Electron Interactions With SF₆ Cite as: Journal of Physical and Chemical Reference Data 29, 267 (2000); https://doi.org/10.1063/1.1288407 Submitted: 14 March 2000 . Accepted: 06 June 2000 . Published Online: 21 September 2000 L. G. Christophorou, and J. K. Olthoff #### ARTICLES YOU MAY BE INTERESTED IN Electron-transport, ionization, attachment, and dissociation coefficients in SF₆ and its mixtures Journal of Applied Physics 64, 4269 (1988); https://doi.org/10.1063/1.341300 Electron Interactions with CF₄ Journal of Physical and Chemical Reference Data 25, 1341 (1996); https://doi.org/10.1063/1.555986 Electron Attachment to SF₆ The Journal of Chemical Physics 53, 2000 (1970); https://doi.org/10.1063/1.1674280 ### Electron Interactions With SF₆ ### L. G. Christophorou^{a)} and J. K. Olthoff^{b)} Electricity Division, Electronics and Electrical Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8113 Received March 14, 2000; accepted June 6, 2000 Sulfur hexafluoride (SF₆) is commonly used as a gaseous dielectric and as a plasma etching gas. In this work, the state of knowledge on electron-interaction cross sections and electron-swarm parameters in SF₆ is comprehensively reviewed and critically assessed. Cross sections are presented and discussed for the following scattering processes: total electron scattering; differential elastic; elastic integral; elastic momentum; total vibrational; total and partial ionization; total dissociative and nondissociative electron attachment; and dissociation into neutrals. Coefficients for electron-impact ionization, effective ionization, electron attachment, electron drift, and electron diffusion are also reviewed and assessed. In addition, complementary information on the electronic and molecular structure of the SF_6 molecule and on electron detachment and ion transport in parent SF₆ gas is provided that allows a better understanding of the nature of the cross sections and swarm parameters. The assessed data are used to deduce cross sections and coefficients for which there exist no direct measurements at the present time. The present work on electron interactions with the SF₆ molecule reveals a rather simple picture which can be summarized as follows: (1) Elastic electron scattering is the most significant electron scattering process over the electron energy range from ~ 0.01 to ~ 1000 eV. (2) Below 15 eV the most distinct inelastic energy-loss process is vibrational excitation direct dipole excitation involving the v_3 mode and indirect vibrational excitation via negative ion states involving the ν_1 mode. (3) Below ~ 0.1 eV electron attachment forming SF₆ is the most dominant interaction (along with elastic scattering). Above this energy, the cross sections for dissociative electron attachment forming fragment anions [principally SF_x^- (x=3, 4, and 5) and F^-] are appreciable, with the room temperature total electron attachment cross section dominated by the formation of SF_5^- between ~ 0.3 and 1.5 eV and by the formation of F^- beyond ~ 2.0 eV. (4) Above ~ 16 eV dissociative ionization becomes significant, generating principally SF_x^+ (x=1, 3, 4, and 5) and F^+ positive-ion fragments which, together with elastic electron scattering, makes up most of the total electron scattering cross section. (5) Electron-impact dissociation into neutral fragments SF_x (x = 1, 2, and 3) and F occurs above $\sim 15 \text{ eV}$, with cross section values potentially exceeding those for ionization for electron energies near 20 eV. (6) The total electron scattering cross section exhibits distinct structure due to negative-ion resonances near 0.0, 2.5, 7.0, and 11.9 eV. The most significant data needs are for direct measurements of vibrational excitation cross sections, for cross sections for electron-impact dissociation into neutral fragments, and for the momentum transfer cross section at low energies. © 2000 American Institute of Physics. [S0047-2689(00)00204-X] Key words: SF₆; sulfur hexafluoride; electron interactions; scattering; ionization; attachment; dissociation; cross section; coefficients; transport; negative ions | | Contents | | 2.2. Total Photoionization, $\sigma_{pi,t}(\lambda)$, Partial | | |----|---|-----|--|--------| | 1. | Introduction | 70 | Photoionization, $\sigma_{pi,partial}(h\nu)$, and Total | | | 2. | Electronic and Molecular Structure | 71 | Photodissociation, $\sigma_{\text{pdis},t}(\lambda)$, Cross Section | s. 273 | | | 2.1. Total Photoabsorption Cross Section, | | 2.3. Electron Energy-Loss Spectra | . 274 | | | $\sigma_{\mathrm{pat}}(\lambda)$ | 272 | 2.4. The Electron Affinity and Negative Ion | | | | pa,t (**) | . – | States of SF ₆ | . 278 | | _ | | | 2.5. Fundamental Vibrational Modes and Other | | | | ectronic mail: loucas.christophorou@nist.gov | | Data | . 278 | | | ectronic mail: james.olthoff@nist.gov | | . Electron Scattering by SF ₆ | . 278 | | | 2000 by the U.S. Secretary of Commerce on behalf of the United State II rights reserved. This copyright is assigned to the American Institute | es. | 3.1. Total Electron Scattering Cross Section, | | | | Physics. | | $\sigma_{ m sc.t}(arepsilon)$ | . 278 | | | 3.2. Elastic Differential Electron Scattering | | | 8.1. Autodetachment | 319 | |----|---|------------|-----|--|------------| | | Cross Section, $\sigma_{\rm e,diff}(\varepsilon)$ | 284 | | 8.2. Thermally Induced Detachment | 319 | | | 3.3. Elastic Integral Electron Scattering Cross | | | 8.3. Photodetachment | 320 | | | Section, $\sigma_{\rm e,int}(\varepsilon)$ | 287 | | 8.4. Collisional Detachment | 321 | | | 3.4. Momentum Transfer (Elastic) Electron | | | Ion Transport in SF ₆ | 323 | | | Scattering Cross Section, $\sigma_{\rm m}(\varepsilon)$ | 288 | 10. | Recommended or Suggested Electron Collision | | | | 3.5. Inelastic Electron Scattering Cross Section, | | | Cross Sections and Electron Transport | | | | $\sigma_{ m inel}(arepsilon)$ | 289 | | Coefficients for SF ₆ | 324 | | | 3.5.1. Vibrational Excitation | 289 | | Data Needs for SF ₆ | 325 | | | 3.5.2. Electronic Excitation | 291 | | Acknowledgments | 325 | | 4. | Electron-Impact Ionization of SF ₆ | 292 | 13. | References | 326 | | | 4.1. Total Ionization Cross Section, $\sigma_{i,t}(\varepsilon)$ | 292 | | | | | | 4.2. Partial Ionization Cross Sections, $\sigma_{i,partial}(\varepsilon)$. | 293 | | List of Tables | | | | 4.3. Electron-Impact Ionization of SF ₆ Neutral | | 1. | Definition of symbols | 271 | | | Fragments | 295 | | Values of the total excitation (photoabsorption) | | | | 4.4. Density-Reduced Electron-Impact Ionization | | | cross section for SF ₆ | 273 | | | Coefficient, $\alpha/N(E/N)$ | 296 | 3. | Ionization energies of various orbitals of SF ₆ | 275 | | 5. | Cross Sections for Electron-Impact Dissociation | | | Photon energy/energy loss and transition | | | | of SF ₆ into Neutral Fragments, $\sigma_{\rm dis,neut}(\varepsilon)$ | 297 | | assignments for SF ₆ | 276 | | 6. | Electron Attachment to SF ₆ | 300 | 5. | Values of the electron affinity of the SF ₆ | | | | 6.1. Cross Sections for the Formation of | | | molecule reported since 1983 | 277 | | | Negative Ions | 300 | 6. | Negative ion states of SF ₆ | 279 | | | 6.1.1. SF_6^- | 300 | 7. | Vibrational assignment, energy, symmetry, | | | | 6.1.2. SF_5^- | 304 | | infrared activity, and degeneracy of the | | | | 6.1.3. SF_4^- , SF_3^- , and SF_2^- | 305 | | fundamental frequencies of the SF ₆ molecule | 280 | | | 6.1.4. F_2^- | 306 | 8. | Other data on SF_6 and SF_6^- | 280 | | | 6.1.5. F ⁻ | 307 | 9. | Recommended values for the total electron | | | | 6.2. Total Electron Attachment Cross Section, | | | scattering cross section, $\sigma_{\text{sc,t}}(\varepsilon)$, of SF ₆ | 282 | | | $\sigma_{\rm a,t}(\varepsilon)$, and Total Dissociative Electron | | 10. | Elastic differential electron scattering cross | | | | Attachment Cross Section, $\sigma_{\text{da,t}}(\varepsilon)$ | 307 | | section, $\sigma_{\rm e,diff}(\varepsilon)$, for SF ₆ from Rohr (Ref. 120). | 285 | | | 6.3. Total Electron Attachment Rate Constant, | | 11. | Elastic differential electron scattering cross | | | | $k_{\rm a,t}$, as a Function of E/N and $\langle \varepsilon \rangle$ | 308 | | section, $\sigma_{e,diff}(\varepsilon)$, for SF ₆ from Cho <i>et al</i> . | | | | 6.3.1. $k_{a,t}(E/N)$ in Ar, Xe, and N ₂ | 308 | | (Refs. 143, 144) | 285 | | | 6.3.2. $k_{a,t}(\langle \varepsilon \rangle)$ | 309 | 12. | Elastic differential electron scattering cross | | | | 6.3.3. Thermal Value, $(k_{a,t})_{th}$, of the Total | | | section, $\sigma_{e,diff}(\varepsilon)$, for SF ₆ from Sakae <i>et al</i> . | | | | Electron Attachment Rate Constant | 311 | | (Ref. 142) | 286 | | | 6.4. Effect of Temperature on Electron | | 13. | Suggested values for the elastic integral electron | • • • | | | Attachment to SF ₆ | 312 | | scattering cross section, $\sigma_{\rm e,int}(\varepsilon)$, of SF ₆ | 288 | | | 6.4.1. Effect of Temperature on the | | 14. | Suggested values for the momentum transfer | | | | Production of SF_5^- from SF_6 | 312 | | (elastic) electron scattering cross section, | • • • | | | 6.4.2. Effect of Temperature on the Total | | | $\sigma_{\rm m}(\varepsilon)$, of SF ₆ | 288 | | | Electron Attachment Rate Constant, | 212 | 15. | Deduced values of the total vibrational excitation | 201 | | | $k_{\mathrm{a,t}}(\langle \varepsilon \rangle, T)
\dots $ | 313 | 1.0 | cross section, $\sigma_{\text{vib,t}}(\varepsilon)$, of SF ₆ | 291 | | | 6.5. Density-Reduced Electron Attachment | 214 | 16. | Comparison of the values of the partial ionization | 202 | | | Coefficient, $\eta/N(E/N)$ | 314 | 17 | cross sections, $\sigma_{i,partial}(\varepsilon = 100 \text{eV})$, of SF ₆ | 292 | | | 6.6. Density-Reduced Effective Ionization | 215 | 1/. | Recommended values for the total ionization | 202 | | 7 | Coefficient, $(\alpha - \eta)/N(E/N)$ | 315 | 10 | cross section, $\sigma_{i,t}(\varepsilon)$, of SF ₆ | 293 | | 7. | Electron Transport in SF ₆ . | 317
317 | 10. | Threshold energies for appearance of positive | 205 | | | 7.1. Electron Drift Velocity, w (E/N) | 317 | 10 | ions from SF ₆ radicals | 295 | | | 7.2. Transverse Electron Diffusion Coefficient to Electron Mobility Ratio, $D_{\rm T}/\mu$ (E/N) | 318 | 19. | Recommended values of the density-reduced electron-impact ionization coefficient, | | | | 7.3. Product of Gas Number Density and | 510 | | | 297 | | | Longitudinal Electron Diffusion Coefficient, | | 20 | $\alpha/N(E/N)$, for SF ₆ | <i>491</i> | | | $ND_{L}(E/N)$ | 319 | 20. | $\sigma_{ m dis, neut, t}(\epsilon)$, for electron-impact dissociation of | | | 8. | Autodetachment, Thermally Induced Detachment, | 317 | | $\sigma_{\text{dis,neut,t}}(\mathcal{E})$, for electron-impact dissociation of SF ₆ into neutral fragments | 298 | | υ. | Photodetachment, and Collisional Detachment of | | 21 | Expected or measured threshold energies for | 230 | | | SF ₆ | 319 | 41. | electron-impact dissociation of SF ₆ into neutrals | 298 | | | D± 6 · · · · · · · · · · · · · · · · · · | シェノ | | election impact dissociation of SI's into neutrals. | 220 | | 22. | Threshold energies of excited neutral fragments | | | List of Figures | | |---------------|---|-----|-----|--|------| | | upon electron impact on SF ₆ | 298 | 1. | Total photoabsorption cross section and total | | | 23. | Absolute emission cross sections, $\sigma_{\rm em}(100{\rm eV})$, | | | excitation cross section of SF ₆ | 272 | | | for various visible FI emission lines for 100 eV | | 2. | Total photodissociation, $\sigma_{\text{pdis},t}(\lambda)$, and total | | | | incident electrons impacting on SF ₆ | 299 | | photoionization, $\sigma_{pi,t}(\lambda)$, cross sections of SF ₆ | 273 | | 24. | Recommended values of the electron attachment | | 3. | Partial photoionization cross sections, | | | | cross section, $\sigma_{\mathrm{a,SF}}(\varepsilon)$, for the formation of | | | $\sigma_{\text{pi,partial}}(h\nu)$, of SF ₆ | 274 | | | SF ₆ by electron impact on SF ₆ | 304 | 4. | Negative ion states of the SF ₆ molecule | 277 | | 25 | Suggested values for the dissociative electron | 501 | 5. | Total electron scattering cross section, $\sigma_{\rm sc,t}(\varepsilon)$, | | | | attachment cross section, $\sigma_{\mathrm{da,SF}_{5}}(\varepsilon)$, for the | | | of SF ₆ | 281 | | | 3 | 204 | 6. | Elastic differential electron scattering cross | | | 26 | formation of SF_5^- by electron attachment to SF_6 . | 304 | _ | sections, $\sigma_{\rm e,diff}(\varepsilon)$, of SF ₆ | 283 | | 20. | Energy positions of cross section maxima in the | | 7. | Elastic integral electron scattering cross section, | 207 | | | formation of negative ions by low-energy | 206 | 0 | $\sigma_{\rm e,int}(\varepsilon)$, of SF ₆ | 287 | | 27 | electron impact on SF ₆ | 306 | 8. | Momentum transfer (elastic) electron scattering | 200 | | 21. | Suggested cross sections for the formation of | | 0 | cross section, $\sigma_{\rm m}(\varepsilon)$, of SF ₆ | 288 | | | SF_4^- , SF_3^- , SF_2^- , F_2^- , and F_3^- by dissociative | 207 | | Low-energy electron energy-loss spectra of SF_6 . | 289 | | 20 | electron attachment to SF ₆ . | 307 | | Low-energy electron energy-loss spectra of SF ₆ . | 290 | | <i>2</i> 0. | Suggested room temperature values of the total | | 11. | Low-energy electron energy-loss spectra for SF ₆ | 200 | | | electron attachment cross section, $\sigma_{a,t}(\varepsilon)$, and | | 12 | as a function of incident electron energy | 290 | | | the total dissociative electron attachment, | 200 | 12. | Deduced total vibrational excitation cross | 291 | | 20 | $\sigma_{\rm da,t}(\varepsilon)$, for SF ₆ | 309 | 13 | section, $\sigma_{\text{vib,t}}(\varepsilon)$, for SF ₆ | 291 | | 29. | Values of $k_{a,t}(E/N)$, and $\eta/N_a(E/N)$ for SF ₆ | | 13. | | 292 | | | measured in the buffer gases Ar and Xe, and | | 14 | $\sigma_{\text{el,diff}}(\varepsilon)$, for excited electronic states of SF ₆
Total electron-impact ionization cross section, | 292 | | | values of $w(E/N)$, and $\langle \varepsilon \rangle (E/N)$ for these buffer | 310 | 17. | $\sigma_{i,t}(\varepsilon)$, for SF ₆ | 293 | | 20 | gases | 310 | 15 | Partial ionization cross sections, $\sigma_{i,partial}(\varepsilon)$, for | 273 | | 30. | Values of $k_{a,t}(E/N)$ and $\eta/N_a(E/N)$ for SF ₆ | | 15. | SF ₆ | 294 | | | measured in the buffer gas N_2 , and values of $v_1(F/N)$ and $v_2(F/N)$ for N_1 | 311 | 16. | Electron-impact ionization of SF ₆ radicals | 295 | | 31 | $w(E/N)$, and $\langle \varepsilon \rangle (E/N)$ for N_2 | 311 | | Density-reduced electron-impact ionization | | | 31. | | 312 | | coefficient, $\alpha/N(E/N)$, for SF ₆ | 296 | | 32 | attachment rate constant, $k_{a,t}(\langle \varepsilon \rangle)$, of SF ₆ | 312 | 18. | Cross sections, $\sigma_{\rm dis,neut}(\varepsilon)$, for electron-impact | | | 32. | Thermal $(k_{a,t})_{th}$ values of the total electron attachment rate constant for SF_6 | 313 | | dissociation of SF_6 into neutral fragments | 297 | | 33 | Variation with temperature of the thermal | 313 | 19. | Emission cross section for the integrated FI | | | 55. | electron attachment rate constant, $(k_{a,t})_{th}$, of SF ₆ . | 314 | | $3p^4D^0 \rightarrow 3s^4P$ multiplet for SF ₆ | 299 | | 3/1 | Recommended values of the density-reduced | 314 | 20. | Emission spectrum of SF ₆ between about 200 | | | J - T. | electron attachment coefficient, $\eta/N(E/N)$, | | | nm and 600 nm generated by collisions with | | | | for SF_6 | 315 | | 200 eV incident electrons | 299 | | 35 | Recommended values of the density-reduced | 313 | 21. | Calculated electron-impact dissociation rate, | | | 55. | effective ionization coefficient, (α | | | $k_{\rm dis}(E/N)$, for total dissociation, total | | | | $-\eta$)/N(E/N), for SF ₆ | 317 | | electronic excitation, and total dissociative | | | 36 | Recommended, suggested, and deduced values | 317 | | ionization | 300 | | 50. | of the electron drift velocity, $w(E/N)$, for SF ₆ | 317 | 22. | Measured total electron attachment cross section, | | | 37 | Assessed values of $\eta/N(E/N)$ and $w(E/N)$, and | 317 | | $\sigma_{a,t}(\varepsilon)$, for SF ₆ | 301 | | 57. | their product $k_{a,t}(E/N)$, for pure SF ₆ | 318 | 23. | Rate constant, $k_{a,be}(n^*)$, for bound-electron | | | 38. | Suggested values of the transverse electron | 010 | | capture as a function of the effective principal | | | | diffusion coefficient to electron mobility | | | quantum number n^* in collisions of Rydberg | 202 | | | ratio, $D_{\rm T}/\mu(E/N)$, for SF ₆ | 319 | 24 | atoms with SF ₆ | 302 | | 39. | Suggested values of the product of the gas | | 24. | Selected measurements of the cross sections for | | | | number density and the longitudinal electron | | | the formation of SF_6^- and dissociative electron | 202 | | | diffusion coefficient, $ND_{L}(E/N)$, for SF_{6} | 319 | 25 | attachment for SF ₆ below 2 eV | 303 | | 40. | Recommended values of the photodetachment | | ۷٥. | Cross sections for the formation of SF ₄ , SF ₃ , | | | | cross section, $\sigma_{pd}(h\nu)$, of SF_6^- as a function | | | and SF_2^- by dissociative electron attachment to SF_6 | 305 | | | of photon energy | 320 | 26 | Cross section for the formation of F_2^- by | 505 | | 41. | $k_{\rm T}^{-}(E/N)$ and $D_{\rm T}^{-}/\mu(E/N)$ for negative ions in | | 20. | dissociative electron attachment to SF_6 | 305 | | | SF ₆ | 324 | 27. | Cross section for the formation of F ⁻ by | _ 00 | | | * | | | <u> </u> | | | | dissociative electron attachment to SF ₆ | 307 | |-----|--|-----| | 28. | Recommended and suggested cross sections for | | | | nondissociative and dissociative electron | | | | attachment to SF ₆ | 308 | | 29. | Total electron attachment rate constant, | | | | $k_{\text{a.t}}(E/N)$, for SF ₆ | 310 | | 30. | Total electron attachment rate constant, $k_{\text{a,t}}(\langle \varepsilon \rangle)$, | | | | for SF ₆ | 312 | | 31. | Temperature dependence of the relative cross | | | | section for the formation of SF ₅ by electron | | | | impact on SF ₆ | 313 | | 32. | Variation of the rate constant for electron | | | | attachment to SF ₆ with gas temperature | 314 | | 33. | Measured density-reduced electron attachment | | | | coefficient, $\eta/N(E/N)$, for SF ₆ | 315 | | 34. | Measured density-reduced effective ionization | | | | coefficient, $(\alpha - \eta)/N(E/N)$, for SF ₆ | 316 | | 35. | Electron drift velocity, $w(E/N)$, in SF_6 | 317 | | | Electron drift velocity, $w(E/N)$, in SF ₆ at low | | | | E/N | 318 | | 37. | Transverse electron diffusion coefficient to | | | | electron mobility ratio, $D_T/\mu(E/N)$, for SF_6 | 318 | | 38. | Measured values of the product of the gas | | | | number density and the longitudinal electron | | | | diffusion coefficient, $ND_{L}(E/N)$, for SF_{6} | 319 | | 39. | Photodetachment cross section, $\sigma_{\rm pd}(h\nu)$, for | | | | SF ₆ | 320 | | 40. | Measured cross sections for negative | | | | ion-molecule
reactions in SF ₆ | 321 | | 41. | Density-reduced electron detachment coefficient, | | | | $\delta/N(E/N)$, of SF ₆ | 322 | | 42. | Measured reduced mobilities, $\mu_0^-(E/N)$, for | | | | negative ions in SF ₆ | 322 | | 43. | Measured reduced mobilities, $\mu_0^-(E/N)$, for F ⁻ | | | | in SF ₆ | 322 | | 44. | Measured reduced mobilities, $\mu_0^+(E/N)$, for | | | | SF_5^+ and SF_3^+ in SF_6 | 323 | | 45. | $ND_{\rm L}^-(E/N)$ for negative ions and $ND_{\rm L}^+(E/N)$ | | | | for positive ions in SF ₆ | 324 | | 46. | Volume (ion-ion) recombination rate coefficient, | | | | $k_{\rm r}$, in SF ₆ | 324 | | 47. | Recommended and suggested electron collision | | | | cross sections for SF ₆ | 325 | | | v | | #### 1. Introduction Sulfur hexafluoride (SF_6) is a man-made molecule used in many applied areas: ^{1,2} as an insulating medium in high-voltage transmission and distribution equipment; a high-dielectric strength gas in ultraviolet (UV) laser-triggered spark-gap closing switches; a fluorine donor in, for instance, rare gas-halide excimer lasers; a gas for plasma etching of silicon and GaAs-based semiconductors; a blanket gas for magnesium casting; a reactive gas in aluminum recycling to reduce porosity; a gas for thermal and sound insulation; and a gas for use in many other wide ranging areas including retinal detachment surgery, airplane tires, AWACS radar domes, and x-ray machines. Its general properties, especially as they relate to its use by the electric power industry, have been summarized and discussed by Christophorou *et al.*² Sulfur hexafluoride is also of environmental concern in that it has been shown to be a potent greenhouse gas.³ It is an efficient absorber of infrared radiation, and because it is very stable, is largely immune to chemical and photolytic degradation. The latter accounts for its long residence lifetime in the environment. The strong infrared absorption and the long (800–3200 yr) residence lifetime^{3–7} in the environment account for its high global warming potential, which for a 100 yr period is estimated to be ~24 000 times greater than that of CO_2 .³ Because of its unique structure and applied interest, the SF_6 molecule has been the subject of many experimental, theoretical, and computational studies. There have been a number of reviews of its interactions with slow electrons (e.g., Refs. 2, 8–14) and photons (e.g., Refs. 15–18). In the present work we synthesize and critically evaluate existing knowledge on the interactions of low-energy (mostly below about 100 eV) electrons with the SF₆ molecule and recommend, suggest, or simply provide values for the various electron scattering cross sections, coefficients, and rate constants that are used to quantify these processes. These processes are identified in Table 1 along with the corresponding symbols and units. The data assessment procedure followed in this work is the same as in the previous papers in this series. 19-25 As discussed in these earlier publications, "recommended" or "suggested" values of cross sections and coefficients are determined, where possible, for each type of cross section and coefficient for which data exist. These values are derived from fits to the most reliable data, as determined by the following criteria: (i) the data are published in peer reviewed literature; (ii) the data exhibit no evidence of unaddressed errors; (iii) the data are absolute measurements; (iv) multiple data sets exist and are consistent with one another within the combined stated uncertainties over common energy ranges; and (v) in regions where both experimentally and theoretically derived data exist, the experimental data are preferred. Data that meet these criteria are selected for each cross section or coefficient and a fit to these data is designated as our recommended data. The recommended data represent the best current estimates for the cross sections and coefficients for each of the processes. A cross section or coefficient may be designated as suggested if the available data are deemed to be reasonable but do not meet all of the criteria listed above. For example, results from a single measurement may be designated as suggested if a second, independent, confirming measurement is unavailable. In cases where no reasonable data exist, or where two or more measurements are in an unresolved contradiction, the raw data are presented for information and no recommendation is made. At the present time, we make no use of data presented on the Internet unless these have been also published in the archival literature or in a formal report of a scientific institution or conference. No attempt is made in this article to evaluate the predic- TABLE 1. Definition of symbols | Symbol | Definition | Common scale and units | |--|---|--| | $\sigma_{\rm pa,t}(\lambda)$ | Total photoabsorption cross section | $10^{-18} \text{cm}^2; 10^{-22} \text{m}^2$ | | $\sigma_{\mathrm{pi,t}}(\lambda)$ | Total photoionization cross section | 10^{-18}cm^2 ; 10^{-22}m^2 | | $\sigma_{\rm pi,partial}(h\nu)$ | Partial photoionization cross section | 10^{-18}cm^2 ; 10^{-22}m^2 | | $\sigma_{\mathrm{pdis},\mathrm{t}}(\lambda)$ | Total photodissociation cross section | 10^{-18}cm^2 ; 10^{-22}m^2 | | $\sigma_{ m sc.t}(arepsilon)$ | Total electron scattering cross section | $10^{-16} \mathrm{cm}^2$; $10^{-20} \mathrm{m}^2$ | | $\sigma_{ m e.diff}(arepsilon)$ | Elastic differential electron scattering cross section | $10^{-20} \mathrm{m^2 sr^{-1}}$ | | $\sigma_{ m e,int}(arepsilon)$ | Elastic integral electron scattering cross section | 10^{-16}cm^2 ; 10^{-20}m^2 | | $\sigma_{ m e,t}(arepsilon)$ | Total elastic electron scattering cross section | $10^{-16} \text{cm}^2; 10^{-20} \text{m}^2$ | | $\sigma_{\mathrm{m}}(arepsilon)$ | Momentum transfer cross section (elastic) | 10^{-16}cm^2 ; 10^{-20}m^2 | | $\sigma_{ m vib,diff}(arepsilon)$ | Vibrational differential scattering cross section | $10^{-20} \mathrm{m^2 sr^{-1}}$ | | $\sigma_{ m vib,t}(arepsilon)$ | Total vibrational excitation cross section | $10^{-16} \text{cm}^2; 10^{-20} \text{m}^2$ | | $\sigma_{ m el.diff}(arepsilon)$ | Differential electronic excitation cross section | $10^{-22} \mathrm{m^2 sr^{-1}}$ | | $\sigma_{\mathrm{i,t}}(arepsilon)$ | Total ionization cross section | 10^{-16}cm^2 ; 10^{-20}m^2 | | $\sigma_{ ext{i,partial}}(arepsilon)$ | Partial ionization cross section | $10^{-16} \mathrm{cm}^2$; $10^{-20} \mathrm{m}^2$ | | $\sigma_{ m dis,t}(arepsilon)$ | Total dissociation cross section | $10^{-16} \mathrm{cm}^2$; $10^{-20} \mathrm{m}^2$ | | $\sigma_{ m dis,neut,t}(arepsilon)$ | Total cross section for electron impact | $10^{-16} \mathrm{cm}^2$; $10^{-20} \mathrm{m}^2$ | | uis,neut,t (- / | dissociation into neutrals | , | | $\sigma_{ m em}(arepsilon)$ | Emission cross section | $10^{-19} \mathrm{cm}^2$; $10^{-23} \mathrm{m}^2$ | | $\sigma_{\rm a.t}(\varepsilon)$ | Total electron attachment cross section | $10^{-14} \mathrm{cm}^2$; $10^{-18} \mathrm{m}^2$ | | $\sigma_{\mathrm{da},\mathrm{t}}(\varepsilon)$ | Total dissociative electron attachment cross section | $10^{-17} \mathrm{cm}^2; 10^{-21} \mathrm{m}^2$ | | $\sigma_{\rm pd}(h\nu)$ | Photodetachment cross section | $10^{-19} \mathrm{cm}^2$; $10^{-23} \mathrm{m}^2$ | | $\sigma_{\rm ic}(\mathcal{E}_{ m cm})$ | Cross section for ion conversion | $10^{-16} \mathrm{cm}^2; 10^{-20} \mathrm{m}^2$ | | $\sigma_{ m cd}\left(\mathcal{E}_{ m cm} ight)$ | Cross section for collisional detachment | $10^{-16} \mathrm{cm}^2$; $10^{-20} \mathrm{m}^2$ | | $\sigma_{\rm ct}\left(\mathcal{E}_{ m cm} ight)$ | Cross section for charge transfer | $10^{-16} \mathrm{cm}^2$; $10^{-20} \mathrm{m}^2$ | | $\alpha/N (E/N)$ | Density-reduced ionization coefficient | $10^{-18} \mathrm{cm}^2, 10^{-22} \mathrm{m}^2$ | | η/N (E/N) | Density-reduced electron attachment coefficient | $10^{-18} \mathrm{cm}^2, 10^{-22} \mathrm{m}^2$ | | $(\alpha - \eta)/N (E/N)$ | Density-reduced effective ionization coefficient | $10^{-18} \mathrm{cm}^2, 10^{-22} \mathrm{m}^2$ | | $k_{\text{a,be}}(n^*)$ | Rate constant for bound-electron attachment | $10^{-7} \text{ cm}^3 \text{ s}^{-1}$ | | $k_{\text{dis}}(E/N)$ | Electron-impact dissociation rate constant | $10^{-9} \mathrm{cm}^3 \mathrm{s}^{-1}$ | | $k_{\text{dis}}(E/N)$ | Total electron attachment rate constant | $10^{-7} \text{cm}^3 \text{s}^{-1}$ | | $(k_{a,t})_{th}$ | Thermal total electron attachment rate constant | $10^{-7} \text{ cm}^3 \text{ s}^{-1}$ | | w(E/N) | Electron drift velocity | 10^6cm s^{-1} | | $D_{\mathrm{T}}/\mu (E/N)$ | Transverse electron diffusion coefficient to electron | V | | D_{T}/μ (L/N) | mobility ratio | · | | $D_{\rm L}/\mu~(E/N)$ | Longitudinal electron diffusion coefficient to electron | V | | D_{L}/μ (L/N) | mobility ratio | Ť | | $\mu_0^ (E/N)$ | Reduced mobility of negative ions | $cm^2 V^{-1} s^{-1}$ | | | Reduced mobility of negative ions | $cm^2 V^{-1} s^{-1}$ | | μ_0^+ (E/N) | Product of gas number density and negative ion | $10^{18} \mathrm{cm}^{-1} \mathrm{s}^{-1}$ | | $ND_{\rm L}^-(E/N)$ | diffusion coefficient | 10 CIII 8 | | ND ⁺ (E/N) | | $10^{18}\mathrm{cm}^{-1}\mathrm{s}^{-1}$ | | $ND_{\rm L}^+$ (E/N) | Product of gas number density and positive ion | 10 cm s | | 1 (E/N) | diffusion coefficient | $10^{-6} \mathrm{cm}^3 \mathrm{s}^{-1}$ | | $k_{\rm r}(E/N)$ | Ion-ion recombination rate coefficient | $10^{-6} \text{ cm}^3 \text{ s}^{-1}$
10^{-19} cm^2 | | δ/N (E/N) | Density-reduced electron detachment coefficient | 10 - cm | tions of the many Boltzmann-code and Monte Carlo-type analyses of electron transport in
SF_6 (e.g., Refs. 11, 26–44) that are available in the literature. This will be the subject of a future paper.⁴⁵ ### 2. Electronic and Molecular Structure The electronic structure of this highly symmetric molecule has long been a subject of much interest because of its unusual properties (e.g., unusual spectroscopy) and because of its many industrial uses. In the SF₆ molecule the sulfur atom is at the center of a regular octahedron, the corners of which are occupied by the six fluorine atoms. It has ten valence orbitals containing 48 electrons and belongs to the point group O_h . Is ground-state valence electron configuration is: $^{46-51}$ $$(\text{core})^{22} (4a_{1g})^2 (3t_{1u})^6 (2e_g)^4 (5a_{1g})^2 (4t_{1u})^6 (1t_{2g})^6 (3e_g)^4$$ $$\times [(1t_{2u})^6 (5t_{1u})^6] (1t_{1g})^6 A_{1g},$$ where the first three orbitals constitute the inner-shell valence region. The four lowest empty (valence) orbitals 49,52 are: $(6a_{1g})^0(6t_{1u})^0(2t_{2g})^0(4e_g)^0$. However, there are still some questions as to the energetic sequence of the various orbitals. For instance, the $(5t_{1u})$ and $(1t_{2u})$ orbitals are nearly degenerate and their ordering is unresolved. Actually, their sequence has been interchanged by some authors (e.g., see Refs. 13 and 52, and also discussions in Refs. 16, 17, 46, 47 and 53–55). As noted by Gianturco and Jain, 56 the SF₆ molecule, being an assembly of atoms containing 70 bound electrons, is difficult to handle by *ab initio* computational methods. The rather large nuclear charges of the fluorine atoms away from the center-of-mass, makes the single-center approach unlikely to work. Thus, computational models are by necessity approximate models. Nonetheless, the present assessment of electron interactions with the SF₆ molecule has unveiled a rather simple picture which can be summarized as follows: - (i) Elastic electron scattering is the most significant electron scattering process over the electron energy range from ~ 0.01 to ~ 1000 eV. - (ii) From \sim 0.1 to 15 eV the most distinct inelastic energy-loss process is vibrational excitation—direct dipole excitation involving the ν_3 mode and indirect vibrational excitation via negative ion states involving the ν_1 mode. - (iii) Below ~ 0.1 eV electron attachment forming SF_6^- is the dominant inelastic interaction. Above this energy the cross sections for dissociative electron attachment forming fragment anions [principally SF_x^- (x=3, 4, and 5) and F^-] are appreciable, with the room temperature total electron attachment cross section dominated by the formation of SF_5^- between ~ 0.3 and 1.5 eV and by the formation of F^- beyond ~ 2.0 eV. - (iv) Above $\sim 16 \,\text{eV}$ dissociative ionization becomes significant, generating principally SF_x^+ (x=1, 3, 4, and 5) and F^+ positive-ion fragments which, together with elastic electron scattering, makes up most of the total electron scattering cross section. - (v) Electron-impact dissociation into neutral fragments SF_x (x = 1, 2, and 3) and F occurs above $\sim 15 \text{ eV}$, with cross section values potentially exceeding those for ionization at electron energies near 20 eV. - (vi) The total electron scattering cross section exhibits distinct structure due to negative ion resonances at about 0.0, 2.5, 7.0, and 11.9 eV. ### 2.1. Total Photoabsorption Cross Section, $\sigma_{pa,t}(\lambda)$ The photoabsorption (and photoelectron) spectrum of SF_6 has been investigated extensively over broad energy ranges. It is unusual in that the most prominent features are due to intervalence transitions. Rydberg series, which often dominate molecular absorption cross sections at energies a few electron volts above the ionization threshold, are strongly suppressed in SF_6 . This anomalous intensity distribution has been interpreted by Nefedov⁵⁷ and Dehmer⁵⁸ in terms of a potential barrier experienced by the outgoing electron. Total photoabsorption cross sections, $\sigma_{\rm pa,t}(\lambda)$, have been discussed by a number of authors (see e.g., Hitchcock and Van der Wiel, ⁵⁹ Berkowitz, ¹⁶ and Holland *et al.* ⁴⁸). Also, Gallagher *et al.* ¹⁸ reviewed the data on the photoabsorption, photoionization, and ionic photofragmentation cross sections for this molecule. The reader is referred to these studies and the sources cited therein for detailed data and discussion. In Fig. 1(a) are shown the total photoabsorption crosssection data for SF₆ of Codling,⁶⁰ Blechschmidt *et al.*,⁶¹ Lee *et al.*,⁵³ Sasanuma *et al.*,⁶² and Holland *et al.*⁴⁸ Collectively these measurements cover the photon energy range between Fig. 1. (a) Total photoabsorption cross section, $\sigma_{pa,t}(\lambda)$, of SF₆ as a function of photon energy: (\bullet) Ref. 60; (---) Ref. 61; (\square) Ref. 53; (\longrightarrow) Ref. 62; (-·-) Ref. 48. (b) Total excitation (photoabsorption) cross section obtained from high-energy electron energy-loss spectra (see text): (\longrightarrow) Ref. 64; (--) Ref. 59; (-·-) Ref. 65. 30 Electron Energy Loss (eV) 40 50 20 10 ~ 10 and $\sim 50\,\mathrm{eV}$. There are considerable differences in these measurements. For example, the most recent cross-section measurements by Holland $et~al.^{48}$ lie below those of Blechschmidt $et~al.^{61}$ in some regions of the spectrum by nearly a factor of 2. They are in closer overall agreement with the measurements of Lee $et~al.^{53}$ and Sasanuma $et~al.^{62}$ All the data however show that the most intense feature in the entire absorption spectrum occurs around 23 eV and is due to the $5a_{1g} \rightarrow 6t_{1u}$ and $5t_{1u} \rightarrow 2t_{2g}$ intervalence transitions which are enhanced by shape resonances. For a spectral assignment see Mitsuke $et~al.^{63}$ Sze and Brion, and Holland $et~al.^{48}$ (see also Table 4 in Sec. 2.3). For comparison with the photoabsorption measurements in Fig. 1(a), excitation cross sections 59,64,65 determined from high-energy electron energy-loss spectra of SF_6 are shown in Fig. 1(b). These spectra are equivalent to the total photoabsorption cross section as a function of the photon energy. The electron energy-loss spectrum of Simpson *et al.* 64 was obtained at 0° scattering angle with 400 eV incident electrons, and was normalized to the photoabsorption results of Codling 60 at 23.0 eV. The electron energy-loss spectrum of Hitchcock and Van der Wiel 59 was also obtained at 0° scat- Table 2. Values of the total excitation (photoabsorption) cross section for SF₆ determined from high-energy electron energy-loss spectra of Ying *et al.* in Ref. 65. The values listed here are derived by digitally scanning the figure in Ref. 65 | Energy loss (eV) | Cross section (10 ⁻²² m ²) | Energy loss (eV) | Cross section (10 ⁻²² m ²) | |------------------|---|------------------|---| | 8 | 0.0 | 36 | 80.4 | | 9 | 0.39 | 38 | 72.4 | | 10 | 7.74 | 40 | 67.1 | | 11 | 24.4 | 42 | 61.1 | | 12 | 18.2 | 44 | 55.7 | | 14 | 25.2 | 46 | 52.2 | | 16 | 73.9 | 48 | 47.5 | | 17 | 95.4 | 50 | 40.3 | | 18 | 76.6 | 52 | 37.9 | | 20 | 71.1 | 54 | 34.9 | | 22 | 122.5 | 56 | 33.3 | | 23 | 156.8 | 58 | 31.7 | | 24 | 130.9 | 60 | 30.2 | | 26 | 83.8 | 62 | 27.6 | | 28 | 84.6 | 64 | 26.4 | | 30 | 74.8 | 66 | 24.6 | | 32 | 74.2 | 68 | 25.5 | | 34 | 77.0 | 70 | 25.5 | tering angle but with 8 keV incident electrons and was normalized to the photoabsorption data of Blechschmidt $et~al.^{61}$ at 27 eV. Ying $et~al.^{65}$ used a 0.5° scattering angle and 2.5 keV incident electrons. Their measurements of generalized oscillator strengths, df/dE, were put on an absolute cross section scale via the relation $\sigma_{\rm pa,t}(10^{-18}\,{\rm cm}^2)=109.75\,df/dE({\rm eV}^{-1})$. These last data are listed in Table 2 since they are absolute values. They are in good agreement with the other two sets of data. Photoabsorption cross section measurements also have been extended into the extreme UV and soft x-ray regions using synchrotron radiation by a number of investigators. 48,50,53,54,60,61,66-70 # 2.2. Total Photoionization, $\sigma_{\text{pi,t}}(\lambda)$, Partial Photoionization, $\sigma_{\text{pi,partial}}(h\nu)$, and Total Photodissociation, $\sigma_{\text{pdis.t}}(\lambda)$, Cross Sections Because the lowest ionic state of SF₆ is antibonding, the ionization process even at threshold is dissociative and results in the formation of the fragments SF_5^+ and F. No SF_6^+ ion has been observed in the preponderance of the investigations, and its abundance is estimated to be less than 10^{-4} compared to that of SF₅⁺. Thus, the photoionization of SF₆ is viewed as totally dissociative, and can be attributed to any of the following processes: direct, indirect, double, or Auger. Measurements of dissociative photoionization and dissociative and nondissociative double photoionization can be found in Gallagher et al. 18 and Hitchcock and Van der Wiel. 59 Holland et al. 48 used their measurements of the absolute total photoabsorption cross section and the photoionization quantum efficiency as a function of the photon wavelength to calculate the absolute total photoionization cross section, $\sigma_{\rm pi,t}(\lambda)$, and the absolute total photodissociation cross section, $\sigma_{\text{pdis},t}(\lambda)$, for SF₆ shown in Fig. 2. In deducing the Fig. 2. Total photodissociation (---), $\sigma_{pdis,t}(\lambda)$, and total photoionization (—), $\sigma_{pi,t}(\lambda)$, cross sections of SF₆ as a function of photon wavelength (data of Holland *et al.* from Ref. 48). photodissociation cross section it has been implicitly assumed that an excited SF₆ molecule can decay only by dissociation into neutral fragments or by autoionization. In Fig. 3 are shown the partial photoionization cross sections, $\sigma_{\text{pi,partial}}(h\nu)$, of Hitchcock and Van der Wiel⁵⁹ deduced
