Journal of
Physical and
Chemical
Reference Data

Volume 17, 1988 Supplement No. 2

Thermodynamic and Transport Properties for Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data

George J. Janz

Molten Salts Data Center, Department of Chemistry, School of Science, Rensselaer Polytechnic Institute, Troy, New York 12181

Published by the American Chemical Society and the American Institute of Physics for the National Bureau of Standards

Thermodynamic and Transport
Properties for Molten Salts:
Correlation Equations for Critically
Evaluated Density, Surface Tension,
Electrical Conductance, and
Viscosity Data

Journal of

Physical and Chemical Reference Data

David R. Lide, Jr., Editor

The Journal of Physical and Chemical Reference Data (ISSN 0047-2689) is published quarterly by the American Chemical Society (1155 16th St., N. W., Washington, DC 20036-9976) and the American Institute of Physics (335 E. 45th St., New York, NY 10017-3483) for the National Bureau of Standards. Second-class postage paid at Washington, DC and additional mailing offices. POSTMASTER: Send address changes to Journal of Physical and Chemical Reference Data, Membership and Subscription Services, P. O. Box 3337, Columbus, Ohio 43210.

The objective of the Journal is to provide critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation. Critical reviews of measurement techniques, whose aim is to assess the accuracy of available data in a given technical area, are also included. The Journal is not intended as a publication outlet for original experimental measurements such as those that are normally reported in the primary research literature, nor for review articles of a descriptive or primarily theoretical nature.

Supplements to the Journal are published at irregular intervals and are not included in subscriptions to the Journal. They contain compilations which are too lengthy for a journal format.

The Editor welcomes appropriate manuscripts for consideration by the Editorial Board. Potential contributors who are interested in preparing a compilation are invited to submit an outline of the nature and scope of the proposed compilation, with criteria for evaluation of the data and other pertinent factors, to:

David R. Lide, Jr., Editor J. Phys. Chem. Ref. Data National Bureau of Standards Gaithersburg, MD 20899

One source of contributions to the Journal is The National Standard Reference Data System (NSRDS), which was established in 1963 as a means of coordinating on a national scale the production and dissemination of critically evaluated reference data in the physical sciences. Under the Standard Reference Data Act (Public Law 90-396) the National Bureau of Standards of the U.S. Department of Commerce has the primary responsibility in the Federal Government for providing reliable scientific and technical reference data. The Office of Standard Reference Data of NBS coordinates a complex of data evaluation centers, located in university, industrial, and other Government laboratories as well as within the National Bureau of Standards, which are engaged in the compilation and critical evaluation of numerical data on physical and chemical properties retrieved from the world scientific literature. The participants in this NBS-sponsored program, together with similar groups under private or other Government support which are pursuing the same ends, comprise the National Standard Reference Data System.

The primary focus of the NSRDS is on well-defined physical and chemical properties of well-characterized materials or systems. An effort is made to assess the accuracy of data reported in the primary research literature and to prepare compilations of critically evaluated data which will serve as reliable and convenient reference sources for the scientific and technical community.

Information for Contributors

Manuscripts submitted for publication must be prepared in accordance with *Instructions for Preparation of Manuscripts for* the Journal of Physical and Chemical Reference Data, available on request from the Editor.

Editorial Board

Term ending 31 December 1988
William A. Goddard III, Ronald A. Phaneuf, Alfons Weber
Term ending 31 December 1989
Mostafa A. El-Sayed, Glen A. Slack, Barry N. Taylor
Term ending 31 December 1990
Sidney C. Abrahams, Carlos M. Bowman, Malcolm W. Chase, Jr.

Management Board

David R. Lide, Jr., Charles R. Bertsch, John T. Scott

Editorial Staff at NBS: Julian M. Ives, Joan Sauerwein Editorial Staff at AIP: Kathleen Strum, Managing Editor; Susan A. Walsh, Chief Copy Editor; Thomas J. Buckley, Copy Editor

New and renewal subscriptions should be sent with payment to the Office of the Controller at the American Chemical Society, 1155 Sixteenth Street, N.W., Washington, DC 20036-9976. Address changes, with at least six weeks advance notice, should be sent to Journal of Physical and Chemical Reference Data, Membership and Subscription Services, American Chemical Society, P.O. Box 3337, Columbus, OH 43210. Changes of address must include both old and new addresses and ZIP codes and, if possible, the address label from the mailing wrapper of a recent issue. Claims for missing numbers will not be allowed: if loss was due to failure of the change-of-address notice to be received in the time specified; if claim is dated (a) North America: more than 90 days beyond issue date, (b) all other foreign: more than one year beyond issue date.

Members of AIP member and affiliate societies requesting member subscription rates should direct subscriptions, renewals, and address changes to American Institute of Physics, Dept. S/F, 335 E. 45th St., NY 10017-3483.

Subscription Prices (1988) (not including supplements)		Foreign	•		
	U.S.A.	(surface maíl)	N. Africa	Asia and Oceania	
Members (of ACS, AIP, or affiliated society)	\$ 60.00	\$ 70.00	\$ 80.00	\$ 80.00	
Regular rate	\$265.00	\$275.00	\$285.00	\$285.00	

Rates above do not apply to nonmember subscribers in Japan, who must enter subscription orders with Maruzen Company Ltd., 3-10 Nihonbashi 2-chome, Chuo-ku, Tokyo 103, Japan. Tel: (03) 272-7211.

Back numbers are available at a cost of \$75 per single copy and \$295 per volume.

Orders for reprints, supplements, and back numbers should be addressed to the American Chemical Society, 1155 Sixteenth Street, N. W., Washington, DC 20036-9976. Prices for reprints and supplements are listed at the end of this issue.

Copying Fees: The code that appears on the first page of articles in this journal gives the fee for each copy of the article made beyond the free copying permitted by AIP. (See statement under "Copyright" elsewhere in this journal.) If no code appears, no fee applies. The fee for pre-1978 articles is \$0.25 per copy. With the exception of copying for advertising and promotional purposes, the express permission of AIP is not required provided the fee is paid through the Copyright Clearance Center, Inc. (CCC), 21 Congress Street, Salem, MA 01970. Contact the CCC for information on how to report copying and remit payment.

Microfilm subscriptions of the *Journal of Physical and Chemical Reference Data* are available on 16 mm and 35 mm. This journal also appears in Sec. I of *Current Physics Microform* (CPM) along with 26 other journals published by the American Institute of Physics and its member societies. A *Microfilm Catalog* is available on request.

Copyright 1988 by the U.S. Secretary of Commerce; copyright assigned to the American Institute of Physics (AIP) and the American Chemical Society (ACS). Individual teachers, students, researchers, and libraries acting for them are permitted to make copies of articles in this journal for their own use in research or teaching, including multiple copies for classroom or library reserve use, provided such copies are not sold. Copying for sale is subject to payment of copying fees. (See "Copying Fees" paragraph elsewhere in this journal.) Permission is granted to quote from this journal with the customary acknowledgment of the source. To reprint a figure, table, or other excerpt requires in addition the consent of one of the original authors and notification to AIP. Reproduction for advertising or promotional purposes, or republication in any form, is permitted only under license from AIP, which will normally require that the permission of one of the authors also be obtained. Direct inquiries to Office of Rights and Permissions, American Institute of Physics, 335 East 45th Street, New York, NY 10017-3483. The right of the U.S. Government to unrestricted copying for its own use of copyrighted material originating in its laboratories or under its contracts is specifically recognized.

Journal of
Physical and
Chemical
Reference Data

Volume 17, 1988 Supplement No. 2

Thermodynamic and Transport Properties for Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data

George J. Janz

Molten Salts Data Center, Department of Chemistry, School of Science, Rensselaer Polytechnic Institute, Troy, New York 12181

Published by the American Chemical Society and the American Institute of Physics for the National Bureau of Standards

Copyright © 1988 by the U.S. Secretary of Commerce on behalf of the United States. This copyright will by assigned to the American Institute of Physics and the American Chemical Society, to whom all requests regarding reproduction should be addressed.

Library of Congress Catalog Card Number 88-82581

International Standard Book Number 0-88318-587-3

American Institute of Physics, Inc.

335 East 45th Street

New York, New York 10017-3483

Printed in the United States of America

Foreword

The Journal of Physical and Chemical Reference Data is published jointly by the American Institute of Physics and the American Chemical Society for the National Bureau of Standards. Its objective is to provide critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation. One of the principal sources of material for the journal is the National Standard Reference Data System (NSRDS), a program coordinated by NBS for the purpose of promoting the compilation and critical evaluation of property data.

The regular issues of the Journal of Physical and Chemical Reference Data are published quarterly and contain compilations and critical data reviews of moderate length. Longer monographs, volumes of collected tables, and other material unsuited to a periodical format are published separately as Supplements to the Journal. This tabulation, "Thermodynamic and Transport Properties for Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data", by George J. Janz is presented as Supplement No. 2 to Volume 17 of the Journal of Physical and Chemical Reference Data.

David R. Lide, Jr., Editor

Journal of Physical and Chemical Reference Data

Thermodynamic and Transport Properties for Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data

George J. Janz

Molten Salts Data Center, Department of Chemistry, School of Science, Rensselaer Polytechnic Institute, Troy, NY 12181

Critically evaluated results for two thermodynamic properties (density and surface tension) and two transport properties (electrical conductance and viscosity) are reported for one and two component salt systems in the molten state. For each system, the recommended results are reported in the form of equations, together with uncertainty estimates, and flagged comments on value judgements and related matters. Results for a limited number of higher multi-component systems are included. The NSRDS-NBS critically evaluated data series have been upgraded as part of this work, and the collection and evaluations of the available experimental data have been systematically extended to 1988.

Key words: critically evaluated data; density data; electrical conductance data; fused salts data; molten salts data; surface tension data; viscosity data.

Contents

1.	Intro	oduction	4
	1.1.	Background	4
	1.2.	Symbols and Units	5
	1.3.	Presentation of Physical Properties Data	5
		1.3.a. Systems Sort	5
		1.3.b. Cross Indexes	5
		1.3.c. Physical Properties Data	6
	1.4.	Value Judgements	ϵ
		1.4.a. Accuracy and Reliability Statements	6
		1.4.b. Flagged Comments	7
		1.4.c. Significant Figures	7
	1.5.	Acknowledgments	7
	1.6.	References	7
2.	Phys	sical Properties Data Tables	7
		Points To Be Noted	7
		List of Tables	
	1.1.	NSRDS molten salts data series	4
	1.2.	Symbols for physical quantities	5
	1.3.	Fundamental constants	5
	2.1.	Molten salts densities	9
	2.2.	Molten salts surface tensions	109
	2.3.	Molten salts electrical conductances	159
	2.4.	Molten salts viscosities	267
	2.5	Additional data	300

1. Introduction

1.1. Background

The term "molten salts" is generally associated with liquids formed by the fusion of crystalline salts of relatively high melting points. In the solid state such salts are virtually non-conductors (i.e., insulators), whereas in the molten state, most salts conduct electricity so well that the terms liquid electrolytes and molten salts have come to be used almost interchangeably. Eutectic mixtures are used to gain the molten state at lower temperatures so as to minimize the problems of corrosion and containment. The term "molten salts" thus includes multi-component salt systems, as well as one component salts in the molten state, i.e., "molten salt mixtures" as well as "single salt melts". As molten electrolytes and high temperature liquids, they are encountered in rather diverse applications in materials research and technology. A partial list of applications would include:

- Chemical: as reaction media for halogenation, oxidation, cracking, condensation, isomerization reactions, and catalysis.
- Chemical and environmental engineering: as heat transfer fluids; as reaction media for clean atmosphere processes, such as the removal of SO₂ and SO₃ in the emissions of coal burning plants, or sulfide ore smelters; as reaction media for the dissolution of plastic materials for metal recovery, such as gold (from computer chips), or clean copper wire (from coated wires), or silver (from waste photographic film).
- Energy: as electrolytes in the high temperature fuel cells (such as molten carbonate cells), and in the concepts of the super-batteries (e.g., sodium/sulfur; lithium/sulfur;), or in high energy thermal batteries; in advanced nuclear energy concepts, as components in reactors; and in energy storage, as phase change materials for the retention/release of thermal energy in advanced concepts for solar energy utilization, or in power utility stations.
- Electrometallurgy and materials science: in metal extractive electrolysis, such as the cryolite process for aluminum extraction, or the sodium chloride electrolysis for winning metallic sodium (and gaseous chlorine); in coating of metal surfaces by electroplating, or by metalliding processes; in the development of glass materials of new compositions, such as the fluoride glasses.
- Solid-state technology: as media for single crystal growth; as heat sensitive detectors, i.e., as in thermal switches; molten semi-conductors; as component materials in the search for superconductors.

The list could be extended, but the preceding may be sufficient to illustrate this facet of the subject.

The critical data evaluations at RPI have included systematic studies of all of the salt systems for a limited series of properties, such as density, surface tension, electrical conductance, and diffusion¹⁻¹⁰; similarly for a selected series of salts (proposed as candidates for energy related applications), a much wider range of properties has been critically evaluated^{11,12}. Additionally the series includes a comprehensive compilation of eutectics data (melting points, compositions)¹³, and recommendations for reference materials and calibration quality data sets (i.e., the Molten Salts Standards Program)¹⁴⁻¹⁶.

The present communication extends the critical evaluations of the density, surface tension, electrical conductance, and viscosity data to 1988, with our comprehensive surveys of the open scientific literature ending some three months before that date. The earlier compilations in this series are summarized in Table 1.1. The single salts recommendations were advanced in 1968 and 1969, respectively. Upgrades have been sprinkled throughout the succeeding publications, and escape notice. As part of the present work, the results in this series have been critically re-examined and updated. The best values recommendations are thus consolidated in the cumulative data tables of the present work herewith.

TABLE 1.1. NSRDS molten salt data series (density, d; surface tension, g; electrical conductance, k; and viscosity, ν)

Molten salts data	NSRDS recommendations	Ref.
Vol. 1 (1968)	Single Salts (d, k, v)	1
Vol. 2 (1969)	Single Salts (g)	2
Vol. 3 (1972)	Binary mixtures: nitrates and nitrites	3
Vol. 4.1 (1974)	Binary mixtures: fluorides	4
Vol. 4.2 (1976)	Binary mixtures: chlorides	5
Vol. 4.3 (1977)	Binary mixtures: bromides and iodides	6
Vol. 4.4 (1979)	Binary mixtures: mixed halides	7
Vol. 5.1 (1980)	Additional mixtures, other than nitrates, nitrites, halides	8
Vol. 5.2 (1983)	Additional mixtures: mixed anion systems	9
this work	Cumulative data to 1988	

For each system, the results for the best values are reported in the form of equations, together with uncertainty statements, and references to the detailed evaluations. The preceding information, along with substance identification and composition (in the case of mixtures) is found in a one line/system format in the data tables. Space for additional observations is provided through the use of a flagged comments column.

Automation of the MSDC-RPI database was an important stepping stone since the use of computer assisted techniques was judged essential to the preparation of the present compilation. For this task the SPIRES^{1,2} data-

SPIRES. Stanford Public Information REtrieval System.

²Identification of such materials/devices does not in any case imply recommendation or endorsement by the National Bureau of Standards.

base management system was selected and the mainframe computer at RPI, and IBM System 370 Model 3081 was used. A practical benefit is that the numerical and bibliographic databases on core memory are available for access and interrogation by remote terminals. While we report only one correlation equation/system, i.e., the best values recommendation, the additional data sets are on record at RPI (on core memory), and can be accessed. The properties of some systems, such as NaCl, for example, have been independently measured and remeasured more than forty times over the past five decades; all such results have been examined and are stored in database core memory at RPI.

A computer Systems Sort was used to list the systems by chemical formulae in alphabetical order. Systems cross indexes have been compiled and are included within the data tables as part of the alphabetical sort.

1.2. Symbols and Units

The symbols, units, and fundamental constants are in Tables 1.2. and 1.3., respectively. For the fundamental

TABLE 1.2. Symbols for physical quantities

Symbol	Name	Units
A	pre-exponential factor	as in text
C	composition	mol %
\boldsymbol{E}	energy of activation	$J mol^{-1}$
T	temperature (Absolute)	K
d	density	$\rm g~cm^{-3}$
g	surface tension	$mN m^{-1}$
k	electrical conductance	$ohm^{-1}cm^{-1}$
ν	viscosity	$mN s m^{-2}$

For conversion between SI and other units: viscosity: 1 mN s m⁻² = 1 cp = 1 mPa·s

surface tension: $1 \text{ mN m}^{-1} = 1 \text{ dyn cm}^{-1}$

electrical conductance:

spec. cond.: $100 \text{ S m}^{-1} = 1 \text{ ohm}^{-1} \text{ cm}^{-1}$

mol. cond.: $0.1 \text{ mS m}^2 \text{ mol}^{-1} = 1 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$

The symbols used for surface tension, electrical conductance, and viscosity are not the standard symbols, but were used because of limitations in the computer-produced tables.

TABLE 1.3. Fundamental constants (from CODATA Bulletin No. 11, Dec. 1973)

Symbol	Name	Value
N_{A}	Avogadro constant	$6.022045(31)\times10^{23} \text{ mol}^{-1}$
$\boldsymbol{\mathit{F}}$	Faraday constant	$9.648456(27)\times10^4$ C mol ⁻¹
e	electron charge	$1.6021892(46)\times10^{-19}$ C
R	molar gas constant	8.31441(26) J mol ⁻¹ K ⁻¹

A summary of the 1986 values recommended by the CODATA Task Group on Fundamental Constants appeared during the course of the present work (see CODATA Newsletter, Oct. 1986). The set above is in exact accord with the new recommendations for five significant figure values of the fundamental constants (as required in the present work).

The numbers in the parentheses indicate the standard deviation in the final decimal places.

constants, the values are listed to the number of significant figures recommended by the CODATA Task Group on Fundamental Constants. For the calculations in the present work, the values were rounded off at five significant figures.

1.3. Presentation of Physical Properties Data 1.3.a. Systems Sort

The systems were computer sorted, alphabetically by chemical formulae, using an internal sort routine based on the letters of the cationic species in the salts formulae. Within each cation "family" of salts, the anions were sorted similarly. Thus for two of the families within the potassium series, i.e., the univalent and the divalent salts of potassium, respectively, the sort routine for the one component systems yields:

Superimposed on this is the sort of the multi-component systems, i.e., mixtures of two or more salts. This sort follows the same routine (above), but with the sort being on the second salt (in the case of binary mixtures) while the first member is held invariant. As an illustration, consider the following series of KCl salt mixtures:

The alphabetical sort routine recognizes the AgCl, AlCl₃, and CaCl₂ families before the KCl family has been reached. Thus these KCl containing mixtures would be listed with AgCl-, AlCl₃-, and CaCl₂-, as the first members of the mixtures, respectively. Since KCl is recognized before KOH, LiCl, and NaCl, the three remaining mixtures would be found within the KCl family, namely, as KCl-KOH...KCl-LiCl...and KCl-NaCl, respectively. In order that KCl containing mixtures not be overlooked, as in the three examples (above) in which KCl is now no longer listed in the first place, cross indexes have been developed for each salt mixture, and have been placed at the end of each "salt family".

The alphabetical sort for more complex mixtures, e.g., ternary systems, was accomplished by the same principles. The ternary carbonate system [Li, Na, K / CO₃] for example, is sorted as:

$$K_2CO_3$$
 - Li_2CO_3 - Na_2CO_3 ,

with two cross index entries (under Li₂CO₃ and Na₂CO₃ as the parents, respectively) as ancillary locators for this ternary system.

1.3.b. Cross Indexes

As already noted, the cross indexes were designed as aids in the use of the relatively large data compilations reported herewith in Tables 2.1.–2.4., respectively.

For example the surface tension data for CsNO₃ and mixtures containing this salt as one component of the system are found in the order:

CsNO₃; CsNO₃-KNO₃; CsNO₃-LiNO₃; CsNO₃-NaNO₃

with an entry in the next line as:

For additional $CsNO_3$ systems, see $AgNO_{3-}$; $Ca(NO_3)_{2-}$; $Cd(NO_3)_{2-}$;

Attention is thus directed to some additional mixtures containing CsNO₃ but in which the binary mixtures are "parented" by AgNO₃, Ca(NO₃)₂, and Cd(NO₃)₂, respectively. The convenience of these "built-in" indexes in such large tables is in the assistance provided for locating whether or not results have been reported for a desired system. Without such aids, the search would be tedious, to say the least.

A second illustration of the utility of these cross indexes from a similar viewpoint, but for a somewhat different situation is as follows. One may wish to examine the data of molten salt mixtures having tungsten oxide [WO₃] as part. In the alphabetical sort routine of the multi-component systems, WO₃ will be invariably listed as the second (or third) component; and thus without the "built-in" cross index at WO₃ in the tables, it would be virtually impossible to access these data quickly, and have confidence that the search has been complete.

An alternate to the use of cross indexes would be the repetitive entry of results. Thus for each multi-component system, the system could have been relisted with each salt in the "parent" (or first) position, and the data, likewise, would be relisted repeatedly. Relative to this option, the "built-in" cross indexes appeared the more desirable approach for ease of working with such large cumulative tables.

1.3.c. Physical Properties Data

For the critical evaluations the results were investigated, broadly, from three different viewpoints: firstly, as correlations with temperature, T, as the variable; secondly, (for cases where the measurements had been limited to isothermal studies) as correlations with concentration, C, as the variable; and thirdly (where the data sets were too limited for curve-fitting analysis) as "data points".

By far the largest number of systems fall in to the first group, in which the evaluated results have been expressed as equations of the forms:

density
$$d = a - (b)T$$

 $(g \text{ cm}^{-3})$
surface tension $g = a - (b)T$
 (dyn cm^{-1})
electrical conductance $(\text{ohm}^{-1} \text{ cm}^{-1})$
viscosity $v = A \exp(E/RT)$
 $(mN \text{ s m}^{-2})$

The data for the two thermodynamic properties, density and surface tension, were thus systematically re-examined for fits to linear correlation functions and are reported accordingly where the re-fits have been possible without sacrifice of precision. Similarly, for the two transport properties, electrical conductance and viscosity, re-fits to exponential type correlations were investigated and are reported as the preferred equations.

For the cases where the data sets were limited to isothermal studies, polynomial correlations of the type:

$$Z=a+(b)C+(c)C^2+(d)C^3...$$

have been investigated as the curve fitting correlation functions. Here Z may be any of the four properties (above) while C is the amount of the first member (in mol%) in the binary mixture. The arithmetical signs of the coefficients: a, b, c, ..., in the polynomial equations may be either positive or negative, and are given with the numerical values in the data tables.

Thirdly, for the case where the data sets were insufficient for a statistical correlation function, the results are reported simply as pair values, i.e., (T, A) and property datum).

Exceptions to the above generalized correlations will be found in the data tables. Thus for some mercuric halide containing salt systems, the conductance data are found to require +E in the temperature correlation equation (above), and electronic as well as faradaiic processes may be contributing to the overall conductance mechanism in such systems. Or again, for certain systems, the property values as a function of temperature are observed to pass through a maximum point. This is generally encountered in multi-component systems in which one of the salts exhibits pronounced covalency, e.g., BiCl₃, HgCl₂ For such systems the simple exponential correlation (above) may be valid for a rather limited temperature range, whereas a polynomial type equation has been found best for the much larger range. In such cases, both correlations have been included in the data tables, i.e., two equations.

Information on the accuracy limits and reliability estimates is given in the tables. Accuracy estimates were limited to the data for one component salt systems (i.e., single salts) and the numerical values are listed directly with the systems. The value judgements for the multicomponent salts studies have been expressed as reliability statements, and for these a series of "numerical flags" are used to point to the narrative statements (which follow as a cumulative list, later in the tables).

1.4. Value Judgements 1.4.a. Accuracy and Reliability Statements

The accuracy estimates have been limited largely to measurements reported for single salts (one component systems); for mixtures, the value judgements have been developed as reliability statements. In the latter, the results for the end-members are compared relative to the best-values data sets that are advanced for these compo-

nents as single salt systems. In the reliability statements the comparisons are limited, generally, to results at two temperatures, so as to show the trend of the departures relative to the reference values for the temperature range of the measurements.

Concerning the accuracy estimates, these have been systematically re-examined, and, where possible, upgraded. Accuracy estimates, at best, are based on somewhat subjective quality judgements, largely due to the difficulties one encounters through the lack of details on sample history, measurement techniques and procedures, and the mathematical principle (theoretical and experimental) underlying the working equations for the data reduction to the physical properties values. Most of the measurements are on a relative basis, and for these the accuracy estimates rest heavily on reliable sets of measurements with "bench-mark" materials, i.e., materials of reference standards purity, and for which reliable data sets of well defined accuracies are known. The results reported for KNO₃ and NaCl in the Molten Salts Standards Program¹⁴⁻¹⁶ have been used throughout the present work in firming up both the accuracy estimates and the reliability statements reported herewith.

1.4.b. Flagged Comments

To call attention to some additional remarks that bear both on the value judgements (above) and matters encountered in the course of the critical data analysis, a column of flagged comments has been included in the tables of correlation equations. For each system, the series of one or more lower case letters in this column are "flags" to specific narrative remarks giving additional insights on the results under consideration. The list of narrative comments follow the reliability statements in each of the physical properties data tables; see Tables 2.1.–2.4.

1.4.c. Significant Figures

The values of numerical constants in the correlation equations have been carried to more figures than physically significant, and the results, similarly, will be gained to more figures than actually significant. Round offs of the calculated values requires knowledge of the accuracy limits of the measurements. A measure of the latter can be gained by inspection of the limits assigned to the single salts studies, and the reliability statements advanced for the various multi-component salt systems (see Tables 2.1.–2.4. inclusive).

1.5. Acknowledgments

This work was made possible in large part by financial support from the Office of Standard Reference Data at the National Bureau of Standards (OSRD-NBS), U. S. Department of Commerce, Gaithersburg, MD. Lewis H. Gevantman, and Howard J. White, Jr. are thanked for thoughtful discussions and their continued interest throughout the period of this work.

The design of the software for molten salts physical properties database network (for storage, interrogation, and retrieval by remote terminals, of highly technical and scientific data) was undertaken with two coworkers, Christopher J. Kopf (in the initial stages) and Donald S. McMurtry (who continued and extended the design, reduced it to practice, and brought this phase of the task to completion). Special thanks are due to both for their very significant contributions, and for their guidance to those at RPI assisting with data entry, data verification, and the many related tasks that form the stepping stones on the path to final copy.

The cumulative data tables (i.e., Tables 2.1-2.4) were prepared using customized SPIRES formats, designed and written by D. S. McMurtry, to generate the results as camera ready copy from the molten salts database on core memory, and the laser printer facilities at Rensselaer Polytechnic Institute.

1.6. References

¹Janz, G. J., Dampier, F. W., Lakshminarayan, G. R., Lorenz, P. K., and Tomkins, R. P. T., Nat. Stand. Ref. Data Ser., NBS (U.S.) 15, 1 (1968).

²Janz, G. J., Lakshminarayan, G. R., Tomkins, R. P. T., and Wong, J., Nat. Stand. Ref. Data Ser., NBS (U.S.) 28, 49 (1969).

³Janz, G. J., Krebs, U., Siegenthaler, H. F., and Tomkins, R. P. T., J. Phys. Chem. Ref. Data 1, 581 (1972).

⁴Janz, G. J., Gardner, G. L., Krebs, U., and Tomkins, R. P. T., J. Phys. Chem. Ref. Data 3, 1 (1974).

⁵Janz, G. J., Tomkins, R. P. T., Allen, C. B., Downey, J. R., Jr., Gardner, G. L., Krebs, U. and Singer, S. K., J. Phys. Chem Ref. Data 4, 871 (1975).

⁶Janz, G. J., Tomkins, R. P. T., Allen, C. B., Downey, J. R., Jr., and Singer, S. K., J. Phys. Chem. Ref. Data 6, 409 (1977).

⁷Janz, G. J., Tomkins, R. P. T., and Allen, C. B., J. Phys. Chem. Ref. Data 8, 125 (1979).

⁸Janz, G. J., Tomkins, R. P. T., J. Phys. Chem. Ref. Data 9, 831 (1980).
 ⁹Janz, G. J., Tomkins, R. P. T., J. Phys. Chem. Ref. Data 12, 591 (1983).

¹⁰Janz, G. J., and Bansal, N. P., J. Phys. Chem. Ref Data 11, 505 (1982).
 ¹¹Janz, G. J., Tomkins, R. P. T., et al., NSRDS-NBS-61-Part II (1979),
 U. S. Dept. of Commerce, U. S. Government Printing Office, Washington, DC.

¹²Janz, G. J., Tomkins, R. P. T., NSRDS-NBS-61-Part IV (1981), U. S. Department of Commerce, U. S. Government Printing Office, Washington, DC.

¹³Janz, G. J., Tomkins, R. P. T., et al., NSRDS-NBS-61-Part I (1978),
 U. S. Department of Commerce, U. S. Government Printing Office,
 Washington, DC.

¹⁴Janz, G. J., J. Phys. Chem. Ref. Data 9, 791 (1980).

¹⁵Janz, G. J., Proc. Fourth Japan Symp. Thermophysical Properties, Yokohama, Japan, 199 (1983).

¹⁶Janz, G. J., Proc. Ninth CODATA Conference (Jerusalem), 381 (1985); P. Glaeser, ed., Elsevier Sci. Co. Inc. (New York).

2. Physical Properties Data Tables 2.1. Points To Be Noted

The cumulative results for the properties: density, surface tension, electrical conductance, and viscosity, have been compiled in a series of four tables. The results for salt systems that were added too late for the machine sorts of the preceding four tables are reported as additional data in that fifth table herewith.

The critically evaluated results in these tables fall into three broad groups: as correlations with temperature, T, as the variable; as correlations with concentration, C, as the variable (for cases where the data sets were limited to isothermal measurements); and thirdly (where the data sets were too limited for curve-fitting analysis) simply as "data points".

The following additional points should be noted for facile work with these tables:

- Accuracy estimates: limited largely to measurements reported for single salts (one component systems).
- Reliability statements: value judgements for the measurements reported for multi-component systems, and principally limited to the results for the

- end-members; these are numerically flagged in the accuracy columns, and the complete statements are found in the second part of each of these four tables.
- Alphabetically flagged comments: the narratives for the flags follow immediately after the reliability statements in each of the data tables.
- Data source references: these are numbered in order of first appearance; the list of references follows as the last part of each of these four tables; for systems for which the NSRDS molten salts volumes are cited, the data source references are cited in full in the cumulative lists of references in each, and accordingly are not repeated again in the present work.

Table 2.1.a Density data

(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
	AgBr				
0	d = 6.307 - 0.001035 T	720-940	±1%	1	a
	AgBr-AgC1				
100	d = 5.519 - 9.4 x 10 ⁻⁴ T	760-900	(1)	2	a
2.7-77.3	d = 5.818 - 0.00108 T	720-850		2	a
0.3-59.7	d = 5.984 - 0.00112 T	700-860		2	a
5.8-34.2	d = 6.124 - 0.00107 T	700-850		2	а
00-0	d = 6.31 - 0.00104 T	720-870	(2)	2	a
	AgBr-Ag ₂ Te				
-100	d = 8.4178 - 8.125 × 10 ⁻⁴ T	1230-1250	(3)	3	a
0-80	d = 7.9529 - 7.757 x 10 ⁻⁴ T	1140-1260		3	a
2-68	d = 7.7926 - 8.84 x 10 ⁻⁴ T	1020-1260		3	а
0-50	d = 7.3999 - 8.582 x 10 ⁻⁴ T	940-1260		3	а
0-30	d = 6.9582 - 9.374 x 10 ⁻⁴ T	780-1260		3	а
0-10	d = 6.2609 - 8.119 x 10 ⁻⁴ T	780-1260		3	a
00-0	d = 6.3212 - 0.0010875 T	740-1180	(4)	3	a
	AgBr-CsBr		• •	_	•
0-50	d = 4.993 - 0.001272 T	760-1060		4	a
	AgBr-CsC1				
0-50	d = 4.7056 - 0.0011809 T	840-1080		2	а
00-0	d = 6.321 ~ 0.00105 T	720-960	(5)	2	а
	AgBr-KBr				
9.5-60.5	d = 3.954 - 9.8 x 10 ⁻⁴ T	870-970		4	a
0.1-39.9	d = 4.657 - 0.00103 T	660-870		4	a
9.2-20.8	d = 5.462 - 0.00112 T	660-870		4	а
00~0	d = 6.316 - 0.00105 T	720-870	(6)	4	а
	AgBr-KC1				÷
50-50	d = 3.9663 - 9.317 x 10 ⁻⁴ T	700-1073		2	a, e
0-100 AgBr	$d = 1.487 + 0.02796 C - 3.279 \times 10^{-5} C^2 + 1.226 \times 10^{-6} C^3 \dots \dots$	1073	(7)	2	a, e
	AgBr-LiBr				
60-50	d = 4.743 - 8.92 x 10 ⁻⁴ T	810-960		4	а
	AgBr-LiC1				
0-50	d = 4.3431 - 8.592 x 10 ⁻⁴ T	880-980		2	а
100-0	d = 6.321 - 0.00105 T	720-960	(8)	2	а
	AgBr-NaBr				
60-50	d = 4.626 - 0.001004 T	930-1060		4	а
50-50	d = 4.2101 - 8.933 x 10 ⁻⁴ T	980-1080		2	a
0-100 AgBr	$d = 1.57 + 0.0344 C - 7.703 \times 10^{-5} C^2 + 1.014 \times 10^{-5} C^3$	1073	(9)	2	a
	AgBr-RbBr		(0)	-	a
50-50	d = 4.727 - 0.001156 T	810-1050		4	а
	AaBr-RbC1	0.0 .400		-	•
50-50	d = 4.4345 - 0.0011046 T	820-1060		2	a
100-0	d = 6.321 - 0.00105 T	720-820	(10)	2	a
	AgC1	720 020	(10)	2	a
100	d = 5.519 - 9.4 x 10 ⁻⁴ T	760-900	±1%	5	a
	AgC1-AgN0 ₃	700 300	-12	9	a
) - 100	d = 4.5218 ~ 0.0011434 T	487-589	(11)	3	a
5.7-94.3	d = 4.5514 - 0.001136 T	500-580	•	3	a
16.1-83.9	d = 4.6599 - 0.0011631 T	460-600		3	a
23.2-76.8	d = 4.7017 - 0.0011365 T	460-580		3	a
34.5-65.5	d = 4.7896 - 0.0011007 T	500-580		3	a
12.8-57.2	d = 4.8674 ~ 0.001107 T	540-580		3	a
		545 565		v	•
	AGC1-AgoS				
D-100	AgC1-Ag ₂ S d = 7.5329 - 9.132 × 10 ⁻⁴ T	1173-1273	3 (12)	3	a ,

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
.50-85.50	d = 6.9369 - 5.199 x 10 ⁻⁴ T	970-1210		3	a,c
.69-78.31	d = 6.8323 - 5.5 x 10 ⁻⁴ T	970-1210		3	a,c
.41~65.59	d = 6.5069 - 4.5 x 10 ⁻⁴ T	970-1210		3	a,c
. 56-53 . 44	d = 6.5301 - 6.701 x 10 ⁻⁴ T	950-1210		3	a,c
. 86-39 . 14	d = 6.2184 - 7.3 x 10 ⁻⁴ T	770~1050		3	a,c
7.70-32.30	d = 6.1122 - 7.399 x 10 ⁻⁴ T	770-1050		3	a,c
9.99-30.01	d = 6.0549 - 7.501 x 10 ⁻⁴ T	770~1050		3	a,c
9.63-20.37	d = 6.0687 - 8.7 x 10 ⁻⁴ T	770-1050		3	a,c
4.30-5.70	d = 5.6412 - 8.5 x 10 ⁻⁴ T	770~1 0 50		3	a,c
00.0-0.0	d = 5.5045 - 8.698 x 10 ⁻⁴ T	770-1050	(13)	3	a,c
	AgC1-Ag ₂ Se				
-100	d = 8.4199 - 9.746 x 10 ⁻⁴ T	1170-1250	(14)	3	а
0-70	d = 7.1012 - 5.093 x 10 ⁻⁴ T	1090-1250)	3	a
0-60	d = 7.0975 - 6.825 x 10 ⁻⁴ T	970-1250		3	a
)-50	d = 6.8537 - 7.022 x 10 ⁻⁴ T	970-1250		3	a
0-40	d = 6.6984 - 8.273 x 10 ⁻⁴ T	970-1250		3	a
0-30	d = 6.4121 - 8.427 x 10 ⁻⁴ T	970-1250		3	a
0-10	d = 6.0941 - 0.0011108 T	970-1250		3	a
00-0	d = 5.4719 - 8.854 x 10 ⁻⁴ T	770-1250	(15)	3	a
	AgC1-Ag ₂ Te		(14)	_	•
-100	d = 8.4178 - 8.125 x 10 ⁻⁴ T	1230-1250	(16)	3	a
5.00-85.00	d = 8.0119 - 7.577 x 10 ⁻⁴ T	1090-1250		3	a
2.50-77.50	d = 7.9781 - 8.807 x 10 ⁻⁴ T	1030-1270		3	a
3.00-67.00	d = 7.6632 ~ 8.465 x 10 ⁻⁴ T	970-1250	_	3	a
5.00-55.00	d = 7.4291 - 8.967 x 10 ⁻⁴ T	870-1250		3	a
0.00-40.00	d = 6.9222 - 8.465 x 10 ⁻⁴ T	850-1250		3	a
7.50-32.50	d = 6.6613 - 8.281 x 10 ⁻⁴ T	770-1250		3	a
5.00-25.00	d = 6.4556 - 8.868 x 10 ⁻⁴ T	770-1250		3	a
2.50-17.50	d = 6.2636 - 9.538 x 10 ⁻⁴ T	770-1250		3	a
0.00-10.00	d = 5.8137 - 7.993 x 10 ⁻⁴ T	770-1250		3	a
2.64-7.36	d = 5.835 - 9.4 x 10 ⁻⁴ T	770-1250		3	a
6.06-3.04	d = 5.5677 - 8.638 x 10 ⁻⁴ T	770-1250		3	
00.0-0.0	d = 5.4719 - 8.854 x 10 ⁻⁴ T	770-1250		3	a
00.0-0.0	AgC1-KBr	770-1250	(17)	3	a
-100 KBr	d = 4.519 - 0.0457 C + 4.581 x 10 ⁻⁴ C ² - 3.882 x 10 ⁻⁶ C ³ + 1.403 x 10 ⁻⁸ C ⁴ .	1073	(18)	2	a
	AgC1-KC1				
7.8-52.2	d = 3.525 - 8.8 x 10 ⁻⁴ T . ,	840-1000		5	a
8.0-32.0	d = 4.263 - 9.6 x 10 ⁻⁴ T	660-900		5	a
0.6-19.4	d = 4.723 - 9.5 x 10 ⁻⁴ T . ,	720-940		5	a
00-0	d = 5.519 - 9.4 x 10 ⁻⁴ T	760-900	(19)	5	a
	AgC1~NaBr				
-100 NaBr	$d = 4.576 - 0.03794 C + 3.515 \times 10^{-4} C^2 - 3.35 \times 10^{-6} C^3 + 1.337 \times 10^{-8} C^4$.	1073	(20)	2	a
	AgC1-PbC12				
- 100	d = 6.112 - 0.0015 T	790-980	(21)	5	a
9.4-80.6	d = 6.056 - 0.00145 T	800-970		5	a
9.1-70.9	d = 6.022 - 0.00142 T	750-950		5	a
8.9-61.1	d = 5.948 - 0.00134 T	720-940		5	a
6.6-53.4	d = 5.893 ~ 0.00128 T	720-950		5	a
7.4-42.6	d = 5.864 - 0.00126 T	660-970		5	a
9.7-20.3	d = 5.682 - 0.00108 T	710-930		5	a
00-0	d = 5.519 - 9.4 x 10 ⁻⁴ T	760-900	(22)	5	a
			/	-	•
for addition	al AgCl systems, see : AgBr- AgClD ₃				
00	d = 8.9502 - 0.01056 T	478-485	±1.5%	6	а
					_

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				_
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
	AgC103-LiNO3				
-50	d = 3.4849 - 0.0010703 T	480-520		3	а
	AgI				
00	d = 6.415 - 0.00101 T	870-1075	±1%	1	а
	AgI-AgNO ₃				
-100	(T=498 K, d=3.954)		(23)	3	а
.4-92.6	d = 5.2239 - 0.0022402 T	420-500		3	а
5.3-84.7	d = 5.1927 - 0.0018038 T	420-500		3	а, е
9.4-80.6	d = 5.5315 ~ 0.0023206 T	420-500		3	а,
3.7-76.3	d = 5.6361 ~ 0.0023322 T	420-500		3	a, e
8-72	d = 5.688 - 0.0022441 T	420-500		3	а, е
32.5-67.5	d = 5.8212 - 0.0023362 T	420-500		3	a, e
37.2-62.8	d = 5.9339 - 0.0023797 T	420-500		3	a, e
12-58	d = 6.0287 - 0.0023878 T	420-500		3	a, e
7-53	d = 6.0884 - 0.0023203 T	420-500		3	a, e
2-48	d = 6.2888 - 0.0026041 T	420-500		3	a
	Ag1-Ag2S	.20 000		J	u
) - 100	d = 7.5329 - 9.132 x 10 ⁻⁴ T	1170 1070	(24)	3	_
		1173-1273	(24)		a
20-80	d = 7.4651 - 9.646 x 10 ⁻⁴ T	1130-1250		3	а
35-65	d = 7.5082 - 0.001169 T	1130-1250		3	a
50-50	d = 6.7416 - 6.987 x 10 ⁻⁴ T	1090-1250		3	а
50-40	d = 6.7956 - 8.549 x 10 ⁻⁴ T	1090-1250		3	а
70-30	d = 6.7032 - 9.274 x 10 ⁻⁴ T	1050-1250		3	а
85-15	d = 6.4086 - 8.018 x 10 ⁻⁴ T	970-1250		3	а
100-0	d = 6.4109 - 0.0010175 T	890-1250	(25)	3	а
	AgI-Ag ₂ Te				
0-100	d = 8.4178 - 8.125 x 10 ⁻⁴ T	1230-1250	(26)	3	а
20-80	d = 7.8607 - 6.93 x 10 ⁻⁴ T	1120-1240		3	а
10-60	d = 7.4642 - 7.231 x 10 ⁻⁴ T	1120-1240		3	а
50-50	d = 7.4962 - 9.192 x 10 ⁻⁴ T	1100-1240		3	а
70-30	d = 7.0626 - 8.905 x 10 ⁻⁴ T	1040-1240		3	а
80-20	d = 6.6858 - 8.173 x 10 ⁻⁴ T	1000-1240		3	а
90-10	d = 6.6967 - 0.0010289 T	920-1240		3	а
100-0	d = 6.4109 ~ 0.0010175 T	900-1240	(27)	3	а
	Agno ₃				
100	d = 4.503 - 0.001098 T	483-633	±1%	7	а
	AgN03-Ba(N03)2				-
97.44-2.56	d = 4.48596 - 0.0011427 T	540-590		7	а
98.48-1.52	d = 4.49724 - 0.0011378 T	490-590		7	a
100-0	d = 4.51914 - 0.0011415 T	490-590	(28)	7	
	AgN03-Ca(N03)2	490-090	(20)	,	а
89.3-10.7	• • • •	.== ===		_	
99-3-10.7 90-10	d = 4.17118 - 0.00105217 T	485-590		7	a,
	d = 4.19018 - 0.00105217 T	485-590		7	a,
91-9	d = 4.22265 - 0.00106117 T	485-590		7	а,
92-8	d = 4.25588 - 0.0010714 T	485-590		7	a
93-7	d = 4.28659 - 0.00107687 T	485-590		7	a
94-6	d = 4.32044 - 0.00108834 T	485-590		7	а
95~5	d = 4.3522 - 0.00109593 T	485-590		7	a
96-4	d = 4.38472 - 0.00110475 T	485-590		7	a
97-3	d = 4.41756 - 0.00111428 T	485-590		7	а
98-2	d = 4.44985 - 0.00112293 T	485-590		7	a
99-1	d = 4.48142 - 0.00113016 T	485-590		7	а
100-0	d = 4.51403 - 0.00113916 T	485-590	(29)	7	a
	AgN0 ₃ -Cd(N0 ₃) ₂				
				_	
40-60	d = 4.04352 - 0.00110794 T	485-560		7	a

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
0-40	d = 4.18407 - 0.00110794 T	445-560		7	a,e
-39	d = 4.19126 - 0.00110794 T	455-560		7	a,e
-30	d = 4.25666 - 0.00110794 T	465-560		7	a,e
0-20	d = 4.33081 - 0.00110794 T	485-560		7	a,e
0-10	d = 4.4065 - 0.00110794 T	495-560		7	a,e
00-0	d = 4.48374 ~ 0.00110794 T	505-560	(30)	7	a,e
	AgNO3-CSNO3				
-100	d = 3.6294 - 0.00118994 T	700-790	(31)	7	a,e
0-90	d = 3.6936 - 0.00119089 T	690-750	,,	7	a,e
0-80	d = 3.7596 - 0.00119184 T	630-710		7	a,e
0-70	d = 3.8291 - 0.00119279 T	560-690		7	a, e
0-60	d = 3.9039 - 0.00119374 T	500-670		7	a,e
0-50	d = 3.9856 - 0.00119469 T	460-670		7	a,e
0-40	d = 4.0761 - 0.00119654 T	470-660		7	a, e
7.5-32.5	d = 4.1507 - 0.00119635 T	500-650		7	a, e
0-30	d = 4.1771 - 0.00119659 T	480-650		7	a, e
0-20	d = 4.2903 - 0.00119754 T	490-640		7	a, e
0-10	d = 4.4175 - 0.00119849 T	500-640		7	a, e
00-0	d = 4.5605 - 0.00119945 T	500-650	(32)	7	a, e
,	AgN03-HgI2	000 000	(02)	•	۵,۰
0-70		4E0 E10			
	d = 6.2743 - 0.0016153 T	450-510		3	a
5-65	d = 6.1625 - 0.0014549 T	410-510		3	а
7.5-62.5	d = 6.1413 - 0.0014434 T	400-510		3	a
0-60	d = 6.1357 - 0.001463 T	390-510		3	а
2.5-57.5	d = 6.1269 - 0.0014532 T	390-510		3	а
5-55	d = 6.0709 - 0.0014002 T	390-510		3	а
7.5-52.5	d = 6.0299 ~ 0.0013533 T	390-510		3	а
0-50	d = 5.9756 - 0.0014503 T	380-510		3	a
2.5-47.5	d = 5.9126 - 0.0013627 T	370-510		3	а
5-45	d = 5.867 - 0.0013937 T	370-510		3	а
0-40	d = 5.751 - 0.0014339 T	360-510		3	а
2.5-37.5	d = 5.696 - 0.0013931 T	370-510		3	а
7.5-32.5	d = 5.633 - 0.0014464 T	380-510		3	а
0-30	d = 5.5599 - 0.0013774 T	380-510		3	а
5-25	d = 5.4362 - 0.0013286 T	370-510		3	а
85-15	d = 5.2677 - 0.0012576 T	370-510		3	а
00-0	d = 4.6292 - 0.0012472 T	490-590	(33)	3	а
	AgN03-KN03				
-100	d = 2.305 - 7.005 x 10 ⁻⁴ T	610-670	(34)	7	а,
0-90	d = 2.534 - 8.25 x 10 ⁻⁴ T	593-653		7	a,
0-80	d = 2.743 - 8.9 x 10 ⁻⁴ T	553-653		7	a,
0-70	d = 2.973 - 9.94 x 10 ⁻⁴ T	523-643		7	a,
0-60	d = 3.185 - 0.00105 T	483-643		7	a,
0-50	d = 3.386 - 0.00106 T	433-643		7	a,
0-40	d = 3.602 - 0.00109 T	433-643		7	a,
3-37	d = 3.667 - 0.001095 T	490-640		7	a,
0-30	d = 3.817 - 0.0011 T	433-639		7	а
0-20	d = 4.039 - 0.00111 T	453-637		7	a
0-10	d = 4.308 - 0.00118 T	473-633		7	а
00-0	d = 4.487 - 0.00108 T	490-630	(35)	7	а
	AgN03-LiN03				
-100	d = 2.1057 - 5.92 x 10 ⁻⁴ T	525-673	(36)	7	а
0-90	d = 2.3492 - 6.11 x 10 ⁻⁴ T	523-662	(00)	7	a
20-80	d = 2.6359 - 7.23 x 10 ⁻⁴ T	513-623		7	a
	d = 2.8897 - 7.75 x 10 ⁻⁴ T	513-623		7	a a
30-70	U = 2.009/ = 7.75 x 10=4 1				

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
0-50	d = 3.395 - 9.07 x 10 ⁻⁴ T	473-615		7	a
-40	d = 3.6925 - 0.001061 T	463-613		7	a
-30	d = 3.8696 - 0.001018 T	453-613		7	а
-20	d = 4.0901 - 0.001059 T	453-613		7	a
-10	d = 4.3095 - 0.001092 T	473-613		7	а
0-0	d = 4.503 - 0.001098 T	483-633	(37)	7	а
	AgNO ₃ -Mg(NO ₃) ₂				
-10	d = 4.1905 - 0.0010813 T	485-590		7	a
-9	d = 4.2251 - 0.0010908 T	485-590		7	а
-8	d = 4.2558 - 0.0010929 T	485-590		7	a
1-7	d = 4.2894 - 0.0011003 T	485-590		7	a
I-6	d = 4.3205 - 0.0011033 T	485-590		7	a
i-5	d = 4.3539 - 0.0011106 T	485-590		7	a
i-4	d = 4.3849 - 0.001113 T	485-590		7	a
'-3	d = 4.418 - 0.0011198 T	485-590		7	a
3-2	d = 4.4501 - 0.0011125 T	485-590		7	a
)-1	d = 4.4844 - 0.0011335 T	485-590		7	a
00-0	d = 4.5147 - 0.0011348 T	485-590	(38)	, 7	a
	AgN03-NaN03	400-090	(30)	,	a
100	d = 2.3569 - 7.5 x 10 ⁻⁴ T	583-673	(39)	7	а
)-80	d = 2.8 - 8.6 x 10 ⁻⁴ T	573-633	(39)	7	
)-60)-60	d = 3.2373 - 9.6 x 10 ⁻⁴ T	553-623		7	a
)-40					a
)-40)-20	d = 3.6923 - 0.00107 T	523-621		7	a
00-0		493-615	(40)	7	a
JU-U	d = 4.503 - 0.001098 T	483-633	(40)	7	а
-100		500 540	(44)	-	
)-90	d = 3.109 - 0.001001 T	600-640	(41)	7	a,e
	d = 3.228 - 0.00105 T	553-653		7	a,e
0-80	d = 3.384 - 0.00114 T	513-643		7	a,e
0-70	d = 3.519 - 0.001185 T	453-643		7	a,e
0-60	d = 3.655 - 0.00121 T	433-633		7	a,e
0-50	d = 3.789 - 0.00122 T	433-623		7	a,e
0-40	d = 3.922 - 0.00121 T	433-633		7	a,e
0-30	d = 4.061 - 0.0012 T	433-623		7	a,e
0-20	d = 4.194 - 0.00116 T	463-623		7	a,e
0-10	d = 4.329 - 0.001107 T	463-613		7	a,e
00-0	d = 4.463 - 0.001036 T	490-630	(42)	7	a,e
	AGND3-TIND3				
-100	d = 5.807 - 0.001858 T	490-620	(43)	7	a,e
0-90	d = 5.695 - 0.00178 T	470-600		7	a,e
0-80	d = 5.582 - 0.00171 T	443-593		7	a,e
0-70	d = 5.467 - 0.00163 T	440-590		7	a,e
0-60	d = 5.351 - 0.00156 T	433-593		7	a,e
0-50	d = 5.23 ~ 0.00149 T	440-590		7	a,e
0-40	d = 5.103 - 0.00142 T	433-593		7	a,e
0-30	d = 4.97 - 0.00135 T	440-590		7	a,e
0-20	d = 4.828 - 0.00127 T	443-593		7	a,e
0-10	d = 4.684 - 0.00121 T	470-600		7	a,e
00-0	d = 4.521 - 0.00113 T	490-630	(44)	7	a,e
For addition	nal AgNO3 systems, see : AgCl- ; AgI-				,-
. S. AUGICIO	Ag ₂ S				
00	d = 7.5329 - 9.132 x 10 ⁻⁴ T	1173-127	3 ±5%	3	a
For additio	nal Ag ₂ S systems, see : AgC1- ; AgI-				
	Ag ₂ Se				
00	d = 8.4199 - 9.746 x 10 ⁻⁴ T	1170-125	0 ±5%	3	а

Table 2.1.a Density data (continued)

,	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref .	Comment
For additiona	Ag ₂ Se systems, see : AgC1-				
	Ag ₂ S0 ₄				
00	d = 5.843 - 0.001089 T	953-1043	± 1%	1	а
-100	d = 2.3824 - 3.35 x 10 ⁻⁴ T	1150-1230	(45)	6	a,b,
0-50	d = 4.4768 - 9.643 x 10 ⁻⁴ T	890-1010		6	a,e
00-0	d = 5.8436 - 0.0010895 T	950-1 0 50	(46)	6	a,e
00	d = 8.4178 - 8.125 x 10 ⁻⁴ T	1230-1250	±5%	3	a
For additiona	1 Ag ₂ Te systems, see : AgBr- ; AgC1- ; AgI-				
	AlBr3				
00	d = 3.5491 - 0.0024356 T	380-540	±1%	4	а
	AlBr ₃ -HgBr ₂				
66.67-33.33	d = 4.4973 - 0.0024002 T	30E. 410			
39.51 - 30.49	d = 4.4393 ~ 0.0024499 T	385-410 385-410		4	a
71.87-28.13	d = 4.1321 - 0.00188 T	385-410		4	a a
73.54-26.46	d = 4.2456 - 0.00229 T	385-410		4	a
6.94-23.06	d = 4.2233 - 0.00247 T	385-410		4	a
30. 15-19.85	d = 4.1432 - 0.00253 T	385-410		4	a
34.80-15.20	d = 3.9315 - 0.0023501 T	385-410		4	a
2.66-7.34	d = 3.7383 - 0.0023801 T	385-410		4	a
100-0	d = 3.4969 - 0.0022801 T	385-415	(47)	4	a
		555 415	(47)	•	-
	AlBr3-KBr				
66.67-33.33	d = 3.3615 - 0.0014202 T	385-410		4	a
88.77-31.23	d = 3.3951 - 0.0015102 T	385-410		4	а
71.21-28.79	d = 3.3838 - 0.0015001 T	395-410		4	а
75.66-24.34	d = 3.4219 - 0.0016301 T	385-410		4	a
76.59-23.41	d = 3.4186 - 0.0016401 T	385-410		4	а
	Albra-KC1				
66.7-33.3	d = 3.2364 - 0.0014321 T	360-440		2	a
100.0-0.0	d = 3.5104 - 0.0023143 T	380-430	(48)	2	a
	AlBr3-NaBr				
33.3-66.7	d = 3.026 - 8.12 x 10 ⁻⁴ T	960-1140		4	а
50.0-50.0	d = 3.267 - 0.00113 T	600-1140		4	a
66.7-33.3	d = 3.321 - 0.00132 T	460-800		4	a
80.0-20.0	d = 3.421 - 0.0017 T	400-640		4	a
00.0 20.0					_
	A1Br3-NH ₄ Br				
66.69-33.31	d = 3.2035 - 0.0013152 T	385-420		4	а
70.90-29.10	d = 3.2491 - 0.001404 T	385-420		4	а
74.78-25.22	d = 3.2763 ~ 0.0014586 T	385-420		4	а
75.63-24.37	d = 3.2968 - 0.0015179 T	385-420		4	а
78.40-21.60	d = 3.3275 - 0.0016029 T	385-420		4	a
100-0	d = 3.4969 - 0.0022801 T	385-420	(49)	4	а
	AlBrg-SbBrg				
0-100	d = 4.6695 - 0.0026044 T	375-410	(50)	4	а
4.39-95.61	d = 4.7948 - 0.0029759 T	375-410		4	a, e
15.47-84.53	d = 4.5433 - 0.0025024 T	375-410		4	а
24.69-75.31	d = 4.4314 - 0.0023764 T	375-410		4	a
28.50-71.50	d = 4.9025 - 0.0036345 T	375-410		4	a, e
	d = 4.305 - 0.0022264 T	375-410		4	a
34.06-65.94	Q = 4.300 = 0.0022204	0,0 4.0		-	~

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref .	Comment
1.30-58.70	d = 4.253 - 0.0022804 T	375-410		4	а
. 08-49.92	d = 4.2046 - 0.0023704 T	375-410		4	a
3.63-46.37	d = 4.1157 - 0.0022384 T	375-410		4	a
5.03-44.97	d = 4.0644 - 0.0021363 T	375-410		4	a
.64-38.36	d = 4.0764 - 0.0023651 T	375-410		4	а
6.65-34.35	d = 3.9943 - 0.0022972 T	375-410		4	a
3.69-26.31	d = 3.9073 - 0.0023359 T	375-410		4	а
.66-22.34	d = 3.8138 - 0.0022552 T	375-410		4	а
3.62-20.38	d = 3.813 - 0.0023362 T	375-410		4	a
2.77-17.23	d = 3.7832 - 0.0023679 T	375-410		4	a
3.69-16.31	d = 3.7046 - 0.0022065 T	375-410		4	a
7.11-12.89	d = 3.7167 - 0.0023655 T	375-410		4	a
3.33-6.67	d = 3.6406 - 0.0024165 T	375-410		4	а
00-0	d = 3.4797 - 0.0022354 T	375-410	(51)	4	a
			(0.7	,	_
	AlBr ₃ -ZnBr ₂				
3.80-33.20	d = 3.7214 - 0.0019062 T	375-420		4	а
1.14-28.86	d = 3.7597 - 0.0021414 T	385-420		4	a,e
4 . 68-25 . 32	d = 3.679 - 0.0020521 T	375-420		4	a
7.38-22.62	d = 3.6714 - 0.0021181 T	375-420		4	a
9.94-20.06	d = 3.6617 - 0.0021771 T	375-420		4	а
2.67-17.33	d = 3.6119 - 0.0021424 T	375-420		4	а
6.54-13.46	d = 3.5915 - 0.0022083 T	375-420		4	а
00-0	d = 3.4797 - 0.0022354 T	375-420	(52)	4	a,e
00	A1C13			_	
00	d = 2.5574 - 0.0027118 T	462-569	±0.5%	5	a
-100	· · ·			_	
	d = 5.05 - 0.00226 T	690-750	(53)	5	а
0-80	d = 4.356 - 0.0019 T	480-550		5	a
5-65	d = 3.894 - 0.00171 T	470-670		5	а
0-40	d = 3.142 - 0.00143 T	450-550		5	а
00-0	d = 2.371 - 0.00233 T	480-490	(54)	5	а
3.34-66.66	A1C13-KC1				
9.97-50.03	d = 1.9734 - 6.101 x 10-4 T	960-1040		5	а
	d = 1.9556 - 6.622 x 10 ⁻⁴ T	740-1040		5	а
6.67-33.33	d = 1.9889 - 7.901 x 10 ⁻⁴ T	500-780		5	a
0.0-20.0	d = 2.0252 - 0.0010038 T	480-540		5	а
9.25-50.75	A1C13-LiC1				
4.7-45.3	d = 1.95522 - 7.515 x 10 ⁻⁴ T	420-530	(55)	8	k
5-45	d = 1.9228 - 6.8 x 10 ⁻⁴ T	470-520		8	đ
0-40		450-495		5	а
i0-40 i0-40	d = 1.9742 - 7.999 x 10-4 T	450-495		5	а
	d = 1.96956 - 8.2581 x 10-4 T	470-540		8	d
55-35	d = 1.9885 - 8.4 x 10-4 T	450-495		5	a
5.3-34.7	d = 1.99139 - 9.0699 x 10-4 T	470-540		8	d
9.8-30.2	d = 2.0242 - 0.00102 T	470-520		8	ď
0-30	d = 2.0142 - 9. x 10 ⁻⁴ T	450-495		5	а
5-25	d = 2.05237 - 0.00113429 T	470-520		8	d
5.0-25.0	d = 1.9589 - 8. x 10 ⁻⁴ T	450-495		5	а
	A1C13-LiC1-NaC1				
0-30-20	d = 2.0099 - 7.9492 x 10 ⁻⁴ T	397-534		9	k
50-40-10	d = 1.9779 - 7.6415 x 10 ⁻⁴ T	418-535	(56)	9	k
60-20-30	d = 2.0266 - 7.9358 x 10 ⁻⁴ T	419-545		9	k
0-10-40	d = 2.0435 - 7.905 x 10 ⁻⁴ T	432-606		9	k
0-20-20	d = 2.0174 - 8.6915 x 10 ⁻⁴ T	426-482		9	k
60-30-10	d = 1.9958 - 8.5945 x 10 ⁻⁴ T	426-500		9	k
	d = 2.0245 - 8.487 x 10 ⁻⁴ T			-	

Table 2.1.a Density data (continued)

4	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
9.7-20.2-10.1	d = 2.0525 - 9.8894 x 10 ⁻⁴ T	468-492		9	k
9.8-10.1-20.1	d = 2.0692 - 9.5349 x 10 ⁻⁴ T	464-545		9	k
9.9-20.0-10.1	d = 2.0456 - 9.784 x 10 ⁻⁴ T	464-535		9	k
9.2-10.4-10.4	d = 2.1027 - 0.0011568 T	463-515		9	k
9.9-10.0-10.1	d = 2.105 - 0.0012739 T	473-492		9	k
0 E.47 E	A1C1 ₃ -NaBr	450 405		•	
2.5-47.5	d = 2.4087 - 9.2 x 10 ⁻⁴ T	450-495		2	а
5.0-45.0	d = 2.3536 - 8.6 x 10 ⁻⁴ T	450-495		2	a
0.0-40.0	d = 2.316 - 9.2 x 10 ⁻⁴ T	450-495		2	a
5 . 00-35 . 00	d = 2.2786 - 9.6 x 10 ⁻⁴ T	450-495		2	a
0.0-30.0	d = 2.2567 - 0.00102 T	450-495		2	а
75 . 0-25 . 0	d = 2.25 - 0.00112 T	475-495		2	a
2.0-48.0	d = 2.068 - 8.38 x 10 ⁻⁴ T	400-560		5	а
31.8-38.2	d = 2.034 - 8.66 x 10 ⁻⁴ T	440-540		5	a
3.0-27.0	d = 2.011 - 9.2 x 10 ⁻⁴ T	460-610		5	a
100-0	d = 2.371 - 0.00233 T	480-490	(57)	5	a
	A1C13-NH4C1		(0,7	•	_
50-50	d = 1.9195 - 8.097 x 10 ⁻⁴ T	556-627		5	a,e
70.0-30.0	d = 2.2536 - 9.6 x 10 ⁻⁴ T	450-495		5	
-					a
5.0-25.0	d = 2.2482 - 0.001 T	450-495		5	а
25-75	d = 4.7793 - 0.001534 T	1130-127	0	10	а
25-75	d = 2.77 - 7.398 x 10 ⁻⁴ T	1273-132	3	10	а,
	AlFg-LiF				
D-100	d = 2.3289 - 4.6803 x 10 ⁻⁴ T	1130-132		10	a
i- 9 5	d = 2.4298 - 4.8222 x 10 ⁻⁴ T	1130-132	0	10	a
10-90	d = 2.666 - 6.1429 x 10 ⁻⁴ T	1130-132	0	10	а
15-85	d = 2.7935 - 6.6981 x 10 ⁻⁴ T	1130-132	0	10	a
20-80	d = 2.8751 - 7.1021 x 10 ⁻⁴ T	1130-132	0	10	а
25-75	d = 3.0422 - 8.359 x 10 ⁻⁴ T	1130-132	0	10	а
30-70	d = 3.1456 - 9.3597 x 10 ⁻⁴ T	1130-132	.0	10	а
35-65	d = 3.205 - 0.00102998 T	1130-132	.0	10	а
10-60	d = 3.1147 - 0.00102009 T	1130-132	0	10	а
15-55	d = 2.9235 - 9.4019 x 10 ⁻⁴ T	1130-132	0	10	а
	A1F3-NaF				
0-100	d = 2.755 - 6.36 x 10 ⁻⁴ T	1275-137		10	а
10-90	d = 2.868 - 6.48 x 10 ⁻⁴ T	1275-137		10	а
15-85	d = 3.0535 - 7.65 x 10 ⁻⁴ T	1275~137	0	10	а
20-80	d = 3.2415 - 8.98 x 10 ⁻⁴ T	1275-137	0	10	а
23-77	d = 3.2612 - 9.12 x 10 ⁻⁴ T	1275~137	0	10	a
25-75	d = 3.2733 - 9.2 x 10 ⁻⁴ T	1275-137	0	10	а
30-70	d = 3.2258 - 9.2 x 10 ⁻⁴ T	1275~137	0	10	а
85- 6 5	d = 3.1679 - 9.35 x 10 ⁻⁴ T	1275~137	0	10	а
10-60	d = 2.9921 - 8.9 x 10 ⁻⁴ T	1275~137	0	10	а
45-55	d = 2.7198 - 7.82 x 10 ⁻⁴ T	1275-137	0	10	a
50-50	d = 2.495 - 6.9 x 10 ⁻⁴ T	1275-137	0	10	a
0-100	A1F3-Na3A1F6 d = 3.307 - 9.515 x 10 ⁻⁴ T	1300~134	10 (60)	3	
					a
	$d = 3.2340 = 0.000 \times 10^{-4}$ T				
8.3-91.7	d = 3.2349 - 9.008 x 10 ⁻⁴ T	1300-134		3	a
8.3-91.7 15.7-84.3 23.5-76.5	d = 3.2349 - 9.008 x 10 ⁻⁴ T	1300-134 1300-134 1300-134	10	3 3	a a

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
	A1F3-RDF				
5-75	d = 4.1844 - 0.00136 T	1273-132	3	10	a,e
	A113				
00	d = 4.383 - 0.0025 T	473-513	n.a.	1	a
	Alla-HgI2				-
-44.8 HgI ₂	$d = 3.256 + 0.01263 C + 1.687 \times 10^{-4} C^2 + 3.755 \times 10^{-7} C^3 \dots \dots$	473	(61)	4	a,r
, 44.0 Hg.2		4.0	(0.,	·	٠,.
	A113-K1				
0-35.72 KI	$d = 3.256 - 0.01066 C + 7.417 \times 10^{-4} C^2 - 1.068 \times 10^{-5} C^3 \dots \dots$	473	(62)	4	a,r
	Alla-Spla				
0-58.01 SbI3	d = 3.256 - 0.05304 C + 0.02333 C^2 - 9.521 x 10^{-4} C^3	473	(63)	4	a,r
	A1203-CaF2				
) - 100	(T=1723 K, d=2.52)		(64)	3	а
.8-92.2	d = 4.415 - 0.001 T	1670-173	0	3	а
6.1-83.9	d = 4.564 - 0.001024 T	1670-173	0	3	а
4.7-75.3	d = 4.571 - 9.8 x 10 ⁻⁴ T	1670-173	0	3	а
	A1203-KF-Na3A1F6				
0-0-100	d = 2.115 - 9.82 x 10 ⁻⁴ T	1273-137	3 (65)	11	k
1.3-45.6 - 53.1	d = 3.326743 - 9.7823 x 10 ⁻⁴ T	1255-134	5	11	k
1.8-13.0-85.2	d = 3.31581 - 9.5994 x 10 ⁻⁴ T	1276-135	5	11	k
1.6-32.3-63.1	d = 3.200886 - 9.015 x 10 ⁻⁴ T	1224-135	4	11	k
4.7-8.3-87.0	d = 3.283616 - 9.4148 x 10 ⁻⁴ T	1275-136	4	11	k
5.2-47.7-47.7	d = 3.156207 - 8.9151 x 10 ⁻⁴ T	1200-135	6	11	k
5.6-39.6-54.8	d = 3.186359 - 9.0286 x 10 ⁻⁴ T	1224-135	4	11	k
3.6-15.3-76.1	d = 3.317274 ~ 9.8817 × 10 ⁻⁴ T	1248-135	2	11	k
11.2-22.6-66.2	d = 3.176965 - 8.9118 x 10 ⁻⁴ T	1229-135	5	11	k
11.7-31.1-57.2	d = 3.134136 - 8.6625 x 10 ⁻⁴ T	1219-134	6	11	k
12.2-38.2-49.6	d = 3.094947 - 8.6633 x 10 ⁻⁴ T	1190-135		11	k
18.5-29.9-51.6	d = 3.126709 - 8.6763 x 10 ⁻⁴ T	1216-134		11	k
18.5-21.7-59.8	d = 3.116817 - 8.5164 x 10 ⁻⁴ T	1219-135		11	k
18.6-11.8-69.6	d = 3.095372 - 8.2907 x 10 ⁻⁴ T	1234-135	16	11	k
	A1203-L13A1F6				
0-100	d = 3.0422 - 8.359 x 10 ⁻⁴ T	1130-132	20 (66)	3	а
3-97	d = 3.0466 - 8.46 x 10 ⁻⁴ T	1220-132		3	а
5-94	d = 2.973 - 7.92 x 10 ⁻⁴ T	1220-132	20	3	а
	A1 ₂ 0 ₃ -Na ₃ A1F ₆				
0-100	d = 2.115 - 9.82 x 10 ⁻⁴ T	1273-137	3 (67)	11	k
3-97	d = 3.2522 - 9.148 x 10 ⁻⁴ T	1270-132	20	3	а
6-94	d = 3.212 - 8.906 x 10 ⁻⁴ T	1270-132	20	3	а
9.8-90.2	d = 3.235935 - 9.115 x 10 ⁻⁴ T	1273-136	60	11	k
12-88	d = 3.1458 - 8.523 x 10 ⁻⁴ T	1270-132	20	3	а
18-82	d = 3.0736 - 8.07 x 10 ⁻⁴ T	1270-132		3	а
18.6-81.4	d = 3.132648 - 8.5012 x 10 ⁻⁴ T	1245-136		11	k
22.7-77.3	d = 3.006758 - 7.612 x 10 ⁻⁴ T	1322-144		11	k
24-76	d = 2.9672 - 7.32 x 10 ⁻⁴ T	1270-132		3	а
26.6-73.4	d = 2.97381 - 7.3715 x 10 ⁻⁴ T	1325 - 142	24	11	k
0-100-0	Al ₂ 0 ₃ -Na ₃ AlF ₆ -Si0 ₂ (T=1273 K, d=2.102)		(68)	3	_
0-100-0	(T=1273 K, d=2.102)		(00)	3	a,
0-96-2 0-96-4	(T=1273 K, d=2.099)			ა 3	a, a,
0-96-4 0-94-6	(T=1273 K, d=2.098)			3	
0-94-6 3-97-0	(T=1273 K, d=2.078)			3	a,
3-97-0 3-95-2	(T=1273 K, d=2.084)			3	a, a,
3-95-2 3-93-4	(T=1273 K, d=2.087)			3	a, a,
U JU 7	(1 late by 4 bieter)			U	a,
3-91-6	(T=1273 K, d=2.088)			3	a,

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commer
92-2	(T=1273 K, d=2.071)			3	а, с
90-4	(T=1273 K, d=2.078)			3	а,
88-6	(T=1273 K, d=2.083)			3	a,
-91-0	(T=1273 K, d=2.048)			3	а,
-89-2	(T=1273 K, d=2.06)			3	а,
-87-4	(T=1273 K, d=2.07)			3	а,
-85-6	(T=1273 K, d=2.075)			3	a,
2-88-0	(T=1273 K, d=2.038)			3	a,
2-86-2	(T=1273 K, d=2.051)			3	а,
2-84-4	(T=1273 K, d=2.06)			3	a,
	BaBr ₂			_	-,
00	d = 5.035 - 9.24 x 10 ⁻⁴ T	1123-1173	±1.5%	1	a
~100	d = 2.942 - 7.94 x 10 ⁻⁴ T	1020-1120	(69)	4	а
0.5-79.5	d = 3.574 - 9.37 x 10 ⁻⁴ T	930-1120		4	а
4.3-75.7	d = 3.556 - 8.49 x 10 ⁻⁴ T	930-1120		4	a
3.3-66.7	d = 3.803 - 8.96 x 10 ⁻⁴ T	920-1120		4	a
0.0-60.0	d = 3.974 - 9.3 x 10 ⁻⁴ T	920-1120		4	a
2.0-48.0	d = 4.18 - 9.06 x 10 ⁻⁴ T	910-1120		4	a
5.0-35.0	d = 4.356 - 8.75 x 10 ⁻⁴ T	970-1120		4	a
5.0-25.0	d = 4.704 - 0.001023 T	1030-1120	1	4	a
5.0-15.0	d = 4.551 - 7.25 x 10 ⁻⁴ T	1090-112		4	a
00-0	d = 5.035 - 9.24 x 10 ⁻⁴ T	1120-112		4	
00 0	BaC12	1120-112	3 (70)	•	а
00	d = 4.0152 - 6.813 x 10 ⁻⁴ T	1239-135	4 ±2%	1	a,
	BaC12-BaF2		, _ 	ŗ	٠,
-100 BaF ₂	$d = 2.94 + 0.003033 C + 7.536 \times 10^{-5} C^2 + 9.641 \times 10^{-7} C^3 - 1.019 \times 10^{-8} C^4$	1573	(71)	2	а,
	BaCl2-CdCl2				
- 1 0 0	d = 4.099 - 8.4 x 10 ⁻⁴ T	860-990	(72)	5	а
7.1-82.9	d = 4.25 ~ 9.3 x 10 ⁻⁴ T	870-970		5	а
36-64	d = 4.292 - 9.3 x 10 ⁻⁴ T	860-970		5	а
4.2-45.8	d = 4.331 - 9.6 x 10 ⁻⁴ T	880-960		5	а
) - 100	d = 3.7808 - 0.0010474 T	980-1270	(73)	5	a
11.42-88.58	d = 3.8593 - 0.0011065 T	980-1270		5	a
4.32-75.68	d = 3.8851 - 0.001073 T	980-1270		5	 a
3.02-66.98	d = 3.8866 - 9.976 × 10 ⁻⁴ T	980-1270		5	a
13.75~56.25	d = 3.9558 - 9.939 x 10 ⁻⁴ T	980-1270		5	
3.37-46.63					a
64 . 83-35 . 17	d = 3.9816 - 9.597 x 10 ⁻⁴ T	980-1270		5	a
	d = 4.1136 - 0.0010144 T	980-1270		5	а
2.41-27.59	d = 4.1154 - 9.691 x 10 ⁻⁴ T	980-1270		5	a
5.28-24.72	d = 4.0725 - 9.099 x 10 ⁻⁴ T	980-1270		5	а
34.77-15.23	d = 4.1382 - 9.142 x 10 ⁻⁴ T	980-1270		5	а
100-0	d = 4.3316 - 9.844 x 10 ⁻⁴ T	1240-127	0 (74)	5	а
N- 100	BaC1 ₂ -KC1	1030 440	0 (75)	_	
)-100	d = 2.1559 - 6.103 x 10 ⁻⁴ T	1070-116	,	5	а
3.4-91.6	d = 2.485 - 7.405 x 10 ⁻⁴ T	1070-116		5	а
13.1-86.9	d = 2.2758 - 4.769 x 10 ⁻⁴ T	1070-116		5	а
24.4-75.6	d = 2.7114 - 6.173 x 10 ⁻⁴ T	1070-116		5	а
29.8-70.2	d = 2.858 - 6.838 x 10 ⁻⁴ T	1080-117		5	а
33.3-66.7	d = 3.3797 - 0.0010894 T	1070-116	0	5	а
3.6-66.4	d = 2.9626 - 6.944 x 10 ⁻⁴ T	1070-116	0	5	a
15.7-54.3	d = 3.2396 - 7.643 x 10 ⁻⁴ T	1070-115	0	5	а
9.5-50.5	d = 3.1602 - 6.349 x 10 ⁻⁴ T	1060-115	0	5	а
53.3-36.7	d = 3.4446 - 6.486 x 10 ⁻⁴ T	1100-118	0	5	а

Table 2.1.a Density data (continued)

(mol %)	Density (g cm ⁻³)	- /**			_
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comme
00-0	d = 3.9881 - 6.819 x 10 ⁻⁴ T	1250-1280	(76)	5	а
-100 BaC1 ₂	d = 1.598 + 0.01373 C + 9.709 x 10 ⁻⁵ C ² - 1.737 x 10 ⁻⁶ C ³ + 7.277 x 10 ⁻⁹ C ⁴	1573	(77)	2	a,
	BaCl ₂ -LaCl ₃				
0-90	d = 3.734 - 4.87 x 10 ⁻⁴ T	1110-1260		5	а
5-75	d = 3.732 - 4.68 x 10 ⁻⁴ T	1070-1260		5	a
0-60	d = 3.706 - 4.36 x 10 ⁻⁴ T	1100-1280		5	a
0-50	d = 3.744 - 4.65 x 10 ⁻⁴ T	1100-1270		5	a
5-45	d = 3.785 - 5.03 x 10 ⁻⁴ T	1140-1270		5	а
0-30	d = 3.942 - 6.39 x 10 ⁻⁴ T	1200-1290		5	a
36-1 4	d = 4.158 - 8.28 x 10 ⁻⁴ T	1250~1320		5	a
100-0	d = 4.3316 - 9.844 x 10 ⁻⁴ T	1250~1270	(78)	5	a
	BaCl ₂ -LiCl				
0.0-100.0	d = 1.8965 - 4.458 x 10 ⁻⁴ T	880-1070	(79)	5	а
10.2-89.8	d = 2.689 - 8.3 x 10 ⁻⁴ T	880-1070	(10)	5	a
5.0-75.0	d = 3.069 - 7.92 x 10 ⁻⁴ T	950-1070		5	a
39.4-60.6	d = 3.43 - 8.43 x 10 ⁻⁴ T	910-1070		5	a
3.3-46.7	d = 3.735 - 9.41 x 10 ⁻⁴ T	990-1 0 60		5	a
37.7 -32 .3	d = 3.868 - 8.71 x 10 ⁻⁴ T	1070-1160		5	a
35.0-15.0	d = 3.977 - 8. x 10 ⁻⁴ T	1160-1220		5	a
100-0	d = 4.3316 - 9.844 x 10 ⁻⁴ T			5	
100-0		1240-1270	(80)	5	а
	BaCl2-MgCl2			_	
0.0-100.0	d = 1.988 - 3. x 10 ⁻⁴ T	1030-1190		5	a
1.8-95.2	d = 2.171 - 3.6 x 10 ⁻⁴ T	1030-1190		5	а
13.2-86.8	d = 2.461 - 4.7 x 10 ⁻⁴ T	1030-1190		5	а
31.4-68.6	d = 3.01 - 6.4 x 10 ⁻⁴ T	1030-1190		5	а
57.8-42.2	d = 3.569 - 7.5 x 10 ⁻⁴ T	1030-1190		5	а
80.4-19.6	d = 3.836 - 7.1 x 10 ⁻⁴ T	1030-1190)	5	а
	BaC1 ₂ -NaC1				
0-100	d = 2.2259 - 6.4 x 10 ⁻⁴ T	1080-1120	(82)	5	а
11.0-89.0	d = 2.1654 - 3.2 x 10 ⁻⁴ T	1050-1070)	5	а
18.0~82.0	d = 2.2436 - 2.4 x 10 ⁻⁴ T	1050-1070)	5	а
19-81	d = 2.6378 - 5.837 x 10 ⁻⁴ T	1060-1120)	5	а
25.0~75.0	d = 2.6709 - 4.68 x 10 ⁻⁴ T	1000-1070)	5	а
26-74	d = 2.5799 - 3.698 x 10 ⁻⁴ T	1 0 60-1110)	5	a
28.5-71.5	d = 3.0067 - 7.2 x 10 ⁻⁴ T	1000-1070)	5	а
32.0-68.0	d = 2.9889 - 6.4 x 10 ⁻⁴ T	1000-1070)	5	a
33-67	d = 3.1909 - 8.15 x 10 ⁻⁴ T	990-1110		5	а
35.5-64.5	d = 3.3008 - 8.84 x 10 ⁻⁴ T	1000-1070)	5	а
39.0-61.0	d = 3.2735 - 7.84 x 10 ⁻⁴ T	1000-1070)	5	a
40-60	d = 3.4208 - 9.123 x 10 ⁻⁴ T	990~1100		5	а
42.5-57.5	d = 3.2956 - 7.44 x 10 ⁻⁴ T	1000-1070)	5	а
46.0-54.0	d = 3.7799 - 0.0011645 T	1000-1120)	5	а
53.0-47.0	d = 3.6532 - 9.586 x 10 ⁻⁴ T	1050-1120	ס	5	а
60.0-40.0	d = 3.6349 - 8.399 x 10 ⁻⁴ T	1050-1120	0	5	8
	BaC12~Na3A1F6				
25-75	d = 3.3688 - 9.043 x 10 ⁻⁴ T	1200-1380	0	3	а
50-50	d = 3.5384 - 9.053 x 10 ⁻⁴ T	1050-138		3	а
75-25	d = 3.7392 - 8.124 x 10 ⁻⁴ T	1140-138		3	a
	8aC1 ₂ -PbC1 ₂				
0-100	d = 6.112 - 0.0015 T	940-980	(83)	5	а
13.8-86.2	d = 5.799 - 0.00135 T	850-960	,007	5	a
19.7-80.3	d = 5.728 - 0.00136 T	840-970		5	a
-	d = 5.503 - 0.00127 T	790-980		Ü	a

Table 2.1.a Density data (continued)

BaCl2-ZnCl2 BaCl2-Zn	a a
0-50 d = 3.6008 - 6.56 x 10 ⁻⁴ T	a
BaF_{2} $10 \qquad d = 5.775 - 9.99 \times 10^{-4} \text{ T} \qquad 1600-2000 \pm 3\% \qquad 1$ $BaF_{2}-CsF$ $150 BaF_{2} \qquad d = 2.9 + 0.01123 C + 2.008 \times 10^{-5} C^{2} - 3.343 \times 10^{-7} C^{3} \qquad 1573 \qquad (84) \qquad 10$ $BaF_{2}-KC1$ $1100 BaF_{2} \qquad d = 1.199 + 0.03076 C - 6.245 \times 10^{-5} C^{2} + 3.029 \times 10^{-7} C^{3} \qquad 1573 \qquad (85) \qquad 2$ $BaF_{2}-KF$ $100 \qquad d = 3.063 - 9.301 \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $1990 \qquad d = 3.825 - 0.00119 T \qquad 1473-1573 \qquad 10$ $19-80 \qquad d = 4.21 - 0.00122 T \qquad 1473-1573 \qquad 10$ $19-70 \qquad d = 4.264 - 0.00105 T \qquad 1473-1573 \qquad 10$ $19-60 \qquad d = 4.117 - 7.699 \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $19-50 \qquad d = 4.08 - 5.9 \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $19-50 \qquad d = 4.08 - 5.9 \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $19-61 \qquad d = 4.579 - 8. \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $19-62 \qquad d = 4.579 - 8. \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $19-63 \qquad d = 4.579 - 8. \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $19-64 \qquad 19-65 \qquad 19-65 \qquad 19-75 \qquad 19-75 \qquad 19-75 \qquad 10$ $19-75 \qquad 19-75 \qquad 19-75 \qquad 19-75 \qquad 19-75 \qquad 19-75 \qquad 10$	a
BaF_2-CsF $-50 BaF_2 \qquad d = 2.9 + 0.01123 C + 2.008 \times 10^{-5} C^2 - 3.343 \times 10^{-7} C^3 \qquad 1573 \qquad (84) \qquad 10$ BaF_2-KC1 $-100 BaF_2 \qquad d = 1.199 + 0.03076 C - 6.245 \times 10^{-5} C^2 + 3.029 \times 10^{-7} C^3 \qquad 1573 \qquad (85) \qquad 2$ BaF_2-KF $-100 \qquad d = 3.063 - 9.301 \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $0-90 \qquad d = 3.825 - 0.00119 T \qquad 1473-1573 \qquad 10$ $0-80 \qquad d = 4.21 - 0.00122 T \qquad 1473-1573 \qquad 10$ $0-70 \qquad d = 4.264 - 0.00105 T \qquad 1473-1573 \qquad 10$ $0-60 \qquad d = 4.117 - 7.699 \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $0-50 \qquad d = 4.08 - 5.9 \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $0-40 \qquad d = 4.579 - 8. \times 10^{-4} T \qquad 1473-1573 \qquad 10$ BaF_2-LiF $-67.1 BaF_2 \qquad d = 1.583 + 0.0788 C - 0.001376 C^2 + 1.731 \times 10^{-5} C^3 - 1.058 \times 10^{-7} C^4 \qquad 1573 \qquad (87) \qquad 10$	
BaF_2-KC1 $-100 BaF_2 \qquad d = 1.199 + 0.03076 C - 6.245 \times 10^{-5} C^2 + 3.029 \times 10^{-7} C^3 \qquad 1573 \qquad (85) \qquad 2$ BaF_2-KF $-100 \qquad d = 3.063 - 9.301 \times 10^{-4} T \qquad 1473-1573 \qquad (86) \qquad 10$ $0-90 \qquad d = 3.825 - 0.00119 T \qquad 1473-1573 \qquad 10$ $0-80 \qquad d = 4.21 - 0.00122 T \qquad 1473-1573 \qquad 10$ $0-70 \qquad d = 4.264 - 0.00105 T \qquad 1473-1573 \qquad 10$ $0-60 \qquad d = 4.117 - 7.699 \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $0-50 \qquad d = 4.08 - 5.9 \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $0-40 \qquad d = 4.579 - 8. \times 10^{-4} T \qquad 1473-1573 \qquad 10$ $0-40 \qquad d = 4.579 - 8. \times 10^{-4} T \qquad 1473-1573 \qquad 10$ BaF_2-LiF $-67.1 BaF_2 \qquad d = 1.583 + 0.0788 C - 0.001376 C^2 + 1.731 \times 10^{-5} C^3 - 1.058 \times 10^{-7} C^4 \qquad 1573 \qquad (87) \qquad 10$	a,(
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
BaF2-KF -100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a, (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a, (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0-60 d = 4.117 - 7.699 x 10 ⁻⁴ T	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
0-40	
BaF_2-LiF $-67.1 BaF_2 d = 1.583 + 0.0788 C - 0.001376 C^2 + 1.731 \times 10^{-5} C^3 - 1.058 \times 10^{-7} C^4 \dots 1573 (87) 10$	
0-67.1 BaF ₂ d = 1.583 + 0.0788 C - 0.001376 C ² + 1.731 x 10 ⁻⁵ C ² - 1.058 x 10 ⁻⁷ C ⁴ 1573 (87)	
•	-
-	а,
	•
.0~100.0 d = 2.7571 - 6.2513 x 10 ⁻⁴ T	а
6.5-83.5 d = 3.3934 - 5.76 x 10 ⁻⁴ T	=
3.2-66.8 d = 3.9022 - 5.9959 x 10 ⁻⁴ T	-
0.0-50.0 d = 4.3643 - 6.2311 x 10 ⁻⁴ T	_
BaF ₂ -Na ₃ A1F ₆	•
)-100 d = 3.3191 - 9.513 x 10 ⁻⁴ T	а
2.9-87.1 d = 3.6575 - 8.376 x 10 ⁻⁴ T	a
27.1-72.9 d = 4.2048 - 9.752 x 10 ⁻⁴ T	a,
12.8-57.2 d = 3.9704 - 4.798 x 10 ⁻⁴ T	a,
For additional Both system are Both	
For additional BaF ₂ systems, see : BaCl ₂ - BaI ₂	
100 d = 5.222 - 9.77 x 10 ⁻⁴ T	a
Ba(N0 ₂) ₂	_
100 d = 3.639 - 7. x 10 ⁻⁴ T	a
Ba(NO ₂) ₂ -Ba(NO ₃) ₂	•
39.1-10.9 d = 3.6297 - 6.75 x 10 ⁻⁴ T	а
95.1-10.9 d = 3.6412 - 7. x 10 ⁻⁴ T	a
100-0 d = 3.6392 - 7. x 10-4 T	a
Ba(NO ₂) ₂ -KNO ₂	•
14.3-85.7 (T=633.2 K, d=2.022)	•
	a
	a
	a a
25.0-75.0 d = 2.6639 - 7.051 x 10 ⁻⁴ T	a
	a
	a
	a
	a
	а,
60.0-40.0 d = 3.225 - 7.502 x 10-4 T	
66.7-33.3 d = 3.374 - 8.504 x 10 ⁻⁴ T	
73.9-26.1 d = 3.376 - 7.252 x 10 ⁻⁴ T	
31.8-18.2 d = 3.421 - 6.501 x 10-4 T	a
90.5-9.5 d = 3.533 - 6.85 x 10 ⁻⁴ T	
100-0 d = $3.6392 - 7. \times 10^{-4} \text{ T}$	•

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
	Ba(N0 ₃) ₂ -KN0 ₃				
100	d = 2.3351 - 7.6 x 10 ⁻⁴ T	630-770	(92)	7	a,e
0-90	d = 2.5229 - 7.84 x 10 ⁻⁴ T	630-770	,- ,	7	a,e
0-80	d = 2.6841 - 7.8 x 10 ⁻⁴ T	630-770		7	a, e
0-70	d = 2.843 - 7.86 × 10 ⁻⁴ T	630-770		7	a, e
0-60	d = 2.9965 - 8.1 x 10 ⁻⁶ T	680-770		7	a,e
0-50	d = 3.0901 - 7.801 x 10 ⁻⁴ T	730-770		7	a, e
0 00	Ba(NO ₃) ₂ -NaNO ₃				4,5
- 100	d = 2.3442 - 7.3066 x 10 ⁻⁴ T	600-720	(93)	7	a, e
-95	d = 2.4388 - 7.1154 x 10 ⁻⁴ T	580-710		7	a, 6
.7-93.3	d = 2.4821 - 7.2457 x 10 ⁻⁴ T	590-720		7	a, e
0-90	d = 2.5572 - 7.3941 x 10 ⁻⁴ T	620-720		7	a, e
5-85	d = 2.6668 - 7.635 x 10 ⁻⁴ T	670-720		7	a, e
0-80	d = 2.7783 - 8.0038 x 10 ⁻⁴ T	700-730		7	a, e
	Ba(N0 ₃) ₂ -RbN0 ₃	700 100		·	۵,۰
- 100	d = 3.1366 - 0.0010687 T	590-690	(94)	7	a, e
-95	d = 3.1748 - 0.00105898 T	570-690	/	7	a,
0-90	d = 3.2156 - 0.00105898 T	550-690		7	a,
5-85	d = 3.2565 ~ 0.00105898 T	550-680		7	a,
0 00	0.200	555 555		·	۵,
For additional	$Ba(NO_3)_2$ systems, see : $AgNO_3$ -; $Ba(NO_2)_2$ -				
	Ba0-CaF ₂				
8.65~81.35	(T=1823 K, d=2.66)			3	a
	Ba(P0 ₃) ₂				
160	d = 3.7366 - 4.921 x 10 ⁻⁴ T	1170-1240	±3%	6	а
	BeC1 ₂				
100	d = 2.276 - 0.0011 T	706-746	±2%	1	a
	BeC1 ₂ -KC1				
20.4-79.6	d = 2.122 - 5.9 x 10 ⁻⁴ T	933-1033		12	k
33.0-67.0	d = 2.068 - 6. x 10 ⁻⁴ T	873-973		12	k
55.3-44.7	d = 2.176 - 8.3 x 10 ⁻⁴ T	673-753		12	k
72.2-27.3	d = 2.199 - 9. x 10 ⁻⁴ T	723-813		12	k
85.8-14.2	d = 2.209 - 9.4 x 10 ⁻⁴ T	673-753		12	k
	BeC1 ₂ -NaC1				
19.6-80.4	d = 2.139 - 5.8 x 10 ⁻⁴ T	983-1043		12	k
37.2-62.8	d = 2.228 - 7.4 × 10 ⁻⁴ T	703-793		12	k
48.0-52.0	d = 2.175 - 7.6 x 10 ⁻⁴ T	623-693		12	k
60.3-39.7	d = 2.158 - 8. x 10 ⁻⁴ T	573-623		12	k
70.2-29.8	d = 2.145 - 8.3 x 10 ⁻⁴ T	623-683		12	k
	BeF ₂				
100	d = 1.972 - 1.45 x 10 ⁻⁵ T	1073-1123	±0.5%	10	a,
	BeF ₂ -LiF				
34.0-66.0	d = 2.413 - 4.88 x 10 ⁻⁴ T	800-1080		10	а
50.2-49.8	d = 2.349 - 4.24 x 10 ⁻⁴ T	930-1130		10	a
74.9-25.1	d = 2.158 - 2.39 x 10 ⁻⁴ T	860-1130		10	a
89.2-10.8	d = 2.075 - 1.48 x 10 ⁻⁴ T	1020-1130		10	a
	BeF2-LiF-ThF₄	.020 1100		10	a
15-70-15	d = 4.439 - 9.5 x 10 ⁻⁴ T	830-1010		3	a
18-70-12	d = 4.044 - 8.05 x 10 ⁻⁴ T	800-1010		3	a
23.9-70.1-6.0	d = 3.295 - 6.71 x 10 ⁻⁴ T	830-980		3	a
	BeF2-LiF-UF4-ZrF4	200 000		·	a
30.0-64.8-0.2- 5.0	- , ,	790-1030		3	a
D.U				•	
20 1-64 7 5 6	BeF2-LiF-ZrF4				
30.1-64.7-5.2	d = 2.697 - 5.78 x 10 ⁻⁴ T	720-960		3	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
	BeF ₂ -NaF				
0-80	(T=1073 K, d=2.024)			10	a
4-76	(T=1073 K, d=2.018)			10	a
0-70	d = 2.554 - 5.05 x 10 ⁻⁴ T	873-1073		10	a,e
3.3-66.7	d = 2.447 - 3.85 x 10 ⁻⁴ T	873-1073		10	a,e
6-64	d = 2.545 ~ 5. x 10 ⁻⁴ T	873-1073		10	a,e
0-60	d = 2.576 - 5.301 x 10 ⁻⁴ T	873-1073		10	a,e
2-58	d = 2.531 - 4.9 x 10 ⁻⁴ T	873-1073		10	a,e
7.1-52.9	d = 2.383 - 3.25 x 10 ⁻⁴ T	873-1073		10	a,e
8-52	d = 2.561 - 5.3 x 10 ⁻⁴ T	873-1073		10	a,e
0-50	d = 2.511 - 5.05 x 10 ⁻⁴ T	873-1073		10	a,e
4-46	d = 2.538 - 5.15 x 10 ⁻⁴ T	873-1073		10	a,e
0-40	d = 2.54 - 5.2 x 10 ⁻⁴ T	873-1073		10	a,e
0-20	(T=1073 K, d=1.971)	2.22		10	a
	BeF2-Na3A1F6				-
00-55 Na3A1F6	d = 1.4759 + 0.01192 C - 5.8 x 10 ⁻⁵ C ²	1273	(95)	3	a
		1270	(30)	Ū	a
	BeF ₂ -RbF				
60-50	d = 2.89 - 5. x 10 ⁻⁴ T	880-1060		10	a
	BeF ₂ -UF ₄				
35-35	(T=1073.2 K, d=4.502)			10	a
	BiBr ₃				
100	d = 6.0594 - 0.002637 T	580-1200	± 1%	4	a
	BiCl ₃				
100	d = 5.073 - 0.0023 T	523-623	±0.5%	1	a
_					
For additional	BiCl ₃ systems, see : AlCl ₃ - Bil ₃				
100	•	700 755	4.10/		_
100	d = 6.186 - 0.0022 T	700-765	±1%	4	а
	Bi ₂ (Mo0 ₄) ₃				
100	d = 6.2457 - 0.0010779 T	955-1030	±2%	6	а
	Bi2(Mo04)3-PbMo04				
0-100	d = 6.1477 - 6.77 x 10 ⁻⁴ T	1347-1401	(96)	6	a,b,
19.6-80.4	d = 6.0788 - 7.5 x 10 ⁻⁴ T	1288-1331		6	a
10-60	d = 5.517 - 3.41 x 10 ⁻⁴ T	1113-1230		6	а
52.2-37.8	d = 6.5207 - 0.0012682 T	1070-1110		6	a
71.5-28.5	d = 6.4205 - 0.001201 T	1030-1050		6	a
78.7-21.3	d = 6.1798 - 9.904 x 10 ⁻⁴ T	970-1110		6	a
90-10	d = 6.2892 - 0.0011079 T	1030-1070		6	а
100-0	d = 6.2457 - 0.0010779 T	950-1030	(97)	6	a
	Bi ₂ 0 ₃ -KP0 ₃				
100-97.3 KPD3	d = 33.054 - 0.3086 C	1123	(98)	3	a
	Bi203-K2B407				
100-95.8 K ₂ B ₄ 0 ₇	d = 11.07 ~ 0.09082 C	1123	(99)	3	а
~	Bi ₂ 0 ₃ -NaP0 ₃				
		4400	(100)	3	
100-96.3 NaP0 ₃	d = 37.169 - 3.5115 C	1123	(100)	٥	a
	Bi ₂ 0 ₃ -Na ₂ B ₄ 0 ₇				
100-96.3	d = 14.969 - 0.12875 C	1123	(101)	3	a
Na ₂ B ₄ 0 ₇					
	Bi ₂ S ₃				
100	d = 7.237 - 9.72 x 10 ⁻⁴ T	1016-1136	n.a.	1	а
	Bi ₂ (W0 ₄) ₃				
100	d = 8.4886 - 0.0012713 T	1143-1275	±2.5%	6	a,e
					,-

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
	Bi ₂ (WO ₄) ₃ -PbWO ₄				
- 100	d = 7.8451 - 9.526 x 10 ⁻⁴ T	1424-1504	(102)	6	a,e
0-80	d = 8.1537 - 0.0011474 T	1350-1390	(/	6	a,e
0-60	d = 8.4896 - 0.0013651 T	1250-1310		6	a,e
0-40	d = 8.558 - 0.0014247 T	1150-1250		6	a,e
3-27	d = 8.7006 - 0.0014583 T	1170-1250		6	a,e
30-20	d = 8.8526 - 0.0016464 T	1130-1250		6	a,e
00-0	d = 8.4886 - 0.0012713 T	1143-1278	(103)	6	a,e
00-0	B ₂ 0 ₃	1143-12/6	(103)	0	a,e
00	d = 1.8324 - 2.4718 x 10 ⁻⁴ T	723-1300	±1.5%	1	а
100	d = 1.6035 - 6.7737 x 10 ⁻⁵ T	1300-1890	±1.5%	1	a
100	B ₂ 0 ₃ -NaF	1300-1890	±1.5%	ļ	a
7.6-12.4	d = 2.053 - 3.1 x 10 ⁻⁴ T	870-1070		3	а
2.35-7.65	d = 1.933 - 2.55 x 10 ⁻⁴ T	870-1070		3	a
		870-1070		3	
17.31-2.69	d = 1.799 - 2.05 x 10 ⁻⁴ T	870-1070	(104)	3	a
100-0	(T=1073 K, d=1.548)		(104)	3	а
00 50 No D 0	B ₂ 0 ₃ -Na ₂ B ₄ 0 ₇	1000	(105)	3	_
100-60 Na ₂ B ₄ 0 ₇	d = 1.946 + 0.00573 C - 4.7 x 10 ⁻⁵ C ²	1223	(105)	3	а
	CaBr ₂				
100	d = 3.618 - 5. x 10 ⁻⁴ T	1036-1064	±1.5%	1	a,c
	CaC1 ₂				
100	d = 2.5261 - 4.225 x 10 ⁻⁴ T	1060-1223	±0.5%	1	a,c
	CaC1 ₂ -CaMo0 ₄				
3.0-0.0 CaMoO.	d = 2.0257 + 0.01774 C	1073	(106)	3	a
_	CaC1 ₂ -CaO				
	-	*****		•	_
91.10-8.90	d = 2.6143 - 4.592 x 10 ⁻⁴ T	1100-1250		3	а
95.10-4.90	d = 2.5615 - 4.414 x 10 ⁻⁴ T	1070-1190		3	a
98.85-1.18	d = 2.5025 - 4.151 x 10 ⁻⁴ T	1100-1130		3	а
	CaCl ₂ -CsCl		(400)	_	
0.00-100.00	d = 4.375 - 0.0016514 T	1035-1156		5	a,c
12.20-87.80	d = 3.8243 - 0.0011758 T	1040-1130		5	a,c
25.00-75.00	d = 1.635 + 6.731 x 10 ⁻⁴ T	1120-1170)	5	a,c
41.20-58.80	d = 2.2372 + 2.13 x 10 ⁻⁵ T	1270-1330)	5	a,c
61.60-38.40	d = 3.8335 - 0.0012887 T	1290-1320)	5	a,c
70.80-29.20	d = 3.2884 - 9.285 x 10 ⁻⁴ T	1250-1310)	5	a,c
80.70-19.30	d = 2.3585 - 2.236 x 10 ⁻⁴ T	1190-1290)	5	a,c
86.90-13.10	d = 2.8162 - 6.441 x 10 ⁻⁴ T	1070-1220)	5	a,c
100.0-0.0	d = 3.2133 ~ 0.001023 T	1070-1190	(108)	5	a,c
	CaCl ₂ -DyCl ₃				
0-100	d = 4.256 - 6.8296 x 10 ⁻⁴ T	1034-1273	(109)	13	k
19.6-80.4	d = 4.017 - 6.1136 x 10 ⁻⁴ T	1073-1273	3	13	k
32.6-67.4	d = 4.011 - 7.0361 x 10 ⁻⁴ T	1073-1273	3	13	k
48.4-51.6	d = 3.643 - 7.0118 x 10 ⁻⁴ T	993-1254		13	k
66.4-33.6	d = 3.32 - 5.4332 x 10 ⁻⁴ T	1053-1273	3	13	k
79.8-20.2	d = 2.956 - 3.0067 x 10 ⁻⁴ T	1053-127	3	13	k
89.4-10.6	d = 2.781 - 4.3738 x 10 ⁻⁴ T	1073-127		13	k
100-0	d = 2.589 - 4.2447 x 10 ⁻⁴ T	1098-1284		13	k
	CaC12-KC1		,,		**
0-100	d = 2.1866 - 6.2556 x 10 ⁻⁴ T	1080-1120	0 (111)	5	а
7.2-92.8	d = 2.2231 - 6.1878 x 10 ⁻⁴ T	1060-1120		5	a
16.2-83.8	d = 2.254 - 6.0024 x 10 ⁻⁴ T			5	
	d = 2.265 - 5.5242 x 10 ⁻⁴ T	1070-1170			a
28.2-71.8		1090-1170		5	a
50.1-49.9	d = 2.3934 - 5.6284 x 10 ⁻⁴ T	1080-117		5	а
68.1-31.9	d = 2.4067 - 4.8912 x 10 ⁻⁴ T	1080-117		5	a
77.7-22.3	d = 2.3534 - 3.9512 x 10 ⁻⁴ T	1090-117	ט	5	а

Table 2.1.a Density data (continued)

					_
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
00-0	d = 2.4968 - 3.9594 x 10 ⁻⁴ T	1070-1140	(112)	5	а
0-40-40	CaCl ₂ -KCl-MgCl ₂ d = 2.185 - 4.662 x 10 ⁻⁴ T	1081-1173		14	k
0-20-60	d = 2.29 - 5.114 x 10 ⁻⁴ T	1082-1193		14	k
0-60-20	d = 2.24 - 5.647 x 10 ⁻⁴ T	1086-1219		14	k
0-40-20	d = 2.281 - 4.821 x 10 ⁻⁴ T	1078-1195		14	k
0-20-40	d = 2.362 - 5.097 x 10 ⁻⁴ T	1078-1200		14	k
-20-20	d = 2.4 - 4.749 x 10 ⁻⁴ T	1095-1173		14	k
. 20 20	CaCl2-LaCl3	1035 1170		17	•
-100	d = 4.0742 - 7.436 x 10 ⁻⁴ T	1173-1273	(113)	15	k
2.3-87.7	d = 4.113 - 8.386 x 10 ⁻⁴ T	1170-1273		15	k
5.2-74.8	d = 3.9523 - 8.089 x 10 ⁻⁴ T	1158-1273		15	k
.9- 6 2.1	d = 3.7984 - 7.913 x 10 ⁻⁴ T	1133-1273		15	k
0.0-50.0	d = 3.4343 - 5.755 x 10 ⁻⁴ T	1113-1273		15	k
.9-38.1	d = 3.5606 - 8.076 x 10 ⁻⁴ T	1073-1273		15	k
. 0-25 . 0	d = 4.0791 - 0.0014529 T	1073-1271		15	k
. 0-12. 0	d = 2.85 - 5.152 x 10 ⁻⁴ T	1103-1273		15	k
0-0	d = 2.5377 ~ 4.167 × 10 ⁻⁴ T	1124-1274	(114)	15	k
	CaCl ₂ -LaCl ₃ -NaCl	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(11-7)		Α.
100-0	d = 4.0108 - 6.93 x 10 ⁻⁴ T	1173-1273	(115)	15	k
5-85.8-10.7	d = 3.9981 - 8.156 x 10 ⁻⁴ T	1173-1278	* · · · - *	15	k
25-85.5-7.25	d = 3.9041 - 7.391 x 10 ⁻⁴ T	1223-1263		15	k
3-70.9-21.8	d = 3.8732 - 8.195 x 10 ⁻⁴ T	1173-1275		15	k
.4-58.5-31.1	d = 3.7689 - 8.596 x 10 ⁻⁴ T	1083-1279			
. 25-85 . 0-3 . 75				15	k 1.
	5 d = 3.4641 - 7.873 x 10 ⁻⁴ T	1173-1273		15	k
. 1-69.8-15.1	d = 3.6671 - 6.514 x 10 ⁻⁴ T	1038-1276		15	k
3.0-28.1-53.9		1123-1273		15	k
	d = 3.1287 - 6.967 x 10 ⁻⁴ T	1050-1274		15	k
1.6-13.6-64.8	d = 2.7662 - 6.311 x 10 ⁻⁴ T	1023-1273		15	k
2.5-70.0-7.5	d = 3.7041 - 6.612 x 10 ⁻⁴ T	1155-1273		15	k
5-0-75	d = 2.3737 - 5.815 x 10 ⁻⁴ T	1063-1273		15	k
5.2-49.6-25.2	d = 3.4351 - 6.587 x 10 ⁻⁴ T	1053-1223		15	k
2.5~35.0-32.5	d = 3.2685 - 6.653 x 10 ⁻⁴ T	1033-1283		15	k
3.19-55.75- 1.06	d = 3.6471 - 7.442 x 10 ⁻⁴ T	1073-1273		15	k
0.25-19.5-40.2	5 d = 2.8854 - 5.607 x 10 ⁻⁴ T	1033-1248		15	k
3.7-41.7-14.6	d = 3.4196 - 6.934 x 10 ⁻⁴ T	1061-1273		15	k
1.8-10.4-44.8	d = 2.6323 - 4.897 x 10 ⁻⁴ T	1023-1223		15	k
0-0-50	d = 2.4208 - 5.114 x 10 ⁻⁴ T	1023-1273		15	k
1.5-27.3-18.2	d = 3.2068 - 6.638 x 10 ⁻⁴ T	1063-1275		15	k
1.8-13.6-21.6	d = 2.8776 - 5.593 x 10 ⁻⁴ T	1038-1272		15	k
5-0-25	d = 2.4935 - 4.58 x 10 ⁻⁴ T	1043-1278		15	k
	CaCl ₂ -LiCl				
-100	d = 1.8767 - 4.2 x 10 ⁻⁴ T	903-1273	(116)	5	а, е
0-90	d = 1.9945 - 4.3 x 10 ⁻⁴ T	884-1273		5	a, e
0-80	d = 2.0718 - 4.2 x 10 ⁻⁴ T	859-1273		5	а, е
70	d = 2.1411 - 4.1 x 10 ⁻⁴ T	827-1273		5	a, e
-6 0	d = 2.2101 - 4.1 x 10 ⁻⁴ T	798-1273		5	а,
) -5 0	d = 2.2633 - 4. x 10 ⁻⁴ T	852-1273		5	a,
-40	d = 2.3407 - 4.2 x 10 ⁻⁴ T	892-1273		5	а, е
-30	d = 2.3703 - 4. x 10 ⁻⁴ T	931-1273		5	a, e
)-20	d = 2.4169 - 4. x 10 ⁻⁴ T	982-1273		5	a,
) - 10	d = 2.4186 - 3.9 x 10 ⁻⁴ T	1029-1273		5	a, (
0-0	d = 2.4852 - 3.9 x 10 ⁻⁴ T	1075-1273	(117)	5	a, e
	CaC12-MgC12		,	J	α, τ
0-100.0	d = 1.95 - 2.705 x 10 ⁻⁴ T	1020-1090	(118)	5	a

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
0.1-59.9	d = 2.3796 - 4.093 x 10 ⁻⁴ T	1070-1130		5	a
9.1-40.9	d = 2.3656 ~ 4.571 x 10 ⁻⁴ T	1090-1160		5	a
5.4-34.6	d = 2.268 - 3.977 x 10 ⁻⁴ T	1100-1180		5	a
7.9-32.1	d = 2.2379 - 3.955 x 10 ⁻⁴ T	1090-1170		5	а
6.7-13.3	d = 2.1352 - 3.697 x 10 ⁻⁴ T	1090-1160		5	a
00.0-0.0	d = 2.4986 - 3.976 x 10 ⁻⁴ T	1070-1140	(119)	5	а
	CaCl ₂ -MgCl ₂ -NaCl				
0-60-20	d = 2.18 - 3.806 x 10 ⁻⁴ T	1073-1173		14	k
0-40-40	d = 2.175 - 4.03 x 10 ⁻⁴ T	1087-1198		14	k
.0-20 -6 0	d = 2.276 - 5.309 x 10 ⁻⁴ T	1090-1188		14	k
0-20-40	d = 2.299 - 4.387 x 10 ⁻⁴ T	1079-1157		14	k
0~40-20	d = 2.372 - 4.77 x 10 ⁻⁴ T	1087-1205		14	k
0-20-20	d = 2.363 - 4.002 x 10 ⁻⁴ T	1106-1206		14	k
	CaC1 ₂ -MnC1 ₂				
-100	d = 2.928 - 6.15 x 10 ⁻⁴ T	940-1020	(120)	5	а
0~80	d = 2.962 - 6.36 x 10 ⁻⁴ T	930-1020		5	a
0-70	d = 2.916 ~ 6.14 x 10 ⁻⁴ T	950-1020		5	а
0-60	d = 2.848 - 5.6 x 10 ⁻⁴ T	930-1020		5	а
0~50	d = 2.916 - 6.48 x 10 ⁻⁴ T	920-1020		5	а
0-40	d = 2.889 - 6.84 x 10 ⁻⁴ T	880-1020		5	a
0-30	d = 2.84 - 6.32 x 10 ⁻⁴ T	960-1020		5	а
30-20	d = 2.72 - 5.5 x 10 ⁻⁴ T	990-1050		5	a
	CaC1 ₂ -NaC1			-	-
- 100	d = 2.1319 - 5.297 x 10 ⁻⁴ T	1090-1170	(121)	5	a,c
5.0-85.0	d = 2.1305 - 4.546 x 10 ⁻⁴ T	1090-1170		5	a,c
2.5-67.5	d = 2.1791 - 4.006 x 10 ⁻⁴ T	1090-1150		5	a, c
0.9-49.1	d = 2.38 - 4.955 x 10 ⁻⁴ T	1060-1160		5	-
4.1-35.9	d = 2.4925 - 5.367 x 10 ⁻⁴ T	1080-1180			a,c
7.5-22.5	d = 2.4637 - 4.564 x 10-4 T			5	a,c
30.2-19.8	d = 2.4651 - 4.444 x 10-4 T	1080-1170		5	a,c
100-0	d = 2.4986 - 3.976 x 10 ⁻⁴ T	1040-1120		5	a,c
	CaC12-NdC13	1070-1140	(122)	5	a,c
15.5-84.5	d = 4.038 ~ 7.37 x 10 ⁻⁴ T	1012 1201		16	4-
25.5-74.5	d = 3.976 - 7.94 x 10 ⁻⁴ T	1013-1291		16	k
39.2-60.8		1003-1284		16	k
54.5-45.5	d = 3.751 - 7.01 x 10 ⁻⁴ T	1006-1282		16	k
2.8-27.2	d = 3.543 - 6.88 x 10 ⁻⁴ T	1003-1297		16	k
	d = 3.224 - 6.23 x 10 ⁻⁴ T	1003-1283		16	k
35.6-14.4	d = 2.805 - 4.42 x 10 ⁻⁴ T	1093-1276		16	k
100-0	d = 2.588 - 4.24 x 10 ⁻⁴ T	1098-1284	(123)	16	k
9.7-80.3	CaCl ₂ -PrCl ₃				
	d = 4.06 - 7.93 x 10 ⁻⁴ T	1093-1273		16	k
33.2-66.8	d = 3.909 - 8.2 x 10 ⁻⁴ T	1073-1273		16	k
19.3-50.7	d = 3.558 - 6.64 x 10 ⁻⁴ T	1073-1273		16	k
54.8-35.2	d = 3.303 - 5.86 x 10 ⁻⁴ T	1073-1273		16	k
79.4-20.6	d = 3.008 - 5.18 x 10 ⁻⁴ T	1073-1273		16	k
90.3-9.7	d = 2.772 - 4.87 x 10 ⁻⁴ T	1073-1273	}	16	k
1 0 0-0	d = 2.588 - 4.24 x 10 ⁻⁴ T	1098-1284	(124)	16	k
	CaC1 ₂ -RbC1				
0-100	d = 3.084 - 8.5 x 10 ⁻⁴ T	1008-1273	(125)	5	a,e
10-90	d = 2.9062 - 7.1 x 10 ⁻⁴ T	940-1273		5	a,e
20-80	d = 2.8413 - 6.7 x 10 ⁻⁴ T	976-1273		5	a, e
30-70	d = 2.8188 - 6.6 x 10 ⁻⁴ T	1085-1273	3	5	a, e
10-60	d = 2.8233 - 6.7 x 10 ⁻⁴ T	1137-1273	3	5	a, e
50-50	d = 2.8183 - 6.7 x 10 ⁻⁴ T	1148-1273		5	a, e
50-40	d = 2.7579 + 6.2 x 10 ⁻⁴ T				a, e
JU 40	u 2.7075 0.2 x 10 1	1134-1273	,	5	

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
0-20	d = 2.6091 - 4.9 x 10 ⁻⁴ T	1003-1273		5	a,e
D-10	d = 2.5496 - 4.4 x 10 ⁻⁴ T	1035-1273		5	a,e
00-0	d = 2.4852 - 3.9 x 10 ⁻⁴ T	1075-1273	(126.)	5	a,e
	CaCl ₂ -SrCl ₂				,-
-100	d = 3.2429 - 4.7002 x 10 ⁻⁴ T	1170-1320	(127)	5	a,e
8.8-41.2	d = 3.0117 - 5.8018 x 10 ⁻⁴ T	1170-1320		5	a,e
00-0	d = 2.4793 - 4. x 10 ⁻⁴ T	1120-1270	(128)	5	a,e
	CaF ₂				
00	d = 3.179 - 3.91 x 10 ⁻⁴ T	1640-2300	±5%	1	а
	CaF ₂ -Ca0				
2.6-37.4	d = 2.892 - 1.46 x 10 ⁻⁴ T	1890-2010		3	а
4.2-25.8	d = 2.874 - 1.55 x 10 ⁻⁴ T	1830-2010		3	a
6.6-13.4	d = 2.969 - 2.19 x 10 ⁻⁴ T	1770-1950		3	а
00-0	d = 3.0511 - 2.81 x 10 ⁻⁴ T	1720-1970	(129)	3	a,b,e
	CaF ₂ -CaSiO ₃				
00-85 CaSiO3	d = 1.1 + 0.00574 C	1823	(130)	3	а
	CaF ₂ -LiF				
.0-100.0	d = 2.074 - 3.321 x 10 ⁻⁴ T	1125-1350	(131)	10	a
.0-93.0	d = 2.12 - 2.621 x 10 ⁻⁴ T	1125-1350		10	а
4.0-86.0	d = 2.336 - 3.64 x 10 ⁻⁴ T	1095-1350		10	а
0.0-80.0	d = 2.453 - 3.704 x 10 ⁻⁴ T	1080-1350		10	a
0.0-70.0	d = 2.809 - 5.755 x 10 ⁻⁴ T	1155-1350		10	a
	CaF ₂ -MgD	1100 1000			a
91	d = 6.034 - 0.00205 T	1680-1820)	3	a
	CaF ₂ -NaF				
0.0-100.0	d = 2.7571 - 6.2513 x 10 ⁻⁴ T	1290-1390	(132)	10	a
6.5-83.5	d = 2.8803 - 6.038 x 10 ⁻⁴ T	1210-1440)	10	a
33.2-66.8	d = 2.9258 - 5.4489 x 10 ⁻⁴ T	1150-1430)	10	a
50.0-50.0	d = 3.0783 - 5.4195 x 10 ⁻⁴ T	1330-1440)	10	a
	CaF2-Na2B407				
5-54 Na ₂ B ₄ 0 ₇	d = 2.344 - 0.0065 C + 4.7 x 10 ⁻⁵ C ²	1223		3	a
	CaF ₂ -Na ₃ A1F ₆				
) - 100	d = 3.2892 - 9.3797 x 10 ⁻⁴ T	1273-1353	(133)	3	a
12.4-87.6	d = 3.256 - 8.91 x 10 ⁻⁴ T	1260-1340)	3	a
23.0-77.0	d = 3 265 - 8 7 x 10 ⁻⁴ T	1260-1346)	3	а
32.2-67.8	d = 3.295 - 8.7 x 10 ⁻⁴ T	1280-1366		3	a
	d = 3.289 ~ 8.4 x 10 ⁻⁴ T			3	
10.2-59.8		1260-1360			a
54.2-35.8	d = 3.402 - 8.41 x 10 ⁻⁴ T	1280-1360	,	3	a
64.3-35.7	(T=1823 K, d=2.18)			3	a
15.4-24.6				3	a
87.3-12.7	(T=1773 K, d=2.2)			3	a
100-0	(T=1673 K, d=2.4)		(134)	3	а
80-20	d = 5.54 - 0.00167 T	1680-180	0	3	a
90.2-9.8	(T=1800 K, d=2.54)	.550 100	-	3	a
		1690190	n	3	
95-5	$d = 5.398 - 0.001595 T \dots $ $CaF_2-V_20_5$	1680-180	·	3	а
93-7	d = 8.4084 - 0.0032652 T	1690-181	0	3	a,b,
98-2	d = 9.563 - 0.00408 T	1730-181		3	a, 5,
	CaF ₂ -ZrO ₂	55 101	-	•	~
78.6-21.4	(T=1813 K, d=3.42)			3	a
36.3-13.7	(T=1793 K, d=3)			3	a

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
3.5-6.5	(T=1753 K, d=2.7)			3	а
For additional	${\sf CaF}_2$ systems, see : ${\sf Al}_2{\sf 0}_3-$; ${\sf Ba0} {\sf CaI}_2$				
00	d = 4.233 - 7.51 x 10 ⁻⁴ T	1059-130	1	1	a
For CaMoO ₄ sys	CaMoO ₄ tems, see : CaCl ₂ -				
. o. oamoog oyo	Ca(NO ₃) ₂ -CsNO ₃				
) - 100	d = 3.8531 - 0.0015303 T	690-720	(135)	7	a,e
-95	d = 3.6916 ~ 0.0013607 T	670-700		7	a,e
0-90	d = 3.5736 ~ 0.0012513 T	650-690		7	a,e
15-85	d = 3.4679 ~ 0.0011577 T	620-680		7	a,e
0-80	d = 3.375 - 0.0010808 T	580-690		7	a,e
25-75	d = 3.3102 ~ 0.0010467 T	540-670		7	a,e
28.9-71.1	d = 3.2916 - 0.0010716 T	490-660		7	a,e
30-70	d = 3.2706 - 0.0010538 T	500-650		7	a,e
35~65	d = 3.1976 - 0.0010069 T	530-610		7	a,e
10-60	d = 3.0787 - 8.737 x 10 ⁻⁴ T	550-630		7	a,e
15-55	d = 2.952 - 7.26 x 10 ⁻⁴ T	560-650		7	a,e
	Ca(NO ₃) ₂ -KNO ₃	***************************************			-,-
) - 100	d = 2.3313 - 7.5455 x 10 ⁻⁴ T	620-710	(136)	7	a
14.57-85.43	d = 2.37 - 7.4667 x 10 ⁻⁴ T	590-670		7	a
24.43-75.57	d = 2.3875 - 7.2692 x 10 ⁻⁴ T	550-670		7	a
	d = 2.4078 - 7.2895 x 10 ⁻⁴ T	470-660		7	
32.28-67.72	Ca(NO ₃) ₂ -KNO ₃ -NaNO ₃	47.0-660		,	а
11-67-22	d = 2.357 ~ 7.38 x 10 ⁻⁴ T	506-752		17	k
11-44.5-44.5	d = 2.352 ~ 7.21 x 10 ⁻⁴ T			17	
		509-746			k
11-22-67	d = 2.343 - 7.03 x 10 ⁻⁴ T	523-721		17	k
12-40-48	d = 2.357 - 7.2 x 10 ⁻⁴ T	573-673		17	k
12-19-69	d = 2.352 - 7.1 x 10 ⁻⁴ T	591-699		17	k
13-62-25	d * 2.346 ~ 7.1 x 10 ⁻⁴ T	573-673		17	k
20-59-21	d = 2.399 - 7.595 x 10 ⁻⁴ T	441-635		17	k
20-40-40	d = 2.389 ~ 7.297 x 10 ⁻⁴ T	478-729		17	k
22-36-42	d = 2.351 - 6.6 x 10 ⁻⁴ T	573-673		17	k
25-50-25	d = 2.397 - 7.301 x 10 ⁻⁴ T	441-757		17	k
25-25-50	d = 2.367 - 6.673 x 10 ⁻⁴ T	502-733		17	k
32-52-16	d = 2 421 - 7 406 x 10-4 T	423-699		17	k
43-28.5-28.5	d = 2.396 - 6.346 x 10 ⁻⁴ T	591-699		17	k
40-20.5 20.5	Ca(NO ₃) ₂ -NaNO ₃	351-055			•
0~100	d = 2.3384 - 7.2198 x 10 ⁻⁴ T	600-720	(137)	7	a
3.5-96.5	d = 2.3475 - 7.2485 x 10 ⁻⁴ T	590-680	(101)	7	a
	d = 2.3573 - 7.1727 x 10 ⁻⁴ T			7	_
8.0-92.0		580-680			а
10.9-89.1	d = 2.392 - 7.553 x 10 ⁻⁴ T	570-670		7	а
16.2-83.8	d = 2.4226 - 7.3297 x 10 ⁻⁴ T	550-670		7	а
23.0-77.0	d = 2.398 - 7.0703 x 10 ⁻⁴ T	530-660		7	а
27.2-72.8	d = 2.3956 - 6.8497 x 10 ⁻⁴ T	530-640		7	а
33.1-66.9	d = 2.4017 - 6.7378 x 10 ⁻⁴ T	530-640		7	а
44.6-55.4	d = 2.4269 - 6.7 x 10 ⁻⁴ T	630-660		7	a
For additiona	11 Ca(NO ₃) ₂ systems, see : AgNO ₃ -				
	CaO-KOH-K2CO3				
5.1-92.9-2.0	d = 2.0681 - 4.56 x 10 ⁻⁴ T	680-860		3	а
8.5-89.5-2.0	d = 2.0801 - 4.5 x 10 ⁻⁴ T	680-860		3	a
	Ca0-Na0H-Na ₂ C0 ₃				
1.6-96.3-2.1	d = 2.107 - 5.001 x 10 ⁻⁴ T	780-870		3	а
		100 370		•	•

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
	CaO-SiO ₂				
)-45 SiO ₂	d = 8.224 - 0.2322 C + 0.001708 C ²	1873		3	a
, 40 0102	d Class Control Contro	1070		Ū	•
or additiona	1 CaO systems', see : CaCl ₂ - ; CaF ₂ -				
	CaSiO ₃				
00	(T=1823 K, d=1.67)		±2%	3	a
400	CaSO ₄ -Na ₂ SO ₄				
-100 00	d = 2.405 - 3.27 x 10 ⁻⁴ T	1240-1470		6	a
0-90 0-80	d = 2.51 - 3.66 x 10 ⁻⁴ T	1240-1470		6	a
0-80 0-70	d = 2.695 - 4.3 x 10 - 1	1240-1470		6	a
0-70	d = 2.763 - 4.5 x 10-4 T	1240-1470 1240-1470		6 6	a
0-60 0-60	d = 2.808 - 5.53 x 10 ⁻⁴ T			_	a
5- 4 5	d = 2.816 - 4.46 x 10 ⁻⁴ T	1240-1470		6	a
0-40	d = 2.823 - 4.4 x 10 ⁻⁴ T	1240-1470		6	a
0-40	CdBr ₂	1240-1470		6	а
	-				
00	d = 4.9831 - 0.00108 T	853-993	±1.5%	1	а
	CdBr ₂ -CdCl ₂				
-100	d = 4.1 - 8.4 x 10 ⁻⁴ T	860-980	(139)	2	а
9.7-70.3	d = 4.384 - 9. x 10 ⁻⁴ T	860-950		2	a
5.6-54.4	d = 4.504 - 9.1 x 10 ⁻⁴ T	870-980		2	а
5.3-34.7	d = 4.644 - 9.3 x 10 ⁻⁴ T	880-970		2	a
00-0	d = 4.9831 - 0.00108 T	860-990	(140)	2	а
	CdBr ₂ -KBr				
0.0-80.0	d = 3.4395 - 9.2928 x 10 ⁻⁴ T	940-1170		4	а
5.5-74.5	d = 3.314 - 7.126 x 10 ⁻⁴ T	870-1120		4	a,e
0.3-69.7	d = 3.5369 - 8.574 x 10 ⁻⁴ T	890-1100		4	a,e
0.0-60.0	d = 3.694 - 8.407 x 10 ⁻⁴ T	780-1010		4	a,e
1.0-39.0	d = 4.0665 - 8.5782 x 10 ⁻⁴ T	920-1100		4	а
0.2-19.8	d = 4.5717 - 9.851 x 10 ⁻⁴ T	880-1030		4	a,e
00-0	d = 4.4627 - 5.3769 x 10 ⁻⁴ T	900-1060	(141)	4	а
	CdBr ₂ -KC1				
-100	d = 2.07 - 5.4 x 10 ⁻⁴ T	1100-1320	(142)	2	a
0-80	d = 2.731 - 6.73 x 10 ⁻⁴ T	722-990		2	a
0-60	d = 3.294 - 7.91 x 10 ⁻⁴ T	988-1235		2	a
5.3-54.7	d = 3.404 - 6.7 x 10 ⁻⁴ T	820-940		2	a
0-40	d = 3.991 - 9.1 x 10 ⁻⁴ T	800-900		2	a
1.8-38.2	d = 4.559 - 0.00158 T	720-800		2	a
0.5-19.5	d = 4.88 - 0.00141 T	880-1080		2	a
00-0	d = 4.463 - 5.4 x 10-4 T	900-1060	(143)	2	a
	CdBr ₂ -NaBr				
-60 NaBr	d = 4.038 - 0.007258 C - 5.155 x 10 ⁻⁵ C ²	873	(144)	4	k,a
	CdBr ₂ -T1Br				.,.
0-100 CdBr ₂	d = 5.6795 - 0.021769 C + 5.1895 x 10 ⁻⁵ C ²	873	(145)	4	a
		0,0	(145)	7	4
	CdBr ₂ -ZnBr ₂				
-100	d = 4.08 - 9.05 x 10 ⁻⁴ T	690-860	(146)	4	а
0-90	d = 4.157 - 9.09 x 10 ⁻⁴ T	690-830		4	а
0-80	d = 4.209 - 8.81 x 10 ⁻⁴ T	700-730		4	a
0-70	d = 4.287 - 8.84 x 10 ⁻⁴ T	720-830		4	а
0-50	d = 4.403 - 8.46 x 10 ⁻⁴ T	820-940		4	а
0-40	d = 4.47 - 8.43 x 10 ⁻⁴ T	820-930		4	а
0-30	d = 4.571 - 8.7 x 10 ⁻⁴ T	830-930		4	a
0-20	d = 4.645 - 8.72 x 10 ⁻⁴ T	860-930		4	a
0-10	d = 4.747 - 9. x 10 ⁻⁴ T	860-930		4	а
00-0	d = 4.834 - 9.15 x 10 ⁻⁴ T	870-950	(147)	4	a

Table 2.1.a Density data (continued)

(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
	CdBr ₂ -ZnCl ₂				
100	d = 2.822 - 5.06 x 10 ⁻⁴ T	630-770	(148)	2	a
-90	d = 3.049 - 5.3 x 10 ⁻⁴ T	760-890		2	a
-80	d = 3.29 - 5.9 x 10 ⁻⁴ T	770-900		2	a
-70	d = 3.514 - 6.46 x 10 ⁻⁴ T	770-910		2	a
-60	d = 3.71 - 6.7 x 10 ⁻⁴ T	780-920		2	а
-50	d = 3.921 - 7.18 x 10 ⁻⁴ T	820-910		2	а
-40	d = 4.093 - 7.38 x 10 ⁻⁴ T	820-900		2	а
-30	d = 4.29 - 7.86 x 10 ⁻⁴ T	830-900		2	a
-20	d = 4.482 - 8.42 x 10 ⁻⁴ T	840-900		2	а
) - 10	d = 4.668 - 8.96 x 10 ⁻⁴ T	840-930		2	a
0-0	d = 4.834 - 9.15 x 10 ⁻⁴ T	870-950	(149)	2	а
	CdC1 ₂				
00	d = 4.078 - 8.2 x 10 ⁻⁴ T	840-1080	±0.5%	1	a
	CdC12-Cd12				
0-100.0	d = 5.133 - 0.001117 T	670-970	(150)	2	a
.0-75.0	d = 4.928 - 0.00106 T	650-970		2	a
0.0-50.0	d = 4.607 - 8.8 x 10 ⁻⁴ T	700-970		2	a
.0-25.0	d = 4.425 - 8.7 x 10 ⁻⁴ T	780-970		2	a
0.0-0.0	d = 4.058 - 8. x 10 ⁻⁴ T	860-970	(151)	2	а
	CdC1 ₂ -CsC1				
0-100.0	d = 3.718 - 0.001024 T	980-1110	(152)	5	а
3.2-86.8	d = 3.783 - 0.001034 T	920-1090		5	a
2-69.8	d = 3.707 - 9.46 x 10 ⁻⁴ T	920-1070		5	a
5.7-53.3	d = 3.824 - 0.001002 T	940-1070		5	а
1.1-38.9	d = 3.949 - 0.001012 T	920-1090		5	а
1.3-25.7	d = 4.083 - 0.001053 T	900-1070		5	a
2.4-17.6	d = 4.156 - 0.001052 T	880-1080		5	a
00.0-0.0	d = 4.059 - 8. x 10 ⁻⁴ T	920-1070	(153)	5	а
	CdC1 ₂ -KBr				
0-100.0	d = 2.908 - 8. x 10 ⁻⁴ T	1080-1260	(154)	2	а
.7-90.3	d = 3.082 - 8.5 x 10 ⁻⁴ T	1040-1260)	2	a
9.7-80.3	d = 2.991 - 7.1 x 10 ⁻⁴ T	1000-122	ס	2	а
9.9-70.1	d = 3.175 - 7.9 x 10 ⁻⁴ T	940-1220		2	а
9.6-60.4	d = 3.421 - 9.2 x 10 ⁻⁴ T	740-980		2	а
1.5-48.5	d = 3.562 - 9.7 x 10 ⁻⁴ T	680-980		2	a
5.4-44.6	d = 3.721 - 0.00102 T	760-960		2	a
3.8-36.2	d = 3.834 - 9.7 x 10 ⁻⁴ T	800-1040		2	a
1.2-18.8	d = 3.953 - 9.4 x 10 ⁻⁴ T	800-960		2	а
9.6-10.4	d = 4.025 - 8.8 x 10 ⁻⁴ T	840-980		2	а
00.0-0.0	d = 4.058 - 8. x 10 ⁻⁴ T	860-980	(155)	2	a
4.8-75.2	CdC1 ₂ -KC1	••-		_	
	d = 2.692 - 7.2 x 10 ⁻⁴ T	880-1020		5	а
0.0-60.0	d = 3.015 - 8.2 x 10 ⁻⁴ T	740-950		5	а
9.2 -4 0.8 3.1-16.9	d = 3.438 - 9.5 x 10 ⁻⁴ T	740-950		5	а
	d = 3.887 - 9.6 x 10 ⁻⁴ T	810-970		5	a
00-0	d = 4.099 - 8.4 x 10 ⁻⁴ T	860-990	(156)	5	а
-100	-	Anc 155		_	
- 100 5.0-75.0	d = 1.835 - 3.82 x 10 ⁻⁴ T	900-1020	(157)	5	а
		850-1020		5	а
0.0-50.0 5.0-25.0	d = 3.476 - 8.45 x 10 ⁻⁴ T	810-1020		5	а
5.0-25.0 00-0	d = 3.818 - 8.25 x 10 ⁻⁴ T	800-1020		5	а
	d = 4.078 - 8.2 x 10 ⁻⁴ T	840-1080	(158)	5	а
	Cuc 12-rac 1				
4.3-65.7	d = 3.123 - 8.2 x 10 ⁻⁴ T	860-960		5	a

Table 2.1.a Density data (continued)

(mo1 %)	Density (g cm ⁻³) Equation	T range(K) Accur.	Ref.	Comment
5.5-44.5	d = 3.566 - 9.2 x 10 ⁻⁴ T	850-950	5	a
4.8-35.2	d = 3.827 - 0.00104 T	820-950	5	a
.8-22.2	d = 3.937 - 9.5 x 10 ⁻⁴ T	860-970	5	a
00-0	d = 4.099 - 8.4 x 10 ⁻⁴ T	860-1080 (159)	5	a
	CdCl2-PbCl2	(1907)		_
-100	d = 6.112 - 0.0015 T	790-980 (160)	5	a
0.6-79.4	d = 5.793 - 0.00143 T	820-950	5	a
2.8-67.2	d = 5.602 - 0.00139 T	760-950	5	a
8.2-41.8	d = 5.048 ~ 0.00118 T	790-970	5	а
9.9-20.1	d = 4.584 ~ 0.00102 T	820-950	5	а
00-0	d = 4.078 ~ 8.2 x 10 ⁻⁴ T	840-1080 (161)	5	a
. 0-100. 0	CdC1 ₂ -RbC1	00- 44 (400)	_	
	d = 3.092 ~ 8.52 x 10 ⁻⁴ T	995-1175 (162)	5	а
0.3-89.7 2.6-77.4	d = 3.177 ~ 8.47 x 10 ⁻⁴ T	1010-1175	5	а
7.7-62.3	d = 3.243 ~ 8.55 x 10 ⁻⁴ T	935-1085	5	а
8.8-51.2	d = 3.367 - 8.53 x 10 ⁻⁴ T	905-1025	5	a
0.1-39.9	d = 3.754 - 9.91 x 10 ⁻⁴ T	875-1055	5	a
4.4-25.6	d = 3.915 - 9.37 x 10 ⁻⁴ T	860-1040	5 5	a
00.0-0.0	d = 4.059 - 8. x 10 ⁻⁴ T	890-1070	_	a
00.0-0.0	CdC1 ₂ -T1C1	920-1070 (163)	5	a
- 100	d = 6.802 - 0.001682 T	730-780 (164)	5	a
0-90	d = 6.548 ~ 0.001742 T	720-770	5	a
0-80	d = 6.259 - 0.001721 T	720-770	5	a
0-70	d = 5.931 - 0.001607 T	720-770	5	a
0-60	d = 5.593 - 0.001437 T	720-770	5	a
0-50	d = 5.398 ~ 0.001418 T	720-770	5	a
0-40	d = 5.18 - 0.00136 T	720-770	5	a
0-30	d = 4.922 - 0.001243 T	730-780	5	а
0-20	d = 4.661 - 0.001122 T	790-820	5	a
00-0	d = 4.098 - 8.4 x 10 ⁻⁴ T	880-960 (165)	5	а
	CdC1 ₂ -ZnBr ₂			
100	d = 4.08 ~ 9.05 x 10 ⁻⁴ T	690-860 (166)	2	a
10-90	d = 4.067 - 8.9 x 10 ⁻⁴ T	820-910	2	а
0-80	d = 4.016 - 8.33 x 10 ⁻⁴ T	820-920	2	a
0-70	d = 3.967 - 7.77 x 10 ⁻⁴ T	820-910	2	а
10-60	d = 3.926 - 7.3 x 10 ⁻⁴ T	800-910	2	а
60-50	d = 3.92 ~ 7.15 x 10 ⁻⁴ T	790-900	2	a
60-40	d = 3.927 - 7.14 x 10 ⁻⁴ T	820-920	2	a
0-30	d = 3.942 - 7.18 x 10 ⁻⁴ T	820-920	2	а
10-20	d = 3.969 - 7.34 x 10 ⁻⁴ T	820-910	2	а
30-10	d = 4.004 - 7.54 x 10 ⁻⁴ T	820-910	2	а
100-0	d = 4.098 - 8.4 x 10 ⁻⁴ T	880-960 (167)	2	a
) - 100	CdCl ₂ -ZnCl ₂ d = 2.822 - 5.06 x 10 ⁻⁴ T	620 750 (160)	-	_
10-90	d = 2.916 - 4.96 x 10 - 1	630-760 (168)		a
10-90 20-80	d = 2.997 - 5.06 x 10 - 1	650-840 700-840	5 5	a,f
30-70	d = 3.135 - 5.35 x 10 ⁻⁴ T	700-840	5	a
10-60	d = 3.263 - 5.7 x 10 ⁻⁴ T	730-840	5	a
60-50		780-890	5	a
60-50 60-40	d = 3.388 - 6. x 10 ⁻⁴ T	800-880	5	а
70-30	d = 3.516 - 6.4 x 10 ⁻⁴ T	850-920	5	а
	d = 3.643 - 6.7 x 10 ⁻⁴ T	850-920	5	а
	d = 2 795 - 7 9 1074 T			
0-20 0-10	d = 3.785 - 7.2 x 10 ⁻⁴ T	860-920 860-920	5 5	a a

Table 2.1.a Density data (continued)

(mo1 %)	Density (g cm ⁻³) Equation	T rango/V)	Annun	Dof	Common
	Equation	T range(K)	Accur.	Ref.	Commen
or addition	al CdCl ₂ systems, see : BaCl ₂ - ; CdBr ₂ -				
	CdI ₂				
00	d = 5.133 - 0.001117 T	673-973	±1%	1	а
	Cdl ₂ -Csl				
-100	d = 4.2631 - 0.0011824 T	930-1040	(170)	4	a
1.5-78.5	d = 4.4331 - 0.0012026 T	880-1020	(170)	4	a
1.5-58.5	d = 4.6243 - 0.0012543 T	750-1000		4	a
0.7-39.3	d = 4.8803 - 0.0013478 T	830-980		4	a
4.4-15.6	d = 5.0443 - 0.0013043 T	760-960		4	a
00-0	d = 5.078 - 0.0010668 T	770-950	(171)	4	а
	CdI ₂ -KI				
100	d = 3.37 - 9.6 x 10 ⁻⁴ T	970-1070	(172)	4	a
5.0-85.0	d = 3.767 - 0.001092 T	890-1070	(112)	4	a
3.3-66.7	d = 4.074 - 0.001115 T	690-1070		4	a
0.0-50.0	d = 4.454 - 0.001222 T	490-970		4	a
6.7-33.3	d = 4.784 - 0.001291 T	610-970		4	a
5.0-15.0	d = 4.965 - 0.00117 T	650-970		4	a
00.0-0.0	d = 5.133 - 0.001117 T	670-970	(173)	4	a
	CdI ₂ -NaI				
2.0-58.0		800 080			
5.7-24.3	d = 4.4989 - 0.0011834 T	800-920 660-850		4	a
00-0	d = 5.078 - 0.0010668 T	770-950	(174)	4	a a
		770 330	(174)	•	a
For addition	nal Cdi ₂ systems, see : CdCl ₂ - Cd(NO ₃) ₂ -KNO ₃				
5-75	d = 2.6569 - 9.3947 x 10 ⁻⁴ T	560-570		7	a,
0-70	d = 2.6994 - 9.3947 x 10 ⁻⁴ T	535-570		7	a,
5-65	d = 2.7439 - 9.3947 x 10 ⁻⁴ T	495-570		7	a,
0-60	d = 2.7909 - 9.3947 x 10 ⁻⁴ T	480-570		7	a,
5-55	d = 2.8407 - 9.3947 x 10 ⁻⁴ T	475-570		7	a,
5.5-54.5	d = 2.8458 - 9.3947 x 10 ⁻⁴ T	475-570		7	a,
0-50	d = 2.8936 - 9.3947 x 10 ⁻⁴ T	475-570		7	a,
5-45	d = 2.95 - 9.3947 x 10 ⁻⁴ T	475-570		7	a,
30-40	d = 3.0103 - 9.3947 x 10 ⁻⁴ T	465-570		7	a,
55-35	d = 3.0748 - 9.3947 x 10 ⁻⁴ T	480-570		7	a,
70-30	d = 3.1437 - 9.3947 x 10 ⁻⁴ T	535-570		7	a,
For addition	nal Cd(N03) ₂ systems, see : AgN03- Cd(P03) ₂				
00	d = 3.4974 - 1.865 x 10 ⁻⁴ T	1200-1260) ±3%	6	a
	CeC1 ₃				
100	d = 4.248 - 9.2 x 10 ⁻⁴ T	1123-122	3 ±1%	1	a
	CeC13-KC1				
0-90	d = 2.574 - 6.95 x 10 ⁻⁴ T	1075-117)	5	а
20-80	d = 2.868 - 6.99 x 10 ⁻⁴ T	1075-117		5	a
25-75	d = 3.062 - 7.59 x 10 ⁻⁴ T	1075-117		5	a
0-60	d = 3.306 - 7.72 × 10 ⁻⁴ T	1075-117		5	a
5-45	d = 3.521 - 7.85 x 10 ⁻⁴ T	1075-117		5	a
0-30	d = 3.829 - 8.85 x 10 ⁻⁴ T	1075-117		5	a
35-15	d = 4.016 - 8.86 x 10 ⁻⁴ T	1075-117		5	a
00-0	d = 4.336 - 0.001 T	1095-117		5	a
	CeC13-KC1*NaC1				
.9-97.1	d = 2.3846 - 7.1999 x 10 ⁻⁴ T	973-1123	(176)	18	z,
.3-93.7	d = 2.5838 - 8.6 x 10 ⁻⁴ T	973-1123		18	k

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
	CeF ₃				
00	d = 6.253 - 9.36 x 10 ⁻⁴ T	1700-2200	±3%	1	а
	CeF ₃ -KF				•
0-100.0	d = 2.555 - 6.241 x 10 ⁻⁴ T	1140-1350	(177)	10	a
0.0-90.0	d = 2.975 - 6.678 x 10 ⁻⁴ T	1080-1350	(,	10	a
0.0-80.0	d = 3.333 - 7.052 x 10 ⁻⁴ T	1065-1350		10	a
0.0-70.0	d = 3.68 - 7.171 x 10 ⁻⁴ T	1050-1350		10	a
0.0-60.0	d = 3.82 - 5.617 x 10 ⁻⁴ T	1185-1350		10	a
	CeF ₃ -LiF				_
. 0-100. 0	d = 2.074 - 3.321 x 10 ⁻⁴ T	1125-1350	(178)	10	а
2.0-88.0	d = 3.286 - 6.235 x 10 ⁻⁴ T	1095-1350		10	a
9.0-81.0	d = 3.837 - 7.091 x 10 ⁻⁴ T	1095-1350		10	a
4.0-76.0	d = 4.161 - 7.484 x 10 ⁻⁴ T	1155-1350		10	a
0.0-70.0	d = 4.061 - 5.133 x 10 ⁻⁴ T	1200-1350		10	a
0.0 70.0	CeFg-NaF	1200-1000		10	a
. 0- 100. 0	· ·	1075 1050	(470)		
	d = 2.682 - 6.151 x 10 ⁻⁴ T	1275-1350		10	а
0.0-90.0	d = 3.207 - 6.35 x 10 ⁻⁴ T	1215-1350		10	а
0.0-80.0	d = 3.67 - 6.478 x 10 ⁻⁴ T	1110-1350		10	a .
8.0-72.0	d = 3.999 - 6.512 x 10 ⁻⁴ T	1080-1350		10	a,k
0.0-70.0	d = 4.063 - 6.42 x 10 ⁻⁴ T	1080-1350		10	а
0.0-60.0	d = 4.486 - 7.249 x 10 ⁻⁴ T	1185-1350)	10	а
	CoBr ₂ -KND ₃				
003-99.997	d = 2.3284 - 7.502 x 10 ⁻⁴ T	670-700		3	а
005-99.995	d = 2.3284 ~ 7.502 x 10 ⁻⁴ T	670-700		3	а
014-99.986	d = 2.3294 ~ 7.502 x 10 ⁻⁴ T	670-700		3	а
027-99.973	d = 2.3311 ~ 7.502 x 10 ⁻⁴ T	670-700		3	а
	Co(P03)2				
100	d = 2.9505 ~ 1.341 x 10 ⁻⁴ T	1395-1470	±3%	6	a
	Co ₄ S ₃				
100	d = 4.3 - 1. x 10 ⁻⁶ T	1473-1523	n.a.	6	a,e
	Co ₄ S ₃ -Cu ₂ S				
100-0 Cu ₂ S	d = 4.2179 + 0.011803 C + 2.0527 x 10 ⁻⁶ C ²	1473	(180)	6	a,b
_	Co ₄ S ₃ -FeS				
0-100 FeS	$d = 4.2922 + 0.029749 C - 3.5985 \times 10^{-4} C^2 + 1.4328 \times 10^{-7} C^3 \dots \dots$	1500	(101)		
0-100 FeS		1523	(181)	6	a,b
	Co4S3-Ni3S2				
100-0 Ni3S2	$d = 4.3049 + 0.0196 C + 5.2086 \times 10^{-5} C^2 - 1.5998 \times 10^{-6} C^3 \dots \dots$	1523	(182)	6	a,b
	CsBF ₄				
100	d = 3.477 - 0.00119 T	840-990	±1%	6	а
	CsBr				
100	d = 4.2449 - 0.0012234 T	910-1133	±0.5%	1	а
	CsBr-CsC1				
0-100	d = 3.7987 - 0.0010849 T	940-1080	(183)	2	а
25-75	d = 3.9488 - 0.0011506 T	960-1120		2	а
50-50	d = 4.0482 - 0.0011692 T	940-1070		2	а
75-25	d = 4.1283 - 0.0011755 T	940-1070		2	а
100-0	d = 4.2236 - 0.0011952 T	940-1090	(184)	2	а
	CsBr-CsF				
0-100	d = 4.8135 - 0.0012105 T	930-1070	(185)	2	а
12-88	d = 4.8084 - 0.0013137 T	930-1070		2	а
25-75	d = 4.6676 - 0.0012885 T	930-1070		2	a
37-63	d = 4.5614 - 0.0012711 T	930-1070		2	a
50-50	d = 4.4914 - 0.0012749 T	930-1070		2	a
63-37	d = 4.4032 - 0.0012488 T	930-1070		2	а
75-25	d = 4.3567 - 0.0012476 T	930-1070		2	a

Table 2.1.a Density data (continued)

(mol %)	Density (g cm ⁻³) Equation	T range(K)	Accur.	Ref.	Comment
	<u> </u>				
00-0	d = 4.2716 - 0.0012468 T	930-1070	(186)	2	a
-100	d = 4.3345 - 0.0012568 T	950-1080	(187)	2	а
-75	d = 4.313 - 0.0012501 T	960-1130		2	а
0-50	d = 4.2817 - 0.0012303 T	960-1130		2	а
5-25	d = 4.2811 - 0.0012334 T	950-1130		2	a
00-0	d = 4.2236 - 0.0011952 T	940-1080	(188)	2	а
0-50	d = 3.624 - 0.001009 T	980-1110		4	а
0-50	d = 3.3597 - 9.408 x 10 ⁻⁴ 7	940-1100		2	а
-100 CsBr	d = 1.449 + 0.01179 C	1073	(189)	2	a,n
	CsBr-LiBr				-,
-100 LiBr	d = 2.9385 - 0.0027181 C - 2.8117 x 10 ⁻⁵ C ²	1073	(190)	4	а
-100 CsBr	d = 1.562 + 0.02526 C - 2.034 x 10^{-4} C ² + 1.453 x 10^{-6} C ³ - 5.51 x 10^{-9} C ⁴ .	1073	(191)	2	a,n
For additiona	CSC1				
100	d = 3.7692 - 0.001065 T	945-1179	±1.5%	1	a,c
100	d = 4.8135 - 0.0012105 T	930-1070	(192)	2	a
2-88	d = 4.7942 - 0.0013456 T	930-1070		2	a
5-75	d = 4.6394 - 0.0013283 T	930-1070		2	a
7-63	d = 4.3801 - 0.0012054 T	930-1070		2	a
0-50	d = 4.2382 - 0.0011803 T	930-1070		2	a
3-37	d = 4.1302 - 0.0011778 T	930-1070		2	a
5-25	d = 3.9361 - 0.001077 T	930-1070		2	a
38-12	d = 3.8766 - 0.0010959 T	930-1070		2	a
00-0	d = 3.7693 - 0.0010536 T	930-1070	(193)	2	a
	CsC1-CsI				
) - 100	d = 4.3345 - 0.0012568 T	950-1080	(194)	2	a
25-75	d = 4.2279 - 0.0012283 T	940-1120		2	a
0-50	d = 4.1068 - 0.0011823 T	970-1120		2	a
75-25	d = 3.9872 - 0.001167 T	970-1130		2	a
100-0	d = 3.7987 - 0.0010849 T	940-1080	(195)	2	a
)-100 KBr	d = 2.633 - 0.005799 C + 2.448 x 10 ⁻⁵ C ²	1073	(196)	2	a
	CsC1-KC1				
-10 0	d = 2.1089 - 5.583 x 10 ⁻⁴ T	1060-1210	(197)	5	a,b,
25-75	d = 2.6582 - 7.654 x 10 ⁻⁴ T	1030-1140)	5	a ,b,
50-50	d = 3.0844 - 8.84 x 10 ⁻⁴ T	1000-1140	0	5	a,b,
75-25	d = 3.4567 - 9.898 x 10 ⁻⁴ T	970-1140		5	a,b,
100-0	d = 3.7987 - 0.0010849 T	940-1090	(198)	5	a,b,
0-100 CsC1	d = 2.319 + 0.002196 C - 1.196 x 10^{-5} C ² + 1.978 x 10^{-7} C ³	1073	(199)	2	a
	CsC1-LaC13				
5.1-94.9	d = 3.707 - 5.5 x 10 ⁻⁴ T	1140-123	0	5	a,c
10.3-89.7	d = 3.75 - 6.38 x 10 ⁻⁴ T	1140-120	0	5	a,c
22.0-78.0	d = 3.696 - 6.84 x 10 ⁻⁴ T	1130-122	0	5	a,c
35.0-65.0	d = 3.679 - 7.52 x 10 ⁻⁴ T	1080-117	0	5	a,c
17.7-52.3	d = 3.707 - 8.3 x 10 ⁻⁴ T	1090-117	0	5	a,c
80.2-39.8	d = 3.708 - 8.75 x 10 ⁻⁴ T	1060-118	0	5	a,c
73.5-26.5	d = 3.74 - 9.41 x 10 ⁻⁴ T	1050-116	0	5	a,c
87.3 - 12.7	d = 3.782 - 0.001015 T	1020-116	0	5	a,c
	d = 3.7808 - 0.0010474 T			5	

Table 2.1.a Density data (continued)

(Density (g cm ⁻³)			_
(mo1 %)	Equation	T range(K) Accur.	Ref.	Commer
	CsC1-LiC1			
-100	d = 1.8965 - 4.458 x 10 ⁻⁴ T	880-1070 (201)	5	а
. 73~98 . 27	d = 1.9574 - 4.672 x 10 ⁻⁴ T	880-1070	5	а
7.33-82.67	d = 2.4174 - 6.285 x 10 ⁻⁴ T	880-1070	5	а
0-70	d = 2.747 - 7.304 x 10 ⁻⁴ T	880-1070	5	а
5-55	d = 3.0975 - 8.69 x 10 ⁻⁴ T	880-1070	5	a
3-47	d = 3.2408 - 9.253 x 10 ⁻⁴ T	880-1070	5	a
60-40	d = 3.3352 - 9.427 x 10 ⁻⁴ T	880-1070	5	а
5-25	d = 3.5147 - 9.754 x 10 ⁻⁴ T	880-1070	5	а
10-10	d = 3.697 - 0.0010474 T	880-1070	5	a
00-0	d = 3.7808 - 0.0010474 T	920-1070 (202)	5	a
	CsC1-MgC1 ₂	523 1075 (202)	·	u
.0-100.0	d = 1.95 - 2.712 x 10 ⁻⁴ T	1020-1090 (203)	5	а
5.5-34.5	d = 2.954 - 7.22 x 10 ⁻⁴ T	980-1070	5	a
6.7-33.3	d = 3.032 - 7.777 x 10 ⁻⁴ T	980-1080	5	
9.3-30.7	d = 3.001 ~ 7.3 x 10 ⁻⁴ T			a
		950-1070	5	a
100.0-0.0	d = 3.829 ~ 0.0011234 T	950-1070 (204)	5	а
	CsC1-MnC1 ₂	A.A	_	
- 100	d = 2.928 - 6.15 x 10 ⁻⁴ T	940-1020 (205)	5	а
0-90	d = 2.969 - 5.8 x 10 ⁻⁴ T	910-970	5	а
20-80	d = 3.167 - 7.73 x 10 ⁻⁴ T	910-970	5	а
30-70	d = 3.204 - 8.09 x 10 ⁻⁴ T	880-970	5	а
10-60	d = 3.212 - 8.15 x 10 ⁻⁴ T	880-970	5	а
0-50	d = 3.24 - 8.35 x 10 ⁻⁴ T	900-970	5	а
60-40	d = 3.202 - 7.73 x 10 ⁻⁴ T	880-970	5	a
70-30	d = 3.271 - 7.95 x 10 ⁻⁴ T	860-970	5	а
30-20	d = 3.473 - 9.26 x 10 ⁻⁴ T	820-970	5	a
90-10	d = 3.576 - 9.49 x 10 ⁻⁴ T	940-1000	5	а
100-0	d = 3.731 - 0.001023 T	930-990 (206)	5	а
	CsC1-NaBr			
0-100 NaBr	d = 2.632 - 0.002292 C - 1.235 x 10 ⁻⁵ C ²	1073 (207)	2	а
	CsC1-NaC1			
0-100	d = 2.139 ~ 5.444 x 10 ⁻⁴ T	1090-1170 (208)	5	а
25-75	d = 2.7526 - 7.616 x 10 ⁻⁴ T	1030-1140	5	а
50-50	d = 3.2194 - 9.41 x 10 ⁻⁴ T	1010-1140	5	а
75-25	g = 3.4953 - 9.853 x 10 ⁻⁴ T	1000-1140	5	а
100-0	d = 3.7987 - 0.0010849 T	940-1090 (209)	5	а
	CsC1-PbC1 ₂			
0.0-100.0	d = 6.089 - 0.001477 T	920-1060 (210)	5	а
23.6-76.4	d = 5.423 ~ 0.001382 T	910-1070	5	а
45.2-54.8	d = 4.921 - 0.001338 T	950~1070	5	
			5	a
65.0-35.0	d = 4.459 - 0.00121 T	940-1070		a
74.1-25.9	d = 4.337 - 0.001223 T	940-1070	5	а
83.2-16.8	d = 4.217 ~ 0.00123 T	930-1030	5	a
100.0-0.0	d = 3.718 - 0.001024 T	980-1110 (211)) 5	a
	CsC1-RbC1			
0-100	d = 3.0863 - 8.514 x 10 ⁻⁴ T	1020-1230 (212		а
25-75	d = 3.2733 - 9.131 x 10 ⁻⁴ T	1030-1150	5	а
50-50	d = 3.4729 - 9.91 x 10 ⁻⁴ T	1000-1160	5	a
75-25	d = 3.6314 - 0.0010327 T	980-1140	5	а
100-0	d = 3.7987 - 0.0010849 T	940-1090 (213) 5	а
	CsC1-UC14			
0.00-100.00	d = 5.2508 - 0.0019455 T	870-940 (214) 5	а
7.42-92.58	d = 4.5279 - 0.0012847 T	860-950	5	a
16.65-83.35	d = 4.4601 - 0.0013398 T	900-950	5	a
			•	u

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
2.80-77.20	d = 4.5521 - 0.0013904 T	880-920		5	a
0.81-69.19	d = 4.6211 - 0.0014976 T	880-950		5	a
4.48-65.52	d = 4.6966 - 0.0016096 T	700-940		5	a
5.92-64.08	d = 4.4808 - 0.0014134 T	720-950		5	a
7.56-62.44	d = 4.6601 - 0.0015971 T	680-950		5	a
1.14-58.86	d = 4.4402 - 0.0013752 T	880-940		5	a
3.75-56.25	d = 4.4225 - 0.0013663 T			5	a a
0.96-49.04		790-940			
	d = 4.1955 - 0.0011917 T	760-960		5	a
6.11-43.89	d = 4.0492 - 0.0010682 T	820-960		5	а
31.14-38.86	d = 3.9243 - 9.688 x 10 ⁻⁴ T	880-970		5	а
66.35-33.65	d = 3.4249 - 4.955 x 10 ⁻⁴ T	910-970		5	а
66.96-33.04	d = 3.5297 - 6.065 x 10 ⁻⁴ T	970-980		5	а
88.87-31.13	d = 3.7666 - 8.536 x 10 ⁻⁴ T	940-960		5	а
69.57-30.43	d = 3.8441 - 9.241 x 10 ⁻⁴ T	930-970		5	a
73.00-27.00	d = 3.6417 - 7.094 x 10 ⁻⁴ T	880-950		5	a
75 . 94-24 . 06	d = 3.8629 - 9.697 x 10 ⁻⁴ T	840-960		5	а
78.72-21.28	d = 3.9463 - 0.0010801 T	820-950		5	a
80.55-19.45	d = 3.9315 - 0.0010738 T	800-940		5	a,b,e
36.17-13.83	d = 3.9309 - 0.0011113 T	850-950		5	a
92.65-7.35	d = 3.852 - 0.0010701 T	900-930		5	a
96.74-3.26	d = 3.7852 ~ 0.0010355 T	920-950		5	a
98.98-1.02	d = 3.667 - 9.308 x 10 ⁻⁴ T	930-1000		5	a
100.0-0.0	d = 3.8047 - 0.0010855 T	930-980	(215)	5	a
.00.0 0.0	CsC1-ZnC1 ₂	300 300	(215)	5	a
0.00-100.00	d = 2.8375 - 5.2926 x 10 ⁻⁴ T	600-820	(216)	5	a
0.62-99.38	d = 2.8516 - 5.38 x 10 ⁻⁴ T	600-780	(=.0)	5	a
. 38-98.62	d = 2.8575 - 5.4123 x 10 ⁻⁴ T	600-760		5	a
4.87-95.13	d = 2.916 - 5.9476 x 10 ⁻⁴ T				
8.78-91.22		580-860		5	a
	d = 2.9745 - 6.4724 x 10 ⁻⁴ T	580-760		5	а
14.80-85.20	d = 3.0642 - 7.2818 x 10 ⁻⁴ T	580-860		5	а
28.60-71.40	d = 3.2111 - 8.5904 x 10 ⁻⁴ T	560-880		5	а
38.80-61.20	d = 3.2531 - 8.8586 x 10 ⁻⁴ T	580-860		5	a
41.90-58.10	d = 3.3095 - 9.197 x 10 ⁻⁴ T	540-860		5	а
46.8-53.2	d = 3.314 - 9.246 x 10 ⁻⁴ T	607-813		19,20	k
54.3-45.7	d = 3.375 - 9.253 x 10 ⁻⁴ T	708-873		19,20	k
59.8~40.2	d = 3.423 - 9.401 x 10 ⁻⁴ T	822-966		19,20	k
64.9-35.1	d = 3.463 - 9.488 x 10 ⁻⁴ T	873-967		19,20	k
69.7-30.3	d = 3.471 - 9.296 x 10 ⁻⁴ T	885~971		19,20	k
82.7-17.3	d = 3.631 - 0.0010047 T	888-1011		19,20	k
100-0	d = 3.802 - 0.0010953 T	935-1106	(217)	19,20	
For additions	al CsCl systems, see : BaCl ₂ - ; CaCl ₂ - ; CdCl ₂ - ; CsBr-				
75. 222.7.0	CsClO ₄ -LiClO ₄				
5-95	d = 2.4547 - 7.083 x 10 ⁻⁴ T	510-600		•	5 b c
15-85	d = 2.6545 - 8.5 x 10 ⁻⁴ T	550-630		6 6	a,b,6
25-75					a .
25-75	d = 2.7751 - 8.925 x 10 ⁻⁴ T	550-620		6	a,b,e
100	d = 2.843 - 9. x 10 ⁻⁴ T	610-620	±1%	6	
2 -	CsC ₂ H ₃ 0 ₂ -NaC ₂ H ₃ 0 ₂	010-020	÷16	Ü	а
0-100	d = 1.688 - 7.02 x 10 ⁻⁴ T	610-620	(218)	6	а
25-75	d = 1.872 - 5. x 10 ⁻⁴ T	610-620	\=.0/	6	a
50-50	d = 2.207 - 6. x 10 ⁻⁴ T	610-620		6	
80-20	d = 2.519 - 6.5 x 10 ⁻⁴ T				a
		600-620		6	а
100-0	d = 2.843 - 9. x 10 ⁻⁴ T	610-620	(219)	6	а
100	CsF d = 4.8985 - 0.0012806 T	005.1105	4.4		
100	W = 4.0000 = 0.0012000 f	985-1185	±1%	1	a,c

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref .	Comment
	CsF-Cs!				
-100	d = 4.3677 - 0.001288 T	930-1070	(220)	2	a
2-88	d = 4.3478 - 0.0012506 T	930-1070		2	a
5-75	d = 4.4337 - 0.0013058 T	930-1070		2	a
7-63	d = 4.4598 - 0.001301 T	930-1070		2	a
0-50	d = 4.4988 - 0.001294 T	930-1070		2	a
3-37	d = 4.5627 ~ 0.0012901 T	930-1070		2	a
5-25	d = 4.6753 - 0.0013052 T	930-1070		2	a
8-12	d = 4.7959 - 0.001311 T	930-1070		2	a
00-0	d = 4.8135 - 0.0012105 T	930-1070	(221)	2	a
F	1.0-5 115 0.5 0.5	•••	,,,	_	-
For additiona	1 CsF systems, see : A1F3- ; BaF2- ; CsBr- ; CsC1-				
00	Cs1 d = 4.255 - 0.0011833 T	012-1190	± 10/	21 22	
50	4 - 4.295 - 0.0011055 1	912-1180	±1%	21,22	a,d,
	CsI-GdI ₃				
.00-100.00	d ≈ 5.2097 - 9.086 x 10 ⁻⁴ T	1260-1300	(222)	4	а
9.93-80.07	d ≈ 5.2965 - 0.0011821 T	1190-1270		4	а
0.69-59.31	d ≈ 5.2011 - 0.0013125 T	1020-1180)	4	а
0.46-49.54	d ≈ 5.0549 - 0.0012749 T	1010-1140)	4	а
0.68-39.32	d = 4.9487 - 0.0012814 T	1010-1190)	4	a
0.38-29.62	d = 4.911 - 0.0013291 T	1020-1180)	4	а
9.68-20.32	d = 4.804 - 0.0013292 T	1020-1180)	4	а
00.00-0.00	d = 4.2743 - 0.0012 T	1030-1180	(223)	4	а
	CsI-KC1				
-100 CsI	$d = 1.502 + 0.02496 C - 1.591 \times 10^{-4} C^2 + 5.517 \times 10^{-7} C^3 \dots \dots$	1073	(224)	2	a,n
	Col-Lol-				,
- 100	CsI-Lal ₃ d = 5.4581 - 0.0011109 T	1120 1100	(005)	4	
1.10-78.90	d = 5.2945 - 0.0012018 T	1130-1180		4	a
9.78-60.22		1030-1180		4	a
	d = 5.0863 - 0.0012203 T	1000-1180		4	а
9.67-50.33	d = 4.9105 - 0.0011801 T	1000-1180		4	а
9.40-40.60	d = 4.7501 - 0.0011508 T	1000-1180)	4	а
9.52-30.48	d = 4.6412 - 0.0011568 T	1030-1180)	4	а
9.27-20.73	d = 4.5019 - 0.0011267 T	1040-1170)	4	а
00.00-0.00	d = 4.2743 - 0.0012 T	1030-1180	(226)	4	а
	CsI-LiI				
- 100	d = 3.7063 - 8.172 x 10 ⁻⁴ T	770-910	(227)	4	а
9.3-80.7	d = 3.9283 - 0.0010303 T	900-1100		4	a
1.7-78.3	d = 4.0206 - 0.0010867 T	890-1090		4	a
3.4-46.6	d = 4.0131 - 0.0010564 T	950-1140		4	а
8.8-21.2	d = 4.2166 - 0.001231 T	920-1110		4	a
00-0	d = 4.3345 - 0.0012568 T	960-1130	(228)	4	a
			,,		-
0.00-100.00	CsI-NdI ₃				
	d = 5.4069 - 0.0010701 T	1120-1190		4	а
0.29-79.71	d = 5.3599 - 0.0012435 T	1090-1180)	4	a
0.81-59.19	d = 5.0529 - 0.0011999 T	950-1180		4	а
0.00-50.00	d = 4.8922 - 0.0011643 T	910-1180		4	a
9.93-40.07	d = 4.7615 - 0.0011421 T	950-1140		4	a
0.06-29.94	d = 4.7125 - 0.0011889 T	1050-1180)	4	a
9.83-20.17	d = 4.6451 - 0.001233 T	1090-1170)	4	а
00.00-0.00	d = 4.2743 - 0.0012 T	1030-1180	(230)	4	a
For additiona	1 CsI systems, see : CdI ₂ - ; CsBr- ; CsC1- ; CsF-				
	CsN03				
00	d = 3.6206 - 0.00116605 T	699-764	± 1°/	•	_
		688-764	±1%	1	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref .	Comment
	CsNO ₃ -KNO ₃				
-100	d = 2.3363 - 7.592 x 10 ⁻⁴ T	626-756	(231)	7	a,e
-75	d = 2.7095 - 8.717 x 10 ⁻⁴ T	578-778		7	a, e
-50	d = 3.0474 - 9.909 x 10 ⁻⁴ T	565-773		7	a,e
-25	d = 3.3324 - 0.0010615 T	619-785		7	a,e
0-0	d = 3.5845 - 0.0011269 T	692-797	(232)	7	a,e
	CsN0 ₃ -LiN0 ₃				
100	d = 2.17212 - 7.0212 x 10 ⁻⁴ T	695-785	(233)	7	a,e
-90	d = 2.3369 - 7.0965 x 10 ⁻⁴ T	635-740		7	a,e
-80	d = 2.5017 - 7.3223 x 10 ⁻⁴ T	575-710		7	a,e
-70	d = 2.6666 - 7.6986 x 10 ⁻⁴ T	560-710		7	a, e
-60	d = 2.8314 - 8.2254 x 10 ⁻⁴ T	530-725		7	a,e
-57	d = 2.8808 - 8.4128 x 10 ⁻⁴ T	515-695		7	a,e
-50	d = 2.9962 - 8.9028 x 10 ⁻⁴ T	530-710		7	a,e
-40	d = 3.161 - 9.7306 x 10 ⁻⁴ T	515-695		7	a, e
-30	d = 3.3258 - 0.0010709 T	530-695		7	a,e
-20	d = 3.4906 - 0.00118379 T	530-695		7	a,e
- 10	d = 3.6554 - 0.00131174 T	545-695		7	a,e
0-0	d = 3.8202 - 0.00145457 T	695-785	(234)	7	a, e
	CsN03-NaN03				
100	d = 2.3336 - 7.319 x 10 ⁻⁴ T	605-740	(235)	7	a,b
-75	d = 2.748 - 8.642 x 10 ⁻⁴ T	545-740	(200)	7	a,t
-55	d = 3.0033 - 9.3045 x 10 ⁻⁴ T	560-740		7	a,b
-50	d = 3.1321 - 0.00105835 T	560-740		7	a,t
. oc i~25	d = 3.3626 - 0.0010727 T	575-770		7	a,t
00-0	d = 3.5845 - 0.00112692 T	695-785	(236)	7	a,t
	CsN0 ₃ -RbN0 ₃		(2007	·	-,-
-100	d = 3.118 - 0.0010508 T	595-730	(237)	7	a, e
-90	d = 3.1576 - 0.00104286 T	590-755	(201)	7	a, e
7.3-82.7	d = 3.1907 - 0.00104403 T	575-770		7	
0-80	d = 3.2029 - 0.00104462 T	575-770		7	a,e
0-70	d = 3.2482 - 0.00104756 T	575-770 590-770		7	a,e
0-60	d = 3.2936 - 0.00105167 T	590-770		7	a, e
0-50 0-50	d = 3.3389 - 0.00105696 T	605-770		7	a, e
0-40					a, e
)-30)-30	d = 3.3842 - 0.00106342 T	620-770		7	a, 6
	d = 3.4296 - 0.00107106 T	635-770		7	a, e
0-20	d = 3.4749 - 0.00107987 T	665-770		7	a, e
0-10 00-0	d = 3.5202 - 0.00108986 T	680-785 695~785	(238)	7 7	a, e
	nal CsN03 systems, see : AgN03- ; Ca(N03)2-	030 700	(200)	·	a, e
	CsPD ₃				
00	d = 3.8253 - 7.32 x 10 ⁻⁴ T	1070-1290) ±3%	6	a
	CSSCN				
00	d = 3.0462 - 7.952 x 10 ⁻⁴ T	513-573	±1.5%	23	k
00	d = 4.037 - 5.614 x 10 ⁻⁴ T	1090-1260	0 ±2%	24	k
00	d = 4.3 - 9.515 x 10 ⁻⁴ T	1309-1803	3 ±1%	1	a,
	Cs ₃ A1F ₆				
00	d = 4.7792 - 0.0015342 T	1093-1280	D ±3%	6	d
	Cs3A1F6-K3A1F6				
-90	d = 3.3613 - 0.0011 T	1198-128	0	6	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
0-70	d = 3.7117 - 0.00118 T	1220-1280		6	a
0-60	d = 3.8498 - 0.00124 T	1123-1280		6	а
60-50	d = 4.0966 - 0.001339 T	1220-1280		6	а
0-40	d = 4.2196 - 0.0014 T	1098-1280		6	а
0-30	d = 4.6503 - 0.00166 T	1220-1280		6	а
30-20	d = 4.5833 - 0.00152 T	1220-1280		6	а
90-10	d = 4.8453 - 0.00166 T	1220-1280		6	a
100-0	d = 4.7792 - 0.0015342 T	1093-1280		6	a
	Cs3A1F6-Li3A1F6		(200)	•	•
D-100	d = 3.251 - 0.001034 T	1073-1330	(240)	6	a,e
10-90	d = 3.7773 - 0.00134 T	1023-1173		6	a,e
20-80	d = 3.6526 - 0.001114 T	1023-1173		6	a,e
30-70	d = 3.6195 - 0.001006 T	1023-1173	i	6	а, е
10-60	d = 3.85 - 0.001146 T	1023-1173		6	a,€
50-50	d = 3.9999 - 0.0012 T	1023-1173		6	a, e
60-40	d = 4.0109 - 0.001136 T	1023-1173		6	a,e
70-30	d = 4.2555 - 0.001276 T	1023-1173		6	
80-20	d = 4.2797 - 0.00122 T	1023-1173		6	a, e
90-10	d = 4.2214 ~ 0.001096 T				а,
100-0		1023-1173		6	а, є
100-0	d = 4.7792 - 0.0015342 T	1123-1173	(241)	6	a, (
20-80	d = 3.731 - 0.0011398 T	1102, 1207		•	_
30-70		1193-1280		6	a
	d = 3.555 - 9.599 x 10 ⁻⁴ T	1170-1280		6	а
10-60	d = 4.2059 - 0.0013802 T	1120-1280		6	а
50-50	d = 4.3246 - 0.0014181 T	1120-1280		6	а
60-40	d = 4.4236 - 0.0014381 T	1120-1280		6	а
70-30	d = 4.4832 - 0.0014401 T	1120-1280)	6	а
80-20	d = 4.5882 - 0.0014801 T	1120-1280	3	6	a
90-10	d = 4.9399 - 0.0017221 T	1073-1280)	6	a
100-0	d = 4.7792 - 0.0015342 T	1093-1280	(242)	6	а
	CuC1				
100	d = 4.226 - 7.6 x 10 ⁻⁴ T	709-858	±2%	1	а
30.6-69.4	CuC1-Cu ₂ S d = 5.0206 - 3.535 x 10 ⁻⁴ T	1340-1420		3	a
45.0-55.0	d = 4.8082 - 3.397 x 10 ⁻⁴ T	1180-130		3	a
55.1-44.9	d = 4.8889 - 5.032 x 10 ⁻⁴ T	1180-132		3	a
63.3-36.7	d = 4.8723 - 5.594 x 10 ⁻⁴ T	1180-126		3	а
66.8-33.2	d = 4.7148 - 4.793 x 10 ⁻⁴ T	1120-128	0	3	а
74.6-25.4	d = 4.7106 - 6.015 x 10 ⁻⁴ T	940-1160		3	а
79.0-21.0	d = 4.8453 - 8.293 x 10 ⁻⁴ T	900-1060		3	а
82.5-17.5	d = 4.6461 - 8.146 x 10 ⁻⁴ T	780-1060		3	а
86.4-13.6	d = 4.6601 - 7.2 x 10 ⁻⁴ T	820-960		3	а
90.3-9.7	d = 4.5956 - 8.495 x 10 ⁻⁴ T	700-940		3	а
93.4-6.6	d = 4.5128 - 8.201 x 10 ⁻⁴ T	740-106 0		3	а
94.2-5.8	d = 4.4748 - 8.309 x 10 ⁻⁴ T	720-1020		3	а
95.2-4.8	d = 3.83 - 8.37 x 10 ⁻⁵ T	760-900		3	a
96.4-3.6	d = 4.4484 - 8.462 x 10 ⁻⁴ T	690-930		3	а
100.0-0.0	d = 4.2995 - 7.93 x 10 ⁻⁴ T	740-1110	(243)	3	а
	CuC1-KC1				
91.1-100 KC1	d = - 0.7618 + 0.062075 C - 3.9386 x 10 ⁻⁴ C ²	1073	(244)	5	a,
	Cuscn-N(C ₃ H ₇) ₄ scn				
0-100	d = 1.079 - 5.397 x 10 ⁻⁴ T	325-370	(245)	6	а
7-93	d = 1.0965 - 5.481 x 10 ⁻⁴ T	325-370		6	а
18.1-81.9	d = 1.1216 - 5.412 x 10 ⁻⁴ T	325-370		6	а
OF 4 74 C	d = 1.1434 - 5.411 x 10 ⁻⁴ T	205 270		6	а
25.4-74.6	G = 1.1434 - 5.41; X (U - 1	325-370		O	a

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
7.9-62.1	d = 1.2076 ~ 5.871 x 10 ⁻⁴ T	325-370		6	а
3.9-56.1	d = 1.2494 - 6.237 x 10 ⁻⁴ T	325-370		6	а
0.0-50.0	d = 1.2923 - 6.45 x 10 ⁻⁴ T	355-370		6	a
1.7-48.3	d = 1.2973 - 6.277 x 10 ⁻⁴ T	355-370		6	а
	Cu ₂ S				
00	d = 5.4 - 1. x 10 ⁻⁶ T	1473-1523	±2%	6	a,e
100-0 FeS	d = 5.3549 - 0.0098769 C - 6.1849 x 10 ⁻⁵ C ²	1523	(246)	6	a,b,m
100-0 Ni ₃ S ₂	d = 5.4116 - 0.0027364 C + 9.7828 x 10 ⁻⁵ C ² - 8.4886 x 10 ⁻⁷ C ³	1473	(247)	6	a,b,m
For additiona	1 Cu ₂ S systems, see : Co ₄ S ₃ - ; CuCl-				
00	DyCl ₃ d = 4.2668 - 6.821 x 10 ⁻⁴ T	980-1260	±1%	5	a
		300-1200	± 1/ ₀	5	•
For additiona	l DyCl ₃ systems, see : CaCl ₂ - FeCl ₂				
100	d = 2.8754 - 5.55 x 10 ⁻⁴ T	960-1150	±1%	3	a
	FeC1 ₂ -FeS				
91.6-8.4	d = 2.895 - 5.573 x 10 ⁻⁴ T	1100-1120)	3	a
94.6-5.4	d = 2.8908 - 5.594 x 10 ⁻⁴ T	1000-1140)	3	a
100.0-0.0	d = 2.8754 - 5.55 x 10 ⁻⁴ T	960-1150	(248)	3	a
	FeS	•••	,,		
100	d = 3.7 - 1. x 10 ⁻⁶ T	1473-1523	3 ±2%	6	a,e
100-0 Ni ₃ S ₂	d = 3.868 + 0.032169 C - 1.9225 x 10 ⁻⁴ C ²	1523	(249)	6	a,b,
For additiona	al FeS systems, see : Co ₄ S ₃ - ; Cu ₂ S- ; FeCl ₂ -				
	GaBr ₃				
100	d = 4.0882 - 0.00246354 T	392-408	±0.5%	4	a
100	d = 2.7841 - 0.0020826 T	360-414	±0.5%	1	a
0-100	d = 4.778 - 0.002377 T	460-525	(250)	4	a
10-90	d = 4,805 - 0.002179 T	470-525		4	a
20-80	d = 4.819 - 0.001996 T	450-495		4	a
40-60	d = 4.817 - 0.001766 T	450-525		4	a
	d = 4.841 - 0.001688 T	455-535		4	
50-50				:	a
57.5-42.5	d = 4.886 - 0.001675 T	455-535		4	a
65-35	d = 4.957 - 0.001704 T	455-535		4	a
69-31	d = 4.971 - 0.001707 T	465-535		4	a
100	d = 4.841 - 0.001688 T	454-538	±0.5%	1	a
100	d = 4.778 - 0.002377 T	460-525	±0.5%	4	a
For addition	al Gal ₃ systems, see : GaI-				
100	GdC1 ₃ d = 4.1484 - 6.707 x 10 ⁻⁴ T	940-1280) ±1%	5	a,e
	GdI ₃				
100	d = 5.2097 - 9.086 x 10 ⁻⁴ T	1255-130	05 ±1%	4	a
	•	1000)n /n=1\		_
0.00-100.00	d = 3.3027 - 8.999 x 10 ⁻⁴ T	1030-118		4	а
19.78-80.22	d = 4.0327 - 0.0010174 T	1050-118		4	а
40.26-59.74	d = 4.5269 - 0.001089 T	1050-118		4	а
64.63-35.37	d = 5.1258 - 0.0012444 T	1050-117	70	4	a
100.00-0.00	d = 5.2097 - 9.086 x 10 ⁻⁴ T	1260-130	00 (252)	4	а

Table 2.1.a Density data (continued)

(mo1 %) Equation For additional GdI ₃ systems, see : CsI- HgBr ₂ 100 d = 6.7715 - 0.0032331 T	T range(K)	Accur.	Ref.	Comment
HgBr ₂ 100 d = 6.7715 - 0.0032331 T				
00 d = 6.7715 - 0.0032331 T				
a 7	511-592	±2%	1	a
D-100 (T=531.2 K, d=5.34)		(253)	2	a,e
59-41 d = 6.548 - 0.002412 T	493-531		2	a,e
100-0 d = 6.3816 - 0.0021889 Ť	513-531	(254)	2	a,e
For additional HgBr ₂ systems, see : A1Br ₃ -HgCl ₂				
100 d = 5.9391 - 0.0028624 T	550-577	±1%	1	a
HgC1 ₂ -T1N0 ₃				
0-100 d = 5.8077 - 0.0018812 T	484-553	(255)	3	а
10-90 d = 5.807 - 0.0018821 T	460-550		3	a
20-80 d = 5.807 - 0.0018821 T	460-550		3	а
30-70 d = 5.807 - 0.0018821 T	460-550		3	a
40-60 d = 5.807 - 0.0018821 T	460-550		3	a
50-50 d = 5.807 - 0.0018821 T	460-550		3	a
Hg1 ₂	400 000		J	۵
100 d = 6.9435 - 0.0032351 T	532-627	±2%	1	a
For additional HgI ₂ systems, see : AgNO ₃ - ; AlI ₃ - ; HgBr ₂ -				
H g ₂ C1 ₂				
100 d = 9.0928 - 0.004 T	799-850	±2%	1	а
100 d = 4.184 - 0.0015 T	721~801	±1%	1	a
InC1				
100 d = 4.437 - 0.0014 T	542-638	±1%	1	а
InC1 ₂				
100 d = 3.863 - 0.0016 T	541-710	±1%	1	a
100 d = 3.944 - 0.0021 T	870-939	±1%	1	a
Ini ₃	5.7.	_,,,	·	•
100 d = 4.5448 - 0.0015 T	503-633	±1%	1	a
KAIC1 ₄ -LiA1Br ₄ -NaAIC1 ₄ 20-30-50 (T=373 K, d=2.07)		(256)	25	k
KBF ₄		(===)		•
100 d = 2.4506 - 8.15 x 10 ⁻⁴ 7	890-990	±1%	6	а
0-100 d = 1.969 + 9.9629 x 10 ⁻⁵ T	1173-1223	3 (257)	3	b,e,v
3.2-96.8 (T=1173 K, d=2.08)			3	a,v1
7.2-92.8 d = 1.69 + 3.6 x 10 ⁻⁴ T	1123-1223	ł	3	a, v1
14.8-85.2 d = 1.725 + 3.4 x 10 ⁻⁴ T	1123-1223		3	-
22.9-77.1 d = 1.711 + 3.5 x 10 ⁻⁴ T				a,v1
31.6-68.4 d = 1.702 + 3.5 x 10 ⁻⁴ T	1123-1223		3	a,v1
	1123-1223		3	a,v1
	1123-1223		3	a,v1
	1123-1223	\$	3	a,v1
61.8-38.2 d = 1.421 + 5.3 x 10 ⁻⁴ T	1123-1223	į	3	a,v1
73.5-26.5 d = 1.356 + 5.5 x 10 ⁻⁴ T	1123-1223	ş.	3	a,v1
89.5-10.5 d = 1.288 + 5.6 x 10 ⁻⁴ T	1123-1223	ŀ	3	a,v1
100 d = 2.9583 - 8.253 x 10 ⁻⁴ T				
KBr-KC1	1014-1203	3 ±1%	1	a
0-100 d = 2.1089 - 5.583 x 10 ⁻⁴ T	1060-1210	(258)	2	a
20-80 d = 2.3228 - 6.367 x 10 ⁻⁴ T	1050-1200)	2	a
40-60 d = 2.503 - 6.937 x 10 ⁻⁴ T	1040-1220	,	2	a

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				_
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
0-50	d = 2.5856 - 7.176 x 10 ⁻⁴ T	1040-1210		2	a
0-40	d = 2.6897 - 7.615 x 10 ⁻⁴ T	1020-1210		2	а
0-20	d = 2.8374 - 8.004 x 10 ⁻⁴ T	1030-1210		2	а
0-0	d = 2.9552 - 8.22 x 10 ⁻⁴ T	1030-1190	(259)	2	а
	KBr-KF				
-100	d = 2.6806 - 6.75 x 10 ⁻⁴ T	1150-1250	(260)	2	a
2- 8 8	d = 2.7232 - 7.03 x 10 ⁻⁴ T	1090-1200		2	а
5-75	d = 2.7657 - 7.286 x 10 ⁻⁴ T	1040-1150		2	а
7-63	d = 2.7956 - 7.448 x 10 ⁻⁴ T	980-1130		2	а
0-50	d = 2.8378 - 7.702 x 10 ⁻⁴ T	990-1150		2	а
3-37	d = 2.8691 - 7.853 x 10 ⁻⁴ T	1080-1240		2	a
5-25	d = 2.8841 - 7.819 x 10 ⁻⁴ T	1080-1230		2	а
8-12	d = 2.9464 - 8.184 x 10 ⁻⁴ T	1090-1220	ı	2	а
00-0	d = 2.974 ~ 8.329 x 10 ⁻⁴ T	1010-1140		2	a
	KBr-KI		(==:,	_	-
-100	d = 3.3336 - 9.29 x 10 ⁻⁴ T	990-1170	(262)	2	a
0-80	d = 3.2709 - 9.152 x 10 ⁻⁴ T	970-1170		2	а
0-60	d = 3.2085 - 9.069 x 10 ⁻⁴ T	960-1180		2	a
0-40	d = 3.1426 - 8.949 x 10 ⁻⁴ T	960-1180		2	a
0-20	d = 3.0501 - 8.592 x 10 ⁻⁴ T	1010-1180	1	2	a
00-0	d = 2.9552 - 8.22 x 10 ⁻⁴ T	1030-1220		2	a
00-0	WBr-KN03	1000 1220	(200)	•	•
- 100	d = 2.3151 - 7.29 x 10 ⁻⁴ T	623-873	(264)	3	a
	d = 2.3811 - 7.141 x 10 ⁻⁴ T	650-860	(204)	3	a
5-85		650-860		3	a
3.3-66.7	d = 2.4836 - 7.27 x 10 ⁻⁴ T				
0-50	d = 2.6277 - 7.788 x 10 ⁻⁴ T	770-860		3	a
6.7-33.3	d = 2.6755 - 7.301 x 10 ⁻⁴ T	623-1073		3	a
35-15	d = 2.8536 - 8.008 x 10 ⁻⁴ T	623-1073		3	a
00-0	d = 2.94 - 7.922 x 10 ⁻⁴ T	1020-1073	(265)	3	a
0-60	KBr-LiBr d = 3.081 - 8.084 x 10 ⁻⁴ T	680-1020		4	a
i0-50	d = 3.0049 - 7.688 x 10 ⁻⁴ T	880-1020		4	a
			\ (BEE\	4	a
00-0	d = 2.9552 - 8.22 x 10 ⁻⁴ T	1030-1170	(266)	-	a
-100 KBr	$d = 1.403 + 0.01596 C - 2.348 \times 10^{-4} C^2 + 2.106 \times 10^{-5} C^3 - 7.598 \times 10^{-9} C^4$	1073	(267)	2	a
)~ 100 KBI	KBr-NaBr	1073	(207)	_	۵.
) - 100	d = 3.1799 - 8.22 x 10 ⁻⁴ T	1050-122	(268)	4	а
0-50	d = 3.0466 - 8.356 x 10 ⁻⁴ T	990-1130	(2007	4	a
100-0	d = 2.9552 - 8.22 x 10 ⁻⁴ T	1030-119	(269)	4	a
.00 0	KBr-NaC1	1000 110	(200)	•	-
50-50	d = 2.645 - 7.23 x 10 ⁻⁴ T	900-1070		2	a
100-0	d = 2.9407 - 7.9289 x 10 ⁻⁴ T	1020-1076	(270)	2	a
0-100 KBr	d = 1.56 + 0.007258 C	1073	(271)	2	a
J-100 KBI	KBr-PbBr ₂	1073	(2/1)	-	4
n=100	d = 6.9123 - 0.001764 T	880-1000	(272)	4	a
0-100		660-1000 660-1000	(272)		
10-90	d = 6.508 - 0.0016538 T	660-1020		4	a
20-80	d = 6.1948 - 0.0015749 T	660-1000		4	а
25-75	d = 6.0369 - 0.001553 T	660-1020		4	а
30-70	d = 5.7481 - 0.0014137 T	680-1000		4	а
33-67	d = 5.7411 - 0.0015086 T	680-1020		4	а
40-60	d = 5.6355 - 0.0016283 T	660-1 04 0		4	а
48-52	d = 5.2089 - 0.0014202 T	660-1020		4	а
58-42	d = 4.8449 - 0.0013775 T	700-1020		4	а
70-30	d = 4.2468 - 0.0011151 T	840-1020		4	а
85-15	d = 3.7868 - 0.001119 T	940-1180		4	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mal %)	Equation	T range(K)	Accur.	Ref.	Comment
	KBr-RbBr				
- 100	d = 3.7373 - 0.0010704 T	980-1140	(274)	4	a
0-50	d = 3.3628 - 9.628 x 10 ⁻⁴ T	1030-1120		4	a
100-0	d = 2.9552 - 8.22 x 10 ⁻⁴ T	1030-1190	(275)	4	a
	KBr-RbC1				
0-100 KBr	d = 2.188 - 7.132 x 10 ⁻⁴ C - 4.777 x 10 ⁻⁶ C ²	1073	(276)	2	a,n
0.0~100.0	d = 7.4335 - 0.001922 T	780-1020	(277)	4	a
12.6-87.4	d = 7.0219 - 0.0019342 T	780-900	(277)	4	
15.6-84.4	d = 7.3789 - 0.002423 T	780-880		4	a
30.0-70.0	d = 7.8431 - 0.0034214 T			4	a
11.3-58.7	d = 7.5097 - 0.0034552 T	860-1000		4	a
58.5-41.5	d = 7.4277 - 0.003819 T	920-1020		4	a
52.7-37.3		1000-1020		4	a
32.7-37.3 36.0-34.0	4 - 5 0005	1040-1060		4	а
76.5-23.5	d = 6.9179 - 0.0031449 1	1040-1120		4	а
78.5-23.5		1000-1020		4	а
	d = 7.1725 - 0.0041899 T	1040-1060		4	a
37.6-12.4	d = 4.496 - 0.0018936 T	1040-1060		4	а
100.0-0.0	d = 2.9258 - 7.891 x 10 ⁻⁴ T	1040-1200	(278)	4	а
	KBr-ZnBr ₂				
0-100	d = 4.1545 ~ 9.827 x 10 ⁻⁴ T	740-880	(279)	4	а
10.8-89.2	d = 4.3189 ~ 0.001601 T	760-900		4	а
21.5-78.5	d = 4.0334 ~ 0.0010771 T	700-820		4	a
22.0-78.0	d = 4.0469 - 0.00109 T	700-820		4	а
33.4-66.6	d = 3.8976 ~ 0.0010687 T	720-880		4	а
13.9-56.1	d = 3.789 - 0.0010337 T	680-820		4	а
61.6-38.4	d = 3.5238 ~ 9.449 x 10 ⁻⁴ T	820-1000		4	a
70.4-29.6	d = 3.3719 ~ 8.819 x 10 ⁻⁴ T	880-1080		4	а
79.3-20.7	d = 3.1981 ~ 8.291 x 10 ⁻⁴ T	1000-1140	ı	4	а
90.2-9.8	d = 3.0584 ~ 8.044 x 10 ⁻⁴ T	1040-1240	ı	4	a
100-0	d = 2.9134 ~ 7.817 x 10 ⁻⁴ T	1080-1260	(280)	4	a
	KBr-ZnS0 ₄				
26.38-73.62	d = 3.2322 - 4.805 x 10 ⁻⁴ T	770-820		3	a,o
31.91-68.09	d = 3.1447 ~ 4.406 x 10 ⁻⁴ T	770-820		3	a, o
33.40-66.60	d = 3.1641 ~ 4.996 x 10 ⁻⁴ T	770-820		3	a, o
45.42-54.58	d = 3.2914 ~ 7.598 x 10 ⁻⁴ T	770-820		3	a,e,
49.88-50.12	d = 3.081 - 5.199 x 10 ⁻⁴ T	770-820		3	
54.48-45.52	d = 3.1198 ~ 6.199 x 10 ⁻⁴ T	770-820		3	a,e,
50.00-40.00	d = 3.1834 ~ 7.598 x 10 ⁻⁴ T	770-820		3	a,e,
				3	a,e,
For additiona	<pre>1 KBr systems, see : AgBr- ; AgCl- ; AlBr₃- ; BaBr₂- ; CdBr₂- ; CdCl₂- ; CsBr- ; C</pre>	sC1-			
	KC1				
100	d = 2.1359 ~ 5.831 x 10 ⁻⁴ T	1053-1212	±0.5%	1	a,c
0-100	KC1-KF				
0-100	d = 2.6806 ~ 6.75 x 10 ⁻⁴ T	1150-1250		2	a
12-88	d = 2.58 - 6.639 x 10 ⁻⁴ T	1090-1230		2	а
37-63	d = 2.4136 - 6.109 x 10 ⁻⁴ T	1000-1150	1	2	a
50-50	d = 2.3296 ~ 6.177 x 10 ⁻⁴ T	1060-1250	1	2	a
53-37	d = 2.2722 - 6.1 x 10 ⁻⁴ T	1060-1250	•	2	a
75-25	d = 2.2187 - 5.962 x 10 ⁻⁴ T	1000-1200)	2	a
B8-12	d = 2.183 - 5.95 x 10 ⁻⁴ T	1020-1170	1	2	a
100-0	d = 2.13 - 5.79 x 10 ⁻⁴ T	1060-1190	(282)	2	a
	KC1-KI				
0.00-100.00	d = 3.3594 - 9.557 x 10 ⁻⁴ T	955-1177	(283)	2	а
5.04-93.96	d = 3.2676 - 9.1348 x 10 ⁻⁴ T	960-1170		2	a
15.96-84.04	d = 3.2007 - 8.6476 x 10 ⁻⁴ T				

J. Phys. Chem. Ref. Data, Vol. 17, Suppl. 2, 1988

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K) A	lccur.	Ref .	Commen
5.67-74.33	d = 3.1155 - 8.894 x 10 ⁻⁴ T	920-1180		2	a
5.15-54.85	d = 2.9088 - 8.2524 x 10 ⁻⁴ T	900-1170		2	а
1.12-38.88	d = 2.7042 - 7.5432 x 10 ⁻⁴ T	960-1180		2	а
80. 22-19. 78	d = 2.4625 - 6.9017 x 10 ⁻⁴ T	990-1170		2	a
00.00-0.00	d = 2.1359 - 5.831 x 10 ⁻⁴ T	1053-1212	(284)	2	a
		1000 1272	(20.7)	-	•
	KC1-KN03			_	
)-100	d = 2.31 - 7.33 x 10 ⁻⁴ T	620-800	(285)	3	а
3.7-91.3	d = 2.2998 - 7.28 x 10 ⁻⁴ T	620-800		3	а
0.5-79.5	d = 2.2844 - 7.118 x 10 ⁻⁴ T	710-830		3	а
9.8-70.2	d = 2.2547 - 6.799 x 10 ⁻⁴ T	770-890		3	" a
	KC1-K0H-K ₂ C0 ₃				
.8-94.5-1.7	d = 2.0456 - 4.6 x 10 ⁻⁴ T	680-800		3	a
.9-94.4-1.7	d = 2.0404 - 4.54 x 10 ⁻⁴ T	680-860		3	а
.9-90.4-1.7	d = 2.0434 - 4.54 x 10 ⁻⁴ T	680-860		3	а
1.0-89.3-1.7	d = 2.0444 - 4.54 x 10 ⁻⁴ T	680-800		3	а
	KC1-K ₂ CO ₃				
9.2-80.8	d = 2.1593 - 2.406 x 10 ⁻⁴ T	1150-1170		3	
33.3-66.7	d = 2.3815 ~ 4.8 x 10 ⁻⁴ T				a
		1000-1060		3	а
35 -6 5	d = 2.3173 - 4.202 x 10 ⁻⁴ T	998-1148		3	а
16.2-53.8	d = 2.3094 - 4.531 x 10 ⁻⁴ T			3	а
18.1-51.9	d = 2.3085 - 4.56 x 10 ⁻⁴ T	1090-1150		3	а
57.1-42.9	d = 2.2292 - 4.233 x 10 ⁻⁴ T	920-1150		3	а
8.5-41.5	d = 2.2794 - 4.714 x 10 ⁻⁴ T	998-1148		3	а
62.1-37.9	d = 2.0997 - 3.166 x 10 ⁻⁴ T			3	а
66.7-33.3	d = 2.1813 - 4.152 x 10 ⁻⁴ T	920-1150		3	a
57.7-32.3	d = 2.2178 - 4.643 x 10 ⁻⁴ T	970-1150		3	а
71-29	d = 2.2026 - 4.577 x 10 ⁻⁴ T			3	a
75-25	d = 2.1911 - 4.601 x 10 ⁻⁴ T	920-1150		3	а
76.5-23.5	d = 2.2319 - 5.128 x 10 ⁻⁴ T	998-1148		3	а
79-21	d = 2.0633 - 3.838 x 10 ⁻⁴ T	1050-1150		3	а
82.4-17.6	d = 2.1099 - 4.266 x 10 ⁻⁴ T			3	а
88.9-11.1	d = 2.1786 - 5.128 x 10 ⁻⁴ T	1000-1150		3	а
89.6-10.4	d = 2.16 - 5.2 x 10 ⁻⁴ T	998-1148		3	a
94.7-5.3	d = 2.1319 - 5.199 x 10 ⁻⁴ T	1150-1250		3	a
	KC1-K2S04				
D-100	d = 2.4697 - 4.473 x 10 ⁻⁴ T	1348-1411	(286)	3	a
19.8-80.2	d = 2.4495 - 4.784 x 10 ⁻⁴ T	1300-1360	(=00)	3	a
30.6-69.4	d = 2.4145 - 4.785 x 10 ⁻⁴ T	1240-1330		3	a
44.8-55.2	d = 2.4994 - 5.991 x 10 ⁻⁴ T	1160-1220			
55.0-45.0	d = 2.4194 - 5.68 x 10 ⁻⁴ T			3	a
56.9-43.1	d = 2.4453 - 5.989 x 10 ⁻⁴ T	1120-1180		3	a
67.6-32.4		1110-1180		3	а
77.7-22.3	d = 2.4057 - 6.183 x 10-4 T	1090-1150		3	а
	d = 2.342 - 6.234 x 10 ⁻⁴ T	1070-1180		3	а
84.7-15.3	d = 2.2536 - 6.01 x 10 ⁻⁴ T	1090-1180		3	а
100-0	d = 2.0865 - 5.476 x 10 ⁻⁴ T	1060-1260	(287)	3	a
	KC1-K ₂ ZrF ₆				
0-100	d = 3.098 - 7.119 x 10 ⁻⁴ T	1073-1253	(288)	3	a,
10-90	d = 3.046 - 7. x 10 ⁻⁴ T	1073-1173		3	a
20-80	d = 3.05 - 7.301 x 10 ⁻⁴ T	1073-1173		3	a,
30-70	d = 3.013 - 7.401 x 10 ⁻⁴ T	1073-1173		3	a
40-60	d = 2.918 - 7. x 10 ⁻⁴ T	1073-1173		3	a
50-50	d = 2.889 - 7.3 x 10 ⁻⁴ T	1073-1173		3	a
_	d = 2 720			3	a
60-40	d = 2.738 - 6.5 × 10 ⁻⁴ T	1073-1173		U	

