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Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron-Nickel Alloys 

H. M. Ledbetter and R. P. Reed 

. Cryogenics Division, Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302 

A comprehensive compilation is ~ven of elastic properties of iron-nickel alloys. When sufficient data 
exist, preferred values are recommended_ This compilation covers, besides pure iron and pure nickel, 
the entire binary composition range, both b.c_c. and f.c.c. phases. Elastic constants included are: 
Young's modulus, shear modulus, bulk modulus (reciprocal compressibility), Poisson's ratio, and single­
crystal elastic stiffnesses, both second-order and higher-order. Data are compiled for variation of 
ela~tic com;tant<;. with rompo!>.ition, tpmpprlltllre, prp!>.!>.nrp., magnetic neld. mechanical deformation. 
annealing, and crystallographic transitions. An overview is given f~om the vantage points of the electron 
theory ·of m.etals, elasticity theory, and crystallographic theory. Also included are discussions of iso­
thermal and adiabatic elastic constants, interrelationships among engineering elastic constants, com­
putation of the latter from single-crystal elastic stiffnesses, and similar topics. Where key data have 
not been measured, they were generated if possible from existing data using standard formulae. Other 
gaps, both theoretical and experimental, in the elastic properties of iron-nickel alloys are indicated. A 
few theoretical results are included where experimental data are nonexistent or scarce. A semantic 
scheme is proposed for distinguishing elastic constants of solids. 

Key words: Bulk modulus; compressibility; elastic constants; Debye temperatures; iron; iron alloys; 
Lame constants; nickel; nickel alloys; Poisson's ratio; shear modulus; single-crystal elastic coefficients; 
Young's modulus. 
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Cijkl, Cijklmn third-order elastic stifInesses (contracte~, 
full) 

ClI, C12, C44 three independent elastic stiffnesses fPr 
cubic symmetry 

C =C44 

C' = (Cll -c12)/2 

ex specific heat at constant x 
E Young's modulus 
F Helmholtz energy 

G shear modulus 
G Gibbs energy 
h Planck's constant 
H enthalpy 
Ii tensor in variants 
k Boltzmann's constant 
l, m,,'f, M urnaghCLIl '::I third-urder 4. uCL::Ii-isutru»ic 

elastic constants 

M general elastic modulus 
N Avogadro's number 
p pressure 

1. Introduction 

In this century, solid-state physics has advanced ra­
matically. Essential to this advance was accumulat on 
of vast quantities of data describing properties of soli s. 
As much as any set of properties, elastic properties w re 
central in this advance. Similarly, technologies suc as 
metallurgy and ultrasonics have matured only throug a 
necessary knowledge and understanding of elastic p p­
erties of solids that provide their basis. 

Most solids are crystalline, therefore elastically ni­
sotropic, and are either single crystals or polycryst 'ne 
aggregates. Thus. crystalline studies form a large art 

. of solid-state physics, which attempts generally to re ate 
properties of atoms and atom groupings to macrosc pic 
properties of solids at various temperatures~ pressu es, 
etc. 

While most phenomenological crystal elasticity 
developed by late 19th century, systematic studies 
practical applications of crystalline elasticity emer ed 
only recently. Uses of crystals in solid-state devices nd 
engineering applications of elastic solids increased ub­
stantially since about 1945. ·Measurement of ela tic 
properties by ultrasonic techniques facilitated t ese 
applications~ 

With the view that elasticity of solids will be incr as­
ingly important in both science and t~chnology, a be 'n­
ning is made here toward a comprehensive compila ion 
and critical review of elastic properties of ~elected ys­
terns that hold high interest for both of these comm ni­
ties. For examples of practical applications of el tic 
properties one need only consult any standard refere ce 
on strength of materials. Perusal of various formula for 
describing states of stress such as compression or b nd-

Sij, Sijkl elastic compliances (contracted, full) 
S entropy 
T temperature (degrees Kelvin) 
u displacement 
v velocity 
v,V specific volume, volume 
a linear thermal expansion coefficient 
f3 volume thermal expansion coefficient 

'Y shear strain 
'Y Griineisen's constant 
~ij Kronecker's delta 
E strain 

"fJ strain 
8 Debye characteristic temperature 
A Lame constant 
A magnetostriction constant 
JL Lame constant (= G) 
v Poisson's ratio 
p mass density 
(T stress 
T shear stress 

ing shows that elastic constants are key design param­
eters. Indeed, few stress-bearing members . can be 
designed adequately in ignorance of the elastic proper~ 
ties of the constitutive material. 

Engineering materials that are macroscopically isot­
ropic are completely. defined elastically by two param­
eten;. Parameter 5election is arbitrary, varying with 

application. As examples: pressure vessel design 
requires knowing the bulk modulus, design of rotating 
shafts requires knowing the rigidity modulus, and design 
of flexed beams or support columns requires knowing 
Young's modulus. 

For some special scientific purposes it is sufficient to 
know the elastic properties of a material in some refer­
ence state, for example-a pure, annealed, defect-free, 
single crystal at 0 K and 1 atmosphere. However, for 
ordinary purposes the elastic properties of a material 
must he known in other, non-reference, states. Depart­
ure from the state of reference usually involves varying 
one or more of- composition, temperature, pressure, 
mechanical deformation, magnetic field, or degree of 
poly crystallinity. Thus, an understanding is sought as to 
how these variables affect elastic properties. These 
topics are discussed in sections 10-11 and 13-16. 

The purpose' of this paper is to present a compre­
hensive compilation and a critical overview of the 
elastic properties of alloys of the binary system iron­
nickel. These alloys hold much interest for both en­
gineers and scientists, for both metallurgists and 
geophysicists. Iron-nickel allOYS also provide fertile 
ground for probing relationships between elasti,c con­
stants and phase transitions, an area of physics and 
metallurgy now ripe for both theoretical and experi­
mental study. Since both iron and nickel are ferro-

J. Phys. Chern. Ref. Data, Vol. 2, No.3, J973 
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magnetic, their alloys show a variety of curious magnetic 
effects, many of which are important technologically; 
and magnetic effects are frequently coupled to elastic 
constants, as for example in magnetostriction. Similarly, 
lnvar 1 is an alloy of Fe-36Ni 2 where magnetic effects 
combine with thermal expansion such that virtually no 
thermal expansivity is exhibited over a wide temperature 
range, one of the curious exceptions to the almost uni­
versal thermal expansion of solids. 

Other materials such as Covar (thermal expansion 
coefficient similar to that of glass) and Permalloy 
(exceptionally. high magnetic permeability) are based 
on iron-nickel binary alloys. Metallic meteorites, also 
scientific curiosities, are iron alloys containing as much 
as 60 percent nickel. Extensive meteorite metallography 
has been done to deduce the thermal-mechanical history 
of meteorites to elucidate the problem of planetary 
genesis. Finally, the earth's core is generally assumed 
to be an alloy of iron and nickel, and elastic constants 
enter many geophysical calculations, notably those 
dealing with seismic-wave propagation. The many tech­
nological applications of Fe-Ni alloys are discussed by 
Chickazumi [1~,3 Rosenberg [2], and Everhart [3]. 

This review collects, for the first time, all available 
data on the elastic properties of iron-nickel alloys. 
Data are discussed from the viewpoints of the modern 
theory of metals, elasticity, and crystallography in an 
attempt to understand, as II:J.uch as possible, in a unified 
way the elastic properties of iron-nickel alloys. This is 
useful because: (1) most of the literature on the subj~ct 
is purely experimental, and (2) an overview facilitates 
semi-quantitative extrapolation of existing information 
to conditions where neither experimental nor theoretical 
data are available. 

Most data are available as engineering elastic con­
stants: Young's modulus, shear modulus, bulk modulus, 
and Poisson's ratio. Single-crystal data exist also, but 
less abundantly. Relationships between single-crystal 
data and engineering data are discussed in section 5. 
Besides the compositional variation of the elastic con­

stants, data on the effects of temperature, pressure, mag­
netic field, mechanical deformation, and annealing are 
also included and discussed. This review is intended to 
provide a convenient source of information on the elastic 
properties of iron-nickel alloys and to stimulate further 
research, both theoretical and experimental. Gaps in 
the klluwledg,e aud undensli:l.uding, uf the daIS lie pW,lJep 

ties of iron-nickel alloys are delineated. 
Since the present article is seen as the first of a series, 

the discussion herein is more general and more extensive 
than is necessary for treating only the elastic properties 
of iron-nickel alloys. Remarks special to iron-nickel are 
so designated whenever appropriate. Mainly, the elastic 

1 Trade names are used to facilitate understanding of work presented; no approval. endorse­
ment, or recommendation by NBS is implied. 

2Throughout, compositions are expressed as weight percent nickel. Because iron llnd 

nickel have similar atomic weights, weight and atomic percentages always differ by Ie," 
thu.n lwu Vc.rCt:J1L. 

3 Numerals in brackets indicate literature references al the end of Ihis paper. 
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properties of metals and alloys are described in general 
terms. Much of the discussion necessarily applies also to 
other types of solids such as ionic or covalent crystals. 
However, readers should make such extrapolations only 
cautiously. 

2. Perspective on Elastic Constants 

Invoking three realms of knowledge of solids-pure 
science, phenomenology, and engineering-elastic 
parameters of solids are distributed among these realms 
as shown schematically in figure 1. As far as elastic prop­
erties of solids are concerned, objects of interest in these 
realms are, respectively- discrete atoms or molecules, 
anisotropic continua, and quasi-isotropic' continua. 
. The a and f3 can be taken to represent extensions (or 
contractions) and bendings of valence bonds between 
atoms in solids; subscript i denotes the various sets of 
atomic neighbors. The Ci/S represent elastic stiffness 
coefficients that relate stresses to strains; both stress 
and strain are specified with respect to a set of axes 
denoted by indices i and j and usually chosen to coincide 
with crystallographic axes. E, G, B, and v denote the 
Young's modulus, shear modulus, bulk modulus, and 
Poisson ratio, parameters arising naturally in char­
acterizing, respectively, uniaxial loading, shear loading, 
hydrostatic loading, and transverse strain under uniaxial 
loading. (In section 4 all of. the elastic constants are 
defined. In section 5 relationships between single-· 
crystal and polycrystal c()!lstants are discussed.) 

Many properties of solid~ are related to elastic coeffi­
cients. The most important of these properties is Debye's 
characteristic temperature (J. Several techniques exist 
for computing () frum the Cij. In turn, () relates directly 
to such properties of solids as heat capacity, intensities 
of Bragg diffractions, Mossbauer emission, thermal con­
nnctivity, electrical resistivity, superconducting transi­
tion temperature, etc. Many of thes~ relationships ~re 
discussed in section 18. 

Elastic coefficients are central in considering defects 
in solids such as vacancies, interstitials, substitutional 
impurities, dislocations, twin boundaries, and grain 
boundaries. Being related to the second spatial derivative 
of the interatomic potential, ela.:stic coefficient:"! relate 

intimately to the problem of cohesion in solids, an 
especially important. problem for metals. In this regard, 
pure-shear elastic coefficients allow for volume effects 
to be separated from non-volume effects. Many crystalline 
phenomena- thermal expaup,jnll, temperature and pres­
sure derivatives of the 8(~cond·()rder elastic coefficients, 
thermal condudivity 01 inRulntufs, sound wave attenua­
tion, ete. - are llTllwrmonir: effects related directly to 
the existenee of .hircl·ont(~r, and higher-order, elastic 
GOIl}!tantA. Tl"HI. Iwttm' undt~rst.unding, both experimental 

and Ilwort'lkul. of dn~'ic cunstants of solids pays 
c1ivicl(~ndl'l in cHvc'nu' wuys, often unsuspected. (Section 
1 I.:~ I n'nt~ IId..,ly Illt' topic of lattice defects and elastic 
('oIlMlnntl',) 
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3. Terminology 

Despite several proposals, there is no generally 
accepted, rational and consistent terminology for 
describing the elastic parameters of solids that form 
the subject of this review. This problem becomes 
especially acute when semantic distinctions are required 
among: (1) the general class of all elastic parameters, 
(2) the sub-class of the parameters used commonly to 
describe quasi-isotropic or engineering solids, and (3) 
the sub-class of parameters used to describe anisotropic 
single crystals. Therefore, a scheme of usage is proposed 
here that corresponds closely to that usually accepted 
but makes useful semantic distinctions: 

E = Young's. mOd.uluS } 
G = shear modulus 

B = bulk modulus 

p - f'OiIOIOOll'lO liltio 

eij = elastic stiffnesses } 

SI} = elastic compliances 

} 

(polycrystal) 
ela~i~ engineering 
mo U elastic 

~on!ltant!l 

(single·crystal) 
elastic coefficients 

elastic 
cunsUmts 

Adoption of this, or a similar, semantic scheme in the 
literature of elastic phenomena of solids should allow 
for a more logical and a more lucid description of the 
subject than has resulted previously. In much of the 
existing literature the Cij are referred to simply as 
"elastic constants". Thus, an alternative to the present 
proposal would be to substitute "constants" for "coeffi­
cients" and perhaps "parameters" for "constants". 
Also, some authors prefer "technical", "practical", or 
"bulk" to "engineering". 

4. Definitions of Elastic Constants 

Elastic materials obey Hooke's law 

(4.1) 

where repeated indices are summed from 1 to 3, Uij are 
stress components given by 

(4.2) 

where Ji are the components of a force actin~ internally 
on an imaginary plane (with normal n) of a body, and Ekl 

are the (infinitesimal) strain components given by 

(4.3) 

and Uk, Ul are components of the displacement. 
While Hooke's law emerged experimentally, it can 

be derived in various ways. For example, Lanczos [4] 
showed that Hooke's law· is the necessary stress-strain 
relationship when Hamilton's variational principle 
is invoked. 

Equation (4.1) means that the strain response of 
an elastic material is instantaneous, independent of 
rate or history. Removal of force restores the original 
reference configuration; no strain exists· in the un­
stressed state and vice versa. If non-mechanical 
(electrical, magnetic, thermal, etc.) effects are incorpo­
rated, then stress and strain may not vanish simultane­
ously unless the non-mechanical effects are subtracted 
from the total stress and strain. Metals approximate 
Hookean behavior within their elastic limit; plastic 
deformation frequently begins before non-linear elastic 
behavior becomes significant. 

Except for third-order elastic constants, the elastic 
constants described herein are either those Cijkl in eq 
(4.1) or can be derived simply from them. 

The Cijkl are components of a fourth-rank tensor 
and an~ (;all~d Lhtj dalSLic 8Lifi'ne88 coefficitjnL8. Gtjlltjr­

ally, there are 34 = 81 such components. However, 
thermodynamic and symmetry considerations show for 
all crystal systems that 

(4.4) 

Complete com mutability of indices occurs only when 
Cauchy's relations, based on central forces between 
atoms and inversion symmetry, hold. In metals these 
relations are broken because of the conduction electrons 
acting through electron-electron and electron-ion 
interactions. 

From eq (4.4) it follows that in general only 21 Cijkl are 
independent. If Voigt's contracted notation4 is invoked, 
then the Cijkl can be represented as a symmetric 6 X 6 
matrix, and Hooke's law becomes 

Ua = CalJ EIJ (4.5) 

where repeated indices are summed from 1 to 6 and 

CalJ = Cijkl 

(T,,= (Ttj 

EIJ = Ekl, f3 = 1, 2, 3 

= 2Ekl, f3 = 4, 5, 6. 

For cubic symmetry, which is the case for iron, nickel, 
and all iron-nickel alloY5, the 21 CalJ (;umpulltjnls reduce 
to three: 

(4.6) 

(4.7) 

and 
(4.8) 

• The Voigt contraction scheme is summarized ~s follows: 

ij, kl: II 22 33 23,32 13,31 12, 21 
a,13: 1 2 3 4 5 6 

J. Phys. Chern. Ref. Data, Vol. 2, No.3, 1973 
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all other Ca /3 are zero. 
. The elastic compliance coefficients Sijkl have the same 
symmetry as the Cijkl and their relationship is inverse 

(4.9) 

where I denotes the identity matrix. t'ormulae for con­
verting Ca.~ to Sa.~ and vice versa are collected in table 3. 

For cubic symmetry, Hooke's law in matrix form is 

CTt Cll C12 C12 0 0 0 El 

CT2 C12 Cll Cl2 0 0 0 E2 

CTa C12 C12 Cll 0 0 0 E3 

(4.10) 
0"4 0 0 0 C44 0 0 e4 

CTs 0 0 0 0 C44 0 Es 

CT6 0 0 0 0 0 C44. E6 

The choice of three independent elastic constants is 
not unique. For example, a useful alternative set advo­
cated by Zener [5] is 

(4.19) 

The constant C= C44 relates a shear stress on a {100} 
plane to the shear strain in any direction in that plane. 
For a shear stress u acting along (IOO) [010] and effect­
ing a shear angle I' 

CT6= CT, (4.20) 
and 

E6= y. (4.21) 

All other stress and strain components are zero. Thus, 
eq (4.1) becomes 

C6S= CT/Y= C44= C. (4.22) 

The constant C' = (Cll -c12)/2 relates a shear stress 
on a {1l0} plane to a shear strain along (110). This is 
equivalent to the C44 case just described', but rotated 
± 45° about [001]. In this case the non-vanishing stress 
components are 

(4.23) 

and the non-vanishing strains are 

El =- E2 = 1'/2 (4.24) 

:50 that eq (4.1) become:5 in thi:5 ca:5e 

(4.12) (Cll -c12)/2= u/Y= C' C44 rotated ±45° about [001]. 

and 

(4.13) 

A set arising frequently in ultrasonic experiments is C, 
C', and 

c,. = (CII +C12 + 2C44)/2. (4.14) 

It can be shown that B is the bulk modulus for cubic 
symmetry. Thus, when a hydrostatic pressure 

is applied to a cubic crystal the strains are 

El = E2 = E3 =-ilV/3V(E4= E5 =Es= 0), (4.16) 

and eq (4.1) becomes 

B=-PI(l~VIV). (4.17) 

For cubic symmetry the compressibility 

(4.18) 

is given by 
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(4_25) 

For isotropic materials there are only two independent 
elastic constants. The Lame constants A and fJ. were the 
first set to be used. For isotropic media, Hooke's law 
in a redu.ced matrix form ,is 

o 0 0 El 

o 0 0 E2 

CTa 

(4.26) 
o o o 

o o o o J.L 0 E5 

o o o 

Clearly, for isotropic media 

(4.27) 

(4.28) 

and 
(4.29) 
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Much recent work on isotropic media uses, instead of 
A and JL, such constants as the bulk modulus B, Young's 
modulus E, the shear modulus G, and Poisson's ratio v. 
B is defined by eqs (4.13) and (4.17). 

Young's modulus is defined as the ratio of uniaxial 
stress (tensile or compressive) to strain measured 
along the same axis. Thus, eq (4.1) becomes for stress 
along [100] 

E == 0"1=...!. o • 
El Sl1 (4.30) 

There can be only one shear modulus in the isotropic 
case, so that 

(4.31) 

Poisson's ratio is defined as the negative of the ratio 
of transverse strain to longitudinal strain for the case 
of uniaxial stress. For stress alon~ fOOl], 

(4.32) 

Zener [S] introduced an additional parameter, a 
dimensionless ratio 

(4.33) 

called the elastic anisotropy factor. 5 Clearly, A = 1 for 
isotropy since all shear moduli, including C and C', are 
equal. Aluminum and tungsten are the only cubic metals 
with known elastic coefficients where A = 1. Zener's 
anisotropy concept has been very useful in discussing 
b.c.c. lattice instabilities. In fact, Barrett [7] was led 
by this consideration to discover low-temperature 
martensitic transformations in both lithium and sodium. 
Iron-nickel alloys have moderate to high elastic anisot­
ropy. As discussed below, marteilsitic transitions in 
iron-nickel alloys can be characterized by a high value 
of A even though the parent phase is f.c.c. as opposed 
to b.c.c. for lithium and sodium. 

Energetic considerations show that B, E, G (both C 
and C' for cubic crystals) are all positive. Bounds on 
v are 1/2 and -1. No negative values ofv have eyer been 
observed for isotropic media. Typically, v ranges from 
0.25 to 0.4S for metals. Lacking any data, the best gues's 
for metals is v = 1/3. 

Connecting identities among E, G, B, and v are 
given in table 1. Other variables included there are 
Lame's constants A and JL, longitudinal and transverse 
sound velocities VI and Vt, quasi-isotropic elastic stiff­
nesses C~j' and quasi-isotropic elastic compliances S~j' 
The sound wave velocities considered herein refer to 

'There is no unique definition of crystalline elastic anisotropy. For example, Chung and 
-Buessem [6J proposed an improved form, although slightly more complicated. Their factor 
A* is zero for isotropy, gives better relative magnitudes of elastic anisotropies than does A, 
and, is especially useful in interpreting A < 1 cases, which occur frequently for non·metals 
and also for metals such as vanadium and chromium. 

waves in an infinite medium, that is to the so-called 
body or volume waves. 

The operational definitions of E, B, G, and v for 
isotropic media apply also to' single crystals. If these 
measurement operations are applied to single crystals, 
results depend on the crystal axis (hkl) along which the 
crystal is tested. Elastic constants so obtained are 
designated Ehkl, Ghkl , and Vhkl and are related to the Cij 

and Sij by formulae summarized in table 2 for cubic 
symmetry. (Note that Bhkl=B for all possible hkl.) 
Thus, by measuring engineering constants on single 
crystals along three independent directions (100, 110, 
and 111 are the simplest) Cij and/or Sij can be deter­
mined. Before the advent of ultrasonic measurement 
methods, this method was used extensively to determine 
co; it is still used occasionally. 

5. Relationships Among Elastic CoeHicients and 
Engineering Elastic Constants 

As described above, cubic crystals are characterized 
by three elastic coefficients while isotropic and quasi­
isotropic solids are characterized elastically by two con­
:stantl5. The relatiolll5hip between the con:stantl5 E, G, B, 
and v of a quasi-isotropic material and the Cij of a single 
crystal of the same substance is considered here. 

5.1. Isotropic Case (A = 1 ) 

The isotropy condition for cubic crystals is 

(S.l) 

When this relationship is satisfied, identities in table 1 
hold among various constants for both single crystals 
and polycrystals. 

5.2. Anisotropic Case (A #= 1) 

In computing two constants from three, the problem is 
generally overdetermined. The overdeterminancy was 
eliminated in the case A = 1 by eq (S.I). Many different 
approaches have been suggested for the anisotropic case. 
A general review of this subject has apparently not been 
made, although comparisons of many of the methods 
were made by Ledbetter [8]. Two of the proposed meth­
ods are discussed here since they are important histor­
ically ~ and their basic assumptions establish upper 'and 
lower limits for the correct result. A compromise aver­
aging method is then discussed that gives good results 
with quite simple formulae. 

The problem is one of averaging a tensor property over 
all possible spatial orientations~ that is, 

1 11T i1T (Cij) =-2 f(cp,O) sin 0 dO dcp 
7r 'P=O 8=0 

(S.2) 

where f(cp,O) contains the directional dependence of 
the Cij. Many schemes have been proposed for solv~ng 
eq (S.2) or its equivalent, but these have not· been 
reviewed critically. 
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Voigt [9] assumed constant strain and averaged the 
Cij with the result 

(5.3) 

Reuss [10], on the other hand, assumed constant stress 
and averaged the Sij with the result 

G
R 

= ___ ...:;5 __ _ 
4(Sl1 - S12) + 3S44 ' 

(5.4) 

For both cases, the bulk modulus is given by eq '(4.13). 
Thus, all engineering elastic constants can be deter­
mined from G and B by using equations in table 1. Hill 
[11) showed on thermodynamic grounds that eqs (5.3) 
and (5.4) represent upper and lower limits on the shear 
modulus and propo~ed either Rn Rrithmetic or a geo­
metric average, that is, 

(5.5) 
or 

(5.6) 

where subscripts V and R refer to Voigt's and Reuss's 
approximations. Hill's method, owing to both its sim­
plicity and its reliability, is used widely and was used 
here. While Hill's average has no theoretical or physical 
basis, it agrees closely (particularly for low elastic 
anisotropy) with averages that have such bases. As 
discussed by Landau and Lifshitz [12], the problem of 
averaging the Cij to obtain R, (;., v, etc. cannot be solved 
uniquely. 

