimolecular isomerization and reaction with O₂ at 298 K and 760 Torr total pressure of air for a series of alkoxy radicals formed from alkanes, haloalkanes, alkenes, haloalkenes and ethers, together with the available literature data. In all cases, the most important removal pathway is correctly predicted. However, this empirical estimation method appears to grossly overestimate the decomposition rates for exothermic decompositions, and it may be more appropriate to set an upper limit to an alkoxy radical decomposition rate of $\sim 2 \times 10^7 \,\text{s}^{-1}$ at 298 K. It is obvious that more theoretical and experimental work is necessary before we have any scientifically valid and quantitative understanding of the atmospherically important reactions of alkoxy radicals.

For the cyclohexyloxy (cyclo- $C_6H_{11}\dot{O}$) radical, the reaction with O_2

cyclo-C₆H₁₁
$$\dot{O}$$
 + O₂ \rightarrow cyclohexanone + HO₂

accounts for $42 \pm 5\%$ of the overall reaction pathways at 296 ± 2 K and atmospheric pressure of air⁸³ (consistent

with the product data of Rowley *et al.*⁴⁷). This relative importance of the O₂ reaction suggests that the isomerization reaction is not important for the cyclo-C₆H₁₁ \dot{O} radical, and that the competing pathway is the alkoxy radical decomposition reaction.⁴⁷

Reactions of RO Radicals with NO and NO₂. Alkoxy radicals can also react with NO and NO₂ under atmospheric conditions

and

Absolute rate constants have been measured for the reactions of CH₃O, C₂H₅O and (CH₃)₂CHO radicals with NO and NO₂, and the recommended 298 K limiting highpressure rate constants and temperature-dependent parameters are given in Tables 10 and 11, respectively. The rate constants for the reactions of the CH₃O radical with NO and NO₂ are in the fall-off region between second- and third-order kinetics,⁹ with calculated rate constants at 298 K and 760 Torr total pressure of air of 2.6 $\times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ and 1.5 $\times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, respectively.

The kinetic data obtained by Balla *et al*.⁶² for the reactions of the $(CH_3)_2CHO$ radical with NO and NO₂ were at, or close to, the high pressure limit, and show that these reactions have rate constants at room temperature of $(3-4) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, with small negative temperature dependencies.⁶²

A large amount of relative rate data have been obtained for these NO and NO₂ reactions, as discussed by Batt.⁶⁸ These relative rate data show that for the reaction of RO radicals with NO, the addition rate constants at ~400 K are ~3 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹, with an uncertainty of a factor of ~2-3. While H-atom abstraction from the RO + NO reactions is observed at low total pressures,^{84,85} at total pressures close to the high pressure limit the H-atom abstraction process appears to be minor (<0.05).⁶⁸

For the RO reactions with NO₂, the relative rate data cited by Batt⁶⁸ suggest that $k(RO + NO_2) \sim 3 \times 10^{-11}$

TABLE 8. Estimated Arrhenius parameters, $k = A e^{-E_a/RT}$, and room temperature rate constants for 1,5-H shift isomerizations of alkoxy radicals

Type of H Abstracted	E (Abstraction) ^a (kcal mol ⁻¹)	E _a (Isom) ^b (kcal mol ⁻¹)	$\begin{array}{c} A^{c} \\ (s^{-1}) \end{array}$	k (298 K) (s ⁻¹)
CH3	7.8	8.3	8.2×10^{10}	6.7×10^{4}
-CH2-	4.7	5.2	5.5×10^{10}	8.4×10^{6}
>CH-	4.7	5.2	2.7×10^{10}	4.1×10^{6}
-CH₂OH	6.6	7.1	5.5×10^{10}	3.4×10^{5}
-CH(OH)-	3.5 ^d	4.0	2.7×10^{10}	3.1×10^{7}

^aE (abstraction) = activation energy for abstraction by RÖ in bimolecular systems (i.e., no ring strain). Estimates of Baldwin *et al.*,⁶³ increased by 0.6 kcal mol⁻¹, have been used. ^bE_a(Isom) = E (abstraction) + 0.5 kcal mol⁻¹ ring strain. ^eEstimates of Baldwin *et al.*,⁶³ decreased by a factor of 2.9 (see text), used.

^dBaldwin et al.⁶³ did not give an estimate for this abstraction. It is assumed that replacing -H with -OH decreases E (abstraction) by 1.2 kcal mol⁻¹, based on their estimates for abstraction from -CH₃ and -CH₂- groups.

TABLE 9. Calculated rates (s⁻¹) of competing alkoxy radical reactions at 298 K and 760 Torr total pressure of air. Dominant reaction is in italics, and literature data are given in parentheses

Radical	Decomposition	Reaction with O ₂	Isomerization
CH ₃ CH(Ó)C(O)CH ₃ ^a	2.2×10^{11}	5.1×10^{4}	<u> </u>
CHCl ₂ O [*]	3.8×10^{12}	1.5×10^{5}	
CH ₃ OC(CH ₃) ₂ CH ₂ O	2.0×10^{7}	2.4×10^{3}	$\geq 7 \times 10^4$
CH ₃ CH(O)CH(OH)CH ₃	2.4×10^{7}	9.0×10^{3}	
CH ₃ CH ₂ CH(OH)CH ₂ O	9.3×10^{5}	7.6×10^{3}	6.7×10^{4}
CH ₃ CH(OH)CH ₂ O	8.1×10^{5}	7.6×10^{3}	
HOCH2CHCIO ^a	3.3×10^{11}	4.8×10^{6}	
CH ₃ CH ₂ CH(O)CH ₂ OH	3.9×10^{6}	3.7×10^{4}	
CH ₃ CH(O)CH ₂ OH	2.6×10^{6}	3.7×10^{4}	
HOCH2CH2O	8.6×10^{4}	3.1×10^{4}	
(CH ₃) ₃ CCH ₂ Ó	9.8×10^{3}	2.4×10^{4}	
CH ₃ CH(O)CH ₂ CH ₃	5.4×10^{4}	8.7×10^{4}	
	$(4.3 \times 10^3)^{\rm b}$		
CH ₃ CH(O)CH ₂ CH ₂ CH ₃	4.9×10^{3}	4.6×10^{4}	6.7×10^{4}
	$(9.0 \times 10^3)^c$		
CH ₃ CH ₂ CH ₂ CH ₂ O	1.6×10^{2}	2.2×10^{4}	6.7×10^{4}
CH ₃ CH ₂ OCH(O)CH ₃ [*]	2.0×10^{7}	4.5×10^{6}	6.7×10^4
(CH ₃) ₃ COCH(Ó)CH ₃ ^a	2.0×10^{7}	4.5×10^{6}	2.0×10^{5}
CH ₃ CH ₂ O	7.8×10^{1}	3.8×10^{4}	
	$(1.7 \times 10^{-1})^{b}$	$(4.9 \times 10^4)^{d}$	
CH₂CIÓ	8.7	7.3×10^{4}	
CH₃Ó	5.3×10^{-2}	1.0×10^{4}	
-		$(9.8 \times 10^3)^{d}$	
(CH ₃) ₃ COCH ₂ Ó	1.1×10^{-3}	3.8×10^{6}	2.0×10^{5}
CH ₃ OCH ₂ Ò	1.5×10^{-2}	2.2×10^{6}	

^aDecomposition reaction is exothermic; see text.

^bData from Batt,⁶⁸ revised using $k(\dot{RO} + NO) = 2.3 \times 10^{-11} e^{150/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (see text). ^cFrom Dóbé *et al.*,⁸² revised using $k(\dot{RO} + NO) = 2.3 \times 10^{-11} e^{150/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

^dFrom present recommendations.

TABLE 10. Rate constant parameters for the gas-phase combination reactions of RO radicals with NO (from Atkinson et al.9)

RÓ	$k_{\rm o}({\rm cm}^6 {\rm molecule}^{-2} {\rm s}^{-1})$	k_{∞} (cm ³ molecule ⁻¹ s ⁻¹)	F	Temperature Range (K)
CH₃Ó	$1.6 \times 10^{-29} (T/300)^{-3.5}$	$3.6 \times 10^{-11} (T/300)^{-0.6}$	0.6	200-400
C₂H₅Ó		4.4×10^{-11}		200-300
(CH ₃) ₂ CHÓ		3.4×10^{-11}		200-300

RÒ	$k_{\rm o}({\rm cm}^6 {\rm molecule}^{-2} {\rm s}^{-1})$	k_{∞} (cm ³ molecule ⁻¹ s ⁻¹)	F	Temperature Range (K)
CH₃Ò	$2.8 \times 10^{-29} (T/300)^{-4.5}$	2.0×10^{-11}	0.44	200-400
C₂H₅Ó (CH₃)2CHÓ		2.8×10^{-11} 3.5×10^{-11}		200–300 200–300

TABLE 11. Recommended rate constant parameters for the combination reactions of RO radicals with NO2 (from Atkinson et al.9)

cm³ molecule⁻¹ s⁻¹ at ~400 K (similar to the rate constants for the corresponding NO reactions), and that the H-atom abstraction channel is minor, with the most recent relative rate data yielding H-atom abstraction rate constants at ~400 K of ~6 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ for CH₃O, ~4 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ for C₂H₅O, and ~1 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ for the (CH₃)₂CHO radical.⁶⁸

As discussed by Frost and Smith⁸⁴ and Smith,⁸⁶ these reactions of \dot{RO} radicals with NO and NO₂ can proceed by two parallel, and independent, pathways, for example,

or by formation of HCHO + HNO from the energy-rich RONO* intermediate:

$$CH_3\dot{O} + NO \iff CH_3ONO^* \xrightarrow{M} CH_3ONO$$

It is likely that the second alternative, involving formation of the H-atom abstraction products from the RONO^{*} intermediate, is the operative reaction scheme. Hence at the high-pressure limit, RONO formation is the sole process expected, and the situation would then be analogous to the R^{*} + O₂ reaction system (see above).

The relative rate data⁶⁸ are consistent with the absolute rate constants available (Tables 10 and 11), and the following recommendations for all alkoxy (RO) radicals are made:

$$k_{\infty}$$
(RO' + NO) = 2.3 × 10⁻¹¹ e^{150/T} cm³ molecule⁻¹ s⁻¹
= 3.8 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K,

with the H-atom abstraction pathway being of minor or negligible importance under tropospheric conditions, and

$$k_{\infty}$$
 (RO + NO₂) = 2.3 × 10⁻¹¹ e^{150/7} cm³ molecule⁻¹ s⁻¹
= 3.8 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K,

with the H-atom abstraction process being of negligible importance under atmospheric conditions. For the $CH_3\dot{O}$ and $C_2H_5\dot{O}$ radical reactions, the recommended rate con-

stants⁹ should be used. Furthermore, the CH₃O radical reactions are in the fall-off region under atmospheric conditions.⁹

Under ambient tropospheric conditions, these alkoxy radical reactions with NO and NO2 are generally of negligible importance, but may be important in laboratory environmental chamber experiments. These reactions are, however, of potential importance for tertiary alkoxy radicals, such as the $(CH_3)_3CO$ radical, where O_2 reaction cannot occur and the decomposition reaction is the other competing process. For example, for the tert-butoxy radical, (CH₃)₃CO, the thermal decomposition rate constant $is^{74} k_{\infty} = 1.1 \times 10^{14} e^{-7519/T} s^{-1} (k_{\infty} = 1.21 \times 10^{3} s^{-1} at$ 298 K). At 298 K and 760 Torr total pressure of air or N₂, the rate constant $k[(CH_3)_3CO \rightarrow CH_3C(O)CH_3 + CH_3]$ is in the fall-off region and is a factor of 1.26 lower⁷⁶ $(\sim 960 \text{ s}^{-1})$. Hence, at 298 K and 760 Torr total pressure of air the NO and NO₂ reactions with the (CH₃)₃CO radical become significant for NO_x concentrations $\ge 2.5 \times$ 10^{12} molecule cm⁻³ (100 parts-per-billion mixing ratio).

The reactions of the alkyl radicals formed from the OH (and NO₃) radical reactions with the alkanes in the presence of NO are then as shown below [Reaction Scheme (3)] for the (CH₃)₃CĊH₂ radical formed from 2,2-dimethylpropane (the "stable" products are underlined, the alkyl nitrates (RONO₂) are not specifically identified, and the RO + NO and RO + NO₂ combination reactions are neglected) [where RONO₂ is the corresponding alkyl nitrate formed from the alkyl peroxy radicals]. In the absence of NO, the alkyl peroxy radicals react with HO₂ and RO₂ radicals.

As discussed above, alkoxy radical isomerization can also occur for the longer chain $(>C_3)$ alkanes in addition to decomposition and reaction with O₂. For example, Reaction Scheme (4) shows the reactions for the 1-butoxy radical formed from *n*-butane. It is expected by analogy with the reactions of alkyl radicals (Table 2) and β -hydroxyalkyl radicals^{10,87,88} (Sec. 2.2) that the δ -hydroxyalkyl radicals will react rapidly and solely with O₂ to form the δ-hydroxyalkyl peroxy radicals. However, this reaction sequence has not been experimentally confirmed under tropospheric conditions, and the fractions of the reactions of the δ -hydroxyalkyl peroxy radicals with NO which yield the corresponding δ -hydroxyalkyl nitrates have not been experimentally determined.¹ The limited data available concerning alkyl nitrate formation from these hydroxy-substituted alkyl peroxy radicals (from computer model fits to environmental chamber data) suggest that

this alkyl nitrate formation is minimal, and Carter and Atkinson¹ recommend that alkyl nitrate formation from the

reaction

$$\begin{array}{c} OO'\\ RCH(OH)CH_2CH_2CHR_1 + NO \xrightarrow{M}\\ RCH(OH)CH_2CH_2CH(ONO_2)R_1 \end{array}$$

is essentially zero.

The α -hydroxy radicals expected to be formed subsequent to the initial isomerization reaction, such as the HOCH₂CH₂CH₂CHOH radical formed from the 1-butoxy

radical isomerization, are expected (see Refs 1, 2 and 9 and Sec. 2.2) to react with solely O_2 under tropospheric conditions to form the HO₂ radical and the carbonyl.

$$R_1R_2COH + O_2 \rightarrow R_1C(O)R_2 + HO_2$$

These α -hydroxy radical reactions are discussed in Sec. 2.2.

The further reactions of the "first-generation" products arising from the above reactions are discussed in Secs. 2.5 (carbonyls, hydroperoxides and alcohols) and 2.6 (alkyl peroxynitrates, alkyl nitrates and nitrites) below.

Reaction Scheme (4)

Reaction Scheme (3)

References

- ¹W. P. L. Carter and R. Atkinson, J. Atmos. Chem. 3, 377 (1985).
- ²R. Atkinson, Atmos. Environ. 24A, 1 (1990).
- ³R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ⁴R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).
- ⁵R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ⁶R. Atkinson, Int. J. Chem. Kinet. 19, 799 (1987).
- ⁷R. Atkinson and S. M. Aschmann, Int. J. Chem. Kinet. 20, 339 (1988).
- ⁸R. Atkinson and S. M. Aschmann, Int. J. Chem. Kinet. 24, 983 (1992).
- ⁹R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr,
- and J. Troe, J. Phys. Chem. Ref. Data 21, 1125 (1992).
- ¹⁰T. M. Lenhardt, C. E. McDade, and K. D. Bayes, J. Chem. Phys. 72, 304 (1980).
- ¹¹D. Wu and K. D. Bayes, Int. J. Chem. Kinet. 18, 547 (1986).
- ¹²Z. Xi, W. -J. Han, and K. D. Bayes, J. Phys. Chem. 92, 3450 (1988).
- ¹³A. F. Wagner, I. R. Slagle, D. Sarzynski, and D. Gutman, J. Phys. Chem. **94**, 1853 (1990).
- ¹⁴J. A. Logan, M. J. Prather, S. C. Wofsy, and M. B. McElroy, J. Geophys. Res. **86**, 7210 (1981).
- ¹⁵J. A. Logan, J. Geophys. Res. 88, 10785 (1983).
- ¹⁶W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, "Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling," NASA Panel for Data Evaluation, Evaluation No. 10, Jet Propulsion Laboratory, CA, Publication 92–20, August 15, 1992.
- ¹⁷J. Peeters, J. Vertommen, and I. Langhans, Ber. Bunsenges. Phys. Chem. **96**, 431 (1992).
- ¹⁸C. Anastasi, I. W. M. Smith, and D. A. Parkes, J. Chem. Soc., Faraday Trans. 1, 74, 1693 (1978).
- ¹⁹I. C. Plumb, K. R. Ryan, J. R. Steven, and M. F. R. Mulcahy, Int. J. Chem. Kinet. 14, 183 (1982).
- ²⁰A. R. Ravishankara, F. L. Eisele, N. M. Kreutter, and P. H. Wine, J. Chem. Phys. **74**, 2267 (1981).
- ²¹R. Zellner, B. Fritz, and K. Lorenz, J. Atmos. Chem. 4, 241 (1986).
- ²²K. R. Darnall, W. P. L. Carter, A. M. Winer, A. C. Lloyd, and J. N. Pitts, Jr., J. Phys. Chem. **80**, 1948 (1976).
- ²³H. Takagi, N. Washida, H. Bandow, H. Akimoto, and M. Okuda, J. Phys. Chem. **85**, 2701 (1981).
- ²⁴R. Atkinson, S. M. Aschmann, W. P. L. Carter, A. M. Winer, and J. N. Pitts, Jr., J. Phys. Chem. 86, 4563 (1982).
- ²⁵R. Atkinson, W. P. L. Carter, and A. M. Winer, J. Phys. Chem. 87, 2012 (1983).
- ²⁶R. Atkinson, S. M. Aschmann, W. P. L. Carter, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 16, 1085 (1984).
- ²⁷D Athings S M Anthropy 1A M W
- ²⁷R. Atkinson, S. M. Aschmann, and A. M. Winer, J. Atmos. Chem. 5, 91 (1987).
- ²⁸S. J. Harris and J. A. Kerr, Int. J. Chem. Kinet. 21, 207 (1989).
- ²⁹W. P. L. Carter and R. Atkinson, J. Atmos. Chem. 8, 165 (1989).
 ³⁰I. Bridier, R. Lesclaux, and B. Veyret, Chem. Phys. Lett. 191, 259 (1992).
- ³¹H. Adachi and N. Basco, Int. J. Chem. Kinet. 14, 1243 (1982).
- ³²H. Adachi and N. Basco, Chem. Phys. Lett. 67, 324 (1979).
- ³³F. Zabel, A. Reimer, K. H. Becker, and E. H. Fink, J. Phys. Chem. 93, 5500 (1989).
- ³⁴D. M. Rowley, R. Lesclaux, P. D. Lightfoot, B. Nozière, T. J. Wallington, and M. D. Hurley, J. Phys. Chem. **96**, 4889 (1992).
- ³⁵T. J. Wallington and S. M. Japar, Chem. Phys. Lett. 166, 495 (1990).
- ³⁶T. J. Wallington and S. M. Japar, Chem. Phys. Lett. 167, 513 (1990).
- ³⁷T. J. Wallington, J. Chem. Soc. Faraday Trans. 87, 2379 (1991).
- ³⁸T. J. Wallington, P. Dagaut, and M. J. Kurylo, Chem. Rev. **92**, 667 (1992).
- ³⁹P. D. Lightfoot, R. A. Cox, J. N. Crowley, M. Destriau, G. D. Hayman, M. E. Jenkin, G. K. Moortgat, and F. Zabel, Atmos. Environ. 26A, 1805 (1992).
- ⁴⁰C. S. Kan, J. G. Calvert, and J. H. Shaw, J. Phys. Chem. **84**, 3411 (1980).
- ⁴¹H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, J. Phys. Chem. **85**, 877 (1981).

- ⁴²O. Horie, J. N. Crowley, and G. K. Moortgat, J. Phys. Chem. **94**, 8198 (1990).
- ⁴³H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, J. Phys. Chem. 86, 3825 (1982).
- ⁴⁴T. J. Wallington, C. A. Gierczak, J. C. Ball, and S. M. Japar, Int. J. Chem. Kinet. **21**, 1077 (1989).
- ⁴⁵D. A. Osborne and D. J. Waddington, J. Chem. Soc. Perkin Trans. 2, 1861 (1984).
- ⁴⁶P. D. Lightfoot, P. Roussel, B. Veyret, and R. Lesclaux, J. Chem. Soc. Faraday Trans. **86**, 2927 (1990).
- ⁴⁷D. M. Rowley, P. D. Lightfoot, R. Lesclaux, and T. J. Wallington, J. Chem. Soc. Faraday Trans. **87**, 3221 (1991).
- ⁴⁸L. J. Kirsch, D. A. Parkes, D. J. Waddington, and A. Woolley, J. Chem. Soc. Faraday Trans. 1, **74**, 2293 (1978).
- ⁴⁹T. J. Wallington, J. M. Andino, A. R. Potts, and O. J. Nielsen, Int. J. Chem. Kinet. 24, 649 (1992).
- ⁵⁰C. S. Kan and J. G. Calvert, Chem. Phys. Lett. 63, 111 (1979).
- ⁵¹M. J. Kurylo, P. Dagaut, T. J. Wallington, and D. M. Neuman, Chem. Phys. Lett. **139**, 513 (1987).
- ⁵²D. A. Parkes, 15th International Symposium on Combustion, 1974; The Combustion Institute, Pittsburgh, PA, 1975; pp. 795–805.
- ⁵³M. C. Addison, J. P. Burrows, R. A. Cox, and R. Patrick, Chem. Phys. Lett. **73**, 283 (1980).
- ⁵⁴G. K. Moortgat, B. Veyret, and R. Lesclaux, J. Phys. Chem. **93**, 2362 (1989).
- ⁵⁵L. J. Garland and K. D. Bayes, J. Phys. Chem. **94**, 4941 (1990).
- ⁵⁶R. Atkinson and W. P. L. Carter, J. Atmos. Chem. 13, 195 (1991).
- ⁵⁷N. Sanders, J. E. Butler, L. R. Pasternack, and J. R. McDonald, Chem. Phys. **48**, 203 (1980).
- ⁵⁸D. Gutman, N. Sanders, and J. E. Butler, J. Phys. Chem. **86**, 66 (1982).
- ⁵⁹K. Lorenz, D. Rhäsa, R. Zellner, and B. Fritz, Ber. Bunsenges. Phys. Chem. **89**, 341 (1985).
- ⁶⁰P. J. Wantuck, R. C. Oldenborg, S. L. Baughcum, and K. R. Winn, J. Phys. Chem. **91**, 4653 (1987).
- ⁶¹D. Hartmann, J. Karthäuser, J. P. Sawerysyn, and R. Zellner, Ber. Bunsenges. Phys. Chem. **94**, 639 (1990).
- ⁶²R. J. Balla, H. H. Nelson, and J. R. McDonald, Chem. Phys. **99**, 323 (1985).
- ⁶³A. C. Baldwin, J. R. Barker, D. M. Golden, and D. G. Hendry, J. Phys. Chem. 81, 2483 (1977).
- ⁶⁴D. M. Golden, "Organic Free Radicals" in "Chemical Kinetic Data Needs for Modeling the Lower Troposphere," NBS Special Publication 557, August 1979, pp. 51–61.
- ⁶⁵L. Batt, Proc. 1st European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, Comm. of European Communities, 1980, pp. 167–184.
- ⁶⁶L. Batt, Int. J. Chem. Kinet. 11, 977 (1979).
- ⁶⁷K. Y. Choo and S. W. Benson, Int. J. Chem. Kinet. 13, 833 (1981).
- ⁶⁸L. Batt, Int. Rev. Phys. Chem. 6, 53 (1987).
- ⁶⁹J. A. Seetula, J. J. Russell, and D. Gutman, J. Am. Chem. Soc. 112, 1347 (1990).
- ⁷⁰P. D. Richards, R. J. Ryther, and E. Weitz, J. Phys. Chem. **94**, 3663 (1990).
- ⁷¹P. W. Seakins and M. J. Pilling, J. Phys. Chem. 95, 9874 (1991).
- ⁷²J. M. Nicovich, C. A. van Dijk, K. D. Kreutter, and P. H. Wine, J. Phys. Chem. **95**, 9890 (1991).
- ⁷³R. M. Drew, J. A. Kerr, and J. Olive, Int. J. Chem. Kinet. 17, 167 (1985).
- ⁷⁴L. Batt, M. W. M. Hisham, and M. MacKay, Int. J. Chem. Kinet. 21, 535 (1989).
- ⁷⁵L. Batt and G. N. Robinson, Int. J. Chem. Kinet. 14, 1053 (1982).
- ⁷⁶L. Batt and G. N. Robinson, Int. J. Chem. Kinet. 19, 391 (1987).
- ⁷⁷N. Y. Al Akeel and D. J. Waddington, J. Chem. Soc. Perkin Trans. 2, 1575 (1984).
- ⁷⁸W. P. L. Carter, K. R. Darnall, A. C. Lloyd, A. M. Winer, and J. N. Pitts, Jr., Chem. Phys. Lett. **42**, 22 (1976); W. P. L. Carter, unpublished data (1976).
- ⁷⁹W. P. L. Carter, A. C. Lloyd, J. L. Sprung, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 11, 45 (1979).

- ⁸⁰R. A. Cox, K. F. Patrick, and S. A. Chant, Environ. Sci. Technol. 15, 587 (1981).
- ⁸¹H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, J. Phys. Chem. **85**, 2698 (1981).
- ⁸²S. Dóbé, T. Bérces, and F. Márta, Int. J. Chem. Kinet. 18, 329 (1986).
 ⁸³R. Atkinson, S. M. Aschmann, J. Arey, and B. Shorees, J. Geophys. Res. 97, 6065 (1992).
- ⁸⁴ M. J. Frost and I. W. M. Smith, J. Chem. Soc. Faraday Trans. **86**, 1757 (1990).
- ⁸⁵J. A. McCaulley, A. M. Moyle, M. F. Golde, S. M. Anderson, and F. Kaufman, J. Chem. Soc. Faraday Trans. 86, 4001 (1990).
- ⁸⁶I. W. M. Smith, J. Chem. Soc. Faraday Trans. 87, 2271 (1991).
- ⁸⁷A. Miyoshi, H. Matsui, and N. Washida, Chem. Phys. Lett. **160**, 291 (1989).
- ⁸⁸A. Miyoshi, H. Matsui, and N. Washida, J. Phys. Chem. **94**, 3016 (1990).

2.2. Alkenes

As discussed previously,^{1,2} the major tropospheric loss processes of the alkenes are by reaction with OH and NO₃ radicals and O₃. The conjugated dienes also react with NO₂, and this reaction can be important in environmental chamber experiments carried out at NO₂ concentrations significantly higher than ambient (see, for example, Refs. 3 and 4), as can the reactions of alkenes with O(³P) atoms.⁴

OH Radical Reactions

The kinetics and mechanisms of the reactions of the OH radical with the alkenes, cycloalkenes and dienes have been reviewed and evaluated by Atkinson,⁵ and that review and evaluation is updated in Sec. 3.3. For ethene and the methyl-substituted ethenes (propene, 2-methylpropene, the 2-butenes, 2-methyl-2-butene and 2,3dimethyl-2-butene), the OH radical reactions proceed essentially totally by OH radical addition to the carboncarbon double bond at atmospheric pressure, with Hatom abstraction from the -CH₃ substituent groups accounting for <5% of the total reaction at room temperature.⁵ For 1-butene, the product data of Hoyermann and Sievert⁶ and Atkinson et al.⁷ show that H-atom abstraction accounts for <10% of the overall reaction at room temperature. To date, only for 1,3-and 1,4-cyclohexadiene has H-atom abstraction been shown to occur to any significant extent,⁸ with this process accounting for \sim 9% and \sim 15% of the overall OH radical reactions with 1,3- and 1,4-cyclohexadiene, respectively, at room temperature. However, for the alkenes with alkyl side chains a small amount of H-atom abstraction must occur with, for example, this pathway being calculated to account for 10-15% of the overall OH radical reaction for 1-heptene at 298 K.9

The rate constants, k, at 298 K and the temperaturedependent parameters (with $k = A e^{-B/T}$) at 760 Torr total pressure of air and for temperatures ≤ 425 K for a number of monoalkenes, dienes, cycloalkenes and monoterpenes are given in Table 12. For all but ethene and propene (and propadiene⁵), these rate constants can be considered to be the high-pressure limits which, for the $\geq C_4$ alkenes, are essentially attained at total pressures of ≥ 50 Torr of air.⁵ For ethene and propene, the Troe fall-off parameters k_o , k_∞ and F derived by Atkinson⁵ and in Sec. 3.3 are (M = air): ethene, $k_o = 6 \times 10^{-29} (T/298)^{-4}$ cm⁶ molecule⁻² s⁻¹, $k_\infty = 9.0 \times 10^{-12} (T/298)^{-1.1}$ cm³ molecule⁻¹ s⁻¹ and F = 0.70 at 298 K; propene, $k_o = 3 \times 10^{-27} (T/298)^{-3}$ cm⁶ molecule⁻² s⁻¹, $k_\infty = 2.8 \times 10^{-11} (T/298)^{-1.3}$ cm³ molecule⁻¹s⁻¹ and F = 0.5 at 298 K.

As discussed above, OH radical addition to the >C=C < bond(s) is the dominant reaction pathway. For monoalkenes, dienes or trienes with non-conjugated >C=C < bonds, the OH radical can add to either end of the double bond(s), and Cvetanovic¹⁰ reported that for propene addition to the terminal carbon occurs ~65% of the time, as expected on thermochemical grounds¹¹

$$OH + CH_{3}CH = CH_{2} \xrightarrow{M} 0.35 CH_{3}CH(OH)\dot{C}H_{2} + 0.65 CH_{3}\dot{C}HCH_{2}OH$$

. .

The resulting β -hydroxyalkyl radicals then react rapidly with O₂, with the measured room temperature rate constants being in the range $(3-30) \times 10^{-12}$ cm³ molecule⁻¹s⁻¹ (Table 13). Under atmospheric conditions, the sole reaction of the β -hydroxyalkyl radicals is then with O₂. For example,

$$CH_{3}\dot{C}HCH_{2}OH + O_{2} \xrightarrow{M} CH_{3}CH(O\dot{O})CH_{2}OH$$

For dienes with conjugated double bonds, such as 1,3butadiene, isoprene (2-methyl-1,3-butadiene), myrcene, ocimene, α - and β -phellandrene and α -terpinene, OH radical addition to the >C=C-C=C< system is expected to occur at the 1- and/or 4-positions, leading to formation of the thermochemically favored allylic radicals.⁴

OH + CH₂ = CHC(CH₃) = CH₂
$$\xrightarrow{M}$$

HOCH₂ĊHC(CH₃) = CH₂
and CH₂ = CHĊ(CH₃)CH₂OH

These initially formed β -hydroxy allylic radicals may isomerize to δ -hydroxy allylic radicals.⁴

$$CH_2 = CH\dot{C}(CH_3)CH_2OH \rightarrow \dot{C}H_2CH = C(CH_3)CH_2OH$$

By analogy with the allyl (\dot{C}_3H_5) radical, for which Morgan *et al*.¹⁵ have measured a rate constant for combination with O₂ of ~4 × 10⁻¹³ cm³ molecule⁻¹s⁻¹ at 380 K and a total pressure of 50 Torr of Ar diluent, these various hydroxy-substituted allyl-type radicals are expected to react solely with O₂ under tropospheric conditions

$$CH_2 = CH\dot{C}(CH_3)CH_2OH + O_2 \xrightarrow{M} CH_2 = CH\dot{C}(CH_3)CH_2OH$$

$$HOCH_2C(CH_3) = CHCH_2 + O_2 \rightarrow HOCH_2C(CH_3) = CHCH_2OO$$

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

TABLE 12. Rate constants k at 298 K and 760 Torr total pressure of air and Arrhenius parameters ($k = A e^{-B/T}$; $T \le 425$ K) for the reaction of OH radicals with alkenes at 760 Torr total pressure of air^a [from Ref. 5 and Sec. 3.3.]

Alkene	$10^{12} \times k(298 \text{ K})$ (cm ³ molecule ⁻¹ s ⁻¹)	$10^{12} \times A$ (cm ³ molecule ⁻¹ s ⁻¹)	В (К)
Ethene ^b	8.52	1.96	- 438
Propene ^c	26.3	4.85	- 504
1-Butene	31.4	6.55	-467
cis-2-Butene	56.4	11.0	- 487
trans-2-Butene	64.0	10.1	- 550
2-Methylpropene	51.4	9.47	- 504
1-Pentene	31.4	5.86 ^d	- 500 ^d
cis-2-Pentene	65		
trans-2-Pentene	67		
3-Methyl-1-butene	31.8	5.32	-533
2-Methyl-1-butene	61		
2-Methyl-2-butene	86.9	19.2	-450
1-Hexene	37		
2-Methyl-1-pentene	63		
2-Methyl-2-pentene	89		
trans-4-Methyl-2-pentene	61		
2,3-Dimethyl-2-butene	110		
3,3-Dimethyl-1-butene	28		
1-Heptene	40		
trans-2-Heptene	68		
2,3-Dimethyl-2-pentene	98		
trans-4,4-Dimethyl-2-pentene	e 55		
trans-4-Octene	69		
1,3-Butadiene	66.6	14.8	- 448
2-Methyl-1,3-butadiene	101	25.4	-410
Myrcene	215		
Ocimene (cis - and trans -)	252		
Cyclopentene	67		
Cyclohexene	67.7		
Cycloheptene	74		
1-Methylcyclohexene	94		
Camphene	53		
2-Carene	80		
3-Carene	88		
Limonene	171		
α-Phellandrene	313		
β-Phellandrene	168		
α-Pinene	53.7	12.1	- 444
β-Pinene	78.9	23.8	- 357
Sabinene	117		
α-Terpinene	363		
γ-Terpinene	177		
Terpinolene	225		

^aExcept for ethene and propene, these are essentially the high-pressure rate constants k_{∞} . ^b $k_{\infty} = 9.0 \times 10^{-12} (T/298)^{-1.1}$ cm³ molecule⁻¹ s⁻¹. ^c $k_{\infty} = 2.8 \times 10^{-11} (T/298)^{-1.3}$ cm³ molecule⁻¹ s⁻¹.

dEstimated5

TABLE 13. Rate constants for the gas-phase reactions of β -hydroxyalkyl radicals with O₂

R'	$10^{12} \times k \text{ (cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\text{)}$	at T(K)	Reference
HOCH ₂ ĊH ₂	3.0 ± 0.4	293 ± 3	Miyoshi et al. ¹²
CH₃ĊHCH₂OH	11.6 ± 2.2	296 ± 4	Miyoshi et al.13
CH₃CH(OH)ĊH₂	3.82 ± 0.60	296 ± 4	Miyoshi et al.13
CH ₃ CH(OH)CHCH ₃	28 ± 18	300	Lenhardt et al.1
To date, few direct experimental data are available concerning the atmospherically important reactions of these β (or δ -)-hydroxyalkyl peroxy radicals. As for the alkyl peroxy radicals formed from the alkanes (Sec. 2.1.) these radicals are expected to react with NO,

$$CH_{3}CH(OH)CH_{2}OO + NO \longrightarrow CH_{3}CH(OH)CH_{2}O + NO_{2}$$

$$M \longrightarrow CH_{3}CH(OH)CH_{2}ONO_{2}$$

 NO_2 (to form thermally unstable peroxynitrates),

$$CH_3CH(OH)CH_2OO' + NO_2 \stackrel{M}{\Leftarrow} CH_3CH(OH)CH_2OONO_2$$

HO₂ radicals,

$$CH_{3}CH(OH)CH_{2}O\dot{O} + HO_{2} \rightarrow CH_{3}CH(OH)CH_{2}OOH + O_{2}$$

and organic peroxy radicals

 $CH_3CH(OH)CH_2OO + RO_2 \rightarrow products$

In fact, to date the only kinetic data concern the selfreaction of the HOCH₂CH₂OO' radical¹⁶⁻¹⁸ and its reactions with HO₂ radicals¹⁶⁻¹⁸ and NO.^{19,20} Based on the data of Jenkin and Cox,¹⁶ Anastasi *et al*.¹⁷ and Murrells *et al*.,¹⁸ the IUPAC panel recommended²¹ for the reactions

 $2 \text{ HOCH}_2\text{CH}_2\dot{\text{O}} + O_2 \qquad (a)$ $2 \text{ HOCH}_2\text{CH}_2\dot{\text{O}} + O_2 \qquad (b)$

that $(k_a + k_b) = 2.3 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1}\text{s}^{-1}$ and $k_a/(k_a + k_b) = 0.36 \pm 0.1$ at 298 K, and that the rate constant for the reaction of HO₂ radicals with the HOCH₂CH₂OO radical

 $HOCH_2CH_2OO + HO_2 \rightarrow products$

is $k(HO_2 + HOCH_2CH_2O\dot{O}) = 1.0 \times 10^{-11} \text{ cm}^3$ molecule⁻¹s⁻¹ at 298 K.²¹ The HOCH_2CH_2O\dot{O} radical self-reaction rate constant is a factor of ~10 higher than that recommended for primary alkylperoxy radicals formed from the alkanes (Sec. 2.1. above). The rate constant for the reaction of the HOCH_2CH_2O\dot{O} radical with the HO₂ radical is identical to that recommended for alkylperoxy radicals in Sec. 2.1.

No data are available for the reactions of the β -hydroxyalkylperoxy radicals with NO₂, but an indirect estimate for the rate constant for the reaction of the HOCH₂CH₂OO radical (formed after OH radical addition to ethene) with NO

$$HOCH_2CH_2O\dot{O} + NO \rightarrow HOCH_2CH_2\dot{O} + NO_2$$

of $(9.0 \pm 4.0) \times 10^{-12}$ cm³ molecule⁻¹s⁻¹ at 298 ± 2 K has been derived by Becker *et al*.²⁰ (which supersedes the

earlier study of Schmidt *et al*.¹⁹). This rate constant for reaction of NO with a β -hydroxyalkyl peroxy radical is essentially identical to the recommendation for the rate constants for the reactions of NO with the $\geq C_2$ alkyl peroxy radicals formed from the alkanes (Sec. 2.1.), implying that these alkylperoxy radical rate constants are also applicable to the β -hydroxyalkyl peroxy radicals.

In the presence of NO, the β -hydroxyalkyl peroxy radicals are therefore expected to form NO₂ plus the corresponding β -hydroxyalkoxy radical, with a small amount of β -hydroxyalkyl nitrate also being formed.²²

At atmospheric pressure and room temperature, Shepson *et al.*²² determined formation yields of CH₃CH(OH)CH₂ONO₂ and CH₃CH(ONO₂)CH₂OH from propene of $\sim 0.016 \pm 0.008$ for each nitrate.

The β -hydroxyalkoxy radicals can then decompose, react with O₂ or isomerize, as discussed in Sec. 2.1. above. Thus, for the alkoxy radical formed after internal addition of the OH radical to 1-butene:

The experimental data for the simple alkenes (ethene, propene, 1-butene, and the 2-butenes) show that at room temperature and atmospheric pressure, decomposition dominates over reaction with O_2 .^{7,23,24} Indeed, the available data show that for the β -hydroxyalkoxy radicals formed from the $\geq C_3$ alkenes, the reaction with O_2 is negligible and only the products arising from decomposition of the β -hydroxyalkoxy radicals are observed at room temperature and atmospheric pressure.^{7,23} For ethene, Niki *et al.*²⁴ showed that both reaction with O_2 and decomposition of the HOCH₂CH₂O radical occurs

$$HOCH_2CH_2\dot{O} \rightarrow \dot{C}H_2OH + HCHO$$
 (a)

$$HOCH_2CH_2O + O_2 \rightarrow HOCH_2CHO + HO_2$$
 (b)

with $k_b/k_a = (5.4 \pm 1.0) \times 10^{-20} \text{ cm}^3 \text{ molecule}^{-1}$ at 298 K and 700 Torr total pressure of air.²⁴ For the CH₃CH₂CH(OH)CH₂O radical formed from 1-butene, the experimental data of Atkinson *et al.*⁷ show that isomerization is not important, in accord with the estimates arising from the discussion in Sec. 2.1.

Hence, apart from ethene, for which reaction of the $HOCH_2CH_2\dot{O}$ radical with O_2 and decomposition are competitive at 298 K and atmospheric pressure, the

 β -hydroxyalkoxy radicals formed subsequent to OH radical reactions with the simpler monoalkenes (propene and the butenes) undergo decomposition, and the estimation method proposed in Sec. 2.1. allows the relative importance of reaction with O₂, decomposition and isomerization to be assessed.

The α -hydroxy radicals formed from the decomposition reactions of the β -hydroxyalkoxy radicals react rapidly with O₂, with rate constants at room temperature of $\sim (0.9-4) \times 10^{-11}$ cm³ molecule⁻¹s⁻¹ (Table 14). Under atmospheric conditions, these reactions with O₂ will then be the sole loss process for the α -hydroxy radicals. The simplest α -hydroxy radical, CH₂OH, reacts with O₂ to form the HO₂ radical and HCHO,²⁵⁻²⁸

$$\dot{C}H_2OH + O_2 \rightarrow HCHO + HO_2$$

and product studies have shown that the higher (C_2-C_4) α -hydroxy radicals also react via H-atom abstraction to yield the corresponding carbonyls²⁹⁻³²

$$\overset{R_1}{\underset{R_2}{\longrightarrow}} \dot{COH} + O_2 \longrightarrow R_2 C(O)R_1 + HO_2$$

Grotheer et al.^{32,33} and Nesbitt et al.³⁴ have studied the temperature dependence of the rate constant for the reaction of the CH2OH radical with O2. These studies³²⁻³⁴ show that the rate constant decreases below room temperature³⁴ and also decreases slightly above room temperature, and then increases more rapidly with increasing temperature, exhibiting a minimum at $\sim 450 \text{ K}^{32,33}$ (see also Ref. 2). A similar slight decrease in the rate constant for the $CH_3CHOH + O_2$ reaction with increasing temperature over the range 300-474 K was observed by Grotheer et al.,³² with the rate constant then increasing at higher temperatures (474-682 K).³² The lack of a deuterium isotope effect on the room temperature rate constant for the reactions of the CH2OH and CH2OD radicals with $O_2^{33,35}$ and the temperature dependence of the rate constant shows that this reaction proceeds by initial O_2 addition,

$$\dot{C}H_2OH + O_2 \rightarrow [\dot{O}OCH_2OH \rightleftharpoons HOOCH_2\dot{O}]^{\ddagger}$$

→ HCHO + HO₂

with the initially formed energy-rich HOCH₂OO radical isomerizing via a five-membered transition state to the

HOOCH₂O radical with subsequent decomposition. Similar reaction mechanisms are expected to occur for the $\geq C_2 \alpha$ -hydroxy radicals.

For propene, the OH radical-initiated reaction scheme, in the presence of NO, is then ("stable" products are underlined and the minor amount of nitrate formation²² is neglected for clarity)

and similarly for ethene and the butenes (1-butene, *cis*and *trans*-2-butene and 2-methylpropene).

However, such reaction schemes involving dominant βhydroxyalkoxy radical decomposition may not apply to the higher alkenes such as the $\geq C_5$ 1-alkenes. Thus, Paulson and Seinfeld³⁶ have obtained a yield of heptanal (CH₃(CH₂)₅CHO) from the OH radical reaction with 1octene in the presence of NO_x of 15 \pm 5%, much lower than the $\sim 80-85\%$ expected if the β -hydroxyalkoxy radicals undergo only decomposition (the remaining 15-20% of the overall reaction is predicted to proceed by initial H-atom abstraction from the -CH₂- groups,⁹ leading to the formation of products other than heptanal). This observation suggests that other reaction channels are operative for the more complex β -hydroxyalkoxy radicals, possibly including isomerization as predicted from the discussion in Sec. 2.1. Indeed, for the OH radical reaction with 1-pentene the estimation method proposed in Sec. 2.1. predicts that the CH₃CH₂CH₂CH(OH)CH₂O radical will undergo mainly isomerization, while the CH₃CH₂CH₂CH(O[•])CH₂OH radical (that formed preferentially from the initial OH radical addition) will undergo decomposition. For the $\geq C_6$ 1-alkenes, both of the β-hydroxyalkoxy radicals formed are predicted to react mainly by isomerization, reasonably consistent with the data for 1-octene.36

TABLE 14. Room temperature rate constants k for the reactions of α -hydroxy radicals with O₂

α-Hydroxy radical	$10^{12} \times k$ (cm ³ molecule ⁻¹ s ⁻¹)	at <i>T</i> (K)	Reference
ĊH₂OH	9.4	298	Atkinson et al. ²¹
СН₃ĊНОН	19	298	Atkinson et al. ²¹
CH₃CH₂ĊHOH	26.1 ± 4.1	296 ± 4	Miyoshi et al.13
CH₃Ċ(OH)CH₃	37.1 ± 6.2	296 ± 4	Miyoshi et al. ¹³

Similar reaction schemes are expected to apply to the conjugated dienes. For example, for isoprene (2-methyl-1.3-butadiene) the simple reaction sequence, with no isomerization of the initially formed β-hydroxy allylic radicals and with decomposition of the β -hydroxyperoxy radicals, is expected to lead³⁷ to the formation of methyl vinyl ketone plus HCHO (OH radical addition to the $CH_2 = C(CH_3)$ - bond) and methacrolein plus HCHO (OH radical addition to the $CH_2 = CH - bond$). For example, Reaction Scheme (5) shows the reaction sequence for terminal OH radical addition (the "stable" first-generation products are underlined), with organic nitrate formation from the \dot{RO}_2 + NO reaction being omitted for clarity. As shown above for the propene reaction, the same ultimate products are formed from internal OH radical addition with subsequent decomposition of the β hydroxyalkoxy radicals. However, for unsymetrical dienes the expected products formed depend on which >C=C< bond OH addition occurs. For conjugated dienes, the estimation technique of Ohta³⁸ allows the fraction of the overall OH radical addition reaction proceeding at each >C=C< double bond to be calculated (this information cannot be obtained from the estimation technique of Atkinson^{9,39}). Thus for isoprene, rate constants for OH radical addition to the $CH_2 = CH$ - and $CH_2 = C <$ bonds of isoprene are calculated³⁸ to be in the ratio 34/66 at room temperature.

For the OH radical-initiated reaction of 1,3-butadiene at 298 \pm 2 K, Maldotti *et al*.⁴⁰ observed the formation of acrolein (the expected product, together with HCHO, based on the above reaction scheme) from irradiated NO_x-1,3-butadiene-air mixtures, with [acrolein]_{max}/[1,3butadiene]_{initial} = 0.59 \pm 0.07. Based on the rate constants for the OH radical reactions with acrolein and 1,3-butadiene,⁵ this ratio corresponds to a formation yield of acrolein from the OH radical-initiated reaction of 1,3butadiene of 0.98 \pm 0.12. Additionally, furan is formed in minor amount from the OH radical-initiated reaction of 1,3-butadiene, with a yield of 0.039 \pm 0.011.⁴¹

However, two recent studies of the products formed from the gas-phase reaction of the OH radical with isoprene^{3,4} show that methyl vinyl ketone and methacrolein (together with their expected HCHO co-product) do not account for the entire reaction pathways. In the Fourier transform infrared absorption spectroscopy study of Tuazon and Atkinson,³ the reaction of isoprene with the O(³P) atom formed from photolysis of NO₂ was not taken into account. This reaction is calculated to contribute $\sim 10-15\%$ of the overall isoprene reacted, and the product yields of Tuazon and Atkinson³ and Atkinson et al.,⁴¹ corrected to take into account this O(³P) atom reaction, are then: methyl vinyl ketone, 33%; methacrolein, 24%, 3-methylfuran, 5%; organic nitrates, ~13%; and unidentified carbonyl compounds, $\sim 25\%$. The formaldehyde yield was consistent with being a co-product formed together with methyl vinyl ketone and methacrolein.³ Paulson et al.⁴ determined yields of methyl vinyl ketone, methacrolein and 3-methylfuran of 35.5%, 25% and 4%, respectively, from a generally similar product study, but using gas chromatography for product analysis. These two studies are in excellent agreement, and show that methyl vinyl ketone and methacrolein formation account for $\sim 60\%$ of the overall OH radical reaction with isoprene in the presence of NO_x. The data of Tuazon and Atkinson³ indicate that organic nitrate formation, presumably from the reactions,

$$\dot{RO_2} + NO \xrightarrow{M} RONO_2$$

accounts for $\sim 13\%$ of the overall reaction, and that other carbonyl compounds, including possibly hydroxycarbonyls, account for $\sim 25\%$ of the reaction. These other, as yet unidentified, carbonyls and/or hydroxycarbonyls may arise from reactions of the δ -hydroxyalkoxy radicals formed through the reaction sequence:

Reaction Scheme (5)

and similarly for terminal OH radical addition to the other >C=C< bond. 3-Methylfuran also arises from the OH radical-initiated reaction of isoprene, possibly in part after the formation of δ -hydroxyalkoxy radicals.^{41,42} Aerosol formation from isoprene photooxidation has been shown to be of negligible importance under atmospheric conditions,⁴³ and the aerosol composition has been investigated by Palen *et al.*⁴⁴

followed by

To date, few quantitative product studies have been carried out for the monoterpenes,⁴⁵⁻⁴⁸ and the reported data are given in Table 15 (the study of Hakola *et al.*⁴⁸ supersedes that of Arey *et al.*⁴⁵). The yields reported by Hatakeyama *et al.*⁴⁶ for specific C₉ and C₁₀ carbonyls formed from α - and β -pinene may be high because of contributions to the observed infrared absorptions from other, as yet unidentified, carbonyl-containing compounds. It appears clear that only a relatively small fraction of the overall reaction products have been accounted for, and Arey *et al.*⁴⁵ and Hakola *et al.*⁴⁸ observed no significant products by gas chromatography with flame ionization detection from the OH radical reactions with myrcene⁴⁵ or camphene⁴⁸ in the presence of NO_x.

Hatakeyama *et al.*⁴⁶ observed that the pinonaldehyde yield in the absence of NO was significantly lower than in the presence of NO. Aerosol formation from the reactions of the OH radical with α - and β -pinene has been studied by Hatakeyama *et al.*⁴⁶ and Pandis *et al.*,⁴³ and the aerosol composition investigated.⁴⁴ These references^{43,44,46} should be consulted for further details.

Clearly, further product and mechanistic data are required for the OH radical reactions with the more complex alkenes, especially for the monoterpenes (including conjugated dienes) of biogenic importance.

O_3 Reaction

The kinetics and mechanisms of the gas-phase reactions of O₃ with the alkenes, cycloalkenes and dienes were last reviewed and evaluated by Atkinson and Carter⁴⁹ and that review and evaluation is updated in Sec. 5.2. The kinetic data for alkenes of atmospheric importance (taken from Ref. 49 and Sec. 5.2.) are given in Table 16. These reactions proceed by initial O₃ addition to the >C=C< bond to yield an energy-rich ozonide, which rapidly decomposes to a carbonyl and an initially energy-rich biradical.

where [][‡] denotes an energy-rich species. It has generally been assumed that $k_a \sim k_b$ for the alkene systems.⁵⁰ However, Horie and Moortgat⁵¹ concluded from a product study that this is not the case for the propene reaction, for which they obtained 62% formation of (HCHO + [CH₃ĊHOO][‡]) and 38% formation of $(CH_3CHO + [\dot{C}H_2O\dot{O}]^{\ddagger})$. The energy-rich biradicals can then be collisionally stabilized or unimolecularly decompose.

 $[R_1R_2\dot{C}O\dot{O}]^{\ddagger} + M \rightarrow R_1R_2\dot{C}O\dot{O} + M$ $[R_1R_2\dot{C}O\dot{O}]^{\ddagger} \rightarrow \text{products.}$

The fraction of the initially formed biradical which is collisionally stabilized is pressure dependent.^{52,53} For *trans*-2-butene, the fraction of the biradical which was stabilized was observed to increase from essentially zero at zero total pressure of air to a high-pressure limit of 0.185, attained at ~600 Torr total pressure of air.⁵² For ethene, however, a significant fraction of the initially-

formed biradical is formed thermally "cold" at low pressures,^{53,54} and Hatakeyama *et al.*⁵³ determined this fraction to be 0.20 ± 0.03 by extrapolation of data obtained over the total pressure range 10–1140 Torr to zero pressure. At room temperature and one atmosphere total pressure, the fractional yields of stabilized biradicals formed from the alkenes studied to date are given in Table 17. The yield of stabilized biradicals from ethene obtained by Hatakeyama *et al.*^{52,53} is in excellent agreement with values of 0.38, 0.37 and 0.35 obtained by Su *et al.*,⁵⁵ Kan *et al.*⁵⁶ and Niki *et al.*,⁵⁷ respectively, and that for *trans*-2-butene of Hatakeyama *et al.*⁵² agrees well with the stabilized biradical yield of 0.18 obtained by Niki *et al.*,⁵⁸ from *cis*-2-butene.

TABLE 15. Products observed and their molar formation yields fro	the reactions of the OH radical with monoterp	penes in the presence of NO _x
--	---	--

Monoterpene	Structure	Product	Yield	Reference
3-Carene	Þ	Сно	$0.34 \pm 0.08^{a,b}$	Hakola et al . ⁴⁸
Limonene	$\langle \rangle$	$\langle \rangle$	$0.29 \pm 0.06^{*,b}$	Hakola et al. ⁴⁸
		CHO	$0.20 \pm 0.03^{a,b}$	Hakola <i>et al</i> . ⁴⁸
β-Phellandrene			$0.29 \pm 0.07^{a,b}$	Hakola <i>et al</i> .47
α-Pinene		CHO CHO	$\begin{array}{r} 0.28 \ \pm \ 0.05^{a,b} \\ 0.56 \ \pm \ 0.04^c \end{array}$	Hakola <i>et al</i> . ⁴⁸ Hatakeyama <i>et al</i> . ⁴⁶
β-Pinene		, L	$0.27 \pm 0.04^{a,b}$ 0.79 ± 0.08^{c}	Hakola <i>et al</i> . ⁴⁸ Hatakeyama <i>et al</i> . ⁴⁶
		нсно	$0.54 \pm 0.05^{\circ}$	Hatakeyama <i>et al</i> . ⁴⁶
Sabinene		Ļ Ļ	$0.17 \pm 0.03^{a,b}$	Hakola <i>et al</i> .48
Terpinolene	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		$0.26 \pm 0.06^{a,b}$	Hakola et al. ⁴⁸
		CHO	0.08 ± 0.02^{d}	Arey <i>et al</i> .; ⁴⁵ Hakola <i>et al</i> . ⁴⁸

*Product identification confirmed by Hakola et al.47,48

^bIndicated uncertainties are two least-squares standard deviations and include uncertainties in the analytical calibration factors.

^eIndicated uncertainties are one standard deviation; the 6,6-dimethylbicyclo[3.1.1]heptan-2-one and pinonaldehyde as measured by Fourier transform infrared absorption spectroscopy may have included IR contributions from other as yet unidentified carbonyl compounds. ^dProduct identification tentative.

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

Alkene	$10^{18} \times k(298 \text{ K})$ (cm ³ molecule ⁻¹ s ⁻¹)	$10^{15} \times A$ (cm ³ molecule ⁻¹ s ⁻¹)	В (К)
Ethene	1.59	9.14	2580
Propene	10.1	5.51	1878
1-Butene	9.64	3.36	1744
2-Methylpropene	11.3	2.70	1632
cis-2-Butene	125	3.22	968
trans-2-Butene	190	6.64	1059
1-Pentene	10.0	0.04	1059
2-Methyl-2-butene	403	6.51	829
1-Hexene	11.0	0.51	027
cis-3-Methyl-2-pentene	450		
trans -3-Methyl-2-pentene	560		
2,3-Dimethyl-2-butene	1130	3.03	294
1,3-Butadiene	6.3	13.4	2283
2-Methyl-1,3-butadiene	12.8	7.86	1913
Myrcene	470	1.00	1715
cistrans-Ocimene	540		
Cyclopentene	630		
Cyclohexene	72		
Cycloheptene	290		
Camphene	0.90		
2-Carene	230		
3-Carene	37		
Limonene	200		
α-Phellandrene	1850		
β-Phellandrene	47		
a-Pinene	86.6	1.01	732
B-Pinene	15		
Sabinene	86		
x-Terpinene	8470		
y-Terpinene	140		
Terpinolene	1380		

TABLE 16. Rate constants k at 298 K and Arrhenius parameters, $k = A e^{-B/T}$, for the gas-phase reactions of O₃ with alkenes, cycloalkenes and dialkenes (from Ref. 49 and Sec. 5.2.)

TABLE 17. Yields of stabilized biradicals from the gas-phase reactions of O_3 with alkenes at room temperature and atmospheric pressure

Alkene	Yield	Reference	
Ethene	0.38	Su et al.55	
	$0.37 \pm 0.02^{*}$	Kan <i>et al</i> .56	
	0.35 ± 0.05	Niki et al.57	
	0.390 ± 0.053	Hatakeyama et al. ^{52,53}	
	0.47	Horie and Moortgat ⁵¹	
Propene	0.254 ± 0.023	Hatakeyama et al.52	
-	0.44	Horie and Moortgat ⁵¹	
2-Methylpropene	0.174 ± 0.032	Hatakeyama <i>et al.</i> ⁵²	
cis-2-Butene	0.18	Niki et al.58	
trans-2-Butene	0.185 ± 0.028	Hatakeyama et al. ⁵²	
	0.42	Horie and Moortgat ⁵¹	
2,3-Dimethyl-2-butene	0.30	Niki et al.59	
1-Octene	0.22	Paulson and Seinfeld ³⁶	
Cyclopentene	0.052 ± 0.013	Hatakeyama et al.52	
Cyclohexene	0.032 ± 0.024	Hatakeyama et al. ⁵²	
Cycloheptene	0.029 ± 0.015	Hatakeyama et al.52	
1-Methylcyclohexene	0.104 ± 0.065	Hatakeyama et al.52	
Methylenecyclohexane	0.216 ± 0.026	Hatakeyama et al.52	
α-Pinene	0.125 ± 0.040	Hatakeyama et al.52	
β-Pinene	0.249 ± 0.024	Hatakeyama et al.52	

^aIndependent of temperature over the range 283-304 K.

However, the biradical stabilization yields at room temperature and atmospheric pressure determined by Hatakeyama *et al.*^{52,53} from the conversion of SO₂ to sulfuric acid aerosol do not agree well with the yields reported by Horie and Moortgat⁵¹ from a product analysis/modeling study. In the absence of further data, it is recommended that the biradical stabilization yield from ethene at 298 K and atmospheric pressure is 0.37, and for the other alkenes that the data of Hatakeyama *et al.*⁵² and Niki *et al.*^{58,59} be used.

Thus, at ~760 Torr total pressure of air and ~298 K the fractions of [CH₂OO][‡] and [CH₃CHOO][‡] stabilized from the ethene and 2-butene systems are 0.37 and 0.18, respectively. Assuming that $k_a = k_b$ for the decomposition routes of the initially formed ozonide (but see above and Horie and Moortgat)⁵¹ and that the [CH₂OO][‡] and [CH₃CHOO][‡] biradicals formed from propene react identically to those formed from ethene and the 2-butenes, a total stabilized biradical yield from propene (ĊH₂OO plus CH₃ĊHOO) of 0.275 is predicted, in good agreement with the observed yield of 0.254 ± 0.023^{52} However, the data of Hatakeyama et al.⁵² for the stabilized biradical yield from 2-methylpropene (0.174) at room temperature and atmospheric pressure are not consistent with the above data for the stabilization yield of $[\dot{C}H_2O\dot{O}]$ [‡] (0.37) and the stabilization yield of 0.30 for the $[(CH_3)_2COO]^{\ddagger}$ biradical in the 2,3-dimethyl-2-butene system.⁵⁹ This suggests that the stabilization yields of these biradical species are dependent on the reaction system in which they are formed, in agreement with the differing [CH₂OO][‡] biradical stabilization yields observed from ethene (0.37) and vinyl chloride (0.25).^{52,60}

Experimental data concerning the decomposition pathways of the energy-rich biradicals arise mainly from the low pressure (4–8 Torr) stopped flow-mass spectrometric studies of Herron and Huie,^{50,61} Martinez *et al.*,^{62,63} Martinez⁶⁴ and Martinez and Herron,^{65,66} and the atmospheric pressure studies with Fourier infrared absorption spectroscopic or gas chromatographic detection of reactants and products of Niki *et al.*,^{54,58,59} Su *et al.*,⁵⁵ Horie and Moortgat,^{51,67} Paulson *et al.*,⁶⁸ Paulson and Seinfeld,³⁶ Atkinson *et al.*,⁶⁹ and Atkinson and Aschmann.⁷⁰ Based on these studies, the energy-rich biradicals can undergo decomposition by three pathways [Reaction Scheme (6)] (see, for example, Niki *et al.*.⁵⁹ and Martinez and Herron⁶⁶). While the O(³P) atom elimination channel has been observed for the O₃ reaction with *trans-*1,2-

dichloroethene,⁵⁴ to date there is no evidence for its occurrence for the simple monoalkenes at atmospheric pressure of air,^{36,59,66} although Martinez and Herron⁶⁵ obtained a fit between experimental and predicted data at low pressure (~4 Torr) for 2,3-dimethyl-2-butene when a 20% O(³P)-atom channel was included.

However, for the reaction of O₃ with isoprene, Paulson *et al.*⁶⁸ concluded from their product study that the O(³P) atom channel accounted for 45 ± 20% of the overall reaction (i.e., Δ [O(³P)]/- Δ [isoprene] = 0.45 ± 0.20) at room temperature and atmospheric pressure.⁶⁸

The occurrence of the hydroperoxide channel has been shown from the studies of Niki *et al*.⁵⁹ and Martinez and Herron⁶⁵ of the products and mechanism of the reaction of O₃ with 2,3-dimethyl-2-butene. Approximately 30% of the initially energy-rich biradical [(CH₃)₂ĊOO][‡] was observed to be stabilized at atmospheric pressure,⁵⁹ with the major decomposition route involving isomerization to the hydroperoxide^{59,65} (the percentages are those of Niki *et al*.⁵⁹ at atmospheric pressure),

 $CH_3C(OOH) = CH_2^*$ 70% followed by dissociation of this energy-rich unsaturated hydroperoxide to an OH radical and the CH₃COCH₂ radical,⁵⁹

$$CH_3C(OOH) = CH_2^* \rightarrow CH_3CO\dot{C}H_2 + OH$$

or, at low total pressures (~ 4 Torr), to an energy-rich hydroxyacetone molecule which can be collisionally stabilized or decompose.⁶⁵

$$CH_{3}C(OOH) = CH_{2}^{\bullet} \longrightarrow CH_{3}C(O)CH_{2}OH^{\bullet} \xrightarrow{M} CH_{3}C(O)CH_{2}OH$$

$$H_{2} + CH_{3}C(O)CHO \qquad CH_{2}OH + CH_{3}CO$$

The product study of Niki *et al*.⁵⁹ concerning the products and reaction mechanism of the O₃ reaction with 2,3dimethyl-2-butene showed that, through the isomerization and decomposition reaction of the $[(CH_3)_2\dot{COO}]^{\ddagger}$ biradical, this reaction is a significant source of OH radicals, with an OH radical formation yield under atmospheric conditions of ~0.70. This direct formation of OH radicals from the O₃ reaction with

$$[R_{1}CH_{2}\dot{C}(R_{2})O\dot{O}]^{\ddagger} \longrightarrow \begin{bmatrix} R_{2} \\ R_{1}CH_{2} \\ C \\ \dot{O} \end{bmatrix} \longrightarrow [R_{1}CH_{2}C(O)OR_{2}]^{\ddagger} (ester channel)$$

$$[R_{1}CH_{2}\dot{C}(R_{2})O\dot{O}]^{\ddagger} \longrightarrow R_{1}CH_{2}C(O)R_{2} + O(^{3}P) \qquad (O-atom elimation channel)$$

$$[R_1CH_2\dot{C}(R_2)\dot{OO}]^{\ddagger} \longrightarrow [R_1CH = C(R_2)OOH]^{\ddagger}$$

Reaction Scheme (6)

(hydroperoxide channel)

2,3-dimethyl-2-butene is consistent with other reports of OH radical (or other reactive radical) involvement in O₃alkene reactions under atmospheric conditions.^{36,68-72} Recently, Paulson *et al.*,⁶⁸ Paulson and Seinfeld,³⁶ Atkinson *et al.*⁶⁹ and Atkinson and Aschmann⁷⁰ have demonstrated the direct formation of OH radicals during the reactions of O₃ with a series of alkenes, dienes and monoterpenes, and the reported OH radical formation yields^{36,59,68-70} are given in Table 18.

The majority of the product and reaction mechanism data for the reactions of O₃ with the simple monoalkenes concerns the reactions of ethene,^{51,55,61} propene,^{50,51} and *trans*-2-butene.⁵¹ For the reaction of O₃ with ethene, the reactions are postulated to include:

$$O_3 + CH_2 = CH_2 \rightarrow HCHO + [\dot{C}H_2O\dot{O}]^{\ddagger}$$

3.5

$$[\dot{C}H_2O\dot{O}]^{\ddagger} \longrightarrow \dot{C}H_2O\dot{O} \qquad (a)$$

$$(a) \qquad (b) \qquad (b) \qquad (c) \qquad (d) \qquad (c) \qquad (c)$$

The studies of Herron and Huie⁶¹ (supposedly adjusted to be applicable to atmospheric pressure^{1,21,73}), Su *et al.*⁵⁵ and Horie and Moortgat⁵¹ lead to fractions of the pathways (a)-(d) of: channel (a), 37%; channel (b), ~13%;^{21,51} channel (c), 31–58%;^{21,51,55} and channel (d), 6–10%.^{21,51} However, Atkinson *et al.*⁶⁹ observed OH radicals to be formed with an ~12% yield, presumably via channel (e). Clearly, significant discrepancies between the various studies are apparent, even for the reactions of the simplest biradical, [CH₂OO][‡].

For the $[CH_3CHOO]^{\ddagger}$ biradical formed from the reaction of O₃ with propene, the postulated reactions are:

Recent studies and evaluations^{2,21,51} have concluded that channels (a)–(f) account for: channel (a), 15–42%; channel (b) 16–30%; channel (c), 17–34%; channel (d), 0–7%; channel (e) 14–17% and channel (f), 0–7%. These various studies lead to differing product distributions from the O₃ reaction with propene. As one example, the OH radical formation yields vary from 0.10^{51} to 0.15,² while Atkinson and Aschmann⁷⁰ obtained an OH radical formation yield of 0.33 (uncertain by a factor of ~1.5) from monitoring the formation of (cyclohexanone + cyclohexanol) formed from OH radical reaction with cyclohexane in a reacting O₃-propene-cyclohexane-air mixture. It is also of interest to note that Japar *et al.*⁷¹ postulated an ~30% formation of a radical species which could react with propene (possibly the OH radical).

Thus, even for ethene and propene there are significant uncertainties in the details of the reaction pathways occurring, the radicals formed, and the product formation yields under atmospheric conditions.

The gas-phase reactions of O₃ with cycloalkenes have been studied by Niki *et al*.,⁵⁴ Hatakeyama *et al*.,^{74,75} Izumi *et al*.⁷⁶ and Hatakeyama and Akimoto.⁷⁷ While these references should be consulted for further details, the formation of significant yields of dicarbonyls were observed,^{74,75,77} and aerosol formation occurred readily.⁷⁶

To date, there have been few quantitative product studies of the reactions of ozone with isoprene and the monoterpenes. For isoprene, Kamens et al.78 and Niki et al.⁵⁴ observed the formation of HCHO, methacrolein, and methyl vinyl ketone. Both groups^{54,78} reported HCHO, methyl vinyl ketone, and methacrolein yields of 85-96%, 13-18%, and 33-42%, respectively. The use of isotope labeling allowed Niki et al.⁵⁴ to conclude that the majority of the HCHO formed arose from secondary reactions. The recent study of Paulson et al.68 has provided evidence that the O₃ reaction with isoprene leads to the formation of OH radicals and $O(^{3}P)$ atoms in large amounts, with molar yields of $68 \pm 15\%$ and $45 \pm 20\%$, respectively, and the formation of these species leads to secondary reactions which complicate the analysis of the O₃-isoprene reaction.⁶⁸ Based on computer modeling of product data, Paulson et al.⁶⁸ concluded that the products formed from the O₃ reaction with isoprene are methacrolein, methyl vinyl ketone, and propene, with yields of 67 \pm 9%, 26 \pm 6% and 7 \pm 3%, respectively.

Several studies have investigated the products of the ozone reactions with monoterpenes (see, for example, Schuetzle and Rasmussen,⁷⁹ Hull,⁸⁰ Yokouchi and Ambe,⁸¹ Hatekayama *et al.*,⁸² Jay and Stieglitz,⁸³ and Hakola *et al.*^{47,48}). Yokouchi and Ambe⁸¹ used high concentrations [\sim (3–15) \times 10¹⁵ molecule cm⁻³] of ozone and of the monoterpenes α - and β -pinene and limonene, and observed ready formation of aerosols, as may be expected. Using gas chromatography (GC) and GC/MS techniques, they identified pinonaldehyde (2,2-dimethyl-3-acetylcyclobutyl ethanol) and, to a lesser extent, pinonic acid (2,2-dimethyl-3-acetylcyclobutyl acetic acid) from α -pinene and 6,6-dimethylbicyclo[3.1.1]heptan-2-

TABLE 18. OH radical formation yields from the gas-phase reactions of O_3 with alkenes at room temperature and atmospheric pressure

Alkene	OH radical formation yield ^a	Reference		
Ethene	0.12	Atkinson et al. ⁶⁹		
Propene	0.33	Atkinson and Aschmann ⁷⁰		
1-Butene	0.41	Atkinson and Aschmann ⁷⁰		
cis-2-Butene	0.41	Atkinson and Aschmann ⁷⁰		
trans-2-Butene	0.64	Atkinson and Aschmann ⁷⁰		
2-Methylpropene	0.84	Atkinson and Aschmann ⁷⁰		
2-Methyl-1-butene	0.83	Atkinson and Aschmann ⁷⁰		
2-Methyl-2-butene	0.89	Atkinson and Aschmann ⁷⁰		
2,3-Dimethyl-2-butene	~0.70	Niki et al.59		
	1.00	Atkinson and Aschmann ⁷⁰		
1-Octene	0.45 ± 0.20	Paulson and Seinfeld ³⁶		
1,3-Butadiene	0.08	Atkinson and Aschmann ⁷⁰		
Isoprene	0.68 ± 0.15	Paulson et al.68		
-	0.27	Atkinson et al.69		
Cyclohexene	0.68	Atkinson and Aschmann ⁷⁰		
Camphene	≤ 0.18	Atkinson et al.69		
3-Carene	1.06	Atkinson et al.69		
Limonene	0.86	Atkinson et al.69		
Myrcene	1.15	Atkinson et al. ⁶⁹		
cis- and trans-Ocimene	0.63	Atkinson et al.69		
B-Phellandrene	0.14	Atkinson et al. ⁶⁹		
α-Pinene	0.85	Atkinson et al.69		
β-Pinene	0.35	Atkinson et al.69		
Sabinene	0.26	Atkinson et al.69		
Terpinolene	1.03	Atkinson et al.69		

^aThe estimated uncertainties for the yields of Atkinson *et al.*⁶⁹ and Atkinson and Aschmann⁷⁰ are a factor of 1.5.

one from β -pinene. No products were identified from the limonene reaction.⁸¹

The product study of Hatakeyama et al.82 was carried out at much lower reactant concentrations (typically ~ 3 \times 10¹³ molecule cm⁻³), using FT-IR absorption spectroscopy and GC/MS for analysis. From the α -pinene reaction, CO, CO₂, HCHO, pinonaldehyde and nor-pinonaldehyde were identified with molar formation yields of CO, CO₂ and HCHO of 9%, 30% and 22%, respectively, and the "total aldehydes" yield was $\sim 51\%$ (reported to be mainly pinonaldehyde and nor-pinonaldehyde). The products identified from the β -pinene reaction were CO₂, HCHO and 6,6-dimethylbicyclo[3.1.1] heptan-2-one, with molar yields of 27%, 76%, and 40%, respectively.⁸² Aerosol formation accounted for 14-18% of the overall reaction. The product studies of Hakola et al.47,48 have used GC and GC/MS to determine carbonyl product yields, and the data of Hatakevama et al.,⁸² Jay and Stieglitz⁸³ and Hakola et al.,^{47,48} are given in Table 19. No significant formation of products was observed by Hakola et al.48 by GC-FID and GC/MS from the O₃ reactions with 3-carene or limonene. The chemical composition of the aerosols formed from isoprene and βpinene has been investigated by Palen et al.⁴⁴ (see also Pandis et al.43 concerning the aerosol yields from these terpenes).

The stabilized biradicals are known to react with aldehydes, SO₂, CO, H₂O and NO₂, and it is expected that they will also react with NO.^{1,49} Based upon the available

data for the reactions of $\dot{C}H_2O\dot{O}$ radicals with these reactants, with rate constants relative to the reaction of $\dot{C}H_2O\dot{O}$ with SO₂ of: HCHO, ~0.25;⁵⁵ CO, 0.0175;⁵⁵ H₂O, (2.3 ± 1) × 10^{-4 84} and NO₂, 0.014,⁸⁵ it appears that the reaction of stabilized biradicals with water vapor will be their dominant loss process under atmospheric conditions.

In addition to the expected formation of carboxylic acids from these reactions of the energy-rich biradicals with H_2O ,¹

$$RCHOO + H_2O \rightarrow RC(O)OH + H_2O$$

the recent studies of Gäb *et al.*,⁸⁶ Becker *et al.*,⁸⁷ Simonaitis *et al.*⁸⁸ and Hewitt and Kok⁸⁹ have reported the formation of H_2O_2 and organic hydroperoxides from the reactions of O_3 with alkenes. There are significant discrepancies between these studies; Simonaitis *et al.*⁸⁸ using a 31000 liter chamber obtained H_2O_2 yields of 9–19% for *trans-2*-butene, isoprene and several monoterpenes,⁸⁸ much higher than the yields reported by Becker *et al.*⁸⁷ from studies conducted in a 130 liter chamber.

NO₃ Radical Reaction

The kinetics and mechanisms of the gas-phase reaction of the NO₃ radical with alkenes, cycloalkenes and dienes have recently been reviewed and evaluated by Atkinson,⁹⁰ and that review and evaluation is updated in Sec. 4.3. The

Monoterpene	Product	Yield	Reference
Camphene		$a = 0.36 \pm 0.06^{b}$	Jay and Stieglitz ⁸³ Hakola <i>et al</i> . ⁴⁸
		a ~0.2	Jay and Stieglitz ⁸³ Hakola <i>et al</i> . ⁴⁸
β-Phellandrene		0.29 ± 0.06^{b}	Hakola <i>et al</i> . ⁴⁷
α-Pinene	нсно	0.22 ± 0.01	Hatakeyama <i>et al</i> . ⁸²
	осно	0.51 ± 0.06° 0.19 ± 0.04 ^b	Hatakeyama <i>et al</i> . ⁸² Hakola <i>et al</i> . ⁴⁸
β-Pinene	НСНО	0.76 ± 0.02	Hatakeyama <i>et al</i> . ⁸²
		$0.40 \pm 0.02^{\circ}$ $0.23 \pm 0.05^{\circ}$	Hatakeyama <i>et al</i> . ⁸² Hakola <i>et al</i> . ⁴⁸
Sabinene		0.50 ± 0.09 ^b	Hakola <i>et al</i> . 48
Terpinolene		0.40 ± 0.06^{b}	Hakola <i>et al</i> .48

TABLE 19. Carbonyl products observed, and their formation yields, from the gas-phase reactions of O_3 with monoterpenes at room temperature and atmospheric pressure

*No product yields reported.

^bIndicated errors are two least-squares standard deviations combined with estimated overall uncertainties in the GC-FID calibration factors of the monoterpene and product of $\pm 10\%$ each. OH radicals scavenged by excess cyclohexane.

"The 6,6-dimethylbicyclo[3.1.1]heptan-2-one and pinonaldehyde as measured by Fourier transform infrared absorption spectroscopy may have included IR contributions from other, as yet unidentified, carbonyl compounds. room temperature rate constants and temperature-dependent parameters for a series of atmospherically important alkenes (taken from Ref. 90 and Sec. 4.3.) are given in Table 20. These reactions proceed by NO₃ radical addition to the >C=C< bond, with H-atom abstraction being insignificant.⁹⁰

The products of the gas-phase reactions of the NO₃ radical with a series of alkenes at room temperature and atmospheric pressure have been studied by Akimoto *et al.*,⁹¹ Hoshino *et al.*,⁹² Bandow *et al.*,⁹³ Shepson *et al.*,²² Kotzias *et al.*,⁹⁴ Skov *et al.*,⁹⁵ Barnes *et al.*,⁹⁶ and Hjorth *et al.*,⁹⁷ and the reaction mechanisms have been discussed by Atkinson.⁹⁰ The studies of Bandow *et al.*,⁹³ Shepson *et al.*,²² Barnes *et al.*,⁹⁴ allow the general features of the reaction mechanisms under atmospheric conditions to be understood. Under atmospheric conditions, rapid addition of O₂ will occur to the initially formed nitratoalkyl radical, leading to the formation of β-nitratoalkyl peroxy radicals. Taking the NO₃ radical reaction with propene as an example:

$$NO_3 + CH_3CH = CH_2 \xrightarrow{M} CH_3\dot{C}HCH_2ONO_2$$

and CH_3CH(ONO_2)CH_2

followed by, for example

$$CH_3\dot{C}HCH_2ONO_2 + O_2 \xrightarrow{M} CH_3CH(O\dot{O})CH_2ONO_2$$

When NO₃ radicals are present, NO concentrations must be extremely low,²¹ and these β -nitratoalkyl peroxy radicals will then either react with HO₂ and other RO₂ radicals, or reversibly add NO₂ to yield the thermally unstable nitrato peroxynitrates^{22,90,93,96,97}

$$CH_3CH(O\dot{O})CH_2ONO_2 + NO_2 \qquad \bigoplus_{CH_3CH(OONO_2)CH_2ONO_2} CH_3CH(OONO_2)CH_2ONO_2$$

Because of the expected rapid thermal decomposition of the peroxy nitrates, these species act as a temporary reservoir of the β -nitratoalkyl peroxy radicals. If NO is present at sufficiently high concentrations to react with the peroxy radicals, then the corresponding alkoxy radical will be formed together with NO₂, and dinitrates may be formed from the RO₂² + NO reaction.

$$CH_{3}CH(\dot{OO})CH_{2}ONO_{2} + NO \longrightarrow CH_{3}CH(\dot{O})CH_{2}ONO_{2} + NO_{2}$$
(a1)
CH_{3}CH(\dot{O})CH_{2}ONO_{2} + NO_{2} (a2)

In the absence of NO, the β -nitratoalkylperoxy radicals will react with HO₂ or other organic peroxy radicals. For example, for the CH₃CH(OO)CH₂ONO₂ radical formed from propene

$$CH_3CH(OO)CH_2ONO_2 + HO_2 \longrightarrow CH_3CH(OOH)CH_2ONO_2 + O_2$$
 (b)

$$CH_{3}CH(\dot{OO})CH_{2}ONO_{2} + \dot{RO_{2}} - CH_{3}CH(\dot{O})CH_{2}ONO_{2} + \dot{RO} + O_{2} \quad (c1)$$

$$CH_{3}CH(\dot{OO})CH_{2}ONO_{2} + \dot{RO_{2}} - CH_{3}CH(OH)CH_{2}ONO_{2} \quad and \quad (c2)$$

$$CH_{3}C(O)CH_{2}ONO_{2} + \dot{RO_{2}} \quad products$$

The alkoxy radicals formed from reactions (a2) and (c1) can then react with O_2 , decompose or isomerize, as discussed in Sec. 2.1. above, and can also react with NO_2

 $CH_3CH(\dot{O})CH_2ONO_2 + O_2 \longrightarrow CH_3C(O)CH_2ONO_2 + HO_2$ (e)

$$CH_{3}CH(\dot{O})CH_{2}ONO_{2} + NO_{2} \xrightarrow{M} CH_{3}CH(ONO_{2})CH_{2}ONO_{2}$$
(f)

Based on this reaction scheme, in the absence of NO dinitrates are expected to be formed from reaction (f), and hence their yields should decrease with decreasing NO₂ concentration. This is consistent with the studies of Shepson *et al.*²² and Bandow *et al.*⁹³ for propene and with the more recent data of Barnes *et al.*⁹⁶ and Hjorth *et al.*⁹⁷ Under atmospheric conditions the formation of dinitrates from reaction (f) is expected to be of no importance. Neglecting isomerization of the alkoxy radicals (but see Hjorth *et al.*)⁹⁷ the expected major products of the NO₃ radical-initiated reactions of the simple alkenes are then carbonyl compounds [reaction (d)], nitratocarbonyls [reactions (c2) and (e)], nitratoalcohols [reaction (c2)] and nitratohydroperoxides [reaction (b)].

The products observed by Barnes et al.⁹⁶ and Hjorth et al.⁹⁷ from the gas-phase reactions of the NO₃ radical with a series of alkenes and dienes, and their measured formation yields, are given in Table 21. While the agreement is good for the carbonyls formed from propene and for CH₃C(O)CH(ONO₂)CH₃ from trans-2-butene, there are significant discrepancies for the 2-methylpropene reaction product yields and for the CH₃CHO yield from trans-2-butene. Interestingly, Hjorth et al.97 observed the formation of CH₃CH(OH)CH(ONO₂)CH₃ from the 2butenes, indicating the occurrence of reaction (c2). These differences in the product yields may be due, at least in part, to the fact that those of Barnes et al.⁹⁶ were obtained after addition of NO to the reaction system to promote the thermal decompositions of the peroxynitrates such as CH₃CH(OONO₂)CH₂ONO₂, while the yields reported by Hjorth et al.97 were those after the peroxynitrates had been allowed to thermally decompose, without addition of NO. The addition of NO to the reaction systems can lead to the formation of OH radicals^{22,98} and hence the formation of OH radical reaction products,

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

TABLE 20. Room temperature rate constants k and temperature-dependent parameters, $k = A e^{-B/T}$, for the gas-phase reactions of the NO₃ radical with a series of alkenes [from Ref. 90 and Sec. 4.3.]

Alkene	$A (cm^3 molecule^{-1} s^{-1})$	В (К)	$k (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ at 298 K
Ethene ^a			2.05×10^{-16}
Propene	4.59×10^{-13}	1156	9.49×10^{-15}
1-Butene	2.04×10^{-13}	843	1.21×10^{-14}
2-Methylpropene			3.32×10^{-13}
cis-2-Butene			3.50×10^{-13}
trans -2-Butene ^b			3.90×10^{-13}
2-Methyl-2-butene			9.37×10^{-12}
2,3-Dimethyl-2-butene			5.72×10^{-11}
1,3-Butadiene			1.0×10^{-13}
2-Methyl-1,3-butadiene	3.03×10^{-12}	446	6.78×10^{-13}
Myrcene			1.1×10^{-11}
Ocimene			2.2×10^{-11}
Cyclopentene			4.6×10^{-13}
Cyclohexene			5.3×10^{-13}
Cycloheptene			4.8×10^{-13}
Camphene			6.6×10^{-13}
2-Carene			1.9×10^{-11}
3-Carene			9.1×10^{-12}
Limonene			1.22×10^{-11}
α-Pinene	1.19×10^{-12}	- 490	6.16×10^{-12}
β-Pinene			2.51×10^{-12}
α-Phellandrene			8.5×10^{-11}
β-Phellandrene			8.0×10^{-12}
Sabinene			1.0×10^{-11}
α-Terpinene			1.8×10^{-10}
γ-Terpinene			2.9×10^{-11}
Terpinolene			9.7×10^{-11}

 ${}^{a}k = 4.88 \times 10^{-18} T^2 e^{-2282/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range 290-523 K recommended.}$

 $^{b}k = 1.22 \times 10^{-18} T^2 e^{382/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range 204-378 K recommended.}$

and Shepson *et al*.²² observed enhanced formation of HCHO and CH₃CHO relative to CH₃C(O)CH₂ONO₂ from a reacting propene system after the addition of NO. The product data of Shepson *et al*.²² obtained prior to the addition of NO show that similar yields of HCHO and CH₃CHO are formed from propene, with the yield of CH₃C(O)CH₂ONO₂ being a factor of \sim 2 higher.

The product studies of Barnes *et al.*⁹⁶ for α - and β pinene, 3-carene and limonene led to the formation of aerosols, although for α - and β -pinene IR spectral features indicated the presence of >C=O and -ONO₂ groups. Aerosol formation could be expected because of the relatively high concentrations of monoterpenes (~5 × 10¹⁴ molecule cm⁻³) used.⁹⁶

It is clear that further product studies are required before the reaction mechanisms and product yields of these NO_3 radical reactions with the alkenes are reliably known.

NO₂ Reactions

NO₂ reacts with conjugated dialkenes with rate constants at room temperature of $> 10^{-20}$ cm³ molecule⁻¹ s⁻¹.^{98,99} These reactions are of negligible importance as an atmospheric loss process of the alkenes and dienes, but may be of some importance in environmental chamber experiments carried out at high NO_2 concentrations, (see, for example, Refs. 3 and 4).

The only monoalkene or non-conjugated diene which has been shown to react with NO₂ at room temperature at an observable rate is 2,3-dimethyl-2-butene,^{98,100} with the room temperature rate constants for the other nonconjugated alkenes being $< 10^{-20}$ cm³ molecule⁻¹ s⁻¹,^{98,99} The room temperature rate constants for the gas-phase reactions of NO₂ with 2,3-dimethyl-2-butene and selected dienes are given in Table 22. As shown by Atkinson *et al.*,⁹⁸ and Niki *et al.*,¹⁰⁰ the reaction sequences are generally as follows, taking 1,3-butadiene as an example

$$NO_2 + CH_2 = CHCH = CH_2 \rightleftharpoons CH_2 = CH\dot{C}HCH_2NO_2$$

with the initial reaction being reversible, at least for 2,3dimethyl-2-butene.¹⁰⁰ The initially formed radical then adds O_2 and reacts as follows

$$CH_{2} = CH\dot{C}HCH_{2}NO_{2} + O_{2} \xrightarrow{M} CH_{2} = CHCH(O\dot{O})CH_{2}NO_{2}$$
$$\downarrow NO_{2}$$
$$CH_{2} = CHCH(OONO_{2})CH_{2}NO_{2}$$

ROGER ATKINSON

TABLE 21.	Products and	their yields observe	ed from the	e gas-phase	reactions	of the NO	3 radical wi	th a series of	alkenes	at room te	mperature and
	atmospheric j	pressure									

		Yield (molar)
Alkene	Product	Barnes et al. ⁹⁶	Hjorth et al. ⁹⁷
Propene	НСНО	0.08	0.10 ± 0.05
	CH₃CHO	0.12	0.10 ± 0.05
	total nitrates	~0.58ª	
1-Butene	НСНО	0.11	
	CH ₃ CH ₂ CHO	0.12	
	total nitrates	~ 0.60ª	
2-Methylpropene	НСНО	0.80	0.24 ± 0.08
	CH ₃ C(O)CH ₃	0.85	0.24 ± 0.08
	total nitrates	~0.25ª	
trans-2-Butene	CH ₃ CHO	0.70	0.34 ± 0.12^{b}
	CH ₃ C(O)CH(ONO ₂)CH ₃	0.55	0.41 ± 0.13^{b}
	CH ₃ CH(ONO ₂)CH(ONO ₂)CH ₃	0.04	
	CH ₃ CH(OH)CH(ONO ₂)CH ₃		0.15 ± 0.05^{b}
2-Methyl-2-butene	CH ₃ CHO		0.22 ± 0.06
	CH ₃ C(O)CH ₃		0.22 ± 0.06
2,3-Dimethyl-2-butene	CH ₃ C(O)CH ₃		1.04 ± 0.26
-	$(CH_3)_2C(ONO_2)C(ONO_2)(CH_3)_2$		0.05 ± 0.02
1,3-Butadiene	НСНО	0.12	
	$CH_2 = CHCHO$	0.12	
	CO	0.04	
	total nitrates	~0.60ª	
2-Methyl-1,3-butadiene	НСНО	0.11	
(isoprene)	CO	0.04	
· _ ·	total nitrates	~0.80°	

^aEstimated from the use of IR absorption cross-sections for 14 compounds containing the --ONO₂ group. ^bYields also apply for *cis*-2-butene.

to form a thermally unstable nitro-peroxynitrate. The following reactions are expected:

$$CH_{2} = CHCH(O\dot{O})CH_{2}NO_{2} \longrightarrow CH_{2} = CHCH(\dot{O})CH_{2}NO_{2}$$

$$CH_{2} = CHCHO + \dot{C}H_{2}NO_{2}$$

$$O_{2}$$

$$OCH_{2}NO_{2}$$

$$\downarrow$$

$$HCHO + NO_{2}$$

For isoprene, an analogous reaction sequence leads to the formation of methyl vinyl ketone and methacrolein, together with the HCHO co-product, and indeed this is observed.^{3,4} In the presence of NO the dark NO₂ reactions with isoprene⁴ and 1,3-cyclohexadiene⁹⁸ (and presymably other dienes) lead to the production of OH radicals. The presence of NO is expected to lead to the facile conversion of the peroxy radicals to the corresponding alkoxy radicals, and in effect remove the peroxynitrates as temporary sinks for the peroxy radicals:

$$CH_2 = CHCH(O\dot{O})CH_2NO_2 + NO \rightarrow CH_2 = CHCH(\dot{O})CH_2NO_2 + NO_2$$

However, the reaction scheme shown above does not lead to the production of OH radicals, and this probably means that reaction pathways leading to the formation of HO_2 radicals occur, by reaction of an alkoxy radical with O_2 to form a carbonyl + HO_2 . One possibility involves the reactions:

followed by:

$$HO_2 + NO \rightarrow OH + NO_2$$

TABLE 22. Room temperature rate constants, k, for the gas-phase reactions of NO₂ with selected alkenes and dienes at atmospheric pressure of air

$10^{20} \times k (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})^{\text{a}}$
1.0
3.0
15
26
89
1300
~70
650

^aFrom Glasson and Tuesday,¹⁰¹ Atkinson *et al.*,^{98,102} Gu *et al.*,⁴² Ohta *et al.*,⁹⁹ Niki *et al.*,¹⁰⁰ Shorees *et al.*,¹⁰³ and Paulson *et al.*⁴ Uncertainties are a factor of ~ 1.5 , except for β -phellandrene, for which the uncertainty is a factor of ~ 2 .

$O(^{3}P)$ Atom Reactions

The O(³P) atom reactions with the alkenes are of little importance under atmospheric conditions, but can become significant in laboratory irradiations of NO_x-alkeneair mixtures (see, for example, Paulson *et al.*⁴ and Paulson and Seinfeld³⁶). The kinetics, reaction mechanisms and products formed under atmospheric conditions have been previously reviewed by Cvetanovic and Singleton,¹⁰⁴ Atkinson and Lloyd¹ and Cvetanovic.¹⁰⁵ The rate constants have been reviewed and evaluated by Cvetanovic,¹⁰⁵ and that review should be consulted for kinetic information. It should also be noted that a good correlation between the OH radical and O(³P) atom reaction rate constants exists,³⁹ with (rate constants in units of 10^{-12} cm³ molecule⁻¹ s⁻¹)

$$\ln k^{O(3P)} = -4.09 + 1.76 \ln k^{OH}$$

The initial reaction involves addition of the O(³P) atom to the >C=C< bond, followed by collisional stabilization to a carbonyl or an epoxide or decomposition. As generally recommended by Atkinson and Lloyd,¹ for ethene at atmospheric pressure and 298 K, the products are,^{1,106,107}

└ CH3 + HCO

$$O(^{3}P) + C_{2}H_{4} \longrightarrow \dot{C}H_{2}CHO + H$$
 (~35%)

HĊO + Ċ₂H₅

$$\begin{array}{c} & & \\$$

$$O(^{3}P) + CH_{3}CH = CH_{2} \xrightarrow{} \dot{C}H_{2}CHO + \dot{C}H_{3} \qquad (20\%)$$

for propene,¹

$$O(^{3}P) + CH_{3}CH_{2}CH = CH_{2} \longrightarrow CH_{3}CH_{2}CH - CH_{2} \qquad (44\%)$$

$$O(^{3}P) + CH_{3}CH_{2}CH = CH_{2} \longrightarrow CH_{3}CH_{2}CH_{2}CHO \qquad (39\%)$$

$$\dot{C}H_{2}CHO + \dot{C}_{2}H_{5} \qquad (17\%)$$

although other fragmentation pathways cannot be excluded for the 2-butenes.

The atmospheric reactions of the carbonyl compounds and epoxides are dealt with in Sec. 2.5 below. The $\dot{C}H_2CHO$ (vinoxy) radical reacts with O_2 ,^{108,109} NO¹⁰⁸ and NO₂.¹¹⁰ Under atmospheric conditions, the only important reaction is with O_2 . The rate constant for the O_2 reaction is in the fall-off region between second- and third-order kinetics at $\leq 100-300$ Torr of He, N₂ or SF₆ at room temperature.^{108,109} The limiting high-pressure rate constant for this reaction is^{108,109}

$$k_{\infty}$$
 (ĊH₂CHO + O₂) = 2.5 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K,

 $(\sim 60\%)$

(20%)

with little or no temperature dependence over the range 292–476 K¹⁰⁸ (see also Lorenz *et al.*¹⁰⁹). The magnitude of the rate constant and the pressure dependence shows that the vinoxy radical reaction with O₂ proceeds by initial addition to form the $\dot{O}OCH_2CHO$ radical (or its isomer). While the products of this reaction have not been directly monitored, there is evidence from the OH radical-initiated reaction of acetylene^{111,112} that OH radicals are one product. Hence, based on the studies of Gutman and Nelson¹⁰⁸ and Schmidt *et al.*,^{111,112} the reaction possibly proceeds by

References

- ¹R. Atkinson and A. C. Lloyd, J. Phys. Chem. Ref. Data 13, 315 (1984).
 ²R. Atkinson, Atmos. Environ. 24A, 1 (1990).
- ³E. C. Tuazon and R. Atkinson, Int. J. Chem. Kinet. 22, 1221 (1990).
- E. Paulson, R. C. Flagan, and J. H. Seinfeld, Int. J. Chem. Kinet. 24, 79 (1992).
- ⁵R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ⁶K. Hoyermann and R. Sievert, Ber. Bunsenges. Phys. Chem. **87**, 1027 (1983).
- ⁷R. Atkinson, E. C. Tuazon, and W. P. L. Carter, Int. J. Chem. Kinet. **17**, 725 (1985).
- ⁸T. Ohta, Int. J. Chem. Kinet. 16, 1495 (1984).
- ⁹R. Atkinson, Int. J. Chem. Kinet. 19, 799 (1987).
- ¹⁰R. J. Cvetanovic, 12th International Symposium on Free Radicals, Laguna Beach, CA, January 4–9, 1976.
- ¹¹S. W. Benson, "Thermochemical Kinetics," 2nd Ed., Wiley, New York, NY, 1976.
- ¹²A. Miyoshi, H. Matsui, and N. Washida, Chem. Phys. Lett. **160**, 291 (1989).
- ¹³A. Miyoshi, H. Matsui, and N. Washida, J. Phys. Chem. 94, 3016 (1990).
- ¹⁴T. M. Lenhardt, C. E. McDade, and K. D. Bayes, J. Chem. Phys. 72, 304 (1980).
- ¹⁵C. A. Morgan, M. J. Pilling, J. M. Tulloch, R. P. Ruiz, and K. D. Bayes, J. Chem. Soc. Faraday Trans. 2, 78, 1323 (1982).
- ¹⁶M. E. Jenkin and R. A. Cox, J. Phys. Chem. 95, 3229 (1991).
- ¹⁷C. Anastasi, D. J. Muir, V. J. Simpson, and P. Pagsberg, J. Phys. Chem. **95**, 5791 (1991).
- ¹⁸T. P. Murrells, M. E. Jenkin, S. J. Shalliker, and G. D. Hayman, J. Chem. Soc. Faraday Trans. 87, 2351 (1991).
- ¹⁹V. H. Schmidt, Y. Su, K. H. Becker, and K. Brochmann, Proc. 4th European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Riedel Pub. Co., Dordrecht, Holland, 1987, pp. 236–248.
- ²⁰K. H. Becker, H. Geiger, and P. Wiesen, Chem. Phys. Lett. **184**, 256 (1991).
- ²¹R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and J. Troe, J. Phys. Chem. Ref. Data 21, 1125 (1992)
- ²²P. B. Shepson, E. O. Edney, T. E. Kleindienst, J. H. Pittman, G. R. Namie, and L. T. Cupitt, Environ. Sci. Technol. **19**, 849 (1985)
- ²³H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, J. Phys. Chem. 82, 135 (1978).
- ²⁴H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, Chem. Phys. Lett. **80**, 499 (1981).
- ²⁵H. E. Radford, Chem. Phys. Lett. 71, 195 (1980).
- ²⁶W. C. Wang, M. Suto, and L. C. Lee, J. Chem. Phys. 81, 3122 (1984).
- ²⁷H. -H. Grotheer, G. Riekert, U. Meier, and Th. Just, Ber. Bunsenges. Phys. Chem. **89**, 187 (1985).

- ²⁸S. Dóbé, F. Temps, T. Böhland, and H. Gg. Wagner, Z. Naturforsch. 40A, 1289 (1985).
- ²⁹W. P. L. Carter, K. R. Darnall, R. A. Graham, A. M. Winer, and J. N. Pitts, Jr., J. Phys. Chem. 83, 2305 (1979).
- ³⁰T. Ohta, H. Bandow, and H. Akimoto, Int. J. Chem. Kinet. 14, 173 (1982).
- ³¹N. Washida, Bull. Chem. Soc. Jpn. 60, 3757 (1987).
- ³²H. -H. Grotheer, G. Riekert, D. Walter, and Th. Just, 22nd International Symposium on Combustion, 1988; The Combustion Institute, Pittsburgh, PA, 1989, pp. 963–972.
- ³³H. -H. Grotheer, G. Riekert, D. Walter, and Th. Just, J. Phys. Chem. 92, 4028 (1988).
- ³⁴F. L. Nesbitt, W. A. Payne, and L. J. Stief, J. Phys. Chem. **92**, 4030 (1988).
- ³⁵P. Pagsberg, J. Munk, C. Anastasi, and V. Simpson, Chem. Phys. Lett. 157, 271 (1989).
- ³⁶S. E. Paulson and J. H. Seinfeld, Environ. Sci. Technol. 26, 1165 (1992).
- ³⁷A. C. Lloyd, R. Atkinson, F. W. Lurmann, and B. Nitta, Atmos. Environ. **17**, 1931 (1983).
- ³⁸T. Ohta, J. Phys. Chem. 87, 1209 (1983).
- ³⁹R. Atkinson, Chem. Rev. **86**, 69 (1986).
- ⁴⁰A. Maldotti, C. Chiorboli, C. A. Bignozzi, C. Bartocci, and V. Carassiti, Int. J. Chem. Kinet. **12**, 905 (1980).
- ⁴¹R. Atkinson, S. M. Aschmann, E. C. Tuazon, J. Arey, and B. Zielinska, Int. J. Chem. Kinet. 21, 593 (1989).
- ⁴²C. -L. Gu, C. M. Rynard, D. G. Hendry, and T. Mill, Environ. Sci. Technol. **19**, 151 (1985).
- ⁴³S. N. Pandis, S. E. Paulson, J. H. Seinfeld, and R. C. Flagan, Atmos. Environ. 25A, 997 (1991).
- ⁴⁴E. J. Palen, D. T. Allen, S. N. Pandis, S. E. Paulson, J. H. Seinfeld, and R. C. Flagan, Atmos. Environ. **26A**, 1239 (1992).
- ⁴⁵J. Arey, R. Atkinson, and S. M. Aschmann, J. Geophys. Res. 95, 18539 (1990).
- ⁴⁶S. Hatakeyama, K. Izumi, T. Fukuyama, H. Akimoto, and N. Washida, J. Geophys. Res. **96**, 947 (1991).
- ⁴⁷H. Hakola, B. Shorees, J. Arey, and R. Atkinson, Environ. Sci. Technol. 27, 278 (1993).
- ⁴⁸H. Hakola, J. Arey, S. M. Aschmann, and R. Atkinson, J. Atmos. Chem., in press (1994).
- ⁴⁹R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ⁵⁰J. T. Herron and R. E. Huie, Int. J. Chem. Kinet. 10, 1019 (1978).
- ⁵¹O. Horie, and G. K. Moortgat, Atmos. Environ. 25A, 1881 (1991).
- ⁵²S. Hatakeyama, H. Kobayashi, and H. Akimoto, J. Phys. Chem. 88, 4736 (1984).
- ⁵³S. Hatakeyama, H. Kobayashi, Z. -Y. Lin, H. Takagi, and H. Akimoto, J. Phys. Chem. **90**, 4131 (1986).
- ⁵⁴H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, Environ. Sci. Technol. 17, 312A (1983)
- ⁵⁵F. Su, J. G. Calvert, and J. H. Shaw, J. Phys. Chem. 84, 239 (1980).
- ⁵⁶C. S. Kan, F. Su, J. G. Calvert, and J. H. Shaw, J. Phys. Chem. **85**, 2359 (1981).
- ⁵⁷H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, J. Phys. Chem. **85**, 1024 (1981).
- ⁵⁸H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, Chem. Phys. Lett. 46, 327 (1977).
- ⁵⁹H. Niki, P. D. Maker, C. M. Savage, L. P. Breitenbach, and M. D. Hurley, J. Phys. Chem. **91**, 941 (1987).
- ⁶⁰J. Zhang, S. Hatakeyama, and H. Akimoto, Int. J. Chem. Kinet. 15, 655 (1983).
- ⁶¹J. T. Herron and R. E. Huie, J. Am. Chem. Soc. 99, 5430 (1977).
- ⁶²R. I. Martinez, R. E. Huie, and J. T. Herron, Chem. Phys. Lett. **72**, 443 (1980).
- ⁶³R. I. Martinez, J. T. Herron, and R. E. Huie, J. Am. Chem. Soc. 103, 3807 (1981).
- ⁶⁴R. I. Martinez, Chem. Phys. Lett. 98, 507 (1983).
- ⁶⁵R. I. Martinez and J. T. Herron, J. Phys. Chem. 91, 946 (1987).
- ⁶⁶R. I. Martinez and J. T. Herron, J. Phys. Chem. 92, 4644 (1988).
- ⁶⁷O. Horie and G. K. Moortgat, Chem. Phys. Lett. 156, 39 (1989).

- ⁶⁸S. E. Paulson, R. C. Flagan, and J. H. Seinfeld, Int. J. Chem. Kinet. 24, 103 (1992)
- ⁶⁹R. Atkinson, S. M. Aschmann, J. Arey, and B. Shorees, J. Geophys. Res., **97**, 6065 (1992).
- ⁷⁰R. Atkinson and S. M. Aschmann, Environ. Sci. Technol. 27, 1357 (1993).
- ⁷¹S. M. Japar, C. H. Wu, and H. Niki, J. Phys. Chem. 80, 2057 (1976).
- ⁷²R. Atkinson, D. Hasegawa, and S. M. Aschmann, Int. J. Chem. Kinet. 22, 871 (1990).
- ⁷³M. C. Dodge and R. R. Arnts, Int. J. Chem. Kinet. 11, 399 (1979).
- ⁷⁴S. Hatakeyama, T. Tanonaka, J. Weng, H. Bandow, H. Takagi, and H. Akimoto, Environ. Sci. Technol. 19, 935 (1985).
- ⁷⁵S. Hatakeyama, M. Ohno, J. Weng, H. Takagi, and H. Akimoto, Environ. Sci. Technol. 21, 52 (1987).
- ⁷⁶ K. Izumi, K. Murano, M. Mizuochi, and T. Fukuyama, Environ. Sci. Technol. 22, 1207 (1988).
- ⁷⁷S. Hatakeyama and H. Akimoto, Bull. Chem. Soc. Jpn. **63**, 2701 (1990).
- ⁷⁸R. M. Kamens, M. W. Gery, H. E. Jeffrics, M. Jackson, and E. I. Cole, Int. J. Chem. Kinet. **14**, 955 (1982).
- ⁷⁹D. Schuetzle and R. A. Rasmussen, J. Air Pollut. Control Assoc. 28, 236 (1978).
- ⁸⁰L. A. Hull, "Terpene ozonolysis products," *in* Atmospheric Biogenic Hydrocarbons, Vol. 2; J. J. Bufalini and R. R. Arnts, eds., Ann Arbor Science, Ann Arbor, MI, 1981, pp. 161–186.
- ⁸¹Y. Yokouchi and Y. Ambe, Atmos. Environ. 19, 1271 (1985).
- ⁸²S. Hatakeyama, K. Izumi, T. Fukuyama, and H. Akimoto, J. Geophys. Res. 94, 13013 (1989).
- ⁸³K. Jay and L. Stieglitz, Atmos. Environ. 23, 1219 (1989).
- ⁸⁴M. Suto, E. R. Manzanares, and L. C. Lee, Environ. Sci. Technol. 19, 815 (1985).
- ⁸⁵E. R. Manzanares, M. Suto, and L. C. Lee, unpublished data (1985).
- ⁸⁶S. Gäb, E. Hellpointner, W. V. Turner, and F. Kórte, Nature 316, 535 (1985).
- ⁸⁷K. H. Becker, K. J. Brockmann, and J. Bechara, Nature 346, 256 (1990).
- ⁸⁸R. Simonaitis, K. J. Olszyna, and J. F. Meagher, Geophys. Res. Lett. **18**, 9 (1991).
- ⁸⁹C. N. Hewitt and G. L. Kok, J. Atmos. Chem. 12, 181 (1991).
- ⁹⁰R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).
- ⁹¹H. Akimoto, M. Hoshino, G. Inoue, F. Sakamaki, H. Bandow, and M. Okuda, J. Environ. Sci. Health, A13, 677 (1978).
- ⁹²M. Hoshino, T. Ogata, H. Akimoto, G. Inoue, F. Sakamaki, and M. Okuda, Chem. Lett. 1367 (1978).
- ⁹³H. Bandow, M. Okuda, and H. Akimoto, J. Phys. Chem. 84, 3604 (1980).
- ⁹⁴D. Kotzias, J. L. Hjorth, and H. Skov, Toxicol. Environ. Chem. 20/21, 95 (1989).
- ⁹⁵H. Skov, J. Hjorth, C. Lohse, G. Restelli, and N. R. Jensen, Presented at COST 611 (Working Party 2) Workshop, Madrid, Spain, September 25-27, 1990.
- ⁹⁶I. Barnes, V. Bastian, K. H. Becker, and Z. Tong, J. Phys. Chem. 94, 2413 (1990).
- ⁹⁷J. Hjorth, C. Lohse, C. J. Nielsen, H. Skov, and G. Restelli, J. Phys. Chem. **94**, 7494 (1990).
- ⁹⁸R. Atkinson, S. M. Aschmann, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 16, 697 (1984).
- ⁹⁹T. Ohta, H. Nagura, and S. Suzuki, Int. J. Chem. Kinet. **18**, 1 (1986).
 ¹⁰⁰H. Niki, P. D. Maker, C. M. Savage, L. P. Breitenbach, and M. D.
- Hurley, Int. J. Chem. Kinet. 18, 1235 (1986).
- ¹⁰¹W. A. Glasson and C. S. Tuesday, Environ. Sci. Technol. 4, 752 (1970).
- ¹⁰²R. Atkinson, S. M. Aschmann, A. M. Winer, and J. N. Pitts, Jr., Environ. Sci. Technol. 19, 159 (1985).
- ¹⁰³B. Shorees, R. Atkinson, and J. Arey, Int. J. Chem. Kinet. 23, 897 (1991).
- ¹⁰⁴R. J. Cvetanovic and D. L. Singleton, Rev. Chem. Int. 5, 183 (1984).
- ¹⁰⁵R. J. Cvetanovic, J. Phys. Chem. Ref. Data 16, 261 (1987).
- ¹⁰⁶J. F. Smalley, F. L. Nesbitt and R. B. Klemm, J. Phys. Chem. **90**, 491 (1986).

- ¹⁰⁷V. D. Knyazev, V. S. Arutyunov, and V. I. Vedeneev, Int. J. Chem. Kinet. 24, 545 (1992).
- ¹⁰⁸D. Gutman and H. H. Nelson, J. Phys. Chem. 87, 3902 (1983).
- ¹⁰⁹K. Lorenz, D. Rhäsa, R. Zellner, and B. Fritz, Ber. Bunsenges. Phys. Chem. 89, 341 (1985).
- ¹¹⁰K. I. Barnhard, A. Santiago, M. He, F. Asmar, and B. R. Weiner, Chem. Phys. Lett. **178**, 150 (1991).
- ¹¹¹V. Schmidt, G. -Y. Zhu, K. H. Becker, and E. H. Fink, Proc. 3rd European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Reidel Pub. Co., Dordrecht, The Netherlands, 1984, pp. 177–187.
- ¹¹²V. Schmidt, G. Y. Zhu, K. H. Becker, and E. H. Fink, Ber. Bunsenges. Phys. Chem. 89, 321 (1985).

2.3. Alkynes

The potentially atmospherically important reactions of the alkynes are with OH and NO_3 radicals and O_3 . At the present time, kinetic and product data are available primarily for acetylene, propyne, 1-butyne and 2-butyne.

OH Radical Reaction

The kinetic and mechanistic data for the gas-phase reactions of the OH radical with alkynes have been reviewed and evaluated by Atkinson,¹ and that review and evaluation is updated in Sec. 3.5. The limiting high-pressure second-order rate constants at 298 K and the temperature parameters recommended by Atkinson¹ (see also Sec. 3.5) are given in Table 23. For acetylene, the rate constant is in the fall-off region between second- and third-order kinetics below ~1000 Torr.¹ The recommended parameters in the Troe fall-off expression are¹: $k_o = 5.0 \times 10^{-30} (T/298)^{-1.5}$ cm⁶ molecule⁻² s⁻¹; $k_{\infty} =$ $9.4 \times 10^{-12}e^{-700/T}$ cm³ molecule⁻¹ s⁻¹, and F = 0.6 at 298 K, leading to k(acetylene) = 8.15×10^{-13} cm³ molecule⁻¹ s⁻¹ at 298 K and 760 Torr total pressure of air.

For the other alkynes studied to date, the rate constants determined at 760 Torr total pressure of air are probably at or close to the high pressure limiting values.¹ These reactions proceed by initial OH radical addition to the $-C \equiv C$ -bond,¹ and the OH-acetylene adduct can isomerize to the vinoxy (CH₂CHO) radical^{2,3} with subsequent decomposition or reaction. While the formation of ketene has been observed at low pressures,⁴ ketene formation is of negligible importance under atmospheric conditions [with a $\leq 0.5\%$ yield of ketene being observed from acetylene].⁵ Schmidt et al.^{2,3} observed the intermediate formation of the vinoxy radical, with glyoxal being a major product. In the presence of O₂, OH radicals were efficiently regenerated,^{2,3} possibly from the reaction of the $\dot{C}H_2CHO$ radical with O_2 (see Sec. 2.2 above). Hatakeyama et al.⁵ investigated the products of the reactions of OH and OD radicals with acetylene, propyne and 2-butyne in the presence of one atmosphere of air. Glyoxal, methylglyoxal and biacetyl were observed from acetylene, propyne and 2-butyne, respectively, in both the absence and presence of NOx.5 For acetylene, formic acid was also observed in appreciable yield.⁵ The reaction of OH radicals with acetylene appears to proceed via (at atmospheric pressure where the initially formed adduct is collisionally stabilized),

 $OH + CH = CH \xrightarrow{M} HOCH = \dot{C}H$ $HOCH = \dot{C}H \rightarrow \dot{C}H_{2}CHO \xrightarrow{O_{2}} (CHO)_{2} + OH$ $HOCH = \dot{C}H + O_{2} \rightarrow HOCH = CHOO$ $HOCH = CHOO \rightarrow H\dot{C}O + HCOOH$ $HOCH = CHOO + NO \rightarrow HO\dot{C}HCHO + NO_{2}$ $\downarrow O_{2}$ $(CHO)_{2} + HO_{2}$

The fraction of reaction leading directly to OH formation, without conversion of NO to NO₂, is uncertain at the present time. The product yields obtained by Hatakeyama *et al.*⁵ were as follows: from acetylene, HCOOH, 0.4 ± 0.1 ; (CHO)₂, 0.7 ± 0.3 ; from propyne, HCOOH, 0.12 ± 0.02 ; CH₃C(O)CHO, 0.53 ± 0.03 ; and from 2-butyne, CH₃COOH, 0.12 ± 0.01 ; and CH₃C(O)C(O)CH₃, 0.87 ± 0.07 . Other products must thus be formed from propyne.

