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Foreword

The Journal of Physical and Chemical Reference Data is published jointly by the
American Institute of Physics and the American Chemical Society for the National
Institute of Standards and Technology. Its objective is to provide critically evaluated
physical and chemical property data, fully documented as to the original sources and
the criteria used for evaluation. One of the principal sources of material for the
journal is the National Standard Reference Data System (NSRDS), a program
coordinated by NIST for the purpose of promoting the compilation and critical
evaluation of property data.

The regular issues of the Journal of Physical and Chemical Reference Data are
published bimonthly and contain compilations and critical data reviews of moderate
length. Longer works, volumes of collected tables, and other material unsuited to a
periodical format have previously been published as Supplements to the Journal.
Beginning in 1989 the generic title of these works has been changed to Monograph,,
which reflects their character as independent publications. This volume, “Gas-
Phase Tropospheric Chemistry of Organic Compounds” by Roger Atkinson, is pre-
sented as Monograph No. 2 of the Journal of Physical and Chemical Reference Data .

Jean W. Gallagher, Editor
Joumnal of Physical and Chemical Reference Data






Gas-Phase Tropospheric Chemistry of
Organic Compounds

Roger Atkinson

Statewide Air Pollution Research Center and Department of Soil and Environmental Sciences,
University of California, Riverside, CA 92521

Received May 29, 1992; revised manuscript received December 2, 1992

The gas-phase reactions of selected classes of organic compounds (alkanes,
alkenes (including isoprene and monoterpenes), alkynes, aromatic hydrocarbons
and oxygen-containing organic compounds and their degradation products) under
tropospheric conditions are reviewed and evaluated. The recommendations of the
most recent [IUPAC evaluation [J. Phys. Chem. Ref. Data 21, 1125 (1992)] are used
for the < C; organic compounds, unless more recent data necessitates reevaluation.
In addition to the review of the gas-phase tropospheric chemistry of these classes of
organic compounds, the previous reviews and evaluations of Atkinson [J. Phys.
Chem. Ref. Data, Monograph 1 (1989)] for OH radical reactions, Atkinson [J. Phys.
Chem. Ref. Data 20, 459 (1991)] for NO; radical reactions and Atkinson and Carter
[Chem. Rev. 84, 437 (1984)] for Os reactions with organic compounds are updated.

Keywords: atmospheric chemistry; hydroxyl radical; nitrate radical; organic compounds; ozone; reaction
kinetics; reaction mechanisms.
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1. Introduction

Organic chemicals are introduced into the atmosphere
in large quantities from a variety of anthropogenic and
biogenic sources,'™ with estimated biogenic and anthro-
pogenic non-methane organic compound emissions of
~1000 million ton yr~' and ~100 million ton yr7',
respectively.* These emissions of organic compounds lead
to a complex series of chemical and physical transforma-
tion and removal processes in the atmosphere which
result in such effects as ozone formation in urban®® and
rural”® areas and in the global troposphere,’ stratospheric
ozone depletion,* long range transport of chemicals,"
acid deposition,'’ and global climate change.'” A large
amount of experimental data concerning the chemical
and physical processes of emitted organic compounds has
been obtained from laboratory and ambient air studies
over the past two decades, and there is now an under-
standing, at varying levels of detail, of the atmospheric
chemistry of the various classes of organic compounds
emitted into the troposphere.'*" Because of the com-
plexity of the physical and chemical processes involved
and the often non-linear response of the parameters of
interest to changes in the input(s), the use of computer
models incorporating the emissions, atmospheric chem-
istry and atmospheric transport processes is generally
necessary to elucidate the effects of emissions of chemi-
cals of anthropogenic and biogenic origin on the atmo-
sphere.

Chemical mechanisms of varying levels of detail have
been formulated and used as components of these com-
puter modeling studies. For the more complex non-
methane organic compounds, the chemical mechanisms
are often compared with experimental data obtained
from environmental chambers during their development
(see, for example, references 20-24) and hence under the
concentration conditions of these experimental data the
predictions of the chemical mechanisms are constrained
to be in reasonable agreement with experimental data.
However, these environmental chamber data are of
somewhat limited utility due to the difficulties of working
at the low reactant concentrations characteristic of the
ambient atmosphere and of monitoring product species
which are present in low concentrations and/or readily
deposit at the chamber walls. The accuracies of chemical
mechanisms used in the computer models designed to
simulate the troposphere and/or stratosphere are then
dependent on the accuracy of the individual rate con-
stants, reaction mechanisms and product distributions for
the multitude of elementary reactions which actually oc-
cur in the atmosphere.