6. Measurement Methods and Errors 

6. 1. Measurement Methods 

The subject of measuring elastic constants has been 
reviewed extensively by several authors, [13]-[22]. Thus, 
only those experimental aspects essential to under­
~tanding Hnd interpreting the data herein will be 
described briefly. 

Direct, indirect, and derived methods are distin­
quished first. Direct methods are based on definitions of 
elastic constants. For example, measuring Young's 
modulus directly requires measuring simultaneously 
stress and strain along a uniaxial loading direction. 
Indirect methods are based on calculations using other 
measured elastic constants as input. Thus, an indirect 
measurement of Young's modulus could be made by 
measuringB and v and using the formulaE= 3B/(l-2v). 
A derived method involves a physical relationship 
betwee'n ,an elastic constant and some nonelastic param­
eters, the latter being measured and the elastic 
constant then being calculated. For example, Young's 
modulus is a simple and well· known function of longi· 
tudinal and transverse sound-wave velocities and mass 
density. Both dir~ct and indirect method~ meR~llre 
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elastic constants while derived. methods measure 
nonelastic parameters. 

Secondly, static and dynamic methods are distin­
guished. Static methods are characterized by time­
independent or, at least, slowly-varying (quasi-static) 
applied stresses. Slow deformation rates ensure heat 
exchange with surroundings. Thus, static methods are 
constant temperature, or isothermal. Dynamic methods 
are characterized by time-dependent, rapidly-varying 
stresses that preclude heat transfer between a specimen 
and its environment. Thus, dynamic methods are isent­
ropic or adiabatic. Static methods have been important 
historically, but have been largely pre-empted by 
dynamic methods. (Distinctions between isothermal and 
adiabatic elastic constants are discussed in section 7.) 
Emergence of high-frequency (ultrasonic) experimental 
methods has heen accompRniell naturRlly by smaller 
specimen sizes, about one centimeter. For efficiency and 
accuracy in the case of single crystals, specimens are 
cut and oriented on specific crystallographic planes. 

Thirdly, relaxed and unrelaxed moduli are distin­
guished. Usually, measuring an elastic constant involves 
imposing a vibrational frequency on a specimen. Relaxa­
tion processes due to interstitial impurities, disloca­
tions, grain boundaries, residual stresses, etc. can occur 
within the specimen. A measurement frequency lower 
than the natural frequency of the relaxation events meas­
ures a relaxed elastic constant. Conversely, a measure· 
ment frequency exceeding the relaxation frequency 
measures unrelaxed elastic properties. If super-imposed 
and relaxation frequencies are about equal, then consid­
erable internal friction or energy dissipation results, and 
measured elastic constants fall somewhere between 
relaxed and unrelaxed values. Differences between 
relaxed and un relaxed constants are usually less than a 
few percent. 

Relative merits of various experimental methods for 
specific materials, conditions, and elastic constants are 
discussed in references [13]-[22]. 

Aside from magnetic effects, which are discussed 
below, there are two additional problems in measuring 
elastic properties of iron-nickel alloys. 

First, impurities. Effects of substitutional impurities 
can be estimated from t~e work of Speich, et aI. [23] who 
determined the variation of E and G for Fe due to alloying 
elements. Carbon is the principal interstitial impurity, 
an,.) ~mR 11 concentrations have negligible effect on elas­
tic properties of iron-nickel alloys; Whether large con­
centrations of carbon increase [24] or decrease [25] 
elastic stiffnesses is still unresolved. Most theory pre­
dicts an increase. But most experiments reveal a 
decrease due to carbon [25]. 

Secondly, b.c.c. phases that contain twins as a result 
of the f.c.c. to b.c.c. transition may show spuriously low 
elastic stiffnesses due to a twin-boundary contribution to 
the strain. This problem becomes acute near -35Ni 
whp.re thp. m::Jrtp.nsite is heavily twinned, but it can be 
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overcome by using high-frequency measurement 
methods. 

6.2. Measurement Errors 

The emergence of dynamic methods, particularly 
ultrasonic techniques in the megahertz region, has 
allowed such high precision that elastic constants are 
now among the most accurately measurable properties 
of solids. Static methods are limited mainly by the im­
precision of measuring stress and strain, and extensive 
calibrations are usually required. Dynamic methods 
employ relatively small stresses and strains, namely 
those produced by a piezoelectric transducer. Whereas 
static methods claim accuracies of about one percent, 
dynamic methods can detect relative elastic modulus 
changes as small as 10- 8 (see Holder [26]). Absolute 
values of elastic moduli are restricted primarily by 
transducer-specimen bond corrections, phase-shift cor­
rections (see McSkimin [27]), non~flatness and mis­
orientation of specimen faces (see Watermnn [2B]), 

and transducer misorientation. Careful specimen prepa­
ration and proper experimental techniques can result in 
absolute errors being as small as 10- 4• 

Chronological variations of the engineering elastic 
constants of iron are shown in figure 2. While more 
recent values are more self-consistent, none of the older 
values can be excluded on the basis of deviations from 
the mean. 

7. Isothermal and Adiabatic Elastic Constants 

Distinctions between isothermal and adiabatic elastic 
constants are discussed here. (These constants are 
denoted herein by subscripts T and S denoting constant 
temperature and constant entropy, respectively.) The 
distinction arises naturally from measurement methods. 
Slow or static loading gives isothermal constants while 
rapid or dynamic loading gives adiabatic constants. For 
most engineering purposes, differences between the two 
cases are negligible, being a few percent or less. 
However, for detailed comparisons between elastic 
constants, this difference becomes important. Using 
thermodynamic relations generalized to include elastic 
strain energy it can be shown that [29] 

(7.1) 

where Sijkl = p.la!'ltlp. p.ompli:mces; a;j, akl = thermal 

expansion coefficients; T = temperature, and C cr = heai 
capacity per unit volume at constant stress (J". Since 
solids have, almost invariably, positive thermal expan­
sion coefficients, adiabatic compliances are smaller than 
isothermal compliances. Differences were computed for 
it few cases by Hearmon [29]. 

A similar relationship exists between the isothermal 
and adiabatic stiffnesses, Cijkl. Thus, after Mason [30]; 

(7.2) 

where A.ij, A.kl= the temperature coefficients of stress at 
constant strain, and C£ = heat capacity per unit volume 
at constant strain. 

For cubic symmetry 

all = a22= a33 = a, 

au = al3 = a23 = 0, 

A. u = A.22 = A.33 = A., 
and 

A.J2 = A.I3 = A.aa = 0; 
thus 

A. = 3aBr , 

so that in the cubic case, in compact notation: 

a 2 T 
S11 S - Sl1 r = S12 S - Sl2 r = - C p , 

S44s - S44r = 0, 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

CllS - CUr = Cl2S - C12r = Bs - Br= 9a2 Bf TIC v, 

(7.10) 

and 

(7.11) 

For completeness, relationships between isothermal 
and adiabatic engineering elastic constants are given 
also: 

_ Er _ 2 Tf32 
Es- l-Er (Tf32/9C p) - Er+ (Er) 9Cp' 

(7.12) 

(7.13) 

(7.14) 

and 
Gs = Gr. (7.15) 

where T= temperature, f3 = volume thermal expansion 
coefficient, V = volume, and C p = heat capacity per unit 
volume at constant pressure. Derivations of these rela­
tionships were given by Landau and Lifshitz [31] and 
Bhatia [32], for example. Approximations in eqs (7.12) 
and (7.14) assume thatETf32/C p is small. Isothermal and 
adiabatic shear moduli are equivalent since shear at 
constant volume, and entropy, leaves temperature 
unaffected. 
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Finally, the relationship of the isothermal and adia­
batic moduIi to the thermodynamics of elastic deforma­
tion is indicated. The first law of thermodynamics is, 
including an elastic energy term, 

(7.16) 

The increment of Helmholtz free energy F = U - TS is 

(7.17) 

so that the stress tensor is given by 

(7.18) 

for the isothermal and adiabatic cases, respectively. And 
hn::llly, 

(7.19) 

where € denotes constancy of all strains except €k so that 

(7.20) 

and 

(7.21) 

8. Elements Iron and Nickel 

The purpose here is to collect data for both Fe and Ni 
that relate to their elastic properties and to the elastic 
properties of their alloys. Table 4 summarizes the data. 

Both elements are transition metals (incomplete 3d 
electronic shells) and occur in the first long period of 
Mendeleev's table, separated in that row only by Co. As 
shown in table 4, Fe and Ni are quite similar in most of 
their properties. As discussed below. this similarity is 
reflected in many aspects of the elastic properties of 
Fe~Ni alloys. 

Properties of solids that are determined lan?;ely by 
orbital electrons must vary periodically with atomic num­
ber according to Mendeleev's table of elements. This 
subject is an important part of the phenomenology and 
science of solids. However, since this review treats only 
two elements that are closely related in both the periodic 
table and in their basic properties, periodic variation of 
elastic and related properties will not he discussp.d hp.fp. 
in any detail. Interested readers should see Mack [33], 
Dorn and Tietz [34], Vereshchagin and Lichter [35], -
Ryahinin [36], Koster and Franz [37], and Gschneider 
[38]. 

9. Iron-Nickel Phase Diagram 

Since elastic properties of alloys are related inti­
mately to the corresponding constitution diagram, some 
cursory considerations of Fe-Ni phase equiHbrin Uf't~ 

appropriate. One of the first proposals for an Fe·Ni 
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phase diagram was made OIi the basis of meteorite 
m~tallography [39]. A currently accepted phase diagra~ 
is shown in figure 3, adapted from Hansen· and Anderko 
[40], Elliott [41], and Shunk [42]. This diagram is rela~ 
tively simple, reflecting similar atomic sizes, melting 
points, heats of fusion, etc. of Fe and Ni. Hume-Rothery'~ 
criteria [43] for solid solubility are favorable: atomic 
size difference· is small, electronegativities and valences 
are identical. Difference in crystal structures at room 
and lower temperatures precludes complete solid sol~ 

ubility. Complete mutual miscibility does occur at 
higher temperatures where both crystal structures 
are f.c.c. 

Nickel is f.c.c. at all temperatures and is compli­
cated only by a paramagnetic-to-ferromagnetic transi­
tion, the Curie temperature being 627 K. Iron has two 
allotropic phase transitions: h.c.c. (a)-to-f.c.c. ('y) 
at 1183 K, and f.c.c. (1')-to-b.c.c. (8) at 1663 K. Also, 
Fe undergoes a paramagnetic-to-ferromagnetic transi;. 
tion at 1043 K. The lower allotropic transition in iron is 

unusual since a b.c.c. phase becomes stable at lower 
temperatures. Because of vibrationBl entropies~ b.c.c. 
phases are stable usually at higher temperatures. The 
upper allotropic transition 'Y-to-S is also unusual. As 
first explained by Seitz [44], f.c.c. l' would be ex·­
pecled to be stable up to its melting point since its 
Debye temperature is lower than that of the b.c~c. 

phase. Debye temperatures are measures of lattice 
vibrational energies. According to Seitz, the 1'-to-8 
transition occurs because the electronic energy becomes 
large, on the order of kT. This happens because the elec­
tronic specific heat, which increases Ii.nearly with T, be­
comes relatively large due to partly. fillt~·a. d-sheiIs; -thed 
shells have ·a high density of states; ther-efore a large 
number of electrons are available at the top of the 
unfilled band to absorb thermal energy. 

Polymorphic transitions of iron were interpreted 
differently by Zener [5]. He ascribed the upper transition: 
S~o-1' to a low value of C' = (ell - C12)/2, the {l!Oh 
< 110)6 shear modulus. Abscnce of elastic data of any 

kind for 8 Fe precludes experimental confirmation of 
this proposal. He ascribed the lower transition 1'-to-a 
to a spontaneous magnetization (ferromagnp.ti~m) of 
b.c.c. Fe. The difference hetween the Curie temperature 
and the allotropic transition temperature was ascribed 
to a local correlation of electron spins, ferromagnetism 
being a long-range correlation. 

The 1'-to-a tr3n~iti()n that occurs on cooling has 
martensitie ehnracter in the range of ahout 18 to 34 Ni 
and "massjvt~" dlUfOC!ter for compositions up 10 about 
]8 Ni f4SJ. Some fwidence suggests that very rapid 
cooJillg of l' prr.Vfmltlo a diffusion mechanism and gives 
a martentlhk IfUntlformation in alloys of lower Ni 
onn1enl. ftV4Hl F1c;·I46I. 
CurietcmJ~rutures representing paramagnetic-to­

ft~rtt)nm"n~ti(~ tront~itions are shown in figure 3 as dotted 
UUt,,!: dUIlt wt!rrtuken from the recent comn-il<>tion of 
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":onnolly and Copenhaver [47]. Possible relevance of 
Curie temperatures to structural transitions was dis­
cussed by Davies and Magee [48]. 

An order-disorder transition occurs in the FeNia 
region, the critical temperature at stoichiometry being 
about 776 K. Some evidence also exists that order­
disorder transitions occur near the stoichiometric com­
positions Fe3Ni and FeNi [49]. Because of strong 
similarities between Fe and Ni atoms, occurrence of 
Fe-Ni superlattices is surprising and not understood 
completely, though magnetic interactions between 
atoms are surely important. 

Thermodynamic equilibrium in Fe-Ni alloys is not 
established readily, and the final form of the equilibrium 
diagram has probably not yet emerged. For present 
purposes

7 
metastaple stHtes corresponning to continuous 

heating and cooling are more important than the 
equilibrium states since man-made Fe-Ni alloys are 
metastable. In figure 3 the two long-short dashed curves 
are so-called realization curves representing boundaries 
of the a and 'Y phases' for Fe-rich alloys. Thus, in 
practice the b.c.c. phase exists at room temperature up 
to about 30 Ni, beyond the 10 Ni predicted by "equi­

librium" phase boundaries. 
Recent experimental and theoretical work on meteor­

ites has suggested modifications of existing Fe-Ni 
phase diagrams; for example, see Goldstein and Ogilvie 
[50] and Kaufman and Ringwood [51]. 

For further details on Fe-Ni phase equilibria readers 
can consult refs. [40, 41, and 42J. 

10. Compositional Dependence of Elastic 
Constants 

Compositional variation data, including iron and 
nickel, are given in figures 4-8 and in tables 5-19. 
Many earlier data (pre-1945) are based on poorly char­
acterized materials. and data variation is due probably 
to non·identical specimens and test conditions. Trace 
impurities influence' elastic constants through an 
impurity-dislocation interaction; dislocations contribute 
an additional strain upon stress application. Similarly. 
small residual stresses affect measured elastic con­
stants. Thus. measurements made on low-impurity. 
well-annealed specimens are much preferred. Both 
resid uaJ stresses and dislocation density are reduced 
by annealing. As discussed in section 11. presences 
of some types of defects are useful for minimizing 
dislocation effects. 

Changes in elastic constants due to alloying are usu-
ally considered to consist of three parts: (1) change in 
valency or electron/atom ratio; (2) change in inter­
atomic spacing, and (3) change in interatomic potential. 
A fourth contribution - change in band structure 
energy-is compli~ated. not generally understood. and 
is treated usually either by simple approximations or 
by neglecting it. 

For Fe-Ni alloys valence is invariant if d electrons 
are neglected; both elements have two 4s electrons. As 

shown by Reed and Schramm [52], lattice parameters 
of both Fe and Ni are reduced only slightly by alloying; 
thus, the lattice paramenter effect is small and possibly 
negligible. The interatomic potential may change signifi­
cantly; 'this effect has apparently never been estimated. 
An estimation could be made by assuming a Born­
Mayer, or similar, ion-core repulsive potential and 
evaluating' the Born-Mayer parameters from the Cij. 

Similarly, contributions from 3d and 4s band structure 
energies are undoubtedly important but apparently 
have never been evaluated. Thus, the theory of alloying 
effects on the elastic properties of transition metals is 
presently inadequate for treating the problem even 
qualitatively. Since both valence and lattice param­
eter effects are negligible, the Fe-Ni system provides 
an opportunity for stllnying effer.ts of hand structure 
and/or effects of changing interatomic potential on 
elastic properties. 

An alternative model by Zener [53] explains lowering 
of elastic moduli by alloying such as shown in figures 
5 and 6. Zener's model is based on residual strain 
energy arising from the atomic size difference of solvent 
Cl.IH.J. ~ulule alulll~. Since: Idative: i51ze:i5 al~o affect the 

mutual solubility of species, the effect is related crudely 
to the limits of maximum solubility; a lower solubility 
giving a larger effect on the modulus per unit solute. 
It can be shown simply that strain energy associated 
with uniaxial tension is largely shear-strain energy 
rather than dilatation-strain energy. For the shear mod­
ulus Zener was able to relate the composition coefficient 
to the temperature coefficient. Thus, 

I/G(dGldx) = 4/Nk(6r/r)2(dG/dT) , (10.1) 

where x=compositional variable, N=Avogadro's num­
b~r, k=Boltzmann's constant, r=radius of solvent 
atom, and 6r= radius difference between solvent and 
solute atoms. As shown in section 13, (dG/dT) is usually 

negative so that (dG/dx) is negative also. Since be­
haviors of E and G are usually parallel, compositional 
dependence of E is also accounted for, albeit crudely. 
Magnetic effects are involved in the minima of elastic 
stiffnesses near 30 Ni; these effects are discussed in 
section IS. 

Poisson's ratio v is a poorly characterized elastic 
constant, both experimentally and theoretically. Espe­
cially, the effect of alloy composition on v cannot be 
predicted a priori. Observed variations of v with com­
position for Fe-Ni alloys are shown for both b.c.c. and 
f.c.c. phases in figure 8. While data are sparse, certain 
trends seem to be established. The b.c.c. data, ob­
tained by indirect methods, increase monotonically 
with increasing Ni content, extrapolating to v = 1/2 at 
about 40 Ni. indicating that b.c.c. Fe-Ni is unstable 
at higher Ni contents. The large magnitude of dvJdx 
for the b.c.c. phase is surprising. and reflects a sig­
nificant change in the interatomic interaction as Ni 
is alloyed with Fe. This may be the largest change inv 
now known for any primary solid solution and reflects 
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undoubtedly the transition-metal aspect (unfilled 3d 
electronic shell) of the two species. For comparison, v 
is constant within experimental error for alloys of eu, 
0-38 percent Zn [37]. 

For the f.c.c. phase (the open symbols in figure 8), 
v changes in a more complicated manner with composi­
tion, having a maximum at about 40 Ni. Koster and Franz 
[37] interpreted the compositional variation of v for the 
f.c.c. phase in terms of magnetostriction, which is 
discussed in section 15. 

Decreases in E and G with increasing Ni content 
shown in figures 5 and 6 are relatively large, about 1 
percent modulus change per atomic percent of solute 
up to ~ 35 Ni. Drastic changes of E and! or G with alloy­
ing are typical of systems that have limited mutual 
solid solubility and that tend to form intermetallic 
phases. Strong compositional variations in Fe-Ni alloys 
are unexpected because Fe and Ni have similar proper­
ties. Magnetic effects are probably important. This 
subject is ripe for theoretical study. Additional refer­
ences on alloy effects were given by Speich, Schwoeble, 
and Leslie [23]. 

Studies of effects of alloying on elastic constants in 
systems other than iron-nickel were summarized by 
Hearmon [54]. Some additional studies include: 

Cu, Ag + many solutes 
Cu-AI 
Cu-AI, Cu-Sn 
Mg-Ag, -Sn, -In 
Fe-AI 
Ni-Co 
Ni-Cu 
Pd-Rh, Pd-Ag 

Cu. Ag. Au + B-metals 

Hopkin, Pursey, Markham [55] 
Cain, Thomas [56] 
Moment [57] 
Eros, Smith [58] 
Leamy, Gibson, Kayser [59] 
Leamy, Warlimont [60] 
Sakurai, et al. [61] 
Walker, et al. [62] 

Koster [63] 

Friedel [64] correlated deviations from Vegard;s law 
wilh difference in compressibilities of solute and solvent. 
(Vegard's law states that, in substitional alloys, lattice 
parameters are related linearly to concentration.) As 
discussed by Mott [6S], Friel'1el [66] extended these 
considerations to elastic constants. His correlations are 
most appropriate when atomic volume changes rapidly 
with composition but Fermi energy is constant. Oriani 
[67] criticized some aspects of the elastic approach. 
Munoz [68] showed that if 8r/r exceeds about 1 percent 
then second-order· terms become important but that 
second-order theory breaks down if Sri r exceeds about 
7 percent. . 

11. Effects of Mechanical Deformation, 
Annealing, Recovery, and Lattice Defects 

Crystals and crystal aggregates described above were 
assumed tacitly to be perfect except for substitutional 
impurities. thermal vibrations. free surfaces. and (in 
the case of aggregates) grain boundaries. In this section 
the small but important effect on elastic constants due to 
variou~ lattice defect:!> is di15cu:s:s~J, LuLh implicitly in 
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terms of macroscopic mechanical states and explicitly 
in terms of defect contributions per sea 

11.1. Mechanical Deformation 

Since mechanical loading beyond the elastic limit 
causes plastic deformation and increases a solid's 
volume, one expects a lowering of elastic stiffnesses by 
cold-working. Few data exist for testing this hypothesis 
for Fe-Ni alloys. Most available experimental data are 
given in figures 9 and 10 for iron, figures 11 and 12 for 
nickel, and in figure 13 for their alloys. Properties of 
deformed metals are difficult to understand because of 
preferred orientations that may be introduced by work­
ing, that is, a mechanically induced anisotropy whose 
degree and nature are usually unknown. For example, 
such anisotropy may account for the non-parallel 
behavior of E and G of Ni with plastic deformation as 
shown in figures 11 and 12. Usually, highly anisotropic 
mechanical states arise from severe plastic deformation. 

Effects of mechanical deformation ~n elastic properties 
are difficult problems both experimentally and theoretic­
ally. As discussed below, full understanding is inacces­
sible since it depends on detailed interactions among 
various species of lattice defects that are deformation 
induced. These interactions vary with material and de­
pend on composition, crystal structure, mechanical and 
thermal histories, etc., that is, on any variable which af­
fects the character and/or number of deformation-in­
duced defects. An obviously important variable is method 
of deformation; whether loading is tensile, compressive, 
hydrostatic, torsional, slow, impulsive, etc. In short, 
the relationship between plastic deformation and 
elastic properties is complicated and will remain so. 
Additional well-characterized experimental dats would 

illumine the subject somewhat. Interested readers may 
find some solace in Zener's [69] study where the latent 
energy of cold-work is related to the lattice expansion 
accompanying lattice distortion. 

A good example of effects of preferred orientations 
on elastic properties is shown in figure 8 where the 
upper curve gives the compositional variation of v for 

44 percent cold-worked alloys. In several cases, values 
of v exceeding 1/2 were found. As described in section 
4, 1/2 is the upper limit for an isotropic aggregate. Thus, 
v can provide a fairly sensitive index for presence of 
strong preferred orientations. The problem of correcting 
elasticity measurements for slightly anisotropic ag­
gregates was discussed in detail by Bradfield and 
Pursey [70] and by Pursey and Cox [71]. 