TABLE 23. Rate constants k_{∞} at 298 K and temperature-dependent parameters, $k = A e^{-B/T}$, for the reaction of OH radicals with alkynes at the high-pressure limit (from Ref. 1)

Alkyne	$10^{12} \times k_{\infty} \text{ (cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\text{)}$	$10^{12} \times A \text{ (cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\text{)}$	В (К)
Acetylene	0.90	9.4	700
Propyne	5.9		
1-Butyne	8.0	8.0	0
2-Butyne	27.4	10	- 300

O₃ Reactions

Rate constants have been determined for the reactions of O₃ with acetylene, propyne, 1-butyne, 2-butyne and butadiyne.⁶ There are significant discrepancies between the various studies, and no recommendations were made by Atkinson and Carter.⁶ The most recent data of Atkinson and Aschmann⁷ gave rate constants at 294 \pm 2 K of (in cm³ molecule⁻¹ s⁻¹ units): acetylene, 7.8 \times 10⁻²¹; propyne, 1.4 \times 10⁻²⁰; and 1-butyne, 2.0 \times 10⁻²⁰. These rate constants are sufficiently low that the O₃ reactions are of negligible importance as an alkyne loss process. No definitive product data are available, although α -dicarbonyls have been observed from the reaction of O₃ with acetylene, propyne, 1-butyne and 2-butyne.⁸

NO₃ Radical Reactions

The kinetics and mechanisms of the gas-phase reactions of the NO₃ radical with alkynes have been reviewed and evaluated by Atkinson,⁹ and that review and evaluation is updated in Sec. 4.5. The room temperature rate constants and temperature-dependent parameters given in the review of Atkinson⁹ (see also Sec. 4.5) are given in Table 24. These reactions are sufficiently slow that they can be neglected for atmospheric purposes.

References

¹R. Atkinson, J. Phys. Chem. Ref. Data, Monograph 1, 1 (1989).

- ²V. Schmidt, G. -Y. Zhu, K. H. Becker, and E. H. Fink, Proc. 3rd European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Riedel Pub. Co., Dordrecht, The Netherlands, 1984, pp. 177-187.
- ³V. Schmidt, G. Y. Zhu, K. H. Becker, and E. H. Fink, Ber. Bunsenges. Phys. Chem. **89**, 321 (1985).
- ⁴W. Hack, K. Hoyermann, R. Sievert, and H. Gg. Wagner, Oxid. Commun. 5, 101 (1983).
- ⁵S. Hatakeyama, N. Washida, and H. Akimoto, J. Phys. Chem. **90**, 173 (1986).
- ⁶R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ⁷R. Atkinson and S. M. Aschmann, Int. J. Chem. Kinet. 16, 259 (1984).
- ⁸W. B. DeMore, Int. J. Chem. Kinet. 3, 161 (1971).
- ⁹R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).

TABLE 24. Room temperature rate constants k and temperature-dependent parameters, $k = Ae^{-B/T}$, for the gas-phase reactions of NO₃ radicals with alkynes (from Atkinson⁹; see also Sec. 4.5)

Alkyne	A (cm3 molecule-1 s-1)	В (К)	k (cm ³ molecule ⁻¹ s ⁻¹)	at T(K)
Acetylene			$<5 \times 10^{-17}$	298
Propyne	1.63×10^{-11}	3328	2.30×10^{-16}	298
1-Butyne	3.2×10^{-11}	3320	4.6×10^{-16}	295 ± 2
2-Butyne			6.7×10^{-14}	295 ± 2

2.4. Aromatic Compounds

The aromatic compounds of concern in polluted urban atmospheres are the aromatic hydrocarbons (benzene, alkyl-substituted benzenes and styrene) and their aromatic ring-retaining products (aromatic aldehydes and phenolic compounds). Additionally, there is interest in the atmospheric chemistry of the 2- through 4-ring polycyclic aromatic hydrocarbons (PAH) and their derivatives. In this section, only the monocyclic aromatic compounds are considered, and the articles of Atkinson and Carter,¹ Atkinson *et al.*,²⁻⁴ Zielinska *et al.*,^{5,6} Arey *et al.*,⁷⁻⁹ Atkinson,^{10,11} Helmig *et al.*¹² and Atkinson and Arey¹³ should be consulted concerning the gas-phase atmospheric chemistry of the 2- to 4-ring PAH.

Benzene and Alkyl-Substituted Benzenes

 O_3 and NO_3 Radical Reactions. The monocyclic aromatic hydrocarbons react only very slowly with O_3 , with room temperature rate constants of $< 10^{-20}$ cm³ molecule⁻¹ s⁻¹ having been measured for benzene,^{1,14} toluene,^{1,14} the xylenes^{1,14} and the trimethylbenzenes,¹ and the O_3 reactions of benzene and the alkyl-substituted benzenes are hence of negligible atmospheric importance.

The kinetics and mechanisms of the gas-phase reactions of the NO₃ radical with aromatic hydrocarbons have been reviewed and evaluated by Atkinson,¹¹ and that review and evaluation is updated in Sec. 4.9. The room temperature rate constants for the gas-phase reactions of the NO₃ radical with benzene and the alkyl-substituted benzenes are given in Table 25, and it can be seen that these rate constants are in the range $\sim 10^{-16}$ - 10^{-15} cm³ molecule⁻¹ s⁻¹. A deuterium isotope effect has been observed for the gas-phase reactions of the NO3 radical with toluene^{11,15} and o- and p-xylene,¹⁶ showing that the ratedetermining step in these NO₃ radical reactions involves H- (or D-) atom abstraction from the C-H (or C-D) bonds of the alkyl substituent group(s). Thus, the NO₃ radical reactions with the alkyl-substituted benzenes proceed by an overall H-atom abstraction from the C-H bonds of the alkyl substituent $group(s)^{11,15,16}$

$$NO_3 + C_6H_5CH_3 \rightarrow HONO_2 + C_6H_5CH_2$$

The magnitude of these NO₃ radical reaction rate constants indicates that the NO₃ radical reactions with benzene, toluene and the xylenes are of negligible importance as a tropospheric loss process, and that the NO₃ radical reactions for the trimethylbenzenes will also be of negligible or minor importance. However, for tetralin the NO₃ radical reaction may well be a minor (~10%) tropospheric loss process, and similarly for other alkyl-substituted benzenes with $-CH_2-$ and/or >CH- groups adjacent to the aromatic ring,¹¹ since it has been postulated that these reactions [see Reaction Scheme (7)] proceed by the intermediate formation of a six-membered transition state¹¹.

TABLE 25. Room temperature (296 ± 2 K) rate constants for the gasphase reactions of the NO₃ radical with benzene and alkylsubstituted benzenes (from reference 11; see also Sec. 4.9)

Aromatic	$10^{16} \times k$ (cm ³ molecule ⁻¹ s ⁻¹)
Benzene	< 0.3
Toluene	0.68
<i>o</i> -Xylene	3.8
<i>m</i> -Xylene	2.33
p-Xylene	4.5
Ethylbenzene	≤ 5.7
1,2,3-Trimethylbenzene	19
1,2,4-Trimethylbenzene	18
1,3,5-Trimethylbenzene	8.0
1-Methyl-4-isopropylbenzene (p-cymene)	10
1,2,3,4-Tetrahydronaphthalene (tetralin)	88

OH Radical Reactions. In the troposphere, the aromatic hydrocarbons react essentially only with the OH radical. The kinetics and mechanisms of the OH radical reactions with the aromatic hydrocarbons have been reviewed and evaluated by Atkinson,¹⁰ and that review and evaluation is updated in Sec. 3.11. The 298 K rate constants as recommended by Atkinson¹⁰ (see also Sec. 3.11) are given in Table 26, and the temperature dependencies at temperatures ≤ 325 K for benzene and toluene are also noted (for the xylenes and trimethylbenzenes the rate constants are essentially independent of temperature over the restricted temperature ranges around 298 K studied¹⁰). These OH radical reactions can proceed by two pathways: H-atom abstraction from the alkyl substituent groups (or for benzene, from the aromatic ring C-H bonds) and OH radical addition to the aromatic ring.^{10,17} For example, for toluene:

Reaction Scheme (7)

(plus other isomers)

In general, the H-atom abstraction pathway [reaction (a)] is of relatively minor importance, with $k_a/(k_a + k_b) \leq 0.1$ at room temperature and atmospheric pressure for toluene, the xylenes and trimethylbenzenes,¹⁰ and these rate constant ratios $k_a/(k_a + k_b)$ as derived from kinetic or product data are also given in Table 26.

TABLE 26. Rate constants k for the gas-phase reactions of the OH radical with aromatic hydrocarbons at 298 K and atmospheric pressure and rate constant ratios $k_a/(k_a + k_b)$ obtained from kinetic data (from reference 10, except as indicated)

Aromatic	$10^{12} \times k (298 \text{ K})$ (cm ³ molecule ⁻¹ s ⁻¹)	$k_{\rm a}/(k_{\rm a} + k_{\rm b})$ (298 K)
Benzene	1.23ª	0.05
Toluene	5.96 ^b	0.12 (0.07 ^c)
Ethylbenzene	7.1	
o-Xylene	13.7	$0.10 (0.05 - 0.06^{d})$
m-Xylene	23.6	$0.04 \ (0.04^{\rm d})$
p-Xylene	14.3	$0.08(0.08^{d})$
n-Propylbenzene	6.0	
Isopropylbenzene	6.5	
o-Ethyltoluene	12.3	
<i>m</i> -Ethyltoluene	19.2	
p-Ethyltoluene	12.1	
1,2,3-Trimethylbenzene	32.7	0.06
1,2,4-Trimethylbenzene	32.5	0.06
1,3,5-Trimethylbenzene	57.5	0.03
tert -Butylbenzene	4.6	
Tetralin	34.3	

 $^{a}k = 2.47 \times 10^{-12} e^{-207/T} cm^{3} molecule^{-1} s^{-1} (234-354 K) at ~100$ Torr total pressure of argon; $k_{\infty} \approx 3.58 \times 10^{-12} \text{ e}^{-280/T} \text{ cm}^3$ molecule⁻¹ s⁻¹.

 ${}^{b}k \approx k_{\infty} = 1.81 \times 10^{-12} \,\mathrm{e}^{355/T} \,\mathrm{cm}^{3} \,\mathrm{molecule}^{-1} \,\mathrm{s}^{-1} \,(213-324 \,\mathrm{K}).$

^cDerived from the product data of Atkinson et al.¹⁷

^dDerived from the product data of Bandow and Washida¹⁸ and Atkinson et al.19

The hydroxycyclohexadienyl radical formed in pathway (b) can thermally dissociate back to reactants, with a thermal decomposition lifetime of the hydroxycyclohexadienyl radical of ~ 0.3 s at 298 K and atmospheric pressure.¹⁰ For the hydroxycyclohexadienyl radical formed from benzene, rate expressions for the thermal decomposition rate constant k_{-b} of $k_{-b} = 9.4 \times 10^{12} e^{-8540/T} s^{-1}$ and $k_{-b} = 9.0 \times 10^{12} e^{-8570/T} s^{-1}$ have been derived by Atkinson¹⁰ and Knispel et al.,²⁰ respectively, and similar thermal decomposition rates are expected for the hydroxvcyclohexadienyl-type radicals formed from toluene,^{10,20} the xylenes¹⁰ and the trimethylbenzenes¹⁰ (see also Sec. 3.11).

Under tropospheric conditions, the reactions subsequent to the H-atom abstraction reaction (a) are reasonably well understood.²¹ The benzyl and alkyl-substituted benzyl radicals react rapidly with O2,22-25 NO22,25 and NO_2 ,^{24,25} and the literature rate constants for the O₂, NO and NO₂ reactions with the benzyl and substituted-benzyl radicals are given in Table 27. Under tropospheric conditions, the sole reaction of the benzyl and alkyl-substituted benzyl radicals will be with O_2 , by an addition reaction, with subsequent reactions of the benzyl peroxy radicals (in the presence of NO)

leading to the formation of aromatic aldehydes and benzyl or alkyl-substituted benzyl nitrates. The fraction of benzyl nitrate formation from the reaction of the benzyl peroxy radical with NO is $\sim 0.10-0.12$ at room temperature and atmospheric pressure.^{17,27,28} Similar reaction pathways account for the observation of the tolualdehydes and methylbenzyl nitrates from the xylene isomers.^{18,19,29}

The major OH radical reaction pathway is hence by OH radical addition to the aromatic ring to yield hydroxvcyclohexadienyl or alkyl-hydroxycyclohexadienyl radicals [reaction (b)]. The hydroxycyclohexadienyl radical formed from benzene has been observed by ultraviolet absorption spectroscopy,^{20,30,31} and the reactions of the hydroxycyclohexadienyl and methylhydroxycyclohexadienyl radicals with NO, 20,31,32 NO $_2^{20,31-36}$ and O $_2^{20,31,37}$ studied both directly^{20,31} and indirectly.^{20,32-37} The reported rate constants for these reactions of the hydroxycyclohexadienvl-type radicals are given in Table 28. The rate constants obtained from these various studies^{20,31-37} are in reasonable agreement, and the most recent data^{20,32,35,36}

	$10^{12} \times k$	c (cm ³ molecule ⁻	¹ s ⁻¹)	at	
Radical	O ₂	NO	NO ₂	<i>T</i> (K)	Reference
Benzyl	0.99 ± 0.07	9.5 ± 1.2		а	Ebata et al. ²²
	1.12 ± 0.11			295	Nelson and McDonald ²³
	0.997 ± 0.08			350	
	1.03 ± 0.04			372	
o-Methylbenzyl	1.2 ± 0.07	8.7 ± 0.8		а	Ebata et al. ²²
	1.00 ± 0.05		50 ± 2	а	Devolder et al. ²⁴
	0.93 ± 0.16	10.5 ± 0.8	57.4 ± 10	297 ± 3	Goumri et al.25
m-Methylbenzyl	1.11 ± 0.1	12.7 ± 0.4	56 ± 11	297 ± 3	Goumri et al. ²⁵
<i>p</i> -Methylbenzyl	1.1 ± 0.10	8.9 ± 0.9		а	Ebata et al. ²²
	1.10 ± 0.08		49.7 ± 1.4	а	Devolder et al.24
<i>m</i> -Fluorobenzyl	0.6 ± 0.05	9.0 ± 0.4	48 ± 2	297 ± 3	Goumri <i>et al</i> . ²⁶
·	0.51 ± 0.06	7.45 ± 1.2	41 ± 10	297 ± 3	Goumri et al.25
<i>p</i> -Fluorobenzyl	0.82 ± 0.04	10 ± 0.4	49 ± 2	297 ± 3	Goumri et al. ²⁶
	0.78 ± 0.05	8.9 ± 1.3	50 ± 4	297 ± 3	Goumri et al.25

TABLE 27. Rate constants k for the gas-phase reactions of benzyl and substituted-benzyl radicals with O₂, NO and NO₂

*Room temperature, not specified.

TABLE 28. Rate constants k for the gas-phase reactions of hydroxycyclohexadienyl and alkyl-substituted hydroxycyclohexadienyl radicals with O_2 , NO and NO_2

		k (cm ³ molecule ⁻¹ s ⁻¹)		at	
Radical	O ₂	NO	NO ₂	<i>T</i> (K)	Reference
Hydroxycyclo-	$\leq 2 \times 10^{-16}$ a	$(1.0 \pm 0.5) \times 10^{-12}$	$(8.5 \pm 2.1) \times 10^{-12}$	298	Zellner et al. ³¹
hexadienyl		$<1 \times 10^{-14}$		319	Zetzsch <i>et al</i> .; ³² Knispel <i>et al</i> . ²⁰
			$(2.75 \pm 0.2) \times 10^{-11}$	305	Zetzsch et al.;32
			$(2.45 \pm 0.2) \times 10^{-11}$	320	Knispel et al.20
			$(2.50 \pm 0.2) \times 10^{-11}$	333	•
			$(2.50 \pm 0.2) \times 10^{-11}$	349	
	$(1.8 \pm 0.5) \times 10^{-16}$. ,	298	Knispel et al.20
1	$(1.88 \pm 0.47) \times 10^{-16}$			299	-
	$(2.61 \pm 0.79) \times 10^{-16}$			314	
	$(2.94 \pm 0.11) \times 10^{-16}$			333	
	$(3.77 \pm 0.43) \times 10^{-16}$			354	
			$(4 \pm 2) \times 10^{-11}$	353	Goumri et al.36
Methylhydroxy-	$<1 \times 10^{-15}$			353	Perry et al. ³⁷
cyclohexadieny	$<1 \times 10^{-15}$			397	
			> 10 ⁻¹¹	353	Bourmada et al. 33,34
			$(4 \pm 2) \times 10^{-11}$	353	Goumri et al.35
		$<3 \times 10^{-14}$		333	Zetzsch et al.32;
					Knispel et al.20
			$(3.6 \pm 0.4) \times 10^{-11}$	300	Zetzsch et al .;32
			$(3.6 \pm 0.3) \times 10^{-11}$	311	Knispel et al.20
			$(3.6 \pm 0.3) \times 10^{-11}$	320	▲ ·
			$(4.0 \pm 0.6) \times 10^{-11}$	338	
	$(5.4 \pm 0.6) \times 10^{-16}$. ,	300	Knispel et al.20
	$(4.3 \pm 0.6) \times 10^{-16}$			321	1

^aDerived from the observed lack of increased decay of the hydroxycyclohexadienyl radical in NO-O₂ mixtures compared to NO-N₂ mixtures.³¹

show that the hydroxycyclohexadienyl and methylhydroxvcvclohexadienvl radicals both react rapidly with NO₂ with similar room temperature rate constants of $\sim 3 \times$ 10^{-11} cm³ molecule⁻¹ s⁻¹. The corresponding reactions with O₂ have much lower reported room temperature rate constants, of $\sim 1.8 \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ for the hydroxycyclohexadienyl radical and $\sim 5 \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ for the methylhydroxycyclohexadienyl radical.²⁰ No reactions with NO were observed by Zetzsch and co-workers,^{20,32} with upper limits to the rate constants of $<(1-3) \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹ being determined for the hydroxycyclohexadienyl and methylhydroxycyclohexadienyl radicals. The rate constant for the NO reaction with the hydroxycyclohexadienyl radical reported by Zellner et al.³¹ may have been in error due to the presence of NO₂ impurity in the NO sample used.^{20,32}

These absolute rate constant data indicate that at room temperature and atmospheric pressure of air the potentially important reactions of the hydroxycyclohexadienyltype radicals are with O_2 and NO_2 , with the NO_2 reactions being of significance for NO₂ concentrations $> 3 \times 10^{12}$ molecule cm⁻³ for the OH-benzene adduct and >9 \times 10^{12} molecule cm⁻³ for the OH-toluene adduct. This is the concentration regime often used in environmental chamber NO_x-air irradiations of aromatic hydrocarbons (see, for example, Refs. 17 and 19). The recent product study of Atkinson et al.¹⁷ of the OH radical-initiated reactions of benzene and toluene was conducted at atmospheric pressure of air over the NO₂ concentration range $(1.5-29.5) \times 10^{13}$ molecule cm⁻³, and the reported absolute rate constants for the O₂ and NO₂ reactions of the hydroxycyclohexadienyl-type radicals (Table 28) lead to the prediction that under these concentration conditions¹⁷ the OH-toluene adducts should react mainly ($\sim 85\%$) with O₂ at the lowest NO₂ concentrations used, and mainly ($\sim 75\%$) with NO₂ at the highest NO₂ concentrations used. The observed yields of the cresols (which have previously been assumed to arise from reaction of the OH-toluene adducts with O_2^{38-41}) were independent of the NO₂ concentration. Furthermore, the nitrotoluene yields (nitrotoluene having been assumed to be formed by reaction of the OHtoluene adduct with NO₂ in competition with the reaction of the OH-toluene adduct with O_2^{38}) did not extrapolate to zero at zero NO_2 concentration,¹⁷ and analogous data were obtained for the benzene¹⁷ and xylene¹⁹ systems.

The cresol formation yields from the OH radical-initiated reaction of toluene measured by Atkinson *et al.*¹⁷ at NO₂ concentrations of $(1.5-29.5) \times 10^{13}$ molecule cm⁻³ are in agreement within the error limits with the yields derived from computer modeling of environmental chamber experiments carried out at lower NO₂ concentrations ($\leq 1.0 \times 10^{13}$ molecule cm⁻³).^{42,43} These observations suggest that, except for the possibility that the O₂ and NO₂ reactions with the OH-toluene adducts lead to cresol formation with identical isomer distributions and yields, the reported absolute rate constants for the hydroxycyclohexadienyl radical reactions are not applicable under atmospheric conditions. It is possible that the

reaction with O₂ leads to a thermally unstable OHaromatic-O₂ adduct⁴⁴ and/or that the rate constants measured by Knispel et al.²⁰ were high due to the formation of peroxy radicals in the presence of O₂ and the subsequent reactions of the OH-aromatic adducts with peroxy radicals [it should be noted that the studies of Zellner et al.,³¹ Bourmada et al.,^{33,34} Goumri et al.,^{35,36} Zetzsch et al.³² and Knispel et al.²⁰ all agree that the NO₂ reactions with the OH-aromatic adducts are $\ge 1 \times 10^{-11}$ cm³ molecule $^{-1}$ s $^{-1}$ at room temperature (Table 28)]. Circumstantial evidence for the importance of the NO₂ reaction with OH-aromatic adducts under ambient tropospheric conditions arises from ambient air and laboratory measurements of nitropolycyclic aromatic hydrocarbons. which show that nitro-PAH products yields from the OH radical-initiated gas-phase reactions of the PAH measured at concentrations of NO₂ in the 10¹⁴ molecule cm⁻³ range appear to be applicable under ambient atmospheric conditions.9,13

These data suggest that it is possible that the OH-aromatic adducts formed from reaction (b) react with NO₂, and not O₂, under conditions used in "smog chamber" experiments (and possibly also under ambient atmospheric conditions), and that previous chemical mechanisms for the atmospheric photooxidations of aromatic hydrocarbons are incorrect. In addition to reactions of the hydroxycyclohexadienyl-type radicals with NO₂ and O₂, the reactions of these radicals with O₃ need to be considered, since the room temperature rate constants for the reactions of O₃ with organic radicals such as the alkyl radicals⁴⁵ and the CH₃S radical⁴⁶ are in the range (0.2–5) × 10^{-11} cm³ molecule⁻¹ s⁻¹.

Thus, at the present time the actual reactions of the hydroxycyclohexadienyl radicals formed from the OH radical reactions with the aromatic hydrocarbons are not known, and it is distinctly possible that they do not involve reaction with O₂, even under atmospheric conditions (see also Sec. 6.1, Addendum). At present, the only definitive data concerning the reactions subsequent to the addition reaction of OH radicals with the aromatic hydrocarbons are the products formed (assuming that they are applicable to tropospheric conditions). For toluene, the most studied aromatic hydrocarbon (see, for example, Refs. 17, 27, 28, 42, 43, 47-55), these include o-, m- and p-cresol, o-, m- and p-nitrotoluene, benzyl nitrate, glyoxal, methylglyoxal, peroxyacetyl nitrate [PAN] (a secondary product which can be formed from the reactions of methylglyoxal), $CH_3COCOCH = CH_2$, $CHOCOCH = CH_2, CH_3COCH = CH_2, CH_3COCH =$ $CHCH = CH_2, CHOC(OH) = CHCHO, CH_3COCH =$ CHCHO, and $CH_3COCH = CHCH = CHCHO$. The formation yields of the ring-retaining products from benzene, toluene and the xylenes are given in Table 29.

The other products whose yields have been measured with some accuracy are the α -dicarbonyls from a series of aromatic hydrocarbons, and the available data are given in Table 30. In addition, the expected co-products of the α -dicarbonyls have been observed,^{57,60} but generally only in small yields.

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

Aromatic	Product	Yield	Reference
Benzene	Phenol	0.236 ± 0.044	Atkinson et al. ¹⁷
	Nitrobenzene	$\{0.0336 \pm 0.0078 + (3.07 \pm 0.92) \times 10^{-16} [NO_2]\}^a$	Atkinson <i>et al</i> . ¹⁷
Toluene	Benzaldehyde	$\begin{array}{l} 0.12 \\ 0.073 \ \pm \ 0.022 \\ 0.054 \\ 0.071 \\ 0.11 \ \pm \ 0.01 \\ 0.104 \ \pm \ 0.029 \\ 0.0645 \ \pm \ 0.0080 \end{array}$	Atkinson et al. ⁴² Atkinson et al. ⁴⁷ Shepson et al. ⁵⁰ Leone et al. ⁴³ Bandow et al. ⁵² Gery et al. ²⁸ Atkinson et al. ¹⁷
	Benzyl Nitrate	$\begin{array}{r} 0.007 \ \pm \ 0.004 \\ 0.0084 \ \pm \ 0.0017 \end{array}$	Gery et al. ²⁸ Atkinson et al. ¹⁷
	o-Cresol	$\begin{array}{r} 0.21 \\ 0.131 \ \pm \ 0.072 \\ 0.16 \\ 0.22 \\ 0.204 \ \pm \ 0.027 \end{array}$	Atkinson <i>et al</i> . ⁴² Atkinson <i>et al</i> . ⁴⁷ Leone <i>et al</i> . ²⁸ Gcry <i>et al</i> . ²⁸ Atkinson <i>et al</i> . ¹⁷
	m- + p -Cresol ^b	$0.05 \\ 0.048 \pm 0.009$	Gery et al. ²⁸ Atkinson et al. ¹⁷
	<i>m</i> -Nitrotoluene ^c	$\{(0.0135 \pm 0.0029) + (1.90 \pm 0.25) \times 10^{-16} [NO_2]\}^a$	Atkinson et al. ¹⁷
9-Xylene	o-Tolualdehyde	$\begin{array}{l} 0.073 \ \pm \ 0.036 \\ 0.047 \\ 0.05 \ \pm \ 0.01 \\ 0.172 \ \pm \ 0.070 \\ 0.0453 \ \pm \ 0.0059 \end{array}$	Takagi <i>et al.</i> ⁵⁶ Shepson <i>et al.</i> ⁵⁰ Bandow and Washida ¹⁸ Gery <i>et al.</i> ²⁹ Atkinson <i>et al.</i> ¹⁹
	2-Methylbenzyl nitrate	$\begin{array}{l} 0.009 \pm 0.002 \\ \sim 0.012 \\ \{(0.0135 \pm 0.0051) \\ + (5.5 \pm 4.6) \times \\ 10^{-17} [\text{NO}_2]\}^{*} \end{array}$	Takagi <i>et al.⁵⁶</i> Gery <i>et al.²⁹</i> Atkinson <i>et al.</i> ¹⁹
	2,3-Dimethylphenol	0.097 ± 0.024	Atkinson et al. ¹⁹
	3,4-Dimethylphenol	0.064 ± 0.015	Atkinson et al. ¹⁹
	2,3- + 3,4- Dimethylphenol	$\begin{array}{r} 0.012 \ \pm \ 0.006 \\ 0.102 \ \pm \ 0.039^{\rm d} \end{array}$	Takagi <i>et al</i> . ⁵⁶ Gery <i>et al</i> . ²⁹
	3-Nitro-o-xylene	0.005 ± 0.002 0.0059 ± 0.0018	Takagi et al. ⁵⁶ Atkinson et al. ¹⁹
	4-Nitro-o-xylene	0.075 ± 0.045 {(0.0111 ± 0.0029) + (9.9 ± 2.2) × 10^{-17} [NO ₂]} ^a	Takagi <i>et al</i> . ⁵⁶ Atkinson <i>et al</i> . ¹⁹
	Nitro-o-xylenes ^e	0.068 ± 0.019	Gery et al.29

TABLE 29. Observed ring-retaining product yields from the OH radical-initiated reactions of aromatic hydrocarbons under atmospheric conditions

TABLE 29. Observed ring-retaining produ	ct yields	from	the	OH	radical-initiated	reactions	of	aromatic	hydrocarbons	under	atmospheric
conditions – Continued											

Aromatic	Product	Yield	Reference
m-Xylene	<i>m</i> -Tolualdehyde	$\begin{array}{r} 0.04 \ \pm \ 0.01 \\ 0.122 \ \pm \ 0.059 \\ 0.0331 \ \pm \ 0.0041 \end{array}$	Bandow and Washida ¹⁸ Gery et al. ²⁹ Atkinson et al. ¹⁹
	3-Methylbenzyl nitrate	~ 0.010 0.0061 ± 0.0027	Gery et al. ²⁹ Atkinson et al. ¹⁹
	2,4-Dimethylphenol	0.099 ± 0.023	Atkinson et al. ¹⁹
	2,6-Dimethylphenol	0.111 ± 0.033	Atkinson et al. ¹⁹
	2,4- + 2,6-Dimethylphenol	0.178 ± 0.065^{f}	Gery et al. ²⁹
	4-Nitro- <i>m</i> -xylene	0.0018 ± 0.0009	Atkinson et al. ¹⁹
	5-Nitro- <i>m</i> -xylene	$\{(0.0032 \pm 0.0012) + (1.6 \pm 0.8) \times 10^{-17} [NO_2]\}^{a}$	Atkinson et al. ¹⁹
	Nitro-m-xylenes	0.033 ± 0.025^{g}	Gery et al. ²⁹
p-Xylene	p-Tolualdehyde	$\begin{array}{r} 0.08 \ \pm \ 0.01 \\ 0.10 \\ 0.0701 \ \pm \ 0.0103 \end{array}$	Bandow and Washida ¹⁸ Becker and Klein ⁵⁷ Atkinson <i>et al</i> . ¹⁹
	4-Methylbenzyl- nitrate	0.0082 ± 0.0016	Atkinson et al. ¹⁹
	2,5-Dimethylphenol	0.188 ± 0.038	Atkinson et al. ¹⁹
	2-Nitro- <i>p</i> -xylene	$\{(0.0120 \pm 0.0035) + (2.8 \pm 2.6) \times 10^{-17} [NO_2]\}^{a}$	Atkinson et al. ¹⁹

^aNO₂ concentration in molecule cm⁻³.

^b*m*-cresol:*p*-cresol $\sim 1:10.^{28}$

^co-nitrotoluene:*m*-nitrotoluene:*p*-nitrotoluene = $7:72:21;^{28}$ 5:70:25.¹⁷

^d2,3-dimethylphenol:3,4-dimethylphenol \sim 74 ± 11:26 ± 11.²⁹

^e4-nitro-o-xylene accounted for 86 \pm 7% of total.²⁹

¹2,4-dimethylphenol: 2,6-dimethylphenol = 58 ± 19 ;42 ± 19 ;²⁹ no 3,5-dimethylphenol observed.

⁸Mainly (71 \pm 49%) 4-nitro-*m*-xylene; remainder 5-nitro-*m*-xylene.

Thus, for toluene approximately 10% of the overall reaction occurs by H-atom abstraction to form, in the presence of NO, benzaldehyde and benzyl nitrate. The cresols account for a further approximately 25% of the overall OH radical reaction, and glyoxal plus methylglyoxal (together with their co-products) account for approximately 25% of the reaction, although the co-products are not known. The remaining reaction products, accounting for approximately 40% of the overall OH radical reaction, are not quantitatively known, although a variety of ringcleavage products (other than the α -dicarbonyls) have been observed.^{48-50,54} The situation is similar for benzene,^{17,53} o-xylene,^{18,19,29,47,53,56,58} m-xylene^{18,19,29,53} and pxylene^{18,19,57} (see Tables 29 and 30).

Styrenes

Kinetic and product studies of the atmosphericallyimportant gas-phase reactions of styrene, ^{1,10,11,15,61-63} α and β -methylstyrene^{10,61} and β -dimethylstyrene^{10,64} have been carried out. The rate constants (all obtained at room temperature) for the gas-phase reactions of styrene and the methyl-substituted styrenes with OH and NO₃ radicals and O₃ are given in Table 31. The OH radicalinitiated reaction of β -methylstyrene was observed to lead to the formation of benzaldehyde with a yield of 0.98 \pm 0.14,⁶¹ while β -dimethylstyrene formed benzaldehyde (with a yield of 1.05 \pm 0.15) and acetone (with a yield of 0.89 \pm 0.05),⁶⁴ consistent with the product data from styrene (see below).

To date, styrene is the most studied of the styrenes.

		a-Dicarbonyl Yield ^a		
Aromatic	Glyoxal	Methylglyoxal	Biacetyl	Reference
Benzene	0.207 ± 0.019			Tuazon et al.53
Toluene	0.08	0.075		Shepson et al. ⁵⁰
	0.111 ± 0.013	0.146 ± 0.014		Tuazon et al. ⁵¹
	0.15 ± 0.04	0.14 ± 0.04		Bandow et al.52
	0.105 ± 0.019	0.146 ± 0.006		Tuazon et al.53
	0.098	0.106		Gery et al. ²⁸
o-Xylene			0.18 ± 0.04	Darnall et al.58
2			0.260 ± 0.102	Takagi et al. ⁵⁶
			0.137 ± 0.016	Atkinson et al.47
	0.034	0.116	0.085	Shepson <i>et al</i> . ⁵⁰
	0.08 ± 0.04	0.23 ± 0.03	0.10 ± 0.02	Bandow and Washida ¹⁸
	0.087 ± 0.012	0.246 ± 0.020		Tuazon et al.53
<i>m</i> -Xylene	0.104 ± 0.020	0.265 ± 0.035		Tuazon et al.51
-	0.13 ± 0.03	0.42 ± 0.05		Bandow and Washida ¹⁸
	0.086 ± 0.011	0.319 ± 0.009		Tuazon et al.53
o-Xylene	0.120 ± 0.020	0.111 ± 0.015		Tuazon et al.51
-	0.24 ± 0.02	0.12 ± 0.02		Bandow and Washida ¹⁸
	0.225 ± 0.039	0.105 ± 0.034		Tuazon et al.53
1,2,3-Trimethylbenzene	0.072 ± 0.001	0.18 ± 0.01	0.45 ± 0.02	Bandow and Washida ⁵⁹
	0.058 ± 0.008	0.152 ± 0.025	0.316 ± 0.036	Tuazon et al.53
1,2,4-Trimethylbenzene	0.078 ± 0.005	0.37 ± 0.01	0.11 ± 0.01	Bandow and Washida ⁵⁹
-	0.048 ± 0.005	0.357 ± 0.017	0.048 ± 0.009	Tuazon et al.53
1,3,5-Trimethylbenzene		0.64 ± 0.03		Bandow and Washida ⁵⁹
-		0.602 ± 0.033		Tuazon et al.53

TABLE 30. a-Dicarbonyl yields from the OH radical-initiated reactions of a series of aromatic hydrocarbons under atmospheric conditions

^aIndicated error limits are two standard deviations.

O_3 Reaction

The magnitude of the rate constant for reaction of styrene with O₃, when compared to the literature rate constants¹ at room temperature for the gas-phase reactions of O₃ with benzene and the methyl-substituted benzenes of $k < 10^{-20}$ cm³ molecule⁻¹ s⁻¹, shows that the reaction of O₃ with styrene proceeds by initial addition of O_3 to the $-CH = CH_2$ substituent group. Product studies using FT-IR absorption spectroscopy to monitor the reactants and products⁶³ showed that the major products of the gas-phase reaction of O₃ with styrene in one atmosphere of air were formaldehyde (HCHO) and benzaldehyde (C₆H₅CHO), together with a minor amount of formic acid (HCOOH). The observed product formation yields were⁶³: HCHO, 0.37 \pm 0.05; C₆H₅CHO, 0.41 \pm 0.05; and HCOOH, $\sim 0.01-0.02$. Analyses of reaction samples from analogous experiments by gas chromatography (GC) and combined gas chromatography-mass spectrometry (GC-MS) yielded the same major products as identified from the FT-IR data.⁶³

The available kinetic and product data suggest that the reaction then proceeds by

where $[]^{\dagger}$ denotes an initially energy-rich biradical species. The subsequent reactions of the $[\dot{C}H_2O\dot{O}]^{\ddagger}$ radical formed from the O₃ reaction with ethene have been discussed in Sec. 2.2 above, with the thermalized $\dot{C}H_2O\dot{O}$ biradical being expected to react with water vapor to form HCOOH under atmospheric conditions. The reactions of the $[C_6H_5\dot{C}HO\dot{O}]^{\ddagger}$ radical are not presently known. The product data obtained by Tuazon *et al.*⁶³ are reasonably consistent with the above reaction scheme, providing that the $[C_6H_5\dot{C}HO\dot{O}]^{\ddagger}$ biradical does not lead to the formation of C_6H_5CHO in high yield.

TABLE 31. Room temperature rate constants for the gas-phase reactions of OH and NO₃ radicals and O₃ with the styrenes

	k (cm^3 molecule ⁻¹ s ⁻¹) for reaction with	
Styrene	OHª	NO3 ^b	O ₃ °
$\overline{C_6H_5CH=CH_2}$	5.8×10^{-11}	1.5×10^{-13}	1.71×10^{-17}
$C_6H_5C(CH_3) = CH_2$	5.2×10^{-11}		
$C_6H_5CH = CHCH_3$	5.9×10^{-11}		
$C_6H_5CH = C(CH_3)_2$	3.3×10^{-11}		

*From Ref. 10.

^bFrom Ref. 11.

^cFrom Ref. 63 and Sec. 5.7.

OH Radical Reaction

Analogous to the O₃ reaction, the magnitude of the OH radical reaction rate constant suggests that the reaction of the OH radical with styrene proceeds by initial OH radical addition to the substituent $-CH = CH_2$ group¹⁰

OH + C₆H₅CH = CH₂
$$\xrightarrow{M}$$
 C₆H₅ĊHCH₂OH
and C₆H₅CH(OH)ĊH₂

The products of the OH radical reaction with styrene in air have been investigated by Bignozzi et al.⁶¹ and Tuazon et al.⁶³ Bignozzi et al.⁶¹ observed benzaldehyde as the major product, and derived a formation yield of benzaldehyde of 1.03 ± 0.15 from the time-concentration profiles of styrene and benzaldehyde in an irradiated NO_x-styrene-air mixture. More recently, Tuazon et al.⁶³ have used FT-IR absorption spectroscopy to monitor the reactants and products in irradiated C₂H₅ONO-NOstyrene-air mixtures, and observed HCHO and C6H5CHO as the major products, with formation yields of 0.72 \pm 0.07 and 0.63 \pm 0.06, respectively. A further product was observed by Tuazon et al.63 which contained a nitrate $(-ONO_2)$ group. Heuss and Glasson⁶⁵ also observed HCHO and C₆H₅CHO as the major products of the NO_x-air photooxidation of styrene.

The products observed in these studies^{61,63,65} are those expected to arise from the reactions subsequent to the initial OH radical addition to the $-CH = CH_2$ substituent group. Thus, in the presence of NO $C_6H_5\dot{C}HCH_2OH + O_2 \xrightarrow{M} C_6H_5CH(OO')CH_2OH$

$$C_{6}H_{5}CH(OO')CH_{2}OH + NO \longrightarrow C_{6}H_{5}CH(OO)CH_{2}OH + NO_{2}$$

$$C_{6}H_{5}CH(O')CH_{2}OH + NO \longrightarrow C_{6}H_{5}CH(O')CH_{2}OH + NO_{2}$$

$$C_{6}H_{5}CH(O')CH_{2}OH \longrightarrow C_{6}H_{5}CHO + CH_{2}OH \longrightarrow O_{2}$$

$$HCHO + HO_{2}$$
and analogously for the C₆H₅CH(OH)CH₂ radical.

NO₃ Radical Reaction

The products of the gas-phase reaction of styrene with the NO₃ radical have been investigated by Tuazon *et al.*⁶³ using FT-IR absorption spectroscopy to monitor the reactants and products. Formaldehyde (HCHO) and benzaldehyde (C₆H₅CHO) were observed as products, each with formation yields of ~0.10–0.12.

Three as yet unidentified nitrogen-containing compounds were also formed as products of these NO₃ radical reactions with styrene.⁶³ These products (A, B and C) had infrared absorption bands which indicated the presence of $-ONO_2$ plus $-OONO_2$; and $-ONO_2$ plus >C=O groups. Product A was formed in the initial stages of the reaction, and then disappeared rapidly (as expected from the presence of the thermally unstable peroxynitrate, $-OONO_2$, group). Product B was more stable than A, but a steady decrease in its concentration with time was also observed.⁶³ Product C was the most stable of these three nitrogen-containing compounds.

The NO₃ radical reaction with styrene is expected to proceed by initial NO₃ radical addition to the $-CH = CH_2$ substituent group¹¹:

$$NO_3 + C_6H_5CH = CH_2 \xrightarrow{M} C_6H_5CH(ONO_2)\dot{C}H_2$$

and $C_6H_5\dot{C}HCH_2ONO_2$

followed by the reactions (taking the $C_6H_5\dot{C}HCH_2ONO_2$ radical as an example)

$$C_6H_5\dot{C}HCH_2ONO_2 + O_2 \xrightarrow{M} C_6H_5CH(OO')CH_2ONO_2$$

 $C_6H_5CH(O\dot{O})CH_2ONO_2 + NO_2 \rightleftharpoons$ $C_6H_5CH(OONO_2)CH_2ONO_2$ (possibly product A)

$$C_6H_5CH(OO')CH_2ONO_2 + \begin{cases} NO \\ RO_2^{\circ} \rightarrow C_6H_5CH(O')CH_2ONO_2 \end{cases}$$

(where the RO₂ radical can include the $C_6H_5CH(OO\cdot)CH_2ONO_2$ or $C_6H_5CH(ONO_2)CH_2OO^2$ radical)

 $C_6H_5CH(O')CH_2ONO_2 + O_2 \rightarrow$

 $C_6H_5C(O)CH_2ONO_2 + HO_2$ (possibly product C)

$$C_6H_5CH(O)CH_2ONO_2 \rightarrow C_6H_5CHO + CH_2ONO_2$$

↓ fast
HCHO + NO₂

Analogous intermediate or first-generation products $(C_6H_5CH(ONO_2)CH_2OONO_2$ and $C_6H_5CH(ONO_2)$ -CHO) are expected to be formed from the $C_6H_5CH(ONO_2)CH_2$ radical.

Aromatic Aldehydes

The only aromatic aldehyde which has been studied to any extent is benzaldehyde. The potential atmospheric reactions are photolysis and chemical reaction with OH and NO₃ radicals and O₃. No data are available concerning the O₃ reaction, but it is expected to be of no significance as an atmospheric loss process.¹ The NO₃ radical reaction has a room temperature rate constant of 2.6×10^{-15} cm³ molecule⁻¹ s^{-1 11}, very similar to that for acetaldehyde. This NO₃ radical reaction is expected to proceed by H-atom abstraction from the -CHO substituent group

$C_6H_5CHO + NO_3 \rightarrow HONO_2 + C_6H_5\dot{C}O$

followed by reactions of the $C_6H_5\dot{C}O$ radical (see below). The rate constant for the OH radical reaction is 1.29 \times 10^{-11} cm³ molecule⁻¹ s⁻¹ at 298 K¹⁰. In terms of their importance as atmospheric loss processes, the OH radical reaction will dominate over the NO₃ radical reaction by approximately an order of magnitude. The OH radical reaction also proceeds by H-atom abstraction from the -CHO group (OH radical addition to the aromatic ring is expected to be slower than the OH radical reaction with benzene since the -CHO group is electron withdrawing⁶⁶). Niki *et al*.⁶⁷ conducted a product study of the Cl atom-initiated reaction of benzaldehyde, and observed the formation of o- and (tentatively) p-nitrophenol. More recently, Atkinson and Aschmann⁶⁸ have observed the formation of o-nitrophenol from the gas-phase OH radical-initiated reaction of benzaldehyde in the presence of NO, in $21 \pm 4\%$ yield. By analogy with the reactions of acetaldehyde (see Sec. 2.5 below), the OH radical-initiated reaction of benzaldehyde in the presence of NO is expected to proceed by Reaction Scheme (8), leading to formation of the phenyl (C_6H_5) radical. Preidel and Zellner⁶⁹ have investigated the kinetics of the reactions of the phenyl radical with O_2 , NO and NO₂ over the temperature range 297-407 K, and determined rate constants of⁶⁹

 $k(C_6H_5 + NO) = 4.0 \times 10^{-12} e^{300/T} cm^3 molecule^{-1} s^{-1},$

 $k(C_6H_5 + NO_2) = 1.3 \times 10^{-12} e^{540/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

and

 $k(C_6H_5^{\circ} + O_2) < 2 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.$

Reaction Scheme (8)

These data indicate that the previously postulated reaction sequence^{21,38,67} of

does not occur, and other reaction routes leading to the formation of (presumably) phenoxy radicals (at least in part) must be operative.

Peroxybenzoyl nitrate (PBzN) is analogous to PAN in that it is in thermal equilibrium with NO₂ and the C₆H₅C(O)OO radical. The thermal decomposition of PBzN has been studied by Ohta and Mizoguchi,⁷⁰ Kenley and Hendry⁷¹ and Kirchner *et al.*⁷²

$$C_6H_5C(O)OONO_2 \xrightarrow{M} C_6H_5C(O)OO^{\cdot} + NO_2$$

The rate constants of Ohta and Mizoguchi⁷⁰ and Kirchner et al.⁷² are in good agreement. Based on the more extensive, pressure-dependent measurements of Kirchner et al.,⁷² the following parameters in the Troe fall-off equation are recommended: $k_0 = 3.4 \times 10^{-2}$ $e^{-11138/T}$ cm⁶ molecule⁻² s⁻¹; $k_{\infty} = 1.1 \times 10^{17}$ e^{-14073/T} cm³ molecule⁻¹ s⁻¹; and F = 0.25. The thermal decomposition rate constant at 298 K and 760 Torr total pressure of air is then 3.2×10^{-4} s⁻¹ ($k_{\infty} = 3.4 \times 10^{-4}$ s⁻¹ at 298 K).

Kirchner *et al*.⁷² also measured the rate constant ratio k_a/k_b for the reactions of the benzoylperoxy radical with NO₂ and NO,

 $C_6H_5C(O)OO^{\circ} + NO_2 \xrightarrow{M} C_6H_5C(O)OONO_2$ (a)

$$C_6H_5C(O)OO^{\bullet} + NO \rightarrow C_6H_5C(O)O^{\bullet} + NO_2$$
 (b)

with $k_a/k_b = 0.63 \pm 0.07$ at 750 Torr total pressure of N₂, independent of temperature over the range 310-322 K.

It is clear from experimental and computer modeling studies of the NO_x-air photooxidations of toluene that benzaldehyde also photolyzes.^{28,42,43} The absorption cross sections in the wavelength region 220–300 nm ($S_o \rightarrow S_3$ bands) have been given by Itoh⁷³ and absorption extends to 400 nm in the $S_o \rightarrow S_1$ and $S_o \rightarrow T_1$ bands.⁷⁴ The photodissociation quantum yields, the photodissociation products (in particular, whether the products are radical species or not) and their wavelength dependencies are, however, not known.

Phenolic Compounds

Phenol, the cresols and the dimethylphenols are formed from the atmospheric degradation of benzene, toluene and the xylenes, respectively (Table 29), and data are available concerning the atmospheric reactions of these compounds. The potential atmospheric loss processes of phenolic compounds are reaction with NO₃ and OH radicals and with O₃, together with wet and dry deposition (these compounds are readily incorporated into rain and cloud-water and fog). The room temperature rate constants for the gas-phase reactions of OH radicals, NO₃ radicals and O₃ with phenol, the cresols and the dimethylphenols are given in Table 32. The reactions with O₃ will be a minor removal process for the phenolic compounds under atmospheric conditions.

The OH radical reactions proceed by OH radical addition to the aromatic ring and by H-atom abstraction from the substituent –OH and –CH₃ groups.¹⁰

TABLE 32. Room temperature rate constants for the gas-phase reactions of OH and NO₃ radicals and O₃ with phenol, the cresols and the dimethylphenols, and with 2-nitrophenol

	F	Rate constants k (cm ³ molecule ⁻¹ s ⁻¹) for reaction with	
Phenol	OHa	NO3 ^b	O ₃ °
Phenol	2.63×10^{-11}	3.78×10^{-12}	
o-Cresol	4.2×10^{-11}	1.37×10^{-11}	2.6×10^{-19}
m-Cresol	6.4×10^{-11}	9.74×10^{-12}	1.9×10^{-19}
<i>p</i> -Cresol	4.7×10^{-11}	1.07×10^{-11}	4.7×10^{-19}
2,3-Dimethylphenol	8.0×10^{-11}		
2,4-Dimethylphenol	7.2×10^{-11}		
2,5-Dimethylphenol	8.0×10^{-11}		
2,6-Dimethylphenol	6.6×10^{-11}		
3,4-Dimethylphenol	8.1×10^{-11}		
3,5-Dimethylphenol	1.1×10^{-10}		
2-Nitrophenol	9.0×10^{-13}	$< 2 \times 10^{-14}$	

^aFrom Atkinson.¹⁰

^bFrom Atkinson¹¹ and Sec. 4.9.

^cFrom Atkinson and Carter.¹

At 298 K, kinetic studies¹⁰ indicate that the H-atom abstraction processes account for $\sim 9\%$ of the overall OH radical reaction for phenol [via pathway (b)] and $\sim 7\%$ of the overall OH radical reaction for *o*-cresol [via pathways (a) and (b)].

In the presence of NO_x, the OH radical-initiated reactions of phenol and the cresols lead to the formation, in low yield, of nitrophenols, and the yields recently measured by Atkinson *et al*.⁷⁵ are given in Table 33. The close correspondence of the nitrophenol formation yields from phenol and *o*-cresol with the fraction of the overall OH radical reaction estimated to proceed by H-atom abstraction from the –OH group¹⁰ implies that the formation of 2-nitrophenol from phenol arises from the reaction sequence

By analogy with the OH radical-initiated reactions of benzene, toluene and the xylenes in the presence of NO_{x} ,^{17,19} nitrophenol formation subsequent to OH radical addition to the aromatic ring is expected to be of minor importance,⁷⁵ and may be expected to give rise to non-ortho nitro-substituted isomers.^{17,19}

No detailed knowledge of the products and mechanism of the OH radical addition reaction pathways is known, although pyruvic acid (CH₃C(O)C(O)OH) has been reported as a product of the *o*-cresol reaction.⁷⁶ Pyruvic acid photolyzes rapidly,^{77,78} with a photolysis rate, relative to that for photolysis of NO₂, of 0.033 under atmospheric conditions.⁷⁸ The photolysis products of pyruvic acid include CO₂ and acetaldehyde.^{79,80} Berges and Warneck⁸⁰ obtained photodissociation quantum yields at $\lambda =$ 350 nm for the processes

$$CH_{3}C(O)C(O)OH + hv \longrightarrow CH_{3}\dot{C}O + HO\dot{C}O (b)$$

of $\phi_a = 0.48 \pm 0.01$ and $\phi_b = 0.39 \pm 0.10$, with an overall quantum yield for the photodissociation of pyruvic acid of 0.88.

The NO₃ radical reactions with the phenols have been postulated to proceed by an overall H-atom abstraction process after initial NO₃ radical addition to the aromatic ring, through the intermediary of a 6-membered transition state^{11,81} [see Reaction Scheme (9)], followed by the reactions of the phenoxy radical with HO₂ to form phenol or with NO₂ to form nitrophenols.

The initial NO₃ radical addition to the aromatic ring is expected to be reversible because of the short lifetime of the NO₃-aromatic adduct with respect to thermal decomposition back to reactants,^{11,82} and a decomposition rate for the NO₃-monocyclic aromatic adducts of $\sim 5 \times$ 10^8 s^{-1} at 298 K has been estimated^{11,82} from a study of the reactions of naphthalene in N₂O₅-NO₃-NO₂-air mixtures.⁸²

However, such a reaction mechanism would be expected to lead to a unit, or near unit, yield of nitrophenols. The nitrophenol product formation yields determined by Atkinson *et al*.⁷⁵ and given in Table 33 show, however, that this is not the case for phenol and *o*and *m*-cresol. These observations indicate that the NO₃ radical reactions with the phenols are more complex than previously thought, and that other reaction pathways, possibly involving ring cleavage, occur.

TABLE 33. Nitrophenol formation yields from the gas-phase reactions of OH and NO₃ radicals with phenol and the cresols, in the presence of NO_x (from Atkinson *et al.*⁷⁵)

		Reaction with		
Reactant	Product	ОН	NO ₃	
Phenol	2-Nitrophenol	0.067 ± 0.015	0.251 ± 0.051	
o-Cresol	6-Methyl-2-nitrophenol	0.051 ± 0.015	0.128 ± 0.028	
m-Cresol	3-Methyl-2-nitrophenol	0.016 ± 0.010	0.168 ± 0.029	
	5-Methyl-2-nitrophenol	~0.016	0.196 ± 0.036	
v-Cresol	4-Methyl-2-nitrophenol	0.10 ± 0.04	0.74 ± 0.16	

other products

The measured rate constants k are then given by $k = k_a(k_c + k_d)/(k_b + k_c + k_d)$, where k_a, k_b, k_c and k_d are the rate constants for reactions (a) through (d). The product data given in Table 33 suggest that $k_c \sim k_d$, to within a factor of ~10. Furthermore, the observation of a dramatically lower rate constant for the reaction of the NO₃ radical with 2-nitrophenol than for phenol and the cresols (Table 32) suggests that the rate constant k_a for initial addition of the NO₃ radical to the aromatic ring is strongly dependent on the identity and position of substituent groups on the aromatic ring, as is the case for the corresponding OH radical reactions.¹⁰ Clearly, further work is needed concerning the atmospheric products and mechanisms of the reactions of phenolic compounds.

The reactions of the α - and δ -dicarbonyls are dealt with in Sec. 2.5 below.

References

- ¹R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ²R. Atkinson, J. Arey, B. Zielinska, and S. M. Aschmann, Environ. Sci. Technol. 21, 1014 (1987).

- ³R. Atkinson, S. M. Aschmann, J. Arey, B. Zielinska, and D. Schuetzle, Atmos. Environ. 23, 2679 (1989).
- ⁴R. Atkinson, J. Arey, B. Zielinska, and S. M. Aschmann, Int. J. Chem. Kinet. 22, 999 (1990).
- ⁵B. Zielinska, J. Arey, R. Atkinson, and P. A. McElroy, Environ. Sci. Technol. 22, 1044 (1988).
- ⁶B. Zielinska, J. Arey, R. Atkinson, and P. A. McElroy, Environ. Sci. Technol. **23**, 723 (1989).
- ⁷J. Arey, R. Atkinson, B. Zielinska, and P. A. McElroy, Environ. Sci. Technol. 23, 321 (1989).
- ⁸J. Arey, B. Zielinska, R. Atkinson, and S. M. Aschmann, Int. J. Chem. Kinet. 21, 775 (1989).
- ⁹J. Arey, R. Atkinson, S. M. Aschmann, and D. Schuetzle, Polycyclic Aromatic Compounds 1, 33 (1990).
- ¹⁰R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ¹¹R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).
- ¹²D. Helmig, J. López-Cancio, J. Arey, W. P. Harger, and R. Atkinson, Environ. Sci. Technol. 26, 2207 (1992).
- ¹³R. Atkinson and J. Arey, Environ. Health Persp., in press (1994).
- ¹⁴S. Toby, L. J. Van de Burgt, and F. S. Toby, J. Phys Chem. **89**, 1982 (1985).
- ¹⁵ R. Atkinson and S. M. Aschmann, Int. J. Chem. Kinet. **20**, 513 (1988).
 ¹⁶ B. Rindone, F. Cariati, G. Restelli, and J. Hjorth, Fres. J. Anal. Chem. **339**, 673 (1991).
- ¹⁷R. Atkinson, S. M. Aschmann, J. Arey, and W. P. L. Carter, Int. J. Chem. Kinet. 21, 801 (1989).
- ¹⁸H. Bandow and N. Washida, Bull. Chem. Soc. Jpn. **58**, 2541 (1985).
 ¹⁹R. Atkinson, S. M. Aschmann, and J. Arey, Int. J. Chem. Kinet. **23**, 77
- (1991).
- ²⁰R. Knispel, R. Koch, M. Siese, and C. Zetzsch, Ber. Bunsenges. Phys. Chem. 94, 1375 (1990).
- ²¹R. Atkinson, Atmos. Environ. 24A, 1 (1990).
- ²²T. Ebata, K. Obi, and I. Tanaka, Chem. Phys. Lett. 77, 480 (1981).
- ²³H. H. Nelson and J. R. McDonald, J. Phys. Chem. 86, 1242 (1982).
- ²⁴P. Devolder, A. Goumri, J. -F. Pauwels, and J. -P. Sawerysyn, 11th International Symposium on Gas Kinetics, Assissi, Italy, September 2-7, 1990.
- ²⁵A. Goumri, L. Elmaimouni, J. P. Sawerysyn and P. Devolder, J. Phys. Chem. 96, 5395 (1992).

- ²⁶A. Goumri, J. -F. Pauwels, J. -P. Sawerysyn, and P. Devolder, Chem. Phys. Lett. 171, 303 (1990).
- ²⁷M. Hoshino, H. Akimoto, and M. Okuda, Bull. Chem. Soc. Jpn. **51**, 718 (1978).
- ²⁸M. W. Gery, D. L. Fox, H. E. Jeffries, L. Stockburger, and W. S. Weathers, Int. J. Chem. Kinet. 17, 931 (1985).
- ²⁹M. W. Gery, D. L. Fox, R. M. Kamens, and L. Stockburger, Environ. Sci. Technol. 21, 339 (1987).
- ³⁰B. Fritz, V. Handwerk, M. Preidel, and R. Zellner, Ber. Bunsenges. Phys. Chem. **89**, 343 (1985).
- ³¹R. Zellner, B. Fritz, and M. Preidel, Chem. Phys. Lett. **121**, 412 (1985).
- ³²C. Zetzsch, R. Koch, M. Siese, F. Witte, and P. Devolder, Proc. 5th European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, Kluwer Academic Publ., Dordrecht, The Netherlands, 1990, pp. 320–327.
- ³³N. Bourmada, P. Devolder, and L. -R. Sochet, Chem. Phys. Lett. **149**, 339 (1988).
- ³⁴N. Bourmada, M. Carlier, J. -F. Pauwels, and P. Devolder, J. Chim. Phys. **85**, 881 (1988).
- ³⁵A. Goumri, J. -P. Sawerysyn, J. -F. Pauwels, and P. Devolder, Proc. 5th European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, Kluwer Academic Publ., Dordrecht, The Netherlands, 1990, pp. 315–319.
- ³⁶A. Goumri, J. F. Pauwels, and P. Devolder, Can. J. Chem. **69**, 1057 (1991).
- ³⁷R. A. Perry, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem. **81**, 296 (1977).
- ³⁸R. Atkinson and A. C. Lloyd, J. Phys. Chem. Ref. Data 13, 315 (1984).
- ³⁹M. W. Gery, G. Z. Whitten, J. P. Killus, and M. C. Dodge, J. Geophys. Res. **94**, 12925 (1989).
- ⁴⁰W. P. L. Carter, Atmos. Environ. 24A, 481 (1990).
- ⁴¹W. R. Stockwell, P. Middleton, J. S. Chang, and X. Tang, J. Geophys. Res. **95**, 16343 (1990).
- ⁴²R. Atkinson, W. P. L. Carter, K. R. Darnall, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 12, 779 (1980).
- ⁴³J. A. Leone, R. C. Flagan, D. Grosjean, and J. H. Seinfeld, Int. J. Chem. Kinet. 17, 177 (1985).
- ⁴⁴R. Atkinson, J. Arey, and S. M. Aschmann, Int. J. Chem. Kinet. 24, 467 (1992).
- ⁴⁵R. Paltenghi, E. A. Ogryzlo, and K. D. Bayes, J. Phys. Chem. 88, 2595 (1984).
- ⁴⁶G. S. Tyndall and A. R. Ravishankara, J. Phys. Chem. 93, 4707 (1989).
- ⁴⁷R. Atkinson, W. P. L. Carter, and A. M. Winer, J. Phys. Chem. 87, 1605 (1983).
- ⁴⁸B. E. Dumdei and R. J. O'Brien, Nature 311, 248 (1984).
- ⁴⁹R. J. O'Brien, B. E. Dumdei, S. V. Hummel, and R. A. Yost, Anal. Chem. 56, 1329 (1984).
- ⁵⁰P. B. Shepson, E. O. Edney, and E. W. Corse, J. Phys. Chem. **88**, 4122 (1984).
- ⁵¹È. C. Tuazon, R. Atkinson, H. Mac Leod, H. W. Biermann, A. M. Winer, W. P. L. Carter, and J. N. Pitts, Jr., Environ. Sci. Technol. 18, 981 (1984).
- ⁵²H. Bandow, N. Washida, and H. Akimoto, Bull. Chem. Soc. Jpn. 58, 2531 (1985).
- ⁵³E. C. Tuazon, H. Mac Leod, R. Atkinson, and W. P. L. Carter, Environ. Sci. Technol. 20, 383 (1986).
- ⁵⁴B. E. Dumdei, D. V. Kenny, P. B. Shepson, T. E. Kleindienst, C. M. Nero, L. T. Cupitt, and L. D. Claxton, Environ. Sci. Technol. 22, 1493 (1988).
- ⁵⁵V. M. Sol, P. Mulder, and R. Louw, Rec. Trav. Chim. Pays-Bas 109, 577 (1990).
- ⁵⁶H. Takagi, N. Washida, H. Akimoto, K. Nagasawa, Y. Usui, and M. Okuda, J. Phys. Chem. 84, 478 (1980).
- ⁵⁷K. H. Becker and Th. Klein, Proc. 4th Euopean Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Riedel Pub. Co., Dordrecht, The Netherlands, 1987, pp. 320–326.
- ⁵⁸K. R. Darnall, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem. **83**, 1943 (1979).
- ⁵⁹H. Bandow and N. Washida, Bull. Chem. Soc. Jpn. 58, 2549 (1985).

- ⁶⁰H. Takagi, N. Washida, H. Akimoto, and M. Okuda, Spectros. Lett. **15**, 145 (1982).
- ⁶¹C. A. Bignozzi, A. Maldotti, C. Chiorboli, C. Bartocci, and V. Carassiti, Int. J. Chem. Kinet. **13**, 1235 (1981).
- ⁶²D. L. Baulch, I. M. Campbell, S. M. Saunders, and P. K. K. Louie, J. Chem. Soc. Faraday Trans. 2, 85, 1819 (1989).
- ⁶³E. C. Tuazon, J. Arey, R. Atkinson, and S. M. Aschmann, Environ. Sci. Technol. 27, 1832 (1993).
- ⁶⁴C. Chiorboli, C. A. Bignozzi, A. Maldotti, P. F. Giardini, A. Rossi, and V. Carassiti, Int. J. Chem. Kinet. 15, 579 (1983).
- ⁶⁵J. M. Heuss and W. A. Glasson, Environ. Sci. Technol. 2, 1109 (1968).
- ⁶⁶C. Zetzsch, 15th Informal Conference on Photochemistry, Stanford, CA, June 27–July 1, 1982.
- ⁶⁷H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, "Fourier Transform Infrared (FTIR) Studies of Gaseous and Particulate Nitrogenous Compounds," *in* "Nitrogenous Air Pollutants," Ed. D. Grosjean, Ann Arbor Science, Ann Arbor, MI, 1979, pp. 1–16.
- ⁶⁸R. Atkinson and S. M. Aschmann, unpublished data (1992).
- ⁶⁹M. Preidel and R. Zellner, Ber. Bunsenges. Phys. Chem. **93**, 1417 (1989).
- ⁷⁰T. Ohta and I. Mizoguchi, Environ. Sci. Technol. 15, 1229 (1981).
- ⁷¹R. A. Kenley and D. G. Hendry, J. Am. Chem. Soc. 104, 220 (1982).
- ⁷²F. Kirchner, F. Zabel, and K. H. Becker, Chem. Phys. Lett. **191**, 169 (1992).
- ⁷³T. Itoh, Chem. Phys. Lett. 133, 254 (1987).
- ⁷⁴T. Itoh, Chem. Phys. Lett. 151, 166 (1988).
- ⁷⁵R. Atkinson, S. M. Aschmann, and J. Arey, Environ. Sci. Technol. 26, 1397 (1992).
- ⁷⁶D. Grosjean, Atmos. Environ. 18, 1641 (1984).
- ⁷⁷D. Grosjean, Atmos. Environ. 17, 2379 (1983).
- ⁷⁸D. Grosjean, Environ. Sci. Technol. 19, 968 (1985).
- ⁷⁹S. Yamamoto and R. A. Back, Can. J. Chem. 63, 549 (1985).
- ⁸⁰M. G. M. Berges and P. Warneck, Ber. Bunsenges. Phys. Chem. **96**, 413 (1992).
- ⁸¹W. P. L. Carter, A. M. Winer, and J. N. Pitts, Jr., Environ. Sci. Technol. **15**, 829 (1981).
- ⁸²R. Atkinson, E. C. Tuazon, and J. Arey, Int. J. Chem. Kinet. 22, 1071 (1990).

2.5. Oxygen-Containing Organic Compounds

In this section, the atmospheric chemistry of those oxygen-containing organic compounds which are either emitted into the troposphere directly or are formed in the atmosphere as degradation products of other organics is dealt with. The atmospheric chemistry of benzaldehyde has been discussed in Sec. 2.4 above.

A. Aliphatic Aldehydes, Ketones and α -Dicarbonyls

The aliphatic aldehydes and ketones are formed as intermediate "stable" chemical products during the atmospheric degradation reactions of a wide variety of organic compounds in addition to any direct emissions. These carbonyls arise from the reactions of the alkyl peroxy and alkoxy radicals discussed in Secs. 2.1 and 2.2 above. In addition, a number of α -dicarbonyls (for example, glyoxal, methylglyoxal and biacetyl) are formed as intermediate reactive products from the aromatic hydrocarbons (Sec. 2.4). In the atmosphere, these carbonyls can photolyze and react with OH, NO₃ and HO₂ radicals.

(b)

Photolysis

The photolysis rates of carbonyls under tropospheric and environmental chamber conditions are given by

$$k_{\rm photolysis} = \int_{\lambda_1}^{\lambda_2} J_\lambda \sigma_\lambda \phi_\lambda \, d\,\lambda$$

where J is the radiation flux, σ is the absorption cross section and ϕ is the photolytic quantum yield, all of which are a function of wavelength, λ , over the wavelength range λ_1 to λ_2 (for tropospheric purposes, this wavelength range is ~290-800 nm). The radiation flux, J_{λ} , is either experimentally measured or calculated for clear sky conditions and is not dealt with further here. The absorption cross-sections, σ_{λ} , and quantum yields, ϕ_{λ} are obtained from experimental studies, and the available data are discussed below.

Formaldehyde. The absorption cross-sections and quantum yields have been most recently evaluated by NASA¹ and IUPAC.² The most recent IUPAC recommendation² accepts the absorption cross-section data of Moortgat and Schneider³ for wavelengths ≤ 300 nm, and those of Cantrell *et al.*,⁴ determined over the temperature range 223–293 K, for $\lambda = 301-356$ nm. The recommended absorption cross-sections and quantum yields for the processes

$$HCHO + h\nu \rightarrow H + H\dot{C}O$$
 (a)

HCHO + $h\nu \rightarrow H_2$ + CO

are tabulated in the IUPAC evaluation.²

Acetaldehyde. The quantum yields for the photolysis of acetaldehyde have been reviewed and evaluated by the IUPAC panel.² The recommended quantum yields for the processes (a) and (b)

$$CH_3CHO + h\nu \rightarrow CH_4 + CO$$
 (a)

 $CH_3CHO + h\nu \rightarrow \dot{C}H_3 + H\dot{C}O$ (b)

$$CH_{3}CHO + h\nu \rightarrow CH_{3}\dot{C}O + H \qquad (c)$$

are those tabulated in the IUPAC evaluation.² Pathway (c) is of negligible importance, as is the possible photodissociation to form ketene plus H₂.^{5,6} Absorption cross-sections have been measured by Martinez *et al.*⁷ at 300 ± 2 K and a spectral resolution of 0.5 nm over the wavelength region 200–366 nm, and the values have been tabulated as averages over 1 nm (>280 nm) or 4 nm (<280 nm) wavelength regions.⁷ The absorption crosssections from this study⁷ are recommended.

Propanal. Photodissociation quantum yields for propanal have been measured by Shepson and Heicklen^{8,9} and Heicklen *et al.*¹⁰ The more recent study of Heicklen *et al.*¹⁰ supersedes the previous work^{8,9} from the same laboratory, and these later data¹⁰ are recommended by the IUPAC evaluation.² For the photodissociation,

$$CH_3CH_2CHO + h\nu \rightarrow \dot{C}_2H_5 + H\dot{C}O$$

data were obtained at 294, 302, 313, 325 and 334 nm,¹⁰ with the quantum yields in air at 760 Torr total pressure and 298 K being 0.89, 0.85, 0.50, 0.26 and 0.15 at these wavelengths, respectively. The quantum yield for the non-radical forming process

$$CH_3CH_2CHO + h\nu \rightarrow C_2H_6 + CO$$

was observed to be essentially zero at wavelengths >313 nm.¹⁰ Absorption cross-sections have been measured by Martinez *et al.*⁷ at a spectral resolution of 0.50 nm and at 300 ± 2 K over the wavelength range 200–366 nm and tabulated as averages over 1 nm (>280 nm) or 4 nm (<280 nm) wavelength regions.⁷ The absorption cross-sections from this study of Martinez *et al.*⁷ are recommended.

1-Butanal. The absorption cross-sections have been measured by Martinez *et al.*⁷ at a spectral resolution of 0.50 nm and at 300 ± 2 K over the wavelength range 200–366 nm and tabulated as averages over 1 nm (>280 nm) or 4 nm (<280 nm) wavelength regions.⁷ The absorption cross-sections from this study of Martinez *et al.*⁷ are recommended. The gas-phase photolysis of butanal has been studied by Förgeteg *et al.*^{11,12} at 313 nm. At high pressure of added C₄F₈, the quantum yields of the processes

 $C_3H_7CHO + h\nu \rightarrow \dot{C}_3H_7 + HCO$ (a)

$$C_3H_7CHO + h\nu \rightarrow C_2H_4 + CH_3CHO$$
 (b)

were reported to be $\phi_b = 0.18$ and $\phi_a \sim 0.3$. Other photolysis pathways accounted for <5% of the overall quantum yield at 313 nm.

Higher Aldehydes. Absorption cross-sections for iso-butyraldehyde, $(CH_3)_2CHCHO$, have been measured by Martinez et al.⁷ at a spectral resolution of 0.50 nm and at 300 ± 2 K over the wavelength range 200–366 nm, and tabulated as averages over 1 nm (>280 nm) or 4 nm (<280 nm) wavelength regions.⁷ The photodissociation quantum yields of iso-butyraldehyde have been measured by Desai et al.,¹³ and at room temperature and one atmosphere of air the quantum yields for $(CH_3)_2CH + HCO$ production were measured to be: 0.20 at 253.7 nm; 0.45 at 280.3 nm; 0.55 at 302.2 nm; 0.88 at 312.8 nm; 0.88 at 326.1 nm and 0.69 at 334.1 nm.¹³

For the higher aldehydes, no quantum yield data are available, and further work is needed concerning the photolysis of aldehydes and ketones under atmospheric conditions.

Acetone. The photodissociation of acetone has been studied under simulated atmospheric conditions by Gardner et al.¹⁴ and Meyrahn et al.¹⁵ The IUPAC evaluation² recommends the absorption cross-sections and photodissociation quantum yields measured by Meyrahn et al.¹⁵ The absorption cross-sections measured by Martinez et al.⁷ over the wavelength region 200–356 nm are in good agreement with those of Meyrahn et al.¹⁵ The data of Martinez *et al.*⁷ are tabulated as average cross-sections over 1 nm (>280 nm) or 4 nm (<280 nm) wavelength intervals, and are recommended for use in tropospheric modeling.

At 750 Torr total pressure of air, the quantum yields for CH₃CO formation were determined by Meyrahn *et al.*¹⁵ to be 0.55 at 280 nm, 0.30 at 290 nm, 0.15 at 300 nm, 0.05 at 310 nm, 0.028 at 320 nm and ~0.033 at 330 nm.¹⁵ These data are reasonably consistent with the average photodissociation quantum yield of 0.33 \pm 0.06 measured by Cox *et al.*¹⁶ for the wavelength region 280– 330 nm and with the photolysis study of CH₃C(O)CH₃-HCl and CH₃C(O)CH₃-HCl-CO₂ mixtures of Horowitz.¹⁷

Higher Ketones. No data are available concerning the photodissociation quantum yields for the higher ketones under atmospheric conditions. As for acetone, these quantum yields are likely to be low. However, since these compounds also react with the OH radical, it is expected that the OH radical reactions will be the dominant atmospheric loss process. Absorption cross-sections for 2-butanone and 2- and 3-pentanone have been measured and tabulated by Martinez *et al.*⁷ for the wavelength region 200–356 nm.

 α -Dicarbonyls. The α -dicarbonyls for which experimental data are available are glyoxal, methylglyoxal and biacetyl. The absorption cross-sections and photodissociation data available for (CHO)₂ and CH₃COCHO have been reviewed and evaluated by the IUPAC panel,² and their recommendations should be consulted.

For biacetyl, the absorption cross-sections measured and tabulated by Plum *et al.*¹⁸ are recommended. Plum *et al.*¹⁸ derived an average photodissociation quantum yield of 0.158 ± 0.024 for wavelengths ≥ 325 nm under atmospheric conditions. In the shorter wavelength absorption band, Cox *et al.*¹⁶ reported an average photodissociation quantum yield of 0.98 ± 0.15 for the 280–330 nm wavelength region.

Hydroxyl Radical Reactions. The kinetics and mechanisms of the OH radical reactions with carbonyl compounds have been most recently reviewed and evaluated by Atkinson,¹⁹ and that review and evaluation is updated in Sec. 3.6. The kinetic data for selected aliphatic aldehydes and ketones and α -dicarbonyls, either as the recommended values or those measured but not recommended for lack of sufficient studies, are given in Table 34. In addition, the room temperature rate constants for 6,6-dimethylbicyclo[3.1.1]heptan-2-one (nopinone) and 3,3-dimethylbicyclo[2.2.1]heptan-2-one (camphenilone), which are formed from the OH radical and O_3 reactions with β -pinene and from the O_3 reaction with camphene, respectively (see Sec. 2.2 above), are given in Table 34. All of these reactions proceed via overall H-atom abstraction, although it should be noted that for the aldehydes the initial reaction possibly involves initial OH radical addition to the >C=O bond system,¹⁹

 $\begin{array}{l} OH \ + \ HCHO \ \rightarrow \ H_2O \ + \ HCO \\ OH \ + \ RCHO \ \rightarrow \ H_2O \ + \ RCO \end{array}$

with H-atom abstraction from the C–H bonds of the alkyl chain being of minor importance.¹⁹ Note, however, that for glycolaldehyde (HOCH₂CHO) H-atom abstraction occurs from the C–H bonds of both the –CH₂– and –CHO groups in a 20:80 ratio at 298 \pm 2 K.²⁰

The HCO radical reacts rapidly with O₂

$$H\dot{C}O + O_2 \rightarrow HO_2 + CO$$

with a rate constant of 5.5×10^{-12} cm³ molecule⁻¹ s⁻¹, independent of temperature over the range 200–400 K.² In contrast, the RĊO (R \neq H) radicals rapidly add O₂ to form the corresponding acyl peroxy radicals (RC(O)OO), with room temperature rate constants of 5×10^{-12} cm³ molecule⁻¹ s⁻¹ for the CH₃ĊO radical² and (5.7 ± 1.4) × 10^{-12} cm³ molecule⁻¹ s⁻¹ for the C₆H₅ĊO radical.²¹

As for the alkyl peroxy (RO_2) radicals, the $CH_3C(O)O\dot{O}$ radical reacts with NO,

CH₃C(O)OO + NO → CH₃C(O)O + NO₂ (a)
↓ fast

$$\dot{C}H_3 + CO_2$$

NO₂, to form peroxyacetyl nitrate (PAN),

$$CH_3C(O)O\dot{O} + NO_2 \xrightarrow{M} CH_3C(O)OONO_2$$
 (b)

the HO₂ radical,

and RO₂ radicals (see Sec. 2.1). The reactions (a), (b), (c1) and (c2) have been reviewed by the IUPAC data evaluation panel,² and the recommended rate constants for reactions (a), (c1) and (c2) are:

$$k(CH_3C(O)O\dot{O} + NO) = 2.0 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

independent of temperature over the range 280-325 K,

$$k(\text{HO}_2 + \text{CH}_3\text{C}(\text{O})\text{OO} \rightarrow \text{CH}_3\text{C}(\text{O})\text{OOH} + \text{O}_2) = 3.0 \times 10^{-13} \text{ e}^{1040/7} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

over the temperature range 250–370 K (1.0×10^{-11} cm³ molecule⁻¹ s⁻¹ at 298 K), and

$$k(\text{HO}_2 + \text{CH}_3\text{C}(\text{O})\text{OO} \rightarrow \text{CH}_3\text{C}(\text{O})\text{OH} + \text{O}_3) =$$

1.3 × 10⁻¹³ e^{1040/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 250–370 K (4.2×10^{-12} cm³ molecule⁻¹ s⁻¹ at 298 K).² [Due to a typographical error in Ref. 2, the rate constants k_{c1} and k_{c2} were incorrectly interchanged].

62

TABLE 34. Rate constants k at 298 K and Arrhenius parameters, $k = CT^n e^{-D/T}$, for the reaction of OH radicals with selected oxygenated compounds [taken from Atkinson¹⁹ and Sec. 3.6]

Organic	$10^{12} \times k \text{ (cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\text{)}$	C (cm ³ molecule ⁻¹ s ⁻¹)	n	D(K)
11dehydes		<u> </u>		
HCHO	9.37	1.20×10^{-14}	1	- 287
CH ₃ CHO	15.8	5.55×10^{-12}	0	-311
CH ₃ CH ₂ CHO	19.6	5.55 × 10	U	- 511
CH ₃ CH ₂ CH ₂ CHO	23.5	5.26×10^{-12}	0	- 446
		6.61×10^{-12}		
CH ₃) ₂ CHCHO	26.3		0	-411
$CH_3(CH_2)_3CHO$	28.5	6.34×10^{-12}	0	- 448
CH ₃) ₂ CHCH ₂ CHO	27.4			
CH ₃) ₃ CCHO	26.5	6.82×10^{-12}	0	- 405
IOCH₂CHO	9.9			
<i>letones</i>				
$CH_3C(O)CH_3$	0.219	5.34×10^{-18}	2	230
$CH_3C(O)CH_2CH_3$	1.15	3.24×10^{-18}	2	- 414
$CH_3C(O)CH_2CH_2CH_3$	4.9			
$CH_3CH_2C(O)CH_2CH_3$	2.0			
$CH_3C(O)CH_2CH_2CH_3CH_3$	9.1			
$CH_3CH_2C(O)CH_2CH_2CH_3$	6.9			
$CH_3C(O)CH_2CH(CH_3)_2$	14.1			
,6-Dimethylbicyclo-	14.1			
3.1.1]heptan-2-one	14.3			
,3-Dimethylbicyclo-	5.2			
2.2.1]heptan-2-one	5.4			
-Dicarbonyls				
	11.4			
CHO) ₂	11.4			
CH3COCHO	17.2			
H ₃ COCOCH ₃	0.238	1.40×10^{-18}	2	- 194
lcohols				
Aethanol	0.944	6.01×10^{-18}	2	- 170
Ethanol	3.27	6.18×10^{-18}	2	- 532
-Propanol	5.53			
-Propanol	5.32	7.21×10^{-18}	2	-631
-Butanol	8.57			
-Methyl-2-propanol	1.12	4.29×10^{-18}	2	- 322
-Pentanol	11.1		=	
-Pentanol	11.8			
-Pentanol	12.2			
Teto-ethers				
lydroxyacetone	3.0			
HOCH ₂ C(O)CH ₃)	5.0			
thers				
Dimethyl ether	2.98	1.04×10^{-11}	0	372
Diethyl ether	13.1	8.91×10^{-18}		-837
fethyl <i>t</i> -butyl ether	2.94	6.54×10^{-18}	2	
thyl <i>t</i> -butyl ether	2.94 8.84	0.04 × 10 **	2	- 483
arboxylic acids				
ormic acid	0.45	4.5×10^{-13}	0	0
cetic acid		4.3 × 10 ~~	U	0
riopionic acid	0.8 1.16			
lydroperoxides				
ethyl hydroperoxide	5.54	2.93×10^{-12}	0	- 190
rt-Butyl hydroperoxide	3.0		~	170

Organic	$10^{12} \times k \text{ (cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\text{)}$	C (cm ³ molecule ⁻¹ s ⁻¹)	n	D(K)
Unsaturated carbonyls		<u> </u>		
Acrolein	19.9			
Methacrolein	33.5	1.86×10^{-11}	0	- 175
Crotonaldehyde	36			
Methyl vinyl ketone	18.8	4.13×10^{-12}	0	-452
4-Acetyl-1-methyl- cyclohexene	129			
1,4-Unsaturated Dicarbonyls				
cis-3-Hexene-2,5-dione	63			
trans-3-Hexene-2,5-dione	53			

TABLE 34. Rate constants k at 298 K and Arrhenius parameters, $k = CT^{n}e^{-D/T}$, for the reaction of OH radicals with selected oxygenated compounds [taken from Atkinson¹⁹ and Sec. 3.6] – Continued

The reaction of the CH₃C(O)OO radical with NO₂ is in the fall-off region at and below atmospheric pressure of air, and the Troe fall-off parameters recommended by the IUPAC evaluation² are: $k_o = 2.7 \times 10^{-28} (T/300)^{-7.1}$ cm⁶ molecule⁻² s⁻¹, $k_{\infty} = 1.2 \times 10^{-11} (T/300)^{-0.9}$ cm³ molecule⁻¹ s⁻¹ and F = 0.3. This leads to a rate constant for reaction (b) at 298 K and 760 Torr total pressure of air of 1.0 $\times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.

In the absence of further experimental information these rate constants for the reactions of the acetyl peroxy radical with NO and HO₂ radicals, and the high-pressure rate constant k_{∞} for reaction with NO₂, are anticipated to be applicable to the higher acyl peroxy (RCO₃) radicals [the NO₂ reactions will be closer to the high pressure limit for the higher acyl peroxy radicals than for the CH₃C(O)OO radical].

For glyoxal, Niki *et al*.²² have shown that at 298 K and 700 Torr total pressure of $O_2 + N_2$ diluent the HCOCO radical can either decompose or react with O_2

$$OH + (CHO)_2 \rightarrow H_2O + HCOCO$$

$$HCO\dot{C}O \rightarrow H\dot{C}O + CO$$
 (a)

 $HCO\dot{C}O + O_2 \rightarrow HCOC(O)O\dot{O}$ (b)

$$HCO\dot{C}O + O_2 \rightarrow 2 CO + HO_2$$
 (c)

with $k_b \sim k_c$ and $k_a/k_b = 3.5 \times 10^{18}$ molecule cm⁻³. Thus, at 298 K and 760 Torr total pressure of air, addition of O₂ occurs 40% of the time, while formation of CO and HO₂ occurs the remaining 60% of the time. For methylglyoxal, under atmospheric conditions the corresponding CH₃COĊO radical decomposes to CH₃CO and CO rather than reacting with O₂ to yield CH₃C(O)C(O)OO²³

For the aldehydes and ketones, the positions of OH radical H-atom abstraction and the partial OH radical re-

action rate constant at that position can be calculated using the estimation technique of Atkinson.²⁴ As an example, the OH radical reaction with 2-butanone is calculated to proceed via the pathways

$$OH + CH_3CH_2C(O)CH_3 \longrightarrow H_2O + CH_3CHC(O)CH_3 (46\%)$$
$$\longrightarrow H_2O + CH_3CHC(O)CH_3 (46\%)$$
$$\longrightarrow H_2O + CH_3CH_2C(O)\dot{C}H_2 (8\%)$$

The tropospheric reactions of these substituted alkyl radicals are analogous to those for the alkyl radicals discussed in Sec. 2.1 above.

Ozone Reactions. For the carbonyls dealt with in this section, which do not contain >C=C< bonds, the reactions with O₃ are of negligible atmospheric importance, and indeed only upper limits to the rate constants of $<10^{-20}$ cm³ molecule⁻¹ s⁻¹ have been obtained for HCHO, CH₃CHO, (CHO)₂ and CH₃COCHO.²⁵

Nitrate Radical Reactions. For the aliphatic carbonyl compounds dealt with in this section, NO₃ radical reaction rate constants are available only for HCHO and CH₃CHO, and these have been evaluated by the NASA¹ and IUPAC² panels and by Atkinson.²⁶ Most of the literature data are relative to the equilibrium constant for the reactions NO₂ + NO₃ \rightleftharpoons N₂O₅ and there are significant uncertainties in the value of this equilibrium constant.²⁶⁻²⁸ The recommendations of Atkinson²⁶ for the reactions of the NO₃ radical with HCHO and CH₃CHO are

$$k(NO_3 + HCHO) =$$

5.8 × 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ at 298 K,

identical to the NASA¹ and IUPAC² recommendations and

$$k(NO_3 + CH_3CHO) =$$

1.44 × 10⁻¹² e^{1862/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 264-374 K,

 $k(NO_3 + CH_3CHO) =$ 2.78 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 298 K,

essentially identical to the NASA¹ and IUPAC² recommendations.

With rate constants of this magnitude, these reactions with the NO₃ radical are of minimal atmospheric importance as an aldehyde loss process. The NO₃ radical reaction rate constants for the ketones are expected to be lower, in the range of 10^{-17} to 10^{-16} cm³ molecule⁻¹ s⁻¹ at room temperature.²⁶ As with the corresponding OH radical reactions, these NO₃ radical reactions proceed via H-atom abstraction

$$NO_3 + RCHO \rightarrow HONO_2 + RCO (R = H, alkyl)$$

and the production of HO₂ and CH₃(O)OO radicals from the NO₃ radical reactions with HCHO and CH₃CHO during nighttime hours can be significant.²⁹⁻³¹

 HO_2 Radical Reactions. The HO_2 radical has been shown to react with HCHO,^{1,2} CH₃CHO^{32,33} and (CHO)₂.²² For HCHO, the initial reaction involves addition of HO₂, followed by rapid isomerization of the intermediate species via a five-member transition state to the peroxy radical,

$$HO_2 + HCHO \rightarrow [HOOCH_2\dot{O}] \rightarrow \dot{O}OCH_2OH$$

which can back-decompose to the $HO_2 + HCHO$ reactants (presumably via the intermediary of $HOOCH_2\dot{O}$). The IUPAC evaluation recommends² that

$$k(\text{HO}_2 + \text{HCHO} \rightarrow \text{HOCH}_2\text{OO}) =$$

9.7 × 10⁻¹⁵ e^{625/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 275–333 K (7.9 \times 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹ at 298 K), and

 $k(\text{HOCH}_2\text{OO} \rightarrow \text{HO}_2 + \text{HCHO}) = 2.4 \times 10^{12} \text{ e}^{-7000/T} \text{ s}^{-1}$

over the temperature range 275–333 K (150 s^{-1} at 298 K). With this rapid back-decomposition rate of the HOCH₂OO radical, the reaction of HO₂ radicals with HCHO is expected to be of minor importance for atmospheric conditions.

The corresponding rate constants for the forward and reverse reaction of HO₂ with CH₃CHO are³³ k(HO₂ + CH₃CHO) = 1 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ and k(CH₃CH(OO)OH \rightarrow HO₂ + CH₃CHO) = 100 s⁻¹, both at 298 K. For the reaction of the HO₂ radical with glyoxal, Niki *et al*.²² reported a rate constant for the reaction

$$HO_2$$
 + (CHO)₂ → [CHOCH(OOH) \dot{O}] →
CHOCH(OH) $O\dot{O}$

of $(5.1 \pm 0.4) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ at 298 K. As for the HO₂ radical reaction with HCHO, these HO₂ radical reactions with CH₃CHO and (CHO)₂ are unimportant under atmospheric conditions.

B. Alcohols

The alcohols of interest in urban atmospheres are primarily methanol, ethanol and, to a lesser extent, the C₃ and C₄ species. The gas-phase reactions with the NO₃ radical are slow,²⁶ with upper limits to the room temperature rate constants of $< 6 \times 10^{-16}$, $< 9 \times 10^{-16}$ and $< 2.3 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ for methanol, ethanol and 2-propanol, respectively. While no kinetic data are available for the gas-phase reactions of O₃ with the alcohols,²⁵ the O₃ reactions are expected to be of negligible importance as an atmospheric loss process. Thus, the only loss process which requires consideration is the reaction with the OH radical. The room temperature rate constants and temperature dependencies for the OH radical reactions with the alcohols are given in Table 34.

These OH radical reactions proceed by H-atom abstraction from both the C-H and O-H bonds. For methanol, the rate constant ratio $k_a/(k_a + k_b)$, where k_a and k_b are the rate constants for the reactions,

$$OH + CH_3OH \rightarrow H_2O + CH_3O$$
 (a)

$$OH + CH_3OH \rightarrow H_2O + CH_2OH$$
 (b)

is 0.15 \pm 0.10 at 298 K.²

For ethanol, the reaction channels are,

$$OH + CH_{3}CH_{2}OH \longrightarrow H_{2}O + CH_{3}CH_{2}O \qquad (c)$$

$$H_{2}O + CH_{3}\dot{C}HOH \qquad (d)$$

$$H_{2}O + \dot{C}H_{2}CH_{2}OH \qquad (e)$$

and the $\dot{C}H_2CH_2OH$ radical formed in channel (e) (the same radical as formed from OH radical addition to ethene) thermally decomposes at temperatures $\geq 500-600 \text{ K}.^{19,34}$ Based on the kinetic data of Hess and Tully³⁴ for the reactions of ¹⁶OH and ¹⁸OH radicals with C₂H₅¹⁶OH (decomposition of the $\dot{C}H_2CH_2^{16}OH$ radical does not regenerate the ¹⁸OH radical) and the room temperature product study of Meier *et al.*,³⁵ the IUPAC evaluation recommends² that at 298 K $k_c/k = k_e/k = 0.05^{+0.10}_{-0.05}$, where $k = (k_c + k_d + k_e)$.

Japar *et al*.³⁶ observed HCHO and CH₃C(O)CH₃ as the only products of the OH radical- and Cl atom-initiated reactions of *tert*-butyl alcohol, (CH₃)₃COH, with essentially unit yields of both products for the Cl atom reaction. The expected reaction scheme is therefore³⁶

Japar *et al*.³⁶ showed that the Cl atom-initiated reaction of CH₃OCH₃ leads to the formation of methyl formate, CH₃OCHO, with a yield of 0.90 \pm 0.08, and this is consistent with the unpublished data of Tuazon³⁷ for the OH radical-initiated reaction in the presence of NO_x. These data indicate that the reaction sequence for the OH radical-initiated reaction, in the presence of NO, is

$$\begin{array}{rcl} OH + CH_3OCH_3 \rightarrow H_2O + CH_3O\dot{C}H_2 & & & & \downarrow O_2 \\ & & & & \downarrow O_2 \\ CH_3OCH_2O\dot{O} & & & & \\ NO & & & & NO_2 \\ & & & & & CH_3OCH_2\dot{O} \\ & & & & \downarrow O_2 \end{array}$$

$$CH_3OCHO + HO_2$$

The OH radical-initiated reaction of methyl *tert*-butyl ether, CH₃OC(CH₃)₃, in the presence of NO_x has been investigated by Japar *et al*.,³⁶ Smith *et al*.³⁸ and Tuazon *et al*.³⁹ The products observed, and their molar percentage yields, were: *tert*-butyl formate, 59 ± 5 ,³⁶ 68 ± 5 ,³⁸ 76 ± 7 ,³⁹ HCHO, 48 ± 5 ,³⁸ 37^{+6} ,³⁹ methyl acetate (CH₃C(O)OCH₃), 14 ± 2 ,³⁸ 17 ± 2 ,³⁹ and acetone (CH₃C(O)CH₃), 2.6 ± 0.3^{38} and 2.1 ± 0.9 .³⁹ The HCHO yield in the study of Tuazon *et al*.³⁹ was observed to increase with the extent of reaction and the cited value is that extrapolated to zero reaction. These product data^{36,38,39} are in reasonably good agreement, and indicate the following reaction mechanism [Reaction Scheme (10)] in the presence of NO³⁹ (the "first-generation" products are underlined)

$$\begin{array}{ccc} OH \ + \ (CH_3)_3 COH \ \rightarrow \ H_2 O \ + \ \dot{C}H_2 C(CH_3)_2 OH \\ & & \downarrow O_2 \\ \dot{O}OCH_2 C(CH_3)_2 OH \\ & & NO \ \begin{array}{c} \rightarrow \ NO_2 \\ \dot{O}CH_2 C(CH_3)_2 OH \\ & & \downarrow \\ & & \downarrow \\ HCHO \ + \ (CH_3)_2 \dot{C}OH \\ & & \downarrow O_2 \\ & & HO_2 \ + \ CH_3 C(O)CH_3 \end{array}$$

The estimation technique of Atkinson²⁴ allows the distribution of initially formed radicals to be approximately determined for the higher alcohols, and the subsequent reactions of these radicals are then as discussed in Secs. 2.1 and 2.2 above.

C. Ethers

The ethers of main atmospheric interest are dimethyl ether, diethyl ether, methyl *tert*-butyl ether and ethyl *tert*-butyl ether. The reactions of the aliphatic saturated ethers with O₃ and NO₃ radicals are expected to be of negligible importance as atmospheric loss processes, with an upper limit to the rate constant for the reaction of NO₃ radicals with CH₃OCH₃ of $< 3 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ at 298 K being the only available literature data.²⁶ Hence the major, if not sole, atmospheric loss process is by reaction with the OH radical. The kinetic data for these reactions are given in Table 34.
The precursor alkoxy radical to CH₃C(O)CH₃ could then be CH₃OC(CH₃)₂O' and/or (CH₃)₃CO'. The estimated distribution given in the reaction scheme above leads to predicted yields of (CH₃)₃COCHO, 76%; HCHO, 48%; CH₃OC(O)CH₃, 18%; and CH₃C(O)CH₃, 6%, reasonably consistent with the experimental data of Smith *et al*.³⁸ and Tuazon *et al*.³⁹ when consideration is taken of combination of the (CH₃)₃CO' radical with NO to form *tert*-butyl nitrite³⁸ (observed as an ~6% product^{38,40}). A small amount ($\leq 10\%$) of organic nitrate production from the RO₂ + NO reactions cannot be ruled out.³⁹

Wallington and Japar⁴¹ observed the formation of ethyl formate (CH₃CH₂OCHO) from the reaction of the OH radical with diethyl ether in the presence of NO_x, with a yield of 0.92 \pm 0.06. Since the major initial OH radical reaction pathway is expected to involve H-atom abstraction from the -CH₂- groups in diethyl ether,²⁴ this finding⁴¹ indicates that under atmospheric conditions the major reaction process of the dominant alkoxy radical formed, CH₃CH₂OCH(\dot{O})CH₃, is through decomposition,

$CH_3CH_2OCH(\dot{O})CH_3 \rightarrow CH_3CH_2OCHO + \dot{C}H_3$

followed by reactions of the CH3 radical to form HCHO.41

The OH radical-initiated reaction of ethyl *tert*-butyl ether, C₂H₅OC(CH₃)₃, has been investigated by Wallington and Japar⁴¹ and Smith *et al.*⁴⁰ The products observed, and their molar percentage yields, were as follows: (CH₃)₃COCHO, 76 \pm 6%,⁴¹ 64 \pm 3%,⁴⁰ (CH₃)₃COC(O)CH₃, 13 \pm 1%;⁴⁰ CH₃CH₂OC(O)CH₃, 4.3 \pm 0.3%;⁴⁰ CH₃CHO, 16 \pm 1%;⁴⁰ CH₃C(O)CH₃, 1.9 \pm 0.2%;⁴⁰ and HCHO, 53 \pm 4%.⁴⁰ In the study of Smith *et al.*,⁴⁰ a significant fraction of the (CH₃)₃CO⁻ radicals formed were scavenged by NO to form *tert*-butyl nitrite. The above information suggests the following Reaction Scheme (11) at 298 K and ~760 Torr total pressure of air: H-atom abstraction from the $-CH_3$ group of the C_2H_5 group (~3%)

Reaction Scheme (11)

H-atom abstraction from the $-CH_2$ - group of the C_2H_5 group (78%)

Reaction Scheme (11) - Continued

This reaction sequence leads to product formation yields of: $(CH_3)_3COCHO$, 69%; $(CH_3)_3COC(O)CH_3$, 12%; $CH_3CH_2OC(O)CH_3$, 4%; $CH_3C(O)CH_3$, 15%; CH_3CHO , 15%; and HCHO, 93%, in reasonable agreement with the experimental data^{40,41} when the interception of $(CH_3)_3C\dot{O}$ radicals by NO⁴⁰ (which otherwise would have led to $CH_3C(O)CH_3$ + HCHO formation) is taken into account.

D. Carboxylic Acids

The carboxylic acids of primary interest present in the gas-phase in polluted urban atmospheres are formic and acetic acid. Again, although no data have been reported for the NO₃ radical or O₃ reactions, the only important gas-phase atmospheric removal process is expected to be by OH radical reaction, and the OH radical rate constants are given in Table 34. For HCOOH, the OH radical reaction proceeds to form mainly CO₂ and an H-atom, with an H atom yield of 0.75 \pm 0.25.⁴² From this H-atom formation yield⁴² and kinetic data for the reactions of OH radicals with HCOOH and DCOOH^{42,43} and of OD radicals with HCOOD and DCOOD,⁴³ the OH radical reaction with formic acid appears to proceed by

$$\begin{array}{c} OH \ + \ HC(O)OH \ \rightarrow \ H_2O \ + \ HCO_2 \\ & \downarrow \\ H \ + \ CO_2 \end{array}$$

with the major reaction pathway being the abstraction of the H (or D) atom from the -OH (or -OD) group.

While no product study of the OH radical reaction with $CH_3C(O)OH$ has been carried out, the rate constants of Singleton *et al.*⁴⁴ for the OH radical reactions with CH_3COOH , CD_3COOH and CD_3COOD indicate that at room temperature the major reaction pathway also involves H atom abstraction from the –OH group

$$\begin{array}{rcl} \mathrm{OH}\ +\ \mathrm{CH_3C(O)OH}\ \rightarrow\ \mathrm{H_2O}\ +\ \mathrm{CH_3CO_2^{\flat}}\\ & & \downarrow\\ & & \dot{\mathrm{CH_3}}\ +\ \mathrm{CO_2} \end{array}$$

Since these OH radical reactions are slow, with calculated atmospheric lifetimes due to OH radical reaction of \sim 30–50 days, the major process(es) removing these compounds from the gas phase are likely to be wet or dry deposition, with incorporation into raindrops or cloud and fog water being of importance from the viewpoint of acid deposition.

E. Hydroperoxides

To date, data concerning the atmospheric chemistry of the hydroperoxides are only available for methyl hydroperoxide (CH₃OOH) and *tert*-butyl hydroperoxide [(CH₃)₃COOH]. The expected gas-phase atmospheric loss processes for this class of organic compounds involve photolysis and OH radical reaction. The absorption cross-sections of CH₃OOH have been evaluated by the IUPAC panel,² and a photodissociation quantum yield of unity is recommended.²

$$CH_3OOH + h\nu \rightarrow CH_3O + OH$$

The room temperature rate constants for the OH radical reactions of CH₃OOH and (CH₃)₃COOH, and the temperature-dependent parameters for CH₃OOH, are given in Table 34. For CH₃OOH, the studies of Niki *et al.*⁴⁵ and Vaghjiani and Ravishankara⁴⁶ show that the OH radical reaction proceeds by two pathways,

$$OH + CH_3OOH \rightarrow H_2O + CH_3OO'$$
 (a)

$$OH + CH_3OOH \rightarrow H_2O + CH_2OOH$$
 (b)

with $k_a = 1.79 \times 10^{-12} e^{219/T} \text{ cm}^3$ molecule⁻¹ s⁻¹ over the temperature range 203–348 K and $(k_a + k_b) = 2.93 \times 10^{-12} e^{190/T} \text{ cm}^3$ molecule⁻¹ s⁻¹ over the temperature range 223–423 K.^{19,46} Thus, $k_a/(k_a + k_b) = 0.67$ at 298 K. The CH₂OOH radical rapidly decomposes

$$CH_2OOH \rightarrow HCHO + OH$$

to regenerate the OH radical.46

F. Unsaturated Carbonyls

The unsaturated carbonyl compounds of atmospheric interest include the α,β -unsaturated carbonyls formed from the atmospheric reactions of conjugated dienes and the unsaturated carbonyls formed from the atmospheric reactions of the monoterpenes limonene and terpinolene (and presumably also myrcene, ocimene and linalool) [see Sec. 2.2]. The α , β -unsaturated carbonyls of major atmospheric interest are acrolein, methacrolein and methyl vinyl ketone. As discussed in Sec. 2.2, acrolein is formed from the atmospheric degradation reactions of 1,3-butadiene, and methacrolein and methyl vinyl ketone are formed from 2-methyl-1,3-butadiene (isoprene). The major atmospheric removal processes for these organic compounds are expected to be reaction with O₃ and with OH and NO₃ radicals. As shown by the data of Gardner et al.⁴⁷ for acrolein, photolysis appears to be of minor importance as a loss process (with a photolysis lifetime of acrolein of ~10 days at 40° zenith angle).⁴⁷

The kinetics of the gas-phase reactions of the NO₃ radical with acrolein and crotonaldehyde have been determined,²⁶ and the rate constants at 298 \pm 2 K are 1.1 × 10^{-15} cm³ molecule⁻¹ s⁻¹ and 5.1 × 10^{-15} cm³ molecule⁻¹ s⁻¹, respectively.²⁶ These reactions are expected to be analogous to the OH radical reactions (see below) in that the NO₃ radical reaction with acrolein is expected to proceed mainly by H-atom abstraction from the –CHO group,

$$NO_3 + CH_2 = CHCHO \rightarrow HONO_2 + CH_2 = CHCO$$

while the reaction with crotonaldehyde will proceed by both H-atom abstraction from the -CHO group and NO₃ radical addition to the >C=C< bond.

These NO₃ radical reactions will be of generally minor significance as atmospheric loss processes for the α , β -unsaturated carbonyls.

The room temperature rate constants for the gas-phase reactions of O₃ with acrolein, methacrolein, crotonaldehyde and methyl vinyl ketone have been measured (see Ref. 25 and Sec. 5.4), with recommended rate constants (Ref. 25 and Sec. 5.4) of: acrolein, 2.9×10^{-19} cm³ molecule⁻¹ s⁻¹ at 298 K, methacrolein, 1.36×10^{-15} e^{-2112/T} cm³ molecule⁻¹ s⁻¹ (1.14×10^{-18} cm³ molecule⁻¹ s⁻¹ at 298 K); crotonaldehyde, 9.0×10^{-19} cm³ molecule⁻¹ s⁻¹ at 298 K; and methyl vinyl ketone, 7.51×10^{-16} e^{-1521/T} cm³ molecule⁻¹ s⁻¹ (4.56×10^{-18} cm³ molecule⁻¹ s⁻¹ at 298 K). As for the alkenes, these O₃ reactions proceed by initial addition to the >C=C < bonds.²⁵ Again, these O₃ reactions are of minor importance as atmospheric loss processes.

The major atmospheric loss process of the α , β -unsaturated carbonyls is by reaction of the OH radical, and the room temperature rate constants and temperature-dependent parameters for the OH radical reactions with acrolein, methacrolein, crotonaldehyde and methyl vinyl ketone are given in Table 34. For the aldehydes, these OH radical reactions occur by both H-atom abstraction from the -CHO group and OH radical addition to the >C=C< bond.¹⁹

OH + CH₂ = CHCHO \longrightarrow H₂O + CH₂ = CHCO (a) HOCH₂ĊHCHO and ĊH₂CH(OH)CHO (b)

For acrolein the major reaction pathway appears to be Hatom abstraction from the -CHO group,¹⁹ while for crotonaldehyde and methacrolein both reaction pathways occur, with the abstraction and addition pathways being of comparable importance at 298 K.^{19,24,48} The subsequent reactions of the initially formed radicals are generally as discussed in Secs. 2.1 and 2.2 above.

For the OH radical-initiated reaction with methacrolein, the product study of Tuazon and Atkinson⁴⁸ shows that the HOCH₂C(CH₃)(CHO)O radical formed after OH radical addition to the terminal carbon atom of the >C=C< bond

OH + CH₂=C(CH₃)CHO → HOCH₂Ċ(CH₃)CHO
NO
$$\rightarrow$$
 NO₂
HOCH₂C(CH₃)(CHO)Ò

must decompose predominantly by route (a) rather than route (b), \dot{O}

since hydroxyacetone (HOCH₂C(O)CH₃) was the major product observed from the OH radical addition pathway.⁴⁸

Furthermore, it appears that terminal versus nonterminal OH radical addition to the >C=C< bond in methacrolein occurs with a ratio of ~83:17 at 298 K,⁴⁸ since the HOCH₂COCH₃ and CH₃COCHO formation yields were 0.41 ± 0.03 and 0.084 ± 0.016, respectively, with the HOCH₂C(O)CH₃ arising from decomposition of the HOCH₂C(CH₃)(CHO)O radical and CH₃COCHO from the OCH₂C(OH)(CH₃)CHO radical (and possibly from the HOCH₂C(CH₃)(CHO)O radical)⁴⁸ [see Reaction Scheme (12)]. This OH radical addition process accounts for 50% of the overall OH radical reaction with methacrolein at room temperature.⁴⁸ The H-atom abstraction pathway proceeds by,⁴⁸

ROGER ATKINSON

Reaction Scheme (12)

$$OH + CH_2 = C(CH_3)CHO \longrightarrow H_2O + CH_2 = C(CH_3)\dot{C}O$$

$$\downarrow O_2$$

$$CH_2 = C(CH_3)C(O)OONO_2 \overleftrightarrow{HO_2} CH_2 = C(CH_3)C(O)O\dot{O}$$

$$(MPAN) \qquad \qquad NO \longrightarrow NO_2$$

$$CH_2 = C(CH_3)C\dot{O}_2$$

$$\downarrow CH_2 = \dot{C}CH_3 + CO_2$$

$$\downarrow HCHO$$

pathway,⁴⁸ has also been prepared and studied by Bertman and Roberts⁴⁹ and Roberts and Bertman⁵⁰ (see also Sec. 2.6).

While the data of Tuazon and Atkinson⁴⁸ suggested the formation of HCHO in close to unit yield from the subsequent reactions of the CH₂=CCH₃ radical, the other product(s) of this radical under atmospheric conditions were not accounted for. The reaction of the homologous vinyl (\dot{C}_2 H₃) radical with O₂ has a room temperature rate constant of 9 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at room temperature, ⁵¹⁻⁵³ with a small negative temperature dependence ($B = -126 \pm 51$ K⁵¹), and HCHO and HCO were observed as products.⁵¹

This reaction of the vinyl radical with O_2 suggests that the $CH_3\dot{C} = CH_2$ radical reaction proceeds by

with this pathway accounting for $50 \pm 16\%$ of the overall reaction at room temperature.⁴⁸ Peroxymethacrylic nitric anhydride (MPAN, CH₂ = C(CH₃)C(O)OONO₂), observed as a temporary reservoir product of this reaction

For the α , β -unsaturated ketones such as methyl vinyl ketone, the only significant reaction pathway (since Hatom abstraction from the substituent alkyl group(s) will be slow²⁴) involves OH radical addition to the >C=C< bond.^{19,54}

 $OH + CH_2 = CHC(O)CH_3 \rightarrow 0.7 HOCH_2CHC(O)CH_3$ $+ 0.3 CH_2CH(OH)C(O)CH_3$

The subsequent reactions of these radicals are as dealt with in Secs. 2.1 and 2.2. Thus, in the presence of NO⁵⁴ Reaction Scheme (13) will occur. Formation of HOCH₂CHO + CH₃CO [route (a)] is calculated⁵⁵ to be ~10 kcal mol⁻¹ more exothermic than the formation of CH₃COCHO + CH₂OH [route (b)], and glycolaldehyde is indeed observed as a major (~70%) product from the OH radical reaction with methyl vinyl ketone in the presence of NO.⁵⁴ The reactions subsequent to OH radical addition to the internal carbon atom are:⁵⁴

The observed HOCH₂CHO and CH₃COCHO formation yields from the OH radical reaction with methyl vinyl ketone of 0.64 \pm 0.13 and 0.25 \pm 0.06, respectively,⁵⁴ indicate that OH radical addition to the terminal and non-terminal carbon atoms of the >C=C< bond occurs in the ratio 72:28 at room temperature.⁵⁴

G. 1,4-Unsaturated Dicarbonyls

1,4-Unsaturated dicarbonyl compounds have been postulated to be formed in the atmospheric degradation

of the aromatic hydrocarbons (see, for example, Atkinson and Lloyd)⁵⁶ and 3-hexene-2,5-dione (CH₃C(O)CH = $CHC(O)CH_3$) has been observed in small yield from the photooxidation of 1,2,4-trimethylbenzene⁵⁷ and, in larger yield, from p-xylene.⁵⁸ Experimental data concerning the atmospherically important reactions are only available for cis - and trans - 3-hexene-2,5-dione.58,59 These isomers were observed to react with O₃, with rate constants at 298 \pm 2 K of 1.8 \times 10⁻¹⁸ and 8.3 \times 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹ for cis- and trans-3-hexene-2,5-dione, respectively.25,59 The measured OH radical reaction rate constants are given in Table 34. Photolysis of both isomers has also been observed, with the major pathway in the > 320 nm spectral region being photoisomerization to the other geometric isomer.^{58,59} Based upon these data, it appears that photolysis (other than photoisomerization) and/or reaction with the OH radical will be the dominant atmospheric removal processes.

Unfortunately, no definitive product data have been obtained for the OH radical reactions with these 1,4-un-saturated dicarbonyls.⁵⁹

References

- ¹W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling," NASA Panel for Data Evaluation, Evaluation No. 10, Jet Propulsion Laboratory Publication 92–20, August 15, 1992.
- ²R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr and J. Troe. J. Phys. Chem. Ref. Data **21**, 1125 (1992).
- ³G. K. Moortgat and W. Schneider, unpublished data presented in reference 2.
- ⁴C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, and J. G. Calvert, J. Phys. Chem. **94**, 3902 (1990).
- ⁵A. Horowitz, C. J. Kershner, and J. G. Calvert, J. Phys. Chem. **86**, 3094 (1982).
- ⁶A. Horowitz and J. G. Calvert, J. Phys. Chem. 86, 3105 (1982).
- ⁷R. D. Martinez, A. A. Buitrago, N. W. Howell, C. H. Hearn, and J. A. Joens, Atmos. Environ. **26A**, 785 (1992).
- ⁸P. B. Shepson and J. Heicklen, J. Photochem. 18, 169 (1982).
- ⁹P. B. Shepson and J. Heicklen, J. Photochem. 19, 215 (1982).

