Molten Salts: Volume 4, Part 1, Fluorides and Mixtures Electrical Conductance, Density, Viscosity, and Surface Tension Data

Cite as: Journal of Physical and Chemical Reference Data **3**, 1 (1974); https://doi.org/10.1063/1.3253134 Published Online: 29 October 2009

G. J. Janz, G. L. Gardner, Ursula Krebs, and R. P. T. Tomkins

ARTICLES YOU MAY BE INTERESTED IN

Molten salts: Volume 4, part 2, chlorides and mixtures–electrical conductance, density, viscosity, and surface tension data Journal of Physical and Chemical Reference Data 4, 871 (1975); https://doi.org/10.1063/1.555527

Molten Salts: Volume 5, Part 2. Additional Single and Multi-Component Salt Systems. Electrical Conductance, Density, Viscosity and Surface Tension Data Journal of Physical and Chemical Reference Data **12**, 591 (1983); https://doi.org/10.1063/1.555693

Molten Salts: Volume 3 Nitrates, Nitrites, and Mixtures: Electrical Conductance, Density, Viscosity, and Surface Tension Data Journal of Physical and Chemical Reference Data 1, 581 (1972); https:// doi.org/10.1063/1.3253103

Where in the world is AIP Publishing? Find out where we are exhibiting next

Journal of Physical and Chemical Reference Data **3**, 1 (1974); https://doi.org/10.1063/1.3253134 © 1974 The U. S. Secretary of Commerce on behalf of the United States.

Molten Salts: Volume 4, Part I, Fluorides and Mixtures

Electrical Conductance, Density, Viscosity, and Surface Tension Data

G. J. Janz, G. L. Gardner, Ursula Krebs, and R. P. T. Tomkins

Molten Salts Data Center, Department of Chemistry, Rensselaer Polytechnic Institute, Troy, N. Y. 12181

Data on the electrical conductance, density, viscosity, and surface tension of fluoride mixtures have been systematically collected and evaluated. Results are given for 44 binary mixtures over a range of compositions and temperatures. Values of the above properties for the single salts have been updated in accord with previously advanced recommendations.

Key words: Data compilation; density; electrical conductance; molten salt mixtures; fluorides; standard reference data; surface tension; viscosity.

1.	Introduction	2
2.	Symbols and Units	3
3.	Experimental Methods	3
	3.1. Techniques	3
	3.2. Percent Application of Techniques	4
	3.3. Melt Preparation and Purification	4
4.	Treatment of Data	4
	4.1. Statistical Analysis	4
	4.2. Percent Departure	5
	4.3. Value Judgments	6
	4.4. Discussion Tables	6
	4.5. Numerical Tables	6
	4.6. Phase Diagrams	7
	4.7. General Summary Tables	7

Contents

Page

ļ	5.	Single Salts	7
		5.1. New Recommendations	7
		5.2. Revised Recommendations	7
		5.3. Discussions and Numerical values	7
		5.4. General Summary Tables	11
		Table 13a. Total and Recommended	
		Investigations	11
		Tables 13be. References	12
(б.	Binary Mixtures	13
		6.1. Discussions and Numerical Values	13
		6.2. General Summary Tables	109
		Table 210. Total and Recommended In-	
		vestigations	109
		Tables 211ad. References	110
		Tables 212ad. Techniques	111
	7.	References	113

System Index

	Page
AlF ₂ -CsF	13
•KF	14
-LiF	15
-NaF	20
-RbF	26
BaF ₂ -CsF	27
-KF	27
-LiF	28
-NaF	29
ReF ₂ -KF	31
LiF	31
-NaF	36

-RbF		39
•UF _* _		40
CaF2-LiF _		40
-NaF		42
CeF ₃ -KF		. 44
LiF _		47
-NaF		50
KF-KBF.		53
·LaF		54
-LiF		57
-NaF		60
-SmF ₂		62
-ThF	·	64
-UF4		66
-YF		68
-ZrF4		71

Copyright () 1974 by the U.S. Secretary of Commerce on behalf of the United States. This copyright will be assigned to the American Institute of Physics and the American Chemical Society, to whom all requests regarding reproduction should be addressed.

LaF ₃ -LiF	74	NaF-NaBF ₄	92
-NaF	76	-SmF ₃	94
LiF-NaF -RbF -SmF ₃	78 82 82	-SrF ₂ -ThF ₄ -UF ₄	96 97 100
-ThF ₄	85 88	-ZrF ₄	105
-YF ₃	90	TiF ₄ -XeF ₂	108

Phase Diagram Index

AlF ₃ -CsF -KF -LiF -NaF -RbF BaF ₂ -CsF -KF -LiF -NaF BeF ₂ -KF -NaF -NaF SeeF ₂ -KF -NaF -Waf -Waf -Waf -Waf -Waf -Waf -NaF -NaF -Waf -Waf -Waf -LiF -NaF -LiF -NaF -LiF -NaF -LiF -NaF -LiF -NaF			
-KF -LiF -NaF -RbF -RaF_x-CsF -KF -LiF -NaF BeF2-KF -NaF -NaF -NaF -CaF2-LiF -NaF -NaF -NaF -UF4 -NaF -NaF -NaF -UF4 -NaF -NaF -NaF -UF4 -NaF -KF-KBF4	AlF ₃ -CsF		
-LiF -NaF -RbF BaF _a -CsF -KF -LiF -NaF BeF ₂ -KF -LiF -NaF BeF ₂ -KF -LiF -NaF -NaF -NaF -NaF -UF ₄ CaF ₂ -LiF -NaF -LiF -NaF -UF ₄ -NaF -NaF -UF ₄ -NaF KF-KBF ₄	-KF		
-NaF	-LiF		
-RbF BaF ₂ -CsF -LiF -NaF BeF ₂ -KF -LiF -NaF -NaF -RbF -RbF -RbF -RbF -RbF -RbF -RbF -NaF -RbF -NaF -RbF -WaF -LiF -NaF -LiF -NaF -LiF -NaF -LiF -NaF -LiF -NaF -NaF	-NaF		
BaF ₂ -CsF -KF -LiF -NaF BeF ₂ -KF -LiF -NaF -NaF -NaF -RbF -UF ₄ CaF ₂ -LiF -NaF -NaF -NaF -UF ₄ Star CaF ₃ -KF -I.iF -NaF -NaF -LiF -LiF -LiF -LiF -NaF -LiF -NaF	-RbF		
-KF	BaF2-CsF		
-LiF -NaF BeF2-KF -LiF -NaF -NaF -UF4 CaF2-LiF -NaF -NaF CeF3-KF -LiF -NaF -NaF Start -NaF -NaF -NaF -NaF -LiF -NaF -NaF -NaF -NaF	-KF		
-NaF BeF ₂ -KF -LiF -NaF -RbF -UF ₄ CaF ₂ -LiF -NaF -NaF CeF ₃ -KF -LiF -NaF KF-KBF ₄	-LiF		
BeF2-KF -LiF -NaF -RbF -UF4 CaF2-LiF -NaF CeF3-KF -LiF -NaF	NaF		
-LiF	BeF ₂ -KF		
-NaF -RbF -UF ₄ -UF ₄ -UF ₄ -NaF -NaF -LiF -NaF -NaF -LiF -NaF -LiF -NaF -LiF -NaF	-LiF		
-RbF -UF ₄ CaF ₂ -LiF -NaF CeF ₃ -KF -LiF -NaF KF-KBF ₄	-NaF		
-UF ₄ CaF ₂ -LiF -NaF CeF ₃ -KF -LiF -NaF KF-KBF ₄	-RbF		
CaF ₂ -LiF -NaF CeF ₃ -KF -LiF -NaF KF-KBF ₄	-UF4		
-NaF CeF ₃ -KF -LiF -NaF KF-KBF ₄	CaF,-LiF		
CeF ₃ -KF -LiF -NaF KF-KBF ₄	-NaF	·	
-LiF -NaF KF-KBF ₄	CeF ₃ -KF		
-NaF KF-KBF ₄	-LiF		
KF-KBF ₄	-NaF		
In The F	KF.KBF.		
	-LoF.		

1. Introduction

This series of compilations includes thermodynamic, transport, and physical properties of selected inorganic salts in the molten state. The early sections covered singlesalt melts, i.e., one-component systems in the classical phase-rule sense. Evaluated data on electrical conductance, viscosity, and density of single-salt melts were published in *Molten Salts, Vol. 1* (NSRDS-NBS-15 [1],¹ and surface tension was covered in Vol. 2 (NSRDS-NBS-28) [2]. Following the completion of that work, evaluation of data on the same four properties of binary molten salt mixtures was undertaken. The following classification was adopted from the many possible binary mixtures of inorganic compounds:

• nitrates-nitrates, nitrites-nitrites, and nitrates-nitrites.

-LiF	59
-NaF	62
-SmF ₃	64
-ThF	66
	68
VF	71
	11
-Zrf ₄	74
LaF _s -LiF	76
-NaF	78
	.0
LiF-NaF	82
-RbF	82
-SmF ₃	85
-ThF ₄	88
-UF4	90
-YF	92
****	74
NaF-NaBF4	94
-SmF ₃	96
-SrF,	97
-ThF ₄	100
-UF,	102
VE	104
•IF ₃ ,	104
-ZrF ₄	107

halides-halides

fluorides-fluorides; chlorides-chlorides; bromides-bromides and iodides-iodides; mixed halides

 additional binary systems carbonates-carbonates, sulfates-sulfates, . . . and mixed systems.

The recommendations for the nitrates nitrates, nitritesnitrites, and nitrates nitrites, together with a Vol. 1 [1] update for the relevant single-salts melt data were reported in *Molten Salts, Vol. 3* [3]. The recommendations for the halides-halides, and for the additional binary systems are being prepared as Vols. 4 and 5 of this series. The results for the binary mixtures of halides, i.e., *Molten Salts, Vol.* 4, will be reported in four parts: Part 1, fluorides-fluorides; Part 2, chlorides-chlorides; Part 3, bromides-bromides and iodides-iodides; and Part 4, mixed halide systems. An

2

¹ Numbers in brackets refer to literature references in section 7.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

update of the recommendations of Vol. 1 [1] for the relevant single-salts melt data is given in each of these parts. The results for some 44 fluoride-fluoride mixtures, and the single-salts melts update are reported herewith as Vol. 4, Part 1. The study includes published results up to approximately 31 December, 1972.

In this volume the discussion has been limited to essential observations concerning experimental procedures and melt preparation and purification. A tabular style is used wherever possible to display the important published results, recommended values, percent departures, and temperature and composition ranges.

As in Vol. 3 the limits imposed by the statistical analysis of the data required the comparisons for conductance and viscosity data to be made at the same compositions as in the original experimental studies; the recommendations are advanced accordingly, but at rounded temperatures. For density and surface tension, it was possible in some cases to report the properties at rounded values of temperature and composition.

Tables of numerical values follow immediately after the tabular presentations of the data sources and other comments. A temperature-liquidus phase diagram has been included wherever possible, to delineate to the lower limits of the liquidus ranges for the binary mixtures; however it should be understood that phase diagrams in this work are present for illustrative purposes and are not advanced as critically evaluated recommendations.

The fluoride mixtures are arranged in alphabetical order by cations according to chemical symbol. A system index is also given in the contents.

2. Symbols and Units

The symbols and units² for the four physical properties in this compilation are:

- $\kappa =$ specific conductance (ohm⁻¹cm⁻¹)
- $\rho = \text{density (gcm}^{-3})$

 $\eta = \text{viscosity} (\text{cp})$

 $\gamma = \text{surface tension } (\text{dyn cm}^{-1})^3$

In addition:

- E = activation energy (cal mol⁻¹)
- Λ = equivalent conductance (ohm⁻¹ cm² equiv⁻¹)
- C = concentration (mol %)
- $R = \text{gas constant} = 1.9817 \text{ cal mol}^{-1} \text{deg}^{-1}$
- T = temperature in kelvin, defined on the thermodynamic scale by assigning 273.16 K to the triple point of water (freezing point, 273.15 K = 0 °C).

³ When γ is treated as a free energy per unit area, it is given the unit, erg cm⁻³; this is dimensionally identical to dyn cm⁻³.

3. Experimental Methods

Authoritative reviews discussing experimental methods for studying transport properties of molten salts have been given elsewhere [3, 11, 21, 38, 53, 99]. Robbins [101] has reviewed the electrical conductance measurements on molten fluorides, with respect to the effects of cell design, materials for fabrication, and bridge methods for precise resistance measurements. The following section will highlight and reference certain experimental aspects that are generally restricted to the study of fluoride melts. Further information for specific fluoride systems has been included in the discussion sections (5.3 and 6.1) for single and binary melts, respectively.

3.1. Techniques

In the measurement of the electrical conductance of fluoride melts suitable materials for the construction of cells are extremely difficult to find [63] since most substances, if not rapidly attacked, are sufficiently porous to allow liquid penetration. Conductivity measurements have been made in cells constructed primarily from platinum [46, 45, 111], but boron nitride in graphite [24, 87, 119], single crystal beryllium oxide [54] and magnesium oxide [23, 34, 39] have also been found useful. Silica glass has been used for capillary cells [22, 30] but in general has not been suitable due to fluoride attack at high temperatures [45]. Electrodes of platinum [45, 46], inconel [120], molybdenum [87], and molten aluminum [39, 96] have been used. The low cell constants normally obtained using these materials in conjunction with the high conductivity of molten fluorides has necessitated the use of accurate bridge methods for precise resistance measurements and these have recently received attention by Robbins [101]. Additional comments regarding the measurements of electrical conductance for specific fluoride systems have been included under the discussion sections (5.3 and 6.1).

Viscosity measurements on fluoride melts have been made using the capillary, oscillating sphere, oscillating hollow cylinder and rotational cylinder methods. Little reported experimental information was available regarding the capillary technique. Oscillating bodies were constructed of platinum [5, 107] and palladium [108]; and rotational cylinders of bronze [117] and inconel [18, 19, 33] have been used. Platinum [5], graphite [117], nickel [33] and inconel [18, 19] melt containers were used. Recently reported viscosity measurements by Grjotheim et al. [44] on several molten chloride melts using the oscillational technique showed large differences (10 to 50%) for NaCl and KCl when compared to results of earlier investigations using the same method. Experimental problems associated with the method included consideration of wire diameter for the suspension system and proper pretreatment of the torsion wire. The stability of the measured torsional constant appeared to be strongly dependent upon these factors. In light of these conflicting results,

3

⁹ For conversion to SI units:

¹ ohm⁻¹ cm = 1×10²Ω⁻¹m⁻¹ 1 gcm⁻³ = 1×10³Kg m⁻³ i cp = i×10⁻³N s m⁻² 1 dyn cm⁻¹ = 1×11⁻³N m⁻¹ 1 cal mol⁻¹ = 4.184 i mol⁻¹

data on viscosity of fluoride melts obtained using the oscillating technique should be viewed with caution until further information becomes available on the reliability of this method.

The Archimedean method for density determination has been found very reliable for molten salts and specifically for fluoride melts. Bobs of platinum [7, 25, 33, 75, 95, 107], molybdenum [87, 98], and Pt-10 percent Rh [49] have been most commonly used with melt containers of platinum, nickel and graphite. A nickel dilatometer has been successfully used [28, 30]. Calibration procedures and corrections for thermal expansion and melt condensation have been discussed under sections 5.3 and 6.1.

The maximum bubble pressure method has been most widely used for surface tension measurements on molten fluorides. Capillaries of Pt-10 percent Rh [20, 43] and molybdenum [67] have been used. Experimental methods have been reviewed by White [113] and Janz [64].

The preparation, handling and transfer procedures for molten fluorides during experimental measurements are discussed in sections, 5.3 and 6.1, for specific and binary fluoride melts, respectively.

3.2. Percent Application of Methods

Experimental methods for studying transport properties of molten fluoride melts were cited in section 3.1. The following summaries indicate the frequency of use of these techniques. The Percent Application is defined as the number of investigations employing a particular method relative to the total number of reported studies for that transport property.

Method	Percent Application
Classical ac Potentiometric ac	97.8 2.2
Densi	ity
Method	Percent Application
Archimedean Dilatometric	96.7 3.3
Viscosi	ity
Method	Percent Application
Capillary	30
Oscillating hollow cylinder	2.5
Rotational cyclinder	52,5

Specific conductance

	on	
Method		Percent Application

Maximum bubble pressure Wilhelmy slide plate	92.9 7.1

3.3. Melt Preparation and Purification

Most fluorides are commercially available, either in technical or analytical pure grades, so that synthetic procedures are avoided. Emphasis is given here to details of salt purification.

The following procedures have been adopted: recrystallization, sublimation, vacuum distillation, fusion under HF gas and heating with NH_4HF_2 in the case of UF₄. The salts are mostly dehydrated in a Pt-crucible under vacuum at elevated temperatures with an inert atmosphere.

Mixtures are prepared by fusion of the required amounts of the pure components under an inert gas atmosphere. The composition and purity are usually checked using standard spectrochemical and gravimetric procedures.

Detailed procedures, including handling and transfer, for each salt or mixture are discussed in sections 5.1 and 6.1, respectively.

4. Treatment of Data

4.1. Statistical Analysis

The statistical analysis was performed on the computer facilities (IBM 360, PDP15 and G.E. Mark II Time-Sharing Unit) at Rensselaer Polytechnic Institute.

The density, specific conductance, viscosity, and surface tension values were recalculated by a one-dimensional analysis, using the method of least squares to establish equations indicating the variations of the physical quantities with temperature at the experimental composition. For density and surface tension results, where five or more experimental compositions and temperatures or temperature-dependent equations were reported, the values were recalculated by a two-dimensional analysis, using a stepwise multiple regression routine. In this way a physical property-temperature-composition matrix was developed. Tabulated values given in brackets are less reliable because of a statistically insufficient number of data points.

a. One-Dimensional Analysis

The criterion for choosing the equation of best fit in the one-dimensional analysis is the standard error of estimate computed from the residuals and defined by

$$s = \sqrt{\frac{\sum_{i=1}^{n} (\gamma_i - \gamma_i)^2}{n - q}}$$

Б

where $\gamma_e =$ the experimental value at each temperature, $\gamma_c =$ the value calculated from the least squares equation at the same temperature as γ_e , n = the number of experimental data points, and q = the number of coefficients in the least squares equation (2 for linear, 3 for quadratic). The standard error of estimate is also expressed as a percentage.

b. Two-Dimensional Analysis

Computer Programs Used

Programs from the IBM Scientific Subroutine Package⁴ were used with the IBM 360/50 computer facility at Rensselaer. The routines consist of STPRG, CORRE, LOC, and MSTR, the latter two being storage routines which have no effect on the accuracy of the results. In addition the subroutine STOUT is used to print the results of each regression step and the subroutine MATRIX is used for printing a matrix of the final equation.

Statistical Procedures

The abbreviated Doolittle method 5 was used to select the variables entering the regression and for calculation of coefficients. The independent variable included in each step of the analysis was selected by computing the reduction of sums of squares of each variable. The variable causing the largest reduction was added to the equation and deleted from the table of sums of squares. The coefficients, intercept and statistical parameters for the new equation were computed and printed. This procedure was repeated until the maximum proportion of sums of squares to the total reduced was less than a limit set by the programmer. The independent variables used in the initial selection were chosen from a generalized procedure, which generated 30 combinations of the input variables using powers, reciprocals, logarithmic and exponential quantities. It was found that the procedure consistently selected the equation $(T + C)^3$, so that the working program used nine independent variables. After the final equation has been produced, it is transferred to the MATRIX routine, which recalculates values at rounded compositions and temperatures, within specified boundary conditions. In the presentation of the matrix, due cognizance is taken of the experimental range of the investigation and of the phase relationships for the system so that values are always "interpolated" rather than "extrapolated". The final step in the procedure involves the residual analysis, where the deviations of the original values from those computed from the "best" equations are given.

Statistical Parameters

For each step in the regression analysis a summary of significant statistical parameters is given. First the sums of squares reduced (S_i) , the proportions of S_i/D , where D is defined below, given by P, the cumulative S_i given by S_{cum} and the cumulative proportion given by (P_{cum}) are listed. These quantities give an indication of the effect of each variable in the final equation. The programmers limit on P was always in the range $0.0001 \leq P \leq 0.001$.

Standard Error of Estimate

The standard error in the estimated y values adjusted for degrees of freedom is given by:

s.e. = $\sqrt{\frac{D-S_{\text{cum}}}{n-q-1}}$

$$D = \sum_{j=1}^{n} (y_j - \overline{y})^2$$

y_i — experimental values.

$$\bar{y}$$
 = average of all experimental values.

q = the number of independent variables in the equation.

The standard error of estimate is also expressed as a percentage. As a general guide about 68 percent of the results lie within the standard error of estimate, 95 percent within twice this value, and approximately 99 percent within three times the value.⁶

F Value for Analysis of Variance

This value is used to determine if a particular model is acceptable.⁷ Tables of F values indicate that values greater than 2.0 are acceptable for the routine used here. In all cases values of F were greater than 500 and in most cases greater than 1000. The F value is defined as:

$$F = \frac{S_{\text{cum/q}}}{(D - S_{\text{cum}})/(n - q - 1)}$$

where S_{cum} , q, D, and n were defined earlier.

4.2. Percent Departure

The percent departure has been used to compare the results of different investigations with either previous [1, 2] or current recommendations and has been later considered when evaluating a study for possible recommendation.

The percent departure is defined by:

Percent departure ==

The "compared values" refer to the numerical data given in the discussed study and are compared to the "recom-

⁴ System 360 Scientific Subroutine Package Programmers Manual; IBM 820-0205-3, 1969.

⁵ C. A. Bennet and N. L. Franklin, Statistical Analysis in Chemistry and the Chemical Industry (John Wiley and Sons, 1954).

⁹ T. D. Sterling and S. V. Pollack. Introduction to Statistical Data Processing (Prentice Hall, 1968).

⁷ H. Smih and N.R. Draper, Applied Regression Analysis (Julin Wiley and Suns, 1968).

mended values" given in NSRDS-NBS-15 [1] or NSRDS-NBS-28 [2], or the present work.

The experimental values, when available, were used as the "compared values", otherwise the "compared values" and the "recommended values" were calculated from statistically derived equations at common temperatures and compositions.

The percent departure is given in the discussion sections 5.3 for single salts and 6.1 for binary mixtures.

4.3. Value Judgments

The recommendations advanced in this work are based on three criteria: (a) type and quantity of experimental data available, (b) experimental method used, and (c) an error analysis of the reported results. The principles followed in selecting the most reliable data are, briefly, as follows:

(a) Studies reporting either numerical data, results derived from statistically generated equations or data in the form of temperature dependent equations were preferred over graphical results. Where investigations reporting numerical results and temperature dependent equations were of equal merit, normally the former was selected. For the case where two sets of results were reported for the same system, one graphical and the other numerical, the graphical results could be preferred if these were based on a more extensive composition and temperature range, when other criteria were of equal merit.

(b) The experimental aspects as discussed in section 3 were examined for each system when a recommendation has been advanced. Of primary importance was the cognizance of an investigator with respect to improvements and limitations on standard measuring techniques together with an examination of the errors leading to uncertainties in the measured transport properties. Attention was given to the preparation, purification, stability and analysis of single and mixed fluoride melts as discussed in section 3.3. The reliability of the measuring technique and melt preparation and purification procedures as determined from results on standard calibration materials was considered important in the ultimate value of the data reported.

(c) The statistical parameters and percent departures as discussed in section 4.1 and 4.2, respectively, were considered. For systems where investigations had similar quantity and quality of data, the results with superior statistical parameters were selected.

For some systems more than one reference has been advanced; this normally occurred when equally good data covered different composition and/or temperature ranges.

4.4. Discussion Tables

Transport properties of molten fluorides and their mixtures have been analyzed and summarized in tabular form with respect to: experimental methods employed, composition and temperature ranges studied, melt preparation and purification procedures and percent departures of numerical data from current or previous recommendations.

For each system the discussion table has been preceded by a brief introductory paragraph giving the recommended reference and experimental technique used, followed by three summary tables (where information exists), which contain respectively:

• the number of references critically re-examined

• the calculated percent departures

and

• the summary of cell materials and calibration methods,

Table A summarizes all investigations carried out for the relevant physical property with corresponding composition and temperature ranges. Data have been reported in numerical or equation form except where graphical results have been indicated.

Table B gives, when available, the minimum and maximum percent departures of the different investigations at comparable compositions and temperatures, in relation to previous recommendations [1, 2] or the present work. Experimental details such as cell materials and calibrations are presented, when available, in Table C for all investigations. Remarks concerning the accuracy, the reproducibility, and the form of numerical data are included. Additional comments may follow to highlight information of unusual importance (technique, experimental uncertainty, etc.) with respect to the particular property and system studied. Finally remarks on the salt preparation and purification are given.

The recommended investigation is always indicated by a bold-faced reference number in square brackets.

For certain systems more than one reference has been recommended where studies of comparable value have been reported covering different temperature and/or composition ranges.

A summary on melt preparation and purification is given for each system, when available.

4.5. Numerical Tables

The specific conductance, density, viscosity, and surface tension values were computed for each system for the experimental compositions at rounded temperatures using the corresponding "best" equation for the same temperature range for which the investigation was carried out. The temperature-dependent equations, the standard errors of estimate, the literature source and the form of the original data are given in each table. For density and surface tension the results were also recalculated using a two-dimensional statistical analysis in cases where sufficient data (more than five compositions and temperatures) were given.

The matrices produced by the two-dimensional analysis are reported in tabular form at rounded temperatures and compositions; in addition the two-dimensional equation, maximum percent departure, standard error of estimate and literature reference are included in the table. Original values are given in cases where investigations reported only limited data or the one- or two-dimensional statistical analysis was unsuccessful. Numerical tables are presented only for the recommended studies and are given immediately after the discussions.

4.6. Phase Diagrams

Phase diagrams for each system are included in section 6.1 when available. It should be understood that the temperature-liquidus phase diagrams included in this work are not advanced as critically evaluated recommendatione, but serve the useful purpose of reporting values for a eutectic composition. The liquidus curves were also used as guidelines for imposing the boundary conditions for generating the matrix, in order to avoid producing values in the solid phase. References for each phase diagram are given with the diagram.

4.7. General Summary Tables

Summary tables are given in section 5.4 (single salts) and section 6.2 (binary mixtures) to summarize specific information such as total number of investigations, recommended references, experimental techniques used, and literature references.

5. Single Salts

The sections 5.1 and 5.2 update the recommendations for single salt melts given in NSRDS-NBS-15 [1] and NSRDS-NBS-28 [2]. The discussions for each single salt recommendation and the numerical values together with the temperature dependent equations are given in section 5.3. References for single fluoride salts not included in NSRDS-NBS-15 [1] and NSRDS-NBS-28 [2] are listed in section 5.4.

5.1. New Recommendations

Single fluoride salts which do not appear in NSRDS-NBS-15 [1] and NSRDS-NBS-28 [2] are listed below. The discussions, numerical values and temperature-dependent equations for the new recommendations are given in section 5.3.

	Number of investigations		
Compound	Density	Viscosity	
BeF₂ KF LiF NaF RbF UF₄	3	1 2 1 1	

5.2 Revised Recommendations

The recommendations for single fluoride melts given in NSRDS-NBS-15 [1] have been updated relative to new investigations and in the case of NaF a revised recommendation is given in this volume. The recommendations given in NSRDS-NBS-28 [2] are still accepted.

The discussions, numerical values, and temperaturedependent equations for the revised recommendations are given in section 5.3.

Compound	Number of investigations Density	NSRDSNBS15 [1] recommendation	
NaF	17	р. З	

5.3. Discussions and Numerical Values

Single fluoride salts for which a new or revised recommendation is reported are discussed in this section with respect to experimental techniques, references, temperature ranges, percent departure values and melt preparation and purification. Numerical values are given for each property at rounded temperatures together with the temperaturedependent equations.

BeF,

Density

The recommended values in table 2 are based on the work of Mackenzie and Cantor et al. (Archimedean method) [73] and [33], respectively.

TABLE 1 A. Investigations critically re-examined

Temp. Range (T)	,
1073	
1123	
1073	
	Temp. Range (T) 1073 1123 1073

Comment: The result reported in [33] is an upper limit of the actual BeF₂ density value. In reference [73] a surface tension of 200 dyn cm⁻¹ was assumed which yielded a corrected density value of 1.947 ± 0.010 gcm⁻³ at 800 °C.

Melt Preparation and Purification

Mackenzie [73] used 99 percent pure BeF_2 contained in a Pt-20 percent Rh crucible and placed overnight in the apparatus under a stream of dry N_2 . The apparatus was then evacuated to a pressure of about 10 mm Hg and the temperature was raised slowly to 200 °C to remove the water present. When the temperature was increased to 700 °C, dry N_2 was admitted. The melt was kept at 900 °C for 1 hr before measurements. In reference [33] BeF_2 was purified by vacuum distillation.

TABLE :	2.	BeF₂
---------	----	------

T	$ ho~(m gcm^{-3})$
1073.2	1.947±0.010 ¹
1123.2	1.96 °

Density: ¹ [73] ² [33]

KF

Viscosity

The recommended value in table 4 is based on the work of Sheiko (oscillating sphere method) [107].

TABLE 3 A.	Investigations	critically	re-examined
------------	----------------	------------	-------------

Ref.	Temp. Range (T)
107	1246

Comment: Sheiko [107] used a platinum sphere as the oscillating bob.

T	η (cp)
1246.2	1.59

Viscosity: [107].

LiF

Viscosity

The recommended values in table 6 are based on the work of Vetyukov and Sipriya (oscillating sphere method) [108].

Table 5 A.	Investigations	critically	re-examined
------------	----------------	------------	-------------

Ref.	Tomp. rango (T)
18 108	1073 1140–1348
TABLE 5 B. Cell ma	terials and calibration
Cell materials	Calibration
Pd-ball and Mo-suspension wire [108]	Sodium cryolite was used to check the method [108]

Melt Preparation and Purification

Vetyukov and Sipriya [108] used analytically pure LiF, heated at 600 °C for 3 h before using.

TABLE	6.	LiF
	· • •	

 $\eta = 1.8549 \cdot 10^{-1} \cdot \exp(5610/RT)$ (cp)

Stand. error of est.: 0.0157 = 0.86%

_	Т	η
	1140	2 21
	1160	2.21
	1180	2.11
_	1200	1.95
	1220	1.88
	1240	1.81
-	1260	1.74
ng	1280	1.68
	1300	1.63
	1320	1.57
	1340	1.53

Viscosity: [18, 108].

NaF

Density

The recommended values in table 9 are based on the work of Paucirova, Matiasovsky, and Malinovsky (Archimedean method) [95] and supersede the recommendation given in NSRDS-NBS-15 (Molten Salts: Vol. 1) [1].

TABLE 7 A.	Additional	investigations*	critically	re-examined
------------	------------	-----------------	------------	-------------

Ref.	Temp. range (T)
106	1290, 1392, 1487
115	1273 (graphical)
96**	1273, 1373 (graphical)
45	1273-1349
7	1283-1393
26	1573
75	1273, 1323, 1373
24	1303-1363
97	1273
5	1288-1473
94	1273
95	1273-1373
49***	1283-1403
87	1273 (graphical)
98	1273-1353
103	1273-1373 (graphical)

*Refer to reference [1] for previous work

**Data taken from references [5, 7].

***Data taken from references [62, 10].

				a .			1 . 1
1 A	BLE /	1	В.	Comparison	with	previous	recommendations

Ref.	Recom- mended Value		% Departure			
	Vol.	Page	% (min)	(T)	% (max)	(T)
106	1	3	-0.03	(1290-1392)		
7	1 ī	3	0.56	(1383)	0.95	(1283)
75	1	3	-0.04	(1323)	-0.24	(1373)
24	1	3	0.06	(1320)	-0.50	(1360)
97	1	3	-0.51	(1273)		
5	1	3	0.42	(1398)	0.84	(1288)
94	1	3	0.16	(1273)		
95	1	3	-0.02	(1320)	-0.18	(1360)
98	1	3	-2.23	(1280)	-2.47	(1350)
45	1	3	0.63	(1340)	0.75	(1280)

TABLE 7 C. Cell materials and calibration

Cell materials	Calibration		
Pt-sinker and suspension wire [106, 45]	Volume calculated using coefficient of expansion of Pt [106, 45]		
Pt spherical bob [5, 7, 97], Pt- ball [26]	Volume of ball dotermined from measurements on sub- stances of known density [26]		
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite cruci ble [24, 98]	Molten KCl [24, 98]		
Pt sinker and suspension wire, melt in Pt crucible [75, 94, 95]	Molten NaCl and KCl [75, 94, 95]		

Comment: Details concerning the density measurements by Paucirova et al. [95] are discussed under the system AlF₃-NaF.

Viscosity

The recommended values in table 9 are based on the work of Abramov (oscillating sphere method) [5].

TABLE 8 A. Investigations critically re-examined

Ref.	Temp. range (T)
5	1288–1473

TABLE 8 B. Cell materials and calibration

Cell material	Calibration
Pt sphere and Mo suspension wire, melt contained in a Pt cup [5]	Water, aniline and sulfuric acid [5]

Comment: Abramov [5] reported a standard deviation of ± 2 percent.

Melt Preparation and Purification

The melt preparation and purification described in the following references are discussed under the binary systems given in section 6.1.

_

Ref.	Systems
45	AlF ₃ -NaF
75	AlF3-NaF
5	AlF ₃ -NaF
94	AlF ₃ -NaF
95	AlF ₃ -NaF
98	CaF ₂ -LiF
24	LiFThF4

TABLE 9. Naf

$\rho = 2.7550 - 6.36 \cdot 10^{-4} T \text{ (gcm}^{-3}\text{)}$

 $\eta = 3.970 \cdot 10^{-2} \cdot \exp(9831/RT)$ (cp)

Stand. error of est. for η : 0.0190 = 1.33%

T	ρ	Ŋ
		·····
1280	1.941	
1290	1.935	1.84
1300	1.928	1.79
1310	1.922	1.73
1320	1.915	1.69
1330	1.909	1.64
1340	1.903	1.59
1350	1.896	1.55
1360	1.890	1.51
1370	1.884	1.47
1380		1.43
1390		1.40
1400		1.36
1410		1.33
1420		1.29
1430		1.26
1440		1.23
1450		1.20
1460		1.18
1470		1.15

Density: [5, 7, 24, 26, 45, 49, 75, 87, 94, 95, 96, 97, 98, 103, 106, 115].

Viscosity: [5].

RbF

Density

The recommended values in table 11 are based on the work of Jaeger et al. (Archimedean method [62] and [106], respectively.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE 10 A.	Investigations	critically	re-examined
-------------	----------------	------------	-------------

Temp. Range
1076-1359
1093-1279

TABLE 10 B. Cell materials and calibration

Cell Materials	Calibration
Pt-sinker and Pt-suspension wire [62, 106]	Volume calculated using co- efficient of expansion of Pt [62, 106]

Comment: The melting point of RbF in reference [62] was found to be 760 $^{\circ}$ C and at 1000 $^{\circ}$ C a markable evaporation was observed.

TABLE 11. RbF

$\rho = 3.9953 - 1.0211 \cdot 10^{-3} \text{ T (gcm}^{-3})$ Stand. error of est.: 0.0019=0.07%					
ρ	-				
2.893 2.872 2.852 2.851 2.831 2.811 2.790 2.770 2.770 2.750 2.729 2.709 2.688 2.668 2.668					
	·10 ^{-s} T (gcm ^{-s}) 0.0019=0.07% 2.893 2.872 2.852 2.831 2.811 2.790 2.770 2.750 2.729 2.709 2.688 2.668 2.647				

Density: [62, 106]

UF.

Viscosity

The recommended values in table 13 are based on the work of Kulifeev et al. (oscillating hollow cylinder method) [69].

_

TABLE 12 A.	Investigations	critically	re-examined
-------------	----------------	------------	-------------

Ref.	Temp. Range (T)
69	1338–1618

TABLE 12 B. Cell material and calibration

Cell material

Graphite crucible, W-suspension wire [69]

Comment: Kulifeev [69] applied a closed crucible with an Argon atmosphere of 100 mm Hg-pressure to prevent evaporation of UF4. An accuracy of ± 10 percent was reported.

Melt Preparation and Purification

Kulifeev and Panchisnyi [69] purified UF_4 by heating the salt with NH4HF2 at 800 to 900 K. The oxide impurities did not exceed 0.08 wt. percent.

Table	13.	UF₄
-------	-----	-----

T	η* (cp)
1338	2.460
1348	2.010
1398	1.606
1433	1.348
1448	1.308
1488	1.272
1618	1.122

"I'he one-dimensional statistical analysis resulted in a Stand. Error of Est. of about 10 percent, therefore the experimental values are given.

Viscosity: [69].

5.4. General Summary Tables

TABLE 13 a.	Total and	recommended	investigations	8
AUDDO TO M	LOLUI MILG		m. occupation of the	

	к			0	· η		γ	
Compound	No. of Invest.	Rec. Ref.	No. of Invest.	Rec. Rcf.	No. of Invest.	Rec. Rof.	No. of In v cst.	Rec. Ref.
AgF BaF ₂ BeF ₂ CaF ₂ CeF ₃ CsF CuF ₂	1 1 2 1	[1] [1] [1] [1]	5 3 2 1 4	[1] . [33, 73] [1] [1] [1]	5	[1]	3	[2]
KF	14	i i i	10	[1]	1	[107]	4	[2]
LaFs LiF MgFz MaFe	15	[1]	1 17 1	[1] [1] [1]	· 2	[108]	4	[2]
NaF PbF2 RbF SrF2 TbF4 UF4	21		17 2 1 4 4	[95] [62, 106] [1] [1] [1]	1	[5]	6 2 1 2	[2] [2] [2] [2]
Ure ZnF2	1	[1]						

" Total number of investigations and recommended references for specific conductance, density, viscosity, and surface tension of single fluoride melts.

TABLE 13 b. References.^a

Specific conductance

Single salts	No. of invest.	Literature references
KF LiF	14 15	1, 13, 14, 15, 89, 107, 120 1, 13, 16, 24, 40, 76, 78, 79, 80, 84, 87, 120
NaF	21	1 , 5, 8, 13, 24, 41, 50, 59, 66, 70, 76, 78, 79, 80, 87, 110, 120

* The total number of investigations evaluated and literature references that were not given in NSRDS-NBS-15 [1] and NSRDS-NBS-28 [2].

_	Density					
	Single salts	No of invest.	Literature references			
	BaF2	5	1, 9, 26, 27, 118			
	BeF2	. 3	32, 33, 73			
	CsF	4	1, 26, 106			
	KF	10	1, 26, 27, 87, 89, 98, 106, 107			
	LiF	17	1, 16, 18, 24, 26, 32, 60, 75, 84, 87, 89, 95, 98, 106, 108			
	NaF	17	1 , 5, 7, 24, 26, 45, 49, 75, 87, 94, 95 , 96, 97, 98, 103, 106			
	RbF	2	62 , 106			
	ThF4	4	1, 31, 60, 98			
	UF4	4	1, 69, 87, 98			

Table 13 c. References *

n ••

FABLE	13	d.	References	8
--------------	----	----	------------	---

Viscosity

No. of invest.	Literature references
5	1, 32, 33, 91
1	107
2	18, 108
1	5
1	69
	No. of invest. 5 1 2 1 1 1

^a The total number of investigations evaluated and literature references that were not given in NSRDS-NBS-15 [1] and NSRDS-NBS-28 [2].

TABLE 13 e. References.*

Surface tension

Single salt	No. of invest.	Literature references
CsF	3	2 , 68
KF	4	2, 61, 89, 106
LiF	4	2, 61, 89
NaF	6	2 , 5, 43, 61
RbF	3	2 , 61
UF4	2	2, 69

a The total number of investigations evaluated and literature references that were not given in NSRDS-NBS-15 [1] and NSRDS-NBS-28 [2].

^a The total number of investigations evaluated and literature references that were not given in NSRDS-NBS-15 [1] and NSRDS-NBS-28 [2].

6. Binary Mixtures

6.1. Discussions and Numerical Data

This section comprises a discussion of the investigated transport properties featuring references, composition and temperature ranges, percent departure values, and experimental techniques. The melt preparation and purification section summarizes the procedures used in each investigation. Numerical tables of physical properties at rounded or experimental compositions and temperatures, together with temperature and composition-dependent equations are given for the recommended studies. Phase diagrams for each binary mixture are reported as an aid to the user.

AIF₃-CsF

Density

The recommended values in table 15 are based on the work of Mal'tsev and Bukhalova (Archimedean method) [25].

TABLE 14 A. Investigations critically re-e	xamined
--	---------

Ref.	CsF (mol %)	Temp. range (T)
25	75	1123-1273
74	75	1123-1223

TABLE 14 B. Cell materials and calibration

Cell material	Calibration
Pt ball and suspension wire	Molten NaF, NaCl, KCl
[25 , 74]	[25, 74]

Melt Preparation and Purification

Mal'tsev and Bukhalova [25, 74] for the preparation of $C_{s_3}AlF_6$ reported only that the synthesis was carried out by fusion of analytical grade CsF and AlF₆.

TABLE 15 a. AIF₃-CsF: Density

Numerical Values (gcm⁻³)

T	75 Mol % CsF
1130	3,046
1140	3.031
1150	3.015
1160	3.000
1170	2,985
1180	2.969
1190	2.954
1200	2.939
1210	2,923
1220	2.908
1230	2,893
1240	2.877
1250	2.862
1260	2.846
1270	2.831

TABLE 15 b. Temperature-dependent equations

 $\rho = a + bT \ (\text{gcm}^{-3})$

Comp. (mol % CsF)	a	b·103	Stand. error of est.
75	4.7793	-1.5340	Q.0003

Reference: [25]. Data reported in numerical form.

