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Elastic Properties of Metals and Alloys. ll. Copper

H. M. Ledbetter and E. R. Naimon'

Cryogenics Division, Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302

The elastic properties of copper have been compiled and reviewed. Polycrystalline elastic
constants included are: Young's modulus, the shear modulus, the bulk modulus, and Peisson’s
third., and fourth-order are included. Over 200 refer-
ences to the experimental literature are given. A few theoretical numbers are included. When

ratio. Single-crystal constants of second-,

sufficient data exist,

best values are recommended together with their standard errors. Effects

on the elastic constants of temperature, pressure, and mechanical (plastic}) deformation are in-
cluded. The Cauchy (central-force) rclationships and the single-crystal—polycrystal relationship

are also discussed.
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898 H. M. LEDBETTER AND E. R. NAIMON

1. Introduction

The purpose here is to present a compilation and a re-
view of the elastic properties of copper. A similar study
was reported by Ledbetter and Reed (1973) for iron,
nickel, and iron-nickel alloys. That rcference also containe
more complete discussions on some aspects of elasticity that
are relevant here. These include: crystal physics and ther-
modynamics of elastic constants; effects of temperature,
pressure, etc.; and the relationship between elastic con-
stants and other physical parameters, including the Debye
temperature,

Copper is especially interesting to metal physicists and

to engineers; hecause of its electronic structure, copper
approximates a standard metal [Pippard (1960)]; it is
used widely technologically, elementally and alloyed. Both
single crystal and polycrystalline elastic constants are in-
cluded, and their interrelationship is discussed. These con-
stants relate directly to interatomic forces in solids. The
polycrysialline vonstants are Young’s wwodulus, the shear
modulus, the bulk modulus (reciprocal compressibility),
Poisson’s ratio, etc. These are the constants used to charac-
terize most engineering materials.

More than two-hundred references are given to the
experimental literature. The earliest elastic study on cop-
per was reported by Wertheim (1848). The first cryogenic
(87 K) study was by Benton (1903). The first high-
temperature data were reported by Kikuta (1921}, who
measured the shear modulus from 298 to 1126 K. The
highest temperature measurements were made by Koster
(1948a, 1948b) for Young’s modulus and by Koch and
Dannecker (1915) for the shear modulus, 1230 and 1273
K, respectively.

Copper’s second-order elastic constants (SOEC) were
reported first by Goens (1933) and Kimura (1933). Sub-
sequently, seventeen ‘additional sets of SOEC have been
reported; nine of these included effects of temperature,
three included pressure, and nine included alloying. A
summary of experimental conditions for single-crystal stud-
ies is given in table 1.* Experimental second-order elastic
stiffncsacs arc given in table 2.

Third-order single-crystal elastic constants (TOEC) were
reported first by Hiki and Granato (1966) ; subsequently,
five additional reports on third-order constants have been
made. Experimental third-order elastic stiffnesses are given
in table 3.

Thus, the elastic proptrties of copper are probably better
characterized than those of any other metal.

2. Electronic Structure

A symbiotic relationship exists between the studies of
the elastic properties of metals and the electron theory of
metals. Calculations of elastic constants are convenient and
valid checks on proposed interatomic potentials. Observed
elastic anomalies often provide a point of departure for
“extending the theoretical description of metals.

The elastic properties of copper are strongly affected by
its electronic structure, [Ar] 3d'%4s*.? Copper's ion cores

J. Phys. Chem. Ref. Dota, Vol. 3, Ne. 4, 1974

consist' of an Ar rare-gas configuration plus a complete d
chell. Thus, the outer-core electrons are loosely bound,
and the ion-core volume is large relative to the atomic
volume. Little difference exists between the valence (4s)
electrons and the outer-core (3d) electrons. Thus, many
equilibrium properties should be determined mainly by
ion-ion overlap; the Fermi-gas pressure due to valence-
electron interactions is secondary. These equilibrium prop-
erties include the interatomic spacing and the bulk mod-
ulus. Since the core electrons are poorly shielded from the
valence electrons, a strong valence-electron—ion-core at-
tractive interaction occurs in copper. Effectively, the 3d
electrons create an additional potential well. Thus, the
electron-ion system tends to contract because the 4s elec-
trons. tend to occupy the well. Opposing this minimization
of free-electron energy are the repulsive ion-ion interac-
tions. Because of their strong radial dependence, these
interactions contribute progressively more to higher deriv-
atives of the energy. Whether ion cores are “hard” or
“soft” affects energy only incidentally, but perfectly “hard”
spheres would determine precisely the interatomic spacing

- and would have an infinite bulk modulus. This valence-

clectron——ion-core interaction accounts roughly for the rel-
atively high cohesior and high bulk modulus exhibited by
copper.

Simple theories predict cohesive energies for copper that
are too low. Brooks (1958) surmised that the extra co-
hesion is due to correlated motions of d-shell electrons and
that these motions arise similar to van der Waals interac-
tions. Overlap of the d shells makes such a model difficult
to describe theoretically.

Elastic properties are related intimately to the problem
of cohesion since elastic stiffness coefficients are spatial
derivatives of the interatomic potential, while cohesive en-
ergy is related to the depth of the potential well. Usnally,
solids with higher cohesive energies also have higher elastic
stiffness.

3. Theoretical Calculation of Elastic Constants

In a landmark paper, Fuchs (1936) was first to study
the fundamental problem of cohesion in copper. He found
that exchange and correlation interactions between 4s and
3d electrons are important in copper, as are the ion-ion
repulsive intcractions, Because of the difficultics of treating
an eleven-electron problem, Fuchs considered the 3d elec-
tron band to be rigid. The ion-ion repulsive interaction
was treated by a modified Thomas-Fermi approach. Fuchs’
calculations of the shear constants of copper were quite
successful, obtaining C,;=0.89 and C’=0.26, in units of
10U'N/m?. Experimentally, C,,~0.82 and (’'=0.26 at
0 K as shown below in the figures for the temperature
dependences of the Cj;.

Subsequently, numerous theoretical calculations of the
elastic constants of copper have been reported. The most

1 Tables have been placed at the end of this paper.
2 This particular electromic-state assignment is not unique. For ex-

ample, in the Engel-Brewer theory of bonding, copper is considered
to have an [Ar}3ds 4s! p? electronic structure. For present purposes
the important point is that the ion core of copper js large and stable.
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recent calculations have used pseudopotentials and either
the method of homogeneous deformation (after Fuchs)
or the method of long waves (after Born). These calcula-
tions have been made by Srinivasan and Girirajan (1973)
and by Thomas (1973). These calculations reveal many
lnpurtant clastic properties ol cuppel Uiat are verified
experimentally, Some of these are discussed below.

4. Second-Order Elastic Constants

The second-order elastic constants of a solid describe
its linear elastic behavier and are directly related to the
harmonic part of the interatomic potential. Thus, the SOEC
play an important role in determining the nature of forces
in solids. Besides being of fundamental interest, SOEC
are often useful parameters in engineering design.