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
10-20	d = 2.521 ~ 6.6 x 10 ⁻⁴ T	1073-1173		3	a,e
0-10	d = 2.34 - 6.101 x 10 ⁻⁴ T	1073-1173		3	a,e
00-0	d = 2.142 - 5.901 x 10 ⁻⁴ T	1073-1173	(289)	3	а, е
		7.1.0	(200)	-	-,-
-100	KC1-LaC1 ₃ d = 4.0108 - 6.93 x 10 ⁻⁴ T	1173-1273	(290)	23	k
5.8-84.2	d = 4.0475 - 8.791 x 10 ⁻⁴ T	1171-1283	(230)	23	k
28.8-71.2	d = 3.8542 - 9.109 x 10 ⁻⁴ T	1078-1277		23	k
1.8-58.2	d = 3.5996 - 8.538 x 10 ⁻⁴ T	1055-1276		23	
57.6-42.4	d = 3.2647 - 7.982 x 10-4 T	1055-1276		23	k
71.8-28.2	d = 2.9406 - 7.535 x 10 ⁻⁴ T	1073-1273		23	k k
35.9-14.1	d = 2.5731 - 6.829 x 10 ⁻⁴ T			23 23	
100-0	d = 2.1717 - 6.042 x 10 ⁻⁴ T	1065-1279	(201)		k
100-0		1122-1281	(291)	23	k
-100	KC1-LiC1	••		_	
)-,100 -,100	d = 1.8842 - 4.328 x 10 ⁻⁴ T	894-1054	(292)	5	a,€
8.23-81.77	d = 1.9689 - 4.8908 x 10 ⁻⁴ T	820-920		5	a
29.64-70.36	d ≈ 1.9945 - 5.0738 x 10 ⁻⁴ T	740-860		5	а
11.20-58.80	d = 2.0286 - 5.2676 x 10 ⁻⁴ T	680-860		5	a
9.55-40.45	d = 2.0768 - 5.612 x 10 ⁻⁴ T	860-1000		5	а
30.04-19.96	d = 2.1172 - 5.7764 x 10 ⁻⁴ T	980-1120		5	а
100-0	d = 2.1359 - 5.831 x 10 ⁻⁴ T	1053-1212	(293)	5	а
	KC1-LiC1-PbC12				
0-0-100	d = 6.07 - 0.00145 T	793-973	(294)	26	k
5-15-80	d = 5.56 - 0.00138 T	723-1073		26	k
10-10-80	d = 5.32 - 0.00114 T	723-1073		26	k
10-30-60	d = 4.85 - 0.00112 T	723-1073		26	k
15-5-80	d = 5.5 - 0.00142 T	723-1073		26	k
15-45-40	d = 4.22 - 0.00107 T	723-1073		26	k
20-20-60	d = 4.9 - 0.00128 T	723-1073		26	k
20-60-20	d = 3.39 - 0.00101 T	773-1073		26	k
30-10-60	d = 4.76 - 0.00119 T	723-1073		26	k
30-30-40	d = 4.07 - 9.8 x 10 ⁻⁴ T	723-1073		26	 k
15-15-4 0	d = 4.06 - 0.00105 T	723-1073		26	k
50-20-20	d = 3.18 - 8.9 x 10 ⁻⁴ T	823-1073		26	k
		020 1010			`
10.00	KC1-Li ₂ C0 ₃	4-0		_	
10-90 20-80	d = 2.127 - 3.37 x 10 ⁻⁴ T	1020-1070		3	a, 0
	d = 2.146 - 3.9 x 10 ⁻⁴ T			3	a , 0
40-60	d = 1.993 - 3.18 x 10 ⁻⁴ T	1020-1070		3	a, 0
50-50	d = 2.104 - 4.47 x 10 ⁻⁴ T			3	а,
50-40	d = 2.05 - 4.27 x 10 ⁻⁴ T			3	а,
70-30	d = 2.109 - 5.02 x 10 ⁻⁴ T	1020-1070	ı	3	a,
80-20	d = 2.09 - 5.09 x 10 ⁻⁴ T			3	a,
90-10	d = 2.089 - 5.27 x 10 ⁻⁴ T	1020-1070	ı	3	а,
100-0	d = 2.1 - 5.5 x 10 ⁻⁴ T	1070-1170	(295)	3	a,
	KC1-MgC1 ₂				
0.0-100.0	d = 1.95 - 2.712 x 10 ⁻⁴ T	1017-1099	(296)	5	а
10.0-90.0	d = 2.0844 - 3.9367 x 10 ⁻⁴ T	1060-1110)	5	а
22.6-77.4	d = 2.2238 - 5.3922 x 10 ⁻⁴ T	1060-1130	ı	5	a
32.5-67.5	d = 2.2582 - 6.0077 x 10 ⁻⁴ T	1060-1160	ı	5	a
33.7 -6 6.3	d = 2.1587 - 5.0863 x 10 ⁻⁴ T	1050-1120)	5	a
38.3-61.7	d = 2.1923 - 5.5627 x 10 ⁻⁴ T	1060-1140)	5	а
30.3-01.1		1060-1130		5	a
	d = 2.19 - 5.7054 x 10~4 T	1000-1130			
16.5-53.5	d = 2.19 - 5.7054 x 10 ⁻⁴ T				
46.5-53.5 49.7-50.3 57.8-42.2		1080-1170 1080-1170)	5 5	a a

J. Phys. Chem. Ref. Data, Vol. 17, Suppl. 2, 1988

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
75.0-25.0	d = 2.0796 - 5.3272 x 10 ⁻⁴ T	1050-1120		5	a
88.0-12.0	d = 2.1561 - 6.0618 x 10 ⁻⁴ T	1080-1140		5	a
3.4-6.6	d = 2.138 ~ 5.8395 x 10 ⁻⁴ T	1050-1140		5	a
100.0-0.0	d = 2.1866 - 6.256 x 10 ⁻⁴ T	1080-1120	(297)	5	a
	KC1-MnC1 ₂				
h 100	d = 2.7574 - 4.38 x 10 ⁻⁴ T	040-1120	(200)	_	
0-100 30-80		940-1120	(298)	5	a
20-80	d = 2.8831 - 6.257 x 10 ⁻⁴ T	880-1120		5	a
30-70	d = 2.6045 - 4.629 x 10 ⁻⁴ T	840-1120		5	а
35-65	d = 2.618 - 5.281 x 10 ⁻⁴ T	780-1120		5	a
15-55	d = 2.5466 ~ 5.643 x 10 ⁻⁴ T	780-1120		5	a
50-50	d = 2.4889 - 5.507 x 10 ⁻⁴ T	780-1120		5	а
55-45	d = 2.4457 ~ 5.6 x 10 ⁻⁴ T	780-1120		5	а
55-35	d = 2.4305 ~ 6.298 x 10 ⁻⁴ T	780-1120		5	а
70-30	d = 2.3727 ~ 6.136 x 10 ⁻⁴ T	780-1120		5	а
75-25	d = 2.3542 ~ 6.414 x 10 ⁻⁴ T	840-1120		5	а
80-20	d = 2.3414 ~ 6.56 x 10 ⁻⁴ T	940-1120		5	а
100-0	d = 2.1988 ~ 6.4 x 10 ⁻⁴ T	1080-1120	(299)	5	а
	KC1-NaBr				
50-50	d = 2.648 - 7.28 x 10 ⁻⁴ T	900-1070		2	а
100-0	d = 2.146 - 5.85 x 10 ⁻⁴ T	1060-1100	(300)	2	а
0-100 NaBr	d = 1.487 + 0.007827 C	1073	(301)	2	a,ı
. 100	KC1-NaC1	1000 1001	. (2.02)	_	
0-100	d = 2.1365 - 5.4052 x 10 ⁻⁴ T	1080-1290		5	а
15 . 23-84 . 77	d = 2.14 - 5.5381 x 10 ⁻⁴ T	1065-1185	,	5	а
27.06-72.94	d = 2.1374 - 5.59 x 10 ⁻⁴ T	990-1185		5	а
34 . 85-65 . 15	d = 2.1338 - 5.5749 x 10 ⁻⁴ T	990-1185		5	а
48.77-51.23	d = 2.1314 - 5.6793 x 10 ⁻⁴ T	945-1170		5	а
59.00-41.00	d = 2.1342 - 5.7477 x 10 ⁻⁴ T	960-1170		5	а
79.25-20.75	d = 2.1377 - 5.8127 x 10 ⁻⁴ T	1005-1200		5	а
100-0	d = 2.1359 - 5.831 x 10 ⁻⁴ T	1053-1212	2 (303)	5	а
	KC1-NaC1-PbC12				
0-0-100	d = 6.04 - 0.0014 T	823-873	(304)	27	k
10-30-60	d = 4.86 - 0.0012 T	723-873		27	k
10-10-80	d = 5.86 - 0.0014 T	773-873		27	k
20-20-60	d = 4.76 - 0.0012 T	723-873		27	k
30-10-60	d = 4.28 - 7. x 10 ⁻⁴ T	723-873		27	k
30-30-40	d = 3.15 - 1. x 10 ⁻⁴ T	823-873		27	k
				_	
	KC1-NaC1-YC13				
8.1-8.1-83.8	d = 3.052 - 5.835 x 10 ⁻⁴ T	1079-120	5	28	k
15.4-15.4-69.2	d = 2.96 - 6.142 x 10 ⁻⁴ T	1082-125	8	28	k
25.05-25.05-49.	9 d = 2.774 - 6.038 x 10 ⁻⁴ T	1076-125	3	28	k
36.1-36.1-27.8	d = 2.491 - 5.294 x 10 ⁻⁴ T	1078-122	3	28	k
41.85-41.85-16.	3 d = 2.434 - 5.907 x 10 ⁻⁴ T	1093-126	8	28	k
50.0-50.0-0.0	d = 2.036 - 5.47 x 10 ⁻⁴ T	1088-127	3	28	k
	KC1-NaI				
0.0-100.0	d = 3.685 - 0.001 T	950-1070	(205)	2	_
5.0-95.0	d = 3.574 - 9.43 x 10 ⁻⁴ T				a
15.0-85.0	d = 3.343 - 8.24 x 10 ⁻⁴ T	930-1070		2	a
		880-1070		2	a
	d = 3.217 - 9. x 10 ⁻⁴ T	810-1070		2	а
33.3-66.7	d = 2.047	AAC			
33.3-66.7 50.0-50.0	d = 2.947 - 8.15 x 10 ⁻⁴ T	830-1070		2	a
33.3-66.7 50.0-50.0 66.3-33.7	d = 2.681 - 7.27 x 10 ⁻⁴ T	850-1070	l	2	a
33.3-66.7 50.0-50.0))		_

Table 2.1.a Density data (continued)

	Density (g cm ⁻²)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
	KC1-Na ₂ B ₄ 0 ₇				
00-30 Na ₂ B ₄ 0 ₇	d = 2.961 - 0.00902 C	1223	(307)	3	a
	KC1-Na ₂ C0 ₃				
3.2-81.8	d = 2.4029 - 4.198 x 10 ⁻⁴ T	1100-1150		3	a,c
3.3-66.7	d = 2.3318 - 4.086 x 10 ⁻⁴ T	973-1148		3	a,c
6.2-53.8	d = 2.2639 - 3.967 x 10 ⁻⁴ T	980-1150		3	a, c
7.1-42.9	d = 2.2206 - 4.067 x 10 ⁻⁴ T	973-1148		3	a,0
6.7-33.3	d = 2.2066 - 4.395 x 10 ⁻⁴ T	920-1150		3	a, 0
7.8-22.2	d = 2.1828 - 4.614 x 10 ⁻⁴ T	1023-1148		3	a,c
5.7-14.3	d = 2.1473 - 4.645 x 10 ⁻⁴ T	980-1150		3	a,c
8.9-11.1	d = 2.1619 - 5.199 x 10 ⁻⁴ T	1048-1148		3	a,c
4.7-5.3	d = 2.1573 - 5.481 x 10 ⁻⁴ T	1040-1150	ı	3	a,0
	KC1-NdC13				
3.8-86.2	d = 4.089 - 8.75 x 10 ⁻⁴ T	997-1277		16	k
0.3-69.7	d ≈ 3.879 - 8.85 x 10 ⁻⁴ T	1045-1283		16	k
0.7-59.3	d = 3.659 - 8.28 x 10 ⁻⁴ T	1021-1281		16	k
7.6-42.4	d = 3.249 - 7.38 x 10 ⁻⁴ T	1083-1283		16	k
1.6-28.4	d ≈ 2.837 - 6.4 x 10 ⁻⁴ T	1105-1283	ı	16	k
4.8-15.2	d ≈ 2.545 - 6.15 x 10 ⁻⁴ T	1093-1278	i	16	k
00-0	d = 2.177 - 6.09 x 10 ⁻⁴ T	1122-1281	(308)	16	k
	KC1-NH4NO3				
. 3-95 . 7	d ≈ 1.7796 - 7.516 x 10 ⁻⁴ T	430-450		3	а
.5-91.5	d = 1.8124 - 7.924 x 10 ⁻⁴ T	430-450		3	a
2.8-87.2	d = 1.7908 - 7.084 x 10 ⁻⁴ T	410-450		3	a
4.9-85.1	d ≈ 1.786 - 6.792 x 10 ⁻⁴ T	430-450		3	a
	KC1-PbC12				
- 100	d = 6.112 - 0.0015 T	790-970	(309)	5	а
7.9-82.1	d = 5.533 - 0.00142 T	840-970		5	а
6.2-63.8	d = 4.863 ~ 0.00128 T	860-950		5	a
2.6-47.4	d = 4.269 - 0.00113 T	770-950		5	а
	KC1-PrC1 ₃				
8.6-81.4	d = 3.959 - 8.74 x 10 ⁻⁴ T	1093-1273	}	16	k
1.5-68.5	d = 3.777 - 8.98 x 10 ⁻⁴ T	1073-1273	1	16	k
9.7-50.3	d = 3.357 - 7.61 x 10 ⁻⁴ T	1073-1273		16	k
6.2-33.8	d = 2.97 - 7.07 x 10 ⁻⁴ T	1076-1273		16	k
9.5-20.5	d = 2.572 - 5.71 x 10 ⁻⁴ T	1073-1273	;	16	k
11.1-8.9	d = 2.278 - 5.39 x 10 ⁻⁴ T	1073-1231		16	k
00-0	d = 2.177 - 6.09 x 10 ⁻⁴ T	1 122-128 1	(310)	16	k
	KC1-RbBr				
-100 KC1	d = 2.599 - 0.00697 C - 9.76 x 10^{-5} C ² + 1.247 x 10^{-6} C ³ - 6.73 x 10^{-9} C ⁴ .	1073	(311)	2	a,1
	KC1-RbC1				
- 100	d = 3.0863 - 8.514 x 10 ⁻⁴ T	1020-1230	(312)	5	а
5-75	d = 2.9062 - 8.249 x 10 ⁻⁴ T	1030-1150)	5	а
60-50	d = 2.6333 - 7.264 x 10 ⁻⁴ T	1060-1170)	5	a
5-25	d = 2.4094 - 6.694 x 10 ⁻⁴ T	1060-1190)	5	а
00-0	d = 2.1089 - 5.583 x 10 ⁻⁴ T	1060-1210	(313)	5	a
	KC1-SrC1 ₂				
- 100	d = 3.311 - 5.21 x 10 ⁻⁴ T	1 150- 1290	(314)	5	a
0-80	d = 3.1221 - 5.54 x 10 ⁻⁴ T	1090-1270		5	a
0-60	d = 3.023 - 6.564 x 10 ⁻⁴ T	1090-1270		5	a
50-40	d = 2.6376 - 5.432 x 10 ⁻⁴ T	1100-1260		5	a

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
0-20	d = 2.4294 ~ 6.627 x 10 ⁻⁴ T	1080-1230		5	а
00-0	d = 2.0627 - 5.341 x 10 ⁻⁴ T	1100-1320	(315)	5	a,e
	KC1-ThC14				
-100	d = 4.822 - 0.0014 T	1075-1173	(316)	29	k
7.4-82.6	d = 4.344 - 0.00115 T	1008-1123	(0.0)	29	k
1.3-68.7	d = 4.204 - 0.00115 T	883-1123		29	k
34.2-65.8	d = 4.281 - 0.00125 T	843-1073		29	k
4.5-55.5	d = 4.103 - 0.0012 T	713-1073		29	k
9.7-50.3	d = 4.159 - 0.00132 T	748-1073		29	k
5.5-44.5	d = 4.016 - 0.00125 T	723-1073		29	k
1.6-38.4	d = 3.897 - 0.00121 T	793-1073		29	k
6.8-33.2	d = 3.599 - 0.00102 T	923-1123		29	k
4.3-25.7	d = 3.472 - 0.00105 T	1003-1123		29	k
0.9-19.1	d = 3.292 - 0.0011 T	973-1123		29	k
5.3-14.7	d = 3.036 - 0.001 T	925-1123		29	k
15.2-4.8	d = 2.684 - 9.5 x 10 ⁻⁴ T	1053-1123		29	k
0-00	d = 2.146 - 5.95 x 10 ⁻⁴ T	1075-1173	(317)	29	k
	KC1-UC13				
- 100	d = 13.652 - 0.007943 T	1220-1300	(318)	5	a
5.5-74.5	d = 8.7 - 0.0042835 T	1220-1260		5	a
32.5-67.5	d = 8.405 - 0.0041819 T	1180-1270		5	a
52.9-37.1	d = 4.099 - 0.001224 T	1090-1280		5	a
74.4-25.6	d = 3.981 - 0.0013827 T	1230-1280		5	a
38.3-11.7	d = 2.852 - 7.818 x 10 ⁻⁴ T	1130-1270)	5	а
97.6-2.4	d = 2.255 - 5.288 x 10 ⁻⁴ T	1170-1250)	5	а
100-0	d = 2.0343 - 5.288 x 10 ⁻⁴ T	1090-1290	(319)	5	a
	KC1-UC14				
0.00-100.00	d = 5.2508 - 0.0019455 T	870-940	(320)	5	a
4.47-95.53	d = 5.1147 - 0.0018524 T	860-890	(020)	5	a
9.66-90.34	d = 4.6922 - 0.001415 T	860-910		5	a
16.74-83.26	d = 4.5715 - 0.0013649 T	840-890		5	a
25.76-74.24	d = 4.5627 - 0.0014728 T	800-890		5	a
35 . 65 - 64 . 35	d = 4,2492 - 0.0013107 T	810-910		5	a
46.30-53.70	d = 3.8979 - 0.0010732 T	840-920		5	a
54.38-45.62	d = 3.6615 - 9.654 x 10 ⁻⁴ T	850-930		5	a
	WOL 1903				-
	KC1-YC13				
19.8-80.2	d = 3.063 - 6.312 x 10 ⁻⁴ T	1073-1270		28	k
36.8-63.2	d = 2.969 - 6.199 x 10 ⁻⁴ T	1092-126		28	k
55.6-44.4	d = 2.635 - 5.594 x 10 ⁻⁴ T	1073-127		28	k
70.1-29.9	d = 2.51 - 5.54 x 10 ⁻⁴ T	1154-127		28	k
84.2-15.8	d = 2.36 - 5.79 x 10 ⁻⁴ T	1073-127	3	28	k
	KC1-ZnC1 ₂				
0.00-100.00	d = 2.8375 - 5.293 x 10 ⁻⁴ T	590-830	(321)	5	а
2.48-97.52	d = 2.844 - 5.552 x 10 ⁻⁴ T	600-760		5	a
4.57-95.43	d = 2.8401 - 5.608 x 10 ⁻⁴ T	580-860		5	а
6.30-93.70	d = 2.8164 - 5.465 x 10 ⁻⁴ T	600-760		. 5	а
9.54-90.46	d = 2.8079 - 5.627 x 10 ⁻⁴ T	600-780		5	а
16.30-83.70	d = 2.8246 - 6.364 x 10 ⁻⁴ T	580-740		5	a
27.60-72.40	d = 2.7976 - 6.989 x 10 ⁻⁴ T	560-860		5	а
34.80-65.20	d = 2.761 - 7.169 x 10 ⁻⁴ T	560-880		5	a
42.20-57.80	d = 2.7097 - 7.239 x 10 ⁻⁴ T	520-880		5	a
	d = 2.6727 - 7.197 x 10 ⁻⁴ T	520-860		5	a
46.10-53.90	G = 2.0727 7.197 X 10 1 1				
46.10-53.90 52.60-47.40	d = 2.6084 - 6.982 x 10 ⁻⁴ T	540-860		5	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
2.0-28.0	d = 2.436 - 6.403 x 10 ⁻⁴ T	750-888		19,20	k
0.7-19.3	d = 2.356 - 6.325 x 10 ⁻⁴ T	919-1036		19,20	k
5.1-14.9	d = 2.3 - 6.157 x 10 ⁻⁴ T	968-1113		19,20	k
00-0	d = 2.164 - 6.023 x 10 ⁻⁴ T	1057-1215	(322)	19,20	k
	KC1−ZnS0 ₄				
4.74-75.26	d = 3.2021 - 6.721 x 10 ⁻⁴ T	750-820		3	a,e,o
8.29-71.71	d = 2.976 - 4.84 x 10 ⁻⁴ T	750-820		3	a,e,
0.73-69.27	d = 3.0969 - 6.918 x 10 ⁻⁴ T	750-820		3	a,e,
1.72-68.28	d = 3.0614 - 6.72 x 10 ⁻⁴ T	750-820		3	a,e,
3.23-66.77	d = 2.9978 - 6.04 x 10 ⁻⁴ T	750-820		3	a,o,
5.00-65.00	d = 3.1085 - 7.599 x 10-4 T	750-820		3	a,e,
0. 15-59.85	d = 2.9054 - 6.518 x 10 ⁻⁴ T	750-820		3	
5.00-55.00	d = 2.8491 - 6.881 x 10 ⁻⁴ T	750-820		3	a,e,
9.06-50.94	d = 2.7707 - 6.64 x 10 ⁻⁴ T	750-820		3	a,e,
4.61-45.39	d = 2.6747 - 6.44 x 10 ⁻⁴ T	750-820		3	a,e,
6.41-43.59	d = 2.7105 - 7.121 x 10 ⁻⁴ T				a,e,
	d = 2.6616 - 6.521 x 10 ⁻⁴ T	750-820		3	a,o
7.18-42.82		750-820		3	a ,0
8.11-41.89	d = 2.6606 - 6.721 x 10 ⁻⁴ T	750-820		3	a,e,
For additional CsC1-; CsI-	al KCl systems, see : AgBr- ; AgCl- ; AlBrg- ; AlClg- ; BaClg- ; BaFg- ; BeClg- ; Ca ; CuCl- ; KBr-	1C1 ₂ - ; CdBr ₂ -	; CdC1 ₂ -	CeC13- ;	CsBr- ;
	KC1*NaC1-LaC13				
4.7-15.3	d = 2.5038 - 5.9999 x 10 ⁻⁴ T	973-1123		18	k
7.9-3.0	d = 2.2973 - 6.2 x 10 ⁻⁵ T	973-1123	(323)	18	k,z
3-7-6.3	d = 2.3403 - 5.7999 x 10 ⁻⁴ T	973-1123		18	k
	KC1*NaC1-NdC13				
5.0-15.0	d = 2.5857 - 6.4 x 10 ⁻⁴ T	973-1123		18	k
3.8-6.2	d = 2.4276 - 6.8 x 10-4 T	973-1123		18	k
37.1-2.9	d = 2.5069 - 8.2 x 10 ⁻⁴ T	973-1123	(324)	18	z,k
		0.020	(024)		-,
34.8-15.2	KC1*NaC1-PrC13 d = 2.9384 - 0.00106 T	923-1123		18	k
33.7-6.3	d = 2.758 - 0.001 T			18	
93.7-0.3 97.1-2.9	d = 2.2319 - 5.5999 x 10 ⁻⁴ T	973-1123	(005)	-	k
37.1-2.9	0 = 2.2319 = 5.5999 X 10 = 1	973-1123	(325)	18	k,z
	KC1*NaC1-SmC13				
35.3-14.7	d = 2.6584 - 8. x 10 ⁻⁴ T	973-1123		18	k
93.9-6.1	d = 2.6472 - 8.7999 x 10 ⁻⁴ T	973-1123		18	k
37.2-2.8	d = 2.3996 - 7.2 x 10 ⁻⁴ T	973-1123	(326)	18	k,z
For addition	al KCl*NaCl systems, see : CeCl ₃ - KCl0 ₄ -KNO ₃				
-100	d = 2.313 - 7.35 x 10 ⁻⁴ T	620-800	(327)	3	a
-95	d = 2.273 - 6.7 x 10 ⁻⁴ T	610-670		3	a
15-85	d = 2.34 - 7.5 x 10 ⁻⁴ T	630-670		3	a
30-70	d = 2.334 - 7.3 x 10 ⁻⁴ T	680-690		3	а
	KC104-LiC104			-	-
- 100	d = 2.3801 - 6.826 x 10 ⁻⁴ T	543-633	(328)	6	a
5-95	d = 2.3743 - 6.745 x 10 ⁻⁴ T	520-620	, i	6	a
15-85	d = 2.4236 - 7.476 x 10 ⁻⁴ T	520-620		6	a
10-60	d = 2.451 - 7.817 x 10 ⁻⁴ T	500-620		6	a
16-65 25-75 35-65	d = 2.4913 - 8.387 x 10 ⁻⁴ T	540-630		6	а
25-75		540-630		6	a
25-75 35-65	d = 2.4913 - 8.387 x 10 ⁻⁴ T	540-630 540-680	(329)	6 3	a
25-75 35-65 0-100	d = 2.4913 - 8.387 x 10 ⁻⁴ T		(329)		
25-75	d = 2.4913 - 8.387 x 10 ⁻⁴ T	540-680	(329)	3	a

Table 2.1.a Density data (continued)

(3 %)	Franklin		_		_
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
5-55	d = 2.3113 - 7.002 x 10 ⁻⁴ T	660-680		3	a
-100	d = 2.3206 - 7.151 x 10 ⁻⁴ T	600-680	(330)	3	a
0-90	d = 2.3093 - 6.719 x 10 ⁻⁴ T	560-680		3	a
2-78	d = 2.3322 - 6.72 x 10 ⁻⁴ T	540-680		3	a
0-60	d = 2.3974 - 7.478 x 10 ⁻⁴ T	640-680		3	а
	KF				
00	d = 2.6464 - 6.515 x 10 ⁻⁴ T	1154-1310	±0.5%	1	а
-100	d = 3.3927 - 9.782 x 10 ⁻⁴ T	1010-1090	(331)	2	a
2-88	d = 3.3108 - 9.33 x 10 ⁻⁴ T	1010-1130)	2	a
5-75	d = 3.2247 - 8.905 x 10 ⁻⁴ T	1050-1170)	2	a
7-63	d = 3.1716 - 8.729 x 10 ⁻⁴ T	1080-1180)	2	а
0-50	d = 3.0887 - 8.359 x 10 ⁻⁴ T	1020-1150)	2	a
3-37	d = 3.0044 - 8.001 x 10 ⁻⁴ T	1040-1190)	2	a
5-25	d = 2.9281 - 7.754 x 10 ⁻⁴ T	1060-1190)	2	a
8-12	d = 2.8122 - 7.262 x 10 ⁻⁴ T	1100-1220)	2	a
00-0	d = 2.6806 - 6.75 x 10 ⁻⁴ T	1150-1250	(332)	2	a
	KF-K ₂ ZrF ₆				
-100	d = 3.098 - 7.119 x 10 ⁻⁴ T	1073-1253	(333)	3	a,e
0-90	d = 3.182 - 8.04 x 10 ⁻⁴ T	1233-1253	3	3	a,e
0-80	d = 3.041 - 7.04 x 10 ⁻⁴ T	1233-1253	3	3	a,e
0-70	d = 3.16 - 8.042 x 10 ⁻⁴ T	1233-1253	3	3	a,e
0-60	d = 3.064 - 7.504 x 10 ⁻⁴ T	1233-1253	3	3	a,e
0-50	d = 3.489 - 0.001102 T	1233-1253	3 1	3	a,e
0-40	d = 3.29 - 9.53 x 10 ⁻⁴ T	1233-1253	3	3	a,e
0-30	d = 3.201 - 9.04 x 10 ⁻⁴ T	1233-1253	3	3	a,e
80-20	d = 3.158 - 9.045 x 10 ⁻⁴ T	1233-1253	3	3	a,e
10-10	d = 3.064 - 9.02 x 10 ⁻⁴ T	1233-1253	3	3	a,e
00-0	d = 2.849 - 8.507 x 10 ⁻⁴ T	1233-1250	3 (334)	3	a,e
	KF-LaF3				
60. 0-4 0. 0	d = 4.09 - 8.03 x 10 ⁻⁴ T	1215-1350	D	10	а
0.0-30.0	d = 3.738 - 7.682 x 10 ⁻⁴ T	1080-1350	0	10	а
8.0-22.0	d = 3.454 - 7.537 x 10 ⁻⁴ T	1050-1350	0	10	a,k
80.0-20.0	d = 3.386 - 7.555 x 10 ⁻⁴ T	1050-135	0	10	а
90.0-10.0	d = 2.983 - 6.947 x 10 ⁻⁴ T	1095-135	0	10	а
100.0-0.0	d = 2.555 - 6.241 x 10 ⁻⁴ T	1140-1356	0 (335)	10	a
	KF-L1F				
0.0-100.0	d = 2.074 - 3.321 x 10 ⁻⁴ T	1140-134	0 (336)	10	a
15.0-85.0	d = 2.278 - 4.663 x 10 ⁻⁴ T	1120-134	0	10	а
30.0-70.0	d = 2.273 - 4.927 x 10 ⁻⁴ T	1120-134	0	10	a
50.0-50.0	d = 2.407 - 5.362 x 10 ⁻⁴ T	1120-134	0	10	а
35.0-35 .0	d = 2.484 - 5.872 x 10 ⁻⁴ T	980-1340		10	а
30.0-20.0	d = 2.483 - 5.58 x 10 ⁻⁴ T	1080-134	0	10	а
100.0-0.0	d = 2.555 - 6.241 x 10 ⁻⁴ T	1140-135	0 (337)	10	a
10-90	d = 2.164 - 2.99 x 10 ⁻⁴ T	1140-122	0	3	a, c
30-70	d ≈ 2.221 - 3.44 × 10 ⁻⁴ T		-	3	a, c
10-60	d ≈ 2.266 - 3.71 x 10 ⁻⁴ T	1140-122	0	3	a, c a, c
50-50	d = 2.387 - 4.73 x 10 ⁻⁴ T	. 140 122	~	3	a, c a, c
60-40	d ≈ 2.432 - 5.02 x 10 ⁻⁴ T	1140-122	n	3	a, c a, c
90-10	d ≈ 2.524 - 5.61 x 10 ⁻⁴ T	1140-122		3	a, (
100-0	d ≈ 2.664 - 6.69 x 10 ⁻⁴ T	1140-125		3	a, c a, c
	KF-NaC1	1140-125	~ (000 <i>)</i>	٥	а,

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
	KF-NaF				
.0-100.0	d = 2.682 - 6.151 x 10 ⁻⁴ T	1275-1350	(340)	10	а
0.0-80.0	d = 2.601 - 5.878 x 10 ⁻⁴ T	1200-1350		10	а
0.0-60.0	d = 2.53 - 5.641 x 10 ⁻⁴ T	1125-1350		10	а
0.0-40.0	d = 2.568 - 6. x 10 ⁻⁴ T	1050-1350		10	а
5.0-25.0	d = 2.114 - 2.853 x 10 ⁻⁴ T	1065-1350		10	a
8.0-12.0	d = 1.867 - 1.011 x 10 ⁻⁴ T	1095-1350		10	a
00.0-0.0	d = 2.555 - 6.241 x 10 ⁻⁴ T	1140-1350	(341)	10	а
	KF-Na ₂ B ₄ 0 ₇				
00-40 Na ₂ B ₄ D ₇	d = 2.609 - 0.01756 C + 1.216 x 10 ⁻⁴ C ²	1223	(342)	3	a
	KF-Na3A1F6				
-100	d = 2.115 - 9.82 x 10 ⁻⁴ T	1273-1373	(343)	11	k
.4-96.6	d = 3.370551 - 9.8791 x 10 ⁻⁴ T	1291-1367		11	k
0.1-89.9	d = 3.34193 - 9.6886 x 10 ⁻⁴ T	1280-1356		11	k
6.1-83.9	d = 3.330499 - 9.6799 x 10 ⁻⁴ T	1280-1360		11	k
3.9-76.1	d = 3.321357 - 9.6596 x 10 ⁻⁴ T	1252-1346		11	k
5.1-64.9	d = 3.279155 - 9.4556 x 10 ⁻⁴ T	1237-1354		11	k
5.8-54.2	d = 3.258434 - 9.4318 x 10 ⁻⁴ T	1217-1358		11	k
4.7-45.3	d = 3.224554 - 9.3157 x 10 ⁻⁴ T	1201-1327		11	k
	KF-SmF3				
0.0-50.0	d = 4.636 - 6.493 x 10 ⁻⁴ T	1230-1340	1	10	а
0.0-40.0	d = 4.414 - 8.576 x 10 ⁻⁴ T	1130-1340	ı	10	a
0.0-30.0	d = 4.024 - 8.605 x 10 ⁻⁴ T	1130-1340)	10	a
0.0-20.0	d = 3.515 - 7.612 x 10 ⁻⁴ T	1100-1340	1	10	а
0.0-10.0	d = 3.038 - 6.836 x 10 ⁻⁴ T	1100-1340)	10	а
00.0-0.0	d = 2.555 - 6.241 x 10 ⁻⁴ T	1140-1340	(344)	10	а
	KF-ThF ₄				
2.5-27.5	d = 4.231 - 8.335 x 10 ⁻⁴ T	1120-1350		10	a
0.3-19.7	d = 3.963 - 8.779 x 10 ⁻⁴ T	1160-1350)	10	а
6.3-13.7	d = 3.625 - 8.359 x 10 ⁻⁴ T	1090-1350)	10	а
2.9-7.1	d = 3.385 - 9.768 x 10 ⁻⁴ T	1100-1350)	10	a
00.0-0.0	d = 2.556 - 6.241 x 10 ⁻⁴ T	1140-1350	(345)	10	а
	KF-UF ₄				
0.0-60.0	d = 6.174 - 0.001009 T	1120-1350		10	а
0.0-50.0	d = 5.974 - 0.001296 T	1110-1350		10	а
0.0-40.0	d = 5.218 - 0.001106 T	1120-1350)	10	а
0.0-30.0	d = 4.618 - 0.001011 T	1220-1350)	10	а
0.0-20.0	d = 3.681 - 6.407 x 10 ⁻⁴ T	1230-1350)	10	а
2.5-7.5	d = 3.387 - 9.629 x 10 ⁻⁴ T	1130-1350)	10	a
00.0-0.0	d = 2.555 - 6.241 x 10 ⁻⁴ T	1140-1350	(346)	10	а
	KF-YF ₃		_		
17.5-52.5	d = 3.775 - 6.558 x 10 ⁻⁴ T	1170-1350		10	a
57.0-43.0	d = 3.517 - 6.406 x 10 ⁻⁴ T	1200-1350		10	a,
7.5-42.5	d = 3.551 - 6.772 x 10 ⁻⁴ T	1200-1350		10	a
0.0-30.0	d = 3.177 - 6.11 x 10 ⁻⁴ T	1230-1350		10	а
32.5-17.5	d = 2.825 - 5.429 x 10 ⁻⁴ T	1170-1350		10	а
12.5-7.5	d = 2.717 - 6.293 x 10 ⁻⁴ T	1080-1350	ס	10	а
00-0	d = 2.555 - 6.241 x 10 ⁻⁴ T	1140-1350	(347)	10	а
1 A-20 P ~-	KF-ZrF ₄	4000	/0/01		
0.0-33.3 ZrF ₄	$d = 1.797 + 0.02556 C - 7.701 \times 10^{-4} C^2 + 1.12 \times 10^{-5} C^3 \dots \dots \dots$	1233	(348)	10	a,
For additiona	1 KF systems, see : A1F $_3$ - ; A1 $_2$ 0 $_3$ - ; BaC1 $_2$ - ; BaF $_2$ - ; CeF $_3$ - ; KBr- ; KC1-				
	KHS04				
100	d = 2.579 - 8.646 x 10 ⁻⁴ T	489-528	±1.5%	30	k

Table 2.1.a Density data (continued)

		Density (g cm ⁻³)				
(ma1 %)	Equation		T range(K)	Accur.	Ref.	Commen
		KI				
00	d = 3.3594 - 9.557 x 10 ⁻⁴ T		955-1177	±0.5%	1	a
		KI-LaI3				
. 00-100. 00	d = 5.4581 - 0.0011109 T	· · · · · · · · · · · · · · · · · · ·	1130-1180	(349)	4	а
9.60-60.40	d = 4.8287 ~ 0.0010932 T		1020-1180		4	а
9.64-40.36	d = 4.4004 - 0.0010295 T		1020-1180		4	a
9.84-20.16	d = 3.8346 - 8.836 x 10 ⁻⁴ T		1020-1180		4	а
00.00-0.00	d = 3.3027 - 8.999 x 10 ⁻⁴ T		1030-1180	(350)	4	а
		KI-LiI				
. 0-100.0	d = 3.7063 - 8.172 x 10 ⁻⁴ T		770-910	(351)	4	а
7.27-82.73	d = 3.5211 - 8.71 x 10 ⁻⁴ T		900-1090		4	а
1.19-78.81	d = 3.3676 - 7.618 x 10-4 T		900-1040		4	а
9.7-50.3	d = 3.3159 - 8.595 x 10 ⁻⁴ T		910-1080		4	а
7.14-32.86	d = 3.327 - 8.41 x 10 ⁻⁴ T		910-1120		4	a
00.0-0.0	d = 3.3336 - 9.29 x 10 ⁻⁴ T		1000-1160	(352)	4	а
		KI-NaC1				
. 0-100.0	$d = 2.165 - 5.66 \times 10^{-4} T$		1090-1200	(353)	2	a
5.0-85.0	d = 2.426 - 6.32 x 10 ⁻⁴ T		1000-1070)	2	a
0.0-70.0	d = 2.677 - 7.06 x 10 ⁻⁴ T		920-1070		2	а
0.0-50.0	$d = 2.951 - 8.19 \times 10^{-4} T \dots$		830-1070		2	а
0.0-30.0	d = 3.127 - 8.58 x 10 ⁻⁴ T		850-1070		2	а
5.0-15.0	d = 3.298 - 9.65 x 10 ⁻⁴ T		910-1070		2	а
00.0-0.0	d = 3.37 ~ 9.6 x 10 ⁻⁴ T		970-1070	(354)	2	а
		KI-NaI				
-100	d = 3.6144 - 9.392 x 10-4 T		960-1130	(355)	4	а
0-80	d = 3.5477 - 9.467 x 10-4 T		910-1130		4	a
0-60	d = 3.4977 - 9.506 x 10 ⁻⁴ T		870-1160		4	а
0-40	d = 3.4395 - 9.437 x 10-4 T		890-1130		4	а
0-20	$d = 3.4045 - 9.559 \times 10^{-4} T \dots$		930-1130		4	а
00-0	d = 3.3583 - 9.553 x 10 ⁻⁴ T		970-1190	(356)	4	a
		KI-NdI ₃				
. 00-100. 00	d = 5.4069 - 0.0010701 T		. 1120-1190	(357)	4	а
9.00-81.00	d = 5.1447 - 0.0010865 T		. 1020-1190)	4	а
8.34-61.66	d = 4.8583 - 0.0011077 T		. 1020-1190)	4	a
0.92-49.08	d = 4.7014 - 0.0011444 T		. 1030-1160	0	4	а
0.33-39.67	d = 4.4489 - 0.0010643 T		. 1040-1196	0	4	а
8.65-31.35	d = 4.2473 - 0.0010233 T		. 1000-1180	D	4	a
9.74-20.26	d = 3.9602 - 9.795 x 10 ⁻⁴ T		1000-118	0	4	a
00.00-0.00	$d = 3.3027 - 8.999 \times 10^{-4} T$		1030-118	0 (358)	4	а
		KI-PbI ₂				
- 100	d = 6.7797 - 0.0015938 T		. 700-960	(359)	4	а
10-90	d = 6.5041 - 0.0015538 T		. 680-960	,	4	a
20-80	d = 6.2308 - 0.0015218 T				4	a
30-70	d = 5.9766 - 0.0015277 T		. 620-960		4	a
33-67	d = 5.8488 - 0.0014881 T				4	a
0-60	d = 5.6518 - 0.0014737 T		. 640-960		4	a
0-50	d = 5.283 - 0.001364 T		. 760-960		4	a
0-40	d = 5.0218 - 0.0013867 T		. 800-960		4	a
0-20	d = 4.0632 - 0.0010099 T				4	а
30-10	d = 3.7256 - 9.907 x 10-4 T				4	a
100-0	d = 3.3583 - 9.553 x 10 ⁻⁴ T				4	a
		KI-RbI				
) - 100	d = 3.9667 - 0.0011613 T		. 950-1120	(361)	4	а
0-50					4	a

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
	K1-T11				
-100	d = 6.232 - 6.816 x 10 ⁻⁴ T	813-970	(363)	4	a,e
-90	d = 6.322 - 0.001102 T	813-970		4	a,e
0-80	d = 6 - 0.001108 T	813-970		4	a,e
70	d = 5.501 - 9.364 x 10 ⁻⁴ T	813-970		4	a,e
0-60	d = 4.985 - 7.453 x 10 ⁻⁴ T	813-970		4	a, e
0-50	d = 4.549 - 6.306 x 10 ⁻⁴ T	813-970		4	a,e
0-40	d = 4.226 - 6.242 x 10 ⁻⁴ T	813-970		4	a,e
0-30	d = 4.005 - 7.134 x 10 ⁻⁴ T	813-970		4	a,e
0-20	d = 3.8 - 8.089 x 10-4 T	813-970		4	a,e
0-10	d = 3.466 - 7.644 x 10-4 T	813-970		4	a,e
00-0	d = 2.8 - 3.694 x 10 ⁻⁴ T	813-970	(364)	4	a,e
Ear addition			(55.7)	·	-,-
ro: audition	nal KI systems, see : All $_3$ - ; CdI $_2$ - ; CsCl- ; GdI $_3$ - ; KBr- ; KCl- ; KF- KNO $_2$				
00	d = 2.167 - 6.67 x 10 ⁻⁴ T	713-773	±1.5%	1	a
	KNO ₂ -KNO ₃				
-100	d = 2.29629 - 7.075 x 10 ⁻⁴ T	620-770	(365)	7	2.6
0-90	d = 2.2872 - 7.075 x 10 ⁻⁴ T	620-770	(305)	7	a,e
					a,e
0-80	d = 2.2781 - 7.075 x 10 ⁻⁴ T	620-770		7	a,e
2.5-77.5	d = 2.2758 - 7.075 x 10 ⁻⁴ T	620-770		7	a,e
10-70	d = 2.2689 - 7.075 x 10 ⁻⁴ T	620-770		7	a,e
0-60	d = 2.2598 - 7.075 x 10 ⁻⁴ T	620-770		7	a,e
50-50	d = 2.2507 - 7.075 x 10 ⁻⁴ T	620-770		7	a,e
60-40	d = 2.2416 - 7.075 x 10 ⁻⁴ T	640-770		7	a,e
70-30	d = 2.2325 - 7.075 x 10 ⁻⁴ T	660-770		7	a,e
30-20	d = 2.2234 - 7.075 x 10 ⁻⁴ T	680-770		7	a,e
90-10	d = 2.2143 - 7.075 x 10 ⁻⁴ T	700-770		7	a,e
100-0	d = 2.167 - 6.67 x 10 ⁻⁴ T	713-773	(366)	7	a,e
	KNO2-K2MOO4				
30-20	d = 2.5949 - 8.02 x 10 ⁻⁴ T	840-1020)	3	a
32-18	d = 2.5531 - 7.888 x 10 ⁻⁴ T	840-1020)	3	a
B6-14	d = 2.4371 - 7.236 x 10 ⁻⁴ T	780-1020)	3	a
90-10	d = 2.3083 - 6.432 x 10 ⁻⁴ T	720-960		3	a
92-8	d = 2.2564 - 6.173 x 10 ⁻⁴ T	720-960		3	a
94-6	d = 2.1966 - 5.847 x 10 ⁻⁴ T	720-900		3	а
96-4	d = 2.1357 - 5.47 x 10 ⁻⁴ T	720-900		3	а
100-0	d = 2.0239 - 4.824 x 10 ⁻⁴ T	720-900	(367)	3	а
	KN0 ₂ -K ₂ w0 ₄				
80-20	d = 2.8301 - 7.767 x 10 ⁻⁴ T	900-102)	3	а
82-18	d = 2.6902 - 6.851 x 10 ⁻⁴ T	840-102	0	3	а
84-16	d = 2.6331 - 6.854 x 10 ⁻⁴ T	840-102	0	3	a
86-14	d = 2.5639 - 6.69 x 10 ⁻⁴ T	780-102	3	3	а
88-12	d = 2.4647 - 6.194 x 10 ⁻⁴ T	780-102	D	3	a
92-8	d = 2.3195 - 5.78 x 10 ⁻⁴ T	720-102	D	3	a
94-6	d = 2.2565 - 5.683 x 10 ⁻⁴ T	720-960		3	a
96-4	d = 2.1814 - 5.427 x 10 ⁻⁴ T	720-920		3	a
100-0	d = 2.0239 - 4.824 x 10 ⁻⁴ T	720-920	(368)	3	a,b
	KN02-NaN02				
0-100	d = 2.1619 - 6.497 x 10 ⁻⁴ T	575-770	(369)	7	a,e
10-90	d = 2.1206 - 5.9235 x 10 ⁻⁴ T	545-770		7	a,e
10-90	d = 2.13 - 6.12 x 10 ⁻⁴ T	680-770		7	a,e
20-80	d = 2.1201 - 5.9232 x 10 ⁻⁴ T	530-770		7	
	d = 2.1201 - 5.9232 x 10 ⁻⁴ T			7	a,e
30-70 35-65		515-770 515-770			a,e
35-65	d = 2.1212 - 5.9508 x 10 ⁻⁴ T	515-770		7	a,

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
0-60	d = 2.124 - 6.0002 x 10 ⁻⁴ T	515-770		7	a,e
0-50	d = 2.1203 - 5.9477 x 10 ⁻⁴ T	560-770		7	a,e
0-40	d = 2.123 - 5.9998 x 10 ⁻⁴ T	575-770		7	a,e
0-30	d = 2.1247 - 6.0262 x 10 ⁻⁴ T	605-770		7	a,e
0-20	d = 2.122 - 5.9998 x 10 ⁻⁴ T	635-770		7	a,e
00-0	d = 2.167 - 6.67 × 10 ⁻⁴ T	713-773	(370)	7	a,e
	WARD A MANUE				•
	KN02-NaN03	EOE 760	(271)	-	
- 100	d = 2.30556 - 6.7008 x 10 ⁻⁴ T	595-760	(371)	7	a,e
0-90	d = 2.2921 - 6.7008 x 10 ⁻⁴ T	565-760		7	a,e
20-80	d = 2.2787 - 6.7008 x 10 ⁻⁴ T	535-760		7	a,e
30-70	d = 2.2653 - 6.7008 x 10 ⁻⁴ T	505-760		7	a,e
10-60	d = 2.2518 - 6.7008 x 10 ⁻⁴ T	475-760		7	a,e
18-52	d = 2.2411 - 6.7008 x 10 ⁻⁴ T	475-760		7	a,e
50-50	d = 2.2384 - 6.7008 x 10 ⁻⁴ T	475-760		7	a,e
60-40	d = 2.225 - 6.7008 x 10 ⁻⁴ T	490-760		7	a,e
70-30	d = 2.2115 - 6.7008 x 10 ⁻⁴ T	535-760		7	a,e
80-20	d = 2.1981 - 6.7008 x 10 ⁻⁴ T	580-760		7	a,e
90-10	d = 2.1847 - 6.7008 x 10 ⁻⁴ T	640-760		7	a,e
100-0	d = 2.167 - 6.67 x 10 ⁻⁴ T	713-773	(372)	7	a,e
For addition	al KNO ₂ systems, see : Ba(NO ₂) ₂ -				
100	KN0 ₃ d = 2.3063 - 7.235 x 10 ⁻⁴ T	620.720	+0 5%	3	
100	KNO ₃ -KOH	620-730	±0.5%	3	d, i
) - 100	d = 2.009 - 4.32 x 10 ⁻⁴ T	683-823	(373)	3	a
10-90	d = 2.088 - 5.55 x 10 ⁻⁴ T	700-760		3	a
25-75	d = 2.053 - 5.25 x 10 ⁻⁴ T	520-760		3	a
33.5-66.5	d = 2.031 - 5.01 x 10 ⁻⁴ T	520-760		3	a
45-55	d = 2.075 - 5.8 x 10 ⁻⁴ T	520-760		3	a
50-50	d = 1.838 - 2.31 x 10 ⁻⁴ T	520-760		3	a
55-45	d = 2.047 - 5.2 x 10 ⁻⁴ T	520-760		3	a
69-31	d = 2.067 - 5.1 x 10 ⁻⁴ T	520-760		3	
80-20	d = 1.999 - 3.09 x 10 ⁻⁴ T	520-760		3	a
90-10	d = 2.228 - 6.36 x 10 ⁻⁴ T				а
100-0	d = 2.134 - 7.03 x 10 ⁻⁴ T	610-760	(8=4)	3	а
100 0	KN03-K2M004	630-770	(374)	3	а
80-20	d = 2.5919 - 7.371 × 10 ⁻⁴ T	830-950		3	a,e
84-16	d = 2.4936 - 6.892 x 10 ⁻⁴ T	770-950		3	a,e
88-12	d = 2.48 - 7.47 x 10 ⁻⁴ T	720-970		3	a
92~8	d = 2.4348 - 7.523 x 10 ⁻⁴ T	680-920		3	
96-4	d = 2.3437 - 7.044 x 10 ⁻⁴ T				a,e
98-2	d = 2.3064 - 6.899 x 10 ⁻⁴ T	620-860		3	a
100-0	d = 2.2516 - 6.625 x 10 ⁻⁴ T	620-870	(08E)	3	а
	KN03-K2M04	620-860	(375)	3	a,e
80-20	d = 2.7554 - 6.087 x 10 ⁻⁴ T	620-860		3	a
82-18	d = 2.6807 - 5.982 x 10 ⁻⁴ T	780-970		3	a,e
84-16	d = 2.6258 - 5.981 x 10 ⁻⁴ T	620-860		3	a,e a,e
86-14	d = 2.5652 - 5.899 x 10 ⁻⁴ T	780-970		3	
88-12	d = 2.5255 - 6.097 x 10 ⁻⁴ T				a,e
90-10	d = 2.4629 - 6.04 x 10 ⁻⁴ T	720-970		3	a,e
92-8		740-920		3	a
	d = 2.4126 - 6.082 x 10 ⁻⁴ T	670-920		3	a,e
94-6	d = 2.3646 - 6.161 x 10-4 T	770-950		3	a,e
96-4	d = 2.3157 - 6.251 x 10-4 T	620-860		3	а
98-2	d = 2.2957 - 6.091 x 10 ⁻⁴ T	830-950		3	a,e
100-0					

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
	KNO3-LiC104				
-100	d = 2.3185 - 5.772 x 10 ⁻⁴ T	520-680	(377)	3	а
6-84	d = 2.3581 - 6.673 x 10 ⁻⁴ T	480-680		3	a
30-70	d = 2.3283 - 6.574 x 10 ⁻⁴ T	580-680		3	a
0-50	d ≈ 2.4075 ~ 7.998 x 10 ⁻⁴ T	680-700		3	a
70-30	d ≈ 2.3339 - 7.503 x 10 ⁻⁴ T	660-700		3	a
35-15	d = 2.3199 - 7.501 x 10 ⁻⁴ T	580-680		3	a
100-0	d ≈ 2.3089 - 7.295 x 10 ⁻⁴ T	620-730	(378)	3	
100 0	KNO3-Lino3	620-730	(3/6)	J	а
0-100	d ≈ 2.1721 - 7.021 × 10 ⁻⁴ T	555-690	(379)	7	a,b,e
10-90	d ≈ 2.2193 - 6.695 x 10 ⁻⁴ T	555-690	(4.0)	7	a,b,e
20-80	d ≈ 2.2516 - 6.695 x 10 ⁻⁴ T	555-705		7	a,b,e
30-70	d = 2.2569 - 6.695 x 10 ⁻⁴ T	555-705		7	a,b,e
10-60	d = 2.244 - 6.695 x 10 ⁻⁴ T	555-700		7	
50-50	d = 2.2216 - 6.695 x 10 ⁻⁴ T	***			a,b,e
58-42	d = 2.2027 - 6.695 x 10 ⁻⁴ T	540-705		7	a,b,e
50-40		555-705		7	a,b,e
70-30	d = 2.1984 - 6.695 x 10 ⁻⁴ T	525-705		7	a,b,e
	d = 2.1831 - 6.695 x 10 ⁻⁴ T	540-705		7	a,b,e
30-20	d = 2.1845 - 6.695 x 10 ⁻⁴ T	540-705		7	a,b,e
90-10	d = 2.2113 - 6.695 x 10 ⁻⁴ T	585-720		7	a,b,e
100-0	d = 2.2722 - 6.695 x 10 ⁻⁴ T	630-720	(380)	7	a,b,e
56.6-33.4	KN03-Mg(N03)2			_	
75.6-24.4	d = 3.1403 - 0.00105 T	490-510		7	a,e,i
3.0-17.0	d = 2.9356 - 9.9273 x 10 ⁻⁴ T	480-570		7	a,e,1
39.0-17.0 39.0-11.0	d = 2.7417 - 8.9818 x 10 ⁻⁴ T	520-610		7	a,e,1
94.7-5.3	d = 2.6148 - 8.7857 x 10 ⁻⁴ T	560-620		7	a,e,1
100-0	d = 2.5389 - 8.6667 x 10 ⁻⁴ T	590-660		7	a,e,ì
100 0	d = 2.3339 - 7.6667 × 10 ⁻⁴ T	620-690	(381)	7	a,e,1
36-64	d = 2.5045 - 8.501 x 10 ⁻⁴ T	670-710		3	a
50-50	d = 2.4589 - 8.198 x 10 ⁻⁴ T	670-710		3	
70-30	d = 2.406 - 8.005 x 10 ⁻⁴ T	630-690		3	a
86-14	d = 2.3448 - 7.503 x 10 ⁻⁴ T				a
100-0	d = 2.3089 - 7.295 x 10 ⁻⁴ T	590-690	(200)	3	a
	KN03-NaN02	590-690	(382)	3	a
0-100	d = 2.1619 - 6.4965 x 10 ⁻⁴ T	580-760	(383)	7	3.0
10-90	d = 2.1749 - 6.5017 x 10 ⁻⁴ T	535-760	(000)	7	a,e
20-80	d = 2.1879 - 6.5171 x 10 ⁻⁴ T	505-760		7	a,e
30-70	d = 2.2009 - 6.5429 x 10 ⁻⁴ T			7	a,e
40-60	d = 2.214 - 6.579 x 10 ⁻⁴ T	475-760			a,e
17.5-52.5	d = 2.2237 - 6.6128 x 10 ⁻⁴ T	460-760		7	a, e
50-50	d = 2.227 - 6.6253 x 10 ⁻⁴ T	460~760		7	a,e
30-40		460-760		7	a,e
70-30	d = 2.24 - 6.682 x 10-4 T	460-760		7	a,e
	d = 2.253 - 6.7489 x 10 ⁻⁴ T	475-760		7	a,e
30-20	d = 2.266 - 6.8262 x 10 ⁻⁴ T	520-760		7	a,e
90-10	d = 2.279 - 6.9137 x 10 ⁻⁴ T	580-760		7	a,e
00-0	d = 2.2921 - 7.0116 x 10 ⁻⁴ T	625-760	(384)	7	a,e
-100	KN03-NaN03				
10-90	d = 2.2775 - 6.3788 x 10-4 T	625-720	(385)	7	a,e
	d = 2.281 - 6.4681 x 10-4 T	625-720		7	a,e
20-80	d = 2.285 - 6.5645 x 10 ⁻⁴ T	625-720		7	a,e
30-70	d = 2.2863 - 6.622 x 10 ⁻⁴ T	625-720		7	a,e
10-60	d = 2.2905 - 6.7242 x 10 ⁻⁴ T	625-720		7	a,e
50-50	d = 2.2906 - 6.7606 x 10 ⁻⁴ T	625-720		7	a,e
4-46	d = 2.2911 - 6.7841 x 10 ⁻⁴ T	COE 700		-	
	d = 2.294 - 6.8499 x 10 ⁻⁴ T	625-720		7	a,e

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
70-30	d = 2.2978 - 6.9462 x 10 ⁻⁴ T	625-720		7	a,e
30-20	d = 2.2992 - 7.0038 x 10 ⁻⁴ T	625~720		7	a,e
90-10	d = 2.3022 - 7.0849 x 10 ⁻⁴ T	625-720		7	a,e
100-0	d = 2.3043 - 7.1565 x 10 ⁻⁴ T	625-720	(386)	7	a,e
	KNO3-Na2Cr2O7				
100-0 Na ₂ Cr ₂ 0 ₇	d = 1.8094 + 0.005853 C	693	(387)	3	a
	KNO3-Pb(NO3)2				
70-30	d = 3.3165 - 9.9821 x 10 ⁻⁴ T	540-620		7	a,e
75-25	d = 3.172 - 9.5668 x 10 ⁻⁴ T	510-630		7	a,e
77-23	d = 3.1114 - 9.3926 x 10 ⁻⁴ T	520-640		7	a,e
80-20	d = 3.0175 - 9.1228 x 10 ⁻⁴ T	530-640		7	a,e
85- 15	d = 2.8531 ~ 8.6502 x 10 ⁻⁴ T	560-650		7	a,e
90-10	d = 2.6787 ~ 8.1489 x 10 ⁻⁴ T	590-660		7	a,e
95-5	d = 2.4943 ~ 7.619 x 10 ⁻⁴ T	610-680		7	a,e
100-0	d = 2.3 - 7.0605 x 10 ⁻⁴ T	620-730	(388)	7	a,e
	KNO3-RDNO3				
0-100	d = 3.118 - 0.0010508 T	595-730	(389)	7	a,e
10-90	d = 2.988 - 9.394 x 10 ⁻⁴ T	590-755	,,,,,	7	a,e
20-80	d = 2.922 - 9.289 x 10 ⁻⁴ T	575-770		7	a,e
30-70	d = 2.855 - 9.173 x 10 ⁻⁴ T	575-770		7	a,e
40-60	d = 2.781 - 8.938 x 10 ⁻⁴ T	575-770		7	a,e
50-50	d = 2.706 - 8.682 x 10 ⁻⁴ T	575-755		7	a,e
60-40	d = 2.634 - 8.485 x 10 ⁻⁴ T	590-755		7	
70-30	d = 2.559 - 8.244 x 10 ⁻⁴ T	590-765		7	a,e
80-20	d = 2.504 - 8.284 x 10 ⁻⁴ T	605-740		7	a,e
90-10	d = 2.434 - 8.111 x 10 ⁻⁴ T	620-740		7	a,e
100-0	d = 2.346 - 7.665 x 10 ⁻⁴ T	635-755	(390)	7	a,e
100 0	KN03-Sr(N03)2	000-700	(390)	,	a,e
80-20	d = 2.43399 - 5.9045 x 10 ⁻⁴ T	630-680		7	a,e
85-15	d = 2.43399 - 6.6656 x 10 ⁻⁴ T	590-680		7	a,e
85.7-14.3	d = 2.43399 - 6.7759 x 10 ⁻⁴ T	590-680		7	a,e
90-10	d = 2.43399 - 7.4729 x 10 ⁻⁴ T	580-680		7	
95-5	d = 2.43399 - 8.3263 x 10 ⁻⁴ T	610-690		7	a,e
100-0	d = 2.3339 - 7.667 x 10 ⁻⁴ T	620-690	(201)	7	a,e
100 0	KN03-T1N03	020-090	(391)	,	a,e
20-80	d = 5.0955 - 0.00157877 T	480-610		7	
28-72	d = 4.8721 - 0.00157877 T	490-610		7	a,e
40-60	d = 4.5371 - 0.00157877 T	510-620		7	a,e
70-30	d = 3.6994 - 0.00157877 T			7	a,e
80-20	d = 3.4202 - 0.00157877 T	580-630 600-630		7	a,e a,e
					۵,5
ror additiona	1 KNO ₃ systems, see : AgNO ₃ - ; Ba(NO ₃) ₂ - ; Ca(NO ₃) ₂ - ; Cd(NO ₃) ₂ - ; CoBr ₂ - ; CsNO ₃ -	; KBr- ; KC1-	; KC104-	; KN0 ₂ -	
100	KOH				
100	d = 2.013 - 4.396 x 10 ⁻⁴ T	673-873	±1%	1	а
	KOH-K ₂ CO ₃				
91.4-8.6	d = 2.1268 - 4.86 x 10 ⁻⁴ T	680-820		3	а
93.3-6.7	d = 2.1043 - 4.78 x 10 ⁻⁴ T	680-820		3	а
95.5-4.5	d = 2.0552 - 4.4 x 10 ⁻⁴ T	680-820		3	а
95.7-4.3	d = 2.0696 - 4.6 x 10 ⁻⁴ T	680-820		3	a
97.2-2.8	d = 2.0541 - 4.52 x 10 ⁻⁴ T	680-820		3	a
97.9-2.1	d = 2.0382 - 4.46 x 10 ⁻⁴ T	680-820		3	a
98.3-1.7	d = 2.0414 - 4.58 x 10 ⁻⁴ T	680-820		3	a

Table 2.1.a Density data (continued)

(mo1 %) 94.1-1.9-4.0	Equation	T			
14.1-1.9-4.0		T range(K)	Accur.	Ref.	Comment
4.1~1.9-4.0	KOH-K ₂ CO ₃ -K ₂ SiO ₃			-	
	d = 2.1214 - 4.8 x 10 ⁻⁴ T	780-870		3	а
6.2-1.9-1.9	d = 2.0836 - 4.7 x 10 ⁻⁴ T	780-870		3	а
For additional	KOH systems, see : CaO- ; KC1- ; KNO ₃ -				
roi addittolla	·				
00	KP03 d = 2.568 - 4.2725 × 10-4 T				
00	d = 2.568 - 4.2725 x 10 ⁻⁴ T	1170-1470	±2%	6	а
	KP03-K3P04				
4.5-25.5	d = 2.6212 - 4.101 x 10 ⁻⁴ T	1080-1160		3	a,e
7.5-22.5	d = 2.5938 - 3.901 x 10 ⁻⁴ T	1080-1160		3	a,e
0-20	d = 2.4993 - 3.101 x 10 ⁻⁴ T	1080-1160		3	a,e
2-18	d = 2.5534 - 3.719 x 10 ⁻⁴ T	1080-1160		3	a,e
5-15	d = 2.4708 - 3.019 x 10 ⁻⁴ T	1020-1160		3	a,e
9-11	d = 2.5305 - 3.519 x 10 ⁻⁴ T	1020-1160		3	a,e
1-9	d = 2.5576 - 3.839 x 10 ⁻⁴ T	1020-1160		3	a,e
4-6	d = 2.5816 - 4.219 x 10 ⁻⁴ T	1020-1160		3	a,e
7-3	d = 2.5731 - 4.2 x 10 ⁻⁴ T	1020-1160		3	a,e
00-0	d = 2.6003 - 4.6 x 10 ⁻⁴ T	1020-1160	(393)	3	a,e
	KP03-K4P207				-,-
0.3-29.7	d = 2.4645 - 2.801 x 10 ⁻⁴ T				
5.2-24.8	d = 2.5136 - 3.281 x 10-4 T	1070-1130		3	а
0.0-20.0		1070-1130		3	а
5.0-15.0	d = 2.5189 - 3.401 x 10 ⁻⁴ T	1070-1130		3	а
	d = 2.4847 - 3.16 x 10 ⁻⁴ T	1070-1130		3	а
0.2-9.8	d = 2.4435 - 2.82 x 10 ⁻⁴ T	1070-1130		3	а
5.0-5.0	d = 2.4514 - 2.961 x 10 ⁻⁴ T	1070-1130		3	а
00-0	d = 2.6003 - 4.6 x 10 ⁻⁴ T	1070-1130	.(394)	3	a,b
	KPO3-N10				
00-92.3 KP03	d = 2.955 - 0.00859 C	1123	(395)	3	a
	KP03-Pb0				
9.5-91.5 KP03	d = 8.839 - 0.0674 C	1123		3	a
	KP03-W03				
0-50	d = 4.6981 - 9.749 x 10 ⁻⁴ T	1070-1210		3	a
5-45	d ≈ 4.8299 - 0.0012197 T	1070-1210		3	•
0-40	d = 4.4975 - 0.0010766 T	1070-1210		3	a
5-35	d ≈ 4.2282 - 9.913 x 10 ⁻⁴ T	1070-1210		3	a
0-30	d ≈ 3.773 - 7.609 x 10 ⁻⁴ T	1070-1210		3	
5-25	d = 3.5101 - 6.261 x 10 ⁻⁴ T	1070-1210		3	a,e
0-20	d = 3.4029 - 6.931 x 10 ⁻⁴ T				a,e
5-15	d = 3.1401 - 5.638 x 10 ⁻⁴ T	1070-1210		3	a,e
0-10	d = 2.9043 - 5.149 x 10 ⁻⁴ T	1070-1210		3	a,e
5-5	d = 2.8752 - 5.677 x 10 ⁻⁴ T	1070-1210		3	а
00-0	d ≈ 2.5597 - 4.45 x 10 ⁻⁴ T	1070-1210		3	a,e
	u = 2.3057 = 4.45 X 10 = 1	1120-1220	(396)	3	a,e
	KP03-Zn0				
1.2-25.8	d ≈ 2.894 - 3.582 x 10 ⁻⁴ T	1140-1350		3	а
7.9-22.1	d ≈ 2.8343 - 3.593 x 10 ⁻⁴ T	1080-1380		3	a
0.4-9.6	d = 2.6613 - 4. x 10 ⁻⁴ T	1110-1320		3	a
	KP03-Zn(P03)2				
-· ·	3 = +3/2				
	d ≈ 2.8817 - 7.67 x 10 ⁻⁵ T	1190-1410	(397)	6	2
- 100		1190-1410 1170-1370	(397)	6 6	a
-100 2.2-87.8	d = 2.8817 - 7.67 x 10 ⁻⁵ T	1170-1370	(397)	6	a
-100 2.2-87.8 8.3-71.7 7.7-52.3	d = 2.8817 - 7.67 x 10 ⁻⁵ T		(397)		

J. Phys. Chem. Ref. Data, Vol. 17, Suppl. 2, 1988

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
- 14	d = 2.6382 - 3.808 x 10 ⁻⁴ T	1090-1370	_	6	a
0-0	d = 2.5292 - 3.963 x 10 ⁻⁴ T	1152-1347	(398)	6	а
or addition	al KPO3 systems, see : Bi ₂ O ₃ - ; KBO ₂ -				
00	KSCN d = 1.8765 - 5.694 x 10 ⁻⁴ T	472-557	±1%	23	d
	KSCN-NaSCN	472 007	21%		u
-100	d = 1.7103 - 3.82 x 10 ⁻⁴ T	573-620	(399)	15	k
0.4-69.6	d = 1.8902 - 6.5 x 10 ⁻⁴ T	497-545		23	k
0.2-59.8	d = 1.9635 - 7.84 x 10 ⁻⁴ T	502-535		15	k
7.2-52.8	d = 1.9082 - 6.7 x 10 ⁻⁴ T	472-515		15	k
9.6-40.4	d = 1.9228 - 6.97 x 10 ⁻⁴ T	462-538		15	k
8.5-11.5	d = 1.8902 - 6.13 x 10 ⁻⁴ T	478-558		15	k
00-0	d = 1.8765 - 5.69 x 10 ⁻⁴ T	472-557	(400)	23	d,
	KYD3				
00	d = 2.515 - 2.22 x 10 ⁻⁴ T	823-1273	±2%	3	а
	KV03-V205				
-100	d = 2.69 - 2.67 x 10 ⁻⁴ T	973-1250	(401)	3	а
9.0-81.0	d = 2.689 - 2.6 x 10 ⁻⁴ T	950-1275		3	а
5.0-64.0	d = 2.676 - 2.56 x 10 ⁻⁴ T	950-1150		3	а
1.7-48.3	d = 2.682 - 2.67 x 10 ⁻⁴ T	895-1250		3	а
5.8-34.2	d = 2.691 - 2.83 x 10 ⁻⁴ T	850-1275		3	а
0.6-19.4	d = 2.694 - 3.02 x 10 ⁻⁴ T	740-1260		3	а
9.0-11.0	d = 2.658 - 2.93 x 10 ⁻⁴ T	750-1250		3	а
00-0	d = 2.515 - 2.22 x 10 ⁻⁴ T	823-1273	(402)	3	a
	к ₂ в ₄ 0 ₇				
00	(T=1123 K, d=1.997)		±2%	6	a
00-81.7	K ₂ B ₄ 0 ₇ -Ni0 d = 2.112 - 0.00114 C	1100	(400)	•	
2B407		1123	(403)	3	а
00-84.4	K ₂ B ₄ O ₇ -PbO				
2B ₄ 0 ₇	d = 3.757 - 0.01769 C	1123	(404)	3	а
For addition	nal K ₂ B ₄ O ₇ systems, see : Bi ₂ O ₃ -				
00	K ₂ C0 ₃				
00	d = 2.4141 - 4.421 x 10 ⁻⁴ T	1181-1283	±0.5%	1	а
	K ₂ CO ₃ -LiC1				
- 100	d = 1.881 - 4.34 x 10 ⁻⁴ T	900-1070	(405)	3	a,
0-90	d = 1.935 - 4.51 x 10 ⁻⁴ T	1030-1070)	3	a,
0-80	d = 1.987 - 4.51 x 10 ⁻⁴ T			3	a,
0-70	d = 1.988 - 4.15 x 10 ⁻⁴ T	1030-1070)	3	a,
0-60	d = 1.945 - 3.43 x 10 ⁻⁴ T			3	a,
0-50	d = 2.033 - 3.84 x 10 ⁻⁴ T			3	a,
50-40	d = 2.143 - 4.33 x 10 ⁻⁴ T	1030-1070)	3	a,
70-30	d = 2.149 - 3.73 x 10 ⁻⁴ T			3	a,
30-20	d = 2.315 - 4.66 x 10 ⁻⁴ T			3	a,
90-10	d = 2.392 - 4.84 x 10 ⁻⁴ T	1030-1070)	3	а,
- 100	d = 2.294 - 4.41 x 10 ⁻⁴ T	1140-1320	0 (406)	3	a,
0-80	d = 2.352 ~ 4.76 x 10 ⁻⁴ T	1140-1220		3	a, a,
30-70	d = 2.328 - 4.48 x 10 ⁻⁴ T	,,,0 1221	-	3	a, a,
10-60	d = 2.423 - 5.19 x 10-4 T	1140-1220	n	3	
i0-50	d = 2.411 - 4.93 x 10 ⁻⁴ T	1140-1220	•		а,
60-40	d = 2.417 - 5. x 10-4 T	1140_100	•	3	a,
70-30	d = 2.448 - 5.23 x 10 ⁻⁴ T	1140-1220	U	3	a,
0-30 10-20	d = 2.434 - 5.07 x 10 ⁻⁴ T			3	a,
			•	3	a,
90-10	d = 2.425 - 4.99 x 10 ⁻⁴ T	1140-122	U	3	а,

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K) Acc	ur.	Ref .	Comment
1.74-48.26	d = 3.0074 - 6. x 10 ⁻⁴ T	. 770-830		6	a,b,e
7.00-43.00	d = 2.8797 - 4.8 x 10 ⁻⁴ T	. 770-830		6	a,b,e
For additional	1 K ₂ SO ₄ systems, see : KC1-				
00	K ₂ WO ₄				
00	d = 4.0624 - 7.484 x 10 ⁻⁴ T	. 1198-1794	±1.5%	1	a,e
) - 100	K2W04-Li2W04				
10-90	d = 5.0527 - 7.818 x 10 ⁻⁴ T		(421)	6	a,e
9.9-80.1	d = 4.8683 - 8.627 x 10 ⁻⁴ T			6	a
30-70	d = 4.6792 - 7.651 x 10 ⁻⁴ T			6 6	a a
40-60	d = 4.4983 - 7.452 x 10 ⁻⁴ T			6	a
50-50	d = 4.5201 - 8.259 x 10 ⁻⁴ T			6	a
54.4-45.6	d = 4.2709 - 6.504 x 10 ⁻⁴ T			6	a,e
60-40	d = 4.3951 - 7.927 x 10 ⁻⁴ T			6	a,e
68-32	d = 4.3225 - 7.806 x 10 ⁻⁴ T	. 1010-1190		6	a
80-20	d = 4.2567 - 8.001 x 10 ⁻⁴ T	. 1090-1190		6	a
100-0	d = 4.0666 - 7.581 x 10 ⁻⁴ T	. 1213-1302	(422)	6	a,e
	K ₂ ₩0 ₄ -₩0 ₃				
30-70	d = 6.3152 - 0.0015546 T	1190-1250		3	а
42.13-57.87	d = 5.9017 - 0.0015197 T	1040-1190		3	а
50.18-49.82	d = 5.7594 - 0.0015622 T	940-1040		3	a
59.42-40.58	d = 5.3195 - 0.0013339 T	950-1100		3	а
70-30	d = 4.8095 - 0.0010156 T	1070-1160		3	a
80.11-19.89	d = 4.4919 - 9.071 x 10 ⁻⁴ T			3	а
89.55-10.45	d = 4.308 - 8.452 x 10 ⁻⁴ T			3	а
100-0	d = 4.043 - 7.268 x 10 ⁻⁴ T	1210-1320	(423)	3	a
For additiona	al K ₂ WO ₄ systems, see : KNO ₂ ~ ; KNO ₃ ~ K ₂ ZrF ₆				
100	d = 3.098 - 7.119 x 10 ⁻⁴ T	1073-1253	n.a.	3	a,e
	KoZrF6-NaC1				
	2 0				
0-100	d = 2.225 - 6.3 x 10 ⁻⁴ T		(424)	3	a,e,
0-100 10-90	d = 2.225 - 6.3 x 10 ⁻⁴ T	1073-1173	(424)	3	a,e,
	d = 2.225 - 6.3 x 10 ⁻⁴ T	1073-1173 . , 1073-1173	(424)	3 3	a,e,
10-90	d = 2.225 - 6.3 x 10 ⁻⁴ T	1073-1173 1073-1173 1073-1173	(424)	3 3 3	a,e,(a,e,(a,e,
10-90 20-80	d = 2.225 - 6.3 x 10 ⁻⁴ T	1073-1173 1073-1173 1073-1173 1073-1173	(424)	3 3 3 3	a,e, a,e, a,e, a,e,
10-90 20-80 30-70	d = 2.225 - 6.3 x 10 ⁻⁴ T	1073-1173 1073-1173 1073-1173 1073-1173	(424)	3 3 3 3	a,e, a,e, a,e, a,e, a,e,
10-90 20-80 30-70 40-60	d = 2.225 - 6.3 x 10 ⁻⁴ T	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173	(424)	3 3 3 3 3	a,e,(a,e,(a,e,(a,e,(a,e,(
10-90 20-80 30-70 40-60 50-50	d = 2.225 - 6.3 x 10 ⁻⁴ T	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173	(424)	3 3 3 3 3 3	a,e, a,e, a,e, a,e, a,e, a,e,
10-90 20-80 30-70 40-60 50-50 60-40	d = 2.225 - 6.3 x 10 ⁻⁴ T	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173	(424)	3 3 3 3 3 3	a,e, a,e, a,e, a,e, a,e, a,e, a,e,
10-90 20-80 30-70 40-60 50-50 60-40 70-30	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T.	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173		3 3 3 3 3 3 3 3	a,e,(a,e,(a,e,(a,e,(a,e, a,e, a,e,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20	d = 2.225 - 6.3 x 10 ⁻⁴ T	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173	(424)	3 3 3 3 3 3	a,e,(a,e,(a,e, a,e, a,e, a,e, a,e,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T.	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173		3 3 3 3 3 3 3 3	a,e, a,e, a,e, a,e, a,e, a,e, a,e,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.098 - 7.119 x 10 ⁻⁴ T.	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173		3 3 3 3 3 3 3 3	a.e.,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0 For addition	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.098 - 7.119 x 10 ⁻⁴ T. K3A1F6 d = 2.7698 - 7.398 x 10 ⁻⁴ T.	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1253		3 3 3 3 3 3 3 3	a.e., a.e., a.e., a.e., a.e., a.e., a.e., a.e., a.e.,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.098 - 7.119 x 10 ⁻⁴ T.	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1253	(425)	3 3 3 3 3 3 3 3 3	a.e.,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0 For addition	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.098 - 7.119 x 10 ⁻⁴ T. d = 3.098 - 7.398 x 10 ⁻⁴ T. K3A1F6 K3A1F6 K3A1F6	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1253 1273-1330 1281-1340	(425)	3 3 3 3 3 3 3 3 3 3 3	a.e.,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0 For addition 100 0-100	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.098 - 7.119 x 10 ⁻⁴ T. mal K ₂ ZrF ₆ systems, see : KC1-; KF- mal K ₂ ZrF ₆ systems, see : KC1-; KF- K ₃ A1F ₆ d = 3.004651 - 8.7811 x 10 ⁻⁴ T. K ₃ A1F ₆ -Li ₃ A1F ₆	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1253 1273-1330 1281-1340	(425) ±1.5%	3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 6 6 6 6	a,e,da,e,da,e,da,e,da,e,da,e,da,e,da,e,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0 For addition 100 100 0-100 10-90	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.098 - 7.119 x 10 ⁻⁴ T. mal K ₂ ZrF ₆ systems, see : KC1-; KF- d = 2.7698 - 7.398 x 10 ⁻⁴ T. d = 3.004651 - 8.7811 x 10 ⁻⁴ T. K ₃ A1F ₆ d = 3.251 - 0.001034 T. d = 3.1278 - 9.5 x 10 ⁻⁴ T.	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1253 1273-1330 1281-1340	(425) ±1.5%	3 3 3 3 3 3 3 3 3 3 4 6 11	a.e,, a.e, a.e, a.e, a.e, a.e, a.e, a.e,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0 For addition 100 100 0-100 10-90 20-80	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.098 - 7.119 x 10 ⁻⁴ T. mal K ₂ ZrF ₆ systems, see : KC1-; KF- d = 2.7698 - 7.398 x 10 ⁻⁴ T. d = 3.004651 - 8.7811 x 10 ⁻⁴ T. K ₃ A1F ₆ d = 3.251 - 0.001034 T. d = 3.1278 - 9.5 x 10 ⁻⁴ T. d = 3.0528 - 9.1 x 10 ⁻⁴ T.	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1253 1273-1330 1281-1340 1073-1330 1220-1330 1220-1330	(425) ±1.5%	3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 6 6 6 6	a.e.,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0 For addition 100 100 0-100 10-90 20-80 30-70	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.098 - 7.119 x 10 ⁻⁴ T. d = 3.098 - 7.398 x 10 ⁻⁴ T. d = 3.004651 - 8.7811 x 10 ⁻⁴ T. K3A1F6 d = 3.251 - 0.001034 T. d = 3.1278 - 9.5 x 10 ⁻⁴ T. d = 3.0528 - 9.1 x 10 ⁻⁴ T. d = 3.0528 - 9.1 x 10 ⁻⁴ T.	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1253 1273-1330 1281-1340 1073-1330 1220-1330 1220-1330	(425) ±1.5%	3 3 3 3 3 3 3 3 3 3 4 6 11	a.e,, a.e, a.e, a.e, a.e, a.e, a.e, a.e,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0 For addition 100 100 0-100 10-90 20-80 30-70 40-60	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.098 - 7.119 x 10 ⁻⁴ T. d = 3.098 - 7.398 x 10 ⁻⁴ T. d = 3.004651 - 8.7811 x 10 ⁻⁴ T. K3A1F6 d = 3.251 - 0.001034 T. d = 3.1278 - 9.5 x 10 ⁻⁴ T. d = 3.0528 - 9.1 x 10 ⁻⁴ T. d = 3.0628 - 9.1 x 10 ⁻⁴ T. d = 3.0822 - 9.601 x 10 ⁻⁴ T.	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1253 1273-1330 1281-1340 1073-1330 1220-1330 1220-1330 1220-1330	(425) ±1.5%	3 3 3 3 3 3 3 3 3 3 6 11	a.e.,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0 For addition 100 10-100 10-90 20-80 30-70 40-60 50-50	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.098 - 7.119 x 10 ⁻⁴ T. d = 3.098 - 7.398 x 10 ⁻⁴ T. d = 3.004651 - 8.7811 x 10 ⁻⁴ T. K3A1F6 d = 3.251 - 0.001034 T. d = 3.1278 - 9.5 x 10 ⁻⁴ T. d = 3.0528 - 9.1 x 10 ⁻⁴ T. d = 3.06228 - 9.1 x 10 ⁻⁴ T. d = 3.0822 - 9.601 x 10 ⁻⁴ T. d = 3.0822 - 9.601 x 10 ⁻⁴ T. d = 3.1006 - 9.9 x 10 ⁻⁴ T.	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1253 1273-1330 1281-1340 1073-1330 1220-1330 1220-1330 1220-1330	(425) ±1.5%	3 3 3 3 3 3 3 3 3 3 3 4 11	a.e.,
10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0 For addition 100 100 0-100 10-90 20-80 30-70 40-60	d = 2.225 - 6.3 x 10 ⁻⁴ T. d = 2.396 - 5.8 x 10 ⁻⁴ T. d = 2.555 - 6.101 x 10 ⁻⁴ T. d = 2.665 - 6.101 x 10 ⁻⁴ T. d = 2.877 - 7.301 x 10 ⁻⁴ T. d = 2.933 - 7.2 x 10 ⁻⁴ T. d = 3.051 - 7.701 x 10 ⁻⁴ T. d = 3.078 - 7.602 x 10 ⁻⁴ T. d = 3.071 - 7.301 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.123 - 7.501 x 10 ⁻⁴ T. d = 3.098 - 7.119 x 10 ⁻⁴ T. d = 3.098 - 7.398 x 10 ⁻⁴ T. d = 3.004651 - 8.7811 x 10 ⁻⁴ T. K3A1F6 d = 3.251 - 0.001034 T. d = 3.1278 - 9.5 x 10 ⁻⁴ T. d = 3.0528 - 9.1 x 10 ⁻⁴ T. d = 3.0628 - 9.1 x 10 ⁻⁴ T. d = 3.0822 - 9.601 x 10 ⁻⁴ T.	1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1173 1073-1253 1273-1330 1281-1340 1073-1330 1220-1330 1220-1330 1220-1330 1220-1330 1220-1330	(425) ±1.5%	3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6	a.e.,

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
35-15	d = 3.0049 - 9.3 x 10 ⁻⁴ T	1220-1330		6	a
0-10	d = 3.2104 - 0.0010796 T	1280-1330		6	а
00-0	d = 2.7698 - 7.398 x 10 ⁻⁴ T	1273-1330	(427)	6	a
	K3A1F6-Na3A1F6				
-100	d = 3.3652 - 9.82 x 10 ⁻⁴ T	1273-1373	(428)	11	d
0-90	d = 4.2618 - 0.001806 T	1258-1280		6	
0-80	d = 4.3144 - 0.001859 †	1220-1280		6	
0.1-79.9	d = 3.268377 - 9.5814 x 10 ⁻⁴ T	1277-1335		11	d
0-70	d = 4.3133 - 0.00188 T	1220-1280		6	
0-60	d = 2.0283 - 1. x 10 ⁻⁴ T	1220-1280		6	
0.2-59.8	d = 3.198997 - 9.4629 x 10 ⁻⁴ T	1276-1334		11	d
0-50	d = 4.1221 - 0.001759 T	1220-1280		6	
0-40	d = 3.8968 - 0.0016 T	1220-1280		6	
0.1-39.9	d = 3.153422 - 9.4229 x 10 ⁻⁴ T	1274~1335		11	ď
0-30	d = 3.8102 - 0.001539 T	1223-1280		6	
0-20	d = 3.9891 - 0.0017 T	1233-1280		6	
0.0-20.0	d = 3.084292 - 9.135 x 10 ⁻⁴ T	1276-1334		11	d
00-0	d = 3.004651 - 8.7811 x 10 ⁻⁴ T	1281-1340	(429)	11	d
		1201 1040	(423)	• •	ŭ
For additiona	1 K3A1F6 systems, see : Cs3A1F6-				
	K ₃ P0 ₄				
For K ₃ P0 ₄ sys	tems, see : KPD3- LaBr3				
00	d = 5.0351 - 9.6 x 10 ⁻⁵ T	1069-1185	±1%	1	а
	LaCl ₂ -LaCl ₃				
6-14	d = 4.761 - 8.6 x 10 ⁻⁴ T	1160-1320)	5	а
	LaCl3			_	-
00	d = 4.0895 - 7.774 x 10 ⁻⁴ T	1146 1046	4.19/		_
00		1146-1246	± 1%	1	а
	LaC1 ₃ -LiC1				
-100	d = 1.8965 - 4.458 x 10 ⁻⁴ T	880-1060	(430)	5	a,c
2.3-87.7	d = 2.381 - 4.63 x 10 ⁻⁴ T	1080-1170)	5	a,c
4.2-75.8	d = 2.699 - 4.55 x 10 ⁻⁴ T	1080-1170)	5	a,c
6.8-63.2	d = 2.976 - 4.7 x 10 ⁻⁴ T	1080-1170)	5	a,c
9.3-50.7	d = 3.174 - 4.68 x 10 ⁻⁴ T	1080-1170)	5	a,c
1.2-38.8	d = 3.372 - 5.08 x 10 ⁻⁴ T	1080-1170)	5	a,c
5.0-25.0	d = 3.54 - 5.23 x 10 ⁻⁴ T	1080-1170)	5	a,c
8.6-11.4	d = 3.71 - 5.61 x 10 ⁻⁴ T	1080-1170)	5	a,c
	LaC13-NaC1				
.0-100.0	d = 2.0876 - 4.9768 x 10 ⁻⁴ T	1132-1257	(431)	5	a,b
1.99-95.01	d = 2.2525 - 5.2835 x 10 ⁻⁴ T	1106-127	:	5	a,b
3.17-86.83	d = 2.7711 - 7.9551 x 10 ⁻⁴ T	1180-1273	3	5	a,b
20.87-79.13	d = 2.7178 - 5.6887 x 10 ⁻⁴ T	1088-1263		5	a,b
33.30-66.70	d = 3.1195 - 6.6379 x 10 ⁻⁴ T	1154-1279		5	a,b
5.11-54.89	d = 3.2572 - 6.7332 x 10 ⁻⁴ T	1136-125		5	a,b
5.02-44.98	d = 3.2767 - 5.7343 x 10 ⁻⁴ T	1121-126		5	
0.22-29.78	d = 3.6063 - 6.3339 x 10 ⁻⁴ T				a,b
34.86-15.14		1132-123		5	a,t
	d = 3.8004 - 6.7778 x 10 ⁻⁴ T	1128-126	3	5	a,b
For additiona	al LaCl ₃ systems, see : BaCl ₂ - ; CaCl ₂ - ; CsCl- ; KCl- ; KCl*NaCl- ; LaCl ₂ -				
	LaF ₃				
00	d = 5.793 - 6.82 x 10 ⁻⁴ T	1750-245	0 ±3%	1	а
	LaF ₃ -LiF				
.0-100.0	d = 2.074 - 3.321 x 10 ⁻⁴ T	1130-135	0 (432)	10	a
5.0-95.0	d = 2.491 - 3.648 x 10 ⁻⁴ T	1140-135	0	10	a
10.0-90.0	d = 2.799 - 3.118 x 10 ⁻⁴ T	1180-135	D	10	a

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
0.0-80.0	d = 3.737 - 6.486 x 10 ⁻⁴ T	1130-1350		10	a
5.0-75.0	d = 3.799 - 5.507 x 10 ⁻⁴ T	1130-1350		10	а
	LaF3-NaF				
. 0-100. 0	d = 2.682 - 6.151 x 10 ⁻⁴ T	1275-1350	(433)	10	а
0.0-90.0	d = 3.16 - 6.057 x 10 ⁻⁴ T	1245-1350		10	а
0.0-80.0	d = 3.802 - 7.726 x 10 ⁻⁴ T	1155-1350		10	a
8.0-72.0	d = 4.067 - 7.335 x 10 ⁻⁴ T	1095-1350		10	a,k
0.0-70.0	d = 4.143 - 7.368 x 10 ⁻⁴ T	1080-1350		10	a
0.0-60.0	d = 4.4 - 7.045 x 10 ⁻⁴ T	1215-1350		10	a
For addition	nal LaF ₃ systems, see : KF-				
	Laig	1405 1400	44 20		_
100	d = 5.4581 - 0.0011109 T	1125-1180	±1.5%	4	а
For addition	nal Laig systems, see : CsI- ; KI-				
	LiA1Br ₄				
FOR LIAIBR4	systems, see : KA1Cl ₄ - LiA1Cl ₄				
100	d = 1.95522 - 7.515 x 10 ⁻⁴ T	420-530	±1.5%	8	k
	LiBF ₄				
100	d = 2.1331 - 4.58 x 10-4 T	590-670	±1%	6	a
100	d = 3.0658 - 6.52 x 10 ⁻⁴ T	825-1012	±1%	1	a
	LiBr-LiC1				
0-100	d = 1.896 - 4.46 x 10 ⁻⁴ T	980-1080	(434)	2	a
12-88	d = 2.06 - 4.77 x 10 ⁻⁴ T	980-1080		2	а
25-75	d = 2.192 - 4.71 x 10 ⁻⁴ T	980-1080		2	а
37-63	d = 2.354 - 5.12 x 10 ⁻⁴ T	980-1080		2	а
50-50	d = 2.487 - 5.18 x 10 ⁻⁴ T	980-1080		2	а
63-37	d = 2.636 - 5.44 x 10 ⁻⁴ T	980-1080		2	a
75-25	d = 2.785 - 5.86 x 10 ⁻⁴ T	980-1080		2	а
88-12	d = 2.942 - 6.32 x 10 ⁻⁴ T	980-1080		2	a
100-0	d = 3.034 - 6.28 x 10 ⁻⁴ T	980-1080	(435)	2	а
	LiBr-LiF	1120-1006	(436)	•	_
0-1 0 0	d = 2.266 - 4.14 x 10 ⁻⁴ T	1130-1280	(436)	2	a
12-88	d = 2.439 - 4.59 x 10 ⁻⁴ T	880-1280		2	a
25-75	d = 2.586 - 5.09 x 10 ⁻⁴ T	880-1280		2	а
37-63	d = 2.66 - 5.11 x 10 ⁻⁴ T	880-1280		2	a
50-50	d = 2.763 - 5.49 x 10 ⁻⁴ T	880-1280		2	а
63-37	d = 2.821 - 5.55 x 10 ⁻⁴ T	880-1280		2	а
75-25	d = 2.893 - 5.78 x 10 ⁻⁴ T	880-1280		2	а
88-12	d = 2.983 - 6.15 x 10 ⁻⁴ T	880-1280		2	а
100-0	d = 3.034 - 6.28 x 10 ⁻⁴ T	880-1280	(437)	2	а
0-100	d = 3.807 - 9.2 x 10 ⁻⁴ T	760-1100	(438)	2	a
25-75	d = 3.625 - 8.53 x 10 ⁻⁴ T	760-1100		2	а
50-50	d = 3.446 - 7.85 x 10 ⁻⁴ T	760-1100		2	а
75-25	d = 3.315 - 7.7 x 10 ⁻⁴ T	760-1100		2	a
100-0	d = 3.034 - 6.28 x 10 ⁻⁴ T	825-1100	(439)	2	a
	LiBr-NaBr		,		_,
0-100	d = 3.1799 - 8.22 x 10 ⁻⁴ T	1050-122	0 (440)	4	а
50-50	d = 3.1597 - 7.821 x 10 ⁻⁴ T	1010-110		4	a,i
	LiBr-RbBr				,
0-100	d = 3.7373 - 0.0010704 T	980-1140	(441)	4	а
			•		

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
or additiona	al LiBr systems, see : AgBr- ; CsBr- ; KBr-				
•	LiC1	204 4054	10.5%		
00	d = 1.8842 - 4.328 x 10 ⁻⁴ T	894-1054	±0.5%	1	a ,
	LiC1-LiF				
-100	d = 2.266 - 4.14 x 10 ⁻⁴ T	1130-1260	(442)	2	a
2-88 5-75	d = 2.16 - 4.17 x 10-4 T	940-1260		2	a
7-63	d = 2.116 - 4.43 x 10 ⁻⁴ T	940-1260 940-1260		2 2	a
7-65 0-50	d = 2 - 4.38 x 10 ⁻⁴ T	940-1260		2	a a
3-37	d = 1.962 - 4.4 x 10 ⁻⁴ T	940-1260		2	a
5-25	d = 1.928 - 4.37 x 10 ⁻⁴ T	940-1260		2	a
3-12	d = 1.905 - 4.38 x 10 ⁻⁴ T	940-1260		2	a
00-0	d = 1.896 - 4.46 x 10 ⁻⁴ T	940-1260	(443)	2	a
	1:01_1:1				
-100	LiCl-LiI d = 3.807 - 9.2 x 10 ⁻⁴ T	710-1110	(444)	2	а
5-75	d = 3.461 - 8.49 x 10 ⁻⁴ T	710-1110	(777/	2	a
0-50	d = 3.047 - 7.39 x 10 ⁻⁴ T	710-1110		2	a
5-25	d = 2.541 - 5.98 x 10 ⁻⁴ T	710-1110		2	а
00-0	d = 1.896 - 4.46 x 10 ⁻⁴ T	900-1110	(445)	2	a
	LiC1-LiN03				
-100	d = 2.074 - 5.56 x 10 ⁻⁴ T			3	а
0-90	d = 2.058 - 5.37 x 10 ⁻⁴ T	550-700		3	a
0.1-79.9	d = 2.05 ~ 5.38 x 10 ⁻⁴ T	610-760		3	a
0-70	d = 2.032 - 5.24 x 10 ⁻⁴ T	670-760		3	a
	1407-14-00-				
9-71	LiC1-Li ₂ C0 ₃ d = 2.1244 - 3.965 x 10 ⁻⁴ T	970-1030		3	
0-50	d = 2.053 - 4.058 x 10 ⁻⁴ T	909-1017		3	a a
0-40	d = 2.002 - 3.672 x 10 ⁻⁴ T	910-1030		3	a
0-30	d = 1.9523 - 3.498 x 10 ⁻⁴ T	812-981		3	a
4.8-25.2	d = 1.942 - 3.635 x 10 ⁻⁴ T	850-1030		3	a
0-20	d = 1.9157 - 3.895 x 10 ⁻⁴ T	835-1025		3	a
0-10	d = 1.9199 - 4.316 x 10 ⁻⁴ T	850-1030		3	a
	LiC1-MgCl ₂				
. 0-100. 0	d = 1.95 - 2.712 x 10 ⁻⁴ T	1017-1099	(446)	5	а
2.6-77.4	d = 2.1334 - 4.4146 x 10 ⁻⁴ T	970-1030	(440)	5	a
3.6-56.4	d = 2.1623 - 5.0348 x 10 ⁻⁴ T	980-1070		5	a
4.6-45.4	d = 2.0892 - 4.6178 x 10 ⁻⁴ T	980-1080		5	a
9.2-30.8	d = 2.1408 - 5.5248 x 10 ⁻⁴ T	1020-1120	0	5	а
32.0-18.0	d = 2.0351 - 4.9534 x 10 ⁻⁴ T	980-1080		5	а
34.3 - 5.7	d = 2.4116 - 8.9056 x 10 ⁻⁴ T	1030-1120	٥	5	a
00.0-0.0	d = 1.8561 - 3.9698 x 10 ⁻⁴ T	910-1 0 50	(447)	5	a
	LiC1-MnCl ₂				
- 100	d = 2.928 - 6.15 x 10 ⁻⁴ T	940-1020	(448)	5	a
0-90	d = 2.843 - 5.8 x 10 ⁻⁴ T	950-1040		5	a
08-0:	d = 2.713 - 5. x 10 ⁻⁴ T	940-1020		5	a
0-70	d = 2.651 - 4.9 x 10 ⁻⁴ T	930-1020		5	a
0-60	d = 2.574 - 4.85 x 10 ⁻⁴ T	940-1020		5	a
0-40	d = 2.404 - 4.66 x 10 ⁻⁴ T	950-1020		5	a
0-20	d = 2.177 - 4.5 x 10 ⁻⁴ T	940-1020		5	а
00-0	d = 1.884 - 4.33 x 10 ⁻⁴ T	1060-112	0 (449)	5	а
	LiC1-NaC1				
-100	d = 2.139 - 5.444 x 10 ⁻⁴ T	1090-122	0 (450)	5	a
0-50	d = 2.0121 - 4.858 x 10 ⁻⁴ T	900-1120		5	а

Table 2.1.a Density data (continued)

(1 W)	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
00-0	d = 1.8721 - 4.243 x 10 ⁻⁴ T	880-1070	(451)	5	a
	LiC1-Na ₂ B ₄ 0 ₇				
00-40 Na ₂ B ₄ 0 ₇	d = 2.069 + 0.00221 C - 2.31 x 10 ⁻⁵ C ²	1223	(452)	3	a
	LiC1-PbC1 ₂				
- 100	d = 6.018 - 0.00138 T	873-973	(453)	5	a,e,
0-90	d = 5.942 - 0.0015 T	873-973		5	k
20-80	d = 5.697 - 0.00145 T	873-973		5	k
30-70	d = 5.356 - 0.00132 T	873-973		5	k
10-60	d = 5.062 - 0.00126 T	873-973		5	k
50-50	d = 4.815 - 0.00128 T	873-973		5	k
60-40	d = 4.395 - 0.00115 T	873-973		5	k
70-30	(T=973.2 K, d=2.937)	073-373		5	k
	(1 574.2 K, M=2.507)			5	•
0-100	LiC1-RbC1	4000 440		-	
5-100 50-50	d = 3.0863 - 8.514 x 10 ⁻⁴ T	1020-119	0 (454)	5	a
	d = 2.6833 - 7.384 x 10 ⁻⁴ T	890-1120		5	а
100-0	d = 1.8721 - 4.243 x 10 ⁻⁴ T	880-1070	(455)	5	а
	LiC1-SrC1 ₂				
25-75	d = 3.395 - 7.5 x 10 ⁻⁴ T	1113-119	3	32	k
50-50	d = 3.433 - 0.001 T ,	1113-119	3	32	k
75-25	d = 2.571 - 5.63 x 10 ⁻⁴ T	953-1193		32	k
100-0	d = 1.928 - 4.464 x 10 ⁻⁴ T	953-1193	(456)	32	k
	1.00.1101				
	LiC1-UC14				
0.00-100.00	d = 5.2508 - 0.0019455 T	870-940	(457)	5	а
14.76-85.24	d = 4.9573 - 0.0017139 T	850-880		5	а
21.56-78.44	d = 4.6934 - 0.0014925 T	830-900		5	а
24.70-75.30	d = 4.7589 - 0.001582 T	850-910		5	a
38.04-61.96	d = 4.34 - 0.0012441 T	820-920		5	a
46.40~53.60	d = 4.0213 - 9.872 x 10 ⁻⁴ T	820-940		5	a
52.84-47.16	d = 4.1104 - 0.0011826 T	820-900		5	а
56.61-43.39	d = 3.8728 - 9.706 x 10 ⁻⁴ T	840-920		5	а
58.36~41.64	d = 3.9311 - 0.0010748 T	810-900		5	а
61.08-38.92	d = 3.9101 - 0.001099 T	800-910		5	а
68.78-31.22	d = 3.6801 - 9.99 x 10 ⁻⁴ T	720-890		5	а
72.21-27.79	d = 3.5531 - 9.287 x 10 ⁻⁴ T	710-880		5	a
79.56-20.44	d = 3.3023 - 8.427 x 10 ⁻⁴ T	790-890		5	а
83.99-16.01	d = 3.1352 - 8.205 x 10 ⁻⁴ T	820-880		5	а
91.10-8.90	d = 2.9249 - 9.446 x 10 ⁻⁴ T	860-900		5	a
91.69-8.31	d = 2.7263 - 8.1 x 10 ⁻⁴ T	860-900		5	a
94.34-5.66	d = 2.5977 - 8.176 x 10 ⁻⁴ T	880-910		5	a
96.21-3.79	d = 2.2016 - 4.83 x 10 ⁻⁴ T	880-890		5	a
100.00-0.00	d = 1.8102 - 3.472 x 10 ⁻⁴ T	890-920	(458)	5	a
		-	(/		
	LiC1-ZnC1 ₂			_	
0.0-100.0	d = 2.8369 - 5.2167 x 10 ⁻⁴ T	700-740	(459)	5	a,c
5.2-94.8	d = 2.7824 - 4.8163 x 10 ⁻⁴ T	760-85 0		5	a,c
9.9-90.1	d = 2.7038 - 4.2109 x 10 ⁻⁴ T	810-850		5	a,c
18.6-81.4	d = 2.7361 - 5.083 x 10 ⁻⁴ T	760-850		5	a,c
20.4-79.6	d = 2.7748 - 5.2072 x 10 ⁻⁴ T	760-850		5	a,c
23.8-76.2	d = 2.7263 - 5.3488 x 10 ⁻⁴ T	780-850		5	a,c
30.05-69.95	d = 2.7168 - 5.4332 x 10 ⁻⁴ T	760-850		5	a,c
40.2-59.8	d = 2.7188 - 6.2145 x 10 ⁻⁴ T	750-880		5	a,c
50.2-49.8	d = 2.6138 - 5.681 x 10 ⁻⁴ T	760-850		5	a, c
60.1-39.9	d = 2.5682 - 5.8972 x 10 ⁻⁴ T	760-880		5	a,c

Table 2.1.a Density data (continued)

	Density (g cm ⁻⁹)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
0.4-19.6	d = 2.5643 - 8.0647 x 10 ⁻⁴ T	850-880		5	a,c
0.98-9.02	d = 2.021 - 3.7939 x 10 ⁻⁴ T	880-900		5	a,c
00.0-0.0	d = 1.8514 - 4.0345 x 10 ⁻⁴ T	900-920	(460)	5	a,c
For additiona	1 LiC1 systems, see : AgBr- ; A1C13- ; BaC12- ; CaC12- ; CdC12- ; CsC1- ; KBr- ; KC LiC103	1- ; K ₂ CO ₃ - ;	LaC1 ₃ - ; l	.iBr-	
00	d = 2.399 - 7.704 x 10 ⁻⁴ T	406-431	±0.5%	1	a,e
	LiC10 ₃ -LiN0 ₃				
0.8-29.2	d = 2.3553 - 7.379 x 10 ⁻⁴ T	410-430		3	a
7.3-22.7	d = 2.3745 - 7.657 x 10 ⁻⁴ T	410-430		3	a
2.9-17.1	d = 2.399 - 8.018 x 10 ⁻⁴ T	410-430		3	a
9.2-10.8	d = 2.3922 - 7.671 x 10 ⁻⁴ T	410-440		3	a
00-0	d = 2.399 - 7.704 x 10 ⁻⁴ T	406-431	(461)	3	a,b,
	LiClO ₃ -LiOH				
2.4-7.6	d = 2.3681 - 8.065 x 10 ⁻⁴ T	410-440		3	a
100-0	d = 2.399 - 7.704 x 10 ⁻⁴ T	406~431	(462)	3	a,e
	LiC104				,
100	d = 2.337 - 6.12 x 10 ⁻⁴ T	534-644	±0.5%	1	a
	LiC10 ₄ -LiN0 ₃				
- 100	d = 2.0739 - 5.561 x 10 ⁻⁴ T	560~690	(463)	3	а
5-75	d = 2.1807 - 6.101 x 10 ⁻⁴ T	520~620		3	a
6.5-53.5	d = 2.2598 - 6.29 x 10 ⁻⁴ T	480-620		3	a
′5~25	d = 2.3058 - 6.291 x 10 ⁻⁴ T	500-600		3	а
00-0	d = 2.3371 - 6.12 x 10 ⁻⁴ T	534-644	(464)	3	a
	LiC104-NaC104				
5.5-54.5	d = 2.4364 - 6.818 x 10 ⁻⁴ T	560-630		6	а
i8-42	d = 2.3894 - 6.25 x 10 ⁻⁴ T	550-620		6	а
73-27	d = 2.4289 - 7.018 x 10 ⁻⁴ T	500-620		6	a
93.7-6.3	d = 2.4863 - 8.333 x 10 ⁻⁴ T	520-610		6	a
100-0	d = 2.3801 - 6.83 x 10 ⁻⁴ T	550-630	(465)	6	a
	LiC104-NaN03				
)-1 0 0	d = 2.3206 - 7.151 x 10 ⁻⁴ T	590-680	(466)	3	а
10-90	d = 2.3028 ~ 6.89 x 10 ⁻⁴ T	560-680		3	а
28-72	d = 2.2753 ~ 6.305 x 10 ⁻⁴ T	500-680		3	а
60-40	d = 2.3276 ~ 6.56 x 10 ⁻⁴ T	530~680		3	a
78-22	d = 2.3439 ~ 6.49 x 10 ⁻⁴ T	470-680		3	a
90-10	d = 2.3192 ~ 5.931 x 10 ⁻⁴ T	530-680		3	a
100-0	d = 2.3185 ~ 5.772 x 10 ⁻⁴ T	530-680	(467)	3	a
For addition	al LiClO ₄ systems, see : CsClO ₄ - ; KClO ₄ - ; KNO ₃ -				
	LiF				
100	d = 2.3581 - 4.902 x 10 ⁻⁴ T	1149-13	20 ±0.5%	1	a
	LiF-LiI				
0-100	d = 3.807 - 9.2 x 10 ⁻⁴ T	760-126		2	a
25-75	d = 3.529 - 7.94 x 10 ⁻⁴ T	760-126		2	a
50-50 er er	d = 3.275 - 6.98 x 10 ⁻⁴ T	760-126		2	a
75-25	d = 2.933 - 5.88 x 10 ⁻⁴ T	760-126		2	a
100-0	d = 2.266 - 4.14 x 10 ⁻⁴ T	1130-120	60 (469)	2	а
	LiF-NaF		_		
0-100	d = 2.759 - 6.3915 x 10 ⁻⁴ T	1280-13		10	a
10-90	d = 2.9187 - 7.7887 x 10 ⁻⁴ T	1280-13		10	a
20-80	d = 2.6766 - 6.0429 x 10 ⁻⁴ T	1230-13	20	10	a
30-70	d = 2.5784 - 5.4338 x 10 ⁻⁴ T	1130-13	20	10	a
40-60	d = 2.5791 - 5.5747 x 10 ⁻⁴ T	1130-13		10	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
0-50	d = 2.5565 - 5.5962 x 10 ⁻⁴ T	1130-1320		10	a
0-40	d = 2.5325 - 5.5523 x 10 ⁻⁴ T	1130-1320		10	а
0-30	d = 2.4709 - 5.2766 x 10 ⁻⁴ T	1130-1320		10	а
80-20	d = 2.4254 - 5.1181 x 10 ⁻⁴ T	1130-1320		10	a,b,
90-10	d = 2.3981 - 5.1021 x 10 ⁻⁴ T	1130-1320		10	a,b,
00-0	d = 2.3289 - 4.6803 x 10 ⁻⁴ T	1130-1320	(471)	10	а
	LiF-Na3A1F ₆				
)-100	d = 3.2732 - 9.199 x 10 ⁻⁴ T	1280-1320	(472)	3	a
20-80	d = 3.1758 - 8.502 x 10 ⁻⁴ T	1220-1320	ı	3	а
10-60	d = 3.0951 - 8.02 x 10 ⁻⁴ T	1220-1320	ı	3	а
60-40	d = 2.9929 - 7.421 x 10 ⁻⁴ T	1220-1320	ı	3	а
70-30	d = 2.9439 - 7.201 x 10 ⁻⁴ T	1220-1320	١	3	а
30-20	d = 2.8927 - 7.102 x 10 ⁻⁴ T	1220-1320	1	3	a
30-10	d = 2.602 - 5.54 x 10 ⁻⁴ T	1220-1320		3	a
100-0	d = 2.3289 - 4.6803 x 10 ⁻⁴ T	1130-1320		3	а
	LiF-RbF				
3-57	d = 3.56 - 9.6 x 10-4 T	773-923		10	а
	LiF-SmF ₃				
50.0-50.0	d = 5.512 - 8.357 x 10 ⁻⁴ T	1250-1340)	10	a
60.0-40.0	d = 4.987 - 7.372 x 10 ⁻⁴ T	1180-1340)	10	a
70.0-30.0	d = 4.803 - 9.187 x 10 ⁻⁴ T	1080-1340		10	a
30.0-20.0	d = 3.946 - 6.474 x 10 ⁻⁴ T	1080-1340		10	a
90.0-10.0	d = 3.087 - 4.702 x 10 ⁻⁴ T	1100-1340		10	a
100.0-0.0	d = 2.074 - 3.321 x 10 ⁻⁴ T	1130-1340		10	
100.0 0.0		1130-1340	(4/4)	10	а
0-100	L1F-ThF ₄ d = 7.34 - 8.08 x 10 ⁻⁴ T	1400 1500	(455)	10	
20.00-80.00	d = 7.354 - 0.001041 T	1400-1500		10	a
10.0-60.0		1320-1440		10	a,b,
	d = 6.927 ~ 0.001115 T	1220-1360		10	a
50.00-40.00	d = 6.159 - 0.001041 T	1080-1260		10	a
80.00-20.00	d = 4.787 - 8.44 x 10 ⁻⁴ T	1020-1220		10	а
81.36-18.64	d = 4.889 ~ 9.2 x 10 ⁻⁴ T	1040-1220		10	a
100.0-0.0	d = 2.371 - 5. x 10 ⁻⁴ T	1140-1360	(476)	10	a
	Lif-UF4				
40.0-60.0	d = 7.891 ~ 0.00169 T	1100-1340)	10	a
50.0-50.0	d = 6.959 - 0.001283 T	1040-1340)	10	а
60.0-40.0	d = 6.393 - 0.001174 T	980-1340		10	а
72.5-27.5	d = 6.105 - 0.001272 T	980-1340		10	a
85.0-15.0	d = 4.461 ~ 7.285 x 10 ⁻⁴ T	1020-1340)	10	a
100.0-0.0	d = 2.074 - 3.321 x 10 ⁻⁴ T	1140-1340	(477)	10	a
	LiF-YF3				
40.0-60.0	d = 4.174 - 5.065 x 10 ⁻⁴ T	1220-1340)	10	а
50.0-50.0	d = 4.287 ~ 7.216 x 10 ⁻⁴ T	1120-1340)	10	а
60.0-40.0	d = 3.902 - 6.154 x 10 ⁻⁴ T	1080-1340)	10	a
70.0-30.0	d = 3.695 - 6.672 x 10 ⁻⁴ T	1080-1340)	10	a
81.0-19.0	d = 3.254 - 5.595 x 10 ⁻⁴ T	980-1340		10	a
100.0-0.0	d = 2.074 - 3.321 x 10 ⁻⁴ T	1140-1340	(478)	10	a
For additiona	11 LiF systems, see : AlF3- ; BaF2- ; BeF2- ; CaF2- ; CeF3- ; KF- ; K_2 C03- ; LaF3-	; LiBr- ; LiCl-	-		
	LiI				
100	d = 3.7902 - 9.176 x 10 ⁻⁴ T	748-940	±3%	1	a
	LiI-NaI				
0.0-100.0	d = 3.6144 - 9.392 x 10 ⁻⁴ T	950-1070	(479)	4	a
20.3-79.7	d = 3.5489 - 8.845 x 10 ⁻⁴ T	910-960		4	a

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
3.1-61.9	d = 3.5936 - 9.139 x 10 ⁻⁴ T	920-960		4	а
1.1-32.9	d = 3.5593 ~ 8.233 x 10 ⁻⁴ T	950-960		4	a
7-19.3	$d = 3.4719 - 7.081 \times 10^{-4} T \dots \dots$	900-960		4	а
00-0	d = 3.7063 - 8.172 x 10 ⁻⁴ T	770-910	(480)	4	a
	LiI-Rb1				
.0-100.0	d = 3.9667 - 0.0011613 T	940-1090	(481)	4	а
4.1-75.9	d = 3.789 - 0.001017 T	950-1100		4	а
6.2-43.8	d = 3.6212 - 8.651 x 10 ⁻⁴ T	960-1080		4	а
1.9-28.1	d = 3.7499 - 9.608 x 10 ⁻⁴ T	950-1090		4	а
7.2-12.8	d = 3.7703 - 9.548 x 10 ⁻⁴ T	960-1130		4	а
00.0-0.0	d = 3.7063 - 8.172 x 10 ⁻⁴ T	770-910	(482)	4	a
For addition	nal LiI systems, see : CsI- ; KI- ; LiBr- ; LiCl- ; LiF-				
	Lino3				
00	d = 2.068 - 5.46 x 10 ⁻⁴ T	545~714	±1.5%	1	а
	LiNO3-LiOH				
) - 100	d = 1.718 - 4.57 x 10 ⁻⁴ T	748~823	(483)	3	a
0-90	d = 1.524 - 1.51 x 10 ⁻⁴ T	693-723		3	a
:0-80	d = 1.691 - 3.1 x 10 ⁻⁴ T	653-693		3	а
27-73	d = 1.662 - 3.73 x 10 ⁻⁴ T	613-693		3	a
35-65	d = 1.878 - 5.04 x 10 ⁻⁴ T	573-693		3	а
17-53	d = 1.919 - 5.15 x 10 ⁻⁴ T	523-693		3	a
5-45	d = 1.929 - 4.95 x 10 ⁻⁴ T	483-693		3	a
57-43	d = 1.943 - 5.19 x 10 ⁻⁴ T	483-693		3	a
9.5-40.5	d = 1.87 - 3.82 x 10 ⁻⁴ T	483-693		3	
70-30	d = 1.993 - 5.21 x 10-4 T				a
		483-693		3	a
30-20	d = 2.026 - 5.42 x 10 ⁻⁴ T	503-693		3	а
92.4-7.6 100-0	d = 2.3681 ~ 8.065 x 10 ⁻⁴ T	410-440	(404)	3	a
100 0		533-693	(484)	3	а
	LiN03-NaC104	600 000			
30-70	d = 2.4197 - 6.963 x 10 ⁻⁴ T	620-680		3	a
50-50	d = 2.2906 - 6.041 x 10 ⁻⁴ T	540-680		3	а
67-33	d = 2.2107 - 5.772 x 10 ⁻⁴ T	480-680		3	a
80-20	d = 2.1599 - 5.881 x 10 ⁻⁴ T	500-680		3	a
90-10	d = 2.147 - 6.183 x 10 ⁻⁴ T	520-680		3	а
100-0	d = 1.9892 - 4.237 x 10 ⁻⁴ T	540-680	(485)	3	a
	LiN03-NaN03				
0-100	d = 2.3335 ~ 7.3174 x 10 ⁻⁴ T	599-742	(486)	7	a,
20-80	d = 2.2682 - 6.781 x 10 ⁻⁴ T	552-731		7	a ,
40-60	d = 2.222 - 6.5199 x 10 ⁻⁴ T	504-739		7	a
60-40	d = 2.1781 - 6.1832 x 10 ⁻⁴ T	509-702		7	a
80-20	d = 2.1404 - 6.093 x 10 ⁻⁴ T	555-713		7	а
	d = 2.1721 - 7.021 x 10 ⁻⁴ T	548-701	(487)	7	a
100-0					
100-0	LiN0a-RbN0a				
	LiN0 ₃ -RbN0 ₃ d = 3.118 ~ 0.0010508 T	595-730	(488)	7	а
0-100 10-90	• •	595-730 545-695	(488)	7 7	
0-100 10-90	d = 3.118 - 0.0010508 T	545-695		7	a a
0-100 10-90 20-80	d = 3.118 ~ 0.0010508 T	545-695 515-710		7 7	a a
0-100 10-90 20-80 30-70	d = 3.118 ~ 0.0010508 T. d = 2.9565 - 8.8289 x 10 ⁻⁴ T. d = 2.9282 - 9.1953 x 10 ⁻⁴ T. d = 2.8809 - 9.3513 x 10 ⁻⁴ T.	545-695 515-710 515-710		7 7 7	a a a
0-100 10-90 20-80 30-70 32-68	d = 3.118 ~ 0.0010508 T. d = 2.9565 - 8.8289 x 10 ⁻⁴ T. d = 2.9282 - 9.1953 x 10 ⁻⁴ T. d = 2.8809 - 9.3513 x 10 ⁻⁴ T. d = 2.8692 - 9.3572 x 10 ⁻⁴ T.	545-695 515-710 515-710 515-695		7 7 7 7	a a a
0-100 10-90 20-80 30-70 32-68 40-60	d = 3.118 ~ 0.0010508 T. d = 2.9565 - 8.8289 x 10 ⁻⁴ T. d = 2.9282 - 9.1953 x 10 ⁻⁴ T. d = 2.8809 - 9.3513 x 10 ⁻⁴ T. d = 2.8692 - 9.3572 x 10 ⁻⁴ T. d = 2.8148 - 9.2968 x 10 ⁻⁴ T.	545-695 515-710 515-710 515-695 500-710		7 7 7 7	a a a a
0-100 10-90 20-80 30-70 32-68 40-60 50-50	d = 3.118 - 0.0010508 T. d = 2.9565 - 8.8289 x 10 ⁻⁴ T. d = 2.9282 - 9.1953 x 10 ⁻⁴ T. d = 2.8809 - 9.3513 x 10 ⁻⁴ T. d = 2.8692 - 9.3572 x 10 ⁻⁴ T. d = 2.8148 - 9.2968 x 10 ⁻⁴ T. d = 2.7297 - 9.0318 x 10 ⁻⁴ T.	545-695 515-710 515-710 515-695 500-710 500-710		7 7 7 7 7	a a a a
0-100 10-90 20-80	d = 3.118 ~ 0.0010508 T. d = 2.9565 - 8.8289 x 10 ⁻⁴ T. d = 2.9282 - 9.1953 x 10 ⁻⁴ T. d = 2.8809 - 9.3513 x 10 ⁻⁴ T. d = 2.8692 - 9.3572 x 10 ⁻⁴ T. d = 2.8148 - 9.2968 x 10 ⁻⁴ T.	545-695 515-710 515-710 515-695 500-710		7 7 7 7	

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
	L1N03-T1N03				
0-100	d = 5.807 - 0.001858 T	483-673	(489)	7	a, e
20-80	d = 5.2396 - 0.001658 T	443-613	(, , , , ,	7	a, e
10-60	d = 4.6152 - 0.001449 T	433-615		7	a, e
30-40	d = 3.8816 - 0.00117 T	483-617		7	a,
30-20	d = 3.0642 - 9. x 10 ⁻⁴ T	513-623		7	
100-0	d = 2.1057 - 5.92 x 10 ⁻⁴ T	575-623 525 - 673	(490)	7	a, (
For addition	nal Lino3 systems, see : AgClo3- ; AgNo3- ; CsNo3- ; KClo4- ; KNo3- ; LiCl- ; LiClo3-	- : LiC104-			
	LiDH	, = 10 1 = 4			
100	d = 1.718 - 4.57 x 10 ⁻⁴ T	748-823	±1%	3	a
For addition	nal LiOH systems, see : LiClO ₃ - ; LiNO ₃ -				
	LiP03				
00	d = 2.5755 - 5.273 x 10 ⁻⁴ T	1100-1190	±3%	6	а
	LiPO3-Li3PO4				
0-30	(T=1173 K, d=2.145)			3	a,
30-20	d = 2.435 - 2.501 x 10 ⁻⁴ T	1073-1173		3	a,
10-10	d = 2.44 - 2.601 x 10 ⁻⁴ T	1073-1173		3	а,
	LiP03-Li4P207				
S5.7-34.3	d = 2.499 - 3.165 x 10 ⁻⁴ T	1020-1240		3	a
5.6-24.4	d = 2.3941 - 2.2 x 10 ⁻⁴ T	1020-1120		3	a
5.0-15.0	d = 2.4579 - 2.849 x 10 ⁻⁴ T	1080-1240		3	a
0.5-9.5	d = 2.4537 - 2.812 x 10 ⁻⁴ T	1080-1240		3	
00-0	d = 2.2432 - 1.102 x 10 ⁻⁴ T	1080-1240	(491)	3	a a
	Liscn		, - ,		_
100	d = 1.6777 - 4.93 x 10 ⁻⁴ T	583-633	±1.5%	23	k
100	Li ₂ CO ₃ d = 2.2026 - 3.729 x 10 ⁻⁴ T	1012-1115	+0 5%	,	_
	Li ₂ CO ₃ -Na ₂ CO ₃	1012-1116	±0.5%	1	а
)-100	d = 2.4532 - 4.267 x 10 ⁻⁴ T	4440 4040			
0-90		1140-1240	(492)	8	а
20-80	d = 2.4443 - 4.301 x 10 ⁻⁴ T	1120-1220		6	а
10-70	d = 2.4461 - 4.437 x 10 ⁻⁴ T	1060-1220		6	а
	d = 2.389 - 4.23 x 10 ⁻⁴ T	960-1180		6	а
10-60	d = 2.3653 - 4.262 x 10 ⁻⁴ T	880-1180		6	а
50-50	d = 2.3532 - 4.249 x 10 ⁻⁴ T	900-1180		6	а,
3.3-46.7	d = 2.3581 - 4.325 x 10 ⁻⁴ T	820-1180		6	а,
60-40	d = 2.3557 - 4.337 x 10 ⁻⁴ T	920-1180		6	а
0-30	d = 2.3474 - 4.378 x 10 ⁻⁴ T	940-1220		6	a
30-20	d = 2.2885 - 4.12 x 10 ⁻⁴ T	960-1220		6	а
90-10	d = 2.2435 - 3.991 x 10 ⁻⁴ T	980-1200		6	a
00-0	d = 2.2365 - 4.041 x 10 ⁻⁴ T	1020~1120	(493)	6	a
For addition	nal Li ₂ CO ₃ systems, see : KCl- ; KF- ; K ₂ CO ₃ - ; K ₂ SO ₄ - ; LiCl-				
	Li ₂ Mo0 ₄				
100	d = 3.3902 - 4.783 x 10 ⁻⁴ T	1060-1230	±2%	6	a,
	Li ₂ Mo0 ₄ -Mo0 ₃				
)-100	d = 4.855 - 0.0015002 T	1100-1180	(494)	3	а
6.03-83.97	d = 4.2526 - 9.501 x 10 ⁻⁴ T	1050~1190		3	а,
27.56-72.44	d = 4.1258 - 8.518 x 10 ⁻⁴ T	1040-1190		3	a,
1.18-58.82	d = 3.9469 - 7.724 x 10 ⁻⁴ T	1030-1210		3	a,
	d = 3.6009 - 5.271 x 10 ⁻⁴ T				
2.51-47.49	d = 0.0009 = 9.271 x 10 = 1	1090-1230		3	20
i2.51-47.49 i5.23-34.77		1090-1230 1070-1210		3	
	d = 3.6775 - 6.193 x 10 ⁻⁴ T	1090-1230 1070-1210 1060-1170		3 3 3	a, (a a

J. Phys. Chem. Ref. Data, Vol. 17, Suppl. 2, 1988

Table 2.1.a Density data (continued)

(N)	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commer
0-0	d = 3.3983 - 5.499 x 10 ⁻⁴ T	1060-1230	(495)	3	a
	Li2M004-Na2M004				
100	d = 3.3016 - 5.936 x 10 ⁻⁴ T	963-1120	(496)	6	а
0-80	d = 3.3849 - 6.435 x 10 ⁻⁴ T	880-1120		6	a,
3-62	d = 3.345 - 5.843 x 10 ⁻⁴ T	820-1040		6	a,
5-55	d = 3.3638 - 5.922 x 10 ⁻⁴ T	840-1080		6	a,
2-48	d = 3.3339 - 5.543 x 10 ⁻⁴ T	800-1000		6	a,
5-25	d = 3.3665 - 5.735 x 10 ⁻⁴ T	900-1080		6	a
0-0	d = 3.3983 - 5.499 x 10 ⁻⁴ T	993-1080	(497)	6	a,
For additiona	1 Li ₂ MoO ₄ systems, see : K ₂ MoO ₄ - Li ₂ SO ₄				
00	d = 2.464 - 4.07 x 10 ⁻⁴ T	1133-1487	±1.5%	1	а
	L12S04-NaP03				
-100	d = 2.6903 - 4.59 x 10 ⁻⁴ T	930~1100	(498)	3	а
0-90	d = 2.647 - 4.48 x 10 ⁻⁴ T	800-960		3	а
5-65	d = 2.606 - 4.52 x 10 ⁻⁴ T	760-840		3	а
0-50	d = 2.547 - 4.18 x 10 ⁻⁴ T	760-800		3	а
	Li ₂ S0 ₄ -Na ₂ S0 ₄				
0-50	d = 2.5562 - 4.536 x 10 ⁻⁴ T	1010-1230)	6	a,
	Li ₂ S0 ₄ -Tl ₂ S0 ₄				
- 100	d = 6.7958 - 0.001296 T	9 50-1210	(499)	6	a,
0-50	d = 5.1437 - 9.303 x 10 ⁻⁴ T	1050-1270)	6	a
	Li ₂ S0 ₄ -ZnS0 ₄				
-100	d = 3.591 - 4.7 x 10 ⁻⁴ T	873-1273	(500)	33	а
0-50	d = 2.9984 ~ 4.245 x 10 ⁻⁴ T	870-960		6	а
For additiona	1 Li $_{2}$ SO $_{4}$ systems, see : Ag $_{2}$ SO $_{4}^{-}$; K $_{2}$ CO $_{3}^{-}$; K $_{2}$ SO $_{4}^{-}$				
	Li ₂ S _{3.9}				
100	d = 2.1309 ~ 5.852 x 10 ⁻⁴ T	637-724	±0.1%	34	k
	Li ₂ w ₀₄				
100	d = 5.0527 - 7.818 x 10 ⁻⁴ T	1040-1190) ±2%	6	а
	Li ₂ WO ₄ -Na ₂ WO ₄				
-100	d = 4.7595 - 9.127 x 10 ⁻⁴ T	975-1145	(501)	6	а
5-85	d = 4.9476 - 0.0010141 T	943-1053		6	a
0-70	d = 4.8062 - 8.448 x 10 ⁻⁴ T	893-1051		6	a
0-60	d = 4.9025 - 9.03 x 10 ⁻⁴ T	853-1028		6	а
52.6-47.4	d = 4.9295 - 8.766 x 10 ⁻⁴ T	804-989		6	a
70-30	d = 4.9982 - 8.667 x 10 ⁻⁴ T	923-1095		6	a
35-15	d = 4.9755 - 7.817 x 10 ⁻⁴ T	997-1256		6	a
100-0	d = 5.0527 - 7.818 x 10 ⁻⁴ T	1040-118	0 (502)	6	a
	Li ₂ w0 ₄ -w0 ₃	1010	(002)	·	•
4.95-55.05	d = 6.2894 - 0.0011628 T	1090-119	0	3	а
19.99-50.01	d = 6.4441 - 0.0013413 T	1040-122		3	a
59.98-40.02	d = 6.095 ~ 0.0011906 T	1040-125		3	a
69.92-30.08	d = 5.8312 - 0.0011122 T	1010-119		3	а
79.51-20.49	d = 5.553 ~ 9.916 x 10 ⁻⁴ T	980-1190		3	a
79.51-20.49 88.86-11.14	d = 5.2485 - 8.511 x 10 ⁻⁴ T	1010-122		ა 3	a
100-0	d = 5.1265 - 8.062 x 10 ⁻⁴ T	1010-122		ა 3	a
		12.2 170	(555)	-	_
IOI AUGITION	ıl Li ₂ WO ₄ systems, see : K ₂ WO ₄ - Li ₃ AlF ₆				
100	d = 3.0422 - 8.359 x 10 ⁻⁴ T	1130-132	o ±3%	10	a
	Li3A1F6-Na3A1F6				
) - 100	d = 3.2732 - 9.2 x 10 ⁻⁴ T	1990-199	0 (504)	c	_
		1280-132		6	a a
10-90	d = 3.2303 - 9, x 10 ⁻⁴ T	1260-132	0	6	

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
0-80	d = 3.2392 - 9.2 x 10 ⁻⁴ T	1250-1320		6	a
30- 7 0	d = 3.24 - 9.3 x 10 ⁻⁴ T	1240-1320		6	а
0-60	d = 3.1858 - 9. x 10 ⁻⁴ T	1230-1320		6	а
0-50	d = 3.187 - 9.1 x 10 ⁻⁴ T	1230-1320		6	a
0-40	d = 3.1775 - 9.1 x 10 ⁻⁴ T	1230-1320		6	а
0-30	d = 3.1782 - 9.2 x 10 ⁻⁴ T	1230-1320		6	a
0-20	d = 3.1565 - 9.1 x 10 ⁻⁴ T	1230-1320		6	а
0-10	d = 3.1211 - 8.9 x 10 ⁻⁴ T	1230-1320		6	a
00-0	d = 3.0422 - 8.359 x 10 ⁻⁴ T	1130-1320	(505)	6	a,b,
	LigAlF6-RbgAlF6				
0-80	d = 3.7691 - 0.0011054 T	1143-1270		6	a,e
0-70	d = 3.8019 - 0.0011781 T	1080-1270		6	a,e
0-60	d = 3.7174 - 0.0011517 T	1 08 0-1270		6	a,e
0-50	d = 3.7503 - 0.0012306 T	1080-1270		6	a,e
0-40	d = 3.7402 - 0.001263 T	1080-1270		6	a,e
0-30	d = 3.6499 - 0.0012066 T	1080-1270		6	a,e,
0-20	d = 3.5479 - 0.001174 T	1080-1270	ı	6	a,e
0-10	d = 3.4793 - 0.00117 T	1038-1270		6	a,e
00-0	d = 3.251 - 0.001034 T	1073-1270	(506)	6	a,e
For addition	al LigAlF ₆ systems, see : Al ₂ 0 ₃ - ; Cs ₃ AlF ₆ - ; K ₃ AlF ₆ -				
	LigPO ₄				
For LigPO4 s	ystems, see : LiPO ₃ -				
• •	MgBr ₂				
00	d = 3.087 - 4.78 x 10 ⁻⁴ T	1040-1208	±1.5%	1	a
	MgC1 ₂				
00	d = 1.95 - 2.712 x 10 ⁻⁴ T	1017-1099	±1%	14	d
	MgC12-NaC1				
-100	d = 2.1321 - 5.2995 x 10 ⁻⁴ T	1090-1170	(507)	5	а
.0-95.0	d = 2.1429 - 5.3845 x 10 ⁻⁴ T	1030-1120		5	а
1.0-89.0	d = 2.1392 - 5.307 x 10~4 T	1080-1120		5	а
3.6-76.4	d = 2.0488 - 4.2896 x 10 ⁻⁴ T	1050-1090		5	а
8.9-71.1	d = 2.0431 - 4.1877 x 10 ⁻⁴ T	1040-1100		5	a
3.7-66.3	d = 2.1182 - 4.8222 x 10 ⁻⁴ T	1050-1110	1	5	а
1.8-58.2	d = 2.1253 - 4.7419 x 10 ⁻⁴ T	1030-1100)	5	a
1.5-48.5	d = 2.1967 - 5.2669 x 10 ⁻⁴ T	1040-1120		5	a
2.3-37.7	d = 2.2029 - 5.1352 x 10 ⁻⁴ T	1030-1120		5	a
4.4-25.6	d = 2.1348 - 4.3414 x 10 ⁻⁴ T	1050-1120		5	a
2.3-17.7	d = 2.1501 - 4.4361 x 10 ⁻⁴ T	1020-1110		5	a
00-0	d = 1.95 - 2.712 x 10 ⁻⁴ T	1017-1099		5	a
	MgC1 ₂ -RbC1	1011 1033	(556)	•	۰
.0-100.0	d = 3.1073 - 8.683 x 10~4 T	1010-1170	(509)	5	a
.6-94.4	d = 3.0328 - 8.485 x 10 ⁻⁴ T	1030-1110		5	
5.1-84.9	d = 2.7973 - 7.087 x 10 ⁻⁴ T				a
4.5-75.5	d = 2.6693 - 6.661 x 10 ⁻⁴ T	1010-1090		5	a
1.2-68.8	d = 2.5961 - 6.329 x 10 ⁻⁴ T	1020-1120		5	a
3.3-66.7	d = 2.6141 - 6.652 x 10 ⁻⁴ T	1030-1110		5	a
7.0-63.0	d = 2.5856 - 6.54 x 10 ⁻⁴ T	960-1070		5	а
8.4-51.6	d = 2.5058 - 6.128 x 10-4 T	1030-1110		5	а
8.1-31.9	d = 2.4748 - 6.228 x 10-4 T	1000-1100		. 5	a
0-20		1010-1070		5	a
5.7-14.3	d = 2.893 - 0.001049 T	1023-1123		14	k
	d = 2.6899 - 8.819 x 10-4 T	1030-1110		5	a
2.3-7.7 00.0-0.0	d = 2.1637 - 4.225 x 10 ⁻⁴ T	1020-1110	1	5	а
	D = 1 Mb = 2 712 v 10-4 T	1017-1099	(510)	5	a

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
For additional	MgCl ₂ systems, see : BaCl ₂ - ; CaCl ₂ -KCl- ; CaCl ₂ - ; CsCl- ; KCl- ; LiCl-				
	MgF ₂				
00	d = 3.235 - 5.24 x 10 ⁻⁴ T	1650-2100	±3%	1	a
					_
	MgF2-Na3A1F6				
75-100 Na ₃ A1F ₆	d = 2.27 - 0.00174 C	1273	(511)	3	а
	MgI ₂				
100	d = 3.642 - 6.51 x 10 ⁻⁴ T	965-1161	±1.5%	1	а
	Mg(N0 ₃) ₂				
For Ma/NO-\- ex	· -				
FOR MG(NU3)2 S	ystems, see : AgNO3- ; KNO3-				
	Mg 0				
For Mg0 system	s, see : Car ₂ - MnCl ₂				
100	d = 2.75701 - 4.3766 x 10 ⁻⁴ T	923-1123	±1%	1	a
• • •	MnC1 ₂ -NaC1	-30		•	-
0-100	d = 2.126 - 5.327 x 10 ⁻⁴ T	1089-1220	(512)	35	k
20-80	d = 2.332 - 5.617 x 10 ⁻⁴ T	1016-1118		35	k
30-70	d = 2.425 - 5.633 x 10 ⁻⁴ T	959-1112		35	k
40-60	d = 2.581 - 6.445 x 10 ⁻⁴ T	810-1115		35	k
50-50	d = 2.67 - 6.576 x 10 ⁻⁴ T	757-1111		35	k
50-40	d = 2.779 - 7.039 x 10 ⁻⁴ T	820-1111		35	k
80-20	d = 2.816 - 5.963 x 10 ⁻⁴ T	913-1090		35	k
100-0	d = 2.841 - 5.211 x 10 ⁻⁴ T	969-1088	(513)	35	k
	MnC1 ₂ -RbC1				
0-100	d = 3.136 ~ 8.951 x 10 ⁻⁴ T	1039-1102	(514)	35	k
10-90	d = 3.077 - 8.576 x 10 ⁻⁴ T	958-1089		35	k
20-80	d = 2.969 - 7.815 x 10 ⁻⁴ T	905-1081		35	k
30-70	d = 2.919 - 7.506 x 10 ⁻⁴ T	753-1080		35	k
40-60	d = 2.896 - 7.282 x 10 ⁻⁴ T	834-1064		35	k
45-55	d = 2.936 - 7.561 x 10 ⁻⁴ T	849-1069		35	k
50-50	d = 2.981 - 7.901 x 10 ⁻⁴ T	856-1061		35	k
55-45	d = 2.991 - 7.827 x 10 ⁻⁴ T	865-1055		35	k
60-40	d = 3.011 - 7.847 x 10 ⁻⁴ T	862-1065		35	k
70-30	d = 3.054 - 7.921 x 10 ⁻⁴ T	814-1067		35	k
80-20	d = 3.012 - 7.18 x 10 ⁻⁴ T	891-1071		35	k
90-10	d = 2.931 - 6.184 x 10 ⁻⁴ T	913-1082		35	k
100-0	d = 2.841 - 5.211 x 10 ⁻⁴ T	969-1088	(515)	35	k
	0.01 0.01 1.01				
For additional	1 MnCl ₂ systems, see : CaCl ₂ - ; CsCl- ; KCl- ; LiCl-				
	Mo03			_	
100	d = 4.855 - 0.0015002 T	1100-118	0 ±4%	3	a
	Mo0 ₃ -Na ₂ Mo0 ₄				
28-72	(T=980 K, d=2.79)			3	a
34-66	d = 3.7886 - 8.88 x 10 ⁻⁴ T	960-1100		3	a
60-40	d = 4.0844 = 0.0010311 T	940-1100		3	a
70-30	d = 4.362 - 0.001212 T	940-1100		3	a
78-22	d = 4.165 - 0.001007 T	940-1100		3	a
76-22 88-12	d = 4.028 - 8.65 x 10 ⁻⁴ T	1000-110		3	a
	d = 4.0077 - 8.553 x 10 ⁻⁴ T	1070-114		3	a
90.2-9.8	d = 4.5226 - 0.0013049 T	1080-117		3	a
100-0	U = 4.0640 = 0.00100m3		,	-	-

For additional MoO3 systems, see : K_2MoO_4- ; Li_2MoO_4-

NaA1C14

(mo1 %)					
(1101 %)	Equation	T range(K)	Accur.	Ref.	Comment
For NaA1C14 sy	stems, see : KAICl ₄ -LiAlBr ₄ -				
	NaBF ₄				
00	d = 2.4681 - 7.51 x 10 ⁻⁴ T	690-820	±1%	6	a
					
	NaBF ₄ -NaF				
12-8	d = 2.446 - 7.11 x 10 ⁻⁴ T	680-860		10	a
	NaB0 ₂ -NaP0 ₃				
31.0-69.0	d = 1.5391 + 5.198 x 10 ⁻⁴ T	1120-1220		3	a,e,v1
9.8-50.2	d = 1.6111 + 4.801 x 10 ⁻⁴ T	1120-1220		3	a,e,v¹
1.5-38.5	d = 1.6959 + 4.3 x 10 ⁻⁴ T	1120-1220		3	a,e,v
3.8-26.2	d = 1.8445 + 3.3 x 10 ⁻⁴ T	1120-1220		3	a,v1
11.5-18.5 4.1-15.9	d = 1.858 + 3.299 x 10 ⁻⁴ T	1120-1220		3	a,v1
14. 1-15.9 17.4-2.6	d = 1.9083 + 2.899 x 10 ⁻⁴ T	1120-1220		3	a,v1
97.4-2.6	d = 1.9825 + 1.7 x 10 ⁻⁴ T	1120-1220		3	a,e,v1
55.4-0.6	NaBr	1120-1220	1	3	a,e,v1
00	d = 3.1748 - 8.169 x 10 ⁻⁴ T	4007 4040			
00	NaBr-NaC1	1027-1218	±1%	1	а
) - 100	d = 2.139 - 5.444 x 10 ⁻⁴ T	1000 1000	(F17)		_
20-80		1090-1200		2	a
10-60	d = 2.3875 - 6.189 x 10 ⁻⁴ T	1070-1200		2	a
i0-50	d = 2.5924 - 6.62 x 10 ⁻⁴ T	1050-1210		2	а
60-40	d = 2.6657 - 6.612 x 10 ⁻⁴ T	1030-1210		2	а
30-40	d = 2.7896 - 7.1 x 10 ⁻⁴ T	1050-1200		2	a
	d = 3.001 - 7.77 x 10 ⁻⁴ T	1050-1200		2	а
100-0	d = 3.1799 - 8.22 x 10 ⁻⁴ T	1050-1220	(518)	2	а
0-100	NaBr-NaI d = 3.6144 - 9.392 x 10 ⁻⁴ T	000 1100	(540)		
20-80	d = 3.5445 - 9.193 x 10 ⁻⁴ T	960-1120	(519)	2	а
10-60		1000-1120)	2	a
	d = 3.4473 - 8.829 x 10 ⁻⁴ T	950-1130		2	а
50-40	d = 3.3808 - 8.787 x 10 ⁻⁴ T	960-1120		2	a
30-20	d = 3.3058 - 8.706 x 10-4 T	1000-1120		2	a
100-0	d = 3.1799 - 8.22 x 10 ⁻⁴ T	1050-1220	(520)	2	a
	NaBr-Na ₂ Cr0 ₄				
0-100	d = 3.236 - 8.755 x 10 ⁻⁴ T	1033-1113	(521)	3	a,e
10-90	d = 3.115 - 7.503 x 10 ⁻⁴ T	1033-1113	3	3	a,e
50-50	d ≈ 3.125 - 7.502 x 10 ⁻⁴ T	1033-1113	3	3	а
90-10	d ≈ 2.797 - 5.001 x 10 ⁻⁴ T	1033-1113	3	3	a,e
100-0	d ≈ 2.639 - 3.754 x 10 ⁻⁴ T	1033-1113	(522)	3	a,e
	NaBr-PbBr ₂				
30-100 PbBr ₂	$d \approx 2.3484 + 0.051031 C - 3.0757 \times 10^{-4} C^2 + 9.4312 \times 10^{-7} C^3$	873	(523)	4	a,n
	NaBr-RbBr				
D-100	d ≈ 3.7373 ~ 0.0010704 T	980-1140	(524)	4	a
50-50	d ≈ 3.5262 - 9.885 x 10 ⁻⁴ T	970-1130	, ,	4	a
100-0	d = 3.1799 - 8.22 x 10 ⁻⁴ T	1050-1220	(525)	4	a
	NaBr-T1Br		(020)	·	•
D-100	d ≈ 7.4335 - 0.001922 T	1023-1063	(526)	4	a,e
10-90	d = 7.407 - 0.002175 T	1023-1063		4	a,e a,e
20-80	d = 7.277 - 0.002323 T	1023-1063		4	
30-70	d = 7.021 - 0.002349 T	1023-1063		4	a,e
10-60	d = 6.684 - 0.002299 T	1023-1063		4	a,e
50-50	d = 6.237 - 0.002149 T			•	a,e
50-40	d = 5.703 - 0.001924 T	1023-1063		4	a,e
0-30	d = 5.102 - 0.001649 T	1023-1063		4	a,e
30-20	d = 4.485 - 0.001375 T	1023-1063		4	a,e
30-10	d = 3.768 - 0.001024 T	1023-1063		4	a,e
100-0		1023-1063		4	a,e
	d = 3.027 - 6.742 x 10 ⁻⁴ T	1023-1110	(527)	4	a,e

(mal %)	Density (g cm ⁻³)	-	•		_
(mol %)	Equation	T range(K)	Accur.	Ref .	Commer
For additional	NaBr systems, see : AgBr- ; AgC1- ; A1Br3- ; A1C13- ; CdBr2- ; CsC1- ; KBr- ; KC1 NaC1	- ; LiBr-			
00	d = 2.1389 - 5.426 x 10 ⁻⁴ T	1080-1300	±0.5%	3	d,
	NaC1-NaF				
- 100	(T=1173 K, d=1.932)		(528)	2	а
5-75	(T=1173 K, d=1.814)			2	а
0-70	(T=1273 K, d=1.716)			2	а
0-50	d = 1.872 - 1.78 x 10 ⁻⁴ T	1173-1273		2	а,
5-25	d = 2.346 - 6.64 x 10 ⁻⁴ T	1173-1273		2	а,
00-0	(T=1173 K, d=1.486)		(529)	2	а
	NaC1-NaF-NaI				
1.6-15.2-53.2	d = 3.29 - 9. x 10 ⁻⁴ T	810-1070		36	k
	NaC1-NaI				
-100	d = 3.6144 - 9.392 x 10 ⁻⁴ T	960-1120	(530)	2	а
0-80	d = 3.3898 - 8.696 x 10 ⁻⁴ T	1000-1130		2	а
0-60	d = 3.124 - 7.832 x 10 ⁻⁴ T	980-1120		2	а
0-40	d = 2.8372 - 7.02 x 10 ⁻⁴ T	1000-1120		2	а
0-20	d = 2.5162 - 6.263 x 10 ⁻⁴ T	1030-1130		2	а
00-0	d = 2.139 - 5.444 x 10 ⁻⁴ T	1090-1200	(531)	2	а
	NaC1-NaNO3				
-100	d = 2.3389 - 7.36 x 10 ⁻⁴ T	598~723	(532)	3	a
.97-99.03	d = 2.3156 - 7.017 x 10 ⁻⁴ T	598-723	(552)	3	a
-98	d = 2.3331 - 7.292 x 10 ⁻⁴ T	620-720		3	a
90 3.09-96.91	d = 2.324 - 7.154 x 10-4 T	598-723		3	
-96	d = 2.3405 - 7.418 x 10-4 T	620-720		3	a
-95	d = 2.333 - 7.303 x 10 ⁻⁴ T			3	a
i-94		598-723		3	a
	d = 2.3313 - 7.257 x 10 ⁻⁴ T	620-720		-	a
. 98-93. 02	d = 2.3368 - 7.384 x 10 ⁻⁴ T	598-723		3	a
i-92	d = 2.3333 - 7.348 x 10 ⁻⁴ T	620-720		3	а
1.9-90.1	d = 2.3277 - 7.258 x 10 ⁻⁴ T	598-723		3	а
1.92-88.08	d = 2.3352 - 7.361 x 10 ⁻⁴ T	660-720		3	а
3.9-86.1	d = 2.3207 - 7.2 x 10 ⁻⁴ T	673-723		3	а
	NaC1-NaOH				
100	(T=693 K, d=1.737)		(533)	3	а
-95	(T=693 K, d=1.737)			3	а
10-90	(T=693 K, d=1.737)			3	а
15-85	(T=693 K, d=1.737)			3	а
0-80	(T=693 K, d=1.737)			3	а
	NaC1-NaOH-Na ₂ CO ₃				
2.0-96.4-1.6	d = 2.0986 - 5. x 10 ⁻⁴ T	600-720		3	а
3.6-94.8-1.6	d = 2.1101 - 5.201 x 10 ⁻⁴ T	600-720		3	a
5.3-93.1-1.6	d = 2.1065 - 5.163 x 10 ⁻⁴ T	600-720		3	a
7.3-91.1-1.6	d = 2.1112 - 5.2 x 10 ⁻⁴ T	600-720		3	а
0.2-88.1-1.7	d = 2.1212 - 5.316 x 10 ⁻⁴ T	600-720		3	a
	NaC1-Na ₂ C0 ₃				
18.2-81.8	d = 2.3645 - 3.8 x 10 ⁻⁴ T	1100-1150)	3	a
33.3-66.7	d = 2.2831 ~ 3.44 x 10 ⁻⁴ T	998-1148		3	a
16.2-53.8	d = 2.2172 ~ 3.286 x 10 ⁻⁴ T	1000-1150)	3	a
57.1-42 <i>.</i> 9	d = 2.1485 ~ 3.085 x 10 ⁻⁴ T	1023-1148		3	a
32.1-37.9	d = 2.1823 ~ 3.571 x 10 ⁻⁴ T	1000-1150		3	a
/-· · • · · ·		1000 1100	•	v	а
66.7-33.3	d = 2.2411 ~ 4.367 x 10 ⁻⁴ T	1098-1148	t	3	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
mo1 %)	Equation	T range(K)	Accur.	Ref.	Commer
-25	d = 2.1209 - 3.679 x 10 ⁻⁴ T	1060-1150		3	a
4-17.6	d = 2.0025 - 2.999 x 10 ⁻⁴ T	1100-1148		3	a
.9-11.1	d = 2.2168 - 5.198 x 10 ⁻⁴ T	1100-1150		3	a
0-0	d = 1.8564 - 3.202 x 10 ⁻⁴ T	1080-1150	(534)	3	a
	NaC1-Na ₂ D				
9-0.1 Na ₂ 0	d = 1.493 - 0.346 C + 0.01074 C ² - 0.71 C ³	1193		3	a
	NaC1-Na ₂ TiF ₆				
100	d = 3.0062 - 7. x 10 ⁻⁴ T	1030-1110	(535)	3	a, 6
95	d = 3.0734 - 7.9 x 10 ⁻⁴ T	1030-1110		3	a, e
-90	d = 3.143 - 8.88 x 10 ⁻⁴ T	970-1110		3	a
-85	d = 3.135 - 9.24 x 10 ⁻⁴ T	970-1110		3	а, е
-80	d = 3.0928 - 9.341 x 10 ⁻⁴ T	970-1110		3	a.e
-75	d = 2.9338 - 8.241 x 10 ⁻⁴ T	970-1110		3	a, e
-70	d = 2.8866 - 8.26 x 10 ⁻⁴ T	970-1110		3	a, e
-65	d = 2.8165 - 8.081 x 10 ⁻⁴ T	970-1110		3	a, t
-60	d = 2.808 - 8.38 x 10 ⁻⁴ T	970-1110		3	a, c
-50	d = 2.6838 - 7.96 x 10 ⁻⁴ T	970-1110		3	a a, e
-40	d = 2.906 - 0.0011 T	970-1110		3	
-30	d = 2.3184 - 5.7 x 10 ⁻⁴ T	970-1110		3	a
•		9/0-1110		3	а, (
0-0 Na ₂ ZrF ₆	$NaCl-Na_2ZrF_6$ $d = 1.4759 + 0.00643 C + 4.4 \times 10^{-5} C^2 \dots \dots$	1173	(536)	3	a
		1170	(500)	Ū	a
-100 Na ₃ A1F ₆	$NaC1-Na_3A1F_6$ $d = 1.874 - 0.00141 C + 3.7 \times 10^{-5} C^2 \dots \dots$	1273	(537)	3	
-0 0		1270	(557)	•	a
100	NaC1-Na ₄ P ₂ 0 ₇ d = 2.5876 - 3.201 x 10 ⁻⁴ T	1070 1370	(520)		_
3.7-80.3		1270-1370	(538)	3	а
.3-64.7	d = 2.6498 - 3.941 x 10 ⁻⁴ T	1230-1370		3	a
0.2-49.8	d = 2.5775 - 3.72 x 10 ⁻⁴ T	1220-1370		3	а
	d = 2.5031 - 3.68 x 10 ⁻⁴ T	1170-1370		3	a
.4-31.6	d = 2.4443 - 4.143 x 10 ⁻⁴ T	1070-1370		3	а
0.0-20.0	d = 2.3712 - 4.436 x 10 ⁻⁴ T	1070-1370		3	а
0-0	d = 2.132 - 5.429 x 10 ⁻⁴ T	1080-1370	(539)	3	а
	NaC1-NdC13				
.0-85.0	d = 4.12 - 8.43 x 10 ⁻⁴ T	1021-1273		16	k
.5-68.5	d = 3.93 - 8.57 x 10 ⁻⁴ T	1005-1281		16	k
.7-55.3	d = 3.703 - 7.83 x 10 ⁻⁴ T	1023-1282		16	k
0.7-39.3	d = 3.351 - 7.2 x 10 ⁻⁴ T	1016-1283		16	k
.8-26.2	d = 3.032 - 6.92 x 10 ⁻⁴ T	1093-1283		16	k
.5-12.5	d = 2.522 - 5.37 x 10 ⁻⁴ T	1131-1284		16	k
0-0	d = 2.181 - 5.73 x 10 ⁻⁴ T	1111-1294	(540)	16	k
	NaC1-PbC1 ₂				
0-100.0	d = 6.089 - 0.001477 T	920-1060	(541)	5	a
.0-75.0	d = 5.435 ~ 0.001352 T	770-970		5	а
.0-50.0	d = 4.568 - 0.001124 T	830-1030		5	a
. 2-24 . 8	d = 3.517 - 8.64 x 10 ⁻⁴ T	980-1070		5	a
	NaC1-PrC13				
. 8-75 . 2	d = 3.842 - 7.11 x 10 ⁻⁴ T	1093-1273		16	k
. 1-61.9	d = 3.622 - 7.08 x 10 ⁻⁴ T	1098-1273		16	k
	d = 3.229 - 6.71 x 10 ⁻⁴ T	1103-1273		16	k
.6-39.4					
.6-39.4 .2-25.8		1083-1273		16	b
	d = 2.939 - 6.1 x 10 ⁻⁴ T	1083-1273 1113-1278		16 16	k k

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
	NaC1-RbC1				
100	d = 3.0863 - 8.514 x 10 ⁻⁴ T	1020-1230	(543)	5	а
5-75	d = 2.9095 - 8.016 x 10 ⁻⁴ T	1000-1150		5	а
0-50	d = 2.6952 - 7.303 x 10 ⁻⁴ T	1010-1150		5	а
5-25	d = 2.6034 - 7.988 x 10 ⁻⁴ T	1010-1170		5	а
00-0	d = 2.139 - 5.444 x 10 ⁻⁴ T	1090-1170	(544)	5	a
	NaC1-SrC1 ₂				
-100	d = 3.2257 - 4.5 x 10 ⁻⁴ T	1168-1273	(545)	37	k
0-90	d = 3.1521 - 4.6 x 10 ⁻⁴ T	1111-1273		37	k
0-80	d = 3.0746 - 4.7 x 10 ⁻⁴ T	1052-1273		37	k
0-70	d = 2.9872 - 4.8 x 10 ⁻⁴ T	986-1273		37	k
0-60	d = 2.8801 - 4.8 x 10 ⁻⁴ T	924-1273		37	k
0-50	d = 2.7796 - 4.9 x 10 ⁻⁴ T	861-1273		37	k
0-40	d = 2.6721 - 5. x 10 ⁻⁴ T	931-1273		37	k
0-30	d = 2.5429 - 5. x 10 ⁻⁴ T	985-1273		37	k
0-20	d = 2.4136 - 5.1 x 10 ⁻⁴ T	1028-1273		37	 k
0-10	d = 2.271 - 5.2 x 10 ⁻⁴ T	1066-1273		37	k
00-0	d = 2.1061 - 5.2 x 10 ⁻⁴ T	1093-1273	(546)	37	k
	NaC1-ThC1_				
-100	d = 4,823 - 0.0014 T	1050-1120	(547)	5	a
2-78	d = 4.288 - 0.00107 T	960-1120		5	а
0-60	d = 4.129 - 0.00104 T	820-1070		5	а
7-53	d = 4.024 - 0.00101 T	740-1070		5	a
5-45	d = 3.905 - 0.00101 T	680-1070		5	a
0-40	d = 3.828 - 9.9 x 10 ⁻⁴ T	690-1070		5	а
4-36	d = 3.772 - 9.8 x 10 ⁻⁴ T	7.10-1070		5	a
7-33	d = 3.692 - 9.8 x 10 ⁻⁴ T	710-1070		5	а
0-30	d = 3.643 - 9.7 x 10 ⁻⁴ T	720-1070		5	а
3-27	d = 3.589 - 9.7 x 10 ⁻⁴ T	670-1070		5	а
6-24	d = 3.472 - 9.2 x 10 ⁻⁴ T	790-1070		5	а
30-20	d = 3.228 - 8.6 x 10 ⁻⁴ T	880-1120		5	а
34-1 6	d = 3.164 - 8.5 x 10 ⁻⁴ T	940-1120		5	а
9-11	d = 2.824 - 7.5 x 10 ⁻⁴ T	1010-1170)	5	a
00-0	d = 2.086 - 5. x 10 ⁻⁴ T	1080-1170	(548)	5	a
	NaC1-UC13				
6.2-53.8	d = 6.639 - 0.0030582 T	980-1270		5	a
5.3-24.7	d = 4.29 - 0.0015903 T	980-1270		5	a
91.3-8.7	d = 2.7796 - 6.828 x 10 ⁻⁴ T	980-1270		5	а
38.4-1.6	d = 2.2075 - 5.655 x 10 ⁻⁴ T	980-1270		5	a
	NaC1-UC14				
0.00-100.00	d = 5.2508 - 0.0019455 T	870-940	(549)	5	а
3.41-96.59	d = 4.9313 - 0.0016147 T	870-930		5	а
7.04-92.96	d = 4.8592 ~ 0.001562 T	860-920		5	а
11.87-88.13	d = 4.7175 - 0.0014402 T	850-910		5	а
19.08-80.92	d = 4.6915 - 0.0014773 T	830-920		5	а
88.85-61.15	d = 4.4491 - 0.0014268 T ,	790-920		5	а
18.76-51.24	d = 4.1291 ~ 0.0012157 T	780-920		5	a
55.72-44.28	d = 3.8614 - 0.0010237 T	830-910		5	a
57.80-32.20	d = 3.4098 - 7.707 x 10 ⁻⁴ T	880-910		5	a
•	NaC1-YC13				
5.0-85.0	d = 3.001 - 4.515 x 10 ⁻⁴ T	1085-127	2	28	k
0.2-69.8	d = 3.036 - 6.219 x 10 ⁻⁴ T	1071-127	5	28	k

Table 2.1.a Density data (continued)

/ •	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
55.8-44.2	d = 2.732 - 5.367 x 10 ⁻⁴ T	1070-1270		28	k
1.9-28.1	d = 2.567 - 5.264 x 10 ⁻⁴ T	1080-1263		28	k
85.1-14.9	d = 2.44 - 5.501 x 10 ⁻⁴ T	1070-1233		28	k
	NaC1-ZnC1 ₂				
0.00-100.00	d = 2.8375 ~ 5.2926 x 10 ⁻⁴ T	590-830	(550)	Б	a,c
2.61-97.39	d = 2.8426 ~ 5.555 x 10 ⁻⁴ T	590-780		5	a,b,c,
4.60-95.40	d = 2.8391 ~ 5.532 x 10 ⁻⁴ T	590-860		5	a,c
6.21-93.79 9.70-90.30	d = 2.8427 - 5.7501 x 10-4 T	590-760		5	a,c
12.50-87.50	d = 2.8202 - 5.5558 x 10 ⁻⁴ T	590-860		5	a,c
19.20-80.80	d = 2.8179 - 5.7254 x 10 ⁻⁴ T	600-770 600-730		5 5	a,c
24.40-75.60	d = 2.8011 - 6.2198 × 10 ⁻⁴ T	600-730 580-770		5	a,c
29.80-70.20	d = 2.8091 - 6.6262 x 10 ⁻⁴ T	570-860		5	a,c
39.60-60.40	d = 2.7582 - 6.7248 x 10 ⁻⁴ T	570-880		5	a,c a,c
40.70-59.30	d = 2.7563 - 6.7338 x 10 ⁻⁴ T	560-880		5	a,b,c,
43.5-56.5	d = 2.649 - 6.473 x 10 ⁻⁴ T	595-736		19,20	а, в, с, k
46.60-53.40	d = 2.7068 - 6.5899 x 10 ⁻⁴ T	570-860		5	a,c
55.30-44.70	d = 2.6269 - 6.4288 x 10 ⁻⁴ T	640-870		5	a,c
65.00-35.00	d = 2.5626 - 6.466 x 10 ⁻⁴ T	740-840		5	a,c
100-0	d = 2.146 - 5.507 x 10 ⁻⁴ T	1078-1232	(551)	19,20	k k
CsCl- ; KBr- ;	NaCl systems, see : AgBr~ ; AlCl3-LiCl- ; AlCl3- ; BaCl2- ; BeCl2- ; CaCl2-LaCl3 KCl- ; KF- ; KI- ; K2C03- ; K2ZrF6- ; LaCl3- ; LiCl- ; MgCl2- ; MnCl2- ; NaBr- ;	- ;	- ; CaCl ₂ - Cl*	- ; CdC12-	; CsBr- ;
	NaC103				
100	d = 2.5728 - 8.7933 x 10 ⁻⁴ T	540-555	±1%	6	а
	NaC103-NaN03				
38.9-61.1	d = 2.4798 ~ 8.7 × 10 ⁻⁴ T	520-560		3	a
51.5-48.5	d = 2.5097 - 8.871 x 10 ⁻⁴ T	510-560		3	a
72.7-27.3	d = 2.5362 - 8.8 x 10 ⁻⁴ T	510-560		3	a
100-0	d = 2.5728 - 8.7933 x 10 ⁻⁴ T	540-560	(552)	3	a
	NaC10 ₄ -NaN0 ₃	313 333	,,		_
0-100	d = 2.3206 - 7.151 x 10 ⁻⁴ T	590-680	(553)	3	a,b,e
10-90	d = 2.303 ~ 6.5 x 10 ⁻⁴ T	580-670	,,,,,	3	a
20-80	d = 2.31 - 6.34 x 10 ⁻⁴ T	540-670		3	a
38.5-61.5	d = 2.376 ~ 6.71 x 10 ⁻⁴ T	500-670		3	a
45-55	d = 2.405 - 6.91 x 10 ⁻⁴ T	540-670		3	a
70-30	d = 2.464 ~ 7.23 x 10 ⁻⁴ T	660-670		3	a
For additiona	1 NaC10 ₄ systems, see : KNO ₃ - ; LiC10 ₄ - ; LiNO ₃ -				
400	NaC ₂ H ₃ O ₂	C40 000	1.40/	•	
100	d = 1.688 - 7.02 x 10 ⁻⁴ T	610-620	±1%	6	a,e
	NaC ₂ H ₃ 0 ₂ -RbC ₂ H ₃ 0 ₂				
0-100	d = 2.503 - 9.515 x 10 ⁻⁴ T	570-620	(554)	6	a,b,e
25-75	d = 2.274 - 8.313 x 10 ⁻⁴ T	590-620		6	a,b,e
50-50	d = 2.112 - 8.308 x 10 ⁻⁴ T	590-620		6	a,b,e
75-25	d = 1.875 - 7.302 x 10 ⁻⁴ T	590-620		6	a,b,e
100-0	d = 1.688 - 7.02 x 10 ⁻⁴ T	610-620	(555)	6	a,b,e
For additiona	1 NaC ₂ H ₃ O ₂ systems, see : CsC ₂ H ₃ O ₂ -				
	NaF	***			
100	d = 2.755 - 6.36 x 10 ⁻⁴ T	1280-1370) ±1%	10	a,d,i
74-38 Na ₂ B ₄ 0 ₇	d = 2.272 - 0.00188 C + 1.5 x 10 ⁻⁶ C ²	1223		3	a
	NaF-Na ₂ ZrF ₆	.220		•	4
0-100		4000 4000	. /===:	•	
0-100	d = 2.645 - 5.6 x 10 ⁻⁴ T	1070-1270		3	a
20-80	d = 3.569 - 8.6 x 10 ⁻⁴ T	1070-1270	J	3	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
0-60	d = 3.621 - 8.9 x 10 ⁻⁴ T	1070-1270		3	a
0-40	d = 3.631 - 9.1 x 10 ⁻⁴ T	1070-1270	ı	3	a
0-20	d = 3.413 - 7.9 x 10 ⁻⁴ T	1070-1270	ı	3	a
	NaF-Na ₃ A1F ₆				
-100	d = 3.2892 - 9.3797 x 10 ⁻⁴ T	1273-1353	(557)	3	a
1-79	d = 3.311 - 9.5 x 10 ⁻⁴ T	1280-1340)	3	а
6-64	d = 3.275 - 9.2 x 10 ⁻⁴ T	1280-1340)	3	а
7-53	d = 3.265 - 9.1 x 10 ⁻⁴ T	1260-1340)	3	а
6-44	d = 3.263 - 9.1 x 10 ⁻⁴ T	1260-1340)	3	a
7-23	d = 3.083 - 7.9 x 10 ⁻⁴ T	1220-1340)	3	а
00-0	d = 2.733 - 6.1 x 10 ⁻⁴ T	1260-1340	(558)	3	a
	NaF-SmF ₃				
0.0-50.0	d = 5.324 - 8.553 x 10 ⁻⁴ T	1280-1340)	10	а
0.0-40.0	d = 4.901 - 8.255 x 10 ⁻⁴ T	1130-1340)	10	а
0.0-30.0	d = 4.335 - 6.943 x 10 ⁻⁴ T	1110-1340		10	а
0.0-20.0	d = 4.101 - 8.282 x 10 ⁻⁴ T	1110-1340		10	а
0.0-10.0	d = 3.233 - 5.764 x 10 ⁻⁴ T	1210-1340		10	a
0.0-0.0	d = 2.682 - 6.151 x 10 ⁻⁴ T	1280-1340	(559)	10	а
	NaF-ThF ₄				
0.0-50.0	d = 5.973 - 8.154 x 10 ⁻⁴ T	1080-1350	ס	10	а
0.0-40.0	d = 6.042 - 0.001363 T	1125-1356	0	10	à
7.0-33.0	d = 5.241 - 0.00104 T	1095-1350	0	10	а
0.0-20.0	d = 4.039 - 6.512 x 10 ⁻⁴ T	1125-1350	0	10	а
B. 0-12.0	d = 3.881 - 8.61 x 10 ⁻⁴ T	1185-135	0	10	а
00.0-0.0	d = 2.682 - 6.151 x 10 ⁻⁴ T	1275-135	0 (560)	10	а
	NaF-UF₄				
5.0-75.0	d = 10.907 - 0.003982 T	1215-135	0	10	а
5.3-54.7	d = 7.485 ~ 0.001903 T	1080-135	0	10	а
4.0-46.0	d = 6.256 ~ 0.001174 T	1080-135	0	10	а
5.0-35.0	d = 5.815 ~ 0.00135 T	1080-135	0	10	а
8.0-22.0	d = 4.753 ~ 9.388 x 10 ⁻⁴ T	1080-135	0	10	a
35.0-15.0	d = 5.52 - 0.001964 T	1155-135	0	10	а
00.0-0.0	d = 2.682 - 6.151 x 10 ⁻⁴ T	1275-135	0 (561)	10	а
	NaF-YF3				
0.0-50.0	d = 4.487 - 9.957 x 10 ⁻⁴ T	1230-135	0	10	а
8.0-32.0	d = 3.779 - 8.11 x 10 ⁻⁴ T	1035-135	0	10	а
1.0-29.0	d = 3.445 - 6.178 x 10 ⁻⁴ T	1005-135	0	10	а
0.0-20.0	d = 3.321 - 7.071 x 10 ⁻⁴ T	1110-135	0	10	a
30.0-10.0	d = 3.239 - 7.947 x 10 ⁻⁴ T	1215-135	0	10	а
00.0-0.0	d = 2.682 - 6.151 x 10 ⁻⁴ T	1275-135	0 (562)	10	а
	NaF-ZrF ₄				
0-25 ZrF ₄	d = 1.91 + 0.02307 C + 0.001019 C^2 - 8.043 x 10^{-5} C^3 + 1.364 x 10^{-6} C^4	1323	(563)	10	a,
For addition	al NaF systems, see : AlF3- ; BaF2- ; BeF2- ; B203- ; CaF2- ; CeF3- ; KF- ; LaF3- ;	LiF- : NaBF4-	· : NaCl-		
iui auuitiuna	NaHSO	,	. ==:		
100	d = 2.6587 - 9.259 x 10 ⁻⁴ T	473-512	±1.5%	30	k
100	d = 2.6587 - 9.259 x 10 1	770 012			•
100	d = 3.6274 - 9.491 x 10 ⁻⁴ T	945-1185	5 ±1%	1	a
100	d = 3.62/4 - 9.491 x 10 - 1	5.5 1100		•	-
0.00-100.00	-	1120-119	90 (564)	4	а
0.00-100.00	d = 5.4069 - 0.0010701 T	1060-116		4	a
22.62-77.38	d = 5.0558 - 9.701 x 10 ⁻⁴ T			4	a
12.39-57.61	d = 4.9113 - 0.0010503 T	1040-118		4	a
32.20-37.80	d = 4.5668 - 9.952 x 10 ⁻⁴ T	1040-117		4	a
12.32-27.68	d = 4.3886 - 9.911 x 10 ⁻⁴ T	1060-118		4	
80.41-19.59	d = 4.1388 - 9.397 x 10 ⁻⁴ T	1060-118		•	a
100.00-0.00	d = 3.5743 - 8.951 x 10 ⁻⁴ T	1030-118	80 (565)	4	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
	NaI-RbI				
100	d = 3.9667 - 0.0011613 T	950-1120	(566)	4	a
0-50	d = 3.7984 - 0.0010695 T	970-1130		4	a
00-0	d = 3.6144 - 9.392 x 10 ⁻⁴ T	960-1120	(567)	4	a
or addition	nal NaI systems, see : CdI ₂ - ; KCl- ; KI- ; LiI- ; NaBr- ; NaCl-NaF- ; NaCl-				
or addition	NaNo2				
00	d = 2.226 - 7.46 x 10 ⁻⁴ T	EE 2_792	+2%	1	_
00	u - 2.226 - 7.46 X 10 - 1	553-723	±3%	'	a
	NaNO ₂ -NaNO ₃				
-100	d ≈ 2.26498 - 6.2576 x 10 ⁻⁴ T	595-760	(568)	7	a,e
0-90	d ≈ 2.253 - 6.2576 x 10 ⁻⁴ T	580-760		7	a,e
0-80	d ≈ 2.2411 - 6.2576 x 10 ⁻⁴ T	565-760		7	a,e
0-70	d ≈ 2.2291 - 6.2576 x 10 ⁻⁴ T	535-760		7	а, є
0-60	d ≈ 2.2172 - 6.2576 x 10 ⁻⁴ T	505-760		7	a,e
0-50	d = 2.2053 - 6.2576 x 10 ⁻⁴ T	50 5-760		7	a,e
0-40	d = 2.1933 - 6.2576 x 10 ⁻⁴ T	520-760		7	a, e
7.5-32.5	d = 2.1844 - 6.2576 x 10 ⁻⁴ T	56 5-760		7	a,e
0-30	d = 2.1814 - 6.2576 x 10 ⁻⁴ T	565-760		7	а, є
0-20	d = 2.1694 - 6.2576 x 10 ⁻⁴ T	580-760		7	a, e
0-10	d = 2.1575 - 6.2576 x 10 ⁻⁴ T	580-760		7	а, є
00-0	d = 2.1619 - 6.4965 x 10 ⁻⁴ T	580-760	(569)	7	a, e
	NaN02-Na2Mo04				
-100	d = 3.439 - 6.17 x 10 ⁻⁴ T	980-1120	(570)	3	а
0-90	d = 3.23 - 4.8 x 10 ⁻⁴ T	920-1120		3	а
0-80	d = 3.153 - 4.84 x 10 ⁻⁴ T	920-1120		3	a
0-70	d = 3.041 - 4.57 x 10 ⁻⁴ T	880-1120		3	a
0-60	d = 2.952 - 4.6 x 10 ⁻⁴ T	880-1120		3	а
0-50	d = 2.87 - 4.76 x 10 ⁻⁴ T	820-1120		3	а
0-40	d = 2.767 - 4.87 x 10 ⁻⁴ T	820-1040		3	a
0-30	d = 2.658 - 5.06 x 10 ⁻⁴ T	780-1040		3	а
5-25	d = 2.601 - 5.3 x 10 ⁻⁴ T	780-1000		3	a
10-20	d = 2.517 - 5.32 x 10 ⁻⁴ T	760-960		3	a
4-16	d = 2.446 - 5.33 x 10 ⁻⁴ T	720-920		3	a
8~12	d = 2.383 - 5.47 x 10 ⁻⁴ T	680-880		3	а
2-8	d = 2.301 - 5.31 x 10 ⁻⁴ T	680-870		3	а
6.5-3.5	d = 2.187 ~ 5.03 x 10 ⁻⁴ T	680-840		3	a
100-0	d = 2.022 - 3.93 x 10 ⁻⁴ T	680-820	(571)	3	а
	NaN0 ₂ -Na ₂ ₩0 ₄				
-100	d = 4.487 - 5.33 x 10 ⁻⁴ T	970-1110	(572)	3	а
0-90	d = 4.242 - 3.71 x 10-4 T	930-1110		3	a
20-80	d = 4.147 - 4.17 x 10 ⁻⁴ T	910-1110		3	a
30-70	d = 3.999 - 4.63 x 10 ⁻⁴ T	870-1110		3	a
10-60	d = 3.858 - 5.1 x 10-4 T			3	-
	d = 3.57 - 4.52 x 10-4 T	870-1110			a
60-50 60-40		830-1110		3	a
60-40	d = 3.327 - 4.4 x 10 ⁻⁴ T	830-1070		3	a
0-30	d = 3.167 - 5.65 x 10 ⁻⁴ T	770-990		3	а
75-25	d = 3.062 - 6.12 x 10 ⁻⁴ T	790-970		3	а
30-20	d = 2.911 - 6.07 x 10 ⁻⁴ T	750-910		3	a
34~16	d = 2.895 - 7.4 x 10-4 T	750-890		3	а
38-12	d = 2.69 - 6.74 x 10 ⁻⁴ T	710-870		3	а
32-8	d = 2.48 - 7.27 x 10 ⁻⁴ T	670-850		3	a
98-2	d = 2.218 - 5.48 x 10 ⁻⁴ T	620-840		3	а
100-0	d = 2.038 - 4.24 x 10 ⁻⁴ T	620-830	(573)	3	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
or addition	al NaNO ₂ systems, see : KNO ₂ - ; KNO ₃ - NaNO ₃				
0	d = 2.32 - 7.15 x 10 ⁻⁴ T	583-643	±0.5%	1	a,c
	NaN0 ₃ -Na0H				
100	d = 2.159 - 6.04 x 10 ⁻⁴ T	598-823	(574)	3	а
-90	d = 2.187 - 6.73 x 10 ⁻⁴ T	573-753		3	a
3-82	d = 2.115 - 5.89 x 10 ⁻⁴ T	553-753		3	а
i-75	d = 1.972 - 4.18 x 10 ⁻⁴ T	553-753		3	а
1-66	d = 2.028 - 4.87 x 10 ⁻⁴ T	553-753		3	а
7-63	d = 2.176 - 6.88 x 10 ⁻⁴ T	553-753		3	a
5 -5 5	d = 2.111 - 5.62 x 10 ⁻⁴ T	553-753		3	a
0-50	d = 2.2 - 6.74 x 10 ⁻⁴ T	553-753		3	а
0-40	d = 2.183 - 6.05 x 10 ⁻⁴ T	553~753		3	a
2-28	d = 2.182 - 6. x 10 ⁻⁴ T	553-753		3	a
0-10	d = 2.268 - 6.69 x 10 ⁻⁴ T	573~753		3	а
00-0	d = 2.116 - 7.29 x 10 ⁻⁴ T	583~753	(575)	3	а
	NaN03-Na2Mo04				
- 100	d = 3.439 - 6.17 x 10 ⁻⁴ T	970~1090	(576)	3	a, e
0-90	d = 3.413 - 6.32 x 10 ⁻⁴ T	930-1090		3	а
0-80	d = 3.229 - 5.19 x 10 ⁻⁴ T	890-1090		3	a
0-70	d = 3.1368 - 5.108 x 10 ⁻⁴ T	850-1090		3	a, e
0-60	d = 3.0756 - 3.434 x 10 ⁻⁴ T	850-1090		3	a, e
0-50	d = 2.9327 - 5.004 x 10 ⁻⁴ T	830-1090		3	a, 0
0-40	d = 2.7933 ~ 4.739 x 10 ⁻⁴ T	810-1050		3	a, e
0-30	d = 2.75 - 5.66 x 10 ⁻⁴ T	770-1050		3	а
5-25	d = 2.6484 - 5.347 x 10 ⁻⁴ T	770-970		3	а,
30-20	d = 2.5634 ~ 5.389 x 10 ⁻⁴ T	730-930		3	a,
5-15	d = 2.526 - 5.79 x 10 ⁻⁴ T	710-910		3	а
10-10	d = 2.437 - 5.68 x 10 ⁻⁴ T	670-890		3	а
16-4	d = 2.384 - 6.39 x 10 ⁻⁴ T	630-850		3	а
00-0	d = 2.2663 ~ 6.059 x 10 ⁻⁴ T	630-810	(577)	3	a,
	NaNO3-Na2WO4				
-100	d = 4.6515 - 6.86 x 10 ⁻⁴ T	970-1110	(578)	3	a
0-90	d = 4.729 - 8.14 x 10 ⁻⁴ T	930-1110		3	a
20-80	d = 4.534 - 7.34 x 10 ⁻⁴ T	950-1110		3	a
30-70	d = 4.296 - 7.05 x 10 ⁻⁴ T	870-1110		3	a
10-60	d = 4.04 - 6.567 x 10 ⁻⁴ T	870-1110		3	a,
50-50	d = 3.7878 - 6.393 x 10 ⁻⁴ T	830-1110		3	a,
50-40	d = 3.532 - 6.42 x 10 ⁻⁴ T	830-1070		3	a - ,
70-30	d = 2.264 - 6.587 x 10 ⁻⁴ T	830-1070		3	a,
75-25	d = 3.062 - 6.08 x 10 ⁻⁴ T	810-1050		3	а
30-20	d = 2.9486 - 6.607 x 10 ⁻⁴ T	790-950	•	3	a,
35-15	d = 2.7695 - 6.382 x 10 ⁻⁴ T	770-970		3	a,
30-15 30-10	d = 2.5773 - 6.16 x 10 ⁻⁴ T	750-930		3	a, a,
30-10 35-5	d = 2.4232 - 6.045 x 10 ⁻⁴ T	710-890		3	a, a,
	d = 2.357 ~ 6.28 x 10 ⁻⁴ T	630-850		3	a, a
98-2 190-0	d = 2.3359 - 6.931 x 10 ⁻⁴ T		(579)	3	a
100-0		630-830	(8/8)	3	a
	NaN03-Pb(N03)2			_	
75-25	d = 3.2826 - 9.2603 x 10 ⁻⁴ T	600-640		7	а,
80-20	d = 3.1228 - 8.9431 x 10 ⁻⁴ T	580-650		7	a,
34.2-15.8	d = 2.9743 - 8.5864 x 10 ⁻⁴ T	570-650		7	а,
35-15	d = 2.9444 - 8.5091 x 10 ⁻⁴ T	560-660		7	a,
10-10	d = 2.7466 - 7.9583 x 10 ⁻⁴ T	570-670		7	a,
95-5	d = 2.5284 - 7.2906 x 10 ⁻⁴ T	580-690		7	а,
100-0	d = 2.2887 - 6.5061 x 10 ⁻⁴ T	600-730	(580)	7	a,

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
	NaNO3~RbNO3				
100	d = 3.118 - 0.0010508 T	595-730	(581)	7	a,e
-80	d = 2.975 - 9.738 x 10 ⁻⁴ T	490-730		7	a,e
-60	d = 2.849 - 9.412 x 10 ⁻⁴ T	505-745		7	a,e
-59	d = 2.842 - 9.379 x 10 ⁻⁴ T	505-745		7	a, e
0-40	d = 2.701 - 8.889 x 10 ⁻⁴ T	505-745		7	a, e
0-20	d = 2.494 - 7.67 x 10 ⁻⁴ T	580-745		7	а, є
00-0	d = 2.309 - 6.949 x 10 ⁻⁴ T	610-745	(582)	7	a,e
	NaN03~T1N03				
100	d = 5.696 - 0.001665 T	490-620	(583)	7	a, e
0-90	d = 5.44 - 0.00161 T	470-620		7	а, е
0-80	d = 5.214 - 0.00164 T	443-613		7	a, e
3-77	d = 5.136 - 0.0016309 T	460-610		7	a, e
0-70	d = 4.928 - 0.00157 T	480-610		7	a, e
0-60	d = 4.607 ~ 0.0014699 T	493-623		7	a, e
)-50)-50	d = 4.305 - 0.00142 T	520-620		7	
0-40	d = 3.913 - 0.0012256 T	520-620		7	a, e
0-30	d = 3.637 ~ 0.00127 T	550-620		7	a, (
0-30	1 0 000				a, (
		553-633		7	а,
0-10	d = 2.773 ~ 8.82 x 10 ⁻⁴ T	580-650		7	а,
00-0	d = 2.395 - 8.11 x 10 ⁻⁴ T	590-650	(584)	7	а,
00	NaOH d = 2.068 - 4.784 x 10 ⁻⁴ T	623-723	±1%	1	а
	Negu Ne Co				
0.6-9.4	Na0H-Na ₂ C0 ₃ d = 2.1648 - 5.061 x 10 ⁻⁴ T	600. 700		3	_
1.4-8.6	d = 2.1607 - 5.1 x 10-4 T	600-720			a
2.8-7.2		600-720		3	a
	d = 2.1411 - 4.928 x 10 ⁻⁴ T	600~720		3	а
3.8-6.2	d = 2.1357 - 5.001 x 10 ⁻⁴ T	600~720		3	а
6.0-4.0	d = 2.1112 - 4.901 x 10 ⁻⁴ T	600-720		3	а
6.4-3.6	d = 2.1037 - 4.837 x 10 ⁻⁴ T	600-720		3	а
17.9-2.1	d = 2.1026 - 5. x 10 ⁻⁴ T	600-720		3	а
18.1-1.9	d = 2.1073 - 5.1 x 10 ⁻⁴ T	600-720		3	а
00-0	d = 2.0782 - 4.929 x 10 ⁻⁴ T	600-720	(585)	3	а
	Na0H-Na ₂ C0 ₃ -Na ₂ Si0 ₃				
4.6-1.8-3.6	d = 2.1983 - 5.6 x 10 ⁻⁴ T	780-870		3	а
16.5-1.7-1.8	d = 2.1605 - 5.501 x 10 ⁻⁴ T	780-870		3	a
.				•	_
For additiona	al NaOH systems, see : CaO- ; NaCl- ; NaNO ₃ -				
	NaP03				
00	d = 2.6903 ~ 4.59 x 10 ⁻⁴ T	930-1100) ±2%	6	а
	NaP03-Na ₂ S0 ₄				
5-25		950 1070	,)	3	a
5-25	NaP03-Na ₂ S0 ₄	950-1070 890-1070		3	a a
5-25 7.5-12.5	NaP0 ₃ -Na ₂ S0 ₄ d = 2.662 - 4.55 x 10 ⁻⁴ T)		
5-25 17.5-12.5 12-8	NaP03-Na ₂ S0 ₄ d = 2.662 - 4.55 x 10 ⁻⁴ T	890-1070)	3	a
	NaP0 ₃ -Na ₂ S0 ₄ d = 2.662 - 4.55 x 10 ⁻⁴ T	890-1070 830-1070 800-1070))	3 3 3	a a a
5-25 :7.5-12.5 :2-8 :6-4 :8-2	NaP0 ₃ -Na ₂ S0 ₄ d = 2.662 - 4.65 x 10 ⁻⁴ T d = 2.674 - 4.57 x 10 ⁻⁴ T d = 2.696 - 4.73 x 10 ⁻⁴ T d = 2.716 - 4.9 x 10 ⁻⁴ T d = 2.705 - 4.77 x 10 ⁻⁴ T	890-1070 830-1070 800-1070 860-1070)))	3 3 3	a a a a
5-25 7.5-12.5 2-8 6-4 8-2 9-1	NaP0 ₃ -Na ₂ S0 ₄ d = 2.662 - 4.65 x 10 ⁻⁴ T d = 2.674 - 4.57 x 10 ⁻⁴ T d = 2.696 - 4.73 x 10 ⁻⁴ T d = 2.716 - 4.9 x 10 ⁻⁴ T d = 2.705 - 4.77 x 10 ⁻⁴ T d = 2.693 - 4.65 x 10 ⁻⁴ T	890-1070 830-1070 800-1070 860-1070 890-1130)))	3 3 3 3	a a a a
5-25 7.5-12.5 2-8 6-4 8-2 9-1	NaP0 ₃ -Na ₂ S0 ₄ d = 2.662 - 4.65 x 10 ⁻⁴ T d = 2.674 - 4.57 x 10 ⁻⁴ T d = 2.696 - 4.73 x 10 ⁻⁴ T d = 2.716 - 4.9 x 10 ⁻⁴ T d = 2.705 - 4.77 x 10 ⁻⁴ T d = 2.693 - 4.65 x 10 ⁻⁴ T d = 2.6903 - 4.59 x 10 ⁻⁴ T	890-1070 830-1070 800-1070 860-1070)))	3 3 3	a a a
5-25 7.5-12.5 2-8 6-4 8-2 9-1 00-0	NaP0 ₃ -Na ₂ S0 ₄ d = 2.662 - 4.55 x 10 ⁻⁴ T d = 2.674 - 4.57 x 10 ⁻⁴ T d = 2.696 - 4.73 x 10 ⁻⁴ T d = 2.716 - 4.9 x 10 ⁻⁴ T d = 2.705 - 4.77 x 10 ⁻⁴ T d = 2.693 - 4.65 x 10 ⁻⁴ T d = 2.6903 - 4.59 x 10 ⁻⁴ T	890-1070 830-1070 800-1070 860-1070 890-1130)))	3 3 3 3	a a a a
5-25 7.5-12.5 2-8 6-4 8-2 9-1 00-0	NaP0 ₃ -Na ₂ S0 ₄ d = 2.662 - 4.55 x 10 ⁻⁴ T d = 2.674 - 4.57 x 10 ⁻⁴ T d = 2.696 - 4.73 x 10 ⁻⁴ T d = 2.716 - 4.9 x 10 ⁻⁴ T d = 2.705 - 4.77 x 10 ⁻⁴ T d = 2.693 - 4.65 x 10 ⁻⁴ T d = 2.6903 - 4.59 x 10 ⁻⁴ T NaP0 ₃ -Na ₃ P0 ₄ d = 2.5901 - 2.999 x 10 ⁻⁴ T	890-1070 830-1070 800-1070 860-1070 890-1130))))) (586)	3 3 3 3	a a a a a
5-25 .7.5-12.5 .2-8 .6-4	NaP0 ₃ -Na ₂ S0 ₄ d = 2.662 - 4.55 x 10 ⁻⁴ T d = 2.674 - 4.57 x 10 ⁻⁴ T d = 2.696 - 4.73 x 10 ⁻⁴ T d = 2.716 - 4.9 x 10 ⁻⁴ T d = 2.705 - 4.77 x 10 ⁻⁴ T d = 2.693 - 4.65 x 10 ⁻⁴ T d = 2.6903 - 4.59 x 10 ⁻⁴ T	890-1070 830-1070 800-1070 860-1070 890-1130 930-1100	(586)	3 3 3 3 3	а а а а

J. Phys. Chem. Ref. Data, Vol. 17, Suppl. 2, 1988

Table 2.1.a Density data (continued)

92.5-7.5 d 95-5 d 97.5-2.5 d	Equation = 2.5826 - 3.44 x 10 ⁻⁴ T	7 range(K) 980-1120 980-1120	Accur.	Ref.	Comment
92.5-7.5 d 95-5 d 97.5-2.5 d	I = 2.5771 - 3.321 x 10 ⁻⁴ T			3	
95-5 d 97.5-2.5 d	l = 2.5733 - 3.22 x 10 ⁻⁴ T	980-1120		•	a,e
07.5-2.5 d				3	a,e
	0.000	980-1120		3	a,e
100-0 d	I = 2.5785 ~ 3.401 x 10 ⁻⁴ T	980-1120		3	a
	! = 2.5806 ~ 3.641 x 10 ⁻⁴ T	980-1120	(587)	3	a
	NaP03-Na4P207				
70-30 d	1 = 2.6365 ~ 3.48 x 10 ⁻⁴ T	1000-1120		3	a
	1 = 2.6349 ~ 3.683 × 10 ⁻⁴ T	1000-1120		3	a,e
	1 = 2.6324 ~ 3.723 × 10 ⁻⁴ T	1000-1120		3	a,e
	3 = 2.6075 ~ 3.48 x 10 ⁻⁴ T	1000-1120		3	a,e
	1 = 2.6293 ~ 3.633 × 10 ⁻⁴ T	1000-1120		3	a,e
				3	
	d = 2.6656 - 3.69 x 10 ⁻⁴ T	1000-1120			a
100-0 d	d = 2.5806 - 3.641 x 10 ⁻⁴ T	1000-1120	(588)	3	а
	NaPO3-N10				
100-88.9 NaP03 d	d = 90.549 - 1.8507 C + 0.009693 C ²	1123	(589)	3	a
	NaP03-Pb0				
99.54-95.17 d NaP0 ₃	d = 10.2 - 0.08011 C	1123		3	a
	NaP03-Rb2S04				
75-25 d	d = 2.973 ~ 5.3 x 10 ⁻⁴ T	780-1050		3	а
	d = 2.84 - 4.86 x 10 ⁻⁴ T	780-1050		3	a
	d = 2.6903 - 4.59 x 10 ⁻⁴ T	930-1100	(590)	3	a
100 0	4.03V0 4.03 X PO 1	300 1100	(550)	·	۵
	NaP03-U02S04				
37.5-12.5 d	d = 3.234 ~ 5.34 x 10 ⁻⁴ T	860-1010		3	. а
90-10 d	d = 3.105 ~ 5.05 x 10 ⁻⁴ T ,	860-950		3	а
93-7 c	d = 2.997 ~ 5.02 x 10 ⁻⁴ T	830-1010		3	a
97-3 c	d = 2.832 - 4.95 x 10 ⁻⁴ T	800-1010		3	a
98-2 c	d = 2.745 - 4.49 x 10 ⁻⁴ T	830-1010		3	а
99-1 c	d = 2.705 - 4.47 x 10 ⁻⁴ T	850-1020		3	а
100-0 c	d = 2.6906 - 4.592 x 10 ⁻⁴ T	930-1100	(591)	3	а
	NaPO3-WO3				
45- 5 5 (d = 5.4645 - 0.0011451 T	1180-1270	0	3	a,e
	d = 5.237 - 0.001125 T	1180-127	D	3	a
	d = 5.1284 - 0.0011863 T	1180-127		3	a,e
	d = 4.8118 - 0.0010201 T	1180-127		3	a
	d = 4.487 - 9.151 x 10 ⁻⁴ T	1120-127		3	a
	d = 4.1682 - 8.256 x 10 ⁻⁴ T	1120-127		3	
					a
	d = 3.8531 - 7.121 x 10 ⁻⁴ T	1090-127		3	а
	d = 3.6436 - 6.881 x 10 ⁻⁴ T	1090-127		3	a,e
	d = 3.3218 - 5.416 x 10 ⁻⁴ T	970-1270		3	a, e
	d = 3.1639 - 5.083 x 10 ⁻⁴ T	970-1270		3	а, є
	d = 2.9523 - 4.771 x 10 ⁻⁴ T	970-1270		3	a
94-6	d = 2.8187 - 4.607 x 10 ⁻⁴ T	970-1270		3	а, е
100-0	d = 2.6237 - 4.155 x 10 ⁻⁴ T	970-1270	(592)	3	а
	NaP0 ₃ -Zn0				
65.2-34.8	d = 3.1487 - 3.439 x 10 ⁻⁴ T	1260-135	0	3	a
73.8-26.2	d = 2.9778 - 3.449 x 10 ⁻⁴ T	1140-135	o	3	a
	d = 2.7616 - 3.643 x 10 ⁻⁴ T	1080-135		3	a
	NaP03-Zn(P03)2				
0-100	d = 2.8817 - 7.6 x 10 ⁻⁵ T	1200-140	0 (593)	6	a
	d = 2.9131 - 1.62 x 10 ⁻⁴ T	1100-136		6	a
	d = 2.9024 - 1.88 x 10-4 T				
01.0-02.0	u = 4.8044 = 1.00 X 1U = 1 , ,	1100-138	U	6	а

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ref. 6 6 6 6 6 7 23 23 6 8 3 3	Commer a a a a k k
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6 6 23 23 6 3 3	a a k k
$ 8.7-21.3 \qquad d = 2.7648 - 3.48 \times 10^{-4} \text{ T} $	6 6 23 23 6 3 3	a a k k
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 23 23 6 6 3 3	a k k
For additional NaPO3 systems, see : Bi_2O_3- ; Li_2SO_4- ; NaBO2- NaSCN 00	23 23 6 3 3	k k
NaSCN 00	23 6 3 3 3	k
NaSCN 00	23 6 3 3 3	k
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 6 3 3 3	k
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23 6 3 3 3	k
NaV0 ₃ 00	3 3 3	a
00 d = 2.864 - 4.4 x 10 ⁻⁴ T	3 3 3	a
NaV03- $^{\circ}$ V205 1-100	3 3 3	a
d = 2.856 - 4.5 x 10 ⁻⁴ T 980-1140 (595) 10-80 d = 2.65 - 2.4 x 10 ⁻⁴ T 1040-1160 10-60 d = 2.896 - 4.48 x 10 ⁻⁴ T 980-1160 10-40 d = 2.822 - 4.06 x 10 ⁻⁴ T 920-1160 10-20 d = 2.81 - 4.14 x 10 ⁻⁴ T 920-1160	3 3	
0-80 d = 2.65 - 2.4 x 10^4 T 1040-1160 0-60 d = 2.896 - 4.48 x 10^4 T 980-1160 0-40 d = 2.822 - 4.06 x 10^4 T 920-1160 0-20 d = 2.81 - 4.14 x 10^4 T 920-1160	3 3	_
0-60 d = 2.896 - 4.48 x 10 ⁻⁴ T	3	a
0-40 d = 2.822 - 4.06 x 10 ⁻⁴ T		a
0-20 d = 2.81 - 4.14 x 10 ⁻⁴ T		a
	3	a
00-0 d = 2.766 - 3.32 x 10 ⁻⁴ T	3	а
N- P 6	3	а
Na ₂ B ₄ O ₇		
00 d = 2.5492 - 4. x 10 ⁻⁴ T	6	a,(
Na ₂ B ₄ U ₇ -N1U 00-81.0 d = 2.277 - 0.001829 C	3	_
00-20-10	J	a
Na ₂ B ₄ 0 ₇ -Pb0		
00-86.3 d = 4.1 - 0.022006 C	3	а
Na ₂ B ₄ 0 ₇ -W0 ₃		
6.3-43.7 d = 3.3938 - 5.44 x 10 ⁻⁴ T	3	а,
i1.8-38.2 d ≈ 3.2038 - 4.695 x 10 ⁻⁴ T	3	a,
i6.7-33.3 d ≈ 3.822 - 0.001063 T	3	a,
'1-29 d = 3.1117 - 5.67 x 10 ⁻⁴ T	3	а,
'5-25 d ≈ 2.9627 - 4.975 x 10 ⁻⁴ T	3	а,
/8.5-21.5 d≈ 2.85 - 3.91 x 10 ⁻⁴ T	3	a,
31.8-18.2 d = 2.798 - 4.525 x 10 ⁻⁴ T	3	а,
34.8~15.2 d = 2.7764 - 4.765 x 10 ⁻⁴ T	3	a,
37.5-12.5 d ≈ 2.7108 - 4.575 x 10 ⁻⁴ T	3	а,
00-10 d = 2.6768 - 4.56 x 10 ⁻⁴ T	3	a,
12.3-7.7 d = 2.6542 - 4.64 x 10 ⁻⁴ T	3	a,
14.4-5.6 d = 2.5652 - 4.11 x 10-4 T	3	a,
1070-1270	3	a,
38.3-1.7 d = 2.5152 - 3.955 x 10 ⁻⁴ T	3	a, a,
100-0 d = 2.513 - 4.04 x 10 ⁻⁴ T	3	a, a,
Na ₂ B ₄ 0 ₇ -ZrF ₄	-	۵,
$33-72 \text{ Na}_2\text{B}_4\text{O}_7$ d = 5.191 - 0.07118 C + 4.05 x 10^{-4} C ²	3	a
For additional Na ₂ B ₄ O ₇ systems, see : Bi ₂ O ₃ - ; B ₂ O ₃ - ; CaF ₂ - ; KCl- ; KF- ; LiCl- ; NaF-		
Na ₂ CO ₃		
d = 2.4797 - 4.487 x 10 ⁻⁴ T	1	a
For additional Na ₂ CO ₃ systems, see : CaO-NaOH- ; KCl- ; K ₂ CO ₃ -Li ₂ CO ₃ - ; K ₂ CO ₃ - ; Li ₂ CO ₃ - ; NaCl-NaOH- ; NaCl- ; NaOH-		
Na ₂ Cr0 ₄		
100 d = 3.236 - 8.755 x 10 ⁻⁴ T	3	a,
For additional Na ₂ Cr0 ₄ systems, see : NaBr-		
Na ₂ Cr ₂ 0 ₇ 100 (T=693 K, d=2.38)		
100 (1=693 K, d=2.38)	6	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
or additiona	1 Na ₂ Cr ₂ O ₇ systems, see : KNO ₂ -				
	Na ₂ Mo0 ₄				
00	d = 3.407 - 6.29 x 10 ⁻⁴ T	1020-1230	±2%	1	a,c
For additions	11 Na ₂ MoO ₄ systems, see : Li ₂ MoO ₄ - ; MoO ₃ - ; NaNO ₂ - ; NaNO ₃ -				
TOT AUGILIONS					
	Na ₂ 0-Zn(P0 ₃) ₂			_	
.6-95.4	d = 2.933 - 1.247 x 10 ⁻⁴ T	1180-1360		3	а
13.9-86.1 36.8-63.2	d = 3.0024 - 1.902 x 10 ⁻⁴ T	1120-1360		3 3	a
58.8 -4 1.2	d = 3.11 - 3.576 x 10-4 T	1120-1300 1240-1360		ა ვ	a a
0.0-41.2	0 - 0.11 - 3.370 x 70 - 1	1240-1360		3	a
For additiona	al Na ₂ O systems, see : NaCl-				
	Na ₂ Si0 ₃				
For Na ₂ Si0 ₃ s	systems, see : NaOH-Na ₂ CO ₃ - Na ₂ SO ₄				
00	d = 2.628 - 4.83 x 10 ⁻⁴ T	1173-1350	±0.5%	1	•
	Na ₂ SO ₄ -ZnSO ₄	11/3-1350	20.5%	1	а
) - 100	d = 3.591 - 4.7 x 10 ⁻⁴ T	873-1273	(600)	33	k
io-50	d = 3.0802 - 5.121 x 10 ⁻⁴ T	820-910	(500)	6	a, e
		220 010		ŭ	₩,'
For additiona	al Na ₂ SO ₄ systems, see : CaSO ₄ - ; K ₂ SO ₄ - ; Li ₂ SO ₄ - ; NaPO ₃ -				
	Na ₂ S _{3.0}				
100	d = 2.227 - 5.658 x 10 ⁻⁴ T	590-683	±1.5%	6	а
100	d = 2.3802 - 7.989 x 10 ⁻⁴ T	576-689	±1.5%	6	а
	Na ₂ S _{3.7}				•
100	d = 2.2538 - 5.459 x 10 ⁻⁴ T	563-669	±1.5%	6	а
	Na ₂ S ₄				
100	d = 2.7631 - 0.00149 T	625-720	±3%	6	а
	Na ₂ S _{4_4}				
100	d = 2.2687 - 6.664 x 10 ⁻⁴ T	571-680	±1.5%	6	а
	Na ₂ S _{4.8}				
100	d = 2.3056 - 7.156 x 10 ⁻⁴ T	573-683	±1.5%	6	а
	Na ₂ S ₅				
100	d = 2.289 - 8.4995 x 10 ⁻⁴ T	625-720	±38%	6	а
	Na ₂ TiF ₆			-	-
100	d = 3.0062 - 7. x 10 ⁻⁴ T	1030-1110) ±2%	3	a
	Na ₂ TiF ₆ -TiO ₂				
63.5-36.5	d = 3.2057 - 7.785 x 10 ⁻⁴ T	1100-1200)	3	а
Eor addition					
TOT AUDITION	al Na ₂ TiF ₆ systems, see : NaCl- Na ₂ WO ₄				
100	d = 4.629 - 7.97 x 10 ⁻⁴ T	1025-1774	±4%	1	а
	Na2W04-W03				
40-60	d = 6.3526 - 0.0014243 T	1070-119)	3	a,
44 . 98-55 . 02	d = 6.0475 - 0.0012294 T	1070-119)	3	a,
49.99-50.01	d = 6.308 - 0.0015571 T	1040-116	ס	3	а,
59.60-40.40	d = 4.4079 + 3.07 x 10 ⁻⁵ T	1010-114	ס	3	a,
69.41-30.59	d = 5.5676 - 0.0012264 T	980-1130		3	a,
79.46-20.54	d = 5.3025 - 0.0011166 T	930-1140		3	а,
89.67-10.33	d = 3.9198 + 5.08 x 10 ⁻⁵ T	980-1130		3	a,
	d = 4.7676 + 9.069 x 10 ⁻⁴ T	990-1140	(601)	3	a,