Effects on elastic constants due to mechanical defor­
mation can be correlated to a certain extent with effects 

due to radiation damage since both methods introduce 
large numbers of lattice point defects. Many funda­
mental studies, both experimental and theoretical, 
have been made on radiation damage effects. For a 
review see Seitz and Koehler [72]. Additional data on 

deformation and elastic constants are included in figures 
14, 18, 19, 26,30, and 32. 
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11.2. Annealing 

When deformed materials are heated, lattice defects 
and distortions induced by cold-work are eliminated; 
that is, lattices recover to un strained and unstressed 
states. If both amount of cold-work and annealing 

temperature are sufficiently high, recrystallization 
occurs; a new set of strain-free grains grows from the 
deformed matrix material. Preferred orientations. can 
arise also from recrystallization and subsequent grain 
growth. Thus, interpretation of the elasticity of a: re­
crystallized material can also be complicated by an 
anisotropic· aspect or annealing texture just as in the 
case of a material with a deformation texture. Some 
annealing data for nickel are given in figure 14. For 
nickp.l, thp. Young's modulus for a heavily deformed 
specimen is close to that of the magnetically saturated 
state; and higher annealing temperatures produce 
lower moduli. As also shown in figure 14, rapid cooling 
from the annealing temperature to room temperature 
(quenching) tends to increase the modulus, presumably 
because of stresses induced by temperature gradients 
during quenching. 

11 .3. Lattice Defects 

Since both deformation and annealing processes must 
be described ultimately by creation and annihilation 
of lattice defects, effects on elastic constants due to 
four types' of lattice imperfections-vacancies, inter­
stitials, dislocations, and grain boundaries - will be dis­
cussed briefly. Effects due to presence of lattice defects 
are expected to be especially strong in systems where 
core-core repulsion energies contribute significantly to 
elastic constants, for example in noble and in transition 
metals. Of various energy terms that contribute to 
elastic constants (see section 17), exchange repulsion 
terms are probably most affected by displacements of 
atoms from equilibrium positions. 

Since creation of vacancies decreases mass density, 
one expects vacancies to lower elastic stiffnesses. 
Theoretical verification of this was obtained by Brugge­
man [73] and by Mackenzie [74], and by Dienes [75] who 
used the Fuchs [76]. extended Wigner-Seitz approach 
with a Morse potential for sodium and a Born-Mayer 
potential for copper. 

In the presence of thermal or static defects, Schok­
necht and Simmons [77] showed that 

_ ~[ . (avi) (P, T») .. (.ani) ] 
~ n; aP +Vt; aP , 
t,; T T 

(11.1) 

where vij= (agij/aPh is the free volume of formation 

of the defect j, gii = partial Gibbs energy of defect, 
nj = number of defects of species j, and superscript 0 

denotes the defect-free case. For thermal monovacan­
cies eq (11.1) becomes 

(11.2) 

since (aV(P, T)/aPh is small; va=atomic volume. 
Thus, the bulk modulus B is decreased by thermal 
vacancies. 

Conversely, interstitials increase mass density, and 
higher elastic stiffnesses are expected. Theoretical 
calculations by Bruggeman [73] and by Dienes [75] also 
predict this effect. Considering copper and sodium, 
Dienes showed that a 1 percent vacancy concentration 
decreases all of the elastic stiffnesses by about 1 percent, 
while a 1 percent interstitial concentration increases 
all elastic stiffnesses by about 10 percent. The large 
difference between effects of vacancies and interstitials 
is related directly to relaxation of lattices around 
defects. Dienes found for copper that the percent change 
in interatomic distance upon relaxation was 2 and 9 
percent for vacancies and interstitials, respectively. 
Dienes also concluded that interatomic relaxation is 
much larger in a b.c.c. (more open) crystal structure 
than in an f.c.c. (close·packed) crystal structure. 
Melngailis [78) considered how Frenkel defects (vacancy­
interstitial pairs) affect elastic properties of copper and 
concluded that an elastic softening results. This is con­

sistent with the observation that Frenkel defects de­
crease mass density. Point defects can alter elastic 
stiffnesses by another mechanism, dislocation pinning. 
This phenomenon is discussed next. 

In discussing effects of dislocations on elastic con­
stants, two types of dislocations are distinguished - those 
which move freely upon stress application and those 
which are immobile or pinned. That dislocations should 
lower elastic stiffnesses was· noted apparently first by 
Eshelby [791- Subsequently the problem was treated 

theoretically by Koehler and De Wit [80] for the case 
of pinned dislocations in f.c.c. crystals. Elastic stiff­
nesses are altered because reversible dislocation 
motions contribute a reversible elastic strain component 
to the total strain. Thus, total strain is increased for a 
given stress and observed elastic stiffnesses are lower. 
Koehle.l" iiull De Wit found approximately that 

aE/E=- KpL2, (11.3) 

where E= Young's modulus, K= constant, p= disloca­
tion density, a~d L = average dislocation loop length. 
For annealed copper they concluded that pinned dis­
locations contribute only a few percent to elastic 
constants, but that for slightly deformed materials 
(where dislocation densities are much higher) the 
contribution to elastic constants can be 10 percent or 
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higher. Because of dilatational components in their 
strain fields, edge dislocations are about ten times as 
effective as screw dislocations (which have only a 
shear strain field) in decreasing elastic stiffnesses. 
Granato and Lucke (811 gave a detailed vibrating 
string model for pinned dislocations where damping is 
related to elastic modulus change; this work was 
initiated by Koehler [82]. 

A related subject-anisotropic dislocation theory­
has become within recent years a flourishing area of 
solid-state physics with many intriguing applications 
for single·crystal elastic data. Interested readers 
should see chapter 13 of the text by Hirth and Lothe 
~8~1. 

If thermal oscillations (phonons) are considered 
crystalline defects. then phonon contributions to elastic 
stiffness can be computed from statistical thermo­
dyna~ics. Holder [84] did such a calculation for the 
bulk modulus with the result for large T that 

aB == 3NkT {_ I' ti_ V ~ (.!)} 
B BV V aV V 

(11.4) 

where B = modulus, N·= Avogadro's number, k = 
Boltzmann's constant, V= volume, T= temperature, 
and 1'= Griineisen's constant. According to Holder, 
substitution of appropriate experimental values into 
eq (11.4) predicts approximately the observed thermal 
variation of the bulk modulus. Extension of this, or a 
similar, approach to dB/dT would be quite useful. 

Grain boundaries can affect elastic constants at 
higher temperatures when a static or slowly-varying 
load is applied such that stress relaxation occurs across 
grain boundaries [5]. At higher temperatures, the 
viscous aspect of grain boundaries becomes more 
important. grain·boundary sliding occurs as a Le 
Chatelier accommodation, and the elastic moduli are 
effectively lowered. This effect is often seen as a 
departure from linear temperature dependence and 
varies with the stress frequency. 

12. Higher-Order Elastic Coefficients 

Deviations from Hooke's law (stress is proportional 
linearly to strain) require the concept of elastic coeffi­
cients higher than second-order. These coefficients 
arise naturally from a Taylor expansion of the elastic 
internal energy about the un strained or reference 
state. Thus, 

U = U 0 + a (x - xo) 2+ b (x -xo) 3 + c (x - xo) 4 + . 

(12.1) 

and the nth order elastic constant is the nth derivative 
of the energy evaluated at the reference spacing. For 
example 
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(a2Ula(x - XO).2)x=xo 

= 2a =second-order elastic coefficient (12.2) 

(a3Ula(x- XO)3)x=xo 

= 6b = third-order elastic coefficient (12.3) 

and so on. 
Identifying elastic stiffnesses with coefficients in a 

series expansion of energy in tenDS of strains was first 

discussed in detail by Birch [85]. More recently, Brugger 
[86] gave definitions of nth order isothermal and adia­
batic elastic coefficients: 

(12.4) 

(12.5) 

(12.6) 

and 
(12.7) 

where 
(12.8) 

are Lagrangian strain components. F = Helmholtz 
elastic energy, S = entropy, H = enthalpy, G = Gibbs 
elastic energy, T= temperature, ai and Xi are Cartesian 
components of a material particle in un strained and 
strained states, and po = mass density of undeformed 
state. The tij represent thermodynamic tensions con­

jugate to the variables 'Y/ij; for example 

(12.9) 

Currently there is much activity, both theoretical 
and experimental, on third-order elastic constants of 
IIleta15. Fourth-order and higher-order elastic con· 

stants have been explored only slightly. 
The primary significance of third-order elastic coeffi­

cients is that they relate directly to anharmonic prop­
erties of lattices such as thermal expansion, thermal 
conductivity, differences between adiabatic and iso­
thermal elastic constants, and temperature and pressure 
coefficients of elastic constants. Anharmonic crystal 
properties were discussed by Leibfried and Ludwig [87]. 

Anharmonic properties of solids can be described 
conveniently by invoking Griineisen'g ')I. Brngger [RR] 

gave a generalized isothermal Griineisen parameter 

1'1.'1= ____ I I (awo) 
i Wi a'YJkl T}=O' 

(12.10) 

where Wj= angular frequency of ith normal mode. By 
differentiating the wave equation Brugger related this 
parameter to second-order and third-order elastic 

stiffnesses C,;llIItI and Cklmnop: 

I'~ol (n) =- (4wd [2W;UkUI+ (Ckllll1l+CklmnopuOup)nmnn] 

(12.11 ) 
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where 

and u = polarization vector. 
Griineisen's parameter figures prominently in 

equations of state for solids. For example 

P+ dU/dV=yEvlbr/V (12.12) 

is the Mie-Griineisen equation of state, which is a 
special case (all Yi are equal) of the more general form 

_1 {. hVi} 
P+dU/dV -17"'2; Yi hVi/2+ exp (hVi/kT) -1 (12.13) 

that follows simply from the thp.rmodynamic partition 
function for an array of oscillators. 

Griineisen's model succeeds for two reasons. First, 
while the Yi are not equal the assumption describes 
macroscopic thermodynamic properties fairly well. 
Secondly, while Y depends on volume the dependence 
is slight; thus, treating y as a constant, independent 
of temperature, leads to theoretical predictions that 
are largely verified by observation. Section 18 discusses 
a few anharmonic properties. Interested readers should 
see Griineisen [89] and Slater [90] for further discussion 
of y and its applications to theory of solids. 

For tetrahedral cubic symmetry (point groups T= 23, 
T h = m3) there are eight independent third-order elastic 
coefficients as shown by Birch [85], Fumi [91], and 
Hearmon [92]. 

CIII = C222 = C333, (12.14) 

(12.15) 

(12.16) 

C 144 C255 = C366 , (12.17) 

(12.18) 

(12.19) 

and 
C456. 

All other coefficients are zero. 
!or octahedral cubic symmetry (point groups T d 

=43m, 0=432, and Oh= m3m) there are two ad­
ditional relationships: 

C1l2=CIl3, (12.20) 

and 

C155= C166, (12.21) 

and therefore only six independent third-order elastic 
coefficients. Both b.c.c. and f.c.c. crystal structures 
have 0 h point symmetry. 

The Cauchy (central-force) conditions for cubic 
third-order elastic constants are: 

C1l2 = C166, (12.22) 
and 

Cl44 = Cl23 = C4560 (12.23) 

Thus, cubic Cauchy crystals have three independent 
third-order elastic constants. Like second-order con­
stants, Cauchy conditions for third-order constants are 
not expected to hold in metals because of free-electron 
effects. However, for Cu, Ag, and Au, Hiki and Granato 
[93] showed that Cauchy conditions are more closely 
followed for third-order than for second-order con­
stants. This is because ion-ion overlap forces. which 
are central forces, contribute more strongly to higher­
order elastic constants. Similar conside:r:ations should 
apply also to the transition metals. 

For isotropy, there are three relationships among 
third-order constants corresponding to P.q (5.1) for 
second-order constants: 

Cl12 = Cl23 + 2C144, (12.24) 

C166 = Cl44 + 2C456, (12.25) 
and 

CIII = Cl23 + 6Cl44 + 8C456. (12.26) 

Thus, for isotropic crystals there are three independent 
third-order elastic constants. 

Available Cijk data for iron and nickel are collected in 
tables 20 and 21. No third-order elastic constants have 
been measured or calculated for Fe-Ni alloys. 

Elastic coefficients are invaluable for testing the 
validity of model interatomic potentials. Such tests 
are. quite sensitive since second- and third-order elastic 
coefficients relate to second and third derivatives of 
the potential. These coefficients describe changes not 
only with respect to various shear deformation, but also 
with respect to volume deformations. Such detailed 
comparisons have borne out, for. example, the validity 
of pseudopotentials as applied to the simple metals, 
[94]-(97]. In many cases, a knowledge of the experi­
mentally determined coefficients gives directly infor­
mation on the interatomic forces. For example, if 
Cauchy relations B;re satisfied one expects a central­
force type model to successfully predict the elastic 
coefficients. Hiki and Granato [93] observed that the 
third-order elastic coefficients of eu, Ag, and Au 
followed the Cauchy relations much more closely than 
did the second-order elastic coefficients. From this 
observation they concluded that short-range central 
forces, in this case arising from d-shell overlap, be­
come increasingly more important as one considers 
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higher-order derivatives of the total energy. As shown 
in tables 5 and 6, second-order Cauchy relationships 
are violated for both iron and nickel, as expected. 
However, the deviations are small, about 20 percent. 
The data in table 21 show that for nickel the deviations 
from third-order Cauchy relationships are quite small. 
and also that the deviation from the condition for first­
nearest-neighbor interactions is very small. The situa­
tion for iron is more ambiguous, and additional exper­
mental third-order data would be very valuable. 

Several proposals have been made for averaging the 
Cijk to obtain the quasi-isotropic coefficients C~jk' Most 
of the considerations discussed in section 5 for obtain­
ing cij apply also to the Cijk case. Hamilton and Parrott 
[98] pointed out that the difference between Voigt's and 
Reuss's averages are even more important for the CUk 

than for the Cij. Whether a Hill-type average is also 
appropriate for the Cijk has not yet been established. The 
problem of averaging Cijk is ripe for both theoretical and 
experimental study. Interested readers should see 
Barsch [99], Nran'yan [100], Cousins [101], and Chang 
[102]. 

Some authors have reported quasi-isotropic third­
order elastic constants as Lame coefficients VI, V2, and , 
Va or as Murnaghan's constants I, m, and n. These are 
related to the Ciik as follows: 

and 

C~2:F VI = I, (12.27) 

C;44 = V2= m, (12.28) 

C~56= Va n, (12.29) 

C~12= VI + 2V 2, (12.30) 

c~oo= V2 + 2v :J. (12.31) 

C~I1= VI + 6V2 + 8v a. (12.32) 

13. Temperature Dependence of E1astic 
Constants 

Temperature (and as discussed in section 14, also 
pressure) variations of elastic constants are an important 
part of the subject of equations of state of solids. If 
equations of state were known precisely. then elastic 
constants and their temperature and pressure coef­
ficients could be calculated immediately. Large parts 
of both theoretical and experimental solid-state physics 
would then be obviated. In fact, equations of state of 
solids are known only crudely, and such parameters as 
iJcij/iJT and iJCij/iJP are measured and used to test and 
to improve the equations. 

The problem of temperature dependence of elastic 
constants of solids was first considered carefully by Born 
and co-workers [103]. Zener [1041 discussed the problem 
in terms of an oscillator model of solids. Discussion here 
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is purely thermodynamic and therefore more general. 
It is easy to show that temperature coefficients of elas­

tic stiffnesses, or any linear combination of elastic 
stiffnesses, should approach zero as T approaches zero. 
Invoking Nernst's heat theorem that the entropy S of 
all crystalline solids approaches zero as T approaches 
zero, then 

lim (iJS/iJxdr=O, (13.1) 

where Xi is any usual thermodynamic variable that 
preserves crystallinity. Physically this means that the 
entropy change in an isothermal physical process goes 
to zero as T approaches zero, that is all crystalline states 
of a solid have zero entropy at zero temperature. Also, 

lim (iJ2S/iJxiiJXj)r=lim [iJ/iJxi(iJS/iJXj)]r=O. (13.2) 
r-o T-6 

If Xi and Xj are strains Ei and Ej and if a Maxwell rela­
tion in elasticity variables 

(l3.3) 

is invoked, then 

and 
lim [d/aT(rld)] = 0, (13.5) 
r-o 

since 

(13.6) 

Thus, elastic stiffnesses Cij approach constant values 
with vanishing slope when plotted versus tempera­
ture as T approaches zero. This feature must be con­
sidered when extrapolating elastic data at cryogenic 
tern peratures. 

Temperature dependence of elastic stiffness at higher 

temperatures cannot be demonstrated so simply since 
the effect is anharmonic. Like thermal expansion, it 
relines to higher-order elastic coefficients, which were 
described in 'section 12. Any discussion of higher-order 
or anharmonic effects is simplified by introducing 
Griineisen's parameter 

1'=- (V/vd (dvi/dV) dIn vdd In V (13.7) 

where V = volume of the crystal and Vi = frequency of 
ith normal vihrational mode. Griineisen's l' is actually a 
tensor property, but its isotropic form is sufficient for 
many purposes. ] Il t IJf~ quasi-harmonic model, l' does 
not depend explicitly oil temperature [105]. And it is 
related directly to various thermodynamic properties, 
for example 11 Ofll, 

1'= f3VB r /C v (13.8) 
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wher-e f3 = volume thermal expansion coefficient, V = 
volume, BT= isothermal bulk modulus and Cv= specific 
heat at constant volume. Thus, y can be determined from 
a set of macroscopic thermodynamic parameters. For 
metals 'Y has a range of 1 to 3 and is usually about 2 
[107]. This limited range of y is expected since by 
integration of eq (13.7) 

(13.9) 

that is the volume dependence of vibrational frequencies 
is weak and is roughly similar for all materials. If an 
Einstein oscillator model of solids is invoked. then 

(13.10) 

where 0= characteristic temperature, k= Boltzmann's 
constant and h=Planck's constant. Substitution into 
eq (13.7) gives 

y=-d In O/d In V=- (V/O)(dO/dV). (13.11) 

. Invoking the well-known relationship 

(13.12) 

for quasi-isotropic solids, combining this with eq (13.8) 
and rearranging terms, 

Cp/Cv= 1 +yTf3= I +yT(dV/dT)p/V. (13.13) 

Substituting from eq (13.11) 

Cp/Cv= 1-T(dO/dT)p/O. (13.14) 

Thus, since Cp > Cl'~ the characteristic temperature de­
creases with increasing temperature. The characteristic 
temperature 0 can be related to the elastic moduli, 
e.g., E, by invoking relationships introduced originally 
by Madelung [108] and by Einstein [109], 

()= KEl/2f(v) , (13.15) 

wheref(v) depends upon Poisson's ratio. Assuming that 
V:F v(T), which is only crudely true, then 

dO/(}= (l/2)dE/E, (13.16) 
and 

(lIE) (dE/dT)p= (2/T) (I-CpICv). (13.17) 

Thus, in thia model elal5tic :5tiffne:5~e:5 behave exactly 

as the characteristic temperature; their coefficients are 
negative. 

Since elastic coefficients Cij are given by the second 
spatial derivative of the elastic potential energy, one 
expects a priori a slow decrease of Cij with increasing 
temperature due to the interatomic potential becoming 
more shallow as atomic vibration amplitudes increase. 

In fact, it has been shown experimentally [54] for a 

wide variety of materials that dCij/dT is zero at T=O K, 
is constant and negative at high temperatures (T > ()), 
and changes rapidly at low temperatures. The exact low 
temperature dependence of Cij remains an unsettled 
prohlem; !OIeveral suggestions. h:we been made on either 

theoretical or empirical grounds for the low-temperature 
dependence of Cij. These include 

(13.18) 

Cij(T) =Cij(O) -AT exp (-TofT), (13.19) 
and 

Cij(T) = Cij(O) - B/[exp (CIT) -1]. (13.20) 

All these functions fit selected data quite well, indicating 
that the exact form of the interpolation from T > 0 to 
T=O is unimportant for most purposes. 

Since no fourth-order elastic stiffness have yet "been 
measured, it is attractive to attempt a derivation of 
fourth-order constants from the temperature derivatives 
of second-order constants. Hiki, Thomas, and Granato 
[110] derived expressions among dCtj/dT. Cljk and Cijkl 

in the high-temperature limit of a continuum model. 
This approach to the Cijkl has been made for f3 Cu-Zn 
[Ill], NaCI [112], and the noble metals [93] and was 
discussed by Holder and Granato [113). 

Temperature variation data are given mainly in figures 
15-32 and also in 33-6 and 38. The only really anomalous 
temperature data are shown in figure 17 where for Fe-Ni 
alloys containing about 30 percent Ni, most elastic 
stiffnesses have positive temperature coefficients over 
a wide temperature range. Positive coefficients, while 
unusual, occur also in other systems; for example 
MO(c12), Pd(cll' C12, C44), and Th(cI2) [54]. However, 
no single theory accounts for occurrences of positive 
coefficients: separate explanation~ mu~t hp. ~ol1ght for 
anomalies in individual cases. In the case of Fe -- 30 Ni 
alloys, apparently no explanation has been proposed in 
the literature. Usual magnetic effects can be disregarded 
since Curie temperatures (see figure 3) lie well below 
temperature regions where anomalies occur. It is in­
teresting to note that alloys in this composition range 
show also curious "invar" effects and phase transition 
effects. Both these aspects are discussed below. 

For additional discussion on the temperature variation 
of elastic constants, readers should see" refs. [87] and 
[114]-[116]. 

At low temperatures where the internal energy is given 
approximately by 

(13.21) 

it follows that a general elastic stiffness M is 

(13.22) 
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where E = appropriate strain, (3 = volume expansion 
coefficient, and the linear term .allows for thermal ex­
pansion. Alers [22] described the validity of eq (13.22) 
for several metals and pointed out that for transition 
metals the quadratic term, which arises from the elec­
tron gas, dominates the quartic term that arises from 
lattice vibrations. 

Sutherland [117] suggested eighty years ago that re­
duced shear modulus G(T)/G(O) plotted versus reduced 
temperature T/TIII gave a universal curve for all metals 
and that G becomes zero at T= Tm. While Sutherland's 
correlation of reduced G's remains valid and valuable, 
it is now known that G need not vanish at the melting 
point [118]. 

In figures 18 and 23 anomalous increases both in E 
and G are shown that result from crystallographic phase 
transitions. Generally, elastic properties are discon­
tinuous through first-order phase transitions. This topic 
is discussed in section 16. 

In absence of a saturating magnetic field, ferro­
magnetic materials may show anomalous elastic be­
havior as a function of temperature due to motion of 

magnetic domains upon stress application. As shown 
in figures 14 and 19, mobility of ferromagnetic domain 
walls leads to an effective elastic softening because 
domain walls can contribute an additional strain. When 
materials are heated through the ferromagnetic-to­
paramagnetic transition, then they usually behave 
normally since in the paramagnetic state there are no 
magnetic domain walls that can move under applied 
stress. Applying a strong magnetic field to the ferro­
magnetic state has a similar effect; domain walls take 
positions that are most favorable for minimizing the total 
energy of the system, and they are effectively immobile 
until the magnetic field is removed. These topics are 
discussed further in section IS. 

Apparently, no theory has been proposed to explain 
the variation of v with T. For many purposes this varia­
tion can be ignored since it is small for most solids. As 
discussed by Slater [119], dv/ dT should be positive 
since the upper limit of v = 1/2 corresponds to a liquid, 
and heating metals increases their volume and their 
behavior becomes more liquid-like. K(;ster and Franz 
[37] discussed some experimental and a few analytical 
aspects of dv/dT. As shown in figures 30 and 31, dv/dT 
is positive and small for both iron and nickel. 

14. Pressure Dependence o~ Elastic Constants 

Most existing data for the pressure variation of the 
clastic constants arc for the bulk modulus (reciprocal 

compressibility). This is because compressibility can 
be determined directly as a volume change under pres­
sure as shown by eq (4.18). Extensive data for metallic 
elements were acquired in the pioneering experiments 
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of Bridgman [120].6 Following Bridgman, compres­
sibility data are expressed frequently in the form 

V=Vo(l-aP+bP2), (14.1) 

where both coefficients a and b depend on temperature. 
The compressibility is 

B-l=- (l/V) (av/ap) = (a-2bP)/(l-aP+bP2). 

