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Analysis of Specific Heat Data in the Critical Region of Magnetic Solids 

F. J. Cook* 

Physics Department, Temple University, Philadelphia, Pa. 19122 

A detailed analysis of specific heat data in the critical region of magrietiG solids is presented. An 
inverse power law, whose strength is measured by the exponent a, is used to describe the temperature 
dependence of the magnetic specific heat. Other parameters used include the power law coefficient 
A, the critical temperature Tc , and a constant background term B. Advanced techniques of data analysis 
suitable for estimation of nonlinear parameters and their errors under conditions of realistically 
weighted experimental data were used to obtain the dependence of a, Tc, A, and B on the range of 
data points included in the fit. Those exponents and parameters that provide the best overall fit to the 
data have been found. Literature references to 49 experiments from 1935 to 1971 are given. We present 
in tabular form the values of a, A, and B for 24 different magnetic crystals. With some exceptions, 
the best fits to the data suggest that in the temperature range studied the magnetic specific heat is 
not symmetric; the exponent a depends on the range of data included in the fit, varies widely from 
material to material, and in many cases is definitely negative below the critical temperature; and that 
there is little evidence that the asymptotic region is being adequately sampled by experiment. These 
results have the implication that until such time as we can adequately account for departures from the 
expected sharp peak in the data at Tc (data rounding) and corrections to asymptotic scaling, then 

comparisons between magnetic specific heat experiments and lowest order scaling predictions are to 

this date still tenuous. 

Key words: Critical exponents; critical phenomena; data analysis; magnetic solids; nonlinear least
squares; phase transitions; specific heat; static scaling. 

1. Introduction 

Near the critical point of real physical systems various 
thermodynamic anomalies occur that are usually char
acterized by power laws involving experimentally de
termined critical exponents. For example, the specific 
heats of a paramagnetic-ferromagnetic transition, an 
alloy order-disorder transition and a liquid-gas transition 
just above the critical temperature all behave as 
C ex: A I T - Te I-a in which Te is the critical temperature, 
a is the specific heat critical exponent and A is the power 
law coefficient. Below Te , the specific heat behaves 
similarly, though perhaps with different 'numerical values 
for A and a, which are then denoted by A' and a'. 
Likewise, the isothermal compressibility KT for the gas

liquid transition and the isothermal susceptibility XT for 
the paramagnetic-ferromagnetic transition near the 
critical point also obey power laws of the form (T- Tc)-Y 

for T> Te and IT- Tel-Y ' for T < Te. As a final example, 
the liquid-gas density difference Pl. - pc and the 
analogous magnetic quantity, the zero field mag
netization M, both vanish as IT - Tel f3 as the critical 
temperature is approached from below. The scaling 
hypothesis of Widom-Kadanoff-Domb [1]1, which 
maintains that the thermodynamic potentials (e.g. 
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the Gibbs potential) are generalized homogeneous 
functions of their independent variables, characterizes 
critical point thermodynamic behavior by relating the 
diverse anomalies through scaling relations among the 
exponents. For example, the scaling relation prediction 
for the exponents of the thermodynamic quantities cited 
above is a' + 2f3 + y' = 2. Scaling theory also predicts 
that primed (T < Te) and unprimed (T> Te) critical 
exponents are equal: a' = a and y' = y; and that for the 
case a' = 01.= 0, the specific heat coefficients A' and A 
are equal. (For reviews of critical phenomena see refs. 
[2-10].) 

In this paper we present a detailed analysis of specific 
heat data in the critical region of magnetic crystals. Our 
original intention was to subject to experimental verifica
tion certain of the above conclusions drawn from the 
static scaling hypothesis and also conclusions from 
detailed model Hamiltonian calculations that may be 
applicable to these data. In particular, we intended to 
determine (1) if existing data support the scaling pre
dictiuIls that the specific heat critical exponents a' and 
a, and the coefficients A' and A for the case a' = a = 0, 
are equal below and above the critical temperature and 
(2) if the data predict exponents in agreement with 
applicable Ising and Heisenberg model calculations. To 
this end we examined the results of 4./ ll1agnetic specific 
heat experiments out of which the exponents of 24 differ
ent materials could be obtained. From available data, 
we carefully determined the dependence of the expo
nents and parameters on the range of data included in the 
fits for 16 different materials. Another original purpose 
of our analysis . was to correlate the experimentally 
observed exponents with specific characteristics of the 
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materials: ferromagnetic versus antiferromagnetic, 
anisotropic as opposed to isotropic interactions, ex
change as opposed to dipolar interactions, and metallic 
versus insulating properties are comparisons we 
considered. 

The specific heat near the critical point is one of the 
weakest of the various thermodynamic anomalies. 
Since the associated exponent a may be quite close or 
equal to zero, the anomaly is often obscured by back
ground effects and becomes difficult to characterize 
accurately by experiment. From the results of various 
model calculations, it is felt that at the critical point the 
specific heat should either diverge (a ~ 0) or show a 
finite cusp (a < 0). In fact,though, high resolution ex
periments reveal that considerable rounding off of the 
data occurs which obscures the expected sharp peak. 
Our efforts to realize the above intentions were frus· 

trated by the presence of rounding in the experimental 
data and the lack of a firm theory to account for it. The 
rounding prevents 'sampling the temperature depend
ence of the specific heat beyond ~ 10-4 in reduced 
temperature, E = I T/Tc - I I and, as pointed out by 
Gaunt and Domb [II] using Ising model calculations, 
makes tenuous any comparisons between experi
mentally determined exponents and those describing 
the theoretical asymptotic behavior. An alternative 
to comparing· exponents is to display in a straight
forward graphical manner the experimental data and the 
theoretical curve for those situations where a reliable 
theoretical prediction for the specific heat temperature 
dependence exists. This more fundamental procedure 
has been utilized by Gaunt and Domb [II] and by 
Wielinga [9, 12], but with the result that a really impres
sive agreement over more than a decade in reduced 
temperature occurs in very few instances. 

The above considerations forced ,us to modify our 
original intentions to one in which we seek those ex
ponents and parameters that provide the best overall 
fit to the data based on a model equation given below, 
and study how they depend on the range of data included 
in the fit. With a few notable exceptions, we obtained 
for the large majority of materials the following results: 

a. The best fits to the data and the behavior of the 
exponents on the range of data included in the fit~ 
suggest the temperature dependence of the 
magnetic specific heat is not symmetric about the 
transition point in the temperature range studied. 

b. Most of the materials are best accommodated by
negative exponents below the transition and 
positive exponents above. 

c. The exponents providing the best fits are relatively 
insensitive to the specific characteristics of the 
materials listed above. 

d. :Many of the exponent values reported in the 
literature for a particular material can be sub
stituted by a number of other equally likely values. 