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
	Na ₂ ZrF ₆				
00	d ≈ 2.645 - 5.6 x 10 ⁻⁴ T	1070-1270	±1.5%	3	a
or additional	Na ₂ ZrF ₆ systems, see : NaC1- ; NaF-				
	Na ₃ A1F ₆				
00	d ≈ 3.2892 - 9.3797 x 10 ⁻⁴ T	1273-1353	±1%	10	d, i
	NagA1F6-Rb3A1F6				
-100	d = 4.1844 - 0.00136 T	1273-1323	(602)	6	a
0-90	d = 3.9682 - 0.00122 T	1223-1323		6	а
0-80	d = 3.8835 - 0.00118 T	1220-1330		6	a,e
0-70	d = 3.8063 - 0.001141 T	1170-1330		6	а
0-60	d = 3.9234 - 0.001251 T	1170-1330		6	а
0-50 0-40	d = 3.8558 - 0.001235 T	1170-1330		6	а
0- 4 0 0-30	d = 3.6738 - 0.001121 T			6	a
0-20	d = 3.36 - 9.441 x 10 ⁻⁴ T			6 6	a
0-10	d = 3.3125 - 9.399 x 10 ⁻⁴ T			6	a a
00-0	d = 3.047 - 7.8 x 10 ⁻⁴ T		(603)	6	a
	Na3A1F6-SiD2	1275 1020	(000)	ŭ	•
00-80 Na3A1F6	• • •	1273	(604)	3	а
0 0					
For additional	l Na3AlF6 systems, see : AlF3- ; Al ₂ O3-KF- ; Al ₂ O3- ; BaCl ₂ - ; BaF ₂ - ; Be ^F 2- ; NaCl- ; NaF-	F ₂ - ; CaF ₂ - ; Cs ₃ A1F ₆ - ;	KF- ; K ₃ A	1F ₆ - ; i	.iF- ;
Ean Na-BO . nur	Na ₃ P0 ₄				
ror Nagru4 sys	stems, see : NaPO3- Na4P2O7				
00	d = 2.5876 - 3.201 x 10 ⁻⁴ T	1270-1370	±1.5%	3	а
	Na ₄ P ₂ 0 ₇ -W0 ₃	12.5		•	-
4-66	d = 4.4826 - 9.071 x 10 ⁻⁴ T	1080-1260		3	a,e
0-60	d = 4.2003 - 8.048 x 10 ⁻⁴ T			3	a,e
5-55	d = 3.8695 - 6.418 x 10 ⁻⁴ T			3	a
0-50	d = 3.7461 - 6.763 x 10 ⁻⁴ T	1080-1370		3	a,e
5-45	d = 4.5416 - 0.0013279 T	1080-1370		3	a,e
0-40	d = 3.7814 - 7.641 x 10 ⁻⁴ T	1130-1370		3	a
5-35	d = 3.651 - 7.153 x 10 ⁻⁴ T	1170-1370		3	a,e
0-30	d = 3.306 - 5.505 x 10 ⁻⁴ T	1170-1370		3	a,e
3.5-26.5	d = 3.1965 - 5.218 x 10 ⁻⁴ T	1230-1370		3	a,e
8-22	d ≈ 3.1333 - 5.341 x 10 ⁻⁴ T	1230-1370		3	a
2-18	d = 2.9631 - 4.67 x 10 ⁻⁴ T	1290-1370		3	a
86-14	d = 3.9347 - 0.0012302 T	•		3	a
39.5-10.5	d = 2.7378 - 3.741 x 10 ⁻⁴ T			3	a
32.5-7.5	d = 2.7069 - 3.791 x 10 ⁻⁴ T			3	a
96.5-3.5	d = 2.5378 - 2.852 x 10 ⁻⁴ T			3	а
00-0	d = 2.5477 - 3.102 x 10 ⁻⁴ T	1290-1370	(605)	3	а
For additional	Na ₄ P ₂ O ₇ systems, see : NaC1- ; NaPO ₃ -				
	NbC1 ₅				
00	d = 3.589 - 0.003088 T	485-800	±3%	5	2.0
		403-000	±0%	5	a, e,
	NbC15-TaC15				
100	d = 4.691 - 0.004101 T		(606)	38	k
9.52-70.48	d = 4.386 - 0.003858 T			38	k
8.16~41.84	d = 3.981 - 0.003414 T			38	k
0.27-19.73	d = 3.62 - 0.002981 T			38	k
00-0	d = 3.359 - 0.002705 T	478-598	(607)	38	k
	110 11 3 20 11 3				
00	N(C ₃ H ₇) ₄ B(C ₆ H ₅) ₄ d = 1.2078 - 5.652 x 10 ⁻⁴ 7				

Table 2.1.a Density data (continued)

,	Density (g cm ⁻³)	_			_
(mo1 %)	Equation	T range(K)	Accur.	Ref .	Commer
	N(C ₃ H ₇) ₄ BF ₄				
00	d = 1.2467 - 6.415 x 10 ⁻⁴ T	525-547	±0.5%	1	a
	N(C _{3H7}) ₄ PF ₆				
00	d = 1.2433 - 3.224 x 10 ⁻⁴ T	513-545	±0.5%	1	a
	N(C ₃ H ₇) ₄ SCN				-
00	d = 1.079 - 5.397 x 10 ⁻⁴ T	325-370	±0.5%	6	a
		020 0/0	_0.0%	•	•
For additiona	al N(C ₃ H ₇) ₄ SCN systems, see : CuSCN- N(C ₄ H ₉) ₄ B(C ₆ H ₅) ₄				
00	, , , , , , , , , , , , , , , , , , , ,	F14 F40	40 5%		
00	d = 1.1435 - 4.945 x 10 ⁻⁴ T	514-540	±0.5%	1	а
	N(C ₄ H ₉) ₄ BF ₄				
00	d = 1.1906 - 5.812 x 10 ⁻⁴ T	436-539	±0.5%	1	а
	N(C ₄ H ₉) ₄ Br				
00	d = 1.287 - 7.039 x 10 ⁻⁴ T	392-408	±0.5%	1	а
	N(C4H9)4I				
00	d = 1.446 - 8.388 x 10 ⁻⁴ T	420-435	±0.5%	1	а
	N(C ₄ H ₉) ₄ PF ₆				
00	d = 1.3252 - 6.557 x 10 ⁻⁴ T	529-548	±0.5%	1	а
	N(C5H ₁₁) ₄ SCN				
00	d = 1.0744 - 5.3662 x 10 ⁻⁴ T	325-383	±0.5%	1	а
	N(C6H13)4BF4				
00	d = 1.1296 - 5.772 x 10 ⁻⁴ T	375-491	±0.5%	1	а
	NdBr3				
00	d = 4.975 - 7.779 x 10 ⁻⁴ T	968-1133	±1.5%	1	а
	NdC13				
00	d = 4.2642 - 9.3014 x 10 ⁻⁴ T	1090-1270	±1%	5	a
For addition	nal NdCl ₃ systems, see : CaCl ₂ - ; KCl- ; KCl*NaCl- ; NaCl-				
	Nd13				
100	d = 5.4069 - 0.0010701 T	1110-1190	±1.5%	4	а
For addition	nal Ndl ₃ systems, see : Csl- ; KI- ; Nal-				
	- NH₄Br				
For NH ₄ Br sv	ystems, see : AlBr ₃ -				
	NH₄C1				
Fee 101 61 61	•				
FOR NHAUL S	ystems, see : A1C13- NH4HS04				
100	d = 1.9352 ~ 5.381 x 10 ⁻⁴ T	453-509	±1.5%	30	k
	NH4H2PO4-NH4NO3				
3.5-96.5	d = 1.7695 - 7.611 x 10 ⁻⁴ T	430-450		3	а
7.2-92.8	d = 1.7815 - 7.611 x 10 ⁻⁴ T	430-450		3	a
10.9-89.1	d = 1.7629 - 6.92 x 10 ⁻⁴ T	420-450		3	a
18.8-81.2	d = 1.7495 - 6.069 x 10 ⁻⁴ T	420-450		3	а
27.3-72.7	d = 1.7327 - 5.141 x 10 ⁻⁴ T	420-450		3	а
33.9-66.1	d = 1.7278 - 4.612 x 10 ⁻⁴ T	440-450		3	a
11.0-59.0	d = 1.7216 - 4.053 x 10 ⁻⁴ T	440-450		3	a
51.1-48.9	d = 1.7002 - 3.024 x 10 ⁻⁴ T	440-450		3	a
	NH ₄ NO ₃				
100	d = 1.759 - 6.675 x 10 ⁻⁴ T	453-463	±1.5%	30	k
					,
For addition	nal NH ₄ ND ₃ systems, see : KCl- ; NH ₄ H ₂ PO ₄ -				
	NiC1 ₂				
100	d = 3.4994 - 6.6044 x 10 ⁻⁴ T	1290-133	0 ±2%	5	а
				=	·
	NiO				

Table 2.1.a Density data (continued)

(mol %)	Density (g cm ⁻³)	T n(*)	A 0.0:	p-t	Co
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
For NiO syste	ms, see : KP03- ; K ₂ B ₄ 0 ₇ - ; NaP03- ; Na ₂ B ₄ 0 ₇ -				
	Ni ₃ S ₂				
00	d = 5.25 - 1. x 10 ⁻⁶ T	1473-1523	±2%	6	a,e
For additiona	11 N1 ₃ S ₂ systems, see : Co ₄ S ₃ - ; Cu ₂ S- ; FeS-				
	PbBr ₂				
00	d = 6.789 - 0.00165 T	778-873	± 1%	1	a
	PbBr2-PbCl2				
- 100	d = 6.112 - 0.0015 T	790-960	(608)	2	
9.7-80.3	d = 6.255 - 0.00152 T	770-890	(000)	2	a
0.3-49.7	d = 6.449 - 0.00155 T	740-910		2	a
4.6-15.4	d = 6.767 - 0.00171 T				a
00-0	d = 6.789 - 0.00165 T	690-870	(600)	2	a
		780-870	(609)	2	a
For additiona	ll PbBr ₂ systems, see : KBr- ; NaBr- PbCl ₂				
00	d = 6.112 - 0.0015 T	789-983	±0.5%	1	a
	PbC1 ₂ -PbS	703-303	20.5%	'	đ
. 00-100. 00	-	1000 1170	(040)	_	
9.46-70.54	d = 7.261 - 5.4 x 10 ⁻⁴ T	1393-1473	(610)	3	a,b,
0.00-50.00	d = 6.823 - 0.00106 T	1193-1323		3	a
5.65-34.35	d = 6.335 - 0.00101 T	1073-1233		3	a
5.03-34.35	d = 6.134 - 0.00107 T	943-1113		3	a
00.00-0.00	d = 6.366 - 0.00156 T	763-923		3	а
00.00-0.00	d = 6.145 - 0.0015 T	773-923	(611)	3	a,b,
.0-100.0	d = 3.0918 - 8.52 x 10 ⁻⁴ T	1030-1190	(612)	5	a
4.8-85.2	d = 3.5064 - 9.02 x 10 ⁻⁴ T	1030-1110	(0.2)	5	a
0.3-69.7	d = 4.1049 - 0.001149 T	1030-1070		5	a
8.6-61.4	d = 4.2805 - 0.001155 T	1030-1070		5	
8.6-41.4	d = 4.8425 - 0.00127 T	1030-1070			a
8.4-21.6	d = 5.451 - 0.001391 T			5	a
00.0-0.0	d = 0.000	1030-1070	(040)	5	a
	a = 6.089 - 0.0014/7	1030-1060	(613)	5	а
-100	d = 6.802 - 0.001682 T	730-780	(614)		
0-90			(614)	5	а
0-80	d = 6.585 - 0.001666 T	700-770		5	а
0-70		700-770		5	a
0-60	d = 6.487 - 0.00165 T	700-770		5	a
0-50 0-50	d = 6.414 - 0.00163 T	700-770		5	а
	d = 6.333 - 0.001609 T	680-770		5	а
0-40	d = 6.278 - 0.0016 T	710-770		5	a
0-30	d = 6.226 - 0.001577 T	720-780		5	а
0-20	d = 6.193 - 0.001566 T	750-800		5	а
10-10	d = 6.153 - 0.001539 T	790-820		5	a
00-0	d = 6.143 - 0.001532 T	790-870	(615)	5	a
	PbC12-ZnC12				
-100	d = 2.7813 - 4.619 x 10 ⁻⁴ T	760-820	(616)	5	a
9.8-50.2	d ≈ 4.2829 - 7.014 x 10-4 T	785-825		5	a
00-0	d = 6.249 - 0.0016832 T	780-815	(617)	5	a
For additiona	nl PbCl ₂ systems, see : AgCl- ; BaCl ₂ - ; CdCl ₂ - ; CsCl- ; KCl-LiCl- ; KCl-NaCl- ; KC	:: :: :: :: :: :: :: :: :: :: :: :: ::	aC1- ; PbE	Brg-	
	PbI ₂			-	
00	d = 6.77966 - 0.0015938 T	690-970	±1.5%	4	a
For additiona	PbI ₂ systems, see : KI-				
	PbMo0 ₄				
00	d = 6.14778 - 6.77 x 10 ⁻⁴ T	1350~1400	±2%	6	a

Table 2.1.a Density data (continued)

Density (g cm ⁻³)						
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment	
	PbMo0 ₄ -Pb0					
-100	d = 9.4831 ~ 0.0013384 T	1290-1340	(618)	3	a,e	
-95	d = 8.0493 - 7.331 x 10 ⁻⁴ T	1280-1360		3	a,e	
2-88	d = 8.6857 - 0.0014098 T	1140-1240		3	a,e	
0-60	d = 7.0844 - 7.436 x 10 ⁻⁴ T	1280-1360		3	a,e	
0-40	d = 6.4802 - 5.556 x 10 ⁻⁴ T	1260-1360		3	a,e	
0-20	d = 6.1828 - 5.777 x 10 ⁻⁴ T	1340-1460		3	a,e	
00-0	d = 5.63 - 3.878 x 10 ⁻⁴ T	1390-1470	(619)	3	a,b,	
Eor addition	nal PbMoO ₄ systems, see : Bi ₂ (MoO ₄) ₃ -					
roi addicio	Pb(N03)2					
For Ph(NOa)	systems, see : KNO3- ; NaNO3-					
. o. , b (no 3 / 2	Pb0					
00	d = 9.4831 - 0.0013384 T	1290-1340	±2%	3	a	
			,	•	-	
For addition	nal Pb0 systems, see : KP03- ; K ₂ B ₄ 07- ; NaP03- ; Na ₂ B ₄ 07- ; PbMo04- PbS					
100	d = 7.26 - 5.4 x 10 ⁻⁴ T	1393-1473	±1.5%	1	a	
For addition	nal PbS systems, see : PbCl ₂ -					
	PbW0 ₄					
100	d = 7.845 - 9.525 x 10 ⁻⁴ T	1424-1504	±1.5%	6	a	
For addition	nal PbWO ₄ systems, see : Bi ₂ (WO ₄) ₃ -					
	PrC13					
100	d = 4.012 - 7.4165 x 10 ⁻⁴ T	1120-1250	±1.5%	5	а	
For addition	nal PrCl ₃ systems, see : CaCl ₂ - ; KCl- ; KCl*NaCl- ; NaCl-					
	RbBF ₄					
100	d = 3.07907 - 0.00104 T	870-990	±1%	6	a	
	RbBr					
100	d = 3.739 - 0.0010718 T	977-1180	±0.5%	1	а	
	RbBr-RbC1					
0-100	d = 3.0863 - 8.514 x 10 ⁻⁴ T	1020-1230	(620)	2	a	
25-75	d = 3.2688 - 9.141 x 10 ⁻⁴ T	980-1130		2	a	
50-50	d = 3.3996 - 9.478 x 10 ⁻⁴ T	980-1120		2	a	
75-25	d = 3.5833 - 0.0010141 T	960-1140		2	a	
100-0	d = 3.7373 - 0.0010704 T	980-1140	(621)	2	a	
	RbBr-Rb I					
0-100	d = 3.9667 - 0.0011613 T	950-1120	(622)	2	a,e	
25-75	d = 3.786 - 0.0010233 T	980-1120		2	a,e	
50-50	d = 3.7863 - 0.0010517 T	950-1120		2	a,e	
75-25	d = 3.7845 - 0.0010909 T	960-1110		2	a,e	
100-0	d = 3.7373 - 0.0010704 T	980-1140	(623)	2	a,e	
	RbBr-T1Br					
0-100	d = 7.465 ~ 0.00195 T	973-1033	(624)	4	a,e	
10-90	d = 7.053 ~ 0.001883 T	973-1033		4	a,e	
20-80 20-30	d = 6.645 ~ 0.001801 T	973-1033		4	a,e	
30-70	d = 6.286 - 0.00175 T	973-1033		4	a,e	
40-60	d = 5.926 - 0.001684 T	973-1033		4	a,e	
50-50	d = 5.545 - 0.001583 T	973-1033		4	a,e	
60-40	d = 5.208 - 0.001517 T	973-1033		4	a,e	
70-30	d = 4.829 - 0.0014 T	973-1033		4	a,e	
80-20	d = 4.474 - 0.0013 T	973-1033		4	a,e	
90-10	d = 4.123 - 0.0012 T	973-1033		4	а,е	
100-0	d = 3.724 - 0.00105 T	973-1033	(625)	4	a,e	

Table 2.1.a Density data (continued)

/1 %	Density (g cm ⁻³)	_			_
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
or additional	RbBr systems, see : AgBr- ; KBr- ; KCl- ; LiBr- ; NaBr-				
	RbC1				
00	d = 3.121 - 8.832 x 10 ⁻⁴ T	996-1196	±0.5%	1	a,c
	RbC1-RbI				
- 100	d = 3.9667 - 0.0011613 T	950-1120	(626)	2	a
25-75	d = 3.8244 - 0.0011288 T	960-1130		2	а
60-50	d = 3.5802 - 0.0010183 T	950-1140		2	a
75-25	d = 3.3805 - 9.743 x 10 ⁻⁴ T	950-1140		2	a
100-0	d = 3.0863 ~ 8.514 x 10 ⁻⁴ T	1020-1230	(627)	2	a
	RbC1-UC1₄				
.00-100.00	d = 5.2508 - 0.0019455 T	870-940	(628)	5	a
. 83-95 . 17	d = 5.0411 - 0.001743 T	900-940	(020)	5	a
35.18-64.82	d = 4.3583 - 0.0012953 T	830-1000		5	a
40.32-59.68	d = 4.2313 - 0.0012191 T			5	
13.46-56.54	d = 4.188 - 0.0012105 T	860-980			a
49.17-50.83	d = 4.107 - 0.0011411 T	850-1010		5	a
57.75-45.25	d = 3.9899 - 0.0010872 T	840-980		5 5	a
50.50-39.50	d = 3.7796 - 9.354 x 10 ⁻⁴ T	700-940			a
66.00-34.00		820-970		5	а
	d = 3.6548 - 8.732 x 10 ⁻⁴ T	950-1000		5	а
71.19-28.81	d = 3.952 - 0.0012615 T	930-1000		5	а
75.01-24.99	d = 3.4798 - 8.309 x 10 ⁻⁴ T	880-1000		5	а
79.76-20.24	d = 3.6618 - 9.848 x 10 ⁻⁴ T	930-1010		5	а
87.65-12.35	d = 3.6541 - 0.0011736 T	990-1010		5	а
90.88-9.12	d = 3.6704 - 0.0012241 T	960-990		5	а
98.38-1.62	d = 2.9855 - 6.957 x 10 ⁻⁴ T	990-1000		5	а
100.00-0.00	d = 3.1751 - 9.383 x 10 ⁻⁴ T	1010-1100	(629)	5	а
	RbC1-ZnC1 ₂				
0-100	d = 2.8369 - 5.217 x 10 ⁻⁴ T	700-740	(630)	5	а
10-90	d = 2.9672 - 6.5272 x 10 ⁻⁴ T	660-800		5	а
20.2-79.8	d = 2.9991 - 7.0018 x 10 ⁻⁴ T	700-800		5	а
30.2-69.8	d = 3.0671 - 8.0205 x 10 ⁻⁴ T	700-800		5	а
40.3-59.7	d = 3.0167 - 7.5426 x 10 ⁻⁴ T	750-800		5	а
49.82-50.18	d = 3.1167 - 8.8024 x 10 ⁻⁴ T	810-880		5	а
59.89-40.11	d = 3.0348 - 7.7766 x 10 ⁻⁴ T	820-920		5	а
70.14-29.86	d = 3.0865 - 8.2603 x 10 ⁻⁴ T	860-960		5	а
80-20	d = 3.0757 - 8.146 x 10 ⁻⁴ T	860-950		5	a
100-0	d = 2.9747 - 7.3504 x 10 ⁻⁴ T	1040-110	(631)	5	a
For additional RbBr-	al RbC1 systems, see : AgBr- ; AlC13- ; CaC12- ; CdC12- ; CsC1- ; KBr- ; KC1- ; LiC	1- ; MgC1 ₂ - ; l	WnC1 ₂ - ; N	aC1- ; P	bC1 ₂ - ;
	RbC ₂ H ₃ 0 ₂				
100	d = 2.503 - 9.515 x 10 ⁻⁴ T	570-620	±1%	6	а,
For addition	al RbC ₂ H ₃ O ₂ systems, see : NaC ₂ H ₃ O ₂ -				
TOT GGG TCTOTT	RbF				
100	d = 3.9953 - 0.0010211 T	1080-134	0 ±1%	10	a
For addition	al RbF systems, see : AlF ₃ - ; BeF ₂ - ; LiF-				
	RbI				
100	d = 3.9499 - 0.0011435 T	928-1175	±1%	1	a
For addition	al RbI systems, see : KI- ; LiI- ; NaI- ; RbBr- ; RbCl-				
uuurtion	RbN03				
100	d = 3.1366 - 0.0010687 T	590-690	±1%	7	a
		200 000	- 1.00	•	•
	RbN03-T1N03				
0-100	d = 5.807 - 0.001858 T	483~623	(632)	7	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
0-60	d = 4.724 - 0.001557 T	503-615		7	a,e
0-40	d = 4.2164 - 0.00144 T	523-617		7 ·	a,e
30-20	d = 3.662 - 0.00103 T	543-613		7	a,b,e
100-0	d = 3.109 - 0.001001 T	600-640	(633)	7	a,e
For additional	1 RbN0 $_3$ systems, see : AgN0 $_3$ - ; Ba(N0 $_3$) $_2$ - ; CsN0 $_3$ - ; KN0 $_3$ - ; LiN0 $_3$ - ; NaN0 $_3$ - RbSCN				
100	d = 2.573 - 7.87 x 10 ⁻⁴ T	483-593	±1.5%	23	k
100	d = 3.5489 - 6.405 x 10 ⁻⁴ T	1210-1280	±1.5%	24	k
100	d = 3.442 - 6.65 x 10 ⁻⁴ T	1359-1818	±1.5%	1	а
For additiona	1 Rb ₂ SO ₄ systems, see : NaPO ₃ -				
	Rb3A1F6				
100	d = 4.1844 - 0.00136 T	1273-1323	±3%	6	a
For additiona	1 Rb3A1F6 systems, see : Li3A1F6-; Na3A1F6-				
400	SbBr ₃		~		
100	d = 4.448 - 0.00251 T	373-530	±5%	4	a,e
	SbBr ₃ -SbI ₃				
0.0-100.0	d = 5.266 ~ 0.002483 T	455-595	(634)	2	a
20.0-80.0	d = 5.053 - 0.00249 T	430-550		2	a
40.0-60.0	d = 4.857 - 0.002377 T	370-550		2	a
60.0-40.0	d = 4.78 - 0.002568 T	370-550		2	a
80.0-20.0	d = 4.476 - 0.002152 T	380-550		2	a
100.0-0.0	d = 4.448 - 0.00251 T	373-530	(635)	2	a
For additiona	1 SbBr3 systems, see : A1Br3- SbC13				
100	d = 3.4755 - 0.0022931 T	325-350	±1%	5	а
	SbC13-SbC15				
0.00-100.00	d = 2.8924 - 0.0018691 T	325-350	(636)	5	а
4.48~95.52	d = 3.0459 - 0.0022751 T	325-350		5	a
25.77-74.23	d = 3.1255 - 0.0022 T	325-350		5	a
33.40-66.60	d = 3.1368 - 0.0021401 T	325-350		5	а
39.89-60.11	d = 3.1742 - 0.0021561 T	325-350		5	а
43.60-56.40	d = 3.162 - 0.0020671 T	325-350		5	a
44.75-55.25	d = 3.155 - 0.0020171 T	325-350		5	
46.50-53.50	d = 3.2232 - 0.0022211 T	325-350			a
46.96-53.04				5	а
	d = 3.2039 - 0.00215 T	325-350		5	a
55.61-44.39	d = 3.2368 - 0.0021251 T	325-350		5	а
58.30-41.70	d = 3.2537 ~ 0.0021471 T	325-350		5	а
65.65-34.35	d = 3.2664 - 0.0020651 T	325-350		5	а
71.92-28.08	d = 3.322 - 0.0021701 T	325-350		5	a
73.27-26.73	d = 3.278 - 0.0020251 T	325-350		5	a
76.86-23.14	d = 3.2903 - 0.0020081 T	325-350		5	а
78.22-21.78	d = 3.2753 - 0.0019501 T	325-340		5	а
80.13~19.87	d = 3.3765 - 0.0022301 T	325-350		5	a
80.80-19.20	d = 3.2607 - 0.0018621 T	325-350		5	a
81.75-18.25	d = 3.3111 - 0.0020061 T	325-350		5	
92.68-7.32					a
	d = 3.3675 - 0.0020451 T	325-350		5	a
94.52-5.48	d = 3.4081 - 0.002146 T	325-350		5	a
100.00-0.00	d = 3.4755 - 0.0022931 T	325-350	(637)	5	а
	SbC1 ₅				
100	d = 2.8922 - 0.001869 T	325-350	±1%	5	а

Table 2.1.a Density data (continued)

(mo1 %)	Density (g Equation		T range(K)	Accur.	Ref.	Commen
or addition	al SbCl ₅ systems, see : SbCl ₃ -	"- "- "- "- "- "- "- "- "- "- "- "- "- "				
10	SbI ₃ d = 5.266 - 0.002483 T		455-595	±1%	4	2.0
	u = 0.200 0.002400 1		400-000	±1%	•	a,e
or addition	al Sbig systems, see : Alig- ; SbBrg- SbgSg					
00	d = 4.387 - 6.5 x 10 ⁻⁴ T		826-1091	n.a.	1	а
	\$i0 ₂					
or SiO ₂ sys	tems, see : A1 ₂ 0 ₃ -Na ₃ A1F ₆ - ; CaF ₂ - ; CaO- ; Na ₃ A1F ₆ -					
-	SmC13					
or SmCla sy	stems, see : KC1*NaC1-					
	SmF ₃					
or SmEn svs	tems, see : KF- ; LiF- ; NaF-					
0. 0 3 0,4	SnC1 ₂					
00	d = 4.016 - 0.001253 T		500 350	±4 F9/		_
,0	B - 4.016 - 0.001255 1		580-753	±1.5%	1	а
	SnCl ₂ -ZnCl ₂					
-100	d = 2.822 - 5.06 x 10 ⁻⁴ T		630-760	(638)	5	а
0-90	d = 2.997 - 6.52 x 10 ⁻⁴ T		570-620		5	а
0-80	d = 3.114 - 7.03 x 10 ⁻⁴ T		560-630		5	а
0-70	d = 3.226 - 7.47 x 10 ⁻⁴ T		560-630		5	а
0-60	d = 3.332 - 7.91 x 10 ⁻⁴ T		560-620		5	а
0-50	d = 3.455 - 8.54 x 10 ⁻⁴ T		550-620		5	a
0-40	d = 3.571 - 9.16 x 10 ⁻⁴ T		540-620		5	a
0-30	d = 3.697 - 0.001 T		550-620		5	а
0-20	d = 3.802 - 0.001058 T		540-620		5	а
0-10	d = 3.983 - 0.001255 T		550-610		5	а
00-0	d = 4.072 - 0.0013 T		550-600	(639)	5	а
	SnC1 ₄					
00	d = 3.0185 - 0.002687 T		309-411	±1%	1	a
	SnC1 ₄ -TiC1 ₄					
-100	d = 2.2496 - 0.0017625 T		295-330	(640)	5	a
0-80	d = 2.3973 - 0.001915 T		295-330		5	a
0-60	d = 2.5408 - 0.00206 T		295-330		5	а
0-40	d = 2.6807 - 0.002205 T		295-330		5	а
0-20	d = 2.8181 - 0.00235 T		295-330		5	а
00-0	d = 2.9537 - 0.0024975 T		295-330	(641)	5	а
00			1193-1324	n.a.	1	а
	SrBr ₂		1130 1024	11.61.	•	•
00			050-1277	419/		
00	SrC1 ₂		950-1277	±1%	1	а
00	d = 3.3896 - 5.781 x 10 ⁻⁴ T		1167-1310	±0.5%	1	а
For addition						
ioi auuitioi	nal SrCl ₂ systems, see : CaCl ₂ - ; KCl- ; LiCl- ; NaCl-					
00	SrF ₂					
0 0	d = 4.784 - 7.51 x 10 ⁻⁴ T		1750-2200) ±3%	1	а
00	d = 4.803 - 8.85 x 10 ⁻⁴ T		789-1299	±1.5%	1	a
	Sr(N0 ₃) ₂					
For Sr(NO ₃)	systems, see : KNO ₃ -					
. 5.	TaC1 ₅					
00	d = 4.811 - 0.004316 T		490-730	±1%	5	а,

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref .	Comment
For additiona	1 TaCl ₅ systems, see : NbCl ₅ -				
00	ThC1 ₄ d = 4.823 - 0.0014 T	1050-1120	±1.5%	5	a
		1000 1120	21.0%	3	۵
For additiona	1 ThC14 systems, see : KC1- ; NaC1- ThF4				
00	d = 7.108 - 7.59 x 10 ⁻⁴ T	1393-1651	±3%	1	a
For additiona	1 ThF ₄ systems, see : BeF ₂ -LiF- ; KF- ; LiF- ; NaF-				
	TiCla				
00	d = 2.237 - 0.001735 T	260-410	±0.5%	5	a,e
				•	-,-
for additiona	1 TiCl ₄ systems, see : SnCl ₄ -				
-	TiO ₂				
or 1102 syst	ems, see : CaF ₂ - ; Na ₂ TiF ₆ -				
00	d = 7.2682 - 0.001755 T	760-920	±1%	4	d, i
30	4 - 7.2002 - 0.001733 1	700 320	-1/4	•	۵,۱
	T1Br-T1C1				
-100 0-00	d = 6.959 - 0.001876 T	786-923	(642)	2	a,e
0-90 0-80	- 1,222	786-923		2	a,e
0-80 0-70	d = 7.041 - 0.001898 T	786-923 786-923		2 2	a,e
0-70 0-60	d = 7.362 - 0.002186 T	786-923			a,e
				2	a,e
0-50	d = 7.482 - 0.002271 T	786-923		2	a,e
0-40	d = 7.54 - 0.002278 T	786-923		2	a,e
0-30	d = 7.505 ~ 0.002185 T	786-923		2	a,e
0-20	d = 7.441 - 0.002056 T	786-923		2	a,e
0-10	d = 7,387 - 0.001936 T	786-923		2	a,e
00-0	d = 7.441 - 0.001929 T	786-923	(643)	2	a,e
	TIBr-TII				
. 0-100. 0	d = 7.332 - 0.001703 T	733-1173	(644)	2	a,e
1.47-88.53	d = 7.3071 - 0.0017026 T	733-1173		2	a,e
2.56-77.44	d = 7.7623 - 0.0026808 T	733-1173		2	a,e
3.31-66.69	d = 7.3122 - 0.0017352 T	733-1173		2	a,e
4.81-55.19	d = 7.3009 ~ 0.0017374 T	733-1173		2	a,e
5.8-54.2	d = 7.3134 - 0.0018438 T	700-1250		2	a,e
4.23-45.77	d = 7.3022 - 0.0017517 T	733-1173		2	a,e
3.61-36.39	d = 7.3071 - 0.0017707 T	733-1173		2	a,e
3.11-26.89	d = 7.3076 - 0.001784 T	73 3-1173		2	a,e
2.33-17.67	d = 7.3083 - 0.0017976 T	733-1173		2	a,e
11.29-8.71	d = 7.2991 - 0.0018073 T	733-1173		2	a,e
00.0-0.0	d = 7.2944 - 0.0018136 T	733-1173	(645)	2	a,e
For additions	al TiBr systems, see : CdBr ₂ - ; KBr- ; NaBr- ; RbBr-				
100	T1C1 d = 6.893 - 0.0018 T	708-915	±0.5%	1	a
	T1C1-ZnC1 ₂				
) - 100	d = 2.822 - 5.06 x 10 ⁻⁴ T	630-720	(646)	5	a
10-90	d = 3.272 - 7.63 x 10 ⁻⁴ T	650-720	,0.07	5	a
20-80	d = 3.569 - 8.1 x 10 ⁻⁴ T	630-720		5	a
28-72	d = 3.89 - 9.28 x 10 ⁻⁴ T	650-770		5	a
10-60	d = 4.344 - 0.001075 T			5 5	
		640-720 650-720		_	a
60-50 60-40	d = 4.732 - 0.001209 T	650-720 650-770		5	a
i0-40	d = 4.986 - 0.001212 T	650-770 660-770		5	a
70-30	d = 5.405 - 0.001355 T	660-730		5	а
80-20	d = 5.833 - 0.001465 T	660-730		5	а

Table 2.1.a Density data (continued)

	Density (g cm ⁻³)				
(mo1 %)	Equation	T range(K)	Accur.	Ref .	Comment
0-10	d = 6.334 - 0.001625 T	680-730		5	а
00-0	d = 6.802 - 0.001682 T	730-780	(647)	5	а
	T1C1-ZnS04				
3.34-70.66	d = 4.5411 - 6.016 x 10 ⁻⁴ T	750-770		3	a,o
.72-68.28	d = 4.8983 - 0.0010398 T	720-770		3	a,o
3.42-66.58	d = 4.7904 - 8.203 x 10 ⁻⁴ T	720-770		3	a,e,
4.52-65.48	d = 4.8895 - 9.203 x 10 ⁻⁴ T	720-770		3	a,e,
6.98-63.02	d = 5.0014 - 0.0010008 T	720-770		3	a,o
3.10-56.90	d = 5.0712 - 9.008 x 10 ⁻⁴ T	720-770		3	a,e,
0-50	d = 5.6258 - 0.0014406 T	750-770		3	a,o
For additiona	1 T1C1 systems, see : CdC1 ₂ - ; PbC1 ₂ - ; T1Br-				
••	THI				
00	d = 7.4014 - 0.001761 T	850-1010	±1%	4	a,e
For additiona	l TlI systems, see : KI- ; TlBr- TlNO ₂				
00	d = 5.6166 - 0.00157 T	480-570	±1%	7	a
	T1N02-T1N03				_
-100	d = 5.579 - 0.0014996 T	513-553	(648)	7	g
0-80	d = 5.767 - 0.001749 T	513-553	(0.0)	7	9
2-58	d = 5.7556 - 0.0016251 T	473-553		7	g
0-40	d = 5.8015 - 0.0016245 T	473-553		7	9
0-20	d = 5.8514 - 0.0016243 T	473-553		7	9
00-0	d = 5.6166 - 0.00157 T	473-553	(649)	7	٥
	TINO3	470 000	(043)	•	•
00	d = 5.8041 - 0.0018737 T	484-552	±0.5%	1	a,c
For additiona	1 T1NO3 systems, see : AgNO3- ; HgCl2- ; KNO3- ; LiNO3- ; NaNO3- ; RbNO3- ; T1NO2-				
	T1 ₂ S				
00	d = 9.1846 - 0.0019434 T	790-1070	n.a.	6	a,e
	11 ₂ 50 ₄				
00	d = 6.7994 - 0.0013017 T	960-1200	±1%	6	a,e
For additiona	1 T1 ₂ S0 ₄ systems, see : Li ₂ S0 ₄ - UC1 ₃				
00	d = 13.652 - 0.007943 T	1220-1300	±1.5%	5	a
		1220 1000	-1.0%	,	a
For additiona	1 UCl ₃ systems, see : KCl- ; NaCl- UCl ₄				
00	·	070 040	==	_	
00	d = 5.2508 - 0.0019455 T	870-940	±1.5%	5	a
For additiona	1 UC14 systems, see : CsC1- ; KC1- ; LiC1- ; NaC1- ; RbC1-				
	UF ₄				
00	d = 7.784 - 9.92 x 10 ⁻⁴ T	1309-1614	±2%	1	a
					-
For additiona	1 UF ₄ systems, see : BeF ₂ -LiF- ; BeF ₂ - ; KF- ; LiF- ; NaF-				
	U0 ₂ \$0 ₄				
For UO ₂ SO ₄ sy	stems, see : NaPO3- V2O5				
00	d = 2.856 - 4.5 x 10 ⁻⁴ T	980-1140	±2.5%	3	a
For additions		302 1140	V//	•	a
, or additiona	1 V ₂ O ₅ systems, see : CaF ₂ - ; KVO ₃ - ; NaVO ₃ -				
For WAs evers	WO3				
ioi mug syste	ms, see : KP03- ; K2W04- ; Li2W04- ; NaP03- ; Na2B407- ; Na2W04- ; Na4P207-				
	YC13				
100	d = 3.007 - 5. x 10 ⁻⁴ T	998-1118	±2%	1	а

		Density (g cm ⁻³)				
(mo1 %)	Equation		T range(K)	Accur.	Ref .	Comment
For addition	al YCl ₃ systems, see : KCl-Na	IC1- ; KC1- ; NaC1-				
		YF3				
For YF ₃ syst	ems, see : KF- ; LiF- ; NaF-					
		ZnBr ₂				
00	d = 4.113 - 9.59 x 10-4 T		707-875	±1%	1	a
For addition	al ZnBr ₂ systems, see : AlBr ₃	₃ - ; CdBr ₂ - ; CdCl ₂ - ; KBr-				
		ZnC1 ₂				
00	d = 2.8375 - 5.293 x 10-4	•т	590-830	±0.5%	5	a,e
For addition	nal ZnCl ₂ systems, see : BaCl ₂	2- ; CdBr ₂ - ; CdCl ₂ - ; CsCl- ; KCl- ; LiCl- ; NaCl- ; P	bCl ₂ - ; RbCl- ;	SnC1 ₂ - ;	TICI-	
		ZnI ₂	_	-		
00	d = 4.856 - 0.00136 T		729-861	±1.5%	1	a
		Znû				
For ZnO syst	ems, see : KPO3- ; NaPO3-					
	d = 0.0017	Zn(P0 ₃) ₂				
00		T	1180-1380	±3%	6	а
For addition	nał Zn(P0 ₃) ₂ systems, see : KF					
		ZnS0 ₄				
100	d = 3.591 - 4.7 x 10 ⁻⁴ T		880-1260	±1%	6	a
For addition	nal ZnSO ₄ systems, see : KBr-	; KC1- ; K ₂ S0 ₄ - ; Li ₂ S0 ₄ - ; Na ₂ S0 ₄ - ; T1C1-				
		ZrC14				
100	d = 6.943 - 0.0074646 T		710-765	±1%	5	a,e
		ZrF ₄				
For ZrF4 S	stems, see : BeF ₂ -LiF-UF ₄ - ;	BeF ₂ -LiF- ; KF- ; NaF- ; Na ₂ B ₄ 0 ₇ -				
	vstems, see : CaF ₂ -	Zr0 ₂				

Table 2.1.b Density data reliability statements

Number			Reliability estimates
1	For	100%	AgCl, the results have been advanced as the recommended data set.
2	For	100%	AgBr, the results have been advanced as the recommended data set.
3	For	100%	Ag_2 Te, the results have been advanced as the recommended data set.
4	For	100%	AgBr, the departures from the recommended data set are: 740 K, -0.4%, 1180 K, -0.6%.
5	For	100%	AgBr, the departures from the recommended data set are: 720 K, +0.05%, 960 K, 0.0%.
6	For	100%	AgBr, the results have been advanced as the recommended data set.
7	For I	both	100% KC1 and 100% AgBr at 1073 K, the departure from the recommended data set is, respectively, -1.2% and -0.1%.
В			AgBr, the departures from the recommended data set are: 720 K, -0.4%, 960 K, -0.6%.
9			100% NaC1 and 100% AgBr at 1073 K, the departure from the recommended data set is, respectively, -0.8% and -0.1%.
10 11	_		AgBr, the departures from the recommended data set are: 720 K, +0.05%, 820 K, +0.04%.
	_		AgNO ₃ , the departures from the recommended data set are: 490 K, 0.0%, 590 K, -0.3%.
12			Ag2S, the results have been advanced as the recommended data set.
13			AgC1, the departures from the recommended data set are: 770 K, +0.8%, 1050 K, +1.3%.
14			Ag ₂ Se, the results have been advanced as the recommended data set.
15	_		AgC1, the departures from the recommended data set are: 770 K, +0.6%, 1250 K, +1.2%.
16	_		Ag2Te, the results have been advanced as the recommended data set.
17 18			AgC1, the departures from the recommended data set are: 770 K, +0.6%, 1250 K, +1.2%.
19			100% AgC1 and 100% KBr at 1073 K, the departure from the recommended data set is, respectively, +0.2% and -1.0%. AgC1, the results have been advanced as the recommended data set.
20			100% AgC1 and 100% NaBr at 1073 K, the departure from the recommended data set is, respectively, +1.5% and -0.8%.
21			PbCl ₂ , the results have been advanced as the recommended data set.
22			AgC1, the results have been advanced as the recommended data set.
23			AgNO ₃ at 498 K, the departure from the recommended data set is ~0.06%.
24	_		Ag2S, the results have been advanced as the recommended data set.
25	_		AgI, the departures from the recommended data set are: 890 K, -0.01%, 1250 K, -0.03%.
26			Ag2Te, the results have been advanced as the recommended data set.
27			AgI, the departures from the recommended data set are: 890 K, -0.01%, 1250 K, -0.03%.
28	_		AgNO ₃ , the departures from the recommended data set are: 490 K, -0.1%, 590 K, -0.2%.
29	_		AgNO ₃ , the departures from the recommended data set are: 490 K, -0.1%, 590 K, -0.2%.
30			AgNO ₃ , the departures from the recommended data set are: 505 K, -0.6%, 560 K, ~0.6%.
31			CsNO ₃ , the departures from the recommended data set are: 700 K, -0.6%, 790 K, ~0.7%.
32	_		AgNO ₃ , the departures from the recommended data set are: 500 K, +0.2%, 650 K, -0.2%.
33			
			AgNO ₃ , the departures from the recommended data set are: 490 K, +1.3%, 590 K, +1.0%.
34	_		KNO ₃ , the departures from the recommended data set are: 620 K, +1.1%, 670 K, +0.8%.
35			AgNO ₃ , the results have been advanced as the recommended data set.
36	For	100%	LiNO ₃ , the departures from the recommended data set are: 530 K, +0.7%, 670 K, +0.4%.
37	For	100%	AgNO ₃ , the results have been advanced as the recommended data set.
38	For	100%	AgNO $_3$, the departures from the recommended data set are: 490 K, -0.1%, 590 K, -0.2%.
39	For	100%	NaNO $_3$, the departures from the recommended data set are: 590 K, +0.8%, 670 K, 0.0%.
40	For	100%	${\sf AgNO}_3$, the results have been advanced as the recommended data set.
41	For	100%	RbN0 $_3$, the departures from the recommended data set are: 600 K, +0.5%, 640 K, +0.6%.
42	For	100%	AgNO3, the results have been advanced as the recommended data set.
43	For	100%	T1NO3, the departures from the recommended data set are: 490 K, +0.09%, 620 K, +0.15%.
44	For	100%	AgNO3, the results have been advanced as the recommended data set.
45			Li ₂ SO ₄ , the departures from the recommended data set are: 1150 K, 0.0%, 1230 K, +0.4%.
46			Ag ₂ SO ₄ , the results have been advanced as the recommended data set.
47			AlBr ₃ , the departures from the recommended data set are: 385 K, +0.3%, 415 K, +0.5%.
48	_		
	_		Albra, the departures from the recommended data set are: 380 K, +0.3%, 430 K, +0.5%.
49			AlBr ₃ , the departures from the recommended data set are: 385 K, +0.3%, 415 K, +0.5%.
50			SbBr ₃ , the departures from the recommended data set are: 375 K, +5.3%, 410 K, +5.6%.
51	For	100%	AlBr $_3$, the departures from the recommended data set are: 380 K, +0.3%, 410 K, +0.5%.
52	For	100%	AlBr3, the departures from the recommended data set are: 380 K, +0.3%, 410 K, +0.5%.

Number	Reliability estimates
53	For 100% BiCl ₃ , the departures from the recommended data set are: 690 K, +0.14%, 750 K, +0.2%.
54	For 100% A1Cl ₃ , the departures from the recommended data set are: 480 K, -0.3%, 490 K, 0.0%.
55	The density results for this composition have been advanced as the recommended data set for lithium tetrachloroaluminate, LiAlC14
56	The density measurements from this laboratory (USAFSC) for AICl ₃ and LiCl-AICl have been advanced as recommended data sets
57	For 100% A1Cl ₃ , the departures from the recommended data set are: 480 K, -0.3%, 490 K, 0.0%.
58	For 100% LiF, the departures from the recommended data set are: 1150 K, -0.2%, 1320 K, +0.06%.
59	For 100% NaF, the results have been advanced as the recommended data set.
60	For 100% Na_3A1F_6 , the departures from the recommended data set are: 1300 K, 0.0%, 1340 K, 0.0%.
61	For 100% AlI $_3$ at 473 K, the departure from the recommended data set is +1.7%.
62	For 100% AlI $_3$ at 473 K, the departure from the recommended data set is +1.7%.
63	For 100% AlI ₃ at 473 K, the departure from the recommended data set is +1.7%.
64	For 100% CaF ₂ at 1723 K, the departure from the recommended data set is +0.4%.
65	For 100% NagAlF6, the departures from the recommended data set are: 1280 K, +0.9%, 1370 K, +0.8%
66	For 100% LigAlF6, the results have been advanced as the recommended data set.
67	For 100% Na ₃ A1F ₆ , the departures from the recommended data set are: 1280K, +0.9%, 1350 K, +0.8%
68	For 100% NagAIF6 at 1273 K, the departure from the recommended data set is +0.3%.
69	For 100% KBr, the departures from the recommended data set are: 1020 K, +0.8%, 1120 K, +1.0%.
70	For 100% BaBr ₂ , the results have been advanced as the recommended data set.
71	For both 100% BaCl ₂ and 100% BaF ₂ at 1573 K, the departure from the recommended data set is, respectively, 0.0% and -6.3%.
72	For 100% CdCl ₂ , the results have been advanced as the recommended data set.
73	For 100% CsC1, the departures from the recommended data set are: 980 K, +1.0%, 1270 K, +1.4%.
74	For 100% BaCl ₂ , the departures from the recommended data set are: 1240 K, -2.0%, 1270 K, -2.3%.
75	For 100% KC1, the departures from the recommended data set are: 1070 K, -0.6%, 1160 K, -0.8%.
76	For 100% BaCl2, the departures from the recommended data set are: 1250 K, ~0.9%, 1280 K, ~0.9%.
77	For both 100% KF and 100% BaCl ₂ at 1573 K, the departure from the recommended data set is, respectively, -1.2% and -0.3%.
78	For 100% BaCl2, the departures from the recommended data set are: 1250 K, -2%, 1270 K, -2.3%.
79	For 100% LiC1, the departures from the recommended data set are: 890 K, +0.07%, 1070 K, -0.1%.
80	For 100% BaCl ₂ , the departures from the recommended data set are: 1240 K, ~2%, 1270 K, ~2.3%.
81	For 100% $MgCl_2$, the departures from the recommended data set are: 1030 K, +0.5%, 1190 K, +0.2%.
82	For 100% NaCl, the departures from the recommended data set are: 1080 K, -1.1%, 1120 K, -1.4%.
83	For 100% PbCl ₂ , the results have been advanced as the recommended data set.
84	For 100% CsF at 1573 K, the departure from the recommended data set is +0.6%.
85	For both 100% KC1 and 100% BaF2 at 1573 K, the departure from the recommended data set is, respectively, -1.6% and -6.3%.
86	For 100% KF, the departures from the recommended data set are: 1470 K, +0.4%, 1570 K, -1.3%.
87 88	For 100% LiF at 1573 K, the departure from the recommended data set is +0.2%. For 100% NaF, the departures from the recommended data set are: 1290 K, +0.8%, 1390 K, +0.9%.
89	For 100% Na3A1F6, the departures from the recommended data set are: 1310 K, +0.6%, 1390 K, +0.6%.
90	For 100% Ba(NO ₂) ₂ , the results have been advanced as the recommended data set.
91	For 100% Ba(NO ₂) ₂ , the results have been advanced as the recommended data set.
92	For 100% KND3, the departures from the recommended data set are: 630 K, +0.3%, 730 K, +0.3%.
93	For 100% NaNO ₃ , the departures from the recommended data set are: 590 K, -0.9%, 690 K, -1.9%.
94	For 100% RbN03, the results have been advanced as the recommended data set.
95	For 100% NagA1F6 at 1273 K, the departure from the recommended data set is -0.3%.
96	For 100% PbMo0 $_4$, the results have been advanced as the recommended data set.
97	
98	For 100% Big(MoO ₄)3, the results have been advanced as the recommended data set.
	For 100% KP03 at 1123 K, the departure from the recommended data set is +4.8%.
99	For 100% K ₂ B ₄ O ₇ , the density at 1123 K, i.e. 1.997, has been advanced as the recommended value.
100	For 100% NaP03 at 1123 K, the departure from the recommended data set is -3.7%.
101	For 100% Na ₂ B ₄ 0 ₇ at 1123 K, the value has been advanced as the recommended data set.
102	For 100% $PbW0_4$, the results have been advanced as the recommended data set.

Table 2.1.b Density data reliability statements (continued)

umber	Reliability estimates
03	For 100% Bi2(WD4)3, the results have been advanced as the recommended data set.
04	For 100% $B_2 O_3$ at 1073 K, the departure from the recommended data set is -1.2%.
05	The value for 100% $Na_2B_4U_7$ at 1223 K has been advanced as recommended data.
0 6	For 100% $CaCl_2$ at 1073 K, the departure from the recommended data set is -2.3%.
07	For 100% CsC1, the departures from the recommended data set are: 1040 K, -0.16%, 1150 K, -2.7%.
80	For 100% CaCl $_2$, the departures from the recommended data set are: 1070 K, +2.1%, 1190 K, -1.3%.
09	For 100% DyCl ₃ , the departures from the recommended data set are: 1034 K ~0.08%, 1260K ~0.09%.
10	For 100% CaCl ₂ , the departures from the recommended data set are: 1098 K 3.0%, 1223K 3.0%.
11	For 100% KC1, the departures from the recommended data set are: 1080 K, $\pm 0.3\%$, 1120 K, $\pm 0.04\%$.
12	For 100% CaCl ₂ , the departures from the recommended data set are: 1070 K, 0.0%, 1140 K, 0.0%.
13	For 100% LaCl $_3$, the departures from the recommended data set are: 1180 K, +0.7%, and 1260 K, +0.9%.
14	For 100% $CaCl_2$, the departures from the recommended data set are: 1130 K, +0.9%, and 1270 K +0.9%.
15	For 100% LaCl ₃ , the departures from the recommended data set are: 1180 K, +0.7%, and 1260 K, +0.9%.
16	For 100% LiC1, the departures from the recommended data set are: 900 K, +0.27%, 1270 K, +0.63%.
17	For 100% CaCl ₂ , the departures from the recommended data set are: 1080 K, -0.3%, 1270 K, 0.0%.
18	For 100% MgCl ₂ , the results have been advanced as the recommended data set.
19	For 100% CaCl ₂ , the departures from the recommended data set are: 1070 K, 0.0%, 1140 K, 0.0%.
20	For 100% MnC1 ₂ , the departures from the recommended data set are: 940 K, +0.2%, 1020 K, -0.4%.
21	For 100% NaC1, the departures from the recommended data set are: 1090 K, +0.3%, 1170 K, +0.5%.
22	For 100% CaCl ₂ , the departures from the recommended data set are: 1070 K, 0.0%, 1140 K, 0.0%.
23	For 100% CaCl ₂ , the departures from the recommended data set are: 1098 K 2.9%, 1223K 3.0%.
24	For 100% CaCl ₂ , the departures from the recommended data set are: 1098 K 2.9%, 1223 K 3.0%.
25	For 100% RbC1, the departures from the recommended data set are: 1010 K, -0.16%, 1270 K, +0.27%.
126	For 100% CaCl ₂ , the departures from the recommended data set are: 1080 K, -0.3%, 1270 K, 0.0%.
27	For 100% SrC1 ₂ , the departures from the recommended data set are: 1170 K, -0.7%, 1320 K, -0.2%.
28	For 100% CaCl ₂ , the departures from the recommended data set are: 1120 K, -1.0%, 1270 K, -0.94%.
129	For 100% CaF ₂ , the departures from the recommended data set are: 1720 K, +2.5%, 1970 K, +3.7%.
130	For 100% CaSiO ₃ , the single data point at 1823 K, i.e. 1.67, has been advanced as the recommended value.
131 132	For 100% LiF, the departures from the recommended data set are: 1120 K, -5.7%, 1340 K, -4.3%. For 100% NaF, the departures from the recommended data set are: 1290 K, +0.8%, 1390 K, +0.9%.
133	For 100% Na ₃ A1F ₆ , the results have been advanced as the recommended data set.
34	For 100% CaF ₂ at 1673 K, the departure from the recommended data set is -5%.
135	For 100% CsND ₃ , the departures from the recommended data set are: 690 K, -0.7%, 720 K, -1.0%.
136	For 100% KNO3, the departures from the recommended data set are: 620 K, +0.3%, 710 K, +0.2%.
137	For 100% NaNO3, the departures from the recommended data set are: 600 K, +1.06%, 720 K, +0.55%.
138	For 100% Na ₂ SD _A , the departures from the recommended data set are: 1240 K, -1.5%, 1470 K, +0.3%.
139	For 100% CdCl ₂ , the results have been advanced as the recommended data set.
140	For 100% CdBr ₂ , the results have been advanced as the recommended data set.
141	For 100% CdBr ₂ , the results have been advanced as the recommended data set.
142	For 100% KC1, the departures from the recommended data set are: 1100 K, -1.2%, 1320 K, -0.6%.
143	For 100% CdBr ₂ , the departures from the recommended data set are: 900 K, -0.4%, 1060 K, +1.3%.
144	For 100% CdBr ₂ at 873.2 K, the departure from the recommended data set is -0.2%.
145	For 100% CdBr ₂ at 873 K, the departure from the recommended data set is +0.25%.
146	For 100% ZnBr ₂ , the departures from the recommended data set are: 690 K, -0.8%, 860 K, -0.8%.
147	For 100% CdBr ₂ , the departures from the recommended data set are: 870 K, -0.15%, 950 K, -0.15%.
148	For 100% ZnCl ₂ , the departures from the recommended data set are: 630 K, -0.05%, 770 K, +1.4%.
149	For 100% CdBr ₂ , the departures from the recommended data set are: 870 K, -0.15%, 950 K, -0.15%.
150	For 100% CdI ₂ , the results have been advanced as the recommended data set.
15 1	For 100% CdCl ₂ , the results have been advanced as the recommended data set.

Number	Reliability estimates
153	For 100% CdCl ₂ , the results have been advanced as the recommended data set.
154	For 100% KBr, the departures from the recommended data set are: 1080 K, -1.0%, 1260 K, -0.9%.
155	For 100% CdCl $_2$, the departures from the recommended data set are: 860 K, -0.09%, 980 K, 0.0%.
156	For 100% CdCl ₂ , the results have been advanced as the recommended data set.
157	For 100% LiCl, the departures from the recommended data set are: 900 K, -0.3%, 1020 K, -0.2%.
158	For 100% CdC1 ₂ , the results have been advanced as the recommended data set.
159	For 100% CdCl ₂ , the departures from the recommended data set are: 860 K, +0.1%, 1080 K, 0.0%.
160	For 100% PbCl ₂ , the results have been advanced as the recommended data set.
161	For 100% CdCl ₂ , the results have been advanced as the recommended data set.
162	For 100% RbC1, the departures from the recommended data set are: 1000 K, +0.1%, 1170 K, +0.3%.
163	For 100% CdCl ₂ , the departures from the recommended data set are: 920 K, 0.0%, 1070 K, 0.0%.
164	For 100% T1C1, the departures from the recommended data set are: 730 K, -0.09%, 780 K, +0.02%.
165	For 100% CdCl ₂ , the departures from the recommended data set are: 880 K, +0.1%, 960 K, 0.0%.
166	For 100% ZnBr ₂ , the departures from the recommended data set are: 690 K, -0.8%, 860 K, -0.8%.
167	For 100% CdCl ₂ , the departures from the recommended data set are: 880 K, +0.1%, 980 K, 0.0%.
168	For 100% ZnCl ₂ , the departures from the recommended data set are: 630 K, -0.05%, 760 K, +0.1%.
169	For 100% CdCl ₂ , the departures from the recommended data set are: 880 K, +0.1%, 980 K, 0.0%.
170	
171	For 100% CsI, the departures from the recommended data set are: 930 K, $+0.4\%$, 1035 K, 0.0% . For 100% CdI ₂ , the departures from the recommended data set are: 770 K, -0.4% , 950 K, -0.2% .
172	For 100% K1, the departures from the recommended data set are: 970 K, +0.29%, 1070 K, +0.25%.
173	For 100% CdI ₂ , the results have been advanced as the recommended data set.
174	For 100% CdI ₂ , the departures from the recommended data set are: 770 K, -0.4%, 950 K, -0.2%.
175	
	For 100% CeCl ₃ , the departures from the recommended data set are: 1100 K, 0.0%, 1170 K, -0.2%.
176 177	Insufficient details for firm estimate. Based on the principles of the method, possibly 2.5% For 100% KF, the departures from the recommended data set are: 1140 K, -3.2%, 1350 K, -3.1%.
178	For 100% LiF, the departures from the recommended data set are: 1150 K, -5.7%, 1320 K, -4.3%.
179	For 100% NaF, the departures from the recommended data set are: 1280 K, -2.4%, 1350 K, -2.3%.
180	For both 100% Cu ₂ S and 100% Co ₄ S ₃ at 1473 K, the results have been advanced as the recommended data set.
181	For both 100% Co ₄ S ₃ and 100% FeS at 1523 K, the results have been advanced as the recommended data set.
182	For 100% Ni ₃ S ₂ at 1523 K, the departure from the recommended data set is -1.3%, while for 100% Co ₄ S ₃ at 1523 K the results have been
183	advanced as the recommended data set. For 100% CsCl, the departures from the recommended data set are: 940 K, +0.4%, 1080 K, +0.3%.
184	For 100% CsBr, the departures from the recommended data set are: 940 K, +0.16%, 1080 K, +0.3%.
185	For 100% CsF, the departures from the recommended data set are: 930 K, -0.5%, 1070 K, -0.3%.
186	For 100% CsBr, the departures from the recommended data set are: 930 K, +0.13%, 1070 K, +0.04%.
187	For 100% CsI, the departures from the recommended data set are: 950 K, +0.3%, 1080 K, 0.0%.
188	For 100% CsBr, the departures from the recommended data set are: 950 K, +0.16%, 1080 K, +0.3%.
189	For both 100% KCl and 100% CsBr at 1073 K, the departure from the recommended data set is, respectively, -1.2% and -1.0%.
190	For both 100% CsBr and 100% LiBr at 1073 K, the departure from the recommended data set is, respectively, +0.2% and +0.8%.
191	For both 100% NaCl and 100% CsBr at 1073 K, the departure from the recommended data set is, respectively, 0.0% and -1.0%.
192	For 100% CsF, the departures from the recommended data set are: 930 K, -0.5%, 1070 K, -0.3%.
193 194	For 100% CsC1, the departures from the recommended data set are: 930 K, +0.4%, 1070 K, +0.5%. For 100% CsI, the departures from the recommended data set are: 950 K, +0.3%, 1080 K, 0.0%.
195	For 100% CsC1, the departures from the recommended data set are: 940 K, +0.4%, 1080 K, +0.3%.
196	For both 100% CSC1 and 100% KBr at 1073 K, the departure from the recommended data set is, respectively, +0.1% and -0.97%.
197	For 100% KC1, the departures from the recommended data set are: 1060 K, 0.0%, 1200 K, +0.06%.
198	For 100% CsC1, the departures from the recommended data set are: 940 K, +0.4%, 1080 K, +0.3%.
199	For both 100% KI and 100% CsC1 at 1073 K, the departure from the recommended data set is, respectively, -0.6% and -0.4%.
200	For 100% CsC1, the departures from the recommended data set are: 920 K, +1.0%, 1070 K, +1.2%.
201	For 100% LiC1, the departures from the recommended data set are: 880 K, +0.07%, 1070 K, -0.1%.
202	For 100% CsC1, the departures from the recommended data set are: 920 K, +1.0%, 1070 K, +1.2%.
203	For 100% MgCl ₂ , the results have been advanced as the recommended data set.
204	For 100% CsC1, the departures from the recommended data set are: 950 K, +0.18%, 1070 K, -0.12%.
205	For 100% MnCl $_2$, the departures from the recommended data set are: 940 K, +0.2%, 1020 K, -0.4%.

Table 2.1.b Density data reliability statements (continued)

lumber		Reliability estimates
206	For 1	00% CsCl, the departures from the recommended data set are: 930 K, +0.05%, 990 K, +0.09%.
207	For b	oth 100% CsCl and 100% NaBr at 1073 K, the departure from the recommended data set is, respectively, +0.08% and -0.8%.
208	For 1	00% NaCl, the results are in exact accord with the recommended data set, i.e., ± 0.05%.
209	For 1	00% CsC1, the departures from the recommended data set are: 940 K, +0.4%, 1090 K, +0.3%.
210	For 1	00% PbCl ₂ , the departures from the recommended data set are: 920 K, -0.04%, 1060 K, +0.03%.
211	For 1	00% CsC1, the departures from the recommended data set are: 980 K, -0.4%, 1110 K, -0.14%.
212		00% RbC1, the departures from the recommended data set are: 1020 K, -0.1%, 1230 K, +0.3%.
213		00% CsC1, the departures from the recommended data set are: 940 K, +0.4%, 1090 K, +0.3%.
214	For 1	00% UCl ₄ , the results have been advanced as the recommended data set.
215		00% CsC1, the departures from the recommended data set are: 930 K, +0.5%, 980 K, +0.6%.
16	For 1	00% ZnCl ₂ , the results have been advanced as the recommended data set.
217		00% CsC1, the departures from the recommended data set are: 940 K, +0.16%, 1100 K, 0.0%.
218	For 1	00% NaC ₂ H ₃ O ₂ , the results have been advanced as the recommended data set.
19	For 1	00% CsC ₂ H ₃ D ₂ , the results have been advanced as the recommended data set.
220	For 1	00% CsI, the departures from the recommended data set are: 930 K, +0.5%, 1070 K, +4%.
21		00% CsF, the departures from the recommended data set are: 930 K, -0.5%, 1070 K, -0.3%.
222		00% GdI ₃ , the results have been advanced as the recommended data set.
223		00% CsI, the results are in exact accord with the recommended data set.
24		00% CsI and 100% KC1 at 1073 K, the departures from the recommended data sets are, respectively, -1.0% and -0.9%.
225		00% LaI3, the results have been advanced as the recommended data set.
226		00% CsI, the results are in exact accord with the recommended data set.
227 228		00% LiI, the departures from the recommended data set are: 770 K, +3.0%, 910 K, +3.8%.
229		00% CsI, the departures from the recommended data set are: 960 K, +0.3%, 1130 K, 0.0%. 00% NdI ₃ , the results have been advanced as the recommended data set.
230		
231		00% CSI, the results are in exact accord with the recommended data set.
232		00% KNO ₃ , the departures from the recommended data set are: 635 K, +1.2%, 725 K, -0.1%.
		00% CsNO ₃ , the departures from the recommended data set are: 695 K, -0.3%, 790 K, -0.2%.
233		00% LiNO ₃ , the departures from the recommended data set are: 695 K, 0.0%, 785 K, -1.1%.
234		00% CsNO ₃ , the departures from the recommended data set are: 700 K, -0.07%, 780 K, -1.0%.
235	For 1	00% NaNO3, the departures from the recommended data set are: 605 K, +0.1%, 740 K, -0.5%.
236	For 1	00% CsNO ₃ , the departures from the recommended data set are: 700 K, -0.32%, 780 K, -0.18%.
237	For 1	00% RbNO3, the departures from the recommended data set are: 600 K, -0.3%, 730 K, -0.2%.
238	For 1	00% CsNO ₃ , the departures from the recommended data set are: 700 K, -0.32%, 780 K, -0.18%.
239	For 1	00% Cs3AlF6, the results have been advanced as the recommended data set.
240	For 1	00% LigAlF ₆ , the departures from the recommended data set are: 1080 K, -0.16%, 1220 K, -1.6%.
241		00% Cs ₃ AlF ₆ , the results have been advanced as the recommended data set.
242		00% Cs ₃ AlF ₆ , the results have been advanced as the recommended data set.
243		
244		00% CuCl, the departures from the recommended data set are: 740 K, +1.3%, 1110 K, +1.1%. 00% KCl at 1073.2 K, the result has been advanced as the recommended data set.
245		00% N(C ₃ H ₇) ₄ SCN, the results have been advanced as the recommended data set.
246		oth 100% FeS and 100% Cu ₂ S at 1523 K, the results have been advanced as the recommended data set.
247		
		00% Ni ₃ S ₂ and 100% Cu ₂ S at 1473 K, the departures from the recommended data sets are, respectively, +0.06% and +0.02%.
48		00% FeC1 ₂ , the results have been advanced as the recommended data set.
49		00% Ni ₃ S ₂ and 100% FeS at 1523 K, the departures from the recommended data sets are, respectively, -1.7% and +4.6%.
250	For 1	00% GaI3, the results have been advanced as the recommended data set.
25 1		00% KI, the departures from the recommended data set are: 1030 K, +0.03%, 1180 K, +0.4%.
252	For 1	00% GdI3, the results have been advanced as the recommended data set.
253	For 1	00% ${ m HgI}_2$ at 531 K, the departure from the recommended data set is +2.2%.
254	For 1	00% HgBr ₂ , the departures from the recommended data set are: 515 K, +2.8%, 530 K, +3.1%.
255		00% TiND3, the results have been advanced as the recommended data set.
256		tainty estimated at 1%
257		00% KPO ₃ , the departures from the recommended data set are: 1170 K, +0.8%, 1220 K, +2.0%.

lumber	Reliability estimates
258	For 100% KC1, the departures from the recommended data set are: 1060 K, 0.0%, 1210 K, +0.06%.
259	For 100% KBr, the departures from the recommended data set are: 1030 K, +0.01%, 1190 K, +0.04%.
260	For 100% KF, the departures from the recommended data set are: 1150 K, +0.4%, 1250 K, +0.2%.
261	For 100% KBr, the departures from the recommended data set are: 1010 K, +0.4%, 1140 K, +0.4%.
262	For 100% KI, the departures from the recommended data set are: 990 K, -0.7% , 1170 K, $+0.2\%$.
263	For 100% KBr, the departures from the recommended data set are: 1030 K, +0.01%, 1220 K, +0.05%.
264	For 100% KND3, the departures from the recommended data set are: 620 K, +0.2%, 870 K, +0.2%.
265	For 100% KBr, the departures from the recommended data set are: 1020 K, +0.8%, 1070 K, +0.9%.
2 6 6	For 100% KBr, the departures from the recommended data set are: 1030 K, +0.01%, 1170 K, +0.07%.
267	For 100% LiC1 and 100% KBr at 1073 K, the departures from the recommended data sets are, respectively, -1.4% and -3.5%.
268 260	For 100% NaBr, the departures from the recommended data set are: 1050 K, -0.2%, 1220 K, -0.3%.
269 270	For 100% KBr, the departures from the recommended data set are: 1030 K, +0.01%, 1190 K, +0.05%.
271	For 100% KBr, the departures from the recommended data set are: 1020 K, +0.8%, 1070 K, +0.9%. For 100% NaCl and 100% KBr at 1073 K, the departures from the recommended data sets are, respectively, 0.0% and -1.0%.
272	For 100% PbBr ₂ , the departures from the recommended data set are: 660 K, +0.8%, 1000 K, +0.2%.
273	For 100% KBr, the departures from the recommended data set are: 1020 K, +0.3%, 1180 K, +0.1%.
274	For 100% RBBr, the departures from the recommended data set are: 980 K, -0.03%, 1180 K, 0.0%.
275	For 100% KBr, the departures from the recommended data set are: 1030 K, +0.01%, 1190 K, +0.04%.
276	For both 100% RbC1 and 100% KBr at 1073 K, the departure from the recommended data set is, respectively, +0.7% and 0.0%.
277	For 100% T1Br, the departures from the recommended data set are: 780 K, +0.6%, 1020 K, -0.09%.
278	For 100% KBr, the departures from the recommended data set are: 1040 K, +0.3%, 1200 K, +0.6%.
279	For 100% ZnBr ₂ , the departures from the recommended data set are: 740 K, +0.7%, 880 K, +0.7%.
280	For 100% KBr, the departures from the recommended data set are: 1080 K, +0.2%, 1260 K, +0.5%.
281	For 100% KF, the departures from the recommended data set are: 1150 K, +0.4%, 1250 K, +0.2%.
282	For 100% KC1, the departures from the recommended data set are: 1060 K, -0.09%, 1190 K, -0.11%.
283	For 100% KI, the results have been advanced as the recommended data set.
284	For 100% KC1, the results have been advanced as the recommended data set.
285	For 100% KNO ₃ , the departures from the recommended data set are: 620 K, 0.0%, 800 K, -0.3%.
286	For 100% K_2SO_4 , the results have been advanced as the recommended data set.
287	For 100% KC1, the departures from the recommended data set are: 1060 K, -0.8%, 1260 K, -0.4%.
2 8 8	For 100% $K_2 ZrF_6$, the results have been advanced as the recommended data set.
289	For 100% KCl, the departures from the recommended data set are: 1070 K, -0.09%, 1170 K, -0.2%.
290	For 100% LaCl ₃ , the departures from the recommended data set are: 1180 K, +0.7% and 1260 K, +0.9%.
291	For 100% KC1, the departures from the recommended data set are: 1120 K, +0.8% and 1270 K, +0.7%.
292	For 100% LiCl, the results have been advanced as the recommended data set.
293	For 100% KCl, the results have been advanced as the recommended data set.
294	For 100% PbCl ₂ , the departures from the recommended data set are: 793 K -0.05%, 970 K 0.15%.
295	For 100% KC1, the departures from the recommended data set are: 1070 K, +0.3%, 1170 K, +0.1%.
296	For 100% MgCl ₂ , the results have been advanced as the recommended data set.
297	For 100% KC1, the departures from the recommended data set are: 1080 K, +0.3%, 1120 K, +0.05%.
298	For 100% MnCl ₂ , the results have been advanced as the recommended data set.
299	For 100% KC1, the departures from the recommended data set are: 1080 K, -0.1%, 1120 K, -0.1%.
300	For 100% KC1, the departures from the recommended data set are: 1060 K, +0.7%, 1100 K, +0.7%.
301	For both 100% KCl and 100% NaBr at 1073 K, the departure from the recommended data set is, respectively, -1.2% and -0.8%.
302	For 100% NaCl, the results are in exact accord with the recommended data set.
303	For 100% KC1, the results have been advanced as the recommended data set.
304	for 100% PbCl ₂ the departures from the recommended data set are: 830 K 0.20%, 880 K 0.30%
305	For 100% NaI, the departures from the recommended data set are: 950 K, -0.3%, 1070 K, -0.1%.
306 307	For 100% KC1, the departures from the recommended data set are: 1060 K, +0.7%, 1100 K, +0.7%.
307	For 100% Na ₂ B ₄ O ₇ at 1223 K, the departure from the recommended data set is 0.0%.
308	For 100% KC1, the departures from the recommended data set are: 1122 K 0.8%, 1212 K 0.7%.
309	For 100% PbCl ₂ , the results have been advanced as the recommended data set.
	For 100% MC1 the decent from the recommended data and and 100 M 0 0% 1010 M 0 7%
310 311	For 100% KC1, the departures from the recommended data set are: 1122 K 0.8%, 1212 K 0.7%. For both 100% RbBr and 100% KC1 at 1073 K, the departure from the recommended data set is, respectively, +0.4% and -1.2%.

Table 2.1.b Density data reliability statements (continued)

Number	Reliability estimates	_
313	For 100% KC1, the departures from the recommended data set are: 1060 K, 0.0%, 1210 K, +0.05%.	
314	For 100% SrCl ₂ , the departures from the recommended data set are: 1150 K, -0.4%, 1290 K, -0.2%.	
315	For 100% KC1, the departures from the recommended data set are: 1100 K, -1.3%, 1320 K, -0.6%.	
316	For 100% ThCl ₄ , the results have been advanced as the recommended data set.	
317	For 100% KC1, the departures from the recommended data set are: 1075 K -0.2%, 1173 K -0.3%.	
318	For 100% UCl ₃ , the results have been advanced as the recommended data set.	
319	For 100% KC1, the departures from the recommended data set are: 1090 K, -2.9%, 1290 K, -2.2%.	
320	For 100% UC14, the results have been advanced as the recommended data set.	
321	For 100% ZnCl ₂ , the results have been advanced as the recommended data set.	
322	For 100% KC1, the departures from the recommended data set are: 1060 K, +0.5%, 1210 K, +0.4%.	
323	Insufficient details for firm estimate. Based on principles of the method, possibly 2.5%	
324	Insufficient details for firm estimate. Based on the principles of the method, possibly 2.5%.	
325	Insufficient details for firm estimate. Based on the principles of the method, possibly 2.5%.	
326	Insufficient details for a firm estimate. Based on the principles of the method, possibly 2.5%.	
327	For 100% KNO3, the departures from the recommended data set are: 620 K, -0.05%, 800 K, -0.17%.	
328	For 100% LiClO ₄ , the departures from the recommended data set are: 540 K, +0.2%, 630 K, -0.05%.	
329	For 100% LiNO3, the departures from the recommended data set are: 540 K, -0.5%, 680 K, +0.6%.	
330	For 100% NaNO3, the departures from the recommended data set are: 600 K, 0.0%, 680 K, -0.7%.	
331	For 100% KI, the departures from the recommended data set are: 1010 K, +0.4%, 1090 K, +0.4%.	
332	For 100% KF, the departures from the recommended data set are: 1150 K, +0.4%, 1250 K, +0.2%.	
333	For 100% K ₂ ZrF ₆ , the results have been advanced as the recommended data set.	
334	For 100% KF, the departures from the recommended data set are: 1230 K, -2.3%, 1250 K, -2.5%.	
335	For 100% KF, the departures from the recommended data set are: 1140 K, -3.2%, 1350 K, -3.1%.	
336	For 100% LiF, the departures from the recommended data set are: 1140 K, -5.7%, 1340 K, -4.3%.	
337	For 100% KF, the departures from the recommended data set are: 1140 K, -3.2%, 1350 K, -3.1%.	
338	For 100% KF, the departures from the recommended data set are: 1140 K, -0.1%, 1250 K, -0.2%.	
339	For 100% NaC1 at 1073 K, the departure from the recommended data set is -0.4%.	
340	For 100% NaF, the departures from the recommended data set are: 1280 K, -2.4%, 1350 K, -2.3%.	
341	For 100% KF, the departures from the recommended data set are: 1140 K, -3.2%, 1350 K, -3.1%.	
342	For 100% Na ₂ B ₄ O ₇ at 1223 K, the departure from the recommended data set is +0.05%.	
343	For 100% Na ₃ A1F ₆ , the departures from the recommended data set are: 1280 K, +0.9%, 1350 K, +0.8%	
344	For 100% KF, the departures from the recommended data set are: 1140 K, -3.2%, 1350 K, -3.1%.	
345	For 100% KF, the departures from the recommended data set are: 1140 K, -3.2%, 1350 K, -3.1%.	
346	For 100% KF, the departures from the recommended data set are: 1140 K, -3.2%, 1350 K, -3.1%.	
347	For 100% KF, the departures from the recommended data set are: 1140 K, -3.2%, 1350 K, -3.1%.	
348 349	For 100% KF at 1233 K, the departure from the recommended data set is -2.6%.	
	For 100% LaI3, the results have been advanced as the recommended data set.	
350 351	For 100% KI, the departures from the recommended data set are: 1030 K, +0.03%, 1180 K, +0.4%.	
352	For 100% LiI, the departures from the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. For 100% KI, the departures from the recommended data set are: 1000 K, -0.6%, 1160 K, +0.2%.	
353	For 100% NaC1, the departures from the recommended data set are: 1000 K, -0.0%, 1200 K, -0.2%.	
354	For 100% KI, the departures from the recommended data set are: 970 K, +0.29%, 1070 K, +0.25%.	
355	For 100% NaI, the departures from the recommended data set are: 960 K, -0.12%, 1130 K, -0.3%.	
356	For 100% KI, the departures from the recommended data set are: 970 K, -0.3%, 1190 K, -0.04%.	
357	For 100% NdI3, the results have been advanced as the recommended data set.	
358	For 100% KI, the departures from the recommended data set are: 1030 K, +0.03%, 1180 K, +0.4%.	
359	For 100% PbI ₂ , the results have been advanced as the recommended data set.	
360	For 100% KI, the departures from the recommended data set are: 980 K, -0.3%, 1190 K, -0.04%.	
361	For 100% RbI, the departures from the recommended data set are: 950 K, -0.02%, 1120 K, -0.11%.	
362	For 100% KI, the departures from the recommended data set are: 990 K, -0.7%, 1170 K, +0.2%.	
363	For 100% T1I, the departures from the recommended data set are: 820 K, -4.8%, 970 K, -2.2%.	
364	For 100% KI, the departures from the recommended data set are: 813 K, -3.2%, 970 K, +4.0%.	
365	For 100% KNO3, the departures from the recommended data set are: 620 K, 0.0%, 730 K, +0.1%.	
366	For 100% KND2, the results have been advanced as the recommended data set.	

Number	Reliability estimates
367	For 100% KNO ₂ , the departures from the recommended data set are: 720 K, -0.6%, 900 K, +1.4%.
368	For 100% KND ₂ , the departures from the recommended data set are: 720 K, -0.6%, 900 K, +1.4%.
369	For 100% NaNO ₂ , the departures from the recommended data set are: 580 K, -0.4%, 770 K, +0.6%.
370	For 100% KN02, the results have been advanced as the recommended data set.
371	For 100% NaNO3, the departures from the recommended data set are: 595 K, +0.6%, 760 K, +0.5%.
372	For 100% KNO2, the results have been advanced as the recommended data set.
373	For 100% KOH, the departures from the recommended data set are: 680 K, +0.06%, 820 K, +0.11%.
374	For 100% KNO_3 , the departures from the recommended data set are: 620 K, -8.6%, 770 K, -9.0%.
375	For 100% KN0 $_3$, the departures from the recommended data set are: 620 K, -0.9%, 820 K, -0.4%.
376	For 100% $KN0_3$, the departures from the recommended data set are: 620 K, -0.9%, 800 K, -0.1%.
377	For 100% LiC10 $_4$, the departures from the recommended data set are: 520 K, -0.05%, 680 K, +0.26%.
378	For 100% $KN0_3$, the departures from the recommended data set are: 630 K, 0.0%, 730 K, -0.05%.
379	For 100% LiNO3, the departures from the recommended data set are: 560 K, +1.2%, 690 K, 0.0%.
380	For 100% KN0 $_3$, the departures from the recommended data set are: 635 K, +1.2%, 725 K, -0.1%.
381	For 100% KN03, the departures from the recommended data set are: 620 K, 0.0%, 690 K, -0.2%.
382	For 100% KNO3, the departures from the recommended data set are: 590 K, 0.0%, 690 K, -0.05%.
383	For 100% NaNO $_2$, the departures from the recommended data set are: 580 K, -0.4%, 760 K, +0.6%.
384	For 100% KNO3, the departures from the recommended data set are: 625 K, 0.0%, 730 K, +0.1%.
385	For 100% NaNO ₃ , the departures from the recommended data set are: 625 K, +0.1%, 720 K, +0.3%.
386	For 100% KNO ₃ , the departures from the recommended data set are: 625 K, +0.1%, 720 K, +0.2%.
387	For 100% Na ₂ Cr ₂ O ₇ at 693 K, the data point has been advanced as the recommended data set. For 100% KNO ₃ at 693 K, the departure from the recommended data set is -0.2%.
388	For 100% KNO3, the departures from the recommended data set are: 620 K, +0.2%, 730 K, +0.4%.
389	For 100% $RbNO_3$, the departures from the recommended data set are: 595 K, -0.3%, 730 K, -0.2%.
390	For 100% KN03, the departures from the recommended data set are: 635 K, \pm 0.7%, 720 K, \pm 0.5%.
391	For 100% KNO3, the departures from the recommended data set are: 620 K, 0.0%, 690 K, -0.2%.
392	For 100% KOH, the results have been advanced as the recommended data set.
393	For 100% KPO ₃ , the departures from the recommended data set are: 1020 K, -0.04%, 1170 K, -0.3%.
394	For 100% KPO ₃ , the departures from the recommended data set are: 1070 K, -0.1%, 1130 K, -0.2%.
395	For 100% KPO ₃ at 1123 K, the departure from the recommended data set is -1.0%.
396	For 100% KPD3, the departures from the recommended data set are: 1120 K, -0.8%, 1220 K, -1.5%.
397	For 100% Zn(P0 ₃) ₂ , the results have been advanced as the recommended data set.
398	For 100% KPO3, the departures from the recommended data set are: 1150 K, -0.1%, 1350 K, +0.1%.
399 400	For 100% NaSCN, the departures relative to the recommended data set are: 600 K, -1.8%; 620 K, -3.0%
401	For 100% KSCN, the departures relative to the recommended data set are: 480 K , -0.04% ; 550 K , -0.06% For 100% V_2O_5 , the departures from the recommended data set are: 980 K , $+0.6\%$, 1250 K , $+2.7\%$.
402	For 100% KV03, the results have been advanced as the recommended data set.
403	The data point at 1123 K for 100% $K_2B_4D_7$ has been advanced as recommended data.
404	The data point for 100% $K_2B_4D_7$ at 1123 K has been advanced as recommended data.
405	For 100% LiC1, the departures from the recommended data set are: 900 K, +0.07%, 1070 K, -0.1%.
406	For 100% LiF, the departures from the recommended data set are: 1140 K, -0.4%, 1320 K, +0.1%.
407	For 100% $\rm Li_2CO_3$, the departures from the recommended data set are: 1030 K, +0.4%, 1130 K, -0.06%.
408	For 100% K_2CO_3 , the departures from the recommended data set are: 1190 K, +0.05%, 1250 K, +0.03%.
409	For 100% $\rm Li_2SO_4$, the departures from the recommended data set are: 1150 K, -0.5%, 1220 K, -1.1%.
410	For 100% K_2CO_3 , the departures from the recommended data set are: 1180 K, -0.3%, 1220 K, -0.1%.
411	For 100% Na_2CO_3 , the departures from the recommended data set are: 1140 K, -1.3%, 1240 K, -1.4%.
412	For 100% K_2CO_3 , the departures from the recommended data set are: 1190 K, +0.05%, 1260 K, +0.03%.
413	For 100% $K_2Cr_2\theta_7$ and 100% NaN θ_3 at 693 K, the departures from the recommended data sets are, respectively, +1.3% and +1.6%.
414	For 100% $\rm Li_2Mo0_4$, the departures from the recommended data set are: 1020 K, -2.2%, 1140 K, -2.6%.
4 15	For 100% K_2MoO_4 , the departures from the recommended data set are: 1210 K, -0.9%, 1280 K, -0.5%.

Table 2.1.b Density data reliability statements (continued)

Number		Reliability estimates
4 16	For	100% MoO ₃ , the results have been advanced as the recommended data set.
417	_	100% K ₂ MoO ₄ , the departures from the recommended data set are: 1210 K, +5.1%, 1280 K, +5.8%.
418	For	100% Li ₂ CO ₃ , the departures from the recommended data set are: 1020 K, -0.2%, 1120 K, +0.2%.
419	For	100% K ₂ SO ₄ , the departures from the recommended data set are: 1350 K, +0.1%, 1400 K, -0.1%.
420	_	100% Na ₂ SO ₄ , the departures from the recommended data set are: 1180 K, +0.06%, 1320 K, +0.5%.
421		100% Li ₂ WO ₄ , the results have been advanced as the recommended data set.
422		100% K ₂ WO ₄ , the departures from the recommended data set are: 1210 K, -0.23%, 1300 K, -0.26%.
423		100% K ₂ W0 ₄ , the departures from the recommended data set are: 1210 K, +0.2%, 1320 K, +0.3%.
424		100% NaC1, the departures from the recommended data set are: 1080 K, -0.5%, 1150 K, -1.0%.
425		100% K ₂ ZrF ₆ , the results have been advanced as the recommended data set.
426	_	100% LigAlF ₆ , the departures from the recommended data set are: 1070 K, -0.16%, 1220 K, -1.6%.
427	_	100% K3A1F6, the departures from the recommended data set are: 1280 K, +3%, 1330 K, +2.8%
428		
429	_	100% Na ₃ AlF ₆ , the departures from the recommended data set are: 1280 K, +0.9%, 1350 K, +0.8%
430		100% KgAIF6, the results have been advanced as the recommended data set
431		100% LiCl, the departures from the recommended data set are: 880 K, +0.07%, 1060 K, -0.1%. 100% NaCl, the departures from the recommended data set are: 1140 K, 0.0%, 1250 K, +0.3%.
432		100% LiF, the departures from the recommended data set are: 1130 K, -5.7%, 1350 K, -4.3%.
433		100% NaF, the departures from the recommended data set are: 1280 K, -2.4%, 1350 K, -2.3%.
434		100% LiC1, the departures from the recommended data set are: 980 K, 0.0%, 1080 K, -0.1%.
435	For	100% LiBr, the departures from the recommended data set are: 825 K, -1.3%, 1080 K, -1.4%.
436	For	100% LiF, the departures from the recommended data set are: 1130 K, -0.2%, 1260 K, +0.3%.
437	For	100% LiBr, the departures from the recommended data set are: 880 K, -1.0%, 1280 K, -0.04%.
438	_	100% LiI, the departures from the recommended data set are: 760 K, +1.9%, 1100 K, +2.7%.
439		100% LiBr, the departures from the recommended data set are: 825 K, -1.3%, 1100 K, -1.4%.
440 441		100% NaBr, the departures from the recommended data set are: 1050 K, -0.2%, 1220 K, -0.3%. 100% RbBr, the departures from the recommended data set are: 980 K, -0.03%, 1140 K, 0.0%.
442		100% LiF, the departures from the recommended data set are: 1130 K, -0.2%, 1260 K, +0.3%.
443		100% LiC1, the departures from the recommended data set are: 940 K, 0.0%, 1260 K, -0.75%.
444		100% Lil, the departures from the recommended data set are: 710 K, +1.9%, 1110 K, +2.7%.
445	For	100% LiC1, the departures from the recommended data set are: 900 K, +0.07%, 1110 K, -0.1%.
446	For	100% MgCl ₂ , the results have been advanced as the recommended data set.
447	For	100% LiC1, the departures from the recommended data set are: 910 K, -0.3% , 1050 K, -0.7% .
448	For	100% MnCl $_2$, the departures from the recommended data set are: 940 K, +0.2%, 1020 K, -0.4%.
449	For	100% LiC1, the departures from the recommended data set are: 1060 K, 0.00%, 1120 K, 0.00%.
450		100% NaC1, the results are in exact accord with the recommended data set.
451		100% LiC1, the departures from the recommended data set are: 880 K, -0.3%, 1070 K, -0.2%.
452		100% Na ₂ B ₄ O ₇ at 1223 K, the departure from the recommended data set is 0.0%.
453		100% PbCl ₂ , the departures from the recommended data set are: 873 K, +0.2%, and 973 K, +0.5%.
454		100% RbC1, the results are in exact accord with the recommended data set.
455 456		100% LiC1, the departures from the recommended data set are: 880 K, -0.3%, 1070 K, -0.2%.
450 457		100% LiC1, the departures from the recommended data set are: 953 K, 2.0% and 1054 K, 2.0%. 100% UC14, the results have been advanced as the recommended data set.
458		100% LiC1, the departures from the recommended data set are: 890 K, +0.1%, 1050 K, +1.7%.
459		100% ZnCl ₂ , the departures from the recommended data set are: 700 K, +0.1%, 1000 K, +1.7%.
460		100% LiC1, the departures from the recommended data set are: 900 K, -0.4%, 920 K, -0.4%.
461		100% LiClO ₃ , the results have been advanced as the recommended data set.
462		100% LiClO ₃ , the results have been advanced as the recommended data set.
463		100% LiNO ₃ , the departures from the recommended data set are: 550 K, -0.6%, 690 K, -0.04%.
464		100% LiClO ₄ , the results have been advanced as the recommended data set.
465		100% LiClO ₄ , the departures from the recommended data set are: 550 K, +0.2%, 630 K, -0.05%.
466		
		100% NaNO ₃ , the departures from the recommended data set are: 590 K, 0.0%, 680 K, -0.7%.
467		100% LiC104, the departures from the recommended data set are: 540 K, 0.0%, 680 K, +0.3%.
468	For	100% LiI, the departures from the recommended data set are: 760 K, +1.8%, 1260 K, +3.2%.

For 100% NaF, the departures from the for 100% LiF, the departures from the for 100% LiPO3, the departures from	the recommended data set are: 1130 K, -0.2%, 1260 K, +0.3%. the recommended data set are: 1280 K, 0.00%, 1320 K, 0.00%. the recommended data set are: 1130 K, -0.2%, 1320 K, +0.06%. the recommended data set are: 1280 K, +0.3%, 1320 K, +0.5%. the recommended data set are: 1130 K, -0.2%, 1320 K, +0.06%. the recommended data set are: 1130 K, -5.7%, 1340 K, -4.3%. the recommended data set are: 1400 K, +2.7%, 1500 K, +2.6%. the recommended data set are: 1140 K, -0.1%, 1360 K, 0.0%. the recommended data set are: 1140 K, -5.7%, 1340 K, -4.3%. the recommended data set are: 1140 K, -5.7%, 1340 K, -4.3%. the recommended data set are: 950 K, -0.12%, 1070 K, -0.4%. the recommended data set are: 970 K, +3.0%, 910 K, +3.8%. the recommended data set are: 940 K, -0.02%, 1090 K, -0.10%. the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. the recommended data set are: 540 K, -0.02%, 1090 K, -0.10%. the recommended data set are: 540 K, -0.5%, 680 K, +0.6%. In the recommended data set are: 540 K, -0.5%, 680 K, +0.6%. In the recommended data set are: 500 K, +0.1%, 740 K, -0.5%. In the recommended data set are: 500 K, +0.1%, 740 K, -0.5%. In the recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% NaF, the departures from the for 100% LiF, the departures from the departures from the for 100% LiF, the departures from the departures from the for 100% LiF, the departures from the depa	the recommended data set are: 1280 K, 0.00%, 1320 K, 0.00%. The recommended data set are: 1130 K, -0.2%, 1320 K, +0.06%. The recommended data set are: 1280 K, +0.3%, 1320 K, +0.5%. The recommended data set are: 1280 K, -0.2%, 1320 K, +0.06%. The recommended data set are: 1130 K, -0.2%, 1320 K, +0.06%. The recommended data set are: 1140 K, -5.7%, 1340 K, -4.3%. The recommended data set are: 1140 K, -0.1%, 1360 K, 0.0%. The recommended data set are: 1140 K, -5.7%, 1340 K, -4.3%. The recommended data set are: 1140 K, -5.7%, 1340 K, -4.3%. The recommended data set are: 1140 K, -5.7%, 1340 K, -4.3%. The recommended data set are: 950 K, -0.12%, 1070 K, -0.4%. The recommended data set are: 940 K, -0.02%, 1090 K, -0.10%. The recommended data set are: 770 K, +3.0%, 910 K, +3.8%. The recommended data set are: 540 K, -1.5%, 690 K, -1.4%. The recommended data set are: 540 K, -0.5%, 680 K, +0.6%. The recommended data set are: 540 K, -0.5%, 680 K, +0.6%. The recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% Na ₃ A1F ₆ , the departures for 100% LiF, the departures from the For 100% NaI, the departures from the For 100% NaI, the departures from the For 100% NaI, the departures from the For 100% LiI, the departures from the For 100% LiI, the departures from the For 100% LiI, the departures from the For 100% LiNO ₃ , the departures from the For 100% LiNO ₃ , the departures from the For 100% LiNO ₃ , the departures from the For 100% LiNO ₃ , the departures from the For 100% LiNO ₃ , the departures from the For 100% LiNO ₃ , the departures from the For 100% LiNO ₃ , the departures from the For 100% LiNO ₃ , the departures from the For 100% LiNO ₃ , the departures from the For 100% LiNO ₃ , the departures from the For 100% LiNO ₃ , the departures from the For 100% LinO ₃ , the departures from the For 100% LinO ₃ , the departures from the For 100% MoO ₃ , the departures from the For 100% LinO ₃ , the departures from the For 100% MoO ₃ , the departures from the For 100% MoO ₃ , the departures from the For 100% Na ₂ MoO ₄ , the departures from the For 100% Na ₂ MoO ₄ , the departures from the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the results have the For 100% Na ₂ MoO ₄ , the features from the For 100% Na ₂ MoO ₄ , t	the recommended data set are: 1280 K , $+0.3\%$, 1320 K , $+0.5\%$. The recommended data set are: 1130 K , -0.2% , 1320 K , $+0.06\%$. The recommended data set are: 1130 K , -5.7% , 1340 K , -4.3% . The recommended data set are: 1400 K , $+2.7\%$, 1500 K , $+2.6\%$. The recommended data set are: 1140 K , -0.1% , 1360 K , 0.0% . The recommended data set are: 1130 K , -5.7% , 1340 K , -4.3% . The recommended data set are: 1140 K , -5.7% , 1340 K , -4.3% . The recommended data set are: 950 K , -0.12% , 1070 K , -0.4% . The recommended data set are: 950 K , -0.12% , 1070 K , -0.4% . The recommended data set are: 940 K , -0.02% , 1090 K , -0.10% . The recommended data set are: 770 K , $+3.0\%$, 910 K , $+3.8\%$. The recommended data set are: 770 K , $+3.0\%$, 910 K , $+3.8\%$. The recommended data set are: 940 K , -1.5% , 990 K , -1.4% . The recommended data set are: 940 K , -1.5% , 990 K , -1.4% . The recommended data set are: 940 K , -0.5% , 940 K , -0.5% . The recommended data set are: 940 K , -0.5% , 940 K , -0.5% . The recommended data set are: 940 K , -0.5% , 940 K , -0.5% . The recommended data set are: 940 K , -0.5% , 940 K , -0.5% . The recommended data set are: 940 K , -0.5% , 940 K , -0.5% . The recommended data set are: 940 K , -0.5% , 940 K , -0.5% . The recommended data set are: 940 K , -0.5% , 940 K , -0.5% . The recommended data set are: 940 K , -0.5% , 940 K , -0.5% . The recommended data set are: 940 K , -0.5% , 940 K , -0.5% .
For 100% LiF, the departures from the for 100% LiNO, the for the for 100% LiNO, the departures from the for 100% LiPO, the departures from the for 100% MoO, the departures from the for 100% LiPO, the departures from the for 100% MoO, the departures from the for 100% LiPOO, the departures from the for 100% MoO, the departures from the for 100% LiPOO, the departures from the for 100% LiPOO, the departures from the for 100% LiPOO, the departures from the for 100% MoO, the departures from the for 100% LiPOO, the departure	the recommended data set are: 1130 K, -0.2% , 1320 K, $+0.06\%$. The recommended data set are: 1130 K, -5.7% , 1340 K, -4.3% . The recommended data set are: 1400 K, $+2.7\%$, 1500 K, $+2.6\%$. The recommended data set are: 1140 K, -0.1% , 1360 K, 0.0% . The recommended data set are: 1130 K, -5.7% , 1340 K, -4.3% . The recommended data set are: 1140 K, -5.7% , 1340 K, -4.3% . The recommended data set are: 1140 K, -5.7% , 1340 K, -4.3% . The recommended data set are: 950 K, -0.12% , 1070 K, -0.4% . The recommended data set are: 770 K, $+3.0\%$, 910 K, $+3.8\%$. The recommended data set are: 940 K, -0.02% , 1090 K, -0.10% . The recommended data set are: 770 K, $+3.0\%$, 910 K, $+3.8\%$. The recommended data set are: 540 K, -1.5% , 690 K, -1.4% . The recommended data set are: 540 K, -0.5% , 680 K, $+0.6\%$. The recommended data set are: 540 K, -0.5% , 680 K, $+0.6\%$. The recommended data set are: 550 K, $+1.2\%$, 690 K, -0.5% . The recommended data set are: 550 K, $+1.2\%$, 690 K, -0.0% .
For 100% LiF, the departures from the for 100% LiF, the departures fro	the recommended data set are: 1130 K, -5.7% , 1340 K, -4.3% . the recommended data set are: 1400 K, $+2.7\%$, 1500 K, $+2.6\%$. the recommended data set are: 1140 K, -0.1% , 1360 K, 0.0% . the recommended data set are: 1130 K, -5.7% , 1340 K, -4.3% . the recommended data set are: 1140 K, -5.7% , 1340 K, -4.3% . the recommended data set are: 950 K, -0.12% , 1070 K, -0.4% . the recommended data set are: 950 K, -0.12% , 1070 K, -0.4% . the recommended data set are: 940 K, -0.02% , 1090 K, -0.10% . the recommended data set are: 770 K, $+3.0\%$, 910 K, $+3.8\%$. the recommended data set are: 770 K, $+3.0\%$, 910 K, $+3.8\%$. The recommended data set are: 540 K, -1.5% , 690 K, -1.4% . In the recommended data set are: 540 K, -0.5% , 680 K, $+0.6\%$. In the recommended data set are: 550 K, $+0.1\%$, 740 K, -0.5% . In the recommended data set are: 550 K, $+1.2\%$, 690 K, -0.0% .
For 100% LiF, the departures from the for 100% LiNO3, the departures from the for 100% LiPO3, the depart	the recommended data set are: 1400 K, +2.7%, 1500 K, +2.6%. the recommended data set are: 1140 K, -0.1%, 1360 K, 0.0%. the recommended data set are: 1130 K, -5.7%, 1340 K, -4.3%. the recommended data set are: 1140 K, -5.7%, 1340 K, -4.3%. the recommended data set are: 950 K, -0.12%, 1070 K, -0.4%. the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. the recommended data set are: 940 K, -0.02%, 1090 K, -0.10%. the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. en advanced as the recommended data set. In the recommended data set are: 540 K, -1.5%, 690 K, -1.4%. In the recommended data set are: 540 K, -0.5%, 680 K, +0.6%. In the recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% LiF, the departures from the for 100% NaI, the departures from the for 100% LiI, the departures from the for 100% LiI, the departures from the for 100% LiI, the departures from the for 100% LiNO3, the departures from the for 100% LinD3, the results have been for 100% LinD3, the results have been for 100% LinD3, the results have the for 100% NapD3, the for 100% NapD3 the for 100% NapD3 the for 100% NapD3 the for 100% NapD3	the recommended data set are: 1140 K, -0.1%, 1360 K, 0.0%. The recommended data set are: 1130 K, -5.7%, 1340 K, -4.3%. The recommended data set are: 1140 K, -5.7%, 1340 K, -4.3%. The recommended data set are: 950 K, -0.12%, 1070 K, -0.4%. The recommended data set are: 770 K, +3.0%, 910 K, +3.8%. The recommended data set are: 940 K, -0.02%, 1090 K, -0.10%. The recommended data set are: 770 K, +3.0%, 910 K, +3.8%. The recommended data set are: 770 K, +3.0%, 910 K, -0.10%. The recommended data set are: 540 K, -0.5%, 690 K, -1.4%. The recommended data set are: 540 K, -0.5%, 680 K, +0.6%. The recommended data set are: 540 K, -0.5%, 680 K, +0.6%. The recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% LiF, the departures from the for 100% LiF, the departures from the for 100% LiF, the departures from the for 100% NaI, the departures from the for 100% LiI, the departures from the for 100% LiI, the departures from the for 100% LiI, the departures from the for 100% LiNO3, the departures from the for 100% LiNO3, the departures from for 100% LiPO3, the departures from for 100% LiPO3, the departures from for 100% Li2CO3, the departures from for 100% Li2CO3, the departures from for 100% Li2MoO4, the results have for 100% NaPO3, the results have for 100% NaPO3, the results have	the recommended data set are: 1130 K, -5.7% , 1340 K, -4.3% . the recommended data set are: 1140 K, -5.7% , 1340 K, -4.3% . the recommended data set are: 950 K, -0.12% , 1070 K, -0.4% . the recommended data set are: 770 K, $+3.0\%$, 910 K, $+3.8\%$. the recommended data set are: 940 K, -0.02% , 1090 K, -0.10% . the recommended data set are: 770 K, $+3.0\%$, 910 K, $+3.8\%$. the recommended data set are: 770 K, $+3.0\%$, 910 K, $+3.8\%$. The recommended data set are: 540 K, -1.5% , 690 K, -1.4% . In the recommended data set are: 540 K, -0.5% , 680 K, $+0.6\%$. In the recommended data set are: 600 K, $+0.1\%$, 740 K, -0.5% . In the recommended data set are: 550 K, $+1.2\%$, 690 K, 0.0% .
For 100% LiF, the departures from the for 100% NaI, the departures from the for 100% LiI, the departures from the for 100% RbI, the departures from the for 100% LiI, the departures from the for 100% LiNO, the departures from for 100% LiNO, the departures from the for 100% Li2CO, the departures from the for 100% Li2CO, the departures from the for 100% Li2MoO, the for	the recommended data set are: 1140 K, -5.7%, 1340 K, -4.3%. the recommended data set are: 950 K, -0.12%, 1070 K, -0.4%. the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. the recommended data set are: 940 K, -0.02%, 1090 K, -0.10%. the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. en advanced as the recommended data set. In the recommended data set are: 540 K, -1.5%, 690 K, -1.4%. In the recommended data set are: 540 K, -0.5%, 680 K, +0.6%. In the recommended data set are: 600 K, +0.1%, 740 K, -0.5%. In the recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% NaI, the departures from the second	the recommended data set are: 950 K, -0.12%, 1070 K, -0.4%. the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. the recommended data set are: 940 K, -0.02%, 1090 K, -0.10%. the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. en advanced as the recommended data set. In the recommended data set are: 540 K, -1.5%, 690 K, -1.4%. In the recommended data set are: 540 K, -0.5%, 680 K, +0.6%. In the recommended data set are: 600 K, +0.1%, 740 K, -0.5%. In the recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% LiI, the departures from the second	the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. the recommended data set are: 940 K, -0.02%, 1090 K, -0.10%. the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. en advanced as the recommended data set. In the recommended data set are: 540 K, -1.5%, 690 K, -1.4%. In the recommended data set are: 540 K, -0.5%, 680 K, +0.6%. In the recommended data set are: 600 K, +0.1%, 740 K, -0.5%. In the recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% RbI, the departures from the second	the recommended data set are: 940 K, -0.02%, 1090 K, -0.10%. the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. en advanced as the recommended data set. in the recommended data set are: 540 K, -1.5%, 690 K, -1.4%. In the recommended data set are: 540 K, -0.5%, 680 K, +0.6%. In the recommended data set are: 600 K, +0.1%, 740 K, -0.5%. In the recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% Li1, the departures from the second	the recommended data set are: 770 K, +3.0%, 910 K, +3.8%. en advanced as the recommended data set. In the recommended data set are: 540 K, -1.5%, 690 K, -1.4%. In the recommended data set are: 540 K, -0.5%, 680 K, +0.6%. In the recommended data set are: 600 K, +0.1%, 740 K, -0.5%. In the recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% LiNO ₃ , the departures from 485 For 100% LiNO ₃ , the departures from 486 For 100% NaNO ₃ , the departures from 487 For 100% LiNO ₃ , the departures from 488 For 100% RbNO ₃ , the departures from 489 For 100% TiNO ₃ , the departures from 490 For 100% LiNO ₃ , the departures from 491 For 100% LiPO ₃ , the departures from 492 For 100% Na ₂ CO ₃ , the departures from 493 For 100% Li ₂ CO ₃ , the departures from 494 For 100% MoO ₃ , the results have been 495 For 100% Na ₂ MoO ₄ , the departures from 496 For 100% Na ₂ MoO ₄ , the departures from 497 For 100% Li ₂ MoO ₄ , the results have 498 For 100% NaPO ₃ , the results have been 498 For 100% NaPO ₃ , the results have been 498 For 100% NaPO ₃ , the results have been 498 For 100% NaPO ₃ , the results have been 498 For 100% NaPO ₃ , the results have been 498 For 100% NaPO ₃ , the results have been 498	the recommended data set are: 540 K, -1.5%, 690 K, -1.4%. In the recommended data set are: 540 K, -0.5%, 680 K, +0.6%. In the recommended data set are: 600 K, +0.1%, 740 K, -0.5%. In the recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% LiND3, the departures from 486 For 100% NaNO3, the departures from 487 For 100% LiND3, the departures from 488 For 100% RbNO3, the departures from 489 For 100% T1NO3, the departures from 490 For 100% LiND3, the departures from 491 For 100% LiPO3, the departures from 492 For 100% LiPO3, the departures from 493 For 100% Li2CO3, the departures from 494 For 100% MoO3, the results have been 495 For 100% Li2MoO4, the departures from 496 For 100% Na2MoO4, the departures from 497 For 100% Li2MoO4, the results have 498 For 100% NaPO3, the results have 498 For 100% NaPO3, the results have 498 For 100% NaPO3, the results have 498	n the recommended data set are: 540 K, -0.5%, 680 K, +0.6%. n the recommended data set are: 600 K, +0.1%, 740 K, -0.5%. n the recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% NaND ₃ , the departures from 187 for 100% LiND ₃ , the departures from 188 for 100% RbND ₃ , the departures from 189 for 100% LiND ₃ , the departures from 190 for 100% LiND ₃ , the departures from 191 for 100% LiPD ₃ , the departures from 192 for 100% Na ₂ CO ₃ , the departures from 193 for 100% Li ₂ CO ₃ , the departures from 194 for 100% MoO ₃ , the results have been 195 for 100% Li ₂ MoO ₄ , the departures from 195 for 100% Na ₂ MoO ₄ , the departures from 195 for 100% Na ₂ MoO ₄ , the results have 195 for 100% Li ₂ MoO ₄ , the results have 196 for 100% Na ₂ MoO ₄ , the results have 197 for 100% Na ₂ PO ₃ , the results have 198 for 100% Na ₂ PO ₃ .	the recommended data set are: 600 K, +0.1%, 740 K, -0.5%. The the recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% LiNO ₃ , the departures from 100% RbNO ₃ , the departures from 100% T1NO ₃ , the departures from 100% LiNO ₃ , the departures from 100% LiNO ₃ , the departures from 100% LiPO ₃ , the departures from 100% Na ₂ CO ₃ , the departures from 100% Li ₂ CO ₃ , the departures from 100% Li ₂ CO ₃ , the departures from 100% MoO ₃ , the results have been 100% Li ₂ MoO ₄ , the departures from 100% Na ₂ MoO ₄ , the departures from 100% Na ₂ MoO ₄ , the departures from 100% Na ₂ MoO ₄ , the results have 100% Na ₂ MoO ₄ , the results have 100% Na ₂ PO ₃ .	m the recommended data set are: 550 K, +1.2%, 690 K, 0.0%.
For 100% RbNO ₃ , the departures from 189 For 100% LiNO ₃ , the departures from 190 For 100% LiNO ₃ , the departures from 191 For 100% LiPO ₃ , the departures from 192 For 100% Na ₂ CO ₃ , the departures from 193 For 100% Li ₂ CO ₃ , the departures from 194 For 100% MoO ₃ , the results have been 195 For 100% Li ₂ MoO ₄ , the departures from 195 For 100% Na ₂ MoO ₄ , the departures from 195 For 100% Li ₂ MoO ₄ , the results have 195 For 100% Na ₂ MoO ₄ , the results have 196 For 100% Na ₂ PO ₃ .	
For 100% T1ND ₃ , the departures from 490 For 100% LiND ₃ , the departures from 491 For 100% LiPD ₃ , the departures from 492 For 100% Na ₂ CO ₃ , the departures from 493 For 100% Li ₂ CO ₃ , the departures from 494 For 100% MoO ₃ , the results have been 495 For 100% Li ₂ MoO ₄ , the departures from 496 For 100% Na ₂ MoO ₄ , the departures from 497 For 100% Li ₂ MoO ₄ , the results have 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have been 498 For 100% NaPD ₃ , the results have 498 For 100% NaPD ₃ , the results have 498 For 100% NaPD ₃ , the results have 498 For 100% NaPD ₃ , the results have 498 For 100% NaPD ₃ , the 498 For 100% NaPD ₃ For 1	and the commence and the control of
For 100% LiNO ₃ , the departures from 491 For 100% LiPO ₃ , the departures from 492 For 100% Na ₂ CO ₃ , the departures from 493 For 100% Li ₂ CO ₃ , the departures from 494 For 100% MoO ₃ , the results have been 495 For 100% Li ₂ MoO ₄ , the departures from 496 For 100% Na ₂ MoO ₄ , the departures from 497 For 100% Li ₂ MoO ₄ , the results have 498 For 100% Na ₂ PO ₃ , the results have been 498 For 100% Na ₂ PO ₃ , the results have been 499	n the recommended data set are: 600 K, -0.3%, 730 K, -0.2%.
For 100% LiNO ₃ , the departures from 491 For 100% LiPO ₃ , the departures from 492 For 100% Na ₂ CO ₃ , the departures from 493 For 100% Li ₂ CO ₃ , the departures from 494 For 100% MoO ₃ , the results have been 495 For 100% Li ₂ MoO ₄ , the departures from 496 For 100% Na ₂ MoO ₄ , the departures from 497 For 100% Li ₂ MoO ₄ , the results have 498 For 100% Na ₂ PO ₃ , the results have been 498 For 100% Na ₂ PO ₃ , the results have been 498	m the recommended data set are: 530 K, +0.1%, 670 K, +0.3%.
For 100% Li ₂ CO ₃ , the departures from 100% Na ₂ CO ₃ , the departures from 100% Na ₂ CO ₃ , the departures from 100% Li ₂ CO ₃ , the departures from 100% MoO ₃ , the results have been 100% Li ₂ MoO ₄ , the departures from 100% Na ₂ MoO ₄ , the departures from 100% Na ₂ MoO ₄ , the results have 100% Na ₂ PO ₃ .	m the recommended data set are: 530 K, +0.7%, 670 K, +0.4%.
For 100% Na ₂ CO ₃ , the departures from 100% Li ₂ CO ₃ , the departures from 100% Li ₂ CO ₃ , the departures from 100% MoO ₃ , the results have been departures from 100% Li ₂ MoO ₄ , the departures from 100% Na ₂ MoO ₄ , the departures from 100% Li ₂ MoO ₄ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ , the results have been departures from 100% Na ₂ PO ₃ .	m the recommended data set are: 1080 K, +5.9%, 1240 K, +9.6%.
For 100% Li ₂ CO ₃ , the departures from 100% MoO ₃ , the results have been departures from 100% Li ₂ MoO ₄ , the departures from 100% Na ₂ MoO ₄ , the departures from 100% Li ₂ MoO ₄ , the results have been departured from 100% Na ₂ MoO ₃ Na ₂ MoO	om the recommended data set are: 1140 K, -1.3%, 1240 K, -1.4%.
For 100% MoO ₃ , the results have been 495 For 100% Li ₂ MoO ₄ , the departures fit 496 For 100% Na ₂ MoO ₄ , the departures fit 497 For 100% Li ₂ MoO ₄ , the results have 498 For 100% NaPO ₃ , the results have be	
For 100% Li ₂ MoO ₄ , the departures fit 496 For 100% Na ₂ MoO ₄ , the departures fit 497 For 100% Li ₂ MoO ₄ , the results have 498 For 100% NaPO ₃ , the results have be	
For 100% Na ₂ MoO ₄ , the departures fit 497 For 100% Li ₂ MoO ₄ , the results have 498 For 100% NaPO ₃ , the results have bit	
For 100% Li ₂ Mo0 ₄ , the results have by For 100% NaPD ₃ , the results have by	rom the recommended data set are: 1020 K, -2.2%, 1140 K, -2.6%.
498 For 100% NaPO3, the results have be	rom the recommended data set are: 960 K, -1.2%, 1120 K, -2.4%.
499 For 100% 112504, the results have i	
• • •	
•	een advanced as the recommended data set.
- '	om the recommended data set are: 980 K, -3.0%, 1140 K, -3.5%.
- '	been advanced as the recommended data set.
503 For 100% Li ₂ WO ₄ , the departures fro	om the recommended data set are: 1040 K, +1.1%, 1160 K, +1.1%.
504 For 100% Na ₃ A1F ₆ , the departures fi	rom the recommended data set are: 1280 K, +0.3%, 1320 K, +0.5%.
505 For 100% LigAlF6, the results have	been advanced as the recommended data set.
506 For 100% LigAlF ₆ , the departures f	rom the recommended data set are: 1080 K, -0.16%, 1220 K, -1.6%.
	the recommended data set are: 1090 K, +0.3%, 1170 K, +0.5%.
508 For 100% MgCl ₂ , the results have b	een advanced as the recommended data set.
	the recommended data set are: 1010 K, +0.06%, 1170 K, +0.16%.
	een advanced as the recommended data set.
	parture from the recommended data set is 0.0%.
	the recommended data set are: 1089 K -0.1%, 1220 K -0.07%.
	mm the recommended data set are: 969 K 0.1%, 1088 K -0.3%.
	the recommended data set are: 1039 K +0.1%, 1102 K +0.09%.
•	om the recommended data set are: 969 K 0.1%, 1088 K -0.3%
	om the recommended data set are: 969 K 0.1%, 1088 K -0.3% in the recommended data set are: 1080 K, -3.8%, 1170 K, -3.4%.
	om the recommended data set are: 969 K 0.1%, 1088 K -0.3% If the recommended data set are: 1080 K, -3.8%, 1170 K, -3.4%. exact agreement with the recommended data set.
519 For 100% NaI, the departures from 520 For 100% NaBr, the departures from	om the recommended data set are: 969 K 0.1%, 1088 K -0.3% In the recommended data set are: 1080 K, -3.8%, 1170 K, -3.4%. exact agreement with the recommended data set. In the recommended data set are: 1050 K, -0.2%, 1220 K, -0.3%.

Table 2.1.b Density data reliability statements (continued)

Number	Reliability estimates
521	For 100% Na ₂ Cr0 ₄ , the results have been advanced as the recommended data set.
522	For 100% NaBr, the departures from the recommended data set are: 1040 K, -3.1%, 1110 K, -2.0%.
523	For 100% PbBr ₂ at 873 K, the departure from the recommended data set is -0.6%.
524	For 100% RbBr, the departures from the recommended data set are: 980 K, -0.03%, 1180 K, 0.0%.
525	For 100% NaBr, the departures from the recommended data set are: 1050 K, -0.2% , 1220 K, -0.3% .
526	For 100% T1Br, the departures from the recommended data set are: 1020 K, -0.09% , 1060 K, -0.2% .
527	For 100% NaBr, the departures from the recommended data set are: 1040 K, +0.09%, 1110 K, -0.47%.
528	For 100% NaF at 1173 K, the departure from the recommended data set is -3.8%.
529 530	For 100% NaC1 at 1173 K, the departure from the recommended data set is -1.5%.
531	For 100% NaI, the departures from the recommended data set are: 960 K, -0.12%, 1130 K, -0.09%. For 100% NaC1, the results are in exact accord with the recommended data set.
532	For 100% NaNO ₃ , the departures from the recommended data set are: 600 K, +0.3%, 720 K, -0.4%.
533	For 100% NaOH at 693 K, the departure from the recommended data set is +0.06%.
534	For 100% NaC1, the departures from the recommended data set are: 1080 K, -2.7%, 1150 K, -1.8%.
535	For 100% Na ₂ TiF ₆ , the results have been advanced as the recommended data set.
536	For 100% Na ₂ ZrF ₆ at 1173 K, the value has been advanced as the recommended data set. For 100% Na ₂ Z at 1173 K, the departure from the
	recommended data set is -1.5%.
537	For 100% Na ₃ A1F ₆ at 1273 K, the departure from the recommended data set is 0.00%.
538	For 100% Na ₄ P ₂ 0 ₇ , the results have been advanced as the recommended data set.
539	For 100% NaC1, the departures from the recommended data set are: 1080 K, -0.5%, 1350 K, -0.5%.
540	For 100% NaC1, the departures from the recommended data set are: 1111 K 0.5%, 1294 K 0.2%.
541	For 100% PbCl ₂ , the results are in exact accord with the recommended data set.
542 543	For 100% NaC1, the departures from the recommended data set are: 1111 K 0.5%, 1294 K 0.2%.
544	For 100% RbC1, the departures from the recommended data set are: 1010 K, -0.1%, 1230 K, +0.3%. For 100% NaC1, the departures from the recommended data set are: 1090 K, +0.2%, 1170 K, -0.5%.
545	For 100% SrC1 ₂ , the departures from the recommended data set are: 1170 K, -0.5%, 1270 K, -0.05%.
546	For 100% NaC1, the departures from the recommended data set are: 1095 K, -0.5%, 1270 K, -0.9%.
547	For 100% ThCl4, the results have been advanced as the recommended data set.
548	For 100% NaCl, the departures from the recommended data set are: 1080 K, -0.5%, 1170 K, -0.2%.
549	For 100% UCl ₄ , the results have been advanced as the recommended data set.
550	For 100% ZnCl ₂ , the results have been advanced as the recommended data set.
551	For 100% NaCl, the departures from the recommended data set are: 1080 K, -0.1%, 1230 K, -0.2%.
552	For 100% NaClO3, the results have been advanced as the recommended data set.
553	For 100% NaNO3, the departures from the recommended data set are: 590 K, 0.0%, 680 K, -0.7%.
554	For 100% RbC ₂ H ₃ O ₂ , the results have been advanced as the recommended data set.
55 5	For 100% NaC ₂ H ₃ O ₂ , the results have been advanced as the recommended data set.
556	For 100% Na ₂ ZrF ₆ , the results have been advanced as the recommended data set.
557	For 100% NagAlF6, the results have been advanced as the recommended data set.
558	For 100% NaF, the departures from the recommended data set are: 1260 K, +0.5%, 1340 K, +0.7%.
559	For 100% NaF, the departures from the recommended data set are: 1280 K, -2.4%, 1340 K, -2.3%.
560	For 100% NaF, the departures from the recommended data set are: 1280 K, -2.4%, 1340 K, -2.3%.
561	For 100% NaF, the departures from the recommended data set are: 1280 K, -2.4%, 1340 K, -2.3%.
562	For 100% NaF, the departures from the recommended data set are: 1280 K, -2.4%, 1340 K, -2.3%.
563	For 100% NaF at 1323 K, the departure from the recommended data set is -0.8%.
564	For 100% NdI ₃ , the results have been advanced as the recommended data set.
565	For 100% NaI, the departures from the recommended data set are: 960 K, +1.2%, 1120 K, +1.8%.
566	For 100% Rb1, the departures from the recommended data set are: 950 K, -0.02%, 1120 K, -0.11%.
567 568	For 100% NaI, the departures from the recommended data set are: 960 K, -0.12%, 1120 K, -0.09%.
569	For 100% NaNO3, the departures from the recommended data set are: 595 K, -0.2%, 760 K, 0.0%.
	For 100% NaNO ₂ , the departures from the recommended data set are: 580 K, -0.4%, 760 K, +0.6%.
570	For 100% Na ₂ MoO ₄ , the departures from the recommended data set are: 960 K, +3.0%, 1120 K, +1.7%.
571	For 100% NaNO ₂ , the departures from the recommended data set are: 580 K, +0.06%, 820 K, +5.3%.
572	For 100% Na_2 WO $_4$, the departures from the recommended data set are: 970 K, +3.0%, 1110 K, +4.0%.

Table 2.1.b Density data reliability statements (continued)

Number		Reliability estimates
573	For	100% NaND ₂ , the departures from the recommended data set are: 620 K, -0.04%, 820 K, +4.7%.
574	For	100% NaOH, the departures from the recommended data set are: 600 K, \pm 0.9%, 820 K, \pm 0.7%.
575	For	100% $NaNO_3$, the departures from the recommended data set are: 590 K, -11%, 750 K, -13%.
576	For	100% Na_2Mo0_4 , the departures from the recommended data set are: 970 K, +3.0%, 1090 K, +1.6%.
577	For	100% NaNO3, the departures from the recommended data set are: 630 K, +0.9%, 810 K, +1.7%.
578	For	100% Na_2W0_4 , the departures from the recommended data set are: 970 K, +3.4%, 1110 K, +3.9%.
579	For	100% NaNO $_3$, the departures from the recommended data set are: 630 K, +1.7%, 830 K, +1.8%.
580	For	100% NaNO $_3$, the departures from the recommended data set are: 600 K, +0.3%, 730 K, +0.4%.
581	For	100% $RbN0_3$, the departures from the recommended data set are: 600 K, -0.3%, 730 K, -0.2%.
582	For	100% $NaNO_3$, the departures from the recommended data set are: 610 K, 0.0%, 740 K, -0.3%.
583	For	100% TINO3, the departures from the recommended data set are: 490 K, +0.09%, 620 K, +0.15%.
584	For	100% $NaN0_3$, the departures from the recommended data set are: 590 K, +0.8%, 640 K, 0.0%.
585	For	100% NaOH, the results have been advanced as the recommended data set.
586	For	100% NaPO3, the results have been advanced as the recommended data set.
587	For	100% NaPO $_3$, the departures from the recommended data set are: 980 K, -0.7%, 1120 K, -0.1%.
588	For	100% NaPO $_3$, the departures from the recommended data set are: 1000 K, -0.6%, 1120 K, -0.1%.
589	For	100% NaPO $_3$ at 1123 K, the departure from the recommended data set is +12%.
590	For	100% NaPO3, the results have been advanced as the recommended data set.
591	For	100% NaPO3, the results have been advanced as the recommended data set.
592	For	100% NaPO $_3$, the departures from the recommended data set are: 980 K, -1.0%, 1270 K, -3.4%.
593	For	100% $Zn(P0_3)_2$, the results have been advanced as the recommended data set.
594	For	100% NaP0 $_3$, the departures from the recommended data set are: 1130 K, +0.4%, 1300 K, +5.1%.
595	For	100% $V_2 \theta_5$, the results have been advanced as the recommended data set.
596	For	100% NaV03, the departures from the recommended data set are: 920 K, $\pm 0.06\%$, 1160 K, $\pm 1.0\%$.
597	The	data point for 100% $Na_2B_40_7$ at 1123 K has been advanced as recommended data.
598	The	data point for 100% Na ₂ B ₄ 0 ₇ at 1123 K has been advanced as recommended data.
599	For	100% $Na_2B_4O_7$, the departures from the recommended data set are: 1070 K, -1.9%, 1270 K, -2.0%.
600	For	100% ZnSO ₄ , the results have been advanced as the recommended data set.
601	For	100% $\mathrm{Na_2W0_4}$, the departures from the recommended data set are: 990 K, +0.8%, 1140 K, +0.3%.
602	For	100% Rb3A1F6, the results have been advanced as the recommended data set.
603	For	100% Na_3A1F_6 , the departures from the recommended data set are: 1280 K, -2.0%, 1320 K, -1.5%.
604	For	100% Na ₃ A1F ₆ at 1273 K, the departure from the recommended data set is 0.00%.
605	For	100% $Na_4P_2O_7$, the departures from the recommended data set are: 1290 K, -1.2%, 1370 K, -1.2%.
606	For	100% TaCl ₅ , the results have been advanced as the recommended data set.
607	For	100% NbCl ₅ , the departures from the recommended data set are: 485 K -2.1%, 598K -0.06%.
608	For	100% PbCl ₂ , the results have been advanced as the recommended data set.
609	For	100% PbBr2, the results have been advanced as the recommended data set.
610	For	100% PbS, the results have been advanced as the recommended data set.
611	For	100% PbCl ₂ , the departures from the recommended data set are: 773 K, +0.8%, 923 K, +0.6%.
612		100% RbCl, the departures from the recommended data set are: 1030 K, +0.1%, 1190 K, +0.3%.
613	For	100% PbCl ₂ , the departures from the recommended data set are: 1030 K, 0.00%, 1060 K, +0.03%.
614		100% TIC1, the departures from the recommended data set are: 730 K, -0.09%, 780 K, +0.02%.
615		100% PbCl ₂ , the departures from the recommended data set are: 790 K, +0.1%, 870 K, +0.04%.
616		100% ZnCl ₂ , the departures from the recommended data set are: 760 K, -0.27%, 820 K, -0.09%.
617		100% PbCl ₂ , the departures from the recommended data set are: 790 K, -0.15%, 820 K, -0.26%.
618 619		100% Pb0, the results have been advanced as the recommended data set.
619 620		100% PbMo04, the departures from the recommended data set are: 1390 K, -2.2%, 1470 K, -1.8%.
620 621		- 100% RbC1, the departures from the recommended data set are: 1020 K, -0.1%, 1230 K, +0.3%. - 100% RbBr, the departures from the recommended data set are: 980 K, -0.03%, 1140 K, 0.00%.
→ ~ ,	. 01	100-1, 1140 K, U. UUA.

Table 2.1.b Density data reliability statements (continued)

Number	Reliability estimates
623	For 100% RbBr, the departures from the recommended data set are: 980 K, -0.03%, 1180 K, 0.00%.
624	For 100% TIBr, the departures from the recommended data set are: 970 K, +0.13%, 1030 K, -0.04%.
625	For 100% RbBr, the departures from the recommended data set are: 970 K, +0.2%, 1030 K, +0.3%.
626	For 100% RbI, the departures from the recommended data set are: 950 K, -0.02%, 1120 K, -0.11%.
627	For 100% RbC1, the departures from the recommended data set are: 1020 K, -0.1%, 1230 K, +0.3%.
628	For 100% UCl ₄ , the results have been advanced as the recommended data set.
629	For 100% RbC1, the departures from the recommended data set are: 1010 K, -0.07%, 1030 K, -0.3%.
630	For 100% ZnCl ₂ , the departures from the recommended data set are: 700 K, +0.2%, 740 K, +0.2%.
631	For 100% RbC1, the departures from the recommended data set are: 1040 K, +0.4%, 1100 K, +0.7%.
632	For 100% T1NO3, the departures from the recommended data set are: 490 K, +0.09%, 620 K, +0.15%.
633	For 100% RbN03, the departures from the recommended data set are: 600 K, +0.5%, 640 K, +0.6%.
634	For 100% SbI3, the results have been advanced as the recommended data set.
635	
	For 100% SbBr ₃ , the results have been advanced as the recommended data set.
63 6	For 100% SbCl ₅ , the results have been advanced as the recommended data set.
637	For 100% SbCl ₃ , the results have been advanced as the recommended data set.
638	For 100% ZnCl ₂ , the departures from the recommended data set are: 630 K, -0.06%, 760 K, +1.4%.
639	For 100% SnCl ₂ , the departures from the recommended data set are: 550 K, -1.5%, 600 K, -1.6%.
640	For 100% TiCl ₄ , the departures from the recommended data set are: 295 K, +0.3%, 330 K, +0.3%.
641	For 100% SnCl ₄ , the departures from the recommended data set are: 295 K, -0.4%, 330 K, -0.1%.
642	For 100% T1C1, the departures from the recommended data set are: 780 K, +0.12%, 920 K, -0.08%.
643	For 100% TIBr, the departures from the recommended data set are: 790 K, +0.6%, 920 K, +0.07%.
644	For 100% TII, the departures from the recommended data set are: 740 K, -0.4%, 1170 K, -0.03%.
545	For 100% TIBr, the departures from the recommended data set are: 740 K, -0.3%, 1170 K, -0.8%.
546	For 100% ZnCl ₂ , the departures from the recommended data set are: 630 K, -0.06%, 720 K, +0.1%.
647	For 100% T1C1, the departures from the recommended data set are: 730 K, -0.09%, 780 K, +0.02%.
648	For 100% T1N0 $_3$, the departures from the recommended data set are: 510 K, -0.8%, 550 K, -0.5%.
549	For 100% T1NO ₂ , the results have been advanced as the recommended data set.

Table 2.1.c Density data comments

Flag Comment

- a The previous evaluation is correct and still holds as the recommended data base. Accuracy limits have been upgraded in light of the Molten Salts Standards Program.
- b The equation in the previous evaluation is incorrect.
- c There are new data but they do not change the recommended equation or uncertainty.
- d There are new data and together with the results of the Molten Salts Standards Program, a shift from the previous evaluation is recommended. The new correlation equation is listed herewith.
- e The previously recommended data have been refitted to a linear correlation function.
- f The previously recommended data have been refitted to an exponential correlation function.
- g The previously reported results were graphical. These correlations were digitized and refitted to the equations herewith.
- i The previously reported results have been upgraded.
- k Systems not included in the previous work.
- Some of the numerical property values in the previous recommended data tables have been found to be incorrect. The correlation equations are correct.
- m The previously recommended correlation has been replaced by the polynomial herewith.
- n The previously recommended data base has been refitted to a polynomial correlation equation.
- o These compositions are: Equivalent Percent.
- p Measurements in the recommended work include results at super-atmospheric pressures.
- q Results upgraded and supplemented with new input.
- u Compositions are: Weight Percent.
- v1 Modest density increase with increasing temperature was reported.
- z The amounts of NaC1 and KC1 were fixed at the equi-molar ratio (1:1) throughout this series of measurements.

Table 2.1.d Density data references

Number Reference G.J. Janz, F.W. Dampier, G.R. Lakshminarayan, P.K. Lorenz, and R.P.T. Tomkins, Natl. Stand. Ref. Data Ser., NBS, Washington, D.C. <u>15</u>, 1 (1968) G.J. Janz, R.P.T. Tomkins, and C.B. Allen, J. Phys. Chem. Ref. Data 8, 125 (1979). G.J. Janz, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 12, 591 (1983). G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Jr. Downey, and S.K. Singer, J. Phys. Chem. Ref. Data 6, 409 (1977). G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Jr. Downey, G.L. Gardner, U. Krebs, and S.K. Singer, J. Phys. Chem. Ref. Data 4, 871 (1975). 6 G.J. Janz, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 9, 831 (1980). G.J. Janz, U. Krebs, H.F. Siegenthaler, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 1, 581 (1972). L.A. King, A.A. Fannin,, Jr., and R.A. Carpio, J. Chem. Eng. Data 24, 22 (1979). R.A. Carpio, F.C. Kibler, J.L.A. King, W. Brockner, K. Torklep, and H.A. Oye, Ber. Bunsenges. Phys. Chem. <u>85</u>, 31 (1981). 10 G.J. Janz, G.L. Gardner, U. Krebs, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 3, 1 (1974). 11 R. Fernandez, K. Grojtheim, and T. Ostvold, Light Metals1025 (1986). 12 B Podafa, L Sauchenko, and P Dubovoi, Ukr. Khim. Zhur. 41, 546 (1975). ¹³ J Mochinaga, and Y Shimada, Chiba Daigaku Kogakubu Kenkyu Hokoku <u>25</u>, 123 (1973). 14 B. Lillebuen, Ph.D. Thesis, Tech. Univ. Norway, Trondheim (1969). 15 J. Mochinaga, Pre-publication data submitted to MSDC-RPI (1986). J Mochinago, and K Igarashi, Bull. Chem. Soc. Japan 48, 713 (1975). A. G. Bergman,, et al, Izv. Sekt. Fiz-Khim Anal Inst. Obshch. 26, 156 (1955). 18 L. Huayi, G. Chuntai, and T. Dingxiang, Int. Conf. Rare Earths Dev. and Applications; 2, 1147 (1985). 19 T. Yoko, Ph.D. Thesis, Dept. Metallurgy, Tohoku Univ., Sendai, Japan (1979). 20 T. Ejima, T. Yoko, G. Saito, and Y. Kato, Nippon Kinzoku Gakkaishi 43, 929 (1979). 21 F.M. Jaeger, Z. Anorg. Chem. 101, 1 (1917). 22 J. Kutscher, and A. Schneider, Z. Anorg. Allg. Chem. 408, 121 (1974). Junichi Mochinaga, Pre-publication data submitted to MSDC-RPI (1986). 24 G. J. Janz, Pre-publication data submitted to MSDC-RPI (1977). 25 H. A. Hjuler, S. von Winbush, R. W. Berg, and N. J. Bjerrum, Proc. Electrochem. Soc. 1, 657 (1987). ²⁴ G. Llu, T. Utigard, and J.M. Toguri, J. Chem. and Eng. Data 31, 342 (1986). ²⁷ T. Fujisawa, T. Utigard, and J.M. Toguri, Can. J. Chem. <u>63</u>, 1132 (1985). J. Mochinaga, and K. Irisawa, Bull. Chem. Soc. Jap. 47, 364 (1974).

- 28 S. Yoshida, T. Ayano, and T. Kuroda, Denki Kagaku 41, 427 (1973).
- 30 J. Tominaga, K. Igarashi, Y. Iwadate, and J. Mochinaga, Proc. 17th Symp. Molten Salt Chem. Japan 41 (1984).
- 31 N. Araki, et al., Proc. 8th Japan Symp. Thermophysical Properties 8, 1 (1987).
- 32 A Kuzmich'eva, and M Zakhvalinskii, Vzaimodeistvie Khloridov Sul-fatov Shcheloch. Shchelochnozemel-N., 180 (1972).
- 33 A.M. Josefson, and A. Kvist, Z. Naturforsch. A 25, 1918 (1970).
- 34 S.M. Upton, PhD. Thesis, University of Southhampton (1980).
- 35 A.S. Kucharski, and S.N. Flengas, J. Electrochem. Soc. <u>121</u>, 1298 (1974).
- E.J. Cairns, C.E. Crouthamel, A.K. Fischer, M.S. Foster, J.C. Hesson, C.E. Johnson, H. Shimotake, and A.D. Tevebaugh, Prog. Rep. USAEC ANL-731661 (1967).
- ³⁷ G. Brautigam, and H.H. Emons, Z. Anorg. Allg. Chem. <u>394</u>, 271 (1972).
- 38 L.A. Niselson, A.I. Pustilnik, and T.D. Sokolova, Russ. J. Inorg. Chem. 9, 574 (1964).

Table 2.2.a Surface Tension data

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
	AgBr				
0	g = 171.3 - 0.025 T	733-893	±1%	1	a, j
	AgBr~AgC1		- 170	•	ω, ,
100	g = 216.4 - 0.052 T	733-973	(1)	2	a,e
-90	g = 205.23 - 0.04182 T	773-883	(1)	2	a, e
-80	g = 198.41 ~ 0.03727 T	773-883		2	a, e
)-70	g = 192.6 - 0.03364 T	773-883		2	a, e
)-60	g = 187.69 ~ 0.0309 T	773-883		2	a, e
)-50	g = 181.37 ~ 0.02636 T	773-883		2	a, e a, e
0-40	g = 177.67 ~ 0.02455 T	773-883		2	
0-30	g = 174.07 ~ 0.02273 T	773-883		2	a, e
0-20	g = 170.06 ~ 0.02 T	773-883		2	a, e
0-10	g = 167.25 ~ 0.01818 T			2	a, e
00-0		773-883	(0)		a, e
0-0	g = 171.3 - 0.025 T	733-893	(2)	2	а, є
100	AgBr-AgI g = 134.08 - 0.023 T	770 070	(2)	•	
)-90		773-873	(3)	2	а, є
)-80)-80	g = 140.04 - 0.028 T	773-873		2	a,€
	g = 142.44 - 0.028 T	773-873		2	a, e
70	g = 148.34 ~ 0.032 T	773-873		2	a, e
0-60	g = 152.21 - 0.033 T	773-873		2	а, е
0-50	g = 158.03 - 0.036 T	773-873		2	a, (
0-40	g = 164.05 - 0.039 T	773-873		2	a, 0
0-30	g = 167.27 - 0.038 T	773-873		2	а,
)-20	g = 169.26 - 0.035 T	773-873		2	а,
0-10	g = 168.25 - 0.028 T	773-873		2	а,
00-0	g = 171.3 - 0.025 T	733-893	(4)	2	a,
0-80	AgBr-KBr g = 173.83 - 0.07999 T	973-1023		3	a,(
0-70	g = 174.83 - 0.07999 T	973-1023		3	a,
0~60	g = 155.37 - 0.05999 T	973-1023		3	a, e
0-50	g = 156.37 - 0.05999 T	973-1023		3	
0-40	g = 158.37 - 0.05999 T	973-1023		3	a, e
0-30	g = 162.37 - 0.05999 T	973-1023		3	a, (
0-20	g = 189.82 - 0.07998 T	973-1023		3	a, (
0-10	g = 203.83 - 0.07999 T				a, (
00-0	g = 171.3 - 0.025 T ,	973-1023	(=)	3	а,
	AgBr-KC1	733-1023	(5)	3	a, (
-100	g = 172.39 - 0.071 T	1070-118	0 (6)	2	а
90	g = 183.89 - 0.0837 T	1080-114	0	2	а
0-80	g = 176.04 - 0.075 T	1010-112	0	2	а
0-70	g = 175.43 - 0.0742 T	990-1090		2	а
0-60	g = 172.93 - 0.0687 T	880-1 0 60		2	a
0-50	g = 172.46 - 0.066 T	830-1030		2	a
0-40	g = 176.5 - 0.0679 T	770-960		2	a
0-30	g = 173.61 - 0.0596 T	690-900		2	a
0-10	g = 179.66 - 0.0505 T	690-920		2	a
00-0	g = 188.9 - 0.0399 T	730-1000	(7)	2	a
	AgBr-NaBr	700-1000	(7)		a
-100	g = 173.472 - 0.068195 T	1060-118	0 (8)	3	a
0-90	g = 186.48 - 0.078221 T	1020-118		3	a
0-70	g = 183.874 - 0.072324 T	980-1120		3	a
0-50	g = 178.118 - 0.061527 T	960-1120		3	a
0-30	g = 180.177 - 0.055568 T	840-1020		3	a
	g = 190.705 - 0.060253 T	840-1000		3	
J-2U		U40 1000		v	а
0-20 0-10	g = 186.921 - 0.048467 T	780-1000		3	а

Table 2.2.a Surface Tension data (continued)

AgB AgB					Surface Tension (mN m ⁻¹)	
100	ef. Com	Ref.	Accur.	T range(K)	%) Equation	mo1 %)
990					AgBr-NaC1	
-80	2 :	2	(10)	1100-1200	g = 211.509 ~ 0.090033 T	100
1-70	2	2		1060-1180	g = 206.472 ~ 0.086371 T	90
0-56	2	2		1060-1160	g = 212.169 - 0.090857 T	0-80
D-20	2	2		1020-1140	g = 190.282 - 0.071089 T	0-70
0-20	2	2		980-1100	g = 189.783 - 0.066856 T	0-50
0-10	2	2		940-1080	g = 204.214 - 0.075125 T	0-30
0-10	2				g ≈ 207.201 - 0.075435 T	0-20
00-0	2				g = 211.933 - 0.073619 T	0-10
AgC1	2		(11)		g ≈ 188.918 - 0.039969 T	00-0
1000	_	_	(,			
AgC1-KBr	1	1	±1%	733-973	-	00
0-90						
0-80	2	2	(12)	1030-1140	g = 167.9 - 0.0753 T	- 100
0-70	2	2		1040-1120	g = 167.51 - 0.0734 T	0-90
0-60	2	2		1000-1140	g = 163.67 - 0.0682 T	0-80
10-50	2	2		940-1080	g = 168.95 - 0.0705 T	80-70
10-50	2	2		910-1030	g = 180.67 ~ 0.0789 T	10-60
34.9-35.1	2				g = 165.85 ~ 0.0593 T	0-50
10-30	2					4.9-35.1
100-20	2				-	
30-10	2				•	
100-0	2				• • • • • • • • • • • • • • • • • • • •	
AgC1-KC1 10-60	2		(13)			
10 - 60	_	-	(10)	740 370		
30-50 g = 189.84 - 0.08 T 873-973 30-40 g = 194.84 - 0.08 T 873-973 30-20 g = 192.11 - 0.07 T 873-973 30-20 g = 199.11 - 0.07 T 873-973 30-10 g = 191.65 - 0.05 T 873-973 3100-0 g = 216.4 - 0.052 T 733-973 3100-0 g = 173.472 - 0.068 195 T 1060-1180 30-10 g = 184.798 - 0.076632 T 1040-1160 30-70 g = 181.924 - 0.068341 T 1040-1160 50-50 g = 203.302 - 0.079272 T 1020-1160 80-20 g = 204.73 - 0.06369 T 920-1060 80-20 g = 204.73 - 0.06369 T 880-1060 99-10 g = 213.316 - 0.059036 T 740-960 100-0 g = 224.601 - 0.056412 T 740-960 0-100 g = 215.3 - 0.1 T 773-873 20-80 g = 205.57 - 0.09 T 773-873 30-70 g = 215.57 - 0.09 T 773-873 40-60 g = 212.57 - 0.09 T 773-873 50-50 g = 215.57 - 0.09 T 773-873 50-60 g = 215.84 - 0.08 T 773-873	4	4		873-973	•	10-60
\$60-40	4					
100-030	4				•	
80-20	4					
90-10	4					
100-0	4	-			• 121	
AgC1-NaBr 0-100	4		(14)		•	
0-100 g = 173.472 - 0.068195 T 1060-1180 (15) 10-90 g = 184.798 - 0.076632 T 1040-1160 30-70 g = 181.924 - 0.068341 T 1040-1160 50-60 g = 203.302 - 0.079272 T 1020-1160 70-30 g = 208.835 - 0.07349 T 920-1060 80-20 g = 204.73 - 0.060369 T 880-1060 90-10 g = 213.316 - 0.059036 T 780-960 100-0 g = 224.601 - 0.056412 T 740-960 (16) AgC1-PbC12 0-100 g = 215.3 - 0.1 T 773-973 (17) 10-90 g = 215.3 - 0.1 T 773-873 20-80 g = 208.57 - 0.09 T 773-873 30-70 g = 210.67 - 0.09 T 773-873 40-60 g = 215.67 - 0.09 T 773-873 50-50 g = 215.84 - 0.08 T 773-873 60-40 g = 215.84 - 0.08 T 773-873	•	•	(14)	700-970	•	100-0
10-90	2	,	(15)	1060-1180		0-100
30-70	2		(13)			
50-50 g = 203.302 - 0.079272 T 1020-1160 70-30 g = 208.835 - 0.07349 T 920-1060 80-20 g = 204.73 - 0.060369 T 880-1060 90-10 g = 213.316 - 0.059036 T 780-960 100-0 g = 224.601 - 0.056412 T 740-960 (16) AgC1-PbC12 0-100 g = 215.3 - 0.1 T 773-973 (17) 10-90 g = 215.3 - 0.1 T 773-873 20-80 g = 208.57 - 0.09 T 773-873 30-70 g = 210.57 - 0.09 T 773-873 40-60 g = 215.57 - 0.09 T 773-873 50-50 g = 215.57 - 0.09 T 773-873 60-40 g = 210.84 - 0.08 T 773-873	2				•	
70-30 g = 208.835 - 0.07349 T 920-1060 80-20 g = 204.73 - 0.060369 T 880-1060 90-10 g = 213.316 - 0.059036 T 780-960 100-0 g = 224.601 - 0.056412 T 740-960 (16) AgC1-PbC12 0-100 g = 215.3 - 0.1 T 773-973 (17) 10-90 g = 215.3 - 0.1 T 773-873 20-80 g = 208.57 - 0.09 T 773-873 30-70 g = 210.57 - 0.09 T 773-873 40-60 g = 215.57 - 0.09 T 773-873 50-50 g = 215.57 - 0.09 T 773-873 60-40 g = 210.84 - 0.08 T 773-873	2					
80-20	_	_			•	
90-10	2					
100-0	2				-	
AgC1-PbC1 ₂ 0-100	2		(16)			
0-100 g = 214.3 - 0.1 T 773-973 (17) 10-90 g = 215.3 - 0.1 T 773-873 20-80 g = 208.57 - 0.09 T 773-873 30-70 g = 210.57 - 0.09 T 773-873 40-60 g = 212.57 - 0.09 T 773-873 50-50 g = 215.57 - 0.09 T 773-873 60-40 g = 210.84 - 0.08 T 773-873 70-30 g = 215.84 - 0.08 T 773-873	2	2	(16)	/40-960		100-0
10-90 g = 215.3 - 0.1 T 773-873 20-80 g = 208.57 - 0.09 T 773-873 30-70 g = 210.57 - 0.09 T 773-873 40-60 g = 212.57 - 0.09 T 773-873 50-50 g = 215.57 - 0.09 T 773-873 60-40 g = 210.84 - 0.08 T 773-873 70-30 g = 215.84 - 0.08 T 773-873			(47)	770 070	-	0 100
20-80 g = 208.57 - 0.09 T 773-873 30-70 g = 210.57 - 0.09 T 773-873 40-60 g = 212.57 - 0.09 T 773-873 50-50 g = 215.57 - 0.09 T 773-873 60-40 g = 210.84 - 0.08 T 773-873 70-30 g = 215.84 - 0.08 T 773-873	4		(1/)		-	
30-70 g = 210.57 - 0.09 T 773-873 40-60 g = 212.57 - 0.09 T 773-873 50-50 g = 215.57 - 0.09 T 773-873 60-40 g = 210.84 - 0.08 T 773-873 70-30 g = 215.84 - 0.08 T 773-873	4					
40-60 g = 212.57 - 0.09 T 773-873 50-50 g = 215.57 - 0.09 T 773-873 60-40 g = 210.84 - 0.08 T 773-873 70-30 g = 215.84 - 0.08 T 773-873	4				•	
50-50 g = 215.57 - 0.09 T 773-873 60-40 g = 210.84 - 0.08 T 773-873 70-30 g = 215.84 - 0.08 T 773-873	4	4				
60-40 g = 210.84 - 0.08 T	4	4			•	
70-30 g = 215.84 - 0.08 T	4	4		773-873	0 g = 215.57 - 0.09 T	50-50
•	4	4		773-873	0 g = 210.84 - 0.08 T ,	60-40
80-20 g = 205.38 - 0.06 T	4	4		773-873	g = 215.84 - 0.08 T	70-30
	4	4		773-873	20 g = 205.38 - 0.06 T	80-20
90-10 g = 204.65 - 0.05 T	4	4		773-873	0 g = 204.65 ~ 0.05 T	90-10
100-0 g = 216.4 ~ 0.052 T	4	4	(18)	733-973	o g = 216.4 ~ 0.052 T	100-0
Ean additional AcCl overtown coo . AcPn					additional AcCl systems acc. AsDn-	Eon nedditi
For additional AgC1 systems, see : AgBr- AgI					auditional agol systems, see : Agur~ AgI	ror add1110
100 g = 134.08 - 0.023 T	2	2	±1%	773-873	g = 134.08 - 0.023 T	100

Table 2.2.a Surface Tension data (continued)

(1 P/)	Surface Tension (mN m ⁻¹)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
	AgNO ₃				
00	g = 179.2 - 0.0613 T	495-625	±1%	1	a,j
	Agno ₃ -Csno ₃				
5-75	g = 146.6 - 0.075 T	580-670		5	a,e
0-50	g = 150 - 0.072 T	490-670		5	a,e
7.5-32.5	g = 159.6 - 0.08 T	445-670		5	a, e
75-25	g = 160 - 0.073 T	445-670		5	a, e
30-10	g = 168.1 - 0.072 T	460-670		5	а, є
	AgN03-KN03				
- 100	g = 148.1642 - 0.0635443 T	520-820	(19)	5	а, е
0-90	g = 150.4489 - 0.0635443 T	460-820		5	а,
20-80	g = 151.9213 - 0.0635443 T	440-820		5	а,
30-70	g = 152.9633 - 0.0635443 T	420-820		5	а,
10-60	g = 153.9571 - 0.0635443 T	420-820		5	a,
50-50	g = 155.2848 - 0.0635443 T	440-820		5	a,
60-40	g = 157.3285 - 0.0635443 T	480-820		5	а,
53-37	g = 158.1384 - 0.0635443 T	500-820		5	a,
70-30	g = 160.4704 - 0.0635443 T	520-820		5	a,
30-20	g = 165.0926 - 0.0635443 T	560-820		5	a,
90-10	g = 171.5771 - 0.0635443 T	600-820		5	a,
100-0	g = 180.3062 - 0.0635443 T	640-820	(20)	5	a,
	AgN03-LiN03				
0-100	g = 144.9 - 0.055 T	570-670	(21)	5	а,
10-90	g = 152.4391 - 0.0645621 T	520-670		5	a,
20-80	g = 154.4689 - 0.0645621 T	520-670		5	a,
30-70	g = 156.7762 - 0.0645621 T	505-670		5	a,
40-60	g = 159.361 - 0.0645621 T	490-670		5	a,
50-50	g = 162.2234 - 0.0645621 T	475-670		5	a,
60-40	g = 165.3633 - 0.0645621 T	475-670		5	a,
70-30	g = 168.7808 - 0.0645621 T	460-670		5	a,
75-25	g = 170.5936 - 0.0645621 T	460-670		5	a,
80-20	g = 172.4758 - 0.0645621 T	460-670		5	a,
90-10	g = 176.4483 - 0.0645621 T	475-670		5	а,
100-0	g = 180.698 - 0.06456 T	490-670	(22)	5	a,
	Agno ₃ -nano ₃			-	,
0-100	g = 153.99 - 0.06 T	590-673	(23)	5	а,
10-90	g = 157.9714 - 0.065391 T	580-680	(20)	5	۵, a,
19.5-80.5	g = 158.848 - 0.065391 T	505-670		5	a, a,
20-80	g = 158.9044 - 0.065391 T	580-670		5	a, a,
30-70	g = 160.2474 - 0.065391 T	565-670		5	a,
40-60	g = 162.0004 - 0.065391 T	550-670		5	a, a,
50-50	g = 164.1634 - 0.065391 T	535-670		5	a,
60-40	g = 166.7363 - 0.065391 T	520-670		5	a,
70-30	g = 169.7192 - 0.065391 T	520-670		5	
80-20	g = 173.1121 - 0.065391 T	505-670		5	a,
90~10	g = 176.915 - 0.065391 T	490-670		5	a,
100-0	g = 181.1279 - 0.065391 T	490-670	(24)	5 5	a,
	AgN03-RbN03	430-070	(24)	5	a,
0-100	·		/ ** *	_	
25-75	g = 156.976 - 0.0830003 T	500-680		5	a
	g = 155.036 - 0.0769998 T	460-640		5	a
50-50 75-25	g = 155.844 - 0.0730002 T	420-620		5	a
75-25 90-10	g = 162.524 - 0.0699998 T	440-620		5	a
90-10	g = 170.416 - 0.0687427 T	480-660		5	а
100-0	g = 181.731 - 0.0659999 T	600-780	(26)	5	a

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
	AgP03				
00	g = 137.2 + 0.0716 T	760-775	n.a.	6	a
	A1C13				
00	g = 42.4 - 0.0704 T	470-590	n.a.	1	a,j
	A1F3-NaF				
-100	g = 289.6 - 0.082 T	1275-1350	(27)	7	a.
3.6-86.4	g = 304.5 - 0.113 T	1275-1350		7	a
9.0-81.0	g = 328.8 - 0.14 T	1275-1350		7	a
1.9-78.1	g = 309.3 - 0.13 T	1275 - 1350)	7	a
5.0-75.0	g = 297 - 0.128 T	1275-1350)	7	a
7.4-72.6	g = 262.5 - 0.106 T	1275-1350)	7	a
	A1 ₂ 0 ₃				
00	(T=2323 K, g=690)		±7%	1	a,j
	Al ₂ 0 ₃ -CaF ₂				, -
5-0 A1 ₂ 0 ₃	g = 256.2 - 0.485 C	1873	(28)	8	a
2 0		10.0	(20)	·	-
	A1203-KF-Na3A1F6			_	
0-0-100	g = 311.27 - 0.138 T	1273-1373		9	k
.3-45.6-53.1	g = 280.999 - 0.119073 T	1255-1345		9	k
.8-13.0-85.2	g = 292.489 - 0.126807 T	1276-1355		9	k
.6-32.3-63.1	g = 261.278 - 0.106332 T	1224-1354		9	k
.7-8.3-87.0	g = 278.168 - 0.116577 T	1275-1364		9	k
. 2-47.7-47.1	g = 254.15 - 0.102298 T	1200-1356	3	9	· k
.6-39.6-54.8	g = 253.337 - 0.101469 T	1225-1354		9	k
3.6-15.3-76.1	g = 263.064 - 0.106643 T	1248-1352	2	9	k
1.2-22.6-66.2	g = 246.992 - 0.095686 T	1229-1355	i	9	k
1.7-31.1-57.2	g = 244.662 - 0.095327 T	1219-1346	i .	9	k
2.2-38.2-49.6	g = 238.875 - 0.092149 T	1190-1353	3	9	k
8.5-29.9-51.6	g = 232.105 - 0.085339 T	1216-1344	1	9	k
8.5-21.7-59.8	g = 237.626 - 0.0884067 T	1219-1354	l	9	k
8.6-11.8-69.6	g = 250.759 - 0.097365 T	1234-1356	5	9	k
	A1203-Li2C03				
100-93 Li ₂ C0 ₃	g = - 8753.7 + 188.04 C - 0.981 C ²	1038	(30)	8	а
	A1203-Na3A1F6				
D- 100	g = 297 - 0.128 T	1273-1353	3 (31)	8	a
D-100	g = 311.27 - 0.138 T	1273-137		9	a k
3.78-91.22	g = 257.76 - 0.09902 T	1270-1350		8	a
9.8-90.2	g = 266.923 - 0.107985 T	1272-1360		9	k
18.6-81.4	g = 262.261 - 0.105202 T	1245-1363		9	k
18.62-81.38	g = 272.76 - 0.11504 T	1270-1350		8	
22.7-77.3	g = 256.18 - 0.100824 T	1322-1445		9	a
26.6-73.4	g = 258.39 - 0.102369 T	1325-142		9	k
26.66-73.34	g = 298.29 - 0.13006 T				k
.0.00 70.04	BaBr ₂	1270-135	J	8	а
100	g = 225.2 - 0.0644 T	1138-128	2 ±1%	1	a,j
	BaBr ₂ -CsBr				
0-100 BaBr ₂	$g = 69.326 + 0.1742 C + 0.018391 C^2 - 4.008 \times 10^{-4} C^3 + 2.8268 \times 10^{-6} C^4$	1123	(33)	3	a,n
	BaBr ₂ -KBr				
0-100 BaBr ₂	$g = 83.14 + 0.2706 C + 0.011617 C^2 - 2.1045 \times 10^{-4} C^3 + 1.3699 \times 10^{-6} C^4$.	1123	(34)	3	a,n
_	BaBr ₂ -NaBr			•	w,"
1-100 Baba-	-				
0-100 BaBr ₂	g = 96.979 + 0.4911 C + 6.5272 x 10 ⁻⁴ C ²	1123	(35)	3	a,n
	BaBr ₂ -RbBr				

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
	BaCl2				
0	g = 218.26 - 0.03973 T	1240-1360		4	d, i
	BaCl2-CaCl2				
- 100	g = 205.83 - 0.0561 T	1070-1140	(37)	4	а
5.0-75.0	g = 203.69 - 0.047 T	930-1070	, ,	4	a
0-60	g = 210.4 - 0.0501 T	880-1070		4	а
	BaCl ₂ -CsCl				
-100	g = 163.46 - 0.07841 T	940-1060	(38)	4	a
0-90	g = 162.6 - 0.0774 T	1080-1260)	4	а
0-80	g = 159.4 - 0.0743 T	1080-1260)	4	а
0-70	g = 157.4 - 0.0715 T	1080-1280)	4	а
0-60	g = 157.4 - 0.0698 T	1120-1260)	4	а
0-50	g = 157.6 - 0.0661 T	1100~1260)	4	а
0-40	g = 161.5 - 0.064 T	1120-1260)	4	а
0-30	g = 165.1 - 0.0612 T	1140-1280)	4	a
0-20	g = 179.9 - 0.0584 T	1200-1300)	4	a
0-10	g = 179.4 - 0.0427 T	1220-1320)	4	a
00-0	g = 216.1 - 0.0381 T	1260-1360	(39)	4	a
	BaC1 ₂ -KC1				
- 100	g = 171.1364 - 0.069911 T	1110-1190	(40)	4	a
. 9-96. 1	g = 178.7136 - 0.075125 T	1100-1170		4	а
.4-91.6	g = 163.2767 - 0.058786 T	1090-1160)	4	а
3.5-86.5	g = 178.0157 - 0.070131 T	1100-1160)	4	а
4.4-75.6	g = 180.4021 - 0.066294 T	1090-1160)	4	а
9.4-70.6	g = 166.1773 - 0.052091 T	1090~1170)	4	а
4.0-66.0	g = 175.6408 - 0.058798 T	1080-1160	3	4	a
37.3-62.7	g = 186.0652 - 0.06669 T	1100-1160	0	4	а
2.3-57.7	g = 168.9015 - 0.048698 T	1100-1170	0	4	а
7.7-52.3	g = 176.1607 - 0.052083 T	1100-1160	0	4	а
32.3-37.7	g = 224.625 - 0.084254 T	1130-1230	0	4	а
32.1-17.9	g = 233.9472 - 0.076421 T	1180~1260	D	4	а
00-0	g = 262.9968 - 0.078938 T	1260~1310	0 (41)	4	а
	BaC1 ₂ -KF				
) 1 0 0	g = 246.17 - 0.0887 T	1173-1298	8 (42)	10	k
i~95	g = 197.93 - 0.0585 T	1073-127		10	k
1-89	g = 199.94 - 0.0645 T	1073-127	3	10	k
8-82	g = 193.33 - 0.0657 T	1073-127		10	k
25-75	g = 179.46 - 0.059 T	1123-132		10	k
33-67	g = 157.62 - 0.0459 T	1173-132		10	k
43-5 7	g = 163.49 - 0.043 T	1173-134	В	10	k
54-46	g = 182.52 - 0.056 T	1223-137		10	k
57-33	g = 183.47 - 0.0504 T	1173-137		10	k
32-18	g = 213.12 - 0.0581 T	1173-137		10	k
100-0	g = 216.1 - 0.0381 T	1273-137		10	k
	BaC1 ₂ -LaC1 ₃			_	·
10-90	g = 187.4 - 0.0526 T	1110-126	0	4	а
25-75	g = 194.6 - 0.0526 T	1070-126		4	a
10-60	g = 197.9 - 0.0493 T	1100-128		4	a
50-50	g = 201 - 0.0476 T	1100-128		4	a
55-45	g = 202.6 - 0.0465 T	1140-127		4	a
70-30	g = 205.2 - 0.0419 T			4	
	•	1200-129		•	a
86-14	g = 208.2 - 0.0375 T	1250-132	U	4	а
	BaCl ₂ -LiCl	_			
-100	g = 214.86 - 0.08294 T	880-1060		4	а
0.2-89.8	g = 216.2 - 0.0799 T	880-1060		4	а
5.0-75.0	g = 215.4 - 0.0792 T	960-1060		4	a

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref .	Comment
9.4-60.6	g = 215.2 - 0.0675 T	920-1060		4	a
3.3-46.7	g = 211 - 0.0582 T	1000-1060		4	a
7.7-32.3	g = 214.5 - 0.0528 T	1080-1160		4	a
5.0-15.0	g = 216.6 - 0.045 T	1160-1220		4	a
00-0	g = 218.26 - 0.03973 T	1240-1360	(45)	4	a
	BaC12-Li2S04				
-100	g = 300.08 - 0.064 T	1173-1373	(46)	8	a,e
-95	g = 401.67 - 0.16 T	1273-1323		8	a,e
0-90	g = 497.52 - 0.24 T	1273-1323		8	a,e
0-70	g = 243.39 - 0.06 T	1273-1323		8	a,e
0-50	g = 290.32 - 0.1 T	1273-1323		8	a,e
5-25	g = 211.93 - 0.04 T	1273-1323	1	8	a,e
00-0	g = 251.39 - 0.06 T	1273-1323	(47)	8	a,e
	BaC1 ₂ -MgC1 ₂				
.0-100.0	g = 89 - 0.016 T	1030-1190	(48)	4	a
0.0-80.0	g = 121.4 - 0.035 T	1030-1190)	4	а
0.0-60.0	g = 143.1 - 0.04 T	1030-1190)	4	a
0.0-40.0	g = 164.2 - 0.041 T	1030-1190		4	a
5.0-25.0	g = 217.5 - 0.07 T	1030-1190		4	a
	BaCl ₂ -NaCl				•
- 100	g = 191.2 - 0.072 T	1080-1240	(49)	4	a
0-80	g = 191.2 - 0.061 T	1070-1180		4	a,b,
0-70	g = 178.3 - 0.048 T	1080-1190		4	a a
0-50	g = 237.8 - 0.095 T	1080-1190		4	a,b,
0-40	g = 210.7 - 0.059 T	1110-1240		4	a, 5,
0-30	g = 218.9 - 0.055 T	1170-1230		4	a,b,
0-20	g = 235.5 - 0.067 T	1190-1230		4	a, 5,
00-0	g = 218.26 - 0.03973 T	1240-1360		4	a
	BaCl ₂ -NaF	,_,,	(00)	•	_
- 100	g = 304.6 - 0.0947 T	1273-1373	3 (51)	11	k
0-90	g = 211.9 - 0.04853 T	1173-1373		11	k
20-80	g = 203.3 - 0.05347 T	1173-1373		11	k
3~67	g = 191.5 - 0.0496 T	1173-1273		11	k
3-57	g = 187.5 - 0.0412 T	1173-1273		11	k
60-50	g = 195.3 - 0.0412 T	1173-127		11	k
0-40	g = 213.4 - 0.0528 T	1173-137		11	k
9-31	g = 230.1 - 0.0638 T			11	
30-20	g = 220.9 - 0.0556 T	1173-137			k 1.
100-0	g = 216.1 - 0.0381 T	1173-137		11	k
00-0	BaC1 ₂ -RbC1	1273-137	3 (52)	11	k
0-70 BaCl ₂	g = 84.6224 + 0.8923 C - 0.017576 C ² + 1.8415 x 10 ⁻⁴ C ³	1123	(53)	4	a,n
_	BaFC1				
100	g = 211.8 - 0.0328 T	1323-142	3	11	k
	BaFC1-KC1				
100	g = 167.01 - 0.0635 T	1073-127	3 (54)	10	k
0-90	g = 167.77 - 0.0622 T	1073-127	3	10	k
0-80	g = 166.04 - 0.0582 T	1073-127	3	10	k
10-70	g = 160.07 - 0.0513 T	1073-127		10	k
0-60	g = 160.51 - 0.0487 T	1073-127		10	k
60-50	g = 183.45 - 0.0605 T	1123-132		10	k
0-40	g = 167.19 - 0.0457 T	1173-134		10	k
0-30	g = 187.45 - 0.0587 T				
0-20	g = 185.5 - 0.0404 T	1223-137		10	k
		1273-137		10	k
					k k
90-10 100-0	g = 215.3 - 0.0456 T	1323-142 1323-142		10 10	

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m⁻¹)				
(mol %)	Equation	T range(K)	Accur.	Ref .	Commen
	BaFC1-NaC1				
-100	g = 235.2 - 0.1076 T	1173-1373	(56)	11	k
08-0	g = 181.8 - 0.031 T	1073-1273		11	k
0-60	g = 166.7 - 0.0348 T	1073-1273		11	k
0-40	g = 176.2 - 0.0332 T	1173-1273		11	k
0-20	g = 191.9 - 0.0392 T	1273-1373		11	k
00-0	g = 211.8 - 0.0328 T	1323-1423	(57)	11	k
	BaF ₂ -CaSiO ₃				
00-86 CaSiO3	g = 1221 - 28.37 C + 0.21 C ²	1823	(58)	8	a
•	BaF ₂ -KC1				
-100	g = 167.01 - 0.0635 T	1073-1273	(59)	10	k
-95	-		,,		k
1-89	_				k
8-82					k
5-75	-				k
3-67	•				k
0 07		1120 1020			•
-100		1173-1373	(60)	11	k
0-90	•				k
0-80	-				 k
0-70	-				k
0-60	•				k
0-50	-				k
i9-31	•				
5-25					
5-25		11/3-13/3)	11	k
100		1000-1221	+19		_
		1099-1231	± 1%	'	а,,
100		070 000			
100		8/3-933	n.a.	1	а,
	<u>-</u>				
18.65-81.35				8	а
100		1175-1246	2 +1%		
100		1175-1540) ±1%	'	а,
)-100	· - ·	1132-177	8 (61)	6	a
25-75					a
35-65					a
51-49					a
					а
					а
					а
					а
95-5					a
100-0		1175-135	5 (62)	6	а
4F 0F	-				
15-85			•		k
25-75		998-1115) 12	k
33-67	g = 295.8 + 0.12 T	773-1073	±3%,(65) 12	d,
37-63	(T=753.2 K, g=196)			7	а
50-50	g = 297.8 + 0.12 T	831-1067	±3%,(66) 12	k
67-33	g = 323.5 + 0.13 T	975-1059	±3%,(67) 12	k
	Bas Bas				
11.8-70.6-17.6	6 g = 307.1 - 0.0984 T	1063-112	4 ±3%,(68) 13	k
19 2-54 5-27 2	3 a = 266 6 - 0 0446 T	1068-111	0 +3% (69) 13	k
10.2-04.0-27.0		,,,,,		,	

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
5.0-50.0-25.0	g = 354.9 - 0.168 T	1008-1121	±3%,(71)	13	k
8.6-57.1-14.3	g = 373 - 0.192 T	924-1038	±3%,(72)	13	k
4.4-44.4-11.2	(T=1073 K, g=157.2)		±3%, (73)	13	k
7.0-63.0	g = 338.3 - 0.165 T	780-1060		7	a
2.5-57.5	g = 306.6 - 0.136 T	780-1 0 60		7	a
12.9-57.1	g = 278.1 - 0.116 T	780-1060		7	a
100	g = 122.647 - 0.1067 T	523-715	±3%	1	a,j
100	g = 136.09 - 0.12908 T	544-655	±3%	1	a,j
	Bi ₂ (MoO ₄) ₃				
00	g = 249.98 - 0.091434 T	953-1033	n.a.	1	a,j
D- 100	g = 237.11 - 0.066 T	1376-1398	(74)	6	a,b,e
19.6-80.4	g = 252.36 - 0.073 T	1300-1320		6	a
40.0-60.0	g = 244.05 - 0.072 T	1180-1220		6	a
52.2-37.8	g = 247.49 - 0.0825 T	1020-1100	ı	6	a,e
71.5-28.5	g = 247.94 - 0.08 T	980-1060		6	a,e
78.7-21.3	g = 237.97 - 0.077 T	960-1060		6	а
90-10	g = 240.98 - 0.0765 T	1000-1080	ı	6	a,e
100-0	g = 240.64 - 0.0835 T	954-1033	(75)	6	a,e
100	Bi ₂ (W0 ₄) ₃				
100	g = 328.816 - 0.099729 T	1150-1270	±1.5%	6	a
D~ 100	g = 279.39 - 0.07835 T	1412-1504	(36)	6	
20-80	200 04 0 00000 7	1413-1504		6	a,e
10-60	g = 300.97 - 0.10503 T	1317-1403		6	a,e
30-40	244 40 40005 -	1207-1294		-	a,e
73-27		1134-1265		6	a,e
	g = 285.4 - 0.07877 T	1123-1258		6	a,e
80-20	g = 338.208 - 0.11685 T	1133-1234		6	а
100-0	g = 328.816 - 0.099729 T	1145-1275	(77)	6	a
100	g = 37.9 + 0.0354 T	973-1673	±4%	1	a,c,
	B ₂ 0 ₃ -L ₁₂ C0 ₃				
100-90 Li ₂ C0 ₃	g = 242.56 + 2.68 C - 0.1042 C ²	1038	(78)	8	а
	B ₂ 0 ₃ -Na ₂ B ₄ 0 ₇				
0-100	g = 293.895 - 0.050966 T	1023-1223	(79)	8	a,e
20-80	g = 280.15 - 0.05 T	1023-1223		8	a,e
50-50	g = 248.92 - 0.04 T	1023-1223		8	a,e
70-30	g = 235.92 - 0.04 T	1023-1223		8	a,e
	CaBr ₂	, , , , , , , , , , , , , , , , , , , ,	•	Ū	4,0
100	g = 165.6 - 0.0459 T	1047-1082	±1%	1	a,j
100	g = 189 - 0.03952 T	1073-1219	±1.5%	14	k
100	g = 195.67 - 0.045411 T	1085-1193		4	a,d,
	CaC1 ₂ -CsC1			•	۵, ч,
0.0-100.0	g = 143.3111 - 0.06074 T	1040-1150	(80)	4	a
12.2-87.8	g = 158.2487 - 0.070134 T	1040-1130)	4	a
25.0-75.0	g = 185.7609 - 0.092123 T	1120-1170)	4	a
41.2-58.8	g = 199.2852 - 0.09594 T	1270-1330		4	a
48.8-51.2	g = 312.9067 - 0.178409 T	1330-1330		4	a
		. 500 , 500		~	a
61.6-38.4	g = 172.5632 - 0.066366 T	1290-1320)	4	a

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mol %)	Equation	T range(K)	Accur. F	ef.	Comment
0.7-19.3	g = 173.5487 - 0.055056 T	1190-1290		4	a
6.9-13.1	g = 165.2924 - 0.042384 T	1070-1220		4	а
00.0-0.0	g = 178.1292 - 0.027173 T	1070-1180	(81)	4	a
	CaCl ₂ -KCl				
.0-100.0	g = 175.5216 - 0.073168 T	1090-1150	(82)	4	a
.2-92.8	g = 170.6846 - 0.067448 T	1070-1140		4	a
6.4-83.6	g = 182.5108 - 0.075773 T	1070-1150		4	a
2.2-57.8	g = 185.4227 - 0.071422 T	1050-1140		4	а
5.3-44.7	g = 181.3611 - 0.063498 T	1080-1140		4	a
5.5-44.5	g = 182.7049 - 0.063444 T	1070-1170		4	a
8.1-31.9	g = 183.5472 - 0.058969 T	1070-1170		4	а
7.4-22.6	g = 183.4629 - 0.055781 T	1050-1170	ı	4	а
0.2-9.8	g = 186.2582 - 0.049863 T	1080-1170	ı	4	а
00.0-0.0	g = 195.67 - 0.045411 T	1085-1193	(83)	4	a
	CaCl ₂ -KCl-MgCl ₂				
0-20-60	g = 116.28 - 0.0331 T	1081-1193		15	k
0-40-40	g = 136.89 - 0.04731 T	1084-1173		15	k
0-60-20	g = 143.48 - 0.04743 T	1085-1221		15	k
0-40-20	g = 146.24 - 0.04662 T	1078-1204		15	k
0-20-40	g = 131,42 - 0.03728 T	1079-1198	1	15	k
0-20-20	g = 156.06 - 0.04683 T	1096-1177		15	k
,0 10 10	CaCl ₂ -LiCl				
-100 CaCl ₂	g = 116.53 + 0.2521 C + 4.6851 x 10 ⁻⁴ C ²	1073	(84)	4	a,n
	CaCl2-MgCl2				
.0-100.0	g = 65.3426 - 0.003073 T	1010-1160	(85)	4	a
3.3-86.7	g = 75.8703 - 0.006668 T	1090-1170		4	a
6.6-83.4	g = 79.0134 - 0.007645 T	1080-1150		4	a
4.6-65.4	g = 93.4904 - 0.011054 T	1100-1180		4	a
		1090-1170		4	a
7.0-53.0	g = 106.8475 - 0.014831 T	1090-1170		4	a
55.4-34.6	g = 128.3171 - 0.018706 T	1080-1170		4	
34.8-15.2	g = 160.5346 - 0.030646 T	1085-119		4	a a
100.0-0.0	g = 195.67 - 0.045411 T	1005-119	(60)	•	a
00-40-40	g = 128.32 - 0.0329 T	1084-120	i	15	k
20-40-40	•				
20-20-60	g = 160.2 - 0.0533 T	1089-118		15	k
20-60-20	g = 99.39 - 0.01573 T	1103-119		15	K .
10-20-40	g = 144.68 - 0.03596 T	1079-118		15	k
40-40-20	g = 129.09 - 0.0295 T	1087-1210		15	k
60-20-20	g = 145.66 - 0.03118 T	1089-120	8	15	k
	CaC1 ₂ -NaC1		. (05)	4-	
0-100	g = 193.96 - 0.07259 T	1095-116		15	d,ç
9.1-90.9	g = 200.86 - 0.07893 T	1078-115		15	d, g
15-85	g = 199.4 - 0.07639 T	1079-115		15	d, g
32.5-67.5	g = 200.41 - 0.07394 T	1080-116		15	d, (
50.9-49.1	g = 204.32 - 0.07241 T	1075-118	3	15	d, g
64.1-35.9	g = 193.02 - 0.05736 T	1081-116		15	d, g
65-35	g = 196.92 - 0.06111 T	1086-117	3	15	d,
77.5-22.5	g = 186.65 - 0.04598 T	1088-117	3	15	d, (
100-0	g = 195.67 - 0.045411 T	1085-119	3 (88)	15	d,
	CaCl ₂ -PrCl ₃				
0-100	g = 146.1 - 0.03729 T	1103-119	9 ±1.5%,(89	9) 14	k
14-86	g = 148.6 - 0.03867 T	1113-121	3 ±1.5%	14	k
29-71	g = 152.7 - 0.03941 T	1143-121	3 ±1.5%	14	k
44.4-55.6	g = 178.6 - 0.05555 T	1143-121	3 ±1.5%	14	k
57-43	g = 198.5 - 0.0663 T	1138-120	3 ±1.5%	14	k

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m^{-1})				
(mo1 %)	Equation	T range(K)	Accur. R	ef.	Commen
0-20	g = 212.7 - 0.06986 T	1153-1203	±1.5%	14	k
00-0	g = 188.971 - 0.03952 T	1073-1219	±1.5%, (90)	14	k
-100 CaC1 ₂	g = 88.69 - 0.1617 C + 0.015919 C^2 - 2.0322 x 10^{-4} C^3 + 1.1869 x 10^{-6} C^4	1073	(91)	4	a,n
For additional	CaCl ₂ systems, see : BaCl ₂ - CaF ₂				
100	g = 1604.6 - 0.72 T	1670-1880	±4%	8	k
	CaF ₂ -Ca0				
52.0-48.0	(T=1773 K, g=440)			8	а
82.5-37.5	(T=1773 K, g=430)			8	а
9.3-30.7	(T=1753 K, g=420)			8	а
35.5-14.5	(T=1723 K, g=410)			8	а
100-0	(T=1773 K, g=400)		(92)	8	а
	CaF ₂ -CaSiO ₃				
100-88 CaSiO3	g = 1560.2 - 31.962 C + 0.212 C ²	1823	(93)	8	а
B2-18	g = 381.4 - 0.0624 T	1570-1870		8	a
91-9	g = 406.7 - 0.0791 T	1570-1870		8	
.	CaF ₂ -Na ₂ B ₄ 0 ₇	1370-1870		0	а
35-55 Na ₂ B ₄ 0 ₇	g = 126.7 + 2.725 C - 0.0157 C ²	1223		8	а
	CaF ₂ -SiO ₂				
64.3-35.7	(T=1823 K, g=350)			8	а
15.4-24.6	(T=1793 K, g=360)			8	а
83.4-16.6	(T=1750 K, g=285)			8	а
87.3-12.7	(T=1773 K, g=390)			8	a
	CaF ₂ -TiO ₂				
70.6-29.4	(T=1833 K, g=360)			8	а
80.5-19.5	(T=1833 K, g=380)			8	а
90.2-9.8	(T=1793 K, g=390)			8	а
93-7	g = 764.826 - 0.30984 T	1570-1750	1	8	a,
98-2	g = 667.963 - 0.2384 T	1690-1870		8	a, e
	CaF ₂ -Zr0 ₂				
78.6-21.4	(T=1813 K, g=380)			8	а
86.3-13.7	(T=1793 K, g=390)			8	а
90.0-10.0	(T=1823 K, g=267)			8	а
93.5-6.5	(T=1753 K, g=400)			8	а
For additiona	1 CaF ₂ systems, see : Al ₂ O ₃ - ; BaO-				
	Cal ₂				
100	g = 103.4 - 0.0173 T	1068-1325	5 ±1%	1	a,
100	(T=833.16 K, g=101.5)		n.a.	1	a,
	Ca(NO ₃) ₂ -CsNO ₃		(04)	_	
0-100 15.85	g = 141.6 - 0.073 T	693-783	(94)	5	а,
15-85	g = 133.9 - 0.0639 T	639-723		5	a,
25-75 20-70	g = 133 - 0.063 T	618-723		5	a,
30-70 35-65	g = 132.4 - 0.0618 T	604-704		5	a,
35-65 EE-4E	g = 133.6 - 0.0661 T	598-723		5	a,
55-45 60-40	g = 136.9 - 0.064 T	604-721		5	а,
60-40	g = 141 - 0.0682 T	642-698		5	а,
0-100	* - · *	620-770	(OE)	=	_
0-100	g = 154.2 - 0.073 T	620-770 500-710	(95)	5	a
8.11-91.89	g = 146.8 - 0.0634 T	590-710		5	а

	Surface Tension (mN m ⁻¹)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commer
7.65-82.35	g = 147 - 0.06 T	530-690		5	а
9.60-71.40	g = 146.4 - 0.0637 T	450-710		5	а
3.34-66.66	g = 145.4 - 0.062 T	490-690		5	а
2.86-57.14	g = 146.3 - 0.0625 T	530-690		5	а
8.15-51.85	g = 148.3 - 0.065 T	600-680		5	а
3.85-46.15	g = 150.2 - 0.0669 T	640-710		5	а
60-40	g = 150.9 - 0.067 T	690-700		5	a
	Ca(N0 ₃) ₂ -NaN0 ₃				
) - 100	g = 150.1 - 0.059 T	588-723	(96)	5	a,
. 27-94 . 73	g = 147.9 - 0.0561 T	583-703	,,	5	а,
11.12-88.88	g = 145.7 - 0.0526 T	572-700		5	a,
17.68-81.32	g = 146.2 - 0.053 T	548-683		5	a,
25.00-75.00	g = 148.1 - 0.0553 T	540-689		5	a,
29.79-70.21	g = 149.2 - 0.0563 T	520-704		5	a, a,
37.93-62.07	g = 152.1 - 0.0601 T	586-690		5	a, a,
46.00-54.00	g = 151.3 - 0.0584 T	637-690		5 5	а, a,
04.00	<u> </u>	007-050		9	d,
	CaO				
For CaO system	s, see : CaF ₂ - Ca(PO ₃) ₂				
100	g = 243.6 - 0.0108 T	1280-138	3 ±4%	1	_
· - •	Ca(P0 ₃) ₂ -NaP0 ₃	1200-100	J <u>-</u> →/⁄	1	a,
. 100	\$ <u>-</u>	4000 440	- (0=)	_	
0-100	g = 237.02 - 0.0488 T	1080-142		6	а
5.28-94.72	g = 235.91 - 0.0469 T	1080-142		6	а
11.12-88.88	g = 239.6 - 0.0487 T	1080-142		6	а
17.66-82.34	g = 239.57 - 0.0475 T	1080-142		6	а
25.01-74.99	g = 239.35 - 0.0456 T	1080-142		6	a
33.32-66.68	g = 237.77 - 0.042 T	1080-142		6	a
42.96-57.04	g = 236.42 - 0.0455 T	1080-142	10	6	а
53.89-46.11	g = 254.46 - 0.0471 T	1080-142	.0	6	a
66.66-33.34	g = 253.53 - 0.0404 T	1080-142	20	6	a
81.81-18.19	g = 255.36 - 0.0332 T	1080-142	.0	6	а
100-0	g = 266.35 - 0.0262 T	1270-142	(98)	6	a
	CaSiO ₃				
100	g = 361.3 + 0.021 T	1803-189	33 n.a.	1	a,
	CaSiO ₃ -KF				
100-85 CaS10 ₃	g = 5838.5 - 132.53 C + 0.7898 C ^z	1823	(99)	8	a
	CaSiO ₃ -LiF				
95-85 CaSiO ₃	g = 43.61 + 2.554 C + 0.01859 C ²	1823		۰	_
30 00 040103		1023		8	a
	CaSiO ₃ -MgF ₂				
100-85 CaSiO ₃	g = - 1634.1 + 38.38 C - 0.172 C ²	1823	(100)	8	a
	CaSiO ₃ -NaF				
100-80 CaSiO3	g = 836.9 - 18.32 C + 0.1482 C ²	1823	(101)	8	a
-			, ,	_	_
For additiona	1 CaSiO ₃ systems, see : BaF ₂ - ; CaF ₂ -				
0-100	CaSO ₄ -Na ₂ SO ₄		. , -		
0-100 10-00	g = 273.1 - 0.06912 T	1240-146		6	a
10-90	g = 277.9 - 0.07206 T	1240-146		6	а
20-80	g = 278 - 0.07026 T	1240-146	30	6	a
30-70	g = 283.8 - 0.07185 T	1240-146	60	6	a
40-60	g = 288.9 - 0.07281 T	1240-146	50	6	a
50-50	g = 297.9 - 0.07607 T	1240-140	60	6	a
55-45	g = 306.5 - 0.0805 T	1240-140	50	6	a
60-40	g = 317.5 - 0.08664 T	1240-146	en.	6	a

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
	CdBr ₂				
00	g = 93.38 - 0.0314 T	908-1048	±1%	1	a,j
	CdBr2-CdCl2				
-100	g = 106.5 - 0.026 T	873-973	(103)	2	a,e
0-90	g = 105.75 - 0.028 T	873-973		2	a,e
20-80	g = 101.7 - 0.026 T	873-973		2	a,e
10-70	g = 99.701 - 0.026 T	873-973		2	a,e
10-60	g = 97.701 - 0.026 T	873-973		2	a, e
50-50	g = 94.152 - 0.024 T	873-973		2	a,e
60-40	g = 94.299 - 0.026 T	873-973		2	a, e
0-30	g = 92.899 - 0.026 T	873-973		2	a, e
30-20	g = 91.699 - 0.026 T	873-973		2	а, є
90-10	g = 89.825 - 0.025 T	873-973		2	a,e
100-0	g = 91.072 - 0.027 T	873-973	(104)	2	a,e
	CdBr ₂ -KBr				
0.0-80.0	g = 156.46 - 0.0716 T	950-1090		3	а
25.5-74.5	g = 132.47 - 0.0544 T	870-1080		3	a
30.3-69.7	g = 127.55 - 0.0505 T	890-1100		3	á
0.0-60.0	g = 128.79 - 0.0584 T	780-1010		3	a
31.0-39.0	g = 130.14 - 0.0612 T	830-1090		3	a
80.2-19.8	g = 122.4 - 0.0576 T	830-1020		3	a
100-0	g = 93.38 - 0.0314 T	910-1040	(105)	3	
.00 0	CdBr ₂ -KC1	510-1040	(105)	3	а
20.0-80.0	-	000 4000			
	g = 142.4 ~ 0.056 T	980-1280		2	а
30.1-69.9	g = 138.4 - 0.057 T	920-1160		2	а
34.0-66.0	g = 139.7 - 0.061 T	940-1260		2	а
45.3-54.7	g = 128.8 - 0.0546 T	800-940		2	а
49.5-50.5	g = 131.3 - 0.0576 T	780-1000		2	а
80.0-40.0	g = 123.1 - 0.054 T	660-920		2	а
61.8-38.2	g = 114.8 - 0.0433 T	660-800		2	а
80.5-19.5	g = 98.5 - 0.0323 T	880-1080		2	а
100.0-0.0	g = 93.4 - 0.0314 T	920-1 0 60	(106)	2	а
	CdC1 ₂				
100	g = 108.5 - 0.028 T	853-1194	±1.5%	1	а,,
	CdC1 ₂ -KBr				
D-100	g = 157.8 - 0.0668 T	1080-1240	0 (107)	2	а
3.7-90.3	g = 146.8 - 0.0581 T	980-1180		2	а
19.7-80.3	g = 143.7 - 0.0579 T	900-1180		2	а
29.9-70.1	g = 140.2 - 0.059 T	860-1080		2	а
39.6-60.4	g = 121.5 - 0.042 T	760-940		2	a
50.1-49.9	g = 130.5 - 0.0516 T	760-900		2	a
59.6-40.4	g = 132.3 - 0.056 T	760-960		2	а
70.0-30.0	g = 126.7 - 0.0484 T	760-1080		2	a
92.2-7.8	g = 108.9 - 0.0288 T	860-1040		2	a
100-0	g = 108.5 - 0.028 T	853-1194	(108)	2	а
	CdC1 ₂ -KC1				
20~80	g = 157.99 - 0.067 T	900-973		4	a,
30-70	g = 147.88 - 0.06 T	873-973		4	a,
40-60	g = 144.31 - 0.059 T	873-973		4	a,
50-50	g = 141.63 - 0.058 T	873-973		4	a,
60-40	g = 142.01 - 0.059 T	873-973		4	a, a,
70-30	g = 138.89 - 0.056 T	873-973		4	
	CdC12-NaC1	010-310		*	а,
40-60	-				
10-60 50-50	g = 170.43 - 0.073 T	973-1073		4	a,
50-50	g = 156.2 - 0.063 T	973-1073		4	a,
60-40	g = 147.06 - 0.057 T	973-1073		4	a,

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
0-30	g = 132.76 - 0.046 T	973-1073		4	a,e
0-20	g = 129.99 - 0.045 T	973-1073		4	a,e
0-10	g = 119.33 - 0.036 T	973-1073		4	a,e
	CdC1 ₂ -PbC1 ₂	• • • • • • • • • • • • • • • • • • • •			4,0
-100	g = 214.3 - 0.1 T	773-973	(109)	4	a,e
0-90	g = 203.19 - 0.093 T	873-973		4	a,e
0-80	g = 186.34 - 0.08 T	873-973		4	a,e
0-70	g = 177.48 - 0.075 T	873-973		4	a,e
0-60	g = 159.38 - 0.06 T	873-973		4	a,e
0~50	g = 151.02 - 0.055 T	873-973		4	a,e
0-40	g = 139.73 - 0.047 T	873-973		4	a,e
0-30	g = 124.56 - 0.035 T	873-973		4	a,e
0-20	g = 118.64 - 0.032 T	873-973		4	a,e
0-10	g = 108.63 - 0.025 T	873-973		4	a,e
00-0	g = 102.61 - 0.022 T	873-973	(110)	4	a, e
or additions	11 CdCl ₂ systems, see : CdBr ₂ -				
	Cd(N0 ₃) ₂ -CsN0 ₃				
0-80	g = 134.19 - 0.070989 T	510-630		5	a,e
0-70	g = 133.65 - 0.073852 T	460-630		5	a, e
9.4-60.6	g = 133.46 - 0.076248 T	450-630		5	а,
0-60	g = 132.69 - 0.075101 T	460-630		5	a, e
0-50	g = 132.87 - 0.076969 T	520-630		5	a,
0-40	g = 134.05 - 0.079029 T	540-630		5	a,
0-30	g = 135.7 - 0.080003 T	550-630		5	а, є
	Cd(NO ₃) ₂ -KNO ₃				
. 0-100.0	g = 154.2 - 0.073 T	620-780	(111)	5	a
4.3-85.7	g = 150.1 - 0.0756 T	540-620		5	а
5.0-75.0	g = 150.1 - 0.081 T	460-620		5	а
9.96-70.04	g = 145.5 - 0.0759 T	480-620		5	а
3.34-66.66	g = 143.2 - 0.0731 T	480-620		5	a
5.46-54.54	g = 145.6 - 0.081 T	460-620		5	а
3.85-46.15	g = 144.6 - 0.0822 T	480-620		5	а
6.67-33.33	g = 142.8 - 0.0813 T	560-620		5	a
73.92-26.08	g = 142.3 - 0.0815 T	600-620		5	a
	Cd(NO ₃) ₂ -NaNO ₃	***************************************		·	ŭ
- 100	g = 150.5 ~ 0.059 T	600-760	(112)	5	a,
. 11-91.89	g = 150.5 - 0.0638 T	580-620		5	a,
14.2-85.8	g = 149 - 0.0646 T	560-620		5	a,
5.55-84.45	g = 151 - 0.0685 T	540-620		5	a,
2.7-77.3	g = 150.1 - 0.0699 T	520-620		5	a,
5.0-75.0	g = 149.7 - 0.0701 T	520-620		5	a,
3.34-66.66	g = 147.9 - 0.0703 T	480-620		5	a,
89.87-60.13	g = 147.1 - 0.0714 T	460-620		5	a, a,
17.06-52.94	g = 144.2 - 0.0696 T	420-680		5	-
30 ~4 0	g = 145.5 - 0.0761 T	540-620			a,
9.49-30.51	g = 143.7 - 0.0766 T			5	а,
	Cd(N0 ₃) ₂ -RbN0 ₃	580-620		5	a,
- 100	g = 148.1 - 0.07 T	610-730	(113)	5	a
3.11-91.89	g = 145.2 - 0.073 T	550-610		5	a
15.61-84.39	g = 142.6 - 0.072 T	510-630		5	a
22.70-77.30	g = 143.4 - 0.0758 T	430-630		5	a
30.72-69.28	g = 138.8 - 0.075 T	490-630		5	a
33.34-66.66	g = 140.8 - 0.073 T	470-630		5	
	g = 139.7 - 0.0763 T				a
41.35-58.65	•	410-630		5	a
50.38-49.62	g = 137.7 - 0.075 T	490-630		5	а
66.67-33.33	g = 136.7 - 0.074 T	570-630		5	а

Table 2.2.a Surface Tension data (continued)

(mo1 %)	Surface Tension (mN m ⁻¹)	* war (11)		0-4	0.
(moi %)	Equation	T range(K)	Accur.	Ref.	Comment
3.92-26.08	g = 135.9 - 0.073 T	590-630		5	a
00	g = 190.82 + 0.012 T	1170-1270	±4%	6	а
9-97.1	g = 155.092 - 0.0566 T	973-1123	(114)	16	k,z
. 3-93 . 7	g = 151.049 - 0.0552 T	973-1123		16	k
5.2-84.8	g = 153.903 - 0.06099 T	973-1123		16	k
00	g = 141.52 - 0.06486 T	922-1185	±1.5%	17	k
2-88	CSBr-CsC1 g = 160.2 - 0.0761 T	930-1070		2	_
5-75	g = 157 - 0.0739 T	930-1070		2	a
7-63	g = 153.8 - 0.0715 T	930-1070		2	a
0-50	g = 151.1 - 0.0697 T	930-1070		2	a
3-37	g = 148.5 - 0.068 T	930-1070		2	a
5-25	g = 145.7 ~ 0.0659 T	930-1070		2	a
8-12	g = 143.1 - 0.064 T	930-1070		2	a a
00-0	g = 141.4 - 0.063 T	930-1070	(115)	2	a
	CsBr-CsI				
-100	g = 125.9 - 0.0567 T	930-1070	(116)	2	a
2-88	g = 127.4 - 0.0574 T	930-1070		2	a
5-75	g = 128.4 - 0.0573 T	930-1070		2	a
7-63	g = 130.2 - 0.0581 T	930-1070		2	a
0-50	g = 131.3 - 0.0581 T	930-1070		2	а
3-37	g = 134.3 - 0.0598 T	930-1070		2	a
5-25	g = 136.6 - 0.0609 T	930-1070		2	a
18-12	g = 139.2 - 0.0621 T	930-1070		2	а
100-0	g = 141.4 - 0.063 T	930-1070	(117)	2	а
) - 100	g = 165.4 - 0.073 T	1020-1120	(118)	3	a
25-75	g = 157.3 - 0.07 T	970-1170	(110)	3	a
50-50	g = 153.2 - 0.07 T	880-1170		3	a
75~25				3	a 2
	•	900-1170	(110)	3	
100-0	g = 145.7 - 0.068 T	940-1100	(119)	3	а
10.1-60 LiBr	g = 79.968 - 0.2188 C + 0.0029893 C ²	1073		3	a,n
D-100	CSBr-NaBr g = 175.3 - 0.07 T	1040-112	0 (120)	3	а
25~75	g = 158.7 - 0.068 T	940-1140	- (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3	a
20-75 50-50	g = 146.9 - 0.063 T	820-1140		3	a
75-25	g = 148.6 - 0.068 T	800-1140		3	a
100-0	g = 145.7 - 0.068 T	940-1100		3	a
For additiona	11 CsBr systems, see : BaBr ₂ - CsC1				
100	g = 162.683 - 0.077392 T	936-1353	±0.5%	1	a,c
0-100	g = 125.9 - 0.0567 T	930-1070	(122)	2	a
12-88	g = 128.3 - 0.0576 T	930-1070		2	a
12-88 25-75	g = 134.3 - 0.0619 T	930-1070		2	a
25-75 37-63	g = 138 - 0.0637 T	930-1070		2	a
		930-1070		2	a
50-50 63-37	g = 142.2 - 0.066 T	930-1070		2	a
63-37	g = 147.8 - 0.0694 T			2	a
75-25	g = 152.6 - 0.072 T	930-1070			
88-12	g = 158.2 - 0.0752 T	930-1070	,	2	а
0-100	g = 193.3 - 0.062 T	1300-145	0 (123)	8	a
5 100	y v	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~	-

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Commen
5-75	g = 188 - 0.069 T	1060-1450		8	а
-50	g = 176 - 0.069 T	1060-1450		8	a
00-0	g = 159.2 - 0.074 T	1060-1450	(124)	8	а
	CsC1-LaC13				
. 1-94 . 9	g = 172.8 - 0.0556 T	1140-1230		4	а
0.3-89.7	g = 170.8 - 0.0607 T	1140-1200		4	а
2.0-78.0	g = 161.7 - 0.0625 T	1130-1220		4	а
5.0-65.0	g = 159.1 - 0.0664 T	1080-1170		4	а
7.7-52.3	g = 161.4 - 0.072 T	1090-1170		4	a
0.2-39.8	g = 159.1 - 0.0722 T	1060-1180		4	а
3.5-26.5	g = 160.4 - 0.0742 T	1050-1160		4	a
7.3-12.7	g = 161.4 - 0.0761 T	1020-1160		4	а
00-0	g = 163.46 - 0.07841 T	920-1070	(125)	4	a
	CsC1-LiC1				
-100	g = 214.86 - 0.08294 T	880-1070	(126)	4	a
. 73-98.27	g = 198.04 - 0.0801 T	880-1070		4	a
7.33-82.67	g = 176.1 - 0.08027 T	880-1070		4	a
0-70	g = 166.62 - 0.07566 T	880-1070		4	a
5-55	g = 165.5 - 0.07727 T	880-1070		4	a
iO-40	g = 162.15 - 0.07608 T	880-1070		4	a
′5-25	g = 161.91 - 0.07656 T	880-1070		4	a
10-10	g = 157.77 ~ 0.07268 T	880-1070		4	а
00-0	g = 163.46 - 0.07841 T	920-1070	(127)	4	a
	CsC1-Li ₂ SO ₄		, ,		
)- 100	g = 300.08 - 0.064 T	1173-1373	(128)	8	a, e
. 25-99, 75	g = 277 - 0.06001 T	1173-1373		8	a,
0.50-99.50	g = 274.24 - 0.058 T	1173-1373		8	a,
1.0-99.0	g = 269.35 - 0.054 T	1173-1373		8	a,
1.50-98.50	g = 266.9 - 0.05601 T	1173-1373		8	a, (
2.00-98.00	g = 262.04 - 0.058 T	1173-1373		8	a, e
3.00-97.00	g = 257.84 - 0.058 T	1173-1373		8	
10.00-90.00	g = 223.06 - 0.05 T	1173-1373		8	a, e
50-50	g = 218.65 - 0.1 T	1173-1273		8	a, e
100-0	•	1173-1273	(120)		a, e
100-0	g = 173.1 - 0.08601 T	11/3-1323	(129)	8	а,
0.0-100.0	g = 65.3426 - 0.003073 T	1010-1160	(130)	4	а
6.7-33.3	g = 114.4065 - 0.044016 T	980-1080	(100)	4	a
69.3-30.7	g = 125.1754 - 0.053395 T	950-1070		4	a
100.0-0.0	g = 162.0726 - 0.076919 T	950-1070	(131)	4	a
100.0 0.0	CsC1-NaC1	300 1070	(101)	7	•
0-100	g = 197.3 - 0.074 T	1100-1140	(132)	4	a
25-75	g = 176.2 - 0.074 T	1000-1140	1	4	а
50-50	g ≈ 163.9 - 0.07 T	860-1140		4	a
75-25	g = 162.5 - 0.074 T	820-1140		4	a
100-0	g = 159.2 - 0.074 T	980-1100	(133)	4	a
	CsC1-PbC1 ₂	230 1100	(100)	•	d
0.00-100.00	g = 233.7 - 0.124 T	791-845	(134)	4	а
18.10-81.90	g = 192.7038 - 0.099 T	740-850	(134)	4	a
18.23-81.77	g = 192.6446 - 0.09922 T	770-860		4	
					a
36.97-63.03	g = 206.0883 - 0.12528 T	860-890		4	а
49.50-50.50	g = 540.5747 - 0.5 T	900-900		4	а
59.89-40.11	g = 173.7146 - 0.09278 T	880-900		4	а
74.11-25.89	g ≈ 166.8733 - 0.08329 T	780-900		4	а
	CsC1-SrC1 ₂				
100-0 SrC1 ₂	$g = 73.26 + 0.9306 C - 0.01999 C^2 + 2.0358 \times 10^{-4} C^3 \dots$	1123	(135)	4	a,