(14.2) 

Coefficient a is the initial (zero-pressure) isothermal 
compressibility, and b is related to the pressure deriva­
tive of the isothermal bulk modulus by the relationship 

b= (1/2B5) (1 +aB/aP)p=o. (14.3) 

The first expressions for the pressure dependence of 
the elastic stiffnesses were given hy Birch [as): 

(14.4) 

(14.5) 

and 

(14.6) 

where cP is defined by 

V/Vo= (1 +2cf»3/2 (14.7) 

with Vo = original volume and V = volume at press ure 
P. Conversion of P to cf> is accomplished by eqs (14.1) 
and (14.7). The third-order coefficients appearing in 
eqs (l4.4}-(l4.6) are related to the third-order coef­
ficients defined by Brugger [86] as follows: 

C~l= c1l1/6, (14.8) 

Ci12= C112/2, (14.9) 

Ci2:J= Ct23, (14.10) 

Ci4A=2c144, (l4.11) 

and c:6S -- 2ClSS. (14.12) 

It follows that the pressure derivatives of the second­
orrler elastic coefficients may be written as 

(14.13) 

• Much c!lnfusiou "1<i515 ("'II<"(~rning Bridgman's clImllressibilily values be('ause the com· 

IJressibilily slillHlarcl. irH". WI'S n,·t'valuall"d. Different corrections have been used. and old 
nod nc.').., YUhH"O') nrc· 1~.Hm,..iltu'!il: nut tli$olttinalli~I)f:o:('L f-:fi::l·hl1pirlpr [3Rt rliG:;t·IIQC.Pf~ thi..::. Ilrnhl~rn in 

del ail, and his .... '."""I1<·,lIlali .. lI~ arc ad"pled here. 
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(14.14) 

- (aC44/ap) p=o= (Cn + 2C12 + C44 + C144 + 2C166 )/3B, 

(14.15) 

and 

- (aB/aP) P=o= (clll + 6C1l2 + 2C123)/9B, 

where the bulk modulus B is 

(14.16) 

(14.17) 

By using the finite strain theory of Murnaghan [121] 
and Birch [85], Ghate [122] neriVf~n theoretical ex­

pressions for the pressure dependence of second-, 
third-, and fourth-order elastic constants. For the second­
order case, he obtained the general form 

(14.18) 

where 'Y/ is the Lagrangian strain and the parameters 
A and B are linear combinations of Cij and Cijk. Ghate's 
second-order equations are identical to Birch's when 
the third-order elastic coefficients are defined identically, 

It is interesting to note that no expressions comparable 
to eqs (14.13)-(14.16) have yet been derived for the 
temperature derivatives in terms of higher-order elastic 
coefficients, even from simple lIloJ~llS. 

Both the temperature and pressure dependence of 
the elastic constants can be deduced qualitatively 
very simply by assuming a linear anharmonic oscillator 
model. In the harmonic approximation the energy per 
atom is 

(14.1Y) 

where Uo=energy in unstrained (reference) state, 
k="spring" constant, and xo=position of atom cor­

responding to U o. In the simplest anharmonic model, 
a single asymmetric term appears. Thus, 

(14.20) 

is the energy when a particle is 'displaced from Xo 

to x. (The ne~i:ltive !!iigu of LIte cubic Lt:am assun::::s pmsi­

tive thermal expansion coefficients.) 
The second· order elastic constant is 

C2 == (a 2U/a (x-xo)2)=k-l(x-xo). (14.21) 

Thus, when the linear chain is compressed (e.g., by 
increasing the pressure) x < Xo and C2 is increased. 
Similarly, when the chain is expanded (e.g., by increas­
ing the temperature) x> Xu and C2 is decreased. In 
thi5 model, both temperature and pressure effects 

are simply related to ehanges in x. the linear lattice 

parameter. 
The influence of, pressure on the elastic constants of 

Fe-Ni alloys is shown in tables 14,15, and 22. 

15. Magnetic Field Dependence of Elastic 
Constgnhi 

Since magnetic interactions between atoms contribute 
to the total energy of a ferromagnet, there must be a 
corresponding contribution to the elastic constants, 
which are second derivatives of the total energy with 
respect to appropriate strains. Direct observation of this 
contribution would elucidate the nature of the magnetic 
exchange energy, particularly its derivatives with 
respect to atomic spacing. However, except in the pres­
enr.e of a saturating magnetic field. this contribution is 
overridden by effects due to magnetic domain boundaries. 

In the domain. theory of ferromagnets the demag­
netized state corresponds to an array of domains, each 
of which is permanently magnetized to saturation. The 
domains are oriented randomly so that a specimen has 
no net magnetization. Net magnetization is achieved by 
applying an external magnetic field so that magnetization 
vectors within domains tend to align with the external 
field. 

Magnetic effects on elastic constants were first ob­
served in 1902 by Honda [123] who termed the phenom­
enon the "AE effect"; AE refers to the difference in 
Young's modulus Eo - Ed between saturated and de­
magnetized states. In the demagueli:t.t:::d :slalt:::, ele­
mentary magnetic domains can change their magnetiza­
tion direction under applied stress and grow at the 
expense of neighboring domains that have different 
orientations that are energetically unfavorable in the 
applied stress field. Growth consists of motion of domain 
boundaries (Bloch walls). At magnetic saturation 
domain walls are immobile, and a "true" or maximum 
value of E is obtained. 

Stress plays a role similar to magnetic field in de­
termining a specimen's magnetization. In effect, stress 

alters magnetization. which alters a ferromagnet's 
elastic constants. If domain redistribution does not 
occur, then different elastic constants are observed. 
Domain redistribution is prevented, for example, by 
superimposing a saturating magnetic field or by a high 
magnetic anisotropy energy_ 

The follOWing brief analysis follows closely that given 
by Lee [124]. 

Assuming that the total strain Et consists of non­
magnetic and mllgnetic> Pllri!Ol, Kornet!llki [125] !lIhowen 

empirically that 

(15.1) 

where numerical subscripts indicate derivatives of 
lIE with respect to stress. In the demagnetized state 

(15.2) 
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And at saturation Em=O so that E=Eo. From eq (15.1) 
it follows that E= alE first decreases, passes through a 
minimum, and then approaches Eo as stress is increased. 
Figure 19.17 in Chickazumi [1] shows this behavior; see 
also figures 13.123 and 13.124 in Bozorth [126]. 

As shown in figures 18 and 19, the M effect for an­
nealed Ni is several percent and for Fe less than one 
percent. For alloys, as shown in figures 34 and 37, the 
effect is strongly composition dependent. 

Clearly, the AE effect should be related to the mag­
netostriction constant, A, the strain due to magnetic 
saturation. Chickazumi [1] has given relationships of 
the form 

(15.3) 

and for Fe-Ni a plot of A versus composition (his fig. 
19.14). The AE effects shown in figures 34 and 37 
correlate remarkably well with the variations of A with 
composition. hp.ing 7.P.TO at ahont 28 ann R2 nickel anrt 
with maxima at about 40 and 100 nickel. 

Taking AB = 0, it can be shown from table 1 that ihe 
change in the shear modulus is related to the change in 
the Young's modulus by the relationship 

D.GIG= (3GIE) IlEIE. (15.4) 

This effect is shown in figures 34 and· 35. Clearly, the 
bulk modulus is unaffected by magnetic fields since 
hydrostatic pressures do not cause domain boundary 
movements. 

The importance of the IlEeffect is well-illustrated by 
the Elinvar alloys (Fe -- 35 Ni -- 10 Cr) where the 
decrease in E. due to increased temperature is largely 
compensated for by a smaller IlEIE effect with increas­
ing temperature. Thus, to a good approximation E is 
independent of T for Elinvar alloys. below their Curie 
tern peratures. 

16. Effects of Crystallographic Transitions on 
Elastic Constants 

When metals or alloys undergo crystallographic 
transitions, their elastic constants change for several 
possible reasons: (1) change of lattice type, (2) change 
of specific volume,· (3) change of electronic or Brillouin 
zone structure, (4) change of relative positions of atoms 
in the unit cell (even when lattice type is invariant, for 

example, hexagonal-to-hexagonal with a change in 
cia ratio). In most cases, there is also a non-physical 
effect, namely a ch~nge of co-ordinate axes. The effect 
can be eliminated by a suitable co-ordinate transforma­
tion or alternatively by considering force constants, for 
example-the spring constant between atoms in closest­
packed direction6 in both phases. In 5hort, any param­

eter that affects vibrational spectra must also influence 
elastic constants. No a priori basis exists for predicting 
effects of phase transitions on elastic constants. Each 
case must be considered individually since both ener-
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getics and mechanisms of solid-solid transitions vary 
widely. 

If a phase transition can be characterized completely 
by lattice considerations, then clearly the lower tempera­
ture phase must be elastically harder than the high 
temperature phase since it must have a higher Debye 
characteristic temperature in order to be the phase of 
lowest free energy at lower temperatures. As shown in 
figures 18, 23, 26, and 38, in Fe-Ni alloys, with one ex­
ception at low Ni contents, low temperature phases are 
elastically softer. Thus, in this system strong electronic 
effects are undoubtedly involved in the f.c.c.-to-b.c.c. 
phase transition. Volume increase during the f.c.c.-to­
b.c.c. transition may also account partially for the ob­
served elastic softening. 

Phase transitions characteristically show a marked 
increase in damping in the region of the transition temp­
erature. Thus, materials should deform readily in the 
temperature regions of their phase transitions since 
deformation mechanisms are augmented by damping 
mechanisms. In fact, some superplastic phenomena 
are due directly to phase-transition softening. Spurious 
elastic measurements .can be obtained near a phase 
change, and such data should be interpreted carefully. 

It is attractive to consider a simple explanation for 
p.rygtRllogrRphip. trangitions, namely, mech,mip.Rl ann 
therefore also thermodynamic instability of lattices. In 
1940, Born [127] derived mechanical, thermodynamic 
stability conditions that apply to all cubic crystals 
regardless of unit-cell size and regardless of the type 
of interatomic forces. These conditions follow from the 
requirement that elastic strain energy 

(16.1) 

is positive-definite. that is 

(16.2) 

In other words, any elastic strain or combination of 
strains must increase elastic energy. Stability conditions 
can be derived readily by considering the matrix array 
of elastic coefficients for a cubic crystal, eq (4.10), and 
requiring that each principal minor of this matrix is 
positive. After some algebra, it results that 

Cll > 0, (16.3) 

c 11 > / C 12/ or (Cn - C 12) > 0, (16.4) 

(Cl1 + 2C12) > 0, (16.5) 
and 

C44 >0. (16.6) 

If any of thel::je conditione; al-e violated, then crYl5tals 

are unstable with respect to long-wavelength phonons 
and a transition to another crystal structure or to a liquid 
phase must occur. Of course, such transitions may occur 
for other reasons since phase equilibria are determined 
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by relative stabilities of competing structures and eqs 
(16~3)-(16.6) describe conditions of absolute insta­
bilities. These conditions may be summarized by saying 
that Cll, the bulk modulus (c1l+2C12)/3, and the two 
shear moduli (CU-C12)/2 and C44 must all be positive. 

Since elastic stiffnesses for cubic crystals are found 
experimentally to be always positive, eq (16.4) is 
usually the strongest stability constraint. 

The following assumptions are implicit in deducing 
eqs (16;3)-(16.6): 

(a) Lattices undergo homogeneous deformations. Ac­
cording to Born and Huang [12B] this means that only 
long-wavelength vibrational modes are important. 

(b) Elastic strain energy density is expanded only to 
second-order terms in-deformation parameters. 

Equations (lb.3)-(lb.o) also imply inequalities for the 
wave velocities, which are related to the Cij by the 
Christoffel equations (see eq (18.3»). 

By assuming a Mie-Griineisen form of interatomic 

potential 

a b 
q!'(r)=--+-, rm rn (16.7) 

where n> m for a minimum energy to exist, and m > 3 
for cohesive energy to be finite, Born [127] proved that 

(a) simple cubic lattices are never stable; 
(b) face centered lattices are always stable; 
(c) body-centered lattices are unstable except for 

small exponents m and n in the force law. 
For an interatomic potential given by eq (16.7), the 

concept of mechanical instability applies only to b. c. c. 
lattices. Zener [129] extended the concept of mechanical 
instability to include ideas on shear anisotropy and 
vibrational entropy. While Zener's ideas were proposed 
originally to explain instability of higher-temperature 
b.c.c. phases on cooling, they can be applied to any 
phase instability on cooling or heating. (For example, 
as shown by Fisher and Renken [130], the hexagonal-to­
b.c.c. transitions in Ti, Zr, and Hf seem to show an un­
usual temperature depend~nce of vibrational entropy 
near the transformation temperatures.) Despite suc­
cess claimed for Zener's criteria, they are not universal. 
Many phase transformations occur without shear con­
stants becoming small or elastic anisotropies becoming 
large. Conversely,. some systems with small shear 
constants and/or high elastic anisotropies exhibit no 
phase transitions. 

Thus," while Zener's criteria are useful for testing 
for possible occurre~ces of phase transitions, they are 

neither necessary nor sufficient. (As discussed above, 
the limit of vanishing Cll - C12 is sufficient reason for a 
phase transition to occur.) 

Iron-nickel alloys in the region of 28 to 35 Ni all 
undergo diffusionless-shear (martensitic) transforma­
tions. In all cases as the transformation temperatures 
are approached, C' decreases while C is relatjvely 
unchanged. Thus, the elastic anisotropy increases with 

decreasing temperatures above the transformation 
temperature. Furthermore, data in table 7 show that 
the elastic anistropy of f.c.c. Fe-Ni alloys is maximum 
at about 35 Ni, which corresponds roughly to the a - 'Y 
realization phase boundary shown in figure 3. 

Recently, for }4'e-Ni and }4'e-Ni-C alloys, Diesburg 
[131] correlated the temperature coefficients of the eij 

with the morphologies of the martensite phase. Since, 
as discussed in section 13, the dCij/dT are related to 
higher-order elastic coefficients, the desirability is 
indicated of measuring higher-order elastic coefficients 
to elucidate the problem of phase instabilities. Higher­
order stability conditions corresponding to eqs (16.3)­
(16.6) have apparently never been published. 

17. Theoretical Calculation of Elastic Constants 

Theory of elastic properties of solids is part of the 
theory of cohesion; see J aswon [132] and Seitz [133]. 
Besides elastic properties, cohesion theories usually 
predict also: lattice parameters or specific volumes, 
cohesive energies, pressure-volume relationships, and, 
at their most ambitious, energy differences between 
allotropic forms. Thus, elastic properties relate funda­
mentally to solid-state theory and therefore also to 
other parameters. associated with theory. (See also 
section lB.) 

Transition metals, which have incomplete d shells 
and which include both iron and nickel, pose particularly 
difficult problems for most theories of cohesion. It is 
known that even filled d shells, such as in noble metals, 
can contribute significantly to cohesion. When d shells 
are incomplete the contribution is even larger since 
incomplete shells contribute to bonding in solids be­
cause the average energy of the solid's energy band 
differs substantially from the atomic energy level. In 
simplest models, filled energy bands contribute nothing 
to cohesion. 

17.1. Fundamental Models 

Elastic stiffnesses of monovalent metals have been 
calculated successfully by methods of Fuchs [76] and 
Frohlich [134]. The former gives shear constants 
(ClI C12)/2 and C44 while the latter gives the bulk mod­
ulus (ell + 2cI2)/3.Fuchs considered three principal 
contributions to shear constants: (1) electrostatic energy 
of positive ions in a negative, charge-compensating 
electron gas, (2) exchange energy due to ion-core over­
lap and repulsion, and (3) Fermi or kinetic energy of 
the valence electrons. A minor contribution also con­

sidered by Fuchs was the van der Waals or dipole­
dipole energy. 

Recently, so-called pseudopotential methods have 
proven quite ~seful for calculating several properties 
of "simple" metals [135]. These methods replace, for 
computational purposes, the rapidly and strongly os­
cillating potential near" the ion-core with a smooth, 
slowly-varying effective potential. With respect to 
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elastic constants, this method has been fairly successful 
for simple metals. But, to date, no pseudopotential 
calculation of elastic constants has been made for transi­
tion metals (incomplete d shells). It would be very 
valuable to extend pseudopotential theory to this case, 
which includes both iron and nickel. 

Johnson [136] constructed an int.eratomic potential 
for iron· based on experimentally observed elastic 
constants. That is, in effect, the reverse problem; but 
it is useful to consider the results because they decom­
pose the elastic constants into various contributing ener­
gies. The Fermi energy contribution was neglected and 
only electrostatic and ionic terms were considered. By 
computing the electrostatic contribution it was deduced 
by difference that the ionic term makes the dominant 
contribution to iron's elastic constants. This reflects 
the large ion-core size of iron compared to its inter­
atomic spacing. 

To determine the applicability of a Morse potential 
to studies of atomic properties of crystals, Girifalco 
and Weizer [137] calculated second-order elastic co­
efficients for several cubic metals including iron and 
nickel. Morse's potential for a pair of atoms is 

(17.1) 
where rij= eenter-to-eenter spacing of ion pair, ro 

equilibrium separation of two ions. 'P (r())= - D = dis-

sociation energy, and a is an adjustable "hardness" 
parameter evaluated from the compressibility. 

These results are in only fair agreement with observa­
tion considering how the three Morse parameters were 
evaluated. B = (Cll + 2C12) /3 was input, and an elaborate 
(1000 neighboring atoms) lattice sum was performed. 
And, of course, the fundamental defect of a Morse, or 
similar, interatomic potential is that it permits only 
central pair-wise interactions, neglecting non-central 
and many-body forces. Central forces demand in the 
cubic case that C12= C44, and this condition is rarely 
observed experimentally. Lincoln, Koliwad and Chate 
[l38] used a Morse potential to calculate third-order 
elastic constants of several cubic metals and some of 
their results disagree strongly with experiment. Iron 
and nickel were not included in their calculations. Third­
order elastic stiffnesses as well as the pressure coeffi­
cients of the second-order elastic stiffnesses were 
recently calculated by Mathur and Sharma [139] using 
a Munit: pult:Jllii:1l; lltt:ir- I-t:lSuitlS i:1rt: gi vt:u in Lablt:lS 20 
and 21. All of these results should be considered 
cautiously since Milstein [140] recently criticized 
application of Morse potentials to b.c.c. crystals since 
such potentials cannot predict values of Cij in the b.c.c. 
case that are within stability limits imposed by Born's 
criteria (see section 16). Use of a Morse potential for 
f.c.c. metals was recently criticized on experimental 
grounds [141]. 

Ducastelle [142] studied theoretically the elastic 
coefficients of transition metals assuming the total 
energy to consist of a d band contribution (using a tight 
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binding approximation) and a Born-Mayer repulsion 
term. His model accounted for the variation in Cij along 
a transition series for f.c.c. and h.c.p. crystal structures. 
Failure to account for the b.c.c. case was attributed to d 
band details not included in his model. For both Fe and 
Ni, his calculated Cij agreed surprisingly well with 
observation. 

Lieberman [143] recently carried out a self-consistent­
field band calculation for zero temperature and pressure 
with a potential incorporating both· exchange and cor­
relation contributions. For iron a good result was 
obtained for the bulk modulus. 

Rosenstock and Blanken [144] considered interatomic 
forces in se'veral cubic solids, including nickel, on the 
basis of experimentally observed dispersion of lattice 
vibrations. 

Zwikker [145] showed for metals that the bulk modulus 
is given by 

mn I 
B=-·-

9 V 
(17.2) 

where 1= ionization energy, V= volume, and m, n= ex~ 
ponential factors in the Mie-Griineisen potential energy, 
eq (16.7). Values of m and n were tabulated by Fiirth. 
However, application of a Mie-Griineiscn potential to 

metals is quite approximate since it does not contain 
non-central forces. 

17.2. Hard.Sphere Model 

Much metallurgy and crystal physics can be under­
stood, albeit crudely, by considering a hard-sphere 
model of solids. In this model, atoms are represented as 
incompressible spheres in contact along close-packed 
lattice directions, (n 1) b.c.c. and (nO) f.c.c., This model 
assumes implicitly that only ion-ion repulsion energies 
contribute to elastic constants. This approximation is 
reasonably good for both noble metals and transition 
metals. Table 23 gives relative elastic constants for both 
b.c.c. and f.c.c. crystals based on a hard-sphere model; 
B was set arbitrarily to unity. Considering the model's 
crudeness, predicted relative quantities correlate sur­
prisingly well with observation in many aspects. For 
example: 

(2) B "':' E, 

(3) G ~ 3/8E, 

(4) high A for b.c.c. case, and 

(5) low {llO}(IIO) shear resistance for h.c.c. case. 

Additional aspects of hard-sphere models were dis­
cussed by Mott [146J. 
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18. Relationship of Elastic Constants to Other 
Physical Parameters 

The purpose here is to indicate briefly how elastic 
l)foperties of crystals relate to a wide variety of solid­
IIlate phenomena, many of which might appear to be 
independent of elasticity. While some of the relation­
~hips described h~re are empirical and not understood 
ultogether, they have proven useful in interpreting 
behavior of solids_ 

Elastic properties of solids are related intimately to" 
tltomic vibrational, or phonon, spectra. Vibrational spec­
lra link elastic properties with most other phenomena 
that are discussed here. 

Frequency distributions of atomic vibrations in crys­
taJs have intrigued scientists since Debye's parabolic 
upproximaliull tu the problem wa~ pW}Ju~ed in 1912. 
Despite intense efforts, theorists have failed to either 
devise an exact mathematical solution for frequency 
spectra or to·explain why Debye's crude model is effec­
tive; obviously, for many purposes the exact shape of 
frequency distributions is relatively unimportant. Thus, 
many lattice vibrational problems in many branches of 
solid-state physics are discussed meaningfully in terms 
of Debye's theta. 

While the main purpose of this section is to relate elas­
tic properties to other solid-state phenomena, this can 
be done most conveniently by invoking Debye's 8. Thus, 
for present purposes {} should be considered an elastic 
stiffness parameter. 

The Debye thetas calculated by several authors from 
their elast~c data are given in table 24. 
Sound Velocities 

Sound waves in solids differ from sound waves in 
gases or liquids in two vital ways. First, solids transmit 

"transverse or shear waves as well as longitudinal or 
dilatational wo.ve~. Secondly, sound waves in solids are 

polarized, and in the anisotropic case polarization 
vectors are not simply related (orthogonal) to the 
propagation vector. 

Debye's () is linearly related to a mean sound velocity 
Vm, that is 

8= KVm, (l8.1) 

where K (h/k)(3/4rrvu) 1/3, where h = Planck's 
constant~ k= Boltzmann's constant~ and VII = atomic 
volume." 

For single crystals~ VIII is obtained from elastic 
constants by the integration over all space 

3V,;;:3 = f L V;;3 dO/4rr, 
a= I ,2,3 

(18.2) 

where VI = quasi-longitudinal wave velocity, V2 and 
Va = quasi-transverse wave velocities, dO = increment of 
solid angle, and 41T = normalization factor. Velocities Va 

are roots of Christoffel's equations 

(18.3) 

which follow from the equations of motion of plane, mono­
chromatic waves where p = mass density, Cijkl = fourth­
rank elastic stiffness tensor, Xi = components of unit 
wave vector relative to cubic axes, and ail = Kronecker 
delta. 

For polycrystals these equations simplify to 

(l1J r = R + 4.G/? > (Ut4.) 
and 

pV;= G, (18.5) 

where Vi = longitudinal wave velocity and Vt = transverse 
wave velocity. The mean velocity is obtained by averag­
ing over v-3 , that is 

(18.6) 

As shown in table 1, Vi and Vt can be computed from any 
two polycrystalline elastic constants together with the 
mass density. 

Some authors prefer to regard VI as the velocity of 
sound in solids while others prefer Vm; either concept is 
valid in context. 

For further discussion of these relationships the reader 
should consult Blackman [147], for example. 

Sound velocities for Fe, Ni, and Fe-Ni. alloys have been 
computed from elastic coefficients by Anderson [148] 
and by Simmons and Wang [149]. 
S pecijic Heats 

Historically, lattice specific heats have been most fre­
quently used to determine the Debye temperature ()s. 