=

AIF₃-KF Electrical Conductance

The recommended values in figure 2 are based on the work of Yim and Feinleib (classical ac technique) [120].

TABLE 16 A. Investigations critically re-examined

Ref.	KF (mol %)	Temp. range (T)
120	75, 100 (graphical except for 100% at 1173 K)	1153–1343
15	60-100	1133-1323
100*	75	1273, 1333
14	75	1273, 1298, 1322

*Values from reference [120].

TABLE 16 B.	Comparisons	with	previous	recommendations
-------------	-------------	------	----------	-----------------

Ref.	Rec mer va	:om- ided lue	KF (mol		% Der	arture	
	Vol.	Page	%)	% (min)	(T)	% (max)	(T)
120	1	- 3	100	3.3	(1173)		
15	1.	3	100	14.1	(1153)	22.5	(1248)

TABLE 16 C. Cel	l materials	and	calibration
-----------------	-------------	-----	-------------

Cell Material	Electrodes	Frequency Range (Hz)	Calibration
Boron nitride cell inside graphite crucible [120]	Inconel [120]	1,000-20,000 measurements at 2000 [120]	Calculated from dimensions of electrodes or/ molten KCl [120]
Pt crucible [14]	Pt [14]		KCl solution [14]

Comment: Yim and Feinleib [120] corrected for the conductance of the boron nitride cell body by measuring both the combined conductance of the electroyte and cell body and then the conductance of the empty cell. Since boron nitride is rapidly oxidized at about 1000 ° C, all measurements were made in an argon atmosphere. Polarization was not considered a problem since resistance readings did not vary appreciably between 1,000 and 20,000 hertz.

Measurements were reported to be reproducible to about 1-2 percent.

Density

The recommended values in table 18 are based on the work of Mal'tsev and Bukhalova (Archimedean method) [74].

TABLE 17 A. Investigations critically re-examined

Ref.	KF (mol %)	Temp. range (T)
25	75	1073
74	75	1273, 1323

TABLE 17 D. Cell materials and calibration

Cell material	Calibration
Pt ball and wire [25, 74]	Molten NaF, KCl, NaCl [25, 74]

Comment: No correction for surface tension was applied in references [25, 74].

Melt Preparation and Purification

Yim and Feinlieb [120] used Baker's reagent grade KF. The preparation of pure AlF_3 is described under the system AlF_3 -LiF. The preparation of pure AlF_3 and KF (similar to NaF) by Batashev [14, 15] is given under the AlF_3 -NaF system.

Mal'tsev and Bukhalova [25, 74] synthesized K_3AlF_6 by fusion of KF with AlF_3 . Salts of analytical grade were used for synthesis.

FIGURE 2. Plots [120] of specific conductance against temperature for the system AIF₃-KF.

TABLE 18. AIF₃-KF: Density

Numerical Values (gcm⁻³)

	·····
T	75 Mol % KF
1273.2 1323.2	1.828

Reference: [74].

Due to limited data the experimental values are given.

FIGURE 3. Temperature-composition phase diagram for AlF_{*}KF. Bert Phillip, C. M. Warsaw, and I. Mockrin, J. Am. Ceram. Soc., **49** [12] 633 (1966).

AIF₃-LiF

Electrical Conductance

The recommended values in table 22 and figure 4 are based on the work of Matiasovsky et al.⁸ (Classical ac technique) [80].

TABLE 19 A.	Investigations	critically	re-examined

Ref.	LiF (mol %)	Temp. Range (T)
120	75, 100 (graphical for 75 mol % LiF)	1063-1248
80	55–100 (numerical for 75 and 100 mol % LiF)	1123–1323
40	25–100 (graphical)	1073-1348
6	75	1098-1348
79	25–100 (graphical)	1173, 1273, 1373
86	75	1073-1273
100*	75	1073-1193
41	75	1153-1348
84 ·	25-100 (graphical)	1073, 1173, 1273
42	75 (graphical)	1273, 1323, 1373
77	75 (graphical)	1273, 1323

* Data from reference [120].

TABLE 19 B. Comparison with previous recommendations

Ref.	Ree me va	com- nded lue	LiF (mol %)		% Dep	arture	
	Vol.	Page		% (min)	(<i>T</i>)	% (max)	(T)
120	1	2	100	-4.2	(1173)		
80	1	2	100	0.04	(1260)	-3.7	(1140)
120	4.1	15	. 100	-1.2	(1173)		
6	4.1	15	75	-2.0	(1173)	-4.0	(1323)
86	4.1	15	75	12.4	(1273)		

⁸ These result have been further discussed recently. See K. Matiasovsky and V. Danek, J. Electrochem. Soc. 120, 919 (1973).

TABLE 19 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)	Calibration
Boron nitride cell inside a graphite crucible [120]	Inconel [120]	I,000-70,000 (measurements at 2,000) [120]	Measurements of cell dimensions and molten KCl [120]
Pt crucible [6, 40, 41, 79, 80]	Pt [6, 40, 41, 79, 80, 86]	4,000-20,000 (measurements at 18,000) [6, 40, 41, 79, 80]	Molten Na ₃ Aik ₆ [6, 40, 41, 79, 80]
Pt crucible [86]	Mo [84]	5,500 [86]	0.1 N KCl solu- tion at 18 ° C [86]
Boron nitride cell inside graphite holder [84]		1,000–20,000 [84]	

Comments: The conductance of the boron nitride cell body used in reference [119, 120] was corrected by measuring the combined conductance of the electroyte and the cell, and then lifting the cell out of the melt and determining the "empty cell conductance." Yim and Feinleib [119, 120] reported that reproducibility between runs was usually 2 percent or better.

Matiasovsky et al reported an overall error of less than ± 2 percent for conductivity measurements. Mashovets and Petrov [86] estimated their accuracy at ± 3 percent.

Density

The recommended values in table 23 are based on the work of Matiasovsky et al. (Archimedean method) [75, 95].

m	T		• •	
TABLE 20 A.	Investigations	criticall	y re-examined	ł

Ref.	LiF (mol %)	Temp. range (T)
7 5 86	55 -100 75	1123-1323
108	65 -100	1140-1398
94 95	55100 55100	1273 1123–1323
84	37.5-100	1073, 1273
74 83	75 75	1073-1273 1283-1348

Two references from the same laboratory were weighted equally. Reference [95] is based on the numerical results received as a private communication [75]; in [95] numerical values are not reported, but rather the results are presented as a set of smoothed equations. The recommended values advanced herewith are based on the numerical results (ref. 75).

TABLE 20 B. Comparison with Previous Recommendations

Ref.	Re me	com- nded ilue .	LiF (mol %)	-	% Dep	parture	
	Vol.	Page		% (min)	(T)	% (max)	(T)
75	1	2	100	-0.11	(1273)	-0.17	(1173)
94			100	-0.11	(1273)	0.10	(1100)
90			100	-0.30	(1140)	-0.18	(1300)
801	1		100	-0.64	(1348)	-1.2	(1188)
84		2	100	-2.8	(1273)	0.00	(7100)
108	4.1	10	100	-0.53	(1348)	-0.90	(1188)
84	4.1	16	100	-2.8	(1273)		
84	4.1	16	95	3.6	(1273)		
108	4.1	16	90	-0.90	(1276)	-0.94	(1238)
84	4.1	16 .	90	3.7	(1273)	•	
84	4.1	16	80	-0.20	(1273)		
86	4.1	16	75	2.7	(1273)		
108	4.1	16	75	-0.90	(1241)	-0.94	(1340)
84	4.1	16	75	-0.97	(1273)		
74	4.1	16	75	-0.48		-2.5	
108	4.1	16	70	-0.77	(1289)	-0.80	(1236)
108	4.1	16	65	-0.69	(1277)	-1.07	(1207)
84	4.1	16	60	6.4	(1273)		. ,
				I !		ļ	

TABLE 20 C. Cell materials and calibration

Cell material	Calibration
Pt sinker and suspension wire	Molten KCl, NaCl [74, 75, 83,
[74, 75, 83, 94, 95]	94, 95]

Comment: Matiasovsky et al. [74, 75, 83, 94, 95] found that volumes of the Pt sinker determined from molten KCl and NaCl differed by less than 0.2 percent. The reproducibility of measurements was reported to be better than 0.1 percent.

Viscosity

The recommended values in table 25 are based on the work of Vetyukov and Sipriya (oscillating sphere method) [108].

TABLE 21 A. Investigations critically re-examined

Ref.	LiF (mol %)	Temp. range (T)
108	65-100	1140-1398

Melt Preparation and Purification

Yim and Feinleib [119, 120] used Baker's reagent grade LiF. Aluminium fluoride was Alcoa X-2A grade powder containing approximately 97 percent AIF₃, 1.2 percent NaF and 1.5 percent Al₂O₃. The material was not sublimed. Mixtures were prepared by mixing the melt constituents in the dry state followed by fusion in a graphite crucible. The melt was cooled, pulverized, thoroughly mixed, and sampled.

Abramov et al. [6] used sublimation techniques to purify technical grade AIF₃. The LiF was heated to 1100 °C to remove moisture.

Lithium cryolite, used in reference [86] was synthetically prepared from chemically-pure lithium and aluminium fluoride. The composition was checked by chemical analysis and optical crystallography.

Vetyukov and Sipriya [108] used analytically pure LiF and c.p. AlF₃. Before using, LiF was heated at 600 °C for 3 h and AlF₃ was heated at 300 °C for 3 h.

TABLE 22a. AlF₃-LiF: Electrical Conductance

Specific Conductance: Numerical Values (ohm-1 cm-1)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mol percent LiF						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		100	75			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 8 8 8 8 8 8 8 8 8 8 8))))	8.20 8.28 8.35 8.42 8.50 8.57 8.64 8.71 8.78	4.02 4.04 4.06 4.08			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 8 9 9 9 9 9 9		8.85 8.91 8.98 9.04 9.11 9.17 9.23 9.29 9.35 0.41	4.10 4.12 4.14 4.15 4.17 4.18 4.20 4.21 4.23 4.23			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9)	9.41 9.46	4.24			

TABLE 22 b. Temperature-dependent equations

$\kappa = a + bT + cT^2 \text{ (ohm^{-1} cm^{-1})}$							
Comp. (mol % LiF)	a	b · 103	c · 106				
75 100	-3.3489 -7.6069	10.3337 20.2557	-3.4658 -5.5475				

Reference: [80]. Data reported in equation form. Additional data are reported graphically in figure 4

FIGURE 4. Isotherms [80] (°C) of specific conductance against molar composition for the system AlF_s-LiF-

TABLE 23. AlF₃-LiF: Density

Numerical values (gcm⁻³)

Mol percent LiF

									-	
T	100	95	90	85	. 80	75	70	65	60	55
1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1970 1280 1290	1.800 1.795 1.791 1.786 1.781 1.777 1.772 1.767 1.763 1.758 1.753 1.758 1.753 1.748 1.744 1.739 1.730 1.725 1.700	1.885 1.880 1.875 1.870 1.866 1.861 1.856 1.851 1.846 1.842 1.837 1.832 1.827 1.822 1.827 1.822 1.817 1.813 1.808	1.972 1.966 1.960 1.953 1.947 1.941 1.935 1.929 1.923 1.917 1.910 1.904 1.898 1.892 1.886 1.880 1.874	2.037 2.030 2.023 2.016 2.010 2.003 1.996 1.983 1.976 1.970 1.963 1.956 1.950 1.950 1.943 1.936 1.929	2.073 2.065 2.058 2.051 2.044 2.037 2.030 2.023 2.016 2.009 2.002 1.994 1.987 1.980 1.973 1.966 1.959	2.098 2.089 2.081 2.073 2.064 2.056 2.048 2.039 2.031 2.022 2.014 2.006 1.997 1.989 1.981 1.972 1.964	2.088 2.079 2.069 2.060 2.051 2.041 2.032 2.022 2.013 2.004 1.994 1.985 1.976 1.966 1.957 1.948 1.938	2.041 2.031 2.021 2.010 2.000 1.990 1.979 1.969 1.959 1.948 1.938 1.928 1.918 1.907 1.897 1.887 1.887	1.962 1.952 1.942 1.931 1.921 1.911 1.901 1.891 1.880 1.870 1.860 1.850 1.840 1.829 1.819 1.809 1.799	1.861 1.851 1.842 1.832 1.823 1.814 1.805 1.795 1.786 1.776 1.778 1.778 1.778 1.778 1.748 1.739 1.729 1.720 1.711
1300 1310 1320	1.720 1 716 1.711	1.803 1.798 1.793	1.867 1.861 1.855	1.923 1.916 1.909	1.952 1.945 1.938	1.956 1.947 1.939	1.929 1.920 1.910	Í.866 1.856 1.845	1.789 1.778 1.768	1.701 1.692 1.682

TABLE 24. Temperature-dependent equations

.

•

$\rho = a + bT$	(gcm ⁻³)	
-----------------	----------------------	--

Comp. (mol % LiF)	a .	b·104	Stand. error of est.
55	2.9235	-9.4019	0.0006
60	3.1147	-10.2009	0.0000
65	3.2050	-10.2998	0.0003
70	3.1456	-9.3597	0.0003
75	3.0422	-8.3590	0.0003
80	2.8751	-7.1021	0.0004
85	2.7935	-6.6981	0.0003
90	2.6660	-6.1429	0.0003
95	2.4298	-4.8222	0.0007
100	2.3283	-4,6757	0.0000

Reference: [75]. Data reported in numerical form.

TABLE 25 a. AlFs-LiF: Viscosity

Numerical values (cp)

Mol percent LiF

	- <u> </u>					
Т	100.0	90. 0	77.5	75.0	70.0	65.0
1150 1160 1170 1180 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390	$\begin{array}{c} 2.16\\ 2.11\\ 2.07\\ 2.03\\ 1.99\\ 1.95\\ 1.91\\ 1.88\\ 1.84\\ 1.81\\ 1.77\\ 1.74\\ 1.71\\ 1.68\\ 1.65\\ 1.63\\ 1.60\\ 1.57\\ 1.55\\ 1.53\\ \end{array}$	[1.90] [1.88] [1.85] [1.75] [1.75] [1.75] [1.64] [1.64] [1.64] [1.64] [1.52] [1.49] [1.43] [1.40]	[2.81] [2.72] [2.64] [2.55] [2.47] [2.40] [2.32] [2.24] [2.16] [2.01] [1.93] [1.84] [1.76] [1.67] [1.58] [1.48] [1.38]	3.01 2.89 2.78 2.56 2.47 2.38 2.29 2.21 2.13 2.05 1.98 1.92 1.85 1.79 1.73 1.68	2.15 2.06 1.99 1.91 1.84 1.72 1.66 1.60 1.55 1.50 1.45 1.40 1.36 1.31	[2.01] [1.93] [1.86] [1.79] [1.73] [1.62] [1.58] [1.53] [1.49] [1.45] [1.41] [1.37]

TABLE 25 b. Temperature-dependent equations

$\eta = a + bT + cT^2 + dT^3$ (cp)

 $\eta = A \cdot \exp(E/RT)$ (cp)

Comp. (mol % LiF)	a · 10 ⁻¹	b·10²	c·104	d · 107	A · 10 ²	E (cal mol ⁻¹)	Stand. error of . est.
65.0 70.0 75.0	[22.0537]	[-48.3987]	[3.5890]	[-0.8940]	1.691	11934	0.0000 0.0235 0.0551
77.5 90.0 100.0	[16.0675] [-22.7452]	[36.5688] [52.8134]	[2.8710] [-4.0281]	[-0.7676] [1.0166]	18.549	5610	0.0000 0.0000 0.0157

Reference: [108]. Data reported in numerical form.

JANZ ET AL.

 $\begin{array}{c} & \text{AIF}_3\text{-LiF} \\ & \text{AIF}_3\text{-LiF} \\ & \text{BOO} \\ & \text{BOO}$

FIGURE 5. Temperature-composition phase diagram for AlF₃-LiF. P. P. Fedotjeff and K. Timofeeff, Z. Anorg. Allg. Chem., 206, 263 (1932).

AlF₃-NaF Electrical Conductance

The recommended values in table 30 are based on the work of Edwards et al. (classical ac technique) [45, 46].

TABLE 26 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. Range (T)
06	40.100 (merchical)	. 1973
14	40-100 (graphical)	1092-1393
1-# 45	67 6-100	1025-1525
85	75	1273
30	75	1203
116	75	1273, 1297, 1323
10	75	1253-1313
80	75, 100 (graphical for 75 mol %)	1273-1373
40	75 (graphical)	1273-1323
6	75	1273-1423
79	75, 100 (graphical for 75 mol %)	1273, 1323
86	75 (graphical except for 1273 K)	1273-1423
120	70.9-100 (graphical)	1173-1333
77	75 (graphical)	1273, 1323
12	75	1273-1353
41	75, 100 (graphical)	1273-1390
5	48.5-100	1003-1439
70	75, 100 (graphical)	940-1523
82	75 (graphical)	1273-1353
110*	75 (graphical)	1273
51**	71.1–100	1273
46	75	1273-1353
104**	* 20–100 (graphical except for 75	1273–1353
	mol %)	
114	63.5-100 (graphical for mixtures)	1193–1411
81	.75 (graphical)	1273

*Values from reference [120].

**Values from references [45, 114, 120].

***Values from references [14, 45, 86, 114, 116, 120]. and see also K. Matiasovsky and V. Danek, J. Electrochem. Soc. 120, 919 (1973).

TABLE 26 B. Comparisons with previous recommendations

Ref.	Ree me va	com- nded llue	NaF (mol		% Dep	oarture	
	Vol.	Page	%)	% (min)	(T)	% (max)	(T)
14	1	. 3	100	-8.8	(1323)	-18.8	(1273)
45	1	3	100	11.7	(1273)	15.1	(1353)
80	11	3	100	0.0	(1370)	-1.9	(1280)
79	1	3	100	0.0	(1370)	-1.9	(1280)
5	1	3	100	-7.9	(1390)	-9.4	(1287)
14	4.1	20	100	-21.4	(1313)	-27.4	(1273)
80	4.1	20	100	-9.3	(1313)	-15.7	(1273)
51	4.1	20	100	-5.9	(1273)		
14	4.1	20	75	-15.4	(1273)	-20.0	(1313)
85	4.1	20	75	-21.4	(1273)		
116	4.1	20	75	-13.0	(1323)	-15.7	(1273)
10	4.1	20	75	18.3	(1313)	-20.4	(1273)
6	4.1	20	75	-10.0	(1273)	-11.4	(1348)
86	4.1	20	75	-9.6	(1273)		
5	4.1	20	75	-5.2	(1313)	-8.2	(1283)
14	4.1	20	70	13.8	(1273)		

TABLE 26 C. Cell materials and calibration

Cell Material	Electrodes	Frequency range (Hz)	Calibration
Pt crucible [10, 14]	Pt [6, 10, 12, 14, 40, 41, 45 , 46 , 70, 77, 79, 80, 82, 86]	500–4000 [45 , 46]	KCl solution (18°C) [14]
Pt cell with cylindrical sides and hemispherical top and bottom, melt contained in Pt crucible [45, 46]	Inconel [120]	1,000-20,000 (measurements at 2,000) [120]	31.1% H ₂ SO ₄ and 0.01 N KCl [45, 46], Molten KCl [120]
Boron nitride cell inside graphite crucible [120]		4,000-20,000 (measurements at 18,000) [6, 40, 77, 79, 80]	Molten Na ₃ AlF ₆ [[6, 40, 77, 79, 80]
Pt crucible with Pt disc electrodes [6, 12, 40, 41, 79, 80, 82]		5,000 [12, 82]	30% H ₂ SO ₄ [12]
Pt crucible with two hemispheri- cal Pt electrodes [86]		5,500 [86]	Molten KNO3, NaCl, Na2SO4 [82]
Pt crucible with inner cylindrical Pt electrode [70]		:	0.1 N KCl (25 ° C) [10] 0.1 N KCl, 1 N KCl and 30% H ₂ SO ₄ [86]
			KCl solution [70]

Comment: Resistance readings in reference [45 and 46] were extrapolated to infinite frequency using plots of resistance versus frequency^{-1/2}. Attempts at determining the cell constant in molten NaCl and KCl were unsuccessful.

Comments concerning reference [120] are given under the system AlF_3 -LiF.

Matiasovsky et al. [6, 40, 41, 79, 80, 82] used as a cell a platinum crucible with two Pt disc electrodes. The electrodes were positioned in the melt with the aid of a micrometer screw to an accuracy of ± 0.01 mm. An overall error of ± 2 percent for conductivity measurements was reported.

Mashovets and Petrov [86] estimated their measurements to be accurate to ± 3 percent.

Density

The recommended values in table 31 are based on the work of Matiasovsky et al. (Archimedean method) [75, 95].

1273-1373

1273-1353

1303-1424

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE 27 A. Investigations critically re-examined

NaF

(mol %)

75-100 (graphical except for

66-100 (graphical)

75-100 (graphical)

70.0-100 (graphical)

62.01, 66.7, 75.0, 83.3, 100

ŧ٧	alues	from	reference	[45].
----	-------	------	-----------	-------

**Values from reference [86].

***Values from reference [5].

Ref.	Re me V	com- nded alue	NaF (mol	% Departure				
	Vol.	Page	%)	% (min)	(<i>T</i>)	% (max)	(T)	
45 7	1	3	100 100	0.63	(1340) (1383)	0.75	(1280) (1283)	
75	. 1	3	100	-0.04	(1323)	-0.24	(1373)	
5	1	3	100	0.42	(1398)	0.84	(1288)	
45	4.1	22	80	1.07	(1283)	1.16	(1353)	
7	4.1	22	.80	1.3	(1373)	1.8	(1333)	
115	4.1	22	75	0.38	(1273)	0.43	(1303)	
4	4.1	22	75	0.15	(1363)	0.29	(1293)	
45	4.1	22	75	-0.33	(1273)	-0.88	(1353)	
85	4.1	22	75	-1.05	(1273)	· .		
65	4.1	22	75	-0.98	(1352)	-1.4	(1308)	
7	4.1	22	75	-0.05	(1323)	0.29	(1293)	
93	4.1	22	75	-0.34	(1303)	-0.39	(1343)	
25	4.1	22	75	4.3	(1273)			
86	4.1	22	75	0.00	(1357)	-0.04	(1307)	
5	4.1	22	75	0.43	(1303)	0.54	(1366)	
108	4.1	22	75	. 0.05	(1313)	-0.49	(1347)	
84	4.1	22	75	-0.45	(1373)	-0.90	(1273)	
46	4.1	22	75	-0.33	(1273)	-0.88	(1353	
45	4.1	22	70	1.07	(1283)	1.16	(1353	
93	4.1	22	70	-0.15	(1303)	-0.20	(1343	
7	4.1	22	60	0.66	(1323)	0.73	(1373	

THOLD AT ALL GUILDGE TOULO THE PEOTEORY AVOID AT ALL AND	TAI	ble 27	B.,	Comparisons	with	previous	recommendat	ioı	ns
--	-----	--------	-----	-------------	------	----------	-------------	-----	----

ly re-examined	TABLE 27 C. Cell Materials and canoration			
Temp. range (T)	Cell Material	Calibration		
1273-1303	Pt spherical bob [4, 5, 7]	Volume calculated using co- efficient of expansion of Pt [45, 86]		
1293-1403				
1273, 1373	Pt sinker and suspension wire	Water and molten KCI [65]		
1220–1367	[45] -			
1273				
1308, 1352, 1395	Pt sinker and suspension wire,	Molten KCl, NaCl, NaF [25]		
1128-1413	melt in Pt crucible [65, 75, 83,			
1303, 1323, 1343	94, 95]			
1273, 1323, 1373				
1273, 1323	Pt sphere and suspension wire	Molten NaCl and KCl [75, 83,		
1273	[25]	94, 95]		
1273-1373	· ·			
1196-1396	Pt float and melt in Pt crucible			
1313, 1347, 1378, 1449	[86]			
1273				
1273-1373	Pt ball and crucible [84]	^		
1213-1373				
1273-1373				

Comment: Matiasovsky et al. [75, 83, 94, 95], using the hydrostatic weighting method, calibrated their platinum sinker using the density data of Bruner (Molten Salts: Vol. 1, reference 3) for NaCl and KCl. The volumes determined using these two salts differed by less than 0.2 percent. The accuracy reported for density values was ± 0.2 percent.

Viscosity

The recommended values in table 32 are based on the work of Abramov (oscillating sphere method) [5].

TABLE 28 A.	Investigat	critically	re-examined
	A	VALUE ALLY	ao onumou

Ref.	NaF (mol %)	Temp. range (T)
117	68–80 (graphical)	1243-1323
93	70–75	1303, 1323, 1343
5	62,0–100	1168-1473
108	75	1313-1449
92	75	1303-1424

TABLE 28 B.	Comparisons	with previous	recommendations
-------------	-------------	---------------	-----------------

Ref.	Re me va	com- nded ilue	NaF (mol %)		% Dej	parture		
	Vol.	Page		% (min)	(T)	% (max)	(T)	
117 93 108 92	4.1 4.1 4.1 4.1	22 22 22 22	75 75 75 75	204 47 5.1 0.8	(1323) (1323) (1443) (1313)	$ -51 \\ -6.6 \\ 2.5 $	(130 (131 (142	

Ref.

115

4

96

45 85

65 7

93

75

25

86

52*

5 108**

94

95 103

84

83

46

92***

75%)

67.6-100

60-100

55-100

75

75

75

75

75

75

75

55-100

50-100

58.7-75.0

75

75 75

Cell material Calibration Rotating cylinder made of bronze, Glycerine solution [117] cryolite in graphite container [117] Pt sphere and Mo suspension Water, aniline and sulfuric wire, melt contained in a Pt cup acid [5] [5] Pd ball and rod, Mo suspension Cryolite was used to check wire [108] method [108] Pt bob and suspension wire [92]

	TABLE 2	8 (C.	Cell	materials	and	calibration
--	---------	-----	----	------	-----------	-----	-------------

Comment: Abramov [5] reported a standard deviation of ± 2 percent.

Surface Tension

The recommended values in table 33 are based on the work of Bloom and Burrows (maximum bubble pressure method) [20].

TABLE 29 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. range (T)
20	72.6-100	1273–1353
5	50 -100	1273

TABLE 29 B. Comparisons with previous recommendations

Ref.	Ree mei va	com- nded llue	NaF (mol %)		% Depa	arture	
	Vol.	Page		% (min)	(T)	% (max)	· (T)
5 5 5 5	2 4.1 4.1 4.1	57 23 23 23	100 86.4 78 75	7.75 8.9 6.1 8.5	(1273) (1273) (1273) (1273)		

Comment: The apparatus used by Bloom and Burrows [20] was essentially the same as that described by Peake and Bothwell (J. S. Peake and M. R. Bothwell, J. Am. Chem. Soc., 76, 2653 (1954)). Reproducibility of surface tension values was reported to be ±1.5 percent.

Melt Preparation and Purification

Batashev [14] dehydrated NaF (Kahlbaum) by gradually heating the material in a platinum cup to melting. Analysis showed 54.63 percent Na and 44.99 percent F (theoretical: 54.76% Na, 45.24% F). Chemically pure and dehydrated AlF₃ was prepared by sublimation. The product was ground up and subjected to magnetic separation of ferrous impurities. Mixtures were prepared by fusing cryolite with NaF and AlF₃. Mixtures which were analyzed following experiments showed compositional changes of less than 0.5 percent.

Edwards et al. [45, 46] used crystals of pure Greenland cryolite which were crushed to 20 mesh and associated particles of galena were removed. Sodium fluoride was Baker's c.p. powder and aluminium fluoride was sublimed. The above materials were ignited at 600 °C in a platinum crucible before weighing. Spectrographic analysis of cryolite showed only K and Li as impurities at 0.1 to 0.01 percent. Analysis gave the results: 54.34 percent F (theoretical-54.30%, 32.76 percent Na (32.86%), 13.01 percent Al (12.84%).

Aluminium fluoride, sodium fluoride and cryolite used by Yim and Feinleib [120] were Alcoa X-2A grade pow der, Baker's reagent grade and natural hand-picked crys tals (Pennsylvania Salt Mfg. Company) respectively. Pure salts and mixtures were fused at a temperature of abou 50 °C above the melting point. Melts were cooled, crushed and sampled with analysis showing little or no compositional changes.

Matiasovsky et al. [40, 41, 75, 77, 79, 80, 83, 94, 95] used NaF of a purity "for monocrystals" and hand-picket Greenland natural cryolite. Pure AlF_3 (99.5 wt. % AlF_3) was prepared by sublimation of the technical product in a platinum apparatus.

Abramov [4, 5, 6] used natural cryolite. The NaF was fused and ground to a powder. Technical AlF_3 was sublimed resulting in colorless transparent crystals.

Bukhalova and Mal'tsev used "analytical reagent" grade fluoride salts.

Sodium cryolite was synthetically prepared by Mashovets and Petrov [86] from the "chemically-pure" fluorides.

Vetyukov and Sipriya [108] used "analytically pure' NaF and c.p. grade AlF₃. Sodium fluoride was heated at 600 °C for 3 h while the aluminium fluride was de hydrated at 300 °C for 3 h.

Landon and Ubbelohde [70] used natural hand-pickec crystals of cryolite (Kryolitselskabet 'Oresund', Koben havn, Denmark).

Bloom and Burrows [20] used natural cryolite (99.6% Na_3AlF_6), analytical reagent NaF (98% NaF) and reagent grade AlF_3 (93% AlF_3). Mixtures containing up to 2 mol percent AIF₃ were prepared by adding dry NaF to cryolite. Mixtures of compositions greater than 25 mol percent AlF₃ were made by adding AlF₃ to cryolite.

JANZ ET- AL.

TABLE 30. AIF₃-NaF: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

• <i>T</i>	100	86.2	80.0	78.1	75.0	70.3	67.7
1273.2	-5.518	3.856	3.189	3.122	2.799	2.677	2.600
1313.2	5.744	3.998	3.301	3.233	2.901	2.773	2.684
1353.2	5.953	4.135	3.408	3.333	2.997	2.856	2.762

Reference: [45]. Due to limited data the experimental values are given.

TABLE 31 a. AlF₃-NaF: Density

Numerical values (gcm⁻³)

Mol percent NaF

T	100	90	85	80	77	75	70	65	60	55	50
1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340	1.944 1.941 1.938 1.935 1.931 1.928 1.925 1.922 1.919 1.915 1.912 1.909 1.906	2.042 2.039 2.035 2.032 2.029 2.026 2.022 2.019 2.016 2.013 2.009 2.006 2.003	2.078 2.074 2.070 2.067 2.063 2.059 2.055 2.051 2.048 2.044 2.040 2.036 2.032 2.032	2.097 2.092 2.088 2.083 2.079 2.074 2.070 2.065 2.061 2.056 2.052 2.047 2.043 2.038	2.098 2.094 2.089 2.085 2.080 2.076 2.071 2.066 2.062 2.057 2.053 2.048 2.044 2.039	2.100 2.096 2.091 2.087 2.082 2.077 2.073 2.068 2.064 2.059 2.054 2.055 2.045 2.045	2.053 2.048 2.044 2.039 2.034 2.030 2.025 2.021 2.016 2.011 2.007 2.002 1.998 1.003	1,976 1,971 1,966 1,962 1,957 1,952 1,948 1,943 1,934 1,934 1,929 1,924 1,920 1,915	1.857 1.853 1.848 1.844 1.840 1.835 1.831 1.826 1.822 1.817 1.813 1.808 1.804 1.804	1.723 1.719 1.715 1.711 1.707 1.703 1.699 1.695 1.691 1.688 1.684 1.680 1.676 1.672	1.615 1.612 1.608 1.605 1.601 1.598 1.595 1.591 1.588 1.584 1.581 1.577 1.574
1345 1350 1355 1360 1365 1370	1.900 1.900 1.896 1.893 1.890 1.887 1.884	1.996 1.993 1.990 1.987 1.983 1.980	2.025 2.021 2.017 2.013 2.009 2.005	2.034 2.029 2.025 2.020 2.016 2.011	2.035 2.030 2.025 2.021 2.016 2.012	2.036 2.031 2.027 2.022 2.017 2.013	1.988 1.984 1.979 1.975 1.970 1.965	1.910 1.906 1.901 1.896 1.892 1.887	1.795 1.791 1.786 1.782 1.777 1.773	1.668 1.664 1.660 1.656 1.652 1.648	1.567 1.563 1.560 1.557 1.553 1.550

TABLE 31 b. Temperature-dependent equations

 $\rho = a + bT \; (gcm^{-3})$

Comp. (mol % NaF)	a	b·104
50	2,4950	-6.90
55	2,7198	-7.82
60	2.9921	-8.90
65	3.1679	-9.35
70	3.2258	-9.20
75	3.2733	-9.20
77	3.2612	-9.12
80 ·	3.2415	
85	3.0535	-7.65
90	2,8680	-6.48
100	2.7550	-6.36

Reference: [95]. Data reported in numerical form.

PROPERTIES OF FLUORIDES AND MIXTURES

Numerical values (cp)

Mol percent NaF

<u>.</u>				-				
T	100.00	95.46	90.00	83.33	78.58	75.00	71.04	62.01
1170 1180 1190 1200 1210 1220 1240 1250 1260 1270 1280 1290 1300 1310 1320 1340 1350 1340 1350 1360 1370 1380 1390 1400 1410 1420 1440 1450 1460 1470	1.84 1.79 1.73 1.69 1.55 1.51 1.47 1.43 1.39 1.36 1.33 1.29 1.26 1.23 1.20 1.18 1.15	$1.76 \\ 1.72 \\ 1.68 \\ 1.64 \\ 1.60 \\ 1.57 \\ 1.53 \\ 1.50 \\ 1.46 \\ 1.43 \\ 1.40 \\ 1.37 \\ 1.34 \\ 1.31 \\ 1.29 \\ 1.26 \\ 1.24 \\ 1.21 \\ 1.19 \\ 1.19 \\ 1.19 \\ 1.19 \\ 1.19 \\ 1.19 \\ 1.10 \\ $	$\begin{array}{c} 2.32\\ 2.26\\ 2.20\\ 2.14\\ 2.08\\ 2.03\\ 1.97\\ 1.92\\ 1.87\\ 1.87\\ 1.87\\ 1.67\\ 1.63\\ 1.58\\ 1.54\\ 1.50\\ 1.46\\ 1.42\\ 1.39\\ 1.36\\ 1.32\\ 1.29\\ \end{array}$	2.55 2.48 2.41 2.34 2.27 2.21 2.14 2.08 2.02 1.96 1.90 1.84 1.78 1.68 1.62	2.50 2.43 2.36 2.29 2.22 2.15 2.08 2.01 1.95 1.88 1.82 1.75 1.69 1.63 1.57 1.52 1.46 1.40	2.46 2.37 2.28 2.20 2.12 2.05 1.98 1.91 1.85 1.79 1.73 1.68 1.62 1.57	2.18 2.10 2.03 1.95 1.89 1.82 1.76 1.70 1.65 1.60 1.56 1.52 1.48 1.45 1.43 1.40	1.79 1.75 1.70 1.66 1.62 1.58 1.54 1.50 1.46 1.42 1.38 1.34 1.30 1.26 1.22 1.18 1.15 1.11 1.07 1.04 1.00

TABLE 32 b. Temperature-dependent equations

 $\eta = a + bT + cT^2 + dT^3$ (cp)

 $\eta = A \cdot \exp(E/RT)$ (cp)

Comp. (mol % NaF)	. <i>a</i>	b · 102	c · 105	d • 109	A · 102	E (cal mol ⁻¹)	Stand. error of est.
62.01 71.04 75.00 78.58 83.33 90.00 95.46 100.00	9.7513 6.3419 14.0023 21.6190 11.1065 10.7245	$ \begin{array}{r} -0.9247 \\ 2.9098 \\ -0.5917 \\ -2.3163 \\ -0.1768 \\ -0.6870 \end{array} $	$\begin{array}{c} 0.2088 \\ -4.5892 \\ -0.5863 \\ 0.6369 \\ -0.9437 \\ -0.2522 \end{array}$	0 16.1901 2.7430 0 4.0773 1.8864	1.736	12893 9831	$\begin{array}{c} 0.0362\\ 0.0236\\ 0.0209\\ 0.0121\\ 0.0152\\ 0.0097\\ 0.0072\\ 0.0190\\ \end{array}$

Reference: [5]. Data reported in numerical form..

TABLE 33 a. AlF₃-NaF: Surface tension Numerical values (dyn cm⁻¹) Mol percent NaF

Т	100	86.4	81.0	78.1	75.0	72.6
1275	185.0	160.4	150.4	143.6	133.8	127.3
1280	184.6	159.8	149.6	142.9	133.1	126.8
1285	184.2	159.3	149.0	142.3	132.5	126.2
1290	183.8	158.7	148.2	141.6	131.8	125.7
1295	183.4	158.1	147.6	141.0	131.2	125.2
1300	183.0	157.6	146.8	140.3	130.6	124.7
1305	182.6	157.0	146.2	139.7	130.0	124.1
1310	182.2	156.4	145.4	139.0	129.3	123.6
1315	181.8	155.9	144.8	138.4	128.6	123.1
1320	181.4	155.3	144.0	137.7	128.0	122.5
1325	181.0	154.8	143.4	137.1	127.4	122.0
1330	180.5	154.2	142.6	136.4	126.7	121.5
1335	180.1	153.6	142.0	135.8	126.1	121.0
1340	179.7	153.0	141.2	135.1	125.4	120.4
1345	179.3	152.5	140.6	134.5	124.8	119.9
1350	178.9	151.9	139.8	133.8	124.2	119.4
· ·						

TABLE 33 b. Temperature-dependent equations

 $\gamma = a + bT$ (dyn cm⁻¹)

Comp. (mol % NaF)	a	b-10 ²
72.6	262.5	-10.6
75.0	297.0	-12.8
78.1	309.3	-13.0
81.0	328.8	-14.0
86.4	304.5	-11.3
100	289,6	-8.2

Reference: [20]. Data reported in equation form.

FIGURE 6. Temperature-composition phase diagram for AlF₂.NaF.
N. A. Pushkin and A. V. Baskov, J. Russ. Chem. Soc., 45, 82-101 (1913).
P. P. Fedotiev and V. L. Iljinsky, Z. Anorg. Allg. Chem., 80, 113-54 (1912).

AIF₃-RbF

Density

The recommended values in table 35 are based on the work of Mal'tsev and Bukhalova (Archimedean method) [25, 74].

Table 34 A.	Investigations	critically	re-examined
-------------	----------------	------------	-------------

Ref.	RbF (mol %)	Temp. range (T)		
25	75	1273, 1323		
74	75	1223, 1273		

TABLE 34 B. Cell materials and calibration

Cell material	Calibration
Pt ball and suspension wire	Molten NaF, NaCl, KCl
[25, 74]	[25, 74]

Melt Preparation and Purification

The preparation of Rb_3AlF_6 in reference [25, 74] was accomplished by the fusion of analytical grade RbF and AlF_3 .

TABLE 35. AlF₃-RbF: Density

Numerical values (gcm⁻³)

T	75 Mol % RbF
1223.2	2.515*
1273.2	2.453
1323.2	2.385

References: [25] and [74*]. Due to limited data the experimental values are given.

FIGURE 7. Temperature composition phase digaram for AlF₈-RbF. E. P. Dergunov, DAN S.S.S.R., 60, 1185 (1948).

BaF₂-CsF

Density

The recommended values in figure 8 are based on the work of Bukhalova and Yagub'yan (Archimedean method) [26].

TABLE 36 A. Investigations critically re-examined

FIGURE 8. Isotherms [26] (°C) of density against molar composition for the system BaF₂-CsF.

FIGURE 9. Temperature-composition phase diagram for BaF2-CsF.
 G. A. Bukhalova and E. S. Yagubyan, Izv. Akad.
 Nauk S.S.S.R., 3, 1096 (1967).

BaF₂-KF

Density

The recommended values in figure 10 are based on the work of Bukhalova and Yagub'yan (Archimedean method) [26].

TABLE 37 A. Investigations critically re-examined

Ref.	KF (mol %)	Temp. range (T)	
26	0–100 (graphical)	1473, 1573	

FIGURE 10. Isotherms [26] (°C) of density against molar composition for the system BaF₂-KF.

FIGURE 11. Temperature-composition phase diagram for BaF₂-KF. N. A. Poschin and A. Baskov, Z. Anorg. Allg. Chem., 81, 347 (1913).

BaF₂-LiF

Density

The recommended values in figure 12 are based on the work of Bukhalova and Yagub'yan (Archimedean method) [26].

TABLE 38 A. Investigations critically re-examined

Ref.	Temp. range (T)	
26	0–100 (graphical)	1573

FIGURE 12. Isotherms [26] (°C) of density against molar composition for the system BaF_xLiF.

FIGURE 13. Temperature-composition phase diagram for BaFr-LiF. A. G. Bergman and E. I. Banachek, Izv. Sekt. Fiz. Khim. A., 23, 201 (1953).

BaF₂-NaF

Electrical Conductance

The recommended values in table 41 are based on the work of Thompson and Kaye (classical ac technique) [111].

TABLE 39 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. range (T)
111 100* 110	67.6 67.6 67.6–100 (graphical except for 67.6 mol %)	1173–1373 1173, 1273, 1373 1123–1273

*Values from reference [111].