It is evident that, together with experimental labora-
tory, ambient air and theoretical studies of the kinetics,
mechanisms and products of the atmospheric reactions of
organic compounds, there must also be an ongoing paral-
lel effort to critically review and evaluate these data.
These evaluation efforts serve to present the current
status of knowledge of atmospheric chemistry, in part for
modelers, and to point out the areas of uncertainty for

designing future experimental and/or theoretical studies.
The reactions of interest for modeling the chemistry
occurring in the stratosphere have been reviewed and
evaluated for several years by the National Atmospheric
and Space Administration (NASA) Panel for Data Eval-
uation [with the most recent evaluation being Number 10,
published in 1992"] and by the IUPAC (formerly
CODATA) Subcommittee on Gas Kinetic Data Evalua-
tion for Atmospheric Chemistry (with the most recent
evaluation being Supplement IV'). While these two data
evaluation panels were originally concerned largely with
stratospheric chemistry, due to the potential for strato-
spheric ozone depletion by inputs of ClIO, and NO; into
the stratosphere, tropospheric chemistry is now being
included to an increasing degree in both evaluations
through the tropospheric chemistry of the hydrochlo-
rofluorocarbons (HCFCs) and hydrofluorocarbons
(HFCs) proposed as alternatives to the chlorofluorocar-
bons and, especially in the more recent IUPAC evalua-
tions,'** by the inclusion of the reactions of < C; alkanes,
alkenes, alkynes, aldehydes, ketones, alcohols, carboxylic
acids and organosulfur species. The gas-phase atmo-
spheric reactions of the HFCs and HCFCs have been
dealt with in detail recently,"'®" and the atmospheric
chemistry of reduced organosulfur compounds has been
reviewed by Tyndall and Ravishankara."”

However, the troposphere contains at least several
hundred organic compounds, with the vast majority of
them being = C, species, and there is an obvious need for
the review and evaluation of the chemical reactions which
occur in the troposphere for these chemicals. To date,
several critical reviews and evaluations of the kinetics and
mechanisms of the gas-phase reactions of organic com-
pounds with OH radicals,”® NO; radicals'*'® and Q¥
have been carried out, with the most recent of these being
those of Atkinson and Carter® for O; reactions and
Atkinson'*? for OH and NOj; radical reactions. In addi-
tion to these reviews of specific (and important) reaction
pathways, the tropospheric chemistry of selected organic
compounds has been reviewed by Atkinson and Lloyd,*
Atkinson®” and Roberts.’ The review of Atkinson and
Lloyd® focused on the tropospheric reactions of eight
hydrocarbons (n-butane, 2,3-dimethylbutane, ethene,
propene, 1-butene, trans-2-butene, toluene and
m-xylene) and their degradation products, while that of
Atkinson® dealt in a more global sense with the tropo-
spheric chemistry of the alkanes, alkenes, alkynes,
oxygenates (including those formed during the atmo-
spheric degradations of the hydrocarbon species), nitro-
gen-containing organics, and aromatic hydrocarbons.

The present article serves to update and extend the
Atkinson® review to take into account more recent data.
In the previous article,” the reactions of alkyl, alkyl
peroxy and alkoxy radicals, and their substituted analogs,
were dealt with as single entities, regardless of the chem-
ical structure of the alkyl radical, alkyl peroxy radical, or
alkoxy radical. A somewhat different approach than used
by Atkinson" is employed here, since recent data for
organic radicals indicate that there are significant differ-
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ences between the reaction pathways occurring in the tro-
posphere, depending on the structures of the radicals.

The reactions of organic compounds under tropo-
spheric conditions are dealt with in Sec. 2:

2.1. Alkanes

2.2. Alkenes

2.3.  Alkynes

2.4. Aromatic hydrocarbons and aromatic com-
pounds formed during the tropospheric photo-
oxidations of the aromatic hydrocarbons.

2.5. Oxygen-containing organic compounds, includ-
ing those formed as photooxidation products of
the alkanes, alkenes, alkynes and aromatic
hydrocarbons.

2.6. Nitrogen-containing organic compounds formed
as photooxidation products of the alkanes and
alkenes.

Only gas-phase reactions are discussed, since while
highly important under many tropospheric conditions,
the reactions occurring in the particle and/or aqueous
phase (for example, in fog, cloud and rain droplets), on
surfaces (heterogeneous reactions) and gas-to-particle
conversion (see, for example, Refs. 32-38) are beyond
the scope of the present article. As in the previous
review,” the most recent NASA' and, especially,
IUPAC" evaluations are used for the < C; reactions,
generally without reevaluation or detailed discussion.
The present article is in essence an extension of the
IUPAC evaluation' to more complex organic compounds
characteristic of the lower troposphere and, in particular,
polluted air masses. Thus the present article and the most
recent IUPAC evaluation' are complementary and both
are necessary for an in-depth coverage of the chemistry of
organic compounds in the troposphere. In addition, the
previous articles'*”% dealing with the kinetics and mech-
anisms of the gas-phase reactions of OH and NOj; radi-
cals and O3 with organic compounds have been updated,
with the data reported since these reviews'®?*? being
tabulated, discussed and evaluated in Secs. 3, 4 and 5. In
these sections, discussion is limited to those organic com-
pounds for which new information has become available
since these previous review articles'*®® were prepared.
Previous data are not included in the tables of rate con-
stants, and hence the previous reviews'**? must be con-
sulted for rate constant and mechanistic information
available and used at the times of their finalization. The
literature through mid-1992 has been included in this
article. (See Addendum, Sec. 6 for data through early/
mid-1993.)