Debye [150] showed that " 

(18. 7) 

where Cv= specific heat at constant volume, N= Avo­
gadro's number, k= Boltzmann's constant, T= absolute 
temperature. Electronic contributions to Cv , which are 
linear in T, must be separated from measured values of 
Cv• Measurements of 8 by specific heats have been sum­
marized by DeSorbo [151] and by Holm [152]. The rela­
tionship between ()s and 8elastlc was discussed by Alers 
and Neighbors [153] and by Alers [154]. From existing 
data, errors in 8e are smaller than those in 8s• 

Many authors [155]-[157J have discussed the equival­
ence of 88 and ()elastic at T= O. 

Entropies 

Vibrational entropies S can be calc·ulal-ed from Boltz­
mann's relationship 

(18.8) 

where w= randomness. For a system of three-dimen­
sional oscillators Lumsden [158] showed for a Debye 
frequency spectrum that 
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[ 8 3 (8)2 3 (8)4 ] S = Nk 4 - 3 In r+ 40 T - 2240 T +. . . . 

(18.9) 

Again, S calculated by eq (18.9) contains only vibra­
tional terms; electronic and other non-vibrational terms 
must be determined· separately. 

All other usual thermodynamic quantities can be cal­
culated from 8 by invoking the thermodynamic partition 
function, as discussed by Fowler and Guggenheim [159], 
for example. 

Zero Point Energy 

Behavior of many substances at low temperatures is 
influenced by zero point energy, which arises as a quan­
tum effect; the energy of a linear oscillator in its ground 
state of energy at T= 0 K is hv/2 where v is the vibra­
tional frequency of the oscillator. Integration over a 
Debye spectrum gives for zero point energy 

9 9 Eo=gNhvmax =gR8 (18.10) 

since hv max k8. Details concerning eq (18.10) were 
given by Domb and Salter [160]. 

Thermal Conductivity 

While thermal conductivity occurs by many mech­
anisms and the theories of' these are difficult and 
disputed, 8 is a pervasive parameter for describing 
these mechanisms. For example, Klemens [161] 
discussed a relationship due to Leibfried and Sch.l()e­
mann for lattice thermal conductivity of non-metals 
at high temperatures, T > 8: . 

83 

K = constant y2T (18.11) 

where y = Griineisen parameter. A similar expression 
was derived on a different basis by Dugdale and Mac· 
Donald [162]. While ')''2. is relatively constant from one 
material to another, (]3 changes considerably. By com­
paring theoretical and observed values of KT at room 
temperatures, Klemens esta.blished the approximate 

validity of the 83 dependence of K. 

Electrical Resistivity 

The most convenient point of departure here is Bloch 
and Griineisen's relationship that describes for many 
metals the temperature variation of their electrical 
resistivity p over a wide temperature range: 

C T5 f BrIT zdz p(T) =- - -
A (]~ 0 (e z -1) (1- e-z )' 

(18.12) 

where C = constant, A = atomic weight, and 8r = char­
dcteri~tic temperature for lattice resistivity. 
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Since in Bloch's theory only longitudinal lattice 
vibrations affect p, no agreement between (Jr and () 
would be expected; in Debye's theory there are two 
transverse vibrational modes for each longitudinal 
mode. Since (}t > (}t, it would be expected that (}r > 8. 
However, Griineisen showed that (}r = (J for a large 
number of cases. Blackman [163] considered the 
problem by calculating 8z both by averaging wave 
velocities as v-3 , as is conventional, and as v-5 , as is 
suggested by eq (18.12); no correlations between these 
thetas and· 8r were found. A recent experimental 
study by Cullen [164] for Cu·Au alloys showed that 91 

(from elastic coefficients) exceeds (J" but that (], and 8r 
have the same compositional dependence, which differs 
from that of 8. This implies that transverse phonons 
contribute to Or in a way not now known. 

The general problem of R,. was disr.uj:;j:;p'cI at lp.ngth by 
Kelly and MacDonald [165] and by Meaden [166] 
who gave a compilation of(}r values. 

Bragg Intensities 

As shown early in this century by Debye and by 
Waner, change in intensities of 'Bragg scattering oi 
x-rays by crystals with increasing temperature due to 
change of the atomic structure factor is given by 

I (T) = Ie-2M• (18.13) 

The Debye-Waller factor 2M is simply related to 
Debye's theta: 

(18.14) 

where h = Planck's constant, k= Boltzmann's constant, 
m = mass of atom, cJ> = Bragg angle, A. = x-ray wave­
length, and D(x) = Debye function where x = 8fT, T 
being absolute temperature. The factor, 1/4 allows for 
zero point energy. 

As shown by Zener and Bilinsky [167) 8M in eq (18.14) 
i-o Qb\aineo hy the a:veTage 

(18.15) 

rather than the usual average 

(18.16) 

Thus, 8M is always slightly larger than 8 by a few percent. 
ihis topic was diseusse(\ exlensive)y by Lonsaa)e 

[168], by James [169], and hy Ilerhsiein (170). 
For both Fe and Ni. Silll-!:h alld Sharma [171) recently 

reported Debye-Wall.·,. faclors enmputed from elastic 
stiffnesses. 

Vibration Am ')/; till/('S 
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in that the Debye-Walier factor can be expressed as 

2M = 167T2 sin2 <p ( 2) 
3A.2 u, (18.17) 

where (u2 ) = mean square atomic vibrational amplitude 
parallel to diffracting plane. Thus, one has 

2 _ 3h2T ( ~) 
(u ) - Tf2mk01 D(x) + 4 . (18.18) 

Lonsdale [168] tabulated (u 2 ) values for many elements. 
She emphasized that vibration amplitudes are anisot­
ropic even for cubic symmetry and that vibrational' 
anisotropy can be calculated from elastic coefficients. 

For Fe-Ni alloys, (u2 ) were computed from E and G 
by Tanji and Shirakawa [172] and by Tanji [173] to 
interpret thermal expansion, electrical resistivity, and 
abnormal volume expansion of Invar alloys. For Fe and 
Ni, (u2 ) were recently computed from elastic stiffnesses 
by Singh and Sharma [171]. 

Melting 

As discussed in section 16, if a material is heated and 
elastic constants change with temperature such that any 
of Born'~ ~tability criteria are violated, tlum i:1 pha:st: 

change must occur- either to another solid phase or to 
a liquid. Of course, phase changes can occur for other 
reasons- generally a lowering of free energy. Linde­
mann [174] believed that melting occurred when atomic 
vibration amplitudes reached critical magnitudes. This 
topic was developed extensively by Pines [175] who 
showed that 

( 
kTm )1/2 

O=c AVW3 ' (18.19) 

where C = constant, A = atomic weight, k= Boltzmann's 
constant, T m = absolute melting temperature, and 
Vo = atomic volume. Pines concluded that melting occurs 
when the root-mean-square atomic displacement 
becomes roughly ro/8 where 2ro= interatomic spacing. 

Thermal Expansivity 

As is well known, thermal expansion is an anharmonic 
effect inconsistent with Debye's model of solids. How­
ever, Griineisen showed for most temperatures that vol­
ume expansivity f3 is proportional to specific heat Cp , 

and at low temperatures 

(18.20) 

where Cv= specific heat at constant volume, p = mass 
density, B= bulk modulus, and y= Griineisen constant 
with a valup. of ahont 2 fot' ::111 solids. Clearly then at low 
temperatures 

yp 
(J3 = K {3B' (18.21) 

where K = constant. This equation is also important 
because it allows computation of 0 from a single elastic 
constant plus thermal data. Manipulation of thermo­
dynamic equalities yields many alternative expressions 
for 0, related generally to Griineisen's equation of state 

(18.22) 

Atomic Diffusivity 

Diffusion coefficients for metallic self-diffusion or for 
substitutional diffusion of different metals are well 
known to be given by Arrheniuss's empirical relationship 

D = A exp (- LlHIRT), (18.23) 

whereA andt.H are temperature-independent constants, 
R == universal ga:; constant, and T ..... temperature. 

Assuming a vacancy mechanism for diffusion, then 

(18.24) 

where t.HJ = formation energy of a vacancy and 
t.H m = motion energy of a vacancy. Realizing from 
thermodynamics that 

t.G = AH - Tt.S, (18.25) 

where G = Gibbs free energy and S = entropy, then 
elastic constants are related to diffusion coefficients 
through a model given by Zener [176] and independently 
by LeClaire [177], which shows that 

I:l.Gm =KE, (18.26) 

where E = Young's modulus appropriate to t.H m, and 
K has units of volume. Substitution into eq (18.23) gives 
after rearrangement 

In D + KE/RT= In Do - t.GJIRT, (18.27) 
where 

In Do = In A - ASJ/R - t.SmIR. 

Since in single crystals E varies with direction, its choice 
is not unique. Reasonable choices are E III for h.c.c. 
lattices and E 111} for f.c.c. lattices. Along with its 
directionality, the temperature dependence of E ijk must 
also be considered. 

Mechanical Plasticity 

Some empirical and semi-empirical relationships 

between elastic and plastic properties of solids were 
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suggested by Pugh [178]. While this topic is now only 
embryonic, it is discussed briefly here because it has 
high potential importance but has received little 
emphasis in the scientific literature. 

That elastic-plastic relationships should exist is 
expected from microplastic theories where most all 
dislocation equations contain explicitly various elastic 
constants. 

Advantages of such relationships include: (1) relating 
plasticity more intimately to interatomic forces; (2) 
possibility of correlating plastic properties with other 
parameters via elastic properties, for example with 
atomic number, melting temperatures, or Debye thetas; 
and (3) a higher degree of correlation among plastic 
properties themselves. 
So~e relationships suggested by Pugh include: (1) 

for T < Tml3 resistance to plastic deformation is pro­
portional to Gb, where G = shear modulus and b= magni­
tude of Burgers vector; (2) fracture strength is propor­
tional to Ba, where B = bulk modulus and a = lattice 
parameter; (3) range of plasticity is proportional to 
BIG, so that a high value of BIG indicates malleability 
and a low value indicates brittleness. 

Besides Pugh, interested readers should see also 
Crutchley and Reid [179]. 

Diatomic Molecular Vibration Frequencies 

Relationships between interatomic force constants 
determined from ultrasonic wave velocities in solids and 
force constants determined spectroscopically from gas 
molecules might appear at first to be vague and com­
plicated. However, rough empirical relationships 
between 8solid and 8 gas were demonstrated by Baughan 
[180]; and Waser ~and Pauling [181] demonstrated the 
relevance of Badger's rule to solids. Badger [182] 
discovered for diatomic gases that k - d- 3 where 
k= force constant and d = interatomic distance. Recent 
work by Haussuhl [183] and by Gilman [184] suggests 
that k - d- 4 is a better· correlation for most solids, a 
dependence first predicted theoretically by Fuchs [76]. 

These studies suggest strong correspondences 
between vibrational properties of atoms in solid and 

gaseous forms. Since better and more complete ex­
perimental data now exist, both elastic and spectro­
scopic, a re-examination of the problem would be 
appropriate to determine its synergistic aspects. Both 
iron and nickel were included in the studies of Baughan, 
and Waser and Pauling. 

Other Properties 

Elastic Debye temperatures correlate with many 
other solid-state phenomena that are not discussed 
here, for example-theoretical strength, Mossbauer 
emISSIOn, sllperconducting transition temperatures, 
infra-red reststrahlen, diffuse x-ray scattering, and 
neutron scattering. For discussion of some of these 
phenomena with respect to 8 andlor elastic constants 
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the reader should see Partington [185], Cartz [186], 
Neshpor [187], and Herbstein [170] as examples. 

19. Concluding Remarks 

As evidenced by over 200 references to the experi­
mental literature,· elastic properties of iron, nickel, and 
iron-nickel alloys have been much studied with the 
result that most are now well characterized. 

Despite this intensity of effort, a few of the elastic 
properties have been studied experimentally only 
cursorily, and the general subject would be strength­
ened by further studies. These properties include: (I) 
temperature dependence of the bulk modulus of nickel, 
(2) preaaure dependence of propertie~ other than ~ingle· 

crystal coefficients or the bulk modulus, and (3) explicit 
dependence of properties on magnetic field. 

Other properties have not yet been studied experi­
mentally; these include: (I) pressure derivatives! of 
alloys, (2) third-order elastic stiffnesses of alloys, and 
(3) fourth-order elastic stiffnesses of both iron and 
nickel. 

From existing single-crystal data it would be useful 
to derive averaged elastic constants and sound velocities. 

Ripe problems for theoretical study include: (1) rela­
tionship of elastic constants to phase transitions, 
particularly martensitic transitions, (2) effects of 
ferromagnetism on elastic. properties, (3) contributions 
of d electrons to bonding and to elasticity, (4) thermal 
dependence of elastic properties, and (5) the existence 
and role of atomic ordering on elasticity. 

Since iron-nickel alloys are of much interest both 
scientifically and technologically, one might expect 
many of these areas to be studied intensively within 
the next few years. 
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24. Tables and Figures 

TABLE 1. Connectir.g identities X = X (Y, Z) for elastic constants of quasi-isotIopic solids 

Y,Z 
X 

E,G E,B E, v G,B G, v B,v A.,p. cY .. cY2 sYI- sY: VI. Vt 

9GB JL(3A. + 2JL) (c?J -C?2) (C?l +2C?2) 1 4 
E 

C+3B 
2G(l+v) 3B(1-2v) - 3Pr1(vf - 3 v;)/(v~ - v~) 

A.+JL C?l +CY2 -srI 

3BE E 3B 1-21' I I I 
G(=I-'-=PV;) 

9B-E 2(l+v) 2·1+v 2 (cfl-CY2) = C~4 
2(SYI -S?2) S~4 

GE E 2G l+v 2 c~I+2c~2 I 
p(V2 _!V2) B 

3(3G-£\ 3(1-2v) 3"·1-2v )'+31-'- 3 511 +2S12 I 3 I 

E 1 E I 3B-2G A. C~2 -~ I 
v 2G- I 2-6B 2· 3B+G 2;A.+ JL) £1J +C12 S11 

2 IVf - 2v'f)/(Vf-tlf) 

£-2G 383B - E vE B-~G 2vG 3vB -S12 
p(v;-2v;) 

£12 ~ G 3G-E 1-2v l+v (S~I -5~2) (S~l + 2s~) 9B-£ (1+v)(I-2v) 3 
I 

G 4(;-£ 38(3B+E) EO-v) B+~G G 2(1-v) I-v 
eYr 

sr. +slj.z 
Pl~ 3G-E 9B-E 0+ v) (1-2v) 3 1-2v 3Bl"+v ,\+2JL 

(srI - .~?2) (sr] + 2SY2) 
------- - - -- - - - ~ 

Besides the symbols already ddinedin the text, P = mass density, v,= vel[)city of long:tudinal elastic wave, and Vt= velocity of transverse elastic wave. The c~ satisfy the isotropy condition Cll -C12 = 2C44. 

Similarly. the s& satisfy t~_e isotropy condition 2(slI -SI2) =S44. 
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CD 
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TABLE 2. Expressions for engineering elastic constants of cubic single 
crystals 

Young's modulus 

Shear modulus 

Bulk modulus 

Poisson ratio 

Vl,m=-.(~"/.'l~l =-(.'ll~+SA)/(SI1-Sn 

where 

r = lil~ + l~l~ + l~li where ll' l2' la = direction cosines of an arbi­

trary crystallographic direction; 

A = limi + l~m~ + l~m~ where m1 , m2 , m3 = direction cosines of an 

arbitrary vector perpendicular to l. 

TABLE 3. Conversions between elastic stiffnesses Clj and elastic 
compliances $Ij for cubic crystals 

Cu 

-512 
C12 

And, by derivation: 

Cu - C12 = ---
511- 5 12 

$11 

512 
-C12 

511 - 512 = --­
Cu- C12 

1 
511 + 2512 = CII + 2C12 

TABLE 4. Selected properties of iron and nickel 

Fe Ni 

Atomic number ...................... 26 28 
Atomic wei6dtt. mk2fmol.. ......... 55.85 58.71 
Electronic structure ................. [Ar]3d6452 [Ar]3dB4s2 

Ionic (Goldschmidt, 12-fold ........ 0.127 0.124 
coordination) radius, nm 

Distance of closest approach, nm 0.24823 0.24919 
Lattice parameter, nm, 293 K.... . 0.28664 0.3523(; 

Density, kkg/nr, 293 K .............. 7.87 8.91 
Melting point, K ..................... 1810 1726 
Boiling point, K ....................... 3106 3059 
Heat of fusion, kllmo!.. ............ 15.3 17.7 
Heat of vaporization, MJ/mol. .... 0.416 0.430 

TABLE 5. Second-order elastic stiffnesses Cij of iron 

Investigator(s) 
CII C12 C44 

(Year) 
Composition Technique Specimen, Test Conditions 

(1012 dyn/cm2 ) 

Goene, Schmid 99.85 Fe (0.025 Tranl>v. reI>. freq. Stlaiu-allll. I.aytilab. Nu fidd. 2.37 1.41 1.16 
(1931) Mn, 0.03C, 0.01 

P, 0.08 S, 0.06 
Cu, trace Si) 

Kimura,Ohno Bending, torsion opt. Recrystallized. No field. 2.41 1.46 1.12 
(1934) microscope. 

Kimura (1939) a) Long. res. freq. No field. 2.09 1.14- 1.11 
b) Long. res. freq. Saturated field. 2.10 1.13 1.12 
c) Bending, torsion. No field. 2.28 1.33 1.11 

Yamamoto (1941, Fe (0.03 C, 0.01 Si, Magnetostrictive oseilla- No field. 2.34 1.35 1.176 
1943) 0.04 Mn, 0.01 P, tion. Bridgman (1940) 

0.04 S, 0.06 Cu) compressibility data. 

Moller, Brasse Fe (0.02-0.2 Mn, Tension, induction. Hz ann., 1223 K; 3-10% strain; vac. 2.28 1.40 1.12 
(1955) 0.01-0.06 Si, ann. 1153 K, 72 h. 

0.015 C, 0.01 P, 
0.02 S, 0.15 0) 

Markham (1957) 5-20 MHz pulse-echo. One crystal. No field. 2.330 I 1.392 1.162 

J. Phys. Chem. Ref. Data, Vol. 2, No.3, 1973 
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TABLE 5. Se(;ond-order elastic stiffnesses Cij of iron-Continued 

I 

I 
--,--

CI~ C44 

Investigaror(s) 
I ell 

.--
(Year) Composition Technique Specimen, Test Conditions 

[ (1012 dyn/cm2 ) 

Rayne, Chand- 99.99 Fe 10 MHz pulse-echo. Strain-ann. crystal. No field, f(T) in 2.331 1.354 1.178 

rasekhar (1961) figure IS. 

Lord, Beshers 99.8 Fe 7,10 MHz pulse-echo. 11 kOe field (saturated). [100], [110] 2.28 1.32 1.165 
(1965) crystals ann., wet H2 • 993 K, 216 h, 

slow cool. [111] crystal vac. ann. 1123 
K, 176 h, slow cool. Strain-ann. crys-
tals,J(T) in figure 15. 

Truell (1965) Pulse-echo. 2.23 1.27 1.15 

Rouer. Smith (l966) 99.99 Fe (Cr, Mn 10 \1.Hz pulse-echo. Specimens from crystal of Rayne, 2.314 1.346 1.164 
traces) Chandrasekhar (1961); no field, 

f(P). 

Leamy, Gibson, Fe, 1-25 Al alloys 10 MHz pulse·echo. Bridgman technique crystals, ann. 1173 2.338 1.378 1.186 
Kay:ser (1967) Extrapolated from K, 72 h. extremely slowly cooled 

alloy data. (60 days), argon atmos;f(T) in figure 
15. 

Leese, L(;rd (1968) 99.8 Fe 30··60 MHz pulse·eeho. Specimens and treatment from Lord, 2.26 1.40 1.16 
Beshers (1965); no field; f(T) in 
figure 15. 

Guinan. Beshcrs 99.8 Fe 10 MHz pulse·echo. Specimens from Lord. Beshers (1965), 2.301 1.346 1.167 
(1968) no field,J(P). 

Dev(~r (1972) Ferrovac 40, 70 MHz phase Two crystals, no field,f(T) in figure 15. 2.322 1.356 1.170 

comparison 

Best values 2.29 1.34 1.15 

Uncertainties 0.09 0.09 0.03 

TABLE 6. Second·order elastic stiffnesses Cij of nickel 

Investigator(s) I ell ell! e44 

(year) 

I 

Composition Technique Specimen. Test Conditions 

i 
(10 12 dyn/cm2 ) 

Honda, Shirakawa Bending, opt. micro· Bridgman method crystals. 2.52 1.51 1.04 
(l9~7, 1(49) scope. 

Bozorth, Mason, 99.95 Ni 10 MHz pulse-echo. Bridgman method, dry H2, crystals. 2.50 1.60 1.185 
McSkimin, Walker 
(19;1Q) 

Bozorth, Mason, 99.95 Ni 10 MHz pulse·echo. Bridgman method. dry H2• crystals; 
McSkimin (1951) f(freq.); a) no field, 2.517 1.574 1.226 

b) saturated field. 2.523 1.566 1.23 

Neighbours, 99.9 Ni 10 MHz pulse-echo. Bridgman method crystals. annealed 2.53 1.52 1.24 
Bratten, Smith 2 h in H 2 • 5 kO(' Irallsv. field. 
(1952) 

Yamamoto (1942, Ni(0.02-0.19 Fe. Magnetostrictive Brid!;rnall IIwlh .. d t"ryslals; vae. ann. 2.44 1.58 1.02 
1950.1951) 0.01 P. S, AI, oscillation. 1273 K, I It. 

0.03 C, Si. Mu, 
0.01-0.20 Co, eu) 

Levy, Truell (1953) 99.9 Ni 27, 30 MHz pulse·echo. Bricil!,!lI:l1I 1'11"11., .. 1 .... yslals; f(H, 2.47 1.52 1.21 
1"1"1"'1.): saillral,·.( fie·ld. 
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TABLE 6. Second·order elastic stiffnesses Cij of nickel-Continued 

;::"'~ 

.1 1 
lnvestigator(s) 

Cll C12 C44 

(Year) Composition Technique Specimen, Test Conditions 
(1012 dyn/cm 

DeKlerk, Musgrave 2-10 MHz puls~·~dlU. it) Nufidd, 2.43 1.49 1.19 

(1955) b) saturated field. 2.46 1.47 1.24 

Shirakawa, Ni(O.06 C, 0.02 Si, Tension, opt. micro· X(Cu) 2.55 1.69 0.902 
Numakura (1957) 0.05 Fe, 0.02 Co) scope. 

DeKlerk (1959) 2 -1 0 MHz pulse·echo. F(freq.). a) No field, 2.459 1.500 1.213 
b) saturated field II to [001]. 2.461 '1.475 1.220 

Alers, Neighbours, "Electrolytic" 10 MHz pulse-echo. Bridgman method crystals, 10 kOe 2.508 1.500 1.235 
Sato (1960) field, f<T) in figure 16. 

Sakurai (19M) 99.95 Ni 1-5 MHz pulse-echo. Brtdgman method crystals, 10 kOe 2.51 1.53 1.24 

field. 

Sakurai, Fujii, 1-5 MHz pulse-echo. Bridgman method crystals, X(Cu, Fe). Cn - en =0.93 1.24 
Nakamura, Takaki 
(1964) 

Epstein, Carlson, 99.95 Ni 10 MHz pulse-echo. Bridgman method crystals; ann. 1373 K, 
(1965) 200h;X(Cu); a) nofield, 2.481 1.54 1.242 

b) saturated field. 2.504 1.57 1.256 

Vintaikin (1966) X-ray, thermal diffuse Bridgman method crystals; ann. 1173 K, 2.47 1.44 1.24 
scattering). 3 h. 

Salama, Alers "Pure" Change of sound velocity Saturated, 10 kOe, field. . 2.516 1.544 . 1.220 
(1969) under uniaxial stress. 