J. Phys. Chem. Ref. Data, Vol. 2, No.1, 1973 

Given the usual amount of scatter, most specific heat 
data can accommodate an uncomfortably large range of 
critical exponents. In the next section, we describe the 
types of constraints placed on the data' analysis to' re
strict the range of possible exponents. The methods 
used and the assumptions made in our analysis of the 
data are discussed in section 3. Our results are given in 
section 4, and a discussion of these results is contained 
in section 5. The principal results in terms of evaluated 
data are contained in tables I and 2 (at the end of sec
tion 5). In table 1 literature references to 49 experi
ments from 1935 to 1971 are given. Table 2 lists for 24 
different magnetic crystals the values of a', a, A', A, 
B', and B obtained from our analysis and/or reported 
in the literature. 

2. Role of Constraints 

It is well established that an unambiguous experi
mental determination of the magnetic specific heat 
critical exponents a' and a is very difficult. In a'ddition 
to scatter in the data, the problem basically involves 
the presence of rounding in the experimental data, which 
makes the range of critical behavior and the position of 
the critical temperature hard to establish prior to least 
square adjusting the data to a model equation of the 
temperature dependence. The techniques used to deal 
with this problem usually result in the introduction of 
more disposable parameters into the data analysis. If no 
constraints al-e imposed, the cumH:!lJU~IlC~ j::; that th~ 

data can be fit equally well, with a wider range of 
alphas. Some constraints must then be involved to nar
row down the range. For example, when the critical 
temperature is made a fit parameter, its adjusted value 
determined from the data below the transition is usually 
different from that using the data above the transition. 
One constraint used at this point is to accept for con
sideration only those alphas leading to the same critical 
temperature. Often this results in increasing the stand
ard deviation of the fit. The data of Skalyo and Fried
berg [13] on CoClz' 6H20 illustrate a possible effect 
of this constraint. When TN is made adjustable the fit 
below the transition for 2.1029 ~ T ~ 2.2813 shows an 
absolute minimum standard deviation of about 0.04 
Jlmol K indicating the relative specific heat accuracy is 
about lI3 percent. This minimum occurs at a' = - 0_25. 
But a' can be varied to as low as - 0.50 and as high as 
+ 0.30 before the deviation of the fit equals twice the 
absolute minimum standard deviation (2/3%). If in

l 

addition, we restrict TN to the rounded region, the range 
in which the deviation of the fit is still less th;:m 2/3 per
cent becomes - 0.50 ~ a' ~ - 0.20. Finally, if TN is 
fixed at 2.2885 K, the similarly determined range narrows 
to about - 0.35 ~ ex' ~ - 0.15, but the absolute minimum 
standard deviation increases by about 25 percent. 

Another possible constraint is to require that 
a' = a [14]. Figure l(a) shows lines of minimum standard 
deviation for Ni [14] taken from our analysis of the Ni 
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data. Along these lines the standard deviation is locally 
minimized for the given range of a' and a as a function 
of possible critical temperatures in a physically accept
able range. The filled dot on each line represents the 
parameters giving the smallest standard deviation. In 
our analysis we have made sure that this smallest stand
ard deviation is in fact the absolute minimum. For the 
data of Connelly et al. [14] these lines intersect at a 
plausible value for the critical temperature and at a pair 
of alphas not significantly different from those yielding 
the absolute minimum standard deviation. Within the 
heavy portions of the lines values of the standard devia
tion on either side of the minimum are considered not 
to be significantly different than the smallest values. 
But not all data allow the crossover to admit the possi
bility that a' = a is very likely. Figure l(b) for Gd [15] 
suggests that a' T a. Indeed, the crossover ma.y be com

pletely outside the range of physically acceptable critical 
tern peratures. 

Another method used to narrow the range of possible 
alphas is to associate the rounding with a Gaussian 
distribution in critical temperatures Tc in which the 
width d and mean To of the distribution become fit 
parameters [15-19]. The distribution is convoluted over 
Tc with a particular form C (T, Tc, a, ... ) of the ideal 
temperature dependence to yield C (T, To, d, a, ... ). 
The range of alphas is narrowed down by constraining 
the calculated maximum specific heat C (T m, To, d, 
a, . . .) to coincide with the data at a temperature T m 

at which the data exhibit a maximum C MAX' The 
method requires that for N data pairs each with variance 
<T~ we minimize 

N L Uj2[Ci -C(T, To, d, a, ... )2 
i= 1 

+A[CMAx-C(Tm, To,d, a, ... ]. 

Lagrange's multiplier A can be eliminated analytically 
and the fit parameters (To, d, a, ... ) determined by 
iteration methods. It is known that this may change the 
values of a' and a [15, 20], but since data in the rounding 
enter the constraint equation the effect on alpha is 
suspect insofar as alpha is to represent the asymptotic 
temperature dependence. 

In the light of the paucity of accurate theoretical 
predictions valid for real materials, many of these con
straints used to establish exponents are, though certainly 
reasonable, still somewhat arbitrary. Thus, we did not 
Luild lh~lll iulu UU!· UUlIlt:1'ical aualy~i~ lechui4ue~. III 

the next sec~ion we describe the techniques we have 
used and how they were employed to obtain exponents 
giving the best overall fit to the data. 

3. Data Analysis 

The various numerical analysis considerations taken 
into account to obtain critical parameters are indicated 
below. 

~ Dependent V",iable Only 

Linear in Weighted ~ Dependent and Independent 

~::::ion < p",ameters>--<Data . ::::~:tion of Errors 

Nonlinear in Nonweighted 
Parameters Data 

+0.5 (a) (b) 
4-0.4 NICKf:L 1:14] GADOLINIUM [IOJ 
+0.3 
+0.2 
+0.1 a a' 

0 

X -U.l 

-0.2 
-0.3 
-0.4 
-0.5 

631.0 631.5 632.0 290.0 291.0 292.0 

ADJUSTED Tc (K) 

FIGURE 1. Lines of locally minimized standard deviation projected 
onto the a-Tc plane. The filled dot locates the absolute minimum 
standard deviation. Within the heavy portions of the lines the 
standard deviation of the fit is compatible with the quoted experi
mental accuracy of the parameters, the deviation of the fit is still 
random with no systematic trends and the adjusted critical temper· 
atures are physically plausible. (a) Results of our analysis for Ni 
[14] and (b) for Cd [15]. 