from dipole oscillator strength measurements over a range of energies up to an equivalent photon energy of 63 eV. In the same figure are also plotted the cross sections for dissociative and double photoionization of SF₆ in the energy range 75–125 eV obtained by Masuoka and Samson⁷¹ using time-of-flight mass spectrometry and synchrotron radiation. The most abundant positive fragment ions are seen to be SF₅⁺ and SF₃⁺ (see also Creasey *et al.*⁷² and Peterka *et al.*⁷³). The relatively large cross section of the doubly charged positive ion SF₄⁺⁺ was also observed under electron impact and was taken to indicate⁷⁴ the formation of SF₄⁺⁺ by removal of two F ions. Gustafsson⁵⁴ also measured partial photoionization cross sections of SF₆ between 20 and 54 eV using synchrotron light. In general, these cross sections (not shown in Fig. 3) are rich in structure showing distinct resonance effects (e.g., see Gustafsson⁵⁴ and Dehmer⁵⁸). Studies employing photoelectron spectroscopy allowed detailed investigations of the photoionization process, including the relative probabilities (partial cross sections) of exciting specific electronic, vibrational, or rotational states of the molecular ion. Photoelectron-photoion coincidence experiments also allowed determination of the subsequent fate of the excited molecular ions. In addition, photoionphotoion coincidence experiments (e.g., see Refs. 75 and 76) have allowed probing of double ionization processes. These can be either direct or via an Auger decay. In the first case two highly correlated valence electrons are ejected. While in the latter case an inner-shell electron is ejected, an Auger decay occurs, and the resulting doubly charged positive molecular ion dissociates immediately into two fragment ions (plus neutrals). Using such techniques in conjunction with synchrotron radiation, Frasinski et al. 76 detected the two photoions from the double photoionization of SF₆. The thresholds they determined for the production of the ion pairs FIG. 3. Partial photoionization cross sections, $\sigma_{\text{pi,partial}}(h\nu)$, of SF₆ as a function of photon energy: (\bullet) data of Hitchcock and Van der Wiel from Ref. 59; (\times) data of Masuoka and Samson from Ref. 71 (see text). $SF_5^+ + F^+, \ SF_3^+ + F^+, \ SF_2^+ + F^+, \ SF_1^+ + F_2^+, \ and \ SF_3^+ + F_2^+$ are listed in Table 3. According to Eland $\it et \ al.^{77}$ the major dissociation process of SF_6^{++} after He II ionization is $SF_6^{++} {\rightarrow} SF_3^+ + F^+ + F_2.$ It is possible, however, that SF_6^{++} dissociation may proceed via doubly charged intermediates such as SF_4^{++} . 77 In Table 3 are listed the ionization energies of the various orbitals of the SF_6 molecule. Ion-pair formation from photoexcitation of SF_6 is another interesting process which has revealed a great deal about the dissociation energetics and the structure of the SF_6 molecule. For instance, Mitsuke *et al.*⁶³ investigated the process $$SF_6 + h\nu \rightarrow SF_6^{**} \rightarrow F^- + SF_x^+ + (5-x)F \quad [x \le 5] \quad (1)$$ employing negative-ion mass spectrometry and synchrotron radiation in the 11.27-31.0 eV photon energy range. (The negative ions SF_6^- and SF_5^- , which were also observed, were attributed to the attachment of low-energy electrons generated by photoionization of the parent molecules.) Mitsuke et al. measured the photodissociation efficiency curve for F^- produced from SF_6 as a function of wavelength and compared the observed structure with that in the photoabsorption cross section data. The results of this study are compared with those from photoabsorption and electron energy-loss experiments in Table 4. Both the photon energy and/or energy loss and transition assignments are given in the table. For a fuller account and more detailed list of transitions see Refs. 52, 62, and 63. ### 2.3. Electron Energy-Loss Spectra There have been a number of electron-impact energy-loss studies of SF₆. ^{52,59,64,65,83,86–88} The studies of Simpson *et al.*, ⁶⁴ Hitchcock and Van der Wiel, ⁵⁹ Sze and Brion, ⁵² and Ying *et al.* ⁶⁵ are of particular interest in that their highenergy electron-impact energy-loss spectrum can be used to generate UV absorption cross sections. As discussed in the ### **ELECTRON INTERACTIONS WITH SF₆** Table 3. Ionization energies of various orbitals of SF_6 | Type of orbital | Energy (eV) | Reference | Comments | |----------------------------|-----------------------|-----------|---| | | 15.29 | 78ª | Photoionization/Formation of SF | | | 15.3 ± 0.2 | 79 | Photoionization/Formation of SF | | | 15.32 | 63 | Photoexcitation/Formation of SF ₅ | | | 15.5 | 80 | VES ^b | | $1t_{1g}$ | 15.67 | 80 | VES | | t_{1u} | 15.69 | 81 | PES ^c | | | 15.7 | 55 | PES | | $\frac{1}{t} t_{1g}$ | 15.7 | 52 | | | $1t_{1g}$ | | | Formation of SF ₅ | | | 15.9 ± 0.2 | 74 | EI Formation of SF ₅ ⁺ | | | 15.9 ± 0.2 16.0 | 82
59 | EI; Formation of SF ₅ ⁺
Formation of SF ₅ ⁺ | | | 16.7 | 80 | VES | | $3t_{1u}$, $1t_{2u}$ | 16.93 | 80 | VES | | t_{1g} | 16.96 | 81 | PES | | $1t_{2u}^{1g}$, $5t_{1u}$ | 17.0 | 55 | PES | | $1t_{2u}$, $5t_{1u}$ | 17.0 | 52 | EELS ^e | | | 18.0 | 59 | Formation of SF ₄ ⁺ | | | 18.0 | 80 | VES | | $2e_{\mathrm{g}}$ | 18.3 | 80 | VES | | | 18.40 | 81 | PES | | e _{1g} | 18.6 | 55 | PES | | $3e_{\rm g} \ 3e_{\rm g}$ | 18.6 | 52 | EELS | | Jeg | 18.7 ± 0.2 | 82 | | | 4 | | | EI; Formation of SF ₄ | | t_{2u} | 18.71 | 81 | PES | | | 18.79 ± 0.14 | 63 | Formation of SF ₃ ⁺ | | | 18.9 ± 0.2 | 74 | EI; Formation of SF ₄ ⁺ | | | 19.1 ± 0.5 | 79 | Photoionization/Formation of SF | | 4 : | 19.0 | 59 | Formation of SF ₃ ⁺ | | $1t_{2g}$ | 19.245 (0-0) | 80 | VES | | | 19.4 ± 0.5 | 79 | Photoionization/Formation of SF | | t_{1u} | 19.68 | 81 | PES | | $1t_{2g}$ | 19.8 | 55 | PES | | $1t_{2g}$ | 19.8 | 52 | EELS | | | 20.1 ± 0.3 | 74 | EI; Formation of SF ₃ ⁺ | | | 20.3 ± 0.2 | 82 | EI; Formation of SF_3^+ | | t_{2g} | 22.5 | 81 | PES | | $4t_{1u}$ | 22.6 | 55 | PES | | $2t_{1u}$ | 22.7 | 80 | VES | | $4t_{1u}$ | 22.9 | 52 | EELS | | | 26.0 | 59 | Formation of SF ₂ ⁺ | | a_1 | 26.8 | 81 | PES | | | 26.8 ± 0.3 | 74 | Formation of SF ₂ ⁺ | | $5a_{1g}$ | 26.85 | 55 | PES | | $5a_{1g}$ | 27.0 | 52 | EELS | | $2a_{1g}$ | 27.0 | 80 | VES | | | 31.0 | 59 | Formation of SF ⁺ | | | 31.3 ± 0.3 | 74 | Formation of SF ⁺ | | | 33 | 59 | Formation of SF ₄ ⁺⁺ | | | 35.8 ± 1.0 | 74 | Formation of F ⁺ | | | 37.0 | 59 | Formation of S ⁺ | | | 37.3 ± 1.0 | 74 | Formation of S ⁺ | | | 38.0 | 59 | Formation of F ⁺ | | $2e_{\rm g}$ | 39.3 | 52 | EELS | | 5 | 40.0 | 59 | Formation of SF ₂ ⁺⁺ | | | 40.6 ± 0.5 | 74 | Formation of SF ₄ ⁺⁺ | | $3t_{1u}$ | 41.2 | 52 | EELS | | J. Iu | 41.1 ± 1 | 76 | DDPf producing $SF_5^+ + F^+$, | | | 71.1 — 1 | 70 | $SF_{2}^{+}+F^{+}$, or $SF_{2}^{+}+F_{2}^{+}$ | | | 45.1 ± 1 | 76 | DDP ^f producing SF ₂ ⁺ +F ⁺
Formation of SF ₂ ⁺⁺ | | | 46.5 ± 0.5 | 74 | Formation of SF ₂ ⁺⁺ | | | 52.8 ± 1 | 76 | DDP ^f producing SF ⁺ +F ₂ ⁺ | $^{^{}a}$ The authors reported observation of a weak SF_{6}^{+} signal using the 21 eV resonance line of helium. b VES=He I induced valence electron spectra. $^{^{}c}PES\!=\!photoelectron\ spectra.$ ^dEI=Electron impact. ^eEELS=Electron energy-loss spectra. ^fDDP=dissociative double photoionization. ### L. G. CHRISTOPHOROU AND J. K. OLTHOFF Table 4. Photon energy/energy loss and transition assignments for $SF_6^{\ a}$ | Photon energy/Energy loss (eV) | Assignment
Ref. 63 ^b | Assignment
Ref. 62 ^c | Assignment
Ref. 52 ^d | Assignment
Ref. 83 ^d | |---|--|--|---|--| | 6.494 (Ref. 52 ^e) | | | | | | 7.93 (Ref. 84 ^{c,f}) | | $5t_{1u} \rightarrow 6a_{1g}$ | | | | 9.596 (Ref. 52) | | 16 | $1t_{1g} \rightarrow 6a_{1g}^{g}$ | | | 9.8 (Ref. 83 ^h) | | | -8 -8 | $1t_{1g} \rightarrow 6a_{1g}$ | | 10.982-12.266 (Ref. 52) | $1t_{1g} \rightarrow 6t_{1u}/5t_{1u} \rightarrow 6a_{1g}$ | | $1t_{1g} \rightarrow 6t_{1u}/1t_{2u}$, $5t_{1u} \rightarrow 6a_{1g}$ | | | 11.0 (Ref. 83 ^h) | | | | $1t_{2u} \rightarrow 6a_{1g}$ | | 11.5; 11.6 (Ref. 83 ⁱ) | | | | $5t_{1u} \rightarrow 6a_{1g}$ | | 11.54 (Ref. 64 ^{d,j}) | | | | | | 11.729 (Ref. 84 ^c) | | | | | | 11.76 (Ref. 85°) | | | | | | 12.8 (Ref. 83 ^h) | | | | $1t_{1g} \rightarrow 7a_{1g}(4s)$ | | 13.2 (Ref. 63 ^k) | $1t_{1g} \rightarrow 4p$ | $5t_{1u} \rightarrow 6a_{1g}$ | | | | 13.2 (Ref. 83 ^h) | | | | $1t_{1g} \rightarrow 6t_{1u}(4p)$ | | 13.143-13.309 (Ref. 52) | | | $1t_{1g} \rightarrow 4p$ | - | | 13.244 (Ref. 85 ^c) | | | - | | | 13.27 (Ref. 84°) | | $4t_{1u} \rightarrow 6a_{1g}$ | | | | 13.30 (Ref. 64 ^{d,j}) | | $4t_{1u} \rightarrow 6a_{1g}$ | | | | 13.3 (Ref. 83 ⁱ) | | | | $1t_{1g} \rightarrow 6t_{1u}(4p)$ | | 14.1 (Ref. 83) | | | | $1t_{2g} \rightarrow 6a_{1g}$ | | 14.218 (Ref. 85 ^c) | | | | | | 14.283 (Ref. 84°) | | | | | | 14.3 (Ref. 63 ^k) | $5t_{1u} \rightarrow 4s/3e_g \rightarrow 6t_{1u}$ | | | | | 14.35 (Ref. 64 ^{d,j}) | | | | | | 13.970–14.415 (Ref. 52) | | | $3e_{\rm g} \rightarrow 6t_{\rm 1u}$ | | | 14.3; 14.7 (Ref. 83 ¹) | | | | $5t_{1u} \rightarrow 7a_{1g}(4s)$ | | 14.6 (Ref. 63 ^k) | $1t_{1g} \rightarrow 5p$ | | | | | 14.707 (Ref. 52) | | | $1t_{2u}$, $5t_{1u} \rightarrow 4s$ | | | 14.90 (Ref. 64 ^d) | | | | | | 14.9 (Ref. 83¹) | | | | $1t_{1g} \rightarrow 7t_{1u}(5p)$ | | 14.933 (Ref. 85°) | | | | | | 15.163 (Ref. 84°) | | | | | | 15.546 (Ref. 52) | e. e u. e. | | $3e_{\rm g} \rightarrow 6t_{\rm 1u}$ | | | 15.7 (Ref. 63 ^k) | $5t_{1u} \rightarrow 5s/1t_{2g} \rightarrow
6t_{1u}$ | 1. 6. | | | | 15.7 (Ref. 62°) | | $1t_{2g} \rightarrow 6t_{1u}$ | | 2 (1 (1) | | 16.0; 16.1 (Ref. 83) | | 1. 6. | 1 | $3e_{\rm g} \rightarrow 6t_{\rm 1u}(4p)$ | | 17.00 (Ref. 62 ^c) | 4. | $1t_{2g} \rightarrow 6t_{1u}$ | $1t_{2g} \rightarrow 6t_{1u}$ | | | 17.00 (Ref. 63 ^k) | $4t_{1u} \rightarrow 6a_{1g}$ | | 4. 6 9 | | | 17.021 | 44 4 | | $4t_{1u} \rightarrow 6a_{1g}^{g}$ | | | 19.6 (Ref. 63 ^k) | $4t_{1u} \rightarrow 4s$ | 5. | 4. 4 | | | 19.8 (Ref. 52 ^J) | | $5t_{1u} \rightarrow 2t_{2g}$ | $4t_{1u} \rightarrow 4s$ | | | 19.8 (Ref. 62°) | | $5t_{1u} \rightarrow 2t_{2g}$ | 1. 2. 9/5 | | | 20.9 (Ref. 52 ^J) | 4 | | $1t_{1g} \rightarrow 2t_{2g}^{g}/5a_{1g} \rightarrow 6a_{1g}^{g}$ | | | 21.2 (Ref. 63 ^k) | $4t_{1u} \rightarrow 5s$ | | $4t_{1u} \rightarrow 5s$ | | | 22.1 (Ref. 63 ^k) | $5t_{1u} \rightarrow 2t_{2g}/4t_{1u} \rightarrow ns \ (n \ge 6)$ | 5 61 | 5 6 (1) 5 2 | | | 23.2 (Ref. 52 ¹) | | $5a_{1g} \rightarrow 6t_{1u}$ | $5a_{1g} \rightarrow 6t_{1u}/1t_{2u}$, $5t_{1u} \rightarrow 2t_{2g}$ | | | 23.2 (Ref. 62°) | 5 4 | $5a_{1g} \rightarrow 6t_{1u}$ | | | | 24.6 (Refs. 63 ^k and 52 ^l) | $5a_{1g} \rightarrow 4p$ | $5a_{1g} \rightarrow 4p$ | | | | 25.7 (Ref. 63 ^k) | $5a_{1g} \rightarrow 5p$ | 5 5 | | | | 25.8 (Ref. 52 ^l) | 5 6 | $5a_{1g} \rightarrow 5p$ | | | | 26.2 (Ref. 63 ^k) | $5a_{1g} \rightarrow 6p$ | 44 . 24 | | | | 28.3 (Ref. 52 ¹) | | $4t_{1u} \rightarrow 2t_{2g}$ | | | | 28.5 (Ref. 60°) | | 14 5 16 12 | | | | 28.8 (Ref. 62°) | | $1t_{2u}, 5a_{1g} \rightarrow (6a_{1g})^2$ | | | | 31.8 (Ref. 62°) | | $3t_{1u} \rightarrow 6a_{1g}$ | | | | 35.4 (Ref. 62° and 60°) | | $2e_{\rm g} \rightarrow 6t_{\rm 1u}$ | | | | 37.6 (Ref. 62 ^c) | | $4t_{1u} \rightarrow 4e_{g}$ | | | ^aSee Refs. 52, 62, and 63 for more details and for information on other transitions. ^bData from studies on ion-pair formation from photoexcitation. $^{^{\}mbox{\scriptsize c}}\mbox{\sc Data}$ from studies on photoabsorption spectra. ^dData from electron energy-loss experiments. ^eEstimated uncertainty=±0.020 eV. ^fThe photoabsorption data show weak continuous absorption which begins at 7.93 eV (Ref. 84). ^gForbidden transition. ^hTriplet ⁱSinglet ^jUncertainty=±0.05 eV. ^kEnergy position of peak maximum in the F⁻ efficiency curve. ¹Estimated uncertainty=±0.5 eV. Table 5. Values of the electron affinity of the SF_6 molecule reported since 1983 | Electron affinity (eV) | Reference | Comments | |------------------------------|-----------|--| | 0.0-1.49 (0.76) ^a | 103 | Range of 20 values listed in Ref. 103 which were reported prior to 1983. | | 1.05 ± 0.1 | 104 | Energetics of electron transfer reactions | | 1.15 ± 0.15 | 105 | Thermal electron attachment studies | | 1.07 ± 0.07^{b} | 106 | Thermal electron attachment studies | | 1.19 | 95 | Calculation | | 1.3-1.4 | 96 | Calculation | | 1.06 | 107 | Calculation | | 3.44 | 101 | Calculation | | 3.46 | 100 | Calculation | | 1.06 | | Recommended value (see text) | ^aAverage of the values listed in Ref. 103 excluding the lowest and the highest values listed in Ref. 103. previous section, Simpson et al. obtained an energy-loss spectrum corresponding to optical electronic excitation of SF₆ using 400 eV incident energy electrons and a 0° scattering angle. Their high-energy electron-impact energy-loss spectrum was used to generate UV absorption cross sections in the 10-30 eV region by normalization to the photoabsorption results of Codling⁶⁰ at 23.0 eV [see comparison with photoabsorption data in Figs. 1(a) and 1(b)]. Hitchcock and Van der Wiel⁵⁹ also obtained electron-impact energy-loss spectra at 0° using electron-ion coincidence measurements and incident electrons with 8 keV kinetic energy. Their electron-energy loss data were also used to determine cross sections for dipole photoabsorption and photofragmentation of SF₆ in the equivalent photon energy range of 5-63 eV by normalization to the photoabsorption measurements of Blechschmidt et al.⁶¹ at 27 eV. Their data are compared in Fig. 1(b) with the data of Simpson et al.⁶⁴ Furthermore, Hitchcock and Van der Wiel⁵⁹ used their electron energy-loss measurements, in connection with the photoionization branching ratios they measured for the six lowest energy states of SF₆⁺, to obtain partial ionization cross sections for the production of specific positive ions. These data were presented earlier in Fig. 3. Sze and Brion⁵² studied inner-shell electron energy-loss spectra of SF₆ using 2.0-3.7 keV electrons and a 0° scattering angle. Their findings for valence-shell excitation spectra have been discussed earlier (Table 3). Ying et al.65 performed angle-resolved electron-energy loss measurements using a coplanar electron spectrometer, and determined generalized oscillator strengths of valence shell electronic transitions in the range of 7-70 eV using electrons with initial kinetic energy of 2.5 keV. Their valence-shell electron energy-loss spectrum of SF₆ measured at 0.5° (converted to photoabsorption cross section using the relationship $\sigma_{\text{pa,t}}(10^{-18} \text{ cm}^2) = 109.75 \text{ d}f/\text{d}E$ (eV^{-1}) , where df/dE is the differential oscillator strength) is compared with other electron energy-loss spectra and photoabsorption data in Fig. 1(b), and values are listed in Table 2. There is general agreement among the photoabsorption data and the electron energy-loss spectra. Fig. 4. Negative ion states of the SF₆ molecule as determined by electron attachment measurements, electron scattering measurements, and calculations: (---) Dehmer *et al.* in Ref. 112; (--) Gianturco *et al.* in Ref. 121; (···) Gyemant *et al.* in Ref. 123. Shaded areas represent the range of measured peak energies. The last column gives the recommended average positions and assignments (see text). It should be noted that the adiabatic position of the $\sim 0.0 \text{ eV}$ negative ion state is at -1.06 eV [=-|EA(SF₆)|]. Besides the above three studies, Chutjian *et al.*⁸⁶ and Trajmar and Chutjian⁸³ investigated the electron-impact excitation of SF_6 using 20 eV incident electrons in the energy-loss range of 7–14 eV. In their experiments the scattering angles ranged from 20° to 135°. From a comparison of their data at low energies and large scattering angles with data they obtained earlier using 400 eV electrons and a 0° scattering angle (i.e., under conditions favoring excitation of optically allowed transitions), they identified a number of spin and/or symmetry forbidden transitions in the energy range $\sim 10 \sim 16 \, \text{eV}$ which are listed in Table 4. In addition to the electron energy-loss studies involving low-lying transitions, Francis $et\ al.^{88}$ recorded electron energy-loss spectra of SF₆ in the region of S 2p, S 2s, and F 1s excitation, using dipole and nondipole electron-scattering conditions. Electron-impact energies between 700 and 3200 eV and scattering angles between 0° and 30° were used. It was found that relative to dipole electron energy-loss or photoabsorption spectra, there are large intensity redistributions in both the S 2p and S 2s spectra under nondipole conditions. In contrast, the F 1s spectrum was found to be essentially the same in near-dipole and nondipole scattering regimes. Fomunung $et\ al.^{89}$ conducted a theoretical study of electron excitation of optically allowed transitions between 20 eV and 2.5 keV, and a number of investigations have ^bThis value is a refinement of their earlier result in Ref. 105. been conducted on the generalized oscillator strength of SF_6 (e.g., see Refs. 88 and 90). Energy-loss spectra involving vibrational excitation of SF₆ were investigated by Trajmar and Chutjian,⁸³ Rohr,⁹¹ and Randell *et al.*⁹² These are discussed in Sec. 3.5.1. ### 2.4. The Electron Affinity and Negative Ion States of SFs The four lowest lying empty orbitals of SF_6 are: $^{49,52}(6a_{1g})^0(6t_{1u})^0(2t_{2g})^0(4e_g)^0$. Calculations for the octahedral symmetry (O_h) of SF_6^- (see Refs. 93–96) have shown that the S–F antibonding character of the highest occupied, totally symmetric, nondegenerate $6a_{1g}$ molecular orbital of SF_6^- results in a substantial increase of the S–F bond in SF_6^- compared to neutral SF_6 . Although a number of authors (e.g., Refs. 97–99) considered electron capture into degenerate molecular orbitals of lower symmetry than a_{1g} , calculations for a lower symmetry configuration (see Gutsev 100,101 and Richman and Banerjee 102) showed the O_h octahedral structure to be the most stable. There has been widespread unanimity that SF_6 attaches thermal and near thermal electrons with a very large cross section forming SF_6^- , and that the SF_6 molecule must thus have a positive electron affinity. However, up until recently there has been no concensus regarding the size of its electron affinity. Prior to 1983 there were at least 20 reported values for this quantity 103 that varied from near 0.0 eV to ~ 1.5 eV. Values reported since 1983 are listed in Table 5 along with the range of pre-1983 values listed in Ref. 103. We take the average of the two most recent and widely accepted values determined in Refs. 104 and 106 to be our presently recommended value of (1.06 ± 0.06) eV for the electron affinity of the SF_6 molecule. In addition to the electron attachment resonance at $\sim 0.0 \, \text{eV}$, electron attachment and electron scattering experiments and calculations have shown the existence of several negative ion states at energies below 30 eV. The energies of these states, as determined by the positions of the maxima in the measured electron attachment cross sections, measured electron scattering cross sections, and calculated cross sections are listed in Table 6. Also listed in Table 6 are possible symmetry assignments. These experimental and the calculated values (below 15 eV) are shown in Fig. 4. The electron
attachment data for each resonance exhibit a considerable spread partly because these data involve a number of different fragment negative ions. The energy range for each resonance as determined by the electron attachment studies, extends to lower energies than the respective energy range determined by the electron-scattering studies. This difference is especially large for the 7.0 eV resonance, and can be attributed to the competition between dissociation and autodetachment of SF₆^{-*} in the attachment studies. It is interesting to note that although electron attachment studies and theoryindicate a resonance near 9 eV, none of the electron scattering investigations show any evidence of it. The last column in Fig. 4 gives the recommended energy positions of the SF_6 negative ion resonances as determined by considering only the electron scattering data, along with their symmetry assignments. The energy positions of the lowest four negative ion states of the SF_6 molecule and their symmetries are: $\sim 0.0\,\mathrm{eV}(a_{1\mathrm{g}}),\,2.5\,\mathrm{eV}(a_{1\mathrm{g}}),\,7.0\,\mathrm{eV}(t_{1\mathrm{u}}),\,$ and $11.9\,\mathrm{eV}(t_{2\mathrm{g}})$. It should be noted that the adiabatic position of the $\sim 0.0\,\mathrm{eV}$ negative ion state is at $-1.06\,\mathrm{eV}$ [= $-|\mathrm{EA}(SF_6)|$]. Other negative ion states are indicated near 17 eV and higher energies (see Table 6). The resonances near 27 and 50 eV can be assigned as core-excited valence negative ion states involving the σ^* molecular orbitals. ### 2.5. Fundamental Vibrational Modes and Other Data The fundamental vibrational frequencies $\nu_1 - \nu_6$ of the SF₆ molecule have a high degree of degeneracy due to the high symmetry of the molecule. Table 7 lists the vibrational assignment, energy, symmetry, infrared activity, and degeneracy of the six fundamental vibrational modes. ^{15,125–130} The low energies of these vibrations results in vibration excitation of these modes at relatively low temperatures above ambient. Even at room temperature the population of the $\nu=1$ level of ν_6 is one half of the ground-state population. The vibrational frequencies for SF_6^- are somewhat lower than the respective frequencies for the neutral SF_6 due to the weaker bonding in the negative ion. The values (in eV) of the six fundamental frequencies of SF_6^- and their degeneracies (values in parenthesis) as listed by Chase *et al.* ¹²⁹ are: 0.0868 (1), 0.0775 (2), 0.1147 (3), 0.0736 (3), 0.0620 (3), and 0.0403 (3). In Table 8 are listed other data on SF_6 and SF_6^- which are relevant to the present discussion on electron interactions with the SF_6 molecule. The large difference between the equilibrium bond lengths of SF_6 and SF_6^- shows the large effect of electron correlation. ### 3. Electron Scattering by SF₆ # 3.1. Total Electron Scattering Cross Section, $\sigma_{\mathrm{sc,t}}(\varepsilon)$ There have been eight sets^{116-120,137-139} of experimental determinations of $\sigma_{\text{sc.t}}(\varepsilon)$. These are shown in Fig. 5. Rohr¹²⁰ determined the integrated vibrationally elastic ($\Delta \nu$ =0) electron scattering cross section for SF_6 below ~ 6 eV. He then obtained a value of $\sigma_{\rm sc,t}(\varepsilon)$ by adding to this cross section the total vibrational excitation cross section he measured earlier. 91 His data on the total vibrational excitation cross section, however, need to be corrected because they were originally normalized to the data of Srivastava et al., 140 which were subsequently corrected by Trajmar et al. 10 According to Trajmar et al., 10 the vibrational cross section of Rohr⁹¹ needs to be multiplied by a factor of 1.28 at 5 eV to correspond to the renormalized data of Srivastava et al. The data identified in Fig. 5 as "Rohr (1979)" are the original values of Rohr without this correction. The $\sigma_{\rm sc,t}(\varepsilon)$ of Rohr is not a direct measurement and for this reason it is not ### **ELECTRON INTERACTIONS WITH SF₆** Table 6. Negative ion states of SF_6 | Energy position (eV) | Type of study | Symmetry/Orbital | Reference | |------------------------------------|---|-------------------------------------|------------------| | ~0.0 | Many electron attachment studies | | | | 0.38 | SF ₅ from SF ₆ | | 26, 108-11 | | 0.5 ± 0.1 | SF_5^- from SF_6 | | 111 | | ~ 0.1 | Excitation function of ν_1 | $A_{1\mathrm{g}}$ | 92 | | ~ 0.1 | Vibrational excitation by electron impact | *8 | 91 | | ~ 0.0 | Multiple scattering calculation | a_{1g} | 112 | | 2.0 | F_2^- from SF_6 | | 26 | | 2.2 | F_2 from SF_6 | | 113 | | 2.4 | F_2 from SF_6 | | 114 ^a | | 2.6 | F_2 from SF_6 | | 26 | | 2.8 | F ⁻ from SF ₆ | | 114 | | 2.8 | F ⁻ from SF ₆ | | 113 | | ~2.9 | F ⁻ from SF ₆ | | 115 | | 2.3 | Total electron scattering cross section | a | 116 | | 2.5 | Total electron scattering cross section | a_{1g} | 117 | | 2.5 | Total electron scattering cross section | A_{1g} | 117 | | 2.52 ± 0.15 | Trochoidal derivative spectrum | a_{1g} | 119 | | 2.52 ± 0.15
2.56 ± 0.15 | Total electron scattering cross section | a_{1g} | 119 | | 2.7 | Angular dependence of vibrationally | a_{1g} | 120 | | 2.7 | elastic electron scattering | $a_{1\mathrm{g}}$ | 120 | | 2.1 | Multiple scattering calculation | a | 112 | | 3.30 | Multichannel calculation with | a_{1g} | 121 | | 3.30 | close coupling | $A_{1\mathrm{g}}$ | 121 | | 4.4 | | | 26 | | 4.4 | F_2^- from SF_6 | | 26 | | 4.8 | F_2^- from SF_6 | | 114 | | 4.8 | F_2^- from SF_6 | | 113 | | 5.0 | SF ₄ from SF ₆ | | 113 | | 5.1 | F from SF ₆ | | 26 | | 5.2 | F from SF ₆ | | 114 | | 5.3 | F from SF ₆ | | 113 | | 5.4 | SF ₄ from SF ₆ | | 26 | | 5.4
∼5.4 ^b | SF ₄ from SF ₆ | | 114 | | | F^-, F_2^- , and SF_4^- from SF_6 | | 115 | | 5.7 ± 0.1 | F from SF ₆ | | 111 | | 6.0 ± 0.1 | SF ₄ from SF ₆ | | 111 | | 6.7 | Total electron scattering cross section | $t_{1\mathrm{g}}$ | 116 | | 7.0 | Total electron scattering cross section | $t_{1\mathrm{u}}$ | 118 | | 7 | Angular dependence of vibrationally elastic electron scattering | $t_{1\mathrm{u}}$ | 120 | | 7 | Total electron scattering cross section | <i>t</i> | 117 | | 7.01 ± 0.16 | Trochoidal derivative spectrum | $t_{1\mathrm{u}}$ | 117 | | 7.01 ± 0.10
7.05 ± 0.10 | Total electron scattering cross section | $t_{1\mathrm{u}} \ t_{1\mathrm{u}}$ | 119 | | 7.03 = 0.10 | Elastic electron scattering cross section | t lu
t lu | 122 | | 7.2 | Multiple scattering calculation | t _{1u} | 112 | | | | - Iu | | | 8.8 | F from SF ₆ | | 26 | | 8.9 | F from SF ₆ | | 114 | | 9.3 ± 0.1 | F from SF ₆ | | 111 | | 9.4 | F from SF ₆ | | 113 | | 9.4 | SF ₃ from SF ₆ | T | 26 | | 8.7; 9.1 | Multiple scattering calculation | $T_{1\mathrm{u}}$ | 123 | | 9.85 | Multichannel calculation with close-coupling | $T_{1\mathrm{u}}$ | 121 | | 44.0 | | | 2.5 | | 11.2 | F_2^- from SF_6 | | 26 | | 11.2 | SF_3^- from SF_6 | | 114 | | 11.3 | SF_3^- from SF_6 | | 113 | | 11.3 | F ⁻ from SF ₆ | | 26 | | 11.5 | F ⁻ from SF ₆ | | 114 | | 11.6 | F ⁻ from SF ₆ | | 113 | | 11.6 | F_2^- from SF_6 | | 113 | | 11.7 | F_2^- from SF_6 | | 26 | | 11.8±0.1 | F from SF ₆ | | 111 | | 12.0 | SF_2^- from SF_6 | | 26 | | 12.3 | SF_2^- from SF_6 | | 113 | | | | | | #### L. G. CHRISTOPHOROU AND J. K. OLTHOFF TABLE 6. Negative ion states of SF₆—Continued | Energy position (eV) | Type of study | Symmetry/Orbital | Reference | |----------------------|---|--|-----------| | 13.0 | SF ₂ from SF ₆ | | 114 | | 11.87 ± 0.10 | Total electron scattering cross section | $t_{2\mathrm{g}}$ | 119 | | 11.88 ± 0.07 | Trochoidal derivative spectrum | $t_{2g}^{z_{g}}$ | 119 | | 11.9 | Total electron scattering cross section | t_{2g}^{-s} | 118 | | 11.9 | Total electron scattering cross section | t_{2g}^{-s} | 116 | | 12 | Total electron scattering cross section | t_{2g}^{-s} | 117 | | 12 | Elastic electron scattering cross section | t_{2g}^{-s} | 122 | | 12 | Elastic and vibrationally inelastic | -6 | 83 | | | electron-impact excitation | | | | 11 | Multiple scattering calculation | $T_{1\mathrm{u}}$ | 124 | | 11.0; 11.8; 13.7 | Multiple scattering calculation | T_{2g}^{1a} | 123 | | 12.7 | Multiple scattering calculation | t_{2a} | 112 | | 13.10 | Multichannel calculation with | $T_{\mathrm{2g}}^{2\mathrm{g}}$ | 121 | | | close coupling | 26 | | | 16.8 | Total electron scattering cross section | | 118 | | 17 | Multiple scattering calculation of total | $T_{2\mathrm{g}}$ | 124 | | | cross section for elastic electron scattering | 26 | | | 23-24 | Angular distribution of photoelectrons | | 46 | | 24 | Multiple scattering calculation | $E_{ m g}$ | 124 | | 27.0 | Multiple scattering calculation | $e_{\mathrm{g}}^{\varepsilon}$ | 112 | | 27.0 | Multichannel calculation with | e_{g}^{5} | 121 | | | close coupling | 5 | | | 27.1; 28.3; 28.6 | Multiple scattering calculation | E_{g} | 123 | | 28.84 | Multichannel calculation with | $\overset{-}{E}_{\mathrm{g}}^{\mathrm{g}}$ | 121 | | | close coupling | ĕ | | | 25-55 ^c | Total electron scattering cross section | e_{g} | 119 | ^aThe values of Lehmann (Ref. 114) given in this table have been deduced from his figures and were reduced by 0.6 eV as discussed in the text. Table 7. Vibrational assignment, energy, symmetry, infrared activity, and degeneracy of the fundamental frequencies of the SF_6 molecule (see Refs. 15, 125-130)^a | Vibration | Energy
(eV) | Reference | Symmetry | Infrared activity | Degeneracy | |--------------------|----------------|-----------|-------------------|-------------------|------------| | $\overline{\nu_1}$ | 0.0955 | 127 | $A_{1\mathrm{g}}$ | No | 1 | | • | 0.0959 | 126 | *5 | | |