Shirakawa, et al. Ni (0.012 Fe, 0.007 Single-crystal resonant Saturated field. 2.88 1.81 1.24 
(1969) Si, 0.008 Cu, frequency. 

0.003Mn) 

Best values (no field) 2.49 1.55 1.14 
(sat. field) 2.54 1.55 1.23 

Um.::~llitilJli~1S (uu fidu) 0.04 0.07 0.12 
(sat. field) 0.12 0.10 0.01 

Investigator(s) CII Cn C44 

(Year) Composition Technique Specimen, Test Conditions 
(1012 dyn/cm 2) 

AIers, Neighbours, Fe-30.0 Ni 10 MHz pulse-echo. Bridgman. method crystals. f(n in 
Sato (1960) figure 17, a) H=O. 1.473 0.888 1.135 

b) H=10kOe. 1.463 0.881 1.132 

Einspruch. Clair- Fe-73.8 Ni Pulse-echo. Bridgman method crystals, no field 2.304 1.444 1.192 
borne (1964) and saturated field. 

Sakurai, Fujii a) Fe-59 Ni 1-5 MHz pulse- Bridgman method crystals, 2-4 kOe CU- C12 =0.72 1.22 
Nakamura, b) Fe-75 Ni echo. . field. AE effect = 1-2%. CU-C12 =0.89 1.27 
Takaki (1964) c) Fe-90 Ni Cll-Cn 1=0.95 1.25 

d) 100 Ni Cll - Cn =0.94 1.24 

Salama, Alers Fe-30.0 Ni 10 MHz pulse-echo. Specimens from Alers, Neighbours. 1.474- 0.894 1.134 
(1968) Sato (1960); 10 kOe field; f (T) in 

figure 17. 
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TABLE 7. Second-order elastic stiffnesses Cij of iron-nickel alloys- Continued 

Investigalor(s) ClI i CI2 C44 

(Year) Composition Technique Specimen,Test Conditions 
(1012 dyn/cm2) 

Bower, Claridge, a) Fe-36.1 Ni 10 MHz pulse-echo. Bridgman method crystals (quenched), 1.573 1.235 1.006 
Tsong (1968) b) Fe-38.2 Ni measured at T = 4K. 1.545 1.211 0.992 

c) Fe-60.8 Ni 2.283 1.501 1.176 
d) Fe-61.8 Ni 2.286 1.500 1.184 
e) Fe-78.4 Ni 2.476 1.512 1.277 
f) Fe·89.8 Ni 2.627 1.528 1.300 
g) Ni 2.614 1.548 1.309 

Shirakawa, et al. a) Fe-35 Ni Single-crystal, Saturated field. 1.40 0.92 loll 
(1969) b) Fe·40 Ni resonant fre- 1.57 1.09 0.96 

c) Fe-45 Ni quency. 1.96 1.42 0.83 
d) Fe-50 Ni 2.12 1.55 0.90 
e) Fe-60 Ni 2.24 1.51 1.12 
f) Fe-70 Ni 2.33 1.46 1.27 
g) Fe-80 Ni 2.41 1.43 1.38 
h) Fe·90 Ni 2.52 1.43 1.39 
i) Ni 2.88 1.81 1.24 

Diesburg (1971) a) Fe-28.2 Ni 10 MHz pulse-echo- Bridgman method crystals, homog. 1.6080 0.9578 1.1598 
b) Fe-30.0 Ni overlap. 1473 K 120h,f(T) in figure 17, no 1.5258 0.9157 1.1313 
c) Fe·34.4 Ni field. 1.3328 0.8570 1.0591 

Hausch, Warlimont a) Fe-31.5 Ni 10 MHz pulse-echo. Bridgman method crystals, 6kOe field, 1.404 0.840 1.121 
(1973) f(T) in figure 17. 1.362 0.852 1.086 

1.379 0.899 1.058 
1.356 0.910 1.042 
1.507 1.077 1.020 
1.592 1.162 1.024 
1.713 1.261 1.029 
1.860 1.372 1.035 
2.053 1.459 1.059 

TABLE 8. Young's modulus Eofiron 

Investigator(s) Composition Technique Specimen. Test Conditions E (1012 

(Yo:;cu) uyu/clll~) 

Guillaume (1897) Spring tension. X (Fe). 1.96 

Schaefer (1901) Res. freq. 1.80 

Benton (1903) "Steel" Tension. F(T, 76-300 K), relative to 300 K. 

Morrow (1903) "W rought iron" Compression, opt. lever. Range of values: 2.01-2.12. 2.06 

Carpenter, Hadfield, Fe(O.95 Mn, 0.17 Si, 0.47 C, Tension, extenso meter. Ann. 1023 K, x(Ni). 2.21 
Longmuir (1905) 0.04 S, 0.02 P) 

Griineisen (1907) 99.5 Fe(O.l C, 0.2 Si, 0.1 Mn) a) Tension, opt. lever. 2.10 
b) Transv. res. freq. 2.10 

Honda, Terada (1907) "Swedish steel" Tension opt. lever. Ann.,f(S), x(Nj). 2.0 

Grtineisen (1908) a) "Steel" Res. freq. 2.09 
b) "Iron" Res. freq. 2.13 

Glilno:;il>t::11 (1910) Bemlil1~. 11,,">," .. f v"luo:;",~2.05-2.11. 2.00 

Honda (1919) Bending, opt. lever. Ann. 117:1 K, x (Ni). 2.05 

Honda (1919) Fc(O.29 Cu, 0.31 Mn, 0.11 Si, Dending, opt. lever. XI(:,,). 2.1 
0.09 C, 0.3 P, S) 
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TABLE 8. Young's modulus E of iron-Continued 

Investigator(s) 
Technique Specimen, Test Conditions 

E (10 12 

(Year) 
Composition 

dyn/cm 2 ) 

Bach, Baumann (1921) F(T, 293-773 K). 2.03 

Honda, Hasimoto (1921) Fe(0.18 C, 0.20 Mn+Si) Bending, opt. lever. a) Ann. 1173 K, slow cool. 2.055 
b) Ann. 1173 K, quench. X (C). 1.955 

Koch, Dieterle (1922) Reo. freq. F(T, 295-973 K). 1.1 

Lea (1922) "Armco iron " . Tension, opt. lever. F(T, 293-573 K) . 2.0 

Carrington (1924) a) "Wrought iron" Tension. Ann. 1183 K, slow cool, f(T, 293- 2.00 
590K). 

b) Fe(0.19 C) Tension. Ann. 1183 K, slow cool, f(T, 293- 1.98 
590K). 

Kimball, Lovell (1925) Fe(0.15 C) Res. freq. F(T, 290-790 K). 

Honda, Tanaka (1926) a) Fe(0.31 Mn, 0.29 Cu, 0.09 C, Bending, opt. lever. Ann. 1173 K, 2 h, slow cool. 2.087 
0.11 Si, 0.03 P, S) Ann. 1173 K, 1/2 h, slow cool. 2.045 

b) Fe(O.38 Mn, 0.1 C, 0.02 P, S) Ann. 1173 K, 1/2 h, oil quench. 1.942 
X(Ni, Co, C),f(H). 

Nishiyama (1929) a) Fe(O.1 C) Bending, opt. lever. Ann. 1173 K in vac., 1 h, furnace 2.12 
cooled; x(Si, Y, AI, W, Mn, Cr, 
Co, Ni). 

b) "Armco iron" 2.11 
c) "Electrolytic iron" 2.13 

Kawai (1930) "Armco iron " Tension. Ann. 1273 K,f(D) in figure 9. 2.13 

Jacquerod, Mugeli (1931) Bending. Ann., f(T, 273-390 K), relative to 2.09 
273K 

Everett (1931) Fe(0.35 C, 0.80 Mn, 0.10 Si, Tension, opt. lever. a) Ann. 1173 K, t h, slow cooL 2.01 
0.02 P, 0.03 S) b) Unannealed. 2.11 

Keulegan, Houseman Fe(0.66 C, 0.8 Mn, 0.01 P) Loaded helical springs. Detm. temp. coeff., 223-323 K. -(1933) 

Bez·Bardili (1935) Long. and transv. res., 1-20 2.18 
MHz. 

Verse (1935) a) Fe(O.43 C, 0.86 Mn, 0.04 S, 
0.02 P, 0.14 Si) 

Tension, cathetometer. Ann.,f(T, 298-733 K). 2.06 

b) Fe(0.34 C, 0.80 Mn, 0.10 Si, Long. torsional res. freq. 
0.02 P, 0.03 S) 

Ann. 1173 K,f(T) in figure 18. 2.08 

Nakamura (1935) 99.94 Fe Long. res. freq. Ann. 1273 K, 1 h, slow cool; x(Ni}; 2.107 
f(H). 

Cooke (1936) "Armco iron" Long. (56 MHz), torsional. a) Ann, 1200 K, 2 h, Hz atmos., slow 1.99 
cool (8 h), H = O. 

b) Cold rolled, H=O. F(H). 1.86 

Fiirster, Koster (1937) Transv. res. freq. Ann. 1200 K, ! h. alr cool. 2.13 

Engler (1938) Long. res. freq. F(H) O-0.575kOe,f(T) in figure 18. 2.12 

Yamamoto (1938) "Armco iron" Magnetostrictive oscillation. Ann. 1203 K,1 h;X(C);f(H). 2.11 

Kimura (1939) "Armco iron" Long. res. freq. Ann., H2 atmos.;f(H),f(T) in 2.17 
figure 18. 

Koster (1940) "Armco iron" Transv. res. freq. X(Co, Cr, C, Ni), f(D) in figure 9. 2.12 
f(T, 293-1173 K),f(GS, A, R). 
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TABLE 8. Young's modulus E of iron-Continued 

Investigator(s) 
(Year) 

Yamamoto (1941. 1943) 

Ki5ster (1943) 

Composition Technique 

a) "Electrolytic" Magnetostrictive oscillation. 
b) Fe(0.03 C, 0.01 Si, 0.39 Mn, 

0.01 P, 0.04 S, 0.06 Cu) 

Transv. res. freq. 

Smith, Wood (1941) 99.95 Fe Tension, x-ray speetometer. 

Seager, Thompson (1943) a) Fe(O.B Mn, 0.06 Si, 0.18 C, Bending, interterometer. 
0.08 S, 0.02 P) 

b) "Armco iron" Bending, interferometer. 

Everett, Miklowitz (191.1) Fc(O.15 0 . .25 C, 0.3-0.6 Mn, Bending, opt. lever. 

0.04 P, 0.05 S) [SAEI0201 

SeheH, Reinacher (1944) Res. freq. 

Roberts, Nortcliffe (1947) Fe(0.09 Ni, 0.22 Mn, 0.21 Si, a) Transv. res. freq. 
0.06 Cr, 0.09 C) b) ·'Static". 

Koster (1948) Transv. res. freq. 

Bennett, Davies (1949) 99.75 Fe Res. freq. 
98.83 Fe(0.25 C, 0.65 Mn) 

Andrews (1950) 99.97 Fe(O.OI C, 0.02 Mn) Transv. res. freq. 

Frederick (1947) "Armco iron" 0.5-15 MHz pulse·echo. 

GCl1ufiilu, Miih::uuck., Sllliti.1 Fc(O.4ti ~II, 0.19 Si, 0.13 C, TCll~ion, opt. lever. 

(1952) 0.01 P, 0.02 S)[SAE1015} 

Hughes, Kelly (1953) "Armco iron" Pulse-echo. 

Yamamoto, Taniguchi Fe(0.02 AI) Magnetostrictive. 
(1954) 

Burnett (1956) 99.8 Fe Res. freq., bending. 

Yamamoto (1959) Fe(O.06 Mn, 0.03 Si, C, S, Magnetostrictive oscillation. 
0.02 P) 

Specimen, Test Conditions 

Vac. ann. 1203 K, 1.5 h, furnace cool. 
Vac. ann. 1203 K, 1 h, furnace cool. 

F(H). 

Ann. 1273 K, 1 h, H = O. 

E (10 12 

dyn/cm 2 ) 

2.140 
2.058 

a) Bec crystal structure. 2.12 
b) Fcc crystal structure (extrapo- 2.20 

lated). F(Ni).f(T) in figure 18, 
f(H)./(O). 

Vac. ann. 0.050 in. sheet. 

Hot rolled, f(T, 295-500 K(, f(lm­
purities). 

Cold rolled, ann.,f(T) in figure 18. 

F(T, 293-310 K). 

x (Ni),J(T) in figure 18. 

Ann. 1200 K,J(T) in figure 18. 
Ann. 1200 K,J(T) , 293-673 1\. 

1.79 

1.94 

1.81 

2.03 

2.11 

2.09 
2.06 

Worked, ann. 1273 K;f(T) in figure. 2.11 
18. 

Ann. 973 K, 6 h; f(T); relative ....... . 
values, 273-850 K. 

0.03 in. sheet;f(T) in figure 18. 2.12 

F(T). 2.089 

Ann. 1173 K, l h, air cool;/(T) in 2.03 
figure 18. 

F(P}. 2.1I 

Ann., x(Al,f(H). 2.152 

F(T) in figure 18. }.98 

Ann. 1273 K,2 h, H2 atmos.;x(Ni); 2.091 
f(H), a) H=O, 

b) H sat. 2.096 

Hill, Shimmin, 
(1961) 

Wilcox Fe(0.30 Mn,0.24 C,O.Ol Si; P, a) Long. res. freq. "Warm rolled",J(T) in figure 18. 2.10 
2.08 0.04 S)[SAEI020] b) Tension, opt. strain gauges. 

Voronov, Vereshchagin 99,8 Fe(O.Ol Mn, 51, 0.01 C, 10 MHz pulse-echo. Annealed. 2.09 

(1961) 0.03 P, S) 

Durham, et al. (1963) Fe(O.08 C, 0.3 Mn, 0.15 Si) Tension, strain gage ex- Ann. 1060 K, 1 h, oil quench, 655 K, 2.07 
[SAEI075] It:IIl>OIUt::lI::r. 1 h, o.ir cool,j(T) in figure lB. 

Kamber (1963) Fe(0.002 C, p, S, Mn, 0.001 1 MHz, transv. res. freq. 
Cr, V, 0.003 Mo, AI, 0.004 
Si, 0.011 Ni, 0.014 Cu, 0.040 
xy) 

Masumoto, Saito, Koba- "Electrolytic" 
'ashi (1963) 
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Long. res. freq. 

a) 1 mm GS, H=O, 2.04 
b) ] mm GS, H= 1.5 kOe. Strained 2.06 

3%, ann. 1173 K, 25 h 
c) 30 mm GS, H=O, 1.94 
d) 30 mm GS, H= 1.5 kOe. F(T) in 1.94 

figure 18. 
Vac. ann. 1273 K, 1 h, slow cool; 1.97 

x(Pd). 
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TABLE 8. Young's modulus E of iron-Continued 

Investigator(s) 

I 
Composition Technique Specimen, Test Conditions 

E (10 12 

(Year) dyn/cm 2) 

Shved (1964) "Armco iron " X-ray scattering, uniaxial ten- 2.21 
sion. 

Smith, Stern, Stephens a) Fe(0.4 C, 0.35i, 0.8 Mn) Long. transv. pulse-echo. F(P). 2.11 
(1966) b) Fe(0.6 C, 0.25 i, 0.8 Mn) 2.11 

Masumoto, Sawaya, Kiku- "Electrolytic" Fe(O.004 Cu, Resonance frequency, 700- Vac. ann. 1 h at 1273 K, cooled at 1.97 
chi (1971) trace AI, 0.005 Mn, 0.005 900 Hz. - 573 K/h; f (T) in figure lB. 

Si, 0.005 C, 0.005 S, 0.004 
P) 

Speich, Schwoeble, Leslie Fe(0.057 C) 80 kHz pulse-echo. Austenitized 1 h at 1273 K and water 2.082 
(1972) quenched. 

Best value 2.05 

Uncertainty I 0.12 

TABLE 9. Young's modulus E of nickel 

Investigator(s) Composition Technique Specimen, Test Conditions E(10 12 

(Year) dyn/cm 2 ) 

Guillaume (1897) Spring tension. X(Ni). 1.92 

Schaefer (1901) Res. freq. 2.31 

Honda, Terada (1907) a) "Pure" Tension, opt. lever. Ann.,f(S), x(Fe). 1.9 
b) "Commercia]" 2.2 

Griineisen (1907) 97.0 Ni(l.4 Co, 0.4 Fe. l.0 Mn. a) Transv. res. freq. Hard drawn. 1.95 
0.1 Cu, Si) b) Tension, opt. lever. 2.01 

Kurnakow, Rapke (1914) 99.9 Ni Tension. opt. Ann. 820-870 K, x(Cu). 1.97 

Harrison (1915) Tension, opt. mic. Ann. 773 K.f(T, 293-740 K). 2.16 

Koch, Dieterle (1922) Res. freq. F(]" 285-1273 K). 1.7 

Honda, Tanaka (1926) Ni(0.145 C, 0.05 Si, 0.01 Cu, Bending, opt. lever. Ann. 1173 K, t h; x(Fe, Co, C);J(H). 1.93 
0.15 Fe, 0.04 S) 

Mudge. Luff (1928) 99.18 Ni(O.Ol C. 0.16 Cu, Tension. a) Hot rolled. 2.13 
0.06 Si, Mn, 0.4 Fe, 0.01 S) b) Ann. 1030 K, 4 h. 2.15 

Nishiyama (1929) Ni(O.lO Fe, 0.03 Co, 0.05 Si, Bending, opt. lever. Vae. ann. 1173 K. 2 h, furnace cool. 1.99 
0.02 P,O.01 S) 

Kawai (1930) Tension, opt. lever. Ann.1l73K;f(D(tension».f(T(an· 2.10 
neal». 

Giebe, Blechschmidt Res. freq. a) Cold worked, H=O; 2.2.')l) 
(1931) b) Cold worked, H~6.2 kOe; 2.2HS 

c) Ann. 973 K, 12 h, slow eool; 1.90S 
d) Ann. 973 K, 12 h, slow cool. H 2.256 

=6.2 kOe; 
e) Ann. 973 K, 2 h quenched, H=O, 2.()63 
f) Ann. 973 K. 2 h, quenched, H 2.207 

=6.2 kOe. 

Jacquerod, Mugeli (1931) "Pure" I Bendin~ 

I 

a) As received. 2.17 
b) Ann. 858 K, H2 atmos., 16 h;f(T) 2.00 

cr 10 fi",ure 19. 
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TABLE 9. Young's modulus E of nickel-Continued 

Investigator(s) 
(Year) 

Zacharia!\ (1933) 

Nakamura (1935) 

Nakamura (1936) 

Siegel, Quimby (1936) 

Davies, Thomas (1937) 

Forster, Koster (1937a, 
1938) 

Forster, Koster (1937b) 

Engler (1938) 

Kimura (1939) 

Koster (1940) 

Aoyama, Fukuroi (1941) 

Yamamoto (1941,1943) 

Yamamoto (1942, 1954) 

Koster (1943a) 

Koster (1943b) 

Composition Technique 

Ni(0.41 Fe, 0.13 Cu, 0.02 Mn, Long. res. freq. 
0.09 Si, 0.11 C, 0.3-0.4 Co, 
0.01 S) 99.9 Ni( < 0.003 Cu, 
0.11 Mo) 

99.84 Ni Lonl/;. res. freq. 

L~mg. res. freq. 

99.715 Ni(O.Ol Si, S 0.02 Cu, Long. res. freq. 
0.11 Fe, Mg 0.05 C) 

99.2 Ni Res. freq. 

Transv. res. freq. 

Transv. res. freq. 

99 Ni Long. res. freq. 

"Electrolytic" Long. res. freq. 

Transv. res. freq. 

98.9 Ni(0.3 Mn, 0.05 Fe) "Dynamic". 

"Electrolytic" Magnetoscillation. 

99.6 Ni(0.08 Fe, 0.32 Co, 0.01 Magnetoscillation. 
Si, 0.02 C) 

Ni(0.5 Mn) Transv. res. freq. 

Ni(0.5 Mn) Transv. res. freq. 

J. Phys. Chem. Ref. Data, Vol. 2, No.3, 1973 

Specimen, Test Conditions 

a) Ann. 973 K, slow cool. 
b) Ann. 1173 K, 2 h, slow cool. 
c) Ann. 1373 K. 2 h, slow cool. 
d) Ann. 1373 K, 2 h. reheated 1373 

K, H20 quench. 

E(1012 
dyn/cm2 ) 

2.141 
1.986 
2.077 
2.301 

a) Single crystal from melt, ann. 2.138 
1373 K, H20 quench. 

b) Single crystal from melt, slow 2.076 
cool from 1723 K. F(T) in figure 
19. 

Vac. ann .• 12n K. 1 h • .o;low cool; 

x (Fe). 
a)H=O, 
b) H = 0.325 kOe. 

F(Cu),f(T. 288-743 K). 

Ann. 1373 K. 4 h, a atmos., slow 
figure 33. cool; GS=O.4 mm.; 
f(H, T) in 
a) H=O, 

"b) H sat. 

a) Ann. 1123 K, 45 h. 
b) Unannealed. x(Fe). 

Ann. 973 K.t h,x(Fe).f(T, 293-745 
K). 

Ann. 973 K, 1 h, slow cool; x(Fe); 
f(vibr. ampl.). 

Ann. 973 K;f(T, H) in figure 33. 
a) H=O, 
b) H = 0.575 kOe. 

Ann. 1223 K, 3 h, slow cool;!(T, H) 
in figure 33; 

a)H=O, 
b) H sat. 

Ann. 973 K, 1 h. slow cool; x (Fe). 

Vac. ann. 1173 K, 6 h,f(Cu); 
a) T=289 K. 
b) T=78 K. 

Vac. ann. 1273 K, 2 h, slow cool; 
f(H). 

Vac. ann. 1173 K, 2 h, x(Cu); f (H); 
a) H=O, 
b) H=0.6 kOe. 

a) Ann. 1273 K: cold rolled 80% 
b) Vac. ann. 973 K 
c) Vac. ann. 1173 K 
d) Vac. ann. 1573 K, H = 0 
e) Vac. ann. 1573 K, H sat. 
F(T, GS. T anneal) in figure 14. 

Vac. ann. 913 K, 1 h, slow COlli; 

x(Fe);f(H);f(T,293-973 K); 

1.940 
2.275 

1.950 

2.085 
2.218 

1.937 
1.918 

2.15 

2.1193 

2.06 
2.21 

1.921 
2.174 

2.11 

1.70 
1.95 

2.012 

1.86 
2.17 

2.15 
2.00 
1.92 
1.82 
2.19 



Investigator(s) 
(Year) 

Masumoto, Saito (1944) 

Koster (1948) 

Koster, Hauscher(1948) 

Bennett, Davies (1949) 

ELASTIC PROPERTIES OF METALS AND ALLOYS 571 

TABLE 9. Young's modulus E of nickel-Continued 

Composition Technique 

99.6 Ni(0.02 Fe, 0.02 C, 0.01 "Static", helical coils. 
Si) 

Transv. res. freq. 

Transv. res. freq. 

99.9 Ni, 99.2 Ni Transv. res. freq. 

Specimen, Test Conditions E(10 12 

dyn/cm2 ) 

a) H=O, 1.87 
b) H=0.5 kOe. 2.19 
(Extrapolated paramagnetic fcc (2.16) 

phase to 293 K.) 

Vac. ann. 1273 K, I h, x(Cu). 

Ann. 1173 K;f(T) in figure 19; 
a) H=O, 
b) H sat. 

X(Cu); 

a) H=O, 
b) H sal. 
923 K ann. 8-29 h,f(T, 273-850 K) 

relative values, x(Fe). 