Rate constants k determined as a function of tempera-
ture are generally cited using the Arrhenius expression, k
= Ae 87, where A is the Arrhenius pre-exponential fac-
tor and B is in K. In some cases rate constants have been
obtained over extended temperature ranges and the sim-
ple Arrhenius expression, as expected, does not hold,
with curvature in the Arrhenius plots being observed.” In
these cases, a three-parameter equation, k = CT"e~"7
has been used,” generally with n = 2 (k = CT%°").
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The equation, k = CT"e~?7, can be transformed into the
Arrhenius expression, k = Ae~%7, centered at a temper-
ature T, withA = Ce"T"and B = D + nT.

Reactions which are in the fall-off region between sec-
ond- and third-order kinetics or between first- and sec-
ond-order kinetics are dealt with by using the Troe
fall-off expression,* with

1+ M

k = <_’&>[ML_) FiL+ ook MYk -1 )

where ko is the limiting low-pressure rate constant, kis
the limiting high-pressure rate constant, M is the concen-
tration of the third-body gas (generally air in this article)
and F is the broadening coefficient. In general, the rate
constants ky and k.have T" temperature dependencies.
The temperature dependence of F is given by F = ¢~ "™
for temperatures appropriate to the troposphere, where
T* is a constant for a given reaction.””* All rate constants
are given in cm molecule s units, and pressure are given
in Torr (1 Torr = 133.3 Pa).
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2. Gas-Phase Tropospheric Chemistry
of Organic Compounds

2.1. Alkanes

The atmospheric chemistry of the alkanes has been
reviewed and discussed previously,"? and the kinetics and
mechanisms of the reactions with OH and NOj radicals
and with O; have been reviewed and evaluated*® and
these reviews and evaluations are updated in Secs. 3, 4,
and 5, respectively. The gas-phase reactions of the alka-
nes with O; are of negligible importance as an atmo-
spheric loss process, since the available data® show that
the room temperature rate constants for these reactions
are <10~ cm® molecule ™' s™'. Under atmospheric con-
ditions, the potential loss processes for the alkanes in-
volve gas-phase reactions with OH and NOs radicals.

OH Radical Reactions

The kinetics and mechanisms of the reactions of the
OH radical with alkanes have been reviewed and evalu-

ated by Atkinson,’® and that evaluation is updated in
Sec.3.1. Rate constants have been determined over
significant temperature ranges for a number of alkanes
and, as expected from theoretical considerations, the
Arrhenius plots exhibit curvature. Accordingly, the three-
parameter expression k = C T2 e~ 7 was generally used?
(see also Sec. 3.1). The 298 K rate constants and the
parameters C and D recommended [from Ref. 3 and Sec.
3.1] are given in Table 1 for alkanes of relevance to tropo-
spheric chemistry. Room temperature rate constants for
other alkanes for which recommendations have not been
given (generally due to only single studies being carried
out) are also given in Table 1.

These OH radical reactions proceed via H-atom ab-
straction from the C-H bonds

OH + RH - H, O + R

to generate an alkyl radical and, as discussed previ-
ously,*® the rate constants for these OH radical reactions
with alkanes can be fit to within a factor of ~2 over the
temperature range 250-1000 K from consideration of the
CHi-, -CH—- and > CH-~ groups in the alkane, and the
neighboring substituent groups. Thus

k(CH3=X) = Kprim F(X)
k(X-CHyr-Y) = ke F(X) F(Y)
and
Y
k(X-CH< ) = ken F(X) F(Y) F(Z)
z

where Kprim, ksec and ki are the OH radical rate constants
per —CH;, -CH>- and > CH- group, respectively, for X =
Y = Z = -CHj; as the standard substituent group, and
F(X), F(Y) and F(Z) are the substituent factors for X, Y
and Z substituent groups. As derived by Atkinson,’

kpim = 4.47 x 107" T? ¢ 3% cm® molecule ™! 577,
kee = 4.32 X 107" T2 &3 cm® molecule ™! 57},
ke = 1.89 x 107" T2 """ ¢m?® molecule ™! 57!,

F(-CHs) = 100, and F(-CHy-) = F(>CH-) =
F(>C<) = ™. For cycloalkanes, the effects of ring
strain are taken into account by means of ring factors.*®
This estimation technique not only allows the calculation
of OH radical reaction rate constants for alkanes for
which experimental data do not exist, but also allows the
initially formed isomeric alkyl radical distribution to be
calculated for a given alkane.’