The earliest measurements of SOEC were performed by
static methods, which yield the isothermal elastic constants.
Quantities such as Young’s modulus, the shear, modulus,
and Poisson’s ratio were measured for single crystals of
various orientations. These moduli are related to the single-
crystal SOEC by simple mathematical transformations (see
section 9).

Most present-day measurements of SORC nse dynamic
methods. The advantages of dynamic methods include
smaller specimen size, simpler temperature control, avoid-
ance of creep, and higher precision. Dynamic methods yield
the adiabatic elastic constants. However, adiabatic and
isothermal moduli are related by well-known thermody-
namic equations. It is usually found that the difference be-
tween adiabatic and isothermal elastic constants is a few
percent or less, which is small compared to the error in
static (isothermal) measurements. The difference for C;,,
Cis, and V45(Cy,+2Cy,) is QQZBTT/(pCt,), where « is the
linear thermal-expansion coefficient, B, is the isothermal
bulk modulus, T is the temperaturs, ¢ is the mass density.
and C, is the specific heat. For copper at room tempera-
ture this correction is 3.0 percent for the bulk modulus.
There are no corrections for the shear moduli 14 (Cy;—Cy)
and C...

Earlier dynamic measurements were performed in the
kilohertz region, where a standing-wave resonance was
established in a system composed. at least partly, of the
specimen under investigation. Higher precision than that
of static methods was oblained from the measurement of
a resonance frequency rather than a small displacement.
These methods were reviewed by Read. Wert, and Metzger
(1959).

The most widely used method today employs frequencies
near 10 MHz. A piezoelectric tranducer is cemented te
one of two parallel faces of the specimen. An ultrasonije
pulse of ~1 ps duration is transmitted through the speci-
men. The transit time of the pulse is related to the ultra-
sonic velocity, which in turn is related to the adiabatic
moduli. Interferometric techniques have made possible
very high-precision measurements of ultrasonic velocities.
Absolute accuracies of better than 0.1 percent and relative
accuracies of 10—% or better are possible. Such precision
results in betier determinations of temperature and pres-

sure dependences of the SOEC. A review of ultrasonic
studies of properties of solids. including various measure-
ment techniques of ultrasonic velocities, was given recently
by Fuller, Granato, Holder, and Naimon (1974).

The SOEC of copper have been determined statically
and dynamically, Despite limited precision, some of the
static-method results (especially those of Goens {1933))
are in excellent agreement with the more modern dynamic
results. This is shown in table 2 where the static-method
results are included and are labeled isothermal.

5. Cauchy Relationships

Because the Cauchy relationships are not satisfied in
most metals, including copper, it follows that the inter-
atomic forces are noncentral. Cauchy relations are simple
relations that can be derived when interatomic interactions
are purely central, when all atoms are at centers of sym-
metry, and when the crystal is siress-free. For cubic crys-
tal symmetry, which copper has, the Cauchy relations for
SOEC are Cy,=0C4: the TOEC Cauchy relations are
Ci12=C166 and C,pu=Cy4s=C4ss. Hiki and Granato
(1966) observed that the TOEC of copper obey the Cauchy
relations much more closely than do the SOEC. The in-
terpretation that Hiki and Granato gave to their results
was that short-range central forces, in this case arising from
d-shell overlap, play a progressively greater role as one
progresses from calculations of the energy to the lattice
constant and second-, third-. and higher-order derivatives
of the total energy. If short-range forces play a dominant
role in third-and higher-order elastic constants, then the
nearest-neighbor atoms should make the most important
rontributions. Hiki and Granato showed the following re-
lations hold for copper if only nearest-neighbor central-
force interactions are considered:

C]QZC.;Az 1/2611-,
Cu‘.'zcmsz %Cuh and C123= Cias=Cy56=0.

As shown by the data in tables 2 and 3, the third-order
nearest-neighbor relations are satisfied to a much greater
extent than are the second-order nearest-neighbor relations.
If second-neighbor interactions are considered, then only
the geometrical factor of 14 is affected in these interrela-
tionships. The shift from 15 is small if the interatomic po-
tential is short ranged.

6. Third-Order Elastic Constants

Third-order elastic constants (TOEC) are important
mainly because they describe the anharmonicity of inter-
atomic potentials. Nonlinear stress-strain behavior is a di-
rect consequence of non-vanishing elastic constants of
higher than second vider ; in fact, as described below, devi-
ations from Hooke’s law can be used to determine the val-
ves of the TOEC. TOEC have been studied more for cop-
per than for any other metal. These data are summarized
in table 3.

Three methods have been used to determine the TOEC
of copper. and they are discussed in the following para-
graphs.

J. Phys. Chem. Ref. Data, Vol. 3, No. 4 1974
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(a) Variations of Ultrasonic Wave Velocities due to Hydro-
static or Uniaxial Stresses

Only method (a) yields a complete set of TOEC; there-
fore it is used most. Since copper is cubic, it has three in-
dependent SOFEC (Cii, Cip, and C.,) and six independent
TOEC (Ciui, an, Ciza, Cua, Cis6. and Case)- SOEC can
be determined from ultrasonic wave velocities, and TOEC
from stress derivatives of the wave velocities.

Pressure-derivative data alone are insufficient for de-
termining a complete set of TOEC since' there are only
three independent SOEC pressure derivatives. The follow-

ing combinations of TOEC can be obtained from hydro-

static-pressure experiments:

—(Cy11 +2C112) =3B(1+dCyy/dP) + Cy, (1)

— (€125 +2C13;) =3B(—~1+dCyo/dP) +Ciz, (2)

— (Cr4a+ 2€166) =3B(1 +dC,,/dP) + Cyy, (3)
where

B=1Y3(Cy; +2Cy,) (4)

is the bulk modulus and P is the pressure.

The additional data needed for a complete set of TOEC
can be obtained by measuring the effects of uniaxial stresses
on wave velocities. When hydrostatic-stress and -uniaxial-
stress data are combined to obtain a complete set of TOEC.
the problem is often overdetermined. (In fact, for cubic
symmetry, a complete set of TOEC can be determined
from six or more independent uniaxial measurements.)
This overdetermination permits a least-squares analysis 1o
be made for the “best” TOEC. Hydrostatic-stress data are
more reliable than uniaxial-stress data and should be
weighted accordingly in the data analysis. Reasons for this
include: (1) dislocations are affected by uniaxial stresses
and contribute spuriously to the elastic strain, (2) a pure
hydrostatic stress is easier to oblain experimentally than
a pure uniaxial stress, and {3) large uniaxial stresses cause
plastic deformation while large hydrostatic stresses don’t.
unless by some mechanism dilatational stress is converted
to shear stress.

For copper, the effects of hydrostatic stress on ultrasonic
wave velocities were first measured by Lazarus (1949)
and later by Daniels and Smith (1958). More recently
Debesis (1971) and Ho, Poirier, and Ruoff (1971) investi-
gated the effects of temperature on the hydrostatic-stress
derivatives of SOEC of copper. Hydrostatic-pressure deriv-
atives of the second-order clastic cupslants of cupper are
given in table 4.