1.68 

1.93 
2.18 

2.01 
2.16 

Fukuro~, Shibuya (1950) 98.9 Ni(0.3 Mn, 0.05 Fe) Bending, interferometer. Vac. ann. 1173 K, 1 h x(Cu). 1.65 

Beol"k, KOllv",lit",Q., M,..J(pp- "r.ommpT',..illlly PIIT'P" 

han (1951) 

Frederick (1947) 

Yamamoto, Taniguchi 
(1951, 1955) 

Long re!':. frell. a) Ann. at 923 K. 3 h. in HOI. 
b) Unannealed. 
F(H) in figure 37. 
M/E data in Kouvelites, McKeehan 

(1952) 

0.5-15 MHz pulse-echo. F (T) in figure 19. 

Magnetostrietive oscillation. Vae. ann. 1273 K, 2 h; f (Co cone.), 
Ni values obtained by extrapola­

tion of Ni-Co data;f(H); 
a) H=O, 
b) H sat. 

1.873 
2.010 

2.075 

1.99 
2.24 

Umekawa (1954) Transv. res. freq. Vac. ann. 1123 K,! h; x( Cu, Co). 1.72 

Burnett (1956) 

Pavlov, Kirutchkov, 
Fedotov (1957) 

Shirakawa, Numakura 
(1958) 

Yamamoto (1959) 

99.8 Ni(O.04 Fe, 0.03 Mn, 0.11 Res. freq. in bending. 
Si,O.OI Cu, C) 

99.99 Ni 0.7 MHz transv. res. freq. 

Ni(O.09 Mn, 0.01 C) Bending. 

Ni(O.1 Fe, 0.01 Si, Cu, 0.04 C, Magn~tostrictive oscillation. 
0.02 S) 

Hill, Shimmin, Wilcox Ni(O.OI C, Si, P) 
(1961) 

Long. res. freq .. 

Durham, et al. (1963) Ni(O.3 Mn, 0.1 Fe, 0.06 C, 0.1 Tension, strain-gauge ex-
S) ten so meter. 

F(r) in figure 19. 

Vac. ann. 1073 K,3 h; x(Cu); f(T) 
in figure 19. 

a) Vac. ann. 973 K, I h, GS = 0.060 
mm. 

b) Vac. ann. 1073 K, 1 h, GS=0.069 
mm. 

1.89 

2.00 

1.70 

1.69 

c) Vac. ann. 1173 K, 1 h, GS = 0.082 1.68 
mm. 

d) Vac. ann. 1273 K, I h, GS=0.111 1.66 
mm. 

t::) Vac. <111U. 1373 K, 111, GS-o.no 1.65 

mm. 

Ann. 1273 K, H2 atmos., 1 h; rean­
nealed 1273 K, vac., Ii h; x(Fe); 
f(H), 

a) H=O, 
b) H sat. 

F(T, 293-920 K). 

Ann. 1213 K, i h; l( T) in figure 19. 

1.749 
1.915 

2.02 

1.96 
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Investigator(s) 
(Year) 

Kamber (1963) 

Tino, Maeda (1963) 

Armstrong, Brown (1964) 

Orlov, Fedotov (1966) 

Masumoto, Saito, Mura· 
kami, Kikuchi (1968) 

Faninger (1969) 

Masumoto, Saito, Sawaya 
(1970) 

Investigator(s) 
(Year) 

Guillaume (1897, 1898, 
1927) 

Angenheister (1903) 

Carpenter, Hadfield, 
Longmuir (1905) 

Honda, Terada (1907) 

Honda (1919) 

Muller (1922) 

Carrington (1924) 

Kimha1J, Lovell (1925) 

Honda, Tanaka (1926 

H. M. LEDBETTER AND R. P. REED 

TABLE 9. Young's modulus E of nickel-Continued 

Composition Technique 

"A" Nickel; Ni(O.1 Cu, C, 0.15 1.2 MHz transv. res. freq. 
Fe, 0.20 Mn, 0.05 Si, 0.005 
S) 

Electrolytic Ni 

Ni(0.55 metallic, 0.05 C, 0.005 
S+O) 

99.98 Ni 

Ni(0.19 Co, 0.01 Fe, AI, 0.02 
c) 

99.99 Ni 

Res. freq., 20-30 kHz. 

L(lng. res. freq. 

Trans., long. res. freq. 

Res. freq. 

Tension, x-ray. 

Electrolytic 99.98 Ni (0.016 600-800 Hz oscillator. 
Co, 0.001 Cu, 0.001 Fe, 
0.002 S, 0.000 Si, Mn, Pb, q 

Specimen, Test Conditions 

a) ann. 1623 K, H2 atmos.,t h,GS= 1 
mm; no field. 

b) ann. 1623 K, H2 at mos. ,i h, GS = 1 
mm; saturated field .. 

c) ann. 1173 K, H2 atmos., 1 h, GS= 
0.13 mm. 

F(T) in figure 19. 

E (10 12 

dyn/cm2
) 

1.90 

2.16 

2.10 

a) H=O, 2.06 
b) H=320 Oe. 2.17 
F(T, H) in figure 33. 

Ann. 1I73,/(T) in figure 19. 2.06 

Vac. electron arc melting, x(Cu), 2.08 
f(T) in figure 19. 

F(T) in figure 19. 1.95 

X(Cu). f(H). 2.15 

Vac. ann. 30 min. at 1173 K, cooled 
300 °C/h. 

Best values (no field) 
(sat. field) 

Uncertainties (no field) 
(sat. field) 

1.96 

1.97 
2.18 

0.15 

0.09 

TABLE 10. Young's modulus E of iron-nickel alloys 

Composition Technique Specimen, Test Conditions 
E 0012 

dyn/cm2 ) 

15 alloys Spring tension. X(Cr, c),f(T, 243-313 K). Figure 5 

Fe-24.1 Ni (0.36 C, 0.41 Mn) Tension. a) Ann. "non-magnetic", 1.74 
b) Cooled to 76 K, "magnetic". 1.53 

6 alloys, impurities (O.40-0.5~ Tension extensometer. Ann. 1030 K, slow cool. Figure 5 
C, 0.8-0.18 Si, 0.01-0.04 
S,P 

6 alloys Tension, opt. lever. F(S). Figure 5 

11 alloys Bending, opt. lever. Ann. lIn K. Figure 5 

12 alloys, impurities (0.12- Tension, opt. microscope). Ann. H[:~- 1117:~ K. Figure 5 
0.73 C, 0.34-1.24 Mn, 
0.13-0.27 Si, ~ 0.02 P, 
~ 0.04 S) 

Fe-3.41 Ni (0.19 C, 0.55 Mn, Bending. I AIIII. [[1\0 K, ! h, slow cool; f(T) in 2.07 
0.03 p, S, 0.10 Si) ti~lIn' 21. 

Fe-3.5 Ni (0.35 C, 0.21 Si, Transv. res. fretl. ·\1U1. 112:3 K, oil quench, drawn 923 
0.02 S, P, 0.58 Mn) 1\../( 1') in figure 22. 

12 allo s y Bendin". opl. I,·v,·!. \illi. 1173 K, 2 h, slow cool; f (H). Figure 5 
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TABLE 10. Young's modulus E of iron-nickel alloys-Continued 

Investigator(s) Composition Technique Specimen, Test Conditions E(10 12 

(Year) dyn/cm2 ) 

Chevenard (1927, 1943) 33 alloys Bending, torsion. Ann. 1173 K. Figure 5 

also Chevenard, 
Crussard (1943) 

Nishiyama (1929) 9 alloys from electrolytic Fe, Bending, opt. lever. Ann. 1173 K, 2 h, furnace cooled. Figure 5 
Mond Ni 

Kawai (1930) Fe-3 Ni (0.3 C) Tension. a) Ann. 1133 K, 2.07 
b) tensile elongati~n = 2.1 %, 2.01 
c) tensile elongation = 5.3%, 1.99 
d) tensile elongation = 8.0%, 1.97 
e) tensile elongation = 12.9%. 2.02 

Honegger (1932) a) Fe-5 Ni Transv. res. freq. 1.99 
b) Fe-3 Ni 1.94 

Keulegan, Houseman Tension, torsion. F(T, 295-906 K) in Fe-3.5-S.0 Ni, 
(1933) ann. t h, furnace cooled or water 

quenched; Fe-35 Ni as received; 
I(T), temp. coeff. at 273 K. 

Nakamura (1935) 10 alloys from 99.94 Fe, Ni Long. res. freq. Vac. ann. 1273 K, 1 h, slow cool, Figure 5 
I(H). 

Moller, Barbers (1936) Fe-0.02 C, Si, S, 0.37 Mn, a) X-ray. Vac. ann. 873 K, 1 h, slow cool. 1.79 
0.05 P) b) Tension. 1.98 

Forster, Koster (1937) Fe-22.4 Ni Transv. res. freq. F (T), in figure 38. 1.49 

Forster, Koster (1937) 6 alloys Transv. res. freq. F(vibr. amp!.). Figure 5 

Davies, Thomas (1937) Fe-48 Ni Res. freq. a) Ann. 1173 K, 7 h. 1.365 
b) As received. 1.529 

Doring (1938) F'e42 Ni Kes. freq. a)H=U. 1.575 
b) H = 0.575 kOe. 1.62 
P(T) in figure 20. 

Engler (1938) 4 <llluylS (0.4 Mil, 0.1 5i) LUllg. HllS. Clell. Ann 973 K, 5 h, 1I1uw t;uul;/(T, X) in Fi~urt; 5 

figure 20; I(H, X) in figure 33. 
I(D,X) in figure 13. 

Scheil, Thiele (193B) Fe-22.4 Ni (0.2 Mn, 0.2B Si, Res. freq. Ann. lOB3K, Hh/(T) in ne;ure 21. 1.50 
0.03 C, 0.01 P, S 

Williams, Bozorth, Fe-68 Ni (0.3 Mn) Long. res. freq. a) Rolled (83% red. thick.), i)H=O, 1.8145 
Christensen ii) H Sat. 1.8161 
(1941) b) Ann. 1273 K, 1 h, Ii:!. i)H=O, 1.783. 

slow cool, ii)HSat. 1.870 
c) Treatment (h), then i)H 0, 1.654 

873 K, rapid cool. ii)H Sat. 1.826 
d) Treatment (b), then i)H=O, 1.843 

873 K, H2 cool in 0.01 ii)H Sat. 1.930 
kOe long. field, 

e) Treatment (b); then i)H=O, 2.105 
873 K, H2 , cool in 0.01 ii)H Sat. 2.181 
kOe transv. field, 

Chevenard, Crussard a) Fe-49 Ni Bending, torsion. Cold worked 44%; I(T) in figure 20. 1.93 
(1943) b) 12 alloys Annealed. Figure 5 

Seager, Thompson (1943) Fe-3.1 Ni (0.51 Mn, 0.16 Si, Bending, interferometric. Ann.,j(T) in figure 21. 1.92 
0.2 C, 0.01 S, P) 

Koster (1943b) 11 aHoys Transv. res. freq. Ann. 1273 K, 1 hjf(Ni). F~H)" figure 5 
1 (T) in figure 20. 
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TABLE 10. Young's modulus E of iron·nickel alloys-Continued 

Investigator(s) 
Composition Technique Specimen, Test Conditions 

E(10 12 

. (Year) dyn/cm2 ) 

SeheH, Reinacher (1944) 7 alloys (0.1-0.9 Mn, 0.1-0.3 Si) Transv. res. freq. Ann. 1173 K, H2 atmos.,! h., slow FigureS 
cool; J(T) in figure 20. 

Fontana (1948) Fe-8.6 Ni (0.77 Mn, 0.23 Si, Tension, strain gauges. Ann. 1173 K, 1 h, air cool then 1063 K, 1.91 
0.05 AI, 0.05 Ti, 0.01 C, P 1 h, air cool; then 838 K, 2 h, air 
0.02 S) cool; J(T) in figure 21. 

Bennett, Davies (1949) Fe48 Ni Res. Freq. Ann. 923K, 10 h; J(T) in figure 22. 

Fine, Ellis (1950) 15 alloys (0-0.4 Co, 0.0.7 Mn) Long. res. freq. Cold swaged 74%; ann. 1223 K. 1 h; FigureS 
J(T) in figure 20. Cold swaged 41, 
55%; ann. 673 K, not plotted. 

Beck, Kouvelites, 5 alloys (40.2,09.1,84.9,88.5, Long. res. freq. Ann. at 923 K, 3 b, in H2. F(H) in Yigure5 
McKeehan (1951) 100Ni) figure 37. ll.EIE data in Kouvelites, 

McKeehan (1952). 

Och5cnfcld (1955) Fe-60Ni RCI!>.flCq. <1) Nu fidd, 1.76 
b) Saturated field. 1.86 

Markham (1957) Fe-3 Ni a) Tension. 2.01 
b) 10 MHz pnJ .. e.e",ho. 2.05 

Yamamoto (1959) 12 alloys from Armco iron, Magnetostrictive vibratiori. Ann. 1273 K, 1 h, H2; then vac. ann. Figure 5 
Mond nickel 1273 K, H h;!(H, x). 

Hill, Shimmin, Fe-35.6Ni Long. res. freq. "Recrystallized";J(T) in figure 20. 1.48 
Wilcox (1961) 

Durham, et al. (1963) Fe-36 Ni (0.8 Mn, ·0.4 Si, 0.2 Torsion, opt. lever. Cold drawn 12-15%,J(T) in figure 20. 1.45 
Se, 0.08 C, 0.01 P, S) 

Tino, Maeda (1963) 6 alloys, 26.2-100 Ni Res. freq., 20·30 kHz. F(T, H) in figure 34,/(D) in figure FigureS 
13. 

Goldman, Robertson Fe·29.9 Ni (0.004 C) Fe·25.1 Long. res. freq. Vac. ann. 1173 K, i h; 0.035 mm GS; FigureS 
(1964) Ni (0.26 C) J( T) in figure 38. 

Doroshek (1964) 6 alloys (0.4·0.5 Mn, 0.14-0.48 Res. freq. Figure 5 
Si, 0.17·0.38 Cr, 0.01 AI, 
0.02·0.03 C, 0.02·0.04 P, S) 

Smith, Stem, Fe·2.5 Ni (0.4 C, 0.6 Cr, Long, transv. pulse·echo. F(P), third· order stiff'nesses. 2.10 
Stephens (1966) 0.5Mo) 

Eganyan, Selissikiy (1967) Fe·75 Ni Res. freq. F(H), a) H= 0, 2.06 
b) H= I kOe. 2.16 

F (T) in figure 20. 

Kototayev, Koneva (1968) Fe-75 Ni Res. freq. F (T) in figure 22, relative values. ........... 

Khomenko, Tseytlin 9 alloys, 30.2·46.4 Ni Res. freq. Va(:. anll. at 1173 K, 2 h, cooled at 
(1969) lO(f/h. 

a) :~O.2 Ni. H = 0; 1.67 
Ii) ~U.2 Ni. H = sat.; 1.67 
d 46.4 Ni,H = 0; 1.33 
eI) 46.4 Ni, H = sat. 1.49 

Shirakawa, et at (1969) 9 alloys, 26.2·100 Ni Res. freq. /I ~at. Polycrystal and (100), (110), FigureS 
( III ) single crystals. 

Maeda (1971) Fe·3S Ni Res. freq. V;w. ann. at 1273 K, 10 h, 
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TABLE 10. Young's modulus E of iron-nickel alloys-Continued 

Investigator(s) Composition Technique Specimen, Test Conditions E(10 12 

(Year) dyn/cm2
) 

a) H=O, 1.26 
b) H= 1900e, 1.36 
c) H = 1900 Oe. 1.38 
F(T,H) in figure 34. 

Diesburg (1971) 3 alloys 10 MHz pulse-echo-overlap. Calculated from Cij by V -R-H method. FigureS 

Hausch, Warlimont (1972) 9 alloys 10 MHz pulse-echo. Calculated from Cij by V-R-H method. FigureS 

TABLE 11. Shear modulus G of iron 

Investigator(s) Composition Technique Specimen, Test Conditions G (10 12 

(Ve~r) dyn/cm2 ) 

Earlier reports Range = 0.68 - 0:83. average = 
(1853-1900) 0.76 

Schaefer (1901) Torsional res. freq. 0.719 

Benton (1903) "Steel" Torsion F(T, 76-300 K), relative to 300 K. 

. Horton (1905) Res. freq . F(T),f(A). 0.826 

Griineisen (1908) a) "Steel" Long. res. freq. 0.812 
b) "Iron" 0.831 

Guye, Freedericksz Torsion pendulum. F (T) in figure 23. 0.805 
(1909) 

Koch, Dannecker (1915) Torsion F (T) in figure 23. 0.79 

Honda (1919) Fe (0.29 Cu, 0.31 Mn, Torsion, opt. lever. X(Co). 0.84 
0.11 Si, 0.09 C, 0.03 P, S) 

Honda (1919) Torsion, opt. lever. Ann. 1173 K, J(X). 0.834 

Honda, Hasimoto (1921) Fe (0.18 C, 0.2 Si + Mn) Torsion, opt. lever. Ann. 1173 K, a) slow cool, 0.832 
b) oil quench. 0.806 

X(C), J(eR). 

lokibe, Sakai (1921) 99.98 Fe (0.0085 q Torsional o9cillations. Ann. 1973 K, f(T) in figure 23. 0.70 

Kikuta (1921) Fe (0.3S C) Res. freq. Ann. 1173 K, J(T) in figure 23. 0.807 

Honda, Tanaka (1926) Fe (0.38 Mn. 0.1 r.. 0.02 P, S, Tonion, opt. lever. X(Ni, Co, C), f(H). 
Fe (0.31 Mn, 0.11 Si, a) Ann. 1173 K, 1 h slow cool. 0.813 
0.09 C, 0.29 Cu, 0.03 P, S) b) Ann. 1173 K, 1 h oil quench. 0.792 

c) Ann. 1173 K. 2 h., slow cool. 0.834 

Chevenard (1927) Torsion. X (Ni, Cr, C). 0.85 

Goens (1930) a) Res. freq. 0.800 
b) Torsion. 0.808 

Gutenberg, Schlechtweg Res. freq., torsion. 0.78 
(1930) 

Everett (1931) Fe (0.35 C, 0.80 Mn, Torsion, dial gauge, mech. Ann. 1173 K, lh, slow cool F(T, 0.794 
0.10 Sit 0.02 P, 0.03 S) lever. 295-773K). 

Kawai (1931) "Armco iron" Torsion, opt. lever. Ann. 1273 K, J(D) in figure 10. 0.812 

M'Farlene (1931) "Soft iron" Torsion pendulum. F(D) in figure 10. 0.78 
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TABLE 11. Shear modulus G of iron - Continued 

Investigator(s) 
Composition Technique Specimen, Test Conditions 

G (10 12 

(Year) dyn/cm 2 ) 

Keulegan, Houseman Fe (0.66 C, 0.8 Mn, 0.01 P, Helical loaded springs. Temp. coeft"., 223-323 K. 
(1933) 0.04 S) 

Verse (1935) a) Fe (0.4C, 0.86 Mn, 0.04 S, Torsion. Ann., f(T, 298-773 K). 0.796 
0.02 P, 0.14 Si) 

b) Fe (0.34 C, 0.80 Mn, 0.10 Si Long. torsional res. freq. Ann. 1173 K, 1 (T) in figure 23. 0.798 
0.02 P, 0.03 S) 

Bez-Bardili (1935) Long., transv. sound-wave 0.845 
velocities, 1-20 MHz. 

Brown (1936) "Armco iron" Long. (56 MHz), torsional Ann., f(H). 0.846 
(39 MHz) res. freq. 

Glocker, Schaaber (1938) Fe (0.06 C) Torsion, x-ray 0.798 

Everett, Miklowitz (1944) Fe (0.15-0.25 C, 0.3-0.6 Mn, Torsion, opt. lever. F(T) in figure 23. 0.78 
0.04 P, 0.05 S); SAE 1020 

Garofalo, Malenock, Fe (0.45 Mn, 0.19 Si, 0.13 C, Torsion, opt. lever. Ann. 1170 K,! h air cooled; I(T) in 0.80 
Smith (1952) 0.01 P, 0.02 S); (SAE 1015) figure 23. 

Hughes, Kelly (1953) "Armco iron" Pulse-echo. F(P). 0.820 

Burnett (1956) 99.8 Fe "Free-free sonic vibration", F (T) in figure 23. 0.78 
res. freq. in torsion. 

Hughes, Maurette (1956) "Armco iron" Pulse· echo. F(P), f(T) in figure 23. 0.814 

Voronov, Vereshchagin 99.8 Fe (0.02 Mn, 0.02 Si, 10 MHz pulse-echo. Ann.; f(P). 0.812 
(1961) 0.012 C, 0.03 P, S) 

Durham, McClintock, Fe (0.8 C, 0.3 Mn, 0.15 Si) Torsion, opt. lever. Ann. 1056 K, 1 h, oil q~ench, temper 0.795 
Reed, Warren, 655 K, 1 h, air cool; f(T) in figure 
Guntner (1963) 23. 

Smith, Stern, Stephens a) Fe (0.8 Mn, 0.3 Si,0.4 C) Long. and transv. pulse· X (Ni), I(P), third·order polycrystal- 0.821 
(1966) echo. line moduli. 

b) Fe (0.8 Mn, 0.2 Si, 0.6 C) 0.820 

Frederick (1947) "Armco iron" 0.5-15 MHz pulse-echo. F(T). 0.808 

Speich, Schwoeble, Fe (0.057 C) 80 kHz pulse-echo. Austenitized 1 h at 1000 °C and water 0.806 
Leslie (1972) quenched. 

BC5t value 0.31 

Uncertainty 0.03 

TABLE 12. Shear modulus G of nickel 

Investigator(s) Composition Technique Specimen, Test Conditions G (1012 

(Year) dyn/cm2 ) 

Earlier reports (1853- Range: 0.68-0.83 average 
1900) 0.76 

Schaefer (1901) Torsion, res. freq. 0.933 

Griineisen (1908) Long. res. freq. Hard drawn. 0.770 

Guye, Schapper (1910) Torsional oscillations. F(T) in figure 24. 0.762 

Koch, Dannecker (1915) Res. freq. F (T) in figure 24. 0.716 
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TABLE 12. Shear modulus G of nickel-Continued 

i i 

Investigator(s) 
Composition Technique Specimen, Test Conditions 

G (10 12 

(Year) dyn/cm2 ) 

Iokibe, Sakai (1921) Torsional oscillations under Vac. ann. 1073 K, f(T) in figure 24. 0.723 
tensile lond. 

Kikuta (1921) Torsional oscillations under Ann., f(T) in figure 24. 0.782 
tensile load. 

Honda, Tanaka (1926) 99.6 Ni (0.15 Fe, 0.14 C, 0.01 Torsion, opt. lever. Ann. 1173 K, 0.5 h; f(H)+ x(Fe). 0.750 
Cu, 0.05 Si, 0.04 S} 

Chevenard (1927) Torsion. X(Fe, Cr). 0.86 

Mudge, Luff (1928) 99.18 Ni (0.1 C, 0.16 Cu, 0.06 Torsion. a) Hot rolled. 0.78 
Si, 0.01 S, 0.4 Fe, 0.05 Mn) b) Ann. 1030 K, 4 h. 0.758 

Gutenberg;, Schechtweg Res. freq. in torsion. 0.80 

(1930) 

Kawai (1931) 99.5 Ni Torsion, opt. lever. Ann. 1073 K, f(D, tension) in figure 0.785 
1l,f(R). 

Mobius (1932, 1934) Res. freq. F(H); f(T, 293-673 K). 

Kikuchi (1936) Torsion. X(Cu). 0.710 

Landon, Davies (1938) 99.2 Ni Res. freq. in torsion. a) Ann. 1133 K, t h, cold rolled, O.BOO 
Brinnell hardness = 210. 

b) Ann. 1133 K, 1 h, cold £oIled, ann. 0.027 
1133 K, t h . 

. Burnett (1956) 99.8 Ni (0.04 Fe, 0.03 Mn, Res. freq. in torsion. F (T) in figure 24. 0.738 
0.11 Si, 0.01 Cu, C) 

Susse (1956} 99.7 Ni Torsional res. freq. F(T) in figure 24. 0.79 

Orlov, Fedotov (1966) 99.98 Ni Long., transv., torsional Ann., x(Cu), f(T) in figure 24. 0.805 
res. freq. 