NO; Radical Reactions

The NOs; radical reacts with the alkanes with rate
constants at room temperature in the 10~" to 107 cm®
molecule™ s~' range (Ref. 4 and Sec. 4.1). The
recommended 298 K rate constants and temperature
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TABLE 1. Rate constants k at 298 K and parameters C and D in k = CT?e ~P'T for the reaction of OH radicals with alkanes (from Ref. 3 and Sec. 3.1)

10'? x k (cm? 10" x C (cm? D
Alkane molecule~! s~') molecule ™! s7) (K)

Methane 0.00686 7.44 1361
Ethane 0.257 15.1 492
Propane 1.15 15.0 44
n-Butane 2.54 15.1 -190
2-Methylpropane 2.33 11.1 —-256
n-Pentane 394 21.0 —223
2-Methylbutane 39
2,2-Dimethylpropane 0.849 17.9 187
n-Hexane 5.61
2-Methylpentane 5.6
3-Methylpentane 5.7
2,2-Dimethylbutane 2.32 a a
2,3-Dimethylbutane 5.99 12.1 =512
n-Heptane 7.15
2,2-Dimethylpentane 34
2,4-Dimethylpentane 5.2
2,2,3-Trimethylbutane 423 9.04 —495
n-Octane 8.68 b b
2,2-Dimethylhexane 4.8
2,2,4-Trimethylpentane 3.59 20.6 -201
2,3,4-Trimethylpentane 7.0
2,2,3,3-Tetramethylbutane 1.06 19.0 139
n-Nonane 10.2
2-Methyloctane 10.1
4-Methyloctane 9.7
2,3,5-Trimethylhexane 7.9
n-Decane 11.6
n-Undecane 13.2
n-Dodecane 14.2
n-Tridecane 16
n-Tetradecane 19
n-Pentadecane 22
n-Hexadecane 25
Cyclopropane 0.084
Cyclobutane 1.5
Cyclopentane 5.08 25.5 ~241
Cyclohexane 7.49 26.6 -344
Cycloheptane 12.5
Methylcyclohexane 10.4
cis- and 20

trans -Bicyclo[4.4.0]decane

*Arrhenius expression of k
®Arrhenius expression of k

dependent parameters, taken from Ref. 4 and Sec. 4.1,
are given in Table 2, which also includes the room tem-
perature rate constants for alkanes for which only a single
study has been carried out and for which no recommen-
dations are given. Under atmospheric conditions, the
nighttime reactions of the alkanes with the NO; radical
can be calculated to be typically two orders of magnitude
less important as an atmospheric loss process than are
the daytime OH radical reactions (although the relative
importance of the NOjs radical reactions may vary widely,
depending on the OH and NO; radical concentrations®).

Similar to the OH radical reactions, these NO; radical
reactions proceed via H-atom abstraction from the C-H
bonds

J. Phys. Chem. Ref. Data, Monograph No. 2

2.84 x 10~!"! ¢=""T cm? molecule ! s~! recommended (245-330 K).
3.15 x 10! =T cm® molecule ™! s~! recommended (300-500 K).

NO; + RH - HONO; + R

For alkanes for which no experimental data presently
exist, the overall 298 K rate constants and the distribution
of initially formed alkyl radical isomers can be calculated
by the use of ~CHs, -CH;~ and > CH- group rate con-
stants and substituent factors, as discussed above for the
corresponding OH radical reactions. Atkinson* derived
group rate constants (in cm® molecule™ s~! units) at
298 K Ofkprim = 7-0 X 10-19, ksec = 1-5 X 10_17, and kten
= 8.2 x 107", and substituent factors at 298 K of F (-
CH;) = 1.00 and F(-CH;~) = F(>CH-) = F(>C<)
= 1.5, and these can be used to calculate the room tem-
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TABLE 2. Rate constants k at 298 K and temperature dependent parameters, k = Ae~57, for the reaction of NO; radicals with alkanes (from Ref. 4

and Sec. 4.1)
102 x A4 107 x k
Alkane (cm® molecule ! s~1) B (K) (cm® molecule~! s~1)

Methane <01
Ethane 0.14*
Propane 1.7
n-Butane 2.76 3279 4.59
2-Methylpropane 3.05 3060 10.6
n-Pentane 8.1
2-Methylbutane 16
n-Hexane 10.5
2,3-Dimethylbutane 43
Cyclohexane 13.5
n-Heptane 14.5
n-Octane 18.2
n-Nonane 24.1

2Estimated from group rate constants, see text.

perature rate constants for the NO; radical reactions with
the alkanes and the distribution of alkyl radicals formed.

Reactions of Alkyl (R) Radicals

The available kinetic and mechanistic data show that
under tropospheric conditions the alkyl radicals react
with O; to form an alkyl peroxy radical.