The model equation used in this analysis for the tem
perature dependence of the magnetic specific heat is 
that suggested by Fisher [3aJ: 

C(T) = (Ala) [ITITe -11-a -1] + B, T> Te. (1) 

When primed quantities (a', etc.) appear they refer to 
T < Te. When eq (1) refers to antIterromagnets TN re
places Te. The exponent a is usually in the range ± 0.3,. 
e.g., a = + 0.125 for the 3-dimensional Ising model, 
- 0.16 for the Heisenberg model, zero fur z-dimensional 
Ising model, and from + 0.04 to + 0.10 for many real 
fluids [10]. For a < 0, the model equation describes a 
finite cusp, a > 0 corresponds to a power law singularity 
and a = 0 gives a logarithmic divergence. Eq (1) is non
linear in the parameters a and Te and linear in A and B. 
We assume the data do not fix Te accurately and take 
it to be a fit parameter. The nonlinear presence of a 
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and Tc precludes an analytic closed form expression for 
the parameters and their errors. For many cases non
weighted data are sufficient. It is only for reduced 
temperatures E = IT/T~ - 11 < 10-3 that we find the 
reported temperature error UTi propagated through eq 
(1) will drive the weight below that represented by the 
error uCi in the measurement of the specific heat itself 
(fig. 2). But it is also for E < 10-3 that data show rounding 
and the propagated part of the error derived from eq (1) 
fails to estimate the true experimental error in this 
region. However, to accommodate exceptions we have 
written our computer programs to minimize the reduced 
chi-square of eq (1) with the data Ci : 

N 

X; (a, Tc, A, B) = V-l ~ Wi[Ci - C(Ti»)2, (2) 
f~l 

where the number of degrees of freedom v is equal to 
the number of data pairs N minus the number of 
parameters 4). When minimized with respect to the 
parameters eq (2) gives the estimated experimental 
variance or the square of the standard deviation of the 
fit if the weight Wi is set equal to unity, but when Wi 
is properly constructed, X; should be approximately one. 

In this analysis we do not define X; using data 
weighted in the dependent and independent variables 
of eq (1). To do so would require [21] that instead of 
eq (2) we minimize 

N 

V-l L [WCi (ACi )2+ Wrd6.Ti)2], 
i=l 

103 

N 102 
!- ....... 
~~ 

"0 "0 101 
E E 

" '"J '"J NICKEL [14] 

;rb 
10° 

10-1 

10-2 

FIGURE 2. The dependence of the weight Wi [See eq (4b)] and the 
standard deviation (Ti= Wi -t/2 of a data point on reduced tempera
ture for Ni [14] based on eq (1). The weight is fairly constant down 
to € - 5 X 10- 4 • The dashed line indicates what appears to be the 
experimental standard deviation in the rounding region where eq (1) 
does not describe the data. 
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with WCi=ucr, Wri=ur/', and where aCi=CiOBS

CiADJ , 6.Ti = TiOBS - TiADJ are respectively the differ

ences between the least square adjusted values and the 
observed measured values of C and T. Using the cal
culus of variations, the parameters would then be given 
by a solution of 

I(A/a2 ).[Eia(l-ln Eia) -I]Ai. 

=I(A/Tc)Eia-1(Ei±I)AiO, (3b) 

Ia-l(Eia~ I)Ai=IAi=O, (3 c) 

subject to the constraint that CiADJ = (A/a [ITiAD) 
Tc--:- II-IX- 1] + B. Thc naive approach to eqs (3) would 

be to solve eqs (3a) for the adjusted values CiADJ , TiADJ 
and substitute into the constraint equation yielding an 
expression for the Lagrange multipliers Adn terms of the 
observed values and the parameters. Then the right 
hand member of eq (3a) can be solved for TiADJ this time 
just-in terms of the observed values and the parameters. 
Substituting TiADJ and Ai into eqs (3b, c) would give four 
(intractable) equations involving only the observed data 
and a, Tc , A, B. The occurrence of nonlinear algebraic 
equations (like eqs (3») is not due solely to the non
linear presence of parameters in the model equation, 
but will occur whenever we separately weight the de
pendent and independent variables, even when the 
model equation is linear in the parameters [22, 23]. 
Since eqs (3) are so difficult to solve efficiently we will 
ascribe all the uncertainties to the dependent variable. 
This is effected bv treating aTi as zero, 6.Ci as CioBS -
C(TioBS ) and, to compensate for the artifice of setting 
6.Ti =O, letting Wc. become Wi= (u2

C' +U2
p .)-1 where 

1 1 1 

U~;= (aC(Ti)/aTi)2u~i is the propagated variance in 

the measurement due to errors in the temperature. Thus 
we assume that for any fixed value of the independent 
variable Ti, repeated measurements of the dependent 
variable Ci are Gaussian distributed with standard 
deviation UCi ; that the errors at the point (C i , Ti) are 
small and independent of the errors at any other point; 
and that the observed set of measurements of the parent 
distribution given by eq (1) is characterized by the maxi
mum likelihood best estimates for a, Tc , A, B. Under 

. these assumptions and those for the weighting given 
above, the probability for the observed set of measure
ments becomes [21] 

N 

P(a, Tc , A, B) = ITv'Wj/21T 
j=l 

(4a) 

(4b) 
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This probability is maximum when x~(a, Te, A, B) of 
eq (2) is minimum. 

The basic procedure was to start the fit using a small 
set of data points located a fixed amount from Te. Within 
this set the data point furthest from Te is denoted as 
€MAX and that nearest is called €MIN' Then while admitting 
into the fit additional data points nearer Tc (varying 
€MIN), the fit was continually repeated until the range of 
points included extended into the rounding region. In 
this mnnnp.r WP. havp. ohtainp.d thp. dp.pp.ndp.ncp. of a. Te • 

A, B on the range of points included in the fit. The fidu
cial points for the analysis were fixed. at €MAX = 0.1 or 
less and were not varied. Our computer programs are 
efficient enough that we could obtain for each side of 
the transition twenty or so determinations of the 
parameters for increasingly larger numbers of data 
points. Our hope· was that the parameters as functions 
of .the range of points included in the fit would converge 
to final values before encountering the rounding region. 
This was realized in a few cases. Figure 3 shows a 
favorable situation for Ni. We also found it illuminating 
to computer-generate for each set of parameters deter
mined from a given limited range of the data. deviation 
plots extending over the entire range of data. In this 
manner we could study how the parameters determined 
for any range fit the entire range. In most cases such a 
procedure revealed fairly well what were the best 
parameters for a given data set, since for too small or 
too large a range in € the deviations would be systematic 
and clearly outside experimental error. 