Hiki and Granato (1966) were the first to measure a
complete set of TOEC for copper. In fact, the results of
Hiki and Granate (who measured the TOEC of silver and
gold also) were the first complete set for any metal. They
used an ultrasonic interferometric method to detect small
wave-velocity changes in crystals stressed hydrostatically
and uniaxially. Their success encouraged further studies
on copper, such as effects of temperature and alloying on
the TOEC. Tlsing only uniaxial.stress measurements, Salama,

and Alers (1967) determined the TOEC of copper at 295.

J. Phys. Chem. Ref. Dota, Vol. 3, No. 4, 1974

77, and 4 K. Their specimen was neutron irradiated to
prevent dislocation motion. Salama and Alers (1968) also
determined the effect of alloying with nickel on the TOEC
of copper; and Debesis (1971) measured the pressure de-
rivatives of SOEC of copper-nickel alloys as a function of
temperature, Recently, Cain and Thomas (1973) used
hydrostatic-stress and uniaxial-stress measurements to ob-
tain complete sets of TOEC for copper alloyed with
aluminum. ‘
(b) Variations of the Finite-Amplitude Distortion of an
Initially Sinusoidel Ultrasonic Wave

Method (b) involves the propagation of large-amplitude
longitudinal ultrasonic waves in a single crystal. Because
the material is nonlinear, an initially sinusoidal wave is
distorted and harmonics of the fundamental frequency are
generated. Mcasurement of the amplitudes of the funda-
mental and second harmonics as a function of path length
determines certain combinations of TOEC, depending on
the crystallographic propagation direction. For cubic crys-
tals with longitudinal waves propagating in the {100], {110],
or [111] direction:

K 100 -‘:Cun (5)
K 110 =Y (Ci1a+3C112+12C166) (6)

I\, 111 :l/g(Cnl +6C113+12C“4 +24‘C196 (7)
+ 2C125+ 16C,56) .

The K’s are called nonlinearity parameters and have been
measured in copper at room temperature by Gauster (1966)
and by Gauster and Breazeale (1968), and as a function of
temperature by Peters, Breazeale, and Paré (1970)}. This
method avoids applying stresses to the crystal, but requires
supplementary data from other experiments to determine
a complete set of TOEC. Gauster and Breazeale (1968)
reported complete sets of TOEC of copper by combining
their results with the pressure-derivative data of other
workers.

If method (b), which involves second-harmonic genera-
tion, is used to measure TOEC, dislocation effects must be
climinated sincc dislocations also lcad to the gencration of
second harmonics. To date, method (b) has had few ap-
plications. A summary of the nonlinearity parameters K
of single-crystal copper is given in table 5.

(¢} Deviation from Hooke’s Law in Static Experiments

Method (c) has been used to measure deviations from
Hooke’s law of single-crystal whiskers of copper. The non-
linear stress-strain relationship is

e=P/E+8(P/EY'+{(P/EV*+. . ., (8)
where ¢ is the strain, P is the force per unit undeformed
area, and E is Young's modulus for the crystallographic
direction of interest. The parameters § and ¢ are nonlinear-
ity constants and represent the nonlinear elastic behavior.
A summary of these constants ix piven in tables 6 and 7.
Measurements of § have been made on copper whiskers
with OOy (TED and (HED arientations and the relation.
ships hetween 8 and TOFC Lave Dwen derived by Seeger
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and Buck (1960). It is found that 8§ ;5, is a function of
Ci11 Cirz, and Cisz; 8 100 s a function of all TOEC except
Cuse: and § ;;; is a function of all six TOEC. Measure-
ments of § ;; were made by Powell and Skove (1968),
by Riley and Skove {1973),-and by Kobayashi and Hiki
(1973). Because this method does not determine a com-
plete set of TOEC, Powell and Skove (1968) and Riley
and Skove (1973) supplemented their data with pressure-
derivative data of others in order to report complete sets
of TOEC.

Because method (c) produced results that varied from
sample to sample, Powell and Skove (1968) suggested that
TOEC may be more structure-sensitive than are SOEC.
However, Kobayashi and Hiki (1973) found an apparent
yield-stress dependence, assumed to arise from defects on
the specimen surfaces. Their analysis explained the experi-
mental variations, and the true nonlinearity constants, pos-
sessed by crystals without defects, were evaluated.

The TOEC obtained by method - (¢) differ in principle
Irom those obtained by uluasonic wmethods. Method (c)
involves static measurements, and the resulting TOEC are

isothermal stress derivatives of isothermal SOEC. Ultra- .

sonic techniques are dynamic, and the resulting TOEC are
“mixed,” being isothermal stress derivatives of adiabatic
SOEC. Expressions relating the purely isothermal TOEC
to the experimentally observed quantities have been derived
by Pouwell and Skove (1967). Usually the differences be-
tween isothermal and “mixed” constants are within experi-
mental error limits; therefore, the differences can usually
be neglected.

The conclusion by Hiki and Granato (1966) that the
ion-ion overlap energy should contribute dominantly to the
TOEC of copper was recently verified by Thomas (1973),
who used a pseudopotential model to calculate the TOEC
of copper. Thomas employed the method of homogeneous
deformation and obtained good agreement with experiment.
A similar ecalculation was performed hy Srinivasan and
Girirajan (1973), who used the method of long waves
and a pseudopotential model. The results also agree well
with experiment and again indicate the dominant contri-
bution of ion-ion overlap to TOEC of copper. Theoretical
values for third-order elastic constants are included in table
3.

Further discussion, both theoretical and experimental,
on nonlinear elastic properties can be found in Green
(1973) together with many valuable references to the liter-
ature on this topic.

7. Fourth-Order Elastic Constants

The accuracy involved in static tests is usually much
less than that in ultrasonic weasurements, Also, the non-
linearity constants § are relatively sensitive to small varia-
tions in SOEC and TOEC; a 1 percent change in SOEC
can cause changes in § as large as 10 percent. However,
static tests provide higher strains and thus permit semi-
quantitative _estimates of fourth-order elastic constants
(FOEC) to be made.

Limited results have been obtained for the FOEC of

copper. Hiki, Thomas, and Granato (1967) used a con-
tinuum model to derive expressions for the temperature
dependence of the three SOEC. These expressions were in
terms of second-, third-, and fourth-order elastic constants.
Using available experimental data for SOEC, TOEC, and
temperature derivatives of SOEC, they deduced informa-
tion on certain FOEC. Their results agreed fairly well with
those calculated earlier by Rose (1966). Further informa-
tion on FOEC of copper was obtained by Riley and Skove
(1973), who measured the nonlinearity constant ¢ for
copper whiskers with (100), ¢110), and {111} orienta-
tions. This information provides three independent linear
equations in the eleven FOEC for cubic symmetry. Using
the theoretical FOEC of Rose (1966) and the experimental
SOEC and TOEC, Riley and Skove (1973) also calculated
¢ and compared with their measured values. Order-of-
magnitude agreement was obtained. Fourth-order elastic
constant data are given in table 8.