Ref.	Re me v:	com- ended alue	NaF (mol %)	% Departure			
	Vol.	Page	۰. ۱۰	% (min)	(T)	% (max)	(<i>T</i>)
110	4.1	29	67.6	0.34	(1223)	0.61	(1273)

Table 39 C	. Cell	materials	and	calibration
------------	--------	-----------	-----	-------------

Cell material	Electrodes	Frequency range (Hz)	Calibration
Pt crucible [110, Pt [110 111] 111]		2500, 5000, 10000 [110]	Molten KNO3 [111]
		1000 [111]	0.01 N KCl solution [110]

Comment: Thompson and Kaye [111] used molten KNO, to determine the cell constant in the temperature range 350-500 °C. A . 50 weight percent mixture of CaCl₂-NaCl (values of Ryscheivitsch) was used in the temperature range 500-670 °C. The value of the cell constant at 1100 °C was found by extrapolation.

Density

The recommended values in table 42 are based on the work of Abramov and Kozunov (Archimedean method) [7].

TABLE 40 A. Investigation critically re-examined

Ref.	NaF (mol %,	Temp. range (T)
7	50.0, 66.8, 83.5, 100	1228–1453
26	0-100 (graphical)	1473, 1573

TABLE 40 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- nded lue	NaF (mol %)	% Departure		% Departure		
	Vol.	Page		% (min)	(<i>T</i>)	% (max)	(T)	
7	1	3	100	0.56	(1383)	0.95	(1283)	

TABLE 40 C. Cell materials and calibration

Cell material	Calibration
Pt ball [26]	Volume of ball determined from measurements c substances of known density [26].

TABLE 42 a. BaF2-NaF: Density

Numerical values (gcm⁻³)

Mol percent NaF

limation.		,				
Thompson	n and Ka	ye [111]	ușed	analyzed	l chemic	al re-
agents (J. 3	f. Baker	Chemical	Co.)	without	further	puri-
fication.						

Melt Preparation and Purification

Sodium fluoride in reference [7] was purified by sub-

Taniuchi [110] used first grade commercial reagents (Morita Chem. Ind. Co.) which were dried at 100 $^{\circ}$ C and kept dessicated until use.

TABLE 41 a. BaF2-NaF: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

T	67.6 Mol % NaF
1180	4.052
1190	4 118
1200	4 184
1210	4.250
1220	4,316
1230	4,382
1240	4.448
1250	4.514
1260	4.580
1270	4.646
1280	4.712
1290	4.778
1300	4.844
1310	4.910
1320	4.976
1330	5.042
1340	5.108
1350	5.174
1360	5.240
1370	5,306

$\kappa = a +$	bT (oh	m ⁻¹ cr	n-1)	
	1			1

Comp. (mol % NaF)	a	b·103	Stand. error of est.
67.6	-3.7363	6.6000	0.0436

Reference: [111]. Data reported in numerical form.

T	100.0	83.5	66.8	50.0
T 1230 1240 1250 12(- 12' 12' 13(1310 1320 1330 1340 1350 1360 1370	100.0 1.951 1.944 1.938 1.932 1.926 1.919 1.913 1.907 1.901	$\begin{array}{r} 83.5\\ 2.685\\ 2.679\\ 2.673\\ 2.668\\ 2.662\\ 2.656\\ 2.650\\ 2.645\\ 2.639\\ 2.633\\ 2.627\\ 2.622\\ 2.616\\ 2.610\\ 2.604 \end{array}$	66.8 3.153 3.147 3.141 3.135 3.129 3.123 3.117 3.111 3.105 3.099 3.093 3.087 3.081	$\begin{array}{c} 50.0\\ \hline \\ 3.598\\ 3.592\\ 3.585\\ 3.579\\ 3.573\\ 3.567\\ 3.560\\ 3.554\\ 3.548\\ 3.548\\ 3.542\\ 3.536\\ 3.529\\ 3.523\\ 3.517\\ 3.511\\ \end{array}$
1380 1390 1400 1410 1420 1430 1440 1450	1.894 1.888	2 . 599 2 . 593 2 . 587 2 . 581 2 . 575 2 . 570	3.075 3.069 3.063 3.057 3.051 3.045	3.504 3.498 3.492 3.486 3.479 3.473 3.467 3.461

TABLE 42 b. Temperature-dependent equations

 $\rho = a + bT (gcm^{-3})$

Comp. (mol % NaF)	a	b · 104	Stand. error of est.
50.0	4,3643	-6.2311	0.0043
66.8	3.9022	-5.9959	0.0087
83.5	3.3934	-5.7600	0.0073
100.0	2.7571	-6.2513	0.0016

Reference: [7]. Data reported in numerical form.

3

FIGURE 14. Temperature-composition phase diagram for BaF₂NaF. G. Z. Grube, Z. Elekroch., **33**, 481 (1827).

BeF₂-KF

Viscosity

The recommended values in table 44 are based on the work of Cohen et al. (capillary method) [35].

Ref,	KF (mol %)	Temp. range (T)
36	79	1023-1123
35	50, 79	873-1073
37	50	843-1073

TABLE 43 A. Investigations critically re-examined

Comment: Cohen et al. [35, 36, 37] measured viscosities using a capillary viscometer as well as a modified Brookfield rotational device. Error limits for the experimental measurements were ± 10 percent

TABLE 44.	BeF ₂ -KF:	Viscosity
-----------	-----------------------	-----------

Numerical values (cp)

Mol percent KF

		i
Т	79	50
873.2		15.3
1073.2	2.2	3.45

Reference: [35]. Due to limited data the experimental values are given.

 FIGURE 15. Temperature composition phase diagram for BeFr KF.
 M. P. Borzenkova, A. V. Novoselova, Yu. P. Simanov, V. I. Chernikh, and E. I. Yarembash, Zh. Neorg. Khim. 1, 2071-82 (1956).

BeF₂-LiF Electrical Conductance

The recommended values in table 49 are based on the work of Robbins and Braunstein (classical ac technique) [102].

TABLE 45 A. Investigations critically re-examined

Ref. LiF (mol %)	Temp. Range
22 48, 53, 58, 62	671.9-806.4
29 66	741 -920
30 66	741 -920
58 48, 53, 58, 62 (graphical)	671.9-806.4
102 30.0-66.0	643 -920
57 30.0-66.0	643 -920
55 66	743,758,773

TABLE 45 B. Cell materials and calibi	ration
---------------------------------------	--------

Cell material	Electrodes	Frequency range (cps)	Calibration
Silica dip cell [22, 29, 30, 55, 58, 102]	L shaped Pt [22, 29, 30, 55, 58, 102]	1,000–10,000 [22, 29, 30, 55, 58, 102]	0.1 demal KCl [22, 29, 30, 55, 58, 102]

Comment: Robbins and Braunstein [22, 29, 30, 55, 58, 102] found the measured resistance of their fluoride melts to vary less than 0.5 percent over the frequency range 1–10 kHz. Values of the measured resistance extrapolated to infinite frequency were less than 0.3 percent of the 10 kHz values. Measurements in molten KNO₃ reproduced the cell constant to within 0.7 percent. The overall accuracy was reported to be ± 2 percent.

Density

The recommended values in tables 50, 51 are based on the work of Cantor, Ward, and Moynihan (Archimedean and dilatometric methods) [30, 33]

Table 46 A.	Investigations	critically	re-examined
-------------	----------------	------------	-------------

Ref.	LiF (mol %)	Temp. Range (T)
121	50, 69	
33	0, 10, 8, 25, 1, 49, 8	854-1135
32	0, 10.8, 25.1, 49.8, 100 (0, 100- extrapolated)	1073
18	45-100	873, 973, 1073
29	. 66	788-1093
30	66	788-1093
57	66	788–1093

TABLE 46 B.	Comparisons	with	previous	recommendations
	1		1	

Ref.	Re me	ecom- ended alue	LiF (mol %)		% Dej	parture	
	Vol.	Page		% (min)	(T)	% (max)	(T)
18 18	4.1	32 . 32	66 50	-1.3 -0.57	(1073) (973)	-2.3 -0.58	(873) (1073)

TABLE 4	46	C.	Cell	materials	and	calibration

Cell material	Calibration
Pt bob, Pt-10% Rh suspension wire, melt contained in cylindrical nickel vessel [32, 33]	Water [30, 32, 33, 57]
Pt cylinder, Pt suspension wire, melt contained in an Inconel crucible [18]	Dilatometer performance checked using molten NaNO, [30, 57]
Metal dilatometer (cylindrical cup for lower section and conical top with long neck for upper section) [30, 57]	

Comment: The liquid level in the dilatometer used by Cantor et al. [30, 57] was detected electrically using a metal probe. Corrections were made for thermal expansion of the vessel and the probe. The volume measurements were reproducible to ± 0.1 percent. The Archimedean apparatus used by Cantor et al. [32, 33] gave results which were reported to be accurate to within 0.4 percent, the tw major sources of error were corrections for the surface tension o the melt and the weight of the immersed bob.

Blanke et al. [18] reported an overall error of ± 1 percent for their density results.

Viscosity

The recommended values in table 52 are based on the work of Cantor, Ward, and Moynihan (rotating cylinder method) [33].

Ref.	LiF (mol %)	Temp. range (T)
121 68 30 33 18 29 37	50, 69 2.24, 4.39, 6.71 50, 69 0-64 45-100 66 50	873 813–1123 873, 973, 1073 649–1252 873, 973, 1073 843–1073

TABLE 47 B. Comparisons with previous recommendations

Ref.	Re me	ecom- ended alue	LiF (mol %)	% Departure						
	Vol.	Page		% (min)	(T)	% (max)	(<i>T</i>)			
18 18	4.1 4.1	32 32	55 50		(873) (873)					

TABLE 47 C. Cell materials and calibration

Cell material	Calibration
Inconel rotating spindle and melt contained in a nickel metal cylinder [33, 68];	NBS standard oils J and L [33, 68]
Two concentric Inconel cylinders (outer one containing fused salt), nickel shaft connected to inner cylinder, Mo torsion wire [18]	· · ·

Comment: Cantor, Ward and Moynihan [33] reported their viscosity results in the form of Arrhenius equations with mean standard deviations of about 0.026 in $\Delta \eta/\eta$. They estimated an experimental error of ± 3 percent.

Bianke et al. [18], using a rotational cylinder method, reported an overail error of ± 5 percent.

Surface Tension

The recommended values in table 53 are based on the work of Sturm (Ring method) [109].

PROPERTIES OF FLUORIDES AND MIXTURES

Ref.	LiF (mol %)	Temp. range (T)
109 68	63 66	753
29	66	

TABLE 48 A. Investigations critically re-examined

TABLE 49 a. BeF2-LiF: Electrical Conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent LiF

T	66.0	62.0	58.0	53.0	50.0	48.0	46.0	42.5	40.0	35.0	30.0
650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 840 850 860 870 880 890 900 910 920	1.397 1.463 1.530 1.596 1.662 1.728 1.793 1.859 1.925 1.990 2.056 2.121 2.186 2.251 2.316 2.381 2.445 2.510	1.109 1.169 1.228 1.288 1.347 1.407 1.466	0.852 0.908 0.964 1.018 1.072 1.126 1.179 1.232	0.506 0.548 0.591 0.635 0.679 0.724 0.770 0.816 0.863 0.911	$\begin{array}{c} 0.256\\ 0.288\\ 0.321\\ 0.354\\ 0.388\\ 0.423\\ 0.458\\ 0.494\\ 0.531\\ 0.568\\ 0.606\\ 0.645\\ 0.684\\ 0.724\\ 0.765\\ 0.806\\ 0.848\\ 0.891\\ \end{array}$	0.294 0.324 0.355 0.387 0.420 0.453 0.487 0.522 0.558 0.595 0.633 0.671 0.710	$\begin{array}{c} 0.197\\ 0.222\\ 0.248\\ 0.274\\ 0.301\\ 0.329\\ 0.357\\ 0.385\\ 0.414\\ 0.444\\ 0.474\\ 0.505\\ 0.536\\ 0.568\\ 0.600\\ 0.633\\ 0.667\\ \end{array}$	0.270 0.294 0.318 0.343 0.369 0.395 0.422 0.449 0.477 0.506	0.253 0.274 0.296 0.319 0.342 0.366 0.390 0.416 0.441	[0.178] [0.193] [0.208] [0.224] [0.239] [0.254] [0.269]	[0.118] [0.128] [0.138] [0.148] [0.158]

TABLE 49-b. Temperature-dependent equations

Comp. (mol % LiF)	a	b · 103	c · 10 ⁶	Stand. error of est.
$\begin{array}{c} 30.0\\ 35.0\\ 40.0\\ 42.5\\ 46.0\\ 48.0\\ 50.0\\ 53.0\\ 58.0\\ 62.0\\ 66.0 \end{array}$	$\begin{bmatrix} -0.2950 \\ [-0.9074] \\ 0.4133 \\ 0.1501 \\ -0.2437 \\ 0.1895 \\ -0.4247 \\ -0.9034 \\ -4.7115 \\ -3.2970 \\ -3.9067 \end{bmatrix}$			$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0012\\ 0.0007\\ 0.0021\\ 0.0014\\ 0.0023\\ 0.0013\\ 0.0001\\ 0.0015\\ 0.0039 \end{array}$
			·	

 $\kappa = a + bT + cT^2 (ohm^{-1} cm^{-1})^2$

Reference: [102]. Data reported in numerical form.

TABLE 50 a. BeF2-LiF: Density

Numerical values (gcm⁻³)

Т	66.0 Mol % LiF
800	2.023
820	2.013
840	2.003
860	1.993
880	1.984
900	1.974
920	1.964
940	1.954
960	1.945
980	1.935
1000	1.925
1020	1.915
1040	1.905
/ 1060	1.896
1080	1.886

TABLE 50 b. Temperature-dependent equations

 $\rho = a + bT \; (\text{gcm}^{-3})$

Comp. (mol % LiF)	a	b·104	Stand. dev. [30]		
66.0	2.413	-4.88	0.00046		

Reference: [30]. Data reported in equation form.

Т	49.8	25.1	10.8	0*
T 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1110 1120 1130	49.8 1.955 1.950 1.946 1.942 1.938 1.929 1.925 1.921 1.917 1.912 1.908 1.904 1.900 1.895 1.891 1.887 1.883 1.878 1.874 1.870	$\begin{array}{c} 25.1\\ 1.952\\ 1.950\\ 1.948\\ 1.945\\ 1.943\\ 1.943\\ 1.943\\ 1.936\\ 1.933\\ 1.931\\ 1.929\\ 1.926\\ 1.924\\ 1.921\\ 1.919\\ 1.917\\ 1.914\\ 1.912\\ 1.909\\ 1.907\\ 1.905\\ 1.902\\ 1.900\\ 1.897\\ 1.895\\ 1.893\\ 1.890\\ 1.888\\ \end{array}$	10.8 1.924 1.923 1.921 1.920 1.918 1.917 1.915 1.914 1.912 1.911 1.909 1.908	0*
				1.70

TABLE 51 a. BeF2-LiF: Density

Numerical values (gcm⁻³) Mol percent LiF

*The only experimental value reported.

TABLE 51	(b).	Temperature-dependent	equations
----------	------	-----------------------	-----------

 $\rho = a + bT \; (\text{gcm}^{-3})$

Comp. (mol % LiF)	a	b · 104	Stand. dev. [33]
10.8	2.075	-1.48	0.00037
25.1	2.158	-2.39	0.0022
49.8	2.349	-4.24	0.00078

Reference: [33]. Data reported in equation form.

TABLE 52 a. BeF2-LiF: Viscosity

Numerical values (cp)

Mol percent LiF

. 00	55.60	50.00	44.99	40.00	35.00	30.00	25.00	20.01	15.00	9.98	8.98	6.99	5.
		374						-	·		•	·	
		273	584										
	104	203	421										
.4	81.9	153	309	762									
.8	65.5	118	231	549	1470								
.1	53.0	91.6	175	403	1040	3040						•	-
.7	43.3	72.2	135	300	751	2110	6880			-			
.4	35,8	57.5	105	227	551	1490	4630						
	<u> </u>	46.4	82.8	174	410	1070	3180		44800		414000		
	г	37.8	66.1	135	310	784	2220	7960	28900		249000		140
					237	581	1580	5440	19000		153000	358000	80'
					184	437	1140	3780	12800	61600	95900	218000	171
					144	333	834	2670	8720	39700	61500	13500	29(
					114	256	619	1910	6060	26100	40200	85600	18(
					91.1	199	465	1390	4270	17500	26800	55300	114
					73.5	157	354	1020	3060	11900	18100	36400	- 732
					. 59.9			764	2220	8250	12500	24400	480
								577	1630	5790	8710	16600	321
									1210	4120	6170	11500	217
										2970	4430	8020	150
										2170	3220	5700	104
										1900	2370	4100	73
										1200	1700	2980	52
										680			
										009			
						· ·							

_			
_	1.99	0.99	0
-			
			129000000
			58600000
			27600000
	1210000		13500000
	695000		6790000
	410000		3530000
	247000	596000	1880000
	152000	350000	1030000
	95000	209000	581000
	20200	70600	334000
	25000	50400	118000
	17300	32400	72200
	11800	21200	45000
	8100	14100	- 28500
	5650	9480	18400
	3990	6470	12000
		4470	8010
		3130	5390
·		2210	3680

PROPERTIES OF FLUORIDES AND MIXTURES

မ္မာ
TABLE	52	(b).	Temperature-dependent	equations
-------	----	------	-----------------------	-----------

Comp. (mol % LiF)	A	E (cal mol ⁻¹)
0*		
0.99	1.53.10-6	51970
1.99	6.62.10-6	47400
3,00	2.31.10-5	43870
3.99	6.05.10-5	40850
5.09	7.96.10-5	39370
6,99	1.05.10-4	37510
8.98	1.99.10-4	34960
9.98	1.71.10-4	34450
15.00	4.57.10-4	29980
20.01	5.98.10-4	27380
25.00	9.20.10-4	24530
30.00	$2.02 \cdot 10^{-3}$	21480
35.00	3.11.10-3	19210
40.00	4.21.10-3	17320
44.99	$6.27 \cdot 10^{-3}$	15460
50.00	8.45.10-3	14030
55.00	$2.07 \cdot 10^{-2}$	11850
60.00	4.30.10-2	10080
64.00	$5.94 \cdot 10^{-2}$	9150

 $\eta = A \cdot \exp(E/RT)$ (cp)

*The equation for pure BeF2 is:

 $\eta = 7.603 \cdot 10^{-7} \exp \left[(52590/RT) + (1471 \cdot 10^6/T^2) \right]$

Reference: [33]. Data reported in equation form.

FIGURE 16. Temperature composition phase diagram for BeF₂-LiF. K. A. Romberger, J. Braunstein, and R. E. Thoma, J. Phys. Chem., 76, 1159 (1972).

BeF₂-NaF

Electrical Conductance

The recommended values in table 58 are based on the work of Robbins and Braunstein (classical ac technique) [30].

TABLE 54 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. range (T)
30	45, 50, 57	624-833

Т	63 Mol % LiF
753.2	196

TABLE 53. BeF₂-LiF: Surface tension Numerical values (dyn cm⁻¹)

Reference: [109]. The only experimental value is given.

Table 54 B.	Cell materials	and calibration
-------------	----------------	-----------------

Cell material	Electrodes	Frequency range (Hz)	Calibration
Silica glass cells	Pt [30]	5000-50,000	Molten KNO ₃
[30]		[30]	[30]

Comment: Robbins and Braunstein [30] reported that the measur resistance was independent of frequency over the range 5,000 50,000 Hz, within the accuracy limits of the bridge ($\pm 0.2\%$).

Density

The recommended values in table 59 are based on the work of Blanke et al. (Archimedean method) [17].

Ref.	NaF (mol %)	Temp. range (T)
35 30* 19 17**	50, 57, 70 45, 50, 57 21.9-81.2 20-80	873, 973, 1073 650–1170

TABLE 55 A. Investigations critically re-examined

*Data from [17].

**Numerical values at 873, 1073; graphical results for temp. range indicated.

TABLE 54 B. Cell materials and calibration

Cell material

Pt cylinder and suspension wire, In crucible [17, 19]

Comment: Blanke et al. [17] reported an overall error for density results of ± 0.27 percent.

Viscosity

The recommended values in tables 60, 61 are based on the work of Cohen et al. (capillary and rotating cylinder methods) [35] and Blanke et al. (rotating cylinder method) [19].

TABLE	56	A.	Investigations	critically	re-examined
TUDDE			THE COMPACTORIO	orgonourry	. o-onuminou

Ref.	NaF (mol %)	Temp. range (T)
121*	57	873
35	50, 57, 70	873, 973, 1073
56	57	727
19	21.9-81.7	873, 973, 1073

*Data from reference [35].

TABLE 56 B. Cell materials and calibration

Cell material

Inner and outer cylinder of Inconel, Ni shaft and Mo torsion wire [19].

Comment: Cohen et al. [35] measured viscosities using a capillary viscometer as well as a modified Brookfield rotational device. Error limits for the experimental measurements were ± 10 percent.

Surface Tension

The recommended values in table 62 are based on the work of Mac Pherson (maximum bubble pressure method) [72].

TABLE J(A. Investigations critically re-examin	TABLE 57 A.	Investigations	critically	re-examine
---	-------------	----------------	------------	------------

Ref.	NaF (mol %)	Temp. range (T)
72	57.1-62.0	773–1073

Melt Preparation and Purification

Robbins and Braunstein [30] used hand picked, glassclear crystals of recrystallized NaF and sublimed BeF_2 which were melted under an inert atmosphere into the conductance cell. Spectrographic analysis of the starting materials showed the major impurities to be (in ppm by weight) for BeF_2 : 50 Li, 100 Na and for NaF: 2 Mg, 2 Fe, and 3 Ca.

Blanke et al. [17, 19] used analytical grade BeF_2 (Brush Beryllium Corporation) without further purification. NaF was analytical reagent grade and was dried at 200 to 230 °C for at least 24 hours before use. Salts were pulverized, weighed and mixed in a stainless steel drybox. Samples were melted in nickel crucibles and transferred into Inconel sample crucibles.

TABLE 58 a. BeF₂-NaF: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent NaF

<i>T</i>	57.0	50.0	45.0
T 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800	57.0 0.1750 0.2032 0.2322 0.2620 0.2927 0.3243 0.3567 0.3899 0.4239 0.4239 0.4588 0.4946 0.5312 0.5686 0.6068 0.6068 0.6459 0.6859 0.7266 0.7266 0.7682	50.0 0.1867 0.2097 0.2337 0.2587 0.2845 0.3113 0.3391 0.3677 0.3973 0.4279 0.4593 0.4917 0.5251 0.5593	45.0 0.0915 0.1069 0.1232 0.1402 0.1581 0.1768 0.1964 0.2167 0.2379 0.2600 0.2828 0.3065 0.3310 0.3563 0.3825 0.4094 0.4372
810 820 830	0.8107 0.8540	0.5946 0.6307	0.4659
600			0.3230

internation of a second

JANZ ET AL.

TABLE 58 b. Temperature-dependent equations

 $\kappa = a + bT + cT^2 \text{ (ohm}^{-1} \text{ cm}^{-1}\text{)}$

Comp. (mol % NaF)	a.101	b·103	c·10°	Stand. error of est.
45.0	8.2320	-3.7865	4.1301	0.0011
50.0	7.6991	-4.0005	4.6716	0.0007
57.0	0.9115	-2.5105	4.1961	0.0038

Reference: [30]. Data reported in numerical form.

TABLE 59. BeF2-NaF: Density

Numerical values (gcm⁻³)

Mol percent NaF

<i>T</i>	80	• 76	70	66.7	64	60	58	52.9	52	50	46	40	20
873.2 1073.2	2.024	2.018	2.113 2.012	$\begin{array}{c} 2.111\\ 2.034 \end{array}$	2.108 2.008	2.113 2.007	2.103 2.005	2.099 2.034	2.098 1.992	2.070 1.969	2.088 1.985	2.086 1.982	1.971

Reference [17]. Due to limited data the numerical interpolated values reported in reference [17] are given.

TABLE 60. BeF2-NaF: Viscosity

Numerical values (cp)

Mol percent NaF

T	81.7	75	72.96	70	69.83	66.67	_ 60	55.59	50	47.8	42.7	35.89	21.93
873.2 973.2 1073.2	3.60	3.04	4.06 2.89	4.98 3.92 2.81	5.03 3.65 2.81	9.04 5.91 4.18	9.59 3.79	9.92 5,68 3.60	14.58 4.58	17.19 8.80 5.02	12.97 5.49	25.90 11.04	55.20

Reference: [19]. Due to limited data the numerical interpolated values reported in reference [19] are given.

TABLE 61. BeF2-NaF: Viscosity

Numerical values (cp)

Mol percent NaF

Т	70	57	50
873.2	5.0	12.8	15.3
973.2	3.9	7.0	8.4
1073.2	2.8	4.25	5.25
·.			

Reference: [35]. Due to limited data the experimental values are given.

-

TABLE 62. BeF2-NaF: Surface tension

Numerical values (dyn cm⁻¹)

Mol percent NaF

T	63.0	57.5	57.1
780	209.6	200.5	187.6
800	206.3	197.8	185.3
820	203.0	195.1	183.0
840	199.7	192.4	180.7
860	196.4	189.6	178.3
800	193.1	186.9	176.0
900	189.8	184.2	173.7
920	186.5	184.2	171.4
940	183.2	178.8	169.1
960	179.9	176.0	166.7
980	176.6	173.3	164.4
1000	173.3	170.6	162.1
1020	170.0	167.9	159.8
1040	166.7	165.2	157.5
1060	163.4	162.4	155.1

TABLE 62 b. Temperature-dependent equations

 $\gamma = a + bT (dyn cm^{-1})$

Comp. (mol % NaF)	a	Ь
57.1	278.1	-0.116
57.5	306.6	-0.136
63.0	338.3	-0.165

Reference: [72].

Data reported in equation form.

FIGURE 17. Temperature-composition phase diagram for BeFr-NaF. R. E. Thoma, editor, Phase Diagrams for Nuclear Reactor Materials, Oak Ridge National Laboratory, ORNL 2540 (1959).

BeF₂-RbF

Density

The recommended values in table 65 are based on the work of Cohen et al. (Archimedean method) [35].

Table 63	A. Investigations cr	itically re-examined
Ref.	RbF (mol %)	Temp. range (T)
35	50	873–1073

Viscosity

The recommended values in table 66 are based on the work of Cohen et al. (capillary and rotational-cylinder methods) [35].

TABLE OF M. Investigations cillicatly re-channing	Table 64 A.	Investigations	critically	re-examine
---	-------------	----------------	------------	------------

Ref.	RbF (mol %)	Temp. range (T)
35	50	873, 973, 1073

Comment: Brief remarks concerning reference [35] are discussed under the system BeF₂-NaF.

TABLE 65 a. BeF. RbF: Density

Numerical values (gcm⁻³)

T	50 Mol % RbF
880 900 920 940 960 980 1000 1020 1040	2.45 2.44 2.43 2.42 2.41 2.40 2.39 2.38 2.38 2.37
1060	2.36

TABLE 65 b. Temperature-dependent equation

 $\rho = a + bT \ (gcm^{-3})$

Comp. (mol % RbF)	a	<i>b</i> ·10⁴
50	2.89	-5.00

Reference: [35]. Data reported in equation form. The temperature range was assumed to be the same as for viscosity measurements.

TABLE 66. BeF2-RbF: Viscosity Numerical values (cp)

	CO M.1 OF PLF
1	50 MOI % RDF
873.2	11.5
973.2	5.2
1073.2	2.75

Reference: [35]. Due to limited data the experimental values are given.

TABLE 67 B. Cell materials and calibration

Cell material

Pt cylinder and Pt suspension wire, melt contained in an Inconel crucible [18].

TABLE 68. BeF2-UF4: Density

Numerical values (gcm⁻³)

Т	35 Mol % UF,
1073.2	4.502

Reference: [18]. The only experimental value is given.

BeF₂-UF₄

Density

The recommended values in table 68 are based on the work of Blanke et al. (Archimedean method) [18].

TABLE 67 A. Investigations critically re-examined

UF₄

(mol %)

35

Temp. range

(T)

1073

TABLE 69 A. Investigations critically re-examined					
Ref.	LiF (mol %)	Temp. range (T)			
87	70, 80, 86, 93, 100	1083–1343			

Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

Ref.

18

BeF2 -UF4 1000 (ပ_ိ) Liquid 800 Temperature UF₄+Liquid 600 Q_{High} BeF₂+Liquíd Q_{High} BeF2+UF4 400 20 80 0 40 60 100 BeF₂ UF4 Mol % UF4

FIGURE 19. Temperature-composition phase diagram for BeF₂·UF₄
 L. V. Jones, D. E. Etter, C. R. Hudgens, A. A. Huffman,
 T. B. Rhinehammer, N. E. Rogers, P. A. Tuker, and L. J. Wittenberg,
 J. Amer. Ceram. Soc., 45[2], 79 (1962).

CaF₂-LiF

Electrical Conductance

The recommended values in table 71 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 69 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- ided lue	LiF (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(T)
87	1	2	100	5.1	(1150)	8.2	(1310)

TABLE 69 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87].

Comment: The specific conductance values measured in reference [87] were reported reproducible to ± 1 percent. The precision of the measurements was ± 3 percent. The measured resistance was found to be independent of frequency over the range 20 to 20,000 Hz.

Density

The recommended values in table 72 are based on the work of Porter and Meaker (Archimedean method) [98].

TABLE 70 A. Investigations critically re-examined

Ref.	LiF (mol %)	Temp. range (T)
87	70—100 (graphical)	1273
98	70—100	1073–1353

TABLE 70 B. Comparisons with previous recommendations

Ref.	Rec mer val	om- nded lue	LiF (mol %)	% Departure			% Departure		
	Vol.	Page		%(min)	(T)	% (max)	(T)		
98	1	2	100	-4.5	(1310)	-5.6	(1150)		

TABLE 70 C. Cell materials and calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87, 98]	Molten KC1 [87, 98]

Comment: Density values for molten KCl, determined by Porter and Meaker [98], agreed with those of Van Artsdalen and Yaffe (Molten Salts: Vol. 1, reference 79) [1] to within a standard deviation of ± 0.3 percent.

Experimental density values in reference [98] were fitted to linear equations with standard deviations in the range: $7.00 \times 10^{-3} \text{ gcm}^{-3}$ (93 mol % LiF) to 19.0×10⁻³ gcm⁻³ (70 mol % LiF).

Melt Preparation and Purification

Reagent-grade chemicals were used in references [87] and [98]. After vacuum drying at 400 °C the salts were cooled and combined in the correct proportions. The salts were then placed in graphite crucibles and heated under vacuum (50 µm (Hg) to 600 °C. For density and conductance measurements the mixtures were melted in an atmosphere of helium in a controlled-atmosphere chamber. Melt compositions were confirmed by analyses after density measurements.

TABLE 71 a. CaF2-LiF: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent LiF

T	100.0	93.0	86.0	80.0	70.0
T 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1220	9.10 9.10 9.16 9.22 9.27 9.33 9.39 9.45 9.51 0.57	93.0 8.20 8.25 8.31 8.37 8.42 8.48 8.54 8.54 8.59 8.65 8.71 2.76	86.0 6.39 6.46 6.52 6.59 6.66 6.72 6.79 6.86 6.92 6.99 7.06 7.12 7.19 7.25	80.0 6.60 6.68 6.75 6.83 6.90 6.98 7.05 7.13 7.20 7.28 7.35 7.42 7.50 7.57	70.0 6.27 6.32 6.38 6.44 6.50 6.55 6.61
1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340	9.37 9.62 9.68 9.74 9.80 9.86 9.92 9.97 10.03 10.09 10.15 10.21	8.76 8.82 8.88 8.93 9.05 9.10 9.16 9.22 9.27 9.33 9.39	7.32 7.39 7.45 7.52 7.59 7.65 7.72 7.79 7.85 7.92 7.98 8.05	7.65 7.72 7.80 7.87 7.95 8.02 8.09 8.17 8.24 8.32 8.39 8.47	6.67 6.72 6.78 6.84 6.90 6.95 7.01 7.07 7.12 7.18 7.24 7.30

TABLE 71 b. Temperature-dependent equations

$\kappa = a + bT$ (ohm ⁻¹ cm ⁻¹)				
Comp. (mol % LiF)	a · 101	b · 103	Stand. dev. [87]	
70.0	-3.716	5.722	0.0470	
80.0	-15.14	7.448	0.0478	
86.0	-0.8412	6.636	0.0268	
93.0	17.86	5.673	0.0290	
100.0	23,95	5.830	0.0500	

Reference: [87]. Data reported in equation form.

TABLE 72 a. CaF2-LiF: Density

Numerical values (gcm⁻³)

Mol percent LiF

				-	
<i>T</i>	100.0	93.0	86.0	80.0	70.0
1080 1095 1110 1125 1140 1155 1170 1185 1200 1215 1230 1245 1260 1275 1290 1305 1320 1335 1350	1.700 1.695 1.690 1.685 1.680 1.675 1.670 1.666 1.661 1.656 1.651 1.646 1.641 1.636 1.631 1.626	1.825 1.821 1.817 1.813 1.809 1.805 1.805 1.802 1.798 1.794 1.790 1.786 1.782 1.778 1.774 1.770 1.766	1.937 1.932 1.926 1.921 1.916 1.910 1.905 1.899 1.894 1.888 1.883 1.877 1.872 1.866 1.861 1.856 1.850 1.845	$\begin{array}{c} 2.053\\ 2.047\\ 2.042\\ 2.036\\ 2.031\\ 2.025\\ 2.020\\ 2.014\\ 2.009\\ 2.003\\ 1.997\\ 1.992\\ 1.986\\ 1.981\\ 1.975\\ 1.970\\ 1.964\\ 1.959\\ 1.953\\ \end{array}$	2.144 2.136 2.127 2.118 2.101 2.093 2.084 2.075 2.067 2.058 2.049 2.041 2.032
<u>i</u>	(

TABLE 72 b. Temperature-dependent equations

 $\rho = a + bT (gcm^{-3})$

Comp. (mol % LiF)	a	b·10*	Stand. dev. [98]
70.0	2.809	$ \begin{array}{r} -5.755 \\ -3.704 \\ -3.640 \\ -2.621 \\ -3.321 \end{array} $	0.0190
80.0	2.453		0.0113
86.0	2.336		0.00750
93.0	2.120		0.00700
100.0	2.074		0.00705

Reference: [98]. Data reported in equation form.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

FIGURE 20. Temperature-composition phase diagram for CaF2-LiF. W. E. Roake, J. Electrochem. Soc., 104, 661 (1957).

CaF₂-NaF

Electrical Conductance

The recommended values in table 75 are based on the work of Thompson and Kaye (classical ac technique) [111].

Table 73 A.	Investigations	critically	re-examined
-------------	----------------	------------	-------------

Ref.	NaF (mol %)	Temp. range (T)
111	48.2	1173–1373
10	94.4	1253, 1273, 1293
100*	48.2	1173, 1273, 1373

*Data from reference [111].

TABLE 73 B. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)	Calibration
Pt crucible [10, 111]	Pt [10, 111]	1000 [111]	Molten KNO3 [111]
			0.1 N KCI (25 ° C) [10]

Density

The recommended values in table 76 are based on the work of Abramov and Kozunov (Archimedean method) [7].

TABLE 74 A. Investigations critically re-examined

Ref.	NaF (mol %)	Tomp. range (T)
7	50.0.66.8,83.5,100	1143-1443

TABLE 74 B. Comparisons with previous recommendations

TABLE 75 b. Temperature dependent equation

$\kappa = a + bT \text{ (ohm^{-1} cm^{-1})}$

Comp. (mol % NaF)	a	b·10 ³	Stand. error of est.	
48.2	1.1188	. 5.0660	0.050	

Reference: [111]. Data reported in numerical form.

TABLE 76 a. CaF2-NaF: Density

Numerical values (gcm⁻³)

Mol percent NaF

Ref.	Rec mer va	om ided lue	NaF (mol %)		% Dep	parture	
	Vol.	Page		% (min)	. (<i>T</i>)	% (max)	(T)
7	1	3	100	0.56	(1383)	0,95	(1283)

Melt Preparation and Purification

Thompson and Kaye [111] used analyzed chemical reagents (J. T. Baker Chemical Co.) without further purification.

Sodium fluoride, used by Abramov and Kozunov [7], was purified by sublimation.

TABLE TO A. Gal 2-Ital . Dioculoui conductant	Table 75 a.	CaF2-NaF:	Electrical	conductanc
---	-------------	-----------	------------	------------

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Т	48.2 Mol % NaF
1180	4.859
1200 1220	4.960
1240	5.162
1260 1280	5.264
1300	5.467
1320	5.670
1360	5.771

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T	100.0	83.5	66.8	50.0
1110 2.011 2.290	1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 1440	1.951 1.944 1.938 1.932 1.926 1.919 1.913 1.907 1.901 1.894 1.888	2.150 2.144 2.138 2.132 2.126 2.119 2.113 2.107 2.101 2.095 2.089 2.083 2.077 2.071 2.065 2.059 2.053 2.047 2.041 2.035 2.029 2.023 2.017 2.011	66.8 2.299 2.294 2.288 2.283 2.277 2.266 2.250 2.245 2.234 2.223 2.17 2.207 2.201 2.196 2.179 2.174 2.168 2.177 2.177 2.207 2.201 2.190 2.185 2.174 2.163 2.157 2.163 2.152 2.147	2.357 2.352 2.352 2.341 2.336 2.330 2.325 2.320 2.314 2.309 2.309 2.309

TABLE 76 b. Temperature-dependent equations

	$\rho = a +$	<i>b1</i> (gcm ^{-s})	
Comp. (mol % NaF)	a	6.104	Stand. error of est.
50.0 66.8 83.5 100.0	3.0783 2.9258 2.8803 2.7571	-5.4195 -5.4489 -6.0380 -6.2513	0.0018 0.0054 0.0043 0.0016

Reference: [7]. Data reported in equation form.

CeF₃-KF

Electrical Conductance

The recommended values in table 79 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 77 A.	Investigations	critically	re-examined
-------------	----------------	------------	-------------

Ref.	KF (mol %)	Temp. range (T)
87	60, 70, 80, 90, 100	1023–1343

TABLE 77 B. Comparisons with previous recommendations

Ref.	Rec mer val	om- Ided lue	KF (mol %)		% Dep	parture	
	Vol.	Page		% (min)	(T)	% (max)	(<i>T</i>)
87	1	3	100	3.5	(1280)	4.5	(1140)

TABLE 77 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)	
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87]	

Comment: Brief remarks concerning reference [87] are discussed under the system CaF2-LiF.

Density

The recommended values in tables 80, 81 are based on the work of Meaker and Porter (Archimedean method) [98].

TABLE 78 A. Investigations critically re-examined

Ref.	KF (mol %)	Temp, range (T)		
87	60–100 (graphical)	1273		
98	60, 70, 80, 90, 100	1043–1353		

Ref.	Rec men val	om- ided iue	KF (mol %)		% Dep	parture		
	Vol.	Page		% (min)	(T)	% (max)	(T)	
98	1	3	100	-3.1	(1140 1280)			

TABLE 78 B. Comparisons with previous recommendations

TABLE 78 C. Cell materials and calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87, 98]	Molten KCl [87, 98]

Comment: Brief remarks concerning reference [98] are discussed under the system CaFz-LiF.

Density values [98] were reported in the form of linear temperature dependent equations with standard deviations in the range: 2.53×10^{-3} gcm⁻³ (90 mol % KF) to 11.9×10^{-3} gcm⁻³ (70 mol % KF).

Melt Preparation and Purification

The preparation of pure salts by Porter et al. [87, 98] is described under the system CaF₂-LiF. Cerium fluoride contained less than 0.1 weight-percent metallic impurities.

ł

TABLE 79 a. CeF₃-KF: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent KF

T	100.0	90.0	80.0	70.0	60.0
T 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320	$\begin{array}{c} 100.0\\ \hline \\ 3.74\\ 3.77\\ 3.80\\ 3.83\\ 3.86\\ 3.89\\ 3.92\\ 3.95\\ 3.98\\ 4.01\\ 4.03\\ 4.06\\ 4.09\\ 4.12\\ 4.15\\ 4.18\\ 4.21\\ 4.24\\ 4.27\\ 4.27\\ 4.27\\ 4.27\\ 4.27\\ 4.20\\ \end{array}$	90.0 2.69 2.73 2.77 2.81 2.85 2.88 2.92 2.96 3.00 3.04 3.08 3.12 3.15 3.19 3.23 3.27 3.31 3.35 3.39 3.42 3.46 3.50 2.54	$\begin{array}{c} 80.0\\ \hline 1.77\\ 1.81\\ 1.84\\ 1.88\\ 1.91\\ 1.95\\ 1.98\\ 2.02\\ 2.05\\ 2.09\\ 2.13\\ 2.16\\ 2.20\\ 2.23\\ 2.27\\ 2.30\\ 2.34\\ 2.37\\ 2.41\\ 2.44\\ 2.48\\ 2.51\\ 2.55\\ 2.59\\ 2.62\\ 2.66\\ 2.69\\ 2.73\\ 2.76\\ 2.90\\ \end{array}$	$\begin{array}{c} \textbf{70.0} \\ \textbf{1.36} \\ \textbf{1.40} \\ \textbf{1.44} \\ \textbf{1.47} \\ \textbf{1.51} \\ \textbf{1.54} \\ \textbf{1.58} \\ \textbf{1.61} \\ \textbf{1.65} \\ \textbf{1.68} \\ \textbf{1.72} \\ \textbf{1.75} \\ \textbf{1.79} \\ \textbf{1.82} \\ \textbf{1.86} \\ \textbf{1.89} \\ \textbf{1.93} \\ \textbf{1.96} \\ \textbf{2.00} \\ \textbf{2.03} \\ \textbf{2.07} \\ \textbf{2.10} \\ \textbf{2.14} \\ \textbf{2.17} \\ \textbf{2.21} \\ \textbf{2.24} \\ \textbf{2.28} \\ \textbf{2.31} \\ \textbf{2.35} \\ \textbf{2.38} \\ \textbf{2.42} \end{array}$	60.0 1.70 1.74 1.77 1.81 1.85 1.88 1.92 1.95 1.99 2.03 2.06 2.10 2.13 2.17 2.21 2.24 2.99
1340	4.33	3.58	2.83	2.45	2.31
	1	E	I.		I

TABLE 79 b. Temperature-dependent equations

 $\kappa = a + bT$ (ohm⁻¹ cm⁻¹)

Comp. (mol % KF)	a	b·103	Stand. deviation [87]	
60.0	-2.498	3.590	0.0137	
70.0	-2.256	3.515	0.0137	
80.0	-1.911	3.540	0.0153	
90.0	-1.594	3,860	0.0240	
100.0	0.388	2.940	0.0179	

Reference: [87]. Data reported in equation form.