Reaction Scheme (13)

- ¹⁰J. Heicklen, J. Desai, A. Bahta, C. Harper, and R. Simonaitis, J. Photochem. 34, 117 (1986).
- ¹¹S. Förgeteg, S. Dóbé, and T. Bérces, React. Kinet. Catal. Lett. 9, 331 (1978).
- ¹²S. Förgeteg, T. Bérces, and S. Dóbé Int. J. Chem. Kinet. 11, 219 (1979).
- ¹³J. Desai, J. Heicklen, A. Bahta, and R. Simonaitis, J. Photochem. 34, 137 (1986).
- ¹⁴ E. P. Gardner, R. D. Wijayaratne, and J. G. Calvert, J. Phys. Chem. **88**, 5069 (1984).
- ¹⁵H. Meyrahn, J. Pauly, W. Schneider, and P. Warneck, J. Atmos. Chem. 4, 277 (1986).
- ¹⁶R. A. Cox, M. C. Addison, J. P. Burrows, and R. Patrick, 14th Informal Conf. Photochem., Newport Beach, CA, March 30-April 3, 1980.
- ¹⁷A. Horowitz, J. Phys. Chem. **95**, 10816 (1991).
- ¹⁸C. N. Plum, E. Sanhueza, R. Atkinson, W. P. L. Carter, and J. N. Pitts, Jr., Environ. Sci. Technol. **17**, 479 (1983).
- ¹⁹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ²⁰H. Niki, P. D. Maker, C. M. Savage, and M. D. Hurley, J. Phys. Chem. **91**, 2174 (1987).
- ²¹C. E. McDade, T. M. Lenhardt, and K. D. Bayes, J. Photochem. 20, 1 (1982).
- ²²H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, Int. J. Chem. Kinet. **17**, 547 (1985).
- ²³M. Green, G. Yarwood, and H. Niki, Int. J. Chem. Kinet. **22**, 689 (1990).
- ²⁴R. Atkinson, Int. J. Chem. Kinet. 19, 799 (1987).
- ²⁵R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ²⁶R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).
 ²⁷R. P. Wayne, I. Barnes, P. Biggs, J. P. Burrows, C. E. Canosa-Mas, J.
- Hjorth, G. Le Bras, G. K. Moortgat, D. Perner, G. Poulet, G. Restelli, and H. Sidebottom, Atmos. Environ. 25A, 1 (1991).
- ²⁸J. Hjorth, J. Notholt, and G. Restelli, Int. J. Chem. Kinet. 24, 51 (1992).
- ²⁹W. R. Stockwell and J. G. Calvert, J. Geophys. Res. 88, 6673 (1983).
- ³⁰C. A. Cantrell, W. R. Stockwell, L. G. Anderson, K. L. Busarow, D. Perner, A. Schmeltekopf, J. G. Calvert, and H. S. Johnston, J. Phys. Chem. **89**, 139 (1985).
- ³¹C. A. Cantrell, J. A. Davidson, K. L. Busarow, and J. G. Calvert, J. Geophys. Res. **91**, 5347 (1986).
- ³²G. K. Moortgat and R. D. McQuigg, Proc. 3rd European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Riedel Pub. Co., Dordrecht, The Netherlands, 1984, pp. 194–204.
- ³³G. K. Moortgat, J. P. Burrows, W. Schneider, G. S. Tyndall, and R. A. Cox, Proc. 4th European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Riedel Pub. Co., Dordrecht, The Netherlands, 1987, pp. 271–281.
- ³⁴W. P. Hess and F. P. Tully, Chem. Phys. Lett. 152, 183 (1988).
- ³⁵U. Meier, H. H. Grotheer, G. Riekert, and Th. Just, Chem. Phys. Lett. 115, 221 (1985).
- ³⁶S. M. Japar, T. J. Wallington, J. F. O. Richert, and J. C. Ball, Int. J. Chem. Kinet. **22**, 1257 (1990).
- ³⁷E. C. Tuazon, unpublished data, cited in R. Atkinson and W. P. L. Carter, J. Atmos. Chem. 13, 195 (1991).
- ³⁸D. F. Smith, T. E. Kleindienst, E. E. Hudgens, C. D. McIver, and J. J. Bufalini, Int. J. Chem. Kinet. **23**, 907 (1991).
- ³⁹E. C. Tuazon, W. P. L. Carter, S. M. Aschmann, and R. Atkinson, Int. J. Chem. Kinet. **23**, 1003 (1991).
- ⁴⁰D. F. Smith, T. E. Kleindienst, E. E. Hudgens, C. D. McIver, and J. J. Bufalini, Int. J. Chem. Kinet. 24, 199 (1992).
- ⁴¹T. J. Wallington and S. M. Japar, Environ. Sci. Technol. 25, 410 (1991).
- ⁴²P. H. Wine, R. J. Astalos, and R. L. Mauldin, III, J. Phys. Chem. **89**, 2620 (1985).
- ⁴³D. L. Singleton, G. Paraskevopoulos, R. S. Irwin, G. S. Jolly, and D. J. McKenney, J. Am. Chem. Soc. 110, 7786 (1988).
- ⁴⁴D. L. Singleton, G. Paraskevopoulos, and R. S. Irwin, J. Am. Chem. Soc. 111, 5248 (1989).
- ⁴⁵H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, J. Phys. Chem. 87, 2190 (1983).

- ⁴⁶G. L. Vaghjiani and A. R. Ravishankara, J. Phys. Chem. **93**, 1948 (1989).
- ⁴⁷E. P. Gardner, P. D. Sperry, and J. G. Calvert, J. Phys. Chem. **91**, 1922 (1987).
- 48 E. C. Tuazon and R. Atkinson, Int. J. Chem. Kinet. 22, 591 (1990).
- ⁴⁹S. B. Bertman and J. M. Roberts, Geophys. Res. Lett. 18, 1461 (1991).
- ⁵⁰J. M. Roberts and S. B. Bertman, Int. J. Chem. Kinet. 24, 297 (1992).
 ⁵¹I. R. Slagle, J. -Y. Park, M. C. Heaven, and D. Gutman, J. Am. Chem.
- Soc. 106, 4356 (1984). ⁵²H. Krueger and E. Weitz, J. Chem. Phys. 88, 1608 (1988).
- ⁵³A. Fahr and A. H. Laufer, J. Phys. Chem. **92**, 7229 (1988).
- A. Fail and A. H. Lauler, J. Fliys. Chem. 92, 7229 (1988).
- ⁵⁴E. C. Tuazon and R. Atkinson, Int. J. Chem. Kinet. 21, 1141 (1989).
 ⁵⁵S. W. Benson, *Thermochemical Kinetics*, 2nd ed. (Wiley, New York, NY, 1976).
- ⁵⁶R. Atkinson and A. C. Lloyd, J. Phys. Chem. Ref. Data 13, 315 (1984).
- ⁵⁷H. Takagi, N. Washida, H. Akimoto, and M. Okuda, Spectros. Lett. 15, 145 (1982).
- ⁵⁸K. H. Becker and Th. Klein, Proc. 4th European Symp. on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Riedel Publishing Co., Dordrecht, The Netherlands, 1987, pp. 320–326.
- ⁵⁹E. C. Tuazon, R. Atkinson, and W. P. L. Carter, Environ. Sci. Technol. 19, 265 (1985).

2.6. Nitrogen-Containing Organic Compounds

The nitrogen-containing organic compounds considered in this section are the alkyl nitrates expected to be formed in the atmosphere from the alkanes and alkenes (see Secs. 2.1 and 2.2), alkyl nitrites, and peroxyacyl and peroxyalkyl nitrates. The reactions of acetyl peroxy (RC(O)OO') radicals under atmospheric conditions are also discussed in the portion of this section dealing with the chemistry of peroxyacyl nitrates.

Alkyl Nitrates

Based upon laboratory studies concerning the formation of alkyl nitrates from the NO_x-air photooxidations of the alkanes (Sec. 2.1 and references 1–3), the major alkyl nitrates expected to be formed in the atmosphere are 2propyl nitrate, 2-butyl nitrate, 2- and 3-pentyl nitrate, and 2- and 3-hexyl nitrate. Although no experimental data are available concerning the kinetics of the NO₃ radical or O₃ reactions, these are expected to be slow and of no significance as atmospheric loss processes. The major loss processes are then reaction with the OH radical and photolysis. The room temperature OH radical reaction rate constants are given in Table 35 (no temperature dependent data are available).

These reactions proceed by H-atom abstraction from the C-H bonds, and in the absence of product data the estimation technique of Atkinson⁶ (as revised by Atkinson and Aschmann⁷ to yield the substituent factors at 298 K of $F(-CH_2ONO_2) = F(>CHONO_2) =$ $F(\Rightarrow CONO_2) = 0.30$ and $F(-ONO_2) = 0.18$) can be used to calculate the distribution of the nitratoalkyl radicals formed from the OH radical reactions of the $\ge C_4$ alkyl nitrates (see Reaction Scheme (14), for example, at room temperature). The expected subsequent reactions of these radicals are as discussed in Sec. 2.1. For example, in the presence of NO, the reactions expected to occur are as shown in Reaction Scheme (15). At the present time, product data are not available for these reactions,

TABLE 35.	Room temperature rate constants k for the gas-phase reac-
	tions of the OH radical with alkyl nitrates and peroxyacetyl
	nitrate at atmospheric pressure [from Ref. 4 and Sec. 3.8]

Organic	$10^{12} \times k$ (cm ³ molecule ⁻¹ s ⁻¹)
Methyl nitrate	0.35
Ethyl nitrate	0.49
1-Propyl nitrate	0.73
2-Propyl nitrate	0.49
1-Butyl nitrate	1.71
2-Butyl nitrate	0.92
2-Pentyl nitrate	1.85
3-Pentyl nitrate	1.12
2-Methyl-3-butyl nitrate	1.82
2,2-Dimethyl-1-propyl nitrate	0.85
2-Hexyl nitrate	3.17
3-Hexyl nitrate	2.70
Cyclohexyl nitrate	3.30
2-Methyl-2-pentyl nitrate	1.72
3-Methyl-2-pentyl nitrate	3.02
3-Heptyl nitrate	3.69
3-Octyl nitrate	3.88
Peroxyacetyl nitrate	0.11ª

 ${}^{a}k = 9.5 \times 10^{-13} e^{-650/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ recommended over the temperature range 270–300 K.}^5$

and the estimation method proposed in Sec. 2.1 for the assessment of the relative importance of the various alkoxy radical reaction pathways should be used.

The absorption cross-sections of methyl nitrate, ethyl nitrate and 1-and 2-propyl nitrate have been reviewed and evaluated by the IUPAC panel,⁵ and the IUPAC recommended values⁵ are based on the measurements of Roberts and Fajer⁸ and Turberg *et al.*⁹ The IUPAC evaluation⁵ should be consulted for the absorption cross-sections for these alkyl nitrates. In addition, Roberts and Fajer⁸ measured absorption cross-sections for 1- and 2-butyl nitrate, 2-methyl-2-propyl nitrate (*tert*-butyl nitrate), 2- and 3-pentyl nitrate, cyclopentyl nitrate, CH₃C(O)CH₂ONO₂ and HOCH₂CH₂ONO₂, while Turberg *et al.*⁹ also measured the absorption cross-sections for 1-butyl nitrate.

Based on the direct measurements of the photolysis rates under ambient atmospheric conditions conducted by Luke and Dickerson¹⁰ and Luke *et al*.¹¹ for ethyl nitrate,^{10,11} 1-propyl nitrate¹¹ and 1- and 2-butyl nitrate,¹¹ the lifetimes of these alkyl nitrates in the lower troposphere due to photolysis are in the range ~15-30 days. Moreover, these measured photolysis rates under ambient atmospheric conditions are in agreement, within the experimental errors, with those calculated assuming a

photodissociation quantum yield of unity^{10,11} (see also Becker and Wirtz¹²). Photolysis leads to cleavage of the O–NO₂ bond,

$$RONO_2 + h\nu \rightarrow R\dot{O} + NO_2$$

followed by the reactions of the alkoxy radical (Sec. 2.1). For example, Becker and Wirtz¹² have observed the formation of acetone from the photolysis of 2-propyl nitrate:

$$CH_{3}CH(ONO_{2})CH_{3} + h\nu \rightarrow CH_{3}CH(\dot{O})CH_{3} + NO_{2}$$

$$\downarrow O_{2}$$

$$CH_{3}C(O)CH_{3} + HO_{2}$$

Alkyl Nitrites

Under atmospheric conditions, the simple alkyl nitrites rapidly photolyze,¹³ with lifetimes measured in minutes.

$$RONO + h\nu \rightarrow R\dot{O} + NO$$

Their reactions with the OH radical (reference 4 and Sec. 3.8) are of negligible importance as an atmospheric loss process.¹⁴ Because of their rapid photolysis, the formation of alkyl nitrites from the $R\dot{O}$ + NO combination reactions can be essentially neglected under atmospheric conditions. However, the formation of alkyl nitrites from the $R\dot{O}$ + NO reactions can be important in the photoxidations, under laboratory conditions, of RONO-NO-organic-air mixtures.

Peroxyacyl Nitrates and Peroxy Nitrates

Peroxyacetyl nitrate (PAN; $CH_3C(O)OONO_2$) and the higher members of this class of compounds are formed from the atmospheric degradations of many organics (see Sec. 2.5) by the combination reaction of acyl peroxy radicals with NO_2 .

$$RC(O)OO' + NO_2 \xrightarrow{M} RC(O)OONO_2$$

The reaction of OH radicals with PAN (the only peroxyacyl nitrate studied to date) is slow at tropospheric temperatures (Table 35) and this OH radical reaction is expected to be a significant atmospheric loss process for PAN only at the low temperatures encountered in the upper troposphere. The absorption cross-sections for PAN are given in the IUPAC evaluation.⁵ The major, and usually totally dominant, loss process for PAN in the lower troposphere is by its thermal decomposition

$$CH_3C(O)OONO_2 \xrightarrow{M} CH_3C(O)O\dot{O} + NO_2$$

Thus, PAN is in equilibrium with NO_2 and the $CH_3C(O)OO$ radical. In the presence of NO, the reaction

$$CH_{3}C(O)OO' + NO \rightarrow CH_{3}C(O)\dot{O} + NO_{2}$$

$$\downarrow$$

$$\dot{C}H_{3} + CO_{2}$$

leads to removal of PAN.

The thermal decomposition rate constant for PAN is temperature and pressure dependent,⁵ being in the fall-off region at room temperature at and below atmospheric pressure. Using the Troe fall-of expression, the IUPAC evaluation panel recommended for the temperature range 280-330 K that:⁵ $k_o = 4.9 \times 10^{-3} e^{-12100/T} cm^3$ molecule⁻¹ s⁻¹, $k_\infty = 4.0 \times 10^{16} e^{-13600/T} s^{-1}$ and F = 0.3 at 298 K. Thus, k_∞ (PAN) = 6.1 × 10⁻⁴ s⁻¹ at 298 K, and at 298 K and 760 Torr total pressure of air k (PAN) = 5.2 × 10⁻⁴ s⁻¹, in good agreement with the atmospheric pressure data of Schurath and Wipprecht¹⁵ ($k = 3.2 \times 10^{16} e^{-13592/T} s^{-1} = 5.0 \times 10^{-4} s^{-1}$ at 298 K), Roberts and Bertman¹⁶ ($k = 2.5 \times 10^{17} e^{-14343/T} s^{-1} = 3.1 \times 10^{-4} s^{-1}$ at 298 K) and Roumelis and Glavas¹⁷ ($k = 3.1 \times 10^{-4} s^{-1}$ at 296.7 K).

The decomposition rates of the higher peroxyacyl nitrates are expected to be similar to that for PAN, with the decomposition rate constants being closer to the high pressure limit at a given pressure than for PAN.

For the formation and decomposition of peroxypropionyl nitrate (PPN),

$$CH_{3}CH_{2}C(O)OO' + NO_{2} \stackrel{M}{\Longrightarrow} CH_{3}CH_{2}C(O)OONO_{2} (a, -a)$$

$$CH_{3}CH_{2}C(O)OO' + NO \rightarrow CH_{3}CH_{2}C(O)O' + NO_{2} (b)$$

$$\downarrow$$

$$C_{2}H_{3} + CO_{2}$$

Kerr and Stocker¹⁸ obtained a rate constant ratio of $k_b/k_a = 1.9$ at ~730 Torr total pressure of air and 302 ± 3 K, essentially identical to the rate constant ratio for the analogous reactions of the CH₃C(O)OO' radical.⁵ At atmospheric pressure, Schurath and Wipprecht¹⁵ and Mineshos and Glavas¹⁹ determined thermal decomposition rate constants for peroxypropionyl nitrate (PPN; C₂H₅C(O)OONO₂) of k (PPN) = 1.6 × 10¹⁷ e^{-14073/T} s⁻¹ s⁻¹ and 2 × 10¹⁵ e^{-12800/T} s^{-1 19} (5.0 × 10⁻⁴ s^{-1 15} and 4.4 × 10⁻⁴ s^{-1 19} at 298 K and atmospheric pressure).

Roberts and Bertman¹⁶ have studied the thermal decomposition of $CH_2 = C(CH_3)C(O)OONO_2$ (MPAN) [formed from the OH radical-initiated reaction of methacrolein (Sec. 2.5)] and determined a thermal decomposition rate constant at atmospheric pressure of $k(MPAN) = 1.6 \times 10^{16} e^{-13488/T} s^{-1} (3.5 \times 10^{-4} s^{-1} at$ 298 K).

These data indicate that for the thermal decompositions of the peroxyacyl nitrates,

$$k(\text{RC(O)OONO}_2) = 4 \times 10^{16} \text{ e}^{-13600/T} \text{ s}^{-1}$$

to within a factor of ~ 1.5 at 298 K.

For the peroxyalkyl nitrates, $ROONO_2$, the only significant lower troposphere loss process is again thermal decomposition,

$$ROONO_2 \xrightarrow{M} RO_2^2 + NO_2$$

with the thermal decomposition rate constants for CH_3OONO_2 and $C_2H_5OONO_2$ being in the fall-off

regime at pressures of one atmosphere and below.^{5,20} Using the Troe fall-off expression, the IUPAC evaluation panel recommended⁵ for the temperature range 250– 300 K that: for CH₃OONO₂, $k_0 = 9 \times 10^{-5} e^{-9690/T} \text{ cm}^3$ molecule⁻¹ s⁻¹, $k_{\infty} = 1.1 \times 10^{16} e^{-10560/T} \text{ s}^{-1}$, and F = 0.4at 298 K; and for C₂H₅OONO₂, $k_0 = 4.8 \times 10^{-4} e^{-9285/T}$ cm³ molecule⁻¹ s⁻¹, $k_{\infty} = 8.8 \times 10^{15} e^{-10440/T} \text{ s}^{-1}$, and F = 0.31. At 760 Torr total pressure of air and 298 K, $k(\text{CH}_3\text{OONO}_2) = 1.8 \text{ s}^{-1}$ and $k(\text{C}_2\text{H}_5\text{OONO}_2) = 4.0 \text{ s}^{-1}$, which can be compared to the limiting high-pressure values of $k_{\infty}(\text{CH}_3\text{OONO}_2) = 4.5 \text{ s}^{-1}$ and $k_{\infty}(\text{C}_2\text{H}_5\text{OONO}_2)$ $= 5.4 \text{ s}^{-1}$ at 298 K. The decomposition rates for the higher ROONO₂ species are expected to be similar to that for CH₃OONO₂, except that they will be closer to the high pressure first-order limit.

Indeed, Zabel *et al*.²⁰ have shown that the thermal decomposition rate constants for the $C_4H_9OONO_2$, $C_6H_{13}OONO_2$ and $C_8H_{17}OONO_2$ species at 600 Torr total pressure and 253 K are within 30% of the high-pressure limiting value for $C_2H_5OONO_2$.²⁰ Hence it is recommended that:

$$k_{\infty}(\text{ROONO}_2) = 9 \times 10^{15} \text{ e}^{-10450/T} \text{ s}^{-1}.$$

Bridier *et al.*²¹ have experimentally measured the equilibrium constant $K = k_a/k_{-a}$ for the reactions

$$CH_3O_2 + NO_2 \stackrel{M}{\cong} CH_3OONO_2$$
 (a, -a)

over the temperature range 333–373 K, with K = $2.73 \times 10^{-28} e^{10910/7}$ cm³ molecule⁻¹, in good agreement with the equilibrium constant calculated from the forward and reverse rate constants k_{∞} recommended by the IUPAC evaluation⁵ of $6.8 \times 10^{-28} e^{10560/7}$ cm³ molecule⁻¹ over the temperature range 333–373 K. Absorption cross-sections have been measured for CH₃OONO₂²¹⁻²⁴ and those of Cox and Tyndall,²² Sander and Watson²³ and Morel *et al.*²⁴ were considered in the IUPAC evaluation.⁵ The absorption cross-sections reported by Bridier *et al.*²¹ for the wavelength range 200–280 nm are in general agreement with the IUPAC recommendation,⁵ except for wavelengths 220–230 nm and 280 nm.

References

- ¹W. P. L. Carter and R. Atkinson, J. Atmos. Chem. 3, 377 (1985).
- ²W. P. L. Carter and R. Atkinson, J. Atmos. Chem. 8, 165 (1989).
- ³R. Atkinson, Atmos. Chem. 24A, 1 (1990).
- ⁴R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ⁵R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and J. Troe, J. Phys. Chem. Ref. Data 21, 1125 (1992).
- ⁶R. Atkinson, Int. J. Chem. Kinet. 19, 799 (1987).
- ⁷R. Atkinson and S. M. Aschmann, Int. J. Chem. Kinet. 21, 1123 (1989).
- ⁸J. M. Roberts and R. W. Fajer, Environ. Sci. Technol. 23, 945 (1989).
- ⁹M. P. Turberg, D. M. Giolando, C. Tilt, T. Soper, S. Mason, M. Davies, P. Klingensmith, and G. A. Takacs, J. Photochem. Photobiol., A: Chemistry **51**, 281 (1990).
- ¹⁰W. T. Luke and R. R. Dickerson, Geophys. Res. Lett. 15, 1181 (1988).
 ¹¹W. T. Luke, R. R. Dickerson, and L. J. Nunnermacker, J. Geophys. Res. 94, 14905 (1989).
- ¹²K. H. Becker and K. Wirtz, J. Atmos. Chem. 9, 419 (1989).
- ¹³W. D. Taylor, T. D. Allston, M. J. Moscato, G. B. Fazekas, R.

Kozlowski, and G. A. Takacs, Int. J. Chem. Kinet. 12, 231 (1980).

- ¹⁴O. J. Nielsen, H. W. Sidebottom, M. Donlon, and J. Treacy, Int. J. Chem. Kinet. 23, 1095 (1991).
- ¹⁵U. Schurath and V. Wipprecht, Proc. 1st European Symp. on the Physico-Chemical Behaviour of Atmospheric Pollutants, pp. 157–166, Commiss. European Commun. (1980).
- ¹⁶J. M. Roberts and S. B. Bertman, Int. J. Chem. Kinet. 24, 297 (1992).
 ¹⁷N. Roumelis and S. Glavas, Monatshefte für Chemie, 123, 63 (1992).
- ¹⁸J. A. Kerr and D. W. Stocker, J. Photochem. 28, 475 (1985).
- ¹⁹G. Mineshos and S. Glavas, React. Kinet. Catal. Lett. 45, 305 (1991).
 ²⁰F. Zabel, A. Reimer, K. H. Becker, and E. H. Fink, J. Phys. Chem. 93, 5500 (1989).
- ²¹I. Bridier, R. Lesclaux, and B. Veyret, Chem. Phys. Lett. 191, 259 (1992).
- ²²R. A. Cox and G. S. Tyndall, Chem. Phys. Lett. 65, 357 (1979).
- ²³S. P. Sander and R. T. Watson, J. Phys. Chem. 84, 1664 (1980).

²⁴O. Morel, R. Simonaitis, and J. Heicklen, Chem. Phys. Lett. 73, 38 (1980).

3. Kinetics and Mechanisms of the Gas-Phase Reactions of the OH Radical with Organic Compounds

Recent kinetic and mechanistic data for the gas-phase reactions of the OH radical with organic compounds are presented and discussed in this section. Recommended rate constant expressions are given using either the Arrhenius expression, $k = A e^{-B/T}$, or, if curvature in the Arrhenius plot is evident, the three parameter equation $k = C T^n e^{-D/T}$, where at a given temperature T the three parameter equation can be transformed into the Arrhenius expression with $A = Ce^nT^n$ and B = D + nT.

3.1. Alkanes

The rate constants reported since the previous review of Atkinson¹ are given in Table 36. In addition to these rate constants, Cantrell *et al.*¹⁷ have determined the rate constant for the OH radical reactions with methane-¹²C relative to that for methane-¹³C over the temperature range 273-353 K, and obtained $k({}^{12}CH_4)/k({}^{13}CH_4) =$ 1.0054 ± 0.0009 independent of temperature over this range.

Methane and Methane-¹³C. Absolute rate constants for the reactions of the OH radical with methane have been determined by Bott and Cohen² at 1234 \pm 15 K, and by Vaghjiani and Ravishankara³ and Finlayson-Pitts *et al.*⁴ over the temperature ranges 223–420 K and 278–378 K, respectively (Table 36). While the high-temperature rate constant of Bott and Cohen² is in good agreement (within 15%) with the recommendation of Atkinson¹ of

k(methane) = 6.95 × 10⁻¹⁸ $T^2 e^{-1282/T} cm^3$ molecule⁻¹ s⁻¹,

the absolute rate constants determined by Vaghjiani and Ravishankara³ and Finlayson-Pitts *et al.*⁴ over the temperature ranges 223–420 K and 278–378 K, respectively, are $\sim 20\%$ lower than most of the previously reported absolute rate constants. In particular, the rate constants of Vaghjiani and Ravishankara³ and FinlaysonPitts *et al.*⁴ at and below room temperature are significantly lower than those of Greiner,¹⁸ Davis *et al.*¹⁹ and Jeong and Kaufman,^{20,21} possibly because of the occurrence of secondary reactions of the OH radical with the methyl radical product in the earlier studies.³

Thus, the CH₄/OH concentration ratios used in the studies of Greiner,¹⁸ Davis et al.¹⁹ and Jeong and Kaufman²⁰ were significantly lower than those used by Vaghjiani and Ravishankara,³ and all of these earlier studies conducted with low CH4/OH concentration ratios were possibly subject to secondary reactions³ leading to erroneously high measured rate constants, especially at the lowest temperatures studied. Indeed, inspection of the 298 K rate data of Davis et al.¹⁹ does indicate a dependence of the measured rate constant on the OH radical concentration³ [as derived from (flash energy) \times (water vapor concentration)], and a similar dependence may be present in the 373 K rate data. This observation³ suggests that the rate constant data of Greiner,¹⁸ Davis et al.,¹⁹ Overend et al.²² and Jeong and Kaufman^{20,21} were subject to the occurrence of secondary reactions, and hence these studies are not used in the evaluation of the rate constant for this reaction. It should, however, be noted that while Finlayson-Pitts et al.⁴ used a CH₄/OH concentration ratio significantly lower than employed in the study of Vaghjiani and Ravishankara,³ these two studies^{3,4} are in good agreement.

At around room temperature, the absolute rate constants of Margitan *et al.*,²³ Howard and Evenson,²⁴ Zellner and Steinert,²⁵ Tully and Ravishankara,²⁶ Husain *et al.*,²⁷ Jonah *et al.*,²⁸ Madronich and Felder,²⁹ Vaghjiani and Ravishankara³ and Finlayson-Pitts *et al.*⁴ are in reasonable agreement, ranging from 5.6 \times 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ to 9.5 \times 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at ~298 K. As noted previously,¹ at higher temperatures there are discrepancies between the rate constants measured by Zellner and Steinert²⁵ (above ~625 K) and Jonah *et al.*²⁸ (400–600 K) and those of Margitan *et al.*,²³ Tully and Ravishankara,²⁶ Madronich and Felder²⁹ and Vaghjiani and Ravishankara.³ It should be noted that the rate constants of Vaghjiani and Ravishankara³ and Finlayson-Pitts *et al.*⁴ are as low as, or lower than, the other absolute rate constants over the temperature range ~295–420 K.

The absolute rate constants of Dixon-Lewis and Williams,³⁰ Margitan *et al.*,²³ Howard and Evenson,²⁴ Ernst *et al.*,³¹ Tully and Ravishankara,²⁶ Madronich and Felder,²⁹ Smith *et al.*,³² Bott and Cohen,² Vaghjiani and Ravishankara³ and Finlayson-Pitts *et al.*⁴ and the relative rate constant of Cox *et al.*³³ are plotted in Arrhenius form in Fig. 2 (the studies of Smith *et al.*³² and Bott and Cohen² supersede the earlier preliminary data reported by Fairchild *et al.*³⁴ and Cohen and Bott,³⁵ respectively). These rate constant data are in generally good agree-

FIG. 2. Arrhenius plot of selected rate constants for the reaction of the OH radical with methane. (■) Dixon-Lewis and Williams;³⁰ (△) Margitan *et al.*;²³ (▼) Howard and Evenson;²⁴ (◆) Cox *et al.*;³³ (X) Ernst *et al.*;³¹ (●) Tully and Ravishankara;²⁶ (∇) Madronich and Felder;²⁹ (▲) Smith *et al.*;³² (□) Bott and Cohen;² (○) Vaghjiani and Ravishankara;³ (+) Finlayson-Pitts *et al.*;⁴ (--) recommendation (see text).

77

ment, and the Arrhenius plot is obviously curved. The absolute rate constants of Dixon-Lewis and Williams,³⁰ Margitan *et al.*,²³ Howard and Evenson,²⁴ Ernst *et al.*,³¹ Tully and Ravishankara,²⁶ Madronich and Felder,²⁹ Smith *et al.*,³² Bott and Cohen,² Vaghjiani and Ravishankara³ and Finlayson-Pitts *et al.*⁴ have been used to evaluate the rate constant for the reaction of OH radicals with methane. A unit-weighted least-squares analysis of these data,^{2-4,23,24,26,29-32} using the expression $k = CT^2e^{-D/T}$, yields the recommendation of

$$k$$
(methane) =
(7.44^{+0.41}_{-0.39}) × 10⁻¹⁸ $T^2 e^{-(1361 \pm 21)/T}$ cm³ molecule⁻¹ s⁻¹

over the temperature range 223-1512 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
 (methane) =
6.86 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 20\%$. At temperatures ≤ 400 K, this recommendation is significantly different to that of

$$k$$
(methane) =
6.95 × 10⁻¹⁸ T^2 e^{-1282/T} cm³ molecule⁻¹ s⁻¹

recommended by Atkinson¹ over the temperature range 240–1512 K, with the presently recommended 298 K rate constant being 18% lower than the previous recommendation.¹

For the reaction of the OH radical with methane-¹³C, Cantrell *et al.*¹⁷ have determined a rate constant ratio of

$$k$$
(methane-¹²C)/ k (methane-¹³C) = 1.0054 ± 0.0009,

independent of temperature over the range 273–353 K. This rate constant ratio, which supersedes the earlier study of Davidson *et al.*,³⁶ is recommended, and agrees well with the rate constant ratio of k (methane-¹²C)/k(methane-¹³C) = 1.007 obtained from the *ab initio* calculations of Lasaga and Gibbs.³⁷

Ethane. The absolute rate constants determined by Lafage et al.⁵ (inadvertently omitted from the Atkinson¹ review), Abbatt et al.,⁶ Schiffman et al.,⁷ Dóbé et al.⁸⁹ and Bott and Cohen¹⁰ are given in Table 36. The rate constants of Abbatt et al.⁶ at 297 \pm 2 K and Schiffman et al.⁷ at an unspecified room temperature are ~9% lower than the recommendation of Atkinson,¹ while the rate constants of Lafage et al.,⁵ Dóbé et al.⁸⁹ and Bott and Cohen¹⁰ are in reasonable⁵ or good⁸⁻¹⁰ agreement with the Atkinson¹ recommendation (the rate constant of Lafage et al.⁵ at 413 K being 40% higher than the recommended value¹).

The rate constant data of Greiner,¹⁸ Howard and Evenson,³⁸ Leu,³⁹ Margitan and Watson,⁴⁰ Tully *et al.*,^{41,42} Jeong *et al.*,²¹ Smith *et al.*,⁴³ Devolder *et al.*,⁴⁴ Baulch *et al.*,⁴⁵ Stachnik *et al.*,⁴⁶ Bourmada *et al.*,⁴⁷ Wallington et al.,⁴⁸ Zabarnick et al.⁴⁹ and Abbatt et al.⁶ are plotted in Arrhenius form in Fig. 3. Analogous to the situation for the OH radical reaction with methane (see above), the rate constants of Greiner,¹⁸ Overend et al.²² and Jeong et al.²¹ were not used in the evaluation of the rate constant for this reaction since the C₂H₆/OH radical concentration ratios were quite low, leading to the possibility of secondary reactions and erroneously high measured rate constants (in this regard see also the comment by Atkinson¹ for the OH radical reaction with ethane).

Accordingly, the rate constant data of Howard and Evenson,³⁸ Leu,³⁹ Margitan and Watson,⁴⁰ Tully *et al.*,^{41,42} Smith *et al.*,⁴³ Devolder *et al.*,⁴⁴ Baulch *et al.*,⁴⁵ Stachnik *et al.*,⁴⁶ Bourmada *et al.*,⁴⁷ Wallington *et al.*,⁴⁸ Zabarnick *et al.*⁴⁹ and Abbatt *et al.*⁶ have been used to evaluate the rate constant for the reaction of the OH radical with ethane. A unit-weighted least-squares analysis of these data,^{6,38-49} using the expression $k = CT^2e^{-D/T}$, yields the recommendation of

$$k$$
(ethane) =
(1.51^{+0.16}_{-0.15}) × 10⁻¹⁷ $T^2 e^{-(492 \pm 31)/T} cm^3 molecule^{-1} s^{-1}$

over the temperature range 226-800 K, where the indicated errors are two least-squares standard deviations, and

$$k(\text{ethane}) =$$

2.57 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K.

with an estimated overall uncertainty at 298 K of $\pm 20\%$.

The room temperature rate constants of Schiffman *et al.*⁷ (the actual temperature not being specified) and Dóbé *et al.*^{8,9} are in good agreement with this recommendation. Moreover, the rate constant at 1225 K of 1.52×10^{-11} cm³ molecule⁻¹ s⁻¹ calculated from the present recommendation is in excellent agreement with that of $(1.54 \pm 0.24) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ determined by Bott and Cohen¹⁰ at 1225 K from an apparently limited study, indicating that the recommendation is applicable up to 1225 K.

This recommendation is slightly different from that recommended previously by Atkinson¹ of

$$k$$
(ethane) =
1.42 × 10⁻¹⁷ T^2 e^{-462/T} cm³ molecule⁻¹ s⁻¹

over the same temperature range, with a 298 K rate constant of 2.68×10^{-13} cm³ molecule⁻¹ s⁻¹.

Propane. The absolute rate constants of Abbatt *et al.*,⁶ Mac Leod *et al.*,¹¹ Schiffman *et al.*,⁷ and Dóbé *et al.*⁸ and the relative rate constant of Nielsen *et al.*,¹² all obtained at room temperature, are given in Table 36, and are in agreement with each other and also agree with the recommendation of Atkinson.¹ The N₂H₄–O₃ reaction was used as a source of OH radicals in the relative rate study of Nielsen *et al.*,¹² and the good agreement of the rate constant for propane with the literature data¹ was used to validate the technique for the determination of

														•					••	I.L.																							
Temperature range covered (K)		223-420																																									
Reference	Bott and Cohen ²	Vaghjiani and	Ravishankara ³																																								
Technique	SH-RA	FP/LP-LIF																																									
at $T(\mathbf{K})$	1234 ± 15	223	223	223	223	223	223	223	223	223	223	223	233	233	233	233	233	233	233	250	250	250	273	273	273	273	273	273	273	295	297	297	298	298	303	303	303	303	303	303	325	350	380
$10^{12} \times k (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	4.3 ± 0.9	+1		+1 -	+1	+1	+1	+I -	+1	+I	+1	+1	+1	+1	+1	0.00118 ± 0.00002	0.00125 ± 0.00003	0.00133 ± 0.00002	+I	+1	+1	+1	+1	+1	+1	+I	0.00338 ± 0.00007	+1	+I	ŧI.	+1	+1	+1	+1	+1	+1	0.00674 ± 0.00008	0.00674 ± 0.00013	+1	+I	+1	+	+
B (K)																																											
a																																											
$\frac{10^{12} \times A \ (\text{cm}^3)}{\text{molecule}^{-1} \text{ s}^{-1}}$																																											
Alkane	Methane																																										

ROGER ATKINSON

Continued
anes –
with alk
radical
НО
f the
actions of
se re
gas-pha:
the
s for
parameters
dent
epene
Ire-de
eratu
empe
and 1
ts k
Istan
e con
Rate
36.
TABLE

Alkane	$10^{12} \times A (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	r u	B (K)	$10^{12} \times k (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
	1.59×10^{-8} 2.94 ± 0.34	2.84	978 1815 ± 30	$\begin{array}{rrrrr} 0.04304 \pm 0.00047 \\ 0.04184 \pm 0.00061 \\ 0.04366 \pm 0.00056 \\ 0.04336 \pm 0.00063 \\ 0.04234 \pm 0.00057 \\ 0.04287 \pm 0.00052 \\ 0.04287 \pm 0.00052 \end{array}$	420 420 420 420 420 420			
	4.0 ⁺ 1.5		1944 ± 114	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	278 298 313 333 348 348 378 378	DF-RF	Finlayson-Pitts <i>et al</i> . ⁴	278-378
Ethane				0.287 1.12	294 413	DF-RF	Lafage <i>et al</i> . ⁵	294-413
				0.253	294	DF-LIF	Lafage <i>et al</i> . ⁵	
				0.238 ± 0.016	297 ± 2	DF-LIF	Abbatt <i>et al</i> . ⁶	
				0.243 ± 0.012	8	LP-LIR	Schiffman et al. ⁷	
				0.274 ± 0.040	298	LP-RF	Dóbé et al .8.9	
				15.4 ± 2.4	1225	SH-RA	Bott and Cohen ¹⁰	
Propane				1.21 ± 0.10	297 ± 2	DF-LIF	Abbatt et al. ⁶	
				1.22 ± 0.08	298	LP-LIF	Mac Leod et al. ¹¹	
				1.02 ± 0.05	ß	LP-LIR	Schiffman et al. ⁷	
				1.40 ± 0.30	298	LP-RF	Dóbé et al ⁸	
				1.10 ± 0.05	298 ± 2	RR [relative to k(2-methylpropane) = 2.33 × 10 ⁻¹²	Nielsen <i>et al</i> . ¹²	

Alkane	$10^{12} \times A \text{ (cm}^3$ molecule ⁻¹ s ⁻¹)		B (K)	$10^{12} \times k (\text{cm}^3$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
<i>n</i> -Butane				2.25 ± 0.10	297 ± 2	DF-LIF	Abbatt et al. ⁶	
				2.32 ± 0.08	a	LP-LIR	Schiffman <i>et al.</i> ⁷	
2-Methylpropane				20.9 ± 4.2	1146 ± 15	SH-RA	Bott and Cohen ²	
				2.11 ± 0.09	в	LP-LIR	Schiffman <i>et al.</i> ⁷	
<i>n</i> -Pentane				4.21 ± 0.18	297 ± 2	DF-LIF	Abbatt <i>et al</i> . ⁶	
2,2-Dimethylpropane				0.79 ± 0.10	298 ± 2	PR-RA	Nielsen <i>et al</i> . ¹³	
				0.84 ± 0.10	298 ± 2	RR [relative to k(n-butane) = 2.54 × 10 ⁻¹²] ^b	Nielsen <i>et al</i> . ¹³	
2,3-Dimethylbutane				34.5 ± 5.2	1220 ± 16	SH-RA	Bott and Cohen ¹⁴	
2,2,4-Trimethylpentane	De			37.2 ± 5.6	1186 ± 16	SH-RA	Bott and Cohen ¹⁴	
2,2,3,3-Tetramethylbutane	utane			29.9 ± 4.5	1180 ± 16	SH-RA	Bott and Cohen ¹⁴	
3,3-Diethylpentane				5.1 ± 0.8	298 ± 2	PR-RA	Nielsen <i>et al</i> . ¹³	
[(\2115)4\]				4.79 ± 0.30	298 ± 2	RR [relative to k(cyclohexane) = 7.49 × 10 ⁻¹²] ^b	Nielsen <i>et al</i> . ¹³	
Cyclopropane	3.9 ± 0.6		1107 ± 51	0.110 ± 0.014	298	LP-RF	Dóbé et al. ⁸	298-492
	1.17 × 10 ⁻⁴	1.5	522 ± 44	$\begin{array}{l} 0.111 \pm 0.024 \\ 0.133 \pm 0.008 \\ 0.152 \pm 0.002 \\ 0.191 \pm 0.042 \\ 0.236 \pm 0.016 \\ 0.235 \pm 0.016 \\ 0.365 \pm 0.058 \\ 0.412 \pm 0.034 \\ 0.462 \pm 0.062 \end{array}$	298 ± 3 325 ± 1 337 ± 1 362 ± 1 368 ± 1 476 ± 3 496 ± 3	LP-RF	Dóbé et al.º	298-492

Alkane	$10^{12} \times \mathcal{A} (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	5	B (K)	$10^{12} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
Cyclobutane				1.75 ± 0.15	298	LP-RF	Dóbé et al . ⁸	
	5 06 × 10-4	v -	07 + 51	$\begin{array}{rrrr} 1.75 \pm 0.12\\ 2.22 \pm 0.20\\ 2.36 \pm 0.14\\ 2.89 \pm 0.30\\ 3.49 \pm 0.28\\ 3.08 \pm 0.28\\ 3.08 \pm 0.40\end{array}$	298 ± 3 327 ± 1 360 ± 2 392 ± 2 429 ± 2	LP-RF	Dóbé et al .º	298-469
Cyclopentane]		46.5 ± 9.3	- +	SH-RA	Bott and Cohen ²	
Cyclohexane				7.07 ± 0.35	298°	RR [relative to k (ethene) = 8.52×10^{-12} b	Japar <i>et al</i> . ¹⁵	
				7.20 ± 0.43	296 ± 2	RR [relative to $k(n-butane) = 2.51 \times 10^{-12}$ ^b	Atkinson and Aschmann ¹⁶	
<i>trans</i> -Pinane [(1R,2R)-2,6,6-Trimethyl- bicyclo[3.1.1]heptane]	methyl- ıne]			13.4 ± 1.1	296 ± 2	RR [relative to k(n-butane) = 2.51×10^{-12} b	Atkinson and Aschmann ¹⁶	
Tricyclene [1,7,7-Trimethyltricyclo- [2.2.1.0 ^{2,6}]heptane]	cyclo-			2.86 ± 0.23	296 ± 2	RR [relative to k(n-butane) = 2.51×10^{-12}	Atkinson and Aschmann ¹⁶	
Quadricyclane [Quadricyclo[2.2.1.0. ^{2.6} 0 ^{3.5}]- heptane]	.0. ^{2,6} 0 ^{3,5}]-			1.83 ± 0.17	296 ± 2	RR [relative to $k(n-butane) = 2.51 \times 10^{-12}$ ^b	Atkinson and Aschmann ¹⁶	
*Room temperature, not specified. ^b From present and previous ¹ recon ^c Room temperature, not specified;	*Room temperature, not specified. ^b From present and previous ¹ recommendations. ^c Room temperature, not specified; 298 K assumed.	lations. Cassumed.						

J. Phys. Chem. Ref. Data, Monograph No. 2

FIG. 3. Arrhenius plot of selected rate constants for the reaction of the OH radical with ethane. (○) Greiner;¹⁸ (+) Howard and Evenson;³⁸ (▼) Leu;³⁹ (◊) Margitan and Watson;⁴⁰ (▽) Tully et al.;⁴¹ (▲) Jeong et al.;²¹ (△) Smith et al.;⁴³ (♠) Devolder et al.,⁴⁴ Baulch et al.,⁴⁵ Bourmada et al.,⁴⁷ Zabarnick et al.;⁴⁹ (■) Tully et al.;⁴² (□) Stachnik et al.;⁴⁶ (●) Wallington et al.;⁴⁸ (X) Abbatt et al.;⁶ (−) recommendation (see text).

rate constants for the reactions of the OH radical with a series of alkyl nitrites.¹² Based upon the discussion of Atkinson,¹ the absolute rate constants measured by Greiner,¹⁸ Bott and Cohen,⁵⁰ Smith *et al.*,³² Baulch *et al.*,⁴⁵ Droege and Tully,⁵¹ Abbatt *et al.*⁶ and Mac Leod *et al.*¹¹ and the relative rate constants of Baker *et al.*^{52,53} and Atkinson *et al.*⁵⁴ are plotted in Arrhenius form in Fig. 4. These rate constant data^{6,11,18,32,45,50,51,53,54} have been used to evaluate the rate constant for the reaction of the OH radical with propane. Using the expression $k = CT^2 e^{-D/T}$, a unit-weighted least squares analysis of these data yields

$$k(\text{propane}) =$$

(1.48^{+0.17}_{-0.14}) × 10⁻¹⁷ T² e^{-(39 ± 39)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 293-1220 K, where the indicated errors are two least-squares standard deviations, and

$$k(\text{propane}) =$$

1.15 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K.

with an estimated overall uncertainty at 298 K of $\pm 20\%$. The room temperature (which was not specified) rate constant of Schiffman *et al.*⁷ is in good agreement with this expression, as is the relative rate constant of Nielsen *et al.*¹²

This rate expression is virtually identical (to within 1% over the temperature range $\sim 210-1500$ K) to the previous recommendation¹ of

k(propane) =1.50 × 10⁻¹⁷ T² e^{-44/T} cm³ molecule⁻¹ s⁻¹ over the same temperature range, and yields an identical 298 K rate constant. It is hence recommended that the previously recommended rate constant expression of

$$k$$
(propane) =
1.50 × 10⁻¹⁷ $T^2 e^{-44/T} cm^3 molecule^{-1} s^{-1}$

over the temperature range 293-1220 K continue to be used, with

$$k$$
(propane) =
1.15 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K.

FIG. 4. Arrhenius plot of selected rate constants for the reaction of the OH radical with propane. (■) Baker et al.;⁵³ (○) Greiner;¹⁸ (♥) Atkinson et al.;⁵⁴ (◇) Bott and Cohen;⁵⁰ (♠) Smith et al.;³² (△) Baulch et al.;⁴⁵ (●) Droege and Tully;⁵¹ (□) Abbatt et al.;⁶ Mac Leod et al.;¹¹ (−) recommendation (see text).

However, the most recent absolute rate constant determinations of Abbatt *et al.*,⁶ Mac Leod *et al.*¹¹ and Schiffman *et al.*⁷ lead to a significantly increased confidence in the recommended rate expression, and the estimated overall uncertainty in the 298 K rate constant has been reduced to $\pm 20\%$.

n-Butane. Absolute rate constants have been determined at room temperature by Abbatt *et al.*⁶ and Schiffman *et al.*,⁷ and these rate constants are given in Table 36. The rate constant of Schiffman *et al.*⁷ cannot be used in the evaluation of this rate constant, since the temperature was not specified. Based on the discussion of Atkinson¹ for this reaction, the absolute rate constants of Greiner,¹⁸ Stuhl,⁵⁵ Perry *et al.*,⁵⁶ Paraskevopoulos and Nip,⁵⁷ Droege and Tully⁵⁸ and Abbatt *et al.*⁶ and the relative rate constant of Baker *et al.*,^{52,53} are plotted in Arrhenius form in Fig. 5 and are used to evaluate the rate constant for the reaction of the OH radical with *n*-butane. A unit-weighted least-squares analysis of these data,^{18,53,55-58} using the expression $k = CT^2e^{-D/T}$, yields

k(n -butane) =(1.55^{+0.31}_{-0.26}) × 10⁻¹⁷ T² e^{(180 ± 64)/T} cm³ molecule⁻¹ s⁻¹ over the temperature range 294-753 K, where the indicated errors are two least-squares standard deviations, and

$$k(n-butane) =$$

2.52 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 20\%$. The rate constant of Schiffman *et al.*⁷ at an unspecified room temperature is in good agreement with this rate expression.

FIG. 5. Arrhenius plot of selected rate constants for the reaction of the OH radical with *n*-butane. (◆) Baker *et al.*;⁵³ (○) Greiner;¹⁸ (▲) Stuhl;⁵⁵ (△) Perry *et al.*;⁵⁶ (□) Paraskevopoulos and Nip;⁵⁷ (◆) Droege and Tully;⁵⁸ (▽) Abbatt *et al.*;⁶ (−) recommendation (see text).

This rate expression is virtually identical (to within 1% over the temperature range $\sim 280-620$ K) to the previous recommendation¹ of

$$k(n\text{-butane}) =$$

1.51 × 10⁻¹⁷ $T^2 e^{190/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the same temperature range, with a 298 K rate constant of 2.54×10^{-12} cm³ molecule⁻¹ s⁻¹. It is hence recommended that the previous recommendation¹ of

$$k(n-butane) =$$

1.51 × 10⁻¹⁷ $T^2 e^{190/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 294-753 K continue to be used, with

$$k(n-butane) =$$

2.54 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

and with an estimated overall uncertainty in the 298 K rate constant of $\pm 20\%$.

2-Methylpropane. The absolute rate constants obtained by Bott and Cohen² at 1146 ± 15 K and by Schiffman et al.⁷ at room temperature (the actual temperature being unspecified) are given in Table 36. Based on the discussion of Atkinson¹ for this reaction, the absolute rate constants of Greiner,¹⁸ Tully et al.⁵⁹ and Bott and Cohen² and the relative rate constants of Baker et al.^{52,53} and Atkinson et al.⁶⁰ are plotted in Arrhenius form in Fig. 6. The rate constant of Bott and Cohen² significantly extends the temperature range over which reliable data are available, and a unit-weighted least-squares analysis of these rate constant data,^{2,18,53,59,60} using the expression $k = CT^2e^{-D/T}$, leads to the recommendation of

$$k(2\text{-methylpropane}) =$$

(1.11^{+0.14}) × 10⁻¹⁷ T² e^{(256 ± 47)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 293-1146 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
 (2-methylpropane) =
2.33 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 25\%$. The room temperature rate constant of Schiffman *et al.*⁷ is in good agreement with this recommendation. This recommended expression is slightly different to the previous recommendation of Atkinson¹ of

k (2-methylpropane) = 1.04 × 10⁻¹⁷ $T^2 e^{277/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 293–864 K, although the 298 K rate constant is essentially identical to the previously recommended value¹ of 2.34×10^{-12} cm³ molecule⁻¹ s⁻¹. Because of the wider temperature range covered and the slight differences at combustion temperatures, the present recommendation is preferred.

n-Pentane. The absolute room temperature rate constant measured by Abbatt *et al.*⁶ is given in Table 36. This is the first absolute rate constant reported for *n*-pentane, and is plotted together with the relative rate constants of Baldwin and Walker,⁵³ Atkinson *et al.*,⁵⁴ Behnke *et al.*,^{61,62} Nolting *et al.*⁶³ and Harris and Kerr⁶⁴ in Arrhenius form in Fig. 7 (the rate constants of Harris and Kerr⁶⁴ relative to 2-methylpropane have not been reevaluated¹ since the change is $\leq 2\%$ at all of the temperatures studied).

The room temperature rate constants^{6,54,61-64} are in reasonable agreement, and a unit-weighted least-squares analysis of the rate constant data of Baldwin and Walker,⁵³ Atkinson *et al.*,⁵⁴ Behnke *et al.*,^{61,62} Nolting *et al.*,⁶³ Harris and Kerr⁶⁴ and Abbatt *et al.*,⁶ using the expression $k = CT^2 e^{-D/T}$, leads to

k(n-pentane) =(2.11^{+0.39}_{-0.33}) × 10⁻¹⁷ T² e^{(223 ± 49)/T} cm³ molecule⁻¹ s⁻¹

FIG. 6. Arrhenius plot of selected rate constants for the reaction of the OH radical with 2-methylpropane. (△) Baker *et al.*;⁵³ (○) Greiner;¹⁸ (▲) Atkinson *et al.*;⁶⁰ (●) Tully *et al.*;⁵⁹ (□) Bott and Cohen;² (−) recommendation (see text).

FIG. 7. Arrhenius plot of selected rate constants for the reaction of the OH radical with *n*-pentane. (◆) Baldwin and Walker;⁵³
(□) Atkinson et al.;⁵⁴ (△) Behnke et al.;^{61,62} (▽) Nolting et al.;⁶³ (○) Harris and Kerr⁶⁴ (relative to *n*-butane); (◆) Harris and Kerr⁶⁴ (relative to 2-methylpropane); (▲) Abbatt et al.⁶; (−) recommendation (see text).

over the temperature range 243-753 K, where the indicated errors are two least-squares standard deviations, and

k(n-pentane) =3.96 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K.

$$k(n\text{-pentane}) =$$

2.10 × 10⁻¹⁷ T² e^{223/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 243-753 K, and

k(n-pentane) =3.94 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 25\%$. 2,2-Dimethylpropane. The absolute and relative rate constants determined by Nielsen *et al.*¹³ at 298 ± 2 K are given in Table 36. These rate constants are in good agreement with the previous recommendation of Atkinson¹ of

k(2,2-dimethylpropane) =8.49 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K,

and hence the previous recommendation¹ of

k(2,2-dimethylpropane) =1.79 × 10⁻¹⁷ T² e^{-187/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 287-901 K is unchanged.

2,3-Dimethylbutane. The absolute rate constant measured by Bott and Cohen¹⁴ at 1220 \pm 16 K is given in Table 36, and is plotted together with the rate constants of Greiner,¹⁸ Atkinson *et al.*⁶⁵ and Harris and Kerr⁶⁴ in Arrhenius form in Fig. 8. The rate constant measurement of Bott and Cohen¹⁴ significantly extends the temperature range over which reliable data are available. A unitweighted least-squares analysis of the rate constants of Greiner,¹⁸ Atkinson *et al.*,⁶⁵ Harris and Kerr⁶⁴ and Bott and Cohen,¹⁴ using the expression $k = CT^2e^{-D/T}$, leads to the recommendation of

$$k(2,3-\text{dimethylbutane}) =$$

 $(1.21^{+0.39}_{-0.30}) \times 10^{-17} T^2 e^{(512 \pm 87)/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 247–1220 K, where the indicated errors are two least-squares standard deviations, and

$$k(2,3-\text{dimethylbutane}) = 5.99 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$$

with an estimated overall uncertainty at 298 K of $\pm 25\%$. This recommendation supersedes the previous recommendation of Atkinson¹ of

$$k(2,3-\text{dimethylbutane}) = 6.2 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

independent of temperature over the more restricted range of 247-498 K.

FIG. 8. Arrhenius plot of selected rate constants for the reaction of the OH radical with 2,3-dimethylbutane. (○) Greiner;¹⁸ (●) Atkinson *et al.*;⁶⁵ (△) Harris and Kerr;⁶⁴ (▲) Bott and Cohen;¹⁴ (—) recommendation (see text).

2,2,4-Trimethylpentane. The absolute rate constant determined by Bott and Cohen¹⁴ at 1186 ± 16 K is given in Table 36 and is plotted together with the rate constants of Greiner¹⁸ and Atkinson *et al.*⁶⁰ in Arrhenius form in Fig. 9. The rate constant measurement of Bott and Cohen¹⁴ greatly extends the temperature range over which data are available. A unit-weighted least-squares analysis of the absolute rate constants of Greiner¹⁸ and Bott and Cohen¹⁴ and the relative rate constant of Atkinson *et al.*,⁶⁰ using the expression $k = CT^2 e^{-D/T}$, leads to the recommendation of

$$k(2,2,4\text{-trimethylpentane}) =$$

 $(2.06^{+0.47}_{-0.39}) \times 10^{-17} T^2 e^{(201 \pm 76)/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 297-1186 K, where the indicated errors are two least-squares standard deviations, and

k(2,2,4-trimethylpentane) =3.59 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 20\%$.

This recommendation supersedes the previous recommendation of Atkinson¹ of

$$k(2,2,4\text{-trimethylpentane}) =$$

1.61 × 10⁻¹¹ e^{-440/T} cm³ molecule⁻¹ s⁻¹

over the more restricted temperature range of 297–493 K, with a 298 K rate constant of 3.68×10^{-12} cm³ molecule⁻¹ s⁻¹.

2,2,3,3-Tetramethylbutane. The absolute rate constant measured by Bott and Cohen¹⁴ at 1180 \pm 16 K is given in Table 36, and is plotted together with the absolute rate constants of Greiner¹⁸ and Tully *et al.*⁶⁶ and the relative rate constants of Baldwin *et al.*^{53,67} and Atkinson *et al.*⁶⁰ in Arrhenius form in Fig. 10. The agreement between these studies is seen to be reasonably good. A unit-weighted

least-squares analysis of these rate constants of Greiner,¹⁸ Baldwin *et al.*,^{53,67} Atkinson *et al.*,⁶⁰ Tully *et al.*⁶⁶ and Bott and Cohen,¹⁴ using the expression $k = CT^2 e^{-D/T}$, leads to the recommendation of

$$k(2,2,3,3-\text{tetramethylbutane}) =$$

 $(1.90^{+0.42}_{-0.35}) \times 10^{-17} T^2 e^{-(139 \pm 79)/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 290-1180 K, where the indicated errors are two least-squares standard deviations, and

$$k(2,2,3,3-\text{tetramethylbutane}) =$$

1.06 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 20\%$.

FIG. 9. Arrhenius plot of selected rate constants for the reaction of the OH radical with 2,2,4-trimethylpentane. (○) Greiner;¹⁸
(●) Atkinson *et al.*;⁶⁰ (△) Bott and Cohen;¹⁴ (—) recommendation (see text).

This recommendation is similar (to within 9% over the temperature range 290–753 K) to the previous recommendation of Atkinson¹ of

k(2,2,3,3-tetramethylbutane) =1.63 × 10⁻¹⁷ T² e^{-86/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 290–753 K, with a 298 K rate constant of 1.08×10^{-12} cm³ molecule⁻¹ s⁻¹. However, the expanded temperature range over which the present recommendation is applicable makes its use preferable, especially for combustion modeling purposes.

Cyclopropane. The absolute rate constants determined by Dóbé *et al.*^{8,9} over the temperature range 298–492 K are given in Table 36. The 298 K rate constant of Dóbé *et al.*^{8,9} is a factor of ~1.4–1.8 higher than those reported

FIG. 10. Arrhenius plot of selected rate constants for the reaction of the OH radical with 2,2,3,3-tetramethylbutane. (○) Greiner;¹⁸ (◆) Baldwin *et al.*;^{53,67} (●) Atkinson *et al.*;⁶⁰ (△) Tully *et al.*;⁶⁶ (□) Bott and Cohen;¹⁴ (−) recommendation (see text).

by Zetzsch⁶⁸ and Jolly *et al.*⁶⁹ A unit-weighted average of the room temperature rate constants of Zetzsch,⁶⁸ Jolly *et al.*⁶⁹ and Dóbé *et al.*⁹ leads to the recommendation of

k(cyclopropane) = 8.4 × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of a factor of 1.5. Because of the discrepancies in the room temperature rate constants, 8,9,68,69 no recommendation is made concerning the temperature dependence.

Cyclobutane. The absolute rate constants determined by Dóbé *et al.*^{8,9} over the temperature range 298–469 K are given in Table 36. These are the first absolute rate constants reported for cyclobutane, and the 298 K rate constant of Dóbé *et al.*^{8,9} is a factor of ~1.5 higher than the relative rate constant of Gorse and Volman.⁷⁰ A unitweighted average of the room temperature rate constants of Gorse and Volman⁷⁰ and Dóbé *et al.*⁹ leads to the recommendation of

k (cyclobutane) = 1.5 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of a factor of 1.5. No recommendation is made for the temperature dependence of this reaction.

Cyclopentane. The absolute rate constant determined by Bott and Cohen² at 1194 \pm 15 K is given in Table 36,

and is plotted together with the rate constants of Atkinson *et al.*,⁶⁵ Jolly *et al.*⁶⁹ and Droege and Tully⁷¹ in Arrhenius form in Fig. 11. The rate constant measurement of Bott and Cohen² significantly expands the temperature range over which reliable data are available. A unitweighted least-squares analysis of the absolute rate constants of Jolly *et al.*,⁶⁹ Droege and Tully⁷¹ and Bott and Cohen² and the relative rate constant of Atkinson *et al.*,⁶⁵ using the expression $k = CT^2e^{-D/T}$, leads to the recommendation of

k (cyclopentane) = (2.55 $^{+0.27}_{-0.24}$) × 10⁻¹⁷ $T^2 e^{(241 \pm 36)/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 295–1194 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
 (cyclopentane) =
5.08 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K

with an estimated overall uncertainty at 298 K of $\pm 20\%$. This recommendation is similar to that of Atkinson¹ of

$$k$$
 (cyclopentane) = 2.13 × 10⁻¹⁷ $T^2 e^{299/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 295–491 K, with a 298 K rate constant of 5.16×10^{-12} cm³ molecule⁻¹ s⁻¹. However, the significantly expanded temperature range over which the present recommendation is applicable makes its use preferable, especially for combustion modeling purposes.

FIG. 11. Arrhenius plot of selected rate constants for the reaction of the OH radical with cyclopentane. (●) Atkinson *et al.*;⁶⁵ (□) Jolly *et al.*;⁶⁹ (△) Droege and Tully;⁷¹ (○) Bott and Cohen;² (─) recommendation (see text).

Cyclohexane. The room temperature rate constants of Japar *et al.*¹⁵ (the actual temperature being unspecified) and Atkinson and Aschmann¹⁶ are given in Table 36. These rate constants are in good agreement with the previous recommendation¹ of

k(cyclohexane) = 7.49 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

and no revision of the previous recommendation¹ is necessary.

Other Alkanes. The rate constants of Nielsen et al.¹³ for 3,3-diethylpentane and Atkinson and Aschmann¹⁶ for trans-pinane, tricyclene and quadricyclane are the first reported for these alkanes, and hence no recommendations are made. For other alkanes for which data have been previously determined,¹ no new data are available, and hence the previous recommendations¹ are applicable. It is of interest to note that the present recommendations for 2,3-dimethylbutane and 2,2,4-trimethylpentane utilizing the three-parameter expression $k = CT^2 e^{-D/T}$ are much more consistent with the empirical estimation method of Atkinson⁷² than were the previous¹ Arrhenius expressions. This observation further indicates the usefulness of this estimation method⁷² for the calculation of rate constants over extended temperature ranges (~250-1200 K) for alkanes for which either no data are available or are only available over a limited temperature range. The study of Atkinson and Aschmann¹⁶ for strained polycycloalkanes indicates, however, that the effects of ring strain in polycyclic alkane systems was not correctly taken into account,⁷² and Atkinson and Aschmann¹⁶ propose a revised method of accounting for this ring strain in the estimation of OH radical reaction rate constants for cycloalkanes.

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ²J. F. Bott and N. Cohen, Int. J. Chem. Kinet. 21, 485 (1989).
- ³G. L. Vaghjiani and A. R. Ravishankara, Nature 350, 406 (1991).
- ⁴B. J. Finlayson-Pitts, M. J. Ezell, T. M. Jayaweera, H. N. Berko, and C. C. Lai, Geophys. Res. Lett. **19**, 1371 (1992).
- ⁵C. Lafage, J.-F. Pauwels, M. Carlier, and P. Devolder, J. Chem. Soc. Faraday Trans. 2, 83, 731 (1987).
- ⁶J. P. D. Abbatt, K. L. Demerjian, and J. G. Anderson, J. Phys. Chem. 94, 4566 (1990).
- ⁷A. Schiffman, D. D. Nelson, Jr., M. S. Robinson, and D. J. Nesbitt, J. Phys. Chem. **95**, 2629 (1991).
- ⁸S. Dóbé, T. Turányi, T. Bérces, and F. Márta, Proc. Indian Acad. Sci. (Chem. Sci.) **103**, 499 (1991).
- ⁹S. Dóbé, T. Turányi, A. A. Iogansen, and T. Bérces, Int. J. Chem. Kinet. 24, 191 (1992).
- ¹⁰J. F. Bott and N. Cohen, Int. J. Chem. Kinet. 23, 1017 (1991).
- ¹¹H. Mac Leod, C. Balestra, J. L. Jourdain, G. Laverdet, and G. Le Bras, Int. J. Chem. Kinet. **22**, 1167 (1990).
- ¹²O. J. Nielsen, H. W. Sidebottom, M. Donlon, and J. Treacy, Int. J. Chem. Kinet. 23, 1095 (1991).
- ¹³O. J. Nielsen, D. J. O'Farrell, J. J. Treacy, and H. W. Sidebottom, Environ. Sci. Technol. 25, 1098 (1991).
- ¹⁴J. F. Bott and N. Cohen, Int. J. Chem. Kinet. 23, 1075 (1991).
- ¹⁵S. M. Japar, T. J. Wallington, J. M. Andino, and J. C. Ball, Environ. Sci. Technol. 24, 313 (1990).

- ¹⁶R. Atkinson and S. M. Aschmann, Int. J. Chem. Kinet. 24, 983 (1992).
 ¹⁷C. A. Cantrell, R. E. Shetter, A. H. McDaniel, J. G. Calvert, J. A. Davidson, D. C. Lowe, S. C. Tyler, R. J. Cicerone, and J. P. Greenberg, J. Geophys. Res. 95, 22455 (1990).
- ¹⁸N. R. Greiner, J. Chem. Phys. 53, 1070 (1970).
- ¹⁹D. D. Davis, S. Fischer, and R. Schiff, J. Chem. Phys. 61, 2213 (1974).
- ²⁰K.-M. Jeong and F. Kaufman, J. Phys. Chem. 86, 1808 (1982).
- ²¹K.-M. Jeong, K.-J. Hsu, J. B. Jeffries, and F. Kaufman, J. Phys. Chem. **88**, 1222 (1984).
- ²²R. P. Overend, G. Paraskevopoulos, and R. J. Cvetanovic, Can. J. Chem. 53, 3374 (1975).
- ²³J. J. Margitan, F. Kaufman, and J. G. Anderson, Geophys. Res. Lett. 1, 80 (1974).
- ²⁴C. J. Howard and K. M. Evenson, J. Chem. Phys. 64, 197 (1976).
- ²⁵R. Zellner and W. Steinert, Int. J. Chem. Kinet. 8, 397 (1976).
- ²⁶F. P. Tully and A. R. Ravishankara, J. Phys. Chem. 84, 3126 (1980).
 ²⁷D. Husain, J. M. C. Plane, and N. K. H. Slater, J. Chem. Soc. Faraday Trans. 2, 77, 1949 (1981).
- ²⁸C. D. Jonah, W. A. Mulac, and P. Zeglinski, J. Phys. Chem. 88, 4100 (1984).
- ²⁹S. Madronich and W. Felder, 20th International Symposium on Combustion, 1984; The Combustion Institute, Pittsburgh, PA, 1985, p. 703.
- ³⁰G. Dixon-Lewis and A. Williams, 11th International Symposium on Combustion, 1966; The Combustion Institute, Pittsburgh, PA, 1967, p. 951.
- ³¹J. Ernst, H. Gg. Wagner, and R. Zellner, Ber. Bunsenges. Phys. Chem. **82**, 409 (1978).
- ³²G. P. Smith, P. W. Fairchild, J. B. Jeffries, and D. R. Crosley, J. Phys. Chem. **89**, 1269 (1985).
- ³³R. A. Cox, R. G. Derwent, and P. M. Holt, J. Chem. Soc. Faraday Trans. 1, **72**, 2031 (1976).
- ³⁴P. W. Fairchild, G. P. Smith, and D. R. Crosley, 19th International Symposium on Combustion, 1982; The Combustion Institute, Pittsburgh, PA, 1982, p. 107.
- ³⁵N. Cohen and J. F. Bott, 20th International Symposium on Combustion, 1984; The Combustion Institute, Pittsburgh, PA, 1985, p. 711.
- ³⁶J. A. Davidson, C. A. Cantrell, S. C. Tyler, R. E. Shetter, R. J. Cicerone, and J. G. Calvert, J. Geophys. Res. 92, 2195 (1987).
- ³⁷A. C. Lasaga and G. V. Gibbs, Geophys. Res. Lett. 18, 1217 (1991).
- ³⁸C. J. Howard and K. M. Evenson, J. Chem. Phys. 64, 4303 (1976).
- ³⁹M.-T. Leu, J. Chem. Phys. 70, 1662 (1979).
- ⁴⁰J. J. Margitan and R. T. Watson, J. Phys. Chem. 86, 3819 (1982).
- ⁴¹F. P. Tully, A. R. Ravishankara, and K. Carr, Int. J. Chem. Kinet. 15, 1111 (1983).
- ⁴²F. P. Tully, A. T. Droege, M. L. Koszykowski, and C. F. Melius, J. Phys. Chem. **90**, 691 (1986).
- ⁴³C. A. Smith, L. T. Molina, J. J. Lamb, and M. J. Molina, Int. J. Chem. Kinet. 16, 41 (1984).
- ⁴⁴P. Devolder, M. Carlier, J. F. Pauwels, and L. R. Sochet, Chem. Phys. Lett. 111, 94 (1984).
- ⁴⁵D. L. Baulch, I. M. Campbell, and S. M. Saunders, J. Chem. Soc. Faraday Trans. 1, **81**, 259 (1985).
- ⁴⁶R. A. Stachnik, L. T. Molina, and M. J. Molina, J. Phys. Chem. **90**, 2777 (1986).
- ⁴⁷N. Bourmada, C. Lafage, and P. Devolder, Chem. Phys. Lett. **136**, 209 (1987).
- ⁴⁸T. J. Wallington, D. M. Neuman, and M. J. Kurylo, Int. J. Chem. Kinet. **19**, 725 (1987).
- ⁴⁹S. Zabarnick, J. W. Fleming, and M. C. Lin, Int. J. Chem. Kinet. **20**, 117 (1988).
- ⁵⁰J. F. Bott and N. Cohen, Int. J. Chem. Kinet. 16, 1557 (1984).
- ⁵¹A. T. Droege and F. P. Tully, J. Phys. Chem. 90, 1949 (1986).
- ⁵²R. R. Baker, R. R. Baldwin, and R. W. Walker, Trans. Faraday Soc. **66**, 2812 (1970).
- ⁵³R. R. Baldwin and R. W. Walker, J. Chem. Soc. Faraday Trans. 1, 75, 140 (1979).
- ⁵⁴R. Atkinson, S. M. Aschmann, W. P. L. Carter, A. M. Winer, and J.
- N. Pitts, Jr., Int. J. Chem. Kinet. 14, 781 (1982).
- ⁵⁵F. Stuhl, Z. Naturforsch. 28A, 1383 (1973).

⁵⁶R. A. Perry, R. Atkinson, and J. N. Pitts, Jr., J. Chem. Phys. 64, 5314 (1976).

- ⁵⁷G. Paraskevopoulos and W. S. Nip, Can. J. Chem. **58**, 2146 (1980).
- ⁵⁸A. T. Droege and F. P. Tully, J. Phys. Chem. **90**, 5937 (1986).
- ⁵⁹F. P. Tully, J. E. M. Goldsmith, and A. T. Droege, J. Phys. Chem. **90**, 5932 (1986).
- ⁶⁰R. Atkinson, W. P. L. Carter, S. M. Aschmann, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 16, 469 (1984).
- ⁶¹W. Behnke, F. Nolting, and C. Zetzsch, J. Aeros. Sci. 18, 65 (1987).
- ⁶²W. Behnke, W. Holländer, W. Koch, F. Nolting, and C. Zetzsch, Atmos. Environ. 22, 1113 (1988).
- ⁶³F. Nolting, W. Behnke, and C. Zetzsch, J. Atmos. Chem. 6, 47 (1988).
- ⁶⁴S. J. Harris and J. A. Kerr, Int. J. Chem. Kinet. 20, 939 (1988).
- ⁶⁵R. Atkinson, S. M. Aschmann, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 14, 507 (1982).
- ⁶⁶F. P. Tully, M. L. Koszykowski, and J. S. Binkley, 20th International Symposium on Combustion, 1984; The Combustion Institute, Pittsburgh, PA, 1985, p. 715.
- ⁶⁷R. R. Baldwin, R. W. Walker, and R. W. Walker, J. Chem. Soc. Faraday Trans. 1, **75**, 1447 (1979).
- ⁶⁸C. Zetzsch, presented at Bunsen Colloquium, Göttingen, West Germany, October 9, 1980, cited in reference 1.
- ⁶⁹G. S. Jolly, G. Paraskevopoulos, and D. L. Singleton, Int. J. Chem. Kinet. 17, 1 (1985).
- ⁷⁰R. A. Gorse and D. H. Volman, J. Photochem. 3, 115 (1974).
- ⁷¹A. T. Droege and F. P. Tully, J. Phys. Chem. 91, 1222 (1987).
- ⁷²R. Atkinson, Int. J. Chem. Kinet. 19, 799 (1987).

3.2. Haloalkanes

The rate constants reported since the previous review of Atkinson¹ are given in Table 37. The agreement of these recent rate constant data with previous literature data¹ and any revisions of the recommended rate constants for the reactions of the OH radical with the haloalkanes are discussed below. As in previous evaluations,^{1,26-28} the rate constant data of Clyne and Holt^{29,30} have not been used in the evaluations of these reactions.

 CH_3Cl . The rate constant determined by Brown *et al.*² at 298 K is given in Table 37. This rate constant of Brown *et al.*² is ~20% higher than the recommended 298 K rate constant of Atkinson.¹ The previous recommendation of Atkinson¹ of

$$k(CH_3Cl) = 3.50 \times 10^{-18} T^2 e^{-585/T} cm^3 molecule^{-1} s^{-1}$$

over the temperature range 250-483 K, and

$$k(CH_3Cl) = 4.36 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

at 298 K, with an estimated overall uncertainty at 298 K of $\pm 20\%$, is unchanged. It should also be noted, as discussed below, that the measured rate constants of Wayne and co-workers^{2,4,12,23} for a series of haloalkanes are generally significantly higher than the rate constants determined by other research groups.

 CH_2F_2 . Rate constants have been determined over the temperature range 222–381 K by Talukdar *et al.*,³ and are given in Table 37. These rate constants³ and those of Howard and Evenson,³¹ Nip *et al.*,³² Jeong and Kaufman³³ and Bera and Hanrahan³⁴ are plotted in Arrhenius form in Fig. 12. The rate constants of Talukdar *et al.*³ are in

good agreement with those of Nip *et al*.³² and Jeong and Kaufman,³³ especially over the temperature range ~ 240–340 K. Since the rate constant measured by Bera and Hanrahan³⁴ was expected³⁴ to have been subject to the occurrence of secondary reactions, the rate constants of Howard and Evenson,³¹ Nip *et al*.,³² Jeong and Kaufman³³ and Talukdar *et al*.³ have been used in the evaluation of the rate constant for this reaction. A unit-weighted least-squares analysis of these data,^{3,31-33} using the expression $k = CT^2e^{-D/T}$, yields the recommendation of

$$k(CH_2F_2) =$$

(3.84^{+1.14}) × 10⁻¹⁸ T² e^{-(1016 ± 78)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 222-492 K, where the indicated errors are two least-squares standard deviations, and

$$k(CH_2F_2) = 1.13 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of $\pm 20\%$. This recommendation supersedes that of Atkinson¹ of

$$k(CH_2F_2) = 5.06 \times 10^{-18} T^2 e^{-1107/T} cm^3 molecule^{-1} s^{-1}$$

over the temperature range 250–492 K, with a 298 K rate constant of 1.09×10^{-14} cm³ molecule⁻¹ s⁻¹.

 CHF_2Br . The rate constants reported by Brown *et al.*⁴ and Talukdar *et al.*⁵ are given in Table 37 and are plotted in Arrhenius form in Fig. 13. These are the first reported measurements of the rate constants for this reaction. The rate constants of Brown *et al.*⁴ are significantly higher than those of Talukdar *et al.*,⁵ especially at the lowest temperatures (275 K and 298 K) studied by Brown *et al.*⁴ Furthermore, at 275 K the uncertainty in the rate constant cited by Brown *et al.*⁴ is high, being \pm 70%. Accordingly, a unit-weighted least-squares analysis of the rate constants of Talukdar *et al.*,⁵ using the expression $k = CT^2e^{-D/T}$, yields the recommendation of

$$k(\text{CHF}_2\text{Br}) =$$

(1.48^{+0.34}_{-0.27}) × 10⁻¹⁸ T² e^{-(779 ± 63)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 233-432 K, where the indicated errors are two least-squares standard deviations, and

$$k(CHF_2Br) = 9.63 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of $\pm 40\%$.

 CF_3Br , CF_2ClBr , CF_2Br_2 , and CF_2BrCF_2Br . The upper limits to the rate constants reported by Burkholder *et al.*⁶ are given in Table 37. These upper limits to the rate constants of Burkholder *et al.*⁶ are consistent with the upper limits to the rate constants for CF_3Br and CF_2ClBr previously reported by Le Bras and Combourieu³⁵ and Clyne and Holt,²⁹ respectively. Based on the upper limits to the rate constants determined by Burkholder *et al.*,⁶ the following recommendations are made for 298 K:

J. Phys. Chem. Ref. Data, Monograph No. 2

 $k(CF_3Br) < 1 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$ $k(CF_2ClBr) < 1 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$ $k(CF_2Br_2) < 5 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, \text{ and}$ $k(CF_2BrCF_2Br) < 1.5 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.$

 $CF_3 J$. The room temperature rate constant measured by Brown *et al*.² is a factor of 4 lower than that of $(1.2 \pm 0.2) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ determined by Garraway and Donovan,³⁶ possibly due to the occurrence of secondary reactions of the OH radical with photolysis products in the study of Garraway and Donovan.³⁶ Since it is possible that secondary reactions were still present in the study of Brown *et al*.,² no recommendation for the rate constant for this reaction is made.

FIG. 12. Arrhenius plot of selected rate constants for the reaction of the OH radical with CH₂F₂. (●) Howard and Evenson;³¹ (▲) Nip *et al.*;³² (○) Jeong and Kaufman;³³ (▽) Bera and Hanrahan;³⁴ (△) Talukdar *et al.*;³ (—) recommendation (see text).

 CH_3CH_2Cl . The rate constants determined by Kasner *et al.*⁷ and Markert and Nielsen⁸ are given in Table 37 and are plotted together with the room temperature rate constants of Howard and Evenson³⁷ and Paraskevopoulos *et al.*³⁸ in Arrhenius form in Fig. 14. The room temperature rate constants from these four studies^{7,8,37,38} are in good agreement, and a unit-weighted least-squares analysis of these data, ^{7,8,37,38} using the expression $k = CT^2e^{-D/T}$, yields the recommendation of

 $k(CH_3CH_2Cl) =$ (7.71^{+0.69}_{-0.63}) × 10⁻¹⁸ T² e^{-(152 ± 38)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 294-789 K, where the indicated errors are two least-squares standard deviations, and

 $k(CH_3CH_2Cl) = 4.11 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of $\pm 20\%$.

FIG. 13. Arrhenius plot of rate constants for the reactions of the OH radical with CHF₂Br. (△) Brown *et al*.,⁴ (○) Talukdar *et al*.,⁵ (─) recommendation (see text).

 CH_3CHF_2 . The absolute rate constants determined by Liu et al.,¹¹ Brown et al.,¹² Gierczak et al.¹³ and Nielsen¹⁴ as a function of temperature are given in Table 37, and are plotted together with the room temperature rate constants of Howard and Evenson,³⁷ Handwerk and Zellner³⁹ and Nip et al.³² in Arrhenius form in Fig. 15. The rate constants reported by Brown et al.¹² at 220 K and 303 K are subject to significant uncertainties ($\pm 100\%$ at 220 K), and the rate constant of Brown et al.¹² at 303 K and those of Nielsen¹⁴ are higher than the rate constants from the remaining studies.^{11,13,32,37,39} Accordingly, the rate constants of Brown et al.¹² and Nielsen¹⁴ have not been used in the evaluation of the rate constant for this reaction. A unit-weighted least-squares analysis of the rate constants of Howard and Evenson,³⁷ Handwerk and Zellner,³⁹ Nip et al.,³² Liu et al.¹¹ and Gierczak et al.,¹³ using the expression $k = CT^2 e^{-D/T}$, yields the recommendation of

$$k(CH_3CHF_2) =$$

(1.98^{+0.40}_{-0.34}) × 10⁻¹⁸ T² e^{-(460 ± 56)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 212-423 K, where the indicated errors are two least-squares standard deviations, and

 $k(CH_3CHF_2) = 3.76 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of $\pm 20\%$.

FIG. 14. Arrhenius plot of rate constants for the reaction of the OH radical with CH₃CH₂Cl. (●) Howard and Evenson;³⁷ (△) Paraskevopoulos *et al.*;³⁸ (○) Kasner *et al.*;⁷ (▲) Markert and Nielsen;⁸ (—) recommendation (see text).

In the previous review of Atkinson,¹ only a room temperature rate constant of

$$k(CH_3CHF_2) = 3.4 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

at ~295 K was recommended, based on the rate constants of Howard and Evenson,³⁷ Handwerk and Zellner³⁹ and Nip *et al.*³²

 CH_2ClCH_2Cl . The room temperature relative rate constant of Arnts *et al.*¹⁵ and the absolute rate constants determined by Taylor *et al.*¹⁶ and Xing *et al.*⁹ and Qiu *et al.*¹⁰ are given in Table 37 and are plotted, together with the room temperature rate constant of Howard and Evenson,³⁷ in Arrhenius form in Fig. 16. The agreement between the room temperature rate constants is good. A unit-weighted least-squares analysis of the absolute rate constants of Howard and Evenson,³⁷ Taylor *et al.*¹⁶ and Qiu *et al.*,¹⁰ using the expression $k = CT^2e^{-D/T}$, yields the recommendation of

$$k(CH_2ClCH_2Cl) =$$

(1.10^{+0.17}_{-0.15}) × 10⁻¹⁷ T² e^{-(409 ± 55)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 292-775 K, where the indicated errors are two least-squares standard deviations, and

 $k(CH_2ClCH_2Cl) = 2.48 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of $\pm 30\%$.

FIG. 15. Arrhenius plot of selected rate constants for the reaction of the OH radical with CH₃CHF₂. (▲) Howard and Evenson;³⁷
(□) Handwerk and Zellner;³⁹ (♥) Nip et al.;³² (●) Liu et al.;¹¹ (△) Brown et al.;¹² (○) Gierczak et al.;¹³ (▽) Nielsen;¹⁴
(—) recommendation (see text).

FIG. 16. Arrhenius plot of rate constants for the reaction of the OH radical with CH₂ClCH₂Cl. (●) Howard and Evenson;³⁷ (▲) Arnts et al.,¹⁵ (○) Taylor et al.;¹⁶ (△) Xing et al.⁹ and Qiu et al.,¹⁰ (−) recommendation (see text).

canes
haloalkane
with h
radical w
HO
the
of
ons
reacti
phase
gas-l
for the
or
IS 1
lete
ran
pa
lent
enc
deb
- A-
erature
0
tem
k and tem
ts k
tan
Suc
ర ల
Rate
37.]
ABLE 3
F

Haloalkane	$10^{12} \times \mathcal{A} (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	ц	B (K)	$10^{14} \times k (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
CH ₃ Cl				5.3 ± 0.8	298	DF-RF	Brown et al. ²	
СН ₃ І	3.1		1119 ± 204	5.0 ± 2.6 7.2 ± 0.7 10.2 ± 4.4 13.7 ± 4.8 23.0 ± 7.2	271 298 330 423	DF-RF	Brown et al. ²	271-423
CH ₂ F ₂	1.57 ± 0.21		1470 ± 100	$\begin{array}{l} 0.196 \pm 0.022\\ 0.227 \pm 0.013\\ 0.398 \pm 0.034\\ 0.672 \pm 0.020\\ 1.09 \pm 0.03\\ 1.92 \pm 0.04\\ 2.66 \pm 0.16\\ 3.43 \pm 0.18 \end{array}$	222 245 245 245 236 336 336 381	FP-LIF	Talukdar <i>et al .</i> ³	222–381
CHF2Br	0.44		1050 ± 400	$\begin{array}{c} 1.3 \pm 0.9 \\ 1.3 \pm 0.3 \\ 2.3 \pm 0.3 \\ 3.0 \pm 0.3 \\ 4.6 \pm 0.3 \end{array}$	275 298 336 370 420	DF-RF	Brown et al. ⁴	275420
	0.74 ± 0.16		1300 ± 100 (233-352 K)	$\begin{array}{l} 0.29 \pm 0.01 \\ 0.41 \pm 0.01 \\ 0.64 \pm 0.05 \\ 0.61 \pm 0.01 \\ 0.91 \pm 0.01 \\ 1.06 \pm 0.08 \\ 1.45 \pm 0.04 \\ 1.45 \pm 0.04 \\ 2.03 \pm 0.12 \\ 2.62 \pm 0.08 \\ 3.52 \pm 0.03 \\ 3.52 \pm 0.23 \\ 4.65 \pm 0.17 \end{array}$	233 268 273 273 333 333 333 405 373 297 297 297 297 297 297 297 297 297 297	DF-LMR/LP-LIF	Talukdar <i>et al.</i> ⁵	233-432
CF ₃ Br				<0.01 <0.017 <0.01 <0.02	294 297 373 424	LP-LIF/DF-LMR	Burkholder <i>et al</i> . ⁶	294-424
CF ₃ I				3.1 ± 0.5	300	DF-RF	Brown et al. ²	

91

	$10^{12} \times A (\mathrm{cm}^3)$		B	$10^{14} \times k (\mathrm{cm}^3)$				Temperature range covered
Haloalkane	molecule ⁻¹ s ⁻¹)	ц	(K)	molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	(K)
CF ₂ ClBr				< 0.02	293	LP-LIF/DF-LMR	Burkholder et al. ⁶	293-424
				<0.000	297 273			
				< 0.02< 0.02	676 424			
CF_2Br_2				< 0.045	293	LP-LIF/DF-LMR	Burkholder <i>et al</i> . ⁶	293-424
				< 0.059	297			
				< 0.072	325			
				< 0.092	373			
				< 0.037	384			
				< 0.042	424			
CH3CH2CI				40.8 ± 3.1	294.8	LP-LIF	Kasner <i>et al</i> . ⁷	295–789
				56.2 ± 5.1	330.5			
				79.8 ± 7.0	381.9			
				94.6 ± 4.3	421.3			
				101 ± 6.9	447.4			
				124 ± 16.1	490.0			
				160 ± 39.3	548.0			
				193 ± 25.1	595.0			
				231 ± 11.0	600.0			
				243 ± 28.8	641.0			
				275 ± 39.5	687.0			
				327 ± 32.7	710.0			
				324 ± 22.2	714.0			
				351 ± 68.1	733.0			
	1.14×10^{-7}	2.59	-115 ± 314	397 ± 40.5 429 ± 59.6	769.2 788.7			
				43 + 5	295 + 2	PR-RA	Markert and Nielcen ⁸	
-a ru cu b-				93 + 9 <i>E</i> L				
					767	DF-RF		81 4- 767
				30.5 ± 0.1	298		Qiu et al."	
				45.3 ± 9.1	325			
				52.2 ± 10.5	340			
				0.9 ± 14.0	300			
	27.7 ± 3.4		1344 ± 86 (292-366 K) ¹⁰	140.1 ± 28.1	418			
CH ₃ CHF ₂				2.99 ± 0.27	270	FP-RF	Liu et al. ¹¹	270-400
				4.22 ± 0.45	298			
				5.32 ± 0.67	330			

J. Phys. Chem. Ref. Data, Monograph No. 2

р
iue
ontinued
- G
ī
ues
lkaı
oal
Jal
Ч
wit
al
dic
ra
HC
je (
f th
6
Suc
actio
rea
has
-p
gas
G
for the gas-j
fo
ers
net
ran
pa
ij
endent
Den
dej
ure-
Itu
erati
đ
Ę
its k and tempe
ints k ai
nts
an
onst
8
ate
Ä
37.
щ
ABL
Ĥ

1	q
940 ± 130	940 ± 130
1050 ± 250	1050 ± 250
980 ± 50 (212-349 K)	980 ± 50 (212-349 K)
1370 ± 260	1370 ± 260

I DI ... Ali Buf Data Management Ma 0

- Continued
oalkanes –
al with halc
OH radica
ions of the
phase react
or the gas-p
parameters fo
-dependent I
emperature-
ants k and to
ate const
TABLE 37. R

Haloalkane	$10^{12} \times \mathcal{A} (\text{cm}^3$ molecule ⁻¹ s ⁻¹)	u	B (K)	$10^{14} \times k (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
	0.0136	1.0	825 ± 88	206 ± 7.1 195 ± 14.8 244 ± 21.2 293 ± 36.4 347 ± 35.0 325 ± 22.3	570 574 627 696 771 775			
	10.5 ± 1.6		1137 ± 106	$\begin{array}{l} 20.9 \pm 4.2 \\ 21.4 \pm 4.3 \\ 32.0 \pm 6.4 \\ 34.5 \pm 6.9 \\ 35.9 \pm 7.2 \\ 41.4 \pm 8.3 \\ 44.4 \pm 8.3 \end{array}$	292 295 333 333 343 358 363	DF-RF	Xing et al %; Qiu et al . ¹⁰	292–363
CH ₂ BrCH ₂ Br				22.5 ± 1.5	297 ± 2	RR [relative to k (ethane) = 2.54 × 10 ⁻¹³] ^a	Arnts et al. ¹⁵	
	14.6 ± 2.6		1283 ± 136	18.6 ± 3.8 27.1 ± 5.5 32.4 ± 6.5 37.0 ± 7.4 42.6 ± 8.6	294 319 337 365	DF-RF	Xing <i>et al</i> . ⁹ ; Qiu <i>et al</i> . ¹⁰	294-365
CH ₃ CF ₃				$\begin{array}{c} 0.0157 \pm 0.0012 \\ 0.0229 \pm 0.0016 \\ 0.0333 \pm 0.0026 \\ 0.0451 \pm 0.0029 \\ 0.0451 \pm 0.0029 \\ 0.0652 \pm 0.0086 \\ 0.06612 \pm 0.0029 \\ 0.1012 \pm 0.004 \\ 0.112 \pm 0.004 \\ 0.112 \pm 0.004 \\ 0.129 \pm 0.004 \\ 0.127 \pm 0.004 \\ 0.127 \pm 0.004 \\ 0.127 \pm 0.004 \\ 0.137 \pm 0.004 \\ 0.012 \\ 0.012 \\ 0.001 \\ 0.000 \end{array}$	223 236 248 266 266 273 296 297 298 298 334 334	FP-LIF/DF-LMR	Talukdar <i>et al</i> . ³	223-374
	2.12 ± 0.65		2200 ± 200 (261–374 K)	0.567 ± 0.036	374			

ROGER ATKINSON

Haioalkane	$10^{12} \times A (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	n (K)	$10^{14} \times k (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$ at	at T (K)	Technique	Reference	Temperature range covered (K)
CH ₃ CF ₂ CI	0.98 ± 0.28	1660 ± 200	$\begin{array}{l} 0.214 \pm 0.07 \\ 0.402 \pm 0.10 \\ 0.660 \pm 0.08 \\ 0.797 \pm 0.11 \\ 1.15 \pm 0.14 \\ 1.70 \pm 0.27 \end{array}$	270 298 330 350 375 400	FP-RF	Liu et al. ¹¹	270-400
	0.26	1230 ± 250	$\begin{array}{l} 0.15 \ \pm \ 0.09 \\ 0.26 \ \pm \ 0.05 \\ 0.37 \ \pm \ 0.14 \\ 0.69 \ \pm \ 0.20 \\ 1.03 \ \pm \ 0.40 \\ 1.58 \ \pm \ 0.71 \end{array}$	231 266 303 373 373	DF-RF	Brown <i>et al.</i> ¹²	231-423
	2 2 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2	2L + 03L1	$\begin{array}{rrrrr} 0.0455 \pm 0.0047 \\ 0.0845 \pm 0.0071 \\ 0.171 \pm 0.014 \\ 0.299 \pm 0.024 \\ 0.296 \pm 0.030 \\ 1.09 \pm 0.09 \\ 2.02 \\ 0.09 \end{array}$	223 243 297 299 374	FP-LIF/DF-LMR	Gierczak <i>et al.</i> ¹³	223-427
	1.17-0.26	(223-374 K)	2.07 ± 0.16 0.245 ± 0.031	4 <i>21</i> 270	FP-RF	Zhang <i>et al</i> . ¹⁷	
CH ₃ CFCl ₂	0.36 ± 0.11	1140 ± 210	$\begin{array}{l} 0.420 \ \pm \ 0.12 \\ 0.524 \ \pm \ 0.08 \\ 0.701 \ \pm \ 0.12 \\ 0.962 \ \pm \ 0.13 \\ 1.38 \ \pm \ 0.02 \\ 1.94 \ \pm \ 0.27 \end{array}$	243 270 330 350	FP-RF	Liu et al.''	243-400
	0.58	1100 ± 250	$\begin{array}{rrrrr} 0.71 \ \pm \ 0.47 \\ 0.94 \ \pm \ 0.44 \\ 1.61 \ \pm \ 0.55 \\ 1.36 \ \pm \ 0.27 \\ 1.32 \ \pm \ 0.27 \\ 1.92 \ \pm \ 0.50 \\ 2.60 \ \pm \ 0.78 \\ 4.82 \ \pm \ 0.60 \end{array}$	238 256 297 303 336 336 426	DF-RF	Brown <i>et al.</i> ¹²	238-426
			$\begin{array}{rrrr} 0.200 \ \pm \ 0.006 \\ 0.159 \ \pm \ 0.010 \\ 0.157 \ \pm \ 0.007 \\ 0.266 \ \pm \ 0.023 \end{array}$	233 233 249	LP-LIF/DF-LMR	Talukdar <i>et al</i> .³	233–393

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

95

	$10^{12} \times A (\mathrm{cm}^3)$	B	$10^{14} \times k \ (\text{cm}^3)$				Temperature range covered
Haloalkane		n (K)	molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	(K)
			0.231 ± 0.030	253			
				253			
			+1	268			
				273			
			0.361 ± 0.012	273 205			
			H ·	C67			
			0.591 ± 0.015	297 207			
			H 4	167			
			0.558 ± 0.022	298			
			+1	298			
			+I	298			
			+1	324			
			+i	332			
			+1	332			
			+1	347			
			1.179 ± 0.024	347			
			+1	363			
			1.647 ± 0.072	374			
			2.02 ± 0.030	375			
	1.47 ± 0.32	1640 ± 100 (253–393 K)		393			
			$\begin{array}{rcrcr} 0.182 \pm 0.065 \\ 0.201 \pm 0.090 \\ 0.339 \pm 0.082 \\ 0.480 \pm 0.146 \end{array}$	250 250 297	FP-RF ⁵	Zhang <i>et al.</i> ¹⁷	250-297
CH,CCI,			1.09 ± 0.35	298 ± 3	RR [relative to $k(CH_3CI) = 4.36 \times 10^{-14}]^2$	Nelson <i>et al</i> . ¹⁸	
	5.4 ± 3	1801 ± 448	3.36 ± 0.3 4.85 ± 0.5 5.83 ± 0.2	359 376 402	PR-RA	Nelson et al ¹⁸	359-402
			$\begin{array}{l} 0.779 \ \pm \ 0.047 \\ 0.899 \ \pm \ 0.059 \\ 0.963 \ \pm \ 0.072 \\ 1.13 \ \pm \ 0.05 \\ 1.83 \ \pm \ 0.11 \\ 2.90 \ \pm \ 0.07 \end{array}$	277 283 298 326 356	RR [relative to k(methane) $= 7.44 \times 10^{-18}$ $T^2 e^{-1361/T}$	DeMore ¹⁹	277-356
			0.789 ± 0.074 1.12 ± 0.16 0.011 ± 0.008	278 298 208	DF-RF	Finlayson-Pitts <i>et al</i> . ²⁰	278–378
			060.0 ± 116.0	067			

J. Phys. Chem. Ref. Data, Monograph No. 2

Haloalkane	$10^{12} \times A (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	а	B (K)	$10^{14} \times k (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
	**************************************		l337 ± 150	$\begin{array}{rrrr} 1.38 \pm 0.42 \\ 1.28 \pm 0.09 \\ 1.61 \pm 0.16 \\ 1.99 \pm 0.24 \\ 1.87 \pm 0.25 \\ 2.17 \pm 0.11 \\ 2.68 \pm 0.28 \end{array}$	318 318 333 338 338 338 338 358 358 378			
	1.75 ± 0.34		1550 ± 60 (243-379 K)	$\begin{array}{l} 0.304 \pm 0.019\\ 0.267 \pm 0.018\\ 0.270 \pm 0.016\\ 0.355 \pm 0.016\\ 0.355 \pm 0.026\\ 0.346 \pm 0.030\\ 0.346 \pm 0.030\\ 0.317 \pm 0.013\\ 0.377 \pm 0.018\\ 0.377 \pm 0.018\\ 0.522 \pm 0.030\\ 0.520 \pm 0.022\\ 0.530 \pm 0.022\\ 0.530 \pm 0.022\\ 0.530 \pm 0.022\\ 0.531 \pm 0.022\\ 0.511 \pm 0.02\\ 0.511 \pm 0.05\\ 2.07 \pm 0.06\\ 0.05\\ 2.07 \pm 0.01\\ 0.05\\ 2.07 \pm 0.05\\ 2.011 \pm 0.05\\ 2.07 \pm 0.05\\ 2.01 \pm 0.05\\ 2.011 \pm 0.05\\ 2.011$	233 255 255 255 255 255 255 255 255 255	LP-LIF	Talukdar <i>et al</i> . ²¹	233-379
CH ₂ CICHCl ₂				18.4 ± 0.7 19.6 ± 0.6 27.0 ± 1.5 32.0 ± 0.9 31.2 ± 2.1 42.8 ± 2.3	295 299 339 360 400	LP-LIF	Taylor <i>et al</i> . ²²	295-850

Haloalkane	$10^{12} \times A (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	E	B (K)	$10^{14} \times k (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
	4.71×10^{-8}	2.64	- 70 ± 55	$\begin{array}{c} 43.0 \pm 2.5 \\ 46.7 \pm 3.5 \\ 63.0 \pm 5.0 \\ 86.0 \pm 7.0 \\ 108.0 \pm 4.4 \\ 129.0 \pm 4.7 \\ 142.0 \pm 5.5 \\ 197.0 \pm 4.2 \\ 197.0 \pm 4.2 \\ 221.0 \pm 16.2 \\ 228.0 \pm 31.2 \end{array}$	404 447 480 540 651 651 775 850			
CH ₂ FCF ₃	3.7 ± 1.5		1990 ± 280	$\begin{array}{c} 0.263 \pm 0.08\\ 0.518 \pm 0.07\\ 0.808 \pm 0.06\\ 1.31 \pm 0.14\\ 1.81 \pm 0.23\\ 2.72 \pm 0.32 \end{array}$	270 298 330 375 400	FP-RF	Liu et al.''	270-400
	0.58		1350 ± 100	$\begin{array}{l} 0.17 \pm 0.01\\ 0.32 \pm 0.10\\ 0.46 \pm 0.02\\ 0.69 \pm 0.15\\ 0.85 \pm 0.14\\ 1.9 \pm 0.3\\ 2.9 \pm 1.8\end{array}$	231 253 280 301 338 338 338	DF-RF	Brown <i>et al</i> . ¹²	231-423
	10+C2 0		- 60 1730	$\begin{array}{c} 0.0990 \pm 0.0085\\ 0.155 \pm 0.013\\ 0.155 \pm 0.013\\ 0.457 \pm 0.027\\ 0.455 \pm 0.033\\ 0.426 \pm 0.029\\ 0.435 \pm 0.037\\ 0.450 \pm 0.037\\ 0.770 \pm 0.069\\ 1.41 \pm 0.11\\ 2.07 \pm 0.18\\ 2.50 \pm 0.20\\ 2.51 \pm 0.20\end{array}$	223 243 273 296 297 297 297 297 297 297 297 297 297 297	FP-LIF/DF-LMR	Gierczak <i>et al</i> ¹³	223-450
	110-10-0		(223-324 K)	0.238 ± 0.022	270	FP-RF	Zhang <i>et al</i> . ¹⁷	
CHCI2CHCI2				23.7 ± 4.8 22.6 ± 4.6 26.6 ± 5.4	292 298 312	DF-RF	Xing et al. ⁹ ; Qiu et al. ¹⁰	292–365

J. Phys. Chem. Ref. Data, Monograph No. 2

Haloalkane	$\frac{10^{12} \times \mathcal{A} (\text{cm}^3)}{\text{molecule}^{-1} \text{s}^{-1}}$	n (K)	$10^{14} \times k (\mathrm{cm}^3$ molecule ⁻¹ s ⁻¹) a	at T (K)	Technique	Reference	Temperature range covered (K)
	3.70 ± 0.46	815 ± 91	33.8 ± 6.8 40.3 ± 8.1	343 365			
CHF ₂ CF ₃	0.28	1350 ± 100	$\begin{array}{rcrcrc} 0.16 \ \pm \ 0.22 \\ 0.16 \ \pm \ 0.14 \\ 0.29 \ \pm \ 0.10 \\ 0.52 \ \pm \ 0.08 \\ 0.82 \ \pm \ 0.48 \\ 0.99 \ \pm \ 1.45 \end{array}$	226 257 303 341 373 423	DF-RF	Brown <i>et al</i> . ¹²	226-423
	0.541 ± 0.083	1700 ± 100	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	220 228 245 355 355 299 299 299 299 299 299 299 299 299 2	FP-LIF/DF-LMR	Talukdar <i>et al</i> . ³	220-364
CHFCICF ₃			$\begin{array}{l} 0.193 \pm 0.016 \\ 0.25 \pm 0.02 \\ 0.260 \pm 0.022 \\ 0.346 \pm 0.028 \\ 0.382 \pm 0.038 \\ 0.399 \pm 0.041 \\ 0.310 \pm 0.034 \\ 0.510 \pm 0.034 \\ 0.511 \pm 0.034 \\ 0.510 \pm 0.072 \\ 0.640 \pm 0.072 \\ 0.660 \pm 0.072 \\ 0.072 \\ 0.975 \pm 0.08 \\ 0.975 \pm 0.15 \\ 1.87 \pm 0.15 \\ 3.16 \pm 0.26 \\ 3.16 \pm 0.26 \end{array}$	210 233 233 245 245 270 233 233 233 233 233 249 233 233 233 249	FP-LIF/DF-LMR	Gierczak <i>et al</i> . ¹³	210-425
CHCl ₂ CF ₃	0.445 0.088	1150 ± 60 (210-349 K)	3.91 ± 0.31 2.50 ± 0.26 3.52 ± 0.28 4.70 ± 0.66	425 270 330	FP-RF	Liu et al. ¹¹	270-400

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

J. Phys. Chem. Ref. Data, Monograph No. 2

Haloalkane	$10^{12} \times A (\text{cm}^3)$ molecule ⁻¹ s ⁻¹	-	B (K)	$10^{14} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
	1.1 ± 0.2		1040 ± 140	$\begin{array}{r} 4.99 \pm 0.62 \\ 7.36 \pm 0.92 \\ 8.84 \pm 0.74 \end{array}$	350 375 400			
	1.18		900 ± 150	$\begin{array}{r} 4.5 \ \pm \ 0.9 \\ 7.0 \ \pm \ 3.0 \\ 5.9 \ \pm \ 0.6 \\ 8.6 \ \pm \ 4.0 \\ 10.5 \ \pm \ 1.1 \\ 14.5 \ \pm \ 1.7 \end{array}$	232 269 333 376 376	DF-RF	Brown <i>et al</i> . ¹²	232-426
	0.65 ^{+ 0.1}		840 + 40	$\begin{array}{c} 1.13 \pm 0.11 \\ 1.58 \pm 0.29 \\ 1.48 \pm 0.13 \\ 1.48 \pm 0.13 \\ 1.89 \pm 0.16 \\ 2.20 \pm 0.24 \\ 2.20 \pm 0.24 \\ 3.05 \pm 0.24 \\ 3.05 \pm 0.23 \\ 3.64 \pm 0.36 \\ 3.64 \pm 0.$	213 223 223 223 223 223 223 233 233 2380 2380	FP-LIF/DF-LMR	Gierczak <i>et al</i> , ¹³	213-380
	1.1		(213-322 K) 940 ± 200		295 323 385	PR-RA	Nielsen ¹⁴	295-385
CHFBrCF ₃	1.13		1250 ± 350	$\begin{array}{l} 1.3 \pm 0.4 \\ 1.7 \pm 0.3 \\ 2.4 \pm 0.5 \\ 3.9 \pm 0.5 \\ 6.1 \pm 1.3 \end{array}$	279 298 377 423	DF-RF	Brown <i>et al.</i> ⁴	279-423
CHCIBrCF ₃				6.0 ± 0.4	303	DF-RF	Brown et al . ^{12,23}	
CHCl ₂ CCl ₃				23.3 ± 4.7	292	DF-RF	Qiu et al. ¹⁰	
CF ₂ BrCF ₂ Br				< 0.19< 0.013< 0.014< 0.04	295 296 374 424	LP-LIF/DF-LMR	Burkholder <i>et al</i> . ⁶	295-424

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Haloalkane	$10^{12} \times A \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	ч	B (K)	$10^{14} \times k (\mathrm{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₂ CH ₂ Cl				82 ± 14	+1	PR-RA	Markert and Nielsen ⁸	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CHCl ₂ CF ₂ CF ₃	0.23		550 ± 750	2.8 ± 1.3 3.7 ± 0.8 6.1 ± 1.1	251 300 393	DF-RF	Brown et al. ⁴	251–393
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.92 ± 0.52		1290 ± 90	$\begin{array}{r} 1.54 \pm 0.29 \\ 2.60 \pm 0.29 \\ 3.78 \pm 0.31 \\ 5.36 \pm 0.65 \\ 7.76 \pm 0.90 \end{array}$	270 298 330 400	FP-RF	Zhang <i>et a</i> l . ²⁴	270-400
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.65 ± 0.13		970 ± 115	+1 +1 +1 +1	295 317 364	DF-LIF	Nelson <i>et al</i> . ²⁵	295-364
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CHFCICF2CF2CI	0.675 ± 0.370		1300 ± 180	+ + + + + +	298 312 331 375 400	FP-RF	Zhang <i>et al</i> . ²⁴	298-400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.39 ± 0.07		1120 ± 125	$\begin{array}{rrrr} 0.90 \ \pm \ 0.11 \\ 1.13 \ \pm \ 0.12 \\ 1.40 \ \pm \ 0.14 \\ 1.82 \ \pm \ 0.19 \\ 1.96 \ \pm \ 0.20 \end{array}$	295 316 336 374	DF-LIF	Nelson <i>et al .</i> ²⁵	295-374
$150 \pm 40 \qquad 295 \pm 2 \qquad PR-RA$ $310 \pm 30 \qquad 295 \pm 2 \qquad PR-RA$ $380 \pm 70 \qquad 705 \pm 2 \qquad DR PA$	CH ₃ CF ₂ CFC ₂	0.71 ± 0.28		1690 ± 230	+1 +1 +1 +1 +1	295 308 328 348 367	DF-LIF	Nelson <i>et al.</i> ²⁵	295-367
310 ± 30 295 ± 2 PR-RA 280 ± 20 205 ± 2 DR-RA	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ Cl				+1	+1	PR-RA	Markert and Nielsen ⁸	
200 + 70 200 - 200	CH3CH2CH2CH2CH	l _i ci			310 ± 30	295 ± 2	PR-RA	Markert and Nielsen ⁸	
W-1 7 7 667 07 7 000	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Cl	I2CH2CI			380 ± 20	295 ± 2	PR-RA	Markert and Nielsen ⁸	

*From present and previous¹ recommendations. ^bConducted at low flash intensities or low H₂O precursor concentrations. Use of higher flash intensities or higher H₂O concentrations gave higher measured rate constants.

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

101
CH_2BrCH_2Br . The room temperature relative rate constant of Arnts *et al*.¹⁵ and the absolute rate constants of Xing *et al*.⁹ and Qiu *et al*.¹⁰ are given in Table 37 and are plotted in Arrhenius form in Fig. 17 together with the absolute room temperature rate constant of Howard and Evenson.³⁷ The room temperature rate constants of Howard and Evenson.³⁷ The absolute rate constants of Howard and Evenson.³⁷ and Qiu *et al*.¹⁰ unit-weighted least-squares analysis of the absolute rate constants of Howard and Evenson.³⁷ and Qiu *et al*.¹⁰ using the expression $k = CT^2e^{-DT}$, yields the recommendation of

$$k(CH_2BrCH_2Br) =$$

(1.03^{+1.94}) × 10⁻¹⁷ T² e^{-(422 ± 343)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 294-365 K, where the indicated errors are two least-squares standard deviations, and

$$k(CH_2BrCH_2Br) = 2.22 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of a factor of 1.5.

FIG. 17. Arrhenius plot of rate constants for the reaction of the OH radical with CH₂BrCH₂Br. (●) Howard and Evenson;³⁷ (△) Arnts *et al.*,¹⁵ (○) Xing *et al.*⁹ and Qiu *et al.*¹⁰ (—) recommendation (see text).

 CH_3CF_3 . The absolute rate constants determined by Talukdar *et al.*³ over the temperature range 223–374 K are given in Table 37, and are plotted together with the room temperature rate constant of Martin and Paraskevopoulos⁴⁰ in Arrhenius form in Fig. 18. The agreement is good, and a unit-weighted least-squares analysis of these data,^{3,40} using the expression $k = CT^2e^{-D/T}$, yields the recommendation of

 $k(CH_3CF_3) =$ (2.02^{+1.11}_{-0.71}) × 10⁻¹⁸ T² e^{-(1459 ± 125)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 223-374 K, where the indicated errors are two least-squares standard deviations, and $k(CH_3CF_3) = 1.34 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of a factor of 1.5.

FIG. 18. Arrhenius plot of selected rate constants for the reaction of the OH radical with CH₃CF₃. (●) Martin and Paraskevopoulos;⁴⁰ (○) Talukdar *et al.*,³ (—) recommendation (see text).

 CH_3CF_2Cl . The absolute rate constants of Liu et al.,¹¹ Brown et al.,¹² Gierczak et al.¹³ and Zhang et al.¹⁷ are given in Table 37. The rate constants of Liu et al.,¹¹ Brown et al.¹² and Gierczak et al.,¹³ together with those of Howard and Evenson,³⁷ Watson et al.,⁴¹ Handwerk and Zellner³⁹ and Paraskevopoulos *et al.*,³⁸ are plotted in Arrhenius form in Fig. 19. A significant amount of scatter in the data is evident, with the rate constants of Brown et al.,¹² and, to a somewhat lesser extent, of Handwerk and Zellner,³⁹ Liu et al.¹¹ and Zhang et al.¹⁷ being appreciably higher than the rate constants of Howard and Evenson,³⁷ Watson et al.⁴¹ and Gierczak et al.¹³ These discrepancies appear to be due, at least in part, to the presence of reactive haloalkene impurities in the CH₃CF₂Cl samples used and/or the occurrence of secondary reactions of OH radicals with the reaction products or CH₃CF₂Cl photolysis products.

Accordingly, a unit-weighted least-squares analysis of the rate constants of Howard and Evenson,³⁷ Watson *et al.*⁴¹ and Gierczak *et al.*,¹³ using the expression $k = CT^2e^{-D/T}$, yields the recommendation of

 $k(CH_3CF_2Cl) =$ (1.77^{+0.26}) × 10⁻¹⁸ T² e^{-(1174 ± 40)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 223-427 K, where the indicated errors are two least-squares standard deviations, and $k(CH_3CF_2Cl) = 3.06 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of a factor of 1.5.

FIG. 19. Arrhenius plot of selected rate constants for the reaction of the OH radical with CH₃CF₂Cl. (■) Howard and Evenson,³⁷
(●) Watson *et al.*,⁴¹ (▲) Handwerk and Zellner;³⁹ (♥) Paraskevopoulos *et al.*,³⁸ (△) Liu *et al.*,¹¹ (□) Brown *et al.*,¹²
(○) Gierczak *et al.*,¹³ (−) recommendation (see text).

This recommendation is 16–17% lower at all temperatures than the previous recommendation of Atkinson¹ of

 $k(CH_3CF_2Cl) = 2.05 \times 10^{-18} T^2 e^{-1171/T} cm^3 molecule^{-1} s^{-1}$

over the temperature range 273–375 K, with a 298 K rate constant of 3.58×10^{-15} cm³ molecule⁻¹ s⁻¹.