(mol %)	Surface Tension (mN m ⁻¹)	T more-(V)	A	Def	Ca
(MOI %)	Equation	T range(K)	Accur.	Ref .	Comment
or addition	onal CsCl systems, see : BaCl ₂ - ; CaCl ₂ - ; CsBr-				
	CsF				
00	g = 184.6 - 0.0808 T	1048-1253	±1%	1	a, j
	CsI				
00	g = - 122.88 - 0.05678 T	900-1147	±1.5%	17	k
For addition	onal CsI systems, see : CsCl-				
	CsN0 ₃				
00	g = 142.3 - 0.074 T	683-873	±0.5%	1	a,j
100	- 404 O 004 F	500 570	(120)	-	_
5-75	g = 155.3 - 0.079 T	620-673	(136)	5	a
0-50	g = 150.4 - 0.077 T	620-673		5	a
5-25		560-673		5	а
	g = 145.3 - 0.074 T	540-673		5	а
00-0	g = 142.3 - 0.074 T	690-725	(137)	5	a
	CsN0 ₃ -L1N0 ₃				
5-75	g = 143.4 - 0.07 T	490-670		5	a,e
3-57	g = 145.2 - 0.075 T	460-670		Б	a,e
0-50	g = 145.1 - 0.076 T	475-670		5	a,e
5-25	g = 142.5 - 0.075 T	565-670		5	a,e
	Csn0 ₃ -nan0 ₃				
-100	g = 153.99 ~ 0.06 T	590-673	(138)	5	a
-75	g = 149.1 - 0.068 T	600-673	,,	5	a
)-50	g = 147.5 - 0.074 T	500-673		5	a
-25	g = 143.1 - 0.072 T	525-673		5	a
00-0	g = 142.3 - 0.074 T	690-725	(139)	5	a
or additio	POL CANO. AUGUSTA		(100)	Ū	-
-or accition	nal CsNO ₃ systems, see : AgNO ₃ - ; Ca(NO ₃) ₂ - ; Cd(NO ₃) ₂ -				
00	CsP03				
30	g = 166.6 - 0.0487 T	1010-1314	±1.5%	1	a, j
	CSSCN				
00	g = 109.44 ~ 0.03196 T	496-549	±1.5%	14	k
	Cs ₂ CO ₃				
00					
	g = 213.5 - 0.0731 T	1100-1220	±1.5%	6	а
		1100-1220	±1.5%	6	a
-100	Cs ₂ C0 ₃ -Li ₂ C0 ₃	1100-1220			
	Cs ₂ CO ₃ -Li ₂ CO ₃ (T=1038 K, g=242)	1100-1220	±1.5%	6	a
	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242)	1100-1220			
5-96.5	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242)			6	a
5-96.5	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T	1100-1220 1309-1803		6	a
5-96.5 00	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄		(140)	6 6	a a
5-96.5	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄ g = 229.75 ~ 0.065 T		(140)	6 6	a a a,e,
5-96.5	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄	1309–1803	(140) ±3%	6 6	a a a,e,
5-96.5 00 -100 -75	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄ g = 229.75 ~ 0.065 T	1309-1803 1360-1460	(140) ±3%	6 6 1 6 6	a a,e, a,b,,
5-96.5 0 100 -75 -50	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄ g = 229.75 - 0.065 T g = 218.72 - 0.066 T	1309-1803 1360-1460 1260-1460 1210-1460	(140) ±3% (141)	6 6 1 6 6	a a,e, a,b,, a,b,,
5-96.5 0 100 -75 -50 -25	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄ g = 229.75 ~ 0.065 T g = 218.72 ~ 0.066 T g = 211.9 - 0.067 T	1309-1803 1360-1460 1260-1460 1210-1460 1210-1460	(140) ±3% (141)	6 6 1 6 6 6	a a,e,, a,b,, a,b,, a,b,
5-96.5 0 100 -75 -50 -25	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄ g = 229.75 - 0.065 T g = 218.72 - 0.066 T g = 211.9 - 0.067 T g = 207.84 - 0.069 T	1309-1803 1360-1460 1260-1460 1210-1460	(140) ±3% (141)	6 6 1 6 6	a a,e, a,b,, a,b,,
5-96.5 100 100 -75 1-50 -25 10-0	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄ g = 229.75 - 0.065 T g = 218.72 - 0.066 T g = 211.9 - 0.067 T g = 207.84 - 0.069 T g = 193.33 - 0.062 T Cs ₂ S0 ₄ -Na ₂ S0 ₄	1309-1803 1360-1460 1260-1460 1210-1460 1210-1460	(140) ±3% (141)	6 6 1 6 6 6 6	a a,e, a,b,, a,b,, a,b,,
5-96.5 100 100 -75 1-50 -25 100-0	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄ g = 229.75 - 0.065 T g = 218.72 - 0.066 T g = 211.9 - 0.067 T g = 207.84 - 0.069 T g = 193.33 - 0.062 T Cs ₂ S0 ₄ -Na ₂ S0 ₄	1309-1803 1360-1460 1260-1460 1210-1460 1210-1460 1300-1460	(140) ±3% (141)	6 6 1 6 6 6 6	a a,e, a,b, a,b, a,b, a,b, a,b,
5-96.5 100 -75 -50 -25 100-0	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄ g = 229.75 - 0.065 T g = 218.72 - 0.066 T g = 211.9 - 0.067 T g = 207.84 - 0.069 T g = 193.33 - 0.062 T Cs ₂ S0 ₄ -Na ₂ S0 ₄ g = 269.02 - 0.066 T g = 214.33 - 0.073 T	1309-1803 1360-1460 1260-1460 1210-1460 1210-1460 1300-1460 1170-1360 900-1360	(140) ±3% (141)	6 6 6 6 6 6	a a,e, a,b, a,b, a,b, a,b, a,b,
5-96.5 100 -75 -50 -25 100 -75 -50	Cs ₂ C0 ₃ -L1 ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄ g = 229.75 - 0.065 T g = 218.72 - 0.066 T g = 211.9 - 0.067 T g = 207.84 - 0.069 T g = 193.33 - 0.062 T Cs ₂ S0 ₄ -Na ₂ S0 ₄ g = 269.02 - 0.066 T g = 214.33 - 0.073 T g = 224.71 - 0.074 T	1309-1803 1360-1460 1260-1460 1210-1460 1210-1460 1300-1460 1170-1360 900-1360 940-1360	(140) ±3% (141)	6 6 6 6 6 6 6	a a,e, a,b,, a,b,, a,b,, a,b,, a,b,, a,b,,
5-96.5 100 100 -75 -50 -25 100 -75 -50 -25	Cs ₂ C0 ₃ -Li ₂ C0 ₃ (T=1038 K, g=242) (T=1038 K, g=213) Cs ₂ S0 ₄ g = 180.942 - 0.055092 T Cs ₂ S0 ₄ -K ₂ S0 ₄ g = 229.75 - 0.065 T g = 218.72 - 0.066 T g = 211.9 - 0.067 T g = 207.84 - 0.069 T g = 193.33 - 0.062 T Cs ₂ S0 ₄ -Na ₂ S0 ₄ g = 269.02 - 0.066 T g = 214.33 - 0.073 T g = 224.71 - 0.074 T g = 228.42 - 0.066 T	1309-1803 1360-1460 1260-1460 1210-1460 1300-1460 1170-1360 900-1360 940-1360 1140-1360	(140) ±3% (141) (142) (143)	6 6 6 6 6 6 6 6	a a,e, a,b, a,b, a,b, a,b, a,b, a,b, a,b
5-96.5 0 100 -75 -50 -25 0-0 100 -75 -50 -25	Cs2C03-Li2C03 (T=1038 K, g=242) (T=1038 K, g=213) Cs2S04 g = 180.942 - 0.055092 T Cs2S04-K2S04 g = 229.75 - 0.065 T g = 218.72 - 0.066 T g = 211.9 - 0.067 T g = 207.84 - 0.069 T g = 193.33 - 0.062 T Cs2S04-Na2S04 g = 24.71 - 0.074 T g = 228.42 - 0.066 T g = 193.33 - 0.062 T	1309-1803 1360-1460 1260-1460 1210-1460 1210-1460 1300-1460 1170-1360 900-1360 940-1360	(140) ±3% (141)	6 6 6 6 6 6 6	a a,e, a,b,, a,b,, a,b,, a,b,, a,b,, a,b,,
5-96.5 0 100 -75 -50 -25 0-0 100 -75 -50 -25 0-0	Cs2C03-Li2C03 (T=1038 K, g=242) (T=1038 K, g=213) Cs2S04 g = 180.942 - 0.055092 T Cs2S04-K2S04 g = 229.75 - 0.065 T g = 218.72 - 0.066 T g = 211.9 - 0.067 T g = 207.84 - 0.069 T g = 193.33 - 0.062 T Cs2S04-Na2S04 g = 24.71 - 0.074 T g = 228.42 - 0.066 T g = 193.33 - 0.062 T Cs2S04-Rb2S04	1309-1803 1360-1460 1260-1460 1210-1460 1300-1460 1170-1360 900-1360 940-1360 1140-1360	(140) ±3% (141) (142) (143)	6 6 6 6 6 6 6 6	a a,e, a,b, a,b, a,b, a,b, a,b, a,b, a,b
5-96.5 100 100 -75 -50 -0-0 100 -75 -50 -25 0-0	Cs2C03-Li2C03 (T=1038 K, g=242) (T=1038 K, g=213) Cs2S04 g = 180.942 - 0.055092 T Cs2S04-K2S04 g = 229.75 - 0.065 T g = 218.72 - 0.066 T g = 211.9 - 0.067 T g = 207.84 - 0.069 T g = 193.33 - 0.062 T Cs2S04-Na2S04 g = 269.02 - 0.066 T g = 214.33 - 0.073 T g = 224.71 - 0.074 T g = 228.42 - 0.066 T g = 193.33 - 0.062 T Cs2S04-Rb2S04 g = 207.89 - 0.06 T	1309-1803 1360-1460 1260-1460 1210-1460 1300-1460 1170-1360 900-1360 940-1360 1140-1360	(140) ±3% (141) (142) (143)	6 6 6 6 6 6 6 6	a a,e, a,b, a,b, a,b, a,b, a,b, a,b, a,b
-100 -5-96.5 -100 -100 -75 -5-25 -5-50 -75 -5-50 -75 -5-50 -75 -75 -75 -75 -75 -75 -75 -75	Cs2C03-Li2C03 (T=1038 K, g=242) (T=1038 K, g=213) Cs2S04 g = 180.942 - 0.055092 T Cs2S04-K2S04 g = 229.75 - 0.065 T g = 218.72 - 0.066 T g = 211.9 - 0.067 T g = 207.84 - 0.069 T g = 193.33 - 0.062 T Cs2S04-Na2S04 g = 24.71 - 0.074 T g = 228.42 - 0.066 T g = 193.33 - 0.062 T Cs2S04-Rb2S04	1309-1803 1360-1460 1260-1460 1210-1460 1300-1460 1170-1360 900-1360 940-1360 1140-1360 1300-1460	(140) ±3% (141) (142) (143)	6 6 6 6 6 6 6 6 6	a a,e, a,b, a,b, a,b, a,b, a a a a

(mol %) For additional 00	Equation Cs ₂ SO ₄ systems, see : CsC1- (T=723 K, g=92)	T range(K)	n.a.	Ref.	Commen
00	CuC1 (T=723 K, g=92)		n.a.	٠	
	(T=723 K, g=92)		n.a.		
00	(T=1403.16 K, g=410)			1	a,j
30					
			n.a.	1	а, ј
00	g = 585	1688-1696	n.a.	1	a,j
00-92 Li ₂ C0 ₃	g = 238 + 0.024 C	1038	(147)	8	а
00	g = 94.5 ~ 0.15 T	392-408	±2%	3	а
00	g = 62.2 - 0.0997 T	354-413	±2%	1	a, j
00	g = 68.4 - 0.084 T	398-433	±2%	1	a,j
00	g = 76.8 - 0.097 T	398-433	±2%	1	a,j
00	g = 91.6 - 0.167 T	383-428	±2%	1	a,;
00	g = 170.3 + 0.056 T	1473-1673	±7%	1	a, ;
00	g = 133.55 - 0.1343 T	514-549	n.a.	1	a,,
00	(T=566 K, g=56.1)		n.a.	1	а,
•	KB0 ₂				
00	g = 346.633 - 0.17823 T	1265 - 14 15	±3%	1	а,
00	g = - 158.69 - 0.06815 T	1012-1193		17	k
-100	g = 155.2 - 0.052 T	1023-1073	(148)	2	a
- 100	g = 179 - 0.074 T	1080-1170	(149)	2	а
0-90	g = 165.46 - 0.06399 T	1023-1073	}	2	a
0-80	g = 169.8 - 0.06999 T	1023-1073	;	2	a
30-70	g = 168.2 ~ 0.06999 T	1023-1073	;	2	а
0-60	g = 166.6 - 0.06999 T	1023-1073	}	2	а
0-50	g = 175.7 - 0.077 T	1020-1170)	2	а
0-50	g = 161 - 0.06599 T	1023-1073	1	2	a
60-40	g = 161.96 - 0.068 T	1023-1073	3	2	а
0-30	g = 165.16 - 0.072 T	1023-1073		2	a
30-20	g = 166.39 - 0.07399 T	1023-1073		2	a
90-10	g = 174.17 - 0.08199 T	1023-1073		2	a
100-0	g = 165.4 - 0.073 T			2	
100-0	g = 182.06 - 0.08999 T	1020-1120 1023-1073		2	a a
40-61.4 LiBr	KBr-LiBr g = 78.733 + 0.373 C - 0.0030335 C ²	1073		,	
	KBr-NaBr			3	a,
0-100	g = 175.3 - 0.07 T	1040-1130	(152)	3	а
25-75	g = 171 - 0.07 T . ,	960-1170		3	а
50-50	g = 171.4 - 0.074 T	910-1170		3	a
75~25	g = 167.7 - 0.073 T	960-1170		3	a
100-0	g = 165.4 - 0.073 T	1020-1120	(153)	3	a
	KBr-NaC1				
0-100	g = 211.5 - 0.09 T	1090-122	(154)	2	а
20-80	g = 176.8 - 0.0658 T	1010-121)	2	a

Table 2.2.a Surface Tension data (continued)

(ma1 %)	Surface Tension (mN m ⁻¹)	_			_
(mo1 %)	Equation	T range(K)	Accur.	Ref .	Commen
30-70	g = 172.1 - 0.065 T	1000-1220		2	а
10-60	g = 172.5 - 0.0693 T	930-1150		2	а
50-50	g = 169.2 - 0.0697 T	940-1140		2	а
70-30	g = 163.5 - 0.0679 T	950-1170		2	а
100-0	g = 167.9 - 0.0753 T	1030-1170	(155)	2	а
	KBr-Na ₂ SO ₄				
100-50 Na ₂ S0 ₄	g = 81.6 + 0.122 C + 0.0097 C ²	1173	(156)	8	a,o
2-100	KBr-RbBr				
0-100	g = 157.7 - 0.072 T	1000-1100	(157)	3	а
50-50 100-0	g = 158.6 - 0.07 T	950-1170		3	а
100-0	g = 165,4 - 0.073 T	1020-1120	(158)	3	а
) - 100	g = 171.3 - 0.0749 T	1020 . 1100	(150)	•	_
15-85	g = 1/1.3 ~ 0.0749	1030-1190		2	a
23-77	g = 169.6 - 0.0771 T	1030-1220		2	а
30-70	g = 166.3 - 0.0752 T	1030-1200		2	а
10-60		1040-1230		2	а
50-50	g = 162.7 - 0.0715 T	1060-1220		2	а
50-40	g = 159.8 - 0.0689 T	1020-1240		2	а
	g = 159.3 - 0.0683 T	1030-1280		2	а
70-30	g = 159.2 - 0.0688 T	1050-1230		2	а
B5-15	g = 162.2 - 0.071 T	1030-1190		2	a
100-0	g = 167.9 - 0.0753 T	1030-1170	(160)	2	а
For additiona	1 KBr systems, see : AgBr- ; AgC1- ; BaBr ₂ - ; CdBr ₂ - ; CdC1 ₂ - ; CsBr-				
100	g = 175.57 - 0.07321 T	1000 1151			
100		1089-1154	±0.5%	15	ď
100	g = 177.61 - 0.07519 T	1127-1209	±1.5%,(161)14	k
10.00.401	KC1-KF	= 4			
10-90 KC1	g = 90.55 + 0.2167 C + 4.763 x 10 ⁻⁴ C ²	1173		2	a,n
	KC1-K2S04				
0-100	g = 245.2 - 0.0765 T	1370-1400	(162)	8	a,e
20.8-79.2	g = 205.85 - 0.06204 T	1270-1310		8	а
30.1-69.9	g = 198.28 - 0.06146 T	1210-1270		8	а
39.8-60.2	g = 212.03 - 0.07469 T	1190-1250		8	а
55.3-44.7	g = 196.07 - 0.07221 T	1090-1180		8	а
64.6-35.4	g = 186.22 - 0.06743 T	1090-1170		8	а
78.7-21.3	g = 186.88 - 0.07454 T	1090-1200		8	а
84.7-15.3	g = 177.5 - 0.07187 T	1090-1170		8	а
100-0	g = 169.44 - 0.06864 T	1108-1200	(163)	8	a
	KC1-K ₂ ZrF ₆				
0-100	g = 192.46 - 0.08061 T	1073-1233	(164)	8	a,e
10-90	g = 192.678 - 0.082015 T	1073-1173		8	a,e
20-80	g = 193 - 0.08301 T	1073-1173		8	a,e
30-70	g = 191.11 - 0.08201 T	1073-1173		8	a,e
40-60	g = 190.76 - 0.083 T	1073-1173		8	a,e
50-50	g = 190.76 - 0.08401 T	1073-1173		8	a,e
50-40	g = 188.87 - 0.08301 T	1073-1173		8	a,e
70-30	g = 189.25 - 0.084 T	1073-1173		8	a,e
80-20	g = 188.52 - 0.084 T	1073-1173		8	a,e
90-10	g = 188.361 - 0.084617 T	1073-1173		8	
100-0	g = 177.061 - 0.075458 T	1073-1173		8	a,e a,e
	KC1-LaC13		,	•	-,0
. 100	g = 272.2 - 0.132 T	1170-1260	(166)	4	a
) 100					
0-100 12-88	g = 181 - 0.0581 T	1080-1170		4	a

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
3 -6 2	g = 179.7 - 0.0672 T	1080-1170		4	а
-50	g = 180.1 - 0.0706 T	1080-1170		4	а
-37	g = 177.9 - 0.071 T	1080-1170		4	а
5-25	g = 176.2 - 0.071 T	1080-1170		4	a
3-12	g = 176.7 - 0.073 T	1080-1170		4	а
00-0	g = 187 - 0.0829 T	1080-1170	(167)	4	а
	, , , , , , , , , , , , , , , , , , ,				
0-90	KC1-LiC1 g = 183.3852 - 0.0675324 T	880-1060	(168)	4	а
0- 9 0 1-79	-	840-1020	(100)	4	
	g = 183.53 - 0.0710111 T	780-880		4	a
1-69	g = 188.365 - 0.0782852 T			4	a
2-58	g = 189.5657 - 0.0823478 T	660-920		4	a
0-50	g = 187.3435 - 0.0808096 T	780-1020		4	a
0-40	g = 189.4704 - 0.0845251 T	880-1020		•	a
0-30	g = 190.9364 - 0.0869217 T	920-1060		4	а
8-22	g = 196.2269 - 0.0916605 T	980-1060		4	а
35-15	g = 189.5651 - 0.0849146 T	1020-1100		4	a
0-10	g = 187.4541 - 0.0830993 T	1040-1100		4.	а
	KC1-LiC1-PbC1 ₂				
0-0-100	g = 228.5 - 0.1167 T	793-973	(169)	18	k
5-15-80	g = 207.6 - 0.099 T	723-1073		18	k
10-10-89	g = 206.4 - 0.1006 T	723-1073		18	k
10-30-60	g = 210.1 - 0.103 T	723-1073		18	k
15-5-80	g = 206.2 - 0.1029 T	723-1073		18	k
15-45-40	g = 189.6 - 0.0814 T	723-1073		18	k
20-20-60	g = 202.9 - 0.1009 T	723-1073		18	k
20-60-20	g = 182.9 - 0.0722 T	773-1073		18	k
30-10-60	g = 199 - 0.1008 T	723-1073		18	k
30-30-40	g = 197.3 - 0.094 T	723-1073		18	k
45-15-40	g = 186.7 - 0.0883 T	723-1073		18	k
80-20-20	g = 170.3 - 0.0669 T	823-1073		18	k
	KC1-Li ₂ SO ₄				
0~100	g = 300.08 - 0.064 T	1173-1373	3 (170)	8	a,
1-99	g = 297.42 - 0.074 T	1173-1373		8	a,
2-98	g = 290.98 - 0.068 T	1173-1373		8	a,
3-97	***	1173-1373		8	a,
5-95	g = 291.85 - 0.08 T	1173-1373		8	a,
10-90	a = 233.42 - 0.044 T	1173-137		8	a,
35-65	g = 209.75 - 0.054 T	1173-137		8	a,
40-60	g = 213.74 ~ 0.062 T	1173-137		8	a, a,
45-55	g = 222.42 - 0.074 T	1173-1373		8	a, a,
	•	1173-137		8	
KO_KO	g = 204.08 - 0.064 T	11/0-13/		8	a, a,
	a = 200 83 = 0.066 T	1172_127			۵.
55-45	g = 200.83 - 0.066 T	1173-137			
55-45 60-40	g = 195.03 - 0.066 T	1173-137	3	8	a,
55-45 60-40 75-25	g = 195.03 - 0.066 T	1173-137 1173-137	3 3	8 8	a, a,
55-45 60-40 75-25 90-10	g = 195.03 - 0.066 T	1173-1373 1173-1373 1173-1373	3 3 3	8 8 8	a, a, a,
55-45 60-40 75-25 90-10 95-5	g = 195.03 - 0.066 T. g = 207.75 - 0.084 T. g = 194.2 - 0.082 T. g = 202.99 - 0.09 T.	1173-137; 1173-137; 1173-137; 1173-137;	3 3 3 3	8 8 8	a, a, a,
55-45 60-40 75-25 90-10 95-5	g = 195.03 - 0.066 T	1173-1373 1173-1373 1173-1373	3 3 3 3	8 8 8	a, a, a,
55-45 60-40 75-25 90-10 95-5	g = 195.03 - 0.066 T. g = 207.75 - 0.084 T. g = 194.2 - 0.082 T. g = 202.99 - 0.09 T.	1173-137; 1173-137; 1173-137; 1173-137;	3 3 3 3	8 8 8	a, a, a,
55-45 60-40 75-25 90-10 95-5 100-0	g = 195.03 - 0.066 T g = 207.75 - 0.084 T g = 194.2 - 0.082 T g = 202.99 - 0.09 T g = 183.7 - 0.078 T	1173-137; 1173-137; 1173-137; 1173-137;	3 3 3 3 3 (171)	8 8 8	a, a, a,
55-45 60-40 75-25 90-10 95-5 100-0	g = 195.03 - 0.066 T. g = 207.75 - 0.084 T. g = 194.2 - 0.082 T. g = 202.99 - 0.09 T. g = 183.7 - 0.078 T. KC1-LuC13	1173-137: 1173-137: 1173-137: 1173-137: 1173-137:	3 3 3 3 (171)	8 8 8 8	a, a, a, a,
55-45 60-40 75-25 90-10 95-5 100-0	g = 195.03 - 0.066 T g = 207.75 - 0.084 T g = 194.2 - 0.082 T g = 202.99 - 0.09 T g = 183.7 - 0.078 T KC1-LuC1 ₃ g = 215.7 - 0.106 T g = 168.6 - 0.06971 T	1173-137: 1173-137: 1173-137: 1173-137: 1173-137:	3 3 3 3 (171)	8 8 8 8 8	a, a, a, a, k
55-45 50-40 75-25 90-10 95-5 100-0 99.6-0.4	g = 195.03 - 0.066 T g = 207.75 - 0.084 T g = 194.2 - 0.082 T g = 202.99 - 0.09 T g = 183.7 - 0.078 T KC1-LuC13 g = 215.7 - 0.106 T g = 168.6 - 0.06971 T KC1-MgC12	1173-137: 1173-137: 1173-137: 1173-137: 1173-137: 1073-117	3 3 3 3 3 (171) 3 3 (172)	8 8 8 8 8 19	a, a, a, a, k
50-50 55-45 60-40 75-25 90-10 95-5 100-0 99.6-0.4 100-0 0-100 11.9-88.1	g = 195.03 - 0.066 T g = 207.75 - 0.084 T g = 194.2 - 0.082 T g = 202.99 - 0.09 T g = 183.7 - 0.078 T KC1-LuC1 ₃ g = 215.7 - 0.106 T g = 168.6 - 0.06971 T	1173-137: 1173-137: 1173-137: 1173-137: 1173-137:	3 3 3 3 3 3 3 3 3 3 3 4 17 1) 3 3 3 4 17 2) 0 4 17 3)	8 8 8 8 8	a, a, a, a,

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
9.8-60.2	g = 124.13 - 0.04686 T	1011-1129		15	d
7.9-52.1	g = 126.83 - 0.04799 T	1016-1115		15	d
0-40	g = 131.85 - 0.05049 T	1033-1142		15	ď
5.9-33.1	g = 128.13 - 0.04548 T	1020-1135		15	d
0.5-29.5	g = 133.4 - 0.04892 T	993-1125		15	d
7.1-22.9	g = 152.33 - 0.06271 T	1032-1133		15	d
5.3-14.7	g = 152.84 - 0.06007 T	1068-1176		15	d
3.4-6.6	g = 153.73 - 0.05607 T	1044-1118		15	d
00-0	g = 175.57 - 0.07321 T	1089-1154	(174)	15	đ
	KC1-NaBr				
-100	g = 173.4 - 0.0682 T	1050-1220	(175)	2	a
5-85	g = 153.9 - 0.0527 T	1010-1200	ı	2	а
0-70	g = 158.6 - 0.0585 T	970-1180		2	a
0-50	g = 165.4 - 0.066 T	920-1160		2	a
0-30	g = 165 - 0.0653 T	970-1180		2	a
5-15	g = 167.4 - 0.0671 T	1000-1200	ı	2	a
00-0	g = 172.4 - 0.071 T	1070-1260		2	a
			(110)	_	_
-100	KC1-NaC1 g = 187 ~ 0.068 T	1090-1220	(177)		
0-90	g = 183.5 - 0.068 T	1080-1220		4	a
5-75	g = 181.2 - 0.07 T	1170-1220		4	a
0-60	- 400 4 0 000 -	1010-1170	l	4	а
D-50 D-50	g = 179.3 - 0.072 T	980-1170		4	а
0-40	g = 177.3 - 0.072 T	980-1170		4	a
5-25	g = 178 - 0.074 T	980-1170		4	а
0-10		980-1170		4	а
00-0	g = 178.1 - 0.075 T	1030-1170		4	а
00-0	g = 176.8 - 0.075 T	1080-1220	(178)	4	a
	KC1-NaC1-PbC1 ₂				
-0-100	g = 227.9 - 0.122 T	823-873	(179)	20	k
0-30-60	g = 192.6 - 0.088 T	723-873		20	k
0-10-80	g = 187.9 - 0.083 T	773-873		20	k
0-20-60	g = 206 - 0.111 T	723-873		20	k
0-10-60	g = 196.2 - 0.101 T	723-873		20	k
0-30-40	g = 228.7 - 0.14 T	823-873		20	k
	KC1-NaI				
0-100.0	g = 172 - 0.09 T	960-1160	(180)	2	a,e
.0-92.0	g = 147.6 - 0.07 T	920-1100		2	a,e
5.0-85.0	g = 146.1 - 0.069 T	880-1080		2	a,e
3.3-66.7	g = 141.6 - 0.063 T	820-1000		2	a,e
0.0-50.0	g = 137.3 - 0.057 T	840-1020		2	a,e
6.7-33.3	g = 145.2 - 0.063 T	860-1060		2	a,e
5.0-15.0	g = 153.2 - 0.066 T	960-1160		2	a,e
00.0-0.0	g = 175.1 - 0.073 T	1060-1260	(181)	2	a,e
			(101)	-	u , c
-100	KC1-NaN0 ₃ (T=743 K, g=110.4)				
)-90			(182)	8	а
0-70				8	a
	(T=743 K, g=109.1)			8	a
	KC1-Na ₂ B ₄ 0 ₇				
00-30 Na ₂ B ₄ 0 ₇	g = 178.5 - 2.508 C + 0.03025 C ²	1223	(183)	8	a,b
	KC1-NdC13				
) - 10	g = 497.613 - 0.354 T	1173-1223		19	k
i-5	g = 179.416 - 0.076003 T	1073-1223		19	k
	g = 193.898 - 0.086003 T			1.5	^

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)	_			
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
00-0	g = 175.559 - 0.0738 T	1073-1223	(184)	19	k
	KC1-PbC1 ₂				
0.00-100.00	g = 233.7 - 0.124 T	795-845	(185)	4	а
4.32-75.68	g = 201.426 - 0.104167 T	765 - 775		4	а
5.88-64.12	g = 193.7382 - 0.098527 T	775-845		4	а
0.87-49.13	g = 193.1133 - 0.100855 T	770-820		4	а
51.15-48.85	g = 196.6602 - 0.105613 T	765-825		4	а
3.14-36.86	g = 180.9981 - 0.085499 T	830-870		4	a
88.23-31.77	g * 169.9381 - 0.073489 T	870-895		4	а
	KC1-PrC13				
- 100	g = 146.1 ~ 0.03729 T	1103-1199	(186)	14	k
4-86	g = 140.8 - 0.03695 T	1154-1225		14	k
29.1-70.9	g = 142.3 - 0.04043 T	1093-1222		14	k
12.9-57.1	g = 147.8 - 0.04821 T	1115-1215		14	k
55.9-43.1	g = 155 - 0.05591 T	1093-1213		14	k
30-20	g = 166.2 - 0.06692 T	1091-1212		14	k
100-0	g = 177.61 - 0.07519 T	1127-1209		14	k
	- KCl-RbBr				
0-100	g = 139.1 - 0.0545 T	970-1170	(188)	2	a,
15-85	g = 149 - 0.063 T	1060-1220		2	а,
30-70	g = 152.3 - 0.0644 T	1050-1240		2	a,
50-50	g = 163.6 - 0.0725 T	1050-1220		2	a,
70-30	g = 162.2 - 0.0684 T	1080-1220		2	a,
80-20	g = 161.5 - 0.0659 T	1070-1230		2	a,
	•	1060-1250		2	a,
90-10 100-0	g = 168.8 - 0.0707 T	1070-1260		2	a,
,00-0		1070 120	(103)	-	•,
	KC1-SrC1 ₂	1153 120	. (100)		_
0-100	g = 230.7 - 0.0541 T	1157-130		4	a
20-80	g = 210.9 - 0.0664 T	1030-1300		•	a
40-60	g = 206.12 - 0.0711 T	1010-1300		4	a
60-40	g = 186.87 - 0.0661 T	1010-130		4	а
80-20	g = 194.25 - 0.0788 T	1010-131		4	а
100-0	g = 187.57 - 0.0837 T	1080-129	0 (191)	4	а
	KC1-UC13				
0-100	g = 311.5 - 0.165 T	1123-132	3 (192)	21	k
10-90	g = 280.33 ~ 0.145 T	1113-134	3	21	k
20-80	g = 257.99 ~ 0.13122 T	1024-136	3	21	k
30-70	g = 236.07 - 0.122 T	974-1323		21	k
40-60	g = 238.45 ~ 0.118 T	979-1340		21	k
50-50	g = 234.39 - 0.115 T	978-1348		21	k
60-40	g = 223.1 - 0.107 T	984~1338		21	k
70-30	g = 211.14 ~ 0.1 T	992-1330	ı	21	k
80-20	g = 197.57 ~ 0.09 T	1000-132	3	21	k
90-10	g = 191.77 - 0.086 T	1015-133	16	21	k
100-0	g = 187 - 0.082 T	1053-132	3 (193)	21	k
	KC1-UC14				
0-100	g = 204.95 - 0.185 T	880-960	(194)	4	a
39.33-60.67	g = 102.83 - 0.0621 T	890-980	(134)	4	
56.04-43.96	g = 93.04 - 0.04808 T	880-990		4	a
64.31-35.69	g = 59.73 - 0.00865 T		,	4	a
73.68-26.32	-	930-1010		4	
96.00-4.00	g * 77.59 - 0.01349 T	870-1050			
	g = 136.65 - 0.06732 T	1020-115		4	á
97.33-2.67	g = 164.82 - 0.08871 T	1050-109	JU .	4	•

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref .	Comment
00-0	g = 182.51 - 0.0782 T	1080-1170	(195)	4	а
	KC1-ZnC1 ₂				
.0-100.0	g = 75.361 - 0.027204 T	611-991	(196)	4	a,e
. 1-96 . 9	g = 64.682 - 0.012396 T	584-951		4	a,e
. 7-93 . 3	g = 65.794 - 0.013939 T	625-974		4	a,e
3.4-86.6	g = 63.393 - 0.00808 T	568-974		4	a,e
9.7-80.3	g = 76.792 - 0.02142 T	592-1011		4	a,e
9.1-60.9	g = 104.545 - 0.040953 T	553-1037		4	a,e
9.9-40.1	g = 140.055 - 0.062009 T	623-1057		4	a,e
For additional R	COI systems, see : AgBr- ; AgCl- ; BaCl ₂ - ; BaFCl- ; BaF ₂ - ; CaCl ₂ - ; CdBr ₂ - ; CdC	2- ; CeCl3-	; KBr-		
	KC1*NaC1-LaC13				
9.6-10.4	g = 147.946 - 0.0546 T	973-1123		16	k
3.7-9.3	g = 163.91 - 0.0674 T	973-1123		16	k
7.0-3.0	g = 159.015 - 0.060199 T	973-1123	(197)	16	k,z
	KC1*NaC1-NdC13				
5.0-15.0	g = 145.996 - 0.052 T	973-1123		16	k
3.8-6.2	g = 156.153 - 0.0584 T	973-1123		16	k
7.1-2.9	g = 146.308 - 0.046 T	973-1123	(198)	16	k,z
	KC1*NaC1-PrC13				
4 . 8-15 . 2	g = 148.93 - 0.0548 T	973-1123		16	k
3.7-6.3	g = 153.688 - 0.05599 T	973-1123		16	k
7.1-2.9	g = 158.415 - 0.0576 T	973-1123	(199)	16	k,z
17. 1-2.5		370 (120	(133)	10	K , &
	KC1*NaC1-SmC1 ₃	070 4400		40	
35.3-14.7	g = 146.042 - 0.054 T	973-1123		16	k
93.9-6.1	g = 153.465 - 0.0576 T	973-1123	(222)	16	k
97.2-2.8	g = 156.707 - 0.059 T	973-1123	(200)	16	k,z
For additional	KCl*NaCl systems, see : CeCl3- KCl03				
100	g = 337.3 - 0.4 T	641-651	±2%	1	a, j
	KC2H302-NaNO3				
isothermal Data	(C=0-100, g=42) (C=50-50, g=51.5) (C=75-25, g=62.7) (C=90-10, g=83.6) (C=95-5, g=94.9) (C=98-2, g=106.4) (C=99-1, g=110.4)	588		8	a
ooints	0=94.9) (L=98-2, 0=106.4) (L=99-1, 0=110.4) KC3H ₅ 02-NaN03				
Isothermal Data	(C=0-100, g=25.6) (C=50-50, g=35.7) (C=75-25, g=41.7) (C=90-10, g=54.8) (C=95-5, g=70.3) (C=98-2, g=86.1) (C=99-1, g=97.86)	588		8	a
points	g=70.3) (C=98-2, g=86.1) (C=99-1, g=97.86) KF				
100	g = 240.011 - 0.084782 T	1185-158	3 (201)	1	a, ;
100	KF-K ₂ ZrF ₆	1100 100	(25.7		
100-0 K ₂ ZrF ₆	g = 136.3 - 0.2136 C - 0.00842 C ² + 6.447 x 10 ⁻⁵ C ³	1233	(202)	8	a
- 0	KF-L1F				
0-100	g = 371.33 - 0.107 T	1073-117	3 (203)	7	а,
10-90	g = 364.41 - 0.126 T	1073-117	3	7	a,
20-80	g = 335.25 - 0.121 T	1073-117	3	7	а,
30-70	g = 300.73 - 0.107 T	1073-117	3	7	а,
40-60	g = 270.9 - 0.09301 T	1073-117	3	7	a,
50-50	g = 253.29 - 0.08601 T	1073-117	3	7	a,
60-40	g = 250.6 - 0.08901 T	1073-117	3	7	a,
70-30	g = 256.59 - 0.09701 T	1073-117	3	7	a,
80-20	g = 262.13 - 0.103 T	1073-117	3	7	a,
90-10	g = 251.47 - 0.09401 T	1073-117	3	7	a,
100-0	g = 203.98 - 0.05301 T	1073-117	3 (204)	7	a,

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
	KF-NaF				
0-40	g = 242.48 - 0.07884 T	903-1151		7	a,g
	KF-Na ₂ B₄0 ₇				
00-40 Na ₂ B ₄ B ₇	g = 146.2 - 1.193 C + 0.02033 C ²	1223	(205)	8	a,b,
-2-4-7	KF-Na3A1F6		(===,	-	_,_,
***	, ,	1072 1070	(005)		1.
-100 .4-96.6	g = 311.27 - 0.138 T	1273-1373 1291-1367	(206)	9	k
	g = 308.595 - 0.1363238 T			9	k
0.1-89.8 6.1-83.9	g = 305.175 - 0.134498 T	1280-1356 1280-1360		9 9	k L
3.9-76.1	g = 301.276 - 0.132918 T			9	k
5.1-64.9	•	1252~1346		9	k
5.8-54.2	g = 298.361 - 0.131498 T	1237~1354		9	k
4.7-45.3	g = 295.35 - 0.130338 T	1217~1358		9	k
4.7-45.3	KF-ZrF ₄	1201-1327		9	k
	-			_	
0.0-33.3 ZrF ₄	g = 135.6 - 1.077 C + 0.1857 C^2 + 0.01183 C^3 + 1.84 x 10^{-4} C^4	1233	(207)	7	a,n
For additional	KF systems, see : Al ₂ O ₃ - ; BaCl ₂ - ; CaSiO ₃ - ; KCl-				
	K1				
00	g = 136.1 - 0.06003 T	969-1186	±1.5%	17	k
00	g = 100.1	303 1180	21.5%	17	•
	KI-Na ₂ SO ₄				
00-50 Na ₂ S0 ₄	g = 72.69 + 1.3093 C - 0.02873 C ² + 2.775 x 10 ⁻⁴ C ³	1173	(208)	8	a
	KN02				
100	g = 164.24 - 0.08 T	718-774	±1.5%	1	a,j
	KN02-KN03	710 774	-1.0%		α, ,
0 100	· · · · · ·	645 840	(000)	_	
20-80	g = 148.5 - 0.064 T	615-740	(209)	5	a,e
22.5-77.5	g = 145.7 - 0.059 T	680-860		5	a,e
10-60	g = 144.3 - 0.057 T	680-860		5	a,e
	g = 148 - 0.061 T	635~860		5	a,e
60-40	g = 145.6 - 0.055 T	605~860		5	a,e
80-20	g = 146 - 0.062 T	605~860		5	a,e
	KN03				
100	g = 154.715 - 0.071708 T	620-760	±0.5%	8	d
	KN03-L1N03				
0-100	g = 144.9 - 0.055 T	575-670	(210)	5	a,e
25-75	g = 143.2 - 0.056 T	505-670		5	a,e
50-50	g = 146.5 - 0.062 T	445-670		5	a,e
58-42	g = 148.7 - 0.065 T	445-670		5	a,e
75-25	g = 152.7 - 0.07 T	460-670		5	a,e
100-0	g = 161.9 - 0.081 T	625-670	(211)	5	a,e
	KNO3-NANO3				
0-100	g = 153.99 ~ 0.06 T	590-673	(212)	5	a,e
10-90	g = 156.6 - 0.06567 T	590-670	(212)	5	a, e
20-80	g = 157.3 - 0.06807 T	560-670		5	a, e
30-70	g = 158.5 - 0.07106 T	540-670		5	
40-60	g = 158.9 - 0.07275 T				a, e
50-50	g = 159.6 - 0.07476 T	510-670 500-670		5	a, e
54-46	g = 159.9 - 0.0756 T	500-670 500-670		5	a, e
60-40		500-670		5	a, e
	g = 160.6 - 0.07709 T	510-670		5	a, e
70-30 80-30	g = 161.5 - 0.07926 T	530-670		5	а,
80-20 80-10	g = 162.7 - 0.08176 T	550-670		5	a,
90-10	g = 153.8 - 0.08401 T	570-670		5	а, е
100-0	g = 164.6 - 0.0855 T	590-670	(213)	5	a, e
	KN03-RbN03				
	·				

Table 2.2.a Surface Tension data (continued)

, , ,	Surface Tension (mN m ⁻¹)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
5-75	g = 157.4 - 0.082 T	585-660		5	a,e
0-50	g = 159.6 - 0.083 T	570-660		5	a,e
0-30	g = 162.1 - 0.084 T	570-660		5	a,e
5-25	g = 161.2 - 0.083 T	570-660		5	a,e
For additiona	1 KN0 $_3$ systems, see : AgN0 $_3$ - ; Ca(N0 $_3$) $_2$ - ; Cd(N0 $_3$) $_2$ - ; CsN0 $_3$ - ; KN0 $_2$ -				
	KP03				
00	g = 208.4 - 0.0556 T	1132-1773	3 ±2%	1	a,j
	KPO3-LiPO3				
- 100	g = 218.282 - 0.0241 T	1030-1416	0 (215)	6	а
0.12-89.88	g = 227.071 - 0.0398 T	1030-1410	0	6	а
0.02-79.98	g = 228.583 - 0.0468 T	1030-1410	0	6	а
9.98-70.02	g = 226.812 - 0.0502 T	1030-1410	0	6	а
0.05-59.95	g = 225.467 - 0.0526 T	1030-141	0	6	а
9.90-50.10	g = 223.55 - 0.054 T	1030-141	0	6	а
9.98-40.02	g = 219.331 - 0.0532 T	1030-141	0	6	a
88.91-31.09	g = 219.878 - 0.0563 T	1030-141	0	6	a
80. 19-19.81	g = 220.115 - 0.059 T	1030-141	0	6	а
39.87- 10.13	g = 220.307 - 0.0608 T	1030-141	0	6	a
100-0	g = 221.672 - 0.0636 T	1030-141	0 (216)	6	а
	KPD3-NaPO3				
- 100	g = 237.02 - 0.0488 T	1078-142	0 (217)	6	a
0.06-89.94	g = 231.53 - 0.0492 T	980-1420)	6	a
19.97-80.03	g = 226.53 - 0.0492 T	980-1420)	6	а
29.89-70.11	g = 223.1 - 0.0498 T	980-1420	1	6	а
39.82-60.18	g = 222.99 - 0.0527 T	980-1420)	6	a
50.05~49.95	g = 222.85 - 0.0555 T	980-1420)	6	a
50.03-39.97	g = 217.53 - 0.0532 T	980-1420)	6	a
70.09-29.91	g = 216 - 0.0542 T	1078-142	10	6	а
78.82-21.18	g = 218.17 - 0.0577 T	1078-142	20	6	a
90.06-9.94	g = 217.85 - 0.0595 T	1078-142	20	6	а
100-0	g = 221.67 - 0.0636 T	1078-142	20 (218)	6	а
	KPO ₃ -Zn0				
72.3-27.7	g = 231.6 - 0.0419 T	1200-138	30	8	a
77.9-22.1	g = 218.2 - 0.0405 T	1050-132	20	8	а
89.6-10.4	g = 204.2 - 0.0471 T	1080-135	50	8	а
	KP03-Zn(P03)2				
0-100	g = 196.58 + 0.00195 T	1244-147	76 (219)	6	a
8.3-91.7	g = 175.6 - 0.004 T	1233-136		6	a
18.1-81.9	g = 171.14 - 0.0042 T	1206-134		6	a
30.1-69.9	g = 195.3 - 0.00367 T	1140-13		6	a,b
44.1-55.9	g = 186.24 - 0.0313 T	1100-13		6	a a
61.2-38.8	g = 190.36 - 0.0416 T	1080-13		6	a
70.05-29.5	g = 197.79 - 0.0478 T	1080-13		6	a
	g = 189.16 - 0.0405 T	1140-13		6	a
78.1-21.9				6	
85.2-14.8	g = 191.9 - 0.0425 T	1169-13			a
94.5-5.5 100-0	g = 206.01 - 0.0535 T	1146-13 1152-13		6 6	a a
100-0	y - 200.00 - 0.0000	1102-10	-, (<u>220</u>)	U	a
For addition	nal KPO3 systems, see : Ba(PO3)2- KSCN				
100	g = 133.97 - 0.0581 T	464-514	±1.5%	14	k
	•				

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
	KSCN-NaSCN				
-100	g = 134.9312 - 0.05266 T	583-597	(221)	14	k
1.7-68.3	g = 124.14 - 0.04433 T	465-536		14	k
2.8-47.2	g = 135.47 - 0.06305 T	506-566		14	k
8.5-41.5	g = 134.33 - 0.06039 T	534-588		14	k
9.0-31.0	g = 131.53 - 0.05513 T	537~581		14	k
100-0	g = 133.97 - 0.0581 T	464-514	(222)	14	k
-100 KSCN	g = 107.1 - 0.127 C - 4.88 x 10^{-5} C ² + 9.67 x 10^{-6} C ³	523	±1%, (223) 14	k
	KV03			_	
00	g = 179.4 - 0.0333 T	823-1273	n.a.	8	а
) 1 0 0	g = 100.5 - 0.0118 T	953-1273	(224)	8	a
19.0-81.0	g = 104.5 - 0.0137 T	950-1275		8	a
36.0-64.0	g = 111.4 - 0.0174 T	950-1150		8	а
51.7-48.3	g = 120.3 - 0.021 T	843-1253		8	а
55.8-34.2	g = 127.4 - 0.0243 T	850-1275		8	а
30.6-19.4	g = 142.3 - 0.0281 T	738-1263		8	a
39.0-11.0	g = 154.2 - 0.03 T	750-1250		8	а
100-0	g = 179.4 - 0.0333 T	823-1273	(225)	8	a
	K ₂ C0 ₃				
100	g = 243.714 - 0.063681 T	1178-128	3 ±0.5%	1	a,e,
0-100	g = 281.5 - 0.0366 T	1023-117	3 (226)	6	а
10-90	g = 253.42 ~ 0.0334 T	965-1172		6	a
30-70	g = 231.18 - 0.0292 T	842-1173		6	a
42.7-57.3	g = 324.09 - 0.1248 T	1004-115		6	a
50-50	g = 229.59 - 0.0395 T	800-1172		6	a
70-30	g = 241.94 - 0.058 T	931-1173		6	a
90-10	g = 262.93 - 0.0769 T	1114-117		6	a
100-0	g = 241.07 ~ 0.0614 T	1173-130		6	a
	K2C03-Li2C03-Na2C03				
25.0-43.5-31.5	g = 287.07 - 0.06944 T	740-1050)	6	a
	K ₂ C0 ₃ -Na ₂ C0 ₃				
0-100	g = 268.5 - 0.0502 T	1143-127	9 (228)	6	a,e
25-75	g = 259.582 - 0.058333 T	1060-120	_	6	a,c a
42-58	g = 288.14 - 0.076207 T	1000-114		6	a,b
50-50	g = 253.18 - 0.062007 T	1000-116		6	a,e
75-25	g = 256.2 - 0.070807 T	1083-123		6	a,e
100-0	g = 243.714 - 0.063681 T	1177-127		6	a,e
	K ₂ Cr ₂ 0 ₇	,,,,	(110)	Ū	4,0
100	g = 310 - 0.27 T	673-713	±2%	1	a, j
100	g = 229.478 - 0.064777 T	1203-180	06 ±3%	1	a,c
	K ₂ Mo0 ₄ -Li ₂ Mo0 ₄				
0-100	g = 367.49 - 0.1282 T	1013-128	31 (230)	6	a,e
19.9-80.1	g = 256.28 - 0.07283 T	940-1160	0	6	a
33-67	g = 241.46 - 0.06896 T	820-1040	0	6	a
50-50	g = 236.63 - 0.06639 T	860-1060	0	6	a
60-40	g = 226.07 - 0.05909 T	840-1066		6	a,e
79.9-20.1	g = 239.22 - 0.07732 T	1080-118		6	a
100-0	g = 279.15 - 0.102 T	1207-12		6	a,e
	K2M004-M003		•	-	_,-
25-75	g = 173.42 - 0.06663 T	1130-13	40	8	•
42-58	g = 183.77 - 0.06983 T				a
		1100-13	10	8	а

Table 2.2.a Surface Tension data (continued)

(mo1 %) 60-50 61-39 81-19 100-0 7.3-92.7 7.5-6-74.4 88.1-61.9 88-52	Equation g = 183.9 - 0.06884 T	T range(K) 1040-1340 1190-1370	Accur.	Ref .	Comment
1-39 1-19 00-0 .3-92.7 5.6-74.4 8.1-61.9	g = 192.97 - 0.0689 T	1190-1370			a
3-92.7 5.6-74.4 3.1-61.9	g = 189.74 - 0.05654 T				
3-92.7 5.6-74.4 3.1-61.9	•	1190-1370		8	a
3-92.7 5.6-74.4 3.1-61.9	g = 217.38 - 0.06425 T			8	a
5.6-74.4 3.1-61.9		1240-1360	(232)	8	а
5.6-74.4 3.1-61.9	K ₂ 0-Zn(PO ₃) ₂				
3.1-61.9	g = 181.9 - 0.0045 T	1240-1360		8	а
	g = 223.7 - 0.042 T	1180-1360		8	а
8-52	g = 230.8 - 0.0453 T	1120-1360		8	a
	g = 239 - 0.0443 T	1240-1360		8	a
	K ₂ S0 ₄				_
00	g = 245.2 - 0.0765 T	1372-1394	±1.5%	1	a,j
	K ₂ SO ₄ -NaBr				_,,
-100	g = 186.89 - 0.08091 T	1233-1343	(233)	8	a
0-80	g = 170.73 - 0.06558 T	1080-1200	(=00)	8	a
5-65	g = 165.763 - 0.058329 T	1010-1220		8	a,e
D-50	g = 171.95 - 0.05502 T	1100-1220		8	a,c a
0-40	g = 190.434 - 0.067061 T	1190-1280		8	
0-30	g = 169.06 - 0.04327 T				a,e
0-30	g = 158.481 - 0.031468 T	1250-1280		8	а
		1280-1340		8	a,e
5-15 	g = 237.61 - 0.08494 T	1233-1343		8	а
5-5	g = 215.28 - 0.06353 T	1233-1343		8	а
00-0	g = 251.07 - 0.08502 T	1350-1373	(234)	8	а
100	K ₂ SO ₄ -Na ₂ SO ₄				
-100 	g = 269 - 0.066 T	1170-1460		6	а
5-75	g = 237.3 - 0.066 T	1100-1460		6	a
0-50	g = 247.1 - 0.069 T	1200-1460		6	a
5-25	g = 248.8 - 0.063 T	1240-1460		6	а
00-0	g = 229.8 - 0.065 T	1360-1460	(236)	6	a
00 00 K-80	K ₂ S0 ₄ -RbC1				
00-90 K ₂ S0 ₄	g = 59.3 + 0.837 C	1348	(237)	8	a
***	K ₂ SO ₄ -Rb ₂ SO ₄				
- 100	g = 207.89 - 0.06 T	1170-1470	(238)	6	a
5-75	g = 226.63 - 0.066 T	1190-1470		6	a
0-50	g = 223.8 - 0.067 T	1230-1470		6	a
00-0	g = 229.76 - 0.065 T	1350-1470	(239)	6	a
For additional	K ₂ SO ₄ systems, see : Cs ₂ SO ₄ - ; KCl-				
	K ₂ W0₄				
00	g = 266.477 - 0.090514 T	1210-1793	±3%	1	a,e,
***	K2W04-L12W04				
-100	g = 322.59 - 0.084855 T	1030-1236	(240)	6	a
0-90	g = 289.918 - 0.07536 T	985-1186		6	a
9.9-80.1	g = 296.88 - 0.09405 T	920-1137		6	a,e
0-70	g = 301.364 - 0.10869 T	867-1024		6	а
0-60	g = 287.69 - 0.09814 T	947-1109		6	a,e
0-50	g = 290.66 - 0.1057 T	963-1077		6	a,e
4.4-45.6	g = 279.705 - 0.09633 T	943-1085		6	a
0-40	g = 266.42 - 0.09091 7	929-1103		6	a,e
0-20	g = 263.87 - 0.08964 T	1040-1183		6	a,e
00-0	g = 295.12 - 0.11142 T	1215-1288		6	a,e
	к ₂ wo ₄ -wo ₃			•	-,-
5-55	g = 231.12 - 0.08932 T	1010-1220	•	8	а
5-45	g = 241.79 - 0.09531 T	1070-1250		8	
5-35	g = 234.71 - 0.08803 T				a
	g = 230.43 - 0.07971 T	1140-1220		8	a
0-20		1130-1280		8	а

J. Phys. Chem. Ref. Data, Vol. 17, Suppl. 2, 1988

Table 2.2.a Surface Tension data (continued)

(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
	K ₂ ZrF ₆				
00	g = 192.46 - 0.08051 T	1073-1223	n.a.	8	a,e
	K ₂ ZrF ₆ -NaC1				,
-100	g = 191.5 - 0.072 T	1123-1223	(243)	8	a
0-90	g = 206.06 - 0.085 T	1123-1223	(=.0)	8	a
0-80	g = 204.16 - 0.08401 T	1123-1223		8	a
30-70	g = 206.37 - 0.087 T	1123-1223		8	a
10-60	g = 203.26 - 0.085 T	1123-1223		8	a
0-50	g = 202.56 - 0.08501 T	1123-1223		8	a
30-40	g = 202.26 - 0.086 T	1123-1223		8	a
70-30	g = 204.75 - 0.089 T	1123-1223		8	a
30-20	g = 200.67 - 0.08601 T	1123-1223		8	a
90-10	g = 200.9 - 0.087 T	1123-1223		8	a
100-0	g = 192.46 - 0.08051 T	1073-1233		8	a,e,
00 0	K ₂ ZrF ₆ -Na ₂ B ₄ 0 ₇	1075-1255	(244)	o	α, ε,
		4000 4005	(5.5)	_	
0-100	g = 293.895 - 0.050966 T	1020-1225		8	a,e
1.4-98.6	g = 287.735 - 0.051335 T	1020-1200		8	a,e
2.9-97.1	g = 277.07 - 0.047148 T	1020-1200		8	a,e
4.3-95.7	g = 284.48 - 0.055201 T	1020-1200		8	a,e
5.8-94.2	g = 283.145 - 0.056388 T	1020-1200		8	a,e
7.2-92.8	g = 278.025 - 0.053051 T	1020-1200	1	8	a,e
8.8-91.2	g = 282.58 - 0.056564 T	1020-1200)	8	a,e
For addition	al K ₂ ZrF ₆ systems, see : KF- K ₃ AlF ₆ -Na ₃ AlF ₆				
0-100	g = 311.27 - 0.138 T	1273-1373	(246)	9	k
20, 1-79.9	g = 259.93 - 0.112067 T	1277-1335		9	k
40.2-59.8	g = 228.396 - 0.098976 T	1276-1334		9	k
60.1-39.9	g = 234.143 - 0.101041 T	1275-1335		9	k
80.0-20.0	g = 228.396 - 0.098976 T	1276-1334		9	k
100-0	g = 237.551 - 0.107387 T	1281-1340		9	
100-0		1281-1340		9	k
100	g = 237.551 - 0.107387 1	1201-1040	2 ±1.5%	3	k
	- •	4405 4884	(0.40)		
0-100	g = 272.2 - 0.132 T	1165-1280		4	a
86-14	g = 239.7 - 0.09615 T	1240-1330)	4	а
100	g = 272.2 - 0.132 T	1165-1280) ±2%	4	a
	LaC13-NaC1				
0-100	g = 189.5 - 0.0706 T	1123-1248	3 (249)	22	k
12.5-87.5	g = 196.3 - 0.076 T	1148-1248	3	22	k
25-75	g = 199.5 - 0.0786 T	1123-1248	3	22	k
40-60	g = 200.5 - 0.0788 T	1148-1248		22	k
55-45	g = 215.2 - 0.0904 T	1148-1248		22	k
70-30	g = 229.5 ~ 0.1016 T	1148-124		22	k
85-15	g = 259.8 - 0.1251 T	1123-124		22	k
100-0	g = 253.9 - 0.1168 T	1148-124		22	k
			. (200)	LL	R.
For addition	nal LaCl ₃ systems, see : BaCl ₂ - ; CsCl- ; KCl- ; KCl*NaCl- ; LaCl ₂ - LiBO ₂				
100	g = 388.823 ~ 0.10433 T	1153-179	3 ±3%	1	a, j
	LiBr				,0
100	g = 150.56 - 0.04988 T	834-1160	±1.5%	17	k
12-88	g = 211.1 - 0.0816 T	900-1070		2	a
		5.5 .5.0		-	•
	a = 206 8 - 0.0796 T	910-1070		2	•
25-75 37-63	g = 206.8 - 0.0796 T	910-1070 900-1070		2 2	a a

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref .	Commen
3-37	g = 195.5 - 0.0744 T	910~1080		2	а
5-25	g = 192.7 - 0.0735 T	900-1080		2	а
8-12	g = 189.5 - 0.0719 T	910-1070		2	а
00-0	g = 185.2 - 0.0691 T	900-1080	(251)	2	а
	LiBr-LiF				
-100	g = 350.2 - 0.0986 T	1140-1290	(252)	2	а
2-88	g = 316.8 - 0.0952 T	1110-1280		2	а
25-75	g = 286.1 - 0.0897 T	1080-1270		2	а
37-63	g = 263.2 - 0.086 T	1020-1250		2	а
0-50	g = 240.3 - 0.081 T	960-1210		2	а
3-37	g = 224.6 - 0.0797 T	930-1140		2	а
5-25	g = 209.8 - 0.0762 T	890-1120		2	а
38-12	g = 196.1 ~ 0.0725 T	900-1130		2	а
00-0	g = 185.2 - 0.0691 T	890-1130	(253)	2	a
	LiBr-LiI				
- 100	g = 140.7 - 0.0565 T	870-1110	(254)	2	а
25-75	g = 148.3 - 0.058 T	890-1100		2	а
50-50	g = 159.5 - 0.062 T	870-1100		2	а
75-25	g = 171.4 - 0.0661 T	880-1110		2	а
00-0	g = 185.2 - 0.0691 T	880-1120	(255)	2	a
	L iBr-NaBr				
39.5-60.5 NaBr	g = 99.531 - 0.02162 C + 2.104 x 10 ⁻⁵ C ²	1073		3	а,1
	LiBr-RbBr				
10-60 RbBr	g = 79.804 + 0.2448 C - 0.003498 C ²	1073		3	a,r
For additional	l LiBr systems, see : CsBr- ; KBr- LiCl				
100	g = 189.28 - 0.06973 T	903-1060	± 1%	15	d
	LiC1-LiF				
0-100	g = 350.2 - 0.0986 T	1100-1240	(256)	2	а
12-88	g = 323.8 ~ 0.0949 T	1100-1220)	2	a
25-75	g = 303.3 - 0.0958 T	1070-1200	ı	2	а
37-63	g = 281.7 - 0.0922 T	1060-1190)	2	а
50-50	g = 264.4 - 0.0913 T	1020-1160)	2	а
63-37	g = 250 - 0.0906 T	970-1150		2	a
75-25	g = 234.1 ~ 0.0853 T	960-1140		2	а
88-12	g = 223.2 - 0.0842 T	930-1110		2	а
	LiC1-LiI				
0-100	g = 140.7 - 0.0565 T	860-1110	(257)	2	а
25-75	g = 153.5 - 0.0617 T	840-1090		2	а
50-50	g = 169.4 - 0.0673 T	910-1110		2	а
75-25	g = 189.6 - 0.0738 T	880-1090		2	а
	LiC1-Li ₂ CO ₃				
30-70	g = 227.57 - 0.03737 T	970-1050		8	а
50-50	g = 240.39 - 0.07437 T	930-1030		8	a
60-40	g = 204.04 - 0.04663 T	890-970		8	а
70-30	g = 203.44 - 0.05511 T	810-1013		8	a
80-20	g = 194.04 - 0.05585 T	830-1030		8	a
90-10	g = 195.57 - 0.06312 T	838-1018		8	a
	LiC1-MgC1 ₂				
0.0-100.0	g = 65.3426 - 0.003073 T	1010-1160	(258)	4	а
26.5-73.5	g = 86.0789 - 0.013302 T	950-1060	,2007	4	a
43.6-56.4	g = 105.1314 - 0.025978 T	970-1080		4	a
46.9-53.1	g = 109.3989 - 0.026473 Ŧ	940-1040		4	a
54.6-45.4	g = 110.3943 - 0.024826 T	980-1080		4	a
63.8-36.2	g = 127.1996 - 0.035963 T	920-1020		4	_
82.0-18.0	g = 149.7022 - 0.047791 T			•	a
82.8-17.2	g = 152.5166 - 0.04987 T	990-1040		4	a
UL. 0-17.2	y = 102.0100 = 0.0430/ 1	950-1040		4	а

Table 2.2.a Surface Tension data (continued)

	Surface Tension ($mN m^{-1}$)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
100.0-0.0	g = 189.28 - 0.06973 T	903-1060	(259)	4	а
) - 100	g = 209.0422 - 0.084345 T	1110-1170	(260)	4	a
0-60	g = 197.2639 - 0.073786 T	980-1170		4	a
0-40	g = 203.5707 - 0.078974 T	980-1170		4	a
10-20	g = 206.048 - 0.080691 T	980-1100		4	a
100-0	g = 187.6507 - 0.061781 T	930-1120	(261)	4	a
100-40 No-9 0-	$LiC1-Na2B4O7$ $g = 392.2 - 12.29 C + 0.1944 C2 - 8.77 \times 10^{-4} C3$	1223	(262)	8	a,b,m
00-40 Na ₂ B ₄ 0 ₇	LiC1-PbC12	1223	(202)	•	a, D, III
), 0-100.0	g = 233.7 - 0.124 T	791-845	(263)	4	a,e
30.10-69.90	g = 200.8931 - 0.087107 T	775-870	(200)	4	a,e
	•	775-845		4	
35.75-64.25	g = 226.3552 - 0.118665 T			4	a,e
49.39-50.61	g = 209.6978 - 0.09848 T	775-845		-	a,e
50.37-49.63	g = 194.0891 - 0.079463 T	775-845		4	a,e
68.74-31.26	g = 211.7828 - 0.102165 T	810-820		4	a,e
73.63-26.37	g = 200.9088 - 0.088542 T	850-870		4	a,e
0-10 RbC1	$g = 126.82 - 6.218 C + 2.0118 C^2 - 0.29664 C^3 + 0.014382 C^4$	1023	(264)	4	a,n
	LiC1-UC14				
0-100	g = 139.33 ~ 0.1125 T	883-923	(265)	4	a,e
7.20-92.80	g = 128.79 - 0.1 T	883-923		4	a,e
25.64-74.36	g = 109.71 - 0.07499 T	883-923		4	a,e
38.75-61.25	g = 122.75 - 0.08749 T	883-923		4	a,e
40.62-59.38	g = 124.26 - 0.0875 T	883-923		4	a,e
46.61-53.39	g = 114.21 - 0.07499 T	883-923		4	a,e
	g = 87.11 - 0.03749 T	883-923		4	•
52.68-47.32	-			-	a,e
55.84-44.16	g = 68.04 - 0.0125 T	883-923		4	a,e
66.11-33.89	g = 97.607 - 0.03749 T	883-923		4	a,e
67.50-32.50	g = 94.607 - 0.03749 T	883-923		4	a,e
72.62-27.38	g = 110.15 - 0.05 T	883-923		4	a,e
82.10-17.90	g = 189.9 - 0.1375 T	883-923		4	a,e
86.24-13.76	g = 224.7 - 0.1725 T	883-923		4	a,e
91.53-8.47	g = 209.43 - 0.15 T	883-923		4	a,e
95.70-4.30	g = 282.13 - 0.2125 T	883-923		4	a,e
100-0	g = 289.16 - 0.16 T	883-923	(266)	4	a,e
For additiona	l LiCl systems, see : BaCl ₂ - ; CaCl ₂ - ; CsCl- ; KCl- ; LiBr-				
	LiClo ₃				
100	g = 115.6 - 0.0692 T	403-433	±2%	1	a,j
	LiC103-LiN03				
78.7-21.3	g ≈ 117.06 ~ 0.06054 T	400-440		8	а
82.8-17.2	g = 109.66 - 0.04386 T	410-430		8	a
92.5-7.5	g = 112.7 - 0.05609 T	410-430		8	a
96.8-3.2	g = 107.76 - 0.04676 T	410-430		8	a
100	LiF g = 346.5 - 0.0988 T	1141-153	3 ±3%	1	a,j
0-100	g = 140.7 - 0.0565 T	870-1100	(267)	2	a
25-75	g = 164.1 - 0.0617 T				
50-50		890-1100		2	a
	g = 204.7 - 0.0749 T	690-1170		2	а
75-25	g = 263.5 - 0.0884 T	1080-122		2	а
100-0	g = 350.2 - 0.0986 T	1140-124	0 (268)	2	a
	LiF-NaF				
60-40	g = 321.87 - 0.099357 T	973-1226	i	7	a,g

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
	LiF-ThF₄				
-50	g = 399.2 - 0.143 T	1152-1232	±3%,(269)	13	k
-40	g = 420.1 - 0.165 T	1079-1172	±3%, (270		k
. 7-33.3	g = 406.5 - 0.15 T	1008-1147	±3%, (271		k
-30	g = 410.6 - 0.151 T	1075-1147	±3%, (272)		k
-20	g = 398 - 0.134 T	959-1102	±3%, (273)		 k
on additional	Life makers and a Defer Continue ME Life Life		, ,		
additional	LiF systems, see : BeF ₂ - ; CaSiO ₃ - ; KF- ; LiBr- ; LiCl-				
)	Lil g = 125.68 - 0.04302 T	743-984	±1.5%	17	k
		740 304	_1.0%	,,	Α.
r additional	LiI systems, see : LiBr- ; LiCl- ; LiF-				
)	LiN0 ₃ g = 144.9 - 0.055 T	570 770			
,	g = 144.9 = 0.000	570-770	±1.5%	1	а,,
	LiN03-RbN03				
·75	g = 150.5 - 0.075 T	467-670		5	а,
-68	g = 151.4 - 0.075 T	445-670		5	а,
-50	g = 149.8 - 0.074 T	460-670		5	a,
-25	g = 141.1 - 0.059 T	497-670		5	а,
or additional	LiNO ₃ systems, see : AgNO ₃ - ; CsNO ₃ - ; KNO ₃ - ; LiClO ₃ -				
	LiOH-Li ₂ CO ₃				
-O LiOH	g = 242.5 - 0.4932 C - 0.005415 C ²	1038	(274)	8	a
	LiPO ₃				
)	g = 212.2 - 0.0222 T	1028-1345	n.a.	1	a,
	LiPO3-NaPO3				
10 0	g = 237.02 - 0.0488 T	1030-1410	(275)	6	а
. 06-89 . 94	g = 237.12 - 0.0484 T	1030-1410		6	a
. 02-79 . 98	g = 235.91 - 0.0469 T	1030-1410		6	a
. 01-69.99	g = 235.22 - 0.0455 T	1030-1410		6	a
.01-59.99	g = 234.52 - 0.0444 T	1030-1410		6	a
. 06-49 . 94	g = 234.73 - 0.0437 T	1030-1410		6	a
. 08-39.92	g = 230.88 - 0.0395 T	1030-1410		6	_
.21-28.79	g = 228.19 - 0.0355 T				a
.92-20.08	g = 227.94 - 0.0342 T	1030-1410		6	a
	•	1030-1410		6	а
-10 0~0	g = 224.04 - 0.0302 T	1030-1410		6	а
J-0	g = 218.28 - 0.0241 T	1030-1410	(276)	6	а
or additiona	LiPO ₃ systems, see : KPO ₃ - Li ₂ CO ₃				
0	g = 284.6 - 0.0406 T	1023-1123	±1.5%	1	а,,
	Li ₂ CO ₃ -Li ₂ O				-,
0-60 Li ₂ C0 ₃	g = -809.2 + 39.98 C - 0.4919 C ² + 0.001974 C ³	1038	(277)	8	а
	Li ₂ CO ₃ -Na ₂ CO ₃				
100	g = 292.2 - 0.072 T	1143-1170	(278)	6	a
-90	g = 279.3 - 0.0563 T	1090-1170		6	a
-70	g = 307.8 - 0.0779 T	970-1170		6	a
-50	g = 308 - 0.0745 T	830-1190		6	a
. 3-46. 7	g = 313.5 - 0.0766 T	830-1010		6	a
-30	g = 298.1 - 0.0604 T	910-1170		6	a
-10	g = 289 - 0.0482 T	990-1190		6	a
0-0	g = 281.5 - 0.0366 T	1010-1170	(279)	6	a
	Li ₂ C0 ₃ -Si _{D2}	.0.0 .170	(=,0)		a
0-85 Li ₂ CO ₃	g = - 790.5 + 23.55 C - 0.1324 C ²	1038	(280)	8	a
- 0		. 000	(_50)	-	e e

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
	L12C03-T12O3				
00-97 Li ₂ C0 ₃	g = - 739.95 + 9.802 C	1038	(281)	8	a,b,6
For additional	Li ₂ CO ₃ systems, see : Al ₂ O ₃ - ; B ₂ O ₃ - ; Cs ₂ CO ₃ - ; Fe ₂ O ₃ - ; K ₂ CO ₃ - ; LiCl- ; LiOH-				
	Li ₂ Mo0 ₄				
00	g = 367.49 - 0.1282 T	1013-1281	±2%	6	a,e
	Li ₂ Mo0 ₄ -Mo0 ₃				
0-70	g = 180.95 - 0.05849 T	1070-1220)	8	a
0-60	g = 203.77 - 0.06488 T	920-1250		8	a
0-40	g = 217.46 - 0.05877 T	980-1280		8	a
30-20	g = 233.47 - 0.05342 T	1040-1250)	8	a
00-0	g = 276.08 - 0.05786 T	1110-1290	(282)	8	a
	Li ₂ Mo0 ₄ -Na ₂ Mo0 ₄				
100		1001-1132	(202)	6	
9-100 20-80	g = 288.84 - 0.08173 T	870-1070	(283)	6	a,e a
8-62	g = 295.52 - 0.08305 T	770-950		6	a a,e
15~55	g = 306.17 - 0.08975 T	830-990		6	a,e
i2-48	g = 326.87 - 0.1059 T	810-990		6	a,e
75-25	g = 336.07 - 0.10795 T	890-1070		6	a,e
100-0	g = 367.49 - 0.1282 T	1013-128	1 (284)	6	a,e
	• • • • • • • • • • • • • • • • • • • •		(2017	•	-,-
For additional	Li ₂ MoO ₄ systems, see : K ₂ MoO ₄ -				
	Li ₂ 0				
For Li ₂ 0 syste	ms, see : Li ₂ CO ₃ - Li ₂ SiO ₃				
100	g = 490.268 - 0.077906 T	1527-187	4 n.a.	1	a,j
100	Li ₂ SD ₄	1027 107		•	α, υ
100	g = 301 - 0.0672 T	1133-137	3 ±2%	1	a, j
	Li ₂ S0 ₄ -NaC1			•	۵, ۵
0-100	g = 191.72 - 0.07 T	1173-137	3 (285)	8	a,e
25-75	g = 218.42 - 0.074 T	1173-137		8	a,e
50-50	g = 233.47 - 0.072 T	1173-137		8	a,e
70-30	g = 236.64 - 0.058 T	1173-137		8	a,e
90-10	g = 269.39 - 0.06 T	1173-137		8	a,e
97.5-2.5	g = 281.94 - 0.062 T	1173-137		8	a,e
98-2	g = 294.32 - 0.07 T	1173-137		8	a,e
98.5-1.5	g = 289.63 - 0.066 T	1173-137		8	a,e
99-1	g = 292.23 - 0.066 T	1173-137	3	8	a,e
100-0	g = 300.08 - 0.064 T	1173-137	3 (286)	8	a,e
	Li ₂ SO ₄ -NaPO ₃				
0-100	g = 228.7 - 0.0398 T	940-1100	(287)	8	a
10-90	g = 224.8 - 0.0352 T	780-980		8	a
	Li ₂ SO ₄ -RbC1				
0-100	g = 181.15 - 0.084 T	1173-137	3 (288)	8	a,e
40-60	g = 184.58 - 0.068 T . , , ,	1173-137		8	a,e
60-40	g = 199.13 - 0.062 T	1173-137		8	a
70-30	g = 210.4 - 0.06 T	1173-132		8	a
80-20	g = 215.6 - 0.052 T	1173-137		8	a,e
90-10	g = 245.1 - 0.056 T	1173-137		8	
97-3	g = 252.86 - 0.05 T	1173-137		8	a,e
97-3 98-2	g = 265.55 - 0.054 T	1173-137		8	a
98.5-1.5	g = 278.14 - 0.062 T	1173-137			a, e
99-1	g = 278.71 - 0.06 T			8 8	a, e
99-1 99.25-0.75		1173-127			a, e
	g = 285.43 - 0.06501 T	1173-137		8	а, е
99.5-0.5	g = 286.63 - 0.066 T	1173-137	0	8	a,

Table 2.2.a Surface Tension data (continued)

(mo1 %)	Surface Tension (mN m ⁻¹) Equation	T page (V)	Ann	D-t	C
		T range(K)	Accur.	Ref.	Comment
9.75-0.25	g = 291.03 - 0.066 T	1173-1373		8	a,e
00-0	g = 300.08 - 0.064 T	1173-1373	(289)	8	a,e
For additiona	al Li ₂ SO ₄ systems, see : BaCl ₂ - ; CsCl- ; KCl-				
	Li ₂ wo ₄				
00	g = 322.59 ~ 0.084855 T	1030-1236	±2%	6	а
	Li2W04-Na2W04				
- 100	g = 254.095 - 0.0552521 T	060-1170	(300)		_
5-85	g = 298.5 ~ 0.089915 T	969-1179 952-1065	(290)	6 6	a
0-70	g = 278.635 - 0.0676386 T	889-1097		6	a,b,
0-60	g = 283.02 - 0.06527 T	813-1036		6	a
2.6-47.4	g = 304.84 - 0.08659 T	779-1005		6	a,e
0-30	g = 285.53 - 0.06312 T	887-1088		6	a,e a,e
5-15	g = 293.86 - 0.0671567 T	994-1162		6	a, e
00-0	g = 322.59 - 0.084855 T	1030-1236	(291)	6	a
			(=0.7)	•	ū
0.50	Li ₂ w ₀₄ -w ₀₃				
0-50 0-30	g = 284.4 - 0.07641 T	1120-1200		8	а
00-0	g = 284.19 - 0.07628 T	1000-1240		8	а
00-0	g = 279.48 - 0.05556 T	1080-1270	(292)	8	а
For additiona	R1 Li ₂ W0 ₄ systems, see : K ₂ W0 ₄ -				
	LuC1 ₃				
For LuCla sy	stems, see : KC1-				
00	MgC1 ₂				
00	g = 65.3426 - 0.003073 T	1010-1160	±1%	4	a,c
- 100	g = 187 - 0.068 T	1000-1220	(303)		
0-90	g = 163.9 - 0.056 T	1090-1220 1030-1170	(293)	4	a,c
0-80	g = 142.7 - 0.043 T			4	a,c
0-70	g = 130.1 - 0.035 T	980-1170 980-1170		4	a,c
0-60	g = 124.4 - 0.033 T	980-1170		4	a,c
0-50	g = 114.7 - 0.027 T	980-1170		4	a,c
0-40	g = 105.5 - 0.023 T				a,c
0-30	g = 98.5 - 0.02 T	980-1170 980-1170		4	a,c
0-20	g = 88.1 - 0.014 T	980-1170		4	a,c
10-10	g = 81.8 - 0.012 T	980-1170		4	a,c
00-0	g = 76.7 - 0.01 T	1000-1180	(294)	4	a,c
	MgC1 ₂ -RbC1	1000-1180	(254)	4	a,c
. 0-100. 0	g = 169.38 - 0.07512 T	1009-1113	(295)	4	a
.6-94.4	g = 152.4464 - 0.06278 T	1040-1110	(230)	4	a
5.1-84.9	g = 152.4109 - 0.06681 T	1010-1090		4	
4.5-75.5	g = 128.8105 - 0.047538 T	1030-1120		4	a
1.2-68.8	g = 123.7692 - 0.045565 T	1030-1110		4	a
3.3-66.7	g = 122.6536 - 0.044621 T	970-1080		4	a
7.0-63.0	g = 130.0286 - 0.052186 T	1030-1110		4	a
8.4-51.6	g = 120.8727 - 0.045257 T	1010-1090		4	a
8.1-31.9	g = 117.8016 - 0.044561 T	1010-1090		4	a
5.7-14.3	g = 97.0127 - 0.027599 T	1030-1110		4	a
2.3-7.7	g = 86.5949 - 0.019163 T			•	a
	g = 65.3426 - 0.003073 T	1030-1100 1010-1160	(296)	4	a
00.0-0.0					а

For MgF_2 systems, see : $\mathsf{CaSi0}_3$ -

Mg0

Table 2.2.a Surface Tension data (continued)

/mol %\	Surface Tension (mN m ⁻¹)	T		D. C	A
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
or Mg0 systems	s, see : CaF ₂ - Mg(P0 ₃) ₂				
00	g = 279.99 - 0.0366 T	1430-1500	n.a.	6	a
00	MgSi0 ₃ g = 197.3 + 0.098 T	1813-1893	n.a.	1	a,j
	MnS103				-,0
00	g = 256.5 + 0.086 T	1723-1853	n.a.	1	a, j
00	g = 464.3 + 0.015 T	1673-1873	n.a.	1	a,j
-100	g = 259.71 - 0.06658 T	1110-1290	(297)	8	a
0-80	g = 236.78 - 0.06827 T	990-1230	(40.7)	8	a
0-60	g = 219.95 - 0.06913 T	930-1230		8	a
0-40	g = 205.18 - 0.07382 T	990-1230		8	a
0-30	g = 187.8 - 0.06728 T	1050-1230	١	8	a
30-20	g = 172.42 - 0.06579 T	1050-1260		8	a
For additional	${ m MoO_3}$ systems, see : ${ m K_2MoO_4-}$; ${ m Li_2MoO_4-}$				
	NaBF ₄				
100	g = 140.48 - 0.075 T	700-780	±1.5%	6	a
	NaBF ₄ -NaF				
92-8	g = 150 - 0.075 T	670-850		7	a
00-0	g = 140.48 - 0.075 T	700-780	(298)	7	а
100	g = 404.1 - 0.163 T	1288-1714	±3%	1	a,j
100	NaBr g = 164.93 - 0.06276 T	1035~1184	±1.5%	17	k
	NaBr-NaC1				
0-100	g = 197.3 - 0.074 T	1090-1180	(299)	2	a
50-50	g = 185 - 0.072 T	1030-1170)	2	а
100-0	g = 175.3 - 0.07 T	1040-1130	0 (300)	2	a
0-100	g = 157.7 - 0.072 T	1000-110	0 (301)	3	a
25~75	g = 160 - 0.072 T ,	880-1160	,,,,,	3	a
50-50	g = 160.3 - 0.069 T	800-1160		3	a
75-25	g = 166.4 - 0.07 T	920-1160		3	a
100-0	g = 175.3 - 0.07 T	1040-112	0 (302)	3	a
For additional	NaBr systems, see : AgBr- ; AgC1- ; BaBr $_2$ - ; CsBr- ; KBr- ; KC1- ; K $_2$ S0 $_4$ - ; LiBr-				
	NaC1				
100	g = 191.16 - 0.07188 T	1080-124	0 ±0.5%	8	d
100	g = 193.48 - 0.0747 T	1103-122	3 ±1.5%,	(303)14	k
10.00 N=03	NaC1-NaF				
10-90 NaC1	$g = 208.8 - 6.135 C + 0.1591 C^2 - 0.001843 C^3 + 7.736 \times 10^{-6} C^4 \dots$	1273		2	a,n
31.6-15.2-53.2	NaCl-NaF-NaI g = 152 + 0.06 T	820-1020	+2%	22	L
01.0 10.2 00.2		820-1020	±2%	23	k
10-90	NaC1-NaN03 (T=743 K, g=110.1)				_
.5 00				8	а
00 20 2 72	NaC1-Na ₂ 0				
99.28-0.72	g = 269.8 - 0.1175 T	1190-127		8	а
99.52-0.48	g = 222.6 - 0.0893 T	1190-127		8	а
99.65-0.35	g = 171.9 - 0.0962 T	1190-127		8	а
99.80-0.20	g = 186.4 - 0.0795 T	1190-127	0	8	a
99.90-0.10	g = 178.1 - 0.0652 T	1190-127	0	8	а

Table 2.2.a Surface Tension data (continued)

(mol %)	Surface Tension (mN m ⁻¹)	T(K)		D. f	
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
00.0-0.0	g = 225 - 0.0981 T	1190-1270	(304)	8	a
	NaC1-Na ₂ S0 ₄				
~100	g = 269 - 0.066 T	1170-1460	(305)	8	а
25-75	g = 248.4 - 0.07 T	1000-1470	(000)	8	a
0-50	g = 227.8 - 0.07 T	980-1470		8	a
75-25	g = 208.3 - 0.07 T	1025-1470		8	a
100-0	g = 197.3 - 0.074 T	1080-1473	(306)	8	a
00-90 Na ₂ S0 ₄	g = 69.65 + 1.205 C	1173	(307)	8	a
	NaC1-PbC1 ₂				
.0-100.0	g = 222.2 - 0.11 T	800-980	(308)	4	a
25.0-75.0	g = 207.5 - 0.102 T	720-920	(300)	4	a
0.0-50.0	g = 214.5 - 0.107 T	840-1020		4	
75.2-24.8	g = 212.6 - 0.1 T	1000-1180		4	a
100.0-0.0	g = 216.2 - 0.093 T	1100-1180	(309)	4	a
00.0 0.0		1100-1280	(309)	•	а
	NaC1-PrC13				
0-100	g = 146.1 - 0.03729 T	1103-1199	(310)	14	k
13.8-86.2	g = 177.31 - 0.06738 T	1148-1183		14	k
29-71	g = 171.39 - 0.06404 T	1088-1198		14	k
12.9-57.1	g = 168.87 - 0.06255 T	1151-1213		14	k
56.9-43.1	g = 184.69 - 0.0747 T	1163-1203		14	k
71-29	g = 164.6 - 0.05582 T	1093-1202		14	k
100-0	g = 193.48 - 0.0747 T	1103-1223	(311)	14	k
	NaC1-RbC1				
0-100	g = 169.5 - 0.074 T	1010-1130	(312)	4	а
25-75	g = 174.8 - 0.076 T	900-1170		4	a
50-50	g = 177 - 0.074 T	870-1170		4	а
75-25	g = 184 - 0.074 T	980-1170		4	а
100-0	g = 197.3 - 0.074 T	1090-1170	(313)	4	a
	NaC1-SrC1 ₂				
100-0 SrC1 ₂	$g = 113.937 + 0.39798 C + 2.679 \times 10^{-4} C^2 + 1.4376 \times 10^{-5} C^3 \dots \dots$	1073	(314)	4	a,r
	NaC1-UC13				
0 1 0 0	g = 311.5 - 0.165 T	1123-1273	(315)	21	k
10-90	g = 288 - 0.147 T	1115-1273		21	k
20-80	g = 271.8 - 0.135 T	1115-1262		21	k
30-70	g = 212 - 0.128 T	1110-1300	ı	21	k
40-60	g = 239 - 0.111 T	1098-1253		21	k
50-50	g = 229 - 0.103 T	1098-1300		21	k
60-40	g = 223 - 0.098 T	1085~1280		21	k
70-30	g = 218 - 0.095 T	1088-1258		21	k
80-20	g = 209 - 0.086 T	1083-1273		21	k
91-9	g = 202.85 - 0.082 T	1073-1271		21	 k
100-0	g = 202.7 - 0.081 T	1073-1273		21	k
For additiona	1 NaC1 systems, see : AgBr- ; BaCl ₂ - ; BaFCl- ; BaF ₂ - ; CaCl ₂ -MgCl ₂ - ; CaCl ₂ - ; Cd - ; Li ₂ SO ₄ - ; MgCl ₂ - ; NaBr-				
	NaC103				
100	g = 130.4 - 0.0738 T	538-563	±2%	1	a,
	NaC103-NaN03				
					_
38.9-61.1	g = 138.13 - 0.06197 T	520-560		8	а
	g = 138.13 - 0.06197 T	520-560 510-560		8	a
38.9-61.1 51.5-48.5 72.7-27.3					

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Comment
	NaF				
00	g = 289.6 - 0.082 T	1273-1353	±8%	1	a,c,j
	NaF-NaNO ₃				
0-90	(T=833 K, g=108.27)			8	a
	NaF-Na ₂ B ₄ 0 ₇				
6-38 Na ₂ B ₄ 0 ₇	g = 201.2 + 0.5182 C - 0.002283 C ²	1223		8	a,b,m
	NaF-ZrF ₄				
5-25	(T=1324.2 K, g=134.8)			7	a
30-20	g = 310.18 - 0.1258 T	1284-1319)	7	a,e
5-15	g = 248.31 - 0.0705 T	1213-1318	1	7	a,e
0-10	g = 303.52 - 0.1052 T	1222-1319)	7	a,e
95-5	(T=1316.2 K, g=175)			7	a
100-0	(T=1325.2 K, g=186.3)		(318)	7	а
For additiona	al NaF systems, see : AlF3- ; BaCl2- ; BeF2- ; CaSiO3- ; KF- ; LiF- ; NaBF4- ; NaCl-	-			
	NaI				
100	g = 139.83 - 0.0573 T	946-1165	±1.5%	17	k
	NaI-NaNO ₃				
				8	_
10-90	(T=585 K, g=119.1)			0	а
	NaI-Na ₂ S0 ₄				
100-90 Na ₂ S0 ₄	g = - 107.8 + 2.756 C	1173	(319)	8	a
For additions	al NaI systems, see : KC1- ; NaC1-NaF-				
TO SUGITION	NaN02				
100	g = 143.8 - 0.041 T	564-657	±1.5%	1	a,j
	NaNO ₂ -NaNO ₃				
20-80	g = 138.6 - 0.039 T ,	530-710		5	a,e
40-60	g = 136.7 - 0.035 T	5 15-695		5	a,e
60-40	g = 139.3 - 0.038 T	530-710		5	a,e
67.5-32.5	g = 138.7 - 0.038 T	545-710 560-740		5 5	a,e
80-20	g = 135 - 0.03 1	900-740		5	a,e
	·	F00 000	1.49/		
100	g = 155.5 - 0.0613 T	589-869	±1%	1	a,c,
	NaNO3-RDNO3			_	
25-75	g = 153.3 - 0.076 T	475-670		5	a,e
40-60	g = 153.7 - 0.075 T	460-670		5 5	a,e
50-50	g = 153.6 - 0.073 T	475-670 535-670		5	a,e
75-25	g = 154 = 0.000	555-6.0		ŭ	a,e
For addition NaI- ; NaNO ₂	nal NaNû $_3$ systems, see : AgNû $_3$ - ; Ca(Nû $_3$) $_2$ - ; Cd(Nû $_3$) $_2$ - ; CsNû $_3$ - ; KC1- ; KC $_2$ H $_3$ 0 $_2$ - ;	KC3H502- ; KN	0 ₃ - ; NaC1	- ; NaC1	0 ₃ - ; NaF-
Mar", Martoz	2 NaP03				
100	•	1005-125	o ±2%	1	3.0
100	g = 228.7 - 0.0398 T	1005 125	U		a,c,.
	NaPO3-Na ₂ SO ₄				
75-25	g = 256.17 - 0.0581 T	940-1120)	8	а
87.5-12.5	g = 247.9 - 0.0534 T	910-1030		8	а
99-1	g = 228.8 - 0.0395 T	880-1030		8	а
100-0	g = 228.7 - 0.0398 T	940-1110	(320)	8	а
	NaP03-Na4P207				
26.0-74.0	g = 261.1 - 0.03784 T	1000-114	10	8	a
27.5-72.5	g = 259.2 - 0.03795 T	910-1090)	8	a
40.0-60.0	g = 247.6 - 0.03789 T	850-1060)	8	a
	g = 239.5 - 0.03793 T	910-970		8	a

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)	T nor (V)	400	Def	0
mol %)	Equation	T range(K)	Accur.	Ref .	Comment
	NaP03-Rb ₂ S0 ₄				
5-25	g = 209 - 0.053 T	810-1050		8	а
7.5-12.5	g = 214.05 - 0.047 T	870-1080		8	а
00-0	g = 228.7 - 0.0398 T	940-1100	(321)	8	a
	NaP03-U02S04				
7.5-12.5	g = 380.4 - 0.181 T	930-1030		8	а
00-0	g = 228.7 - 0.0398 T	930-1100	(322)	8	a
	NaPO3-ZnO				
5.2-34.8	g = 283.1 - 0.041 T	1270-1360	ı	8	a
3.8-26.2	g = 250.3 - 0.0323 T	1090-1360	1	8	а
7.2-12.8	g = 236.5 - 0.0413 T	970-1360		8	а
	NaP03-Zn(P03)2				
-100	g = 196.58 + 0.00195 T	1244-1476	(323)	6	a,b,
7.1-82.9	g = 196.87 - 0.0142 T	1222-1347	1	6	а
5.8-64.2	g = 189.87 - 0.0153 T	1170-1350)	6	a
8.2-51.8	g = 193.19 - 0.0223 T	1130-1350)	6	a
9.1-40.9	g = 196.58 ~ 0.0241 T ,	1110-1310)	6	a
8.7-31.3	g = 207.83 - 0.0338 T	1090-1310		6	a
8.4-21.6	g = 205.86 ~ 0.031 T	1090-1310		6	a
9.8-10.2	•	1074-1353		6	a
	g = 216.54 ~ 0.0375 T				
15.5-4.5 00-0	g = 220.68 - 0.0395 T	1070-1347 1073-1373		6 6	a a
	3 None and the Colon No. 1200 12 00				
For additiona	11 NaPO ₃ systems, see : Ca(PO ₃) ₂ - ; KPO ₃ - ; LiPO ₃ - ; Li ₂ SO ₄ -				
	NaSCN	F00 F07	11 F9/	14	1.
		583-597	±1.5%	14	k
100	NaSCN	583-597	±1.5%	14	k
100 For additiona	g = 134.9312 - 0.05266 T	583-597 1020-122		14	k a
100 For additiona	NaSCN g = 134.9312 - 0.05266 T				
for additiona	NaSCN g = 134.9312 - 0.06266 T		5 n.a.		
For additional	NaSCN g = 134.9312 - 0.05266 T	1020-122	5 n.a.	8	a
For additional 100 56.3-43.7 51.8-38.2	NaSCN g = 134.9312 - 0.05266 T	1020-122 1070-137	5 n.a. 0	8	a a,e
For additional 100 56.3-43.7 51.8-38.2 56.7-33.3	NaSCN g = 134.9312 - 0.05266 T a1 NaSCN systems, see : KSCN-	1020-122 1070-137 1070-137	5 n.a. 0 0	8 8 8	a a,e a
For additional 100 56.3-43.7 61.8-38.2 66.7-33.3 75-25	NaSCN g = 134.9312 - 0.05266 T a) NaSCN systems, see : KSCN-	1020-122 1070-137 1070-137 1070-137 1073-137	5 n.a. 0 0 0 0	8 8 8 8	a a,e a a,e a,e
For additional 100 56.3-43.7 61.8-38.2 66.7-33.3 75-25 81.8-18.2	NaSCN g = 134.9312 - 0.05266 T a) NaSCN systems, see : KSCN-	1020-122 1070-137 1070-137 1070-137 1073-137 1070-137	5 n.a. 0 0 0 0 3	8 8 8 8 8	a a,e a,e a,e a,e
For additional 100 56.3-43.7 61.8-38.2 66.7-33.3 75-25 81.8-18.2 87.5-12.5	NaSCN g = 134.9312 - 0.05266 T a) NaSCN systems, see : KSCN-	1020-122 1070-137 1070-137 1070-137 1073-137 1070-137	5 n.a. 0 0 0 0 3 0	8 8 8 8 8 8	a a,e a,e a,e a,e
For additional 100 56.3-43.7 51.8-38.2 56.7-33.3 75-25 81.8-18.2 87.5-12.5 90-10	NaSCN g = 134.9312 - 0.05266 T a) NaSCN systems, see : KSCN-	1020-122: 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137	5 n.a.	8 8 8 8 8 8	a a,e a.e a,e a,e a,e
For additional 100 56.3-43.7 61.8-38.2 66.7-33.3 75-25 81.8-18.2 87.5-12.5 90-10 92.3-7.7	NaSCN g = 134.9312 - 0.05266 T a1 NaSCN systems, see : KSCN- Na ₂ B ₄ O ₇ g = 293.895 - 0.060966 T Na ₂ B ₄ O ₇ -WO ₃ g = 286.613 - 0.093663 T g = 306.12 - 0.10646 T g = 335.378 - 0.12486 T g = 339.96 - 0.125 T g = 337.938 - 0.11635 T g = 325.922 - 0.10312 T g = 325.29 - 0.10047 T g = 341.616 - 0.11131 T	1020-122: 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137	5 n.a.	8 8 8 8 8 8 8	a a,e a,e a,e a,e a,e a,e
For additional 100 56.3-43.7 51.8-38.2 56.7-33.3 75-25 81.8-18.2 87.5-12.5 90-10 92.3-7.7 96.4-3.6	NaSCN g = 134.9312 - 0.05266 T A1 NaSCN systems, see : KSCN- Na ₂ B ₄ 0 ₇ g = 293.895 - 0.060966 T Na ₂ B ₄ 0 ₇ -W0 ₃ g = 286.613 - 0.093663 T g = 306.12 - 0.10646 T g = 335.378 - 0.12486 T g = 339.96 - 0.125 T g = 337.938 - 0.11635 T g = 325.922 - 0.10312 T g = 325.92 - 0.10047 T g = 341.616 - 0.11131 T g = 347.26 - 0.11339 T	1020-122 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137	5 n.a.	8 8 8 8 8 8 8 8	a a,e a,e a,e a,e a,e a
For additional 100 56.3-43.7 61.8-38.2 66.7-33.3 75-25 81.8-18.2 87.5-12.5 90-10 92.3-7.7 96.4-3.6	NaSCN g = 134.9312 - 0.05266 T a1 NaSCN systems, see : KSCN- Na ₂ B ₄ O ₇ g = 293.895 - 0.060966 T Na ₂ B ₄ O ₇ -WO ₃ g = 286.613 - 0.093663 T g = 306.12 - 0.10646 T g = 335.378 - 0.12486 T g = 339.96 - 0.125 T g = 337.938 - 0.11635 T g = 325.922 - 0.10312 T g = 325.92 - 0.10047 T g = 341.616 - 0.11131 T g = 347.26 - 0.11339 T g = 364.06 - 0.12401 T	1020-122: 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137	5 n.a.	8 8 8 8 8 8 8	a a,e a,e a,e a,e a,e a,e
For additional 100 56.3-43.7 61.8-38.2 66.7-33.3 75-25 81.8-18.2 87.5-12.5	NaSCN g = 134.9312 - 0.05266 T a1 NaSCN systems, see : KSCN- Na ₂ B ₄ 0 ₇ g = 293.895 - 0.060966 T Na ₂ B ₄ 0 ₇ -w0 ₃ g = 286.613 - 0.093663 T g = 306.12 - 0.10646 T g = 335.378 - 0.12486 T g = 339.96 - 0.125 T g = 337.938 - 0.11635 T g = 325.922 - 0.10312 T g = 325.922 - 0.10047 T g = 341.616 - 0.11131 T g = 347.26 - 0.11339 T g = 364.06 - 0.12401 T Na ₂ B ₄ 0 ₇ -ZrF ₄	1020-122 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137	5 n.a.	8 8 8 8 8 8 8 8	a a,e a,e a,e a,e a,e a,e
For additional 100 100 100 100 100 100 100 100 100 10	NaSCN $g = 134.9312 - 0.05266 T$ a) NaSCN systems, see : KSCN- $g = 293.895 - 0.060966 T$ $na_2B_40_7 - w0_3$ $g = 286.613 - 0.093663 T$ $g = 306.12 - 0.10646 T$ $g = 335.378 - 0.12486 T$ $g = 339.96 - 0.125 T$ $g = 337.938 - 0.11635 T$ $g = 325.922 - 0.10312 T$ $g = 325.29 - 0.10047 T$ $g = 341.616 - 0.11131 T$ $g = 347.26 - 0.11339 T$ $g = 364.06 - 0.12401 T$ $na_2B_40_7 - ZrF_4$ $g = -222.3 + 11.71 C - 0.073 C^2$	1020-122 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137	5 n.a.	8 8 8 8 8 8 8 8	a a,e a,e a,e a,e a,e a,e a,e
For additional 100 56.3-43.7 61.8-38.2 66.7-33.3 75-25 81.8-18.2 87.5-12.5 90-10 92.3-7.7 96.4-3.6 100-0 93-72 Na ₂ B ₄ O ₇	NaSCN $g = 134.9312 - 0.06266 T$ a) NaSCN systems, see : KSCN- $g = 293.895 - 0.060966 T$ Na $_2B_40_7$ -W0 $_3$ $g = 286.613 - 0.093663 T$ $g = 306.12 - 0.10646 T$ $g = 335.378 - 0.12486 T$ $g = 339.96 - 0.125 T$ $g = 337.938 - 0.11635 T$ $g = 325.922 - 0.10312 T$ $g = 325.922 - 0.10047 T$ $g = 341.616 - 0.11131 T$ $g = 347.26 - 0.11339 T$ $g = 364.06 - 0.12401 T$ Na $_2B_40_7$ -ZrF $_4$ $g = -222.3 + 11.71 C - 0.073 C^2$ Al Na $_2B_40_7$ systems, see : B_20_3 -; CaF_2	1020-122 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137	5 n.a.	8 8 8 8 8 8 8 8	a a,e a,e a,e a,e a,e a,e a,e
For additional 100 56.3-43.7 61.8-38.2 66.7-33.3 75-25 81.8-18.2 87.5-12.5 90-10 92.3-7.7 96.4-3.6 100-0 93-72 Na ₂ B ₄ O ₇ For additional	NaSCN $g = 134.9312 - 0.05266 T$	1020-122: 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137	5 n.a.	8 8 8 8 8 8 8 8 8	a a,e a,e a,e a,e a.e a
For additional 100 56.3-43.7 51.8-38.2 56.7-33.3 75-25 81.8-18.2 87.5-12.5 90-10 92.3-7.7 96.4-3.6 100-0 93-72 Na ₂ B ₄ D ₇ For additional 100	NaSCN g = 134.9312 - 0.05266 T Al NaSCN systems, see : KSCN- p = 293.895 - 0.050966 T Na ₂ B ₄ 0 ₇ -w0 ₃ g = 286.613 - 0.093663 T g = 306.12 - 0.10646 T g = 335.378 - 0.12486 T g = 339.96 - 0.125 T g = 337.938 - 0.11635 T g = 325.922 - 0.10312 T g = 325.922 - 0.10047 T g = 341.616 - 0.11131 T g = 347.26 - 0.11339 T g = 364.06 - 0.12401 T Na ₂ B ₄ 0 ₇ -ZrF ₄ g = - 222.3 + 11.71 C - 0.073 C ² Al Na ₂ B ₄ 0 ₇ systems, see : B ₂ 0 ₃ -; CaF ₂ -; KCl-; KF-; K ₂ ZrF ₆ -; LiCl-; NaF-Na ₂ CO ₃ g = 268.5 - 0.0502 T	1020-122 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137	5 n.a.	8 8 8 8 8 8 8 8	a a,e a,e a,e a,e a,e a
For additional 100 56.3-43.7 61.8-38.2 66.7-33.3 75-25 81.8-18.2 87.5-12.5 90-10 92.3-7.7 96.4-3.6 100-0 93-72 Na ₂ B ₄ D ₇ For additional	NaSCN g = 134.9312 - 0.05266 T Al NaSCN systems, see : KSCN- R2B407 g = 293.895 - 0.050966 T Na2B407-W03 g = 286.613 - 0.093663 T g = 306.12 - 0.10646 T g = 335.378 - 0.12486 T g = 337.938 - 0.125 T g = 337.938 - 0.11635 T g = 325.922 - 0.10312 T g = 325.922 - 0.10047 T g = 341.616 - 0.11131 T g = 347.26 - 0.11339 T g = 364.06 - 0.12401 T Na2B407-ZrF4 g = - 222.3 + 11.71 C - 0.073 C ² Al Na2B407 systems, see : B203-; CaF2-; KC1-; KF-; K2ZrF6-; LiC1-; NaF-Na2C03 g = 268.5 - 0.0502 T	1020-122: 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137	5 n.a.	8 8 8 8 8 8 8 8 8	a a,e a,e a,e a,e a,e a,e a,e
For additional 100 56.3-43.7 61.8-38.2 66.7-33.3 75-25 81.8-18.2 87.5-12.5 90-10 92.3-7.7 96.4-3.6 100-0 93-72 Na ₂ B ₄ D ₇ For additional	NaSCN g = 134.9312 - 0.05266 T Al NaSCN systems, see : KSCN- p = 293.895 - 0.050966 T Na ₂ B ₄ 0 ₇ -w0 ₃ g = 286.613 - 0.093663 T g = 306.12 - 0.10646 T g = 335.378 - 0.12486 T g = 339.96 - 0.125 T g = 337.938 - 0.11635 T g = 325.922 - 0.10312 T g = 325.922 - 0.10047 T g = 341.616 - 0.11131 T g = 347.26 - 0.11339 T g = 364.06 - 0.12401 T Na ₂ B ₄ 0 ₇ -ZrF ₄ g = - 222.3 + 11.71 C - 0.073 C ² Al Na ₂ B ₄ 0 ₇ systems, see : B ₂ 0 ₃ -; CaF ₂ -; KCl-; KF-; K ₂ ZrF ₆ -; LiCl-; NaF-Na ₂ CO ₃ g = 268.5 - 0.0502 T	1020-122: 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137 1070-137	5 n.a. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (325)	8 8 8 8 8 8 8 8 8	a a,e a,e a,e a,e a,e a,e a

Table 2.2.a Surface Tension data (continued)

	Surface Te nsion (mN m ⁻¹)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
	Na ₂ 0-Zn(P0 ₃) ₂				
3.4-90.6	g = 208.45 - 0.0148 T	1200-1440		8	a
7-73	g = 235.31 - 0.0304 T	1200-1380		8	a
0.3-59.7	g = 249.33 - 0.0295 T	1170-1350		8	a
67.9-42.1	g = 308.18 - 0.0465 T	1290-1380		8	a
For additiona	Na ₂ O systems, see : NaCl-				
100	Na ₂ SO ₄ g = 269 - 0.066 T	1170 1460	10%	•	_
100	g = 269 - 0.066 1	1170-1460	±2%	6	a
00-90 Na ₂ S0 ₄	g = 6.2 + 1.72 C	1323	(326)	8	a
	$Na_2SO_4-Rb_2SO_4$				
) - 100	g = 207.89 - 0.06 T	1360-1460	(327)	6	a,b,
60-50	g = 230.23 - 0.066 T	1080-1460		6	a
′5 -2 5	g = 244.13 - 0.066 T	980-1460		6	a
00-0	g = 269.03 - 0.066 T	1170-1460	(328)	6	a
For additiona	al Na ₂ SO ₄ systems, see : CaSO ₄ - ; Cs ₂ SO ₄ - ; KBr- ; KI- ; K ₂ SO ₄ - ; NaCl- ; NaI- ; Na	P03-			
	Na ₂ S _{3.0}	. .			
100	- · · · · · · · · · · · · · · · · · · ·	rno co.	14 5%	•	
100	g = 210.22 - 0.0607 T	583-691	±1.5%	6	а
100	g = 237.21 - 0.1198 T	588-673	±1.5%	6	a
100	g = 191.61 - 0.06496 T	586-671	±1.5%	6	a
	Na ₂ S _{3.6}				
100	g = 162 - 0.03395 T	589-677	±1.5%	6	a
	Na ₂ S _{3.9}				_
100	g = 153.62 - 0.03592 T	539-676	±1.5%	6	a
	Na ₂ S ₄	335-070	± 1,.0%	·	a
100	g = 177.24 - 0.065571 T	COE 710	±1 F%		_
100		625-710	±1.5%	6	а
	Na ₂ S _{4.1}				
100	g = 163.08 - 0.05809 T	556-641	±1.5%	6	a
	Na ₂ S _{4.3}				
100	g = 168.25 - 0.06729 T	602-676	±1.5%	6	a
	Na ₂ S _{4.7}				
100	g = 169.8 - 0.071 T	562-671	±1.5%	6	а
	Na ₂ S _{4.8}				
100	g = 182.95 - 0.09153 T	625-688	±1.5%	6	а
	Na ₂ S ₅				
100	g = 184.87 - 0.101353 T	635-700	±1.5%	6	а
	Na ₂ S _{6.2}				
100	g = 138.74 - 0.03901 T	616-661	±1.5%	6	a
	Na ₂ W0 ₄			ŭ	-
100	g = 272.323 - 0.069709 T	083-1868	+2%		
-	Na ₂ w0 ₄ -w0 ₃	983-1868	±3%	1	a,c,
40-60				_	
	g = 256.7 - 0.08772 T	1130-1280		8	a
55-45 80-40	g = 276.73 - 0.0988 T	1100-1250		8	а
60-40 70-30	g = 275.92 - 0.09466 T	1100-1220		8	а
70-30	g = 305.58 - 0.11535 T	1070-1250)	8	a
80-20	g = 286.18 - 0.09312 T	1040-1250)	8	а
100-0	g = 262.98 - 0.06603 T	1040-1250	(329)	8	а

For additional $\mathrm{Na_2W0_4}$ systems, see : $\mathrm{Li_2W0_4-}$

Table 2.2.a Surface Tension data (continued)

(3 . 25)	Surface Tension (mN m ⁻¹)				
(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commer
	Na ₃ A1F ₆				
00	g = 297 - 0.128 T	1273-1353	±1.5%	1	а,
00	g = 309.896 - 0.1369 T	1273-1373			d
					_
or additiona	1 Na ₃ A1F ₆ systems, see : A1 ₂ O ₃ -KF- ; A1 ₂ O ₃ - ; KF- ; K ₃ A1F ₆ -				
	Na ₄ P ₂ O ₇				
00	g = 389.56 - 0.11001 T	1280-1370	n.a.	8	а
	Na ₄ P ₂ 0 ₇ -W0 ₃				
1-66	g = 303.37 - 0.10246 T	1120-1360)	8	a
0-60	g = 321.46 - 0.11081 T	1120-1360)	8	a
5-55	g = 334.214 - 0.11683 T	1120-1360		8	a,
0-50	g = 316.743 - 0.10014 T	1120-1360		8	a,
5.2-44.8	g = 326.81 - 0.10424 T	1120-1360		8	a
0-40	g = 331.714 - 0.10344 T	1120-1360		8	a,
9.3-30.7	g = 340.58 - 0.10081 T	1270-1370		8	a,
7.8-22.2	g = 374.622 - 0.12203 T	1270-1370		8	a,
5.72-14.28	g = 414.07 - 0.14601 T	1270-1370		8	а,
2.5-7.5	g = 380.4 - 0.11301 T	1270-1370		8	a
00-0	g = 389.56 - 0.11001 T	1280-1370		8	a
Page			(55.7)	-	-
For additiona	al Na ₄ P ₂ O ₇ systems, see : NaPO ₃ -				
For MdCla sys	NdC13				
ror Nucia sys	NHANO3				
00	g = 148.4 - 0.106 T	443-493	±2%	1	
	PbC1 ₂	770 733		•	a,
100		704 045	44 20		_
100	g = 233.7 - 0.124 T	791-845	±1.5%	1	a,
.00	g = 227.9 - 0.122 T	823-873		20	
27.50-72.50	g = 174.1704 - 0.082888 T	840-860		4	а
12.23-57.77	g = 188.6019 - 0.102465 T	800-820		4	а
5.00-55.00	g = 166.1787 - 0.073647 T	800-850		4	а
9.08-50.92	g = 180.3699 - 0.091331 T	800~845		4	a
8.10-31.90	g = 189.8578 - 0.098722 T	800-845		4	a
30.20-19.80	g = 200.7342 - 0.103011 T	800-845		4	а
96.04-3.96	g = 224.1056 - 0.117755 T	800-850		4	a
00.00-0.00	g = 233.7 - 0.124 T	791~845	(332)	4	а
For additions	al PbCl ₂ systems, see : AgCl- ; CdCl ₂ - ; CsCl- ; KCl-LiCl- ; KCl-NaCl- ; KCl- ; LiCl	- ; NaC1-			
	PbMo0 ₄				
100	g = 257.94 ~ 0.08061 T	1380-147	0 ±3%	8	d
	PbMo0 ₄ -Pb0				
-100	g = 244.26 - 0.0695 T	1300-135	0 (333)	8	а
i- 9 5	g = 196.6 - 0.0455 T	1300-140	0	8	а
2-88	g = 174.14 - 0.0327 T	1140-122	0	8	а
10-60	g = 238.05 - 0.0581 T	1280-136	0	8	a
60-40	g = 198 - 0.0395 T	1240-136	0	8	а
30-20	g = 209.68 - 0.0473 T	1360-144		8	а
100-0	g = 257.94 - 0.08051 T	1380-147		8	a
For addition	al Philon, eyetame eas : Rio/Mon.)a-				
TO AUDICION	al PbMo0 $_4$ systems, see : Bi $_2$ (Mo0 $_4$) $_3$ - Pb0				
100	g = 244.26 - 0.0695 T	1300-135	0 ±3%	8	d

Table 2.2.a Surface Tension data (continued)

(mol %)	Surface Tension (mN m ⁻¹) Equation	T range(K)	Accur.	Pof	Common
	· · · · · · · · · · · · · · · · · · ·	i range(k)	ACCUT.	Ref.	Comment
or addition:	al Pb0 systems, see : PbMo04- PbW0 ₄				
00	g = 279.367 - 0.07836 T	1413-1504	±3%	6	a
For additiona	al PbWO ₄ systems, see : Bi ₂ (WO ₄) ₃ -				
	PrC13				
00	g = 146.1 - 0.03729 T	1103-1199	±1.5%	14	k
For addition	nal PrCl ₃ systems, see : CaCl ₂ - ; KCl- ; KCl*NaCl- ; NaCl-				
	P ₂ 0 ₃				
00	g = 72.1 - 0.116 T	. 304-383	n.a.	1	a,j
00	g = 67.8 - 0.021 T	. 373-573	n.a.	1	a,j
00	RbBr g = 150.91 - 0.06669 T	. 974-1183		17	.
00	RbBr-RbC1	. 574-1165		17	k
-100	g = 169.5 - 0.074 T	1010-1130	(335)	2	a
0-50	g = 164.4 - 0.074 T	1000-1170		2	a
00-0	g = 157.7 - 0.072 T	1000-1110	(336)	2	а
For addition	nal RbBr systems, see : BaBr ₂ - ; KBr- ; KCl- ; LiBr- ; NaBr-				
	RbC1				
00	g = 169.38 - 0.07512 T	. 1009-1113	3 ±1%	15	đ
	RbC1-RbF			_	
1-49	(T=1073 K, g=95.1)			2	a
	RbC1-Rb ₂ S0 ₄				
60-50	g = 190.6 - 0.07 T	. 1040-1270)	8	a
	RbC1-SrC1 ₂				
00-0 SrC1 ₂	$g = 86.48 + 0.086 C + 0.021234 C^2 - 4.0993 \times 10^{-4} C^3 + 2.7392 \times 10^{-6} C^4$.	1123	(337)	4	a,n
For addition	nal RbCl systems, see : BaCl ₂ - ; CaCl ₂ - ; KBr- ; K ₂ SO ₄ - ; LiCl- ; Li ₂ SO ₄ - ; MgCl	2- ; NaC1- ; Na ₂ S0,	- ; PbC12	- ; RbBr	-
	RbF				
100	g = 209 - 0.0782 T	. 1068-1218	±1.5%	1	a, j
For addition	nal RbF systems, see : RbCl-				
100	g = 132.89 - 0.06141 T	. 921-1125	±1.5%	17	k
	RbN03				
100	g = 157 - 0.083 T	603-873	±1%	1	a, ;
For addition	mal RbN0 $_3$ systems, see : AgN0 $_3$ - ; Cd(N0 $_3$) $_2$ - ; KN0 $_3$ - ; LiN0 $_3$ - ; NaN0 $_3$ -				
100	RbSCN g = 124.23 - 0.04796 T	. 480-524	±1.5%	14	k
For addition			20%		,
, o, auuitior	nal RbSCN systems, see : KSCN- Rb ₂ CO ₃				
100	g = 266.4 - 0.1042 T	. 1160-1236	±1.5%	6	a
100	g = 197.847 - 0.050242 T	. 1359~1818	3 ±3%	1	a, ;
For addition	nal Rb $_2$ SO $_4$ systems, see : Cs $_2$ SO $_4$ - ; K $_2$ SO $_4$ - ; NaPO $_3$ - ; Na $_2$ SO $_4$ - ; RbCl-				
	Sio2				
100	g = 243.2 + 0.031 T	1773-207	3 ±7%	1	а,,

SmC13

Table 2.2.a Surface Tension data (continued)

(mol %)	Surface Tension ($mN \ m^{-1}$) Equation	T range(K)	Accur.	Ref.	Commen
	ystems, see : KC1*NaC1-				
0. 0013 03	SnC1 ₂				
00	g = 154.9 - 0.0984 T	556-729	±1%	1	a,j
00	g = 61.0028 - 0.11368 T	295-380	n.a.	4	a
00	SrBr ₂ g = 190 - 0.0439 T	930-1284	±1%	1	a, :
00	\$rCl ₂ g = 230.7 - 0.0541 T	1157-1307	±1%	1	a, j
or addition	nal SrCl ₂ systems, see : CsCl- ; KCl- ; NaCl- ; RbCl-				
	Sr1 ₂				
00	g = 145.3 - 0.0383 T	850-1260	±1.5%	1	a, j
00	Sr(NO ₃) ₂				
	(T=888.16 K, g=128.5) Sr(P0 ₃) ₂		n.a.	1	a,j
00	g = 235.1 - 0.0053 T	1303-1355	±1.5%	1	a , j
00	g = 460.9 - 0.161 T	1420-1940	±3%	1	a, j
For addition	nal ThF ₄ systems, see : BeF ₂ -LiF- ; LiF-				
	TiC14				
00	g = 67.411 ~ 0.11578 T	283-408	±1.5%	4	a
	TiO ₂				
For TiO ₂ sys	stems, see : CaF ₂ - T1NO ₃				
00	g = 132.2 - 0.078 T	499-731	±5%	1	a, ;
	•		-5	·	٠,٠
For TlaDa s	T1 ₂ 0 ₃ ystems, see : Li ₂ C0 ₃ -				
20	T1 ₂ S				
00	g = 241.1 - 0.0356 T	773-973	n.a.	1	a, ;
0 0	g = 311.5 - 0.165 T	1123-1323	3 ±4%	21	k
For addition	nal UCl ₃ systems, see : KCl- ; NaCl- UCl ₄				
00	g = 204.95 - 0.185 T	880-960	n.a.	4	a
For addition	nal UCl ₄ systems, see : KCl- ; LiCl-				
00	UF ₄				
00	g = 446.9 - 0.192 T	1320-1700) ±3%	1	a, :
00	g = 70.91 - 0.1574 T	338-345	n.a.	1	a, ;
	U0 ₂ S0 ₄				
For U0 ₂ S0 ₄ :	systems, see : NaPO ₃ - V ₂ O ₅				
00	g = 100.5 - 0.0118 T	953-1273	n.a.	8	а
For addition	nal V ₂ 0 ₅ systems, see : CaF ₂ - ; KVO ₃ -			-	-
	wo ₃				
For WO ₃ sys	tems, see : K ₂ WO ₄ - ; Li ₂ WO ₄ - ; Na ₂ B ₄ O ₇ - ; Na ₂ WO ₄ - ; Na ₄ P ₂ O ₇ -				
	ZnBr ₂				
100	g = 62.8 - 0.0172 T	773-873	±3%	1	а, є
100	g = 124.9 - 0.0895 T		±3%	1	a, e

Table 2.2.a Surface Tension data (continued)

	Surface Tension (mN m ⁻¹)				
(mol %)	Equation	T range(K)	Accur.	Ref.	Comment
	ZnC1 ₂				
100	g = 54.9 ~ 0.002 T	580-818	±2%	1	a,e,,
100	g = 68.8 - 0.019 T	818-970	±2%	1	a,e,
For addition	nal ZnCl ₂ systems, see : KCl-				
	Zn0				
For Zn0 syst	ems, see : KPO ₃ - ; NaPO ₃ - ; Zn(PO ₃) ₂ -				
	Zn(PD ₃) ₂				
100	g = 196.58 + 0.00195 T	1244-1476	5 ±3%	6	а
	Zn(P0 ₃) ₂ -Zn0				
33.3-66.7	g = 323.6 - 0.0066 T	1370-1450)	8	a, v2
37.6-62.4	g = 274.7 + 0.0069 T	1350-1450		8	a,v2
42.9-57.1	g = 254.2 + 0.0026 T	1350-1450		8	a, v2
50-50	g = 229.5 + 0.0077 T	1350-1450)	8	a,v2
60.2-39.8	g = 196.1 + 0.0231 T	1290-1450)	8	a,v2
75.2-24.8	g = 185.2 + 0.0217 T	1270-1370		8	a,v2
For addition	nal Zn(P0 $_3$) $_2$ systems, see : KP0 $_3$ - ; K $_2$ 0- ; NaP0 $_3$ - ; Na $_2$ 0-				
	ZrC1 ₄				
100	g = 80.91 - 0.1047 T	715-760	±2%	4	a,e
	Zrf ₄				
For ZrF4 sy	ystems, see : KF- ; NaF- ; Na ₂ B ₄ 0 ₇ -				
	Zr0 ₂				
For Zr02 sy	ystems, see : CaF ₂ -				

Table 2.2.b Surface Tension data reliability statements

Number	Reliability estimates
1	For 100% AgC1, the results have been advanced as the recommended data set.
2	For 100% AgBr, the results have been advanced as the recommended data set.
3	For 100% AgI, the results have been advanced as the recommended data set.
4	For 100% AgBr, the results have been advanced as the recommended data set.
5	For 100% AgBr, the results have been advanced as the recommended data set.
3	For 100% KC1, the results are approx. 1% lower than the recommended data set, i.e.: 1070 K, -0.9%, 1180 K, -0.7%.
	For 100% AgBr, the departures from the recommended data set are: 760 K, +4.1%, 900 K, +2.8%.
3	For 100% NaBr, the departures from the recommended data set are: 1060 K, +0.05%, 1170 K, +1.6%.
9	For 100% AgBr, the departures from the recommended data set are: 760 K, +4.1%, 900 K, +2.8%.
10 11	For 100% NaC1, the departures from the recommended data set are: 1100 K, +0.3%, 1260 K, -1.3%.
12	For 100% AgBr, the departures from the recommended data set are: 760 K, +4.1%, 900 K, +2.8%. For 100% KBr, the departures from the recommended data set are: 1030 K, +3.0%, 1140 K, +2.8%.
13	For 100% AgC1, the departures from the recommended data set are: 740 K, +2.8%, 970 K, +2.4%.
14	For 100% AgC1, the results have been advanced as the recommended data set.
15	For 100% NaBr, the departures from the recommended data set are: 1060 K, +0.05%, 1170 K, +1.6%.
16	For 100% AgC1, the departures from the recommended data set are: 740 K, +2.8%, 960 K, +2.4%.
17	For 100% PbCl ₂ , the departures from the recommended data set are: 775 K, -0.6%, 970 K, +3.4%.
18	For 100% AgC1, the results have been advanced as the recommended data set.
19	For 100% KNO3, the departures from the recommended data set are: 620 K, -1.4%, 760 K, -0.3%.
20	For 100% AgNO3, the departures from the recommended data set are: 640 K, -0.2%, 820 K, -0.6%.
21	For 100% LiN03, the results have been advanced as the recommended data set.
22	For 100% AgNO ₃ , the departures from the recommended data set are: 490 K, -0.6%, 670 K, -0.5%.
23	
	For 100% NaN03, the departures from the recommended data set are: 595 K, -0.4%, 670 K, -0.7%.
24	For 100% AgN03, the departures from the recommended data set are: 490 K, +0.0%, 670 K, +0.5%.
25	For 100% RbN03, the results have been advanced as the recommended data set.
26	For 100% AgNO ₃ , the departures from the recommended data set are: 600 K, +0.2%, 780 K, -0.3%.
27	For 100% NaF, the results have been advanced as the recommended data set.
28	For 100% CaF ₂ at 1873 K, the results have been advanced as the recommended data set.
29	For 100% Na_3A1F_6 the departures from the recommended data set are: 1280 K, -0.02%, 1350 K, +0.09%.
30	For 100% Li_2CO_3 at 1038 K, the departure from the recommended data set is -0.2%.
31	For 100% NagAlF ₆ , the results have been advanced as the recommended data set.
32	For 100% Na_3A1F_6 , the departures from the recommended data are: 1280 K, -0.02%, 1350 K, +0.09%
33	For 100% CsBr at 1123 K, the results have been advanced as the recommended data set. For 100% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the departure from the second data set is 200% BaBr ₂ at 1123 K, the second data set is 200% BaBr ₂ at 1123 K, the second data set is 200% BaBr ₂ at
34	recommended data set is 0.0%. For 100% KBr at 1123 K, the departure from the recommended data set is +2.4%. For 100% BaBr ₂ at 1123 K, the departure from the recommended data set is 0.0%.
35	For 100% NaBr at 1123 K, the departure from the recommended data set is +1.0%. For 100% BaBr ₂ at 1123 K, the departure from the
20	recommended data set is 0.0%.
36	For 100% RbBr at 1123 K, the results have been advanced as the recommended data set. For 100% BaBr ₂ at 1123 K, the departure from t recommended data set is 0.0%.
37	For 100% CaCl ₂ , the departures from the recommended data set are: 1070 K, -0.9%, 1140 K, -1.4%.
38	For 100% CsCl, the departures from the recommended data set are: 940 K, -0.2%, 1060 K, -0.4%.
39	For 100% BaCl $_2$, the departures from the recommended data set are: 1260 K, -0.2%, 1360 K, -0.3%.
40	For 100% KC1, the departures from the recommended data set are: 1110 K, -1.1%, 1190 K, -0.6%.
41	For 100% BaCl ₂ , the departures from the recommended data set are: 1260 K, -2.9%, 1310 K, -4.2%.
42	For 100% KF, the departures from the recommended data set are: 1185 K 1.1%, 1298K 0.8%
43	For 100% BaCl ₂ , the departures from the recommended data set are: 1273 K -0.05%, 1360K 0.03%
44	For 100% LiC1, the departures from the recommended data set are: 900 K, +10.8%, 1060 K, +10.0%.
45	For 100% BaCl2, the results have been advanced as the recommended data set.
46	For 100% Li_2SO_4 , the departures from the recommended data set are: 1273 K, +1.6%, 1323 K, +1.7%.
47	For 100% BaCl ₂ , the departures from the recommended data set are: 1273 K, +3.8%, 1323 K, +3.2%.
	For 100% MgCl ₂ , the departures from the recommended data set are: 1030 K, +16.6%, 1190 K, +13.4%.
48	
48 49	For 100% NaC1, the results are in exact accord with the recommended data set
	For 100% NaCl, the results are in exact accord with the recommended data set. For 100% BaCl ₂ , the results have been advanced as the recommended data set.

Table 2.2.b Surface Tension data reliability statements (continued)

Number	Reliability estimates
52	For 100% BaCl ₂ , the departures from the recommended data set are: 1273 K -0.05%, 1360K 0.03%
53	For 100% RbCl at 1123 K, the departure from the recommended data set is -0.5%.
54	For 100% kC1, the departures from the recommended data set are: 1089 K 2.1%, 1154K 2.9%
55	For 100% BaFC1, the results have been advanced as the recommended data set.
56	For 100% NaCl, the departures from the recommended data set are: 1173 K 2.0%, 1240K -0.25%
i7	For 100% BaFC1, the results have been advanced as the recommended data set.
58	For 100% CaSiO ₃ at 1823 K, the departure from the recommended data set is +21%.
59	For 100% kC1, the departures from the recommended data set are: 1089 K 2.1%, 1154K 2.9%
30 31	For 100% NaCl, the departures from the recommended data set are 1173 K 2.0%, 1240K -0.25% For 100% KPO ₃ , the results have been advanced as the recommended data set.
62	
33	For 100% Ba(P0 ₃) ₂ , the results have been advanced as the recommended data set.
64	Relative to the recommended data base for 100% LiF, the accuracy limits of \pm 3% can be assigned. Relative to the recommended data base for 100% LiF, the accuracy limits of \pm 3% can be assigned.
55	Relative to the recommended data base for 100% LiF, the accuracy limits of ± 3% can be assigned.
66	Relative to the recommended data base for 100% LiF, the accuracy limits of ± 3% can be assigned.
57	Relative to the recommended data base for 100% LiF, the accuracy limits of \pm 3% can be assigned.
88	Relative to the recommended data base for LiF, the accuracy limits of \pm 3.0% can be assumed.
69	Relative to the recommended data base for LiF, the accuracy limits of \pm 3.0% can be assumed.
0	Relative to the recommended data base for LiF, the accuracy limits of \pm 3.0% can be assumed.
71	Relative to the recommended data base for LiF, the accuracy limits of \pm 3.0% can be assumed.
72	Relative to the recommended data base for LiF, the accuracy limits of ± 3.0% can be assumed.
73	Relative to the recommended data base for LiF, the accuracy limits of ± 3.0% can be assumed.
4	For 100% PbMoO ₄ , the departures from the recommended data set are: 1375 K, -0.6%, 1400 K, -0.4%.
5	For 100% Bi ₂ (MoO ₄) ₃ , the results have been advanced as the recommended data set.
76	For 100% PbWO4, the results have been advanced as the recommended data set.
77	For 100% $Bi_2(WD_4)_3$, the results have been advanced as the recommended data set.
78	For 100% Li ₂ CO ₃ at 1038 K, the departure from the recommended data set is -0.2%.
79	For 100% $Na_2B_40_7$, the results have been advanced as the recommended data set.
80	For 100% CsC1, the departures from the recommended data set are: 1060 K, -2.1%, 1150 K, -0.2%.
81	For 100% CaCl ₂ , the departures from the recommended data set are: 1070 K, +1.3%, 1140 K, +2.3%.
82	For 100% KC1, the results are in exact accord with the recommended data set.
33	For 100% CaCl ₂ , the results have been advanced as the recommended data set.
B4	For 100% LiCl and 100% CaCl ₂ , the results have been advanced as the recommended data set.
35	For 100% MgCl ₂ , the results have been advanced as the recommended data set.
86	For 100% CaCl ₂ , the results have been advanced as the recommended data set.
87	For 100% NaC1, the present results are about 1.8% higher than the recommended data set over the complete temperature range.
B8	For 100% CaCl ₂ , the results have been advanced as the recommended data set.
89	The data set for 100% PrCl ₃ has been advanced elsewhere as the recommended set.
90	For 100% CaCl ₂ , the departures from the recommended data set are: 1100 K, -0.4%; 1200 K, -0.04%.
91	For both 100% CaCl ₂ and 100% RbCl at 1073 K, the results are in exact accord with the recommended data set.
92	For 100% CaF ₂ , the results have been advanced as the recommended data set.
93	For 100% CaSiO ₃ at 1823 K, the departure from the recommended data set is +21%.
94	For 100% CsN03, the departures from the recommended data set are: 690 K, 0.0%, 780 K, +0.1%.
95	For 100% KNO3, the departures from the recommended data set are: 620 K, -1.3%, 760 K, -1.5%.
96	For 100% NaNO ₃ , the departures from the recommended data set are: 595 K, -3.4%, 720 K, -3.4%.
97	For 100% NaPO ₃ , the departures from the recommended data set are: 1080 K, -0.8%, 1420 K, -5.2%.
98	For 100% Ca(P0 ₃) ₂ , the departures from the recommended data set are: 1270 K, +1.4%, 1420 K, +0.4%.
99	For 100% CaSiO ₃ at 1823 K, the departure from the recommended data set is +21%.
100	
	For 100% CaSiD ₃ at 1823 K, the departure from the recommended data set is +21%.
101	For 100% CaSiO ₃ at 1823 K, the departure from the recommended data set is +21%.
102	For 100% $ m Na_2SO_4$, the departures from the recommended data set are: 1240 K, +0.1%, 1460 K, -0.3%.

Table 2.2.b Surface Tension data reliability statements (continued)

lumber		Reliability estimates
03	For 100%	CdCl ₂ , the departures from the recommended data set are: 880 K, -0.3%, 970 K, -0.1%.
04	For 100%	CdBr ₂ , the departures from the recommended data set are: 880 K, +2.3%, 970 K, +1.3%.
05	For 100%	CdBr ₂ , the results have been advanced as the recommended data set.
0 6	For 100%	CdBr ₂ , the results have been advanced as the recommended data set.
70	For 100%	KBr, the departures from the recommended data set are: 1080 K, +1.8%, 1240 K, +3.2%.
80	For 100%	CdCl ₂ , the results have been advanced as the recommended data set.
09	For 100%	PbCl $_2$, the departures from the recommended data set are: 775 K, \sim 0.6%, 970 K, $+3.4\%$.
10	For 100%	CdCl $_2$, the departures from the recommended data set are: 880 K, -0.7%, 970 K, -0.9%.
11	For 100%	KNO_3 , the departures from the recommended data set are: 620 K, -1.2%, 760 K, -1.5%.
12	For 100%	NaNO $_3$, the departures from the recommended data set are: 600 K, -3.0%, 700 K, -3.0%.
13	For 100%	RbN0 $_3$, the departures from the recommended data set are: 610 K, -0.9%, 730 K, +0.6%.
14	Insuffic	ent details for firm estimate. Based on the principles of the method, possibly 2.5%
15		CsBr, the departures from the recommended data set are: 930 K, +0.4%, 1070 K, +1.4%.
16		CSI, the departures from the recommended data set are: 930 K, +1.3%, 1070 K, +1.7%.
17 18		CSBr, the departures from the recommended data set are: 930 K, +0.4%, 1070 K, +1.4%.
19		KBr, the departures from the recommended data set are: 1020 K, +2.9%, 1120 K, +2.9%. CsBr, the results have been advanced as the recommended data set.
20		NaBr, the departures from the recommended data set are: 1060 K, 0.0%, 1120 K, +0.6%.
21		CsBr, the results have been advanced as the recommended data set.
2 2	For 100%	CsI, the departures from the recommended data set are: 930 K, $\pm 1.3\%$, 1070 K, $\pm 1.7\%$.
23	For 100%	$\mathrm{Cs}_2\mathrm{SO}_4$, the departures from the recommended data set are: 1300 K, +3.1%, 1450 K, +2.3%.
24	For 100%	CsC1, the departures from the recommended data set are: 1060 K, \pm 0.1%, 1450 K, \pm 2.8%.
25	For 100%	CsC1, the departures from the recommended data set are: 940 K, -0.2%, 1060 K, -0.4%.
26		LiC1, the departures from the recommended data set are: 900 K, +10.8%, 1060 K, +10.0%.
27 28		CsC1, the departures from the recommended data set are: 940 K, -0.2%, 1060 K, -0.4%. Li ₂ SO ₄ , the departures from the recommended data set are: 1173 K, +1.4%, 1373 K, +1.7%.
29		CsC1, the departures from the recommended data set are: 1173 K, +1.0%, 1373 K, -3.8%.
30		MgCl ₂ , the results have been advanced as the recommended data set.
31		CsC1, the departures from the recommended data set are: 950 K, -0.18%, 1070 K, -0.14%.
32		NaC1, the departures from the recommended data set are: 1100 K, +3.4%, 1140 K, +3.5%.
33	For 100%	CsC1, the departures from the recommended data set are: 980 K, $\pm 3.8\%$, 1100 K, $\pm 5\%$.
34	For 100%	PbCl ₂ , the results have been advanced as the recommended data set.
35	For 100%	SrCl ₂ and 100% CsCl at 1123 K, the departures from the recommended data set are, respectively, +1.2% and +1.3%.
36	For 100%	KNO_3 , the departures from the recommended data set are: 620 K, +1.3%, 670 K, +0.8%.
37	For 100%	CsNO ₃ , the results have been advanced as the recommended data set.
38	For 100%	NaN03, the departures from the recommended data set are: 590 K, -0.4% , 670 K, -0.7% .
39	For 100%	${\tt CsN0_3},$ the results have been advanced as the recommended data set.
40	For 100%	Li_2CO_3 at 1038 K, the departure from the recommended data set is -0.2%.
41	For 100%	$K_2 SO_4$, the departures from the recommended data set are: 1370 K, +0.2%, 1460 K, +1.0%.
42	For 100%	Cs_2SO_4 , the departures from the recommended data set are: 1300 K, +3.1, 1450 K, +2.3%.
43	For 100%	Na ₂ SO ₄ , the results have been advanced as the recommended data set.
44	For 100%	Cs_2So_4 , the departures from the recommended data set are: 1300 K, +3.1%, 1450 K, +2.3%.
45	For 100%	Rb ₂ SO ₄ , the departures from the recommended data set are: 1350 K, -2.4%, 1460 K, -3.4%.
46	For 100%	Cs_2SO_4 , the departures from the recommended data set are: 1300 K, +3.1%, 1450 K, +2.3%.
47	For 100%	Li_2CO_3 at 1038 K, the departure from the recommended data set is ~0.2%.
148	For 100%	KCl, the results fall uniformly above the recommended data set, e.g.: 1023 K, +1.3%, 1073 K, +2.5%.
149		KC1, the results are approx. 3% higher than the recommended data set, e.g.: 1080 K, +2.7%, 1170 K, +2.8%.
150	For 100%	KBr, the departures from the recommended data set are: 1030 K, +2.8%, 1120 K, +2.9%.
151		KBr, the departures from the recommended data set are: 1030 K, +1.9%, 1070 K, +1.1%.
52	For 100%	NaBr, the departures from the recommended data set are: 1060 K, 0.0%, 1120 K, +0.6%.
153	Eas 1000	KBr, the departures from the recommended data set are: 1030 K, +2.8%, 1120 K, +2.9%.

Table 2.2.b Surface Tension data reliability statements (continued)

Number	Reliability estimates
155	For 100% KBr, the departures from the recommended data set are: 1030 K, +3.0%, 1170 K, +2.7%.
156	For 100% Na_2SO_4 at 1173 K, the departure from the recommended data set is -0.4%.
157	For 100% RbBr, the results have been advanced as the recommended data set.
158	For 100% KBr, the departures from the recommended data set are: 1030 K, +2.8%, 1120 K, +2.9%.
159	For 100% RbC1, the departures from the recommended data set are: 1030 K, +2.3%, 1190 K, +2.7%.
160 161	For 100% KBr, the departures from the recommended data set are: 1030 K, +3.0%, 1170 K, +2.8%.
162	For 100% KC1, the departure from the recommended data set are: 1100 K, -0.2%; 1200 K, -0.5% For 100% K ₂ SO ₄ , the results have been advanced as the recommended data set.
163	For 100% KC1, the departures from the recommended data set are: 1110 K, -1.1%, 1200 K, -0.7%.
164	For 100% KgZrF ₆ , the results have been advanced as the recommended data set.
165	For 100% KC1, the departures from the recommended data set are: 1070 K, -0.9%, 1170 K, -1.3%.
166	For 100% LaCl3, the results have been advanced as the recommended data set.
167	For 100% KC1, the departures from the recommended data set are: 1080 K, +1.0%, 1170 K, +0.1%.
168	Compared with the recommended data set for KC1, the results appear to be uniformly about 1% lower.
169	For 100% PbCl $_2$, the departures from the recommended data set are: 793 K $$ 0.4%, 880 K $$ 1.0%.
170	For 100% Li_2SO_4 , the departures from the recommended data set are: 1170 K, +1.4%, 1370 K, +1.7%.
171	For 100% KC1, the departures from the recommended data set are: 1170 K, +3.1%, 1300 K, +2.9%.
172	For 100% UC13, the departures from the recommended data set are: 1089 K -3.2%, 1154K -3.2%
173	For 100% MgCl ₂ , the results have been advanced as the recommended data set.
174	For 100% KCl, the results have been advanced as the recommended data set.
175	For 100% NaBr, the departures from the recommended data set are: 1060 K, +0.05%, 1220 K, +2.3%.
176 177	For 100% KC1, the results are in close agreement (within 1%) with the recommended data set, i.e.: 1180 K, -0.8%, 1260 K, -0.5%.
177 178	For 100% NaCl, the departures from the recommended data set are: 1080 K, 0.0%, 1220 K, +0.5%. For 100% KCl, the departures from the recommended data set are: 1020 K, -0.6%, 1220 K, -1.1%.
179	For 100% PbCl ₂ , the departures from the recommended data set are: 830 K -3.2%, 880 K -3.2%.
180	For 100% NaI, the departures from the recommended data set are: 960 K, -2.4%, 1160 K, -7.4%.
181	For 100% KC1, the departures from the recommended data set are: 1070 K, -2.6%, 1260 K, -1.6%.
182	For 100% NaNO3 at 743 K, the deparature from the recommended data set is +0.4%.
1 8 3	For 100% Na ₂ B ₄ 0 ₇ at 1223 K, the departure from the recommended data set is -0.6%.
184	For 100% KC1, the departures from the recommended data set are: 1089 K, -0.7% and 1154 K, -0.8%,
185	For 100% PbCl ₂ , the results have been advanced as the recommended data set.
186	For 100% PrCl ₃ , the results have been advanced as the recommended data set.
187	For 100% KC1, the departures from the recommended data set are: 1100 K -0.2%, 1200 K -0.5%.
188	For 100% RbBr, the departures from the recommended data set are: 970 K, -1.8%, 1170 K, +2.6%.
189	For 100% KC1, the results agree closely (within 1%) with the recommended data set, i.e.: 1180 K, -0.8%, 1260 K, -0.5%.
190	For 100% SrCl ₂ , the results have been advanced as the recommended data set.
191	For 100% KC1, the departures from the recommended data set are: 1080 K, +0.8%, 1290 K, -1.8%.
192	For 100% UC13, the results have been advanced as the recommended data set.
193	For 100% kC1, the departures from the recommended data set are: 1089 K 1.9%, 1154K 1.4%
194	For 100% UC1 ₄ , the results have been advanced as the recommended data set.
195 196	For 100% KC1, the departures from the recommended data set are: 1080 K, +2.1%, 1170 K, +1.2%.
197	For 100% ZnCl ₂ , the departures from the recommended data set are: 620 K, +9.0%, 970 K, -2.9%.
198	Insufficient details for firm estimate. Based on principles of the method, possibly 2.5%
199	Insufficient details for firm estimate. Based on the principles of the method, possibly 2.5%. Insufficient details for firm estimate. Based on the principles of the method, possibly 2.5%.
200	Insufficient details for firm estimate. Based on the principles of the method, possibly 2.5%.
201	For 100% KF, an accuracy estimate was not possible due to insufficient information.
202	For 100% K_2ZrF_6 at 1233 K, the results have been advanced as the recommended data set. For 100% KF at 1233 K, the departure from the recommended data set is $+0.9\%$.
203	For 100% LiF, the departures from the recommended data set are: 1070 K, +6.6%, 1170 K, +6.6%.
204	For 100% KF, the departures from the recommended data set are: 1070 K, +1.4%, 1170 K, -0.7%.
205	For 100% $Na_2B_40_7$ at 1223 K, the departure from the recommended data set is -0.6%.
206	For 100% Na_3AlF_6 , the departures from the recommended data are: 1280 K, -0.02% , 1350 K, $=0.09\%$
207	For 100% KF at 1233 K, the departure from the recommended data set is +0.4%.
208	For 100% Na_2SO_4 at 1173 K, the departure from the recommended data set is -0.4%.

Table 2.2.b Surface Tension data reliability statements (continued)

Number		Reliability estimates
209	For 1	00% KNO ₃ , the departures from the recommended data set are: 695 K, -1.0%, 770 K, -0.4%.
210	For 1	00% LiNO3, the results have been advanced as the recommended data set.
211	For 1	00% KNO ₃ , the departures from the recommended data set are: 625 K, +1.2%, 670 K, +1.1%.
212	For 1	00% NaNO3, the departures from the recommended data set are:.620 K, -0.6%, 670 K, -0.7%.
213	For 1	00% KNO ₃ , the departures from the recommended data set are: 600 K, +1.4%, 670 K, +0.6%.
14	For 1	00% $RbN0_3$, the results have been advanced as the recommended data set.
15	For 1	00% LiPO3, the departures from the recommended data set are: 1030 K, +2.2%, 1410 K, +1.9%.
16	For 1	00% KPO ₃ , the departures from the recommended data set are: 1030 K, +3.2%, 1410 K, +1.5%.
17	For 1	00% NaPO3, the departures from the recommended data set are: 1080 K, -0.8%, 1420 K, -5.2%.
18	For 1	00% KPO ₃ , the departures from the recommended data set are: 1080 K, +3.1%, 1410 K, +1.5%.
19	For 1	00% ${\sf Zn(P0_3)_2}$, the results have been advanced as the recommended data set.
220	For 1	00% KPO ₃ , the results have been advanced as the recommended data set.
21	For 1	00% NaSCN, the results have been advanced as the recommended data set.
22		00% KSCN, the results have been advanced as the recommended data set.
23	The v	alues for 100% NaSCN and 100% KSCN have been advanced as the recommended data sets.
24	For 1	00% V ₂ 0 ₅ , the results have been advanced as the recommended data set.
25	For 1	00% KVO3, the results have been advanced as the recommended data set.
26	For 1	00% Li ₂ CO ₃ , the departures from the recommended data set are: 1030 K, \pm 0.4%, 1170 K, \pm 0.7%.
27	For 1	00% $ m K_2CO_3$, the departures from the recommended data set are: 1180 K, 0.0%, 1300 K, +0.2%.
228	For 1	00% Na ₂ CO ₃ , the results have been advanced as the recommended data set.
29	For 1	00% K $_2$ CO $_3$, the results have been advanced as the recommended data set.
30	For 1	00% Li ₂ Mo0 ₄ , the results have been advanced as the recommended data set.
31	For 1	00% K_2 Mo0 $_4$, the departures from the recommended data set are: 1210 K, +3.1%, 1280 K, +1.4%.
232	For 1	00% K_2 Mo0 $_4$, the departures from the recommended data set are: 1240 K, -7.7%, 1360 K, -8.0%.
233	The r	esults for 100% NaBr have been advanced as the recommended data base.
234	For 1	00% K ₂ SO ₄ , the departures from the recommended data set are: 1370 K, -3.9%, 1460 K, -4.9%.
35	For 1	00% Na ₂ SO ₄ , the results have been advanced as the recommended data set.
236	For 1	00% K ₂ SO ₄ , the departures from the recommended data set are: 1370 K, +0.2%, 1460 K, +1.0%.
237		00% K ₂ SO ₄ at 1348 K, the departure from the recommended data set is +0.6%.
:38		00% Rb ₂ S0 ₄ , the departures from the recommended data set are: 1170 K, -1.0%, 1460 K, -3.4%.
:39		00% K ₂ SO ₄ , the departures from the recommended data set are: 1370 K, +0.2%, 1460 K, +1.0%.
40		00% Li ₂ WO ₄ , the results have been advanced as the recommended data set.
41		00% K ₂ WO ₄ , the departures from the recommended data set are: 1215 K, +2.1%, 1280 K, +1.2%.
42		00% ${ m K_2WO_4}$, the departures from the recommended data set are: 1250 K, -8.7%, 1280 K, -9.2%.
43		00% NaC1, the departures from the recommended data set are: 1120 K, -0.2%, 1220 K, -0.2%.
44		00% K ₂ ZrF ₆ , the results have been advanced as the recommended data set.
45		00% Na ₂ B ₄ 0 ₇ , the results have been advanced as the recommended data set.
46		00% NagAIF6, the departure from the recommended data set are: 1280 K, ~0.02%, 1350 K, +0.09%.
47		00% KgAlF6 the results have been advanced as the recommended data set.
48		00% LaCl3, the results have been advanced as the recommended data set.
49 50		00% NaC1, the departures from the recommended data set are: 1100 K -0.2%, 1200 K -0.1%.
51		00% LaCl ₃ , the departures from the recommended data set are: 1150 K -0.7%, 1250 K 0.6%.
:5 i :52		00% LiBr, the results have been advanced as the recommended data set. 00% LiF, the departures from the recommended data set are: 1140 K, +1.7%, 1290 K, +1.8%.
53		00% LiBr, the results have been advanced as the recommended data set.
54		00% LiI, the results have been advanced as the recommended data set.
255		00% LiBr, the results have been advanced as the recommended data set.
256		00% LiF, the departures from the recommended data set are: 1100 K, +1.7%, 1240 K, +1.8%.
57		00% LiI, the results have been advanced as the recommended data set.
58	For 1	00% MgCl ₂ , the results have been advanced as the recommended data set.

Table 2.2.b Surface Tension data reliability statements (continued)

Number	Reliability estimates
260	Ear 100% NaCl the departures from the recommended data act are 1110 K 12 GV 1170 K 12 1V
261	For 100% NaC1, the departures from the recommended data set are: 1110 K, +3.6%, 1170 K, +3.1%. For 100% LiC1, the departures from the recommended data set are: 930 K, +4.6%, 1120 K, +6.5%.
262	For 100% Na ₂ B ₄ 0 ₇ at 1223 K, the departure from the recommended data set is -0.6%.
263	For 100% PbCl ₂ , the results have been advanced as the recommended data set.
264	For 100% LiC1 at 1023 K, the departure from the recommended data set is +7.5%.
265	For 100% UC14, the departures from the recommended data set are: 880 K, -4.3%, 920 K, +3.1%.
266	For 100% LiC1, the departures from the recommended data set are: 890 K, +15.4%, 920 K, +13.5%.
267	For 100% Lil, the results have been advanced as the recommended data set.
268	For 100% LiF, the departures from the recommended data set are: 1140 K, +1.7%, 1240 K, +1.8%.
269	Relative to the recommended data base for LiF, the accuracy limits of \pm 3.0% can be assumed.
270	Relative to the recommended data base for LiF, the accuracy limits of \pm 3.0% can be assumed.
271	Relative to the recommended data base for LiF, the accuracy limits of \pm 3.0% can be assumed.
272	Relative to the recommended data base for LiF, the accuracy limits of ± 3.0% can be assumed.
273	Relative to the recommended data base for LiF, the accuracy limits of ± 3.0% can be assumed.
274	For 100% Li ₂ CO ₃ at 1038 K, the departure from the recommended data set is 0.0%.
275	For 100% NaP03, the departures from the recommended data set are: 1030 K, -0.5%, 1410 K, -5.1%.
276	For 100% LiPO ₃ , the departures from the recommended data set are: 1030 K, +2.2%, 1410 K, +1.9%.
277	For 100% Li ₂ CO ₃ at 1038 K, the departure from the recommended data set is +0.55%.
278	For 100% Na ₂ CO ₃ , the departures from the recommended data set are: 1145 K, -0.6%, 1170 K, -0.9%.
279	For 100% Li_2CD_3 , the departures from the recommended data set are: 1030 K, +0.4%, 1170 K, +0.7%.
280	For 100% Li_2CO_3 at 1038 K, the value is in exact agreement with the recommended data set.
281	For 100% Li ₂ CO ₃ at 1038 K, the value is in exact agreement with the recommended data set.
282	For 100% Li_2MoO_4 , the departures from the recommended data set are: 1110 K, -5.9%, 1280 K, -0.7%.
283	For 100% Na_2Mo0_4 , the departures from the recommended data set are: 1000 K, -1.1%, 1130 K, -1.5%.
284	For 100% Li ₂ MoO ₄ , the results have been advanced as the recommended data set.
285	For 100% NaCl, the departures from the recommended data set are: 1170 K, +2.7%, 1370 K, +3.7%.
286	For 100% Li ₂ SO ₄ , the results have been advanced as the recommended data set.
287	For 100% NaPO3, the results have been advanced as the recommended data set.
288	For 100% RbC1, the departures from the recommended data set are: 1190 K, +1.4%, 1370 K, -0.9%.
289	For 100% $\rm Li_2SO_4$, the departures from the recommended data set are: 1170 K, +1.4%, 1370 K, +1.7%.
290	For 100% $Na_2 W0_4$, the departures from the recommended data set are: 970 K, -2.0%, 1180 K, -0.6%.
291	For 100% Li ₂ WO ₄ , the results have been advanced as the recommended data set.
292	For 100% $\rm Li_2WO_4$, the departures from the recommended data set are: 1080 K, -5.0%, 1270 K, -2.8%.
293	For 100% NaCl, the departures from the recommended data set are: 1090 K, +0.06%, 1220 K, -0.6%.
294	For 100% MgCl ₂ , the departures from the recommended data set are: 1030 K, +6.8%, 1190 K, +5.0%.
295	For 100% RbCl, the results have been advanced as the recommended data set.
296	For 100% MgCl ₂ , the results have been advanced as the recommended data set.
297	For 100% Na_2Mo0_4 , the departures from the recommended data set are: 1110 K, -4.7%, 1290 K, -4.7%.
298	For 100% NaBF ₄ , the results have been advanced as the recommended data set.
299	For 100% NaCl, the results fall uniformly about 3.5% above the recommended data set.
300	For 100% NaBr, the departures from the recommended data set are: 1040 K, 0.0%, 1120 K, +0.6%.
301	For 100% RbBr, the results have been advanced as the recommended data set.
302	For 100% NaBr, the departures from the recommended data set are: 1060 K, 0.0%, 1120 K, +0.6%.
303	For 100% NaCl, the departures from the recommended data set are: 1100 K, -0.7%; 1200 K, -1.0%.
304	For 100% NaC1, the departures from the recommended data set are: 1190 K, +2.9%, 1270 K, +0.5%.
305	For 100% Na ₂ SO ₄ , the results have been advanced as the recommended data set.
306 307	For 100% NaCl, the departures from the recommended data set are: 1090 K, +3.4%, 1470 K, 0.0%.
307	For 100% Na ₂ SO ₄ at 1173 K, the departure from the recommended data set is -0.7%.
308	For 100% PbCl ₂ , the departures from the recommended data set are: 800 K, -0.2%, 970 K, +1.2%.
309	For 100% NaC1, the departures from the recommended data set are: 1100 K, +1.6%, 1240 K, -1.1%.
310	For 100% PrCl ₃ , the results have been advanced as the recommended data set.
311	For 100% NaCl, the departures from the recommended data set are: 1100 K, -0.7%; 1200 K, -1.0%.
312	For 100% RbCl, the results have been advanced as the recommended data set.

Table 2.2.b Surface Tension data reliability statements (continued)

Number	Reliability estimates
313	For 100% NaCl, the departures from the recommended data set are: 1090 K, +3.4%, 1170 K, +3.4%.
314	For 100% SrCl ₂ at 1073 K, the departure from the recommended data set is -1.0%.
315	For 100% UCl ₃ , the results have been advanced as the recommended data set.
316	For 100% NaCl, the departures from the recommended data set are 1080 K 1.5%, 1240K 0.2%
317	For 100% $NaClo_3$, the results have been advanced as the recommended data set.
318	For 100% NaF at 1325 K, the departure from the recommended data set is +3.0%.
319	For 100% Na_2SO_4 at 1173 K, the departure from the recommended data set is -12.1%.
320	For 100% NaPO3, the results have been advanced as the recommended data set.
321	For 100% NaPO3, the results have been advanced as the recommended data set.
322	For 100% NaPO3, the results have been advanced as the recommended data set.
323	For 100% Zn(PO ₃) ₂ , the results have been advanced as the recommended data set.
324	For 100% NaPO3, the departures from the recommended data set are: 1080 K, -2.9%, 1370 K, -4.6%.
325	For 100% Na ₂ B ₄ D ₇ , the departures from the recommended data set are: 1070 K, -3.3%, 1370 K, -13.3%.
326	For 100% Na ₂ SO ₄ at 1323 K, the departure from the recommended data set is -1.9%.
327	For 100% Rb ₂ S0 ₄ , the departures from the recommended data set are: 1360 K, -2.4%, 1460 K, -3.4%.
328	For 100% Na ₂ SO ₄ , the results have been advanced as the recommended data set.
329	For 100% Na ₂ w0 ₄ , the departures from the recommended data set are: 1040 K, -2.8%, 1250 K, -2.6%.
330	The departures of the previously recommended data from the upgraded recommendations (above) are: 1280 K, -0.4%, 1350 K, +0.1% Higher sample purity, and improved measurement techniques, and critical examination of possible error sources support the shift of the reference data set to 51351.
331	For 100% $Na_4P_2O_7$, the results have been advanced as the recommended data set.
332	For 100% PbCl ₂ , the results have been advanced as the recommended data set.
333	For 100% Pb0, the results have been advanced as the recommended data set.
334	For 100% PbMo04, the results have been advanced as the recommended data set.
335	For 100% RbC1, the departures from the recommended data set are: 1030 K, +1.4%, 1130 K, +1.6%.
336	For 100% RbBr, the results have been advanced as the recommended data set.
337	For 100% SrCl ₂ and 100% RbCl at 1123 K, the departures from the recommended data sets are: +1.2% and +1.6%, respectively.

Table 2.2.c Surface Tension data comments

Flag Comment

- a The previous evaluation is correct and still holds as the recommended data base. Accuracy limits have been upgraded in light of the Molten Salts Standards Program.
- b The equation in the previous evaluation is incorrect.
- c There are new data but they do not change the recommended equation or uncertainty.
- d There are new data and together with the results of the Molten Salts Standards Program, a shift from the previous evaluation is recommended. The new correlation equation is listed herewith.
- e The previously recommended data have been refitted to a linear correlation function.
- g The previously reported results were graphical. These correlations were digitized and refitted to the equations herewith.
- i The previously reported results have been upgraded.
- j The recommended data set have been refitted to the Kelvin temperature scale, previously the temperatures were Celsius.
- k systems not included in the previous work
- Some of the numerical property values in the previous recommended data tables have been found to be incorrect. The correlation equations are correct.
- m The previously recommended correlation has been replaced by the polynomial herewith.
- n The previously recommended data base has been refitted to a polynomial correlation equation.
- o These compositions are: Equivalent Percent.
- r For compositions above this limit, the results in the previous evaluations are in error since these were in the area of heterogeneity at the temperatures of concern.
- v2 Modest surface tension increase with increasing temperature was reported.
- z the amounts of NaCl and KCL were fixed at the equi-molar ratio (1:1) throughout this series of measurements

Number

GEORGE J. JANZ

Table 2.2.d Surface Tension data references

Reference

- ¹ G.J. Janz, G.R. Lakshminarayan, R.P.T. Tomkins, and J Wong, Natl. Stand. Ref. Data Ser., NBS, Washington, D.C. <u>28</u>, 49 (1969).
- 2 G.J. Janz, R.P.T. Tomkins, and C.B. Allen, J. Phys. Chem. Ref. Data 8, 125 (1979).
- 3 G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Jr. Downey, and S.K. Singer, J. Phys. Chem. Ref. Data 6, 409 (1977).
- 4 G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Jr. Downey, G.L. Gardner, U. Krebs, and S.K. Singer, J. Phys. Chem. Ref. Data 4, 871 (1975).
- 6. J. Janz, U. Krebs, H.F. Siegenthaler, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 1, 581 (1972).
- ⁶ G.J. Janz, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 9, 831 (1980).
- ⁷ G.J. Janz, G.L. Gardner, U. Krebs, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 3, 1 (1974).
- G.J. Janz, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 12, 591 (1983).
- R. Fernandez, K. Grojtheim, and T. Ostvold, Light Metals1025 (1986).
- 10 M.V. Byshnova, A.G. Morachevskii, and B.V. Patrov, Izvest Vuz Tsvetnaya Met. 1, 117 (1984).
- 11 M.Y. Byshnova, B.Y. Patrov, and A.G. Morachevskii, Izvest Vuz Tsvetnaya Met. 4, 73 (1982).
- 12 K. Yajima, H. Moriyama, J. Dishi, and Y. Tominaga, J. Phys. Chem. <u>86</u>, 4193 (1982).
- 13 K. Yajima, H. Moriyama, Y. Tominga, T. Hara, and J. Oishi, J. Chem. Eng. Data 29, 122 (1984).
- 14 J. Mochinaga, Pre-publication data submitted to MSDC-RPI (1986).
- 15 B. Lillebuen, Ph.D. Thesis, Tech. Univ. Norway, Trondheim (1969).
- 16 L. Huayi, G. Chuntai, and T. Dingxiang, Int. Conf. Rare Earths Dev. and Applications; 2, 1147 (1985).
- 17 T. Ejima, and Y Sato, Pre-publication data submitted to MSDC-RPI (1987).
- 18 G. Llu, T. Utigard, and J.M. Toguri, J. Chem. and Eng. Data 31, 342 (1986).
- 19 R. Kh. Kurmaev, L.A. Kuprianova, N.A. Maltsev, and V.A. Krokhin, Izv. Yyssh. Ucheb. Zaved., Tsvet. Met. 17, 28 (1974).
- ²⁰ T. Fujisawa, T. Utigard, and J.M. Toguri, Can. J. Chem. <u>63</u>, 1132 (1985).
- 11 Y.N. Desyatnik, V.E. Nazarov, and S.P. Raspopin, Poverkhn. Yavleniya Zhidk. Zhidk. Rastvorakh. 2, 58 (1973).
- 22 G. Liu, J.M. Toguri, and N.M. Stubina, Can. J. Chem. 65, in publication (1987).
- 23 E.J. Cairns, C.E. Crouthamel, A.K. Fischer, M.S. Foster, J.C. Hesson, C.E. Johnson, H. Shimotake, and A.D. Tevebaugh, Prog. Rep. USAEC ANL-731661 (1967).
- 24 D. Bratland, C. M. Ferro, and T. Ostvold, Acta Chem. Scand. 37, 487 (1983).

Table 2.3.a Electrical Conductance data

		Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation	$(R = 8.31441 \ J \ K^{-1} \ mol^{-1})$	T range(K)	Accur.	Ref.	Comment
		AgBr				
00	$k = 5.183 \exp(-3476.96217/RT)$		723-1073	±1%	1	a,f
		AgBr-AgC1				
- 100	k = 7 644 exp(- 4342 64625/RT)		730-970	(1)	2	a,f
0-80	•		720-870	(.,	2	a,f
0-60			720-870		2	a, f
0-60			720-870		2	a,f
			720-870		2	a, i a, f
0-20				(0)		
00-0	$k = 5.2826 \exp(-3597.88179/RI)$.		720-870	(2)	2	a,f
		AgBr-AgI	000 070		•	- •
-95	• • • • • • • • • • • • • • • • • • • •		830-870		2	a,f
0-90			830-870		2	a,f
0-80	$k = 3.246 \exp(-2036.38687/RT)$		780-870		2	a,f
0-70	$k = 3.1568 \exp(-1781.99541/RT)$.		780-870		2	a,f
0-60	$k = 3.9753 \exp(-3150.1863/RT)$		730-820		2	a,f
0-40	$k = 4.1138 \exp(-3035.96119/RT)$.		680-870		2	a,f
0-30	$k = 4.0209 \exp(-2810.02141/RT)$.		680-870		2	a,f
0-20	$k = 4.1944 \exp(-3066.5049/RT)$		680-870		2	a,f
10-10	$k = 4.3127 \exp(-2862.32229/RT)$.		730-870		2	a,f
		AgBr-AgN03				
-100	k = 5 757 exp(- 7041 36486/RT)		623-823	(3)	3	a,f
			570-810	(0)	3	a,f
10-80			570-810		3	a, r a, f
4-76						-
0-60			570-810		3	a,f
60-40			570-810		3	a,f
30-20	$k = 5.86331 \exp(-5595.35681/RT)$		630-810		3	a,f
100-0	$k = 5.1656 \exp(-3450.60253/RT)$.		623-823	(4)	3	a,f
		AgBr-CsBr	000 050	(E)	4	
0-100			920-950	(5)		a,f
20-80	• • • • • • • • • • • • • • • • • • • •		800-950		4	a,f
10-60	$k = 8.255 \exp(-16527.91331/RT)$.		650-950		4	a,f
50-50	$k = 8.20902 \exp(-15634.19596/RT)$		600-950		4	a,f
70-30	$k = 5.014 \exp(-8956.42024/RT)$.		600-950		4	a,f
80-20	$k = 4.24 \exp(-6238.86678/RT)$		600-950		4	a,f
100-0	$k = 5.065 \exp(-3077.80189/RT)$.		710-950	(6)	4	a,f
		AgBr-HgBr ₂				
0.15-1.32 AgBr	$k = 5.852 \times 10^{-5} + 0.001428 C + 0$.00158 C²	5 15	(7)	4	a,n
		AgBr-KBr				
40. 9- 59.1	$k = 6.197 \exp(-10635.06913/RT)$.		830-870		4	a,f
50.7-49.3	$k = 6.246 \exp(-10126.28621/RT)$.		780-870		4	a,f
69.2-30.8	$k = 5.376 \exp(-7453.92071/RT)$.		630-870		4	a,f
85.1-14.9	$k = 4.992 \exp(-5197.87016/RT)$.		630-870		4	a,f
100.0-0.0	$k = 5.183 \exp(-3476.96217/RT)$.		730-870	(8)	4	a,f
		AgBr-KC1				
0-100	$k = 8.0879 \exp(-11473.97516/RT)$		1030-107	70 (9)	2	a,f
20-80	$k = 7.2074 \exp(-10896.5735/RT)$.		930-1070	0	2	a,f
40-60	k = 6.1952 exp(~ 9437.58829/RT) .		830-1076	0	2	a,f
50-40	$k = 5.634 \exp(-7761.44985/RT)$		780-1070	0	2	a,f
80-20			780-1076	D	2	a,f
100-0			780-107	0 (10)	2	a,f
		AgBr-LiC1				
0-100	k = 13.1706 exp(- 6136.35706/RT)		930-107	0 (11)	2	a,f
20-80	k = 11.9118 exp(- 6779.03021/RT)		880-107	0	2	a, f
40-60	k = 11.0119 exp(- 7653.50084/RT)	. , ,	880-107	0	2	a, f
60-40	$k = 8.051 \exp(-6199.95493/RT)$.		880-107	0	2	a, f
80-20				0	2	a, f
100-0	-		830-107	0 (12)	2	a, f
100 0	K - 0.1000 EXP(0400.00200/RT) .			/	-	₩,

Table 2.3.a Electrical Conductance data (continued)

(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
J	AgBr-NaBr				
-100	(T=1000 K, k=2.83)		(13)	4	a
0-60	k = 5.012 exp(- 4712.51804/RT)	900-950		4	a,f
0-40	k = 5.39939 exp(~ 5009.58701/RT)	800-950		4	a,f,
0-20	k = 5.177 exp(- 3928.84173/RT)	700-950		4	a,f
00-0	k = 5.06529 exp(- 3077.71821/RT)	710-1000	(14)	4	a,f
	AgBr-NaC1				
- 100	k = 9.0177 exp(- 8223.78959/RT)	1080-1120	(15)	2	a,f
0-80	k = 7.5724 exp(- 7208.3158/RT)	1030-1120		2	a,f
0-60	k = 6.1372 exp(- 5697.02971/RT)	980-1120		2	a,f
0-40	k = 6.05 exp(- 5626.73734/RT)	930-1120		2	a,f
80-20	k = 5.2182 exp(- 4064.4056/RT)	880-1120		2	a,f
00~0	k = 5.0604 exp(- 3288.26061/RT)	880-1120	(16)	2	a,f
	AgBr-RbBr				•
- 100	k = 16.571 exp(- 21959.25458/RT)	955-1050	(17)	4	a,f
.0-80	k = 9.037 exp(- 16576.44853/RT)	880-1000	,	4	a,f
0-60	k = 8.41 exp(- 14593.19935/RT)	750-1000		4	a,f
60-40	k = 8.28633 exp(- 14465.58521/RT)	600-1000		4	a,f
10-30	k = 4.518 exp(- 7443.87894/RT)	600-1000		4	a,f
30-20	k = 8.92478 exp(- 16435.02696/RT)	600-1000		4	a,f
100-0	k = 5.065 exp(- 3077.80189/RT)	710-1000	(18)	4	a,f
	AgC1	710 1000	(10)	7	۵,۱
00	k = 8.482 exp(- 4941.38667/RT)	753-1013	± 1%	1	a,f
	AgC1-AgI	730 1010	- 1/4	•	α,,
0-90	k = 3.712 exp(- 2929.68581/RT)	830-870		2	a,f
25-75	k = 3.653 exp(- 2680.73365/RT)	730-870		2	a,f
42 ~58	k = 4.5244 exp(- 3277.38203/RT)	580-870		2	a,f
90-10	k = 7.0061 exp(- 4381.1397/RT)	730-870		2	a,f
	AgC1-AgND3	700 070		-	ω, ι
) 100	k = 5.757 exp(- 7941.36486/RT)	573-823	(19)	3	a,f
18.5-81.5	k = 6.78333 exp(- 8731.73568/RT)	580-820	(13)	3	a, i a, f
20-80	k = 6.88415 exp(- 8807.04894/RT)	580-820		3	
40-60	k = 7.36215 exp(- 8643.0334/RT)	580-820		3	a,f a,f
50-40	k = 7.10145 exp(- 7469.82017/RT)	640-820		3	
80-20	k = 7.79843 exp(- 6418.78179/RT)			3	a,f
100-0		640-820	(20)		a,f
100-0	k = 7.4195 exp(- 4022.14649/RT)	730-823	(20)	3	a,f
10.06~89.94	k = 66.0159 exp(11593.63956/RT)	1030-1050		3	
22.8-77.2	k = 37.4301 exp(12814.9696/RT)		,	3	a,f
52.17-47.83	k = 399.576 exp(- 23544.5987/RT)	965-1200			a,f
50.0-40.0	•	910-1050		3	a, f
55.0-35.0	k = 1349.45 exp(- 34828.61709/RT)	850-970		3	a, f
	k = 113.569 exp(- 22250.46585/RT)	710-1030		3	a, f
70.0-30.0	k = 35.6091 exp(- 15565.99562/RT)	710-1030		3	a, f
80.0-20.0	k = 11.2275 exp(- 8174.41756/RT)	730-970		3	a, f
90.0-10.0	k = 8.18487 exp(- 5790.75288/RT)	730-1040		3	a, 1
95.0-5.0	k = 9.44444 exp(- 6393.25896/RT)	720-1030		3	a,f
100.0-0.0	k = 8.482 exp(- 4941.38667/RT)	730-1020	(21)	3	a,f
	AgC1-A1Br ₃				
26.2-73.8	k = 11.779 exp(- 21855.90805/RT)	373-443		2	a, f
0-100	k = 5.8551 exp(- 10852.22236/RT)	1030-112	0 (22)	2	a, f
20-80	k = 5.7007 exp(- 10146.78816/RT)	880-1070		2	a, t
40-60	k = 5.5346 exp(- 9107.46517/RT)	830-1070		2	a, 1
60-40	k = 5.3994 exp(- 7243.46198/RT)	780-1070		2	a, :
		700-1070		_	-
80-20	k = 5.5676 exp(- 4867.74704/RT)	780-1070		2	a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K) Ad	ccur.	Ref.	Commen
	AgC1-KC1				
. 3-65 . 7	k = 10.679 exp(- 12914.55046/RT)	930-970		5	a,f
6.8-53.2	k = 8.042 exp(- 10082.35348/RT)	830-970		5	a,f
7.7-42.3	k = 7.282 exp(- 8558.93359/RT)	730-970		5	a,f
3.1-20.9	k = 6.865 exp(- 6048.91/RT)	680-970		5	a,f
0~0	k = 7.644 exp(- 4342.64625/RT)	730-970	(24)	5	a,f
100	AgC1-LiBr	990 1070	(DE)	•	
-100	k = 13.197 exp(- 7097.01953/RT)	880-1070	(25)	2	a,f
0-80	k = 11.677 exp(- 7109.15334/RT)	830-1070		2	a,f
0-40	k = 9.2766 exp(- 6888.65285/RT)	830-1070		2	a,f
0-40	k = 12.243 exp(- 8568.55695/RT)	830-1070		2	a,f
0-20	k = 7.5604 exp(- 5037.62028/RT)	830-1070	(00)	2	a,f
0-0	k = 7.4195 exp(- 4022.14649/RT)	830-1070	(26)	2	a,f
-100	k = 8.55542 exp(- 9187.38091/RT)	1030-1120	(27)	2	a,f
0-80	k = 7.79392 exp(- 8405.79663/RT)	1030-1070	. ,	2	a,f
0-60	k = 7.45696 exp(- 7773.16525/RT)	980-1070		2	a,f
0-40	k = 6.42831 exp(- 5629.24778/RT)	930-1070		2	a,f
0-20	k = 6.3496 exp(- 4166.2877/RT)	830-1070		2	a,f
00-0	k = 7.4195 exp(- 4022.14649/RT)	830-1070	(28)	2	a,f
	AgC1-PbC12	000 1010	(20)	_	-,.
-100	k = 15.378 exp(- 15163.90649/RT)	780-960	(29)	5	a,f
9.7-80.3	k = 15.64 exp(- 14716.62941/RT)	740-960		5	a, f
0.2-59.8	k = 14.8 exp(- 13588.18573/RT)	680-920		5	a, f
9.8-40.2	k = 11.471 exp(~ 10765.61211/RT)	640-960		5	a,f
6.2-13.8	k = 8.322 exp(- 6386.14604/RT)	680-960		5	a,f
00-0	k = 7.633 exp(- 4325.49157/RT)	740-960	(30)	5	a, f
. 00-100 . 00	AgC1-T1C1	770 0-0	(84)	_	_
00-0 T1C1	k = 12.779 exp(- 14989.01237/RT)	773-973	(31)	5	a,f
	$k = 3.659 - 0.05204 C + 8.21 \times 10^{-5} C^2 + 5.797 \times 10^{-6} C^3 - 3.858 \times 10^{-8} C^4$	773	(32)	5	а,п
ror additional	AgC1 systems, see : AgBr- AgC103				
00	k = 19.4316 exp(- 16115.78242/RT)	505-510		6	a,f
0-50	AgC103-LiN03				
0-50	k = 30.0756 exp(- 17374.76908/RT)	480-510		3	a,f
00	k = 1234.6 exp(- 14441.31761/RT)	773-923	±20%	1	a,f
	AgI				
00	k = 4.674 exp(- 4794.94422/RT)	830-1073	±12%	1	a,f
-100	AgI-AgN0 ₃ k = 11.234 exp(- 11510.37657/RT)	10	(55)	_	
4-92.6	k = 26.4094 exp(- 15289.42859/RT)	485-560	(33)	3	a, f
5.3-84.7	k = 14.6759 exp(- 12648.44361/RT)	455-560		3	a, f
9.4-80.6	k = 14.9478 exp(- 12561.41495/RT)	425-560		3	a,1
1.1-78.9	k = 14.0394 exp(- 12345.09854/RT)	410-560		3	a, 1
3,7-76.3	k = 14.2725 exp(- 12353.46668/RT)	410-560		3	a,1
5.3-73.7	k = 12.6631 exp(~ 11722.09051/RT)	400-560		3	a,
8-72	k = 11.482 exp(- 11235.48317/RT)	400-560		3	a, 1
9.8-70.2		400-560		3	a,
2.5-67.5	k = 11.2459 exp(- 11071.04922/RT)	400-560		3	а,
5.3-64.7		400-560		3	а,
8.1-61.9	k = 10.1156 exp(- 10377.33041/RT)	400-560		3	а,
o. 1-01.9 0-60	k = 9.2 exp(- 9838.00379/RT)	400-560		3	а,
2-58	k = 8.82544 exp(- 9687.37727/RT)	400-560		3	а,
	k = 8.19206 exp(- 9192.40179/RT)	400-560		3	a, 1
1.9-55.1					

Table 2.3.a Electrical Conductance data (continued)

	Conductance	(Ohm-1 cm-1)			
(mo1 %)	Equation (R = 8.31441 J H	(-1 mol-1) T range(K)	Accur.	Ref.	Comment
	AgI-A11	3			
.88-91.12	k = 0.3171 exp(- 16565.98835/RT)	470-580		4	a,f
1,22-97.86	$k = 0.24586 - 0.0044694 C + 2.001 \times 10^{-5} C^2 \dots$	473		4	a,n
113					ŕ
For additiona	1 AgI systems, see : AgC1-				
00	k = 11.29 exp(- 11384.85447/RT)		±1%	7	a,c,f
	AgN03-Ba(I	NO ₃) ₂			
7.44-2.56	k = 10.868 exp(- 11443.43145/RT)			7	a,f
8.48-1.52	k = 13.07 exp(- 12192.37998/RT)	490-590		7	a,f
00-0	k = 12.576 exp(- 11828.36589/RT)		(34)	7	a,f
	AgN0 ₃ -Ca(I	103)2			
8.89-11.11	k = 18.874 exp(- 15330.43248/RT)			7	a,f
4.74-5.26	k = 17.162 exp(- 14025.00264/RT)	490-590		7	a,f
7.44-2.56	k = 13.53 exp(- 12548.02593/RT)	490-590		7	a,f
8.48-1.52	k = 13.119 exp(- 12242.58882/RT)	490-590		7	a,f
00-0		490-590	(35)	7	a,f
	AgN0 ₃ -Cd(i				
6.1-53.9	k = 108.24 exp(- 28564.64589/RT)			7	a,f
1.8-48.2	k = 168.87 exp(~ 29819.86689/RT)			7	a,f
5.0-45.0	k = 169.73 exp(- 29242.46523/RT)			7	a,f
7.1-42.9	k = 266.15 exp(- 30819.85962/RT)			7	a,f
9.6-40.4	k = 181.27 exp(- 28937.02812/RT)			7	a, f
2.0-38.0	k = 225.68 exp(- 29422.38024/RT)			7	a,f
4.4-35.6	k = 165.7 exp(- 27665.07084/RT)			7	a,f
6.6-33.4	k = 129.16 exp(- 26121.14901/RT)			7	a,f
8.8-31.2 0.9-29.1	k = 100.38 exp(- 24593.96346/RT)	423-583		7	a,f
3.0-27.0	k = 46.282 exp(- 20665.12173/RT)			7	a,f
5.0-27.0	k = 36.952 exp(- 19614.92016/RT)			7 7	a,f
8.7-21.3	k = 22.55 exp(- 16677.70302/RT)			7	a,f
32.3-17.7	k = 16.441 exp(- 14819.97594/RT)	423-563		7	a,f
8.8-11.2	k = 12.982 exp(- 12987.35328/RT)			7	a,f
11.8-8.2		483-583		7	a,f
00-0	k = 10.678 exp(- 11085.69347/RT)		(36)	7	a,f a,f
•	AgND ₃ -Cs		(30)	,	a , T
- 100	k = 5.8807 exp(- 13707.01332/RT)	· ·	(37)	7	
25-75	k = 4.261 exp(- 10920.4227/RT)			7	a,f
0-50	k = 8.177 exp(- 13142.16387/RT)			7	a,f a,f
0-30	k = 10.917 exp(- 13372.28772/RT)			7	a, i a, f
00-0	k = 12.788 exp(- 11924.5995/RT)			7	a, f
	AgN03-H		(00)	•	۵,۱
10-90	k = 2.959 exp(- 9716.24735/RT)	-		3	a,f
15-85	k = 2.56 exp(- 8460.60795/RT)			3	a, i a, f
10-80	k = 5.428 exp(- 11624.60168/RT)			3	a,f
25~75	k = 7.358 exp(- 13083.16848/RT)			3	a,f
30-70	k = 9.475 exp(- 14335.04223/RT)			3	a,f
85 -6 5	k = 22.067 exp(- 18082.71373/RT)			3	a,f
37.5-62.5	k = 27.628 exp(- 18997.76984/RT)			3	a,f
10-60	k = 26.046 exp(- 18809.90509/RT)			3	a,f
12-58	k = 35.755 exp(- 20103.20113/RT)			3	a, f
15-55	k = 22.219 exp(- 18237.94272/RT)			3	a,. a,f
6-54	k = 44.695 exp(- 21045.45369/RT)			3	a, f
7.5-52.5	k = 22.272 exp(- 18193.59158/RT)			3	a,f
9-51	k = 44.028 exp(- 20955.9146/RT)			3	a,f
				•	٠,,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation ($R = 8.31441 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
2-48	k = 39.471 exp(- 20383.95223/RT)	398-548		3	a, f
-45	k = 33.177 exp(- 19635.4221/RT)	398-548		3	a,f
-43	k = 28.85 exp(- 18881.45269/RT)	398-548		3	a,f
-40	k = 22.35 exp(- 17588.15665/RT)	398-548		3	a,f
-38	k = 21.717 exp(- 17201.13018/RT)	398-548		3	a,f
-35	k = 14.753 exp(- 15456.79139/RT)	398-548		3	a,f
-33	k = 21.678 exp(~ 17252.59424/RT)	398-548		3	a,f
-32	k = 33.86 exp(- 19152.99883/RT)	398-548		3	a, r a, f
)-31	k = 34.58 exp(- 18947.9794/RT)	398-548		3	a, t a, f
)-30	k = 34.136 exp(~ 18717.01874/RT)			3	a,f
3-27	k = 32.002 exp(- 18192.75477/RT)	398-548		3	a, f
5-21 5-24	k = 33.355 exp(- 18046.31232/RT)	398-548		3	a,. a,f
D-20	k = 26.218 exp(- 16809.91963/RT)			3	
3-17					a,f
	k = 21.968 exp(- 15816.62141/RT)			3	a,f
5-15	k = 17.983 exp(- 14803.23966/RT)			3	a,f
6-14	k = 16.648 exp(- 14378.13815/RT)			3	a,f
0-10	k = 10.781 exp(- 12164.34671/RT)	423-548		3	a, f
5-5	k = 14.657 exp(- 12895.72215/RT)		(**)	3	a, f
00-0	k = 15.845 exp(- 12741.74837/RT)	498-548	(39)	3	a, f
	Agno ₃ -kno ₃				
- 100	k = 12.1099 exp(- 15066.83607/RT)	609-673	(40)	7	a , 1
0-90	k = 12.268 exp(- 14778.13524/RT)	593-653		7	a,1
0-80	k = 12.767 exp(- 14640.06093/RT)	593-653		7	a, t
0-70	k = 13.6815 exp(- 14623.32465/RT)	523-643		7	a , 1
0-60	k = 15.8312 exp(- 14995.70688/RT)	483-643		7	a, ·
0-50	k = 21.475 exp(- 16087.74915/RT)	. 433-643		7	a,
60-40	k = 19.566 exp(- 15309.51213/RT)	. 433-643		7	a,
0-30	k = 18.246 exp(- 14619.14058/RT)	. 433-639		7	a,
10-20	k = 14.494 exp(- 13225.84527/RT)	. 453-637		7	а,
90-10	k = 12.73 exp(- 12271.87731/RT)	473-633		7	а,
100-0	k = 11.29 exp(- 11384.85447/RT)	483-633	(41)	7	a, 1
	AgN03-LiND3				
0-100	k = 20.587 exp(- 14209.10172/RT)	. 651-673	(42)	7	a,
10-90	k = 21.701 exp(- 14464.32999/RT)	. 523-633		7	а,
20-80	k = 20.708 exp(- 14238.39021/RT)	. 513-623		7	a,
30-70	k = 19.402 exp(- 13937.13717/RT)	. 503-619		7	a,
40-60	k = 19.248 exp(- 13895.29647/RT)	. 493-617		7	a,
50-50	k = 19.597 exp(- 13987.34601/RT)	. 473-615		7	a,
50-40	k = 19.079 exp(- 13845.08763/RT)	. 463-613		7	a,
70-30	k = 17.875 exp(- 13539.65052/RT)	. 453-613		7	a,
80-20	k = 17.037 exp(- 13330.44702/RT)	. 453-613		7	a,
90-10	k = 13.925 exp(- 12380.66313/RT)	. 473-613		7	a,
100-0	k = 11.29 exp(- 11384.85447/RT)	483-633	(43)	7	a,
	AgN03-Mg(N03)2				
88.89-11.1	k = 16.47 exp(- 14899.47327/RT)	490-590)	7	a,
94.74-5.26	k = 14.077 exp(- 13217.47713/RT)			7	a,
37.44-2.56	k = 12.875 exp(- 12359.74278/RT)			7	a, a,
18.48-1.52	k = 13.041 exp(- 12259.3251/RT)			7	a, a,
100-0	k = 12.576 exp(- 11828.36589/RT)			7	a, a,
	AGN03-NaN03	. 450-090	. (**)	,	a,
. 100	• •	F80 F5		_	
0-100	k = 12.982 exp(- 12514.55337/RT)			7	а,
20-80	k = 13.664 exp(- 12727.94094/RT)			7	a,
10-60	k = 13.33 exp(- 12514.55337/RT)			7	а,
50-40	k = 13.34 exp(- 12418.31976/RT)			7	a
80-20	k = 13.92 exp(- 12485.26488/RT)		5	7	a,
100-0	k = 11.29 exp(- 11384.85447/RT)	483-633	(46)	7	а,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Commen
	Agn0 ₃ -Rbn0 ₃				
-100	k = 9.942 exp(- 15640.05366/RT)	583-673	(47)	7	a,f
0-90	k = 11.638 exp(- 15978.96333/RT)	553-653		7	a,f
0-80	k = 13.713 exp(- 16305.32079/RT)	513-643		7	a,f
0-70	k = 20.308 exp(- 17698.6161/RT)	453-643		7	a,f
0-60	k = 23.727 exp(~ 17937.10809/RT)	433-633		7	a, f
0-50	k = 21.318 exp(- 16932.93129/RT)	433-633		7	a, f
0-40	k = 19.617 exp(~ 16037.54031/RT)			7	
0-30	k = 20.307 exp(~ 15619.13331/RT)	433-633			a,f
i0-20		433-623		7	a,f
10-20 10-10	k = 14.129 exp(- 13455.96912/RT)	463-623		7	a,f
	k = 14.999 exp(- 13188.18864/RT)	463-613		7	a,f
00-0	k = 11.29 exp(- 11384.85447/RT)	483-633	(48)	7	a,f
~100	AgN03-T1N03		(40)	_	
	k = 8.026 exp(- 12510.3693/RT)	483-623	(49)	7	a,f
0-90	k = 10.083 exp(~ 13246.76562/RT)	463-559		7	a,f
30-70	k = 14.035 exp(- 14176.88438/RT)	433-559		7	a,f
50-50	k = 15.935 exp(- 14238.39021/RT)	433-559		7	a,f
35-35	k = 17.49 exp(- 14250.94242/RT)	433-559		7	a,f
9-21	k = 15.837 exp(- 13455.96912/RT)	453-561		7	a,f
00-0	k = 11.29 exp(- 11384.85447/RT)	483-633	(50)	7	a,f
For additiona	al AgNO3 systems, see : AgBr- ; AgCl- ; AgI-				
	Ag ₂ S				
00	k = 41.5109 exp(10749.41976/RT)	1115-1352	±15%	1	a, v
	Ag ₂ S-Na ₂ S				
0-80	k = 24.1426 exp(- 18728.31573/RT)	960-1250		6	a, f
10-70	k = 26.2644 exp(- 20071.8206/RT)	960-1250		6	-
0-60	k = 24.0856 exp(- 19142.95706/RT)				a,f
0-50		960-1250		6	a,f
50-40	k = 24.6097 exp(- 18473.08746/RT)	960-1250		6	a,f
	k = 60.9404 exp(- 23239.58/RT)	960-1250		6	a,f
70-30	k = 543.845 exp(- 41010.58051/RT)	960-1250		6	a,f
For addition	al Ag ₂ S systems, see : AgC1-				
00	Ag ₂ SO ₄ k = 7.4568 exp(- 11523.55639/RT)	040 4047	+04/		
	k = 7.4568 exp(- 11523.55639/RT)	942-1017	±3%	1	а
0-60				_	_
10-60	k = 20.721 exp(- 18694.42476/RT)	870-1050		6	a,f
50-50	k = 17.287 exp(- 17614.9347/RT)	860-1020		6	a,f
50-40	k = 16.754 exp(- 17594.01435/RT)	850-1020		6	a,f
30-20	k = 13.309 exp(- 15907.83414/RT)	860-1000		6	a,f
90-10	k = 10.523 exp(- 14112.86811/RT)	900-1020		6	a,f
100-0	k = 7.4582 exp(- 11527.11285/RT)	940-1020	(51)	6	a,f
	AlBra				
100	k = 1.167 x 10 ⁻⁴ exp(- 27761.30445/RT)	468-543		4	a ,c
20 2 17 7	AlBrg-CoBrg				
82.3-17.7	(T=423 K, k=0.0008)			4	а
31.6~18.4	A1Br ₃ -FeBr ₃ (T=423 K, k=0.001)				_
	(1=423 K, K=0.001)			4	а
6.67-33.33	k = 44.017 exp(- 25658.39087/RT)	385-410		4	a,f
67.43-32.57	k = 30.647 exp(- 24576.80877/RT)	385-410		4	
0.54-29.46	k = 12.236 exp(- 21986.45104/RT)			4	a,1
74.14-25.86	k = 7.073 exp(- 20853.40488/RT)	385~410			a, f
33.57-16.43		385-410		4	a, f
,0.07 (0.40	k = 0.2848 exp(- 13386.09515/RT)	385-410		4	a, f
92.06-7.94	k = 0.004972 exp(- 6528.82283/RT)	385-410		4	а,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
	AlBr ₃ -KBr	-			
6.67-33.33	k = 42.143 exp(- 22504.85731/RT)	383-413		4	a,f
8.77-31.23	k = 34.064 exp(- 22084.77668/RT)	383~413		4	a,f
1.21-28.79	k = 28.354 exp(- 21809.46488/RT)	383~413		4	a,f
3.66-26.34	k = 22.975 exp(- 21494.82281/RT)	383-413		4	a,f
5.66-24.34	k = 31.769 exp(- 22877.65795/RT)	393~403		4	a,f
6.59-23.41				4	
0.03-20.41	k = 17.981 exp(- 21173.48624/RT)	383~413		4	a,f
6.7-33.3	k = 21.5567 exp(- 20371.40002/RT)	370-440		2	a,f
00-0	k = 2.8989 x 10 ⁻⁵ exp(13753.03809/RT)	373-403	(52)	2	a,f
	AlBr ₃ -LiCl				
0. 13-19.87	k = 0.508591 exp(- 11149.70974/RT)	360-450		2	a,f
	AlBr ₃ -MnBr ₂				
2-18	(T=433.2 K, k=0.001)			4	k
	AlBr ₃ -NaBr				
5-75	k = 2.551 exp(- 6779.86703/RT)	925-1275		4	a,f
3-67	k = 2.394 exp(- 7606.63926/RT)	850-1275		4	a,f
2-58	k = 1.655 exp(- 5055.61178/RT)	900-1275		4	a,f
0-50	k = - 1.0423 + 0.0037731 T - 1.7211 x 10 ⁻⁶ T ²	450-1275		4	a
7-33	k = 2.745 exp(- 11501.59002/RT)	500-975		4	a,f
0-20	k = 1.45525 exp(- 12956.80957/RT)	485-674		4	a,f
0-20	$k = 0.2593 - 6.064 \times 10^{-4} \text{ T} - 3.1175 \times 10^{-6} \text{ T}^2 + 9.047 \times 10^{-9} \text{ T}^3 - 5.186 \times 10^{-12} \text{ T}^3$			4	a,n
12-8	k = 0.400932 exp(- 15363.90504/RT)	506-663		4	a,f
2-8	k = - 2.525 + 0.0060275 T - 3.9683 x 10 ⁻⁶ T ² + 7.999 x 10 ⁻¹⁰ T ³	713-1174		4	-
8-2	k = 51.6546 exp(- 10741.3445/RT)			4	a,n
10-2	A1Brg-NaC1	475-700		4	a,f
52-48	k = 5.452 exp(- 10860.17209/RT)	462-573		8	k
66-44	k = 6.069 exp(- 12212.46352/RT)	451-523		8	k
4-36	k = 6.224 exp(- 14034.20759/RT)	411-523		8	k
8-32	k = 6.181 exp(- 14865.1639/RT)			8	
88.21-31.79	(T. 200 0 W.)	392-523			k,a
				2	a
88.21-31.79	k = 739.68 exp(- 32820.26349/RT)	373-403		2	a,f
76.5-23.5	k = 4.20829 exp(- 16327.07795/RT)	373-423		2	a,f
30.07-19.93	k = 1.65844 exp(- 14030.44193/RT)	373-443		2	a,f
70-30	AlBr3-N(CH3)4Br	200 407			
0.00	k = 7.791 exp(- 22014.0659/RT)	382-497		8	k
30-70	k = 128.3 exp(- 35189.28392/RT)	369-488		8	k
0-60	k = 23.92 exp(- 27530.34379/RT)				
60 -5 0		400-469		8	, k
	k = 11.42 exp(- 24666.76628/RT)	425-492		8	k
50-40	k = 12.98 exp(- 25504.8355/RT)	387-446		8	k
64-36	k = 7.323 exp(- 23522.42313/RT)	372-492		8	k
88-32	k = 6.47 exp(- 23249.20336/RT)	358-493		8	k
66.69-33.31	A1Brg-NH ₄ Br				
	k = 23.883 exp(- 22183.10233/RT)	385-420		4	a,f
70.90-29.10	k = 18.767 exp(- 21914.48503/RT)	385-420		4	a,f
74.78-25.22	k = 13.159 exp(- 21198.59066/RT)	385-420		4	a,f
75 . 63-24 . 37	k = 9.011 exp(~ 20180.18802/RT)	385-420		4	a, f
78.40-21.60	k = 6.765 exp(- 19619.94104/RT)	385-420		4	a,f
. 100	AlBrg-SbBrg				
0-100	(T=373 K, k=0)		(53)	4	a
10-90	k = 0.3609 exp(- 11171.04849/RT)	373-413		4	a,f
20-80	k = 1.52399 exp(- 14058.4752/RT)	373-413		4	a,f
30-70	k = 0.987182 exp(- 12545.9339/RT)	373-413		4	a,f
40-60	k = 3.098 exp(- 16626.65737/RT)	373-413		4	a, f

Table 2.3.a Electrical Conductance data (continued)

/1 */\	Conductance (ohm ⁻¹ cm ⁻¹)			
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K) Accur	. Ref.	Comment
0-50	k = 8.534 exp(- 20386.04426/RT)	353-443	4	a,f
0-50	k = 10.1184 exp(- 21372.22956/RT)	373-413	4	a,f
0-40	k = 5.254 exp(- 20122.86626/RT)	373-413	4	a, f
0-30	k = 7.688 exp(- 22123.68853/RT)	373-413	4	a, f
0-20	k = 1.78683 exp(- 19031.2424/RT)	373-413	4	a,f
10-10	(T=373 K, k=0.001)		4	a
100-0	k = 2.8989 x 10 ⁻⁵ exp(13753.03809/RT)	373-403 (54	1) 4	a,f
	AlBra-ZnBr ₂	, ,	•	-,-
66.7-33.3	k = 760.832 exp(- 36974.20818/RT)	373-423	4	a,f
66.7-33.3	k = 103.6778 exp(- 30452.04221/RT)	380-450	4	a,f
75-25	k = 60.58 exp(- 25347.09606/RT)	373-423	4	a,f
80-20	(T=373 K, k=0.003)		4	a
80-20	k = 10.2555 exp(- 25581.40398/RT)	393-423	4	a,f
87-13	(T=373 K, k=0)		4	a
100-0	k = 2.8989 x 10 ⁻⁵ exp(13753.03809/RT)	373-403 (5	5) 4	a,f
	A1C13			-,-
100	k = 9.7744 x 10 ⁻⁴ exp(~ 29259.20151/RT)	475-515	5	a,f
	A1C13-A12S3-NaC1	-	-	
39.3-7.8-52.9	k = - 0.93596 + 0.0025639 T	446-675	9	k
43.2-4.1-52.7	k = - 1.36 + 0.0045743 T - 1.8879 x 10 ⁻⁶ T ²	446-673	9	k
45.0-3.4-51.6	k = - 1.4619 + 0.0050211 T - 2.2876 x 10 ⁻⁶ T ²	447-648	9	k
46.1-2.6-51.3	k = - 0.96403 + 0.0029267 T	436-462	9	k
49.2-0.4-50.4		447-674 (5	_	k
49.2-0,4-50.4	k = - 1.4074 + 0.0052933 T - 2.6765 x 10 ⁻⁶ T ²	447-074 (5	0, 9	
0~100	k = 6.9 exp(- 10115.40763/RT)	1080-1275 (5	7) 5	a, f
10-90		1080-1275	,, 5 5	a, r a, f
20-80	k = 8.576 exp(- 14425.41814/RT)	1080-1275	5	a, r a, f
	k = 3.75 exp(- 9853.90326/RT)	975-1275	5	a, i a, f
30-70	k = 2.989 exp(- 9340.51787/RT)		5	a, f
40-60	k = 2.524 exp(- 8434.66671/RT)	875-1275 875-1275	5	a, r a, f
50-50	k = 1.965 exp(- 5424.64676/RT)	875-1275	5	
50.65-49.35	k = 7.93 exp(- 13594.04343/RT)	530-570		a,f
60-40	k = 1.512 exp(- 4388.25262/RT)		58) 5	a, f
60.55~39.45	k = 5.223 exp(- 12762.25031/RT)	480-560	5	a, f
69.25-30.75	k = 4 exp(- 12485.68329/RT)	480-570	5	a,f
71.20-28.80	k = 3.754 exp(- 12445.09781/RT) ,	470-540	5	a,f
80.25-19.75	k = 1.772 exp(- 11007.03295/RT)	470-560	5	a, f
80.6-19.4	k = 2.077 exp(- 11686.52592/RT)	470-550	5	a, f
Isothermal Data points	(C=100-0, k=0.1) (C=90-10, k=0.23) (C=80-20, k=0.43) (C=70-30, k=0.63)	873	5	а
	A1C13-L1C1			
49.25-50.75	k = 5.183 exp(- 10152.22745/RT)	437-622	10) d,
55-45	k = 4.499 exp(- 10612.47515/RT)	424-597	10) d,
59.98-40.02	k = 3:989 exp(- 11089.87754/RT)	422-572	10	d, (
64.92-35.08	k = 3.12 exp(- 10935.90376/RT)	433-546	10	d, (
69.99-30.01	k = 3.004 exp(~ 11725.43777/RT)	473-487	10	
75.1-24.9	k = 1.681 exp(- 10791.97175/RT)	467-522	10	
-	AICI3-LiCI-NaCI			
49.25-50.75-0	k = 5.6141 exp(~ 10508.29181/RT)	432-615	59) 11	1 k
49.75-0-50.25	k = 6.5285 exp(- 10626.28258/RT)	434-524	60) 11	1 k
50-30-20	k = 6.3046 exp(- 10381.09608/RT)	396-527	11	1 k
50-20-30	k = 7.2766 exp(- 10977.32605/RT)	398-523	11	
	k = 5.594 exp(- 9917.50112/RT)	429-528	11	
50-10-40		433-522	11	
50-10-40 50-40-10				. ^
50-40-10	k = 5.8222 exp(- 10268.54459/RT)		15	, ,
50-40-10 52-24-24	k = 6.037 exp(- 10412.4766/RT)	393-571	12	
50-40-10			12 12	2 k

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)			
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	Trange(K) Accur.	Ref.	Comment
5-33-11	k = 5.241 exp(~ 10953.89526/RT)	403-573	12	k
-21-21	k = 5.154 exp(- 11120.83965/RT)	393-573	12	k
-31.5-10.5	k = 5.22 exp(- 11368.5366/RT)	393-575	12	k
-30-10	k = 4.856 exp(- 11466.02543/RT)	393-573	12	k
-20-20	k = 5.046 exp(- 11337.57448/RT)	403-573	12	k
-30~10	k = 4.5838 exp(- 10999.92003/RT)	452-523	11	k
-20-20	k = 4.5533 exp(- 10730.46592/RT)	452-533	11	k
- 10-30	k = 4.3811 exp(- 10355.15484/RT)	462-512	11	k
:- 19- 19	k = 4.98 exp(- 11664.35035/RT)	423-573	12	k
- 18- 18	k = 3.848 exp(- 10998.2464/RT)	433-543	12	k
3-24-8	k = 2.835 exp(- 10643.01886/RT)	443-523	12	k
3-16-16	k = 2.897 exp(- 10477.74809/RT)	453-523	12	r k
0-10-10	A1013-MgC12	450 525	12	•
100		1004 1256 (61)	12	L
- 100	k = 6.55154 exp(- 15294.44948/RT)	1004-1256 (61)	13	k
.0-95.0	k = 6.91943 exp(- 17622.04762/RT)	995-1173	13	k
5.2-83.8	(T=1229 K, k=0.7743)	004 4450	13	k
3.2-83.8	k = 3.62789 exp(- 15141.73092/RT)	981-1158	13	k .
9.8-70.2	k = 2.01636 exp(- 13377.72701/RT)	968-1068	13	k
6.1-63.9	k = 2.7574 exp(- 17604.89293/RT)	955-1064	13	k
8.1-31.9	k = 0.60208 exp(- 11772.71776/RT)	631-782	13	k
8.0-12.0	(T=631 K, k=0.0505)		13	k
8.0~12.0	k = 7.5972 exp(- 25885.16746/RT)	510-588	13	k
	A1C1 ₃ -NaBr			
2.5~47.5	k = 6.1906 exp(- 10742.59973/RT)	448-498	2	a, c
5-45	k = 5.7836 exp(- 10932.5565/RT)	448-498	2	a,
0-40	k = 5.2282 exp(- 11455.98366/RT)	448-498	2	a.0
5-35	k = 4.557 exp(- 11777.32024/RT)	448-498	2	a,
0-30	k = 3.527 exp(- 11636.73548/RT)	448-498	2	a, 0
5-25	k = 2.492 exp(- 11394.05942/RT)	473-498	2	a, c
	A1C1 ₃ -NaC1			
0-50	k = - 1.59838 + 0.00601589 T - 3.29411 x 10 ⁻⁶ T ²	448-673 (62)	9	d
0.0-50.0	k = 6.317 exp(- 9993.23279/RT)	460-540 (63)	5	a, 1
0.8-49.2	k = 4.975 exp(- 9163.1133/RT)	460-540	5	a, 1
52-48	k = ~ 1.22339 + 0.0045665 T - 2.1265 x 10 ⁻⁶ T ²	448-673	9	ď
7.8-42.2	k = 4.829 exp(- 10499.92367/RT)	460-540 (64)	5	a, 1
0-40	k = - 0.77428 + 0.0027635 T - 9.8104 x 10 ⁻⁷ T ²	448-573	9	d
9-31	k = 2.757 exp(- 10018.33721/RT)	420-510	5	a, :
69.1-30.9	k = 3.979 exp(- 11240.08565/RT)	450-490	5	a, ·
70-30	k = 3.9313 exp(- 11573.13762/RT)	428-482	9	ď
80.6-19.4	k = 1.422 exp(- 9838.84061/RT)	480-510	5	a, 1
81.1-18.9	k = 1.627 exp(- 10432.56014/RT)	480-510	5	a,:
	A1C13-NH4C1	400 010	•	α,
49.9-50.1	- · ·	F70 F90	-	
-	k = 16.98 exp(- 16989.83464/RT)	570-580	5	а,
57.1-42.9	k = 6.826 exp(- 13360.57232/RT)	540-560	5	a,
70.90-29.10	k = 4.245 exp(- 12699.48926/RT)	470-570	5	a,
79.75-20.25	k = 2.559 exp(- 12211.2083/RT)	470-560	5	а,
	AIC13-RbC1			
70.0-30.0	k = 5.207 exp(- 14803.65807/RT)	448-498	5	a,
75 . 0-25 . 0	k = 3.003 exp(- 13074.38194/RT)	448-498	5	a,
	AICI3-SDCI3			
2.5-97.5	k = 0.02079 exp(- 2638.89295/RT)	360-504	8	k
5 -9 5	k = 0.05541 exp(- 3784.49132/RT)	357-505	8	k
10-90	k = 0.2012 exp(- 6030.50009/RT)	353-503	8	k
15-85	k = 0.271 exp(~ 5886.98649/RT)	382-513	8	k
20-80	k = 0.4935 exp(- 7380.69948/RT)	396-499	8	k