JANZ ET AL.

TABLE 80 a. CeF₃-KF: Density

Numerical values (gcm⁻³)

Mol percent KF

	_								
T	100	95	90	85	80	75	70	65	60
						1			
1050					2.595	2.759	2.925		
1065				2.418	2.583	2.748	2.913		1
1080			2.239	2.406	2.572	2.737	2.902		
1095			2.228	2.395	2.561	2.726	2.891	3.058	1
1110		2.046	2.217	2.384	2.550	2.715	2.880	3.047	
1125		2.035	2.206	2.374	2.539	2.704	2.869	3.036	ļ
1140	1.849	2.024	2.195	2.363	2.529	2.694	2.859	3.025	1
1155	1.839	2.014	2.184	2.352	2.518	2.683	2.848	3.015	
1170	1.828	2.003	2.174	2.342	2.507	2.672	2.838	3.004	
1185	1.818	1.993	2.163	2.331	2.497	2.662	2.827	2.994	3.162
1200	1.808	1.982	2.153	2.321	2.487	2.652	2.817	2.983	3.152
1215	1.797	1.972	2.143	2.311	2.476	2.641	2.807	2.973	3.142
1230	1.787	1.962	2.133	2.300	2.466	2.631	2.796	2.963	3.132
1245	-1.777	1.952	2.123	2.290	2.456	2.621	2.786	2.953	3.122
1260	1.767	1.942	2.113	2.280	2.446	2,611	2.776	2.943	3.112
1275	1.757	1.932	2.103	2.271	2.436	2.601	2.767	2.933	3.102
1290	1.748	1.922	2.093	2.261	2.427	2.592	2.757	2.923	3.092
1305	1.738	1.913	2.084	2.251	2.417	2,582	2.747	2.914	3.082
1320	1.728	1.903	2.074	2.242	2.408	2.572	2.738	2.904	3.073
1335	1.719	1.894	2.065	2.232	2.398	2.563	2.728	2.895	3.063
1350	1.710	1.884	2.055	2.223	2.389	2.554	2.719	2.885	3.054
		1							1

TABLE 80 b. Two-dimensional equation and statistical parameters

 $\rho = a + bT + cC + dT^2 + eC^2 + fC^3 (gcm^{-3})$

a	<i>b</i> · 10 ³	c·10 ²	d·107	e·104	f.10°	Max. percent departure	Stand. error of est.
2.94846	-1.21553	3.54550	2.20620	-1.03800	1.44443	0.36 (1133.2K, 0 mol % CeF3)	0.004

Reference: [98]. Data reported in numerical form. C = mol % CeF3.

TABLE 81 a. CeF3-KF: Density

Numerical values (gcm⁻³) Mol percent KF

-					
	100.0	90.0	80.0	70.00	60.0
1050			2.593	2.927	· · · · · · · · · · · · · · · · · · ·
1065			2.582	2.916	
1080		2.236	2.571	2.906	
1095		2.226	2.561	2.895	
1110	ļ	2.216	2.550	2.884	
1125		2.206	2.540	2.873	1
1140	1.844	2.196	2.529	2.863	
1155	1.834	2.186	2.518	2.852	ļ
1170	1.825	2.176	2.508	2.841	
1185	1.815	2,166	2.497	2.830	3.154
1200	1.806	2.156	2.487	2.819	3.146
1215	1.797	2.146	2.476	2.809	3.138
1230	1.787	2.136	2.466	2.798	3.129
1245	1.778	2.120	2.455	2.787	3.121
1260	1.769	2.116	2.444	2.776	3.112
1275	1.759	2.106	2.434	2.766	3.104
1290	1.750	2.096	2.423	2.755	3.095
1305	1.741	2.086	2.413	2.744	3.087
1320	1.731	2,076	2.402	2.733	3.079
1335	1.722	2.065	2.392	2.723	3.070
1350	1.712	2.055	2.381	2.712	3.062
	[.				

 TABLE 81 b.
 Temperature-dependent equations

 $\rho = a + bT (gcm^{-3})$

Comp. (mol % KF)	a	b·104	Stand. dev. [98]		
60.0	3.820	-5.617	0.00985		
70.0	3.680	-7.171	0.0119		
80.0	3.333	-7.052	0.00376		
90.0	2,957	-6.678	0.00253		
100.0	2.555	-6.241	0.00276		

Reference: [98]. Data reported in equation form.

FICURE 22. Temperature-composition phace diagram for CeFa-KF. G. A. Bukhalova and E. P. Babaeva, Russ. J. Inorg. Chem., 11, 337 (1966).

CeF₃-LiF

Electrical Conductance

The recommended values in table 84 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 82 A. Investigations critically re-examined

Ref.	LiF (mol %)	Temp. range (T)	
87	70, 76, 81, 88, 100	1083–1343	

TABLE 82 B. Comparisons with previous recommendations

Ref.	Rec men val	om- ided lue	LiF (mol %)		% Dep	arture		
	Vol.	Page		% (min)	(T)	% (max)	(<i>T</i>)	
87	1	2	100	5.1	(1150)	8.2	(1310)	

TABLE 82 C. Coll materials and calibration

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87]

Comment: Brief remarks concerning reference [87] are discussed under the system CaF2-LiF.

Density

The recommended values in tables 85, 86 are based on the work of Meaker and Porter (Archimedean method) [98].

TABLE 83 A. Investigations critically re-examined

Ref.	LiF (mol %)	Temp. range (T)
87	70–100 (graphical)	1273
98	70, 76, 81, 88, 100	1083–1353

TABLE 83 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- ided lue	LiF (mol %)		parture		
	Vol.	Page		% (min)	(T)	% (max)	(T)
-98	1	2	100	-4.5	(1310)	-5.6	(1150)

TABLE 83 C.	Cell	materials	and	calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87, 98]	Molten KCl [87, 98]

Comment: Brief remarks concerning reference [98] are discussed under the system CaF2-LiF.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

Melt Preparation and Purification

The preparation of pure salts by Porter et al. [87, 98] is described under the system CaF2-LiF. Cerium fluoride contained less than 0.1 weight-percent metallic impurities.

TABLE 84 a. CeF₃-LiF: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol	percent	LiF
	1	

					· · ·
T	100.0	88.0	81.0	76.0	70.0
1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340	9.10 9.16 9.22 9.27 9.33 9.39 9.45 9.51 9.57 9.62 9.68 9.74 9.80 9.86 9.92 9.97 10.3 10.09 10.15 10.21	6.72 6.79 6.85 6.91 6.98 7.04 7.11 7.17 7.23 7.30 7.36 7.43 7.49 7.55 7.62 7.68 7.75 7.62 7.68 7.75 7.81 7.88 7.94 8.00 8.07 8.13	5.42 5.49 5.55 5.61 5.68 5.74 5.87 5.93 6.00 6.06 6.12 6.19 6.25 6.32 6.32 6.38 6.44 6.51 6.57 6.64 6.70 6.76 6.83 6.95 7.02	5.51 5.57 5.64 5.70 6.76 5.83 5.89 5.96 6.02 6.02 6.08 6.15 6.21 6.21 6.27 6.34 6.40 6.40	5.46 5.52 5.58 5.64 5.69 5.75 5.81 5.87 5.93 5.99 6.05 6.11
· · · ·					

TABLE 84 b.	Temperature-dependent	equations
-------------	-----------------------	-----------

 $\kappa = a + bT$ (ohm ¹ cm ¹)

Comp. (mol % LiF)	a	6-103	Stand. deviation [87]	
70.0	$ \begin{array}{r} -1.782 \\ -2.040 \\ -1.533 \\ -0.452 \\ 2.395 \end{array} $	5.887	0.0399	
76.0		6.345	0.0180	
81.0		6.381	0.0495	
88.0		6.405	0.0464	
100.0		5.830	0.0500	

Reference: [87]. Data reported in equation form.

Density values [98] were reported in the form of linear temperaturedependent equations with standard deviations in the range: 1.94×10-2 gcm-3 (76 mol % LiF) to 19.9×10-3 gcm-3 (88 mol % LiF).

PROPERTIES OF FLUORIDES AND MIXTURES

TABLE 85 a. CeF₃-LiF: Density

Numerical values (gem⁻³)

Mol percent LiF

and the second s								
T	100	95	[`] 90	85	80	75	70	80
1090 1105 1120 1135 1150 1165 1180 1195 1210 1225 1240 1255 1240 1255 1270 1285 1300 1315 1330	$\begin{array}{c} 1.701\\ 1.695\\ 1.690\\ 1.684\\ 1.679\\ 1.674\\ 1.668\\ 1.663\\ 1.657\\ 1.652\\ 1.647\\ 1.641\\ 1.636\\ 1.630\\ 1.630\\ \end{array}$	2.046 2.039 2.031 2.024 2.017 2.009 2.002 1.995 1.988 1.980 1.973 1.966	2.447 2.438 2.429 2.420 2.412 2.403 2.394 2.386 2.377 2.368 2.377 2.368 2.359 2.351 2.342 2.333 2.324 2.324 2.316	$\begin{array}{c} 2.811\\ 2.802\\ 2.792\\ 2.782\\ 2.773\\ 2.763\\ 2.753\\ 2.753\\ 2.743\\ 2.734\\ 2.724\\ 2.714\\ 2.705\\ 2.695\\ 2.685\\ 2.675\\ 2.666\\ 2.656\\ 2.656\\ 2.656\\ \end{array}$	$\begin{array}{c} 3.116\\ 3.105\\ 3.095\\ 3.085\\ 3.074\\ 3.064\\ 3.054\\ 3.054\\ 3.044\\ 3.033\\ 3.023\\ 3.013\\ 3.003\\ 2.992\\ 2.982\\ 2.972\\ 2.961\\ 2.961\\ \end{array}$	3.322 3.312 3.301 3.291 3.280 3.270 3.260 3.249 3.239 3.229 3.229 3.218 3.208	3.461 3.450 3.440 3.430 3.420 3.410 3.400 3.390 3.380 3.370	$\begin{array}{c} 3.116\\ 3.105\\ 3.095\\ 3.085\\ 3.074\\ 3.064\\ 3.054\\ 3.044\\ 3.033\\ 3.023\\ 3.013\\ 3.003\\ 2.992\\ 2.982\\ 2.972\\ 2.961\\ 2.961\end{array}$
1345	1.025	1.958	2.307	2.040	2.951	5.197	3.300	2.951

TABLE 85 b. Two-dimensional equation and statistical parameters

 $\rho = a + bT + cC + dC^3 + eTC + fTC^2 (gcm^{-3})$

a	b·104	c·101	<i>d</i> · 10⁵	$e \cdot 10^5$	f 107	Max. percent departure	Stand. error of est.
2.10920	3.60006	1.01307	-3.28974	-2.80956	5.92992	0.38 (1193.2 K 30 Mol % CeF ₃)	0.006

Reference: [98]. Data reported in equation form. $C = mol percent CeF_3$.

.....

TABLE 86 a. CeE₃-LiF: Density

Numerical values (gcm⁻³)

Mol percent LiF							
T	100.0	88.0	81.0	76.0	70.0		
1095 1110 1125 1140 1155 1170 1185 1200 1215 1230 1245 1260 1275 1290 1305 1320 1335 1350	$\begin{array}{c} 1.700\\ 1.695\\ 1.690\\ 1.685\\ 1.680\\ 1.675\\ 1.670\\ 1.666\\ 1.661\\ 1.656\\ 1.651\\ 1.646\\ 1.651\\ 1.646\\ 1.631\\ 1.636\\ 1.631\\ 1.626\end{array}$	$\begin{array}{c} 2.603\\ 2.594\\ 2.585\\ 2.575\\ 2.566\\ 2.557\\ 2.547\\ 2.538\\ 2.528\\ 2.519\\ 2.510\\ 2.500\\ 2.491\\ 2.482\\ 2.472\\ 2.463\\ 2.454\\ 2.444\end{array}$	$\begin{array}{c} 3.061\\ 3.050\\ 3.039\\ 3.029\\ 3.018\\ 3.007\\ 2.997\\ 2.986\\ 2.975\\ 2.965\\ 2.954\\ 2.944\\ 2.933\\ 2.922\\ 2.912\\ 2.901\\ 2.890\\ 2.880\\ \end{array}$	$\begin{array}{c} 3.297\\ 3.285\\ 3.274\\ 3.263\\ 3.252\\ 3.240\\ 3.229\\ 3.218\\ 3.207\\ 3.196\\ 3.184\\ 3.173\\ 3.162\\ 3.151\\ \end{array}$	3.445 3.437 3.430 3.422 3.414 3.407 3.399 3.391 3.383 3.376 3.368		
	;	ļ	l j				

CeF₃-NaF

Electrical Conductance

The recommended values in table 89 are based on the work of Meaker, Porter and Kesterke (classical ac technique) [87].

Table 87 A.	Investigations	critically	re-examined

Ref.	NaF (mol %)	Temp. range (T)
87	60, 70, 80, 90, 100	1093–1343

TABLE 86 b. Temperature-dependent equations

 $\rho = a + bT (gcm^{-3})$

Comp. (mol % LiF)	<i>a</i>	6.104	Stand. dev. [98]
70.0	4.061	-5.133	0.0094
76.0	4.161	-7.484	0.00194
81.0	3.837	-7.091	0.0140
88.0	3.286	-6.235	0.0199

Reference: [98]. Data reported in equation form.

Recom-NaF % Departure mended Ref. value (mol %) Vol. Page % (max) % (min) (T)(T)(1300)87 1 3 0 5.0 7.4(1340)

TABLE 87 B. Comparisons with previous recommendations

TABLE 87 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87]

Comment: Brief remarks concerning reference [87] are discussed under the system Cat₂-LiF.

Density

The recommended values in tables 90, 91 are based on the work of Meaker and Porter (Archimedean method) [98].

TABLE 88 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. range (T)
87	60–100 (graphical)	1273
98	60, 70, 80, 90, 100	1073–1353

TABLE 88 B. Comparisons with previous recon

Ref.	Rec men val	om- ided ue	NaF (mol %)	% Departure					
	Vol.	Page		% (min)	(T)	% (max)	(T)		
98	1	3	0	-2.2	(1270)	-2.5	(1350)		

TABLE 88 C. Cell materials and calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87, 98]	Molten KCl [87, 98]

Comment: Brief remarks concerning reference [98] are discussed under the system CaF₂-LiF.

Density values [98] were reported in the form of linear temperaturedependent equations with standard deviations in the range: 2.39×10^{-3} gcm⁻³ (100 mol % NaF) to 9.40×10^{-3} gcm⁻³ (60 mol % NaF).

Melt Preparation and Purification

The preparation of pure salts by Porter et al. [87, 98] is described under the system CaF_2 -LiF. Cerium fluoride contained less than 0.1 weight-percent metallic impurities.

TABLE 89 a. CeF3-NaF: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent NaF

T	100.0	90.0	80.0	70.0	60.0
T 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290	100.0	90.0 4.28 4.31 4.35 4.39 4.43	80.0 3.08 3.12 3.17 3.22 3.27 3.32 3.37 3.42 3.47 3.51 3.56 3.61 3.66 3.71 3.76 3.81 3.85 3.90	70.0 2.48 2.53 2.58 2.63 2.73 2.79 2.84 2.89 2.94 2.99 3.04 3.09 3.14 3.19 3.24 3.29 3.34 3.39 3.44	60.0 2.46 2.51 2.56 2.61 2.66 2.72 2.77 2.82 2.92 2.98 3.03 3.08 3.13 3.18 3.24
1300 1310 1320 1330 1340	5.33 5.39 5.44 5.50	4.46 4.50 4.54 4.58 4.61	3.95 4.00 4.05 4.10 4.15	3.49 3.55 3.60 3.65 3.70	3.29 3.34 3.39 3.44 3.50

JANZ ET AL.

TABLE 89 b. Temperature-dependent equations

 $\kappa = a + bT$ (ohm⁻¹ cm⁻¹)

Comp. (mol % NaF)	a	<i>b</i> ·10 ³	Stand. deviation [87]
60.0	-3.474	5.201	0.0154
70.0	-3.088	5.063	0.0155
80.0	-2.377	4 868	0 0235
90.0	-0.394	3.736	0.0985
100.0	-2.060	5.640	0.0660

Reference: [87]. Data reported in equation form.

TABLE 90 a. CeF3-NaF: Density

Numerical values (gcm⁻³)

Mol percent NaF

T	100	95	90	85	80	75	70	65	60	72
1080 1095 1110 1125 1140 1155 1170 1185 1200 1215 1230 1245 1260 1275 1290 1305 1320 1335 1350	1.899 1.890 1.880 1.871 1.861 1.852	2.151 2.142 2.133 2.123 2.114 2.105	2.432 2.423 2.413 2.404 2.395 2.385 2.376 2.367 2.358 2.348	$\begin{array}{c} 2.702\\ 2.693\\ 2.683\\ 2.674\\ 2.665\\ 2.655\\ 2.646\\ 2.637\\ 2.627\\ 2.618\\ 2.609\\ 2.599\\ 2.590\\ 2.581\end{array}$	2.951 2.942 2.932 2.923 2.913 2.904 2.895 2.865 2.876 2.866 2.857 2.847 2.838 2.829 2.819 2.810 2.800	$\begin{array}{c} 3.178\\ 3.160\\ 3.159\\ 3.149\\ 3.139\\ 3.130\\ 3.120\\ 3.111\\ 3.101\\ 3.082\\ 3.072\\ 3.063\\ s.053\\ 3.043\\ 3.024\\ 3.014\\ 3.005 \end{array}$	$\begin{array}{c} 3.370\\ 3.360\\ 3.351\\ 3.341\\ 3.331\\ 3.321\\ 3.311\\ 3.301\\ 3.291\\ 3.281\\ 3.272\\ 3.262\\ 3.252\\ 3.252\\ 3.242\\ 3.232\\ 3.222\\ 3.212\\ 3.202\\ 3.192\\ \end{array}$	3.525 3.515 3.504 3.494 3.484 3.474 3.464 3.443 3.443 3.443 3.443 3.423 2.412 3.402 3.392 3.382 3.372 3.361	3.627 3.616 3.605 3.595 3.584 3.573 2.563 3.552 3.541 3.531 3.520 3.509	$\begin{array}{c} 3.295\\ 3.286\\ 3.276\\ 3.266\\ 3.256\\ 3.247\\ 3.237\\ 3.227\\ 3.227\\ 3.217\\ 3.207\\ 3.198\\ 3.188\\ 3.178\\ 2.168\\ 3.159\\ 3.149\\ 3.139\\ 3.129\\ 3.120\\ \end{array}$

TABLE 90 b. Two-dimensional equation and statistical parameters

 $\rho = a + bT + cC + dC^3 + eTC + fTC^2 (gcm^{-3})$

<i>a</i>	b·104	c · 10 ²	$d \cdot 10^6$	e · 106	f.107	Max. percent departure	Stand. error of est.
2,70452	-6.31498	4.82510	-2.60170	2.26641	-1.05829	0.17 (1343.2K, 20 mol % CeF)	0.003

Reference: [98]. Data reported in equation form. $C = \text{ mol percent CeF}_3$.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE 91 a. CeF₃-NaF: Density

Numerical values (gcm⁻³) Mol percent NaF

T	100.0	90.0	80.0	70.0	60.0
1080 1095 1110 1125			2.951 2.941 2.932	3.370 3.360 3.350 3.341 3.331	
1155 1170 1185			2.922 2.912 2.902	3.321 3.312 3.302	3.627
1200 1215 1230		2.435	2.893 2.883 2.873	3.293 3.283 3.273	3.616 3.605 3.594
1245 1260 1275 1290	1.898	2.410 2.407 2.397 2.388	2.803 2.854 2.844 2.834	3.204 3.254 3.244 3.235	3.583 3.573 3.562 3.551
1305 1320 1335 1350	1.879 1.870 1.861 1.852	2.378 2.369 2.359 2.350	2.825 2.815 2.805 2.795	3.225 3.216 3.206 3.196	3.540 3.529 3.518 3.507

TABLE 91 b. Temperature-dependent equations

 $b \cdot 10^{4}$

-7.249

-6.420

-6.478

-6.350

-6.151

Stand. dev.

[98]

0.00940

0.00907

0.00798

0.00353 0.00239

 $\rho = a + bT (gcm^{-3})$

a

4.486

4.063

3.670

3.207

2.682

Comp.

(mol % NaF)

60.0

70.0

80.0

90.0

100.0

FIGURE 24. Temperature-composition phase diagram for CeFs-NaF. C. J. Barton, J. D. Redman, and R. A. Strehlow, J. Inorg. Nucl. Chem., 20, 45 (1961).

KF-KBF₄

Electrical Conductance

The recommended values in table 93 are based on the work of Selivanov and Stender (classical ac technique) [125].

TABLE 92 A. Investigations critically re-examined

Ref.	KBF. (mol %)	Temp. range (T)
125	16.5-80.6	723–1073

Reference: [98]. Data reported in equation form.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE 92 B. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)	Calibration
Corundum crucible [125]	Pt [125]	5000 [125]	Melt containing 62% CaCl ₂ 38% NaCl and molten Na ₂ B ₄ O ₇ [125]

TABLE 93. KF-KBF4: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent KBF4

T	80.6	64.9	51.8	40.9	31.6	23.5	16.5
723.2 773.2 823.2 873.2 923.2 973.2 1023.2 1023.2 1073.2	0.281 0.445 0.915 1.459 3.601 6.801 9.807 12.703	0.519 0.815 1.215 2.225 4.209 7.292 10.015 13.015	$\begin{array}{c} 0.201 \\ 0.355 \\ 0.555 \\ 1.209 \\ 3.150 \\ 6.806 \\ 9.345 \\ 12.501 \end{array}$	2.255 5.303 8.406 11.495	3.291 7.105 9.912	3.902 8.101	5.001

Reference: [125]. The statistical analysis was unsuccessful therefore the original data are reported.

Electrical Conductance

The recommended values in table 96 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

Table 94 A.	Investigations	critically	re-examined
-------------	----------------	------------	-------------

Ref.	LaFs (mol %)	Temp. range (T)		
87	0, 10.0, 20.0, 30.0, 40.0	10431343		

TABLE 94 B. Comparisons with previous recommendations

Ref.	Rec men val	om- ided ue	LaF₃ (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(T)
87	1	3	0	3.5	(1280)	4.5	(1140)

TABLE 94 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	2020,000 measurements at 10,000 [87]

Comment: Brief remarks concerning reference [87] are discussed under the system CaF_2 -LiF.

Density

The recommended values in tables 97, 98 are based on the work of Meaker and Porter (Archimedean method) [98].

Table 95 A.	Investigations	critically	re-examined
-------------	----------------	------------	-------------

=

Ref.	LaF3 (mol %)	Temp. range (T)
87	60–100 (graphical)	1273
98	0.0, 10.0, 20.0, 30.0, 40.0	1043–1353

FIGURE 25. Temperature-composition phase diagram for KF-KBF4. V. G. Selivanov and V. V. Stender, Zhur. Neorg. Khim., 4, 2058 (1959); Russ. J. Inorg. Chem., 4 [9], 934 (1959).

-	-
-	•
-	-

Ref.	Rec mer va	om- ided lue	LaF3 (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(<i>T</i>)
98	_1	3	0	-3.1	(1140– 1280)	}	

TABLE 95 B. Comparisons with previous recommendations

TABLE 96 a. KF-LaF3: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Comment: Brief remarks concerning reference [98] are given under the system CaF_2 -LiF.

Density values [98] were reported in the form of linear temperaturedependent equations with standard deviations in the range: $2.76 \times 10^{-3} \text{ gcm}^{-3}$ (0 mol % LaF₃) to $5.95 \times 10^{-3} \text{ gcm}^{-3}$ (30 mol % LaF₃).

Melt Preparation and Purification

The method of salt purification used by Porter et al. [87, 98] is described under the system CaF_2 -LiF.

Lanthanum fluoride contained less than 0.1 weightpercent of metallic impurities.

					-) = <u> </u>
T	40.0	30.0	20.0	10.0	0.0
1050 1060		1.45 1.49			
1070 1080		$1.53 \\ 1.56$	1.93	2.59	
1090		1.60	1.97	2.62	
1110		1.68	2.01	2.60	
1120 1130		1.72	2.08	2.73	
1140 1150		1.79 1.83	2.15 2.19	2.79 2.83	3.74 3.77
1160 1170		1.87	2.23	2.86	3.80 3.83
1180		1.94	2.30	2.93	3.86
1200	1.89	2.02	2.34	2.98	3.92
1210 1220	1.93	2.05	2.41	3.03 3.06	3.95
1230 1240	2.01 2.05	$\begin{array}{c} 2.13 \\ 2.17 \end{array}$	2.48 2.52	3.10 3.13	4.51 4.03
1250 1260	2.09	2.21	2.56 2.60	3.16 3.20	4.06
1270	2.17	2.28	2.63 2.67	3.23	4.12
1290	2.25	2.36	2.71	3.30	4.18
1300	2.29	2.39 2.43	$\frac{2.74}{2.78}$	3.33	4.21 4.24
1320 1330	2.36	$\begin{array}{c} 2.47 \\ 2.51 \end{array}$	2.82	$\frac{3.40}{3.43}$	$4.27 \\ 4.30$
1340	2.44	2.55	2.89	3.46	4.33

TABLE 96 b. Temperature-dependent equations

$\kappa = a + bT$	(ohm ⁻¹	cm^{-1})
-------------------	--------------------	-------------

Comp. (mol % LaF3)	a	b·10 ³	Stand. deviation [87]
0.0	0.388	2.940	0.0179
10.0	-1.037	3.359	0.0147
20.0	-2.046	3.683	0.0189
30.0	-2.511	3.773	0.0069
40.2	-2.807	3.917	0.0087

Reference: [87]. Data reported in equation form.

TABLE 97 a. KF-LaF₃: Density

Numerical values (gcm⁻³)

Mol percent LaF3

T	40	35	30	25	20	.15	10	5	0	22
									[<u>_</u>
1050				2.764	2.595					2.663
1065				2.752	2.584	2.413				2.651
1080			2.907	2.741	2.573	2.403				2.640
1095			2.895	2.729	2.561	2.392	2.220			2.629
1110			2.883	2.718	2.550	2.381	2.210			2.617
1125		3.034	2.871	2.706	2.539	2.370	2.200	2.027		2.606
1140		3.022	2.859	2.694	2.528	2.360	2.189	2.017	1 843	2.595
1155		3.009	2.847	2.683	2.517	2.349	2.179	2.007	1.834	2.584
1170		2.997	2,835	2.671	2.506	2.338	2.169	1.998	1.824	2.572
1185		2.985	2.823	2.660	2.495	2.327	2.158	1.988	1.815	2.561
1200		2.973	2.811	2.648	2.483	2.317	2.148	1.978	1.806	2.550
1215	3.120	2.961	2.800	2.637	2.472	2.306	2.138	1.968	1.796	2.538
1230	3.107	2.948	2.788	2.625	2.461	2.295	2.128	1.958	1.787	2.527
1245	3.095	2.936	2.776	2.614	2.450	2.285	2.117	1.948	1.778	2.516
1260	3 082	2 924	2 764	2,602	2.439	2.274	2.107	1.938	1,768	2.504
1275	3.070	2.912	2.752	2.591	2.428	2.263	2.097	1:929	1.759	2.493
1290	3.057	2.899	2.740	2.579	2.417	2.252	2.086	1.919	1.750	2.482
1305	2.045	2.887	2.728	2.568	2.405	2.242	2.076	1.909	1.740	2.470
1320	3.032	2 875	2.716	2.556	2.394	2.231	2.066	1,899	1.731	2.459
1335	3.019	2.863	2.704	2.545	2,383	2.220	2.055	1.889	1.722	2.448
1350	3.007	2.851	2.693	2.533	2.372	2.209	2.045	1.879	1.712	2.437

TABLE 97 b. Two-dimensional equations and statistical parameters

 $\rho = a + bT + cC + dC^2 + eTC^2 (gcm^{-3})$

a	b · 10*	$c \cdot 10^2$	$d \cdot 10^{3}$	e·108	Max. percent departure	Stand. error of est.
6.05239	-9.55399	-2.73976	7.58455	3.31696	0.30 (1343.2K, 70 mol % KF)	0.004

Reference: [98]. Data reported in equation form.

C = mol percent KF.

.

TABLE 98 a. KF-LaF3: Density

Numerical values (gcm⁻³)

Mol percent LaF3

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Т	40.0	30.0	20.0	10.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T 1050 1065 1080 1095 1110 1125 1140 1155 1170 1185 1200 1215	3.114	30.0 2.908 2.897 2.885 2.874 2.862 2.851 2.839 2.828 2.816 2.805	$\begin{array}{c} 20.0\\ \hline 2.593\\ 2.581\\ 2.570\\ 2.559\\ 2.547\\ 2.536\\ 2.525\\ 2.513\\ 2.502\\ 2.491\\ 2.479\\ 2.468\\ 4.57\end{array}$	10.0 2.222 2.212 2.201 2.191 2.181 2.170 2.160 2.149 2.139	0.0 1.844 1.834 1.825 1.815 1.806 1.797
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1230 1245 1260 1275 1290 1305 1320 1335 1350	3.102 3.090 3.078 3.066 3.054 3.042 3.030 3.018 3.006	2.793 2.782 2.770 2.759 2.747 2.735 2.724 2.712 2.701	$\begin{array}{c} 2.457 \\ 2.445 \\ 2.434 \\ 2.423 \\ 2.411 \\ 2.400 \\ 2.389 \\ 2.377 \\ 2.366 \end{array}$	2.129 2.118 2.007 2.087 2.076 2.066 2.056 2.045	1.787 1.778 1.769 1.759 1.750 1.741 1.731 1.722 1.712

Comp.

(mol % LaF3)

0.0

10.0

20.030.0

40.0

2.555

2.983

3.386

3.738

4.090

Reference: [98]. Data reported in equation form.

900 KF-LaF3 800 Temperature (°C) 746 0 0 700 625 00 Ó 600 0 0 540 0 500 0 20 40 60 80 100 KF LaF3 % LaF3 Mol

KF-LiF

Electrical Conductance

The recommended values in table 102 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 99 A. Investigations critically re-examined

Ref.	LiF (mol %)	Temp. range (T)
87	0–100	1013-1343

Ref.	Rec mer va	com- 1ded lue	LiF (mol %)		% Dep	parture	
	Vol.	Page		%(min)	(T)	% (max)	(T)
87 87	1 1	2 3	100 0	5.0 3.5	(1160) (1280)	6.8 4.5	(1270) (1140)

Table 99 B.	Comparisons	with	previous	recommendations
-------------	-------------	------	----------	-----------------

TABLE	e 98 b.	Temper	ature-dependent e	quations
	ρ	=a+bT	' (gcm ³)	
). 		a	<i>b</i> ⋅ 10 ⁴	Stand. dev.

-6.241

-6.947-7.555

-7.682

-8.030

[98]

0.00276

0.00447

0.00510

0.00595 0.00492

FIGURE 26. Temperature-composition phase diagram for KF-LaF3. G. A. Bukhalova, E. P. Babaeva, and T. M. Khliyan, Russ. J. Inorg. Chem., 10, 1158 (1965).

=

TABLE 99 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87].	Mo[87]	20-20,000 measurements at 10,000 [87]

Comment: Brief remarks concerning reference [87] are discussed under the system CaF₂-LiF.

Density

The recommended values in table 103 are based on the work of Porter and Meaker (Archimedean method) [98].

TABLE IOU A. Investigations critically re-examine	TABLE 100 A.	Investigations	critically re-examine	d
---	--------------	----------------	-----------------------	---

Ref,	LiF (mol %)	Temp. range (T)
47 89 48 87 98 30	50 0–100 (graphical) 50 0–100 (graphical) 0–100 50	$\begin{array}{c} 788-1011\\ 1073,\ 1173,\ 1273\\ 788-1011\\ 1273\\ 973-1353\\ 873,\ 973,\ 1073\end{array}$

TABLE 100 B. Comparisons with previous recommendations

Ref.	Rec mer va	com- nded lue	LiF (mol %)		% Dep	parture	
	Vol.	Page		%(min)	(<i>T</i>)	% (max)	(T)
98 98	1 1	2 3	100 0	-4.5 -3.1	(1310) (1140– 1280)	-5.6	(1150)

TARLE 100 C. Cell materials and calibration

Cell material	Calibration
Tungsten, molybdenum or nickle bob suspended by a W or Mo wire, melt contained in a Mo crucible [89]	
Pt sphere and Pt suspension wire [48]	Water [48]
Biconical Mo plummet sus- pended from Mo wire, melt contained in graphite crucible [87, 98]	Molten KCl [87, 98]

Comment: Brief remarks concerning reference [98] are given under the system NaF-ThF₄. Density values in reference [98] were reported in the form of linear temperature-dependent equations with standard deviations in the range: 2.76×10^{-3} gcm⁻³ (0 mol % LiF) to 10.6×10^{-3} gcm⁻³ (70 mol % LiF).

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

Surface Tension

The recommended values in figure 27 are based on the work of Mellors and Senderoff (maximum bubble pressure method) [89].

TABLE 101 A.	Investigations	critically	re-examined
--------------	----------------	------------	-------------

Ref.	LiF (mol %)	Temp. range (T)
89	0, 25, 50, 75, 100 (graphical)	1023-1273

Comment: Mellors and Senderoff [89] corrected for the expansion of the bubble tip with temperature. The accuracy of their method was reported to be ± 0.5 dyn cm⁻¹.

Melt Preparation and Purification

Mellors and Senderoff [89] used ACS specified reagents (Harshaw Chemical Company).

The procedure used by Porter et al. [87, 98] is discussed under the system CaF₂-LiF.

TABLE 102. KF-LiF: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent LiF

TABLE 102 b. Temperature-dependent equations

 $\kappa = a + bT$ (ohm⁻¹ cm⁻¹)

Comp. (mol % LiF)	a · 101	<i>b</i> ⋅ 10³	Stand. dev. [87]
0.0	3.884	2.940	0.0179
20.0	-3,994	3.434	0.0253
35.0	-11.87	4.064	0.0390
50.0	-15.42	4.448	0.0348
70.0	-9.417	4.610	0.0280
85.0	-3.625	5.475	0.0310
100.0	23.95	5,830	0.0500

Reference: [87]. Data reported in equation form.

TABLE 103 a. KF-LiF: Density

Numerical values (gcm⁻³)

Mol percent LiF

Т	100.0	85.0	70.0	50.0	35.0	20.0	0.0
980 1000 1020 1040 1060 1180 1120 1140 1140 1140 1200 1220 1240 1260 1280 1300 1320 1340	$1.695 \\ 1.689 \\ 1.682 \\ 1.675 \\ 1.669 \\ 1.662 \\ 1.656 \\ 1.649 \\ 1.642 \\ 1.636 \\ 1.629 \\ 1.62$	1.756 1.746 1.737 1.728 1.718 1.709 1.690 1.681 1.672 1.662 1.653	$\begin{array}{c} 1.721\\ 1.711\\ 1.701\\ 1.692\\ 1.662\\ 1.652\\ 1.652\\ 1.652\\ 1.642\\ 1.632\\ 1.623\\ 1.613\end{array}$	1.806 1.796 1.775 1.774 1.764 1.753 1.742 1.731 1.721 1.710 1.699 1.688	$\begin{array}{c} 1.909\\ 1.897\\ 1.885\\ 1.873\\ 1.862\\ 1.850\\ 1.838\\ 1.826\\ 1.815\\ 1.803\\ 1.791\\ 1.779\\ 1.768\\ 1.756\\ 1.744\\ 1.732\\ 1.721\\ 1.709\\ 1.697\\ \end{array}$	1.870 1.858 1.847 1.835 1.824 1.813 1.801 1.799 1.779 1.776 1.756 1.745 1.733 1.722	1.844 1.831 1.819 1.794 1.781 1.769 1.756 1.744 1.731 1.719
				1	1	1	1

TABLE 103 b. Temperature-dependent equations

$p = \omega v \in (c \cup m)$	<i>bT</i> (gcm ^{−3})
---------------------------------	--------------------------------

Comp. (mol % LiF)	a	b·104	Stand. dev. [98]
0.0	2.555	-6.241	0.00276
20.0	2.483	-5.680	0.00690
35.0	2.484	-5.872	0.00596
50.0	2.407	-5.362	0.00357
70.0	2.273	-4.927	0.0106
85.0	2.278	-4.663	0.00610
100.0	2.074	-3.321	0.00705

Reference: [98]. Data reported in equation form.

FIGURE 27. Isotherms [89] (°C) of surface tension against molar composition for the system KF-LiF.

FIGURE 28. Temperature-composition phase diagram for KF-LiF.
A. G. Bergman and N. A. Bychkova-Shul'ga, Zh. Neorg. Khim. 2, 179 (1957).
[J. Inorg. Chem. USSR, 2, No. 1, 276 (1957)].
E. Akrust, B. Bjorge, H. Flood, and T. Forland, Ann. N.Y. Acad. Sci., 79, 830 (1960).

KF-NaF

Electrical Conductance

The recommended values in table 107 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 104 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. range (T)
14	0–100	1023–1323
87	0–100	1043–1343

T.pr r 104 B	Comparisone	with	nrevious	recommendations
TABLE IVE D.	Comparisons	with	previous	recommendations

Ref	Re me v	com- ended alue	Naf (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(T)
14 87 14 14 14 14 14 14 14 87	1 4.1 4.1 4.1 4.1 4.1 1 1	3 3 60 60 60 60 60 3 3	100 100 100 80 60 40 0 0 0	$\begin{array}{r} -8.8\\ 5.5\\ -14.1\\ -14.3\\ -15.0\\ -6.5\\ -18.9\\ -16.0\\ 3.5\end{array}$	(1323) (1310) (1323) (1273) (1273) (1273) (1273) (1273) (1280)	$ \begin{array}{r} -18.8 \\ 8.3 \\ -15.7 \\ -18.1 \\ -23.9 \\ -22.8 \\ -31.2 \\ -28.2 \\ 4.5 \end{array} $	(1273) (1360) (1313) (1223) (1223) (1073) (1153) (1153) (1140)

TABLE 104 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)	Calibration
Pt crucible [14]	Pt crucible and Pt disc [14]	20-20,000 measurements at 10,000 [87]	KCl solution at 18° C [14]
Capillary cell consisting of two boron ni- tride cylinders encased in a graphite jacket [87]	Mo [87]		

Comment: Batashev [14] reported an accuracy of 2-3 percent for conductivity measurements. Remarks concerning reference [87] are discussed under the system CaF_2 -LiF.

Density

The recommended values in table 108 are based on the work of Porter and Meaker (Archimedean method) [98].

TABLE 105 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. range (T)
89	40 (eutectic, graphical)	1023–1153
87	0–100 (graphical)	1273
98	0–100	1043–1353

TABLE 105 B. Comparisons with previous recommendations

Ref.	Rec mer va	com- ided lue	Naf (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(T)
98 98	1 1	3 3	100 0	-2.2 -3.1	(1280) (1140– 1280)	-2.5	(1340)

TABLE 105 C. Cell materials and calibration

Cell material	Calibration
W, Mo, or Ni bob suspended by W or Mo wire, melt contained in Mo crucible [89]	Molten KC1 [87, 98]
Mo plummet connected to quartz spring by Mo wire, melt contained in graphite crucible [87, 98]	

Comment: Remarks concerning reference [98] are under the system CaF₂-LiF. Density values were reported in the form of linear temperature equations with standard deviations in the range: 2.30 $\times 10^{-3}$ gcm⁻³ (80 mol % NaF) to 18.7×10^{-3} (12 mol % NaF).

Surface Tension

The recommended values in figure 29 are based on the work of Mellors and Senderoff (maximum bubble pressure method) [89].

TABLE 106 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. range (T)
89	40 (eutectic, graphical)	973–1198

Comment: Remarks concerning reference [89] are under the system KF.LiF.

Melt Preparation and Purification

Batashev [14] dehydrated sodium and potassium fluoride (obtained from Kahlbaum) by melting the salts in a platinum cup. Analysis of KF gave the results: K, 67.27 percent (theoretical 67.30%) and F, 32.51 percent (32.70); and results of NaF showed: Na, 54.63 percent (54.76) and F, 44.99 percent (45.24).

Salts in reference [89] were ACS grade (obtained from Harshaw Chemical Company).

The melt preparation procedure used by Porter et al. [87, 98] is discussed under the system CaF₂-LiF.