CH₃CFCl₂. The absolute rate constants reported by Liu et al.,¹¹ Brown et al.,¹² Talukdar et al.³ and Zhang et al.¹⁷ are given in Table 37, and are plotted in Arrhenius form in Fig. 20. No previous rate constant measurements have been reported for this reaction. The measured rate constants exhibit a significant degree of scatter, more so at the lower temperatures. The rate constants of Brown et al.¹² are higher than those from the other studies^{3,11,17} at all temperatures studied,¹² and the rate constants measured by Liu *et al.*¹¹ at temperatures ≤ 298 K are significantly higher than those of Talukdar et al.³ and Zhang et al.¹⁷ Among the proposed reasons for these discrepancies are the presence of reactive haloalkenes in the CH₃CFCl₂ samples used³ and the occurrence of secondary reactions of OH radicals with the reaction products.¹⁷ The most recent measurements of Zhang et al.¹⁷ indicate that the earlier lower temperature data

 $(\leq 298 \text{ K})$ of Liu *et al.*¹¹ were in error due to the occurrence of secondary reactions of OH radicals with reaction products. Talukdar *et al.*³ also reported that preliminary experiments utilizing the flash photolysis of H₂O as the OH radical source indicated problems due to the reactions of OH radicals with photolysis products of CH₃CFCl₂ (or possibly with reaction products), and the data given in Table 37 were obtained with a discharge flow system with laser magnetic resonance detection of OH radicals or with a laser photolysis (of HONO) system with laser induced fluorescence detection of OH radicals.

FIG. 20. Arrhenius plot of rate constants for the reaction of the OH radical with CH₃CFCl₂. (●) Liu *et al.*;¹¹ (△) Brown *et al*;¹² (○) Talukdar *et al.*;³ (□) Zhang *et al.*;¹⁷ (−) recommendation (see text).

The rate constants of Talukdar *et al.*³ and Zhang *et al.*¹⁷ (obtained at low flash energies and/or low water vapor concentrations and with high associated uncertainties) are in good agreement, as are those of Talukdar *et al.*³ and Liu *et al.*¹¹ at temperatures ≥ 330 K. A unit-weighted least-squares analysis of the rate constants of Talukdar *et al.*³ using the expression $k = CT^2 e^{-D/T}$, yields the recommendation of

 $k(CH_3CFCl_2) =$ (1.35^{+0.37}_{-0.28}) × 10⁻¹⁸ T² e^{-(893 ± 69)/T} cm³ molecule⁻¹ s⁻¹ over the temperature range 233-393 K, where the indicated errors are two least-squares standard deviations, and

 $k(CH_3CFCl_2) = 5.99 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of a factor of 1.5. As noted above, while not used in the evaluation of the rate constant for this reaction, the rate constants of Liu *et al.*¹¹ at temperatures \geq 330 K and of Zhang *et al.*¹⁷ over the temperature range 250–297 K are in agreement, within the experimental errors, with this recommendation.

 CH_3CCl_3 . The absolute rate constants of Nelson *et al.*,¹⁸ Finlayson-Pitts *et al.*²⁰ and Talukdar *et al.*²¹ and the relative rate constants of Nelson *et al.*¹⁸ and DeMore¹⁹ are given in Table 37 and are plotted, together with the absolute rate constants of Jeong and Kaufman^{42,43} and Kurylo *et al.*,⁴⁴ in Arrhenius form in Fig. 21. The absolute and relative rate constants of Nelson *et al.*¹⁸ are in good agreement with the previous rate constants of Jeong and Kaufman^{42,43} and Kurylo *et al.*⁴⁴

FIG. 21. Arrhenius plot of selected rate constants for the reaction of the OH radical with CH₃CCl₃. (●) Jeong and Kaufman;^{42,43}
(▽) Kurylo et al.;⁴⁴ (▲) DeMore;¹⁹ (△) Finlayson-Pitts et al.;²⁰ (○) Talukdar et al.;²¹ (□) Nelson et al.¹⁸ (absolute rate constants); (—) recommendation (see text).

However, these rate constants of Jeong and Kaufman,^{42,43} Kurylo *et al.*⁴⁴ and Nelson *et al.*¹⁸ are significantly higher than the recent absolute rate constants of Finlayson-Pitts *et al.*²⁰ and Talukdar *et al.*,²¹ especially at temperatures ≥ 270 K. The presence of undetected reactive impurities such as CH₂=CCl₂ in the CH₃CCl₃ samples used would lead to erroneously high measured rate constants at lower temperatures, with the effect becoming more pronounced as the temperature decreased, since the rate constant for the reaction of the OH radical with CH₂=CCl₂ increases with decreasing temperature (Sec. 3.4). It is, however, possible that the higher measured absolute rate constants of Jeong and Kaufman,^{42,43} Kurylo *et al*.⁴⁴ and Nelson *et al*.¹⁸ at the higher temperatures were due to thermal decomposition of CH₃CCl₃ to reactive CH₂ = CCl₂ on surfaces.^{20,21} This possible reason for the discrepancies between the measured rate constants at the higher temperatures is supported by the good agreement between the studies of Kurylo *et al*.,⁴⁴ and Talukdar *et al*.²¹ at 250–270 K (Fig. 21).

The rate constants of DeMore,¹⁹ determined relative to the rate constant for the reaction of the OH radical with CH₄, are uniformly $\sim 20\%$ higher than the absolute rate constants of Finlayson-Pitts *et al.*²⁰ and Talukdar *et al.*,²¹ and this difference may be due in part to uncertainties in the recommended rate constant for the methane reference reaction.

Accordingly, a unit-weighted least-squares analysis of the absolute rate constants of Finlayson-Pitts *et al*.²⁰ and the 243–379 K rate constants of Talukdar *et al*.,²¹ using the expression $k = CT^2 e^{-D/T}$, yields the recommendation of

$$k(CH_3CCl_3) =$$

(2.25^{+0.46}_{-0.39}) × 10⁻¹⁸ T² e^{-(910 ± 56)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 243-379 K, where the indicated errors are two least-squares standard deviations, and

$$k(CH_3CCl_3) =$$

9.43 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 298 K

with an estimated overall uncertainty at 298 K of $\pm 30\%$. Inclusion of the 233 K rate constants of Talukdar *et al.*²¹ leads to a temperature-dependent expression of $k(CH_3CCl_3) = 2.05 \times 10^{-18} T^2 e^{-881/T} cm^3 molecule^{-1} s^{-1}$ over the temperature range 233–379 K, with rate constants within 3% of those calculated from the above recommendation for temperatures in the range 235–460 K.

The present recommendation is significantly different to the previous recommendation of Atkinson¹ of

$$k(CH_3CCI_3) = 5.92 \times 10^{-18} T^2 e^{-1129/T} cm^3 molecule^{-1} s^{-1}$$

over the temperature range 253–457 K, with k (CH₃CCl₃) = 1.19 × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹ at 298 K. However, because of the significantly different temperature-dependencies of the present and previous¹ recommendations, the difference in the calculated rate constants from the two recommendations decreases with decreasing temperature, and at 270 K and 250 K the present recommendation leads to rate constants which are lower than those from the previous recommendation of Atkinson¹ by 15% and 9%, respectively.

The present recommendations for the rate constants for the reactions of the OH radical with methane (Sec. 3.1) and CH₃CCl₃ lead to a rate constant ratio of k (CH₃CCl₃)/k (CH₄) = 0.30 e^{451/T} [1.59 at 270 K and 1.36 at 298 K].

 $CH_2ClCHCl_2$. The absolute rate constants of Taylor et al.²² are given in Table 37 and are plotted, together with the rate constants of Jeong and Kaufman⁴² and Jeong et al.,⁴³ in Arrhenius form in Fig. 22. There are significant discrepancies between these two studies^{22,42,43} at temperatures ≤ 400 K, with the rate constants of Jeong and Kaufman⁴² and Jeong et al.⁴³ being increasing higher than those of Taylor *et al.*²² as the temperature decreases. The rate constants of Taylor et al.²² are in reasonable accord with empirical^{45,46} and theoretical⁴⁷ expectations,²² and it is possible that the rate constants measured by Jeong and Kaufman⁴² and Jeong et al.⁴³ are erroneously high because of the presence of reactive impurities in the CH2ClCHCl2 samples used.22 Accordingly, a unitweighted least-squares analysis of the rate constants of Taylor et al.²² has been carried out, using the expression $k = CT^2 e^{-D/T}$, to recommend that

 $k(\text{CH}_2\text{ClCHCl}_2) =$ (4.44^{+0.63}_{-0.55}) × 10⁻¹⁸ T² e^{-(208 ± 57)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 295-850 K, where the indicated errors are two least-squares standard deviations, and

k (CH₂ClCHCl₂) = 1.96 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of a factor of 1.5.

FIG. 22. Arrhenius plot of rate constants for the reaction of the OH radical with CH₂ClCHCl₂. (●) Jeong and Kaufman;^{42,43} (○) Taylor *et al*.;²² (—) recommendation (see text).

 CH_2FCF_3 . The rate constants of Liu *et al.*,¹¹ Brown *et al.*,¹² Gierczak *et al.*¹³ and Zhang *et al.*¹⁷ are given in Table 37 and those of Liu *et al.*,¹¹ Brown *et al.*¹² and Gierczak *et al.*,¹³ together with the rate constants of Martin

and Paraskevopoulos⁴⁰ and Jeong *et al.*,⁴³ are plotted in Arrhenius form in Fig. 23. The rate constants of Martin and Paraskevopoulos,⁴⁰ Liu *et al.*¹¹ and Gierczak *et al.*¹³ are in reasonably good agreement (especially at temperatures ≤ 330 K), but are significantly lower than those of Jeong *et al.*⁴³ over the entire temperature range common to these studies (249–450 K) and of Brown *et al.*¹² at temperatures ≤ 301 K. The reasons for these discrepancies are not fully understood at present, but may be due in part to the presence of reactive impurities in the CH₂FCF₃ samples used by Jeong *et al.*⁴³ and Brown *et al.*¹²

FIG. 23. Arrhenius plot of selected rate constants for the reaction of the OH radical with CH₂FCF₃. (□) Martin and Paraskevo-poulos;⁴⁰ (▲) Jeong *et al.*;⁴³ (●) Liu *et al.*;¹¹ (△) Brown *et al.*;¹² (○) Gierczak *et al.*;¹³ (─) recommendation (see text).

Accordingly, the rate constants of Martin and Paraskevopoulos,⁴⁰ Liu *et al*.¹¹ and Gierczak *et al*.¹³ have been used to evaluate the rate constant for this reaction, and a unit-weighted least-squares analysis of these data,^{11,13,40} using the expression $k = CT^2 e^{-D/T}$, yields the recommendation of

 $k(CH_2FCF_3) =$ (1.61^{+0.43}_{-0.40}) × 10⁻¹⁸ T² e^{-(1005 ± 88)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 223-450 K, where the indicated errors are two least-squares standard deviations, and

$$k(CH_2FCF_3) =$$

4.90 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 40\%$.

This recommendation supersedes, and is significantly different to, that of Atkinson¹ of

$$k(CH_2FCF_3) =$$

1.27 × 10⁻¹⁸ $T^2 e^{-769/T} cm^3 molecule^{-1} s^{-1}$

over the temperature range 249–473 K, with a 298 K rate constant of 8.54×10^{-15} cm³ molecule⁻¹ s⁻¹, based on the rate constants of Martin and Paraskevopoulos⁴⁰ and Jeong *et al.*⁴³

 CH_2ClCF_2Cl . No new rate constants have been reported for this reaction. The previous recommendation of Atkinson¹ was based on the measured rate constants of Watson *et al*.⁴⁸ and Jeong *et al*.,⁴³ which are not in good agreement. Furthermore, Watson *et al*.⁴⁸ corrected their measured rate constants to account for the presence of $\sim 0.045\%$ of chloroethenes in the CH₂ClCF₂Cl sample used. Because of the apparently high accuracy of the rate constants measured by Watson *et al*.^{41,48} (see this section and Atkinson¹), it is recommended that the rate constant for the reaction of the OH radical with CH₂ClCF₂Cl be based on the corrected rate constants of Watson *et al*.,⁴⁸ with

$$k(CH_2ClCF_2Cl) =$$

3.2 × 10⁻¹² e^{-1580/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 250-350 K, and

 $k(CH_2ClCF_2Cl) = 1.6 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of a factor of 1.6. This recommendation supersedes that of Atkinson¹ of

$$k$$
 (CH₂ClCF₂Cl) = 2.80 × 10⁻¹⁸ T² e^{-672/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 249–473 K, with a 298 K rate constant of 2.61×10^{-14} cm³ molecule⁻¹ s⁻¹.

 CHF_2CF_3 . The rate constants of Brown *et al.*¹² and Talukdar *et al.*,³ both determined as a function of temperature, are given in Table 37. These rate constants^{3,12} and the room temperature rate constant of Martin and Paraskevopoulos⁴⁰ are plotted in Arrhenius form in Fig. 24. As seen from Table 37 and Fig. 24, the rate constants of Brown *et al.*¹² are subject to significant uncertainties (exceeding $\pm 100\%$ in two cases), and these rate constants¹² are not used in the evaluation of the rate constant for this reaction. A unit-weighted least-squares analysis of the rate constants of Martin and Paraskevo-poulos⁴⁰ and Talukdar *et al.*,³ using the expression $k = CT^2e^{-D/T}$, yields the recommendation of

 $k(CHF_2CF_3) =$ (9.46^{+3.96}/_{-2.79}) × 10⁻¹⁹ T² e^{-(1126 ± 97)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 220-364 K, where the indicated errors are two least-squares standard deviations, and

$$k(CHF_2CF_3) = 1.92 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of a factor of 1.5.

FIG. 24. Arrhenius plot of selected rate constants for the reaction of the OH radical with CHF₂CF₃. (●) Martin and Paraskevopoulos;⁴⁰ (△) Brown *et al*.;¹² (○) Talukdar *et al*.;³ (—) recommendation (see text).

CHFClCF₃. The rate constants of Gierczak et al.¹³ are given in Table 37 and are plotted, together with the rate constants of Howard and Evenson³⁷ and Watson et al.,⁴⁸ in Arrhenius form in Fig. 25. The agreement between the rate constants of Watson et al.⁴⁸ and Gierczak et al.¹³ is excellent, with the room temperature rate constant of Howard and Evenson³⁷ being ~40% higher. A unitweighted least-squares analysis of the rate constants of Watson et al.⁴⁸ and Gierczak et al.,¹³ using the expression $k = CT^2e^{-D/T}$, yields the recommendation of

$$k(\text{CHFClCF}_3) =$$

(1.03^{+0.17}_{-0.14}) × 10⁻¹⁸ T² e^{-(675 ± 40)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 210-425 K, where the indicated errors are two least-squares standard deviations, and

k(CHFClCF₃) = 9.50 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 40\%$. This recommendation supersedes that of Atkinson¹ of

$$k(\text{CHFClCF}_3) = 6.38 \times 10^{-13} \,\mathrm{e}^{-1233/T} \,\mathrm{cm}^3 \,\mathrm{molecule}^{-1} \,\mathrm{s}^{-1}$$

over the temperature range 250–375 K, with a 298 K rate constant of 1.02×10^{-14} cm³ molecule⁻¹ s⁻¹, based on the rate constants of Howard and Evenson³⁷ and Watson *et al.*⁴⁸

FIG. 25. Arrhenius plot of rate constants for the reaction of the OH radical with CHFCICF₂. (△) Howard and Evenson;³⁷ (●) Watson *et al.*,⁴⁸ (○) Gierczak *et al.*,¹³ (—) recommendation (see text).

CHCl₂CF₃. The rate constants of Liu et al.,¹¹ Brown et al.¹², Gierczak et al.¹³ and Nielsen¹⁴ are given in Table 37, and are plotted, together with the room temperature rate constant of Howard and Evenson³⁷ and the measured rate constants of Watson et al.,48 in Arrhenius form in Fig. 26. The rate constants of Brown et al.¹² and Nielsen¹⁴ are significantly higher, by factors of $\sim 1.5-2.5$ and ≤ 1.4 , respectively, than the rate constants of Howard and Evenson,³⁷ Watson et al.,⁴⁸ Liu et al.¹¹ and Gierczak et al.,¹³ and are not used in the evaluation of the rate constant for this reaction. It should be noted that Watson et al.48 corrected their measured rate constants for the presence of reactive impurities in the sample of CHCl₂CF₃, with this correction ranging from <1% at 375 K to \sim 7% at 245 K. Because of the smallness of this correction, the measured rate constants have been used in the evaluation of the rate constant for this reaction. A unit-weighted least-squares analysis of the rate constants of Howard and Evenson,³⁷ Watson et al.,⁴⁸ Liu et al.¹¹ and Gierczak *et al.*,¹³ using the expression $k = CT^2 e^{-D/T}$, yields the recommendation of

 $k(\text{CHCl}_2\text{CF}_3) =$ (1.06^{+0.30}_{-0.24}) × 10⁻¹⁸ T² e^{-(283 ± 70)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 213-400 K, where the indicated errors are two least-squares standard deviations, and

$$k(\text{CHCl}_2\text{CF}_3) =$$

3.64 × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 30\%$. This recommendation supersedes that of Atkinson¹ of

$$k(CH_2ClCF_3) = 1.16 \times 10^{-12} e^{-1056/T} cm^3 molecule^{-1} s^{-1}$$

over the temperature range 245–375 K, with a 298 K rate constant of 3.35×10^{-14} cm³ molecule⁻¹ s⁻¹, based on the measured rate constants of Howard and Evenson³⁷ and Watson *et al.*⁴⁸

FIG. 26. Arrhenius plot of selected rate constants for the reaction of the OH radical with CHCl₂CF₃. (□) Howard and Evenson;³⁷
(●) Watson et al.;⁴⁸ (▲) Liu et al.;¹¹ (△) Brown et al.;¹² (○) Gierczak et al.;¹³ (♥) Nielsen;¹⁴ (−) recommendation (see text).

CHCl₂CF₂CF₃. The rate constants of Brown *et al.*,⁴ Zhang *et al.*²⁴ and Nelson *et al.*²⁵ are given in Table 37 and are plotted in Arrhenius form in Fig. 27. Over the temperature range common to both studies (295–365 K), the rate constants of Zhang *et al.*²⁴ and Nelson *et al.*²⁵ are in good agreement, but exhibit significant disagreement with the rate constant data of Brown *et al.*⁴ Accordingly, the rate constants of Zhang *et al.*²⁴ and Nelson *et al.*²⁵ are used in the evaluation of the rate constant for this reaction. Since a least-squares analysis of these data^{24,25} would unduly weight the 270 K and 400 K rate constants of Zhang *et al.*,²⁴ the room temperature rate constants and Arrhenius temperature-dependent factors *B* have been averaged to yield the recommended Arrhenius expression of

$$k(CHCl_2CF_2CF_3) =$$

1.13 × 10⁻¹² e^{-1130/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 270-400 K, and

k (CHCl₂CF₂CF₃) = 2.50×10^{-14} cm³ molecule⁻¹ s⁻¹

at 298 K, with an estimated overall uncertainty at 298 K of $\pm 35\%$.

FIG. 27. Arrhenius plots of rate constants for the reactions of the OH radical with CHCl₂CF₂CF₃ and CHFClCF₂CF₂Cl. CHCl₂CF₂CF₃: (△) Brown et al.;⁴ (○) Zhang et al.;²⁴ (●) Nelson et al.²⁵ CHFClCF₂CF₂Cl: (□) Zhang et al.;²⁴ (■) Nelson et al.;²⁵ (—) recommendations (see text).

CHFClCF₂CF₂Cl. The rate constants of Zhang *et al.*²⁴ and Nelson *et al.*²⁵ are given in Table 37 and are plotted in Arrhenius form in Fig. 27. These rate constants^{24,25} are in good agreement, and a unit-weighted least-squares analysis yields the recommended Arrhenius expression of

$$k$$
 (CHFClCF₂CF₂Cl) =
(5.49^{+2.02}_{-1.48}) × 10⁻¹³ e^{-(1230 ± 106)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 295-400 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
(CHFClCF₂CF₂Cl) =
8.85 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 40\%$.

Other Haloalkanes. For CHCl₂CHCl₂, CHFBrCF₃, CHClBrCF₃, CHCl₂CCl₃, CH₃CF₂CFCl₂, 1-chloropropane, 1-chlorobutane, 1-chloropentane, and 1-chlorohexane, only single studies have been conducted (Table 37), and hence no recommendations are made.

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ²A. C. Brown, C. E. Canosa-Mas, and R. P. Wayne, Atmos. Environ. **24A**, 361 (1990).
- ³R. Talukdar, A. Mellouki, T. Gierczak, J. B. Burkholder, S. A. McKeen, and A. R. Ravishankara, J. Phys. Chem. **95**, 5815 (1991).
- ⁴A. C. Brown, C. E. Canosa-Mas, A. D. Parr, K. Rothwell, and R. P. Wayne, Nature **347**, 541 (1990).
- ⁵R. Talukdar, A. Mellouki, T. Gierczak, J. B. Burkholder, S. A. McKeen, and A. R. Ravishankara, Science 252, 693 (1991).

- ⁶J. B. Burkholder, R. R. Wilson, T. Gierczak, R. Talukdar, S. A. McKeen, J. J. Orlando, G. L. Vaghjiani, and A. R. Ravishankara, J. Geophys. Res. **96**, 5025 (1991).
- ⁷J. H. Kasner, P. H. Taylor, and B. Dellinger, J. Phys. Chem. **94**, 3250 (1990).
- ⁸F. Markert and O. J. Nielsen, Chem. Phys. Lett. 189, 171 (1992).
- ⁹S.-B. Xing, S.-H. Shi and L.-X. Qiu, Int. J. Chem. Kinet. 24, 1 (1992).
- ¹⁰L. X. Qiu, S. H. Shi, S. B. Xing and X. G. Chen, J. Phys. Chem. **96**, 685 (1992).
- ¹¹R. Liu, R. E. Huie, and M. J. Kurylo, J. Phys. Chem. 94, 3247 (1990).
- ¹²A. C. Brown, C. E. Canosa-Mas, A. D. Parr, and R. P. Wayne, Atmos. Environ. 24A, 2499 (1990).
- ¹³T. Gierczak, R. Talukdar, G. L. Vaghjiani, E. R. Lovejoy, and A. R. Ravishankara, J. Geophys. Res. 96, 5001 (1991).
- ¹⁴O. J. Nielsen, Chem. Phys. Lett. 187, 286 (1991).
- ¹⁵R. R. Arnts, R. L. Seila, and J. J. Bufalini, J. Air Pollut. Control Assoc. **39**, 453 (1989).
- ¹⁶P. H. Taylor, S. McCarron, and B. Dellinger, Chem. Phys. Lett. 177, 27 (1991).
- ¹⁷Z. Zhang, R. E. Huie and M. J. Kurylo, J. Phys. Chem. **96**, 1533 (1992).
- ¹⁸L. Nelson, I. Shanahan, H. W. Sidebottom, J. Treacy, and O. J. Nielsen, Int. J. Chem. Kinet. 22, 577 (1990).
- ¹⁹W. B. DeMore, Geophys. Res. Lett. 19, 1367 (1992).
- ²⁰B. J. Finlayson-Pitts, M. J. Ezell, T. M. Jayaweera, H. N. Berko, and C. C. Lai, Geophys. Res. Lett. **19**, 1371 (1992).
- ²¹R. K. Talukdar, A. Mellouki, A.-M. Schmoltner, T. Watson, S. Montzka, and A. R. Ravishankara, Science 257, 227 (1992).
- ²²P. H. Taylor, Z. Jiang and B. Dellinger, J. Phys. Chem. **96**, 1293 (1992).
- ²³A. C. Brown, C. E. Canosa-Mas, A. D. Parr, J. M. T. Pierce, and R. P. Wayne, Nature 341, 635 (1989).
- ²⁴Z. Zhang, R. Liu, R. E. Huie, and M. J. Kurylo, Geophys. Res. Lett. 18, 5 (1991).
- ²⁵D. D. Nelson, Jr., M. S. Zahniser, and C. E. Kolb, J. Phys. Chem. 96, 249 (1992).
- ²⁶R. Atkinson, Chem. Rev. 86, 69 (1986).
- ²⁷W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling," NASA Panel for Data Evaluation, Evaluation No. 10, Jet Propulsion Laboratory Publication 92–20, August 15, 1992.
- ²⁸R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and J. Troe, J. Phys. Chem. Ref. Data 21, 1125 (1992).
- ²⁹M. A. A. Clyne and P. M. Holt, J. Chem. Soc. Faraday Trans. 2, 75, 569 (1979).
- ³⁰M. A. A. Clyne and P. M. Holt, J. Chem. Soc. Faraday Trans. 2, 75, 582 (1979).
- ³¹C. J. Howard and K. M. Evenson, J. Chem. Phys. 64, 197 (1976).
- ³²W. S. Nip, D. L. Singleton, R. Overend, and G. Paraskevopoulos, J. Phys. Chem. 83, 2440 (1979).
- ³³K.-M. Jeong and F. Kaufman, J. Phys. Chem. 86, 1808 (1982).
- ³⁴R. K. Bera and R. J. Hanrahan, Radiat. Phys. Chem. 32, 579 (1988).
- ³⁵G. Le Bras and J. Combourieu, Int. J. Chem. Kinet. 10, 1205 (1978).
- ³⁶J. Garraway and R. J. Donovan, J. Chem. Soc. Chem. Comm. 1108 (1979).
- ³⁷C. J. Howard and K. M. Evenson, J. Chem. Phys. 64, 4303 (1976).
- ³⁸G. Paraskevopoulos, D. L. Singleton, and R. S. Irwin, J. Phys. Chem. 85, 561 (1981).
- ³⁹V. Handwerk and R. Zellner, Ber. Bunsenges. Phys. Chem. **82**, 1161 (1978).
- ⁴⁰J.-P. Martin and G. Paraskevopoulos, Can. J. Chem. 61, 861 (1983).
- ⁴¹R. T. Watson, G. Machado, B. Conaway, S. Wagner, and D. D. Davis, J. Phys. Chem. 81, 256 (1977).
- ⁴²K.-M. Jeong and F. Kaufman, Geophys. Res. Lett. 6, 757 (1979).
- ⁴³K.-M. Jeong, K.-J. Hsu, J. B. Jeffries, and F. Kaufman, J. Phys. Chem. 88, 1222 (1984).
- ⁴⁴M. J. Kurylo, P. C. Anderson, and O. Klais, Geophys. Res. Lett. 6, 760 (1979).

- ⁴⁵R. Atkinson, Int. J. Chem. Kinet. 19, 799 (1987).
- ⁴⁶N. Cohen and S. W. Benson, J. Phys. Chem. 91, 171 (1987).
- ⁴⁷N. Cohen and S. W. Benson, J. Phys. Chem. **91**, 162 (1987).
- ⁴⁸R. T. Watson, A. R. Ravishankara, G. Machado, S. Wagner, and D.
- D. Davis, Int. J. Chem. Kinet. 11, 187 (1979).

3.3. Alkenes

The rate constants reported since the previous review of Atkinson¹ are given in Table 38. In addition, rate constants have been determined by Liu *et al.*^{11,12} for propene and 1-butene at 760 Torr total pressure (1 atmosphere) of argon over the temperature ranges 323–973 K and 478–873 K, respectively, and rate constants for the reaction of the OH radical with ethene have been measured by Kuo and Lee¹³ at low total pressures as a function of temperature. The reaction of OH radicals with ethene has also been studied by Diau and Lee¹⁴ over the temperature range 544–673 K under conditions where the decomposition reaction of the HOC₂H₄ radical is important.

Ethene. The rate constants determined by Nielsen et al.² and Becker et al.⁴ at 298 \pm 2 K and one atmosphere total pressure, of $(9.4 \pm 1.6) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ and $(7.7 \pm 1.0) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹, respectively, are in agreement within the cited uncertainties with the recommended value of Atkinson¹ of 8.52 $\times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at 298 K and one atmosphere total pressure of air. The absolute rate constant measured by Bott and Cohen³ at 1197 ± 16 K and 790 Torr total pressure, of (4.38 ± 0.66) $\times 10^{-12}$ cm³ molecule⁻¹ s⁻¹, is plotted in Arrhenius form in Fig. 28, together with the absolute rate constants of Smith,¹⁵ Tully¹⁶ and the > 625 K absolute rate constants of Liu *et al.*^{17,18} The recommended rate expression of Atkinson¹ for H-atom abstraction of

$$k^{abs} = 4.87 \times 10^{-18} T^2 e^{-1125/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$$

based on the rate constant data of Smith¹⁵ and Tully,¹⁶ is also shown in Fig. 28.

Figure 28 shows that while the rate constant of Bott and Cohen³ agrees with those of Liu *et al.*,^{17,18} these studies^{3,17,18} measured rate constants which are a factor of $\sim 1.5-2$ higher than those of Smith¹⁵ and Tully.¹⁶

Kuo and Lee¹³ have determined rate constants for this reaction with He, N₂ and O₂ diluents at total pressures in the range 1–5 Torr of He, 0.8–3.2 Torr of N₂ and 0.3–1.5 Torr of O₂ at 300 K, and in He diluent over the temperature range 251–430 K, using a discharge flow system with resonance fluorescence detection of the OH radical. At 300 K, the limiting low pressure rate constants, k_0 , obtained were (in cm⁶ molecule⁻² s⁻¹ units): He, (2.7 ± 0.5) × 10⁻²⁹; N₂, (6.1 ± 1.2) × 10⁻²⁹; and O₂, (5.3 ± 1.1) × 10⁻²⁹. This limiting low pressure rate constant for He¹³ is similar to that used in the previous evaluation of Atkinson¹ of 3.0 × 10⁻²⁹ cm⁶ molecule⁻² s⁻¹, while those for N₂ and O₂¹³ are factors of 1.6–1.9 lower than the value of $k_0(N_2, O_2) = 1.0 \times 10^{-28}$ cm⁶ molecule⁻² s⁻¹ at 298 K used by Atkinson.¹ A temperature dependence of the limiting low pressure rate constant k_o for M = He of $T^{-4.8}$ was determined by Kuo and Lee¹³ (using a temperature dependence of the limiting high pressure rate constant similar to that recommended by Atkinson¹). This $T^{-4.8}$ temperature dependence of k_o is significantly higher than that of T^{-3} used by Atkinson¹ and based on the data of Tully.¹⁹

FIG. 28. Arrhenius plot of selected absolute rate constants for the reaction of the OH radical with ethene at temperatures > 625 K. (●) Smith;¹⁵ (○) Tully;¹⁶ (△) Liu *et al.*;^{17,18} (▲) Bott and Cohen;³ (—) recommendation of Atkinson¹ for the H-atom abstraction reaction.

It appears that a temperature dependence of T^{-4} is appropriate for k_0 , and that the limiting low pressure rate constants at 298 K are

$$k_{\rm o}({\rm M} = {\rm He}) = 3.0 \times 10^{-29} \,{\rm cm}^6 \,{\rm molecule}^{-2} \,{\rm s}^{-1},$$

and

$$k_0(M = N_2, O_2) = 6 \times 10^{-29} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}.$$

The previous recommendations¹ for the limiting high pressure rate constant for OH radical addition and for the elevated temperature H-atom abstraction pathway are unchanged.

Diau and Lee¹⁴ investigated the reaction of the OH radical with ethene at 544–673 K and at total pressures of 278–616 Torr of He. At these temperatures, the HOCH₂CH₂ adduct radical rapidly thermally decomposes back to reactants,¹ and Diau and Lee¹⁴ observed the expected biexponential OH radical decays. The data obtained¹⁴ allowed a value of $\Delta H^{\circ} = -30.7 \pm 0.9$ kcal mol⁻¹ to be derived, reasonably close to the value of

-32.1 kcal mol⁻¹ calculated from group additivity.²⁰ While both the forward and reverse rate constants are expected,¹ and were observed,¹⁴ to be in the fall-off regime at the total pressures employed, the OH radical addition reaction (a) was observed to be more dependent on pressure than was the HOCH₂CH₂ decomposition reaction (b),

$$OH + C_2H_4 \stackrel{a}{\rightleftharpoons} HOCH_2\dot{C}H_2$$

in apparent violation of detailed balancing. Under the temperature and pressure conditions employed, a HOCH₂CH₂ radical decomposition rate constant of k (HOCH₂CH₂ \rightarrow OH + C₂H₄) = 6.2 × 10¹¹ e^{-(11900 ± 400)/T} s⁻¹ was derived.¹⁴ It should be noted, however, that this rate constant is in the fall-off regime.

Propene. The rate constant determined by Nielsen et al.² at 298 \pm 2 K and one atmosphere total pressure of argon diluent of $(3.01 \pm 0.42) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ is in reasonable agreement with that of 2.63 $\times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ recommended by Atkinson¹ for 298 K and one atmosphere total pressure of air. The absolute rate constants measured by Liu *et al.*^{11,12} at 760 Torr total pressure of argon (shown graphically and not tabulated^{11,12}) are in good agreement with the recommendation of Atkinson¹ over the temperature range 323–500 K, where the reaction proceeds predominantly by OH radical addition at atmospheric pressure.

The rate constants determined by Liu *et al.*^{11,12} at temperatures > 625 K and by Bott and Cohen³ at 1204 ± 16 K are plotted in Arrhenius form in Fig. 29, together with the absolute rate constants of Smith *et al.*²¹ and Tully and Goldsmith.²² Also shown is the recommendation of Atkinson¹ for the H-atom abstraction rate constant (which was based on the data of Tully and Goldsmith²²). It can be seen that the rate constant of Bott and Cohen³ is in good agreement with the rate constants of Liu *et al.*^{11,12} (which were presented graphically and not tabulated), but that the rate constants from these studies^{3,11,12} are significantly higher than those determined by Smith *et al.*²¹ and Tully and Goldsmith,²² although the discrepancies between these studies^{3,11,12,21,22} decrease as the temperature increases. The previous recommendations of Atkinson¹ are unchanged.

1-Butene. Rate constants have been determined over the temperature range 478–873 K at 760 Torr total pressure of argon diluent by Liu *et al*.^{11,12} (these data are shown graphically, and not tabulated). The rate constant of Liu *et al*.^{11,12} at 478 K of 1.6×10^{-11} cm³ molecule⁻¹ s⁻¹ is in good agreement with that of 1.74×10^{-11} cm³ molecule⁻¹ s⁻¹ calculated from the recommended limiting high-pressure rate constant expression of Atkinson.¹ The rate constants decrease with increasing temperature over the range 478–673 K,^{11,12} as expected¹ for a predominantly OH radical addition reaction with some fall-off behavior at the higher temperatures. Above 650 K the rate constants increase with increasing temperature,^{11,12} but are significantly higher (by a factor of ~1.3–1.5) than those of Tully¹⁶ measured over the temperature range 650–833 K (although they do appear to extrapolate to the rate constant determined by Smith¹⁵ at 1225 K).

FIG. 29. Arrhenius plot of absolute rate constants for the reaction of the OH radical with propene at temperatures > 625 K. (▲) Smith et al.;²¹ (○) Tully and Goldsmith;²² (△) Liu et al.^{11,12} (taken from data presented graphically); (●) Bott and Cohen;³ (—) recommendation of Atkinson¹ for the H-atom abstraction reaction.

2,3-Dimethyl-2-butene. The rate constants measured at room temperature by Atkinson *et al.*,^{5,6} Corchnoy and Atkinson⁷ and Atkinson and Aschmann,⁸ relative to the rate constant for the reaction of the OH radical with isoprene (2-methyl-1,3-butadiene), are in excellent agreement with the recommended rate constant of Atkinson¹ of 1.10×10^{-10} cm³ molecule⁻¹ s⁻¹ at 298 K.

Cyclohexene. The rate constant determined by Nielsen et al.² at 298 \pm 2 K and one atmosphere total pressure of (6.18 \pm 0.81) \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ is in agreement with that of 6.77 \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K recommended by Atkinson.¹

Other Alkenes. The rate constant measurements for trans-2-heptene,⁹ trans-4-octene⁹ and the monoterpenes camphene,⁶ 2-carene,⁷ β -phellandrene,¹⁰ sabinene⁶ and terpinolene⁷ are the first reported, and hence no recommendations are made. The room temperature rate constants for trans-2-heptene and trans-4-octene determined relative to the OH radical reaction rate constants for propene and trans-2-butene⁹ lead to a rate constant ratio of k (trans-2-butene)/k (propene) in excellent agreement (within 2%) with the previous recommendations.¹

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

TABLE 38. Rate constants k at, or close to, the high pressure limit for the gas-phase reactions of the OH radical with alkenes

Alkene	$10^{12} \times k \text{ (cm}^3$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference
Ethene	9.4 ± 1.6	298 ± 2	PR-RA	Nielsen et al. ²
	4.38 ± 0.66	1197 ± 16	SH-RA	Bott and Cohen ³
	7.7 ± 1.0	298 ± 2	LP-LIF	Becker et al. ⁴
Ргорепе	30.1 ± 4.2	298 ± 2	PR-RA	Nielsen et al. ²
	15.9 ± 2.4	$1204~\pm~16$	SH-RA	Bott and Cohen ³
2,3-Dimethyl- 2-butene	107 ± 3	296 ± 2	RR [relative to $k(2$ -methyl- 1,3-butadiene) = 1.01×10^{-10}] ^a	Atkinson et al. ⁵
	111 ± 3	296 ± 2	RR [relative to $k(2$ -methyl- 1,3-butadiene) = 1.01×10^{-10}] ^a	Atkinson et al. ⁶
	111 ± 5	295 ± 2	RR [relative to k (2-methyl- 1,3-butadiene) = 1.02×10^{-10}] ^a	Corchnoy and Atkinson ⁷
	106 ± 4	296 ± 2	RR [relative to $k(2$ -methyl- 1,3-butadiene) = 1.01×10^{-10}] ^a	Atkinson and Aschmann ⁸
trans-2-Heptene	67.4 ± 2.4	297 ± 2	RR [relative to k (propene) = 2.65 × 10 ⁻¹¹] ^a	O'Rji and Stone ⁹
	69.1 ± 5.3	297 ± 2	RR [relative to k (trans- 2-butene) = 6.44×10^{-11}] ^a	O'Rji and Stone ⁹
trans-4-Octene	68.2 ± 5.1	297 ± 2	RR [relative to k (propene) = 2.65 × 10 ⁻¹¹] ^a	O'Rji and Stone ⁹
	69.7 ± 3.0	297 ± 2	RR [relative to k (trans- 2-butene) = 6.44×10^{-11}] ^a	O'Rji and Stone ⁹
Cyclohexene	61.8 ± 8.1	298 ± 2	PR-RA	Nielsen et al. ²
Camphene	53.3 ± 2.0	296 ± 2	RR [relative to $k(2$ -methyl- 1,3-butadiene) = 1.01×10^{-10}] ^a	Atkinson et al. ⁶
2-Carene	79.5 ± 2.4	295 ± 2	RR [relative to k (2-methyl- 1,3-butadiene) = 1.02×10^{-10}] ^a	Corchnoy and Atkinson ⁷
β-Phellandrene	168 ± 23	297 ± 2	RR [relative to $k(2,3\text{-dimethyl-}2\text{-butene}) = 1.11 \times 10^{-10}]^{a}$	Shorces et al. ¹⁰
Sabinene	117 ± 5	296 ± 2	RR [relative to k (2-methyl- 1,3-butadiene) = 1.01×10^{-10}] ^a	Atkinson et al. ⁶
Terpinolene	225 ± 10	295 ± 2	RR [relative to k (2-methyl- 1,3-butadiene) = 1.02×10^{-10}] ^a	Corchnoy and Atkinson ⁷

^aFrom previous evaluation.¹

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ²O. J. Nielsen, O. Jørgensen, M. Donlon, H. W. Sidebottom, D. J.
- O'Farrell, and J. Treacy, Chem. Phys. Lett. 168, 319 (1990).
- ³ J. F. Bott and N. Cohen, Int. J. Chem. Kinet. 23, 1075 (1991).
- ⁴K. H. Becker, H. Geiger, and P. Wiesen, Chem. Phys. Lett. 184, 256 (1991).
- ⁵R. Atkinson, S. M. Aschmann, D. Hasegawa, E. T. Thompson-Eagle, and W. T. Frankenberger, Jr., Environ. Sci. Technol. 24, 1326 (1990).
- ⁶R. Atkinson, S. M. Aschmann, and J. Arey, Atmos. Environ. 24A, 2647 (1990).
- ⁷S. B. Corchnoy and R. Atkinson, Environ. Sci. Technol. 24, 1497 (1990).
- ⁸R. Atkinson and S. M. Aschmann, J. Atmos. Chem. 16, 337 (1993).
- ⁹L. N. O'Rji and D. A. Stone, Int. J. Chem. Kinet. 24, 703 (1992).
- ¹⁰B. Shorees, R. Atkinson and J. Arey, Int. J. Chem. Kinet. **23**, 897 (1991).
- ¹¹A. Liu, C. D. Jonah, and W. A. Mulac, Radiat. Phys. Chem., Int. J. Radiat. Appl. Instrum., Part C. 34, 687 (1989).
- ¹²A. Liu, J. Radiat. Res. Radiat. Process 8, 28 (1990).
- ¹³C.-H. Kuo and Y.-P. Lee, J. Phys. Chem. 95, 1253 (1991).
- ¹⁴E. W.-G. Diau and Y.-P. Lee, J. Chem. Phys. 96, 377 (1992).
- ¹⁵G. P. Smith, Int. J. Chem. Kinet. **19**, 269 (1987).
- ¹⁶F. P. Tully, Chem. Phys. Lett. 143, 510 (1988).
- ¹⁷A.-D. Liu, W. A. Mulac, and C. D. Jonah, Int. J. Chem. Kinet. **19**, 25 (1987).
- ¹⁸A. Liu, W. A. Mulac, and C. D. Jonah, J. Phys. Chem. 92, 3828 (1988).
- ¹⁹F. P. Tully, unpublished data, cited in Ref. 1.
- ²⁰S. W. Benson, *Thermochemical Kinetics*, 2nd Ed. (Wiley, New York, N.Y., 1976).
- ²¹G. P. Smith, P. W. Fairchild, J. B. Jeffries, and D. R. Crosley, J. Phys. Chem. **89**, 1269 (1985).

²²F. P. Tully and J. E. M. Goldsmith, Chem. Phys. Lett. 116, 345 (1985).

3.4. Haloalkenes

The rate constants reported for the reactions of the OH radical with haloalkenes since the review of Atkinson¹ are given in Table 39.

Vinyl Chloride. The absolute rate constants determined by Liu *et al*.^{2,6,7} at 760 Torr total pressure of argon diluent are given in Table 39, and are plotted, together with the rate constants of Perry *et al*.,⁸ in Arrhenius form in Fig. 30. The temperature dependence of the rate constant is similar to that for ethene and other simple alkenes,¹ with the measured rate constant decreasing with increasing temperature over the range ~298–590 K, decreasing rapidly (by a factor of ~2) over the narrow temperature range ~590–720 K, and then increasing with increasing temperature above ~720 K. By analogy with the alkenes,¹ and as expected,¹ this behavior indicates that at temperatures ≤ 500 K the OH radical reaction with CH₂=CHCl involves initial OH radical addition

 $OH + CH_2 = CHCl \rightleftharpoons HOCH_2CHCl^*$

$$HOCH_2CHCl^* + M \rightarrow HOCH_2CHCl + M$$

with the addition adduct decomposing back to reactants or being collisionally stabilized. At temperatures $\gtrsim 500-600$ K, the addition adduct undergoes thermal decomposition, and above ~ 650 K the reaction observed is that for H-atom abstraction

$$OH + CH_2 = CHCl \rightarrow H_2O + \dot{C}_2H_2Cl$$

Over the temperature range 299–423 K the rate constants measured by Perry *et al.*⁸ and Liu *et al.*^{2,6,7} are in good agreement, indicating that the rate constant is at, or close to, the high-pressure second-order limit at total pressures of argon ≥ 50 Torr.^{1,8} By analogy with the rate constants for the reactions of the OH radical with alkenes,¹ rate constants at temperatures ≤ 500 K have been used in the evaluation of the low-temperature OH radical addition rate constant for this reaction. A unit-weighted leastsquares analysis of the rate constants of Perry *et al.*⁸ and Liu *et al.*² yields the recommended Arrhenius expression of

$$k(CH_2 = CHCl) =$$

(1.69^{+1.12}_{-0.67}) × 10⁻¹² e^{(422 ± 188)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 299-473 K, where the indicated errors are two least-squares standard deviations, and

 $k(CH_2 = CHCl) = 6.96 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of $\pm 30\%$.

FIG. 30. Arrhenius plot of rate constants for the reaction of the OH radical with CH₂=CHCl at, or close to, the high-pressure limit. (●) Perry *et al.*;⁸ (○) Liu *et al.*;² (—) recommendation (see text).

At temperatures \geq 723 K, the measured rate constant increases with increasing temperature,^{2,6,7}, and at 1173 K the measured rate constant is of a similar magnitude as that at 313 K.² Since only a single study has been carried out at temperatures > 700 K, where the measured rate constants appear to be those for H-atom abstraction, no recommendation is made for this temperature region.

1,1-Dichloroethene. The absolute rate constants, or temperature-dependent rate expressions, reported by Kirchner et al.,³ Zhang et al.⁴ and Abbatt and Anderson⁵ are given in Table 39. These rate constants are plotted, together with the relative rate constants of Edney et al.⁹ and Tuazon et al.,¹⁰ in Arrhenius form in Fig. 31 (for the study of Kirchner et al.³ only the reported 300 K rate constant and the reported Arrhenius expression can be plot-

FIG. 31. Arrhenius plot of rate constants for the reaction of the OH radical with CH₂=CCl₂. (▲) Edney et al.;⁹ (●) Tuazon et al.;¹⁰ (△) Zhang et al.;⁴ (○) Abbatt and Anderson;⁵ (-- and ▼) Kirchner et al.;³ (-) recommendation (see text).

ted, since the individual rate constants at the temperatures studied were not tabulated³). It can be seen from Fig. 31 that the absolute rate constants of Zhang et al.⁴ and Abbatt and Anderson⁵ are in good agreement, and that at 300 K the rate constants from these two studies^{4,5} are in agreement with that reported by Kirchner et al.³ However, at elevated temperatures the rate constants of Kirchner et al.,³ measured at a total pressure of $\sim 1-3$ Torr, are significantly lower than those of Zhang et al.⁴ and Abbatt and Anderson⁵ measured at total pressures of 35 Torr and 26-85 Torr, respectively, and it is possible that this indicates that the rate constant for this reaction at $\sim 1-3$ Torr total pressure moves increasing into the fall-off regime as the temperature increases. The relative room temperature rate constants reported by Edney et al.⁹ and Tuazon et al.¹⁰ are $\sim 30\%$ higher and lower, respectively, than the absolute rate constants of Kirchner et al.,³ Zhang et al.⁴ and Abbatt and Anderson.⁵ These discrepancies may be caused, in part, through the involvement of secondary reactions of Cl atoms produced in the primary reactions, although efforts were made^{9,10} to eliminate or take into account these secondary reactions of Cl atoms.

A unit-weighted least-squares analysis of the absolute rate constants of Zhang *et al.*⁴ and Abbatt and Anderson⁵ yields the recommended Arrhenius expression of

$$k(CH_2 = CCl_2) =$$

(2.00^{+0.63}_{-0.47}) × 10⁻¹² e^{(506 ± 82)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 240-400 K, where the indicated errors are two least-squares standard deviations, and

$$k(CH_2 = CCl_2) = 1.09 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of $\pm 40\%$. This reaction proceeds by initial OH radical addition.¹ cis-CHCl = CHCl. The absolute rate constants measured by Zhang *et al.*⁴ and Abbatt and Anderson⁵ are given in Table 39, and are plotted together with the relative rate constant of Tuazon *et al.*¹⁰ in Fig. 32. The agreement is good, and a unit-weighted least-squares analysis of the absolute rate constants of Zhang *et al.*⁴ and Abbatt and Anderson⁵ yields the recommended Arrhenius expression of

$$k (cis - CHCl = CHCl) =$$

(1.94^{+0.8}) × 10⁻¹² e^{(90 ± 108)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 240-400 K, where the indicated errors are two least-squares standard deviations, and

$$k(cis-CHCl = CHCl) =$$

2.62 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K

with an estimated overall uncertainty at 298 K of $\pm 40\%$. The room temperature relative rate constant of Tuazon *et al.*¹⁰ is in good agreement with this recommendation.

FIG. 32. Arrhenius plot of rate constants for the reaction of the OH radical with *cis*-CHCl=CHCl. (●) Tuazon *et al.*;¹⁰ (△) Zhang *et al.*;⁴ (○) Abbatt and Anderson;⁵ (—) recommendation (see text).

trans-CHCl = CHCl. The absolute rate constants of Zhang *et al.*⁴ and Abbatt and Anderson⁵ are given in Table 39 and are plotted, together with the relative rate constant of Tuazon *et al.*,¹⁰ in Arrhenius form in Fig. 33. The agreement is reasonable, and a unit-weighted least-squares analysis of the rate constants of Zhang *et al.*⁴ and Abbatt and Anderson⁵ yields the recommended Arrhenius expression of

k (trans - CHCl) = CHCl) =(1.01^{+0.39}_{-0.28}) × 10⁻¹² e^{(250 ± 100)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 240-400 K, where the indicated errors are two least-squares standard deviations, and

							Tamneratura
	$10^{12} \times A (\mathrm{cm}^3)$	В	$10^{12} \times k (\mathrm{cm}^3)$				range covered
Haloalkene	molecule ^{-1} s ^{-1}) n	(K)	molecule ⁻¹ s ⁻¹) at $T(\mathbf{K})$	(K)	Technique	Reference	(K)
$CH_2 = CHCI$			7.55 ± 0.76 313	3	PR-RA	Liu et al. ²	313-1173
				en i			
				× 0			
				0 0			
				.			
	2.14	-352 ± 61	4.18 ± 0.42 58	. 00			
		(313-588 K))			
			1.90 ± 0.19 723	3			
			0.25	3			
			0.25	3			
			0.32	9			
			± 0.37	33			
				73			
	1,4 × 10 ⁻³ 2	1200 (723–1173 K)	± 0.77	73			
$CH_2 = CCI_2$	0.226 ± 0.027	- 1143 ± 49	10.2 ± 1.2 300		DF-MS	Kirchner et al. ³	298-432
							100, 000
			11		IN- 11		240-400
			- 1.1				
				- r			
			0.7	<i>.</i>			
			0.6	00			
				0			
		301 . 021	9.19 ± 0.87 360	0			
	tt:0 - 00:7	COT = 7/+_	H 1.43	-			
				2	DF-LIF	Abbatt and Anderson ⁵	797-368
			0.8	1			
			0.7	0			
			± 0.62	328			
				8			
	1.6 ± 0.6	-560 ± 110	± 0.65	80			
cis-CHCl = CHCl					FP.RF	Thank of al 4	
			0.14				001-01-7
			2.71 ± 0.28 298				
			0.18	0			
		, 00 ,		•			
	2.21 ± 0.34	- 05 ± 89	± 0.36	•			

TABLE 39. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with haloalkenes

J. Phys. Chem. Ref. Data, Monograph No. 2

114

ROGER ATKINSON

temperature-dependent parameters for the gas-phase reactions of the OH radical with haloalkenes -
temperature-dependent parameters for the gas-phase reaction
temperature-dependent paramete
tem
TABLE 39. Rate constants k and

Haloalkene	$10^{12} \times \mathcal{A} (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	-	B (K)	$10^{12} \times k \; (\mathrm{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
	2.0 ± 0.5		- 70 ± 120	$\begin{array}{c} 2.35 \pm 0.10 \\ 2.45 \pm 0.08 \\ 2.49 \pm 0.10 \\ 2.38 \pm 0.13 \\ 2.28 \pm 0.13 \end{array}$	297 ± 2 297 ± 2 322 346 367	DF-LIF	Abbatt and Anderson ⁵	297–367
trans-CHCl = CHCl	0.937 ± 0.147		- 283 ± 85	$\begin{array}{c} 2.87 \pm 0.11 \\ 2.80 \pm 0.12 \\ 2.50 \pm 0.30 \\ 2.11 \pm 0.24 \\ 2.09 \pm 0.28 \\ 1.79 \pm 0.48 \end{array}$	240 263 298 330 350	FP-RF	Zhang <i>et al</i> . ⁴	240400
	2.1 ± 0.8		− 20 ± 120	$\begin{array}{c} 1.99 \pm 0.22 \\ 2.20 \pm 0.08 \\ 2.27 \pm 0.10 \\ 2.21 \pm 0.14 \\ 2.13 \pm 0.15 \end{array}$	297 ± 2 297 ± 2 322 367	DF-LIF	Abbatt and Anderson ⁵	297–367
$CHCI = CCI_2$	0.780 ± 0.085		241 ± 61	1.76 ± 0.17	300	DF-MS	Kirchner et al. ³	300-459
$CCl_2 = CCl_2$	5.53 ± 0.32		1034 ± 13	0.173 ± 0.017	301	DF-MS	Kirchner et al. ³	301-433
CFCI = CCl ₂	1.0 ± 0.5		- 590 ± 150	7.57 ± 0.40 6.44 ± 0.38 6.08 ± 0.44 5.17 ± 0.37	297 ± 2 315 338 364	DF-LIF	Abbatt and Anderson ⁵	297–364
CF ₂ = CCl ₂	1.5 ± 0.5		- 480 ± 100	7.63 ± 0.37 7.35 ± 0.37 6.93 ± 0.23 6.54 ± 0.34 6.51 ± 0.33 5.91 ± 0.33 5.11 ± 0.40 5.25 ± 0.34	297 ± 2 297 ± 2 310 ± 2 318 318 328 336 349 365	DF-LIF	Abbatt and Anderson ⁵	297-365

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

$$k(trans-CHCl = CHCl) =$$

2.34 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of a factor of 1.5.

FIG. 33. Arrhenius plot of rate constants for the reaction of the OH radical with *trans*-CHCl=CHCl. (●) Tuazon et al;¹⁰ (△) Zhang *et al*.;⁴ (○) Abbatt and Anderson;⁵ (---) recommendation (see text).

 $CHCl = CCl_2$. The room temperature rate constant and Arrhenius expression of Kirchner *et al.*³ are given in Table 39. This temperature dependent expression is significantly different to that recommended by Atkinson¹ of

$$k(CHCl = CCl_2) =$$

5.63 × 10⁻¹³ e^{427/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 234-420 K, with

 $k(\text{CHCl} = \text{CCl}_2) = 2.36 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

although the room temperature rate constant is in reasonable agreement with the recommendation of Atkinson.¹ This discrepancy is not due to the rate constants measured by Kirchner *et al.*³ being in the fall-off regime, since the temperature dependence of Kirchner *et al.*³ is less negative than the higher pressure data.¹ The previous recommendation¹ is unchanged.

 $CCl_2 = CCl_2$. The room temperature rate constant and Arrhenius expression reported by Kirchner *et al.*³ are given in Table 39. In this case, the data of Kirchner *et al.*³ are in good agreement (within 16% over the temperature range of 301–433 K studied³) with the recommendation of Atkinson¹ of

$$k(\text{CCl}_2 = \text{CCl}_2) = 9.64 \times 10^{-12} \,\text{e}^{-1209/T} \,\text{cm}^3 \,\text{molecule}^{-1} \,\text{s}^{-1}$$

over the temperature range 296-420 K, with

$$k(\text{CCl}_2 = \text{CCl}_2) = 1.67 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$$

This previous recommendation¹ is hence unchanged.

 $CFCl = CCl_2$. The rate constants determined by Abbatt and Anderson⁵ at total pressures of 10–85 Torr of N₂ are given in Table 39. These are the limiting high-pressure rate constants,⁵ and the 297 K rate constant of $(7.57 \pm 0.40) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ is consistent with that of 7×10^{-12} cm³ molecule⁻¹ s⁻¹ measured by Howard¹¹ at 296 K and 7 Torr total pressure of helium (and which was in the fall-off region between second- and third-order kinetics¹¹).

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ²A. Liu, W. A. Mulac, and C. D. Jonah, J. Phys. Chem. **93**, 4092 (1989).
 ³K. Kirchner, D. Helf, P. Ott, and S. Vogt, Ber. Bunsenges. Phys. Chem. **94**, 77 (1990).
- ⁴Z. Zhang, R. Liu, R. E. Huie, and M. J. Kurylo, J. Phys. Chem. **95**, 194 (1991).
- ⁵J. P. D. Abbatt and J. G. Anderson, J. Phys. Chem. 95, 2382 (1991).
- ⁶A. Liu, C. D. Jonah, and W. A. Mulac, Radiat. Phys. Chem. **34**, 687 (1989).
- ⁷A. Liu, J. Radiat. Res. Radiat. Process 8, 28 (1990).
- ⁸R. A. Perry, R. Atkinson, and J. N. Pitts, Jr., J. Chem. Phys. **67**, 458 (1977).
- ⁹E. O. Edney, T. E. Kleindienst, and E. W. Corse, Int. J. Chem. Kinet. 18, 1355 (1986).
- ¹⁰E. C. Tuazon, R. Atkinson, S. M. Aschmann, M. A. Goodman, and A. M. Winer, Int. J. Chem. Kinet. **20**, 241 (1988).
- ¹¹C. J. Howard, J. Chem. Phys. 65, 4771 (1976).

3.5. Alkynes

The kinetic data reported since the review and evaluation of Atkinson¹ are given in Table 40.

Acetylene. The room temperature rate constant of Arnts et al.,² obtained from a relative rate study, is in reasonable agreement with the recommended rate constant of Atkinson¹ of 8.15×10^{-13} cm³ molecule⁻¹ s⁻¹ at 298 K and atmospheric pressure. The rate constants determined by Kaiser³ from the time-concentration profiles of OH radicals and C₂H₂ in fuel-rich propaneand methane-air flames (Table 40) are within 10% of the previous recommendation of Atkinson¹ for the H-atom abstraction reaction, of

$$k^{abs} = 4.9 \times 10^{-18} T^2 e^{-3600/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$$

while that measured by Bott and Cohen⁴ at $1205 \pm 16 \text{ K}$ is 30% higher than calculated from the recommended Hatom abstraction expression of Atkinson¹ (see Fig. 34). Kaiser³ concluded that the reaction proceeds by the formation of H + CH₂CO, although the H-atom abstraction pathway was not ruled out.

1,3-Butadiyne (Diacetylene). The rate constant of $(1.5 \pm 0.75) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ measured by Bartels et al.⁵ at 295 K and ~1.5 Torr total pressure is in good agreement with the previous recommendation of Atkinson¹ of 1.89×10^{-11} cm³ molecule⁻¹ s⁻¹ at 298 K, based on the relative and absolute rate constants of Atkinson and Aschmann⁸ and Perry.⁹ This similarity between the low pressure (~1.5 Torr) data of Bartels et al.⁵ and the

higher pressure (50–735 Torr) data of Atkinson and Aschmann⁸ and Perry⁹ indicates that at room temperature the OH radical addition to 1,3-butadiyne is within a factor of 2 of the high-pressure limit at total pressures ≥ 1 Torr.

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ²R. R. Arnts, R. L. Seila, and J. J. Bufalini, J. Air Pollut. Control Assoc. **39**, 453 (1989).
- ³E. W. Kaiser, J. Phys. Chem. 94, 4493 (1990).
- ⁴J. F. Bott and N. Cohen, Int. J. Chem. Kinet. 23, 1075 (1991).
- ⁵M. Bartels, P. Heinemann-Fiedler, and K. Hoyermann, Z. Phys. Chem. Neue Folge **161**, 189 (1989).
- ⁶G. P. Smith, P. W. Fairchild, and D. R. Crosley, J. Chem. Phys. 81, 2667 (1984).
- ⁷A. Liu, W. A. Mulac, and C. D. Jonah, J. Phys. Chem. 92, 5942 (1988).
- ⁸R. Atkinson and S. M. Aschmann, Combust. Flame 58, 217 (1984).
- ⁹R. A. Perry, Combust. Flame 58, 221 (1984).

FIG. 34. Arrhenius plot of selected absolute rate constants for the reaction of the OH radical with acetylene at temperatures > 625 K. (♥) Smith *et al.*⁶ (the rate constant at 830 K was observed to be pressure dependent; the extrapolated zero pressure rate constant is plotted); (O) Liu *et al.*⁷ (●) Kaiser;³ (△) Bott and Cohen;⁴ (—) recommendation of Atkinson¹ for the H-atom abstraction process.

TABLE 40. Rate constants k for the gas-phas	e reactions of the OH radical with alkynes
---	--

Alkyne	$10^{12} \times k \; (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	at <i>T</i> (K)	Technique	Reference	Temperature range covered (K)
Acetylene	0.721 ± 0.069	297 ± 2	RR [relative to k(ethane) = 2.54×10^{-13}] [*]	Arnts et al. ²	
	1.53 ± 0.25 1.83 ± 0.25 (H + CH ₂ CO)	1700 1770	Flame-RA	Kaiser ³	1700-1770
	0.465 ± 0.070	1205 ± 16	SH-RA	Bott and Cohen ⁴	
1,3-Butadiyne [CH≡CC≡CH]	15 ± 7.5	295	RR [relative to $k(n$ -butane) = 2.50 × 10 ⁻¹²] ^a	Bartels et al. ⁵	

^aFrom present and previous¹ recommendations.

3.6. Oxygen-Containing Organics

The rate constants reported for the reactions of the OH radical with oxygen-containing organic compounds since the review and evaluation of Atkinson¹ are given in Table 41.

3.6.1. Aldehydes

Formaldehvde. The absolute rate constants determined by Yetter et al.² and Bott and Cohen³ are given in Table 41 and are plotted in Arrhenius form in Fig. 35, together with the rate constants of Atkinson and Pitts,³³ Stief et al.,³⁴ Temps and Wagner,³⁵ Niki et al.³⁶ (for ¹³CH₂O) and Zabarnick et al.37 The absolute rate constant of Bott and Cohen³ at 1205 \pm 16 K greatly entends the temperature range for which apparently reliable kinetic data are available for this reaction. The rate constants of Zabarnick et al.³⁷ exhibit a high degree of scatter and are uniformly higher than those of Atkinson and Pitts,³³ Stief et al.,³⁴ Temps and Wagner,³⁵ Niki et al.³⁶ and Yetter et al.² Accordingly, the absolute rate constants of Atkinson and Pitts,³³ Stief et al.,³⁴ Temps and Wagner,³⁵ Yetter et al.² and Bott and Cohen³ and the relative rate constant of Niki et al.³⁶ are used in the evaluation of the rate constant for this reaction. Unit-weighted least-squares analyses of these data^{2,3,33-36} have been carried out, using the three parameter expression $k = CT^n e^{-D/T}$ with n = 1 and n = 2, to obtain

$$k$$
(formaldehyde) =
(8.24^{+2.59}_{-1.98}) × 10⁻¹⁸ $T^2 e^{(753 \pm 86)/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

with n = 2, and

k(formaldehyde) = (1.20 $^{+0.33}_{-0.26}$) × 10⁻¹⁴ T e^{(287 ± 74)/T} cm³ molecule⁻¹ s⁻¹

with n = 1, both over the temperature range 228–1205 K, where the indicated errors are two least-squares standard deviations, and

k(formaldehyde) = 9.16 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K (n = 2), and

$$k$$
(formaldehyde) =
9.37 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K ($n = 1$),

with an estimated overall uncertainty at 298 K of $\pm 25\%$. While previous recommendations for OH radical reactions over extended temperature ranges¹ have generally used the expression $k = CT^2 e^{-D/T}$, inspection of Fig. 35 indicates that this expression predicts excessive curvature in the Arrhenius plot compared to the experimental data, and that the expression $k = CT e^{-D/T}$ provides a much better match between the predicted and experimental rate constants. It is therefore recommended for the OH radical reaction with formaldehyde that

$$k$$
 (formaldehyde) = 1.20 × 10⁻¹⁴ T e^{287/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 228-1205 K, and

k(formaldehyde) = 9.37 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 25\%$. This recommendation supersedes that of Atkinson¹ of

k (formaldehyde) = $1.25 \times 10^{-17} T^2 e^{648/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the more restricted temperature range 228–426 K, with a 298 K rate constant of 9.77×10^{-12} cm³ molecule⁻¹ s⁻¹.

FIG. 35. Arrhenius plot of selected rate constants for the reaction of the OH radical with formaldehyde. (●) Atkinson and Pitts;³³
(△) Stief et al.;³⁴ (▲) Temps and Wagner;³⁵ (□) Niki et al.³⁶
(for formaldehyde-¹³C); (○) Zabarnick et al.;³⁷ (◇) Yetter et al.;² (■) Bott and Cohen;³ (−) recommendation using expression k = CT e^{-D/T} (see text); (− −) fit to same data set using the expression k = CT² e^{-D/T} (see text).

Yetter *et al*.² showed that the OH radical reaction with HCHO proceeds essentially totally $(97\pm_{10}^{+3}\%)$ by the H-atom abstraction channel,

$$OH + HCHO \rightarrow H_2O + HCO$$

in agreement with previous product data.¹

Acetaldehyde. The rate constants measured by Dóbé et al.,⁴ Balestra-Garcia et al.⁵ and Scollard et al.⁶ are given in Table 41. These rate constants⁴⁻⁶ are in excellent agreement with the previous recommendation of Atkinson.¹ While the rate constants of Dóbé et al.⁴ for acetaldehyde agree with the previous literature data,¹ this is not the case for the data of Dóbé et al.⁴ for 2-methyl-1-propanal or 2,2-dimethyl-1-propanal, which are both a factor of ~1.8 higher than the previous data of Kerr and Sheppard³⁸ and Semmes et al.³⁹ The previous recommendation of Atkinson¹ for the reaction of the OH radical with acetaldehyde of

k(acetaldehyde) = 5.55 × 10⁻¹² e^{311/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 244–528 K, with a 298 K rate constant of 1.58×10^{-11} cm³ molecule⁻¹ s⁻¹, is hence unchanged.

2-Methyl-1-propanal and 2,2-Dimethyl-1-propanal. As noted above, the rate constants of Dóbé *et al.*⁴ for these two aldehydes, given in Table 41, are a factor of ~ 1.8

higher than the previous literature data.^{1,38,39} The previous¹ recommendations are unchanged.

Trifluoroacetaldehyde. The room temperature rate constants of Dóbé *et al.*⁴ and Scollard *et al.*⁶ are given in Table 41. These rate constants disagree by a factor of 2. It is tentatively recommended that the rate constant of Scollard *et al.*⁶ be used, with

$$k(CF_3CHO) = 5.3 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

and with an estimated overall uncertainty of a factor of 2. This reaction will proceed by H-atom abstraction from the -CHO group

$$OH + CF_3CHO \rightarrow H_2O + CF_3CO$$

Chloroacetaldehyde (CH₂ClCHO) and Dichloroacetaldehyde (CHCl₂CHO). The rate constants of Starcke *et al.*,⁹ Balestra-Garcia *et al.*⁵ and Scollard *et al.*,⁶ all obtained at room temperature, are given in Table 41. The agreement between these three studies^{5,6,9} is good, and unit-weighted averages of these data^{5,6,9} lead to the recommended 298 K rate constants of

 $k(CH_2ClCHO) = 3.1 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, and $k(CHCl_2CHO) = 2.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$,

both with an estimated overall uncertainty of $\pm 40\%$. At room temperature, these OH radical reactions proceed almost entirely by H-atom abstraction from the -CHO group, for example

$$OH + CHCl_2CHO \rightarrow H_2O + CHCl_2CO$$

Trichloroacetaldehyde (CCl₃CHO). The rate constants of Dóbé et al.,⁴ Starcke et al.,⁹ Nelson et al.,⁸ Balestra-Garcia et al.⁵ and Scollard et al.⁶ are given in Table 41. The absolute rate constant of Balestra-Garcia et al.⁵ is a factor of ~ 1.9 lower than most of the other room temperature rate constants (Table 41). A unit-weighted average of the room temperature rate constants of Starcke et al.,⁹ Nelson et al.,⁸ Balestra-Garcia et al.⁵ and Scollard et al.⁶ yields the recommendation of

$$k(\text{CCl}_3\text{CHO}) = 1.3 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty of a factor of 2. This reaction proceeds by H-atom abstraction from the –CHO group

$$OH + CCl_3CHO \rightarrow H_2O + CCl_3\dot{C}O$$
.

3.6.2. Ketones

Acetone. The absolute rate constant determined by Bott and Cohen¹⁰ at 1217 K is given in Table 41. This measurement¹⁰ significantly expands the temperature range over which rate constant data are available. The absolute rate constants of Wallington and Kurylo⁴⁰ and Bott and Cohen¹⁰ and the relative rate constant of Kerr and Stocker⁴¹ are plotted in Arrhenius form in Fig. 36. A unit-weighted least-squares analysis of these data, ^{10,40,41} using the expression $k = CT^2 e^{-D/T}$, leads to the recommendation of

$$k(\text{acetone}) =$$

(5.34^{+4.15}/_{-2.33}) × 10⁻¹⁸ T² e^{-(230 ± 196)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 240–1217 K, where the indicated errors are two least-squares standard deviations, and

 $k(\text{acetone}) = 2.19 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of $\pm 35\%$.

FIG. 36. Arrhenius plot of selected rate constants for the reaction of the OH radical with acetone. (●) Kerr and Stocker;⁴¹ (○) Wallington and Kurylo;⁴⁰ (△) Bott and Cohen;¹⁰ (—) recommendation (see text).

This recommendation supersedes, and is significantly different at temperatures other than ~ 298 K, than the previous recommendation of Atkinson¹ of

$$k(\text{acetone}) = 2.13 \times 10^{-18} T^2 e^{53/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

over the much more restricted temperature range 240– 440 K, with a 298 K rate constant of 2.26×10^{-13} cm³ molecule⁻¹ s⁻¹.

4-Methyl-2-pentanone. The rate constants obtained by O'Rji and Stone¹² from a relative rate study are given in Table 41. These rate constants agree with the previous recommendation of Atkinson¹ of

k (4-methyl-2-pentanone) = 1.41 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K,

which is therefore unchanged.

	10 ¹² × 4 / cm ³	a	1012 ~ 1 /3				Temperature
Oxygenate	molecule ⁻¹ s ⁻¹)	(K)	molecule $-i s^{-1}$	at $T(\mathbf{K})$	Technique	Reference	range covered (K)
Aldehydes							
Formaldehyde			7.95±2.04	298	DF-RF	Yetter et al. ²	
			19.4 ± 3.0	1205 ± 16	SH-RA	Bott and Cohen ³	
Acetaldehyde	8.6 ± 1.9	- 200 ± 60	$15.6 \\16.9 \pm 3.4 \\13.8 \\15.1 \pm 3.2 \\13.8 \pm 2.7 \\13.5 \pm 2.7 \\11.8 \\12.8 \\12.8 \end{bmatrix}$	297 298 ± 2 303 ± 6 423 ± 3 467 ± 8 517	DF-RF/LIF	Dóbé <i>et al.</i> 4	297–517
			17 ± 3	298	LP-RF	Balestra-Garcia et al. ⁵	
			16.2 ± 1	298 ± 2	RR [relative to k (ethene) = 8.52 × 10 ⁻¹²] ^a	Scollard <i>et al</i> . ⁶	
2-Methyl-1-propanal	15.8 ± 5.0	- 320 ± 130 (298-420 K)	46.3 ± 7.4 44.2 39.7 ± 6.4 36.0 32.7 ± 8.0 33.5 ± 6.2 43.8 ± 6.0	298 ± 2 300 ± 2 349 ± 2 355 = 447 ± 471 ± 3 519 ± 3	DF-RF	Dóbé et al .4	298-519
2,2-Dimethyl-1- propanal	13.3 ± 6.7	-410 ± 205	51.6 ± 13.7 40.2 ± 15.2 33.2	300 ± 2 386 ± 4 405	DF-RF	Dôbé et al .4	300-405
Formyl chloride [HC(O)Cl]			≤ 0.32	299.2	RR [relative to $k(n$ -butane) = 2.55 × 10 ⁻¹²] ^a	Libuda <i>et al.</i> ⁷	
Phosgene [COCl ₂]			< 0.001	298 ± 3	RR ^b	Nelson <i>et al</i> . ⁸	
Trifluoro- acetaldehvde			1.11 ± 0.54	299 ± 3	DF-RF	Dóbé et al. ⁴	
[CF ₃ CHO]			0.53 ± 0.05	298 ± 2	RR [relative to k (acetone) = 2.19 × 10 ⁻¹³ ^{ja}	Scollard <i>et al</i> . ⁶	

TABLE 41. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with oxygen-containing organics

J. Phys. Chem. Ref. Data, Monograph No. 2

10 Oxygenate m	$10^{12} \times \mathcal{A} (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	B (K)	$10^{12} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Temperature range covered Reference (K)	rature · · · · · · · · · · · · · · · · · · ·
CF ₂ ClCHO			0.70 ± 0.05	298 ± 2	RR [relative to $k(\text{ethanol})$ = 3.27×10^{-12}	Scollard <i>et al.</i> ⁶	
CFCI ₂ CHO			1.1 ± 0.1	298 ± 2	RR [relative to k (ethanol) = 3.27×10^{-12} ^a	Scollard <i>et al</i> . ⁶	
Chloroacetaldehyde [CH ₂ ClCHO]			3.2	300	RR [relative to $k(n$ -butane) = 2.56 × 10 ⁻¹²] ^a	Starcke et al. ⁹	
			3.0 ± 0.6	298	LP-RF	Balestra-Garcia <i>et al .</i> ⁵	
			3.1 ± 0.2	298 ± 2	RR [relative to $k(2-butanone)$ = 1.15 × 10^{-12} ^a	Scollard <i>et al.</i> ⁶	
Dichloroacetaldehyde [CHCl2CHO]			~ 2.8	300	RR [relative to $k(n$ -butane) = 2.56 × 10 ⁻¹²] ^a	Starcke <i>et al</i> . ⁹	
			2.4 ± 0.5	298	LP-RF	Balestra-Garcia <i>et al.</i> ⁵	
			2.3 ± 0.1	298 ± 2	RR [relative to $k(2-butanone)$ = 1.15 × 10^{-12} ^w	Scollard <i>et al.</i> ⁶	
Trichloro- acetaldehyde [CCI ₃ CHO]	11.8 ± 2.5	00 + 90	$\begin{array}{c} 1.61 \\ 1.56 \pm 0.25 \\ 1.69 \pm 0.52 \\ 2.13 \pm 0.52 \\ 2.47 \pm 0.47 \\ 2.91 \pm 0.37 \\ 3.29 \\ 3.94 \pm 1.10 \end{array}$	298 300 ± 3 304 ± 4 339 ± 4 449 ± 3 483 520 ± 5	DF-RF/LIF	Dóbé et al .4 298–520	520
			~ 1.2	300	RR [relative to $k(n$ -butane) = 2.56 × 10^{-12} ^a	Starcke et al. ⁹	
			1.63 ± 0.29	298 ± 3	RR [relative to k (ethyl acetate) = 1.6 \times 10 ^{-12]a}	Nelson <i>et a</i> l . ⁸	
			0.86 ± 0.17	298	LP-RF	Balestra-Garcia <i>et al</i> . ⁵	
			1.6 ± 0.2	298 ± 2	RR [relative to k (toluene) = 5.96 × 10 ⁻¹²] ^a	Scollard et al. ⁶	

TABLE 41. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with oxygen-containing organics - Continued

- - - -

. ...

~·

--

. .

	-				0	a	
Oxvgenate	$10^{12} \times A (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	B (K)	$10^{12} \times k \text{ (cm}^3$ molecule ⁻¹ s ⁻¹)	at T (K)	Techniaue	Reference	Temperature range covered (K)
	(c	61	(()
Acetyl chloride [CH ₃ C(O)Cl]			$0.0091 \pm 0.0032^{\circ}$	298 ± 3	RR [relative to k (trichloro- methane) = 1.03 × 10 ⁻¹³] ^a	Nelson <i>et al</i> . ⁸	
Ketones							
Acetone			8.80 ± 1.32	1217	SH-RA	Bott and Cohen ¹⁰	
Acetone-d ₆			0.0358 ± 0.0029	298	FP-RF	Wallington et al. ¹¹	
1,1,1-Trifluoro- acetone			0.0151 ± 0.0013	298	FP-RF	Wallington <i>et al</i> . ¹¹	
4-Methyl-2-pentanone			14.1 ± 0.8	297 ± 2	RR [relative to k (propene) = 2.65×10^{-11}	O'Rji and Stone ¹²	
			14.1 ± 0.7	297 ± 2	RR [relative to k (trans - 2-butene) = 6.44 × 10 ⁻¹¹] ^a	O'Rji and Stone ¹²	
6,6-Dimethylbicyclo- [3 1 1 hentan-2-one			15	q	RR ^h	Hatakeyama ¹³	
(nopinone)			14.3 ± 0.8	296 ± 2	RR [relative to k (cyclo- hexane) = 7.45 × 10^{-12} ^a	Atkinson and Aschmann ¹⁴	
3,3-Dimethylbicyclo- [2.2.1]heptan-2-one (camphenilone)			5.15 ± 0.63	296 ± 2	RR [relative to k (cyclo- hexane) = 7.45 × 10^{-12} ^µ	Atkinson and Aschmann ¹⁴	
4-Acetyl-1-methylcyclo- hexene	4		129 ± 6	296 ± 2	RR [relative to k (2-methyl- 1,3-butadiene) = 1.01 × 10 ⁻¹⁰] ^a	Atkinson and Aschmann ¹⁴	
Ketenes							
Ketene [CH ₂ CO]	6.2 ⁺¹⁰	− 510 ± 420	106 ± 20 89 ± 27 86 ± 16 55 ± 16 33 ± 6 21 ± 5 21 ± 2	193 204 234 269 373 423	DF-RF	Brown <i>et al.</i> '5	193-423
			12.0 ± 3.4	296	DF-LMR	Oehlers et al. ¹⁶	

TABLE 41. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with oxygen-containing organics - Continued

J. Phys. Chem. Ref. Data, Monograph No. 2

- Continued
H radical with oxygen-containing organics -
istants k and temperature-dependent parameters for the gas-phase reactions of the OF
TABLE 41. Rate cons

Oxygenate	$10^{12} \times A (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	B (K)	$10^{12} \times k (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Ter rang Reference	Temperature range covered (K)
Alcohols			- 				
Methanol			0.88 ± 0.18	298	PR-RA	Pagsberg <i>et al</i> . ¹⁷	
			0.90 ± 0.09	298 ± 2	PR-RA	Nelson <i>et al</i> . ¹⁸	
			1.00 ± 0.23	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12} ^a	Nelson <i>et al</i> . ¹⁸	
			8.64 ± 1.30	1205 ± 16	SH-RA	Bott and Cohen ³	
Methanol-d4 [CD3OD]			0.323 ± 0.002	298	FP-RF	Wallington <i>et al</i> ."	
Ethanol			3.04 ± 0.25	298 ± 2	PR-RA	Nelson <i>et al</i> . ¹⁸	
			3.46 ± 0.52	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12} ^a	Nelson <i>et al</i> . ¹⁸	
			8.80 ± 1.32	1204 ± 16	SH-RA	Bott and Cohen ³	
Ethanol-d ₆ [CD ₃ CD ₂ OD]			1.15 ± 0.09	298	FP-RF	Wallington <i>et al</i> . ¹¹	
2-Chloroethanol [ClCH2CH2OH]			1.28 ± 0.09	298	FP-RF	Wallington <i>et al</i> . ¹¹	
2,2,2-Trifluoro- ethanol [CF3,CH2OH]			0.0955 ± 0.0071	298	FP-RF	Wallington <i>et al</i> . ¹¹	
2,2,2-Trichloro- ethanol [CCI3,CH2OH]			0.245 ± 0.024	298	FP-RF	Wallington <i>et al</i> . ¹¹	
1-Propanol			5.64 ± 0.48	298 ± 2	PR-RA	Nelson <i>et al</i> . ¹⁸	
			5.50 ± 0.44	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12}	Nelson <i>et al</i> . ¹⁸	
			5.84 ± 0.24	293	LP-LIF	Tully ¹⁹	

Oxygenate	$10^{12} \times A \ (\text{cm}^3 \qquad B \\ \text{molecule}^{-1} \ \text{s}^{-1} \) \tag{K}$	$10^{12} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Temperature range covered Reference (K)	erature covered K)
2-Propanol		5.69 ± 1.09	298 ± 2	PR-RA	Nelson et al. ¹⁸	
		5.78 ± 0.75	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12} ^a	Nelson <i>et al</i> . ¹⁸	
		5.10 ± 0.21	293	LP-LIF	Tully ¹⁹	
1-Butanol		7.80 ± 0.20	298 ± 2	PR-RA	Nelson et al. ¹⁸	
		8.56 ± 0.70	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 $\times 10^{-12}$ ^a	Nelson <i>et al</i> . ¹⁸	
		9.60 ± 0.41	293	LP-LIF	Tully ¹⁹	
1-Pentanol		12.0 ± 1.6	298 ± 2	PR-RA	Nelson <i>et al</i> . ¹⁸	
		10.5 ± 1.3	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12} ^a	Nelson <i>et al</i> . ¹⁸	
1-Hexanol		12.2 ± 2.4	298 ± 2	PR-RA	Nelson <i>et al</i> . ¹⁸	
		12.9 ± 1.2	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12} ⁴	Nelson <i>et al</i> . ¹⁸	
1-Heptanol		13.7 ± 1.5	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12} ¹⁴	Nelson <i>et al</i> . ¹⁸	
1-Octanol		14.4 ± 1.5	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12} ¹⁴	Nelson <i>et al</i> . ¹⁸	
Hydroxyketones and Ketoethers	Ketoethers					
Hydroxyacetone [CH ₃ COCH ₂ OH]		3.0 ± 0.3	298	FP-RF	Dagaut <i>et al</i> . ²⁰	
Methoxyacetone [CH ₃ OCH ₂ COCH ₃]		6.8 ± 0.6	298	FP-RF	Dagaut <i>et al</i> . ²⁰	
Ethers						
Dimethyl ether		2.30 ± 0.23	295 ± 3	RR [relative to $k(n$ -butane) = 2.50 × 10 ⁻¹²] ^a	Wallington et al. ²¹	
		2.35 ± 0.24	298 ± 2	PR-RA	Nelson <i>et al</i> . ¹⁸	

Oxygenate	$10^{12} \times A (\text{cm}^{3} \text{molecule}^{-1} \text{s}^{-1})$	B (K)	$10^{12} \times k (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	at T (K)	Technique	Reference	Temperature range covered (K)
			3.19 ± 0.70	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12} ^a	Nelson <i>et al</i> . ¹⁸	
Diethyl ether			$\begin{array}{c} 13.1 \pm 0.3 \\ 11.8 \pm 0.8 \\ 11.7 \pm 0.8 \\ 10.3 \pm 0.6 \\ 10.3 \pm 1.0 \\ 10.1 \pm 0.6 \\ 10.1 \pm 0.6 \\ 9.70 \pm 0.13 \end{array}$	242 263 273 289 304 317 325	RR [relative to k(2,3-dimethylbutane) = 1.21 × 10 ⁻¹⁷ $T^2 e^{5127}$	Bennett and Kerr ²²	242–325
			11.3 ± 0.1	298 ± 2	PR-RA	Nelson <i>et al</i> . ¹⁸	
			12.8 ± 0.6	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12} ^µ	Nelson <i>et al</i> . ¹⁸	
			$\begin{array}{c} 13.2 \pm 1.7 \\ 13.5 \pm 1.3 \\ 13.5 \pm 1.3 \\ 12.8 \pm 1.9 \\ 13.2 \pm 0.4 \\ 11.9 \pm 0.4 \\ 11.9 \pm 0.8 \\ 11.3 \pm 0.7 \\ 11.6 \pm 0.8 \\ 11.6 \pm 0.8 \\ 11.6 \pm 0.8 \\ 11.2 \end{array}$	250 253 308 323 333 333 333 333 333	RR [relative to $k(2,3-$ dimethylbutane) = 1.21 × 10 ⁻¹⁷ T ² e ⁵¹²⁷] ^a	Semadeni <i>et al</i> . ²³	250-373
Di-n-propyl ether			19.3 ± 0.8	295 ± 3	RR [relative to k (diethyl ether) = 1.32 × 10 ⁻¹¹] ^a	Wallington et al. ²¹	
			24.4 ± 0.7 22.2 ± 1.4 22.2 ± 0.9 22.6 ± 1.1 22.1 ± 2.8 22.1 ± 1.8	242 264 273 300 323	RR [relative to k (diethyl ether) = 8.91 × $10^{-18} T^2 e^{83777}$	Bennett and Kerr ²²	242-323
			19.9 ± 1.7	298 ± 2	PR-RA	Nelson <i>et al</i> . ¹⁸	
			20.3 ± 1.8	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12} ^m	Nelson <i>et al</i> . ¹⁸	

TABLE 41. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with oxygen-containing organics - Continued

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

125

							E
Oxygenate	$10^{12} \times \mathcal{A} \text{ (cm}^3$ molecule ⁻¹ s ⁻¹)	B (K)	$10^{12} \times k (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	at T (K)	Technique	Reference	lemperature range covered (K)
Di-isopropyl ether	H.L.		10.7 ± 2.0	298 ± 2	PR-RA	Nelson <i>et al</i> . ¹⁸	
	[Z(kry		11.3 ± 0.7	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10 ⁻¹²] ^a	Nelson <i>et al</i> . ¹⁸	
Methyl <i>n</i> -butyl ether	ler		12.6 ± 0.3	295 ± 3	RR [relative to k (diethyl ether) = 1.32 × 10 ⁻¹¹] ^a	Wallington <i>et al.</i> ²¹	
			17.7 ± 3.6	247	RR [relative to k(2,3-	Semadeni et al. ²³	247–353
			16.1 ± 5.2 15.5 ± 1.8	263 298	dimethylbutane) = $1.21 \times 10^{-17} T^2 e^{512/7}$		
			+1	313			
			13.1 ± 1.0	353			
Methyl <i>ter</i> t-butyl ether			3.20 ± 0.08	295 ± 3	RR [relative to $k(n$ -butane) = 2.50 × 10^{-12}	Wallington <i>et al</i> . ²¹	
			2.68 ± 0.47	295 ± 3	RR [relative to k (diethyl ether) = 1.32 × 10^{-11} s	Wallington <i>et al.</i> ²¹	
			3.09 ± 0.20	246	RR [relative to k (diethv]	Bennett and Kerr ²²	246-314
			3.13 ± 0.29	251	ether) =		
			3.16 ± 0.27 3.41 ± 0.11 3.37 ± 0.08	275 284 306	$8.91 \times 10^{-18} T^2 e^{837/7} d^{-18}$		
			+	314			
			2.99 ± 0.12	298	RR [relative to k (<i>n</i> -butane) = 2.54 × 10 ⁻¹²] ^a	Smith <i>et al</i> . ²⁴	
Ethyl <i>n</i> -butyl ether			22.2 ± 1.0	295 ± 3	RR [relative to k (diethyl ether) = 1.32 × 10 ⁻¹¹] ⁴	Wallington <i>et al</i> . ²¹	
			19.0 ± 0.7 18.9 ± 0.7 18.1 ± 0.6	253 263 278	RR [relative to k (diethyl ether) = $8.91 \times 10^{-18} T^2 e^{83777}$	Bennett and Kerr ²²	253-315
			$17.8 \pm 0.7 \\ 17.9 \pm 0.2 \\ 17.8 \pm 0.9$	294 300 315			

TABLE 41. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with oxygen-containing organics – Continued

J. Phys. Chem. Ref. Data, Monograph No. 2

Nelson et al.¹⁸

PR-RA

 298 ± 2

 18.7 ± 0.7

ned
Continued
- t
rganics
00
containin
oxygen-c
<i>i</i> th
alw
I radic
НО
the
s of the O
tion
eac
ISC I
-pha
gas
the
for
ters
amet
para
ent
ende
dep
ure-
perati
temp
k and
nts /
nsta
i coi
Rate
н. в
LE 4
TABI

Oxygenate	$10^{12} \times \mathcal{A} (\text{cm}^{3})$ molecule ⁻¹ s ⁻¹)	B (K)	$10^{12} \times k \; (\mathrm{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
			25.2 ± 3.4 26.4 ± 9.7 26.8 ± 4.1 24.0 ± 4.4 21.3 ± 1.7 19.7 ± 2.2 20.1 ± 1.1	248 251 261 273 323 353	RR [relative to $k(2,3-$ dimethylbutane) = 1.21 × 10 ⁻¹⁷ T ² e ^{s127}] ^a	Semadeni <i>et al .</i> ²⁵	248–353
Ethyl <i>ler</i> -butyl ether			8.63 ± 0.26 6.32 ± 1.88 5.96 ± 0.29 5.77 ± 0.80 5.85 ± 1.17 5.95 ± 1.00	295 ± 3 253 273 302 325	RR [relative to k (diethyl ether) = 1.32 × 10 ⁻¹¹] ^a RR [relative to k (diethyl ether) = 8.91 × 10 ⁻¹⁸ $T^2 e^{8377}$ ^a	Wallington <i>et al.</i> ²¹ Bennett and Kerr ²²	253–325
			9.78 ± 0.34	298	RR [relative to $k(n-hexane)$ = 5.61 × 10 ^{-12]^a}	Smith et al. ²⁵	
Di-n-butyl ether			26.8 ± 3.2	295 ± 3	RR [relative to k (diethyl ether) = 1.32 × 10 ⁻¹¹] ^a	Wallington <i>et al</i> . ²¹	
			27.2 ± 0.2	298 ± 2	PR-RA	Nelson <i>et al</i> . ¹⁸	
			28.8 ± 1.2	298 ± 2	RR [relative to k (cyclo- hexane) = 7.49 × 10^{-12} ¹⁴	Nelson <i>et al</i> . ¹⁸	
			$\begin{array}{rrrr} 41.0 \ \pm \ 2.0 \\ 38.0 \ \pm \ 0.6 \\ 36.5 \ \pm \ 3.9 \\ 32.6 \ \pm \ 2.5 \\ 30.2 \ \pm \ 1.5 \\ 26.2 \ \pm \ 1.5 \\ 26.2 \ \pm \ 1.4 \end{array}$	251 258 265 273 323 333	RR [relative to k(2,3-dimethylbutane) = $1.21 \times 10^{-17} T^2 e^{512/7}$	Semadeni <i>et al</i> . ²³	251–353
			47.2 ± 4.2 46.8 ± 3.8 44.8 ± 2.4 39.9 ± 1.4 41.9 ± 5.3 41.0 ± 4.2 38.3 ± 2.7	248 251 260 266 268 273	RR [relative to k (diethyl ether) = 8.91 × 10 ⁻¹⁸ T^2 $e^{837/T_{\rm B}}$	Semadeni <i>et al .</i> ²³	248–343

127

						,	
Oxygenate	$10^{12} \times A (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	B (K)	$10^{12} \times k (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	at T (K)	Technique	Reference	Temperature range covered (K)
			38.3 ± 2.5 39.1 ± 3.4 31.6 ± 4.4 27.9 ± 1.1 32.2 ± 1.0 28.9 ± 1.2 26.0 ± 2.4 26.0 ± 2.4 27.6 ± 0.7 24.1 ± 2.6	273 275 297 298 298 301 317 343			
Di-n-pentyl ether			30.2 ± 2.6 34.0 ± 2.6	295 ± 3 298 ± 2	RR [relative to k (diethyl ether) = 1.32 × 10 ⁻¹¹] ^a PR-RA	Wallington <i>et al</i> . ²¹ Nelson <i>et al</i> . ¹⁸	
			34.0 ± 0.9	298	RR [relative to k (di- <i>n</i> - 5 butyl ether) = 2.88 × 10 ⁻¹¹] ^a	Semadeni <i>et al</i> . ²³	263–373
1,1-Dimethoxyethane [(CH ₃ O) ₂ CHCH ₃]	υ		8.9 ± 1.0	298	FP-RF	Dagaut <i>et al</i> . ²⁶	
2,2-Dimethoxypropane [CH ₃ OC(CH ₃) ₂ OCH ₃]	ne [4] 3.55 ± 0.39	- 30 ± 35	$\begin{array}{rrrr} 4.09 \ \pm \ 0.89 \\ 3.93 \ \pm \ 0.17 \\ 3.75 \ \pm \ 0.18 \\ 3.80 \ \pm \ 0.51 \\ 3.93 \ \pm \ 0.35 \end{array}$	240 298 350 400	FP-RF	Dagaut <i>et al</i> . ²⁶	240-440
2,2-Diethoxypropane [CH3,CH2,OC(CH3)2OCH2,CH3] 10.6	• 5CH₂CH₃] 10.6 ± 2.5	- 15 ± 75	$11.1 \pm 1.7 \\ 11.7 \pm 1.3 \\ 10.5 \pm 1.0 \\ 11.7 \pm 1.0 \\ 11.7 \pm 1.0 \\ 10.6 \pm 0.7 $	240 298 350 440	FP-RF	Dagaut <i>et al</i> . ²⁶	240-440
1,1,3-Trimethoxypropane [(CH1,0)2CHCH2CH2OCH1]	pane 2OCH,1]		16.7 ± 1.0	298	FP-RF	Dagaut <i>et al</i> . ²⁶	
CHF ₂ OCHCICF ₃			0.021 ± 0.007	298	DF-RF	Brown et al. ^{27,28}	
CHF2OCF2CHFCI	0.61	1080 ± 500	0.017 ± 0.005 0.047 ± 0.007	302 422	DF-RF	Brown et al . ^{27,28}	302-422
CH ₂ FOCH(CF ₃) ₂	1.53	900 ± 500	0.073 ± 0.022 0.177 ± 0.014	299 422	DF-RF	Brown <i>et al</i> . ^{27,28}	299-422

TABLE 41. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with oxygen-containing organics – Continued

ontinued
rganics
ntaining o
th oxygen-coi
with
radical
НО
the
ns of
eactior
е геа
s-phas
gas-]
the ga
ers for tl
eter
ıram
ot pa
indei
iperature-depei
ure-
рега
ten
and
ints k
e consta
Rate
41.
TABLE

Oxygenate	$10^{12} \times A (cm^3)$ molecule ⁻¹ s ⁻¹)	B (K)	$10^{12} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at <i>T</i> (K)	Technique	Reference	Temperature range covered (K)
1,8-Cineole			11.1 ± 1.2	295 ± 2	RR [relative to k (cyclo- hexane) = 7.43 × 10 ⁻¹²] ^a	Corchnoy and Atkinson ²⁹	
Furan			41.9 ± 2.1	300 ± 2	RR [relative to k (propene) = 2.60×10^{-11} ^a	Bierbach <i>et al</i> . ³⁰	
2-Methylfuran			61.9 ± 3.2	300 ± 2	RR [relative to k (propene) = 2.60×10^{-11} ³	Bierbach <i>et al</i> . ³⁰	
2-Ethylfuran			108 ± 22	300 ± 2	RR [relative to k (propene) = 2.60×10^{-11} ^a	Bierbach <i>et al</i> . ³⁰	
2,5-Dimethylfuran			132 ± 10	300 ± 2	RR [relative to k (trans- 2-butene) = 6.32 × 10 ⁻¹¹] ^a	Bierbach <i>et al</i> . ³⁰	
<i>tert</i> -Butyl formate [(CH ₃) ₃ COCHO]			0.737 ± 0.06	298	RR [relative to $k(n$ -butane) = 2.54 × 10 ⁻¹²] ^a	Smith <i>et al</i> . ²⁴	
<i>tert</i> -Butyl acetate [(CH ₃) ₃ COC(O)CH ₃]]		0.439 ± 0.036	298	RR [relative to $k(n$ -butane) = 2.54×10^{-12}] ^a	Smith <i>et al</i> . ²⁵	
			0.413 ± 0.052	298	RR [relative to k (propane) = 1.15 × 10^{-12} ^a	Smith <i>et al.</i> ²⁵	
			0.501 ± 0.045	298	RR [relative to k (<i>tert</i> - butyl formate) = 7.37 × 10 ⁻¹³]*	Smith <i>et al</i> . ²⁵	
Acetic acid [CH ₃ COOH]			$\begin{array}{rrrr} 0.867 \pm 0.065 \\ 0.563 \pm 0.044 \\ 0.488 \pm 0.017 \\ 0.409 \pm 0.014 \\ 0.395 \pm 0.007 \end{array}$	296.8 326.2 356.4 396.8 446.2	LP-RA	Singleton <i>et al</i> . ³¹	297-446
Acetic acid dimer [(CH ₃ COOH) ₂]			$\begin{array}{r} 0.0093 \ \pm \ 0.0266 \\ 0.114 \ \pm \ 0.075 \end{array}$	296.8 326.2	LP-RA	Singleton et al. ³¹	297–326
Acetic acid-d ₃ [CD ₃ COOH]			$\begin{array}{l} 0.810\ \pm\ 0.037\\ 0.648\ \pm\ 0.027\\ 0.483\ \pm\ 0.015\\ 0.447\ \pm\ 0.007\\ 0.413\ \pm\ 0.014\\ 0.354\ \pm\ 0.009 \end{array}$	297.8 326.9 356.7 374.2 396.8 444.6	LP-RA	Singleton <i>et al</i> . ³¹	298-445

129

Acetic acid-d ₃ dimer [(CD ₃ COOH) ₂] Acetic acid d	$molecule^{-1} s^{-1}$	а (Қ)	$10^{12} \times k (\text{cm}^3$ molecule ⁻¹ s ⁻¹)	at $T(\mathbf{K})$	Technique	Reference	range covered (K)
Aratic acid_d.			-0.0229 ± 0.369	297.8	LP-RA	Singleton et al. ³¹	
[CD ₃ COOD]			$\begin{array}{rcrcrc} 0.236 \ \pm \ 0.017 \\ 0.139 \ \pm \ 0.008 \\ 0.113 \ \pm \ 0.009 \\ 0.107 \ \pm \ 0.006 \\ 0.114 \ \pm \ 0.007 \end{array}$	297.8 326.5 357.0 397.0	LP-RA	Singleton <i>et al</i> . ³¹	298-444
Acetic acid- <i>d</i> , dimer [(CD ₃ COOD) ₂]			-0.0141 ± 0.0199	297.8	LP-RA	Singleton <i>et al</i> . ³¹	
Propionic acid [CH ₃ CH ₂ COOH] 1.07 ± 0.05	0.05	0	$\begin{array}{rrrrr} 1.02 \pm 0.55\\ 0.880 \pm 0.193\\ 1.14 \pm 0.15\\ 1.20 \pm 0.06\\ 1.09 \pm 0.04\\ 1.04 \pm 0.03\end{array}$	298.2 327.1 356.6 374.9 397.1	LP-RA	Singleton <i>et al</i> . ³¹	298-445
Propionic acid dimer [(CH ₃ CH ₂ COOH) ₂]			$\begin{array}{rrrr} 1.11 \ \pm \ 0.45 \\ 1.65 \ \pm \ 0.62 \\ 1.88 \ \pm \ 25.0 \end{array}$	298.2 327.1 356.6	LP-RA	Singleton et al. ³¹	298-357
1,2-Epoxybutane			1.91 ± 0.08	298	FP-RF	Wallington et al. ¹¹	

^cCited data do not appear consistent with graphical presentation⁸ or with prior work.^{1,32} ^dRoom temperature, not stated. ^eFrom Smith *et al.*²⁴

TABLE 41. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with oxygen-containing organics - Continued

3.6.3. Ketenes

Ketene (CH₂CO). The absolute rate constants of Brown et al.¹⁵ and Oehlers et al.¹⁶ are given in Table 41. The room temperature rate constant measured by Brown et al.¹⁵ of 3.3×10^{-11} cm³ molecule⁻¹ s⁻¹ (Table 41) is a factor of ~2.8 higher than the absolute rate constant of Oehlers et al.¹⁶ and a factor of 1.9 higher than the relative rate constant of Hatakeyama et al.⁴² Based on a unit-weighted average of the rate constants of Hatakeyama et al.⁴² and Oehlers et al.¹⁶ it is recommended that

k(ketene) = 1.5 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of a factor of 1.5.

3.6.4. Alcohols

Methanol. The absolute rate constants of Pagsberg et al.,¹⁷ Nelson et al.¹⁸ and Bott and Cohen³ and the relative rate constant of Nelson et al.¹⁸ are given in Table 41 and are plotted, together with the rate constants of Overend and Paraskevopoulos,⁴³ Ravishankara and Davis,⁴⁴ Tuazon et al.,⁴⁵ Wallington and Kurylo,⁴⁶ Hess and Tully⁴⁷ and McCaulley et al.,⁴⁸ in Fig. 37. A unitweighted least-squares analysis of the absolute rate constants of Overend and Paraskevopoulos,⁴³ Ravishankara and Davis,⁴⁴ Wallington and Kurylo,⁴⁶ Hess and Tully,⁴⁷ McCaulley et al.,⁴⁸ Nelson et al.¹⁸ (which is taken to supersede that of Pagsberg et al.¹⁷) and Bott and Cohen³ and the relative rate constant of Tuazon et al.,⁴⁵ using the expression $k = CT^2 e^{-D/T}$, leads to the recommendation of

$$k(\text{methanol}) =$$

(6.01^{+0.58}_{-0.53}) × 10⁻¹⁸ T² e^{(170 ± 34)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 240-1205 K, where the indicated errors are two least-squares standard deviations, and

k (methanol) = 9.44 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 25\%$. Over the temperature range 200–2200 K, this recommendation agrees to within 5% with the previous recommendation of Atkinson¹ of

k(methanol) = 6.39 × 10⁻¹⁸ $T^2 e^{148/T} cm^3$ molecule⁻¹ s⁻¹

over the temperature range 240–866 K, with a 298 K rate constant of 9.32×10^{-13} cm³ molecule⁻¹ s⁻¹.

At 298 K, formation of the CH₃O radical

OH + CH₃OH H_2O + CH₃O H₂O + CH₂OH H_2O + CH₂OH accounts for 15 ± 8% of the overall reaction.⁴⁸

FIG. 37. Arrhenius plot of selected rate constants for the reaction of the OH radical with methanol. (▽) Overend and Paraskevopoulos;⁴³ (▲) Ravishankara and Davis,⁴⁴ McCaulley *et al.*;⁴⁸ (◊) Tuazon *et al.*;⁴⁵ (△) Wallington and Kurylo;⁴⁶ (○) Hess and Tully;⁴⁷ (■) Bott and Cohen;³ (●) Pagsberg *et al.*;¹⁷ Nelson *et al.*¹⁸ (absolute rate constant); (—) recommendation (see text).

Ethanol. The rate constants of Nelson *et al*.¹⁸ and Bott and Cohen³ are given in Table 41. The 298 K absolute and relative rate constants of Nelson *et al*.¹⁸ are in good agreement with the previous recommendation of Atkinson¹ of 3.27×10^{-12} cm³ molecule⁻¹ s⁻¹. As discussed previously,^{1,49} at temperatures >500 K the HOCH₂CH₂ radical formed from pathway (a)

OH + CH₃CH₂OH
$$\rightarrow$$
 H₂O + CH₃CH₂OH (a)
H₂O + CH₃CHOH (b)

 $H_2O + CH_3CH_2\dot{O}$ (c)

rapidly thermally decomposes, and hence only the rate constants for pathways (b) and (c) were measured in the kinetic study of Bott and Cohen.³ Using an estimated rate constant¹ for H-atom abstraction from the $-CH_3$ group of $k_a = 4.47 \times 10^{-18} T^2 e^{-227/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, a rate constant at 1205 K of $k_a = 5.4 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1}$ s^{-1} is calculated. This calculated rate constant k_a at 1205 K is in agreement with that of $k_a \sim 5 \times 10^{-12} \text{ cm}^3$ molecule⁻¹ s⁻¹ derived from the previous recommendation of Atkinson¹ for $(k_a + k_b + k_c)$, based on the rate constants of Hess and Tully⁴⁹ for the reactions of ¹⁶OH and ¹⁸OH radicals with ethanol (and using only the ¹⁸OH radical rate constants at temperatures $> 500 \text{ K}^1$), and the measured value of $(k_{\rm b} + k_{\rm c})$ at 1205 K of Bott and Cohen.³ Accordingly, the previous recommendation of Atkinson¹ for the overall rate constant, $(k_a + k_b + k_c)$, of

k(ethanol) = 6.18 × 10⁻¹⁸ $T^2 e^{532/T} cm^3$ molecule⁻¹ s⁻¹

over the temperature range 293–599 K, with a 298 K rate constant of 3.27×10^{-12} cm³ molecule⁻¹ s⁻¹, is unchanged.

1-Propanol. The rate constants of Nelson *et al.*¹⁸ and Tully¹⁹ are given in Table 41. These rate constants are in reasonable agreement with the previous recommendation of Atkinson,¹ and a unit-weighted average of the rate constants of Overend and Paraskevopoulos,⁴³ Wallington and Kurylo,⁴⁶ Nelson *et al.*¹⁸ and Tully¹⁹ leads to the recommendation of

$$k(1\text{-propanol}) = 5.53 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty of $\pm 30\%$. This recommendation supersedes that previously recommended by Atkinson¹ of 5.34 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K, using the rate constants of Overend and Paraskevopoulos⁴³ and Wallington and Kurylo.⁴⁶

2-Propanol. The rate constants of Nelson *et al.*¹⁸ and Tully¹⁹ are given in Table 41 and are plotted in Arrhenius form, together with the rate constants of Overend and Paraskevopoulos⁴³ and Wallington and Kurylo,⁴⁶ in Fig. 38. A unit-weighted least-squares analysis of the absolute rate constants of Overend and Paraskevopoulos,⁴³ Wallington and Kurylo,⁴⁶ Nelson *et al.*¹⁸ and Tully¹⁹ and the relative rate constant of Nelson *et al.*,¹⁸ using the expression $k = CT^2 e^{-D/T}$, yields the recommendation of

$$k(2$$
-propanol) =
(7.21^{+2.67}_{-1.95}) × 10⁻¹⁸ T² e^{(631 ± 98)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 240-440 K, where the indicated errors are two least-squares standard deviations, and

$$k(2\text{-propanol}) = 5.32 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of $\pm 35\%$. This recommended expression is similar to that of Atkinson¹ of

 $k(2\text{-propanol}) = 7.32 \times 10^{-18} T^2 e^{620/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the same temperature range of 240–440 K, with a 298 K rate constant of 5.21 $\times 10^{-12}$ cm³ molecule⁻¹ s⁻¹.

1-Butanol. The room temperature rate constants of Nelson *et al*.¹⁸ and Tully¹⁹ are given in Table 41. A unit-weighted average of the absolute rate constants of Wallington and Kurylo,⁴⁶ Nelson *et al*.¹⁸ and Tully¹⁹ and the relative rate constant of Nelson *et al*.¹⁸ leads to the recommendation of

k(1-butanol) = 8.57 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 35\%$.

1-Pentanol, 1-Hexanol and 1-Heptanol. The rate constants of Nelson *et al.*¹⁸ are given in Table 41. These rate constants of Nelson *et al.*¹⁸ are in good agreement with the absolute room temperature rate constants of Walling-

ton and Kurylo⁴⁶ for 1-pentanol and Wallington *et al.*⁵⁰ for 1-hexanol and 1-heptanol. Unit-weighted least-squares averages of the rate constants of Wallington and Kurylo⁴⁶ (for 1-pentanol), Wallington *et al.*⁵⁰ (for 1-hexanol and 1-heptanol) and Nelson *et al.*¹⁸ lead to the recommendations of

 $k(1-\text{pentanol}) = 1.11 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$

 $k(1-\text{hexanol}) = 1.25 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, and

 $k(1-heptanol) = 1.37 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$

all at 298 K and with estimated overall uncertainties of $\pm 35\%$.

FIG. 38. Arrhenius plot of selected rate constants for the reaction of the OH radical with 2-propanol. (●) Overend and Paraskevopoulos;⁴³ (○) Wallington and Kurylo;⁴⁶ (△) Nelson et al.;¹⁸ (▲) Tully;¹⁹ (—) recommendation (see text).

3.6.5. Ethers

Dimethyl ether. The room temperature rate constants of Wallington *et al.*²¹ and Nelson *et al.*¹⁸ are given in Table 41. These rate constants range over a factor of 1.4, and are reasonably consistent with the previous recommendation of Atkinson¹ of

k (dimethyl ether) = 1.04 × 10⁻¹¹ e^{-372/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 295–442 K, with a 298 K rate constant of 2.98×10^{-12} cm³ molecule⁻¹ s⁻¹. This previous recommendation¹ is hence unchanged.

Diethyl ether. The absolute rate constant of Nelson et al.¹⁸ and the relative rate constants of Bennett and Kerr,²² Nelson et al.¹⁸ and Semadeni et al.²³ are given in Table 41 and those of Nelson et al.¹⁸ and Bennett and Kerr²² are plotted, together with the rate constants of Tully and Droege,⁵¹ Wallington et al.⁵² and Bennett and Kerr,⁵³ in Fig. 39. There is a significant amount of scatter between the data from the various studies, with the rate constants of Bennett and Kerr,²² obtained relative to the rate constant for the reaction of the OH radical with 2,3-dimethylbutane, being ~30% lower than the absolute rate constants of Tully and Droege⁵¹ and Wallington et al.⁵² The relative rate constants of Semadeni et al.²³ are in good agreement with (~10% lower than) those of

Tully and Droege⁵¹ and Wallington *et al.*⁵² A unitweighted least-squares analysis of the absolute rate constants of Tully and Droege,⁵¹ Wallington *et al.*⁵² and Nelson *et al.*¹⁸ and the relative rate constant of Nelson *et al.*,¹⁸ using the expression $k = CT^2 e^{-D/T}$, leads to the recommendation of

k(diethyl ether) = (8.91^{+2.11}_{-1.71}) × 10⁻¹⁸ $T^2 e^{(837 \pm 70)/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 240-442 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
 (diethyl ether) =
1.31 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 35\%$. This recommendation supersedes, but is similar to, that of Atkinson¹ of

k(diethyl ether) = 8.80 × 10⁻¹⁸ $T^2 e^{844/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the same temperature range of 240–442 K, with a 298 K rate constant of 1.33×10^{-11} cm³ molecule⁻¹ s⁻¹.

FIG. 39. Arrhenius plot of selected rate constants for the reaction of the OH radical with diethyl ether. (○) Tully and Droege;⁵¹
(△) Wallington *et al.*;⁵² (■) Bennett and Kerr;⁵³ (▲) Nelson *et al.*,¹⁸ absolute rate constant; (▼) Nelson *et al.*,¹⁸ relative rate constant; (∇) Bennett and Kerr;²² (—) recommendation (see text).

Di-n-propyl ether. The rate constants of Wallington et al.,²¹ Bennett and Kerr²² and Nelson et al.¹⁸ are given in Table 41 and are plotted, together with the rate constants of Wallington et al.⁵² and Bennett and Kerr,⁵³ in Arrhenius form in Fig. 40. The rate constants of Wallington et al.,²¹ Bennett and Kerr,²² and Nelson et al.,¹⁸ especially those of Bennett and Kerr,²² are higher than the previously reported rate constants of Wallington et al.,⁵² and Bennett and Kerr.⁵³ A unit-weighted least-squares analysis of the absolute rate constants of Wallington et al.,⁵² and Nelson et al.,⁵² and Nelson et al.,⁵³ and Bennett and Kerr.⁵³ A unit-weighted least-squares analysis of the absolute rate constants of Wallington et al.,⁵² and Nelson et al.,¹⁸ and the relative rate constants of Vallington et al.,⁵⁴ and Nelson et al.,⁵⁶ and the relative rate constants of Vallington et al.,⁵⁶ and Nelson et al.,⁵⁸ and the relative rate constants of Vallington et al.,⁵⁹ and Nelson et al.,⁵⁹ and the relative rate constants of Vallington et al.,⁵⁰ and Nelson et al.,⁵⁰ and the relative rate constants of Vallington et al.,⁵⁰ and Nelson et al.,⁵⁰ and the relative rate constants of Vallington et al.,⁵⁰ and Nelson et al.,⁵⁰ and the relative rate constants of Vallington et al.,⁵⁰ and Nelson et al.,⁵⁰ and the relative rate constants of Vallington et al.,⁵⁰ and Nelson et al.,⁵⁰ and the relative rate constants of Vallington et al.,⁵⁰ and Nelson et al.,⁵⁰ and the relative rate constants of Vallington et al.,⁵⁰ and Nelson et al.,⁵⁰ and the relative rate constants of Vallington et al.,⁵⁰ and Nelson et al.,⁵⁰ and Sentence et al

Wallington *et al.*²¹ and Nelson *et al.*,¹⁸ using the expression $k = CT^2 e^{-D/T}$, leads to the recommendation of

$$k(\text{di-}n\text{-propyl ether}) =$$

(1.31^{+0.30}_{-0.30}) × 10⁻¹⁷ T² e^{(825 ± 80)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 240-440 K, where the indicated errors are two least-squares standard deviations, and

 $k(\text{di-}n\text{-}\text{propyl ether}) = 1.85 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

at 298 K, with an estimated overall uncertainty at 298 K of $\pm 40\%$. This recommendation is slightly different from the previous recommendation of Atkinson¹ of

$$k$$
 (di-*n*-propyl ether) =
1.42 × 10⁻¹⁷ $T^2 e^{778/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the same temperature range, with a 298 K rate constant of 1.72×10^{-11} cm³ molecule⁻¹ s⁻¹.