| | 0.0959 | 129 | | | | | | 0.096 | 130 | | | | | ν_2 | 0.0793 | 127 | $E_{\rm g}$ | No | 2 | | - | 0.0796 | 126 | ь | | | | | 0.0796 | 129 | | | | | | 0.0798 | 130 | | | | | ν_3 | 0.1174 | 125 | F_{1n} | Yes | 3 | | | 0.1175 | 127 | | | | | | 0.1175 | 129 | | | | | | 0.1175 | 128 | | | | | | 0.1175 | 130 | | | | | $ u_4$ | 0.0761 | 127 | F_{1n} | Yes | 3 | | • | 0.0762 | 130 | | | | | | 0.07625 | 128 | | | | | | 0.0763 | 129 | | | | | ν_5 | 0.0647 | 127 | F_{2g} | No | 3 | | | 0.0649 | 130 | -5 | | | | | 0.0651 | 126 | | | | | | 0.0651 | 129 | | | | | ν_6 | 0.0430 | 126 | F_{2u} | No | 3 | | 3 | 0.0430 | 129 | Zu | | | | | 0.0432 | 130 | | | | | | 0.0434 | 127 | | | | ^aSee text and Chase *et al.* (Ref. 129) for the vibrational frequencies of SF_6^- . included in the data used to determine the recommended values of $\sigma_{\rm sc,t}(\varepsilon)$ derived later in this section. Another low-energy measurement of $\sigma_{\rm sc,t}(\varepsilon)$ was made by Ferch *et al.*¹³⁷ in a transmission experiment using a time-of- TABLE 8. Other data on SF_6 and SF_6^{-a} | Physical quantity | Value | Reference | |--|-----------------------------------|------------------| | SF ₅ -F bond dissociation energy ^b | 3.38 eV | 132° | | | $\leq (3.39 \pm 0.15) \text{ eV}$ | 133 ^c | | | $(3.9\pm0.15) \text{ eV}$ | 134 | | | $(4.1 \pm 0.13) \text{ eV}$ | 135 | | S-F bond length of SF ₆ | 1.5568 Å | 136 | | - | $1.564 \pm 0.01 \text{ Å}$ | 129 | | | 1.565 Å ^d | 96 | | | 1.567 Å^{d} | 94 | | F-S-F bond angle of SF ₆ and SF ₆ | 90° | 129 | | S-F bond length of SF ₆ | 1.72 Å | 129 | | | 1.717 Å ^d | 101 | | | 1.710 Å ^d | 94 | | | 1.704 Å ^d | 96 | ^aSee text for values of the vibrational frequencies of SF₆⁻. ^bMain resonance. ^cPossibly one or more resonances in this energy range. ^bHubers and Los (Ref. 131) obtained a value of (1.0 ± 0.1) eV for the dissociation energy of SF₅⁻-F. ^cAccording to Fenzlaff *et al.* (Ref. 115) this value is too low due to the low value used by these authors for the production of F^- from SF_6 . dOctahedral geometry. Fig. 5. (a) Total electron scattering cross section, $\sigma_{\text{sc,t}}(\varepsilon)$, of SF₆ as a function of electron energy ε : (- - -) Ref. 120; (+) Ref. 119; (∇) Ref. 137; (∇) Ref. 118; (\bullet) Ref. 116; (\bigcirc) Ref. 138; (- -) Ref. 139; (\times) Ref. 117; (\cdots) Ref. 141; (\cdots) recommended data. (b) Expanded view. flight spectrometer. It covered the electron energy range from 0.036 to 1.0 eV with a reported uncertainty of $\pm 7\%$ above 0.2 eV and $\pm 9\%$ below 0.2 eV. The results of Ferch *et al.* are in excellent agreement with the other available measurements of $\sigma_{\rm sc,t}(\epsilon)$ above 0.5 eV. Measurements of $\sigma_{\text{sc.t}}(\varepsilon)$ extending to higher electron energies were also made using a variety of techniques. Wan et al. 139 measured the $\sigma_{\rm sc,t}(\epsilon)$ of SF₆ using an electron transmission spectrometer employing a trochoidal monochromator. The overall uncertainty of their measurements is within $\pm 15\%$ above 1 eV, but it may increase to as much as ±50% at energies below 0.2 eV. These data are in reasonable agreement with the other measurements above $\sim 1.0 \, \text{eV}$, but fall systematically below most of the other measurements for lower electron energies. Kennerly et al. 119 measured the $\sigma_{\rm sc.t}(\varepsilon)$ of SF₆ for incident-electron energies between 0.5 and 100 eV. The uncertainty in their measurements was reported to be $\pm 5\%$ from 0.5 to 30 eV, $\pm 10\%$ from 30 to 50 eV, and $\pm 15\%$ from 50 to 100 eV. The principal source of error above 30 eV is the detection of electrons scattered inelastically in the forward direction which contribute to a higher transmission value and a lower cross section. Hence, the values above 30 eV are a lower bound. 119 Indeed, as can be seen from Fig. 5(b), the values of Kennerly et al. lie below those of the other groups at energies above $\sim 10 \, \text{eV}$. Romanyuk et al. 118 measured $\sigma_{\rm sc.t}(\varepsilon)$ for SF₆ from ~0.4 to ~25 eV using an electron trap method. No uncertainty is given in their paper, but their values below $\sim 1.0 \,\mathrm{eV}$ are low. In addition, the measurements of Romanyuk et al. show a resonance peak at 16.8 eV, which is absent from all the other data. The measurements of Dababneh et al. 116 extend over a larger electron energy range stretching from 1 to 500 eV and were made using an electron transmission technique. The values of $\sigma_{\rm sc}(\varepsilon)$ at the resonance energies 2.3, 6.7, and 11.9 eV are, respectively, reported to be $(24.1\pm0.2)\times10^{-16}$ cm², $(31.5\pm0.5)\times10^{-16}$ cm², and $(33.5\pm0.2)\times10^{-16}$ cm². Measurements of $\sigma_{\text{sc.t}}(\varepsilon)$ for SF₆ at higher energies (75–4000 eV) have been reported by Zecca et al. 138 and were made using a Ramsauer-type electron spectrometer. The total uncertainty in these measurements is $\sim \pm 6\%$. The data of Zecca et al. 138 are generally higher than those of Dababneh et al. 116 in the energy range from 75 to 700 eV where the two sets of data overlap. They are also higher than those of Kennerly et al. 119 in the range from 75 to 100 eV [see Fig. 5(b)]. Finally, a more recent measurement of the $\sigma_{\rm sc,t}(\epsilon)$ of ${\rm SF_6}$ for electron energies between 0.6 and 250 eV has been made by Kasperski $et~al.^{117}$ who employed the electron transmission method. The estimated uncertainty of these measurements is up to $\pm 7\%$ below 5 eV, less than $\pm 4\%$ between 10 and 100 eV, and approximately $\pm 5\%$ at the highest energies they investigated. These data are consistently higher than the other measurements between 20 and 100 eV, but agree well with the high-energy measurements of Zecca $et~al.^{138}$ In Fig. 5 are also plotted the values of $\sigma_{\rm sc,t}(\varepsilon)$ for SF₆ calculated by Jiang *et al.*¹⁴¹ who employed the additivity rule and the model complex optical potential. These calculated values of $\sigma_{\rm sc,t}(\varepsilon)$ are not in good agreement with the mea- Table 9. Recommended values for the total electron scattering cross section, $\sigma_{sc,t}(\epsilon)$, of SF_6 | Electron energy | $\sigma_{ m sc,t}(arepsilon)$ | Electron energy | $\sigma_{\mathrm{sc},\mathrm{t}}(arepsilon)$ | |-----------------|-------------------------------|-----------------|--| | (eV) | $(10^{-20} \mathrm{m}^2)$ | (eV) | $(10^{-20} \mathrm{m}^2)$ | | 0.035 | 379.8 | 13 | 28.9 | | 0.040 | 344.7 | 14 | 26.6 | | 0.045 | 315.3 | 15 | 26.4 | | 0.050 | 290.1 | 18 | 26.7 | | 0.060 | 249.4 | 20 | 27.6 | | 0.070 | 217.6 | 22 | 28.7 | | 0.080 | 192.7 | 25 | 29.4 | | 0.090 | 173.1 | 30 | 29.4 | | 0.10 | 157.4 | 35 | 29.3 | | 0.15 | 109.5 | 40 | 29.3 | | 0.20 | 84.3 | 45 | 29.3 | | 0.25 | 68.7 | 50 | 29.3 | | 0.30 | 58.1 | 60 | 28.8 | | 0.35 | 50.4 | 70 | 28.2 | | 0.40 | 44.6 | 80 | 27.2 | | 0.45 | 40.3 | 90 | 26.5 | | 0.50 | 37.2 | 100 | 25.8 | | 0.60 | 32.8 | 150 | 22.7 | | 0.70 | 29.4 | 200 | 20.2 | | 0.80 | 26.8 | 250 | 18.0 | | 0.90 | 24.9 | 300 | 16.3 | | 1.0 | 23.4 | 350 | 15.1 | | 1.5 | 22.2 | 400 | 14.1 | | 2.0 | 22.8 | 450 | 13.1 | | 2.5 | 23.4 | 500 | 12.4 | | 3.0 | 23.1 | 600 | 11.2 | | 3.5 | 22.7 | 700 | 10.2 | | 4.0 | 22.4 | 800 | 9.41 | | 4.5 | 22.6 | 900 | 8.73 | | 5.0 | 23.7 | 1000 | 8.15 | | 6.0 | 28.0 | 1500 | 6.07 | | 7.0 | 30.7 | 2000 | 4.80 | | 8.0 | 29.2 | 2500 | 3.94 | | 9.0 | 27.6 | 3000 | 3.36 | | 10.0 | 27.3 | 3500 | 2.95 | | 11.0 | 29.6 | 4000 | 2.64 | | 12.0 | 32.9 | | | | | | | | surements except at the very high energies. The additivity rule ignores molecular geometry and reduces molecular scattering to atomic scattering. Since the contribution from the interference occurring between the scattering amplitudes originating from the different constituent atoms of the molecule is not included in the additivity rule, the results of the total scattering cross section using the additivity rule show larger discrepancies in the low-energy range. Besides the calculations by Jiang *et al.*¹⁴¹ there have also been two other electron scattering calculations, one by Dehmer *et al.*¹¹² and another by Benedict and Gyemant.¹²⁴ However, these authors calculated cross sections for total elastic electron scattering and for this reason their results are not shown in Fig. 5 (see Sec. 3.3). The experimental data in Fig. 5 by-and-large lie within the quoted or expected experimental uncertainties for most of the electron energy range investigated. There are however systematic differences between the various sets of experimental measurements. For instance, there exist large uncertainties in the data below $\sim 1 \text{ eV}$ and, as mentioned earlier, FIG. 6. Elastic differential electron scattering cross sections, $\sigma_{e,diff}(\varepsilon)$, of SF₆ as a function of electron energy ε : (\bigcirc) Data of Srivastava *et al.* from Ref. 140; (\blacksquare) experimental measurements from Ref. 140 as corrected by Trajmar *et al.* in Ref. 10; (\square) extrapolated values of Trajmar *et al.* in Ref. 10; (\blacksquare) data of Sakae *et al.* from Ref. 142; (\times) data of Johnstone and Newell from Ref. 122; (+) data of Cho *et al.* from Refs. 143, 144; (---) calculations of Gianturco *et al.* from Ref. 121; (-) calculations of Jiang *et al.* from Ref. 145. the measurements of Romanyuk $et~al.^{118}$ show a resonance peak at 16.8 eV which is not present in the other measurements. We thus deduced a recommended cross section $\sigma_{\rm sc,t}(\varepsilon)$ for SF₆ by considering only the measurements of Kennerly $et~al.,^{119}$ Ferch $et~al.,^{137}$ Dababneh $et~al.,^{116}$ Zecca $et~al.,^{138}$ and Kasperski $et~al.^{117}$ The data of Rohr were not considered because they are
not direct measurements, and the data of Wan $et~al.^{139}$ and Romanyuk $et~al.^{118}$ were not considered because of their differences with the rest of the measurements. The recommended cross section is shown by the solid line in Fig. 5 [Fig. 5(b) is an expanded view of part of Fig. 5(a) to more clearly show the individual measurements]. Values obtained from the solid line are listed in Table 9 as our recommended values for the $\sigma_{\rm sc,t}(\varepsilon)$ of the SF₆ molecule. It should be noted that while these values are well defined for energies above 0.5 eV, below this energy the uncertainties are potentially larger since the data rely solely on one measurement, namely, that of Ferch *et al.* ¹³⁷ Fig. 6. Elastic differential electron scattering cross sections, $\sigma_{e,diff}(\varepsilon)$, of SF₆ as a function of electron energy ε : (\bigcirc) Data of Srivastava *et al.* from Ref. 140; (\blacksquare) experimental measurements from Ref. 140 as corrected by Trajmar *et al.* in Ref. 10; (\square) extrapolated values of Trajmar *et al.* in Ref. 10; (\blacksquare) data of Sakae *et al.* from Ref. 142; (\times) data of Johnstone and Newell from Ref. 122; (+) data of Cho *et al.* from Refs. 143, 144; (---) calculations of Gianturco *et al.* from Ref. 121; (-) calculations of Jiang *et al.* from Ref. 145—Continued # 3.2. Elastic Differential Electron Scattering Cross Section, $\sigma_{\rm e,diff}(\varepsilon)$ There have been a number of published measurements 10,120,122,140,142 and two calculations 121,145 of the elastic differential electron scattering cross section, $\sigma_{\rm e,diff}(\varepsilon)$, of SF₆ which are plotted in Fig. 6. The early measurements of $\sigma_{\rm e,diff}(\varepsilon)$ by Srivastava *et al.* 140 for incident electron energies between 5 and 75 eV were made relative to those for helium. It was subsequently realized 10,146 that the data of Srivastava *et al.*¹⁴⁰ needed to be renormalized to more accurate helium cross section values than those used in the original analysis. The data identified in Fig. 6 by the squares are the data of Srivastava *et al.*¹⁴⁰ for $\sigma_{\rm e,diff}(\varepsilon)$ as recalculated by Trajmar *et al.*¹⁰ using the improved He cross sections of Register *et al.*¹⁴⁷ Another early measurement of the $\sigma_{e,diff}(\epsilon)$ of SF_6 was made by Rohr. He measured differential cross sections for vibrationally elastic ($\Delta \nu = 0$) electron scattering by SF_6 up Table 10. Elastic differential electron scattering cross section, $\sigma_{e,diff}(\epsilon)$, for SF₆ in units of 10^{-20} m² sr⁻¹. The data are those of Rohr (Ref. 120) and were obtained by digitizing the curves in Fig. 2 in Ref. 120 | | F | Electron energy (eV | 7) | |-------|------|---------------------|------| | | | dectron energy (e v | ') | | Angle | 0.5 | 2.7^{a} | 7.0 | | 10° | 5.82 | 1.85 | 6.75 | | 20° | 2.91 | 1.57 | 6.21 | | 30° | 2.28 | 1.72 | 5.63 | | 40° | 1.75 | 2.02 | 4.34 | | 50° | 1.36 | 2.15 | 2.73 | | 60° | 1.01 | 1.90 | 1.38 | | 70° | 0.93 | 1.63 | 0.80 | | 80° | 0.87 | 1.35 | 0.96 | | 90° | 0.74 | 1.18 | 1.26 | | 100° | 0.66 | 1.16 | 1.49 | | 110° | 0.68 | 1.32 | 1.37 | | 120° | 0.66 | 1.35 | 1.19 | ^aThe data shown in Fig. 2 of Ref. 120 for this energy were larger by a factor of 2 than the correct values. The values listed here are those presented in the original reference divided by 2. to 10 eV. Absolute values of the cross section $\sigma_{\rm e,diff}(\varepsilon)$ were obtained by comparison with data on elastic electron scattering by He and have an estimated uncertainty of about ±20%. Interestingly, Rohr¹²⁰ found that below 1 eV the cross section appears to be determined essentially by direct scattering, while between 2 and 3 eV and around 7 eV the scattering is dominated by resonances. In Fig. 6 are shown the angular dependencies measured by Rohr for 0.5, 2.7, and 7 eV. (Note that the cross section values at 2.7 eV as presented in Fig. 2 of Ref. 120 were too large by a factor of 2. The data have been corrected as presented here in Fig. 6.) The 0.5 eV data peak sharply in the forward direction and the scattering is dominated by direct processes. The 2.7 and 7 eV measurements indicate strong resonant contributions to the scattering process. These data compare favorably with other data obtained at similar electron energies. The measurements of $\sigma_{e,diff}(\epsilon)$ of SF_6 by Johnstone and Newell¹²² were made over a wider electron energy range (5–75 eV) using a hemispherical electron spectrometer, with an angular range of $10^{\circ}-120^{\circ}$. The magnitude of $\sigma_{e,diff}(\epsilon)$ was determined with reference to the respective cross sec- Table 11. Elastic differential electron scattering cross section, $\sigma_{e,diff}(\varepsilon)$, for SF₆ in units of 10^{-20} m² sr⁻¹ (data of Cho et al. from Refs. 143 and 144) | | Electron energy (eV) | | | | | | | | | | | |-------|----------------------|------|------|------|-------|-------|-------|-------|-------|-------|-------| | Angle | 2.7 | 5 | 7 | 8.5 | 10 | 12 | 15 | 20 | 30 | 50 | 75 | | 10° | | | | | | 13.79 | | 23.71 | 55.57 | 49.46 | 45.48 | | 12° | | | | | | | | 19.54 | | | | | 15° | | | 5.90 | 8.50 | 11.17 | 15.22 | 12.99 | 15.66 | 23.33 | 24.68 | 15.42 | | 20° | 1.95 | 3.94 | 7.90 | 8.82 | 8.89 | 12.41 | 11.13 | 10.98 | 13.26 | 9.67 | 4.41 | | 25° | 1.99 | 4.22 | 6.84 | 7.72 | 7.56 | 9.31 | 8.70 | 7.99 | 6.92 | 3.51 | 1.37 | | 30° | 2.34 | 4.00 | 5.90 | 6.40 | 6.24 | 6.65 | 6.65 | 5.25 | 3.31 | 1.61 | 1.23 | | 35° | 2.47 | 3.83 | 4.89 | 5.20 | 4.81 | 4.51 | 4.65 | 3.23 | 1.57 | 1.29 | 1.38 | | 40° | 2.52 | 3.60 | 3.99 | 3.89 | 3.51 | 2.91 | 3.05 | 1.87 | 0.99 | 1.38 | 1.33 | | 45° | 2.51 | 3.14 | 3.00 | 2.81 | 2.52 | 1.72 | 1.84 | 1.00 | 0.99 | 1.38 | 0.96 | | 50° | 2.40 | 2.82 | 2.20 | 2.07 | 1.71 | 1.10 | 1.13 | 0.70 | 1.27 | 1.16 | 0.67 | | 55° | 2.18 | 2.33 | 1.55 | 1.44 | 1.19 | 0.75 | 0.84 | 0.74 | 1.37 | 1.04 | 0.48 | | 60° | 2.05 | 1.89 | 1.11 | 1.09 | 1.03 | 0.68 | 0.87 | 0.98 | 1.43 | 0.76 | 0.34 | | 65° | 1.79 | 1.42 | 0.87 | 0.95 | 0.98 | 0.74 | 1.05 | 1.33 | | 0.53 | 0.30 | | 70° | 1.54 | 1.15 | 0.80 | 0.94 | 1.09 | 0.86 | 1.25 | 1.43 | 1.05 | 0.34 | 0.27 | | 75° | 1.41 | 0.91 | 0.84 | 1.07 | 1.26 | 0.99 | 1.39 | 1.50 | | 0.24 | 0.26 | | 80° | 1.20 | 0.82 | 1.00 | 1.26 | 1.46 | 1.09 | 1.40 | 1.34 | 0.66 | 0.18 | 0.25 | | 85° | 1.08 | 0.80 | 1.15 | 1.32 | 1.53 | 1.10 | 1.31 | 1.13 | | 0.20 | 0.23 | | 90° | 0.97 | 0.88 | 1.29 | 1.39 | 1.52 | 1.17 | 1.22 | 1.01 | 0.40 | 0.23 | 0.21 | | 95° | 0.91 | 0.96 | 1.39 | 1.39 | 1.41 | 1.19 | 1.07 | 0.82 | | 0.28 | 0.22 | | 100° | 0.94 | 1.12 | 1.42 | 1.35 | 1.24 | 1.13 | 0.97 | 0.69 | 0.47 | 0.32 | 0.19 | | 105° | 0.98 | 1.23 | 1.40 | 1.22 | 1.07 | 1.10 | 0.86 | 0.60 | | 0.32 | 0.18 | | 110° | 1.04 | 1.27 | 1.30 | 1.07 | 0.95 | 1.12 | 0.79 | 0.61 | 0.64 | 0.35 | 0.21 | | 115° | 1.06 | 1.25 | 1.17 | 0.94 | 0.83 | 1.21 | 0.78 | 0.60 | | 0.39 | 0.26 | | 120° | 1.10 | 1.23 | 1.05 | 0.82 | 0.77 | 1.38 | 0.77 | 0.67 | 0.87 | 0.42 | 0.36 | | 125° | 1.24 | 1.15 | 0.91 | 0.75 | 0.78 | 1.45 | 0.81 | 0.81 | | 0.47 | 0.47 | | 130° | 1.31 | 1.02 | 0.81 | 0.83 | 0.85 | 1.54 | 0.87 | 0.93 | 1.10 | 0.58 | 0.63 | | 135° | 1.35 | 0.96 | 0.98 | 0.96 | 0.92 | 1.57 | 0.97 | | | | | | 140° | 1.37 | 0.91 | 1.00 | 1.00 | 1.00 | 1.62 | 1.12 | | | | | | 145° | 1.40 | 0.79 | 1.01 | 1.07 | 1.11 | 1.65 | 1.26 | | | | | | 150° | 1.42 | 0.74 | 1.11 | 1.23 | 1.17 | 1.69 | 1.35 | | | | | | 155° | 1.39 | 0.70 | 1.24 | 1.30 | 1.25 | 1.71 | 1.50 | | | | | | 160° | 1.49 | 0.64 | 1.29 | 1.47 | 1.31 | 1.76 | 1.65 | | | | | | 165° | 1.49 | 0.61 | 1.40 | 1.57 | 1.36 | 1.75 | 1.77 | | | | | | 170° | 1.49 | 0.58 | 1.47 | 1.62 | 1.37 | 1.83 | 1.92 | | | | | | 175° | 1.50 | 0.57 | 1.51 | 1.71 | 1.44 | 1.86 | 1.94 | | | | | | 180° | 1.50 | 0.54 | 1.54 | 1.77 | 1.47 | 1.84 | 1.97 | | | | | | TABLE 12. Elastic differential electron scattering cross section, $\sigma_{e,diff}(\varepsilon)$, for SF ₆ in units of 10^{-20} m ² sr ⁻¹ . The | |---| | data are those of Sakae et al. from Ref. 142 as supplied by Professor M. Hayashi (private communication, | | 2000). Stated uncertainties are approximately 8%–10% | | | Electron energy (eV) | | | | | | | | |--------|----------------------|-------|-------|-------|--------|--------|--------|--| | Angle | 75 | 100 | 150 | 200 | 300 | 500 | 700 | | | 5.0° | 133 | 125 | 117 | 105 | 102 | 70.3 | 53.2 | | | 7.5° | _ | _ | 68.5 | _ | 45.3 | 21.9 | 11.1 | | | 10.0° | 41.3 | 43.2 | 35.7 | 28.4 | 13.6 | 5.11 | 3.48 | | | 12.5° | _ | _ | 16.8 | 8.34 | 4.86 | 3.03 | 4.46 | | | 15.0° | 15.2 | 12.4 | 6.18 | 3.28 | 2.43 | 3.88 | 4.60 | | | 17.5° | _ | _ | 2.40 | 2.00 | 3.05 | 3.86 | 3.21 | | | 20.0° | 3.80 | 2.53 | 1.64 | 2.17 | 3.04 | 2.95 | 2.03 | | | 22.5° | _ | _ | 1.93 | 2.57 | _ | 1.94 | 1.60 | | | 25.0° | 1.17 | 1.51 | 1.96 | 2.44 | 1.22 | 1.34 | 1.60 | | | 27.5° | _ | _ | 1.82 | _ | _ | 1.22 | 1.33 | | | 30.0° | 1.09 | 1.64 | 1.70 | 1.55 | 0.906 | 1.16 | 0.758 | | | 32.5° | _ | _ | _ | _ | _ | 1.05 | 0.442 | | | 35.0° | 1.23 | 1.46 | 1.09 | 0.795 | 0.726 | 0.712 | 0.409 | | | 40.0° | 1.16 | 0.953 | 0.592 | 0.509 | 0.738 | 0.322 | 0.365 | | | 42.5° | _ | _ | _ | _ | _ | 0.329 | 0.268 | | | 45.0° | 0.878 | 0.573 | 0.390 | 0.557 | 0.468 | 0.317 | 0.205 | | | 50.0° | 0.575 | 0.338 | 0.372 | 0.559 | 0.227 | 0.227 | 0.171 | | | 55.0° | 0.416 | 0.265 | 0.385 | 0.375 | 0.196 | 0.166 | 0.134 | | | 60.0° | 0.316 | 0.267 | 0.350 | 0.216 | 0.199 | 0.143 | 0.0933 | | | 65.0° | 0.241 | 0.286 | 0.243 | 0.172 | 0.159 | 0.119 | 0.0884 | | | 70.0° | 0.241 | 0.316 | 0.164 | 0.178 | 0.131 | 0.0831 | 0.0652 | | | 75.0° | 0.236 | 0.289 | 0.134 | 0.182 | 0.117 | 0.0850 | 0.0556 | | | 80.0° | 0.214 | 0.234 | 0.139 | 0.159 | 0.114 | 0.0851 | 0.0489 | | |
85.0° | 0.204 | 0.180 | 0.139 | 0.134 | 0.104 | 0.0616 | 0.0437 | | | 90.0° | 0.177 | 0.142 | 0.144 | 0.135 | 0.0897 | 0.0577 | 0.0393 | | | 95.0° | 0.172 | 0.127 | 0.140 | 0.136 | 0.0855 | 0.0561 | 0.0349 | | | 100.0° | 0.162 | 0.148 | 0.130 | 0.136 | 0.0864 | 0.0557 | 0.0324 | | | 105.0° | 0.161 | 0.182 | 0.127 | 0.149 | 0.0984 | 0.0524 | _ | | | 110.0° | 0.174 | 0.218 | 0.146 | 0.164 | 0.0974 | 0.0511 | 0.0297 | | | 115.0° | 0.230 | 0.264 | _ | _ | _ | 0.0497 | _ | | | 120.0° | 0.295 | 0.318 | 0.222 | 0.189 | 0.104 | 0.0510 | 0.0292 | | | 130.0° | 0.514 | 0.456 | 0.345 | 0.202 | 0.103 | 0.0491 | 0.0263 | | | 135.0° | 0.606 | 0.548 | 0.406 | 0.238 | 0.119 | 0.0516 | 0.0264 | | tions for He (calculated values by Nesbet¹⁴⁸ below 20 eV and measurements by Register *et al.*¹⁴⁷ for energies greater than 20 eV), and they have a quoted uncertainty of $\pm 12\% - \pm 14\%$. While these data are in qualitative agreement with other measurements, the degree of agreement varies with the electron energy and the scattering angle. The measurements of Sakae *et al.*¹⁴² were made using a crossed-beam method and extend up to 700 eV with an angular range of $5^{\circ}-135^{\circ}$. They were put on absolute scale by normalization to the differential electron scattering cross sections for He (data of Jansen *et al.*¹⁴⁹ for energies between 100 and 700 eV and data of Register *et al.*¹⁴⁷ for 75 eV), and have an overall uncertainty of about $\pm 10\%$. Recent measurements of the differential elastic electron scattering cross section for SF₆ for energies ranging from 2.5 to 75 eV by Cho *et al.* ^{143,144} have been made in response to the discrepancies in the resultant determinations of the integral elastic scattering cross sections, $\sigma_{\rm e,int}(\varepsilon)$, by Trajmar *et al.*, ¹⁰ Johnstone and Newell, ¹²² and Sakae *et al.* ¹⁴² (see discussion in Sec. 3.3.). These recent data of Cho *et al.* ^{143,144} are also shown in Fig. 6, and are in good agreement with the data of Sakae *et al.* ¹⁴² at 75 eV and with Rohr ¹²⁰ at 2.7 and 7 eV. Cho et al. 143,144 directly measured the cross sections at large angles using a new magnetic deflection technique 143,150,151 that allows cross section measurements at angles up to 180° . This reduces extrapolation uncertainties when using these data to calculate the corresponding elastic integral and momentum transfer cross sections. At most energies, the measured values of $\sigma_{\rm e,diff}(\varepsilon)$ by Cho et al. are seen to be higher than the corresponding measurements of Trajmar et al. 10 and Johnstone and Newell. 122 In Fig. 6 are also shown the results of two calculations of $\sigma_{\rm e,diff}(\varepsilon)$, those of Gianturco $et~al.^{121}$ who used an ab~initio approach and solved the multichannel scattering problem within the close-coupling methodology, and those of Jiang $et~al.^{145}$ who calculated differential elastic scattering cross sections at six electron energies between 100 and 700 eV using the independent-atom model with partial waves. There is qualitative agreement between these calculated results and the experimental data, particularly at higher energies. The values calculated by Gianturco $et~al.^{121}$ are generally larger than the measurements, especially at small and large scattering angles. In Tables 10, 11, and 12 are listed, respectively, the Fig. 7. Elastic integral electron scattering cross section, $\sigma_{\text{e,int}}(\varepsilon)$, of SF₆ as a function of electron energy: (\blacksquare) Ref. 120; (\blacksquare) Ref. 140 as corrected by Trajmar *et al.* in Ref. 10; (\blacksquare) Ref. 142; (\blacklozenge) Refs. 122; (\blacktriangledown) Refs. 143, 144; (-) Ref. 124; (-) Ref. 112; (-) Ref. 121; (-) Ref. 121; (-) Ref. 145; (+) deduced in present work from data in Ref. 92, see text; (-) suggested values. $\sigma_{\rm e,diff}(\varepsilon)$ values of Rohr¹²⁰ for low electron energies, the recently measured values of Cho *et al.*^{143,144} at intermediate electron energies, and the values of Sakae *et al.*¹⁴² at higher energies. Collectively these data provide values of the $\sigma_{\rm e,diff}(\varepsilon)$ of SF₆ from 0.5 to 700 eV. The tabulated values of $\sigma_{\rm e,diff}(\varepsilon)$ for Trajmar *et al.*¹⁰ and Johnstone and Newell¹²² are presented in the respective references. ### 3.3. Elastic Integral Electron Scattering Cross Section, $\sigma_{e,int}(\varepsilon)$ In Fig. 7 are compared the five sets of values of the elastic integral electron scattering cross section, $\sigma_{\rm e,int}(\varepsilon)$, for SF₆ derived from the differential elastic cross section measurements of Srivastava *et al.*¹⁴⁰ (as corrected by Trajmar *et al.*¹⁰), Rohr, ¹²⁰ Sakae *et al.*, ¹⁴² Johnstone and Newell, ¹²² and Cho *et al.* ^{143,144} The uncertainties for $\sigma_{\rm e,int}(\varepsilon)$ are somewhat larger than those quoted in the preceding section for $\sigma_{\rm e,diff}$, largely because of errors arising from the extrapolation of the elastic differential electron scattering cross section measurements to 0° and 180° scattering angles. The stated uncertainties for the $\sigma_{\rm e,int}(\varepsilon)$ data are as follows: Srivastava *et al.*¹⁴⁰ (±18%); Rohr¹²⁰ (~±20%); Johnstone and Newell¹²² ($\pm 17\%$); Sakae *et al.*¹⁴² ($\sim \pm 10\%$); and Cho *et al.*¹⁴³ ($\pm 20\%$). The errors are generally larger when the differential cross sections rise steeply at small scattering angles. The $\sigma_{\rm e,int}(\varepsilon)$ data of Sakae et~al., 142 Cho et~al., 143 and Rohr 120 agree well within the overlapping energy ranges. The data of Trajmar et~al. 10 and Johnson and Newell 122 are seen to fall significantly below the other data, particularly at higher electron energies. In view of the agreement between the data of Sakae et~al., 142 Cho et~al., 143 and Rohr, 120 we have chosen to fit these data in order to obtain our suggested values for this cross section. This fit is shown by the solid line in Fig. 7 and values obtained from the fit are listed in Table 13 as our suggested values for the $\sigma_{\rm e,int}(\varepsilon)$ of the SF₆ molecule. The cross section labeled "Randell (1992)/Present" in Fig. 7 was deduced by us from the relative cross section for total elastic electron scattering measured by Randell *et al.*⁹² This cross section was put on an absolute scale by normalizing its value at 1 eV to the data of Rohr¹²⁰ at 1 eV. The total elastic electron scattering cross section determined this way is shown in Fig. 7 by the crosses and is seen to be in Table 13. Suggested values for the elastic integral electron scattering cross section, $\sigma_{e,int}\left(\epsilon\right)$, of SF_{6} | - C,IIIC V | | | | |----------------------|--|----------------------|--| | Electron energy (eV) | $\sigma_{\rm e,int}(\varepsilon) $ $(10^{-20} \rm m^2)$ | Electron energy (eV) | $\sigma_{\rm e,int}(\varepsilon) $ $(10^{-20} \rm m^2)$ | | 0.30 | 45.6 | 16 | 25.2 | | 0.35 | 33.0 | 17 | 24.9 | | 0.40 | 26.2 | 18 | 24.8 | | 0.45 | 21.8 | 19 | 24.8 | | 0.50 | 18.7 | 20 | 24.7 | | 0.60 | 14.8 | 22 | 24.7 | | 0.70 | 12.5 | 25 | 24.7 | | 0.80 | 11.1 | 30 | 24.4 | | 0.90 | 10.2 | 35 | 24.0 | | 1.0 | 9.72 | 40 | 23.5 | | 1.2 | 9.73 | 45 | 22.8 | | 1.5 | 10.9 | 50 | 22.2 | | 2.0 | 14.8 | 60 | 21.3 | | 2.5 | 17.8 | 70 | 20.5 | | 3.0 | 19.3 | 75 | 20.2 | | 3.5 | 19.9 | 80 | 19.8 | | 4.0 | 20.1 | 90 | 19.1 | | 4.5 | 20.6 | 100 | 18.4 | | 5.0 | 21.3 | 125 | 16.9 | | 6.0 | 23.6 | 150 | 15.5 | | 7.0 | 24.2 | 200 | 13.3 | | 8.0 | 24.6 | 250 | 11.8 | | 9.0 | 24.5 | 300 | 10.6 | | 10.0 | 24.8 | 350 | 9.71 | | 11.0 | 26.1 | 400 | 8.95 | | 12.0 | 26.6 | 450 | 8.31 | | 13.0 | 26.5 | 500 | 7.74 | | 14.0 | 26.1 | 600 | 6.76 | | 15.0 | 25.6 | 700 | 5.94 | agreement with the measurements of Rohr between about 0.5 and 1 eV. Below $\sim 0.5 \, \text{eV}$ the deduced values are significantly lower than the values measured by Rohr, perhaps due to the fact that the measurements of Randell *et al.* were made at only a single scattering angle (90°). Also shown in Fig. 7 are the results of four calculations of the total elastic electron scattering cross section, $\sigma_{\rm e,t}(\varepsilon)$, by Benedict and Gyemant, ¹²⁴ Dehmer et~al., ¹¹² Gianturco et~al., ¹²¹ and Jiang et~al. ¹⁴⁵ The results of the first three calculations show distinct structure due to negative ion resonances, but they agree with the experimental data only in restricted energy regions. The values of $\sigma_{\rm e,t}(\varepsilon)$ calculated by Jiang et~al. using the independent-atom model with partial waves are higher than the experimental data of Sakae et~al. between 100 and 500 eV, and only merge well with the experimental data at high energies. # 3.4. Momentum Transfer (Elastic) Electron Scattering Cross Section, $\sigma_{\rm m}(\varepsilon)$ The momentum transfer (elastic) electron scattering cross section, $\sigma_{\rm m}(\varepsilon)$, of SF₆ has been determined by Srivastava et al., ¹⁴⁰ Sakae et al., ¹⁴² Johnstone and Newell, ¹²² and Cho et al. ¹⁴³ from their respective differential elastic electron scattering cross section measurements extrapolated, as required, to 0° and 180° scattering angles. These determinations of $\sigma_{\rm m}(\varepsilon)$ are shown in Fig. 8. The data of Srivastava et al. ¹⁴⁰ shown in Fig. 8 are those that have been renormal- Fig. 8. Momentum transfer (elastic) electron scattering cross section, $\sigma_{\rm m}(\varepsilon)$, of SF₆ as a function of electron energy: (\bullet) Ref. 140 as corrected by Trajmar *et al.* in Ref. 10; (\blacksquare) Ref. 142; (\diamond) Ref. 122; (\blacktriangledown) Refs. 143, 144; (-, - - -) suggested values. The broken line indicates an uncertainty in the significance of the structure observed at energies between 2.7 and 30 eV. ized by Trajmar *et al.*¹⁰ (Sec. 3.2). The quoted
uncertainty in the data is \pm 20% for Srivastava *et al.*, ¹⁴⁰ $\sim \pm$ 9% for Sakae *et al.*, ¹⁴² \pm 20% for Johnstone and Newell, ¹²² and \pm 20% for Cho *et al.* ¹⁴³ The uncertainty is generally larger at the higher energies due to the difficulty in accurately measuring the steeply rising differential cross section at small scattering angles. At 75 eV the data of Trajmar *et al.*¹⁰ and Johnstone and Newell¹²² lie somewhat below those of Sakae *et al.*,¹⁴² while the data of Cho *et al.*¹⁴³ are in reasonable agreement with Table 14. Suggested values for the momentum transfer (elastic) cross section, $\sigma_m\left(\epsilon\right),$ of SF_6 | Electron energy (eV) | $\sigma_{\rm m}(\epsilon) $ (10 ⁻²⁰ m ²) | Electron energy (eV) | $\frac{\sigma_{\rm m}(\varepsilon)}{(10^{-20}{\rm m}^2)}$ | |----------------------|---|----------------------|---| | 2.75 | 16.0 | 27 | 14.3 | | 3.0 | 15.4 | 30 | 13.2 | | 3.5 | 14.5 | 35 | 11.5 | | 4.0 | 14.0 | 40 | 10.3 | | 4.5 | 13.9 | 45 | 9.37 | | 5.0 | 14.1 | 50 | 8.65 | | 6.0 | 15.1 | 60 | 7.69 | | 7.0 | 15.5 | 70 | 7.06 | | 8.0 | 14.8 | 75 | 6.74 | | 9.0 | 14.4 | 80 | 6.46 | | 10 | 15.1 | 90 | 6.03 | | 11 | 16.7 | 100 | 5.70 | | 12 | 17.6 | 125 | 4.92 | | 13 | 17.1 | 150 | 4.16 | | 14 | 15.8 | 200 | 2.98 | | 15 | 14.9 | 250 | 2.23 | | 16 | 14.5 | 300 | 1.76 | | 17 | 14.7 | 350 | 1.47 | | 18 | 15.0 | 400 | 1.28 | | 19 | 15.4 | 450 | 1.13 | | 20 | 15.7 | 500 | 1.02 | | 22 | 15.7 | 600 | 0.82 | | 25 | 15.0 | 700 | 0.66 | | | | | | Fig. 9. Low-energy electron energy-loss spectra for SF_6 of Rohr from Ref. 91. (a) Energy-loss spectrum of SF_6 for a collision energy of 1 eV and a scattering angle of 10° . (b) Energy-loss spectrum of SF_6 at 1 eV and a scattering angle of 80° . (c) Angular dependencies of the differential cross sections for the ν_1 and ν_3 vibrational excitations (the cross section scales reflect true intensity ratios). (d) Differential cross section for excitation of the ν_1 vibrational mode of SF_6 at a scattering angle of 80° . Sakae *et al.* Based upon this agreement, we have made a modified spline fit to the data of Cho *et al.* and of Sakae *et al.* which is shown by the line in Fig. 8. Values extracted from this fit are listed in Table 14 as our suggested data for the $\sigma_{\rm m}(\varepsilon)$ of the SF₆ molecule. The data of Cho *et al.* ¹⁴³ and Johnstone and Newell ¹²² indicate structure which can be associated with the negative ion states presented in Table 6. However, it should be noted that the variations in the measured values of $\sigma_{\rm m}(\varepsilon)$ in the energy region of 2.7–30 eV are smaller than the stated uncertainties of the measurements. Thus the line designating our suggested values for $\sigma_{\rm m}(\varepsilon)$ in this energy range is broken in order to highlight the potential uncertainty of the observed structure. ## 3.5. Inelastic Electron Scattering Cross Section, $\sigma_{\rm inel}(\varepsilon)$ ### 3.5.1. Vibrational Excitation Two low-energy electron-impact vibrational-excitation studies^{91,92} of SF₆ have shown that at energies below \sim 3 eV the energy-loss spectra of SF₆ are characterized by strong vibrational excitation and vibrationally elastic electron scattering. In this energy range these studies have also shown that the vibrationally inelastic processes are dominated by excitation of the ν_1 and ν_3 modes. This is seen from the energy-loss spectrum (collision energy of 1 eV and scattering angle of 10°) in Fig. 9(a) which is characterized by the large magnitude of the excitation of the v_3 fundamental mode which exceeds the elastic peak by about a factor of 3. Rohr⁹¹ estimates that at 1 eV the integral total vibrational excitation cross section is $\sim 10^{-15} \,\mathrm{cm}^2$. The ν_3 (0.1175 eV, Table 7) vibrational mode is infrared (IR) active and is associated with vertical displacement of the apical F atoms in the octahedral structure for normal modes of vibration of SF₆, and the ν_1 (0.096 eV; Table 7) vibrational mode is the Raman active totally symmetric breathing mode. Figure 9(b) shows the energy-loss spectrum again at a collision energy of 1 eV, but at a scattering angle of 80° . The excitation is now seen to be dominated by the ν_1 mode and its higher harmonics. No other modes or intercombination lines are seen. Rohr observed the same behavior at all angles greater than 60° for all the energies he employed. In Fig. 9(c) are shown the angular dependencies of the differential cross sections, $\sigma_{\text{vib,diff}}$, for the ν_1 and ν_3 vibrational excitations in the angular range $10^\circ-120^\circ$ for a collision energy of 1 eV (note that the cross section scales reflect true intensity ratios and that the values of the cross section for ν_1 have been multiplied by a factor of 10). The differential cross section of the IR active ν_3 vibrational mode is peaked in the forward direction, indicating that a direct process via the dipole interaction is involved. For the Raman active totally symmetric vibration ν_1 the dipole mechanism is excluded and the angular distribution is nearly isotropic. Figure 9(d) shows the differential cross section $\sigma_{vib,diff}(\epsilon)$ for excitation of the ν_1 vibration at a scattering angle of 80°. The sharp peak at 0.060 eV was attributed⁹¹ to the formation of SF_6^- negative ions and the broad maximum at near 0.7 eV to vibrational excitation via a negative ion state. A similar crossed-beam study of SF₆ was conducted by Randell *et al.*⁹² using 0.05–1 eV incident-energy electrons detected at a fixed scattering angle of 90°. Figure 10(a) shows the electron-energy loss function measured at an incident electron energy of 0.4 eV due to excitation of the ν_1 , ν_3 , $2\nu_1$, $\nu_1+\nu_3$, and $3\nu_1$ vibrations. The contribution to the total scattering cross section of inelastic scattering is roughly equal to the elastic scattering at this energy. The weak peak at a negative energy loss was attributed by Randell *et al.* to superelastic scattering from the thermal population of ν_3 =1. In agreement with Rohr, ⁹¹ Randell *et al.* have attributed the excitation of ν_3 to a direct dipole mechanism and the excitation of ν_1 to a long-lived negative ion resonance, i.e., to excitation of the symmetric breathing mode, Fig. 10. Low-energy electron energy-loss spectra for SF₆ of Randell *et al.* from Ref. 92. (a) Energy-loss spectrum of SF₆ for a collision energy of 0.4 eV and a scattering angle of 90°. (b) Energy-loss spectrum of SF₆ for a collision energy of 0.18 eV and a scattering angle of 90° showing resolution of the ν_1 and ν_3 vibrational modes. v_1 , via autoionization of ${\rm SF}_6^{-*}$. The latter interpretation is supported by the high-resolution electron attachment studies of Klar *et al.* ^{152,153} which show that the attachment cross section has a pronounced cusp at 0.096 eV associated with v_1 excitation. It is also consistent with the work of Trajmar and Chutjian ⁸³ whose electron-energy-loss spectra using 12 eV incident electrons showed strong enhancement of vibrational excitation attributed mostly to the v_1 mode. Figure 10(b) shows an energy-loss spectrum obtained by Randell *et al.* ⁹² for an electron-impact energy of 0.18 eV and a scattering angle of 90° showing resolution of electrons scattered inelastically through energies corresponding to the v_1 and v_3 vibrational modes. Within experimental error, the thresholds for v_1 and v_3 are at 0.095 and 0.117 eV, respectively, and excitation is thus at the energy threshold. Figures 11(a), 11(b), 11(c), and 11(d) show the excitation functions, respectively, for ν_1 , ν_3 , $2\nu_1$, and $\nu_1 + \nu_3$ as reported by Randell *et al.* ⁹² The scales in Fig. 11 are not in absolute units, but their vertical axes give the correct relative values of these quantities. Clearly, the excitation cross section for ν_1 is the largest, and the excitation functions for ν_1 and ν_3 are markedly different, reflecting the different mechanisms by which these vibrations are excited. The measured functional dependence of the cross section for ν_3 was found by Randell *et al.* to be in agreement with that predicted by the Born point-dipole approximation. Fig. 11. Low-energy electron energy-loss spectra for SF₆ of Randell *et al.* from Ref. 92. Excitation functions for (a) ν_1 , (b) ν_3 , (c) $2\nu_1$, (d) $\nu_1 + \nu_3$, and (e) elastic electron scattering. The solid line labeled "Total Vibration" in (e) is the sum of the relative excitation cross sections for ν_1 , ν_3 , $2\nu_1$, and $\nu_1 + \nu_3$ shown in (a)–(d) (see text). The relative cross sections in Figs. 11(a), 11(b), 11(c), and 11(d) have been used by us in conjunction with other assessed cross sections in this paper to deduce absolute values for the total vibrational excitation cross section, $\sigma_{\text{vib},t}(\varepsilon)$, of SF₆ for electron energies less than 1.1 eV. This was done as follows: Since the vibrational energy-loss measurements by both Rohr⁹¹ and Randell et al.⁹² show that the major contribution to vibrational excitation by electron impact below \sim 3 eV comes from ν_1 (indirect excitation via the SF₆^{-*} resonances) and ν_3 (direct excitation via the dipole interaction) vibrations and their combinational excitations, we have summed the relative vibrational excitation cross sections shown in Figs. 11(a), 11(b), 11(c), and 11(d), and plotted the result in Fig. 11(e). In Fig. 11(e) is also shown the relative total elastic electron scattering cross section measured by Randell et al. To put the deduced total vibrational cross section of Randell et al. on an absolute scale, the relative vibrational