TABLE 107a. KF-NaF: Electrical conductance

Specific conductance: Numerical values (ohm-I cm-I)

Mol Percent NaF

T	100.0	80.0	60.0	40.0	25.0	12.0	0.0
1050				3.21		ľ	
1060				3.25			
1070				3.28			
1080				3.32	3.41	i I	
1090				3.36	3.45	3.45	
1100				8.89	3.49	3.48	
1110			3.76	3.43	3.53	3.52	
1120			3.79	3.46	3.57	3.55	
1130) '		3.83	3.50	3.61	3.59)
1140			3.86	3.54	3.65	3.62	3.74
1150			3.90	3.57	3.69	3.66	3.77
1160			3.93	3.61	3.73	3.69	3.80
1170	{		3.97	3.64	3.76	3.73	3.83
1180		ł	4.00	3.68	3.80	3.76	3.86
1190			4.04	3.71	3.84	3.80	3.89
1200			4.07	3.75	3.88	3.83	3.92
1210			4.11	3.79	3.92	3.87	3.95
1220			4.14	3.82	3.96	3.91	3.98
1230	1	4.39	4.18	3.86	4.00	3.94	4.01
1240		4.42	4.21	3.89	4.04	3.98	4.03
1250		4.46	4.25	3.93	4.08	4.01	4.06
1260		4.49	4.28	3.96	4.12	4.05	4.09
1270		4.52	4.32	4.00	4.16	4.08	4.12
1280		4.56	4.35	4.04	4.20	4.12	4.15
1290		4.59	4.39	4.07	4.24	4.15	4.18
1300		4.63	4.42	4.11	4.28	4.19	4.21
1310	5.33	4.66	4.46	4.14	4.32	4.22	4.24
1320	5.39	4.69	4.49	4.18	4.36	4.26	4.27
1330	5.44	4.73	4.53	4.22	4.40	4.29	4.30
1340	5.50	4.76	4,56	4.25	4.44	4.33	4.33
	1						
			·				

TABLE 107 b. Temperature-dependent equations

$\kappa = a + bT(\text{ohm}^{-1} \text{ cm}^{-1})$

Comp. (mol % NaF)	a·10 ¹	b·103	Stand. dev. [87]
$\begin{array}{c} 0.0 \\ 12.0 \\ 25.0 \\ 40.0 \\ 60.0 \\ 80.0 \\ 100.0 \end{array}$	3.884-3.959-8.667-5.467-1.2821.797-20.60	2.940 3.525 3.958 3.580 3.500 3.420 5.640	0.0179 0.0253 0.0100 0.0420 0.0226 0.0280 0.0660

Reference: [87]. Data reported in equation form.

TABLE 108 a. KF-NaF: Density

Numerical values (gcm⁻³)

Mol percent NaF

T	100.0	80.0	60.0	40.0	25.0	12.0	0.0
1050 1065 1080 1095 1110 1125 1140 1155 1170 1185 1200 1215 1230 1245 1260 1275 1290 1305 1320 1335 1350	1.898 1.889 1.879 1.870 1.861 1.852	1.896 1.887 1.87 1.869 1.860 1.852 1.843 1.834 1.834 1.835 1.816 1.807	1.895 1.887 1.878 1.870 1.862 1.853 1.845 1.836 1.828 1.819 1.811 1.802 1.794 1.785 1.777 1.768	1.938 1.929 1.920 1.911 1.902 1.893 1.884 1.875 1.866 1.857 1.848 1.839 1.830 1.821 1.812 1.803 1.794 1.785 1.776 1.767 1.758	$\begin{array}{c} 1.810\\ 1.806\\ 1.802\\ 1.797\\ 1.793\\ 1.789\\ 1.789\\ 1.776\\ 1.776\\ 1.776\\ 1.776\\ 1.763\\ 1.755\\ 1.755\\ 1.755\\ 1.755\\ 1.755\\ 1.746\\ 1.742\\ 1.737\\ 1.733\\ 1.729\\ \end{array}$	1.756 1.755 1.753 1.752 1.750 1.749 1.747 1.746 1.744 1.743 1.741 1.748 1.737 1.735 1.737 1.735 1.734 1.732 1.731	1.844 1.834 1.825 1.815 1.806 1.797 1.787 1.778 1.769 1.759 1.750 1.741 1.731 1.722 1.712

=

TABLE 108 b. Temperature-dependent equations

Comp. (mol % NaF)	a	b · 104	Stand. deviation [98]
0.0	2.555	$ \begin{array}{r} -6.241 \\ -1.011 \\ -2.853 \\ 6.000 \end{array} $	0.00276
12.0	1.867		0.0187
25.0	2.114		0.0145
40.0	2.568		0.0120
60.0	2.530		0.00279
80.0	2.601		0.00230
100.0	2.682		0.00239

 $\rho = a + bT \ (\text{gcm}^{-3})$

Reference: [98]. Data reported in equation form. Two-dimensional statistical analysis was unsuccessful.

Temperature (°C)

FIGURE 29. Plot [89] of surface tension against temperature for the system KF-NaF.

FIGURE 30. Temperature-composition phase diagram for KF-NaF. A. G. Bergman and E. P. Dergunov, "Fusion Diagram of LiF-KF-NaF," Compt. Rend. Acad. Sci. USSR. 31, 753-54 (1941).

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

KF-SmF₃

Electrical Conductance

The recommended values in table 111 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

m . 100		T	1.1 11	
TABLE 109	Α.	Investigations	critically	re-examined
			or solution of the second of t	

Ref.	SmF3 (mol %)	Temp. range (T)
87	0, 10.0, 20.0, 30.0, 40.0, 50.0	1063-1343

TABLE 109 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- nded lue	SmF₃ (mol %)		% Dep	parture	
	Vol.	Page		% (min)	(T)	% (max)	(T)
87	1	3	0	3.5	(1280)	4.5	(1140)

TABLE 109 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87]

Density

The recommended values in table 112 are based on the work of Meaker, Porter, and Kesterke (Archimedean method) [87].

TABLE 110 A. Investigations critically re-examined

Ref.	SmF₃ (mol %)	Temp. range (T)
87	10.0, 20.0, 30.0, 40.0, 50.0	1100–1343

TABLE 110 B. Cell materials and calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87]	Molten KCl [87]

Melt Preparation and Purification

Reagent-grade chemicals were used in references [87] and [98]. After vacuum drying at 400 °C the salts were cooled and combined in the correct proportions. The salts were then placed in graphite crucibles and heated under vacuum (50 µm Hg) to 600 °C. For density and conductance measurements the mixtures were melted in an atmosphere of helium in a controlled-atmosphere chamber. Melt compositions were confirmed by analysis after density measurements.

TABLE 111 a. KF-SmF₃: Electrical conductance

Specific conductance: Numerical values (ohm 1 cm-1)

Mol percent SmF₃

_

Т	50.0	40.0	30.0	20.0	10.0	0.0
1070					2.43	
1080					2.4/	
1090				1 05	2.51	
1100				1.85	2.55	
1110				1.88	2.59	
1120		1 29		1.92	2.05	
1130		1.02		1.90	2.01	2 74
1140		1.00		2.90	2.11	0.14 9 77
1160		1.50		2.01	2.13	3.66
1170		1.45		2.05	2.12	3.00
1380		1.45		2.00	2.03	3.05
1100		1.40	1 72	2.11	2.07	3.00
1200		1.51	1.76	9 17	2.91	3.09
1200		1.57	1 79	2.11	2.90	3 95
1220		1.61	1 81	2.24	3.02	3.98
1230		1.61	1 84	2 27	3.06	4 01
1240		1.67	1 87	2 30	3 10	4 03
1250	1.67	1.70	1.90	2.34	3.14	4.06
1260	1.70	1.73	1.92	2.37	3.18	4.09
1270	1.74	1.77	1.95	2.40	3.22	4.12
1280	1.77	1.80	1.98	2.43	3.26	4.15
1290	1.81	1.83	2.01	2.46	3.30	4.18
1300	1.84	1.86	2.03	2.50	3.34	4.21
1310	1.88	1.89	2.06	2.53	3,38	4.24
1320	1.92	1.93	2.09	2.56	3.42	4.27
1330	1.95	1.96	2.12	2.59	3.46	4.30
1340	1.99	1.99	2.14	2.63	3.50	4.33

TABLE 111 b. Temperature-dependent equations

i	$\kappa = a + bT$ (of	1m ⁻¹ cm ⁻¹)	
Comp. (mol % SmF)	a	6.103	Stand. deviation [87]
0.0 10.0 20.0 30.0 40.0 50.0	0.388 -1.798 -1.697 -1.523 -2.293 -2.771	2.940 3.953 3.226 2.736 3.196 3.550	0.0179 0.0155 0.0067 0.0138 0.0078 0.0078

Reference: [87]. Data reported in equation form.

TABLE 112 a. KF-SmF₃: Density

Numerical values (gcm⁻³)

Mol percent SmF₃

T	50.0	40.0	30.0	20.0	10.0	0.0
1100 1110 1120 1130 1140 1150 1160 1170 1180		3.445 3.437 3.428 3.419 3.411 3.402	3.051 3.043 3.034 3.025 3.017 3.008	2.678 2.670 2.663 2.655 2.647 2.647 2.647 2.632 2.632 2.624 2.617	2.286 2.280 2.273 2.266 2.259 2.252 2.245 2.238 2.232	1.844 1.837 1.831 1.825 1.819
1190 1200		3.394 3.385	3.000	2.609	2.225	1.812
1210		3.377	2.991	2.594	2.210 2.211	1.800
1220		3.368	2.974	2.586	2.204	1.794
1230	3.838	3.359	2.965	2.579	2.197	1.787
1240	3.831	3.351	2.956	2.571	2.191	1.781
1250	3.825	3.342	2.948	2.564	2.184	1.775
1260	3.818	3.334	2.939	2.556	2.177	1.769
1270	3.812	3.325	2.931	2.548	2.170	1.762
1280	3.805	3.316	2.922	2.541	2.163	1.756
1290	3.799	3.308	2.913	2.533	2.156	1.750
1300	3.792	3.299	2.905	2.526	2.150	1.744
1310	3.786	3.291	2,896	2.518	2.143	1.737
1320	3.779	3.282	2.888	2.510	2.130	1.731
1940	3.113	3.2/4	9 070	2.503	2.129	1.730
1940	5.100	5.205	2.010	4,495	4.1ZZ	1.719

TABLE 112 b. Temperature-dependent equations

 $\rho = a + bT (gcm^{-3})$

Comp. (mol % SmF3)	a	, b · 104	Stand. deviation [87, 98]
0.0	2.555	-6.241	0.00276
10.0	3,038	-6.836	0.0028
20.0	3.515	-7.612	0.0046
30.0	4.024	-8.605	0.0028
40.0	4.414	-8.576	0.0047
50.0	4.636	-6.493	0.0044
		1	1

References: [87] and [98] (for KF). Data reported in equation form.

FIGURE 31. Temperature-composition phase diagram for KF-SmF₈. E. P. Dergunov, Dokl. Akad. Nauk SSSR, **85** [5] 1027 (1952).

KF-ThF₄

Electrical Conductance

The recommended values in table 115 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 113 A. Investigations critically re-examined

· Ref.	ThF4 (mol %)	Temp. range (T)
87	0.0, 7.1, 13.7, 19.7, 27.5	1103-1343

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

and and and an and and provide a cooling and	TABLE 113	B. Com	parisons v	with	previous	recommendations
--	-----------	--------	------------	------	----------	-----------------

Ref.	Rec mer val	om- Ided Iue	ThF4 (mol .%)		% Dep	oarture	
	Vol.	Page		% (min)	(<i>T</i>)	% (max)	(<i>T</i>)
87	1	3	0	3.5	(1280)	4.5	(1140)

TABLE 113 C.	Cell materials	and calibration
---------------------	----------------	-----------------

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87]

Comment: The specific conductance values measured in reference [87] were reported reproducible to ± 1 percent. The precision of the measurements was ± 3 percent. The measured resistance was found to be independent of frequency over the range 20 to 20,000 hertz.

Density

The recommended values in table 116 are based on the work of Meaker and Porter (Archimedean method) [98].

TABLE 114 A. Investigations critically re-examined

Ref.	ThF4 (mol %)	Temp. range (T)
87	0–28 (graphical)	1273
98	0.0, 7.1, 13.7, 19.7, 27.5	1088–1353

TABLE 114 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- nded lue	ThF₄ (mol %)	% Departure			
	Vol.	Page		% (min)	(<i>T</i>)	% (max)	(T)
98	1	3	0	-3.1	(1140– 1280)		

]

TABLE 114 C. Cell materials and calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87, 98]	Molten KCl [87, 98]

Comment: Brief remarks concerning reference [98] are discussed under the system CaF₂-LiF.

Density values [98] were reported in the form of linear temperaturedependent equations with standard deviations in the range: 2.76×10^{-3} gcm⁻³ (0 mol % ThF₄) to 32.0×10^{-3} gcm⁻³ (7.1 mol % ThF₄).

Melt Preparation and Purification

The procedure used by Porter et al. [87, 98] for the preparation of pure salts is discussed under the system CaF_2 -LiF. Thorium tetrafluoride contained less than 0.1 weight-percent of metallic impurities.

TABLE 115 a.	KF-ThF₄:	Electrical	conductance
--------------	----------	------------	-------------

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent ThF4

Т	27.5	19.7	13.7	7.1	0.0
1110 1120 1130 1140 1150 1160 1170 1180	$1.30 \\ 1.32 \\ 1.35 \\ 1.38 \\ 1.40 \\ 1.43$	1.78 1.81	2.30 2.33 2.35 2.38	2.68 2.72 2.75 2.78 2.81 2.85 2.88 2.91	3.74 3.77 3.80 3.83 3.86
1190	1.46	1.84	2.41	2.95	3.89
1200	1.48	1.87	2.44	2.98	3.92
1210	1.51	1.89	2.47	3.01	3.95
1220	1.54	1.92	2.50	3.04	3.98
1230	1.56	1.95	2.53	3.08	4.01
1240	1.59	1.98	2.56	3.11	4.03
1250	1.62	2.00	2.59	3.14	4.06
1260	1.64	2.03	2.62	3.18	4.09
1270	1.67	2.06	2.65	3.21	4.12
1280	1.70	2.09	2.68	3.24	4.15
1290	1.72	2.12	2.71	3.27	4.18
1300	1.75	2.14	2.74	3.31	4.21
1310	1.78	2.17	2.77	3.34	4.24
1320	1.80	2.20	2 80	3.37	4.27.
1330	1.83	2.23	2.83	3.41	4.30
1340	1.86	2.26	2.86	3.44	4.33

TABLE 115 b. Temperature-dependent equations

 $\kappa = a + bT \text{ (ohm}^{-1} \text{ cm}^{-1}\text{)}$

Comp. (mol % ThF4)	a	6.103	Stand. deviation [87]
0.0	$\begin{array}{c} 0.388 \\ -0.962 \\ -1.099 \\ -1.474 \\ -1.718 \end{array}$	2.940	0.0179
7.1		3.284	0.0182
13.7		2.952	0.0151
19.7		2.783	0.00763
27.5		2.668	0.00625

Reference: [87]. Data reported in equation form.

TABLE 116 a. KF-ThF4: Density

Numerical values (gcm⁻³)

Mol percent ThF4

TABLE 116 b. Temperature-dependent equations

 $\rho = a + bT (gcm^{-3})$

Comp. (mol % ThF₄)	<i>a</i>	b-10 ³	Stand. dev. [98]
0.0	2.555	-0.6241	0.00276
7.1	3.385	0.9768	0.032
13.7	3.625	0.8359	0.00628
19.7	3.963	-0.8779	0.00913
27.5	4.231	-0.8335	0.00860

Reference: [98]. Data reported in equation form. Two-dimensional statistical analysis was unsuccessful.

FIGURE 32. Temperature-composition phase diagram for KF-ThF4.
W. J. Asker, E. K. Segnit, and A. W. Wylie, J. Chem. Soc. (London), pg. 4471, Nov. 1952.

KF-UF₄

Electrical Conductance

The recommended values in table 119 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 117 A.	Investigations	critically	re-examined
--------------	----------------	------------	-------------

Ref.	UF4 (mol %)	Temp. range (T)
87	0, 7. 5, 20, 30, 40, 50	1103–1343

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE 117 B. Comparisons with previous recommendations

Ref.	Rec men val	om- ided lue	UF₄ (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(T)
87	1	3	0	3.5	(1280)	4.5	(1140)

TABLE 117 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87]

Comment: The specific conductance values measured in reference [87] were reported reproducible to ± 1 percent. The precision of the measurements was ± 3 percent. The measured resistance was found to be independent of frequency over the range 20 to 20,000 he:tz.

Density

The recommended values in table 120 are based on the work of Meaker and Porter (Archimedean method) [98].

TABLE 118 A. Investigations critically re-examined

Ref.	UF4 (mol %)	Temp. range (T)
87	40–100 (graphical	1273
98	0–60	1103–1353

TABLE 118 B. Comparisons with previous recommendations

Ref.	Rec mer val	om- nded lue	UF₄ (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(T)
98	1	3	0	-3.1	(1140 1280)		

=

TABLE 118 C. Cell materials and calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87, 98]	Molten KCl [87, 98]

Comment: Remarks concerning reference [98] are given under the system CaF_{2} -LiF.

Density results [98] were reported in the form of linear temperaturedependent equations with standard deviations in the range: 2.76×10^{-3} gcm⁻³ (0 mol % UF₄) to 42.9×10^{-3} gcm⁻³ (50 mol % UF₄).

Melt Preparation and Purification

Reagent-grade chemicals were used in references [87] and [98]. After vacuum drying at 400 °C the salts were cooled and combined in the correct proportions. The salts were then placed in graphite crucibles and heated under vacuum (50 microns) to 600 °C. For density and conductance measurements the mixtures were melted in an atmosphere of helium in a controlled-atmosphere chamber. Melt compositions were confirmed by analyses after density measurements.

TABLE 119 a. KF-UF4: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent UF4

Т	50.0	40.0	30.0	20.0	7.5	0.0
1110 1120 1130 1140	1.34 1.36 1.38 1.41					3.74
1160 1170	1.45 1.48				2.87	3.80 3.83
1180 1190 1200	1.50 1.52 1.55	1.32 1.34 1.36			2.90 2.93 2.96	3.86 3.89 3.92
1210 1220	1.57	1.38	1.48	1.96	2.99	3.95 3.98
1230 1240 1250	1.62 1.64 1.66	1.41 1.43 1.45	1.52 1.55 1.57	1.99 2.01 2.04	3.04 3.07 3.10	4.01 4.03 4.06
1260 1270 1280	1.69 1.71 1.73	1.47 1.49	1.59 1.62	2.06 2.09 2.11	3.13 3.16 3.19	4.09 4.12 4.15
1290 1300	1.76	1.52	1.66	2.14	3.22 3.24	4.18 4.21
1310 1320 1330	1.80 1.83 1.85	1.56 1.58 1.60	1.71 1.73 1.76	2.19 2.22 2.24	3.27 3.30 3.33	4.24 4.27 4.30
1340	1.87	1.62	1.78	2.27	3.36	4.33

TABLE 119 b. Temperature-dependent equations

$\kappa = a + bT $ (ohm ⁻¹ cm ⁻¹)						
Comp. (mol % UF4)	a	b · 103	Stand. dev. [87]			
0.0 7.5 20.0 30.0	$\begin{array}{r} 0.388 \\ -0.448 \\ -1.129 \\ -1.355 \end{array}$	2.940 2.840 2.534 2.340	0.0179 0.0134 0.0121 0.0166			
40.0 50.0	-0.870 -1.248	1.856	0.00913			

Reference: [87]. Data reported in equation form.

TABLE 120 a. KF-UF4: Density

Numerical values (gcm⁻³)

Mol percent UF4

Т	60.0	50.0	40.0	30.0	20.0	7.5	0.0
T 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1280 1240 1250	60.0 5.044 5.034 5.024 5.014 5.004 4.993 4.983 4.963 4.963 4.963 4.943 4.923 4.923	50.0 4.535 4.522 4.510 4.494 4.471 4.458 4.445 4.445 4.445 4.445 4.445 4.493 4.406 4.393 4.367 4.354	40.0 3.979 3.968 3.957 3.946 3.935 3.924 3.913 3.902 3.891 3.880 3.869 3.856 3.845 3.845	30.0 3.385 3.374 3.364 3.354	20.0 2.893 2.887 2.887	7.5 2.299 2.289 2.200 2.270 2.260 2.251 2.241 2.232 2.222 2.212 2.203 2.193 2.183	0.0 1.844 1.037 1.831 1.825 1.819 1.812 1.806 1.800 1.794 1.787 1.781 1.775
1260 1270 1280 1290 1300 1310 1320	4.903 4.893 4.882 4.872 4.862 4.852 4.852 4.842	4.341 4.328 4.315 4.302 4.289 4.276 4.263	3.824 3.813 3.802 3.791 3.780 3.769 3.758	3.344 3.334 3.324 3.314 3.304 3.294 3.283	2.800 2.874 2.867 2.861 2.854 2.848 2.848 2.842 2.835	2.103 2.174 2.164 2.154 2.145 2.135 2.126 2.116	1.769 1.762 1.756 1.750 1.744 1.737 1.731
1330 1340 1350	4.832 4.822 4.012	4.250 4.237 4.224	3.747 3.736 3.725	3.273 3.263 3.253	2.829 2.322 2.816	2.106 2.097 2.087	1.725 1.719 1.712

67

.

TABLE 120 b. Temperature-dependent equations

$\rho = a + bT (gcm^{-3})$					
Comp. (mol % UF4)	a	b·10.	Stand. dev. [98]		
0.0	2.555	-6.241	0.00276		
7.5	3.387	-9.629	0.0206		
20.0	3.681	-6.407	0.00800		
30.0	4.618	-10.110	0.00398		
40.0	5.218	-11.060	0.0254		
50.0	5.974	-12.960	0.0429		
60.0	6.174		0.0201		

Reference: [98]. Data reported in equation form.

FIGURE 33. Temperature-composition phase diagram for KF-UF4.
R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and
W. R. Grimes, J. Amer. Ceram. Soc. 41, 538 (1958).

KF-YF₃

Electrical Conductance

The recommended values in table 123 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 121 A. Investigations critically re-examined

Ref.	¥F3 (mol %)	Temp. range (T)
87	0, 7.5, 17.5, 30.0, 42.5, 52.5	1123-1343

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE 121 B. Comparisons with previous recommendations

Ref.	Rec men val	om- aded lue	YF3 (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(<i>T</i>)
87	1	3	0	3.5	(1280)	4.5	(1140)

TABLE 121 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [0 7]	20-20,000 measurements at 10,000 [87]

Comment: The specific conductance values measured in reference [87] were reported reproducible to ± 1 percent. The precision of the measurements was ± 3 percent. The measured resistance was found to be independent of frequency over the range 20 to 20,000 hertz.

Density

The recommended values in tables 124, 125 arc based on the work of Meaker and Porter (Archimedean method) [98].

TABLE 122 A. Investigations critically re-examined

Ref.	YF3 (mol %)	Temp. range (T)
87	0–53 (graphical)	1273
98	0, 7.5, 17.5, 30.0, 42.5, 52.5	1073–1353

TABLE 122 B. Comparisons with previous recommendations

Ref.	Recom- mended f. value		YF3 (mol %)		parture		
	Vol.	Page		% (min)	(T)	% (max)	(T)
98	1	3	0	-3.1	(1140– 1280)		

-

TABLE 122 C. Cell materials and calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87, 98]	Molten KCl [87, 98]]

Comment: Brief remarks concerning reference [98] are given under the system CaF2-LiF.

Density values [98] were reported in the form of linear temperaturedependent equations with standard deviations in the range: 2.13×10^{-3} gcm⁻³ (7.5 mol % YF₈) to 6.29×10^{-3} gcm⁻³ (52.5 mol % YF₈).

Melt Preparation and Purification

The method used by Porter et al. [87, 98] is described under the system CaF_2 -LiF. Yttrium fluoride contained less than 0.1 weight-percent of metallic impurities.

TABLE 123 a. KF-YF ₃ : Electrical co	onductance
---	------------

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

	Mol percent YF ₃								
T	52.5	42.5	30.0	17.5	7.5	0.0			
1130 1140 1150 1160 1170 1200 1210 1220 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1320 1330	$1.20 \\ 1.24 \\ 1.20 \\ 1.31 \\ 1.35 \\ 1.39 \\ 1.43 \\ 1.46 \\ 1.50 \\ 1.54 \\ 1.57 \\ 1.61 \\ 1.65 \\ 1.69 \\ 1.72 \\ 1.76 \\ 1.80 \\ 1.83 \\ 1.87 \\ 1.91 $	1.42 1.45 1.48 1.51 1.54 1.57 1.60 1.62 1.65 1.68 1.71	$1.51 \\ 1.54 \\ 1.56 \\ 1.59 \\ 1.61 \\ 1.64 \\ 1.67 \\ 1.69 \\ 1.72 \\ 1.74 \\ 1.77 \\ 1.79$	2.27 2.30 2.33 2.36 2.39 2.42 2.45 2.48 2.51 2.54 2.57 2.60 2.63 2.66	2.08 2.91 2.94 2.96 2.99 3.02 3.05 3.08 3.10 3.13 3.16 3.19 3.22 3.24 3.27 3.30 3.33 3.36 3.38 3.41 2.44 3.47	$\begin{array}{c} 3.74\\ 3.77\\ 3.80\\ 3.83\\ 3.86\\ 3.89\\ 3.92\\ 3.95\\ 3.98\\ 4.01\\ 4.03\\ 4.06\\ 4.09\\ 4.12\\ 4.15\\ 4.18\\ 4.21\\ 4.24\\ 4.27\\ 4.20\\ 4.33\\ \end{array}$			
	I		ı	<u> </u>	·	<u> </u>			

TABLE 123 b. Temperature-dependent equations

 $\kappa = a + bT$ (ohm⁻¹ cm⁻¹)

Comp. (mol % YF3)	a	b·103	Stand. deviation [87]	
0.0	0.388	2.940	0 0179	
7.5	-0.291	2,805	0.0325	
17.5	-1.362	3.000	0.0223	
30.0	-1.633	2.557	0.02557	
42.5	-2.096	2.839	0.0292	
52.5	-3.070	3.715	0.0232	
		1	l	

Reference: [87]. Data reported in equation form.

TABLE 124 a. KF-YF3: Density

Numerical values (gcm⁻³)

Mol percent YF3

Т	50	45	·40	35	30	25	20	15	10	. 5	0	43
1080 1095 1110 1125 1140 1155 1170 1185 1200 1215 1230 1245 1260 1275 1290 1305 1320 1335 1350	2.942 2.932 2.923 2.913 2.903 2.893 2.884 2.874 2.864 2.855 2.845 2.835 2.826	2.806 2.797 2.787 2.777 2.768 2.758 2.748 2.739 2.729 2.720 2.710 2.700	2.666 2.657 2.647 2.638 2.628 2.618 2.609 2.599 2.590 2.590 2.580	2.540 2.531 2.521 2.512 2.502 2.493 2.483 2.474 2.464	2.428 2.418 2.409 2.399 2.390 2.380 2.371 2.362 2.352	2.327 2.318 2.308 2.299 2.289 2.280 2.271 2.261 2.252 2.243	2.238 2.229 2.219 2.201 2.191 2.182 2.173 2.163 2.154 2.145 2.136	2.159 2.150 2.141 2.131 2.122 2.113 2.104 2.094 2.085 2.076 2.067 2.057 2.048 2.039 2.030	$\begin{array}{c} 2.081 \\ 2.072 \\ 2.063 \\ 2.053 \\ 2.044 \\ 2.035 \\ 2.026 \\ 2.016 \\ 2.007 \\ 1.998 \\ 1.989 \\ 1.980 \\ 1.970 \\ 1.961 \\ 1.952 \\ 1.943 \\ 1.934 \\ 1.925 \end{array}$	$\begin{array}{c} 1.984\\ 1.975\\ 1.966\\ 1.957\\ 1.947\\ 1.938\\ 1.929\\ 1.920\\ 1.911\\ 1.990\\ 1.991\\ 1.892\\ 1.883\\ 1.874\\ 1.865\\ 1.856\\ 1.847\\ 1.838\\ 1.829\\ 1.820\\ \end{array}$	1.841 1.831 1.022 1.813 1.804 1.795 1.786 1.777 1.768 1.779 1.750 1.741 1.732 1.723 1.714	2.748 2.738 2.729 2.719 2.709 2.700 2.690 2.681 2.671 2.661 2.652

TABLE 124 b. Two-dimensional equation and statistical parameters

 $\rho = a + bT + cC + dC^2 + eC^3 + fCT^2 (gcm^{-3})$

a	b·104	c·10 ²	d · 104	e·107	f-1010	Max. percent departure	Stand. error of est.
5.44520	-6.90657	-4.49311	2.59050	-9.59873	3.48411	-0.43 (1343.2K, 82.5 mol % KF)	0.003

Reference: [98]. Data reported in equation form. C = mol percent KF.

TABLE 125 a. KF-YF₃: Density

Numerical values (gcm⁻³)

Mol percent YF₃

T	52.5	42.5	30.0	17.5	7.5	0.0
$\begin{array}{c} 1080\\ 1095\\ 1110\\ 1125\\ 1140\\ 1155\\ 1170\\ 1185\\ 1200\\ 1215\\ 1230\\ 1245\\ 1260\\ 1275\\ 1290\\ 1305\\ 1320\\ 1335\\ 1350\\ \end{array}$	3.008 2.998 2.988 2.978 2.968 2.959 2.949 2.939 2.929 2.919 2.909 2.900 2.890	2.738 2.728 2.718 2.698 2.698 2.677 2.667 2.657 2.647 2.657 2.647	2.425 2.416 2.407 2.398 2.389 2.380 2.370 2.361 3.352	2.190 1.182 1.174 2.165 2.157 2.149 2.141 2.133 2.125 2.117 2.108 2.100 2.092	2.037 2.028 2.018 2.009 2.000 1.990 1.981 1.971 1.962 1.952 1.943 1.934 1.915 1.905 1.896 1.886 1.886 1.877 1.867	1.844 1.834 1.825 1.815 1.806 1.797 1.787 1.778 1.769 1.759 1.750 1.741 1.731 1.722 1.712
					ŀ	

TABLE 125 b. Temperature-dependent equations

 $\rho = a + bT (\text{gcm}^{-3})$

Comp. (mol % YF ₃)	a	b·104	Stand. dev [98]
0.0	2.555	-6.241	0.00276
7.5	2.717	-6.293	0.00213
17.5	2.825	-5.429	0.00413
30.0	3.177	-6.110	0.00263
42.5	3.551	-6.772	0.00300
52.5	3.775	-6.558	0.00629

107

1

3

0

Reference: [98]. Data reported in equation form.

FIGURE 34. Temperature-composition phase diagram for KF-YF₈. G. A. Bukhalova and E. P. Babaeva, Russ. J. Inorg. Chem. 11, 350 (1966).

KF-ZrF₄

Electrical Conductance

The recommended values in table 130 are based on the work of Sheiko (classical ac technique) [107].

TABLE 126 A. Investigations critically re-examined

Ref.	ZrF4 (mol %)	Temp. range (T)
107	0-33.3	1233

Ref.	Rec mcr va	com- ndcd lue	ZrF. (mol %)		% Do _F	arturo	
	Vol.	Page		% (min)	(<i>T</i>)	% (max)	(T)

51.6

(1233)

TABLE 126 B. Comparisons with previous recommendations
TABLE 126 C. Cell materials and electrodes

Cell material	Electrodes
Porcelain crucible [107]	Pt [107]

Density

The recommended values in table 131 are based on the work of Sheiko (Archimedean method) [107].

TABLE 127 A.	Investigations	critically	re-examined
--------------	----------------	------------	-------------

Ref.	ZrF4 (mol %)	Temp. range (T)
107	033.3	1233

TABLE 127 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- ded ue	ZrF4 (mol %)		% Depa	arlure	
	Vol.	Page		% (min)	(<i>T</i>)	%(max)	(<i>T</i>)
107	1	3	0	-2.3	(1233)		

Comment: Sheiko [107] used a platinum sphere as the float and used a platinum cup to contain the melt.

Viscosity

The recommended values in table 132 are based on the work of Sheiko (oscillating sphere method) [107].

TABLE THO II. INTOSTIGUTIONS CITICUTY TO CAUMING	TABLE 128 A.	Investigations	critically	re-examined
--	--------------	----------------	------------	-------------

Ref.	ZrF4 (mol %)	Temp. range (T)
107	0-33.3	1253

Comment: Sheiko [107] used a platinum sphere as the oscillating bob.

Surface Tension

The recommended values in table 133 are based on the work of Sheiko (maximum bubble pressure method) [107].

TABLE 129 A. Investigations critically re-examined

Ref.	ZrF, (mol %)	Temp. range (T)
107	0–33.3	1233

TABLE 129 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- nded lue	ZrF4 (mol %)		% Dep	% Departure				
	Vol.	Page		% (min)	(T)	% (max)	(<i>T</i>)			
107	1	3	0	0.4	(1233)					

TABLE 130. KF-ZrF4: Electrical conductance

-

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent ZrF4

Т	33.3	32.1	30.8	30.0	29.2	28.6	27.3	25.0	22.2	19.9	16.7	14.3	8.3	0
1233.2	2.61	2.68	2.81	2.96	3.05	3.14	3.37	3.81	3.94	4.28	4.67	4.84	5.30	5.86

Reference: [107]. Due to limited data the experimental values are given.

PROPERTIES OF FLUORIDES AND MIXTURES

TABLE 131. KF-ZrF4: Density

Numerical values (gcm⁻³)

Mol percent ZrF4

T	33.3	32.1	30.8	29.2	27.3	25.0	22.2	18.8	14.3	8.3	0
1233.2	2.220	2.190	2.173	2.168	2.139	2.129	2.114	2.086	2.043	1.952	1.800

Reference: [107]. Due to limited data the experimental values are given.

TABLE 132. KF-ZrF4: Viscosity

Numerical values (cp)

Mol percent ZrF4

=	· · · · · · · · · · · · · · · · · · ·										
T	33.3	32.1	30.2	29.2	27.3	25.0	22.2	18.8	14.3	8.3	0
1253.2	2.28	2.24	2.22	2.19	2.18	2.15	2.01	1.91	1.79	1.69	1.59

Reference: [107]. Due to limited data the experimental values are given.

TABLE 133. KF-ZrF4: Surface tension

Numerical values (dyn cm⁻¹)

Mol percent ZrF4

T	33.3	32.1	30.8	29.2	27.3	25.0	22.2	18.8	8.3	0
1233.3	93.2	98.4	99.7	102.8	104.5	109.6	. 120.0	125.9	133.3	135.7

Reference: [107]. Due to limited data the experimental values are given.

73

Т

FIGURE 35.	Temperature-composition	phase	diagram	for	KF-ZrF.
A. V.	Novoselova, Yu. M. Koren	ev, and	Yu. D. S	imar	10v,
D	okl. Akad. Nauk S.S.S.R., 1	39 [4],	893 (196	1).	
C. J.	Barton, H. Insley, R. E. M	etcalf,]	R. E. Tho	ma a	ind
	W. R. Grimes, ORNL-254	8, pg. 5	6 (1959)		

LaF₃-LiF

Electrical Conductance

The recommended values in table 136 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 134 A. Investigations critically re-examined

Ref.	LiF (mol %)	Temp. range (T)
87	67.55–100	1143–1343

TABLE	134	B.	Com	parisons	with	previous	recommendations
	TO T		00111	0000000		p	

Ref.	Rec mer val	om- ided lue	LiF (mol %)		% Dep	arture	
	Vol.	Page		% (min)	(T)	% (max)	(T)
87	1	2	100	5.1	(1150)	8.2	(1310)

1. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE	134	C.	Cell	materials	and	calibration
1 7 7 7 7 7	TOX	u .	Cert	materials	anu	Campianon

			_
Cell material	Electrodes	Frequency range (Hz)	-
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20–20,000 measurements at 10,000 [87]	-

Comment: Brief remarks concerning reference [87] are discussed under the system CaF_2 -LiF.

Density

The recommended values in table 137 are based on the work of Meaker and Porter (Archimedean method) [98].

TABLE 135 A	. 1	nvestigations	critically	re-examined
TUPER TOO 1		in Congations	cincially	10-0Aummou

Ref.	LiF (mol %)	Temp. range (T)
87	75–100 (graphical)	1273
98	75, 80, 85, 90, 95, 100	1103–1353

TABLE 155 D. Comparisons with previous recommendation

Ref.	Rec mer va	om- aded lue	LiF (mol %)		% D	eparture	
	Vol.	Page	ip:	% (min)	(T)	% (max)	(T)
98	1	2	100	-4.5	(1310)	-5.6	(1150)

TABLE 135 C.	Cell materials	and calibration
--------------	----------------	-----------------

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87, 98]	Molten KC1 [87, 98]

Comment: Brief remarks concerning reference [98] are given under the system CaF_2 -LiF.

Density values [98] were reported in the form of linear temperature-dependent equations with standard deviations in the range: 2.00×10^{-3} gcm⁻³ (75 mol % LiF) to 7.05×10^{-3} gcm⁻³ (100 mol % LiF).

Melt Preparation and Purification

The method of salt purification used by Porter et al. [87, 98] is described under the system CaF_2 -LiF.

Lanthanum fluoride contained less than 0.1 weightpercent of metallic impurities.

TABLE 136 a. LaF3-LiF: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent LiF

TABLE 136 b. Temperature-dependent equations

 $\kappa = a + bT \text{ (ohm}^{-1} \text{ cm}^{-1}\text{)}$

Comp. (mol % LiF)	a	b · 10 ³	Stand. deviation [87]
67.55	-4.872	8.179	0.0489
71.0	-4.898	8.513	0.0635
75.0	-1.775	6.119	0.0090
80.0	0 698	4.762	0.0405
85.0	1.255	4.896	0.0182
90.0	0.054	6.340	0.0423
95.0	1.884	5,565	0.0270
100.0	2.395	5.830	0.050
	•	1	

Reference: [87]. Data reported in equation form,

-

TABLE 137 a. LaF₃-LiF: Density

Numerical values (gcm⁻³)

Mol percent LiF

T	100.0	95.0	90.0	85.0	0.08	75.0
1 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350	$\begin{array}{c} 1.699\\ 1.695\\ 1.692\\ 1.692\\ 1.682\\ 1.682\\ 1.682\\ 1.675\\ 1.672\\ 1.669\\ 1.655\\ 1.652\\ 1.659\\ 1.656\\ 1.652\\ 1.646\\ 1.642\\ 1.639\\ 1.636\\ 1.632\\ 1.$	2.075 2.071 2.068 2.064 2.061 2.053 2.050 2.046 2.042 2.035 2.031 2.028 2.031 2.028 2.020 2.017 2.013 2.029 2.006 2.006	2.431 2.428 2.425 2.422 2.419 2.415 2.409 2.406 2.400 2.406 2.403 2.400 2.397 2.394 2.391 2.887 2.384 2.381 2.827	2.761 2.754 2.748 2.741 2.734 2.728 2.721 2.714 2.708 2.701 2.694 2.668 2.661 2.654 2.668 2.661 2.654 2.648 2.641 2.634 2.628 2.621 2.614 2.601	3.004 2.998 2.991 2.985 2.978 2.965 2.959 2.952 2.946 2.939 2.933 2.926 2.920 2.913 2.920 2.913 2.920 2.913 2.920 2.920 2.894 2.887 2.881 2.874 2.887 2.881	3.177 3.171 3.166 3.155 3.140 3.144 3.133 3.127 3.122 8.116 3.117 3.122 8.116 3.111 3.105 3.100 8.094 2.089 3.083 3.072 3.067 3.061 2.052

TABLE 137 b. Temperature-depen	dent equations
--------------------------------	----------------

 $\rho = a + bT (gcm^{-3})$

Comp. (mol % LiF)	a	b·104	Stand. dev. [98]
75.0	3.799	-5.507	0.00200
80.0	3.737	-6.486	0.00334
85.0	3.500	-6.658	0.00555
90.0	2.799	-3.118	0.00500
95.0	2.491	-3.648	0.00580
100.0	2.074	-3.321	0.00705

Reference: [98]. Data reported in equation form.

_

LaF₃-NaF

Electrical Conductance

The recommended values in table 140 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 138 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. range (T)
87	60, 70, 80, 90, 100	1053–1343

TABLE 138 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- ided lue	NaF (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(T)
87	1	3	0	5.0	(1300)	7.4	(1340)

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE 138 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87]

Comment: Brief remarks concerning reference [87] are discussed under the system CaF_2 -LiF.

Density

The recommended values in tables 141, 142 are based on the work of Meaker and Porter (Archimedean method) [98].

TABLE 139 A.	Investigations	critically	re-examined
--------------	----------------	------------	-------------

Ref.	NaF (mol %)	. Temp. range (T)
87	60–100 (graphical)	1273
98	60, 70, 80, 90, 100	1073–1353

TABLE 139 B. Comparisons with previous recommendations

Ref,	Rec mer va	om- ided lue	NaF (mol %)		% Dep	parture	
Vo	Vol.	Page		% (min)	(T)	% (max)	(T)
98	1	3	0	-2.2	(1270)	-2.5	(1350)

TABLE 139 C. Cell materials and calibration

Cell material	Calibration		
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87, 98]	Molten KCI [87, 98]		

Comment: Brief remarks concerning reference [98] are given under the system CaF₂-LiF.