R+ O, M RO;

The room temperature kinetic data presently available
for O, addition to alkyl radicals are given in Table 3. For
methyl and ethyl radicals at room temperature, these re-
actions are in the fall-off region at and below atmospheric
pressure, and the [IUPAC recommended values of ko, k-
and F for these O, reactions are:’ methyl, k&, = 1.0 X
107* (7/300)~** cm® molecule~* s™! (200-300 K), k. =
2.2 x 1072 (T/300) cm® molecule ™' s~! (200-300 K) and
F = 0.27 at 298 K; ethyl, k, = 5.9 x 10~ (7/300) ** cm®
molecule™? s~' (200-300 K), k- = 7.8 x 107" cm’
molecule ™ s™! (200300 K) and F = 0.54 at 298 K. In
addition, Xi et al.'* have determined a rate constant of k.
= 2.1 x 107 (T/300)"*' cm® molecule™! s~! for the
reaction of O, with the 2,2-dimethyl-1-propyl (neopentyl)
radical over the temperature range 266-374 K.

At elevated temperatures, these reactions of alkyl rad-
icals with O; have been assumed to also occur by an H-
atom abstraction pathway, for example

‘C;Hs + O, —» CH,=CH; + HO;

However, this is now recognized not to be a parallel reac-
tion route, but to occur from the activated RO3 radical®”

R'+ O; 2 [RO2]* - HO; + alkene
| M
RO3

At the high pressure limit, peroxy radical formation is
therefore the sole reaction process. At 760 Torr and
298 K, the formation yield of C;Hs + HO; from the reac-
tion of the ethyl radical with O, is ~0.05%.°

Hence, for the alkyl radicals studied to date, under at-
mospheric conditions the reactions with O proceed via
addition to form a peroxy radical, with a room tempera-
ture rate constant of 210~"2 cm® molecule ™! s™! at atmo-
spheric pressure. For the smaller alkyl radicals these
reactions are in the fall-off regime between second- and
third-order kinetics, but are reasonably close to the high-
pressure rate constant at 760 Torr of air. Under atmo-
spheric conditions, these reactions with O, are the sole
loss process of these alkyl radicals, and other reactions
need not be considered.

Alkyl Peroxy (RO:) Radicals

As discussed above, these radicals are formed from the
addition of O; to the alkyl radicals. Under tropospheric
conditions, RO radicals react with NO (by two path-
ways),

— RO+ NOz

RO; + NO —

M, RONO,
with HO, radicals,
RO; + HO; - ROOH + O,

with ROj radicals (either self-reaction or reaction with
other alkyl peroxy radicals),

RO3 + ROj; —products

and with NO..

J. Phys. Chem. Ref. Data, Monograph No. 2
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TaBLE 3. High-pressure rate constants k., for the addition reactions of alkyl radicals (R) with O, at around room temperature

102 X ko
R (cm® molecule~! s~ 1) T (K) Reference
Methyl 2.2%%% 298 Atkinson et al .’
1.0° 298
Ethyl 7.8*4$ 298 Atkinson et al ?
7.0 298
1-Propyl 8*3 298 Atkinson et al ®
2-Propyl 1121% 298 Atkinson et al ?
1-Buty! 75 + 14 300 Lenhardt et al **
2-Butyl 16.6 = 2.2 300 Lenhardt et al M
2-Methyl-2-propyl 234 x 39 300 Lenhardt et al .1
2-Methyl-1-propyl 29 =07 298 = 3 Wu and Bayes'!
2,2-Dimethyl-1-propyl 24 =04 293 + 1 Xi et al .'?
Cyclopentyl 173 293 Wu and Bayes!!
Cyclohexyl 14 =2 298 = 3 Wu and Bayes'!

*Value at 760 Torr total pressure calculated from the fall-off expression.

RO; + NO; M RO;NO;

The reaction pathways which occur depend on the NO to
HO; and/or RO: radical concentration ratios, and in the
troposphere the reaction with NO is expected to domi-
nate for NO concentrations =7 X 10® molecule cm 3,413
The reaction of ROj radicals with NO; to form alkyl per-
oxynitrates is generally unimportant under lower tropo-
spheric conditions due to the rapid thermal
decomposition of the alkyl peroxynitrates back to reac-
tants (see Sec. 2.6).

Reaction with NO

The recommended NASA'" and IUPAC’ room tem-
perature rate constants for the reactions of alkyl peroxy
radicals with NO and the absolute literature data of
Peeters et al ' and Anastasi et al " for the (CH;),CHO;"
and (CH3);CO;'”" radicals are given in Table 4. Both the
NASA'S and IUPAC’ evaluations recommend a rate con-
stant for the reaction of CH;O; radicals with NO of
k(CH;0:; + NO) = 42 x 10712 08 = 180T ¢om3
molecule ™' s~!, with k (CH;0; + NO) = 7.6 x 10~"? cm’
molecule ™! s™! at 298 K. The NASA and IUPAC recom-
mended rate constants for the reaction of the C;HsO3
radical with NO*'® are both based on the measurement of
Plumb etal.” Although no experimental temperature-
dependent data are available, the NASA evaluation'® rec-
ommends a temperature independent rate constant for
the reaction of the C;H;sOj; radical with NO. Further-
more, the ITUPAC’ recommendations for the reactions of
the CH;CH,CH,03 and (CHj;);CHO:; radicals with NO
assume that the overall rate constants for these reactions
are identical to that for the corresponding C;HsO5 radical
reaction. Recently, however, Peeters et al.'” have mea-
sured significantly lower rate constants for the reactions
of the (CH;):CHO3 and (CH3);COj radicals with NO at
290 K of (5.0 = 1.2) x 107 cm® molecule™' s~! and (4.0
%= 1.1) x 1072 cm® molecule ™' 5!, respectively. Unfor-
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tunately, no measurements for the CH;03 or C;HsO; rad-
ical reactions were carried out by Peeters etal.'’ for
comparison with the previous literature data.