Methyl tert-butyl ether. The rate constants of Wallington et al.,²¹ Bennett and Kerr²² and Smith et al.,²⁴ are given in Table 41 and are plotted, together with those of Wallington et al.⁵⁴ and Cox and Goldstone,⁵⁵ in Arrhenius form in Fig. 40. As for di-*n*-propyl ether, the rate constants of Bennett and Kerr²² are consistently higher than those of

Wallington *et al*.,^{21,54} Cox and Goldstone⁵⁵ and Smith *et al*.²⁴ A unit-weighted least-squares analysis of the absolute rate constants of Wallington *et al*.⁵⁴ and the relative rate constants of Wallington *et al*.²¹ and Smith *et al*.,²⁴ using the expression $k = CT^2 e^{-D/T}$, leads to the recommendation of

 $k (\text{methyl tert-butyl ether}) = (6.54^{+2.13}_{-1.61}) \times 10^{-18} T^2 e^{(483 \pm 88)/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 240-440 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
(methyl *tert*-butyl ether) =
2.94 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 40\%$. This recommendation supersedes that of Atkinson¹ of

k (methyl *tert*-butyl ether) = 6.81 × 10⁻¹⁸ $T^2 e^{460/T} cm^3 molecule^{-1} s^{-1}$

over the same temperature range of 240–440 K, with a 298 K rate constant of 2.83 $\times 10^{-12}$ cm³ molecule⁻¹ s⁻¹.

Methyl n-butyl ether, ethyl n-butyl ether, ethyl tert-butyl ether, di-n-butyl ether and di-n-pentyl ether. The rate constants of Wallington et al.,²¹ Bennett and Kerr²² (ethyl nbutyl ether and ethyl tert-butyl ether), Nelson et al.¹⁸ (ethyl *n*-butyl ether, di-*n*-butyl ether and di-*n*-pentyl ether), Smith et al.25 (ethyl tert-butyl ether) and Semadeni et al.²³ (methyl *n*-butyl ether, ethyl *n*-butyl ether, di-n-butyl ether and di-n-pentyl ether) are given in Table 41. For di-*n*-pentyl ether, Semadeni et al.²³ determined rate constants relative to those for di-n-butyl ether over the temperature range 263-373 K; only the 298 K rate constant is given in Table 41 since no temperature dependent recommendation is given for di-n-butyl ether. The absolute and relative rate constants of Wallington et al.,^{21,50,52} Nelson et al.,¹⁸ Smith et al.²⁵ and Semadeni et al.²³ are in good agreement, while the relative rate constants of Bennett and Kerr^{22,53} are generally significantly lower. The following recommendations are made from unit-weighted averages:

k (methyl *n*-butyl ether) = 1.48×10^{-11} cm³ molecule⁻¹ s⁻¹

based on the rate constants of Wallington *et al*.^{21,50} and Semadeni *et al*.,²³

 $k(\text{ethyl } n \text{-butyl ether}) = 2.13 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

based on the rate constants of Wallington *et al.*,^{21,50} Nelson *et al.*¹⁸ and Semadeni *et al.*,²³

k (ethyl *tert*-butyl ether) = 8.84 × 10⁻¹² cm³ molecule⁻¹ s⁻¹

based on the rate constants of Wallington *et al*.^{21,50} and Smith *et al*.,²⁵

k(di-*n*-butyl ether) = 2.88 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹

based on the rate constants of Wallington *et al.*,^{21,52} Nelson *et al.*,¹⁸ and Semadeni *et al.*,²³ and

k(di-*n*-pentyl ether) = 3.32×10^{-11} cm³ molecule⁻¹ s⁻¹

based on the rate constants of Wallington *et al.*,^{21,52} Nelson *et al.*,¹⁸ and Semadeni *et al.*,²³ all at 298 K and with estimated overall uncertainties of $\pm \sim 35\%$.

Furan. The room temperature rate constant of Bierbach *et al*.³⁰ is given in Table 41. This rate constant is in excellent agreement with the previously recommended¹ value of 4.02×10^{-11} cm³ molecule⁻¹ s⁻¹ at 300 K. The previous recommendation of Atkinson¹ of

$$k$$
(furan) = 1.32 × 10⁻¹¹ e^{334/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 254–424 K, with a 298 K rate constant of 4.05×10^{-11} cm³ molecule⁻¹ s⁻¹, is hence unchanged.

3.6.6. Carboxylic acids

Acetic Acid. The absolute rate constants of Singleton et al.³¹ for the reactions of the OH radical with CH₃COOH, CD₃COOH and CD₃COOD are given in Table 41. While the room temperature rate constant of Singleton et al.³¹ for CH₃COOH is in reasonable agreement with the previous measurement of Dagaut et al.,⁵⁶ the rate constants of Singleton et al.³¹ for CH₃COOH decrease with increasing temperature, in contrast to the study of Dagaut et al.⁵⁶ in which the rate constants increased with increasing temperature. A unit-weighted average of the room temperature rate constants from these two studies^{31,56} leads to the recommendation of

$$k$$
 (acetic acid) = 8 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of a factor of 1.5. No temperature dependence is recommended.

Singleton *et al.*³¹ determined that the rate constant for the reaction of the OH radical with CD₃COOH is essentially identical to that for CH₃COOH, and that the rate constant for the reaction of the OH radical with CD₃COOD is uniformly a factor of ~ 3.5 lower than those for CH₃COOH and CD₃COOH over the temperature range 297–445 K. These observations indicate that the reaction proceeds by H– (or D–) atom abstraction from the –OH (or –OD) bond. For example, for CD₃COOH

$$OH + CD_3COOH \rightarrow H_2O + CD_3CO_2$$

Propionic acid. The absolute rate constants of Singleton *et al.*³¹ are given in Table 41. In this case, the agreement of the rate constants of Singleton *et al.*³¹ with those of Dagaut *et al.*⁵⁶ and Zetzsch and Stuhl⁵⁷ is reasonable. Both of the temperature dependent studies of Dagaut et al.⁵⁶ and Singleton et al.³¹ indicate that the rate constant is essentially independent of temperature over the range 298–445 K. A unit-weighted average of all of the rate constants of Dagaut et al.⁵⁶ and Singleton et al.³¹ leads to the recommendation of

k (propionic acid) = 1.16 × 10⁻¹² cm³ molecule⁻¹ s⁻¹,

independent of temperature over the range 298–445 K, with an estimated overall uncertainty of a factor of 2.

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ²R. A. Yetter, H. Rabitz, F. L. Dryer, R. G. Maki, and R. B. Klemm, J. Chem. Phys. **91**, 4088 (1989).
- ³J. F. Bott and N. Cohen, Int. J. Chem. Kinet. 23, 1075 (1991).
- ⁴S. Dóbé, L. A. Khachatryan, and T. Bérces, Ber. Bunsenges. Phys. Chem. **93**, 847 (1989).
- ⁵C. Balestra-Garcia, G. Le Bras, and H. Mac Leod, J. Phys. Chem. **96**, 3312 (1992).
- ⁶D. Scollard, M. Corrigan, H. Sidebottom, and J. Treacy, "Kinetics and Mechanisms for the Reactions of Halogenated Organic Compounds in the Troposphere," Proceedings of the STEP-HALOCSIDE/AFEAS Workshop, University College, Dublin, Eire, May 14–16, 1991.
- ⁷H. G. Libuda, F. Zabel, E. H. Fink, and K. H. Becker, J. Phys. Chem. **94**, 5860 (1990).
- ⁸L. Nelson, I. Shanahan, H. W. Sidebottom, J. Treacy, and O. J. Nielsen, Int. J. Chem. Kinet. 22, 577 (1990).
- ⁹J. Starcke, F. Zabel, L. Elsen, W. Nelsen, I. Barnes, and K. H. Becker, Proc. 5th European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, Kluwer Academic Publ., Dordrecht, The Netherlands, 1990, pp. 172–176.
- ¹⁰J. F. Bott and N. Cohen, Int. J. Chem. Kinet. 23, 1017 (1991).
- ¹¹T. J. Wallington, P. Dagaut, and M. J. Kurylo, J. Phys. Chem. **92**, 5024 (1988).
- ¹²L. N. O'Rji and D. A. Stone, Int. J. Chem. Kinet. 24, 703 (1992).
- ¹³S. Hatakeyama, unpublished data, cited in S. Hatakeyama, K. Izumi, T. Fukuyama, H. Akimoto, and N. Washida, J. Geophys. Res. 96, 947 (1991).
- ¹⁴R. Atkinson and S. M. Aschmann, J. Atmos. Chem. 16, 337 (1993).
- ¹⁵A. C. Brown, C. E. Canosa-Mas, A. D. Parr, and R. P. Wayne, Chem. Phys. Lett. **161**, 491 (1989).
- ¹⁶C. Oehlers, F. Temps, H. Gg. Wagner, and M. Wolf, Ber. Bunsenges. Phys. Chem. **96**, 171 (1992).
- ¹⁷P. Pagsberg, J. Munk, A. Sillesen, and C. Anastasi, Chem. Phys. Lett. **146**, 375 (1988).
- ¹⁸L. Nelson, O. Rattigan, R. Neavyn, H. Sidebottom, J. Treacy, and O. J. Nielsen, Int. J. Chem. Kinet. 22, 1111 (1990).
- ¹⁹F. P. Tully, unpublished data, cited in reference 18.
- ²⁰P. Dagaut, R. Liu, T. J. Wallington, and M. J. Kurylo, J. Phys. Chem. **93**, 7838 (1989).
- ²¹T. J. Wallington, J. M. Andino, L. M. Skewes, W. O. Siegl, and S. M. Japar, Int. J. Chem. Kinet. **21**, 993 (1989).
- ²²P. J. Bennett and J. A. Kerr, J. Atmos. Chem. 10, 29 (1990).
- ²³M. Semadeni, D. W. Stocker, and J. A. Kerr, J. Atmos. Chem. 16, 79 (1993).
- ²⁴D. F. Smith, T. E. Kleindienst, E. E. Hudgens, C. D. McIver, and J. J. Bufalini, Int. J. Chem. Kinet. 23, 907 (1991).
- ²⁵D. F. Smith, T. E. Kleindienst, E. E. Hudgens, C. D. McIver, and J. J. Bufalini, Int. J. Chem. Kinet. **24**, 199 (1992).
- ²⁶P. Dagaut, R. Liu, T. J. Wallington, and M. J. Kurylo, Int. J. Chem. Kinet. **21**, 1173 (1989).
- ²⁷A. C. Brown, C. E. Canosa-Mas, A. D. Parr, J. M. T. Pierce, and R. P. Wayne, Nature **341**, 635 (1989).
- ²⁸A. C. Brown, C. E. Canosa-Mas, A. D. Parr, and R. P. Wayne, Atmos. Environ. **24A**, 2499 (1990).
- ²⁹S. B. Corchnoy and R. Atkinson, Environ. Sci. Technol. 24, 1497

(1990).

- ³⁰A. Bierbach, I. Barnes, and K. H. Becker, Atmos. Environ. 26A, 813 (1992).
- ³¹D. L. Singleton, G. Paraskevopoulos, and R. S. Irwin, J. Am. Chem. Soc. 111, 5248 (1989).
- ³²L. Nelson, J. J. Treacy, and H. W. Sidebottom, Proc. 3rd European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Riedel Pub. Co., Dordrecht, The Netherlands, 1984, pp. 258– 263.
- ³³R. Atkinson and J. N. Pitts, Jr., J. Chem. Phys. 68, 3581 (1978).
- ³⁴L. J. Stief, D. F. Nava, W. A. Payne, and J. V. Michael, J. Chem. Phys. 73, 2254 (1980).
- ³⁵F. Temps and H. Gg. Wagner, Ber. Bunsenges. Phys. Chem. **88**, 415 (1984).
- ³⁶H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, J. Phys. Chem. **88**, 5342 (1984).
- ³⁷S. Zabarnick, J. W. Fleming, and M. C. Lin, Int. J. Chem. Kinet. **20**, 117 (1988).
- ³⁸J. A. Kerr and D. W. Sheppard, Environ. Sci. Technol. 15, 960 (1981).
- ³⁹D. H. Semmes, A. R. Ravishankara, C. A. Gump-Perkins, and P. H. Wine, Int. J. Chem. Kinet. 17, 303 (1985).
- ⁴⁰T. J. Wallington and M. J. Kurylo, J. Phys. Chem. 91, 5050 (1987).
- ⁴¹J. A. Kerr and D. W. Stocker, J. Atmos. Chem. 4, 253 (1986).
- ⁴²S. Hatakeyama, S. Honda, N. Washida, and H. Akimoto, Bull. Chem. Soc. Jpn. 58, 2157 (1985).
- ⁴³R. Overend and G. Paraskevopoulos, J. Phys. Chem. 82, 1329 (1978).
- ⁴⁴A. R. Ravishankara and D. D. Davis, J. Phys. Chem. 82, 2852 (1978).
- ⁴⁵E. C. Tuazon, W. P. L. Carter, R. Atkinson, and J. N. Pitts, Jr., Int. J. Chem. Kinet. **15**, 619 (1983).
- ⁴⁶T. J. Wallington and M. J. Kurylo, Int. J. Chem. Kinet. **19**, 1015 (1987).
- ⁴⁷W. P. Hess and F. P. Tully, J. Phys. Chem. 93, 1944 (1989).
- ⁴⁸J. A. McCaulley, N. Kelly, M. F. Golde, and F. Kaufman, J. Phys. Chem. **93**, 1014 (1989).
- ⁴⁹W. P. Hess and F. P. Tully, Chem. Phys. Lett. 152, 183 (1988).
- ⁵⁰T. J. Wallington, P. Dagaut, R. Liu, and M. J. Kurylo, Int. J. Chem. Kinet. **20**, 541 (1988).
- ⁵¹F. P. Tully and A. T. Droege, Int. J. Chem. Kinet. 19, 251 (1987).
- ⁵²T. J. Wallington, R. Liu, P. Dagaut, and M. J. Kurylo, Int. J. Chem.
- Kinet. 20, 41 (1988).
- ⁵³P. J. Bennett and J. A. Kerr, J. Atmos. Chem. 8, 87 (1989).
- ⁵⁴T. J. Wallington, P. Dagaut, R. Liu, and M. J. Kurylo, Environ. Sci. Technol. **22**, 842 (1988).
- ⁵⁵R. A. Cox and A. Goldstone, Proc. 2nd European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Riedel Publishing Co., Dordrecht, The Netherlands, 1982, pp. 112–119.
- ⁵⁶P. Dagaut, T. J. Wallington, R. Liu, and M. J. Kurylo, Int. J. Chem. Kinet. **20**, 331 (1988).
- ⁵⁷C. Zetzsch and F. Stuhl, Proc. 2nd European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Riedel Publishing Co., Dordrecht, The Netherlands, 1982, pp. 129–137.

3.7. Sulfur-Containing Organic Compounds

The rate constants reported since the review and evaluation of Atkinson¹ are given in Table 42. In addition to these kinetic data, Tyndall and Ravishankara⁷ have shown that the yield of CH₃S radicals from the OH radical reaction with CH₃SH is 1.1 ± 0.2 at 298 K. These data, combined with the lack of any significant deuterium atom isotope effect on the rate constants for the reactions of the OH radical with CH₃SD⁸ and CD₃SH⁹ show that the OH radical reaction with CH₃SH proceeds by

$$OH + CH_3SH \rightarrow [CH_3S(OH)H] \rightarrow H_2O + CH_3S$$

Dimethyl sulfide. The absolute rate constants of Nielsen et al.² and Abbatt et al.³ determined in the ab-

sence of O_2 are given in Table 42 and are plotted, together with the rate constants of Wine *et al.*,¹⁰ Hynes *et al.*,¹¹ Hsu *et al.*¹² and Barnes *et al.*¹³ (all of which were also obtained in the absence of O_2), in Arrhenius form in Fig. 41. There is an appreciable amount of scatter in these data, and the absolute rate constant of Nielsen *et al.*² appears to be significantly low. A unit-weighted least-squares analysis of the absolute rate constants of Wine *et al.*,¹⁰ Hynes *et al.*,¹¹ Hsu *et al.*¹² and Abbatt *et al.*³ leads to the recommended Arrhenius expression of

$$k(CH_3SCH_3) =$$

(1.13^{+0.37}_{-0.28}) × 10⁻¹¹ e^{-(254 ± 87)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 248–397 K, where the indicated errors are two least-squares standard deviations, and

$$k(CH_3SCH_3) = 4.82 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of $\pm 35\%$. This recommendation supersedes the previous recommendation of Atkinson¹ of

$$k(CH_3SCH_3) = 1.03 \times 10^{-11} e^{-243/T} cm^3 molecule^{-1} s^{-1}$$

over the same temperature range of 248–397 K, with a 298 K rate constant of 4.56×10^{-12} cm³ molecule⁻¹ s⁻¹.

FIG. 41. Arrhenius plot of selected rate constants for the reaction of the OH radical with dimethyl sulfide, obtained in the absence of O₂. (●) Wine et al.;¹⁰ (△) Hynes et al.;¹¹ (▲) Hsu et al.;¹² (□) Barnes et al.;¹³ (■) Nielsen et al.;² (○) Abbatt et al.;³ (─) recommendation (see text).

As discussed previously,¹ the rate constant determined in the absence of O_2 is that for the H-atom abstraction pathway

$$OH + CH_3SCH_3 \rightarrow H_2O + CH_3SCH_2$$

In the presence of O_2 , the reaction of the OH-CH₃SCH₃ adduct with O_2 occurs in competition with the back-decomposition of the adduct to reactants.^{1,11}

$$OH + CH_3SCH_3 \rightleftharpoons [CH_3S(OH)CH_3] \xrightarrow{O_2} products$$

Kinetic data for the addition pathway have been presented previously.¹

Diethyl sulfide. The rate constant of Nielsen et al.⁴ is given in Table 42. This room temperature rate constant of Nielsen et al.⁴ is in reasonable agreement with the rate constants of Martin et al.,¹⁴ Barnes et al.¹⁵ and Hynes et al.¹¹ The previous recommendation of Atkinson¹ of

$$k(CH_3CH_2SCH_2CH_3) = 1.5 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$$

independent of temperature over the range 255-370 K, is hence unchanged.

Di-n-propyl sulfide. The room temperature rate constant of Nielsen *et al.*⁴ is given in Table 42. This rate constant⁴ is in good agreement with that of Barnes *et al.*¹⁵ of $(2.00 \pm 0.22) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 300 K. A unit-weighted average of these rate constants of Barnes *et al.*¹⁵ and Nielsen *et al.*⁴ leads to the recommendation of

$$k$$
 (di-*n*-propyl sulfide) =
2.1 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 40\%$.

Dimethyl disulfide. The absolute rate constants of Abbatt *et al.*³ are given in Table 42 and are plotted, together with the rate constants of Cox and Sheppard,¹⁶ Wine *et al.*¹⁰ and Barnes *et al.*,^{15,17} in Arrhenius form in Fig. 42.

FIG. 42. Arrhenius plot of rate constants for the reaction of the OH radical with dimethyl disulfide. (□) Cox and Sheppard;¹⁶ (○) Wine *et al.*;¹⁰ (●) Barnes *et al.*;^{15,17} (△) Abbatt et al.;³ (−) recommendation (see text).

The agreement between these absolute^{3,10} and relative¹⁵⁻¹⁷ rate studies is reasonable, and a unit-weighted least-squares analysis of the absolute rate constants of Wine *et al.*¹⁰ and Abbatt *et al.*³ leads to the recommended Arrhenius expression of

 $k(CH_3SSCH_3) =$ (7.00^{+4.63}/_{2.79}) × 10⁻¹¹ e^{(350 ± 160)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 249-367 K, where the indicated errors are two least-squares standard deviations, and

Organic	$10^{12} \times \mathcal{A} (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	B (K)	$10^{12} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
Dimethyl sulfide			3.5 ± 0.2	295 ± 2	PR-RA	Nielsen et al. ²	
	13.5 ± 6.2	285 ± 135	$\begin{array}{r} 4.98 \pm 0.23 \\ 5.73 \pm 0.25 \\ 5.69 \pm 0.25 \\ 5.81 \pm 0.30 \\ 6.22 \pm 0.33 \end{array}$	297 ± 2 317 331 348 368	DF-LIF	Abbatt <i>et al</i> . ³	297–368
Diethyl sulfide			11.6 ± 2.5	295 ± 3	PR-RA	Nielsen et al. ⁴	
Di-n-propyl sulfide			21.5 ± 3	295 ± 3	PR-RA	Nielsen et al. ⁴	
Di-n-butyl sulfide			37.4 ± 5	295 ± 3	PR-RA	Nielsen et al. ⁴	
Dimethyl disulfide	62 ± 49	- 410 ± 210	$\begin{array}{r} 239 \pm 15\\ 233 \pm 16\\ 219 \pm 16\\ 207 \pm 18\\ 169 \pm 22\\ \end{array}$	297 313 329 346 366	DF-LIF	Abbatt <i>et al.</i> ³	297–366
Dimethyl sulfate			< 0.5	r9	RR [relative to k (ethene) = 8.52 × 10^{-12} ^h	Japar <i>et al</i> . ⁵	
Diethyl sulfate			2.18 ± 0.31	c,	RR [relative to k (ethene) = 8.52 × 10^{-12} ^b	Japar <i>et al</i> .6	
			1.43 ± 0.32	G	RR [relative to Japar <i>et al</i> . ⁶ $k(acetylene) = 8.15 \times 10^{-13}$	Japar <i>et al</i> .6 13]5	

*Room temperature; 298 K assumed. bFrom previous¹ recommendations.
$k(CH_3SSCH_3) = 2.27 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of $\pm 25\%$. This recommendation supersedes that of Atkinson¹ of

$$k(CH_3SSCH_3) = 5.83 \times 10^{-11} e^{383/T} cm^3 molecule^{-1} s^{-1}$$

over the same temperature range of 249–367 K, with a 298 K rate constant of 2.11×10^{-10} cm³ molecule⁻¹ s⁻¹.

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ²O. J. Nielsen, H. W. Sidebottom, L. Nelson, J. J. Treacy, and D. J. O'Farrell, Int. J. Chem. Kinet. **21**, 1101 (1989).
- ³J. P. D. Abbatt, F. F. Fenter, and J. G. Anderson, J. Phys. Chem. **96**, 1780 (1992).
- ⁴O. J. Nielsen, H. W. Sidebottom, L. Nelson, O. Rattigan, J. J. Treacy, and D. J. O'Farrell, Int. J. Chem. Kinet. **22**, 603 (1990).
- ⁵S. M. Japar, T. J. Wallington, J. M. Andino, and J. C. Ball, Environ. Sci. Technol. **24**, 313 (1990).
- ⁶S. M. Japar, T. J. Wallington, J. M. Andino, and J. C. Ball, Environ. Sci. Technol. 24, 894 (1990).
- ⁷G. S. Tyndall and A. R. Ravishankara, J. Phys. Chem. 93, 4707 (1989).
- ⁸P. H. Wine, R. J. Thompson, and D. H. Semmes, Int. J. Chem. Kinet. **16**, 1623 (1984).
- ⁹A. J. Hynes and P. H. Wine, J. Phys. Chem. 91, 3672 (1987).
- ¹⁰P. H. Wine, N. M. Kreutter, C. A. Gump, and A. R. Ravishankara, J. Phys. Chem. **85**, 2660 (1981).
- ¹¹A. J. Hynes, P. H. Wine, and D. H. Semmes, J. Phys. Chem. **90**, 4148 (1986).
- ¹²Y.-C. Hsu, D.-S. Chen, and Y.-P. Lee, Int. J. Chem. Kinet. **19**, 1073 (1987).
- ¹³I. Barnes, V. Bastian, and K. H. Becker, Int. J. Chem. Kinet. **20**, 415 (1988).
- ¹⁴D. Martin, J. L. Jourdain, and G. Le Bras, Int. J. Chem. Kinet. 17, 1247 (1985).
- ¹⁵I. Barnes, V. Bastian, and K. H. Becker, 9th International Symposium on Gas Kinetics, University of Bordeaux, Bordeaux, France, July 20– 25, 1986.
- ¹⁶R. A. Cox and D. Sheppard, Nature 284, 330 (1980).
- ¹⁷I. Barnes, V. Bastian, and K. H. Becker, Proc. 4th European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Riedel Pub. Co., Dordrecht, The Netherlands, 1987, pp. 327–337.

3.8. Nitrogen-Containing Organic Compounds

The rate constants reported since the review and evaluation of Atkinson¹ are given in Tables 43 (OH radical reactions) and 44 (OD radical reactions). For several nitrogen-containing compounds, the rate constants given in Table 43 are the first reported.

3.8.1 Nitrates

Methyl nitrate. The absolute and relative rate constants of Nielsen *et al.*² are given in Table 43. These rate constants were obtained at one atmosphere total pressure of air or argon. The room temperature absolute and relative rate constants of Nielsen *et al.*² are in agreement with the relative rate constant of Kerr and Stocker,¹² also obtained at one atmosphere total pressure, but are a factor of ~ 10 higher than the rate constant obtained at a total pressure of 2–3 Torr by Gaffney *et al.*¹³ These observations indicate that at room temperature the rate constant for the reaction of the OH radical with methyl nitrate is pressure dependent, and that the reaction proceeds by an H-atom abstraction pathway (a) and an addition pathway (b),

$$\longrightarrow$$
 H₂O + CH₂ONO₂ (a)

OH + CH₃ONO₂
$$\longrightarrow$$
 [CH₃ON(OH)O₂] \xrightarrow{M} products (b)

where the products of the addition pathway may include $CH_3\dot{O} + HONO_2$.² This situation is similar to the OH radical reactions with the alkyl nitrites and nitroalkanes (see below). Comparison of the low pressure¹³ and atmospheric pressure^{2,12} rate constants at room temperature further indicates that at atmospheric pressure and room temperature the OH radical reaction with methyl nitrate proceeds mainly (~90%) by the addition pathway (b).² This conclusion is consistent with the observation of a marked negative temperature dependence of the rate constant at atmospheric pressure (Table 43 and Ref. 2).

At the present time the total pressure at which the high-pressure limiting rate constant is attained is not known. A unit-weighted average of the atmospheric pressure absolute rate constant of Nielsen *et al.*² and the atmospheric pressure relative rate constants of Kerr and Stocker¹² and Nielsen *et al.*² leads to the recommendation of

k(methyl nitrate) = 3.5 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹

at 298 K and 760 Torr total pressure of air, with an estimated overall uncertainty of a factor of 1.5. In the absence of kinetic and mechanistic data for this reaction as a function of temperature and pressure, no recommendations are made concerning the temperature or pressure dependence of the rate constant.

Ethyl nitrate. The absolute and relative rate constants of Nielsen *et al.*² are given in Table 43. At room temperature, these rate constants, obtained at one atmosphere total pressure of argon or air, are in agreement with the atmospheric pressure relative rate constant of Kerr and Stocker.¹² Accordingly, a unit-weighted average of the absolute rate constant of Nielsen *et al.*² and the relative rate constants of Kerr and Stocker¹² and Nielsen *et al.*² leads to the recommendation of

k (ethyl nitrate) = 4.9 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹

at 298 K and 760 Torr total pressure of air, with an estimated overall uncertainty of a factor of 1.5. Analogous to the OH radical reaction with methyl nitrate, the room temperature rate constant for the reaction of the OH radical with ethyl nitrate is expected to be pressure dependent, and the negative temperature dependence determined by Nielsen *et al.*² at atmospheric pressure of argon diluent is consistent with the reaction proceeding mainly by OH radical addition at 298 K and 760 Torr total pressure of air, as also concluded by Nielsen *et al.*²

1-Propyl nitrate. The absolute and relative rate constants of Nielsen *et al.*² are given in Table 43. The room temperature rate constants of Nielsen *et al.*,² obtained at one atmosphere total pressure of argon or air, are in agreement with the atmospheric pressure relative rate measurements of Kerr and Stocker¹² and Atkinson and Aschmann.¹⁴ A unit-weighted average of the absolute rate constant of Nielsen *et al.*² and the relative rate constants of Kerr and Stocker,¹² Atkinson and Aschmann¹⁴ and Nielsen *et al.*² leads to the recommendation of

$$k(1$$
-propyl nitrate) = 7.3 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹

at 298 K and 760 Torr total pressure of air, with an estimated overall uncertainty of a factor of 1.5. Consistent with the observed lack of a temperature dependence for the rate constant at one atmosphere total pressure of argon diluent,² the reaction of the OH radical with 1-propyl nitrate is expected to proceed by both H-atom abstraction and initial OH radical addition, with the two pathways possibly being of approximately comparable importance at 298 K and one atmosphere total pressure of air.²

2-Propyl nitrate. The room temperature relative rate constant of Becker and Wirtz³ is given in Table 43. This rate constant³ is in agreement, within the experimental errors, with the relative rate constant of Atkinson and Aschmann¹⁴ (which supersedes the previous measurement of Atkinson *et al.*¹⁵). A unit-weighted average of the rate constants of Atkinson and Aschmann¹⁴ and Becker and Wirtz³ leads to the recommendation of

k(2-propyl nitrate) = 4.9×10^{-13} cm³ molecule⁻¹ s⁻¹

at 298 K and 760 Torr total pressure of air, with an estimated overall uncertainty of a factor of 2. The OH radical reaction with 2-propyl nitrate at room temperature and atmospheric pressure is again expected to proceed by Hatom abstraction and initial OH radical addition.

1-Butyl nitrate. The room temperature absolute and relative rate constants of Nielsen *et al.*² are given in Table 43. These rate constants, obtained at a total pressure of one atmosphere of argon or air, are in good agreement with the previous relative rate constant of Atkinson and Aschmann¹⁴ (which supersedes the earlier measurement of Atkinson *et al.*¹⁵). Accordingly, a unit-weighted average of the absolute rate constant of Nielsen *et al.*² and the relative rate constants of Atkinson and Aschmann¹⁴ and Nielsen *et al.*² leads to the recommendation of

$$k$$
(1-butyl nitrate) = 1.71 × 10⁻¹² cm³ molecule⁻¹ s⁻¹

at 298 K and 760 Torr total pressure of air, with an estimated overall uncertainty of $\pm 35\%$. Based on the correlation of Nielsen *et al.*² of the Cl atom and OH radical

reaction rate constants with a series of alkyl nitrates, it is expected that the OH radical reaction with 1-butyl nitrate proceeds mainly by H-atom abstraction at 298 K and atmospheric pressure.

2-Methyl-3-butyl nitrate. The relative rate constant of Becker and Wirtz³ obtained at room temperature and atmospheric pressure is given in Table 43. This rate constant³ is in good agreement with that of Atkinson *et al.*,¹⁶ and a unit-weighted average of these rate constants^{3,16} leads to the recommendation of

k (2-methyl-3-butyl nitrate) = 1.82 × 10⁻¹² cm³ molecule⁻¹ s⁻¹

at 298 K and atmospheric pressure of air, with an estimated overall uncertainty of $\pm 35\%$. It is expected that this OH radical reaction proceeds mainly by H-atom abstraction under atmospheric conditions.

Other alkyl nitrates. Only single studies have been conducted for the alkyl nitrates other than those discussed above and 2-butyl nitrate (for which the study of Atkinson and Aschmann¹⁴ supersedes that of Atkinson *et al.*¹⁵). While no firm recommendations are made, the rate constants of Atkinson *et al.*,^{15,16} (other than for 2-butyl nitrate for which the rate constant of Atkinson and Aschmann¹⁴ should be used), Becker and Wirtz³ and Nielsen *et al.*² should be used.

3.8.2. Alkyl nitrites

Methyl nitrite. The absolute and relative rate constants of Nielsen et al.⁵ are given in Table 43. The room temperature rate constants of Nielsen et al.,⁵ obtained at one atmosphere total pressure of argon or air, are consistent with the previous relative rate constants of Tuazon et al.,¹⁷ but are lower by a factor of ~4 than the rate constants of Campbell and Goodman,¹⁸ Audley et al.¹⁹ and Baulch et al.²⁰ Consistent with the previous discussion by Atkinson,¹ a unit-weighted average of the absolute and relative rate constants of Tuazon et al.¹⁷ and Nielsen et al.⁵ leads to the recommendation of

k(methyl nitrite) = 2.2 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹

at 298 K and 760 Torr total pressure of air, with an estimated overall uncertainty of a factor of 3. It is likely that at room temperature and atmospheric pressure the OH radical reaction with methyl nitrite proceeds by both H-atom abstraction and initial OH radical addition.⁵

Other alkyl nitrites. Rate constants for the C₂ through C₅ n-alkyl nitrites have been determined by Nielsen et al.⁵ (Table 43) at room temperature and atmospheric pressure. These rate constants for ethyl nitrite, 1-propyl nitrite and 1-butyl nitrite⁵ are significantly lower (by factors of -2) than the previous rate constants of Audley et al.¹⁹ and Baulch et al.²⁰ Consistent with the above recommendation for methyl nitrite, the rate constants of Nielsen et al.⁵ are preferred.

Organic	$10^{12} \times \mathcal{A} (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	B (K)	$10^{12} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at <i>T</i> (K)	Technique	Reference	Temperature range covered (K)
Methyl nitrate		- 1057	$\begin{array}{c} 0.32 \ \pm \ 0.05 \\ 0.22 \ \pm \ 0.06 \\ 0.15 \ \pm \ 0.03 \\ 0.14 \ \pm \ 0.03 \end{array}$	298 ± 2 323 358 393	PR-RA	Nielsen et al . ²	298-393
			0.339 ± 0.070	298 ± 2	RR [relative to $k(2\text{-methyl-} 2.33 \times 10^{-12}]^{a}$	Nielsen <i>et al</i> . ²	
Ethyl nitrate		- 705	$\begin{array}{r} 0.53 \pm 0.06 \\ 0.37 \pm 0.05 \\ 0.33 \pm 0.05 \end{array}$	298 ± 2 338 373	PR-RA	Nielsen <i>et al</i> . ²	298–373
			0.458 ± 0.030	298 ± 2	RR [relative to $k(2\text{-methyl-} 2.33 \times 10^{-12}]^{a}$	Nielsen et al. ²	
1-Propyl nitrate		0~	$\begin{array}{r} 0.82 \pm 0.08 \\ 0.72 \pm 0.15 \\ 0.76 \pm 0.05 \end{array}$	298 ± 2 338 368	PR-RA	Nielsen <i>et al</i> . ²	298–368
			0.767 ± 0.080	298 ± 2	RR [relative to $k(2\text{-methyl-} 2.33 \times 10^{-12}]^{a}$	Nielsen <i>et al</i> . ²	
2-Propyl nitrate			0.575 ± 0.225	295 ± 2	RR [relative to $k(n$ -butane) = 2.50×10^{-12}	Becker and Wirtz ³	
1-Butyl nitrate			1.74 ± 0.19	298 ± 2	PR-RA	Nielsen <i>et al.</i> ²	
			1.61 ± 0.08	298 ± 2	RR [relative to $k(2\text{-methyl-} propane) = 2.33 \times 10^{-12}$	Nielsen <i>et al</i> . ²	
2-Methyl-1-propyl nitrate			1.63 ± 0.20	295 ± 2	RR [relative to $k(n$ -butane) = 2.50 × 10 ⁻¹²]*	Becker and Wirtz ³	
1-Pentyl nitrate			3.32 ± 0.30	298 ± 2	PR-RA	Nielsen et al. ²	
			2.95 ± 0.09	298 ± 2	RR [relative to $k(2\text{-methyl-} propane) = 2.33 \times 10^{-12}$	Nielsen <i>et al</i> . ²	
2-Methyl-3-butyl nitrate			1.93 ± 0.15	295 ± 2	RR [relative to $k(n$ -butane) = 2.50×10^{-12}	Becker and Wirtz ³	
2-Methyl-1-butyl nitrate			2.48 ± 0.15	295 ± 2	RR [relative to $k(n$ -butane) = 2.50 × 10 ⁻¹²] ^a	Becker and Wirtz ³	

ROGER ATKINSON

140

TABLE 43. Rate constants k and temperature-dependent parameters at, or close to, the high-pressure limit for the gas-phase reactions of the OH radical with nitrogen-containing organics

I ABLE 43. Kate constant	IABLE 43. Kate constants k and temperature-dependent parameters at, or close to, the high-pressure limit for the gas-phase reactions of the OH radical with nitrogen-containing organics –	it parameters at, or close	to, the high-pressure h	mit for the gas-p	ase reactions of the UH radical	with nitrogen-containing organi	ics - Continued
Organic	$10^{12} \times A (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	B (K)	$10^{12} \times k (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	at T (K)	Technique	Reference	Temperature range covered (K)
3-Methyl-1-butyl nitrate			2.53 ± 0.35	295 ± 2	RR [relative to $k(n$ -butane) = 2.50 × 10 ⁻¹²] ^a	Becker and Wirtz ³	
CH ₃ C(0)CH ₂ ONO ₂			<0.44	298 ± 2	RR [relative to $k(n$ -butane) = 2.54 × 10 ⁻¹²] ^a	Zhu et al. ⁴	
CH ₃ CH ₂ C(0)CH ₂ ONO ₂)2		0.907 ± 0.153	298 ± 2	RR [relative to $k(n$ -butane) = 2.54 × 10 ⁻¹²] ^a	Zhu et al. ⁴	
CH ₃ CH(ONO ₂)C(0)CH ₃	H,		1.27 ± 0.15	298 ± 2	RR [relative to $k(n$ -butane) = 2.54 × 10^{-12} ^a	Zhu et al. ⁴	
CH3CH(ONO2)CH2ONO2	VO ₂		< 0.32	298 ± 2	RR [relative to k (propane) = 1.15 × 10 ⁻¹²] ^a	Zhu et al . ⁴	
CH3CH2CH(ONO2)CH2ONO2	1 ₂ ONO ₂		1.70 ± 0.33	298 ± 2	RR [relative to k (propane) = 1.15 × 10 ⁻¹²] ^a	Zhu et al. ⁴	
CH3CH(ONO2)CH(ONO2)CH3	VO ₂)CH ₃		1.07 ± 0.26	298 ± 2	RR [relative to k (propane) = 1.15 × 10 ⁻¹²] ^a	Zhu et al. ⁴	
O ₂ NOCH ₂ CH = CHCH ₂ ONO ₂	1 ₂ 0NO ₂		15.1 ± 1.6	298 ± 2	RR [relative to k (ethene) = 8.52 × 10 ⁻¹²] ^a	Zhu et al. ⁴	
0_2 NOCH ₂ CH(ONO ₂)CH = CH ₂	CH = CH ₂		10.1 ± 0.6	298 ± 2	RR [relative to k (ethene) = 8.52 × 10 ⁻¹² Ja	Zhu et al. ⁴	
Methyl nitrite	100 ^{±130}	1764 ± 300	$\begin{array}{rrrr} 0.26 \ \pm \ 0.05 \\ 0.42 \ \pm \ 0.03 \\ 0.74 \ \pm \ 0.10 \\ 1.05 \ \pm \ 0.10 \end{array}$	298 ± 2 323 353 393	PR-RA	Nielsen <i>et al</i> . ⁵	298–393
			0.30 ± 0.10	298 ± 2	RR [relative to k (2-methylpropane) = 2.33 × 10 ⁻¹² ⁴	Nielsen <i>et al .</i> ⁵	
Ethyl nitrite			0.70 ± 0.11	298 ± 2	PR-RA	Nielsen et al. ⁵	
			0.70 ± 0.15	298 ± 2	RR [relative to k (2-methyl- propane) = 2.33 × 10 ⁻¹²] ^a	Nielsen <i>et al</i> . ⁵	
1-Propyl nitrite			1.20 ± 0.05	298 ± 2	PR-RA	Nielsen et al. ⁵	
			1.10 ± 0.15	298 ± 2	RR [relative to k (2-methyl- propane) = 2.33 × 10 ⁻¹²] ^a	Nielsen <i>et al.</i> ⁵	

Organic	$10^{12} \times A (\text{cm}^3$ molecule ⁻¹ s ⁻¹)	B (K)	$10^{12} \times k (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
1-Butyl nitrite			2.72 ± 0.60	298 ± 2	PR-RA	Nielsen et al. ⁵	
			2.26 ± 0.08	298 ± 2	RR [relative to k (2-methyl- propane) = 2.33 × 10 ⁻¹²] ^a	Nielsen <i>et al.</i> ⁵	
1-Pentyl nitrite			4.25 ± 0.80	298 ± 2	PR-RA	Nielsen <i>et al</i> . ⁵	
			3.72 ± 0.50	298 ± 2	RR [relative to k (2-methyl- propane) = 2.33×10^{-12} ^a	Nielsen <i>et al .</i> ⁵	
Nitromethane			0.16 ± 0.05	295 ± 3	PR-RA	Nielsen <i>et al</i> . ⁶	
			0.107 ± 0.010	295 ± 3	RR [relative to k(2,2-dimethy propane) = 8.26 × 10 ⁻¹³] ^a	Nielsen <i>et al.</i> ⁶	
			0.0158 ± 0.0009 0.0321 ± 0.0057	298 400	FP-RF	Liu et al. ⁷	298-400
Nitromethane-d ₃			0.10 ± 0.02	295 ± 3	PR-RA	Nielsen <i>et al</i> . ⁶	
			0.087 ± 0.010	295 ± 3	RR [relative to k(2,2-dimethylpropane) = 8.26 × 10 ⁻¹³] ^a	Nielsen <i>et al.</i> ⁶	
			0.0090 ± 0.0004 0.0119 ± 0.0003	298 400	FP-RF	Liv et al. ⁷	298-400
Nitroethane			0.15 ± 0.05	295 ± 3	PR-RA	Nielsen <i>et al</i> . ⁶	
			0.145 ± 0.010	295 ± 3	RR [relative to k(2,2-dimethy propane) = 8.26 × 10 ⁻¹³] ^a	Nielsen <i>et al.</i> °	
	1.9 ± 0.5	960 ± 90	$\begin{array}{rrrr} 0.0438 \pm 0.003 \\ 0.0722 \pm 0.0082 \\ 0.100 \pm 0.004 \\ 0.112 \pm 0.009 \\ 0.175 \pm 0.007 \end{array}$	253 298 330 400	FP-RF	Liu et al. ⁷	253-400
1-Nitropropane			0.34 ± 0.08	295 ± 3	PR-RA	Nielsen et al. ⁶	
			0.533 ± 0.078	295 ± 3	RR [relative to k(2,2-dimethylpropane) = 8.26 × 10 ⁻¹³]	Nielsen <i>et al.</i> °	

ROGER ATKINSON

TABLE 43. Rate constants k and temperature-dependent parameters at, or close to, the high-pressure limit for the gas-phase reactions of the OH radical with nitrogen-containing organics - Continued

142

	$10^{12} \times A \text{ (cm}^3 B 10^{12} \times k \text{ (cm}^3 B 10^{12} \times k \text{ (cm}^3 \text{ range covered} \text{ range covered}$	8 (3)	$10^{12} \times k (\mathrm{cm}^3)$		Ē		Temperature range covered
Organic		(V)	molecule 's ')	al / (K)	lechnique	keterence	(K)
	3.7 ± 0.2	690 ± 17	0.207 ± 0.016 0.364 ± 0.018 0.448 ± 0.032 0.514 ± 0.031 0.514 ± 0.031 0.663 ± 0.055	240 298 330 350	FP-RF	Liu et al. ⁷	240-400
2-Nitropropane	2.1 ± 0.7	630 ± 106	$\begin{array}{l} 0.145 \pm 0.014 \\ 0.259 \pm 0.011 \\ 0.314 \pm 0.020 \\ 0.322 \pm 0.015 \\ 0.439 \pm 0.018 \end{array}$	240 298 330 400	FP-RF	Liu et al. ⁷	240-400
1-Nitrobutane			1.55 ± 0.09	295 ± 3	PR-RA	Nielsen <i>et al</i> . ⁶	
			1.68 ± 0.11	295 ± 3	RR [relative to $k(2,2-\text{dimethylpropane} = 8.26 \times 10^{-13} \text{ Js}$	Nielsen <i>et al.</i> ⁶	
	6.1 ± 0.9	660 ± 49	0.404 ± 0.032 0.658 ± 0.042 0.790 ± 0.074 0.930 ± 0.054 1.20 ± 0.05	240 330 350	FP-RF	Liu et al. ⁷	240-400
1-Nitropentane			3.30 ± 0.05	295 ± 3	PR-RA	Nielsen <i>et al</i> . ⁶	
			3.17 ± 0.15	295 ± 3	RR [relative to k(2,2-dimethylpropane = 8.26 × 10 ⁻¹³ ^µ	Nielsen <i>et al.</i> ⁶	
	10.9 ± 1.7	710 ± 47	$\begin{array}{l} 0.574 \ \pm \ 0.033 \\ 1.00 \ \pm \ 0.05 \\ 1.33 \ \pm \ 0.07 \\ 1.48 \ \pm \ 0.09 \\ 1.81 \ \pm \ 0.13 \end{array}$	240 298 330 350	FP-RF	Liu et al. ⁷	240-440
Nitroethene [CH ₂ = CHNO ₂]			1.2 ± 0.2	298 ± 2	PR-RA	Nielsen <i>et al.</i> ⁸	
3-Nitropropene [CH ₂ =CHCH ₂ NO ₂]			12.2 ± 2.1	298 ± 2	PR-RA	Nielsen <i>et al</i> . ⁸	

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

143

Nielsen et al.⁸

RR [relative to k(cis-2-butene) = 5.64 × 10⁻¹¹]^a

298 ± 2

 43.7 ± 4.3

1-Nitrocyclohexene

ومحمولها والأفراد والمائية المراجع والمراجع ومراحبهم							
	$10^{12} \times A (\mathrm{cm}^3)$	B	$10^{12} \times k (\mathrm{cm}^3)$				Temperature range covered
Organic	molecule ⁻¹ s ⁻¹)	(K)	molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	(K)
CH ₃ CN			+1	256.5	LP-LIF	Hynes and Wine ⁹	256-388
			+1	256.5			
			0.0199 ± 0.0013	273			
			H +	C.412 2.472			
			I +I	278			
			+1	298			
			+	318			
			+1 -	318			
			0.0305 ± 0.001	330 338 5			
			1 +1	345.5			
			+	352.5			
			+I	366.5			
			0.0571 ± 0.0052	370.5 377			
	$1.1_{-0.5}^{+0.5}$	1130 ± 90	+	388			
CD ₃ CN			$\begin{array}{r} 0.00941 \pm 0.00041^{\rm b} \\ 0.0126 \pm 0.0013^{\rm b} \\ 0.0216 \pm 0.0011^{\rm b} \\ 0.0750 \pm 0.0073^{\rm b} \end{array}$	256 275 298 335	LP-LIF	Hynes and Wine [®]	256-379
	0.94 - 0.50	1180 ± 250	0.0364 ± 0.0051^{b}	358.5 358.5			
2-Vinylpyridine			56.7 ± 3.7	298 ± 2	RR [relative to $k(2-\text{methyl}-1,3-\text{butadiene})$	Tuazon <i>et al.</i> ¹⁰	
					≡ 1.01 × 10." =		
(CH ₃) ₂ NC(O)SCH ₃			13.3 ± 0.6	298 ± 2	RR [relative to k (cyclohexane) = 7.49 × 10 ⁻¹²] ⁴	Kwok et al. ¹¹	
(CH ₃ CH ₂ CH ₂) ₂ NC(0)SCH ₂ CH ₃	H ₂ CH ₃		31.0 ± 2.9	298 ± 2	RR [relative to k (propene) = 2.63 × 10 ⁻¹¹ ³⁴	Kwok et al. ¹¹	
			34.0 ± 3.8	298 ± 2	RR [relative to k(2-methyl-1,3-butadiene) = 1.01×10^{-10}	Kwok et al. ¹¹	
CH ₃ CH ₂ (c-C ₆ H ₁₁)NC(0)SCH ₂ CH ₃	SCH ₂ CH ₃		35.4 ± 5.7	298 ± 2	RR [relative to $k(2\text{-methyl})$ 1,3-butadiene) = 1.01 × 10 ⁻¹⁰ ³	Kwok <i>et al</i> .''	
^a Erom present and previous ¹ recommendations	terommendations						

^aFrom present and previous¹ recommendations. ^bAt total pressures of $N_2 \ge 550$ Torr.

TABLE 43. Rate constants k and temperature-dependent parameters at, or close to, the high-pressure limit for the gas-phase reactions of the OH radical with nitrogen-containing organics - Continued

3.8.3. Nitroalkanes

The absolute and relative rate constants determined by Nielsen *et al.*⁶ at one atmosphere of argon or air and the absolute rate constants of Liu *et al.*,⁷ obtained at total pressures of argon diluent of 25–50 Torr, are given in Table 43 (the absolute rate constants of Nielsen *et al.*⁶ were included in the review of Atkinson,¹ but are included here for completeness). The data from this study of Nielsen *et al.*⁶ supersede those reported earlier.²¹

The rate constants of Liu *et al*.⁷ for CH₃NO₂ are in reasonable agreement with the absolute rate constants of Zabarnick *et al*.,²² and those of Liu *et al*.⁷ for the nitroalkanes studied are generally significantly lower than the atmospheric pressure rate constants of Nielsen *et al*.⁶ (Table 43). While these observations suggest an effect of total pressure on the rate constant, neither Zabarnick *et al*.²² or Liu *et al*.⁷ observed an effect of the pressure of the argon diluent on the measured rate constants over total pressure ranges of 100–300 Torr²² and 25–50 Torr.⁷

Only for the reaction of the OH radical with 1-nitrobutane have studies been conducted at atmospheric pressure by more than one research group, and the rate constants of Atkinson and Aschmann¹⁴ and Nielsen *et al.*⁶ are in reasonable agreement. While definitive experimental evidence still remains to be obtained, the experimental data suggest that the rate constants for the reactions of the OH radical with the $< C_4$ nitroalkanes studied to date are pressure dependent at around room temperature, and that these reactions proceed by both H-atom abstraction and initial OH radical addition

$$OH + CH_3NO_2 \longrightarrow [CH_3N(OH)O_2] \xrightarrow{M} products$$

Based on unit-weighted averages of the absolute and relative rate constants of Nielsen *et al.*⁶ for nitromethane, nitromethane- d_3 , nitroethane, 1-nitropropane and 1-nitropentane, and of the rate constants of Atkinson and Aschmann¹⁴ and Nielsen *et al.*⁶ for 1-nitrobutane, the following recommendations are made for 298 K and 760 Torr total pressure of air:

k(nitromethane) = 1.3 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹,

$$k$$
(nitromethane- d_3) = 9 × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹,

$$k$$
(nitroethane) = 1.5 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹,

$$k(1-\text{nitropropane}) = 4.4 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$$

all with estimated overall uncertainties of a factor of 2,

$$k(1-nitrobutane) = 1.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$$

and

$$k(1-\text{nitropentane}) = 3.2 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$$

both with estimated overall uncertainties of $\pm 35\%$.

3.8.4. Nitriles

Acetonitrile (CH₃CN). The absolute rate constants of Hynes and Wine⁹ for the reactions of the OH radical with CH₃CN and CD₃CN are given in Table 43, and the rate constants for the reactions of the OD radical with CH₃CN and CD₃CN⁹ are given in Table 44.

At 298 K, rate constants for the reaction of the OH radical with CH₃CN were obtained over the total pressure range 46-700 Torr of N₂ and at 580-630 Torr total pressure of He. The measured rate constants were independent of total pressure within the experimental uncertainties, although a tendency for the rate constant to decrease for total pressures of N_2 of <100-200 Torr was observed.9 In contrast, the rate constant for the reaction of the OH radical with CD₃CN increased with increasing pressure at 298 K, from $\sim 1.3 \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹ at ~50 Torr total pressure of N₂ to 2.16 \times 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹ at 680 Torr total pressure of N₂.⁹ The 298 K rate constants for the reactions of the OD radical with CH₃CN and CD₃CN were observed to be independent of total pressure of N₂ diluent over the pressure range 50-700 Torr.⁹ In the presence of O₂, OH radical regeneration was observed⁹ from both of the OH radical reactions with CH₃CN and CD₃CN, and similarly OD radical regeneration was observed from the reactions of the OD radical with both CH₃CN and CD₃CN.⁹

These data show that these reactions are complex,⁹ with bimolecular and termolecular channels. The essential lack of deuterium isotope effects for the reactions of the OH radical with CH₃CN and CD₃CN also indicates that an addition reaction is important. It is possible that the reactions proceed by, for example,

TABLE 44. Rate constants k at, or close to, the high-pressure limit for the gas-phase reactions of the OD radical with nitrogen-containing organics

Organic	$\frac{10^{12} \times k(\text{cm}^3)}{\text{molecule}^{-1} \text{ s}^{-1}}$	at T (K)	Technique	Reference
CH ₃ CN	0.0318 ± 0.0040	298	LP-LIF	Hynes and Wine ⁹
CD ₃ CN	0.0225 ± 0.0028	298	LP-LIF	Hynes and Wine ⁹

The rate constants of Hynes and Wine⁹ for the reaction of the OH radical with CH₃CN are plotted, together with those of Fritz *et al*.,²³ Zetzsch,²⁴ Kurylo and Knable²⁵ and Poulet *et al*.,²⁶ in Arrhenius form in Fig. 43 (the 100–300 Torr total pressure rate constant of Zetzsch²⁴ is plotted, since Zetzsch²⁴ also observed the rate constant to be pressure dependent, especially at total pressures (of argon) below 100 Torr). The agreement between these studies is reasonable.

FIG. 43. Arrhenius plot of selected rate constants for the reaction of the OH radical with CH₃CN. (△) Fritz et al.,²³ (●) Zetzsch²⁴ (for total pressures 100–300 Torr of argon); (○) Kurylo and Knable;²⁵ (▲) Poulet et al.,²⁶ (□) Hynes and Wine;⁹ (−) recommendation (see text).

Because of the much more extensive study of Hynes and Wine,⁹ the data from that study are preferred, and a unit-weighted least-squares analysis of the rate constants of Hynes and Wine⁹ leads to the recommendation of

$$k(CH_3CN) =$$

(1.08^{+0.39}_{-0.29}) × 10⁻¹² e^{-(1107 ± 95)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 256-388 K, where the indicated errors are two least-squares standard deviations, and

$$k(CH_3CN) = 2.63 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of $\pm 40\%$. This recommended expression should not be used outside of the stated temperature range (256–388 K) or at total pressures ≤ 100 Torr.

3.8.5. Miscellaneous

2-Vinylpyridine. The rate constant of Tuazon et al.¹⁰ is given in Table 43. The magnitude of the rate constant, when compared to that for pyridine,¹ and the product data of Tuazon et al.¹⁰ show that the reaction proceeds by initial OH radical addition to the $-CH = CH_2$ substituent group as shown below [Reaction Scheme (16)] with subsequent reactions of these initially formed radicals leading to the formation of 2-pyridinecarboxaldehyde with a yield of 0.78 \pm 0.14.¹⁰

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ²O. J. Nielsen, H. W. Sidebottom, M. Donlon, and J. Treacy, Chem. Phys. Lett. **178**, 163 (1991).
- ³K. H. Becker and K. Wirtz, J. Atmos. Chem. 9, 419 (1989).
- ⁴T. Zhu, I. Barnes, and K. H. Becker, J. Atmos. Chem. 13, 301 (1991).
- ⁵O. J. Nielsen, H. W. Sidebottom, M. Donlon, and J. Treacy, Int. J. Chem. Kinet. 23, 1095 (1991).
- ⁶O. J. Nielsen, H. W. Sidebottom, D. J. O'Farrell, M. Donlon, and J. Treacy, Chem. Phys. Lett. **156**, 312 (1989).
- ⁷R. Liu, R. E. Huie, M. J. Kurylo, and O. J. Nielsen, Chem. Phys. Lett. **167**, 519 (1990).
- ⁸O. J. Nielsen, O. Jørgensen, M. Donlon, H. W. Sidebottom, D. J. O'Farrell, and J. Treacy, Chem. Phys. Lett. **168**, 319 (1990).
- ⁹A. J. Hynes and P. H. Wine, J. Phys. Chem. 95, 1232 (1991).
- ¹⁰E. C. Tuazon, J. Arey, R. Atkinson, and S. M. Aschmann, Environ. Sci. Technol. 27, 1832 (1993).
- ¹¹E. S. C. Kwok, R. Atkinson, and J. Arey, Environ. Sci. Technol. 26, 1798 (1992).
- ¹²J. A. Kerr and D. W. Stocker, J. Atmos. Chem. 4, 253 (1986).
- ¹³J. S. Gaffney, R. Fajer, G. I. Senum, and J. H. Lee, Int. J. Chem. Kinet. 18, 399 (1986).
- ¹⁴R. Atkinson and S. M. Aschmann, Int. J. Chem. Kinet. 21, 1123 (1989).

Reaction Scheme (16)

- ¹⁵R. Atkinson, S. M. Aschmann, W. P. L. Carter, and A. M. Winer, Int. J. Chem. Kinet. 14, 919 (1982).
- ¹⁶R. Atkinson, S. M. Aschmann, W. P. L. Carter, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 16, 1085 (1984).
- ¹⁷E. C. Tuazon, W. P. L. Carter, R. Atkinson, and J. N. Pitts, Jr., Int. J. Chem. Kinet. **15**, 619 (1983).
- ¹⁸I. M. Campbell and K. Goodman, Chem. Phys. Lett. 36, 382 (1975).
- ¹⁹G. J. Audley, D. L. Baulch, I. M. Campbell, D. J. Waters, and G. Watling, J. Chem. Soc. Faraday Trans. 1, 78, 611 (1982).
- ²⁰D. L. Baulch, I. M. Campbell, and S. M. Saunders, Int. J. Chem. Kinet. 17, 355 (1985).
- ²¹O. J. Nielsen, H. W. Sidebottom, D. J. O'Farrell, M. Donlon, and J. Treacy, Chem. Phys. Lett. **146**, 197 (1988).
- ²²S. Zabarnick, J. W. Fleming, and M. C. Lin, Chem. Phys. **120**, 319 (1988).
- ²³B. Fritz, K. Lorenz, W. Steinert, and R. Zellner, Proc. 2nd European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Riedel Pub. Co., Dordrecht, The Netherlands, 1982, pp. 192–202.
- ²⁴C. Zetzsch, presented at Bunsen-Kolloquium, Frankfurt am Main, Germany, March 1983; data cited in Ref. 1.
- ²⁵M. J. Kurylo and G. L. Knable, J. Phys. Chem. 88, 3305 (1984).
- ²⁶G. Poulet, G. Laverdet, J. L. Jourdain, and G. Le Bras, J. Phys. Chem. **88**, 6259 (1984).

3.9 Silicon-Containing Organic Compounds

The rate constants for the room temperature reactions of the OH radical with tetramethylsilane, a series of siloxanes and $(CH_3)_3SiOSi(CH_3)_2OH$ determined by Atkinson¹ and Atkinson *et al.*² from relative rate studies are given in Table 45. The magnitude of these rate constants^{1,2} indicates that these reactions proceed by H-atom abstraction:

$$OH + \rightarrow SiCH_3 \rightarrow H_2O + \rightarrow SiCH_2$$
.

.

.

References

- ¹R. Atkinson, Environ. Sci. Technol. 25, 863 (1991).
- ²R. Atkinson, S. M. Aschmann, and J. Arey, unpublished data (1993).
- ³R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).

3.10. Selenium-Containing Organic Compounds

The room temperature rate constant determined for dimethyl selenide by Atkinson *et al.*¹ from a relative rate study is given in Table 46. The magnitude of this rate constant suggests that the reaction proceeds by initial addition of the OH radical to the Se atom,

$OH + CH_3SeCH_3 \rightleftharpoons [CH_3Se(OH)CH_3] \rightarrow products$

where the products may include $H_2O + CH_3SeCH_2$.

References

 ¹R. Atkinson, S. M. Aschmann, D. Hasegawa, E. T. Thompson-Eagle, and W. T. Frankenberger, Jr., Environ. Sci. Technol. 24, 1326 (1990).
 ²R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).

3.11. Aromatic Compounds

The rate constants reported since the review and evaluation of Atkinson¹ are given in Table 47. The study of Atkinson *et al.*⁷ concerning the kinetics of the reactions of the OH radical with 1,4-benzodioxan, 2,3-dihydrobenzofuran and 2,3-benzofuran at 298 \pm 2 K, the data being given in the review of Atkinson,¹ has now been published.⁷ In addition to the rate constants given in Table 47, Goumri *et al.*⁸ have investigated the reaction of the OH radical with benzene at low total pressures (0.5–9 Torr) at 297 \pm 3 K and 353 K.

			• -	-
Organic	$\frac{10^{12} \times k \text{ (cm}^3)}{\text{molecule}^{-1} \text{ s}^{-1}}$	at <i>T</i> (K)	Technique	Reference
Tetramethylsilane [(CH ₃) ₄ Si]	1.00 ± 0.09	297 ± 2	RR [relative to k (cyclohexane) = 7.47×10^{-12}] ^a	Atkinson ¹
Hexamethyldisiloxane [(CH3)3SiOSi(CH3)3]	1.38 ± 0.09	297 ± 2	RR [relative to k (cyclo- hexane) = 7.47×10^{-12}] ^a	Atkinson ¹
Hexamethylcyclotrisiloxane [(–(CH3)2SiO-)3]	0.52 ± 0.11	297 ± 2	RR [relative to k (cyclo- hexane) = 7.47 × 10 ⁻¹²] ^a	Atkinson ¹
Octamethylcyclotetrasiloxane [(–CH ₃) ₂ SiO-) ₄]	1.01 ± 0.20	297 ± 2	RR [relative to k (cyclo- hexane) = 7.47 × 10 ⁻¹²] ^a	Atkinson ¹
Decamethylcyclopentasiloxane [(– (CH ₃) ₂ SiO-) ₅]	1.55 ± 0.30	297 ± 2	RR [relative to k (cyclo- hexane) = 7.47 × 10 ⁻¹²] ^a	Atkinson ¹
(CH ₃) ₃ SiOSi(CH ₃) ₂ OH	1.89 ± 0.36	297 ± 2	RR [relative to k (cyclohexane) = 7.47×10^{-12}] ^a	Atkinson et al. ²

TABLE 45. Rate constants k for the gas-phase reactions of the OH radical with silicon-containing organic compounds

*From present and previous³ recommendations.

Benzene. The absolute rate constants of Knispel et al.² are given in Table 47. These rate constants, obtained at 100 Torr total pressure of argon, are in generally good agreement with the previous literature data¹ and with the recommended 298 K rate constant at ~100 Torr total pressure of Atkinson¹ of 1.23×10^{-12} cm³ molecule⁻¹ s⁻¹. These rate constants of Knispel et al.² are essentially independent of temperature over the temperature range 298–354 K, in contrast to the recommended Arrhenius expression of Atkinson¹ for the temperature range 234–354 K which has a small positive temperature dependence, of B = 207 K. The previous recommendations¹ are unchanged.

Goumri et al.⁸ used a discharge flow technique with resonance fluorescence detection of the OH radical to study the reaction of the OH radical with benzene at 297 \pm 3 K and 353 K over the total pressure range of helium diluent of 0.5–9 Torr. Under these conditions, the rate constants are in the fall-off region between second- and third-order kinetics, and fits of the experimental data to the Troe fall-off expression led to limiting low-pressure and high-pressure rate constants k_0 and k_{∞} , respectively, of k_o (cm⁶ molecule⁻² s⁻¹ units), (1.7 ± 0.5) × 10⁻²⁹ at 297 ± 3 K and (1 ± 0.2) × 10⁻²⁹ at 353 K; and of k_{∞} (cm³ molecule⁻¹ s⁻¹ units), $(1.0 \pm 0.2) \times 10^{-12}$ at 297 ± 3 K and $(1.0 \pm 0.1) \times 10^{-12}$ at 353 K. The high-pressure rate constants are in good agreement with the literature data (Table 47 and Ref. 1) and the low-pressure rate constant k_0 for M = He at 297 K is consistent with the literature data^{9,10} for M = Ar of k_0 (M = Ar) = 3 × 10⁻²⁹ cm⁶ molecule $^{-2}$ s^{-1.10} The rate constant for the reaction of the OH radical with benzene- d_6 at 353 K and 1 Torr total pressure of helium was observed to be within 10% of that for benzene- h_6 .

Toluene. The rate constants of Knispel *et al.*,² obtained at 100 Torr total pressure of argon, are given in Table 47. These rate constants, which are for the overall H-atom abstraction and OH radical addition reactions, are in reasonable agreement with the previous recommendation of Atkinson¹ of

$$k_{\infty}$$
(toluene) = 1.81 × 10⁻¹² e^{355/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 213–324 K, with a 298 K rate constant of 5.96×10^{-12} cm³ molecule⁻¹ s⁻¹. The previous recommendation¹ is hence unchanged.

Phenol. The rate constants of Knispel *et al*.² are given in Table 47. These rate constants for the overall H-atom abstraction and OH radical addition reactions are in

agreement within the experimental errors with the recommendation of Atkinson¹ of

$$k$$
(phenol) = 6.75 × 10⁻¹² e^{405/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 245–296 K, with a 298 K rate constant of 2.63×10^{-11} cm³ molecule⁻¹ s⁻¹. The previous recommendation¹ is hence unchanged.

Decomposition rates of the hydroxycyclohexadienyl-type radicals. Knispel et al.² derived the thermal decomposition rate constants at 100 Torr total pressure of argon for three OH-aromatic adduct radicals. The decomposition rate constants (s^{-1}) for the OH-benzene, OH-toluene and OH-phenol adducts at the various temperatures studied were: benzene, 3.3 ± 0.3 at 298 K, 13.8 ± 0.6 at $315 \text{ K}, 61 \pm 8 \text{ at } 333 \text{ K}, \text{ and } 301 \pm 31 \text{ at } 354 \text{ K}; \text{ toluene},$ 4.8 ± 1.8 at 299 K, 14.4 ± 1.5 at 311 K, 38.8 ± 3.3 at 323 K, and 118 \pm 30 at 340 K; and phenol, 0.7 \pm 1 at $300 \text{ K}, 2.3 \pm 1 \text{ at } 308 \text{ K}, 9.4 \pm 1 \text{ at } 323 \text{ K}, 36.0 \pm 3 \text{ at}$ $339 \text{ K}, 123 \pm 15 \text{ at } 354 \text{ K}, \text{ and } 480 \pm 70 \text{ at } 374 \text{ K}.$ These thermal decomposition rates for the hydroxycyclohexadienvl radical (the OH-benzene adduct) are in good agreement with the recommendation of Atkinson¹ of $k_{\rm d}$ (hydroxycyclohexadienyl) = 9.4 × 10¹² e^{-8540/T} s⁻¹, and the Arrhenius expression of Knispel *et al.*² of k_d (hydroxycyclohexadienyl) = $9.0 \times 10^{12} e^{-8570/T} s^{-1}$ is virtually identical to that of Atkinson.¹

The decomposition rates of Knispel *et al.*² for the OHtoluene adduct are within 30% of those calculated from the recommendation of Atkinson¹ for the hydroxycyclohexadienyl radical, as expected. The Arrhenius expression of Knispel *et al.*² is k_d (OH-toluene) = 1.49×10^{12} $e^{-7880/T} s^{-1}$. For the OH-phenol adduct, Knispel *et al.*² obtained k_d (OH-phenol) = $1.33 \times 10^{14} e^{-9770/T} s^{-1}$.

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ²R. Knispel, R. Koch, M. Siese, and C. Zetzsch, Ber. Bunsenges. Phys. Chem. 94, 1375 (1990).
- ³S. B. Corchnoy and R. Atkinson, Environ. Sci. Technol. 24, 1497 (1990).
- ⁴D. L. Baulch, I. M. Campbell, S. M. Saunders, and P. K. K. Louie, J. Chem. Soc. Faraday Trans. 2, **85**, 1819 (1989).
- ⁵R. R. Arnts, R. L. Seila, and J. J. Bufalini, J. Air. Pollut. Control Assoc. **39**, 453 (1989).
- ⁶R. Atkinson, J. Arey, and S. M. Aschmann, Int. J. Chem. Kinet. **24**, 467 (1992).
- ⁷R. Atkinson, J. Arey, E. C. Tuazon, and S. M. Aschmann, Int. J. Chem. Kinet. 24, 345 (1992)

TABLE 46. Rate constants k for the gas-phase reactions of the OH radical with selenium-containing organics

Organic	$10^{12} \times k \text{ (cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\text{)}$	at T (K)	Technique	Reference
Dimethyl selenide [CH ₃ SeCH ₃]	67.8 ± 0.5	296 ± 2	RR [relative to k (2-methyl- 1,3-butadiene) = 1.01×10^{-10}] ^a	Atkinson et al. ¹

^aFrom present and previous² recommendations.

limit
ssure l
sh-pre
the hig
ò, th
¥
close
5
at,
spunodi
com
aromatic e
with
H radical
НО
$\mathbf{\circ}$
of the
reactions
ase
Ę
gas
the
for
s k
constants
47. Rate
7. R
TABLE

Aromatic	$10^{12} \times k (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
Benzene	$\begin{array}{c} 1.11 \pm 0.12 \\ 1.04 \pm 0.05 \\ 1.06 \pm 0.13 \\ 0.90 \pm 0.24 \end{array}$	298 315 333 354	FP-RF	Knispel et al. ²	298-354
Toluene	7.0 ± 2.3 6.05 ± 0.61 5.50 ± 0.36 4.42 ± 0.99	299 311 323 340	FP-RF	Knispel et al. ²	299–340
1-Methyl-4-iso- propyl benzene (p-cymene)	15.1 ± 1.5	295 ± 2	RR [relative to k (cyclo- hexane) = 7.43 × 10 ⁻¹²] ^a	Corchnoy and Atkinson ³	
Phenol	29 ± 3.5 26 ± 3.5 22.4 ± 2.5 18.6 ± 2.5 17.6 ± 2.4 17.1 ± 2.4	300 308 323 339 354 374	FP-RF	Knispel <i>et al.</i> ²	300–374
Indan	9.2 ± 1.4	295	DF-RF	Baulch et al. ⁴	
Indene	≥51	295	DF-RF	Baulch et al. ⁴	
Styrene	≥43	295	DF-RF	Baulch <i>et al</i> . ⁴	
<i>p</i> -Dichlorobenzene	0.384 ± 0.028	297 ± 2	RR [relative to k (ethane) = 2.54 × 10 ⁻¹³] ^a	Arnts et al. ⁵	
Nitrobenzene	<0.6	297 ± 2	RR [relative to k (ethane) = 2.54 × 10^{-13} ^µ	Arnts et al. ⁵	
Azulene	273 ± 10	298 ± 2	RR [relative to k (2,3- dimethyl-2-butene) = 1.10 × 10 ⁻¹⁰] ^a	Atkinson et al. ⁶	
^a From present and previous ¹ recommendations.	ious ¹ recommendations.				

⁸A. Goumri, J. F. Pauwels, and P. Devolder, Can. J. Chem. **69**, 1057, (1991).

⁹K. Lorenz and R. Zellner, Ber. Bunsenges. Phys. Chem. 87, 629 (1983).
 ¹⁰F. Witte, E. Urbanik, and C. Zetzsch, J. Phys. Chem. 90, 3251 (1986).
 ¹¹A. Wahner and C. Zetzsch, J. Phys. Chem. 87, 4945 (1983).

3.12. Organometallic Compounds

The rate constants reported since the review and evaluation of Atkinson¹ are given in Table 48. The absolute and relative rate constants determined by Nielsen *et al.*² are judged to supersede the previous absolute measurements of Nielsen *et al.*³ at 296 K, of $(6.3 \pm 1.4) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ for (CH₃)₄Pb and $(1.16 \pm 0.17) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ for (C₂H₅)₄Pb. In fact, the most recent data of Nielsen *et al.*² are more consistent with the relative rate measurements of Harrison and Laxen⁴ at 295 ± 3 K, of 9.0 $\times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ for (CH₃)₄Pb. Based on the absolute and relative rate constants of Nielsen *et al.*,² recommendations of

 $k((CH_3)_4Pb) = 4.6 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $k((C_2H_5)_4Pb) = 6.3 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.$

both at 298 K and with estimated overall uncertainties of a factor of 2, are made.

The reaction mechanisms and products formed are not presently known.^{1,2}

References

 ¹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
 ²O. J. Nielsen, D. J. O'Farrell, J. J. Treacy, and H. W. Sidebottom, Environ. Sci. Technol. 25, 1098 (1991).

- ³O. J. Nielsen, T. Nielsen, and P. Pagsberg, "Direct Spectrokinetic Investigation of the Reactivity of OH with Tetraalkyllead Compounds in Gas Phase. Estimates of Lifetimes of Tetraalkyllead Compounds in Ambient Air," Report Risø-R-463; Risø National Laboratory, Roskilde, Denmark, May 1982.
- ⁴R. M. Harrison and D. P. H. Laxen, Environ. Sci. Technol. **12**, 1384 (1978).

3.13. Organic Radicals

Rate constants for the reaction of the CH₃ radical with the OH radical have been obtained at room temperature by Anastasi *et al.*¹ and Oser *et al.*² and by Bott and Cohen³ at 1212 K and one atmosphere total pressure (Table 49). Anastasi *et al.*¹ used a pulsed radiolysis technique at 750 Torr total pressure of argon and 294 K and derived a rate constant for the reaction

$$OH + CH_3 \xrightarrow{M} CH_3OH$$

of $(9.4 \pm 1.3) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ from computer modeling the data obtained.

Oser *et al.*² used a discharge flow system with mass spectrometric detection of reactants over the total pressure range 0.22–4.7 Torr at 300 K. The rate constant for the combination reaction of CH₃ and OH radicals increased with increasing total pressure from 8.0×10^{-12} cm³ molecule⁻¹ s⁻¹ at 0.225 Torr to 6.0×10^{-11} cm³ molecule⁻¹ s⁻¹ at 4.65 Torr total pressure of helium. The rate constants obtained were consistent with a limiting high-pressure rate constant of ~(9–10) × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 300 K,² effectively attained at total pressures ≥ 100 Torr.² The room temperature rate constants of Sworski *et al.*,⁴ Anastasi *et al.*¹ and Oser *et al.*² are all reasonably consistent with a recommended highpressure rate constant of

TABLE 48. Rate constants k for the gas-phase reactions of the OH radical with organometallic compounds

Organometallic	$\frac{10^{12} \times k}{(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})}$	at T (K)	Technique	Reference
(CH ₃) ₄ Pb	5.9 ± 1.2	298 ± 2	PR-RA	Nielsen et al. ²
	3.98 ± 0.29	298 ± 2	RR [relative to $k (n \text{-hexane})$ = 5.61 × 10 ⁻¹²] ^a	Neilsen et al. ²
	3.82 ± 0.38	298 ± 2	RR [relative to k (cyclohexane) = 7.49 × 10 ⁻¹²] ^a	Nielsen et al. ²
$(C_2H_5)_4Pb$	68 ± 16	$298~\pm~2$	PR-RA	Nielsen et al. ²
	54.9 ± 14.3	298 ± 2	RR [relative to $k(n \text{-nonane})$ = 1.02 × 10 ⁻¹¹] ^a	Nielsen et al. ²
	66.3 ± 1.1	298 ± 2	RR [relative to k (propene) = 2.63 × 10 ⁻¹¹] ^a	Nielsen et al. ²

*From the present and previous¹ recommendations.

$$k_{\infty}(CH_3) = 1.0 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}$$

which is applicable to a total pressure of air ≥ 100 Torr and has an estimated overall uncertainty of a factor of 2.

Bott and Cohen³ derived a rate constant of $(1.8 \pm 0.5) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 1212 K and ~800 Torr total pressure of argon, and concluded that the major reaction pathway under the conditions employed was the combination channel (a),

$$OH + \dot{C}H_3 \longrightarrow CH_3OH^* \longrightarrow \dot{C}H_2OH + H \qquad (b)$$

$$H_2O + CH_2 \qquad (c)$$

with channels (b) and (c) possibly being of minor importance.

References

- ¹C. Anastasi, S. Beverton, T. Ellermann, and P. Pagsberg, J. Chem. Soc. Faraday Trans. **87**, 2325 (1991).
- ²H. Oser, N. D. Stothard, R. Humpfer, and H. H. Grotheer, J. Phys. Chem. **96**, 5359 (1992).
- ³J. F. Bott and N. Cohen, Int. J. Chem. Kinet. 23, 1017 (1991).
- ⁴T. J. Sworski, C. J. Hochanadel and P. J. Ogren, J. Phys. Chem. **84**, 129 (1980).

4. Kinetics and Mechanisms of the Gas-Phase Reactions of the NO₃ Radical with Organic Compounds

Recent kinetic and mechanistic data for the gas-phase reactions of the NO₃ radical with organic compounds are presented and discussed in the following sections. Temperature-dependent rate constants are generally given in the recommendations using the Arrhenius expression $k = A e^{-B/T}$.

4.1. Alkanes

The rate constants reported since the previous review of Atkinson¹ are given in Table 50 (the data of Bagley *et al.*³ were reported in an Addendum in the Atkinson¹ review, but were not used in the recommendations). The upper limits to the rate constants reported by Boyd *et al.*² for ethane, propane and 2-methylbutane were derived by assuming that the stoichiometry factors were ≥ 2 under the stopped-flow reaction conditions employed. For methane, no enhanced decay rate of the NO₃ radical was observed,² and the upper limit reported was derived from the observed lack of an increased NO₃ radical decay rate in the presence of methane.

Ethane. Absolute rate constants have been determined by Bagley et al.³ over the temperature range 453–553 K, and an upper limit has been derived by Boyd *et al.*² at room temperature (Table 50). The extrapolated 298 K rate constant from the data of Bagley et al.³ is 2.0×10^{-18} cm^3 molecule⁻¹ s⁻¹ (subject to an uncertainty of a factor of ≥ 2), which is consistent with the upper limits to the rate constant of 4×10^{-18} cm³ molecule⁻¹ s⁻¹ measured by Wallington et al.⁴ (which may however be erroneously low due to removal of the ethane by reaction with F_2 in the experimental system used) and 2.9 \times 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ by Boyd *et al*.² This extrapolated rate constant of Bagley et al.³ of 2.0×10^{-18} cm³ molecule⁻¹ s⁻¹ at 298 K is also in reasonable agreement with the rate constant calculated using a group rate constant for Hatom abstraction from a -CH₃ group of $k_{\text{prim}} = 7.0 \times$ 10^{-19} cm³ molecule⁻¹ s⁻¹ at 298 K¹ [leading to k (ethane) = 1.4×10^{-18} cm³ molecule⁻¹ s⁻¹ at 298 K]. However, Boyd et al.² also derived from modeling their data a lower limit to the rate constant of 9×10^{-18} cm³ molecule⁻¹ s⁻¹ at 302 K, significantly higher than that obtained from extrapolation of the elevated temperature data of Bagley et al.³ or the estimated¹ rate constant.

Because of the small, and elevated, temperature range for which apparently reliable absolute rate constants are available,³ no recommendation is made for this reaction. The previously derived 298 K -CH₃ group rate constant¹ of $k_{prim} = 7.0 \times 10^{-19}$ cm³ molecule⁻¹ s⁻¹ is unchanged.

n-Butane. The rate constants measured by Bagley et al.³ over the temperature range 298-523 K are given in Table 50. The 298 K rate constant of Bagley et al.³ of (4.5 \pm 0.6) \times 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ is in agreement within the error limits with the relative rate constant of Atkinson et al.⁵ of (6.6 \pm 1.7) \times 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ but is a factor of ~2 higher than the upper limit reported by Wallington et al.⁴ At temperatures > 423 K the Arrhenius plot exhibits upward curvature, especially above

TABLE 49. Rate constants k for the gas-phase reactions of the OH radical with organic radicals at ~ 1 atmosphere total pressure

Organic Radical	$10^{12} \times k$ (cm ³ molecule ⁻¹ s ⁻¹)	at <i>T</i> (K)	Technique	Reference
CH ₃	94 ± 13^{a}	294	PR-Modeling	Anastasi et al. ¹
	$18 \pm 5^{\mathrm{b}}$	1212	SH-RA	Bott and Cohen ³

*At 750 Torr total pressure of argon diluent.

^bAt ~800 Torr total pressure of argon.

Alkane	$10^{12} \times A (cm^3)$ molecule ⁻¹ s ⁻¹)	B (K)	k (cm ³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
Methane			≤8 × 10 ⁻¹⁹	302	SF-A	Boyd et al. ²	
Ethane	5.7 ± 4.0	4426 ± 337	$\begin{array}{l} (3.0 \pm 0.5) \times 10^{-16} \\ (4.7 \pm 0.8) \times 10^{-16} \\ (1.4 \pm 0.3) \times 10^{-15} \\ (1.6 \pm 0.3) \times 10^{-15} \end{array}$	453 473 523 553	DF-A	Bagley <i>et al</i> . ³	453-553
			$\leq 2.9 \times 10^{-17}$	302	SF-A	Boyd et al. ²	
Propane			$\leq 6.5 \times 10^{-17}$	298	SF-A	Boyd et al. ²	
<i>n</i> -Butane			$\begin{array}{l} (4.5 \pm 0.6) \times 10^{-17} \\ (1.44 \pm 0.12) \times 10^{-16} \\ (4.6 \pm 1.2) \times 10^{-16} \\ (1.12 \pm 0.12) \times 10^{-16} \\ (1.12 \pm 0.12) \times 10^{-15} \\ (3.2 \pm 0.3) \times 10^{-15} \\ (9.0 \pm 0.4) \times 10^{-15} \end{array}$	298 333 373 423 473 523	DF-A	Bagley <i>et al.</i> ³	298-523
2-Methylpropane			$\begin{array}{c} (1.1 \pm 0.2) \times 10^{-16} \\ (4.5 \pm 1.6) \times 10^{-16} \\ (4.5 \pm 0.8) \times 10^{-16} \\ (8.0 \pm 0.8) \times 10^{-16} \\ (2.3 \pm 0.4) \times 10^{-15} \\ (5.4 \pm 1.2) \times 10^{-15} \\ (1.30 \pm 0.24) \times 10^{-14} \end{array}$	298 348 373 423 473 523	DF-A	Bagley <i>et al</i> . ³	298-523
			$\leq 7.0 \times 10^{-16}$	298	SF-A	Boyd et al. ²	
2-Methylbutane			$\begin{array}{l} (1.6 \pm 0.2) \times 10^{-16} \\ (3.9 \pm 1.4) \times 10^{-16} \\ (1.04 \pm 0.12) \times 10^{-15} \\ (2.5 \pm 0.4) \times 10^{-15} \\ (6.1 \pm 1.4) \times 10^{-15} \\ (1.29 \pm 0.37) \times 10^{-13} \end{array}$	298 323 423 523	DF-A	Bagley <i>et al.</i> ³	298-523

TABLE 50. Rate constants k and temperature-dependent parameters, $k = Ae^{-B/T}$, for the gas-phase reactions of the NO₃ radical with alkanes

J. Phys. Chem. Ref. Data, Monograph No. 2

E.

ROGER ATKINSON

473 K.³ A unit-weighted least-squares analysis of the absolute rate constants of Bagley *et al.*³ obtained over the restricted temperature range 298–423 K yields the recommended Arrhenius expression of

$$k(n \text{-butane}) =$$

(2.76^{+2.30}_{-1.26}) × 10⁻¹² e^{-(3279 ± 211)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 298-423 K, where the indicated errors are two least-squares standard deviations, and

$$k(n-butane) = 4.59 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of a factor of 1.5. While the relative rate constant of Atkinson *et al.*⁵ is in reasonable agreement with this recommendation, it is possible that the rate constant of Atkinson *et al.*⁵ is somewhat high¹ due to secondary reactions involving OH radicals.⁶

2-Methylpropane. The rate constants determined by Bagley et al.³ over the temperature range 298–523 K are given in Table 50, and are plotted in Arrhenius form in Fig. 44 together with the room temperature relative rate constant of Atkinson et al.⁵ In addition, Boyd et al.² derived an upper limit to the rate constant of 7.0×10^{-17} cm³ molecule⁻¹ s⁻¹ at 298 K, consistent with the data of Bagley et al.³ and Atkinson et al.⁵ The room temperature rate constants of Atkinson et al.⁵ and Bagley et al.² are in excellent agreement. Since the Arrhenius plot appears to exhibit a significant degree of curvature at temperatures >423 K, a unit-weighted least-squares analysis of the room temperature relative rate constant of Atkinson et al.⁵ and the 298-423 K absolute rate constants of Bagley et al.³ has been carried out to yield the recommended Arrhenius expression of

$$k(2\text{-methylpropane}) =$$

(3.05^{+1.04}_{-0.78}) × 10⁻¹² e^{-(3060 ± 99)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 296-423 K, where the indicated errors are two least-squares standard deviations, and

k(2-methylpropane) =1.06 × 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 40\%$.

Other Alkanes. The upper limit to the rate constant for the reaction of the NO₃ radical with methane of 8 × 10^{-19} cm³ molecule⁻¹ s⁻¹ at 302 K reported by Boyd *et al.*² is consistent with the upper limit to the rate constant recommended by Atkinson¹ of 1 × 10^{-18} cm³ molecule⁻¹ s⁻¹ at 298 K. Since only a single study has been carried out for 2-methylbutane,³ no recommendation is made for this reaction. However, the measured 298 K rate constant³ of $(1.6 \pm 0.2) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ is totally consistent with the rate constants for H-atom abstraction from primary, secondary and tertiary C-H bonds derived by Bagley et al.³ from their rate data for ethane, n-butane and 2-methylpropane, and is in excellent agreement with the rate constant of 1.5×10^{-16} cm³ molecule⁻¹ s⁻¹ calculated from the -CH₃, -CH₂- and >CH- group rate constants derived by Atkinson¹. Moreover, the predicted 298 K rate constants for *n*-butane and 2-methylpropane of 4.7×10^{-17} cm³ molecule⁻¹ s⁻¹ and 8.5×10^{-17} cm³ molecule⁻¹ s⁻¹, respectively, are in good agreement with the recommended values, and the calculated rate constant for propane of 1.7×10^{-17} cm³ molecule⁻¹ s⁻¹ at 298 K¹ is reasonably consistent with the lower limit to the rate constant of 2.0×10^{-17} cm³ molecule⁻¹ s⁻¹ at 298 K derived by Boyd et al.² from modeling their data. These observations indicate that the group rate constants at 298 K (in cm³ molecule⁻¹ s⁻¹ units) of: $k_{prim} = 7.0 \times$ 10^{-19} , $k_{sec} = 1.5 \times 10^{-17}$, and $k_{tert} = 8.2 \times 10^{-17}$, together with the substituent factors of $F(-CH_3) = 1.00$ and $F(-CH_2-) = F(>CH-) = F(>C<) = 1.5$, all at 298 K, can be used to calculate room temperature rate constants for the gas-phase reactions of the NO₃ radical with alkanes. In addition to allowing the overall reaction rate constants to be calculated, the distribution of alkyl radicals formed can be calculated.

FIG. 44. Arrhenius plot of rate constants for the reaction of the NO₃ radical with 2-methylpropane. (○) Bagley *et al.*,³ (●) Atkinson *et al.*,⁵ (─) recommendation (see text).

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).
- ²A. A. Boyd, C. E. Canosa-Mas, A. D. King, R. P. Wayne, and M. R. Wilson, J. Chem. Soc. Faraday Trans. **87**, 2913 (1991).
- ³J. A. Bagley, C. Canosa-Mas, M. R. Little, A. D. Parr, S. J. Smith, S. J. Waygood, and R. P. Wayne, J. Chem. Soc. Faraday Trans. **86**, 2109 (1990).
- ⁴T. J. Wallington, R. Atkinson, A. M. Winer, and J. N. Pitts, Jr., J. Phys. Chem. **90**, 4640 (1986).

⁵R. Atkinson, C. N. Plum, W. P. L. Carter, A. M. Winer, and J. N. Pitts, Jr., J. Phys. Chem. 88, 2361 (1984).

⁶R. Atkinson, S. M. Aschmann, and J. N. Pitts, Jr., J. Phys. Chem. 92, 3454 (1988).

4.2. Haloaikanes

The kinetic data reported since the review of Atkinson¹ are given in Table 51. The upper limits to the rate constants obtained by Boyd et al.² using a stopped flow system with optical absorption of the NO₃ radical assumed a minimum stoichiometric factor of 2 for reactions of the NO₃ radical under these conditions.

References

¹R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).

²A. A. Boyd, C. E. Canosa-Mas, A. D. King, R. P. Wayne, and M. R. Wilson, J. Chem. Soc. Faraday Trans. 87, 2913 (1991).

4.3. Alkenes

The rate constants reported since the review and evaluation of Atkinson¹ are given in Table 52, with the data of Wille et al.⁶ being obtained from observation of the oxirane product formation profiles. The rate constants for the reactions of the NO₃ radical with 2,3-dimethyl-2butene, 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene) and 2,3-dimethyl-1,3-butadiene reported by Poulet and Le Bras,¹⁰ and used by Atkinson¹ in the evaluations of the rate constants for these reactions, have been published^{8,11} (that for isoprene is included in the publication of Wille et al.⁸ and is also given in Table 52).

Ethene. The room temperature rate constant of Biggs et al.,² of $(1.7 \pm 0.5) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ at 300 K, is given in Table 52. This rate constant is in reasonable agreement with the recommended rate constant of Atkinson¹ of 2.18 \times 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ at this temperature. Hence the previous recommendation,¹ of

 $k(\text{ethene}) = 4.88 \times 10^{-18} T^2 e^{-2282/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 295-523 K, with a 298 K rate constant of 2.05×10^{-16} cm³ molecule⁻¹ s⁻¹, is unchanged.

Propene. The absolute rate constants of Canosa-Mas et al.³ are given in Table 52 and are plotted, together with the room temperature relative rate constant of Atkinson et al.,¹² in Arrhenius form in Fig. 45. The agreement between the room temperature rate constants^{3,12} is excellent. The Arrhenius plot exhibits distinct non-Arrhenius behavior above 423 K, and a unit-weighted least-squares analysis of the 298-423 K absolute rate constants of Canosa-Mas et al.³ and the relative rate constant of Atkinson et al.¹² leads to the recommended Arrhenius expression of

$$k$$
 (propene) =
(4.59^{+1.22}_{-0.96}) × 10⁻¹³ e^{-(1156 ± 79)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 296-423 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
(propene) = 9.49 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 35\%$. This recommendation is in excellent agreement with, but supersedes, that of Atkinson¹ of

$$k$$
(propene) = 9.45 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 298 K.

1-Butene. The absolute rate constants of Canosa-Mas et al.⁴ are given in Table 52 and are plotted, together with those of Atkinson et al.,^{12,13} Andersson and Ljungström¹⁴ and Barnes et al.,¹⁵ in Arrhenius form in Fig. 46. The agreement between these studies is good, and a unitweighted least-squares analysis of the absolute rate constants of Canosa-Mas $et al.^4$ and the relative rate constants of Atkinson $et al.^{12,13}$ and Barnes $et al.^{15}$ leads to the recommended Arrhenius expression of

$$k(1\text{-butene}) =$$

(2.04^{+1.06}_{-0.70}) × 10⁻¹³ e^{-(843 ± 139)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 296-473 K, where the indicated errors are two least-squares standard deviations, and

$$k(1$$
-butene) = $1.21 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of $\pm 30\%$. This recommendation is in excellent agreement with, but supersedes, that of Atkinson¹ of

$$k(1$$
-butene) = $1.25 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

Haloalkane	$k \text{ (cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{)}$	at $T(\mathbf{K})$	Technique	Reference
CH₃Cl	$\leq 8 \times 10^{-19}$	300	SF-A	Boyd et al. ²
CH ₂ Cl ₂	$\leq 5.8 \times 10^{-18}$	300	SF-A	Boyd et al. ²
CHCl ₃	$\leq 6.5 \times 10^{-17}$	304	SF-A	Boyd et al. ²

TABLE 51. Rate constants for the gas-phase reactions of the NO₃ radical with haloalkanes

154

alkene
with
s radical
Ő
f the
of
reactions
s-phase re-
e ga
r the g
s fo
parameter
dependent pa
temperature-d
and
Rate constants
TABLE 52.

cs

Alkene	$10^{12} \times \mathcal{A} (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	B (K)	k (cm ³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	range covered (K)
							×
Ethene			$(1.7 \pm 0.5) \times 10^{-16}$	300	SF-A	Biggs et al. ²	
Propene			$(9.3 \pm 1.2) \times 10^{-15}$	298	DF-A	Canosa-Mas et al. ³	298-523
4			$(1.45 \pm 0.36) \times 10^{-14}$	333			
			$(1.98 \pm 0.44) \times 10^{-14}$	373			
			$(3.06 \pm 0.84) \times 10^{-14}$	423			
			$(5.05 \pm 0.34) \times 10^{-14}$	473			
	$0.474_{-0.085}^{+0.006}$	1171 ± 66	$(9.3 \pm 2.4) \times 10^{-14}$	523			
		(298–423 K)					
1-Butene			0.2)	299	DF-A	Canosa-Mas et al. ⁴	299-473
			0.5)	323			
			$(1.8 \pm 0.4) \times 10^{-14}$	373			
		•	$(2.9 \pm 1.0) \times 10^{-14}$	423			
	0.25	940	$(3.6 \pm 0.8) \times 10^{-14}$	473			
2-Methylpropene			$(3.87 \pm 0.42) \times 10^{-13}$	298	DF-MS	Benter <i>et al</i> . ⁵	
			$(3.6 \pm 0.4) \times 10^{-13}$	298	DF-MS	Wille et al. ⁶	
cis-2-Butene			$(3.75 \pm 0.24) \times 10^{-13}$	298	DF-MS	Benter et al. ⁵	
			$(3.3 \pm 0.8) \times 10^{-13}$	298	DF-MS	Wille et al. ⁶	
trans -2-Butene			$(3.88 \pm 0.30) \times 10^{-13}$	298	DF-MS	Benter et al. ⁵	
2-Methyl-2-butene			$(8.42 \pm 0.60) \times 10^{-12}$	298	DF-MS	Benter et al. ⁵	
			$(7.0 \pm 2.0) \times 10^{-12}$	298	DF-MS	Wille et al. ⁶	
2,3-Dimethyl-2-butene	ene		$(4.07 \pm 0.40) \times 10^{-11}$	298	DF-MS	Benter et al. ⁵	
			$(3.8 \pm 0.8) \times 10^{-11}$	298	DF-MS	Wille et al. ⁶	
			$(5.71 \pm 0.28) \times 10^{-11}$	296 ± 2	RR [relative to $k(2\text{-methyl}-2\text{-butene}) = 9.37 \times 10^{-12}\text{m}$	Atkinson et al. ⁷	
2-Methyl-1,3-			$(8.26 \pm 0.60) \times 10^{-13}$	298	DF-MS	Wille et al. ⁸	
(isoprene)			$(7.30 \pm 0.44) \times 10^{-13}$	298	DF-MS	Wille et al. ⁸	
β-Phellandrenc			$(7.96 \pm 0.44) \times 10^{-12}$	297 ± 2	RR [relative to k (2-methyl- 2-butene) = 9.37 × 10 ⁻¹²] ⁴	Shorees et al. ⁹	

155

FIG. 45. Arrhenius plot of selected rate constants for the reaction of the NO₃ radical with propene. (●) Atkinson *et al.*,¹² (○) Canosa-Mas *et al.*,³ (−) recommendation (see text).

FIG. 46. Arrhenius plot of selected rate constants for the reaction of the NO₃ radical with 1-butene. (△) Atkinson *et al.*,¹³ (●) Atkinson *et al.*,¹² (□) Andersson and Ljungström;¹⁴ (▽) Barnes *et al.*,¹⁵ (○) Canosa-Mas *et al.*,⁴ (−) recommendation (see text).

2-Methylpropene. The rate constants determined by Benter et al.⁵ and Wille et al.⁶ (the latter from the oxirane product formation rate) are given in Table 52. These rate constants^{5,6} are in good agreement with the previous recommendation of Atkinson¹ of

k(2-methylpropene) =3.32 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K,

which is therefore unchanged.

$$k$$
 (cis-2-butene) =
3.50 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K,

which is therefore unchanged. Wille *et al.*⁶ showed that at 298 K and 2.2-7.5 Torr total pressure that the pathway

$$NO_3 + CH_3CH = CHCH_3 \longrightarrow CH_3CH - CHCH_3 + NO_2$$

accounted for $90 \pm 10\%$ of the overall reaction. This observation is in agreement with the previous results of Dlugokencky and Howard¹⁶ for the NO₃ radical reaction with *trans*-2-butene at low total pressures.

trans-2-Butene. The rate constant reported by Benter $et al.^{5}$ is given in Table 52. This rate constant is in excellent agreement with the previous recommendation of Atkinson¹ of

$$k(trans - 2$$
-butene) =
3.90 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K,

which is therefore unchanged.

2-Methyl-2-butene. The rate constants reported by Benter et al.⁵ and Wille et al.⁶ (the latter from the oxirane product formation rate) are given in Table 52. The more precise rate constant of Benter et al.⁵ is 20% lower than the previous recommendation of Atkinson¹ of

$$k(2\text{-methyl-2-butene}) = 9.37 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

at 298 K. Until further absolute rate constant studies confirm a lower rate constant for this reaction, the previous recommendation¹ is unchanged.

2,3-Dimethyl-2-butene. The rate constants obtained by Benter et al.⁵ and Wille et al.⁶ at low total pressures (2.3 Torr) are given in Table 52 (the rate constant of Wille et al.⁶ was obtained from the oxirane product formation rate). These absolute rate constants^{5,6} are $\sim 30\%$ lower than the previous recommendation of Atkinson¹ of

 $k(2,3-\text{dimethyl-2-butene}) = 5.72 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K.}$

In contrast, the relative rate constant of Atkinson *et al.*⁷ is in excellent agreement with the previous recommendation of Atkinson.¹

However, the rate constants of Benter *et al.*⁵ and Wille *et al.*⁶ are in good agreement with the previously reported low pressure absolute rate constants of Rahman *et al.*¹⁷ and Lancar *et al.*,¹¹ also obtained using discharge flow-mass spectrometry techniques. Until this discrepancy is resolved, possibly through the use of other experimental approaches, the previous recommendation is unchanged.

It should also be noted that the rate constant ratio of $k(2,3\text{-dimethyl-2-butene})/k(2\text{-methyl-2-butene}) = 4.83 \pm 0.59$ at 298 K derived from the rate constants of Benter *et al.*⁵ is significantly lower than the ratios of 6.10 ± 0.16 at 298 ± 1 K,¹³ 6.13 ± 0.16 at 295 ± 1 K¹⁸ and 6.09 ± 0.29 at 296 ± 2 K⁷ obtained by Atkinson *et al.*^{7,13,18} from relative rate studies conducted at atmospheric pressure of air. Wille *et al.*⁶ observed the formation of the oxirane from the reaction pathway

 $NO_3 + (CH_3)_2C = C(CH_3)_2 \longrightarrow (CH_3)_2C \longrightarrow C(CH_3)_2 + NO_2$

to account for 90 \pm 10% of the overall reaction.

2-Methyl-1,3-butadiene (isoprene). The rate constants reported by Wille *et al.*⁸ at 298 K originate from studies conducted at two laboratories, with that of Lancar *et al.*¹¹ being reported previously¹⁰ and used in the review and evaluation of Atkinson.¹ The rate constant determined at Kiel, Germany⁸ of $(7.30 \pm 0.44) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ at 298 K is in good agreement with the recommendation of Atkinson¹ of

k(isoprene) = 6.78 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K,

and hence this previous recommendation¹ of

k(isoprene) = 3.03 × 10⁻¹² e^{-446/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 251-381 K is unchanged.

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).
- ²P. Biggs, A. A. Boyd, C. E. Canosa-Mas, D. M. Joseph, and R. P. Wayne, Meas. Sci. Technol. **2**, 675 (1991).
- ³C. E. Canosa-Mas, S. J. Smith, S. J. Waygood, and R. P. Wayne, J. Chem. Soc. Faraday Trans. 87, 3473 (1991).
- ⁴C. E. Canosa-Mas, P. S. Monks, and R. P. Wayne, J. Chem. Soc. Faraday Trans. **88**, 11 (1992).
- ⁵Th. Benter, E. Becker, U. Wille, M. M. Rahman, and R. N. Schindler, Ber. Bunsenges. Phys. Chem. **96**, 769 (1992).
- ⁶U. Wille, M. M. Rahman, and R. N. Schindler, Ber. Bunsenges. Phys. Chem. **96**, 833 (1992).
- ⁷R. Atkinson, S. M. Aschmann, and J. Arey, Environ. Sci. Technol. 26, 1397 (1992).
- ⁸U. Wille, E. Becker, R. N. Schindler, I. T. Lancar, G. Poulet, and G. Le Bras, J. Atmos. Chem. **13**, 183 (1991).
- ⁹B. Shorees, R. Atkinson, and J. Arey, Int. J. Chem. Kinet. 23, 897 (1991).
- ¹⁰G. Poulet and G. Le Bras, 2nd LACTOZ Report (a joint EUROTRAC/Cost 611 project), 1989; cited in Ref. 1.
- ¹¹I. T. Lancar, V. Daele, G. Le Bras, and G. Poulet, J. Chim. Phys. 88, 1777 (1991).
- ¹²R. Atkinson, S. M. Aschmann, and J. N. Pitts, Jr., J. Phys. Chem. 92, 3454 (1988).
- ¹³R. Atkinson, C. N. Plum, W. P. L. Carter, A. M. Winer, and J. N. Pitts, Jr., J. Phys. Chem. 88, 1210 (1984).
- ¹⁴Y. Andersson and E. Ljungström, Atmos. Environ. 23, 1153 (1989).
- ¹⁵I. Barnes, V. Bastian, K. H. Becker, and Z. Tong, J. Phys. Chem. **94**, 2413 (1990).
- ¹⁶E. J. Dlugokencky and C. J. Howard, J. Phys. Chem. **93**, 1091 (1989).
 ¹⁷M. M. Rahman, E. Becker, Th. Benter, and R. N. Schindler, Ber.
- Bunsenges. Phys. Chem. 92, 91 (1988).

¹⁸R. Atkinson, S. M. Aschmann, A. M. Winer, and J. N. Pitts, Jr., Environ. Sci. Technol. 18, 370 (1984).

4.4. Haloalkenes

The rate constants reported since the review and evaluation of Atkinson¹ are given in Table 53 (the data of Wängberg *et al.*³ were included in the Addendum in Atkinson¹). The rate constants for the reaction of the NO₃ radical with 2-chloro-1-butene at room temperature^{2,3} are in good agreement. The trends in the rate constants for the reactions of the NO₃ radical with haloalkenes with the number and configuration of the halogen substituent(s) around the >C=C< bond are discussed by Aird *et al.*²

References

¹R. Atkinson, J. Phys. Chem. Ref. Data 20, 459, (1991).

- ²R. W. S. Aird, C. E. Canosa-Mas, D. J. Cook, G. Marston, P. S. Monks, R. P. Wayne, and E. Ljungström, J. Chem. Soc. Faraday Trans. 88, 1093 (1992).
- ³I. Wängberg, E. Ljungström, J. Hjorth and G. Ottobrini, J. Phys. Chem. 94, 8036 (1990).

4.5. Alkynes

The rate constants reported since the review and evaluation of Atkinson¹ are given in Table 54.

References

¹R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).

²Th. Benter, E. Becker, U. Wille, R. N. Schindler, C. E. Canosa-Mas, S. J. Smith, S. J. Waygood, and R. P. Wayne, J. Chem. Soc. Faraday Trans. **87**, 2141 (1991).

4.6. Oxygen-Containing Organic Compounds

The kinetic data reported since the review and evaluation of Atkinson¹ are given in Table 55.

References

¹R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).

- ² A. A. Boyd, C. E. Canosa-Mas, A. D. King, R. P. Wayne, and M. R. Wilson, J. Chem. Soc. Faraday Trans. 87, 2913 (1991).
- ³R. Atkinson and S. M. Aschmann, J. Atmos. Chem. 16, 337 (1993).

4.7. Sulfur-Containing Organic Compounds

Jensen *et al.*^{1,2} have conducted product studies of the gas-phase reactions of the NO₃ radical with CH₃SCH₃^{1,2}, CD₃SCD₃,² CH₃SH² and CH₃SSCH₃,² using Fourier transform infrared (FT-IR) absorption spectroscopy to monitor the reactants and products. By monitoring the relative disappearance rates of CH₃SCH₃ and CD₃SCD₃, a rate constant ratio of k (CH₃SCH₃)/k (CD₃SCD₃) = 3.8 ± 0.6 at 295 ± 2 K was determined,² in excellent agreement with the absolute rate constants of Daykin and Wine³ for CH₃SCH₃ and CD₃SCD₃. This deuterium isotope effect² and the products observed^{1,2} led Jensen *et al.*^{1,2} to conclude that these NO₃ radical reactions proceed exclusively (or mainly) by,

$$NO_3 + CH_3SCH_3 \rightleftharpoons [CH_3S(ONO_2)CH_3] \rightarrow HONO_2 + CH_3SCH_2$$

$$NO_3 + CH_3SH \rightleftharpoons [CH_3S(ONO_2)H] \rightarrow HONO_2 + CH_3S'$$

$$NO_3 + CH_3SSCH_3 \rightleftharpoons [CH_3SS(ONO_2)CH_3] \rightarrow CH_3\dot{S} + CH_3\dot{S}O + NO_2$$

in agreement with previous discussions.⁴

Analogous product studies have been conducted by Jensen *et al.*⁵ for the gas-phase reactions of the NO₃ radical with CH₃CH₂SH, CH₃CH₂SCH₃, CH₃CH₂SCH₂CH₃ and CH₃CH₂SSCH₂CH₃ in air at 295 \pm 2 K. Jensen *et al.*⁵ concluded that the reaction mechanisms for these organosulfur compounds were analogous to those for CH₃SH, CH₃SCH₃ and CH₃SSCH₃.^{1,2,4}

References

- ¹N. R. Jensen, J. Hjorth, C. Lohse, H. Skov, and G. Restelli, Atmos. Environ. **25A**, 1897 (1991).
- ²N. R. Jensen, J. Hjorth, C. Lohse, H. Skov, and G. Restelli, J. Atmos. Chem. **14**, 95 (1992).
- ³E. P. Daykin and P. H. Wine, Int. J. Chem. Kinet. 22, 1083 (1990).
- ⁴R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).
- ⁵N. R. Jensen, J. Hjorth, C. Lohse, H. Skov, and G. Restelli, Int. J. Chem. Kinet. **24**, 839 (1992).

4.8. Nitrogen- and Silicon-Containing Organic Compounds

The rate constants reported since the review and evaluation of Atkinson¹ are given in Table 56. From a product study, Kwok *et al*.² showed that the major reaction pathway for the NO₃ radical reaction with (CH₃)₂NC(O)SCH₃ proceeds by overall H-atom abstraction to form the $\dot{C}H_2(CH_3)NC(O)SCH_3$ radical (presumably by initial NO₃ radical interaction with the N atom), ultimately leading to the formation of CH₃(CHO)NC(O)SCH₃ in 87 \pm 13% yield.

¹R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).

²E. S. C. Kwok, R. Atkinson, and J. Arey, Environ. Sci. Technol. 26, 1798 (1992).

³R. Atkinson, S. M. Aschmann, and J. Arey, unpublished data (1993).

4.9. Aromatic Compounds

The rate constants reported since the review and evaluation of Atkinson¹ are given in Table 57. Phenol, o-Cresol, m-Cresol and p-Cresol. The room temperature rate constants of Atkinson et al.² are given in Table 57. These rate constants are in general agreement (within $\pm 40\%$) with the relative rate constants of Carter et al.,³ and that for phenol² is also in excellent agreement with the rate constant of Atkinson et al.⁴ determined relative to the rate constant for the reaction of the NO₃ radical with 2-methyl-2-butene. There are, however, significant discrepancies between the rate constants for o-, m- and p-cresol obtained from the two studies of Atkinson et al.²⁴ (the rate constants for o- and p-cresol⁴ were relative to that for m-cresol, which in turn was relative to that for phenol,⁴ all determined using FT-IR absorption spectroscopy).⁴

A unit-weighted average of the rate constants for phenol of Atkinson *et al.*^{2,4} leads to the recommendation of

k(phenol) = 3.78 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 35\%$. This recommendation supersedes that of Atkinson¹ of

$$k$$
(phenol) = 3.64 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

which was based on the study of Atkinson *et al.*⁴ For the three cresol isomers, the rate constants of Atkinson *et al.*² are recommended:

k(o-cresol) = 1.37 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K

with an estimated overall uncertainty of $\pm 35\%$,

 $k(m\text{-}cresol) = 9.74 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}$ with an estimated overall uncertainty of $\pm 35\%$, and $k(p\text{-}cresol) = 1.07 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}$

with an estimated overall uncertainty of a factor of 1.5.

Atkinson *et al.*² also measured the nitrophenol and nitrocresol yields from these NO₃ radical reactions, and observed yields significantly lower than unity for phenol and o- and m-cresol (Sec. 2.4). These product data suggest that these NO₃ radical reactions proceed by,

with the phenoxy radicals reacting with NO₂ to form the nitrophenols.²

Miscellaneous

Rindone *et al.*⁵ have investigated the gas-phase reactions of the NO₃ radical with o-xylene- h_{10} , o-xylene- d_{10} ,

radical with haloalkenes
NO3
of the
reactions o
gas-phase
e e
for th
ŝk
constant
Rate
Е 53.
TABLE 53.