Faninger (1969) 99.99 Ni X-ray, tension. X{Cu), f(H). 0.83 

Shirakawa, et a1. (1969) Electrolytic Ni (0.012 Fe, Res. freq. H sat., 1 mm GS. 0.83 
0.007 Si, 0.008 Cu, 0.003 
Mnl 

hederick (IY47) 0-15 MHz pulse-echo. F{T). 0.808 

Best value 0.785 

Uncertainty 0.05 

TABLE 13. Shear modulus G of iron-niCkel alloys 

Investigator(s) 
Composition Technique Specimen, Test Conditions 

G (10l2 
(Year) dyn/cm2 ) 

Angerheister (1903) Fe·24.1 Ni (0.36 C, 0.41 Mn) Tension. torsion, res. freq. a) Ann. "non·magnetic", fcc. 0.67 
b) Cooled to 76K. "magnetic", bcc. O.5~ 

Guye, Woelfle (1907) Fe-36.11B Ni (0.02 Cn) Res. freq. F(T) in figure 25. 0.563 

Honda (1919) 13 alloys Torsion, opt. lever. Ann. 1173K. Fignre6 

Chevenard (1920) Fe-36 Ni Res. freq. in torsion. Ann. 973K, cold worked, tempered, 
ann. F(T) in figure 25. 

Honda, Tanaka (1926) 12 alloys Torsion, opt. lever. Ann. 1173 K. i h;f(H). Fignre6 
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TABLE 13. Shear modulus G of iron·nickel alloys - Continued 

Investigator(s) 
Composition Technique Specimen, Test Conditions G (lOu 

(Year) dyn/cm2) 

Chevenard (1927) 35 anoys Res. freq. in torsion. Ann. 1023K, x(Cr); f(T) , relative in Figure 6 
tigure:lb. 

Landon, Davies (1938) Fe·48 Ni Res. {req. in torsion. a) Unannealed 11 73K, 20 min., rolled 
400/0. 0.601 

b) Ann. 1173K, 20 min., rolled 40%, 
ann. 1173K, 20 min. 0.596 

Burnett (1956) 66.97 Fe, 31.95 Ni (0.81 Mn, Res. freq. in torsion. F (T) in figure 25. 0.58 
0.14 Si, 0.05 Cr, 0.08 C) 

Markham (1957) Fe·3 Ni a) 10 MHz pulse-echo. 0.797 
b) Torsion. 0.790 

Bungardt, Preisendanz, a) 90.68 Fe, 9.21 Ni (0.05 Mn, Res. freq. in torsion. Ann. 1173 K, 1 h; F(T, l00-nOO K), 
Brandis (1962) 0.02 C, 0.01 P, S, N) relative, in figure 26. 

b) 82.74 Fe, 17.14 Ni (0.05 
Mn. 0.02 C. 0.01 P. S. N) 

Durham, McClintock, Fe·36 Ni (0.8 Mn, 0.2 Se, Torsion, opt. lever. Cold drawn 12·15%.,f(T) in figure 25. 0.565 
Guntner, Warren (1963) 0.08 C, 0.01 P, S) 

Goldman, Robertson a) Fe·29.9 Ni (0.004 C) Long., torsional res. freq. Vac. ann. 1173 K,! h, 0.035 mm GS; 
(1964) b) Fe·25.1 Ni (0.26 C) V( T) in figure 25. 

i) fcc 0.68 
ii) bcc 0.54 
i) fcc 0.72 

ti) bee 0.625 

Smith, Stern, Fe·2.5 Ni (0.4 C. 0.6 Cr, 0.5 Long., transv. pulse-echo. F(P), third·order stiffnesses. 0.818 
Stephens (l~bb) Mo) 

Roberts, Owen 6 alloys (50 ppm C) Res. freq. in torsion. Ann. 1198K, i h, 2% H2 atmos., Figure 6 
(1967) quenched. 

Meincke, Litva (1969) Fe-35 Ni Sound velocity measurements. Ann. 1273K. air cool. F(T) in figure 25. 0.56 
Maeda (1971) Fe-35 Ni Res. freq. Vac. ann. 1273 K, 10 h, 

a) H=O, 0.407 
b) H= 1900e, 0.458 
c) H = 19000e. 0.473 
F(T, H) in figure 3. 

Shirakawa, et al. (1969) 9 alloys, 26.2-100 Ni Res. freq. H sat. Polycrystal and (100). (11O). Figure 6 
(Ill) single crystals. 

Diesburg (1971) 3 alloys 10 MHz pulse-echo-overlap. Calculated from elj by V ·R-H method. Figure 6 

Hausch, Warlimont (1972) 9 alloys 10 MHz pulse-echo Calculated fwm Cij by V -R-Il lIIethud. Figure 6 
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Investigator(s) 
(Year) 

Richards (1907) 

Griineisen (190B) 

Griineisen (190B) 

Richards, Bartlett (1915) 

Bridgman (1923) 

Ebert (1935) 

Ebert, Kussmann (1937) 

Bridgman (1940a, 1940b) 

Birch (1947) 

Bridgman (1949) 

Hughes. Kelly (1953) 

Hughes. Maurette (1956) 

Composition 

99.97 Fe 

99.99 Fe 

Fe(0.008 Ni. C, 0.002 i, 
0.001, < (J.00l Co, Cr, 
Mo, Mn, (I, < 0.005 CI) 

"Armco Iron" 

"Armco iron" 

TABLE 14. Bulk modulus B and compressibility B-1 of iron 

Bs 
Technique SpeCimen, Test Conditions 

(1012 

dyn/cm! 

Res. freq., alll measure-
ments. 

alit measurements. Range: 0.570-0.641. 
f(T) in figure 27. 

aVIV measurements, Hg 100 < P < 500 bar. 

batn. 

alii of rod under hydro- P~ lOok bar. 

static pressure. a) 303 K 
b) 348 K 

alii of rod, comparative. Single crystal, P ~ 5 kbar. 

Press lIre dep. in magnetic X(Ni),f(H), saturated field. 
field. 

alll, lever piezometer. P~ 30 kbar, 
Slater (1940) correction. 
a) 297 K, 
b) 348 K. 

Correction to Bridgman data. T=297 K. 

alll, lever improved piezom- P ~ 30 kbar, T=296-299 K. 
eler; Compared to Fe, 
Bridgman (1940). 1.641 

Pulsed ultrasound Simple compression and hydro-
vel,)cities. static pressure to 9 kbar. 

Pul~e-echo. Polycrystals; 
f(T) in figure 27; 1.686 
isothermal data calculated; 1.683 
a) P= 1 bar, T=303 K; 1.735 
b) P= I bar, T= 373 K; 1.712 
c) P=9 kbar, T=303 K; 
d) P=9 kbar, T=373 K. 1.667 

B-l=a* Br 
dBsldP 

(lQ-r (1012 

cm2/dyn) dyn/cm2 ) 

0.40 

0.62 1.61 

0.61 1.64 

0.61 1.64 

0.599 1.669 

0.605 1.653 

0.603 1.658 

0.612 1.634 

1.680 

0.595 
0.601 1.664 

0.5941 1.683 

0.590 1.695 

2.7±1.6 6.093 1.641 

4.30 0.6033 1.656 

5.13 0.606 1.650 

b* 

(10-24 
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TABLE 14. Bulk modulus B and compressibility B-1 of iron-Continued 

Bs 
Investigator(s) Composition Technique Specimen, Test Conditions 

(Year) (10 12 

dyn/em 2 ) 

Voronov, Vereshchagin 99.8 Fe(0.02 Mn, Si, 10 MHz pulse-echo. Ann. polycrystals, up to 10 kbar, iso-
(1961) 0.01 C,0_03 P, S) thermal data calculated. 

Rotter, Smith (1966) 99.99 Fe(Cr, Mn traces) 10 MHz pulse-echo. Specimens from crystal of Rayne, 
Chandrasekhar (1961),f(P). 1.569 

Aliev, Lazarev, Sudovtsov Bimelallic helix. T=4.2 K. 
(1967) 

Guinan, Beshers (1968) "Armco iron" 10 MHz pulse-echo. Specimens from Lord, Beshers 
(1965), single crystals;/(P); is[)- 1.564 

thermal data calculated. 

Takahashi, Bassett, Mao High pressure x-ray diffrac- a) From Murnaghan molar volume 
(1968) tiOIl, NaCl standard. eqn. 

b) From 1st-order Birch molar 
volume eqn. 

*a and b are coefficients in the equation ilV/Vo= aP+ bPz. Best values 1.664 

Uncertainties 0.'Jl5 

B:;.I=a* 

dBsldP 
(10- 12 

cm2/dyn) 

5.97 0.6098 

0.58 

5.29 0.6117 

0.618 

0.625 

4.68 0.606 

1.26 0.009 

BT 

(1012 

dyn/cm2 ) 

1.637 

1.72 

1.635 

1.62 

1.60 

1.649 

0.025 

b* 

(10- 24 

cm4/dyn 2 ) 

1.29 

1.15 

1.17 

0.43 
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TABLE 15. Bulk modulus B and compressibility B-1 of nickel 

Investigator(s) Brl=a* Br b* 
(Year) Composition Technique Specimen, Test Conditions (10-12 (1012 (10-24 

cm2(dyn) dyn{cm2 ) cm4 /dyn2 ) 

Griineisen (1908) Res. freq., alIt 0.57 1.75 
measurements. 

Bridgman t (1923) a) 99 Ni. alIi Fe standard, pie· Ann. 2 h. F(P, ~ 1 khar). 
zometer, hydrostatic P. i) T=303 K, 0.535 1.869 2.14 

ii) T=348 K. 0.539 1.855 2.14 
b) "Pure" Illli tensile. Drawn, ann. to "bright red" 

i) T=303K, 0.540 1.853 2.14 
ii) T=348 K. 0.546 l.832 2.14 

Ehert, Kussmann Ni(O.12 Fe, IlA/A in magnetic Saturated field. 0.542 1.845 
(1937) 0.04 Mn, field. F(H),X(Ni), p~ 10 khar. 

Si, 0.1 Co., 
0.05 Cu) 

Bridgman (1949) about 99.98 Piezometer, Fe stand· Ann., H2, - 1650 K. 0.488 2.048 
Ni arcL hynrostatic P, F(P, ~ .~o khllr). 

Ill/l. T= 296-299 K. 

Aliev. Lazarev Bimetallic helix, differ· T=4.2 K. 0.49 2.02 
Sudovtsov (1967) ential, compared to 

Ph 

Tanji, et ai. (1970), Calc. from E, G data. Ann. 1273 K, 3 h. 
reported also in a) H=O, 0.46 2.17 
Shirakawa, et al. b) H sat. 0.54 1.85 
(1969) 

*a andb are coefficients in the equation IlVIVo=aP+bP2. Best values 0.526 1.903 2.14 
tOriginal values corrected according to Bridgman (1946, 

1949). Uncertainties 0.036 0.127 -

TABLE 16. Bulk modulus B and compressibility B-1 of iron· nickel alloys 

In vestigator( s) B-1 B 
(Year) Composition Technique Specimen, Test Conditions (10-12 (1012 

cm2/dyn) dyn/cm2) 

Ehert, Kussmann (1937) 13 alloys from 99.99 Pressure dependence in mag· X(Co, Cr, Pt). Figure 7 
Fe, Ni(0.12 Fe, netic field. 
U.04 Mn, U.l Co, 
0.05 Cu, 0.04 Si) 

Takahashi, Bassett, Fe-S.15 Ni P to 300 khars, H to IS kOe, a) Using Murnaghan eqn. 0.645 1.55 
Mao (1968) x-ray diffraction, NaC) b) Using Ist order Birch eqn. 0.641 1.56 

standard, molar volume detn. 
Fe-l0.26 Ni a) Using Murnaghan eqn. 0.645 1.55 

h) Using Ist order Birch eqn. 0.654 1.53 

Meincke, Litva (1969) Fe-35 Ni Sound velocity measurements. Ann. 1273 K, air cool;f(T) in 0.90 1.11 
figure 29. 

Maeda (1971) Fe-35 Ni Flexural and torsional res;o- Vac. ann. at 1273 for 10 h. 
nance of a bar specimen. a) H= 190 Oe, 0.813 1.23 
Calc. from E and G data. b) H= 1900 Oe. 0.847 1.18 

F(T) ,J(H) in figure 36. 

Diesburg (1971) 3 alloys 10 MHz pulse-echo-overlap Calculated from Clj by V-R-H Figure 7 
method. 

Hausch, Warlimont 9 alloys 10 MHz pulse-echo. Calculated from Cli by V-R-H Figure 7 
(1972) method. 
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TABLE 17. Poisson ratio 11 of iron 

lnvestigator(s) Composition Technique Specimen, Test Conditions 11 

(Year) 

Earlier publica- a) "Steel" Range = 0.27 - 0.30. average 0.29 
tions (1879- h) "Iron" Range = 0.26 - 0.32. average 0.28 
1903) 

Benton (1901) "Iron" Interference microscope. 0.29 

Schaefer (1901) Torsion, res. freq. 0.247 

Morrow (1903) "W rought iron" Meas. of lateral and long. Range= 0.270 - 0.289. 0.275 
strains under compression. 

Griineisen (1908) a) "Steel" Res. freq. 0.287 
b) "Iron" 0.280 

Griineisen (1910) Bending, torsion. Range= 0.28 - 0.293. average 0.284 

Carrington (1924) a) "Wrought iron" Flexure. Ann. llS3 K, slow cool,f(T) in 0.23 
figure 30. 

b) Fe(O.l9 C) Ann. 1183 K, slow cool,J(T) in 0.27 
figure 30. 

Honda, Tanaka Fe(0.09 C, 0.11 Si, 0.31 Mn, Bending torsion. Ann. 1173 K, 112 h,j(H), x(Ni). 0.27 
(1926) 0.03 p. S, 0.29 Cu) 

Keulegan, House- Fe{0.66 C, 0.8 M, 0.01 P, Loaded helical springs. Detm. temp. coeff., 223-323 K. 
man (1933) 0.04 S) 

Verse (1935) a) Fe(0.43 C. 0.86 Mn. 0.04 Tension cathetometer Ann. f(/', 298-733 K). 0.295 
S, 0.02 P, 0.14 Si) torsion. 

h) Fe(0.34 C, 0.80 Mn, 0.10 Long., torsional res. Ann. 1173 K,j(T) in figure 30. 0.307 
Si, 0.02 P, 0.03 S) freq. 

Bez-Bardili (1935) Long., transv. sound-wave Calc. from me as. E, C. 0.290 
velocities, 1-20 MHz. 

Smith, Wood (1941) 99.95 Fe Tension, x-ray spectrometer. Yac. ann. 0.050 in. sheet. 0.27 

Everett, Miklowitz Fe(0.15-0.25 C, 0.3-0.6 Mn, Bending, torsion. a) Hot rolled, 0.313 
(1944) 0.04 P, 0.05 S) [SAE 1020] h) Cold rolled. 0.286 

F(T) in figure 30. 

Garofalo, Fe(0.45 Mn, 0.19 Si, 0.13 C, Bending, torsion. Ann. 1170 K, 1/2 h, air cooled. F(T) 0.265 
Malenock, 0.01 P, 0.02 S) [SAE 1015] in figure 30. 
Smith (1952) 

Burnett (1956) 99.8 Fe "Free-free sonic vibration, " F(T) in figure 30. 0.275 
res. freq. in torsion. 

·Yoronov, 99.8 Fe(O.01 C, 0.02 Si, Mn, 10 MHz pulse· echo. Ann., a) Hydrostatic P=O, 0.290 
Vereshchagin 0.03 P, S) b) Hydrostatic P= 9.8 hare 2.292 

(1961) 

Shved (1964) "Armco iron" X-ray scattering, uniaxial 0.283 
tension. 

Bt:::;l va)ut:: 0.282 

Uncertainty 0.019 
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TABLE 18. Poisson ratio II of nickel 

Investigator(s) 
Composition Technique Specimen, Test Conditions 

(Year) 
II 

Schaefer (1901) Torsion, res. freq. 0.240 

Benton (1901) Interference microscope. 0.96 Diam. wire. 0.375 
1.49 diam. wire. 0.271 

Griineisen (1908) Static. 0.309 

Honda, Tanaka (1926) Ni(0.05 Si, 0.01 Ca, 0.15 Fe, Bending, torsion. Ann. 1173 K·, 112. h; /(H); X(Fe). 0.29 
0.04 S, 0.14 C) 

Burnett (1956) 99.8 Ni(O.04 Fe, 0.03 Mn, 0.11 Res. freq. in bending, torsion. 0.280 
Si,O.01 Cu) 

Koster (1961) Calculated from KosterE, G 0.31 

data. 

Best value 0;296 

Uncertainty 0.029 

TABLE 19. Poisson ratio II of iron-nickel alloys 

Investigator(s) 
Composition 

(Year) 
Technique Specimen, Test Conditions II 

Angenheister (1903) Fe-24.1 Ni(O.36 C, 0.41 Mn) Tension, torsion, res. Ann., non-magnetic, fcc. 0.298 
freq. Cooled to 76 K, magnetic, bcc. 0.358 

Carrington (1924) Fe-3.4 Ni(0.19 C, 0.55 Mn, 0.03 Bending. Ann. 1180 K, Va h, slow cool; /(T) in 0.27 
P, S, 0.01 Si) figure 32. 

Honda, Tanaka (1926) 12 alloys Torsion, bending. Ann. 1173 K, l/a h;/(H). Figure 8 

Chevenard, Crussard a) Fe-6Ni Torsion·flexure. i) Cold worked. 0.27 
(1942) ii) Ann. 1073 K. 0.29 

b) Fe-36Ni Ann. 1073 K; / (T) in figure 32. 0.28 

Chevenard, Crussard a) Fe-49Ni Torsion-flexure. Cold worked 44%; f (T) in figure 32. 0.56 
(1943) h) 12 alloys Ann. 1173 K, ('oM work",tI 44%. Figure S 

Goldman, Robertson a) Fe-29.9 Ni(O.OO4 C) Long., torsional res. Vae. ann. 1173 K, 1/2 h, 0.035 mm GS;/(T) 0.28 
(1964) b) Fe-25.1 Ni(0.26 C) freq. in figure 32. 

f('(', 293 K; 0.26 

bee, 293 K; 0.23 
fcc, 217 K; 0.22 
bcc, 217 K. 0.20 

Dieshurg (1971) 3 alloys 10 MHz pulse-echo- Calculated from Cij by V-R-H method. Figure 8 
overlap. 

Hausch, Warlimont 9 alloys 10 MHz pulse-echo Calculated from Cij by V-R-H method. Figure 8 
(1972) 
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TABLE 20. Third-order elastic stiffnesses Cijk of iron 

Investigator(s) CUI CU2 C'23 I C14 .. CI66 C456 

(Year) Technique 

(1012 dyn/cm 2 ) 

Hughes, Kelly (1953)* Ultrasound velocities under tension and hydro- -3.48 -10.31 9.81 
static pressure. 

Seeger, Buck (1%0)* Poynting effect. -1.67 ~7.55 -14.9 

Powell, Skove (1968) Measured deviations from Hooke's law of single -28.29 -8.00 -6.07 
crystals. Calculated using Rotter, Smith (1966) 
pressure derivatives of second-order stiff-
nesses. 

Tietz (1969)* Ultrasound velocities under tension and hydro- 5.99 -9.44 
static pressure. 

Mathur, Sharma (1970) Calculated using Morse central-force potential -16.44 -2.60 -3.00 -3.00 -2.60 -3.00 
and Girifalco, Weizer (1959) parameters. 

*Determined isotrooic constants C~g9' c~ .... ~md c~&,,: see text for relationship of these to o~her CUk. 

TABLE 21. Third-order and fourth-order elastic stiffnesses CiJl,. and CiJkI of nickel 

lnvestigator(s) CIlI CII2 CI23 CJ44 CI66 C456 CUll CIIl2 C1I22 C1I23 

(Ye,ar) Technique 

(10 12 dyn/cm 2 ) 

Rose (1966) Calc. from data in -14.37 -10.53 1.19 1.19 -10.53 1.19 102.70 58.63 65.48 -3.47 
Huntington (1959) 

using finite strain 
theory and central-
force potential. 

Salama, Alers Change of sound -20.32 -10.43 ..,...2.20 -1.38 -9.10 -0.70 
(1%9 velocity under uni-

axial stress, speci-
mens neutron 
irradiated to pin 
dislocations, satu-
rated, 10 kUe held. 

Sarma, Mathur Calc. from 9 nn Morse -17.896 -11.420 0.814 0.814 -11.420 0.814 -15.366 -0.741 -0.141 -0.083 
(1969) potential. 

Sarma, Reddy Change of sound -21.04 -13.45 0.59 -1.80 -7.57 -0.42 
(1973) velocity under 

uniaxial stress, 
sp~cimens neutron 
irradiated to pin 
dislocations, satu· 
rated, 8 kOe field. 
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TABLE 22. Pressure derivatives dCij/dP of elastic stiffnesses of iron and nickel 

CIl CI2 C44 (CII + 2Ct2)f3 (CII -Ct2)/2 

Fe; Rotter, Smith (1966) 7.51 5.19 2.66 5.97 1.16 

Fe: Guinan, Beshers (1968) 6.72 4.58 2.59 5.29 1.07 

Ni: Salama, Alers (1967) 6.03 4.87 2.38 5.26 0.58 

Ni: Sarma, MdlitUi (1969) 5.70 1.5S 2.65 4J)5 0.70 

TABLE 23. Relative elastic constants based on a hard-sphere model, B= 1 arbitrarily 

C~t C~2 C~4 t' Br Gr Er v A 

b. c. c. 1.000 1.000 0.667 0.000 1.000 0.200 0.563 0.406 00 

Fe (obs.) 1.375 0.838 0.726 0.481 1.000 0.489 1.246 0.282 2.43 

f. c. c. 1.333 0.833 0.500 0.250 1.000 0.379 1.000 0.333 2.00 
Ni (obs.) 1.350 0.825 0.666 0.486 1.000 0.413 1.145 0.296 2.54 

TABLE 24. Debye characteristic temperatures (J of iron, nickel, and iron-nickel alloys calculated from single-crystal elastic data 

Low·temperature Room-temperature 

Wt. 
0, K Ref. Wt. 

Ref. %Ni %Ni 0, K 

0 472 Lord, Beshers (1965) 29.82 435 Tanji (1971) 
35.3 351 Hausch, Warlimont (1972) 35.7 405 Tanji (1971) 
36.1 348 Bower, et a1. (1968) 39.62 398 Tanji (1971) 
37.7 358 Hausch, Warlimont (1972) 44.43 410 Tanji (1971) 
38.2 346 Bower, et a1. (1968) 49.96 425 Tanji (1971) 
40.0 . 369 Hausch, Warlimont (1972) 60.7 458 Tanji (1971) 
42.5 383 Hausch, Warlimont (1972) 70.02 465 Tanji (1971) 
45.2 396 Hausch, Warlimont (1972) 78.5 478 T anji (1971) 
51.4 419 Hausch, Warlimont (1972) 89.6 475 Tanji (1971) 
60.8 436 Hausch, Warlimont (1972) 99.98 474 Tanji (1971) 
61.9 437 Hausch, Warlimont (1972) 
78.5 463 Hausch, Warlimont (1972) 
89.7 468 Hausch, Warlimont (1972) See tables 5-7 for. details. 

100.0 472 Hausch, Warlimont (1972) 
100.0 476 Alers, et a!. (1960) 
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Realm: Pure Science Phenomenology Engineering 

Parameter: Atomic Single-Crystal Engineering 
Force Constants Elastic Coefficients Elastic Constants 

FIGURE 1. Schematic interconnectivity of elastic parameters of solids 
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FIGURE 2. Chronological variation of observed elastic properties of iron 
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