The actual search for the absolute minimum of the X; 
space for a given range of data proceeded in two steps. 
The first, executed by a program we call LINEAR: is 
patterned after the grid-type search method of van der 
Hoeven, et al. [24]. The method employs simple linear 
least-square techniques by incrementing over the non
linear parameters. However, it does not automatically 

NICKEL [14] 
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X eo 
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-5.0 4.5 -4.0 

I 
I , 

-3.5 -3.0 -2.5 

LOG1o E MIN 

x 
x 
xx 

-2.0 -1.5 

FIGURE 3. at (.) and a (X) versus loglo€MIN for Ni [14J (our analysis). 
The vertical dashed line is approximately where the rounding in the 
data begins. After some initial scatter both at and a settle down to 
approximately -0.1 before the range Of data extends into the 
rounding region. The exponents in the neighborhood of the dashed 
line have uncertainties of about ±0.03. 

provide error estimates for a and Te. We start with a 
given range of data, fix a' (a) of eq (1) at -1.5 and find 
the least-square adjusted values of A' (A) and B' (B) 
and the resulting value of X; (Wi = 1) of eq (2) for a range 
of possibl~ critical temperatures. The critical tempera
ture range is over a 40 cell grid roughly centered on the 
peak of the specific heat curve. The cell size ranges from 
0.00015 K to 0.15 K depending on the material being 
studied. The exponent a' (a) is then incremented in 
steps of 0.1 until it reaches a value of + 1.5. At each step 
the above procedure is repeated. Figure 4 gives an ex
ample of the type of information stored at the end of 
the run for a given data range of a particular material. 
The algorithm locates the minimum X~(Wi= 1) for each 
family member and of these locates the absolute 
minimum. For these particular values of a' (a) and T; 
(Te), the lea~H;quare aujusted value~ uf the linear 

parameters A' (A) and B' (B) are provided. These 
parameters are then taken to approximately locate the 
absolute minimum region in X; space and are used as 
initial starting parameters for an analytical search 
described below. The range of data is then increased 
and the process repeated until the range extends into 
the rounding region. 

An analytical search (one employing an analytical 
description of the X~ hypersurface) that involves in
verting the curvature matrix of the hypersurface has 
the advantage of automatically providing uncertainties 
for the parameters. In our circumstances it is also 3 
or 4 times as efficient as the brute-for~e mapping 
procedure described above, provided one has good 
starting parameters that characterize the absolute 
minimum and not a local minimum, maximum or a flat 
plateau. The latter conditions constantly plagued our 
earlier attempts to use various [25,26] analytical search 
methods efficiently. For the purpose of discussing the 
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~
=+0'2\1 
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FIGURE 4. A family of locally minimized X~ (Wi = 1) vs. "Tc" curves 

for Ni [14J (our analysis) using data in the range 618.911 ::;; T::;; 
630.847 K. The absolute minimum consistent with the incrementing 
interval is indicated by an X on the at =- 0.2 curve. Note the local 
minimum at the point marked with a triangle on the at = - 0.4 curv~. 
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merits of analytical searching methods, W~ pall1l1uu 
the hyperspace into two regions: a) the convex region 
of the absolute minimum and b) the rest of the surface 
outside of (a). By (a) we mean that region around the 
absolute minimum for which 

remains positive definite. Here the sum is over the 
parameters al = a, a2 = Te , ••• , and the partial deriv
atives are evaluated at the absolute minimum point of 
x;. The position around this minimum is given by 
Ul = (a-ao), U2= (T~-Teo), . .. , where ao, Teo,' .. , 
specify the minimum point. No least square fitting 
method known to us claims to be able· to analytically 
converge from region (b) to region (a) for any nonlinear 
function. Claims are usually made as to how rapidly a 
given method will converge to the absolute minimum 
point from some other point within the convex.region (a). 
For example, starting from points "far away" but still-i~ 
region (a), gradient search methods locate the immediate 
neighhOl-hood of the- aLsulul~ miuimum quite rapidly 
but from there to the minimum point convergence can 
be painfully slow. On the other hand, Taylor series ex
pansion methods converge rapidly to the minimum point 
from points in the immediate neighborhood but can not 
be relied on to converge for points "far away" [27a]. 
The method we used most extensively to determine the 
fit parameters was the gradient-expansion algorithm of 
Marquardt [27b]. Our error estimates of the parameters 
were obtained from the diagonal terms of Marquardt's 
inverse curvature matrix. The algorithm has the advan
tage of rapid approach to the minimum neighborhood 
from points far away (forte of pure gradient or steepest 
descent methods) and rapid convergence to the point of 
minimum X; from points nearby (forte of pure Taylor 
series expansion methods). For the present problem of 
fitting four parameter5 5imultaneously, we found lhe 
initial starting parameters needed by the algorithm must 
all he indigenous to the region of the absolute minimum. 
Otherwi~e convp.rgence w()111r1 be err::ttic or incomplete, 
different initial starting values would give different final 
results, and convergence to local minima would occur. 
None of these pro~lems arose when the initial starting 
values were obtained as described above. 

One problem'did occur with Marquardt's algorithm, 
however, even when the initial starting parameters were 
determined as described above. We compared the suc
cessive values of X; (via ilX;/X;) at each iteration to 

monitor the rate of convergence. On occasion, we 
noticed· that even though the relative difference in 
x; converged to 10- 12 and the parameters were succes

sively equal to eight places, systematic deviations 
occurred in a data region where we expected eq (1) to 
fit the data. This prompted us to monitor not just 
LiX;/X; and the parameters at each iteration but also the 
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derivatives of x; with respecl Lu Lh~ palameLtas (i)X~/ 

aaj) and Marquardt's I\. parameter~ The I\. parameter 
determines if the algorithm behaves like a gradient 
search (I\. large) or an expansion search (I\. small). As 
the minimum point is approached I\. tends to zero. We 
found that the above inconsistency was associated with 
large derivatives aX;/aaj (102 -106

) and diverging 

values of I\. (> 105). The occurrence of large I\. values is 
referred to by Marquardt in a footnote (ref. [27b], 
page 438) as due to high (0.99) correlations among the 
parameters. However, we have seen the condition occur 
when the largest correlation is 0.97, and we have seen it 
not to occur with correlations as high as 0.9999. Monitor
ing the derivatives aX;/aaj also indicated that they 

were significantly different from zero (say ~ 1) when the 
iterative process was stopped using a convergence 
criterion of ilX~/X~ "-' 10-3 • Indeed, many times the 

derivatives did not drop below 10-6 unless ilX;/X; 
was around 10- 8• Thus we accepted for consideration 
only those parameter values leading to relative differ
ences ilX;/X;, chi-square derivatives aX;/aaj, and I\. 

values all predominantly in the range 10- 7 to 10- 12
• We 

further required the off-diagonal terms of the product 
of the curvative matrix and its inverse to be less than 
10- 10. Of course the accuracy of the data can not 
demand such strong requirements, but they narrowed 
down sources of internal inconsistencies present in 
comparing experimental results. 

4. Results 

We found, in the literature, results of 49 experiments 
on the magnetic specific heat in the critical region. The 
magnets are listed in table 1 according to the publica
tion date of the experimentaI" results. The asterisks 
in column 1 of this table indicate those data sets we 
least square analyzed by the methods described above. 
For the remaining magnets, it was usually the case that 
the data were unavailable to us. Table 2 lists the results 
of our investigation (17 sets) together with all the param
eters we found published (23 sets). For a given magnet, 
the first line gives the results of our analysis and the 

second line contains the parameter values reported in 
the references. The dagger indicates that the results of 
our analysis differ significantly from those reported in 
the references. We will discuss these differences first. 

EuO: Figure 5 shows the dependence of a' and a on 
the range of data included in the fit. After initially 
varying widely, a' finally. settles down to a distinctly 
negative value. On the high temperature side, a could 
be zero if we were content to include only a limited 
amount of data, but we interpret these results as indi
cating that a is positive and greater than 0.3. 