8. Polycrystalline Elastic Constants

For technological uses, metals are almost always in poly-
crystalline form. Polycrystals (aggregates of single crystals,
or crystallites) can usually be described by relationships
for isotropic materials; some exceptions are noted in sec-
tion 9. Several constants are used to describe the elastic
behavior of isotropic materials. While only two of these
are independent, the others are useful for simply describing
a particular load-displacement or stress-strain situation.

For convenience, the most common constants are de-
scribed briefly here. Young’s modulus E is appropriate to
the case of uniaxial loading and is given by

o=Ee¢ {9)

where o is the stress (force per unit area), e is the strain
{fractional length change), and both are measured along
the loading axis. The shear modulus G is appropriate to
torsion, twisting, or pure or simple shear and is given by
(10)
where r is the stress (tangential force per unit area) and y
is the angle of shear. The bulk modulus B is appropriate
to a uniform (hydrostatic) pressure and is given by

T:C'y.;

P:_BT’ (11)

where P is the pressure and Av/v is the volume strain
(fractional volume change). Poisson’s ratio » measures,
for the case of uniaxial loading, the ratio of transverse
strain to Jongitudinal strain and is given by

€transverse
Y e | (12)
€longitudinal
From physical arguments it can be deduced that E, G, and
B are always positive and that v has limits of —1 and + 1.
Negative values of v have never been reported for isotropic
materials. In some engineering literature the reciprocal
m=1/v is used. For metals v is typically near a value of
Yo, If v==V, then B~FE and G==34E. These approximate
relationships are also typically observed in metals. As
shown by the data in tables 9 and 10, for copper v=0.35,
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B=113E, and G=0.37E; thus, copper is typically be-
haved in the relative values of its elastic constants.

9. Relationship between Single-Crystal and
Polycrystal Elastic Constants

The linear elastic behavior of both isotropic and quasi-
isotropic materials is described completely by two con-
stants. These two elastic constants cannot be chosen
uniquely. For example, an isotropic material’s elastic prop-
terties can be described completely by Young’s modulus
E and Poisson’s ratio v. They can be characterized equally
well by the bulk modulus B and shear modulus G. Of the
four material constants E, G, B, and v, only two are inde-
pendent. The relationships among E, G, B, and v are

E=9GB/(G +3B), (13)

and

=14 (3B—2G)/(3B+G). (14)

For preeent purposes B and € will be considered to be the
two independent constants. Other material elastic constants,
such as Lamé’s constants A and u, are also simply related
to Band G: A=B—24C and p=G.

If a polycrystalline aggregate consists of small crystallites
oriented randomly, then it is elastically quasi-isotropic and
its elastic behavior can be described by the above relation-
ships. (Quasi-isotropic means macroscopically isotropic.
but microscopically anisotropic; an aggregate of anisot-
ropic crystallites is a good example of a quasi-isotropic
material. The importance of distinguishing between isotropy
and quasi-isotropy has been emphasized by Ledbetter
(1973), for example.) In practice, aggregates may have
preferred orientations of crystallites or crystallite sizes that
are large with respect to the overall aggregate size; in this
case the above equations do not strictly apply; the degree
of their invalidity depends on the elastic anisotropy (defined
below) of the crystallites in addition to the factors of
crystallite orientations and sizes.

In principle the quasi-isotropic constants are related to
the single-crystal elastic constants. For a cubic material
such as copper, this means relating B and G to Cyy, Cyz,
and C,,. that is determining B (Cy;) and G (Cy). For
cubic symmetry B (C;;) is uniquely determined,

This relationship results because the bulk modulus of a
cubic material is a scalar invariant of the elastic constant
tensor. Equation (15) assumes, of course, that crystallite
boundaries per se contribute nothing to the aggregate
elastic properties. The validity of this assumption is borne
out by the equality (within experimental error) of the
polycrystalline and single-crystal bulk moduli of copper as
shown in table 10.

The problem remains then to relate the quasi-isotropic
shear modulus G to the single-crystal elastic moduli Ci;.
No unique relationship exists. Since G concerns only
shear (not dilatational) deformations, it is expected that
only those Cj; related to shear deformations would enter in
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the expression for G(C;). For cubic materials there are
two shear constants, Cyy and C'=14(C,;—Cy,). Thus, G
should depend somehow on these two constants. Physical
reasoning requires that the value of G lie somewhere be-
tween the values of C,, and C’. If it should happen that
C;s=C’, then G will have the same value. In this case the
material is elastically isotropic and G is determined un-
ambiguously. A measure of the anisotropy, or deviation
from isotropy, is given by

A=C,,/C", (16)

where A is known as the Zener anisotropy. Copper has a
relatively high elastic anisotropy; from table 2 it follows
that A=3.2 at room temperature. The problem of deter-
mining G(C’, C,;) can be reduced to finding the product
of €’ and a function of the anisotropy. This factorization
permits general tabular or graphical solutions for G/C”
as a function of 4.

By assuming homogeneous strain in an aggregate Voigt
(1880) was the first to relate C to the C,;J-. He obstained

Cy=Y5C"(2+34). (17)
The other extreme. namely homogeneous stress in an ag-

gregate, was assumed by Reuss (1929), who obtained

G_=5C" 4

. (18)
R 3424

Obviously G, =G in the isotropic limit of 4=1. Later,
Hill (1952) showed that the quasi-isotropic shear modulus
G should be bounded by G.. and G, that is

Rr?

G, =G=G,.. (19)

Hill suggested an averaging of G and G, to cbtain an
effective shear modulus. An arithmetic average gives

Cypia = V2(6y +Cp) (20)
and a geometric average gives
Cyrine= VO lp - (21)

HilPs method has been adopted widely and is referred to
as the VRH approximation. Usually the arithmetic mean
is used. v

A variety of methods have developed for improving the
VRH method. These include those by Hershey (1954).
Kroner (1958), Eshelby {1961), Hashin and Shtrikman
(1962), Aleksandrov (1966). and Kroner (1967). For
cubic symmetry all of these methods predict a shear mod-
ulus higher than a VKH-a value. I'or copper, as shown n
table 10, the GVRH-a
served shear modulus polycrystalline copper. Thus, the above
methods give values for G that are even further in error.

An averaging method developed recently by Ledbetter
and Naimon (1974) does result in an effective shear mod-
ulus that agrees much more closely with the observed poly-
crystalline value. This method assumes that the elastic
Debye temperature ¢ is the same for single crystals and

value is already higher than the ob-

polycrystals of the same material. They derived an ex-
pression for G in terms of B. 6 and the muss density p.
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The results in table 10 obtained by the Ledbetter-Naimon
averaging method show the close agreement for copper
between the predicted value of G and the observed value.
That the other quasi-isotropic constants of copper derived
from B and G, namely E and », also agree well with ob-
served values is an indication, at least for copper, that equat-
ing Debye temperatures leads to a better relationship be-
tween single-crystal and polycrystal elastic constants.

10. Temperature Dependence of the
Elastic Constants

The single-crystal elastic constants of copper behave
regularly with respect to temperature. The SOEC contin-
uously decrease with increasing temperature, and for high
temperatures (7>6/2) the decrease is linear. As the tem-
perature approaches 0 K, the SOEC approach their limiting
values witlt zero slope. The temperature variation of the
SOEC of copper is shown in figures 1-7.?