Density values [98] were reported in the form of linear temperature-dependent equations with standard deviations in the range: 2.39×10^{-3} gcm⁻³ (100 mol % NaF) to 10.2×10^{-3} gcm⁻³ (60 mol % NaF).

Melt Preparation and Purification

The method of salt purification used by Porter et al. [87, 98] is described under the system CaF₂-LiF.

Lanthanum fluoride contained less than 0.1 weightpercent of metallic impurities.

PROPERTIES OF FLUORIDES AND MIXTURES

TABLE 140 a. LaF3-NaF: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent NaF

T	100.0	90.0	80.0	7Ò.O	60.0
1060 1070 1080 1090 1100				2.33 2.39 2.45 2.51 2.57 2.63	
1120 1130 1140 1150				2.69 2.76 2.82 2.88	
1160 1170 1180 1190			3.34 3.39 3.44	2.94 3.00 3.06 3.12 2.18	
1200 1210 1220 1230 1240		4.26	3.54 3.59 3.64 3.69	3.24 3.30 3.30 3.43	2.89 2.95 3.00 3.05
1250 1260 1270 1280		$\begin{array}{r} 4.31 \\ 4.35 \\ 4.40 \\ 4.45 \end{array}$	3.74 3.79 3.84 3.89	3.49 3.55 3.61 3.67	3.11 3.16 3.21 3.27
1290 1300 1310 1320 1330 1340	5.33 5.39 5.44 5.50	4.49 4.54 4.63 4.63 4.68 4.73	3.99 4.04 4.08 4.13 4.18	3.79 3.85 3.91 3.97 4.03	3.38 3.43 3.48 3.54 3.54
1010	0.00	1.10	1.10	2.00	0.05

,

TABLE 140 b. Temperature-dependent equations

$\kappa = a + bT \text{ (ohm}^{-1} \text{ cm}^{-1}\text{)}$

Comp. (mol % NaF)	a	b-103	Stand. deviation [87]
60.0	-3.561	5.334	0.0142
70.0	-4.123	6.087	0.0143
80.0	-2.443	4.945	0.0240
90.0	-1,559	4.691	0.0300
100.0	-2.060	5,640	0.0660

Reference: [87]. Data reported in equation form.

TABLE 141 a. LaFs-NaF: Density

Numerical values (gcm⁻³)

Mol percent NaF

Т	100	95	90	85	80	75	70	65	60	72
							0.047			
1080							3.341		1	
1095							3.336	3.502		3.264
1110						3.140	3.325	3.491	l	3.253
1125						8.129	3.314	3.479		8.242
1140						3.118	3.303	3.468		3.231
1155					2.907	3.107	3.291	3.456		3.220
1170	}				2.896	3.097	3.280	3.444		3.209
1185					2.885	3.086	3.269	3,433		3.198
1200				2.660	2.875	3,075	3.258	3.421		3.187
1215				2.650	2.864	3.064	3.247	3.410	3.551	3.176
1230				2.640	2.854	3.053	3.235	3.398	3.539	3.165
1245			2.403	2.629	2.843	3.042	3.224	3,387	3.527	3.154
1260		2.156	2.393	2.619	2.833	3.032	3.213	3.375	3.515	3,143
1275	1.903	2.146	2.382	2.608	2.822	3.021	3.202	3,363	3.503	3.132
1290	1.893	2.136	2.372	2.598	2.811	3.010	3.191	3.352	3.491	3.121
1305	1.882	2.126	2.362	2.588	2.801	2.999	3.180	3.340	3.479	3.110
1320	1.872	2.116	2.352	2.577	2.790	2.988	3.168	3.329	3.467	3.099
1335	1.862	2.106	2.342	2.567	2.780	2.977	3.157	3.317	3.455	3.088
1350	1.852	2.096	2.331	2.557	2.769	2.966	3.146	3.306	3.443	3.077
								,		

JANZ ET AL.

TABLE 141 b. Two-dimensional equation and statistical parameters

 $\rho = a + bT + cC + dC^3 + eTC^2 \text{ (gcm}^{-3)}$

a	b·104	c·10 ²	$d \cdot 10^6$	e·108	Max. percent departure	Stand. error of est.
2.75981	-6.72268	4.93313	-3.25825		-0.43 (1338.2 K, 10 mol % LaF _o)	0.004

Reference: [98]. Data reported in equation form.

 $C = \text{mol percent LaF}_{s}$.

TABLE 142 a. LaF3-NaF: Density

Numerical values (gcm⁻³)

Mol percent NaF						
Т	100.0	90.0	80.0	70.0	60.0	
1080 1095 1110 1125 1140 1155 1170 1185 1200 1215 1230 1245 1260 1275 1290 1305 1320 1335 1350	1.898 1.889 1.879 1.870 1.861 1.852	2.406 2.397 2.388 2.379 2.370 2.360 2.351 2.342	2.910 2.898 2.886 2.875 2.863 2.852 2.840 2.829 2.817 2.805 2.794 2.782 2.771 2.759	$\begin{array}{c} 3.347\\ 3.336\\ 3.325\\ 3.314\\ 3.303\\ 3.292\\ 3.281\\ 3.270\\ 3.259\\ 3.248\\ 3.237\\ 3.226\\ 3.215\\ 3.204\\ 3.193\\ 3.181\\ 3.170\\ 3.159\\ 3.148 \end{array}$	3.544 3.533 3.523 3.512 3.502 3.491 3.481 3.470 3.459 3.449	

FIGURE 37. Temperature-composition phase diagram for LaFa-NE
 G. A. Bukhalova, E. P. Babaeva, and T. M. Khliyan,
 Russ. J. Inorg. Chem. 10, 1158 (1965).

LiF-NaF

Electrical Conductance

Comp. (mol % NaF)	a	6 104	Stand. dev. [98]
60.0	4.400	-7.045	0.0102
70.0	4.143	-7.368	0.00525
80.0	3.802	-7.726	0.00360
90.0	3.160	-6.057	0.00353
100.0	2.682	-6.151	0.00239

TABLE 142 b. Temperature-dependent equations

Reference: [98]. Data reported in equation form.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

The recommended values in table 147 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 143 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. range (T)
87	0–100	1013-1343

Recom-NaF % Departure mended Ref. value (mol %) Vol. Page % (min) (T)% (max) (T)87 3 100 5.5 (1310) 8.3 (1360)1 (1270) 87 1 2 0 5.0 (1160)6.8

TABLE 143 B. Comparisons with previous recommendations

TABLE 143 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20–20,000 measurements at 10,000 [87]

Comment: Brief remarks concerning reference [87] are discussed under the system CaF_2 -LiF.

Density

The recommended values in table 148 are based on the work of Matiasovsky (Archimedean method) [75].

TABLE 144 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. range (T)
75	0-100	1123–1373
89	40 (eutectic, graphical)	973–1173
88	40 (eutectic, graphical)	1073, 1123
07	0-100 (graphical)	1273
98	0-100	1023–1353

Ref.	Re me va	com- nded alue	NaF (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(T)
75 98 98 98 98 98 75 98 98	$1 \\ 4.1 \\ 4.1 \\ 4.1 \\ 4.1 \\ 1 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	3 3 79 79 79 79 79 2 2 2 70	100 100 100 80 60 30 0 0	$ \begin{array}{r} -0.04 \\ -2.2 \\ -2.3 \\ -2.9 \\ 0.87 \\ 0.58 \\ 0.0 \\ -4.5 \\ -4.4 \end{array} $	(1323) (1280) (1323) (1233) (1123) (1123) (1323) (1310) (1323)	$\begin{array}{r} -0.24 \\ -2.5 \\ -2.4 \\ -3.7 \\ -3.7 \\ -3.1 \\ -0.19 \\ -5.6 \\ -5.5 \end{array}$	(1373) (1340) (1273) (1323) (1323) (1323) (1323) (1173) (1150) (1123)

TABLE 144 B. Comparisons with previous recommendations

l'ABLE 144 C. Cell ma	erials and calibration
-----------------------	------------------------

Cell material	Calibration
Spherical Pt sinker suspended by Pt wire, melt contained in Pt crucible [75]	Molten NaCl and KCl [75]
W bob suspended by a W or Mo wire, melt contained in Mo crucible [89, 88]	Molten KCl [87, 98]
Diconical Mo plummet suspended from Mo wire, melt contained in a graphite crucible [87, 98]	

Comment: Matiasovsky [75] determined the volume of the density sinker in melts of NaCl and KCl over the temperature range 800-1050 ° C. The volumes differed by less than 0.2 percent. The reproducibility of measurements was better than 0.1 percent. No surface tension correction was applied.

Brief remarks concerning reference [98] are given under the system NaF-ThF4. Density values were reported in the form of linear temperature-dependent equations with standard deviations in the range: 2.39×10^{-3} gcm⁻³ (100 mol % NaF) to 44.0×10^{-3} gcm⁻³ (38 mol % NaF).

Viscosity

The recommended values in table 149 are based on the work of Cohen et al. (capillary and rotational cylinder method) [35].

TABLE 145 A. Investigations critically re-examined

Ref.	NaF (mol %)	Temp. range (T)
35	40	973, 1073

Surface Tension

The recommended values in figure 38 are based on the work of Mellors and Senderoff (maximum bubble pressure method) [89].

Table 146 A.	Investigations	critically	re-examined
--------------	----------------	------------	-------------

Ref.	NaF (mol %)	Temp. range (T)
89	40 (eutectic, graphical)	973–1223
68	40	973–1073

Comment: Remarks concerning reference [89] are under the system KF-LiF.

=

Melt Preparation and Purification

Salts used in references [88, 89] were ACS grade (obtained from Harshaw Chemical Company).

The procedure used by Porter et al. [87, 98] is discussed under the system CaF_2 -LiF.

TABLE 147 a. LiF-NaF: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent NaF

T	100.0	80.0	60.0	50.0	38.0	30.0	15.0	0.0
1020 1030 1040 1050 1060 1070 1080 1090 1100				5.40 5.45 5.51 5.57 5.62	5.54 5.59 5.65 5.70 5.76 5.82 5.87 5.93 5.98	5.81 5.87 5.93 5.99 6.05 6.11 6.17 6.24 6.30 6.36	6.97 7.04 7.11 7.18 7.25 7.32	
1120 1130 1140 1150		-	5.21 5.26 5.30	5.68 5.74 5.79 5.85	6.04 6.09 6.15 6.20	6.42 6.48 6.54 6.60	7.39 7.46 7.53 7.60	9.10
1170 1170 1180 1190 1200		5.21 5.26 5.31	5.34 5.39 5.43 5.48 5.52	5.96 5.96 6.02 6.07 6.13	6,26 6,32 6,37 6,43 6,48	6.72 6.79 6.85 6.91	7.87 7.74 7.81 7.88 7.95	9.18 9.22 9.27 9.33 9.39
1210 1220 1230 1240 1250		5.37 5.42 5.47 5.52 5.57	5.56 5.61 5.65 5.69 5.74	6.19 6.24 6.30 6.36 6.41	6.54 6.59 6.65 6.70 6.70	6.97 7.03 7.09 7.15 7.21	8.02 8.09 8.16 8.22 8.29	9.45 9.51 9.57 9.62 9.68
1250 1260 1270 1280 1290		5.62 5.68 5.73 5.77	5.78 5.82 5.87 5.91	6.47 6.53 6.58 6.64 6.70	6.81 6.87 6.93 6.98	7.27 7.34 7.40 7.46 7.52	8.36 8.43 8.50 8.57 8.64	9.74 9.80 9.86 9.92 9.92
1310 1320 1330 1340	5.33 5.39 5.44 5.50	5.88 5.93 5.99 6.04	6.00 6.04 6.08 6.13	6.75 6.81 6.87 6.92	7.09 7.15 7.20 7.26	7.58 7.64 7.70 7.76	8.71 8.78 8.85 8.92	10.03 10.09 10.15 10.21

TABLE 147 b. Temperat	ure-dependent	equations
-----------------------	---------------	-----------

 $\kappa = a + bT \pmod{1} \operatorname{cm}^{-1} \operatorname{cm}^{-1}$

Comp. (mol % NaF)	a · 10 ¹	b·103	Stand. dev. [87]
0.0	23.95	5.830	0.0500
15.0	-4.124	6.965	0.0301
30.0	-4.307	6.115	0.0250
38.0	-1.798	5,551	0.0301
50.0	-6.533	5.653	0.0317
60.0	2.936	4,354	0.0246
80.0	-8.848	5.166	0.0307
100.0	-2.060	5,640	0.0660

Reference: [87]. Data reported in equation form.

PROPERTIES OF FLUORIDES AND MIXTURES

TABLE 148 a. LiF-NaF: Density

Numerical values (gcm⁻³)

Mol percent NaF

<u> </u>			1								
T	100	90	80 `	70	60	50	40	30	20	10	0
1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320	1.941 1.935 1.928 1.922 1.915	1.922 1.914 1.906 1.898 1.891	1.933 1.927 1.921 1.915 1.909 1.903 1.897 1.891 1.885 1.879	1.964 1 959 1.954 1.948 1.943 1.937 1.932 1.926 1.921 1.916 1.910 1.905 1.899 1.894 1.888 1.883 1.877 1.872 1.867 1.861	1.949 1.944 1.938 1.932 1.927 1.921 1.916 1.910 1.905 1.899 1.893 1.888 1.882 1.877 1.871 1.865 1.860 1.854 1.849 1.843	1.924 1.919 1.913 1.907 1.902 1.896 1.891 1.885 1.879 1.874 1.868 1.863 1.857 1.851 1.846 1.840 1.835 1.829 1.823 1.818	1.905 1.900 1.894 1.888 1.883 1.877 1.872 1.866 1.866 1.855 1.850 1.844 1.838 1.822 1.827 1.822 1.816 1.911 1.805 1.800	1.875 1.869 1.864 1.859 1.854 1.843 1.843 1.838 1.832 1.827 1.822 1.817 1.822 1.817 1.811 1.906 1.801 1.790 1.705 1.780 1.774	$\begin{array}{c} 1.822\\ 1.816\\ 1.811\\ 1.806\\ 1.801\\ 1.796\\ 1.791\\ 1.786\\ 1.791\\ 1.786\\ 1.771\\ 1.765\\ 1.776\\ 1.775\\ 1.760\\ 1.755\\ 1.750\\ 1.745\\ 1.740\\ 1.735\\ 1.730\\ 1.725\end{array}$	1.856 1.848 1.841 1.833 1.826 1.818 1.811 1.803 1.796 1.788 1.781 1.773 1.766 1.753 1.766 1.753 1.743 1.743 1.720 1.721 1.713	1.800 1.795 1.791 1.786 1.781 1.777 1.772 1.767 1.763 1.758 1.753 1.753 1.753 1.749 1.744 1.739 1.734 1.730 1.725 1.720 1.716 1.711
							Į				

TABLE 148 b. Temperature-dependent equations

	$\rho = a + bT \ (\text{gcm}^{-s})$				
Comp. (mol % NaF)	a	b·104	Stand. error of est.		
0	9 2220	4 6902	0.0001		
10	2.3209		0.0001		
20	2.0010	-5 1137	0.0001		
20	2.4240	5 2766	0.0002		
40	2.4103	-5.2700	0.0001		
40	4.0040 9.5545	-5.5525	0.0001		
50	2.5505	-5.5962	0.0001		
60	2.5791	-5.5747	0.0001		
70	2.5784	- 5.4338	0.0001		
80	2.6766	-6.0429	0.0028		
90	2.9187	-7.7887	0.0001		
100	2.7590	-6.3915	0.0001		
		1	1		

Reference: [75]. Data reported in numerical form.

Fable	149.	LiF NaF:	Viscosity
--------------	------	----------	-----------

Numerical values (cp)

Т	40 Mol % NaF
973.2	3.2
1073.2	2.35

Reference: [35]. Due to limited data the experimental values are $\boldsymbol{\varepsilon}^{ivon.}$

81

=

Lif-RbF

Density

The recommended values in table 152 are based on the work of Cohen and Jones (Archimedean method) [35].

TABLE 150 A. Investigations critically re-examined

Ref.	RbF (mol %)	Temp. range (T)
35	57	

Comment: Cohen and Jones [35] report an experimental error of ± 5 percent in their density measurements.

Viscosity

The recommended values in table 153 are based on the work of Cohen and Jones (capillary and rotational pendulum methods) [35].

Table 151 A. I	n vestigations	critically	re-examined
----------------	----------------	------------	-------------

Ref.	RbF (mol %)	Temp. range (T)
35	57	773-923

Comment: Error limits for viscosity measurements in reference [35] were reported to be ± 10 percent.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE 152. LiF-RbF: Density Temperature-dependent equation $\rho = n + bT \text{ (gcm}^{-3}\text{)}$

Comp. (mol % RbF)	a	b·104
57	3.56	-9.6

Reference: [35]. Data reported in equation form. No temperature range is given.

TABLE 153. LiF-RbF: Viscosity

Numerical values (cp)

Т	57 Mol % RbF
772 0	0.0
115.2	9.0
873 9	4.5
923.2	3.4

Reference: [35]. Due to limited data the experimental values are given.

FIGURE 40. Temperature-composition phase diagram for LiF-RbF. E. P. Dergunov, Dokl. Akad. Nauk S.S.S.R., 58, 1369 (1947).

LiF-SmF₃

Electrical Conductance

The recommended values in table 156 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 154 A. Investigations critically re-examined

Ref.	SmF₃ (mol %)	Temp. range (T)
87	0, 10, 20, 30, 40, 50	10731343

TABLE 154 B. Comparisons with previous recommendations

Ref.	Recom- mended value		SmF₃ (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(T)
87	1	2	0	5.1	(1150)	8.2	(1310)

TABLE 154 C.	Cell	materials	and	calibration
--------------	------	-----------	-----	-------------

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87]

Comment: The specific conductance values measured in reference [87] were reported reproducible to ± 1 percent. The precision of the measurements was ± 3 percent. The measured resistance was found to be independent of frequency over the range 20 to 20,000 hertz.

Density

The recommended values in tables 157, 158 are based on the work of Meaker, Porter, and Kesterke (Archimedean method) [87].

TABLE 155 A.	In vestigations	critically	re-examined
--------------	-----------------	------------	-------------

Ref.	SmF3 (mol %)	Temp. range (T)
87	0–50	1073-1343

TABLE 155 B. Cell materials and calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87]	Molten KCl [87]

Melt Preparation and Purification

Reagent-grade chemicals were used in reference [87] and [98]. After vacuum drying at 400 °C the salts were cooled and combined in the correct proportions. The salts were then placed in graphite orucibles and heated undor vacuum (50 microns) to 600 °C. For density and conductance measurements the mixtures were melted in an atmosphere of helium in a controlled-atmosphere chamber. Melt compositions were confirmed by analysis after density measurements.

TABLE 156 a.	Lif-SmF ₃ :	Electrical	conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent SmF₃

Т	50.0	40.0	30.0	20.0	10.0	0.0
T 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1220 1220 1220 1220 1240 1250 1260 1270 1280 1300 1310 1320	3.83 3.83 3.87 3.92 3.96 4.00 4.05 4.09	$\begin{array}{c} 40.0\\ \hline \\ 3.70\\ 3.76\\ 3.82\\ 3.89\\ 3.95\\ 4.01\\ 4.07\\ 4.13\\ 4.19\\ 4.25\\ 4.31\\ 4.37\\ 4.43\\ 4.49\\ 4.55\\ 4.61\\ 4.67\\ 4.73\\ \end{array}$	$\begin{array}{c} 30.0\\ \hline 3.90\\ 3.97\\ 4.04\\ 4.10\\ 4.17\\ 4.24\\ 4.30\\ 4.37\\ 4.44\\ 4.50\\ 4.57\\ 4.63\\ 4.70\\ 4.77\\ 4.83\\ 4.90\\ 4.97\\ 5.03\\ 5.10\\ 5.16\\ 5.23\\ 5.30\\ 5.36\\ 5.43\\ 5.50\\ \end{array}$	$\begin{array}{c} 5.07\\ 5.14\\ 5.21\\ 5.28\\ 5.35\\ 5.42\\ 5.50\\ 5.57\\ 5.64\\ 5.71\\ 5.78\\ 5.85\\ 5.92\\ 5.99\\ 6.06\\ 6.13\\ 6.20\\ 6.27\\ 6.35\\ 6.42\\ 6.49\\ 6.56\\ 6.63\\ \end{array}$	$\begin{array}{c} 6.80\\ 6.86\\ 6.92\\ 6.99\\ 7.05\\ 7.11\\ 7.18\\ 7.24\\ 7.30\\ 7.37\\ 7.43\\ 7.49\\ 7.55\\ 7.62\\ 7.68\\ 7.74\\ 7.81\\ 7.87\\ 7.93\\ 7.99\\ 8.06 \end{array}$	9.10 9.16 9.22 9.27 9.33 9.39 9.45 9.51 9.57 9.62 9.68 9.74 9.80 9.86 9.92 9.97 10.03 10.09
1330 1340	4.14	4.79 4.85	5.56 5.63	6.70 6.77	8.12 8.18	$10.15 \\ 10.21$

TABLE 156 b. Temperature-dependent equations

 $\kappa = a + bT \text{ (ohm^{-1} cm^{-1})}$

Comp. (mol % SmF3)	a	b·103	Stand. deviation [87]
0.0	2.395	5.830	0.0500
10.0	0.255	6.297	0.0477
20.0	2.721	7.083	0.0377
30.0	3.262	6.635	0.0371
40.0	3.265	6.059	0.0455
50.0	1.710	4.395	0.0311

Reference: [87]. Data reported in equation form.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

JANZ ET AL.

TABLE 157 a. LiF-SmF3: Density

Numerical values (gcm⁻³)

Mol percent SmF3

T	50	45	40	35	30	25	20	15	10	5	0	35
T 1080 1095 1110 1125 1140 1155 1170 1185 1200 1215	50	45	40 4.129 4.115 4.102	35 3.977 3.963 3.949 3.935 3.922 3.909 3.896	30 3.781 3.767 3.753 3.740 3.726 3.713 3.700 3.688 3.675	25 3.546 3.533 3.507 3.494 3.481 3.469 3.457 3.445 3.445 3.445	20 3.268 3.255 3.243 3.231 3.219 3.207 3.196 3.185 3.174 3.163	15 2.952 2.941 2.920 2.919 2.908 2.898 2.898 2.898 2.877 2.868 2.858	10 2.573 2.564 2.554 2.545 2.536 2.528 2.520 2.512	5 2.159 2.151 2.144 2.136 2.130 2.123 2.117	0 1.697 1.691 1.686 1.680 1.675 1.671 1.666	35 3.977 3.963 3.949 3.935 3.922 3.909 3.896
1213 1230 1245 1260 1275 1290 1305 1320 1335	4.458 4.446 4.433 4.420 4.408 4.395	4.300 4.287 4.274 4.261 4.248 4.205 4.222 4.210 4.197	4.089 4.075 4.062 4.030 4.037 4.025 4.012 4.000	3.883 3.870 3.857 3.845 3.033 3.821 3.809 3.797	3.663 3.663 3.639 3.627 3.615 3.604 3.593 3.582	3.422 3.410 3.399 3.388 3.367 3.367 3.357 3.347	3.103 3.153 3.142 3.132 3.123 3.113 3.104 3.094 3.085	2.849 2.849 2.831 2.823 2.814 2.806 2.799 2.791	2.504 2.496 2.489 2.482 2.475 2.469 2.463 2.457	2.111 2.105 2.099 2.094 2.089 2.084 2.080 2.076	$1.662 \\ 1.662 \\ 1.658 \\ 1.655 \\ 1.652 \\ 1.649 \\ 1.646 \\ 1.643 \\ 1.641$	3.833 3.870 3.857 3.845 3.833 3.821 3.809 3.797

TABLE 157 b. Two-dimensional equation and statistical parameters

 $\rho = a + bC + cC^2 + dC^3 + eTC + fTC^2 + gCT^2 (gcm^{-3})$

a	b·102	c · 103	d · 106	e·105	f · 107	g · 109	Max. percent departure	Stand. error of est.
7.92402		1.11561	-9.07294 .	-4.79804	2.99784	6.23976	0.69 (1073.2 K, 80 mol % LiF)	0.006

Reference: [87] and [98] (for LiF). Data reported in equation form, C = mol percent LiF.

-

TABLE 158 a. LiF-SmF3: Density

Numerical values (gcm⁻³)

Mol percent SmF3

T	50.0	40.0	30.0	20.0	10.0	0.0
T 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1310 1310 1320	50.0 4.467 4.459 4.451 4.426 4.434 4.426 4.417 4.400	40.0 4.117 4.110 4.02 4.083 4.080 4.075 4.083 4.065 4.055 4.058 4.051 4.043 4.051 4.043 4.029 4.021 4.014	30.0 3.811 3 R02 3.792 3.783 3.774 3.765 3.756 3.746 3.777 3.728 3.719 3.710 3.700 3.601 3.682 3.6645 3.6645 3.636 3.6627 3.618 3.609 3.599 3.590	20.0 3.247 3.224 3.227 3.221 3.214 3.208 3.201 3.195 3.188 3.182 3.175 3.169 3.162 3.156 3.149 3.137 3.130 3.124 3.117 3.111 3.104 3.091	10.0 2.570 2.565 2.551 2.557 2.557 2.557 2.557 2.557 2.557 2.533 2.528 2.523 2.523 2.523 2.524 2.523 2.523 2.524 2.550 2.551 2.557 2.555 2.551 2.542 2.555 2.550 2.555 2.551 2.542 2.555 2.550 2.555 2.557 2.542 2.557 2.558 2.557 2.554 2.557 2.554 2.557 2.554 2.557 2.554 2.557 2.554 2.557 2.554 2.557 2.554 2.557 2.554 2.557 2.554 2.557 2.554 2.557 2.554 2.557 2.554 2.557 2.556 2.557 2.554 2.557 2.558 2.557 2.558 2.559 2.559 2.509 2.500 2.495 2.490 2.486 2.481 2.476 2.477 2.477 2.477 2.477 2.477 2.542 2.540 2.509 2.495 2.490 2.446 2.477 2.447 2.4	0.0 1.699 1.695 1.692 1.689 1.685 1.672 1.669 1.665 1.652 1.656 1.652 1.656 1.652 1.649 1.642 1.639 1.642 1.639
1320 1330 1340	4.409 4.401 4.392	4.014 4.006 3.999	3.590 3.581 3.572	3.091 3.085 3.078	2.467 2.462 2.457	1.636 1.632 1.629
	1	1				

TABLE 158 b. Temperature-dependent equations

 $\rho = a + bT \pmod{3}$

Comp. (mol % SmF3)	a	b·104	Stand. deviation [87, 98]
0.0	2.074	-3.321	0.00705
10.0	3.087	-4.702	0.0083
20.0	3.946	-6.474	0.0144
30.0	4.803	-9.187	0.0126
40.0	4.987	-7.372	0.0153
50.0	5.512	-8.357	0.0953

References: [87] and [98] (for LiF). Data reported in equation form.

FIGURE 41. Temperature-composition phase diagram for LiF-SmFs. R. E. Thoma, Progress in Science and Technology of the Rare Earths, Vol. 2, p. 110, Pergamon Press, N.Y. 1966.

LiF-ThF₄

Electrical Conductance

The recommended values in table 161 are based on the work of Brown and Porter (classical ac technique) [24].

Ref.	ThF4 (mol %)	Temp. range (T)
24	0-49.8	913–1273
100*	3.2, 22, 49.8	913–1273
87	0-49.8	913–1343

TABLE 159 A. Investigations critically re-examined

* Data from reference [24].

85

60 1

24 1

60 | 1

98

24

98

1

4.1

4.1

TABLE 159 B. Comparisons with previous recommendations

Ref.	Rec mer va	Recom- mended % Departure value ThF ₄ (mol					
	Vol.	Page	%)	% (min)	(T)	% (max)	(<i>T</i>)
24 87	1	3 3	0	5.0 5.0	(1160) (1160)	6.8 6.8	(1270) (1270)

Ref.	Rec mer va	om- ided lue	ThF₄ (mol %)		% Departure					
	Vol.	Page		% (min)	(T)	% (max)	(T)			

2.5

0.0

0.0

0.0

-4.5

-5.6

(1390)

(1180)

(1180)

(1310)

(1180)

(1123)

(1500)

(1260)

(1310)

(1150)

(1310)

(1323)

2.8

-1.1

-0.6

-5.6

-11

-4.4

100

0

0

0

0

0

4

2

2

2

86

86

TABLE 160 B. Comparisons with previous recommendations

TABLE 159 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)	Calibration
Boron nitride cylinders with graphite jackets, melt contained in graphite crucible [24, 87].	Mo tubes [24, 87]	1000-20,000 experimental values at 10,000 [24] 20-20,000 experimental values at 10,000 [87]	Molten KC1 [24]

Comment: Measured resistances in reference [24] did not vary over the frequency range of 1,000 to to 20,000 hertz. Experimental conductivities were corrected for the resistance of the boron nitride cell. The specific conductance values were observed to be reproducible to ± 1 percent.

Remarks concerning reference [87] are discussed under the CaF_2 -LiF system. Electrical conductivity values reported by Porter, Meaker and Kesterke [87] are identical to the earlier values of Porter and Brown [24].

Density

The recommended values in table 162 are based on the work of Hill, Cantor, and Ward (Archimedean method) [60].

TABLE 160 A.	Investigations	critically	re-examined
---------------------	----------------	------------	-------------

Ref.	ThF4 (mol %)	Temp. range (T)
24	0-49.8	928–1273
60	0-100	1024-1508
87	0-49.8 (graphical)	1273
98	0-49.8	928-1353

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE 160 C. Cell materials and calibration

Cell material	Calibration
Biconical Mo plummet sus- pended from Mo wire, melt contained in graphite crucible [24, 87, 98].	Molten KC1 [24]
Pt plummet suspended by Pt- Rh wire, melt contained in a nickel cup [60]	Distilled water [60]

Comment: Hill et al. [60] corrected for the surface tension effect of water upon the suspension wire and for the thermal expansion of the Pt plummet with temperature.

Brief remarks concerning references [24] and [98] are given under the system NaF₂ThF₄. Density values in references [98] and [60] were given in the form of linear temperature-dependent equations. The range of standard deviation in gcm⁻³ in reference [60] was 0.13×10^{-4} (18.64 mol % ThF₄) to 12.0×10^{-3} (80 mol % ThF₄); the range reported in reference [98] was 7.05×10^{-3} (0 mol % ThF₄) to 30.0×10^{-3} (22 mol % ThF₄).

Melt Preparation and Purification

Brown and Porter [24] used commercial sources of LiF and ThF₄ which on analysis showed less than 0.01 percent metallic contaminants. The individual salts were combined in the desired proportions, vacuum dried to 400 °C at pressures less than 100 μ m Hg, and then melted in an atmosphere of helium.

Hill et al. [60] purified LiF (Baker and Adamson Reagent Grade) by recrystallizing from slowly cooled melts, from which only clear crystal fragments were selected for use. Spectrochemical analysis showed three metallic impurities were present in concentration greater than 0.01 percent: Al, 0.05 percent; Ca, 0.015 percent; Ni, 0.075 percent. Thorium tetrafluoride was recrystallized in a graphite crucible by slowly heating the commercial, anhydrous product (National Lead Co.) to melting under a He atmosphere. Analysis showed only calcium (0.03%) to be present in large amounts.

The procedure used by Porter et al. [87, 98] is discussed under the system CaF_2 -LiF.

TABLE 161 a. LiF-ThF4: Electrical conductance.

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol	percent	ThF₄
-----	---------	------

Т	49.8	41.8	28.1	22.0	3.2	0
920			2,06	2.55		
940			2.19	2.71		
960			2.32	2.86		ļ
980			2.44	3.01		
1000			2.57	3.16		
1020			2.70	3.31		
1040			2.82	3.46		
1060			2.95	3.61		
1080		2.45	3.08	3.71		
1100	2.16	2.55	3.21	3.92		1
1120	2.24	2.65	3.33	4.07		
1140	2.33	2.74	3.46	4.22		
1160	2.41	2.84	3.59	4.37	7.22	9.16
1180	2.49	2.94	3.71	4.52	7.43	9.28
1200	2.58	3.04	3.84	4.68	7.65	9.39
1220	2.66	3.14	3.97	4.83	7.87	9.51
1240	2.75	3.23	4.09	4.98	8.09	9.63
1260	2.83	3.33	4.22	5.13	8.31	9.75
1270	2.87	3.38	4.28	5.21	8.42	9.80

TABLE	162 a.	LiF-ThFA:	Density
	TOH G.		DCHSILY

Numerical values (gcm⁻³)

Mol percent ThF4

Т	100	80.00	60.00	40.00	20.00	18.64	0
1020 1040 1060 1080 1100 1120 1120 1120 1120 1220 122	6.209 6.193 6.176 6.160 6.144 6.120	5.981 5.960 5.940 5.919 5.898 5.877 5.856	5.567 5.544 5.522 5.500 5.478 5.455 5.433 5.411	5.035 5.014 4.993 4.972 4.951 4.931 4.910 4.889 4.868 4.847	3.926 3.909 3.892 3.875 3.842 3.825 3.808 3.791 3.774 3.757	3.932 3.914 3.895 3.877 3.859 3.840 3.822 3.803 3.785 3.767	1.801 1.791 1.781 1.771 1.761 1.751 1.741 1.731 1.721 1.701 1.691

TABLE 162 b. Temperature-dependent equations

 $\rho = a + bT \ (\text{gcm}^{-3})$

TABLE 161 b. Temperature-dependent equations

$\kappa = a + bT$	(ohm ⁻¹	cm^{-1}
-------------------	--------------------	-----------

Comp. (mol % ThF4)	a	6.103
0	2.40	5.83
3.2	-5,51	10.97
22.0	-4.42	7.58
28.1	-3.78	6.35
41.8	-2.83	4.89
49.8	-2.45	4.19

Comp. (mol % ThF4) a b·10⁴ 0 2.371 -5.0018.64 4.889 -9.20 20.005.787 -8.44-10.41 -11.15 40.00 6.159 60.00 6.927 80.00 7.354 -10.40 100 7.340 -8.08

Reference: [24]. Data reported in equation form.

Reference: [60]. Data reported in equation form. Two-dimensional statistical analysis was unsuccessful.

LiF-UF₄

Electrical Conductance

The recommended values in table 166 are based on the work of Brown and Porter (classical ac technique) [24].

TABLE 163 A. Investigations critically re-examined

Ref.	UF4 (mol %)	Temp. range (T)
24	0-60	923–1273
100*	5, 40, 60	973–1273
87	0-60	923–1343

* Data from reference [24].

Ref.	Rec men va	:om- nded lue	UF4 (mol %)		% Dej	parture	
	Vol.	Page		% (min)	(T)	% (max)	(T)
24	1	2	0	5.0	(1160)	6.8	(1270)
87	1	2	0	5.0	(1160)	6.8	(1270)

TABLE 163 B. Comparisons with previous recommendations

TABLE 163 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)	Calibration
Boron nitride cylinders with graphite jackets, melt contained in graphite crucible [24, 87]	Mo tubes [24 , 87]	1000-20,000 experimental values at 10,000 [24]	Molten KCl [24]
07]		20-20,000 experimental values at 10,000 [87]	

Comment: Remarks concerning references [24] and [87] are given under the systems LiF-ThF₄ and CaF₂-LiF, respectively. Electrical conductivity values reported by Porter, Meaker and Kesterke [87] are identical to the earlier values of Porter and Brown [24].

Density

The recommended values in table 167 are based on the work of Porter and Meaker (Archimedean method) [78].

TABLE 164 A. Investigations critically re-examined

Ref.	UF4 (mol %)	Temp. 1ange (T)
24	0-60	973–1273
18	0-47	973, 1073
87	0-60 (graphical)	1273
98	0-60	973–1353

TABLE 164 B. Comparisons with previous recommendations

Ref.	Recom- mended UH value (me		UF4 (mol %)		% Dep	parture	
	Vol.	Page		% (min)	(T)	% (max)	(<i>T</i>)
24 98	1	2 2	0 0	0.0 4.5	(1180) (1310)	-1.1 -5.6	(1260) (1150)

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE 164 C. Cell materials and calibration

 Cell material
 Calibration

 Biconical Mo plummet suspended from Mo wire, melt contained in graphite crucible [24, 87, 98]
 Molten KCl [24]

 Pt cylinder and Pt suspension wire, melt contained in Inconel
 Pt cylinder and Pt suspension

Comment: Brief remarks concerning references [24] and [98] are given under the system NaF-ThF₄. Density values in [98] were in the form of linear temperature-dependent equations with standard deviations in the range: 7.05×10^{-3} gcm⁻³ (0 mol % UF₄) to 36.0×10^{-3} gcm⁻³ (27.5 mol % UF₄).

crucible [78]

Viscosity

The recommended values in table 168 are based on the work of Blanke et al. (rotational cylinder method) [18].

TABLE 165 A. Investigations critically re-examined

Ref.	UF4 (mol %)	Temp. range (T)
18	0-47	873, 973, 1073

TABLE 165 B. Cell materials and calibration

Cell material

Two concentric Inconel cylinders, nickel shaft connected to inner Mo torsion wire [18].

Comment: the overall error for viscosity measurements in reference [18] was ± 5 percent.

Melt Preparation and Purification

Brown and Porter [24] used commercial sources of LiF and UF₄ which on analysis showed less than 0.01 percent metallic contaminants. The individual salts were combined in the desired proportions, vacuum dried to 400 °C (pressure less than 100 μ m Hg), and then melted in an atmosphere of helium.

The procedure used by Porter et al. [87, 98] is discussed under the system CaF_2 -LiF.

TABLE 166 a. LiF-UF4: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent UF4

		<u> </u>				
<i>T</i> 60.	0 50.0	40.0	27.5	15.0	5.0	0
940 960 980 980 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 2.9 1200 2.9 1200 3.0 1240 3.1 1260 3.1 1270 3.2 3.0 3.1	2.48 2.57 2.66 2.76 2.85 1 2.94 8 3.03 4 3.12 1 3.22 3 3.31 1 3.35	$\begin{array}{c} 2.21\\ 2.32\\ 2.43\\ 2.55\\ 2.66\\ 2.77\\ 2.89\\ 3.00\\ 3.12\\ 3.23\\ 3.34\\ 3.46\\ 3.57\\ 3.68\\ 3.80\\ 3.85\end{array}$	$\begin{array}{c} 2.50\\ 2.62\\ 2.74\\ 2.86\\ 2.98\\ 3.10\\ 3.22\\ 3.34\\ 3.46\\ 3.58\\ 3.70\\ 3.82\\ 3.94\\ 4.06\\ 4.18\\ 4.06\\ 4.42\\ 4.48\\ \end{array}$	4.81 4.93 5.05 5.18 5.30 5.42 5.55 5.67 5.80 5.92 5.98	7.59 7.71 7.83 7.95 8.06 8.12	9.16 9.28 9.39 9.51 9.63 9.75 9.80

TABLE 166 b. Temperature-dependent equations

 $\kappa = a + bT$ (ohm⁻¹ cm⁻¹)

Comp. (mol % UF₄)	· a	b.103
0	2.40	5.83
5.0	0.68	5.86
15.0	-1.88	6.19
27.5	-3.13	5.99
40.0	3.36	5.68
50.0	-2.50	4.61
60.0	-0.97	3.29

Reference: [24]. Data reported in equation form.

TABLE 167 a. LiF-UF4: Density

Numerical values (gcm⁻³)

	Mol percent UF4							
T	60.0	50.0	40.0	27.5	15.0	0.0		
T 980 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1220 1240 1280	60.0 6.032 5.998 5.964 5.931 5.897 5.863 5.829 5.795 5.762 5.728	50.0 5.625 5.599 5.573 5.548 5.522 5.496 5.471 5.445 5.419 5.348 5.342 5.368 5.342 5.317	40.0 5.242 5.219 5.196 5.172 5.125 5.102 5.078 5.055 5.031 5.008 4.984 4.961 4.937 4.914 4.830	$\begin{array}{c} 27.5\\ \hline \\ 4.858\\ 4.833\\ 4.808\\ 4.782\\ 4.757\\ 4.731\\ 4.706\\ 4.680\\ 4.655\\ 4.629\\ 4.604\\ 4.579\\ 4.553\\ 4.528\\ 4.502\\ 4.477\end{array}$	15.0 3.718 3.703 3.689 3.674 3.660 3.645 3.631 3.616 3.601 3.587 3.572 3.558 3.558 3.548 3.529	0.0 1.695 1.689 1.682 1.652 1.669 1.669 1.656 1.649		
1300 1320 1340	5.694 5.660 5.626	5.291 5.265 5.240	4.867 4.843 4.820	4.451 4.426 4.401	3.514 3.499 3.485	$1.642 \\ 1.636 \\ 1.629$		

Comp. (mol % UF4)	a	b·104	Stand. deviation [98]
0.0	2.074	-3.321	0.00705
15.0	4.461	-7.285	0.0216
27.5	6.105	-12.720	0.0360
40.0	6.393	-11.740	0.0200
50.0	6.959	-12.830	0.0179
60.0	7.891	16.900	0.0347

Reference: [98]. Data reported in equation form.

TABLE 168. LiF-UF4: Viscosity

Numerical values	(cp)
Mol percent U	F.

Т	47	35	20	12	0*
873.2 973.2 1073.2	16.1 9.81	25.6 15.3 10.05	16.2 8.81 5.39	6.04	2.32

Reference: [18]. Due to limited data the experimental values are given.