Mn(NH4h(S04h'6H2 0 (MATS): Allowing Te to be a 
free parameter in our analysis of MATS led to fairly 
inclusive results. Figure 6 shows a' varying widely right 
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up to the region of rounding. The insert in figure 6 sug
gests a value of 0.176 K for Tc , in agreement with the 
value taken by Rayl et al. in the analysis [17] of their 
data. When we fix Tc at 0.176 K the results of figure 7 
occur as opposed to those of figure 6. This constraint 
removes the scatter in a', and we can say fairly conclu
sively that a/is not equal to a and neither appears to 
be equal to 1/8 [17]. The best fit is given by those ex
ponents marked with their error bars. These are the 
values we entered in table 2, line I of MATS. A case for 
a I = a = 1/8 within the uncertainties of the exponents 
could be made for a special subset of the data, namely 
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LhaL revresented by the exponents marked with an 
arrow in figure 7. Finally, we remark that due to scatter
ing in the experimental data the differences that appear 
distinct using the kind of analysis embodied in figure 7 
are hardly apparent in a deviation plot. 

CoCb· 6H2 0: The dependence of a ' and a on the range 

of data included in the fit for CoCI2 • 6H20 is shown in 
figure 8. It is unlikely that a is zero, and to accommodate 
a ' = 0, points somewhat in the rounded region must be 
included in the fit. However, these results are incon
clusive since the data below and above the transition 
led to significantly different values of TN. We obtained 
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TN'=2.2885±0.0010 K and TN=2.2828±0.0006 K. 
The weighted average is 2.2844 ± 0.005 K, which is 
right at the peak in the data. Since the critical temper
ature is usually found above the peak for an asymmetric 
transition, we feel that TN= 2.2885 is a better choice for 
the critical temperature. Holding TN fixed at this value 
gives the results of figure 9. This constraint resulted in 
lowering the best a somewhat while a' changed little; 
however, the range of data giving the best overall fit 
has shifted away from the transition, and the deviation 
of the fit from the data is more' systematic. Finally, it 
now appears that even a' is most likely not zero. 
CoCsa C15 : In the original analysis of this data [28], 
Wielinga, et al. took TN= 0.523 K corresponding to the 
peak in the data. They obtained a' = 0.0 and a= 0.75. 
Later [18], as a result of convoluting the ideal tempera
ture dependence with a Gaussian distribution in tr~msi
tion temperatures, they concluded TN= 0.527 K, 
which gives a'=0.19+0.04 and a=0.50+0.05. 
Allowing TN to a free parameter, we find TN' = 0.5229+ 
O.OO~O amI TN=O.5247+0.0023. Unlike the case for 
CoCl2 '6H20, the errors in these determinations . of 
TN overlap. In addition they encompass the previously 
obt::lined values of 0.523 K and 0.527 K. Thus, the scatter 

in the data does not permit choosing any of these four 
determinations as the' most likely value of TN. This 
scatter is reflected in the results for a' and a versus 
€MIN (fig. 10). Below TN, a' does not appear to be con
verging, while above TN, a varies widely before abruptly 
leveling off at rather large values. 

We now wish to discuss those materials appearing 
more than once in table 2. These are Gd, Ni and MnCI2 " 

4H20.Their exponents are summarized in table 3 
(at the end of section 5). 
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rounding region. The arrows mark exponents giving the best overall 
fit. Their position on the temperature axis has been shifted further 
away from the transition as compared with figure 8. 

J. Phys. Chem. Ref. Data, Vol. 2, No.1, 1973 

Gd: Below Tc our analysis of Lewis' [15] data agrp.es 
both with his results and with our analysis of the much 
earlier data of Griffel, et al. [29], at least within experi
mental error. Above Tc our analysis of Lewis' data 
agrees quite well with his result for a, but not with the 
value of a we obtained for Griffel's data. Except for 

. € > 10-2 our analysis of a versus €MIN shows that a 
negative exponent above Tc is not consistent with 
Griffel's data. The data of Griffel etaI., was not intended 
to be high resolution work· at the critical point, and we 
did not subtract out nonmagnetic contributions from 
this data, as Lewis did for his data, though these con
tributions probably have little influence on the expo
nents [15]. What is perhaps more important is that 
Griffel's data were obtained using adiabatic calorimetry 
and Lewis' data were obtained by the ac method. 
We will return to this point when discussing Ni. 
Ni: The first published results for the exponents of 
Ni appear to be those of Kraftmakher [30], who con
cludes that the specific heat is logarithmic on both 
~ides of the transition. Since then Ni has been exten
sively studied [31, 32, 14, 33], and this conclusion has 
been significantly modified. Assuming a value of 630 
K for Tc of Kraftmakher's data, his figure 2 suggests 

that his data extend to about €=2 X 10-a. Our figure 
3 suggests that this range of data might admit a= 0 
but not a' = O. A continuing series of measurements 
by Handler, Mapother, and Rayl [31], Maher and Mc
Cormick [32], and Cormelly, Loomis, and Mapother 
[14,33] has gone almost to €= 10-5• These measurements 
have established the result that a' for Ni is negative. 
The results of Connelly, Loomis, and Mapother obtained 
in 1969 [14] and 1971 [33] replace as more accurate 
the 1967 results of Handler, Mapother, and Rayl 
[31]. Of these, the results of Connelly, et aI., reported 
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in ref. [33] are considered by them their most detailed 
measurements. Our analysis of their 1969 [14] data 
agrees quite well with their results (table 3). Two entirely 
different measurement techniques have been applied 
to Ni. Conventional adiabatic calorimetry was used by 
Maher and McCormick [32] to obtain specific heat 
point accuracy of 1.5 percent, and the ac method was 
used by Connelly, et al. [14, 33], to obtain continuously 
recorded specific heat accuracy of 0.5 percent. Thus, 
the observation that for Ni, a' is negative is to this date 
the most firmly established result of any magnetic 
crystal specific heat exponent, even though a factor of 
2.5 separates the known observations (table 3). The 
situation above Tc is not as clear. Above Tc, the measure
ments of Maher and McCormick differ in an essential 
way from those of Connelly, et al. The former find a 
divergence given by a=+0.10±0.05 and the latter 
find a cusp given by a=-0.10±0.03. After considering 
various aspects of experimental methods, sample con
figuration, chemical purity, experimental accuracy and 
normalization procedures, Connelly, et at, conclude that 
the source of the differences in the two determinations 
of a is obscure. We see a parallel between these results 
and tho::;e for Gd, which ha::; cUlllparaLle magnetic 

anisotropy. Namely, the adiabatic calorimetric method 
and the ac method agree with respect to the sign of 
alpha below Tc but not above (table 3). Above the transi
tion the calorimetric method yields positive and almost 
equal exponents for Gd and Ni, while the ac method 
gives negative and practically equal exponents for these 
materials. 