values shown in Fig. 11(e) were multiplied by the same factor used to normalize the relative $\sigma_{e int}(\varepsilon)$ values of Randell et al. that are shown in Fig. 7 and discussed in Sec. 3.3. The values of $\sigma_{\text{vib,t}}(\varepsilon)$ determined in this way are shown in Fig. 12 (closed circles). Confirmation of these deduced values of $\sigma_{\text{vib,t}}(\epsilon)$ below Fig. 12. Deduced total vibrational excitation cross section, $\sigma_{\text{vib,t}}(\varepsilon)$, for SF₆: (\bullet) Ref. 92 normalized as discussed in text; (\bigcirc) difference, $\sigma_{\text{sc,t}}(\varepsilon) - \sigma_{\text{e,int}}(\varepsilon)$, of the recommended values for $\sigma_{\text{sc,t}}(\varepsilon)$ and $\sigma_{\text{e,int}}(\varepsilon)$ [see text]; (\bigcirc) suggested values. 1.1 eV, and extension of $\sigma_{\text{vib,t}}(\varepsilon)$ to higher electron energies has been obtained by the following analysis. At energies above ~ 1 eV and below the region of significant electronic excitation (<16 eV), the total electron attachment cross section of SF₆ is very much smaller than the total electron scattering cross section (see Fig. 47 in Sec. 10), so the cross section $\sigma_{\text{vib,t}}(\varepsilon)$ can be estimated by the difference $\sigma_{\text{sc,t}}(\varepsilon) - \sigma_{\text{e,int}}(\varepsilon)$, viz., $$\sigma_{\text{vib,t}}(\varepsilon) = \sigma_{\text{sc,t}}(\varepsilon) - \sigma_{\text{e,int}}(\varepsilon) - \sigma_{\text{a,t}}(\varepsilon)$$ $$\approx \sigma_{\text{sc,t}}(\varepsilon) - \sigma_{\text{e,int}}(\varepsilon). \tag{2}$$ Using the assessed values of $\sigma_{\rm sc,t}(\epsilon)$ and $\sigma_{\rm e,int}(\epsilon)$ determined in this work, we obtained the difference $\sigma_{\rm sc.t}(\varepsilon)$ $-\sigma_{\rm e.int}(\varepsilon)$, and have shown these values in Fig. 12 by the open symbols. It is encouraging to see the agreement of the two determinations of $\sigma_{\mathrm{vib,t}}(\varepsilon)$ in the energy range from \sim 0.5 to 1 eV, thus confirming the normalization of the data of Randell et al. 92 However, the two sets of values differ significantly at energies below $\sim 0.5 \, \text{eV}$, indicating potential errors in the various cross sections employed. Nonetheless, in the absence of any direct measurements of $\sigma_{\text{vib,t}}(\varepsilon)$, we take the difference $\sigma_{\rm sc,t}(\epsilon) - \sigma_{\rm e,int}(\epsilon)$, between 1 and 14 eV, and the normalized data of Randell et al. 92 below 1 eV, to be a good measure of $\sigma_{\text{vib,t}}(\varepsilon)$. The solid line in Fig. 12 represents our suggested values for the total vibrational cross section, $\sigma_{\text{vib,t}}(\varepsilon)$, for SF₆ using the cross section values deduced as just described. Values of $\sigma_{\text{vib,t}}(\varepsilon)$ extracted from the solid line in Fig. 12 are listed in Table 15. In the absence of absolute experimental measurements, the values represented by the solid line in Fig. 12 can be used in combination with the relative data in Figs. 11(a), 11(b), 11(c), and 11(d) to deduce cross sections for vibrational excitation of ν_1 , ν_3 , $2\nu_1$, and $\nu_1 + \nu_3$ up to ~4 eV. An estimate of the cross Table 15. Deduced values of the total vibrational excitation cross section, $\sigma_{\text{vib,I}}(\varepsilon)$, of SF₆ | Electron energy (eV) | $\frac{\sigma_{\text{vib,t}}(\varepsilon)}{(10^{-20}\text{m}^2)}$ | Electron energy (eV) | $\frac{\sigma_{\text{vib,t}}(\varepsilon)}{(10^{-20}\text{m}^2)}$ | |----------------------|---|----------------------|---| | 0.09 | 1.9 | 1.2 | 12.6 | | 0.10 | 7.0 | 1.5 | 10.8 | | 0.12 | 21.3 | 2.0 | 8.0 | | 0.15 | 30.6 | 2.5 | 5.6 | | 0.17 | 30.6 | 3.0 | 3.8 | | 0.20 | 34.9 | 3.5 | 2.8 | | 0.22 | 35.5 | 4.0 | 2.3 | | 0.25 | 33.6 | 4.5 | 2.0 | | 0.28 | 30.9 | 5.0 | 2.4 | | 0.30 | 29.4 | 6.0 | 4.4 | | 0.35 | 26.8 | 7.0 | 6.5 | | 0.40 | 25.4 | 8.0 | 4.6 | | 0.45 | 23.5 | 9.0 | 3.1 | | 0.50 | 21.6 | 10.0 | 2.5 | | 0.60 | 19.7 | 11.0 | 3.5 | | 0.70 | 18.1 | 12.0 | 6.3 | | 0.80 | 16.4 | 13.0 | 2.4 | | 0.90 | 15.1 | 14.0 | 0.5 | | 1.0 | 13.9 | | | section for indirect vibrational excitation via the negative ion states near 7 and 12 eV can also be obtained from Fig. 12 and Table 15. Above 15 eV, where $\sigma_{\text{vib,t}}(\varepsilon)$ becomes small, the difference $\sigma_{\text{sc,t}}(\varepsilon) - \sigma_{\text{e,int}}(\varepsilon)$ can be attributed to other inelastic processes (such as ionization and dissociation), and may be used to deduce a value of the total cross section for dissociation of SF₆ into neutral fragments. This will be further discussed in Sec. 5. #### 3.5.2. Electronic Excitation Excitation of the SF₆ molecule by electron impact to any electronic state is generally assumed to lead to dissociation, i.e., all excited electronic states of the SF₆ molecule are antibonding. This assumption is consistent with optical emission data following electron-impact excitation of SF₆ (e.g., see Refs. 154 and 155). Electron-impact electronic excitation of SF₆ is thus an important process in controlling the rates of decomposition of this gas in electrical discharges and also indirectly the rates of electron-impact ionization and electron attachment. In spite of this, to our knowledge, there are no cross sections for electron-impact excitation functions for specific electronic transitions in SF₆. We can however direct attention to the following investigations: the electron-impact energy-loss spectra and the generalized oscillator-strength results presented in Sec. 2; the differential inelastic electron scattering cross sections, $\sigma_{\rm el,diff}$ ($\varepsilon = 20 \, {\rm eV}$), for five electronic states located at 9.8, 11.0, 11.6, 12.8, and 13.3 eV obtained by Trajmar and Chutjian⁸³ at one (20 eV) incidentelectron energy (Fig. 13); and the Boltzmann-type calculations (e.g., Yoshizawa et al.²⁷ and Itoh et al.²⁸) which determined an overall electronic excitation cross section function consistent with the measured ionization and attachment coefficients. Fig. 13. Differential electronic excitation cross section, $\sigma_{\rm el,diff}(\epsilon)$, for excited electronic states of SF₆ at (×) 9.8 eV; (\blacksquare) 11.0, 11.6, and 12.8 eV; and (\blacksquare) 13.3 eV. The incident electron energy was 20 eV (data of Trajmar and Chutjian from Ref. 83). ### 4. Electron-Impact Ionization of SF₆ ### 4.1. Total Ionization Cross Section, $\sigma_{i,t}(\varepsilon)$ There have been five measurements $^{82,156-159}$ of the total ionization cross section, $\sigma_{i,t}(\varepsilon)$, of SF_6 , which are compared in Fig. 14. Two 82,156 of these were direct measurements of the total ionization cross section. The uncertainty in the data of Rapp and Englander-Golden is probably $\pm 7\%$, while that of Asundi and Craggs is much larger. Asundi and Craggs observed structure in their data at 14.3, 15.9, 17.5, 18.7, 20.3, and 22.2 eV. The processes at 15.9, 18.7, and 20.3 eV were attributed to the formation of SF_5^+ , SF_4^+ , and SF_3^+ , respectively, and agree within experimental error (± 0.2 eV) with the values of Dibeler and Mohler which were similarly attributed to these positive ions (Table 3). The other three experimental determinations ^{157–159} of $\sigma_{i,t}(\varepsilon)$ were made by summation of the respective partial ionization cross sections, $\sigma_{i,partial}(\varepsilon)$, presented in Sec. 4.2. Stanski and Adamczyk ¹⁵⁷ measured electron-impact dissociative ionization of SF₆ as a function of electron energy to 600 eV and obtained partial ionization cross sections for the positive ion fragments SF₅⁺, SF₄⁺, SF₃⁺, SF₂⁺, SF⁺, S⁺, F⁺, SF₄⁺⁺, and SF₂⁺⁺ by normalizing their sum to the total ionization cross section of Rapp and Englander-Golden. ¹⁵⁶ Margreiter *et al.*¹⁵⁸ measured electron-impact ionization of SF₆ from threshold to 180 eV using a Nier-type ion source in combination with a double-focusing sector field mass spectrometer. They determined absolute partial ionization cross sections for the production of SF₅⁺, SF₄⁺, SF₃⁺, SF₂⁺, SF⁺, S⁺, F⁺, SF₄⁺⁺, and SF₂⁺⁺ using an improved experimental method based on ion trajectory calculations. They determined the $\sigma_{i,partial}(\varepsilon)$ using various procedures which gave cross section values at 100 eV that differed by 7%–40% for the larger ion fragments, and by as much as a factor of 3 for F⁺. The cross section values at 100 eV listed in Table 16 are for the ''preferred method of analysis'' (case A) of Margreiter *et al.*, and the sum of these partial ionization cross sec- Table 16. Comparison of the values of the partial ionization cross sections, $\sigma_{i,partial}(\varepsilon=100\,\text{eV})$, of SF₆ as measured by three different groups (Refs. 157–159) | Fragment positive ion | $\sigma_{i,partial} \ (arepsilon = 100 \; eV) \ (10^{-20} \; m^2) \ Ref. \; 157^a$ | $\sigma_{i,partial} \ (\epsilon = 100 \text{ eV}) \ (10^{-20} \text{ m}^2) \ \text{Ref. } 158^{\text{b}}$ | $\sigma_{i,partial}$ (ε =100 eV) (10 ⁻²⁰ m ²) Ref. 159 | |------------------------------|--|---|--| | SF ₅ ⁺ | 3.38 | 3.42 | 3.52 | | SF_4^+ | 0.30 | 0.39 | 0.395 | | SF_3^+ | 0.99 | 1.09 | 0.93 | | SF_2^+ | 0.26 | 0.27 | 0.22 | | SF^{+} | 0.42 | 0.46 | 0.265 | | S^+ | 0.32 | 0.31 | 0.21 | | F^+ | 0.34 | 0.27 | 0.19 | | SF_4^{++} | 0.13 | 0.18 | 0.255 | | SF_3^{++} | _ | _ | 0.03 | | SF_2^{++} | 0.09 | 0.12 | 0.095 | ^aTaken off the figures given in Ref. 157. tions at various electron energies is plotted
in Fig. 14. Rao and Srivastava¹⁵⁹ reported only one value (6.11 $\times 10^{-20} \,\mathrm{m}^2$) of the total ionization cross section at 100 eV (the sum of the partial ionization cross sections they measured at this energy, see Table 16). The stated uncertainty in their measurements is $\pm 10\%$, and their value of $\sigma_{i,t}(\varepsilon)$ is also plotted in Fig. 14. No SF_6^+ was detected by Dibeler and Mohler,⁷⁴ Rao and Srivastava,¹⁵⁹ Al-Nasir *et al.*,¹⁶⁰ or Pullen and Stockdale.¹⁶¹ It is believed that the SF_6^+ ion is unstable both in its ground state and in its excited electronic states in the symmetrical configuration. Nevertheless, some authors have reported weak SF_6^+ signals. For example, Stanski and Adamczyk¹⁵⁷ indicated that at 100 eV the cross section for SF_6^+ is about 5×10^{-23} m², and Shibata *et al.*¹⁶² reported observation of SF_6^+ in frozen-gas-target experiments where a high-energy positive-ion beam collided with SF_6 frozen on a thin Al foil held at ~ 15 K. There have been a number of calculations 163-167 of the $\sigma_{i,t}(\varepsilon)$ of SF₆. Hwang et al. 164 and Kim and Rudd 167 calculated the total electron-impact ionization cross section using the binary-encounter-Bethe (BEB) theory, the former without and the latter with contributions from multiple ionization. Margreiter et al. 163 and Tarnovsky et al. 165,166 calculated the total single ionization cross section using the additivity rule. The results of these calculations are compared with the experimental data in Fig. 14. (See also Deutsch et al. 168 for a calculation of electron-impact ionization cross sections "utilizing empirically modified collision theories.") Surprisingly, the calculated $\sigma_{i,t}(\varepsilon)$ by Kim and collaborators for this molecule are higher than the experimental measurements, although the results of similar calculations for other molecules [see, e.g., CF₄ (Refs. 19 and 25), C₂F₆ (Refs. 22 and 25), and C_3F_8 (Ref. 23)] are in good agreement with experiment. The experimental data shown in Fig. 14 are in reasonable agreement with each other except in some cases at low electron energies (e.g., the lowest values of Stanski and Adamczyk¹⁵⁷). Overall, the data of Rapp and ^bData for case A-type analysis in Ref. 158. Fig. 14. Total electron-impact ionization cross section, $\sigma_{i,t}(\varepsilon)$, for SF₆ as a function of electron energy: (---) Ref. 82; (\bullet) Ref. 156; (\bigcirc) Ref. 157; (--) Ref. 158; (\blacksquare) Ref. 159; (\cdots) Ref. 163; (---) Ref. 164; (---) Ref. 166; $(-\cdots)$ Ref. 167; (--) Ref. 167; (--) Ref. 168; (--) Ref. 169; Englander-Golden¹⁵⁶ are considered to be the most reliable, and they form the basis for our recommended data. The solid line in Fig. 14 is a fit to the data of Rapp and Englander-Golden¹⁵⁶ up to 300 eV, and to the data of Stanski and Adamczyk¹⁵⁷ for energies above 300 eV. Values derived from this fit are listed in Table 17 as our recommended values of the $\sigma_{ij}(\varepsilon)$ of the SF₆ molecule. The high ionization thresholds and the repulsiveness of the dissociating excited electronic states of SF_6 account for the large values of W (the energy required by energetic charged particles to produce an electron-positive ion pair in SF_6). Hilal and Christophorou¹⁶⁹ measured the mean energy required to produce an electron-positive ion pair in SF_6 by α particles (initial energy ~ 5.1 MeV) and found it to be 35.45 eV per ion pair. This value is larger than that [(34.0 ± 0.4) eV per ion pair] measured by Lopes *et al.*¹⁷⁰ using 60 Co γ rays. The lower value for γ rays is consistent with other measurements (see Christophorou¹⁷¹) which show that for molecular gases, the energy to produce an electron-positive ion pair for α particles exceeds that for γ rays and β particles. ### 4.2. Partial Ionization Cross Sections, $\sigma_{i,partial}(\varepsilon)$ It was indicated in the preceding section that all electronimpact ionization processes in SF₆ are dissociative and that a number of investigators $^{157-159}$ have measured the cross sections for the production of the various positive-ion fragments following electron impact on SF₆. Thus, Stanski and Adamczyk 157 measured electron-impact dissociative ioniza- Table 17. Recommended values for the total ionization cross section, $\sigma_{i,t}(\epsilon)$, of SF₆ (derived from a fit to the data of Rapp and Englander-Golden in Ref. 156 and the data of Stanski and Adamczyk above 300 eV in Ref. 157) | Electron energy (eV) | $\begin{array}{c} \sigma_{i,t}(\epsilon) \\ (10^{-20}\mathrm{m}^2) \end{array}$ | Electron energy (eV) | $\sigma_{i,t}(\varepsilon) $ $(10^{-20} \mathrm{m}^2)$ | |----------------------|---|----------------------|--| | 16.5 | 0.020 | 75 | 5.77 | | 17.0 | 0.035 | 80 | 5.95 | | 17.5 | 0.055 | 90 | 6.28 | | 18.0 | 0.084 | 100 | 6.53 | | 19.0 | 0.155 | 125 | 6.87 | | 20 | 0.240 | 150 | 6.97 | | 22 | 0.457 | 200 | 6.83 | | 25 | 1.04 | 250 | 6.48 | | 30 | 1.93 | 300 | 6.04 | | 35 | 2.87 | 350 | 5.60 | | 40 | 3.47 | 400 | 5.16 | | 45 | 3.79 | 450 | 4.75 | | 50 | 4.35 | 500 | 4.36 | | 60 | 5.09 | 550 | 4.00 | | 70 | 5.65 | 600 | 3.65 | FIG. 15. Partial ionization cross sections, $\sigma_{i,partial}(\varepsilon)$, as a function of electron energy for SF₆: (•) data of Stanski and Adamczyk from Ref. 157; (—) data of Margreiter *et al.* from Ref. 158 [these data are normalized to the "case A" values at 100 eV (third Column, Table 16)]; (•) data of Rao and Srivastava from Ref. 159. tion cross sections, $\sigma_{i,partial}(\varepsilon)$, for SF_6 as a function of electron energy up to 600 eV. They reported $\sigma_{i,partial}(\varepsilon)$ for the production of the positive-ion fragments SF_5^+ , SF_4^+ , SF_3^+ , SF_2^+ , SF_5^+ $SF_$ Similarly, Margreiter $et~al.^{158}$ investigated electron-impact dissociative ionization of SF_6 and determined (see previous section for details) the $\sigma_{i,partial}(\varepsilon)$ for the same positive ion fragments as Stanski and Adamczyk. The $\sigma_{i,partial}(\varepsilon)$ data for their preferred method (case A in their paper) are also plotted in Fig. 15. There is general overall agreement between the data of Stanski and Adamczyk and Margreiter $et~al.^{158}$ although for some fragments the two sets of measurements differ considerably. The difference may be due to the detection efficiency of energetic fragments, a problem which was addressed specifically in the experiment of Margreiter $et~al.^{158}$ The data of Rao and Srivastava¹⁵⁹ are for only a single incident electron energy (100 eV) and were obtained by normalization to the electron-impact ionization cross sections of the rare gases. They have a quoted uncertainty of $\pm\,10\%$. The data of these three groups of investigators are compared in Table 16 for the common electron energy of 100 eV. The agreement between the three sets of data varies from fragment to fragment. For some positive ion fragments (such as the energetic fragments F^+ and $SF^+)$ the agreement between the three sets of measurements is poor and thus further measurements are indicated. Finally, Al-Nasir *et al.*¹⁶⁰ employed an ejected-electron/produced-ion coincidence technique and measured relative partial doubly differential cross sections $d^2\sigma^{(n)}/dE \,d\Omega$ (partial doubly differential cross section for the production of ions in the charge state n) for the ions SF_5^+ , SF_4^+ , SF_3^+ , SF_2^+ , (SF^+, SF_4^+) , S^+ , SF_5^{++} , SF_3^{++} , and SF_2^{++} resulting from electron-impact dissociative ionization of the SF_6 molecule. They made such measurements at incident electron energies of 100 and 200 eV, ejected electron energies of 30, 50, 65, 100, and 150 eV, and ejected-electron angles ranging from 10° to 120° . Their results confirm previous observations 59,111 that the probability of production of ions of the form SF_x^+ Fig. 16. Electron-impact ionization of SF₆ radicals: (a) Cross section for the formation of SF₅⁺ and SF₄⁺ by electron-impact on the free radical SF₅. Measurements of Tarnovsky et al. from Ref. 166: (\bigcirc) SF₅⁺; (\bullet) SF₄⁺; (+) sum of the measured cross sections for SF₅⁺ and SF₄⁺ generated by electronimpact on SF₅. Calculations of total electron-impact single ionization cross section of the radical SF₅: (—) data of Tarnovsky et al. from Ref. 166; (---) data of Ali et al. from Ref. 172 (without double ionization); $(-\cdot-)$ data of Ali et al. from Ref. 172 (with double ionization). (b) Cross section for the formation of SF_3^+ by electron-impact on the free radical SF_3 : (\bullet) measurements of Tarnovsky et al. from Ref. 166; (--) calculation of Tarnovsky et al. from Ref. 166; (---) calculation of Ali et al. from Ref. 172 (without double ionization); $(-\cdot-)$ calculation of Ali et al. from Ref. 172 (with double ionization). (c) Calculated electron-impact total single ionization cross sections as a function of the electron energy for the radicals SF₅, SF₄, SF₃, SF₂, and SF: (---) calculations of Tarnovsky et al. from Ref. 166; (—) calculations of Ali *et al.* from Ref. 172 (without double ionization). with x odd is higher than that for similar ions with x even, and that the probability of production of ions of the form SF_x^{++} with x is even higher than that of similar ions with x odd All three experimental studies clearly show that SF_5^+ is by far the most abundant positive ion fragment and that the cross sections of doubly charged positive ion fragments are generally small (Fig. 15). Besides the doubly charged species SF_4^{++} , SF_3^{++} , and SF_2^{++} , Al-Nasir *et al.*¹⁶⁰ found a measurable signal due to SF_5^{++} , and Harland and Thynne¹¹¹ detected S^{++} from
SF_6 under impact by 70 eV electrons. # 4.3. Electron-Impact Ionization of SF₆ Neutral Fragments Absolute cross sections for electron-impact ionization and dissociative ionization of the SF₅ and SF₃ free radicals have recently been measured by Tarnovsky *et al.*¹⁶⁶ from thresh- TABLE 18. Threshold energies for appearance of positive ions from SF₆ radicals | Ion | Radical | Threshold energy (eV) | Reference | |------------------------------|-----------------|---|-----------| | SF ₅ ⁺ | SF ₅ | 11.2±1.0 | 166 | | | | 11.7 ^a | 173 | | | | 10.5 ± 0.1^{b} | 174 | | SF_4^+ | SF_5 | 14.5 ± 1.0 | 166 | | | SF_5 | 15.5 ^a | 173 | | | SF_4 | 13.0 ^a | 173 | | | SF_4 | 12.03 ± 0.05^{b} | 174 | | SF_3^+ | SF ₅ | 17.0 ^{a,c} , 16.2 ^{a,d} | 173 | | | SF_4 | 14.5 ^a | 173 | | | SF_3 | $10.6^{a}, 11.4^{e}$ | 173 | | | SF_3 | 11.0 ± 1.0 | 166 | | SF_2^+ | SF ₅ | 21.8 ^{a,f} , 21.0 ^{a,g} | 173 | | | SF_4 | 19.3 ^{a,c} , 18.5 ^{a,d} | 173 | | | SF_3 | 15.4 ^a | 173 | | | SF_2 | 12.8 ^a , 11.8 ^e | 173 | | | SF_2 | 10.08 ^b | 174 | | SF^+ | SF_5 | $27.8^{a,h},\ 27.0^{a,i},\ 26.2^{a,j}$ | 173 | | | SF_4 | 25.3 ^{a,f} , 24.5 ^{a,g} | 173 | | | SF_3 | 21.4 ^{a,c} , 20.6 ^{a,d} | 173 | | | SF_2 | 18.8 ^a | 173 | | | SF | 14.7 ^a , 15.0 ^e | 173 | | | SF | 10.09 ^b | 174 | ^aEstimated. ^jEstimated using reactions producing two F. old to 200 eV using the fast-neutral-beam technique. It was found that dissociative ionization is important for SF₅, but not for SF₃. For the SF₅ radical the cross sections for formation of the parent SF₅⁺ positive ion and the fragment SF₄⁺ positive ion were found to be about the same, while electronimpact ionization of the SF₃ radical predominantly generates SF₃⁺ parent ions. The reported uncertainties of these cross section measurements are $\pm 15\%$ for the parent ionization cross sections and $\pm 18\%$ for the dissociative ionization cross sections. Figure 16(a) shows the cross sections for the formation of the SF₅⁺ parent ion and the SF₄⁺ fragment ion from the SF₅ free radical. The two cross section curves are similar except for the shift in the appearance energy of the SF₄⁺ cross section to higher energy. The sum of the two cross sections is also plotted in the figure and represents the total single ionization cross section for this radical, since Tarnovsky et al. put an upper limit on the contribution from all other singly charged positive ions of 0.25×10^{-16} cm² at 70 The cross section for the formation of the SF_3^+ parent positive ion from the SF_3 free radical is shown in Fig. 16(b). Based on the very weak signals Tarnovsky *et al.* observed for ions other than SF_3^+ from SF_3 , they put an upper limit on ^bListed value of the ionization threshold energy. ^cEstimated using reactions producing two F. ^dEstimated using reactions producing F₂. eMeasured. ^fEstimated using reactions producing three F. ^gEstimated using reactions producing F₂+F. ^hEstimated using reactions producing four F. ⁱEstimated using reactions producing F₂+2F. Fig. 17. Density-reduced electron-impact ionization coefficient, α/N (E/N), for SF₆ as a function of E/N (T=293-296 K): (\blacksquare) Ref. 175; (\blacksquare) Ref. 177; (\blacksquare) Ref. 178; (\blacksquare) Ref. 179; (\blacksquare) Ref. 184; (\bigcirc) Ref. 180; (\triangle) Ref. 180; (\triangle) Ref. 181; (\bigcirc) Refs. 185 and 186; (\bigcirc) Ref. 187; (+) Ref. 188; (*) Ref. 182; (×) Ref. 183; (—) recommended values. the possible contributions from all other singly charged ions of 0.2×10^{-16} cm² at 70 eV. Besides the measurements in Figs. 16(a) and 16(b), there have been two calculations of the ionization cross sections of these two radicals by electron impact. The modified additivity rule calculation of the total electron-impact single ionization cross section of Tarnovsky *et al.*, ^{165,166} and the BEB calculation of the total electron-impact ionization cross section with and without double ionization of Ali *et al.* ¹⁷² In comparing the results of the two BEB calculations with the experimental measurements one should consider the calculated values without double ionization. The overall agreement between the experimental and calculated values is reasonable although, because the BEB cross sections are higher than the experimental data for most of the electron energy range, further scrutiny of both theory and experiment is indicated. Besides the total electron-impact single ionization cross sections for SF₅ and SF₃, Tarnovsky *et al.*^{165,166} and Ali *et al.*¹⁷² made similar calculations for the radicals SF₄, SF₂, and SF. The calculated total electron-impact single ionization cross sections for all five radicals SF₅, SF₄, SF₃, SF₂, and SF are presented in Fig. 16(c). In all cases the BEB cross sections lie generally higher than the modified additivity rule results. Table 18 lists values of the threshold energies for the appearance of positive ions from SF_6 radicals. ### 4.4. Density-Reduced Electron-Impact Ionization Coefficient, $\alpha/N(E/N)$ There have been a number of measurements of this coefficient using the steady-state Townsend method, $^{26,175-183}$ and the pulsed-Townsend method. These measurements were made at room temperature (293–296 K) and collectively cover the E/N range from 212×10^{-17} to 8482 $\times10^{-17}$ V cm². Not all of these studies quote uncertainties for the data. Bhalla and Craggs¹⁷⁷ and de Urquijo *et al.* 188 quote uncertainties ranging from about $\pm5\%$ to about $\pm15\%$, while Hayashi¹⁸² estimates the uncertainty in his measurements to be about $\pm5\%$. These may be considered typical of the uncertainties in the data of the other groups. Figure 17 shows the available data on $\alpha/N(E/N)$ for SF₆. The solid line represents a least squares fit to all the data plotted in the figure up to $2000 \times 10^{-17} \,\mathrm{V \, cm^2}$, except those of Maller and Naidu¹⁸⁰ which clearly differ from the rest in TABLE 19. Recommended values of the density-reduced electron-impact ionization coefficient, α/N (E/N), for SF₆ | $\frac{E/N}{(10^{-17} \mathrm{V cm^2})}$ | $\alpha/N (E/N)$
(10 ⁻¹⁸ cm ²) | E/N (10 ⁻¹⁷ V cm ²) | $\frac{\alpha/N (E/N)}{(10^{-18} \mathrm{cm}^2)}$ | |--|--|--|---| | 215 | 4.66 | 700 | 102.9 | | 250 | 8.90 | 750 | 112.4 | | 300 | 18.5 | 800 | 121.5 | | 350 | 29.5 | 850 | 130.1 | | 400 | 40.1 | 900 | 138.9 | | 450 | 52.3 | 950 | 148.6 | | 500 | 62.7 | 1000 | 158.2 | | 550 | 73.2 | 1250 | 208.5 | | 600 | 83.7 | 1500 | 259.8 | | 650 | 93.3 | 2000 | 366.3 | their functional dependence on E/N. Values derived from this curve are listed in Table 19 as our recommended data for the $\alpha/N(E/N)$ of SF₆. Above $2000\times10^{-17}\,\mathrm{V\,cm^2}$ the data taken using the pulsed Townsend method^{184,187} lie higher than those taken using the steady state Townsend technique.¹⁸² The steady state data of Hayashi and Wang¹⁸² for α/N above $2000\times10^{-17}\,\mathrm{V\,cm^2}$ agree well with the high E/N values of $(\alpha-\eta)/N$ of Hasegawa *et al.*¹⁸⁹ (also obtained using the steady state Townsend method, see Sec. 6.6). However, it is possible that the values obtained by the steady state method at high E/N may be adversely affected by the low pressures and/or small drift distances used in such high E/N measurements. Besides the above measurements, there have been a number of Monte Carlo³¹ and Boltzmann^{11,26–28,30,32–34,38,40,43,44} code calculations of $\alpha/N(E/N)$ for SF₆. The results of these calculations depend on the details of the calculation, especially the cross sections used and the associated energy losses (for such data and details see the individual papers). # 5. Cross Sections for Electron-Impact Dissociation of SF_6 Into Neutral Fragments, $\sigma_{\rm dis.neut}(\varepsilon)$ Relatively little work has been done on the process of electron-impact dissociation of the SF₆ molecule into neutral fragments in spite of the practical significance of this process in plasma processing and gaseous dielectrics. There have been no absolute measurements of the cross sections for total or partial dissociation of SF₆ into neutral fragments. To our knowledge the only study to date is that of Ito et al. 173 who used appearance mass spectrometry in a dual electron beam device and measured the energy dependence of the partial cross sections of electron-impact dissociation of SF₆ into the neutral radicals SF, SF₂, and SF₃ from threshold to 200 eV. The dissociation products SF₄ and SF₅ were below the detection limit of their system. The relative cross sections for electron-impact dissociation of SF₆ into SF, SF₂, and SF₃ reported by Ito et al. are shown in Fig. 18(a). The quoted relative uncertainty of these data is $\pm 20\%$. Ito et al. 173 were unable to determine the absolute cross section scale in Fig. Fig. 18. (a) Relative cross sections, $\sigma_{\text{dis,neut}}(\varepsilon)$, for electron-impact dissociation of SF₆ into (\blacksquare) SF₃, (\blacktriangle) SF₂, and (\bullet) SF neutral radicals from the measurements of Ito *et al.* in Ref. 173. The line (—) represents the relative sum of the cross sections for the three radicals. (b) Deduced cross section for total dissociation into neutrals, $\sigma_{\text{dis,neut,t}}(\varepsilon)$, for SF₆ from other recommended cross sections (see text). 18(a) because of a lack of ionization cross sections for the SF_x radicals required to normalize their relative measurements. However, such measurements have since become available (Fig. 16) and could be used to determine absolute cross sections from the relative measurements of Ito *et al.*,
assuming that the other experimental variables involved are accurately known. It should be noted that the relative cross sections for the three radicals in Fig. 18 are absolute with respect to each other, and that in Table 4 of the paper by Ito *et al.*¹⁷³ the cross sections for the three fragments are listed as being in units of 10^{-20} m². As for the case of the CF_4 molecule, ^{19,25} these cross sections are expected to be much smaller than the cross sections $\sigma_{i,t}(\varepsilon)$ and $\sigma_{e,int}(\varepsilon)$ of SF_6 , at electron energies above ~ 50 eV. As we have discussed in Sec. 3.5.1, at energies above $\sim 15\,\mathrm{eV}$ where the cross section $\sigma_{\mathrm{vib,t}}(\varepsilon)$ is small, the difference $\sigma_{\mathrm{sc,t}}(\varepsilon) - \sigma_{\mathrm{e,int}}(\varepsilon)$ can be used to deduce a value for the total cross section, $\sigma_{\mathrm{dis,neut,t}}(\varepsilon)$, for the dissociation of SF₆ into neutral fragments via the relation $$\sigma_{\text{dis,neut,t}}(\varepsilon) \cong [\sigma_{\text{sc,t}}(\varepsilon) - \sigma_{\text{e,int}}(\varepsilon)] - \sigma_{\text{i,t}}(\varepsilon).$$ (3) In Eq. (3) the quantity $[\sigma_{\text{sc,t}}(\epsilon) - \sigma_{\text{e,int}}(\epsilon)]$ is as determined in Sec. 3.5.1 (open symbols in Fig. 12 above 15 eV), and $\sigma_{\text{i,t}}(\epsilon)$ is our recommended cross section for the total ionization cross section (Table 17). These two quantities, along with their difference, $\sigma_{\text{dis,neut,t}}(\epsilon)$, are shown in Fig. 18(b). The cross section $\sigma_{\text{dis,neut,t}}(\epsilon)$ deduced this way is seen to have a different energy dependence than the sum of the relative cross sections for dissociation of SF₆ into the neutral Table 20. Deduced values of the total cross section, $\sigma_{dis,neut,t}(\epsilon)$, for electron-impact dissociation of SF₆ into neutral fragments | Electron energy (eV) | $\sigma_{\rm dis,neut,t}(\varepsilon)$
$(10^{-20}{\rm m}^2)$ | Electron energy (eV) | $\sigma_{\mathrm{dis,neut,t}}(\varepsilon)$
$(10^{-20}\mathrm{m}^2)$ | |----------------------|---|----------------------|---| | 15 | 0.8 | 45 | 2.7 | | 16 | 1.2 | 50 | 2.8 | | 17 | 1.6 | 60 | 2.4 | | 18 | 1.8 | 70 | 2.1 | | 19 | 2.2 | 75 | 1.7 | | 20 | 2.7 | 80 | 1.5 | | 22 | 3.5 | 90 | 1.1 | | 25 | 3.7 | 100 | 0.87 | | 30 | 3.1 | 125 | 0.53 | | 35 | 2.4 | 150 | 0.23 | | 40 | 2.3 | 200 | 0.07 | fragments SF_3 , SF_2 , and SF reported by Ito $et\ al.^{173}$ [Fig. 18(a)]. This discrepancy is consistent with previous observations²⁵ of possible inaccuracies in magnitude and energy dependence in the cross sections for dissociation into neutrals measured by Sugai and co-workers for CF_4 and CHF_3 . Ito $et\ al.$ obtained the relative cross sections in Fig. 18(a) under the assumption that the total ionization cross section for each of the SF_6 radicals is similar in shape to that of SF_6 . In the absence of any absolute data on the $\sigma_{\text{dis,neut,t}}(\varepsilon)$ of SF₆, we list in Table 20 the values of $\sigma_{\text{dis,neut,t}}(\varepsilon)$ deduced as described above as our presently suggested data. It should be realized that these data are approximate and require experimental confirmation. Table 21 lists the expected or measured threshold energies for dissociation of SF_6 into SF_5 , SF_4 , SF_3 , SF_2 , SF, F_2 , and F as given by Ito *et al.* ¹⁷³ There have been a few other studies 154,155,191,192 dealing with electron-impact dissociation of SF_6 into excited neutral fragments. These provide complementary information on the dissociation mechanisms of this molecule. Thus, Corr TABLE 21. Expected or measured threshold energies given by Ito et al. in Ref. 173 for electron-impact dissociation of SF₆ into neutrals | Reaction | Expected threshold energy (eV) | Measured ^a threshold