* Extrapolated.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

LIF-UF4 1000 Temperature (°C) 800 LiF-4UF₄ 600 6UF 4LiF · ÚF4 400 20 40 Ō 60 80 100 LiF UF₄ % UF4 Mol

FIGURE 43.	Temperature-composition phase diagram for LiF-UF4.
C. J. Barton,	H. A. Friedman, W. R. Grimes, H. Insley, R. E. Moore,
and R. I	E. Thoma, J. Amer. Ceram. Soc., 41[2], 67 (1958).

LiF-YF₃

Electrical Conductance

The recommended values in table 171 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 169 A. Investigations critically re-examined

Ref.	YF3 (mol %)	Temp. range
87	0, 19, 30, 40, 50, 60	973-1343

TABLE 169 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- ided lue	YF3 (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(T)
87	1	2	100	5.1	(1150)	8.2	(1310)

FABLE 169 C. Cell materials and calibrat
--

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87]

Comment: The specific conductance values measured in reference [87] were reported reproducible to ± 1 percent. The precision of the measurements was ± 3 percent. The measured resistance was found to be independent of frequency over the range 20 to 20,000 hertz.

Density

The recommended values in table 172 are based on the work of Porter and Meaker (Archimedean method) [98].

TABLE 170 A. Investigations critically re-examined

Ref.	YF. (mol %)	Temp. range (T)
87	0, 19, 30, 40, 50, 60 (graphical)	1273
98	0, 19, 30, 40, 50, 60	973–1353

TABLE 170 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- ided lue	YF₃ (mol %)		% Dej	parture	
	Vol.	Page		% (min)	(T)	% (max)	(T)
98	1	2	100	-4.5	(1310)	-5.6	(1150)

TABLE 170 C. Cell materials and calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87, 98]	Molten KCl [87, 98]

Comment: Brief remarks concerning reference [98] are given under the system CaFz-LiF.

Density values [98] were fitted to linear temperature-dependent equations with standard deviations in the range: 7.05×10^{-3} (100 mol % LiF) to 23.1×10^{-3} gcm⁻³ (60 mol % YF₃).

Melt Preparation and Purification

The method used by Porter et al. [87, 98] is described under the system CaF_2 -LiF. Yttrium fluoride contained less than 0.1 weight-percent of metallic impurities.

TABLE 171 a. LiF-YF3: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent YF₃

T	60.0	50.0	40.0	30.0	19.0	0.0
980 1000 1020 1040 1060 1100 1120 1140 1160 1180 1200 1220 1240 1260 1280 1300 1320 1340	2.48 2.59 2.70 2.81 2.92 3.04 3.15 3.26 3.37	2.51 2.63 2.75 2.87 2.99 3.11 3.24 3.36 3.48 3.60 3.72	$\begin{array}{c} 2.82\\ 2.96\\ 3.10\\ 3.23\\ 3.37\\ 3.51\\ 3.65\\ 3.79\\ 3.92\\ 4.06\\ 4.20\\ 4.34\\ 4.47\\ 4.61\end{array}$	$\begin{array}{c} 3.73\\ 3.85\\ 3.98\\ 4.10\\ 4.23\\ 4.36\\ 4.48\\ 4.61\\ 4.74\\ 4.86\\ 4.99\\ 5.11\\ 5.24\\ 5.37\end{array}$	$\begin{array}{c} 4.10\\ 4.25\\ 4.39\\ 4.54\\ 4.69\\ 4.84\\ 4.90\\ 5.13\\ 5.28\\ 5.42\\ 5.57\\ 5.72\\ 5.87\\ 6.01\\ 6.16\\ 6.31\\ 6.46\\ 6.60\\ 6.75\\ \end{array}$	9.16 9.27 9.39 9.51 9.62 9.74 9.86 9.97 10.09 10.21

TABLE 171 b.	Temperature-dependent	equations
--------------	-----------------------	-----------

 $\kappa = a + bT$ (ohm⁻¹ cm⁻¹)

Comp. (mol % YF3)	a	6.103	Stand deviation [87]
0.0	2.395	5.830	0.0500
19.0	-3.117	7.363	0.0529
30.0	-3.088	6.309	0.0309
40.0	-4.634	6.901	0.0278
50.0	-4.415	6.072	0.0205
60.0	-4.146	5.611	0.0123

Reference: [87]. Data reported in equation form.

TABLE 172 a. LiF-YF₃: Density

Numerical values	(gcm ⁻³)
Mol percent	YFε

 T	60.0	50.0	40.0	30.0	19.0	0.0
980 1000 1020 1040 1060 1100 1120 1140 1160 1180 1200 1220 1240 1240 1280 1300 1320 1340	3.556 3.546 3.536 3.526 3.516 3.505 3.495	3.479 3.464 3.450 3.436 3.421 3.407 3.392 3.378 3.363 3.349 3.334 3.320	3.237 3.225 3.213 3.200 3.188 3.176 3.164 3.151 2.139 3.127 3.114 3.102 3.090 3.077	2.974 2.961 2.948 2.934 2.921 2.908 2.894 2.894 2.881 2.868 2.854 2.854 2.841 2.828 2.814 2.801	$\begin{array}{c} 2.706\\ 2.694\\ 2.683\\ 2.672\\ 2.661\\ 2.650\\ 2.639\\ 2.627\\ 2.616\\ 2.605\\ 2.594\\ 2.583\\ 2.571\\ 2.560\\ 2.549\\ 2.538\\ 2.527\\ 2.515\\ 2.504 \end{array}$	$\begin{array}{c} 1.695\\ 1.689\\ 1.682\\ 1.675\\ 1.669\\ 1.662\\ 1.656\\ 1.649\\ 1.642\\ 1.636\\ 1.629\end{array}$
	1	L .		}	1	

FIGURE 44. Temperature-composition phase diagram for LiF-YF₂. R. E. Thoma, C. F. Weaver, and H. A. Friedman, unpublished work performed at Oakridge National Laboratory 1958–59.

NaF-NaBF₄

Electrical Conductance

TABLE 172 b. Temperature-dependent equations

p a lor (gom	$\rho = a$	+bT	(gcm	-3)
--------------	------------	-----	------	-----

Comp. (mol % YF3)	a	b·104	Stand. dev. [98]
0.0 19.0 30.0 .40.0 50.0 60.0	$\begin{array}{c} 2.074 \\ 3.254 \\ 3.695 \\ 3.902 \\ 4.287 \\ 4.174 \end{array}$	$\begin{array}{r} -3.321 \\ -5.595 \\ -6.672 \\ -6.154 \\ -7.216 \\ -5.065 \end{array}$	$\begin{array}{c} 0.000705\\ 0.0130\\ 0.0213\\ 0.014\\ 0.0117\\ 0.0231 \end{array}$

Reference: [98]. Data reported in equation form.

The recommended values in table 177 are based on the work of Selivanov and Stender (classical ac technique) [125].

TABLE 173 A. Investigations critically re-examined

Ref.	NaBF4 (mol %)	Temp. range (T)
1 25	20.3-77.5	723–1073
124*	92, 100	773

* Data tak en from reference [125].

TABLE 173 B. Cell materials and calibration.

Cell Material	Electrodes	Frequency range (Hz)	Calibration
Corundum cru- cible [125]	Pt [125]	5000 [125]	Melt con- taining 62% CaCl 38% NaCl and molten Na2B407 [125]

Comment: Cantor [124] combined calculated data for NaBF₄ with the results given in reference [125] to interpolate conductance values for the 92 mol percent NaBF₄ composition.

Density

The recommended values in table 178 are based on the work of Cantor (dilatometric method) [123].

TABLE 174 A.	Investigations	critically re-examined	
TUDDE TILLAN	In tornganouro		

Ref.	NaBF4 (mol %)	Temp. range (T)
122*	92	727, 894
123	92	673-864

* Data in reference [122] are estimates.

Viscosity

The recommended values in table 179 are based on the work of Cantor (oscillating hollow cylinder method) [123].

TABLE	175	A.	Investigations	critically	re-examined
TUDUU				~~~~~ /	

Ref. NaBF ₄		Temp. range	
(mol %)		(T)	
122*	92	727, 894	
123	92, 100	681–810	

*Data in reference [122] are estimates.

Surface Tension

The recommended values in table 180 are based on the work of Cantor et al. [124].

TABLE 176 A. Investigations critically re-examined

Ref.	NaBF4 (mol %)
124*	92, 100

* The data reported in reference [124] are estimates.

TABLE 177. NaF-NaBF4: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent NaBF.

Т	77.5	60.5	47.2	36.5	27.7	20.3
723.2 773.2 823.2 873.2 923.2 973.2 1023.2 1073.2	2.408 4.093 5.445 6.955 8.801 10.305 11.955 14.978	$\begin{array}{c} 2.019\\ 3.408\\ 4.810\\ 6.600\\ 8.555\\ 10.425\\ 12.300\\ 15.375\end{array}$	1.5592.7554.115 $6.0157.95010.10112.37515.201$	0.905 1,601 2.501 4.755 6.350 7.803 10.997 14.105	2.955 4.095 5.015 7.451 12.075	4.108 6.502

Reference: [125]. The statistical analysis was unsuccessful therefore the original data are reported.

TABLE 178 a. NaF-NaBF4: Density

Numerical values (gcm⁻³)

<i>T</i>	92 Mol % NaBF
680	1.963
700	1.948
720	1.934
. 740	1.920
760	1.906
780	1.891
800	1.877
820 .	1.863
840	1.849
860	1.835

TABLE 178 b. Temperature-dependent equation

 $\rho = a + bT (gcm^{-3})$

Comp. (mol % NaBF4)	a	b•104	Stand. error [123]
92	2.446	7.11	0.0018

References: [123]. Data reported in equation form,

TABLE 179 a. NaF-NaBF4: Viscosity

	Mol percent NaBF4	
T	100	92
. 690		2.25
700	2.42	2.15
710	2.31	2.06
720	2.21	1.97
730	2.11	1.89
740	2.02	1.81
750	1.93	1.74
760	1.86	1.67
770	1.78	1.61
780	1.71	1.55
790		1.49
800		1.44
810		1.39

FIGURE 45. Temperature-composition phase diagram for NaBF₄-NaF. M. W. Rosenthal, P. N. Haubenreich, and R. B. Briggs,

Oak Ridge National Laboratory, ORNL-4812 (1972).

TABLE 179 b.	Temperature-dependent equations
η	$=A \cdot \exp(E/RT)$ (cp)

Comp (mol % NaBF₄)	$A \cdot 10^2$	E (cal mol ⁻¹)	
92	8.77	4451	
100	8.32	4689	

Reference: [123]. Data reported in equation form.

NaF-SmF₃

Electrical Conductance

The recommended values in table 183 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 181 A. Investigations critically re-examined

Ref.	SmF₃ (mol %)	Temp. range (T)
87	0, 10, 20, 30, 40, 50	1103-1343

TABLE 180. NaF-NaBF4: Surface tension

Temperature-dependent equation

 $\gamma = a + bT$ (dyn cm⁻¹)

Comp. (mol % NaBF₄)	a	b • 10 ⁻²	Unce tainty
92 ·	150	7.5	$\pm 30\% \\ \pm 25\%$
100	140	7.5	

Reference: [124]. Data reported in equation form, no temperature ranges were given.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE 181 B. Comparisons with previous recommendations

Ref.	Recom- mended Sn value (m		SmF3 (mol %)	% Departure				
	Vol.	Page		% (min)	(T)	% (max)	(T)	
87	1	3	0	5.0	(1300)	7.4	(1340)	

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87]

Comment: The specific conductance values measured in reference [87] were reported reproducible to ± 1 percent. The precision of the measurements was ± 3 percent. The measured resistance was found to be independent of frequency over the range 20 to 20,000 hertz.

Density

The recommended values in table 184 are based on the work of Meaker, Porter, and Kesterke (Archimedean method) [87].

TABLE 182 A. Investigations critically re-examined

Ref.	SmF₃ (mol %)	Temp. range (T)	
87	0-50	1103-1343	

TABLE 182 B. Cell materials and calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [87]	Molten KCl [87]

TABLE 183 a. NaF-SmF₃: Electrical conductance

Specific conductance: Numerical values (ohm-1cm-1)

Mol percent SmF₃

<i>T</i>	50.Q	40.0	30.0	20.0	10.0	0.0
1110 1120			2.39	2.88 2.92		
$1130 \\ 1140$			2.43	2.97		
1150		2.21	2.53	3.06	ŀ	
1160 1170	ĺ	$2.26 \\ 2.31$	2.57 2.62	3.11 3.16		
1180		2.36	2.66	3.20	3.96	
1190 1200		$2.41 \\ 2.46$	2.71 2.76	3.25	4.01	
1210		2.51	2.80	3.34	4.11	
1220 1230		2.56	2.85	3.39 3.43	4.16	1
1240		2.65	2.94	3.48	4.20	
1250		2.70	3.03	3.53	4.31	
1270	9.65	2.80	3.08	3.62	4.41	
1280	2.70	2.90	3.17	3.71	4.51	
1300 1310	2.74	2.95	3.22	3.76	4.56	E 99
1320	2.83	3.05	3.31	3.85	4.00	5.39
$1330 \\ 1340$	$2.87 \\ 2.92$	$3.10 \\ 3.15$	$3.35 \\ 3.40$	3.90 3.95	4.70 4.75	5.44 5.50
30.00		0.10	0.10	0.00	2.10	0.00

TABLE 183 b. Temperature-dependent equations

 $\kappa = a + bT$ (ohm⁻¹ cm⁻¹)

Melt Preparation and Purification

Reagent-grade chemicals were used in references [87] and [98]. After vacuum drying at 400 °C the salts were cooled and combined in the correct proportions. The salts were then placed in graphite crucibles and heated under vacuum (50 μ m Hg) to 600 °C. For density and conductance measurements the mixtures were melted in an atmosphere of helium in a controlled-atmosphere chamber. Melt compositions were confirmed by analyses after density measurements.

Comp. (mol % SmF3) a		b·10s	Stand. deviation [87]	
0.0	-2.060	5.640	0.0660	
10.0	-1.854	4,930	0.0260	
20.0	-2.301	4.663	0.0188	
30.0	-2.777	4.610	0.0176	
40.0	-3.458	4.929	0.0192	
50.0	-2.996	4.413	0.00843	

Reference: [67]. Data reported in equation form.

TABLE 184 a. NaF-SmF3: Density

Numerical values (gcm⁻³)

Mol percent SmF ₃						
T	50.0	40.0	30.0	20.0	10.0	0.0
1110 1120 1130 1140		3.968 3.960	3.564 3.557 3.550 3.343	3.181 3.173 3.165 3.157		
1150 1160 1170 1180		3.952 3.943 3.935 3.927	3.536 3.530 3.523 3.516	3.148 3.140 3.132 3.123		
1190 1200 1210		3.919 3.910 3.902	3.509 3.502 3.495	3.115 3.107 3.099	2.535	
1220 1230 1240		3.894 3.886 3.877	3.488 3.481 3.474	3.090 3.082 3.074	2.529 2.524 2.518	
1250 1260 1270 1280	4.229	3.809 3.861 3.853 3.844	3.467 3.460 3.453 3.446	3.003 3.057 3.049 3.041	2.512 2.506 2.500 2.495	1.895
1290 1300 1310 1320	4.221 4.212 4.204 4.195	3.836 3.828 3.820 3.811	3.439 3.432 3.425 3.418	3.032 3.024 3.016 3.007	2.489 2.483 2.477 2.472	1.889 1.882 1.876 1.870
1330 1340	4.186 4.178	3.803 3.794	3.411 3.405	2.999	2.466 2.460	1.864 1.858

NaF-SrF₂

Electrical Conductance

The recommended values in table 186 are based on the work of Thompson and Kaye (classical ac technique) [111].

TABLE 185 A. Investigations critically re-examined

Ref.	SrF2 (mol %)	Temp. range (T)		
111	40.1	1173–1373		
100*	40.1	1173, 1273, 1373		

* Data from reference [111].

_

Table 185 B.	Cell materials and	calibration
--------------	--------------------	-------------

Cell material	Electrodes	Frequency range (Hz)	Calibration
Pt crucible [111]	Pt [111]	1000 [111]	Molten KNO ₃ [111]

TABLE 184 b. Temperature-dependent equations

$\rho = a + bT$ (gcm ⁻³)
-------------------	---------------------

Comp. (mol % SmF3)	a	b.104	Stand. deviation [87, 98]
0.0	2.682	-6.151	0.00239
10.0	3.233	-5.764	0.0107
20.0	4.101	-8.282	0.0085
30.0	4.335	-6.943	0.0113
40.0	4.901	-8.255	0.0191
50.0	5.324	-8.553	0.0130
	ļ		ĺ

References: [87] and [98] (for NaF). Data reported in equation form. Two-dimensional statistical analysis was unsuccessful.

Melt Preparation and Purification

Thompson and Kaye [111] used analyzed chemical reagents (J. T. Baker Chemical Co.) without further purification.

TABLE 186 a. NaF-SrF2: Electrical conductance

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Т	40.1 Mol % SrF2
1180	4.489
1200	4.609
1220	4.729
1240	4.850
1240	4.970
1280	5.091
1300	5.211
1320	5.332
1340	5,452
1360	5.573

FIGURE 47. Temperature-composition phase diagram for NaF-SrFz-G. A. Bukhalova, Izv. Sekt. Fiz. Khim. A., 26, 138 (1955).

NaF-ThF₄

Electrical Conductance

The recommended values in table 189 are based on the work of Brown and Porter (classical ac technique) [24].

Table 187 A.	Investigations	critically	re-examined
--------------	----------------	------------	-------------

Ref.	ThF4 (mol %)	Temp. range (T)
24	0–50	1073-1363
100*	12, 33, 50	1073-1363
87	0-50	1073-1343
01	0-50	1073-1343

Fable 186 b.	Temperature-dependen	t equations
--------------	----------------------	-------------

$\kappa = a + bT \text{ (ohm}^{-1} \text{ cm}^{-1}\text{)}$				
Comp. (mol % SrF2)	a	b·103	Stand. error of est.	
40.1	-2.6174	6.0220	0.058	

Reference: [111]. Data reported in numerical form.

*Data from reference [24].

97

TABLE 187 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- ided lue	ThF₄ (mol %)		% De	parture		Rei
	Vol.	Page		% (min)	(T)	% (max)	(T)	
24 87	1	3	0	5.5 5.5	(1310) (1310)	8.3 8.3	(1360) (1360)	24 24 24

TABLE 180	B. Com	parisons wit	n previous	recommendat	ions
	_				

Ref.	Rec mer va	om- ided lue	ThF₄ (mol %)		% De	parture	
	Vol.	Page		% (min)	(T)	% (max)	(T)
24 24 24 24 24 24 24 24 24 24 98	4.1 4.1 4.1 4.1 4.1 4.1 1.1 1.1	98 98 98 98 98 98 98 3 3	50 40 33 20 12 0 0 0	2.9 3.0 2.8 2.7 2.6 1.7 0.0 -2.2	(1073) (1113) (1093) (1123) (1173) (1340) (1330) (1280)	3.1 3.2 3.0 2.8 2.7 2.4 0.5 -2.5	(1353) (1353) (1353) (1343) (1343) (1343) (1280) (1360) (1340)

TABLE 187 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)	Calibration
Boron nitride cylinders with graphite jackets, melt contained in graphite cru- cible [24, 87]	Mo tubes [24 , 87]	1000-20,000 experimental values at 10,000 [24] 20-20,000 experimental values at 10,000 [87]	Molten KCl [24]

Comments: Remarks concerning references [24] and [87] are discussed under the LiF-UF4 and CaF2-LiF systems, respectively.

Electrical Conductivity values reported by Porter, Meaker and Kesterke [87] are identical to the earlier values of Porter and Brown [24].

TABLE 188 C. Cell Materials and Calibration

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [24, 87, 98]	Molten KCl [24, 87, 98]

Comment: The density measurements of molten KCl in the temperature range 810 to 975 °C for references [24] and [98] agreed with the published values of Van Artsdalen and Yaffe (NSRDS-NBS-15, Molten Salts: Vol. 1, reference 79) to within an average deviation of ± 0.4 percent and ± 0.3 percent, respectively.

Density values were initially reported by Brown and Porter [24] and then by Porter and Meaker [98]. The more recent measurements [98] were made with an improved apparatus involving a more precise control of the immersed volume of the plummet. Density values [98] were reported in the form of linear temperature-dependent equations with standard deviations in the range: 2.39×10^{-3} gcm⁻³ (1) mol % ThF₄) to 22.5×10^{-3} gcm⁻³ (40 mol % ThF₄).

Density

The recommended values in table 190 are based on the work of Porter and Meaker (Archimedean method) [98].

TABLE 188 A. Investigations critically re-examined

Ref.	ThF4 (mol %)	Temp. range (T)
24	0–50	1073–1363
87	0–50 (graphical)	1273
98	0, 12, 20, 33, 40, 50	1073–1353

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

Melt Preparation and Purification

The procedure used by Brown and Porter [24] is discussed under the LiF-ThF₄ system.

The method of Porter and Meaker [98] is discussed under the system CaF_2 -LiF.

TABLE 189 a. NaF-ThF4: Electrical conductance

Specific conductance: Numerical values (ohm ¹ cm⁻¹)

Mol percent T	ſhF₄
---------------	------

TABLE 190 a.	NaF-ThF4: Density
Numerical	values (gcm ⁻³)

Mol percent ThF4

T	50.0	40.0	33.0	20.0	12.0	0
1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1210 1220 1220 1220 1240 1250 1240 1250 1260 1270 1390	1.52 1.57 1.62 1.68 1.73 1.78 1.83 1.88 1.94 1.99 2.04 2.09 2.15 2.20 2.25 2.30 2.36 2.41 2.46 2.51	$\begin{array}{c} 1.66\\ 1.70\\ 1.74\\ 1.77\\ 1.81\\ 1.85\\ 1.88\\ 1.92\\ 1.96\\ 1.99\\ 2.03\\ 2.07\\ 2.10\\ 2.14\\ 2.18\\ 2.21\\ 2.25\\ 2.29\\ 2.32\\ 2.36\\ \end{array}$	$\begin{array}{c} 1.79\\ 1.83\\ 1.87\\ 1.91\\ 1.95\\ 1.98\\ 2.02\\ 2.06\\ 2.10\\ 2.14\\ 2.18\\ 2.22\\ 2.26\\ 2.29\\ 2.33\\ 2.37\\ 2.41\\ 2.45\\ 2.49\\ 2.53\end{array}$	2.45 2.49 2.53 2.56 2.60 2.64 2.68 2.71 2.75 2.79 2.83 2.86 2.90 2.94 2.98 3.01 3.05 3.09 3.13 3.16	3.51 3.55 3.62 3.66 3.70 3.73 3.77 3.81 3.84	5.38 5.50

Т	50.0	40.0	33.0	20.0	12.0	0.0
1080	5 002]			
1005	5 080		4 109			1
1110	5.060		4.102			1
1195	5.000	4 500	4.007	2 200		
1120	5.030	4.309	4.071	3.300	1	.
1155	5 031	1 160	4.035	2 907		
1170	5 010	4.400	4.040	3.207	ļ	
110	5.019	4.497	4.024	3.411	0.001	
1105	3.007	4.447	4.009	3.207	2.861	
1200	4.995	4.406	3.993	3.258	2.848	
1215	4.902	4.000	3.911	5.248	2.835	f
1230	4.970	4.300	3.902	3.238	2.822	
1245	4.958	4.345	3.946	3.228	2.809	
1260	4.946	4.325	3.931	3.218	2.796	
12/0	4.933	4.304	3.915	3.209	2.783	1.89
1290	4.921	4.284	3.899	3.199	2.770	1.88
1305	4.909	4.263	3.884	3.189	2.757	1.87
1320	4.897	4.243	3.868	3.179	2.744	1.87
1335	4.884	4.222	3.853	3.170	2.732	1.86
1350	4.872	4.202	3.837	3.160	2.719	1.85

TABLE 189 b. Temperature-dependent equations

$\kappa = a + bT (ohm^{-1} cm^{-1})$

Comp. (mol % ThF4)	a	b.103
0	-2.06	5.64
12.0	-0.90	3.74
20.0	-1.61	3.76
33.0	-2.40	3.88
40.0	-2.29	3.66
50.0	4.13	5.23

Reference: [24]. Data reported in equation form.

TABLE 190 b. Temperature-dependent equations

 $\rho = a + bT \ (\text{gcm}^{-3})$

Comp. (mol % ThF4)	a	b·104	Stand. dev. [98]
0.0	2,682	-6.151	0.0024
12.0	3.881	-8.610	0.0120
20.0	4.039	-6.512	0.0198
33.0	5.241	-10,400	0.0100
40.0	6.042	-13.630	0.0225
50.0	5,973	-8,154	0.0156

Reference: [98]. Data reported in equation form. Two-dimensional statistical analysis was unsuccessful.

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, J. Phys. Chem., 63, 1269 (1959).

NaF-UF₄

Electrical Conductance

The recommended values in table 194 are based on the work of Brown and Porter (classical ac technique) [24].

TABLE 191 A. Investigations critically re-examined

Ref.	UF4 Temp. rang (mol %) (T)	
24	0-75	973–1363
100*	15, 35, 75	973-1363
87	0-75	973-1343

*Data from reference [24].

Table 191 B. Comparisons with previous recommendations

Ref.	Rec men val	Recom- mended UF, % Departure value (mol %)					
	Vol.	Page		% (min)	(<i>T</i>)	% (max)	(<i>T</i>)
24	1	3	0	5.5	(1310)	8.3	(1360)

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

TABLE	191	C.	Cell	materials	and	calibration

Cell material	Electrodes	Frequency range (Hz)	Calibration
Boron nitride cylin- ders with graphite jackets, melt con- tained in a graphite erucible [24, 87]	Mo tubes [24, 87]	1000-20,000 experimental values at 10,000 [24] 20-20,000 experimental values at 10,000 [87]	Molten KCl [24]

Comments: Remarks concerning references [24] and [87] are discussed under the LiF-UF4 and CaF2-LiF systems, respectively. Electrical conductivity values reported by Porter, Meaker, and

Kesterke [87] are identical to the earlier values of Porter and Brown [24].

Density

The recommended values in table 195 are based on the work of Porter and Meaker (Archimedean method) [98].

TABLE 192 A. Investigations critically re-examined

Ref.	UF. (mol %)	Temp. range (T)
24 35	0-75	1073-1363
87	0-75 (graphical)	1273
98	0-75	1073-1353
19	24-70	873, 973, 1073
17	24-70	873, 973, 1073

TABLE 192 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- ided lue	UF4 mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(<i>T</i>)
24 24 24 24 24 24 24 24 98	4.1 4.1 4.1 4.1 4.1 1 1	100 100 100 100 100 3 3	75.0 54.7 35.0 15 0 0 0	2.8 2.9 2.7 3.1 1.7 0.0 -2.2	(1223) (1073) (1073) (1143) (1340) (1330) (1280)	3.0 3.1 3.0 3.4 2.4 0.5 -2.5	(1323) (1353) (1353) (1303) (1280) (1360) (1340)

TABLE 192 C. Cell materials and calibration

TABLE 194a.	NaF-UF4:	Electrical	conductance
-------------	----------	------------	-------------

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent UF4

Cell material	Calibration
Mo plummet connected to a quartz spring by a Mo wire, melt contained in a graphite crucible [24, 87, 98]; Pt cylinder and suspension wire, In crucible [19, 17]	Molten KCI [24, 87, 98]

Commonto: Brief romarke concerning references [24] and [98] are given under the system NaF-ThF₄. Density values in reference [98] were reported in the form of linear temperature-dependent equations with standard deviations in the range: 2.39×10^{-3} gcm⁻³ (0 mol % UF₄) to 36.0×10^{-3} gcm⁻³ (75 mol % UF₄).

Viscosity

The recommended values in tables 196, 197 are based on the work of Cohen et al., (capillary and rotating cylinder methods [35]), and Blanke et al. (rotating cylinder method [19]).

TABLE 193 A. Investigations critically re-examined

Ref.	UF4 (mol %)	Temp. range (T)
35	33.3	973, 1073, 1173
19	24–70	973, 1073

TABLE 193 B. Cell materials and calibration

Cell material

Inner and outer cylinder of Inconel, Ni shaft and Mo torsion wire [19]

Melt Preparation and Purification

Materials used by Brown and Porter [24] are described under the system LiF-ThF₄.

The procedure used by Porter and Meaker [98] is discussed under the system CaF_2 -LiF.

The preparation of pure NaF by Blanke et al. [19, 17] is given under the system BeF₂-NaF. Oxide impurities were removed from ThF₄ by vacuum heating in Ni crucibles at 750 °C with a HF gas flow over the melt. The melt was cooled to 150 °C and HF was removed by a flow of H₂ gas.

-								
T	75.0	54.7	46.0	35.0	25.0	22.0	15.0	0
980 1000 1020 1040 1060 1180 1120 1140 1140 1200 1220 1240 1260 1240 1280 1310 1320 1340 1360	2.20 2.27 2.34 2.41 2.49 2.56	2.02 2.10 2.18 2.25 2.33 2.42 2.49 2.57 2.65 2.73 2.81	1.96 2.04 2.12 2.20 2.28 2.36 2.44 2.52 2.60 2.68 2.76 2.84	1.40 1.49 1.58 1.68 1.77 1.86 1.96 2.04 2.14 2.23 2.33 2.42 2.51 2.61 2.70 2.79	1.90 1.99 2.07 2.16 2.25 2.34 2.51 2.60 2.69 2.77	1.66 1.74 1.82 1.90 1.98 2.07 2.15 2.23 2.30 2.39 2.47 2.55 2.64 2.71 2.79 2.88	2.88 2.95 3.09 3.16 3.23 3.31 3.38	5.33 5.38 5.50 5.61
		i						

TABLE 194 b. Temperature-dependent equations

 $\rho = a + bT$ (ohm⁻¹ cm⁻¹)

Comp. (mol % UF4)	a	b·103
0	-2.06	5.64
15.0	-1.18	3.56
22.0	-2.33	4.07
25.0	-2.82	4.37
35.0	-3.16	4.65
46.0	-2.27	3.99
54.7	-2.21	3.92
75.0	-2.00	3.56

Reference: [24]. Data reported in equation form.

TABLE 195 a. NaF-UF4: Density

Numerical values (gcm⁻³)

Mol percent UF4

T	75.0	54.7	46.0	35.0	22.0	15.0	0.0
T 1080 1095 1110 1125 1140 1155 1170 1185 1200 1215 1230 1245 1245 1245 1245 1245 1245 1250 1305 1320 1335 1350	6.069 6.009 5.949 5.890 5.770 5.770 5.710 5.651 5.591 5.531	54.7 5.430 5.440 5.373 5.344 5.316 5.287 5.258 5.230 5.201 5.173 5.144 5.116 5.087 5.059 5.030 5.002 4.973 4.944 4.916	46.0 4.988 4.970 4.953 4.918 4.900 4.882 4.865 4.847 4.830 4.812 4.794 4.777 4.759 4.742 4.729 4.742 4.706 4.689 4.671	$\begin{array}{c} 35.0\\ \hline \\ 4.357\\ 4.337\\ 4.296\\ 4.276\\ 4.26\\ 4.26\\ 4.215\\ 4.195\\ 4.175\\ 4.155\\ 4.134\\ 4.014\\ 4.074\\ 4.053\\ 4.033\\ 4.013\\ 3.993\\ \end{array}$	22.0 3.739 3.725 3.711 3.697 3.683 3.669 3.655 3.641 3.626 3.612 3.598 3.584 3.556 3.554 3.556 3.524 3.524 3.514 3.500 3.486	3.252 3.222 3.193 3.163 3.134 3.075 3.016 2.986 2.957 2.928 2.898 2.869	1.898 1.899 1.889 1.879 1.870 1.861 1.852
						l I	

TABLE 195 b. Temperature-dependent equations

 $\rho = a + bT \pmod{3}$

Comp. (mol % UF4)	a	b·104	Stand. dev. [98]
$\begin{array}{c} 0.0 \\ 15.0 \\ 22.0 \\ 35.0 \\ 46.0 \\ 54.7 \\ 75.0 \end{array}$	2.682 5.520 4.753 5.815 6.256 7.485 10.907	$\begin{array}{r} -6.151 \\ -19.640 \\ -9.388 \\ -13.500 \\ -11.740 \\ -19.030 \\ -39.820 \end{array}$	$\begin{array}{c} 0.00239\\ 0.0231\\ 0.0180\\ 0.0129\\ 0.0200\\ 0.0330\\ 0.0360\\ \end{array}$

Reference: [98]. Data reported in equation form. Two dimensional statistical analysis was unsuccessful.

TABLE 196. NaF-UF4: Viscosity

Numerical values (cp)

Mol percent UF4 .

 T	70	60	54	46.16	42	37.5	33.33	25	24
973.2 1073.2	10.99	16.62 10.59	16.60 10.98	12.93 8.27	13.13 8.64	12.40 7.62	11.50 6.93	5.72	12.25 7.24

Reference: [19]. Due to limited data the numerical interpolated values reported in reference [19] are given.

TABLE 197. NaF-UF4: Viscosity

Numerical values (cp)

<i>T</i>	33.3 Mol % UF4
973.2	10.25
1073.2	7.0
1173.2	5.15

Reference: [35]. Due to limited data the experimental values are given.

FIGURE 49. Temperature-composition phase diagram for NaF-UF4.
C. J. Barton, H. A. Friedman, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, J. Amer. Ceram. Soc., 41 [2], 68 (1958).

NaF-YF₃

Electrical Conductance

The recommended values in table 200 are based on the work of Meaker, Porter, and Kesterke (classical ac technique) [87].

TABLE 198 A. I	nvestigations	critically r	e-examined
----------------	---------------	--------------	------------

Ref.	YF3 (mol %)	Temp. range (T)
87	0, 10, 29, 32, 50	963-1343

PROPERTIES OF FLUORIDES AND MIXTURES

TABLE 198 B. Comparisons with previous recommendations

Ref.	Recom- mended value		YF₃ (mol %)	% Departure				
	Vol.	Page		% (min)	(T)	% (max)	(T)	
87	1	3	0	5.0	(1300)	7.4	(1340)	

TABLE 198 C. Cell materials and calibration

Cell material	Electrodes	Calibration
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 Hz measurements at 10,000 Hz [87]

Comment: The specific conductance values measured in reference [87] were reported reproducible to ± 1 percent. The precision of the measurements was ± 3 percent. The measured resistance was found to be independent of frequency over the range 20 to 20,000 hertz.

TABLE 199 C. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)
Capillary cell consisting of two boron nitride cylinders encased in a graphite jacket [87]	Mo [87]	20-20,000 measurements at 10,000 [87]

Comment: Brief remarks concerning reference [98] are given under the system CaF₂-LiF.

Density values [98] were reported in the form of lincar tomperature-dependent equations with standard deviations in the range: 7.05×10^{-3} gcm⁻³ (0 mol % YF₃) to 21.0×10^{-3} gcm⁻³ (50 mol % YF₃).

Melt Preparation and Purification

The method used by Porter et al. [87, 98] is described under the system CaF_2 -LiF. Yttrium fluoride contained less than 0.1 weight-percent of metallic impurities.

Density

The recommended values in table 201 are based on the work of Porter and Meaker (Archimedean method) [98].

Table 199 A.	Investigations	critically	re-examined
--------------	----------------	------------	-------------

Ref.	YF3 (mol %)	Temp. range (T)
87	0–50 (graphical)	1273
98	0, 10, 20, 29, 32, 50	993–1353

TABLE 199 B. Con	parisons with	previous	recommendations
------------------	---------------	----------	-----------------

Ref.	Rec men val	om- ided ue	YF3 (mol	% Departure				
	Vol.	Page	%)	% (min)	(T)	% (max)	(T)	
98	1	3	0	-2.2	(1270)	-2.5	(1350)	

TABLE 200 a. NaF-YF3:	Electrical	conductance
-----------------------	------------	-------------

Specific conductance: Numerical values (ohm⁻¹ cm⁻¹)

Mol percent YF₃

Т	50.0	32.0	29.0	20.0	10.0	0.0
980 1000 1020 1040 1060 1100 1120 1140 1120 1140 1220 1220 1240 1260 1280 1300 1320	1.89 1.98 2.07 2.16 2.25 2.34 2.44 2.53 2.62	$\begin{array}{c} 1.51\\ 1.59\\ 1.68\\ 1.77\\ 1.86\\ 1.95\\ 2.03\\ 2.12\\ 2.21\\ 2.30\\ 2.39\\ 2.48\\ 2.56\\ 2.65\\ 2.74\\ 2.83\\ 2.92\\ 3.00\\ 3.09 \end{array}$	$1.59 \\ 1.69 \\ 1.78 \\ 1.88 \\ 1.98 \\ 2.07 \\ 2.17 \\ 2.27 \\ 2.36 \\ 2.46 \\ 2.56 \\ 2.66 \\ 2.75 \\ 2.85 \\ 2.95 \\ 3.04 \\ 3.14 \\ 3.24 \\ 3.33 $	2.67 2.75 2.84 2.92 2.00 3.09 3.17 3.25 3.33 3.42 3.50 3.58 3.67	3.99 4.07 4.14 4.21 4.29 4.36 4.43	5.39
				•		1

TABLE 200 b. Temperature-dependent equations

$r = a \perp hT$	(ohm-1	cm-1)	

$\kappa = a + bT$ (ohm ⁻¹ cm ⁻¹)				$\rho = a + bT \ (\text{gcm}^{-3})$			
Comp. (mol % YF ₃)	a	B-103	Stand. deviations [87]	Comp. (mol % YF 3)	<i>a</i>	b·104	Stand. dev. [98]
				0.0	2.682	-6.151	0.00239
0.0	-2.060	5.640	0.0660	10.0	3.239	-7.947	0.00870
10.0	-0.516	3.694	0.0116	20.0	3.321	-7.071	0.00956
20.0	-1.895	4.150	0.0150	29.0	3.455	6.178	0.0103
29.0	-3.159	4.845	0.030	32.0	3.779	-8.110	0.00760
32.0	-2.815	4.408	0.0256	50.0	4.487	-9.957	0.0210
50.0	-3.524	4.584	0.0360	1		1	Ι.

Reference: [87]. Data reported in equation form.

Reference: [98]. Data reported in equation form. Two-dimensional statistical analysis was unsuccessful.

TABLE 201 b. Temperature-dependent equations

TABLE 201 a. NaF-YF3: Density

Numerical values (gcm⁻³)

Mol percent YF₃

-		<u></u>				
T	50.0	32.0	29.0	20.0	10.0	0.0
1005			2.834			
1020			2.825			
1035	{	2.940	2.816		{	
1050	1	2.927	2.806	ļ		
1065		2.915	2.797	{		
1080		2.903	2.788		[. ·
1095]	2.891	2.779		}	
1110	ł	2.879	2.769	2 536		
1125		2.867	2.760	2.526		
1140		2.854	2.751	2.515		
1155	l	2.842	2.741	2.504		
1170	J	2.830	2 732	2. 4.94		
1185		2.818	2.723	2.483		
1200		2.806	2.714	2.472		
1215		2.794	2.704	2.462	2.273	
1230	3.262	2.781	2.695	2.451	2.262	
1245	3.247	2.769	2.686	2.441	2.250	
1260	3.232	2.757	2.677	2.430	2.238	
1275	3.217	2.745	2.667	2.419	2.226	1.898
1290	3.203	2.733	2.658	2.409	2.214	1.889
1305	3.188	2.721	2.649	2.398	2.202	1.879
1320	3.173	2.708	2.640	2.388	2.190	1.870
1335	3.158	2.696	2.630	2.377	2.178	1.861
1350	3.143	2.684	2.621	2.366	2.166	1.852

FIGURE 50. Temperature-composition phase diagram for NaF-YFs. C. A. Bukhalova and E. P. Babaeva, Russ. J. Inorg. Chem., 11, 349 (1966).

NaF-ZrF₄

Electrical Conductance

The recommended values in figure 51 were based on the work of Greene (classical ac technique and modified ac potentiometric method) [54].

TABLE 202 A.	Investigations	critically re-examined	
TURNE TOT II.	moongations	cultionity re-oxaminou	

Ref.	ZrF4 (mol %)	Temp. range (T)
35*	43, 50	866, 977, 1089
54	43, 50 (graphical)	825–1227
100*	43, 50	838, 1003, 1158
50	0–25 (graphical)	1323

* Data from [54].

TABLE 202 B. Cell materials and calibration

Cell material	Electrodes	Frequency range (Hz)	Calibration
BeO dip cell with melt in Pt crucible [54]	Pt [54]	1000 (500 used with potentiometric method) [54]	KCl solution and molten KCl [54]
Boron nitride cell [50]	Inconel [50]	20–20,000 (measurements at 20,000) [50]	Molten NaF and measured cell dimensions [50]

Comment: Greene [54] used three conductivity cells in his investigation. A beryllium oxide dip-type cell and a low resistance platinum crucible cell were used in conjunction with an ac Wheatstone bridge. A current-potential cell consisting of Pt electrodes immersed in a Pt crucible was used with a modified ac potentiometric bridge. Conductivity values were reported to be accurate to ± 10 percent.

Fontana and Winand [50] used a boron nitride cell of the type described by Yim and Feinleih [119].

Density

The recommended values in table 206 and figure 52 are based on the work of Fontana and Winand (Archimedean method) [49].