The temperature coefficients of the SOEC of copper at
room temptrature are listed in table 11. These coefficients
are a measure of the relative change in the elastic constants
due to temperature effects. As is the usual case for metals,
the “temperature coefficients of the shear constants (Cis
and C’) are Jargest in magnitude, being approximately
twice the magnitude of the coefficients of the longitudinal
constants (C,, and CL). The temperature coeflicients of the
bulk modulus B and (,, are smallést 'in magnitude.

As indicated in figure 8, data for the temperature de-
pendence of TOEC of copper are less abundant than for
the SOEC. Thus, it is more difficult to make definitive
statements about the behavior of TOEC with respect to
temperature. It does appear, however, that the TOEC do
behave essentially linearly with respect to temperature.
The constant Cy exhibits almost no temperature depend-
ence; the constant C,; decreases slightly with tempera-
ture: and the constants Cy,5, Cigs, Cize, and Ciy; increase
(become Jess negative) with increasing temperature. The
nonlinearity parameters K ;00 , K 150, and K ;;; also in-
crease linearily with temperature.

The temperature variations of the quasi-isotropic elastic
constants of polycrystalline cupper are shown in figures
9-12. The data scatter shown there is much larger than
in the single-crystal case. Also shown are curves deduced
from averaging single-crystal data and curves obtained
from a least-squares fit of a semi-theoretical function to
the polycrystalline data. For both Young’s modulus E and
the shear modulus G, the decrease with temperature is
steeper than that deduced from single-crystal data. In fact
the magnitude of the temperature coefficient of G is ap-
proximately twice that of C,, and C’. The most obvious
interpretation of this effert is that grain boundaries
“soften” the elastic moduli at higher temperatures, especially
the shear modulus. The bulk modulus B also seems to-de-
crease faster than the single-crystal curve, while Poisson’s
ratio parallels the single-crystal curve. {v increases with
increasing temperature, which is regular behavior for Pois-
son’s ratio.) The paucity of data for both B and v as a

function of temperature precludes deciding whether these

parameters also have different averaged-single-crystal and
polycrystal values. It is probably not significant that all
the data of figure 11 (based on relative measurements)
lie below the averaged single-crystal data for B. Tempera-
ture derivatives of E, G, B, and v are given in table 12;
these were determined by fitting a semi-theoretical function
to the polycrystal data after excluding outlying observa-
tions, and from a VRH-arithmetic average of the single-
crystal data at different temperatures.

11. Alloying Effects

While the principal object of this study was the elastic
properties of unalloyed copper, it seems useful to at least
indicate what studies have been made to determine the
effect of alloying on the elastic properties of copper. This
is' done in table 1 for single crystals and in table 13 for
polycrystals, and is included as a possible aid to those in-
terested in the wide variety of properties that can be
achieved in copper alloys. The elastic properties of copper-
zinc alloys, including all of the solid-solution: phases, is
the subject of a compilation and review now in progress
by .the present authors.

12. Mechanical-Deformation Effects

Mechanical deformation affects elastic properties of met-
als in two ways. First, for both single crystals and poly-
crystals, plastic deformation salters the elastic constants
per se by introducing lattice imperfections (vacancies,
interstitials, dislocations) and by creating residual stresses
and straius in the deformed material. A second efiect arises
in polycrystals—texture, a non-random distribution of
grain orientations—that makes the polycrystalline aggre-
gate elastically anisotropic. While texture can often be ne-
glected, particularly if the degree of texture is small or
if the Zener elastic anisotropy factor is near unity, it is
a real property of most aggregates; a random distribution
of crystallite orientations is really an idealization.

Texture arises in plastically deformed aggregates because
certain lattice planes and directions tend to align with
the principal directions of plastic flow. Depending on the
type of stress—uniaxial, biaxial, etc.—various types of tex-
ture arise. Copper is typical of many f.c.c. metals; it has
a [1117-[100] wire texture and a (110)[112] principal
rolling texture. While textures are usually studied by x-ray
diffraction methods, elastic constant measurements can alsc
provide information on texture since they are sensitive to
anieotropy.

" The relationship between texture and elastic properties
was discussed recently and very comprehensively by Green
{1973). Copper was included in his discussion and his ref-
erences; thus, further discussion on this topic needs to be
only cursory.

References to texture studies together with some of the
available data are given in table 9. Recrystallization-
texture data are included along with deformation-texture
data. While few authors have attempled to do so, it should

3 Figures have been placed at the end of this paper.
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be realized, as emphasized by Bradfield and Pursey (1953),
that the quasi-isotropic elastic constants can be determined
from measurements on a textured aggregate. Examination
of table 9 shows also that while the effect of texture on
Young’s modulus is well defined, the effect of texture on
the shear modulus or on Poisson’s ratio has not been stud-
ied experimentally. One would expect no effect of texture
on the bulk modulus of a cubic metal.

The effects of mechanical deformation on the elastic
constants of polycrystalline copper, untextured, are not
well defined. There are several possible reasons for this:
the complexity of the plastic deformation process; the am-
biguity in defining plastic strain; the distinction, in terms
of dislocation models and in terms of observed behavior.
between micro, low, medium, and high plastic strains; the
different methods for imparting plastic deformation—shear,
extension, compression, bending, rolling, cte.: the possible
anisotropic effect of the deformation process, for example,
uniaxial extension may change the shear modulus differently
along the loading direction than along the transverse direc-
tions; and last, specimens that are believed to he relatively
free of texture may be textured.

Some single-crystal mechanical-deformation-effect data
are available; these are given in table 2. The general re-
sult shown there is that all of the C;; are either unaffected
or reduced slightly by plastic deformation. However, addi-
tional detailed studies on single crystals using different
deformation modes and considering dislocation models of
the deformation process would be useful toward under-
standing the effects of plastic deformation on elastic
properties.

13. Concluding Remarks

Copper is well characterized elastically, perhaps better
than any other metal. At room temperature, polycrystalline
copper is especially well defined with respect to Young’s
modulus (standard error=0.6 percent}, the shear mod-
ulus (s.e.=2.6 percent), the bulk modulus (s.e.=2.8 per-
cent), and Polsson’s ratio (s.e.=2.6 percent). (The stand-
ard error of the arithmetic mean is defined as o/\/n, where
o is the standard deviation and » is the number of obser
vations.) Single-crystal parameters are even better charac-
terized; the second-order elastic stiffnesses C;;. C;., and
Cy. all have standard errors of 0.2 percent or less. Despite
the difficulty of measurements, the larger third-order elastic
stifinesses of copper (Ciyy, Ciyz, and Cyge) have standard
errors of 4 percent or less. Fourth-order elastic stiffnesses
of copper arc known approximately.

Not only has copper been much studied elastically, but
its elastic properties exhibit an unusually ideal behavior.
Anomalies in elastic constants due to magnetic transitions.
crystal-structure transitions, etc. are absent in copper. The
temperature behavior of copper’s elastic moduli is classic—
continuously decreasing with increasing temperature, rel-
ative flatness at low temperatures, zero slope at T=0 K,
and linear behavior at high temperatures.