energy (eV) | |--|--------------------------------|--| | $SF_6 + e \rightarrow SF_5 + F + e$ | 9.6 | _ | | $SF_6 + e \rightarrow SF_4 + 2F + e$
$SF_6 + e \rightarrow SF_4 + F_2 + e$ | 12.1
11.3 | | | $SF_6+e \rightarrow SF_3+3F+e$
$SF_6+e \rightarrow SF_3+F+F_2+e$ | 16.0
15.2 | 16.0 ^b | | $SF_6 + e \rightarrow SF_2 + 4F + e$
$SF_6 + e \rightarrow SF_2 + 2F + F_2 + e$
$SF_6 + e \rightarrow SF_2 + 2F_2 + e$ | 18.6
17.8
17.0 | 19.5 ^b | | $SF_6+e \rightarrow SF+5F+e$
$SF_6+e \rightarrow SF+3F+F_2+e$
$SF_6+e \rightarrow SF+F+2F_2+e$ | 22.7
21.9
21.1 | 22.0 ^b | ^aEstimated uncertainty: ±0.5 eV. Table 22. Threshold energies of excited neutral fragments upon electron impact on SF_6 | Fragment | Threshold energy (eV) | Reference | Species detected | |---------------|-----------------------|-----------|----------------------| | F_2^R | 18.7 ± 1.0 | 191 | Rydbergs | | _ | 17.9 ± 1.0 | 191 | Photons/total | | | 18.0 ± 1.0 | 161 | F_2^+ | | Metastable | 27 | 191 | Low-energy fragments | | fragments | 30.0 ± 1.0 | 191 | Neutrals/total | | | 26.8 ± 0.3 | 74 | SF_2^+ | | | 27.0 ± 0.3 | 161 | SF_2^+ | | F^R | 36.0 ± 1.0 | 191 | Rydbergs | | | 35.0 ± 1.0 | 191 | Photons/total | | | 35.8 ± 1.0 | 191 | Neutrals/total | | | 35.8 ± 1.0 | 74 | F^+ | | | 37.5 ± 1.0 | 161 | F^+ | | | 35.8 ± 1.5 | 154 | F* | | F^R , S^R | 44.3 ± 1.0 | 191 | Rydbergs | | | 44.5 ± 1.0 | 191 | Photons/total | | | 44.9 ± 1.0 | 191 | Neutrals/total | | | 42.0 ± 1.5 | 154 | F* | | | 41.6 ± 1.5 | 155 | F* | | | 40 ± 2 | 192 | F* | | | 43.6 ± 1.5 | 154 | S* | et al. 191 studied the dissociation of the SF₆ molecule into neutral metastable fragments as a function of the incident electron energy from threshold to 300 eV. They identified a number of dissociation channels involving both partial and total fragmentation of the SF₆ molecule by electron impact. In Table 22 are listed the threshold energies they determined for the production of the various excited fragments. The work of Corr et al. 191 shows that dissociation leading to total fragmentation of SF₆ is responsible for the formation of the S fragments and also the dominant process for the formation of F atoms. The finding that the F atoms are predominantly produced by complete dissociation of the SF₆ molecule is also consistent with the results of three other studies by Becker and collaborators 154,155,192 on the optical emission from excited atomic fragments generated by electron-impact dissociation of SF₆. Thus, Blanks et al., 155 using a crossed electron beam-gas beam apparatus, measured absolute emission cross sections and appearance potentials for the most intense $3p \rightarrow 3s$ atomic fluorine lines in the visible range of the optical spectrum between 620 and 780 nm. According to Blanks et al. these lines are emitted by atomic fluorine fragments that are formed in the various excited states associated with the $1s^2 2s^2 2p^4 3p$ electron configuration. Figure 19 shows the absolute emission cross section, $\sigma_{\rm em}(\varepsilon)$, of the integrated FI $3p^4D^0 \rightarrow 3s^4P$ multiplet as a function of the incident electron energy, and Table 23 lists the absolute emission cross sections, $\sigma_{\rm em}$ (100 eV), measured for various visible FI emission lines for an incident-electron energy of 100 eV. The threshold energies for excited neutral fragments produced by electron impact on SF₆ as obtained by these workers are also listed in Table 22. Blanks *et al.* ¹⁵⁵ determined a ^bThe experimental value is affected by contributions from all respective processes given in the first column of the table. Fig. 19. Emission cross section for the integrated FI $3p^4D^0 \rightarrow 3s^4P$ multiplet as a function of the energy of the incident electrons impacting on SF₆ (data of Blanks *et al.* from Ref. 155). value of $41.6 \pm 1.5 \,\text{eV}$ for the threshold energy of the strongest line emission at 685.6 nm. This relatively high onset indicates that total fragmentation of the molecule plays a leading role in the electron-impact-induced dissociation of SF_6 . Becker and collaborators 154,192 also investigated light emission resulting from electron impact on SF₆ in other (shorter) wavelength regions. Blanks and Becker¹⁹² investigated the wavelength range from 200 to 600 nm, and Forand et al. 154 studied the wavelength range from 45–185 nm using 200 eV incident electrons. Blanks and Becker¹⁹² found that the $^{2,4}D \rightarrow ^4P$ multiplet at 366.8 nm has the largest emission cross section with a cross section of $(4.4\pm1.2)\times10^{-20}$ cm² at 100 eV. Figure 20 shows the emissions produced by 200 eV electrons on SF₆. The spectrum consists of a broad structure from 200 to 320 nm and several line emissions. The strongest line emissions originate from excited fluorine fragments in the ${}^{2,4}S^0$, ${}^{2,4}P^0$, and ${}^{2,4}D^0$ states associated with the $2p^44p$ electron configuration. These states lie approximately 16 eV above the ground state atom and decay into the $2p^43s^{2,4}P$ states emitting several multiplets in the wavelength region between 350 and 400 nm. The threshold energy of the strongest line was found by Blanks and Becker to be (40 ± 2) eV (Table 22). Interestingly, no emission from ionic fluorine was observed by Becker and collaborators. A later study by Field and Eland¹⁹³ using wavelengths of 58.4, 30.4, and 25.6 nm to excite SF₆ is consistent with the electron-impact result in that no detectable ionic emission from either parent or fragment ions was observed. However, according to Forand et al., 154 at shorter wavelengths (45– 185 nm), the observed lines following electron impact of 200 eV electrons on SF₆ could be
identified with singly ionized S atoms, besides neutral S and F atomic transitions. From the work of Becker and collaborators, 154,192 it can be concluded that electron impact on SF_6 results in the formation of neutral and ionized excited atomic fragments with significant probabilities, and that light observed following electron impact on SF_6 is due to de-excitation of these ex- Table 23. Absolute emission cross sections, $\sigma_{\rm em}$ (100 eV), for various visible FI emission lines for 100 eV incident electrons impacting on SF₆ (data of Blanks *et al.* from Ref. 155) | Transition | Line
(nm) | $\sigma_{\rm em} (100 \text{ eV})^{\rm a} (10^{-19} \text{ cm}^2)$ | |---------------------------|--------------|--| | $^4S^0 \rightarrow {}^4P$ | 624.0 | 0.6 | | | 634.9 | 0.4 | | | 641.3 | 0.3 | | $^4D^0 \rightarrow {}^4P$ | 677.4 | 0.4 | | <i>D</i> , 1 | 679.5 | < 0.1 | | | 683.4 | 0.6 | | | 685.6 | 2.5 | | | 687.0 | 0.4 | | | 690.2 | 1.4 | | | 691.0 | 0.4 | | $^2P^0 \rightarrow ^2P$ | 703.7 | 0.6 | | | 712.8 | 0.3 | | | 720.2 | 0.2 | | $^2S^0 \rightarrow {}^2P$ | 731.1 | 1.4 | | $^4P^0{ ightarrow}\ ^4P$ | 733.2 | | | | 739.9 | 2.1 | | | 746.5 | 0.3 | | | 755.2 | | | | 757.3 | 1.1 | | $^2D^0 \rightarrow {}^2P$ | 760.7 | | | | 775.5 | 2.0 | | | 788.0 | 1.1 | ^aThe uncertainty is $\pm 20\%$ for $\sigma_{\rm em}$ (100 eV) values larger than $10^{-19}\,{\rm cm^2}$, $\pm 25\%$ for $\sigma_{\rm em}$ (100 eV) values smaller than $10^{-19}\,{\rm cm^2}$, and about $\pm 40\%$ for the $\sigma_{\rm em}$ (100 eV) of emissions at wavelengths longer than 750.0 nm. cited fragments. These results would indicate that the weak light emission observed by some investigators from the motion of electron swarms in SF_6 at high E/N or from SF_6 discharges may be due to such excited fragments, although another possible source of these weak emissions may be impurities. It has, for instance, been shown that small amounts of N_2 in SF_6 greatly enhance light emission as the nitrogen Fig. 20. Emission spectrum of SF_6 between about 200 and 600 nm generated by collisions with 200 eV incident electrons (data uncorrected for the wavelength dependence of the detector efficiency) from Blanks and Becker in Ref. 192. Fig. 21. Calculated electron-impact dissociation rate, $k_{\rm dis}$ (E/N), as a function of E/N for (\blacksquare) total dissociation, (\blacksquare) total electronic excitation, and (\blacksquare) total dissociative ionization (results of Phelps and Van Brunt from Ref. 40). The open points (\bigcirc), (\triangle) are calculated results by Masek *et al.* in Ref. 195 at $E/N = 100 \times 10^{-17} \, {\rm V \ cm^2}$. The dashed lines are extrapolations by Phelps and Van Brunt of their calculations to lower E/N. molecule has a large excitation coefficient for the second positive group radiation ($C^3\Pi_u \rightarrow B^3\Pi_g$) and quenching of the C states of N_2 by SF_6 is not very strong.¹⁹⁴ Finally, in the absence of any measurements of the electron-impact dissociation rate for SF_6 , we show in Fig. 21 the results⁴⁰ of a Boltzmann calculation of the electron-impact induced dissociation rate, $k_{\rm dis}(E/N)$, of SF_6 (also see Ref. 196). It should be realized that these data are model-specific. ### 6. Electron Attachment to SF₆ ### 6.1. Cross Sections for the Formation of Negative lons It has long been established that SF_6 is an electronegative gas. Electron attachment to SF_6 leads to the formation of both parent (SF_6^-) and fragment $(SF_5^-, SF_4^-, SF_3^-, SF_2^-, F_2^-, and F^-)$ negative ions. The experimental data on the cross sections for the formation of each of these negative ions are presented and discussed in this section. The measured cross sections for the various negative ions formed by electron impact on SF_6 show that the parent negative ion SF_6^- is formed only at extremely low electron energies (below $\sim 0.2 \, \text{eV}$), and that the fragment negative ions are formed via a number of negative ion states located between 0 and $\sim 15 \, \text{eV}$. ### 6.1.1. SF₆ The stable parent negative ion SF_6^- produced at zero and near-zero electron energy is initially formed as a metastable SF_6^{-*} ion which subsequent to its formation is stabilized by collision or radiation. Its autodetachment lifetime, τ_a , under collision-free conditions has been found to be between 10 and 68 $\mu s^{197-202}$ using time-of-flight (TOF) mass spectro- metric measurements. Similar measurements using ion cyclotron resonance (ICR) techniques found the lifetime of ${\rm SF}_6^{-*}$ to be much longer, in the ms range. $^{203-205}$ This is not surprising, since a number of studies 201,202,206 have shown that the autodetachment lifetime of many polyatomic longlived transient negative ions depends on the experimental conditions (kinetic energy of the captured electron, internal energy of the electron capturing molecule, and hence the gas temperature), and the electron energies in ICR experiments are normally much lower than in TOF experiments. While no effect of the attaching electron's energy on the τ_a of SF₆^{-*} has been reported, such energy dependence has been found for other transient anions. ^{201,207–211} Furthermore, Delmore and Appelhans ²¹² observed an increase of \sim 33% in the $\tau_{\rm a}$ of metastable SF₆^{-*} when the temperature of the ion source was decreased from \sim 475 to \sim 375 K. This was attributed to the contribution of various excited states to the autodetachment process. It has also been shown²⁰⁴ that the τ_a of SF₆^{-*} in the ICR spectrometer varies with the observation time of the experiment, thus accounting for radiative and collisional cooling of SF_6^{-*} . 204,213 Besides the formation of SF_6^- by direct attachment of lowenergy electrons, SF_6^- can also be formed indirectly by relatively higher energy electrons when these electrons lose ''all'' of their energy to inelastic electron scattering and are then attached efficiently as ''zero-energy'' electrons to SF_6 molecules. Indeed, this is the basis of the so-called '' SF_6^- threshold-electron-excitation technique'' used to locate negative-ion states and excited electronic states, especially optically forbidden states, of neutral molecules. ^{214–217} Many early studies ^{82,114,198,214,215,218–222} showed that SF_6^- is formed near 0.0 eV with a very large cross section. These studies also indicated that the shape of the measured cross section for the formation of SF_6^- was instrumental, i.e., the SF₆ resonance is narrower than the energy spread of the electron pulse or beam used to measure it. This narrowness of the SF₆⁻ resonance is largely responsible for the large uncertainty and spread in the early published values of the attachment cross section, $\sigma_{a,SF_6^-}(\epsilon)$, for formation of SF_6^- at thermal and near-thermal energies. There have been a number of subsequent (room temperature) studies using both beam^{26,139,223} electron conventional and swarm^{108,109,224–228} techniques. Additionally, newer veryhigh resolution and very-low energy electron beam techniques have been used to provide accurate values of the absolute cross section for the attachment of free electrons to SF_6 to form SF_6^- from $\sim 1 \text{ eV}$ down to the μeV range. 152,153,229-236 Besides these methods, information on $\sigma_{\rm a,SF_c^-}(\epsilon)$ has been provided in the thermal and subthermal electron energy range by another new technique using "bound-electron" capture in collisions of SF_6 with high-Rydberg atoms. $^{234,237-253}$ The results obtained by these methods are complementary to those obtained by direct "free" electron-impact methods. The cross section data for total electron attachment determined by these methods are plotted in Fig. 22 over an energy Fig. 22. Measured total electron attachment cross section, $\sigma_{a,t}(\varepsilon)$, for SF₆ as a function of the electron energy, for free electrons and for electrons bound in high-Rydberg states of atoms (see text). Below \sim 0.1 eV this cross section is about equal to $\sigma_{a,SF_6^-}(\varepsilon)$ for the production of SF₆. Conventional electron-beam data: (---) Ref. 26; (\blacksquare) Ref. 223; (--) Ref. 139. Swarm-unfolded data: (\blacktriangledown) Ref. 108; (\blacktriangle) Ref. 225; (\bigtriangleup) Ref. 226; (\cdots) Ref. 227; (\cdots) Ref. 228. TPSA technique: (\cdots) data from Ref. 232 normalized to the thermal electron attachment rate constant value of Crompton and Haddad in Ref. 254; (\cdots) data of Ref. 233 normalized to the swarm-unfolded cross section of McCorkle *et al.* in Ref. 227. LPA technique: ($-\cdot$) Refs. 152, 255, 261. High-Rydberg data: (\circlearrowleft) Xe* (nf), Ref. 240; (\diamondsuit) Rb* (ns,nd), Ref. 241; (+) Rb* (ns,nd), K*(nd), Xe*(nf), Ref. 243; (\square) K*(np), Ref. 248. (\longrightarrow) Recommended values. range of $0.0001 - \sim 0.2 \,\text{eV}$, and are briefly discussed below. Data obtained by conventional electron-swarm and electron-beam techniques—The swarm data 108,109,224-228 plotted in Fig. 22 have been unfolded from the total electron attachment rate-constant measurements made in mixtures of SF₆ with N₂ buffer gas. They are therefore total electron attachment cross sections. However, since SF₆ is the predominant negative ion in the energy region below $\sim 0.1 \text{ eV}$, these cross sections give the value of $\sigma_{a,SF_6^-}(\epsilon)$. It is difficult to assess the uncertainty of these cross section data. Although the rate constant measurements are expected to have an uncertainty around $\pm 10\%$, the cross section values have a larger uncertainty. Similarly, the electron beam data have a large uncertainty at low energies. Kline et al.26 used the retarding potential
difference method in their experiments and their energy resolution was typically between 80 and 100 meV. Their cross section below $\sim 0.1 \, \text{eV}$ is therefore instrumental. The measurements of Olthoff et al. 223 and Wan et al. 139 are for the total electron attachment cross section and were made using a trochoidal monochromator (T = 328 K). They have a quoted uncertainty of $\pm 15\%$ above 1 eV and a larger uncertainty below this energy, which perhaps increases to $\pm 50\%$ at 0.2 eV. Data obtained from very-high resolution, very-low energy electron-beam techniques—Two such techniques have been developed, one by Chutjian and collaborators^{229,230,232,233} and the other by Hotop and collaborators. ^{152,153,234–236} The two techniques are similar in principle. The technique of the former group uses vacuum uv photoionization of rare-gas atoms mixed with SF₆ to generate *in situ* photoelectrons of well defined and variable energy. It is referred to as the threshold-photoelectron-spectroscopy-by-electron- attachment (TPSA) technique and provides relative cross sections for electron energies in the range from a few meV to 150 meV with electron-energy resolution between 6 and 8 meV (full-width at half-maximum).²³² The energy dependent dence of the cross section is obtained using convolution techniques and the absolute value is determined by normalization to electron swarm data. The data of Chutiian et al. 232 were normalized to the thermal electron attachment rate constant $(2.27 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1})$ of Crompton and Haddad, ²⁵⁴ while the data of Chutjian and Alajajian²³³ were normalized to the electron swarm-unfolded cross section data of McCorkle et al. 227 The technique of Hotop and collaborators is referred to as the laser-photoelectron-attachment (LPA) method and is based on the controlled production of variable-energy photoelectrons using lasers to photoionize a well-collimated beam of metastable Ar* $(4s^3P_2)$ atoms "from a differentially pumped dc discharge source in a field-free region." The resulting negative ions are then detected by application of pulsed electric fields. 152 This technique has permitted the energy dependence of the electron attachment cross section to be measured directly with sub-meV resolution. The values measured by Hotop and collaborators for the $\sigma_{a.SF}(\varepsilon)$ in the range 0.0001-0.250 eV are shown in Fig. 22. These cross-section values were obtained by normalization to the thermal (T=300 K) rate constant measurement of Crompton et al. 254,256 It should be emphasized that the cross section of Hotop et al. in Fig. 22 is only for the formation of SF₆, while the rest of the data above 0.1 eV are total electron attachment cross sections. Data obtained from high-Rydberg atom bound-electron capture methods—A number of investigators, foremost the group at Rice University, have used beams of atoms excited in high-Rydberg states, $A^{**}(nl)$, to measure the rate constant for the reaction $$A^{**}(nl) + SF_6 \rightarrow A^+ + SF_6^-$$ (4) down to \sim 4 μ eV.²⁵³ In almost all such investigations, A**(nl) is a rare-gas or an alkali-metal atom in a Rydberg state with principal quantum number n and angular momentum quantum number l. In these studies the rate constant $k_{\rm a,be}$ for the formation of SF $_6^-$ is measured as a function of the principal quantum number n, or as a function of the effective principal quantum number n^* ($n^*=n-\delta_l$, where δ_l is the l-dependent quantum defect). An example of the $k_{\rm a,be}(n^*)$ measurements is shown in Fig. 23. From data such as in Fig. 23, the cross section for bound-electron capture, $\sigma_{\rm a,be}(v)$, is determined via the relation $$\sigma_{\text{a,be}}(v) = k_{\text{a,be}}(n^*)/v_{\text{rms}}, \qquad (5)$$ where $v_{\rm rms}$ is the root-mean-square velocity of the Rydberg electron. While a number of authors (e.g., see Refs. 251 and 253) have shown Eq. (5) to be inappropriate for Rydberg states with l small compared to n, and while postattachment electrostatic attraction between the products (A^+, SF_6^-) may have significant effects on the size of the measured cross section (e.g., see Ref. 253), a number of studies (e.g., Refs. 241, 248, 252, and 253) have shown that the cross sections for bound-electron capture are consistent with the "free" electron model *for sufficiently large values* (>30) *of the principal quantum number n*. In such cases, then, the excited electron and the core can be considered independent par- Fig. 23. Rate constant, $k_{a,bc}(n^*)$, for bound-electron capture as a function of the effective principal quantum number n^* in collisions of Rydberg atoms with SF₆ (from Ling *et al.* in Ref. 248): (\blacksquare) K*(np), Ref. 248; (\bigcirc) Rb*(nd), Ref. 241; (\blacksquare) Rb*(ns), Ref. 241; (\square) K*(nd), Ref. 243; (∇) Na*(np), Ref. 244; (\Diamond) Ne*(ns), Ref. 234; (\blacktriangle) Ne*(ns), Ref. 234. ticles, the electron in the Rydberg atom essentially being equivalent to a free electron having the same kinetic energy as the binding energy of the Rydberg electron. These studies, as well as those of Chutjian and collaborators and Hotop and collaborators (referred to earlier in this section) have shown that at very low energies ($\leq 1 \text{ meV}^{152,236}$) the attachment cross section for the formation of SF $_6^-$ varies inversely with the electron velocity in accordance with the Wigner threshold law for *s*-wave electron attachment.²⁵⁷ Reaction (4) has been studied using a number of Rydberg atoms: He* $(n = 14, ^1P)$; 250 Ne*(ns, nd); 234 Xe*(nf); 237,238,240,243 K*(nd); 242,243,245 K*(np); 248 Na*(np); 244 Rb*(ns, nd); 241,243 and Cs*(ns, np, nd). The results of these high-Rydberg-atom studies on $\sigma_{a,be}(v)$ are plotted in Fig. 22. The wide spread in the data shown in Fig. 22 and the many factors that can affect them (many of which are often not clearly discerned) makes the deduction of a recommended total attachment cross section, $\sigma_{a,t}(\varepsilon)$, for SF₆ difficult. However, since at energies below $\sim 1.5 \, \text{eV}$, SF₆ and SF₅ are the only negative ions produced by electron attachment to SF₆ with significant intensity, we determined the recommended value of $\sigma_{a,t}(\varepsilon)$ for SF₆ shown by the solid line in Fig. 22, by summing our recommended cross sections for SF₆ and SF₅ formation, which are determined separately below. The determination of the recommended cross section, $\sigma_{a,SF_6^-}(\varepsilon)$, for the formation of SF_6^- was made by considering the data in Fig. 24(a). The dot-dash line $(-\cdot-)$ represents the measurements of Hotop and collaborators 152,255 obtained using the LPA technique (much of this curve from \sim 0.003 to 0.2 eV is overlaid by the solid recommended line discussed later). The broken lines (--) and (---) are the cross sections for the production of only SF_6^- as obtained, respectively, from electron-swarm-based measurements by Hunter *et al.* 228 and from electron-beam-based measurements by Kline *et al.* 26 The symbols shown in the figure are the Fig. 24. (a) Selected measurements of the electron attachment cross section, $\sigma_{a,SF_6^-}(\epsilon)$, for the formation of SF_6^- from SF_6 as a function of the electron energy: (- - -) Ref. 26; (- - -) Ref. 228; (- · -) Refs. 152, 255, 261; (\bigcirc) Ref. 240; (\bigcirc) Ref. 241; (+) Ref. 243; (\square) Ref. 248; (\square) recommended values. (b) Selected measurements on the dissociative electron attachment cross section, $\sigma_{a,SF_5^-}(\epsilon)$, for the formation of SF_5^- from SF_6 as a function of the electron energy: (· · ·) Refs. 108, 109; (- - -) Ref. 26; (- - -) Ref. 228; (\bigcirc) Ref. 113; (\square) suggested data. Table 24. Recommended values of the electron attachment cross section, $\sigma_{a,SF_6^-}(\epsilon)$, for the formation of SF_6^- by electron impact on SF_6 in the electron energy range 0.0001–0.40 eV $\sigma_{\rm a,SF_6^-}(\epsilon) \ (10^{-20} \, {\rm m^2})$ $\sigma_{\rm a,SF_6^-}(\epsilon) \ (10^{-20} \, {\rm m^2})$ Electron energy Electron energy (eV) (eV) 0.0001 7617 0.030 221 0.0002 5283 0.035 190 0.0003 4284 0.040 171 0.0004 3692 0.045 149 3280 0.0005 0.050 132 2968 109 0.0006 0.060 0.0007 2724 0.070 92.7 0.0008 2529 0.080 82.9 0.0009 2369 0.090 74.3 0.001 2237 0.10 49.5 0.002 1511 0.12 30.8 0.003 1202 0.14 17.8 0.004 993 0.15 14.2 0.005 859 0.16 10.5 0.006 760 0.18 5.85 0.007 683 0.20 2.86 0.008 621 0.22 1.24 0.009 569 0.25 0.52 0.010 526 0.28 0.25 0.015 383 0.30 0.16 0.020 304 0.35 0.05 0.025 257 0.40 0.01 bound-electron attachment cross sections of Refs. 240, 241, 243, and 248. At the lowest energies ($< 0.005 \,\mathrm{eV}$), the cross section values of Hotop and collaborators are in excellent agreement with the bound-electron attachment measurements for n > 30. At higher energies, the cross section of Hotop and collaborators drops off abruptly at the onsets of the ν_1 , ν_3 , and $2\nu_1$ vibrational excitations (see discussions in Refs. 152 and 255), and is in overall agreement with the data of Hunter et al. and Kline et al. considering the precipitous decline in the magnitude of the cross section with increasing electron energy in this energy range. The measurements of Hotop and collaborators 152,255 from 0.0001 to 0.23 eV, the boundelectron attachment data below 0.005 eV, and the data of Hunter et al. and Kline et al. above 0.2 eV were fit to yield the solid line in Fig. 24(a). This line represents our recommended values for $\sigma_{\rm a,SF}^-(\varepsilon)$ in the energy range 0.0001–0.4 eV, and values extracted from the line are listed in Table 24. The other free-electron data for $\sigma_{a,SF_6^-}(\epsilon)$ shown in Fig. 22 were not considered for various reasons: (1) The data of Chutjian and collaborators are indirect measurements both in absolute
magnitude and energy dependence. Also, according to Chutjian²⁵⁸ part of the disagreement between the data they obtained using the TPSA technique and the data obtained using the LPA and bound-electron attachment methods are due to the effects of stray fields on the TPSA measurements. (2) The electron beam data of Olthoff *et al.*²²³ and Wan *et al.*¹³⁹ do not show the enhancement at \sim 0.4 eV due to SF₅ borne out by all other electron beam and electron swarm studies, and no means exists to differentiate between the SF₆ and SF₅ contributions. (3) From the various swarm-based TABLE 25. Suggested values for the dissociative electron attachment cross section, $\sigma_{da,SF_5^-}(\epsilon)$, for the formation of SF_5^- by electron attachment to SF_6 as a function of the electron energy | Electron energy (eV) | $\sigma_{\rm da,SF_5^-}(\epsilon) \ (10^{-20} \rm m^2)$ | Electron energy (eV) | $\sigma_{\rm da,SF_5^-}(\epsilon)$ $(10^{-20}{\rm m}^2)$ | |----------------------|--|----------------------|--| | 0.10 | 1.85 | 0.40 | 3.45 | | 0.12 | 2.09 | 0.45 | 2.75 | | 0.14 | 2.36 | 0.50 | 2.15 | | 0.15 | 2.48 | 0.60 | 1.25 | | 0.16 | 2.61 | 0.70 | 0.72 | | 0.18 | 2.87 | 0.80 | 0.42 | | 0.20 | 3.15 | 0.90 | 0.25 | | 0.22 | 3.45 | 1.0 | 0.15 | | 0.25 | 3.86 | 1.2 | 0.060 | | 0.28 | 4.15 | 1.5 | 0.020 | | 0.30 | 4.24 | 1.9 | 0.005 | | 0.35 | 4.07 | | | cross sections we considered only the more recent data of Hunter *et al.*²²⁸ since these measurements were more accurate and more extensive than the previous ones, and since more recent cross sections were employed in the determination of the electron energy distribution functions used to obtain the swarm-based cross sections from the measured rate constants. ### 6.1.2. SF₅ A number of electron-beam studies $^{26,108-111,113,115,259}$ have shown that at energies below ~ 2 eV, SF_5^- is produced via the dissociative electron attachment reaction $$e + SF_6 \rightarrow SF_5^- + F$$ (6) with maxima at ~ 0.0 and 0.38 eV. It has been shown by Chen and Chantry¹¹⁰ that the first peak at $\sim 0.0 \, \text{eV}$ is very sensitive to gas temperature (Sec. 6.4.1) and that the second peak at 0.38 eV is rather independent of temperature. Interestingly, Matejcik *et al.*²⁵⁹ have recently found that the first peak at 0.0 eV disappears at temperatures below ambient. In Fig. 24(b) are compared the published values of the cross section, $\sigma_{\text{da,SF}_5^-}(\epsilon)$, for the formation of SF $_5^-$ by lowenergy electron-impact on SF_6 as a function of electron energy for swarm-normalized $\text{data}^{108,109,228}$ and electron-beam data. 26,113 None of these studies quoted uncertainties. As can be seen from Fig. 24(b) there are large differences in the cross section data for the production of SF₅ from SF₆. The large discrepancies below 0.1 eV may be partly due to the varied effects of temperature on the formation of SF₅ at the low energies (e.g., see Refs. 152, 260, and 261) which are still unresolved. For this reason, we suggest data for the cross section, $\sigma_{\text{da.SF}}(\epsilon)$, for the formation of SF₅ by electron attachment to SF₆ down to only 0.1 eV. These suggested data are shown in Fig. 24(b) by the solid line which was obtained by a least squares fit to the data of Kline et al.26 and Hunter et al. 228 Values derived from the line are listed in Table 25. The data of Rao and Srivastava¹¹³ were excluded from the fit since they exhibit a large energy uncertainty due Fig. 25. Cross sections for the formation of SF_4^- , SF_3^- , and SF_2^- by dissociative electron attachment to SF_6 as a function of the electron energy: (\bigcirc), (\blacksquare) Ref. 114; (- - -) Ref. 26; (\triangle), (\blacksquare) Ref. 113; (\longrightarrow) suggested values. to the difficulty of obtaining accurate values from the sharp SF_5^- peak shown in the figure in their paper. It should be noted, that at room temperature the contribution of SF_5^- to the total electron attachment cross section below $\sim\!0.1\,\text{eV}$ is small compared to SF_6^- production. 6.1.3. $$SF_4^-$$, SF_3^- , and SF_2^- The smaller SF_x^- (x=2,3,4) ions are generated mostly through negative-ion states located at progressively higher electron energies (see Table 26). The SF_4^- fragment is generated from a broad resonance between 4 and 8 eV. Harland and Thynne¹¹¹ attributed the production of this ion to the reaction $$SF_6 + e \rightarrow SF_4^- + 2F$$ (7) and reported the cross section maximum for this ion to be at $(6.0\pm0.1)\,\mathrm{eV}$. In contrast, Fenzlaff *et al.*, ¹¹⁵ although not excluding reaction (7) for the formation of SF_4^- , attributed its formation "at least on the high energy side of the resonance," to the reaction $$e + SF_6 \rightarrow SF_6^{-*}(5.4 \text{ eV}) \rightarrow SF_4^{-} + F_2$$ (8) with a threshold at (2.8 ± 0.1) eV and a peak at 5.4 eV. Cross sections for all three fragment negative ions were measured at room temperature by Lehmann, ¹¹⁴ Kline *et al.*, ²⁶ and Rao and Srivastava, ¹¹³ and are shown in Fig. 25. Kline FIG. 26. Cross section for the formation of F_2^- by dissociative electron attachment to SF_6 as a function of the electron energy: (\bullet) Ref. 114; (---) Ref. 26; (\blacktriangle) Ref. 113; (—) suggested data. | Table 26. | Energy | positions | of cross | section | maxima | in the | formation | of | negative | ions b | y low-energy | electron | |-------------|--------|-----------|----------|---------|--------|--------|-----------|----|----------|--------|--------------|----------| | impact on S | SF_6 | | | | | | | | | | | | | Negative ion | Energy position of cross section maximum (eV) | Reference(s) | Suggested reaction | |-------------------|---|--|---| | SF ₆ | ~0.0 | Many (see text) | $e + SF_6 \rightarrow SF_6^{-*}$ | | SF ₅ | 0.50 ± 0.1
0.38
~ 0.0 ; 0.38
$\sim 0.0^{a}$, 0.38
~ 0.0 | 111
108, 109
110, 26
115
113 ^b | $e + SF_6 \rightarrow SF_5^- + F$ | | SF_4^- | 6.0±0.1
5.4
5.4
5.4
5.0 | 111
114 ^{b,c}
26 ^b
115
113 ^b | $e+SF_6 \rightarrow SF_4^- + 2F$
$e+SF_6 \rightarrow SF_4^- + F_2$ and $(SF_4^- + 2F)$ | | SF_3^- | 11.2
9.4; 10.9
11.3 | 114 ^{b,c}
26 ^b
113 ^b | | | SF_2^- | 13.0
12.0
12.3 | 114 ^{b,c}
26 ^b
113 ^b | | | F_2^- | 2.4; 4.8; 11.7
2.0; 4.4; 11.2
5.4
2.2; 4.8; 11.6 | 114 ^{b,c}
26 ^b
115
113 ^b | $e + SF_6 \rightarrow SF_6^{-*} (5.4 \text{ eV}) \rightarrow SF_4 + F_2^-$ | | F ⁻ | 5.7 ± 0.1 9.3 ± 0.1 11.8 ± 0.1 $2.8; 5.2; 8.9; 11.5$ $2.6; 5.1; 8.8; 11.3$ ~ 2.9 5.4 $2.8; 5.3; 9.4; 11.6$ | 111
111
111
114 ^{b,c}
26 ^b
115
115 | $e + SF_6 \rightarrow SF_6^{-*} \rightarrow SF_4 + F + F^-$ $e + SF_6 \rightarrow SF_6^{-*} \rightarrow SF_3 + 2F + F^-$ $e + SF_6 \rightarrow SF_6^{-*} \rightarrow SF_2 + 3F + F^-$ $e + SF_6 \rightarrow SF_6^{-*} \rightarrow SF_5 + F^-$ $e + SF_6 \rightarrow SF_6^{-*} \rightarrow SF_4 + F + F^-$ | ^aThe zero-energy peak was found to "disappear" at temperatures below ambient (Ref. 259). et al. established the magnitudes of the cross sections by measuring the various positive-ion cross sections and calibrating their sum with the total ionization cross section measurements of Rapp and Englander Golden. Their effective electron energy resolution was between 0.08 and 0.1 eV with an estimated uncertainty of the electron energy scale of ± 0.1 eV. Rao and Srivastava measured peak cross section values for SF $_4^-$, SF $_3^-$, and SF $_2^-$, respectively, equal to 4.0 $\times 10^{-19}$, 8.8×10^{-20} , and $1.3\times 10^{-20}\,\mathrm{cm}^2$. The data of Rao and Srivastava in Fig. 25 were taken off their plots and were put on an absolute scale using these peak cross section values. In Fig. 25 the data of Lehmann were shifted to lower energies by 0.6 eV, as suggested by Kline et al. 26 With the applied shift in the data of Lehmann, ¹¹⁴ the agreement in the magnitude and energy dependence of the cross sections for these three ions as measured by Lehmann ¹¹⁴ and by Rao and Srivastava ¹¹³ is reasonable. The energy position of the maxima in the cross sections for each of these ions as determined from the data reported by Lehmann, ¹¹⁴ Kline *et al.*, ²⁶ and Rao and Srivastava ¹¹³ are listed in Table 26, along with similar data derived from the relative cross section measurements of Fenzlaff et al. 115 The solid lines shown in the figure for each negative ion fragment represent our respective suggested cross sections. They were obtained by a least squares fit to all three sets of measurements for each ion, except for the case of the SF_3 ion for which only the data of Refs. 113 and 114 were considered. In Table 27 are listed the suggested values for the cross sections of these three fragment negative ions derived from the solid lines in Fig. 25. ### 6.1.4. F₂ Figure 26 compares the room temperature cross section measurements of Lehmann, ¹¹⁴ Kline *et al.*, ²⁶ and Rao and Srivastava ¹¹³ for the production of F_2^- . The F_2^- ion is produced in the energy range from ~ 1 to $\sim 14\,\mathrm{eV}$, and the cross sections exhibit maxima near 2.2, 4.7 eV, and 11.5 eV (Table 26). The data of Lehmann shown here were again shifted to lower energy by 0.6 eV as discussed previously.