1 Haloalkene п	$10^{12} \times A (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	B (K)	k (cm³ molecule ⁻¹ s ⁻¹) at	at <i>T</i> (K)	Technique	18 Reference	Temperature range covered (K)
$\frac{1-Chloro-1-butene}{[CH_3CH_2CH = CHCI]}$			$(1.2 \pm 0.4) \times 10^{-14}$	298	DF-A	Aird et al. ²	
2-Chloro-1-butene			$(1.73 \pm 0.31) \times 10^{-14}$	299	DF-A	Wängberg <i>et al</i> . ³	
			$(2.21 \pm 0.53) \times 10^{-14}$	296	RR [relative to k(NO ₃ + NO ₂ ≠ N ₂ O ₅) = 4.40 × 10 ⁻¹¹] ^a	Wängberg <i>et al</i> . ³	
			$(1.7 \pm 0.3) \times 10^{-14}$	299	DF-A	Aird et al. ²	
3-Chloro-1-butene [CH ₃ CHClCH = CH ₂]	2.4×10^{-12}	1992 ± 241	$\begin{array}{l} (3.0 \pm 0.7) \times 10^{-15} \\ (1.2 \pm 0.1) \times 10^{-14} \\ (3.5 \pm 1.2) \times 10^{-14} \end{array}$	296 373 473	DF-A	Aird et al. ²	296-473
1-Chloro-2-butene [CH ₃ CH = CHCH ₂ Cl]	6.0×10^{-13}	981 ± 349	$\begin{array}{l} (2.0 \pm 0.7) \times 10^{-14} \\ (5.0 \pm 1.7) \times 10^{-14} \\ (7.0 \pm 5.5) \times 10^{-14} \end{array}$	298 373 473	DF-A	Aird et al. ²	29 8-4 73
2-Chloro-2-butene [CH ₃ CH = CCICH ₃]			$(1.10 \pm 0.40) \times 10^{-13}$	298	DF-A	Aird et al. ²	
1-Chloro-2-methylpropene [(CH ₃) ₂ C = CHCl]	ne		$(9.0 \pm 2.3) \times 10^{-14}$	298	DF-A	Aird <i>et al</i> . ²	
2-Chloromethylpropene [CH ₃ C(CH ₂ Cl) = CH ₂]	1.6×10^{-12}	1277 ± 205	$\begin{array}{l} (2.5 \pm 0.4) \times 10^{-14} \\ (4.7 \pm 0.5) \times 10^{-14} \\ (1.23 \pm 0.06) \times 10^{-13} \end{array}$	298 373 473	DF-A	Aird et al. ²	298-473
3-Bromo-1-butene [CH ₃ CHBrCH = CH ₂]			$(4 \pm 1) \times 10^{-15}$	298	DF-A	Aird et al. ²	
4-Bromo-1-butene [CH ₂ BrCH ₂ CH = CH ₂]			$(5 \pm 1) \times 10^{-15}$	298	DF-A	Aird et al. ²	
2-Bromo-2-butene [CH ₃ CH = CBrCH ₃]			$(1.34 \pm 0.01) \times 10^{-13}$	298	DF-A	Aird et al. ²	

^aFrom present and previous¹ recommendations.

ROGER ATKINSON

Alkyne $k(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ at T(K)TechniqueReference2-Hexyne $(2.8 \pm 0.1) \times 10^{-14}$ 298DF-MSBenter et al.² $\sim 3 \times 10^{-13}$ 433DF-ABenter et al.²

TABLE 54. Rate constants k for the gas-phase reactions of the NO₃ radical with alkynes

TABLE 55. Rate constants k for the gas-phase reactions of the NO₃ radical with oxygen-containing organic compounds

Oxygenate	$k(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	at T (K)	Technique	Reference
Acetone	$\leq 1.1 \times 10^{-17}$	302	SF-A	Boyd et al. ²
4-Acetyl-1- methylcyclohexene	$(1.05 \pm 0.08) \times 10^{-11}$	296 ± 2	RR [relative to k(2-methyl-2- butene) = 9.37×10^{-12}] ^a	Atkinson and Aschmann ³

^aFrom present and previous¹ recommendation.

TABLE 56. Rate constants k for the gas-phase	reactions of the NO. radical with nitroge	and silicon containing organic compounds
TABLE 50. Rate constants & for the gas-phase	reactions of the 1403 faultal with hittog	in- and sincon-containing organic compounds

Organic	$k(\mathrm{cm}^3 \mathrm{molecule}^{-1} \mathrm{s}^{-1})$	at T (K)	Technique	Reference
Nitrogen-containing				
(CH ₃) ₂ NC(O)SCH ₃	$(7.10 \pm 0.31) \times 10^{-15}$	298 ± 2	RR [relative to k(1-butene) = 1.21×10^{-14}] ^a	Kwok <i>et al</i> . ²
(CH ₃ CH ₂ CH ₂) ₂ NC(O)SCH ₂ CH ₃	$(8.94 \pm 0.45) \times 10^{-15}$	298 ± 2	RR [relative to k(1-butene) = 1.21×10^{-14}] ^a	Kwok <i>et al</i> . ²
CH ₃ CH ₂ (c-C ₆ H ₁₁)NC(O)SCH ₂ CH	(3.18 \pm 0.26) \times 10 ⁻¹⁴	298±2	RR [relative to k(1-butene) = 1.21×10^{-14}] ^a	Kwok et al. ²
Silicon-containing				
(CH ₃) ₃ SiOSi(CH ₃) ₂ OH	$< 1.7 \times 10^{-16}$	297 ± 2	RR [relative to k(n-heptane) = 1.37×10^{-16}] ^a	Atkinson et al. ³

^aFrom present and previous¹ recommendations.

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

Aromatic	$k(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	at T (K)	Technique	Reference
Phenol	$(3.92 \pm 0.25) \times 10^{-12}$	296 ± 2	RR [relative to k(2-methyl-2-butene) = 9.37×10^{-12}] ^a	Atkinson et al. ²
o-Cresol	$(1.37 \pm 0.09) \times 10^{-11}$	296 ± 2	RR [relative to k(2-methyl-2-butene) = 9.37×10^{-12}] ^a	Atkinson et al. ²
m-Cresol	$(9.74 \pm 0.47) \times 10^{-12}$	296 ± 2	RR [relative to k(2-methyl-2-butene) = 9.37×10^{-12}] ^a	Atkinson et al. ²
p-Cresol	$(1.07 \pm 0.10) \times 10^{-11}$	296 ± 2	RR [relative to k(2-methyl-2-butene) = 9.37×10^{-12}] ^a	Atkinson et al. ²
2-Nitrophenol	$< 1.2 \times 10^{-14}$	296 ± 2	RR [relative to k (trans-2-butene) = 3.89×10^{-13}] ^a	Atkinson et al. ²

TABLE 57. Rate constants k for the gas-phase reactions of the NO_3 radical with aromatic compounds

*From present and previous¹ recommendations.

p-xylene- h_{10} , *p*-xylene- d_{10} and *p*-xylene- d_6 [C₆H₄(CD₃)₂] at room temperature, and observed a significant deuterium isotope effect on the rate constants, with the deuterated xylenes reacting slower than the non-deuterated compounds by factors of 1.48–1.87. In agreement with the rate constants of Atkinson and Aschmann,⁶ these kinetic data of Rindone *et al.*⁵ confirm that the NO₃ radicals with the alkyl-substituted benzenes proceed by H-atom abstraction from the C–H (or C–D) bonds

$$NO_3 + C_6H_5CH_3 \rightarrow HONO_2 + C_6H_5CH_2$$

References

- ¹R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).
- ²R. Atkinson, S. M. Aschmann, and J. Arey, Environ. Sci. Technol. 26, 1397 (1992).
- ³W. P. L. Carter, A. M. Winer, and J. N. Pitts, Jr., Environ. Sci. Technol. **15**, 829 (1981).
- ⁴R. Atkinson, W. P. L. Carter, C. N. Plum, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 16, 887 (1984).
- ⁵B. Rindone, F. Cariati, G. Restelli, and J. Hjorth, Fres. J. Anal. Chem. **339**, 673 (1991).
- ⁶R. Atkinson and S. M. Aschmann, Int. J. Chem. Kinet. 20, 513 (1988).

5. Kinetics and Mechanisms of the Gas-Phase Reactions of Ozone with Organic Compounds

In this section, the previous review and evaluation of Atkinson and Carter¹ is updated.

5.1. Haloalkanes

Since the review and evaluation of Atkinson and Carter,¹ Tuazon *et al.*² have determined an upper limit

to the rate constant for the reaction of O₃ with 1,2-dibromo-3-chloropropane (CH₂BrCHBrCH₂Cl) of k(CH₂BrCHBrCH₂Cl) < 3 × 10⁻²⁰ cm³ molecule⁻¹ s⁻¹ at 296 ± 2 K.

References

¹R. Atkinson and W. P. L. Carter, Chem. Rev. **84**, 437 (1984). ²E. C. Tuazon, R. Atkinson, S. M. Aschmann, J. Arey, A. M. Winer, and

J. N. Pitts, Jr., Environ. Sci. Technol. 20, 1043 (1986).

5.2. Alkenes

The rate constants reported since the review and evaluation of Atkinson and Carter¹ are given in Table 58. Also included in this table are the corrected rate constants of Herron and Huie⁴ for propene. The study of Treacy *et al.*³ is taken to supersede the data previously reported by Donlon *et al.*¹⁴

Ethene. The rate constants of Bahta et al.² and Treacy et al.³ are given in Table 58 (the rate constants of Bahta et al.² have been averaged at each of the four temperatures studied). Since Treacy et al.³ did not tabulate the individual rate constants at the various temperatures studied, only the Arrhenius expression and 298 K rate constants can be included in Table 58. These two kinetic studies^{2,3} obtained room temperature rate constants in the range $(1.37-1.45) \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, which are somewhat lower than many of the previous rate constant data,¹ including those of Su et al.¹⁵ and Kan et al.¹⁶ The rate constants of Bahta et al.² and Treacy et al.³ are plotted in Arrhenius form in Fig. 47, together with the rate constants of DeMore,¹⁷ Stedman *et al.*,¹⁸ Herron and Huie,⁴ Japar et al.,^{19,20} Toby et al.²¹ and Atkinson et al.²² A unit-weighted least-squares analysis of the rate constants of DeMore,¹⁷ Stedman et al.,¹⁸ Herron and Huie,⁴ Japar et al.,^{19,20} Toby et al.,²¹ Atkinson et al.,²² Bahta et al.² and

the 298 K rate constant of Treacy *et al.*³ leads to the recommended Arrhenius expression of

$$k(\text{ethene}) =$$

(9.14^{+3.13}_{-2.33}) × 10⁻¹⁵ e^{-(2580 ± 71)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 178-362 K, where the indicated errors are two least-squares standard deviations, and

$$k(\text{ethene}) = 1.59 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of $\pm 30\%$.

This recommendation supersedes the previous recommendation of Atkinson and Carter¹ (which was also used by the NASA²³ and IUPAC²⁴ evaluations) of

k(ethene) = 1.2 × 10⁻¹⁴ e^{-2630/T} cm³ molecule⁻¹ s⁻¹

over the same temperature range of 178–362 K, with a 298 K rate constant of 1.75×10^{-18} cm³ molecule⁻¹ s⁻¹.

Propene. The rate constants of Treacy et al.³ are given in Table 58, together with the corrected rate constants of Herron and Huie⁴ (the lowest temperature studied was 235.0 K and not 250.0 K as given by Herron and Huie⁴ and used in the evaluation of Atkinson and Carter¹). The rate constants of Herron and Huie⁴ and Treacy et al.³ are plotted in Arrhenius form in Fig. 48, together with the apparently reliable¹ rate constants of Cox and Penkett,²⁵ Stedman et al.,¹⁸ Japar et al.^{19,20} and Atkinson et al.²² The rate constants determined by Herron and Huie⁴ and Treacy et al.³ for propene [and ethene (Fig. 47)] are in excellent agreement over the temperature range common to both studies (240-324 K). The rate constants obtained by Huie and Herron²⁶ and Treacy et al.³ for 1-butene, cis-2-butene, trans-2-butene, 2-methylpropene and 2-methyl-2-butene are also in excellent agreement over the temperature range common to both studies (240-324 K).

In addition to these studies, Greene and Atkinson⁵ have carried out a relative rate study of the reactions of O₃ with a series of alkenes at 296 \pm 2 K. Greene and Atkinson⁵ obtained relative rate constants for propene, 1-butene, 2-methylpropene, *cis*- and *trans*-2-butene, 2-methyl-2-butene, 2,3-dimethyl-2-butene and 2-methyl-1,3-butadiene,⁵ and these relative rate constants are in generally excellent agreement with the absolute rate constants of Herron and Huie,⁴ Huie and Herron²⁶ and Treacy *et al.*³ From a unit-weighted average of the 298 K rate constants of Herron and Huie⁴ and Treacy *et al.*³ a rate constant of

k(propene) = 1.01 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ at 298 K

is recommended. Combination of this 298 K rate constant with the temperature dependence of B = 1878 K, obtained from a unit-weighted average of the temperature dependencies of Herron and Huie⁴ and Treacy *et al.*,³ leads to the recommended Arrhenius expression of

FIG. 48. Arrhenius plot of selected rate constants for the reaction of O₃ with propene. (□) Cox and Penkett;²⁵ (▽) Stedman et al.;¹⁸ (○) Herron and Huie;⁴ (▼) Japar et al.;^{19,20} (●) Atkinson et al.;²² (-X-) Treacy et al.;³ (−) recommendation (see text).

k(propene) = 5.51 × 10⁻¹⁵ e^{-1878/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 235–362 K, with an estimated overall uncertainty at 298 K of $\pm 25\%$.

This recommendation supersedes the IUPAC²⁴ recommendation of

$$k(\text{propene}) = 6.5 \times 10^{-15} \text{ e}^{-1880/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

over the temperature range 230–370 K, with a 298 K rate constant of 1.2×10^{-17} cm³ molecule⁻¹ s⁻¹.

l-Butene. The rate constants of Treacy *et al.*³ and Greene and Atkinson⁵ are given in Table 58 and are plotted, together with the rate constants of Japar *et al.*¹⁹ and Huie and Herron,²⁶ in Arrhenius form in Fig. 49. The agreement of the room temperature rate constants between the studies of Huie and Herron,²⁶ Treacy *et al.*³ and Greene and Atkinson⁵ is excellent. From a unit-weighted average of the 298 K rate constants of Huie and Herron,²⁶ Treacy *et al.*³ and Greene and Atkinson⁵ (corrected from 296 K to 298 K using the recommended temperature dependence), the rate constant of

$$k(1$$
-butene) = 9.64 × 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹ at 298 K

is recommended. Combining this recommended 298 K rate constant with the unit-weighted average of the temperature dependences of Huie and Herron²⁶ and Treacy *et al.*,³ of B = 1744 K, leads to the recommendation of

 $k(1\text{-butene}) = 3.36 \times 10^{-15} \text{ e}^{-1744/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 225–363 K, with an estimated overall uncertainty at 298 K of $\pm 25\%$. This recommendation supersedes that of Atkinson and Carter¹ of

 $k(1\text{-butene}) = 3.46 \times 10^{-15} \text{ e}^{-1713/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the same temperature range of 225–363 K, with a 298 K rate constant of 1.10×10^{-17} cm³ molecule⁻¹ s⁻¹.

2-Methylpropene. The rate constants of Treacy et al.³ and Greene and Atkinson⁵ are given in Table 58 and are plotted, together with the rate constants of Japar et al.¹⁹ and Huie and Herron,²⁶ in Arrhenius form in Fig. 50. The rate constants of Huie and Herron,²⁶ Treacy et al.³ and Green and Atkinson⁵ are in excellent agreement, and a unit-weighted average of the 298 K rate constants of Huie and Herron,²⁶ Treacy et al.³ and Greene and Atkinson⁵ (corrected to 298 K as described for 1-butene above) leads to the recommended 298 K rate constant of

 $k(2\text{-methylpropene}) = 1.13 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.$

Combining this 298 K rate constant with the temperature dependence of B = 1632 K obtained from a unitweighted average of the temperature dependencies of Huie and Herron²⁶ and Treacy *et al.*³ leads to the recommendation of

$$k(2\text{-methylpropene}) =$$

2.70 × 10⁻¹⁵ e^{-1632/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 225–363 K, with an estimated overall uncertainty at 298 K of $\pm 30\%$. This recommendation supersedes that of Atkinson and Carter¹ of

k(2-methylpropene) =3.55 × 10⁻¹⁵ e^{-1693/T} cm³ molecule⁻¹ s⁻¹

over the same temperature range of 225–363 K, with a 298 K rate constant of 1.21×10^{-17} cm³ molecule⁻¹ s⁻¹.

FIG. 49. Arrhenius plots of selected rate constants for the reactions of O₃ with 1-butene and *trans*-2-butene. (△) Japar *et al*.;¹⁹ (1-butene) and Japar *et al*.^{19,20} (*trans*-2-butene); (○) Huie and Herron;²⁶ (□) Nolting *et al*.;⁶ (-X -) Treacy *et al*.;³ (●) Greene and Atkinson;⁵ (−) recommendations (see text).

cis-2-Butene. The rate constants of Treacy *et al.*³ and Greene and Atkinson⁵ are given in Table 58 and are plotted in Arrhenius form, together with the rate constants of Japar *et al.*,¹⁹ Huie and Herron²⁶ and Atkinson *et al.*,²⁷ in Fig. 50. The room temperature rate constants of Huie and Herron,²⁶ Treacy *et al.*³ and Greene and Atkinson⁵ are in excellent agreement, and agree well with the literature rate constants of Cox and Penkett,²⁵ Japar *et al.*,¹⁹ and Atkinson *et al.*²⁷ A unit-weighted average of the 298 K rate constants of Huie and Herron,²⁶ Treacy *et al.*³ and Greene and Atkinson⁵ (corrected to 298 K as described above for 1-butene) leads to the recommended 298 K rate constant of

Alkene	$10^{12} \times \mathcal{A} (\text{cm}^3$ molecule ⁻¹ s ⁻¹)	B (K)	k (cm ³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
Ethene	$(7.72 \pm 0.89) \times 10^{-15}$	2557 ± 31	$\begin{array}{rcl} (1.34 \pm 0.37) \times 10^{-19} \\ (3.31 \pm 0.88) \times 10^{-19} \\ (6.60 \pm 1.75) \times 10^{-19} \\ (1.45 \pm 0.25) \times 10^{-18} \end{array}$	232 ± 4 251 ± 4 272 ± 3 298 ± 3	s-UV	Bahta <i>et al</i> . ²	228-301
	$(5.1 \pm 1.0) \times 10^{-15}$	2446 ± 91	$(1.37 \pm 0.08) \times 10^{-18}$	298	S-UV	Treacy et al. ³	240-324
Propene	6.14×10^{-15}	1897 ± 109	$\begin{array}{l} (2.08 \pm 0.02) \times 10^{-18} \\ (4.83 \pm 0.10) \times 10^{-18} \\ (7.37 \pm 0.15) \times 10^{-18} \\ (1.41 \pm 0.02) \times 10^{-17} \\ (1.76 \pm 0.02) \times 10^{-17} \\ (1.76 \pm 0.02) \times 10^{-17} \\ (3.82 \pm 0.05) \times 10^{-17} \end{array}$	235.0 266.9 286.2 309.4 332.4 362.0	SF-MS	Herron and Huie ⁴	235-362
	$(4.9 \pm 1.0) \times 10^{-15}$	1858 ± 70	$(9.6 \pm 0.4) \times 10^{-18}$	298	VU-S	Treacy et al. ³	240-324
1-Butene	$(3.7 \pm 1.0) \times 10^{-15}$	1801 ± 156	$(8.8 \pm 0.6) \times 10^{-18}$	298	S-UV	Treacy et al. ³	240324
			$(9.44 \pm 0.30) \times 10^{-18}$	296 ± 2	RR [relative to k (propene) = 9.68 $\times 10^{-18}$ ³⁴	Greene and Atkinson ⁵	
2-Methylpropene	$(2.5 \pm 0.5) \times 10^{-15}$	1592 ± 115	$(1.09 \pm 0.18) \times 10^{-17}$	298	VU-S	Treacy et al. ³	240–324
			$(1.10 \pm 0.04) \times 10^{-17}$	296 ± 2	RR [relative to k(propene) = $9.68 \times 10^{-18^{3}*}$	Greene and Atkinson ⁵	
cis-2-Butene	$(3.4 \pm 0.7) \times 10^{-15}$	979 ± 22	$(1.23 \pm 0.18) \times 10^{-16}$	298	VU-S	Treacy et al. ³	240–324
			$(1.24 \pm 0.08) \times 10^{-16}$	296 ± 2	RR [relative to k(propene) = 9.68 \times 10 ⁻¹⁸] ^a	Greene and Atkinson ⁵	
trans-2-Butene			$(2.02 \pm 0.10) \times 10^{-16}$	297 ± 2	RR [relative to $k(cis-2-butene)$ = 1.24 × 10 ⁻¹⁶] ^a	Nolting <i>et al</i> . ⁶	
	$(6.7 \pm 1.3) \times 10^{-15}$	1066 ± 115	$(1.81 \pm 0.06) \times 10^{-16}$	298	S-UV	Treacy et al. ³	240-324
			$(2.08 \pm 0.15) \times 10^{-16}$	296 ± 2	RR [relative to k (propene) = 9.68 \times 10 ^{-18]^a}	Greene and Atkinson ⁵	

TABLE 58. Rate constants k and temperature-dependent parameters, $k = A e^{-BT}$, for the gas-phase reactions of O₃ with alkenes

J. Phys. Chem. Ref. Data, Monograph No. 2

164

Continued
I.
h alkenes
wit
ő
of (
eactions (
ы Б
s gas-phas
Ē
for
в/Т
- i
Ae
k =
parameters, k
dependent
temperature
and
constants k
Rate
TABLE 5

Alkene	$10^{12} \times \mathcal{A} \ (\text{cm}^3$ molecule ⁻¹ s ⁻¹)	B (K)	k (cm³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
1-Pentene	$(1.7 \pm 0.5) \times 10^{-15}$	1579 ± 81	$(9.2 \pm 0.5) \times 10^{-18}$	298	S-UV	Treacy et al. ³	240-324
2-Methyl-2- hutene	$(6.5 \pm 1.3) \times 10^{-15}$	831 ± 44	$(3.97 \pm 0.12) \times 10^{-16}$	298	VU-S	Treacy et al. ³	240–324
			$(3.81 \pm 0.04) \times 10^{-16}$	298 ± 2	RR [relative to k(2,3-dimethyl- 2-butene) = 1.13×10^{-15}	Atkinson et al. ⁷	
			$(4.08 \pm 0.28) \times 10^{-16}$	296 ± 2	RR [relative to k(propene) = 9.68×10^{-18}] ^a	Greene and Atkinson ⁵	
1-Hexene	$(1.4 \pm 0.5) \times 10^{-15}$	1479 ± 70	$(1.02 \pm 0.06) \times 10^{-17}$	298	S-UV	Treacy et al. ³	240-324
<i>cis</i> -3-Methyl- 2-pentene			$(4.50 \pm 0.17) \times 10^{-16}$	297 ± 2	RR [relative to $k(cis-2-butene)$ = 1.24 × 10 ⁻¹⁶] ^a	Nolting <i>et al.</i> °	
2,3-Dimethyl-2-butene			$(1.19 \pm 0.11) \times 10^{-15}$	296 ± 2	RR [relative to k(propene) = 9.68×10^{-18}	Greene and Atkinson ⁵	
1-Heptene			$(1.44 \pm 0.85) \times 10^{-17}$	293–298	S-UV/GC	Grosjean ^s	
1,2-Propadiene	$(1.54 \pm 0.25) \times 10^{-15}$	2689 ± 44	1.3 × 10^{-20} 1.4 × 10^{-20} 2.4 × 10^{-20} 2.7 × 10^{-20} 3.9 × 10^{-20} 4.5 × 10^{-20} 4.6 × 10^{-20} 5.0 × 10^{-20} 5.0 × 10^{-20} 6.4 × 10^{-20} 6.4 × 10^{-20} 6.6 × 10^{-20} 6.6 × 10^{-20} 6.7 × 10^{-20} 1.03 × 10^{-19} 1.03 × 10^{-19} 1.02 × 10^{-19} 1.02 × 10^{-19}	231 236 236 240 252 253 253 253 255 261 258 265 268 268 268 268 268 275 268 268 278 278 278 278 277 278 277 278 267 277 277 277 277 277 277 277 277 277	S-UV	Bahta <i>et al</i> . ²	231-298

	$10^{12} \times A (\mathrm{cm}^3)$	B	ķ				Temperature range covered
Alkene	$molecule^{-t} s^{-1}$)	(K)	(cm ³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	(K)
1,3-Butadiene			×	254	S-UV	Bahta et al. ²	254-299
				256			
			1.61×10^{-18}	257			
			1.73×10^{-18}	257			
			1.79×10^{-18}	257			
			1.67×10^{-18}	258			
			1.96×10^{-18}	260			
			1.78×10^{-18}	261			
			1.86×10^{-18}	262			
			2.12×10^{-18}	263			
			1.93×10^{-18}	264			
			2.63×10^{-18}	266			
			2.83×10^{-18}	267			
			2.74×10^{-18}	268			
			2.99×10^{-18}	269			
			2.73×10^{-18}	270			
			2.78×10^{-18}	270			
			3.27×10^{-18}	271			
			3.35×10^{-18}	271			
			3.16×10^{-18}	272			
			3.05×10^{-18}	273			
			3.48×10^{-18}	274			
			3.44×10^{-18}	275			
			3.27×10^{-18}	276			
			3.29×10^{-18}	279			
			3.37×10^{-18}	279			
			3.31×10^{-18}				
	$(2.20 \pm 0.44) \times 10^{-14}$	2430 ± 55	$(6.27 \pm 0.63) \times 10^{-18}$	297 ± 2			
	$(8.2 \pm 1.6) \times 10^{-15}$	2136 ± 106	$(6.3 \pm 0.4) \times 10^{-18}$	298	S-UV	Treacy et al. ³	240-324
trans-1.3-			63 × 10 ⁻¹⁸	738	2-1 I.V	Rahta at al 2	738 708
Pentadiene			8.1×10^{-18}	242			
			7.1×10^{-18}	243			
			8.6×10^{-18}	245			
			9.1×10^{-18}	247			
			6.6×10^{-18}	248			
			8.5×10^{-18}	249			
			9.9×10^{-18}	249			
			1.03×10^{-17}	251			
			1.25×10^{-17}	253			
			1.06 × 10 ⁻¹	53			
			1.20×10^{-11}	254			
			1.49 × 10	23			

166

ROGER ATKINSON

TABLE 58. Rate constants k and temperature-dependent parameters, $k = A e^{-BT}$, for the gas-phase reactions of O₃ with alkenes – Continued

Alkene	$10^{12} \times \mathcal{A} (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	B (K)	k (cm ³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
			1.59×10^{-17}	255			
			1.50×10^{-17}	256			
			1.21×10^{-17}	256			
			1.21×10^{-17}	256			
			1.06×10^{-17}	257			
			1.30×10^{-17}	258			
			1.44×10^{-1}	258			
			1.48×10^{-1}	259 260			
				007			
			1.7×10^{-17}	760 260			
			1.50×10^{-17}	261			
			1.36×10^{-17}	261			
			1.61×10^{-17}	266			
			1.70×10^{-17}	266			
			1.98×10^{-17}	270 271			
	$(1.07 \pm 0.25) \times 10^{-13}$	2319 ± 62	$(4.42 \pm 0.51) \times 10^{-17}$	297–298			
1,3-Pentadiene	$(2.1 \pm 0.4) \times 10^{-15}$	1158 ± 101	$(4.24 \pm 0.12) \times 10^{-17}$	298	S-UV	Treacy et al. ³	240–324
1,4-Pentadiene			$(1.45 \pm 0.20) \times 10^{-17}$	298 ± 2	S-UV	Treacy et al. ³	
7 Mathul 1 2	$78 \pm 16 \times 10^{-15}$	1013 + 130	(1.38 + 0.13) × 10 ⁻¹⁷	208	ALL.S	Tready of al 3	240-324
2-Metuyt-1,0- butadiene /isonrene)	$01 \times (0.1 \pm 0.1)$		$01 \times (71.0 - 07.1)$	0.7	• •		2
			$(1.17 \pm 0.02) \times 10^{-17}$	296 ± 2	RR [relative to k(propene) = 9.68×10^{-18}] ^a	Greene and Atkinson ⁵	
2-Methyl-1,4-pentadiene			$(1.32 \pm 0.20) \times 10^{-17}$	298 ± 2	VU-S	Treacy et al. ³	
2,3-Dimethyl- 1,3-butadiene	$(6.9 \pm 1.3) \times 10^{-15}$	1668 ± 42	$(2.65 \pm 0.08) \times 10^{-17}$	298	VU-S	Treacy et al. ³	240-324
2,4-Dimethyl- 1,3-butadiene			$(8.0 \pm 1.4) \times 10^{-17}$	298 ± 2	S-UV	Treacy et al. ³	
2,5-Dimethyl- 1,5-hexadiene			$(1.42 \pm 0.20) \times 10^{-17}$	298 ± 2	VU-S	Treacy et al. ³	
3-Methylene-7- methyl-1,6-octadiene (myrcene)			$(4.74 \pm 0.76) \times 10^{-16}$	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52 × 10 ⁻¹⁷] ^a	Atkinson <i>et al</i> . ⁹	

167

Alkene	$10^{12} \times A (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	B (K)	k (cm³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
trans-3,7-Dimethyl- 1,3,6-octatriene (trans-ocimene) ^b			$(5.44 \pm 0.83) \times 10^{-16}$	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52 × 10 ⁻¹⁷] ^a	Atkinson et al. ⁹	
Cyclopentene			$(4.97 \pm 0.30) \times 10^{-16}$	291.5	S-CL	Bennett <i>et al</i> . ¹⁰	
			$(5.95 \pm 0.34) \times 10^{-16}$	297 ± 2	RR [relative to k(cis-2-butene) = 1.24×10^{-16}] ^a	Nolting <i>et al</i> .	
			$(6.28 \pm 0.42) \times 10^{-16}$	296 ± 2	RR [relative to k (propene) = 9.68 × 10 ⁻¹⁸] ^a	Greene and Atkinson ⁵	
Cyclohexene			$(1.51 \pm 0.10) \times 10^{-16}$	295	S-CL	Bennett <i>et al</i> . ¹⁰	
			$(7.44 \pm 0.48) \times 10^{-17}$	297 ± 2	RR [relative to $k(cis-2-butene)$ = 1.24 × 10 ⁻¹⁶] ³	Nolting <i>et al</i> .6	
			$(9.93 \pm 0.21) \times 10^{-17}$	303 ± 1	S-CL	Izumi <i>et al</i> . ¹¹	
			$(7.14 \pm 0.47) \times 10^{-17}$	296 ± 2	RR [relative to k(propene) = 9.68×10^{-18}] ^a	Greene and Atkinson ⁵	
1,4-Cyclohexadiene			$(4.60 \pm 0.23) \times 10^{-17}$	296 ± 2	RR [relative to k(propene) = 9.68×10^{-18}	Greene and Atkinson ⁵	
Cycloheptene			$(2.70 \pm 0.15) \times 10^{-16}$	297 ± 2	RR [relative to $k(cis-2-butene)$ = 1.24 × 10 ⁻¹⁶] ^a	Nolting <i>et al</i> .	
α-Pinene			$(8.20 \pm 1.24) \times 10^{-17}$	297 ± 2	RR [relative to $k(cis-2-butene)$ = 1.24 × 10 ⁻¹⁶] ^a	Nolting <i>et al</i> . ⁶	
			$(9.71 \pm 1.06) \times 10^{-17}$	296 ± 2	S-CL	Atkinson et al. ⁹	
β-Pinene			$(1.34 \pm 0.20) \times 10^{-17}$	297 ± 2	RR [relative to $k(cis-2-butene)$ = 1.24 × 10 ⁻¹⁶] ^a	Nolting <i>et al</i> . ⁶	

Continued
1
se reactions of O ₃ with alkenes
oha
as-I
e Go
r the
for
BIT,
Ae ⁻
7
ŗ,
perature-dependent parameters,
temp
nd t
k aı
BLE 58. Rate constants /
E 58
TABLE

Alkene	$10^{12} \times A (\text{cm}^3$ molecule ⁻¹ s ⁻¹)	B (K)	k (cm³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
			$(1.48 \pm 0.17) \times 10^{-17}$	296 ± 2	s-cL	Atkinson et al. ⁹	
			$(1.64 \pm 0.20) \times 10^{-17}$	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52×10^{-17} ^a	Atkinson <i>et al</i> . ⁹	
2-Carene			$(2.32 \pm 0.30) \times 10^{-16}$	296 ± 2	S-CL	Atkinson et al. ⁹	
			$(2.31 \pm 0.24) \times 10^{-16}$	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52 × 10 ⁻¹⁷] ^a	Atkinson <i>et al</i> . ⁹	
3-Carene			$(5.20 \pm 0.56) \times 10^{-17}$	296 ± 2	S-CL	Atkinson <i>et al</i> . ⁹	
			$(3.71 \pm 0.40) \times 10^{-17}$	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52×10^{-17} ^a	Atkinson <i>et al</i> . ⁹	
Camphene			$(9.0 \pm 1.7) \times 10^{-19}$	296 ± 2	S-CL	Atkinson et al. ¹²	
Sabinene			$(8.07 \pm 0.83) \times 10^{-17}$	296 ± 2	S-CL	Atkinson <i>et al</i> . ¹²	
			$(8.61 \pm 0.94) \times 10^{-17}$	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52×10^{-17} ^a	Atkinson <i>et al</i> . ⁹	
Limonene			$(2.04 \pm 0.22) \times 10^{-16}$	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52×10^{-17} ^a	Atkinson <i>et al</i> . ⁹	
α-Phellandrene			$(1.85 \pm 0.40) \times 10^{-15}$	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52 × 10 ⁻¹⁷] ^a	Atkinson et al. ⁹	
β-Phellandrene			$(4.71 \pm 0.28) \times 10^{-17}$	297 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.59 $\times 10^{-17}$ ^a	Shorees <i>et al</i> . ¹³	
α-Terpinene			$(8.47 \pm 2.24) \times 10^{-15}$	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52×10^{-17}] ^a	Atkinson <i>et al</i> . ⁹	

Alkene	$10^{12} \times \mathcal{A} \ (\text{cm}^3$ molecule ⁻¹ s ⁻¹)	B (K)	k (cm³ molecule ⁻¹ s ⁻¹)	at T (K)	at T (K) Technique	Reference	Temperature range covered (K)
y-Terpinene			$(1.40 \pm 0.16) \times 10^{-16}$	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52×10^{-17} ^a	Atkinson et al. ⁹	
Terpinolene			$(1.38 \pm 0.24) \times 10^{-15}$	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52×10^{-17} ^µ	Atkinson et al. ⁹	
Azulene			<7 × 10 ⁻¹⁷	298 ± 2	RR [relative to k(2,3-dimethyl- 2-butene) = 1.13 × 10 ⁻¹⁵] ^a	Atkinson <i>et al.</i> 7	

J. Phys. Chem. Ref. Data, Monograph No. 2

^aFrom present recommendations (see text).

^bcis-isomer has a rate constant 10 \pm 10% lower than that for the *trans*-isomer.⁹

 $k(cis-2-butene) = 1.25 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.$

Combination of this 298 K rate constant with the temperature dependence of B = 968 K determined from a unitweighted average of the temperature dependencies of Huie and Herron²⁶ and Treacy *et al.*³ leads to the recommendation of

 $k(cis-2-butene) = 3.22 \times 10^{-15} e^{-968/T} cm^3 molecule^{-1} s^{-1}$

over the temperature range 225-364 K, with an estimated overall uncertainty at 298 K of $\pm 25\%$. This recommendation supersedes that of Atkinson and Carter¹ of

 $k(cis-2-butene) = 3.52 \times 10^{-15} e^{-983/T} cm^3 molecule^{-1} s^{-1}$

over the same temperature range of 225–364 K, with a 298 K rate constant of 1.30×10^{-16} cm³ molecule⁻¹ s⁻¹.

trans-2-Butene. The absolute rate constants of Treacy et al.³ and the relative rate constants of Nolting et al.⁶ and Greene and Atkinson⁵ are given in Table 58 and are plotted, together with the rate constants of Japar et al.^{19,20} and Huie and Herron,²⁶ in Arrhenius form in Fig. 49. The rate constants of Nolting et al.⁶ and Greene and Atkinson⁵ are in excellent agreement and are in reasonable agreement with the room temperature rate constants of Huie and Herron²⁶ and Treacy et al.³ A unit-weighted average of the 298 K rate constants of Huie and Herron,²⁶ Treacy et al.³ and Greene and Atkinson⁵ (corrected to 298 K as described above for 1-butene) leads to the recommended 298 K rate constant of

$$k(trans-2$$
-butene) = $1.90 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Combination of this 298 K rate constant with the temperature dependence of B = 1059 K determined from a unitweighted average of the temperature dependencies of Huie and Herron²⁶ and Treacy *et al.*³ leads to the recommendation of

k(trans-2-butene) = 6.64 × 10⁻¹⁵ e^{-1059/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 225–364 K, with an estimated overall uncertainty at 298 K of $\pm 35\%$.

This recommendation supersedes that of Atkinson and Carter¹ of

k(trans-2-butene) = 9.08 × 10⁻¹⁵ e^{-1136/T} cm³ molecule⁻¹ s⁻¹

over the same temperature range of 225–364 K, with a 298 K rate constant of 2.00×10^{-16} cm³ molecule⁻¹ s⁻¹.

1-Pentene. The rate constants of Treacy *et al.*³ are given in Table 58. The room temperature rate constant of Treacy *et al.*³ is in reasonable agreement with that of Japar *et al.*¹⁹ of $(1.07 \pm 0.04) \times 10^{-17}$ cm³ molecule⁻¹ s⁻¹ at 299 \pm 2 K. A unit-weighted average of the rate constants of Treacy *et al.*³ and Japar *et al.*¹⁸ leads to the recommendation of $k(1\text{-pentene}) = 1.00 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty of $\pm 30\%$.

2-Methyl-2-butene. The rate constants of Treacy et al.,³ Atkinson et al.⁷ and Greene and Atkinson⁵ are given in Table 58 and those of Treacy et al.³ and Green and Atkinson⁵ are plotted, together with the rate constants of Japar et al.¹⁹ and Huie and Herron,²⁶ in Arrhenius form in Fig. 50. The rate constants of Atkinson et al.⁷ and Greene and Atkinson⁵ are self-consistent and are in good agreement with the room temperature rate constants of Huie and Herron²⁶ and Treacy et al.³ A unit-weighted average of the 298 K rate constants of Huie and Herron,²⁶ Treacy et al.³ and Greene and Atkinson⁵ (corrected to 298 K as described above for 1-butene) leads to the recommended 298 K rate constant of

 $k(2\text{-methyl-2-butene}) = 4.03 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.$

Combination of this 298 K rate constant with the temperature dependence of B = 829 K determined from a unitweighted average of the temperature dependencies of Huie and Herron²⁶ and Treacy *et al.*³ leads to the recommendation of

k (2-methyl-2-butene) = 6.51 × 10⁻¹⁵ e^{-829/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 227–363 K, with an estimated overall uncertainty at 298 K of \pm 35%. This recommendation supersedes that of Atkinson and Carter¹ of

$$k$$
 (2-methyl-2-butene) =
6.17 × 10⁻¹⁵ e^{-798/T} cm³ molecule⁻¹ s⁻¹

over the same temperature range of 227–363 K, with a 298 K rate constant of 4.23×10^{-16} cm³ molecule⁻¹ s⁻¹.

1-Hexene. The rate constants of Treacy *et al.*³ are given in Table 58. These absolute rate constants are in good agreement with the previous room temperature rate constants of Stedman *et al.*,¹⁸ Japar *et al.*,¹⁹ Adeniji *et al.*²⁸ and Atkinson *et al.*²² A unit-weighted average of the room temperature constants of Stedman *et al.*,¹⁸ Japar *et al.*,¹⁹ Adeniji *et al.*,²⁸ Atkinson *et al.*²² and Treacy *et al.*³ leads to the recommendation of

 $k(1-\text{hexene}) = 1.10 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty of $\pm 30\%$. This recommendation is similar to, but supersedes, that of Atkinson and Carter¹ of

 $k(1\text{-hexene}) = 1.17 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

2,3-Dimethyl-2-butene. The relative rate constant of Greene and Atkinson⁵ is given in Table 58 and is plotted, together with the rate constants of Japar *et al*.¹⁹ and Huie and Herron,²⁶ in Arrhenius form in Fig. 50. The room temperature rate constant of Greene and Atkinson⁵ is in

FIG. 50. Arrhenius plots of selected rate constants for the reactions of O₃ with 2-methylpropene, *cis*-2-butene, 2-methyl-2-butene and 2,3-dimethyl-2-butene. (△) Japar *et al.*;¹⁹ (○) Huie and Herron;²⁶ (▽) Atkinson *et al.*;²⁷ (-X-) Treacy *et al.*;³ (●) Greene and Atkinson;⁵ (—) recommendations (see text). For *cis*-2-butene, the recommendation and Arrhenius line of Treacy *et al.*³ are indistinguishable.

good agreement with the Arrhenius expression of Huie and Herron.²⁶ A unit-weighted average of the 298 K rate constants of Huie and Herron²⁶ and Greene and Atkinson⁵ (corrected to 298 K as described above for 1-butene) leads to the recommended 298 K rate constant of

 $k(2,3-\text{dimethyl-2-butene}) = 1.13 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1}\text{s}^{-1}$.

Combination of this 298 K rate constant with the temperature dependence of B = 294 K of Huie and Herron²⁶ leads to the recommendation of

$$k(2,3-\text{dimethyl-2-butene}) =$$

3.03 × 10⁻¹⁵ e^{-294/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 227–363 K, with an estimated overall uncertainty at 298 K of $\pm 35\%$. This recommendation is similar to, but supersedes, that of Atkinson and Carter¹ of

k(2,3-dimethyl-2-butene) =3.71 × 10⁻¹⁵ e^{-347/T} cm³ molecule⁻¹ s⁻¹

over the same temperature range of 227–363 K, with a 298 K rate constant of 1.16×10^{-15} cm³ molecule⁻¹ s⁻¹.

k(cis-3-methyl-2-pentene) =4.5 × 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 35\%$.

1,2-Propadiene. The rate constants of Bahta *et al.*² are given in Table 58, and are in good agreement with the Arrhenius expression reported by Toby and Toby.²⁹ Accordingly, the Arrhenius expression of Bahta *et al.*² is preferred.

1,3-Butadiene. The rate constants of Bahta et al.² and Treacy et al.³ are given in Table 58. The room temperature rate constants determined by Bahta et al.² and Treacy et al.³ are lower than the previous rate constant of Japar et al.,¹⁹ and the temperature dependencies of Bahta et al.² and Treacy et al.³ are lower than that reported by Toby and Toby.³⁰ The data of Bahta et al.² and Treacy et al.³ are in reasonably good agreement, especially at around room temperature, and are hence preferred. A unit-weighted average of the 298 K rate constants of Bahta et al.² and Treacy et al.³ yields the recommendation of

$$k(1,3-butadiene) = 6.3 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty of $\pm 30\%$. From a unit-weighted average of the temperature dependencies of Bahta *et al.*² and Treacy *et al.*,³ a temperature dependence of B = 2283 K is recommended, leading to

$$k(1,3\text{-butadiene}) = 1.34 \times 10^{-14} \text{ e}^{-2283/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

over the temperature range 231-324 K. This recommendation differs significantly from that of Atkinson and Carter¹ of

$$k(1,3\text{-butadiene}) = 8.8 \times 10^{-14} \text{ e}^{-2768/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$$

with a 298 K rate constant of 8.1 \times 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹.

2-Methyl-1,3-butadiene. The rate constants of Treacy et al.³ and Greene and Atkinson⁵ are given in Table 58 and are plotted in Arrhenius form in Fig. 51, together with the data of Arnts and Gay,³¹ Adeniji et al.²⁸ and Atkinson et al.³² The room temperature rate constants from these studies^{3,5} are in excellent agreement with those of Arnts and Gay³¹ (1.27 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ at 295 ± 1 K) and Atkinson et al.³² [(1.25 ± 0.20) × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ at 296 ± 2 K], but are significantly lower than the room temperature rate constant of Adeniji et al.²⁸ Combination of the 295–298 K rate con-

FIG. 51. Arrhenius plot of rate constants for the reaction of O₃ with 2-methyl-1,3-butadiene (isoprene). (□) Arnts and Gay;³¹ (△) Adeniji *et al.*;²⁸ (○) Atkinson *et al.*;³² (-X-) Treacy *et al*;³ (●) Greene and Atkinson;⁵ (—) recommendation (see text). [The recommendation and the Arrhenius expression of Treacy *et al.*³ are indistinguishable].

stants of Arnts and Gay,³¹ Atkinson *et al.*,³² Treacy *et al.*³ and Greene and Atkinson⁵ with the temperature dependence of B = 1913 K determined by Tracy *et al.*³ leads to the recommendation of

$$k$$
(2-methyl-1,3-butadiene) =
7.86 × 10⁻¹⁵ e^{-1913/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 240-324 K, and

k(2-methyl-1,3-butadiene) =1.28 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 25\%$. This recommendation supersedes that of Atkinson and Carter¹ of

$$k$$
(2-methyl-1,3-butadiene) =
1.23 × 10⁻¹⁴ e^{-2013/T} cm³ molecule⁻¹ s⁻¹,

with a 298 K rate constant of 1.43 \times 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹.

Cyclopentene. The rate constants of Bennett *et al.*,¹⁰ Nolting *et al.*⁶ and Greene and Atkinson⁵ are given in Table 58. As discussed previously, the previous room temperature rate constants for this reaction^{19,27,28} range over a factor of 3.5. The room temperature relative rate constants of Nolting *et al.*⁶ and Greene and Atkinson⁵ are in excellent agreement and, based mainly on the rate constant of Greene and Atkinson,⁵ it is recommended that

k (cyclopentene) = 6.3 × 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 35\%$.

Cyclohexene. The room temperature rate constants of Bennett et al.,¹⁰ Nolting et al.,⁶ Izumi et al.¹¹ and Greene and Atkinson⁵ are given in Table 58. Somewhat analogous to the situation for cyclopentene, these^{5,6,10,11} and previous^{19,27,28} literature room temperature rate constants exhibit a significant degree of scatter, covering a range of ~2.7 in this case. Again, the relative rate constants of Nolting et al.⁶ and Greene and Atkinson⁵ are in good agreement and, based mainly on the rate constant of Greene and Atkinson,⁵ it is recommended that

k(cyclohexene) = 7.2 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 30\%$.

1,4-Cyclohexadiene. The relative rate constant of Greene and Atkinson⁵ is given in Table 58. This rate constant is 28% lower than that of Atkinson *et al*.²⁷ The rate constant of Greene and Atkinson⁵ is recommended, of

k(1,4-cyclohexadiene) =4.6 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 35\%$.

Cycloheptene. The relative rate constant of Nolting et al.⁶ is given in Table 58. This rate constant of Nolting et al.⁶ is in reasonable agreement with that of Atkinson et al.²⁷ of $(3.19 \pm 0.36) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ at 297 \pm 1 K. A unit-weighted average of these rate constants^{6,27} leads to the recommendation of

k (cycloheptene) = 2.9×10^{-16} cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 35\%$.

 α -Pinene. The rate constants of Nolting *et al.*⁶ and Atkinson *et al.*⁹ are given in Table 58. In addition, the relative rate constant for sabinene relative to that for α -pinene determined in the study of Atkinson *et al.*⁹ can be combined with the absolute rate constant for sabinene¹² to obtain a rate constant for α -pinene of 7.99 $\times 10^{-17}$ cm³ molecule⁻¹s⁻¹ at 296 ± 2 K.⁹ The absolute rate constants of Atkinson *et al.*^{9,32} and the relative rate constants of Nolting *et al.*⁶ and Atkinson *et al.*⁹ are in good agreement, and a unit-weighted average of these rate constants^{6,9,32} leads to the recommendation of

$$k(\alpha$$
-pinene) =
8.52 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ at 296 ± 1 K.

Combining this 296 K rate constant with the temperature dependence of Atkinson *et al.*³² of $B = 731 \pm 174$ K leads to the recommendation of

 $k(\alpha$ -pinene) = 1.01 × 10⁻¹⁵ e^{-732/T} cm³ molecule⁻¹ s⁻¹
over the temperature range 276-324 K, and

 $k(\alpha$ -pinene) = 8.66 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 30\%$.

β-Pinene. The room temperature rate constants of Nolting et al.⁶ and Atkinson et al.⁹ are given in Table 58. The rate constants from these studies^{6,9} are in good agreement, and agree reasonably well with the rate constant of $(2.1 \pm 0.5) \times 10^{-17}$ cm³ molecule⁻¹ s⁻¹ at 296 ± 2 K determined previously by Atkinson et al.³² A unitweighted average of the absolute and relative rate constants of Nolting et al.⁶ and Atkinson et al.⁹ leads to the recommendation of

 $k(\beta$ -pinene) = 1.5 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 35\%$.

2-Carene, 3-Carene and Sabinene. The absolute and relative rate constants of Atkinson *et al.*^{9,12} are given in Table 58. The relative rate constants are preferred,⁹ leading to the recommendations of

$$k(2\text{-carene}) = 2.3 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$$

 $k(3\text{-carene}) = 3.7 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$ and

k(sabinene) = 8.6 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹,

all at 298 K and with estimated overall uncertainties of $\pm 35\%$.

Other Terpenes. The rate constants of Atkinson *et al*.^{9,12} and Shorees *et al*.¹³ are given in Table 58. As discussed previously,^{1,9} these rate constants are significantly lower than the previous literature data, but are preferred. The rate constants of Atkinson *et al*.^{9,12} and Shorees *et al*.¹³ should therefore be used.

Other Alkenes. For the other alkenes for which data are given in Table 58, these are the first reported data, apart from 1,3-pentadiene for which the studies of Bahta *et al.*² and Treacy *et al.*³ give very different temperature dependencies (but similar room temperature rate constants).

References

- ¹R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ²A. Bahta, R. Simonaitis, and J. Heicklen, Int. J. Chem. Kinet. 16, 1227 (1984).
- ³J. Treacy, M. El Hag, D. O'Farrell, and H. Sidebottom, Ber. Bunsenges. Phys. Chem. 96, 422 (1992).
- ⁴J. T. Herron and R. E. Huie, J. Phys. Chem. 78, 2085 (1974).
- ⁵C. R. Greene and R. Atkinson, Int. J. Chem. Kinet. 24, 803 (1992).
- ⁶F. Nolting, W. Behnke, and C. Zetzsch, J. Atmos. Chem. 6, 47 (1988).
- ⁷R. Atkinson, J. Arey, and S. M. Aschmann, Int. J. Chem. Kinet. 24, 467 (1992).
- ⁸D. Grosjean, Sci. Total Environ. 37, 195 (1984).
- ⁹R. Atkinson, D. Hasegawa, and S. M. Aschmann, Int. J. Chem. Kinet. **22**, 871 (1990).
- ¹⁰P. J. Bennett, S. J. Harris, and J. A. Kerr, Int. J. Chem. Kinet. **19**, 609 (1987).

- ¹¹K. Izumi, K. Murano, M. Mizuochi, and T. Fukuyama, Environ. Sci. Technol. 22, 1207 (1988).
- ¹²R. Atkinson, S. M. Aschmann, and J. Arey, Atmos. Environ. 24A, 2647 (1990).
- ¹³B. Shorees, R. Atkinson, and J. Arey, Int. J. Chem. Kinet. 23, 897 (1991).
- ¹⁴M. Donlon, D. J. O'Farrell, J. J. Treacy, and H. W. Sidebottom, Proc. 5th European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990, pp. 359–363.
- ¹⁵F. Su, J. G. Calvert, and J. H. Shaw, J. Phys. Chem. 84, 239 (1980).
- ¹⁶C. S. Kan, F. Su, J. G. Calvert, and J. H. Shaw, J. Phys. Chem. **85**, 2359 (1981).
- ¹⁷W. B. DeMore, Int. J. Chem. Kinet. 1, 209 (1969).
- ¹⁸D. H. Stedman, C. H. Wu, and H. Niki, J. Phys. Chem. 77, 2511 (1973).
- ¹⁹S. M. Japar, C. H. Wu, and H. Niki, J. Phys. Chem. 78, 2318 (1974).
- ²⁰S. M. Japar, C. H. Wu, and H. Niki, J. Phys. Chem. 80, 2057 (1976).
- ²¹F. S. Toby, S. Toby, and H. E. O'Neal, Int. J. Chem. Kinet. 8, 25 (1976).
- ²²R. Atkinson, S. M. Aschmann, D. R. Fitz, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 14, 13 (1982).
- ²³W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling," NASA Panel for Data Evaluation, Evaluation No. 10, Jet Propulsion Laboratory Publication 92–20, August 15, 1992.
- ²⁴R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and J. Troe, J. Phys. Chem. Ref. Data 21, 1125 (1992).
- ²⁵R. A. Cox and S. A. Penkett, J. Chem. Soc. Faraday Trans. 1, 68, 1735 (1972).
- ²⁶R. E. Huie and J. T. Herron, Int. J. Chem. Kinet. Symp. 1, 165 (1975).
- ²⁷R. Atkinson, S. M. Aschmann, W. P. L. Carter, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 15, 721 (1983).
- ²⁸S. A. Adeniji, J. A. Kerr, and M. R. Williams, Int. J. Chem. Kinet. 13, 209 (1981).
- ²⁹F. S. Toby and S. Toby, Int. J. Chem. Kinet. 6, 417 (1974).
- ³⁰F. S. Toby and S. Toby, Int. J. Chem. Kinet. Symp. 1, 197 (1975).
- ³¹R. R. Arnts and B. W. Gay, Jr., "Photochemistry of Some Naturally Emitted Hydrocarbons," EPA-600/3-79-081, September 1979, Research Triangle Park, NC.
- ³²R. Atkinson, A. M. Winer, and J. N. Pitts, Jr., Atmos. Environ. 16, 1017 (1982).

5.3. Haloalkenes

The rate constants reported since the review and evaluation of Atkinson and Carter¹ are given in Table 59. The rate constant of Toby and Toby² for $CF_2 = CF_2$ was inadvertently omitted from the previous evaluation.¹ This room temperature rate constant of Toby and Toby² for $CF_2 = CF_2$ is lower by factors of ~3 and 20 than the measurements of Adeniji *et al.*⁵ and Heicklen,⁶ respectively.

3-Chloro-1-propene (allyl chloride). The rate constants of Edney *et al.*³ and Tuazon *et al.*⁴ are given in Table 59. These rate constants^{3,4} are in good agreement, and a unit-weighted average leads to the recommendation of

k (allyl chloride) = 1.55 × 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 30\%$. Product studies were also conducted by Edney *et al.*³ and Tuazon *et al.*⁴ and these references should be consulted for further details.

References

- ¹R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ²F. S. Toby and S. Toby, J. Phys. Chem. 80, 2313 (1976).
- ³E. O. Edney, P. B. Shepson, T. E. Kleindienst, and E. W. Corse, Int. J. Chem. Kinet. **18**, 597 (1986).
- ⁴E. C. Tuazon, R. Atkinson, and S. M. Aschmann, Int. J. Chem. Kinet. **22**, 981 (1990).
- ⁵S. A. Adeniji, J. A. Kerr, and M. R. Williams, Int. J. Chem. Kinet. 13, 209 (1981).
- ⁶J. Heicklen, J. Phys. Chem. 70, 477, 4101 (1966).

5.4. Oxygen-Containing Organic Compounds

The kinetic data reported since the review and evaluation of Atkinson and Carter¹ are given in Table 60. As expected, no evidence for any reaction of 1,8-cineole (a cyclic saturated ether) was observed.²

Acrolein. The rate constant measured by Treacy *et al.*³ at 298 \pm 2 K is given in Table 60. This rate constant of Treacy *et al.*³ is in excellent agreement with that of Atkinson *et al.*⁵ of (2.8 \pm 0.5) \times 10⁻¹⁹ cm³ molecule⁻¹ s⁻¹ at 296 \pm 2 K. A unit-weighted average of the rate constants of Atkinson *et al.*⁵ and Treacy *et al.*³ leads to the recommended rate constant of

 $k(\text{acrolein}) = 2.9 \times 10^{-19} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty of $\pm 35\%$.

Methacrolein. The 298 K rate constant and Arrhenius expression reported by Treacy *et al.*³ are given in Table 60 (the individual rate constants at the temperatures studied were not tabulated). The 298 K rate constant of Treacy *et al.*³ is in good agreement with the room temperature rate constants of Atkinson *et al.*,⁵ of $(1.12 \pm 0.13) \times 10^{-18}$ cm³ molecule⁻¹ s⁻¹ at 296 ± 2 K, and Kamens *et al.*,⁶ of 1.1×10^{-18} cm³ molecule⁻¹ s⁻¹ at an unspecified room temperature.

A unit-weighted average of the room temperature rate constants of Atkinson *et al.*⁵ and Treacy *et al.*,³ combined with the temperature dependence of Treacy *et al.*,³ leads to the recommended Arrhenius expression of

k(methacrolein) = $1.36 \times 10^{-15} e^{-2112/T} cm^3$ molecule⁻¹ s⁻¹

over the temperature range 240-324 K, and

k (methacrolein) = 1.14 × 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 35\%$.

Methyl vinyl ketone. The 298 K rate constant and Arrhenius expression reported by Treacy *et al.*³ are given in Table 60. The 298 K rate constant of Treacy *et al.*³ is in reasonable agreement with the rate constants of Atkinson *et al.*,⁵ of (4.77 \pm 0.59) \times 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹ at 296 \pm 2 K, and Kamens *et al.*,⁶ of 4.0 \times 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹ at an unspecified room temperature. A unit-weighted average of the room temperature rate constants of Atkinson *et al.*⁵ and Treacy *et al.*,³ combined with the temperature dependence of Treacy *et al.*,³ leads to the recommended Arrhenius expression of

k (methyl vinyl ketone) =7.51 × 10⁻¹⁶ e^{-1521/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 240-324 K, and

 $k \text{(methyl vinyl ketone)} = 4.56 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty at 298 K of $\pm 35\%$.

References

- ¹R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ²R. Atkinson, D. Hasegawa, and S. M. Aschmann, Int. J. Chem. Kinet. **22**, 871 (1990).
- ³J. Treacy, M. El Hag, D. O'Farrell, and H. Sidebottom, Ber. Bunsenges. Phys. Chem. **96**, 422 (1992).
- ⁴R. Atkinson and S. M. Aschmann, J. Atmos. Chem. 16, 337 (1993).
- ⁵R. Atkinson, S. M. Aschmann, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. **13**, 1133 (1981).
- ⁶R. M. Kamens, M. W. Gery, H. E. Jeffries, M. Jackson, E. I. Cole, Int. J. Chem. Kinet. **14**, 955 (1982).

5.5. Nitrogen-Containing Organic Compounds

The rate constants reported since the review and evaluation of Atkinson and Carter¹ are given in Table 61. The rate constants of Tuazon *et al.*² for the aliphatic amines and tetramethylhydrazine are all lower, by factors of \sim 1.2–3, than the unpublished data of Tuazon, Atkinson, Carter and Pitts, cited in Atkinson and Carter.¹ The rate constants of Tuazon *et al.*² given in Table 61 are preferred.

The rate constant for 2-vinylpyridine⁴ is very similar to that for styrene (see Sec. 5.7. below), indicating that the O₃ reaction proceeds by initial O₃ addition to the $-CH = CH_2$ substituent group. Under atmospheric conditions, the major products of the O₃ reaction with 2vinylpyridine were determined to be 2-pyridinecarboxaldehyde and HCHO, with yields of 0.80 ± 0.09 and 0.34 ± 0.05, respectively,⁴ together with minor amounts of pyridine, HCOOH and HC(O)OOH.⁴ (See Reaction Scheme (17) on the next page.)

References

- ¹R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ²E. C. Tuazon, R. Atkinson, S. M. Aschmann, and J. Arey, Res. Chem. Intermed., in press (1993).
- ³R. Atkinson, E. C. Tuzaon, T. J. Wallington, S. M. Aschmann, J. Arey,
- A. M. Winer, and J. N. Pitts, Jr., Environ. Sci. Technol. 21, 64 (1987). ⁴E. C. Tuazon, J. Arey, R. Atkinson, and S. M. Aschmann, Environ. Sci.

⁵E. S. C. Kwok, R. Atkinson, and J. Arey, Environ. Sci. Technol. 26, 1798 (1992).

Technol. 27, 1832 (1993).

5.6. Phosphorus-, Silicon- and Selenium-Containing Organic Compunds

The rate constants reported since the review and evaluation of Atkinson and Carter¹ are given in Table 62. Only for dimethyl selenide (CH₃SeCH₃) was a reaction observed.⁸

References

- ¹R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ² E. C. Tuazon, R. Atkinson, S. M. Aschmann, J. Arey, A. M. Winer, and J. N. Pitts, Jr., Environ. Sci. Technol. 20, 1043 (1986).
- ³M. A. Goodman, S. M. Aschmann, R. Atkinson, and A. M. Winer, Arch. Environ. Contam. Toxicol. **17**, 281 (1988).
- ⁴R. Atkinson, S. M. Aschmann, M. A. Goodman, and A. M. Winer, Int. J. Chem. Kinet. **20**, 273 (1988).
- ⁵M. A. Goodman, S. M. Aschmann, R. Atkinson, and A. M. Winer, Environ. Sci. Technol. **22**, 578 (1988).
- ⁶R. Atkinson, Environ. Sci. Technol. 25, 863 (1991).
- ⁷R. Atkinson, S. M. Aschmann, and J. Arey, unpublished data (1992). ⁸R. Atkinson, S. M. Aschmann, D. Hasegawa, E. T. Thompson-Eagle,
- and W. T. Frankenberger, Jr., Environ. Sci. Technol. 24, 1326 (1990).

5.7. Aromatic Compounds

The rate constants reported since the review and evaluation of Atkinson and Carter¹ are given in Table 63. In most cases, only upper limits to the rate constants have been obtained.

Benzene and Alkyl-Substituted Benzenes. The rate constants of Toby et al.² for benzene, toluene and the xylenes and of Atkinson et al.³ for 1-methyl-4-isopropylbenzene are given in Table 63. These reactions are extremely slow at room temperature and, consistent with the conclusions of Atkinson and Carter,¹ an upper limit of k (benzene and alkyl-benzenes) $< 1 \times 10^{-20}$ cm³ molecule⁻¹ s⁻¹ at 298 K

is recommended.

Styrene. The rate constant of Tuazon et al.⁶ is given in Table 63. This room temperature rate constant is in good agreement with that of Atkinson et al.¹³ of $(2.16 \pm 0.46) \times 10^{-17}$ cm³ molecule⁻¹ s⁻¹ at 296 ± 2 K. The study of Tuazon et al.⁶ supersedes that of Atkinson et al.¹³ and the rate constant of Tuazon et al.⁶ is used to recommend that

$$k$$
(styrene) = 1.71 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 35\%$. This reaction proceeds by initial addition of O₃ to the $-CH = CH_2$ substituent group,

and both HCHO and C₆H₅CHO were observed by Tuazon *et al.*⁶ in yields of 0.37 \pm 0.05 and 0.41 \pm 0.05, respectively.

2,3-Benzofuran and Acenaphthylene. In contrast to most of the other aromatic compunds studied (Table 63 and Atkinson and Carter¹), these two compounds react with O₃. These O₃ reactions proceed by initial O₃ addition to the >C=C< bonds in the 5-membered ring systems.^{7,11}

					•		
Haloalkene	$10^{12} \times A$ (cm ³ molecule ⁻¹ s ⁻¹)	B (K)	$k \qquad (cm^3 molecule^{-1} s^{-1})$	at T (K)	Technique	Reference	Temperature range covered (K)
Tetrafluoroethene	0.26 ^{+0.58}	4781 ± 353	$2.8 \times 10^{-20} \text{ s}$	298	S-UV	Toby and Toby ²	273–383
3-Chloro-1-propene			$(1.5 \pm 0.23) \times 10^{-18}$	298	S-UV	Edney et al. ³	
(allyl chloride)			$(1.60 \pm 0.18) \times 10^{-18}$	298 ± 2	S-CL	Tuazon <i>et al</i> . ⁴	
^a Calculated from Arrhenius expression.	rthenius expression.						
	TABLE 60. Rate co	nstants k and tem	TABLE 60. Rate constants k and temperature-dependent parameters for the gas-phase reactions of O ₃ with oxygen-containing compounds	the gas-phase reaction	ns of O ₃ with oxygen-co	ataining compounds	
Oxygenate	$\frac{A}{(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})}$	B (K)	k (cm³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
1,8-Cineole			$< 1.5 \times 10^{-19}$	296 ± 2	s-cL	Atkinson et al. ²	
Acrolein [CH ₂ = CHCHO]			$(3.0 \pm 0.4) \times 10^{-19}$	298 ± 2	S-UV	Treacy et al. ³	
Methacrolein [CH ₂ = C(CH ₃)CHO]	$(1.3 \pm 0.2) \times 10^{-15}$	2112 ± 131	$(1.1 \pm 0.2) \times 10^{-18}$	298	s-UV	Treacy et al. ³	240-324
Methyl vinyl ketone [CH ₂ =CHC(O)CH ₃]	$(6.9 \pm 1.4) \times 10^{-16}$	1521 ± 78	$(4.2 \pm 0.4) \times 10^{-18}$	298	S-UV	Treacy et al. ³	240-324
4-Acetyl-1- methylcyclohexene			$(1.50 \pm 0.04) \times 10^{-16}$	296 ± 2	RR [relative to k(2-methyl-2- butene) = 3.96 $\times 10^{-16}$] ^a	Atkinson and Aschmann ⁴	lann ⁴

TABLE 59. Rate constants k and temperature-dependent parameters, $k = Ae^{-B/T}$, for the gas-phase reactions of O₃ with haloalkenes

^aFrom present recommendation.

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

177

Rate constants <i>l</i>					

Organic	$k (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	at T (K)	Technique	Reference
Methylamine	$(7.4 \pm 2.4) \times 10^{-21}$	298 ± 2	S-CL	Tuazon et al.2
Dimethylamine	$(1.67 \pm 0.20) \times 10^{-18}$	298 ± 2	S-CL	Tuazon et al.2
Trimethylamine	$(7.84 \pm 0.87) \times 10^{-18}$	298 ± 2	S-CL	Tuazon et al.2
2-(Dimethylamino)ethanol [(CH ₃) ₂ NCH ₂ CH ₂ OH]	$(6.76 \pm 0.83) \times 10^{-18}$	298 ± 2	S-CL	Tuazon et al. ²
Tetramethylhydrazine	$(5.21 \pm 0.60) \times 10^{-18}$	298 ± 2	S-CL	Tuazon et al.2
Pyridine	$< 1.1 \times 10^{-20}$	296 ± 2	S-CL	Atkinson et al.3
2-Vinylpyridine	$(1.46 \pm 0.17) \times 10^{-17}$	298 ± 2	S-CL	Tuazon et al.4
1,3,5-Triazine	$<4 \times 10^{-21}$	296 ± 2	S-CL	Atkinson et al.3
(CH ₃) ₂ NC(O)SCH ₃	$<4 \times 10^{-20}$	298 ± 2	S-GC	Kwok et al.5
(CH ₃ CH ₂ CH ₂) ₂ NC(O)SCH ₂ CH ₃	$< 1.3 \times 10^{-19}$	298 ± 2	S-GC	Kwok et al.5
$CH_3CH_2(c-C_6H_{11})NC(O)SCH_2CH_3$	$< 3 \times 10^{-19}$	298 ± 2	S-GC	Kwok et al.5

TABLE 62. Rate constants k for the gas-phase reactions of O₃ with phosphorus-, selenium- and silicon- containing organic compounds

Organic	$k(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	at T (K)	Technique	Reference
Phosphorus-Containing				
(CH ₃ O) ₃ PO	$< 6 \times 10^{-20}$	296 ± 2	S-IR	Tuazon et al. ²
(CH ₃ O) ₂ P(O)SCH ₃	$<2 \times 10^{-19}$	298 ± 2	S-GC	Goodman et al.3
(CH ₃ S) ₂ P(O)OCH ₃	$<1 \times 10^{-19}$	298 ± 2	S-GC	Goodman et al.3
(CH ₃ O) ₃ PS	$< 3 \times 10^{-19}$	298 ± 2	S-GC	Goodman et al.3
(CH ₃ O) ₂ P(S)SCH ₃	$<2 \times 10^{-19}$	298 ± 2	S-GC	Goodman et al.3
(CH ₃ O) ₂ P(S)Cl	$<2 \times 10^{-19}$	296 ± 2	S-GC	Atkinson et al.4
$(CH_3O)_2P(O)N(CH_3)_2$	$<2 \times 10^{-19}$	296 ± 2	S-GC	Goodman et al.5
$(CH_3O)_2P(S)N(CH_3)_2$	$<2 \times 10^{-19}$	296 ± 2	S-GC	Goodman et al.5
(CH ₃ O) ₂ P(S)NHCH ₃	$<2 \times 10^{-19}$	296 ± 2	S-GC	Goodman et al.5
$(CH_3O)_2P(S)NH_2$	$<4 \times 10^{-19}$	296 ± 2	S-GC	Goodman et al.5
Silicon-Containing				
Tetramethylsilane	$<7 \times 10^{-21}$	297 ± 2	S-GC	Atkinson ⁶
[(CH3)4Si] Hexamethyldisiloxane	$<7 \times 10^{-21}$	297 ± 2	S-GC	Atkinson ⁶
[(CH ₃) ₃ SiOSi(CH ₃) ₃]		297 ± 2	3-00	Atkinson"
Hexamethylcyclotrisiloxane	$<3 \times 10^{-20}$	297 ± 2	S-GC	Atkinson ⁶
[-(CH ₃) ₂ SiO-] ₃		471 ± 4	3-00	Atkinson
Octamethylcyclotetrasiloxane	$< 3 \times 10^{-20}$	297 ± 2	S-GC	Atkinson ⁶
[-(CH ₃) ₂ SiO-] ₄			5-00	ATTENII SOLL
Decamethylcyclopentasiloxane	$< 3 \times 10^{-20}$	297 ± 2	S-GC	Atkinson ⁶
[-(CH ₃) ₂ SiO-] ₅	-0 - 20		0.00	1 MAILOVII
(CH ₃) ₃ SiOSi(CH ₃) ₂ OH	$<7 \times 10^{-20}$	297 ± 2	S-GC	Atkinson et al.7
Selenium-Containing				
Dimethyl selenide	$(6.80 \pm 0.72) \times 10^{-17}$	296 ± 2	S-CL	Atkinson et al.8
(CH ₃) ₂ Se	(

apun
Ino
đ
com
ii:
aromat
ro
Ча
wit
ő
of
s
<u>10</u>
act
геас
ase
phź
as-j
60 (J)
the
for
F.
- B
Ae
B
×
ers, k
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
ate constants k and temperature dependent parameters, k
×
ate constants k and temperature dependent parameters, k
\mathbf{x} 63. Rate constants k and temperature dependent parameters, k
63. Rate constants k and temperature dependent parameters, k

	$10^{12} \times A \ (\text{cm}^3)$	B	k				Temperature range covered
Aromatic	$molecule^{-1} s^{-1}$	(K)	(cm ³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	(K)
Benzene	10.5 ± 15.9	7398 ± 353	1.7×10^{-22} a	298	S-UV	Toby et al. ²	298-423
Toluene	$2.34^{+5.98}_{-1.68}$	6694 ± 403	4.1×10^{-22} s	298	S-UV	Toby et al. ²	298-398
o-Xylene	$0.240_{-0.187}^{+0.832}$	5586 ± 453	1.7×10^{-21}	298	S-UV	Toby et al. ²	298-423
<i>m</i> -Xylene	0.537 ± 0.876	6039 ± 202	8.5×10^{-22} a	298	S-UV	Toby et al. ²	298-423
<i>p</i> -Xylene	$0.191^{+0.568}_{-0.144}$	5586 ± 302	1.4×10^{-21} a	298	S-UV	Toby et al. ²	298-423
1-Methyl-4-isopropylbenzene	anzene		$<5 \times 10^{-20}$	296 ± 2	s-cL	Atkinson et al. ³	
(<i>p</i> -cymene)			≤ 2.1 × 10 ⁻¹⁸	296 ± 2	RR [relative to $k(\alpha$ -pinene) = 8.52×10^{-17}	Atkinson et al. ³	
Benzylchloride			$< 6 \times 10^{-20}$	298 ± 2	s-cL	Tuazon <i>et al</i> . ⁴	
Nitrobenzene			$<7 \times 10^{-21}$	296 ± 2	S-CL	Atkinson et al. ⁵	
Aniline			$(1.12 \pm 0.14) \times 10^{-18}$	296 ± 2	S-CL	Atkinson et al.5	
N,N-Dimethylaniline			$(9.1 \pm 1.0) \times 10^{-18}$	296 ± 2	S-CL	Atkinson et al.5	
Styrene			$(1.71 \pm 0.18) \times 10^{-17}$	296 ± 2	S-CL	Tuazon <i>et al</i> . ⁶	
1,4-Benzodioxan			$< 1.2 \times 10^{-20}$	298 ± 2	S-CL	Atkinson et al. ⁷	
2,3-Dihydrobenzofuran			$<1 \times 10^{-19}$	298 ± 2	S-CL	Atkinson et al. ⁷	
2,3-Benzofuran			$(1.83 \pm 0.21) \times 10^{-18}$	298 ± 2	S-CL	Atkinson et al. ⁷	
1,4-Naphthoquinone			$< 2 \times 10^{-19}$	298 ± 2	S-GC	Atkinson et al. ⁸	
Naphthalene			$< 3 \times 10^{-19}$	295 ± 1	S-GC	Atkinson and Aschmann ⁹	ann ⁹
1-Methylnaphthalene			$< 1.3 \times 10^{-19}$	298 ± 2	S-GC	Atkinson and Aschmann ¹⁰	01 une
2-Methylnaphthalene			$< 4 \times 10^{-19}$	295 ± 1	S-GC	Atkinson and Aschmann ⁹	ann ⁹
2,3-Dimethylnaphthalene	:ne		$< 4 \times 10^{-19}$	295 ± 1	S-GC	Atkinson and Aschmann ⁹	inn ⁹
Acenaphthene			$<5 \times 10^{-19}$	296 ± 2	S-GC	Atkinson and Aschmann ^{1t}	ann ^{it}
Acenaphthylene			$(5.5^{+5.8}_{-2.8}) \times 10^{-16}$	296 ± 2	S-GC	Atkinson and Aschmann ¹¹	in une
1-Nitronaphthalene			$< 6 \times 10^{-19}$	298 ± 2	S-GC	Atkinson et al. ⁸	
2-Nitronaphthalene			$< 6 \times 10^{-19}$	298 ± 2	S-GC	Atkinson et al. ⁸	
2-Methyl-1-nitronaphthalene	halene		$< 3 \times 10^{-19}$	298 ± 2	S-GC	Arey et al. ¹²	
"Calculated from cited Arrhenius expression	Arrhenius expression						

^aCalculated from cited Arrhenius expression. ^bFrom present recommendation.

References

- ¹R. Atkinson and W. P. L. Carter, Chem. Rev. 84, 437 (1984).
- ²S. Toby, L. J. Van de Burgt and F. S. Toby, J. Phys. Chem. **89**, 1982 (1985).
- ³R. Atkinson, D. Hasegawa and S. M. Aschmann, Int. J. Chem. Kinet. **22**, 871 (1990).
- ⁴E. C. Tuazon, R. Atkinson, and S. M. Aschmann, Int. J. Chem. Kinet. **22**, 981 (1990).
- ⁵R. Atkinson, E. C. Tuazon, T. J. Wallington, S. M. Aschmann, J. Arey, A. M. Winer, and J. N. Pitts, Jr., Environ. Sci. Technol. 21, 64 (1987).
- ⁶E. C. Tuazon, J. Arey, R. Atkinson, and S. M. Aschmann, Environ. Sci. Technol. 27, 1832 (1993).
- ⁷R. Atkinson, J. Arey, E. C. Tuazon, and S. M. Aschmann, Int. J. Chem. Kinet. **24**, 345 (1992).
- ⁸R. Atkinson, S. M. Aschmann, J. Arey, B. Zielinska, and D. Schuetzle, Atmos. Environ. 23, 2679 (1989).
- ⁹R. Atkinson and S. M. Aschmann, Int. J. Chem. Kinet. 18, 569 (1986).
- ¹⁰R. Atkinson and S. M. Aschmann, Atmos. Environ. 21, 2323 (1987).
- ¹¹R. Atkinson and S. M. Aschmann, Int. J. Chem. Kinet. 20, 513 (1988).
- ¹²J. Arey, R. Atkinson, S. M. Aschmann, and D. Schuetzle, Polycyclic Aromatic Compounds, 1, 33 (1990).
- ¹³R. Atkinson, S. M. Aschmann, D. R. Fitz, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 14, 13 (1982).

6. Acknowledgments

The author gratefully thanks the U. S. Environmental Protection Agency, through Cooperative Agreement No. CR-815699-01-0 (Marcia C. Dodge, Project Officer) and the California Air Resources Board, through Contract No. A032-055 (Ralph Propper, Project Monitor) for financial assistance, and thanks Drs. J. Alistair Kerr, Suzanne E. Paulson, John H. Seinfeld and Timothy J. Wallington for communicating their data prior to publication and Ms. Christy J. LaClaire for her excellent work in assembling this manuscript. While this work has been funded by the U. S. EPA and the California Air Resources Board, it has not been subjected to these agencies reviews and therefore no official endorsement should be inferred.

7. Addendum Updated literature

In this section, literature data appearing since the final version of this article was prepared are presented and discussed. The format of this Addendum follows that of the article.

7.1. Gas-Phase Tropospheric Chemistry of Organic Compounds

7.1.1. Alkanes

Kinetic data concerning the OH radical reactions with the alkanes which have appeared since the final version of this article was prepared are presented and discussed in Sec. 7.2.1 (this addendum). In this section, new data concerning the reaction mechanisms and products of the reactions subsequent to the initial OH radical and/or NO_3 radical reactions are given.

Reactions of Alkyl Radicals with HO₂ Radicals

Wallington and Hurley¹ have used FT-IR absorption spectroscopy to study the products of the gas-phase reaction of the CD₃ \dot{O}_2 radical with the HO₂ radical at 295 \pm 2 K over the total pressure range 10–700 Torr of O₂ or O₂ + N₂. CD₃ \dot{O}_2 and HO₂ radicals were generated¹ by the photolysis of F₂-CD₄-H₂-O₂-N₂ mixtures at wavelengths > 290 nm. CD₃OOH was the major product observed and, taking into account the self-reaction of CD₃ \dot{O}_2 radicals (calculated to be 9–11% of the overall removal of CD₃ \dot{O}_2 radicals), then a formation yield of CD₃OOH from the reaction of HO₂ radicals with CD₃ \dot{O}_2 radicals of 1.00 \pm 0.04 was obtained.¹ These data show that the CD₃ \dot{O}_2 radical reaction with the HO₂ radical proceeds through the single channel,

$$CD_3O_2 + HO_2 \rightarrow CD_3OOH + O_2$$

in agreement with the data presented in Sec. 2.1.

Fenter $et al.^2$ have used a flash photolysis system with ultraviolet absorption spectroscopy to determine rate constants for the reactions

$$2 C_2 H_5 O_2 \rightarrow \text{products}$$

and

$$C_2H_5O_2 + HO_2 \rightarrow C_2H_5OOH + O_2$$

The rate constant obtained for the self reaction of ethyl peroxy radicals of $(6.7 \pm 0.6) \times 10^{-14} e^{(60 \pm 40)/T}$ cm³ molecule⁻¹ s⁻¹ over the temperature range 248–460 K is in good agreement with that recommended in Sec. 2.1 from the IUPAC recommendation.³ For the reaction of the C₂H₅ \dot{O}_2 radical with the HO₂ radical, however, Fenter *et al.*² obtained a rate constant at atmospheric pressure of

$$k(C_2H_5O_2 + HO_2) =$$

(1.60 ± 0.40) × 10⁻¹³ e^{(1260 ± 130)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 248–480 K, with $k(C_2H_5\dot{O}_2 + HO_2) = (1.10 \pm 0.21) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 298 K.² This rate constant is a factor of ~2 higher than previous measurements (Sec. 2.1) but is close to the general recommendation made in Sec. 2.1 of

$$k(\dot{RO}_2 + HO_2) = 1.0 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$$

Rowley *et al.*⁴ have studied the kinetics and products of the gas-phase reaction of the neopentyl peroxy $[(CH_3)_3CCH_2\dot{O}_2]$ radical with the HO₂ radical. A rate constant k of $k = (1.43 \pm 0.46) \times 10^{-13} e^{(1380 \pm 100)/T} \text{ cm}^3$ molecule⁻¹ s⁻¹ was determined over the temperature range 248–365 K, with $k = (1.5 \pm 0.4) \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹ at 298 K.⁴ This rate constant is similar to those determined by Rowley *et al.*⁵ for the reactions of the HO₂ radical with cyclopentyl peroxy and cyclohexyl peroxy radicals of 2.1 $\times 10^{-13} e^{1323/T} \text{ cm}^3$ molecule⁻¹ s⁻¹ and 2.6 $\times 10^{-13} e^{1245/T} \text{ cm}^3$ molecule⁻¹ s⁻¹, respectively. Using FT-IR absorption spectroscopic analysis at 296 \pm 2 K and 700 Torr total pressure of O₂ + N₂, Rowley *et al.*⁴ observed neopentyl hydroperoxide, (CH₃)₃CCH₂OOH, to be the major product of the HO₂ radical reaction with the neopentyl peroxy radical, with a formation yield of 0.92 \pm 0.15.

These data⁴ again show that the reactions of the alkyl peroxy radicals with the HO_2 radical proceed by

 $\dot{RO_2} + HO_2 \rightarrow ROOH + O_2$.

Based on the rate constants for the alkyl peroxy radicals other than methyl peroxy, the recommendation for the reaction of HO_2 radicals with $R\dot{O}_2$ radicals given in Sec. 2.1 of

 $k(\text{HO}_2 + \text{R}\dot{\text{O}}_2) = 3.5 \times 10^{-13} \text{ e}^{1000/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$

with $k(\text{HO}_2 + \text{R}\dot{\text{O}}_2) = 1.0 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K, uncertain by a factor of 2, is revised to

 $k(\text{HO}_2 + \text{R}\dot{\text{O}}_2) = 1.5 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

uncertain to a factor of 2, and

 $k(\text{HO}_2 + \text{R\dot{O}}_2) = 1.9 \times 10^{-13} \text{ e}^{1300/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 250–370 K. Obviously, the data for the individual alkyl peroxy radicals should be used, when available.

Reactions of Alkyl Peroxy Radicals with RO₂ Radicals

Rowley *et al.*⁶ have carried out a kinetic and product study of the self-reaction of cyclopentyl peroxyl radicals. At 295 \pm 2 K and 700 Torr total pressure of N₂ + O₂, cyclopentanone and cyclopentanol were observed with

similar yields (0.18 ± 0.01 and 0.16 ± 0.02 , respectively), independent of the O₂ partial pressure over the range 5– 700 Torr.⁶ These data, together with the small yield of hydroperoxide(s) observed [0.07 ± 0.02], indicate that the major reaction pathway involves formation of the cyclopentoxy radical with subsequent ring cleavage⁶ [see Reaction Scheme (18)] followed by the various reactions of the $\dot{C}H_2CH_2CH_2CH_2CHO$ radical, as discussed in Sec. 2.1.

Rate constants k_{obs} were determined⁶ over the temperature range 243–373 K from the flash photolysis of Cl₂-cyclopentane-O₂-N₂ mixtures by monitoring the second-order decays of the cyclopentyl peroxy radical absorption. At a given temperature, values of k_{obs} was observed to depend on the O₂/Cl₂ concentration ratios used, increasing with the O₂/Cl₂ concentration ratio.⁶ This behavior was explained⁶ by reaction of the CH₂CH₂CH₂CH₂CHO radical with Cl₂ in competion with reaction of the CH₂CH₂CH₂CH₂CHO radical with O₂ (and possibly isomerization). From these data, Rowley *et al.*⁶ obtained rate constants for the reaction pathways of

 $k_{\rm b} = (1.3 \pm 0.4) \times 10^{-14} \,\mathrm{e}^{(188 \pm 83)/T} \,\mathrm{cm}^3 \,\mathrm{molecule}^{-1} \,\mathrm{s}^{-1}$ $(k_{\rm b} = 2.19 \times 10^{-14} \,\mathrm{cm}^3 \,\mathrm{molecule}^{-1} \,\mathrm{s}^{-1} \,\mathrm{at} \,298 \,\mathrm{K}), \,\mathrm{and}$ $k_{\rm a} + k_{\rm b} \leq (2.9 \pm 0.8) \times 10^{-13} \,\mathrm{e}^{-(555 \pm 77)/T} \,\mathrm{cm}^3 \,\mathrm{molecule}^{-1} \,\mathrm{s}^{-1}$ $(k_{\rm a} + k_{\rm b} \leq 6.73 \times 10^{-14} \,\mathrm{cm}^3 \,\mathrm{molecule}^{-1} \,\mathrm{s}^{-1} \,\mathrm{at} \,298 \,\mathrm{K}).$

Additional kinetic experiments for the self-reactions of cyclohexyl peroxy radicals were also conducted by Rowley *et al.*,⁶ to augment those previously reported.⁷ For the reactions shown by Reaction Scheme (19), rate constants of

2 cyclo-C₅H₉
$$\dot{O}_2$$
 (b)
2 cyclo-C₅H₉ \dot{O}_2 (c)
2 cyclo-C₅H₉ \dot{O} + O₂ (a)
 \downarrow decomposition
 $\dot{C}H_2CH_2CH_2CH_2CHO$
Reaction Scheme (18)

$$2 \operatorname{cyclo-C_6H_{11}O_+O_2}$$
(a)

$$2 \operatorname{cyclo-C_6H_{11}O_+O_2}$$
(b)

Reaction Scheme (19)

 $k_{\rm b} = (1.3 \pm 0.3) \times 10^{-14} \, {\rm e}^{(185 \pm 15)/T} \, {\rm cm}^3 \, {\rm molecule}^{-1} \, {\rm s}^{-1}$

over the temperature range 253-323 K and

$$k_{\rm a} + k_{\rm b} = 7.7 \times 10^{-14} \, {\rm e}^{-184/T} \, {\rm cm}^3 \, {\rm molecule}^{-1} \, {\rm s}^{-1}$$

over the temperature range 253–373 K were obtained.⁶ The overall rate constant $(k_a + k_b)^6$ is similar to that previously reported.⁷

Horie and Moortgat⁸ have carried out a product study of the reaction of $CH_3\dot{O}_2$ radicals with the acetylperoxy ($CH_3C(O)O\dot{O}$) radical over the temperature range 263– 333 K, using matrix-isolation FT-IR spectroscopy.

$$CH_3C(O)O\dot{O} + CH_3\dot{O}_2 \rightarrow CH_3C(O)\dot{O} + CH_3\dot{O} + O_2(a)$$

 $CH_3C(O)O\dot{O} + CH_3\dot{O}_2 \rightarrow CH_3C(O)OH + HCHO + O_2$ (b)

A rate constant ratio of $k_a/k_b = 2.2 \times 10^6 e^{-(3870 \pm 950)/T}$ ($k_a/k_b = 5.0$ at 298 K) was obtained.⁸ This rate constant ratio is a factor of ~5 higher than the 298 K IUPAC recommendation³ given in Sec. 2.1.

Heimann and Warneck⁹ have investigated the products of the OH radical-initiated reaction of 2,3-dimethylbutane in the presence of 750 Torr total pressure of air at 297 K. OH radicals were produced by the photolysis of H₂O₂, and the products observed were consistent with expectations. The data obtained⁹ allowed derivation of rate constant ratios k_a/k ($k = k_a + k_b$) for the reactions

$$2 \operatorname{RO}_2 \rightarrow 2 \operatorname{RO} + \operatorname{O}_2$$
 (a)

$$2 \operatorname{RO}_2 \rightarrow \operatorname{alcohol} + \operatorname{carbonyl} + \operatorname{O}_2$$
 (b)

of $k_a/k = 0.39 \pm 0.08$ for the self-reaction of 2-propyl peroxy radicals (in good agreement with the IUPAC recommendation³ of $k_a/k = 0.34$ at 298 K) and $k_a/k = 0.44 \pm 0.07$ for the self-reaction of 2,3-dimethyl-2-butyl peroxy radicals. Rate constants for the cross-combination reactions of 2,3-dimethyl-2-butyl peroxy radicals with 2-propyl peroxy and 2,3-dimethyl-1-butyl peroxy radicals were also derived from computer simulations.⁹

References

- ¹T. J. Wallington and M. D. Hurley, Chem. Phys. Lett. **193**, 84 (1992). ²F. F. Fenter, V. Catoire, R. Lesclaux, and P. D. Lightfoot, J. Phys.
- Chem. 97, 3530 (1993).
 ³R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and J. Troe, J. Phys. Chem. Ref. Data 21, 1125 (1992).
- ⁴D. M. Rowley, R. Lesclaux, P. D. Lightfoot, K. J. Hughes, M. D.
- Hurley, S. Rudy, and T. J. Wallington, J. Phys. Chem. 96, 7043 (1992). ⁵D. M. Rowley, R. Lesclaux, P. D. Lightfoot, B. Nozière, T. J.
- Wallington, and M. D. Hurley, J. Phys. Chem. **96**, 4889 (1992). ⁶D. M. Rowley, P. D. Lightfoot, R. Lesclaux, and T. J. Wallington, J.
- Chem. Soc. Faraday Trans. 88, 1369 (1992). ⁷D. M. Rowley, P. D. Lightfoot, R. Lesclaux, and T. J. Wallington, J.
- Chem. Soc. Faraday Trans. 87, 3221 (1991). ⁸O. Horie and G. K. Moortgat, J. Chem. Soc. Faraday Trans. 88, 3305
- (1992).
- ⁹G. Heimann and P. Warneck, J. Phys. Chem. 96, 8403 (1992).

7.1.2. Alkenes

Kinetic data concerning the OH radical, NO₃ radical and O₃ reactions with the alkenes which have appeared since the final version of this article was prepared are given in Secs. 7.2.3, 7.3.1 and 7.4.1 (this addendum). In this section, new data concerning the products and reaction mechanisms of these reactions are given.

OH Radical Reactions

Jenkin *et al.*¹ have measured a rate constant at 296 \pm 2 K and 740–800 Torr total pressure for the addition of O₂ to the allyl radical

$$CH_2 = CH\dot{C}H_2 + O_2 \xrightarrow{M} CH_2 = CHCH_2O\dot{O}$$

of $(6 \pm 2) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹. This room temperature rate constant is similar to that of $\sim 4 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ measured by Morgan *et al*.² at 380 K and 50 Torr total pressure of Ar diluent, suggesting that the rate constant for this addition reaction is essentially independent of temperature over the range ~ 290 -400 K.

Jenkin *et al.*¹ also investigated the kinetics and products of the self-reaction of the allyl peroxy $(CH_2 = CHCH_2O\dot{O})$ radical, and concluded that the rate -onstants for the reactions

$$2 \text{ CH}_2 = \text{CHCH}_2\text{OO} \longrightarrow 2 \text{ CH}_2 = \text{CHCH}_2\text{O} + \text{O}_2$$

$$CH_2 = \text{CHCH}_2 + \text{O}_2$$

$$CH_2 = \text{CHCHO} + \text{CH}_2 = \text{CHCH}_2\text{OH} + \text{O}_2$$

are $(k_a + k_b) = (6.8 \pm 1.3) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $k_a/(k_a + k_b) = 0.61 \pm 0.07 \text{ at } 296 \pm 2 \text{ K}$. FT-IR absorption spectroscopy showed¹ that, as expected, the alkoxy radical CH₂ = CHCH₂ \dot{O} reacts with O₂,

$$CH_2 = CHCH_2\dot{O} + O_2 \rightarrow CH_2 = CHCHO + HO_2$$

and no evidence for decomposition of this alkoxy radical was observed.¹

Barnes *et al.*³ have used FT-IR absorption spectroscopy to study the products of the self-reaction of β -hydroxyethyl peroxy (HOCH₂CH₂OO) radicals at 295 ± 3 K as a function of total pressure (11–675 Torr) and O₂ concentration. The major products observed³ were glycolaldehyde (HOCH₂CHO), HCHO and HOCH₂CH₂OH. Barnes *et al.*³ concluded that the reactions involved are:

$$2 \operatorname{HOCH}_2\operatorname{CH}_2\operatorname{OO} \longrightarrow 2 \operatorname{HOCH}_2\operatorname{CH}_2\dot{\operatorname{O}} + \operatorname{O}_2 \qquad (a)$$

$$+ \operatorname{HOCH}_2\operatorname{CH}_2\operatorname{OH} + \operatorname{HOCH}_2\operatorname{CHO} + \operatorname{O}_2 \qquad (b)$$

followed by

$$\begin{array}{rl} \text{HOCH}_2\text{CH}_2\dot{\text{O}} \ + \ \text{O}_2 \rightarrow \text{HOCH}_2\text{CHO} \ + \ \text{HO}_2\\ \\ \text{HOCH}_2\text{CH}_2\dot{\text{O}} \rightarrow \text{HCHO} \ + \ \dot{\text{CH}}_2\text{OH} \\ & \downarrow \text{O}_2\\ \\ \text{HO}_2 \ + \ \text{HCHO} \end{array}$$

with $k_a/(k_a + k_b) = 0.50 \pm 0.06$. Furthermore, the rate constant ratio for reaction with O₂ versus decomposition of the HOCH₂CH₂ \dot{O} radical was in excellent agreement with the ratio measured by Niki *et al.*⁴ from a product study of the OH radical reaction with ethene in the presence of NO_x.

Grosjean *et al.*⁵ studied the products formed during NO_x-air irradiations of isoprene, and observed HCHO, methyl vinyl ketone and methacrolein to be the major products formed during the OH radical-dominated reaction period. The reported yields of these three products, which were not corrected for secondary reactions with the OH radical, were 0.50, 0.22 and 0.31, respectively.⁵ These yields are consistent with the more extensive product data of Tuazon and Atkinson⁶ and Paulson *et al.*⁷

Aerosol formation from the OH radical-initiated reactions of α - and β -pinene in air has been further studied by Zhang *et al.*⁸

O₃ Reactions

Hatakeyama and Akimoto⁹ has investigated the oxidation of SO₂ in reacting O₃-ethene-SO₂-H₂O-air systems through the formation of formic acid (HC(O)OH). The HC(O)OH formation yield data obtained⁹ were in accord with Reaction Scheme (20), and a rate constant ratio $k_b/k_a = 6.0 \times 10^{-3}$ was derived.⁹

Becker et al.¹⁰ have reinvestigated the formation of H_2O_2 in the reactions of O_3 with a series of alkenes using tunable diode laser absorption spectroscopy and FT-IR absorption spectroscopy in 130-1080 liter volume reaction chambers. The H_2O_2 yields of Becker *et al.*¹⁰ are in agreement with their previous data,¹¹ being (on a molar basis) 0.001 for ethene and isoprene, 0.0015 for β -pinene, 0.0028 for propene, 0.005 for trans-2-butene and α pinene, 0.006 for 3-carene, 0.018 for limonene and 0.027 for 2,3-dimethyl-2-butene. These yields are in approximate agreement with those reported in the gas-phase by Hewitt and Kok,¹² but are much lower than those of Simonaitis et al.¹³ From the H₂O₂ formation yields obtained in experiments conducted in the presence and absence of SO₂ at various water vapor concentrations, Becker et al.¹⁰ derived rate constant ratios for the processes

$$\dot{C}H_2O\dot{O} + H_2O$$
 (a)
 $\dot{C}H_2O\dot{O} + H_2O$ (b)

$$\dot{C}H_2OO + SO_2 \longrightarrow \text{products}$$
 (c)

of $(k_a + k_b)/k_c = (8.3 \pm 3.6) \times 10^{-4}$ and $k_a/(k_a + k_b) = 0.005$. For the corresponding reactions of the $(CH_3)_2\dot{C}\dot{O}\dot{O}$ biradical, values of $(k_a + k_b)/k_c = (4.1 \pm 2.2) \times 10^{-4}$ and $k_a/(k_a + k_b) = 0.13$ were derived.¹⁰ These rate constant ratios $(k_a + k_b)/k_c$ are within a factor of 4 of that reported by Suto *et al.*¹⁴ for the $\dot{C}H_2O\dot{O}$ biradical. The discrepancies between the H_2O_2 yields measured in the studies of Becker *et al.*^{10,11} and Simonaitis *et al.*¹³ need to be resolved.

Grosjean *et al.*⁵ have investigated the products formed from the gas-phase reaction of O_3 with isoprene in the presence of an excess concentration of cyclohexane to scavenge the OH radicals formed from the O_3 -isoprene reaction. The molar yields of HCHO, methyl vinyl ketone and methacrolein were 0.90, 0.17 and 0.44, respectively,⁵ similar to those reported by Kamens *et al.*¹⁵ and Niki *et al.*¹⁶ in the absence of an OH radical scavenger but lower than the methyl vinyl ketone and methacrolein yields derived from the primary reaction by Paulson *et al.*¹⁷ Further studies are clearly required.

Atkinson *et al*.¹⁸ have carried out a product study of the reaction of O₃ with isoprene in the presence of cyclohexane (to scavenge OH radicals) in N₂ and air diluents, and shown that the epoxides observed by Paulson *et al*.¹⁷ arise from a direct reaction (see Reaction Scheme (21) on next page) and not via the intermediary of O(³P) atoms. An O(³P) atom formation yield of <0.1, and probably <0.01, was obtained,¹⁸ much lower than that of 0.45 \pm 0.20 derived by Paulson *et al*.¹⁷

Aerosol formation from the O₃ reactions with α - and β -pinene has been investigated by Zhang *et al.*⁸

NO₃ Radical Reactions

Skov *et al.*¹⁹ have investigated the products and mechanisms of the gas-phase reactions of the NO₃ radical with isoprene, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-butadiene-1,1,4,4- d_4 , 1,3-butadiene- d_6 and 2-methyl-1,3-butadiene-4,4- d_2 in air at 295 ± 2 K and 740 ± 5 Torr total pressure. The products observed were in general accord with the reaction schemes discussed in Sec. 2.2, and

Reaction Scheme (20)

the article of Skov *et al*.¹⁹ should be consulted for further details.

References

- ¹M. E. Jenkin, T. P. Murrells, S. J. Shalliker, and G. D. Hayman, J. Chem. Soc. Faraday Trans. **89**, 433 (1993).
- ²C. A. Morgan, M. J. Pilling, J. M. Tulloch, R. P. Ruiz, and K. D. Bayes, J. Chem. Soc. Faraday Trans. 2, 78, 1323 (1982).
- ³I. Barnes, K. H. Becker, and L. Ruppert, Chem. Phys. Lett. **203**, 295 (1993).
- ⁴H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, Chem. Phys. Lett. **80**, 499 (1981).
- ⁵D. Grosjean, E. L. Williams II, and E. Grosjean, Environ. Sci. Technol. **27**, 830 (1993).
- ⁶E. C. Tuazon and R. Atkinson, Int. J. Chem. Kinet. 22, 1221 (1990).
 ⁷S. E. Paulson, R. C. Flagan, and J. H. Seinfeld, Int. J. Chem. Kinet. 24, 79 (1992).
- ⁸S.-H. Zhang, M. Shaw, J. H. Seinfeld, and R. C. Flagan, J. Geophys. Res. **97**, 20717 (1992).
- ⁹S. Hatakeyama and H. Akimoto, Nippon Kagaku Kaishi 785 (1992).
- ¹⁰K. H. Becker, J. Bechara, and K. J. Brockmann, Atmos. Environ. 27A, 57 (1993).
- ¹¹K. H. Becker, K. J. Brockmann, and J. Bechara, Nature **346**, 256 (1990).
- ¹²C. N. Hewitt and G. L. Kok, J. Atmos. Chem. 12, 181 (1991).
- ¹³R. Simonaitis, K. J. Olszyna, and J. F. Meagher, Geophys. Res. Lett. **18**, 9 (1991).
- ¹⁴M. Suto, E. R. Manzanares, and L. C. Lee, Environ. Sci. Technol. 19, 815 (1985).
- ¹⁵R. M. Kamens, M. W. Gery, H. E. Jeffries, M. Jackson, and E. I. Cole, Int. J. Chem. Kinet. **14**, 955 (1982).
- ¹⁶H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, Environ. Sci. Technol. 17, 312A (1983).
- ¹⁷S. E. Paulson, R. C. Flagan, and J. H. Seinfeld, Int. J. Chem. Kinet. **24**, 103 (1992).
- ¹⁸R. Atkinson, J. Arey, S. M. Aschmann, and E. C. Tuazon, Res. Chem. Intermed., in press (1993).
- ¹⁹H. Skov, J. Hjorth, C. Lohse, N. R. Jensen, and G. Restelli, Atmos. Environ. **26A**, 2771 (1992).

7.1.3. Aromatic Compounds

Kinetic data for the OH radical and NO_3 reactions with aromatic compounds which have appeared since the final version of this article was prepared are presented and discussed in Secs. 7.2.6 and 7.3.3. In this section, new data concerning the products and reaction mechanisms of these reactions are given.

The rate constants for the reactions of the OH-phenol adduct with NO and NO₂ determined by Knispel *et al.*¹ were inadvertently omitted from Sec. 2.4. An upper limit for reaction of the OH-phenol adduct with NO of 7 \times

 10^{-14} cm³ molecule⁻¹ s⁻¹ at 316–332 K was obtained.¹ Rate constants for reaction of the OH-phenol adduct with NO₂ of (2.8 ± 0.4) × 10^{-11} cm³ molecule⁻¹ s⁻¹ at 331 K and (3.6 ± 0.3) × 10^{-11} cm³ molecule⁻¹ s⁻¹ at 353 K were determined, these rate constants being similar to those for the corresponding reactions of NO₂ with the OH-benzene and OH-toluene adducts.¹

Zetzsch and coworkers² have reported updated rate constants for the reactions of hydroxycyclohexadienyl and substituted-hydroxycyclohexadienyl radicals with O₂. The rate constants (in units of 10^{-16} cm³ molecule⁻¹ s⁻¹ at 100 Torr total pressure of Ar diluent) are²: for the hydroxycyclohexadienyl radical formed from the OH radical reaction with benzene; 1.6 ± 0.6 at 299 K, 2.1 ± 0.4 at 314 K, 3.0 ± 0.3 at 333 K, and 3.7 ± 0.4 at 354 K; for the methylhydroxycyclohexadienyl radical(s) formed from the OH radical reaction with toluene; 5.6 ± 1.5 at 299 K, 5.6 ± 0.6 at 321 K, 5.6 ± 0.6 at 339 K, 5.3 ± 0.7 at 347 K, and 5.9 \pm 0.8 at 354 K; and for the dihydroxycyclohexadienvl radical(s) formed from the OH radical reaction with phenol; 300 ± 70 at 323 K, 260 ± 60 at 333 K, 270 ± 50 at 337 K, 290 \pm 60 at 343 K, 270 \pm 60 at 353 K, and 360 ± 50 at 363 K. Additional experiments showed the formation of HO₂ radicals in >90% yield from reaction of the OH-phenol adduct with O_2 at room temperature,² although the reaction sequence was concluded² to be more complex than the direct formation of HO₂ radicals via

OH-phenol adduct + $O_2 \rightarrow dihydroxybenzene + HO_2$

Using a 2400 liter volume reaction chamber at 300 K and atmospheric pressure of N₂, Zetzsch *et al.*² used a relative rate technique to show that the rate constants for the reactions of benzene, toluene and *p*-xylene with the OH radical increased with increasing concentrations of O₂, as expected from the reaction sequence (taking toluene as an example)

185

and the previously measured rate constants k_a , k_b , k_{-b} and k_c . For *p*-xylene, the experimental data allowed a rate constant k_c for reaction of O₂ with the dimethylhydroxycy-clohexadienyl radical of ~1.9 × 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ to be derived.²

Atkinson and Aschmann³ have generated OH radicals from the dark O_3 reactions with propene and α -pinene at 296 ± 2 K and atmospheric pressure of air (Sec. 2.2), and shown that o -cresol is formed from toluene with a slightly lower yield in the absence of NO_x than in the presence of NO_x. The formation yields of 2,3-butanedione (biacetyl) were also measured from the OH radical reactions with o-xylene and 1,2,3-trimethylbenzene in the presence and absence of NO_x. For 1,2,3-trimethylbenzene, the 2,3-butanedione formation yield³ increased from ~ 0.18 in the absence of NO_x to ~ 0.45 in the presence of NO₂ at concentrations $\geq 5 \times 10^{12}$ molecule cm⁻³. The product data of Atkinson and Aschmann³ are consistent with the kinetic data of Zetzsch and coworkers^{1,2} and indicate that the OH-benzene, OH-toluene, OH-xylene and OHtrimethylbenzene adducts will react with O2 under most atmospheric conditions.

References

- ¹R. Knispel, R. Koch, M. Siese, and C. Zetzsch, Ber. Bunsenges. Phys. Chem. **94**, 1375 (1990).
- ²C. Zetzsch, M. Elend, R. Knispel, R. Koch, J. Nowack and M. Siese, "Hydroxyl and Aromatics: Fate of the Adducts in the Presence of O₂," EUROTRAC Annual Report, 1991, Part 8, LACTOZ, pp. 207–215, Commission of the European Communities.
- ³R. Atkinson and S. M. Aschmann, Int. J. Chem. Kinet., submitted for publication (1994).

87.1.4. Oxygen-Containing Organic Compounds

The kinetics of the OH radical, NO₃ radical and O₃ reactions with oxygen-containing organic compounds which have appeared since the final version of this article was prepared are presented and discussed in Secs. 7.2.5, 7.3.2 and 7.4.2. In this section new data concerning the products and reaction mechanisms of these reactions are given.

Horie and Moortgat¹ have obtained, from a product study of the reaction of the $CH_3C(O)O\dot{O}$ radical with HO_2 ,

the rate constant ratio of $k_a/k_b = 330 e^{-(1430 \pm 480)/T}$ over the temperature range 263–333 K ($k_a/k_b = 2.7$ at 298 K). This rate constant ratio¹ is in agreement with the recommendation of Atkinson *et al.*² (Sec. 2.5) of $k_a/k_b = 2.3$ at 298 K, but disagrees with the previous recommendation² that $k_a/k_b = 2.3$, independent of temperature over the range 250–370 K. Cox *et al.*³ have used a pulsed radiolysis technique to obtain rate constants for the reactions

$$CH_3C(O)\dot{C}H_2 + O_2 \xrightarrow{M} CH_3C(O)CH_2O\dot{O}$$

and

2 CH₃C(O)CH₂OO
$$\rightarrow$$
 products

at 298 K and one atmosphere total pressure of SF₆, of $(1.5 \pm 0.3) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ and $(8.3 \pm 1.6) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹, respectively. The O₂ addition reaction to the CH₃C(O) CH₂ radical has a rate constant of a similar magnitude to the reactions of O₂ with alkyl radicals (Sec. 2.1), as expected.

Grosjean *et al.*⁴ have shown that the atmospheric photooxidation of *cis*-3-hexen-1-ol (CH₃CH₂CH = CHCH₂CH₂OH) leads to the formation of propanal and peroxypropionyl nitrate, as expected.⁵ Based on analogy with the reaction of propene with OH radicals and O₃, propanal is expected to be a first-generation product, with subsequent OH radical reaction with propanal in the presence of NO_x leading to the formation of peroxypropionyl nitrate (CH₃CH₂C(O)OONO₂) [Sec. 2.6].

Wallington *et al.*⁶ have used FT-IR absorption spectroscopy to investigate the products formed from the OH radical and Cl atom-initiated reactions of di-isopropyl ether at 295 \pm 2 K and 700 Torr total pressure of air. The major product of both the OH radical (in the presence of NO_x) and Cl atom reactions was isopropyl acetate [(CH₃)₂CHOC(O)CH₃], with a yield of 1.05 \pm 0.06 from the OH radical reaction.⁶ An isopropyl acetate yield of 0.92 \pm 0.13 was obtained from the Cl atom-initiated reaction in the presence of NO_x and a yield of the products arising from the reactions of the CH₃O radical (HCHO, CH₃ONO and CH₃ONO₂) of ~1.1 was determined. The OH radical reaction is expected to proceed mainly at the >CH-group,^{6,7} and hence the OH radical reaction in the presence of NO_x must proceed by Reaction Scheme (22).

Temperature-dependent absorption cross-sections for acetone and 2-butanone have been measured by Hynes $et al.^8$

The gas-phase reaction of the HO₂ radical with HCHO has been theoretically investigated by Evleth *et al*.,⁹ and it was concluded that the reaction proceeds by

$$HO_2 + HCHO \rightleftharpoons [H_2C = OHOO] \rightleftharpoons HOCH_2OO$$

and that the intermediate alkoxy radical HOOCH₂ \dot{O} is not involved.

Barnes *et al.*¹⁰ have studied the products of the OH radical reaction with HOCH₂CH₂OH and shown that glycolaldehyde (HOCH₂CHO) is the major product, together with lesser yields of HCHO and HC(O)OH. The reaction then proceeds mainly by¹⁰

OH + HOCH₂CH₂OH \rightarrow H₂O + HOCH₂ĊHOH HOCH₂ĊHOH + O₂ \rightarrow HOCH₂CHO + HO₂

References

- ¹O. Horie and G. K. Moortgat, J. Chem. Soc. Faraday Trans. 88, 3305 (1992).
- ²R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and J. Troe, J. Phys. Chem. Ref. Data 21, 1125 (1992).
- ³R. A. Cox, J. Munk, O. J. Nielsen, P. Pagsberg, and E. Ratajczak, Chem. Phys. Lett. **173**, 206 (1990).
- ⁴D. Grosjean, E. L. Williams II, and E. Grosjean, Environ. Sci. Technol. **27**, 979 (1993).
- ⁵J. Arey, A. M. Winer, R. Atkinson, S. M. Aschmann, W. D. Long, and C. L. Morrison, Atmos. Environ. **25A**, 1063 (1991).
- ⁶T. J. Wallington, J. M. Andino, A. R. Potts, S. J. Rudy, W. O. Siegl, Z. Zhang, M. J. Kurylo, and R. E. Huie, Environ. Sci. Technol. **27**, 98 (1993).
- ⁷R. Atkinson, Int. J. Chem. Kinet. **19**, 799 (1987).
- ⁸A. J. Hynes, E. A. Kenyon, A. J. Pounds, and P. H. Wine, Spectrochimica Acta. **48A**, 1235 (1992).
- ⁹E. M. Evleth, C. F. Melius, M. T. Rayez, J. C. Rayez, and W. Forst, J. Phys. Chem. **97**, 5040 (1993).
- ¹⁰I. Barnes, K. H. Becker, and L. Ruppert, Chem. Phys. Lett. **203**, 295 (1993).

7.1.5. Nitrogen-Containing Organic Compounds

Kinetic data for the gas-phase reactions of O_3 with nitrogen-containing organic compounds which has appeared since the finalization of this article are presented in Sec. 7.4.3 below. The product and mechanistic data for nitrogen-containing organic compounds are presented below.

Langer *et al*.¹ and Orlando *et al*.² have investigated the thermal decomposition of peroxyactyl nitrate (PAN) in

the presence of NO₂. Orlando *et al*.² showed that the reaction channels

$$CH_3C(O)OONO_2 \rightarrow CH_3ONO_2 + CO_2$$

and

$$CH_3C(O)OONO_2 \rightarrow CH_3C(O)\dot{O} + NO_3$$

are of negligible importance compared to the reaction pathway,

$$CH_3C(O)OONO_2 \rightarrow CH_3C(O)OO + NO_2$$

and that the thermal decomposition of PAN is not a significant source of CH_3ONO_2 in the atmosphere. Langer *et al.*¹ concluded that the heterogeneous decomposition of PAN is not important under atmospheric conditions.

References

¹S. Langer, I. Wängberg, and E. Ljungström, Atmos. Environ. **26A**, 3089 (1992).

²J. J. Orlando, G. S. Tyndall, and J. G. Calvert, Atmos. Environ. **26A**, 3111 (1992).

7.2. Kinetics and Mechanisms of the Gas-Phase Reactions of the OH Radical with Organic Compounds

The rate constants for the reactions of the OH radical with organic compounds reported since Sec. 3 of this article was finalized are presented and discussed in the sections below.

7.2.1. Alkanes

The rate constants reported since Table 36 was finalized are given in Table 64.

Methane. The absolute rate constants reported by Lancar et al.¹ and Sharkey and Smith² at 378-422 K¹ and 298 K² are within $\pm 20\%$ of the recommendation given in Sec. 3.1, of $k(CH_4) = 7.44 \times 10^{-18} T^2 e^{-1361/T} cm^3$ molecule⁻¹ s⁻¹ over the temperature range 223–1512 K. The upper limit obtained by Sharkey and Smith² at 178 K is also consistent with this recommended rate constant. However, the rate constant reported by Sharkey and Smith² at 216 K is a factor of 2.6 higher than the recommended rate constant. The recommended rate constant from Sec. 3.1 is unchanged. The 378 and 422 K rate constants of Lancar et al.¹ together with the 295-420 K data of Vaghjiani and Ravishankara⁶ and the 333-378 K data of Finlayson-Pitts et al.⁷ may indicate that the value of nin the three-parameter expression $k(CH_4) = CT^n e^{-D/T}$ is >2, leading to slightly lower rate constants in the range \sim 330–600 K than presently recommended.