Hence, it is recommended that the rate constant for
the reaction of the CH;0j3 radical with NO is given by

k(CH;0; + NO) = 4.2 x 107" "™ cm® molecule ™! s~!
= 7.6 x 107" cm® molecule™! s~! at 298 K

and that the overall rate constants for the higher (= ()
alkyl peroxy radicals with NO are identical, with

k(RO; + NO) = 49 x 107" "7 ¢m® molecule ™! s~!
= 89 x 107" c¢m® molecule™! s~! at 298 K.

The reaction of CH3;Oz with NO has been shown to pro-
ceed primarily by*!%22!

CH;03; + NO — CH;0O' + NO,

and Plumb et al."” have shown from direct measurements
that the reaction of C;H;sO; radicals with NO forms NO;
with a yield of =0.80.

However, for the larger alkyl peroxy radicals, Darnall
et al.,”> Takagi et al ., Atkinson et al .***" and Harris and
Kerr® have shown that the reaction pathway to form the
alkyl nitrate becomes important. At room temperature
and atmospheric pressure, the product data of Atkinson
etal *? and Harris and Kerr® show that for the sec-
ondary alkyl peroxy radicals the rate constant ratio k./(ka
+ kv), where k. and k. are the rate constants for the re-
action pathways (a) and (b), respectively,

M
— > RONO, (@)

RO; + NO—

—> RO +NO, (b)
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TABLE 4. Absolute room temperature rate constants for the reactions of RO, radicals with NO

102 x k
RO, (cm® molecule™! s™1) T (K) Reference

CH;0, 7.6 298 DeMore et al .;'¢
Atkinson et al ?
CH;0; 8.9 298 DeMore et al ;16
Atkinson et al ?

CH,CH,CH,0, 8.9° 298 Atkinson et al ®
(CH;),CHO, 8.9 298 Atkinson et al

50 £ 1.2 290 Peeters et al .7
(CH5);:CO, > 1 298 Anastasi e al '

40 = 1.1 290 Peeters et al V7

*At 760 Torr total pressure (see text).

increases monotonically with the carbon number of the
ROjradical. Furthermore, for a given alkyl peroxy radical
the rate constant ratio k./(k. + kb) is pressure- and tem-
perature-dependent, increasing with increasing pressure
and with decreasing temperature.”*"*

The pressure and temperature-dependent rate con-
stant ratios ku/ky for secondary alkyl peroxy radicals®*?’
are fit by the fall-off expression®

ke [ Y [M](T/300)™
k‘.,‘(l Y M0 )F ’ a
Y™ (T/300) "~

where

- e[RRI

and Y3¥ = a e, n is the number of carbon atoms in the
alkyl peroxy radical, and a and B are constants. The most
recent evaluation® of the experimental data of Atkinson
etal *% leads to Y& = 0.826, @ = 1.94 x 107 cm’®
molecule™, 8 = 097, m, = 0, m. = 8.1 and F = 0.411.
The experimental data of Harris and Kerr® for the heptyl
nitrates formed from the OH radical reaction with n -hep-
tane at 730 Torr total pressure over the temperature
range 253-325 K are in good agreement with predictions
from this equation.

Although the rate constant ratios k./k, at room temper-
ature and atmospheric pressure for secondary RO; radi-
cals depend primarily on the number of carbon atoms in
the RO3 molecule, the corresponding rate constant ratios
for primary and tertiary RO; radicals are significantly
lower, by a factor of ~2.5 for primary and a factor of
~3.3 for tertiary alkyl peroxy radicals.”* Accordingly,

(ka/kb)primary =~ 0.40 (ka/kb)secondary
and
(ka/kb)tertiary = 0.3 (ka/kb)secondary-

It should be noted that the use of the above equations to
calculate rate constant ratios k./ks is solely applicable to

alkyl peroxy radicals. Thus, although no definitive data
exist, computer modeling data suggest' that the rate con-
stant ratios for 8-hydroxyalkyl peroxy radicals (for exam-
ple, the RCH(OH)CH.CH,CH(OO)R, radical) are much
lower than those for the corresponding alkyl peroxy rad-
icals.