The temperature dependences of the elastic constants of
copper are also well characterized. At room temperature,
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- 1
the temperature derivatives — have standard errors

Cy; dT
of 6,percent or less. From these, temperature derivatives of
E, B, G. and v can be derived that have only slightly larger
errors. This is a more reliable approach than averaging
the polycrystalline temperature derivatives to obtain aver-

-

1
age values of — ——, etc.
E dT

Quasi-isotropic elastic constants (E, G, B, v, etc.) de-
termined by averaging single-crystal elastic stiffnesses (the
Ci;) have lower standard errors than those obtained by
measurements on polycrystalline specimens. Thus, the single-
crystal data-averaging approach is appealing when highly
accurate quasi-isotropic data are desired. However, the
attractiveness of this approach is reduced by the mulii-
plicity of suggested averaging methods; the deviations
among results obtained by various methods far exceed the
combined errors due to imprecisions in the C;; and their
compounding due to the averaging calculations.

Recommendativns for further work on the elastic prop-
erties of copper include: (1) better delineation of the bulk

modulus and Poisson’s ratio as a function of temperature;

{2) further experimental and theoretical studies of higher-
order, especially fourth-order, elastic constants since these
directly reveal the anharmonic part of the interatomic po-
tential; (3) experimental and theoretical studies of the
problem of averaging single-crystal properties to obtain
quasi-isotropic properties; (4) careful studies of the effects
of mechanical deformation on elastic properties of single
crystals; and (5) studies to determine the effect of tevture
on polycrystalline elastic constants other than Young's
modulus.
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Notes on Tables
Some comments are required for a satisfactory reading
of the tables. The following principal notations are used
in the tables:

B=bulk modulus
Cij=single-crystal elastic stiffnesses (number of sub-
scripts denotes order)
(d) = deformed plastically
E=Young's modulus
f={frequency
G =shear modulns
h=hourts)
K=deprees Kelvin

OFH(C

avveendree hich condos i
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P =pressure

rv=relative value

T =temperature

-y =longitudinal wave velocity (pt)*=DB+4/3C)
v=Poisson’s ratio
p==mass density
* —gee comment column

Unless indicated by (d)="deformed plastically or by an-
other comment, data can be assumed to represent annealed
specimens. Recommended values of elastic constants, given
at the bottom of the tables, were obtained by averaging
arithmetically. without weighting factors, the data for an-
nealed specimens. All data were included in the average
except those deviating by more than 1.5 ¢ from the mean;
o is the standard deviation, and the standard error of the
arithmetic mean o/\/n is reporléd as the imprecision.
where n is the number of observations. For a large num-
her of observations (greater than twenty), the 95 per-
cent confidence interval for the arithmetic mean % is

given approximately by x=2¢/Vn. The limits
#*0/Vn define a confidence interval of about

70 percent for the arithmetic mean. Other interpretations
of the standard error of the mean can be found in standard

works ,on statistics. Despite large deviations of some ob-
servations from the average value in the polyecrystalline
cases, no syslematic trend could be detected, Variants that
were considered in attempting to detect a trend include:
static versus dynamic measurements and impurity concen-
trations. Other variables that might be important, but for
which convincing data are Jacking, include: grain. size,
grain orientation distribution (texture), segregation of
impurities al grain boundaries. and siress-strain states.

Some readers will be interested in compressibility data;
compressibility y is simply the reciprocal of the bulk mod-
ulus. The recommended compressibility of copper is
x=B"! =0.741 X 10-** m*/N.

Entries in parentheses were derived from the given data,
usually by the formulas

recomm,

v= £ —1.
2G
and
p—_ EC_
233G —E)

These formulas tend to give large errors in v and B, but
the numbers are still useful.

J. Phys. Chem. Ref. Dota, Vol. 3, Ne. 4, 1974
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Table |. Summary of experimental conditions for single-crystal studies;
lattice parameters and densities correspond to room temperature

Ref ce Copper P L:af:é‘e . Density Varjables Studied
Reference Content (%) P a (})v 2t ( /FmB) Method for C_. s . Method for Ciik
g/¢ H T(K) |P(10°N/m”) | Alloying | Other .
Goens (193.3) Composite oscillator
Kimura (1933) E, G as f (direction}
Goens, Weerts (1936) 80
Liazarus (1949) Ultrasonic (pulse- 0-10
echo)
*
Jacohsen (1955) 99.99 X-ray scattering 2
o
Tiong (3955) o]
@
o
Overton, Spectroscopic Ultrasonic (pulse- 4-300 o
(:;nf_{'ney (1955) echo) =
2
Daniels, Smith Ultrasonic (pulse- 0-10 [}
(1958) ' echo) m
V =
Rayne (1958) Ultrasonic {pulse- Zin z
echo) =
8
Dayna {1959) Ultrasonic (pulse- 4-300 Zn >
echo)
“onoonk, Smith 99. 9+ 3.6150 8.932 Ultrasonic (pulse- Ni
Ca . echo) )
PEeon 99.98 (OFHC) Ultrasonic (pulse- 4-300 Mn
echo)
Thomuson 29.98 (OFHC), Ultrasonic (pulse- 4-270 Plastic strain,
99,999+ o echo) irrad., anneal.
Epstein, 99,9 18.910 Ultrasonic (pulse- Ni
Carlson (1965) echo), resonance
Chang, Himmel 99.999 8.937 Ultrasonic (pulse- 300-800
{1966) echo) |
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Table 1. (cont'd) Summary of experimental conditions for single-crystal studies;

lattice parameters and densities correspond to room temperature

Refcrence

Gauster (1966)

Hiki, Granato
(1966)

Salama, Alers
(1967)

Gauster, Breazeale

(1968)

Powell, Skove
(1968)

Salama, Alers
(1968)

Riley (1969)

Peters, Breazecale,
Paré (1970)

Cain and
Thomas (1971)

Q'Hara,
Marshall (1971)

Debesis (1971)

Moment (1972)

Kobayashi, Hiki
(1973)

Copper P L;athc:a Density Variables Studied
Content (%) |~ © g\')“e‘”( Jem®) Method for C., 5 3 A Method for C, .
g/em H T(K) P{10°N/m")| Alloying | Other ]
99.9995 Ultrasonic (inter- Hydrostatic,
ferometric) uniaxial stresses
Ultrasonic (sing- Uniaxial stress
around)
99.999 Secord-harmonic
generation
Deviations from
Hooke's law
Uniaxial stress
99.999 77-300 Second-harmonic
gensration
99.999 3.6147 8.91384 Ultrasonic (pulse- 275-300 Al
superposition)
3.614 8.94 Ultrasonic (pulse- 4-300 Au
Extrapolated from alloy data echo)
Schmunk, Smith (1960) crystals Cltrasonic (pulse- 77-297 {0-4 Ni Hydrostatic stress
echo) buffer rod
Ultrasonic (pulse- Al, Sn