MnCl2 ·4H20: The data of Dixon and Rivers [34] are 
the more reliable here since those of Friedberg and 
Wasscher [35] were not intended to be high resolution 
work at the critical point. The large uncertainty we found 
for a' from the data of Friedberg and Wasscher could 
admit the possibility that a' = 0 for their data. As a 
matter of fact we obtained a' = 0.001 ± 0.2 when all the 
data down to E= 10-3 were included in the fit, but a value 
of a' =- 0.27 ± 0.20 was more consistent with the be
havior of a' versus EMIN and predicted a more random 
deviation plot. Above TN, the value of a=0.63+0.10 
we obtamed for the data of Friedberg and Wasscher is 
not very reliable; it provided the best overall fit but the 
scatter in the a versus EM IN plot could easily acco~
modate Dixon and Rives value of a = 0.35. 

5. Discussion 

We now discuss some general features of the results 
given in table 2. Our analysis has not revealed any out
standing difference in the range of a' and a between 
ferro magnets and antiferromagnets. We also find little 
in the way of significant differences in the ranges of a' 
and a when the materials are grouped according to 
representative system Hamiltonians. The ranges are: 

a' range a range 

Heisenberg FM ........................... . o to - 0.5 a 0.0 to 0.4 
b-0.2 to 0.4 

Ising AFM (Exchange) .................. . o to - 0.4 o to 0.6 

Heisenberg AFM ......................... . o to< 0 o to 0.1 

Ising AFM (Dipolar) .... , ................ . o to -'-- 0.3 o to 0.3 

a Calorimetric method only. 
b Calorimetric and ac method inclusive. 

Model calculations reveal that the nature of the transi
tion depends less on the details of the interaction than 
on the symmetry of the ordered spin state. But our re
sults, especially for the ordered state, indicate that even 
the spin symmetry (Ising vs. Heisenberg anisotropy) 
assumed to be present in these materials is not being 
reflected in the measured magnetic specific heat singu
larity. A feature most apparent in these results is the 
preponderant number of negative exponents for the 
ordered state. The ,first to report a negative a' were 
IIalldlel-, Mapother, and Rayl for Ni [31], though our 

analysis shows previously published data [29, 36, 37, 
38, 57] predict negative a' exponents. Below the transi
tion 16 out ~f 24 material", have negative exponents. 
while only 6 out of 24 (including Cd and Ni) have nega
tive exponents above the transition. Most Heisenberg 
model calculations predict a negative exponent above 
the critical temperature, whereas we find mostly 
positive a's. The fact that the data do not distinguish 
between model Hamiltonians suggests this effect may 
be due to an intrinsic property of the material not 
accounted for in the Hamiltonian. 

The scaling hypothesis referred to in the Introduction 
also implies a scaled equation of state that has been 
applied to a wide variety of substances [67]. Thus, 
we should make a comparison between the a exponents 
obtained here and those provided by fits of scaled equa
tions of' state to magnetic field (H)-magnetization 
(M)-temperature (T) data. (See ref. [67l for such 
fits and references to HMT data.) Only for Gd and 
Ni do we find such a comparison possible. HMT data, 
together with the scaling relation f3 (8 + 1) = 2 a 
and the scaling result that a must be equal to a', 
have been used in ref. [67J to obtain a=0.01±0.09 for 
Cd and a=-0.03±0.15 for Ni. The exponents f3 and 
8 describe, respectively, the asymptotic power law for 
the cuexi::;tence curve; M ex:: IT- Tcl 13 , amI the critical 

isotherm: H cc Mo. For Cd our results (see table 3) 
do not support' the assumption that a equals a', and 
even allowing for the large uncertainty in the HMT 
value of a, we do not find agreement between a ob
tained from the specific heat data tn: Lewis [15] and 
a obtained from the HMT data. The situation for Ni 
is somewhat different (table 3). The results of Connelly, 
Loomis, and Mapother (CLM) [14, 33] support the 
equality of a and a' while those of Maher and McCor
mick (MM) [32] do not. Also the large uncertainty of the 
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HAlT value of a for Ni allows for agreement within this 

error with the specific heat exponents of CLM but not 
with the a' of MM. 

These results, by themselves, do not lend convincing 
support to scaling. This situation for magnets most 
likely occurs because the experimental results -are still 
ambiguous, and we lack a firm theoretical understanding 
of the data rounding. One would expect the experimental 
precision represented by the high resolution work on 
Ni [32, 14, 33] to have afforded a more definitive com
parison with theory, but the diverse though precise 
results obtained from different Ni samples indicate that 
the fundamental problem of obtaining uniform single 
crystals has still not been solved. 
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TABLE 1. A chronological listing of experiments on the magnetic 
specific heat in the critical region3 

Material Ref. State below Te (K) Parameters given 

FeCl2 [39] 1935 AFM 23.55 None 
Cr203 [40] 1937 AFM 306.5 None 
,B-VH3 [41] 1942 FM 172.0 None 
NiClz [42] 1952 AFM 52.39 None 
MnCh ·4H2O * [35] 1953 AFM 1.622 None 
Gd * [29] 1954 FM 291.76 None 
CoF2 [43] 1955 AFM 37.5 None 
NiF2 [44] 1955 AFM 73.33 None 
VI3 * [45] 1955 AFM 2.61 None 
FeF2 [46] 1955 AFM 78.11 None 
Dy [47] 1956 AFM 175.3 None 
Tb * [36] 1957 FM 227.67 None 
Sm [65] 1957 AFM 13.6 None 
Sm * [37] 1959 FM 105.8 None 
NiClz ·6H2O [48] 1960 AFM 5.2 None 
CoCl2 * [49] 1962 AFM 24.71 None 
CrCl2 * [50] 1962 AFM 16.06 None 
CuCIz ..- [51] 1962 AFM 23.91 None 
CoClz ·2H2O [52] 1964 AFM 17.2 None 
KMnF3 [53] 1964 AFM 88.0 None 
CoClz·6H2O * [13] 1964 AFM 2.2890 a', a, TN, A', A, B', B 
Gd [54] 19()5 FM 290.45 None 
MnF2 [55] 1965 AFM 67.33 , a', a, A' , A, B' , B 
CrBr3 [56] 1965 FM 32.55 None 
EuO * [57] 1965 FM 69.3 a,A 
CuK2Cl4 . 2H~O * L3HJ 1965 FM O.H9 a', a, Te, A', A, B', B 
Fe [59] 1965 FM 1042 a' , a, A' fA 
Ni [30] 1966 FM 630 a', a, A', A, B', B 
RbMnF3 [58] 1966 AFM 83 a' " a, A 
DY3Als012 [60] 1967 AFM 2.54 a', a, TN', TN,A,B',B 
Ni * [31] 1967 FM 625 a' , a 
CoCs3C15 * [28] 1967 AFM 0.527 a', a, TN,A, B, 
COCS3Br5 [28] 1967 AFM 0.282 a', a, A', A, B', B 
EuS * [24] 1968 FM 16.426 a', a, Tc', Te, A', A, B', B 
Mn(CH3COO)z '4H2O * [61] 1968 FIM 3.180 None 
Mn(NH4)z(S04)2'6H2O * [17] 1968 FM 0.176 a' , a, A' , A 
DyAI03 [66] 1968 AFM 3.52' None 
TbAI03 [66] 1968 AFM 3.95 None 
GdAI03 [66] 1968 AFM 3.69 None 
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Material 