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation $(R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1})$	range(K)	Accur.	Ref.	Comment
0-70	k = 0.7565 exp(- 8435.92193/RT)	434-493		8	k
0~60	k = 1.181 exp(- 10227.95912/RT)	447-491		8	k
0-50	k = 1.612 exp(- 11904.51596/RT)	455-483		8	k
6-45	k = 1.411 exp(- 11764.76803/RT)	456-491		8	k
0-40	k = 0.8825 exp(- 10248.04265/RT)	466-490		8	k
	A1C13-SbC13-C9H13NC1				
9-60-21	k = 15.06 exp(- 19791.06951/RT)	298-434		8	k
1-60-19	k = 9.089 exp(- 18615.34584/RT)	298-434		8	k
	Alfa-KF	250 404		·	•
5-75	k = 24.984 exp(- 25634.12326/RT)	1273-1340	(65)	14	2.0
	AlF3-LiF	1273 1340	(65)	.,	a,g
- 100	·				
5-75	k = 22.198 exp(- 9343.02831/RT)	1130-1320		14	a,f
5-75	k = 6.852 exp(- 5215.86166/RT)	1180-1320)	14	a,f
	A1F3-NaF				
-100	k = 19.932 exp(- 13592.3698/RT)	1273-1353		14	a,f
3.8-86.2	k = 12.569 exp(- 12507.85886/RT)	1273-1353		14	a, f
0.0-80.0	k = 9.8098 exp(- 11894.05579/RT)	1273-1353	3	14	a, f
1.9-78.1	k = 9.445 exp(- 11714.55919/RT)	1273-1353	3	14	a, f
5.0-75.0	k = 8.896 exp(- 12238.82316/RT)	1273-1353	(68)	14	a, f
9.7-70.3	k = 8.01 exp(- 11596.15001/RT)	1273-1353	3	14	a,f
2.3-67.7	k = 7.231 exp(- 10825.86272/RT)	1273-1353	3	14	a,f
	A1F3-Na3A1F6				
~100	k = 8.896 exp(- 12238.82316/RT)	1300-1340	(69)	3	a, f
1.6-88.4	k = 7.81419 exp(- 11327.53271/RT)	1270-1350)	3	a,f
7.9-82.1	k = 7.09307 exp(- 10617.49603/RT)	1270-1350)	3	a, f
	Ali ₃				
100	k = 0.1876 exp(- 45133.56309/RT)	464-530	±20%	1	a, f
	All3-Cdl5				
91.96-8.04	k = 0.06177 exp(- 14641.73456/RT)	470-580		4	a,f
2.48-27.24 Cdi ₂	$k = 0.001065 - 6.472 \times 10^{-4} \text{ C} + 1.169 \times 10^{-4} \text{ C}^2 - 4.504 \times 10^{-6} \text{ C}^3 + 5.597 \times 10^{-8} \text{ C}^3$	4 473		4	a,n
cuiz					
	Alla-Cui				
73.97-26.03	(T=473 K, k=0.005567)			4	a
73.97-26.03	k = 252.37 exp(- 42799.27044/RT)	470-570		4	a, f
85.43-14.57	(T=473 K, k=0.004779)			4	a
87.97-12.03	(T=473 K, k=0.002707)			4	a
93.17-6.83	(T=473 K, k=0.002004)			4	а
96.78-3.22	(T=473 K, k=0.0006657)			4	a
98.20-1.80	(T=473 K, k=0.000127)			4	a
	All ₃ -HgI ₂				
89.54-10.46	k = 0.005255 exp(- 3381.10513/RT)	470-580		4	a, f
0.66-37.74	k = 4.542 x 10 ⁻⁴ - 4.093 x 10 ⁻⁴ C + 6.8494 x 10 ⁻⁵ C ² - 1.202 x 10 ⁻⁶ C ³ + 1.0691 x	473		4	a,r
HgI ₂	17 -				
47.64-75.2 HgI ₂	$k = 2.3071 - 0.12051 C + 0.00207 C^2 + 1.1103 \times 10^{-5} C^3 \dots \dots \dots$	473		4	a,n
	A11V1				
10 00-20 04	A113-K1				
79.99-20.01	k = 3.408 exp(- 17624.13965/RT)	470-580		4	a, f
0.83-46.5 KI	$k = -4.679 \times 10^{-4} + 5.292 \times 10^{-4} C + 1.012 \times 10^{-4} C^2 - 2.708 \times 10^{-6} C^3 + 3.239 \times 10^{-6} C^4$	473		4	a, r
	Alla-Sbla				
0-100	(T=473 K, k=0.0002099)		(70)	4	a
7.05-92.95	(T=473 K, k=0.007524)		(10)	4	
88.73-11.27	k = - 0.0113589 + 5.23513 x 10 ⁻⁵ T - 4.9963 x 10 ⁻⁸ T ²	470 E00		4	a
2 35-72 81	$k = 2.358 \times 10^{-4} + 7.439 \times 10^{-6} \text{ C} + 2.107 \times 10^{-5} \text{ C}^2 - 3.1095 \times 10^{-7} \text{ C}^3 + 1.206 \text{ x}$	470-580		4	a
Sb13	10-9 C ⁴ - 2.300 x 10 - + 7.439 x 10-0 C + 2.107 x 10-0 C ² - 3.1095 x 10-7 C ³ + 1.206 x	473		4	a,r

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)			
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K) Accur.	Ref.	Comment
For additiona	al All ₃ systems, see : Agl-			
100	A1 ₂ 0 ₃ -CaF ₂	4500 4000 (F4)		
-100	k = 18.168 exp(- 16146.32613/RT)	1720-1960 (71)	3	a,f
.9-96.1	k = 21.3545 exp(- 24457.14437/RT)	1720-1960	3	a,f
.8-92.2	k = 22.1757 exp(- 29081.79694/RT)	1720-1960	3	a,f
6.1-83.9	k = 20.1512 exp(- 31740.35502/RT)	1720-1960	3	a,f
4.7-75.3	$k = 186.517 \exp(-72723.32067/RT) \dots $ $Al_2O_3-K_3AlF_6$	1720-1960	3	a,f
- 100	k = 1832.75 exp(- 69125.02047/RT)	1200-1320 (72)	3	a,f
12-88	k = 23.5202 exp(- 24218.65238/RT)	1270-1320	3	a,f
22-78	k = 13.7918 exp(- 19099.02433/RT)	1250-1320	3	a,f
31-69	k = 14.4436 exp(- 20269.30871/RT)	1230-1320	3	a,f
, 00	Al203-NagAlF6		_	_,.
3.7-90.3	k = 7.37054 exp(- 11225.023/RT)	1270-1350	3	a,f
17.2-82.8		1270-1350	3	a,f
17.2-02.0	k = 7.01229 exp(- 11671.88167/RT)	1270-1550	J	α,,
	A1203-Na3A1F6-Si02		_	
0-100-0	(T=1273 K, k=2.8)	(73)	3	a
0-98-2	(T=1273 K, k=2.63)		3	a
0-96-4	(T=1273 K, k=2.57)		3	a
0-94-6	(T=1273 K, k=2.5)		3	a
3-97-0	(T=1273 K, k=2.68)		3	a
3-95-2	(T=1273 K, k=2.57)		3	а
3-93-4	(T=1273 K, k=2.49)		3	а
3-91-6	(T=1273 K, k=2.42)		3	a
6-94-0	(T=1273 K, k=2.53)		3	а
6-92-2	(T=1273 K, k=2.41)		3	a
6-90-4	(T=1273 K, k=2.31)		3	a
6-88-6	(T=1273 K, k=2.26)		3	a
9-91-0	(T=1273 K, k=2.38)		3	а
9-89-2	(T=1273 K, k=2.28)		3	a
9-87-4	(T=1273 K, k=2.23)		3	a
9-85-6	(T=1273 K, k=2.18)		3	a
12-88-0	(T=1273 K, k=2.22)		3	a
12-86-2	(T=1273 K, k=2.18)		3	a
12-84-4	(T=1273 K, k=2.15)		3	a
12-82-6	(T=1273 K, k=2.1)		3	а
	A1 ₂ S ₃			
For Al ₂ S ₃ sy	stems, see : AIC13-			
20-70	As ₂ S ₃ -K ₂ S	770-980	6	a,b
30-70 40-60	$k = 5106.57 \text{ exp}(\sim 84673.02459/RT)$		6	a,b,
40-60	k = 0.7889 - 0.003124 T + 2.957 x 10 ⁻⁶ T ²	670-980	6	a, u, a
50-50	k = 0.7889 - 0.003124 T + 2.957 x 10 ⁻⁶ T ²	670-980 670-980	6	
60-40			6	a
70-30	k = 1.006 - 0.003624 T + 3.195 x 10 ⁻⁶ T ²	670-980 670-980	_	a
80-20	k = 1.046 - 0.003425 T + 2.814 x 10 ⁻⁶ T ²	670-980	6	a
90-10	k = 0.5679 - 0.001798 T + 1.431 x 10 ⁻⁶ T ²	670-980	6	a
10-90	k = 38.2548 exp(- 23566.77428/RT)	830-970	6	a,f
20-80	k = 26.3441 exp(- 21785.19727/RT)	830-970	6	a,f
30-70	k = 21.9483 exp(- 22293.14337/RT)	830-970	6	a,f
40-60	k = 37.4298 exp(- 28494.77192/RT)	770-970	6	a,f
70-00	k = 60.0658 exp(- 33872.55709/RT)	770-970	6	a,f
EO-EO	K - 00.0000 CAP/ 00012.00103/R1/			
	L - 06 3533 evn/- 30060 17203/PT\	730-070	£	3 £
60-40	k = 96.3533 exp(- 39069.17203/RT)	730-970 730-970	6	a,f
50-50 60-40 70-30 80-20	k = 96.3533 exp(- 39069.17203/RT)	730-970 730-970 730-970	6 6 6	a,f a,f a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 c			
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹) Trange(K) Acc	cur. Ref	. Commer
	BaBr ₂			
00	k = 13.539 exp(- 22765.52487/RT)		±10% 1	a, f
	BaBr ₂ -KBr			
-100	k = 5.991 exp(- 11045.9448/RT)	1020-1120	(74) 4	a,1
0.5-79.5	k = 8.108 exp(- 15658.04516/RT)	930-1120	4	a,
4.3-75.7	k = 8.615 exp(- 16407.83051/RT)	930-1120	4	a,
3.3-66.7	k = 9.059 exp(- 17573.93081/RT)	920-1120	4	a,
0.0-60.0	k = 10.141 exp(- 20010.31478/RT)	920-1120	4	a,
2.0-48.0	k = 12.492 exp(- 21418.67274/RT)	910-1120	4	a,
5.0-35.0	k = 15.891 exp(- 24055.05524/RT)	970-1120	4	a,
5.0-25.0	k = 16.261 exp(- 24414.46686/RT)	1030-1120	4	a,
5.0-15.0	k = 23.166 exp(- 28150.42296/RT)	1090-1120		a,
	BaC1 ₂		,	۵,
00		1000 1000	.00	
			±9% 1	
	BaC1 ₂ -BaF ₂			
)-50	k = 36.0851 exp(- 34001.84486/RT)		2	a,
2.5-37.5	k = 37.8111 exp(- 37405.5858/RT)	1275-1370	2	a,
5-25	k = 38.3415 exp(- 38254.95201/RT)		2	a,
1.5-12.5	k = 43.1696 exp(- 37366.25554/RT)		2	a,
0-0	k = 39.564 exp(- 32844.9495/RT)		(75) 2	a,
	BaCl2-CaCl2			
-100	k = 13.819 exp(- 17534.18215/RT)	1080-1360	(76) 5	a,
90	k = 13.835 exp(- 17883.9704/RT)	1040-1360	5	a,
-80	k = 13.765 exp(- 18078.94806/RT)		5	a,
70	k = 13.755 exp(- 18353.42306/RT)		5	а,
0-60	k = 13.58 exp(- 18481.4556/RT)		5	
0-50	k = 13.814 exp(- 18914.92525/RT)	1040-1360	5	a,
)- 4 0	k = 13.509 exp(- 18923.29339/RT)	1080-1360	5	a,
)-30	k = 12.705 exp(- 18541.2878/RT)		5	a,
0-20	k = 13.47 exp(- 19424.96338/RT)		5	a, a,
0-10	k = 12.213 exp(- 18601.53841/RT)		5	a, a,
00-0	k = 10.671 exp(~ 17391.50536/RT)			
•••			(77) 5	a,
400	BaCl ₂ -CsCl			
-100	k = 5.908 exp(- 12235.4759/RT)		(78) 5	a,
. 04-90.96	k = 5.503 exp(- 12199.4929/RT)	· · · · · · · · · · · · · · · · · · ·	5	a,
7.63-82.37	k = 5.873 exp(- 13231.28456/RT)	1070-1280	5	a,
6.60-73.40	k = 6.486 exp(- 14803.23966/RT)	· ·	5	a,
3.0-67.0	k = 7.045 exp(- 15962.64546/RT)		5	a,
9.65-60.35	k = 7.403 exp(- 16715.35965/RT)	1070-1280	5	a,
9.05-50.95	k = 8.133 exp(- 17858.02917/RT)	1070-1280	5	a,
5.0-45.0	k = 8.615 exp(- 18171.41601/RT)	1070-1280	5	a,
4.0-36.0	k = 9.951 exp(- 19356.76304/RT)	1070-1280	5	a,
0.0-10.0	k = 11.713 exp(- 18898.60738/RT)		5	a,
00-0	k = 12.85 exp(- 18835.84633/RT)	1240-1290	(79) 5	a ,
	BaC12-LaC13			
-100	k = 12.715 exp(- 22002.3505/RT)	1140-1220	(80) 5	a,
0.0-90.0	k = 13.467 exp(- 22369.71185/RT)		(80) 5	
5.0-75.0	k = 14.934 exp(- 23267.19486/RT)	· = : :		•
0.0-60.0	k = 17.707 exp(- 24793.96201/RT)		5	
5.0-45.0			5	
0.0-45.0	k = 17.532 exp(- 24504.42436/RT)		5	
	k = 17.975 exp(- 24506.09799/RT)		5	
5.31-13.69	k = 14.701 exp(- 21509.88546/RT)		5	a,
00-0	k = 12.85 exp(- 18835.84633/RT)	1240-1290	(81) 5	a,
	BaCl ₂ -LiCl			
100	k = 11.604 exp(- 4994.10595/RT)	1080-1270	(82) 5	a,
		1080-1270		-

Table 2.3.a Electrical Conductance data (continued)

(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
5.6-64.4	k = 27.004 exp(~ 18165.97672/RT)	1080-1270		5	a,f
7.6-52.4	k = 35.274 exp(- 22351.72035/RT)	1080-1270		5	a,f
5.0-35.0	k = 30.581 exp(- 23118.66038/RT)	1080-1270		5	a,f
8.4-21.6	k = 30.103 exp(- 24829.5266/RT)	1140-1270		5	a.f
9.5-10.5	k = 19.038 exp(- 21769.2978/RT)	1180-1270		5	a, f
00.0-0.0	k = 5.274 exp(- 9406.62617/RT)	1240-1270	(83)	5	a, f
	BaCl ₂ -MgCl ₂	12.15 12.15	(00)	•	u ,.
-100	k = 6.936 exp(- 15892.77149/RT)	1000-1240	(84)	5	a,f
1.4-68.6	k = 6.349 exp(- 11716.65122/RT)	1040-1340	(5.7	5	a, f
5.6-44.4	k = 7.625 exp(- 13948.85257/RT)	1140-1340		5	a,f
4.5-35.5	k = 9.211 exp(- 16011.18067/RT)	1180-1320		5	a, r a, f
00-0		1260-1340	(85)	5	
00-0	k = 12.506 exp(- 19091.0745/RT)	1200-1340	(65)	5	a,f
-100	k = 8.539 exp(- 7781.95179/RT)	1100-1180	(86)	5	a,f
3-87	k = 7.525 exp(- 8618.76579/RT)	1080-1380	(86)	5	
3.95-76.05	k = 7.832 exp(- 10020.01084/RT)				a,f
		1020-1300		5	a,f
5.4-64.6	k = 11.606 exp(- 14740.47861/RT)	960-1300		5	a,f
8-52	k = 11.434 exp(- 15453.44414/RT)	1020-1300		5	a,f
7.5-32.5	k = 12.023 exp(- 16414.52502/RT)	1160-1340		5	a,f
3.5-16.5	k = 12.333 exp(- 17980.20401/RT)	1200-1400		5	a,f
00-0	k = 9.882 exp(- 16610.33949/RT)	1260-1360	(87)	5	a,f
	BaC1 ₂ -NaF				
-100	(T=1273 K, k=5.13)		(88)	2	a,f
0-90	k = 10.767 exp(- 10023.35809/RT)	1123-1273		2	a,f
20-80	k = 11.187 exp(- 12460.57887/RT)	1123-1273		2	a,f
10-70	k = 7.979 exp(- 10424.61041/RT)	1173-1273		2	a,f
10-60	k = 7.317 exp(- 10651.80613/RT)	1173-1273		2	a,f
50-50	(T=1273 K, k=2.54)			2	a
60-40	(T=1273 K, k=2.44)			2	a
70-30	(T=1273 K, k=2.34)			2	a
30-20	(T=1273 K, k=2.3)			2	а
90-10	(T=1273 K, k=2.24)			2	a
100-0	(T=1273 K, k=2.18)		(89)	2	а
	BaC1 ₂ -NaN0 ₃				
1.169-98.831	k = 10.3483 exp(- 11502.42684/RT)	620-640		3	a,f
1.979-98.021	k = 12.0767 exp(- 12381.08154/RT)	620-630		3	a,f
5. 138-93. 862	k = 10.2658 exp(- 11699.07813/RT)	620-630		3	a,f
9. 121-90. 879	k = 14.9312 exp(- 13861.4055/RT)	620-630		3	a,f
	BaC1 ₂ -Na ₃ A1F ₆				
0-100	k = 9.088 exp(- 12447.60825/RT)	1270-1370	(90)	3	a,f
2.0-98.0	k = 10.6567 exp(- 14503.66025/RT)	1260-1380)	3	a,f
5.0-95.0	k = 4.52076 exp(- 5756.86191/RT)	1290-1390)	3	a,f
10.1-89.9	k = 5.61644 exp(- 8611.65287/RT)	1260-1340)	3	a,f
20.1-79.9	k = 8.77794 exp(- 13961.82318/RT)	1240-1380	י	3	a,f
40.2-59.8	k = 11.9105 exp(- 17581.04373/RT)	1260-1320	כ	3	a,f
50.2-39.8	k = 16.8584 exp(- 21704.86313/RT)	1220-1320	0	3	a,f
100-0	k = 14.23 exp(- 19911.98913/RT)	1250-1350	(91)	3	a,f
	BaC12*BaF2-Na3A1F6				
0-100	k = 15.39 exp(- 18125.39124/RT)	1270-1370	0 (92)	3	a,f
20-80	k = 15.1603 exp(- 18482.71082/RT)	1270-1370	0	3	a,f
40-60	k = 18.0073 exp(- 20883.53018/RT)	1270-1370	0	3	a,f
60-40	k = 21.1963 exp(- 24079.74126/RT)	1270-1370	0	3	a,f
80-20	k = 22.4685 exp(- 26286.41978/RT)	1270-1370	0	3	a,f

Table 2.3.a Electrical Conductance data (continued)

		Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
		BaF ₂ -NaF				
2.4-67.6	k = 28.311 exp(- 19078.940	079/RT)	1180-1370		14	a,f
or addition	al BaF ₂ systems, see : BaCl ₂ -					
		BaI ₂				
00	k = 13.767 exp(- 24397.31	217/RT)	991-1292	±10%	1	a,f
00	k = 355 04 ava (22240 244	Ba(N0 ₂) ₂		+0%		
JO .	K = 200.94 exp(- 33340.34	339/RT)	553-573	±6%	1	a,f
5-15	(T=613.2 K, k=0.32) .				7	
)-10		761/RT)	573-613		7	a
5-5	k = 169.86 exp(- 31807.30		553-613		7	a,f a,f
00-0	k = 122.5 exp(- 30049.990		553-613	(94)	7	a,i a,f
•	122.0 CAP(00075.050	Ba(N0 ₂) ₂ -CsN0 ₂	555-615	(34)	,	a, 1
-100	k = 7 359 exp(- 13280, 238	18/RT)	685-733	(95)	7	- 4
.3-94.7		33/RT)	653-693	(95)	7	a,f a,f
1.1-88.9	$k = 13.452 \exp(-17920.37)$		653-693		7	a, i
7.6-82.4	k = 8.976 exp(- 15977.708		613-693		7	a, r a, f
5.0-75.0		022/RT)	613-673		7	a,f
9.0-71.0		415/RT)	633-673		7	a,f
3.3-66.7	k = 12.844 exp(- 19191.07	• •	633-673		7	a, 1
7.9-62.1	k = 13.885 exp(- 19776.42	526/RT)	633-673		7	a, t
2.9-57.1	k = 14.986 exp(- 20112.82	449/RT)	613-673		7	a, t
3.8-46.2	k = 82.188 exp(- 28934.09	927/RT)	593-633		7	a, 1
0.0-40.0	k = 67.858 exp(- 27800.21	63/RT)	593-633		7	a, 1
6.7-33.3	k = 47.143 exp(- 25903.57	737/RT)	613-633		7	a,
3.9-26.1	k = 77.974 exp(- 28263.39	285/RT)	593-613		7	a, 1
1.8-18.2	k = 74.525 exp(- 27757.12	038/RT)	593-613		7	а,
00-0	$k = 122.5 \exp(-30049.990)$	74/RT)	553-613	(96)	7	a,
		Ba(N0 ₂) ₂ -CsN0 ₃				
)- 10 0	$k = 7.778 \exp(-15451.770)$	%1/RT)	700-730	(97)	7	a, 1
.3-94.7	$k = 6.8 \exp(-15043.82369)$	/RT)	680-730		7	a, 1
1.1-88.9	k = 7.185 exp(- 15625.827	/82/RT)	660-730		7	а,
7.6-82.4	k = 9.29 exp(- 17504.8936		620-710		7	а,
1.2-78.8	k = 13.401 exp(- 19785.21		580-690		7	а,
5.0-75.0	• •	1257/RT)	580-670		7	а,
9.0-71.0		\$024/RT)	580-650		7	a,
33.3-66.7		7527/RT)	580-650		7	a,
37.9-62.1		05/RT)			7 7	a,
12.9-57.1		508/RT)	580-630		7	а,
48.1-51.9		0591/RT)			7	а,
53.8-46.2	, , , , ,	8316/RT)			7	a, a,
60.0-40.0	·	4203/RT)			, 7	a, a,
36.7-33.3					7	a, a,
73.9-26.1		0816/RT)			7	a, a,
81.8-18.2	· ·	78/RT)			7	a, a,
90.5-9.5 100-0		074/RT)	560-610		7	a, a,
	K - 122.0 EAP(- 30049.99	Ba(N0 ₂) ₂ -KN0 ₂	330-010	(30)	,	a,
) - 100	k = 7 809 evn/- 10825 49	608/RT)	720-750	(99)	7	a,
17.6-82.4	• •	6268/RT)			7	a, a,
17.6-82.4 22.0-78.0	• •	1394/RT)			7	a, a,
22.0-78.0 25.0-75.0		5072/RT)			7	a, a,
29.0-75.0 29.0-71.0		87934/RT)	575-680		7	a, a,
33.3-66.7		7771/RT)			7	a, a,
37.9-62.1		4466/RT)			7	a,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
3.1-51.9	k = 40.723 exp(~ 22330.38159/RT)	575-650		7	a,b,
.9-49.1	k = 38.805 exp(- 22261.34444/RT)	590-650		7	a,b,
.8-46.2	k = 48.178 exp(- 23447.52828/RT)	590-650		7	a,b,
5.9-43.1	k = 39.2117 exp(~ 22493.56032/RT)	590-650		7	a,b,
0.0-40.0	k = 39.984 exp(- 22694.39568/RT)	590-650		7	a,b,
3.3-36.7	k = 43.7141 exp(~ 23234.97752/RT)	590-650		7	a,b,
5.7-33.3	k = 41.244 exp(- 23024.93721/RT)	590-650		7	a,b,
0.2-29.8	k = 50.539 exp(- 24166.35151/RT)	590-650		7	a,b,
3.9-26.1	k = 55.309 exp(- 24743.33476/RT)	590-650		7	a,b,
7.8-22.2	k = 54.3942 exp(~ 24806.09581/RT)	590-650		7	a,b,
1.8-18.2	k = 77.63 exp(- 26727.83916/RT)	585-650		7	a,b,
5.0-14.0	k = 97.067 exp(- 27957.95574/RT)	575-650		7	a,b,
0.5-9.5	k = 86.036 exp(- 27549.59051/RT)	575-650		7	a,b,
5.1-4.9	k = 80.18 exp(- 27350.42878/RT)	575-650		7	a,b,
00-0	k = 255.94 exp(- 33340.34339/RT)	553-650	(100)	7	a,b,
00 0	Ba(NO ₂) ₂ -KNO ₃	330 030	(100)	•	α,υ,
100	k = 10.1314 exp(- 13939.64761/RT)	613-653	(101)	7	a,g
94	k = 12.3465 exp(- 15418.71636/RT)	593-653	(101)	7	
)-90	k = 13.9669 exp(- 16333.77247/RT)	573-653		7	a, g
					a,g
5-74	k = 14.574 exp(- 17288.15883/RT)	573-653		7	а, д
9-51	k = 16.2522 exp(- 18644.63433/RT)	593-633		7	a,g
0-40	k = 20.6227 exp(- 20086.04644/RT)	593-613		, 7 -	a,g
1-26	k = 41.4756 exp(- 23976.81314/RT)	573-593		7	a,g
5-6	k = 178.954 exp(- 31498.09737/RT)	573-593		7	a,g
	Ba(NO ₂) ₂ -NaNO ₂				
-100	k = 16.185 exp(- 11794.89333/RT)	580-610	(102)	7	a,f
.0-98.0	k = 17.043 exp(- 12287.35837/RT)	580-610		7	a,f
. 3-95 . 7	k = 15.994 exp(- 12220.41325/RT)	560-610		7	a,f
.2-92.8	k = 15.452 exp(- 12365.18207/RT)	560-610		7	a,f
0.8-89.2	k = 18.53 exp(- 13627.51599/RT)	540-610		7	a,f
5.3-84.7	k = 25.545 exp(~ 15642.5641/RT)	520-610		7	a,f
8.0-82.0	k = 27.621 exp(~ 16298.20787/RT)	520-610		7	a,f
1.3-78.6	k = 31.745 exp(~ 17322.0498/RT)	520-610		7	a,f
5.0-75.0	k = 34.566 exp(~ 18069.3247/RT)	520-610		7	a,f
9.8-70.2	k = 39.888 exp(~ 19229.14891/RT)	520-610		7	a,f
4.7-65.3	k = 46.582 exp(~ 20455.08142/RT)	520-610		7	a.f
1.9-58.1	k = 63.315 exp(~ 22496.90758/RT)	520-590		7	a,f
0.6-49.4	k = 74.899 exp(~ 24014.46977/RT)	520-590		7	a,b
6.2-43.8	k = 77.958 exp(~ 24641.24345/RT)	520-590		7	a,f
1.9-38.1	k = 87.28 exp(- 25648.3491/RT)	520-590		7	a,f
9.5-30.5	k = 76.011 exp(- 25616.96858/RT)	540-590		7	a,i a,f
9.4-20.6	k = 101.18 exp(~ 27471.3484/RT)	540-590		7	a,i a,f
00-0	k = 255.94 exp(~ 33340.34339/RT)	560-570	(103)	7	a, i a, f
	Ba(NO ₃) ₂ -CsNO ₂	300 370	(103)	•	۵, ۱
- 100	k = 7.359 exp(- 13280.23818/RT)	600.720	(104)	-	
.3-94.7	k = 6.945 exp(- 13765.5903/RT)	680-730	(104)	7	a,f
1.1-88.9	k = 8.644 exp(- 15734.61364/RT)	660-690		7	a,f
7.6-82.4	k = 9.772 exp(- 17175.60735/RT)	640-690		7	a,f
1.2-78.8		600-690		7	a,f
5.0-75.0	k = 13.494 exp(- 19342.95561/RT)	580-690		7	a,f
	k = 17.779 exp(- 21178.92553/RT)	580-690		7	a,f
9.0-71.0	k = 18.634 exp(- 21626.62102/RT)	580-690		7	a,f
3.3-66.7	k = 19.662 exp(- 22211.1356/RT)	580-690		7	a,f
7.9-62.1	k = 16.922 exp(- 21552.14457/RT)	600-690		7	a,f
2.9-57.1	k = 15.361 exp(- 21186.03845/RT)	640-690		7	a,f
	Ba(NO ₃) ₂ -CsNO ₃				

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Commen
)- 9 0	k = 8.873 exp(- 16796.94902/RT)	640-720		7	a, f
-80	k = 10.037 exp(- 18121.20717/RT)	620-720		7	a, f
0-70	k = 4.413 exp(- 13784.41862/RT)	650-720		7	a, f
	Ba(NO ₃) ₂ -KNO ₂	000 720		•	ω,,
4-86	k = 12.5527 exp(- 15074.7858/RT)	573-593		7	a,g
8-82	k = 22.712 exp(- 18320.78731/RT)	553-593		7	a,ç
4-76	k = 28.38 exp(- 19973.91337/RT)	533-593		7	a,ç
9-71	k = 27.917 exp(- 20427.88496/RT)	533-593		7	a,ç
2-68	k = 16.8111 exp(- 18306.97988/RT)	573-593		7	a, g
	Ba(N0 ₃) ₂ -KN0 ₃				
-100	k = 10.824 exp(- 14522.90697/RT)	620-730	(106)	7	a, f
0-90	k = 10.294 exp(- 14937.1299/RT)	620-710		7	a, f
0-80	k = 10.528 exp(- 15642.5641/RT)	610-720		7	a, f
0-70	k = 7.594 exp(- 14200.73358/RT)	680-740		7	a,f
For addition	al Ba(NO ₃) $_2$ systems, see : AgNO $_3$ - ; Ba(NO $_2$) $_2$ -				
	Ba0-CaF ₂				
0.48-89.52	k = 82.3194 exp(- 39130.67786/RT)	1673-1973		3	a,f
	Ba(P0 ₃) ₂				-,.
00	k = 616.313 exp(- 98597.60955/RT)	1230-1340)	6	a, f
	Ba ₂ S0 ₄ -Li ₂ S0 ₄				
- 100	k = 13.858 exp(- 11962.25613/RT)	1140-1200	(107)	6	a, f
-99	k = 17.548 exp(- 13619.14785/RT)	1140-1220		6	a, f
.5-97.5	k = 17.093 exp(- 13648.43634/RT)	1150-1220		6	a, f
.92-96.08	k = 17.471 exp(- 14122.90988/RT)	1100-1190		6	a,f
-94	k = 12.499 exp(- 11368.11819/RT)	1100-1220		6	a, f
	BeC1 ₂	1100 1220		·	α, ι
00	k = 6.718680000000 x 10 ¹² exp(- 2.1905907689 x 10 ⁵ /RT)	718-761	±50%	1	a,f
	BeC1 ₂ -KC1				
1-89	k = 8.288 exp(- 13134.63254/RT)	993-1093		15	k
5- 8 5	k = 8.569 exp(- 13998.22459/RT)	963-1053		15	k
1-79	k = 9.573 exp(- 15241.7302/RT)	893-1003		15	k
6-74	k = 8.72 exp(- 14822.06798/RT)	863-1003		15	k
2-68	k = 6.516 exp(- 12803.67261/RT)	853-963		15	k
6-64	k = 5.804 exp(- 12066.85788/RT)	813-923		15	
8-52	k = 6.123 exp(- 12338.40402/RT)	683-803			k
5-45	k = 8.942 exp(- 15233.36206/RT)			15	к .
7-43	k = 8.125 exp(- 14986.08352/RT)	673-733		15	k
4-36		703-793		15	k
- 30	k = 16.708 exp(- 21058.84272/RT)	673-733		15	k
0.44-69.56	BeC1 ₂ -NaC1 k = 6.56 exp(- 10150.55382/RT)	7/0 700		_	_
1.95-68.05	k = 9.421 exp(- 12489.03054/RT)	740-790		5	a,f
5.09-64.91		720-770		5	a, f
7.77-62.23	k = 9.723 exp(- 12663.08786/RT)	640-770		5	a,f
8.43-61.57	k = 9.805 exp(- 12901.16144/RT)	620-770		5	a,f
	k = 9.48 exp(- 12545.09708/RT)	620-770		5	a, f
1.53-58.47	k = 9.883 exp(- 12426.26949/RT)	580-770		5	a,f
	k = 9.893 exp(- 12637.56503/RT)	560-750		5	a,f
	k = 12.001 exp(- 13746.34358/RT)	560-750		5	a, f
4 . 86-55 . 14				5	a, f
3.19-56.81 4.86-55.14 0.74-49.26	k = 16.465 exp(- 15882.72972/RT)	540-750		•	
4 . 86-55 . 14	k = 14.362 exp(- 15342.56628/RT)	540-750 540-770		5	
4.86-55.14 0.74-49.26					a, f
4.86-55.14 0.74-49.26 1.63-48.37	k = 14.362 exp(- 15342.56628/RT)	540-770		5	a, f a, f
4 .86-55 . 14 0 . 74-49 . 26 1 .63-48 . 37 4 . 92-45 . 08	k = 14.362 exp(- 15342.56628/RT)	540-770 540-770 560-690		5 5 5	a, f a, f a, f
4.86-55.14 0.74-49.26 1.63-48.37 4.92-45.08 5.17-43.83	k = 14.362 exp(- 15342.56628/RT)	540-770 540-770		5 5	a, f a, f a, f a, f a, f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mol %)	Equation ($R = 8.31441 \ J \ K^{-1} \ mol^{-1}$)	T range(K)	Accur.	Ref.	Commen
	BeF ₂ -L1F				
4.0-66.0	k = 32.998 exp(- 19653.83201/RT)	750-920		14	a,f
8.0-62.0	k = 45.759 exp(- 22870.96343/RT)			14	a,f
2.0-58.0	k = 57.316 exp(- 25500.65143/RT)	730-800		14	a,f
7.0-53.0	k = 87.425 exp(- 29936.18404/RT)	700-790		14	a,f
0.0-50.0	k = 99.09 exp(- 31917.75959/RT)	650-820		14	a,f
2.0-48.0	k = 104.57 exp(- 33108.96432/RT)			14	a, f
4.0-46.0	k = 99.03 exp(- 33862.09692/RT)			14	a, f
7.5-42.5	k = 76.225 exp(- 33733.64597/RT)			14	a,f
0.0-40.0	k = 75.814 exp(- 35053.30165/RT)	740~820		14	a, f
5.0-35.0	k = 51.075 exp(- 35713.9663/RT)			14	
0.0-30.0	k = 46.931 exp(- 38795.95226/RT)				a,f
0.0-30.0		770-820		14	a,f
	BeF ₂ -NaF				
3.0-57.0	k = 149.55 exp(- 34902.25672/RT)			14	a,f
i0.0-50.0	k = 139.89 exp(- 36684.67054/RT)			14	a,f
5.0-45.0	k = 175.23 exp(- 39784.648/RT)	640-830		14	a,f
	BeF ₂ -Na ₃ A1F ₆				
100-55 Na ₃ A1F ₆	k = 1.495 + 0.01277 C	1273	(108)	3	а
	BiBr3				
100	$k = -1.99453 + 0.00817416 T - 8.99735 \times 10^{-6} T^2 + 3.02196 \times 10^{-9} T^3$.	600-998	±3%	1	а
100	k = 2.159 exp(- 9355.58052/RT)	510-590	±3%	1	a,f
	BiBr ₃ -BiCl ₃				
) - 100	k = 1.21 exp(- 5242.63971/RT)	523-723	(109)	2	a,f
10-90	k = 1.11125 exp(- 4909.58774/RT)	523-723		2	a, f
20-80	k = 1.05179 exp(- 4768.16617/RT)	523-723		2	a,f
30-70	k = 1.03344 exp(- 4815.02776/RT)			2	a, f
40-60	k = 1.01201 exp(- 4856.86846/RT)			2	a,1
50-50	k = 1.01769 exp(- 5017.95515/RT)	523-723		2	a,f
30-40	k = 1.00337 exp(- 5096.61567/RT)	523-723		2	a, f
70-30	k = 1.01242 exp(- 5308.32961/RT)	523-723		2	
30-20	k = 1.02682 exp(- 5556.02655/RT)	523-723		2	a,f
90-10	k = 1.0544 exp(- 5870.66862/RT)			2	a,f
100-0	k = 1.1303 exp(- 6468.57222/RT)		(110)	2	a, f
	BiBr ₃ -BiI ₃	523-723	(110)	2	a, f
0-100	• •				
	k = 0.818559 exp(- 6138.4491/RT)		(111)	2	a,1
10-90	k = 0.793265 exp(- 5867.73977/RT)			2	a,1
20-80	k = 0.780246 exp(- 5669.41485/RT)			2	a, 1
30-70	k = 0.696916 exp(- 4911.26137/RT)			2	a,f
40-60	k = 0.609884 exp(- 3989.59443/RT)	-		2	a, f
50-50	k = 0.512145 exp(- 2821.56945/RT)			2	a, 1
50-40	k = 0.437781 exp(- 1783.92009/RT)			2	а,
70-30	k = 0.361356 exp(- 460.16402/RT)	673-773		2	a,
80-20	k = 0.348402 exp(- 74.1459/RT)			2	а,
90-10	k = 0.300969 exp(917.27367/RT)	673-773		2	a, 1
100-0	k = 1.1303 exp(- 6468.57222/RT)	523-723	(112)	2	a,
	BiCl ₃				
100	k = -4.0243 + 0.016574 T - 1.9059 x 10 ⁻⁵ T ² + 6.8368 x 10 ⁻⁹ T ³		±2.3%	1	a
100	k = 3.5702 exp(- 9409.97343/RT)	510-610	±2.3%	1	a,
10.00	BiC1 ₃ -GaC1 ₃	-			
10-90	k = 0.4661 exp(- 11755.98148/RT)			5	a,
20-80	k = 0.4092 exp(- 8125.04553/RT)			5	а,
30-70	k = 0.3614 exp(- 7069.40467/RT)			5	а,
		E00 E04		-	а,
	k = 77.527 exp(- 28329.50116/RT)	509-521		5	α,
50-50 60-40	k = 77.527 exp(- 28329.50116/RT)			5	a,i

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mo}\}^{-1}$)	T range(K)	Accur.	Ref.	Comment
0-20	k = 86.4 exp(- 25681.82166/RT)	509~521		5	a,f
0-10	k = 25.8 exp(- 19656.76086/RT)	509-521		5	a,f
00-0	k = 8.019 exp(- 13794.04198/RT)	509-521	(113)	5	a,f
For additiona	1 BiCl3 systems, see : BiBr3-				
00	Bil3 k = 0.6888 exp(- 5025.06807/RT)	686-775	±3%	1	a, f
	Bi ₂ (MoO ₄) ₃	_			•
00	k = 79.1553 exp(- 46280.41668/RT)	980-1120		6	a,f
-100		1271 1201	(444)	_	
9.6-80.4		1371-1391	(114)	6	a,f
0-60	k = 13.8684 exp(- 29333.67796/RT)	1297-1334		6	a,f
2.2-37.8		1180-1240		6	a,f
1.5-28.5	k = 77.1107 exp(- 46300.91862/RT)	1060-1100		6	a, f
8.7-21.3	k = 229.957 exp(- 54551.90466/RT)	1000-1040	ı	6	a,f
0.7-21.3	k = 178.936 exp(- 53602.12077/RT)	980-1060		6	a,f
00-0	k = 122.244 exp(- 49961.97987/RT)	1000-1060		6	a,f
00-0	K = /9.1bb3 exp(- 46279.99827/RT)	981-1120	(115)	6	a,f
00	k = - 11.668 + 0.010764 T				
.00	Bi ₂ S ₃	1102-1228	n.a.	1	a,c
00	D = 0747 4 = (4700 0000 (FF)	070	+459/ /44	c\ .	
••	k = 2/1/. i exp(1760.23825/RT)	973-1198	±15%,(11	b) 1	a,c,v
0.56-69.44	k = 9.9199 exp(- 69197.82329/RT)	1123-1223	ı	6	a,f
0-60	k = 3.50497 exp(- 54447.30291/RT)	1073-1223		6	a, f
0.56-49.44	k = 1.28299 exp(~ 39741.97049/RT)	1023-1223		6	
0-40	k = 1.25633 exp(- 35207.27542/RT)	1023-1223		6	a,f
9.4-30.6	k = 2.29958 exp(- 37956.62782/RT)				a,f
0.56-29.44	k = 1.19208 exp(- 31596.84142/RT)	1123-1223		6	a,f
9.3-20.7	k = 1.88573 exp(- 33718.16491/RT)	1023-1073		6	a,f
9.5-20.7 90-10		1023-1223		6	a,f
100-0	k = 2.69564 exp(- 35059.57775/RT)	1023-1223		6	a,f
00-0	k = 4.43417 exp(- 38003.4894/RT)	1023-1223	(117)	6	a,f
100	k = 91.826 exp(- 51618.87159/RT)	1160-1275	i	6	a,f
	Bi ₂ (W0 ₄) ₃ -PbW0 ₄				
-100	k = 10.388 exp(- 29422.38024/RT)	1408-1503	(118)	6	a,f
.0-80	k = 19.359 exp(- 36112.70817/RT)	1300-1394	,	6	a,f
0-60	k = 43.02 exp(- 43807.2129/RT)	1181-1296	,	6	a,f
60-40	k = 55.809 exp(- 46384.60002/RT)	1140-1273	;	6	a,f
73-27	k = 83.387 exp(- 50505.90897/RT)	1125-1171	l	6	a,f
30-20	k = 195.83 exp(- 59200.40643/RT)	1123-1236	;	6	a,f
100-0	k = 91.826 exp(- 51618.87159/RT)	1160-1275	(119)	6	a,f
	^B 203-NaP03				
0.00-100.00	k = 29.736 exp(- 32393.06994/RT)	920-1170	(120)	3	a,f
9.4-40.6	k = 166.347 exp(- 67221.26862/RT)	1020-1220)	3	a,f
86.5-3.5	k = 0.00116 - 9.02 x 10 ⁻⁶ T + 7.9 x 10 ⁻⁹ T ²	1020-1220)	3	a,f
	CaBr ₂				
100	k = 12.82 exp(- 18723.71325/RT)	1014-1291	±2.5%	1	a,f
0-100 CaBr ₂	$k = 65.69 \sim 0.09174 \text{ C} - 0.01041 \text{ C}^2 + 1.963 \text{ x} \cdot 10^{-4} \text{ C}^3 - 1.038 \text{ x} \cdot 10^{-8} \text{ C}^4$	1023		2	a,n,o
	CaBr ₂ -KC1				
100-0 CaBr ₂	$k = 100.2 - 0.969 C - 0.009446 C^2 + 2.254 \times 10^{-4} C^3 - 8.866 \times 10^{-7} C^4$	1023		2	a,n,o
	CaC1 ₂				
100	k = 19.628 exp(- 19870.14843/RT)	1060-1291	±2.5%	1	a,f

Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$	T		
) Trange(K) Accur.	Ref.	Comment
CaC1 ₂ -CsC1			
k = 6.918 exp(- 16660.12993/RT)		16	k
k = 5.118 exp(- 15267.67143/RT)		16	k
k = 5.168 exp(- 15180.64277/RT)		16	k
k = 6.743 exp(- 17301.12945/RT)		16	k
k = 9.469 exp(- 17424.14111/RT)		16	k
CaCl ₂ -KBr			
$k = 50.7 - 0.8727 \text{ C} + 0.02554 \text{ C}^2 - 1.947 \text{ x} 10^{-4} \text{ C}^3 + 7.066 \text{ x} 10^{-4} \text{ C}^3$	7 C ⁴ 1023	2	a,n,o
CaC1 ₂ -KC1			
k = 7.542 exp(- 10882.34766/RT)		5	a,f
k = 12.725 exp(- 18081.0401/RT)		5	a,f
k = 10.968 exp(- 18090.24505/RT)	1080-1110	5	a,f
k = 15.197 exp(- 20983.52946/RT)	1010-1050	5	a,f
k = 15.139 exp(- 19849.22808/RT)		5	a,f
k = 14.058 exp(- 16999.0396/RT)		5	a,f
CaCl ₂ -LiCl			
$k = 6.5931 - 0.096139 C + 6.4119 \times 10^{-4} C^2 - 1.2606 \times 10^{-6} C^3$.		5	a,n
CaCl ₂ -MgCl ₂			
k = 10.193 exp(- 19089.81938/RT)		5	a,f
k = 7.812 exp(- 13709.10536/RT)		5	a,f
k = 11.46 exp(- 15654.69791/RT)	980-1040	5	a,f
k = 6.449 exp(- 10517.91517/RT)	1000-1050	5	a,f
k = 26.585 exp(- 22438.3306/RT)	1050-1090	5	a,f
k = 14.058 exp(- 16999.0396/RT)		5	a,f
CaC1 ₂ -NaC1			
k = 8.198 exp(- 7293.67082/RT)			a,f
k = 7.61 exp(- 8069.81581/RT)			, a,f
k = 12.129 exp(~ 13831.2802/RT)		5	a,f
k = 19.031 exp(- 19042.12098/RT)	830-1080	5	a,f
k = 19.203 exp(- 19732.91093/RT)		5	a,f
k = 21.218 exp(- 20593.99254/RT)		5	a,f
k = 14.69999 exp(- 24198.06676/RT)			k
k = 13.51362 exp(- 22039.88161/RT)	1019-1254	17	k
k = 15.67959 exp(- 22702.17805/RT)	1001–1272		k
k = 19.9979 exp(- 24167.98329/RT)	937-1265	17	k
k = 18.63543 exp(- 22545.56831/RT)		17	k
k = 18.34112 exp(- 21646.49535/RT)	977-1269	17	k
k = 15.5015 exp(- 19053.83637/RT)	1051-1256	17	k
k = 14.57292 exp(- 17489.45444/RT)) 17	k
CaC1 ₂ -RbC1			
k = 6.984 exp(- 12195.30883/RT)) 5	a,f
k = 8.421 exp(- 15157.21198/RT)	1073-1173	5	a,f
k = 9.151 exp(- 17007.82614/RT)	1073-1173	5	a,f
		5	a
		5	a
		5	a
		5	a
		5	a,f
		5	a,f
		5	a,f
k = 11.086 exp(- 14842.98833/RT)			a,f
K = .UOD EAP(" 4044.30000/KI)		-	•
CaCl ₂ -SrCl ₂ k = 12.084 exp(- 17617.44514/RT)) 5	a,f
	k = 6.918 exp(- 15660.12993/RT) k = 5.118 exp(- 15267.67143/RT) k = 5.168 exp(- 15180.64277/RT) k = 6.743 exp(- 17301.12945/RT) k = 9.469 exp(- 17424.14111/RT) CaCl2-KBr k = 50.7 - 0.8727 C + 0.02554 C² - 1.947 x 10-4 C² + 7.066 x 10- CaCl2-KC1 k = 7.542 exp(- 10882.34766/RT) k = 10.968 exp(- 18090.24506/RT) k = 10.968 exp(- 18090.24506/RT) k = 15.139 exp(- 20983.52946/RT) k = 15.139 exp(- 19849.22808/RT) k = 14.058 exp(- 16999.0396/RT) CaCl2-LiCl k = 6.5931 - 0.096139 C + 6.4119 x 10-4 C² - 1.2606 x 10-5 C² . CaCl2-LiCl k = 7.812 exp(- 13709.10536/RT) k = 11.46 exp(- 15654.69791/RT) k = 6.449 exp(- 10517.91517/RT) k = 26.585 exp(- 22438.3306/RT) k = 14.058 exp(- 16999.0396/RT) CaCl2-NaCl k = 8.198 exp(- 7293.67082/RT) k = 7.61 exp(- 8069.81681/RT) k = 19.031 exp(- 19042.12098/RT) k = 19.031 exp(- 19732.91093/RT) k = 19.031 exp(- 19732.91093/RT) k = 19.031 exp(- 24198.06675/RT) k = 19.031 exp(- 22438.566831/RT) k = 18.51362 exp(- 22545.56831/RT) k = 18.5959 exp(- 22702.17806/RT) k = 18.63543 exp(- 22545.56831/RT) k = 18.63543 exp(- 22545.56831/RT) k = 18.63543 exp(- 1953.38363/RT) k = 18.63543 exp(- 15157.211983/RT) k = 16.6994 exp(- 11480.3853/RT) k = 18.421 exp(- 17489.455444/RT) CaCl2-RbCl k = 6.984 exp(- 12195.30883/RT) k = 8.421 exp(- 15157.211983/RT) k = 14.57992 exp(- 117489.455444/RT) CaCl2-RbCl k = 6.984 exp(- 12195.30883/RT) k = 14.57992 exp(- 11480.25127/RT) k = 173 K, k=1.4) (T=1173 K, k=1.4)	K = 8.918 exp(- 15660.1293/RT)	R = 6.918 exp(- 16660.12993/RT)

	Conductance (ohm ⁻¹ cm ⁻¹)			
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K) Accur.	Ref.	Comment
00-0	k = 10.847 exp(- 14940.47716/RT)	1180-1320 (133)	5	a,f
or additiona	1 CaCl ₂ systems, see : BaCl ₂ -			
2 .00 -	CaCrO ₄ -KC1-LiC1		_	
.3-19.0-73.7	k = 10.3803 exp(- 20221.61031/RT)		3	a,f
. 2-47.6-44.2	k = 15.9493 exp(- 22127.8726/RT)		3	a,f
.1-57.3-33.6	k = 22.0244 exp(- 29132.8426/RT)	820-970	3	a,f
0.6-36.6-52.8	k = 5.99566 exp(- 18362.62801/RT)	820-970	3	a,f
1.0-7.7-81.3	k = 7.09648 exp(- 13963.91522/RT)	820-970	3	a,f
. 36-93 . 64	k = 6.6534 exp(- 8261.02781/RT)	860-970	3	a,f
	CaF ₂			
00	k = 18.168 exp(- 16146.32613/RT)	1720-1960	3	a,f
5.7-53.3	k = 99.0338 exp(- 49175.37471/RT)	1720-1960	3	a,f
2.6-37.4	k = 117.926 exp(- 48719.31108/RT)		3	a,f
0.3-19.7	k = 343.246 exp(- 16390.25741/RT)		3	a, c a, f
3.2-6.8	k = 66.8413 exp(- 38214.36653/RT)		3	а, т а, f
6.6-3.4	k = 34.883 exp(- 27213.60969/RT)		3	-
0.0-3.4	CaF ₂ -LiF	1720-1960	s	a,f
0.0-100.0	k = 20.471 exp(- 7768.14436/RT)	1150-1340 (134)	14	a, f
.0-93.0	k = 19.474 exp(- 8150.98677/RT)		14	a,f
4.0-86.0	k = 22.01 exp(- 11237.57521/RT)	1090-1340	14	a,t
0.0-80.0	k = 25.06 exp(- 12118.74035/RT)		14	a,b, a,f
0.0-70.0	k = 19.399 exp(- 10911.63615/RT)			
0.0-70.0	CaF ₂ -Mg0	1160-1340	14	a,f
8.8-31.2	k = 109.855 exp(- 45091.72239/RT)	1670-1950	3	a,f
100-0	(T=1973 K, k=6.81)	(135)	3	a
51.8-48.2	k = 17.813 exp(- 12760.57669/RT)	1180-1360	14	a, f
	CaF2-Na3A1F6			•
) 100	k = 8.896 exp(- 12238.82316/RT)	1270-1350 (136)	3	a.f
2.3-87.7	k = 9.6206 exp(- 13304.50579/RT)			
23.0-77.0			3	a,f
	k = 9.77672 exp(- 13692.78748/RT)		3	a,f
32.3-67.7	k = 9.67876 exp(- 13678.14324/RT)	1270-1350	3	a,f
30-20	k = - 92.214 + 0.110266 T - 3.114 x 10 ⁻⁵ T ²	1470–1870	3	a
95-5	k = - 107.518 + 0.12866 T - 3.665 x 10 ⁻⁵ T ²		3	
50-5	CaF ₂ -Y ₂ 0 ₅	1470-1870	3	a
93-7	k = 14.4582 exp(- 5655.60742/RT)	1670-1870	3	a, f
98-2	k = 224.209 - 0.30798 T + 1.0656 x 10 ⁻⁴ T ²		3	
98-2	k = - 119.657 + 0.14138 T - 3.921 x 10 ⁻⁵ T ²		3	a
39.87-10.13	CaF ₂ -Zr0 ₂ k = 162.302 exp(- 54016.3437/RT)	1670-1990	3	a,f
For additiona	nl CaF ₂ systems, see : Al ₂ 0 ₃ - ; BaO-			
	CaI ₂			
100	k = 7.843 exp(- 16912.01094/RT)	1059-1287 ±2%	1	a,f
		662-602	7	a,f
	k = 4955.5 exp(- 58748.10846/RT)	663-693		۵,۰
100	$k = 4955.5 \exp(-58748.10846/RT) \dots Ca(NO2)2-CsNO2$ $k = 7.84459 \exp(-13606.59564/RT) \dots$			
00 0~100	Ca(NO ₂) ₂ -CsNO ₂	693-713 (137)		a,g
000 0-100 5-95		693-713 (137) 673-713	7	a, g a, g
100 0-100 5-95 10-90 17-83	$Ca(NO_2)_2$ -CsNO ₂ k = 7.84459 exp(~ 13606.59564/RT)	693-713 (137) 673-713 593-713	7	a,g

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation ($R = 8.31441 \text{ J } K^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Commen
4-66	k = 5.91273 exp(- 15768.50461/RT)	613-713		7	a,g
) - 60	k = 7.96441 exp(- 18166.81353/RT)	673-693		7	a,g
0-40	k = 16.8979 exp(- 24044.17666/RT)	673-693		7	a,g
0-20	k = 40.4444 exp(- 30298.10609/RT)	673-693		7	a,g
00-0	k = 4955.4 exp(- 58748.10846/RT)	663-693	(138)	7	a,g
	Ca(NO ₂) ₂ -KNO ₂				
0-90	k = 12.2556 exp(- 14499.89459/RT)	643-683		7	a,g
0-80	k = 13.8808 exp(- 16237.95726/RT)	523-683		7	a,g
0-70	k = 150.482 exp(- 9707.46081/RT)	483-683		7	a, g
3-57	k = 44.8134 exp(- 24762.99989/RT)	483-683		7	a,ç
8-52	k = 30.399 exp(- 23419.0766/RT)	523-683		7	a,ç
0-40	k = 285.767 exp(- 37446.58969/RT)	663-683		7	a,ç
0-20	k = 328.528 exp(- 40531.9229/RT)	663-683		7	a, c
100-0	k = 4955.4 exp(- 58748.10846/RT)	663-693	(139)	7	a, <u>s</u>
00 0	Ca(NO ₂) ₂ -NaNO ₂	000 030	(103)	'	α, ι
- 100	k = 26.9536 exp(- 14066.00653/RT)	573-633	(140)	7	a, (
			(140)	7	
0-90	k = 52.5157 exp(- 18581.03646/RT)	513-633			a,ç
0-80	k = 47.4462 exp(- 19333.75066/RT)	513-633		7	a, g
5-75	k = 64.6331 exp(- 21558.42068/RT)	493-633		7	a,(
3-67	k = 111.535 exp(- 25846.25561/RT)	493-633		7	a,(
4-56	k = 101.444 exp(- 28732.4271/RT)	533-633		7	a,(
	Ca(NO ₂) ₂ -RbNO ₂			_	
4-86	k = 13.7612 exp(- 17196.10929/RT)	573-693		7	a,
4-76	k = 17.8817 exp(- 19496.51098/RT)	513-693		7	a,
33-67	k = 28.8734 exp(- 22830.79636/RT)	513-693		7	a,
12-58	k = 22.4222 exp(- 22371.80388/RT)	553-693		7	a,
35-35	k = 48.2027 exp(- 28456.69688/RT)	593-693		7	а,
100-0	k = 4955.4 exp(- 58748.10846/RT)	663-693	(141)	7	a,
	Ca(NO ₃) ₂ -KNO ₃				
D- 100	k = 10.824 exp(- 14522.90697/RT)	620-730	(142)	7	а,
10-90	k = 10.299 exp(- 15012.44316/RT)	620-730		7	а,
20-80	k = 19.605 exp(- 19439.18922/RT)	520-710		7	а,
33.5-66.5	k = 26.159 exp(- 22091.8896/RT)	540-690		7	а,
	Ca(N0 ₃) ₂ -NaN0 ₃				
0-100	k = 11.089 exp(- 11673.5553/RT)	610-690	(143)	7	а,
10-90	k = 13.658 exp(- 14083.57962/RT)	580-690		7	a,
25-75	k = 31.255 exp(- 20899.42965/RT)	550-670		7	a,
50-50	k = 15.433 exp(- 19079.3592/RT)	570-640		7	a,
For additional	1 Ca(NO ₃) ₂ systems, see : AgNO ₃ -				
	CaO-KOH-K ₂ CO ₃				
5.1-93.2-1.7	k = 9.40357 exp(- 8793.24151/RT)	680-860		3	a,
10.2-88.1-1.7	k = 8.48049 exp(- 9060.60359/RT)	680-860		3	a,
	Ca0-Na0H-Na ₂ C0 ₃				
1.6-96.3-2.1	k = 14.0613 exp(- 10022.10287/RT)	780-860	1	3	a,
F	1.000 contains and 0.5				·
For additiona	1 CaO systems, see : CaF ₂ - Ca(PO ₃) ₂				
100	k = 13741.6 exp(- 1.3729607298 x 10 ⁵ /RT)	1255-13	30	6	a,
15-0 CaSb ₂ 0₄	k = 0.0443 + 0.006402 C - 3.97 x 10 ⁻⁴ C ²	1033	(144)	3	a
£ 7	CaSb ₂ 0 ₆ -Sb ₂ 0 ₃		, ,	-	•
15-0 Cach-0-		1000	/ 4 AF S		
15-0 CaSb ₂ 0 ₆	k = 0.0446 - 8.227 x 10 ⁻⁴ C	1033	(145)	3	а
	Ca ₄ Sb ₈ 0 ₂₃ -Sb ₂ 0 ₃				
15-0 Ca ₄ Sb ₈ 0 ₂₃	k = 0.05 + 2.871 x 10 ⁻⁴ C - 6.89 x 10 ⁻⁵ C ²	1033	(146)	3	а

Table 2.3.a Electrical Conductance data (continued)

		Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	† range(K)	Accur.	Ref.	Comment
		CdBr ₂				
00	$k = 5.488 \exp(-11502.00843/R)$	T)	849-1055	±1.5%	1	a,f
		CdBr2-CdCl2				
-100	k = 6.724 exp(- 9001.6082/RT)		873-913	(147)	2	a,f
0-90	k = 9.884 exp(- 12281.91908/R	Τ)	873-913		2	a,f
0-80	k = 10.311 exp(- 13041.74619/	RT)	873-913		2	a,f
0-70	k = 10.805 exp(- 13818.72799/	RT) ,	873-913		2	a,f
0-60	k = 11.363 exp(~ 14601.56749/	RT)	873-913		2	a,f
0-50	$k = 13.945 \exp(-16530.84216)$	RT)	873-913		2	a,f
0-40	k = 14.963 exp(- 17460.54252/	RT)	873-913		2	a,f
0-30	k = 22.356 exp(- 20817.84029/	RT)	873-913		2	a,f
0-20	k = 29.171 exp(- 23160.91949/	RT)	873-913		2	a,f
10-10		RT)	873-913		2	a,f
00-0	$k = 44.674 \exp(-27086.83237)$	RT)	873-913	(148)	2	a,f
		CdBr ₂ -KBr				
0-80	k = 5.488 exp(- 11581.50576/R	т)	890-1020		4	a,f
0-70	k = 5.586 exp(- 12696.97882/R	т)	890-1020		4	a,f
7-63	k = 5.478 exp(- 12435.05604/R	т)	890-1020		4	a,f
7-53	k = 4.806 exp(- 11122.51328/R	т)	890-1020		4	a,f
57-43	k = 4.401 exp(- 9886.95741/RT)	890-1020		4	a,f
4-26	k = 4.366 exp(- 9507.88067/RT)	890-1020		4	a,f
18-12	k = 4.856 exp(- 10405.78209/R	τ)	890-1020		4	a,f
00-0	k = 5.728 exp(- 11842.59173/R	T)	890-1020	(149)	4	a,f
-94	k = 5.337 exp(- 6385.30923/RT	CdBr ₂ -NaBr	980-1070		4	a,f
2-78	k ≈ 6.562 exp(- 8963.11475/RT)	830-1020		4	a,f
2~68	k = 6.311 exp(- 9069.39013/RT) <i>.</i>	830-1020		4	a,f
7-63	k = 6.352 exp(- 9389.05308/RT)	780-1020		4	a,f
2-48	k = 5.751 exp(- 9132.56959/RT)	780-1020		4	a,f
1.5-38.5	k = 5.836 exp(- 9630.47392/RT)	780-1020		4	a,f
4-26	k = 5.285 exp(- 9458.50864/RT)	830-1020		4	a,f
37-13	k = 5.356 exp(- 10276.91273/R	τ)	830-1020		4	a,f
00-0	k = 5.728 exp(- 11842.59173/R	τ)	850-1020	(150)	4	a,f
		CdBr ₂ -ZnC1 ₂				
-100 CdBr ₂	k = 0.2385 + 0.00665 C + 6.48	3 x 10 ⁻⁵ C ² - 4.216 x 10 ⁻⁷ C ³	873	(151)	2	a,n
100	b = 6 000 aug/ 0007 0400/07	_				
100	K = 0.365 exp(- 85//.3435/RI)	CdC1 ₂ -CdI ₂	845-1082	±1%	1	a,f
-100	k = 23.327 exp(- 26535 79035/	RT)	680-965	(152)	2	
5.0-75.0		/RT)	650-965	(152)	2	a,f
0.0-50.0		RT)	695-965			a,f
5.0-25.0		RT)			2	a,f
00-0		T)	785-965	(152)	2	a,f
	K - 0.5140 EAD(- 5200.05152/R	CdC1 ₂ -CsC1	860-965	(153)	2	a,f
0-50	k = 240.83 exp(- 14255.9633/R	r)	823-873		5	a,f,
6.1-83.9	k = 2097.4 exp(- 58749.78209/	CdC1 ₂ -KC1	970-990		5	a,f
.0.4-79.6		(RT)	920-990		5	a,i a,f
5.2-74.8		π)	880-990		5	a,r a,f
0.8-69.2)	850-990		5	a,i a,f
3.5-66.5		γ	850-990		5	a, r a, f
0.8-59.2		T)	850-990		5	
6.0-54.0		π)	850-990		5 5	a,f
0.6-49.4		ग)	850-990		5 5	a,f a,f
0.0 70.7						

Table 2.3.a Electrical Conductance data (continued)

(mo1 %) 67.6-32.4 71.0-29.0	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
					COMMENT
71.0-29.0	k = 6.969 exp(- 10778.16432/RT)	850-990		5	a,f
	k = 7.305 exp(- 10993.22552/RT)	850-990		5	a,f
79.7-20.3	k = 7.824 exp(- 11081.09099/RT)	850-990		5	a,f
90.5-9.5	k = 7.665 exp(- 10478.58491/RT)	850-990		5	a,f
100-0	k = 6.724 exp(- 9001.6082/RT)	850-990	(154)	5	a,f
	CdC1 ₂ -LiC1				
0-100	k = 12.6 exp(- 5606.6538/RT)	900-1020	(155)	5	a
25.0-75.0	k = 11.3 exp(- 7740.5295/RT)	850-1020		5	a
50.0-50.0	k = 10.3 exp(- 9037.5912/RT)	810-1020		5	a
75.0-25.0	k = 9.09 exp(- 9497.8389/RT)	800-1020		5	a
100-0	k = 6.915 exp(- 9199.93312/RT)	860-1020	(156)	5	а
	CdC1 ₂ -NaC1				
40-60	k = 8.234 exp(- 9799.09194/RT)	823-973		5	a,f
50-50	k = 7.896 exp(- 9571.06013/RT)	823-973		5	a,f
60-40	k = 8.367 exp(- 10046.78888/RT)	823-973		5	a,f,r
	CdC1 ₂ -PbBr ₂				
0-100 PbBr ₂	$k = 5.351 + 0.008116 C + 0.001597 C^2 - 4.561 x 10^{-5} C^3 + 2.209 x 10^{-7} C^4$	873		2	a,n,o,
	CdC1 ₂ -PbC1 ₂				
0.0-100.0	k = 29.965 exp(- 19513.66567/RT)	775- 79 0	(157)	5	b,f
14.4-85.6	k = 53.925 exp(- 22605.27499/RT)	755-790		5	a,f
27.5-72.5	k = 33.885 exp(- 19360.94711/RT)	735-790		5	a,f
38.2-61.8	k = 31.359 exp(- 18620.78513/RT)	735-790		5	a,f
50.3-49.7	k = 22.671 exp(- 16795.69379/RT)	735-790		5	a,f
60.3-39.7	k = 28.062 exp(- 18318.27687/RT)	755-790		5	a,f
	CdC1 ₂ -T1C1				
0-100	k = 11.348 exp(- 13553.03954/RT)	735-770	(158)	5	a,f
25-75	k = 7.845 exp(- 12315.39164/RT)	735-770		5	a,f
30-70	k = 8.118 exp(- 12617.48149/RT)	735-770		5	a,f
35-65	k = 7.416 exp(- 12134.63981/RT)	735-770		5	a,f
40-60	k = 7.704 exp(- 12379.82632/RT)	735-770		5	a,f
42.5-57.5	k = 7.655 exp(- 12299.07377/RT)	735-770		5	a,f
45-55	k = 7.78 exp(- 12345.93535/RT)	735-770		5	a,f
47.5-52.5	k = 8.1 exp(- 12548.86274/RT)	735-770		5	a,f
50-50	k = 8.975 exp(- 13081.07645/RT)	735-770		5	a,f
55-45	k = 8.379 exp(- 12517.48222/RT)	735-770		5	a,f
60-40	k = 9.757 exp(- 13361.82755/RT)	735-770		5	a,f
65-35	k = 9.068 exp(- 12748.02448/RT)	735-770		5	a,f
0-100 7-0-	CdC12-ZnBr2				
0-100 ZnBr ₂	$k = 53.51 - 0.8258 \text{ C} + 0.002127 \text{ C}^2 + 3.698 \times 10^{-5} \text{ C}^2 - 2.168 \times 10^{-7} \text{ C}^4$	873		2	a,n,o,
For additiona	1 CdC1 ₂ systems, see : CaBr ₂ - ; CdBr ₂ -				
	CdI ₂				
100	k = 23.613 exp(- 26108.5968/RT)	675-913	±4.5%	1	a,f
	CdI ₂ -KI				
0-100	k = 5.803 exp(- 11917.48658/RT)	970-1060	(159)	4	a, f
5.0-95.0	k = 7.781 exp(- 14739.22339/RT)	970-1060		4	a,f
10.0-90.0	k = 8.608 exp(- 15917.4575/RT)	940-1060		4	a,f
20.0-80.0	k = 7.001 exp(- 15064.32563/RT)	850-1060		4	a,f
25.0-75.0	k = 38.546 exp(- 26705.24518/RT)	790-1060		4	a,f
33.3-66.7	k = 8.018 exp(- 15897.37397/RT)	700-1060		4	a,f
45.0-55.0	k = 6.636 exp(- 14766.83825/RT)	550-1060		4	a,f
52.5-47.5	k = 7.284 exp(- 14916.62796/RT)	490-970		4	a, f
58.0-42.0	k = 5.102 exp(- 13310.78189/RT)	580-970		4	a,t a,f
80.0-20.0	k = 5.185 exp(- 14177.7212/RT)	640-970		4	a,, a,f
00.0-20.0		2.2 2.0			ω, .

Table 2.3.a Electrical Conductance data (continued)

		Conductance (ohm-1 cm-1)				
(mol %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
or addition	al Cdl ₂ systems, see : All ₃ - ; CdCl ₂	_				-
o aggstion	ar curz systems, see : Arra- ; cucrz	Cd(N03)2-CsN03				
1.2-78.8	k = 15.843 exp(- 19552.15911/RT)		. 550-590		7	a, f
3.1-76.9	k = 16.95 exp(~ 19974.75018/RT)		510-590		7	a,f
5-75	$k = 21.248 \exp(-21087.7128/RT)$		490-590		7	a,f
7-73	k = 27.233 exp(- 22317.82938/RT)		. 470-590		7	a,f
9-71	$k = 37.964 \exp(-23824.09458/RT)$. 450-590		7	a,f
1.1-68.9	k = 36.311 exp(- 23677.65213/RT)		. 450-590		7	a,f
3.3-66.7	k = 36.583 exp(- 23752.96539/RT)		. 450-590		7	a,f
5.6-64.4	k = 38.351 exp(- 24020.74587/RT)		. 450-590		7	a,f
7.9-62.1	k = 43.343 exp(- 24663.83743/RT)		. 450-590		7	a,f
0.4-59.6	$k = 74.98 \exp(-27221.55942/RT)$		430-590		7	a,f
2.9-57.1	k = 106.16 exp(- 28886.81928/RT)		. 430-590		7	a,f
8.1-51.9	k = 72.797 exp(- 27514.44432/RT)		. 470-590		7	a, f
3.8-46.2	k = 58.677 exp(~ 26974.69929/RT)		. 510-590		7	a, f
0-40	k = 58.669 exp(- 27497.70804/RT)		. 550-590		7	a,f
6.7-33.3	$k = 111 \exp(-31393.07721/RT)$		570-590		7	a, f
		Cd(N03)2-KN03				-,
. 3-94 . 7	(T=593.2 K, k≈0.56)				7	а
1.2-88.8	$k = 30.749 \exp(-20029.14309/RT)$. 573-593		7	a, f
4.3-85.7	k = 20.304 exp(- 18171.41601/RT)		. 553-593		7	a, f
7.7-82.3	k = 16.587 exp(- 17351.33829/RT)				7	a, f
1.3-78.7					7	a, f
5.0-75.0					7	a, f
7.0~73.0					, 7	a, f
9.1-70.9					7	a, i
1.2-68.8					7	a, i
3.4-66.6					7	-
5.2-64.8					7	a,f
8.0-62.0						a, f
0.4-59.6					7 7	a, f
2.9-57.1						a, f
5.0~55.0					7	a,f
8.2-51.8					7	a, f
1.0-49.0					7	a,f
3.9-46.1	• •		. 100 000		7	a,f
0.0-40.0		x 10 ⁻⁶ T ²	453-593		7	a,r
0.0-40.0	K = 1.027 - 0.005167 1 + 6.447 x	10 ⁻⁶ T ²	. 453-593		7	a,r
-100	k = 40 494 ovn/- 19200 20102 (DT)	Cd(N0 ₃) ₂ -LiN0 ₃				
.3-94.7				(161)	7	a,f
1.1-88.9		· · · · · · · · · · · · · · · · · · ·			7	a,f
4.3-85.7		• • • • • • • • • • • • • • • • • • • •			7	a,f
7.6-82.4		• • • • • • • • • • • • • • • • • • • •			7	a, f
					7	a, f
1.2-78.8					7	a, f
5.0-75.0					7	a, 1
7.0-73.0		• • • • • • • • • • • • • • • • • • • •			7	a, f
9.0-71.0					7	a,1
1.1-68.9					7	a, f
3.3-66.7					7	a,f
5.1-64.9					7	a,r
6.5-63.5					7	a,r
7.9-62.1	$k = 426 \exp(-34288.45365/RT)$.		500-590		7	a,f
0.4-59.6					7	a,f
2.9-57.1	$K = 385.52 \exp(-34367.95098/RT)$. 540-590		ל	
2.9-57.1 5.4-54.4		· · · · · · · · · · · · · · · · · · ·			7 7	a,f a,f

Table 2.3.a Electrical Conductance data (continued)

(m = 1 9/)					
(mo1 %)	Equation $(R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1})$	T range(K)	Accur.	Ref.	Commer
3.8-46.2	k = 1196.8 exp(- 41244.47003/RT)	580-590		7	a, f
	Cd(N0 ₃) ₂ -NaN0 ₃				Í
. 1-88.9	k = 17.562 exp(- 15228.75958/RT)	553-593		7	a, 1
.6-82.4	k = 27.097 exp(- 18065.55904/RT)	533-593		7	a,
.2-78.8	k = 38.739 exp(- 20154.66519/RT)	533-593		7	a,
.0-75.0	k = 41.016 exp(- 20830.8109/RT)	513-593		7	a,
.0-73.0	k = 43.718 exp(- 21414.90707/RT)	513-593		7	a,
.0-71.0	k = 49.976 exp(- 22338.74973/RT)	513-573		7	a,
. 1-68. 9	k = 86.836 exp(- 25167.18105/RT)	493-593		7	a,
. 3-66.7	k = 144.24 exp(- 27932.85132/RT)	473-593		7	a,
.6-64.4	k = 297.8 exp(- 31552.07187/RT)	453-593		7	a,
7.9-62.1	k = 310.4 exp(- 32037.42399/RT)	453-593		7	a,
. 4-59.6	$k = -0.2086 - 9.469 \times 10^{-4} \text{ T} + 3.305 \times 10^{-6} \text{ T}^2 \dots \dots \dots$	453-593		7	a,
.9-57.1	k = 403.55 exp(- 33902.26399/RT)	453-593		7	a,
.5-54.5	k = 0.3466 ~ 0.002992 T + 5.049 x 10 ⁻⁶ T ²	453-593		7	
7.1-52.9	k = 0.4227 - 0.003253 T + 5.244 x 10 ⁻⁶ T ²	453-593		7	а,
3.3-50.7	k = 0.5952 ~ 0.00388 T + 5.767 x 10 ⁻⁶ T ²	453-593		7	a, a,
.9-49.1	k = 0.5426 - 0.003637 T + 5.468 x 10 ⁻⁶ T ²	453-593 453-593		7	a, a,
3.8-46.2	k = 0.8761 - 0.0049 T + 6.573 x 10 ⁻⁶ T ²	473-593		7	
0.0-40.0	k = 449.76 exp(- 36966.25845/RT)	533-593		7	a, a,
7.0-40.0		555-595		,	a,
	Cd(NO ₃) ₂ -RbNO ₃			_	
-100	(T=593.2 K, k=0.438)		(162)	7	а
3-94.7	k = 669.95 exp(- 35299.32496/RT)	553-593		7	a,
. 2-88.8	k = 29.178 exp(- 21165.1181/RT)	513-593		7	a,
7.7-82.3	k = 50.516 exp(- 23895.22377/RT)	453-593		7	a,
.3-78.7	k = 53.717 exp(- 24351.2874/RT)	453-593		7	a
3.1-76.9	k = 52.192 exp(- 24321.99891/RT)	453-593		7	а
5.0-75.0	k = 56.666 exp(- 24761.32626/RT)	453-593		7	а
7.0-73.0	k = 65.005 exp(- 25416.13322/RT)	453-593		7	a
9.1-70.9	k = 82.617 exp(- 26556.29229/RT)	453-593		7	a
1.2-68.8	k = 79.803 exp(- 26529.09584/RT)	453-593		7	a
3.4-66.6	k = 73.291 exp(- 26258.38651/RT)	453-593		7	а
5.6-64.4	k = 85.819 exp(- 27070.9329/RT)	453-593		7	a
8.0-62.0	k = 76.972 exp(- 26634.11599/RT)	453-593		7	a
0.4-59.6	k = 96.334 exp(- 27914.44141/RT)	453-593		7	a
2.9-57.1	k = 113.86 exp(- 28863.8069/RT)	453-593		7	a
5.5-54.5	k = 53.254 exp(- 25556.29956/RT)	493-593		7	а
8.2-51.8	k = 51.874 exp(~ 25617.38698/RT)	513-593		7	a
1.0-49.0	k = 69.386 exp(- 27395.61673/RT)	533-593		7	а
3.9-46.1	k = 50.37 exp(- 26104.41273/RT)	553-593		7	· a
0.0-40.0	k = 82.012 exp(- 29070.08155/RT)	573-593		7	а
6.7-33.3	(T=593.2 K, k=0.199)			7	a
	Cd(N03)2-T1N03				
-100	k = 7.7826 exp(- 12203.67697/RT)	490-570	(163)	7	а
. 3-94 . 7	k = 8.9176 exp(- 13096.1391/RT)	460-570		7	a
. 1-91.9	k = 11.073 exp(- 14201.9888/RT)	460-570		7	a
1.1-88.9	k = 11.459 exp(- 14493.61848/RT)	440-570		7	a
4.3-85.7	k = 16.003 exp(- 16175.61462/RT)	430-570		7	a
7.6-82.4	k = 20.02 exp(- 17338.78608/RT)	400-570		7	a
1.2-78.8	k = 24.891 exp(- 18535.4301/RT)	400-570		7	a
3.1-76.9	k = 37.918 exp(- 20280.18729/RT)	400-530		7	a
5-75	k = 20.668 exp(- 17959.70207/RT)	430-570		7	a
3 73 7-73	k = 22.657 exp(- 18499.86551/RT)	430-570		7	a
9-71	k = 24.024 exp(- 18919.10932/RT)	430-570		7	
	. Tropy (000) 1000/100/	730-070			a
	k = 25 745 exp(- 19483 12196/PT)	300-530		7	
1.1-68.9 3.3-66.7	k = 25.745 exp(- 19483.12196/RT)	390-570 440-570		7 7	a a

Table 2.3.a Electrical Conductance data (continued)

(mo1 %)					
(11101 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
7.9-62.1	k = 28.761 exp(- 20614.91289/RT)	470-570		7	a,f
0.4-59.6	k = 34.945 exp(- 21719.50737/RT)	470-570		7	a,f
2.9-57.1	k = 32.887 exp(- 21694.40295/RT)	490-570		7	a,f
8.1-51.9	k = 46.041 exp(- 23840.83086/RT)	510-570		7	a,f
3.8-46.2	k = 32.21 exp(- 22943.76625/RT)	550-570		7	a,f
For additiona ¹	1 Cd(NO ₃) ₂ systems, see : AgNO ₃ -				
	Cd(P0 ₃) ₂			_	
00	k = 1003.04 exp(- 99911.40753/RT)	1190-1270		6	a,f
- 100	k = 13.858 exp(- 11962.25613/RT)	1140-1200	(164)	6	a,f
. 92-96 . 08	k = 17.926 exp(- 13932.9531/RT)	1120-1170		6	a,f
	CeC13				
00	k = 13.107 exp(- 22452.55643/RT)	1101-1204	±15%	1	a,f
	CeF ₃ -KF				
. 0-100.0	k = 9.9064 exp(~ 9248.04992/RT)	1140-1340	(165)	14	a,f
0.0-90.0	k = 14.145 exp(- 15331.6877/RT)	1110-1340		14	a,f
0.0-80.0	k = 14.422 exp(- 18147.56681/RT)	1040-1340		14	a,f
0.0-70.0	k = 17.081 exp(- 21591.47483/RT)	1030-1340		14	a,f
0.0-60.0	k = 19.188 exp(~ 23560.49817/RT)	1170-1340		14	a,f
	CeF ₃ -LiF				
. 0-100.0	k = 20.471 exp(~ 7768.14436/RT)	1150-1340	(166)	14	a,f
2.0-88.0	k = 21.401 exp(- 10807.45281/RT)	1120-1340		14	a,f
9.0-81.0	k = 21.602 exp(- 12555.55726/RT)	1090-1340		14	a,f
4.0-76.0	k = 22.894 exp(- 14100.73431/RT)	1190-1340		14	a,f
30.0-70.0	k = 21.459 exp(- 14004.08229/RT)	1230-1340		14	a,f
0.0-100.0	k = 21.451 exp(- 15165.16172/RT)	1310-1340	(167)	14	a,f
10.0-90.0	k = 13.114 exp(- 11643.8484/RT)	1250-1340		14	a,f
20.0-80.0	k = 18.911 exp(- 16922.05271/RT)	1120-1340		14	a,f
30.0-70.0	k = 23.007 exp(- 20367.21595/RT)	1100-1340		14	a,f
\$0.0 -6 0.0	k = 26.107 exp(- 22392.72423/RT)	1140-1340		14	a,f
	CeI3				
100	k = 7.746 exp(- 25334.54385/RT)	1069-1133	±18%	1	a,f
	CoBr ₂ -KN0 ₃				
.003-99.997	k = 8.37654 exp(- 13082.33167/RT)	670-690		. 3	a, f
. 005-99 . 995	k = 8.35282 exp(- 13073.54512/RT)	670-690		3	a,f
. 014-99. 986	k = 8.1066 exp(- 12909.52958/RT)	670-690		3	a,f
.027-99.973	k = 7.88315 exp(- 12762.25031/RT)	670-690		3	a,f
For additiona	al CoBr ₂ systems, see : AlBr ₃ - CoCl ₂ -KND ₃				
. 003-99. 997	k = 10.661 exp(- 14482.32149/RT)	670-700		3	a, f
.005-99.995	k = 10.6755 exp(- 14494.03689/RT)	670-700		3	a, i
		_			d ,1
.014-99.986	k = 8.02387 exp(- 12849.69738/RT)	670-700		3	
.027-99.973	k = 8.05469 exp(- 12885.26197/RT)	670-700		3	a, 1
100	k = 6.2884 exp(64827.98058/RT)	1461-1497	±50%	1	a,
100	Co ₄ S ₃ k = 1416.7 exp(13949.68938/RT)	1470-1770)	6	a, i
-	Co ₄ S ₃ -Cu ₂ S	,3.5 111		ŭ	٠,,
0-100	k = 624.176 exp(- 23880.16112/RT)	1470-1770	(168)	6	а,
5.08-94.92	k = 4685.38 exp(- 29137.44507/RT)	1470-1770)	6	a,
	L = 47000 4 (00705 07000 (DT)	1470-1770)	6	a,
	k = 17820.1 exp(- 38785.07368/RT)	1470 1771		•	
10.7-89.3	k = 1/820.1 exp(- 38/85.0/368/RI)			6	
10.7-89.3 17.1-82.9 24.2-75.8		1470-1770)		a,i a,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
2-58	k = 6365.88 exp(- 3474.74461/RT)	1470~1770	_	6	a,f
2.9-47.1	(T=1470 K, k=5618)			6	a
5.8-34.2	(T=1470 K, k=6329.1)			6	а
1.1-18.9	k = 4964.2 exp(3008.84842/RT)	1470-1770		6	a,f
100-0	k = 1416.7 exp(13949.68938/RT)	1470-1770	(169)	6	a,f
	Co ₄ S ₃ -FeS				•
00-0 FeS	k = 3729.92 - 8.29886 C + 0.23494 C ² - 0.003817 C ³	1773	(170)	6	a,b,m
	Co4S3-Ni3S2				
100-0 Ni ₃ S ₂	k = 3695.114 - 3.06292 C + 0.005324 C ² + 4.1432 x 10 ⁻⁴ C ³	1773	(171)	6	a,b,m
• •	CrO3				
100	k = - 0.18451 + 3.623 x 10 ⁻⁴ T	491-535	n.a.	1	a,f
	CsBr				-,
00	k = 11.185 exp(- 19903.62099/RT)	917-1131	±5%	1	a,f
	CsBr-CsC1				
- 100	k = 6.42 exp(- 13253.87854/RT)	943-1148	(172)	2	a,f
5-75	k = 5.6007 exp(~ 12680.24254/RT)	963~1153		2	a,f
0-50	k = 5.2034 exp(- 12717.48077/RT)	973-1143		2	a,f
75-25	k = 4.845 exp(- 12723.33846/RT)	963~1128		2	a,f
100~0	k = 4.6348 exp(- 12886.09879/RT)	963-1133	(173)	2	a,f
	CsBr-CsF		, ,		-,-
- 100	k = 9.0482 exp(- 10730.88433/RT)	990~1180	(174)	2	a,f
2-88	k = 6.8705 exp(- 9912.06183/RT)	970~1170		2	a,f
5-75	k = 6.4199 exp(- 10833.39404/RT)	980-1170		2	a,f
7-63	k = 5.347 exp(- 10679.42027/RT)	970-1170		2	a,f
0-50	k = 4.4288 exp(- 10082.77189/RT)	970-1170		2	a,f
33-37	k = 4.5829 exp(- 11234.22795/RT) ,	970-1190		2	a,f
75-25	k = 4.4158 exp(- 11621.67283/RT)	990-1170		2	a,f
38-12	k = 4.808 exp(- 13123.75396/RT)	950-1170		2	a,f
100-0	k = 4.6413 exp(- 12955.13594/RT)	930-1080	(175)	2	a,f
	CsBr-CsI	040 4440	(_	
0-100	k = 3.4639 exp(- 11990.70781/RT)	943-1148	(176)	2	a,f
25-75	k = 3.6433 exp(- 12158.07061/RT)	948-1103		2	a,f
50-50	k = 3.8676 exp(- 12277.73501/RT)	948-1118		2	a,f
75-25	k = 3.9907 exp(- 12078.57328/RT)	948-1118		2	a,f
100-0	k = 4.6348 exp(- 12886.09879/RT)	943-1133	(177)	2	a,f
	CsBr-KC1				
0-100	k = 5.769 exp(- 8600.35589/RT)	1048-1080	(178)	2	a,f
10-90	k = 5.782 exp(~ 9426.70971/RT)	1048-1073	ļ	2	a,f
20-80	k = 5.82 exp(- 10081.09826/RT)	1048-1073	1	2	a, f
30-70	k = 5.902 exp(- 10845.10944/RT)	1048-1073	}	2	a,f
40-60	k = 7.856 exp(- 14030.44193/RT)	1048-1073	1	2	a, f
50-50	k = 8.23 exp(- 15068.92811/RT)	1048-1073		2	a,f
60-40	k = 6.385 exp(- 13411.61798/RT)			2	
70-30		1048-1073			a,f
	k = 6.635 exp(- 14337.97108/RT)	1048-1073		2	a,f
80-20	k = 4.905 exp(- 12267.27483/RT)	1048-1073		2	a,f
90 10	k = 5.032 exp(- 13013.71292/RT)	1048-1073	3	2	a,f
100-0	k = 3.513 exp(- 10441.34669/RT)	1048-1100	(179)	2	a,f
	CsBr-NaC1	4888 442		_	_ ^
0-100	$k = 8.991 \exp(-8290.3163/RT) \dots$	1073-112		2	a,f
10-90	k = 11.214 exp(- 12065.60266/RT)	1073-112		2	a,f
20-80	k = 12.122 exp(- 14374.79089/RT)	1073-112	3	2	a,f
30-70	k = 7.347 exp(- 11343.85058/RT)	1073-112	3	2	a,f
40-60	k = 6.136 exp(- 11451.79959/RT)	1073-112	3	2	a,f
50-50	k = 4.799 exp(- 10083.6087/RT)	1073-112	3	2	a,f
	the contract of the contract o				
60-40	k = 3.094 exp(- 6886.14241/RT)	1073-112	3	2	a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
0-20	k = 6.034 exp(- 14260.98419/RT)	1073-1123		2	a,f
0-10	k = 4.358 exp(- 12043.00868/RT)	1073-1123		2	a,f
00-0	k = 3.637 exp(- 10832.97564/RT)	1073-1123	(181)	2	a,f
	CsBr-ZnS0 ₄				
1.5-78.5	k = 701.272 exp(- 65020.4478/RT)	780-820		3	a,f,
4.0-76.0	k = 143.119 exp(~ 53844.79683/RT)	780-820		3	a,f,
27.0-73.0	k = 9.99347 exp(~ 31820.68916/RT)	780-820		3	a,f,
30.0-70.0	k = 140.041 exp(~ 51346.90704/RT)	780-820		3	a,f,
34.2-65.8	k = 35.5609 exp(- 40433.17885/RT)	780-820		3	a,f,
0.0-60.0	k = 65.4729 exp(- 42397.18131/RT)	780-820		3	a,f,
60.0-50.0	k = 11.5318 exp(- 27657.95792/RT)	780-820		3	a,f,
60.0-40.0	k = 37.7242 exp(- 33862.93373/RT)	780-820		3	a,f,
54-36	k = 10.4894 exp(- 24621.57832/RT)	780-820		3	a,f,
For addition	nal CsBr systems, see : AgBr-				
100	CsC1 k = 11.698 exp(- 17962.21251/RT)	026_1170	+=%	,	
·,- -	CsC1-CsF	926-1170	±5%	1	a,f
0-100	k = 8.1712 exp(~ 11813.30324/RT)	990-1180	(182)	2	a,f
12-88	k = 7.7439 exp(- 10497.41322/RT)	980-1170		2	a,f
25-75	k = 8.1712 exp(- 11813.30324/RT)	970-1170		2	a,f
37-63	k = 6.6454 exp(- 10783.60361/RT)	980-1180		2	a,f
50-50	k = 6.4696 exp(- 11314.9805/RT)	960-1170		2	a,f
33-37	k = 6.5337 exp(- 11972.71631/RT)	980-1150		2	a,f
75-25	k = 7.0962 exp(- 13138.81661/RT)	960-1240		2	a,f
38-12	k = 6.6585 exp(- 13129.61166/RT)	960-1170		2	a,f
100-0	k = 7.2733 exp(- 14182.74208/RT)	930-1070	(183)	2	a,f
,,,,,	CsC1-CsI	300 1070	(100)	_	α, ι
0~100	k = 3.4639 exp(- 11990.70781/RT)	943-1148	(184)	2	a,f
25-75	k = 4.0434 exp(- 12716.64395/RT)	933-1113		2	a,f
50-50	k = 4.4252 exp(- 12511.62452/RT)	948-1108		2	a,f
75-25	k = 5.306 exp(- 12914.96887/RT)	933-1103		2	a,f
100-0	k = 6.42 exp(- 13253.87854/RT)	943-1148	(185)	2	a,f
	CsC1-GaC13	0.00	(100)	-	~,.
0-100	(T=373 K, k=0.01)		(186)	5	a
10-90	(T=373 K, k=0.03)			5	a
20-80	(T=373 K, k=0.04)			5	a
30-70	k = 2.905 exp(- 12789.44677/RT)	573-873		5	a,f
40-60	k = 3.176 exp(- 12846.76853/RT)	673-973		5	a,f
50-50	k = 3.183 exp(- 12758.48465/RT)	673-973		5	a,f
60-40	k = 2.59 exp(- 11873.55385/RT)	773-973		5	a,f
70-30	k = 3.32 exp(- 13318.73162/RT)	873-973		5	a,f
80-20	k = 2.941 exp(- 10735.90521/RT)	873-973		5	a,f
90-10	(T=973 K, k=1)			5	a
	CsC1-KBr				
0-100	k = 7.537 exp(- 12976.4747/RT)	1048-1100	_	2	a,f
10-90	k = 5.955 exp(- 11237.1568/RT)	1048-1078		2	a,f
20-80	k = 6.02 exp(- 11656.40061/RT)	1048-107		2	a,f
30-70	k = 6.072 exp(- 11953.88799/RT)	1048-107	3	2	a,f
40-60	k = 6.131 exp(- 12267.27483/RT)	1048-107	3	2	a,f
	k = 6.198 exp(- 12598.65318/RT)	1048-107	3	2	a,f
50-50	k = 6.234 exp(- 12768.94483/RT)	1048-107	3	2	a,f
60-40	k = 6.276 exp(- 12949.27824/RT)	1048-107	3	2	а,т
60-40 70-30	k = 6.276 exp(- 12949.27824/RT)	1048-1073 1048-1073		2	
50-50 60-40 70-30 80-20 90-10			3		a,f a,f a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
	CsC1-KC1				
-100	k = 7.165 exp(- 10404.52687/RT)	1060-1190	(189)	5	a,f
5-75	k = 6.783 exp(- 11229.20707/RT)	1060-1160		5	a,f
0-50	k = 6.586 exp(- 12001.58639/RT)	1030-1150		5	a,f
5-25	k = 5.862 exp(- 11728.36662/RT)	1070-1150		5	a,f
00-0	k = 6.42 exp(- 13253.87854/RT)	950-1090	(190)	5	a,f
00 0	CsC1-LaCl ₃	950-1090	(190)	5	a, 1
-100	k = 12.715 exp(- 22001.9321/RT)	1140-1220	(191)	5	a,f
0.0-90.0	k = 17.521 exp(- 25435.79834/RT)	1080-1220		5	a, f
0.0-80.0	k = 17.963 exp(- 26631.18714/RT)	1080-1220		5	a, i a, f
0.0-70.0	k = 14.464 exp(- 25462.15799/RT)			5	
88.55-61.45	k = 11.093 exp(- 23588.53144/RT)	1180-1220			a,f
8.60-51.40		1080-1220		5	a,f
	k = 7.674 exp(- 20621.189/RT)	1080-1220		5	a,f
8.65-41.35	k = 5.731 exp(- 18097.35797/RT)	1080-1220		5	a,f
9.24-30.76	k = 5.966 exp(- 18018.69746/RT)	1080-1220		5	a,f
9.52-20.48	k = 6.308 exp(- 16965.14863/RT)	1080-1220	1	5	a,f
9.70-10.30	k = 5.24 exp(- 13387.76878/RT)	1080-1220)	5	a,f
00-0	k = 5.908 exp(- 12235.4759/RT)	1090-1240	(192)	5	a,f
-100	CsC1-LiC1 k = 13.26 exp(- 6194.93404/RT)	000 1070	(400)	_	
20-80	k = 13.548 exp(~ 10986.1126/RT)	890-1070	(193)	5	a,f
2-58	k = 11.568 exp(- 13611.19812/RT)	830-1010		5	a,f
4-46	k = 21.3514 exp(- 20021.19336/RT)	610-1070		5	a,f
0-30	k = 12.052 exp(- 17443.80624/RT)	650-1070		5	a,f
0-20	k = 8.352 exp(- 14982.31786/RT)	750-1070		5	a,f
00-0	k = 7.804 exp(- 14873.11363/RT)	830-1070		5	a,f
	CsC1-MnC1 ₂	930-1070	(194)	5	a,f
- 100	k = 5.493 exp(- 10194.90496/RT)	201			
0-90	k = 9.338 exp(- 27429.5077/RT)	931-1106	(195)	18	k
20-80	k = 144 exp(- 55857.3345/RT)	903-1082		18	k
80-70	k = 5.008 exp(- 12832.54269/RT)	858-1102		18	k
0-60	k = 3.609 exp(- 11280.25272/RT)	851-1089		18	k
0-50		900-1110		18	k
0-40	k = 3.593 exp(- 12235.89431/RT)	913-1095		18	k
5-25	k = 14.581 exp(- 15653.86109/RT)	852-1096		18	k
0-20	k = 5.978 exp(- 15843.81787/RT)	834-1051		18	k
10-10	k = 5.988 exp(- 15319.13549/RT)	853-1100		18	k
00-0	k = 5.787 exp(- 13643.41546/RT)	934-1096		18	k
	k = 6.627 exp(- 13505.75955/RT)	953-1103	(196)	18	k
-100	k = 7.241 exp(- 7860.61231/RT)	1070 1100		_	
0-90	k = 9.307 exp(- 11907.02641/RT)	1073-1123	, ,	2	a,f
0-80	k = 5.382 exp(- 8567.72014/RT)	1073-1123		2	a,f
0-70	k = 4.26 exp(- 7441.3685/RT)	1073-1123		2	a,f
0-60	k = 6.208 exp(- 11929.62038/RT)	1073-1123		2	a,f
0-50	k = 4 18 pvp(= 9950 55227/DT)	1073-1123		2	a,f
0-40	k = 4.18 exp(- 8850.56327/RT)	1073-1123		2	a,f
0~30	k = 4.814 exp(- 10343.85785/RT)	1073-1123		2	a,f
0-20	k = 7.462 exp(- 14554.7059/RT)	1073-1123		2	a,f
0-10	k = 10.093 exp(- 17433.76447/RT)	1073-1123		2	a,f
	k = 10.155 exp(- 17551.33684/RT)	1073-1123	1	2	a,f
00-0	k = 10.219 exp(- 17669.74602/RT)	1073-1123	(198)	2	a,f
- 100	CsC1-NaC1 k = 7 689 exp(- 6808 73711/PT)				
5-75	k = 7.689 exp(- 6808.73711/RT)	1090-1170	(199)	5	a,f
0-50	k = 6.549 exp(- 9530.47465/RT)	1050-1140)	5	a,f
	k = 6.31 exp(- 11056.82338/RT)	1050-1150)	5	a,f
75-25 100-0	k = 5.869 exp(- 11702.42538/RT)	1 0 50-1150)	5	a,f
100-0	k = 6.42 exp(- 13253.87854/RT)	950-1090	(200)	5	a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
	CsC1-PbC1 ₂				
.0-100.0	k = 12.297 exp(- 13480.65513/RT)	830-1070	(201)	5	a,f
7.2-82.8	k = 10.84 exp(- 14080.23236/RT)	730-1070	(== //	5	a,f
B.5-61.5	k = 8.038 exp(- 13609.10608/RT)	880-1070		5	a,f
5.7-44.3	k = 16.712 exp(- 21565.11519/RT)	880-1070		5	
6.6-33.4	k = 23.596 exp(- 25511.94842/RT)			-	a,f
3.6-26.4		780-1070		5	a,f
3.6-20.4	k = 16.552 exp(- 22770.54575/RT)	780-1070		5	a,f
-100	k = 6.246 exp(- 11673.5553/RT)	1020~1190	(202)	5	a,f
5-75	k = 5.996 exp(- 11774.39139/RT)	1050~1160		5	a,f
0-50	k = 5.772 exp(- 11832.54996/RT)	1030~1160		5	a,f
5-25	k = 5.462 exp(- 11631.29619/RT)	1060-1150		5	a,f
00-0	k = 6.42 exp(- 13253.87854/RT)	950-1090	(203)	5	a,f
	CsC1-ScC1 ₃				
0-70	k = 4.827 exp(- 21443.77716/RT)	1113-1233		5	a,f
0-60	k = 4.635 exp(- 19651.32157/RT)	893-1233		5	a,f
0-50	k = 3.846 exp(- 17364.30891/RT)	933-1233		5	a,f
0-40	k = 5.02 exp(- 19506.13434/RT)	1013-1233		5	a,f
0-30	k = 6.419 exp(- 20311.56782/RT)	1073-1213		5	a,f
0-20	k = 5.529 exp(- 16960.12775/RT)	1073-1233		5	a,f
10-10	k = 5.712 exp(- 14812.44461/RT)	993-1233		5	a,f
100-0	k = 5.281 exp(- 11711.21193/RT)	933-1233	(204)	5	a,f
00 0	CsC1-SrC1 ₂	300 1200	(204)	·	α, ι
-100	k = 17.396 exp(- 20874.32523/RT)	1173-1273	(205)	19	k
		1123-1273		19	k
0-90					
0-80	k = 9.41 exp(- 17829.9959/RT)	1073-1273		19	k
0-70	k = 10.001 exp(- 19683.53891/RT)	1073-1273		19	k
10-60	k = 8.376 exp(- 18883.12632/RT)	1123-1273		19	k
0-50	k = 7.269 exp(- 18052.58842/RT)	1123-1273		19	k
30-40	k = 7.749 exp(- 18831.66226/RT)	1073-1273		19	k
70-30	k = 7.878 exp(- 18645.88955/RT)	1073-1273	3	19	k
30-20	k = 6.771 exp(- 16330.42521/RT)	1023-1273	3	19	k
90-10	k = 6.269 exp(- 14442.15442/RT)	973-1273		19	k
100-0	k = 5.259 exp(~ 11469.37268/RT)	973-1273	(206)	19	k
	CsC1-TiC13				
-50 TiC13	$k = 1.457 - 0.05503 \text{ C} + 0.0023764 \text{ C}^2 - 5.6712 \times 10^{-5} \text{ C}^3 + 5.0044 \times 10^{-7} \text{ C}^4$.	1073	(207)	5	а,
0.00-100.00	CsC1-UC1 ₄ k = 5.216 exp(- 18104.05248/RT)	880-1000	(208)	5	a, 1
.42-92.58	k = 5.882 exp(- 19095.25867/RT)	850-930	(100)	5	a, t
		830-950		5	a,
16.65-83.35	k = 4.459 exp(- 17179.37301/RT)	860-930		5	a,
20.71-79.29	k = 3.997 exp(- 16473.5204/RT)				
22.80-77.20	k = 4.431 exp(- 17156.77904/RT)	820-930		5	a,
30.83-69.17	k = 4.236 exp(- 17368.07457/RT)	760-940		5	а,
34 . 48-65 . 52	k = 5.835 exp(- 19858.01463/RT)	690-940		5	a,
35 . 92-64 . 08	k = 6.648 exp(- 20968.88521/RT)	670-950		5	а,
37.56-62.44	k = 5.719 exp(- 19940.85921/RT)	670-950		5	а,
41.14-58.86	k = 2.94 exp(- 15141.73092/RT)	840-960		5	b,
43.75-56.25	k = 3.543 exp(- 16626.65737/RT)	790-940		5	a,
43.75-50.25	k = 4.263 exp(- 18360.11757/RT)	760-960		5	a,
50.96-49.04	h = 2 E7 ove/ 17002 20267/PT)	820-960		5	a,
	k = 3.57 exp(- 17003.22367/RT)			5	a,
50.96-49.04	k = 3.483 exp(- 16508.66659/RT)	880-970		9	ω,
50.96-49.04 56.11-43.89 51.14-38.86		880-970 960-990		5	
50.96-49.04 56.11-43.89 51.14-38.86 66.35-33.65	k = 3.483 exp(- 16508.66659/RT)				a,
50.96-49.04 56.11-43.89 51.14-38.86 56.35-33.65 56.96-33.04	k = 3.483 exp(- 16508.66659/RT)	960-990 960-990		5 5	a, a,
50.96-49.04 56.11-43.89	k = 3.483 exp(- 16508.66659/RT)	960-990		5	a, a, a, a,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
5.94-24.06	k = 5.229 exp(- 17640.45753/RT)	840-960		5	a,f
3.72-21.28	k = 5.614 exp(- 17835.43519/RT)	820-940		5	a,f
.55-19.45	k = 6.252 exp(- 18176.8553/RT)	810-940		5	a,f
5. 17-13.83	k = 6.666 exp(- 17374.35068/RT)	850-950		5	a,f
2.65-7.35	k = 7.123 exp(- 16215.36329/RT)	900-930		5	a,f
5.74-3.26	k = 7.572 exp(- 15551.35138/RT)	920-950		5	a, i a, f
				-	
8.98-1.02	k = 10.007 exp(- 17139.20594/RT)	920-940	(***)	5	a,f
00.00-0.00	k = 9.127 exp(- 16175.19621/RT)	930-1050	(209)	5	a,f
. 00-100 . 00	k = - 0.97574 + 0.0055534 T - 1.04507 x 10 ⁻⁵ T ² + 6.5176 x 10 ⁻⁹ T ³	610-850	(210)	5	а
83-97.17	k = 0.3473 - 4.23 x 10 ⁻⁴ T - 1.7232 x 10 ⁻⁶ T ² + 2.4876 x 10 ⁻⁹ T ³	590-870	(2.0)	5	a
. 16-93 . 84	k = 0.67834 - 0.0022889 T + 1.4825 x 10 ⁻⁶ T ² + 8.552 x 10 ⁻¹⁰ T ³	590-870		5	
5.10-84.90				_	a
	k = 50.1397 exp(- 32557.9223/RT)	570-870		5	a,f
0.30-79.70	k = 33.251 exp(- 28753.76585/RT)	550-870		5	a,f
2.06-67.94	k = 19.3607 exp(- 24310.28351/RT)	550-870		5	a,f
1.92-58.08	$k = 0.67241 - 0.0045267 T + 8.3585 \times 10^{-6} T^2 - 3.7187 \times 10^{-9} T^3 \dots \dots$	530-870		5	а
or additiona	1 CsC1 systems, see : BaC1 ₂ - ; CaC1 ₂ - ; CdC1 ₂ - ; CsBr-				
.OE	CSC104-LiC104				
-95	k = 15.0358 exp(- 13649.69156/RT)	543-633		6	a,f
5-85	k = 11.3967 exp(- 13550.5291/RT)	543-643		6	a,f
5-75	k = 11.9848 exp(- 15127.92349/RT)	533-633		6	a , f
00	CsC ₂ H ₃ O ₂				
5 0	k ≈ 10.355 exp(- 18807.81306/RT)	550-620		6	a,f
-100	k = 12.897 exp(- 21229.55277/RT)	600-630	(211)	6	
5~75	k = 16.306 exp(- 22404.02122/RT)		(211)		a,f
0-50	k = 12.613 exp(- 20947.54646/RT)	560-630		6	a,f
0-20		560-620		6	a,f
00-0	k = 9.1974 exp(- 18739.19431/RT)	570-620		6	a,f
00 0	k = 10.355 exp(- 18807.81306/RT)	550-620	(212)	6	a ,f
00	k = 12.89 exp(- 13577.30715/RT)	1010-1125	±5%	1	a,f
	CsF-Cs1				
-100	k = 3.762 exp(- 12914.96887/RT)	930-1070	(213)	2	a,f
2-88	k = 4.07 exp(- 13299.4849/RT)	950-1120		2	a,f
5~75	k = 3.7894 exp(- 12207.44263/RT)	950-1120		2	a,f
7-63	k = 4.1732 exp(- 12270.62209/RT)	960-1170		2	a,f
0-50	k = 4.1048 exp(- 11248.45379/RT)	980-1170		2	a,f
3~37	k = 4.6164 exp(- 11093.6432/RT)	960-1170		2	
5-25	k = 5.4826 exp(- 11184.43752/RT)	960-1170			a,f
3-12	k = 6.1786 exp(- 10544.69321/RT)			2	a,f
00-0	k = 9.0482 exp(- 10730.88433/RT)	990-1180	(0.44)	2	a,f
For additiona	1 CsF systems, see : CsC1-	990-1180	(214)	2	a,f
00	CSI				
	k = 8.616 exp(- 19196.51316/RT)	932-1137	±5%	1	a,f
-100	k = 7.972 exp(- 31365.04394/RT)	1050 4000		-	
0-90	k = 6.184 exp(- 28333.68523/RT)	1258-1325	, -,	4	a,f
0-80	k = 5.962 exp(- 27700.21703/RT)	1258-1328		4	a,f
0-70		1258-1325		4	a,f
0-60	k = 3.425 exp(- 21273.0671/RT)	1258-1329	i	4	a,f
	k = 2.335 exp(- 17003.22367/RT)	1258-1325	5	4	a,f
0-50	k = 4.768 exp(- 24028.6956/RT)	1258-1329	i .	4	a,f
0-40	k = 2.939 exp(- 17565.56267/RT)	1258-1329	5	4	a,f
0-30	k = 3.75 exp(- 18838.35677/RT)	1258-1329	5	4	a,f
				-	
0-20	K = 4.411 exp(= 18809.06828/R1)	1258-1329	5	4	3 5
0-20 0-10	k = 4.411 exp(- 18809.06828/RT)	1258-1329 1258-1329		4	a,f a,f

Table 2.3.a Electrical Conductance data (continued)

	on add turn	ce (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation (R = 8.31441	J K-1 mol-1)	T range(K)	Accur.	Ref.	Commen
	Cs1-	GdI ₃				
-100	k = 3.595 exp(- 21498.17007/RT)	<i></i>	1243-1322	(217)	4	a, f
-90	k = 3.595 exp(- 21498.17007/RT)		1243-1322		4	a, f
-80	k = 5.288 exp(- 25403.1626/RT)		1243-1322		4	a, f
0-70	k = 3.671 exp(- 21429.55132/RT)		1243-1322		4	a, f
0-60	k = 3.453 exp(- 20633.74121/RT)		1243-1322		4	a, 1
0-50	k = 3.333 exp(- 19837.51268/RT)		1243-1322		4	a, i
0-40	k = 1.767 exp(- 12264.34598/RT)		1243-1322		4	a, 1
0-30	k = 3.764 exp(- 18803.62899/RT)		1243-1322		4	a, t
0-20	k = 3.381 exp(- 15841.72583/RT)		1243-1322		4	a, i
0-10	k = 3.616 exp(- 14421.23407/RT)		1243-1322		4	a, f
00-0	k = 5.213 exp(- 16560.54906/RT)		1243-1322		4	a, 1
	Cs1-		1240 1022	(210)	•	ω,
-100	k = 10.544 exp(- 27770.5094/RT)	· ·	1095-1198	(219)	4	a,i
0-90	k = 8.753 exp(- 26103.99432/RT)		1095-1198		4	a, f
0-80	k = 6.045 exp(- 22737.91001/RT)		1095-1198		4	a, :
0-70	k = 4.125 exp(- 19262.20306/RT)		1095-1198		4	a,1 a,1
0-60	k = 2.884 exp(- 16323.7307/RT)		1095-1198		4	
0-50	k = 2.925 exp(- 16644.64887/RT)				4	a, 1
0-40	k = 4.291 exp(- 19994.41531/RT)		1095-1198			a, t
0-40	k = 4.823 exp(- 20301.10764/RT)		1095-1198		4	а,
0-20	k = 12.498 exp(- 27718.62694/RT)		1095-1198		4	а,
0-20 0-10			1095-1198		4	а,
00-0	k = 3.723 exp(- 14690.26977/RT)		1095-1198		4	a, 1
00-0	k = 5.213 exp(- 16560.54906/RT)		1095-1198	(220)	4	a,
-100	k = 10.028 exp(- 5864.39251/RT)		770-910	(221)	4	a, ·
.4-94.6	k = 7.145 exp(- 6239.28518/RT)		870-1050	(== 1)	4	a, a,
2.0-78.0	k = 9.932 exp(- 12307.86031/RT)		880-1070		4	a, a,
6.8-53.2	k = 16.887 exp(- 20481.85946/RT)		870-1030		4	a, i
1.6-28.4	k = 15.978 exp(- 22073.06129/RT)		860-990		4	-
5.7-24.3	k = 3.955 exp(- 11515.81586/RT)		880-1070		4	a, 1
00-0	k = 3.4639 exp(- 11990.70781/RT)			(222)	4	a, 1
	Cs1-		960-1130	(222)	•	а,
- 100	k = 9.437 exp(- 28271.34258/RT)	•	1092-1187	(223)	4	a, i
0-90	k = 7.463 exp(- 25873.87047/RT)		1092-1187		4	
0-80	k = 4.479 exp(- 21092.73368/RT)		1092-1187		4	a, i
0-70	k = 3.628 exp(- 19359.69189/RT)				4	a, i
0-60	k = 3.665 exp(- 19730.8189/RT)		1092-1187		•	a,
0-50	k = 3.665 exp(- 19730.8189/RT)		1092-1187		4	a, 1
0-40			1092-1187		4	a,1
	k = 4.654 exp(- 21588.54598/RT)		1092-1187		4	а,
0-30 0-30	k = 4.01 exp(- 19110.32132/RT)		1092-1187		4	а,
0-20	k = 6.21 exp(- 21679.3403/RT)		1092-1187		4	a,
0-10	k = 4.24 exp(- 16115.78242/RT)		1092-1187		4	a,
00-0	k = 5.213 exp(- 16560.54906/RT)		1092-1187	(224)	4	а,
For additions	CSI systems, see : CsBr- ; CsC1- ; CsF-					
	Csn	02				
00	k = 6.905 exp(- 12866.43366/RT)		688-739	±5%	1	a,
	Csn0 ₂ -	CsN03				
-100	k = 7.778 exp(- 15451.77051/RT)		695-730	(225)	7	a,
0-90	k = 7.374 exp(- 14669.34942/RT)	· · · · · · · · · · · · · ·	695-730		7	a,
0-80	k = 6.937 exp(- 14091.94776/RT)		675-730		7	a,
0-70	k = 7.215 exp(- 14174.37394/RT)		675-730		7	a,
	k = 7.921 exp(- 14537.96962/RT)		675-730		7	a, a,
0-60						a.
0-60 0-50	k = 7.488 exp(- 14079.39555/RT)		675-730		7	a,

	Conductance (ohm-1 cm-1)				
(mo1 %)	Equation ($R = 8.31441 \ J \ K^{-1} \ mol^{-1}$)	⊺ range(K)	Accur.	Ref.	Commen
0-30	k = 6.872 exp(- 13284.42225/RT)	675-730		7	a,f
0-20	k = 7.473 exp(- 13651.7836/RT)	675-730		7	a,f
0-10	k = 7.26 exp(- 13301.15853/RT)	675-730		7	a,f
00-0	k = 7.359 exp(- 13280.23818/RT)	675-730	(226)	7	a,f
	CsnO ₂ -LinO ₂				
0-90	k = 21.361 exp(- 15468.50679/RT)	473-553		7	a, f
0-80	k = 19.907 exp(- 16124.56897/RT)	473-593		7	a, f
0-70	k = 27.579 exp(- 18314.92961/RT)	433-593		7	a, i a, f
0-60	k = - 1.028435 + 0.00274025 T	393-633		7	
5- 5 5	k = - 0.128 - 8.312 x 10 ⁻⁴ T + 3.37 x 10 ⁻⁶ T ²			7	a,f
0-50	k = - 0.3702 + 1.618 x 10 ⁻⁴ T + 2.325 x 10 ⁻⁶ T ²	393-633			a,n
5-45		393-673		7	a,n
	k = -0.265 - 2.825 x 10 ⁻⁴ T + 2.723 x 10 ⁻⁶ T ²	393-673		7	a,n
0-40	k = - 0.3828 + 1.647 x 10 ⁻⁴ T + 2.269 x 10 ⁻⁶ T ²	393-673		7	a,n
0-30	k = 16.427 exp(- 17338.78608/RT)	513-713		7	a,f
0-20 0-10	k = 11.227 exp(- 15429.17653/RT)	593-713		7	a,f
0-10	k = 8.2 exp(- 13737.55703/RT)	673-713		7	a,f
	CsN0 ₂ -LiN0 ₃				
0-90	k = 10.925 exp(- 12545.09708/RT)	553-633		7	a,f
0-80	$k = 8.157 - 0.05106 T + 1.031 \times 10^{-4} T^2 - 6.427 \times 10^{-8} T^3 \dots \dots$	433-673		7	a,n
0-70	k = 19.1877 exp(- 17108.24382/RT)	433-673		7	a,f
0-60	k = 15.4016 exp(- 16535.86305/RT)	433-673		7	a,f
0-50	$k = -2.443674 + 0.01241919 T - 2.1413565 \times 10^{-5} T^2 + 1.5070768 \times 10^{-8} T^3$.	393-713		7	a,n
0-40	k = 10.708 exp(- 15376.45725/RT)	473-713		7	a,f
0-30	k = 11.399 exp(- 15906.99733/RT)	553-713		7	a,f
0-20	k = 10.227 exp(- 15421.2268/RT)	593-713		7	a, f
80-10	k = 8.117 exp(- 14020.81857/RT)	637-713		7	a,f
For additio	mal CsNO ₂ systems, see : Ba(NO ₂) ₂ - ; Ba(NO ₃) ₂ - ; Ca(NO ₂) ₂ -				
	CsN03				
00	k = 5.804 exp(- 13602.41157/RT)	688-764	±1%	1	a,f
		000 704	÷ 1 /e	,	а,т
- 100	CsN03-KN03				
	k = 10.874 exp(- 14543.82732/RT)	620-730	(227)	7	a,f
5-75	k = 12.28 exp(- 16040.05075/RT)	590-670		7	a,f
0-50	k = 11.228 exp(- 16202.81108/RT)	580-680		7	a,f
5-25	k = 7.4854 exp(- 14630.85598/RT)	640-680		7	a,f
00-0	k = 5.8807 exp(- 13707.01332/RT)	700-740	(228)	7	a,f
	CsN03-LiN02				
0-90	k = 9.432 exp(- 11652.63495/RT)	505-520		7	a,f
0-80	k = 23.712 exp(- 16945.4835/RT)	460-565		7	a,f
30-70	k = 39.3794 exp(- 20172.69853/RT)	430-565		7	a, f
10-60	k = 23.393 exp(- 18705.72175/RT)	415-610		7	a,f
0-50	k = 21.112 exp(- 18624.9692/RT)	415-640		7	a, f
0-40	k = 10.665 exp(- 15554.28023/RT)	505-685		7	a, i
0-30	k = 9.626 exp(- 15274.36594/RT)	580-685		7	
0-20	k = 11.536 exp(- 16625.40215/RT)	625-730		7	a,f
0-10	k = 13.409 exp(- 18267.64962/RT)	700-730		7	a,f a,f
				•	a,,
- 100	CsN0g-LiN0g		,		
5-75	k = 16.295 exp(- 13002.83434/RT)	580-690	(229)	7	a,f
	k = 11.8 exp(- 13819.98321/RT)	570-650		7	a,f
0-50	k = 14.135 exp(- 16598.20569/RT)	530-640		7	a,f
75-25	k = 7.7237 exp(- 14660.98128/RT)	570-660		7	a,f
100-0	k = 5.8807 exp(- 13707.01332/RT)	700-740	(230)	7	a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
	CsnD ₃ -NaNO ₃				
- 100	k = 11.089 exp(- 11673.5553/RT)	610-690	(231)	7	a,f
5-75	k = 10.699 exp(- 13598.2275/RT)	600-680		7	a,f
0-50	k = 10.98 exp(- 15219.55463/RT)	570-670		7	a,f
5-25	k = 8.1743 exp(- 14711.19012/RT)	610-680		7	a,f
00-0	k = 5.8807 exp(- 13707.01332/RT)	700-740	(232)	7	a,f
	CsN0 ₃ -RbN0 ₃				
-100	k = 8.9221 exp(- 15112.86084/RT)	590-720	(233)	7	a,f
0-50	k = 6.8516 exp(- 14112.86811/RT)	630-710		7	a,f
00-0	k = 5.8807 exp(- 13707.01332/RT)	700-740	(234)	7	a,f
	CsN0 ₃ -Sr(N0 ₃) ₂				
5.5-34.5	k = 12.204 exp(- 20213.24217/RT)	610-720		7	a,f
80-20	k = 12.883 exp(- 19773.91482/RT)	580-690		7	a,f
30-10	k = 7.0326 exp(- 15537.54395/RT)	660-720		7	a,f
00-0	k = 5.8807 exp(- 13707.01332/RT)	700-740	(235)	7	a,f
	CsN03-T1N03				
) - 100	k = 7.7788 exp(- 12305.34987/RT)	500-600	(236)	7	a,f
50-50	k = 7.6472 exp(- 13681.9089/RT)	570-620		7	a,f
100-0	k = 5.8807 exp(- 13707.01332/RT)	692-741	(237)	7	a,f
For additional	$ {\rm CsNO_3~systems},~{\rm see}~:~{\rm AgNO_{3^-}}~;~{\rm Ba(NO_2)_{2^-}}~;~{\rm Ba(NO_3)_{2^-}}~;~{\rm Cd(NO_3)_{2^-}}~;~{\rm CsNO_{2^-}} $				
	CsP0 ₃				
100	k = 10.8955 exp(- 30079.69764/RT)	1020-1200	n.a.	6	a,f
100	$k = 4.7018 \exp(-15420.80839/RT) \dots \dots$	1295-1355	±3%	1	a,f
50-50	k = 6.5417 exp(- 17246.73654/RT)	1220-1270)	6	a,f
100-0	k = 4.628 exp(- 15246.75108/RT)	1295-1340	(238)	6	a,f
	Cs ₂ S0 ₄ -Li ₂ S0 ₄				
0-100	k = 18.9289 exp(- 14258.05534/RT)	1140-1200	(239)	6	a,f
2-98	k = 20.019 exp(- 15819.96867/RT)	1100-1170)	6	a,f
4.89-95.11	k = 18.67 exp(- 16363.89777/RT)	1040-1130)	6	a,f
50-50	k = 12.432 exp(- 24811.5351/RT)	1040-1270)	6	a,f
100-0	k = 4.628 exp(- 15246.75108/RT)	1295-1330	(240)	6	a,b,
0-100	k = 11.8933 exp(- 15982.72899/RT)	1340-1390	0 (241)	6	a,f
50-50	k = 12.527 exp(- 24171.37239/RT)	960-1140	(=,	6	a,f
100-0	k = 4.628 exp(- 15246.75108/RT)	1290-1330	(242)	6	a,b,
	Cs ₂ SO ₄ -Rb ₂ SO ₄				
0-100	k = 6.1856 exp(- 16543.81278/RT)	1340-1396	0 (243)	6	a,b,
50-50	k = 4.8256 exp(- 15527.08377/RT)	1330-1420	0	6	a,b,
100-0	k = 4.628 exp(- 15246.75108/RT)	1295-1336	0 (244)	6	a,b,
50-50	Cs ₂ S0 ₄ -T1 ₂ S0 ₄	1070 104	•		- •
50-50	k = 5.9294 exp(~ 15945.49077/RT)	1070-1210	U	6	a,f
100	k = 6.342 exp(~ 5924.64312/RT)	764-823	±8%	1	a,f
0.16-1.10 CuBr	k = 1.948 x 10 ⁻⁴ - 1.769 x 10 ⁻⁵ C	5 15	(245)	4	a,f
100	k = 4.19463 exp(- 735.89423/RT)	746-1430	±5%	1	a,f
34.8-65.2	k = 558.584 exp(- 42045.71943/RT)	1170 10-	0		
49.4-50.6	k = 37.8537 exp(- 19410.31914/RT)	1170-125		3	a,f
73.4-00.0	K = 07-0007 GAP(= 13410.01314/KI)	1170-125	U	3	a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation ($R \approx 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
4.0-36.0	k = 22.4756 exp(- 14917.88318/RT)	1090-1250		3	a,f
9.6-30.4	k = 8.98952 exp(- 6949.32186/RT)	1070-1250		3	a,f
3.3-26.7	k = 9.16393 exp(~ 7191.16111/RT)	1070-1250		3	a,f
1.0-26.0	k = 8.16229 exp(- 6256.02146/RT)	970-1250		3	a,f
0.8-19.2	k = 7.49294 exp(- 5651.84176/RT)	890-1170		3	a,f
3.8-16.2	k = 6.03957 exp(- 4027.87867/RT)	770-1070		3	a,f
7.5-12.5	k = 5.48952 exp(- 3328.09296/RT)	770-970		3	a,f
0.7-9.3	k = 4.3691 exp(- 1747.8534/RT)	770-970		3	a,f
2.3-7.7	k = 7.24154 exp(- 5467.32427/RT)	770-1070		3	a,f
6.5-3.5	k = 4.91558 exp(- 2295.71553/RT)	770-1170		3	·
00.0-0.0	k = 4.801 exp(- 1819.65204/RT)		(246)	_	a,f
00.0-0.0	CuC1-KC1	770-1250	(246)	3	a,f
0.6-79.4	k = 12.101 exp(- 12289.4504/RT)	860-900		5	a,f
8.9-71.1	k = 8.736 exp(- 9684.86683/RT)	770-900		5	a,f
5.1-64.9	k = 4.897 exp(- 5469.4163/RT)	700-900		5	a,f
0.5-59.5	k = 4.422 exp(- 4500.8041/RT)	700-900		5	a, f
0.3-49.7	k = 6.885 exp(- 7009.57247/RT)	700-900		5	a,f
9.2-40.8	k = 6.113 exp(- 5525.48284/RT)	700-900		5	a,f
0.4-29.6	k = 5.602 exp(- 4369.84271/RT)	700-900		5	•
2.1-17.9	k = 5.816 exp(- 4049.34295/RT)	700-900		5	a,f
00.0-0.0	k = 5.851 exp(- 3391.18874/RT)	700-900	(247)	-	a,f
00.0	CuF ₂	700-900	(247)	5	a,f
0 0	k = 4.03099 exp(~ 6397.02462/RT)	1270-1370	±20%	1	a,f
	CuI				
For CuI syst	ems, see : AlI₃- CuSCN-N(C₃H႗)₄SCN				
100	k = 2554.1 exp(- 42920.19006/RT)	330-370	(248)	6	a,f
-93	k = 4792.9 exp(- 45518.49753/RT)	330-370	(=,	6	a,f
8.1-81.9	k = 73614 exp(- 54953.57538/RT)	330-370		6	a,f
5.4-74.6	k = 1.94440 x 10 ⁵ exp(- 59242.24713/RT)	330-370		6	a,i a,f
0.7-69.3	k = 8.92020 x 10 ⁵ exp(- 64443.04614/RT)	330-370		6	· ·
7.9-62.1	k = 3.333600 x 10° exp(~ 68551.80288/RT)	330-370		-	a,f
3.9-56.1	k = 4.048900 x 10 ⁵ exp(- 58794.47894/RT)			6	a,f
0-50	k = 7.65922 x 10 ⁵ exp(- 64309.99271/RT)	330-370		6	a,f
1.7-48.3		330-370		6	a,f
7.7 40.5	k = 7.707800 x 10° exp(- 71589.4377/RT)	350-370		6	a,f
0 0	k = 1.30540 x 10 ⁵ exp(- 92286.35836/RT)	1402-1523	±15%	1	a,f,v6
	Cu ₂ S-FeS				47.71
-100	k = 1157.5 exp(3594.11613/RT)	1470-1770	(249)	6	a,f
5.6-84.4	k = 1102.1 exp(~ 2055.63359/RT)	1370-1770		6	a,f
2.9-77.1	k = 877.35 exp(- 913.92641/RT)	1370-1770		6	a,b,f
5.9-64.1	k = 1356.1 exp(- 12355.1403/RT)	1270-1610		6	a,f
0.6-49.4	k = 3071.8 exp(- 25348.35128/RT)	1330-1670		6	a,f
2.4-37.6	k = 5861.7 exp(- 36139.90463/RT)	1330-1670		6	a,f
00-0	k = 20232 exp(- 68873.97627/RT)	1370-1770	(250)	6	
	Cu ₂ S-Ni ₃ S ₂	,0,0	(200)	ŭ	a,f
.0-100.0	k = 3.909955 x 10 ⁵ - 458.8387 T + 0.1358 T ²	1470-1770	(251)	6	a,b,1,
7.5-82.5	(T=1470 K, k=10000)			6	a
7.5-72.5	(T≈1470 K, k=9090.9)			6	a
9.4-60.6	(T≈1470 K, k=7692.3)			6	a
0.0-50.0	k = 8934.44 exp(- 4658.96195/RT)	1470-1770		. 6	a,f
0.2-39.8	k = 3979.94 exp(- 3358.2601/RT)	1470-1770		6	a,f
9.3-30.7	k = 1.78968 x 10 ⁵ - 227.9502 T + 0.0731133 T ²	1470-1770		6	
7.9-22.1	k = 1930.14 exp(- 7861.86753/RT)	1470-1770		6	a
85 . 8 - 14 . 2	k = 1474.53 exp(- 8483.20193/RT)				a,f
33.15-6.85	k = 1201.98 exp(- 15335.45336/RT)	1470-1770		6	a,f
		1470-1770		6	a,f

Table 2.3.a Electrical Conductance data (continued)

(mol %)	Equat ion	Conductance (ohm ⁻¹ cm ⁻¹) (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
100~0						
		2/RT)	1470-1770	(252)	6	a,f
or addition	al Cu ₂ S systems, see : Co ₄ S ₃ - ;	CuC1-				
		CgH ₁₃ NC1				
For CgH ₁₃ NC1	systems, see : A1C13-SbC13-					
		DyC13				
00	k = 8.9484 exp(- 24794.79882	/RT)	960-1260	±2%	5	a,c,f
		DyCl3-KCl				
-90 KC1	k = 45.65 + 0.6143 C - 0.010	188 C ² - 4.53 x 10 ⁻⁶ C ³ + 1.175 x 10 ⁻⁵ C ⁴	1073	(253)	5	a,n,t
	N 10100 010110 0 01011		1070	(250)	J	۵,۱۱, د
		DyC13-NaC1				
-100 NaC1	k = 46.14 + 0.5906 C + 0.007	751 C ² - 2.2945 x 10 ⁻⁴ C ³ + 1.8208 x 10 ⁻⁶ C ⁴	1073	(254)	5	a,n,t
		DyI ₃				
00	k = 7.972 exp(- 31365.04394/	RT)	1248-1330	±5%	4	a,f
		DyI ₃ -KI				
-100	k = 6.291 exp(- 12717.48077/	'RT)	1248-1330	(255)	4	a,f
0-90	k = 6.432 exp(- 15310.76735/	RT)	1248-1330		4	a,f
0-80	k = 8.045 exp(- 19750.06562/	(RT)	1248-1330		4	a,f
0-70	$k = 7.418 \exp(-20641.27253)$	(RT)	1248-1330		4	a,f
0-60	k = 5.227 exp(- 18560.53452/	(RT)	1248-1330		4	a,f
0-50	k = 4.772 exp(~ 19027.89514/	(RT)	1248-1330		4	a,f
0-40	k = 5.756 exp(- 24074.72037)	(RT)	1248-1330		4	a,f
0-30	k = 7.991 exp(- 27148.7566/F	(T)	1248-1330		4	a,f
0-20	$k = 5.39 \exp(-24234.13344/F$	ατ)	1248-1330		4	a,f
0-10	k = 11.402 exp(- 33563.77273	3/RT)	1248-1330		4	a,f
00-0	$k = 7.972 \exp(-31365.04394)$	(RT)	1248-1330	(256)	4	a,f
For addition	al Dylg systems, see : CsI-	ErC13				
100	k = 18 85 exp(- 33003 10735.	/RT)	1074-1112	±5%	1	a,f
100	K - 10.00 EXP(- 00000.10700)	ErC13-KC1	1074-1112	±0%	•	α, τ
0-90 KC1	k = 36.86 + 0.6367 C - 4.94	\times 10 ⁻⁴ C ² - 2.0787 x 10 ⁻⁴ C ³ + 2.3145 x 10 ⁻⁶ C ⁴	1073	(257)	5	a,n,1
	K 00700 0.000 0 4.01	FeBr ₃	1070	(2017	·	ω,,
For FeBra sv	stems, see : AlBr ₃ -	real 3				
	•	FeC1 ₂				
100	k = 6.205 exp(- 5715.43962/	रा)	1000-1180	±1.5%	3	a,f
		FeC1 ₂ -FeS				
34.47-15.53	k = 16.0373 exp(- 18825.804	56/RT)	1000-1180		3	a,f
5.59-14.41	k = 17.3999 exp(- 20316.588	7/RT)	1000-1180		3	a, f
0.00 11.41					3	a,f
	k = 5.69877 exp(- 11481.088	08/RT)	1000-1180			
90.74-9.26		08/RT)	1000-1180 1000-1180		3	•
90.74-9.26 95.14-4.86	k = 5.96135 exp(- 12004.933					a,f a,f
90.74-9.26 95.14-4.86 100.0-0.0	k = 5.96135 exp(- 12004.933	64/RT)	1000-1180		3	a,f
90.74-9.26 95.14-4.86 100.0-0.0	k = 5.96135 exp(- 12004.9336 k = 6.205 exp(- 5715.43962/6	54/RT)	1000-1180		3	a,f
90.74-9.26 95.14-4.86 100.0-0.0	k = 5.96135 exp(- 12004.9336 k = 6.205 exp(- 5715.43962/6	64/RT)	1000-1180 1000-1180		3 3	a,f a,f
90.74-9.26 95.14-4.86 100.0-0.0	k = 5.96135 exp(- 12004.9336 k = 6.205 exp(- 5715.43962/6 k = 4.631 exp(- 9505.78863/6	FeCl ₃ -LiCl-NaCl	1000-1180 1000-1180		3 3	a,f a,f
90.74-9.26 95.14-4.86 100.0-0.0 56-22-22	k = 5.96135 exp(- 12004.9336 k = 6.205 exp(- 5715.43962/6 k = 4.631 exp(- 9505.78863/6 k = 3.740505 exp(- 7310.8256	FeCl ₃ -NaCl	1000-1180 1000-1180 500-596		3 3 8	a,f a,f k
90.74-9.26 95.14-4.86	k = 5.96135 exp(- 12004.9336 k = 6.205 exp(- 5715.43962/6 k = 4.631 exp(- 9505.78863/6 k = 3.740505 exp(- 7310.8256 (T=629 K, k=0.902)	FeCl ₃ -NaCl	1000-1180 1000-1180 500-596		3 3 8 20	a,f a,f k
90.74-9.26 95.14-4.86 100.0-0.0 66-22-22 49.0-51.0 60.0-50.0	k = 5.96135 exp(- 12004.9336 k = 6.205 exp(- 5715.43962/6 k = 4.631 exp(- 9505.78863/6 k = 3.740505 exp(- 7310.8256 (T=629 K, k=0.902) k = 5.50388 exp(- 9266.5016	FeCl ₃ -LiCl-NaCl FeCl ₃ -LiCl-NaCl FeCl ₃ -NaCl	1000-1180 1000-1180 500-596 543-723 449-599		3 3 8 20 20	a,f a,f k k k
90.74-9.26 95.14-4.86 100.0-0.0 96-22-22 19.0-51.0 90.0-50.0 90.0-50.0	k = 5.96135 exp(- 12004.933) k = 6.205 exp(- 5715.43962/1) k = 4.631 exp(- 9505.78863/1) k = 3.740505 exp(- 7310.825) (T=629 K, k=0.902) k = 5.50388 exp(- 9266.5016) k = 5.243 exp(- 9392.81874/1)	FeCl ₃ -LiCl-NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl	1000-1180 1000-1180 500-596 543-723 449-599 456-621		3 3 8 20 20 20	a,f a,f k k k
90.74-9.26 95.14-4.86 100.0-0.0 96-22-22 99.0-51.0 90.0-50.0 90.0-50.0 92-48 94-46	k = 5.96135 exp(- 12004.933) k = 6.205 exp(- 5715.43962/1) k = 4.631 exp(- 9505.78863/1) k = 3.740505 exp(- 7310.825) (T=629 K, k=0.902) k = 5.50388 exp(- 9266.5016) k = 5.243 exp(- 9392.81874/1) k = 4.613 exp(- 9027.96784/1)	FeCl ₃ -LiCl-NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl	1000-1180 1000-1180 500-596 543-723 449-599 456-621 510-616		3 3 8 20 20 20 8 8	a,f a,f k k k k
10.74-9.26 15.14-4.86 100.0-0.0 16-22-22 19.0-51.0 10.0-50.0 10.0-50.0 10.0-50.0 10.0-50.0 10.0-50.0 10.0-50.0	k = 5.96135 exp(- 12004.933) k = 6.205 exp(- 5715.43962/1) k = 4.631 exp(- 9505.78863/1) k = 3.740505 exp(- 7310.825) (T=629 K, k=0.902) k = 5.50388 exp(- 9266.5016) k = 5.243 exp(- 9392.81874/1) k = 4.613 exp(- 9027.96784/1) k = 4.096 exp(- 8978.59581/1)	FeCl ₃ -LiCl-NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl	1000-1180 1000-1180 500-596 543-723 449-599 456-621		3 3 8 20 20 20 8 8 8	a, f a, f k k k k
10.74-9.26 15.14-4.86 100.0-0.0 16-22-22 19.0-51.0 10.0-50.0 10.0-50.0 10.0-50.0 10.0-50.0 10.0-50.0 10.0-50.0 10.0-50.0	k = 5.96135 exp(- 12004.933) k = 6.205 exp(- 5715.43962/1) k = 4.631 exp(- 9505.78863/1) k = 3.740505 exp(- 7310.825) (T=629 K, k=0.902) k = 5.50388 exp(- 9266.5016) k = 5.243 exp(- 9392.81874/1) k = 4.613 exp(- 9027.96784/1) k = 4.096 exp(- 8978.59581/1) (T=683 K, k=0.815)	FeCl ₃ -LiCl-NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl	1000-1180 1000-1180 500-596 543-723 449-599 456-621 510-616 505-624		3 3 8 20 20 20 8 8 8	a, f a, f k k k k k
90.74-9.26 95.14-4.86 100.0-0.0 66-22-22 49.0-51.0 50.0-50.0	k = 5.96135 exp(- 12004.933) k = 6.205 exp(- 5715.43962/1) k = 4.631 exp(- 9505.78863/1) k = 3.740505 exp(- 7310.825) (T=629 K, k=0.902) k = 5.50388 exp(- 9266.5016) k = 5.243 exp(- 9392.81874/1) k = 4.613 exp(- 9027.96784/1) k = 4.096 exp(- 8978.59581/1) (T=683 K, k=0.815) k = 3.89447 exp(- 8734.3298	FeCl ₃ -LiCl-NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl FeCl ₃ -NaCl	1000-1180 1000-1180 500-596 543-723 449-599 456-621 510-616		3 3 8 20 20 20 8 8 8	a,f a,f k k k k

		Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation	$(R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1})$	T range(K)	Accur.	Ref.	Comment
9.2-30.8	k = 2.33611 exp(- 8107.6398/	/RT)	553-693		20	k
00	$k = 6.2500000 \times 10^7 \exp(-1.$	7319539358 x 10 ⁵ /RT)	1648-1713	n.a.	1	a,f
00	k = 1482.3 exp(- 22375.15114	I/RT)	1713-1773	n.a.	1	a,f
00	k = 677.7 exp(9591.98048/RT)	FeS-Ni ₃ S ₂	1469-1493	±50%	1	a,f
.00-0.0 FeS	k = 3848.889 + 3.9629 x 10 ⁻⁴	¹ C - 2.8762 x 10 ⁻⁵ C ²	1773	(259)	6	a
For additiona	1 FeS systems, see : Co ₄ S ₃ - ; (
		GaBr ₂				
00	k = 13.8741 exp(- 16563.059	G/RT)	442-462	±1%	21	k
00	k = 0.012385 exp(- 32326.54	323/RT)	398-407		4	a,f
00	k = 15.1424 exp(- 15013.279		446-458	±1%	21	k
00	h = 0 1007 :: 10=6 -::::/ :00	GaC13				
00	$k = 9.1867 \times 10^{-6} \exp(-494)$	4.73393/RT)	355-360		22	i,v
5-10 HgC1 ₂	k = - 0.078928 + 0.058364 C	- 0.012579 C ² + 8.407 x 10 ⁻⁴ C ³	353		5	a,n
		GaC13-KC1				
0-70	(T=973 K, k=0.951)				5	a
0-60	k = 3.833 exp(- 11337.15607	/RT) ,	873-973		5	a,f
0-50	k = 6.58 exp(- 13023.75469/	RT)	673-973		5	a,f
0-40	k = 6.196 exp(- 13807.84941	/RT)	573-873		5	a,f
0-30	k = 6.727 exp(- 14509.09954	/RT)	473-673		5	a,f
0-20	k = 5.525 exp(- 14753.03082	/RT)	373-573		5	a,f
0-10	k = 2.749 exp(- 14140.06457	/RT)	373-573		5	a,f
		GaC1 ₃ -LiC1				
0-70	•	· · · · · · · · · · · · · · · · · · ·			5	а
0-60	• • • • • • • • • • • • • • • • • • • •	T)	673-873		5	a,f
0-50	• •	/RT) ,	473-673		5	a,f
0-40		/RT)	473-573		5	a,f
0-30		/RT)	373-473		5	a,f
10-20		RT)	373-473		5	a,f
10-10	K = 3.613 exp(- 16116.78242	/RT)	373-473		5	a,f
0-80	(T=1073 K, k=1.56)				5	а
0-70	(T=1073 K, k=1.3)				5	a
0-60	k = 3.033 exp(- 7463.12566/	RT)	773-1073		5	a,f
0-50	k = 3.721 exp(- 8243.87312/	RT)	473-773		5	a,f
60-40	k = 3.063 exp(- 9136.75366/	RT)	473-573		5	a, f
0-30	(T=473 K, k=0.2)				5	a
0-30	k = 5.277 exp(- 12456.8132/	RT)	431-510		8	a, f
9.6-20.4	k = 3.148 exp(- 12184.84865	/RT)	419-499		8	a, f
0-20	$k = 2.575 \exp(-11179.83504)$	/RT)	373-473		5	a, f
10-10	k = 3.613 exp(- 16115.78242	/RT)	373-473		5	a,f
10-10	k = 1.195 exp(- 12142.58955	/RT)	384-494		8	a,f
0.00	(T-000 H + 5 - 5 - 1	GaC13-RbC1				
0-90					5	а
0-60		/RT)	773-973		5	a, f
50-50		/RT)	673-973		5	a, t
50-40		RT)	673-873		5	a, 1
70-30		RT)	473-773		5	a,f
30-20	k = 8.40874 exp(- 17164.310	36/RT)	373-573		5	a, f

Table 2.3.a Electrical Conductance data (continued)

		Conductance (ohm-1 cm-1)				
(mo1 %)	Equation	$(R = 8.31441 \ J \ K^{-1} \ mol^{-1})$	T range(K)	Accur.	Ref.	Comment
0-10	(T=373 K, k=0.02)				5	a
00-0	(T=373 K, k=0.01)			(260)	5	a
othermal Data	(C=20-80, k=0.83) (C=30-70, k=	0.72)	973	,	5	а
oints	(2 22 22)				-	-
)- 9 0	k = 2 127 evn/- 14144 66704/PT	GaC1 ₃ -SbC1 ₃	353-373		5	a,f
0-80	$k = 2.059 \exp(-12218.73962/RT)$		353-373		5	a, i a, f
0-70	k = 5.258 exp(~ 14612.02766/RT		353-373		5	
0-70	•				-	a,f
0-50	k = 9.595 exp(~ 16554.27296/RT	,	353-373		5 5	a,f
0-40	(T=353 K, k=0.029) (T=353 K, k=0.023)					a
0-30	(T=353 K, k=0.017)				5 5	a
0-30					5	a
0-20	(T=353 K, k=0.01)					a
	(T=353 K, k=0.006)	• • • • • • • • • • • • • • • • • • • •		(004)	5	a
00-0	(T=353 K, k=0.0005)			(261)	5	а
For additional	GaCl ₃ systems, see : BiCl ₃ - ; C	SC1- Gal-Gal3				
.0-100.0	k = - 0.011231 + 4.152 x 10 ⁻⁵	T - 3.45747 x 10 ⁻⁸ T ²	460-670	(262)	4	a,n
.5-91.5	k = 0.440338 exp(- 12476.47833	/RT)	460-670		4	a,f
5.5-84.5	k = - 0.49093 + 0.00176369 T -	1.38758 x 10 ⁻⁶ T ²	440-670		4	a,n
6.0-74.0	k = 13.1048 exp(- 22060.92748/	RT)	420-620		4	a,f
3.5-66.5	k = 12.3391 exp(- 20842.5263/R	T)	420-640		4	a,f
7.0-53.0	k = 27.678 exp(- 23665.93673/R	T)	430-620		4	a,f
0.0-50.0	$k = 17.626 \exp(-21168.04694/R)$	ग)	430-620		4	a, f
6.0-44.0	k = 16.248 exp(- 20844.61833/R		430-620		4	a,f
1.0-39.0	k = 24.7457 exp(- 22768.87213/		450-630		4	a, f
88.5-31.5	k = 102.13 exp(- 29322.38097/F		480-540		4	a,f
		GaI ₂				-,-
100	k = 16.099 exp(- 20773.90755/R	т)	423-623		1	a,f
		Gal ₃				
100	$k = 0.10763 \exp(-19928.72541/$	RT)	458-495	±3%	4	a,f
100	$k = 0.015556 \exp(-11941.33578)$	(/RT)	495-557	±3%	4	a,f
100	k = 0.0021915 exp(- 2833.87061	/RT)	557-677	±3%	4	a,f
100	$k = 6.145 \times 10^{-5} \exp(15751.349)$	92/RT)	625-673	±3%	4	a,f
For additional	Gala systems, see : Gal-	C-ID-				
100	k = 10.48 exp(~ 28202.30543/R1	GdBr ₃	1072-1116	±2%	1	
100	K - 10.40 EAP(- 20202.00045)/KI	GdC1 ₃	1073-1115	12%	,	a,f
100	k = 13.058 exp(- 26564.66043/F	ττ)	920-1240	±2%	5	a,f
		GdC1 ₃ -KC1				
100-0 KC1	k = 56.045 + 0.33644 C - 0.006	35331 C ² - 2.8231 x 10 ⁻⁵ C ³ + 1.1376 x 10 ⁻⁶ C ⁴	1073	(263)	5	a,n,
		GdC1 ₃ -NaC1				
0-100 NaC1	k = 57.12 + 0.8094 C + 6.903 >	C 10-4 C ² - 1.8536 x 10-4 C ³ + 1.7704 x 10-6 C ⁴	1073	(264)	5	a,n,
100	k = 5 401 ovn/ 20120 02007/27	Gd13	4000 400	, per		
100	k = 5.491 exp(- 26136.63007/RT	f)	1233-133	±5%	4	a,f
0-100	k = 6.291 exp(~ 12717.48077/R	T)	1247~133	l (265)	4	a,f
10-90) <i>,</i>	1247~133		4	a, f
20-80	k = 5.331 exp(- 15108.67677/R	r)	1247~133		4	a,f
30-70)	1247~133		4	a,f
10-60		r)	1247-133		4	a,f
0-50		r)	1247~133		4	a, i a, f
60-40		D	1247-133		7	
			1277-100	•	4	a, f
70-30	$k = 4.213 \exp(-19847 97288/PT)$	r)	1247-133	1	4	a, f

	Conductance (ohm-1 cm-1)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
0-10	k = 5.21 exp(- 24342.08245/RT)	1247-1331		4	a,f
00-0	k = 5.491 exp(- 26136.63007/RT)	1247-1331	(266)	4	a,f
	GdI ₃ -NaI				
- 100	k = 5.48763 exp(- 6012.927/RT)	1233-1325	(267)	4	a,f
0-90	k = 5.3399 exp(- 8648.8911/RT)	1233-1325		4	a,f
0-80	k = 5.24478 exp(- 10755.57034/RT)	1233-1325		4	a,f
0-70	k = 4.50083 exp(- 11037.99507/RT)	1233-1325		4	a,f
0-60	k = 4.60212 exp(- 13089.02618/RT)	1233-1325		4	a,f
0-50	k = 4.86809 exp(- 15432.10538/RT)	1233-1325		4	a,f
0-40	k = 4.06092 exp(- 15442.14715/RT)	1233-1325		4	a,f
0-30	k = 4.49846 exp(- 18358.86235/RT)	1233-1325		4	a,f
0-20	k = 6.55091 exp(- 24348.77696/RT)	1233-1325		4	a,f
10-10	k = 5.23332 exp(- 23890.20289/RT)	1233-1325		4	a,f
00-0	k = 5.491 exp(- 26136.63007/RT)	1233-1325	(268)	4	a,f
For additiona	1 GdI ₃ systems, see : CsI- GeO ₂				
100	k = 29.758 exp(- 1.5881474499 x 10 ⁵ /RT)	1389-1623	±20%	1	a,f
	GeS	1000 1020		•	٠,٠
100	k = 114.82 exp(- 62773.60221/RT)	873-1073	±50%	1	a,f
	GeS ₂ -K ₂ S				
88.21-61.79	k = 60.4044 exp(- 40651.1689/RT)	923-1123		6	a,f
15-55	k = 46.9328 exp(- 34993.05104/RT)	920-1120		6	a,f
0-50	k = 73.486 exp(- 35983.83881/RT)	880-1120		6	a,f
0-40	k = 20.9123 exp(- 33723.18579/RT)	880-1120		6	a,f
70-30	k = 61.5385 exp(- 45949.45674/RT)	880-1120		6	a,f
33.4-16.6	k = 1.0053 - 0.002733 T + 1.835 x 10 ⁻⁶ T ² ,	880-1120		6	a
	HgBr ₂				
100	k = 0.020134 exp(- 21038.34077/RT)	520-610	±1.5%	1	a,c
) - 100	k = 0.09357 - 1.54 x 10 ⁻⁴ T + 5.694 x 10 ⁻⁸ T ²	\$50_900	(260)	•	
1-89	k = 0.09275 - 1.641 x 10 ⁻⁴ T + 7.12 x 10 ⁻⁸ T ²	550-800	(269)	2	a,n
23-77	k = 0.1483 - 3.708 x 10 ⁻⁴ T + 8.75 x 10 ⁻⁸ T ² + 5.027 x 10 ⁻¹⁰ T ³ - 3.867 x 10 ⁻¹³ T	550-800 4 550-800		2	a,n
34-66	k = 0.05367 - 9.82 x 10 ⁻⁵ T + 1.698 x 10 ⁻⁸ T ² + 1.182 x 10 ⁻¹⁰ T ³ - 1.034 x 10 ⁻¹³			2	a,n
51-49	$k = -0.1618 + 7.631 \times 10^{-4} \text{ T} - 1.117 \times 10^{-6} \text{ T}^2 + 5.273 \times 10^{-10} \text{ T}^3$	500-800		2	a,n
69-31	k = - 0.03167 + 1.338 × 10 ⁻⁴ T - 1.627 × 10 ⁻⁷ T ² + 6.003 × 10 ⁻¹¹ T ³			2	a,n
77-23	k = - 0.0228 + 9.436 x 10 ⁻⁵ T - 1.118 x 10 ⁻⁷ T ² + 3.975 x 10 ⁻¹¹ T ³	500-800		2	a,n
83-17	k = - 0.009766 + 3.37 x 10 ⁻⁵ T - 2.498 x 10 ⁻⁸ T ²	500-800		2	a,n
38-12	k = - 0.00735 + 2.471 x 10 ⁻⁵ T - 1.808 x 10 ⁻⁸ T ²	500-800		2	a,n
92-8	k = - 0.005707 + 1.851 x 10 ⁻⁵ T - 1.32 x 10 ⁻⁶ T ²	500-800		2	a,n
95-5	k = - 0.006253 + 1.933 x 10 ⁻⁵ T - 1.334 x 10 ⁻⁸ T ²	550-800		2	a,n
99-1		550-800		2	a,n
100-0	k = - 0.002932 + 9.332 x 10 ⁻⁶ T - 6.494 x 10 ⁻⁹ T ²	550-800		2	a,n
	k = 0.0075834 exp(- 16628.7494/RT)	550-650	(270)	2	a,f
100-0	k = 0.00114 - 5.209 x 10^{-6} T + 2.388 x 10^{-9} T ² + 1.513 x 10^{-11} T ³ - 1.441 x 10^{-14} HgBr ₂ -KBr	T* 550-800		2	a,n
1.34-57.1 KBr	$k = -0.014954 + 0.02239 C - 9.5293 \times 10^{-4} C^2 + 2.0574 \times 10^{-5} C^3 - 1.6518 \times 10^{-7}$ $HgBr_2-NaBr$	C4 515	(271)	4	a,n
0.18-7.5 NaBr	$k = -1.8104 \times 10^{-5} + 0.0040751 C + 0.0020963 C^2 - 1.5283 \times 10^{-4} C^3 \dots$	515	(272)	4	a,n
	HgBr ₂ -NH ₄ Br				
28.0-72.0	k = 11.702 exp(- 14397.38487/RT)	580-640		4	a,f
31.0-69.0	k = 16.587 exp(- 16201.55585/RT)	580-640		4	a,f
33.0-67.0	k = 15.177 exp(- 15712.85648/RT)	530-640		4	a,f
35.0-65.0	k = 24.82 exp(- 17966.81499/RT)	500-640		4	a,f
36.0-64.0	k = 18.409 exp(- 16460.54979/RT)	500-640		4	a, f
38.0-62.0	k = 18.848 exp(- 16491.93031/RT)	500-640		4	a, f

Table 2.3.a Electrical Conductance data (continued)

,	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
1.0-59.0	k = 16.166 exp(- 15461.81228/RT)	500-620		4	a,f
3.0-57.0	k = 16.176 exp(- 15275.20276/RT)	480-620		4	a,f
5.0-55.0	k = 22.988 exp(- 16863.47573/RT)	480-620		4	a,f
7.5-52.5	k = 23.77 exp(- 16777.70229/RT)	480-620		4	a,f
0.0-50.0	k = 20.539 exp(- 15935.0306/RT)	480-620		4	a,f
2.5-47.5	k = 13.583 exp(- 13721.23916/RT)	480-620		4	a,f
5.0-45.0	k = 16.343 exp(- 14432.53106/RT)	480-620		4	a,f
8.0-42.0	k = 14.787 exp(- 13940.48443/RT)	480-620		4	a,f
0.0-40.0	k = 17.337 exp(- 14581.06554/RT)	480-620		4	a, f
4.0-36.0	k = 12.558 exp(- 13114.96742/RT)	480-620		4	a,f
88.0-32.0	k = 12.752 exp(- 13304.08738/RT)	480-620		4	a,f
70.0-30.0	k = 10.912 exp(- 12631.70733/RT)	480-620		4	a,f
71.0-29.0	k = 11.96 exp(- 13183.58616/RT)	480-620		4	a,f
71.5-28.5	k = 9.425 exp(- 12091.9623/RT)	500-620		4	a,f
72.5-27.5	k = 8.499 exp(- 11533.38896/RT)	500-620		4	a, f
74.0-26.0	k = 7.47 exp(- 11101.59293/RT)	500-620		4	a, i a, f
76.0-24.0	k = 7.891 exp(- 11477.74082/RT)	500-590		4	a, f
77.5-22.5	k = 5.882 exp(- 10568.96082/RT)	500-590		4	a, f
79.0-21.0	k = 5.705 exp(- 10729.2107/RT)	500-590		4	a, i a, f
31.0-19.0	k = 5.435 exp(- 10796.15582/RT)	500-590		4	
33.0-17.0	k = 3.373 exp(- 9027.96784/RT)	500-590		4	a,f
35.0-15.0	k = 5.331 exp(- 11657.65583/RT)				, a,f
38.0-12.0	k = 1.874 exp(- 8084.87846/RT)	500-570		4	a,f
92.5-7.5		530-570		4	a,f
94.0-6.0	k = 1.13 exp(- 8384.45787/RT)	530-570		4	a,f
100-0	k = 0.8858 exp(- 8416.25681/RT)	530-570		4	a,f
100-0	k = - 2.19 + 0.006589 T - 4.592 x 10 ⁻⁶ T ²	530-570	(273)	4	a, f
0.31-2.67 PbBr ₂	$k = -3.3344 \times 10^{-4} + 0.004834 C + 0.001555 C^2 + 3.701 \times 10^{-4} C^3$	515	(274)	4	a,n
_	HgBr ₂ -TlBr				
0.033-6.70 T1Br	$k = 1.6523 \times 10^{-4} + 0.004044 C + 0.003105 C^2 - 2.706 \times 10^{-4} C^3 \dots$	515	(275)	4	a,n
For addition	al HgBr ₂ systems, see : AgBr- ; AlBr ₃ - ; CuBr-				
	HgC1 ₂				
100	k = 0.0070941 exp(- 24729.52733/RT)	550-630	±3%	1	a,c,1
		,			-,-,-
	HgC1 ₂ -HgI ₂				
0-100	k = 0.004331 exp(8897.84326/RT)	550-570	(276)	2	a,f
10-90	k = 0.01096 exp(4684.48477/RT)	530-570		2	a,f
20-80	k = 0.008988 exp(4938.45782/RT)	500-570		2	a,f
30-70	k = 0.012447 exp(2443.49688/RT)	480-570		2	a,f
40-60	(T=480 K, k=0.016)			2	a
50-50	k = 0.020749 exp(- 3282.40292/RT)	480-570		2	a,f
60-40	k = 0.019859 exp(- 5497.44957/RT)	480-570		2	a,f
70-30	k = 0.045409 exp(- 12378.5711/RT)	500-570		2	a,f
80-20	k = 1.6931 exp(- 31958.76347/RT)	530-570		2	a,f
90-10	k = 857.17 exp(- 63386.15006/RT)	550-570		2	a,f
	HgC1 ₂ -Hg ₂ C1 ₂				
0.0-100.0	k = 12.652 exp(- 17481.88127/RT)	800-1060	(277)	5	a,f
33.3-66.7	k = 12.272 exp(- 18372.25137/RT)	780-860		5	a,f
57.2-42.8	k = 3.871 exp(- 14342.15515/RT)	760-860		5	a,f
74.8-25.2	k = 0.479286 exp(- 8719.18347/RT)	700-940		5	a,f
88.9-11.1	k = 0.104925 exp(- 14804.07647/RT)	620-840		5	a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
	HgC12-NH4C1				
3.4-70.6	k = 4.461 exp(- 7067.73104/RT)	530-570		5	a,f
2.2-67.8	k = 22.449 exp(- 14942.56919/RT)	530-570		5	a,f
5.0-65.0	k = 25.867 exp(- 15242.98542/RT)	500-570		5	a,f
3.0-62.0	k = 16.206 exp(- 12975.63788/RT)	500-570		5	a,f
1.8-58.2	k = 23.649 exp(- 14387.76151/RT)	500-570		5	a,f
4.2-55.8	k = 28.714 exp(- 15194.45021/RT)	500-570		5	a,f
5.2-53.8	k = 7.109 exp(- 8733.82772/RT)	550-570		5	a,f
8.5-51.5	k = 35.892 exp(- 16035.86668/RT)	500-570		5	a,f
0.0-50.0	k = 28.67 exp(~ 15293.61266/RT)	500-570		5	a,f
0.3-49.7	k = 73.101 exp(- 19739.18704/RT)	500-570		5	a,f
2.7-47.3	k = 395.05 exp(- 27702.30906/RT)	500-570		5	a,f
4.8-45.2	k = 43.029 exp(- 17469.74747/RT)	500-570		5	a,f
6.8-43.2	k = 75.574 exp(- 19903.62099/RT)	500-570		5	a,f
2.4-37.6	k = 35.576 exp(- 16648.41453/RT)	500-570		5	a,f
6.6-33.4	k = 34.107 exp(- 17030.83853/RT)	500-570		5	a,t
0.0-30.0	k = 42.742 exp(- 18907.39392/RT)	500-570		5	a,i a,f
2.0-28.0	k = 40.002 exp(- 17977.69357/RT)	500-570		5	
3.0-27.0	k = 14.75 exp(- 12826.68499/RT)	500-570		5	a,f
8.0-22.0	k = 6.312 exp(- 9905.78573/RT)	530-570			a,f
8.5-21.5	k = 13.211 exp(- 13914.9616/RT)	530-570		5	a,f
3.0-17.0	k = 29.706 exp(- 18760.95147/RT)	530-570		5	a,f
4.1-15.9	k = 142.88 exp(- 27008.17185/RT)			5	a,f
0.0-10.0	k = 0.7074 exp(- 5104.98381/RT)	530-570		5	a,f
4.9-5.1	k = 8.892 exp(- 20900.68487/RT)	530-570		5	a,f
		550-570		5	a,f
~100	HgCl ₂ -T1NO ₃ k = 9.416 exp(- 13150.53201/RT)				
0-90		498-523	(278)	3	a,f
0-80		460-550		3	a,f
0-70		460-550		3	a,f
0-60	k = 19.1285 exp(- 18809.48669/RT)	460-550		3	a,f
0-50	k = 21.9527 exp(- 20231.65208/RT)	460-550		3	a,f
	k = 14.7058 exp(- 19423.70816/RT)	460-550		3	a,f
ror addition	al HgCl ₂ systems, see : GaCl ₃ - HgI ₂				
00	k = 0.0017223 exp(12789.44677/RT)	530-650	±2.5%	1	a,c,
	HgI ₂ -Hg ₂ I ₂				
.7-92.3	k = 2.852 exp(- 7406.64071/RT)	620-820		4	a,f
3.3-66.7	k = 1.681 exp(- 4079.88666/RT)	700-840		4	a,f
7.4-42.6	k = - 3.5028 + 0.011534 T - 7.8529 x 10 ⁻⁶ T ²	560-880		4	a,n
6.5-33.5	k = 1.26239 exp(- 4258.54645/RT)	540-760		4	a,n
2.5-17.5	$k = -2.5845 + 0.0116269 T - 1.40878 \times 10^{-9} T^2 + 4.8868 \times 10^{-9} T^3 \dots$	520-840		4	a,n
4.4-5.6	$k = -0.6965 + 0.0042089 T - 6.6838 \times 10^{-6} T^2 + 3.2035 \times 10^{-8} T^3 \dots$	540-860		4	a, 1,
	HgI ₂ -KI				
7.5-52.5	k = 17.142 exp(- 16464.31545/RT)	565-600		4	a,f
0-50	k = 13.165 exp(- 15318.71708/RT)	565-600		4	
2.5-47.5	k = 26.119 exp(- 18605.30407/RT)	555-600		4	a,f
5-45	k = 28.214 exp(- 18658.86017/RT)	545-600		4	a,f
0-40	k = 34.636 exp(- 19309.48305/RT)			•	a,f
5-35	k = 28.498 exp(- 17796.10493/RT)	545-590 E4E-E90		4	a,f
0-30	k = 8.052 exp(- 11522.92878/RT)	545-580		4	a,f
5-25	k = 7.4 exp(- 11074.81488/RT)	545-580		4	a,f
0-20	k = 6.475 exp(- 10463.52226/RT)	545-580		4	a,f
0-10		545-580		4	a,f
00-0	k = 2.402 exp(- 7743.03994/RT)	545-570		4	a,f
	k = 0.009913 exp(5154.35583/RT)	545-570	(279)	4	a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
	HgI2-NH4I				
0.0-70.0	k = 16.353 exp(- 17682.29823/RT)	530-620		4	a,f
2.5-67.5	k = 30.261 exp(- 20700.68633/RT)	530-620		4	a,f
5.0-65.0	k = 18.043 exp(- 17924.13747/RT)	530-620		4	a,f
7.5-62.5	k = 15.92 exp(- 17165.98399/RT)	530-620		4	a,f
2.0-58.0	k = 19.934 exp(- 17965.97817/RT)	480-620		4	a,f
2.5-57.5	k = 16.957 exp(- 16999.87641/RT)	480-620		4	a,f
4.5-55.5	k = 12.856 exp(- 15543.40164/RT)	480-620		4	a,i a,b,
5.0-54.0	k = 17.3 exp(- 16794.02017/RT)	480-620		4	a,b, a,f
7.0-53.0	k = 12.981 exp(- 15509.09227/RT)	480-620		4	-
7.0-53.0 8.0-52.0				•	a,f
	k = 11.718 exp(- 14832.52815/RT)	480-620		4	a,f
9.5-50.5	k = 9.627 exp(- 13753.4565/RT)	480-620		4	a,f
1.0-49.0	k = 8.146 exp(- 12882.33312/RT)	480-620		4	a,f
2.0-48.0	k = 9.777 exp(- 13730.02571/RT)	480-620		4	a,f
3.5-46.5	k = 7.045 exp(- 11963.09294/RT)	480-620		4	a, f
5.0-45.0	k = 7.145 exp(- 11943.84622/RT)	480-620		4	a,f
5.0-44.0	k = 6.53 exp(- 11400.33553/RT)	480-620		4	a,f
7.5-42.5	k = 6.699 exp(- 11432.97128/RT)	480-620		4	a,f
0.0-40.0	k = 6.246 exp(- 10960.17137/RT)	480-620		4	a,f
1.5-38.5	k = 5.695 exp(- 10421.68156/RT)	480-620		4	a,f
3.0-37.0	k = 5.011 exp(- 9771.05867/RT)	480-620		4	a,f
5.0-35.0	k = 4.717 exp(- 9382.77698/RT)	480-620		4	a,f
7.0-33.0	k = 4.093 exp(- 8649.72791/RT)	480-620		4	a,f
8.5-31.5	k = 3.749 exp(- 8241.36268/RT)	480-620		4	a,f
0.0-30.0	k = 3.936 exp(- 8490.73325/RT)	480-620		4	a,f
1.5-28.5	k = 3.741 exp(- 8251.40445/RT)	480-620		4	a,f
3.0-27.0	k = 3.377 exp(- 7808.72984/RT)	480-620		4	a,f
5.0-25.0°	k = 2.891 exp(- 7120.86873/RT)	480-620		4	a,f
7.5-22.5	k = 2.618 exp(- 6799.11375/RT)	500-620		4	a,f
9.0-21.0	k = 2.326 exp(- 6378.61472/RT)	500-620		4	a,f
2.0-18.0	k = 1.77 exp(- 5393.68464/RT)	530-620		4	a,f
4.0-16.0	k = 1.407 exp(- 4598.29293/RT)	530-620		4	a,f
6.0-14.0	k = 1.11 exp(- 3968.7996/RT)	530-620		4	a,f
8.0-12.0	k = 0.9368 exp(- 3574.28364/RT)	530-620		4	a,f
4.0-6.0	k = 0.3689 exp(- 1611.57824/RT)	550-620		4	a,f
00.0-0.0	k = 0.009913 exp(5154.35583/RT)	550-620	(280)	4	a,f
	Hg12-Sb13	330 320	(200)	_	α, ι
-100	k = 0.0028891 exp(- 9154.74516/RT)	450-550	(281)	4	a,f
-100	$k = -7.599 \times 10^{-4} + 2.173 \times 10^{-6} T + 1.525 \times 10^{-9} T^2 - 3.061 \times 10^{-12} T^3$		(201)		
-91	$k = -0.002409 + 1.076 \times 10^{-6} \text{ T} - 1.225 \times 10^{-8} \text{ T}^2 + 3.978 \times 10^{-12} \text{ T}^3$	450-800		4	a,n
6-84		450-800		4	a,n
7-73	$k = -0.004174 + 2.086 \times 10^{-5} \text{ T} - 2.925 \times 10^{-6} \text{ T}^2 + 1.307 \times 10^{-11} \text{ T}^3 \dots$	450-800		4	a,n
	$k = -0.005905 + 3.031 \times 10^{-5} T - 4.399 \times 10^{-8} T^2 + 2.034 \times 10^{-11} T^3 \dots$	450-800		4	a,n
2-58	$k = -0.0104 + 5.917 \times 10^{-5} T - 9. \times 10^{-8} T^2 + 4.25 \times 10^{-11} T^3 \dots$	500-800		4	a,n
8-42	$k = -0.003486 + 3.314 \times 10^{-5} \text{ T} - 5.04 \times 10^{-8} \text{ T}^2 + 2.097 \times 10^{-11} \text{ T}^3 \dots$	500-800		4	a,n
4-26	k = 0.01442 - 1.526 x 10 ⁻⁵ T	550-800		4	a,n
3-17	$k = 0.03122 - 4.87 \times 10^{-5} T + 1.707 \times 10^{-8} T^{2} \dots$	550-800		4	a,n
1-9	k = 0.06053 - 1.0946 x 10 ⁻⁴ T + 4.917 x 10 ⁻⁸ T ²	550-800		4	a,n
00-0	$k = 0.09357 - 1.54 \times 10^{-4} T + 5.694 \times 10^{-8} T^{2} \dots \dots \dots \dots \dots$	550-800	(282)	4	a,n
	HgI ₂ -T1N0 ₃				
-100	k = 6.704 exp(- 11510.37657/RT)	498-573	(283)	3	a,f
-95	k = 6.40896 exp(- 11814.55846/RT)	498-573		3	a,f
0-90	k = 6.49872 exp(- 12432.5456/RT)	500-570		3	a, f
0-80	k = 6.56 exp(- 13387.76878/RT)	523-573		3	a,f
0-70	k = 6.88311 exp(- 14664.32854/RT)	520-570		3	a,f
0-60	k = 10.127 exp(- 17673.09327/RT)	523-573		3	a,, a,f
0-50	k = 7.01816 exp(- 16620.38126/RT)			3	a, r a, f
0-50	κ - 7.010 to exp(- 10020.30120/R1)	520-570			

J. Phys. Chem. Ref. Data, Vol. 17, Suppl. 2, 1988

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
0~30	k = 1.68805 exp(- 10778.16432/RT)	520-570		3	a,f
0~20	k = 1.1926 exp(- 9261.02054/RT)	523-573		3	a,f
0~10	k = 0.382278 exp(- 4456.03455/RT) , , , , ,	550-570		3	a,f
2~8	k = 0.5087 exp(- 6148.49087/RT)	548-573		3	a,f
5~5	k = 0.1412 exp(- 896.52068/RT)	548-573		3	a,f
7-3	k = 0.06013 exp(2179.48206/RT)	548-573		3	a,f
00-0	k = 0.004331 exp(8897.84326/RT)	550-570	(284)	3	a,, a,f
		300 0.1	(=017	·	۵,۰
For addition	al HgI ₂ systems, see : AgN0 ₃ - ; AlI ₃ - ; HgBr ₂ - ; HgCl ₂ -				
00	Hg_2C1_2 k = 12.652 exp(~ 17481.88127/RT)	900 1060	±3%	5	2.0
00	K - 12.002 BAP(~ 17401.00127/R!)	800-1 06 0	±3%	5	a,c,
	Hg ₂ I ₂				
-or Hg ₂ I ₂ sy	/stems, see : HgI ₂ - HoCl ₃				
00	k = 23.29 exp(- 33800.17268/RT)	1020-1092	±5%	1	a,f
	InBr ₃				_,.
00	k = 0.119392 exp(2005.09003/RT)	709-813	±10%	1	a,f
	InBr ₃ -KBr				·
0-80	k = 22.953 exp(- 24362.16598/RT)	602 752			
5-75		603-753		4	a,f
	k = 10.945 exp(- 19941.27762/RT)	603-753		4	a,f
0-70	k = 5.125 exp(- 15220.39144/RT)	603-753		4	a,f
5-65	k = 5.082 exp(- 15060.97837/RT)	603-753		4	a,f
0-60	k = 4.911 exp(- 14924.9961/RT)	603-753		4	a,f
5-55	k = 4.741 exp(- 14786.08497/RT)	603-753		4	a,f
	InBr ₃ -LiBr				
0-80	k = 41.305 exp(- 24180.99575/RY)	593-743		4	a,f
5-75	k = 33.168 exp(- 22931.21404/RY)	593-783		4	a,f
0-70	k = 16.632 exp(- 18811.99713/RT)	593-783		4	a, f
5-65	k = 12.895 exp(- 17435.4381/RT)	593-783		4	a,f
0-60	k = 10.717 exp(- 16628.7494/RT)	593-783		4	a, f
	InCl	330 700		7	۵,۰
00	k = 23.915 exp(- 13811.19666/RT)	498-624	±10%	1	a,f
••	InCl ₂	430 024	-10%	•	۵,۰
100	k = 6.405 exp(- 13866.00798/RT)	508-780	+10%	•	- 4
100		506-760	±10%	1	a,f
	InCl ₃				
00	k = 0.045 exp(16158.87834/RT)	859-967	±10%	1	a,f
	Ini ₃				
00	k = 0.88378 exp(- 11021.25879/RT)	504-580	±6%	1	a,f
100	k = 0.295433 exp(- 5926.73516/RT)	504-880		1	
	KAICIA				
100	k = 7.93 exp(- 13594.04343/RT)	E20 E20	+0*/	-	
		530-570	±2%	5	a,f
100	k = 1.965 exp(~ 5424.64676/RT)	875-1275	±5%	5	a,f
	KA1C1 ₄ -LiA1Br ₄ -NaA1C1 ₄				
20-30-50	$k = -0.97724 + 0.0034931 T - 1.3753 \times 10^{-6} T^2 \dots \dots \dots \dots \dots \dots$	370-674	(285)	23	k
	KBF₄				
100	k = 4.121 exp(- 9184.45206/RT)	818-925	±4%	3	a,f
	KBF4-KF				
3.2-76.8	k = 2.5220000 x 10 ⁷ exp(- 1.3341074558 x 10 ⁵ /RT)	1023-1073	3	14	a,f
31.6-68.4	k = 2.95424 x 10 ⁵ exp(- 91112.30832/RT)	973-1073	.	14	
					a,f
0.9-59.1	k = 19758.7 exp(- 66217.09182/RT)	973-1073		14	a,f
1.8-48.2	(T=723 K, k=0.201)			14	a
1.8-48.2	$k = 153.6 - 0.01832 T - 9.803 \times 10^{-4} T^2 + 1.367 \times 10^{-6} T^3 - 5.135 \times 10^{-10} T^4$	823-1073		14	a,n
64.9-35.1	k = 13597.6 exp(- 61989.08909/RT)	723-1073		14	a,f
30.6-19.4	(T=873 K, k=1.459)			14	а

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)		
mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K) Accur.	Ref.	Commen
	KBr			
0	k = 6.256 exp(- 11259.33237/RT)	1011-1229 ±2%	1	a,f
	KBr-KC1			,
100	k = 7.165 exp(- 10404.52687/RT)		2	a,f
0-80	k = 6.7513 exp(- 10332.14246/RT)		2	a, f
0-60	k = 6.8265 exp(- 10978.99968/RT)		2	a, f
0-50	k = 6.6721 exp(- 10973.14198/RT)	1023-1193	2	a, f
0-40	k = 6.7476 exp(- 11287.78405/RT)	1018-1203	2	a, f
0-20	k = 6.4943 exp(- 11025.44286/RT)	1013-1193	2	a, f
00-0	k = 6.41206 exp(- 11494.4771/RT)		2	a, f
	KBr-KF			
-100	k = 9.2835 exp(- 9774.82433/RT)		2	a, f
2-88	k = 8.9478 exp(- 10849.71192/RT)		2	a, 1
5-75	k = 7.5998 exp(- 10450.97005/RT)		2	a, 1
7-63	k = 6.5334 exp(- 9735.49408/RT) , ,		2	a,
0-50	k = 7.0637 exp(- 11122.09487/RT)		2	a, i
3-37	k = 6.2785 exp(- 10396.15873/RT)		2	a,
5-25	k = 5.6001 exp(- 9723.36027/RT)		2	a,
8-12	k = 5.15 exp(- 9307.88212/RT)		2	a,
00-0	k = 6.2082 exp(- 11583.5978/RT)			a,
00 0	KBr-KI		, -	۵,
7-100	k = 4.94767 exp(- 10559.33746/RT)) 2	a,
20-80	k = 5.18787 exp(- 10843.43581/RT)		, 2	a,
10-60	k = 5.58576 exp(- 11230.46229/RT)		2	
				а,
50-40 10-80	k = 5.78071 exp(- 11268.53732/RT)		2	а,
80-20	k = 6.0644 exp(- 11339.66651/RT)		. 2	а,
1 00 -0	k = 6.41206 exp(- 11494.4771/RT)) 2	a,
	KBr-KN03			
0-100	k = 8.65609 exp(- 13260.99146/RT)			a,
15-85	k = 7.60116 exp(~ 12601.58203/RT)		3	a,
33.3-66.7	k = 7.02654 exp(- 12222.50528/RT)	660-760	3	a,
60-50	k = 7.58538 exp(- 12788.19155/RT)		3	a,
66.7-33.3	k = 5.58899 exp(- 10459.33819/RT)	623-1073	3	a,
100-0	k = 5.991 exp(- 11045.9448/RT)) 3	a,
	KBr-LiBr			
0~100	k = 12.97 exp(- 6881.12152/RT)) 4	a,
20-80	k = 9.944 exp(- 8640.94136/RT)		4	a,
40-60	k = 12.665 exp(- 12960.99364/RT)	640-1020	4	a,
60~40	k = 9.681 exp(- 12795.72287/RT)	840-1020	4	a,
80-20	k = 9.947 exp(- 14520.39653/RT)	940-1020	4	a,
	KBr-NaBr			
0-100	k = 5.845 exp(- 5994.9355/RT)		i) 4	а
50-50	k = 5.783 exp(- 8946.37847/RT)	1000-1140	4	а
100-0	k = 6.366 exp(- 11431.71605/RT)	1030-1190 (29	5) 4	a
	KBr-NaC1			
0-100	k = 8.991 exp(- 8290.3163/RT)		7) 2	а
10-90	k = 8.954 exp(- 9124.61986/RT)	1073-1123	2	а
20-80	k = 6.721 exp(- 7285.30268/RT)	1073-1123	2	a
30-70	k = 7.172 exp(- 8650.14632/RT)		2	а
40-60	k = 6.576 exp(- 8592.82456/RT)		2	a
50-50	k = 6.565 exp(- 9127.96711/RT)		2	a
60-40	k = 6.582 exp(- 9776.49796/RT)		2	a
70-30	k = 5.971 exp(- 9407.8814/RT)		2	a
	k = 5.992 exp(- 9969.802/RT)		2	a
BU-3U	n " 0.334 CAU(" 9909.002/RI)	1073-1123	2	а
80-20 90-10	k = 6.759 exp(- 11511.21338/RT)	1073-1123	2	а

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)			
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K) Accur	. Ref.	Comment
	KBr-PbBr ₂			
- 100	k = 9.727 exp(- 14634.20323/RT)	660-1080 (29	9) 4	a,f
.8-91.2	k = 7.096 exp(- !2595.72433/RT)	780-1060	4	a,f
8.0-82.0	k = 5.655 exp(- 11191.96884/RT)	840-1160	4	a,f
0.9-69.1	k = 7.365 exp(- 13699.9004/RT)	660-1100	4	a,f
1.7-58.3	k = 6.074 exp(- 12674.80325/RT)	780-1120	4	a, f
			· ·	-
5.0-45.0	k = 8.204 exp(- 15567.25084/RT)	680-1120	4	a,f
55.8-34.2	k = 7.157 exp(- 14539.22484/RT)	780-1160	4	a,f
11.7-18.3	k = 7.805 exp(- 14978.9706/RT)	840-1180	4	a,f
9.4-10.6	k = 6.406 exp(~ 12682.75298/RT)	1020-1140	4	a,f
100	KBr-RbBr	000 1110 (00	NO. 4	- 6
- 100	k = 4.781 exp(- 11525.85763/RT)	980-1140 (30		a,f
0-50	k = 5.48 exp(- 11430.46083/RT)	980-1130	4	a,f
00-0	k = 6.395 exp(- 11476.4856/RT)	1030-1190 (30	01) 4	a,f
- 100	KBr-RbC1 k = 6.3915 exp(- 11454.72844/RT)	1042-1122 (20)2) 2	
		1043-1123 (30	•	a,f
0-90	k = 6.0224 exp(- 11022.0956/RT)	1043-1123	2	a,f
20-80	k = 5.9834 exp(- 11048.87365/RT)	1043-1123	2	a,f
30-70	k = 5.9996 exp(- 11176.90619/RT)	1043-1123	2	a,f
1060	k = 6.0082 exp(- 11241.75928/RT)	1043-1123	2	a,f
50-50	k = 6.5291 exp(- 12023.34355/RT)	1043-1123	2	a,f
50-40	k = 6.4813 exp(- 11992.38143/RT)	1043-1123	2	a,f
0-30	k = 7.0328 exp(- 12707.8574/RT)	1043-1123	2	a,f
30-20	k = 6.5291 exp(- 12023.34355/RT)	1043-1123	2	a,f
90-10	k = 6.5291 exp(- 12023.34355/RT)		2	
00-0		1043-1123	_	a,f
100-0	k = 6.0642 exp(- 11342.59536/RT)	1043-1123 (30	03) 2	a,f
30-70	(T=1153 K, k=0.5)			
10-60			4	а
	k = 2.73832 exp(- 15100.72704/RT)	1113-1233	4	a,f
50-50	k = 8.94146 exp(- 24163.84106/RT)	1033-1233	4	a,f
60-40	k = 8.478 exp(- 21506.1198/RT)	993-1233	4	a,f
70-30	k = 5.48517 exp(- 15583.98712/RT)	993-1233	4	a,f
30-20	k = 6.63333 exp(- 16498.20642/RT)	993-1233	4	a, f
90-10	k = 6.5104 exp(- 13839.64834/RT) /	993-1233	4	a,f
100-0	k = 5.8977 exp(- 10764.7753/RT)	1033-1233 (30	04) 4	a,f
	KBr-T1Br	7000 1200 (00	7	α, 1
0.0-100.0	k = 6.388 exp(- 12532.96328/RT)	760-960 (30	05) 4	a,b
.5-94.5	k = 6.147 exp(- 12192.37998/RT)	820-960	4	a,b
16.0-84.0	k = 7.061 exp(~ 13157.64493/RT)	760-900	4	a,b
20.4~79.6	k = 6.173 exp(- 12081.92053/RT)	940-1020	4	a,b
27.0-73.0	k = 5.159 exp(- 10608.29108/RT)	940-1060	•	
35.0-65.0	k = 6.895 exp(- 12825.84818/RT)		4	a,b
51.0-49.0		900-980	4	a,b
	k = 6.006 exp(- 11727.94821/RT)	900-1060	4	a,b
73.6-26.4	k = 6.095 exp(- 11594.47638/RT)	960-1060	4	a,b
36.0-14.0	k = 5.933 exp(- 11225.86981/RT)	1000-1040	4	a,b
100.0-0.0	k = 5.283 exp(- 9807.04167/RT)	1040-1240 (3	06) 4	a,b
	KBr-ZnS0 ₄			
7.29-72.71	k = 32.1122 exp(- 36158.73294/RT)	770-820	3	a,f
28.38-71.62	k = 18.7454 exp(- 31037.43126/RT)	770-820	3	a,f
31.00-69.00	k = 32.9384 exp(- 34673.8065/RT)	770-820	3	a,f
32.36-67.64	k = 35.4437 exp(- 35414.80529/RT)	770-820	3	a,f
33.38-66.62	k = 56.7977 exp(- 39059.13026/RT)	770-820	3	a,f
34.50-65.50	k = 11.1585 exp(- 28032.01378/RT)			
35.00-65.00	k = 36.0838 exp(- 35761.24629/RT)	770-820	3	a,f
36.10-63.90		770-820	3	a,f
	k = 74.186 exp(- 40333.59799/RT)	770-820	3	a,f
37.82-62.18	k = 70.9028 exp(- 39851.17472/RT)	750-820	3	a,f
40.00-60.00	k = 39.497 exp(- 35451.2067/RT)			

Table 2.3.a Electrical Conductance data (continued)

(mo1 %)					
	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
0.63-59.37	k = 55.7572 exp(- 37636.96487/RT)	750-820		3	a,f,
5.08-54.92	k = 45.5397 exp(- 34582.59377/RT)	750-820		3	a,f,
0.00-50.00	k = 32.1134 exp(- 31283.87298/RT)	750-820		3	a,f,
2.28-47.72	k = 37.3241 exp(- 31803.11607/RT)	750-820		3	a,f,
5.10-44.90	k = 37.7557 exp(- 31249.98202/RT)	750-820		3	a,f,
0.44-39.56	k = 38.4645 exp(- 30677.18283/RT)	750-820		3	a,f,
4.91-35.09	k = 69.1932 exp(- 32968.79797/RT)	750-820		3	a,f,
For additional	KBr systems, see : AgBr- ; AgCl- ; AlBr ₃ - ; BaBr ₂ - ; CaCl ₂ - ; CdBr ₂ - ; CsCl- ; HgE	Br ₂ - ; InBr ₃ -			
	KCH0 ₂				
00	k = 13.8712 exp(- 16004.90456/RT)	580-600	n.a.	3	a,f
	KCH02-KC2H302				
-100	k = 31.8579 exp(- 24562.58294/RT)	580-600	(307)	3	a, f
0-50	k = 19.2595 exp(- 20004.87548/RT)	580-600	(00.7)	3	a,f
5-25	k = 16.1459 exp(- 18026.64719/RT)	580-600		3	a,f
7-13	k = 14.5439 exp(- 16945.4835/RT)	580-600		3	a, t a, f
93-7	k = 13.9891 exp(- 16431.6797/RT)	580-600		3	a,ı a,f
100-0	k = 13.8712 exp(- 16004.90456/RT)	580-600	(308)	3	a,i a,f
	KC1	300-000	(000)		α,1
00	k = 6.9475 exp(- 10100.34498/RT)	1063-1198	3 ±1.5%	1	a,c,
-100	k = 9.2756 exp(- 9767.71142/RT)	1140-1270	(309)	2	a, f
2-88	k = 8.5987 exp(- 9683.61161/RT)	1110-129	0	2	a,f
7-63	k = 8.2617 exp(- 10336.32653/RT)	1030-127	0	2	a,f
0-50	k = 8.3205 exp(- 10854.31439/RT)	1030-124		2	a,f
3-37	k = 7.8889 exp(- 10753.47831/RT)	1000-124		2	a,f
5-25	k = 8.4356 exp(- 11653.47176/RT)	1000-125		2	a,f
38-12	k = 6.7314 exp(- 10079.00622/RT)	1030-127		2	a,f
100-0	k = 6.4563 exp(- 9454.74298/RT)	1060-127		2	a,f
	KC1-KI		,- ,		
) - 100	k = 4.846 exp(- 10405.78209/RT)	960-1180	(311)	2	a,f
5.04-93.96	k = 5.4285 exp(- 11419.16384/RT)	970-1170		2	a,f
5.30-84.70	k = 5.275 exp(- 10881.09244/RT)	950-1170		2	a,f
24.67-75.33	k = 5.5968 exp(- 11176.90619/RT)	910-1170		2	a,f
15.15-54.85	k = 6.4463 exp(- 11949.70392/RT)	890-1170		2	a,f
61.12-38.88	k = 9.4064 exp(- 14980.64423/RT)	920-1170		2	a,f
80.22-19.78	k = 7.0859 exp(- 11584.0162/RT)	990-1170		2	a,f
100-0	k = 6.9475 exp(- 10100.34498/RT)	1060-119		2	a,f
	кс1-кон-к ₂ со ₃	,,,,,,	- (0.2)	_	-,
1.3-97.1-1.6	k = 12.5737 exp(- 9853.06644/RT)	680-860		3	a,f
3.9-94.4-1.7	k = 13.4993 exp(- 11027.53489/RT)	680-860		3	a,f
4.0-94.3-1.7	k = 14.0967 exp(~ 11381.08881/RT)	680-860		3	a,f
7.9-90.4-1.7	k = 13.6161 exp(- 11759.32874/RT)	680-860		3	a,f
8.3-90.0-1.7	k = 13.5575 exp(- 11703.2622/RT)	680-860		3	a, f
12.0-86.3-1.7	k = 14.092 exp(- 12505.76682/RT)	680-860		3	a,f
12.4-85.8-1.8	k = 13.9527 exp(- 12378.5711/RT)	680-860		3	a,f
100-0 KP03	KC1-KP03	1123	(313)	3	a
	KC1-K ₂ ZrF ₆		,	-	-
0-100	k = 10.888 exp(- 14804.91329/RT)	1073-125	3 (314)	3	a,f
15-85	k = 6.105 exp(- 9437.16989/RT)	1073-117		3	a, f
15-65 25-75	k = 4.987 exp(- 7548.06228/RT)	1073-117		3	a, r a, f
LU: 70	k = 7.815 exp(- 11515.39745/RT)			ა 3	
22_67	K = /.010 EXD(= 11010.09/40/K1)	1073-117	v	ა	a,f
		1070 117	2	•	
33-67 40-60 50-50	k = 7.413 exp(- 10838.41493/RT)	1073-117 1073-117		3 3	a,f a,f

		Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation	$(R = 8.31441 \ J \ K^{-1} \ mol^{-1})$	T range(K)	Accur.	Ref.	Commen
75-25	k = 10.016 exp(- 13854.71099/	RT)	1073-1173		3	a,f
30-20	k = 6.411 exp(- 9543.86367/RT)	1073-1173		3	a,f
100-0	k = 6.106 exp(- 9108.72039/RT	·)	1073-1173	(315)	3	a,f
		KC1-K3P04				
10-0 K3PO4	k = 2.275 - 0.0612 C + 7.91 x	10-4 C ²	1123	(316)	3	а
		KC1-K4P207				
30-0 K4P207	k = 2.16 - 0.1013 C + 0.00203	C ²	1123	(317)	3	a
		KC1-LaC13				
0.0-100.0	k = 11.701 exp(~ 21973.06201/	RT)	1170-1300	(318)	5	b,f
15.5-84.5	k = 13.476 exp(~ 23584.34737/	RT)	1160-1260		5	b,f
30.1-69.9	k = 13.982 exp(~ 23322.00618/	(RT)	1090-1210	ļ	5	b, f
0.7-59.3		रा)	1100-1210	ı	5	b, f
9.7-50.3		(RT)	1080-1210		5	b, f
31.7-38.3	·	(RT)	1050-1210		5	b,f
75.1-24.9	·		1060-1220		5	b, f
		RT)				•
36. 1-13.9		RT)	1070-1230		5	b, t
94.8-5.2		रा)	1080-1230		5	b,f
00.0-0.0	k = 6.075 exp(- 9736.33089/R)	")	1070-1200	(319)	5	b, f
		KC1-LiC1				
- 100	$k = 13.662 \exp(-6433.84444/F)$	रा)	910-1050	(320)	5	a, 1
8.23-81.77	k = 13.886 exp(- 9982.35421/F	₹₹)	810-890		5	a,
9.64-70.36	k = 19.585 exp(- 13822.91206)	/RT)	730-870		5	а,
1.20-58.80	k = 23.021 exp(- 16204.90311)	/RT)	670-850		5	а,
9.55-40.45	k = 13.21 exp(- 13995.71415/	रा)	870-1010		5	a,
30.04-19.96	k = 8.595 exp(- 11537.15462/	RT)	990-1110		5	a,
100-0	k = 7.004 exp(- 10176.91346/	RT)	1070-1190	(321)	5	a,
		KC1-MgC1 ₂				
0. 0-100. 0	k = 6 627 exp(- 15353 86327/	RT)	980-1020	(322)	5	a,
6.0-84.0		RT)		(322)		-
7.9-72.1		RT)	930-1020		5	а,
1.2-58.8			880-1020		5	a,
		RT)	830-1020		5	a,
18.0-52.0		T)	830-1020		5	a,
51.2-48.8		RT)	830-1020		5	a,
54.5-45.5)	830-1020		5	a,
50.1-39.9		RT)	830-1020		5	a,
63.0-37.0	k = 8.373 exp(~ 15653.44268/	RT)	830-1020		5	a,
66.0-34.0	k = 8.65 exp(- 15909.92618/R	T)	830-1020		5	a,
58.2-31.8	k = 8.356 exp(- 15588.17119/	RT)	830-1020		5	a,
75.5-24.5	k = 10.015 exp(+ 16793.18335	/RT)	830-1020		5	a,
78.0-22.0	k = 11.509 exp(~ 17822.46457	/RT)	830-1020		5	a,
81.5-18.5		RT)	880-1020		5	
		KC1-MnC1 ₂	300 1020		Ş	a,
D-100	k = 4 9986 pvn/= 0300 03466/	RT)	0.0	(888.	_	
20-80			940-1120	(323)	5	a,
		RT)	880-1120		5	a,
30-70		RT)	840-1120		5	a,
35-65		RT)	780-1120		5	a,
15-55		RT)	780-1120		5	a,
50-50	k = 6.077 exp(- 12489.86736/	RT)	780-1120		5	a,
55-45	k = 6.679 exp(- 13428.77267/	RT)	780-1120		5	а,
65-35	k = 6.516 exp(- 12973.54585/	RT)	780-1120		5	a,
70-30	k = 6.676 exp(- 12926.26586/	RT)	780-1120		5	a,
75-25		RT)	840-1120		5	a,
					•	۵,
80-20	k = 9.302 exp(- 15391.1015/R	rt)	940-1120		5	a,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)			
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K) Accur	Ref.	Comment
	KC1-NaBr			
-100	k = 7.241 exp(- 7860.61231/RT)	1073-1123 (32	25) 2	a,f
D- 9 0	k = 6.653 exp(- 7721.28278/RT)	1073-1123	2	a,f
08-0	k = 8.425 exp(- 10352.22599/RT)	1073-1123	2	a,f
0-70	k = 6.579 exp(- 8561.02563/RT)	1073-1123	2	a,f
0-60	k = 7.837 exp(- 10483.60579/RT)	1073-1123	2	a,f
0-50	k = 7.192 exp(- 9979.00695/RT)		2	a,f
0-40	k = 5.981 exp(- 8526.29785/RT)		2	a,f
0-30	k = 7.223 exp(- 10365.61502/RT)		2	a,f
0-20	k = 8.753 exp(- 12199.07449/RT)		2	a,f
0-10	k = 7.977 exp(- 11451.79959/RT)		2	a,f
00-0	k = 7.252 exp(- 10642.18205/RT)		26) 2	a, r a, f
00 0	KC1-NaC1		10) 2	а,т
.00-100.00	k = 9.017 exp(- 8236.3418/RT)	1080-1290 (3.	27) 5	a,f
5.23-84.77	k = 8.536 exp(- 8689.89498/RT)		5	a, f
7.06-72.94	k = 8.459 exp(- 9350.97804/RT)		5	
4.85-65.15	k = 8.547 exp(- 9825.03317/RT)		=	a,f
8.77-51.23			5	a,f
	k = 8.12 exp(- 10056.41225/RT)		5	a,f
9.00-41.00	k = 8.213 exp(- 10557.66383/RT)		5	a,f
9.60-20.40	k = 7.084 exp(- 9915.82749/RT)		5	a,f
00.00-0.00	k = 7.084 exp(- 10289.04654/RT)	1060-1190 (3	28) 5	a,f
	KC1-NaI			
-100	k = 7.3557 exp(- 8919.18202/RT)	,-	29) 2	a,f
5.0-85.0	k = 9.0292 exp(- 11381.08881/RT)	**	2	a,f
3.3-66.7	k = 10.1966 exp(- 13053.04318/RT)	810-1070	2	a,f
0-50	k = 9.496 exp(- 13176.89165/RT)	830-1070	2	a,f
6.7-33.3	k = 10.6857 exp(- 14173.95553/RT)		2	a,f
85.0-15.0	k = 9.5149 exp(- 13126.2644/RT)	970-1070	2	a,f
00-0	k = 9.14 exp(~ 12594.0507/RT)	1060-1140 (3	30) 2	a,f
	KC1-Na ₂ S0 ₄			
0-80	k = 7.87138 exp(- 11714.97759/RT)	980-1060	3	a,f,
1-69	k = 8.7359 exp(- 12581.49849/RT)	980-1060	3	a,f,
1-59	k = 9.53875 exp(~ 13946.34212/RT)	980-1060	3	a,f,
1-49	k = 16.558 exp(- 19322.03526/RT)	920-1060	3	a,f,
1-39	k = 14.0572 exp(- 18519.94904/RT)	920-1070	3	a,f,
31~19	k = 11.8871 exp(- 17017.0311/RT)		3	a,f
	KC1-NdC13		-	-,-,
00-0 NdC13	$k = 73.3 - 0.562 \text{ C} + 0.01763 \text{ C}^2 - 3.0884 \text{ x} \cdot 10^{-4} \text{ C}^3 + 2.2589 \text{ x} \cdot 10^{-6}$	C ⁴ 1073 (3	31) 5	a,n,
	KC1-PbC1 ₂			-,
) - 100	k = 15.55 exp(- 15183.99003/RT)		32) 5	
				a,f
10-90	k = 14.382 exp(- 14814.11824/RT)		5	a,f
15-85	k = 15.477 exp(- 15581.89509/RT)		5	a,f
8.07-81.93	k = 14.604 exp(- 15421.2268/RT)		5	a,f
20-80	k = 12.484 exp(- 14356.38098/RT)		5	a,f
23-77	k = 11.449 exp(- 13845.08763/RT)		5	a, f
33-67	k = 10.633 exp(- 13840.90356/RT)		5	a, f
0-60	k = 11.405 exp(- 14611.19085/RT)		5	a,f
60-50	k = 9.645 exp(- 13922.49293/RT)		5	a, f
8.33-41.67	k = 9.24 exp(- 13922.91133/RT)		5	a,f
70-30	k = 9.069 exp(- 13979.39628/RT)		5	a,f
	k = 8.17 exp(- 13102.41521/RT)		5	a,f
5-25				•
	k = 8.09 exp(- 12867.68888/RT)	780-960	5	a.f
75-25 80-20 85-15	k = 8.09 exp(- 12867.68888/RT)		5 5	a,f a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)			
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K) Accur.	Ref.	Comment
	KC1-PrC13			
- 100	k = 14.69999 exp(- 24198.06676/RT)	1071-1262 (333	3) 17	k
4.9-75.1	k = 15.97074 exp(- 25154.04307/RT)	984-1250	17	k
7.0-63.0	k = 16.30655 exp(- 25135.17291/RT)	881-1242	17	k
0.3-49.7	k = 10.4017 exp(- 20645.58212/RT)		17	k
32.2-37.8	k = 7.58338 exp(- 17290.7948/RT)		17	k
75.0-25.0	k = 5.815425 exp(- 13389.81897/RT)		17	k
37.4-12.6	k = 6.205616 exp(- 11711.63034/RT)		17	k
100-0	k = 6.451048 exp(- 9230.1421/RT)			k
0-100 KC1	* * * * * * * * * * * * * * * * * * * *			
7- 100 KC1	$k = 77.18 - 0.4777 C + 0.012484 C^2 - 2.4683 \times 10^{-4} C^3 + 2.0545 \times 10^{-6} ($ KC1-RbBr	C ⁴ 1073 (335	5) 5	a,n,
- 100	k = 4.4159 exp(- 10568.12401/RT)	1043-1123 (338	5) 2	a,f
10-90	k = 5.4011 exp(- 11967.69542/RT)	1043-1123	2	a, f
20-80	k = 5.2131 exp(- 11178.57982/RT)		2	
30-70	k = 5.2143 exp(- 10790.29812/RT)	1043-1123		a,f
		1043-1123	2	a,f
10-60	k = 6.0078 exp(- 11718.74326/RT)		2	a,f
50-50	k = 6.0082 exp(- 11241.75928/RT)	1043-1123	2	a,f
50-40	k = 6.4862 exp(- 11519.99993/RT)	1043-1123	2	a,f
70-30	k = 6.7943 exp(- 11497.82436/RT)	1043-1123	2	a,f
30-20	k = 8.9132 exp(- 13501.99389/RT)	1043-1123	2	a,f
90-10	k = 7.1561 exp(- 11016.2379/RT)	1043-1123	2	a,f
100-0	k = 6.5967 exp(- 9745.11744/RT)	1043-1123 (33	7) 2	a,f
	KC1-RbC1			
- 100	k = 6.246 exp(- 11673.97371/RT)	1020-1190 (33	8) 5	a,f
25-75	k = 6.49 exp(- 11530.87851/RT)	1060-1140	5	a,f
50-50	k = 6.508 exp(- 10928.37243/RT)	1070-1190	5	a,f
75-25	k = 6.886 exp(- 10806.19759/RT)	1070-1180	5	a,f
100-0	k = 7.165 exp(- 10404.52687/RT)	1060-1190 (33	9) 5	a,f
	KC1-ScC13			
30-70	k = 5.247 exp(- 14306.59055/RT)	1153-1233	5	a,f
40-60	k = 5.071 exp(- 13496.97301/RT)	1133-1233	5	a,f
50-50	k = 9.354 exp(- 18604.46726/RT)	913-1233	5	a,f
60-40	k = 6.088 exp(- 13381.49267/RT)	1073-1233	5	a,f
70-30	k = 11.944 exp(- 19606.13361/RT)	1113-1233	5	a,f
80-20	k = 9.192 exp(- 15186.50047/RT)	1073-1233	5	a,f
90-10	k = 8.451 exp(- 12983.16921/RT)	1033-1233	5	a,f
100-0	k = 6.721 exp(- 10086.53755/RT)		0) 5	a,f
	KC1-SnC12			
0-100	k = 17.095 exp(- 13010.36567/RT)	573-623 (34	1) 5	a,f
5-95	k = 19.966 exp(- 13814.96233/RT)	573-623	5	a,f
10-90	k = 14.766 exp(+ 12468.94701/RT)	573-623	5	a,f
15-85	k = 11.371 exp(- 11399.49872/RT)		5	a,f
20-80	k = 12 exp(- 11866.44093/RT)		5	a,f
25-75	k = 13.743 exp(- 12809.53031/RT)		5	
30-70				a,f
35-65	k = 10.902 exp(- 12076.48124/RT)		5	a,f
	k = 13.289 exp(- 13404.50506/RT)		5	a,f
40-60	k = 13.012 exp(- 14010.7768/RT)		5	a,f
45-55	k = 13.134 exp(- 15096.12456/RT)		5	a,f
50-50	k = 23.14 exp(- 18550.07435/RT)		5	a,f
52-48	k = 15.573 exp(- 16247.58062/RT)	573-623	5	a,f
55-45	(T=623 K, k=0.702)		5	a,f
	KC1-SrC1 ₂			
0-100	k = 15.197 exp(- 19663.87378/RT)	1148-1273 (34	2) 19	k
10-90	k = 10.68 exp(- 16806.99078/RT)	1098-1273	19	k
00 00	k = 12.011 exp(- 18481.874/RT)	1023-1273	10	k
20-80	K = 12.017 GAP(= 10401.074/RI)		19	Α.