These reactions of ROj radicals with NO are postu-
lated® to occur by

RO, + NO —> ROONO" — RO +NO,

’
RO\ l . M
N — RONO," — RONO,

and it is therefore expected that the overall rate constant
is independent of total pressure, but that the rate con-
stant ratio k./ks is pressure (and temperature) dependent,
as observed.

Reaction with NO,

The reactions of alkyl peroxy radicals with NO; all pro-
ceed via combination to yield the corresponding perox-
ynitrates®

RO; + NO, M ROONO,

The IUPAC recommendations’ for the values of ko, k«, F
and the rate constant, k, at 298 K and 760 Torr total pres-
sure of air for the reactions of NO, with CH;O; and
C;H;0, radicals are given in Table 5. The rate constant at
298 K and 760 Torr total pressure of air calculated from
the TUPAC recommendation for the reaction of the
CH;03 radical with NO, (Table 5) is in excellent agree-
ment with that of (4.4 = 0.4) x 1072 cm® molecule ™! s™!
measured by Bridier et al.* at 298 + 1 K and 760 Torr
total pressure of air. These reactions are in the fall-off

J. Phys. Chem. Ref. Data, Monoaraph No. 2
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TaBLE 5. Recommended? rate constant parameters k,, k. and F for the gas-phase reactions of RO, radicals with NO,, together with calculated rate

constants at 298 K and 760 Torr total pressure

ko ke 102 x k
RO; (cm® molecule =2 s™1) (cm® molecule ! s~1) F(298 K) (298 K, 760 Torr)
CH,0; 2.5 x 1073%(T/300) %5 7.5 x 10~12 0.4 4.1
C;H;0; 1.3 x 10~2(T/300) %2 8.8 x 10-12 0.31 6.1

*From Atkinson et al.’

regime between second- and third-order kinetics at and
below atmospheric pressure at room temperature, and
this is in agreement with the thermal decomposition data
for the corresponding peroxynitrates CH;OONO, and
C,HsOONO,.’

Absolute rate constants have also been obtained at
room temperature for the reactions of NO, with
(CH3),CHO3" and (CH,);CO3"*® radicals, of (5.65 = 0.17)
X 1072 cm® molecule™! s7! and =5 x 107" cm?
molecule ™' s, respectively. The rate constant of Adachi
and Basco® for the (CH;),CHO; radicals is anticipated to
be erroneously low, by analogy with the rate constant of
Adachi and Basco® for reaction of the C;HsO; radical
with NO,, for which they measured a rate constant of
(1.25 = 0.07) x 1072 cm® molecule ™' s~ at room tem-
perature, independent of total pressure over the range
44-676 Torr.*

Based upon the data for the CH;03 and C;H;Ox> radi-
cals, it is recommended that the limiting high-pressure
rate constants for the = C, alkyl peroxy radicals are iden-
tical to that for the C;H;O radical,

k(RO3 + NO;) = 9 x 1072 cm® molecule™' s™',

approximately independent of temperature over the
range ~250-350 K. This recommendation is consistent
with the kinetic data of Zabel et al.* for the thermal de-
compositions of a series of alkyl peroxynitrates
(ROONOz, where R = CH3, C2H5, C4H9, C(,Hl:; and
CsHy7) at 253 K and 600 Torr total pressure of Na, which
showed that the thermal decomposition rates for the
C-C; alkyl peroxynitrates were reasonably similar. In
particular, the thermal decomposition rates for the Cs~Cs
alkyl peroxynitrates were within +30% of the calculated
high pressure thermal decomposition rate of
C;H;O00NO,.* The pressures at which these RO, +
NO; reactions will exhibit kinetic fall-off behavior from
the second- to third-order regime will decrease as the size
of the RO; radical increases, and it is expected that at
room temperature and 760 Torr total pressure the =Cs
alkyl peroxy radical reactions are close to the limiting
high-pressure region. The thermal decomposition reac-
tions of the alkyl peroxynitrates are discussed in Sec. 2.6.

Reaction with HO, Radicals

Relatively few data exist for the reactions of HO,
radicals with alkyl peroxy radicals. Absolute rate con-
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stants have been determined only for the CH;05, C;H;05,
cyclopentylperoxy and cyclohexylperoxy radicals. The
Arrhenius expressions recommended by the TUPAC
panel for the CH303 and C,H;0; reactions are’; k (CH;03
+ HOy) = 3.8 x 1077 ™7 cm® molecule ™! s~ (5.2 X
107" cm® molecule™! s7! at 298 K); and k(C;H;03 +
HO;) = 6.5 x 1077 %7 ¢m’ molecule™! s~! (5.8 x
1072 cm® molecule ™' s™! at 298 K). For the reactions of
the cyclopentylperoxy and cyclohexylperoxy radicals with
the HO; radical, Rowley et al ** have measured rate con-
stants over the temperature range 249-364 K of (2.1 =
1.3) x 1071 e = BT cm3 molecule ™ s7! and (2.6 *
1.2) x 1073 (% = 1297 cmd molecule ™! s, respectively.
At 298 K, the rate constants for these two reactions are
both (1.7-1.8) x 107" ¢cm® molecule™! s~'*