Rao and Srivastava ¹¹³ gave a value of $2.6\times 10^{-20}\,\mathrm{cm}^2$ for the cross section of this ion at the maximum of the third peak at ^bDetermined from the respective figures of each of these references. ^cAll energy values determined from the figures given in Ref. 114 were reduced by 0.6 eV (see text). Table 27. Suggested cross sections for the formation of SF_4^- , SF_3^- , SF_2^- , F_2^- , and F^- by dissociative electron attachment to SF_6 as a function of the electron energy. Note that the cross section units are $10^{-22}\,\mathrm{m}^2$ | Energy | | Cross | s section (10 | ⁻²² m ²) | | |--------|----------------------------|-------------------------------|----------------------------|---------------------------------|----------------------| | (eV) | $\sigma_{ ext{da,SF}_4^-}$ | $\sigma_{\mathrm{da,SF}_3^-}$ | $\sigma_{ ext{da,SF}_2^-}$ | $\sigma_{ ext{da,F}_2^-}$ | $\sigma_{ m da,F^-}$ | | 1.50 | _ | | _ | 0.0030 | _ | | 2.00 | _ | _ | _ | 0.0080 | 0.022 | | 2.25 | _ | _ | | 0.0075 | 0.075 | | 2.50 | _ | _ | | 0.0060 | 0.149 | | 2.75 | | _ | _ | 0.0042 | 0.162 | | 3.00 | _ | _ | | 0.0026 | 0.098 | | 3.50 | 0.0084 | _ | | 0.0026 | 0.171 | | 4.00 | 0.0350 | _ | _ | 0.0265 | 0.856 | | 4.50 | 0.144 | _ | _ | 0.0707 | 2.69 | | 5.00 | 0.457 | _ | | 0.0489 | 4.63 | | 5.50 | 0.528 | _ | _ | 0.0155 | 4.39 | | 6.00 | 0.394 | _ | _ | 0.0038 | 2.78 | | 6.50 | 0.251 | _ | _ | 0.0019 | 1.37 | | 7.00 | 0.130 | _ | _ | 0.0015 | 0.749 | | 7.50 | 0.0460 | _ | | 0.0015 | 0.615 | | 8.00 | 0.0084 | 0.0014 | _ | 0.0018 | 0.977 | | 8.50 | 0.0032 | 0.0046 | | 0.0031 | 1.42 | | 9.00 | | 0.0150 | _ | 0.0065 | 1.57 | | 9.50 | _ | 0.0330 | | 0.0104 | 1.39 | | 10.00 | _ | 0.0510 | | 0.0200 | 1.13 | | 10.25 | _ | 0.0577 | 0.000 19 | 0.0308 | 1.14 | | 10.50 | _ | 0.0640 | 0.000 37 | 0.0503 | 1.31 | | 11.00 | _ | 0.0750 | 0.001 40 | 0.0910 | 2.10 | | 11.50 | _ | 0.0710 | 0.004 20 | 0.0954 | 2.35 | | 12.00 | | 0.0490 | 0.007 60 | 0.0615 | 1.95 | | 12.50 | _ | 0.0260 | 0.010 60 | 0.0274 | 1.22 | | 13.00 | _ | 0.0110 | 0.00870 | 0.0111 | 0.629 | | 13.50 | _ | 0.0031 | 0.004 40 | 0.0050 | 0.400 | | 14.00 | _ | 0.0008 | 0.001 70 | 0.0032 | 0.340 | | 14.50 | _ | _ | 0.00068 | 0.0018 | 0.310 | | 15.00 | _ | _ | 0.000 28 | 0.0012 | 0.300 | 11.5 eV which is lower than the other two sets of measurements by nearly a factor of 10. The solid line in Fig. 26 is our suggested cross section, $\sigma_{\text{da},F_2^-}(\varepsilon)$, for this ion that was obtained by considering all three sets of experimental data. Values derived from this curve are listed in Table 27. #### 6.1.5. F The F^- ion is the predominant fragment negative ion produced by dissociative electron attachment to SF_6 at ambient temperature at electron energies above ~ 3 eV. Cross sections for the formation of this ion are shown in Fig. 27, and these exhibit maxima near 2.8, 5.2, 9.1, and 11.5 eV. Above ~ 15 eV the data of Rao and Srivastava show formation of F^- possibly via ion-pair processes. The energy positions of the maxima in the F^- cross section function as determined from the various sources and possible reaction mechanisms of formation are given in Table 26. Not included in Table 26 is an early observation by Curran of F^- formation at ~ 0.0 eV (presumably via the reaction F^- formation at Fig. 27. Cross section for the formation of F^- by dissociative electron attachment to SF_6 as a function of the electron energy: (\bullet) Ref. 114; (---) Ref. 26; (\blacktriangle) data from Ref. 113 adjusted upwards by a factor of 10 as discussed in the text; (—) suggested data. The original data of Rao and Srivastava¹¹³ for this ion were mistakenly reported at values that were low by a factor of $10.^{262}$ The data plotted in Fig. 27 are the original values corrected upward by a factor of 10. The various cross section measurements along with a least squares fit to the three sets of data (solid line) are shown in Fig. 27. Values obtained from the solid line in Fig. 27 are listed in Table 27 as our suggested data for the $\sigma_{\rm da,F^-}(\varepsilon)$. ## 6.2. Total Electron Attachment Cross Section, $\sigma_{\rm a,t}(\varepsilon)$, and Total Dissociative Electron Attachment Cross Section, $\sigma_{\rm da,t}(\varepsilon)$ In Fig. 28 are plotted the recommended or suggested cross sections for the various negative ions as determined in the preceding sections, namely, for SF₆ [Fig. 24(a)], SF₅ [Fig. 24(b)], SF₄⁻, SF₃⁻, and SF₂⁻ (Fig. 25), F₂⁻ (Fig. 26), and F⁻ (Fig. 27). The total electron attachment cross section, $\sigma_{\rm a.t}(\varepsilon)$, as represented by the sum of all these recommended or suggested cross sections is shown in Fig. 28 by the dotted line, which overlaps with the solid line for SF₅ below $\sim 1.5 \, \text{eV}$ and the solid line for SF_6^- below $\sim 0.2 \, \text{eV}$. Data derived from the dotted line are listed in column 2 of Table 28 as our recommended values for the $\sigma_{a,t}(\varepsilon)$ of the SF₆ molecule in the energy range 0.0001-15 eV. The total dissociative electron attachment cross section $\sigma_{\rm da,t}(\varepsilon)$, as represented by the sum of the suggested dissociative electron attachment cross sections for all fragment negative ions, is listed in column 3 of Table 28. The values listed represent our suggested data for the $\sigma_{\rm dat}(\varepsilon)$ of the SF₆ molecule. It is seen from Fig. 28 that beyond $\sim 0.3 \, \text{eV}, \ \sigma_{\text{da,t}}(\varepsilon) = \sigma_{\text{a,t}}(\varepsilon)$. It is also seen that $\sigma_{\rm da,t}(\varepsilon)$ is dominated by the formation of SF_5^- below $\sim 1.5 \, eV$ and by the formation of F^- above this energy. Fig. 28. Recommended and suggested cross sections for the formation of SF_6^- [Fig. 24(a)], SF_5^- [Fig. 24(b)], SF_4^- , SF_3^- , and SF_2^- (Fig. 25), F_2^- (Fig. 26), and F^- (Fig. 27) by electron attachment or dissociative attachment. (...) Suggested $\sigma_{a,t}(\epsilon)$ (sum of all cross sections in figure). ### 6.3. Total Electron Attachment Rate Constant, $k_{a,t}$, as a Function of E/N and $\langle \varepsilon \rangle$ 6.3.1. $k_{a,t}(E/N)$ in Ar, Xe, and N_2 Hunter et al.²²⁸ measured the total electron attachment rate constant $k_{a,t}(E/N)$ near 300 K in mixtures of SF₆ with N₂, Ar, and Xe buffer gases. The E/N range they covered for the three buffer gases corresponds to the mean electron energy range from ~ 0.04 to ~ 4.3 eV. The uncertainty in their measurements varies from $\pm 5\%$ to $\pm 15\%$ depending on the value of E/N. Hunter et al. obtained values of the rate constants uninfluenced by changes in the electron energy distribution function of the pure buffer gases by using extremely low concentrations of SF_6 (the SF_6 fractional concentrations were as low as 1.3×10^{-9} for N_2 , 1.5×10^{-9} for Ar, and 2.2×10^{-10} for Xe). This was achieved by extrapolating the measured electron attachment coefficient, $\eta/N_a(E/N)$, (normalized to the attaching gas number density N_a) at each value of E/N to zero SF_6 concentration and multiplying the extrapolated values of $\eta/N_a(E/N)$ by the electron drift velocity for the pure gas. The data of Hunter et al. are shown in Fig. 29. In Table 29 are listed the values of $k_{a,t}(E/N)$ and $\eta/N_a(E/N)$ for mixtures of SF₆ with Ar and Xe, along with the values of the electron drift velocity w(E/N) and the mean electron energy $\langle \varepsilon \rangle (E/N)$ for the Ar and Xe buffer gases given by Hunter *et al.*²²⁸ Similar data are given in Table 30 for the N₂ buffer gas. Also plotted in Fig. 29 are the earlier measurements of the $k_{a,t}(E/N)$ of SF₆ conducted by Gant²²⁵ in mixtures of SF₆ with N₂ and Ar buffer gases, and by Christophorou et al., ¹⁰⁸ Lakdawala and Moruzzi, 263 and Christophorou and Datskos²⁶⁴ in mixtures of SF₆ with N₂. Christophorou and Datskos²⁶⁴ reported $k_{a,t}$ only as a function of the mean electron energy $\langle \epsilon \rangle$. For presentation in Fig. 29, we converted their $k_{a,t}(\langle \varepsilon \rangle)$ data to $k_{a,t}(E/N)$ by using the $\langle \varepsilon \rangle(E/N)$ in Table 30. We deduce the $k_{a,t}(E/N)$ of Lakdawala and Moruzzi²⁶³ from their measurements of $\eta/N_a(E/N)$ in mixtures of SF₆ with N₂. The data in Fig. 2 of their paper represent measurements for a number of SF₆ concentrations in N₂ ranging from 0.03% to 0.6%. We performed a least squares fit to all their $\eta/N_a(E/N)$ data points and values from this fit were converted to $k_{a,t}(E/N)$ using the electron drift velocities in N2 given by Hunter and Christophorou265 and Wedding et al. 266 The resultant values of $k_{a,t}(E/N)$ are plotted in Fig. 29. It is seen that although the data of Lakdawala and Moruzzi considerably expand the E/N range of the measurements, they are incompatible with the rest of the data in this buffer gas. TABLE 28. Suggested room temperature values of the total electron attachment cross section $\sigma_{a,t}(\epsilon)$ and the total dissociative electron attachment $\sigma_{da,t}(\epsilon)$ for SF_6 | Electron energy (eV) | $\sigma_{a,t}(\varepsilon) $ $(10^{-20} \mathrm{m}^2)$ | $(10^{-20} \mathrm{m}^2)$ | Electron energy (eV) | $\sigma_{\rm a,t}(\varepsilon) \\ (10^{-20}\rm m^2)$ | $\sigma_{\rm da,t}(\varepsilon)$ $(10^{-20}{\rm m}^2)$ | |----------------------|--|---------------------------|----------------------|--|--| | 0.0001 | 7617 | _ | 0.30 | 4.40 | 4.24 | | 0.0002 | 5283 | _ | 0.35 | 4.12 | 4.07 | | 0.0003 | 4284 | _ | 0.40 | 3.46 | 3.45 | | 0.0004 | 3692 | _ | 0.45 | 2.75 | 2.75 | | 0.0005 | 3280 | _ | 0.50 | 2.15 | 2.15 | | 0.0006 | 2968 | _ | 0.60 | 1.25 | 1.25 | | 0.0007 | 2724 | _ | 0.70 | 0.722 | 0.722 | | 0.0008 | 2529 | _ | 0.80 | 0.416 | 0.416 | |
0.0009 | 2369 | _ | 0.90 | 0.245 | 0.245 | | 0.001 | 2237 | _ | 1.00 | 0.147 | 0.147 | | 0.002 | 1511 | _ | 1.20 | 0.060 | 0.060 | | 0.003 | 1202 | _ | 1.50 | 0.020 | 0.020 | | 0.004 | 993 | _ | 2.00 | 0.0043 | 0.0043 | | 0.005 | 859 | _ | 2.25 | 0.0020 | 0.0020 | | 0.006 | 760 | _ | 2.50 | 0.0019 | 0.0019 | | 0.007 | 683 | _ | 2.75 | 0.0017 | 0.0017 | | 0.008 | 621 | _ | 3.0 | 0.0010 | 0.0010 | | 0.009 | 569 | _ | 3.5 | 0.0018 | 0.0018 | | 0.010 | 526 | _ | 4.0 | 0.0092 | 0.0092 | | 0.015 | 383 | _ | 4.5 | 0.0290 | 0.0290 | | 0.020 | 304 | _ | 5.0 | 0.0514 | 0.0514 | | 0.025 | 257 | _ | 5.5 | 0.0493 | 0.0493 | | 0.030 | 221 | _ | 6.0 | 0.0317 | 0.0317 | | 0.035 | 190 | _ | 6.5 | 0.0162 | 0.0162 | | 0.040 | 171 | _ | 7.0 | 0.0088 | 0.0088 | | 0.045 | 149 | _ | 7.5 | 0.0066 | 0.0066 | | 0.050 | 132 | _ | 8.0 | 0.0099 | 0.0099 | | 0.060 | 109 | _ | 8.5 | 0.0143 | 0.0143 | | 0.070 | 92.7 | _ | 9.0 | 0.0159 | 0.0159 | | 0.080 | 82.9 | _ | 9.5 | 0.0144 | 0.0144 | | 0.090 | 74.3 | _ | 10.0 | 0.0120 | 0.0120 | | 0.10 | 51.4 | 1.85 | 10.5 | 0.0142 | 0.0142 | | 0.12 | 32.9 | 2.09 | 11.0 | 0.0227 | 0.0227 | | 0.14 | 20.2 | 2.36 | 11.5 | 0.0252 | 0.0252 | | 0.15 | 16.7 | 2.48 | 12.0 | 0.0206 | 0.0206 | | 0.16 | 13.1 | 2.61 | 12.5 | 0.0128 | 0.0128 | | 0.18 | 8.72 | 2.87 | 13.0 | 0.0066 | 0.0066 | | 0.20 | 6.01 | 3.15 | 13.5 | 0.0041 | 0.0041 | | 0.22 | 4.69 | 3.45 | 14.0 | 0.0035 | 0.0035 | | 0.25 | 4.38 | 3.86 | 14.5 | 0.0031 | 0.0031 | | 0.28 | 4.40 | 4.15 | 15.0 | 0.0030 | 0.0030 | For an indirect determination of the total electron attachment rate constant $k_{\rm a,t}(E/N)$ in pure SF₆ see Table 37 in Sec. 7.1. ### **6.3.2.** $k_{a,t}(\langle \varepsilon \rangle)$ Since the electron energy distribution can be calculated as a function of E/N for Ar, Xe, and N_2 , one can determine the total electron attachment rate constant as a function of the mean electron energy, $k_{\rm a,t}(\langle \epsilon \rangle)$, from measurements of $k_{\rm a,t}(E/N)$ for SF₆ in low-concentration mixtures of SF₆ with each of these buffer gases. This facilitates a comparison of the measurements made in different buffer gases. In Fig. 30 are plotted the $k_{\rm a,t}(\langle \varepsilon \rangle)$ for SF₆ based on the measurements of $k_{\rm a,t}(E/N)$ made at room temperature in the buffer gases N₂, ^{108,225,228,264} Ar, ^{225,228} Xe, ²²⁸ and also C₂H₄. ¹⁰⁸ The uncertainty in these data is likely to vary from $\pm 5\%$ to $\pm 15\%$ depending on E/N. Differences in the $k_{\rm a,t}(\langle \varepsilon \rangle)$ values measured in the various buffer gases may reflect differences in the electron energy distribution functions $f(\varepsilon, E/N)$ and hence the mean electron energies. This may be especially Table 29. Values of $k_{a,t}(E/N)$, and $\eta/N_a(E/N)$ for SF₆ measured in the buffer gases Ar and Xe by Hunter *et al.* (Ref. 228), and values of w(E/N), and $\langle \varepsilon \rangle$ (E/N) for these buffer gases as reported by Hunter *et al.* (Ref. 228) | | | | SF_6/Ar | | SF ₆ /Xe | | | | |--|------------------------------------|---|-------------------------------------|---|------------------------------------|---|----------------------------|---| | E/N (10 ⁻¹⁷ V cm ²) | $\langle \varepsilon \rangle$ (eV) | $\eta/N_{\rm a}$ $(10^{-13}{\rm cm}^2)$ | $(10^5 \mathrm{cm}\mathrm{s}^{-1})$ | $(10^{-7} \frac{k_{a,t}}{\text{cm}^3} \text{s}^{-1})$ | $\langle \varepsilon \rangle$ (eV) | $\eta/N_{\rm a}$ $(10^{-12}{\rm cm}^2)$ | (10^5 cm s^{-1}) | $(10^{-7} \text{cm}^3 \text{s}^{-1})$ | | 0.003 | 0.130 | 26.8 | 0.533 | 1.43 | _ | _ | _ | _ | | 0.004 | 0.178 | 16.5 | 0.668 | 1.10 | 0.0391 | 145.8 | 0.0153 | 2.23 | | 0.005 | 0.213 | 11.4 | 0.750 | 0.854 | 0.0392 | 118.30 | 0.0191 | 2.26 | | 0.006 | 0.240 | 8.92 | 0.803 | 0.716 | 0.0393 | 99.1 | 0.0230 | 2.28 | | 0.007 | 0.260 | 7.49 | 0.840 | 0.629 | 0.0394 | 83.9 | 0.0268 | 2.25 | | 0.008 | 0.277 | 6.19 | 0.869 | 0.538 | 0.0396 | 73.4 | 0.0308 | 2.26 | | 0.010 | 0.304 | 4.94 | 0.915 | 0.452 | 0.0401 | 57.9 | 0.0387 | 2.24 | | 0.012 | _ | _ | _ | _ | 0.0406 | 47.9 | 0.0469 | 2.25 | | 0.0125 | 0.331 | 3.87 | 0.962 | 0.372 | _ | _ | _ | _ | | 0.014 | _ | _ | _ | _ | 0.0414 | 39.4 | 0.0554 | 2.18 | | 0.015 | 0.354 | 3.28 | 1.000 | 0.329 | _ | _ | _ | _ | | 0.017 | _ | _ | _ | _ | 0.0432 | 31.0 | 0.0691 | 2.14 | | 0.0175 | 0.375 | 2.91 | 1.040 | 0.302 | _ | _ | _ | _ | | 0.02 | 0.394 | 2.66 | 1.070 | 0.285 | 0.0463 | 24.6 | 0.0849 | 2.09 | | 0.03 | 0.461 | 1.89 | 1.190 | 0.224 | 0.0801 | 11.1 | 0.1690 | 1.87 | | 0.05 | 0.570 | 1.21 | 1.360 | 0.165 | 0.3430 | 2.00 | 0.5110 | 1.02 | | 0.07 | 0.663 | 0.904 | 1.490 | 0.135 | 0.5960 | 0.65 | 0.7420 | 0.48 | | 0.10 | 0.784 | 0.648 | 1.650 | 0.107 | 0.7770 | 0.23 | 0.8610 | 0.20 | | 0.15 | 0.956 | 0.433 | 1.850 | 0.080 | 0.9290 | 0.111 | 0.9240 | 0.1024 | | 0.20 | 1.10 | 0.319 | 1.990 | 0.0637 | 1.03 | 0.0802 | 0.9820 | 0.0787 | | 0.30 | 1.34 | 0.217 | 2.210 | 0.0480 | 1.18 | 0.0517 | 1.0500 | 0.0543 | | 0.50 | 1.72 | 0.133 | 2.510 | 0.0335 | 1.40 | 0.0359 | 1.1500 | 0.0413 | | 0.70 | 2.02 | 0.097 | 2.720 | 0.0265 | | | | | | 1.00 | 2.39 | 0.071 | 2.960 | 0.0210 | | | | | | 1.09 ^a | 2.49 | 0.0656 | 3.020 | 0.0192 | | | | | | 1.24 | 2.65 | 0.0581 | 3.120 | 0.0176 | | | | | | 1.55 | 2.95 | 0.0473 | 3.290 | 0.0154 | | | | | | 1.86 | 3.22 | 0.0403 | 3.450 | 0.0137 | | | | | | 2.17 | 3.48 | 0.0354 | 3.590 | 0.0125 | | | | | | 2.48 | 3.72 | 0.0317 | 3.720 | 0.0115 | | | | | | 2.79 | 3.94 | 0.0290 | 3.830 | 0.0108 | | | | | | 3.11 | 4.15 | 0.0263 | 3.960 | 0.0102 | | | | | | 3.42 | 4.33 | 0.0244 | 4.100 | 0.0096 | | | | | ^aData beyond this E/N value were taken with another (higher pressure) electron swarm apparatus. The rest of the measurements were made using a pulsed Townsend technique. true in the case of the Xe data since the cross sections for this buffer gas are not as well established (see below). The $\langle \varepsilon \rangle (E/N)$ values for the buffer gas ethylene are those determined from $\langle \varepsilon \rangle (E/N) = 3/2 (eD_{\rm T}/\mu)(E/N)$, where $D_{\rm T}/\mu(E/N)$ is the ratio of the lateral electron diffusion coefficient to electron mobility as a function of E/N for this gas. In Fig. 30 are also plotted the $k_{\rm a,l}(\langle \varepsilon \rangle)$ for SF₆ measured at room temperature in a Xe buffer gas by Shimamori $et~al.^{267}$ using a pulse-radiolysis microwave cavity technique. The calibration of the mean electron energy in this study was made by analyzing the time profile of the microwave conductivity signals for "thermalized" electrons produced by pulsed x-rays in gaseous Xe and assuming a Maxwellian form for $f(\varepsilon, E/N)$. The data of Shimamori et~al. obtained from measurements in a Xe buffer gas disagree with the data of Hunter $et~al.^{228}$ obtained using the same buffer gas, and are not in good overall agreement with the other electron swarm data. This may indicate that the electron energy distribution functions in Xe as assumed by Shimamori et~al. and as determined by Hunter et~al. are different, and both are less accurate than those for the N₂ and Ar buffer gases. Fig. 29. Total electron attachment rate constant, $k_{\text{a,t}}(E/N)$, as a function of E/N for SF₆ measured in mixtures with various buffer gases: N₂ – (\blacksquare) Ref. 228; (\blacktriangledown) Ref. 108; (\bigcirc) Ref. 225; (\spadesuit) Ref. 263; (\square) Ref. 264. Ar – (\blacksquare) Ref. 228; (\triangle) Ref. 225. Xe – (\times) Ref. 228. Table 30. Values of $k_{a,t}(E/N)$ and $\eta/N_a(E/N)$ for SF₆ measured in the buffer gas N₂ by Hunter *et al.* (Ref. 228), and values of w(E/N), and $\langle \varepsilon \rangle$ (E/N) for this buffer gas as reported by Hunter *et al.* (Ref. 228) | | SF_6/N_2 | | | | | | |-------------------------------------|-------------|---|------------------------------|---|--|--| | E/N $(10^{-17} \mathrm{V cm^2})$ | (ε)
(eV) | $\eta/N_{\rm a}$ $(10^{-13}{\rm cm}^2)$ | $(10^5 \mathrm{cm s}^{-1})$ | $(10^{-7} \text{cm}^3 \text{s}^{-1})$ | | | | 0.0311 | 0.0403 | 21.2 | 1.07 | 2.27 | | | | 0.0466 | 0.0433 | 14.9 | 1.49 | 2.22 | | | | 0.0621 | 0.0466 | 11.9 | 1.83 | 2.17 | | | | 0.0932 | 0.0548 | 8.88 | 2.30 | 2.04 | | | | 0.124 | 0.0644 | 7.27 | 2.57 | 1.87 | | | | 0.155 | 0.0751 | 6.34 | 2.73 | 1.73 | | | | 0.186 | 0.0864 | 5.55 | 2.83 | 1.57 | | | | 0.217 | 0.0977 | 5.02 | 2.91 | 1.46 | | | | 0.249 | 0.109 | 4.58 | 2.97 | 1.36 | | | | 0.311 | 0.130 | 3.70 | 3.10 | 1.15 | | | | 0.373 | 0.150 | 3.16 | 3.23 | 1.02 | | | | 0.466 | 0.179 | 2.54 | 3.45 | 0.878 | | | | 0.528 | 0.199 | 2.14 | 3.59 | 0.769 | | | | 0.621 | 0.229 | 1.79 | 3.80 | 0.679 | | | | 0.777 | 0.282 | 1.39 | 4.09 | 0.569 | | | | 0.932 | 0.335 | 1.10 | 4.35 | 0.479 | | | | 1.09 | 0.388 | 0.885 | 4.60 | 0.407 | | | | 1.24 | 0.436 | 0.725 | 4.82 | 0.350 | | | | 1.55 | 0.514 | 0.512 | 5.29 | 0.271 | | | | 1.86 | 0.578 | 0.387 | 5.77 | 0.223 | | | | 2.17 | 0.628 | 0.300 | 6.26 | 0.188 | | | | 2.48 | 0.668 | 0.247 | 6.76 | 0.167 | | | | 3.11 | 0.729 | 0.177 | 7.78 | 0.138 | | | | 3.73 | 0.772 | 0.142 | 8.79 | 0.125 | | | | 4.66 | 0.817 | 0.107 | 10.27 | 0.110 | | | | 5.28 | 0.840 | 0.0903 | 11.25 | 0.102 | | | | 6.21 | 0.870 | 0.0748 | 12.6 | 0.095 | | | | 7.76 | 0.901 | 0.0567 | 15.0 | 0.085 | | | Also plotted in Fig. 30 is the recommended value (2.25 $\times 10^{-7} \, \mathrm{cm^3 \, s^{-1}}$) of the thermal value, ($k_{\mathrm{a,t}}$)_{th} ($T \sim 300 \, \mathrm{K}$), of the electron attachment rate constant (see Table 32, Sec. 6.3.3). Besides the measurements of $k_{a,t}(\langle \varepsilon \rangle)$ made using the electron swarm method, there have been a number of other measurements of this quantity using the
laser-photoelectronattachment and the high-Rydberg-atom methods which have extended the values of $k_{a,t}(\langle \varepsilon \rangle)$ for SF₆ down to the μeV range. The results of these methods dealing with the electron attachment cross section for the formation of SF₆ have been discussed earlier in Sec. 6.1. Most of the rate-constant measurements involving high-Rydberg atoms are normally given in terms of the dependence of the rate constant on the principal quantum number n or the effective principal quantum number n^* of the Rydberg atom involved (see Fig. 23). However, the bound-electron attachment rate constant, $k_{a,be}(\langle \varepsilon \rangle)$, can be expressed as a function of the average kinetic energy of the Rydberg electron which is given by R/n^2 or R/n^{*2} , where R is the Rydberg constant (13.6 eV) (see discussion in Sec. 6.1). In Fig. 30 are plotted the $k_{a,t}(\langle \varepsilon \rangle)$ data of Klar et al. 152 using the laser-photoelectronattachment technique and the data of a number of investigators using the high-Rydberg-atom method. All data on the bound-electron attachment rate constants, $k_{\text{a,be}}(\langle \varepsilon \rangle)$, are shown in Fig. 30 by the same symbol (+), although they involve a number of studies and various Rydberg atoms: $Xe^*(nf)$ (Refs. 237 and 238), $Rb^*(ns,nd)$ (Ref. 241), $K^*(nd)$ (Refs. 242 and 245), $K^*(np)$ (Ref. 248), $Na^*(np)$ (Ref. 244), and $Ne^*(ns,nd)$ (Ref. 234). They refer to the production of SF_6^- and are consistent with the electron swarm measurements only for large n values (small values of $\langle \varepsilon \rangle$). The $k_{a,be}(\langle \varepsilon \rangle)$ becomes progressively smaller than $k_{a,t}(\langle \varepsilon \rangle)$ as the value of n decreases, that is, as the energy increases for the reasons discussed in Sec. 6.1. We performed a least squares fit to only the swarm data in Fig. 30, excluding the measurements in the Xe buffer and also those in C_2H_4 , and required the fit to agree with the recommended thermal value $(2.25\times10^{-7}~{\rm cm}^3~{\rm s}^{-1})$ of $k_{\rm a,t}(\langle\epsilon\rangle)$. This fit is shown by the solid line in Fig. 30, and recommended values of $k_{\rm a,t}(\langle\epsilon\rangle)$ in the energy range from 0.038 to 4.0 eV obtained from this fit are listed in Table 31. #### 6.3.3. Thermal Value, $(k_{a,t})_{th}$, of the Total Electron Attachment Rate Constant Many measurements have been made of this quantity which vary significantly. They are summarized in Table 32. The most reliable data lie between 2.2×10^{-7} and 2.3 Fig. 30. Total electron attachment rate constant, $k_{a,t}(\langle \epsilon \rangle)$, for SF₆ as a function of the mean electron energy $\langle \epsilon \rangle$. For the electron swarm data, measurements were made in the buffer gases indicated in the legend. Electron swarm measurements: (\bullet), (\bullet) Ref. 108; (\blacksquare), (\bullet) Ref. 225; (\blacktriangledown), (\bigcirc), (\triangle) Ref. 228; (\square) Ref. 264; (\Diamond) Ref. 267; (\Diamond) Recommended value of $(k_{a,t})_{th}$. Laser photoelectron attachment measurements: (- - -) Ref. 152. High-Rydberg-atom measurements: (+), this same symbol was used for data from all of the following sources: West *et al.* in Ref. 237 [Xe*(nf)]; Foltz *et al.* in Ref. 238 [Xe*(nf)]; Zollars *et al.* in Ref. 242 [K*(nd)]; Beterov *et al.* in Ref. 244 [Na*(np)]; Zheng *et al.* in Ref. 245 [K*(nd)]; Harth *et al.* in Ref. 234 [Ne*(ns,nd)]; and Ling *et al.* in Ref. 248 [K*(np)]. The recommended values of $k_{a,t}(\langle \epsilon \rangle)$ are shown by the solid line. $\times 10^{-7}$ cm³ s⁻¹. The average of the ten values in this range is 2.25×10^{-7} cm³ s⁻¹ which is our recommended value. ### 6.4. Effect of Temperature on Electron Attachment to SF₆ ### 6.4.1. Effect of Temperature on the Production of SF₅ from SF₆ In Fig. 31 are shown the relative cross section measure- ments of Chen and Chantry 110 for the production of SF_5^- from SF_6 at temperatures ranging from 300 to 880 K. Two peaks are seen in the energy dependence of the production of SF_5^- , one at $\sim\!0.0\,\text{eV}$ and the other at near 0.38 eV. The near-zero-energy peak is very sensitive to temperature, has an activation energy of $\sim\!0.2\,\text{eV},^{110}$ and is due to dissociative electron attachment to "hot" SF_6 molecules, i.e., due to attachment of near-zero-energy electrons to vibrational/rotational states of SF_6 lying at energies 0.2 eV above the molecular ground state TABLE 31. Recommended values for the total electron attachment rate constant, $k_{\rm a,t}$ ($\langle \epsilon \rangle$), of SF₆ as a function of the mean electron energy $\langle \epsilon \rangle$ | | $\langle \varepsilon \rangle$ (eV) | $k_{a,t} (\langle \varepsilon \rangle) $ $(10^{-7} \text{ cm}^3 \text{ s}^{-1})$ | $\langle \varepsilon \rangle$ (eV) | $k_{a,t} (\langle \varepsilon \rangle) $ $ (10^{-7} \text{ cm}^3 \text{ s}^{-1})$ | |---|------------------------------------|--|------------------------------------|---| | | 0.038 | 2.25 | 0.5 | 0.241 | | | 0.04 | 2.20 | 0.6 | 0.181 | | | 0.05 | 2.05 | 0.7 | 0.135 | | | 0.06 | 1.88 | 0.8 | 0.103 | | | 0.07 | 1.74 | 0.9 | 0.0833 | | | 0.08 | 1.62 | 1.0 | 0.0721 | | | 0.09 | 1.51 | 1.5 | 0.0406 | | | 0.10 | 1.41 | 2.0 | 0.0268 | | | 0.15 | 1.04 | 2.5 | 0.0197 | | | 0.20 | 0.801 | 3.0 | 0.0154 | | | 0.25 | 0.622 | 3.5 | 0.0125 | | | 0.30 | 0.487 | 4.0 | 0.0104 | | | 0.40 | 0.327 | | | | _ | | | | | Table 32. Thermal (T=295–300 K) values ($k_{\rm a,t}$)_{th} of the total electron attachment rate constant for SF₆ | $(k_{\rm a,t})_{\rm th}$
$(10^{-7} {\rm cm}^3 {\rm s}^{-1})$ | Reference | |---|-------------------| | 0.385 | 198 | | 2.06 ± 0.08 | 268 | | 2.13 ± 0.04 | 269 | | 2.2 | 270 | | 2.2 ± 0.1 | 271 | | 2.20 | 272 | | 2.27 ± 0.07 | 254 | | 2.24 ± 0.15 | 256 | | 2.27 ± 0.09 | 256 | | 2.3 | 273 | | 2.3 ± 0.2 | 267 | | 2.25 ± 0.2 | 228 | | 2.30 ± 0.1 | 228 | | 2.41 | 274 | | 2.5 | 275 | | 2.6 | 276 | | 2.70 | 108 | | 2.78 | 108 | | 2.77 | 277 | | 2.8 ± 0.3 | 278 | | 3.1 | 279 | | 3.1 ± 0.47 | 280 | | $2.25 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$ | Recommended value | $$SF_6^*(\nu, r \ge 0.2 \text{ eV}) + e(\sim 0 \text{ eV}) \rightarrow SF_5^- + F.$$ (9) The 0.38 eV peak is broad, insensitive to temperature variation, and results from the capture of $\sim 0.38\,\text{eV}$ electrons by unexcited SF₆ molecules reaching the lowest repulsive negative ion state of SF₆, that is, due to the reaction $$SF_6(\nu=0) + e(\sim 0.38 \,\text{eV}) \rightarrow SF_5^- + F$$ (10) (see, however, Refs. 259 and 281). It is interesting to observe that in spite of this large increase in the formation of SF_5^- from SF_6 with increasing T, the total electron attachment rate constant and cross section at near-zero-electron energy (Sec. 6.4.2) is independent of T. This may imply that at $\sim 0.0 \, \text{eV}$, the formation of SF_6^- in electron beam experiments where the SF_6^{-*} is not stabilized by collision or radiation prior to its detection, decreases with T. Indeed, such a decrease has been observed and would be consistent with the decrease in the autodetachment lifetime of SF_6^{-*} with increasing internal energy of the transient anion. The data in Fig. 31 can be put on an absolute scale by considering the magnitude of the cross section for the production of SF_5^- at 0.38 eV at room temperature. A value of $\sim 3.8 \times 10^{-16} \, \text{cm}^2$ is suggested from Fig. 24(b) and Table 25. The strong increase of the cross section for the production of SF_5^- from SF_6 with increasing vibrational excitation energy of the SF_6 molecule has led Chen and Chantry¹¹⁰ to anticipate that the zero-energy peak in Fig. 31 could be photoenhanced. Thus, they used specific lines from a CO_2 laser to produce (via n-photon absorption processes, $n \ge 1$) vibra- Fig. 31. Temperature dependence of the relative cross section for the formation of SF_5^- by electron impact on SF_6 (data of Chen and Chantry from Ref. 110). tionally excited SF_6 molecules, SF_6^* , and observed the production of SF_5^- from electron impact on SF_6^* as a function of the electron energy, viz. $$n(h\nu)_{\text{laser}} + \text{SF}_6 \rightarrow (\text{SF}_6^*)_{\text{laser}}$$ followed by $(\text{SF}_6^*)_{\text{laser}} + e$ $\rightarrow (\text{SF}_5)_{\text{laser}}^- + \text{F}.$ (11) Chen and Chantry found that the production of SF_5^- from electron impact on SF_6^* is enhanced and that this infrared enhancement of SF_5^- production is different for the ^{32}S and ^{34}S isotopes. Thus, the formation of SF_5^- was found to be radiation-wavelength dependent. With the 936.856 cm⁻¹ CO_2 line the $^{32}SF_5^-$ enhancement was optimized and the $^{34}SF_5^-$ was unaffected. With the 920.810 cm⁻¹ CO_2 laser line the $^{34}SF_5^-$ line was optimized and the $^{32}SF_5^-$ was unaffected. This isotopic specificity is an illustration of possible isotope separation processes using knowledge of low-energy electron–molecule reactions. It is consistent with the earlier observations of Beterov *et al.* 282 and Beterov and Fateyev²⁸³ of optogalvanic effects when they used a CO_2 laser to vibrationally excite SF_6 molecules (see also Avrillier and Schermann²⁸⁴). ### 6.4.2. Effect of Temperature on the Total Electron Attachment Rate Constant, $k_{\rm a,t}(\langle \varepsilon \rangle, T)$ In Table 33 are listed the thermal values, $(k_{\rm a,t})_{\rm th}$, of the total electron attachment rate constant for SF₆ as a function of gas temperature. Although the data
listed in Table 33 show $(k_{\rm a,t})_{\rm th}$ to be virtually constant for T between about 300 and 600 K, the more recent measurements of Le Garrec *et al.* 277 below room temperature indicate a small increase with increasing T in the low-temperature range they investigated [see Table 33 and Fig. 32(a)]. | Table 33. | Variation | with | temperature | of | the | thermal | electron | attachment | |--------------|-----------------------|------|-------------|----|-----|---------|----------|------------| | rate constan | nt, $(k_{at})_{th}$, | of S | F_6 | | | | | | | $(k_{a,t})_{th}$
(10 ⁻⁷ cm ³ s ⁻¹) | Temperature (K) | Reference(s) | |---|-----------------|--------------| | 2.70 | 298-418 | 108, 198 | | 2.20 | 293-523 | 272 | | 3.10 | 205 | 280 | | 3.10 | 300 | | | 4.50 | 455 | | | 4.00 | 590 | | | 2.27 | 294 | 256 | | 2.20 | 500 | | | 2.30 | 300 | 273 | | 2.60 | 329 | | | 2.80 | 362 | | | 3.10 | 411 | | | 2.80 | 449 | | | 2.70 | 498 | | | 2.20 | 545 | | | 1.41 | 49 | 277 | | 1.44 | 85 | | | 1.42 | 126 | | | 1.65 | 162 | | | 1.73 | 174 | | | 2.77 | 304 | | Consistent with the finding that the thermal electron attachment rate constant for SF_6 is independent of T for temperatures a few hundred degrees above ambient, are the results of a beam study²²² which showed the energy-integrated total electron attachment cross section at thermal (and nearthermal) energies to be independent of T in the range from 300 to 1200 K. Interestingly, the temperature independence of the total rate of electron attachment to SF_6 is evident for mean energies up to at least 1 eV as can be seen from the data in Fig. 32(b). 264,285 ### 6.5. Density-Reduced Electron Attachment Coefficient, $\eta/N(E/N)$ There have been at least 17 room-temperature (293–298 K) measurements of $\eta/N(E/N)$ in pure SF_6 , $^{26,175,177,178,180-186,188,189,286-290}$ over a period of 40 yr, normally at high E/N to avoid the difficulty arising from the strong electron attachment at low E/N. They mostly employed the steady-state Townsend or the pulsed-Townsend methods. The more recent time-resolved measuring techniques provided an improvement over the traditional avalanche-shape method. All determinations except that of Kline $et\ al.^{26}$ assumed that electron detachment is negligible in these measurements and this is a reasonable assumption 26,180,291 (see also Sec. 8). The experimental results obtained by these methods are shown in Fig. 33. Their quoted uncertainties range from $\pm 5\%$ to $\pm 15\%$, but clearly some of the data diverge considerably more than this. For instance, this is the case for the lowest five data points of McAffee and Edelson²⁸⁶ [their E/N dependence is inconsistent with the well-established steep Fig. 32. (a)Variation of the rate constant for electron attachment to SF_6 at thermal electron energies with gas temperature (see Table 33): (- - -) Refs. 108, 198; (- -) Ref. 256; (\blacktriangledown) Ref. 273; (\bigcirc) Ref. 277; (\blacksquare) Ref. 280; (\bullet) Ref. 272. (b) Variation of the rate constant for electron attachment to SF_6 as a function of mean electron energies for a range of temperatures. The data are those of Christophorou and Datskos from Ref. 264 taken for mixtures of SF_6 in N_2 buffer gas. rise of the electron attachment rate constant as the E/N (or $\langle \varepsilon \rangle$) decreases toward zero (Figs. 29 and 30)], and for the measurements of Siddagangappa et al. 288,289 The solid line in Fig. 33 up to $E/N = 450 \times 10^{-17} \text{ V cm}^2$ is a least squares fit to all the data except those just mentioned. (Aschwanden¹⁸⁶ reported two values of η/N at each value of E/N for which he made measurements below $243 \times 10^{-17} \,\mathrm{V \, cm^2}$. In Fig. 33 are only plotted the lower set of values since these are consistent with the other available measurements.) For E/N values above $450\times10^{-17}\,\mathrm{V\,cm^2}$, we prefer the data of Aschwanden, 185,186 as opposed to the other diverging data. 180-182,184,189,290 Aschwanden's data are more consistent with the values (broken line in Fig. 33) of $\eta/N(E/N)$ we obtained from $\alpha/N(E/N) - [(\alpha - \eta)/N(E/N)]$ using our recommended values for $\alpha/N(E/N)$ (Fig. 17) and $(\alpha - \eta)/N(E/N)$ (Fig. 34). Values obtained from the solid line in Fig. 33 are listed in Table 34 as our recommended values for the $\eta/N(E/N)$ of SF₆. It should be noted that there have been a number of calculations of the $\eta/N(E/N)$ of SF₆ using Boltzmann and Monte Carlo codes (e.g., see Refs. 11, 26–28, 30–34, 38, 40, 41, and 44). These, however, are not discussed here. Finally, it should be pointed out that one can determine Fig. 33. Measured density-reduced electron attachment coefficient, η/N (E/N), for SF₆: (\bigcirc) Ref. 175; (\bigcirc) Ref. 177; (\triangle) Ref. 286; (\triangle) Ref. 178; (\blacksquare) Ref. 184; (\square) Ref. 180; (\Diamond) Ref. 26; (\Diamond) Ref. 287; (*) Ref. 181; (+) Ref. 288; (\blacktriangledown) Refs. 185 and 186; (∇) Ref. 289; (\times) Ref. 290; (\blacksquare) Ref. 188; (\blacktriangleright) Ref. 182; (\bigotimes) Ref. 189; (\boxtimes) Ref. 183; (---) (α/N) – ($\alpha-\eta$)/N (see text); (\longrightarrow) suggested. values of $\eta/N_a(E/N)$ [where N_a refers to the SF₆ gas number density in a mixture with a buffer gas of density N ($N \gg Na$)] for SF₆ in various buffer gases (N₂, Ar, Xe) from the electron-attachment-rate constant data presented in Sec. 6.3 by making use of the w(E/N) values in the corresponding buffer gases (Tables 29 and 30). Furthermore, if the $\langle \varepsilon \rangle (E/N)$ is known (as in the measurements of $\eta/N_a(E/N)$ for SF₆ in N₂, Ar, and Xe buffer gases by Hunter *et al.*²²⁸), values of $\eta/N_a(\langle \varepsilon \rangle)$ can be obtained. ### 6.6. Density-Reduced Effective Ionization Coefficient, $(\alpha - \eta)/N(E/N)$ The data from direct experimental measurements of the density-reduced effective ionization coefficient, $(\alpha - \eta)/N(E/N)$, $^{26,175,177,178,181,183,185,186,189,287,290,292-295}$ are compared in Fig. 34 [Fig. 34(b) is an expanded view of a portion of Fig. 34(a)]. The solid line in Fig. 34 represents our recommended data for $(\alpha - \eta)/N(E/N)$ up to an $E/N = 4000 \times 10^{-17} \, \text{V cm}^2$, based upon a fit to all of the available data. Values obtained from this line are listed in Table 35. Analysis of the data in Fig. 34 in the region near where $(\alpha - \eta)/N(E/N) = 0$ gives a so-called critical value, $(E/N)_{\rm cr}$, of E/N (the value of E/N at which $\eta/N = \alpha/N$) of $(359.3 \pm 3) \times 10^{-17} \, \text{V cm}^2$. For $E/N > 4000 \times 10^{-17} \,\mathrm{V} \,\mathrm{cm}^2$, there is only one set of measurements, namely, that of Hasegawa *et al.*¹⁸⁹ made using the steady-state Townsend method. As discussed previ- TABLE 34. Recommended values of the density-reduced electron attachment coefficient η/N (E/N) for SF₆ as a function of E/N | E/N (10 ⁻¹⁷ V cm ²) | $\eta/N (E/N)$
(10 ⁻¹⁸ cm ²) | E/N (10 ⁻¹⁷ V cm ²) | $\eta/N (E/N)$
(10 ⁻¹⁸ cm ²) | |--|--|--|--| | 75 | 126 | 450 | 26.3 | | 100 | 87 | 500 | 24.5 | | 125 | 68 | 550 | 22.6 | | 150 | 58.0 | 600 | 20.7 | | 175 | 51.7 | 650 | 18.6 | | 200 | 46.8 | 700 | 16.4 | | 225 | 43.3 | 750 | 14.3 | | 250 | 40.1 | 800 | 12.2 | | 300 | 34.8 | 850 | 10.2 | | 350 | 31.6 | 900 | 8.06 | | 400 | 28.3 | | | Fig. 34. (a) Measured density-reduced effective ionization coefficient, $(\alpha - \eta)/N$ (E/N), for SF₆, (b) an expanded portion of Fig. 34(a): (\bullet) Ref. 175; (\blacktriangle) Ref. 177; (\blacksquare) Ref. 178; (\bullet) Ref. 295; (\blacktriangledown) Ref. 292; (\bigcirc) Ref. 26; (\triangle) Ref. 287; (\square) Ref. 181; (\diamondsuit) Ref. 185; (\bigotimes) Ref. 186; (\bigtriangledown) Ref. 290; (+) Ref. 189; (\times) Ref. 183; (*) Ref. 293; (-) recommended. The dotted vertical line in Fig. 34(b) shows $(E/N)_{cr} = (359.3 \pm 3) \times 10^{-17} \text{ V cm}^2$. TABLE 35. Recommended values of the density-reduced effective ionization coefficient $(\alpha - \eta)/N$ (E/N) for SF₆ as a function of E/N | E/N (10 ⁻¹⁷ V cm ²) | $(\alpha - \eta)/N (E/N)$
(10^{-18} cm^2) | E/N (10 ⁻¹⁷ V cm ²) | $(\alpha - \eta)/N (E/N)$
(10^{-18} cm^2) | |--|--|--|--| | 200 | -55.3 | 800 | 110 | | 250 | -32.8 | 850 | 122 | | 300 | -16.1 | 900 | 132 | | 350 | -2.43 | 950 | 143 | | 400 | 10.9 | 1000 | 154 | | 450 | 25.8 | 1250 | 204 | | 500 | 39.3 | 1500 | 250 | | 550 | 51.9 | 2000 | 338 | | 600 | 63.8 | 2500 | 413 | | 650 | 75.2 | 3000 | 478 | | 700 | 87.0 | 3500 | 531 | | 750 | 98.8 | 4000 | 578 | ously, the values of Hasegawa *et al.*¹⁸⁹ of $(\alpha - \eta)/N$ for $E/N > 4000 \times 10^{-17} \, \text{V cm}^2$ agree with the α/N values of Hayashi and Wang.¹⁸² Finally, it should be noted that measurements of $(\alpha-\eta)/N(E/N)$ in mixtures of SF_6 with Xe have been made by Hilmert $et~al.^{296}$ and Xiao $et~al.^{297}$ Similar measurements have also been made by Qiu and Xiao¹⁸³ in mixtures of SF_6 with Ar and Kr, and by Xiao $et~al.^{293}$ in mixtures of SF_6 with Ne. ### 7. Electron Transport in SF₆ ### 7.1. Electron Drift Velocity, w(E/N) The experimental data^{185,186,293,294,298–304} on w(E/N) for SF₆ are plotted in Fig. 35. These measurements were taken at "room temperature" (~293–300 K) and generally at high values of E/N.