Table 2.3.a Electrical Conductance data (continued)

(1 B/)	Conductance (ohm-1 cm-1)				_
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K) Acc	cur.	Ref.	Commen
0-60	k = 11.606 exp(- 18762.20669/RT)	923-1273		19	k
0-50	k = 11.061 exp(- 18369.74093/RT)	923-1273		19	k
0-40	k = 10.813 exp(- 17927.90314/RT)	923-1273		19	k
0-30	k = 11.977 exp(- 18764.71714/RT)	923-1273		19	k
0-20	k = 10.114 exp(- 16109.92472/RT)	923-1273		19	k
0-10	k = 8.666 exp(- 13471.03177/RT)	973-1273		19	k
00-0	k = 6.635 exp(- 9735.49408/RT)	1073-1273	(343)	19	k
	KC1-ThC1 ₄				
- 100	k = 10.135 exp(- 25542.91054/RT) ,	1075-1173	(344)	24	k
4.7-75.3	k = 9.836 exp(- 24156.72815/RT)	973-1123		24	k
5.5-64.5	k = 10.792 exp(- 24355.47147/RT)	853-1123		24	k
4.1-55.9	k = 8.54 exp(- 20950.4753/RT)	723-1073		24	k
0.3-49.7	k = 8.077 exp(- 19828.72614/RT)	743-1073		24	k
3.1-41.9	k = 6.347 exp(- 17200.29336/RT)	773-1073		24	k
3.6-36.4	k = 5.366 exp(- 15177.71393/RT)	903-1073		24	k
9.5-30.5	k = 5.532 exp(- 14798.21878/RT)	973-1123		24	k
4.2-25.8	k = 6.774 exp(- 15698.21223/RT)	993-1123		24	k
9.4-20.6	k = 6.549 exp(- 14596.96501/RT)	973-1123		24	k
3.8-16.2	k = 6.768 exp(- 13878.9786/RT)	953-1123		24	k
00-0	k = 7.396 exp(- 10663.93921/RT)	1075-1173	(345)	24	k
	KC1-TiCl3		,		
-50 TiCl3	k = 2.304 - 0.07632 C + 0.0030631 C ² - 7.0853 x 10 ⁻⁵ C ³ + 6.2519 x 10 ⁻⁷ C ⁴	1073	(346)	5	a,n
v	KC1-UC13		(0,0)	٠	۵,
9.6-50.4	k = 10.624 exp(- 22188.96002/RT)	870-1100		5	
9.9-40.1	k = 5.998 exp(- 16387.32856/RT)	930-1190		5	a,f
1.2-28.8	k = 5.406 exp(- 13871.02886/RT)	970-1110		5	a, f
5.0-25.0	k = 6.412 exp(- 15343.8215/RT)	950-1060		5	a,f
1.1-18.9	k = 6.919 exp(- 14577.29988/RT)			5	a, f
5.0-5.0	k = 5.016 exp(- 8830.47974/RT)	910-1060 1060-1230		5	a,f
0.0 0.0	KC1-UC1₄	1000-1230		9	a,f
. 00-100.00	k = 5.216 exp(- 18104.06248/RT)	872-1001	(347)	5	
. 47-95 . 53	k = 6.946 exp(- 20007.38593/RT)		(347)		a,f
.66-90.34	k = 6.386 exp(- 18987.72807/RT)	870-890		5	a,f
6.74-83.26	k = 6.784 exp(- 18912.41481/RT)	850-910		5	a,f
5.76-74.24	k = 5.881 exp(- 17328.74431/RT)	840-890		5	a,f
5.65-64.35	h = 4 100 pun/ 14000 00044 (DT)	800-910		5	a,f
6.30-53.70		830-910		5	a,f
4.38-45.62	k = 4.246 exp(- 13971.86495/RT)	840-920		5	a,f
4.30-40.02	k = 4.212 exp(- 13466.01089/RT)	850-930		5	a,f
- 100	•	4000 4400	(0.0)		
	k = 27.893 exp(- 34680.91942/RT)		(348)	25	k
9.64-80.36	k = 16.209 exp(- 27715.69809/RT)	903-1023		25	k
7.41-62.59	k = 14.224 exp(- 24870.53049/RT)	823-933		25	k
3.74-46.26	k = 19.138 exp(- 25995.2085/RT)	723-903		25	k
0.49-29.51	k = 6.968 exp(- 16524.14765/RT)	1073-1173		25	k
7.99-22.01	k = 8.521 exp(- 16781.04955/RT)	1063-1153		25	k
0-20	k = 10.379 exp(- 18399.86623/RT)	1073-1163		25	k
5.47-14.53	k = 10.876 exp(- 17808.65714/RT)	993-1143		25	k
1-9	k = 9.058 exp(- 14804.07647/RT)	1003-1153		25	k
	KC1-ZnC1 ₂				
.00-100.00	$k = -0.9757 + 0.0055534 T - 1.04507 \times 10^{-5} T^2 + 6.5176 \times 10^{-9} T^3 \dots$	610-850	(349)	5	а,п
.72-94.28	k = 0.1026 + 6.75 x 10 ⁻⁵ T - 1.6401 x 10 ⁻⁶ T ² + 2.1337 x 10 ⁻⁹ T ³	590-890		5	a,n
. 98-91. 02	k = 1.3224 - 0.0047385 T + 4.295 x 10 ⁻⁶ T ²	590-870		5	a,n
0.80-79.20	k = 36.0389 exp(- 27997.286/RT)	590-870		5	a,f
3.80-66.20	$k = 1.1729 - 0.0075411 T + 1.3649 \times 10^{-5} T^2 - 6.1321 \times 10^{-9} T^3 \dots \dots$	530-850		5	a,r
7.00-53.00	$k = 1.1202 - 0.0076752 T + 1.45618 \times 10^{-5} T^2 - 6.8193 \times 10^{-9} T^3 \dots$	510-870		5	a,n
4.10-45.90	k = 18.9544 exp(- 20846.29196/RT)	550-870		5	a, f

1-1)				
) T ra	ange(K)	Accur.	Ref.	Comment
	710-730		5	a,f
·	**		-	
	770-820		3	a,f,c
	750-820		3	a,f,0
	750-820		3	a,f,c
	750-820		3	a,f,0
	750-820		3	a,f,0
	770-820		3	a,f,
	750-820		3	a,f,
	750-820		3	a, f,
	750-820		3	a,f,
	750-820		3	a,f,
	750-820		3	a,f,
	750-820		3	a,f,
	750-820		3	a,f,
	750-820		3	a,f,
	750-820		3	a,f,
	750-820		3	a,f,
	750-820		3	a,f,
	750-820		3	a,f,
Br ₂ - ; CaCl ₂ - ; CaCrO ₄	- ; CdC1 ₂	- ; CsBr-	; CsCl-	; CuC1- ;
	930-1010		3	
	870-1010		3	a,f,
			3	a,f,
	920-1020			a,f,
	870-1010		3	a,f,
	920-1020		3	a,f,
	920-1020		3	a,f,
	920-1060		3	a,f,
	870-1010 920-1020		3	a,f,
	920-1020		3	a,f,
	620-700	(350)	3	
	620-700	(350)	3	a,f
	620-700		ა 3	a,f
	650-700		3	a,f
	700-750		3	a,f
	700-750		_	a,f
			3	a,f
	750-800		3	a,f
	800-875		3	a,f
	F.10. 000		_	
	543-633	(351)	6	a,f
	530-630		6	a,f
	520-610		6	a,f
	500-640		6	a,b,
	550-630		6	a,f
			_	
	540-680	(352)	3	a,f
	540-680		3	a,f
	520-680		3	a,f
	580-680		3	a,f
	660-680		3	a,f

Table 2.3.a Electrical Conductance data (continued)

		ce (ohm ⁻¹ cm ⁻¹)			
(mo1 %)	Equation (R = 8.31441	J K ⁻¹ mol ⁻¹) T range(K)	Accur.	Ref.	Comment
	KC104-	NaN03			
-100	k = 11.2715 exp(- 11798.65899/RT)	600-680	(353)	3	a,f
0-90	k = 12.2734 exp(- 12909.94799/RT)			3	a,f
2-78	k = 11.9965 exp(- 13413.29161/RT)			3	a,f
0-60	k = 10.3001 exp(- 13787.76587/RT)	640-680		3	a,f
	KC ₂ +				_,.
100	k = 31.8579 exp(- 24562.58294/RT)			3	a,f
For addition	nal KC ₂ H ₃ O ₂ systems, see : KCHO ₂ -				
		F			
100	k = 10.002 exp(- 9731.72841/RT)		35 ±5%	1	a,f
0 -10 0	k = 4.4871 exp(- 9729.21797/RT)	970-118	(354)	2	a,f
12-88	k = 6.3283 exp(- 13193.20952/RT)			2	a,f
25-75	k = 6.922 exp(- 13665.17262/RT))	2	a,f
37-63	k = 7.5046 exp(- 14107.01041/RT)	1000-119	30	2	a,f
50-50	k = 6.048 exp(- 11484.85374/RT)			2	a,f
63-37	k = 6.9949 exp(- 12176.06211/RT)			2	a,f
75-25	k = 7.0164 exp(- 10955.15048/RT)			2	a,f
38-12	k = 10.0541 exp(- 12668.52715/RT)			2	a,f
100-0	k = 9.2835 exp(- 9774.82433/RT)			2	a,i a,f
.00		2S1F ₆	70 (333)		۵,۱
47.7-52.3	k = 7.12223 exp(- 14375.62771/RT)		70	3	a,f
	KF-K	2 ^{ZrF} 6			
0-100	k = 10.888 exp(- 14804.91329/RT)	1073-12	53 (356 [°])	3	a,d,
10-90	k = 6.774 exp(- 9507.46226/RT)	1233-12	53	3	a,d,
20-80	k = 6.813 exp(- 9079.85031/RT)	1233-12	53	3	a,d,
25-75	k = 8.45 exp(- 10755.15194/RT)			3	a,d,
30-70	k = 6.896 exp(- 8363.95593/RT)		•	3	a,d,
33-67	k = 6.933 exp(- 8121.27987/RT)			3	a,d,
40-60	k = 8.47 exp(- 9449.7221/RT)			3	a,d,
50-50	k = 13.984 exp(- 13331.28383/RT)			3	
					a,d,
60-40	k = 13.855 exp(- 12892.37489/RT)			3	a,d,
67-33	k = 10.237 exp(- 8941.35759/RT)			3	a,d
75-25	k = 15.452 exp(- 12268.53005/RT)			3	a,d
80-20	k = 15.343 exp(- 11829.62111/RT)			3	a,d
90-10	k = 17.107 exp(~ 12014.1386/RT)		53	3	a,d
100-0	k = 20.84 exp(- 13007.85522/RT)		53 (357)	3	a,d
60 0 40 0		•	40		
60.0-40.0	k = 21.817 exp(- 24387.68881/RT)			14	a,f
70.0-30.0	k = 19.436 exp(- 22619.91923/RT)			14	a,f
80.0-20.0	k = 15.378 exp(- 18633.33734/RT)		40	14	a,f
90.0-10.0	k = 11.519 exp(- 13422.91497/RT)		40	14	a,f
100.0-0.0	k = 9.9064 exp(- 9248.04992/RT)		40 (358)	14	a,f
0.0-100.0	k = 20.471 exp(- 7768.14436/RT)	-LiF 	40 (359)	14	a,f
15.0-85.0	k = 18.447 exp(- 10859.33528/RT)			14	
30.0-70.0	• •				a,f
	k = 15.529 exp(- 12140.91592/RT)			14	a,f
50.0-50.0	k = 15.206 exp(- 13819.5648/RT)			14	a,f
65.0-35.0	k = 13.564 exp(- 12958.4832/RT)			14	a,f
80.0-20.0	k = 11.475 exp(- 11219.58371/RT)		340	14	a,f
100.0-0.0	k = 9.9064 exp(- 9248.04992/RT)	NaC1	340 (360)	14	a,f
33.4-66.6	k = 46.4832 exp(- 24515.30294/RT)		70	2	a, f
50-50	k = 33.9363 exp(- 20972.23247/RT)			2	a,f
66.7-33.3	k = 44.9363 exp(- 23248.78496/RT)			2	a,f

Table 2.3.a Electrical Conductance data (continued)

		Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
		KF-NaF				
0-100.0	k = 21.451 exp(~ 15165.16172/RT)		1310-1340	(361)	14	a,f
0.0-80.0	k = 11.811 exp(- 10128.37825/RT)		1230-1340		14	a,f
0.0-60.0	k = 11.617 exp(- 10435.90739/RT)		1110-1340		14	a, f
0.0-40.0	k = 11.719 exp(- 11340.92174/RT)		1050-1340		14	a, f
5.0-25.0	k = 13.199 exp(- 12183.59343/RT)		1080-1340		14	a,f
8.0-12.0	k = 11.604 exp(- 11025.02445/RT)		1090-1340		14	a,f
00.0-0.0	k = 9.9064 exp(- 9248.04992/RT)		1140-1340	(362)	14	a, f
		KF-SmF ₃				
0.0-50.0	k = 22.366 exp(- 26967.16796/RT)		1250-1340	•	14	a,f
0.0-40.0	$k = 18.141 \exp(-24606.09726/RT)$. 1130-1340)	14	a, f
0.0-30.0	k = 11.638 exp(- 18849.65376/RT)		. 1190-1340	1	14	a, f
0.0-20.0	k = 12.966 exp(- 17829.9959/RT)	· · · · · · · · · · · · · · · · · · ·	1110-1340)	14	a, f
0.0-10.0	k = 14.764 exp(- 16065.99199/RT)		. 1070-1340)	14	a, f
00.0-0.0	$k = 9.9064 \exp(-9248.04992/RT)$		1140-1340	(363)	14	a, f
		KF-ThF4				
2.5-27.5	$k = 12.797 \exp(-21500.2621/RT)$.		1130-1340)	14	a, 1
0.3-19.7	k = 11.572 exp(- 18215.34875/RT)				14	a, f
5.3-13.7	$k = 10.841 \exp(-14865.5823/RT)$.		1150-1340		14	a,1
2.9-7.1					14	a, i
00.0-0.0			1140-1340		14	a, 1
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	KF-UF₄	,,,,,	(551)		۵,۰
0.0-50.0	k = 9.48 exp(- 18083.13213/RT)		. 1110-1340	1	14	a, f
0.0-40.0			1180-1340		14	a, i
0.0-30.0	k = 10.136 exp(- 19379.77543/RT)		. 1210-1340		14	a, a,
0.0-20.0			1220-1340		14	a,
2.5-7.5					14	a, a,
00.0-0.0			1140-1340		14	a, a,
		KF-YF3	1140 1040	(000)		۵,
7.5-52.5	k = 31 038 exp(- 31023 20542/RT)		1150-1240	,	14	
7.5-42.5					14	a, 1
0.0-30.0					14	a,1
2.5-17.5					14	a, 1
2.5-7.5			1210-1340		14	a, 1
00.0-0.0					14	a,f
	K - 3.3004 EAD(- 3240.04352/RT)	KF-ZrFa	1140-1340	(366)	14	a,1
.0-33.3 ZrF₄	k = 5 85 - 0 04785 C - 0 001570 C2		4000			
	k = 3.63	,	. 1233	(367)	14	a,r
For additiona	KF systems, see : A1F3- ; CeF3- ; KBF	4- ; KBr- ; KC1-				
		KI				
00	$k = 4.846 \exp(-10405.78209/RT)$		959-1184	±2.5%	1	a,
		KI-Lai3				
-100	k = 10.544 exp(- 27770 5094/RT)	• • • • • • • • • • • • • • • • • • • •	1002 1102	(000)		
0-90			1093-1193	,,	4	а,
0-80			1093-1193		4	a,
0-70					4	а,
0-60			1093-1193		4	а,
0-50					4	a,
0-40			1093-1193		4	a,
0-30			1093-1193		4	a,
			1093-1193		4	a,
0-20			1093-1193		4	a,
0-10			1093-1193	3	4	a,
00-0	$K = 6.291 \exp(-12717.48077/RT)$		1093-119	3 (369)	4	a,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)			
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K) Accur.	Ref.	Comment
	KI-LiI			
. 0-100.0	k = 10.028 exp(- 5864.39251/RT)	770-910 (370)	4	a,f
8.4-71.6	k = 7.066 exp(- 7314.17277/RT)	860-1010	4	a,f
5.0-65.0	k = 6.362 exp(- 7649.31677/RT)	880-1020	4	a,b,
8.6-51.4	k = 5.481 exp(- 7855.17302/RT)	910-1090	4	a,b,
5.9-24.1	k = 6.392 exp(- 11088.62231/RT)	920-1040	4	a,f
7.0-23.0	k = 6.67 exp(- 12171.04122/RT)	920-1040	4	a,f
00.0-0.0	k = 5.187 exp(- 10981.51012/RT)	1000-1160 (371)	4	a,b,
	KI-NaC1			
5.0-85.0	k = 13.2081 exp(- 13018.73381/RT)	1000-1070	2	a,f
0.0-70.0	k = 11.0078 exp(- 12852.62623/RT)	920-1070	2	a,f
0.0-50.0	k = 9.6113 exp(- 13173.5444/RT)	830-1070	2	a,f
0.0-30.0	k = 8.9337 exp(- 13719.98394/RT)	850-1070	2	a,f
5.0-15.0	k = 7.8236 exp(- 13423.75178/RT)	910-1070	2	a,f
00-0	k = 5.803 exp(- 11917.48658/RT)	970-1070 (372)	2	a,f
	KI-NaI			
- 100	k = 5.414 exp(- 6393.25896/RT)	950-1120 (373)	4	a,f
0-80	k = 5.299 exp(- 7515.84494/RT)	950-1120	4	a,f
0-60	k = 5.041 exp(- 8140.945/RT)	950-1120	4	a,f
60-40	k = 4.969 exp(- 9037.5912/RT)	950-1120	4	a,f
30-20	k = 4.946 exp(- 9852.64804/RT)	950-1120	4	a,f
00-0	k = 5.236 exp(- 11046.78161/RT)	980-1120 (374)	4	a,f
	KI-NdI ₃			
- 100	k = 9.437 exp(- 28271.34258/RT)	1093-1197 (375)	4	a,f
0-90	k = 5.329 exp(- 21966.3675/RT)	1093-1197	4	a,f
20-80	k = 2.716 exp(- 14952.19255/RT)	1093-1197	4	a,f
30-70	k = 4.367 exp(- 18507.81524/RT)	1093-1197	4	a,f
10-60	k = 4.843 exp(- 18852.1642/RT)	1093-1197	4	a,f
50-50	k = 5.181 exp(- 18630.40849/RT)	1093-1197	4	a,f
60~40	k = 4.156 exp(- 15581.89509/RT)	1093-1197	4	a,f
70-30	k = 6.274 exp(- 18321.20572/RT)	1093-1197	4	a,f
30-20	k = 5.542 exp(- 15574.36376/RT)	1093-1197	4	a,f
30-10 30-10	k = 5.442 exp(- 13389.86081/RT)	1093-1197	4	a,f
100-0	k = 6.291 exp(- 12717.48077/RT)	1093-1197 (376)		a, i a, f
				,
	KI-PbI ₂	720-070 (277		
0-100	k = 6.445 exp(- 14150.52474/RT)	730-970 (377 680-970) 4 4	a,f
10-90	k = 6.413 exp(- 14402.82416/RT)		4	a,f
20-80	k = 6.612 exp(- 14888.17628/RT)	650-970	4	a,f
30-70	k = 6.523 exp(- 15039.63962/RT)	650-970		a,f
33-67	k = 7.215 exp(- 15900.30281/RT)	650-970	4	a,f
40-60	k = 7.448 exp(- 16065.57358/RT)	650-970	4	a, f
50-50	k = 6.906 exp(- 15964.73749/RT)	780-970	4	a, f
60-40	k = 6.709 exp(- 15589.84482/RT)	830-970	4	a, f
80-20	k = 5.696 exp(- 13337.14153/RT)	930-970	4	a, f
100-0	k = 5.236 exp(- 11046.78161/RT)	980-1120 (378) 4	a,f
	Kî-RbI			
0-100	k = 4.132 exp(- 11789.45404/RT)	950-1100 (379		a,f
50-50	k = 4.645 exp(- 11557.23815/RY)	950-1120	. 4	a,f
100-0	k = 4.964 exp(- 10587.37073/RT)	1000-1170 (380) 4	a, i
	KI-TII			
0-100	k = 4.647 exp(- 12718.73599/RT)	913-970 (381) 4	a, 1
10-90	k = 4.68 exp(~ 12859.32074/RT)	913-970	4	a,f
20-80	k = 4.647 exp(- 12718.73599/RT)	913-970	4	a,f
30-70	k = 6.468 exp(~ 15055.95749/RT)	913-970	4	a, f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
0-60	k = 8.622 exp(- 16904.47961/RT)	913-970		4	a,f
0-50	k = 9.512 exp(- 17252.17583/RT)	913-970		4	a,f
0-40	k = 4.986 exp(- 11971.87949/RT)	913-970		4	a, f
0-30	k = 4.917 exp(- 11648.03247/RT)	913-970		4	a,f
0-20	k = 5.599 exp(- 12422.08542/RT)	913-970		4	a, f
10-10	k = 7.26 exp(- 14188.59978/RT)	913-970		4	a,f
00-0	k = 8.01 exp(- 14602.82271/RT)	970-1050	(382)	4	a,f
	KI-Zn\$0₄				
7.00-63.00	k = 107.292 exp(- 40851.58585/RT)	710-750		3	a,f,d
9.64-60.36	k = 140.141 exp(~ 41760.78426/RT)	710-750		3	a,f,
2.50-57.50	k = 199.817 exp(- 43639.8501/RT)	710-750		3	a,f,
5.09-54.91	k = 60.6334 exp(- 35594.3019/RT)	710-750		3	a,f,
7.42-52.58	k = 87.4444 exp(- 36942.40925/RT)	710-750		3	a,f,
50.00-50.00	k = 56.1051 exp(- 33252.47792/RT)	710-750		3	a,f,
For additions	al KI systems, see : AlI ₃ - ; CdI ₂ - ; DyI ₃ - ; GdI ₃ - ; HgI ₂ - ; KBr- ; KCl- ; KF-				
, , , , , , , , , , , , , , , , , , , ,	KND2				
00	k = 9.3374 exp(- 11922.50747/RT)	713-743	±5%	1	a,f
	KNO2-NANO2				
-100	k = 16.185 exp(- 11794.89333/RT)	580-610	(383)	7	a,f
			(353)		
-95	k = 13.992 exp(- 11279.41591/RT)	580-630		7	a,f
0-90	k = 13.396 exp(- 11252.63786/RT)	580-630		7	a,f
5-85	k = 13.534 exp(- 11476.90401/RT)	580-650		7	a,f
0-80	k = 13.444 exp(- 11605.77337/RT)	580-650		7	a,f
25-75	k = 12.997 exp(- 11558.91178/RT)	580-670		7	a,f
30-70	k = 13.671 exp(- 11966.4402/RT)	580-670		7	a,f
35-65	k = 13.392 exp(- 12016.64904/RT)	580~670		7	a,f
40-60	k = 12.862 exp(- 11916.23136/RT)	580-690		7	a,f
45-55	k = 12.448 exp(- 11878.57473/RT)	580-710		7	a,f
50-50	k = 12.366 exp(- 11970.62427/RT)	580~710		7	a,f
55-45	k = 11.904 exp(- 11945.51985/RT)	580-730		7	a,f
50-40	k = 11.179 exp(- 11782.34112/RT)	580~730		7	a,f
65-35	k = 10.616 exp(- 11652.63495/RT)	610-730		7	a,f
70-30	k = 10.701 exp(- 11872.29863/RT)	620-730		7	a, f
75-25	k = 10.638 exp(- 12012.46497/RT)	640-650		7	a,f
75-25	k = 10.6117 exp(- 11996.5655/RT)	650-730		7	a, f
80-20	k = 10.427 exp(- 12058.48974/RT)	660-730		7	a, f
90-10	k = 8.95 exp(- 11376.48633/RT)	700-730		7	a, f
100-0	k = 7.809 exp(- 10835.48608/RT)	720-730	(384)	7	a,f
For addition	al KNO ₂ systems, see : Ba(NO ₂) ₂ - ; Ba(NO ₃) ₂ - ; Ca(NO ₂) ₂ -				
	KNO ₃				
100	k = 9.1025 exp(- 13587.34892/RT)	615-780	±0.5%	3	đ
	KN03-K2Cr207				
0-100	k = 200.559 exp(- 38951.18126/RT)	675-740	(385)	3	a,f
5-95	k = 559.287 exp(- 45116.82681/RT)	620-740		3	a,f
10-90	k = 65.1919 exp(~ 32480.0986/RT)	620-740		3	a,f
15-85	k = 27.4194 exp(~ 27056.28866/RT)	680-740		3	a,f
20-80	k = 44.7488 exp(- 29647.48321/RT)	620-740		3	a,f
25-75	k = 41.9939 exp(- 28910.66848/RT)	620-740		3	a,f
30-70	k = 35.0968 exp(- 27504.82096/RT)	620-740		3	a, f
35-65	k = 35.2894 exp(- 27180.13713/RT)	620-740		3	a, r a, f
40-60	k = 36.2606 exp(- 26917.79594/RT)	620-740		3	
45-55	k = 28.7752 exp(- 25309.02102/RT)	620-740		3	a,f a,f
					a f

Table 2.3.a Electrical Conductance data (continued)

(3 - 7()	Conductance (ohm-1 cm-1)	_			_
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
5-45	k = 32.5982 exp(- 25310.69465/RT)	620-740		3	a,f
0-40	k = 23.4933 exp(- 23163.84833/RT)	620-740		3	a,f
5-35	k = 20.704 exp(- 22018.66838/RT)	620-740		3	a,f
0-30	k = 17.1904 exp(- 20113.2429/RT)	620-740		3	a,f
5-25	k = 14.6339 exp(- 18913.67003/RT)	620-740		3	a,f
0-20	k = 12.2857 exp(- 17229.58185/RT)	620-740		3	a,f
35-15	k = 12.5622 exp(- 16960.12775/RT)	620-740		3	a,f
90-10	k = 11.4838 exp(- 15988.16828/RT)	620-740		3	a,f
100-0	k = 15.1672 exp(- 17038.78826/RT)	620-740	(386)	3	a,f
	VAID 1:010		,,,,,		
) - 100	KN03-LiC104	F00 C00	(207)	•	
	k = 13.8486 exp(- 12768.52642/RT)	520-690	(387)	3	a,f
16-84	k = 13.4963 exp(- 13867.68161/RT)	480-680		3	a,f
30-70	k = 12.886 exp(- 15003.23821/RT)	580-680		3	a,f
50-50	k = 11.2744 exp(- 15228.34117/RT)	680-700		3	a,f
70-30	k = 10.0832 exp(- 15226.66754/RT)	660-700		3	a,f
35-15	k = 10.6026 exp(- 14991.94122/RT)	580-680		3	a,f
100-0	k = 9.67396 exp(- 13672.70395/RT)	620-690	(388)	3	a,f
	KNO3-LiNO3				
D-100	k = 20.354 exp(- 14108.26563/RT)	560-630	(389)	7	a,b,
25.20-74.80	k = 15.343 exp(- 13794.87879/RT)	560-640		7	a,f
49.88-50.12	k = 12.507 exp(- 13736.30181/RT)	560-700		7	a,f
76.69-23.31	k = 13.291 exp(- 14870.18478/RT)	550-690		7	a,f
100-0	k = 10.709 exp(- 14363.91231/RT)	630-690	(390)	7	a,f
		•	(55-7		
	KNO3-NaC1O4				
36-64	k = 9.03238 exp(- 13097.81273/RT)	670-710		3	a,f
45-55	k = 9.31567 exp(- 13575.21512/RT)	670-710		3	a,f
70-30	k = 8.53984 exp(- 13636.30254/RT)	630-690		3	a,f
86-14	k = 9.63857 exp(- 13914.54319/RT)	590-690		3	a,f
100-0	k = 9.67396 exp(- 13672.70395/RT)	620-690	(391)	3	a,f
	KN03-NaN02				
0-100	k = 20.0381 exp(- 15341.31106/RT) ,	623-683	(392)	7	a,g
20-80	k = 27.7674 exp(- 17417.4466/RT)	623-683		7	a,g
4060	k = 30.3498 exp(- 18348.82058/RT)	623-683		7	a,g
60-40	k = 23.6753 exp(- 17481.88127/RT)	623-683		7	a,g
80-20	k = 18.5788 exp(- 16753.85309/RT)	623-683		7	a,g
100-0	k = 8.06341 exp(- 12804.92783/RT)	623-683	(393)	7	a, g
,00 0	K = 0.00041 EAP(12004.32700/N1)	023-003	(050)	,	a, y
	KN03-NaN03				
0-100	k = 10.228 exp(- 11200.75539/RT)	610-720	(394)	7	a,f
24.91-75.09	k = 12.751 exp(- 13217.47713/RT)	580-670		7	a,f
49.69-50.31	k = 12.695 exp(- 13987.34601/RT)	560-690		7	a,f
75 . 15-24 . 85	k = 12.337 exp(- 14522.90697/RT)	560-690		7	a,f
100-0	k = 10.709 exp(- 14363.91231/RT)	630-690	(395)	7	a,f
	KNO3-RDNO3				
0-100	k = 9.3443 exp(- 15261.81373/RT)	590-670	(396)	7	a,f
10-90	k = 9.8759 exp(- 15379.3861/RT)	590-670		7	a,f
15-85	k = 9.4614 exp(- 15146.3334/RT)	590-670		7	a,f
20-80	k = 10.231 exp(- 15464.32272/RT)	570-670		7	a,f
25-75	k = 10.661 exp(- 15621.22535/RT)	570-670		7	a, f
30-70	k = 11.016 exp(- 15746.74745/RT)	570-670		7	a, i a, f
32.5-67.5	k = 11.616 exp(- 15949.67484/RT)				
		570-670		7	a,f
35-65	k = 11.189 exp(- 15750.93152/RT)	570-670		7	a,f
		570-670			a,f
37.5-62.5 40-60	k = 11.47 exp(- 15824.15274/RT)				7 7

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Commen
5-55	k = 11.243 exp(- 15606.5811/RT)	570-670		7	a,f
0-50	k = 10.311 exp(- 15033.36351/RT)	590-670		7	a,f
5-45	k = 11.444 exp(- 15522.8997/RT)	570-670		7	a,f
0-40	k = 11.518 exp(- 15485.24307/RT)	570-670		7	a, f
5-35	k = 10.983 exp(- 15137.96526/RT)	590-670		7	a,f
0~30	k = 10.782 exp(- 14949.68211/RT)			7	a,f
0-20	k = 10.424 exp(- 14573.11581/RT)			7	a,f
5-15	k = 10.944 exp(- 14765.58303/RT)			7	a,f
io-10	k = 10.9 exp(- 14690.26977/RT)			7	
100-0			(207)	7	a,f
00-0	k = 11.548 exp(- 14782.31931/RT)	610-670	(397)	,	a,f
	KND3-Sr(NO3)2				
0-30	k = 12.627 exp(- 17600.29046/RT)	660-720		7	a,f
8.5-21.5	k = 11.356 exp(- 16391.93104/RT)	660-720		7	a,f
90-10	k = 11.572 exp(- 15631.68552/RT)	590-720		7	a,f
00-0	k = 10.824 exp(- 14522.90697/RT)	620-730	(398)	7	a,f
	KND3-T1Br				
)-100 T1Br	k = 1.2289 - 0.00733 C + 5.3 x 10 ⁻⁶ C ²	823	(399)	3	a
100 115	N = 1.2203	623	(355)	3	а
	KN03-TIC1				
100-0 KN03	k = 1.084 - 0.00708 C + 5.3 x 10 ⁻⁵ C ²	703	(400)	3	а
	KN03-T1N03				
- 100	· ·	*** ***	(404)	_	
	k = 8.0256 exp(- 12510.3693/RT)		(401)	7	a,f
0-80	k = 10.112 exp(- 13778.14251/RT)			7	a,f
0-60	k = 10.948 exp(- 14296.96719/RT)			7	a,f
60-40	k = 10.788 exp(- 14351.3601/RT)			7	a,f
70-30	k = 11.157 exp(- 14577.29988/RT)	570-630		7	a,f
80-20	k = 11.708 exp(~ 14857.63257/RT)	593-633		7	a,f
100-0	k = 12.11 exp(- 15066.83607/RT)	610-670	(402)	7	a,f
For additiona	1 KN0 $_3$ systems, see : AgN0 $_3$ - ; Ba(N0 $_2$) $_2$ - ; Ba(N0 $_3$) $_2$ - ; Ca(N0 $_3$) $_2$ - ; Cd(N0 $_3$) $_2$	- ; CoBr ₂ - ; CoCl ₂ - ;	CsN0 ₃ - ;	KBr- ; K	C104-
100	K0H k = 13.2638 exp(- 9324.6184/RT)	680-860		3	d
			n.a.	٥	u
	кон-к ₂ со ₃				
91.5-8.5	k = 15.127 exp(- 11617.90717/RT)			3	a,f
93.3-6.7	k = 14.3936 exp(- 11179.41663/RT)	680-860		3	a,f
95.7-4.3	k = 14.1995 exp(- 10846.36466/RT)	680-860		3	a,f
96.0-4.0	k = 14.2134 exp(- 10807.45281/RT)	680-860		3	a,f
97.5-2.5	k = 13.9842 exp(- 10444.69394/RT)	680-860		3	a,f
97.9-2.1	k = 13.6403 exp(- 10031.30783/RT)	680-860		3	a,f
98.3-1.7	k = 12.8682 exp(- 9646.37339/RT)	680-860		3	a,f
100-0	k = 13.2638 exp(~ 9324.6184/RT)	680-860	(403)	3	a,f
	K0H-K2C03-K2S103				
92.0-1.8-6.2	k = 10.8847 exp(- 9934.2374/RT)	780_870		•	
94.2-1.8-4.0	k = 11.5752 exp(- 9867.29228/RT)			3	a, f
96.4-1.7-1.9	k = 12.9211 exp(- 10142.18568/RT)			3	a,f
		780-870		3	a,f
For additiona	1 KOH systems, see : CaO- ; KC1- KPO3				
100	k = 6.479 exp(- 20652.56952/RT)	1155-122	25 ±5%	6	a, 1
50-50	k = 20237.1 exp(- 1.1225022996 x 10 ⁵ /RT)	1000101	20	3	
55-45	k = - 1.2453 + 0.0012812 T				a,1
60-40				3	а,
	k = 706.605 exp(- 75698.19444/RT)			3	а,
65-35	k = 56.4301 exp(- 49179.55878/RT)			3	а,
70-30	k = 217.963 exp(- 60539.30883/RT)	1020-12	20	3	a,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K) A	ccur.	Ref.	Comment
5-25	k = 84.6225 exp(- 49602.14985/RT)	1020-1220		3	a,f
0-20	k = 23.82 exp(- 36355.38423/RT)	1020-1220		3	a,f
5-15	k = 31.8855 exp(- 39426.49161/RT)	1020-1220		3	a,f
0-10	k = - 34.3521 + 0.0578761 T - 2.39131 x 10 ⁻⁵ T ²	1080-1220		3	a,f
95-5	k = 17.1662 exp(- 32167.13016/RT)	1120-1220		3	a,f
100-0	k = 26.2 exp(- 35430.70476/RT)	1120-1220	(404)	3	a,f
	KSCN				
00	k = 100 exp(- 24476.8095/RT)	450-510	±2%	1	a,f
	KV03-V205				
3.4-90.6	k = 10.2254 exp(- 35144.93278/RT)	910-1250		3	a,f
18.0-82.0	k = 7.21494 exp(- 28807.74036/RT)	1000-1250		3	a,f
24.4-75.6	k = 9.96252 exp(- 29755.01381/RT)	910-1250		3	a,f
32.2-67.8	k = 10.2106 exp(- 28289.33408/RT)	835-1250		3	a,f
10.4-59.6	k = 6.6553 exp(- 22772.63779/RT)	835-1250		3	a,f
14.6-55.4	k = 7.34791 exp(- 22611.13341/RT)	835-1250		3	a,f
0.0-50.0	k = 6.15963 exp(- 20307.38375/RT)	835-1250		3	a,f
	K ₂ CO ₃				
100	k = 11.027 exp(- 16489.41987/RT)	1184-1279	±1.5%	1	a,c,
	K ₂ CO ₃ -Li ₂ CO ₃				
) - 100	k = 29.22 exp(- 16485.2358/RT)	1013-1153	(405)	6	а
10-90	k = 26.46 exp(- 16861.8021/RT)	1133-1260		6	a
20-80	k = 23.37 exp(- 17196.5277/RT)	1034-1246		6	a
30-70	k = 20.27 exp(- 17489.4126/RT)	1001-1239		6	а
10-60	k = 16.63 exp(- 17740.4568/RT)	993-1227		6	а
0-50	k = 14.96 exp(- 18117.0231/RT)	1013-1222		6	а
57.3-42.7	k = 14.56 exp(- 18075.1824/RT)	1013-1223		6	a
60-40	k = 14.49 exp(- 18075.1824/RT) ,	1003-1197		6	a
70-30	k = 13.32 exp(- 17489.4126/RT)	973-1193		6	a
30-20	k = 11.41 exp(- 16276.0323/RT)	972-1165		6	a
90-10	k = 10.85 exp(- 16066.8288/RT)	996-1136		6	a
100-0	k = 10.52 exp(- 16024.9881/RT)	1178-1281	(406)	6	a
.00 0	K ₂ C0 ₃ -Li ₂ C0 ₃ -Na ₂ C0 ₃	1170-1201	(400)	0	a
6.7-50.0-33.3	k = 38.236 exp(- 24727.8537/RT)	850-1120		6	а
25.0-43.5-31.5	k = 83.819 exp(- 30899.35695/RT)	670-1000	(407)	6	
30-40-30			(407)		a
33.4-33.3-33.3	k = 32.777 exp(- 24702.74928/RT)	850-1120		6 6	a
30.4-30.3-33.3	K = 27.200 exp(= 23510.20933/R1)	850-1120		ь	а
90-10 Li ₂ S0 ₄	k = 1.049 ~ 0.01314 C + 2.265 x 10 ⁻⁴ C ²	1173		3	а
	K ₂ C0 ₃ -Na ₂ C0 ₃				
) - 100	k = 14.12 exp(- 15020.8113/RT)	1145-1238	(408)	6	a
10-90	k = 13.95 exp(- 15481.059/RT)	1143-1254		6	a
20-80	k = 13.65 exp(- 15899.466/RT)	1086-1236		6	a
30-70	k = 13.2 exp(- 16359.7137/RT)	1071-1222		6	-
40-60	k = 12.98 exp(- 16694.4393/RT)	1073-1230		6	a a
42-58	k = 12.38 exp(- 16359.7137/RT)				
50-50		1043-1226		6	a
	k = 12.2 exp(- 16317.873/RT)	1044-1230		6	а
50-40	k = 11.79 exp(- 16150.5102/RT)	1047-1246		6	a
70-30	k = 11.49 exp(- 16192.3509/RT)	1076-1237		6	а
B0-20	k = 11.32 exp(- 16234.1916/RT)	1148-1258		6	a
90-10	k = 10.85 exp(- 16108.6695/RT)	1157-1250		6	а
100-0	k = 10.52 exp(- 16024.9881/RT)	1178-1281	(409)	6	a
For additional	K2CO3 systems, see : CaO-KOH- ; KC1-KOH- ; KOH-				
	K ₂ Cr ₂ O ₇				
100	k = 73 exp(- 32635.746/RT)	675-870	±5%	1	a,f

Table 2.3.a Electrical Conductance data (continued)

(mol %)	Conductance (ohm-1 cm-1)				
· · · · · · · · · · · · · · · · · · ·	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
or additiona	K ₂ Cr ₂ O ₇ systems, see : KNO ₃ -				
	K ₂ Mo0 ₄				
00	$k = 4.72 \exp(-13549.6922S/RT) \dots K_2MO0_4-Li_2MO0_4$	1205 - 1270	±3%	6	a,f
-100	k = 23.532 exp(- 18938.77445/RT)	1013-1145	(410)	6	a,f
9.9-80.1	k = 10.539 exp(- 19475.17222/RT)	930-1130		6	a, f
3-67	k = 17.399 exp(- 24544.17303/RT)	870-1070		6	a,f
9.3-60.7	k = 32.16 exp(- 31173.83194/RT)	890-1030		6	a,f
0-50	k = 16.398 exp(- 26093.11574/RT)	890-1070	`	6	a,f
3.4-46.6	k = 31.589 exp(- 32688.88369/RT)	910-1050		6	a,f
0-40	k = 13.77 exp(- 25229.9421/RT)	870-1070		6	a,f
9.9-20.1	k = 7.2791 exp(- 19224.96484/RT)	1073-1200		6	a,f
00-0	k = 8.5676 exp(- 19756.34173/RT)	1207-1281	(411)	6	a,f
	К ₂ Мо0 ₄ -Мо0 ₃				
-100	k = 1.568 exp(- 7518.77379/RT)	1110-1150	(412)	3	a,f
1.37-88.63	k = 9.29199 exp(- 23370.12299/RT)	1040-1070		3	a,f
8.65-81.35	k = 17.7629 exp(- 28620.71243/RT)	890-1070		3	a,1
2.65-77.35	k = 11.6451 exp(- 24923.66818/RT)	930-1130		3	a, 1
1.46-68.54	k = 12.3483 exp(- 25004.83913/RT)	950-1040		3	a, 1
9.80-60.20	k = 9.44673 exp(- 23281.83911/RT)	930-1060		3	a,
7.56-52.44	k = 10.5245 exp(- 24447.1026/RT)	860-980		3	a, 1
69. 87~3 0.13	k = 6.0236 exp(- 17499.03596/RT)	1100-1190		3	а,
35.87-14.13	k = 7.41541 exp(- 19278.10253/RT)	1160-1250		3	a, 1
00-0	k = 4.72 exp(- 13549.69229/RT)	1210-1250	(413)	3	а,
10-90	K ₂ S-SnS k = 1547.16 exp(- 57777.82263/RT)	1020-1230		6	a,
20-80	k = 103.014 exp(- 40933.59362/RT)	1020-1230		6	a,
30-70	k = 20.1 exp(- 27913.6046/RT)	1020-1230		6	a,
10-60	k = 14.5328 exp(- 25833.28499/RT)	920-1230		6	a,
50-50	k = 12.4683 exp(- 24294.38405/RT)	923-1223		6	a, 1
60-40	k = 25.362 exp(- 28025.31927/RT)	1123-1223		6	a, 1
For additiona	1 K ₂ S systems, see : As ₂ S ₃ - ; Bi ₂ S ₃ - ; GeS ₂ -				
	K ₂ SiF ₆				
For K ₂ SiF _B sy	stems, see : KF- K ₂ S10 ₃				
For K ₂ SiO ₃ sy	stems, see : KOH-K ₂ CO ₃ -				
	K ₂ SO ₄ k = 7.949 exp(- 16017.45677/RT)	1044 4000	+20/		_
100		1341-1360	±3%	1	а,
100	K ₂ SO ₄ -K ₂ WO ₄				
		1200-1270		3	а,
60-50	$K_2S0_4-K_2W0_4$ k = 9.3355 exp(- 19385.21472/RT)			3	a, a
50-50	$ K_2 S_0 _4 - K_2 W_0 _4 $ $ k = 9.3355 \text{ exp}(-19385.21472/RT)$	1200-1270			
50-50 80-10 K ₂ S0 ₄	$ K_2 S_0 _4 - K_2 W_0 _4 $ $ k = 9.3355 \ exp(-19385.21472/RT)$	1200-1270 1173		3	a
50-50 80-10 K ₂ S0 ₄ 0.25-99.75	$ K_2 S 0_4 - K_2 W 0_4 $ $ k = 9.3355 \text{ exp}(-19385.21472/RT)$	1200-1270 1173 1160-1220		3 6	a a,
50-50 80-10 K ₂ S0 ₄ 0.25-99.75 0.50-99.50	$ K_2 S U_4 - K_2 W U_4 $ $ k = 9.3355 \text{ exp}(-19385.21472/RT) . $ $ K_2 S U_4 - L_1 C U_3 $ $ k = 2.64 - 0.07332 C + 9.919 \times 10^{-4} C^2 - 4.47 \times 10^{-6} C^3 . $ $ K_2 S U_4 - L_1 C U_3 $ $ K_3 C U_4 - L_1 C U_3 $ $ K_4 C U_4 - L_1 C U_4 $ $ K_5 C U_4 - L_1 C U_5 $ $ K_5 C U_5 C U_5 - L_1 C U_5 $ $ K_7 C U_7 C U_7 C U_7 $ $ K_7 C U_7 C U_7 C U_7 C U_7 C U_7 $ $ K_7 C U_7 C U_7$	1200-1270 1173 1160-1220 1160-1220		3 6 6	a a, a,
50-50 80-10 K ₂ S0 ₄ 0.25-99.75 0.50-99.50 0.75-99.25	$ K_2 S O_4 - K_2 W O_4 $ $ k = 9.3355 \text{ exp}(-19385.21472/RT) . $ $ K_2 S O_4 - L_1 C C O_3 $ $ k = 2.64 - 0.07332 C + 9.919 \times 10^{-4} C^2 - 4.47 \times 10^{-6} C^3 . $ $ K_2 S O_4 - L_1 C C O_3 $ $ K_2 S O_4 - L_1 C C O_3 $ $ K_2 S O_4 - L_1 C C C O_4 $ $ K_2 S O_4 - L_1 C C C C C C C C C C C C C C C C C C C$	1200-1270 1173 1160-1220 1160-1220 1120-1220		3 6 6 6	a a, a,
50-50 80-10 K ₂ S0 ₄ 0.25-99.75 0.50-99.50 0.75-99.25 1.00-99.00	$ K_2 S O_4 - K_2 W O_4 $ $ k = 9.3355 \text{ exp}(-19385.21472/RT) . $ $ K_2 S O_4 - L_{12} C O_3 $ $ k = 2.64 - 0.07332 \text{ C} + 9.919 \times 10^{-4} \text{ C}^2 - 4.47 \times 10^{-6} \text{ C}^3 . $ $ K_2 S O_4 - L_{12} S O_4 $ $ k = 17.804 \text{ exp}(-13727.93367/RT) . $ $ k = 17.929 \text{ exp}(-13870.19205/RT) . $ $ k = 18.466 \text{ exp}(-14196.54951/RT) . $ $ k = 17.378 \text{ exp}(-13614.96378/RT) . $	1200-1270 1173 1160-1220 1160-1220 1120-1220 1150-1210		3 6 6 6 6	a a, a, a,
50-50 80-10 K ₂ S0 ₄ 0.25-99.75 0.50-99.50 0.75-99.25 1.00-99.00 3.00-97.00		1200-1270 1173 1160-1220 1160-1220 1120-1220 1150-1210 1110-1180		3 6 6 6 6	a a, a, a, a,
80-10 K ₂ S0 ₄ 0.25-99.75 0.50-99.50 0.75-99.25 1.00-99.00 3.00-97.00 4.89-95.11	$ K_2 S O_4 - K_2 W O_4 $ $ k = 9.3355 \ \exp(-19385.21472/RT) $ $ K_2 S O_4 - L_{12} C O_3 $ $ k = 2.64 - 0.07332 \ C + 9.919 \ x \ 10^{-4} \ C^2 - 4.47 \ x \ 10^{-6} \ C^3 $ $ K_2 S O_4 - L_{12} S O_4 $ $ k = 17.804 \ \exp(-13727.93367/RT) $ $ k = 17.929 \ \exp(-13870.19205/RT) $ $ k = 18.466 \ \exp(-14196.54951/RT) $ $ k = 17.378 \ \exp(-13614.96378/RT) $ $ k = 18.626 \ \exp(-14861.81664/RT) $ $ k = 18.926 \ \exp(-15455.95458/RT) $	1200-1270 1173 1160-1220 1160-1220 1120-1220 1150-1210 1110-1180 1040-1180		3 6 6 6 6 6	a a, a, a, a,
50-50 80-10 K ₂ S0 ₄ 0.25-99.75 0.50-99.50 0.75-99.25 1.00-99.00 3.00-97.00 4.89-95.11 20.00-80.00	$ K_2 S O_4 - K_2 W O_4 $ $ k = 9.3355 \ \exp(-19385.21472/RT) $ $ K_2 S O_4 - L_{12} C O_3 $ $ k = 2.64 - 0.07332 \ C + 9.919 \ x \ 10^{-4} \ C^2 - 4.47 \ x \ 10^{-6} \ C^3 $ $ K_2 S O_4 - L_{12} S O_4 $ $ k = 17.804 \ \exp(-13727.93367/RT) $ $ k = 17.929 \ \exp(-13870.19205/RT) $ $ k = 18.466 \ \exp(-14196.54951/RT) $ $ k = 17.378 \ \exp(-13614.96378/RT) $ $ k = 18.626 \ \exp(-14861.81664/RT) $ $ k = 18.926 \ \exp(-15455.95458/RT) $ $ k = 10.194 \ \exp(-18891.07605/RT) $	1200-1270 1173 1160-1220 1160-1220 1120-1220 1150-1210 1110-1180 1040-1180 1220-1230		3 6 6 6 6 6 6	a a, a, a, a, a,
100 50-50 80-10 K ₂ S0 ₄ 0.25-99.75 0.50-99.50 0.75-99.25 1.00-99.00 3.00-97.00 4.89-95.11 20.00-80.00 40.00-60.00	K ₂ SU ₄ -K ₂ WU ₄ k = 9.3355 exp(- 19385.21472/RT) K ₂ SU ₄ -Li ₂ CO ₃ k = 2.64 - 0.07332 C + 9.919 x 10 ⁻⁴ C ² - 4.47 x 10 ⁻⁶ C ³ K ₂ SU ₄ -Li ₂ SU ₄ k = 17.804 exp(- 13727.93367/RT) k = 17.929 exp(- 13870.19205/RT) k = 18.466 exp(- 14196.54951/RT) k = 17.378 exp(- 13614.96378/RT) k = 18.626 exp(- 14861.81664/RT) k = 18.926 exp(- 15455.95458/RT) k = 10.194 exp(- 18891.07605/RT) k = 19.961 exp(- 24937.0572/RT)	1200-1270 1173 1160-1220 1160-1220 1120-1220 1150-1210 1110-1180 1040-1180 1220-1230		3 6 6 6 6 6 6 6	a a, a, a, a, a, a,
50-50 80-10 K ₂ S0 ₄ 0.25-99.75 0.50-99.50 0.75-99.25 1.00-99.00 3.00-97.00 4.89-95.11 20.00-80.00	$ K_2 S O_4 - K_2 W O_4 $ $ k = 9.3355 \ \exp(-19385.21472/RT) $ $ K_2 S O_4 - L_{12} C O_3 $ $ k = 2.64 - 0.07332 \ C + 9.919 \ x \ 10^{-4} \ C^2 - 4.47 \ x \ 10^{-6} \ C^3 $ $ K_2 S O_4 - L_{12} S O_4 $ $ k = 17.804 \ \exp(-13727.93367/RT) $ $ k = 17.929 \ \exp(-13870.19205/RT) $ $ k = 18.466 \ \exp(-14196.54951/RT) $ $ k = 17.378 \ \exp(-13614.96378/RT) $ $ k = 18.626 \ \exp(-14861.81664/RT) $ $ k = 18.926 \ \exp(-15455.95458/RT) $ $ k = 10.194 \ \exp(-18891.07605/RT) $	1200-1270 1173 1160-1220 1160-1220 1120-1220 1150-1210 1110-1180 1040-1180 1220-1230		3 6 6 6 6 6 6	

Table 2.3.a Electrical Conductance data (continued)

(mo1 %)	Equation	$(R = 8.31441 J K^{-1} mol^{-1})$	T range(K)	Accur.	Ref.	Comment
		K ₂ S0 ₄ -NaC1				
2-58	k = 5.90922 exp(- 11360.168	346/RT)	920-1020		3	a,f,o
1-49	k = 10.181 exp(- 15170.1826	S/RT)	920-1020		3	a,f,o
1-39	$k = 10.997 \exp(-14325.0004)$	46/RT)	920-1020		3	a,f,o
		K ₂ S0 ₄ -Na ₂ S0 ₄				
0-50	k = 13.881 exp(- 20847.547	18/RT)	1182-1193	,	6	a,f
		K ₂ S0 ₄ -Rb ₂ S0 ₄				
0-50	k = 6.801 exp(- 16150.5102)	/RT)	1340-1380	,	6	a,f
		K ₂ SO ₄ -T1 ₂ SO ₄				
0-50	k = 6.88692 exp(- 15578.966	624/RT)	1100-1200	ı	6	a,f
		K ₂ SO ₄ -ZnSO ₄				
0-80					6	а
5-75	(T=748 K, k=0.02)				6	а
0-70	$k = 47426.2 \exp(-90304.78)$	281/RT)	748-823		6	a,f
0-60	k = 32.1572 exp(- 38199.72	229/RT)	723-823		6	a,f
0-50	k = 139.106 exp(- 48095.88	465/RT)	723-823		6	a,f
7-43	k = 42.7031 exp(- 37116.04)	B16/RT)	723-823		6	a,f
For addition	al K ₂ SO ₄ systems, see : Cs ₂ SO ₄					
		K ₂ S0 ₄ *Na ₂ S0 ₄ -NaC1				
3-57		252/RT)	920-1020		3	a,f,
2-48	k = 11.3422 exp(- 14998.63	573/RT)	920-1020		3	a,f,
4-36	k = 12.8744 exp(- 14976.04	175/RT)	920-1020		3	a,f,
••		K ₂ S ₃			_	
00	k = 5.438 exp(- 6234.2643/	R(T-343)	570-690	±4%	6	а
00	h = 6 96 (7435 00000 (<u> </u>	400 670	4.00	-	
100	k = 6.26 exp(- 7435.09239/	K(1-306))	490-670	±4%	6	а
100	k = 3.014 exp(- 5418.37065		470-680	±4%	6	a
	ii olon onp(on olongo	K ₂ S ₅	470 000		·	•
100	k = 2.427 exp(- 5209.16715	= ·	520-670	±4%	6	a
	K 2.427 CAP(0200.10710	K ₂ S ₆	320 070		·	•
100	k = 1.099 exp(- 3340.14308	/R(T-393))	520-690	±4%	6	a
		K₂TaF ₇				
100	k = 9.572 exp(- 21167.2101	3/RT)	1020-116	0 ±5%	3	d,f
		K ₂ TaF ₇ -Ta ₂ 0 ₅				
30-20	k = 5.046 exp(- 17370.5850	1/RT)	1073-117	3	3	a,f
35-15	$k = 4.679 \exp(-15757.6260)$	3/RT)	1073-117	3	3	a,f
90-10	$k = 4.484 \exp(-14732.1104)$	7/RT)	1073-117		3	a,f
95-5	·	2/RT)	1073-117		3	a,f
100-0	• •	3/RT)	·		3	
100-0	K - 9.572 EXP(- 21167,210)	κ ₂ ΤίF ₆	1073-117	3 (414)	•	a,f
100	k = 6 968 evn/- 15250 0351	5/RT)	1115-124	9 ±5%	3	a,f
100	K 0.300 EXP(* 10200, 5001	K ₂ TiF ₆ -NaC1	1110-124	7 20%		α,,
2.6-97.4	k = 10.2438 exp(- 9703,695	(14/RT)	850-1170		3	a,f
5.7-94.3)23/RT)	850-1170		3	a,f
3.5-90.5		054/RT)			3	
			850-1170			a,f
14.0-86.0		9/RT)	850-1170		3	a,f
19.6-80.4		lo2/RT)	910-1170		3	a,f
26.8-73.2		957/RT)	850-1170		3	a,f
31.1-68.9	$k = 7.652 \exp(-8440.106/R)$	π)	850-1170		3	a,f
36.2-63.8	k = 6.73031 exp(- 7712.496	323/RT)	820-1170		3	a,f
12.2-57.8	k = 5.6781 exp(- 6945.1377	79/RT)	850-1170		3	a,f
						•
49.3-50.7	$k = 5.31653 \exp(-6974.007)$	788/RT)	850-1170		3	a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
8.7-31.3	k = 31.6493 exp(- 22624.52171/RT)	850-1170	•	3	a,f
2.2-17.8	k = 38.281 exp(- 23664.68151/RT)	880-1170		3	a,f
00-0	k = 250 exp(- 41690.07348/RT)	1098-1173	(415)	3	a,f
	K ₂ TiF ₆ -Ti0 ₂				
0-40	k = 8.278 exp(- 18594.42549/RT)	1143-1193		3	a,f
0-30	k = 8.045 exp(- 18003.2164/RT)	1143-1193		3	a, f
10-20	k = 7.792 exp(- 17315.35529/RT)	1143-1193	i	3	a,f
90-10	k = 8.91 exp(- 18147.1484/RT)	1143-1193	l	3	a,f
100-0	k = 6.968 exp(- 15250.93515/RT)	1143-1193	(416)	3	a,f
	K2₩0₄				
00	k = 8.141 exp(- 19518.68655/RT)	1210-1300	±3%	6	a,f
	K ₂ W0 ₄ -Li ₂ S0 ₄				
0-50	k = 15.34 exp(- 23974.7211/RT)	1080-1240)	3	a,f
	K ₂ ₩0 ₄ -Li ₂ ₩0 ₄				
) - 100	k = 16.969 exp(- 18758.44103/RT)	1084-1150	(417)	6	a,f
10-90	k = 45.807 exp(- 32736.16368/RT)	1028-1137	,	6	a,f
19.9-80.1	k = 65.249 exp(- 37936.96269/RT)	962-1125		6	a,f
30-70	k = 91.819 exp(- 42116.84862/RT)	898-1028		6	a, f
10-60	k = 34.644 exp(- 36560.40366/RT)	926-1048		6	a,f
50-50	k = 32.456 exp(- 34129.45899/RT)	952-1068		6	a,f
54.4-45.6	k = 2.647 exp(- 14899.47327/RT)	948-1070		6	a,f
60-40	k = 7.183 exp(- 22635.8187/RT)	940-1080		6	a,f
8-32	k = 16.48 exp(- 28372.17867/RT)	1031-1200)	6	a, f
30~20	k = 81.94 exp(- 44372.06235/RT)	1070-1166	3	6	a,f
100-0	k = 14.412 exp(- 25673.45352/RT)	1250-130		6	a,f
	K ₂ ₩0 ₄ -₩0 ₃				
29.88-70.12	k = 15.2939 exp(- 32634.07237/RT)	1180-127	0	3	a,f
2.13-57.87	k = 43.788 exp(- 41142.37872/RT)	1040-117	b	3	a,f
50. 18-49.82	k = 21.3982 exp(- 33034.06946/RT)	1020-104	0	3	a,f
59.42-40.58	k = 36.774 exp(- 36122.74994/RT)	940-1090		3	a,f
70-30	k = 18.9445 exp(- 28781.38072/RT)	1060-121	0	3	a, f
80.11-19.89	k = 15.0033 exp(- 25412.36755/RT)	1120-128	D	3	a,f
90-10	k = 37.1834 exp(- 36306.43061/RT)	1180-130		3	a,f
100-0	k = 4.05548 exp(- 17144.64523/RT)	1220-129		3	a, i a, f
For additions	st KaWD, puntawa and KaCD		,	•	-,.
TO AUGICIONA	11 K ₂ WO ₄ systems, see : K ₂ SO ₄ - K ₂ ZrF ₆				
100	k = 10.888 exp(- 14804.91329/RT)	1073-125	3	3	
	K ₂ ZrF ₆ -NaC1				
0-100	k = 8.389 exp(- 7673.58438/RT)	1073-117	3 (420)	3	a,d
10-90	k = 8.855 exp(- 9054.32748/RT)	1073-117	3	3	a, d
20-80	k = 7.388 exp(- 8161.44694/RT)	1073-117		3	a,d
25-75	k = 7.075 exp(- 8207.89012/RT)	1073-117		3	a, c
30-70	(T=1173 K, k=2.96)			3	a,c
33-67	k = 7.04 exp(- 8650.14632/RT)	1073-117	3	3	a, c
40-60	k = 7.326 exp(- 9242.61063/RT)	1073-117		3	a, c a, c
50-50	k = 8.022 exp(- 10767.28574/RT)	1073-117		3	
50-40	k = 8.055 exp(- 11029.62693/RT)		_	3	a, c
67-33	k = 7.036 exp(- 9977.33332/RT)	1073-117			a, c
70-30	k = 7.041 exp(- 10060.59632/RT)	1073-117		3	a, c
75-25	k = 7.043 exp(- 10102.85542/RT)	1073-117		3	a, c
75-25 80-20		1073-117		3	a, 0
	k = 6.727 exp(- 9891.55989/RT)	1073-117		3	а,
85-15 00-10	k = 6.412 exp(- 9585.28596/RT)	1073-117		3	a, 0
90-10	k = 6.416 exp(- 9755.57761/RT)	1073-117		3	а, с
100-0	k = 10.888 exp(- 14804.91329/RT)	1073-125	3 (421)	3	a, c

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
For additiona	1 K ₂ ZrF ₆ systems, see : KC1- ; KF-				
	K ₃ A1F ₆				_
00	k = 430.9 exp(- 57773.63856/RT)	1270-1330		6	a,f
00	k = 24.984 exp(- 26010.68956/RT)	1273-1340	±5%	14	a,f
- 100	k = 54.106 exp(- 29877.60706/RT)	1270-1330	(422)	6	a,f
6.89-83.11	k = 123.3 exp(- 39764.98287/RT)	1240-1330	(426)	6	a,i a,f
35.15-64.85	k = 143.56 exp(- 42644.04144/RT)	1220-1330		6	
54.94-45.06					a,b,
76.48-23.52	k = 256.92 exp(- 50279.96919/RT)	1240-1330		6	a,f
	k = 5108.4 exp(- 83848.7628/RT)	1240-1330		6	a,f
100-0	k = 430.9 exp(- 57773.63856/RT)	1270-1330	(423)	6	a,f
For additiona	IT K3AIF6 systems, see : A1 ₂ 0 ₃ -				
	K ₃ P0 ₄				
For K3P04 sys	tems, see : KC1- LaBr ₃				
100	k = 106.15 exp(- 43317.67671/RT)	1050-1185	±25%	1	a,f
	LaCl3				
100	k = 9.427 exp(- 18966.80772/RT)	1170-1270	±2.5%	5	d
	LaC13-LiC1				
0-100	k = 11.604 exp(- 4994.10595/RT)	1080-1270	(424)	5	a,f
10.04~89.96	k = 12.749 exp(- 9035.91757/RT)	1080-1220		5	b,f
20.06-79.94	k = 9.753 exp(- 8625.87871/RT)	1080-1220	,	5	b,f
29.63-70.37	k = 9.796 exp(- 10362.68617/RT)	1080-1220)	5	a,f
40.00-60.00	k = 9.056 exp(- 11220.83893/RT)	1080-1220		5	a,f
53.02-46.98	k = 11.968 exp(- 15821.22389/RT)	1080-1220		5	a,f
65.01-34.99	k = 13.576 exp(- 18721.62122/RT)	1080-1220		5	a,f
80.03-19.97	k = 17.262 exp(- 22608.20384/RT)	1080-1220		5	a,f
100-0	k = 12.715 exp(- 22001.9321/RT)	1140-1220		5	a,f
	LaC13-NaC1				
0.0-100.0	k = 5.935 exp(- 5190.33884/RT)	1120-1200	(426)	5	a,b,
4.99-95.01	k = 5.27488 exp(2588.39122/RT)	1134-1215	i	26	a,b,
13.17-86.83	k = 6.537 exp(- 10660.17355/RT)	1090-1220)	5	a,b,
20.87~79.13	k = 8.972 exp(- 16109.92472/RT)	1110-1220)	5	a,b,
33.30-66.70	k = 14.296 exp(- 21980.59334/RT)	1110-1220)	5	a,b,
45.11-54.89	k = 11.564 exp(- 19659.2713/RT)	1070-1200)	5	a,b,
55.02-44.98	k = 15.567 exp(- 24259.65627/RT)	1140-1220)	5	a,b,
70.22-29.78	k = 8.774 exp(- 23165.94037/RT)	1170-1220		5	a,b,
84 . 26 - 15 . 74	k = 18.182 exp(- 26804.82605/RT)	1160-1260		5	a,b,
	LaC13-RbC1				~,-,
0-100 LaC13	$k = 122.08 - 1.0654 \text{ C} + 0.0029388 \text{ C}^2 + 4.3405 \text{ x} \cdot 10^{-6} \text{ C}^3 + 7.7095 \text{ x} \cdot 10^{-7} \text{ C}^4$.	1195	(427)	5	a,n,
For addition	al LaCl ₃ systems, see : BaCl ₂ - ; CsCl- ; KCl-				
	LaF ₃ -LiF				
0.0-100.0	k = 20.471 exp(- 7767.72596/RT)	1150-134	(428)	14	a,f
5.0-95.0	k = 19.592 exp(~ 8263.11984/RT)	1180-134	ס	14	a,f
10.0-90.0	k = 21.642 exp(- 10358.92051/RT) ,	1170-134	ס	14	a,f
15.0-85.0	k = 17.158 exp(- 8766.46346/RT)	1190-134	0	14	a,f
20.0-80.0	k = 16.232 exp(- 9263.53098/RT)	1160-134	0	14	a,f
25.0-75.0	k = 21.695 exp(- 13572.28627/RT)	1190-134	0	14	a,f
29.0-71.0	k = 36.568 exp(- 19232.91457/RT)	1160-134	D	14	a,f
32.45-67.55	k = 36.562 exp(- 19972.65815/RT)	1260-134	D	14	a,f
	LaF ₃ -NaF				
0.0-100.0	k = 21.451 exp(- 15165.16172/RT)	1310-134	0 (429)	14	a,f
10.0-90.0	k = 17.241 exp(- 14419.14203/RT)	1240-134	0	14	a,f
					•

		Conductance (ohm-1 cm-1)				
(mol %)	Equation	$(R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1})$	T range(K)	Accur.	Ref.	Comment
0.0-70.0	k = 32.168 exp(- 23103.1793	2/RT)	1060-1340		14	a,f
0.0-60.0	$k = 27.016 \exp(-22481.0081)$	1/RT)	1210-1340		14	a,f
or additio	nal LaF3 systems, see : KF-					
		LaI3				
00	$k = 9.118 \exp(-26606.50113)$	/RT)	1069-1144	±10%	1	a,f
- 100	L = E 49762 ava/- 6010 007/	LaI3-NaI	1002-1227	(430)	4	
0-90		RT)	1092-1227 1092-1227	(430)	4	a,f a,f
0-80		RT)	1092-1227		4	a,ı a,f
0-70		RT)	1092-1227		4	a,, a,f
0-60	ř.	/RT)	1092-1227		4	a, f
0-50		/RT)	1092-1227		4	a, f
0-40		/RT)	1092-1227		4	a,; a,f
0-30		/RT)			4	
0-30	* * * * * * * * * * * * * * * * * * * *	,	1092-1227		•	a,f
		/RT)	1092-1227		4	a,f
00-10 00-0		/RT)	1092~1227	(101)	4	a,f
00-0	K = 7.152 exp(- 241/1.3/239	/RT)	1092-1227	(431)	4	a,f
For addition	onal LaI ₃ systems, see : CsI- ; K					
		LiA1Br ₄				
For LiAlBr	systems, see : KA1C1 ₄ -	LiAIC14				
100	k = 5.183 exp(- 10152.22745	/RT) ,	437-622	±1.5%	10	d, g
		LiBr				
100	k = 12.98 exp(- 6970.66062/	RT)	831-1022	±2%	1	a, f
		LiBr-LiC1				
) - 100	k = 13.4286 exp(- 6324.2218	31/RT)	980-1080	(432)	2	a, f
12-88	$k = 12.1119 \exp(-5675.6909)$	96/RT)	980-1080		2	a, f
25-75	k = 11.2593 exp(- 5295.3589	19/RT)	980-1080		2	a,f
37-63	k = 11.2823 exp(- 5567.3238	4/RT)	980-1080		2	a,f
50-50	k = 10.4546 exp(- 5041.3859	04/RT)	980-1080		2	a, f
33-37	$k = 9.919 \exp(-4736.36724)$	RT)	980-1080		2	a, 1
75-25	k = 10.1748 exp(- 5003.3109	01/RT)	980-1080		2	a, i
38-12	k = 10.4867 exp(- 5278.2043	31/RT)	980-1080		2	a, f
100-0	k = 10.6392 exp(- 5518.7883	33/RT)	980-1080	(433)	2	a, f
		LiBr-LiF				
0-100		5/RT)	1130-128	(434)	2	a, f
12-88		56/RT)	880-1280		2	a, 1
25-75		96/RT)	880-1280		2	a, i
37-63		53/RT)	880-1280		2	a,f
50-50		76/RT)	880-1280		2	a, t
63-37		4/RT)	880-1280		2	a,
75-25	k = 10.746 exp(- 8366.8847	3/RT)	880-1280		2	а,
88-12	k = 9.1844 exp(- 5564.8131	/RT)	880-1280		2	a,
100-0	k = 10.6392 exp(- 5518.788	33/RT)	880-1280	(435)	2	a,
0-100	k = 9 4084 avn/- 5363 5503	LiBr-LiI 3/RT)	700 4400	/ 400		
12-88			760-1100	(436)	2	a,
25-75		4/RT)	760-1100		2	а,
25-75 37-63		3/RT)	760-1100		2	а,
		43/RT)	760-1100		2	a,
50-50 63-37		23/RT)	760-1100		2	a,
63-37		53/RT)	760-1100		2	a,
75-25		/RT)	760-1100		2	a,
88-12		27/RT)	760-1100		2	a,
100-0		33/RT)				

Table 2.3.a Electrical Conductance data (continued)

	Conductance (o	NM-1 CM-1)			
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1}$	mol^{-1}) Trange(K) A	ccur.	Ref.	Commen
	LiBr-NaBr				
100	k = 5.845 exp(- 5994.9355/RT)	1050-1220	(438)	4	a,f
-50	k = 7.739 exp(- 5911.6725/RT)		, ,	4	a,f
	LiBr-PbBr ₂				-,
100	k = 19.144 exp(- 18755.51218/RT)	653-773	(439)	4	a,f
90	k = 15.073 exp(- 16637.95436/RT)		, , , ,	4	a,f
0-80	k = 15.329 exp(- 15953.0221/RT)			4	a,f
0-70	k = 15.29 exp(- 15243.82223/RT)			4	a, f
0-60	k = 10.958 exp(- 12384.42879/RT)			4	a, f
0-50	k = 15.713 exp(- 13924.16655/RT)			4	a, f
0-40	k = 13.799 exp(- 12413.29888/RT)			4	a, f
0-30	k = 12.27 exp(- 10760.59123/RT)			4	a, f
	LiBr-RoBr				-,
-100	k = 4.781 exp(- 11525.85763/RT)		(440)	4	a, f
0-50	k = 7.469 exp(- 12000.33117/RT)			4	a, f
					-,
or addition	ıl LiBr systems, see : AgCl- ; InBr ₃ - ; KBr-				
	LiCl				
00	k = 13.134 exp(- 6097.86362/RT)	917-1056	±2%	1	a, 1
	LiC1-LiF				
-100	k = 23.003 exp(- 9608.29835/RT)		(441)	2	a,
2-88	k = 20.849 exp(- 9826.7068/RT)		(/	2	a,
5-75	k = 20.717 exp(- 10496.57641/RT)			2	a,
7-63	k = 18.119 exp(- 10453.48049/RT)			2	a,
0-50	k = 16.09 exp(- 9748.04629/RT)			2	a,
3-37	k = 21.741 exp(- 11592.38434/RT)			2	a,
5-25	k = 14.245 exp(- 8383.20265/RT)			2	a,
38 12	k = 11.634 exp(- 5887.4049/RT)			2	a,
00-0	k = 13.4286 exp(- 6324.22181/RT)		(442)	2	a,
			(/	-	-,
	LiC1-LiI			_	
-100	k = 9.4084 exp(- 5363.55933/RT)		(443)	2	a,
2-88	k = 9.7234 exp(- 5896.19144/RT)			2	a,
5-75	k = 10.4153 exp(- 6486.98213/RT)			2	a,
7-63	k = 11.2717 exp(- 7069.40467/RT)			2	a,
0-50	k = 11.5673 exp(- 7193.25314/RT)			2	a,
31.2-38.8	k = 12.0676 exp(- 7184.885/RT)			2	a,
75-25	k = 12.8483 exp(- 7169.40395/RT)			2	a,
38-12	k = 12.8941 exp(- 6769.40685/RT)			2	a,
100-0	k = 13.4286 exp(- 6324.22181/RT)		(444)	2	а,
	LiC1-MgC1	9			
80.0-40.0	k = 8.154 exp(- 7868.98045/RT)	•		5	a,
70.0-30.0	k = 8.915 exp(- 7533.41804/RT)			5	a, a,
30.0-20.0	k = 9.991 exp(- 6816.26844/RT)			5	a, a,
34.0-16.0	k = 10.259 exp(- 6424.22108/RT)			5	a, a,
90.0-10.0	k = 11.023 exp(- 6094.51636/RT)				
95.3-4.7				5	а,
U.U T./	k = 11.805 exp(- 5789.07925/RT)			5	a,
	LiC1-MnC1	2			
0-100	k = 5.493 exp(- 10194.90496/RT)		(445)	18	k
17.9-82.1	k = 6.685 exp(- 9532.98509/RT)			18	k
52.48-47.52	k = 9.564 exp(- 9376.50087/RT)			18	k
70.71-29.29	k = 11.505 exp(- 9102.44429/RT)			18	k
90-10	k = 11.608 exp(- 5602.46973/RT)			18	k
100-0	k = 9.886 exp(- 3824.65839/RT)		(446)	18	k

Table 2.3.a Electrical Conductance data (continued)

(m=1 %)	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
1	LiC1-NaC1				
-100	k = 7.689 exp(- 6808.73711/RT)	1090-1170	(447)	5	a,f
0-50	k = 9.402 exp(- 6478.61399/RT)	920-1130		5	a, f
	LiC1-NaNO3				
.6-97.4	k = 11.3579 exp(- 11855.14394/RT)	620-630		3	a,f
		020 000		•	α,
	LiC1-RbC1			_	
0-100	k = 6.246 exp(- 11673.5553/RT)	1020-1190	(448)	5	a, f
50-50	k = 9.585 exp(- 12861.41277/RT)	910-1130		5	a, f
	LiCi-ScC13				
30-70	(T=1233 K, k=1.03)			5	а
10-60	k = 246.31 exp(- 54001.69946/RT)	1173-1233		5	a, t
50-50	k = 154.4 exp(- 47371.20373/RT)	1173-1233		5	a, 1
60-40	k = 4.33 exp(- 8110.40129/RT)	1133-1233		5	а,
70-30	k = 4.57 exp(- 5212.096/RT)	993-1233		5	а,
80-20	k = 10.579 exp(- 10328.3768/RT)	933-1233		5	a, 1
90-10	k = 12.724 exp(- 9455.9982/RT)	933-1233		5	a, 1
100-0	k = 10.773 exp(- 4393.69191/RT)	933-1233	(449)	5	a,
	LiC1-SrC12				
0-100	k = 14.896 exp(- 19474.33541/RT)	1148-1173	(450)	19	k
10-90	k = 19.781 exp(- 21292.73223/RT)	1073-1173		19	k
20-80	k = 14.38 exp(- 17382.71882/RT)	1023-1173		19	k
30-70	k = 16.045 exp(- 17396.10784/RT)	973-1173		19	k
40-60	k = 17.061 exp(- 16807.40919/RT)	923-1173		19	k
50-50	k = 16.104 exp(- 15103.65589/RT)	898-1173		19	k
60-40	k = 13.404 exp(- 12176.48051/RT)	898-1173			
70-30	k = 14.71 exp(- 11525.85763/RT)	898-1173		19	k
30-20	k = 17.342 exp(- 11415.39818/RT)	899-1173	+0.3%	19	k
90-10	k = 13.869 exp(- 7857.26505/RT)		±0.2%	19	k
100-0	k = 11.792 exp(- 5104.14699/RT)	898-1173 899-1173	(451)	19 19	k k
		033-1170	(451)	15	*
0.00-100.00	LiC1-UC14				
14.76-85.24	k = 5.215 exp(- 18104.05248/RT)	872-1001	(452)	5	а,
21.56-78.44	k = 5.48 exp(- 16434.19015/RT)	850-880		5	а,
	k = 5.254 exp(- 14981.48104/RT)	830-920		5	a,
24.70-75.30	k = 4.577 exp(- 13521.24061/RT)	850-910		5	а,
32.22-67.78	k = 4.525 exp(- 12198.23768/RT)	800-920		5	a,
38.04-61.96	k = 4.584 exp(- 11176.48778/RT)	820-920		5	a,
44.42-55.58 46.40-53.60	k = 5.037 exp(- 11123.7685/RT)	760-900		5	a,
	k = 4.549 exp(- 9492.39961/RT)	820-940		5	a,
		00- 00-		5	a,
52.84-47.16	k = 4.492 exp(- 8546.79979/RT)	820-900		-	,
52.84-47.16 56.61-43.39	k = 4.897 exp(- 8489.89644/RT)	820-900 830-870		5	
52.84-47.16 56.61-43.39 58.36-41.64	k = 4.897 exp(- 8489.89644/RT)				а,
52.84-47.16 56.61-43.39 58.36-41.64 51.08-38.92	k = 4.897 exp(- 8489.89644/RT)	830-870		5	a, a,
12.84-47.16 16.61-43.39 18.36-41.64 11.08-38.92 16.71-33.29	k = 4.897 exp(- 8489.89644/RT) k = 4.887 exp(- 8307.88939/RT) k = 4.569 exp(- 7439.27646/RT) k = 5.076 exp(- 7551.40954/RT)	830-870 800-900		5 5	a, a, a,
52.84-47.16 56.61-43.39 58.36-41.64 51.08-38.92 56.71-33.29 58.78-31.22	k = 4.897 exp(- 8489.89644/RT) k = 4.887 exp(- 8307.88939/RT) k = 4.569 exp(- 7439.27646/RT) k = 5.076 exp(- 7551.40954/RT) k = 5.647 exp(- 8181.53048/RT)	830-870 800-900 840-910		5 5 5	a, d a, d a, d a, d a, d
32.84-47.16 36.61-43.39 38.36-41.64 31.08-38.92 36.71-33.29 38.78-31.22	k = 4.897 exp(- 8489.89644/RT) k = 4.887 exp(- 8307.88939/RT) k = 4.569 exp(- 7439.27646/RT) k = 5.076 exp(- 7551.40954/RT)	830-870 800-900 840-910 770-880		5 5 5 5	a, a, a, a,
62.84-47.16 66.61-43.39 68.36-41.64 61.08-38.92 66.71-33.29 68.78-31.22 72.21-27.79	k = 4.897 exp(- 8489.89644/RT) k = 4.887 exp(- 8307.88939/RT) k = 4.569 exp(- 7439.27646/RT) k = 5.076 exp(- 7551.40954/RT) k = 5.647 exp(- 8181.53048/RT)	830-870 800-900 840-910 770-880 730-890		5 5 5 5	a, a, a, a, a,
52.84-47.16 56.61-43.39 58.36-41.64 51.08-38.92 66.71-33.29	k = 4.897 exp(- 8489.89644/RT) k = 4.887 exp(- 8307.88939/RT) k = 4.569 exp(- 7439.27646/RT) k = 5.076 exp(- 7551.40954/RT) k = 5.647 exp(- 8181.53048/RT) k = 6.867 exp(- 9016.67085/RT)	830-870 800-900 840-910 770-880 730-890 710-880		5 5 5 5 5	a, a, a, a, a,
32.84-47.16 36.61-43.39 38.36-41.64 31.08-38.92 36.71-33.29 38.78-31.22 37.21-27.79 38.99-16.01	k = 4.897 exp(- 8489.89644/RT) k = 4.887 exp(- 8307.88939/RT) k = 4.569 exp(- 7439.27646/RT) k = 5.076 exp(- 7551.40954/RT) k = 5.647 exp(- 8181.53048/RT) k = 6.867 exp(- 9016.67085/RT) k = 7.441 exp(- 8545.54457/RT)	830-870 800-900 840-910 770-880 730-890 710-880 790-890 820-890		5 5 5 5 5 5 5	a, a, a, a, a, a,
2.84-47.16 6.61-43.39 8.36-41.64 1.08-38.92 6.71-33.29 8.78-31.22 2.21-27.79 9.56-20.44 13.99-16.01	k = 4.897 exp(- 8489.89644/RT) k = 4.887 exp(- 8307.88939/RT) k = 4.569 exp(- 7439.27646/RT) k = 5.076 exp(- 7551.40954/RT) k = 5.647 exp(- 8181.53048/RT) k = 6.867 exp(- 9016.67085/RT) k = 7.441 exp(- 8545.54457/RT) k = 8.057 exp(- 8394.08123/RT) k = 8.897 exp(- 7658.52173/RT)	830-870 800-900 840-910 770-880 730-890 710-880 790-890 820-890		5 5 5 5 5 5 5 5	a, a, a, a, a, a,
12.84-47.16 16.61-43.39 18.36-41.64 11.08-38.92 16.71-33.29 18.78-31.22 12.21-27.79 19.56-20.44 13.99-16.01 19.03-10.97 11.10-8.90	k = 4.897 exp(- 8489.89644/RT) k = 4.887 exp(- 8307.88939/RT) k = 4.569 exp(- 7439.27646/RT) k = 5.076 exp(- 7551.40954/RT) k = 5.647 exp(- 8181.53048/RT) k = 6.867 exp(- 9016.67085/RT) k = 7.441 exp(- 8545.54457/RT) k = 8.057 exp(- 8394.08123/RT) k = 8.897 exp(- 7658.52173/RT) k = 8.415 exp(- 6689.90952/RT)	830-870 800-900 840-910 770-880 730-890 710-880 790-890 820-890 850-890		5 5 5 5 5 5 5 5	a, a, a, a, a, a, a,
62.84-47.16 66.61-43.39 68.36-41.64 61.08-38.92 66.71-33.29 68.78-31.22 72.21-27.79 79.56-20.44	k = 4.897 exp(- 8489.89644/RT) k = 4.887 exp(- 8307.88939/RT) k = 4.569 exp(- 7439.27646/RT) k = 5.076 exp(- 7551.40954/RT) k = 5.647 exp(- 8181.53048/RT) k = 6.867 exp(- 9016.67085/RT) k = 7.441 exp(- 8545.54457/RT) k = 8.057 exp(- 8394.08123/RT) k = 8.897 exp(- 7658.52173/RT)	830-870 800-900 840-910 770-880 730-890 710-880 790-890 820-890		5 5 5 5 5 5 5 5	a, ; a, ; a, ;

Table 2.3.a Electrical Conductance data (continued)

(mol %)	Conductance $(ohm^{-1} cm^{-1})$ Equation $(R = 8.31441 \ J K^{-1} mol^{-1})$	T range(K)	Accur.	Ref.	Comment
For addition: (Cl- ; LaCl ₃	al LiCl systems, see : AgBr- ; AlBr3- ; AlCl3- ; BaCl2- ; CaCl2- ; CaCr04-KCl- ; - ; LiBr-	uauru ₄ - ; CdC1 ₂ -	; CsC1- ;	FeClg-	GaCl3-
	LiC103				
00	k = 166.87 exp(- 24476.39109/RT)	404-446	±2.5%	1	a,f
	LiC103-LiN03				
0-30	k = 436.678 exp(- 27556.28502/RT)	420-440		3	a,f
4.5-25.5	k = 265.707 exp(- 25811.94624/RT)	410-440		3	a,f
9.4-20.6	k = 352.323 exp(- 26873.4448/RT)	400-440		3	a,f
31.9-18.1	k = 324.299 exp(- 26634.11599/RT)	400-440		3	a, f
84.4-15.6	k = 203.557 exp(- 24927.85225/RT)	410-440		3	a,f
00-0	k = 166.87 exp(- 24476.39109/RT)	400-440	(454)	3	a,f
	LiClO3-LiOH				
2.4-7.6	k = 138.711 exp(- 24146.26797/RT)	410-440		3	a,f
00-0	k = 166.87 exp(- 24476.39109/RT)	410-440	(455)	3	a,f
	LiC104				
100	k = 14.831 exp(- 13016.64177/RT)	550-620	±2.5%	6	a,f
	Liclo ₄ -Lino ₃				
0-100	k = 20.5363 exp(- 14023.74742/RT)	540-640	(456)	3	a, f
i- 9 5	k = 19.4848 exp(- 13922.07452/RT)	540-640		3	a, i
10-90	k = 19.555 exp(- 14084.83484/RT)	540-640		3	a, f
5-85	k = 20.5112 exp(- 14408.26345/RT)	520-640		3	a, f
20-80	k = 22.8048 exp(- 15052.19183/RT)	520-640		3	a, 1
25-75	k = 20.4136 exp(- 14582.73917/RT)	520-640		3	a, i
30-70	k = 20.485 exp(- 14642.15297/RT)	500-640		3	a, 1
35-65	k = 19.0512 exp(- 14412.02912/RT)	500-640		3	a, 1
10-60	k = 18.9402 exp(- 14395.29284/RT)	500-640		3	a, 1
15-55	k = 20.2526 exp(- 14735.45773/RT)	480-640		3	a, t
50-50	k = 19.3029 exp(- 14564.32926/RT)	480-640		3	a, t
55~45	k = 18.298 exp(- 14316.21391/RT)	480-640		3	a,
50-40	k = 19.6927 exp(- 14676.04393/RT)	480-640		3	a,-
70-30	k = 16.1075 exp(- 13627.09758/RT)	500-640		3	a,-
75-25	k = 17.0087 exp(- 13903.66461/RT)	500-640		3	a, ·
80-20	k = 14.4374 exp(- 13072.70831/RT)	520-640		3	a. ·
B5-15	k = 14.4474 exp(- 13072.70831/RT)	520-640		3	a,
90-10	k = 13.8077 exp(- 12805.34624/RT)	520-640		3	a,
95-5	k = 13.4895 exp(- 12630.45211/RT)	540-640		3	a,
100-0	k = 13.49 exp(- 12635.8914/RT)		(457)	3	a,
	LiC104-NaC104				
49.7-50.3	k = 12.834 exp(- 13250.94969/RT)	590-640		6	a, ·
59-41	k = 11.801 exp(- 12669.36396/RT)			6	a,
68-32	k = 14.574 exp(- 13656.80448/RT)			6	a,
88-12	k = 14.737 exp(- 13393.20807/RT)			6	a,
89.3-10.7	k = 16.696 exp(- 13849.2717/RT)	510-620		6	a, a,
100-0	k = 14.597 exp(- 12941.32851/RT)		(458)	6	a, a,
-	LiCl04-NaN03	222 300	,	-	-,
0-100	k = 11.2715 exp(- 11798.65899/RT)	600-680	(459)	3	a,
10-90	k = 13.8713 exp(- 13237.97907/RT)	560-680	(409)	3	a, a,
28-72	k = 16.8688 exp(- 14796.96356/RT)	480-680		3	a, a,
20-72 60-40	k = 17.3036 exp(- 14756.50505/RT)	540-680		3	a, a,
78~22	k = 17.1765 exp(- 14175.62916/RT)			3	
		480-680			a, a,
90-10	k = 16.3955 exp(- 13358.06188/RT)	520-680		3	

Table 2.3.a Electrical Conductance data (continued)

		Conductance (ohm-1 cm-1)				
(mol %)	Equation (R	= 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
or addition	al LiClO ₄ systems, see : CsClO ₄ - ; KClO ₄ - ; KNO	03-				
		LiF				
00	k = 15.287 exp(- 5386.57172/RT)		1140-1310	±3%	1	a,f
		1:5-1:1				
-100	k = 9.4084 exp(- 5363.55933/RT)	LiF-LiI	760-1260	(461)	2	a,f
5-75	k = 8.8136 exp(- 7997.01299/RT)		760-1260	(401)	2	a, i
7-63	k = 7.006 exp(- 7768.98118/RT)		760-1260		2	a, i
0-50	k = 11.6072 exp(- 11517.9079/RT)		760-1260		2	a, 1
3-37	k = 17.17 exp(- 14695.70906/RT)		760-1260		2	a, f
5-25	k = 18.8859 exp(- 15358.04734/RT)		760-1260		2	a, f
00-0	k = 23.003 exp(- 9608.29835/RT)		1130-1260	(462)	2	a,f
				,		
0-100 0	k = 21.451 exp(- 15165.16172/RT)	LiF-NaF	1210 1240	(462)	14	- 4
. 0- 100. 0 0. 0-80. 0	k = 17.902 exp(- 12122.92442/RT)		1310-1340		14	a, f a, f
0.0-60.0	k = 14.627 exp(- 9714.15532/RT)		1180-1340		14	a, i
0.0-60.0	k = 18.53 exp(- 11009.54339/RT)		1130-1340 1070-1340		14	a, i
2.0-38.0	k = 17.799 exp(- 10046.78888/RT)		1030-1340		14	a,
0.0-30.0	k = 19.483 exp(- 10314.56936/RT)		1020-1340		14	a, a,
5.0-15.0	k = 22.58 exp(- 10394.4851/RT)		1060-1340		14	a, a,
00.0-0.0	k = 20.471 exp(- 7768.14436/RT)		1150-1340		14	a, a,
00.0 0.0	K = 20.471 0Ap(7700, 14400/N1)		1100 1011	(404)	1.4	٠,
		LiF-Na3A1F6				
-100	k = 9.109 exp(- 12460.16046/RT)		1270-1370	(465)	3	а,
5-75	$k = 7.19057 \exp(-9252.6524/RT) \dots$		1280-1370)	3	a,
2.8-57.2	$k = 7.1417 \exp(-8742.19586/RT) \dots$		1220-1370)	3	а,
6.2-43.8	k = 9.4411 exp(- 11299.91785/RT)		1220-1370)	3	a,
6.7-33.3	k = 19.6893 exp(~ 17331.25475/RT)		1120-1320)	3	a,
5.0-25.0	k = 13.9546 exp(- 13151.36882/RT)		1070-1310	0	3	a,
1.8-18.2	$k = 10.9144 \exp(-9323.78159/RT) \dots$		1130-131	ס	3	a,
37.5-12.5	k = 11.7351 exp(- 8344.2908/RT)		1120-132	0	3	a,
32.3-7.7	k = 12.961 exp(- 7655.17447/RT)		1130-131		3	а,
16.4-3.6	$k = 8.78608 \exp(-2034.71324/RT) \dots$		1120-132		3	a,
00-0	k = 11.477 exp(- 2891.19237/RT)		1120-132	0 (466)	3	a,
		LiF-SmF3				
0.0-50.0	k = 16.707 exp(- 15437.96308/RT)		1260-134	0	14	a,
0.0-40.0	k = 24.886 exp(- 18221.62485/RT)		1150-134	0	14	a,
70.0-30.0	k = 25.698 exp(- 16936.69695/RT)		1080~134	0	14	a,
30.0-20.0	k = 25.462 exp(- 14781.4825/RT)		1100-134	0	14	a,
90.0-10.0	k = 20.994 exp(- 10523.35446/RT)		1120-134	0	14	a,
100.0-0.0	k = 20.471 exp(- 7768.14436/RT)		1150-134	0 (467)	14	a,
		LiF-ThF₄				
= 0 0 40 P	h = 19 025 aug (= 10404 04202/BT)	•	1100-127	0	14	a,
50.2-49.8	k = 18.025 exp(- 19404.04303/RT)		1080-127		14	a, a,
58.2-41.8 71:9-28.1	k = 29.083 exp(- 20196.08748/RT)		920-1270		14	a, a,
	k = 33.778 exp(- 19733.32934/RT)		920-1270		14	a, a,
78.0-22.0 96.8-3.2	k = 42.82 exp(- 19733.32934/RT)		1160-127		14	a, a,
96.8-3.2 100-0	k = 42.82 exp(- 1/1/8.5362/Rt)		1160-127		14	a, a,
100-0	K - 20.001 BAP(1370.03000/RT)		1100 127	- (400)	• •	۵,
		LiF-UF4		_		
10.0-60.0	$k = 11.651 \exp(-13612.45334/RT) \dots$				14	a
50.0-50.0	k = 18.663 exp(- 18130.41212/RT)				14	a,
60.0-40.0	k = 25.24 exp(- 19836.67587/RT)		980-1270		14	a
72.5-27.5	k = 23.529 exp(- 17525.3956/RT)		940-1270		14	а,
85.0-15.0	$k = 20.711 \exp(-13129.61166/RT) \dots$				14	а,
95.0-5.0	k = 19.668 exp(- 9342.6099/RT)		1180-127	0	14	a

Table 2.3.a Electrical Conductance data (continued)

,		Conductance (ohm ⁻¹ cm ⁻¹)	_			_
(mol %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
00-0	$k = 20.081 \exp(-7576.09555$	/RT)	1160-1270	(469)	14	a,f
		LiF-YF3				
0.0-60.0	k = 32.621 exp(- 25275.9668	7/RT)	1180-1340		14	a,f
0.0-50.0	k = 35.232 exp(- 25025.3410	8/RT)	1140-1340		14	a,f
0.0-40.0	k = 35.317 exp(- 22668.8728	5/RT)	1080-1340		14	a,f
0.0-30.0	k = 24.386 exp(- 16881.0488	2/RT)	1080-1340		14	a,f
1.0-19.0	k = 26.137 exp(- 15133.7811	9/RT)	980-1340		14	a,f
00.0-0.0	k = 20.548 exp(- 7807.05621	/RT)	1160-1340	(470)	14	a,f
For addition	al LiF systems, see : AlF3- ; E	leF ₂ - ; CaF ₂ - ; CeF ₃ - ; KF- ; LaF ₃ - ; LiBr- ; LiCl-				
		LiH				
00	$k = 100.7 \exp(-9765.20097)$	RT)	973-1073	±10%	27,28	d
		LiI				
00	k ≈ 10.113 exp(- 5903.72277		756-877	±2%	1	a,c,
0 100 0	h = E 465 aun/ 6400 30000	LiI-NaI	070 4400			_
.0-100.0		(RT)	950-1120	(471)	4	a,f
9.8-70.2		(RT)	880-1040		4	a,f
0.4-49.6		(RT)	890-1040		4	a,f
4.6-45.4		·) <i></i>	860-1070		4	a,f
5.2-44.8	$k = 5.937 \exp(-4916.70066)$	(RT)	850-1020		4	a,b,
5.7-24.3	$k = 7.251 \exp(-5431.34127)$	(RT)	860-10 50		4	a,f
00.0-0.0	k = 10.028 exp(- 5864.3925	I/RT)	770-910	(472)	4	a,f
.0-100.0	k = 4.186 exp(- 11976.06356	LiI-RbI 5/RT)	930-1050	(473)	4	a,f
7.1-72.9		I/RT)	880-1050	, ,	4	a,f
5.2-44.8	k = 5.701 exp(- 9698.67426	/RT)	860-1030		4	a,f
01.0-9.0	k = 7.729 exp(- 6197.02608)	/RT)	860-1030		4	a,f
00.0-0.0		I/RT)	770-910	(474)	4	a,f
For addition	nal Lil systems, see : CsI- ; K	(- ; LiBr- ; LiCl- ; LiF-				
		LiNO2				
100	k = 44.82 exp(- 17426.6515	5/RT)	502-527	±5%	1	a,f
		LiN02-NaN02				
100	(T=573 K, k=1.43)			(475)	7	a,g
3-87	k = 9.00374 exp(~ 8936.336	71/RT)	553-573		7	a, g
20-80	$k = 11.4363 \exp(-10178.58)$	709/RT)	533-573		7	a,g
30-70	k = 15.105 exp(- 11662.258	31/RT)	513-573		7	a, g
89-61	$k = 20.801 \exp(-13274.798)$	39/RT)	493-573		7	a,g
50-50	•	286/RT) ,	473-573		7	a,g
78-22		937/RT) ,	473-553		7	a,g
90-10	•	57/RT)	493-553		7	
100-0		029/RT)	513-553	(476)	7	a,g
	12.0005 CAP(12445.70		510-550	(470)	,	a,g
	h . 44 400m / 44mm -	LiN02-NaN03				
0-100		346/RT)	593-633	(477)	7	a,g
22-78		956/RT)	533-633		7	a,g
28-72		943/RT)	513-633		7	a,g
11-59		89/RT)	473-613		7	a,g
50-50		066/RT)	473-593		7	a,g
30-40		042/RT)	433-593		7	a,g
75-25	k = 16.4227 exp(- 12638.40	184/RT)	433-573		7	a,g
30-20	k = 13.2914 exp(- 11689.87	317/RT)	453-573		7	a,g

For additional LiN0 $_2$ systems, see : CsN0 $_2$ - ; CsN0 $_3$ -

Table 2.3.a Electrical Conductance data (continued)

		Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation	$(R = 8.31441 \ J \ K^{-1} \ mol^{-1})$	T range(K)	Accur.	Ref.	Comment
 		LiN03			-	
00	k = 20.354 exp(- 14108.26563/RT)	\	558-653	±2.5%	1	a,f
		•				,-
		LiNO3-LiOH				
2.4-7.6	k = 138.436 exp(- 24137.06302/RT)		410-440		3	a,f
		LiN03-NaC104				
0-70	k = 14.4348 exp(- 14546.75617/RT)		620-680		3	a,f
0-50	k = 17.5146 exp(- 15354.28168/RT)		540-680		3	a,f
7-33	k = 19.5353 exp(~ 15278.55001/RT)		480-680		3	a,f
0-20	k = 20.2248 exp(~ 14981.06264/RT)		500-680		3	a,f
0-10			520-680		3	a,f
00-0	k = 20.5363 exp(~ 14023.74742/RT)		540-680	(478)	3	a,f
		LiN03-NaN02				
-100	k = 16.1695 exp(~ 11722.92733/RT)		573-610	(479)	7	a,g
0-90	k = 15.1803 exp(~ 11598.66045/RT)		533-593		7	a,g
8-82	k = 16.6932 exp(~ 12224.17891/RT)		493-593		7	a,g
9-71	k = 19.4094 exp(~ 13155.55289/RT)		453-593		7	a,g
0-50	k = 22.2622 exp(- 14169.35306/RT)		453-593		7	a,g
9-31	k = 28.5302 exp(- 15676.45507/RT)		453-593		7	a,g
5-25	k = 26.4416 exp(- 15463.48591/RT)		493-593		7	a,g
8-12	k = 33.2922 exp(- 16775.19185/RT)		513-593		7	a,g
00-0	k = 31.3841 exp(- 16702.38903/RT)		553-593	(480)	7	a,g
		LiN03-NaN03				
~100	k = 10.228 exp(- 11200 75539/RT)		610-720	(481)	7	
5.05-74.95				(401)	7	a,b,
0.04-49.96			560-670		7	a,f a,f
4.70-25.30					7	a, t a, f
00-0				(482)	7	a,; a,f
				,,,,,	Ť	۵,,
-100	k = 8 922 evn/~ 15112 95094/PT)	L1N0 ₃ -RbN0 ₃				
0-50			590-720	(483)	7	a,f
100-0		* * * * * * * * * * * * * * * * * * *			7	a,f
	10.250 EAPT 1002, 001047 (1)		580-690	(484)	7	a,f
		L1N03-T1N03				
)~100 IO 00				(485)	7	a,f
0-80	k = 10.652 exp(- 13686.09297/RT)		443-613		7	a,f,
10-60					7	a,f
60-40 80-30		• • • • • • • • • • • • • • • • • • • •			7	a,f
30-20					7	a,f
100-0	k = 20.587 exp(- 14209.10172/RT)		525-673	(486)	7	a,f
For additiona	1 Lin03 systems, see : AgC103- ; AgN	03- ; Cd(N03)2- ; CsN02- ; CsN03- ; KC104-	; KN03- ; L1C103-	; L1C104-		
		LiOH	.	. = · - · ·		
For LiOH syst	ems, see : LiClO ₃ - ; LiNO ₃ -					
		LiP03				
100	k = 15.0353 exp(- 23894.38696/RT)		1110-127	0 ±5%	6	1 e
		Li ₂ CO ₃	1110 127	0%	U	a,f
100	k = 29.34 exp(- 16543.81278/RT) .		1018-111	8 ±1.5%	1	
		Li ₂ C0 ₃ -Na ₂ C0 ₃	1010 111	~1.0%	'	a,c,
	k = 14.12 exp(- 15020.8113/RT) .		. 1145-123	38 (487)	£	_
D-100					6	a
	$k = 14.71 \exp(-15146.3334/RT)$.		1077-191	12	c	_
10-90					6	a
0-100 10-90 20-80 30-70	$k = 15.88 \exp(-15522.8997/RT)$.		. 1013-122	24	6 6 6	a a a

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
0-50	k = 20.36 exp(- 16861.8021/RT)	933-1212		6	a
3.3-46.7	k = 20.84 exp(- 16945.4835/RT)	913-1220		6	а
0-40	k = 21.74 exp(- 16945.4835/RT)	953~1253		6	a
0-30	k = 23.21 exp(- 16736.28/RT)	973-1196		6	a
0-20	k = 25.05 exp(- 16443.3951/RT)	973-1196		6	a
10-10	k = 28 exp(- 16652.5986/RT)	1007-1201		6	a
00-0	k = 29.22 exp(- 16485.2358/RT)	1013-1153	(488)	6	a
For additiona	1 Li $_2$ CO $_3$ systems, see : K $_2$ CO $_3$ - ; K $_2$ SO $_4$ -				
	L12M004				
00	k = 22.493 exp(- 20736.25092/RT)	977-1223	±10%	1	a
	Li ₂ Mo0 ₄ -Mo0 ₃				
- 100	k = 1.568 exp(- 7518.77379/RT)	1080-1180	(489)	3	a,f
6.03-83.97	k = 11.2026 exp(- 22924.10112/RT)	1060-1180		3	a,f
27.56-72.43	k = 9.59055 exp(- 19653.4136/RT)	1040-1180		3	a,f
1, 18-58.82	k = 12.895 exp(- 20313.24144/RT)	1040-1180		3	a,f
2.51-47.49	k = 10.1447 exp(- 16841.30016/RT)	1070-1220		3	a,f
55.23-34.77	k = 8.71821 exp(- 16245.48859/RT)	1120-1220		3	a, f
7.88-22.12	k = 13.6741 exp(- 17516.60906/RT)	1040-1140		3	
15.84-14.16	k = 17.8529 exp(- 18814.92598/RT)			3	a,f
100-0	k = 293.4 exp(- 38342.81748/RT)	1080-1180 1060-1210		3	a,f a,b,
	250.1 5.60 555-12.0 1.10 1.10 1.10 1.10 1.10 1.10 1.10	1000 1210	(430)	ŭ	۵,5,
	Li ₂ Mo0 ₄ ~Na ₂ Mo0 ₄				
- 100	k = 15.839 exp(- 21250.89153/RT)	1001-1132	(491)	6	a,f
20-80	k = 21.93 exp(- 23610.70701/RT)	890-1050		6	a,f
8-62	k = 22.24 exp(- 23112.80268/RT)	830-1090		6	a,f
1555	k = 30.637 exp(- 25443.32967/RT)	810-990		6	a,f
52-48	k = 30.472 exp(- 25142.07663/RT)	810-990		6	a,f
75-25	k = 17.764 exp(- 19740.44226/RT)	970-1050		Б	a,f
100-0	k = 23.532 exp(- 18938.77445/RT)	1030-1130	(492)	6	a,f
For additiona	.1 Li ₂ MoO ₄ systems, see : K ₂ MoO ₄ - Li ₂ SO ₄				
100	k = 18.9289 exp(- 14258.05534/RT)	1140-1245	5 ±3%	6	a,f
.00	Li ₂ SO ₄ -Li ₂ WO ₄	1140-1240	10%	0	a, 1
F0 F0				_	_
50-50	k = 23.8887 exp(- 19964.70841/RT)	920-1180		3	a,f
	Li ₂ S0 ₄ -MgS0 ₄				
96.0-4.0	k = 20.751 exp(- 15468.50679/RT)	1110-1226	0	6	a,b,
	Li ₂ S0 ₄ -Na ₂ S0 ₄				
0-100	k = 11.8933 exp(- 15982.72899/RT)	1153-1342		6	a,f
10-90	k = 12.478 exp(- 16083.56508/RT)	1100-125	3	6	a,f
20-80	k = 12.699 exp(- 16309.50486/RT)	1038-133	В	6	a,f
30-70	k = 17.077 exp(- 16405.73847/RT)	995~1272		6	a,f
40-60	k = 19.057 exp(~ 19376.42817/RT)	915-1155		6	a,f
50-50	k = 22.504 exp(- 20012.40681/RT)	909-1068		6	a,f
50~40	k = 24.498 exp(- 20125.3767/RT)	901-1056		6	a,f
70-30	k = 20.006 exp(- 17874.34704/RT)	923-1178		6	a,f
30-20	k = 19.356 exp(- 16827.91113/RT)	990-1213		6	a,f
90-10	k = 16.974 exp(- 14342.99196/RT)	1296-130	5	6	a,f
95.11-4.89	k = 17.345 exp(- 14121.23625/RT)	1116-118		6	a,, a,f
98.0-2.0	k = 18.804 exp(- 14338.80789/RT)	1140-119		6	a,i a,f
100-0	k = 18.9289 exp(- 14258.05534/RT)	1136-120		6	a, r a, f
	Li ₂ S0 ₄ -Rb ₂ S0 ₄	· · · · · ·	/	-	~, ·
50.0-50.0	k = 13.494 exp(- 23355.47874/RT)	1050-121	0	6	a,f
93.49-6.51	k = 20.831 exp(- 17769.74529/RT)	970-1120		6	a,f
98.0-2.0	k = 18.221 exp(- 14552.19546/RT)	1090-116		6	
99.0-1.0	k = 18.047 exp(- 14091.94776/RT)				a,f
55.0 1.0	κ = 10.047 GAP(" 14031.347/0/RT)	1130-122	U	6	a,f

Table 2.3.a Electrical Conductance data (continued)

		Conductance (ohm-1 cm-1)				
(mol %)	Equation	$(R = 8.31441 \ J \ K^{-1} \ mol^{-1})$	T range(K)	Accur.	Ref.	Comment
100-0	k = 18.9289 exp(- 14258.05534	/RT)	1140-1200	(495)	6	a,f
		Li ₂ S0 ₄ -T1 ₂ S0 ₄				
0.0-50.0	k = 11.829 exp(- 19765.54668/	RT)	1040-1200		6	a,f
		Li ₂ \$0 ₄ -Zn\$0 ₄				
25-75	k = 30.781 exp(- 32434.91064/	(RT)	1020-1140		6	a,f
33-67	$k = 11.832 \exp(-23121.17082)$	(RT)	940-960		6	a,f
50-50		(RT)	780-980		6	a,f
67-33		(RT)	860-1060		6	a,b,f
75-25	k = 23.218 exp(- 19481.02992)	/RT)	940-1020		6	a,f
For additiona	l Li ₂ SO ₄ systems, see : Ag ₂ SO ₄ -	; Ba_2S0_4- ; $CdS0_4-$; Cs_2S0_4- ; K_2C0_3- ; K_2S0_4- ; K_4	2 ^{W0} 4-			
		Li ₂ S _{3.9}				
100	k = 56.442 exp(- 22417.41025)	/RT)	726-802	±3%	29	k
		Li ₂ WO ₄				
100	k = 16.969 exp(- 18758.44103)	/RT) ,	1085-1150	±5%	6	a,f
		Li2W04-Na2W04				
0-100	k = 14.389 exp(- 22016.57634)	/RT)	974-1146	(496)	6	
15-85	k = 29.295 exp(- 27861.72213	/RT) ,	921-1088		6	a,b,f
30-70	k = 20.59 exp(- 24585.59532/	RT)	881-1083		6	a,f
40-60	k = 25.184 exp(- 26372.19321	/RT)	833-1023		6	a,f
52.6-47.4	k = 34.444 exp(- 28255.02471	/RT)	812-982		6	a,f
70-30	k = 14.913 exp(- 20861.77302	/RT)	910-1084		6	a,f
85-15		/RT)	977-1124		6	a,f
100~0	• •	/RT)	1100-1140	(497)	6	a,, a,f
	10.500 CAP(10.00.44100	Li ₂ W0 ₄ -W0 ₃	1100-1140	(457)	0	a, T
44.95-55.05	k = 21 6202 avn(= 20024 0405	1/RT)			_	
49.99-50.01		6/RT)	1080-1200		3	a,f
59.98-40.02			1050-1170		3	a,f
69.92-30.08	, , , , , , , , , , , , , , , , , , , ,	9/RT)	1050-1200		3	a,f
		/RT)	1020-1080		3	a,f
79.51-20.49		/RT)	990-1170		3	a,f
88.86-11.14		8/RT)	1020-1170		3	a,f
100-0	K = 20.46 exp(- 21514.48794/	RT)	1040-1160	(498)	3	a,f
For additiona	1 Li ₂ WO ₄ systems, see : Li ₂ SO ₄ -	Li3A1F6				
100	k = 9.6349 exp(- 9577.33623/	RT)	1180-1363	±3%	6	a,c,f
		L13A1F6-Na3A1F6	1,05 1000	-0%	Ū	۵,0,1
5-95	k = 15.356 exp(- 18122.8808/	RT)	1180-1370		6	a, f
10-90		s/RT)	1180-1370		6	a,f
15-85		i/RT)	1180-1370		6	a,, a,f
20-80	• • • • • • • • • • • • • • • • • • • •	//RT)	1180-1370		6	
25-75		6/RT)	1180-1370		6	a,f
30-70		//RT)				a,f
35-65		O/RT)	1180-1370		6	a,f
40-60		(RT)	1180-1370		6	a,f
45-55			1180-1370		6	a,f
55-45		I/RT)	1180-1370		6	a,f
		/RT)	1180-1370		6	a,f
62.5-37.5		(RT)	1180-1370		6	a,f
70-30		3/RT)	1180-1370		6	a,f
80~20		₹₹)	1180-1370)	6	a,f
90-10	k = 11.106 exp(- 11619.1623	9/RT)	1180-1370)	6	a,f
100-0	k = 9.6349 exp(- 9577.33623	/RT)	1180-1363	(499)	6	a,f
		MgBr ₂				
100	$k = 8.696 \exp(-20689.80774)$	/RT)	987-1244	±4%	1	a,f
		MgC1 ₂				
100	k = 7.374 exp(- 16313.68893	/RT)	987-1252	±2%	1	a,f
			·		•	-,.

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Commen
	MgC1 ₂ -Mg0				
98.2-1.8	k = 6.86689 exp(- 15809.09009/RT)	1000-1240		3	a,f
	MgC1 ₂ -NaC1				
) - 100	k = 7.797 exp(- 6851.83303/RT)	1100-1130	(500)	5	a, f
20-80	k = 6.925 exp(- 7449.73664/RT)	1020-1060		5	a, f
10-60	k = 5.746 exp(- 8150.56836/RT)	1000-1090		5	a, 1
60-40	k = 9.585 exp(- 13560.57087/RT)	1000-1010		5	a, 1
30-20	k = 7.355 exp(- 13109.94653/RT)	1000-1050		5	a, 1
00-0	k = 10.193 exp(- 19089.81938/RT)	1020-1080	(501)	5	а,
For additiona	al MgCl ₂ systems, see : AlCl ₃ - ; BaCl ₂ - ; CaCl ₂ - ; KCl- ; LiCl-				
	MgF ₂ -Na ₃ A1F ₆				
0-100	k = 6.112 exp(- 9363.94866/RT)	1273-1423	(502)	3	a, f
5.0-94.0	k = 6.51 exp(- 10256.41079/RT)	1273-1423		3	a, t
37.3-62.7	k = 6.346 exp(- 10422.09996/RT)	1273-1423		3	a,
19.4-50.6	k = 6.591 exp(- 11098.24568/RT)	1273-1423		3	a,
94.1-5.9	k = 7.615 exp(- 13370.19569/RT)	1273-1423		3	a,
	Mg1 ₂			-	-,
00	k = 13.07 exp(- 26497.71531/RT)	910-1176	±4%	1	а,
	Mg(N0 ₃) ₂				
For Mg(NO ₃) ₂	systems, see : AgNO ₃ -				
	Mg0				
For Mg0 syste	ems, see : CaF ₂ - ; MgCl ₂ -				
	MgS04				
For MgS0 ₄ sys	·				
For MgS0 ₄ sys	stems, see : Li ₂ \$0 ₄ -				
	stems, see : Li ₂ SO ₄ - MnBr ₂ stems, see : AlBr ₃ -				
For MnBr ₂ sys	stems, see : Li ₂ SO ₄ - MnBr ₂ stems, see : AlBr ₃ - MnCl ₂				
For MnBr ₂ sys	stems, see : Li ₂ SO ₄ - MnBr ₂ stems, see : A1Br ₃ - MnC1 ₂ k = 4.9986 exp(- 9399.93166/RT)	923-1123	±4%	1	a,
For MnBr ₂ sys	stems, see : Li ₂ SO ₄ - MnBr ₂ stems, see : AlBr ₃ - MnCl ₂	923-1123	±4%	1	a,·
For MinBr ₂ sys	stems, see : Li ₂ SO ₄ - MnBr ₂ stems, see : A1Br ₃ - MnC1 ₂ k = 4.9986 exp(- 9399.93166/RT)	923-1123 1099-1174		1	a, k
For MnBr ₂ sys	stems, see : Li ₂ SO ₄ - MnBr ₂ stems, see : AlBr ₃ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT)		(503)		
For MnBr ₂ sys	MnBr ₂ stems, see : Li ₂ SO ₄ - MnBr ₂ stems, see : AlBr ₃ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT)	1099-1174	(503)	18	k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02	MnBr ₂ stems, see : Li ₂ SO ₄ - MnBr ₂ stems, see : AlBr ₃ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT)	1099-1174 1053-1143	(503)	18 18	k k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15	MnBr ₂ stems, see : Li ₂ SO ₄ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41064/RT)	1099-1174 1053-1143 977-1128	(503)	18 18 18	k k k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15 39.71-60.29	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnBr ₂ Stems, see : AlBr ₃ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT)	1099-1174 1053-1143 977-1128 884-1074	(503)	18 18 18	k k k
	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnBr ₂ Stems, see : AlBr ₃ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100	(503)	18 18 18 18	k k k k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnBr ₂ Stems, see : AlBr ₃ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108	(503)	18 18 18 18 18	k k k k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 59.12-40.88 70.89-29.11	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnBr ₂ Stems, see : AlBr ₃ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 8.143 exp(- 11555.14612/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108	(503)	18 18 18 18 18 18	k k k k k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 69.12-40.88 70.89-29.11 74.44-25.56	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnBr ₂ Stems, see : AlBr ₃ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41064/RT) k = 8.689 exp(- 11377.74155/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 8.143 exp(- 11555.14612/RT) k = 7.322 exp(- 11108.70585/RT) k = 6.719 exp(- 10689.88044/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122	(503)	18 18 18 18 18 18 18 18	k k k k k k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 59.12-40.88 70.89-29.11 74.44-25.56 90.56-9.44	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41064/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 8.143 exp(- 11555.14612/RT) k = 7.322 exp(- 11108.70585/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.14 exp(- 10620.42488/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119	(503)	18 18 18 18 18 18 18 18	k k k k k k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 59.12-40.88 70.89-29.11 74.44-25.56 90.56-9.44	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnBr ₂ Stems, see : AlBr ₃ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41064/RT) k = 8.689 exp(- 11377.74155/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 8.143 exp(- 11555.14612/RT) k = 7.322 exp(- 11108.70585/RT) k = 6.719 exp(- 10689.88044/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122	(503)	18 18 18 18 18 18 18 18	k k k k k k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 59.12-40.88 70.89-29.11 74.44-25.56 90.56-9.44 100-0	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 8.143 exp(- 11555.14612/RT) k = 7.322 exp(- 11108.70585/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.14 exp(- 10620.42488/RT) k = 5.493 exp(- 10194.90496/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119	(503)	18 18 18 18 18 18 18 18	k k k k k k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 59.12-40.88 70.89-29.11 74.44-25.56 90.56-9.44 100-0	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 8.143 exp(- 11555.14612/RT) k = 7.322 exp(- 11108.70585/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.14 exp(- 10620.42488/RT) k = 5.493 exp(- 10194.90496/RT) MnCl ₂ -RbCl k = 6.945 exp(- 12639.23866/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119	(503) (504) (505)	18 18 18 18 18 18 18 18 18	k k k k k k k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 59.12-40.88 70.89-29.11 74.44-25.56 90.56-9.44 100-0 0-100 9.67-90.33	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 8.143 exp(- 11555.14612/RT) k = 7.322 exp(- 11108.70585/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.14 exp(- 10620.42488/RT) k = 5.493 exp(- 10194.90496/RT) MnCl ₂ -RbCl k = 6.945 exp(- 12639.23866/RT) k = 6.166 exp(- 12733.38023/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119 931-1106	(503) (504) (505)	18 18 18 18 18 18 18 18 18 18	k k k k k k k
For MnBr ₂ sys 100 0-100 0-94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 59.12-40.88 70.89-29.11 74.44-25.56 90.56-9.44 100-0 0-100 9.67-90.33 20.36-79.64	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 7.322 exp(- 1108.70585/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.14 exp(- 10620.42488/RT) k = 5.493 exp(- 10194.90496/RT) MnCl ₂ -RbCl k = 6.945 exp(- 12639.23866/RT) k = 6.166 exp(- 12733.38023/RT) k = 6.092 exp(- 14003.66388/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119 931-1106	(503) (504) (505)	18 18 18 18 18 18 18 18 18 18	k k k k k k k k
For MnBr ₂ sys 100 0-100 0-94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 59.12-40.88 70.89-29.11 74.44-25.56 30.56-9.44 100-0 0-100 9.67-90.33 20.36-79.64 30-70	MnBr ₂ Stems, see : Li ₂ SO ₄ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 7.322 exp(- 11108.70585/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.14 exp(- 10620.42488/RT) k = 6.945 exp(- 10194.90496/RT) MnCl ₂ -RbCl k = 6.945 exp(- 12639.23866/RT) k = 6.092 exp(- 14003.66388/RT) k = 6.092 exp(- 15562.23214/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119 931-1106 999-1107 1003-1104 882-1105 785-1087	(503) (504) (505)	18 18 18 18 18 18 18 18 18 18 18	k
For MnBr ₂ sys 100 0-100 0-94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 69.12-40.88 70.89-29.11 74.44-25.56 30.56-9.44 100-0 0-100 9.67-90.33 20.36-79.64 30-70 40-60	MnBr2 stems, see : Li ₂ SO ₄ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 7.322 exp(- 11108.70585/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.14 exp(- 10620.42488/RT) k = 6.14 exp(- 10620.42488/RT) k = 6.945 exp(- 12639.23866/RT) k = 6.945 exp(- 12733.38023/RT) k = 6.092 exp(- 14003.66388/RT) k = 6.435 exp(- 15262.23214/RT) k = 6.435 exp(- 15262.23214/RT) k = 6.006 exp(- 13439.65125/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119 931-1106 999-1107 1003-1104 882-1105 785-1087	(503) (504) (505)	18 18 18 18 18 18 18 18 18 18 18 18	k
For MnBr ₂ sys 100 0-100 0-94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 19.78-50.22 59.12-40.88 70.89-29.11 74.44-25.56 30.56-9.44 100-0 0-100 9.67-90.33 20.36-79.64 30-70 40-60 50-50	MnBr2 stems, see : A1Br3- MnC12 k = 4.9986 exp(- 9399.93166/RT) MnC12-NaC1 k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 7.322 exp(- 11108.70585/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.14 exp(- 10620.42488/RT) k = 6.14 exp(- 10620.42488/RT) k = 6.945 exp(- 10194.90496/RT) MnC12-RbC1 k = 6.945 exp(- 12633.23866/RT) k = 6.092 exp(- 14003.66388/RT) k = 6.435 exp(- 15622.23214/RT) k = 5.006 exp(- 13439.65125/RT) k = 4.286 exp(- 11755.14467/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119 931-1106 999-1107 1003-1104 882-1105 785-1087 897-1090 868-1105	(503) (504) (505)	18 18 18 18 18 18 18 18 18 18 18 18	k
For MnBr ₂ sys 100 0-100 0-94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 59.12-40.88 70.89-29.11 74.44-25.56 100-0 0-100 100-100 1	Stems, see : Li ₂ SO ₄ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41064/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 7.322 exp(- 11108.70585/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.14 exp(- 10620.42488/RT) k = 6.14 exp(- 10620.42488/RT) k = 6.945 exp(- 12539.23866/RT) k = 6.166 exp(- 12733.38023/RT) k = 6.092 exp(- 14003.66388/RT) k = 6.435 exp(- 15262.23214/RT) k = 5.005 exp(- 13439.65125/RT) k = 4.286 exp(- 11755.14467/RT) k = 4.286 exp(- 11755.14467/RT) k = 4.08 exp(- 10648.45815/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119 931-1106 999-1107 1003-1104 882-1105 785-1087 897-1090 868-1105	(503) (504) (505)	18 18 18 18 18 18 18 18 18 18 18 18 18	k k k k k k k k
For MnBr ₂ sys 100 0-100 0-94-90.06 19.98-80.02 19.85-70.15 19.71-60.29 19.78-50.22 19.12-40.88 10.89-29.11 14.44-25.56 10.56-9.44 100-0	Stems, see : Li ₂ SO ₄ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 7.322 exp(- 11108.70685/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.14 exp(- 10620.42488/RT) k = 6.945 exp(- 12639.23866/RT) k = 6.945 exp(- 12639.23866/RT) k = 6.092 exp(- 14003.66388/RT) k = 6.092 exp(- 15262.23214/RT) k = 5.005 exp(- 13439.65125/RT) k = 4.286 exp(- 11755.14467/RT) k = 4.08 exp(- 11755.14467/RT) k = 6.967 exp(- 14296.96719/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119 931-1106 999-1107 1003-1104 882-1105 785-1087 897-1090 868-1105 816-1097 778-1104	(503) (504) (505)	18 18 18 18 18 18 18 18 18 18 18 18 18 1	k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 59.12-40.88 70.89-29.11 74.44-25.56 90.56-9.44 100-0 0-100 9.67-90.33 20.36-79.64 30-70 40-60 50-50 60-40 70-30 79-21	MnBr2 stems, see : A1Br3- MnC12 k = 4.9986 exp(- 9399.93166/RT) MnC12-NaC1 k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9716.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 7.801 exp(- 10864.35616/RT) k = 8.143 exp(- 11555.14612/RT) k = 7.322 exp(- 11108.70585/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.719 exp(- 10620.42488/RT) k = 6.14 exp(- 10620.42488/RT) k = 5.493 exp(- 10194.90496/RT) MnC12-RbC1 k = 6.945 exp(- 12733.38023/RT) k = 6.092 exp(- 14003.66388/RT) k = 6.092 exp(- 14003.66388/RT) k = 6.092 exp(- 15262.23214/RT) k = 6.005 exp(- 15439.65125/RT) k = 4.286 exp(- 11755.14467/RT) k = 4.08 exp(- 10648.45815/RT) k = 6.967 exp(- 14296.96719/RT) k = 6.554 exp(- 13259.31783/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119 931-1106 999-1107 1003-1104 882-1105 785-1087 897-1090 868-1106 816-1097 778-1104	(503) (504) (505)	18 18 18 18 18 18 18 18 18 18 18 18 18	k
For MnBr ₂ sys 100 0-100 9.94-90.06 19.98-80.02 29.85-70.15 39.71-60.29 49.78-50.22 59.12-40.88	Stems, see : Li ₂ SO ₄ - MnCl ₂ k = 4.9986 exp(- 9399.93166/RT) MnCl ₂ -NaCl k = 17.354 exp(- 18641.70548/RT) k = 8.199 exp(- 8727.97002/RT) k = 6.781 exp(- 8008.72839/RT) k = 7.611 exp(- 9715.41054/RT) k = 8.689 exp(- 11377.74155/RT) k = 7.801 exp(- 10864.35616/RT) k = 7.322 exp(- 11108.70685/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.719 exp(- 10689.88044/RT) k = 6.14 exp(- 10620.42488/RT) k = 6.945 exp(- 12639.23866/RT) k = 6.945 exp(- 12639.23866/RT) k = 6.092 exp(- 14003.66388/RT) k = 6.092 exp(- 15262.23214/RT) k = 5.005 exp(- 13439.65125/RT) k = 4.286 exp(- 11755.14467/RT) k = 4.08 exp(- 11755.14467/RT) k = 6.967 exp(- 14296.96719/RT)	1099-1174 1053-1143 977-1128 884-1074 733-1100 775-1108 766-1112 848-1122 878-1124 916-1119 931-1106 999-1107 1003-1104 882-1105 785-1087 897-1090 868-1105 816-1097 778-1104	(503) (504) (505)	18 18 18 18 18 18 18 18 18 18 18 18 18 1	k

Table 2.3.a Electrical Conductance data (continued)

/ 3 P/\	Conductance (ohm-1 cm-1)	_			
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
or addition	al MnCl ₂ systems, see : CsCl- ; KCl- ; LiCl-				
	MnF ₂				
00	k = 16.9026 exp(- 12561.41495/RT)	1223-1273	±5%	1	a,f
	Mo03				
00	k = 11.642 exp(- 23372.21502/RT)	1096-1187	±5%	1	a, f
•	Mo03-Na2Mo04	1030 1107	0 //		۵, ۱
) - 100	• - •	1030-1230	(507)	3	2.6
10-90	k = 15.609 exp(- 21388.96584/RT)	1050-1230	(507)	3	a, f
10-90 10-80	k = 12.9668 exp(- 20271.40074/RT)	1030-1230		3	a, 1 a, 1
8-72	k = 30.6736 exp(- 27217.79376/RT)	930-1090		3	.a.,۱ a,۱
4-66	k = 18.6285 exp(- 23077.65649/RT)	930-1090		3	a,1
i0-50	k = 20.835 exp(- 25389.77357/RT)	930-1080		3	
60-40	k = 19.735 exp(- 25473.45497/RT)	930-1090		3	a, 1 a, 1
0-30	k = 27.727 exp(- 28598.53686/RT)	930-1090		3	a,:
8-22	k = 46.7844 exp(- 33531.55539/RT)	930-1080		3	
8-12	k = 4.28398 exp(- 15509.09227/RT)	930-1080		3	a, 1
90.2-9.8	k = 17.4519 exp(- 26388.92949/RT)	1070-1150		ა ვ	a, i
100-0	k = 11.642 exp(- 23372.21502/RT)				a, 1
00-0	K - 11.042 BXD(- 23372.21902/K1)	1080-1180	(508)	3	а,
For addition	al MoO3 systems, see : K2MoO4- ; Li2MoO4-				
	NaA1C1 ₄				
100	k = - 1.59838 + 0.00601589 T - 3.29411 x 10 ⁻⁶ T ²	448-673	±2%	9	d
For addition	nal NaAlCl ₄ systems, see : KAlCl ₄ -LiAlBr ₄ -				
	NaBF₄				
100	k = 5.2325 exp(- 6447.65187/RT)	700-780	±20%	6	a,
	MaDENaE				
	NaBF ₄ -NaF				
20.3-79.7	k = 78458.9 exp(- 83860.05979/RT)	1023-1073	i	14	a,
27.7-72.3	k = 3895.7 exp(- 52691.66714/RT)	873-1073		14	a,
36.5-63.5	k = 4394.9 exp(- 50782.8944/RT)	723-1073		14	a,
47.2-52.8	k = 1655.8 exp(- 41321.87532/RT)	723-1073		14	a,
30.5-39.5	k = 779.7 exp(- 34859.99761/RT)	723-1073		14	a,
77.5-22.5	k = 531.7 exp(- 31758.76493/RT)	723-1073		14	a,
	NaBr				
100	k = 9.097 exp(- 9723.77868/RT)	1030-1229	±5%	1	a,
	NaBr-NaC1				
0-100	k = 7.6005 exp(- 6704.13536/RT)	1080-1223	(509)	2	a,
20-80	k = 7.1469 exp(- 6579.86848/RT)	1073-1223	3	2	a,
40-60	k = 6.897 exp(- 6671.49962/RT)	1056-1228	3	2	a,
50-50	k = 6.6216 exp(- 6220.45687/RT)	1043-1223	3	2	a,
60-40	k = 6.5131 exp(- 6502.04478/RT)	1038-1223	1	2	a,
80-20	k = 6.0807 exp(- 6158.11423/RT)	1080-1223	3	2	a,
100-0	k = 5.845 exp(- 5994.9355/RT)	1043-1223	(510)	2	a,
	NaBr-NaI				
0-100	k = 5.5351 exp(- 6439.28373/RT)	943-1153	(511)	2	a,
20-80	k = 5.4124 exp(- 6339.70286/RT)	981-1124		2	a,
10-60	k = 5.4124 exp(- 6621.29078/RT)	963-1127		2	a,
50-40	k = 5.7318 exp(- 6511.24973/RT)	991-1133		2	a,
80-20	k = 5.8889 exp(- 6440.95736/RT)	1007-1127	,	2	a,
100-0	k = 5.845 exp(- 5994.9355/RT)	1043-122	3 (512)	2	a,
	NaBr-Na ₂ CrO ₄				
0-100	k = 21.858 exp(- 21290.22179/RT)	1073-111	3 (513)	3	a
10-90	k = 17.955 exp(- 18976.01267/RT)	1073-111		3	a,
20.70	k = 15.288 exp(- 16567.66198/RT)	1033-111		3	a,
30-70					
30-70 50-50	k = 17.649 exp(- 17085.64985/RT)	1033-111	3	3	a,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
0-10	k = 4.898 exp(- 4127.08297/RT)	1033-1113		3	a,f
00-0	k = 6.714 exp(- 6738.44474/RT)	1033-1113	(514)	3	a,f
	NaBr-PbBr ₂		,	Ť	
-100	k = 11.966 exp(~ 15981.47377/RT)	660-920	(515)	4	a,f
-92	k = 11.909 exp(- 15816.62141/RT)		(313)	4	
5- 8 5	k = 8.506 exp(- 13463.91885/RT)	•		4	a,f
0-80	k = 8.049 exp(- 12971.03541/RT)			4	a,f
				-	a,f
5-75	k = 7.796 exp(- 12670.20077/RT)	660-1020		4	a,f
0-70	k = 7.057 exp(- 11866.02252/RT)	680-1020		4	a,f
5-65	k = 7.098 exp(- 11680.24981/RT)	700-1020		4	a,f
0-60	k = 6.658 exp(- 11133.39186/RT)	760-1020		4	a,f
5-55	k = 6.647 exp(- 11070.21241/RT)	760-1020		4	a, f
5-45	k = 6.676 exp(- 10945.94553/RT)	800-1020		4	a,f
5-35	k = 6.252 exp(- 9604.53269/RT)	940-1020		4	a,f
0-20	$k = 9.91 \exp(-12205.769/RT) \dots$	960-1020		4	a,f
	NaBr-RbBr				
- 100	k = 4.781 exp(- 11525.85763/RT)	980-1140	(516)	4	a,b
0-50	k = 5.336 exp(- 9811.64415/RT)	960-1150		4	a,b
00-0	k = 5.845 exp(- 5994.9355/RT)	1050-1220	(517)	4	a,b
	NaBr-ScBr3				
0-70	k = 30.196 exp(- 36014.80093/RT)	1193-1233		4	a, f
0-60	k = 6.902 exp(- 18137.10664/RT)	1113-1233		4	a,f
0-50	k = 6.958 exp(- 16505.73774/RT)	1033-1233		4	a,f
0-40	k = 11.171 exp(- 19913.24435/RT)	993-1233		4	a, f
0-30	k = 7.079 exp(- 14679.39119/RT)	873-1233		4	a,f
30-20	k = 7.384 exp(- 12614.55264/RT)	913-1233		4	a,f
30-10	k = 7.568 exp(- 10227.1223/RT)	993-1233		4	a, f
100-0	k = 7.742 exp(- 8160.19172/RT)	993-1233	(518)	4	a, i a, f
	al NaBr systems, see : AgBr- ; AgCl- ; AlBr3- ; AlCl3- ; CdBr2- ; CsCl- ; Hg			•	-, .
	NaC1	1000 1000		•	
100	k = 7.6426 exp(- 6742.62881/RT)	1080-1290) ±1%	3	đ
	NaC1-NaI				
D-100	k = 5.5351 exp(~ 6439.28373/RT)	943-1153	(519)	2	a,f
20-80	k = 5.7024 exp(- 5774.84614/RT)	976-1133		2	a,f
60-40	k = 6.1719 exp(- 7236.34907/RT)	928-1123		2	a,f
50-40	k = 6.5709 exp(- 7284.88428/RT)	997-1133		2	a,f
80-20	k = 7.1393 exp(- 7194.50837/RT)	1034-1153	3	2	a,f
100-0	k = 7.5822 exp(- 6679.03094/RT)	1080-1223	(520)	2	a,f
	NaC1-NaNO3				
0-100	k ≠ 10.1382 exp(- 11156.40425/RT)	598-723	(521)	3	a,f
1.07~98.93	k = 10.014 exp(- 10979.83649/RT)	598-723		3	a,f
2.07-97.93	k = 11.245 exp(- 11626.69372/RT)	598-723		3	a,f
3.1-96.9	k = 9.634 exp(- 10722.09778/RT)	598-723		3	a, f
3.96-96.04	k = 11.4583 exp(~ 11719.58007/RT)	600-720		3	a, t
4 . 34-95 . 66	k = 10.2443 exp(- 11101.59293/RT)	598-723		3	a, i
5.15~94.85	k = 10.4394 exp(- 11167.28283/RT)	598-723		3	a, 1
5.96-94.04	k = 12.8964 exp(- 12399.90985/RT)	600-720		. 3	a, 1
7.05-92.95	k = 9.62165 exp(- 10723.353/RT)			3	a, f
8.01~91.99	k = 12.1528 exp(- 12099.07522/RT)			3	a,
9.2-90.8	k = 12.1598 exp(- 12176.89892/RT)			3	
					a,
9.97-90.03	k = 11.372 exp(- 11705.77264/RT)			3	а,
11-89	k = 11.5562 exp(- 11804.9351/RT)			3	a,
12.29-87.71	k = 8.351 exp(- 9885.70219/RT)			3	а,
13.2-86.8	k = 9.16045 exp(- 10457.66456/RT)	673-723		3	a,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo) %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	ccur.	Ref.	Comment
	NaC1-NaDH-Na ₂ C0 ₃				
.9-96.4-1.7	k = 22.185 exp(- 12845.0949/RT)	600~720		3	a,f
.0-97.4-0.6	k = 24.675 exp(- 12802.41739/RT)	593-723		3	a,f
.0-96.4-1.6	k = 24.109 exp(- 13235.05022/RT)	593-723		3	a,f
.0-96.1-1.9	k = 21.716 exp(- 12820.82729/RT)	593-723		3	a,f
1.1-94.3-3.6	k = 22.344 exp(- 13377.72701/RT)	593-723		3	a,f
2.1-94.0-3.9	k = 22.682 exp(- 13502.8307/RT)	593-723		3	a,f
2.1-92.9-5.0	k = 23.078 exp(- 13910.35912/RT)	593-723		3	a,f
2.3-87.2-10.5	k = 23.703 exp(- 14698.63791/RT)	593-723		3	a,f
3.6-94.7-1.7	k = 19.1757 exp(- 12489.44895/RT)	620-720		3	a,f
3.8-94.5-1.7	k = 20.0419 exp(- 12772.71049/RT)	600-720		3	a,f
5.1-92.2-1.7	k = 17.4039 exp(- 12458.90524/RT)	600-720		3	a,f
7.3-91.0-1.7	k = 17.325 exp(- 12533.80009/RT)	640-720		3	a,f
10.0-88.3-1.7	k = 17.7172 exp(- 12948.02302/RT)	600-720		3	a,f
		000 720		·	Ψ,.
00-0 NaP03	NaC1-NaP03 k = 3.8119 - 0.0258 C	1123	(522)	3	a
00 0 (10.03		1120	(322)	·	•
	NaC1-Na ₂ B ₄ 0 ₇				
)-100	k = 434.2 exp(- 66238.01217/RT)	1023-1123	(523)	3	a,f
7.5~92.5	k = 483.452 exp(- 65744.29191/RT)	1020-1130		3	a, f
23.5-76.5	k = 158.628 exp(- 52715.09793/RT)	1020-1130		3	. a,f
39.2-60.8	k = 183.419 exp(- 50409.67536/RT)	1080-1130		3	a,f
49.3-50.7	k = 171.807 exp(- 47510.11485/RT)	1080-1130		3	a,f
	NaC1-Na ₂ C0 ₃				
D- 100	k = 25.08 exp(- 23041.67349/RT)	1103-1323	(524)	3	a, f
66.7-33.3	k = 13.4811 exp(- 14813.69984/RT)	930-1310		3	a,f
30-20	k = 13.0294 exp(- 13575.21512/RT)	990-1310		3	a, f
	NaC1-Na ₂ S0 ₄				
15.9-84.1	(T=1073 K, k=3.332)			3	a, c
25.7-74.3	(T=1073 K, k=3.195)			3	a, c
34 . 8-65 . 2	(T=1023 K, k=2.877)			3	a,c
45.1-54.9	(T=1023 K, k=2.795)			3	a, c
65.4-34.6	(T=1023 K, k=2.395)			3	a, c
66.3-33.7	(T=1073 K, k=2.573)			3	a, c
76.5-23.5	(T=1023 K, k=2.173)			3	a,c
88.0-12.0	(T=1073 K, k=2.086)			3	a, c
	NaC1-Na ₂ TiF ₆				
0-100	k = 24.66 exp(- 21719.50737/RT)	1000-1150	(525)	3	a, f
15.79-84.21	k = 3.91394 exp(- 8868.97318/RT)	1000-1150		3	a, f
28.33-71.67	k = 6.36913 exp(- 11553.05408/RT)	1000-1140		3	a,1
38.56-61.44	k = 9.64559 exp(- 14801.56603/RT)	970-1100		3	a, 1
47.07-52.93	k = 10.154 exp(- 13823.33047/RT)	1000-1120		3	a, 1
54 . 25-45 . 75	k = 12.9295 exp(- 15689.42569/RT)	970-1100		3	a,
60.38-39.62	k = 9.44362 exp(- 12381.08154/RT)	1000-1120		3	a, i
65.70-34.30	k = 14.8016 exp(- 15529.59421/RT)	1000-1120		3	a, 1
70.33-29.67	k = 16.9259 exp(- 15740.88975/RT)	1000-1100		3	a,
78.05-21.95	k = 14.9208 exp(- 13803.66534/RT)	1020-1120		3	a, 1
89.25-10.75	k = 18.7331 exp(- 14550.94024/RT)	1020-1120		3	a, 1
93.43-6.57	k = 20.0354 exp(- 14723.32392/RT)	1050-1140		3	a,
96.97-3.03	k = 12.5387 exp(- 9927.12448/RT)	1050-1140		3	a,
	NaC1-Na ₃ A1F ₆				
0-100	k = 9.088 exp(- 12447.60825/RT)	1270-1370	(526)	3	а,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
3.5-71.5	k = 8.81874 exp(- 11746.77653/RT)	1250-1340		3	a,f
.8-61.2	k = 8.4599 exp(~ 11168.11964/RT)	1240-1360		3	a,f
.4-52.6	k = 8.40651 exp(- 11096.99045/RT)	1240-1340		3	a, f
.6-39.4	k = 7.73483 exp(- 10109.54993/RT)	1200-1330		3	a,f
0.5-29.5	k = 6.83936 exp(- 8515.41926/RT)	1200-1320		3	a,f
.2-21.8	k = 6.33412 exp(- 7248.48287/RT)	1200-1320		3	a,f
1.2-15.8	k = 5.72429 exp(- 5775.69023/RT)	1210-1340		3	a, r a, f
3.3-10.7	k = 5.89752 exp(- 5433.4333/RT)	1200-1330		3	a, i
3.5-6.5	k = 6.32268 exp(~ 5626.73734/RT)	1200-1310		3	-
7.1-2.9	k = 6.13469 exp(- 4699.96583/RT)	· · - · ·		3	a,f
00-0	k = 7.959 exp(- 6928.81992/RT)	1180-1320 1200-1330		3	a,f a,f
			,,	•	- ,,.
100	NaC1-Na ₄ P ₂ D ₇	1070 1000	(500)		- •
	k = 22.812 exp(- 24568.85904/RT)	1270-1320		3	a, f
0.3-79.7	k = 29.9149 exp(- 26873.8632/RT)	1270-1320		3	a,f
9.8-60.2	k = 30.9955 exp(- 26611.52201/RT)	1230-1320		3	a,f
0.3-39.7	k = 23.6082 exp(- 22698.57975/RT)	1120-1270		3	a,f
8.4-31.6	k = 14.9471 exp(- 17648.40726/RT)	1070-1320)	3	a,f
0.9-19.1	k = 12.9222 exp(- 15113.69765/RT)	1070-1320)	3	a,f
0.1-9.9	k = 11.989 exp(- 13058.90088/RT)	1073-1273	3	3	a,f
5.5-4.5	k = 8.82254 exp(- 9298.67717/RT)	1123-1323	3	3	a,f
00-0	k = 6.87326 exp(- 5848.91145/RT)	1073-1323	3 (529)	3	a,f
	NaC1-NbC15				
3.3-21.7	k = 2031.2 exp(~ 65484.04276/RT)	1073-1123	3	5	a,f
7.6-12.4	k = 93.81 exp(- 33486.36743/RT)	1073-1123	3	5	a,f
7.7~12.3	k = 94.868 exp(~ 33627.37059/RT)	1073-1123	3	5	a,f
2.1-7.9	(T=1123 K, k=2.98)			5	a,f
2.8-7.2	(T=1123 K, k=2.94)			5	a,f
00-0	k = 17.995 exp(~ 15027.50581/RT)	1073-1123	3 (530)	5	a,f
	NaC1-NdC13				
-100 NaC1	$k = 74.41 + 0.0311 C + 0.01418 C^2 - 2.6954 \times 10^{-4} C^3 + 1.806 \times 10^{-5} C^4$	1073	(531)	5	a,n
	NaC1-PbC1 ₂				
.0-100.0	k = 12.297 exp(- 13480.65513/RT)	830-1070	(532)	5	a,f
0.0-90.0	k = 10.879 exp(~ 12502.41957/RT)	830-1070		5	a,f
0.0-80.0	k = 13.654 exp(- 14148.85111/RT)	780-1070		5	a,f
8.0-72.0	k = 11.358 exp(- 12731.7066/RT)	780-1070		5	a,f
0.0-50.0	k = 11.217 exp(~ 12465.18134/RT)	880-1070		5	a, f
6.7-33.3	k = 10.744 exp(~ 11685.6891/RT)	950-1070		5	a,f
0.0-20.0	k = 33.458 exp(- 20923.27885/RT)	1060-108		5	a,f
	NaC1-PrC13				
-100	k = 14.69999 exp(- 24198.06676/RT)	1071-126	2 (533)	-17	k
24.9-75.1	k = 14.24889 exp(- 22797.19828/RT)	993-1252		17	k
37.6-62.4	k = 13.65176 exp(- 20812.27547/RT)	932-1269		17	k
0.7-49.3	k = 11.47897 exp(- 17994.47169/RT)				
3.0-37.0		870-1250 803-1266		17 17	k L
	k = 10.36904 exp(- 15782.52124/RT)	803-1266		17	k L
74.7-25.3	k = 7.679356 exp(- 11382.63691/RT)	910-1256		17	k
37.2-12.8	k = 6.776232 exp(- 8356.63381/RT)	1050-126		17	k
100-0 0-100 NaC1	$k = 6.927953 \exp(-5763.2217/RT)$	1115-125			k
. TOU MALL		1073	(535)	5	a,r
- 100	NaC1-RbC1	1000 4:0	0 (500)	_	
	k = 6.246 exp(- 11673.5553/RT)	1020-119		5	a,f
5-75	k = 6.204 exp(- 10860.17209/RT)	1050-116		5	a, f
50-50 	k = 6.525 exp(- 10163.10603/RT)	1060-115		5	a,f
75-25	k = 6.875 exp(- 8822.94841/RT)	1050-115	0	5	a, f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (oh	1 ⁻¹ cm ⁻¹)			
(mol %)	Equation (R = 8.31441 J K ⁻¹	nol-1) T range(K) A	ccur.	Ref.	Comment
00-0	k = 7.689 exp(- 6808.73711/RT)	1090-1170	(537)	5	a,f
	NaC1-ScC13				
9-8 0	(T=1233 K, k=1.02)			5	a
0-70	(T=1233 K, k=1.14)			5	a
0-60	k = 3.673 exp(- 11132.97346/RT)			5	a,f
0-50	k = 5.833 exp(- 14067.68015/RT)			5	a,f
0-40	k = 8.179 exp(- 15222.90188/RT)			5	a,f
0-30	k = 7.885 exp(- 13124.59078/RT)			5	a,f
0-20	k = 7.283 exp(- 10448.0412/RT)	993-1233		5	a,f
0-10	k = 6.999 exp(- 7791.57515/RT)	1073-1233		5	a,f
00-0	k = 7.199 exp(- 6298.28057/RT)	1073-1233	(538)	5	a,f
	NaC1-SmC1 ₃				
-100 NaC1	$k = 66.79 + 0.1365 C + 0.019343 C^2 - 4.2081 \times 10^{-4} C^3 + 2.$	8409 x 10 ⁻⁶ C ⁴ 1073	(539)	5	a,n,
	NaC1-SrC12				
- 100	k = 14.975 exp(- 19521.19699/RT)		(540)	19	k
0-90	k = 12.699 exp(- 17880.62315/RT)	1023-1273		19	k
0-80	k = 11.841 exp(- 16928.74722/RT)	973-1273		19	k
0-70	k = 11.398 exp(- 16185.65639/RT)	948-1273		19	k
0-60	k = 11.243 exp(- 15635.03278/RT)	948-1273		19	k
0-50	k = 10.946 exp(- 14896.96283/RT)	948-1273		19	k
50-40	k = 10.946 exp(- 14290.69109/RT)	948-1273		19	k
0-30	k = 10.458 exp(- 13041.74619/RT)	948-1273		19	k
10-20	k = 9.793 exp(- 11409.12208/RT)	998-1273		19	k
10-10	k = 8.142 exp(- 8414.16477/RT)	1073-1273		19	k
100-0	k = 8.884 exp(- 8144.71066/RT)	1123-1273	(541)	19	k
	NaC1-ThC14				
30~70	(T=973 K, k=0.58)			5	a
10-60	k = 9.3 exp(- 18996.09621/RT)	873-973		5	a,f
50-50	k = 7.635 exp(- 16201.55585/RT)			5	a,f
50-40	k = 8.137 exp(- 15219.13622/RT)			5	a, i a, f
70-30	k = 7.452 exp(- 14594.45457/RT)			_	
80-20	k = 10.48 exp(- 15774.36231/RT)			5	a,f
isothermal Data	(C=100-0, k=3.61) (C=90-10, k=2.46)		(542)	5 5	a,f
points	(6 165 6), 11 6 16 16, 11 2.46)		(342)	5	а
0.40.7:01	NaC1-TiC13				
0-40 TiC13	$k = 3.5 - 0.2728 \text{ C} + 0.018 \text{ C}^2 - 5.2665 \times 10^{-4} \text{ C}^3 + 5.437$	C 10 ⁻⁶ C ⁴ 1073	(543)	5	a,n
15.1-84.9	NaC1-UC13			_	
24.9-75.1	k = 8.997 exp(- 19372.66251/RT)			5	a,f
	k = 12.207 exp(- 22713.224/RT)			5	a,f
45.1-54.9	k = 8.399 exp(- 17547.98958/RT)			5	a,f
55.0-45.0	k = 9.454 exp(- 17091.08914/RT) ,			5	a,f
68.3-31.7	k = 7.243 exp(- 13641.32342/RT)			5	a,f
74.3-25.7	k = 5.438 exp(- 10018.33721/RT)	****		5	a,f
80.0-20.0	k = 5.593 exp(- 9041.77527/RT)			5	a,f
95.0-5.0	k = 3.009 exp(- 2976.96581/RT)			5	a,f
0 00 400 00	NaC1-UC14				
0.00-100.00	k = 5.216 exp(- 18104.05248/RT)		(544)	5	a, f
3.41-96.59	k = 6.179 exp(- 19010.32205/RT)			5	a, 1
7.31-92.69	k = 6.138 exp(- 18468.48498/RT)	860-920		5	a, f
11.87-88.13	k = 6.492 exp(- 18232.08503/RT)			5	a, f
19.08-80.92	k = 5.44 exp(- 15987.74988/RT)	830-930		5	a, 1
	k = 9.4 exp(- 18919.94613/RT)	830-910		5	a, f
28.85-71.15	K = 3.4 exp(18313.34010/K1/			•	-,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref .	Comment
8.76-51.24	k = 4.428 exp(- 10768.95937/RT)	800-920		5	a,f
5.72-44.28	k = 4.088 exp(- 9538.84279/RT)	830-890		5	a,f
7.80-32.20	k = 4.618 exp(- 9425.45449/RT)	760-910		5	a,f
					-,.
	NaC1-ZnC1 ₂				
.00-100.00	$k = -0.97574 + 0.0055534 T - 1.04507 \times 10^{-5} T^2 + 6.5176 \times 10^{-9} T^3$		(545)	5	a,b,
.64-97.36	$k = 0.81694 - 0.00222235 T + 4.4201 \times 10^{-7} T^2 + 1.69466 \times 10^{-9} T^3$.			5	а
0.06-89.94	$k = 1.9342 - 0.0079397 T + 9.5769 \times 10^{-6} T^2 - 2.6725 \times 10^{-9} T^3$	580-860		5	а
5.83-84.17	k = 80.3645 exp(- 33842.43179/RT)	580-860		5	a,f
0.84-79.16	k = 92.7771 exp(- 32646.62458/RT)	580-760		5	a,f
0.35-69.65	k = 29.4429 exp(- 23408.61643/RT)	560-880		5	a,f
8.12-61.88	k = 39.2446 exp(- 23603.59409/RT)	540-760		5	a,f
2.50-47.50	k = 16.4294 exp(- 17049.66684/RT)	620-880		5	a,f
2.60-37.40	k = 13.498 exp(- 15148.00703/RT)	700-860		5	a,f
	NaC1-ZrC14				
8.1-31.9	k = 9.162 exp(- 16527.91331/RT)	923-1073		5	a,f
8.3-31.7	k = 5.068 exp(- 11173.55894/RT)	723-873		5	a,f
9.8-20.2	(T=723.2 K, k≈1.06)			5	a
10.1-19.9	(T=723.2 K, k=1.08)			5	a
1.5-18.5	k = 39.88 exp(- 29390.58131/RT)	1023-1073	3	5	a,f
5.5-14.5	k = 28.076 exp(- 24853.3758/RT)	1073-1123	3	5	a,f
2.3-7.7	k = 367.5 exp(- 44721.4322/RT)		3	5	a, f
6.7-3.3	k = 79.999 exp(- 29687.65028/RT)	1073-1123		5	a,f
96.9-3.1	k = 430.7 exp(- 45325.1935/RT)			5	a,f
100-0	k = 17.827 exp(- 14986.50193/RT)			5	a,f
00	NaC10 ₃ k = 48.3 exp(- 22348.7915/RT)	540-555	±2.5%	6	a,f
		010 000	-2.0%	Ū	۵,۰
00.0.61.4	NaC103-NaN03	500 550		•	
38.9-61.1	k = 39.4631 exp(- 19327.47455/RT)			3	a,f
51.5-48.5	k = 34.4551 exp(- 19100.69796/RT)			3	a,f
72.7-27.3	k = 53.4328 exp(- 21837.07974/RT)	520-560		3	a,f
100-0	k = 48.3 exp(- 22348.7915/RT)	540-560	(547)	3	a,f
For additiona	1 NaClO ₃ systems, see :				
	NaC10 ₄ -NaN0 ₃				
50-10 NaC104	$k = 1.341 - 0.00612 C + 4.56 \times 10^{-5} C^2 \dots \dots \dots \dots$	673		3	a.
	NaC ₂ H ₃ O ₂				
100	k = 12.897 exp(- 21229.55277/RT)	600-630	n.a.	6	a,f
	NaC ₂ H ₃ O ₂ -RbC ₂ H ₃ O ₂				·
0-100	k = 27.21 exp(- 24060.91294/RT)	550-620	(548)	6	a,f
25-75	k = 28.323 exp(- 24632.0385/RT)			6	a,f
50-50	k = 39.405 exp(- 26489.34717/RT)			6	a,f
75-25	k = 33.335 exp(- 25910.27188/RT)			6	a,f
100-0	k = 12.897 exp(- 21229.55277/RT)		(549)	6	
			(549)	0	a,f
For additiona	INAC ₂ H ₃ O ₂ systems, see : KNO ₃ - ; LiClO ₄ - ; LiNO ₃ -				
100	NaF k = 10.49 exp(- 7966.46928/RT)	1276-141	1 ±5%	1	a,c
-		1270-141	. ±3%	Ī	a,C
0_100	NaF-Na ₂ B ₄ 0 ₇			_	
0-100 8 5-01 5	k = 434.2 exp(- 66238.01217/RT)			3	a,f
8.5-91.5	k = 266.583 exp(- 61208.76003/RT)			3	a,f
27.4-72.6	k = 206.107 exp(- 55928.46369/RT)		0	3	a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)			
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K) Accu	ur. Ref.	Commen
3-57	k = 192.004 exp(- 52166.98476/RT)	1080-1130	3	a,f
1.4-37.6	k = 208.469 exp(- 48317.64036/RT)		3	a,f
				·
	NaF-Na3A1F6	4070 4050 (1	e=1)	
-100	k = 9.267 exp(- 12694.46838/RT)		551) 3	a,f
5.7-64.3	k = 9.23757 exp(- 11473.97516/RT)		3	a, f
60.0-50.0	k = 9.58462 exp(- 11642.59318/RT)		3	a,1
76.9-23.1	k ≈ 12.2565 exp(- 12235.4759/RT)		3	a,f
100-0	k = 19.932 exp(- 13589.85936/RT)	1270-1350 (!	552) 3	a,f
	NaF-SmF ₃			
60.0-50.0	k = 22.333 exp(- 22669.91887/RT)	1280-1340	14	a,f
50.0-40.0	k = 26.626 exp(- 23777.233/RT)	1150-1340	14	a,f
70.0-30.0	k = 19.674 exp(- 19631.23803/RT)	1120-1340	14	a, i
80.0-20.0	k = 18.117 exp(- 16994.85553/RT)	1110-1340	14	a,f
90.0-10.0	k ≈ 18.192 exp(- 14963.48954/RT)	1180-1340	14	a, f
100.0-0.0	$k = 21.451 \exp(-15165.16172/RT) \dots \dots \dots \dots \dots \dots \dots \dots \dots$	1310-1340 (553) 14	a,1
	NaF-SrF ₂			
59.9-40.1	k = 22.513 exp(- 15790.68018/RT)	1180-1360	14	a, 1
	NaF-ThF <u>₄</u>			
50.0-50.0	k = 43.669 exp(- 30091.83144/RT)	1080-1270	14	a,
60.0-40.0	k = 17.213 exp(- 20977.67176/RT)		14	а,
67.0-33.0	k = 17.894 exp(- 20661.35607/RT)		14	a,
80.0-20.0	k = 13.471 exp(- 15308.67532/RT)		14	a,
88.0-12.0	k = 12.629 exp(- 12564.76221/RT)		14	a,
100.0-0.0	k = 21.792 exp(- 15343.4031/RT)		(554) 14	a,
				۵,
	NaF-UF ₄			
25.0-75.0	k = 15.405 exp(- 19105.30043/RT)		14	a,
45.3-54.7	k = 16.611 exp(- 18924.1302/RT)		14	a,
54.0-46.0	k = 16.94 exp(~ 19008.64842/RT)		14	а,
65.0-35.0	k = 26.525 exp(- 23901.49988/RT)		14	а,
75.0-25.0	k = 21.36 exp(- 21724.94666/RT)		14	а,
78.0-22.0	k = 17.346 exp(- 19120.36309/RT)		14	а,
85.0-15.0	k = 12.425 exp(- 13871.44727/RT)		14	a,
100-0	k = 21.792 exp(- 15343.4031/RT)	1310-1360 ((555) 14	a,
	NaF-YF3			
50.0-50.0	k = 29.293 exp(- 26883.48656/RT)	1180-1340	14	a,
68.0-32.0	k = 21.779 exp(- 21713.23127/RT)		14	a,
71.0-29.0	k = 24.933 exp(~ 22368.87503/RT)	980-1340	14	a,
80.0-20.0	k = 15.639 exp(- 16180.2171/RT)	1100-1340	14	a,
90.0-10.0	k = 12.811 exp(- 11831.29474/RT)	1220-1340	14	a,
100.0-0.0	k = 21.792 exp(- 15343.4031/RT)	1320-1340 ((556) 14	a,
	NaF-ZrF ₄			
50-50	k = 36.405 exp(- 29158.36542/RT)	873-1173	14	k
57-43	k = 21.827 exp(- 22508.20457/RT)	873-1173	14	k
For addition	nal NaF systems, see : CsC ₂ H ₃ O ₂ -			
100	Nai			
100	k = 8.292 exp(- 10138.00161/RT)	936-1187	±5% 1	a,
0-100	Nai-Ndi ₃	4000 4400	(FF3)	
	k = 9.437 exp(- 28271.34258/RT)		(557) 4	a,
10-90	k = 6.13 exp(- 22757.57514/RT)		4	a,
20-80	k = 6.849 exp(- 22201.93064/RT)		4	a,
30-70	k = 5.758 exp(- 19046.72345/RT)		4	a,
40-60	k = 4.99 exp(~ 16141.30525/RT)	1093-1196	4	a,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
0-50	k = 5.655 exp(- 15854.69645/RT)	1093-1196		4	a,f
0-40	k = 5.214 exp(- 13674.79598/RT)	1093-1196		4	a,f
0-30	k = 5.304 exp(- 12216.22918/RT)	1093-1196		4	a,f
0-20	k = 5.868 exp(- 11533.38896/RT)	1093-1196		4	a,f
0-10	k = 6.726 exp(- 10837.15971/RT)	1093-1196		4	a,f
00-0	k = 5.48763 exp(- 6012.927/RT)	1093-1196	(558)	4	a,f
	NaI-RbI	1000 1100	(000)	•	۵,۰
-100	k = 4.132 exp(- 11789.45404/RT)	950-1100	(559)	4	a,f
0-50	k = 4.19 exp(- 8939.26556/RT)	930-1120		4	a,f
00-0	k = 5.465 exp(- 6480.70602/RT)	960-1120	(560)	4	a,f
For addition	nal NaI systems, see : AlF3- ; BaCl2- ; BaF2- ; BeF2- ; CaF2- ; CeF3- ; KF- ; LaF3- ;	LiF- ; NaBF4-			
	NaNO ₂				
00	k = 13.2 exp(- 10878.582/RT)	554-723	±3%	1	a,f
	nand ₂ -nand ₃				
- 100	k = 13.4 exp(- 13054.2984/RT)	600-720	(561)	7	a
0.0-80.0	k = 12.4 exp(- 11966.4402/RT)	570-720	,	7	a
5.0-75.0	k = 11.7 exp(- 11506.1925/RT)	560-720		7	a
0.0-50.0	k = 11.2 exp(- 10962.2634/RT)	520-720		7	a
0.0-30.0	k = 12 exp(- 10962.2634/RT)	520-720		7	a
15.0-15.0				7	
	k = 12.6 exp(- 11004.1041/RT)	550-720			a
2.5-7.5	k = 13.2 exp(- 11045.9448/RT)	560-720		7	а
00-0	k = 13.2 exp(- 10878.582/RT)	570-720	(562)	7	а
	NaN0 ₂ -Na ₂ Mo0 ₄				_
)-100	k = 17.223 exp(- 22181.84711/RT)	990-1170	(563)	3	a,1
30-70	k = 14.4999 exp(- 18804.4658/RT)	870-1030		3	a, 1
0-50	k = 11.162 exp(- 15745.07382/RT)	870-990		3	a,f
30-20	k = 10.6824 exp(- 12526.68717/RT)	750-910		3	a, f
32-8	k = 9.41002 exp(- 9799.92875/RT)	630-870		3	a, t
96.8-3.2	k = 10.1533 exp(- 9671.0594/RT)	590-750		3	a, f
100-0	k = 11.1671 exp(- 9811.22574/RT)	630-770	(564)	3	a, i
	NaNO ₂ -Na ₂ WO ₄				
O-100	k = 12.1777 exp(- 20674.74509/RT)	980-1060	(565)	3	a, f
30~70	k = 19.327 exp(- 22278.49912/RT)	940-1020		3	a, f
50-50	k = 13.6808 exp(- 17019.12313/RT)	860-1020		3	a, 1
80-20	k = 15.5879 exp(- 15611.60198/RT)	780-940		3	a, •
92-8	k = 9.94107 exp(- 10740.08928/RT)	740-860		3	a, i
97-3	k = 8.96116 exp(- 8973.15652/RT)	620-760		3	a, t
100-0	k = 11.1671 exp(- 9811.22574/RT)	620-760	(566)	3	a, i
	NaN0 ₂ -T1ND ₂				
D-100	k = 6.145 exp(- 9153.07153/RT)	473-533	(567)	7	a,(
10-90	k = 15.6225 exp(- 13252.62332/RT)	473-533	(007)	7	
18~82					a,
	k = 19.28 exp(- 14212.86738/RT)	473-533		7	a,
25-75	k = 18.2568 exp(- 13919.98248/RT)	473-553		7	a,
36-64	k~= 19.8449 exp(~ 13981.48831/RT)	473-553		7	a,
54-46	k = 14.6608 exp(~ 11844.68376/RT)	493-553		7	a,
64~36	k = 22.923 exp(- 13337.14153/RT)	533-553		7	а,
74-26	(T=553 K, k=1.41)			7	a,
	NaNO ₂ -T1NO ₃				
0-100	k = 8.81491 exp(~ 12786.09951/RT)	513-573	(568)	7	a,
10-90	k = 11.0168 exp(~ 13289.02473/RT)	513-573		7	a,
16-84	k = 15.2802 exp(~ 14442.15442/RT)	453-573		7	a,
30-70	k = 20.1443 exp(- 15066.41766/RT)	453-573		7	a,
					J- 9

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
)-40	k = 33.416 exp(~ 16109.92472/RT)	453-573		7	a, g
-30	k = 41.5886 exp(- 16683.97913/RT)	473-573		7	a,g
- 15	k = 30.0529 exp(- 14532.11192/RT)	513-573		7	a,g
D-10	k = 22.786 exp(- 12976.4747/RT)	533-573		7	a,g
0-0	(T=573 K, k=1.68)		(569)	7	a,g
For additiona	NaNO2 systems, see : GdI3- ; KCl- ; KI- ; LaI3- ; LiI- ; NaBr- ; NaCl-				
	NaNO ₃				
00	k = 12.103 exp(- 12154.72335/RT)	583-691	±1.5%	1	a,f
	NaN0 ₃ -Na ₂ Mo0 ₄				
-100	k = 17.223 exp(- 22181.84711/RT)	980-1160	(570)	3	a,f
0-70	k = 13.2805 exp(- 18528.73559/RT)	900-1020		3	a,f
0-50	k = 13.2772 exp(- 17429.5804/RT)	820-1020		3	a,f
0-20	k = 12.1851 exp(~ 14848.42762/RT)	780-940		3	a,f
2-8	k = 8.59046 exp(- 11249.70901/RT)	620-860		3	a,, a,f
6.8-3.2	k = 8.86201 exp(- 10913.72819/RT)	620-780		_	-
00-0	k = 8.90357 exp(- 10438.83624/RT)	620-780	(571)	3 3	a,f a,f
		020-020	(571)	3	a,,
5.22-4.78	NaN03-Na ₂ S0 ₄	500 540			
	k = 15.5531 exp(- 13972.70177/RT)	620-640		3	a,f
7.14-2.86	k = 11.6557 exp(- 12291.96085/RT)	620-640		3	a,f
8.97-1.03	k = 10.1863 exp(- 11427.11358/RT)	620-640		3	a,f
	Nano ₃ -Na ₂ wo ₄				
-100	k = 12.178 exp(- 20674.74509/RT)	970-1140	(572)	3	a,f
0-70	k = 21.2295 exp(- 22664.27038/RT)	930-1050		3	a,f
0-50	k = 12.0861 exp(- 16472.68359/RT)	870-1020		3	a,f
0-20	k = 13.0793 exp(- 15080.6435/RT)	840-960		3	a,1
2-8	k = 15.0766 exp(- 14974.36812/RT)	780-870		3	a,1
7-3	k = 37.6187 exp(- 11726.27458/RT)	630-820		3	a, f
00-0	k = 8.9036 exp(- 10438.83624/RT)	630-830	(573)	3	a, f
	NaNO ₃ -PbC1 ₂				
1.992-8.008	k = 5.6417 exp(- 8574.41465/RT)	620-630		3	a, f
12.979-7.021	k = 7.68662 exp(- 10148.88019/RT)	620-630		3	a, f
6.914-3.086	k = 9.49915 exp(- 11107.03222/RT)	620-640		3	a, f
	NaN03-RbN03				
-100	k = 8.9221 exp(- 15112.86084/RT)	590-720	(574)	7	a, 1
5-75	k = 11.145 exp(- 15422.48202/RT)	570-680	,,,,	7	a, 1
0-50	k = 20.386 exp(- 17513.2618/RT)	500-650		7	a, i
5-25	k = 11.055 exp(- 13158.90015/RT)	580-680		7	a, i
00-0	k = 11.089 exp(- 11673.5553/RT)	610-690	(575)	7	a, i a, i
			(070)	•	α,
00-0 NaND3	NaN03-T1C1 k = 1.109 - 0.00545 C + 9. x 10 ⁻⁵ C ²	702	(E7C)	•	
• ਜਗਾਹਤ	K 1.100 0.00040 0 - 5. A 10 0 - 1	703	(576)	3	а
	NaN03-T1N02				
0-100	k = 6.145 exp(- 9153.07153/RT)	473-533	(577)	7	a,(
0-90	k = 3.7032 exp(- 7214.5919/RT)	473-553		7	a, (
20-80	k = 3.7367 exp(- 7440.95009/RT)	453-553		7	a,(
30-70	k = 4.395 exp(- 8244.29153/RT)	453-553		7	a,
10-60	k = 4.95975 exp(- 8871.06521/RT)	453-553		7	a ,
17-53	k = 5.84685 exp(- 9572.73375/RT)	453-553		7	а,
55-45	k = 5.90625 exp(- 9589.05163/RT)	453-553		7	a,
	NaN03-T1N03				
- 100	k = 8.026 exp(- 12510.3693/RT)	483-623	(578)	7	a,

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Commen
)-80	k = 13.598 exp(- 14732.11047/RT)	443-609		7	a,f
.6-76.4	k = 11.679 exp(- 14016.6345/RT)	473-613		7	a,f
-68	k = 11.767 exp(- 13953.87345/RT)	483-619		7	a, f
-60	k = 11.948 exp(- 13907.84868/RT)	503-623		7	a,f
)-5 0	k = 12.517 exp(- 13958.05752/RT)	513-633		7	a,f
)- 4 0	k = 12.572 exp(- 13757.22216/RT)	533-627		7	a,f
0-30	k = 13.608 exp(- 13836.71949/RT)	543-623		7	a,f
0-20	k = 14.353 exp(- 13811.61507/RT)	553-631		7	a,f
0-10	k = 13.974 exp(- 13326.26295/RT)	573-631		7	a,f
00-0	k = 12.982 exp(- 12514.55337/RT)	583-673	(579)	7	a,f
or additiona	.1 NaNO3 systems, see : Ba(NO2)2- ; Ca(NO2)2- ; KNO2- ; KNO3- ; L1NO2- ; L1NO3-				
	NaOH				
00	k = 24.4901 exp(- 12084.43097/RT)	593-723	n.a.	1	a,f
	NaOH-Na ₂ CO ₃				
1.4-8.6	k = 24.092 exp(- 14655.12358/RT)	630-710		3	a,f
3.8-6.2	k = 23.5955 exp(- 14239.64543/RT)	630-710		3	a,f
6.0-4.0	k = 22.667 exp(- 13613.70856/RT)	630-710		3	a,f
3.1-1.9	k = 26.4579 exp(- 13797.80764/RT)	590-710		3	a, f
3.3-1.7	k = 21.7504 exp(- 12246.77289/RT)	590-710		3	a, f
9.4-0.6	k = 24.0388 exp(- 12570.2015/RT)	610-730		3	a,f
00-0	k = 24.4901 exp(- 12084.43097/RT)	600-720	(580)	3	a,f
	Na0H-Na ₂ C0 ₃ -Na ₂ Si0 ₃				
3.8-1.8-4.4	k = 17.3296 exp(- 12239.65997/RT)	780-870		3	a, f
5.1-1.8-2.1	k = 19.3912 exp(- 12332.96473/RT)	780-870		3	a,f
Maci-; Macio	NaC104~; NaN02~				
00	k = 9.12716 exp(- 21516.16157/RT)	1100-1300	±5%	6	a, f
	NaP03-Na4P207				
6.0-74.0	k = 65.453 exp(- 34512.7198/RT)	1000-1140)	3	a,f
7.5-72.5	k = 60.3761 exp(- 34232.38711/RT)	900-1100		3	a,f
0.0-60.0	k = 65.2419 exp(- 35863.75601/RT)	840-1080		3	a,f
2.0-58.0	k = 65.6377 exp(- 36011.87208/RT)	900-980		3	a, f
	NaPO3-WO3				
0-60	k = 23333.4 exp(- 1.1264353254 x 10 ⁵ /RT)	1180-1210)	3	a,f
5-55	k = 9555.23 exp(- 99262.87668/RT)	1180-1210		3	a, t
0-50	k = 1.70581 x 10 ⁵ exp(- 1.2848023749 x 10 ⁵ /RT)	· ·		3	a, f
5-45	k = 1912.97 exp(- 81597.73314/RT)	1180-1210		3	a, i a, f
0-40	k = 12139.4 exp(- 97877.94951/RT)	1120-1210		3	
5-35	k = 4640.23 exp(- 87087.23298/RT)				a,1
0-30	k = - 3.7868 + 0.0038163 T	1130-1210		3	a,1
5-25				3	a,f
	k = 723.348 exp(- 66740.10057/RT)	1080-1210	J	3	a, i
0-20	k = 12.8033 - 0.0251263 T + 1.27235 x 10 ⁻⁵ T ²	970-1210		3	а
5-15	k = 233.296 exp(- 55367.79831/RT)	980-1210		3	a, f
D-10 	k = 93.9099 exp(- 44589.63399/RT)	980-1210		3	a, 1
5-5	k = 50.2256 exp(- 37269.18512/RT)	980-1210		3	a, 1
00-0	k = 55.88 exp(- 37321.9044/RT)	980-1210	(581)	3	a, f
For additiona	ll NaPO3 systems, see : CaO- ; NaC1- NaSCN				
00	k = 43 exp(- 19832.4918/RT)	583-643	±2%	1	a, f
				•	۵,۱

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
or additiona	al NaSCN systems, see : B ₂ O ₃ - ; NaCl-				
0	NaY03 k = 10.797 exp(- 15941.3067/RT)	940-1280	±4%	6	a,f
•	NaV03-Y205	340 1200	±4%	Ū	α, ι
100	k = 4881.4 exp(- 90821.93386/RT)	965-1215	(582)	30	a,f
100	k = 16.1687 exp(- 35010.20573/RT)	1140-1237		3	a, f
0-99.0	k = 2290.87 exp(- 78660.516/RT)	1000-1100		3	a,f
6-93.4	k = 1621.81 exp(- 71966.004/RT)	1000-1100		3	a,f
.8-90.2	k = 37.1483 exp(- 35766.26717/RT)	980-1160		3	a,f
.9-90.1	k = 588.84 exp(- 61505.829/RT)	1000-1100)	3	a,f
5.5-84.5	k = 186.21 exp(- 49790.433/RT)	1000-1100		3	a,f
7.7-82.3	k = 41.9907 exp(- 31824.87323/RT)	1040-1160		3	a,. a,f
0.0-80.0	k = 208.93 exp(~ 49790.433/RT)	1000-1100		3	
1.0-79.0	k = 56.9945 exp(- 34289.70887/RT)			3	a,f
3.8-76.2	k = 204.17 exp(- 48953.619/RT)	1040-1160 1000-1100		3	a,f
					a,f
8.5-71.5 3.0-67.0	k = 162.18 exp(- 45187.956/RT)	1000-1100	,	3	a,f
3.0-67.0 9.8-50.2	k = 35.5096 exp(- 30126.14081/RT)	980-1160		3	a,f
	k = 6.3956 exp(- 17941.71057/RT)	920-1160		3	a,f
6.9-43.1	k = 13.7617 exp(- 24463.00207/RT)	920-1160		3	a,f
8.3-21.7	k = 6.70205 exp(- 15657.20835/RT)	920-1160		3	a,f
00-0	k = 9.043 exp(- 14276.04684/RT)	923-1173	(584)	3	a,f
00		1020-1260	3 410%	2	
	k = 36.42 exp(- 45016.40913/RT)	1030-1260	0 ±10%	3	a,f
) - 50	k = 104.469 exp(- 54246.46755/RT)	1070-1270	n	3	a,f
5.3-43.7	k = 67.9469 exp(- 50664.90363/RT)	1070-1270		3	-
1.8-38.2	k = 81.6379 exp(- 52970.3262/RT)	1070-1270		3	a,f
6.7-33.3	k = 49.7826 exp(- 47472.45822/RT)	1070-1270		ა ვ	a,f
1-29	k = 53.4662 exp(- 48405.50583/RT)	1070-1270		3	a,f
5-25	k = 59.009 exp(- 50242.31256/RT)	1070-1270			a,f
9-21	k = 84.9694 exp(- 53953.58265/RT)	1070-1270		3 3	a,f
1.8-18.2	k = 51.6383 exp(- 48685.83852/RT)	1070-127		ა 3	a,f
4.8-15.2	k = 46.8646 exp(- 47786.26347/RT)	1070-1270	-		a,f
7.5-12.5	k = 56.2119 exp(- 49505.91624/RT)			3	a,f
10-10	k = 54.5624 exp(- 49476.62775/RT)	1070-127		3	a,f
12.3-7.7	k = 40.7502 exp(- 46242.34164/RT)	1070-1270		3	a,f
4.4-5.6	k = 26.7059 exp(- 41748.65046/RT)	1070-127		3	a,f
6.4-3.6	k = 29.2078 exp(- 42372.07689/RT)	1070-127		3	a,f
8.3-1.7	k = 30.2486 exp(- 42878.34936/RT)	1070-127		3	a,f
00-0	k = 36.42 exp(- 45016.40913/RT)	1070-127		3	a,f
	Na ₂ CO ₃	1030-126	0 (585)	3	a,f
00	k = 13.758 exp(- 14757.21489/RT)	1138-124	0 ±1.5%	1	a,c
For addition	nal Na ₂ CO ₃ systems, see : NaF-		-1.0%	•	α,υ
, or addition	Na2Cr04				
00	k = 21.858 exp(- 21290.22179/RT)	1073-111	3 ±4%	3	a,f
For addition	nal Na ₂ CrO ₄ systems, see : CaO-NaOH- ; K ₂ CO ₃ -Li ₂ CO ₃ - ; K ₂ CO ₃ - ; Li ₂ CO ₃ - ; NaCl-NaOH	- · NaCl- · Nan	H		
	Na ₂ Mo0 ₄	, , 1100			
100	k = 15.609 exp(- 21388.96584/RT)	1024-123	7 ±3%	1	a,f
For addition	nal Na ₂ MoO ₄ systems, see : NaBr-			•	a,1
	Na ₂ S				
100	k = 71.505 exp(- 30376.3482/RT)	1240-132	0 n.a.	6	a,f
.3-92.7	k = 1388.63 exp(- 28288.07886/RT)	1383-148	3	6	a, f
3.2-76.8	k = 4185.62 exp(~ 56794.56618/RT)	1290-131	0	6	a,f
30-70	k = 7867.04 exp(- 70300.74414/RT)	1250-131	0	6	a, f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹) T	range(K)	Accur.	Ref.	Comment
6.6-63.4	k = - 38.2096 + 0.12305 T - 1.3092 x 10 ⁻⁴ T ² + 4.792 x 10 ⁻⁸ T ³	870-1310		6	a
3-57	k = 408.588 exp(- 46803.00702/RT)	1070-1170		6	a,f
4.4-45.6	k = 58.7265 exp(- 30359.19351/RT)	1090-1230		6	a,f
0-40	k = 32.7678 exp(- 23769.28326/RT)	930-1130		6	a,f
0-30	k = 32.7678 exp(- 23769.28326/RT)	930-1130		6	a,f
	Na ₂ S-Sb ₂ S ₃				
-100	k = 34932.7 exp(- 88561.28084/RT)	960-1240	(586)	6	a,f
5.2-84.8	k = 886.913 exp(- 56763.60406/RT)	920-1120		6	a,f
5.2-84.8	k = 3.67181 x 10 ⁵ exp(- 1.1400753936 x 10 ⁵ /RT)	1130-1210		6	a,f
5.2-84.8	$k = 1.35012000 \times 10^8 \exp(-1.7529161265 \times 10^5/RT) \dots$	1220-1330		6	a, f
7.0-83.0	k = 551.777 exp(- 52959.86603/RT)	920-1120		6	a,f
7.0-83.0	k = 18189.3 exp(- 86124.89688/RT)	1130-1210		6	a,f
7.0-83.0	$k = 445.953 + 0.42307 T - 0.00156353 T^2 + 7.539 \times 10^{-7} T^3$	1220-1330		6	a,f
9.6-70.4	$k = -14.443 + 0.038281 T - 1.1056 \times 10^{-5} T^2 - 3.4025 \times 10^{-8} T^3 + 2.2171 \times 10^{-11} T^4$	920-1320		6	a,b,ı
4.8-55.2	$k = -9.9901 + 0.02588 T - 9.8225 \times 10^{-6} T^2 - 1.5862 \times 10^{-8} T^3 + 1.0992 \times 10^{-11} T^4$	920-1320		6	a,b,
8.9-41.1	k = 28.0506 exp(- 25655.04361/RT)	920-1320		6	a,b,
i5.0- 3 5.0	k = 25.751 exp(- 24355.47147/RT)	920-1320		6	a,f
1.5-28.5	k = 17.8148 exp(- 20241.69385/RT)	920-1320		6	a,f
0.0 - 20.0	k = 24.6036 exp(- 22420.3391/RT)	920-1320		6	a,f
86.5-13.5	k = 26.5011 exp(- 21589.8012/RT)	920-1320		6	
100-0	k = 71.505 exp(- 30376.3482/RT)	1240-1320	(587)	6	a,f
	Na ₂ S-T1 ₂ S				
- 100	k = 1450 exp(- 37543.66011/RT)	770-1170	(588)	6	a,f
0-90	k = 2048 exp(- 43556.1687/RT)	770-1170		6	a,f
.0-80	k = 2006.9 exp(- 45710.96475/RT)	770-1170		6	a,f
10-70	k = 1140 exp(- 43945.28721/RT)	770-1170		6	a,f
0-60	k = 678.77 exp(- 41007.65166/RT)	770-1170		6	a,f
50 - 50	k = 635.16 exp(- 41932.74954/RT)	770-1170		6	a, f
60-40	k = 594.73 exp(- 43660.77045/RT)	870-1170		6	a,f
70-30	k = 312.68 exp(- 41664.96906/RT)	870-1170		6	a,f
30-20	k = 148.63 exp(- 36882.57705/RT)	870-1170		6	a,f
For addition	nal Na ₂ S systems, see : Li ₂ MoO ₄ - ; MoO ₃ - ; NaNO ₂ - ; NaNO ₃ -				
	Na ₂ SiO ₃				
For NaoSiGo	systems, see : Ag ₂ S- ; As ₂ S ₃ -				
23	Na ₂ S0 ₄				
100	k = 11.8933 exp(- 15982.72899/RT)	1189-1232	±2%	1	a,f
	Na ₂ S0 ₄ -Rb ₂ S0 ₄				
50-50	k = 5.926 exp(- 15117.04491/RT)	1110-1260)	6	a,f
	Na ₂ SD ₄ -T1 ₂ SD ₄			ŭ	۵,۰
50-50	k = 7.726 exp(- 16150.5102/RT)	1060-1210		6	
	Na ₂ S0 ₄ -ZnS0 ₄	1000-1210	,	0	a,f
)r ==					
25-75	k = 28.5397 exp(- 34520.25113/RT)	900-980		6	a,f
33-67	k = 29.6532 exp(- 34136.57191/RT)	840-960		6	a,f
50-50 ST 00	k = 22.0993 exp(- 28952.50918/RT)	860-1040		6	a,f
67-33 05	k = 17.632 exp(- 23922.42023/RT)	940-1080		6	a,f
75-25	k = 15.3287 exp(- 21686.87162/RT)	1040-1120	ס	6	a,f
For addition	nal Na ₂ SO ₄ systems, see : NaOH-Na ₂ CO ₃ -				
	Na ₂ S _{2.1}				
100	k = 5.477 exp(- 3079.89393/R(T-499))	728-840	±2.5%	6	а
For addition	nal Na ₂ S _{2.1} systems, see : Cs ₂ SO ₄ - ; KCl- ; KCl*NaCl- ; K ₂ SO ₄ - ; Li ₂ SO ₄ - ; NaCl- ; NaNO ₅	a- : KoSO.*			
	Na ₂ S ₂ g	,			
100	k = 3.859 exp(- 2491.19528/R(T-458))	040 000		_	
		642-698	±2.5%	6	а

		Conductance (ohm-1 cm-1)				
(mol %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref .	Comment
		Na ₂ S _{3.0}				
00	$k = 7.0407 \exp(-5698.70334$	I/R(T-329))	582-693	±2.5%	6	а
		Na ₂ S _{3.2}				
00	k = 7.065 exp(- 5866.06614)	(R(T-330))	458-694	±2.5%	6	a
		Na ₂ S _{3.8}				
00	$k = 7.086 \exp(-6447.65187)$	/R(T-325))	428-694	±2.5%	6	a
		Na ₂ S _{4.2}				
00	k = 6.2783 exp(- 6171.5032	5/R(T-341))	456-671	±2.5%	6	a
		Na ₂ S _{5.1}				
00	k = 5.7935 exp(- 6330.4979	1/R(T-344))	477-681	±2.5%	6	a
		Na ₂ TaF ₇				
00	k = - 24.859 + 0.047561 T	- 2.137 x 10 ⁻⁵ T ²	873-1087	±5%	3	a,f
		Na ₂ TiF ₆				
100	k = 24.66 exp(- 21719.5073	7/RT)	1000~1150	n.a.	3	a,f
		Na ₂ WO ₄				
00	k = 7.541 exp(- 16447.5791	7/RT)	925-1774	±5%	1	a,c,1
		Na ₂ W0 ₄ -W0 ₃				
0-60	k = 35.2689 exp(- 35291.79	364/RT)	1070-1190)	3	a,f
4.98-55.02		732/RT)	1050-1140)	3	a,f
9.99-50.01	k = 32.4002 exp(- 32575.49	539/RT)	1040-1160)	3	a,f
9.60-40.40		823/RT)	1010-1130)	3	a,f
9.41-30.59	k = 37.0611 exp(- 30380.53	227/RT)	970-1110		3	a,f
79.46-20.54	k = 63.4642 exp(- 31883.03	181/RT)	920-1070		3	a,f
39.67-10.33	k = 21.3403 exp(- 27109.42	634/RT)	980-1130		3	a,f
100-0	k = 19.89 exp(- 24941.2412	7/RT)	990-1130	(589)	3	a,f
For additiona	1 Na ₂ W0 ₄ systems, see : NaC1-					
		NagA1F6				
100	k = 8.896 exp(- 12238.8231	6/RT)	1273-135	3 ±2%	14	a,f
		NagA1F6-Si02				
100-80 Na ₃ A1F ₆	k = 5.756 - 0.08525 C + 5.	56 x 10 ⁻⁴ C ²	1273	(590)	3	a
For additiona	1 Na ₃ A1F ₆ systems, see : Li ₂ W	/0₄~ ; NaN02~ ; NaN03~				
		Na ₄ P ₂ 0 ₇				
100	k = 22.812 exp(- 24568.859	304/RT)	1270-132	0 n.a.	3	a,f
	" LL.012 OAP(L-1000.000		1270 102		Ū	ω, .
		Na ₄ P ₂ 0 ₇ -W0 ₃				
27-73	k = 9.19597 exp(- 28740.79	9524/RT)	1280-137	D	3	a,f
34-66	k = 4.74767 exp(- 20209.89	0491/RT)	1070-137	0	3	a,f
40-60	$k = 4.06308 \exp(-18112.00$	0222/RT)	1070-137	D	3	a,f
45-55	k = 5.04345 exp(- 19250.06	926/RT)	1070-137	0	3	a,f
50-50		376/RT)	1070-137	0	3	a,f
55.2-44.8	• •	9337/RT)	1070-137		3	a,f
80-40		3719/RT)	1120-137		3	a,f
64.8-35.2 =0.3-30.7	•	5009/RT)	1190-137		3	a,f
69.3-30.7 73.5-26.5		971/RT)	1 190-137 1220-137		3 3	a,f a,f
73.5-26.5 77.8-22.2	• •	3088/RT)	1220-137		3	a, f
77.6-22.2 82-18		7801/RT)	1280-137		3	a,ı a,f
85.72-14.28		B93/RT)			3	a,f
89.5-10.5		596/RT)			3	a,i a,f
69.5-IV 5					-	-, '
92.5-7.5		3164/RT)	1280-137	0	3	a,f

For additional Na₄P₂0₇ systems, see : A1F₃- ; A1₂0₃- ; BaC1₂- ; BaC1₂- ; BeF₂- ; CaF₂- ; K₃A1F₆- ; LiF- ; Li₃A1F₆- ; MgF₂- ; NaC1- ; NaF-

Table 2.3.a Electrical Conductance data (continued)

,		Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
		NbC1 ₅				
or MbCl ₅ sy	stems, see : NaCl- ; NaPO3-					
		N(CH ₃) ₄ Br				
or N(CH ₃) ₄ B	r systems, see : NaCl-	N(C II) PF				
00	L - 6 6721 ava/- 19714 A900	N(C ₃ H ₇) ₄ BF ₄	500 554	100		- •
50	K - 0.5/3) exp(- 18/14.0898	19/RT)	522-554	±3%	1	a,f
or addition	nal $N(C_3H_7)_4BF_4$ systems, see : I	N(C3H7)4PF6				
00	k = 21.0096 exp(- 24696.556	• • •	511-545	±3%	1	
	1 21.0000 CAP(24000.001	N(C ₃ H ₇)₄SCN	311-545	10%	•	a,f
00	k = 2554.1 exp(- 42920,190	06/RT)	330-370	n.a.	6	a,f
		N(C ₄ H ₉) ₄ B(C ₆ H ₅) ₄	000 070	11.64.	Ü	۵,۱
00	k = 8.027 exp(- 27560.4690	9/RT)	514-540	±3%	1	a,f
					·	٠,٠
or addition	nal $N(C_4H_9)_4B(C_6H_5)_4$ systems, so	ee : CuSCN- N(C₄Hg)₄Br				
00	k = 1926.41 exp(- 45264.94	289/RT)	390-407	±3%	1	a,f
		N(C4H9)4I				-,.
00	k = 281.56 exp(- 38000.142	15/RT)	420-440	±3%	1	a,f
Enr addition	nal N(C4Hg)4I systems, see : Ali	lra-				
ioi addittioi	iai A(ogiig) gr systems, see . All	N(C4H9)4PF6				
00	k = 8.654 exp(- 23485.6033	2/RT)	529-548	±3%	1	a,f
		N(C5H11)4SCN				
00	k = 1140.2 exp(- 40669.160	4/RT)	325-383	±2%	1	a,f
		NdBr3				
00	$k = 106.67 \exp(-47493.378)$	57/RT)	963-1143	±35%	1	a,f
		NdC13				
00	$k = 28.58 \exp(-33196.4113)$	B/RT)	1048-1173	±12%	1	a,f
		NdI3				
00	$k = 6.336 \exp(-24719.4855)$	5/RT)	1072-1115	± 15%	1	a,c,
For addition	nal NdI3 systems, see : KC1- ;	NaC1-				
		NH ₄ Br				
For NH ₄ Br s	ystems, see : CsI- ; KI- ; NaI-					
		NH ₄ C1				
For NH ₄ C1 s	ystems, see : AlBr3- ; HgBr2-	, and the second				
·	V · · · · L	NH ₄ I				
For NH ₄ I sy:	stems, see : A1Cl3- ; HgCl2-	•				
•	, , , ,	NiS				
00	k = 2099.4 exp(7575.67714/	RT)	1073-1273	3 ±15%	31	k,v9
00		(RT)	1153-1398		1	a,f,
Eor additio	nal NiS systems, see : HgI2-					
FOI AUGUSTIO	nai Nio Systems, see : Hg12-	Ni ₃ S ₂				
00	k = 3.909955 x 10 ⁵ - 458.8	387 T + 0.1358 T ²	1470-1770	±20%	6	a
		PbBr ₂				
00	k = 9.727 exp(- 14634.2032	3/RT)	660-1080	±3%	4	a,c,
		PbBr ₂ -PbCl ₂				
.0-100.0	k = 22.7767 exp(- 17774.76	617/RT)	780-820	(591)	2	a,f
9.0-81.0	k = 18.7267 exp(- 17003.22	367/RT)	750-820		2	a,f
8.5-61.5	$k = 18.066 \exp(-17222.887)$	34/RT)	730-820		2	a,f
0.2-39.8	k = 17.684 exp(- 17502.801	62/RT)	700-820		2	a,f
9.7-20.3	k = 14.2027 exp(- 16525.82	128/RT)	700-820		2	a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
00.0-0.0	k = 13.59 exp(- 16623.72852/RT)	. 700-820	(592)	2	a, f
-100	PbBr ₂ -T1Br k = 11.291 exp(- 15907.83414/RT)	. 733-773	(593)	4	2 f
0-90	k = 9.615 exp(- 15164.3249/RT)		(593)	4	a,f
0-90 0-80	k = 10.941 exp(- 16201.97426/RT)			4	a,f
0-80	k = 10.313 exp(- 16055.53181/RT)			4	a,f a,f
0-70	k = 9.361 exp(- 15571.01651/RT)			4	a,ı a,f
0-50	k = 10.529 exp(- 16322.89388/RT)			4	a,ı a,f
0-40	k = 12.399 exp(- 17248.41017/RT)	653-773		4	a, f
0-30	k = 12.805 exp(- 17365.98254/RT)	653-773		4	a,f
0-20	k = 13.37 exp(- 17344.22537/RT)	. 653-773		4	a,f
90-10	k = 14.319 exp(- 17297.78219/RT)			4	a, f
00-0	k = 20.373 exp(- 18807.39465/RT)		(594)	4	a, f
For additiona	al PbBr ₂ systems, see : Co ₄ S ₃ - ; Cu ₂ S- ; FeS-				·
TOT EGG! CTONE	PbC12				
00	k = 15.55 exp(- 15183.99003/RT)	. 773-923	±4%	1	a,f
		. 770-323	÷7%	,	a,,
4.00-46.00	PbC1 ₂ -PbS k = 1.45966 exp(- 4351.4328/RT)	070 1170		•	
5.39-44.61				3	a,f
	k = 1.48834 exp(- 4370.26112/RT)	-		3	a,f
50.68-39.32	k = 1.48119 exp(- 3915.2435/RT)			3	a,f
34.06-35.94 37.29-32.71	k = 1.45749 exp(- 3447.25527/RT)			3	a,f
3.11-26.89	k = 1.49361 exp(- 3278.80461/RT)	850-1130		3 3	a,f
4.80-25.20	k = 1.58283 exp(- 2945.66896/RT)	850-1110		3	a,f
31.36-18.64	k = 1.61226 exp(- 2899.39315/RT)	850-1110 790-990	,	3	a,f
33.97-16.03	k = 1.69545 exp(- 2268.39355/RT)			3	a,f
39.42-10.58	k = 1.77931 exp(- 2111.90933/RT)			3	a, f
97.21-2.79	k = 1.93213 exp(- 1879.94449/RT)			ა 3	a, f
100.0-0.0	k = 10.998 exp(- 12694.46838/RT)		(595)	3	a,f a,f
	PbC1 ₂ -RbC1		,,		
0.0-90.0	k = 11.4 exp(- 17312.42644/RT)	940-1120	•	5	
25.0-75.0	k = 9.01 exp(- 15645.91136/RT)				a,f
33.3-66.7	k = 12.363 exp(- 18308.65351/RT)	740-1120		5	a,f
50-0-50.0	k = 9.24 exp(- 15180.22437/RT)			5 5	a,f
6.7-33.3	k = 8.689 exp(- 13601.57476/RT)			5	a,1
35.0-15.0	k = 10.846 exp(- 13638.81298/RT)			5	a,1
100.0-0.0	k = 12.297 exp(- 13480.65513/RT)			5	a,f a,f
	PbC1 ₂ -T1C1				
) - 100	k = 8.681 exp(- 12076.48124/RT)	. 730-970	(597)	5	a, 1
10-90	k = 9.245 exp(- 13163.92103/RT)		,7	5	a, 1
13.5-86.5	k = 8.739 exp(- 12979.82195/RT)			5	a, 1
25-75	k = 8.749 exp(- 13268.10438/RT)			5	a,
41-59	k = 8.741 exp(- 13107.8545/RT)			5	a,
50-50	k = 8.312 exp(- 12622.92078/RT)			5	a, 1
56.7-33.3	k = 8.731 exp(- 12571.03832/RT)			5	a, 1
74-26	k = 10.742 exp(- 13922.49293/RT)			5	a, 1
85-15	k = 10.801 exp(- 13695.29792/RT)			5	a, 1
90-10	k = 10.391 exp(- 13272.28845/RT)			5	a,
100-0	k = 14.955 exp(- 14902.40212/RT)		(598)	5	a,
	PbC12-ZnC12				
0-100	k = 1.236 - 0.004048 T + 3.326 x 10 ⁻⁶ T ²		(599)	32	k
3.1-96.9	k = 1.371 - 0.004593 T + 3.871 x 10 ⁻⁶ T ²	593-853		32	k
9.6-90.4	k = 0.7805 - 0.0032 T + 3.233 x 10 ⁻⁶ T ²	. 593-913		32	k