Ethane. The absolute rate constants reported by Sharkey and Smith² at 178–298 K are 9 ± 6 to $20 \pm 10\%$ higher than those calculated from the recommendation of Sec. 3.1. of k (ethane) = $1.51 \times 10^{-17} T^2 e^{-492/T} cm^3$

Alkane	$\frac{10^{12} \times k}{(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})}$	at T (K)	Technique	Reference
Methane	0.0262 ± 0.0027	378	DF-EPR	Lancar et al. ¹
	0.0427 ± 0.0018	422		
	< 0.0003	178	LP-LIF	Sharkey and Smith ²
	0.00165 ± 0.0002	216		
	0.0076 ± 0.0003	298		
Ethane	0.013 ± 0.002	138	LP-LIF	Sharkey and Smith ²
	0.025 ± 0.003	178		•
	0.0785 ± 0.004	216		
	0.295 ± 0.014	298		
	0.291 ± 0.007	298	RR [relative to k (propane) =	Finlayson-Pitts et al.3
	0.285 ± 0.013	298	$1.50 \times 10^{-17} T^2 e^{-44/T}$	2
	0.377 ± 0.014	323	-	
	0.480 ± 0.013	348		
	0.590 ± 0.010	373		
Propane	1.15 ± 0.06	298	RR [relative to $k(n$ -butane) =	Finlayson-Pitts et al.3
•	1.15 ± 0.06	298	2.54×10^{-12}] ^a	
	1.04 ± 0.07	298	RR [relative to k(2-methyl-	Finlayson-Pitts et al.3
	1.22 ± 0.04	298	propane) = 2.33×10^{-12}] ^a	-
	1.16 ± 0.06	298		
n-Pentane	4.22 ± 0.05	302	RR [relative to k (2-methyl- propane) = 2.36 × 10 ⁻¹²] ^a	Donaghy et al. ⁴
n-Hexane	5.55 ± 0.20	301 ± 2	RR [relative to $k(n$ -pentane) = 3.99 × 10 ⁻¹²] ^a	McLoughlin et al. ⁵

Table 64. Rate constants k for the gas-phase reactions of the OH radical with alkanes

^aFrom recommendations in Sec. 3.1.

molecule⁻¹ s⁻¹ over the temperature range 226–800 K. The rate constant reported by Sharkey and Smith² at 138 K is $60 \pm 25\%$ higher than the present recommendation. Finlayson-Pitts *et al.*³ have employed a relative rate method, using the dark reaction of O₃ in the presence of alkanes and the photolysis of O₃–H₂O–alkane mixtures to generate OH radicals, to obtain rate constants for ethane versus propane. The rate constants obtained by Finlayson-Pitts *et al.*³ over the temperature range 298–373 K (Table 64) are within 13% of the recommendation given in Sec. 3.1, which is hence unchanged.

Propane. Finlayson-Pitts *et al.*³ have used relative rate methods to obtain rate constants for the OH radical reaction with propane relative to those for the OH radical reactions with *n*-butane and 2-methylpropane. For the measurements relative to 2-methylpropane, OH radicals were generated from the dark reactions of O₃ in alkane–O₂ or alkane–H₂O–O₂ mixtures, the photolysis of O₃-H₂O–alkane–O₂ mixtures, and the photolysis of CH₃ONO–NO–alkane–air mixtures.³ The three methods of OH radical generation led to essentially identical results (Table 64).³ The rate constants for propane obtained by Finlayson-Pitts *et al.*³ are in excellent agreement with the recommended 298 K rate constant of

 1.15×10^{-12} cm³ molecule⁻¹ s⁻¹ (Sec. 3.1), and hence this recommendation is unchanged.

n-Pentane and n-Hexane. The relative rate constants of Donaghy *et al.*⁴ (*n*-pentane) and McLoughlin *et al.*⁵ (*n*-hexane) are given in Table 64. These rate constants are in good agreement (within 5% for *n*-pentane and 2% for *n*-hexane) with the recommendations given in Sec. 3.1 and by Atkinson.⁸ These recommendations (Sec. 3.1 and Ref. 8) are hence unchanged.

References

- ¹I. T. Lancar, G. Le Bras, and G. Poulet, C. R. Acad. Sci. Paris, Series II, 1487 (1992).
- ²P. Sharkey and I. W. M. Smith, J. Chem. Soc. Faraday Trans. **89**, 631 (1993).
- ³B. J. Finlayson-Pitts, S. K. Hernandez, and H. N. Berko, J. Phys. Chem. **97**, 1172 (1993).
- ⁴T. Donaghy, I. Shanahan, M. Hande, and S. Fitzpatrick, Int. J. Chem. Kinet. 25, 273 (1993).
- ⁵P. McLoughlin, R. Kane, and I. Shanahan, Int. J. Chem. Kinet. **25**, 137 (1993).
- ⁶G. L. Vaghjiani and A. R. Ravishankara, Nature 350, 406 (1991).
- ⁷B. J. Finlayson-Pitts, M. J. Ezell, T. M. Jayaweera, H. N. Berko, and C. C. Lai, Geophys. Res. Lett. **19**, 1371 (1992).
- ⁸R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).

7.2.2. Haloalkanes

The rate constants reported since Table 37 was finalized was given in Table 65.

 CH_3F . The rate constants obtained by Wallington and Hurley¹ from relative rate measurements are given in Table 65. These rate constants are in excellent agreement with that of 1.62×10^{-14} cm³ molecule⁻¹ s⁻¹ at 296 K calculated from the recommendation of Atkinson¹⁵ of

$$k(CH_3F) = 5.51 \times 10^{-18} T^2 e^{-1005/T} cm^3 molecule^{-1} s^{-1}$$

over the temperature range 292–480 K. This recommendation¹⁵ is hence unchanged.

 CH_3Cl . Taylor et al.² have reinvestigated the kinetics of the OH radical reaction with CH₃Cl at elevated temperatures (742-955 K) to check that previous measurements¹⁶ were not influenced by photolysis of the CH₃Cl reactant. This was shown to be generally the case, and the rate constants determined at 742-955 K² are given in Table 65. These rate constants² and those of Taylor et al.,¹⁶ as listed by Taylor et al.² (with the rate constants of Taylor et al.¹⁶ being averaged at 473 and 475 K, 524 and 525 K, 667 K, and 695 K, and the rate constant at 735 K being omitted), are used in the evaluation of the rate constant for this reaction. A unit-weighted least-squares analysis of the absolute rate constants of Howard and Evenson,¹⁷ Perry et al.,¹⁸ Davis et al.,¹⁹ Paraskevopoulos et al.,²⁰ Jeong and Kaufman²¹ and the absolute rate constants listed by Taylor et al.² (see above), using the expression $k = CT^2$ $e^{-D/T}$, yields the recommendation of

$$k(CH_3Cl) =$$

(7.33^{+1.09}/_{-0.94}) × 10⁻¹⁸ T² e^{-(809 ± 54)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 250–955 K, where the indicated errors are two least-squares standard deviations, and

$$k(CH_3Cl) = 4.31 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of $\pm 20\%$. This recommendation supersedes that of Atkinson¹⁵ of

$$k(CH_3Cl) = 3.50 \times 10^{-18} T^2 e^{-585/T} cm^3 molecule^{-1} s^{-1}$$

over the temperature range 250–483 K, with a 298 K rate constant of 4.36×10^{-14} cm³ molecule⁻¹ s⁻¹, and leads to a rate constant at 250 K 15% lower than calculated from the previous¹⁵ recommendation.

 CH_3Br . The absolute rate constants obtained by Mellouki *et al.*³ and Zhang *et al.*⁴ are given in Table 65. These rate constants are significantly lower than the previous data of Howard and Evenson¹⁷ and Davis *et al.*¹⁹ over a similar temperature range. A unit-weighted leastsquares analysis of the rate constants of Mellouki *et al.*³ and Zhang *et al.*,⁴ using the expression $k = CT^2 e^{-D/T}$, yields the recommendation of

$$\kappa(CH_3Br) =$$

(3.62^{+0.77}_{-0.63}) × 10⁻¹⁸ T² e^{-(711 ± 56)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 233-400 K, where the indicated errors are two least-squares standard deviations, and

$$k(CH_3Br) = 2.96 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of $\pm 20\%$. This recommendation supersedes that of Atkinson¹⁵ of

$$k(CH_3Br) = 2.60 \times 10^{-18} T^2 e^{-521/T} cm^3 molecule^{-1} s^{-1}$$

over the temperature range 244–2000 K, with a 298 K rate constant of 4.02×10^{-14} cm³ molecule⁻¹ s⁻¹.

 CH_2Cl_2 . Taylor *et al.*² have re-investigated the kinetics of this reaction, and the rate constants obtained² are given in Table 65. These rate constants² supersede those reported previously.¹⁶ A unit-weighted least-squares analysis of the absolute rate constants of Howard and Evenson,¹⁷ Perry *et al.*,¹⁸ Davis *et al.*,¹⁹ Jeong and Kaufman²¹ and Taylor *et al.*,² using the expression $k = CT^2 e^{-D/T}$, yields the recommendation of

$$k(CH_2Cl_2) =$$

(6.14^{+1.16}_{-0.97}) × 10⁻¹⁸ T² e^{-(389 ± 66)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 245-955 K, where the indicated errors are two least-squares standard deviations, and

$$k(CH_2Cl_2) = 1.48 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of $\pm 20\%$. This recommendation supersedes that of Atkinson¹⁵ of

$$k(CH_2Cl_2) = 8.54 \times 10^{-18} T^2 e^{-500/T} cm^3 molecule^{-1} s^{-1}$$

over the temperature range 245–455 K, with a 298 K rate constant of 1.42×10^{-13} cm³ molecule⁻¹ s⁻¹.

 CHF_2Cl . The absolute rate constants determined by Orkin and Khamaganov⁵ are given in Table 65. These rate constants⁵ are in good agreement (within 12% from 298–370 K and within 21% at 460 K) with the recommendation of Atkinson,¹⁵ of

$$k(CHF_2Cl) = 1.51 \times 10^{-18} T^2 e^{-1000/T} cm^3 molecule^{-1} s^{-1}$$

over the temperature range 250-482 K, and

$$k(CHF_2Cl) = 4.68 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$$

The previous recommendation¹⁵ is therefore unchanged.

 CHF_2Br . The absolute rate constants of Orkin and Khamaganov⁶ are given in Table 65. These rate constants⁶ are in excellent agreement with the recommendation in Sec. 3.2 (being 1–9% higher at 314–460 K and 14% higher at 298 K) of

 $k(CHF_2Br) = 1.48 \times 10^{-18} T^2 e^{-779/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 233-432 K, and

 $k(CHF_2Br) = 9.63 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

This recommendation from Sec. 3.2 is hence unchanged, although the estimated overall uncertainty at 298 K is now reduced to $\pm 30\%$.

*CHCl*₃. Taylor *et al*.² have reinvestigated the kinetics of this reaction, and observed that at temperatures ≥ 400 K laser photolysis of the CHCl₃ reactant led to erroneously high measured rate constants unless the laser photolysis intensities were kept low. The rate constants obtained at low laser photolysis intensities, and shown to be independent of the laser photolysis intensity,² are given in Table 65. These rate constants supersede those of Taylor *et al*.¹⁶ reported earlier. The rate constants of Taylor *et al*.² at temperatures of 360–480 K are significantly (up to a factor of ~1.7) lower than the rate constants of Jeong and Kaufman.²¹ A unit-weighted least-squares analysis of the absolute rate constants of Howard and Evenson,¹⁷ Davis *et al*.¹⁹ and Taylor *et al*.,² using the expression $k = CT^2 e^{-D/T}$, leads to the recommendation of

$$k = (1.80^{+0.38}_{-0.32}) \times 10^{-18} T^2 e^{-(129 \pm 75)/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

over the temperature range 245-775 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
 (CHCl₃) = 1.04 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 20\%$. [Inclusion of the rate constants of Jeong and Kaufman²¹ into the data set used for evaluation of this rate constant leads to $k(\text{CHCl}_3) = 2.11 \times 10^{-18} T^2 \text{ e}^{-169/T} \text{ cm}^3$ molecule⁻¹ s⁻¹ over the same temperature range, with a 298 K rate constant of $1.06 \times 10^{-13} \text{ cm}^3$ molecule⁻¹ s⁻¹].

The present recommendation supersedes the previous recommendation of Atkinson¹⁵ of

$$k$$
 (CHCl₃) = 6.30 × 10⁻¹⁸ $T^2 e^{-504/T} cm^3 molecule^{-1} s^{-1}$

over the more restricted temperature range of 245–487 K, with a 298 K rate constant of 1.03×10^{-13} cm³ molecule⁻¹ s⁻¹. The present recommendation leads to significantly higher rate constants for temperatures ≤ 290 K than calculated from the previous recommendation.¹⁵ In particular, the present recommendation leads to rate constants which are 20–45% higher than those measured by Davis *et al*.¹⁹ at 245 K and Jeong and Kaufman²¹ at 249 K. Clearly, further absolute rate constant studies are needed, particularly at temperatures in the range ~230–270 K, to resolve these discrepancies.^{2,19,21}

 CF_4 , CF_3Br and CF_2BrCF_2Br . The upper limits to the rate constants reported by Ravishankara *et al.*⁷ (CF₄) and Orkin and Khamaganov⁶ (CF₃Br and CF₂BrCF₂Br) are given in Table 65. The upper limit to the rate constant for CF₄ reported by Ravishankara *et al.*⁷ is consistent with,

but a factor of 200 lower, than the recommendation of Atkinson¹⁵ based on the data of Howard and Evenson.¹⁷ Accordingly, a rate constant of

$$k(CF_4) < 2 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}$$

is recommended.

The upper limits to the rate constants for CF₃Br and CF₂BrCF₂Br of Orkin and Khamaganov⁶ are consistent with the upper limits recommended at 298 K in Sec. 3.2 of $< 1 \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ and $< 1.5 \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹, respectively.

 CH_3CH_2Cl . The absolute rate constants determined by Markert and Nielsen⁸ are given in Table 65. The 295 K rate constant reported by Markert and Nielsen⁸ is identical to that reported by Markert and Nielsen²² and used in the evaluation of the rate constant for this reaction in Sec. 3.2. However, the rate constants of Markert and Nielsen⁸ at 307–360 K are 45–77% higher than calculated from the recommendation given in Sec. 3.2 of

$$k(CH_3CH_2Cl) = 7.71 \times 10^{-18} T^2 e^{-152/T} cm^3 molecule^{-1} s^{-1}$$

over the temperature range 294–789 K, with a 298 K rate constant of 4.11×10^{-13} cm³ molecule⁻¹ s⁻¹ (the 295 K rate constant of Markert and Nielsen^{8,22} is only 7% higher than the recommended value). The recommendation of Sec. 3.2 is unchanged.

 CH_3CH_2Br . The relative rate constant of Donaghy *et al.*⁹ is given in Table 9. This 300 K rate constant of Donaghy *et al.*⁹ is 25% lower than that calculated from the Arrhenius expression of Xing *et al.*²³ and Qiu *et al.*²⁴ (Sec. 3.2), although within the combined uncertainties cited.^{9,23,24} From a unit-weighted average of the room temperature rate constants of Xing *et al.*²³ and Qiu *et al.*²⁴ and Donaghy *et al.*,⁹ the recommendation of

$$k$$
 (CH₃CH₂Br) = 2.7 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K

is obtained, with an estimated overall uncertainty at 298 K of $\pm 40\%$.

 CH_3CHCl_2 . The absolute rate constants determined by Jiang *et al*.¹⁰ are given in Table 65. The only previous rate constant for CH₃CHCl₂ is that measured at 296 K by Howard and Evenson,²⁵ and the agreement is excellent. A unit-weighted least-squares analysis of the absolute rate constants of Howard and Evenson²⁵ and Jiang *et al*.,¹⁰ using the expression $k = CT^2 e^{-D/T}$, leads to the recommendation of

 $k(CH_3CHCl_2) =$ (2.50 ± 0.16) × 10⁻¹⁸ T² e^{(63 ± 27)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 294-800 K, where the indicated errors are two least-squares standard deviations, and

 $k(CH_3CHCl_2) =$ 2.74 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K, with an estimated overall uncertainty at 298 K of $\pm 30\%$.

 CH_3CCl_3 . The absolute rate constants of Jiang *et al.*¹¹ are given in Table 65. These rate constants of Jiang *et al.*¹¹ are systematically higher than the recommendation of Sec. 3.2 based on the absolute rate constants of Finlayson-Pitts *et al.*²⁶ and Talukdar *et al.*²⁷ This discrepancy increases with temperature, with the rate constants of Jiang *et al.*¹¹ being 15% higher than the recommendation of Sec. 3.2 at 298 K, increasing to 34% higher at 400 K. Accordingly, the recommendation of Sec. 3.2 of

$$k(CH_3CCl_3) = 2.25 \times 10^{-18} T^2 e^{-910/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

over the temperature range 243–379 K, with a 298 K rate constant of 9.43 \times 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹, is unchanged.

 CH_2FCF_3 . The absolute rate constants of Orkin and Khamaganov⁵ are given in Table 65. These rate constants are in excellent agreement (within 14%) with the recommendation of Sec. 3.2 based on the rate constants of Martin and Parakevopoulos,²⁸ Liu *et al*.²⁹ and Gierczak *et al*.³⁰ Accordingly, the recommendation of Sec. 3.2 of

$$k(CH_2FCF_3) = 1.61 \times 10^{-18} T^2 e^{-1005/T} cm^3 molecule^{-1} s^{-1}$$

over the temperature range 223–450 K, with a 298 K rate constant of 4.90 \times 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹, is unchanged.

 CH_2BrCF_3 . The absolute rate constants of Nelson *et al.*¹² and Orkin and Khamaganov⁶ are given in Table 65. The rate constants of Nelson *et al.*¹² are uniformly lower, by ~20%, than those of Orkin and Khamaganov⁶ over the temperature range common to both studies (298–353 K). A unit-weighted least-squares analysis of the absolute rate constants of Nelson *et al.*¹² and Orkin and Khamaganov,⁶ using the Arrhenius expression $k = A e^{-B/T}$, yields the recommendation of

$$k(CH_2BrCF_3) =$$

(1.44^{+1.14}_{-0.64}) × 10⁻¹² e^{-(1337 ± 192)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 280-460 K, where the indicated errors are two least-squares standard deviations, and

$$k(CH_2BrCF_3) = 1.62 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

with an estimated overall uncertainty at 298 K of $\pm 40\%$.

 $CHCl_2CHCl_2$. The absolute rate constants of Jiang *et al.*¹³ are given in Table 65. These rate constants are a factor of ~ 2 lower than those of Xing *et al.*²³ and Qiu *et al.*²⁴ No recommendation is made.

 $CHFBrCF_3$. The rate constants of Orkin and Khamaganov⁶ are given in Table 65. These rate constants are in good agreement with the absolute rate constants of

Brown *et al.*³¹ A unit-weighted least-squares analysis of the rate constants of Brown *et al.*³¹ and Orkin and Khamaganov,⁶ using the Arrhenius expression $k = A e^{-B/T}$, yields the recommendation of

$$k(CHFBrCF_3) =$$

(8.09^{+2.87}/_{-2.12}) × 10⁻¹³ e^{-(1157 ± 105)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 279-460 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
 (CHFBrCF₃) = 1.67 × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an overall estimated uncertainty at 298 K of $\pm 35\%$.

CHClBrCF₃. The absolute rate constants of Orkin and Khamaganov⁶ are given in Table 65. This is the first temperature-dependence study. The previous rate constant of Brown *et al.*^{32,33} at 303 K is ~25% higher than that calculated from the Arrhenius expression of Orkin and Khamaganov.⁶ A unit-weighted least-squares analysis of the absolute rate constants of Orkin and Khamaganov,⁶ using the Arrhenius expression $k = A e^{-B/T}$, yields the recommendation of

$$k$$
 (CHClBrCF₃) =
(1.20^{+0.23}_{-0.20}) × 10⁻¹² e^{-(970 ± 63)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 298-460 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
(CHClBrCF₃) = 4.63 × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 40\%$.

 CH_3CH_2Cl and $CH_3CHClCH_3$. The rate constants of Markert and Nielsen⁸ and Donaghy *et al.*⁹ are given in Table 65. For both chloropropanes, the room temperature rate constants exhibit a significant amount of scatter. Furthermore, the absolute rate constant data of Markert and Nielsen⁸ are quite scattered for both compounds. Based on the relative rate constants of Donaghy *et al.*,⁹ rate constants of

$$k(CH_3CH_2Cl) = 1.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

and

$$k(CH_3CHClCH_3) = 9.0 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

at 298 K are recommended, both with estimated overall uncertainties of $\pm 40\%$.

Other Haloalkanes. For the other haloalkanes listed in Table 65, only single studies (or studies conducted by one research group) have been carried out and no recommendations are made.

Haloaikane	$10^{12} \times A \text{ (cm}^3$ molecule ⁻¹ s ⁻¹)	E E	B (K)	$10^{14} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at $T(\mathbf{K})$	Technique	Reference	Temperature range covered (K)
CH ₃ F				1.61 ± 0.08	296 ± 2	RR [relative to k(acetylene) = 7.99 × 10 ⁻¹³] ^a	Wallington and Hurley ¹	
				1.51 ± 0.08	296 ± 2	RR [relative to k (methane) = 6.57×10^{-15} ³	Wallington and Hurley ¹	
CH ₃ Cl	2.90×10^{-2}	0.89	1447 ± 75 ^b	146.3 ± 4.8 167.0 ± 4.6 217.0 ± 10.3 247.1 ± 11.9 267.0 ± 31.7	742 775 875 925 955	LP-LIF	Taylor <i>et al .</i> 2	742–955
CH ₃ Br	2.35		1300 ± 150	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	233 243 251 253 253 253 255 255 256 273 273 273 273 273 273 273 273 273 273	LP-LIF	Mellouki <i>et al.</i> ³	233-379

Table 65. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with haloalkanes

191

Haloalkane	$10^{12} \times \mathcal{A} (\text{cm}^3$ molecule ⁻¹ s ⁻¹)		B (K)	$10^{14} \times k \text{ (cm}^3$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
	5.79		1560 ± 150	$\begin{array}{c} 1.17 \pm 0.29 \\ 1.33 \pm 0.19 \\ 1.68 \pm 0.30 \\ 2.25 \pm 0.56 \\ 2.81 \pm 0.31 \\ 2.81 \pm 0.31 \\ 2.77 \pm 0.74 \\ 2.96 \pm 0.83 \\ 6.51 \pm 0.97 \\ 12.3 \pm 1.3 \end{array}$	250 250 270 283 295 296 298 298 400	FP-RF	Zhang <i>et al</i> . ⁴	250-400
CH ₂ Cl ₂				14.7 ± 1.8 16.1 ± 3.0 24.8 ± 2.3 24.2 ± 4.6 23.9 ± 5.6 43.9 ± 5.6 43.3 ± 4.2 61.5 ± 13.8 65.1 ± 10.6 85.8 ± 10.0 10.14 ± 7.6 135.3 ± 13.0 10.14 ± 7.6 135.3 ± 13.0 10.14 ± 7.6 135.5 ± 11.8 135.5 ± 11.8 135.5 ± 12.8 135.5 ± 12.8 135.5 ± 12.8 135.5 ± 12.8	295 3309 335 335 335 415 425 435 435 535 535 535 535 535 535 535 53	LP-LIF	Taylor <i>et al.</i> ²	295955
CH ₂ Br ₂	4.01 × 10 ⁻³	1.09	771 ± 48 840 ± 100	$\begin{array}{c} 259.0 \pm 11.7\\ 316.0 \pm 39.2\\ 6.0 \pm 0.2\\ 6.8 \pm 0.2\\ 6.8 \pm 0.2\\ 6.8 \pm 0.4\\ 9.5 \pm 0.3\\ 11.1 \pm 0.4\\ 12.0 \pm 0.3\\ 11.3 \pm 0.6\\ 11.3 \pm 0.6\\ 11.3 \pm 0.6\\ 11.3 \pm 1.0\\ 17.4 \pm 1.0\\ 17.4 \pm 1.0\\ 17.4 \pm 1.0\\ 17.4 \pm 1.0\end{array}$	886 3324 350 350 350 350 350 350 350 350 350 350	LP-LIF	Mellouki <i>et al.</i> ³	243-380

ROGER ATKINSON

Haloalkane	$10^{12} \times \mathcal{A} (\text{cm}^3$ molecule ⁻¹ s ⁻¹)	E	B (K)	$10^{14} \times k \ (\text{cm}^3$ molecule ⁻¹ s ⁻¹)	at $T(\mathbf{K})$	Technique	Reference	Temperature range covered (K)
CHF2CI	0.81 ±0.15		1516 ± 53	$\begin{array}{r} 0.49 \ \pm \ 0.045 \\ 0.72 \ \pm \ 0.051 \\ 0.89 \ \pm \ 0.064 \\ 1.32 \ \pm \ 0.096 \\ 3.00 \ \pm \ 0.22 \end{array}$	298 318 330 370 460	DF-EPR	Orkin and Khamaganov ⁵	298-460
CHF ₂ Br	0.93 ^{-0.0}		1326 ± 33	$\begin{array}{rrrr} 1.10 \ \pm \ 0.09 \\ 1.32 \ \pm \ 0.09 \\ 1.64 \ \pm \ 0.12 \\ 2.07 \ \pm \ 0.15 \\ 2.62 \ \pm \ 0.19 \\ 4.03 \ \pm \ 0.28 \\ 5.80 \ \pm \ 0.5 \end{array}$	298 314 329 350 410 460	DF-EPR	Orkin and Khamaganov ⁶	298-460
CHCI,	4.65×10^{-5}	1.52	261 ± 42	$\begin{array}{c} 11.2 \pm 1.0 \\ 14.2 \pm 2.7 \\ 17.1 \pm 2.0 \\ 20.4 \pm 1.2 \\ 24.5 \pm 1.3 \\ 28.9 \pm 4.5 \\ 28.9 \pm 4.5 \\ 29.8 \pm 1.8 \\ 29.8 \pm 1.8 \\ 23.6 \pm 1.8 \\ 23.6 \pm 1.8 \\ 23.7 \\ 65.6 \pm 6.1 \\ 65.1 \pm 5.0 \\ 68.1 \pm 5.0 \\ 80.7 \pm 5.0 \\ 81.7 \pm 5.0 \end{array}$	295 327 360 455 480 540 540 670 7730 775	LP-LIF	Taylor <i>et al.</i> ²	295–775
CF4				< 0.0002	J	р	Ravishankara <i>et al</i> . ⁷	
CF ₃ Br				< 0.04 < 0.04	298 460	DF-EPR	Orkin and Khamaganov ⁶	298-460
CH ₃ CH ₂ Cl	24 ± 4		1083 ± 361	43 ± 5 66 ± 4 83 ± 4 82 ± 16 8 ± 16 95 ± 13	295 307 315 333 360	PR-RA	Markert and Nielsen ⁸	295360

Table 65. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with haloalkanes - Continued

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

193

Haloalkane	$10^{12} \times A \ (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	G	B (K)	$10^{14} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
CH ₃ CH ₂ Br				23.4 ± 0.8	300	RR [relative to k(ethane) = 2.64×10^{-13} ^a	Donaghy <i>et al.</i> ⁹	
CH ₃ CHCl ₂	2.02×10^{-8}	2.67	- 378 ± 18	$\begin{array}{c} 28.2 \pm 1.4 \\ 30.9 \pm 2.0 \\ 35.8 \pm 1.9 \\ 35.8 \pm 1.9 \\ 35.8 \pm 1.9 \\ 54.5 \pm 1.9 \\ 54.5 \pm 1.9 \\ 54.5 \pm 2.1 \\ 54.5 \pm 2.1 \\ 54.5 \pm 2.1 \\ 75.8 \pm 2.2 \\ 75.8 \pm 2.2 \\ 75.8 \pm 2.1 \\ 114 \pm 4.4 \\ 114 \pm 4.4 \\ 112 \pm 9.4 \\ 114 \pm 4.4 \\ 112 \pm 1.2 \\ 114 \pm 1.2 \\ 118 \pm 7.6 \\ 188 \pm 7.6 \end{array}$	294 321 338 362 441 441 441 660 680 680 680 680 719 719	LP-LIF	Jiang <i>et al</i> . ¹⁰	294-800
CH3CCI3	2.78 × 10 ⁻⁶	2.08	1068 ± 108	$\begin{array}{rrrr} 1.1 \ \pm \ 0.1 \\ 2.9 \ \pm \ 0.6 \\ 5.0 \ \pm \ 1.0 \\ 9.4 \ \pm \ 0.6 \\ 10.9 \ \pm \ 2.9 \\ 12.7 \ \pm \ 0.6 \\ 12.7 \ \pm \ 0.9 \\ 12.7 \ \pm \ 1.2 \\ 12.7 \ \pm \ 1.2 \\ 23.5 \ \pm \ 1.3 \\ 23.5 \ \pm \ 2.8 \\ 33.1 \ \pm \ 8.1 \\ 36.8 \ \pm \ 3.6 \\ 54.5 \ \pm \ 2.0 \ $	298 350 457 457 457 513 513 513 513 560 642 611 720 720	LP-LIF	Jiang <i>et al</i> . ¹¹	298–761
CH ₂ FCF ₃	$1.03^{+0.15}_{-0.15}$		1588 ± 52	0.50 ± 0.044 0.83 ± 0.066 1.14 ± 0.08 1.42 ± 0.11 3.31 ± 0.24	298 330 370 460	DF-EPR	Orkin and Khamaganov ⁵	298-460

Table 65. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with haloalkanes - Continued

J. Phys. Chem. Ref. Data, Monograph No. 2

Continued
L
radical with haloalkanes
H
0
the
of
reactions
phase
as-
he g
Ĕ
parameters fo
ent
-depende
ure
rat
mpe
ten
and
sk
e constants
at
ŝ
9
Table

Haloalkane	$10^{12} \times A \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	u	B (K)	$10^{14} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T(K)	Technique	Reference	Temperature range covered (K)
CH ₂ BrCF ₃	1.39 ± 0.6		1350 ± 195	$\begin{array}{rcrcr} 1.08 \pm 0.08 \\ 1.45 \pm 0.13 \\ 1.99 \pm 0.07 \\ 2.35 \pm 0.15 \\ 3.01 \pm 0.10 \end{array}$	280 294 318 328 353	DF-LIF	Nelson <i>et al</i> . ¹²	280-353
	0.85±0.0		1113 ± 35	2.05 ± 0.16 3.06 ± 0.21 4.81 ± 0.34 7.65 ± 0.55	298 338 389	DF-EPR	Orkin and Khamaganov ⁶	298-460
CH2ClCCl3				$\begin{array}{c} 2.0 \pm 0.4^{\circ} \\ 3.1 \pm 0.5^{\circ} \\ 3.9 \pm 0.5^{\circ} \\ 5.8 \pm 1.3^{\circ} \\ 5.8 \pm 1.3^{\circ} \\ 9.2 \pm 1.4^{\circ} \\ 15.3 \pm 3.6^{3} \\ 16.6 \pm 1.7^{\circ} \\ 24.2 \pm 3.2 \\ 24.2 \pm 3.2 \\ 26.2 \pm 7.2 \end{array}$	295 326 335 460 480 480	LP-LIF	Jiang <i>et al</i> .13	295-882
	3.38 × 10 ⁻³	1.21	1553 ± 92	39.9 ± 6.5 57.8 ± 11 60.4 ± 4.8 66.1 ± 3.9 85.0 ± 6.6 118 ± 3.4 84.6 ± 1.8 119 ± 3.3 153 ± 20 171 ± 15 215 ± 30	544 575 579 663 663 663 777 783 882 882			
CHCl ₂ CHCl ₂	0.776	0.22	915 ± 62	10.9 ± 2.7 13.8 ± 2.0 15.4 ± 1.9 19.8 ± 2.6 27.1 ± 1.0 30.6 ± 2.1 37.4 ± 3.4 52.2 ± 5.7 63.6 ± 6.3 80.6 ± 7.8 89.6 ± 8.1	295 316 326 340 340 402 542 562 562 562 701	LP-LIF	Jiang <i>et al</i> . ¹³	295-701

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

195

Haloalkane	$10^{12} \times A (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	=	B (K)	$10^{14} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at $T(\mathbf{K})$	Technique	Reference	Temperature range covered (K)
CHFCICF2CI	0.92 ^{+0.25}		1281 ± 85	$\begin{array}{c} 1.23 \pm 0.10 \\ 1.67 \pm 0.12 \\ 1.81 \pm 0.13 \\ 2.19 \pm 0.16 \\ 2.74 \pm 0.22 \\ 2.68 \pm 0.19 \\ 5.63 \pm 0.41 \end{array}$	298 313 344 360 370 460	DF-EPR	Orkin and Khamaganov ⁵	298-460
CHFBrCF ₃	0.72±0.07		1111 ± 32	$\begin{array}{c} 1.75 \ \pm \ 0.17\\ 2.02 \ \pm \ 0.14\\ 2.35 \ \pm \ 0.16\\ 2.96 \ \pm \ 0.27\\ 3.61 \ \pm \ 0.43\\ 4.60 \ \pm \ 0.32\\ 6.22 \ \pm \ 0.48 \end{array}$	298 314 330 350 410 460	DF-EPR	Orkin and Khamaganov ⁶	298-460
CHCl ₂ CF ₂ Cl	$1.13_{-0.16}^{+0.21}$		918 ± 52	5.30 ± 0.41 6.75 ± 0.48 9.38 ± 0.72 15.90 ± 1.10	298 330 370 460	DF-EPR	Orkin and Khamaganov ⁵	298-460
CHCIBrCF ₃	1.28 ^{±0,15}		995 ± 38	$\begin{array}{l} 4.50 \pm 0.40 \\ 5.82 \pm 0.41 \\ 7.15 \pm 0.5 \\ 8.64 \pm 0.6 \\ 9.53 \pm 0.67 \\ 11.10 \pm 0.78 \\ 14.90 \pm 1.4 \end{array}$	298 317 341 370 389 410 460	DF-EPR	Orkin and Khamaganov ⁶	298-460
CF ₂ BrCF ₂ Br				< 0.04 < 0.04	298 460	DF-EPR	Orkin and Khamaganov ⁶	298-460
CH ₃ CH ₂ CH ₂ Cl	100 ± 30		1443 ± 482	96 \pm 4 68 \pm 7 147 \pm 6 176 \pm 2 116 \pm 7 180 \pm 20 160 \pm 3	295 295 317 328 331 333	PR-RA	Markert and Nielsen ⁸	295-353
				111 ± 3	305	RR [relative to k(2-methyl- propane) = 2.39 $\times 10^{-12}$	Donaghy <i>et al</i> .°	

Table 65. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with haloalkanes - Continued

Continued
I
with haloalkanes
I radical
НО
the
of
reactions
-phase
gas
the
for
parameters 1
lent
depend
ure-
erature-
temp
and
ĸ
constants
Rate
65.]
Table (

Haloalkane	$\frac{10^{12} \times A (\text{cm}^3)}{\text{molecule}^{-1} \text{ s}^{-1}}$	=	B (K)	$10^{14} \times k (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
				87.1 ± 2.5	308	RR [relative to k(n-pentane) = 4.11 × 10 ⁻¹²] ^a	Donaghy et al."	
				112 ± 10	303	RR [relative to k(cyclohexane) = 7.60 × 10 ⁻¹²] ⁴	Donaghy et al. ⁹	
CH ₃ CH ₂ CH ₂ Br				118 ± 7	300	RR [relative to k (cyclohexane) = 7.54 × 10 ⁻¹²] ^a	Donaghy et al. ⁹	
CH ₃ CHCICH ₃	50 ± 6		1323 ± 842	43 ± 4 104 ± 7 95 ± 3 101 ± 4	295 313 333 353	PR-RA	Markert and Nielsen ⁸	295-353
				92.0 ± 4.6	303	RR [relative to k (cyclohexane) = 7.60 × 10 ⁻¹²] ^a	Donaghy <i>et al</i> . ⁹	
CH ₃ CHBrCH ₃				87.6 ± 11.3	298	RR [relative to k (cyclohexane) = 7.49 × 10 ⁻¹²] ^a	Donaghy et al. ⁹	
CH2CICH2CH2CI				77.9 ± 3.1	305	RR [relative to k (cyclohexane) = 7.64 × 10 ⁻¹²] ⁴	Donaghy <i>et al</i> . ⁹	
CF,CHFCF,	3.7 ± 1.1		1615 ± 190	$\begin{array}{c} 0.144 \ \pm \ 0.012 \\ 0.165 \ \pm \ 0.028 \\ 0.166 \ \pm \ 0.06 \\ 0.241 \ \pm \ 0.013 \\ 0.253 \ \pm \ 0.011 \\ 0.332 \ \pm \ 0.024 \\ 0.332 \ \pm \ 0.023 \\ 0.355 \ \pm \ 0.063 \\ 0.355 \ \pm \ 0.063 \\ 0.472 \ \pm \ 0.033 \end{array}$	294 295 321 323 343 343 343 348 368 368	DF-LIF	Nelson <i>et al</i> . ¹²	294-369

Haloalkane	$10^{12} \times \mathcal{A} (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	q	B (K)	$10^{14} \times k \text{ (cm}^3$ molecule ⁻¹ s ⁻¹)	at T(K)	Technique	Reference	Temperature range covered (K)
CH ₃ CH ₂ CH ₂ CH ₂ Cl	28 ± 9		842 ± 482	169 ± 9 210 ± 10 114 ± 6 128 ± 5 231 ± 7 234 ± 9 214 ± 6	295 295 295 295 331 331 353	PR-RA	Markert and Nielsen ⁸	295-353
CH ₃ CH ₂ CH ₂ CH ₂ Br				246 ± 8	299	RR [relative to k (cyclohexane) = 7.51 × 10 ⁻¹²] ^a	Donaghy <i>et al</i> . ⁹	
(CH ₃) ₃ CCl				41.2 ± 4.5	298	RR [relative to k (cyclohexane) = 7.49 × 10 ⁻¹²] ^a	Donaghy <i>et al</i> . ⁹	
CHF2CF2CF2CHF2	0.780 ± 0.340		1510 ± 260	$\begin{array}{c} 0.126 \pm 0.050\\ 0.322 \pm 0.033\\ 0.279 \pm 0.024\\ 0.418 \pm 0.030\\ 0.780 \pm 0.120\\ 1.12 \pm 0.17\\ 2.53 \pm 0.26\end{array}$	245 266 266 335 335 330 419	FP-RF	Zhang <i>et al</i> . ¹⁴	245-419
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Cl	17 ± 3		481 ± 361	336 ± 7 275 ± 8 450 ± 20 390 ± 30 380 ± 20	295 295 331 333	PR-RA	Markert and Nielsen ⁸	295-353
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ Br				396 ± 14	304	RR [relative to k (cyclohexane) = 7.62 × 10 ⁻¹²] ^a	Donaghy et al. ⁹	
CF ₃ CHFCHFCF ₂ CF ₃	0.421 ± 0.128		1400 ± 180	$\begin{array}{c} 0.156 \pm 0.039\\ 0.194 \pm 0.029\\ 0.267 \pm 0.036\\ 0.387 \pm 0.038\\ 0.630 \pm 0.097\\ 0.630 \pm 0.097\\ 0.887 \pm 0.103\\ 1.28 \pm 0.23\end{array}$	250 270 270 330 330 365 365	FP-RF	Zhang <i>et al</i> . ¹⁴	250-400

Table 65. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with haloalkanes - Continued

J. Phys. Chem. Ref. Data, Monograph No. 2

ROGER ATKINSON

198

Continued
1
adical with haloalkanes
-
НО
the
of I
reactions
gas-phase
he
ort
parameters f
dependent
and temperature
and t
constants k
late
5. R
Table 6

Temperature range covered (K)	562	-OSP NE
Reference	Markert and Nielsen ⁸	Donaghy <i>et al</i> . ⁹
Technique	PR-RA	RR [relative to k (cyclohexane) = 7.67 × 10^{-12} ^w
at T(K)	295 295 319 333 333 333 333 333 333 333 343 343	306
$10^{14} \times k \text{ (cm}^3$ molecule ⁻¹ s ⁻¹)	$\begin{array}{c} 360 \pm 30 \\ 400 \pm 30 \\ 4700 \pm 30 \\ 510 \pm 50 \\ 570 \pm 40 \\ 570 \pm 40 \\ 580 \pm 40 \\ 380 \pm 30 \\ 380 \pm 10 \\ 410 \pm 20 \end{array}$	585 ± 21
B (K)	361 ± 241	
а () п		
$\frac{10^{12} \times \mathcal{A} (\text{cm}^3)}{\text{molecule}^{-1} \text{ s}^{-1}}$	CH ₂ CH ₂ Cl 16 ± 2	CH ₂ CH ₂ Br
Haloalkane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br

^aFrom present (Section 3.2) and previous¹⁵ recommendations. ^bCombined with the previous measurements of Taylor *et al.*¹⁶ ^cNot reported, expected to be room temperature. ^dNot reported, expected to be LP-LIF. ^eCorrected for the presence of CHCI = CCI₂ impurity.¹³

References

- ¹T. J. Wallington and M. D. Hurley, Environ. Sci. Technol. 27, 1448 (1993).
- ²P. H. Taylor, Z. Jiang, and B. Dellinger, Int. J. Chem. Kinet. 25, 9 (1993).
- ³A. Mellouki, R. K. Talukdar, A.-M. Schmoltner, T. Gierczak, M. J. Mills, S. Solomon, and A. R. Ravishankara, Geophys. Res. Lett. 19, 2059 (1992).
- ⁴Z. Zhang, R. D. Saini, M. J. Kurylo, and R. E. Huie, Geophys. Res. Lett. **19**, 2413 (1992).
- ⁵V. L. Orkin and V. G. Khamaganov, J. Atmos. Chem. 16, 157 (1993).
- ⁶V. L. Orkin and V. G. Khamaganov, J. Atmos. Chem. 16, 169 (1993).
- ⁷A. R. Ravishankara, S. Solomon, A. A. Turnipseed, and R. F. Warren, Science **259**, 194 (1993).
- ⁸F. Markert and O. J. Nielsen, Chem. Phys. Lett. 194, 123 (1992).
- ⁹T. Donaghy, I. Shanahan, M. Hande, and S. Fitzpatrick, Int. J. Chem. Kinet. **25**, 273 (1993).
- ¹⁰Z. Jiang, P. H. Taylor, and B. Dellinger, J. Phys. Chem. **96**, 8964 (1992).
- ¹¹Z. Jiang, P. H. Taylor, and B. Dellinger, J. Phys. Chem. **96**, 8961 (1992).
- ¹²D. D. Nelson, Jr., M. S. Zahniser, and C. E. Kolb, Geophys. Res. Lett. 20, 197 (1993).
- ¹³Z. Jiang, P. H. Taylor, and B. Dellinger, J. Phys. Chem. **97**, 5050 (1993).
- ¹⁴Z. Zhang, R. D. Saini, M. J. Kurylo, and R. E. Huie, Chem. Phys. Lett. **200**, 230 (1992).
- ¹⁵R. Atkinson, J. Phys. Chem. Ref. Data, Monograph 1,1 (1989).
- ¹⁶P. H. Taylor, J. A. D'Angelo, M. C. Martin, J. H. Kasner, and B. Dellinger, Int. J. Chem. Kinet. **21**, 829 (1989).
- ¹⁷C. J. Howard and K. M. Evenson, J. Chem. Phys. **64**, 197 (1976). ¹⁸R. A. Perry, R. Atkinson, and J. N. Pitts, Jr., J. Chem. Phys. **64**, 1618
- (1976). ¹⁹D. D. Davis, G. Machado, B. Conaway, Y. Oh, and R. Watson, J.
- Chem. Phys. 65, 1268 (1976).
- ²⁰G. Paraskevoupoulos, D. L. Singleton, and R. S. Irwin, J. Phys. Chem. **85**, 561 (1981).
- ²¹K.-M. Jeong and F. Kaufman, J. Phys. Chem. 86, 1808 (1982).
- ²²F. Markert and O. J. Nielsen, Chem. Phys. Lett. 189, 171 (1992).
- ²³S.-B. Xing, S.-H. Shi, and L.-X. Qiu, Int. J. Chem. Kinet. 24, 1 (1992).
- ²⁴L. X. Qiu, S. H. Shi, S. B. Xing, and X. G. Chen, J. Phys. Chem. **96**, 685 (1992).
- ²⁵C. J. Howard and K. M. Evenson, J. Chem. Phys. 64, 4303 (1976).
- ²⁶B. J. Finlayson-Pitts, M. J. Ezell, T. M. Jayaweera, H. N. Berko, and C. C. Lai, Geophys. Res. Lett. **19**, 1371 (1992).
- ²⁷R. K. Talukdar, A. Mellouki, A.-M. Schmoltner, T. Watson, S. Montzka, and A. R. Ravishankara, Science 257, 227 (1992).
- ²⁸J.-P. Martin and G. Paraskevopoulos, Can. J. Chem. 61, 861 (1983).
- ²⁹R. Liu, R. E. Huie, and M. J. Kurylo, J. Phys. Chem. 94, 3247 (1990).
 ³⁰T. Gierczak, R. Talukdar, G. L. Vaghjiani, E. R. Lovejoy, and A. R.
- Ravishankara, J. Geophys. Res. 96, 5001 (1991). ³¹A. C. Brown, C. E. Canosa-Mas, A. D. Parr, K. Rothwell, and R. P.
- Wayne, Nature 347, 541 (1990).
- ³²A. C. Brown, C. E. Canosa-Mas, A. D. Parr, and R. P. Wayne, Atmos. Environ. **24A**, 2499 (1990).
- ³³A. C. Brown, C. E. Canosa-Mas, A. D. Parr, J. M. T. Pierce, and R. P. Wayne, Nature **341**, 635 (1989).

7.2.3. Haloalkenes

The rate constants reported for the reactions of the OH radicals with haloalkenes since Table 39 was finalized are given in Table 66.

 $CHCl = CCl_2$. The absolute rate constants of Jiang *et al.*,¹ measured at 740 Torr total pressure of helium diluent, are given in Table 66. At room temperature, the rate constant of Jiang *et al.*¹ is 65–70% higher than the

recommendation of Atkinson,³ although the discrepancy decreases with increasing temperature. While this effect could be due to the rate constant being pressure-dependent at total pressures up to several hundred Torr, the temperature dependence of the rate constants measured by Jiang *et al.*,¹ of B = -1000 K, appears anomalously high. In the absence of further confirmation of these data of Jiang *et al.*,¹ the previous recommendation³ is unchanged.

 $CF_3CF = CF_2$. McIlroy and Tully² have measured rate constants for the reaction of the OH radical with $CF_3CF = CF_2$ over the temperature range 293–831 K. At 293 K, the rate constant is independent of total pressure of helium over the range 75–750 Torr. The reaction is assumed to proceed by OH radical addition at temperatures $\leq 500 \text{ K.}^2$ Non-exponential decays of the OH radical concentration were observed² over the temperature range 528–641 K, indicating either thermal decomposition of the HOC₃F₆ adduct back to reactants or generation of an F atom which reacted with the H₂O present to reform OH radicals. At temperatures > 736 K, the measured rate constant exceeds that for the OH radical addition pathway extrapolated from the 293–489 K temperature range, indicating a direct reaction process.²

References

- ¹Z. Jiang, P. H. Taylor, and B. Dellinger, J. Phys. Chem. **97**, 5050 (1993). ²A. McIlroy and F. P. Tully, J. Phys. Chem. **97**, 610 (1993).
- ³R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).

7.2.4. Alkynes

Lai *et al.*¹ have measured the forward and reverse rate constants for the reaction of the OH radical with acetylene over the temperature range 627-713 K at 414-864 Torr total pressure of He.

$$OH + C_2H_2 \stackrel{M}{\rightleftharpoons} C_2H_2OH$$
 (a,-a)

Under these temperature and pressure conditions, the rate constants k_a and k_{-a} are in the fall-off regime between second- and third-order kinetics and first- and second-order kinetics, respectively.² For 760 Torr of Ar diluent, Atkinson² used the Troe fall-off model to calculate rate constants k_a for the addition of the OH radical to C₂H₂ (H-atom abstraction is of no importance at 627-713 K) of $\sim 8 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ at 710 K and $\sim 1 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at 625 K. The rate constants k_a obtained by Lai *et al.*¹ are in accord with these calculations,² with $k_a = (1.1 \pm 0.2) \times 10^{-13} e^{(1460 \pm 500)/T}$ cm³ molecule⁻¹ s⁻¹ for the restricted set of pressure and temperature conditions employed.

References

¹L.-H. Lai, Y.-C. Hsu, and Y.-P. Lee, J. Chem. Phys. **97**, 3092 (1992). ²R. Atkinson, J. Phys. Chem. Ref. Data Monograph **1**, **1** (1989).

Haloalkene	$10^{12} \times \mathcal{A} (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	B (K)	$10^{12} \times k (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	at T (K)	Technique	Reference	Temperature range covered (K)
CHCI=CCl ₂			$\begin{array}{c} 3.97 \pm 0.45 \\ 3.08 \pm 0.23 \\ 2.84 \pm 0.29 \\ 2.17 \pm 0.21 \\ 1.58 \pm 0.16 \\ 1.23 \pm 0.12 \\ 1.18 \pm 0.11 \end{array}$	295 326 335 362 403 452 452	LP-LIF	Jiang <i>et al.</i> ''	295-460
Hexafluoropropene ⁴ (CF ₃ CF = CF ₂)	0.99 ± 0.064	-245 ± 23 (293-489 K)	$\begin{array}{c} 2.32 \pm 0.10\\ 2.10 \pm 0.09\\ 1.87 \pm 0.08\\ 1.74 \pm 0.09\\ 1.66 \pm 0.08\\ 1.66 \pm 0.08\\ 1.66 \pm 0.08\\ 1.56 \pm 0.10\\ 1.61 \pm 0.10\\ 1.61 \pm 0.11\\ 1.72 \pm 0.11\\ 1.74 \pm 0.11\end{array}$	293 326 378 438 438 489 489 713 755 753 794 831	LP-LIF	McIlroy and Tully ²	293-831

Table 66. Rate constants k and temperature-dependent parameters, $k = A e^{-BT}$, for the gas-phase reactions of the OH radical with haloalkenes at, or close to, the high pressure limit

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

7.2.5. Oxygen-Containing Organic Compounds

The rate constants reported since Table 41 was finalized are given in Table 67.

2-Propanol. The absolute rate constants determined by Dunlop and Tully² for $(CH_3)_2CHOH$, $(CH_3)_2CHOD$, $(CH_3)_2CDOH$, $(CD_3)_2CHOH$ and $(CD_3)_2CDOD$ are given in Table 67. For the reaction of ¹⁶OH radicals with $(CH_3)_2CHOH$, non-exponential decays of the ¹⁶OH radical were observed over the temperature range 504– 600 K.² Above 600 K, exponential decays of the ¹⁶OH radical were observed, with the rate constants being significantly lower than expected from extrapolation of the lower temperature data.² At 548 and 587 K, rate constants were obtained from the exponential decays of ¹⁸OH radicals. These observations are expected^{2,10} from the reaction sequence

$$\longrightarrow$$
 H₂O + (CH₃)₂CHO (a)

OH + (CH₃)₂CHOH
$$\longrightarrow$$
 H₂O + CH₃Ċ(OH)CH₃ (b)

$$\rightarrow$$
 H₂O + CH₃CH(OH)ĊH₂ (c)

with the CH₃CH(OH)CH₂ radical formed in channel (c) being identical to that formed from OH radical addition to propene, and undergoing thermal decomposition at temperatures ≥ 600 K.⁹

$$CH_3CH(OH)CH_2 \rightarrow CH_3CH = CH_2 + OH$$

Thus at temperatures ≤ 500 K the measured rate constant for reaction with ¹⁶OH radicals is $k_a + k_b + k_c$, while for temperatures > 600 K the measured rate constant for ¹⁶OH radical reaction is $k_a + k_b$ (the ¹⁸OH radical reaction leads to a measured rate constant for $k_a + k_b + k_c$ since ¹⁶OH radicals and not ¹⁸OH radicals are regenerated). Because of expected rapid exchange of the H and D atoms on the -OH or -OD groups, the rate constants for (CH₃)₂CHOD and (CH₃)₂CHOH are identical (note that H or D atom abstraction from the -OH or -OD groups is also of minor importance) [Table 67]. From the rate constants obtained for (CH₃)₂CHOH and the partially or fully deuterated species, Dunlop and Tully² obtained a rate constant ratio of $k_c/(k_a + k_b + k_c)$ for (CH₃)₂CHOH of

$$k_{\rm c}/(k_{\rm a} + k_{\rm b} + k_{\rm c}) = 0.698 \ {\rm e}^{-521/T}$$

over the temperature range 293-502 K.

The rate constants of Dunlop and Tully² for $(CH_3)_2CHOH$ are lower than those of Wallington and Kurylo¹¹ by ~10-20% over the temperature range common to both studies (293-440 K). A unit-weighted least squares analysis of the ¹⁶OH and ¹⁸OH radical reaction rate constants of Dunlop and Tully², using the expression $k = CT^2 e^{-D/T}$, leads to the recommendation of

k(2-propanol) =

 $(4.06 \pm 0.11) \times 10^{-18} T^2 e^{(788 \pm 11)/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

over the temperature range 293-587 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
 (2-propanol) =
5.07 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 20\%$. This recommendation supersedes that in Sec. 3.6 of

$$k(2\text{-propanol}) = 7.32 \times 10^{-18} T^2 e^{620/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

over the temperature range 240–440 K, with a 298 K rate constant of 5.21×10^{-12} cm³ molecule⁻¹ s⁻¹.

2,2-Dimethylpropan-1-ol (Neopentyl alcohol). The absolute rate constants determined by Tully³ for the reactions of ¹⁶OH and ¹⁸OH radicals with (CH₃)₃CCH₂OH are given in Table 67. For the ¹⁸OH radical reaction, exponential ¹⁸OH radical decays were observed at all temperatures,³ while for the ¹⁶OH radical reactions non-exponential ¹⁶OH radical decays were observed³ over the temperature range 437–572 K (the rate constants obtained from the initial portions of these non-exponential decays are given in Table 67). While non-exponential decays of ¹⁶OH radicals were observed over a fairly limited temperature range,³ indicating some (slow) reformation of ¹⁶OH radicals,³ the data obtained show that the previously observed reaction scheme of

$$OH + alcohol \rightarrow H_2O + OH + alkene$$

at temperatures $\geq 500 \text{ K}^{10}$ does not occur to any significant extent for neopentyl alcohol. This lack of significant regeneration of OH radicals from the OH radical reaction with neopentyl alcohol is expected, since neopentyl alcohol does not contain any abstractable β -H atoms (see above discussion for 2-pentanol).

Di-isopropyl ether. The absolute and relative rate constants of McLaughlin et al.⁴ and Wallington et al.^{5,6} are given in Table 67. The room temperature absolute and relative rate constants of McLoughlin et al.⁴ and Wallington et al.^{5,6} are in excellent agreement with those of Nelson et al.¹² given in Table 41 of Sec. 3.6. Over the temperature range employed by Wallington et al.,⁵ the rate constants were well fit by an Arrhenius expression and no evidence for curvature in the Arrhenius plot was observed.⁵ Accordingly, a unit-weighted least-squares analysis of the absolute rate constants of Nelson et al.¹² and Wallington et al.⁵ and the relative rate constants of Nelson et al.,¹² McLoughlin et al.,⁴ and Wallington et al.,^{5,6} using the Arrhenius expression $k = A e^{-B/T}$, yields the recommendation of

$$k$$
(di-isopropyl ether) =
(2.20^{+1.08}_{-0.73}) × 10⁻¹² e^{(457 ± 120)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 240-400 K, where the indi-

cated errors are two least-squares standard deviations, and

k(di-isopropyl ether) = 1.02 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 25\%$.

Ethyl tert-butyl ether. The relative rate constants of Wallington et al.^{5,6} given in Table 67 are in excellent agreement with the recommended rate constant from Sec. 3.6 of

k(ethyl *t*-butyl ether) = 8.84 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K.

This recommendation is hence unchanged, although the estimated overall uncertainties are reduced to $\pm 30\%$.

Methyl t-amyl ether. The absolute and relative rate constants of Wallington et al.⁶ are given in Table 67. These room temperature rate constants⁶ are $\sim 30\%$ lower than the previously reported absolute room temperature rate constant of Wallington et al.,¹³ and reanalysis⁶ of the ether sample used by Wallington et al.¹³ showed the presence of a reactive alkene impurity. An Arrhenius plot of the absolute rate constants of Wallington et al.⁶ showed no evidence of curvature.⁶ Hence, a unit-weighted leastsquares of the absolute and relative rate constants of Wallington et al.,⁶ using the Arrhenius expression k = A $e^{-B/T}$, yields the recommendation of

$$k (\text{methyl } t\text{-amyl ether}) = (6.49^{+1.45}_{-1.18}) \times 10^{-12} e^{(48 \pm 61)/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

over the temperature range 240-400 K, where the indicated errors are two least-squares standard deviations, and

k(methyl *t*-amyl ether) = 5.52 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 35\%$.

n-Propyl acetate and *n*-butyl acetate. The relative rate constants of Williams *et al.*⁸ are given in Table 67. For *n*-propyl acetate, the rate constants of Williams *et al.*⁸ are in good agreement with the previous recommendation of Atkinson⁹ of

 $k(n \text{-propyl acetate}) = 3.4 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

which is therefore unchanged.

For *n*-butyl acetate, the rate constants of Williams *et al.*⁸ are $\sim 35\%$ higher than the previous absolute rate constants of Hartmann *et al.*¹⁴ and Wallington *et al.*¹⁵ A

unit-weighted average of the absolute and relative room temperature rate constants of Hartmann *et al.*,¹⁴ Wallington *et al.*¹⁵ and Williams *et al.*⁸ leads to the recommendation of

k(n-butyl acetate) = $4.9 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$

with an estimated overall uncertainty of $\pm 50\%$. This recommendation supersedes that of Atkinson⁹ of

k(n-butyl acetate) = $4.2 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

1-Acetoxy-2-ethoxyethane. The relative rate constants of Williams et al.⁸ given in Table 67 are in good agreement with the room temperature rate constant of Hartmann et al.,¹⁴ of $(1.3 \pm 0.2) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 298 K. Accordingly, a unit-weighted average of the room temperature rate constants of Hartmann et al.¹⁴ and Williams et al.⁸ leads to the recommendation of

k (1-acetoxy-2-ethoxyethane) = 1.14 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 40\%$.

References

- ¹T. J. Wallington and M. D. Hurley, Environ. Sci. Technol. 27, 1448 (1993).
- ²J. R. Dunlop and F. P. Tully, J. Phys Chem. 97, 6457 (1993).
- ³F. P. Tully, 23rd International Symposium on Combustion, 1990; The Combustion Institute, Pittsburgh, PA, 1991, pp. 147–153.
- ⁴P. McLoughlin, R. Kane, and I. Shanahan, Int. J. Chem. Kinet. **25**, 137 (1993).
- ⁵T. J. Wallington, J. M. Andino, A. R. Potts, S. J. Rudy, W. O. Siegl, Z. Zhang, M. J. Kurylo, and R. E. Huie, Environ. Sci. Technol. 27, 98 (1993).
- ⁶T. J. Wallington, A. R. Potts, J. M. Andino, W. O. Siegl, Z. Zhang, M. J. Kurylo, and R. E. Huie, Int. J. Chem. Kinet. **25**, 265 (1993).
- ⁷Z. Zhang, R. D. Saini, M. J. Kurylo, and R. E. Huie, J. Phys. Chem. **96**, 9301 (1992).
- ⁸D. C. Williams, L. N. O'Rji, and D. A. Stone, Int. J. Chem. Kinet. **25**, 539 (1993).
- ⁹R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ¹⁰W. P. Hess and F. P. Tully, Chem. Phys. Lett. 152, 183 (1988).
- ¹¹T. J. Wallington and M. J. Kurylo, Int. J. Chem. Kinet. **19**, 1015 (1987).
- ¹²L. Nelson, O. Rattigan, R. Neavyn, H. Sidebottom, J. Treacy, and O. J. Nielsen, Int. J. Chem. Kinet. 22, 1111 (1990).
- ¹³T. J. Wallington, P. Dagaut, R. Liu, and M. J. Kurylo, Int. J. Chem. Kinet. 20, 541 (1988).
- ¹⁴D. Hartmann, A. Gedra, D. Rhäsa, and R. Zellner, Proc. 4th European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, D. Reidel Publishing Co., Dordrecht, The Netherlands, 1987, pp. 225–235.
- ¹⁵T. J. Wallington, P. Dagaut, R. Liu, and M. J. Kurylo, Int. J. Chem. Kinet. **20**, 177 (1988).

		-	5				
Oxygenate	$10^{12} \times A (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}) \text{ n}$	B (K)	$10^{12} \times k (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
Aldehydes							
Formyl fluoride [HC(O)F]			< 0.0041	296 ± 2	RR [relative to $k(CH_3F) = 1.62 \times 10^{-14}$] ^a	Wallington and Hurley ¹	
Alcohols							
2-Propanol [(CH ₃) ₂ CHOH]	1.044 × 10 ⁻⁵ 1.86	736 (293–587 K)	$\begin{array}{c} 5.10 \pm 0.21 \\ 4.89 \pm 0.20 \\ 4.68 \pm 0.20 \\ 4.73 \pm 0.20 \\ 4.85 \pm 0.22 \\ 5.16 \pm 0.24 \\ 5.37 \pm 0.47^{\circ} \\ 5.37 \pm 0.47^{\circ} \\ 3.93 \pm 0.27 \\ 3.6 \pm 0.27 \end{array}$	293 326 378 587 587 587 587 543	LP-LIF	Dunlop and Tully ²	293–745
			+ +	653 745			
2-Propanol-d ₁ [(CH ₃) ₂ CHOD]			$\begin{array}{c} 5.13 \pm 0.22 \\ 4.88 \pm 0.20 \\ 4.68 \pm 0.20 \\ 4.82 \pm 0.20 \\ 4.86 \pm 0.23 \end{array}$	293 326 378 438 502	LP-LIF	Dunlop and Tully ²	293-502
2-Propanol-d ₁ [(CH ₃) ₂ CDOH]			3.23 ± 0.13 3.13 ± 0.13 3.21 ± 0.14 3.38 ± 0.16 3.58 ± 0.19	293 326 378 438 502	LP-LIF	Dunlop and Tully ²	293-502
2-Propanol-d ₆ [(CD ₃) ₂ CHOH]			4.68 ± 0.20 4.37 ± 0.18 4.12 ± 0.17 4.04 ± 0.18 4.13 ± 0.20	293 326 378 438 502	LP-LIF	Dunlop and Tully ²	293-502
2-Propanol-d ₈ [(CD ₃) ₂ CDOD]			$\begin{array}{l} 2.71 \ \pm \ 0.11 \\ 2.60 \ \pm \ 0.11 \\ 2.64 \ \pm \ 0.11 \\ 2.76 \ \pm \ 0.13 \end{array}$	293 326 378 438	LP-LIF	Dunlop and Tully ²	293–587

Table 67. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with oxygen-containing organic compounds

J. Phys. Chem. Ref. Data, Monograph No. 2

	1012 ~ 4 (3	4	1012 ~ 1. (3				Temperature
Oxygenate	molecule ⁻¹ s ⁻¹) n	(K)	molecule $^{-1}$ s (cm $^{-1}$)	at T (K)	Technique	Reference	range covered (K)
			2.89 ± 0.14 3.30 ± 0.21^{b}	502 587			
2,2-Dimethylpropan-1-ol			+I	293	LP-LIF	Tully ³	293-764
[(CH ₃) ₃ CCH ₂ OH]			+I	327			
			+1	377.5			
			+I	437.5			
			+I	438.5			
			+I	456			
			+1	456			
			+I	478			
			ŧI	489			
			+I	501			
			+1	521.5			
			+1	546			
			+1	547			
			+1	572			
			+I	596			
			+1	596			
			+I	601			
			+1	619.5			
			+I	645			
			+1	673			
			+I	715.5			
			11.6 ± 0.75	763.5			
Ethers							
Di-isopropyl ether [(CH ₃) ₂ CHOCH(CH ₃) ₂]			10.6 ± 0.5	300 ± 3	RR [relative to k (diethyl ether) = 1.31×10^{-11}	McLoughlin <i>et al</i> . ⁴	
			12.9 ± 1.4	240	FP-RF	Wallington <i>et al</i> . ⁵	240-400
			12.4 ± 1.7	270		C	
			10.6 ± 0.9	296			
			10.8 ± 0.9 8.67 ± 1.16	296 230			
			Н	ncc			
	+1.4	- 445 + 145	6.51 ± 1.02	365 400			
	2.4 -0.8		н	004			
			9.81 ± 0.23	295 ± 2	RR [relative to k(cyclohexane)	Wallington <i>et al</i> . ⁵	
					$= 7.43 \times 10^{-12}$		

Table 67. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with oxygen-containing organic compounds - Continued

Oxygenate	$10^{12} \times A (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}) \text{ n}$	B (K)	$10^{12} \times k (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	at T (K)	Technique	Reference	Temperature range covered (K)
			10.7 ± 0.6	295 ± 2	RR [relative to k(methyl <i>t</i> -amyl ether) = 5.52 x 10^{-12}] ^a	Wallington <i>et al</i> . ^{5,6}	
Ethyl <i>t</i> -butyl ether [CH ₃ CH ₂ OC(CH ₃) ₃]			8.67 ± 0.43	295 ± 2	RR [relative to k (methyl t -amyl ether) = 5.52 x 10^{-12} ^a	Wallington <i>et al</i> . ⁶	
			8.62 ± 0.30	295 ± 2	RR [relative to k(cyclohexane) = 7.43 × 10 ⁻¹²] ⁴	Wallington <i>et al</i> . ⁵	
Methyl <i>t</i> -amyl ether [CH ₃ OC(CH ₃) ₂ CH ₂ CH ₃]	6.32 ± 0.72	40 ± 70	$\begin{array}{c} 5.12 \ \pm \ 0.48 \\ 5.76 \ \pm \ 0.43 \\ 5.68 \ \pm \ 0.36 \\ 5.66 \ \pm \ 0.38 \\ 5.45 \ \pm \ 0.48 \\ 5.85 \ \pm \ 0.62 \end{array}$	240 270 330 330 400	FP-RF	Wallington <i>et al.</i> ⁶	240-400
			5.33 ± 0.24	295 ± 2	RR [relative to k (cyclohexane) = 7.43 × 10 ⁻¹²] ^a	Wallington <i>et al</i> . ⁶	
CH ₃ OCH ₂ CH ₂ Cl			4.69 ± 0.28	300 ± 3	RR [relative to k (diethyl ether) = 1.31 × 10 ⁻¹¹] ^a	McLoughlin et al. ⁴	
CH ₃ OCH ₂ CHCl ₂			2.27 ± 0.11	300 ± 3	RR [relative to k (diethyl ether) = 1.31 × 10 ⁻¹¹] ^a	McLoughlin et al. ⁴	
CH ₃ OCH ₂ CH ₂ Br			6.64 ± 0.23	300 ± 3	RR [relative to k (dicthyl ether) = 1.31 × 10 ⁻¹¹] ^a	McLoughlin et al . ⁴	
CH ₃ CHFOCF ₂ CH ₂ Cl			< 0.3	300 ± 3	RR [relative to k (dicthyl ether) = 1.31 × 10 ⁻¹¹] ^a	McLoughlin et al. ⁴	
CHF20CHCICF3			< 0.3	300 ± 3	RR [relative to k(diethyl ether) = 1.31 × 10 ⁻¹¹] ^a	McLoughlin et al. ⁴	

Table 67. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with oxygen-containing organic compounds - Continued

- Continued
1
nic compounds
crgar
containing
oxygen
l with ox
radical
НО
Je (
ft
ctions o
read
s-phase
or the ga
for
parameters
pendent
ıre-dej
temperatı
k and
stants ,
cons
Rate o
67.
Table

ure

Oxygenate	$10^{12} \times A (\text{cm}^3$ molecule ⁻¹ s ⁻¹) n	B (K)	$10^{12} \times k (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	at T (K)	Technique	Reference	Temperatu range covere (K)
CHF ₂ OCF ₂ CHFCI			< 0.3	300 ± 3	RR [relative to k(diethyl ether) = 1.31×10^{-11} ^a	McLoughlin et al. ⁴	
CH ₃ OCF ₃			0.0214 ± 0.0015	296	FP-RF	Zhang et al. ⁷	
CHF ₂ OCF ₃			0.00338 ± 0.00041 0.00356 ± 0.00062	1 296 2 296	FP-RF	Zhang et al. ⁷	
CHF ₂ OCHF ₂			$\begin{array}{r} 0.0253 \ \pm \ 0.0024 \\ 0.0241 \ \pm \ 0.0016 \end{array}$	296 296	FP-RF	Zhang et al. ⁷	
CH ₃ OCH ₂ CF ₃			0.624 ± 0.067	296	FP-RF	Zhang et al. ⁷	
CHF2OCH2CF3			$\begin{array}{rrrr} 0.0125 \ \pm \ 0.0009 \\ 0.0120 \ \pm \ 0.0016 \end{array}$	296 296	FP-RF	Zhang et al. ⁷	
cyclo-CF2CHFCF2O-			0.00251 ± 0.00035 0.00240 ± 0.00030	5 296 0 296	FP-RF	Zhang et al. ⁷	
cyclo-(CF ₂) ₃ O-			< 0.0002	296	FP-RF	Zhang <i>et al.</i> ⁷	
Esters							
n-Propyl acetate [CH ₃ C(0)0CH ₂ CH ₂ CH ₃]			3.45 ± 0.88	297 ± 2	RR [relative to k(propene) = 2.65×10^{-11} ^a	Williams <i>et al</i> . ⁸	
			3.56 ± 0.85	297 ± 2	RR [relative to k(n-butane) = 2.53 × 10 ⁻¹²] ⁴	Williams <i>et al.</i> ⁸	
n-Butyl acetate [CH ₃ C(0)OCH ₂ CH ₂ CH ₂ CH ₃]			5.75 ± 0.96	297 ± 2	RR [relative to k (propene) = 2.65 × 10 ⁻¹¹] ^a	Williams <i>et al</i> . ⁸	
			5.53 ± 0.86	297 ± 2	RR [relative to k(n-butane) = 2.53×10^{-12} ⁴	Williams <i>et al</i> . ⁸	
n-Pentyl acetate [CH ₃ C(0)OCH ₂ CH ₂ CH ₂ CH ₂ CH ₃]	H ₃]		7.58 ± 0.48	297 ± 2	RR [relative to k (propene) = 2.65×10^{-11} ^a	Williams <i>et al</i> . ⁸	

		1					
Oxygenate	$10^{12} \times A (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}) \text{ n}$	B (K)	$10^{12} \times k \; (\text{cm}^3)$ molecule ⁻¹ s ⁻¹)	at <i>T</i> (K)	Technique	Temperature range covered Reference (K)	ature /ered
			7.51 ± 0.56	297 ± 2	RR [relative to k(r-butane) = 2.53 × 10 ⁻¹²] ^a	Williams <i>et al</i> . ⁸	
1-Acetoxy-2-ethoxyethane [CH ₃ C(O)OCH ₂ CH ₂ OCH ₂ CH ₃]			10.7 ± 1.4	297 ± 2	RR [relative to k(propene) = 2.65×10^{-11} ^a	Williams <i>et al</i> . ⁸	
			10.6 ± 0.7	297 ± 2	RR [relative to k(n-butane) = 2.53 × 10 ⁻¹²] ^a	Williams <i>et al</i> . ⁸	
2-Ethoxyethyl isobutyrate [(CH ₃) ₂ CHC(O)OCH ₂ CH ₂ OCH ₂ CH ₃]	CH ₃]		13.6 ± 2.4	297 ± 2	RR [relative to k(propene) = 2.65×10^{-11} ^a	Williams <i>et al</i> . ⁸	
			13.0 ± 1.1	297 ± 2	RR [relative to $k(\pi$ -butane) = 2.53 $\times 10^{-12}$] ^a	Williams <i>et al</i> . ⁸	
			13.7 ± 1.7	297 ± 2	RR [relative to $k(trans-2-butene)$ = 6.44 × 10 ⁻¹¹] ^a	Williams <i>et al</i> . ⁸	
2-Ethoxyethyl methacrylate [CH ₂ =C(CH ₃)C(O)OCH ₂ CH ₂ OCH ₂ CH ₃]	JH2CH3]		27.4 ± 2.1	297 ± 2	RR [relative to k(propene) = 2.65×10^{-11}] ²	Williams <i>et al</i> . ⁸	
			28.2 ± 3.5	297 ± 2	RR [relative to k(trans-2-butene) = 6.44×10^{-11}	Williams <i>et al</i> . ⁸	
4-Penten-1-yl acetate [CH ₃ C(O)OCH ₂ CH ₂ CH ₂ CH = CH ₂]	12]		43.7 ± 3.9	297 ± 2	RR [relative to k(propene) = 2.65×10^{-11} ^a	Williams <i>et al</i> . ⁸	
			43.1 ± 2.9	297 ± 2	RR [relative to k(trans-2-butene) = 6.44×10^{-11}	Williams <i>et al</i> . ⁸	
Ethyl 3-ethoxy-2-propenoate [CH ₃ CH ₂ OCH = CHC(O)OCH ₂ CH ₃]	H ₃]		33.2 ± 1.3	297 ± 2	RR [relative to k(trans-2-butene) = 6.44×10^{-11}	Williams <i>et al</i> . ⁸	

^aFrom present or previous⁹ recommendations. ^bReaction of ¹⁸OH radical. ^cNon-exponential ¹⁶OH radical decays observed. Rate constant obtained from the initial portion of the decay curve.

208

Table 67. Rate constants k and temperature-dependent parameters for the gas-phase reactions of the OH radical with oxygen-containing organic compounds - Continued

ROGER ATKINSON

7.2.6. Aromatic Compounds

The rate constants reported for the gas-phase reactions of OH radicals with aromatic compounds since Table 47 was finalized are given in Table 68.

Toluene. The rate constant obtained by Finlayson-Pitts *et al.*,¹ using a relative rate method and ozone as a dark source of OH radicals,¹ of $(6.00 \pm 0.29) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at 298 K (Table 68), is in excellent agreement with the recommendation of Atkinson³ of

$$k$$
(toluene) = 5.96 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K,

which is therefore unchanged.

Hexafluorobenzene. The absolute rate constants determined by McIlroy and Tully² over the temperature 244– 830 K are given in Table 68. No evidence for OH radical reformation was observed² at elevated temperatures, consistent with either a larger C-OH bond dissociation energy in the HO-C₆F₆ adduct than in the hydroxycyclohexadienyl radical³ or with an exothermic reaction pathway to products other than the reactants.²

The room temperature rate constant of McIlroy and Tully² is in reasonable or good agreement, respectively, with the previous absolute rate constants of Ravishankara *et al.*⁴ and Wallington *et al.*⁵ The rate constants of Wallington *et al.*⁵ over the temperature range 234-438 K are in reasonable agreement with those of McIlroy and Tully,² although the data of Wallington *et al.*⁵ lead to a significantly lower Arrhenius activation energy B of B = 610 ± 80 K.

A unit-weighted least-squares analysis of the absolute rate constants of Ravishankara *et al.*,⁴ Wallington *et al.*⁵ and McIlroy and Tully,² using the Arrhenius expression $k = A e^{-B/T}$, leads to the recommendation of

$$k$$
 (hexafluorobenzene) =
(3.88 $^{+0.98}_{-0.79}$) × 10⁻¹² e^{-(931 ± 78)/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 234-830 K, where the indicated errors are two least-squares standard deviations, and

$$k$$
 (hexafluorobenzene) =
1.71 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty at 298 K of $\pm 30\%$. This recommendation supersedes that of Atkinson³ of

$$k$$
(hexafluorobenzene) =
1.46 × 10⁻¹² e^{-638/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 234–438 K, with a 298 K rate constant of 1.72×10^{-13} cm³ molecule⁻¹ s⁻¹.

References

¹B. J. Finlayson-Pitts, S. K. Hernandez, and H. N. Berko, J. Phys. Chem. 97, 1172 (1993).

- ²A. McIlroy and F. P. Tully, J. Phys. Chem. 97, 610 (1993).
- ³R. Atkinson, J. Phys. Chem. Ref. Data Monograph 1, 1 (1989).
- ⁴A. R. Ravishankara, S. Wagner, S. Fischer, G. Smith, R. Schiff, R. T.
- Watson, G. Tesi, and D. D. Davis, Int. J. Chem. Kinet. 10, 783 (1978).
- ⁵T. J. Wallington, D. M. Neuman, and M. J. Kurylo, Int. J. Chem. Kinet. 19, 725 (1987).

7.2.7. Organic Radicals

Rate constants reported for the gas-phase reactions of the OH radical with organic radicals since Table 49 was finalized are given in Table 69.

CH₃. The absolute room temperature rate constants of Hughes *et al.*¹ and Fagerström *et al.*² are given in Table 69. Hughes *et al.*¹ observed no pressure dependence of the rate constant over the total pressure range 7.4–700 Torr of helium diluent, while Fagerström *et al.*² observed the rate constant to increase from (9.6 ± 0.5) × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 64 Torr total pressure of SF₆ to $(1.30 \pm 0.12) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ at 750 torr total pressure of SF₆. The absolute room temperature rate constants from these two studies^{1,2} and those of Anastasi *et al.*⁴ and Osner *et al.*⁵ exhibit discrepancies of a factor of ~2. The recommendation of Sec. 3.13 of

$$k_{\infty}(CH_3) = 1.0 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},$$

applicable to total pressures of air $\gtrsim 100$ Torr and with an estimated overall uncertainty of a factor of 2, is unchanged.

References

- ¹K. J. Hughes, A. R. Pereira, and M. J. Pilling, Ber. Bunsenges. Phys. Chem. 96, 1352 (1992).
- ²K. Fagerström, A. Lund, G. Mahmoud, J. T. Jodkowski, and E. Ratajczak, Chem. Phys. Lett. 204, 226 (1993).
- ³K. Fagerström, A. Lund, G. Mahmoud, J. T. Jodkowski, and E. Ratajczak, Chem. Phys. Lett. **208**, 321 (1993).
- ⁴C. Anastasi, S. Beverton, T. Ellermann, and P. Pagsberg, J. Chem. Soc. Faraday Trans. **87**, 2325 (1991).
- ⁵H. Osner, N. D. Stothard, R. Humpfer, and H. H. Grotheer, J. Phys. Chem. **96**, 5359 (1992).
| Aromatic | $10^{12} \times A (\text{cm}^3)$
molecule ⁻¹ s ⁻¹ | B
(K) | $10^{12} \times k (\text{cm}^3)$
molecule ⁻¹ s ⁻¹) | at T (K) | Technique | Reference | Temperature
range covered
(K) |
|---|--|------------|--|--|--|---|-------------------------------------|
| Toluene | | | 6.00 ± 0.29 | 298 | RR [relative to
k(n-hexane)
= 5.61 × 10 ^{-12]a} | Finlayson-Pitts <i>et al</i> . ¹ | |
| Hexafluorobenzene
(C ₆ F ₆) | 4.78 ± 0.90 | 1005 ± 116 | $\begin{array}{c} 0.0790 \pm 0.0042 \\ 0.109 \pm 0.006 \\ 0.136 \pm 0.008 \\ 0.152 \pm 0.009 \\ 0.215 \pm 0.012 \\ 0.330 \pm 0.012 \\ 0.332 \pm 0.018 \\ 0.413 \pm 0.028 \\ 0.532 \pm 0.018 \\ 0.532 \pm 0.018 \\ 0.532 \pm 0.048 \\ 1.05 \pm 0.069 \\ 1.30 \pm 0.15 \\ 1.31 \pm 0.10 \end{array}$ | 244
260
275
377
377
420
586
537
637
830 | LP-LIF | McIlroy and Tully ² | 244-830 |

Radical	$10^{12} \times k$ (cm ³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference
CH ₃	76 ± 8	290	LP-RA	Hughes et al. ¹
	$144 \pm 15^{*}$	298	PR-RA	Fagerström et al. ²
C ₂ H ₅	$118 \pm 17^{\rm b}$	298	PR-RA	Fagerström et al. ³

TABLE 69. Rate constants k for the gas-phase reactions of the OH radical with organic radicals at, or close to, the high-pressure limit

*Extrapolated high-pressure limit²; see text.

^bIndependent of total pressure of SF₆ diluent over the range 188–750 Torr.

7.3. Kinetics and Mechanisms of the Gas-Phase Reactions of the NO₃ Radical with Organic Compounds

7.3.1. Alkanes

Since Table 50 was finalized, Langer *et al.*¹ have used a discharge flow system with optical absorption detection of NO₃ radicals at 662 nm to obtain a rate constant of (2.8 \pm 0.3) \times 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ at 296 \pm 2 K for the reaction of the NO₃ radical with *n*-hexane. Due to the expected occurrence of secondary reactions leading to a stoichiometry of ~2 for disappearance of NO₃ radicals,¹ this rate constant is an upper limit and is consistent with the discussion given in Sec. 4.1.

Reference

¹S. Langer, E. Ljungström and I. Wängberg, J. Chem. Soc. Faraday Trans. **89**, 425 (1993).

7.3.2. Alkenes

The rate constants reported since Table 52 was finalized are given in Table 70. For 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene, the absolute rate constants of Ellermann *et al.*¹ are higher than the recommendations of Atkinson² at 298 K of

$$k(1,3-butadiene) = 1.0 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$$

k (2-methyl-1,3-butadiene) = 6.78 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹,

and

$$k$$
 (2,3-dimethyl-1,3-butadiene) =
2.1 × 10⁻¹² cm³ molecule⁻¹ s⁻¹,

with estimated overall uncertainties of factors of 3 (1,3butadiene) and 2 (2-methyl-1,3-butadiene and 2,3dimethyl-1,3-butadiene). The recommendations of Atkinson² are unchanged (see also Sec. 4.3 for isoprene).

The absolute rate constant for 1,3-cyclohexadiene of $(1.2 \pm 0.2) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 295 K is in excellent agreement with the recommendation of Atkinson² of

k(1,3-cyclohexadiene) =1.16 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K,

which is therefore unchanged.

References

¹T. Ellermann, O. J. Nielsen, and H. Skov, Chem. Phys. Lett. **200**, 224 (1992).

²R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).

7.3.3. Oxygen-Containing Organic Compounds

The rate constants reported since Table 55 was finalized are given in Table 71. The duplicate sets of experiments at 296 \pm 2 K for several of the esters studied are for ester samples obtained from different commercial sources.¹ Because of the slowness of these reactions, the rate constants given in Table 71 should be considered to be upper limits to the elementary rate constants.¹

References

¹S. Langer, E. Ljungström and I. Wängberg, J. Chem. Soc. Faraday Trans. **89**, 425 (1993).

7.3.4. Aromatic Compounds

The rate constants reported since Table 57 was finalized are given in Table 72, where the rate constants k_{abs} , k_a , k_b , k_c and k_d are those for the reactions (abs), (a), (b), (c) and (d), respectively.

Table 70. Rate constants k for the gas-phase reactions of the NO₃ radical with alkenes

Alkene	$k (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	at T (K)	Technique	Reference
1,3-Butadiene	$(1.8 \pm 0.4) \times 10^{-13}$	295	PR-A	Ellermann et al. ¹
2-Methyl-1,3-butadiene (isoprene)	$(1.07 \pm 0.20) \times 10^{-12}$	295	PR-A	Ellermann et al. ¹
2,3-Dimethyl-1,3-butadiene	$(2.7 \pm 0.2) \times 10^{-12}$	295	PR-A	Ellermann et al. ¹
cis-1,3-Pentadiene	$(1.4 \pm 0.1) \times 10^{-12}$	295	PR-A	Ellermann et al. ¹
trans-1,3-Pentadiene	$(1.6 \pm 0.1) \times 10^{-12}$	295	PR-A	Ellermann et al. ¹
1,3-Cyclohexadiene	$(1.2 \pm 0.2) \times 10^{-11}$	295	PR-A	Ellermann et al. ¹
trans, trans - 2,4-Hexadiene	$(1.6 \pm 0.3) \times 10^{-11}$	295	PR-A	Ellermann et al. ¹

These rate constant data are from the relative rate constant study of Kwok et al.¹ Of particular interest is the determination of the rate constant $k_a = 6.8 \times 10^{-14} \text{ cm}^3$ molecule⁻¹ s⁻¹ at 297 K for the addition reaction of the NO₃ radical with dibenzo-p-dioxin. Assuming that the rate constant k_c for the reaction of NO₂ with the NO₃dibenzo-p-dioxin adduct is similar to those determined by Knispel et al.³ for the reactions of NO₂ with the OH-benzene, OH-toluene and OH-phenol adducts, of $\sim 3 \times$ 10^{-11} cm³ molecule⁻¹ s⁻¹, than a rate constant for the thermal decomposition of NO₃-dibenzo-p-dioxin back to reactants of $k_b \sim 520 \text{ s}^{-1}$ at 297 $\pm 2 \text{ K}$ was obtained.¹ Furthermore, with the same assumption, $k_d < 1.2 \times 10^{-17}$ cm^3 molecule⁻¹ s⁻¹ at 297 \pm 2 K, approximately an order of magnitude (or greater) less than the room temperature rate constants determined by Knispel et al.³ for the corresponding reactions of OH-benzene and OH-toluene adducts with O₂.

References

¹E. S. C. Kwok, R. Atkinson, and J. Arey, Int. J. Chem. Kinet., in press (1994).

³R. Knispel, R. Koch, M. Siese, and C. Zetzsch, Ber. Bunsenges. Phys. Chem. **94**, 1375 (1990).

7.4. Kinetics and Mechanisms of the Gas-Phase Reactions of Ozone with Organic Compounds

The kinetic and mechanistic data reported since Sec. 5 was finalized are presented and briefly discussed in the sections below.

7.4.1. Alkenes

The rate constants reported since Table 58 was finalized are given in Table 73. In addition to the rate constants given in Table 73, Munshi *et al.*³ have reported lower limits to the (unspecified) room temperature rate constants for α -pinene, β -pinene, limonene and α -phellandrene of (in cm³ molecule⁻¹ s⁻¹ units) > 8.0 × 10⁻¹⁷, > 9.6 × 10⁻¹⁸, > 5.0 × 10⁻¹⁸ and > 4.1 × 10⁻¹⁷, respectively.

2-Methyl-1,3-butadiene (isoprene). The absolute rate constant of Grosjean *et al.*¹ is given in Table 73. This rate constant of Grosjean *et al.*¹ is in reasonable agreement with that of 1.15×10^{-17} cm³ molecule⁻¹ s⁻¹ calculated from the recommendation of Sec. 5.2 of

k(2-methyl-1,3-butadiene) = 7.86 × 10⁻¹⁵ e^{-1913/T} cm³ molecule⁻¹ s⁻¹

over the temperature range 240-324 K, which is unchanged.

Cycloheptene. The rate constant of Greene and Atkinson² supersedes that of Atkinson *et al.*⁴ (and is 30% lower), and is in good agreement with the relative rate constant of Nolting *et al.*⁵ of $(2.70 \pm 0.15) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ at 297 ± 2 K. A unit-weighted average of the relative rate constants of Nolting *et al.*⁵ and Greene and Atkinson² leads to the recommendation of

$$k$$
(cycloheptene) = 2.48 × 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ at 298 K,

with an estimated overall uncertainty of $\pm 40\%$.

Other Alkenes. The rate constants measured by Greene and Atkinson² using a relative rate method are given in Table 73. These rate constants of Greene and Atkinson² supersede those of Atkinson *et al.*^{4,6}.

References

- ¹D. Grosjean, E. L. Williams II, and E. Grosjean, Environ. Sci. Technol. **27**, 830 (1993).
- ²C. R. Greene and R. Atkinson, Int. J. Chem. Kinet. 26, 37 (1994).
- ³H. B. Munshi, K. V. S. R. Rao, and R. M. Iyer, Atmos. Environ. 23, 1971 (1989).
- ⁴R. Atkinson, S. M. Aschmann, W. P. L. Carter, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 15, 721 (1983).
- ⁵F. Nolting, W. Behnke, and C. Zetzsch, J. Atmos. Chem. 6, 47 (1988).
- ⁶R. Atkinson, S. M. Aschmann, and W. P. L. Carter, Int. J. Chem. Kinet. 16, 967 (1984).

7.4.2. Oxygen-Containing Organic Compounds

The rate constants reported since Table 60 was finalized are given in Table 74 (those of Hatakeyama *et al.*³ and Munshi *et al.*⁴ were inadvertently omitted from Sec. 5.4).

²R. Atkinson, J. Phys. Chem. Ref. Data 20, 459 (1991).

Organic	$10^{12} \times A$ (cm ³ molecule ⁻¹ s ⁻¹)	B (K)	k (cm ³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference	Temperature range covered (K)
Methyl formate [HC(O)OCH ₃]			$\begin{array}{l} (3 \pm 1) \times 10^{-18} \\ (4.1 \pm 0.6) \times 10^{-18} \end{array}$	296 ± 2 296 ± 2	DF-A	Langer <i>et al</i> . ¹	
Methyl acetate [CH3C(0)OCH3]			$(7 \pm 2) \times 10^{-18}$ $(7.2 \pm 0.4) \times 10^{-17}$	296 ± 2 296 ± 2	DF-A	Langer <i>et al</i> .'	
Methyl propionate [CH ₃ CH ₂ C(O)OCH ₃]			$(3.3 \pm 0.8) \times 10^{-17}$	296 ± 2	DF-A	Langer <i>et al</i> .'	
Methyl butyrate [CH ₃ CH ₂ CH ₂ C(0)OCH ₃]			$(4.8 \pm 0.5) \times 10^{-17}$	296 ± 2	DF-A	Langer <i>et al</i> .'	
Ethyl formate [HC(0)CH ₂ CH ₃]			$(1.7 \pm 0.3) \times 10^{-17}$ $(2.2 \pm 0.4) \times 10^{-17}$	296 ± 2 296 ± 2	DF-A	Langer <i>et al</i> .'	
Ethyl acetate [CH ₃ C(0)OCH ₂ CH ₃]	0.133	2795 ± 962	$\begin{array}{l} (5 \pm 3) \times 10^{-18} \\ (1.4 \pm 0.3) \times 10^{-17} \\ (1.1 \pm 0.2) \times 10^{-17} \\ (1.6 \pm 0.4) \times 10^{-17} \\ (1.8 \pm 0.5) \times 10^{-17} \\ (4.2 \pm 0.4) \times 10^{-17} \\ (1.05 \pm 0.07) \times 10^{-16} \end{array}$	273 296 ± 2 313 328 328 353 353	DF-A	Langer <i>et al</i> .'	273-373
Ethyl propionate [CH ₃ CH ₂ C(0)OCH ₂ CH ₃]			$(3.3 \pm 0.4) \times 10^{-17}$ $(3.8 \pm 0.1) \times 10^{-17}$	296 ± 2 296 ± 2	DF-A	Langer <i>et al</i> .'	
Propyl formate [HC(0)0CH ₂ CH ₂ CH ₃]			$(5.4 \pm 0.9) \times 10^{-17}$	296 ± 2	DF-A	Langer <i>et al</i> .'	
Propyl acetate [CH ₃ C(0)OCH ₂ CH ₂ CH ₃]			$(5 \pm 2) \times 10^{-17}$	296 ± 2	DF-A	Langer <i>et al.</i> '	

Table 71. Rate constants k and temperature-dependent parameters, $k = A e^{-B/T}$, for the gas-phase reactions of the NO₃ radical with oxygen-containing compounds

Methacrolein and Methyl Vinyl Ketone. The absolute rate constants of Grosjean *et al.*¹ are given in Table 74. These rate constants are in good agreement, to within 6% for methacrolein and 17% for methyl vinyl ketone, with the rate constants calculated from the recommendations given in Sec. 5.4 of

k (methacrolein) = 1.36 × 10⁻¹⁵ e^{-2112/T} cm³ molecule⁻¹ s⁻¹ and

k(methyl vinyl ketone) = 7.51 × 10⁻¹⁶ e^{-1521/T} cm³ molecule⁻¹ s⁻¹,

both over the temperature range 240–324 K. These previous recommendations are unchanged.

2-Cyclohexen-1-one. The upper limit to the rate constant obtained by Greene and Atkinson² from a relative rate study is consistent with the absolute rate constant of Atkinson *et al.*⁶

3-Penten-2-one. The relative rate constant of Greene and Atkinson² supersedes the previous absolute rate constant of Atkinson *et al.*⁶

References

- ¹D. Grosjean, E. L. Williams II, and E. Grosjean, Environ. Sci. Technol. **27**, 830 (1993).
- ²C. R. Greene and R. Atkinson, Int. J. Chem. Kinet. 26, 37 (1994).
 ³S. Hatakeyama, S. Honda, and H. Akimoto, Bull Chem. Soc. Jpn. 58,
- 2411 (1985). ⁴H. B. Munshi, K. V. S. R. Rao, and R. M. Iyer, Atmos. Environ. 23,
- 1971 (1989). ⁵R. Atkinson, J. Arey, S. M. Aschmann, and E. C. Tuazon, Res. Chem.
- Intermed., in press (1993).
- ⁶R. Atkinson, S. M. Aschmann, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. **13**, 1133 (1981).

7.4.3. Nitrogen-Containing Organic Compounds

Blatchley *et al.*¹ have used a static system with ultraviolet absorption spectroscopy to investigate the kinetics of the gas-phase reaction of pyridine, 2-, 3- and 4methylpyridine, and 2,5- and 2,6-dimethylpyridine with O₃. Due to spectroscopic interferences between O₃ and the pyridine and/or pyridine reaction products, only semiquantitative data were obtained, indicating that these reactions were slow, with room temperature rate constants of $\sim (5-50) \times 10^{-21}$ cm³ molecule⁻¹ s⁻¹ being reported.

Munshi *et al.*² used a flow technique with ultraviolet absorption spectroscopy to measure rate constants at room temperature (unspecified) for the gas phase reactions of O₃ with acrylonitrile (CH₂=CHCN) and methacrylonitrile (CH₂=C(CH₃)CN) of 1.38 × 10⁻¹⁹ cm³ molecule⁻¹ s⁻¹ and 3.52 × 10⁻¹⁹ cm³ molecule⁻¹ s⁻¹, respectively. Decidedly non-unit stoichiometry was observed for the O₃ reaction with acrylonitrile² ($\Delta O_3/\Delta$ acrylonitrile = 0.33), and the rate constant obtained² is marginally inconsistent with the upper limit of k (acrylonitrile) <1 × 10⁻¹⁹ cm³ molecule⁻¹ s⁻¹ determined by Atkinson *et al.*³ at 296 ± 2 K.

References

¹E. R. Blatchley, III, C. R. Daughton, and J. F. Thomas, Atmos. Environ. **27A**, 113 (1993).

²H. B. Munshi, K. V. S. R. Rao, and R. M. Iyer, Atmos. Environ. 23, 1971 (1989).

³R. Atkinson, S. M. Aschmann, D. R. Fitz, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. 14, 13 (1982).

Table 72. Rate constants k_{abs} and k_a and rate constant ratios k_ak_c/k_b and k_ak_d/k_b for the gas-phase reactions of the NO₃ radical with aromatic compounds at 297 \pm 2 K¹

Aromatic	k_a (cm ³ molecule ⁻¹ s ⁻¹) ^a	k_{abs} (cm ³ molecule ⁻¹ s ⁻¹) ^a	$k_a k_c / k_b$ (cm ⁶ molecule ⁻² s ⁻¹) ^a	$k_a k_d / k_b (\text{cm}^6 \text{molecule}^{-2} \text{s}^{-1})^a$
Methoxybenzene		$< 1.6 \times 10^{-15}$	$< 7 \times 10^{-30}$	
1,2-Dimethoxybenzer	ne	$(9.8 \pm 4.8) \times 10^{-15}$	$(1.02 \pm 0.18) \times 10^{-28}$	
1,3-Dimethoxybenzer	ne	$(1.02 \pm 0.35) \times 10^{-14}$	$(3.3 \pm 0.6) \times 10^{-29}$	
1,4-Dimethoxybenzer	ne	$(8.8 \pm 0.6) \times 10^{-15}$	$(1.34 \pm 0.03) \times 10^{-28}$	
Dibenzofuran		$< 1.6 \times 10^{-15}$	$< 7 \times 10^{-30}$	
Dibenzo-p-dioxin	6.8×10^{-14} b	$< 8 \times 10^{-15}$	3.9×10^{-27} b	$< 1.6 \times 10^{-33}$

*Relative to k(1-butene) = $1.19 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.²

^bEstimated overall uncertainty of a factor of -2.

GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC COMPOUNDS

Alkene	k (cm ³ molecule ⁻¹ s ⁻¹)	at <i>T</i> (K)	Technique	Reference
2-Methyl-1,3-butadiene (isoprene)	$(8.95 \pm 0.25) \times 10^{-18}$	293 ± 2	S-UV	Grosjean et al. ¹
1,3-Cyclohexadiene	$(1.22 \pm 0.05) \times 10^{-15}$	296 ± 2	RR [relative to k(2,3-dimethyl-2- butene) = 1.12×10^{-15}] ^a	Greene and Atkinson ²
Cycloheptene	$(2.26 \pm 0.04) \times 10^{-16}$	296 ± 2	RR [relative to k(cis-2-butene) $= 1.22 \times 10^{-16}$] ^a	Greene and Atkinson ²
1,3-Cycloheptadiene	$(1.54 \pm 0.03) \times 10^{-16}$	296 ± 2	RR [relative to k(cis-2-butene) = 1.22×10^{-16}] ^a	Greene and Atkinson ²
Bicyclo[2.2.1]-2-heptene	$(1.55 \pm 0.05) \times 10^{-15}$	296 ± 2	RR [relative to k(2,3-dimethyl-2- butene) = 1.12×10^{-15}] ^a	Greene and Atkinson ²
Bicyclo[2.2.1]-2,5- heptadiene	$(3.55 \pm 0.07) \times 10^{-15}$	296 ± 2	RR [relative to k(2,3-dimethyl-2- butene) = 1.12×10^{-15}] ^a	Greene and Atkinson ²
Bicyclo[2.2.2]-2-octene	$(7.09 \pm 0.10) \times 10^{-17}$	296 ± 2	RR [relative to k(cis-2-butene) = 1.22×10^{-16}] ^a	Greene and Atkinson ²

Table 73. Rate constants k for the gas-phase reaction of O₃ with alkenes

*From previous recommendations.

ROGER ATKINSON

Organic	k (cm ³ molecule ⁻¹ s ⁻¹)	at T (K)	Technique	Reference
Methacrolein $[CH_2 = C(CH_3)CHO]$	$(1.02 \pm 0.05) \times 10^{-18}$	291 ± 2	S-UV	Grosjean et al. ¹
Methyl vinyl ketone [CH ₃ C(O)CH = CH ₂]	$(4.72 \pm 0.09) \times 10^{-18}$	291 ± 2	S-UV	Grosjean et al. ¹
3-Penten-2-one [CH ₃ C(O)CH ≈ CHCH ₃]	$(3.50 \pm 0.16) \times 10^{-17}$	296 ± 2	RR [relative to k(propene) = 9.68×10^{-18}] ^a	Greene and Atkinson ²
2-Cyclohexene-1-one	<1.9 × 10 ⁻¹⁸	296 ± 2	RR [relative to k(propene) = 9.68×10^{-18}] ^a	Greene and Atkinson ²
Ketene $[CH_2 = C = O]$	$<1 \times 10^{-21}$	b	S-IR	Hatakeyama <i>et al</i> . ³
Methylketene $[CH_3CH = C = O]$	$< 7 \times 10^{-19}$	303 ± 1	S-IR	Hatakeyama <i>et al</i> . ³
Ethylketene [CH ₃ CH ₂ CH = C = O]	$<1 \times 10^{-18}$	303 ± 1	S-IR	Hatakeyama <i>et al</i> . ³
Dimethylketene [(CH_3) ₂ $C = C = O$]	$<4 \times 10^{-17}$	303 ± 1	S-IR	Hatakeyama <i>et al</i> . ³
Methyl acrylate [CH ₂ =CHC(O)OCH ₃]	2.91×10^{-18}	b	F-UV	Munshi et al. ⁴
Ethyl acrylate [CH ₂ =CHC(O)OCH ₂ CH ₃]	5.70×10^{-18}	b	F-UV	Munshi et al. ⁴
1,2-Epoxy-2-methyl- 3-butene	$(2.49 \pm 0.15) \times 10^{-18}$	296 ± 2	RR [relative to k(propene) = 9.68×10^{-18}] ^a	Atkinson et al. ⁵

Table 74. Rate constants k for the gas-phase reactions of O₃ with oxygen-containing organic compounds

*From previous recommendations.

^bRoom temperature, not specified.

Journal of Physical and Chemical Reference Data Cumulative Listing of Reprints

\$14.00

\$6.00

\$6.00

\$8.00

\$10.00

\$13.00

\$9.00

\$17.00

\$8.00

\$10.00

Reprints from Volume 1

- 1. Gaseous Diffusion Coefficients, *T.R. Marrero and E.A. Mason*, Vol. 1, No. 1, pp. 1–118 (1972)
- 2. Selected Values of Critical Supersaturation for Nucleation of Liquids from the Vapor, *G.M. Pound*, Vol. 1, No. 1, pp. 119–134 (1972)
- 3. Selected Values of Evaporation and Condensation Coefficients for Simple Substances, *G.M. Pound*, Vol. 1, No. 1, pp. 135–146 (1972)
- 4. Atlas of the Observed Absorption Spectrum of Carbon Monoxide between 1060 and 1900 Å, S.G. Tilford and J.D. Simmons, Vol. 1, No. 1, pp. 147–188 (1972) \$9.00
- 5. Tables of Molecular Vibrational Frequencies, Part 5, *T. Shimanouchi*, Vol. 1, No. 1, pp. 189–216 (1972) (superseded by No.103)
- Selected Values of Heats of Combustion and Heats of Formation of Organic Compounds Containing the Elements C, H, N, O, P, and S, *Eugene S. Domalski*, Vol. 1, No. 2, pp. 221–278 (1972)
- 7. Thermal Conductivity of the Elements, *C.Y. Ho, R.W. Powell, and P.E. Liley,* Vol. 1, No. 2, pp. 279–422 (1972) \$15.00
- 8. The Spectrum of Molecular Oxygen, Paul H. Krupenie, Vol. 1, No. 2, pp. 423–534 (1972)
- A Critical Review of the Gas-Phase Reaction Kinetics of the Hydroxyl Radical, *Wm. E. Wilson, Jr.*, Vol. 1, No. 2, pp. 535–574 (1972) (superseded by Monograph 1)
- Molten Salts: Volume 3, Nitrates, Nitrites, and Mixtures, Electrical Conductance, Density, Viscosity, and Surface Tension Data, *G.J. Janz, Ursula Krebs, H.F. Siegenthaler, and R.P.T. Tomkins*, Vol. 1, No. 3, pp. 581–746 (1972)
- 11. High Temperature Properties and Decomposition of Inorganic Salts—Part 3. Nitrates and Nitrites, *Kurt H. Stern*, Vol. 1, No. 3, pp. 747–772 (1972)
- High-Pressure Calibration: A Critical Review, D.L. Decker, W.A. Bassett, L. Merrill, H.T. Hall, and J.D. Barnett, Vol. 1, No. 3, pp. 773–836 (1972)
- 13. The Surface Tension of Pure Liquid Compounds, *Joseph J. Jasper*, Vol. 1, No. 4, pp. 841–1009 (1972) \$17.00

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Journal of Physical and Chemical Reference Data Reprint and Supplements/Monographs Orders

To: American Chemical Society Distribution Office 1155 Sixteenth Street, N.W. Washington, DC 20036-9976	3
Name:	
Title:	
Organization:	
Address:	
City:	State:
Country:	Zip:
I am a member of	
(ACS, AIP, o	or Affiliated Society)
ORDERS FOR REPRINTS AND SUP	

ORDERS FOR REPRINTS AND SUPPLEMENTS MUST BE PREPAID. *Foreign orders for Reprints, add \$2.50 for each reprint for postage and handing. Foreign orders for Reprint Packages, add \$5.00 for each Reprint Package for postage and handling. Make checks payable to the American Chemical society.

*Bulk Rates: Substract 20% from the listed price for orders of 50 or more of any one item.

PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

\$9.00	14. Microwave Spectra of Molecules of Astrophysical In- terest, I. Formaldehyde, Formamide, and Thioformal- dehyde, <i>Donald R. Johnson, Frank J. Lovas, and</i> <i>William H. Kirchhoff,</i> Vol. 1, No. 4, pp. 1011–1046 (1972)
\$10.00	 Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes in Water at 25° C, Walter J. Hamer and Yung-Chi Wu, Vol. 1, No. 4, pp. 1047-1099 (1972)
\$6.00	 The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Fluorine, H.J.M. Hanley and R. Prydz, Vol. 1, No. 4, pp. 1101-1113 (1972)

Reprints from Volume 2

17	Microwave Spectra of Molecules of Astrophysical In- terest, II. Methylenimine, <i>William H. Kirchhoff, Donald</i> <i>R. Johnson, and Frank J. Lovas,</i> Vol. 2, No. 1, pp. 1-10 (1973)	\$6.00
18	Analysis of Specific Heat Data in the Critical Region of Magnetic Solids, <i>F.J. Cook</i> , Vol. 2, No. 1, pp. 11-24 (1973)	\$6.00
19	. Evaluated Chemical Kinetic Rate Constants for Vari- ous Gas Phase Reactions, <i>Keith Schofield</i> , Vol. 2, No. 1, pp. 25–84 (1973)	\$10.00
20	Atomic Transition Probabilities for Forbidden Lines of the Iron Group Elements. (A Critical Data Compilation for Selected Lines), <i>M.W. Smith and W.L. Wiese</i> , Vol. 2, No. 1, pp. 85–120 (1973) (superseded by Vol. 17, Suppl. 4)	\$9.00
21	. Tables of Molecular Vibrational Frequencies, Part 6, <i>T. Shimanouchi</i> , Vol. 2, No. 1, pp. 121–162 (1973) (superseded by No. 103)	\$9.00
22	. Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators, <i>W.H. Strehlow and E.L. Cook</i> , Vol. 2, No. 1, pp. 163– 200 (1973)	\$9.00
23	Microwave Spectra of Molecules of Astrophysical In- terest, III. Methanol, <i>R.M. Lees, F.J. Lovas, W.H. Kirch- hoff, and D.R. Johnson</i> , Vol. 2, No. 2, pp. 205–214 (1973)	\$6.00

Please ship the following Reprints and Supplements/ Monographs:

Reprint No./Package	,	copies \$
Reprint No./Package	,	copies \$
Reprint No./Package	<u> </u>	copies \$
Reprint No./Package	····· , ·····	copies \$
Reprint No./Package	1	copies \$
Reprint No./Package		copies \$
Vol , Suppl	Hardcover	copies \$
Vol , Suppl	Hardcover	copies \$
Vol, Suppl	Hardcover	copies \$
Vol , Suppl	Hardcover	copies \$
Vol , Suppl	Hardcover	copies \$
Vol , Suppl	Hardcover	copies \$
Mono. No. 1, 1989	Hardcover	copies \$
Mono. No. 2, 1994	Hardcover	copies \$
Mono. No. 3, 1994	Hardcover	copies \$
	Total Enclosed	\$

24. Microwave Spectra of Molecules of Astrophysical Interest, IV. Hydrogen Sulfide, Paul Helminger, Frank C. De Lucia, and William H. Kirchhoff, Vol. 2, No. 2, pp. 215-224 (1973)

\$6.00

\$8.00

\$6.00

\$9.00

\$13.00

\$6.00

\$6.00

\$8.00

\$10.00

\$6.00

\$12.00

\$8.00

\$6.00

\$11.00

\$8.00

\$14.00

- 25. Tables of Molecular Vibrational Frequencies, Part 7, 7. Shimanouchi, Vol. 2, No. 2, pp. 225-256 (1973) (superseded by No. 103)
- 26. Energy Levels of Neutral Helium (4He I), W.C. Martin, Vol. 2, No. 2, pp. 257-266 (1973)
- 27. Survey of Photochemical and Rate Data for Twentyeight Reactions of Interest in Atmospheric Chemistry, R.F. Hampson, Editor, W. Braun, R.L. Brown, D. Garvin, J.T. Herron, R.E. Huie, M.J. Kurylo, A.H. Laufer, J.D. McKinley, H. Okabe, M.D. Scheer, W. Tsang, and D.H. Stedman, Vol. 2, No. 2, pp. 267-312 (1973) (superseded by Nos. 159, 203, 264, 366)
- 28. Compilation of the Static Dielectric Constant of Inorganic Solids, K.F. Young and H.P.R. Frederikse, Vol. 2, No. 2, pp. 313-410 (1973) (superseded by Nos. 159, 203, 264, 366)
- 29. Soft X-Ray Emission Spectra of Metallic Solids: Critical Review of Selected Systems, A.J. McAlister, R.C. Dobbyn, J.R. Cuthill, and M.L. Williams, Vol. 2, No. 2, pp. 411-426 (1973)
- 30. Ideal Gas Thermodynamic Properties of Ethane and Propane, J. Chao, R.C. Wilhoit, and B.J. Zwolinski, Vol. 2, No. 2, pp. 427-438 (1973)
- 31. An Analysis of Coexistence Curve Data for Several Binary Liquid Mixtures Near Their Critical Points, A. Stein and G.F. Allen, Vol. 2, No. 3, pp. 443-466 (1973)
- 32. Rate Constants for the Reactions of Atomic Oxygen (O ³P) with Organic Compounds in the Gas Phase, John T. Herron and Robert E. Huie, Vol. 2, No. 3, pp. 467-518 (1973)
- 33. First Spectra of Neon, Argon, and Xenon 136 in the 1.2-4.0 µm Region, Curtis J. Humphreys, Vol. 2, No. 3, pp. 519-530 (1973)
- 34. Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron-Nickel Alloys, H.M. Ledbetter and R.P. Reed. Vol. 2, No. 3, pp. 531-618 (1973)
- 35. The Viscosity and Thermal Conductivity Coefficients of Dilute Argon, Krypton, and Xenon, H.J.M. Hanley, Vol. 2, No. 3, pp. 619-642 (1973)
- 36. Diffusion in Copper and Copper Alloys, Part I. Volume and Surface Self-Diffusion in Copper, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read, Vol. 2, No. 3, pp. 643-656 (1973)
- 37. The 1973 Least-Squares Adjustment of the Fundamental Constants, E. Richard Cohen and B.N. Taylor, Vol. 2, No. 4, pp. 663-734 (1973)
- 38. The Viscosity and Thermal Conductivity Coefficients of Dilute Nitrogen and Oxygen, H.J.M. Hanley and James F. Ely, Vol. 2, No. 4, pp. 735-756 (1973)
- 39. Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63 K to 2000 K with Pressures to 10,000 Bar, Richard T. Jacobsen and Richard B. Stewart, Vol. 2, No. 4, pp. 757-922 (1973) \$17.00
- 40. Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 108 Pa, Robert T. McCarty, Vol. 2, No. 4, pp. 923-1042 (1973)

Reprints from Volume 3

41. Molten Salts: Volume 4, Part 1, Fluorides and Mixtures, Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, G.L. Gardner, Ursula Krebs, and R.P.T. Tomkins, Vol. 3, No. 1, pp. 1-115 (1974)

 Ideal Gas Thermodynamic Properties of Eight Chloro- and Fluoromethanes, A.S. Rodgers, J. Chao, R. C. Wilhoit, and B.J. Zwolinski, Vol. 3, No. 1, pp. 117–140 (1974) 	\$8.00
 43. Ideal Gas Thermodynamic Properties of Six Chloroethanes, J. Chao, A.S. Rodgers, R.C. Wilhoit, and B.J. Zwolinski, Vol. 3, No. 1, pp. 141–162 (1974) 	\$8.00
 Critical Analysis of Heat-Capacity Data and Evaluation of Thermodynamic Properties of Ruthenium, Rhodium, Palladium, Iridium, and Platinum from 0 to 300 K. A Survey of the Literature Data on Osmium, <i>George T.</i> <i>Furukawa, Martin L. Reilly, and John S. Gallagher</i>, Vol. 3, No. 1, pp. 163–209 (1974) 	\$9.00
45. Microwave Spectra of Molecules of Astrophysical In- terest, V. Water Vapor, <i>Frank C. De Lucia, Paul Helm- inger, and William H. Kirchhoff</i> , Vol. 3, No. 1, pp. 211– 219 (1974)	\$6.00
 Microwave Spectra of Molecules of Astrophysical In- terest, VI. Carbonyl Sulfide and Hydrogen Cyanide, <i>Arthur G. Maki</i>, Vol. 3, No. 1, pp. 221–244 (1974) 	\$8.00
47. Microwave Spectra of Molecules of Astrophysical In- terest, VII. Carbon Monoxide, Carbon Monosulfide, and Silicon Monoxide, <i>Frank J. Lovas and Paul H. Kru- penie</i> , Vol. 3, No. 1, pp. 245–257 (1974)	\$6.00
 Microwave Spectra of Molecules of Astrophysical In- terest, VIII. Sulfur Monoxide, <i>Eberhard Tiemann</i>, Vol. 3, No. 1, pp. 259–268 (1974) 	\$6.00
49. Tables of Molecular Vibrational Frequencies, Part 8, <i>T. Shimanouchi</i> , Vol. 3, No. 1, pp. 269–308 (1974) (superseded by No. 103)	\$9.00
 JANAF Thermochemical Tables, 1974 Supplement, M.W. Chase, J.L. Curnutt, A.T. Hu, H. Prophet, A.N. Syverud, and L.C. Walker, Vol. 3, No. 2, pp. 311–480 (1974) (superseded by Vol. 14, Suppl. 1) 	\$17.00
 High Temperature Properties and Decomposition of Inorganic Salts, Part 4. Oxy-Salts of the Halogens, <i>Kurt</i> <i>H. Stern</i>, Vol. 3, No. 2, pp. 481–526 (1974) 	\$9.00
 52. Diffusion in Copper and Copper Alloys, Part II. Copper- Silver and Copper-Gold Systems, Daniel B. Butry- mowicz, John R. Manning, and Michael E. Read, Vol. 3, No. 2, pp. 527–602 (1974) 	\$11.00
53. Microwave Spectral Tables I. Diatomic Molecules, Frank J. Lovas and Eberhard Tiemann, Vol. 3, No. 3, pp. 609–770 (1974)	\$17.00
54. Ground Levels and Ionization Potentials for Lan- thanide and Actinide Atoms and Ions, W.C. Martin, Lucy Hagan, Joseph Reader, and Jack Sugar, Vol. 3,	•
No. 3, pp. 771–780 (1974) 55. Behavior of the Elements at High Pressures, <i>John</i>	\$6.00
 Francis Cannon, Vol. 3, No. 3, pp. 781–824 (1974) 56. Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25000 Å, <i>Victor Kaufman and Bengt</i> 	\$9.00
 Edlen, Vol. 3, No. 4, pp. 825–895 (1974) 57. Elastic Properties of Metals and Alloys. II. Copper, H.M. Ledbetter and E.R. Naimon, Vol. 3, No. 4, 	\$11.00
pp.897–935 (1974) 58. A Critical Review of H-Atom Transfer in the Liquid	\$9.00
Phase: Chlorine Atom, Alkyl, Trichloromethyl, Alkoxy, and Alkylperoxy Radicals, <i>D.G. Hendry, T. Mill, L. Pisz- kiewicz, J.A. Howard, and H.K. Eigenmann,</i> Vol. 3, No.	00.00
4, pp. 937–978 (1974) 59. The Viscosity and Thermal Conductivity Coefficients	\$9.00
for Dense Gaseous and Liquid Argon, Krypton, Xenon, Nitrogen, and Oxygen, <i>H.J.M. Hanley, R.D. McCarty,</i> and W.M. Havnes, Vol. 3, No. 4, pp. 979–1017 (1974)	00 09

and W.M. Haynes, Vol. 3, No. 4, pp. 979-1017 (1974)

\$9.00

\$14.00

Reprints from Volume 4

60. JANAF Thermochemical Tables, 1975 Supplement, M.W. Chase, J.L. Curnutt, H. Prophet, R.A. McDonald, and A.N. Syverud, Vol. 4, No. 1, pp. 1–175 (1975) (superseded by Vol. 14, Suppl. 1)

\$17.00

\$6.00

\$6.00

\$11.00

\$9.00

\$6.00

- 61. Diffusion in Copper and Copper Alloys, Part III. Diffusion in Systems Involving Elements of the Groups IA, IIA, IIIB, IVB, VB, VIB, and VIIB, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read, Vol. 4, No. 1, pp. 177–249 (1975)
 \$12.00
- Ideal Gas Thermodynamic Properties of Ethylene and Propylene, *Jing Chao and Bruno J. Zwolinski*, Vol. 4, No. 1, pp. 251–261 (1975)
- 63. Atomic Transition Probabilities for Scandium and Titanium (A Critical Data Compilation of Allowed Lines), W.L. Wiese and J.R. Fuhr, Vol. 4, No. 2, pp. 263–352 (1975) (superseded by Vol. 17, Suppl. 3) \$12.00
- 64. Energy Levels of Iron, Fe I through Fe XXVI, Joseph Reader and Jack Sugar, Vol. 4, No. 2, pp. 353–440 (1975) (superseded by Vol. 14, Suppl. 2) \$12.00
- Ideal Gas Thermodynamic Properties of Six Fluoroethanes, S.S. Chen, A.S. Rodgers, J. Chao, R.C. Wilhoit, and B.J. Zwolinski, Vol. 4, No. 2, pp. 441–456 (1975) \$6.00
- 66. Ideal Gas Thermodynamic Properties of the Eight Bromo- and Iodomethanes, S.A. Kudchadker and A.P. Kudchadker, Vol. 4, No. 2, pp. 457–470 (1975)
- Atomic Form Factors, Incoherent Scattering Functions, and Photon Scattering Cross Sections, J.H. Hubbell, Wm.J. Veigele, E.A. Briggs, R.T. Brown, D.T. Cromer, and R.J. Howerton, Vol. 4, No. 3, pp. 471–538 (1975)
- Binding Energies in Atomic Negative lons, H. Hotop and W.C. Lineberger, Vol. 4, No. 3, pp. 539–576 (1975)
- 69. A Survey of Electron Swarm Data, *J. Dutton,* Vol. 4, No. 3, pp. 577–856 (1975) \$24.00
- 70. Ideal Gas Thermodynamic Properties and Isomerization of *n*-Butane and Isobutane, *S.S. Chen, R.C. Wilhoit, and B.J. Zwolinski,* Vol. 4, No. 4, pp. 859–869 (1975)
- Molten Salts: Volume 4, Part 2, Chlorides and Mixtures, Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, Jr., G.L. Gardner, U. Krebs, and S.K. Singer, Vol. 4, No. 4, pp. 871–1178 (1975) \$26.00
- 72. Property Index to Volumes 1–4 (1972–1975), Vol. 4, No. 4, pp. 1179–1192 (1975) (superseded by Reprint --- 194, Vol. 1–10)
 \$6.00

Reprints from Volume 5

- Scaled Equation of State Parameters for Gases in the Critical Region, J.M.H. Levelt Sengers, W.L. Greer, and J.V. Sengers, Vol. 5, No. 1, pp. 1–51 (1976) \$10.00
- 74. Microwave Spectra of Molecules of Astrophysical Interest, IX. Acetaldehyde, *A. Bauder, F.J. Lovas, and D.R. Johnson*, Vol. 5, No. 1, pp. 53–77 (1976) \$8.00
- 75. Microwave Spectra of Molecules of Astrophysical Interest, X. Isocyanic Acid, G. Winnewisser, W.H. Hocking, and M.C.L. Gerry, Vol. 5, No. 1, pp. 79–101 (1976) \$8.00
- 76. Diffusion in Copper and Copper Alloys, Part IV. Diffusion in Systems Involving Elements of Group VIII, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read, Vol. 5, No. 1, pp. 103–200 (1976)
 \$13.00
- 77. A Critical Review of the Stark Widths and Shifts of Spectral Lines from Non-Hydrogenic Atoms, *N. Konjevic and J.R. Roberts,* Vol. 5, No. 2, pp. 209–257 (1976) \$10.00

78. Experimental Stark Widths and Shifts for Non- Hydrogenic Spectral Lines of Ionized Atoms (A Critical Review and Tabulation of Selected Data), <i>N. Konjevic</i> and W.L. Wiese, Vol. 5, No. 2, pp. 259–308 (1976)	\$10.00
 Atlas of the Absorption Spectrum of Nitric Oxide (NO) between 1420 and 1250 Å, <i>E. Miescher and F. Alberti,</i> Vol. 5, No. 2, pp. 309–317 (1976) 	\$6.00
80. Ideal Gas Thermodynamic Properties of Propanone and 2-Butanone, <i>Jing Chao and Bruno J. Zwolinski</i> , Vol. 5, No. 2, pp. 319–328 (1976)	\$6.00
81. Refractive Index of Alkali Halides and Its Wavelength and Temperature Derivatives, <i>H.H. Li</i> , Vol. 5, No. 2, pp. 329–528 (1976)	\$19.00
82. Tables of Critically Evaluated Oscillator Strengths for the Lithium Isoelectronic Sequence, <i>G.A. Martin and</i> <i>W.L. Wiese</i> , Vol. 5, No. 3, pp. 537–570 (1976)	\$9.00
83. Ideal Gas Thermodynamic Properties of Six Chloroflu- oromethanes, S.S. Chen, R. C. Wilhoit, and B.J. Zwo- linski, Vol. 5, No. 3, pp. 571–580 (1976)	\$6.00
84. Survey of Superconductive Materials and Critical Eval- uation of Selected Properties, <i>B.W. Roberts</i> , Vol. 5, No. 3, pp. 581–821 (1976)	\$25.00
85. Nuclear Spins and Moments, <i>Gladys H. Fuller</i> , Vol. 5, No. 4, pp. 835–1092 (1976)	\$23.00
 Nuclear Moments and Moment Ratios as Determined by Mössbauer Spectroscopy, <i>J.G. Stevens and B.D.</i> <i>Dunlap</i>, Vol. 5, No. 4, pp. 1093–1121 (1976) 	\$8.00
 Rate Coefficients for Ion-Molecule Reactions, I. Ions Containing C and H, L. Wayne Sieck and Sharon G. Lias, Vol. 5, No. 4, pp. 1123–1146 (1976) 	\$8.00
 Microwave Spectra of Molecules of Astrophysical In- terest, XI. Silicon Sulfide, <i>Eberhard Tiemann</i>, Vol. 5, No. 4, pp. 1147–1156 (1976) 	\$6.00
89. Property Index and Author Index to Volumes 1–5 (1972–1976), Vol. 5, No. 4, pp. 1161–1183 (super- seded by Reprint 194, Vol. 1–10)	\$8.00
Reprints from Volume 6	
90. Diffusion in Copper and Copper Alloys, Part V. Diffu-	

sion in Systems Involving Elements of Group VA, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read, Vol. 6, No. 1, pp. 1-50 (1977) \$10.00 91. The Calculated Thermodynamic Properties of Superfluid Helium-4, James S. Brooks and Russell J. Donnelly, Vol. 6, No. 1, pp. 51-104 (1977) \$10.00 92. Thermodynamic Properties of Normal and Deuterated Methanols, S.S. Chen, R.C. Wilhoit, and B.J. Zwolinski, Vol. 6, No. 1, pp. 105-112 (1977) \$6.00 93. The Spectrum of Molecular Nitrogen, Alf Lofthus and \$19.00 Paul H. Krupenie, Vol. 6, No. 1, pp. 113-307 (1977) 94. Energy Levels of Chromium, Cr I through Cr XXIV, Jack Sugar and Charles Corliss, Vol. 6, No. 2, pp. 317-383 (1977) (superseded by Vol. 14, Suppl. 2) \$11.00 95. The Activity and Osmotic Coefficients of Aqueous Calcium Chloride at 298.15 K, Bert R. Staples and Ralph \$8.00 L. Nuttall, Vol. 6, No. 2, pp. 385-407 (1977) 96. Molten Salts: Volume 4, Part 3, Bromides and Mixtures; lodides and Mixtures-Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, Jr., and S.K. Singer, Vol. 6, No. 2, pp. 409-596 (1977) \$18.00 97. The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Methane, H.J.M. Hanley, W.M. Haynes, and R.D. McCarty, Vol. 6, No. 2, pp. \$6.00 597-609 (1977) 98. Phase Diagrams and Thermodynamic Properties of Ternary Copper-Silver Systems, Y. Austin Chang, Daniel Goldberg, and Joachim P. Neumann, Vol. 6, No. 3, pp. 621-673 (1977) \$10.00

- 99. Crystal Data Space-Group Tables, Alan D. Mighell, Helen M. Ondik, and Bettijoyce Breen Molino, Vol. 6, No. 3, pp. 675–829 (1977)
- 100. Energy Levels of One-Electron Atoms, *Glen W. Erickson,* Vol. 6, No. 3, pp. 831–869 (1977) \$9.00

\$16.00

\$9.00

\$11.00

\$8.00

\$9.00

\$6.00

\$8.00

\$9.00

\$11.00

\$9.00

\$10.00

\$6.00

\$9.00

\$6.00

\$6.00

\$10.00

\$15.00

- 101. Rate Constants for Reactions of CIO_x of Atmospheric Interest, *R.T. Watson*, Vol. 6, No. 3, pp. 871–917 (1977)
- 102. NMR Spectral Data: A Compilation of Aromatic Proton Chemical Shifts in Mono- and Di-Substituted Benzenes, *B.L. Shapiro and L.E. Mohrmann*, Vol. 6, No. 3, pp. 919–991 (1977)
- 103. Tables of Molecular Vibrational Frequencies. Consolidated Volume II. *T. Shimanouchi*, Vol. 6, No. 3, pp. 993–1102 (1977) (supersedes Nos. 5, 21, 25, 49) \$13.00
- 104. Effects of Isotopic Composition, Temperature, Pressure, and Dissolved Gases on the Density of Liquid Water, *George S. Kell*, Vol. 6, No. 4, pp. 1109–1131 (1977)
- 105. Viscosity of Water Substance-New International Formulation and Its Background, *A. Nagashima*, Vol. 6, No. 4, pp. 1133-1166 (1977)
- 106. A Correlation of the Existing Viscosity and Thermal Conductivity Data of Gaseous and Liquid Ethane, *H.J.M. Hanley, K.E. Gubbins, and S. Murad*, Vol. 6, No. 4, pp. 1167–1180 (1977)
- 107. Elastic Properties of Zinc: A Compilation and a Review, *H.M. Ledbetter*, Vol. 6, No. 4, pp. 1181–1203 (1977)
- 108. Behavior of the AB-Type Compounds at High Pressures and High Temperatures, *Leo Merrill*, Vol. 6, No. 4, pp. 1205–1252 (1977)
- 109. Energy Levels of Manganese, Mn I through Mn XXV, Charles Corliss and Jack Sugar, Vol. 6, No. 4, pp. 1253–1329 (1977) (superseded by Vol. 14, Suppl. 2)

Reprints from Volume 7

- 110. Tables of Atomic Spectral Lines for the 10 000 Å to 40 000 Å Region, *Michael Outred*, Vol. 7, No. 1, pp. 1–262 (1978) \$23.00
- 111. Evaluated Activity and Osmotic Coefficients for Aqueous Solutions: The Alkaline Earth Metal Halides, *R.N. Goldberg and R.L. Nuttall*, Vol. 7, No. 1, pp. 263–310 (1978)
- 112. Microwave Spectra of Molecules of Astrophysical Interest XII. Hydroxyl Radical, *Robert A. Beaudet and Robert L. Poynter*, Vol. 7, No. 1, pp. 311–362 (1978)
- 113. Ideal Gas Thermodynamic Properties of Methanoic and Ethanoic Acids, *Jing Chao and Bruno J. Zwolinski*, *Vol. 7, No. 1, pp. 363–377 (1978)*
- 114. Critical Review of Hydrolysis of Organic Compounds in Water Under Environmental Conditions, *W. Mabey and T. Mill*, Vol. 7, No. 2, pp. 383–415 (1978)
- 115. Ideal Gas Thermodynamic Properties of Phenol and Creosols, *S.A. Kudchadker, A.P. Kudchadker, R.C. Wilhoit, and B.J. Zwolinski*, Vol. 7, No. 2, pp. 417–423 (1978)
- 116. Densities of Liquid $CH_{4-a}X_a$ (X=Br,I) and $CH_{4-(a+b+c+d)}F_aCI_bBr_cI_d$ Halomethanes, *A.P. Kudchadker, S.A.Kudchadker, P.R. Patnaik, and P.P. Mishra,* Vol. 7, No. 2, pp. 425–439 (1978)
- 117. Microwave Spectra of Molecules of Astrophysical Interest XIII. Cyanoacetylene, W.J. Lafferty and F.J. Lovas, Vol. 7, No. 2, pp. 441–493 (1978)
- 118. Atomic Transition Probabilities for Vanadium, Chromium, and Manganese (A Critical Data Compilation of Allowed Lines), *S.M. Younger, J.R. Fuhr, G.A. Martin,* and W.L. Wiese, Vol. 7, No. 2, pp. 495–629 (1978) (superseded by Vol. 17, Suppl. 3)

119. Thermodynamic Properties of Ammonia, Lester Haar and John S. Gallagher, Vol. 7, No. 3, pp. 635–792 (1978)	\$16.00
120. JANAF Thermochemical Tables, 1978 Supplement, M.W. Chase, Jr., J.L. Curnutt, R.A. McDonald, and A.N. Syverud, Vol. 7, No. 3, pp. 793–940 (1978) (super- seded by Vol. 14, Suppl. 1)	\$16.00
121. Viscosity of Liquid Water in the Range –8 °C to 150 °C, Joseph Kestin, Mordechai Sokolov, and William A. Wakeham, Vol. 7, No. 3, pp. 941–948 (1978)	\$6.00
122. The Molar Volume (Density) of Solid Oxygen in Equi- librium with Vapor, <i>H.M. Roder,</i> Vol. 7, No. 3, pp. 949– 957 (1978)	\$6.00
123. Thermal Conductivity of Ten Selected Binary Alloy Systems, C.Y. Ho, M.W. Ackerman, K.Y. Wu, S.G. Oh, and T.N. Havill, Vol. 7, No. 3, pp. 959–1177 (1978)	\$20.00
124. Semi-Empirical Extrapolation and Estimation of Rate Constants for Abstraction of H from Methane by H, O, HO, and O ₂ , <i>Robert Shaw</i> , Vol. 7, No. 3, pp. 1179– 1190 (1978)	\$6.00
125. Energy Levels of Vanadium, V I through V XXIII, Jack Sugar and Charles Corliss, Vol. 7, No. 3, pp. 1191– 1262 (1978) (superseded by Vol. 14, Suppl. 2)	\$11.00
126. Recommended Atomic Electron Binding Energies, 1s to $6p_{3/2}$, for the Heavy Elements, $Z = 84$ to 103, <i>F.T.</i> <i>Porter and M.S. Freedman</i> , Vol. 7, No. 4, pp. 1267–1284 (1978)	\$8.00
127. Ideal Gas Thermodynamic Properties of CH _{4-(a+b+c+d})F _a Cl _b Br _c I _d Halomethanes, Shanti A. Kudchadker and Arvind P. Kudchadker, Vol. 7, No. 4, pp. 1285–1307 (1978)	\$8.00
128. Critical Review of Vibrational Data and Force Field Constants for Polyethylene, <i>John Barnes and Bruno</i> <i>Fanconi,</i> Vol. 7, No. 4, pp. 1309–1321 (1978)	\$6.00
129. Tables of Molecular Vibrational Frequencies, Part 9, Takehiko Shimanouchi, Hiroatsu Matsuura, Yoshiki Ogawa, and Issei Harada, Vol. 7, No. 4, pp. 1323–1443 (1978)	\$14.00
130. Microwave Spectral Tables. II. Triatomic Molecules, Frank J. Lovas, Vol. 7, No. 4, pp. 1445–1750 (1978)	\$26.00
Reprints from Volume 8	

Reprints from Volume 8

131. Energy Levels of Titanium, Ti I through Ti XXII, Charles Corliss and Jack Sugar, Vol. 8, No. 1, pp. 1-62 (1979) (superseded by Vol. 14, Suppl. 2) \$10.00 132. The Spectrum and Energy Levels of the Neutral Atom of Boron (BI), G.A. Odintzova and A.R. Striganov, Vol. 8, No. 1, pp. 63-67 (1979) \$6.00 133. Relativistic Atomic Form Factors and Photon Coherent Scattering Cross Sections, J.H. Hubbell and I. Øverbø, Vol. 8, No. 1, pp. 69-105 (1979) \$9.00 134. Microwave Spectra of Molecules of Astrophysical Interest. XIV. Vinyl Cyanide (Acrylonitrile), M.C.L. Gerry, K. Yamada, and G. Winnewisser, Vol. 8, No. 1, pp. \$8.00 107-123 (1979) 135. Molten Salts: Volume 4, Part 4, Mixed Halide Melts. Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, and \$18.00 C.B. Allen, Vol. 8, No. 1, pp. 125-302 (1979) 136. Atomic Radiative and Radiationless Yields for K and L Shells, M.O. Krause, Vol. 8, No. 2, pp. 307-327 (1979) \$8.00 137. Natural Widths of Atomic K and L Levels, $K\alpha$ X-ray Lines and Several KLL Auger Lines, M.O. Krause and \$6.00 J.H. Oliver, Vol. 8, No. 2, pp. 329-338 (1979) 138. Electrical Resistivity of Alkali Elements, T.C. Chi, Vol. 8, No. 2, pp. 339-438 (1979) \$13.00 139. Electrical Resistivity of Alkaline Earth Elements, T.C. \$10.00 Chi, Vol. 8, No. 2, pp. 439-497 (1979)

140. Vapor Pressures and Boiling Points of Selected Halomethanes, *A.P. Kudchadker, S.A. Kudchadker, R.P. Shukla, and P.R. Patnaik,* Vol. 8, No. 2, pp. 499– 517 (1979)

\$8.00

\$6.00

\$6.00

\$8.00

\$8.00

\$9.00

\$13.00

\$8.00

\$9.00

\$10.00

\$12.00

\$9.00

\$10.00

\$9.00

\$16.00

\$12.00

- 141. Ideal Gas Thermodynamic Properties of Selected Bromoethanes and Iodoethane, *S.A. Kudchadker and A.P. Kudchadker*, Vol. 8, No. 2, pp. 519–526 (1979)
- 142. Thermodynamic Properties of Normal and Deuterated Naphthalenes, S.S. Chen, S.A. Kudchadker, and R.C. Wilhoit, Vol. 8, No. 2, pp. 527–535 (1979)
- 143. Microwave Spectra of Molecules of Astrophysical Interest. XV. Propyne, A. Bauer, D. Boucher, J. Burie, J. Demaison, and A. Dubrulle, Vol. 8, No. 2, pp. 537–558 (1979)
- 144. A Correlation of the Viscosity and Thermal Conductivity Data of Gaseous and Liquid Propane, *P.M. Holland, H.J.M. Hanley, K.E. Gubbins, and J.M. Haile,* Vol. 8, No. 2, pp. 559–575 (1979)
- 145. Microwave Spectra of Molecules of Astrophysical Interest. XVI. Methyl Formate, A. Bauder, Vol. 8, No. 3, pp. 583–618 (1979)
- 146. Molecular Structures of Gas-Phase Polyatomic Molecules Determined by Spectroscopic Methods, *Marlin* D. Harmony, Victor W. Laurie, Robert L. Kuczkowski, R.H. Schwendeman, D.A. Ramsay, Frank J. Lovas, Walter J. Lafferty, and Arthur G. Maki, Vol. 8, No. 3, pp. 619–721 (1979)
- 147. Critically Evaluated Rate Constants for Gaseous Reactions of Several Electronically Excited Species, *Keith Schofield*, Vol. 8, No. 3, pp. 723–798 (1979) \$11.00
- 148. A Review, Evaluation, and Correlation of the Phase Equilibria, Heat of Mixing, and Change in Volume on Mixing for Liquid Mixtures of Methane + Ethane, *M.J. Hiza, R.C. Miller, and A.J. Kidnay,* Vol. 8, No. 3, pp. 799–816 (1979)
- 149. Energy Levels of Aluminum, Al I through Al XIII, W.C. Martin and Romuald Zalubas, Vol. 8, No. 3, pp. 817– 864 (1979)
- 150. Energy Levels of Calcium, Ca I through Ca xx, Jack Sugar and Charles Corliss, Vol. 8, No. 3, pp. 865–916 (1979) (superseded by Vol. 14, Suppl. 2)
- 151. Evaluated Activity and Osmotic Coefficients for Aqueous Solutions: Iron Chloride and the Bi-univalent Compounds of Nickel and Cobalt, *R.N. Goldberg, R.L. Nutall, and B.R. Staples,* Vol. 8, No. 4, pp. 923–1003 (1979)
- 152. Evaluated Activity and Osmotic Coefficients for Aqueous Solutions: Bi-univalent Compounds of Lead, Copper, Manganese, and Uranium, *R.N. Goldberg*, Vol. 8, No. 4, pp. 1005–1050 (1979)
- 153. Microwave Spectra of Molecules of Astrophysical Interest. XVII. Dimethyl Ether, *F.J. Lovas, H. Lutz, and H. Dreizler,* Vol. 8, No. 4, pp. 1051–1107 (1979)
- 154. Energy Levels of Potassium, K I through K XIX, Charles Corliss and Jack Sugar, Vol. 8, No. 4, pp. 1109–1145 (1979) (superseded by Vol. 14, Suppl. 2)
- 155. Electrical Resistivity of Copper, Gold, Palladium, and Silver, *R.A. Matula*, Vol. 8, No. 4, pp. 1147–1298 (1979)

Reprints from Volume 9

- 156. Energy Levels of Magnesium, Mg I through Mg XII, W.C. Martin and Romuald Zalubas, Vol 9, No. 1, pp. 1–58(1980)
- 157. Microwave Spectra of Molecules of Astrophysical Interest. XVIII. Formic Acid, Edmond Willemot, Didier Dangoisse, Nicole Monnanteuil, and Jean Bellet, Vol. 9, No. 1, pp. 59–160 (1980)
 \$15.00

158. Refractive Index of Alkaline Earth Hali Wavelength and Temperature Derivatives, 9, No. 1, pp. 161–289 (1980).		\$17.00
159. Evaluated Kinetic and Photochemical Da spheric Chemistry, <i>D.L. Baulch, R.A. Cox,</i> son, Jr., J.A. Kerr, J. Troe, and R.L. Watso 2, pp. 295–471 (1980)	R.F. Hamp-	\$20.00
160. Energy Levels of Scandium, Sc I through Sugar and Charles Corliss, Vol. 9, No. 2, (1980) (superseded by Vol. 14, Suppl. 2)		\$11.00
161. A Compilation of Kinetic Parameters for Degradation of <i>n</i> -Alkane Molecules, <i>D.L</i> <i>Robert Shaw</i> , Vol. 9, No. 3, pp. 523–559	. Allara and	\$11.00
162. Refractive Index of Silicon and Germar Wavelength and Temperature Derivatives, 9, No. 3, pp. 561–658 (1980)		\$15.00
 Microwave Spectra of Molecules of Astri- terest XIX. Methyl Cyanide, D. Boucher, Bauer, A. Dubrulle, and J. Demaison, Vol. 659–719 (1980). 	J. Burie, A.	\$12.00
164. A Review, Evaluation, and Correlation c Equilibria, Heat of Mixing, and Change ir Mixing for Liquid Mixtures of Methane + P <i>Miller, A.J. Kidnay, and M.J. Hiza,</i> Vol. 9 721–734 (1980)	n Volume on Propane, <i>R.C</i> .	\$8.00
165. Saturation States of Heavy Water, P.G. Chris MacMillan, Vol. 9, No. 3, pp. 735–7		\$8.00
166. The Solubility of Some Sparingly Soluble An Evaluation of the Solubility in Water a Electrolyte Solution, <i>H. Lawrence Clever</i> <i>J. Johnston,</i> Vol. 9, No. 3, pp. 751–784 (and Aqueous and Francis	\$11.00
167. Molten Salts Data as Reference Standard Surface Tension, Viscosity, and Electri tance: KNO ₃ and NaCl, George J. Janz, V pp. 791–829 (1980)	cal Conduc-	\$11.00
168. Molten Salts: Volume 5, Part 1, Additiona Multi-Component Salt Systems. Electri- tance, Density, Viscosity, and Surface T <i>G.J. Janz and R.P. Tomkins</i> , Vol. 9, No.	cal Conduc- ension Data,	
 1021 (1980) 169. Pair, Triplet, and Total Atomic Cross S Mass Attenuation Coefficients) for 1 Me Photons in Elements Z=1 to 100, J.H. H Gimm, and I. Øverbø, Vol. 9, No. 4, pp (1980) 	eV–100 GeV Hubbell, H.A.	\$21.00 \$16.00
170. Tables of Molecular Vibrational Frequence Takehiko Shimanouchi, Hiroatsu Matsu Ogawa, and Issei Harada, Vol. 9, No. 4, pp (1980)	iura, Yoshiki	\$15.00
171. An Improved Representative Equation for Viscosity of Water Substance, <i>J.T.R. V</i> <i>Basu, and J.V. Sengers</i> , Vol. 9, No. 4, pp (1980)	Vatson, R.S.	\$11.00
172. Static Dielectric Constant of Water and S matsu and E. U. Franck, Vol. 9, No. 4, pp (1980)		\$8.00
173. Compilation and Evaluation of Solubility Mercury (I) Chloride-Water System, Y. Ma No. 4, pp. 1307–1329 (1980)		\$10.00

Reprints from Volume 10

174. Evaluated Activity and Osmotic Coefficients for Aqueous Solutions: Bi-Univalent Compounds of Zinc, Cadmium, and Ethylene Bis(Trimethylammonium) Chloride and Iodide, *R. N. Goldberg*, Vol. 10, No. 1, pp. 1–55 (1981)

\$12.00

175. Tables of the Dynamic and Kinematic Viscosity of Aqueous KCI Solutions in the Temperature Range 25– 150 °C and the Pressure Range 0.1–35 MPa, *Joseph Kestin, H. Ezzat Khalifa, and Robert J. Correia,* Vol. 10, No. 1, pp. 57–70 (1981)

\$8.00

\$10.00

\$10.00

\$11.00

\$11.00

\$14.00

\$8.00

\$25.00

\$14.00

\$14.00

\$8.00

\$10.00

\$20.00

\$11.00

\$8.00

\$10.00

\$8.00

\$13.00

- 176. Tables of the Dynamic and Kinematic Viscosity of Aqueous NaCl Solutions in the Temperature Range 20–150 °C and the Pressure Range 0.1–35 MPa, *Joseph Kestin, H. Ezzat Khalifa, and Robert J. Correia, Vol. 10, No. 1, pp. 71–87 (1981)*
- 177. Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. I. Selenium, *Umesh Gaur, Hua-Cheng Shu, Aspy Mehta, and Bernhard Wunderlich*, Vol. 10, No. 1, pp. 89–117 (1981)
- 178. Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. II. Polyethylene, *Umesh Gaur and Bernhard Wunderlich*, Vol. 10, No. 1, pp. 119–152 (1981)
- 179. Energy Levels of Sodium, Na I through Na XI, W. C. Martin and Romuald Zalubas, Vol. 10, No. 1, pp. 153– 195 (1981)
- 180. Energy Levels of Nickel, Ni I through Ni xxvIII, Charles Corliss and Jack Sugar, Vol. 10, No. 1, pp. 197–289 (1981) (superseded by Vol. 14, Suppl. 2)
- 181. Ion Product of Water Substance, 0–1000 °C, 1–10,000 bars New International Formulation and Its Background, William L. Marshall and E. U. Franck, Vol. 10, No. 2, pp. 295–304 (1981)
- 182. Atomic Transition Probabilities for Iron, Cobalt, and Nickel (A Critical Data Compilation of Allowed Lines), J. R. Fuhr, G. A. Martin, W. L. Wiese, and S. M. Younger, Vol. 10, No. 2, pp. 305–565 (1981) (superseded by Vol. 17, Suppl. 4)
- 183. Thermodynamic Tabulations for Selected Phases in the System CaO-Al₂O₃SiO₂-H₂O at 101.325 kPa (1 atm) between 273.15 and 1800 K, John L. Haas, Jr., Gilpin R. Robinson, Jr., and Bruce S. Hemingway, Vol. 10, No. 3, pp. 575–669 (1981)
- Evaluated Activity and Osmotic Coefficients for Aqueous Solutions: Thirty-Six Uni-Bivalent Electrolytes, R. N. Goldberg, Vol. 10, No. 3, pp. 671–764 (1981)
- 185. Activity and Osmotic Coefficients of Aqueous Alkali Metal Nitrites, *Bert R. Staples*, Vol. 10, No. 3, pp. 765– 778 (1981)
- 186. Activity and Osmotic Coefficients of Aqueous Sulfuric Acid at 298.15 K, *Bert R. Staples*, Vol. 10, No. 3, pp. 779–798 (1981)
- 187. Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution, *Francis Wilkinson and James G. Brummer*, Vol. 10, No. 4, pp. 809–999 (1981)
- 188. Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. III. Polyoxides, Umesh Gaur and Bernhard Wunderlich, Vol. 10, No. 4, pp. 1001–1049 (1981)
- 189. Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IV. Polypropylene, *Umesh Gaur and Bernhard Wunderlich*, Vol. 10, No. 4, pp. 1051–1064 (1981)
- 190. Tables of N₂O Absorption Lines for the Calibration of Tunable Infrared Lasers from 522 cm⁻¹ to 657 cm⁻¹ and from 1115 cm⁻¹ to 1340 cm⁻¹, *W. B. Olson, A. G. Maki, and W. J. Lafferty*, Vol. 10, No. 4, pp. 1065–1084 (1981)
- 191. Microwave Spectra of Molecules of Astrophysical Interest. XX. Methane, *I. Ozier, M. C. L. Gerry, and A. G. Robiette,* Vol. 10, No. 4, pp. 1085–1095 (1981)
- 192. Energy Levels of Cobalt, Co I through Co XXVII, Jack Sugar and Charles Corliss, Vol. 10, No. 4, pp. 1097– 1174 (1981) (superseded by Vol. 14, Suppl. 2)

193	A Critical Review of Henry's Law Constants for Chem- icals of Environmental Interest, <i>Donald Mackay and</i> <i>Wan Ying Shiu</i> , Vol. 10, No. 4, pp. 1175–1199 (1981)	\$10.00
194	Property, Materials, and Author Indexes to the Journal of Physical and Chemical Reference Data, Vol. 1–10, pp. 1205–1225 (1972–1981)	\$10.00
Re	prints from Volume 11	
195	A Fundamental Equation of State for Heavy Water, <i>P. G. Hill, R. D. Chris MacMillan, and V. Lee</i> , Vol. 11, No. 1, pp. 1–14 (1982)	\$10.00
196	Volumetric Properties of Aqueous Sodium Chloride Solutions, <i>P. S. Z. Rogers and Kenneth S. Pitzer</i> , Vol. 11, No. 1, pp. 15–81 (1982)	\$18.00
197	Ideal Gas Thermodynamic Properties of CH_3 , CD_3 , CD_4 , C_2D_2 , C_2D_4 , C_2D_6 , C_2H_6 , $CH_3N_2CH_3$, and $CD_3N_2CD_3$, Krishna M. Pamidimukkala, David Rogers, and Gordon B. Skinner, Vol. 11, No. 1, pp. 83–99 (1982)	\$12.00
198	Peak Absorption Coefficients of Microwave Absorption Lines of Carbonyl Sulphide, <i>Z. Kisiel and D. J. Millen</i> , Vol. 11, No. 1, pp. 99–116 (1982)	\$12.00
199	Vibrational Contributions to Molecular Dipole Polariz- abilities, <i>David M. Bishop and Lap M. Cheung</i> , Vol. 11, No. 1, pp. 119–133 (1982)	\$10.00
200	Energy Levels of Iron, Fe I through Fe xxvi, <i>Charles Corliss and Jack Sugar</i> , Vol. 11, No. 1, pp. 135–241 (1982) (superseded by Vol. 14, Suppl. 2)	\$22.00
201.	Microwave Spectra of Molecules of Astrophysical In- terest. XXI. Ethanol(C_2H_5OH) and Propionitrile (C_2H_5CN), <i>Frank J. Lovas</i> , Vol. 11, No. 2, pp. 251–312 (1982)	\$16.00
202.	Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules, V. Polystyrene, <i>Umesh</i> <i>Gaur and Bernhard Wunderlich</i> , Vol. 11, No. 2, pp. 313–325 (1982)	\$10.00
203.	Evaluated Kinetic and Photochemical Data for Atmo- spheric Chemistry: Supplement 1, CODATA Task Group on Chemical Kinetics, <i>D. L. Baulch, R. A. Cox,</i> <i>P. J. Crutzen, R. F. Hampson, Jr., J. A. Kerr (Chair- man), J. Troe, and R. T. Watson, Vol.</i> 11, No. 2, pp. 327–496 (1982)	\$30.00
204.	Molten Salts Data: Diffusion Coefficients in Single and Multi-Component Salt Systems, <i>G. J. Janz and N. P. Bansal</i> , Vol. 11, No. 3, pp. 505–693 (1982)	\$32.00
205.	JANAF Thermochemical Tables, 1982 Supplement, <i>M. W. Chase, Jr., J. L. Curnutt, J. R. Downey, Jr., R. A. McDonald, A. N. Syverud, and E. A. Valenzuela,</i> Vol. 11, No. 3, pp. 695–940 (1982) (superseded by Vol. 14, Suppl. 1)	\$40.00
206.	Critical Evaluation of Vapor-Liquid Equilibrium, Heat of Mixing, and Volume Change of Mixing Data. General Procedures, <i>Buford D. Smith, Ol Muthu, Ashok Dewan,</i> <i>and Matthew Gierlach</i> , Vol. 11, No. 3, pp. 941–951 (1982)	\$10.00
207.	Rate Coefficients for Vibrational Energy Transfer In- volving the Hydrogen Halides, <i>Stephen R. Leone</i> , Vol. 11, No. 3, pp. 953–996 (1982)	\$14.00
208.	Behavior of the AB ₂ -Type Compounds at High Pressures and High Temperatures, <i>Leo Merrill</i> , Vol. 11, No. 4, pp. 1005–1064 (1982)	\$16.00
209.	Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VI. Acrylic Polymers, Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich, Vol. 11, No. 4, pp. 1065–1089 (1982)	¢10.00
210.	Molecular Form Factors and Photon Coherent Scatter-	\$12.00

ing Cross Sections of Water, *L. R. M. Morin*, Vol. 11, No. 4, pp. 1091–1098 (1982) \$10.00

- 211. Evaluation of Binary *PTxy* Vapor–Liquid Equilibrium Data for C₆ Hydrocarbons. Benzene+Cyclohexane, Buford D. Smith, Ol Muthu, Ashok Dewan, and Matthew Gierlach, Vol. 11, No. 4, pp. 1099–1126 (1982) \$12.00
- 212. Evaluation of Binary Excess Enthalpy Data for C₆ Hydrocarbons. Benzene + Cyclohexane, Buford D. Smith, Ol Muthu, Ashok Dewan, and Matthew Gierlach, Vol. 11, No. 4, pp. 1127–1149 (1982)
 \$12.00
- 213. Evaluation of Binary Excess Volume Data for C₆ Hydrocarbons. Benzene + Cyclohexane, Buford D. Smith, Ol Muthu, Ashok Dewan, and Matthew Gierlach, Vol. 11, No. 4, pp. 1151–1169 (1982)
 \$12.00

\$12.00

\$14.00

\$12.00

\$12.00

\$14.00

\$10.00

\$10.00

\$26.00

\$16.00

\$10.00

\$10.00

\$16.00

207-227 (1984)

Reprints from Volume 12

- 214. Thermodynamic Properties of Steam in the Critical Region, J. M. H. Levelt Sengers, B. Kamgar-Parsi, F. W. Balfour, and J. V. Sengers, Vol. 12, No. 1, pp. 1–28 (1983)
- 215. Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VII. Other Carbon Backbone Polymers, *Umesh Gaur, Brent B. Wunderlich, and Bernhard Wunderlich,* Vol. 12, No. 1, pp. 29–63 (1983)
- 216. Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VIII. Polyesters and Polyamides, Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich, Vol. 12, No. 1, pp. 65–89 (1983)
- 217. Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IX. Final Group of Aromatic and Inorganic Polymers, *Umesh Gaur, Suk-fai Lau, and Bernhard Wunderlich,* Vol. 12, No. 1, pp. 91–108 (1983)
- 218. An Annotated Compilation and Appraisal of Electron Swarm Data in Electronegative Gases, *J. W. Gallagher, E. C. Beaty, J. Dutton, and L. C. Pitchford,* Vol. 12, No. 1, pp. 109–152 (1983)
- 219. The Solubility of Oxygen and Ozone in Liquids, Rubin Battino, Timothy R. Rettich, and Toshihiro Tominaga, Vol. 12, No. 2, pp. 163–178 (1983)
- 220. Recommended Values for the Thermal Expansivity of Silicon from 0 to 1000 K, C. A. Swenson, Vol. 12, No. 2, pp. 179–182 (1983)
- Electrical Resistivity of Ten Selected Binary Alloy Systems, C. Y. Ho, M. W. Ackerman, K. Y. Wu, T. N. Havill, R. H. Bogaard, R. A. Matula, S. G. Oh, and H. M. James, Vol. 12, No. 2, pp. 183–322 (1983)
- 222. Energy Levels of Silicon, Si I through Si XIV, W. C. Martin and Romuald Zalubas, Vol. 12, No. 2, pp. 323– 380 (1983)
- 223. Evaluation of Binary *PTxy* Vapor–Liquid Equilibrium Data for C₆ Hydrocarbons. Benzene + Hexane, *Buford D. Smith, Ol Muthu, and Ashok Dewan,* Vol. 12, No. 2, pp. 381–387 (1983)
- 224. Evaluation of Binary Excess Enthalpy Data for C₆ Hydrocarbons. Benzene + Hexane, *Buford D. Smith, Ol Muthu, and Ashok Dewan,* Vol. 12, No. 2, pp, 389–393 (1983)
- 225. Evaluation of Binary Excess Volume Data for C₆ Hydrocarbons. Benzene + Hexane, *Buford D. Smith, Ol Muthu, and Ashok Dewan,* Vol. 12, No. 2, pp. 395–401 (1983) \$10.00
- 226. Atlas of the High-Temperature Water Vapor Spectrum in the 3000 to 4000 cm⁻¹ Region, A. S. Pine, M. J. Coulombe, C. Camy-Peyret, and J-M. Flaud, Vol. 12, No. 3, pp. 413–465 (1983)

227.	Small-Angle Rayleigh Scattering of Photons at High Energies: Tabulations of Relativistic HFS Modified Atomic Form Factors, <i>D. Schaupp, M. Schumacher, F.</i> <i>Smend, P. Rullhusen, and J. H. Hubbell</i> , Vol. 12, No. 3, pp. 467–512 (1983)	\$14.00
228	Thermodynamic Properties of D_2O in the Critical Region, <i>B. Kamgar-Parsi, J. M. H. Levelt Sengers, and J. V. Sengers,</i> Vol. 12, No. 3, pp. 513–529 (1983)	\$12.00
229.	Chemical Kinetic Data Sheets for High-Temperature Chemical Reactions, <i>N. Cohen and K. R. Westberg</i> , Vol. 12, No. 3, pp. 531–590 (1983)	\$16.00
230.	Molten Salts: Volume 5, Part 2. Additional Single and Multi-Component Salt Systems. Electrical Conduc- tance, Density, Viscosity and Surface Tension Data, <i>G.</i> <i>J. Janz and R. P. T. Tomkins</i> , Vol. 12, No. 3, pp. 591– 815 (1983)	\$38.00
231.	International Tables of the Surface Tension of Water, N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, Vol. 12, No. 3, pp. 817–820 (1983)	\$10.00
232.	Evaluated Theoretical Cross Section Data for Charge Exchange of Multiply Charged Ions with Atoms. I. Hydrogen Atom-Fully Stripped Ion Systems, <i>R. K. Janev, B. H. Bransden, and J. W. Gallagher,</i> Vol. 12, No. 4, pp. 829–872 (1983)	\$14.00
233	Evaluated Theoretical Cross Section Data for Charge Exchange of Multiply Charged Ions with Atoms. II. Hydrogen Atom-Partially Stripped Ion Systems, <i>J. W. Gallagher, B. H. Bransden, and R. K. Janev</i> , Vol. 12, No. 4, pp. 873–890 (1983)	\$12.00
234.	Recommended Data on the Electron Impact Ionization of Light Atoms and Ions, <i>K. L. Bell, H. B. Gilbody, J. G.</i> <i>Hughes, A. E. Kingston, and F. J. Smith</i> , Vol. 12, No. 4, pp. 891–916 (1983)	\$12.00
235.	A Correlation of the Viscosity and Thermal Conductiv- ity Data of Gaseous and Liquid Ethylene, <i>P. M. Hol-</i> <i>land, B. E. Eaton, and H. J. M. Hanley</i> , Vol. 12, No. 4, pp. 917–932 (1983)	\$10.00
236.	Transport Properties of Liquid and Gaseous D_2O over a Wide Range of Temperature and Pressure, <i>N. Mat-</i> <i>sunaga and A. Nagashima</i> , Vol. 12, No. 4, pp. 933–966 (1983)	\$14.00
237.	Thermochemical Data for Gaseous Monoxides, J. B. Pedley and E. M. Marshall, Vol. 12, No. 4, pp. 967– 1031 (1983)	\$18.00
238.	Vapor Pressure of Coal Chemicals, J. Chao, C. T. Lin, and T. H. Chung, Vol. 12, No. 4, pp. 1033–1063 (1983)	\$12.00
Rej	prints from Volume 13	
239.	Thermodynamic Properties of Aqueous Sodium Chlo- ride Solutions, <i>Kenneth S. Pitzer, J. Christopher</i> <i>Peiper, and R. H. Busey</i> , Vol. 13, No. 1, pp. 1–102	
240.	(1984) Refractive Index of ZnS, ZnSe, and ZnTe and Its	\$22.00
	Wavelength and Temperature Derivatives, H. H. Li, Vol. 13, No. 1, pp. 103-150 (1984)	\$14.00
241.	High Temperature Vaporization Behavior of Oxides. I. Alkali Metal Binary Oxides, <i>R. H. Lamoreaux and D. L.</i> <i>Hildenbrand</i> , Vol. 13, No. 1, pp. 151–173 (1984)	\$12.00
242.	Thermophysical Properties of Fluid H ₂ O, <i>J. Kestin, J. V. Sengers, B. Kamgar-Parsi, and J. M. H. Levelt Sengers</i> , Vol. 13, No. 1, pp. 175–183 (1984)	\$10.00
243.	Representative Equations for the Viscosity of Water Substance, <i>J. V. Sengers and B. Kamgar-Parsi</i> , Vol. 13, No. 1, pp. 185–205 (1984)	\$12.00
244.	Atlas of the Schumann-Runge Absorption Bands of O_2 in the Wavelength Region 175–205 nm, <i>K. Yoshino, D. E. Freeman, and W. H. Parkinson</i> , Vol. 13, No. 1, pp.	-

\$12.00

- 245. Equilibrium and Transport Properties of the Noble Gases and Their Mixtures at Low Density, *J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman,* Vol. 13, No. 1, pp. 229–303 (1984)
- 246. Evaluation of Kinetic and Mechanistic Data For Modeling of Photochemical Smog, *Roger Atkinson and Alan C. Lloyd*, Vol. 13, No. 2, pp. 315–444 (1984)
- 247. Rate Data for Inelastic Collision Processes in the Diatomic Halogen Molecules, J. I. Steinfeld, Vol. 13, No. 2, pp. 445–553 (1984)
- 248. Water Solubilities of Polynuclear Aromatic and Heteroaromatic Compounds, *Robert S. Pearlman, Samuel H. Yalkowsky, and Sujit Banerjee,* Vol. 13, No. 2, pp. 555–562 (1984)
- 249. The Solubility of Nitrogen and Air in Liquids, *Rubin Battino, Timothy R. Rettich, and Toshihiro Tominaga,* Vol. 13, No. 2, pp. 563–600 (1984) \$14.00
- 250. Thermophysical Properties of Fluid D₂O, *J. Kestin, J. V. Sengers, B. Kamgar-Parsi, and J. M. H. Levelt Sengers*, Vol. 13, No. 2, pp. 601--309 (1984)
- 251. Experimental Stark Widths and Shifts for Spectral Lines of Neutral Atoms (A Critical Review of Selected Data for the Period 1976 to 1982), *N. Konjević, M. S. Dimitrijević, and W. L. Wiese,* Vol. 13, No. 3, pp. 619– 647 (1984)
- 252. Experimental Stark Widths and Shifts for Spectral Lines of Positive Ions (A Critical Review and Tabulation of Selected Data for the Period 1976 to 1982), *N. Konjević*, *M. S. Dimitrijević*, and W. L. Wiese, Vol. 13, No. 3, pp. 649–686 (1984)
- 253. A Review of Deuterium Triple-Point Temperatures, L.
 A. Schwalbe and E. R. Grilly, Vol. 13, No. 3, pp. 687–693 (1984)
 \$10.00
- 254. Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules, Sharon G. Lias, Joel F. Liebman, and Rhoda D. Levin, Vol. 13, No. 3, pp. 695–808 (1984)
- 255. Isotopic Abundances and Atomic Weights of the Elements, Paul De Bièvre, Marc Gallet, Norman E. Holden, and I. Lynus Barnes, Vol. 13, No. 3, pp. 809– 891 (1984)
- 256. Representative Equations for the Thermal Conductivity of Water Substance, J. V. Sengers, J. T. R. Watson, R. S. Basu, B. Kamgar-Parsi, and R. C. Hendricks, Vol. 13, No. 3, pp. 893–933 (1984)
- 257. Ground-State Vibrational Energy Levels of Polyatomic Transient Molecules, *Marilyn E. Jacox*, Vol. 13, No. 4, pp. 945–1068 (1984)
- 258. Electrical Resistivity of Selected Elements, *P. D. Desai*, *T. K. Chu*, *H. M. James, and C. Y. Ho*, Vol. 13, No. 4, pp. 1069–1096 (1984)
- 259. Electrical Resistivity of Vanadium and Zirconium, P. D. Desai, H. M. James, and C. Y. Ho, Vol. 13, No. 4, pp. 1097–1130 (1984)
- Electrical Resistivity of Aluminum and Manganese, P. D. Desai, H. M. James, and C. Y. Ho, Vol. 13, No. 4, pp. 1131–1172 (1984)
- Standard Chemical Thermodynamic Properties of Alkane Isomer Groups, *Robert A. Alberty and Catherine A. Gehrig*, Vol. 13, No. 4, pp. 1173–1197 (1984)
- 262. Evaluated Theoretical Cross-Section Data for Charge Exchange of Multiply Charged Ions with Atoms. III. Nonhydrogenic Target Atoms, *R. K. Janev and J. W. Gallagher*, Vol. 13, No. 4, pp. 1199–1249 (1984)
- 263. Heat Capacity of Reference Materials: Cu and W, G. K.
 White and S. J. Collocott, Vol. 13, No. 4, pp. 1251– 1257 (1984)
 \$10.00

264. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement II. CODATA Task Group on Gas Phase Chemical Kinetics, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr (Chairman), J. Troe, and R. T. Watson, Vol. 13, No. 4, pp. 1259–1380 (1984)

\$24.00

Reprints from Volume 14

\$18.00

\$26.00

\$22.00

\$10.00

\$10.00

\$12.00

\$14.00

\$24.00

\$20.00

\$14.00

\$24.00

\$12.00

\$14.00

\$14.00

\$12.00

\$16.00

265. Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C ₁ to C ₄ . Part 1. Properties of Condensed Phases, <i>Randolph C. Wilhoit,</i> <i>Jing Chao, and Kenneth R. Hall,</i> Vol. 14, No. 1, pp. 1–175 (1985)	\$30.00
	\$30.00
266. Standard Chemical Thermodynamic Properties of Alkylbenzene Isomer Groups, <i>Robert A. Alberty</i> , Vol. 14, No. 1, pp. 177–192 (1985)	\$10.00
267. Assessment of Critical Parameter Values for H ₂ O and D ₂ O, J. M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill, Vol. 14, No. 1, pp. 193–207 (1985)	\$10.00
268. The Viscosity of Nitrogen, Oxygen, and Their Binary Mixtures in the Limit of Zero Density, Wendy A. Cole and William A. Wakeham, Vol. 14, No. 1, pp. 209–226 (1985)	\$12.00
269. The Thermal Conductivity of Fluid Air, <i>K. Stephan and A. Laesecke</i> , Vol. 14, No. 1, pp. 227–234 (1985)	\$10.00
270. The Electronic Spectrum and Energy Levels of the Deuterium Molecule, <i>Robert S. Freund, James A. Schi-</i> avone, and H. M. Crosswhite, Vol. 14, No. 1, pp. 235– 383 (1985)	\$28.00
271. Microwave Spectra of Molecules of Astrophysical In- terest. XXII. Sulfur Dioxide (SO ₂), <i>F. J. Lovas</i> , Vol. 14, No. 2, pp. 395–488 (1985)	\$20.00
272. Evaluation of the Thermodynamic Functions for Aque- ous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C, <i>E. Colin W. Clarke and David N. Glew</i> , Vol. 14, No. 2, pp. 489–610 (1985)	\$24.00
273. The Mark–Houwink–Sakurada Equation for the Viscos- ity of Linear Polyethylene, <i>Herman L. Wagner</i> , Vol. 14, No. 2, pp. 611–617 (1985)	\$10.00
274. The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solu- tions, <i>H. Lawrence Clever, Susan A. Johnson, and M.</i> <i>Elizabeth Derrick</i> , Vol. 14, No. 3, pp. 631–680 (1985)	\$16.00
275. A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase <i>PVT</i> Measurements for Nitrogen + Methane, A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza, Vol. 14, No. 3, pp. 681–694 (1985)	\$10.00
276. The Homogeneous Nucleation Limits of Liquids, C. T. Avedisian, Vol. 14, No. 3, pp. 695–729 (1985)	\$14.00
277. Binding Energies in Atomic Negative Ions: II, <i>H. Hotop</i> and <i>W. C. Lineberger</i> , Vol. 14, No. 3, pp. 731–750	
(1985)	\$12.00
 Energy Levels of Phosphorus, P I through P XV , W. C. Martin, Romuald Zalubas, and Arlene Musgrove, Vol. 14, No. 3, pp. 751–802 (1985) 	\$16.00
279. Standard Chemical Thermodynamic Properties of Alk- ene Isomer Groups, <i>Robert A. Alberty and Catherine</i> <i>A. Gehrig</i> , Vol. 14, No. 3, pp. 803–820 (1985)	\$12.00
280. Standard Chemical Thermodynamic Properties of Alkylnaphthalene Isomer Groups, <i>Robert A. Alberty</i> <i>and Theodore M. Bloomstein</i> , Vol. 14, No. 3, pp. 821– 837 (1985)	\$12.00
281. Carbon Monoxide Thermophysical Properties from 68	
to 1000 K at Pressures to 100 MPa, <i>Robert D. Good-</i> <i>win</i> , Vol. 14, No. 4, pp. 849–932 (1985)	\$20.00

282. Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density, *I. Thormählen, J. Straub, and U. Grigull*, Vol. 14, No. 4, pp. 933–945 (1985)

\$10.00

\$12.00

\$18.00

\$16.00

\$10.00

\$40.00

\$16.00

\$10.00

\$22.00

\$12.00

\$24.00

\$26.00

\$30.00

\$12.00

\$12.00

\$12.00

- 283. Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase, K. Kadoya, N. Matsunaga, and A. Nagashima, Vol. 14, No. 4, pp. 947–970 (1985)
- 284. Charge Transfer of Hydrogen lons and Atoms in Metal Vapors, *T. J. Morgan, R. E. Olson, A. S. Schlachter, and J. W. Gallagher*, Vol. 14, No. 4, pp. 971–1040 (1985)
- 285. Reactivity of HO₂/O₂⁻ Radicals in Aqueous Solution, Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi, and Alberta B. Ross, Vol. 14, No. 4, pp. 1041–1100 (1985)
- 286. The Mark-Houwink-Sakurada Equation for the Viscosity of Atactic Polystyrene, *Herman L. Wagner*, Vol. 14, No. 4, pp. 1101–1106 (1985)
- 287. Standard Chemical Thermodynamic Properties of Alkylcyclopentane Isomer Groups, Alkylcyclohexane Isomer Groups, and Combined Isomer Groups, *Robert A. Alberty and Young S. Ha*, Vol. 14, No. 4, pp. 1107– 1132 (1985)
 \$12.00

Reprints from Volume 15

- 288. Triplet–Triplet Absorption Spectra of Organic Molecules in Condensed Phases, *Ian Carmichael and Gordon L. Hug*, Vol. 15, No. 1, pp. 1–250 (1986)
- 289. Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions—1985 Revision, *F. J. Lovas*, Vol. 15, No. 1, pp. 251–303 (1986)
- 290. New International Formulations for the Thermodynamic Properties of Light and Heavy Water, *J. Kestin and J. V. Sengers*, Vol. 15, No. 1, pp. 305–320 (1986)
- 291. Forbidden Lines in ns²np^k Ground Configurations and nsnp Excited Configurations of Beryllium through Molybdenum Atoms and Ions, Victor Kaufman and Jack Sugar, Vol. 15, No. 1, pp. 321–426 (1986)
- 292. Thermodynamic Properties of Twenty-One Monocyclic Hydrocarbons, *O. V. Dorofeeva, L. V. Gurvich, and V. S. Jorish*, Vol. 15, No. 2, pp. 437–464 (1986)
- 293. Evaluated Kinetic Data for High-Temperature Reactions. Volume 5. Part 1. Homogeneous Gas Phase Reactions of the Hydroxyl Radical with Alkanes, *D. L. Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman,* Vol. 15, No. 2, pp. 465–592 (1986)
- 294. Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa, *Majid Jahangiri, Richard T Jacobsen, Richard B. Stewart, and Robert D. McCarty,* Vol. 15, No. 2, pp. 593–734 (1986)
- 295. Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa, *Richard T Jacobsen, Richard B. Stewart, and Majid Jahangiri,* Vol. 15, No. 2, pp. 735–909 (1986)
- 296. A Critical Review of Aqueous Solubilities, Vapor Pressures, Henry's Law Constants, and Octanol–Water Partition Coefficients of the Polychlorinated Biphenyls, *Wan Ying Shiu and Donald Mackay*, Vol. 15, No. 2, pp. 911–929 (1986)
- 297. Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl₄(g), TiCl₄(I), TiCl₃(cr), and TiCl₂(cr), *S. P. Kirby, E. M. Marshall, and J. B. Pedley,* Vol. 15, No. 3, pp. 943–965 (1986)
- 298. Thermodynamic Properties of Iron and Silicon, *P. D. Desai*, Vol. 15, No. 3, pp. 967–983 (1986)

299. Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules, Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Na- kamura, H. Nishimura, and T. Takayanagi, Vol. 15, No. 3, pp. 985–1010 (1986)	\$12.00
300. Thermochemical Data on Gas-Phase Ion-Molecule Association and Clustering Reactions, <i>R. G. Keesee and A. W. Castleman, Jr.</i> , Vol. 15, No. 3, pp. 1011–1071 (1986)	\$16.00
301. Standard Reference Data for the Thermal Conductivity of Liquids, <i>C. A. Nieto de Castro, S. F. Y. Li, A. Na- gashima, R. D. Trengove, and W. A. Wakeham</i> , Vol. 15, No. 3, pp. 1073–1086 (1986)	\$10.00
302. Chemical Kinetic Data Base for Combustion Chemis- try. Part I. Methane and Related Compounds, <i>W.</i> <i>Tsang and R. F. Hampson,</i> Vol. 15, No. 3, pp. 1087– 1279 (1986)	\$34.00
303. Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance, <i>J. V.</i> <i>Sengers and J. T. R. Watson</i> , Vol. 15, No. 4, pp. 1291– 1314 (1986)	\$12.00
304. The Viscosity and Thermal Conductivity of Normal Hy- drogen in the Limit of Zero Density, <i>M. J. Assael, S. Mixafendi, and W. A. Wakeham,</i> Vol. 15, No. 4, pp. 1315–1322 (1986)	\$10.00
305. The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Argon, <i>B. A. Younglove and H. J. M. Hanley,</i> Vol. 15, No. 4, pp. 1323–1337 (1986)	\$10.00
306. Standard Chemical Thermodynamic Properties of Alkyne Isomer Groups, <i>Robert A. Alberty and Ellen Burmenko</i> , Vol. 15, No. 4, pp. 1339–1349 (1986)	\$10.00
307. Recent Progress in Deuterium Triple-Point Measure- ments, <i>L. A. Schwalbe</i> , Vol. 15, No. 4, pp. 1351–1356 (1986)	\$10.00
308. Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides, <i>S. Gor- don, J. C. Sullivan, and Alberta B. Ross</i> , Vol. 15, No. 4, pp. 1357–1367 (1986)	\$10.00
309. Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C ₁ to C ₄ . Part 2. Ideal Gas Properties, <i>Jing Chao, Kenneth R. Hall, Ken- neth N. Marsh, and Randolph C. Wilhoit</i> , Vol. 15, No. 4, pp. 1369–1436 (1986)	\$18.00
FF. 1000 1100 (1000)	ψι0.00

Reprints from Volume 16

- 310. Thermochemical Data on Gas Phase Compounds of Sulfur, Fluorine, Oxygen, and Hydrogen Related to Pyrolysis and Oxidation of Sulfur Hexafluoride, John T. Herron, Vol. 16, No. 1, pp. 1-6 (1987) \$10.00 311. The Thermochemical Measurements on Rubidium Compounds: A Comparison of Measured Values with Those Predicted from the NBS Tables of Chemical and Thermodynamic Properties, V. B. Parker, W. H. Evans, and R. L. Nuttall, Vol. 16, No. 1, pp. 7-59 (1987)\$16.00 312. Standard Thermodynamic Functions of Gaseous Polyatomic lons at 100-1000 K, Aharon Loewenschuss and Yitzhak Marcus, Vol. 16, No. 1, pp. 61-89 (1987) \$12.00 313. Thermodynamic Properties of Manganese and Molybdenum, P. D. Desai, Vol. 16, No. 1, pp. 91-108 (1987) \$12.00 314. Thermodynamic Properties of Selected Binary Aluminum Alloy Systems, P. D. Desai, Vol. 16, No. 1, pp. 109-124 (1987) \$10.00 315. 13C Chemical Shielding in Solids, T. M. Duncan, Vol. 16, No. 1, pp. 125-151 (1987) \$12.00 316. The Mark-Houwink-Sakurada Relation for Poly(Methyl
- 316. The Mark-Houwink-Sakurada Relation for Poly(Methyl Methacrylate), *Herman L. Wagner*, Vol. 16, No. 2, pp. 165–173 (1987) \$10.00

317. The Viscosity of Carbon Dioxide, Methane, and Sulfur Hexafluoride in the Limit of Zero Density, *R. D. Trengove and W. A. Wakeham*, Vol. 16, No. 2, pp. 175–187 (1987)

\$10.00

\$10.00

\$10.00

\$12.00

\$18.00

\$16.00

\$12.00

\$12.00

\$12.00

\$10.00

\$14.00

\$16.00

\$36.00

\$20.00

\$10.00

\$10.00

\$14.00

- 318. The Viscosity of Normal Deuterium in the Limit of Zero Density, M. J. Assael, S. Mixafendi, and W. A. Wakeham, Vol. 16, No. 2, pp. 189–192 (1987)
- Standard Chemical Thermodynamic Properties of Alkanethiol Isomer Groups, *Robert A. Alberty, Ellen Burmenko, Tae H. Kang, and Michael B. Chung, Vol.* 16, No. 2, pp. 193–208 (1987)
- 320. Evaluation of Binary Excess Volume Data for the Methanol+Hydrocarbon Systems, *R. Srivastava and B. D. Smith*, Vol. 16, No. 2, pp. 209–218 (1987) \$10.00
- 321. Evaluation of Binary Excess Enthalpy Data for the Methanol+Hydrocarbon Systems, *R. Srivastava and B. D. Smith*, Vol. 16, No. 2, pp. 219–237 (1987) \$12.00
- 322. Extinction Coefficients of Triplet–Triplet Absorption Spectra of Organic Molecules in Condensed Phases: A Least-Squares Analysis, *Ian Carmichael, W. P. Helman, and G. L. Hug,* Vol. 16, No. 2, pp. 239–260 (1987)
- 323. Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(³P) with Unsaturated Hydrocarbons, *R. J. Cvetanović*, Vol. 16, No. 2, pp. 261–326 (1987)
- 324. Spectral Data for Molybdenum Ions, Mo VI-Mo XLII, Toshizo Shirai, Yohta Nakai, Kunio Ozawa, Keishi Ishii, Jack Sugar, and Kazuo Mori, Vol. 16, No. 2, pp. 327– 377 (1987)
- 325. Standard Chemical Thermodynamic Properties of Alkanol Isomer Groups, *Robert A. Alberty, Michael B. Chung, and Theresa M. Flood*, Vol. 16, No. 3, pp. 391– 417 (1987)
- 326. High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg, *R. H. Lamoreaux, D. L. Hildenbrand, and L. Brewer,* Vol. 16, No. 3, pp. 419–443 (1987)
- 327. Equilibrium and Transport Properties of Eleven Polyatomic Gases at Low Density, *A. Boushehri, J. Bzowski, J. Kestin, and E. A. Mason,* Vol. 16, No. 3, pp. 445–466 (1987)
- 328. The Thermochemistry of Inorganic Solids IV. Enthalpies of Formation of Compounds of the Formula MX_aY_b, Mohamed W. M. Hisham and Sidney W. Benson, Vol. 16, No. 3, pp. 467–470 (1987)
- 329. Chemical Kinetic Data Base for Combustion Chemistry. Part 2. Methanol, Wing Tsang, Vol. 16, No. 3, pp. 471–508 (1987)
- 330. Phase Diagrams and Thermodynamic Properties of the 70 Binary Alkali Halide Systems Having Common lons, *James Sangster and Arthur D. Pelton*, Vol. 16, No. 3, pp. 509–561 (1987)
- 331. Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane, *B. A. Younglove and J. F. Ely*, Vol. 16, No. 4, pp. 577–798 (1987)
- 332. Methanol Thermodynamic Properties from 176 to 673 K at Pressures to 700 Bar, *Robert D. Goodwin*, Vol. 16, No. 4, pp. 799–892 (1987)
- 333. International Equations for the Saturation Properties of Ordinary Water Substance, A. Saul and W. Wagner, Vol. 16, No. 4, pp. 893–901 (1987)
- 334. Rate Data for Inelastic Collision Processes in the Diatomic Halogen Molecules. 1986 Supplement, J. I. Steinfeld, Vol. 16, No. 4, pp. 903–910 (1987)
- 335. Critical Survey of Data on the Spectroscopy and Kinetics of Ozone in the Mesosphere and Thermosphere, Jeffrey I. Steinfeld, Steven M. Adler-Golden, and Jean W. Gallagher, Vol. 16, No. 4, pp. 911–951 (1987)

336. Critical Compilation of Surface Structures Determined by Low-Energy Electron Diffraction Crystallography, <i>Philip R. Watson</i> , Vol. 16, No. 4, pp. 953–992 (1987)	\$14.00
337. Viscosity and Thermal Conductivity of Nitrogen for a Wide Range of Fluid States, <i>K. Stephan, R. Krauss, and A. Laesecke,</i> Vol. 16, No. 4, pp. 993–1023 (1987)	\$12.00
Reprints from Volume 17	
338. Pressure and Density Series Equations of State for Steam as Derived from the Haar–Gallagher–Kell For- mulation, <i>R. A. Dobbins, K. Mohammed, and D. A. Sul- livan</i> , Vol. 17, No. 1, pp. 1–8 (1988)	\$10.00
339. Absolute Cross Sections for Molecular Photoabsorp- tion, Partial Photoionization, and Ionic Photofragmen- tation Processes, J. W. Gallagher, C. E. Brion, J. A. R. Samson, and P. W. Langhoff, Vol. 17, No. 1, pp. 9–153 (1988)	\$28.00
340. Energy Levels of Molybdenum, Mo Hthrough Mo XLII, Jack Sugar and Arlene Musgrove, Vol. 17, No. 1, pp. 155–239 (1988)	\$20.00
341. Standard Chemical Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons and Their Isomer Groups I. Benzene Series, <i>Robert A. Alberty and An- drea K. Reif</i> , Vol. 17, No. 1, pp. 241–253 (1988)	\$10.00
342. Electronic Energy Levels of Small Polyatomic Tran- sient Molecules, <i>Marilyn E. Jacox</i> , Vol. 17, No. 2, pp. 269–511 (1988)	\$40.00
343. Critical Review of Rate Constants for Reactions of Hy- drated Electrons, Hydrogen Atoms and Hydroxyl Rad- icals (·OH/·O [−]) in Aqueous Solution, <i>George V. Bux-</i> <i>ton, Clive L. Greenstock, W. Phillip Helman, and</i> <i>Alberta B. Ross,</i> Vol. 17, No. 2, pp. 513–886 (1988)	\$56.00
344. Chemical Kinetic Data Base for Combustion Chemis- try. Part 3. Propane, <i>Wing Tsang</i> , Vol. 17, No. 2, pp. 887–951 (1988)	\$18.00
345. Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(³ P) with Saturated Organic Com- pounds in the Gas Phase, <i>John T. Herron</i> , Vol. 17, No. 3, pp. 967–1026 (1988)	\$16.00
346. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution, <i>P. Neta, Robert E. Huie, and Alberta B. Ross,</i> Vol. 17, No. 3, pp. 1027–1284 (1988)	\$42.00
347. Recommended Data on the Electron Impact Ionization of Atoms and Ions: Fluorine to Nickel, M. A. Lennon, K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, M. J. Murray, and F. J. Smith, Vol. 17, No. 3, pp. 1285– 1363 (1988)	\$18.00
348. Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(³ P) with Sulfur Containing Com- pounds, D. L. Singleton and R. J. Cvetanović, Vol. 17, No. 4, pp. 1377–1437 (1988)	\$16.00
349. New International Skeleton Tables for the Thermody- namic Properties of Ordinary Water Substance, <i>H. Sato, M. Uematsu, K. Watanabe, A. Saul, and W. Wag-</i> <i>ner</i> , Vol. 17, No. 4, pp. 1439–1540 (1988)	\$22.00
350. Benzene Thermophysical Properties from 279 to 900 K at Pressures to 1000 Bar, <i>Robert D. Goodwin</i> , Vol. 17, No. 4, pp. 1541–1636 (1988)	\$20.00
351. Estimation of the Thermodynamic Properties of Hydro- carbons at 298.15, K, <i>Eugene S. Domalski, and Eliza- beth D. Hearing,</i> Vol. 17, No. 4, pp. 1637–1678 (1988)	\$14.00
352. Wavelengths and Energy Level Classifications of Scandium Spectra for All stages of Ionization, <i>V. Kaufman and J. Sugar</i> , Vol. 17, No. 4, pp. 1679–1789 (1999)	600 00
(1988)	\$22.00

353. Atomic Weights of the Elements 1987, *J. R. De Laeter,* Vol. 17, No. 4, pp. 1791–1793 (1988) \$10.00

354. The 1986 CODATA Recommended Values of the Fundamental Physical Constants, E. Richard Cohen and Barry N. Taylor, Vol. 17, No. 4, pp. 1795–1803 (1988) \$10.00

\$12.00

\$12.00

\$14.00

\$14.00

\$22.00

\$50.00

\$16.00

\$28.00

\$18.00

\$36.00

\$24.00

\$10.00

\$44.00

\$12.00

\$18.00

Reprints from Volume 18

- 355. Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K, Steven G. Bratsch, Vol. 18, No. 1, pp. 1–21 (1989)
- 356. Cross Sections for Collisions of Electrons and Photons with Oxygen Molecules, Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, Vol. 18, No. 1, pp. 23–42 (1989)
- 357. Thermal Conductivity of Refrigerants in a Wide Range of Temperature and Pressure, *R. Krauss and K. Stephan*, Vol. 18, No. 1, pp. 43–76 (1989)
- 358. Standard Chemical Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons and Their Isomer Groups. II. Pyrene Series, Naphthopyrene Series, and Coronene Series, Robert A. Alberty, Michael B. Chung, and Andrea K. Reif, Vol. 18, No. 1, pp. 77–109 (1989)
- 359. Cross Sections for K-Shell X-ray Production by Hydrogen and Helium Ions in Elements from Beryllium to Uranium, G. Lapicki, Vol 18. No. 1, pp. 111–218 (1989)
- Rate Constants for the Quenching of Excited States of Metal Complexes in Fluid Solution, *Morton Z. Hoffman*, *Fabrizio Bolletta, Luca Moggi, and Gordon L. Hug*, Vol. 18. No. 1, pp. 219–543 (1989).
- 361. The Thermal Conductivity of Nitrogen and Carbon Monoxide in the Limit of Zero Density, *J. Millat and W. A. Wakeham*, Vol. 18, No. 2, pp. 565–581 (1989) \$12.00
- 362. Thermophysical Properties of Methane, *Daniel G. Friend, James F. Ely, and Hepburn Ingham,* Vol. 18, No. 2, pp. 583–638 (1989)
- 363. Thermodynamic Properties of Argon from the Triple Point to 1200 K with Pressures to 1000 MPa, *Richard B. Stewart and Richard T. Jacobsen*, Vol. 18, No. 2, pp. 639–798 (1989)
- 364. Thermodynamic Properties of Dioxygen Difluoride (O₂F₂) and Dioxygen Fluoride (O₂F), John L. Lyman, Vol. 18, No. 2, pp. 799–807 (1989)
 \$10.00
- 365. Thermodynamic and Transport Properties of Carbohydrates and their Monophosphates: The Pentoses and Hexoses, *Robert N. Goldberg and Yadu B. Tewari*, Vol. 18, No. 2, pp. 809–880 (1989)
- 366. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement III. *IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr (Chairman), and J. Troe, Vol.* 18, No. 2, pp. 881–1097 (1989)
- 367. Octanol–Water Partition Coefficients of Simple Organic Compounds, *James Sangster*, Vol. 18, No. 3, pp. 1111–1229 (1989)
- 368. Evaluation of Data on Solubility of Simple Apolar Gases in Light and Heavy Water at High Temperature, *Roberto Fernández Prini and Rosa Crovetto*, Vol. 18, No. 3, pp. 1231–1243 (1989)
- 369. Microwave Spectral Tables. III. Hydrocarbons, CH to C₁₀H₁₀, *F. J. Lovas an R. D. Suenram*, Vol. 18, No. 3, pp. 1245–1524 (1989)
- 370. A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25 000 MPa, *A. Saul and W. Wagner*, Vol. 18, No. 4, pp. 1537–1564 (1989)
- 371. Toluene Thermophysical Properties from 178 to 800 K at Pressures to 1000 Bar, *Robert D. Goodwin*, Vol. 18, No. 4, pp. 1565–1636 (1989)

ing Free Radicals in Aqueous Solution, <i>Peter Ward-</i> man, Vol. 18, No. 4, pp. 1637–1755 (1989)	\$24.0
373. Photoemission Cross Sections for Atomic Transitions in the Extreme Ultraviolet due to Electron Collisions with Atoms and Molecules, <i>P. J. M. van der Burgt, W.</i> <i>B. Westerveld, and J. S. Risley</i> , Vol. 18, No. 4, pp. 1757–1805 (1989)	\$16.0
Reprints from Volume 19	
374. Chemical Kinetic Data Base for Combustion Chemis- try. Part 4. Isobutane, Wing Tsang, Vol. 19, No. 1, pp. 1–68 (1990)	\$18.0
375. Thermodynamic Functions and Properties of MgO at High Compression and High Temperature, Orson L. Anderson and Keshan Zou, Vol. 19, No. 1, pp. 69–83 (1990)	\$10.0
376. Critical Compilation of Surface Structures Determined by Ion Scattering Methods, <i>Philip R. Watson</i> , Vol. 19, No. 1, pp. 85–111 (1990)	\$12.0
377. Benzene: A Further Liquid Thermal Conductivity Stan- dard, M. J. Assael, M. L. V. Ramires, C. A. Nieto de Castro, and W. A. Wakeham, Vol. 19, No. 1, pp. 113– 117 (1990)	\$10.0
378. Energy Levels of Atomic Aluminum with Hyperfine Structure, <i>Edward S. Chang</i> , Vol. 19, No. 1, pp. 119– 125 (1990)	\$24.00
379. Spectral Data and Grotrian Diagrams for Highly Ion- ized Iron, Fe VIII-XXVI, Toshizo Shirai, Yoshio Funa- take, Kazuo Mori, Jack Sugar, Wolfgang L. Wiese, and Yohta Nakai, Vol. 19, No. 1, pp. 127–275 (1990)	\$28.0
380. Updated Excitation and Ionization Cross Section for Electron Impact on Atomic Oxygen, Russ R. Laher and Forrest R. Gilmore, Vol. 19, No. 1, pp. 277–305 (1990)	\$12.0
381. Standard Chemical Thermodynamic Properties of Iso- mer Groups of Monochioroalkanes, <i>Robert A. Alberty</i> and Michael B. Chung, Vol. 19, No. 2, pp. 321–348 (1990)	\$12.00
382. Standard Chemical Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons and Their Isomer Groups. III. Napthocoronene Series, Ovalene Series, and First Members of Some Higher Series, <i>Robert A.</i> <i>Alberty, Michael B. Chung, and Andrea K. Reif</i> , Vol. 19, No. 2, pp. 349–370 (1990)	\$12.00
383. The Dielectric Constant of Water and Debye-Huckel Limiting Law Slopes, Donald G. Archer and Peiming Wang, Vol. 19, No. 2, pp. 371–411 (1990)	\$14.00
384. Rate Constants for Reactions of Peroxyl Radicals in Fluid Solutions, <i>P. Neta, Robert E. Huie, and Alberta B.</i> <i>Ross</i> , Vol. 19, No. 2, pp. 413–513 (1990)	\$22.00
385. Energy Levels of Copper, Cu I through Cu XXIX, Jack Sugar and Arlene Musgrove, Vol. 19, No. 3, pp. 527– 616 (1990)	\$20.00
386. Cross Sections and Related Data for Electron Collisions with Hydrogen Molecules and Molecular Ions, <i>H. Tawara, Y. Itikava, H. Nishimura, and M. Yoshino</i> , Vol. 19, No. 3, pp. 617–636 (1990)	\$12.0
387. Cross Sections for Collisions of Electrons and Photons with Atomic Oxygen, Y. Itikawa and A. Ichimura, Vol. 19, No. 3, pp. 637–651 (1990).	\$10.00
388. Cross Sections and Swarm Coefficients for H ⁺ , H ₂ ⁺ , H ₃ ⁺ , H, H ₂ , and H ⁻ in H ₂ for Energies from 0.1 eV to 10 keV, <i>A. V. Phelps</i> , Vol. 19, No. 3, pp. 653–675 (1990)	\$12.00
 389. Refractive Index of Water and Steam as Function of Wavelength, Temperature and Density, <i>P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher,</i> Vol. 19, No. 3, pp. 677–717 (1990) 	\$14.00
	- ψ · ¬.Ο'

372 Reduction Potentials of One-Electron Couples Involv

- 390. Heat Capacities of Organic Compounds in the Liquid State I. C1 to C18 1-Alkanols, Milan Zábranský, Vlastimil Růžička, Jr., and Vladimír Majer, Vol. 19, No. 3, pp. 719-762 (1990)
- 391. The Transport Properties of Carbon Dioxide, V. Vesovic, W. A. Wakeham, G. A. Olchowy, J. V. Sengers, J. T. R. Watson, and J. Millat, Vol. 19, No. 3, pp. 763-808 (1990)
- 392. Energy Levels of Sulfur, S I Through S XVI, W. C. Martin, Romuald Zalubas, and Arlene Musgrove, Vol. 19, No. 4, pp. 821-880 (1990)
- 393. Heat Capacities and Entropies of Organic Compounds in the Condensed Phase, Volume II, Eugene S. Domalski and Elizabeth D. Hearing, Vol. 19, No. 4, pp. 881-1047 (1990)
- 394. The Thermodynamics of the Krebs Cycle and Related Compounds, Stanley L. Miller and David Smith-Magowan, Vol. 19, No. 4, pp. 1049-1073 (1990) \$12.00
- 395. Transport Properties of Fluid Oxygen, A. Laesecke, R. Krauss, K. Stephen, and W. Wagner, Vol. 19, No. 5, pp. 1089-1122 (1990)
- 396. Thermal Conductivity of Nine Polyatomic Gases at Low Density, F. J. Uribe, E. A. Mason, and J. Kestin, Vol. 19, No. 5, pp. 1123-1136 (1990)
- 397. The Thermal Conductivity of Methane and Tetrafluoromethane in the Limit of Zero Density, M. J. Assael, J. Millat, V. Vesovic, and W. A. Wakeham, Vol. 19, No. 5, pp. 1137-1147 (1990)
- 398. Coupled Phase Diagram-Thermodynamic Analysis of the 24 Binary Systems, A2CO3-AX and A2SO4-AX where A=Li, Na, K and X=CI, F, NO3, OH, Yves Dessureault, James Sangster, and Arthur D. Pelton, Vol. 19, No. 5, pp. 1149-1178 (1990)
- 399. Equilibrium and Transport Properties of Gas Mixtures at Low Density: Eleven Polyatomic Gases and Five Noble Gases, J. Bzowski, J. Kestin, E. A. Mason, and F. J. Uribe, Vol. 19, No. 5, pp. 1179-1232 (1990)
- 400. A Unified Fundamental Equation for the Thermodynamic Properties of H2O, Philip G. Hill, Vol. 19, No. 5, pp. 1233-1274 (1990)
- 401. The Viscosity and Thermal Conductivity of Pure Monatomic Gases From Their Normal Boiling Point up to 5000 K in the Limit of Zero Density and at 0.101325 MPa, E. Bich, J. Millat, and E. Vogel, Vol. 19, No. 6, pp. 1289-1305 (1990)

- 402. Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms (A Critical Review of Selected Data for the Period 1983 through 1988), N. Konjević and W. L. Wiese, Vol. 19, No. 6, pp. 1307-1385 (1990)
- 403. Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules. Supplement 1, Marilyn E. Jacox, Vol. 19, No. 6, pp. 1387-1546 (1990)
- 404. Thermodynamic and Thermophysical Properties of Organic Nitrogen Compounds. Part I. Methanamine, Ethanamine, 1- and 2-Propanamine, Benzenamine, 2-, 3-, and 4-Methylbenzenamine, J. Chao, N. A. M. Gadella, B. E. Gammon, K. N. Marsh, A. S. Rodgers, G. R. Somayajulu, and R. C. Wilhoit, Vol. 19, No. 6, pp. 1547-1615 (1990)

Reprints from Volume 20

- 405. Spectral Data and Grotrian Diagrams for Highly Ionized Copper, Cu X-Cu XXIX, T. Shirai, T. Nakagaki, Y. Nakai, J. Sugar, K. Ishii, and K. Mori, Vol. 20, No. 1, pp. 1-81 (1991)
- 406. Wavelengths and Energy Level Classifications of Magnesium Spectra for All Stages of Ionization (Mg I thru Mg XII), V. Kaufman and W. C. Martin, Vol. 20, No. 1, pp. 83-152 (1991)

\$14.00	407. Spectroscopy and Structure of the Alkali Hydride Di- atomic Molecules and Their Ions, <i>W. C. Stwalley, W. T. Zemke, and S. C. Yang</i> , Vol. 20, No. 1, pp. 153–187 (1991)	\$14.00
\$14.00	408. Critical Evaluation of Liquid Crystal Transition Temper- ature I: 4,4'-Alkyl/Alkoxyphenylbenzoates, <i>T. T. Blair</i> , <i>M. E. Neubert, M. Tsai, and C. Tsai</i> Vol. 20, No. 1, pp. 189–204 (1991)	\$10.00
\$16.00	409. Chemical Kinetic Data Base for Combustion Chemis- try. Part V. Propene, <i>Wing Tsang</i> , Vol. 20, No. 2, pp. 221–273 (1991)	\$16.00
\$30.00	410. Thermophysical Properties of Ethane, <i>Daniel G. Friend, Hepburn Ingham, and James F. Ely</i> , Vol. 20, No. 2, pp. 275–347 (1991)	\$18.00
\$12.00	411. Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. X. Update of the ATHAS 1980 Data Bank, <i>Manika Varma-Nair and Bernhard</i> <i>Wunderlich</i> , Vol. 20, No. 2, pp. 349–404 (1991)	\$16.00
\$14.00	412. Heat Capacities of Organic Compounds in Liquid State. II. C ₁ to C ₁₈ n-Alkanes, Vlastimil Růžička, Jr., Milan Zábranský, and Vladimír Majer, Vol. 20, No. 2, pp. 405–444 (1991)	\$14.00
\$10.00	413. Kinetics and Mechanisms of the Gas-Phase Reactions of the NO ₃ Radical with Organic Compounds, <i>Roger</i> <i>Atkinson</i> , Vol. 20, No. 3, pp. 459–507 (1991)	\$16.00
\$10.00	414. Thermodynamic Properties of the NaBr + H ₂ O System, Donald G. Archer, Vol. 20, No. 3, pp. 509-555 (1991)	\$14.00
\$12.00	415. Cross Sections and Swarm Coefficients for Nitrogen lons and Neutrals in N ₂ and Argon lons and Neutrals in Ar for Energies from 0.1 eV to 10 keV, A. V. Phelps, Vol. 20, No. 3, pp. 557–573 (1991)	\$12.00
6 4 0 0 0	416. Evaluation of Solubility Data of the System CO ₂ -H ₂ O from 273 K to the Critical Point of Water, <i>Rosa</i> <i>Crovetto</i> , Vol. 20, No. 3, pp. 575–589 (1991)	\$10.00
\$16.00 \$14.00	 417. Chemical Kinetic Data Base for Propellant Combustion. I. Reactions Involving NO, NO₂, HNO, HNO₂, HCN, and N₂O, Wing Tsang and John T. Herron, Vol. 20, No. 4, pp. 609–663 (1991) 	\$16.00
\$12.00	418. Ab-Initio Calculations and Ideal Gas Thermodynamic Functions of Cyclopentadiene and Cyclopentadiene Derivatives, <i>Miriam Karni, Izhack Oref, and Alexander</i> <i>Burcat,</i> Vol. 20, No. 4, pp. 665–683 (1991)	\$12.00
•	419. Improved Fits for the Vibrational and Rotational Con- stants of Many States of Nitrogen and Oxygen, <i>Russ</i> <i>R. Laher and Forrest R. Gilmore</i> , Vol. 20, No. 4, pp. 685–712 (1991)	\$12.00
\$18.00	 420. Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide, K. D. Bartle, A. A. Clif- ford, S. A. Jafar, and G. F. Shilstone, Vol. 20, No. 4, pp. 	φ12.00
\$28.00	713–756 (1991) 421. Wavelengths and Energy Level Classifications for the Spectra of Aluminum (Al I through Al XIII), <i>Victor</i> <i>Kaufman and W. C. Martin</i> , Vol. 20, No. 5, pp. 775–858	\$14.00
\$18.00	(1991) 422. Energy Levels of Krypton, Kr I through Kr XXXVI, <i>Jack</i> <i>Sugar and Arlene Musgrove</i> , Vol. 20, No. 5, pp. 859– 915 (1991)	\$20.00 \$16.00
	423. Thermodynamic Properties of Oxygen from the Triple Point to 300 K with Pressures to 80 MPa, <i>Richard B.</i> <i>Stewart, Richard T. Jacobsen, and W. Wagner</i> , Vol. 20, No. 5, pp. 917–1021 (1991)	\$22.00
\$20.00	424. Sixteen Thousand Evaluated Experimental Thermody- namic Property Data for Water and Steam, <i>H. Sato, K.</i> <i>Watanabe, J. M. H. Levelt Sengers, J. S. Gallagher, P.</i>	<i><i><i><i><i><i><i><i></i></i></i></i></i></i></i><i><i><i><i><i><i><i></i></i></i></i></i></i></i></i>
\$18.00	<i>G. Hill, J. Straub, and W. Wagner,</i> Vol. 20, No. 5, pp. 1023–1044 (1991)	\$12.00

- 425. A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa, *U. Setzmann and W. Wagner*, Vol. 20, No. 6, pp. 1061–1155 (1991)
- 426. Thermodynamic Properties of the Aqueous Sulfuric Acid System to 350 K, *Frank J. Zeleznik*, Vol. 20, No. 6, pp. 1157–1200 (1991)

\$20.00

\$14.00

\$10.00

\$12.00

\$22.00

\$14.00

\$10.00

\$20.00

\$24.00

\$70.00

\$14.00

(1993)

- 427. The Solubility of Carbon Dioxide in Water at Low Pressure, John J. Carroll, John D. Slupsky, and Alan E. Mather, Vol. 20, No. 6, pp. 1201–1209 (1991)
 \$10.00
- 428. Chemical Kinetic Data Sheets for High-Temperature Reactions. Part II, *N. Cohen and K. R. Westberg*, Vol. 20, No. 6, pp. 1211–1311 (1991)
 \$22.00
- 429. Atomic Weights of the Elements 1989, *J. R. De Laeter* and K. G. Heumann, Vol. 20, No. 6, pp. 1313–1325 (1991) \$10.00
- 430. Isotopic Compositions of the Elements 1989, *J. R. De Laeter, K. G. Heumann, and K. J. R. Rosman*, Vol. 20, No. 6, pp. 1327–1337 (1991)
- 431. Property, Materials, and Author Indexes to the Journal of Physical and Chemical Reference Data, Vols. 11– 20, pp. 1343–1394 (1982–1991) \$16.00

Reprints from Volume 21

- 432. Thermodynamic Properties of the NaCl+H₂O System.
 I. Thermodynamic Properties of NaCl(cr), *Donald G. Archer*, Vol. 21, No. 1, pp. 1–21 (1992)
- 433. Spectral Data and Grotrian Diagrams for Highly Ionized Cobalt, Co vill through Co xxvii, Toshizo Shirai, Alberto Mengoni, Yohta Nakai, Jack Sugar, Wolfgang L. Wiese, Kazuo Mori, and H. Sakai, Vol. 21, No. 1, pp. 23–121 (1992)
- 434. Critical Compilation of Surface Structures Determined by Surface Extended X-Ray Absorption Fine Structure (SEXAFS) and Surface Extended Electron Energy Loss Spectroscopy (SEELFS), *Philip R. Watson*, Vol. 21, No. 1, pp. 123–156 (1992)
- 435. Laser-Induced Kerr Constants for Pure Liquids, N. J. Harrison and B. R. Jennings, Vol. 21, No. 1, pp. 157– 163 (1992)
- 436. Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions—1991 Revision, *Frank J. Lovas*, Vol. 21, No. 2, pp. 181–272 (1992)
- 437. Spectral Data and Grotrian Diagrams for Highly Ionized Vanadium, V vi through V xxiii, Toshizo Shirai, Toshiaki Nakagaki, Jack Sugar, and Wolfgang L. Wiese, Vol. 21, No. 2, pp. 273–390 (1992)
- 438. Evaluated Kinetic Data for Combustion Modelling, D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, Vol. 21, No. 3, pp. 411–734 (entire issue) (1992)
- 439. Chemical Kinetic Data Base for Propellant Combustion. II. Reactions Involving CN, NCO, and HNCO, *Wing Tsang*, Vol. 21, No. 4, pp. 753–791 (1992)
- 440. Thermodynamic Properties of the NaCl+H₂O System.
 II. Thermodynamic Properties of NaCl(aq), NaCl·2H₂O(cr), and Phase Equilibria, *Donald G. Archer*, Vol. 21, No. 4, pp. 793–829 (1992) \$14.00
- 441. Vibrational Bands of H_xN_yO_z *Molecules, F. Mélen and M. Herman*, Vol. 21, No. 4, pp. 831–881 (1992) \$16.00
- 442. Collisions of H⁺, H⁺₂, H⁺₃, ArH⁺, H[−], H, and H₂ with Ar and of Ar⁺ and ArH⁺ with H₂ for Energies from 0.1 eV to 10 keV, *A. V. Phelps,* Vol. 21, No. 4, pp. 883–897 (1992). \$10.00

443. A Critical Compilation of Atomic Transition Proba ties for Singly Ionized Argon, <i>V. Vujnović and W</i> <i>Wiese</i> , Vol. 21, No. 5, pp. 919–939 (1992)	
444. The Solubility of Some Sparingly Soluble Salts of and Cadmium in Water and in Aqueous Electrolyte lutions, <i>H. Lawrence Clever, M. Elizabeth Derrick,</i> <i>Susan A. Johnson</i> , Vol. 21, No. 5, pp. 941–1004 (19)	So- and
445. Franck–Condon Factors, <i>r</i> -Centroids, Electronic T sition Moments, and Einstein Coefficients for Many trogen and Oxygen Band Systems, <i>Forrest R. Gilm Russ R. Laher, and Patrick J. Espy</i> , Vol. 21, No. 5 1005–1107 (1992)	y Ni- <i>iore</i> ,
446. Evaluated Kinetic and Photochemical Data for A spheric Chemistry. Supplement IV, <i>IUPAC Subcon</i> tee on Gas Kinetic Data Evaluation for Atmospl Chemistry, R. Atkinson, D. L. Baulch, R. A. Cox, I Hampson, Jr., J. A. Kerr (Chairman), and J. Troe, 21, No. 6, pp. 1125–1568 (entire issue) (1992)	nmít- heric R. F.
Reprints from Volume 22	
447. Thermodynamic Properties of the Group IIA Eleme C. B. Alcock, M. W. Chase, and V. Itkin, Vol. 22, N pp. 1–85 (1993)	
448. Spectroscopy and Structure of the Lithium Hydrid atomic Molecules and Ions, <i>William C. Stwalley</i> <i>Warren T. Zemke</i> , Vol. 22, No. 1, pp. 87–112 (19	and
449. Quantum Yields for the Photosensitized Formatic the Lowest Electronically Excited Singlet State of lecular Oxygen in Solution, <i>Francis Wilkinson</i> , <i>Phillip Helman, and Alberta B. Ross</i> , Vol. 22, No. 1 113–262 (1993)	Мо- , <i>W.</i>
450. Wavelengths and Energy Level Classifications fo Spectra of Sulfur (S I through S XVI), Victor Kau and W. C. Martin, Vol. 22, No. 2, pp. 279–375 (19	fman
 Thermodynamic Properties of Alkenes (Mono-Ol- Larger than C₄), W. V. Steele and R. D. Chirico, 22, No. 2, pp. 377–430 (1993) 	
452. The Thermodynamic Behavior of the CO_2 -H ₂ O tem from 400 to 1000 K, up to 100 MPa and 30% Fraction of CO_2 , <i>J. S. Gallagher, R. Crovetto, and H. Levelt Sengers,</i> Vol. 22, No. 2, pp. 431–513 (1)	Mole <i>J. M.</i>
453. Thermodynamics of Enzyme-Catalyzed React Part 1. Oxidoreductases, <i>Robert N. Goldberg, Yad</i> <i>Tewari, Donna Bell, Karl Fazio, and Ellen Ander</i> Vol. 22, No. 2, pp. 515–582 (1993)	du B.
454. Estimation of the Heat Capacities of Organic Lic as a Function of Temperature Using Group Additiv Hydrocarbon Compounds, <i>Vlastimil</i> Růžička, Jr., Eugene S. Domalski, Vol. 22, No. 3, pp. 597-	ity. I. and –618
(1993) 455. Estimation of the Heat Capacities of Organic Lic	\$12.00
as a Function of Temperature Using Group Addit II. Compounds of Carbon, Hydrogen, Halogens, M gen, Oxygen, and Sulfur, Vlastimil Růžička, Jr., Eugene S. Domalski, Vol. 22, No. 3, pp. 619	livity. Nitro- <i>and</i> –657
(1993)	\$14.00
456. Thermodynamic and Thermophysical Properties of ganic Nitrogen Compounds. Part II. 1-2-Butanamine, 2-Methyl-1-Propanamine, 2-Methyl-Propanamine, 2-Methylpyrrole, 1-, 2-, and 3-Methylpyrrole ridine, 2-, 3-, and 4-Methylpyrridine, Prodine, Indole, Quinoline, Isoquinoline, Prodine, Indole, Quinoline, Isoquinoline, Acri Carbazole, Phenanthridine, 1- and 2-Naphthamine, and 9-Methylcarbazole, A. Das, M. Frenke, A. M. Gadalla, S. Kudchadker, K. N. Marsh.	and nyl-2- iperi- dine, alen- el, N.

Rodgers, and R. C. Wilhoit, Vol. 22, No. 3, pp. 659-782

\$24.00

457. International Equations for the Saturation Properties of Ordinary Water Substance. Revised According to the International Temperature Scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16, 893 (1987), *W. Wagner and A. Pruss,* Vol. 22, No. 3, pp. 783–787 (1993)

\$10.00

\$80.00

\$18.00

\$28.00

- 458. Estimation of the Thermodynamic Properties of C-H-N-O-S-Halogen Compounds at 298.15 K, *Eugene S. Domalski and Elizabeth D. Hearing*, Vol. 22, No. 4, pp. 805–1159 (entire issue) (1993)
- 459. A Compilation of Energy Levels and Wavelengths for the Spectrum of Singly-Ionized Oxygen (O II), W. C. Martin, Victor Kaufman, and Arlene Musgrove, Vol. 22, No. 5, pp. 1179–1212 (1993)
 \$14.00
- 460. Energy Levels of Germanium, Ge I through Ge XXXII, Jack Sugar and Arlene Musgrove, Vol. 22, No. 5, pp. 1213–1278 (1993)
- 461. Spectral Data and Grotrian Diagrams for Highly Ionized Chromium, Cr v through Cr xxiv, *Toshizo Shirai, Yohta Nakai, Toshiaki Nakagaki, Jack Sugar, and Wolfgang L. Wiese,* Vol. 22, No. 5, pp. 1279–1423 (1993)
- 462. Thermodynamic Properties of Synthetic Sapphire (a-Al₂O₃), Standard Reference Material 720 and the Effect of Temperature-Scale Differences on Thermodynamic Properties, Donald G. Archer, Vol. 22, No. 6, pp. 1441-1453 (1993) \$10.00 463. Thermodynamic Properties of Gaseous Silicon Monotelluride and the Bond Dissociation Enthalpy D^e_m(SiTe) at T→0, P. A. G. O'Hare, Vol. 22, No. 6, pp. 1455-1458 (1993)\$10.00 464. The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: A Survey of Their Thermodynamic Properties, M. S. Chandrasekharaiah, J. L. Margrave, and P. A. G. O'Hare, Vol. 22, No. 6, pp. 1459-1468 (1993) \$10.00 465. Evaluated Bimolecular Ion-Molecule Gas Phase Kinetics of Positive Ions for Use in Modeling Planetary Atmospheres, Cometary Comae, and Interstellar Clouds, Vincent G. Anicich, Vol. 22, No. 6, pp. 1469-1569 (1993)\$22.00 466. Atomic Weights of the Elements 1991, IUPAC Com-
 - 6. Atomic Weights of the Elements 1991, *IUPAC Commission on Atomic Weights and Isotopic Abundances,* Vol. 22, No. 6, pp. 1571–1584 (1993) \$10.00

JPCRD Supplements/Monographs

When the topic demands it, and the quantity and quality of the data justifies it, the **Journal of Physical and Chemical Reference Data** issues a separate hard-cover-bound compilation. Monographs (before 1989 known as Supplements) are a collection of tables of highly significant physical or chemical property data in one complete volume. Listed below are the Monographs/Supplements to **JPCRD** which have been published. Each one is a valuable resource for the physicist and chemist.

PHYSICAL AND THERMODYNAMIC PROPERTIES OF ALIPHATIC ALCOHOLS, by R. C. Wilhoit and B. J. Zwo- linski. (Supplement No. 1 to Volume 2) 1973, 420 pages.* U.S. & Canada \$66/3 Abroad: \$80/3		00.00 16.00
THERMAL CONDUCTIVITY OF THE ELEMENTS: A COMPREHENSIVE REVIEW, by C. Y. Ho, R. W. Powell, and P. E. Liley. (Supplement No. 1 to Volume 3) 1974, 796 pages.* U.S. & Canada \$120/\$ Abroad: \$144/\$	132 U.S. & Canada \$15	50.00 80.00
ENERGETICS OF GASEOUS IONS, by H. M. Rosen- stock, K. Draxi, B. W. Steiner, and J. T. Herron. (Supple- ment No. 1 to Volume 6) 1977, 783 pages.* U.S. & Canada \$140/\$ Abroad: \$168/\$	156 1 to Volume 17) 1988, 872 pages. Hardcover. U.S. & Canada \$14	40.00 68.00
EVALUATED KINETIC DATA FOR HIGH TEMPERA- TURE REACTIONS: VOLUME 4, HOMOGENEOUS GAS PHASE REACTIONS OF HALOGEN- AND CYANIDE- CONTAINING SPECIES by D. L. Baulch, J. Duxbury, S. J. Grant, and D. C. Montague. (Supplement No. 1 to Volume 10) 1981, 721 pages. Hardcover. U.S. & Canada \$160 Abroad: \$192	ume 17) 1988, 320 pages. Hardcover. U.S. & Canada \$5	50.00 60.00
····· · · · · · ·		30.00 56.00
THE NBS TABLES OF CHEMICAL THERMODYNAMIC PROPERTIES. SELECTED VALUES FOR INORGANIC AND C ₁ AND C ₂ ORGANIC SUBSTANCES IN SI UNITS, by D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall. (Supplement No. 2 to Volume 11) 1982, 394	Abroad: \$15	30.00 56.00
Abroad: \$96 HEAT CAPACITIES AND ENTROPIES OF ORGANIC COMPOUNDS IN THE CONDENSED PHASE by E. S.		10.00 32.00
		20.00 44.00
M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. (Supplement No. 1 to Volume 14) 1985, 1896 pages, 2 volumes. Hard- cover. U.S. & Canada \$260 Abroad: \$312		40.00 58.00

JPCRD Special Issues

EVALUATED KINETIC DATA FOR COMBUSTION MOD-ELLING. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, Vol. 21 No. 3, pp. 411–734 (entire issue) (1992) EVALUATED KINETIC AND PHOTOCHEMICAL DATA FOR ATMOSPHERIC CHEMISTRY, SUPPLEMENT IV, R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and J. Troe, Vol. 21, No. 6, pp. 1125–1568 (entire issue) (1992)

\$70.00

ESTIMATION OF THE THERMODYNAMIC PROPER-TIES OF C-H-N-O-S-HALOGEN COMPOUNDS AT 298.15 K. Eugene S. Domalski and Elizabeth D. Hearing, Vol. 22, No. 4, pp. 805–1159 (entire issue) (1993)

\$70.00

\$80.00

SPECIAL REPRINT PACKAGES

JPCRD special reprint packages contain selected articles on specific subjects offered at a more economical package rate than aggregate individual purchase. Your specific requirements are available in a complete library of literature, at a fractional cost of purchasing previous journal issues.

The reprint packages are listed by subject area. The corresponding reprint numbers and titles are given in the Cumulative Reprints List. Build your information bank in this thorough and economical manner!

PACKAGE 1: ATOMIC PHYSICS			Package 4B (7 Parts) CRYOGENIC FLUIDS. Consisting of Reprint Nos. 295, 337, 281, 304, 305, 363, 395.	
TRA. Consisting of Reprints	ERGY LEVELS AND SPEC- Nos. 378, 324, 379, 385, 392,		If purchased individually: PACKAGE:	\$124.00 \$99.00
402, 405, 406, 421, 422, 43	13, 437, 443. If purchased individually: PACKAGE:	\$254.00 \$203.00	Package 4C (10 Parts) HYDROCARBONS AND DERIVA- TIVES. Consisting of Reprint Nos. 331, 362, 294, 350, 371, 332, 377, 397, 410, 425.	
Package 1B (8 Parts) COLLISION CROSS SECTIONS. Consisting of Reprint Nos. 380, 356, 299, 386, 387, 388,			If purchased individually: PACKAGE:	\$194.00 \$155.00
415. 442. If p	If purchased individually: PACKAGE:	\$92.00 \$73.00	PACKAGE 5: THERMOCHEMISTRY	
PACKAGE 2: MOLECULA			Package 5A (16 Parts) ORGANIC COMPOUNDS. Con- sisting of Reprint Nos. 265, 309, 292, 381, 382, 391, 393, 394, 404, 254, 197, 351, 397, 404, 412, 418.	
Package 2A (6 Parts) MICROWAVE SPECTRA. Consist- ing of Reprint Nos. 289, 198, 53, 130, 369, 436.			If purchased individually: PACKAGE:	\$272.00 \$217.00
	If purchased individually: PACKAGE:	\$135.00 \$108.00	Package 5B (6 Parts) INORGANIC COMPOUNDS. Con- sisting of Reprint Nos. 310, 375, 398, 237, 297, 183. If purchased individually:	\$76.00
Package 2B (6 Parts) OPTICAL SPECTRA. Consisting of Reprint Nos. 244, 270, 288, 93, 8, 441.			PACKAGE:	\$60.00
•	If purchased individually:	\$128.00	PACKAGE 6: PHYSICAL PROPERTIES	
	PACKAGE:	\$101.00	Package 6A (12 Parts) SOLUBILITY. Consisting of Re-	
Package 2C (10 Parts) MOLECULAR CONSTANTS. Con- sisting of Reprint Nos. 257, 342, 103, 129, 170, 403, 407,			print Nos. 296, 248, 193, 219, 246, 274, 166, 368, 416, 420, 427, 444. If purchased individually: PACKAGE:	\$143.00 \$114.00
419, 445, 448.	If purchased individually: PACKAGE:	\$194.00 \$155.00	Package 6B (3 Parts) VAPOR PRESSURE. Consisting of Reprint Nos. 140, 241, 326.	<i></i>
PACKAGE 3: CONDENSED MATTER PHYSICS			If purchased individually: PACKAGE:	\$32.00 \$25.00
•	TRICAL PROPERTIES. Con-			·
	259, 260, 221, 138, 139, 28,	#107.00	PACKAGE 7: CHEMICAL KINETICS	
84.	If purchased individually: PACKAGE:	\$127.00 <i>\$102.00</i>	Package 7A (7 Parts) ATMOSPHERIC CHEMISTRY. Con- sisting of Reprint Nos. 413, 159, 203, 264, 366, 246, 335. If purchased individually:	\$168.00
Package 3B (6 Parts) OPTICAL PROPERTIES. Consisting			PACKAGE:	\$134.00
of Reprint Nos. 240, 162, 8	1, 158, 282, 389. If purchased individually: PACKAGE:	\$89.00 \$71.00	Package 7B (10 Parts) COMBUSTION CHEMISTRY. Consisting of Reprint Nos. 302, 329, 344, 374, 345, 348, 409, 417, 428, 438. If purchased individually:	\$240.00
PACKAGE 4: THERMOPH	YSICS		PACKAGE:	\$192.00
Package 4A (8 Parts) WATER AND STEAM. Consisting of			PACKAGE 8: SURFACE CHARACTERIZATION	
Reprint Nos. 333, 370, 383, 290, 400, 338, 349, 424. If purchased individually:		\$104.00	Package 8A (3 Parts) Consisting of Reprint Nos. 336, 376, 434. If purchased individually	\$40.00

If purchased individually: \$104.00 PACKAGE: \$83.00

If purchased individually:

PACKAGE:

\$40.00

\$32.00

American Institute of Physics 500 Sunnyside Boulevard Woodbury, NY 11797-2999

Roland W. Schmitt	Chair, Governing Board
Marc H. Brodsky	Executive Director and CEO
Roderick M. Grant	Secretary
Arthur T. Bent	Treasurer and CFO
John S. Rigden	Director of Physics Programs
Darlene Carlin	Director of Publishing

The American Institute of Physics was founded in 1931; it is chartered as a membership corporation with leading societies in the fields of physics and astronomy as members. The Institute combines into one operating agency those functions which can best be done by the societies jointly. Its purpose is the advancement and diffusion of the knowledge of physics and its application to human welfare. About 100 000 physicists belong to its ten member societies: The American Physical Society, Optical Society of America, Acoustical Society of America, Society of Rheology, American Association of Physics Teachers, American Crystallographic Associa-

American Chemical Society

1155 Sixteenth Street, NW Washington, DC 20036-9976

Paul H. L. Walter	Chairman of the Board
Ned D. Heindel	President
John K. Crum	Executive Director
Brian A. Bernstein	Treasurer
D.H. Michael Bowen	Deputy Executive Director
	and Secretary
Robert J. Massie	Director, Chemical Abstracts Service
Robert H. Marks	Director, Publications Division*
Halley A. Merrell	Director, Membership Division
Sylvia A. Ware	Director, Education Division

tion, American Astronomical Society, American Association of Physicists in Medicine, American Vacuum Society, American Geophysical Union. In addition, there are 20 Affiliated Societies, 84 Corporate Associates, and 6500 members of the Society of Physics Students.

For itself and its member societies, AIP publishes 20 archival journals, 17 translated Soviet journals, a general interest journal, conference proceedings, handbooks, and bulletin-programs, as well as an integrated package of current awareness journals, magnetic tapes, and microfilm. AIP also serves the public by making available to the press and other channels of public information reliable communications on physics and astronomy and their progress; carries on extensive career planning and placement activities; encourages and assists in the documentation and study of the history and philosophy of recent physics; cooperates with local, national, and international organizations devoted to physics and the related sciences; and fosters the relations of the science of physics to other sciences and to the arts and industries.

The American Chemical Society was founded in 1876 as a scientific and educational society, and in 1937 was granted a national charter by an act of Congress. Its objectives include the advancement of chemistry, the promotion of research in science and industry, improvement of qualifications and usefulness of chemists, increased diffusion of chemical knowledge, and the promotion of scientific interest and inquiry.

ACS publishes 26 magazines, journals, and other scientific periodicals in addition to its participation in publication of the *Journal of Physical and Chemical Reference Data.* It also publishes books and other nonperiodical reports and operates the Chemical Abstracts Service, the key to the world's chemical literature. It pursues its objectives through its services to chemists and chemical engineers and to education, industry, and government.

*Inquiries regarding ACS participation in JPCRD should be directed to this division.

National Institute of Standards and Technology

U.S. Department of Commerce Gaithersburg, MD 20899-0001

U.S. Department of Commerce	Ronald H. Brown, Secretary
Technology Administration	Mary L. Good, Under Secretary for Technology
National Institute of Standards and Technology	Arati Prabhakar, Director

The National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards, was established by an act of Congress 3 March 1901. NIST works to strengthen U.S. industry's international competitiveness, advance science and engineering, and improve public health, safety, and the environment. With an annual budget of more than \$350 million and about 3100 staff members, NIST conducts science and engineering research in commercially important fields such as advanced materials, information systems, biotechnology, optoelectronics, computer-integrated manufacturing, and sensor technology.

NIST's laboratory research is designed to support development of critical emerging technologies and the new measurement methods and standards necessary to make them commercially viable. The ability of U.S.based industries to exploit these new technologies determines in large part the health of the U.S. economy.

Several new NIST programs are designed to help spur innovation at U.S. businesses through seed money for development of generic technologies; grants to states for support of technology transfer programs; and financial and technical assistance to help small and midsized companies adopt more efficient manufacturing methods.

Throughout its history, NIST has helped industry to develop high-quality products and processes by supplying standard reference materials and data; by continuously improving technologies for precision measurements of mass, time, length, voltage, radiation, and other units; and through active participation in voluntary standards-setting bodies.