Extrapolated from alloy data

echo)
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Table 2. Second-order adiabatic elastic stiffnesses Ci' of copper
at room temperature; entries have units of 1011 N/m2
Reference C11 C12 C44 c’ B CL Comments
Goens (1933} 1.698 1.226 0.753 0.236 1.383 2.215 Isothermal
Kimura (1933) 1,733 1.182 0.612 0.276 1,366 2.069 Isothermal
Goens, Weerts (1936) 1. 764 1.292 0,753 0.263 1. 449 2.254 Isothermal
Lazarus (1949) 1.710  1.239  0.756 0.236 1.396 2.230 '
Jacobsen (1955) 1,70 1,24 0. 645 0.23 1.39 2,12
Long (1955) ) 1.683 1,221 0.754 0.231 1.375 2.206
Overton, Gaffney (1955) 1.6839 1.2142 0.7539 0.2348 1.3708 2.2030
Rayne (1958), (1959) 1. 684 1.214 0.755 0.235 1.371 2.204
Schmunk, Smith (1960) 1. 679 1.245 0.7511 0.2332 1,370 2.197
Waldorf (1960) 1.6897 1.2203 0.7540 0.2347 1.3768 2.2090
Alers, Thompson (1961) 1. 693 1.222 0.753 0.236 1.379 2.210 99.98
(Extrapolated from 270 K) 1. 687 1.217 0.750 0.235 1.374 2.202 99.999, annealed
1. 690 1.218 0.753 0.236. 1.375 2.207 99.999, annealed, irradiated
1. 666 1.204  0.753 0,231 1.358 2,170 99.999, deformed 5%
1. 680 1.212 0,745 0.234 1.368 2.191 99.999, deformed 5%, irradiated
Epstein, Carlson (1965) 1. 697 0.753 ' {100] orientation, ultrasonic
1.684 1,212 0,757 0.236 1.369 2,205 [110] orientation, ultrasonic
1. 683 [100] orientation, resonance
2,213 [110] orientation, resonance
“hane, Himmel (1966) 1,700 1.225 0,758 0.2355 1.385 2.223
Ziranato (1966) 1. 661 1.199 0.756 0.231 1.353 2.186
2 s (1971) 1. 692 1.219 0. 754 0.237 1,377 2.209
C Hera, vshall (1971) Extrapolated from alloy data.
Debesis (1971) 1.6960 1,2276 0,7556 0.2342 1.3838 2.2174
Moment (1972) » 1. 695 1.223 0.757 0.237 1. 380 2.215 Extrapolated from alloy data.
Average values 1.691 1.222 0.7542 0.2346 1.376 2.211
Standard errors 0.002 0.003 0.0005 0.002 C.003

0, 0005

806
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Table 3. Third-order single-crystal elastic constants Cijk

of copper at room temperature;

entries have units of 10 ! N/mz.
Reference C111 CllZ 6123 0144 6166 C456 Comments
Hiki, Granato (1966) ~12.71 -3.14 ~0.50 -0.03 7. 80 -0.95
Salama, Alers (1967) -15.0 -3.5 -2.5 -1.35 -6.45 -0.16
Salama, Alers {1968) -13.90 -7.78  -1.81  -1.40  -6.48  -0.16 _
Gauster, Breazeale (1968) -14.,27 -5.21 -1.09 +8.54 -8.36 -5.47 Data supplemented with pressure derivatives
of Liazarus (1949).
Gauster, Breazeale (1968) -14.27 -3, 66 -0.98 +0, 64 -7.49 +0,44 Data suppiemented with pressure derivatives
of Daniels, Smith (1958),
Gauster, Breazeale (1968) -14.27 -7.78 -2.65 -0.06 =7.71 +1,17 Data supplemented with pressure derivatives
: of Hiki, Granato (1966).
Gauster, Breazeale (1968) -14,27 -8.87 -1.77 -0. 63 ~7.44 +0. 66 Data supplemented with pressure derivatives
of Salama, Alers (1967).
Powell, Skove (1568) -14.31 -8.47 -1.24 +0.75 -7.50 +0.43 Isothermal; data supplemented with pressure
derivatives of Lazarus (1949).
Powell, Skove (1968) -12.28 -6.34 +0.95 +3.20 -5.74 -1.36 Isothermal; data supplemented with pressure
’ ] derivatives of Daniels, Smith (1958).
Powell, Skove (1968) -12.99 -8.11 -1.69 +0, 87 -7.96 +0.70' { Isothermal; data supplemented with pressure
derivatives of Hiki, Granato (1966).
Riley, Skove (1973) ~11.7 -6.5 +1.54 +1.4 -4.8 -1.3 Isothermal; data supplemented with pressure
: derivatives of Lazarus (1949).
Riley, Skove (1973) -13.7 -8.6 ~0. 65 -0.95 -6.6 +0.4 Isothermal; data supplemented with pressure
derivatives of Daniels, Smith (1958).
Riley, Skove (1973) -12.4 -8.2 -1.1 -1.0 -7.0 +0.70 Isothermal; data supplemented with pressure
derivatives of Hiki, Granato {1966).
Riley, Skove (1973) -12,7 -8.2 -0.72 -0, 69 -6.7 +0.4 Isothermal; data supplemented with pressure
) derivatives of Salama, Alers (1968),
Average values -13.5 -8.0 -1.2 0. 66 -7.2 -0.32
Standard errors 0.3 0.3 Q. 3 0.7 0.3 0.4
) ) Theoretical Qalues
Rose (1966) -10.40 -7.70 +0.92 +0.92 -7.70 +0.92 Central-force model,
Srinivasan, Girirajan (1973)| -16,08 -8.40 +0. 80 -0.02 -8.26 +0.12 Pseudopotential; method of long waves.
Thomas (1973) -17.02 29.65  -0.10  +0.34  -8.32  +0.12

SAOTIV ANV STV1IW 40 S31143d0dd DILSV1a

Pseudopotential; method of homogeneous deformation.
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Table 4. Hydrostatic-pressure derivatives of the elastic constants of copper at room temperature.

Reference dC,,/dP  dC,/dP  dC, /dV ac’/ap dB/dP
Lazarus (1949) 1 4.67 3.53 0.83 0.57 3.91
Daniels, Smith (1958) 6.36 5.20 2.35 0.58 5.59
Hiki, Granato {1966) 5.94 5.19 2.63 0.375 5.44
Salama, Alers (19€7) 6.4 5.5 2.5 0.45 5.8
Salama, Alers (1968) 5.92 5. 02 2.36 0.45 5.32
Bridgman (1949) 5.3
Rice et al. (1958) 4,1
Al'tshuler et al. (1958) 4.8
Debesis (1971) 6.19 5.08 2.33 0.556 5.45
ITo et al. (1971) ‘ 5.08 4,94 2,24 0.50 5.2¢
Average values 5.92 4:92 2.18 0.50 5.10
Standard errors 0.22 0.24 0.23 0.03 0.20

Table 5. Nonlinearity parameters of single-crystal copper at room temperature;
entries have in units of 1011 N/mz.
Reference K<100> K<110> K<111> Comments

Gauster (1966) - G.63 -19.48 -16.55

Gauster. Breazeale (1968) ~14,3 -32.5 -25.9

Gauster, Breazeale (1968) -12.7 -32.7 -29.,5 Calculated from data of Hiki,and
Granato (1966).