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
9.2-80.8	k = 80.892 exp(- 33587.20352/RT)	593-863		32	k
. 1-74.9	k = 46.733 exp(- 28799.79062/RT)	583-903		32	k
1.2-70.8	k = 44.296 exp(- 27351.26559/RT)	593-853		32	k
1.4-58.6	k = 28.969 exp(- 22660.08631/RT)	583-863		32	k
9.9-50.1	k = 18.473 exp(- 18733.75502/RT)	613-903		32	k
0.6-39.4	k = 17.512 exp(- 17771.00051/RT)	653-873		32	k
9.5-30.5	k = 14.399 exp(- 15866.83025/RT)	693-933		32	k
8.8-21.2	k = 13.397 exp(- 14854.28531/RT)	723-943		32	k
0.3-9.7	k = 13.797 exp(- 14548.4298/RT)	743-973		32	k
00-0	k = 15.189 exp(- 14997.79892/RT)	783-923	(600)	32	k
Fan additions		700 020	(0.0)		"
ror additiona	1 PbC1 ₂ systems, see : CdC1 ₂ - ; HgBr ₂ - ; KBr- ; LiBr- ; NaBr-				
0 0	PbF ₂	1172_177	+6%	•	
	k = 13.0413 exp(- 8607.4688/RT)	1123-1273	±5%	1	a,f
For additiona	1 PbF ₂ systems, see : AgC1- ; CdC1 ₂ - ; CsC1- ; KC1- ; NaC1- ; NaNO ₃ - ; PbBr ₂ -				
	PbI ₂				
00	k = 8.5849 exp(- 16858.87325/RT)	798-978	±3%	33	đ
	PbMo0 ₄				
00	k = 4.50602 exp(- 17881.04155/RT)	1370-1390	±3%	6	a,f
	PbMo0 ₄ -Pb0				
- 100	k = 96.9192 exp(- 43978.75977/RT)	1260-1350	(601)	3	a,f
-95	k = 139.37 exp(- 49171.19064/RT)	1290-1390)	3	a,f
2-88	k = 138.556 exp(- 47141.91669/RT)	1130-1230)	3	a,f
0-60	k = 37.927 exp(- 39052.01735/RT)	1270-1370)	3	a,f
0-40	k = 19.2032 exp(- 32983.44222/RT)	1270-1350		3	a,f
0-20	k = 9.49424 exp(- 26418.63639/RT)	1370-1450		3	a,f
00-0	k = 9.169 exp(- 26288.51181/RT)	1400-1460		3	a,f
For additiona	il PbMoO₄ systems, see : KI-				,
	Pb0				
00	k = 96.9192 exp(- 43978.75977/RT)	1260-1350	±3%	3	a,c
For additiona	17 Pb0 systems, see : Bi ₂ (Mo0 ₄) ₃ -				
100	PbS k = 17.0058 exp(21260.9333/RT)	1388-1490	±20%	1	a,f
Enr additions	11 PbS systems, see : PbMo04-				-,.
, or additiona	PbW0 ₄				
100	k = 10.388 exp(- 29422.38024/RT)	1408-1503	3 ±3%	6	a,f
For additiona	11 PbWO ₄ systems, see : Na ₂ S- ; PbCl ₂ -				
100	PrBrg	4000 404			_
	k = 16.62 exp(- 28820.71097/RT)	1000-1043	3 ±20%	1	a,f
For additiona	ll PrBr3 systems, see : Bi2(WO4)3- PrCl3				
100	k = 14.69999 exp(- 24198.06676/RT)	1071-126	2 ±1.5%	17	
	Prig	1071-120	11.5%	"	d
100	k = 7.132 exp(~ 24838.73156/RT)	1036-108	2 ±15%	1	a,f
-		7555 1557		•	α,,
For additiona	al PrI ₃ systems, see : CaCl ₂ - ; KCl- ; NaCl-				
100	RbBr k = 6.174 exp(- 13585.67529/RT)	969-1179	±3.5%	1	a,f
		2000	_5.54	•	۵,۱
	RbBr-RbC1				
D-100	k = 6.246 exp(- 11673.5553/RT)	1013-119	3 (603)	2	a,f
25-75	k = 6.3555 exp(- 12370.62136/RT)	973-1183		2	a,f
10-50	k = 5.7081 exp(- 12049.70319/RT)	873-1178		2	a,f
75-25	k = 5.0132 exp(- 11445.52349/RT)	973-1173		2	a,f
					,

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Commen
-100	RbBr-RbI k = 4.132 exp(- 11789.45404/RT)	933-1103	/60E\	2	
			(605)		a,f
5 -7 5	k = 4.0745 exp(- 11429.20561/RT)	953-1153		2	a,f
0-50	k = 4.2735 exp(- 11565.18789/RT)	933-1188		2	a,f
5-25	k = 4.4378 exp(- 11476.4856/RT)	973-1173		2	a,f
00-0	k = 4.781 exp(- 11525.85763/RT)	963-1153	(606)	2	a,f
00	k = 8.621 exp(- 14393.2008/RT)	1003-1197	±4%	1	a,f
D-100	RbC1-RbI k = 4.132 exp(- 11789.45404/RT)	933-1103	(607)	2	a, f
25-75			(607)	2	
	k = 4.1379 exp(- 11188.62159/RT)	973-1143			a, f
50-50	k = 4.8787 exp(- 11819.57934/RT)	973-1143		2	a, 1
75-25	k = 5.8068 exp(- 12335.05677/RT)	953-1143		2	a,1
100-0	k = 6.246 exp(- 11673.5553/RT)	1013-119	3 (608)	2	a,1
10-70	RbC1-ScC1 ₃	1102_122	•	E	
30-70 10-60	k = 17.741 exp(- 33477.16248/RT)	1193-133	•	5	a, •
40-60	k = 7.931 exp(- 24172.62761/RT)	993-1333	_	5	а,
50-50	k = 6.17 exp(- 20887.71425/RT)	1153-133		5	a, ·
50-40	k = 6.707 exp(- 20931.22858/RT)	1113-133		5	а,
70-30	k = 16.972 exp(- 29288.07159/RT)	1193-133	3	5	а,
80-20	k = 15.907 exp(- 27062.98317/RT)	1193-133	3	5	а,
90-10	k = 5.695 exp(- 14804.91329/RT)	973-1333		5	а,
100-0	k = 4.779 exp(- 10213.31487/RT)	1013-133	3 (609)	5	а,
	RbC1-SrC1 ₂	4440 400	. (244)	40	
0-100	k = 15.2 exp(- 19666.38422/RT)	1148-127		19	k
10-90	k = 12.512 exp(- 18722.87644/RT)	1098-127		19	k
20-80	k = 11.867 exp(- 19242.11952/RT)	1023-127	3	19	k
30-70	k = 11.347 exp(- 19728.30846/RT)	973-1273		19	k
40-60	k = 10.562 exp(- 19778.9357/RT)	923-1273		19	k
50-50	k = 9.629 exp(- 19254.67173/RT)	948-1273		19	k
60-40	k = 8.99 exp(- 18487.3133/RT)	923-1273		19	k
70-30	k = 9.086 exp(- 18087.3162/RT)	898-1273		19	k
80-20	k = 7.803 exp(- 15892.77149/RT)	923-1273		19	k
90-10	k = 6.432 exp(- 13084.4237/RT)	973-1273		19	k
100-0	k = 5.53 exp(- 10455.15412/RT)	1023-127	3 (611)	19	k
	RbC1-TiC13				
0-50 TiC13	$k = 1.6794 - 0.034436 C + 4.1854 \times 10^{-4} C^2 - 7.445 \times 10^{-7} C^3 \dots \dots$	1073	(612)	5	a,
	RbC1-UC1 ₄				
0.00-100.00	k = 5.216 exp(- 18104.05248/RT)	872-1001	(613)	5	a,
4.83-95.17	k = 4.795 exp(- 17340.0413/RT)	890-990		5	a,
7.69-92.31	k = 13.004 exp(- 24826.59775/RT)	860-890		5	a,
11.71-88.29	k = 9.911 exp(- 23043.76553/RT)	810-1000		5	a,
17.26-82.74	k = 5.237 exp(- 18143.80115/RT)	830-910		5	a,
28.76-71.24	k = 9.803 exp(- 22345.02584/RT)	780-900		5	a,
35 . 18-64 . 82	k = 2.881 exp(- 13327.09976/RT)	830-1010		5	a,
40.32-59.68	k = 3.168 exp(- 14068.51697/RT)	840-980		5	a,
43.46-56.54	k = 3.264 exp(- 14282.32295/RT)	810-990		5	a, a,
49. 17-50.83	k = 3.631 exp(- 15208.25764/RT)	840-980		5	
57.75-42.25	k = 4.797 exp(- 17101.54931/RT)				а,
60.50-39.50		700-980		5	a,
	k = 3.896 exp(- 15170.1826/RT)	820-980		5	а,
66.00-34.00	k = 4.181 exp(- 15257.62966/RT)	950-1000		5	a,
71.19-28.81	k = 3.917 exp(- 14330.43975/RT)	920-1000)	5	a,
75.01-24.99	k = 4.718 exp(- 15392.35672/RT)	880-1010)	5	a,
79.76-20.24	k = 5.035 exp(- 15120.39217/RT)	920-1030)	5	a,
83.46-16.54	k = 5.72 exp(- 15410.34822/RT)	920-1010)	5	a,

Table 2.3.a Electrical Conductance data (continued)

(mol %)	Conductance $(ohm^{-1} cm^{-1})$ Equation $(R = 8.31441 J K^{-1} mol^{-1})$	T range(K)	Accur.	Ref.	Comment
0.88-9.12	k = 5.7 exp(- 13538.81371/RT)	990-1000		5	a,f
8.38-1.62	k = 7.703 exp(- 13954.29186/RT)	990-1000		5	a,f
00.00-0.00	k = 7.016 exp(- 12753.88217/RT)	1010-1080	(614)	5	a,f
or additional	RbC1 systems, see : AgBr- ; KBr- ; KC1- ; LiBr- ; NaBr-				
00	RbC ₂ H ₃ 0 ₂ k = 27.21 exp(- 24060.91294/RT)	550-620	n.a.	6	a,f
For additional	$RbC_2H_3O_2$ systems, see : AlCl $_3$ - ; CaCl $_2$ - ; CsCl- ; GaCl $_3$ - ; KBr- ; KCl- ; LaCl $_3$ - ;	LiC1- ; MnC1 ₂ -	; NaCl-	; PbC1 ₂ -	; RbBr-
00	RbI k = 5.082 exp(- 13535.46645/RT)	929-1158	±3%	1	a,f
For additional	RbI systems, see : NaC ₂ H ₃ O ₂ -				
00	RbN0 ₂ k = 10.66 exp(~ 14377.30133/RT)	717.750	1 F%	•	- 4
		712-758	±5%	1	a,f
For additional	RbN0 ₂ systems, see : KI- ; LiI- ; NaI- ; RbBr- ; RbCl-				
	RbN03				
00	k = 9.942 exp(- 15640.05366/RT)	590-680	±2%	7	a,c,
	RbN03-T1N03				
- 100	k = 8.026 exp(- 12510.3693/RT)	480-620	(615)	7	a,f
0-80	k = 9.216 exp(- 13552.20273/RT)	490-610		7	a,f
0-60	k = 10.342 exp(- 14518.7229/RT)	500-610		7	a,f
0-40	k = 11.02 exp(- 15271.8555/RT)	520-620		7	a,f
0-20	k = 11.733 exp(- 16032.10102/RT)	540-620		7	a,b,
00-0	k = 9.942 exp(- 15640.05366/RT)	583-673	(616)	7	a, f
For additiona	1 RbN03 systems, see : Ca(NO ₂) ₂ -				
100	RbP03	4400 4000	150/	•	
	k = 11.225 exp(- 26100.64707/RT)	1120-1230	±5%	6	a,f
TO AUGITIONA	Rb2S04				
100	k = 6.2394 exp(- 16641.00873/RT)	1345-1395	±3%	1	a
	Rb2S04-T12S04				
50-50	k = 6.9405 exp(- 16748.83221/RT)	1120-1190		6	a,f
	SbBr ₃				
100	k = 7.3896 x 10 ⁻⁴ exp(- 9427.96493/RT)	380-530		4	a,f
	SbBr ₃ -SbI ₃				-,.
0.0-100.0	k = 0.013485 exp(- 14717.88463/RT)	460-520	(617)	2	a,f
. 0-95.0	k = 0.011649 exp(- 14930.43539/RT)	460-520	(017)	2	a,f
10.0-90.0	k = 0.005877 exp(- 12302.00261/RT)			2	
		450-520			a,f
20.0-80.0	k = 0.005696 exp(- 12266.01961/RT)	440-520		2	a,f
0.0-70.0	k = 0.003703 exp(- 10779.83795/RT)	430-520		2	a,f
0.0-60.0	k = 0.003191 exp(- 10548.87728/RT)	420-520		2	a,f
0.0-50.0	k = 0.002644 exp(- 9812.48096/RT)	410-520		2	a,f
60.0-40.0	k = 0.002218 exp(- 9148.46906/RT)	400-520		2	a,f
0.0-30.0	k = 0.001852 exp(- 8897.00645/RT)	390-520		2	a,f
30.0-20.0	k = 0.001542 exp(- 8567.72014/RT)	390-520		2	a,f
90.0-10.0	k = 0.001576 exp(- 9136.33525/RT)	390-520		2	a,f
95.0-5.0	k = 0.001334 exp(- 9501.18616/RT)	380-520		2	a,f
100.0-0.0	k = 7.3896 x 10 ⁻⁴ exp(- 9427.96493/RT)	380-530	(618)	2	a,f
For additiona	1 SbBr $_3$ systems, see : Cs_2So_4- ; K_2So_4- ; Li_2So_4- ; Na_2So_4-				
	SbC13				
100	k = 0.241 exp(- 20511.56636/RT)	333-353		5	a,f

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm ⁻¹ cm ⁻¹)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
	SbC13-SbC15				
5.77-74.23	k = 1.3782 x 10 ⁻⁴ exp(- 8145.54748/RT)	325-350		5	a,f
6.96-53.04	k = 2.089 x 10 ⁻⁴ exp(- 3029.43404/RT)	325-350		5	a,f
1.14-48.86	k = 0.0019484 exp(- 8709.97852/RT)	325-350		5	a,f
5.61-44.39	k = 1.7981 x 10 ⁻⁴ exp(- 931.37398/RT)	325-350		5	a,f
6.81-43.19	k = 2.554 x 10 ⁻⁴ exp(- 1069.02989/RT)	325-350		5	a,f
1.92-28.08	k = 5.001 x 10 ⁻⁴ exp(- 1595.38589/RT)	325-350		5	a,f
3.27-26.73	k = 4.177 x 10 ⁻⁴ exp(- 865.26568/RT)	325-350		5	a,f
0.13-19.87	k = 7.272 x 10 ⁻⁴ exp(- 2051.03111/RT)	325-350		5	a, f
1.44-18.56	k = 6.14 x 10 ⁻⁴ exp(- 1536.80891/RT)	325-350		5	a,f
6.5-13.5	k = 7.516 x 10 ⁻⁴ exp(- 1991.61732/RT)	325-350		5	a,f
0.36-9.64	k = 6.522 x 10 ⁻⁴ exp(- 1656.47331/RT)	325-350		5	a, f
3.96-6.04	k = 4.541 x 10 ⁻⁴ exp(- 1148.94562/RT)	325-350		5	a,f
4.52-5.48	k = 8.628 x 10 ⁻⁴ exp(- 3150.1863/RT)	325-350		5	a,f
6.34-3.66	k = 7.594 x 10 ⁻⁴ exp(- 3377.79971/RT)	325-350		5	a,f
00-0	k = 0.241 exp(- 20511.56636/RT)	335-350	(619)	5	a, f
00-0	κ = 0.24 (exp(= 20011.00030) κτ)	335-350	(015)	3	۵,۱
For additiona	1 SbCl ₃ systems, see : AlBr ₃ -				
	SbC1 ₅				
For SbCl ₅ sys	tems, see : A1C13- ; GaC13-				
	SbI ₃				
00	k = 0.013485 exp(- 14717.88463/RT)	485-540		4	a,f
For additiona	1 SbI ₃ systems, see : SbCl ₃ ~				
	\$b ₂ 0 ₃				
100	k = 6799 exp(- 1.0341347412 x 10 ⁵ /RT)	1101-1161		1	a,f
For additiona	1 Sb203 systems, see : AlI3- ; HgI2- ; SbBr3-				
	Sb ₂ S ₃				
• ^ ^	- ·	000 1076	415%	21	h10
100	k = 484.3 exp(- 52883.29754/RT)	830-1076	±15%	31	k,v10
100	k = 435.58 exp(- 52719.282/RT)	830-1076		1	a,f,v
100	k = 34932.7 exp(- 88561.28084/RT)	960-1240	±10%	6	
For additiona	1 Sb ₂ S ₃ systems, see : CaSb ₂ O ₄ - ; CaSb ₂ O ₆ - ; Ca ₄ Sb ₈ O ₂₃ -				
	ScBr ₃				
For ScBr3 sys	tems, see : Na ₂ S-				
•	ScC13				
100	k = 218.426 exp(- 61225.49631/RT)	1223-1273		1	a,f
For additiona	ul ScCl ₃ systems, see : KBr- ; NaBr-				
	SiO ₂				
For Pin auni					
ror 5102 syst	rems, see : CsC1- ; KC1- ; LiC1- ; NaC1- ; RbC1-				
	SmC1 ₃				
100	(T=1073.2 K, k=0.84)		n.a.	5	a,f
For additiona	al SmCl3 systems, see : Al203-Na3AlF6- ; Na3AlF6-				
	SmF ₃				
For SmF2 syst	tems, see : NaC1-				
3 -70	SnC1 ₂				
100	k = 33.808 exp(- 16395.2783/RT)	520-620	±2%	1	a,f
100	$k = -4.734129 + 0.01434825 T - 7.776484 \times 10^{-6} T^2 + 8.757843 \times 10^{-10} T^3$	529-1235		1	a,n
Enn nobles	al CaCle avadame and a KE at LAF at NoFe				
ror additiona	al SnCl ₂ systems, see : KF- ; LiF- ; NaF-				
	SnS				
100	k = 6194 exp(- 55359.43017/RT)	1158-1411	± 15%	1	a,f,
100	k = 10669.6 exp(- 49074.53862/RT)	1173-1273	±15%	31	k, v1

Table 2.3.a Electrical Conductance data (continued)

1 0()	-	Conductance (ohm-1 cm-1)	_			
mo1 %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
or additional	SnS systems, see : KC1-	SrBr ₂				
0	k = 21.531 exp(- 25154.62884	/RT)	929-1186	±2%	1	a,f
or additional	SrBr ₂ systems, see : K ₂ S-					
		SrC1 ₂				
0	k = 17.792 exp(- 20865.95709	O/RT)	1146-1357	±4%	1	a, 1
		SrF ₂				
or SrF ₂ system	ms, see : CaCl ₂ - ; CsCl- ; KCl	l- ; LiCl- ; NaCl- ; RbCl-				
		SrI ₂				
0	k = 10.99 exp(- 20635.83324/	/RT)	821-1270	±6%	1	a,
or additional	SrI ₂ systems, see : NaF-	Sp/Dna\a				
0	k = 3107.48 exp(- 1.19028423	\$r(P0 ₃) ₂ 336 × 10 ⁵ /RT)	1260-1340	±5%	6	a, t
on additional			1200 1040	-0%	J	u ,,
OI AUUITIONAI	Sr(PO ₃) ₂ systems, see : CsNO ₃	3-; KN03- TeCl ₂				
00	k = 66.19 exp(- 29008.15731/	/RT)	479-578	±10%	1	а,
or additional	TeCl ₂ systems, see : K ₂ TaF ₇ -					
		TeC1 ₄				
00	$k = 7.734 \exp(-17765.56122)$		509-589	±10%	1	а,
00	k = 145.4 exp(- 40401.37992)	TeO ₂	1023-1233	B n.a.	1	a,
-	K 14014 CMp (40401101002)	ThC14	1020 1200	,	•	α,
00	k = 10.25 exp(- 25368.01641)	/RT)	1087-1195	± 15%	1	a,
		ThF₄				
For ThF₄ syste	ms, see : KC1- ; NaC1-	•				
·		TiC13				
For TiCl ₃ syst	ems, see : KF- ; LiF- ; NaF-					
		TiF ₄ -XeF ₂				
.4-7.0 XeF ₂	k = - 8.485 x 10-4 + 0.0012	86 C - 6.51 x 10 ⁻⁴ C ² + 1.342 x 10 ⁻⁴ C ³ - 8.863 x 1	0-6 C4 405		14	a,
3.8-54.9 XeF ₂	k = 0.008769 - 3.66 x 10 ⁻⁴	C + 4.43 x 10 ⁻⁶ C ² - 1. x 10 ⁻⁸ C ³	405		14	a,
sothermal Data Dints	(C=19.7-80.3, k=0.5)		405		14	a,
sothermal Data oints	(C=90.1-9.9, k=6) (C=80.3-1	9.7, k=4) (C=70.4-29.6, k=6)	405		14	a,
For additional	TiF ₄ systems, see : CsCl- ;	KCl- ; NaCl- ; RbCl-				
00	k = 6.184 exp(- 12307.86031	/RT)	745-1127	±2%	1	a,
For additional	T1Br systems, see : CaF ₂ - ;					
00	L = 8 683 evn/- 11038 82534	T1C1 //RT)	720-1169	±2%	1	а,
00	K - 0.000 Exp(11900.02004	T1C1-ZnS0₄	720-1103	±2.%	,	α,
7-73	k = 45.1817 exp(- 37238.641	41/RT)	720-820		3	a,
2-68	k = 58.3315 exp(- 36826.928	92/RT)	720-820		3	a
0-50	$k = 11.5872 \exp(-21882.267)$	(69/RT)	720-820		3	a
9-41	$k = 9.41695 \exp(-18227.900)$	96/RT)	720-820		3	a
1-36	k = 8.00192 exp(- 16222.476	S2/RT)	720-820		3	a
For additional	I TIC1 systems, see : HgBr ₂ - ;	KBr- ; KNO ₃ - ; PbBr ₂ -				
		T11				
100		T11 7/RT)	721-1333	±2%	1	a

Table 2.3.a Electrical Conductance data (continued)

		Conductance (ohm-1 cm-1)				
(mo1 %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
		T1N02				
00	k = 6.145 exp(- 9153.0715	3/RT)	470-560	±5%	7	a,g
		T1N02-T1N03				
-100	k = 6.21043 exp(- 10743.8	5495/RT)	513-553	(620)	7	a,g
6-74		1186/RT)	473-553	(020)	7	a,g
0-60		553/RT)	473-553		7	a,g
i0-40		195/RT)	473-553		7	a,g
6-24	k = 4.82257 exp(- 8281.94	816/RT)	473-553		7	a,g
00-0	k = 6.145 exp(- 9153.0715	3/RT)	473-513	(621)	7	a,g
For addition	nal TINO2 systems, see : KI-					
		TINO3				
00	k = 9.416 exp(- 13150.113	6/RT)	485-554	±2%	1	a,f
For addition	nal TINO3 systems, see : NaNO2	- ; NaN0 ₃ -				
	0 •,•••• <u>2</u>	T1 ₂ S				
100	k = 14585.1 exp(- 55881.1	837/RT)	730-910	±15%	6	a,f
						•
For addition	nal Tl ₂ S systems, see : A g N0 ₃ -	; Cd(NO ₃) ₂ - ; CsNO ₃ - ; HgC1 ₂ - ; HgI ₂ - ; KNO ₃ - ; LiNO T1 ₂ SO ₄	3- ; NaN0 ₂ - ; N	aN0 ₃ - ; Rb	N03-; Т	1N0 ₂ -
100	k = 6.28167 exp(- 14670.6	0464/RT)	925-1000	±3%	6	a,f
For addition	nal Tl ₂ SO ₄ systems, see : Na ₂ S	;- UC1 ₃				
100	/T=1122 # k=1 07)	•		±3%	_	_
.00	(1-1123 K, K-1.07)			۸۵∸	5	а
For addition	nal UC13 systems, see : Cs2SO4	₁ - ; K ₂ SO ₄ - ; Li ₂ SO ₄ - ; Na ₂ SO ₄ - ; Rb ₂ SO ₄ - UCl ₄				
100	k = 5.216 exp(- 18104.052	248/RT)	872-1001	±5%	5	a,c,
For addition	nal UCl ₄ systems, see : KCl- ;	NaCl_				
101 4441(101	nar oorg systems, see . Rot ,					
For UF Tue		UF ₄				
rui ura sys	tems, see : CsCl- ; KCl- ; LiC					
		U0 ₂ C1 ₂				
100	$k = 15.7334 \exp(-41649.0$	06959/RT)	851-953	n.a.	1	a,f
For addition	nal U0 ₂ Cl ₂ systems, see : KF-	; LiF- ; NaF-				
		٧ ₂ 0 ₅				
100	$k = 4881.4 \exp(-90821.93)$	3386/RT)	965~1215	±20%	30	d
		₩0 ₃				
For Wile eve	tems, see : CaF ₂ - ; KVO ₃ - ; Na	.				
101 403 393	tems, see . Garg- , Kvog- , Ne	·				
F V-F		XeF ₂				
For Aer ₂ sy	stems, see : KPU3- ; K2WU4- ;	Li ₂ WO ₄ - ; NaPO ₃ - ; Na ₂ B ₄ O ₇ - ; Na ₂ WO ₄ - ; Na ₄ P ₂ O ₇ -				
		YC13				
100	$k = 32.755 \exp(-36083.4)$	1968/RT)	973-1148	±10%	1	a,f
For additio	nal YCl3 systems, see : TiF4-					
		YF3				
For YF3 sys	tems, see : KC1-					
		ZnBr ₂				
100	k = 894.4 exp(- 59991.195	566/RT)	671-913	±5%	1	a,f
For additio	nal ZnBr ₂ systems, see : KF- ;	; LiF- ; NaF-				
	-	ZnC1 ₂				
100	k = 5.39900 x 105 exp(- 0	97170.84168/RT)	593-673	±5%	5	9.0
						a,c
100	k = 2624.4 exp(- 66802.80	6162/RT)	673-851	±5%	5	a , c

Table 2.3.a Electrical Conductance data (continued)

	Conductance (ohm-1 cm-1)					
(mo1 %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
For addition	onal ZnCl ₂ systems, see : AlBr ₃ -	; CdCl ₂ -				
		ZnF ₂				
100	k = 27.962 exp(- 20877.2540	98/RT)	1173-1223	±2%	1	a,f
For addition	onal ZnF ₂ systems, see : CdBr ₂ - ;	CsC1- ; KC1- ; NaC1- ; PbC12-				
		ZnI ₂				
100	k = 242.794 exp(- 49467.004	39/RT)	740-820	±5%	4	a,c,f
100	$k = 134.411 \exp(-96585.07)$	2rC1 ₄	1365-1420	±5%	6	a,f
For ZrC14	systems, see : CsBr- ; KBr- ; KC	C1- ; KI- ; K ₂ SO ₄ - ; Li ₂ SO ₄ - ; Na ₂ SO ₄ - ; T1C1-				
		ZrF ₄				
For ZrF4 :	systems, see : /NaCl-					
		zro ₂				
For Zr0 ₂ s	systems, see : KF~ ; NaF-					

	Reliability estimates	
1	or 100% AgC1, the departures from the recommended data set are: 750 K, -0.79%, 970 K, -2.9%.	
2	or 100% AgBr, the results have been advanced as the recommended data set.	
3	or 100% AgNO ₃ , the departures from the recommended data set are: 630 K, -1.6%, 820 K, -15%.	
	or 100% AgBr, the departures from the recommended data set are: 650 K, +0.14%, 820 K, 0.0%.	
,	or 100% CsBr, the departures from the recommended data set are: 920 K, -5.1%, 950 K, -3.0%.	
•	or 100% AgBr, the departures from the recommended data set are: 700 K, +4.0%, 950 K, +2.7%.	
	he departure of the conductance of 100% HgBr ₂ at 515 K from the value from the recommended data set is approx2%.	
3	or 100% AgBr, the results have been advanced as the recommended data set.	
3	for 100% KC1, the departures from the recommended data set are: 1030 K, -0.8%, 1080 K, -0.1%.	
0	or 100% AgBr, the departures from the recommended data set are: 780 K, +0.1%, 1000 K, 0.0%.	
1 2	or 100% LiCl, the departures from the recommended data set are: 930 K, -0.20%, 1070 K, -0.15%.	
13	or 100% AgBr, the departures from the recommended data set are: 830 K, 0.0%, 1070 K, -0.03%. For 100% NaBr at 1000 K, the departure from the recommended data set is +0.2%.	
4	for 100% AgBr, the departures from the recommended data set are: 720 K, +4.0%, 950 K, +2.7%.	
5	for 100% NaCl, the departures from the recommended data set are: 1080 K, +0.3%, 1120 K, +0.4%.	
6	for 100% AgBr, the departures from the recommended data set are: 950 K, 0.0%, 1070 K, 0.0%.	
17	For 100% RbBr, the departures from the recommended data set are: 960 K, -6.0%, 1050 K, +2.9%.	
18	for 100% AgBr, the departures from the recommended data set are: 720 K, +4.0%, 950 K, +2.7%.	
9	For 100% $AgN0_3$, the departures from the recommended data set are: 580 K, +4.0%, 820 K, -15%.	
20	For 100% AgC1, the departures from the recommended data set are: 750 K, +1.0%, 820 K, +0.1%.	
21	For 100% AgC1, the results have been advanced as the recommended data set.	
22	For 100% KBr, the departures from the recommended data set are: 1030 K, -1.9%, 1120 K, -2.2%.	
23	for 100% AgC1, the departures from the recommended data set are: 750 K, +1.0%, 1070 K, -3.0%.	
24	For 100% AgC1, the departures from the recommended data set are: 750 K, -0.79%, 970 K, -2.9%.	
25 Se	For 100% LiBr, the departures from the recommended data set are: 880 K, -0.09%, 1070 K, +0.22%.	
26 27	For 100% AgC1, the departures from the recommended data set are: 830 K, +0.1%, 1070 K, -3.0%.	
28	For 100% NaBr, the departures from the recommended data set are: 1030 K, +0.10%, 1120 K, -0.38%. For 100% AgC1, the departures from the recommended data set are: 830 K, +0.10%, 1070 K, -3.0%.	
29	For 100% PbCl ₂ , the departures from the recommended data set are: 780 K, -0.80%, 950 K, -0.84%.	
30	For 100% AgC1, the departures from the recommended data set are: 750 K, -0.79%, 960 K, -2.9%.	
31	For 100% T1C1, the departures from the recommended data set are: 773 K, -8%, 973 K, +1%.	
32	For 100% TIC1 and 100% AgC1 at 773 K, the departures from the recommended data sets are, respectively, -10% and -7%.	
33	For 100% AgNO ₃ , the departures from the recommended data set are: 490 K, -3.5%, 560 K, -3.1%.	
34	For 100% AgND ₃ , the departures from the recommended data set are: 490 K, 0.0%, 580 K, +1.6%.	
35	For 100% AgND ₃ , the departures from the recommended data set are: 490 K, 0.0%, 580 K, +1.6%.	
36	For 100% AgNO ₃ , the departures from the recommended data set are: 503 K, +1.7%, 540 K, +0.7%.	
37	For 100% CsNO ₃ , the departures from the recommended data set are: 690 K, -0.53%, 740 K, -0.36%.	
38	For 100% AgNO ₃ , the departures from the recommended data set are: 500 K, -0.70%, 580 K, +1.3%.	
39		
40	For 100% AgNO ₃ , the departures from the recommended data set are: 500 K, +1.2%, 550 K, +4.4%.	
	For 100% KN03, the departures from the recommended data set are: 620 K, +0.3%, 670 K, +0.5%.	
41	For 100% AgNO3, the results have been advanced as the recommended data set.	
42	For 100% LiNO3, the departures from the recommended data set are: 650 K, -0.73%, 670 K, -0.68%.	
43	For 100% AgN03, the results have been advanced as the recommended data set.	
44	For 100% AgNO3, the departures from the recommended data set are: 490 K, 0.0%, 580 K, +1.6%.	
45	For 100% NaNO3, the departures from the recommended data set are: 590 K, -0.34%, 670 K, +0.52%.	
46	For 100% AgN 0_3 , the results have been advanced as the recommended data set.	
47	For 100% RbN03, the results have been advanced as the recommended data set.	
48	For 100% AgNO3, the results have been advanced as the recommended data set.	
49	For 100% T1NO ₃ , the departures from the recommended data set are: 490 K, -0.26%, 620 K, -3.5%.	
50	For 100% AgNO ₃ , the results have been advanced as the recommended data set.	
51		
	For 100% AgeS04, the results have been advanced as the recommended data set.	
52	For 100% AlBr3 two points in this study should be noted; the specific conductance results seem about 4 orders larger than the recommended data set; and secondly, k decreases as T increases, i.e., the sign of E is positive.	18
53	The values for 100% SbBr3 are qualitatively in accord with those of the recommended data set.	

Number	Reliability estimates
54	For 100% AlBr3 two points in this study should be noted; the specific conductance results seem about 4 orders larger than the recommended data set; and secondly, k decreases as T increases, i.e., the sign of E is positive.
55	For 100% AlBr ₃ two points in this study should be noted; the specific conductance results seem about 4 orders larger than the recommended data set; and secondly, k decreases as T increases, i.e., the sign of E is positive.
56	For 100% NaA1C14 (i.e.: 50:50, NaC1:A1C13), the results have been advanced as the recommended data set
57	For 100% KC1, the departures from the recommended data set are: 1080 K, -0.85%, 1250 K, -0.83%.
58	The departure from the recommended data base (Yamaguti and Sisido, $60.55-39.45$, AlCl $_3$ -KCl) is -7.8% (when the latter correlation is extrapolated to 875 K).
59	For LiAlC14 (i.e.: 50:50, LiCl:AlCl3), the results have been advanced as the recommended data set
60	For NaA1C14 (i.e.: 50:50, NaC1:A1C13), the deaprtures from the recommended data set are: 448 K, -10%, 673 K, -2%
61	For 100% MgCl $_2$, the departures from the recommended data set are 1000 K -0.1%, 1240 K -2.3%
62	For this composition, the density measurements have been advanced as the recommended data set for NaAIC14
63	The results for NaA1C14 in this study show departures of 5% from the recommended data set
64 65	From a comparison of results for overlapping concentrations (e.g. 60:40) the departures are: 448 K, +5%, 573 K, +7%
66	The values have been advanced as the recommended data set for K3A1F6. For 100% LiF, the departures from the recommended data set are: 1140 K, -4.3%, 1320 K, +1.25%.
67	For 100% NaF, the departures from the recommended data set are: 1280 K, +12.0%, 1350 K, +15.1%.
68	The values have been advanced as the recommended data set for Na3A1F6.
69	For 100% Na ₃ AlF ₆ , the results have been advanced as the recommended data set.
70	For 100% SbI_3 at 473 K, the departure from the recommended data set is -37%.
71	For 100% CaF ₂ , the results have been advanced as the recommended data set.
72	For 100% K ₃ A1F ₆ , the departures from the recommended data set are: 1270 K, +19.3%, 1330 K, +43.7%.
73	For 100% Na ₃ A1F ₆ at 1273 K, the departure from the recommended data set is 0.0%.
74	For 100% KBr, the departures from the recommended data set are: 1030 K, -1.9%, 1120 K, -2.0%.
75	For 100% BaCl ₂ , the departures from the recommended data set are: 1280 K, -18%, 1340 K, -14%.
76	For 100% CaCl ₂ , the departures from the recommended data set are: 1080 K, -8.7%, 1300 K, -12.6%.
77	For 100% BaCl ₂ , the departures from the recommended data set are: 1280 K, -5.2%, 1400 K, -8.8%.
78	For 100% CsC1, the departures from the recommended data set are: 1090 K, -5.0%, 1200 K, -10.3%.
79	For 100% BaCl ₂ , the departures from the recommended data set are: 1240 K, +0.59%, 1290 K, -0.65%.
80	For 100% LaCl ₃ , the departures from the recommended data set are: 1140 K, -2.0%, 1220 K, 0.0%.
81	For 100% BaCl ₂ , the departures from the recommended data set are: 1240 K, +0.59%, 1290 K, -0.65%.
82	For 100% LiC1, the departures from the recommended data set are: 1080 K, -0.09%, 1270 K, -1.9%.
83	For 100% BaCl ₂ , the departures from the recommended data set are: 1240 K, +3.1%, 1270 K, -1.6%.
84	For 100% MgCl ₂ , the departures from the recommended data set are: 1000 K, -1.1%, 1240 K, -2.0%.
85	For 100% BaCl ₂ , the departures from the recommended data set are: 1260 K, -4.5%, 1340 K, -6.6%.
86	For 100% NaC1, the departures from the recommended data set are: 1100 K, -0.5%, 1180 K, +0.08%.
87	For 100% BaCl ₂ , the departures from the recommended data set are: 1260 K, -4.0%, 1340 K, -7.7%.
88	For 100% NaF at 1273 K, the departure from the recommended data set is +3.8%.
89	For 100% BaCl ₂ at 1273 K, the departure from the recommended data set is -0.3%.
90	For 100% Na ₃ A1F ₆ , the departures from the recommended data set are: 1280 K, +0.17%, 1350 K, +0.27%.
91	For 100% BaCl ₂ , the departures from the recommended data set are: 1260 K, +0.32%, 1340 K, -1.2%.
92	For 100% Na_3A1F_6 , the departures from the recommended data set are- 1280 K, -0.51%, 1350 K, +2.4%.
93	In this study, the departures from 100% BaC12 from the recommended data set are, 1280 K, -18%; 1340 K, -14%.
94	For 100% Ba($N0_2$) ₂ , the departures from the recommended data set are: 550 K, -1.7%, 610 K, -8.4%.
95	For 100% CsNO ₂ , the departures from the recommended data set are: 685 K, -0.87%, 730 K, -0.46%.
96	For 100% Ba($N0_2$) ₂ , the departures from the recommended data set are: 560 K, -1.7%, 610 K, -8.4%.
97	For 100% CsNO ₃ , the departures from the recommended data set are: 700 K, -2.9%, 730 K, -0.75%.
98	For 100% $Ba(N0_2)_2$, the departures from the recommended data set are: 560 K, -1.7%, 610 K, -8.4%.
99	For 100% KN02, the departures from the recommended data set are: 720 K, +0.3%, 750 K, -0.5%.
100	For 100% $Ba(N0_2)_2$, the results have been advanced as the recommended data set.
101	For 100% KNO3, the departures from the recommended data set are: 620 K, +4.5%, 650 K, +3.2%.
102	For 100% NaNO ₂ , the departures from the recommended data set are: 580 K, +1.4%, 610 K, +2.4%.

lumber 		Reliability estimates
104	For	100% CsNO ₂ , the departures from the recommended data set are: 685 K, -0.87%, 730 K, -0.46%.
105	For	100% CsNO ₃ , the departures from the recommended data set are: 690 K, -0.53%, 740 K, -0.36%.
06	For	100% KNO3, the departures from the recommended data set are: 620 K, -1.2%, 730 K, -0.5%.
07	For	100% $\rm Li_2SO_4$, the departures from the recommended data set are: 1140 K, -6.8%, 1200 K, -7.8%.
80	For	100% Na ₃ A1F ₆ at 1273 K, the departure from the recommended data set is -1.1%.
09	For	100% BiCl ₃ , the departures from the recommended data set are: 523 K, -10.5%, 720 K, -13.2%.
10	For	100% BiBr3, the departures from the recommended data set are: 520 K, +2.1%, 720 K, +8.2%.
11	For	100% Bil3, the departures from the recommended data set are: 720 K, -1.5%, 770 K, 0.0%.
12	For	100% BiBr3, the departures from the recommended data set are: 520 K, +2.1%, 720 K, +8.2%.
113	For	100% BiCl ₃ , the departures from the recommended data set are: 510 K, -18%, 520 K, -18%.
14	For	100% PbMoO ₄ , the results have been advanced as the recommended data set.
15	For	100% Bi ₂ (MoO ₄) ₃ , the results have been advanced as the recommended data set.
116		020 K, the conductance for Bi_2S_3 (air atmosphere), and that of the recommended study (argon atmosphere) are: 3345 and 0.051, ectively.
17	For	100% $\mathrm{Bi}_2\mathrm{S}_3$, the results have been advanced as the recommended data set.
118	For	100% PbW04, the results have been advanced as the recommended data set.
119	For	100% $\mathrm{Bi}_2(\mathrm{WO}_4)_3$, the results have been advanced as the recommended data set.
120	For	100% NaP0 $_3$, the departures from the recommended data set are: 920 K, -21%, 1170 K, +6.5%.
121	For	100% KC1, the departures from the recommended data set are: 1080 K, -0.5% , 1140 K, -0.04% .
122	For	100% CaCl $_2$, the departures from the recommended data set are: 1080 K, -1.4%, 1170 K, -3.8%.
123	For	100% CaCl ₂ and 100% LiCl at 1073 K, the departures from the recommended data sets are, respectively, +0.64% and -0.45%.
124	For	100% $MgC1_2$, the departures from the recommended data set are: 1020 K, -1.1%, 1080 K, +1.4%.
125	For	100% $CaCl_2$, the departures from the recommended data set are: 1080 K, -1.4%, 1170 K, -3.8%.
126	For	100% NaC1, the departures from the recommended data set are: 1090 K, \pm 1.0%, 1170 K, \pm 0.9%.
127	For	100% $CaCl_2$, the departures from the recommended data set are: 1080 K, -0.26%, 1130 K, +0.86%.
128	For	100% PrCl ₃ , the results have been advanced as the recommended data set.
129	For	100% CaCl $_2$, the departures from the recommended data set are: 1080 K -3.4% , 1250 K -6.5%
130	_	100% RbC1, the departures from the recommended data set are: 1080 K, +3.5%, 1170 K, +1.6%.
131		100% CaCl ₂ , the departures from the recommended data set are: 1080 K, -1.1%, 1170 K, +1.8%.
132		100% SrCl ₂ , the departures from the recommended data set are: 1180 K, -5.4%, 1320 K, -8.7%.
133		100% CaCl ₂ , the departures from the recommended data set are: 1180 K, -8.2%, 1300 K, -12.8%.
134 135	_	100% LiF, the departures from the recommended data set are: 1150 K, +4.2%, 1320 K, +7.8%.
		100% CaF ₂ at 1973 K, the departure from the recommeded data set is +0.15%.
136		100% NagAIF6, the results have been advanced as the recommended data set.
137		100% CsNO ₂ , the departures from the recommended data set are: 690 K, -0.13%, 715 K, +0.25%.
138		100% Ca(NO ₂) ₂ , the results have been advanced as the recommended data set.
139		100% Ca(NO ₂) ₂ , the results have been advanced as the recommended data set.
140		100% NaNO ₂ , the departures from the recommended data set are: 580 K, +5.4%, 630 K, +11.1%.
141		100% Ca(NO ₂) ₂ , the results have been advanced as the recommended data set.
142		100% KN03, the departures from the recommended data set are: 620 K, -1.2%, 730 K, -0.5%.
143		100% NaNO ₃ , the departures from the recommended data set are: 610 K, +0.73%, 690 K, +0.38%.
144		100% Sb203 at 1033 K, the departure from the recommended data set is +0.3%.
145		100% Sb203 at 1033 K, the departure from the recommended data set is +0.3%.
146		100% Sb203 at 1033 K, the departure from the recommended data set is +0.3%.
147		100% CdCl ₂ , the departures from the recommended data set are: 870 K, -0.34%, 910 K, -0.14%.
148		100% CdBr ₂ , the departures from the recommended data set are: 890 K, -5.6%, 910 K, +3.7%.
149		100% CdBr ₂ , the departures from the recommended data set are: 890 K, -0.34%, 1020 K, +0.25%.
150	For	100% CdBr $_2$, the departures from the recommended data set are: 850 K, $ extstyle -0.54$ %, 1020 K, $ extstyle +0.25$ %.
151		100% CdBr2 and 100% ZnCl2 at 873 K, the departures from the recommended data sets are, respectively, +0.4% and -10%.

Table 2.3.b Electrical Conductance data reliability statements (continued)

Number	Reliability estimates
153	For 100% CdCl ₂ , the departures from the recommended data set are: 870 K, -0.34%, 960 K, +0.50%.
154	For 100% CdCl ₂ , the departures from the recommended data set are: 870 K, -0.34%, 960 K, +0.18%.
155	For 100% LiC1, the departures from the recommended data set are: 900 K, +2.4%, 1020 K, +1.7%.
156	For 100% CdCl ₂ , the departures from the recommended data set are: 870 K, -0.34%, 1020 K, +0.95%.
157	For 100% PbCl ₂ , the departures from the recommended data set are: 775 K, -1.15%, 790 K, -0.32%.
158	For 100% T1C1, the departures from the recommended data set are: 730 K, +0.13%, 770 K, +1.58%.
159	For 100% KI, the departures from the recommended data set are: 970 K, -0.97%, 1060 K, +0.87%.
160	For 100% CdI ₂ , the departures from the recommended data set are: 680 K, ~0.35%, 960 K, +1.6%.
161	For 100% LiNO ₃ , the departures from the recommended data set are: 550 K, -2.4%, 590 K, +3.7%.
162	For 100% RbNO ₃ at 593.2 K, the departure from the recommended data set is +5.0%.
163	For 100% TINO3, the departures from the recommended data set are: 490 K, +4.4%, 560 K, +1.3%.
164	For 100% Li ₂ SO ₄ , the departures from the recommended data set are: 1140 K, -6.8%, 1200 K, -7.8%.
165 166	For 100% KF, the departures from the recommended data set are: 1140 K, +4.2%, 1340 K, +3.4%.
167	For 100% LiF, the departures from the recommended data set are: 1140 K, +4.2%, 1320 K, +7.8%. For 100% NaF, the departures from the recommended data set are: 1310 K, +5.6%, 1340 K, +7.7%.
168	For 100% Cu ₂ S, the departures from the recommended data set are: 1500 K, +15.2%, 1700 K, -40%.
169	For 100% Co ₄ S ₃ , the results have been advanced as the recommended data set.
170	For 100% Co ₄ S ₃ at 1773 K, the result has been advanced as recommended data. For 100% FeS at 1773 K, the departure from the
	recommended data set is +10.3%.
171	For both 100% Co_4S_3 and 100% Ni_3S_2 at 1773 K, the result has been advanced as recommended data.
172 173	For 100% CsC1, the departures from the recommended data set are: 950 K, -0.42%, 1140 K, -9.8%.
174	For 100% CsBr, the departures from the recommended data set are: 950 K, -4.9%, 1130 K, -17.1%. For 100% CsF, the departures from the recommended data set are: 1000 K, -1.1%, 1180 K, -6.2%.
175	For 100% CsBr, the departures from the recommended data set are: 950 K, -5.6%, 1080 K, -15.0%.
176	For 100% CsI, the departures from the recommended data set are: 950 K, +0.14%, 1140 K, -15%.
177	For 100% CsBr, the departures from the recommended data set are: 950 K, -4.9%, 1130 K, -17.1%.
178	For 100% KC1, the departures from the recommended data set are: 1030 K, -1.1%, 1080 K, -1.9%.
179	For 100% CsBr, the departures from the recommended data set are: 1050 K, +12%, 1100 K, -17%.
180 181	For 100% NaC1, the departures from the recommended data set are: 1073 K, -1.1%, 1123 K, -0.3%. For 100% CsBr, the departures from the recommended data set are: 1050 K, -13%, 1130 K, -19%.
182	For 100% CsF, the departures from the recommended data set are: 1000 K, -1.1%, 1180 K, -6.2%.
183	For 100% CsC1, the departures from the recommended data set are: 950 K, $\pm 0.3\%$, 1050 K, $\pm 4.3\%$.
184	For 100% CsI, the departures from the recommended data set are: 950 K, \pm 0.14%, 1140 K, \pm 14%.
185	For 100% CsC1, the departures from the recommended data set are: 950 K, -0.42%, 1140 K, -9.8%.
186	For 100% GaCl ₃ , the conductance appears to be four orders of magnitude larger than the value from the recommended data set.
187 188	For 100% KBr, the departures from the recommended data set are: 1050 K, -1.0%, 1100 K, +0.15%. For 100% CsC1, the departures from the recommended data set are: 1050 K, -6.1%, 1100 K, -9.0%.
189	For 100% KC1, the departures from the recommended data set are: 1080 K, -3.1%, 1190 K, 0.0%.
190	For 100% CsC1, the departures from the recommended data set are: 950 K, -0.42%, 1090 K, -2.9%.
191	For 100% LaCl ₃ , the departures from the recommended data set are: 1140 K, -2.0%, 1220 K, 0.0%.
192	For 100% CsC1, the departures from the recommended data set are: 1090 K, -5.0% , 1200 K, -10.3% .
193	For 100% LiC1, the departures from the recommended data set are: 900 K, -3.4%, 1070 K, -0.13%.
194	For 100% CsC1, the departures from the recommended data set are: 950 K, -1.4%, 1090 K, -6.2%.
195	For 100% MnCl ₂ , the departures from the recommended data set are: 931 K -0.8%, 1106 K 0.8%.
196 197	For 100% CsC1, the departures from the recommended data set are: 953 K -0.6%, 1103 K -7.9%.
198	For 100% NaBr, the departures from the recommended data set are: 1080 K, -2.1%, 1120 K, -2.8%. For 100% CsC1, the departures from the recommended data set are: 1080 K, -9.8%, 1120 K, -9.8%.
199	For 100% NaC1, the departures from the recommended data set are: 1090 K, 0.0%, 1170 K, -0.5%.
200	For 100% CsC1, the departures from the recommended data set are: 950 K, -0.42% , 1090 K, -2.9% .
201	For 100% PbCl ₂ , the departures from the recommended data set are: 830 K, +1.2%, 1070 K, -4.2%.
202	For 100% RbC1, the departures from the recommended data set are: 1020 K, -0.13%, 1170 K, -4.2%.
203	For 100% CsC1, the departures from the recommended data set are: 950 K, -0.42%, 1090 K, -2.9%.
204 205	For 100% CsC1, the departures from the recommended data set are: 950 K, -0.42%, 1200 K, -15.5%.
	For 100% SrCl ₂ , the departures from the recommended data set are: 1173 K -2.3%, 1273 K -2.3%.
206	For 100% CsC1, the departures from the recommended data set are: 973 K 0.3%, 1170 K -12.4%.

Number	Reliability estimates
208	For 100% UCl ₄ , the results have been advanced as the recommended data set.
209	For 100% CsCl, the departures from the recommended data set are: 950 K, -2.2%, 1050 K, -4.1%.
210	For 100% ZnCl ₂ , the results have been advanced as the recommended data set.
211	For 100% $NaC_2H_3O_2$, the results have been advanced as the recommended data set.
212	For 100% CsC ₂ H ₃ O ₂ , the results have been advanced as the recommended data set.
213	For 100% CsI, the departures from the recommended data set are: 950 K, -3.2%, 1070 K, -11.6%.
214	For 100% CsF, the departures from the recommended data set are: 1000 K, -1.1%, 1180 K, -6.2%.
215	For 100% DyI3, the results have been advanced as the recommended data set.
216	For 100% CsI, the departures from the recommended data set are: 1260 K, -22%, 1320 K, -23%.
217	For 100% GdI ₃ , the results have been advanced as the recommended data set.
218 219	For 100% CsI, the departures from the recommended data set are: 1260 K, -22%, 1320 K, -23%.
220	For 100% LaI ₃ , the departures from the recommended data set are: 1100 K, +1.8%, 1200 K, +2.8%.
221	For 100% CsI, the departures from the recommended data set are: 1100 K, -19%, 1190 K, -21%. For 100% LiI, the departures from the recommended data set are: 770 K, -0.25%, 910 K, -0.31%.
222	For 100% CsI, the departures from the recommended data set are: 950 K, +0.14%, 1140 K, -15%.
223	For 100% NdI_3 , the departures from the recommended data set are: 1090 K, +0.7%, 1190 K, +4.0%.
224	For 100% CsI, the departures from the recommended data set are: 1090 K, -19%, 1190 K, -21%.
225	For 100% $CsN0_3$, the departures from the recommended data set are: 695 K, -2.9%, 730 K, -0.75%.
226	For 100% $CsN0_2$, the departures from the recommended data set are: 685 K, -0.87%, 730 K, -0.46%.
227	For 100% KND_3 , the departures from the recommended data set are: 620 K, -1.2%, 730 K, -0.5%.
228	For 100% CsN 0 3, the departures from the recommended data set are: 700 K, -0.53%, 740 K, -0.36%.
229	For 100% LiN03, the departures from the recommended data set are: 590 K, $+0.22\%$, 670 K, -2.4% .
230	For 100% CsN0 ₃ , the departures from the recommended data set are: 700 K, ~0.53%, 740 K, ~0.36%.
231	For 100% NaNO3, the departures from the recommended data set are: 610 K, +0.73%, 690 K, +0.38%.
232	For 100% CsNO $_3$, the departures from the recommended data set are: 700 K, \sim 0.53%, 740 K, \sim 0.36%.
233	For 100% $RbN0_3$, the departures from the recommended data set are: 590 K, 0.0%, 700 K, -1.8%.
234	For 100% CsNO ₃ , the departures from the recommended data set are: 700 K, ~0.53%, 740 K, ~0.36%.
235	For 100% CsNO ₃ , the departures from the recommended data set are: 700 K, ~0.53%, 740 K, ~0.36%.
236	For 100% T1NO ₃ , the departures from the recommended data set are: 500 K, +1.7%, 600 K, -2.5%.
237	For 100% CsND ₃ , the departures from the recommended data set are: 700 K, ~0.53%, 740 K, ~0.36%.
238	For 100% Cs ₂ SO ₄ , the results have been advanced as the recommended data set.
239	For 100% Li ₂ SO ₄ , the results have been advanced as the recommended data set.
240	For 100% Cs ₂ SO ₄ , the results have been advanced as the recommended data set.
241	For 100% Na ₂ SO ₄ , the results have been advanced as the recommended data set.
242	For 100% Cs2S04, the results have been advanced as the recommended data set.
243 244	For 100% Rb2S04, the results have been advanced as the recommended data set.
244	For 100% Cs ₂ SO ₄ , the results have been advanced as the recommended data set.
246	The departure of the conductance for 100% HgBr ₂ in this work at 515 K from the recommended data set is ~2.0%.
247	For 100% CuCl, the departures from the recommended data set are: 770 K, -1.1%, 1200 K, +2.7%. For 100% CuCl, the departures from the recommended data set are: 740 K, -6.5%, 900 K, -3.0%.
248	For 100% N(C ₃ H ₇) ₄ SCN, the results have been advanced as the recommended data set.
249	For 100% FeS, the departures from the recommended data set are: 1470 K, +4.6%, 1770 K, +11.7%.
250	For 100% Cu ₂ S, the departures from the recommended data set are: 1410 K, +14.1%, 1700 K, -18.8%.
25 1	For 100% Ni ₃ S ₂ , the results have been advanced as the recommended data set.
252	For 100% Cu_2S , the departures from the recommended data set are: 1500 K, +15.2%, 1700 K, -40%.
253	For 100% DyCl ₃ at 1073 K, the departure from the recommended data set is not available.
254	For 100% NaCl at 1073 K, the departure from the recommended data set is ~0.8%. For 100% DyCl3 at 1073 K, the departure from the recommended data set is not available.
255	For 100% KI, the departures from the recommended data set are: 1250 K, +3.5%, 1330 K, +5.3%.
256	For 100% Dylg, the results have been advanced as the recommended data set.
257	For 100% ErCl ₃ at 1073 K, the departure from the recommended data set is not available.
	The state of the s

Number ———	Reliability estimates
258	For 100% FeCl ₂ , the results have been advanced as the recommended data set.
259	For 100% Ni_3S_2 at 1773 K, the results has been advanced as recommended data.
260	The results for 100% GaCl3 appear about four orders of magnitude larger than the values from the recommended data set.
261	The conductance for 100% GaCl3 appears to be about 2 orders of magnitude larger than the value from the recommended data set.
262	For 100% GaI3, the results have been advanced as the recommended data set.
263	For both 100% KC1 and 100% GdC13 at 1073 K, the departure from the recommended data set is, respectively, -1.4% and +10.5%.
264	For both 100% NaCl and 100% GdCl3 at 1073 K, the departure from the recommended data set is, respectively, -0.8% and +10.5%.
265	For 100% KI, the departures from the recommended data set are: 1250 K, $+3.5\%$, 1330 K, $+5.3\%$.
266	For 100% GdI_3 , the results have been advanced as the recommended data set.
267	For 100% NaI, the departures from the recommended data set are: 1230 K, -0.9% , 1320 K, -3.6% .
268	For 100% GdI3, the results have been advanced as the recommended data set.
269	For 100% HgI_2 , the departures from the recommended data set are: 550 K, -10%, 600 K, -3%.
270	For 100% $HgBr_2$, the departures from the recommended data set are: 550 K, -1%, 650 K, -14%.
271	The departure of the conductance of 100% HgBr2 from the recommended data set at 515 K is approx2%.
272	The departure of the conductance of 100% HgBr ₂ from the recommended data set at 515 K is approx2%.
273	The values for 100% HgBr ₂ are 2 orders of magnitude larger than those for the recommended data set.
274	The departure of the conductance for 100% ${ m HgBr}_2$ at 515 K from the recommended data set is approx2%.
275	The departure of the conductance for 100% $HgBr_2$ at 515 K from the recommended data set is approx2%.
276	For 100% ${\rm HgI}_2$, the departures from the recommended data set are: 550 K, +7.0%, 570 K, +7.1%.
277	For 100% Hg_2C1_2 , the results have been advanced as the recommended data set.
278	For 100% TINO3, the results have been advanced as the recommended data set.
279	For 100% ${\rm HgI}_2$, the departures from the recommended data set are: 550 K, -10%, 570 K, +11%.
280	For 100% ${\rm HgI}_2$, the departures from the recommended data set are: 550 K, -10%, 570 K, +11%.
281	For 100% SbI_3 , the departures from the recommended data set are: 450 K, -5%, 550 K, -27%.
282	For 100% ${\rm HgI}_2$, the departures from the recommended data set are: 550 K, -9%, 600 K, -3.1%.
283	For 100% T1N0 $_3$, the departures from the recommended data set are: 500 K, +6.0%, 570 K, +1.1%.
284	For 100% HgI_2 , the departures from the recommended data set are: 550 K, +7%, 570 K, +7.1%.
285	For 100% NaA1Cl4, the reults have been advanced as the recommended data set
286	For 100% KC1, the departures from the recommended data set are: 1080 K, -3.1%, 1190 K, 0.0%.
287	For 100% KBr, the departures from the recommended data set are: 1030 K, -0.3%, 1200 K, +0.1%.
288	For 100% KF, the departures from the recommended data set are: 1140 K, -7.6%, 1250 K, -7.6%.
289 290	For 100% KBr, the departures from the recommended data set are: 1030 K, -4.5%, 1200 K, -3.9%. For 100% KI, the departures from the recommended data set are: 970 K, 0.0%, 1170 K, +0.5%.
291	For 100% KBr, the departures from the recommended data set are: 1030 K, -0.3%, 1200 K, +0.1%.
292	For 100% KNO3, the departures from the recommended data set are: 630 K, +1.2%, 870 K, -0.5%.
293	For 100% KBr, the departures from the recommended data set are: 1030 K, -1.9%, 1070 K, -2.0%.
294	For 100% LiBr, the departures from the recommended data set are: 840 K, +1.2%, 1020 K, +1.0%.
295	For 100% NaBr, the departures from the recommended data set are: 1080 K, -2.7%, 1220 K, -7.2%.
296	For 100% KBr, the departures from the recommended data set are: 1030 K, -0.27%, 1200 K, 0.0%.
297	For 100% NaC1, the departures from the recommended data set are: 1073 K, -1.1%, 1123 K, -0.3%.
298 299	For 100% KBr, the departures from the recommended data set are: 1070 K, -0.5%, 1120 K, -1.2%. For 100% PbBr ₂ , the results have been advanced as the recommended data set.
300	For 100% RbBr, the departures from the recommended data set are: 980 K, +0.2%, 1140 K, -3.8%.
301	For 100% KBr, the departures from the recommended data set are: 1030 K, -0.27%, 1200 K, 0.0%.
302	For 100% RbC1, the departures from the recommended data set are: 1020 K, +4.9%, 1120 K, +1.6%.
303	For 100% KBr, the departures from the recommended data set are: 1030 K, -4.0%, 1120 K, -3.9%.
304	For 100% KBr, the departures from the recommended data set are: 1030 K, ~0.1%, 1200 K, -0.9%.
305	For 100% T1Br, the departures from the recommended data set are: 760 K, -0.3%, 960 K, +0.4%.
306	For 100% KBr, the departures from the recommended data set are: 1030 K, 0.0%, 1200 K, -2.3%.
307	For 100% KC2H302, the results have been advanced as the recommended data set.
200	
308 309	For 100% KCH0 ₂ , the results have been advanced as the recommended data set. For 100% KF, the departures from the recommended data set are: 1140 K, -7.6%, 1250 K, -7.6%.

Table 2.3.b Electrical Conductance data reliability statements (continued)

Number	Reliability estimates
311	For 100% KI, the results have been advanced as the recommended data set.
312	For 100% KC1, the results have been advanced as the recommended data set.
313	For both 100% KCl and 100% KP0 $_3$ at 1123 K, the departure from the recommended data set is, respectively, -3.4% and $+73\%$.
314	For 100% K2ZrF6, the results have been advanced as the recommended data set.
315	For 100% KC1, the departures from the recommended data set are: 1080 K, -2.8%, 1190 K, -2.8%.
316	For 100% KC1 at 1123 K, the departure from the recommended data set is -3.4%.
317	For 100% KC1 at 1123 K, the departure from the recommended data set is -4.3%.
318	For 100% LaCl ₃ , the departures from the recommended data set are: 1170 K, -8.9%, 1300 K, -6.0%.
319	For 100% KC1, the departures from the recommended data set are: 1070 K, -9.9%, 1190 K, -9.3%.
320	For 100% LiC1, the results have been advanced as the recommended data set.
321 322	For 100% KC1, the results have been advanced as the recommended data set.
	For 100% MgCl ₂ , the departures from the recommended data set are: 980 K, +1.1%, 1020 K, +0.7%.
323	For 100% MnCl ₂ , the results have been advanced as the recommended data set.
324 325	For 100% KC1, the departures from the recommended data set are: 1080 K, -0.09%, 1130 K, -0.18%. For 100% NaBr, the departures from the recommended data set are: 1080 K, -2.1%, 1120 K, -2.8%.
326	For 100% KCl, the departures from the recommended data set are: 1080 K, -1.7%, 1140 K, -1.4%.
327	For 100% NaC1, the departures from the recommended data set are: 1080 K, 0.0%, 1290 K, +2.6%.
328	For 100% KC1, the results have been advanced as the recommended data set.
329	For 100% NaI, the departures from the recommended data set are: 950 K, +3.5%, 1070 K, +1.7%.
330	For 100% KC1, the departures from the recommended data set are: 1060 K, -0.3%, 1140 K, +1.0%.
331	For 100% KCl at 1073 K, the departure from the recommended data set is -0.5%. For 100% NdCl ₃ at 1073 K, the departure from the recommended data set is not available.
332	For 100% PbCl ₂ , the results have been advanced as the recommended data set.
333	For 100% PrCl ₃ the results have been advanced as the recommended data set
334	For 100% KC1, the departures from the recommended data set are: 1090 K 0.6%, 1250 K 0.6%.
335	For 100% KCl at 1073 K, the departure from the recommended data set is -0.5%. For 100% PrCl ₃ at 1073 K, the departure from the recommended data set is not available.
336	For 100% RbBr, the departures from the recommended data set are: 1050 K, +1.1%, 1120 K, -1.6%.
337	For 100% KCl, the departures from the recommended data set are: 1050 K, -1.0%, 1120 K, -1.4%.
338	For 100% RBC1, the departures from the recommended data set are: 1020 K, -0.13%, 1170 K, -4.2%.
339 340	For 100% KC1, the departures from the recommended data set are: 1080 K, -3.1%, 1190 K, 0.0%. For 100% KC1, the departures from the recommended data set are: 1080 K, -3.1%, 1230 K, -2.9%.
341	For 100% SnCl ₂ , the departures from the recommended data set are: 570 K, +3.2%, 620 K, -2.5%.
342	For 100% SrCl ₂ , the departures from the recommended data set are: 1148 K -3.1%, 1273 K -4.3%.
343	For 100% KC1, the departures from the recommended data set are: 1073 K -0.5%, 1198 K -0.9%.
344	For 100% ThCl ₄ , the departures from the recommended data set are: 1075 K -3.0%, 1173 K -2.9%.
345	For 100% KC1, the departures from the recommended data set are: 1075 K -0.05%, 1273 K 0.5%.
346	For 100% KC1 at 1073 K, the departure from the recommended data set is +2.4%.
347	For 100% UCl ₄ , the results have been advanced as the recommended data set.
348	For 100% YCl ₃ , the departures from the recommended data set are: 1000 K 0.9%, 1148 K -1.3%.
349	For 100% ZnCl ₂ , the results have been advanced as the recommended data set.
350	For 100% KNO3, the departures from the recommended data set are: 630 K, +1.0%, 700 K, +2.2%.
35 1	For 100% LiC104, the results have been advanced as the recommended data set.
352	For 100% LiNO ₃ , the departures from the recommended data set are: 550 K, +2.7%, 670 K, +2.5%.
353	For 100% NaNO ₃ , the departures from the recommended data set are: 610 K, -0.1%, 680 K, -0.9%.
354	For 100% KI, the departures from the recommended data set are: 970 K, +0.4%, 1170 K, -0.8%.
355	For 100% KF, the departures from the recommended data set are: 1140 K, -7.6%, 1250 K, -7.6%.
356	For 100% K ₂ ZrF ₆ , the results have been advanced as the recommended data set.
357	For 100% KF, the departures from the recommended data set are: 1230 K, +51%, 1250 K, +52%.
358	For 100% KF, the departures from the recommended data set are: 1140 K, +4.2%, 1340 K, +3.4%.
359	For 100% LiF, the departures from the recommended data set are: 1140 K, +4.2%, 1320 K, +7.8%.
360	For 100% KF, the departures from the recommended data set are: 1140 K, +4.2%, 1340 K, +3.4%.
361	For 100% NaF, the departures from the recommended data set are: 1310 K, +5.6%, 1350 K, +7.7%.
362	For 100% KF, the departures from the recommended data set are: 1140 K, +4.2%, 1340 K, +3.4%.
363	For 100% KF, the departures from the recommended data set are: 1140 K, +4.2%, 1340 K, +3.4%.

Table 2.3.b Electrical Conductance data reliability statements (continued)

Number	Reliability estimates
364	For 100% KF, the departures from the recommended data set are: 1140 K, +4.2%, 1340 K, +3.4%.
365	For 100% KF, the departures from the recommended data set are: 1140 K, +4.2%, 1340 K, +3.4%.
866	For 100% KF, the departures from the recommended data set are: 1140 K, +4.2%, 1340 K, +3.4%.
67	For 100% KF at 1233 K, the departure from the recommended data set is +51%.
868	For 100% LaI $_3$, the departures from the recommended data set are: 1100 K, +1.8%, 1190 K, +2.8%.
869	For 100% KI, the departures from the recommended data set are: 1090 K, +6.8%, 1170 K, +5.1%.
70	For 100% LiI, the departures from the recommended data set are: 770 K, -0.25% , 910 K, -0.31% .
371	For 100% KI, the departures from the recommended data set are: 1000 K, -0.6%, 1170 K, +0.9%.
372	For 100% KI, the departures from the recommended data set are: 970 K, -0.97%, 1060 K, +0.87%.
373	For 100% NaI, the departures from the recommended data set are: 950 K, +4.9%, 1120 K, -2.4%.
374	For 100% KI, the departures from the recommended data set are: 980 K, -0.5%, 1120 K, +0.6%.
375	For 100% NdI ₃ , the departures from the recommended data set are: 1090 K, +0.7%, 1190 K, +4.0%.
376	For 100% KI, the departures from the recommended data set are: 1090 K, 0.0%, 1190 K, +2.3%.
377	For 100% PbI ₂ , the departures from the recommended data set are: 730 K, +15.5%, 970 K, +3.8%.
378	For 100% KI, the departures from the recommended data set are: 970 K, -0.5%, 1120 K, +0.6%.
379	For 100% RbI, the departures from the recommended data set are: 950 K, +1.4%, 1100 K, -1.6%.
380	For 100% KI, the departures from the recommended data set are: 1000 K, 0.0%, 1170 K, +0.5%.
381	For 100% T1I, the departures from the recommended data set are: 920 K, +1.2%, 970 K, +0.9%.
382	For 100% KI, the departures from the recommended data set are: 970 K, -2.0%, 1060 K, +2.7%.
383	For 100% NaNO ₂ , the departures from the recommended data set are: 580 K, +1.4%, 610 K, +2.4%.
384	For 100% KNO ₂ , the departures from the recommended data set are: 720 K, +0.3%, 750 K, -0.5%.
385	For 100% K ₂ Cr ₂ O ₇ , the departures from the recommended data set are: 690 K, -8.6%, 750 K, 0.0%.
386	For 100% KNO3, the departures from the recommended data set are: 630 K, -14%, 740 K, -4.9%.
387	For 100% LiClO $_4$, the departures from the recommended data set are: 520 K, -1.4%, 690 K, -2.5%.
888	For 100% KNO3, the departures from the recommended data set are: 630 K, +4.5%, 700 K, +4.7%.
389	For 100% LiNO3, the results have been advanced as the recommended data set.
3 9 0	For 100% KNO3, the departures from the recommended data set are: 630 K, +1.7%, 700 K, +2.9%.
391	For 100% KNO ₃ , the departures from the recommended data set are: 630 K, +4.5%, 700 K, +4.7%.
392	
	For 100% NaNO ₂ , the departures from the recommended data set are: 630 K, -35%, 680 K, -31%.
393	For 100% KNO3, the departures from the recommended data set are: 620 K, +3.5%, 680 K, +0.3%.
394	For 100% NaNO ₃ , the departures from the recommended data set are: 610 K, +2.0%, 720 K, -0.9%.
395	For 100% KNO ₃ , the departures from the recommended data set are: 630 K, +1.7%, 700 K, +2.9%.
396	For 100% $RbN0_3$, the departures from the recommended data set are: 590 K, +1.5%, 700 K, +0.3%.
397	For 100% KNO3, the departures from the recommended data set are: 620 K, +1.0%, 670 K, +3.0%.
398	For 100% KNO3, the departures from the recommended data set are: 630 K, -0.5%, 730 K, +2.0%.
399	For both 100% KNO3 and 100% T1Br at 823 K, the departure from the recommended data set is, respectively, -17% and +0.6%.
400	For 100% KN03 and 100% T1C! at 703 K, the departures from the recommended data sets are, respectively, +0.7% and -2.3%.
401	For 100% T1NO3, the departures from the recommended data set are: 490 K, -0.26%, 620 K, -3.5%.
402	
	For 100% KNO ₃ , the departures from the recommended data set are: 620 K, +0.3%, 670 K, +2.0%.
403	For 100% KOH, the results have been advanced as the recommended data set.
404	For 100% KPO ₃ , the departures from the recommended data set are: 1150 K, -14%, 1220 K, -5.8%.
405	For 100% Li ₂ CO ₃ , the departures from the recommended data set are: 1020 K, +0.3%, 1150 K, +0.2%.
406	For 100% K_2CO_3 , the departures from the recommended data set are: 1190 K, 0.0%, 1280 K, -0.3%.
407	The results for the three carbonates as single salts have been advanced as the recommended data sets.
408	For 100% Na_2CO_3 , the departures from the recommended data set are: 1150 K, -0.1%, 1240 K, 0.0%.
409	For 100% K_2CO_3 , the departures from the recommended data set are: 1190 K, 0.0%, 1280 K, -0.3%.
410	For 100% Li ₂ MoO ₄ , the departures from the recommended data set are: 1050 K, -26%, 1140 K, -38%.
411	For 100% K ₂ Mo0 ₄ , the departures from the recommended data set are: 1210 K, -2.1%, 1280 K, +1.3%.
412	For 100% MoO ₃ , the departures from the recommended data set are: 1110 K, -33%, 1150 K, -29%.
413	
	For 100% K ₂ MoO ₄ , the results have been advanced as the recommended data set.
414	For 100% K ₂ TaF ₇ , the results have been advanced as the recommended data set.
415	For 100% K ₂ TiF ₆ , the departures from the recommended data set are: 1100 K, +98%, 1170 K, +137%.

Number		Reliability estimates
416	For 100% K ₂ TiF ₆ , the results have been	
417	For 100% Li ₂ WO ₄ , the results have been	
4 18	For 100% K_2 W0 ₄ , the departures from the	e recommended data set are: 1250 K, -2.1%, 1300 K, +0.2%.
419	For 100% $K_2 W0_4$, the departures from the	e recommended data set are: 1220 K, -37%, 1290 K, -38%.
420		recommended data set are: 1080 K, -0.8%, 1170 K, -0.6%.
421	For 100% K ₂ ZrF ₆ , the results have been	
422		the recommended data set are: 1280 K, +16%, 1350 K, +26%.
423	For 100% K3A1F6, the departures from th	ne recommended data set are: 1270 K, -17.8%, 1330 K, -5.7%.
424		recommended data set are: 1080 K, -0.09%, 1270 K, -1.9%.
425		e recommended data set are: 1140 K, -2.0%, 1220 K, 0.0%.
426		recommended data set are: 1120 K, -8.3%, 1200 K, -9.4%.
427	•	, the departures from the recommended data sets are, respectively, +3.6% and -2.8%.
428		recommended data set are: 1140 K, +4.2%, 1320 K, +7.8%. recommended data set are: 1310 K, +5.6%, 1350 K, +7.7%.
429 430		recommended data set are: 1090 K, +1.5%, 1220 K, -1.0%.
431		recommended data set are: 1100 K, +1.8%, 1200 K, +2.8%.
432		recommended data set are: 970 K, -0.6%, 1070 K, -0.3%.
433		recommended data set are: 980 K, -2.1%, 1070 K, -3.5%.
434	For 100% LiF, the departures from the	recommended data set are: 1140 K, -3.6%, 1260 K, +1.2%.
435	For 100% LiBr, the departures from the	recommended data set are: 880 K, 0.0%, 1280 K, -6.0%.
436	For 100% LiI, the departures from the	recommended data set are: 770 K, +1.2%, 1100 K, -1.3%.
437		recommended data set are: 880 K, 0.0%, 1070 K, -3.5%.
438 439		recommended data set are: 1080 K, -2.7%, 1220 K, -7.2%.
	<u>-</u>	e recommended data set are: 660 K, -7.2%, 770 K, +3.4%.
440 441		recommended data set are: 960 K, +0.2%, 1140 K, -3.8%. recommended data set are: 1140 K, -3.6%, 1260 K, +1.2%.
442		recommended data set are: 940 K, -0.6%, 1260 K, +0.1%.
443		recommended data set are: 760 K, +1.2%, 1100 K, -1.3%.
444	For 100% LiCl, the departures from the	recommended data set are: 900 K, -0.8%, 1110 K, -0.2%.
445	For 100% MnCl $_2$, the departures from th	e recommended data set are: 931 K -0.8%, 1106 K 0.8%.
446	For 100% LiC1, the departures from the	recommended data set are: 929 K 1.0%, 1056 K -2.5%.
447	For 100% NaC1, the departures from the	recommended data set are: 1090 K, 0.0%, 1170 K, -0.5%.
448		recommended data set are: 1020 K, -0.13%, 1170 K, -4.2%.
449 450		e recommended data set are: 940 K, +2.2%, 1200 K, -2.7%.
451	-	e recommended data set are: 1148 K -3.2%, 1173 K -3.4%. : recommended data set are: 917 K 2.3%, 1056 K 0.6%.
452	For 100% UCl ₄ , the results have been a	
453	7	e recommended data set are: 890 K, -1.0%, 920 K, -0.9%.
454	For 100% LiClO ₃ , the results have been	
455	· ·	the recommended data set are: 410 K, 0.0%, 440 K, 0.0%.
456		ne recommended data set are: 550 K, +2.7%, 650 K, +2.5%.
457	•	the recommended data set are: 550 K, -1.2%, 630 K, -2.2%.
458	₹'	the recommended data set are: 550 K, 0.0%, 630 K, -0.16%.
459		ne recommended data set are: 610 K, -0.1%, 680 K, -0.9%.
460	•	the recommended data set are: 540 K, -1.4%, 680 K, -2.5%.
461		recommended data set are: 770 K, +1.2%, 1260 K, -1.3%.
462		recommended data set are: 1140 K, -3.6%, 1260 K, +1.2%.
463		recommended data set are: 1310 K, +5.6%, 1350 K, +7.7%.
464		recommended data set are: 1150 K, +4.2%, 1320 K, +7.8%.
465	For 100% Na ₃ A1F ₆ , the departures from	the recommended data set are: 1270 K, $\pm 0.3\%$, 1350 K, $\pm 0.4\%$.
466	For 100% LiF, the departures from the	recommended data set are: 1140.K, -2.3%, 1320 K, -5.8%.
467	For 100% LiF, the departures from the	recommended data set are: 1150 K, +4.2%, 1320 K, +7.8%.
468	For 100% LiF, the departures from the	recommended data set are: 1160 K, +4.5%, 1280 K, +6.9%.

Table 2.3.b Electrical Conductance data reliability statements (continued)

Number	Reliability estimates
469	For 100% LiF, the departures from the recommended data set are: 1160 K, +4.6%, 1280 K, +6.9%.
470	For 100% LiF, the departures from the recommended data set are: 1150 K, +4.2%, 1320 K, +7.8%.
471	For 100% NaI, the departures from the recommended data set are: 950 K, $\pm 4.7\%$, 1120 K, $\pm 2.4\%$.
472	For 100% LiI, the departures from the recommended data set are: 770 K, -0.25%, 910 K, -0.31%.
473	For 100% RbI, the departures from the recommended data set are: 950 K, +0.3%, 1050 K, -1.5%.
474 475	For 100% LiI, the departures from the recommended data set are: 770 K, -0.25% , 910 K, -0.31% . For 100% NaNO ₂ at 573 K, the departure from the recommended data set is $+2.3\%$.
476	For 100% LiNO ₂ , the departures from the recommended data set are: 510 K, -9.1%, 550 K, -16.5%.
477	For 100% NaNO ₃ , the departures from the recommended data set are: 590 K, +3.0%, 630 K, +2.3%.
478	For 100% LiND3, the departures from the recommended data set are: 550 K, +2.7%, 670 K, +2.5%.
479	For 100% NaNO ₂ , the departures from the recommended data set are: 580 K, +2.8%, 610 K, +3.7%.
480	For 100% LiNO3, the departures from the recommended data set are: 550 K, ~12.6%, 590 K, ~9.2%.
481	For 100% NaNO3, the departures from the recommended data set are: 610 K, +2.0%, 720 K, -0.9%.
482	For 100% LiN03, the results have been advanced as the recommended data set.
483	For 100% RbN03, the departures from the recommended data set are: 590 K, 0.0%, 700 K, -1.8%.
484	For 100% LiNO ₃ , the departures from the recommended data set are: 590 K, +0.2%, 670 K, -2.4%.
485	For 100% TINO3, the departures from the recommended data set are: 490 K, -0.26%, 620 K, -3.5%.
486	For 100% LiNO3, the departures from the recommended data set are: 550 K, -1.1%, 670 K, -0.68%.
487	For 100% Na ₂ CO ₃ , the departures from the recommended data set are: 1150 K, -0.1%, 1240 K, 0.0%.
488	For 100% Li_2CO_3 , the departures from the recommended data set are: 1020 K, +0.3%, 1150 K, +0.2%.
489	For 100% MoD_3 , the departures from the recommended data set are: 1110 K, -33%, 1150 K, -29%.
490	For 100% Li_2MoO_4 , the departures from the recommended data set are: 1050 K, +73%, 1140 K, +103%.
491	For 100% Na_2Mo0_4 , the departures from the recommended data set are: 1020 K, +3.2%, 1130 K, +3.0%.
492	For 100% $\rm Li_2Mo0_4$, the departures from the recommended data set are: 1050 K, -26%, 1140 K, -38%.
493	For 100% Na ₂ SO ₄ , the results have been advanced as the recommended data set.
494	For 100% $\mathrm{Li}_2\mathrm{SO}_4$, the results have been advanced as the recommended data set.
495	For 100% Li_2SO_4 , the results have been advanced as the recommended data set.
496	For 100% Na_2 $W0_4$, the departures from the recommended data set are: 980 K, -3.7%, 1140 K, +6.0%.
497	For 100% Li ₂ WO ₄ , the results have been advanced as the recommended data set.
498	For 100% Li_2 W04, the departures from the recommended data set are: 1050 K, -12%, 1150 K, -10%.
499	For 100% LigAlF6, the results have been advanced as the recommended data set.
5 0 0	For 100% NaC1, the departures from the recommended data set are: 1100 K, +0.8%, 1130 K, +0.5%.
501	For 100% MgCl ₂ , the departures from the recommended data set are: 1000 K, -1.1%, 1080 K, +1.4%. For 100% Na ₃ AlF ₆ , the departures from the recommended data set are: 1280 K, -10%, 1400 K, -12%.
502 503	For 100% NaC1, the departures from the recommended data set are: 1099 K +287%, 1174 K 274%.
504	For 100% MnCl ₂ , the departures from the recommended data set are: 931 K -0.8%, 1106 K 0.8%.
505	For 100% RbC1, the departures from the recommended data set are: 1003 K -0.6%, 1107 K -2.5%.
506	For 100% $MnC1_2$, the departures from the recommended data set are: 931 K -0.8%, 1106 K 0.8%.
507	For 100% Na ₂ Mo0 ₄ , the results have been advanced as the recommended data set.
508	For 100% Mo03, the results have been advanced as the recommended data set.
509	For 100% NaCl, the departures from the recommended data set are: 1090 K, 0.0%, 1200 K, -0.5%.
510	For 100% NaBr, the departures from the recommended data set are: 1080 K, -2.7%, 1220 K, -7.2%.
511 512	For 100% NaI, the departures from the recommended data set are: 950 K, +6.6%, 1150 K, -1.0%. For 100% NaBr, the departures from the recommended data set are: 1080 K, -2.7%, 1220 K, -7.2%.
512	For 100% Na ₂ CrO ₄ , the results have been advanced as the recommended data set.
514	For 100% NaBr, the departures from the recommended data set are: 1030 K, +4.6%, 1140 K, +1.6%.
5 15	For 100% PbBr ₂ , the departures from the recommended data set are: 660 K, -3.8%, 920 K, +3.1%.
516	For 100% RbBr, the departures from the recommended data set are: 960 K, +0.2%, 1140 K, -3.8%.
517	For 100% NaBr, the departures from the recommended data set are: 1080 K, -2.7%, 1220 K, -7.2%.
518	For 100% NaBr, the departures from the recommended data set are: 1030 K, +2.1%, 1220 K, -0.7%.
519 520	For 100% NaI, the departures from the recommended data set are: 950 K, +6.6%, 1150 K, -1.1%.
520	For 100% NaCl, the departures from the recommended data set are: 1080 K, +0.2%, 1220 K, -0.2%.

Table 2.3.b Electrical Conductance data reliability statements (continued)

lumber	Reliability estimates	
521	For 100% NaNO ₃ , the departures from the recommended data set are: 610 K, +2.0%, 720 K, -1.0%.	
22	For 100% NaPO ₃ and 100% NaCl at 1123 K, the departures from the recommended data sets are respectively, +35% and +2.5%.	
523	For 100% Na ₂ B ₄ 0 ₇ , the departures from the recommended data set are: 1030 K, 0.0%, 1120 K, +22%.	
24	For 100% Na ₂ CO ₃ , the departures from the recommended data set are: 1150 K, -23%, 1240 K, -18%.	
25	For 100% Na ₂ TiF ₆ , the results have been advanced as the recommended data set.	
26	For 100% Na ₃ A1F ₆ , the departures from the recommended data set are: 1280 K, +0.17%, 1350 K, +0.27%.	
27	For 100% NaCl, the departures from the recommended data set are: 1200 K, +4.1%, 1320 K, +4.2%.	
28	For 100% $Na_4P_20_7$, the results have been advanced as the recommended data set.	
29	For 100% NaCl, the departures from the recommended data set are: 1080 K, -0.4%, 1320 K, -2.5%.	
30	For 100% NaCl, the departures from the recommended data set are: 1080 K, -6.1%, 1120 K, -3.5%.	
31	For 100% NaCl at 1073 K, the departure from the recommended data set is +0.3%. For 100% NdCl3 at 1073 K, the departure from trecommended data set is not available.	ne
32	For 100% PbCl ₂ , the departures from the recommended data set are: 830 K, +1.2%, 1070 K, -4.2%.	
33	For 100% PrCl ₃ , the results have been advanced as the recommended data set	
34	For 100% NaCl the departures from the recommended data set are: 1120 K 0.24%, 1250 K -0.15%	
35	For 100% NaCl at 1073 K, the departure from the recommended data set is -1.1% . For 100% PrCl ₃ at 1073 K, the departure from recommended data set is not available.	he
36	For 100% RbC1, the departures from the recommended data set are: 1020 K, -0.13%, 1170 K, -4.2%.	
37	For 100% NaCl, the departures from the recommended data set are: 1090 K, 0.0%, 1170 K, -0.5%.	
38	For 100% NaCl, the departures from the recommended data set are: 1073 K, -1.1%, 1233 K, -1.5%.	
39	For 100% NaCl at 1073 K, the departure from the recommended data set is +1.8%. For 100% SmCl ₃ at 1073 K, the departure from recommended data set is not available.	ne
40	For 100% $SrCl_2$, the departures from the recommend data set are: 1148 K -3.1%, 1273 K -4.4%.	
41	For 100% NaC1, the departures from the recommended data set are: 1123 K 0.03%, 1273 K 1.8%.	
42	For 100% NaCl at 1073 K, the departure from the recommended data set is +0.6%.	
43	For 100% NaC1 at 1073 K, the departure from the recommended data set is -2.5%.	
44	For 100% UCl ₄ , the results have been advanced as the recommended data set.	
45	For 100% ZnCl ₂ , the results have been advanced as the recommended data set.	
546 547	For 100% NaC1, the departures from the recommended data set are: 1073 K, -7%, 1123 K, -3%.	
48	For 100% NaCl03, the results have been advanced as the recommended data set.	
49	For 100% RbC ₂ H ₃ O ₂ , the results have been advanced as the recommended data set.	
	For 100% NaC2H302, the results have been advanced as the recommended data set.	
50	For 100% Na ₂ B ₄ O ₇ , the departures from the recommended data set are: 1030 K, 0.0%, 1120 K, +22%.	
i51	For 100% Na ₃ A1F ₆ , the results have been advanced as the recommended data set.	
552 553	For 100% NaF, the departures from the recommended data set are: 1280 K, +12%, 1350 K, +15%.	
554	For 100% NaF, the departures from the recommended data set are: 1310 K, +5.6%, 1340 K, +7.7%. For 100% NaF, the departures from the recommended data set are: 1320 K, +5.6%, 1350 K, +7.7%.	
555	For 100% NaF, the departures from the recommended data set are: 1320 K, +5.6%, 1350 K, +7.7%.	
556	For 100% NaF, the departures from the recommended data set are: 1310 K, +5.6%, 1350 K, +7.7%.	
557	For 100% NdI_3 , the departures from the recommended data set are: 1090 K, +0.72%, 1190 K, +4.0%.	
558	For 100% NaI, the departures from the recommended data set are: 1090 K, +4.3%, 1190 K, +1.7%.	
559	For 100% RbI, the departures from the recommended data set are: 950 K, +1.4%, 1100 K, -1.6%.	
560	For 100% NaI, the departures from the recommended data set are: 950 K, +4.7%, 1120 K, -2.4%.	
561	For 100% NaNO ₃ , the departures from the recommended data set are: 610 K, -7.3%, 720 K, -4.7%.	
562	For 100% NaNO ₂ , the results have been advanced as the recommended data set.	
563	For 100% Na ₂ Mo0 ₄ , the departures from the recommended data set are: 1020 K, +0.5%, 1170 K, +1.7%.	
564	For 100% NaNO $_2$, the departures from the recommended data set are: 630 K, +3.7%, 750 K, +0.41%.	
565	For 100% Na_2W0_4 , the departures from the recommended data set are: 980 K, -3.9%, 1060 K, 0.0%.	
566	For 100% $NaNO_2$, the departures from the recommended data set are: 630 K, +3.7%, 750 K, +0.41%.	
567	For 100% $TINO_2$, the results have been advanced as the recommended data set.	
568	For 100% T1ND3, the departures from the recommended data set are: 510 K, +2.0%, 570 K, +1.1%.	
569	For 100% $NaNO_2$ at 573 K, the departure from the recommended data set is +9%.	
570	For 100% Na ₂ MoO ₄ , the departures from the recommended data set are: 1020 K, +0.5%, 1170 K, +1.7%.	

Table 2.3.b Electrical Conductance data reliability statements (continued)

Number			Reliability estimates
571	For	100%	NaNO ₃ , the departures from the recommended data set are: 610 K, +3.2%, 820 K, -5.4%.
572	For	100%	Na ₂ WO ₄ , the departures from the recommended data set are: 980 K, -3.9%, 1140 K, +3.4%.
573	For	100%	NaNO3, the departures from the recommended data set are: 610 K, +3.2%, 820 K, -5.4%.
574			RbNO ₃ , the departures from the recommended data set are: 590 K, 0.0%, 700 K, -1.8%.
575			NaNO ₃ , the departures from the recommended data set are: 610 K, +0.73%, 690 K, +0.38%.
576			100% NaNO3 and 100% TIC1 at 703 K, the departure from the recommended data set is, respectively, -3.5% and -2.3%.
577			TINO2, the results have been advanced as the recommended data set.
578			TINO3, the departures from the recommended data set are: 490 K, -0.26%, 620 K, -3.5%.
579			NaNO ₃ , the departures from the recommended data set are: 590 K, -0.34%, 670 K, +0.52%.
580			NaDH, the results have been advanced as the recommended data set.
581			NaPO ₃ , the departures from the recommended data set are: 980 K, -13%, 1210 K, +27%.
582			V_20_5 , the results have been advanced as the recommended data set.
583			
584			V_2O_5 , the departures from the recommended data set are: 1140 K, +19%, 1230 K, -22%.
			NaVO3, the departures from the recommended data set are: 940 K, +3.7%, 1170 K, -0.6%.
585			Na ₂ B ₄ 0 ₇ , the results have been advanced as the recommended data set.
586	atmo:	conau	uctance of Sb ₂ S ₃ (air atmosphere) is approx. 20 to 30 times larger than that of the recommended study (under argon to 1240 K, the values are 6.49 and 0.281 respectively.
587			Na ₂ S, the results have been advanced as the recommended data set.
588	For	100%	T1 ₂ S, the departures from the recommended data set are: 770 K, +74%, 910 K, +4.8%.
589			Na ₂ WO ₄ , the departures from the recommended data set are: 980 K, -7%, 1140 K, +7%.
590			Na ₃ A1F ₆ at 1273 K, the departure from the recommended data set is +0.2%.
591			PbCl ₂ , the departures from the recommended data set are: 780 K, -1.8%, 830 K, +0.6%.
92			PbBr ₂ , the departures from the recommended data set are: 700 K, -0.7%, 820 K, +4.4%.
593			TiBr, the departures from the recommended data set are: 730 K, +6.5%, 770 K, +9.0%.
594			PbBr ₂ , the departures from the recommended data set are: 660 K, -2.1%, 770 K, +9.2%.
595			PbCl ₂ , the departures from the recommended data set are: 780 K, +3.8%, 950 K, -3.1%.
596			PbCl ₂ , the departures from the recommended data set are: 830 K, +1.2%, 1070 K, -4.2%.
597			T1C1, the departures from the recommended data set are: 730 K, -2.3%, 970 K, -1.7%.
598			PbCl ₂ , the departures from the recommended data set are: 780 K, +0.4%, 920 K, -0.2%.
599			ZnCl ₂ , the departures from the recommended data set are: 593 K 244%, 851 K -3.8%.
3 0 0			PbCl ₂ , the departures from the recommended data set are: 783 K 0.5%, 923 K 0.1%.
801			Pb0, the results have been advanced as the recommended data set.
502			PbMo04, the departures from the recommended data set are: 1400 K, -1.2%, 1460 K, +1.8%.
603			RbC1, the departures from the recommended data set are: 1020 K, -0.13%, 1170 K, -4.2%.
504			RbBr, the departures from the recommended data set are: 960 K, +0.2%, 1140 K, -3.8%.
605			RbI, the departures from the recommended data set are: 950 K, +1.4%, 1100 K, -1.6%.
606			RbBr, the departures from the recommended data set are: 960 K, +0.2%, 1140 K, -3.8%.
507	For	100%	RbI, the departures from the recommended data set are: 950 K, +1.4%, 1100 K, −1.6%.
808			RbCl, the departures from the recommended data set are: 1020 K, -0.13%, 1170 K, -4.2%.
109			RbC1, the departures from the recommended data set are: 1020 K, -9.2%, 1300 K, -18.4%.
510			SrCl ₂ , the departures from the recommended data set are: 1148 K -3.1%, 1273 K -4.3%.
511			RDC1, the departures from the recommend data set are: 1023 K 2.0%, 1197 K -4.7%.
512 513			RbC1 at 1073 K, the departure from the recommended data set is -2.2%.
514			UC14, the results have been advanced as the recommended data set.
5 1 4 5 1 5			RBC1, the departures from the recommended data set are: 1020 K, -1.2%, 1080 K, -2.3%.
16			TINO3, the departures from the recommended data set are: 490 K, -0.26%, 620 K, -3.5%.
			RbN03, the results have been advanced as the recommended data set.
517			SbI ₃ , the results have been advanced as the recommended data set.
618			SbBr3, the results have been advanced as the recommended data set.
519			SbCl ₃ , the results have been advanced as the recommended data set.
320	For	100%	TINO3, the departures from the recommended data set are: 510 K, +15%, 550 K, +9%.
21	For	100%	TINO ₂ , the results have been advanced as the recommended data set.

Table 2.3.c Electrical Conductance data comments

Flag Comment The previous evaluation is correct and still holds as the recommended data base. Accuracy limits have been upgraded in light of the Molten Salts Standards Program.

- The equation in the previous evaluation is incorrect.
- There are new data but they do not change the recommended equation or uncertainty.
- There are new data and together with the results of the Molten Salts Standards Program, a shift from the previous evaluation is recommended. The new correlation equation is listed herewith.
- The previously recommended data have been refitted to an exponential correlation function.
- The previously reported results were graphical, these correlations were digitized and refitted to the equations herewith.
- The previously reported results have been upgraded.
- Systems not included in the previous work.
- Some of the numerical property values in the previous recommended data tables have been found to be incorrect. The correlation equations are correct.
- m The previously recommended correlation has been replaced by the polynomial herewith.
- n The previously recommended data base has been refitted to a polynomial correlation equation.
- These compositions are: equivalent percent.
- For compositions above this limit, the results in the previous evaluation were in error, since these were in the area of heterogeneity at the temperatures of concern.
- The conductance here is: Equivalent Conductance (ohm-1 cm² equiv-1). Density measurements are required to reduce these to specific
- The conductance here is: Molar Conductance (ohm-1 cm2 mol-1). Density data are required to reduce these to specific conductivities.
- v3 The conductance correlation is for measurements with the melt under an argon atmosphere (i.e.: inert atmosphere). The negative temperature coefficient is associated with electronic processes contributing to the conductivity of this molten sulfide.
- v4 For these k measurements the ratio of BaCl2 to BaF2 was held fixed at 30-70 mol% in all the compositions.
- This conductance correlation is for measurements with the melt in an air atmosphere. The negative temperature coefficient indicates electronic processes contributing to the conductance (possibly due to thermal dissociation and, concomitantly, oxidation of sulfur leading to the formation of metal-rich non-stoichiometric sulfides in these melts).
- The conductance correlation is for measurements with the system under argon gas. The conductivity is considerably higher than for melts from typical ionic salts. It is suggested that the conductivity is of the semi-conductor type. ٧6
- The electrical conductivity in the solid state is appreciably higher than in the molten state. A minimum in k is observed at about 80 C (m. 77.75 C). The conductance correlation herewith starts at this minimum.
- v8 For these k measurements the ratio of Na2S04 to K2S04 was held fixed at 30-70 mol% in all the compositions.
- The two conductance correlations are for measurements under argon gas and in air atmospheres, respectively. In air the conductance is about three-fold greater than for measurements under argon gas. It is proposed that this increase is due to the formation of metal-rich non-stoichiometric sulfides formed as loss of sulfur occurs (through oxidation) with thermal decomposition of the melt.
- v10 The two conductance correlations are for measurements with the melts under argon gas and air atmosphere, respectively. The conductance increases only modestly for work in air (i.e. approximately 10%). This is attributed to the formation of Sb204, a very volatile oxide, s that loss of both Sb and sulfur occurs with thermal decomposition processes in the air atmospheres. Only a small enrichment of the melt with metal-rich non-stoichiometric sulfides thus occurs.
- v11 The two conductance correlations are for the melt under the argon gas and air atmospheres, respectively. The conductance is almost three-fold higher for measurements in air. It is suggested that this is due to presence of metal-rich non-stoichiometric sulfides formed from the thermal dissociation of the SnS with loss of sulfur (through oxidation) from the melt. The conductivities are higher than for melts of typical ionic salts. It is suggested that the conductivity of molten SnS is of the semiconductor type.
- In this series of measurements the ratio of NaCl to KCl was held fixed at 74.8-25.2 mol%, respectively
- In this series of measurements the ratio of NaCl to KCl was held constant at 58-42 mol%, respectively.
- In this series of measurements the ratio of NaC1 to KC1 was held fixed at 35.3-64.7 mol%, respectively.

Table 2.3.d Electrical Conductance data references

Number Reference

- G.J. Janz, F.W. Dampier, G.R. Lakshminarayan, P.K. Lorenz, and R.P.T. Tomkins, Natl. Stand. Ref. Data Ser., NBS, Washington, D.C. 15, 1 (1968).
- G.J. Janz, R.P.T. Tomkins, and C.B. Allen, J. Phys. Chem. Ref. Data 8, 125 (1979).
- G.J. Janz, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data <u>12</u>, 591 (1983).
- G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Jr. Downey, and S.K. Singer, J. Phys. Chem. Ref. Data <u>6</u>, 409 (1977).
- G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Jr. Downey, G.L. Gardner, U. Krebs, and S.K. Singer, J. Phys. Chem. Ref. Data 4, 871 (1975).
- 6 G.J. Janz, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 9, 831 (1980).
- G.J. Janz, U. Krebs, H.F. Siegenthaler, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 1, 581 (1972).
- G. Mamantov, and C. Petrovic, (Univ. Tenn.) Tech. Rept. AFWAL-TR-81-2003, Mar.(1981), USAF Wright-Patterson AF, Ohio 45433 (1981).
- H.A. Hjuler, R.W. Berg, K. Zachariassen, and N.J. Bjerrum, J. Chem. Eng. Data 30, 203 (1985).
- 10 R. Carpio, L. King, F. Kibler, and A. Fannin, J. Electrochem. Soc. <u>126</u>, 1650 (1978).
- 11 R.A. Carpio, F.C. Kibler, J.L.A. King, W. Brockner, K. Torklep, and H.A. Oye, Ber. Bunsenges. Phys. Chem. <u>85</u>, 31 (1981).
- 12 G. Mamantov,, et al. (Univ. Tenn.) Tech. Rept. AFAPL-TR-79-2124, Nov.(1979), USAF Wright-Patterson AF, Ohio 45433 (1979).
- 13 T. Kanai, M. Nanjo, Y. Ito, and K. Taniuchi, Bull. Research Inst. Mineral Dressing and Met., Tohoku Univ. 37, 67 (1981).
- 14 G.J. Janz, G.L. Gardner, U. Krebs, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 3, 1 (1974).
- 15 A.E. Mordovin, I.F. Nichkov, and V.A. Tomashov, Russ. J. Phys. Chem. 48, 860 (1974).
- ¹⁶ H. Vogt, G. Braeutigam, and H.H. Emons, Z. Anorg. Allg. Chem. <u>394</u>, 263 (1972).
- 17 Y. Iwadate, K. Igarashi, J. Mochinaga, and T. Adachi, J. Electrochem. Soc. 1162 (1986).
- 18 A.S. Kucharski, and S.N. Flengas, J. Electrochem. Soc. 121, 1298 (1974).
- ¹⁹ H. Vogt, G. Braeutigam, and H.H. Emons, Z. Anorg. Allg. Chem. <u>397</u>, 131 (1973).
- 20 M. Uramoto, T. Kanai, M. Nanjo, Y. Ito, and K. Taniuchi, Bull. Research Inst. Mineral Dressing and Met., Tohoku Univ. 37, 73 (1981).
- ²¹ N.N. Greenwood, and I.J. Worrall, J. Chem. Soc. 1680 (1958).
- ²² N.N. Greenwood, and I.J. Worrall, J. Inorg. Nucl. Chem. <u>3</u>, 357 (1957).
- 23 H. A. Hjuler, S. von Winbush, R. W. Berg, and N. J. Bjerrum, Proc. Electrochem. Soc. 1, 657 (1987).
- ²⁴ S. Yoshida, T. Ayano, and T. Kuroda, Denki Kagaku <u>41</u>, 427 (1973).
- ²⁵ I.F. Nichkov, V.A. Tomashov, and A.E. Mordovin, Zh. Neorg. Khim. <u>19</u>, 823 (1974).
- ²⁶ K Cho, and T Kuroda, Denki Kagaku <u>40</u>, 45 (1926).
- 27 G.J. Janz, M. Hansen, and T. Yamamura, Pre-publication data submitted to MSDC-RPI (1984).
- 28 E.J. Cairns, C.E. Crouthamel, A.K. Fischer, M.S. Foster, J.C. Hesson, C.E. Johnson, H. Shimotake, and A.D. Tevebaugh, Prog. Rep. USAEC ANL-731661 (1967).
- 29 S.M. Upton, PhD. Thesis, University of Southhampton (1980).
- 30 D.A. Pantony, and K.I. Vasu, J. Inorg. Nucl. Chem. 30, 432 (1968).
- 31 Y.K. Delimarskii, and A.A. Velikanov, Akad. Nauk SSSR, Zhur. Neorg. Khim. 111, 1075 (1958).
- 32 Y Umetsu, Y Ishii, T Swada, and T Ejima, Nippon Kinzoku Gakkaishi <u>37</u>, 997 (1973).
- 33 A.J. Easteal, and P.H. Khoo, Z. Naturforsch. A 35, 1415 (1980).

Table 2.4.a Viscosity data

	Viscosity (mN s m ⁻²)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
	AgBr				
00	v = 0.3806 exp(12920.40816/RT)	713-873	±1.5%	1	a,c,
	AgBr-AgC1				
. 0-100. 0	v = 0.31776 exp(12027.10922/RT)	730-970	(1)	2	a,f
6.8-73.2	v = 0.30267 exp(12742.16678/RT)	720-870		2	a,f
10-60	v = 0.22062 exp(15031.68988/RT)	720-870		2	a,f
30-40	v = 0.31178 exp(13358.06188/RT)	720-870		2	a,f
30-20	v = 0.34041 exp(13109.52812/RT)	720-870		2	a,f
100-0	v = 0.39199 exp(12737.14589/RT)	720-870	(2)	2	a,f
	AgBr-HgBr ₂				
0-100	v = 0.01801 exp(21087.7128/RT)	528-548	(3)	3	a,f
0.14-99.86	v = 0.1264 exp(12409.11481/RT)	528-548		3	a,f
1.03-98.97	v = 0.1421 exp(11354.31076/RT)	528-548		3	a,f
2.32-97.68	v = 0.01167 exp(23057.15455/RT)	528-548		3	a,f
7.04-92.96	v = 0.02728 exp(19561.36406/RT)			3	a,f
	AgBr-KBr			•	-1.
45.7-54.3	v = 0.1208 exp(19324.5457/RT)	830-870		3	a,f
55.2-44.8	v = 0.1498 exp(17719.11804/RT)	730-870		3	a,f
69.2-30.8	v = 0.1681 exp(17098.20206/RT)	630-870		3	a,f
79.7-20.3	v = 0.2102 exp(15811.60053/RT)	630-870		3	a,f
100.0-0.0	v = 0.3806 exp(12920.40816/RT)	713-873	(4)	3	a,f
100.0-0.0	AgC1		(4)	3	a, 1
100			±1.5%	1	
100	v = 0.3098 exp(12196.56406/RT)		II.5%	,	a,c
38.1-61.9	v = 0.1377 exp(18002.79799/RT)	990 070			
44.9-55.1				4	a,f
	v = 0.1327 exp(18111.58381/RT)			4	a,f
67.9-32.1	v = 0.1556 exp(16748.83221/RT)	680-970		4	a - •
80.6-19.4	v = 0.1907 exp(15490.26395/RT)	730-970		4	a,f
100-0	v = 0.3098 exp(12196.56405/RT)		(5)	4	a,f
	AgC1-PbC1 ₂				
0-100	v = 0.05619 exp(28292.68134/RT)		(6)	4	a,f
17.4-82.6	v = 0.09628 exp(24015.30658/RT)			4	a,f
38.0-62.0	v = 0.1271 exp(21228.71596/RT)			4	a, f
60.8-39.2	v = 0.1625 exp(18775.59572/RT)	640-960		4	a,f
80.2-19.8	v = 0.2411 exp(14976.46016/RT)	680-960		4	a,f
100-0	v = 0.3098 exp(12196.56405/RT)		(7)	4	a,f
For addition	nal AgCl systems, see : AgBr-				
	AgI				
100	v = 0.1481 exp(22004.02413/RT)		±3%	1	a,f
	AgI-AgN03				
0-100	(T=498 K, v=4.56)	,	(8)	5	a,f
7.4-92.6	v = 0.600033 exp(8848.05283/RT)			5	a,f
15.3-84.7	v = 0.295083 exp(12130.03734/RT)	420-500		5	a,f
19.4-80.6	v = 0.172414 exp(14626.2535/RT)	420-500		5	a,f
20.7-79.3	v = 0.139233 exp(15530.84943/RT)	, 410-500		5	a,f
23.7-76.3	v = 0.080893 exp(17558.86816/RT)	400-500		5	a,f
25.8-74.2	v = 0.105335 exp(16709.08355/RT)	400-500		5	a, f
28.0-72.0	v = 0.167855 exp(15068.09129/RT)	400-500		5	a,f
32.5-67.5	v = 0.126516 exp(16590.25596/RT)	400-500		5	a, f
37.2-62.8	v = 0.157457 exp(16184.40117/RT)			5	a,f
40.0-60.0	v = 0.115231 exp(17386.06607/RT)			5	a, f
40.0 00.0				5	a,f
	v = 0.100842 exp(17895.25/39/R1)				
42.0-58.0	v = 0.100842 exp(17895.26739/RT)			=	
42.0-58.0 43.9-56.1 46.9-53.1	v = 0.100842 exp(17895.26/39/R1) v = 689.65 - 2.84283 T + 0.00296673 T ²	400-500		5 5	a, . a a, f

Table 2.4.a Viscosity data (continued)

	Viscosity (mN s m ⁻²)				
(mol %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
	AgI-HgI ₂			_	
- 100	v = 0.311216 exp(9393.23715/RT)	540-750	(9)	3	a,f
.5 -9 9.5	v = 0.168166 exp(12409.11481/RT)	560-680		3	a,f
. 8-98 . 2	v = 0.166318 exp(13001.57912/RT)	540-700		3	a,f
.5-96.5	v = 0.173107 exp(13234.63182/RT)	550-730		3	a,f
.9-94.1	v = 0.117241 exp(16004.48616/RT)	540-730		3	a,f
	Agn0 ₃				
00	v = 0.1159 exp(15146.3334/RT)	530-593	±1%	1	a,c,
100	AgN03-CSN03				
	v = 0.05236 exp(22020.76041/RT)	550-670	(10)	6	а
5-75	v = 0.08238 exp(18351.33102/RT)	550-670		6	а
0-50	v = 0.09479 exp(16744.64814/RT)	550-670		6	а
5-25	v = 0.11851 exp(15263.48736/RT)	550-670		6	а
00-0	v = 0.14124 exp(14301.15126/RT)	550-670	(11)	6	а
19-99.81	v = 0.133357 exp(12380.66313/RT)	530-550		5	a,f
.01-98.99	v = 0.3663 exp(7850.15213/RT)	530-550		5	a.f
. 38-95, 62	v = 0.120107 exp(13311.61871/RT)	530-550		5	a,f
5.75-93.25	v = 0.0119272 exp(23995.22304/RT)	530-550		5	a,f
	AgN03-HgI2	300-330		J	۰,۱
0-70	v = 6.094 x 10 ⁻⁵ exp(41252.83817/RT)	430-470		5	а
2.5-67.5	v = 7.362 x 10 ⁻⁵ exp(40552.84325/RT)	380-470		5	а
5-45	v = 6.06 x 10 ⁻⁵ exp(41056.18688/RT)	400-470		5	а
0-40	v = 7.443 x 10 ⁻⁵ exp(39634.8583/RT)	380-470		5	a,d
5-35	v = 1.6009 x 10 ⁻⁴ exp(37654.95637/RT)	390-470		5	а
	Agno ₃ -Kno ₃				
)-100	v = 0.07531 exp(18527.06196/RT)	610-670	(12)	6	а
25-75	v = 0.10056 exp(16430.84289/RT)	550-670		6	а
50-50	v = 0.11504 exp(15372.27318/RT)	550-670		6	а
75-25	v = 0.11192 exp(15426.66609/RT)	550-670		6	а
100-0	v = 0.14124 exp(14301.15126/RT)	550-670	(13)	6	а
	Agn0 ₃ -Lin0 ₃				
) - 100	v = 0.08363 exp(18690.24069/RT)	550-670	(14)	6	a,f
25-75	v = 0.11289 exp(16481.05173/RT)	550-670		6	а
50-50	v = 0.10481 exp(16012.43589/RT)	550-670		6	а
75-25	v = 0.13815 exp(14660.98128/RT)	550-670		6	а
100-0	v = 0.14124 exp(14301.15126/RT)	550-670	(15)	6	а
	Agno ₃ -Nano ₃				
D-100	v = 0.10392 exp(16234.1916/RT)	550-670	(16)	6	а
25-75	v = 0.11369 exp(15493.61121/RT)	550-670		6	а
50-50	v = 0.12345 exp(15296.95992/RT)	550-670		6	a
75-25	v = 0.12903 exp(14824.16001/RT)	550-670		6	a
100-0	v = 0.14124 exp(14301.15126/RT)	550-670	(17)	6	a
	AgN03-RbN03				
0-100	v = 0.14711 exp(15865.99344/RT)	550-670	(18)	6	a
25-75	v = 0.14693 exp(15008.25909/RT)	550-670		6	а
50-50	v = 0.14094 exp(14648.42907/RT)	550-670		6	а
75-25	v = 0.14207 exp(14271.86277/RT)	550-670		6	a
100-0	v = 0.14124 exp(14301.15126/RT)	550-670	(19)	6	а
	AgN03-T1N03				
0-100	(T=498.2 K, v=3.67)		(20)	6	а
14.6-85.4	v = 1.467 exp(3774.03114/RT)	473-498		6	a,f
33.8-66.2	v = 1.704 exp(3241.81744/RT)	448-498		6	a,f
45.2-54.8	v = 1.592 exp(3568.1749/RT)	448-498		6	a,f
51.1-48.9	v = 0.307 exp(10153.48267/RT)	398-498		6	a,f

Table 2.4.a Viscosity data (continued)

	-	(mN s m ⁻²)			
(mo1 %)	Equation (R = 8.31441 J	K ⁻¹ mol ⁻¹) T range(K)	Accur.	Ref.	Comment
6.2-43.8	v = 0.302 exp(10317.91662/RT)			6	a,f
9.1-40.9	v = 0.319 exp(10284.44406/RT)			6	a,f
1.1-38.9	v = 0.266 exp(11033.39259/RT)			6	a,f
2.9-37.1	v = 0.31 exp(10401.59802/RT)	398-498		6	a,f
5.8-34.2	v = 0.334 exp(10100.34498/RT)			6	a,f
0.2-29.8	v = 0.357 exp(9857.66892/RT)	398-498		6	a,f
4.0-26.0	v = 1.3 exp(4790.76015/RT)	448-498		6	a,f
12.1-17.9	v = 1.5 exp(4301.22396/RT)	448-498		6	a,f
3.2-6.8	v = 1.74 exp(3834.28175/RT)			6	a,f
100-0	(T=498.2 K, v=4.56)		(21)	6	a
For additiona	AgNO3 systems, see : AgI-	1) 201			
4 05 6	AgSCN-N(C3H			-	- 6
3.4-96.6	v = 2.9202 x 10 ⁻⁵ exp(43767.6316/RT)			7	a,f
15.1-84.9	v = 2.8396 x 10 ⁻⁵ exp(44371.56026/RT)			7	a,f
26.8-73.2	v = 2.3915 x 10 ⁻⁵ exp(45458.37244/RT)			7	a,f
11.6-58.4	v = 9.9695 x 10 ⁻⁶ exp(48825.71198/RT)			7	a,f
100	v = 0.03491 exp(13066.85061/RT)	•	±1.5%	1	a
	A)Bra-He		-1.0%	•	•
66.67-33.33	v = 2.317 x 10 ⁻⁴ exp(36907.26306/RT)	-)	3	a,f
9.51-30.49	$v = 5.658 \times 10^{-4} \exp(33688.87642/RT)$			3	a,f
1.87-28.13	v = 5.78 x 10 ⁻⁴ exp(33201.85067/RT)			3	a,f
3.54-26.46	v = 7.26 x 10 ⁻⁴ exp(32222.35988/RT)			3	a,f
6.94-23.06				3	a,f
30. 15-19.85	v = 4.645 x 10 ⁻⁴ exp(32376.33366/RT)	***		3	a,ı a,b
34.80-15.20	v = 0.002011 exp(26146.25343/RT)			3	a,b a,f
92.66-7.34	v = 0.005633 exp(20695.66544/RT)			3	-
100.0-0.0	v = 0.03632 exp(13004.50797/RT)			3	a,f a,f
	AlBra-	***	(22)	·	۵,۱
66.67-33.33	v = 0.006875 exp(25284.33501/RT)		3	3	a,f
58.77-31.23	v = 0.004546 exp(26562.14999/RT)	383-413	3	3	a,f
71.22-28.78	v = 0.003503 exp(27365.49143/RT)		3	3	a, f
73.66-26.34	v = 0.004652 exp(26257.54969/RT)	383-413	3	3	a,f
75.66-24.34	v = 0.003871 exp(26634.95281/RT)		3	3	a, f
76.59-23.41	v = 0.004033 exp(26349.18083/RT)		3	3	a,f
	AIBr3-	KC1			
86.7-33.3	(T=353.2 K, v=41.603)			2	a
66.7-33.3	v = 0.00768327 exp(24498.98507/RT)		3	2	a,f
100-0	v = 0.0462149 exp(12184.01184/RT)		3 (23)	2	a,f
86.67-33.33	A1Br ₃ - v = 0.004408 exp(26641.64732/RT)				
69.62-30.38				3	a,f
73.7-26.3	v = 0.004167 exp(26713.19492/RT)			3	a,f
	v = 0.01013 exp(23560.91658/RT)			3	a,f
75 . 46-24 . 54	v = 0.007528 exp(24448.35782/RT)		3	3	a, f
66.69-33.31	v = 0.00585 exp(25518.64293/RT)	,	0	3	a,f
70.90-29.10	v = 0.00454 exp(26212.36174/RT)			3	a, ₁ a, f
74.78-25.22		385-42		3	а, т а, f
75 . 63-24 . 37	v = 0.00524 exp(25398.56012/RT)			3	
78.40-21.60	v = 0.0073 exp(23944.17739/RT)				a,f
100.0-0.0	v = 0.0356 exp(13071.45309/RT)			3 3	a, f a, f
	AlBr3-8		(44)	•	ω, 1
0-100	v = 0.01899 exp(16297.37106/RT)	375-41	0 (25)	3	a, f
	y = 0.03572 avp/15000 0050/DT)	373-41	3	3	a, f
10-90	$v = 0.03572 \exp(15009.0959/RT)$		U	•	

Table 2.4.a Viscosity data (continued)

	Viscosity (mN s m ⁻²)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
30-70	v = 0.01787 exp(18743.37838/RT)	373-413		3	a,f
40-60	v = 0.002192 exp(26544.57689/RT)	373-413		3	a,f
50-50	v = 7.344 x 10 ⁻⁴ exp(30747.89362/RT)	373-413		3	a,f
60-40	$v = 6.679 \times 10^{-4} \exp(31080.94559/RT) \dots$	373-413		3	a,f
70-30	v = 4.296 x 10 ⁻⁴ exp(32180.93759/RT)	373-413		3	a,f
10-20	v = 0.00216471 exp(25714.87581/RT)	373-413		3	a,f
30-10	v = 0.014906 exp(17211.17195/RT)	373-413		3	a,f
100-0	v = 0.0466 exp(12147.61043/RT)	413-433	(26)	3	a,f
66.7-33.3	v = 1.4225 x 10 ⁻⁴ exp(43861.60581/RT)	413-453		3	a,f
100-0	v = 0.0466 exp(12147.61043/RT)	415-435	(27)	3	a,f
	A1C13		,=.,		-,-
100	v = 0.00228 exp(19424.96338/RT)	469-559	± 1%	8	d
	AIC13-KC1				
D- 100	v = 0.11402 exp(21390.22106/RT)	973-1173		9	k
5.5-94.5	v = 0.05288 exp(26800.64198/RT)	973-1173		9	k
1.5-88.5	v = 0.04071 exp(27650.4266/RT)	973-1173		9	k
18.35-81.65	v = 0.02845 exp(29800.62017/RT)	973-1173		9	k
25.7-74.3	v = 0.01967 exp(31900.6049/RT)	973-1173		9	k
	A1C13-KC1-NaC1	570 1170		•	•
0-61.5-38.5	v = 0.0391 exp(30180.53372/RT)	973-1173		9	k
-70.6-29.4	v = 0.05141 exp(28030.34015/RT)	973-1173		9	k
-84.6-15.4	v = 0.07806 exp(25240.40228/RT)	973-1173		9	k
. 1-58.4-36.5	v = 0.02665 exp(31610.64885/RT)	973-1173		9	k
. 2-66 . 9-27 . 9	v = 0.0353 exp(29710.66266/RT)	973-1173		9	k
.3-80.1-14.6	v = 0.05335 exp(26990.59876/RT)			9	
0.6-55.0-34.4	v = 0.01942 exp(32820.68189/RT)	973-1173		-	k L
0.9-62.9-26.2	v = 0.02568 exp(31050.40188/RT)	973-1173		9	k
1.2-75.1-13.7	v = 0.03788 exp(28570.50359/RT)	973-1173		9	k
	0 v = 0.01121 exp(36010.61686/RT)	973-1173		9	k
		973-1173		9	k .
7.2-58.4-24.4	v = 0.01713 exp(33250.38588/RT)	973-1173		9	k
7.7-69.6-12.7	v = 0.02466 exp(31070.90382/RT)	973-1173		9	k
4.2-46.6-29.2	v = 0.00859 exp(37430.69022/RT)	973-1173		9	k
4.4-53.4-22.2	v = 0.01108 exp(35910.61759/RT)	973-1173		9	k
5.0-63.5-11.5	v = 0.01531 exp(33770.46578/RT)	973-1173		9	k
	ATC13-L1C1-NaC1				
0-20-30	v = 0.044131 exp(15871.85114/RT)	372-534		10	k
0-10-40	v = 0.053764 exp(14981.06264/RT)	383-556		10	k
0-30-20	v = 0.044825 exp(15997.79165/RT)	384-534		10	k
0-40-10	v = 0.049507 exp(15836.70495/RT)	424-574	(28)	10	k
0-30-10	v = 0.031865 exp(18000.70595/RT)	383-552		10	k
0-20-20	v = 0.03322 exp(17659.70425/RT)	384-532		10	k
0-10-30	v = 0.032341 exp(17488.15738/RT)	387-572		10	k
0-20-10	v = 0.032341 exp(17488.15738/RT)	439-533		10	k
0-10-20	v = 0.036547 exp(17052.59569/RT)	439-553		10	k
0-10-10	v = 0.02838 exp(16209.08718/RT)	475-533		10	k
	A1C13~NaC1				
50.2-49.8	v = 0.08993 exp(13501.99389/RT)	480-570		4	b,f
50.7-49.3	v = 0.06892 exp(14225.41959/RT)	480-540		4	a,f
51.8-48.2	v = 0.05692 exp(14903.23893/RT)	480-540		4	a,f
6.4-43.6	v = 0.05615 exp(15064.32563/RT)	480-540		4	a,f
9.4-40.6	v = 0.08639 exp(13941.32124/RT)	480-570		4	b,f
0.9-39.1	v = 0.11804 exp(12857.64711/RT)	480-570		4	a
5.2-34.8	v = 0.09684 exp(13840.90356/RT)	480-570		4	
5.5-34.5	v = 0.09778 exp(13953.87345/RT)				a
		500-570		4	a,f

Table 2.4.a Viscosity data (continued)

	Viscosity (mN s m ⁻²)			
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K) Accur.	Ref.	Comment
	AlF3-LiF			
. 0-100. 0	v = 0.18549 exp(23472.6327/RT)	1150-1340 (29)	11	а
0.0-90.0	v = 0.10194 exp(30373.00094/RT)	1240-1390	11	a,f
2.5-77.5	v = 0.01192 exp(54072.82865/RT)	1180-1350	11	a,f
5.0-75.0	v = 0.0224 exp(48079.14837/RT)	1180-1340	11	a
0.0-70.0	v = 0.01691 exp(49932.69138/RT)	1240-1380	11	a
5.0-65.0	v = 0.02949 exp(43137.7617/RT)	1210-1330	11	a.f
0.0 00.0	A1F3-NaF	1210 1000		٠,٠
0.00-100.00	•	1000 1470 (20)	••	_
1.54-95.46	v = 0.0397 exp(41133.59217/RT)	1290-1470 (30)	11	a
	v = 0.0737 exp(33773.39463/RT)	1280-1460	11	a,f
0.00-90.00	v = 0.0462 exp(40507.23689/RT)	1240-1460	11	a,b,
6.67-83.33	v = 0.0363 exp(44654.06867/RT)	1260-1410	11	a,f
1.42-78.58	v = 0.0172 exp(53685.38376/RT)	1290-1460	11	a,f
5.00-75.00	v = 0.01736 exp(53945.21451/RT)	1310-1440	11	а
28.96-71.04	v = 0.0284 exp(46785.43393/RT)	1300-1450	11	a,f
7.99-62.01	v = 0.0352 exp(38494.28081/RT)	1170-1370	11	a,f
	A1F3-Na3A1F6			
) 100	v = 0.1856 exp(20769.72348/RT)	1303-1343 (31)	5	a,f
3.3-91.7	v = 0.0833865 exp(29279.28505/RT)	1300-1340	5	a,f
15.7-84.3	v = 0.0785903 exp(29747.06407/RT)	1300-1340	5	a,f
23.5-76.5	v = 0.0714934 exp(30503.54393/RT)	1300-1340	5	a,f
28.2-71.8	v = 0.0842072 exp(28367.57619/RT)	1300-1340	5	a,f
	All3			
100	v = 0.06338 exp(14547.17458/RT)	480-660 ±3%	3	a,f
	A1 ₂ 0 ₃ -CaF ₂			
1.8-92.2	(T=1773 K, v=1)		5	а
16.1-83.9	(T=1773 K, v=1.5)		5	a
18.6-81.4	(T=1673 K, v=1.5)		5	a
24.7-75.3	(T=1673 K, v=2)		5	a
28.3-71.7	(T=1873 K, v=0.3)		5	a
29.2-70.8	(T=1773 K, v≈3)		5	a
33.8-66.2	$v = 7.402 \times 10^{-19} \exp(6.3585646516 \times 10^{5}/RT) \dots$	1773~1873	5	
38.5-61.5	(T=1873 K, v=0.6)	1770 1070	5	a,f
40.4-59.6	(T=1873 K, v=0.8)			a
43.4-56.6	(T=1873 K, v=1)		5	a
			5	а
10-10 11-0-	A1 ₂ 0 ₃ -NaF			
40-10 A1 ₂ 0 ₃	v = - 89.9 + 14.27 C - 0.038 C ²	1673	5	а
	A1203-Na3A1F6			
7.9-92.1	v = 0.0225944 exp(49593.78171/RT)	1280-1380 (32)	5	a,f
15.2-84.8	v = 0.0217493 exp(51100.04691/RT)	1250-1360	5	a,f
21.9-78.1	v = 0.0254018 exp(51459.87693/RT)	1240-1360	5	a,f
24.0-76.0	v = 0.0389771 exp(48623.07747/RT)	1280-1460 (33)	5	a,f
30.0-70.0	v = 0.0416906 exp(51493.34949/RT)	1300-1480	5	a,f
	As ₂ 0 ₃			-,.
100	v = 0.01679 exp(92932.37877/RT)	601- 70 3 n.a.		- +
	BaCl ₂	601-703 n.a.	1	a,f
100	W = 0.07000 cm/(20004 F0000/07)			
	v = 0.07993 exp(39521.55368/RT)	1210-1320 ±1%	12	d
	BaC1 ₂ -CsC1			
0-100	v = 0.03448 exp(28342.89018/RT)	930-1030 (34)	4	а
11.42-88.58	v = 0.13769 exp(19196.51316/RT)	1070-1250	4	a
24.32-75.68	v = 0.10483 exp(24368.02368/RT)	1000-1240	4	а
	v = 0.06616 exp(30539.52693/RT)	1000-1190	4	а
		1000 1100	-	
33.02-66.98	v = 0.05559 exp(33849.1263/RT)	1030-1200	4	a
33.02-66.98 43.75-56.25 53.37-46.63			•	

Table 2.4.a Viscosity data (continued)

		Viscosity (mN s m ⁻²)	٠			
(mol %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
5.28-24.72	v = 0.02928 exp(44723.52423/R	т)	1130-1290)	4	а
. 78-15 . 22	$v = 0.02799 \exp(47623.08474/R)$	т)	1180-1290	ŀ	4	a
00-0	v = 0.0357 exp(48146.09349/RT)	1240-1290	(35)	4	a
		BaCl ₂ -LiCl				
0.2-89.8	v = 0.18963 exp(16355.52963/R	T)	1010-1160)	4	a
5.0-75:0	v = 0.23561 exp(15941.3067/RT)	1020-1170)	4	a
9.4-60.6	v = 0.2765 exp(17066.82153/RT)	1010-1170)	4	b,f
3.3-46.7	v = 0.18155 exp(24355.47147/R	T)	1070-1220)	4	а
8.0-32.0	v = 0.20147 exp(25778.05527/R	T)	1130-1250)	4	а
5.0-15.0	v = 0.13508 exp(32221.52307/R	T)	1160-1230)	4	a
00.0-0.0	v = 0.0357 exp(48146.09349/RT	·)	1240-1290	(36)	4	a
		BaCl2-MgCl2				
-100	v = 0.1317 exp(23460.08049/RT)	1010-1130	(37)	4	a, f
- 100	$v = 0.2192 \exp(18929.9879/RT)$		1023-1073	3	4	a,f
0-90	v = 0.1013 exp(25641.65459/RT	·)	973-1073		4	a, f
0-80	v = 0.1156 exp(25083.49965/RT	·)	973-1073		4	a,f
0-70	v = 0.1005 exp(27239.96933/RT	·)	973-1073		4	a, f
0-60	v = 0.091698 exp(29317.77849/	RT)	973-1073		4	a, f
0-50	v = 0.030581 exp(40446.98628/	RT)	973-1073		4	a, f
0-40	$v = 0.02574 \exp(43978.34136/R)$	IT)	1023-1073	3	4	a, f
00-0	v = 0.0934 exp(38730.26236/RT	· · · · · · · · · · · · · · · · · · ·	1250-1350	(38)	4	a, f
		BaCl ₂ -NaCl				,
- 100	$v = 0.01134 \exp(44154.49071/R)$	T)	1100-1140	(39)	4	а
9-81		······································	1030-1140	,	4	a, f
6-74	v = 0.07615 exp(30870.48687/R		1000-1140		4	a, f
3-67	v = 0.1682 exp(24745.00839/RT		1000-1140		4	a, i
0-60	v = 0.1025 exp(30223.62965/RT		1000-1140		4	a, i
6-54	v = 0.06797 exp(34609.79023/F		1000-1140		4	a, i
3-47		· · · · · · · · · · · · · · · · · · ·	1030-1140		4	a, 1
60-40	v = 0.2475 exp(23744.17884/RT		1050-1140		4	a, f
		BaC12-Na3A1F6			·	-,
60-40	v = 0.0136 exp(50146.07895/RT	- • •	1050-1130	1	5	a
		Ba(N0 ₂) ₂	1030 1100	•	,	α
100	v = 0.0012906 exp(47347.35453		EE2_E03	+ E%		
	7 - 0.0012300 exp(47047.0045)	Ba(NO ₂) ₂ -KNO ₂	553-593	±5%	6	a, f
8-82	v = 0 0308093 exn(24950 44622	2/RT)	613-623		6	2.0
6-74		//RT)	583-623		6	a, (
30-70		6/RT)	583-623		6	a,(
10-60		38/RT)	583-623		6	a,(
50-50		34/RT)	583-623		6	a,(
50-40	• •	17/RT)	593-623		6	a,(
70-30	• •	3/RT)				a,(
30-20			593-623		6	a,
30-20 33-17		O/RT)	593-623		6	а,
		3/RT)	583-623		6	a,
90-10 100-0				,	6	а,
100-0	v + 0.0012906 exp(47347.3545)	Br/ND-\	553-593	(40)	6	a,(
1 2-42 4-25 4	V = 0 05950 aum/94500 40040	Ba(NO ₂) ₂ -KNO ₂ -NaNO ₂			_	
11.2-42.4-36.4 66.3-6.2-37.5		RT)	453-621		13	k
6.3-6.2-37.5		2273/RT)	473-518		13	k
U.L-U/.U	. 0.01000 EXP(02499.04002/F	R7)	518-598		13	k
0-80	v = 0.050610 a.m/00040 c.m.o	Ba(N0 ₂) ₂ -NaN0 ₂			_	
		/RT)	513-613		6	a,
0-70		3/RT)	513-613		6	а,
0-60		3/RT)	513-613		6	a,
13-57		4/RT)	513-593		6	
50-50	$v = 0.0325 \exp(27116.95767/R^2)$	n	513-593		6	a,

Table 2.4.a Viscosity data (continued)

	Viscosity (mN s m ⁻²)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref .	Comment
60-40	v = 0.01975 exp(30380.53227/RT)	513-593		6	a,g
6-34	(T=513 K, v=33)			6	a,g
6-34	v = 0.0323339 exp(28707.74108/RT)	533-593		6	a,g
0-30	v = 0.02152 exp(30902.70421/RT)	533-593		6	a,g
31-19	v = 0.00614624 exp(37916.87915/RT)	533-593		6	a,g
100-0	$v = 0.0012906 \exp(47347.35453/RT) \dots$ $Ba(NO3)2-KNO3$	553-593	(41)	6	a,g
)- 100	v = 0.1 exp(17047.1564/RT)	613-693	(42)	14	k
5-95	v = 0.09085 exp(18078.52966/RT)	593-693	(42)	14	k
11-89	v = 0.08982 exp(18670.99397/RT)	573-693		14	k
18-82	v = 0.102 exp(18609.48814/RT)	613-693		14	k
23-77	v = 0.1104 exp(18868.48207/RT)			14	k k
23-77	Ba(N0 ₃) ₂ -KN0 ₃ -NaN0 ₃	633-693		14	ĸ
2.8-50.0-47.2	v = 0.05284 exp(20393.15718/RT)	503-727		13	k
100	-	048 4050	1.09/		- 1- 1
100	$v = 7.603 \times 10^{-7} \exp((2.200402413 \times 10^{5}/RT) + (1.471000 \times 10^{6}/T^{2}))$	847-1252	±10%	1	a,b,f
100	v = 3.0184 x 10 ⁻⁷ exp(2.3925767481 x 10 ⁵ /RT)	1024-1130	-	1	a,b,f
100	v = 2.2647 x 10 ⁻⁷ exp(2.4226602114 x 10 ^e /RT)	1130-1252	2 ±10%	1	a,b,f
50-50	v = 0.00515 exp(58040.16382/RT)	873-1073	(43)	11	a,f
79-21	(T=1073.2 K, v=2.2)			11	a
	BeF ₂ -LiF				
36.00-64.00	v = 0.0594 exp(38284.2405/RT)	740-860	(44)	11	а
15.00-55.00	v = 0.0207 exp(49581.2295/RT)	700-820		11	a
50.00-50.00	v = 0.00845 exp(58702.5021/RT)	660-840		11	a
55.01-44.99	v = 0.00627 exp(64685.7222/RT)	680-840		11	а
60.00-40.00	v = 0.00421 exp(72468.0924/RT)	720-840		11	а
65 . 00-35 . 00	v = 0.00311 exp(80375.9847/RT)	740-980		11	а
70.00-30.00	v = 0.00202 exp(89873.8236/RT)	760-940		11	a
75 . 00-25 . 00	$v = 9.2 \times 10^{-4} \exp(1.026352371 \times 10^{5}/RT) \dots$	780-960		11	а
79.99-20.01	$v = 5.98 \times 10^{-4} \exp(1.145598366 \times 10^{5}/RT) \dots$	840-980		11	a
85.00-15.00	$v = 4.57 \times 10^{-4} \exp(1.254384186 \times 10^{5}/RT) \dots$	820-1000		11	а
90.02-9.98	$v = 1.71 \times 10^{-4} \exp(1.441412115 \times 10^{5}/RT) \dots$	880-1120		11	a
91.02-8.98	$v = 1.99 \times 10^{-4} \exp(1.462750872 \times 10^{5}/RT) \dots \dots \dots \dots \dots \dots$	820-1100		11	а
93.01-6.99	$v = 1.05 \times 10^{-4} \exp(1.569444657 \times 10^{5}/RT) \dots$	860-1100		11	а
94 . 91-5 . 09	$v = 7.69 \times 10^{-5} \exp(1.647268359 \times 10^{5}/RT) \dots \dots \dots \dots \dots$	840-1100		11	а
96.01-3.99	$v = 6.05 \times 10^{-5} \exp(1.709192595 \times 10^{5}/RT) \dots \dots \dots \dots \dots$	880-1080		11	а
97.00-3.00	$v = 2.31 \times 10^{-5} \exp(1.835551509 \times 10^{5}/RT) \dots \dots \dots \dots \dots$	880~1180		11	а
98.01-1.99	$v = 6.62 \times 10^{-6} \exp(1.98324918 \times 10^{5}/RT) \dots$	900-1240	•	11	а
99.01-0.99	$v = 1.53 \times 10^{-6} \exp(2.174461179 \times 10^{5}/RT) \dots$	980-1240)	11	а
100-0	$v = 7.603 \times 10^{-7} \exp((2.200402413 \times 10^{5}/RT) + (1.471000 \times 10^{5}/T^{2})) BeF_2-LiF-ThF_4$	847-1252	±10%,(45	5) 11	a,b,
15.7-72.7-11.6	v = 0.1091 exp(33995.56875/RT)	840-940		5	a
23.9-70.1-6.0	v = 0.06625 exp(36388.85679/RT)	800-900		5	a
	BeF ₂ -NaF				
26.04-72.96	v = 0.1057 exp(29519.86907/RT)	973-1073		11	
30-70	v = 0.247243 exp(22125.36216/RT)	873-1073		11	a,f
30.17-69.83	v = 0.2212 exp(22682.26188/RT)	873-1073		11	a,f
33.33-66.67	v = 0.1441 exp(30049.57233/RT)	873-1073		11	a,f
40-60	v = 0.06582 exp(36166.68267/RT)	873-1073	3	11	a,f
43-57	v = 0.0346 exp(42941.52882/RT)	873-1073	3	11	a,f
44.41-55.59	v = 0.04312 exp(39485.9054/RT)	873-1073	3	11	a,f
50-50	v = 0.02919 exp(45111.38752/RT)	873-1073	3	11	a,f
52.2-47.8	v = 0.02341 exp(47929.77707/RT)	873-1073	3	11	a,f
57.3-42.7	v = 0.001276 exp(74659.28986/RT)	973-1073	3	11	a,f
64.11-35.89	y = 0.002746 exp(74051.7629/RT)	973-1023	3	11	a,f

Table 2.4.a Viscosity data (continued)

(mal %)	Viscosity (mN s m ⁻²)				_
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Commen
	BeF ₂ -RbF				
0-50	v = 0.005309 exp(55752.73275/RT)	873-1073	(47)	11	a,f
	BiCI3				
00	v = 0.3787 exp(19635.84051/RT)	533-613	±1.5%	1	a,
	B ₂ 0 ₃				
00	v = 0.661 exp(92635.3098/RT)	873-1023	±10%	5	k
00	v = 6.738 exp(78221.18865/RT)	1410-1893	±8%	1	a
	B ₂ 0 ₃ -Cs ₂ Co ₃				
7.0-3.0	v = 0.078623 exp(1.0156411518 x 10 ⁵ /RT)	873-1023		5	а,
9.0-1.0	v = 0.17189 exp(98547.40071/RT)	873-1023		5	а,
00-0	v = 0.661 exp(92635.3098/RT)	. 873-1023	(48)	5	a, 1
	B ₂ 0 ₃ -K ₂ B ₄ 0 ₇				
4.8-5.2	v = 53.8846 exp(50455.70013/RT)	1080-1320)	5	a,
6.8-3.2	v = 44.9903 exp(55786.20531/RT)	1080-1220)	5	а,
00-0	v = 52.1 exp(57949.3695/RT)	1030-1370	(49)	5	а,
	B ₂ 0 ₃ -K ₂ C0 ₃				
4.0-6.0	(T=873 K, v=160000)		(50)	5	а
7.0-3.0	(T=873 K, v=100000)			5	a
9.0-1.0	v = 0.1359 exp(99754.0865/RT)	873-1023	(51)	5	а,
	B ₂ 0 ₃ -Li ₂ C0 ₃				
4.0-6.0	v = 2.4653 x 10 ⁻⁴ exp(1.4664328536 x 10 ⁵ /RT)	. 873-1023		5	а,
7.0-3.0	v = 0.01661 exp(1.1474435409 x 10 ⁵ /RT)	. 973-1023		5	a,
9.0-1.0	v = 0.01789 exp(1.1652425747 x 10 ⁵ /RT)	. 873-1023		5	a,
00-0	v = 0.661 exp(92635.3098/RT)	. 873-1023	(52)	5	a,
	B ₂ 0 ₃ -NaC1				
-98	v = 0.08572 exp(1.0619588067 x 10 ⁵ /RT)	. 870-1020		5	а
9 1	v = 0.32406 exp(96777.5391/RT)	. 870-1020	(53)	5	а
	B ₂ 0 ₃ -NaF				
1.1-19.9	$v = 2.0269 \times 10^{-5} \exp(1.7043390738 \times 10^{5}/RT) \dots$. 870-1010		5	а
7.9-12.1	$v = 2.2615 \times 10^{-5} \exp(1.6777283886 \times 10^{5}/RT) \dots$. 870-1010		5	а
3.6-6.4	v = 0.003038 exp(1.2786936327 x 10 ⁵ /RT)	870-1010		5	а
7.3-2.7	v = 0.012175 exp(1.1968113828 x 10 ⁵ /RT)	870-1010		5	а
	B ₂ 0 ₃ -NaP0 ₃				
.0-100.0	v = 0.02412 exp(83258.80893/RT)	916-1029	(54)	5	a,
9.4-40.6	v = 2.06673 x 10 ⁵ - 345.57 T + 0.14464 T ²	1070-122	0	5	a,
6.5-3.5	v = 2.08791 exp(75484.80687/RT)	1070-122	0	5	a,
00-0	v = 5.17 exp(76263.04389/RT)	. 970-1170	(55)	5	a,
	B ₂ D ₃ -Na ₂ B ₄ O ₇				
-100	$v = 4.531 \times 10^{-11} \exp(2.745586734 \times 10^{5}/RT) \dots$	948-1023	(56)	5	a,
3.9-76.1	$v = 1.0914 \times 10^{-11} \exp(2.9371752993 \times 10^5/RT) \dots$	948-1023		5	а,
1.4-49.6	$v = 8.811 \times 10^{-12} \exp(3.025919424 \times 10^{5}/RT) \dots$	948-1023		5	a,
4.8-45.2	$v = 2.8109 \times 10^{-11} \exp(2.9333677956 \times 10^5/RT) \dots$	948-1023		5	а,
9.9-40.1	$v = 3.8504 \times 10^{-11} \exp(2.8828660707 \times 10^{5}/RT) \dots$	948-1023		5	a,
4.9-35.1	$v = 1.4285 \times 10^{-10} \exp(2.7760467636 \times 10^{5}/RT) \dots$	948-1023		5	a,
6.3-33.7	v = 7.4 x 10 ⁻¹¹ exp(2.8534102179 x 10 ⁵ /RT)	. 948-1023		5	a,
7.2-32.8	$v = 3.0739 \times 10^{-10} \exp(2.7075535377 \times 10^5/RT) \dots$	948-1023		5	a,
7.6-22.4	v = 2.0482 x 10 ⁻⁸ exp(2.3515310214 x 10 ⁵ /RT)	. 948-1023		5	a,
2.1-7.9	$v = 7.485 \times 10^{-4} \exp(1.4160315464 \times 10^{5}/RT) \dots$	923-1023		5	a,
00.00-0.00	v = 4.303 exp(80250.4626/RT)	. 923-1023	(57)	5	a,
	B ₂ 0 ₃ -Na ₂ C0 ₃				
4.0-6.0	v = 0.024434 exp(1.1404519599 x 10 ⁵ /RT)	873-1023		5	a,
7.0-3.0	v = 0.01091 exp(1.1987025824 x 10 ⁵ /RT)	. 873-1023		5	a,
9.0-1.0	v = 0.0203 exp(1.1558911782 x 10 ⁵ /RT)	873-1023		5	a,
100-0	v = 0.661 exp(92635.3098/RT)	. 873-1023	(58)	5	a,

Table 2.4.a Viscosity data (continued)

/ > P/>	Viscosity (mN s m ⁻²)			
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K) Acci	ur. Ref.	Commer
	B ₂ 0 ₃ -Na ₃ A1F ₆			
6.8-3.2	v = 0.072912 exp(96915.61341/RT)	873-1023 (59) 5	a, f
8.4-1.6	v = 0.08357 exp(1.0204235438 x 10 ⁵ /RT)	873-1023	5	a,f
	B ₂ 0 ₃ -Rb ₂ C0 ₃			
97.0-3.0	v = 0.006918 exp(1.1820457998 x 10 ⁵ /RT)	873-1023	5	a, f
99.0-1.0	v = 0.4838 exp(88069.23421/RT)	873-1023 (60) 5	a,f
	CaC1 ₂			
100	v = 0.10215 exp(30350.99274/RT)	980-1240 ±	1% 12	d
	CaC1 ₂ -NaC1			
) - 100	v = 0.01395 exp(42290.06912/RT)	1100-1140 (61) 4	a, f
10-90	v = 0.005655 exp(52052.34124/RT)	1050-1140	4	a, f
20-80	v = 0.01433 exp(44631.47469/RT)	1000-1140	4	a,1
30-70	v = 0.03606 exp(37282.99255/RT)	980-1140	4	a,1
10-60	v = 0.15 exp(25498.9778/RT)	930-1140	4	a, i
50-50	v = 0.2175 exp(23409.45324/RT)	930-1140	4	a,1
50-40	v = 0.3268 exp(20722.8619/RT)	930-1140	4	a,
30-20	v = 0.3321 exp(22546.2796/RT)	980-1140	4	a,
90-10	v = 0.3743 exp(22346.69946/RT)	1030-1140	4	a,
100-0	v = 0.1715 exp(28610.25225/RT)		(62) 4	a,
	CaC2-CaO	(, 7	u,
75-25	v = 29111.2 - 12.8903 T - 0.0041496 T ² + 1.88 x 10 ⁻⁶ T ³	2190-2490	5	a
	CaF ₂ -Ca0	2	•	-
51.9-48.1	(T=1873 K, v=1.5)		5	a
55.0-45.0	(T=1873 K, v=1)		5	a
56.1-43.9	(T=1873 K, v=0.8)		5	a
56.6-43.4	(T=1873 K, v=0.6)		5	a
57.2-42.8	(T=1873 K, v=0.4)		5	a
58.2-41.8	(T=1873 K, v=0.3)		5	a
62.2-37.8	(T=1873 K, v=0.2)		5	a
J-12 01.10	CaF ₂ -Mg0		J	a
67.38-32.62	v = 0.020597 exp(99367.47843/RT)	1475-1621	5	a,
	CaF ₂ -Na ₃ A1F ₆	1470 1021	v	α,
0-100	v = 0.1856 exp(20769.72348/RT)	1303-1343 ((63) 5	a,
6.4-93.6	v = 0.0759572 exp(30804.79697/RT)	1300-1340	5	α,
12.4-87.6	v = 0.0479496 exp(35979.23634/RT)	1300-1340	5	_
23.0-77.0	v = 0.039205 exp(38316.45784/RT)	1300-1340	-	а,
20.0 17.0	CaF ₂ -Ti0 ₂	1300-1340	5	a,
95-5	(T=1570 K, v=2.75)		5	а
	CaF ₂ -Y ₂ 0 ₅		5	a
97.79-2.21	v = 3.047 x 10 ⁻⁴ exp(1.633042521 x 10 ⁵ /RT)	1562-1773	5	a
		1002 1110	· ·	•
For additiona	al CaF ₂ systems, see : Al ₂ O ₃ - Ca(NO ₃) ₂ -KNO ₃			
0-100	v = 0.064641 exp(19388.98038/RT)	626-667	(64) 6	a
20-80	v = 0.04063 exp(23632.46417/RT)	500-670	6	a,
26-74	v = 0.00111287 exp(40204.31022/RT)	450-525	6	a, a
26-74	v = 0.044748 exp(23840.83086/RT)	526-667	6	a a,
33-67	v = 55791.1 - 334.8012 T + 0.670742 T ² - 4.4842 x 10 ⁻⁴ T ³	440-525	6	
33-67	v = 0.037111 exp(25426.59339/RT)		_	а,
36-64		526-667	6	a
	v = 1.451 x 10 ⁻⁴ exp(50447.33199/RT)	460-525	6	а,
36-64	v = 0.023373 exp(28296.86541/RT)	526-667	6	а
40-60	v = 39145.8 - 220.977 T + 0.41596 T ² - 2.6094 x 10 ⁻⁴ T ³	450-525	6	a,
		526-667	6	a
		480-525	6	a,
40~60 45~55 45~55	v = 0.019033 exp(30250.8261/RT)			

Table 2.4.a Viscosity data (continued)

	Viscosity (mN s m ⁻²)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
	Ca(N0 ₃) ₂ -KN0 ₃ -NaN0 ₃				
. - 19-69	v = 0.07943 exp(19043.79461/RT)	573-673		15	k
2-40-48	v = 0.06975 exp(19687.72298/RT)	573-673		15	k
3 - 62-25	v = 0.06404 exp(20443.36602/RT)	573-673		15	k
2-36-42	v = 0.03436 exp(24739.5691/RT)	573-673		15	k
5-25-50	v = 0.03109 exp(25709.01812/RT)	573-673		15	k
5-50-25	v = 0.03746 exp(24545.42825/RT)	573-673		15	k
2.3-52.1-15.6	v = 1.207 x 10 ⁻⁴ exp(50851.09475/RT)	423-501		13	k
2.3-52.1-15.6		501-610		13	k
	Ca(N0 ₃) ₂ -LiN0 ₃				
- 100	v = 0.06263 exp(19784.375/RT)	530-680	(65)	16	k
-95	v = 0.02804 exp(24674.71601/RT)	520-700		16	k
1-89	v = 0.02504 exp(26468.84523/RT)	520-700		16	k
6-84	v = 0.01516 exp(30093.92348/RT)	520-680		16	k
1-79	v = 0.02033 exp(29493.92784/RT)	550-690		16	k
7-73	v = 0.01826 exp(30821.95166/RT)	580-680		16	k
33-67	v = 0.01786 exp(31771.73555/RT)	620-690		16	k
88-62	v = 0.01627 exp(33094.32007/RT)	640-690		16	k
3-57	v = 0.01419 exp(35079.24288/RT)	660-690		16	k
8-52	v = 0.00589 exp(40643.21917/RT)	680-710		16	k
54-46	v = 0.001504 exp(49609.26277/RT)	690-710		16	k
	Ca(N0 ₃) ₂ -NaN0 ₃				
100	v = 0.1038 exp(16129.68985/RT)	590-690	(66)	16	k
5-95	v = 0.09491 exp(17464.30818/RT)	570-690		16	, k
11-89	v = 0.08809 exp(18382.71155/RT)	560-700		16	k
18-82	v = 0.0416 exp(23682.25461/RT)	530-680		16	k
25-75	v = 0.02384 exp(27321.14029/RT)	530-680		16	k
30-70	v = 0.02234 exp(28401.04875/RT)	530-680		16	k
38-62	v = 0.02204 exp(29548.32075/RT)	570-690		16	k
43-57	v = 0.02865 exp(28796.86178/RT)	600-700		16	k
48-52	v = 0.01895 exp(32003.53302/RT)	640-690		16	k
54-46	v = 0.005196 exp(40359.53922/RT)	680-710		16	k
60-40	v = 9.305 x 10 ⁻⁵ exp(64433.84119/RT)	680-710		16	k
	CaD-KOH-K ₂ CO ₃				
7.6-2.0-90.4	v = 0.0208415 exp(26320.31074/RT)	680-860		5	а,
55-15 Ca0	Ca0-NaF Y = - 25.2 + 3.38 C - 0.008 C ²	1673		5	a
99-15 Cau		1070		·	•
1 4 07 0 1 6	Ca0-Na0H-Na ₂ C0 ₃	730-820		5	a,
1.4-97.0-1.6	v = 0.0997208 exp(18340.45244/RT)	700 020		·	۵,
For additiona	al CaO systems, see : CaC ₂ - ; CaF ₂ - CaSO ₄ -Na ₂ SO ₄				
0-100	v = 0.148 exp(41798.8593/RT)	1240-1470	(67)	7	a
10-90	v = 0.0479 exp(57405.4404/RT)	1240-1470		7	а
20~80	v = 0.024 exp(65815.4211/RT)	1240-1470)	7	а
30-70	v = 0.0407 exp(63514.1826/RT)	1240-1470)	7	a
40-60	v = 0.2884 exp(45982.9293/RT)	1240-1470)	7	a
55-45	v = 0.4786 exp(39999.7092/RT)	1240-1470		7	а
	CdBr ₂				
100	v = 0.1893 exp(19062.62292/RT)	853-949	±1.5%	1	a,
	CdBr ₂ -CdCl ₂				
0-100	v = 0.2405 exp(16368.08184/RT)	863-963	(68)	2	a
10-90	v = 0.2168 exp(17238.3684/RT)	873-933		2	a
20-80	v = 0.2101 exp(17558.03135/RT)	873-933		2	а,
30-70	v = 0.2037 exp(17871.41819/RT)	873-933		2	a,
				2	a,

Table 2.4.a Viscosity data (continued)

		Viscosity (mN s m ⁻²)				
(mo1 %)	Equation (F	$R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$	T range(K)	Accur.	Ref.	Comment
i0- 5 0	v = 0.2039 exp(18017.02383/RT)		873-933		2	a,f
60-40	v = 0.2101 exp(17858.44757/RT)		873-933		2	a,f
0-30	$v = 0.2041 \exp(18156.35336/RT) \dots$		873-933		2	a,f
30-20	v = 0.1984 exp(18448.40144/RT)		873-933		2	a,f
90-10	v = 0.2044 exp(18291.08041/RT)		873-933		2	a,f
100-0	v = 0.1893 exp(19062.62292/RT)		853-949	(69)	2	a,f
		CdBr ₂ -KC1				
0-50	v = 0.198419 exp(16242.14133/RT)		683-791		2	a,f
50-40	$v = 0.181767 \exp(16635.44391/RT)$		683-791		2	a,f
70-30	v = 0.2096 exp(15754.69718/RT)		733-791		2	a,f
30-20	$v = 0.1959 \exp(16424.98519/RT) \dots$		733-791		2	a,f
		CdBr ₂ -NaCl	•			
0-80 CdBr ₂	v = 2.625 - 0.008152 C + 1.011 x 10-4 C ²		793		2	a,n
		CdBr ₂ -PbCl ₂				
) - 100	(T=793 K, v=3.8)			(70)	2	a
10 -9 0	(T=793 K, v=3.7)				2	а
20-80	(T=793 K, v=3.6)				2	а
30-70	v = 0.08191 exp(24719.06715/RT)		733-793		2	a
10-60	v = 0.08994 exp(23832.04431/RT)		733-793		2	а
50-50	v = 0.09026 exp(23547.10915/RT)		733-793		2	a
60-40	v = 0.1163 exp(21914.90344/RT)		733-793		2	а
70-30	(T=733 K, v=4.27)				2	а
30-20	(T=733 K, v=4.36)				2	a
90-10	(T=733 K, v=4.5)				2	а
		CdC1 ₂				
100	v = 0.2405 exp(16368.08184/RT)		863-963	±1.5%	1	a,f
		CdC12-CdI2				
0-100	$v = 0.03235 \exp(32126.96309/RT) \dots$		683-793	(71)	2	a,f
10-90	$v = 0.06952 \exp(27084.32192/RT)$		683-793		2	a,f
20-80	$v = 0.08508 \exp(25837.46906/RT)$		683-793		2	a,f
30-70	v = 0.0982 exp(24837.89474/RT)		683-793		2	a,f
40-60	v = 0.08688 exp(25659.64609/RT)		683-793		2	a,f
50-50	v = 0.1013 exp(24703.58609/RT)		683-793		2	a,f
		CdC1 ₂ -KBr				
32.7-67.3	v = 0.11685 exp(18265.97599/RT)		683-930		2	a,b
37.9-62.1	v = 0.092337 exp(20585.20599/RT)		644-918		2	a,b
43.9-56.1	v = 0.078273 exp(21440.4299/RT)		697-916		2	a,b
50.8-49.2	v = 0.073125 exp(22530.79854/RT)		704-877		2	a,b
53.5-46.5	v = 0.11295 exp(19741.27907/RT)		667-911		2	a,b
59.9-40.1	v = 0.066934 exp(23154.64338/RT)		650-904		2	a,b
		CdC1 ₂ -KC1				
21.6-78.4	v = 0.05392 exp(25309.43943/RT)		880-970		4	а
26.1-73.9	v = 0.0668 exp(23670.1208/RT)		830-970		4	a,f
37.5-62.5	v = 0.06544 exp(23564.68224/RT)		730-970		4	a
45.6-54.4	v = 0.06313 exp(23803.17423/RT)		730-970		4	a
50.1-49.9	v = 0.06124 exp(24016.5618/RT)		730-970		4	a
51.1-48.9	v = 0.06977 exp(23292.71769/RT)		730-970		4	a
65.6-34.4	v = 0.07274 exp(23815.72644/RT)		730-970		4	a
76.5-23.5	v = 0.10266 exp(22058.41704/RT)		780-970		4	a
100.0-0.0	v = 0.2405 exp(16368.08184/RT)		863-963	(72)	4,	a
		CdC12-NaBr				
60-40	v = 0.3812 exp(12186.52228/RT)		735-793		2	a, 1
70-30	v = 0.2892 exp(14089.01891/RT)		735-793		2	a, i

Table 2.4.a Viscosity data (continued)

	Viscosity (mN s m ⁻²)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Commen
	CdC12-NaC1				
. 2-72.8	v = 0.098 exp(21322.02072/RT)	930-970		4	a
.0-50.0	v = 0.0715 exp(23359.2444/RT)	730-970		4	a,f
.5-45.5	v = 0.0659 exp(23987.27331/RT)	730-970		4	a
0.0-40.0	v = 0.07732 exp(23205.68903/RT)	730-970		4	a, f
4.5-25.5	v = 0.1045 exp(21531.22422/RT)	780-970		4	a
00.0-0.0	v = 0.2405 exp(16368.08184/RT)	863-963	(73)	4	a, f
-100	CdCl ₂ -PbBr ₂ v = 0.05864 exp(27741.22091/RT)	733-793	(74)	2	a, f
0-90	v = 0.04893 exp(28643.72481/RT)	733-793	(,,,	2	a, f
0-80	v = 0.04138 exp(29481.79403/RT)	733-793		2	a, f
0-70	v = 0.03357 exp(30638.68939/RT)	733-793		2	a, f
0-60	v = 0.02856 exp(31551.65346/RT)	733-793		2	-
0-50	(T=793 K, v=3.4)	/33-/93		2	a, f
0-40					a
7-40	(T=793 K, v=3.4)			2	а
0-100.0	v = 0.04915 exp(29284.30593/RT)	800-950	(75)	4	
5.1-74.9	v = 0.07629 exp(25725.33599/RT)	760-950	(70)	4	a a, t
5.8-64.2	v = 0.08377 exp(24578.06399/RT)				-
8.2-51.8		720-950 760-950		4	a,1
4.6-25.4	v = 0.08208 exp(24489.36171/RT)			4	a, 1
00.0-0.0	v = 0.1552 exp(19499.43983/RT)	840-950	(20)	4	a, i
	v = 0.2405 exp(16368.08184/RT)	863-963	(76)	4	а,
ror additional	CdCl ₂ systems, see : CdBr ₂ - CdI ₂				
00	v = 0.082084 exp(29472.58908/RT)	680-920	±4%	3	а,
For additional	${\rm CdI_2}$ systems, see : ${\rm CdC1_2-}$ ${\rm Cd(N0_3)_2-KN0_3-LiN0_3}$				
1.3-61.2-27.5	v = 0.01431 exp(26160.06086/RT)	403-603		13	k
	Cd(N03)2-KN03-NaN03				
2.0-59.1-18.9	v = 0.003138 exp(32981.76859/RT)	412-473		13	k
2.0-59.1-18.9	v = 0.02629 exp(24296.89449/RT)	473-605		13	k
6.0-14.6-39.4	v = 1.019 x 10 ⁻⁴ exp(52066.98549/RT)	404-519		13	k
6.0-14.6-39.4	v = 0.003439 exp(36942.40925/RT)	5 19-603		13	k
	Cd(N03)2-L1N03-NaN03				
8.9-20.1-41.0	v = 2.33 x 10 ⁻⁴ exp(47372.04054/RT)	403-468		13	k
8.9-20.1-41.0	v = 0.002255 exp(38360.80898/RT)	468-603		13	k
	Cd(SCN)2-N(C3H7)4SCN				
.8-98.2	v = 2.9367 x 10 ⁻⁵ exp(43871.35469/RT)	330-370		7	a,
. 7-95.3	v = 1.6999 x 10 ⁻⁵ exp(45921.80004/RT)	330-370		7	a,
5.1-84.9	v = 6.0141 x 10 ⁻⁶ exp(49859.17727/RT)	330-370		7	а,
1.1-78.9	v = 2.8786 x 10 ⁻⁶ exp(52655.72598/RT)	330-370		7	a,
	CeCl ₃ -KCl*NaCl				
9-97.1	v = 0.04532 exp(28058.37342/RT)	973-1123	(77)	17	z,
.3-93.7	v = 0.0262 exp(33850.38152/RT)	973-1123		17	k
1.2-78.8	v = 0.04978 exp(29920.28457/RT)	973-1123		17	k
	Co ₄ S ₃	370 1120	,	.,	•
00	v = 0.3289 exp(23775.55937/RT)	1523-17	73 ±10%	7	а,
	Co ₄ S ₃ -Cu ₂ S				
-100	v = 0.3102 exp(32112.31884/RT)	1473-177	73 (78)	7	a,
. 03-94 . 97	v = 0.4033 exp(27473.02203/RT)	1473-173	73	7	a,
0.66-89.34	v = 0.4039 exp(26272.19394/RT)	1473-17	13	7	a,
6.98-83.02	v = 0.521 exp(21236.66569/RT)	1473-17	73	7	a,
4.30-75.70	v = 0.4435 exp(22570.96562/RT)	1473-17		7	a,
					a,
32.47-67.53	$v = 0.4748 \exp(20826.62683/RT) \dots \dots$	1473-17	73	7	

Table 2.4.a Viscosity data (continued)

	Viscosity (mN s m ⁻²)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
2.75-47.25	v = 0.4209 exp(19686.04935/RT)	1473-1773		7	a,f
. 67-34 . 33	v = 0.375 exp(21389.80265/RT)	1473~1773		7	a,f
. 14-18.86	v = 0.3927 exp(20240.43863/RT)	1473-1773		7	a,f
0-0	v = 0.3949 exp(21254.65719/RT)	1473~1773	(79)	7	a,f
	Co ₄ S ₃ -FeS				,
100	v = 0.3327 exp(29434.09564/RT)	1523-1773	(80)	7	a,f
-97	v = 0.3385 exp(28248.74861/RT)	1523-1773		7	a,f
-94	v = 0.3325 exp(27859.21169/RT)	1523-1773		7	a,f
90	v = 0.3267 exp(27430.34451/RT)	1523-1773		7	a,f
5-85	v = 0.3009 exp(27551.26414/RT)	1523-1773		7	a,f
1-79	v = 0.3341 exp(25231.19732/RT)	1523-1773		7	a,f
3-62	v = 0.328 exp(22894.81263/RT)	1523-1773		7	a,f
1- 56	v = 0.3553 exp(21232.90003/RT)	1523-1773		7	a,f
1-49	v = 0.3553 exp(21232.90003/RT)	1523-1773		7	a,f
0-30	v = 0.3827 exp(20621.189/RT)	1523-1773		7	a,f
00-0	v = 0.3289 exp(23775.55937/RT)	1523-1773	(81)	7	a,f
	Co ₄ S ₃ -Ni ₃ S ₂				
-100	v = 0.3704 exp(28444.14467/RT)	1523-1773	(82)	7	a,f
4-92.6	v = 0.7705 exp(16565.56994/RT)	1523-1773	}	7	a,f
5.3-84.7	v = 1.06 exp(10761.00963/RT)	1523-1773	}	7	a,f
3.6-76.4	v = 1.163 exp(8361.44549/RT)	1523-1773	}	7	a,f
2.6-67.4	v = 1.015 exp(9080.26871/RT)	1523-1773	}	7	a,f
2.1-57.9	v = 1.06 exp(7386.97559/RT)	1523-1773	}	7	a,f
2.2-47.8	v = 0.8648 exp(9069.80854/RT)	1523-1773	}	7	a, f
2.8-37.2	v = 0.752 exp(10179.4239/RT)	1523-1773	3	7	a, f
4.4-25.6	v = 0.8393 exp(8561.02563/RT)	1523-1773	3	7	a,f
6.6-13.4	v = 0.8829 exp(8297.42922/RT)	1523-1773	}	7	a, f
00-0	v = 0.3289 exp(23775.55937/RT)	1523-1773	(83)	7	a,f
00	v = 0.0847 exp(22920.33546/RT)	912-1192	±1.5%	18	d
	CsBr-CsC1				
-100 CsBr	v = 1.033 + 0.001684 C	1070	(84)	2	a,n
400 O-D-	CsBr-CsF				
-100 CsBr	v = 1.304 - 0.00263 C - 4.083 x 10 ⁻⁵ C ² + 5.694 x 10 ⁻⁷ C ³	1070	(85)	2	a,n
~100 Cs I	v = 1.203 - 0.0023 C + 4.253 x 10 ⁻⁶ C ²	1070	(86)	2	
	CsC1				
00	v = 0.07148 exp(23619.40988/RT)	934-1072	±1%	19	d
-100 CsC1	v = 1.304 - 0.01404 C + 3.029 x 10 ⁻⁴ C ² - 2.709 x 10 ⁻⁵ C ³ + 8.148 x 10 ⁻⁹ C ⁴	1070	(87)	2	
	CsC1-CsI	10.0	(67)	2	a,n
-100 CsI	$v = 1.034 + 4.729 \times 10^{-4} \text{ C} - 3.116 \times 10^{-5} \text{ C}^2 + 4.026 \times 10^{-7} \text{ C}^3 - 1.613 \times 10^{-9} \text{ C}^4$	1073	(88)	2	a,n
	CsC1-KC1				
- 100	v = 0.054 exp(26878.46568/RT)	1053-1203	(89)	20	k
5-75	v = 0.055 exp(26192.2782/RT)	983-1083		20	k
0-50	v = 0.058 exp(25560.48363/RT)	898-1103		20	k
5-25	v = 0.064 exp(24853.3758/RT)	913-1083		20	k
00-0	v = 0.084 exp(22552.1373/RT)	963-1083	(90)	20	k
	CsC1-LaC13				
. 0-100.0	v = 0.00984 exp(61851.01478/RT)	1150-124	0 (91)	4	a
0.3-89.7	v = 0.01403 exp(55936.83183/RT)	1140-1210	0	4	a
2.0-78.0	v = 0.02951 exp(46556.14689/RT)	1070-122	0	4	а
5.0-65.0	v = 0.03436 exp(43033.15995/RT)	1060-118	0	4	a
7.7-52.3	v = 0.04018 exp(39547.82964/RT)	1070-118	0	4	а
0.2-39.8	v = 0.05585 exp(34284.26958/RT)	1060-117	0	4	a
3.5-26.5	v = 0.05943 exp(31472.57454/RT)	1070-116		4	a
37.3-12.7	v = 0.02944 exp(23623.25922/RT)				-

Table 2.4.a Viscosity data (continued)

	Viscosity (mN s m ⁻²)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
0-0	v = 0.03448 exp(28342.89018/RT)	930-1030	(92)	4	a
•••	CsC1-LiC1				
100	v = 0.05 exp(25941.234/RT)	893-1083	(93)	20	k
100	v = 0.044257 exp(26694.3666/RT)	930-1 0 60	(94)	4	а
-75	v = 0.088 exp(20439.18195/RT)	903-1083		20	k
-70	v = 0.058263 exp(23388.9513/RT)	840-1050		4	а
-55	$v = 0.042181 \exp(26317.8003/RT) \dots$	840-1060		4	а
-50	v = 0.068 exp(23221.5885/RT)	913-1093		20	k
-40	v = 0.034348 exp(28284.3132/RT)	920-1020		4	а
-30	v = 0.041733 exp(26819.8887/RT)	870-1060		4	a
-25	v = 0.040057 exp(27070.9329/RT)	830-1 0 60		4	а
5-25	v = 0.061 exp(24476.8095/RT)	908-1083		20	k
0-20	v = 0.049971 exp(25439.1456/RT)	890-1060		4	а
) - 10	v = 0.05926 exp(24602.3316/RT)	910-1070		4	а
00-0	v = 0.034478 exp(28242.4725/RT)	930-1030	(95)	4	a
0-0	v = 0.084 exp(22552.1373/RT)	963-1083	(96)	20	k
	CsC1-RbC1				
100	v = 0.072 exp(24602.3316/RT)	1013-1113	(97)	20	k
-50	v = 0.063 exp(25200.65361/RT)	943-1118		20	k
00-0	v = 0.084 exp(22552.1373/RT)	963-1083	(98)	20	k
	CsC1-ZnC1 ₂	333 ,000	,/		٠
6-94.4	v = 3.961 x 10 ⁻⁴ exp(67497.41724/RT)	593-726		21,22	k
2.0-88.0	v = 0.001314 exp(56164.86365/RT)	576-687		21,22	k
9.3-80.7	v = 0.00271 exp(47593.37784/RT)	555-638		21,22	k
5.1-73.9	v = 0.005044 exp(42273.33284/RT)	549-596		21,22	k
3.2-66.8	v = 0.00349 exp(42193.83551/RT)	547-598		21,22	
9.4-50.6	v = 0.05385 exp(26321.56596/RT)	692-879		21,22	
9.5-40.5	v = 0.06688 exp(26125.33308/RT)	834-1016		21,22	
8.3-31.7	v = 0.05935 exp(26978.46495/RT)	883-1065		21,22	
4.1-15.9	v = 0.08111 exp(23799.82697/RT)	835-1013		21,22	
00.0-0.0	v = 0.06791 exp(23342.92653/RT)	944-1115	(99)	21,22	
		344 7713	(33)	21,22	N.
ror additiona	1 CsC1 systems, see : BaC1 ₂ - ; CsBr- CsF				
00	v = 0.101637 exp(22177.03542/RT)	982-1281	±3%	23	d
-100 CsI	$v = 1.302 + 7.338 \times 10^{-4} \text{ C} - 3.595 \times 10^{-4} \text{ C}^2 + 6.08 \times 10^{-6} \text{ C}^3 - 2.846 \times 10^{-8} \text{ C}^4$	1070	(100)	2	a,n
For additiona	1 CsF systems, see : CsC1-				
00	v = 0.0772 exp(22701.2994/RT)	917-1198	±1.5%	18	a,f
For additiona	1 CsI systems, see : CsBr- ; CsCl- ; CsF-				
	CsNO ₂				
00	v = 0.1058 exp(17627.48691/RT)	688-739	±3%	1	a,f
	CsN03				
00		695.740	+1 E%	6	
		685-740	±1.5%	O	a, f
100	CsN03-KN03			_	
-100	v = 0.07375 exp(18665.13627/RT)	630-770	(101)	6	а
5-75	v = 0.06704 exp(19351.32375/RT)	600-770		6	а
0-50	v = 0.07851 exp(18690.24069/RT)	580-770		6	а
5-25	v = 0.0845664 exp(18583.96531/RT)	630-770		6	a,f
00-0	v = 0.05236 exp(22020.76041/RT)	700-770	(102)	6	а
	CsNO3-LiNO3				
-100	v = 0.08363 exp(18690.24069/RT)	550-690	(103)	6	b,1
0-80	v = 0.0905 exp(17485.22853/RT)	530-690	()	6	b, i
0-60	v = 0.1199 exp(15669.34215/RT)				
0-40		530-690		6	b,1
	v = 0.1118 exp(16203.64789/RT)	550-690		6	b,f
0-20	v = 0.09988 exp(17380.62678/RT)	580-690		6	b,

J. Phys. Chem. Ref. Data, Vol. 17, Suppl. 2, 1988

THERMODYNAMIC AND TRANSPORT PROPERTIES FOR MOLTEN SALTS

Table 2.4.a Viscosity data (continued)

		Viscosity (mN s m ⁻²)				
(mo1 %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
100-0	v = 0.05236 exp(22020.76041/R	т)	700-770	(104)	6	a
		CsN03-NaN03				
- 100	v = 0.1027 exp(16313.68893/RT)	600-740	(105)	6	a,f
5-75	$v = 0.066 \exp(18853.41942/RT)$		580-740		8	a,f
0-50	$v = 0.08442 \exp(17786.48157/R)$	Τ)	580-740		6	а
5~25	$v = 0.103 \exp(17146.31886/RT)$		600-740		6	а
00-0	v = 0.05236 exp(22020.76041/R	T)	700-770	(106)	6	а
		CsNG3-RbNG3				
D- 100	v = 0.13076 exp(16594.02162/R	rr)	600-740	(107)	6	a
25-75	v = 0.13671 exp(16175.61462/R	π)	600-770		6	a,f
50-50	v = 0.11333 exp(17217.44805/R	ιτ)	630-770		6	a,f
75-25	v = 0.07781 exp(19499.43983/R	IT)	650-770		6	a,f
100-0	v = 0.05236 exp(22020.76041/R	π)	700-770	(108)	6	a,b
For additions	al CsNO ₃ systems, see : AgNO ₃ -					
101 444 (101)	ar candy systems, see . Agnug-	Cs ₂ Co ₃				
100	v = 0.11478 exp(29468.40501/R	RT)	1072-1211	±3%,(109	24	k
For additiona	al Cs ₂ CO ₃ systems, see : B ₂ O ₃ -					
100	v = 0 1049 avm/91994 4FF0F/PP	CuC1				
100	v = 0.1042 exp(21234.15525/RT		773-973	±3%	1	a,f
0.0-100.0	= 0 40074 40=5	CuSCN-N(C3H7)4SCN				
7.0-93.0		0978/RT)	330-380	(110)	7	a,b
18.1-81.9		0619/RT)	330-380		7	a,b
25.4-74.6	$V = 2.699 \times 10^{-6} \exp(52844.80)$		330-380		7	a,b
30.7-69.3	v = 5.911 x 10 ⁻⁷ exp(58451.45		330-380		7	a,b
37.9-62.1	$v = 1.863 \times 10^{-7} \exp(62677.36)$		330-380		7	a,b
43.9-56.1	v = 7.04 x 10 ⁻⁸ exp(65982.783		330-380		7	a,b
50.0-50.0	V = 3.272 x 10 / exp(61463.98	383/RT)	350-380		7	a,b
30.0 30.0	V - 1.042 X 10 ' EXP(039/4.43	303/RT)	350-380		7	a,b
100	v = 0.3062 exp(32361 27101/8)	Cu ₂ S				
		Cu ₂ S-FeS	1473-1773	3 n.a.	7	a,f
0-100	v = 0.3327 exp(29434.09564/R1	D	1472 477		_	
5.80-94.20			1473-1775		7	a,f
12.16-87.84	v = 0.5514 exp(18994.00417/R)		1473-1773	-	7	a,f
19. 19-80.81		Γ)	1473-1773		7	a,f
26.87-73.13		D	1473-1773		7	a,f
35.56-64.44		D	1473-1773		7	a,f
45.31-54.69		D	1473-1773		7	a,f
55.34-43.66		· · · · · · · · · · · · · · · · · · ·	1473-1773		7	a,f
68.81-31.19		D	1473-1773		7	a,f
83.24-16.77	V = 0.3141 exp(29353 34309/PT	D	1473-1773		7	a,f
100-0	v = 0.3062 exp(32361 27101/p)	D	1473-1773		7	a,f
		Cu ₂ S-Ni ₃ S ₂	1473-1773	3 (112)	7	a,f
0-100	v = 0.3704 exp(28444.14467/R))	4470 477			
14.38-85.62	V = 0.1085 exp(44033.57109/R)	D	1473-1773		7	a,f
27.45-72.55		· · · · · · · · · · · · · · · · · · ·	1473-1773		7	a,f
39.37-60.63)	1473-1773		7	a,f
50.10-49.90		D	1473-1773		7	a,f
60. 15-39.85)	1473-1773		7	a,f
69.43-30.57		D	1473-177		7	a,f
77.88-22.12			1473-177		7	a,f
85.84-14.16		T)	1473-177		7	a,f
93.09-6.91		7)	1473-177		7	a,f
100-0)	1473-177		7	a,f
.00 0	v - 0.3102 exp(32112.31884/R	τ) ,	1473-177	3 (114)	7	a, f

Table 2.4.a Viscosity data (continued)

(mal %)	Faretie	Viscosity (mN s m ⁻²)	-			
(mol %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref .	Comment
0-60	v = 0.078287 exp(21666.78809/	RT)	743-791		2	a,f
For additiona	ıl KBr systems, see : AgBr- ; AlE	rg- ; CdC1 ₂ - ; HgBr ₂ -				
		KC1				
100	$v = 0.06166 \exp(25047.2656/R)$	")	1111-1162	±1%	19	đ
		KC1-KOH-K2C03				
8.9-89.0-2.1	v = 0.00162395 exp(39662.891	\$7 /PT\	500 500		_	
		(MI)	680-860		5	a,f
D-100	(T-1170 #	KC1-KP03				
20-80	(T=1173 K, v=220)			(128)	5	a
10-60	(T=1173 K, v=185) (T=1173 K, v=65)	• • • • • • • • • • • • • • • • • • • •			5	а
60-40	(T=1173 K, v=15)				5	a
	(1-11/0 K, V-19)	•••••••			5	a
		KC1-K ₂ ZrF ₆				
0-100	v = 0.3708 exp(18653.83928/R	")	1073-1253	(129)	5	
10-90	v = 0.160011 exp(26159.22405)	(RT)	1073-1173	,	5	a,f a,f
0-80	v = 0.11719 exp(28617.78358/F	RT)	1073-1173		5	a,⊤ a,f
30-70	v = 0.0890006 exp(30897.26492	2/RT)	1073-1173		5	a, r a, f
10-60	v = 0.0757815 exp(31922.36207		1073-1173		5	a,, a,f
50-50	v = 0.0469728 exp(35798.90292	!/RT)	1073-1173		5	a, i a, f
60-40	v = 0.0442247 exp(35400.99786	i/RT)	1073-1173		5	a,ī a,f
0-30	v = 0.0420941 exp(34723.17852	/RT)	1073-1173		5	•
10-20	v = 0.0550113 exp(31252.49246	/RT)	1073-1173		5	a,f
10-10	v = 0.0179522 exp(39977.95204	/RT)	1073-1173		5	a,b,
00-0	v = 0.026633 exp(34556.23413/	RT)	1073-1173	(130)	5	a,f a,f
				(100)	•	۵,۱
-100	v = 0.06578 exp(23787.69317/R	KC1-LiC1	200 4000			
20-80	v = 0.08893 exp(20836.6686/RT		900-1070	(131)	4	a,f
0-60	v = 0.08703 exp(20852.56807/R		910-1070		4	a
0-50	v = 0.0786 exp(21962.18343/RT		890-1070		4	a,f
0-40	v = 0.07793 exp(22330.38159/R		930-1070		4	а
0-30	v = 0.09019 exp(21326.20479/R		920-1070 920-1080		4	a
0-20	v = 0.07037 exp(23878.48749/R				4	a
00-0	v = 0.05727 exp(26273.44916/R		970-1080 1090-1150	(122)	4	a - •
			1090-1150	(132)	4	a,f
		KC1-MgC1 ₂				
-100		τ)	1010-1140	(133)	4	a
6.0-54.0		τ)	970~1060		4	a
0.1-49.9)	980-1150		4	a,f
6.1-43.9		T)	900-1050		4	a
5.7-34.3)	910-1090		4	a,f
7.6-32.4)	900-1030		4	a,f
4.9-25.1	v = 0.11894 exp(18861.78756/R	т)	900-1080		4	a
3.6-16.4	v = 0.1158 exp(19295.25721/RT)	960-1110		4	a,f
2.0-8.0		RT)	1030-1180		4	a,f
00-0	v = 0.05315 exp(27288.50454/R	τ)	1070-1180	(134)	4	a
		KC1-NaC1				
-100	v = 0.01821 exp(39083.39787/R	T)	1100-1170	(135)	4	a
5.23-84.77		T)	1040-1170	(,	4	_
7.10-72.90		T)	1000-1170		4	a,f a
4 . 85-65 . 15		7)	1000-1170		4	_
8.77-51.23			1000-1170		4	a,f
9.00-41.00)	1000-1170		7	a,f
			1300-1170		-	a,f
9.25-20.75	$v = 0.03388 \exp(31116.5101R/R)$	T)	1020-1170			a, f

Table 2.4.a Viscosity data (continued)

	Viscosity (mN s m	-2)			
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹	¹) T range(K)	Accur.	Ref.	Comment
	KC1-NH4N03				
.4-94.6	v = 0.118813 exp(13805.75737/RT)			5	a,f
0.7-89.3	v = 0.0921884 exp(15285.66293/RT)			5	a,f
4.9-85.1	v = 0.199789 exp(12912.87683/RT)			5	a,f
				ŭ	•,.
	KC1-PbBr ₂				
-100	v = 0.31191 exp(16294.86062/RT)		(137)	2	а
0-90	v = 0.132216 exp(20745.45587/RT)			2	а
0-80	v = 0.119419 exp(20878.09089/RT)			2	а
0-70	v = 0.173649 exp(18620.36672/RT)			2	а
0-60	v = 0.199893 exp(17770.5821/RT)			2	а
0-50	v = 0.24794 exp(16410.75935/RT)			2	а
	KC1-PbC1 ₂				
. 0-100.0	v = 0.04915 exp(29284.30593/RT)	800-970	(138)	4	a,f
7.1-82.9	v = 0.04884 exp(28383.89407/RT)			4	a,f
5.6-73.4	v = 0.05424 exp(27137.87802/RT)			4	а
3.6-66.4	v = 0.05837 exp(26267.59146/RT)			4	а
5.7-54.3	v = 0.04929 exp(27116.95767/RT)			4	a
8.1-51.9	v = 0.05018 exp(27051.68618/RT)			4	a,f
0.3-49.7	v = 0.05321 exp(26514.45159/RT)			4	a
1.1-48.9	v = 0.05305 exp(26720.72624/RT)			4	a,f
6.5-43.5	v = 0.05099 exp(26920.30638/RT)			4	b.f
6.6-33.4	v = 0.0598 exp(25965.92001/RT)			4	a,f
4.1-25.9	v = 0.04191 exp(28916.10777/RT)			4	a
	KC1-RbC1				
-100	v = 0.072 exp(24602.3316/RT)	1013-1113	3 (139)	20	k
5-75	v = 0.078 exp(23556.3141/RT)		• • • • •	20	k
0-50	v = 0.077 exp(23656.73178/RT)			20	k
5-25	v = 0.069 exp(24539.57055/RT)			20	k
00-0	v = 0.054 exp(26878.46568/RT)			20	k
-1.91 KC1	$KC1-ScC1_3$ v = 1.7202 + 1.286 C + 0.49493 C ² - 0.023973 C ³ + 1.5614 x 10 ⁻	-4.04			
1.57 (0)		-4 C4	(141)	4	a,n
	KC1-ZnC1 ₂				
.2-93.8	v = 3.783 x 10 ⁻⁴ exp(67979.0037/RT)	588-775		21,22	. k
4.1-85.9	v = 0.001072 exp(56637.66356/RT)			21,22	. k
0.0-80.0	v = 0.002558 exp(48379.14619/RT)			21,22	. k
1.1-78.9	v = 0.002066 exp(49127.67631/RT)			21,22	. k
6.6-73.4	v = 0.002451 exp(45860.75446/RT)			21,22	. k
1.1-68.9	v = 0.002465 exp(43861.1874/RT)			21,22	k k
3.4-56.6	v = 0.003531 exp(40260.79517/RT)			21,22	k k
1.9-48.1	v = 0.03849 exp(27463.39867/RT)			21,22	: k
0.5-39.5	v = 0.06994 exp(24206.51858/RT)			21,22	! k
0.4-29.5	v = 0.03306 exp(25529.10311/RT)			21,22	. k
5.3-24.7	v = 0.04744 exp(28506.06891/RT)		6	21,22	. k
5.5-14.5	v = 0.09889 exp(21062.18997/RT)		6	21,22	. k
	v = 0.06985 exp(25282.24298/RT)		8 (142)	21,22	! k
00.0-0.0		CoClos · CoCls · KBrs			
	nal KCl systems, see : AgCl- ; AlBr3- ; AlCl3- ; CdBr2- ; CdCl2- ;	00013 , 0301- , KBI			
	nal KC1 systems, see : AgC1- ; A1Br3- ; A1C13- ; CdBr2- ; CdC12- ; KC1*NaC1-LaC13	veers , caer , kar			
For addition				17	k
100.0-0.0 For addition 84.7-15.5 93.7-6.3	KC1*NaC1-LaC13			17 17	k k

,		Viscosity (mN s m-2)	_		_
(mol %).	fed Equation (Japanes)	(R = 8.31441.J K = mol ; ') , \	T range(K) Accur.	Ref.	Comment
	The state of the s	KC1*NaC1-NdC13	The second secon		
. 0-15.0	$v = 0.14938 \exp(20245.0411/RT)$	e dayer et qu	. 973-1123	17	k
.8-6.2	v = 0.13305 exp(20440.85558/RT		973-1123	17	√ k € 1
. 1-2.9	v = 0.11925 exp(20995.24485/RT)	973-1123 (144)	× · 17	k,ż
1.5	e Committee		DAMESTER LIES LIVE CASE LO	. 7	1 149-4
		KC1*NaC1-PrC13			
. 8-15 . 2	$v = 0.07769 \exp(25217.8083/RT)$. 973-1123	17	k
7-6.3	v = 0.10139 exp(22500.25483/RT		973-1123	17	k 007
. 1-2.9	v = 0.14297 exp(19069.73584/RT			17	z,k
	- 10	KC1*NaC1_SmC1_	(T41,93460)		5-3- 9+-
.3-14.7	v = 0.1096 exp(24012:79614/RT)		- 21\\$00@\$1.430\$1.46\s (\$470.41.11) 481.63&8.49 7371123 (\$58&65)	17	k
.9-6.1	v = 0.08106 exp(24274.71892/RT			. 17	k,
.2-2.8	v = 0.16257 exp(16642.55683/RT		973-1123 (146)	17	z,k
	, , , , , , , , , , , , , , , , , , ,		. 370 /120 (140)	.,	- , ~
or addition	nal KCl*NaCl systems, see : CeCl3-	K010 KNO-	- 10 (2000) \$400 (0.00) 0.400 0.00	4	0.070
	919+ 83	KC104-KN03	Winderfor EACSCINGAD ASSET G		: 18-7
100	v = 0.07088 exp(18893.58649/RT		610-700 (147)	. 5	6 ET 3
95	v = 0.07079 exp(18939.61126/RT		- 74462274 - 630-690	5	: ಾ <mark>ತಿ</mark>
-85	v = 0.07263 exp(19034.17124/RT		650-710	5	a
-70	v = 0.07096 exp(19277.26571/RT		115101662 690-720 115101662 (00 1150 6100)	·, 5	a
	▶ 978 €78	KC104-LIND3	10 (48) (0 (41 8) (6 8) (68) (12) (6 (0)	ž y	€, \$5 + 8
100	v = 0.0807 exp({8861.78756/RT)		530-700 (148)	. , 5	ું કુ .a .
4-86 _;	v = 0.08076 exp(18999.86187/RT		-13468544 (526-680) Section 1	5	: 6 a c
5-75	v = 0.07949 exp(19250.90607/RT		• 1791-13578 569-790 1995 n	_ ,- 5	ु∂ a ∵
5-55	v = 0.07425 exp(19874.3325/RT)		(***\1700) 3 600 7700 8 19140 0	5	2 83 a
0-40	v = 0.07318 exp(20104.45635/RT	1 1 No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 660-700	5	а
	The that you the factor	KC104-NaN03	:1111,81 88		Tave
-100	v = 0.09139 exp(16891.09059/RT)	580-720 (149)	5	а
0-90	v = 0.09615 exp(17037.53304/RT		. 0.07 exc(22665 /3/16/7	. 5	а
2-78	v = 0.09095 exp(17723.72052/RT	· · · · · · · · · · · · · · · · · · ·	. 009 exp(24529 8708/9)	. 5	а
D-60 3	v = 0.08346 exp(18627.47964/RT		. 540-700	5	a
0-50	v = 0.07757 exp(19225.80165/RT		. 600-700	5	а
		ga KE ga yang			
00	v = 0.1068 exp(23778.99031/RT)	l e e e e e en en en este el estemble (el el el el este el	- 141 <u>-1328 - ±1.5%</u>	23	-08 - d -
		KF-KP03			
0-80	(T=1173 K, v=200)			5	a
# 12" 1	(A)	KF-K ₂ ZrF ₆	1809 AMERICAN 1201 F F41 R .	7 Y	5.88-9
00-0 K2ZrF6	v = 1.5659 + 0.01419 C - 7.214	x 10 ⁻⁵ C ²	1253 (150)	5	0.38- a
6 <u>1</u> 2	10 A * G = 598	KF-7rF4	TBNs194 - 878847,049 - 788860.00		0.08+0
. 0-33.3 ZrF		1687 C ² - 2.914 x 10 ⁻⁵ C ³	740,8903 19144 gas 200700 a -	″ ∨ 11	. 1-78.9
	nal KF systems, see : BeF ₂ -		0.002463 exc(45361 1574/81)		6.38-7
2 19			: 0 00053) esp(40260.79517/RT		8.33-A.
00 4 SS.					1.83 d
. 22 k		******	(1.06094 exp(2A208.5:8582/E))		8.98-8.
22 5 00	v = 0.1645 exp(14326.25568/RT)	686-725 ±1.5%	* · 1	ે કેટ ુક ,
8 38,		KNU2-NANU2	- 6. 04744 exp(28506.03891/RT)		0 84 7
-100 001-0	v = 0.04561 exp(19916.1732/RT			6	3.H-3 a,
. 22 0 e- 0	v = 0.05016 exp(19504.04231/R	τ) Ι.	0 (1985 exp(25282.24298/RT) 0 (1985 exp(25282.24298/RT) 068-088	6	0 0-0.€ a,
0-80	v = 0.06475 exp(18307.81669/R	T00% රට උදේ බවයි. ඉදුරිබන්ට වෙදුරුවර දෙදුරුවරු ද			ratibbs a y
0-70)	*	6	a
0 -6 0		T)		. 6	a.at a .
0-50	v = 0.07052 exp(18054.26205/R	n	114/11/30.16115/qxs [5d3[.0] =	6	8.81-√. S.8-
0-40	v = 0.08506 exp(17158.87107/R	τ)	\:n\:0002.51002)qx8.87881.0 =	6	5 8-7 0.8- 8
0-30	v = 0.09819 exp(16506.15615/R	T)	(18\&\d45.80\df)dxs 8348f.0 = 620-710	- v - 6	მ.8-ნ a
	· · · · · · · · · · · · · · · · · · ·			-	-

			Viscosity (mN; s m-2)			
(mo1 %)	7.5°C	Equation : 152,155	(R = 8.3-1441 引 KT和 mo_1 T多。) 多。	T range(K) rankcuri	Ref.	Comment
-10	y =	0.133 exp(15102.81907/RT)	· · · · · · · · · · · · · · · · · · ·	700-730	6	a,f
0-0	v =	0.1131 exp(16225.82346/RT) .	• • • • • • • • • • • • • • • • • • • •	720-740 (153)	6	a,f
or additio	onal KN0 ₂	systems, see : $Ba(NO_2)_2$ -	KN03343	3% - 15 och 15% vars	:3-	1 (30.0) (4)
O + ₁ +;.	v =	0.07737 exp(18468.48498/RT) .		898903 615 8 760 ±2%	5	d -
			KN03-L1C10413			
100 5	· v =	0.09436 exp(19522.87062/RT) .		1955 (454) - 1900 (85 °(154) - 1	5	a 9.93
-84 ₅	; v =	0.08119 exp(20213.24217/RT) .		17 NEWS - 500-700 (* 1800) (* 1	- 5	a *! -
)-70 _{=}}	; v =	0.08096 exp(19623.2883/RT) .		580-700	- 5	a : 1
)-50 ₅	: v =	0.07456 exp(19874.3325/RT) .		14G (49 6804720 1444 5.71 6.41	5	a :
-30	Ç. v =	0.07664 exp(19455.9255/RT) .		e 11 45 - 660-700 1 (1.39) - 7 -	5	aû⊴
5-15	y =	0.07643 exp(19121.1999/RT) .		680-720	5	a Konsultapa inga
00-0	v =	0.07088 exp(18895.26012/RT) .	12 5%	610-700 (155)	5	а
		998.5	KN03-L1N03	MARCHEN DROLL STORM STORM		
- 100	٧ =	0.08363 exp(18690.24069/RT)		550-690 (156)	6	a,f
0-80	٧ =	0.08554 exp(17882.71518/RT)		550-690	6	a,f
0-60 [:]	" v =	0.06555 exp(18924.54861/RT) .		530-690	6	a,f
0-40	, A =	0.09038 exp(16991.50827/RT)		530-690	6	a,f
0-20	∜ v =	0.09139 exp(17075.18967/RT)		550-690	6	a
00-0	ν ≠	0.07375 exp(18665.13627/RT)		630-690 (157)	6	1.54-0 a
V . 80		Ø 71 A48	KNU3-Naciu4	Strike Bis A. Bish (1987) to the section of the sec		Competer
-64	γ =	0.07918 exp(19447.55736/RT)	โร ศ +สพฐฮิกล	680-710	5	а
)−50°	: v =	0.07667 exp(19305.29898/RT)		680-710	5	а
30		0.07574 exp(19050.07071/RT)		640-710	5	a
5-14 ⁻	٧ =	0.07391 exp(18857.60349/RT)		600-700	5	a
00-0	8 v =	0.07088 exp(18895.26012/RT)		610-700 (158)	5	a
			KN03-NaN03	garga in ni kilomata tengga	4 1 5	entrolline mo
- 100	٧ =	0.1027 exp(16313.68893/RT) .		600-740 (159)	6	a,f
5-75	-45 v 6⊄	0.098204 exp(16284.40044/RT)		64764 570-720	6	a,f
0-50	٧ =	0.074755 exp(17878.53111/RT)		520-720	6	a,f
5-25 ₅	# y =	0.0871 exp(17326.23387/RT) .		ved III ee 570∸720 – John St. John S	6	a (%)
00-0.		0.07375 exp(18665.13627/RT)		630-690 (160)	6	b,f∃
7.3		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KN03-RbN03	engener i filmper ener in vo		(1 ¹⁷⁵ - 1
-100:	` v =	0.13076 exp(16594.02162/RT)		600-740 (161)	6	$\mathbf{a}^{e^{2}}$
5-75	· v =	0.1172 exp(15824:14547/RT) .		600-740	6	a,f
0-501	\ v =	0.09477 exp(17727.90459/RT)		9-30300-580-740		a
5−25≘	: v =	= 0.07819 exp(18556.35045/RT)		9 (1877) 600-740 (1886) 1	6	a V
00∔0.	7 y :	0.07375 exp(18665.13627/RT)		630-690 (162)	6	a ⁰²⁰
5.4	ζ.			võõnde ja 886 6 tajus (1954)95 (b. h.)		06.4
7-23	٠ y :	0.09363 exp(19614.50175/RT)		. 1 1 08880 2 <mark>444 26</mark> 45 78486	14	, 13th
2-18	ν.	0.08515 exp(19546.30141/RT)		7.40.00 000 000 7.40.00 000 000 000 000 000 000 000 000 0	14	k ⊌∂∹ k
6-14 [©]						05.4
9-11 ⁶	٧.	= 0.08561 exp(18849 65376/RT)		070-090 - 1 21769 3-6-3-6-3 31018-2	14	.61-4
5-5	· v :	= 0 1018 exp(17385 64766/PT)	₄ 30gs4hy4000-1-g80g4	573-693		к .
00-0:					14	k 18-8.8 k -0.α
For additi			2010 and 2010 1		14	K
7.6	CHAI KNU	3 Systems, see : Agnu3- ; Ba(N (051)	03)2-; Ca(N03)2-; Cd(N03)2-; CsN03-; KC10			0.5 -4
00	j.	48,1100.01	KOH	v = 0 103855 exp(28861:258967		0.76
00	V :	= 0.02295 exp(25845.00039/RT)				a _x f
3,6	7			0 195419 cap(37527.49847/		08-0
3.2-6.8	: .) , , , , , , , , , , , , , , , , , , ,			01-(a,f
B.0-2.0	ν ·	1 0337208 AUN 2020 EE 15 /PT)	0 08-060 	5	a,f 08-0 a,f
	٧ .	- 0.0001400 EXP(20200.00110/KI		680-860	5	a,f

Table 2.4.a Viscosity data (continued)

(F44	Viscosity (mN s m ⁻²)				
(mo1 %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
		KOH-K2CO3-K2SiO3				
6.8-2.0-1.1	v = 0.0359149 exp(22914.05	936/RT)	730-870		5	a,f
For additional	KOH systems, see : CaO- ; K	C1- KP03				
00	v = 7 198 x 10-4 exn(1 200	1251662 x 10 ⁵ /RT)	1123-1173	n.a.	5	d, f
	V 7.130 A 10 EAP(1.200	KP03-Ni0	1123-1173	n.a.	5	u, i
30-20	v = 0.3773 exp(64564.38417	/RT)	1123-1173		5	a,f
B5-15		/RT)	1123-1173		5	a, f
90-10	v = 1.24 exp(56792.05574/R	T)	1123-1173		5	a, f
5-5	$v = 0.319 \exp(69025.4396/R)$	n)	1123-1173		5	a, 1
00-0	$v = 7.198 \times 10^{-4} \exp(1.200$	01251662 x 10 ⁵ /RT)	1123-1173	(165)	5	a,f
For additional	KP03 systems, see : KB02- ;	KC1- ; KF-				
		KSCN				
100	v = 0.00858 exp(27003.9877	8/RT)	448-523	±1.5%	1	
		KV03-V205				
0.0-100.0	(T=1111 K, v=26)			(166)	5	а
0.0-100.0				(167)	5	а
9.4-90.6 18.0-82.0		51/RT)	910-1000		5	a,
50.0-50.0	v = 2.75792 exp(23083.9326		910~1250		5 5	а,
0.0-50.0	v = 2.05824 exp(26968.423	19/RT)	910-1250		5	a,
96-4	v = 0.0326 exp(51024.7336	5/RT)	1123-1173		5	a,
97-3		34/RT)	1123-1173		5	a.
98-2	• •	069/RT)	1123-1173		5	a,
99-1	• •	53/RT)	1123-1173		5	a,
For additional	K ₂ B ₄ O ₇ systems, see : B ₂ O ₃ :	-				
	24,	ĸ₂co₃				
100	v = 0.18751 exp(27037.878	75/RT)	1186-1234	±3%,(168) 24	d
0~100	v = 0 22106 evn/28787 656	82/RT)	1023-117	3 (169)	7	а,
5-95	• •	38/RT)	1023-117		7	a,
10-90	v = 0.14502 exp(31389.311		1023-117		7	a,
15-85	• •	4/RT)	973-1173	•	7	a,
20-80		03/RT)	973-1173		7	a,
25-75		68/RT)	973-1173		7	a,
30-70		58/RT)	973-1173		7	a,
40-60	v = 0.091341 exp(33414.40	143/RT)	973-1173		7	a,
50-50	•	466/RT)	973-1173		7	a,
60-40		486/RT)	973-1173		7	a,
70-30	v = 0.10234 exp(31651.652	74/RT)	973-1173		7	a,
80-20	v = 0.12115 exp(30284.717	07/RT)	1023-117	3	7	a,
90-10	v = 0.21769 exp(24932.873	13/RT)	1123-117	3	7	a,
		K ₂ CO ₃ -Li ₂ CO ₃ -Na ₂ CO ₃				
25.0-43.5-31.5	v = 0.10121 exp(33395.154	71/RT)	773-1140		25	d
		K ₂ CO ₃ -Na ₂ CO ₃	4888 4	0 /476	-	
20-80	• •	75/RT)	1023-117		7 7	a
30-70	·	396/RT)	1020-118		7	a
40-60		368/RT)	1020-118		7	a
50-50	v = 0.195419 exp(27547.49	847/RT)	1020-118			a a
60-40	V = 0 000101/00701 70	3013/RT)	1020-118		7	

For additional $\mbox{K}_2\mbox{CO}_3$ systems, see : CaO-KOH- ; KC1-KOH- ; KOH-

Table 2.4.a Viscosity data (continued)