Table 203 A.	Investigations	critically	re-examined
		/	

Ref.	ZrF4 (mol %)	Temp. range (T)
121	50	
35	50	
97	0-33.3	1173, 1273
49	0, 5, 10, 25	1253-1368

TABLE 203 B. Comparisons with previous recommendations

Ref.	Rec mer va	om- ided lue	ZrF. (mol %)	% Departure			
l	Vol.	Page		% (min)	(T)	% (max)	(T)
97	1	3	0	-1.83	(1273)		

TABLE 203 C. Cell materials and calibration

Cell material	Calibration
Pt spherical bob [97]	
Pt –10% Rh bob and Pd alloy suspension wire [49]	Molten NaF [49]

Comment: The density apparatus of Fontana and Winand [49] was calibrated with molten NaF using the values of Jaeger (Molten Salts: Vol. 1. reference 25) and Blander (Molten Salt Chemistry, Interscience, N.Y., 1964). The overall error was less than 0.2 percent.

Viscosity

The recommended values in table 207 are based on the work of Cohen et al. (capillary and rotating-cylinder method) [35].

TABLE 204 A.	Investigations	critically	re-examined
--------------	----------------	------------	-------------

Ref.	ZrF4 (mol %)	Temp. range (T)		
102	50	873		
35	47, 50	873, 973, 1073		

Comment: Cohen [35] reported error limits of ± 10 percent for his viscosity measurements.

Surface Tension

The recommended values in table 208 are based on the work of Decroly, Fontana, and Winand (Wilhelmy slide plate method) [43].

TABLE 205 A.	Investigations	critically	v re-examined
--------------	----------------	------------	---------------

Ref.	ZrF4 (mol %)	Temp. range (T)
43	0–25	1213-1325

1

TABLE 205 B. Comparisons with previous recommendations

Ref.	Rec men va	om- ided lue	ZrF4 (mol %)	% Departure			
	Vol.	Page		% (min)	(T)	% (max)	(T)
43	2	56	0	4.4	(1322)	5.5	(1319)

TABLE 205 C. Cell materials and calibration

Cell material	Calibration .		
Pt-10% Rh plate and melt contained in graphite crucible [43]	Water, 25 °C [43]		

Comment: Surface tension results [43] on molten KCl at 900 and 1000 °C differed from the recommended data of Dahl and Duke (Molten Salts: Vol. 2, reference 31a) by -9.5 percent and -10.6 percent, respectively.

Melt Preparation and Purification

Winand et al. [43, 49, 50] dried pure NaF under vacuum at 180 °C. The ZrF₄ was sublimed and dried under vacuum at 180 °C.

Numerical va'ues (gcm⁻³)

Mol percent ZrF4

Т	25	20	15	10	5	0
323.2	2.43	2.36	2.27	2.17	2.05	1.92

TABLE 206 b. Composition-dependent equations

$\rho = a + ox + cx^2 (gcm^2)$

(x: mol fraction ZrF4)

Tempera- ture a (T)		в	С	
1323.2	1.915	2.81	-2.95	

TABLE 206 c. Temperature-dependent equalion

Comp. (mol % ZrF4)	a	<i>b</i> -104	Temp. range (T)
0 to 25	2.669	-5.7	~1313 to ~1330

Reference: [49]. Data reported in equat on form.

Figure 51. Plots [54] of specific conductance against temperature for the system NaF-ZrF4.

FIGURE 52. Isotherms [49] (°C) of density against molar composition for the system NaF-ZrF.

J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

PROPERTIES OF FLUORIDES AND MIXTURES

TABLE 207. NaF-ZrF4: Viscosity					
Numerical values (cp)					
Mol percent ZrF4					
T	50	47			
873.2 973.2 1073.2	2.60 1.66 1.13	7.5 4.6 3.2			

2

Reference: [35]. Due to limited data the experimental values are given.

TABLE 208. NaF-ZrF4: Surface tension

Numerical values (dyn cm⁻¹)

Mal	percent	ZrFe
-----	---------	------

			_			
Т	25	20	15	10	5	0
1213.2 1222.2 1284.2 1316.2 1318.2 1319.2 1324.2 1325.2	134.8	148.6 144.2	162.8 155.4	175.0 `164.8	175.0	186.3

Reference: [43]. Due to limited data the experimental values are given.

FIGURE 53. Temperature-composition phase diagram for NaF-ZrF.
W. R. Grimes, D. R. Cuneo, F. F. Blankenship, G. W. Keilholtz,
H. F. Poppendick, M. T. Robinson in "Fluid Fuel Reactors",
by Lane, MacPherson, Maslaw, p. 570, chap. 12, 1958.
TiF₄-XeF₂

Electrical Conductance

The recommended values in figure 54 are based on the work of Rüdiger and Meinert (classical ac technique) [105].

TABLE 209A. Investigations critically re-exan

Ref.	XeF2 (mol %)	Temp. range (T)
105	\cong 37–81 (graphical)	405

TABLE 200B	Cell materiale	and electrodee
TADLE 209D	Cen materials	and electrodes

Cell material	Electrodes
Quartz [105]	Pt [105]

Comment: After three measurements the Pt electrodes were replaced due to attack by the melt.

PROPERTIES OF FLUORIDES AND MIXTURES

6.2. General Summary Tables

			:	F	,		η		γ
Sys	stem	No. of invest.	Recom- mended reference	No. of invest.	Recom- mended reference	No. of invest.	Recom- mended reference	No. of invest.	Recom- mended reference
AlF ₃ [-] -] -]	CsF KF LiF RbF	4 11 25	[120] [80] [45, 46]	2 2 8 21 2	[25] [74] [75, 95] [75, 95] [25, 74]	1 5	[108] [5]	2	[20]
BaF2 -(-] -]	CsF KF LiF NaF	3	[111]	1 1 1 2	[26] [26] [26] [7]				
BeF2 -] -] -] -]	KF LiF RaF RbF UF4	7 1	[102] [30]	8 4 1 1	[30, 33] [17] [35] [18]	3 7 4 1	[35] [33] [19, 35] [35]	3 1	[109] [72]
CaF ₂ -]	LiF NaF	1 3	[87] [111]	2 1	[98] [7]				
CeF ₃ -] -] -]	KF LiF NaF	1 1 1	[87] [87] [87]	2 2 2	[98] [98] [98]				
KF -H -I -J -J -J -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	KBF, LaF3 LiF NaF SmF3 ThF4 UF4 YF3 ZrF,	1 1 2 1 1 1 1 1	[611] [87] [87] [87] [87] [87] [87] [87] [107]	2 6 3 1 2 2 2 1	[98] [98] [98] [98] [98] [98] [98] [107]	1	[107]	<u>)</u> 1	[89] [89] [107]
LaF ₃ -1	LiF NaF	1 · 1	[87] [87]	2 2	[98] [98]			 .	
LiF - -I -2 -1 -1 -1	NaF RbF SmFs ThF4 UF4 YF3	1 1 3 3 1	[87] [24] [24] [87]	5 1 4 4 2	[75] [35] [87] [60] [98] [98]	1 1 1	[35] [35] [18]	2	[89]
NaF -1 -2 -1 -1	NaBF, SmF ₃ S1F ₂ ThF, UF, YF,	2 1 2 3 3 1	[125] [87] [111] [24] [24] [87]	2 1 3 5 2	[123] [87] [98] [98] [98]	2 2	[123] [19, 35]	L	[124]
-7 THM -2	ZrF4 XeF2	4. 1	[54] [105]	4	[49]			1	[43]

TABLE 210. Total and recommended investigations *

• Total number of investigations and recommended references for specific conductance, density, viscosity, and surface tension of molten fluorido mixturos.

TABLE 211 a. References * Specific conductance

TABLE 211 b. References •

Densit	y
	3

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		System	No. of invest.	Literature references		System	No. of invest.	Literature references
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4	14. 15. 100. 120	AlF ₃	-CsF	2	25,74
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_UF	1 11	6 40 41 42 77 79 80 84 86	•	-KF	2	25.74
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				100 120		-LiF	8	74, 75, 83, 84, 86, 94, 95, 108
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-Naf	25	5, 6, 10, 12, 14, 39, 40, 41, 45 , 46 , 51, 70, 77, 79, 80, 81, 82, 85, 86, 96, 104, 110, 114, 116, 120		-Nať	21	4, 5, 7, 25, 45, 46, 52, 65, 75, 83, 84, 85, 86, 92, 93, 94, 95 , 96, 103, 108, 115
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BaF2	-NaF	3	100, 110, 111		RbF	2	25,74
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BeF,	-LiF	7	22, 29, 30, 55, 57, 58, 102	BaF2	–CsF	1	26
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-NaF	1	30		-KF) 1	26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						LiF	· 1	26
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CaF.	_I;F	1	87		-NaF	2	7.26
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gar 2	-MaF	2	10 100 111		11112	-	1,20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1141		10,100,111	BeF-	-LiF	8	18, 29, 30, 32, 33, 35, 57, 121
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O F	VE	,	97	Der ₂	-NeF	4	17 10 20 25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cer 3			07		_RhF	1 1	25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-Lir NaF		87		-UF4	1	18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	KF	-KBF₄			CaF ₂	-Lif	2	87, 98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-LaF ₃		87		-Na r	1 1	17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		–LiF	1	87				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		NaF	2	14,87	CeF ₃	-KF	2	87, 98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-SmF3	1	87		–LiF	2	87 . 98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		–ThF₄	1	87		–NaF	2	87, 98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		–UF₄	{ 1	87				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-YF3	1	.87	KF	–LaF₃	2	87, 98
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		–ZrF4	. 1	107		–LiF	6	35, 47, 48, 87, 89, 98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						–NaF	3	87, 89, 98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LaF,	LiF	1	87		$-SmF_3$	1	87
JiF -NaF 1 87 -UF4 2 87.98 $-SmF_3$ 1 87 $-ZrF_4$ 1 107 $-ThF_4$ 3 24,87.100 LaF3 LiF 2 87.98 $-UF_4$ 3 24,87.100 $-IaF_3$ 2 87.98 $-UF_4$ 3 24,87.100 $-NaF$ 2 87.98 $-VF_3$ 1 87 $-VaF$ 2 87.98 $-VF_3$ 1 87 $-VaF$ 2 87.98 $-VF_3$ 1 87 $-NaF$ 2 87.98 VaF -NaBF4 2 124,125 $-NaF$ 35 $-SmF_3$ 1 87 $-SmF_3$ 1 87 $-SmF_4$ 2 100,111 $-ThF_4$ 4 24,60,87,98 $-UF_4$ 3 24,87,100 $-UF_4$ 4 18,24,87,98 $-UF_4$ 3 24,87,100 $-YF_4$ 2 122,123 $-YF_3$ 1 87 $-ThF_4$ 3 24,87,98	-	NaF	1	87		-ThF4	2	87, 98
if -NaF 1 87 -YF3 2 87, 98 -SmF3 1 87 -ZrF4 1 107 -ThF4 3 24, 87, 100 LaF3 LaF3 2 87, 98 -UF4 3 24, 87, 100 -NaF 2 87, 98 -UF4 3 24, 87, 100 -NaF 2 87, 98 -YF3 1 87 -NaF 2 87, 98 -YF3 1 87 -NaF 2 87, 98 -SmF3 1 87 -NaF 5 75, 87, 88, 89, 98 -SmF3 1 87 -SmF3 1 87 -SmF4 2 100, 111 -ThF4 4 24, 60, 87, 98 -ThF4 3 24, 87, 100 -UF4 4 18, 24, 87, 98 -UF4 3 24, 87, 100 -YF3 2 87, 98 -YF3 1 87 - - 2 122, 123 -YF4 4 35, 50, 54, 100 NaF -NaBF4 2 122, 123						-UF	2	87. 98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LiF	-NaF	1 1	87	· ·	-YF.	2	87.98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-SmF.	1 ī	87		-ZrF	1	107
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-ThF	3	24.87 100	LaF.	-LiF	· - 2	87.98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-IIF.	3	24.87 100		-NaF	2	87 98
Lif -NaF 5 75, 87, 88, 89, 98 NaF -NaBF4 2 124, 125 -RbF 1 35 $-SmF_3$ 1 87 $-SmF_3$ 1 87 $-SrF_2$ 2 100, 111 $-ThF_4$ 4 24, 60, 87, 98 $-ThF_4$ 3 24, 87, 100 $-UF_4$ 4 18, 24, 87, 98 $-UF_4$ 3 24, 87, 100 $-YF_3$ 1 87 $-YF_3$ 1 87 $-YF_3$ 1 87 $-ZrF_4$ 4 35, 50, 54, 100 NaF $-NaBF_4$ 2 122, 123 TiF_4 35, 50, 54, 100 NaF $-NaBF_4$ 2 122, 123 $-ZrF_4$ 4 35, 50, 54, 100 NaF $-NaBF_4$ 2 122, 123 TiF_4 $-XeF_2$ 1 105 $-ThF_4$ 3 24, 87, 98 $-UF_4$ $-VF_3$ 2 87, 98 $37, 98$ 4 $70, 92, 35, 87, 98$ $70, 92, 35, 87, 98$ $70, 92, 98, 98$		-YF.	· l ĭ	87	•	Ital	1	
NaF -NaBF4 2 124, 125 -RbF 1 35 -SmF3 1 87 -SmF3 1 87 -SrF2 2 100, 111 -ThF4 4 24, 60, 87, 98 -ThF4 3 24, 87, 100 -UF4 4 18, 24, 87, 98 -UF4 3 24, 87, 100 -VF3 2 87, 98 -ZrF4 4 35, 50, 54, 100 NaF -NaBF4 2 122, 123 FiF4 -XeF2 1 105 -ThF4 3 24, 87, 98 -TiF4 -YF3 1 87 - - - -Table -NaBF4 2 122, 123 - - -Table -ThF4 3 24, 87, 98 - - -Table -YF3 1 87 - - - -Table -YF3 2 87, 98 - - - - - - - - - - - - - - - -		113	-	.	LiF	-NoF	5	75 87 88 89 98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N aদ	-NaBF	9	124. 125	LIL	-BhF	i i	35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lar.	-MaDr4 SmF	1	97		-MDF	1	87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-Smr ₃ S-F	1			-5mr3 TLF		94 60 97 09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-SIF2	2	94 97 100		-Inr4		10 94 07 09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-10F4	3	94 97 100		-UF4 VE	4	10, 24, 01, 70
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-UI4 VE		47, 67, 100		-118		01,98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-1F3			3 * **			100 100
TiF4 -XeF2 1 105 -SmF3 1 87 -ThF4 -ThF4 3 24, 87, 98 -11F4 6 17, 19, 24, 35, 87, 98 -Total number of investigations recommended and literature -YF3 2 87, 98		-ZrF4	4	35, 50, 94, 100	NaF	-NaBr ₄		122, 123
IIF_4 $IIIF_4$ $IIIIF_4$ $IIIIIF_4$ $IIIIF_4$ $IIIIIF_4$ $IIIIF_4$ $IIIIIF_4$ $IIIIIF_4$ $IIIIIF_4$ $IIIIIF_4$						-Smr3		87
$-IIF_4 = -IIF_4 = -IIF_4 = -IIF_4 = -IIF_4 = -IIF_4 = -YF_3 = -YF_3 = 2 = 87,98$	liF4	-XeF ₂		105		-ThF4	3	24, 87, 98
a Total number of investigations recommended and literature $-YF_3$ 2 87, 98				<u> </u>		-IIF4	6	17, 19, 24, 35, 87, 98
	<u>л</u> 1	Cotal number	r of investig	ations recommended and literature		-YF ₃	2	87, 98

references for specific conductance of molten fluoride mixtures.

^a Total number of investigations, recommended and literature references for density of molten fluoride mixtures.

PROPERTIES OF FLUORIDES AND MIXTURES

TABLE 211 c. References ⁸

Viscosity				
	System	No. of invest.	Literature references	
AIF3	–LiF –NaF	1	108 5, 92, 93, 108, 117	
BeF ₂	KF LiF NaF RbF	3 7 4 1	35 , 36, 37 18, 29, 33 , 35, 37, 68, 121 19 , 35 , 56, 121 35	
KF	–ZrF4	1	107	
LiF	–NaF –RbF –UF₄	1 1 1	35 35 18	
NaF	–NaBF₄ −UF₄	2 2	122, 123 19, 35	

• Total number of investigations, recommended and literature references for viscosity of molten fluoride mixtures.

IABLE ALL U. MCICICHEES	TABLE	211	d.	References	
-------------------------	-------	-----	----	------------	--

Surface tension

	System	No. of invest.	Literature references
AIF3	–NaF	2	5, 20
BeF₂	–LiF –NaF	3 1	29, 68, 109 109
KF	LiF NaF ZrF₄	· 1 1 1	89 89 107
Lif	NaF	2	68, 89
NaF	–NaBF, –ZrF,	1	124 43

• Total number of investigations, recommended and literature references for surface tension of molten fluoride mixtures.

TABLE 212	a.	Techniques
-----------	----	------------

Specific conductance

A: Classical ac technique

B: Potentiometric ac technique

Syst	em	Technique*	Recommended reference
AlF ₃ -k	CF	A	120 Yim and Feinleib80 Matiasovsky et al.45 Edwards et al.
-L	.iF	A	
-N	IaF	A	
BaF ₂ –N	laF	Α	111 Thompson and Kaye
BeF ₂ –L	.iF	A	102 Robbins and Braunstein
–N	IaF	A	30 Robbins and Braunstein
CaF ₂ -L	.iF	A	87 Meaker, Porter, and Kesterke
-N	∖aF	A	111 Thompson and Kaye
CeF3 -k	CF	A	87 Meaker, Porter, and Kesterke
-L	.iF	A	87 Meaker, Porter, and Kesterke
-N	VaF	A	87 Meaker, Porter, and Kesterke
KF -k -L -L -S -T	⟨BF "aF₃ "iF NAF mF₃ 'hF₄	A A A A A	 125 Selivanov and Stender 87 Meaker, Porter, and Kesterke
L	JF4	A	87 Meaker, Porter, and Kesterke
Y	(F3	A	87 Meaker, Porter, and Kesterke
Z	(rF4	A	107 Sheiko
LaF3 -L	iF	A	87 Meaker, Porter, and Kesterke
-N	laF	A	87 Meaker, Porter, and Kesterke
LiFN S T U Y	laF 5mF3 ThF4 JF4 (F3	A A A A	 87 Meaker, Porter, and Kesterke 87 Meaker, Porter, and Kesterke 24 Brown and Porter 24 Brown and Porter 87 Meaker, Porter, and Kesterke
NaFN S T U Y Z	VaBF4 SmF3 SrF2 ChF4 JF4 JF4 ZF3 ZrF4	A A A A A and B used for Ref. 54, B used for Ref. 35	 125 Selivanov and Stender 87 Meaker, Porter, and Kesterke 111 Thompson and Kaye 24 Brown and Porter 24 Brown and Porter 87 Meaker, Porter, and Kesterke 54 Greene
TiF₄ −Y	leF₄	Α	105 Rudigert and Meinert

*The technique indicated applies to all references given for each system in tables 211 a-211 d.

TABLE 212 b. Techniques

Density

fechnique*

A: Archimedean method B: Dilatometric method

Recommended reference

TABLE 212 c. Techniques

Viscosity

- A: Capillary technique
- B: Oscillating sphere technique
- C: Oscillating hollow cylinder technique

		l]	D: Rotational cylinder technique		
AlF ₃	-CsF	A	25 Mal'tsev and Bukhalova			
	- KF	Λ	79 Mal'tscv and Bukhalova	System	Technique	Recommended reference
	-LiF	A	75 Matiasovski et al.			<u>_</u>
	-NaF	A	75 Matiasovski et al.			
	-RbF	A	25 Ma'tsev and Bukhalova	AlF ₃ –LiF	B 108	108 Vetyukov and Sipriya
				-NaF	B 5, 92, 93, 108	5 Abramov
BaF₂	-CsF	A	26 Bukhalova and Yagub'yan		D 117	
	KF	A	26 Bukhalova and Yagub'yan			
	–LiF	A	26 Bukhalova and Yagub'yan	BeF ₂ –KF	A and D 35, 36,	35 Cohen et al.
	–NaF	A	7 Abramov and Kozunov		37	
				-LiF	D 18, 29, 33, 68	33 Cantor, Ward and
BeF ₂	–LiF	A and B used for	33 Cantor, Ward, and		A and D 102, 35,	Moynihan
		Ref. 33 and 30	Moynihan		37	
	-NaF	A and B is used	17 Blanke et al.	–NaF	D 19, 50	35 Cohen et al.
		for Ref. 30			A and D 35, 121	19 Blanke et al.
	-RbF	A	35 Cohen et al.	-RbF	A and D 35	35 Cohen et al.
	-UF₄	A	18 Blanke et al.			
CaF2	-LiF	A	98 Porter and Meaker	$KF -Z_1F_4$	B 107	107 Sheiko
	–NaF	A	7 Abramov and Kozunov	Lif -Naf	A and D 35	35 Cohen et al.
				-RbF	A and D 35	35 Cohen et al.
CeF3	–KF	A	98 Porter and Meaker	UF4	D 18	18 Blanke et al.
	-LiF	A	98 Porter and Meaker	N.E. N.DE	C 709	100 0
	–NaF	A	98 Porter and Meaker	INAF -INABF4	C 123	123 Cantor
				-Uf4	A and D 35	35 Cohen et al.
KF	−LaF3	A	98 Porter and Meaker		D 19	19 Blanke et al.
	–LiF	A	98 Porter and Meaker		<u> </u>	l·
	–NaF	A	98 Porter and Meaker			
	–SmF₃	A	87 Porter and Meaker			
	–ThF₄	A	98 Porter and Meaker			
	-UF4	A	98 Porter and Meaker			
	$-YF_3$	A	98 Porter and Meaker	TABLE 212 d. Techniques		
	-ZrF4	A	107 Sheiko	Surface tension		
LaF ₃	-LiF	A	98 Porter and Meaker	A. Maximum Bubble Pressure Method		
	-NaF	A	98 Porter and Meaker	A, maximum bubble i ressure method		
LiF	–NaF	A	75 Matiasovsky	B: Wilhelmy Slide Plate Method		
	-RbF	A	35 Cohen and Jones			
	-SmF ₃	A	87 Meaker, Porter, and Kesterke	_		
	−ThF₄	Α	60 Hill, Cantor, and Ward	System	Technique*	Recommended reference
	-UF₄	A	98 Porter and Meaker			
	-YF3	. A	98 Porter and Meaker			
37.11		, n	100 C	AlF ₃ –NaF	A	20 Bloom and Burrows
Naf	-NaBF ₄	В	123 Cantor			
	$-SmF_3$	A	87 Meaker, Porter, and	Ber ₂ -LiF		109 Sturm
	116.12		Kesterke	-Nat	A	72 MacPherson
	-ihf ₄		90 Forter and Meaker	VE LE		
	-UF4 VF		yo rorter and Meaker	NF THE	A	89 Mellors and Senderoft
	-1F3		yo Forter and Meaker	-ivar		by Mellors and Senderoff
	-2r#4	A	49 rontana and Winand	–∠rf₄	A	107 Sheiko

LiF

–NaF

NaF -ZrF4

* The technique indicated applies to all references given for each system in table 211a-211d.

* The technique indicated applies to the references given for each system in tables 211a-211d.

89 Mellors and Senderoff

43 Decroly, Fontana, and Winand

A

B

System

This work was made possible in large part by financial support received from the Office of Standard Reference Data, National Bureau of Standards, Washington, D.C.

We wish to thank Howard J. White, Jr. and J. Hilsenrath (Office of Standard Reference Data, NBS) for discussions on various aspects of computer analysis and data evaluation. Contributions to the early phases of this work by H. F. Siegenthaler are gratefully acknowledged.

The American Ceramic Society and the Israel Program for Scientific Translations are thanked for permission to reproduce some of the phase diagrams from Phase Diagrams for Ceramists [71] and from the Handbook of Solid-Liquid Equilibria in Systems of Anhydrous Inorganic Salts [112], respectively.

7. References

- [1] Janz, C. J., Dampier, F. W., Lakshminarayanan, C. R., Lorenz, P. K., and Tomkins, R. P. T., "Molten Salts: Volume 1, Electrical Conductance, Density, and Viscosity Data", Nat. Stand. Ref. Data Ser., NBS (U.S.), 15, 139 pages (Oct. 1968).
- [2] Janz, G. J., Lakshminarayanan, G. R., Tomkins, R. P. T., and Wong, J., "Molten Salts: Volume 2, Section 2, Surface Tension Data", Nat. Stand. Ref. Data Ser., NBS (U.S.), 28, 110 pages (Aug. 1969).
- [3] Janz, G. J., Krebs, Ursula, Siegenthaler, H. F., and Tomkins, R. P. T., "Molten Salts: Volume 3, Nitrates, Nitrites, and Mixtures", J. Phys. Chem. Ref. Data, 1, No. 3, 581-746 (1972).
- [4] Abramov, G. A., Legkie Metal., 51, 27 (1936).
- [5] Abramov, G. A., Vetyukov, M. M., Gupalova, I. P., Kostyukov, A. A., and Lozhkin, L. N., "Theoretical Basis of Electrometallurgy of Aluminum", Metallurgizdat, Moskau (1953).
- [6] Abramov, G. A., and Kostyukov, A. A., Trudy Liningradskogo Politekhnicheskogo Instituta, 40, 188 (1957).
- [7] Abramov, G. A., and Kozunov, P. T., Trans. Leningrad Ind. Inst., 1, 60 (1939).
- [8] Argyriades, D., Ph.D. Thesis, Rheinisch-Westfaelischen Technischen Hochschule Aachen, Germany (1954).
- [9] Arkhangel'skaya, V. A., Mikheev, B. G., Nikitinskaya, T. I., and Tyutin, M. S., Soviet Physics—Solid State, 9, No. 2, 539 (1967).
- [10] Arndt, K., and Kalass, W., Z. Elektrochem., 30, 12 (1924).
- [11] Bailey, R. A., and Janz, G. J., "The Chemistry of Non-Aqueous Solvents", Lagowski, J. J., ed., Vol. 1, Chap. 7 (Academic Press, New York, 1966).
- [12] Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962).
- [13] Balakir, E. A., Bushuev, Yu. G., and Kudryavtsev, Yu. V., Siberian Chemistry Journal, Consultants Bureau No. 2, 164 (1968).
- [14] Batashev, K. P., Legkie Metal., No. 10, 48 (1936).
- [15] Batashev, K., and Shurin, A., Metallurg (Leningrad) 10, 67 (1935).
- [16] Danielyan, E. R., and Belyaev, A. I. (M. V. Lomonosov Inst. Fine Chem. Technol., Moscow). Tr. Vses. Soveshch. po Fiz. Khim. Rasplavlen. Solei, 2nd, Kiev 1963, 88-94 (Pub. 1965) (Russ).
- [17] Blanke, B. C., Bousquet, E. N., Jones, L. V., Murphy, E. L., and Vallee, R. E., U.S.A.E.C. Research and Development Report, Contract No. AT-33-1-GEN-53, MLM-1076, July 1958.
- [18] Blanke, B. C., Bousquet, E. N., Curtis, M. L., and Murphy,

E. L., U.S.A.E.C. Research and Development Report, Contract No. A7-33-1-GEN-53, MLM-1086, March 1959.

- [19] Blanke, B. C., Foster, K. W., Jones, L. V., Jordan, K. C., and Murphy, E. L., U.S.A.E.C. Research and Development Report, Contract No. AT-33-1-GEN-53, MLM-1079, Sep. 1958.
- [20] Bloom, H., and Burrows, B. W., "Electrochemistry", Proceedings of the first Australian Conf., Pergamon Press, pp. 882-888, 1964.
- [21] Bockris, J. O'M., White, J. L., and Mackenzie, J. D. (eds.), "Physico Chemical Measurements at High Temperatures" (Butterworths, London and Washington, D.C., 1959).
- [22] Braunstein, J., and Robbins, G. D., "Molten Salts, Characterization and Analysis", Mamantov, G. (ed.), pp. 443-477, Marcel Dekker, New York, 1969.
- [23] Bronstein, H. R., Dworkin, A. S., and Bredig, M. A., Chemistry Progress Report, ORNL-2983, Oak Ridge National Laboratory, p. 65, 1960.
- [24] Brown, E. A., and Porter, B., U.S. Department of the Interior, Bureau of Mines, Report of Investigations 6500, 1964.
- [25] Bukhalova, G. A., and Mal'tsev, V. T., Russ. J. Inorg. Chem., 11, 215 (1966).
- [26] Bukhalova, G. A., and Yagub'yan, E. S., Trans. from Izv. Akad. Nauk SSSR, Neorgan. Mat. 3, 1096 (1967).
- [27] Bukhalova, G. A., and Yagub'yan, E. S., Trans. from Zh. Prikl. Khim., 41, 1861 (1968).
- [28] Cantor, S., Rev. Sci. Instrum. 40, 967 (1969).
- [29] Cantor, S. (ed.), Cooke, J. W., Dworkin, A. S., Robbins, G. D., Thomas, R. E., and Watson, G. M., U.S.A.E.C. Report, Contract No. W-7405-eng-26, URNL-TM-2316, Aug. 1968.
- [30] Cantor, S., Gilpatrick, L. O., Robbins, G. D., and Braunstein, J., U.S.A.E.C. Semiannual Progress Report, Contract No. W-7405-eng-26, ORNL-4449, pp. 122-146, Feb. 1970.
- [31] Cantor, S., Hill, D. G., and Ward, W. T., Inorg. Nucl. Chem. Letters, 2, 15 (1966).
- [32] Cantor, S., Moynihan, C. T., and Ward, W. T., Reactor Chemistry Division Annual Progress Report, Contract No. W-7405-eng-26, ORNL-4076, pp. 25-26, March 1967.
- [33] Cantor, S., Ward, W. T., and Moynihan, C. T., J. Chem. Phys., 50, 2874 (1969).
- [34] Christie, W. H., Chemistry Progress Report, ORNL-2782, Oak Ridge National Laboratory, p. 59, 1959.
- [35] Cohen, S. I., et al., U.S.A.E.C. Unclassified Report, ORNL-2150 (DEL), Oak Ridge National Laboratory, 1956.
- [36] Cohen, S. I., and Jones, T. N., U.S.A.E.C. Unclassified Report, CF-55-11-28, Oak Ridge National Laboratory, Nov. 1955.
- [37] Cohen, S. I., and Jones, T. N., U.E.A.E.C. Unclassified Report, CF-55-8-2 (DEL) 10F1, Oak Ridge National Laboratory, Aug. 1955.
- [38] Corbett, J. D., and Duke, F. R., "Technique of Inorganic Chemistry", Jonassen, H. B., and Weisberger, A. (eds.), Vol. 1 (Wiley, Interscience, New York 1963).
- [39] Cuthbertson, J. W., and Waddington, J., Trans. Faraday Soc., 32, 745 (1936).
- [40] Danek, V., Malinovsky, M., and Matiasovsky, K., Chem. Zvesti, 22, 641 (1968).
- [41] Danek, V., Malinovsky, M., and Matiasovsky, Chem. Zvesti, 22, 707 (1968).
- [42] Danek, V., Novak, J., and Malinovsky, M., Chem. Zvešti, 21, 832 (1967).
- [43] Decroly, C., Fontana, A., and Winand, R., J. Nucl. Mater., 27, 36 (1968).
- [44] Dumas, D., Grojotheim, K., Hoegdahl, B., and Oye, H. A., Acta. Chem. Scand., 24, 510 (1970).
- [45] Edwards, J. D., Taylor, C. S., Cosgrove, L. A., and Russell, A. S., J. Electrochem. Soc., 100, 503 (1953).

- [46] Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem. Soc., 99, 527 (1952).
- [47] Ellis, R. B., U.S.A.E.C. Final Report, Contract No. AT-(40-1)-2073, ORO 2073-12, April 1967.
- [48] Ellis, R. B., U.S.A.E.C. Annual Progress Report, Contract No. AT-(40-1)-2073, Dec. 1957.
- [49] Fontana, A., and Winand, R., J. Nucl. Mater., 35, 82 (1970).
- [50] Fontana, A., and Winand, R., J. Nucl. Mater., 35, 73 (1970).
- [51] Frank, W. A., and Foster, L. M., J. Phys. Chem., 64, 310 (1960).
- [52] Frank, W. B., and Foster, L. M., J. Phys. Chem., 64, 95 (1960).
- [53] Graves, A. D., Inman, D., and Hills, G. J., "Advances in Electrochemistry and Electrochem. Eng.", Vol. 4, p. 117 (1965).
- [54] Greene, N. D., Unclassified Report No. CF-54-8-64 Oak Ridge National Laboratory, 1954.
- [55] Grimes, W. R., Bohlman, E. C., McDuffie, H. F., and Watson, G. M., U.S.A.E.C. Annual Progress Report, Contract No. W-7405-eng-26, ORNL-4229, March 1968.
- [56] Grimes, W. R., J. Nucl. Tech. 8, 137 (1970).
- [57] Grimes, W. R., Bohlman, E. G., McDuffie, H. F., and Watson, G. M., U.S.A.E.C. Annual Progress Report, Contract No. W-7405-eng-26, ORNL 4586, July 1970.
- [58] Grimes, W. R., Bohlman, E. G., McDuffie, H. F., and Watson, G. M., U.S.A.E.C. Annual Progress Report, Contract No. W-7405-eng-26, ORNL 4400, Feb. 1970.
- [59] Grjotheim, K., Malinovsky, M., Matiasovsky, K., Zuca, S., and Oye, H. A., J. Chim. Phys., Oct., 145 (1969).
- [60] Hill, D. G., Cantor, S., and Ward, W. T., J. Inorg. Nucl. Chem., 29, 241 (1967).
- [61] Holm, J. L., Ph.D. Thesis, Univ. of Trondheim, Norway (1971).
- [62] Jaeger, F. M., Z. anorg. Allg. Chem., 101, 1 (1917).
- [63] Janz, C. J., "Molten Salts Handbook", Academic Press, New York (1967).
- [64] Janz, C. J., Wong, J., and Lakshminarayanan, Chem. Instrum., 1, 261 (1969).
- [65] Kameyama, N., and Naka, A., J. Soc. Chem. Ind. Japan 34, 140 (1931).
- [66] Karpachev, S., Zhur. Fiz. Khim., 6, 1079 (1935).
- [67] Kirshenbaum, A. D., and Cahill, J. A., J. Phys. Chem., 70, 3037 (1966).
- [68] Kreyger, P. J., Ward, W. T., Cantor, S., Kirslis, S. S., and Blankenship, F. F., U.S.A.E.C. Annual Progress Report, ORNL 3591, Jan. 1964.
- [69] Kulifeev, V. K., and Panchishnyi, V. I., Izv. Vyssh. Ucheb. Zaved., Tsvet. Met., 14, 92 (1971).
- [70] Landon, G. J., and Ubbelohde, A. R., Proc. Roy. Soc., A240, 160 (1957).
- [71] Levin, E. M., Robbins, C. R., and McMurdie, H. F., "Phase Diagrams for Ceramists", Reser, M. K. (ed.), The American Ceramic Society, 1964, 1969.
- [72] MacPherson, H. G., U.S.A.E.C. Report ORNL 3015, p. 83, July 1960.
- [73] Mackenzie, J. D., J. Chem. Phys., 32, 1150 (1960).
- [74] Mal'tsev, V. T., and Bukhalova, G. A., J. Appl. Chem. (USSR) 40, 521 (1967).
- [75] Matiasovsky, K., Private communication, 1968.
- [76] Matiasovsky, K., Danek, V., and Lillebuen, B., Electrochim. Acta, 17, 463 (1972).
- [77] Matiasovsky, K., Danek, V., and Malinovsky, M., J. Electrochem. Soc., 116, 1381 (1969).
- [78] Matiasovsky, K., Lillebuen, B., and Danek, V., Rev. Roum. Chim., 16, 163 (1971).
- [79] Matiasovsky, K., Malinovsky, M., and Danek, V., Private communication, 1968.
- [80] Matiasovsky, K., Malinovsky, M., and Danek, V., Electrochim. Acta, 15, 25 (1970).
- J. Phys. Chem. Ref. Data, Vol. 3, No. 1, 1974

- [81] Matiasovsky, K., and Malinovsky, M., Electrochim. Acta, 11, 1035 (1966).
- [82] Matiasovsky, K., Malinovsky, M., and Ordzovensky, S., J. Electrochem. Soc., 111, 973 (1964).
- [83] Malinovsky, M., Paucirova, M., and Matiasovsky, K., Chem. Zvesti, 23, 27 (1969).
- [84] Matsushima, T., Yoshida, Y., and Takahashi, N., Denki Kagaku, 39, 102 (1971).
- [85] Mashovets, V. P., The Electrolytic Production of Aluminum, p. 44 (1951).
- [86] Mashovets, V. P., and Petrov, V. I., J. Appl. Chem. (USSR) 32, 1561 (1959).
- [87] Meaker, R. E., Porter, B., and Kesterke, D. G., United States Department of the Interior, Report of Investigations 7528, 1971.
- [88] Mellors, G. W., and Senderoff, S., J. Electrochem. Soc., 111, 1355 (1964).
- [89] Mellors, C. W., and Senderoff, S., "Electrochemistry", Proceedings of the First Australian Conf., Pergamon Press, p. 578 (1964).
- [90] Mellors, G. W., and Senderoff, S., J. Electrochem. Soc., 111, 1355 (1964).
- [91] Moynihan, C. T., and Cantor, S., J. Chem. Phys., 48, 115 (1968).
- [92] Murgulescu, J. G., and Zuca, S., Acad. Rep. Populare Romine, Stud. Cercet. Chim., 9, 55 (1961).
- [93] Nishihara, K., Matsumura, Y., Komatsu, K., and Noguchi, H., Suiyokai-Shi, 15, 311 (1964).
- [94] Paucirova, M., Matiasovsky, K., and Malinovsky, M., Rev. Roum. Chim., 15, 201 (1970).
- [95] Paucirova, M., Matiasovsky, K., and Malinovsky, M., Rev. Roum. Chim., 15, 33 (1970).
- [96] Pearson, T. G., and Waddington, J., Discuss. Faraday Soc., 1, 307 (1947).
- [97] Sheiko, I. N., Perks, O. F., and Pozdnyokov, Ukr. Khim. Zhur., 31, 1055 (1965).
- [98] Porter, B., and Meaker, R. E., United States Department of the Interior, Report of Investigations 6838, 1966.
- [99] Reeves, R. D., and Janz, G. J., "Advances in Electrochemistry and Electrochem. Eng.", Vol. 5, p. 137 (1967).
- [100] Robbins, G. D., U.S.A.E.C. Review, ORNL-TM-2180, March 1968.
- [101] Robbins, G. D., J. Electrochem. Soc., 116, 813 (1969).
- [102] Robbins, G. D., and Braunstein, J., U.S.A.E.C. Semiannual Progress Report, Contract No. W-7405-eng-26, ORNL-4548, pp. 156-159, Aug. 1970.
- [103] Rolin, M., Rev. Int. Hautes Temper. et Refract., 8, 127 (1971).
- [104] Rolin, M., Electrochim. Acta, 17, 2293 (1972).
- [105] Ruediger, S., and Meinert, H., Z. Chem., 9, 434 (1969).
- [106] Jaeger, F. M., and Kahn, J., Koninkl Ned. Akad. VN. Wetenschapen, Proc. Ser. B., 19, 381 (1916).
- [107] Sheiko, I. N., Tr. Vses. Sovesch. Fiz. Rasplav. Solei. 2nd Kiev 1963, p. 79 (1965).
- [108] Sipriya, G. J., and Vetyukov, M. M., J. Appl. Chem. (USSR), 36, 1849 (1962).
- [109] Sturm, B. J., U.S.A.E.C. Quart. Progress Report, ORNL-2626, Oct. 1958.
- [110] Taniuchi, K., Keikinzokii, 20, 157 (1970).
- [111] Thompson, M. Dekay, and Kaye, A. L., Traus. Electrochem. Soc., 67, 169 (1935).
- [112] Voskresenskaya, N. K. (ed.), "Handbook of Solid-Liquid Equilibria in Systems of Anhydrous Inorganic Salts", 2 Vol., Trans. from Russian, Israel Program for Scientific Translations, Jerusalem, 1970.
- [113] White, D. W. G., Am. Soc. Metals, Trans. Quart., 55, 751 (1962).
- [114] Winterhager, H., and Werner, L., Forschungsberichte des Wirtschafts-und Verkehrsministeriums Nordheim-Westfalen, No. 438, Germany, 1957.

- [115] Vayna, A., Alluminio, 19, 541 (1950).
- [116] Vayna, A., Alluminio, 19, 215 (1950).
- [117] Vayna, A., Alluminio, 19, 133 (1950).
- [118] Yagub'yan, E. S., and Bukhalova, G. A., Russ. J. Inorg. Chem., 13, 1162 (1968).
- [119] Yim, W. Y., and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957).
- [120] Yim, E. W., and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957).
- [121] Grimes, W. R., Cuneo, D. R., Blankenship, F. F., Keilholtz, G. W., Poppendick, H. F., and Robinson, M. T., "Fluid Fuel Reactors", Chapter 12, pp. 569-581, 1958.
- [122] Rosenthal, M. W., Haubenreich, P. N., and Briggs, R. B., U.S.A.E.C. Report, Contract No. W-740S-eng-26, ORNL-4812, pp. 137-140, Aug. 1972.
- [123] Rosenthal, M. W., Briggs, R. B., and Kasten, P. R., U.S.A.E.C. Semiannual Progress Report, Contract No. W-7405-eng-26, ORNL-4449, pp. 145-146, Feb. 1970.
- [124] Cantor, S. (ed.), Cooke, J. W., Dworkin, A. S., Robbins, G. D., Thomas, R. E., and Watson, G. M., U.S.A.E.C. Report, Contract No. W-7405-eng-26, ORNL-TM-2316, pp. 14-37, Aug. 1968.
- [125] Schivanov, V. G., and Stender, V. V., Zh. Neurg. Khim., 4, 2058 (1959).