The reported uncertainties range from <1% to 15%, as evidenced by the uncertainty of \pm 15% reported by Harris and Jones,²⁹⁸ \pm 5% claimed by Naidu and Fig. 35. Electron drift velocity, w (E/N), in SF₆: (\bullet) Ref. 298; (Δ) Ref. 299; (---) Ref. 300; (∇) Ref. 301; (\bigcirc) Ref. 302; (Δ) Refs. 185 and 186; (+) Ref. 303; (\Diamond) Ref. 293; (∇) Ref. 304; (\longrightarrow) recommended values. TABLE 36. Recommended, suggested, and deduced values of the electron drift velocity w (E/N) for SF₆ (see text) | E/N (10 ⁻¹⁷ V cm ²) | w (E/N) (10 ⁶ cm/s) | E/N (10 ⁻¹⁷ V cm ²) | w (E/N) (10 ⁶ cm/s) | |--|--------------------------------|--|--------------------------------| | 0 | [0.0] ^a | 650 | 31.7 | | 25 | [4.1] | 700 | 33.4 | | 50 | [6.8] | 750 | 35.1 | | 100 | [10.2] | 800 | 36.8 | | 150 | [12.1] | 850 | 38.5 | | 200 | [13.5] | 900 | 40.1 | | 250 | [15.6] | 950 | 41.8 | | 275 | 17.0 ^b | 1000 | 43.4 | | 300 | 18.3 | 1500 | (58.3) ^c | | 350 | 20.5 | 2000 | (71.7) | | 400 | 22.6 | 2500 | (83.9) | | 450 | 24.6 | 3000 | (95.4) | | 500 | 26.4 | 3500 | (106.3) | | 550 | 28.2 | 4000 | (116.8) | | 600 | 30.0 | | | ^aValues in square brackets are deduced from available data (see text). Prasad,³⁰⁰ and the very low uncertainty of $\pm 0.5\%$ quoted by Aschwanden.¹⁸⁵ In general, the lower the E/N, the higher the expected uncertainty. In the E/N range between $\sim 250\times 10^{-17}$ and $\sim 600\times 10^{-17}\,\mathrm{V}\,\mathrm{cm}^2$, the data are more consistent than in the low E/N region. The solid line in Fig. 35 represents a fit to all measurements in the E/N range of $250\times 10^{-17}-1000\times 10^{-17}\,\mathrm{V}\,\mathrm{cm}^2$, except those of Branston, 301 Naidu and Prasad, 300 and Xiao *et al.* 293,294 The reason for excluding these three sets of measurements is because the first two do not show the correct dependence of the electron drift velocity on E/N, and the third is consistently $\sim 20\%$ lower in magnitude than the rest of the data. Values from the solid line in Fig. 35 are given in Table 36 as our recommended data for the w(E/N) in SF₆. Above $E/N = 1000 \times 10^{-17} \,\mathrm{V} \,\mathrm{cm}^2$, there are only two sets of measurements, namely, those of Aschwanden¹⁸⁶ and those of Lisovskiy and Yegorenkov.³⁰⁴ The latter lie systematically lower than the former, but the data sets agree within combined uncertainties. Since the measurements of Aschwanden agree well with the other data at lower E/N, we choose his data as our suggested values of w(E/N) for $E/N > 1000 \times 10^{-17} \,\mathrm{V} \,\mathrm{cm}^2$. These suggested values are shown in Fig. 35 by the broken line and are listed in parenthesis in Table 36. There are no reliable experimental measurements for the electron drift velocity w(E/N) in SF₆ at low E/N. The data of Harris and Jones²⁹⁸ are not direct measurements, but rather values based on an empirical formula they deduced from their measurements. The values of w at low E/N are difficult to measure because the strong electron attachment at low E/N depletes the electrons and results in very weak electron currents. This may also prevent the electron swarm from reaching a steady-state condition with regard to electron attachment. Unfortunately, there are no calculated ^bRecommended values. ^cValues in parenthesis are suggested data based upon the measurements of Aschwanden (Ref. 186). Fig. 36. Electron drift velocity, w (E/N), in SF₆ at low E/N (see text): (\bullet) Ref. 298; (\blacktriangle) Ref. 299; (\bigcirc) Ref. 302; (\triangle) Refs. 185 and 186; (+) Ref. 303; (\diamondsuit) Ref. 293; (—) recommended values from Fig. 35; (---) deduced values for low E/N. values of w(E/N) at low E/N either. Calculations using the Boltzmann transport equation or the Monte Carlo method (e.g., Refs. 11, 26, 27, 30–32, 34, 38–41, 44, and 306) do not extend to low E/N. However, in an effort to provide an estimate of the w(E/N) in SF₆ at low E/N, we have fit a curve to the limited data below $300 \times 10^{-17} \, \mathrm{V \, cm^2}$, requiring that the fitted curve goes through the origin since w(E/N)= 0 at E/N = 0. This fit is shown by the broken line in Fig. 36, and values from the broken curve are presented (in brackets) in Table 36 as our deduced values for w(E/N) for $E/N \le 250 \times 10^{-17} \,\mathrm{V \, cm^2}$ in lieu of direct measurements. It is emphasized that for electronegative gases, such as SF₆ for which the electron attachment cross section is very large at thermal and near thermal electron energies, the definition of electron drift velocity becomes questionable in the E/N region where the majority of electrons are attached prior to reaching a steady-state electron energy distribution. Now that we have been able to obtain independent values of $\eta/N(E/N)$ and w(E/N), we can determine their product, $\eta/N(E/N) \times w(E/N)$, which represents the total electron attachment rate constant, $k_{a,t}(E/N)$, for SF₆ as a function of E/N in pure SF₆. Values of this quantity are listed in Table 37. Since, moreover, plots of the electron attachment rate constant as a function of the mean electron energy, $k_{a,t}(\langle \varepsilon \rangle)$, in various buffer gases is a unique function of the mean electron energy (see Fig. 30), one may infer that the rate constant $k_{a,t}$ measured in a buffer gas A has the same magnitude as measured in a buffer gas B, when the E/N values in A and B are such that the mean electron energies in the two buffer gases are the same. From such considerations, we infer from the data in Table 37 and Fig. 30, that the mean electron energy in pure SF₆ at $E/N = 100 \times 10^{-17} \,\mathrm{V \, cm^2}$ is \sim 4.5 eV. Unfortunately, the data in Table 37 do not extend to sufficiently low E/N to allow determination of $\langle \varepsilon \rangle$ for SF₆ at $E/N < 100 \times 10^{-17} \,\mathrm{V \, cm^2}$. An estimate of the mean electron energies at 350×10^{-17} V cm² < E/N < 700×10^{-17} V cm² can be made by considering the values of the characteristic electron energy $[3/2(eD_T/\mu)]$ inferred from the TABLE 37. Assessed values of $\eta/N(E/N)$ and w(E/N), and their product—total electron attachment rate constant $k_{\rm a,t}(E/N)$ —for pure SF₆ (see text) | E/N (10 ⁻¹⁷ V cm ²) | w (E/N)
(10 ⁶ cm s ⁻¹) | $\eta/N (E/N)$
(10 ⁻¹⁸ cm ²) | $k_{a,t} (E/N)$
(10 ⁻¹² cm ³ s ⁻¹) | |--|--|--|---| | 100 | 10.2 | 87.0 | 887 | | 150 | 12.1 | 58.0 | 702 | | 200 | 13.5 | 46.8 | 632 | | 250 | 15.6 | 40.1 | 626 | | 300 | 18.3 | 34.8 | 637 | | 350 | 20.5 | 31.6 | 648 | | 400 | 22.6 | 28.3 | 440 | | 450 | 24.6 | 26.3 | 647 | | 500 | 26.4 | 24.5 | 647 | | 550 | 28.2 | 22.6 | 637 | | 600 | 30.0 | 20.7 | 621 | | 650 | 31.7 | 18.6 | 590 | $D_{\rm T}/\mu(E/N)$ data in Sec. 7.2 (Fig. 37). From these data, the characteristic energy in SF₆ is estimated to be 7.4 eV at $E/N = 400 \times 10^{-17} \ {\rm V \ cm^2}$ and 8.6 eV at $E/N = 650 \times 10^{-17} \ {\rm V \ cm^2}$. ### 7.2. Transverse Electron Diffusion Coefficient to Electron Mobility Ratio, $D_T/\mu(E/N)$ In Fig. 37 are plotted the values of $D_{\rm T}/\mu(E/N)$ as measured by Naidu and Prasad³⁰⁰ at 293 K. These are the mean values of a number of measurements made at a pressure of 0.27 kPa. Also plotted in Fig. 37 are similar subsequent measurements made by Maller and Naidu³⁰⁷ along with their indicated errors. The two sets of measurements are consistent with each other. A fit to the most recent data is shown by the solid line in the figure and is listed in Table 38 as our presently suggested values of the $D_{\rm T}/\mu(E/N)$ for SF₆. They can be used to determine the characteristic energy, $3/2(eD_{\rm T}/\mu)$, of electrons in SF₆ gas as a function of E/N. Calculated Fig. 37. Transverse electron diffusion coefficient to electron mobility ratio as a function of E/N, $D_{\rm T}/\mu$ (E/N), for SF₆: (- - -) Ref. 300; (\blacksquare) Ref. 307; (\blacksquare) suggested values. TABLE 38. Suggested values of the transverse electron diffusion coefficient to electron mobility ratio $D_{\rm T}/\mu$ (E/N) for SF₆ | E/N (10 ⁻¹⁷ V cm ²) | $D_{\mathrm{T}}/\mu \; (E/N)$ (V) | E/N (10 ⁻¹⁷ V cm ²) | $D_{\mathrm{T}}/\mu \; (E/N)$ (V) | |--|-----------------------------------|--|-----------------------------------| | 365 | 4.86 | 600 | 5.52 | | 400 | 4.99 | 650 | 5.82 | | 450 | 5.13 | 700 | 6.22 | | 500 | 5.21 | 725 | 6.44 | | 550 | 5.32 | | | values of $D_{\rm T}/\mu(E/N)$ for SF₆ using Boltzmann code analysis or the Monte Carlo method can be found in Refs. 11, 26–28, 30–32, 34, 39–41, 43, and 44. ## 7.3. Product of Gas Number Density and Longitudinal Electron Diffusion Coefficient, $ND_1(E/N)$ There are three sets of measurements 185,186,293 of this quantity which are plotted in Fig. 38. Two of these are by Aschwanden 185,186 and have uncertainties as shown by the error bars in the figure. The other set of mesurements is by Xiao *et al.* 293 who state no uncertainties. The solid line in Fig. 38 represents a fit to the three data sets, and values from this fit are listed in Table 39 as our suggested data for the $ND_L(E/N)$ of SF₆. Calculated values of the longitudinal electron diffusion coefficient D_L (or ND_L or D_L/μ) using a Boltzmann code analysis or the Monte Carlo method can be found in Refs. 27, 39–41, 43, and 44. # 8. Autodetachment, Thermally Induced Detachment, Photodetachment, and Collisional Detachment of SF₆ Electron detachment from SF_6^- ions is an important process of basic and applied interest. It can
be induced via a number of ways, for instance, automatically from unstable Fig. 38. Measured values of the product, $ND_L(E/N)$, of the gas number density N and the longitudinal electron diffusion coefficient D_L as a function of E/N for SF₆: (\blacksquare) Ref. 185; (\blacktriangledown) Ref. 186; (\square) Ref. 293; (\longrightarrow) suggested values. TABLE 39. Suggested values of the product of the gas number density and the longitudinal electron diffusion coefficient ND_1 (E/N) for SF_6 | E/N (10 ⁻¹⁷ V cm ²) | $ND_{\rm L}(E/N)$
(10 ²⁴ m ⁻¹ s ⁻¹) | E/N (10 ⁻¹⁷ V cm ²) | $ND_{\rm L} (E/N)$
(10 ²⁴ m ⁻¹ s ⁻¹) | |--|--|--|---| | 85 | 2.05 | 350 | 2.90 | | 100 | 2.10 | 400 | 3.01 | | 150 | 2.28 | 450 | 3.10 | | 200 | 2.46 | 500 | 3.19 | | 250 | 2.65 | 550 | 3.27 | | 300 | 2.79 | 600 | 3.36 | SF_6^{-*} , or from SF_6^{-*} or SF_6^{-} by an applied electric field, or by heat, or by collision with photons, electrons, or neutral species. In this section we briefly elaborate on the autodetachment of SF_6^{-*} and summarize pertinent findings on thermally induced detachment, photodetachment, and collisional detachment of SF_6^{-} (see, also, Refs. 14, 202, 308, and 309). #### 8.1. Autodetachment As shown in the previous section, low-energy free electrons attach very efficiently to the SF_6 molecule forming SF_6^{-*} parent anions. The initially produced isolated SF_6^{-*} parent ion is long lived, but metastable. Its mean lifetime toward autodetachment, that is, for the process $$SF_6^{-*} \rightarrow SF_6^{(*)} + e$$ (12) is $> 1~\mu s$. Process (12) is a function of the internal energy of the unstable SF_6^{-*} . Alternatively, the unstable SF_6^{-*} species can be easily stabilized by collision $$SF_6^{-*} + collision \rightarrow SF_6^{-} + energy$$ (13) and/or by emission of infrared radiation $h\nu$ $$SF_6^{-*} \rightarrow SF_6^{-} + h\nu.$$ (14) ### 8.2. Thermally Induced Detachment The possible effect of temperature on electron detachment from stabilized SF_6^- ions has recently been investigated by Christophorou and collaborators. 264,285 These studies have shown that when the gas temperature was raised from 300 to $\sim\!600\,\mathrm{K},\,$ thermally enhanced electron detachment is observed for such negative ions as $C_6F_6^-$ and $\mathit{c}\text{-}C_4F_6^-$, but not for SF_6^- , that is, not for the reaction $$SF_6^- + heat \rightarrow SF_6 + e.$$ (15) This may be related to the relatively larger electron affinity of the SF₆ molecule (1.06 eV, Table 5) compared to those of the other two molecules ($<0.5 \, \text{eV}$). 264,285,310 Also, the energetically stabilized SF₆⁻ ion does not detach in collisions with SF₆ for collision energies less than $\sim 90 \, \text{eV}$ (see Refs. 311 and 312, and Sec. 8.4). Fig. 39. Photodetachment cross section, $\sigma_{pd}(h\nu)$, for SF_6^- as a function of the photon energy $h\nu$: (\bullet) Ref. 314; (\blacktriangle) Ref. 318. #### 8.3. Photodetachment The first attempt to investigate the photodetachment process in SF₆ was made by Drzaic and Brauman^{98,99} who reported observation of electron detachment from gas-phase SF₆ induced by IR multiphoton absorption. However, they did not observe photodetachment of SF_6^- with "visible light." According to Hay, ⁹⁴ Freiser and Beauchamp³¹³ observed a monotonically increasing photodetachment signal at wavelengths shorter than 350 nm (3.55 eV), but were unable to detect photodetachment from SF_6^- below 370-380 nm (3.25–3.35 eV). Following these initial investigations, new photodetachment methods^{314–318} enabled a quantitative measurement of the photodetachment cross section and energetics of the SF₆ ion. Thus, Mock and Grimsrud³¹⁴ observed photodetachment from SF₆ (in a mixture of SF₆ with nitrogen at 1 atm and 423 K) over a portion of the wavelength range between 300 and 450 nm and estimated a photodetachment onset of 387 nm (3.2 eV). No photodetachment was detectable in the spectral range from 450 to 1200 nm. Mock and Grimsrud³¹⁴ were able to determine absolute values of the photodetachment cross section $\sigma_{\mathrm{pd}}(\lambda)$ in the wavelength range between 300 and 400 nm, and these are shown in Fig. 39 [the data plotted were taken from Fig. 1(a) of their paper]. A more detailed set of measurements was made by Datskos $et~al.^{318}$ using a more sensitive method, 315,316 which allowed accurate determination of the absolute photodetachment cross section, $\sigma_{\rm pd}(h\nu)$, of ${\rm SF}_6^-$ as a function of photon energy $h\nu$. In this method the photodetachment cross section and the photodetachment threshold $E_{\rm th}$ are determined using a two-laser arrangement. Photoelectrons generated by one laser pulse attach to ${\rm SF}_6$ forming ${\rm SF}_6^-$. Another tunable laser pulse, delayed with respect to the first, photodetaches the electrons from the ${\rm SF}_6^-$ ions when $h\nu{>}E_{\rm th}$. The photodetached electrons, being more mobile than the ${\rm SF}_6^-$ ions, induce a detectable transient voltage signal while drifting as free electrons prior to being again attached to ${\rm SF}_6$. The size of this transient signal due to the photodetached electrons is Table 40. Suggested values of the photodetachment cross section σ_{pd} ($h\nu$) of SF_6^- as a function of photon energy (data of Datskos *et al.* obtained by digitizing Fig. 4 of Ref. 318) | Photon energy
(eV) | $\sigma_{\rm pd} (h \nu)$
(10 ⁻¹⁸ cm ²) | Photon energy (eV) | $\sigma_{\rm pd} (h \nu)$
(10 ⁻¹⁸ cm ²) | |-----------------------|---|--------------------|---| | 3.18 | 0.013 | 3.35 | 0.492 | | 3.20 | 0.042 | 3.37 | 0.530 | | 3.22 | 0.070 | 3.40 | 0.638 | | 3.24 | 0.152 | 3.42 | 0.725 | | 3.26 | 0.205 | 3.44 | 0.825 | | 3.28 | 0.211 | 3.45 | 0.983 | | 3.30 | 0.313 | 3.46 | 1.02 | | 3.33 | 0.366 | | | measured and used to determine the cross section $\sigma_{\rm pd}(h\nu)$ (see Refs. 315, 316, and 318 for details). In Fig. 39 are shown the data for the photodetachment cross section $\sigma_{\rm pd}(h\nu)$ for the reaction $$SF_6^- + h \nu \rightarrow SF_6 + e,$$ (16) obtained by Datskos et al. 318 using this technique, along with typical associated errors. They show that the photodetachment cross section has a threshold (i.e., a vertical detachment energy) at 3.16 eV which is about three times the size of the electron affinity of the SF₆ molecule. The cross section increases from a zero value at the threshold to ~ 1.0 $\times 10^{-18}$ cm² at a photon energy of 3.46 eV. The small size of the measured cross section $\sigma_{\rm pd}(h\,\nu)$ has been attributed to the large relaxation in the equilibrium internuclear positions of SF₆ compared to SF₆. ^{94,231,318} With the exception of the lowest two data points of Mock and Grimsrud (which are considered uncertain due to the low sensitivity of the experiment at these wavelengths), the measurements of Mock and Grimsrud are in agreement with those of Datskos et al. in the small wavelength range in which they overlap. Since the measurements of $\sigma_{\rm pd}(h\nu)$ for ${\rm SF}_6^-$ by Datskos et al. 318 are more extensive and their uncertainty indicated, they are listed in Table 40 as our suggested data. Ingólfsson *et al.*³¹⁷ employed a somewhat similar technique to that of Christophorou and co-workers, 315,316,318 but used only a fixed wavelength (337 nm) from a pulsed nitrogen laser. At this wavelength (which corresponds to a photon energy of 3.68 eV) they observed photodetachment from SF_6^- with an estimated cross section of $\sim 10^{-18} \, \mathrm{cm}^2$. This value is not inconsistent with the data in Fig. 39. The cross section data in Fig. 39 should be valuable to investigations attempting to measure the SF_6^- ion densities in various types of gas discharges (e.g., see Ishikawa *et al.*³¹⁹ and Kono *et al.*³²⁰). The small measured cross section for photodetachment of SF_6^- would also indicate that this electron detachment mechanism is of minor significance compared to collisional detachment in gas discharges and gasinsulated high-voltage equipment using SF_6 gas.^{321–324} Finally, it should be noted that no photodetachment cross sections appear to have been published for the other negative ions produced by dissociative electron attachment to SF_6 , except for F^- . Fig. 40. (a) Measured cross sections for collisions of (a) SF_6^- , (b) SF_5^- , and (c) F^- on SF_6 for the following processes: (\blacktriangledown) collisional detachment, $\sigma_{cd}(\mathcal{E}_{cm})$; (\square) collisional production of F^- , $\sigma_{ic,F^-}(\mathcal{E}_{cm})$; (\square) collisional production of SF_5^- , $\sigma_{ic,SF_5^-}(\mathcal{E}_{cm})$; and (\square) charge transfer processes, $\sigma_{ct}(\mathcal{E}_{cm})$. All data in this figure are those of Wang *et al.* from Ref. 325. Note that in Figs. 40(a) and 40(b) the cross section values for $\sigma_{cd}(\mathcal{E}_{cm})$ have been multiplied by a factor of 3 for the convenience of display. ### 8.4. Collisional Detachment Collisional detachment studies involving the three major negative ions $(SF_6^-, SF_5^-, \text{ and } F^-)$ formed by electron attachment to SF_6 have been performed by Champion and collaborators. 311,312,325 Collisional detachment from SF_6^- and SF_5^- in SF_6 was found to have anomalously high energy thresholds [see Figs. 40(a) and 40(b)]. The thresholds for electron release in the reactions $$SF_6^- + SF_6 \rightarrow SF_6 + SF_6 + e$$ (17) and $$SF_5^- + SF_6 \rightarrow SF_5 + SF_6 + e$$ (18) are
$\sim\!90\,\text{eV}$ in the center-of-mass (cm) system. These values are much larger in comparison with the respective electron affinities of SF $_6$ (1.06 eV, Table 5) and SF $_5$ (2.7 eV–3.7 eV, Ref. 103). The anomalously high energy threshold for the collisional detachment reaction (17) has been attributed 311,312,325 to the competing ion-conversion and charge-transfer reactions at cm energies below $\sim\!100\,\text{eV},$ viz. $$SF_6^- + SF_6 \rightarrow F^- + SF_5 + SF_6,$$ (19) $$SF_6^- + SF_6 \rightarrow SF_5^- + F + SF_6,$$ (20) and $$SF_6^- + SF_6 \rightarrow charge transfer products + SF_6.$$ (21) As can be seen from Fig. 40(a), the cross sections, $\sigma_{\text{ic},F^-}(\mathcal{E}_{\text{cm}}), \ \sigma_{\text{ic},SF_{\varsigma}^-}(\mathcal{E}_{\text{cm}}), \ \text{and} \ \sigma_{\text{ct}}(\mathcal{E}_{\text{cm}}), \ \text{for reactions} \ (19),$ (20), and (21) respectively, are much larger than the cross section, $\sigma_{\rm cd}(\mathcal{E}_{\rm cm})$, for the collisional detachment reaction (17), and their thresholds lie at much lower collision energies \mathcal{E}_{cm} (collision energy in the cm system). The energetic thresholds for collisionally decomposing ground-state SF_6^- via the reactions (17), (19), and (20) are, respectively, 1.06 eV [= $EA(SF_6)$, Table 5], 1.61 eV [= $D(SF_5-F)$ $+EA(SF_6)-EA$ (F), with D (SF₅-F) = 3.95 eV (Table 8), EA $(SF_6) = 1.06 \text{ eV}$, and EA $(F) = 3.40 \text{ eV}^{103}$], and 1.34 eV [=D] $(SF_5-F) + EA(SF_6)-EA(SF_5)$, with D $(SF_5-F) = 3.95 \text{ eV}$ (Table 8), EA $(SF_6) = 1.06 \text{ eV}$, and EA $(SF_5) = 3.66 \text{ eV}$ (average of the two highest values listed in Ref. 103). Clearly, the data in Fig. 40(a) show that electron detachment from SF₆ by SF₆ has a very small probability of occurrence for collision energies $\mathcal{E}_{cm}{<}60\,\text{eV},$ and that the dominant collisional decomposition mechanism of SF₆ is dissociation. It is interesting to note also that studies of reactions of the form $A^-+B \rightarrow A+B^-$, with A^- being SF_6^- , have shown³²⁶ that the large geometrical change between SF₆ and SF₆ introduces an internal barrier in the reaction coordinates and hence such reactions proceed with a low reaction rate con- Similarly, the measurements of Wang $et\ al.^{325}$ shown in Fig. 40(b) for SF_5^- , indicate that the cross sections for the reactions $$SF_5^- + SF_6 \rightarrow F^- + SF_4 + SF_6$$ (22) and $$SF_5^- + SF_6 \rightarrow charge transfer products + SF_6$$ (23) have much lower energy thresholds than that for the electron detachment reaction (18). The cross sections for reactions (22) and (23) far exceed that for reaction (18) below $\sim 100\,\mathrm{eV}$. In contrast to the above findings on the collisional detachment in SF_6 of the SF_6^- and SF_5^- ions, the measurements of Wang *et al.* shown in Fig. 40(c) for the collisional detachment of F^- in SF_6 , viz., $$F^- + SF_6 \rightarrow F + SF_6 + e \tag{24}$$ indicate a rather low energy threshold (\sim 8.0 eV). Additionally, the cross-section values for reaction (24) progressively exceed those of the charge-transfer reactions as the reaction energy increases above \sim 20 eV. It is clear then that charge transfer and collision-induced dissociation processes are the dominant inelastic channels in SF₆ involving the destruction of SF₆⁻, SF₅⁻, and F⁻ at low collision energies. These find- Fig. 41. Density-reduced electron detachment coefficient δ/N (E/N) as a function of E/N for SF₆ (T=293–296 K) at the pressures indicated in the legend: (-, \cdots , - \cdot -) Ref. 291; (\bigcirc), (∇) Ref. 329; (\bullet), (\triangle), (\square), (\Diamond), (∇), (\times), (\triangle), (\square) Ref. 330. ings are also consistent with the results of Wang *et al.*³²⁵ on the destruction of SF_6^- , SF_5^- , and F^- in rare gases. Interestingly, evidence has been obtained 311,325 that long-lived energetically unstable states of SF_6^- can contribute to collisional detachment. Also, experimental evidence has Fig. 42. Measured reduced mobilities μ_0^- (E/N) for negative ions in SF₆. Mass identified data of Patterson from Ref. 327: (- -) SF₅; (—) SF₆; (-·-) SF₆(SF₆); (-·-) SF₆(SF₆)₂. Mass identified data of de Urquijo et al. from Ref. 340: (-···-) SF₅; (···) SF₆. Measurements without mass analysis: (\boxtimes), (\square), (\square) Ref. 336; (\spadesuit), (\diamondsuit) Ref. 337; (\times) Ref. 184; (∇) Ref. 338; (\bigcirc) Ref. 339; (\triangle), (\blacktriangle) Ref. 303. Fig. 43. Measured reduced mobilities μ_0^- (E/N) for the fastest ion in the study of Nakamura in Ref. 303, presumed to be F⁻ in SF₆. been provided^{327–330} that negative-ion clusters such as $(SF_6^-)SF_6$ (and also clusters involving F^-) can form in parent SF_6 gas and can contribute to the pressure dependence³²⁹ of the measured density-normalized electron detachment coefficient δ/N in SF_6 (the gas pressure in these experiments was 7.4 and 11.1 kPa). Figure 41 shows the measurements of the density-reduced electron detachment coefficient, $\delta/N(E/N)$, measured in SF₆ by O'Neill and Craggs, 291 Hansen et al., 329 and Hilmert and Schmidt. 330 The density dependence of $\delta/N(E/N)$ observed by O'Neill and Craggs (at pressures between 0.33 and 1.35 kPa) is seen to continue up to the higher pressures (7.43 and 11.15 kPa) employed by Hansen et al. 329 The coefficient $\delta/N(E/N)$ decreases with increasing N. They attributed this decrease to a three-body process $SF_6^- + SF_6 + SF_6$ \rightarrow (SF₆)SF₆+SF₆, which leads to the formation of a stable complex (SF₆)SF₆ in which the electron is more tightly bound than in SF₆. This process then competes with the two-body detachment reaction which is pressure independent. The data shown in Fig. 41 were obtained using swarm techniques. Data obtained by time-lag to breakdown experiments^{323,324,331} are not plotted since they gave very different and less accurate values because of the way the coefficient was evaluated in these experiments (see discussion in Hilmert and Schmidt³³⁰). The high-energy collisional detachment thresholds of the SF_6 negative ions in SF_6 gas accounts for the observed small values of the collisional detachment coefficient compared to the values of the coefficients of other negative ion–molecule reactions in SF_6 . ³¹¹ As a consequence, collisional detachment in SF_6 , and electrical properties of SF_6 such as discharge initiation probabilities that depend on electron detachment, are sensitive to the presence of impurities, such as water and air, that may form clusters with SF_6 -originated negative ions for which collisional detachment may be more probable. ^{332–334} Fig. 44. Measured reduced mobilities, μ_0^+ (E/N), for SF₅⁺ and SF₃⁺ in parent SF₆ gas (T=290–300 K): (\blacksquare) Ref. 336; (\blacksquare) Ref. 184; (\blacksquare) Ref. 341; (\blacksquare) Ref. 339; (\blacksquare) Ref. 342; (\frown) SF₅⁺ from Ref. 342; (\frown) SF₅⁺ from Ref. 344; (\frown) SF₃⁺ from Ref. 344; (\frown) SF₅⁺ from Ref. 345. Also shown are the reduced mobilities of (\bigcirc) SF⁺ and (\bigcirc) SF₂⁺ from Ref. 343. ### 9. Ion Transport in SF₆ The motion of ions through SF_6 gas is an important aspect of modeling many systems utilizing SF_6 . While no direct cross sections are available for these processes, some ion transport data are available. We briefly summarize the available data here. A number of studies have attempted to quantify the moof negative ions 184,303,327,335–340 and positive $ions^{184,336,339,341-345}$ formed by electron impact on SF₆ in parent SF_6 gas. These studies include measurements of ion mobilities $^{184,303,327,336-345}$ and ion diffusion. 303,337,340,342,343 They are not only limited in number, but the interpretation of the measurements is often hindered by the absence of mass spectrometric identification of the ions present in the system and also by the absence of reliable information on the pertinent ion-transformation processes under varied experimental conditions. Only the work of Patterson³²⁷ and de Urquijo et al. 340 on negative ions and the work of de Urquijo et al. 342 on positive ions included mass analysis. The rest of the studies inferred the nature of the ions by reference to the mass spectrometric data of these three studies. The early data on the mobilities of positive ions, negative ions, and ion clusters in the parent SF₆ gas have been summarized and discussed by Brand and Jungblut³²⁸ and by Morrow. 12 In Fig. 42 are plotted the reduced mobilities [that is, mobilities referred to standard pressure (101.325 kPa) and tem- perature (277.16 K)], $\mu_0^-(E/N)$, for the negative ions SF_5^- , SF_6^- , SF_6^- (SF_6), and SF_6^- (SF_6)₂ in SF_6 . As mentioned in the preceding paragraph, only Patterson³²⁷ and de Urquijo³⁴⁰ identified the ions by mass spectrometry. The identification of the ionic mobilities with the anionic species by other researchers was made primarily by virtue of their agreement with the $\mu_0^-(E/N)$ data of Patterson for the corresponding negative-ion species. According to Brand and Jungblut, ³²⁸ all measured negative ion mobilities can be assigned to one or more of the following ions: SF_5^- , SF_6^- , SF_6^- (SF_6), and SF_6^- (SF_6)₂. In Fig. 43 are shown the $\mu_0^-(E/N)$ measurements of Nakamura³⁰³ for the fastest negative ion observed in parent SF₆ gas in his study, which he presumed to be F⁻. Similar measurements of the reduced mobilities, $\mu_0^+(E/N)$, of positive ions in parent SF₆ gas are shown in Fig. 44. Along with the early data^{184,336,339,341} plotted in Fig. 44 are shown the more recent mass-identified measurements of Talib and Saporoschenko^{344,345} and de Urquijo *et al.*^{342,343} In Fig. 45(a) are shown the
$ND_L^-(E/N)$ measurements of Nakamura³⁰³ for negative ions in SF_6 (closed symbols). Although in the experiments of Nakamura there was no mass analysis of the negative ions present in the system, he ascribed his mobility measurements to the SF_6^- , SF_5^- , and F^- ions as shown in the figure. More recent mass-identified measurements of $ND_L^-(E/N)$ for SF_6^- and SF_5^- in SF_6 by de Fig. 45. (a) $ND_L^-(E/N)$ for the negative ions SF_6^- , SF_5^- and F^- in SF_6 (closed symbols, data of Nakamura from Ref. 303; open symbols, data of de Urquijo et al. from Ref. 340). (b) $ND_{L}^{+}(E/N)$ for the positive ions SF_{5}^{+} , SF₃⁺, SF₂⁺, and SF⁺ in SF₆ (data of de Urquijo et al. from Refs. 342 and 343). Urquijo et al. 340 are also shown. De Urquijo et al. 342,343 also measured $ND_1^+(E/N)$ for the positive ions SF_5^+ , SF_3^+ , SF_2^+ , and SF⁺ in SF₆, and these results are shown in Fig. 45(b). There seem to be no measurements of $D_T^-/\mu(E/N)$ for negative ions in SF₆. However, Naidu and Prasad³³⁷ measured the so-called Townsend energy factor $k_{\rm T}$ (ratio of the mean ion energy to the mean energy of the gas molecules) as a function E/N at T=293 K for pressures equal to 0.16 and 0.32 kPa. Table 41 lists the measurements of Naidu and Prasad³³⁷ for $k_T^-(E/N)$ and the $D_T^-/\mu(E/N)$ values we calculated from these using the equation $k_T^-(E/N)$ = 39.6 $D_T^-/\mu(E/N)$ (for T = 293 K and a Maxwell distribu- TABLE 41. $k_{\rm T}^-(E/N)$ and $D_{\rm T}^-/\mu(E/N)$ for negative ions in SF₆ (T = 293 K) (data of Naidu and Prasad in Ref. 337) | E/N (10 ⁻¹⁷ V cm ²) | $k_{\mathrm{T}}^{-}\left(E/N\right)$ | $D_{\mathrm{T}}^{-}/\mu~(E/N)$ (V) | |--|--------------------------------------|------------------------------------| | 30.3 | 1.0 | 0.025 | | 60.6 | 1.2 | 0.030 | | 91.0 | 1.7 | 0.043 | | 121.3 | 2.6 | 0.066 | | 151.6 | 3.5 | 0.088 | | 181.9 | 4.6 | 0.116 | | 212.2 | 5.9 | 0.149 | Fig. 46. Volume (ion-ion) recombination rate coefficient k_r in SF₆ as a function of gas pressure: (\bigcirc) Ref. 346 ($T=298 \,\mathrm{K}$); (\blacksquare) Ref. 347 ($T=298 \,\mathrm{K}$) = 296 K); (\triangle) Ref. 348 (T= 296 K). tion function for the ion kinetic energies). The quantity $D_{\rm T}^{-}/\mu(E/N)$ is seen to increase from a value of 0.025 V at $E/N = 30.3 \times 10^{-17} \,\text{V cm}^2$ to a value of 0.149 V at E/N $=212.2\times10^{-17} \text{ V cm}^2$. Finally, in Fig. 46 are shown the measurements of Wilson et al. 346 and Schmidt and collaborators 347,348 of the volume (ion-ion) recombination rate coefficient k_r for SF₆ as a function of gas pressure (T = 296 - 298 K). ### 10. Recommended or Suggested Electron Collision Cross Sections and Electron Transport Coefficients for SF₆ In Fig. 47 are plotted the recommended or suggested cross sections for SF₆ discussed in this paper: - (i) $\sigma_{\rm sc.t}(\varepsilon)$ -Table 9, Fig. 5; - (ii) $\sigma_{\rm e.int}(\varepsilon)$ -Table 13, Fig. 7; - $\sigma_{\rm m}(\varepsilon)$ -Table 14, Fig. 8; (iii) - $\sigma_{\text{vib.t}}(\varepsilon)$ -Table 15, Fig. 12; (iv) - (v) $\sigma_{i,t}(\varepsilon)$ -Table 17, Fig. 14; - $\sigma_{\rm dis,neut,t}(\varepsilon)$ -Table 20; Fig. 18; (vi) - (vii) $\sigma_{a,SF_{\epsilon}^{-}}(\varepsilon)$ -Table 28, Figs. 24(a) and 28; and - (viii) $\sigma_{\rm da.t}(\varepsilon)$ -Table 28, Fig. 28. A number of additional electron collision cross sections have been discussed in the paper and data on these can be found as follows: - $\sigma_{\rm e,diff}(\varepsilon)$ -Tables 10, 11, and 12, Fig. 6; (i) - (ii) $\sigma_{\rm i,partial}(\varepsilon)$ -Fig. 15; - (iii) $\sigma_{\rm a.t}(\varepsilon)$ -Table 28, Fig. 22; - $\sigma_{a,SF_{\varepsilon}^{-}}(\varepsilon)$ -Table 25, Fig. 24(b); (iv) - $\sigma_{a,SF_4^-}(\epsilon), \ \sigma_{a,SF_3^-}(\epsilon), \ \text{and} \ \sigma_{a,SF_2^-}(\epsilon)\text{-Table 27, Figs.}$ - $\sigma_{a,F_{-}}(\varepsilon)$ -Table 27, Figs. 26 and 28; and (vi) - $\sigma_{\rm a,F^-}(\epsilon)$ Table 27, Figs. 27 and 28. Fig. 47. Recommended and suggested electron collision cross sections for SF₆. Based on the discussions in the paper, recommended or suggested data for the electron transport coefficients, density-reduced electron attachment and ionization coefficients, and electron attachment rate constants have been presented as follows: - (i) $\alpha/N(E/N)$ -Table 19, Fig. 17; - (ii) $\eta/N(E/N)$ -Table 34, Fig. 33; - (iii) $\eta/N_a(\langle \varepsilon \rangle)$ -Tables 29 and 30; - (iv) $(\alpha \eta)/N(E/N)$ -Table 35, Fig. 34; - (v) $k_{a,t}(E/N)$ in Ar, Xe, or N₂-Tables 29 and 30, Fig. 29; - (vi) $k_{a,t}(\langle \varepsilon \rangle)$ -Table 31, Fig. 30; - (vii) w(E/N)-Table 36, Figs. 35 and 36; - (viii) $D_{\rm T}/\mu(E/N)$ -Table 38, Fig. 37; and - (ix) $ND_L(E/N)$,—Table 39, Fig. 38. Tables of the recommended and suggested data can be found at http://www.eeel.nist.gov/811/refdata on the World Wide Web. ### 11. Data Needs for SF₆ In spite of the many studies on electron interactions with the SF_6 molecule there still exist distinct gaps in the avail- able data. The most significant data need is for direct measurements of cross sections for vibrational excitation and for electron-impact dissociation into neutral fragments. Additionally, a determination of the momentum transfer cross section at energies below 2.5 eV is needed. These data are necessary to extend the recommended and suggested data in the present work, and hence provide a reliable source of electron–SF₆ interaction data for use in computer modeling codes. ### 12. Acknowledgments We wish to thank Professor M. Hayashi of the Gaseous Electronics Institute, Nagoya, Japan, for providing to us his list of references on SF_6 and for valuable comments, Professor S. J. Buckman of the Australian National University, Canberra, Australia for his unpublished measurements on differential electron scattering cross sections, and Professor H. Hotop of Universität Kaiserslautern for information on their electron attachment data in SF_6 at low electron energies. We are also grateful to Robin J. Martucci of the Electricity Division of the National Institute of Standards and Technology for her assistance with the literature. ### 13. References - ¹L. G. Christophorou and S. R. Hunter, in *Electron-Molecule Interactions and Their Applications*, edited by L. G. Christophorou (Academic, Orlando, FL, 1984), Vol. 2, Chap. 5. - ²L. G. Christophorou, J. K. Olthoff, and D. S. Green, "Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SF₆," National Institute of Standards and Technology (NIST), NIST Technical Note 1425 (1997). - ³ Intergovernmental Panel on Climate Change (IPCC), *Climate Change* 1995, edited by J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (Cambridge University Press, Cambridge, New York, 1996), p. 22. - ⁴M. K. W. Ko, N. D. Sze, W.-C. Wang, G. Shia, A. Goldman, F. J. Murcray, D. G. Murcray, and C. P. Rins, J. Geophys. Res. 98, 10 499 (1993). - ⁵R. A. Morris, T. M. Miller, A. A. Viggiano, J. F. Paulson, S. Solomon, and G. Reid, J. Geophys. Res. **100**, 1287 (1995). - ⁶D. J. Wuebbles and A. K. Jain, in "Electrical Transmission and Distribution Systems, Sulfur Hexafluoride, and Atmospheric Effects of Greenhouse Gas Emissions Conference," U.S. Environmental Protection Agency Conference Proceedings Report (August 1995), p. 8. - ⁷L. S. Geller, J. W. Elkins, J. M. Lobert, A. D. Clarke, D. F. Hurst, J. H. Butler, and R. C. Myers, Geophys. Res. Lett. **24**, 675 (1997). - ⁸T. H. Teich, in *Electron and Ion Swarms*, edited by L. G. Christophorou (Pergamon, New York, 1981), p. 241. - ⁹J. W. Gallagher, E. C. Beaty, J. Dutton, and L. C. Pitchford, J. Phys. Chem. Ref. Data 12, 109 (1983). - ¹⁰S. Trajmar, D. F. Register, and A. Chutjian, Phys. Rep. 97, 219 (1983). - ¹¹ J. P. Novak and M. F. Fréchette, J. Appl. Phys. 55, 107 (1984). - ¹²R. Morrow, IEEE Trans. Plasma Science **PS-14**, 234 (1986). - ¹³E. Weigold, Y. Zheng, and W. von Niessen, Chem. Phys. **150**, 405 (1991). - ¹⁴L. G. Christophorou and R. J. Van Brunt, IEEE Trans. Dielect. Electr. Insul. 2, 952 (1995). - ¹⁵ G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (D. Van Nostrand Company, Inc., Princeton, NJ, 1966). - ¹⁶J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic, New York, 1979). - ¹⁷ M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic, Orlando, FL, 1985), Vol. III. - ¹⁸J. W. Gallagher, C. E. Brion, J. A. R. Samson, and P. W. Langhoff, J. Phys. Chem. Ref. Data 17, 9 (1988). - ¹⁹L. G. Christophorou, J. K. Olthoff, and M. V. V. S. Rao, J. Phys. Chem. Ref. Data 25, 1341 (1996). - ²⁰ L. G. Christophorou, J. K. Olthoff, and M. V. V. S. Rao, J. Phys. Chem. Ref. Data **26**, 1 (1997). - ²¹L. G. Christophorou, J. K. Olthoff, and Y. Wang, J. Phys. Chem. Ref. Data 26, 1205 (1997). - ²²L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 27, 1 (1998). - ²³ L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 27, 889 (1998). - ²⁴L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 28, 131 (1999) - ²⁵ L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 28, 967 (1999) - ²⁶L. E. Kline, D. K. Davies, C. L. Chen, and P. J. Chantry, J. Appl. Phys. 50, 6789 (1979). - ²⁷ T. Yoshizawa, Y. Saki, H. Tagashira, and S. Sakamoto, J. Phys. D 12, 1839 (1979). - ²⁸ H. Itoh, M. Shimozuma, and H. Tagashira, J. Phys. D **13**, 1201 (1980). - ²⁹G. R. Govinda Raju and R. Hackam, J. Appl. Phys. **52**, 3912 (1981). - ³⁰ J. P. Novak and M. F. Fréchette, J. Phys. D **15**, L105 (1982). - ³¹M. S. Dincer and G. R. Govinda Raju, J. Appl. Phys. **54**, 6311 (1983). - ³² J. P. Novak and M. F. Fréchette, in *Gaseous
Dielectrics IV*, edited by L. G. Christophorou and M. O. Pace (Pergamon, New York, 1984), p. 34. - ³³M. Hayashi and T. Nimura, J. Phys. D 17, 2215 (1984). - ³⁴ I. M. Bortnik, A. N. Kushko, and A. N. Lobanov, Sov. Phys. Tech. Phys. 30, 1015 (1985). - ³⁵M. F. Fréchette and J. P. Novak, J. Phys. D **20**, 438 (1987). - ³⁶M. Yousfi and A. Chatwiti, J. Phys. D **20**, 1457 (1987). - ³⁷ A. V. Phelps, in *Gaseous Dielectrics V*, edited by L. G. Christophorou and D. W. Bouldin (Pergamon, New York, 1987), p. 1. - ³⁸ H. Itoh, Y. Miura, N. Ikuta, Y. Nakao, and H. Tagashira, J. Appl. Phys. 21, 922 (1988). - ³⁹ K. Satoh, H. Itoh, Y. Nakao, and H. Tagashira, J. Phys. D **21**, 931 (1988). - ⁴⁰ A. V. Phelps and R. J. Van Brunt, J. Appl. Phys. **64**, 4269 (1988). - ⁴¹ H. Itoh, M. Kawaguchi, K. Satoh, Y. Miura, Y. Nakao, and H. Tagashira, J. Phys. D **23**, 299 (1990). - ⁴²M. Hayashi and S. Hara, Proceedings of Joint Symposium on Electron and Ion Swarms and Low-Energy Electron Scattering, Gold Coast, Australia, 18–20 July 1991, p. 109. - ⁴³ H. Itoh, T. Miyachi, M. Kawaguchi, Y. Nakao, and H. Tagashira, J. Phys. D **24**, 277 (1991). - ⁴⁴ H. Itoh, T. Matsumura, K. Satoh, H. Date, Y. Nakao, and H. Tagashira, J. Phys. D **26**, 1975 (1993). - ⁴⁵ M. Hayashi, K. Nakamura, L. G. Christophorou, and J. K. Olthoff (unpublished). - ⁴⁶ J. L. Dehmer, A. C. Parr, S. Wallace, and D. Dill, Phys. Rev. A 26, 3283 (1982). - ⁴⁷B. M. Addison-Jones, K. H. Tan, B. W. Yates, J. N. Cutler, G. M. Ban-croft, and J. S. Tse, J. Electron Spectrosc. Relat. Phenom. 48, 155 (1989). - ⁴⁸ D. M. P. Holland, D. A. Shaw, A. Hopkirk, M. A. MacDonald, and S. M. McSweeney, J. Phys. B **25**, 4823 (1992). - ⁴⁹D. M. P. Holland, M. A. MacDonald, P. Baltzer, L. Karlsson, M. Lundqvist, B. Wannberg, and W. von Niessen, Chem. Phys. 192, 333 (1995). - ⁵⁰ A. J. Yencha, D. B. Thompson, A. J. Cormack, D. R. Cooper, M. Zubek, P. Bolognesi, and G. C. King, Chem. Phys. 216, 227 (1997). - ⁵¹E. Fainelli, F. Maracci, R. Platania, and L. Avaldi, J. Electron Spectrosc. Relat. Phenom. 87, 169 (1998). - ⁵² K. H. Sze and C. E. Brion, Chem. Phys. **140**, 439 (1990). - ⁵³L. C. Lee, E. Phillips, and D. L. Judge, J. Chem. Phys. **67**, 1237 (1977). - ⁵⁴J. Gustafsson, Phys. Rev. A **18**, 1481 (1978). - ⁵⁵G. Bieri, L. Åsbrink, and W. von Niessen, J. Electron Spectrosc. Relat. Phenom. 27, 129 (1982). - ⁵⁶F. A. Gianturco and A. Jain, Phys. Rep. **143**, 347 (1986). - ⁵⁷ V. I. Nefedov, J. Struct. Chem. **11**, 272 (1970). - ⁵⁸ J. L. Dehmer, J. Chem. Phys. **56**, 4496 (1972). - ⁵⁹ A. P. Hitchcock and M. J. Van der Wiel, J. Phys. B **12**, 2153 (1979). - 60 K. Codling, J. Chem. Phys. 44, 4401 (1966). - ⁶¹D. Blechschmidt, R. Haensel, E. E. Koch, U. Nielsen, and T. Sagawa, Chem. Phys. Lett. **14**, 33 (1972). - ⁶² M. Sasanuma, E. Ishiguro, H. Masuko, Y. Morioka, and M. Nakamura, J. Phys. B **11**, 3655 (1978). - ⁶³ K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano, J. Chem. Phys. **93**, 8717 (1990). - ⁶⁴ J. A. Simpson, C. E. Kuyatt, and S. R. Mielczarek, J. Chem. Phys. 44, 4403 (1966). - ⁶⁵ J. F. Ying, T. A. Daniels, C. P. Mathers, H. Zhu, and K. T. Leung, J. Chem. Phys. **99**, 3390 (1993). - ⁶⁶T. M. Zimkina and V. A. Fomichev, Sov. Phys.-Dokl. 11, 726 (1967). - ⁶⁷ A. S. Vinogradov and T. M. Zimkina, Opt. Spectrosc. 32, 17 (1972). - ⁶⁸ E. S. Gluskin, A. A. Krasnoperova, and L. N. Mazalov, J. Struct. Chem. 18, 156 (1977). - ⁶⁹ Y. Sato, K. Ueda, H. Chiba, E. Shigemasa, and A. Yagishita, Chem. Phys. Lett. **196**, 475 (1991). - ⁷⁰ K. Mochiji, K. Lee, C.-I. Ma, D. Y. Kim, M. Mahalingam, and D. M. Hanson, J. Vac. Sci. Technol. A **12**, 216 (1994). - ⁷¹T. Masuoka and J. A. R. Samson, J. Chem. Phys. **75**, 4946 (1981). - ⁷² J. C. Creasey, I. R. Lambert, R. P. Tuckett, K. Codling, L. J. Frasinski, P. A. Hatherly, and M. Stankiewicz, J. Chem. Soc. Faraday Trans. 87, 1287 (1991). - ⁷³D. S. Peterka, M. Ahmed, C.-Y. Ng, and A. G. Suits, Chem. Phys. Lett. 312, 108 (1999). - ⁷⁴V. H. Dibeler and F. L. Mohler, J. Res. Natl. Bur. Stand. **40**, 25 (1948). - ⁷⁵ D. M. Curtis and J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. **63**, 241 (1985). - ⁷⁶ L. J. Frasinski, M. Stankiewicz, K. J. Randall, P. A. Hatherly, and K. Codling, J. Phys. B **19**, L819 (1986). - ⁷⁷ J. H. D. Eland, F. S. Wort, P. Lablanquie, and I. Nenner, Z. Phys. D 4, 31 (1986). - ⁷⁸V. H. Dibeler and J. A. Walker, J. Chem. Phys. **44**, 4405 (1966). - ⁷⁹M. Sasanuma, E. Ishiguro, T. Hayaisha, H. Masuko, Y. Morioka, T. Na- - kajima, and M. Nakamura, J. Phys. B 12, 4057 (1979). - ⁸⁰ L. Karlsson, L. Mattsson, R. Jadrny, T. Bergmark, and K. Siegbahn, Phys. Scr. 14, 230 (1976). - ⁸¹ A. W. Potts, H. J. Lempka, D. G. Streets, and W. C. Price, Philos. Trans. R. Soc. London, Ser. A **268**, 59 (1970). - ⁸²R. K. Asundi and J. D. Craggs, Proc. Phys. Soc. 83, 611 (1964). - ⁸³S. Trajmar and A. Chutjian, J. Phys. B **10**, 2943 (1977). - ⁸⁴E. D. Nostrand and A. B. F. Duncan, J. Am. Chem. Soc. **76**, 3377 (1954). - ⁸⁵T.-K. Liu, G. Moe, and A. B. F. Duncan, J. Chem. Phys. 19, 71 (1951). - ⁸⁶ A. Chutjian, S. K. Srivastava, and S. Trajmar, Ninth International Conference on the Physics of Electronic and Atomic Collisions, Seattle, WA, 1975, Vol. 1, p. 137. - ⁸⁷C. C. Turci, J. T. Francis, T. Tyliszczak, G. G. B. de Souza, and A. P. Hitchcock, Phys. Rev. A 52, 4678 (1995). - ⁸⁸ J. T. Francis, C. C. Turci, T. Tyliszczak, G. G. B. de Souza, N. Kosugi, and A. P. Hitchcock, Phys. Rev. A 52, 4665 (1995). - ⁸⁹I. W. Fomunung, Z. Chen, and A. Z. Msezane, Phys. Rev. A 53, 806 (1996). - ⁹⁰ Z. Felfli, I. Fomunung, D. Bessis, and A. Z. Msezane, Chem. Phys. **211**, 325 (1996). - ⁹¹ K. Rohr, J. Phys. B **10**, 1175 (1977). - ⁹² J. Randell, D. Field, S. L. Lunt, G. Mrotzek, and J. P. Ziesel, J. Phys. B 25, 2899 (1992). - 93 P. J. Hay, J. Am. Chem. Soc. 99, 1013 (1977). - ⁹⁴P. J. Hay, J. Chem. Phys. **76**, 502 (1982). - 95 R. Tang and J. Callaway, J. Chem. Phys. 84, 6854 (1986). - ⁹⁶M. Klobukowski, Z. Barandiaran, L. Seijo, and S. Huzinaga, J. Chem. Phys. 86, 1637 (1987). - ⁹⁷ J. A. D. Stockdale, R. N. Compton, and H. C. Schweinler, J. Chem. Phys. 53, 1502 (1969). - ⁹⁸ P. S. Drzaic and J. I. Brauman, Chem. Phys. Lett. **83**, 508 (1981). - ⁹⁹P. S. Drzaic and J. I. Brauman, J. Am. Chem. Soc. **104**, 13 (1982). - ¹⁰⁰G. L. Gutsev (Plenum, New York, 1992), p. 504 [translated from Izv. Ak. Nauk, Se. Khimi. No. 3, 641 (1992)]. - ¹⁰¹G. L. Gutsev, Int. J. Mass Spectrom. Ion Processes **115**, 185 (1992). - ¹⁰² K. W. Richman and A. Banerjee, Int. J. Quantum Chem.: Quantum Chem. Symp. 27, 759 (1993). - ¹⁰³ A. A. Christodoulides, D. L. McCorkle, and L. G. Christophorou, in Electron-Molecule Interactions and Their Applications, edited by L. G. Christophorou (Academic, New York, 1984), Vol. 2, Chap. 6. - ¹⁰⁴E. P. Grimsrud, S. Chowdhury, and P. Kebarle, J. Chem. Phys. 83, 1059 (1985). - ¹⁰⁵ E. C. M. Chen, L.-R. Shuie, E. D. D'sa, C. F. Batten, and W. E. Wentworth, J. Chem. Phys. 88, 4711 (1988). - ¹⁰⁶E. C. M. Chen, J. R. Wiley, C. F. Batten, and W. E. Wentworth, J. Phys. Chem. **98**, 88 (1994). - ¹⁰⁷E. Miyoshi, Y. Sakai, and S. Miyoshi, J. Chem. Phys. **88**, 1470 (1988). - ¹⁰⁸ L. G. Christophorou, D. L. McCorkle, and J. G. Carter, J. Chem. Phys. 54, 253 (1971); 57, 2228E (1972). - ¹⁰⁹L. G. Christophorou, D. L. McCorkle, and J. G. Carter, J. Chem. Phys. 57, 2228 (1972). - ¹¹⁰C. L. Chen and P. J. Chantry, J. Chem. Phys. **71**, 3897 (1979). - ¹¹¹P. W. Harland and J. C. J. Thynne, J. Phys. Chem. 73, 4031 (1969). - ¹¹² J. L. Dehmer, J. Siegel, and D. Dill, J. Chem. Phys. **69**, 5205 (1978). - ¹¹³M. V. V. S. Rao and S. K. Srivastava, Proceedings of the XVIIIth International Conference on the Physics of Electronic and Atomic Collisions, Aarhus, Denmark, July 21–27, 1993; Abstracts of Contributed Papers, edited by T. Andersen, B. Fastrup, F. Folkmann, and H. Knudsen, p. 345. - 114 B. Lehmann, Z. Naturforsch. **25A**, 1755 (1970). 115 M. Fenzlaff, R. Gerhard, and E. Illenberger, J. Chem. Phys. **88**, 149 (1988). - ¹¹⁶M. S. Dababneh, Y.-F. Hsieh, W. E. Kauppila, C. K. Kwan, S. J. Smith, T. S. Stein, and M. N. Uddin, Phys. Rev. A 38, 1207 (1988). - 117 G. Kasperski, P. Mozejko, and C. Szmytkowski, Z. Phys. D 42, 187 (1997) - ¹¹⁸N. I. Romanyuk, I. V. Chernyshova, and O. B. Shpenik, Sov. Phys. Tech. Phys. **29**, 1204 (1984). - ¹¹⁹R. E. Kennerly, R. A. Bonham, and M. McMillan, J. Chem. Phys. **70**, 2039 (1979). - ¹²⁰ K. Rohr, J. Phys. B 12, L185 (1979). - ¹²¹F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. **102**, 5743 (1995). - ¹²²W. M. Johnstone and W. R. Newell, J. Phys. B **24**, 473 (1991). - ¹²³I. Gyemant, Zs. Varga, and M. G. Benedict, Int. J. Quantum Chem. XVII, 255 (1980). - ¹²⁴ M. G. Benedict and I. Gyemant, Int. J. Quantum Chem. XIII, 597 (1978). - ¹²⁵ D. Edelson and K. B. McAffe, J. Chem. Phys. **19**, 1311 (1951). - ¹²⁶ H. H. Claassen, G. L. Goodman, J. H. Holloway, and H. Selig, J. Chem. Phys. **53**, 341 (1970). - ¹²⁷H. Brunet, IEEE J. Quantum Electron. **QE-6**, 678 (1970). - ¹²⁸ K. Kim, R. S. McDowell, and W. T. King, J. Chem. Phys. **73**, 36 (1980). - ¹²⁹ M. W. Chase, Jr., C. A. Davis, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data 14, 1163 (1985). - ¹³⁰C. Chapados and G. Birnbaum, J. Mol. Spectrosc. **132**, 323 (1988). - ¹³¹M. M. Hubers and J. Los, Chem. Phys. **10**, 235 (1975). - ¹³²D. L. Hildenbrand, J. Phys. Chem. **77**, 897 (1973). - ¹³³R. K. Curran, J. Chem. Phys. **34**, 1069 (1961). - ¹³⁴T. Kiang, R. C. Estler, and R. N. Zare, J. Chem. Phys. **70**, 5925 (1979). - ¹³⁵L. M. Babcock and G. E. Streit, J. Chem. Phys. **74**, 5700 (1981). - ¹³⁶ A. A. Ischenko, J. D. Ewbank, and L. Schäfer, J. Phys. Chem. 98, 4287 (1994). - ¹³⁷ J. Ferch, W. Raith, and K. Schröder, J. Phys. B **15**, L175 (1982). - ¹³⁸ A. Zecca, G. Karwasz, and R. S. Brusa, Chem. Phys. Lett. **199**, 423 (1992). - ¹³⁹H.-X. Wan, J. H. Moore, J. K. Olthoff, and R. J. Van Brunt, Plasma Chem. Plasma Process. 13, 1 (1993). - ¹⁴⁰S. K. Srivastava, S.