	Viscosity (mN s m ⁻²)				
(mo1 %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref .	Commen
	K ₂ Cr ₂ 0 ₇		-		
0	v = 0.08051 exp(28782.21753/RT)	. 670-780	±1.5%	1	a,f
	K ₂ Mo0 ₄				
0	v = 0.289523 exp(21360.09576/RT)	1215-1285	±10%	7	a,f
	K ₂ TiF ₆				
00	v = 1.891 x 10 ⁻⁵ exp(1.1642593182 x 10 ⁵ /RT)	. 1116-1249	±15%	5	а
	K ₂ TiF ₆ -NaC1				
7-73	v = 0.127372 exp(25550.02346/RT)	850-1170		5	a,f
9-51	v = 0.0746756 exp(32134.91282/RT)			5	a,f
9-31	v = 0.091482 exp(33578.41697/RT)	940-1170		5	a,f
00-0	$v = 1.891 \times 10^{-5} \exp(1.1642593182 \times 10^{5}/RT) \dots \dots \dots \dots$. 1116-1249	(172)	5	a,f
	K ₂ WO ₄				
00	v = 0.07666 exp(36065.42818/RT)	. 1235-1255	±10%	7	a,f
	K ₂ ZrF ₆				-,
00	v = 0.3708 exp(18653.83928/RT)	1073-1253	±10%	5	a,f
	K2ZrF6-NaC1		_,0,5	ŭ	α, ι
-100	v = 0.01834 exp(39786.32163/RT)	. 1073-1173	(173)	5	
0-90	v = 0.103799 exp(25446.25852/RT)			5	a,f a,f
0-80	v = 0.126935 exp(25156.30247/RT)			5	a, r a, f
0-70	v = 0.115999 exp(26831.6041/RT)			5	a, i
0-60	v = 0.149542 exp(25415.71481/RT)			5	a, i a, f
0-50	v = 0.0921453 exp(30156.68453/RT)			5	a, i a, f
0-40	v = 0.0902533 exp(30819.02281/RT)	. 1073-1173		5	
0-30	v = 0.120674 exp(28473.85157/RT)	1073-1173		5	a,f a,f
0-20	v = 0.120613 exp(28690.5864/RT)	. 1073-1173		5	-
0-10	v = 0.204751 exp(24113.63222/RT)			5	a,f a,f
00-0	v = 0.3708 exp(18653.83928/RT)			5	a, f
	K ₂ ZrF ₆ -Na ₂ B ₄ O ₇	1010 1201	(17-4)	•	α, ι
-100	v = 1.27 x 10 ⁻⁵ exp(1.6534607826 x 10 ⁵ /RT)	. 1050-1220	(175)	5	_
. 3-98 . 7	v = 7.16 x 10 ⁻⁶ exp(1.7370166605 x 10 ⁵ /RT)		,	5	a
.4-97.6	v = 5.43 x 10 ⁻⁶ exp(1.7756774673 x 10 ⁵ /RT)			5	a
.2-96.8	v = 4.9892 x 10 ⁻⁴ exp(1.3325426136 x 10 ⁵ /RT)			5	a
.5-95.5	$v = 1.168 \times 10^{-5} \exp(1.7101549311 \times 10^{5}/RT) \dots$. 1050-1220		5	a
. 8-94 . 2	$v = 1.537 \times 10^{-5} \exp(1.6745903361 \times 10^{5}/RT)$. 1050-1220		5	a a
.5-91.5	$v = 9.402 \times 10^{-5} \exp(1.4931690609 \times 10^{5}/RT)$. 1050-1220		5	a
2.9-87.1	v = 3.0055 x 10 ⁻⁴ exp(1.3802828523 x 10 ⁵ /RT)			5	a
Con odditions				J	•
roi addittolla	al K ₂ ZrF ₆ systems, see : KCl- ; KF- LaCl ₂ -LaCl ₃				
-100	v = 0.02061 exp(54597.92943/RT)	1100 100	(476)		
6-14	v = 0.00733 exp(57765.27042/RT)			4	а
	LaC13	. 1150-1250	,	4	а
00	v = 0.02061 exp(54597.92943/RT)				
	LaCl3-LiCl	. 1183-1276	±4%	1	f
4.2-75.8					
9.3-50.7	v = 0.06887 exp(30263.37831/RT)			4	а
5.0-25.0	v = 0.06486 exp(35221.50126/RT)			4	. a
00.00-0.00	v = 0.00984 exp(61851.01478/RT)			4	a
		. 1150-1240	(177)	4	а
For additiona	al LaCl ₃ systems, see : CsCl- ; KCl*NaCl- ; LaCl ₂ -				
	LiBr				
00	v = 0.1403 exp(17246.23445/RT)	823-1082	±1.5%	18	đ
	LiCI				_
00	v = 0.10852 exp(19111.36734/RT)	. 894-1113	±1%		

			Viscosity (mN:sam=2)				
(mol %)	Equation	They had to	(R ≈ 8.3144/b J K/m b molift)	T range(K)	Accur.	Ref.	Comment (Con)
· · · · · · · · · · · · · · · · · · ·	5 (S)		LiCl-Li ₂ G03 Tige				
0-70	v = 0.0757508 exp((34256,65472/RT)		, - 1 - 17 1000 - 1020	1 17081 1	5	a,f
0-50	v = 0.105124 exp(2	28716.94604/RT).	Tanan kanan kanan kanangaran banasa kan	. 892-1020		5	a,f
0-40	v = 0.107794 exp(2	26998.9669/RT)			NE 020028 6	- 5	a,f ಪ್ರ
0-30	$v = 0.0820991 \exp($	(27260.47127/RT)		. 825-999		5	a, f
0-20	v = 0.0982459 exp((24086,01736/RT)		840-1020	101 K 188 3	5	a,f
15 - 15	v = 0.0910034 exp(i to Militaria		850-1022	8: 4 '80 :	5	a, f
90-10	v = 0.114371 exp(2			. 880-1020		5	a,f
. 35	~ 50	Cir 088	LiC1-MgC1 ₂	, ୮୪.୯୫.୯୪ ସିଆ ପ୍ରଥମଣ୍ଡି ହେ			8, ,
)-100	y = 0.1645 exp(2)5	(11 -01명 555 40183/PT)	and the second s	. 10193315 /8552/200 1019-1140		, ≃ ∀ 4	18-0 b.f
28.4-71.6	y = 0.111 exp(2276	ruit rutair		940-1010	as 184700 t	;	b,f _{rg=g} a,f _{g=gS}
49.1 - 50.9	v = 0.0883 exp(232	SE seed to		2 13 (1783)26 77 (184 960-1010	Of 2 (86)		a,f
50.0-40.0	$v = 0.1295 \exp(197)$. 930-1030		4	a,i a,f
59.2 -3 0.8		45 9044	. 	. 930-1030 . 940-1010	as. 58 8 10 (: = ÿ	1411
77.1-22.9	v = 0.2355 exp(144					4	a,f
77. 1-22.9 80.7-19.8	v = 0.1081 exp(20)	et en a		. 940-1020 . 940-1020	7929 8 014 0	4	a,f
	v = 0.08025 exp(2)	• •	TURKHER STORY			4	a,f
84.0-16.0	v = 0.09686 exp(2			. 940-1020 . 950-1030	nia EFRIN I	4	∘a,f a,f ⁰⁰¹ -
90.0-10.0	v = 0.118 exp(193)						a,f ొ a,f ^{ეద్ద} ం
92.7-713	v = 0.1139 exp(19			920-1010			a,f *** **
95.3-4:7	v = 0.1692 exp(16			930-1000			a,f ^{ন্ত্ৰ}
100-0	v = 0.08139 exp(2)			. 920-1020	(,		a,f 01-0 08-0
* . <i>6</i>	. ते दर्शर -	16/0 1	LiC1-RbC1	. / (%\ 148) / (%\ 1) .			
0-100 %	$\psi = 0.072 \exp(246)$	02.3316/RT)		TR .00463 101329 141			k ^{0∂-0}
25-75 🖘	$v = 0.058 \exp(254)$	72.61816/RT)		. 15\18550 878-1078			k () \$- ()
50-50 े.8	$v = 0.062 \exp(242)$	29.94937/RT)		. 78 36 883 1088			k 00-0
75−25 ≟, 6	$\hat{\mathbf{v}} = 0.084 \exp(2\hat{\mathbf{r}})^2$	71.3942/RT)		893-1083	ла 20613 ек	20	k da
100-0 % 6	$v = 0.05 \exp(2594)$	1.234/RT)		. 893-1083	• •		k (11-0
÷. s	s (\$PE) 659	\$ 0001	LiC1-ZnC12	rrayesere Gadet	1948 3015 K	+ + 4°	5-100
0-100	v = 2.6912 x 10-7	exp(1.147405884	2 x 105/RT) **Cangelleg 193. "	. 591-628	(182)	21,2	2 k
0-100 =	v = 5.30191 x 10	exp(99099.2795	4/RT)	. 65870318 628-722	27 x 1015	21,2	2 k ^{Odis}
0-100 S	ÿ = 2.8899 x 10=4	exp(75136.27384)	/RT)	x 30088101722-853	a 10 × 10 °s	21,2	.2 k ^{5 36− 8}
10.9-89.4			सा)				2 k ^{∂ \⊕-}
22.4-77.6			T)				0.00.0
32.3-67.7	v = 0.001164 exp(1.110013101 557-646			2 k ^{a ae} -a
43.0-57.0	v = 0.004129 exp(. (78\f0)	≈ 1865083561 ×	.537 x 10m	,- - 21.2	
47.7-52.43	v = 0.07933 exp(2	4385 59677/RT)	(TЯ*0)			• -	
56.3-43.7			/18 *0 t x				
65.5-34.5							
83.2-16.8					Systems:	ਹੈ। ਨਿੰਪੂਵਿਜ਼ 21,2	<mark>}2</mark> na (j ⁱ t obs na9 1 2 k
100.0-0.0			~ ~		(193):	,	
9	1 100						
For additiona	1 LiC1 systems, see	ATC13- ; BaC12	- ; CsCl- ; KCl- ; LaCl3-	(57765.27042/RT)) 00733 exb	1 = 4	51 - 34
			LiC103 ^{(Oal}				
100	$v = 0.001979 \exp($	32690 13891/RT)	The second secon	(54597, 92943/RT) 044-404	gxa (∂020) ±2%) ≈ y 1	a,f
		,,,,,	LaOlg-LiGI			,	-,.
ε	k G81	11-0801	LiC103-LiN03	(30263.37821/RT)	0.06887 exp) = A	2 - 78 . 8
74-26 s	av = 0.00162 exp(3	85142±00393/RT).		(024-004)126/RT)	06486 exp) = . 5	% <u>a</u> 08−0 . 9
79.4-20∉6	∆v = 0.001848 exp.0	34535.:31378/RT)		(034+8016511/R1)	0.04046 exp) = √6	©a 82-0 6
86.9-13 ₆ 1	v = 0.001444 exp((35 t54 .55614/RT)		(08%-004 1478/RT)	00984 exp) = \5	00 \$/-00 00
91.8-8.2			្តាក់ ក្រុមប្រជាពលរដ្ឋបានប្រជាពលរដ្ឋបានប្រជាពលរដ្ឋបានប្រជាពលរដ្ឋបានប្រជាពលរដ្ឋបានប្រជាពលរដ្ឋបានប្រជាពលរដ្ឋបានប្រជាពល				a
97-3	v = 0.001811 exp((33489, 29628/RT)	် ရှင်ခြင်း (၂၈)	Úsi4*i3X : −(ČeŠ : a∈ 400 ~45 0	systems, s	୍ଞାଠିତି ⁽ ଜ 5	for additiona a
100-0			n∰fd		(184)	5	a
.00 0 5		801-298	LiC10 ₄	17245.23445/RT;) = v	00
			1981			_	
100 b	v = 0.09436 exp(1	1 9522.87062/RT) . ///-A88		. 19111.36734/RT)	2% Gru 28 62.0	7 } ≠ ∀	a 00
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- -	LiC104-LiN03				
	0 00070	10060 DEOTE (DT)			(40=)	_	_
0-100	v = 0.08072 exp()	19900.320/2/KI) .		. 550-690	(185)	5	а

Table 2.4.a Viscosity data (continued)

(mol %)					
(11101 767	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
10-70	v = 0.07617 exp(19465.96727/RT)	510-700		5	a
5-45	v = 0.08188 exp(19453.41506/RT)	470-690		5	а
0-30	v = 0.08138 exp(19676.8444/RT)	490-690		5	a
10-10	v = 0.09068 exp(19446.30214/RT)	510-690		5	a
00-0	v = 0.09436 exp(19522.87062/RT)	540-700	(186)	5	a
	LiC104-NaNO3				
) - 100	v = 0.09139 exp(16891.09059/RT)	580-720	(187)	5	a
0-90	v = 0.09091 exp(17405.7312/RT)	580-700		5	а
8-72	v = 0.09824 exp(17594.01435/RT)	500-700		5	а
0-40	v = 0.1016 exp(18075.1824/RT)	540-700		5	а
8-22	v = 0.1021 exp(18284.3859/RT)	500-680		5	a
10~10	v = 0.09817 exp(18786.4743/RT)	520-680		5	a
00-0	v = 0.09436 exp(19522.87062/RT)	540-700	(188)	5	a
For additions	al LiClO4 systems, see : KNO3-				
. S. Add Crotts	Lif				
100	v = 0.18359 exp(21832.01701/RT)	1125-1317	7 ±1.5%	23	d
	LiF-LiP03				
30-20	(T=1173 K, v=150)			5	а
50-40	v = 0.1164 exp(26811.10215/RT)	. 973-1073	(189)	11	a,f
	LiF-Na3A1F6	. 575 1575	(1007	• • • • • • • • • • • • • • • • • • • •	۵,۰
53.9-46.1	v = 0.00184461 exp(69041.33907/RT)	. 1180-1320	n	5	a, i
75.7-24.3	v = 0.00110691 exp(72254.70483/RT)			5	a, i
37.5-12.5	v = 0.00254473 exp(64363.54881/RT)			5	
94.9-5.1	v = 0.0148957 exp(47660.74137/RT)				a,
100-0				5	a, 1
100-0	v = 0.130978 exp(26839.97224/RT)	. 1180-1320	0 (190)	5	a,1
42-57	LiF-RbF	770 000	(404)		
13-57	v = 0.02241 exp(38518.54842/RT)	773-923	(191)	11	a, 1
53-47	v = 0.07901 exp(43023.53659/RT)	973-1073	(192)	11	a, 1
35-35	v = 0.1696 exp(36424.83979/RT)	. 873-1073		11	a,
80-20	v = 0.04408 exp(42879.18617/RT)	873-1073		11	a, 1
88-12	(T=1073.2 K, v=6.04)			11	a
For addition	al LiF systems, see : AlF ₃ - ; BeF ₂ -				
	LiI				
100	v = 0.1265 exp(17386.23343/RT)	. 742-1028	±1.5%	18	d
	LiNO ₂				
100	v = 0.002971 exp(34342.84656/RT)	. 502-527	±2%	1	
	Lino3				
100	v = 0.0823731 exp(18575.17877/RT)	540-650	±2%	5	а,
	LiN03-NaC104				
30-70	v = 0.1116 exp(17573.094/RT)	. 660-680		5	а
45-55	v = 0.1034 exp(17870.16297/RT)	. 540-680		5	a
67-33	v = 0.09914 exp(18368.0673/RT)	. 500-680		5	a
90-10	v = 0.0876 exp(18451.7487/RT)	540-680		5	a
100-0	v = 0.0807 exp(18861.78756/RT)		(193)	5	a
	Lino3-Nano3		•		_,
0-100	v = 0.091906 exp(16899.45873/RT)	. 600-700	(194)	6	a,
20-80	v = 0.09359 exp(16861.8021/RT)		·	6	a,
40-60	v = 0.1133 exp(15978.96333/RT)	. 530-690		6	a,
60-40	v = 0.1025 exp(16824.14547/RT)	. 530-690		6	a, a,
00-40					a.
60-40 80-20	v = 0.09815 exp(17422.46748/RT)	530-690		6	a

	Viscosity (mN s m ⁻²)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
	LiND3-RbND3				
- 100	v = 0.13076 exp(16594.02162/RT)	600-690	(196)	6	а
0-90	v = 0.1004 exp(17621.62921/RT)	550-690		6	a,f
0-80	v = 0.08825 exp(18020.78949/RT)	530-690		6	a,f
5~75	v = 0.08311 exp(18163.04787/RT)	500-690		6	a,f
5-65	v = 0.09271 exp(17440.45898/RT)	500-690		6	a,f
5-55	v = 0.09584 exp(17087.74188/RT)	500-690		6	a, f
0-50	v = 0.09076 exp(17393.17899/RT)	500-690		6	a,f
5-45	v = 0.07887 exp(18163.04787/RT)	500-690		6	a,f
5-35	v = 0.08028 exp(18154.67973/RT)	530-690		6	a,f
0-20	v = 0.09377 exp(17542.13188/RT)	550-690		6	a, f
00-0	v = 0.08363 exp(18690.24069/RT)	550-690	(197)	6	a,f
For addition	nal LiN03 systems, see : AgN03- ; Ca(N03)2- ; Cd(N03)2-KN03- ; Cd(N03)2- ; CsN03- ;	KC104- : KN02-	· LiClOs- ·	Licio	
	LiPO ₃		,,		
or LiPO3 s	ystems, see : LiF-				
00	Li ₂ CO ₃				
00	v = 0.0866 exp(36862.49351/RT)	1019-1197	±3%,(198	24	d
0-90	v = 0.20167 exp(27579.71581/RT)	973-1180	(199)	7	a,f
0-80	v = 0.15131 exp(30013.17092/RT)	943-1180		7	a, i
0-70	v = 0.13848 exp(30785.13184/RT)	970-1180		7	a,1
0-60	v = 0.13743 exp(31015.6741/RT)	970-1180		7	a,f
0-50	v = 0.13196 exp(31562.53205/RT)	970-1180		7	a,f
0-40	v = 0.12768 exp(32003.11462/RT)	970-1180		7	a, f
0-30	v = 0.13047 exp(31942.86401/RT)	970-1180		7	a, f
0-20	v = 0.1362 exp(31732.82369/RT)	1043-1180)	7	a, f
0-10	v = 0.1591 exp(30775.92689/RT)	1113-1180)	7	a,f
00-0	v = 0.21837 exp(28698.95454/RT)	1010-1180	(200)	7	a,1
For addition	nal Li ₂ CO ₃ systems, see : B ₂ O ₃ - ; K ₂ CO ₃ - ; LiCl-				
100	Li ₂ Mo0 ₄	1000 100	±10%	7	
100	v = 0.219888 exp(29457.10802/RT)	1000-1200	J 10%	,	a,f
	Li ₂ ₩0 ₄				_
00	v = 0.02244 exp(55018.84687/RT)	1126-121	5 ±10%	7	a, 1
00	v = 0.0224 exp(48079.14837/RT)	1180-134	0	11	а
	Li3A1F6-Na3A1F6				
- 100	v = 0.018175 exp(52430.58117/RT)	1320-1430	(201)	7	a, i
4.5-75.5	v = 0.02329 exp(48355.29699/RT)	1220-1400	ס	7	a,
6.4-53.6	v = 0.012567 exp(54091.65696/RT)	1210-1350	0	7	a,
3.9-16.1	v = 0.023883 exp(46577.06724/RT)	1180-140	0	7	a,
100	v = 0.003409 exp(60213.36978/RT)	1040-1220	0 ±4%	3	
100	v = 0.17939 exp(20558.67899/RT)	993-1170	±1%	12	d
	MgC1 ₂ -NaC1	200 ,,,,			-
-100	(T=1073 K, v=1.2)		(202)	4	а
0-90	(T=1073 K, v=1.19)			4	a
20-80	v = 0.1357 exp(19262.62147/RT)	973-1073		4	а,
30-70	v = 0.1009 exp(21217.41897/RT)	973-1073		4	a,
40-60	v = 0.08278 exp(21740.84613/RT)	973-1073		4	a,
50-50	v = 0.08636 exp(22532.05376/RT)	973-1073		4	a,
50-40	v = 0.1028 exp(22166.78445/RT)	973-1073		4	a,
70-30	v = 0.1189 exp(21902.76964/RT)	973-1073		4	a,

	Viscosity (mh	is m ⁻²)				
(mol %)	Equation (R = 8.31441 J K ⁻¹	mol ⁻¹) T range	(K) A	ccur.	Ref.	Commen
0-10	v = 0.1451 exp(21741.26453/RT)	1023	- 1073		4	a, f
0-0	v = 0.1258 exp(23736.64752/RT)	1023	1073	(203)	4	a,f
or additional	MgCl ₂ systems, see : BaCl ₂ ~ ; KCl~ ; LiCl~					
	MgF ₂ -Na ₃ A1F ₈	3				
100	v = 0.02656 exp(49263.24018/RT)		-1323	(204)	5	a,1
0-90	v = 0.01806 exp(53459.86239/RT)		-1323		5	a, 1
0-80	v = 0.0175 exp(54447.30291/RT)	1273	- 1323		5	a, 1
0-70	v = 0.01807 exp(55275.74877/RT)		-1323		5	a, '
0-60	v = 0.01971 exp(55882.43892/RT)		- 1323		5	a, 1
0-50	v = 0.02542 exp(54907.55061/RT)	1273	-1323		5	a, 1
	Mg0					
For MgO system	is, see : CaF ₂					
00	v = 0.0832 exp(19620.35945/RT)	700-	780	±10%	7	а
	NaBF ₄ -NaF		.00	210%	•	•
2-8	v = 0.0877 exp(18623.29557/RT)	<i></i> 690-	910	(205)	11	a, f
00-0	v = 0.0832 exp(19620.35945/RT)			(206)	11	a, 1
	NaB02-NaP03		700	(200)	• • • • • • • • • • • • • • • • • • • •	
0-80	$v = 0.00197898 \exp(1.184928624 \times 10^5/RT) \dots$	1080	- 1220		5	a,1
0-60	v = 0.0389887 exp(93589.27776/RT) ,		- 1220		5	a, 1
0-40	v = 2.49832 exp(57589.53948/RT)		- 1220		5	a, i
0-20	v = 0.265992 exp(75442.96617/RT)		- 1220		5	a,1
00	NaBr v = 0.1034 exp(20478.303/RT)	4000			4.5	
00	NaBr-NaC1		-1192	±1.5%	18	ď
-100	v = 0.1051 exp(22954.22643/RT)	1083	-1143	(207)	2	a, :
0-80	v = 0.0402 exp(31857.09057/RT)	1083	-1143		2	a, 1
0-60	v = 0.1459 exp(21222.43985/RT)	1083	-1143		2	a, t
0-40	v = 0.1456 exp(18978.94152/RT)	1083	-1143		2	a, 1
80-20	v = 0.1399 exp(19431.65789/RT)	1083	-1143		2	a.1
00~0	v = 0.3046 exp(13327.51817/RT)		-1143	(208)	2	a, 1
For additiona	NaBr systems, see : AlBr3- ; CdCl2- ; HgBr2-					
100	NaC1					
00	v = 0.089272 exp(21960.0914/RT)	1080	- 1210	±0.2%	5	d
)-81 NaC1	NaCl-NaF v = 1.42 - 0.006591 C - 3.235 x 10-4 C ² + 7.178 x 10-6 C ³	- 4 224 v 10~8 04		(200)	_	
			•	(209)	2	a,r
1.6-15.2-53.2	NaC1-NaF-Na v = 0.1682 exp(16350.92715/RT)		1070		26	k
	NaC1-NaN03					
-100	v = 0.091634 exp(16958.03571/RT)		700	(045)	_	
:-98	v = 0.1276 exp(15575.61898/RT)			(210)	5	а,
-96	v = 0.181163 exp(13985.67238/RT)				5	а,
i~94	v = 0.140717 exp(15615.78605/RT)				5	a, f
-92	v = 141.203 - 0.403 T + 2.9137 x 10 ⁻⁴ T ²				5	a, 1
0-90	v = 0.100302 exp(17227.07141/RT)				5	а,
2-88	v = 0.00738367 exp(32234.91209/RT)				5	а,
4~86	v = 0.676061 exp(6893.25533/RT)				5	a, 1
		680	720		5	a,
00-80 NaOH	NaC1-Na0H v = 2.3173 + 0.02722 C - 2.742 x 10 ⁻⁴ C ²	693		(211)	5	
	NaC1-Na0H-Na;			(=11/	5	а
.0-96.4-1.6	·	•				
	v = 0.0717255 exp(20501.943/RT)		-820		5	а,
7.9-90.5-1.6	v = 0.0348783 exp(24473.88065/RT)		-820 - 76 0		5 5	

Table 2.4.a Viscosity data (continued)

,	Viscosity (mN	•	
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ m	ol-1) Trange(K) Accur. Ref.	Commen
	NaC1-NaP03		
-80	(T=1173 K, v=240)		а
	NaCl-Na-Sa		
0-0 Na ₂ \$0 ₄	NaC1-Na ₂ S0 ₄ $v = 1.169 + 0.02943 C - 8.586 \times 10^{-4} C^2 + 1.021 \times 10^{-5} C^3$		а
	NaC1-NagA1F6		
.5-71.5	v = 0.0264946 exp(47572.8759/RT)		a,f
.3-52.7	v = 0.0769671 exp(35004.34803/RT)		a,f
.6-39.4	v = 0.0894914 exp(31167.97424/RT)		a,f
0.5-29.5	v = 0.0636424 exp(32693.06776/RT)		a,f
.2-21.8	v = 0.0961257 exp(26872.60798/RT)		a,f
. 3-15.7	v = 0.0307744 exp(37412.28031/RT)		a,f
1.3-10.7	v = 0.00354645 exp(57572.8032/RT)		a,f
3.5-6.5	v = 0.00294991 exp(59556.05238/RT)		a,f
7.0-3.0	v = 0.00827424 exp(47698.398/RT)		a,f
	NaC1-ZnC1 ₂		
. 1-88.9	v = 4.034 x 10 ⁻⁴ exp(64872.33172/RT)		d,ç
.7-88.3	v = 3.888 x 10 ⁻⁴ exp(64719.19476/RT)		
3.3-79.7	v = 0.001326 exp(52690.41192/RT)		d,ç
0.7-79.3	v = 8.179 x 10 ⁻⁴ exp(55076.58704/RT)		
).7-79.3	v = 0.006974 exp(43523.53295/RT)		
0.4-69.6	v = 0.002749 exp(44871.64031/RT)		
0.4-69.6	v = 0.01925 exp(34536.569/RT)	631-769 4	
1.0-69.0	v = 0.008074 exp(39683.39351/RT)	576-626 21,22	d, g
3.1-61.9	v = 0.00274 exp(42765.79788/RT)		
3.1-61.9	v = 0.02364 exp(31801.44244/RT)	606-772 4	
9.4-60.6	v = 0.002732 exp(42698.43435/RT)	539-599 21,22	d,
1.9-48.1	v = 0.03685 exp(28180.12986/RT)	627-815 21,22	d,
5.7-44.3	v = 0.04458 exp(26181.81803/RT)	635-723 4	
5.7-44.3	v = 0.1158 exp(20468.05203/RT)		
3.3-41.7	v = 0.06682 exp(24552.12276/RT)		d,
8.2-31.8	v = 0.07445 exp(21338.33859/RT)	•	-
1.4-18.6	v = 0.2048 exp(14626.2535/RT)		
4.9-15.1	v = 0.1093 exp(21224.53189/RT)	,	
00.0-0.0	v = 0.1053 exp(21853.81602/RT)		-
	nal NaCl systems, see : AlCl3-KCl- ; AlCl3-LiCl- ; AlCl3- ; BaC	1 ₂ - ; B ₂ 0 ₃ - ; CaC1 ₂ - ; CdBr ₂ - ; CdC1 ₂ - ; KC1- ; K ₂ TiF ₆ -	· ;
24F6- ; M Q	Cl ₂ - ; NaBr- ; CeCl ₃ -KCl ; KCl* NaClo ₃		
00	v = 0.02439 exp(25109.85929/RT)		a,
	NaC103-NaN03		
8.9-61.1	v = 0.0366 exp(22214.48285/RT)		a
1.5-48.5	v = 0.02385 exp(24468.44136/RT)		a
2.7-27.3	v = 0.02054 exp(25606.08999/RT)		a
00-0	v = 0.02439 exp(25109.85929/RT)		a
	NaC104-NaN03		
-100	v = 0.09139 exp(16891.09059/RT)		a
0-90	v = 0.09425 exp(16950.50438/RT)		а
0-80	v = 0.09332 exp(17232.92911/RT)		a
8.5-61.5	v = 0.09085 exp(17598.19842/RT)		a
	v = 0.08937 exp(17847.15059/RT)		a
5-55			

	Viscosity (mN s m ⁻²) Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref .	Comment
(mo1 %)		1 Janye(k)	ACCUI .	Nei.	Comment
or additiona	al NaClO ₄ systems, see : KNO ₃ - ; LiNO ₃ -				
in.	NaF	1273-1373	+1%	27	4
00	v = 0.1197 exp(26468.42682/RT)	1275-1575	±1%	21	d
	NaF-NaP03				
-100	(T=1173 K, v=431.7)		(216)	5	a
0.6-79.4	(T=1173 K, v=148.8)			5	a
0.9-59.1	(T=1173 K, v=51.8)			5	а
0.3-39.7	(T=1173 K, v=14.5)			5	a
0.0-20.0	(T=1173 K, v=9.8)			5	a
	NaF-Na ₃ A1F ₆				
5-64	v = 0.338948 exp(30331.16024/RT)	1250-1290	1	5	a,f
7-53	v = 0.0117121 exp(63677.36133/RT)	1240-1300)	5	a,f
	Maralle.				
	NaF-UF ₄		(04=)		
0-70	(T=1073.2 K, v=10.99)	000 4000	(217)	11	a
0-60	v = 0.1318 exp(39139.46441/RT)	973-1073		11	a,f
6-54	v = 0.1966 exp(35893.88131/RT)	973-1073		11	a,f
3.8-46.2	v = 0.1068 exp(38810.59651/RT)	973-1073		11	a,f
8-42	v = 0.1471 exp(36343.25043/RT)	973-1073		11	a,f
2.5-37.5	v = 0.06668 exp(42283.37461/RT)	973-1073		11	a,f
6.7-33.3	v = 0.05011 exp(43984.61747/RT)	973-1073		11	a,f
5-25	(T=1073.2 K, v=5.72)			11	a
6-24	v = 0.04334 exp(45669.96086/RT)	973-1073		11	a,f
	NaF-ZrF ₄				
0-50	v = 0.02993 exp(32435.32905/RT)	873-1073		- 11	a,f
3-47	v = 0.07666 exp(33234.06801/RT)	873-1073		11	a,f
For addition	nal NaF systems, see : A1F3- ; A1203- ; BeF2- ; B203- ; Ca0- ; LiF- ; NaBF4- ; NaC	C1-			
	Nai				
100	v = 0.0994 exp(19095.25867/RT)	941-1117	±1.5%	18	ď
	NaNO ₂				_
100	v = 0.04876 exp(19581.4476/RT)	563-613	±2%	1	a,f
		333 3.0		·	۵,۰
For addition	nal NaNO ₂ systems, see : Ba(NO ₂) ₂ -KNO ₂ - ; Ba(NO ₂) ₂ - ; KNO ₂ -				
	NaN03				
100	NaN03 v = 0.1041 exp(16259.29602/RT)	589-731	±3%	1	f
100	•	589-731	±3%	1	f
	v = 0.1041 exp(16259.29602/RT)				
D-100	v = 0.1041 exp(16259.29602/RT)	598-748	±3% (218)	6	a,f
D-100 20-80	v = 0.1041 exp(16259.29602/RT)	598-748 573-698		6 6	a,f a,f
0-100 20-80 40-60	v = 0.1041 exp(16259.29602/RT) NaN03-RbN03 v = 0.1308 exp(16594.02162/RT) v = 0.0795 exp(18673.50441/RT) v = 0.08057 exp(18117.0231/RT)	598-748 573-698 523-698		6 6 6	a, f a, f a, f
0-100 20-80 40-60 60-40	v = 0.1041 exp(16259.29602/RT) NaN0 ₃ -RbN0 ₃ v = 0.1308 exp(16594.02162/RT) v = 0.0795 exp(18673.50441/RT) v = 0.08057 exp(18117.0231/RT) v = 0.03548 exp(22213.22763/RT)	598-748 573-698 523-698 523-698		6 6 6	a,f a,f a,f a,f
0-100 20-80 40-60 50-40 30-20	v = 0.1041 exp(16259.29602/RT) NaN0 ₃ -RbN0 ₃ v = 0.1308 exp(16594.02162/RT) v = 0.0795 exp(18673.50441/RT) v = 0.08057 exp(18117.0231/RT) v = 0.03548 exp(22213.22763/RT) (T=503.2 K, v=6.44)	598-748 573-698 523-698 523-698		6 6 6 6	a,f a,f a,f a,f
0-100 20-80 10-60 60-40 80-20	v = 0.1041 exp(16259.29602/RT) NaN0 ₃ -RbN0 ₃ v = 0.1308 exp(16594.02162/RT) v = 0.0795 exp(18673.50441/RT) v = 0.08057 exp(18117.0231/RT) v = 0.03548 exp(22213.22763/RT) (T=503.2 K, v=6.44) v = 0.0786346 exp(17664.30673/RT)	598-748 573-698 523-698 523-698	(218)	6 6 6 6 6	a, f a, f a, f a, f a
0-100 20-80 40-60 50-40 30-20 80-20	v = 0.1041 exp(16259.29602/RT) NaN03-RbN03 v = 0.1308 exp(16594.02162/RT) v = 0.0795 exp(18673.50441/RT) v = 0.08057 exp(18117.0231/RT) v = 0.03548 exp(22213.22763/RT) (T=503.2 K, v=6.44) v = 0.0786346 exp(17664.30673/RT) v = 0.09699 exp(16614.94197/RT)	598-748 573-698 523-698 523-698 573-698 598-748	(218)	6 6 6 6 6	a,f a,f a,f a a,f a,f
0-100 20-80 40-60 50-40 30-20 80-20 100-0 For addition KC104-; KNG	v = 0.1041 exp(16259.29602/RT) NaN0 ₃ -RbN0 ₃ v = 0.1308 exp(16594.02162/RT) v = 0.0795 exp(18673.50441/RT) v = 0.08057 exp(18117.0231/RT) v = 0.03548 exp(22213.22763/RT) (T=503.2 K, v=6.44) v = 0.0786346 exp(17664.30673/RT)	598-748 573-698 523-698 523-698 573-698 598-748	(218)	6 6 6 6 6	a,f a,f a,f a a,f a,f
0-100 20-80 40-60 50-40 30-20 30-20 100-0	v = 0.1041 exp(16259.29602/RT) NaN03-RbN03 v = 0.1308 exp(16594.02162/RT) v = 0.0795 exp(18673.50441/RT) v = 0.08057 exp(18117.0231/RT) v = 0.03548 exp(22213.22763/RT) (T=503.2 K, v=6.44) v = 0.0786346 exp(17664.30673/RT) v = 0.09699 exp(16614.94197/RT) nal NaN03 systems, see : AgN03-; Ba(N03)2-KN03-; Ca(N03)2-KN03-; Ca(N03)2-; C	598-748 573-698 523-698 523-698 573-698 598-748	(218)	6 6 6 6 6	a,f a,f a,f a a,f a,f
0-100 20-80 10-60 60-40 30-20 30-20 100-0 For addition KC10 ₄ -; KNO	v = 0.1041 exp(16259.29602/RT) NaN03-RbN03 v = 0.1308 exp(16594.02162/RT) v = 0.0795 exp(18673.50441/RT) v = 0.08057 exp(18117.0231/RT) v = 0.03548 exp(22213.22763/RT) (T=503.2 K, v=6.44) v = 0.0786346 exp(17664.30673/RT) v = 0.09699 exp(16614.94197/RT) nal NaN03 systems, see : AgN03-; Ba(N03)2-KN03-; Ca(N03)2-KN03-; Ca(N03)2-; C	598-748 573-698 523-698 523-698 573-698 598-748	(218)	6 6 6 6 6	a,f a,f a,f a a,f a,f
0-100 0-80 0-60 0-40 0-20 0-20 00-0 For addition KC10 ₄ -; KNO	v = 0.1041 exp(16259.29602/RT) NaN03-RbN03 v = 0.1308 exp(16594.02162/RT) v = 0.0795 exp(18673.50441/RT) v = 0.08057 exp(18117.0231/RT) v = 0.03548 exp(22213.22763/RT) (T=503.2 K, v=6.44) v = 0.0786346 exp(17664.30673/RT) v = 0.09699 exp(16614.94197/RT) nal NaN03 systems, see : AgN03-; Ba(N03)2-KN03-; Ca(N03)2-KN03-; Ca(N03)2-; C 03-; L1C104-; L1N03-; NaC1-; NaC103-; NaC104- NaOH v = 0.07211 exp(20656.75359/RT)	598-748 573-698 523-698 573-698 598-748	(218) (219) d(N0 ₃) ₂ -Li	6 6 6 6 6 6 8	a, f a, f a, f a a, f a, f
0-100 0-80 10-60 60-40 80-20 80-20 100-0 For addition KC10 ₄ -; KNO	v = 0.1041 exp(16259.29602/RT) NaN03-RbN03 v = 0.1308 exp(16594.02162/RT) v = 0.0795 exp(18673.50441/RT) v = 0.08057 exp(18117.0231/RT) v = 0.03548 exp(22213.22763/RT) (T=503.2 K, v=6.44) v = 0.0786346 exp(17664.30673/RT) v = 0.09699 exp(16614.94197/RT) nal NaN03 systems, see : AgN03-; Ba(N03)2-KN03-; Ca(N03)2-KN03-; Ca(N03)2-; C 03-; L1C104-; LiN03-; NaC1-; NaC103-; NaC104- NaOH v = 0.07211 exp(20656.75359/RT)	598-748 573-698 523-698 573-698 598-748 5d(NO ₃) ₂ -KNO ₃ -; C	(218) (219) d(N0 ₃) ₂ -Li	6 6 6 6 6 6 8 NO ₃ - ; C	a, f a, f a, f a a, f a, f sN03-;
0-100 20-80 40-60 50-40 30-20 30-20 100-0	v = 0.1041 exp(16259.29602/RT) NaN03-RbN03 v = 0.1308 exp(16594.02162/RT) v = 0.0795 exp(18673.50441/RT) v = 0.08057 exp(18117.0231/RT) v = 0.03548 exp(22213.22763/RT) (T=503.2 K, v=6.44) v = 0.0786346 exp(17664.30673/RT) v = 0.09699 exp(16614.94197/RT) nal NaN03 systems, see : AgN03-; Ba(N03)2-KN03-; Ca(N03)2-KN03-; Ca(N03)2-; C 03-; L1C104-; L1N03-; NaC1-; NaC103-; NaC104- NaOH v = 0.07211 exp(20656.75359/RT)	598-748 573-698 523-698 573-698 598-748 5d(NO ₃) ₂ -KNO ₃ -; C	(218) (219) d(N0 ₃) ₂ -Li	6 6 6 6 6 6 8	a, f a, f a, f a a, f a, f

Table 2.4.a Viscosity data (continued)

	Viscosity (mN s m ⁻²)				
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	Trange(K) Ad	cur.	Ref.	Comment
	Na0H-Na ₂ C0 ₃ -Na ₂ Si0 ₃				
.6-1.7-4.7	v = 0.081678 exp(19631.23803/RT)	730-820		5	a,f
	NaOH-Na3ASO4				
. 0-69. 0	(T=773 K, v=603)			5	a
.4-60.6	v = 1.24004 x 10 ⁻⁸ exp(1.26358914 x 10 ⁵ /RT)	730-770		5	a,f
3.9-51.1	v = 2.82696 x 10 ⁻⁵ exp(68217.07728/RT)	650-750		5	a,f
0.9-39.1	(T=653 K, v=144)			5	a
	Na0H-Na ₃ Sb0 ₄				
i-54	v = 2.62174 exp(14528.76467/RT)	650-750		5	a,f
050	v = 1.15668 exp(18288.15156/RT)	650-750		5	a,f
6-44	v = 0.368532 exp(22789.79248/RT)	650-750		5	a, f
2-38	v = 0.162034 exp(25126.59557/RT)	650-750		5	a, f
3-32	v = 0.0883776 exp(26199.80953/RT)	650-750		5	a,f
For additional	NaOH systems, see : CaD- ; NaC1-				
	NaP0 ₃				
00	v = 0.02412 exp(83258.80893/RT)	9161110	n.a.	1	a,f
00	v = 0.16063 exp(67873.98354/RT)	1010-1290	±5%	5	a,f
	NaP03-Na2B ₄ 07				
-50 NaP03	v = 170.73 + 0.05184 C + 0.02513 C ²	1223	(221)	5	a , 0
0~100 NaP03	v = - 449.38 + 37.55 C - 0.6369 C ² + 0.0031728 C ³	1223	(222)	5	a ,0
v	NaP03-Na ₂ S0 ₄				- ,
sothermal Data		1173		5	а
oints	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1173		5	a
	NaP03-Na4P207				
- 100	v = 3.363 exp(23870.11935/RT)	1310-1350	(223)	5	a, 1
1.5-68.5	v = 3.33749 exp(21561.34952/RT)	1240-1370		5	а,
6.5-53.5	v = 1.59805 exp(32390.97791/RT)	1230-1310		5	а,
3.5-36.5	v = 1.0098 exp(37848.67881/RT)	1030-1370		5	a,
2.3-27.7	v = 0.748526 exp(41228.98897/RT)	1110-1270		5	а,
6.1-23.9	v = 8074.4 - 19.7222 T + 0.016212 T ² - 4.46 x 10 ⁻⁶ T ³	930-1320		5	а
9.6-20.4	v = 0.430529 exp(48907.59423/RT)	870-1110		5	a,
15.9-14.1	v = 0.213257 exp(55819.67787/RT)	950-1110		5	a,
3.7-6.3	v = 0.174187 exp(64108.32054/RT)	970-1270		5	a,
95.9-4.1	v = 0.179631 exp(63652.25691/RT)	990-1110		5	a,
100-0	v = 0.16063 exp(67873.98354/RT)	1010-1290	(224)	5	a
For additional	NaPO ₃ systems, see : B ₂ O ₃ - ; NaBO ₂ - ; NaC1- ; NaF-				
	NaSCN				
100	v = 0.04935 exp(19397.34852/RT)	578-634	±2%	1	а,
	NaVO ₃				
100	v = 0.162 exp(50899.21155/RT)	920-1160	±10%	5	a,
	NaV03-V205				
) - 100	v = 0.221 exp(44844.86226/RT)	940-1150	(225)	5	a,
10-90	v = 0.543242 exp(38152.02389/RT)			5	a,
0-80	v = 0.342185 exp(43129.39356/RT) ,	1040-1160		5	a,
32-68	v = 0.0801421 exp(49008.01191/RT)	980-1160		5	a,
i7-43	v = 0.216394 exp(36567.09817/RT)			5	a,
30-20	v = 0.0594415 exp(56392.89546/RT)	920-1160		5	a, a,
100-0			(226)	5	
100-0	v = 0.162 exp(50899.21155/RT)	920-1160	(226)	Đ	a,
100	v = 1.27 x 10 ⁻⁵ exp(1.6534607826 x 10 ⁵ /RT)	1050-1220	±15%	5	а,
	Na ₂ B ₄ D ₇ -₩D ₃			-	۵,
1.8-38.2	v = 0.0012506 exp(1.3054716807 x 10 ⁵ /RT)	1123-1373		5	a,
		0 .070		-	₩,

	Viscosity (mN s m ⁻²)				
(mol %)	Equation ($R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1}$)	T range(K)	Accur.	Ref.	Comment
-25	v = 2.233 x 10 ⁻⁴ exp(1.465261314 x 10 ⁵ /RT)	1123-1373		5	a,f
. 8~ 18 . 2	v = 7.7438 x 10 ⁻⁴ exp(1.3260154644 x 10 ⁵ /RT)	1123-1373		5	a,f
-10	y = 2.7591 x 10 ⁻⁴ exp(1.4164750578 x 10 ⁵ /RT)	1123-1373		5	a,f
0-0	v = 6.95 x 10 ⁻⁵ exp(1.5519134037 x 10 ⁵ /RT)	1123-1373	(227)	5	a,f
			,,		-,
or additional	$Na_2B_4O_7$ systems, see : B_2O_3 - ; K_2ZrF_6 - ; $NaPO_3$ - Na_2CO_3				
00	v = 0.18937 exp(28834.1/RT)	1134-1234	±3%,(228) 24	d
For additional	Na2C03 systems, see : B2O3- ; CaO-NaOH- ; K2CO3-Li2CO3- ; K2CO3- ; Li2CO3- ; NaCONa2MoO4	-Na0H- ; Na0H-			
00	v = 0.152639 exp(29570.07791/RT)	1030-1190	±10%	7	a,f
	Na ₂ S0 ₄				
00	v = 0.148 exp(41798.8593/RT)	1240-1470	±10%	7	a
0-100 Na ₂ S0 ₄	v = 22.987 - 0.2732 C + 9.3 x 10 ⁻⁴ C ²	1273	(229)	5	a
or additional	Na ₂ SO ₄ systems, see : CaSO ₄ - ; NaC1- ; NaPO ₃ -				
	Na ₂ S _{3,1}				
00	v = 0.5624 exp(8443.45326/R(T-332))	577-653	±5%	7	a
	Na ₂ S _{3.3}	• • • • • • • • • • • • • • • • • • • •			•
00	v = 0.337 exp(11225.85981/R(T-288))	589-647	±5%	7	а
00	v = 0.6193 exp(7974.83742/R(T-342))	558-646	±5%	7	a
	Na ₂ S ₃ g	555 545	-0%	•	•
00	v = 0.4046 exp(9292.81947/R(T-326))	533-652	±5%	7	a
	Na ₂ S ₄ 1	300 032	20%	,	a
00	v = 0.407 exp(9347.21238/R(T-328))	587-641	±5%	7	а
	Na ₂ S _{4 3}	337 311		•	
00	v = 0.8071 exp(6016.69266/R(T-390))	572-675	±5%	7	a
	Na ₂ S ₄₋₇	372 073	20%	,	a
00	v = 0.4684 exp(8213.32941/R(T-356))	EE7_CE4	AE */	-	_
	Na ₂ S _{5, 2}	557-654	±5%	7	а
00	3 7411 aug/2104 00005 (B/T 405)	500 540	459	_	
	V = 1.7411 exp(3104.99635)R(1-465))	620-648	±5%	7	а
00	v = 0.0797384 exp(38682.98237/RT)	1050 1050	1400	_	
•	NagA1F ₆	1050-1250	±10%	7	a,f
00	v = 0.017924 exp(51799.9163/RT)	1000 1000			
		1290-1390		7	a,f
ror additional	Na ₃ A1F $_6$ systems, see : A1F $_3$ - ; A1 $_2$ 0 $_3$ - ; BaC1 $_2$ - ; B $_2$ 0 $_3$ - ; CaF $_2$ - ; L1F- ; L1 $_3$ A1F $_6$ -	; MgF ₂ - ; NaCl	- ; NaF-		
.	Na ₃ As ₀ ₄				
ror Nagasu ₄ sy	stems, see : NaOH- Na ₄ P ₂ O ₇				
0 0	y = 2 262 avp/22270 1100F (BT)	1210-1250	+100/	_	
	Na ₄ P ₂ 07-W03	1310-1350) ±10%	5	a,f
D-60	v = 0.004102 exp(99436.09718/RT)	1000 11-		_	
5-55	v = 0.002614 exp(1.0207499013 x 10 ⁵ /RT)	1230-1370		5	a,f
D-50	v = 0.002344 exp(1.0193022131 x 105/RT)	1230-1370		5	a,f
5.2-44.8	v = 0.01724 exp(81811.12071/RT)	1230-1370		5	a,f
0-40	v = 0.026 exp(76288.14831/RT)	1230-1370		5	a
9.3-30.7	v = 0.157339 exp(58296.64731/RT)	1230-1370		5	a
8-22	v = 0.07252 exp(68246.36577/RT)	1230-1370		5 -	a, f
5 . 8 - 14 . 2	v = 0.11919 exp(64530.91161/RT)	1230-1370		5	a, f
2.5-7.5	v = 0.1323 exp(64966.05489/RT)	1280-1370		5	a
00-0		1280-1370		5	а
00 0	v = 0.29506 exp(57890.79252/RT)	1280-1370	0 (230)	5	а

(mol %)	Viscosity ($mN s m^{-2}$) Equation ($R = 8.31441 \ J K^{-1} mol^{-1}$)	T range(K)	Accur.	Ref.	Commer
or additiona	al Na ₄ P ₂ O ₇ systems, see : NaPO ₃ - ; Na ₂ SO ₄ -				
	N(CH ₃) ₄ C10 ₄				
or N(CH ₃) ₄ C1	104 systems, see : HgBr ₂ - N(C3H ₇)4B(C6H ₅)4				
00		402 500	(001)		
00	v = 9.287 x 10 ⁻⁴ exp(37225.67079/RT)	483-529	(231)	1	а,
00		E22-E40	(022)		
,0	v = 0.006663 exp(25259.23059/RT)	522-546	(232)	1	а,
00	N(C ₃ H ₇) ₄ PF ₆ y = 0.005752 exp(27033.27627/RT)	517-541	(222)	•	
	N(C ₃ H ₇) ₄ SCN	517-543	(233)	1	а,
10		222 222	(024)	~	
00	v = 2.48274 x 10 ⁻⁵ exp(44100.0978/RT)	330-380	(234)	7	а,
or addition	al N(C ₃ H ₇) ₄ SCN systems, see : AgSCN- ; Cd(SCN) ₂ - ; CuSCN-				
	$N(C_4H_9)_4B(C_6H_5)_4$				
00	v = 0.001588 exp(34455.81645/RT)	516-541	(235)	1	a,
	$N(C_4H_9)_4BF_4$				
00	v = 0.002222 exp(30313.58715/RT)	435-539	(236)	1	a,
	N(C ₄ H ₉) ₄ PF ₆				- *
00	v = 0.003173 exp(29953.75713/RT)	529-554	(237)	1	a,
	N(C5H11)4SCN				
00	v = 2.512 x 10 ⁻⁵ exp(44146.12257/RT)	325-383	n.a.)	1	а,
	N(C6H13)4BF4				-
00	v = 1.806 x 10 ⁻⁴ exp(41175.43287/RT) ,	376-502	n.a.)	1	a,
	NdC13		,		
00	v = 0.116738 exp(27121.56015/RT)	1160-1240	±3%	4	a,
Con addition	In I Mark - supreme the Community of the				
TOT AUDITION	al NdCl ₃ systems, see : KCl*NaCl- NH ₄ Br				
For NHARE SV	vstems, see : AlBrg-				
	NH4H2PO4-NH4NO3				
.5-96.5	v = 0.1867 exp(12029.20125/RT)	430-450		5	a
2-92.8	v = 0.08488 exp(15305.32806/RT)	430-450		5	a
0.9-89.1	v = 0.08893 exp(15581.47668/RT)	420-450		5	a
8.8-81.2	v = 0.07306 exp(17435.01969/RT)	420-450		5	а
7.3-72.7	v = 0.03181 exp(21497.75166/RT)	420-450		5	а
3.9-66.1	v = 0.0336 exp(22175.571/RT)	440-450		5	а
1.0-59.0	v = 0.02255 exp(24598.14753/RT)	440-450		5	а
1.1-48.9	v = 0.01235 exp(28070.92563/RT)	440-450		5	а
	NH ₄ NO ₃				
For NH ₄ N0 ₃ s	systems, see : KC1- ; NH ₄ H ₂ PO ₄ -				
	N10				
For NiO syst	tems, see : KPO ₃ - ; K ₂ B ₄ O ₇ -				
	Ni ₃ S ₂				
00	v = 0.3704 exp(28444.14467/RT)	1523-177	3 n.a.	7	а
For addition	nal Ni ₃ S ₂ systems, see : Co ₄ S ₃ - ; Cu ₂ S- ; FeS-				
	PbBr ₂				
00	v = 0.08165 exp(24573.04311/RT)	700-820	±2%	2	a
		.,		_	•
	PbBr ₂ -PbCl ₂				
.0-100.0	v = 0.07066 exp(26790.60021/RT)	780-820	(240)	2	a
23.1-76.9	v = 0.044219 exp(29652.9225/RT)	750-820		2	a
6.4~43.6	v = 0.040502 exp(29652.50409/RT)	700-820		2	a
75.3-24.7	v = 0.05754 exp(27167.16651/RT)	700-820		2	a
100.0-0.0	$v = 0.08165 \exp(24573.04311/RT) \dots \dots$	700-820	(241)	2	a

/		Viscosity (mN s m ⁻²)			_	
(mol %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref .	Comment
or addition	al PbBr ₂ systems, see : CdCl ₂ - :	; KBr- ; KCl-				
		PbC1 ₂				
00	v = 0.05619 exp(28292.68134)	/RT)	773-973	±2%	1	a,f
	-1 0001 4-01	04b- 0403 KD- K01 BLD-				
ror additiona	al PDU12 systems, see : Agui- ;	CdBr ₂ -; CdCl ₂ -; KBr-; KCl-; PbBr ₂ -				
		PbF ₂ -Pb0				
8-52	v = 27.1703 exp(22104.0234/	RT)	880-1200		5	a,f
		Pb0				
For Pb0 syste	ems, see : PbF ₂ -	D=01				
	0.00.005/0.400 0000	PrC1 ₃	4400 4050			
00	v = 0.094205 exp(31429.0602	11/RT)	1130-1250	±3%	4	a,f
or addition	al PrCl ₃ systems, see : KCl*NaC					
00	0 0005 num/22550 22009/	RbBr RT)	971-1197	±1 F%		
00	V - 0.0806 EXP(23550.33066/	RbC1	9/1-119/	±1.5%	18	đ
00	v = 0.06783 exp(24805.17531	/RT)	1023-1172	±1%	19	đ
						_
For addition	nal RbCl systems, see : CsCl- ;					
00	V = 0.0071060 avp/94994 600	RbF 335/RT)	1079-1274	±1.5%	23	
00	V - 0.09/1000 EXP(24324.505	1997KT)	10/9-12/4	11.5%	23	ĸ
For addition	na! RbF systems, see : BeF2- ; L	.iF~ RbI				
00	v = 0 0764 exp(23081 33847/	(RT)	934-1194	±1.5%	18	d
		RbN0 ₂	304 1134	-1.0%		•
00	v = 0.08754 exp(18807.39465	6/RT)	712-758	±3%	1	a,f
		RbN03	712 700	-0%		۵,۱
00	v = 0.1296 exp(16635.86232/	(RT)	598-698	±3%	1	a,c,
-						-,-,
For addition	nai Konug Systems, see : Agnug-	; CsNO ₃ - ; KNO ₃ - ; LiNO ₃ - ; NaNO ₃ -				
		Rb ₂ C0 ₃				
00	$v = 0.15847 \exp(28317.78576$	6/RT)	1154-1234	±3%	24	k
For addition	nal Rb ₂ CO ₃ systems, see : B ₂ O ₃ ~					
		SbBr ₃				
00	v = 0.01899 exp(16297.37106	6/RT)	375-410	±2%	3	a,f
For addition	nal SbBr3 systems, see : AlBr3-					
		SbC13				
00	v = 0.003841 exp(18599.8647	78/RT)	323-353	±2%	4	a,f
		SbC13-SbC15				
1-100		2/RT)	323-353	(242)	4	a,f
. 48-95.52 5.77-74.23		7/RT)	323-353		4	a,f
3.40-66.60		B/RT)	323-353		4	a,f
9.89-60.11		2/RT)	323-353 323-353		4	a,f a,f
3.60-56.40		9/RT)	323-353			a, r a, f
4.75-55.25		3/RT)	323-353		4	a,f
6.50-53.50	v = 0.009065 exp(14826.6704	45/RT)	323-353		4	a,f
16.96-53.04		69/RT)	323-353		4	a,f
5.61-44.39	v = 0.006568 exp(15981.473	77/RT)	323-353		4	a,f
8.30-41.70	v = 0.006167 exp(16188.166	83/RT)	323-353		4	a,f
65 . 65-34 . 3 5		5/RT)	323~353		4	a,f
71.92-28.08		74/RT)	323-353		4	a,f
73.27-26.73		75/RT)	323-353		4	a,f
76.86-23.14		46/RT)	323-353		4	a,f
78.22-21.78		01/RT)	323-353		4	a,f
30. 13-19. 87	y - 0.004051 exp(17950.078	71/RT)	323-353		4	a,f

Table 2.4.a Viscosity data (continued)

(mol %)	Viscosity (mN s m ⁻²)	-		.	_
(mo1 %)	Equation (R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Commen
0.80-19,20	v = 0.003709 exp(18230.4114/RT)	323-353		4	a,f
1.75-18.25	v = 0.00488 exp(17524.9772/RT)	323-353		4	a,f
7.77-12.23	v = 0.004333 exp(17997.3587/RT)	323-353		4	а,
2.68-7.32	v = 0.00405 exp(18295.26448/RT)	333-353		4	a,
4.55-5.45	v = 0.004573 exp(18014.09498/RT)	323-353		4	а,
00-0	v = 0.003828 exp(18620.36672/RT)	323-353	(243)	4	а,
	SbC1 ₅				
00	v = 0.0348832 exp(9991.55916/RT)	325-350	±2%	4	а,
For additiona	11 SbC1 ₅ systems, see : SbC1 ₃ -				
For ScCla sys	ScC1 ₃				
	Si02				
00	v = 9.004 x 10 ⁻⁴ exp(3.7336967052 x 10 ⁵ /RT)	2208-2595	±10%	1	a,
	SmC13				
For SmC13 sys	tems, see : KC1*NaC1- SnC1 ₄				
00	v = 0.03187 exp(8066.88696/RT)	273-423	±2%	1	a.
	SnC1 ₄ -TiC1 ₄				
-100	v = 0.04949 exp(5877.35586/RT)	293-333	(244)	4	a,
0-80	v = 0.04236 exp(7304.96781/RT)	293-333		4	a,
0-60	v = 0.03646 exp(7724.63003/RT)	293-333		4	a,
0-40	v = 0.03316 exp(8011.23883/RT)	293-333		4	a,
0-20	v = 0.03103 exp(8231.32091/RT)	293-333		4	a,
00-0	v = 0.03138 exp(8262.28303/RT)	293-333	(245)	4	a,
	SrC1 ₂				
00	v = 0.09638 exp(34917.82146/RT)	1150-1300	±1%	12	đ
	Sr(NO ₃) ₂				
For Sr(ND3)2	systems, see : KNO ₃ ThF4				
For ThF ₄ syst	tems, see : BeF2-LiF-				
	TiC14				
100	v = 0.04952 exp(6874.42701/RT)	293-333	n.a.	1	a,
For additiona	al TiCl ₄ systems, see : SnCl ₄ -				
For TiO ₂ syst	TiO ₂ tems, see : CaF ₂ -				
-	TIBr				
00	v = 0.3157 exp(11771.46254/RT)	760-990	±2%	3	a,
100	v = 0.2297 exp(12696.97882/RT)	773-1173	(246)	2	a,
.7-91.3	v = 0.2297 exp(12696.97882/RT)	733-1073	•	2	a,
7.7-82.3	v = 0.233 exp(12714.97032/RT)	733-1173		2	a,
6.9-73.1	v = 0.2352 exp(12729.61457/RT)	733-1173		2	a,
6.4-63.6	v = 0.2359 exp(12816.22482/RT)	733-1173		2	a, a,
6.2-53.8	v = 0.2364 exp(12908.69276/RT)	733-1173		2	a,
6.3-43.7	v = 0.2409 exp(12879.40427/RT)			2	
6.7-33.3		733-1173			а,
7.4-22.6	v = 0.2416 exp(12960.57523/RT)	733-1173		2	a,
	v = 0.245 exp(12946.34939/RT)	733-1173		2	а,
88.5-11.5 100-0	v = 0.2302 exp(13443.83532/RT)	733-1173	/2/71	2 2	a
•	T1Br-T11	733-1173	(247)	2	а,
-100	v = 0.2332 exp(14110.77608/RT)	723-1173	(248)	2	a,
	v = 0.2332 exp(14110.77608/RT)	723-1173 733-1173	(248)	2 2	
0-100 11.47-88.53 22.56-77.44			(248)		a, a, a,

Table 2.4.a Viscosity data (continued)

		Viscosity (mN s m ⁻²)				
(mo1 %)	Equation	(R = 8.31441 J K ⁻¹ mol ⁻¹)	T range(K)	Accur.	Ref.	Comment
4.81-55.19	v = 0.2385 exp(13693.20589/RT)	733-1173		2	a,f
4.23-45.77	v = 0.2986 exp(11686.10751/RT)	733-1173		2	a,f
3.61-36.39	v = 0.2404 exp(13517.89336/RT)	733-1173		2	a,f
3.11-26.89	v = 0.2414 exp(13414.54683/RT)	733-1173		2	a,f
2.33-17.67	v = 0.2424 exp(13342.99923/RT)	733-1173		2	a,f
1.29-8.71	$v = 0.2437 \exp(13209.9458/RT)$		733-1173		2	a,f
00-0	v = 0.2464 exp(13089.863/RT)		733-1173	(249)	2	a,f,
For additional	l TIBr systems, see : HgBr ₂ -	TICI				
00	v = 0 172 evp/14225 838/PT)		740-1040	±2%	4	a
00	V - 0.176 EXP(14225.0507KT) .		740-1040	±2/°	7	•
For additional	l TIC1 systems, see : TIBr-	111				
00	v = 0.2284 exp(14522.90697/RT	······································	740-960	±2%	3	a,f
		TINO3				
00	v = 0.0843 exp(15301.14399/RT	.)	493-554	±2%	1	a,c,
For additiona	1 T1N03 systems, see : AgN03- ;	HgC1 ₂ -				
		T1 ₂ S				
00	v = 0.105948 exp(20983.12779/	(RT)	790-1060	n.a.	7	a,f
		UF ₄				
00	v = 0.010775 exp(58222.17086/	(RT)	1348-1488	n.a.	11	a,f
For additiona	l UF₄ systems, see : LiF- ; NaF-					
	7 7 7	۷ ₂ 0 ₅				
00	v = 0.221 exp(44844.86226/RT)		940-1150	±10%	5	a,f
For additiona	1 V ₂ 0 ₅ systems, see : CaF ₂ - ; K\	/0 ₃ - ; NaV0 ₃ -				
		wo ₃				
For WO ₃ system	ms, see : Na ₂ B ₄ O ₇ - ; Na ₄ P ₂ O ₇ -					
		ZnBr ₂				
100	$v = 7.78814 \times 10^{-5} \exp(82480.$	57191/RT)	680-810	±5%	3	a,f
For additiona	1 ZnBr ₂ systems, see : A1Br ₃ -					
		ZnC1 ₂				
100	$v = 2.6912 \times 10^{-7} \exp(1.14740)$	058842 x 10 ⁵ /RT)	591-628	±5%	21,2	2 d
100	$v = 5.30191 \times 10^{-6} \exp(99099)$.27954/RT)	628-722	±5%	21,2	2 d
100	$v = 2.8899 \times 10^{-4} \exp(75136.5)$	27384/RT)	722-853		21,2	.2 d
For additiona	1 ZnCl ₂ systems, see : CsCl- ; !	CC1- ; LiC1- ; NaC1-				
		ZrC1 ₄				
100	$v = 5.10082 \times 10^{-7} \exp(80116$.57236/RT)	710-760	±2%	4	a,f
	tems, see : KF- ; NaF-	7				

Table 2.4.b Viscosity data reliability statements

Number	Reliability estimates
1	For 100% AgC1, the departures from the recommended data set are: 730 K, -0.25%, 970 K, +0.41%.
2	For 100% AgBr, the departures from the recommended data set are: 720 K, -0.1%, 870 K, +0.4%.
3	The values for 100% HgBr ₂ from this work have been advanced elsewhere as the recommended data set.
4	For 100% AgBr, the results from this study have been advanced elsewhere as the recommended data set.
5	For 100% AgC1, the results from this study have been advanced elsewhere as the recommended data set.
6	For 100% PbCl ₂ , the results from this study have been advanced elsewhere as the recommended data set.
7	For 100% AgC1, the results from this study have been advanced elsewhere as the recommended data set.
8	This is approx. 2% lower than the recommended data base for pure AgNO ₃ .
9	For 100% HgI_2 , the departures from the recommended data set are: 556 K, 3.3%, 629 K, 19.3%.
10	For 100% $CsNO_3$, the departures from the recommended data set are: 550 K, +2.9%, 670 K, -5.0%.
11	For 100% AgNO $_3$, the departures from the recommended data set are: 550 K, +1.3%, 670 K, +4.6%.
12	For 100% KNO3, the departures from the recommended data set are: 620 K, -1.7%, 670 K, -1.1%.
13	For 100% AgNO ₃ , the departures from the recommended data set are: 550 K, +1.3%, 670 K, +4.6%.
14	For 100% LiNO3, the departures from the recommended data set are: 550 K, +4.7%, 670 K, +3.7%.
15	For 100% AgNO ₃ , the departures from the recommended data set are: 550 K, +1.3%, 670 K, +4.6%.
16	
-	For 100% NaNO3, the departures from the recommended data set are: 550 K, -0.6%, 670 K, -0.7%.
17	For 100% AgNO ₃ , the departures from the recommended data set are: 550 K, +1.3%, 670 K, +4.6%.
18	For 100% RbN03, the departures from the recommended data set are: 550 K, -4.1%, 670 K, -1.2%.
19	For 100% AgND3, the departures from the recommended data set are: 550 K, +1.3%, 670 K, +4.6%.
20	For 100% TIND3, at 498 K, the departure from the recommended value is +8.3%.
21	For 100% AgNO ₃ , at 498 K, the departure from the recommended value is -1.0%.
22	For 100% AlBr $_3$, the departures from the recommended data set are: 385 K, +2.0%, 415 K, +2.0%.
23	For 100% AlBr3, the departures from the recommended data set are: 415 K, +2.6%, 430 K, +3.4%.
24	For 100% AlBr3, the departures from the recommended data set are: 385 K, +2.0%, 420 K, +2.0%.
25	For 100% SbBr3, the results from this study have been advanced elsewhere as the recommended data set.
26	For 100% AlBr3, the departures from the recommended data set are: 415 K, +1.9%, 435 K, +3.9%.
27	For 100% AlBr3, the departures from the recommended data set are: 415 K, +1.9%, 435 K, +3.9%.
28	For viscosity measurements from this laboratory (Trondheim) for 100% NaCl in the Molten Salts Standards Program have been advanced as
00	the recommended data set
29 30	For 100% LiF, the departures from the recommended data set are: 1150 K, +27%, 1320 K, +22%. For 100% NaF, the departures from the recommended data set are: 1290 K, +31%, 1370 K, +20%.
31	For 100% Na ₃ A1F ₆ , the departures from the recommended data set are: 1300 K, -41%, 1340 K, -40%.
32	For 100% Na ₂ A1F ₆ , the results from this laboratory have been advanced elsewhere as the recommended data set.
	•
33	The results of Abramov et al. appear to be approx. 12% too high based on comparisons with the recommended data set for NagAlF6.
34 35	For 100% CsC1, the departures from the recommended data set are: 930 K, -11%, 1030 K, -16%. For 100% BaCl ₂ , the departures from the recommended data set are: 1240 K, +3.2%, 1290 K, -0.1%.
36	For 100% BaCl ₂ , the departures from the recommended data set are: 1240 K, +3.2%, 1290 K, -0.1%.
37	For 100% MgCl ₂ , the departures from the recommended data set are: 1010 K, -2.3%, 1130 K, 0.0%.
38	For 100% BaCl ₂ , the departures from the recommended data set are: 1250 K, +9.5%, 1350 K, +10.4%.
39	For 100% NaC1, the departures from the recommended data set are: 1100 K; +44%, 1140 K, +33%.
40	For 100% Ba(NO ₂) ₂ , the results from this work have been advanced elsewhere as the recommended data set.
41	For 100% Ba(NO ₂) ₂ , the results from this work have been advanced elsewhere as the recommended data set.
42	For 100% KNO3, the departures from the recommended data set are: 613 K -2.2%, 693 K 1.0%.
43	The results appear to be approx. 18% too high, based on comparisons with the recommended data set for KF.
44	The results appear to be approx. 17% too high, based on comparisons with the recommended data set for LiF.
45	The results for 100% BeF ₂ have been advanced elsewhere as the best values data set.
46	The results appear approx. 17% too high, based on comparisons with the recommended data set for NaF.
47	Based on comparisons with the recommended data set for RbF, the results appear approx. 18% too high.
48	For 100% B ₂ 0 ₃ , the results from this work have been advanced elsewhere as the recommended data set.
49	For 100% B_2O_3 , the results appear approx. 40-50% too high, based on comparisons with the recommended data set.
50	For 100% B_2O_3 , the results from this work have been advanced elsewhere as the recommended data set.
51	For 100% B ₂ 0 ₃ , the results from this work have been advanced elsewhere as the recommended data set.

Table 2.4.b Viscosity data reliability statements (continued)

Number	Reliability estimates
52	For 100% B_2O_3 , the results from this work have been advanced elsewhere as the recommended data set.
53	For 100% B ₂ 0 ₃ , the results from this study have been advanced elsewhere as the recommended data set.
54	For 100% NaPO3, the results have been advanced elsewhere as the recommended data set.
55	For 100% B ₂ 0 ₃ , the departures from the recommended data set are: 970 K, +2.7%, 1020 K, +13.2%.
56	For 100% Na ₂ B ₄ O ₇ , the results appear about 39% too high at approx. 1030 K on comparison with the recommended data set.
57	For 100% B ₂ 0 ₃ , the departures from the recommended data set are: 920 K, +29%, 1020 K, +51%.
8	For 100% B ₂ O ₃ , the results from this work have been advanced elsewhere as the recommended data set.
59	For 100% B ₂ 0 ₃ , the results from this work have been advanced elsewhere as the recommended data set.
50	For 100% B ₂ O ₃ , the results from this work have been advanced elsewhere as the recommended data set.
51	For 100% NaCl, the departures from the recommended data set are: 1100 K, +44%, 1140 K, +33%.
52	For 100% CaCl ₂ , the departures from the recommended data set are: 1030 K, +36.7%, 1140 K, +39.8%.
53	For 100% Na ₃ AlF ₆ , the departures from the recommended data set are: 1300 K, -41%, 1340 K, -40%.
64	For 100% KNO3, the departures from the recommended data set are: 620 K, -0.3%, 670 K, -1.1%.
35	For 100% LiNO ₃ , the departures from the recommended data set are: 540 K -0.5%, 650 K -4.9%.
56	For 100% NaNO3, the departures from the recommended data set are: 590 K -2.9%, 690 K -2.5%.
57	For 100% Na ₂ SO ₄ , the results from this study have been advanced elsewhere as the recommended data set.
68	For 100% CdCl ₂ , the results have been advanced elsewhere as the recommended data set.
69	For 100% CdBr ₂ , the results have been advanced elsewhere as the recommended data set.
70	For 100% PbCl ₂ at 793 K, the departure from the recommended data set is -7.4%.
71	For 100% CdI ₂ , the departures from the recommended data set are: 690 K, -34%, 790 K, -41%.
72	For 100% CdCl ₂ , the results have been recommended elsewhere as the recommended data set.
73	For 100% CdCl ₂ , the results have been recommended elsewhere as the recommended data set.
74	For 100% PbBr ₂ , the departures from the recommended data set are: 735 K, +21%, 790 K, +16%.
75	For 100% PbCl ₂ , the departures from the recommended data set are: 800 K, +1.5%, 950 K, -1.0%.
76	For 100% CdCl ₂ , the results have been advanced elsewhere as the recommended data set.
77	Insufficient details for firm estimate. Based on the principles of the method, possibly 10%.
78	For 100% Cu ₂ S, the departures from the recommended data set are: 1473 K, ~0.7%, 1773 K, +7.5%.
79	For 100% Co_4S_3 , the departures from the recommended data set are: 1480 K, -2.0%, 1770 K, +0.9%.
80	For 100% FeS, the results have been advanced elsewhere as the recommended data set.
81	For 100% Co ₄ S ₃ , the results have been recommended elsewhere as the recommended data set.
82	For 100% Ni ₃ S ₂ , the results have been advanced elsewhere as the recommended data set.
83	For 100% Co ₄ S ₃ , the results have been advanced elsewhere as the recommended data set.
84	For 100% CsC1 and 100% CsBr, the departures from the recommended data sets are, respectively, +1.7% and +8%.
85	For 100% CsF and 100% CsBr, the results differ from the recommended data sets by -18% and +8%, respectively.
86	For 100% CsBr and 100% CsI at 1070 K, the departures from the recommended data sets are, respectively: +8.0% and +1.6%.
87	For 100% CsF and 100% CsC1, the results differ by -18% and +1.7%, respectively, from the recommended data sets.
88 89	For 100% CSC1 and 100% CSI, the departures from the recommended data sets are, respectively: +2% and +1.7%.
90	For 100% KC1, the departures from the recommended data set are: 1053 K 7.9%, 1162 K 5.8%. For 100% CsC1, the departures from the recommended data set are: 963 K 2.9%, 1072 K 4.2%.
91	For 100% LaCl ₃ , the departures from the recommended data set are: 1190 K, -0.6%, 1240 K, -3.4%.
92	For 100% CsC1, the departures from the recommended data set are: 935 K, -11.4%, 1030 K, -16.2%.
93	For 100% LiC1, the departures from the recommended data set are: 893 K 15.6%, 1083 K -1.5%.
94	For 100% LiC1, the departures from the recommended data set are: 930 K, +8.5%, 1060 K, -3.2%.
95	For 100% CsC1, the departures from the recommended data set are: 930 K, -12%, 1030 K, -17%.
96	For 100% CsC1, the departures from the recommended data set are: 963 K 2.9%, 1072 K 4.2%.
97 98	For 100% RbC1, the departures from the recommended data set are: 1023 K 3.7%, 1113 K 3.8%.
99	For 100% CSC1, the departures from the recommended data set are: 963 K 2.9%, 1072 K 4.2%. For 100% CSC1, the departures from the recommended data set are: 940 K, -2.0%, 1070 K, -3.0%.
100	For 100% CSF, the departures from the recommended data set are: 940 K, -2.0%, 1070 K, -3.0%. For 100% CSF and 100% CSI, the results differ from the recommended data sets by -18% and +2%, respectively.
101	For 100% KN03, the departures from the recommended data set are: 630 K, -1.5%, 760 K, -4.1%.
102	For 100% CSNO ₃ , the departures from the recommended data set are: 700 K, +8.5%, 770 K, +10.9%.

Table 2.4.b Viscosity data reliability statements (continued)

104	For 100% CsNO ₃ , the departures from the recommended data set are: 700 K, +8.5%, 770 K, +10.9%.
105	For 100% NaNO ₃ , the departures from the recommended data set are: 600 K, -0.4%, 740 K, 0.0%.
106	For 100% CsN03, the departures from the recommended data set are: 700 K, +8.5%, 770 K, +10.9%.
107	For 100% RbN03, the departures from the recommended data set are: 600 K, 0.0%, 700 K, 0.0%, i.e.: exact accord.
108	For 100% CsN03, the departures from the recommended data set are: 700 K, +8.5%, 770 K, +10.9%.
109	Measurements were extended to include NaCl, and comparison with the recommended NaCl data set shows excellent agreement (i.e., ± 1%).
110	For 100% $N(C_3H_7)_4SCN$, the results have been advanced elsewhere as the recommended data set.
111	For 100% FeS, the results have been advanced elsewhere as the recommended data set.
112	For 100% Cu ₂ S, the results have been advanced elsewhere as the recommended data set.
113	For 100% Ni ₃ S ₂ , the results have been advanced elsewhere as the recommended data set.
114	For 100% Cu_2S , the departures from the recommended data set are: 1473 K, -0.7%, 1773 K, +7.5%.
1 15	For 100% Ni_3S_2 , the results have been advanced elsewhere as the recommended data set.
116	For 100% FeS, the results have been advanced elsewhere as the recommended data set.
117	For 100% HgI ₂ , at 531.2 K, the departure from the recommended data set is +35.2%.
118	For 100% HgBr ₂ , the departures from the recommended data set are: 520 K, -41%, 531 K, +3.7%.
119	For 100% HgBr ₂ , the results have been advanced elsewhere as the recommended data set.
120	For 100% HgBr ₂ , the results have been advanced elsewhere as the recommended data set.
121	For 100% HgBr ₂ , the results have been advanced elsewhere as the recommended data set.
122	For 100% TINO3, the results have been advanced elsewhere as the recommended data set.
123	For 100% KC1, the departures from the recommended data set are: 1070 K, +7%, 1200 K, +5%, respectively.
124 125	For 100% KBr, the departures from the recommended data set are, respectively: 1030 K, -1.2%, 1200 K, +5%.
126	For 100% PbBr ₂ , the departures from the recommended data set are: 735 K, +0.9%, 820 K, +8.3%.
127	For 100% KBr, the departures from the recommended data set are: 1040 K , -1.8% , 1200 K , $+3.8\%$. For 100% PbCl ₂ at 791 K, the departure from the recommended data set is -34% .
128	For 100% KPD3, at 1173 K, the departure from the recommended data set is 38%.
	For 100% K ₂ ZrF ₆ , the results have been advanced elsewhere as the recommended data set.
	For 100% KC1, the departures from the recommended data set are: 1070 K, +26%, 1170 K, +15%.
	For 100% LiCl, the departures from the recommended data set are: 930 K, +10.8%, 1060 K, +4.2%.
	For 100% KC1, the departures from the recommended data set are: 1080 K, +4.0%, 1150 K, +4.7%.
133	For 100% $MgCl_2$, the departures from the recommended data set are: 1010 K, -2.3% , 1130 K, 0.0%.
	For 100% KC1, the departures from the recommended data set are: 1080 K, +11%, 1150 K, +8%.
	For 100% NaCl, the departures from the recommended data set are: 1100 K, +33%, 1170 K, +19%.
	For 100% KC1, the departures from the recommended data set are: 1080 K, +3.9%, 1150 K, +4.4%.
	For 100% PbBr2, the departures from the recommended data set are: 700 K, -7.8%, 790 K, +8.4%.
	For 100% PbCl ₂ , the departures from the recommended data set are: 880 K, 0.0%, 970 K, -1.0%.
	For 100% RbCl, the departures from the recommended data set are: 1053 K 7.9%, 1162 K 5.8%. For 100% KCl, the departures from the recommended data set are: 1023 K 3.7%, 1113 K 3.8%.
	For 100% SbCl3, at 373.2 K, the departure from the recommended data set is +11.7%.
	For 100% KC1, the departures from the recommended data set are: 1070 K, -11.4%, 1170 K, -7.6%.
143	Insufficient details for firm estimate. Based on principles of the method, possibly 10%
	Insufficient details for a firm estimate. Based on the principles of the method, possibly 10%.
	Insufficient details for firm estimate. Based on the principles of the method, possibly 10%.
147	Insufficient details for firm estimate. Based on the principles of the method, possibly 10%. For 100% KNO3, the departures from the recommended data set are: 620 K, -0.4% , 700 K, -1.5% .
	For 100% LiNO ₃ , the departures from the recommended data set are: 520 K, +0.4%, 700 K, -1.5%.
	For 100% NaNO ₃ , the departures from the recommended data set are: 540 K, +4.5%, 650 K, +3.5%.
	For 100% KF, at 1253 K, the departure from the recommended data set is +50%.
	Comparison with the recommended data set for KF (0.0% ZrF4) at 1253 K, indicates that the results are approx. 52% too high.
	For 100% NaNO ₂ , the departures from the recommended data set are: 570 K, +0.3%, 610 K, -0.3%.
	For 100% KNO ₂ , the departures from the recommended data set are: 720 K, -5.6%, 740 K, -6.4%.

THERMODYNAMIC AND TRANSPORT PROPERTIES FOR MOLTEN SALTS

Table 2.4.b Viscosity data reliability statements (continued)

Number	Reliability estimates
155	For 100% KNO. The departures from the recommended data set and, \$20 K =0.4% 700 K =1.5%
155 156	For 100% KN0 $_3$, the departures from the recommended data set are: 620 K, -0.4%, 700 K, -1.5%. For 100% LiN0 $_3$, the departures from the recommended data set are: 550 K, +4.1%, 650 K, +3.7%.
157	For 100% KNO ₃ , the departures from the recommended data set are: 630 K, -1.5%, 690 K, -0.3%.
158	For 100% KNO ₃ , the departures from the recommended data set are: 620 K, -0.4%, 700 K, -1.5%.
	·
159	For 100% NaNO ₃ , the departures from the recommended data set are: 600 K, ~0.4%, 720 K, 0.0%.
160	For 100% KNO ₃ , the departures from the recommended data set are: 630 K, -1.5%, 690 K, -0.3%.
161	For 100% RbNO ₃ , the departures from the recommended data set are: 600 K, 0.0%, 700 K, 0.0%, i.e.: exact accord.
162	For 100% KNO ₃ , the departures from the recommended data set are: 630 K, -1.5%, 690 K, -0.3%.
163	For 100% KNU ₃ , the departures from the recommended data set are: 613 K -2.2%, 693 K 1.0%.
164 165	For 100% KDH, the results have been advanced elsewhere as the recommended data set. For 100% KPD ₃ , the results have been advanced as the recommended data set.
166	For 100% V ₂ 0 ₅ at 1111 K, the departure from the recommended data set is -8.4%.
167	For 100% V ₂ 0 ₅ at 1111 K, the departure from the recommended data set is +5.6%.
168	Measurements were extended to include NaCl. Comparison with the recommended NaCl data base shows excellent agreement (i.e., ± 1%).
169	For 100% Li ₂ CO ₃ , the departures from the recommended data set are: 1020 K, +33%, 1170 K, +26%.
170	For 100% Na ₂ CO ₃ , at 1160 K, the departure from the recommended data set is -0.8%.
171	For 100% K ₂ CO ₃ , at 1190 K, the departure from the recommended data set is +0.7%.
172	For 100% K ₂ TiF ₆ , the results have been advanced elsewhere as the recommended data set.
173	For 100% NaCl, the departures relative to the recommended data set are: 1090 K, +32%, 1140 K, +36%.
174	For 100% K2ZrF6, the results have been advanced elsewhere as the recommended data set.
175	For 100% $Na_2B_4D_7$, the results have been advanced as the recommended data set.
176	For 100% LaCl ₃ , the results have been advanced elsewhere as the recommended data set.
177	For 100% LaCl ₃ , the departures from the recommended data set are: 1190 K, -0.6%, 1240 K, -3.4%.
178	For 100% MgCl ₂ , the departures from the recommended data set are: 1010 K, +4.4%, 1130 K, +1.9%.
179	For 100% LiC1, the departures from the recommended data set are: 930 K, 13.9%, 1020 K, 10.6%.
180	For 100% RbC1, the departures from the recommended data set are: 1023 K 3.7%, 1113 K 3.8%.
181	For 100% LiC1, the departures from the recommended data set are: 893 K +15.6%, 1083 K -1.5%.
182	For 100% ZnCl ₂ , the results have been advanced elsewhere as the recommended data set.
183 184	For 100% LiC1, the departures from the recommended data set are: 910 K, -40%, 1090 K, -32%.
185	For 100% LiClo ₃ , the results have been advanced elsewhere as the recommended data set.
186	For 100% LiNO3, the departures from the recommended data set are: 540 K, +4.5%, 650 K, +3.5%.
187	For 100% LiC104, the results have been advanced elsewhere as the recommended data set.
	For 100% NaND3, the departures from the recommended data set are: 580 K, 0.0%, 720 K, -1.9%.
188 189	For 100% LiC10 ₄ , the results have been advanced as the recommended data set.
190	Comparison with the recommended data sets for both NaF and LiF indicates that the results are approx. 18% too high. For 100% LiF, the departures from the recommended data set are: 1180 K, +25%, 1320 K, +18%.
191	Comparison with the recommended data sets for both LiF and RbF, indicates that the results are about 18% too high.
192	Comparison with the recommended data set for LiF, indicates that the results are about 17% too high.
193	For 100% LiNO3, the departures from the recommended data set are: 540 K, +4.5%, 650 K, +3.5%.
194	For 100% NaNO3, the departures from the recommended data set are: 550 K, -0.6%, 670 K, -0.7%.
195	For 100% LiNO3, the departures from the recommended data set are: 550 K, +4.1%, 650 K, +3.7%.
196	For 100% RbN03, the departures from the recommended data set are: 600 K, 0.0%, 700 K, 0.0%, i.e.: exact accord.
197	For 100% LiNO3, the departures from the recommended data set are: 550 K, +4.1%, 650 K, +3.7%.
198	Measurements were extended to include 100% NaCl. Comparison with the recommended NaCl data set shows the agreement is within 1%.
199	For 100% Na ₂ CO ₃ , at 1160 K, the departure from the recommended data set is -0.8%.
200	For 100% Li_2CO_3 , the departures from the recommended data set are: 1020 K, +33%, 1170 K, +26%.
201	For 100% Na_3A1F_6 , the departures from the recommended data set are: 1320 K, +7.0%, 1390 K, -9.2%.
202	For 100% NaCl, compared with the recommended data set, the value at 1073 K is about 15% too high.
203	For 100% $MgCl_2$, the departures from the recommended data set are: 1023 K, +2%, 1073 K, 0.0%.
204	For 100% Na ₃ A1F ₆ , the departures from the recommended data set are: 1273 K, +1.7%, 1323 K, +1.8%.

Table 2.4.b Viscosity data reliability statements (continued)

Number	Reliability estimates
205	Comparison with the recommended data set for NaF indicates that the results may be approx. 18% too high.
206	For 100% NaBF ₄ , the results have been advanced as the recommended data set.
207	For 100% NaCl, the departures from the recommended data set are: 1083 K, +30%, 1143 K, +29%.
208	For 100% NaBr, the departures from the recommended data set are, respectively: 1083 K, 28%, 1143 K, 34%.
209	For 100% NaF, at 1273 K, the departure from the recommended data set is -2.7%.
210	For 100% NaNO3, the departures from the recommended data set are: 580 K, +2.0%, 720 K, -0.6%.
211	For 100% NaOH, the departure from the recommended data set falls within the estimated accuracy limits (± 5%).
212	For 100% Na_2SO_4 , at 1173 K, the departure from the recommended data set is -47%. For 100% $NaCl$, at 1173 K, the departure from the recommended data set is +38%.
213	For 100% NaC1, the departures from the recommended data set are: 1090 K, +32%, 1210 K, +26%.
214	For 100% NaClO ₃ , the results have been advanced as the recommended data set.
215	For 100% NaN03, the departures from the recommended data set are: 580 K, 0.0%, 720 K, -1.9%.
216	For 100% NaPO3, at 1173 K, the departure from the extrapolated value from the recommended data base is +250%.
217	Comparison with the recommended data set for NaF, indicates that the results are approx. 18% too high.
218	For 100% RbN03, the departures from the recommended data set are: 600 K, 0.0%, 700 K, 0.0%, i.e.: exact accord.
219	For 100% NaNO3, the departures from the recommended data set are: 600 K, -0.4%, 740 K, 0.0%.
220	For 100% NaOH, the results have been advanced as the recommended data set.
221	For 100% $Na_2B_4O_7$, at 1223 K, the departure from the recommended data set is +16.5%.
222	For 100% NaPO3 at 1223 K, the value is virtually in exact agreement with the extrapolated result from the recommended data set.
23	For 100% $Na_4P_2O_7$, the results have been advanced as the recommended data set.
224	For 100% NaPD3, the departures from the recommended data set are: 1020 K, +8%, 1200 K, +42% (extrapolated).
225	For 100% V_2D_5 , the results have been advanced as the recommended data set.
226	For 100% NaVO3, the results have been advanced as the recommended data set.
227	For 100% $Na_2B_40_7$, the departures from the recommended data set are: 1130 K, +80%, 1220 K, +100%.
228	Measurements were extended to include 100% NaCl. Comparison with the recommended NaCl data set shows the agreement is within 1%.
229	For 100% Na ₂ SO ₄ at 1273 K, the departure from the recommended data set is -35%.
230	For 100% Na ₄ P ₂ O ₇ , the departures from the recommended data set are: 1310 K, +99%, 1350 K, +82%.
231	While there is insufficient information for accuracy estimates, the results may be taken as reliable.
232	While there is insufficient information for accuracy estimates, the results may be taken as reliable.
233	While there is insufficient information for accuracy estimates, the results may be taken as reliable.
234	While there is insufficient information for accuracy estimates, the results may be taken as reliable.
235	While there is insufficient information for accuracy estimates, the results may be taken as reliable.
236	While there is insufficient information for accuracy estimates, the results may be taken as reliable.
237	While there is insufficient information for accuracy estimates, the results may be taken as reliable.
238	While there is insufficient information for accuracy estimates, the results may be taken as reliable.
239	While there is insufficient information for accuracy estimates, the results may be taken as reliable.
240	For 100% PbCl ₂ , the results have been advanced as the recommended data set.
241	For 100% PbBr ₂ , the results have been advanced as the recommended data set.
242	For 100% SbCl ₅ , the results have been advanced as the recommended data set.
243	For 100% SbCl ₃ , the results have been advanced as the recommended data set.
244	For 100% TiCl ₄ , the results have been advanced as the recommended data set.
245	For 100% $SnCl_4$, the departures from the recommended data set are: 293 K, -0.49%, 333 K, -0.14%.
246	For 100% TIC1, the departures from the recommended data set are: 770 K, +4.4%, 1040 K, +1.1%.
247	For 100% TIBr, the departures from the recommended data set are: 760 K, -3.5%, 990 K, -9.0%.
248	For 100% TII, the departures from the recommended data set are: 740 K, -4.5%, 960 K, -2.8%.
249	For 100% T1Br, the departures from the recommended data set are: 760 K, -3.5%, 990 K, -9.0%.

Table 2.4.c Viscosity data comments

Fla	ag Comment
a	The previous evaluation is correct and still holds as the recommended data base. Accuracy limits have been upgraded in light of the Molten Salts Standards Program.
b	The equation in the previous evaluation is incorrect.
С	There are new data but they do not change the recommended equation or uncertainty
d	There are new data and together with the results of the Molten Salts Standards Program, a shift from the previous evaluation is recommended. The new correlation equation is listed herewith.
f	The previously recommended data have been refitted to an exponential correlation function
g	The previous reported results were graphical, these correlations were digitized and refitted to the equations herewith.
k	Systems not included in the previous work.
1	Some of the numerical property values in the previous recommend data tables have been found to be incorrect. The correlation equations are correct.
m	The previously recommended correlation has been replaced by the polynomial herewith
n	The previously recommended data base has been refitted to a polynomial correlation equation.

z The amounts of NaCl and KCl were fixed at the equi-molar ratio (1:1) throughout this series of measurements

o These compositions are: Equivalent Percent.

Table 2.4.d Viscosity data references

Number Reference

- G.J. Janz, F.W. Dampier, G.R. Lakshminarayan, P.K. Lorenz, and R.P.T. Tomkins, Natl. Stand. Ref. Data Ser., NBS, Washington, D.C. 15, 1 (1968).
- G.J. Janz, R.P.T. Tomkins, and C.B. Allen, J. Phys. Chem. Ref. Data &, 125 (1979).
- G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Jr. Downey, and S.K. Singer, J. Phys. Chem. Ref. Data 6, 409 (1977).
- 4 G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Jr. Downey, G.L. Gardner, U. Krebs, and S.K. Singer, J. Phys. Chem. Ref. Data 4, 871 (1975).
- G.J. Janz, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data <u>12</u>, 591 (1983).
- ⁶ G.J. Janz, U. Krebs, H.F. Siegenthaler, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 1, 581 (1972).
- G.J. Janz, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 9, 831 (1980).
- W. Brockner, K. Torklep, and H. Oye, Ber. Bunsenges. Phys. Chem. 83, 1 (1979).
- Yu.V. Borisoglebskii, Bui Huong,, Van, and M.M. Vetyukov, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. 3, 16 (1980).
- 10 R.A. Carpio, F.C. Kibler, J.L.A. King, W. Brockner, K. Torklep, and H.A. Oye, Ber. Bunsenges. Phys. Chem. 85, 31 (1981).
- 11 G.J. Janz, G.L. Gardner, U. Krebs, and R.P.T. Tomkins, J. Phys. Chem. Ref. Data 3, 1 (1974).
- 12 K Torklep, and H Bye, J. Chem. Eng. Data 27, 387 (1982).
- 13 P.I. Protsenko, and O.N. Razumovskaya, Zhur. Fiz. Khim. $\underline{38}$, 1455 (1964).
- 14 P.I. Protsenko, V.G. Smotrakov, and N.P. Popovskaya, Zhur. Priklad. Khim. 45, 2745 (1972).
- 15 A. G. Bergman,, et al, Izv. Sekt. Fiz-Khim Anal Inst. Obshch. <u>26</u>, 156 (1955).
- 16 V.G. Smotrakov, N.P. Popovskaya, and V.A. Tereshchenko, Zhur. Priklad. Khim. 45, 2627 (1972).
- ¹⁷ L. Huayi, G. Chuntai, and T. Dingxiang, Int. Conf. Rare Earths Dev. and Applications; 2, 1147 (1985).
- 18 T. Ejima, and Y. Sato, Pre-publication data submitted to MSDC-RPI (1985).
- 19 W. Brockner, K. Torklep, and H.A. Oye, J. Chem. Eng. Data 26, 250 (1981).
- ²⁰ S. Zuca, and R. Borcan, Rev. Roum. Chim. <u>19</u>, 553 (1974).
- ²¹ T. Yoko, Ph.D. Thesis, Dept. Metallurgy, Tohoku Univ., Sendai, Japan (1979).
- 22 T. Ejima, T. Yoko, G. Saito, and Y. Kato, Nippon Kinzoku Gakkaishi $\underline{43}$, 929 (1979).
- ²³ S. Yaegashi, T. Kijima, E. Takeuchi, and K. Tamai, J. Japan Inst. Metals <u>51</u>, 328 (1987).
- ²⁴ T. Ejima, T. Yamamura, and Y. Sato, Pre-publication data submitted to MSDC-RPI (1986).
- ²⁵ T. Ejima, Y. Sato, T. Yamamura, K. Tamai, M. Hasebe, M.S. Bohn, and G.J. Janz, J. Chem. Eng. Data <u>32</u>, 180 (1987).
- 26 E.J. Cairns, C.E. Crouthamel, A.K. Fischer, M.S. Foster, J.C. Hesson, C.E. Johnson, H. Shimotake, and A.D. Tevebaugh, Prog. Rep. USAEC ANL-731661 (1967).
- W. Brockner, K. Torklep, and H. Oye, Ber. Bunsenges. Phys. Chem. 83, 12 (1979).

Table 2.5 Additional data

(mo1 %)	Equation	T range(K)	Accur.	Ref.	Commen
	Density (g cm ⁻³)				
	KF-L 1F-NaF				
2.0-46.5-11.5	d = 2.5793 - 6.237 x 10 ⁻⁴ T	940-1170	±2%	1	k
	Surface Tension (mN m ⁻¹)				
	KC1-YC13				
100	g = 138.6 - 0.0519 T	1048-1248	(1)	2	k
.5-87.5	g = 142.3 - 0.0557 T				k
-75	g = 142.5 - 0.0561 T	1123-1248			k
-58	g = 145.5 - 0.0581 T	1123-1248			k
-40	g = 153.2 - 0.0621 T	1123-1248			k
-25	g = 164.1 - 0.0678 T				k
.5-12.5 0-0	g = 172.2 - 0.0725 T				k
0-0	g = 178.8 - 0.0758 T	1073-1248	(2)		k
	KF-LiF-NaF				
.0-46.5-11.5	g = 272.6 - 0.1014 T	770-1040	±2%	3	k
	YC13				
0	g = 138.6 - 0.0519 T	1048-1248	±3%	2	k
	Conductance (ohm-1 cm-1)				
	$(R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1})$				
	KF-LiF-NaF				
.0-46.5-11.5	k = 7.805 exp(- 12936.20302/RT)	790-1100	±5%	4, 5	k
	Viscosity (mN s m ⁻²)				
	$(R = 8.31441 \text{ J K}^{-1} \text{ mol}^{-1})$				
	KF-LiF-NaF				
.0-46.5-11.5	v = 0.02487 exp(37213.11858/RT)	770-970	±2%	6	k
	Reliability statements				
				-	
1	For 100% YCl ₃ , the results have been advanced as the recommended data set.				

Flag Comments

k Systems not included in previous work

References

⁴ G.W. Mellors, and S. Senderoff, Proc. 1st Austral. Conf. Electrochem.578 (1963).

² G. Liu, and N. M. Stubina, J. Less-Common Metals <u>136</u>, 111 (1987).

³ R.B. Ellis, Prog. Rep. USAEC CT. AT-(40-1)-2073 (1959).

⁴ J. Braunstein, and G.D. Robbins, Prog. Rep. USAEC DRNL-4548

⁵ N. D. Green, Prog. Rep. USAEC 0RNL CF -64-8-64

⁶ K. Torklep, and H.A. Oye, J. Chem. Eng. Data <u>25</u>, 16 (1980).

Journal of Physical and Chemical Reference Data Cumulative Listing of Reprints and Supplements

Reprints from Volume 1		14.Microwave Spectra		'_'_		
1.Gaseous Diffusion Coefficients, T.R. Marrero and E.A. Mason, Vol. 1, No. 1, pp. 1–118 (1972)	\$7.00	hyde, <i>Donald R. Jo</i>	de, Formamide, and <i>hnson, Frank J. Lov</i> , No. 4, pp. 1011–	as, and William	\$4.50	
2.Selected Values of Critical Supersaturation for Nucleation of Liquids from the Vapor, <i>G.M. Pound</i> , Vol. 1, No. 1, pp. 119–134 (1972)	15.Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes in Water at 25° C, Walter J. Hamer and Yung-Chi Wu, Vol. 1, No. 4, pp. 1047-1099 (1972)					
 Selected Values of Evaporation and Condensation Co- efficients for Simple Substances, G.M. Pound, Vol. 1, No. 1, pp. 135–146 (1972) 	16.The Viscosity and Gaseous and Liqui	Hanley and R.	\$5.00			
4.Atlas of the Observed Absorption Spectrum of Carbon Monoxide between 1060 and 1900 Å, <i>S.G. Tilford and J.D. Simmons</i> , Vol. 1, No. 1, pp. 147–188 (1972)	\$4.50	Prydz, Vol. 1, No. Reprints from	4, pp. 1101-1113 (1 Volume 2	1972)	\$3.00	
5.D. Simmons, Vol. 1, No. 1, pp. 147–166 (1372) 5.Tables of Molecular Vibrational Frequencies, Part 5, <i>T. Shimanouchi</i> , Vol. 1, No. 1, pp. 189–216 (1972) (superseded by No.103)	\$4.00		of Molecules of Ast ne, <i>William H. Kirch</i> k <i>J. Lovas</i> , Vol. 2,	hoff, Donald R.	\$3.00	
6.Selected Values of Heats of Combustion and Heats of Formation of Organic Compounds Containing the Ele- ments C, H, N, O, P, and S, Eugene S. Domalski, Vol. 1, No. 2, pp. 221–278 (1972)	\$5.00	18.Analysis of Specific	Heat Data in the F.J. Cook, Vol. 2,		\$3.00	
7.Thermal Conductivity of the Elements, C.Y. Ho, R.W. Powell, and P.E. Liley, Vol. 1, No. 2, pp. 279–422 (1972)	\$7.50	19.Evaluated Chemical Gas Phase Reaction pp. 25-84 (1973)	Kinetic Rate Const. ons, <i>Keith Schofield,</i>		\$5.00	
8.The Spectrum of Molecular Oxygen, <i>Paul H. Krupenie</i>, Vol. 1, No. 2, pp. 423–534 (1972)9.A Critical Review of the Gas-Phase Reaction Kinetics	\$6.50	20.Atomic Transition Probabilities for Forbidden Lines of the Iron Group Elements. (A Critical Data Compilation for Selected Lines), <i>M.W. Smith and W.L. Wiese</i> , Vol. 2, No. 1, pp. 85–120 (1973)				
of the Hydroxyl Radical, <i>Wm. E. Wilson, Jr.,</i> Vol. 1, No. 2, pp. 535–574 (1972) 10.Molten Salts: Volume 3, Nitrates, Nitrites, and Mix-	\$4.50	21.Tables of Molecular Shimanouchi, Vol. 2	r Vibrational Frequer 2, No. 1, pp. 121-1		\$4.50 \$4.50	
tures, Electrical Conductance, Density, Viscosity, and Surface Tension Data, <i>G.J. Janz, Ursula Krebs, H.F. Siegenthaler, and R.P.T. Tomkins,</i> Vol. 1, No. 3, pp. 581–746 (1972)	\$8.50	(superseded by No. 103) 22.Compilation of Energy Band Gaps in Elemental and-Binary Compound Semiconductors and Insulators, W.H. Strehlow and E.L. Cook, Vol. 2, No. 1, pp. 163–200 (1973)				
11. High Temperature Properties and Decomposition of Inorganic Salts—Part 3. Nitrates and Nitrites, <i>Kurt H. Stern</i> , Vol. 1, No. 3, pp. 747–772 (1972)	23.Microwave Spectra of Molecules of Astrophysical Interest, III. Methanol, <i>R.M. Lees, F.J. Lovas, W.H. Kirchhoff, and D.R. Johnson,</i> Vol. 2, No. 2, pp. 205–214					
12.High-Pressure Calibration: A Critical Review, D.L. Decker, W.A. Bassett, L. Merrill, H.T. Hall, and J.D. Barnett, Vol. 1, No. 3, pp. 773–836 (1972)	\$5.00	(1973)24.Microwave Spectra of Molecules of Astrophysical Interest, IV. Hydrogen Sulfide, <i>Paul Helminger</i>, <i>Frank C.</i>				
13.The Surface Tension of Pure Liquid Compounds, <i>Joseph J. Jasper</i> , Vol. 1, No. 4, pp. 841–1009 (1972)	\$8.50	De Lucia, and William H. Kirchhoff, Vol. 2, No. 2, pp. 215–224 (1973)				
Journal of Physical and Chemical Reference Data Reprint and Supplement Orders		Please ship the follo	owing reprints an	d supplements:		
To: American Chemical Society		Reprint No./Package		copies \$		
Distribution Office 1155 Sixteenth Street, N.W.	i	Reprint No./Package		copies \$		
Washington, DC 20036		Reprint No./Package	1	copies \$		
Name:		Vol. 2, Suppl. 1	Hardcover	copies \$		
Title:			Softcover	0001100 U		
Organization:		Vol. 3, Suppl. 1	☐ Hardcover☐ Softcover☐	copies \$		
Address:		Vol. 6, Suppl. 1	Hardcover	copies \$		
City:State:			Softcover			
Country:Zip:		Vol. 10, Suppl. 1	Hardcover			
I am a member of	Vol. 11, Suppl. 1	Hardcover				
(ACS, AIP, or Affiliated Society)	-	Vol. 11, Suppl. 2 Vol. 13, Suppl. 1	Hardcover			
ORDERS FOR REPRINTS AND SUPPLEMENTS MUST BE		Vol. 14, Suppl. 1	Hardcover			
*Foreign orders for Reprints, add \$2.50 for each reprint for p handling. Foreign orders for Reprint Packages, add \$5.00 for each		Vol. 14, Suppl. 2	Hardcover	copies \$		
Package for postage and handling. Make checks payable to th Chemical Society.		Vol. 16, Suppl. 1	Hardcover			
BULK RATES: Subtract 20% from the listed price for orders o	,f	Other Suppl.:		copies \$		
50 or more of any one item.			Total Enclosed	\$		

(Continuation of Cumulative Listing of Reprints	s)		
25.Tables of Molecular Vibrational Frequencies, Part 7, <i>T. Shimanouchi</i> , Vol. 2, No. 2, pp. 225–256 (1973) (superseded by No. 103)	\$4.00	44.Critical Analysis of Heat-Capacity Data and Evaluation of Thermodynamic Properties of Ruthenium, Rhodium, Palladium, Iridium, and Platinum from 0 to 300 K. A	
26.Energy Levels of Neutral Helium (⁴ He I), <i>W.C. Martin</i> , Vol. 2, No. 2, pp. 257–266 (1973)	\$3.00	Survey of the Literature Data on Osmium, <i>George T. Furukawa, Martin L. Reilly, and John S. Gallagher,</i> Vol. 3, No. 1, pp. 163–209 (1974)	\$4.50
27. Survey of Photochemical and Rate Data for Twenty-eight Reactions of Interest in Atmospheric Chemistry, R.F. Hampson, Editor, W. Braun, R.L. Brown, D. Garvin, J.T. Herron, R.E. Huie, M.J. Kurylo, A.H.		45.Microwave Spectra of Molecules of Astrophysical Interest, V. Water Vapor, Frank C. De Lucia, Paul Helminger, and William H. Kirchhoff, Vol. 3, No. 1, pp. 211–219 (1974)	\$3.00
Laufer, J.D. McKinley, H. Okabe, M.D. Scheer, W. Tsang, and D.H. Stedman, Vol. 2, No. 2, pp. 267–312 (1973)	\$4.50	46.Microwave Spectra of Molecules of Astrophysical Interest, VI. Carbonyl Sulfide and Hydrogen Cyanide, Ar-	
28.Compilation of the Static Dielectric Constant of Inorganic Solids, K.F. Young and H.P.R. Frederikse, Vol. 2, No. 2, pp. 313–410 (1973)	\$6.50	thur G. Maki, Vol. 3, No. 1, pp. 221–244 (1974)47.Microwave Spectra of Molecules of Astrophysical Interest, VII. Carbon Monoxide, Carbon Monosulfide, and	\$4.00
29.Soft X-Ray Emission Spectra of Metallic Solids: Critical Review of Selected Systems, A.J. McAlister, R.C. Dobbyn, J.R. Cuthill, and M.L. Williams, Vol. 2, No. 2, pp.		Silicon Monoxide, <i>Frank J. Lovas and Paul H. Kru- penie</i> , Vol. 3, No. 1, pp. 245–257 (1974)	\$3.00
411–426 (1973) 30.Ideal Gas Thermodynamic Properties of Ethane and	\$3.00	48.Microwave Spectra of Molecules of Astrophysical Interest, VIII. Sulfur Monoxide, Eberhard Tiemann, Vol. 3, No. 1, pp. 259–268 (1974)	\$3.00
Propane, J. Chao, R.C. Wilhoit, and B.J. Zwolinski, Vol. 2, No. 2, pp. 427–438 (1973)	\$3.00	49.Tables of Molecular Vibrational Frequencies, Part 8, 7. Shimanouchi, Vol. 3, No. 1, pp. 269–308 (1974) (superseded by No. 103)	\$4.50
31.An Analysis of Coexistence Curve Data for Several Binary Liquid Mixtures Near Their Critical Points, A. Stein and G.F. Allen, Vol. 2, No. 3, pp. 443–466 (1973)	\$4.00	50.JANAF Thermochemical Tables, 1974 Supplement, M.W. Chase, J.L. Curnutt, A.T. Hu, H. Prophet, A.N. Syverud, and L.C. Walker, Vol. 3, No. 2, pp. 311–480 (1974)	\$8.50
32.Rate Constants for the Reactions of Atomic Oxygen (O ³P) with Organic Compounds in the Gas Phase, John T. Herron and Robert E. Huie, Vol. 2, No. 3, pp. 467–518 (1973)	\$5.00	51. High Temperature Properties and Decomposition of Inorganic Salts, Part 4. Oxy-Salts of the Halogens, Kurt H. Stern, Vol. 3, No. 2, pp. 481–526 (1974)	\$4.50
33.First Spectra of Neon, Argon, and Xenon 136 in the 1.2-4.0 µm Region, <i>Curtis J. Humphreys</i> , Vol. 2, No. 3, pp. 519–530 (1973)	\$3.00	52.Diffusion in Copper and Copper Alloys, Part II. Copper-Silver and Copper-Gold Systems, <i>Daniel B. Butymowicz, John R. Manning, and Michael E. Read,</i>	# F F0
34.Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron-Nickel Alloys, H.M. Ledbetter and R.P. Reed, Vol. 2, No. 3, pp. 531–618 (1973)	\$6.00	 Vol. 3, No. 2, pp. 527–602 (1974) 53.Microwave Spectral Tables I. Diatomic Molecules, Frank J. Lovas and Eberhard Tiemann, Vol. 3, No. 3, 	\$5.50
35.The Viscosity and Thermal Conductivity Coefficients of Dilute Argon, Krypton, and Xenon, <i>H.J.M. Hanley</i> , Vol. 2, No. 3, pp. 619–642 (1973)	\$4.00	 pp. 609–770 (1974) 54.Ground Levels and Ionization Potentials for Lanthanide and Actinide Atoms and Ions, W.C. Martin, Lucy Ha- 	\$8.50
36.Diffusion in Copper and Copper Alloys, Part I. Volume and Surface Self-Diffusion in Copper, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read,		gan, Joseph Reader, and Jack Sugar, Vol. 3, No. 3, pp. 771–780 (1974) 55.Behavior of the Elements at High Pressures, John	\$3.00
Vol. 2, No. 3, pp. 643–656 (1973)	\$3.00	Francis Cannon, Vol. 3, No. 3, pp. 781-824 (1974)	\$4.50
37.The 1973 Least-Squares Adjustment of the Fundamental Constants, <i>E. Richard Cohen and B.N. Taylor</i> , Vol. 2, No. 4, pp. 663–734 (1973)	\$5.50	56.Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25000 Å, <i>Victor Kaufman and Bengt Edlen</i> , Vol. 3, No. 4, pp. 825–895 (1974)	\$5.50
38. The Viscosity and Thermal Conductivity Coefficients of Dilute Nitrogen and Oxygen, H.J.M. Hanley and James F. Ely, Vol. 2, No. 4, pp. 735–756 (1973)	\$4.00	57.Elastic Properties of Metals and Alloys. II. Copper, H.M. Ledbetter and E.R. Naimon, Vol. 3, No. 4, pp.897–935 (1974)	\$4.50
39.Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63 K to 2000 K with Pressures to 10,000 Bar, <i>Richard T. Jacobsen and Richard B. Stewart</i> , Vol. 2, No. 4, pp. 757–922 (1973)	\$8.50	58.A Critical Review of H-Atom Transfer in the Liquid Phase: Chlorine Atom, Alkyl, Trichloromethyl, Alkoxy, and Alkylperoxy Radicals, D.G. Hendry, T. Mill, L. Piszkiewicz, J.A. Howard, and H.K. Eigenmann, Vol. 3,	
40.Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 10 ⁸ Pa, <i>Robert T. McCarty</i> , Vol. 2, No. 4, pp. 923–1042 (1973)	\$7.00	No. 4, pp. 937–978 (1974) 59.The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Argon, Krypton, Xenon, Nitrogen, and Owiger, H. M. Harley, R.P. McCarti,	\$4.50
Reprints from Volume 3		Nitrogen, and Oxygen, H.J.M. Hanley, R.D. McCarty, and W.M. Haynes, Vol. 3, No. 4, pp. 979–1017 (1974)	\$4.50
41.Molten Salts: Volume 4, Part 1, Fluorides and Mixtures, Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, G.L. Gardner, Ursula Krebs, and R.P.T. Tomkins, Vol. 3, No. 1, pp. 1–115	67.00	Reprints from Volume 4	
 (1974) 42.Ideal Gas Thermodynamic Properties of Eight Chloro- and Fluoromethanes, A.S. Rodgers, J. Chao, R. C. Wilhoit, and B.J. Zwolinski, Vol. 3, No. 1, pp. 117–140 	\$7.00	 60.JANAF Thermochemical Tables, 1975 Supplement, M.W. Chase, J.L. Curnutt, H. Prophet, R.A. McDonald, and A.N. Syverud, Vol. 4, No. 1, pp. 1–175 (1975) 61.Diffusion in Copper and Copper Alloys, Part III. Diffusion 	\$8.50
 (1974) 43.Ideal Gas Thermodynamic Properties of Six Chloroethanes, J. Chao, A.S. Rodgers, R.C. Wilhoit, and B.J. Zwolinski, Vol. 3, No. 1, pp. 141–162 (1974) 	\$4.00 \$4.00	sion in Systems Involving Elements of the Groups IA, IIA, IIIB, IVB, VB, VIB, and VIIB, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read, Vol. 4, No. 1, pp. 177–249 (1975)	\$6.00

62.Ideal Gas Thermodynamic Properties of Ethylene			
and Propylene, <i>Jing Chao and Bruno J. Zwolinski</i> , Vol. 4, No. 1, pp. 251–261 (1975)	\$3.00	82.Tables of Critically Evaluated Oscillator Strengths for the Lithium Isoelectronic Sequence, G.A. Martin and W.L. Wiese, Vol. 5, No. 3, pp. 537–570 (1976)	\$4.50
63.Atomic Transition Probabilities for Scandium and Titanium (A Critical Data Compilation of Allowed Lines), W.L. Wiese and J.R. Fuhr, Vol. 4, No. 2, pp. 263–352	t 0.00	83.Ideal Gas Thermodynamic Properties of Six Chloro- fluoromethanes, <i>S.S. Chen, R. C. Wilhoit, and B.J. Zwolinski,</i> Vol. 5, No. 3, pp. 571–580 (1976)	\$3.00
(1975) 64.Energy Levels of Iron, Fe I through Fe xxvi, <i>Joseph Reader and Jack Sugar</i> , Vol. 4, No. 2, pp. 353–440	\$6.00	84.Survey of Superconductive Materials and Critical Evaluation of Selected Properties, <i>B.W. Roberts</i> , Vol. 5, No. 3, pp. 581–821 (1976)	\$12.50
(1975)65.Ideal Gas Thermodynamic Properties of Six Fluoroeth- anes, S.S. Chen, A.S. Rodgers, J. Chao, R.C. Wilhoit,	\$6.00	85. Nuclear Spins and Moments, <i>Gladys H. Fuller</i> , Vol. 5, No. 4, pp. 835–1092 (1976)	\$11.50
and B.J. Zwolinski, Vol. 4, No. 2, pp. 441–456 (1975) 66.Ideal Gas Thermodynamic Properties of the Eight Bro-	\$3.00	86.Nuclear Moments and Moment Ratios as Determined by Mössbauer Spectroscopy, J.G. Stevens and B.D. Dunlap, Vol. 5, No. 4, pp. 1093–1121 (1976)	\$4.00
mo- and lodomethanes, S.A. Kudchadker and A.P. Kudchadker, Vol. 4, No. 2, pp. 457–470 (1975)	\$3.00	87.Rate Coefficients for Ion-Molecule Reactions, I. Ions Containing C and H, L. Wayne Sieck and Sharon G.	0.4.04
67. Atomic Form Factors, Incoherent Scattering Functions, and Photon Scattering Cross Sections, <i>J.H. Hubbell, Wm.J. Veigele, E.A. Briggs, R.T. Brown, D.T. Cromer, and R.J. Howerton, Vol.</i> 4, No. 3, pp. 471–538 (1975)	\$ 5.50	Lias, Vol. 5, No. 4, pp. 1123–1146 (1976) 88.Microwave Spectra of Molecules of Astrophysical Interest, XI. Silicon Sulfide, Eberhard Tiemann, Vol. 5, No. 4, pp. 1147–1156 (1976)	\$4.00 \$3.00
68.Binding Energies in Atomic Negative Ions, <i>H. Hotop</i> and W.C. Lineberger, Vol. 4, No. 3, pp. 539–576 (1975)	\$4.50	89.Property Index and Author Index to Volumes 1–5 (1972–1976), Vol. 5, No. 4, pp. 1161–1183	\$4.00
69.A Survey of Electron Swarm Data, <i>J. Dutton,</i> Vol. 4, No. 3, pp. 577–856 (1975)	\$12.00		
70.Ideal Gas Thermodynamic Properties and Isomerization of n-Butane and Isobutane, S.S. Chen, R.C. Wilhoit,		Reprints from Volume 6	
and B.J. Zwolinski, Vol. 4, No. 4, pp. 859–869 (1975) 71.Molten Salts: Volume 4, Part 2, Chlorides and Mixtures, Electrical Conductance, Density, Viscosity, and	\$3.00	90.Diffusion in Copper and Copper Alloys, Part V. Diffusion in Systems Involving Elements of Group VA, Daniel B. Butrymowicz, John R. Manning, and Michael	
Surface Tension Data, G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, Jr., G.L. Gardner, U. Krebs, and S.K. Singer, Vol. 4, No. 4, pp. 871–1178 (1975)	\$13.00	E. Read, Vol. 6, No. 1, pp. 1–50 (1977)91.The Calculated Thermodynamic Properties of Superfluid Helium-4, James S. Brooks and Russell J. Don-	\$5.00
72.Property Index to Volumes 1-4 (1972-1975), Vol. 4,		nelly, Vol. 6, No. 1, pp. 51–104 (1977)	\$5.00
No. 4, pp. 1179–1192 (1975)	\$3.00	92.Thermodynamic Properties of Normal and Deuterated Methanols, S.S. Chen, R.C. Wilhoit, and B.J. Zwolinski, Vol. 6, No. 1, pp. 105–112 (1977)	\$3.00
.		93.The Spectrum of Molecular Nitrogen, Alf Lofthus and Paul H. Krupenie, Vol. 6, No. 1, pp. 113–307 (1977)	\$9.50
Reprints from Volume 5 73.Scaled Equation of State Parameters for Gases in the Critical Region, J.M.H. Levelt Sengers, W.L. Greer,		94.Energy Levels of Chromium, Cr.1 through Cr.xxiv, <i>Jack Sugar and Charles Corliss</i> , Vol. 6, No. 2, pp. 317–383 (1977)	65 50
and J.V. Sengers, Vol. 5, No. 1, pp. 1-51 (1976)	\$5.00	95.The Activity and Osmotic Coefficients of Aqueous Cal-	\$5.50
74.Microwave Spectra of Molecules of Astrophysical Interest, IX. Acetaldehyde, A. Bauder, F.J. Lovas, and D.R. Johnson, Vol. 5, No. 1, pp. 53-77 (1976)	\$4.00	cium Chloride at 298.15 K, Bert R. Staples and Ralph L. Nuttall, Vol. 6, No. 2, pp. 385-407 (1977)	\$4.00
est, IX. Acetaldehyde, A. Bauder, F.J. Lovas, and D.R. Johnson, Vol. 5, No. 1, pp. 53-77 (1976) 75.Microwave Spectra of Molecules of Astrophysical Interest, X. Isocyanic Acid, G. Winnewisser, W.H. Hocking,	\$4.00	cium Chloride at 298.15 K, Bert R. Staples and Ralph L. Nuttall, Vol. 6, No. 2, pp. 385–407 (1977) 96.Molten Salts: Volume 4, Part 3, Bromides and Mixtures; lodides and Mixtures-Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J.	\$4.00
est, IX. Acetaldehyde, A. Bauder, F.J. Lovas, and D.R. Johnson, Vol. 5, No. 1, pp. 53–77 (1976) 75.Microwave Spectra of Molecules of Astrophysical Interest, X. Isocyanic Acid, G. Winnewisser, W.H. Hocking, and M.C.L. Gerry, Vol. 5, No. 1, pp. 79–101 (1976) 76.Diffusion in Copper and Copper Alloys, Part IV. Diffu-	\$4.00 \$4.00	cium Chloride at 298.15 K, Bert R. Staples and Ralph L. Nuttall, Vol. 6, No. 2, pp. 385–407 (1977) 96.Molten Salts: Volume 4, Part 3, Bromides and Mixtures; lodides and Mixtures-Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, Jr., and S.K. Singer, Vol. 6, No. 2, pp. 409–596 (1977)	\$4.00 \$9.00
est, IX. Acetaldehyde, A. Bauder, F.J. Lovas, and D.R. Johnson, Vol. 5, No. 1, pp. 53–77 (1976) 75.Microwave Spectra of Molecules of Astrophysical Interest, X. Isocyanic Acid, G. Winnewisser, W.H. Hocking, and M.C.L. Gerry, Vol. 5, No. 1, pp. 79–101 (1976) 76.Diffusion in Copper and Copper Alloys, Part IV. Diffusion in Systems Involving Elements of Group VIII, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read, Vol. 5, No. 1, pp. 103–200 (1976)		cium Chloride at 298.15 K, Bert R. Staples and Ralph L. Nuttall, Vol. 6, No. 2, pp. 385–407 (1977) 96.Molten Salts: Volume 4, Part 3, Bromides and Mixtures; lodides and Mixtures-Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, Jr., and S.K. Singer, Vol. 6, No. 2, pp. 409–596 (1977) 97.The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Methane, H.J.M. Hanley, W.M. Haynes, and R.D. McCarty, Vol. 6, No. 2,	\$9.00
est, IX. Acetaldehyde, A. Bauder, F.J. Lovas, and D.R. Johnson, Vol. 5, No. 1, pp. 53–77 (1976) 75.Microwave Spectra of Molecules of Astrophysical Interest, X. Isocyanic Acid, G. Winnewisser, W.H. Hocking, and M.C.L. Gerry, Vol. 5, No. 1, pp. 79–101 (1976) 76.Diffusion in Copper and Copper Alloys, Part IV. Diffusion in Systems Involving Elements of Group VIII, Daniel B. Butrymowicz, John R. Manning, and Michael	\$4.00	cium Chloride at 298.15 K, Bert R. Staples and Ralph L. Nuttall, Vol. 6, No. 2, pp. 385–407 (1977) 96.Molten Salts: Volume 4, Part 3, Bromides and Mixtures; lodides and Mixtures-Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, Jr., and S.K. Singer, Vol. 6, No. 2, pp. 409–596 (1977) 97.The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Methane, H.J.M. Han-	
est, IX. Acetaldehyde, A. Bauder, F.J. Lovas, and D.R. Johnson, Vol. 5, No. 1, pp. 53–77 (1976) 75.Microwave Spectra of Molecules of Astrophysical Interest, X. Isocyanic Acid, G. Winnewisser, W.H. Hocking, and M.C.L. Gerry, Vol. 5, No. 1, pp. 79–101 (1976) 76.Diffusion in Copper and Copper Alloys, Part IV. Diffusion in Systems Involving Elements of Group VIII, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read, Vol. 5, No. 1, pp. 103–200 (1976) 77.A Critical Review of the Stark Widths and Shifts of Spectral Lines from Non-Hydrogenic Atoms, N. Konjevic and J.R. Roberts, Vol. 5, No. 2, pp. 209–257 (1976) 78.Experimental Stark Widths and Shifts for Non-Hydrogenic Spectral Lines of Ionized Atoms (A Critical Review and Tabulation of Selected Data), N. Konjevic	\$4.00 \$6.50 \$5.00	cium Chloride at 298.15 K, Bert R. Staples and Ralph L. Nuttall, Vol. 6, No. 2, pp. 385–407 (1977) 96.Molten Salts: Volume 4, Part 3, Bromides and Mixtures; lodides and Mixtures-Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, Jr., and S.K. Singer, Vol. 6, No. 2, pp. 409–596 (1977) 97.The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Methane, H.J.M. Hanley, W.M. Haynes, and R.D. McCarty, Vol. 6, No. 2, pp. 597–609 (1977) 98.Phase Diagrams and Thermodynamic Properties of Ternary Copper-Silver Systems, Y. Austin Chang, Daniel Goldberg, and Joachim P. Neumann, Vol. 6, No. 3, pp. 621–673 (1977) 99.Crystal Data Space-Group Tables, Alan D. Mighell, Helen M. Ondik, and Bettijoyce Breen Molino, Vol. 6, No.	\$9.00 \$3.00 \$5.00
est, IX. Acetaldehyde, A. Bauder, F.J. Lovas, and D.R. Johnson, Vol. 5, No. 1, pp. 53–77 (1976) 75.Microwave Spectra of Molecules of Astrophysical Interest, X. Isocyanic Acid, G. Winnewisser, W.H. Hocking, and M.C.L. Gerry, Vol. 5, No. 1, pp. 79–101 (1976) 76.Diffusion in Copper and Copper Alloys, Part IV. Diffusion in Systems Involving Elements of Group VIII, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read, Vol. 5, No. 1, pp. 103–200 (1976) 77.A Critical Review of the Stark Widths and Shifts of Spectral Lines from Non-Hydrogenic Atoms, N. Konjevic and J.R. Roberts, Vol. 5, No. 2, pp. 209–257 (1976) 78.Experimental Stark Widths and Shifts for Non-Hydrogenic Spectral Lines of Ionized Atoms (A Critical Review and Tabulation of Selected Data), N. Konjevic and W.L. Wiese, Vol. 5, No. 2, pp. 259–308 (1976) 79.Atlas of the Absorption Spectrum of Nitric Oxide (NO)	\$4.00 \$6.50	cium Chloride at 298.15 K, Bert R. Staples and Ralph L. Nuttall, Vol. 6, No. 2, pp. 385–407 (1977) 96.Molten Salts: Volume 4, Part 3, Bromides and Mixtures; lodides and Mixtures-Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, Jr., and S.K. Singer, Vol. 6, No. 2, pp. 409–596 (1977) 97.The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Methane, H.J.M. Hanley, W.M. Haynes, and R.D. McCarty, Vol. 6, No. 2, pp. 597–609 (1977) 98.Phase Diagrams and Thermodynamic Properties of Ternary Copper-Silver Systems, Y. Austin Chang, Daniel Goldberg, and Joachim P. Neumann, Vol. 6, No. 3, pp. 621–673 (1977) 99.Crystal Data Space-Group Tables, Alan D. Mighell, Helen M. Ondik, and Bettijoyce Breen Molino, Vol. 6, No. 3, pp. 675–829 (1977)	\$9.00 \$3.00
est, IX. Acetaldehyde, A. Bauder, F.J. Lovas, and D.R. Johnson, Vol. 5, No. 1, pp. 53–77 (1976) 75.Microwave Spectra of Molecules of Astrophysical Interest, X. Isocyanic Acid, G. Winnewisser, W.H. Hocking, and M.C.L. Gerry, Vol. 5, No. 1, pp. 79–101 (1976) 76.Diffusion in Copper and Copper Alloys, Part IV. Diffusion in Systems Involving Elements of Group VIII, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read, Vol. 5, No. 1, pp. 103–200 (1976) 77.A Critical Review of the Stark Widths and Shifts of Spectral Lines from Non-Hydrogenic Atoms, N. Konjevic and J.R. Roberts, Vol. 5, No. 2, pp. 209–257 (1976) 78.Experimental Stark Widths and Shifts for Non-Hydrogenic Spectral Lines of Ionized Atoms (A Critical Review and Tabulation of Selected Data), N. Konjevic and W.L. Wiese, Vol. 5, No. 2, pp. 259–308 (1976) 79.Atlas of the Absorption Spectrum of Nitric Oxide (NO) between 1420 and 1250 Å, E. Miescher and F. Alberti, Vol. 5, No. 2, pp. 309–317 (1976)	\$4.00 \$6.50 \$5.00	cium Chloride at 298.15 K, Bert R. Staples and Ralph L. Nuttall, Vol. 6, No. 2, pp. 385–407 (1977) 96.Molten Salts: Volume 4, Part 3, Bromides and Mixtures; lodides and Mixtures-Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, Jr., and S.K. Singer, Vol. 6, No. 2, pp. 409–596 (1977) 97.The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Methane, H.J.M. Hanley, W.M. Haynes, and R.D. McCarty, Vol. 6, No. 2, pp. 597–609 (1977) 98.Phase Diagrams and Thermodynamic Properties of Ternary Copper-Silver Systems, Y. Austin Chang, Daniel Goldberg, and Joachim P. Neumann, Vol. 6, No. 3, pp. 621–673 (1977) 99.Crystal Data Space-Group Tables, Alan D. Mighell, Helen M. Ondik, and Bettijoyce Breen Molino, Vol. 6, No. 3, pp. 675–829 (1977)	\$9.00 \$3.00 \$5.00
est, IX. Acetaldehyde, A. Bauder, F.J. Lovas, and D.R. Johnson, Vol. 5, No. 1, pp. 53–77 (1976) 75.Microwave Spectra of Molecules of Astrophysical Interest, X. Isocyanic Acid, G. Winnewisser, W.H. Hocking, and M.C.L. Gerry, Vol. 5, No. 1, pp. 79–101 (1976) 76.Diffusion in Copper and Copper Alloys, Part IV. Diffusion in Systems Involving Elements of Group VIII, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read, Vol. 5, No. 1, pp. 103–200 (1976) 77.A Critical Review of the Stark Widths and Shifts of Spectral Lines from Non-Hydrogenic Atoms, N. Konjevic and J.R. Roberts, Vol. 5, No. 2, pp. 209–257 (1976) 78.Experimental Stark Widths and Shifts for Non-Hydrogenic Spectral Lines of Ionized Atoms (A Critical Review and Tabulation of Selected Data), N. Konjevic and W.L. Wiese, Vol. 5, No. 2, pp. 259–308 (1976) 79.Atlas of the Absorption Spectrum of Nitric Oxide (NO) between 1420 and 1250 Å, E. Miescher and F. Alberti, Vol. 5, No. 2, pp. 309–317 (1976) 80.Ideal Gas Thermodynamic Properties of Propanone and 2-Butanone, Jing Chao and Bruno J. Zwolinski,	\$4.00 \$6.50 \$5.00 \$3.00	cium Chloride at 298.15 K, Bert R. Staples and Ralph L. Nuttall, Vol. 6, No. 2, pp. 385–407 (1977) 96.Molten Salts: Volume 4, Part 3, Bromides and Mixtures; lodides and Mixtures-Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, Jr., and S.K. Singer, Vol. 6, No. 2, pp. 409–596 (1977) 97.The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Methane, H.J.M. Hanley, W.M. Haynes, and R.D. McCarty, Vol. 6, No. 2, pp. 597–609 (1977) 98.Phase Diagrams and Thermodynamic Properties of Ternary Copper-Silver Systems, Y. Austin Chang, Daniel Goldberg, and Joachim P. Neumann, Vol. 6, No. 3, pp. 621–673 (1977) 99.Crystal Data Space-Group Tables, Alan D. Mighell, Helen M. Ondik, and Bettijoyce Breen Molino, Vol. 6, No. 3, pp. 675–829 (1977) 100.Energy Levels of One-Electron Atoms, Glen W. Erickson, Vol. 6, No. 3, pp. 831–869 (1977) 101.Rate Constants for Reactions of CIO _x of Atmospheric Interest, R.T. Watson, Vol. 6, No. 3, pp. 871–917 (1977)	\$9.00 \$3.00 \$5.00
est, IX. Acetaldehyde, A. Bauder, F.J. Lovas, and D.R. Johnson, Vol. 5, No. 1, pp. 53–77 (1976) 75.Microwave Spectra of Molecules of Astrophysical Interest, X. Isocyanic Acid, G. Winnewisser, W.H. Hocking, and M.C.L. Gerry, Vol. 5, No. 1, pp. 79–101 (1976) 76.Diffusion in Copper and Copper Alloys, Part IV. Diffusion in Systems Involving Elements of Group VIII, Daniel B. Butrymowicz, John R. Manning, and Michael E. Read, Vol. 5, No. 1, pp. 103–200 (1976) 77.A Critical Review of the Stark Widths and Shifts of Spectral Lines from Non-Hydrogenic Atoms, N. Konjevic and J.R. Roberts, Vol. 5, No. 2, pp. 209–257 (1976) 78.Experimental Stark Widths and Shifts for Non-Hydrogenic Spectral Lines of Ionized Atoms (A Critical Review and Tabulation of Selected Data), N. Konjevic and W.L. Wiese, Vol. 5, No. 2, pp. 259–308 (1976) 79.Atlas of the Absorption Spectrum of Nitric Oxide (NO) between 1420 and 1250 Å, E. Miescher and F. Alberti, Vol. 5, No. 2, pp. 309–317 (1976)	\$4.00 \$6.50 \$5.00 \$5.00	cium Chloride at 298.15 K, Bert R. Staples and Ralph L. Nuttall, Vol. 6, No. 2, pp. 385–407 (1977) 96.Molten Salts: Volume 4, Part 3, Bromides and Mixtures; lodides and Mixtures-Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, Jr., and S.K. Singer, Vol. 6, No. 2, pp. 409–596 (1977) 97.The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Methane, H.J.M. Hanley, W.M. Haynes, and R.D. McCarty, Vol. 6, No. 2, pp. 597–609 (1977) 98.Phase Diagrams and Thermodynamic Properties of Ternary Copper-Silver Systems, Y. Austin Chang, Daniel Goldberg, and Joachim P. Neumann, Vol. 6, No. 3, pp. 621–673 (1977) 99.Crystal Data Space-Group Tables, Alan D. Mighell, Helen M. Ondik, and Bettijoyce Breen Molino, Vol. 6, No. 3, pp. 675–829 (1977) 100.Energy Levels of One-Electron Atoms, Glen W. Erickson, Vol. 6, No. 3, pp. 831–869 (1977) 101.Rate Constants for Reactions of ClO _x of Atmospheric Interest, R.T. Watson, Vol. 6, No. 3, pp. 871–917	\$9.00 \$3.00 \$5.00 \$8.00 \$4.50

103.Tables of Molecular Vibrational Frequencies. Consolidated Volume II. <i>T. Shimanouchi,</i> Vol. 6, No. 3, pp. 993-1102 (1977) (supersedes Nos. 5, 21, 25, 49)	\$6 .50	123.Thermal Conductivity of Ten Selected Binary Alloy Systems, C.Y. Ho, M.W. Ackerman, K.Y. Wu, S.G. Oh, and T.N. Havill, Vol. 7, No. 3, pp. 959–1177 (1978)	\$10.00
104.Effects of Isotopic Composition, Temperature, Pressure, and Dissolved Gases on the Density of Liquid Water, <i>George S. Kell</i> , Vol. 6, No. 4, pp. 1109-1131 (1977)	\$4.00	124.Semi-Empirical Extrapolation and Estimation of Rate Constants for Abstraction of H from Methane by H, O, HO, and O ₂ , <i>Robert Shaw</i> , Vol. 7, No. 3, pp. 1179–1190 (1978)	\$3.00
105. Viscosity of Water Substance-New International Formulation and Its Background, A. Nagashima, Vol. 6, No. 4, pp. 1133-1166 (1977)	\$4.50	125.Energy Levels of Vanadium, Vı through VxxIII, <i>Jack Sugar and Charles Corliss</i> , Vol. 7, No. 3, pp. 1191–1262 (1978)	\$5.50
106.A Correlation of the Existing Viscosity and Thermal Conductivity Data of Gaseous and Liquid Ethane, H.J.M. Hanley, K.E. Gubbins, and S. Murad, Vol. 6, No. 4, pp. 1167–1180 (1977)	\$3.00	126.Recommended Atomic Electron Binding Energies, 1s to $6p_{3/2}$, for the Heavy Elements, $Z=84$ to 103, F.T. Porter and M.S. Freedman, Vol. 7, No. 4, pp. 1267–1284 (1978)	\$4.00
107.Elastic Properties of Zinc: A Compilation and a Review, H.M. Ledbetter, Vol. 6, No. 4, pp. 1181–1203 (1977)	\$4.00	127.Ideal Gas Thermodynamic Properties of CH _{4-(a+b+c+d)} F _a Cl _b Br _c l _g Halomethanes, <i>Shanti A. Kudchadker and Arvind P. Kudchadker</i> , Vol. 7, No. 4, pp. 1285–1307 (1978)	\$4.00
108.Behavior of the AB-Type Compounds at High Pressures and High Temperatures, <i>Leo Merrill</i> , Vol. 6, No. 4, pp. 1205–1252 (1977)	\$4.50	128.Critical Review of Vibrational Data and Force Field Constants for Polyethylene, <i>John Barnes and Bruno</i>	
109.Energy Levels of Manganese, Mn I through Mn xxv, Charles Corliss and Jack Sugar, Vol. 6, No. 4, pp. 1253–1329 (1977)	\$5.50	Fanconi, Vol. 7, No. 4, pp. 1309–1321 (1978) 129.Tables of Molecular Vibrational Frequencies, Part 9, Takehiko Shimanouchi, Hiroatsu Matsuura, Yoshiki Ogawa, and Issei Harada, Vol. 7, No. 4, pp. 1323– 1443 (1978)	\$3.00 \$7.00
Reprints from Volume 7		130.Microwave Spectral Tables. II. Triatomic Molecules, Frank J. Lovas, Vol. 7, No. 4, pp. 1445–1750 (1978)	\$13.00
110.Tables of Atomic Spectral Lines for the 10 000 Å to 40 000 Å Region, <i>Michael Outred</i> , Vol. 7, No. 1, pp. 1–262 (1978)	\$11.50		
111.Evaluated Activity and Osmotic Coefficients for Aqueous Solutions: The Alkaline Earth Metal Halides, <i>R.N. Goldberg and R.L. Nuttall</i> , Vol. 7, No. 1, pp.		Reprints from Volume 8	
263-310 (1978) 112.Microwave Spectra of Molecules of Astrophysical Interest XII. Hydroxyl Radical, <i>Robert A. Beaudet and Rob-</i>	\$4.50	131.Energy Levels of Titanium, Till through TilxxII, Charles Corliss and Jack Sugar, Vol. 8, No. 1, pp. 1–62 (1979)	\$5.00
ert L. Poynter, Vol. 7, No. 1, pp. 311–362 (1978) 113.Ideal Gas Thermodynamic Properties of Methanoic and Ethanoic Acids, <i>Jing Chao and Bruno J. Zwolinski</i> ,	\$5.00	132.The Spectrum and Energy Levels of the Neutral Atom of Boron (B _I), G.A. Odintzova and A.R. Striganov, Vol. 8, No. 1, pp. 63-67 (1979)	\$3.00
Vol. 7, No. 1, pp. 363–377 (1978) 114.Critical Review of Hydrolysis of Organic Compounds in Water Under Environmental Conditions, <i>W. Mabey and</i>	\$3.00	133.Relativistic Atomic Form Factors and Photon Coherent Scattering Cross Sections, <i>J.H. Hubbell and I. Øverbø</i> , Vol. 8, No. 1, pp. 69–105 (1979)	\$4.50
T. Mill, Vol. 7, No. 2, pp. 383-415 (1978) 115.Ideal Gas Thermodynamic Properties of Phenol and	\$4.50	134.Microwave Spectra of Molecules of Astrophysical Interest. XIV. Vinyl Cyanide (Acrylonitrile), M.C.L. Gerry, K.	φ4.50
Creosols, <i>S.A. Kudchadker, A.P. Kudchadker, R.C. Wilhoit, and B.J. Zwolinski,</i> Vol. 7, No. 2, pp. 417–423 (1978)	\$3.00	Yamada, and G. Winnewisser, Vol. 8, No. 1, pp. 107–123 (1979) 135.Molten Salts: Volume 4, Part 4, Mixed Halide Melts,	\$4.00
116.Densities of Liquid $CH_{4-a}X_a$ (X = Br,I) and $CH_{4-(a+b+c+d)}F_aCl_bBr_cl_d$ Halometanes, A.P. Kud-chadker, S.A.F. Albertalker, P.R. Patnaik, and P.P. Michter Vol. 7, No. 2, eq. 405, 409, 4070.	00.00	Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J. Janz, R.P.T. Tomkins, and C.B. Allen, Vol. 8, No. 1, pp. 125–302 (1979)	\$9.00
Mishra, Vol. 7, No. 2, pp. 425–439 (1978) 117.Microwave Spectra of Molecules of Astrophysical Interest XIII. Cyanoacetylene, W.J. Lafferty and F.J. Lovas,	\$3.00	136.Atomic Radiative and Radiationless Yields for <i>K</i> and <i>L</i> Shells, <i>M.O. Krause</i> , Vol. 8, No. 2, pp. 307–327 (1979)	\$4.00
Vol. 7, No. 2, pp. 441–493 (1978) 118.Atomic Transition Probabilities for Vanadium, Chromium, and Manganese (A Critical Data Compilation of	\$5.00	137.Natural Widths of Atomic K and L Levels, Kα X-ray Lines and Several KLL Auger Lines, M.O. Krause and J.H. Oliver, Vol. 8, No. 2, pp. 329–338 (1979)	\$3.00
Allowed Lines), S.M. Younger, J.R. Fuhr, G.A. Martin, and W.L. Wiese, Vol. 7, No. 2, pp. 495–629 (1978)	\$7.50	138.Electrical Resistivity of Alkali Elements, T.C. Chi, Vol. 8, No. 2, pp. 339–438 (1979)	\$6.50
119.Thermodynamic Properties of Ammonia, <i>Lester Haar</i> and John S. Gallagher, Vol. 7, No. 3, pp. 635–792 (1978)	\$8.00	139.Electrical Resistivity of Alkaline Earth Elements, <i>T.C. Chi,</i> Vol. 8, No. 2, pp. 439-497 (1979)	\$5.00
120.JANAF Thermochemical Tables, 1978 Supplement, M.W. Chase, Jr., J.L. Curnutt, R.A. McDonald, and A.N. Syverud, Vol. 7, No. 3, pp. 793–940 (1978)	\$8.00	140.Vapor Pressures and Boiling Points of Selected Halomethanes, A.P. Kudchadker, S.A. Kudchadker, R.P. Shukla, and P.R. Patnaik, Vol. 8, No. 2, pp. 499–517 (1979)	#4.00
121. Viscosity of Liquid Water in the Range — 8°C to 150°C, Joseph Kestin, Mordechai Sokolov, and William A. Wakeham, Vol. 7, No. 3, pp. 941–948 (1978)	\$3.00	(1979) 141.Ideal Gas Thermodynamic Properties of Selected Bromoethanes and Iodoethane, S.A. Kudchadker and A.P. Kudchadker, Vol. 8, No. 2, pp. 519, 526, (1979)	\$4.00
122.The Molar Volume (Density) of Solid Oxygen in Equilibrium with Vapor, <i>H.M. Roder</i> , Vol. 7, No. 3, pp. 949–957 (1978)	\$3.00	 Kudchadker, Vol. 8, No. 2, pp. 519–526 (1979) 142.Thermodynamic Properties of Normal and Deuterated Naphthalenes, S.S. Chen, S.A. Kudchadker, and R.C. Wilhoit, Vol. 8, No. 2, pp. 527–535 (1979) 	\$3.00 \$3.00

143.Microwave Spectra of Molecules of Astrophysical Interest. XV. Propyne, A. Bauer, D. Boucher, J. Burie, J. Demaison, and A. Dubrulle, Vol. 8, No. 2, pp. 537–558 (1979)	\$4.00	161.A Compilation of Kinetic Parameters for the Thermal Degradation of <i>n</i> -Alkane Molecules, <i>D.L. Allara and Robert Shaw</i> , Vol. 9, No. 3, pp. 523–559 (1980)	\$5.50
144.A Correlation of the Viscosity and Thermal Conductivity Data of Gaseous and Liquid Propane, P.M. Holland, H.J.M. Hanley, K.E. Gubbins, and J.M. Haile,	Q 4.00	162.Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives, H.H. Li, Vol. 9, No. 3, pp. 561–658 (1980)	\$ 7.50
 Vol. 8, No. 2, pp. 559–575 (1979) 145.Microwave Spectra of Molecules of Astrophysical Interest. XVI. Methyl Formate, A. Bauder, Vol. 8, No. 3, 	\$4.00	163.Microwave Spectra of Molecules of Astrophysical Interest XIX. Methyl Cyanide, D. Boucher, J. Burie, A. Bauer, A. Dubrulle, and J. Demaison, Vol. 9, No. 3, pp. 659–719 (1980).	\$6.00
 pp. 583–618 (1979) 146.Molecular Structures of Gas-Phase Polyatomic Molecules Determined by Spectroscopic Methods, Marlin D. Harmony, Victor W. Laurie, Robert L. Kuczkowski, R.H. Schwendeman, D.A. Ramsay, Frank J. Lovas, Walter J. Lafferty, and Arthur G. Maki, Vol. 8, No. 3, pp. 	\$4.50	164.A Review, Evaluation, and Correlation of the Phase Equilibria, Heat of Mixing, and Change in Volume on Mixing for Liquid Mixtures of Methane + Propane, R.C. Miller, A.J. Kidnay, and M.J. Hiza, Vol. 9, No. 3, pp. 721–734 (1980)	\$4.00
619-721 (1979) 147.Critically Evaluated Rate Constants for Gaseous Reac-	\$6.50	 165.Saturation States of Heavy Water, P.G. Hill and R.D. Chris MacMillan, Vol. 9, No. 3, pp. 735-749 (1980) 166.The Solubility of Some Sparingly Soluble Lead Salts: 	\$4.00
tions of Several Electronically Excited Species, <i>Keith Schoffeld</i> , Vol. 8, No. 3, pp. 723–798 (1979) 148.A Review, Evaluation, and Correlation of the Phase	\$5.50	An Evaluation of the Solubility in Water and Aqueous Electrolyte Solution, <i>H. Lawrence Clever and Francis J. Johnston</i> , Vol. 9, No. 3, pp. 751–784 (1980)	\$ 5.50
Equilibria, Heat of Mixing, and Change in Volume on Mixing for Liquid Mixtures of Methane + Ethane, <i>M.J. Hiza, R.C. Miller, and A.J. Kidnay,</i> Vol. 8, No. 3, pp. 799–816 (1979)	\$4.00	167.Molten Salts Data as Reference Standards for Density, Surface Tension, Viscosity, and Electrical Conductance: KNO ₃ and NaCl, George J. Janz, Vol. 9, No. 4, pp. 791–829 (1980)	\$5.50
149.Energy Levels of Aluminum, Al 1 through Al XIII, W.C. Martin and Romuald Zalubas, Vol. 8, No. 3, pp. 817–864 (1979)	\$4.50	168.Molten Salts: Volume 5, Part 1, Additional Single and Multi-Component Salt Systems. Electrical Conductance, Density, Viscosity, and Surface Tension Data, G.J.	*****
150.Energy Levels of Calcium, Ca i through Ca xx, <i>Jack Sugar and Charles Corliss</i> , Vol. 8, No. 3, pp. 865–916 (1979)	\$5.00	Janz and R.P. Tomkins, Vol. 9, No. 4, pp. 831-1021 (1980)	\$10.50
151.Evaluated Activity and Osmotic Coefficients for Aqueous Solutions: Iron Chloride and the Bi-univalent Compounds of Nickel and Cobalt, <i>R.N. Goldberg, R.L. Nutall, and B.R. Staples,</i> Vol. 8, No. 4, pp. 923–1003	\$3.00	169.Pair, Triplet, and Total Atomic Cross Sections (and Mass Attenuation Coefficients) for 1 MeV-100 GeV Photons in Elements Z = 1 to 100, J.H. Hubbell, H.A. Gimm, and I. Øverbø, Vol. 9, No. 4, pp. 1023-1147 (1980)	\$8.00
(1979) 152.Evaluated Activity and Osmotic Coefficients for Aqueous Solutions: Bi-univalent Compounds of Lead, Copper, Manganese, and Uranium, R.N. Goldberg, Vol.	\$6.00	170.Tables of Molecular Vibrational Frequencies, Part 10, Takehiko Shimanouchi, Hiroatsu Matsuura, Yoshiki Ogawa, and Issei Harada, Vol. 9, No. 4, pp. 1149– 1254 (1980)	\$7.50
 No. 4, pp. 1005–1050 (1979) Microwave Spectra of Molecules of Astrophysical Interest. XVII. Dimethyl Ether, F.J. Lovas, H. Lutz, and H. Dreizler, Vol. 8, No. 4, pp. 1051–1107 (1979) 	\$4.50 \$5.00	171.An Improved Representative Equation for the Dynamic Viscosity of Water Substance, <i>J.T.R. Watson, R.S. Basu, and J.V. Sengers</i> , Vol. 9, No. 4, pp. 1255–1290 (1980)	\$5.50
154.Energy Levels of Potassium, Kı through Kxıx, Charles Corliss and Jack Sugar, Vol. 8, No. 4, pp. 1109–1145 (1979)	\$4.50	172.Static Dielectric Constant of Water and Steam, M. Ue- matsu and E. U. Franck, Vol. 9, No. 4, pp. 1291–1306 (1980)	\$4.00
155.Electrical Resistivity of Copper, Gold, Palladium, and Silver, <i>R.A. Matula</i> , Vol. 8, No. 4, pp. 1147–1298 (1979)	\$8.00	173.Compilation and Evaluation of Solubility Data in the Mercury (I) Chloride-Water System, <i>Y. Marcus</i> , Vol. 9, No. 4, pp. 1307–1329 (1980)	\$5.00
		Reprints from Volume 10	
Reprints from Volume 9		174.Evaluated Activity and Osmotic Coefficients for	
156.Energy Levels of Magnesium, Mg I through Mg XII, W.C. Martin and Romuald Zalubas, Vol 9, No. 1, pp. 1–58(1980)	\$6.00	Aqueous Solutions: Bi-Univalent Compounds of Zinc, Cadmium, and Ethylene Bis(Trimethylammonium) Chloride and Iodide, <i>R. N. Goldberg</i> , Vol. 10, No. 1, pp. 1–55 (1981)	\$6.00
157.Microwave Spectra of Molecules of Astrophysical Interest. XVIII. Formic Acid, <i>Edmond Willemot, Didier Dangoisse, Nicole Monnanteuil, and Jean Bellet,</i> Vol. 9, No. 1, pp. 59–160 (1980)	\$7.50	175. Tables of the Dynamic and Kinematic Viscosity of Aqueous KCl Solutions in the Temperature Range 25–150 °C and the Pressure Range 0.1–35 MPa, Joseph Kestin, H. Ezzat Khalifa, and Robert J. Correia, Vol.	\$ 0.00
158.Refractive Index of Alkaline Earth Halides and Its Wavelength and Temperature Derivatives, <i>H.H. Li</i> , Vol. 9, No. 1, pp. 161–289 (1980).	\$8.50	10, No. 1, pp. 57–70 (1981) 176.Tables of the Dynamic and Kinematic Viscosity of	\$4.00
159.Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry, D.L. Baulch, R.A. Cox, R.F. Hampson, Jr., J.A. Kerr, J. Troe, and R.L. Watson, Vol. 9,	φο.υ∪	Aqueous NaCl Solutions in the Temperature Range 20–150 °C and the Pressure Range 0.1–35 MPa, <i>Joseph Kestin, H. Ezzat Khalifa, and Robert J. Correia</i> , Vol. 10, No. 1, pp. 71–87 (1981)	\$5.00
No. 2, pp. 295–471 (1980) 160.Energy Levels of Scandium, Sc I through Sc xxII, <i>Jack Sugar and Charles Cerliss</i> , Vol. 9, No. 2, pp. 473–511	\$10.00	177.Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. I. Selenium, <i>Umesh Gaur, Hua-Cheng Shu, Aspy Mehta, and Bernhard Wunder-</i>	
(1980)	\$5.50	lich, Vol. 10, No. 1, pp. 89-117 (1981)	\$5.00

(Continuation of Cumulative Listing of Reprint	s)		
178.Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. II. Polyethylene, <i>Umesh Gaur</i> and Bernhard Wunderlich, Vol. 10, No. 1, pp. 119–152 (1981)	\$ 5.50	197.Ideal Gas Thermodynamic Properties of CH ₃ , CD ₃ , CD ₄ , C ₂ D ₂ , C ₂ D ₄ , C ₂ D ₆ , C ₂ H ₆ , CH ₃ N ₂ CH ₃ , and CD ₃ N ₂ CD ₃ , <i>Krishna M. Pamidimukkala, David Rogers, and Gordon B. Skinner</i> , Vol. 11, No. 1, pp. 83–99 (1982)	#C 00
179.Energy Levels of Sodium, Na I through Na XI, W. C. Martin and Romuald Zalubas, Vol. 10, No. 1, pp. 153–195 (1981)	\$5.50	(1982)198.Peak Absorption Coefficients of Microwave Absorption Lines of Carbonyl Sulphide, Z. Kisiel and D. J. Millen,	\$6.00
180.Energy Levels of Nickel, Ni I through Ni xxvIII, Charles Corliss and Jack Sugar, Vol. 10, No. 1, pp. 197–289 (1981)	\$7.00	Vol. 11, No. 1, pp. 99–116 (1982) 199.Vibrational Contributions to Molecular Dipole Polarizabilities, <i>David M. Bishop and Lap M. Cheung</i> , Vol. 11,	\$6.00
181.lon Product of Water Substance, 0-1000 °C, 1-10,000 bars New International Formulation and Its Back-	Ψ1.00	No. 1, pp. 119–133 (1982) 200.Energy Levels of Iron, Fe I through Fe xxvi, <i>Charles</i>	\$5.00
ground, William L. Marshall and E. U. Franck, Vol. 10, No. 2, pp. 295–304 (1981)	\$4.00	Corliss and Jack Sugar, Vol. 11, No. 1, pp. 135–241 (1982)	\$11.00
182.Atomic Transition Probabilities for Iron, Cobalt, and Nickel (A Critical Data Compilation of Allowed Lines), J. R. Fuhr, G. A. Martin, W. L. Wiese, and S. M. Younger, Vol. 10, No. 2, pp. 305–565 (1981)	\$12.50	201.Microwave Spectra of Molecules of Astrophysical Interest. XXI. Ethanol(C ₂ H ₅ OH) and Propionitrile (C ₂ H ₅ CN), Frank J. Lovas, Vol. 11, No. 2, pp. 251–312 (1982)	\$8.00
183.Thermodynamic Tabulations for Selected Phases in the System CaO-Al ₂ O ₃ SiO ₂ -H ₂ O at 101.325 kPa (1 atm) between 273.15 and 1800 K, <i>John L. Haas, Jr., Gilpin R. Robinson, Jr., and Bruce S. Hemingway,</i> Vol.	\$12.30	202.Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules, V. Polystyrene, <i>Umesh Gaur</i> and Bernhard Wunderlich, Vol. 11, No. 2, pp. 313–325 (1982)	\$5.00
 10, No. 3, pp. 575–669 (1981) 184.Evaluated Activity and Osmotic Coefficients for Aqueous Solutions: Thirty-Six Uni-Bivalent Electrolytes, R. N. Goldberg, Vol. 10, No. 3, pp. 671–764 (1981) 	\$7.00 \$7.00	203.Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement 1, CODATA Task Group on Chemical Kinetics, D. L. Baulch, R. A. Cox, P. J. Crutzen, R. F. Hampson, Jr., J. A. Kerr (Chairman), J. Troe, and R. T. Watson, Vol. 11, No. 2, pp.	
185.Activity and Osmotic Coefficients of Aqueous Alkali Metal Nitrites, <i>Bert R. Staples</i> , Vol. 10, No. 3, pp. 765–778 (1981)	\$4.00	327–496 (1982)204.Molten Salts Data: Diffusion Coefficients in Single and Multi-Component Salt Systems, G. J. Janz and N. P.	\$15.00
186.Activity and Osmotic Coefficients of Aqueous Sulfuric Acid at 298.15 K, <i>Bert R. Staples</i> , Vol. 10, No. 3, pp. 779–798 (1981)	\$5.00	Bansal, Vol. 11, No. 3, pp. 505–693 (1982) 205.JANAF Thermochemical Tables, 1982 Supplement, M. W. Chase, Jr., J. L. Curnutt, J. R. Downey, Jr., R. A.	\$16.00
187.Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution, <i>Francis Wilkinson and James</i>		McDonald, A. N. Syverud, and E. A. Valenzuela, Vol. 11, No. 3, pp. 695–940 (1982) 206.Critical Evaluation of Vapor-Liquid Equilibrium, Heat of	\$20.00
 G. Brummer, Vol. 10, No. 4, pp. 809–999 (1981) 188.Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. III. Polyoxides, Umesh Gaur and Bernhard Wunderlich, Vol. 10, No. 4, pp. 1001– 	\$10.00	Mixing, and Volume Change of Mixing Data. General Procedures, <i>Buford D. Smith, Ol Muthu, Ashok Dewan, and Matthew Gierlach,</i> Vol. 11, No. 3, pp. 941–951 (1982)	\$5.00
1049 (1981) 189.Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IV. Polypropylene, <i>Umesh</i>	\$5.50	207.Rate Coefficients for Vibrational Energy Transfer Involving the Hydrogen Halides, <i>Stephen R. Leone</i> , Vol. 11, No. 3, pp. 953–996 (1982)	\$7.00
Gaur and Bernhard Wunderlich, Vol. 10, No. 4, pp. 1051–1064 (1981) 190.Tables of N ₂ O Absorption Lines for the Calibration of	\$4.00	208.Behavior of the AB ₂ -Type Compounds at High Pressures and High Temperatures, <i>Leo Merrill</i> , Vol. 11, No. 4, pp. 1005–1064 (1982)	\$8.00
Tunable Infrared Lasers from 522 cm ⁻¹ to 657 cm ⁻¹ and from 1115 cm ⁻¹ to 1340 cm ⁻¹ , <i>W. B. Olson, A. G. Maki, and W. J. Lafferty</i> , Vol. 10, No. 4, pp. 1065–1084 (1981)	\$5.00	209.Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VI. Acrylic Polymers, <i>Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich,</i> Vol. 11, No. 4, pp. 1065–1089 (1982)	\$6.00
191.Microwave Spectra of Molecules of Astrophysical Interest. XX. Methane, <i>I. Ozier, M. C. L. Gerry, and A. G. Robiette,</i> Vol. 10, No. 4, pp. 1085–1095 (1981)	\$4.00	210.Molecular Form Factors and Photon Coherent Scattering Cross Sections of Water, L. R. M. Morin, Vol. 11, No. 4, pp. 1091–1098 (1982)	\$5.00
192.Energy Levels of Cobalt, Co I through Co XXVII., Jack Sugar and Charles Corliss, Vol. 10, No. 4, pp. 1097– 1174 (1981)	\$6 .50	211.Evaluation of Binary <i>PTxy</i> Vapor-Liquid Equilibrium Data for C ₆ Hydrocarbons. Benzene + Cyclohexane, <i>Buford D. Smith, Ol Muthu, Ashok Dewan, and</i>	•
193.A Critical Review of Henry's Law Constants for Chemicals of Environmental Interest, <i>Donald Mackay and Wan Ying Shiu</i> , Vol. 10, No. 4, pp. 1175–1199		Matthew Gierlach, Vol. 11, No. 4, pp. 1099–1126 (1982) 212.Evaluation of Binary Excess Enthalpy Data for C ₆ Hy-	\$6.00
(1981) 194.Property, Materials, and Author Indexes to the Journal of Physical and Chemical Reference Data, Vol. 1–10,	\$5.00	drocarbons. Benzene + Cyclohexane, <i>Buford D. Smith, Ol Muthu, Ashok Dewan, and Matthew Gierlach</i> , Vol. 11, No. 4, pp. 1127–1149 (1982)	\$6.00
pp. 1205–1225 (1972–1981)	\$5.00	213.Evaluation of Binary Excess Volume Data for C ₆ Hydrocarbons. Benzene + Cyclohexane, <i>Buford D. Smith, Ol Muthu, Ashok Dewan, and Matthew Gierlach</i> , Vol.	
Reprints from Volume 11		11, No. 4, pp. 1151–1169 (1982)	\$6.00
195.A Fundamental Equation of State for Heavy Water, <i>P. G. Hill, R. D. Chris MacMillan, and V. Lee,</i> Vol. 11, No. 1, pp. 1–14 (1982)	\$5.00	Reprints from Volume 12	
196.Volumetric Properties of Aqueous Sodium Chloride Solutions, <i>P. S. Z. Rogers and Kenneth S. Pitzer</i> , Vol. 11, No. 1, pp. 15–81 (1982)	\$9.00	214.Thermodynamic Properties of Steam in the Critical Region, <i>J. M. H. Levelt Sengers, B. Kamgar-Parsi, F. W. Balfour, and J. V. Sengers,</i> Vol. 12, No. 1, pp. 1–28 (1983)	\$6.00
		(1000)	φ0.00

215.Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VII. Other Carbon Backbone Polymers, <i>Umesh Gaur, Brent B. Wunderlich, and Bernhard Wunderlich</i> , Vol. 12, No. 1, pp. 29–63 (1983)	\$7.00	233.Evaluated Theoretical Cross Section Data for Charge Exchange of Multiply Charged Ions with Atoms. II. Hydrogen Atom-Partially Stripped Ion Systems, <i>J. W. Gallagher, B. H. Bransden, and R. K. Janev</i> , Vol. 12, No.	•
216.Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VIII. Polyesters and Polya- mides, Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich, Vol. 12, No. 1, pp. 65–89 (1983)	\$6.00	4, pp. 873–890 (1983) 234.Recommended Data on the Electron Impact Ionization of Light Atoms and Ions, <i>K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith</i> , Vol. 12, No. 4, pp. 891–916 (1983)	\$6.00 \$6.00
217.Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IX. Final Group of Aromatic and Inorganic Polymers, <i>Umesh Gaur, Suk-fai Lau, and Bernhard Wunderlich,</i> Vol. 12, No. 1, pp. 91–108 (1983)	\$6.00	235.A Correlation of the Viscosity and Thermal Conductivity Data of Gaseous and Liquid Ethylene, <i>P. M. Holland, B. E. Eaton, and H. J. M. Hanley</i> , Vol. 12, No. 4, pp. 917–932 (1983)	\$5.00
218.An Annotated Compilation and Appraisal of Electron Swarm Data in Electronegative Gases, <i>J. W. Gallagher, E. C. Beaty, J. Dutton, and L. C. Pitchford,</i>		236.Transport Properties of Liquid and Gaseous D ₂ O over a Wide Range of Temperature and Pressure, N. Mat- sunaga and A. Nagashima, Vol. 12, No. 4, pp. 933– 966 (1983)	\$7.00
Vol. 12, No. 1, pp. 109–152 (1983) 219.The Solubility of Oxygen and Ozone in Liquids, <i>Rubin Battino, Timothy R. Rettich, and Toshihiro Tominaga</i> ,	\$7.00	237.Thermochemical Data for Gaseous Monoxides, <i>J. B. Pedley and E. M. Marshall</i> , Vol. 12, No. 4, pp. 967–1031 (1983)	\$9.00
Vol. 12, No. 2, pp. 163–178 (1983) 220.Recommended Values for the Thermal Expansivity of Silicon from 0 to 1000 K, C. A. Swenson, Vol. 12,	\$5.00	238.Vapor Pressure of Coal Chemicals, <i>J. Chao, C. T. Lin,</i> and <i>T. H. Chung</i> , Vol. 12, No. 4, pp. 1033–1063 (1983)	\$6.00
No. 2, pp. 179–182 (1983)	\$5.00	B 11 4 4 4	
221. Electrical Resistivity of Ten Selected Binary Alloy Systems, C. Y. Ho, M. W. Ackerman, K. Y. Wu, T. N. Havill, R. H. Bogaard, R. A. Matula, S. G. Oh, and H. M. James, Vol. 12, No. 2, pp. 183–322 (1983)	\$13.00	Reprints from Volume 13 239.Thermodynamic Properties of Aqueous Sodium Chloride Solutions, Kenneth S. Pitzer, J. Christopher Peiper, and R. H. Busey, Vol. 13, No. 1, pp. 1–102	
222.Energy Levels of Silicon, Si 1 through Si xiv, W. C. Martin and Romuald Zalubas, Vol. 12, No. 2, pp. 323–380 (1983)	\$8.00	(1984) 240.Refractive Index of ZnS, ZnSe, and ZnTe and Its	\$11.00
223.Evaluation of Binary <i>PTxy</i> Vapor-Liquid Equilibrium Data for C ₆ Hydrocarbons. Benzene + Hexane, <i>Buford D. Smith, Ol Muthu, and Ashok Dewan,</i> Vol. 12, No.		Wavelength and Temperature Derivatives, H. H. Li, Vol. 13, No. 1, pp. 103–150 (1984) 241.High Temperature Vaporization Behavior of Oxides. I. Alkali Metal Binary Oxides, R. H. Lamoreaux and D.	\$7.00
2, pp. 381–387 (1983)	\$5.00	L. Hildenbrand, Vol. 13, No. 1, pp. 151–173 (1984)	\$6.00
224. Evaluation of Binary Excess Enthalpy Data for C ₆ Hydrocarbons. Benzene + Hexane, Buford D. Smith, Ol Muthu, and Ashok Dewan, Vol. 12, No. 2, pp, 389–393 (1983)	\$5.00	242.Thermophysical Properties of Fluid H ₂ O, <i>J. Kestin, J. V. Sengers, B. Kamgar-Parsi, and J. M. H. Levelt Sengers</i> , Vol. 13, No. 1, pp. 175–183 (1984)	\$5.00
225.Evaluation of Binary Excess Volume Data for C ₆ Hydrocarbons. Benzene + Hexane, <i>Buford D. Smith, Ol Muthu, and Ashok Dewan,</i> Vol. 12, No. 2, pp. 395–401 (1982)	\$5.00	243.Representative Equations for the Viscosity of Water Substance, <i>J. V. Sengers and B. Kamgar-Parsi</i> , Vol. 13, No. 1, pp. 185–205 (1984)	\$6.00
401 (1983) 226.Atlas of the High-Temperature Water Vapor Spectrum in the 3000 to 4000 cm ⁻¹ Region, <i>A. S. Pine, M. J. Coulombe, C. Camy-Peyret, and J-M. Flaud</i> , Vol. 12,	\$5.00	244.Atlas of the Schumann-Runge Absorption Bands of O_2 in the Wavelength Region 175–205 nm, <i>K. Yoshino, D. E. Freeman, and W. H. Parkinson</i> , Vol. 13, No. 1, pp. 207–227 (1984)	\$6.00
No. 3, pp. 413-465 (1983) 227.Small-Angle Rayleigh Scattering of Photons at High Energies: Tabulations of Relativistic HFS Modified Atomic Form Factors, <i>D. Schaupp, M. Schumacher, F.</i>	\$8.00	245.Equilibrium and Transport Properties of the Noble Gases and Their Mixtures at Low Density, <i>J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman</i> , Vol. 13, No. 1, pp. 229–303 (1984)	\$9.00
Smend, P. Rullhusen, and J. H. Hubbell, Vol. 12, No. 3, pp. 467–512 (1983)	\$7.00	246.Evaluation of Kinetic and Mechanistic Data For Modeling of Photochemical Smog, <i>Roger Atkinson and Alan C. Lloyd</i> , Vol. 13, No. 2, pp. 315–444 (1984)	\$13.00
228.Thermodynamic Properties of D ₂ O in the Critical Region, B. Kamgar-Parsi, J. M. H. Levelt Sengers, and J. V. Sengers, Vol. 12, No. 3, pp. 513–529 (1983)	\$6.00	247.Rate Data for Inelastic Collision Processes in the Diatomic Halogen Molecules, <i>J. I. Steinfeld</i> , Vol. 13, No. 2, pp. 445–553 (1984)	\$11.00
229.Chemical Kinetic Data Sheets for High-Temperature Chemical Reactions, <i>N. Cohen and K. R. Westberg</i> , Vol. 12, No. 3, pp. 531–590 (1983)	\$8.00	248.Water Solubilities of Polynuclear Aromatic and Heteroaromatic Compounds, Robert S. Pearlman, Samuel H.	\$11.00
230.Molten Salts: Volume 5, Part 2. Additional Single and Multi-Component Salt Systems. Electrical Conductance, Density, Viscosity and Surface Tension Data, G. J.		Yalkowsky, and Sujit Banerjee, Vol. 13, No. 2, pp. 555–562 (1984) 249.The Solubility of Nitrogen and Air in Liquids, Rubin	\$5.00
Janz and R. P. T. Tomkins, Vol. 12, No. 3, pp. 591–815 (1983)	\$19.00	Battino, Timothy R. Rettich, and Toshihiro Tominaga, Vol. 13, No. 2, pp. 563–600 (1984)	\$7.00
231.International Tables of the Surface Tension of Water, N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, Vol. 12, No. 3, pp. 817–820 (1983)	\$5.00	250.Thermophysical Properties of Fluid D₂O, <i>J. Kestin, J. V. Sengers, B. Kamgar-Parsi, and J. M. H. Levelt Sengers,</i> Vol. 13, No. 2, pp. 601–609 (1984)	\$5.00
232.Evaluated Theoretical Cross Section Data for Charge Exchange of Multiply Charged Ions with Atoms. I. Hy- drogen Atom-Fully Stripped Ion Systems, R. K. Janev, B. H. Bransden, and J. W. Gallagher, Vol. 12, No. 4, pp. 829–872 (1983)	\$7.00	251.Experimental Stark Widths and Shifts for Spectral Lines of Neutral Atoms (A Critical Review of Selected Data for the Period 1976 to 1982), <i>N. Konjevic, M. S. Dimitrijević, and W. L. Wiese</i> , Vol. 13, No. 3, pp. 619–647 (1984)	\$6.00

Li tio	xperimental Stark Widths and Shifts for Spectral ines of Positive Ions (A Critical Review and Tabulaton of Selected Data for the Period 1976 to 1982), I. Konjević, M. S. Dimitrijević, and W. L. Wiese, Vol.		271.Microwave Spectra of Molecules of Astrophysical Interest. XXII. Sulfur Dioxide (SO ₂), <i>F. J. Lovas</i> , Vol. 14, No. 2, pp. 395–488 (1985)	\$10.00
1: 253.A	3, No. 3, pp. 649–686 (1984) Review of Deuterium Triple-Point Temperatures, L.	\$7.00	272.Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C, E. Colin W. Clarke and David W. Clark Vol. 14 No. 2 pp. 489 510	
	. Schwalbe and E. R. Grilly, Vol. 13, No. 3, pp. 687– 93 (1984)	\$5.00	and David N. Glew, Vol. 14, No. 2, pp. 489–610 (1985)	\$12.00
0	valuated Gas Phase Basicities and Proton Affinities f Molecules; Heats of Formation of Protonated Moleules, Sharon G. Lias, Joel F. Liebman, and Rhoda D.		273.The Mark-Houwink-Sakurada Equation for the Viscosity of Linear Polyethylene, <i>Herman L. Wagner</i> , Vol. 14, No. 2, pp. 611–617 (1985)	\$5.00
255.ls	evin, Vol. 13, No. 3, pp. 695–808 (1984) sotopic Abundances and Atomic Weights of the Ele- nents, Paul De Bièvre, Marc Gallet, Norman E. Hold- in, and I. Lynus Barnes, Vol. 13, No. 3, pp. 809–891	\$12.00	274. The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions, <i>H. Lawrence Clever, Susan A. Johnson, and M. Elizabeth Derrick</i> , Vol. 14, No. 3, pp. 631–680 (1985)	\$8.00
256.R 0 <i>F</i> i	1984) lepresentative Equations for the Thermal Conductivity f Water Substance, <i>J. V. Sengers, J. T. R. Watson,</i> l. S. Basu, B. Kamgar-Parsi, and R. C. Hendricks, lol. 13, No. 3, pp. 893–933 (1984)	\$10.00 \$7.00	275.A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase <i>PVT</i> Measurements for Nitrogen + Methane, <i>A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza</i> , Vol. 14, No. 3, pp. 681–694 (1985)	\$5.00
T	round-State Vibrational Energy Levels of Polyatomic ransient Molecules, <i>Marilyn E. Jacox</i> , Vol. 13, No. 4,	***	276.The Homogeneous Nucleation Limits of Liquids, C. T. Avedisian, Vol. 14, No. 3, pp. 695–729 (1985)	\$7.00
258.E s	p. 945–1068 (1984) lectrical Resistivity of Selected Elements, <i>P. D. De-</i> ai, <i>T. K. Chu, H. M. James, and C. Y. Ho</i> , Vol. 13,	\$12.00	277.Binding Energies in Atomic Negative Ions: II, <i>H. Hotop and W. C. Lineberger</i> , Vol. 14, No. 3, pp. 731–750 (1985)	\$6.00
259.E	lo. 4, pp. 1069-1096 (1984) Rectrical Resistivity of Vanadium and Zirconium, P. D. Desai, H. M. James, and C. Y. Ho, Vol. 13, No. 4,	\$6.00	278.Energy Levels of Phosphorus, P I through P xv, W. C. Martin, Romuald Zalubas, and Arlene Musgrove, Vol. 14, No. 3, pp. 751–802 (1985)	\$8.00
260.E	p. 1097–1130 (1984) lectrical Resistivity of Aluminum and Manganese, <i>P. Desai, H. M. James, and C. Y. Ho</i> , Vol. 13, No. 4,	\$7.00	279.Standard Chemical Thermodynamic Properties of Al- kene Isomer Groups, <i>Robert A. Alberty and Catherine</i> <i>A. Gehrig,</i> Vol. 14, No. 3, pp. 803–820 (1985)	\$6.00
261.S k	p. 1131–1172 (1984) Itandard Chemical Thermodynamic Properties of Alane Isomer Groups, <i>Robert A. Alberty and Catherine</i> I. Gehrig, Vol. 13, No. 4, pp. 1173–1197 (1984)	\$7.00 \$6.00	280.Standard Chemical Thermodynamic Properties of Alkylnaphthalene Isomer Groups, <i>Robert A. Alberty and Theodore M. Bloomstein</i> , Vol. 14, No. 3, pp. 821–837 (1985)	\$6.00
E N	valuated Theoretical Cross-Section Data for Charge xchange of Multiply Charged Ions with Atoms. III. lonhydrogenic Target Atoms, R. K. Janev and J. W.	20.00	281.Carbon Monoxide Thermophysical Properties from 68 to 1000 K at Pressures to 100 MPa, <i>Robert D. Goodwin</i> , Vol. 14, No. 4, pp. 849–932 (1985)	\$10.00
263.H	Callagher, Vol. 13, No. 4, pp. 1199–1249 (1984) Reat Capacity of Reference Materials: Cu and W, G. C. White and S. J. Collocott, Vol. 13, No. 4, pp. 251–1257 (1984)	\$8.00 \$5.00	282.Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density, <i>I. Thormählen, J. Straub, and U. Grigull,</i> Vol. 14, No. 4, pp. 933–945 (1985)	\$5.00
264.E s G	evaluated Kinetic and Photochemical Data for Atmo- pheric Chemistry: Supplement II. CODATA Task croup on Gas Phase Chemical Kinetics, D. L. Baulch,		283. Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase, <i>K. Kadoya, N. Matsunaga, and A. Nagashima,</i> Vol. 14, No. 4, pp. 947–970 (1985)	\$6.00
J	R. A. Cox, R. F. Hampson, Jr., J. A. Kerr (Chairman), Troe, and R. T. Watson, Vol. 13, No. 4, pp. 1259– 380 (1984)	\$12.00	284.Charge Transfer of Hydrogen lons and Atoms in Metal Vapors, <i>T. J. Morgan, R. E. Olson, A. S. Schlachter, and J. W. Gallagher,</i> Vol. 14, No. 4, pp. 971–1040	
•	rints from Volume 14		(1985) 285.Reactivity of HO ₂ /O ₂ Radicals in Aqueous Solution,	\$9.00
Co Pr	nermodynamic Properties of Key Organic Oxygen compounds in the Carbon Range C_1 to C_4 . Part 1. roperties of Condensed Phases, Randolph C. Wilhoit, and Chao, and Kenneth R. Hall, Vol. 14, No. 1, pp.		Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi, and Alberta B. Ross, Vol. 14, No. 4, pp. 1041-1100 (1985)	\$8.00
266.St	-175 (1985) tandard Chemical Thermodynamic Properties of Alkyl- enzene Isomer Groups, <i>Robert A. Alberty</i> , Vol. 14,	\$15.00	286.The Mark-Houwink-Sakurada Equation for the Viscosity of Atactic Polystyrene, <i>Herman L. Wagner</i> , Vol. 14, No. 4, pp. 1101–1106 (1985)	\$5.00
No 267.As D ₂	o. 1, pp. 177-192 (1985) ssessment of Critical Parameter Values for H ₂ O and ₂ O, <i>J. M. H. Levelt Sengers, J. Straub, K. Watanabe,</i>	\$5.00	287.Standard Chemical Thermodynamic Properties of Alkyl- cyclopentane Isomer Groups, Alkylcyclohexane Isomer Groups, and Combined Isomer Groups, Robert A. Al-	
268.TI	nd P. G. Hill, Vol. 14, No. 1, pp. 193–207 (1985) ne Viscosity of Nitrogen, Oxygen, and Their Binary ixtures in the Limit of Zero Density, Wendy A. Cole	\$5.00	berty and Young S. Ha, Vol. 14, No. 4, pp. 1107– 1132 (1985)	\$6.00
	nd William A. Wakeham, Vol. 14, No. 1, pp. 209–226 985)	\$6.00	Reprints from Volume 15	
269.TI	ne Thermal Conductivity of Fluid Air, <i>K. Stephan and Laesecke,</i> Vol. 14, No. 1, pp. 227–234 (1985)	\$5.00	288.Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases, <i>lan Carmichael and Gordon L.</i>	
Di Si	ne Electronic Spectrum and Energy Levels of the euterium Molecule, <i>Robert S. Freund, James A. chiavone, and H. M. Crosswhite,</i> Vol. 14, No. 1, pp. 35–383 (1985)	\$14.00	 Hug, Vol. 15, No. 1, pp. 1–250 (1986) 289.Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions—1985 Revision. F. J. Lovas. Vol. 15, No. 1, pp. 251–303 (1986) 	\$20.00

290.New International Formulations for the Thermodynamic Properties of Light and Heavy Water, <i>J. Kestin and J. V. Sengers</i> , Vol. 15, No. 1, pp. 305–320 (1986)	\$5.00	308.Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides, <i>S. Gordon, J. C. Sullivan, and Alberta B. Ross,</i> Vol. 15, No. 4, pp. 1357–1367 (1986)	Φ Ε Ο (
291.Forbidden Lines in <i>ns²np</i> * Ground Configurations and <i>nsnp</i> Excited Configurations of Beryllium through Molybdenum Atoms and Ions, <i>Victor Kaufman and Jack Sugar</i> , Vol. 15, No. 1, pp. 321–426 (1986)	\$11.00	309.Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C ₁ to C ₄ . Part 2. Ideal Gas Properties, <i>Jing Chao, Kenneth R. Hall</i> ,	\$5.00
292.Thermodynamic Properties of Twenty-One Monocyclic Hydrocarbons, <i>O. V. Dorofeeva, L. V. Gurvich, and V. S. Jorish,</i> Vol. 15, No. 2, pp. 437–464 (1986)	\$6.00	Kenneth N. Marsh, and Randolph C. Wilhoit, Vol. 15, No. 4, pp. 1369–1436 (1986)	\$9.00
293.Evaluated Kinetic Data for High-Temperature Reactions. Volume 5. Part 1. Homogeneous Gas Phase Reactions of the Hydroxyl Radical with Alkanes, <i>D. L.</i>		Reprints from Volume 16	
Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman, Vol. 15, No. 2, pp. 465–592 (1986) 294.Thermodynamic Properties of Ethylene from the Freez-	\$12.00	310.Thermochemical Data on Gas Phase Compounds of Sulfur, Fluorine, Oxygen, and Hydrogen Related to Pyrolysis and Oxidation of Sulfur Hexafluoride, <i>John T. Herron</i> , Vol. 16, No. 1, pp. 1–6 (1987)	\$5.00
ing Line to 450 K at Pressures to 260 MPa, <i>Majid Jahangiri</i> , <i>Richard T Jacobsen</i> , <i>Richard B. Stewart</i> , and <i>Robert D. McCarty</i> , Vol. 15, No. 2, pp. 593–734 (1986)	\$13.00	311.The Thermochemical Measurements on Rubidium Compounds: A Comparison of Measured Values with Those Predicted from the NBS Tables of Chemical and Thermodynamic Properties, V. B. Parker, W. H.	
295.Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa, Richard T Jacobsen, Richard B. Stewart, and Majid (Apartic Jacobs) 15 No. 2 at 275, 2000 (1002)	645.00	Evans, and R. L. Nuttall, Vol. 16, No. 1, pp. 7-59 (1987) 312.Standard Thermodynamic Functions of Gaseous Polya-	\$8.00
Jahangiri, Vol. 15, No. 2, pp. 735–909 (1986) 296.A Critical Review of Aqueous Solubilities, Vapor Pressures, Henry's Law Constants, and Octanol-Water Par-	\$15.00	tomic lons at 100–1000 K, <i>Aharon Loewenschuss</i> and <i>Yitzhak Marcus</i> , Vol. 16, No. 1, pp. 61–89 (1987)	\$6.00
tition Coefficients of the Polychlorinated Biphenyls, Wan Ying Shiu and Donald Mackay, Vol. 15, No. 2, pp. 911–929 (1986)	\$6.00	313.Thermodynamic Properties of Manganese and Molybdenum, <i>P. D. Desai</i> , Vol. 16, No. 1, pp. 91–108 (1987)	\$6.00
297.Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl ₄ (g), TiCl ₄ (I), TiCl ₃ (cr), and TiCl ₂ (cr), S.		314.Thermodynamic Properties of Selected Binary Aluminum Alloy Systems, <i>P. D. Desai</i> , Vol. 16, No. 1, pp. 109–124 (1987)	\$5.00
P. Kirby, E. M. Marshall, and J. B. Pedley, Vol. 15, No. 3, pp. 943-965 (1986)	\$6.00	315. ¹³ C. Chemical Shielding in Solids, <i>T. M. Duncan</i> , Vol. 16, No. 1, pp. 125–151 (1987)	\$6.00
298.Thermodynamic Properties of Iron and Silicon, P. D. Desai, Vol. 15, No. 3, pp. 967–983 (1986)	\$6.00	316.The Mark-Houwink-Sakurada Relation for Poly(Methyl Methacrylate), <i>Herman L. Wagner</i> , Vol. 16, No. 2, pp. 165–173 (1987)	\$5.00
299.Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules, <i>Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi,</i> Vol. 15, No. 3, pp. 985–1010 (1986)	\$6.00	317.The Viscosity of Carbon Dioxide, Methane, and Sulfur Hexafluoride in the Limit of Zero Density, <i>R. D. Trengove and W. A. Wakeham</i> , Vol. 16, No. 2, pp. 175–187 (1987)	\$5.00
300.Thermochemical Data on Gas-Phase Ion-Molecule Association and Clustering Reactions, <i>R. G. Keesee and A. W. Castleman, Jr.</i> , Vol. 15, No. 3, pp. 1011–1071 (1008)	#9 AA	318.The Viscosity of Normal Deuterium in the Limit of Zero Density, <i>M. J. Assael, S. Mixafendi, and W. A. Wakeham,</i> Vol. 16, No. 2, pp. 189–192 (1987)	\$5.00
 1071 (1986) 301.Standard Reference Data for the Thermal Conductivity of Liquids, C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham, 	\$8.00	319.Standard Chemical Thermodynamic Properties of Al- kanethiol Isomer Groups, <i>Robert A. Alberty, Ellen</i> <i>Burmenko, Tae H. Kang, and Michael B. Chung,</i> Vol. 16, No. 2, pp. 193–208 (1987)	\$5.00
Vol. 15, No. 3, pp. 1073–1086 (1986) 302.Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds, W. Tsang	\$5.00	320.Evaluation of Binary Excess Volume Data for the Methanol + Hydrocarbon Systems, <i>R. Srivastava and B. D. Smith</i> , Vol. 16, No. 2, pp. 209–218 (1987)	\$5.00
and R. F. Hampson, Vol. 15, No. 3, pp. 1087–1279 (1986)303.Improved International Formulations for the Viscosity	\$17.00	321.Evaluation of Binary Excess Enthalpy Data for the Methanol + Hydrocarbon Systems, <i>R. Srivastava and B. D. Smith</i> , Vol. 16, No. 2, pp. 219–237 (1987)	\$6.00
and Thermal Conductivity of Water Substance, <i>J. V. Sengers and J. T. R. Watson</i> , Vol. 15, No. 4, pp. 1291–1314 (1986)	\$6.00	322.Extinction Coefficients of Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases: A Least-Squares Analysis, <i>Ian Carmichael, W. P.</i>	φυ.υ
304.The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density, M. J. Assael, S. Mixafendi, and W. A. Wakeham, Vol. 15, No. 4, pp.		Helman, and G. L. Hug, Vol. 16, No. 2, pp. 239–260 (1987)	\$6.00
1315–1322 (1986) 305.The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Argon, <i>B. A. Younglove and H.</i>	\$5.00	323.Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(³ P) with Unsaturated Hydrocarbons, R. J. Cvetanović, Vol. 16, No. 2, pp. 261–326 (1987)	\$9.00
J. M. Hanley, Vol. 15, No. 4, pp. 1323–1337 (1986) 306.Standard Chemical Thermodynamic Properties of Al-	\$5.00	324.Spectral Data for Molybdenum Ions, Mo vi–Mo XLII, Toshizo Shirai, Yohta Nakai, Kunio Ozawa, Keishi Ishii, Jack Sugar, and Kazuo Mori, Vol. 16, No. 2,	* **
kyne Isomer Groups, <i>Robert A. Alberty and Ellen Burmenko</i> , Vol. 15, No. 4, pp. 1339–1349 (1986)	\$5.00	pp. 327–377 (1987) 325.Standard Chemical Thermodynamic Properties of	\$8.00
307.Recent Progress in Deuterium Triple-Point Measurements, <i>L. A. Schwalbe</i> , Vol. 15, No. 4, pp. 1351–1356 (1986)	\$5.00	Alkanol Isomer Groups, <i>Robert A. Alberty, Michael B. Chung, and Theresa M. Flood</i> , Vol. 16, No. 3, pp. 391–417 (1987)	\$6.00

326.High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg, R. H. Lamoreaux,		Reprints from Volume 17	
D. L. Hildenbrand, and L. Brewer, Vol. 16, No. 3, pp. 419–443 (1987)	\$6.00	338.Pressure and Density Series Equations of State for Steam as Derived from the Haar-Gallagher-Kell Formulation, R. A. Dobbins, K. Mohammed, and D.	
327.Equilibrium and Transport Properties of Eleven Polyatomic Gases at Low Density, <i>A. Boushehri, J. Bzowski, J. Kestin, and E. A. Mason,</i> Vol. 16, No. 3, pp. 445–466 (1987)	\$6.00	A. Sullivan, Vol. 17, No. 1, pp. 1–8 (1988) 339.Absolute Cross Sections for Molecular Photoab-	\$5.00
328.The Thermochemistry of Inorganic Solids IV. Enthalpies of Formation of Compounds of the Formula MX _a Y _b , Mohamed W. M. Hisham and Sidney W.		sorption, Partial Photoionization, and Ionic Photo- fragmentation Processes, <i>J. W. Gallagher, C. E. Brion, J. A. R. Samson, and P. W. Langhoff</i> , Vol. 17, No. 1, pp. 9–153 (1988)	\$14.00
Benson, Vol. 16, No. 3, pp. 467–470 (1987) 329.Chemical Kinetic Data Base for Combustion Chemistry. Part 2. Methanol, Wing Tsang, Vol. 16, No. 3, pp. 471–508 (1987)	\$5.00 \$7.00	340.Energy Levels of Molybdenum, Moi through MoxLii, Jack Sugar and Arlene Musgrove, Vol. 17, No. 1, pp. 155–239 (1988)	\$10.00
330.Phase Diagrams and Thermodynamic Properties of the 70 Binary Alkali Halide Systems Having Com- mon lons, <i>James Sangster and Arthur D. Pelton</i> , Vol. 16, No. 3, pp. 509–561 (1987)	\$8.00	341.Standard Chemical Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons and Their Isomer Groups I. Benzene Series, <i>Robert A. Alberty and</i> Andrea K. Reif, Vol. 17, No. 1, pp. 241–253 (1988)	\$5.00
331.Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane, <i>B. A. Younglove and J. F. Ely</i> , Vol. 16, No. 4, pp. 577–798 (1987)	\$18.00	342.Electronic Energy Levels of Small Polyatomic Transient Molecules, <i>Marilyn E. Jacox</i> , Vol. 17, No. 2, pp. 269–511 (1988)	\$20.00
332.Methanol Thermodynamic Properties from 176 to 673 K at Pressures to 700 Bar, <i>Robert D. Goodwin</i> , Vol. 16, No. 4, pp. 799–892 (1987)	\$10.00	343.Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/·O ⁻) in Aqueous Solution, <i>George V. Buxton, Clive L. Greenstock, W. Phillip Helman,</i>	
333.International Equations for the Saturation Properties of Ordinary Water Substance, <i>A. Saul and W. Wagner</i> , Vol. 16, No. 4, pp. 893–901 (1987)	\$5.00	and Alberta B. Ross, Vol. 17, No. 2, pp. 513–886 (1988)	\$28.00
334.Rate Data for Inelastic Collision Processes in the Diatomic Halogen Molecules. 1986 Supplement, <i>J. I. Steinfeld</i> , Vol. 16, No. 4, pp. 903–910 (1987)	\$5.00	344.Chemical Kinetic Data Base for Combustion Chemistry. Part 3. Propane, <i>Wing Tsang</i> , Vol. 17, No. 2, pp. 887–951 (1988)	\$9.00
335.Critical Survey of Data on the Spectroscopy and Kinetics of Ozone in the Mesosphere and Thermosphere, Jeffrey I. Steinfeld, Steven M. Adler-Golden, and Jean W. Gallagher, Vol. 16, No. 4,		345.Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(³ P) with Saturated Organic Compounds in the Gas Phase, <i>John T. Herron</i> , Vol. 17, No. 3, pp. 967–1026 (1988)	\$8.00
 pp. 911–951 (1987) 336.Critical Compilation of Surface Structures Determined by Low-Energy Electron Diffraction Crystallography, <i>Philip R. Watson</i>, Vol. 16, No. 4, pp. 	\$7.00	346.Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution, <i>P. Neta, Robert E. Huie, and Alberta B. Ross,</i> Vol. 17, No. 3, pp. 1027–1284 (1988)	\$21.00
953–992 (1987) 337.Viscosity and Thermal Conductivity of Nitrogen for a Wide Range of Fluid States, <i>K. Stephan, R. Krauss, and A. Laesecke,</i> Vol. 16, No. 4, pp. 993–1023 (1987)	\$7.00 \$6.00	347.Recommended Data on the Electron Impact Ionization of Atoms and Ions: Fluorine to Nickel, <i>M. A. Lennon, K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, M. J. Murray, and F. J. Smith,</i> Vol. 17, No. 3, pp. 1285–1363 (1988)	\$9.00

Special Reprints Packages

These special reprints packages offer selected articles in specific subject areas from the JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, and they are offered at a better rate than when purchased individually. You will have available a complete library of literature for your specific requirements at a fraction of the cost of purchasing back issues of the journal.

Look over the reprints packages available—they are listed by subject area. In the Cumulative Listing of Reprints you will find the titles corresponding to the reprint numbers. You are sure to find building your information bank in this manner to be thorough and economical.

Package C1 (5 Parts) MOLECULAR VIBRATIONAL FREQUENCIES. Consisting of Reprint Nos. 103, 129, 170, 257, NSRD 39. If purchased individually:	\$ 33.00	Package C6 (9 Parts) THERMODYNAMIC PROPERTIES OF ELECTROLYTE SOLUTIONS. Consisting of Reprint Nos. 15, 95, 111, 151, 152, 174, 184, 185, 186.	
Special package price:	\$ 26.00	If purchased individually:	\$ 46.00
		Special package price:	\$ 37.00
Package C2 (22 Parts) ATOMIC ENERGY LEVELS.			
Consisting of Reprint Nos. 26, 54, 64, 68, 94, 100, 109, 125,		Package C7 (12 Parts) IDEAL GAS THERMODYNAMIC	
126, 131, 132, 149, 150, 154, 156, 160, 179, 180,		PROPERTIES. Consisting of Reprint Nos. 30, 42, 43, 62,	
192, 200, 222, 278. If purchased individually:	\$121.00	65, 66, 70, 80, 83, 113, 115, 141.	
Special package price:	\$ 96.00	If purchased individually:	\$ 38.00
		Special package price:	\$ 31.00
Package C3 (6 Parts) ATOMIC SPECTRA. Consisting of			
Reprint Nos. 33, 56, 77, 78, 110, 132.		Package C8 (7 Parts) RESISTIVITY. Consisting of Reprint	
If purchased individually:	\$ 33.00	Nos. 138, 139, 155, 221, 258, 259, 260.	
Special package price:	\$ 27.00	If purchased individually:	\$ 47.50
		Special package price:	\$ 39.00
Package C4 (5 Parts) ATOMIC TRANSITION			
PROBABILITIES. Consisting of Reprint Nos. 20, 63, 82,		Package C9 (7 Parts) MOLTEN SALTS. Consisting of	
118, 182. If purchased individually:	\$ 35.00	Reprint Nos. 10, 41, 71, 96, 135, 167, 168.	
Special package price:	\$ 28.00	If purchased individually:	\$ 62.50
		Special package price:	\$ 44.00
Package C5 (7 Parts) MOLECULAR SPECTRA. Consisting			
of Reprint Nos. 4, 8, 53, 79, 93, 130, 146.		Package C10 (4 Parts) REFRACTIVE INDEX. Consisting of	
If purchased individually:	\$ 51.50	Reprint Nos. 81, 158, 162, 240.	
Special package price:	\$ 41.00	If purchased individually:	\$ 32.50
		Special package price:	\$ 26.00

Supplements to JPCRD

When the topic demands it, and the quality of the data justifies it, the JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA issues a special Supplement. Each Supplement is a monograph—collected tables of highly significant physical or chemical property data in one complete volume. Listed below are the special Supplements to JPCRD that have been published. Each is a valuable resource for the physical chemist and chemical physicist.

GAS-PHASE ION AND NEUTRAL THERMOCHEMISTRY, by Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard. (Supplement No. 1 to Volume 17) 1988, 874 pages. Hardcover. U.S. & Canada: Abroad:	\$70.00 \$84.00	THE NBS TABLES OF CHEMICAL THERMODYNAMIC PROPERTIES. SELECTED VALUES FOR INORGANIC AND C_1 AND C_2 ORGANIC SUBSTANCES IN SI UNITS by D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall. (Supplement No. 2 to Volume 11) 1982, 394 pages. Hardcover. U.S. & Canada:	\$40.00
ATOMIC AND IONIC SPECTRUM LINES BELOW 2000 ANGSTROMS: HYDROGEN THROUGH KRYPTON, by		Abroad:	\$48.00
Raymond L. Kelly. (Supplement No. 1 to Volume 16) 1987, 1689 pages, 3 volumes. Hardcover. U.S. & Canada: Abroad:	\$75.00 \$90.00	THERMOPHYSICAL PROPERTIES OF FLUIDS. 1. ARGON, ETHYLENE, PARAHYDROGEN, NITROGEN, NITROGEN TRIFLUORIDE, AND OXYGEN by B.A. Younglove. (Supplement No. 1 to Volume 11) 1982, 368	
ATOMIC ENERGY LEVELS OF THE IRON-PERIOD ELEMENTS: POTASSIUM THROUGH NICKEL by J. Sugar and C. Corliss. (Supplement No. 2 to Volume 14) 1985, 664		pages. Hardcover. U.S. & Canada: Abroad:	\$40.00 \$48.00
pages. Hardcover. U.S. & Canada: Abroad:	\$50.00 \$58.00	EVALUATED KINETIC DATA FOR HIGH TEMPERATURE REACTIONS: VOLUME 4, HOMOGENEOUS GAS PHASE REACTIONS OF HALOGEN- AND CYANIDE-	
JANAF THERMOCHEMICAL TABLES, Third Edition by M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. (Supplement No. 1 to Volume 14) 1985, 1896 pages, 2 volumes. Hardcover.		CONTAINING SPECIES by D.L. Baulch, J. Duxbury, S.J. Grant, and D.C. Montague. (Supplement No. 1 to Volume 10) 1981, 721 pages. Hardcover. U.S. & Canada: Abroad:	\$80.00 \$96.00
U.S. & Canada: Abroad:	\$130.00 \$156.00	THERMAL CONDUCTIVITY OF THE ELEMENTS: A	
HEAT CAPACITIES AND ENTROPIES OF ORGANIC COMPOUNDS IN THE CONDENSED PHASE by E.S. Domalski, W.H. Evans, and E.D. Hearing. (Supplement No. 1 to Volume 13) 1984, 288 pages. Hardcover.		COMPREHENSIVE REVIEW by C.Y. Ho, R.W. Powell, and P.E. Liley. (Supplement No. 1 to Volume 3) 1974, 796 pages.* U.S. & Canada: Abroad:	\$60/\$55 \$72/\$66
U.S. & Canada:	\$40.00		

Abroad:

\$48.00

*Prices are for hardcover/softcover.

RMOCHEMICAL

A Major Supplement from JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA

Presenting Reliable Data Utilized by Chemists, Chemical Engineers, and Materials Scientists from Around the World for Over 25 Years

JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA is very pleased to publish the Third Edition of the JANAF THERMOCHEMICAL TABLES.

Since the first version appeared 25 years ago, the JANAF THERMOCHEMICAL TABLES have been among the most widely used data tables in science and engineering.

You'll find:

- Reliable tables of thermodynamic properties of substances of wide interest
- A highly professional approach with critical evaluations of the world's thermochemical and spectroscopic literature
- A concise and easy-to-use format

This Third Edition presents an extensive set of tables including thermodynamic properties of more than 1800 substances, expressed in SI units. The notation has been made consistent with current international recommendations.

There is no other reference source of thermodynamic data that satisfies the needs of such a broad base of users.

Order your 2-volume set of the JANAF THERMOCHEMICAL TABLES today! You'll get over 1890 pages of valuable information that is crucial to your research—in two hardback volumes.

SUBSCRIPTION INFORMATION

The JANAF THERMOCHEMICAL TABLES, THIRD EDITION is a twovolume supplement of Journal of Physical and Chemical Reference Data.

1896 pages, 2 volumes, hardcover ISBN 0-88318-473-7 Supplement Number 1 to Volume 14, 1985

U.S. & Canada \$130.00 All Other Countries \$156.00 (Postage included.)

All orders for supplements must be prepaid.

Foreign payment must be made in U.S. currency by international money order, UNESCO coupons, U.S. bank draft, or order through your subscription agency. For rates in Japan, contact Maruzen Co., Ltd. Please allow four to six weeks for your copy to be mailed.

For more information, write American Chemical Society, Marketing Communications Department, 1155 Sixteenth Street, NW, Washington, DC 20036.

In a hurry? Call TOLL FREE 800-227-5558 and charge your order!

Published by the American Chemical Society and the American Institute of Physics for the National Bureau of Standards

Editors:

M.W. Chase, Jr. Nat'l Bureau of Standards

C.A. Davies Dow Chemical U.S.A.

J.R. Downey, Jr. Dow Chemical U.S.A.

D.J. Frurip Dow Chemical U.S.A.

R.A. McDonald Dow Chemical U.S.A.

A.N. Syverud Dow Chemical U.S.A.

Journal of Physical and Chemical Reference Data

Four comprehensive reference volumes, each, like the Journal itself, published by the American Institute of Physics and the American Chemical Society for the National Bureau of Standards . . . your triple assurance of their accuracy, immediacy, and usefulness.

Evaluated Kinetic Data for High Temperature Reactions. Volume 4: Homogeneous Gas Phase Reactions of Halogen- and Cyanide-Containing Species

Supplement No. I to Volume 10

by D. L. Baulch, J. Duxbury, S. J. Grant, and D. C. Montague, Department of Chemistry, University of Leeds

Compiles and critically evaluates the available kinetic data for 300 homogeneous gas phase reactions involving halogens, the cyanide radical, and their compounds. For each reaction you will have

- relevant thermodynamic data a table of measured rate constants
- a discussion of the data and a comprehensive bibliography.

Thermal Conductivity of the Elements: A Comprehensive Review

Supplement No. I to Volume 3

by C. Y. Ho, R. W. Powell, and P. E. Liley, Thermophysical Properties Research Center, Purdue University

This comprehensive review of the world's thermal conductivity data presents recommended or estimated values for all 105 elements.

13

Physical and Thermodynamic Properties of Aliphatic Alcohols

Supplement No. 1 to Volume 2

by R. C. Wilhoit and B. J. Zwolinski, Thermodynamics Research Center, Department of Chemistry, Texas A & M University
Represents the most exhaustive review and critical analysis of selected physical and thermodynamic properties of aliphatic alcohols that has been published in the world literature of chemistry.

G:

Gas-Phase Ion And Neutral Thermochemistry

Supplement No. I to Volume 17

by S.G. Lias, J.E. Bartmess, J.L. Holmes, R.D. Levin, W.G. Mallard, lon Kinetics and Energetics Data Center, National Bureau of Standards

The volume includes brand new evaluated data on ionization energies of 4,000 atoms and molecules and proton affinities of 1,000 compounds, as well as electron affinities and gas phase acidities of approximately 3,000 species. The thermochemistry of the related neutral species is also given. It is the long-awaited update to JPCRD's "Energetics of Gaseous lons".

Title		Price	Qty.	Subtotal			
A. Evaluated Kinetic Data for High Temperature Reactions. Volume 4: Homogeneous Gas	U.S. & Canada	Export			☐ Payment enclosed☐ Bill me ☐ Bill co	d (payable to American Ch Ompany	nemical Society)
Phase Reactions of Halogen- and Cyanide-Containing Speci Hardcover	es S80	\$96				terCard 🗆 VISA 🗀 / ers Club/Carte Blanche	
3. Physical and Thermodynamic Properties of Alcohols	•••	•			Account No	Interbank .	(MasterCard only)
Hardcover Softcoyer	\$33 \$30	\$40 \$36			Name of Cardholde	(American Express Only)	
C. Thermal Conductivity of the Elements: A						Telephone	
Comprehensive Review Hardcover	\$60	\$72			Name		
Softcover Compared to the second sec	\$55	\$66			Organization Home	Title	
Thermochemistry							
Hardcover California	\$70 residents ac				City	State	Zip