Gd 

Tb 

Sm 

EuOt 

Ni 

Fe 

Ni 

EuS 

Mn(NH4h(S04h . 
6H20t 

Ni 

Ni 

Pd-Mn(0.54 at % Mn) 

SPECIFIC HEATS IN THE CRITICAL REGION OF MAGNETIC SOLIDS 

TABLE 1. A chronological listing of experiments on the magnetic 

specific heat in the critical region. 3 -Continued 

Material Ref. State below Te (K) Parameters given 

Ni [32] 1969 FM 629.635 a', a, Te,A',A,B',B 
Ni * [14] 1969 FM 631.55 a' , a, Te, A', A, B', B 
Cr [62] 1969 AFM 310.7 a',A' 
MnCI2 ·4H2O [34] 1969 AFM 1.62 a',a,A',A,B',B 
Pd-Mn(0.54 at % Mn) [19] 1970 FM 1.98 a', a, Te,A',A,B',B 
Pd-Mn(1.35 at % Mn) [63] 1970 FM 4.477 a', a, Te,A' ,A, B', B 
Pd-Mn(2.54 at % 1\1:n) [19] 1970 FM 5.783 a', a, Te, A', A, B', B 
ErCI3·6H2O [64] 1970 AFM 0.356 a', a, TN, A' ;A, B', B 
Gd * [15] 1970 FM 291.35 a', a, Te 
Ni [33] 1971 FM 631.58 a', a, Te, A', A, B', B 

3 Column 1. The asterisks indicate data sets we have least square 
analyzed by methods described in the text. 

Column 2. The left hand member is the reference number and on 
the right is the date of publication. 

Column 3. FM = ferromagnet, AFM = antiferromagnet, FIM = ferri-

magnet indicate the state immediately below the given transition 
temperature. The transition temperature listed is that reported by the 
investigators in the· references. When more than one transition 
temperature is found, a representative value is entered here. 

Column 4. The parameters are defined by eq (1) in the text. An 
entry in this column means that either the parameter as defined by 
eq (1) is given in the reference or that it can be derived from whatever 
parameters are given. For this tabulation, the transition temperature 
is not considered a parameter unless it was explicitly treated as such 
in the data analysis reported by the investigator. 

TABLE 2. Some critical parameters for 24 different magnetic crystals 1 

Ferromagnets 

Ref. a' A' A B' B 

[29] 1954 -0.24±0.07 0.1l±0.01 12.33±2.12 2.02 ± 0.09 22.46±2.38 27.25 ±0.19 

21 

A'IA 

6.10 

[36] 1957 -0.70±0.08 0.55±0.04 202.8 ±8.3 1.12±0.15 -213.5 ±8.5 26.28' ±0.47 181.07 

[37] 1959 -0.27±0.1O 0.60±0.09 4.35±0.90 0.1O±0.03 29.0 ±1.0· 26.05 ±0.15 43.50 

[57] 1965 -0.50±0.15 0.34±0.24 12.46±0.80 1.61 ± 1.11 1.40 ± 1.60 0.076 ± 2.46 7.74 
<;:0 0 ...••..•....•.•.•..•• 3.61 ..................... -7.25 3 

[38] 1965 -0.02±0.13 0.03±0.14 1.89±0.77 1.53±0.70 3.00±1.23 -0.12 ±1.27 1.24 
0.0 0.0 1.69 1.69 3.58 - 0.42 1.00 

[30] 1966 .................................................................................................................................... .. 
0.0 0.0 1.65 1.65 28.65 b 25.94 b 1.00 

[59] 1966 ..................................................................................................................................... . 
0.0 0.0 ..................... .................... .................... .................... 1. 

[31] 1967 
-0.3 ±0.1 0.0 ±0.1 ...................... .................... ..................... .................... . ........... 

[24] 1968 -0.25±0.03 0.00±0.02 7:63±0.79 3.99±0.31 4.19± 1.07 -2.01 ±0.61 1.91 
-0.25±0.03 0.00±0.03 7.59 4.21 4.33 -2.50 1.80 

[17] 1968 -0.30±0.20 0.50±0.20 19.74 0_10 -10.03 9.46 197.4 
0.125 0.125 2.34 c 0.78 c 22.45 c f ~c; c 3.00 
0.125 0.125 2.21 d 0.76 d 25.23 d 6.56 d 2.91 

[32] 1969 .................... ................... ..................... .................... ..................... .................... . ........... 
I 

-0.26±0.06 0.10±0.05 4.60 0.67 24.34 29.24 6.87 
[14] 1969 -0.09±0.03 -0.14±0.02 1.60±0.20 2.21±0.07 2.09±0.41 -3.36±0.14 0.72 

-0.1l±0.03 -0.1l±0.03 1.73 1.99 1.86 -3.00 0.87 

[19] 1970 
-1.78 0.1227 0.01l0 -0.0217 0.0091 11.15 
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Material 

Pd-Mn(1.35 at % Mn) 

Pd-Mn(2.45 at % Mn) 

Gd 

Ni 

UIa 

crCh 

MnF2 

RbMnFa 

CoCs3 Cht 

Cr 

T AHLt; 2. Some critical parameters fo.r 24 different maglleLit.: c.rysLab 1 - Continued 

Ferromagnets 

Ref. a' a A' A B' B A'IA 

[63] 1970 
-1.36±0.12 -0.20±0.06 e 0.1467 0.0234 -0.0009 0.0215 6.27 

[19] 1970 
-1.18 -0.41e 0.1622 0.0584 0.0289 0.0461 2.78 

[15] 1970 -0.31±0.06 -0.17±0.02 1.75±0.33 f 0.84±O.07 f 9.54±0.39 r 8.60±0.12r 2.08 
-0.29±0.05 -0.17±0.05 .................. ...................... ..................... .................... ............ 