Trajmar, A. Chutjian, and W. Williams, J. Chem. Phys. **64**, 2767 (1976). - ¹⁴¹ Y. Jiang, J. Sun, and L. Wan, Phys. Rev. A **52**, 398 (1995). - ¹⁴²T. Sakae, S. Sumiyoshi, E. Murakami, Y. Matsumoto, K. Ishibashi, and A. Katase, J. Phys. B 22, 1385 (1989). - ¹⁴³H. Cho, R. J. Gulley, and S. J. Buckman, J. Phys. B **33**, L309 (2000). - ¹⁴⁴S. J. Buckman (private communication, February 2000). - ¹⁴⁵Y. Jiang, J. Sun, and L. Wan, Phys. Lett. A 231, 231 (1997). - ¹⁴⁶J. A. Rees, in *Gaseous Dielectrics III*, edited by L. G. Christophorou (Pergamon, New York, 1982), p. 1. - ¹⁴⁷D. F. Register, S. Trajmar, and S. K. Srivastava, Phys. Rev. A 21, 1134 (1980). - ¹⁴⁸R. K. Nesbet, Phys. Rev. A **20**, 58 (1979). - ¹⁴⁹R. H. J. Jansen, F. J. de Heer, H. J. Luyken, B. van Wingerden, and H. J. Blaauw, J. Phys. B 9, 185 (1976). - ¹⁵⁰J. C. Gibson, M. A. Green, K. W. Trantham, S. J. Buckman, P. J. O. Teubner, and M. J. Brunger, J. Phys. B 32, 213 (1999). - ¹⁵¹F. H. Read and J. M. Channing, Rev. Sci. Instrum. 67, 2372 (1996). - ¹⁵²D. Klar, M.-W. Ruf, and H. Hotop, Aust. J. Phys. 45, 263 (1992). - ¹⁵³D. Klar, M.-W. Ruf, and H. Hotop, Meas. Sci. Technol. **5**, 1248 (1994). - ¹⁵⁴J. L. Forand, K. Becker, and J. W. McConkey, Can. J. Phys. **64**, 269 (1986). - ¹⁵⁵K. A. Blanks, A. E. Tabor, and K. Becker, J. Chem. Phys. 86, 4871 (1987). - ¹⁵⁶D. Rapp and P. Englander-Golden, J. Chem. Phys. **43**, 1464 (1965). - 157T. Stanski and B. Adamczyk, Int. J. Mass Spectrom. Ion Phys. 46, 31 - ¹⁵⁸D. Margreiter, G. Walder, H. Deutsch, H. U. Poll, C. Winkler, K. Stephan, and T. D. Märk, Int. J. Mass Spectrom. Ion Processes 100, 143 (1990) - ¹⁵⁹M. V. V. S. Rao and S. K. Srivastava, XX International Conference on the Physics of Electronic and Atomic Collisions, Scientific Program and Abstracts of Contributed Papers, Vol. II, Vienna, Austria, 23–29 July, 1997, Paper MO 151. - ¹⁶⁰ A. H. Al-Nasir, M. A. Chaudhry, A. J. Duncan, R. Hippler, D. M. Campbell, and H. Kleinpoppen, J. Phys. B. 29, 1849 (1996). - ¹⁶¹B. P. Pullen and J. A. D. Stockdale, Int. J. Mass Spectrom. Ion Phys. 19, 35 (1976). - ¹⁶² H. Shibata, T. Tonuma, T. Matsuo, H. Kumagai, and H. Tawara, in *VIth International Conference on the Physics of Highly Charged Ions* (Manhattan, KS, 1992), edited by P. Richard, M. Stöckli, C. L. Cocke, and C. D. Lin, AIP Conf. Proc. 274, 335 (1993). - ¹⁶³ D. Margreiter, H. Deutsch, M. Schmidt, and T. D. Märk, Int. J. Mass Spectrom. Ion Processes 100, 157 (1990). - ¹⁶⁴W. Hwang, Y.-K. Kim, and M. E. Rudd, J. Chem. Phys. **104**, 2956 (1996) - ¹⁶⁵V. Tarnovsky, H. Deutsch, S. Matt, T. D. Märk, R. Basner, M. Schmidt, - and K. Becker, in *Gaseous Dielectrics VIII*, edited by L. G. Christophorou and J. K. Olthoff (Plenum, New York, 1998), p. 3. - ¹⁶⁶V. Tarnovsky, H. Deutsch, K. E. Martus, and K. Becker, J. Chem. Phys. 109, 6596 (1998). - ¹⁶⁷Y.-K. Kim and M. E. Rudd, Comments At. Mol. Phys. **34**, 309 (1999). - ¹⁶⁸H. Deutsch, P. Scheier, and T. D. Märk, Int. J. Mass Spectrom. Ion Processes 74, 81 (1986). - ¹⁶⁹ Y. H. Hilal and L. G. Christophorou, J. Phys. D **20**, 975 (1987). - ¹⁷⁰I. Lopes, H. Hilmert, and W. F. Schmidt, J. Phys. D **19**, L107 (1986). - ¹⁷¹L. G. Christophorou, Atomic and Molecular Radiation Physics (Wiley, New York, 1971), Chap. 2. - ¹⁷²M. A. Ali, K. K. Irikura, and Y.-K. Kim, Int. J. Mass Spectrom. (in press). - ¹⁷³M. Ito, M. Goto, H. Toyoda, and H. Sugai, Contrib. Plasma Phys. **35**, 405 (1995). - ¹⁷⁴S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard, J. Phys. Chem. Ref. Data 17, 1 (1988). - ¹⁷⁵R. Geballe and M. A. Harrison, as reported by L. B. Loeb, *Basic Processes of Gaseous Electronics* (University of California Press, Berkeley, Los Angeles, 1955), Chap. 5, p. 415. - ¹⁷⁶M. A. Harrison and R. Geballe, Phys. Rev. **91**, 1 (1953). - ¹⁷⁷M. S. Bhalla and J. D. Craggs, Proc. Phys. Soc. (London) **80**, 151 (1962). - ¹⁷⁸H. A. Boyd and G. C. Crichton, Proc. IEE 118, 1872 (1971). - ¹⁷⁹I. M. Bortnik and A. A. Panov, Sov. Phys.-Tech. Phys. **16**, 571 (1971). - ¹⁸⁰V. N. Maller and M. S. Naidu, Proc. IEE **123**, 107 (1976). ¹⁸¹M. Shimozuma, H. Itoh, and H. Tagashira, J. Phys. D **15**, 2443 (1982). - ¹⁸² M. Hayashi and G. Wang (unpublished results, 1987); M. Hayashi (private communication, 1999). - ¹⁸³ Y. Qiu and D. M. Xiao, J. Phys. D 27, 2663 (1994). - ¹⁸⁴T. H. Teich and R. Sangi, Proceedings First International Symposium on High Voltage Technology, Munich, 1972, edited by F. Heidbromer, 1972, Vol. 1, p. 391. - ¹⁸⁵Th. Aschwanden, in *Gaseous Dielectrics IV*, edited by L. G. Christophorou and M. O. Pace (Pergamom, New York, 1984), p. 24. - ¹⁸⁶Th. Aschwanden, Ph.D. thesis, ETH, Zürich, 1985. - ¹⁸⁷ J. de Urquijo-Carmona, C. Cisneros, and I. Alvarez, J. Phys. D **18**, 2017 (1985). - ¹⁸⁸ J. de Urquijo-Carmona, I. Alvarez, and C. Cisneros, J. Phys. D 19, L207 (1986). - ¹⁸⁹ H. Hasegawa, A. Taneda, K. Murai, M. Shimozuma, and H. Tagashira, J. Phys. D 21, 1745 (1988). - ¹⁹⁰H. Toyoda (private communication, 2000). - ¹⁹¹ J. J. Corr, M. A. Khakoo, and J. W. McConkey, J. Phys. B 20, 2597 (1987). - ¹⁹²K. A. Blanks and K. Becker, J. Phys. B **20**, 6157 (1987). - ¹⁹³T. Field and J. H. D. Eland, Chem. Phys. Lett. **197**, 542 (1992). - ¹⁹⁴T. H. Teich and R. Bräunlich, in *Gaseous Dielectrics IV*, edited by L. G. Christophorou and M. O. Pace (Pergamon, New York, 1984), p. 71. - ¹⁹⁵ K. Masek, L. Laska, V. Perina, and J. Krasa, Acta Phys. Slovaca 33, 145 (1983). - ¹⁹⁶R. J. Van Brunt and J. T. Herron, IEEE Trans. Electr. Insul. 25, 55 (1990). - ¹⁹⁷ D. Edelson, J. E. Griffiths, and K. B. McAfee, Jr., J. Chem. Phys. 37, 917 (1962). - ¹⁹⁸R. N. Compton, L. G. Christophorou, G. S. Hurst, and P. W. Reinhardt, J. Chem. Phys. **45**, 4634 (1966). - ¹⁹⁹P. W. Harland and J. C. J. Thynne, J. Phys. Chem. **75**, 3517 (1971). - ²⁰⁰L. G. Christophorou, Atomic and Molecular Radiation Physics (Wiley, New York, 1971), Chap. 6. - ²⁰¹L. G. Christophorou, Adv. Electron. Electron Phys. **46**, 55 (1978). - ²⁰²L. G. Christophorou, D. L. McCorkle, and A. A. Christodoulides, in Electron-Molecule Interactions and Their Applications, edited by L. G. Christophorou (Academic, New York, 1984), Vol. 1, Chap. 6. - ²⁰³ J. M. S. Henis and C. A. Mabie, J. Chem. Phys. **53**, 2999 (1970). - ²⁰⁴ R. W. Odom, D. L. Smith, and J. H. Futrell, J. Phys. B **8**, 1349 (1975). - ²⁰⁵ M. S. Foster and J. L. Beauchamp, Chem. Phys. Lett. **31**, 482 (1975). - ²⁰⁶C. E. Klots, J. Chem. Phys. **46**, 1197 (1967). - ²⁰⁷P. M. Collins, L. G. Christophorou, E. L. Chaney, and J. G. Carter, Chem. Phys. Lett. 4, 646 (1970). - ²⁰⁸L. G. Christophorou, A. Hadjiantoniou, and J. G. Carter, J. Chem. Soc., Faraday Trans. 2 69, 1713 (1975). - ²⁰⁹C. D. Cooper and R. N. Compton, J. Chem. Phys. **59**, 3550 (1973). - ²¹⁰ J. P. Johnson, D. L. McCorkle, L. G. Christophorou, and J. G. Carter, J. Chem. Soc., Faraday Trans. 2 71, 1742 (1975). - ²¹¹S. M. Spyrou, I. Sauers, and L. G. Christophorou, J. Chem. Phys. **78**, 7200 (1983). - ²¹² J. E. Delmore and A. D. Appelhans, J. Chem. Phys. **84**, 6238 (1986). - ²¹³S. P. Heneghan and S. W. Benson, Int. J. Chem. Kinet. **15**, 109 (1983). - ²¹⁴R. K. Curran, J. Chem. Phys. **38**, 780 (1963). - ²¹⁵ R. N. Compton, L. G. Christophorou, and R. H. Huebner, Phys. Lett. 23, 656 (1966). - ²¹⁶R. N. Compton, R. H. Huebner, P. W. Reinhardt, and L. G. Christophorou, J. Chem. Phys. 48, 901 (1968). - ²¹⁷L. G. Christophorou, D. L. McCorkle, and J. G. Carter, J. Chem. Phys. **60**, 3779 (1974). - ²¹⁸W. M. Hickam and R. E. Fox, J. Chem. Phys. **25**, 642 (1956). - ²¹⁹ W. M. Hickam and D. Berg, J. Chem. Phys. 29, 517 (1958). - ²²⁰I. S. Buchel'nikova, Sov. Phys. JETP **35**, 783 (1959). - ²²¹D. Rapp and D. D. Briglia, J. Chem. Phys. **43**, 1480 (1965). - ²²²D. Spence and G. J. Schulz, J. Chem. Phys. **58**, 1800 (1973). - ²²³ J. K. Olthoff, R. J. Van Brunt, H.-X. Wan, J. H. Moore, and J. A. Tossell, in *Gaseous Dielectrics VI*, edited by L. G. Christophorou and I. Sauers (Plenum, New York, 1991), p. 19. - ²²⁴K. S. Gant and L. G. Christophorou, J. Chem. Phys. 65, 2977 (1976). - ²²⁵ K. S. Gant, Ph.D. dissertation, University of Tennessee, 1976. - ²²⁶R. Y. Pai, L. G. Christophorou, and A. A. Christodoulides, J. Chem. Phys. **70**, 1169 (1979). - ²²⁷D. L. McCorkle, A. A. Christodoulides, L. G. Christophorou, and I. Szamrej, J. Chem. Phys. **72**, 4049 (1980); **76**, 753E (1982). - ²²⁸ S. R. Hunter, J. G. Carter, and L. G. Christophorou, J. Chem. Phys. **90**, 4879 (1989). - ²²⁹ J. M. Ajello and A. Chutjian, J. Chem. Phys. **65**, 5524 (1976). - ²³⁰ A. Chutjian, Phys. Rev. Lett. **46**, 1511 (1981); **48**, 289E (1982). - ²³¹ A. J. Chutjian, J. Phys. Chem. **86**, 3518 (1982). - ²³² A. Chutjian, S. H. Alajajian, and O. J. Orient, in *Gaseous Dielectrics IV*, edited by L. G. Christophorou and M. O. Pace (Pergamon, New York, 1984), p. 42. - ²³³ A. Chutjian and S. H. Alajajian, Phys. Rev. A **31**, 2885 (1985). - ²³⁴ K. Harth, M.-W. Ruf, and H. Hotop, Z. Phys. D **14**, 149 (1989). - ²³⁵D. Klar, M.-W. Ruf, and H. Hotop, Chem. Phys. Lett. **189**, 448 (1992). - ²³⁶ A. Schramm, J. M. Weber, J. Kreil, D. Klar, H.-W. Ruf, and H. Hotop, Phys. Rev. Lett. **81**, 778 (1998). - ²³⁷ W. P. West, G. W. Foltz, F. B. Dunning, C. J. Latimer, and R. F. Stebbings, Phys. Rev. Lett. 36, 854 (1976). - ²³⁸ G. W. Foltz, C. J. Latimer, G. F. Hildebrandt, F. G. Kellert, K. A. Smith, W. P. West, F. B. Dunning, and R. F. Stebbings, J. Chem. Phys. 67, 1352 (1977). - ²³⁹ J. P. Astruc, R. Barbé, and J. P. Schermann, J. Phys. B **12**, L377 (1979). - ²⁴⁰B. G. Zollars, K. A. Smith, and F. B. Dunning, J. Chem. Phys. 81, 3158 (1984). - ²⁴¹B. G. Zollars, C. Higgs, F. Lu, C. W. Walter, L. G. Gray, K. A. Smith, F. B. Dunning, and R. F. Stebbings, Phys. Rev. A 32, 3330 (1985). - ²⁴²B. G. Zollars, C. W. Walter, F. Lu, C. B. Johnson, K. A. Smith, and F. B. Dunning, J. Chem. Phys. **84**, 5589 (1986). - ²⁴³F. B. Dunning, J. Phys. Chem. **91**, 2244 (1987). - ²⁴⁴I. M. Beterov, G. L. Vasilenko, I. I. Riabtsev, B. M.
Smirnov, and N. V. Fatayev, Z. Phys. D 6, 55 (1987). - ²⁴⁵Z. Zheng, K. A. Smith, and F. B. Dunning, J. Chem. Phys. **89**, 6295 (1988). - ²⁴⁶H. S. Carman, Jr., C. E. Klots, and R. N. Compton, J. Chem. Phys. 90, 2580 (1989). - ²⁴⁷ A. Pesnelle, C. Ronge, M. Perdrix, and G. Watel, Phys. Rev. A **42**, 273 (1990). - ²⁴⁸ X. Ling, B. G. Lindsay, K. A. Smith, and F. B. Dunning, Phys. Rev. A 45, 242 (1992). - ²⁴⁹R. A. Popple, M. A. Durham, R. W. Marawar, B. G. Lindsay, K. A. Smith, and F. B. Dunning, Phys. Rev. A 45, 247 (1992). - ²⁵⁰ A. Pesnelle, M. Perdrix, and G. Watel, J. Chem. Phys. **96**, 4303 (1992). - ²⁵¹ D. Klar, B. Mirbach, H. J. Korsch, M.-W. Ruf, and H. Hotop, Z. Phys. D 31, 235 (1994). - ²⁵²M. T. Frey, S. B. Hill, K. A. Smith, F. B. Dunning, and I. I. Fabrikant, Phys. Rev. Lett. **75**, 810 (1995). - ²⁵³F. B. Dunning, J. Phys. B **28**, 1645 (1995). - ²⁵⁴R. W. Crompton and G. N. Haddad, Aust. J. Phys. 36, 15 (1983). - ²⁵⁵ H. Hotop, D. Klar, J. Kreil, M.-W. Ruf, A. Schramm, and J. M. Weber, in The Physics of Electronic and Atomic Collisions, edited by L. J. Dubé, J. B. A. Mitchell, J. W. McConkey, and C. E. Brion (AIP Press, Woodbury, NY) [AIP Conf. Proc. 360, 267 (1995)]. - ²⁵⁶Z. Lj. Petrovic and R. W. Crompton, J. Phys. B **18**, 2777 (1985). - ²⁵⁷E. P. Wigner, Phys. Rev. **73**, 1002 (1948). - ²⁵⁸ A. Chutjian (private communication, 1999). - ²⁵⁹S. Matejcik, P. Eichberger, B. Plunger, A. Kiendler, A. Stamatovic, and T. D. Märk, Int. J. Mass Spectrom. Ion Processes 144, L13 (1995). - ²⁶⁰ A. Schramm, dissertation, University of Kaiserslautern, 1998. - ²⁶¹H. Hotop (private communication, March 2000). - ²⁶²M. V. V. S. Rao (private communication, 1999). - ²⁶³ V. K. Lakdawala and J. L. Moruzzi, J. Phys. D **13**, 1439 (1980). - ²⁶⁴L. G. Christophorou and P. G. Datskos, Int. J. Mass Spectrom. Ion Processes 149/150, 59 (1995). - ²⁶⁵S. R. Hunter and L. G. Christophorou, in *Electron-Molecule Interactions and Their Applications* (Academic, New York, 1984), Vol. 2, Chap. 3. - ²⁶⁶ A. B. Wedding, H. A. Blevin, and J. Fletcher, J. Phys. D **18**, 2361 (1985). - ²⁶⁷ H. Shimamori, Y. Tatsumi, Y. Ogawa, and T. Sunagawa, J. Chem. Phys. 97, 6335 (1992). - ²⁶⁸ J. Sherwell, R. Cooper, D. C. Nguyen, and S. P. Mezyk, Aust. J. Chem. 41, 1491 (1988). - ²⁶⁹F. J. Davis and D. R. Nelson, Chem. Phys. Lett. **6**, 277 (1970). - ²⁷⁰ K. M. Bansal and R. W. Fessenden, J. Chem. Phys. **59**, 1760 (1973). - ²⁷¹H. Shimamori and R. W. Fessenden, J. Chem. Phys. **71**, 3009 (1979). - ²⁷²F. C. Fehsenfeld, J. Chem. Phys. **53**, 2000 (1970). - ²⁷³ T. M. Miller, A. E. S. Miller, J. F. Paulson, and X. Liu, J. Chem. Phys. 100, 8841 (1994). - ²⁷⁴E. C. M. Chen, R. D. George, and W. E. Wentworth, J. Chem. Phys. 49, 1973 (1968). - ²⁷⁵I. Szamrej and M. Forys, in *Gaseous Dielectrics VI*, edited by L. G. Christophorou and I. Sauers (Plenum, New York, 1991), p. 43. - ²⁷⁶K. G. Mothes and R. N. Schindler, Ber. Bunsen-Ges. **75**, 938 (1971). - ²⁷⁷ J. L. Le Garrec, O. Sidko, J. L. Queffelec, S. Hamon, J. B. A. Mitchell, and B. R. Rowe, J. Chem. Phys. 107, 54 (1997). - ²⁷⁸ J. A. Ayala, W. E. Wentworth, and E. C. M. Chen, J. Phys. Chem. 85, 3989 (1981). - ²⁷⁹ B. H. Mahan and C. E. Young, J. Chem. Phys. **44**, 2192 (1966). - ²⁸⁰D. Smith, N. G. Adams, and E. Alge, J. Phys. B 17, 461 (1984). - ²⁸¹ D. Smith, P. Španěl, S. Matejcik, A. Stamatovic, T. D. Märk, T. Jaffke, and E. Illenberger, Chem. Phys. Lett. **240**, 481 (1995). - ²⁸² I. M. Beterov, V. P. Chebotaev, N. V. Fateev, and D. V. Yakovin, Sov. J. Quantum Electron. 8, 533 (1978). - ²⁸³I. M. Beterov and N. V. Fateyev, J. Phys. Colloq. **44**, C7-447 (1983). - ²⁸⁴S. Avrillier and J.-P. Schermann, Opt. Commun 19, 87 (1976). - ²⁸⁵P. G. Datskos, L. G. Christophorou, and J. G. Carter, J. Chem. Phys. 99, 8607 (1993). - ²⁸⁶ K. B. McAfee, Jr. and D. Edelson, Proc. Phys. Soc. London **81**, 382 (1963). - ²⁸⁷G. R. G. Raju and M. S. Dincer, J. Appl. Phys. **53**, 8562 (1982). - ²⁸⁸M. C. Siddagangappa, C. S. Lakshminarasimha, and M. S. Naidu, J. Phys. D 15, L83 (1982). - ²⁸⁹ M. C. Siddagangappa, C. S. Lakshminarasimha, and M. S. Naidu, in Gaseous Dielectrics IV, edited by L. G. Christophorou and M. O. Pace (Pergamon, New York, 1984), p. 49. - ²⁹⁰M. F. Fréchette, J. Appl. Phys. **59**, 3684 (1986). - ²⁹¹B. C. O'Neill and J. D. Craggs, J. Phys. B **6**, 2634 (1973). - ²⁹² H. Itoh, M. Shimozuma, H. Tagashira, and S. Sakamoto, J. Phys. D 12, 2167 (1979). - ²⁹³ D. M. Xiao, H. L. Liu, and Y. Z. Chen, J. Appl. Phys. **86**, 6611 (1999). - ²⁹⁴ D. M. Xiao, L. L. Zhu, and Y. Z. Chen, J. Phys. D: Appl. Phys. 32, L18 (1999). - ²⁹⁵ T. H. Teich and D. W. Branston, *Third International Conference on Gas Discharges*, IEE Conf. Publ. **118**, 109 (1974). - ²⁹⁶ H. Hilmert, W. F. Schmidt, Y. Sakai, and S. Sawada, Jpn. J. Appl. Phys., 30, 1487 (1991). - ²⁹⁷ D. M. Xiao, H. L. Liu, and L. Qin, Jpn. J. Appl. Phys., Part 2 38, L875 (1999). - ²⁹⁸ F. M. Harris and G. J. Jones, J. Phys. B **4**, 1536 (1971). - ²⁹⁹B. Sangi, Ph.D. thesis, University of Manchester, 1971, as quoted in Ref. 8 - 300 M. S. Naidu and A. N. Prasad, J. Phys. D 5, 1090 (1972). - ³⁰¹D. W. Branston, Ph.D. thesis, University of Manchester, 1973, as quoted in Ref. 8. - ³⁰² J. de Urquijo-Carmona, Ph.D. thesis, University of Manchester, 1980, as quoted in Ref. 8. - ³⁰³ Y. Nakamura, J. Phys. D **21**, 67 (1988). - ³⁰⁴ V. A. Lisovskiy and V. D. Yegorenkov, Proceedings of the International Symposium on Electron-Molecule Collisions and Swarms, edited by Y. Hatano, H. Tanaka, and N. Kouchi, Tokyo, Japan, 18–20 July, 1999, p. 156; J. Phys. D 32, 2645 (1999). - ³⁰⁵B. Shizgal, J. Phys. B **21**, 1699 (1988). - ³⁰⁶M. S. Dincer, J. Phys. D **23**, 622 (1990). - ³⁰⁷ V. N. Maller and M. S. Naidu, IEEE Trans. Plasma Sci. **3**, 205 (1975). - ³⁰⁸ R. L. Champion and L. D. Doverspike, in *Electron-Molecule Interactions and Their Applications*, edited by L. G. Christophorou (Academic, New York, 1984), Vol. 1, Chap. 7. - ³⁰⁹L. G. Christophorou, Contrib. Plasma Phys. **27**, 237 (1987). - ³¹⁰S. Chowdhury, E. P. Grimsrud, T. Heinis, and P. Kebarle, J. Am. Chem. Soc. **108**, 3630 (1986). - ³¹¹ J. K. Olthoff, R. J. Van Brunt, Y. Wang, R. L. Champion, and L. D. Doverspike, J. Chem. Phys. **91**, 2261 (1989). - ³¹²R. L. Champion, in *Gaseous Dielectrics VI*, edited by L. G. Christophorou and I. Sauers (Plenum, New York, 1991), p. 1. - ³¹³B. Freiser and J. L. Beauchamp, quoted in Ref. 94. - ³¹⁴R. S. Mock and E. P. Grimsrud, Chem. Phys. Lett. **184**, 99 (1991). - ³¹⁵ H. Faidas, L. G. Christophorou, and D. L. McCorkle, Chem. Phys. Lett. 193, 487 (1992). - ³¹⁶L. G. Christophorou, P. G. Datskos, and H. Faidas, J. Chem. Phys. **101**, 6728 (1994). - ³¹⁷O. Ingólfsson, E. Illenberger, and W. F. Schmidt, Int. J. Mass Spectrom. Ion Processes 139, 103 (1994). - ³¹⁸P. G. Datskos, J. G. Carter, and L. G. Christophorou, Chem. Phys. Lett. 239, 38 (1995). - ³¹⁹I. Ishikawa, K. Koike, T. Akitsu, S. Suganomata, and H. Matsuzawa, Jpn. J. Appl. Phys., **29**, 767 (1990). - ³²⁰ A. Kono, M. Endo, K. Ohata, S. Kishimoto, and T. Goto, J. Appl. Phys. 76, 7221 (1994). - ³²¹ W. F. Schmidt and R. J. Van Brunt, in *Gaseous Dielectrics III*, edited by L. G. Christophorou (Pergamon, New York, 1982), p. 561. - ³²² R. J. Van Brunt and M. Misakian, J. Appl. Phys. **54**, 3074 (1983). - ³²³N. Wiegart, IEEE Trans. Electr. Insul. **EI-20**, 587 (1985). - ³²⁴J. Kindersberger, Proceedings VIIIth International Conference on Gas Discharges and Their Applications, September 16–20, 1985, Oxford, U.K. (University of Leeds Press, Leeds, 1985), p. 263. - ³²⁵ Y. Wang, R. L. Champion, L. D. Doverspike, J. K. Olthoff, and R. J. Van Brunt, J. Chem. Phys. **91**, 2254 (1989). - ³²⁶S. Chowdhury and P. Kebarle, J. Chem. Phys. **85**, 4989 (1986). - ³²⁷P. L. Patterson, J. Chem. Phys. **53**, 696 (1970). - ³²⁸ K. P. Brand and H. Jungblut, J. Chem. Phys. **78**, 1999 (1983). - ³²⁹D. Hansen, H. Jungblut, and W. F. Schmidt, J. Phys. D **16**, 1623 (1983). - ³³⁰H. Hilmert and W. F. Schmidt, J. Phys. D **24**, 915 (1991). - ³³¹ N. Wiegart, L. Niemeyer, F. Pinnekamp, W. Boeck, J. Kindersberger, R. Morrow, W. Zaengl, M. Zwicky, I. Galimberti, and S. A. Boggs, IEEE Trans. Power Del. 3, 923, (1988); 3, 931 (1988); 3, 939 (1988). - 332 R. J. Van Brunt, J. Appl. Phys. 59, 2314 (1986). - ³³³G. Berger and B. Senouci, J. Phys. D **19**, 2337 (1986). - ³³⁴ A. Gilbert, J. Dupuy, P. Domens, G. Riquel, and B. Hutzler, J. Phys. D 26, 773 (1993). - ³³⁵ H. Schlumbohm, Z. Phys. **166**, 192 (1962). - ³³⁶I. A. Fleming and J. A. Rees, J. Phys. B **2**, 777 (1969). - ³³⁷M. S. Naidu and A. N. Prasad, J. Phys. D 3, 951 (1970). - ³³⁸B. H. Crichton and D.-i. Lee, Proceedings 5th International Conference on Gas Discharges, Liverpool, England, 1978, p. 254. - ³³⁹Th. Aschwanden (private communication, 1984), as quoted in Morrow (Ref. 12). - ³⁴⁰ J. de Urquijo-Carmona, I. Alvarez, H. Martinez, and C. Cisneros, J. Phys. D 24, 664 (1991). - ³⁴¹ J. de Urquijo-Carmona, Ph.D. thesis, University of Manchester, 1980, as quoted in Morrow (Ref. 12). - ³⁴² J. de Urquijo-Carmona, I. Alvarez, C. Cisneros, and H. Martinez, J. Phys. D 23, 778 (1990). - ³⁴³ J. de Urquijo-Carmona, C. Cisneros, H. Martinez, and I. Alvarez, J. Phys. D 25, 1277 (1992). - $^{344}\mathrm{Z}.$ A. Talib and M. Saporoschenko, Int. J. Mass Spectrom Ion Processes $\boldsymbol{116},~1~(1992).$ - ³⁴⁵Z. A. Talib and M. Saporoschenko, J. Phys. D **27**, 2307 (1994). - ³⁴⁶D. E. Wilson, W. J. Quiring, and D. A. Armstrong, J. Appl. Phys. **47**, 1194 (1976). - ³⁴⁷W. F. Schmidt, H. Jungblut, D. Hansen, and H. Tagashira, in *Gaseous Dielectrics II*, edited by L. G. Christophorou (Pergamon, New York, 1980) p. 1 - 348 H. Jungblut, D. Hansen, and W. F. Schmidt, IEEE Trans. Electr. Insul. **24**, 343 (1989).