Based upon the recommendations’ for the CH303 and
C,H;0; reactions and the rate constants for the cy-
clopentylperoxy and cyclohexylperoxy radicals,* a rate
constant at 298 K for the reactions of HO; radicals with
ROy radicals of

k(HO; + RO3) = 1.0 x 107" cm® molecule ™! 57!

is indicated, with a likely overall uncertainty of a factor of
2. The temperature dependencies of the reactions stud-
ied to date are negative. A mean value of B = —1000 K
is chosen in the expression k = 4 e~ to yield the recom-
mendation of

k(HO, + RO3) = 3.5 x 107" '™ cm’® molecule ™' s~

The IUPAC recommendations® should be used for the re-
actions of the CH30; and C;H;0O5 radicals with HO,. The
reaction of the HOCH,CH,OO' radical with the HO, rad-
ical also has a rate constant of ~1 x 107" cm®
molecule ™' s™! at room temperature (see Sec. 2.2).

The reactions of the CH;0,, C;H;0,, cyclopentylper-
oxy and cyclohexylperoxy radicals with the HO, radical
have been shown to proceed by H-atom abstraction to
form the hydroperoxide***’

RO& + H02 i d ROzH + 02
Reaction with RO; Radicals
Numerous studies of the self-reactions of ROj radicals

have been carried out.*** These reactions can proceed by
the three pathways
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2 RiR,CHO; - 2 R;R;CHO' + O, (a)
2 R{R,CHO; —» R;R;CHOH + R,R,CO + 0, (b)
2 RiR,CHO; —» R;R,CHOOCHR,R;+ O, (C)

with pathway (b) not being accessible for tertiary RO;
radicals. At around room temperature, product studies of
the self-reactions of CHi0,** CH;03** and
(CH3);CO; radicals® show no evidence for the occur-
rence of reaction pathway (c). In the following discussion,
pathway (c) is taken to be of negligible importance and
only pathways (a) and (b) are assumed to occur.

The TUPAC panel recommendations’® for the overall
rate constants (k = k., + kv) and the rate constant ratio
ki/k for the <C; RO; radicals are given in Table 6,
together with the literature data for the =C, RO; radi-
cals. For the self-reaction of the tert -butyl peroxy radical,
the rate constants reported by Anastasi et al.,'* Kirsch
etal.® and Lightfoot et al.*® at room temperature and
above are in good agreement.* Because of the wider tem-
perature range studied, the Arrhenius expression of
Lightfoot et al.* is preferred. Although an Arrhenius
expression is given in Table 6 for the self-reaction of
neopentyl peroxy radicals,* the rate constants measured
by Lightfoot et al.*é exhibit non-Arrhenius behavior (note
that the three parameter expression of k = 3.02 x 107"
(7/298)°* &7 cm® molecule™! s~! cited by Lightfoot
et al .* does not fit their data, and the expression k = 3.02

x 107" (T/298)*% €T cm® molecule™ s~! appears to
be a better fit). The overall rate constant k and branching
ratio k./k determined by Wallington et al.* at 297 K for
the self-reaction of neopentyl peroxy radicals are in excel-
lent agreement with the more extensive measurements of
Lightfoot et al *

The Arrhenius expressions for k./k are only applicable
over the cited temperature ranges, since over extended
temperature ranges the calculated values exceed unity.
The more correct temperature-dependent format uses
the ratio kJko (see, for example, Carter and Atkinson®
for alkyl nitrate formation from the RO + NO reac-
tions), and Lightfoot et al.*® have derived the rate con-
stant ratio k./ky, = 197 e~ %% =97 for the self-reaction of
neopentyl peroxy radicals over the temperature range
248-373 K.

For all of the alkyl peroxy radicals for which data are
available and for which both reaction pathways (a) and
(b) are allowed, the reaction pathway (a) to yield the
alkoxy radicals increases in importance as the tempera-
ture increases (Table 6 and Lightfoot et al .*), with this
pathway accounting for 30-60% of the overall reaction at
298 K. For the self-recombination reaction of CH;053 rad-
icals, Kan and Calvert* and Kurylo et al.’! have shown
that, in contrast to the combination reaction of HO, rad-
icals,” H.O vapor has no effect on the measured room
temperature rate constant.

In addition to these RO; self-combination reaction
studies, rate constants have been obtained for the reac-

TABLE 6. Rate constants, k, at 298 K and temperature-dependent parameters, k = A e =27, for the gas-phase combination reactions of RO, radicals

102 x A B 102 x k (298 K)

RO, + RO, (cm? molecule™! s~')  (K) (cm~3 molecule~'s~") k./k Reference
CH,0, + CH;0, 0.11 —-365 = 200 37443 5.4 e~#0T Atkinson et al <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>