[33] 1971 .................... .................... ... .: .............. ...................... ..................... .................... ............ 
-0.10±0.03 -0.1O±0.03 1.416 ± O.OO"t; 1.609 ± O.OOS 1.51 -2.60 0.88 

Antiferromagnets 

[35] 1953 -0.27±0.20 0.63±0.1O 13.1±9.2 0.31 ±0.12 -3.8±12.0 2.44±0.53 42.26 

l4S] 1955 0.8± 1.0 -0.4±1.0 0.41 ± 1.3 8.10±3.0 0.28±1.0 -B.6O±3.0 0.051 

[49] 1962 -0.39±0.05 0.57±0.06 9.58± 1.5 0.19±0.04 -4.04±1.6 8.66±0.14 50.42 

[SI] 1962 -0.70±0.26 0.05±0.20 12.68 0.34 -6.81 8.54 37.29 

[SO] 1962 -0.7S±0.50 -0.SO±0.30 21.95 10.42 1-14.34 -5.73 2.11 

. [13] 1964 -0.25±0.04 
0.0 

0.59±0.04 
0.0 

6.3B±0.B4 
2.2S 

0.22 ± 0.02 
2.25 

-4.I2±1.06 
2.78 

3.B3±0.1l 
-1.99 

29.00 
1.00 

[55] 1965 ...................................................... . 
0.0 O.OtoO.l 4.15 2.17 6.82 1.16 1.91 

[58] ·1966 ..... ~ ............................................................................................................................... . 
<0 0.0 to 0.05 ......... '" ... ... 1.34 ..................................................... . 

[60] 1967 ..................................................................................................................................... . 
0.0 0.31±0.02 3.96 0.35g -3.6SU I.I3g 11.31 

[2B] 1967 -O.ll 0.B7 3.47 0.13 4.59 1.40 26.69 
0.I9±0.04 0.50±O.05i ,1 1.50 ± 0.32k 0.29±0.201,k 7.90 ± 0.42i O.5B±0.421 5.17 

[2B] 1967 ..................................................................................................................................... . 
0.0 0.0 3.66±0.17 4.57±0.17 -1.58±0.B3 -6.90±0.83 0.80 

[62] 1969 ..................................................................................................................................... . 
0.34 ± 0.02 ..................... ·0.031 ± 0.002· ........................................................................ . 

. [34] lQ69 _ ..................................................................................................................................... . 

0.0 0.35±0.02 6.07±0.07 0.49±0.04 4.82±0.58 3.88±0.09 12.39 
[64] 1970 .......................................................................... : .......................................................... . 

~0.26±0.06 -0.07±0.05 m I7.11 1.00 -18.39 0.338 I7.11 

Ferrimagnets 

[61] 1968 0.14±0.02 -0.I9±0.04 0.99 ± 0.06 1.52±0.2I 2.74±0.I3 2.53±0.3I 0.65 
........................................................................................................................................ 

IThe values of A', A, B', andB are inl/mol K unless indicated other
wise. The parameters are defined by C= (Ala)(e-a-I) + B or for 
a=O by C= -AlnE+B where E= ITITe-ll. Primed quantities refer 
to below the transition and unprimed quantities refer to above. The 
dagger in column 1 indicates that a significant difference occurs be
tween the .results of our analysis and those reported in the references. 
For a given magnet, the first line gives the results of our analysis and 
the second line contains the parameter values reported in the 
references. 

assumed in eq (1) of this reference. Using their eq (3) and the solid 
lines of their figure 4, we obtain B-=0.I5and B+=0.05 giving 
B'=22.45 llmol K and B=6.65 llmol K. These latter values are 
entered in table 2. 

dWhen we fix a' (a) at 1/8 and Tc at 0.176 K we ~et fo.r eq (3) ref. 
[17]: C+/R=0.733e- I /8+O.0556 (1.73XIO-3";;e,,;;1.76XIO-2) and 
C -IR = 2.I3IEI-l/8+ 0.908 (1.57 X 10-3 ,,;; lei,,;; 1.88 X 10-2). These 
parameters imply those entered in table 2. 

e The temperature dependence used in ref. [19 and 631 is C ± = (P ±! 
a±) (l-E±-a±)+Q± where E±=I- (Tc/T)±l. Below Tc this differs a Estimated from figure 3, page 53 of ref. [57]. 

bIn converting Kraftmakher's equation for C (ref. [30]) to our 
eq (I), we assume Te = 630 K. 

C The coefficients of eq (3) in ref. [17] should be interchanged. Also 
the values of B± are not given in eq (3), although their presence is 
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from our eq (I) only by the sign of P -, but above Tc we can write 
C+= (-P +Ia+) [(E-E2+e3 - ... )-a+ -1] +Q+ where e= ITITe-II 

(not e+). Thus to the extent that the higher order term in e can be 
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neglected we make the association (Y = a +. A = -P +. B = Q +. JTor 
Pd-Mn (1.35 at % Mn)~ using this association in our eq (I) gives a 
0.006 percent error at E= 10-3• 0.1 percent error at E= 10-2 and. 1.4 
percent error at E= 10-1• The experimental error in C is about 0.2 
percent. so below E= 10-2 this association leads to an undetectable 
error. 

f These values are in the arbitrary units of ref. [15]. 

J.I D~duced from figure 2 and figure 3 of ref. [60] and using T.v=2.537 
K. Also the sign of A'_ in figure 2. ref. [60] is incorrect. 

h The data for CoCsaCl5 included about 4 points with quite large 
deviations from the calculated curve; thus, we did not obtain reliable 
estimates of the uncertainties in the parameters. If these pointl'l arp. 

not included in the data analysis, we estimate the uncertainty in a ' and 
a to be about 20 percent. 

i Remarks similar to footnote e apply here. 
j In ref. [28], figure 6, the signs of the coefficients 8.5 and 1.6 in the 

expression for C(T < TN) should be reversed. They are given correctly 
in the text. In ref. [18], page 61, figure 7, the sign of the coefficient 
0.193 in the expression for C(T < TN) should also be reversed. It is 
given correctly in the text. 

k The errors for A I and A were determined ignoring the covariances 
between these coefficients and the critical exponents a ' and a. respec
tively. 

I These parameters for T> Tv derived from those of ref. [28 and 18J 
predict a curve that differs systematically from that giyen in the above 
references. The difference can not be accounted for by differences in 
the choice of the temperature axis (see footnote e). 

UJ Remarks similar to tootnote e apply here. 

TABLE 3. The exponents for those materials appearing more than 
once in table 2a 

Material Ref. 

Gd [29J 1954* 

[IS] 1970t 

Ni [30] 1966 

[31] 1967 

[32] 1969* 

[14] 1969t 

[33] 1971t 

MnCh·4H2O [35] 1953 

[34] 1969 

* Adiabatic calorimetry. 
t ac method. 

a ' a 

-0.24±0.07 O.II ± 0.01 

- 0.31 ± 0.06 - 0.17± 0.02 
-0.29±0.05 -0.17±0.05 

0.0 0:0 

-O,~+O] 

........................ ........................ 
-0.26±0.06 0.10±0.05 
-0.09±0.03 -"0.14± 0.02 
-0.II±0.03 -0.II±0.03 

........................ ......................... 
-O.lO±O.03 -0.1O±O.03 
-0.27±0.20 0.63± 0.10 

........................ ........................ 

........................ ........................ 
0.0 0.35±0.02 

a The top line for each reference entry gives the results our analysis 
and the bottom line contains the exponent values reported in the 
reference~. 
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