Gauster, Brcazcale (1968) 15.0 -29.5 27,2 Calculated from data of Salama,
Alers (1967}

Peters et al, (1970) ) -13.9 -31.2 -25.7

Average values -13.1 -29.1 -25.0

Standarc errors 0.9 2.5 2.2

4. Phys. Chem. Ref. Data, Vol. 3, No. 4, 1974



ELASTIC PROPERTIES OF METALS AND ALLOYS

Table 6. Nonlinearity constants & of single-crystal copper whiskers at room temperature.

b t
Reference é(lOO} 6<110> 6(111) Comments
Powell, Skove (1968) -3.3 4.8 2.1
Powell, Skove (1968) -4.7 10.8 3.8 Calculated f{rom third-order data
of Hiki, Granato (1966).
Riley, Skove (1973) -4,4 8.9 2.1
Riley, Skove (1973) -4.6 10.7 3.8 Calculated from third-order data
of Hiki, Granato {1966).
Riley, Skove (1973) 2.2 7.2 2.7 Calculated from third-order data
: of Salama, Alers (1968).
Kobayashi, Hiki (1973) -4.3 10.0 3.5
Kobayaehi, Hiki (1973) -4.51 10,57 3,76 Calculatcd from third-order data
of Hiki, Granatoc (1966).
Kobayashi, Hiki (1973) -2.00 7.23 2.68 Calculated from third-order data
of Salama, Alers (1967).
Average values -3.8 8.8 © 3.1
Standard evrors 0.4 0.8 0.3

Table, 7. Nonlinearity constants { of single-crystal copper whiskers at room temperature
Reference £¢100) C(1]0) g“]]) Comments
Riley, Skove (1973) 6€ + 25 184 + 25 20 =10 Static test; deviations from
Hooke's law.
Riley, Skove {1973) 70 Calculated from SOEC and

Riley. Skove (1973)

w

[

TOEC of Hiki, Granato (1966)
and from theoretical FOEC of
Rose (1966).

Calculated from SOEC and
TOEC of Salama, Alers (1968)
and from theoretical FOEC of
Rose (1966).

Table 8. Fourth-order elastic stiffnesses of copper; entries have units of 10“ N/mz.
Reference Cllll C1112 C1122 C1123 Comments
Hiki, Thomas, 101 50. 5 50.5 Determined from tempera-~
Granato (1967) ture dependence of SOEC
assuming nearest-neighbor
central forces.
Rose (1966) 74.49 42.33 47.56 -2.62

Central-force model, many-
neighbors.

9
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Table 9.

Room-temperature elastic properties of polycrystalline copper

Reference

E G B v
11 2
100 N/m" (excep:v)

Variables Studied

Method

Alers, Choi, Liu (1967)

Alers, Liun (1967)

Amagat (1891)

Aoyama, Fukuroi (1941)

Bennett, Davies (1949)

Benton (1901)

Benton (1903}

Bez-~Bard:li (1935)

Biller, Helow (1969)

Birch (19:7)

1.€9-1.34(d)
1.16-1.39(d)
1.21 (0.456) 1,16 (0.350)
1,27
TV

0.341
TV rv
1.16 0.429 (1.31) 0.348
1.27
1.277 0,468 1.36 0.364
1.17(d)
1.27

0.346
1.358(d)
1.373
1.275(d)
1

.310

Neutron irradiation,
rolling direction,
rolling temperature
Rolling temperature,

rolling direction,
alloying: Zn

T =78 289K

T = 268-650 K

T=87TK

P = 1-4000 atm
{~ 0.4G Pa)

T = 77-873 K,
annealing temp.

T =4.5-300 K

Resonant bar, longi-
tudinal

Resonant bar

Resonant bar

(0.5-2.0 kHz),
trarsverse

Interference apparatus
Stress-strain

Angle of total reflec-
tion of ultrasonic waves

(1-20 MHz)

Resonant bar
(9-17 kHz)

Resonant har
Resonant bar
(8-40 kH7)

Simualtaneous bending
and torsion

Resonant bar
(10-50 kH=)

Composition

Comments

Cathode copper

99.99

0.95 Ni, 0.0.02 Mn,
0.02 Fe, bal. Cu

99.98

Commercial
electrolytic

99.999

Commercially pure

Cold worked to 95% reduction

Cold worked to 95% reduction

B_. /B

= 7
Cu 0.79

Fe

= 8.70 g/cm3

P ’
v: = 1.84 x 101 N/m?2

3
p = 8,904 g/cm
Temp. data given as

resonance frequencies

*G/E = 0,371

ZLe

NOWIVN ¥ '3 ANV 331134031 'W 'H



PL61 ‘b "ON ‘€ [OA '040Q $3y "way) shyd f

Druyvesteyn (1965)

torsion

and torsion

Table 9. Room-tempecrature elastic properties of polycrystalline copper (cont'd)
Reference G B v Variables Studied Method Composition Comments
1 2 ’
101! N/m" (except v)
Bradfield, Pufsey (1953) 1.301 0.480 (1.498) 0.350 Annealing tempera- Longitudinal, torsional| NPL pure Annealed 3 h at 550°C
1.296 0.483 (1.364) 0,342 ture vibration (20-150 kHz) Annealed thoroughly
Bridgman i1923) 1.340(d) T = 303, 348 K Pressure cylinde}, Commercial rod
1.345 linear compressibility
1.364 relative to iron 99.987
Bridgman (1949) 1.379 Pressure cylinder, 99.999
lever piezometer
Brouwer (1965) TV rv Plastic strain at Resonant bar, bending
T =70 K-
Brouwer, Groenenboom- rv rv Plastic strain at Resonant bar, bending
Eygelaar (1967) T=77K and torsion
Bruner, Mecs (1963) rv Annealing tempera- Resonant bar
ture after plastic .
deformation at 4 K
Bunge, Ebert, 1.210 Rolling direction, Resonant bar ‘99,92 Random specimen
Ginther (1969) ’ amount of plastic
- deformation
Cabarat, Cuillet, 1.248 Alloying: Sn, Zn Resonant bar
LeRoux (1949)
Chang, Huitgren (1965) 1.348
. Chelnokov (1964) * Plastic strain, Resonant bar *Relative resonance
annealing time frequencies
Collet (1967) rv Plastic strain, Torsion pendulum 99.999
vibration amplitude,
T=77K
Davis (1943) 1.06(d) T :_303—508 K Stress-strain OFHC Plastically strained 8%
DeKock, Crans, v rv Plastic elongation, Simultaneous bending

SAOTIV ANV S1V13IW 4O S311¥3d0¥d IILSV1I

€16



v46L ‘v "ON ‘€ '[oA ‘DIng JoYy ‘way) 'sAyd °f

Table 9. Room-temperature elastic properties of polycrystalline copper (cont'd)

" Reference G B v Variables Studied Method Composition Comments
11 2
107" N/m" (exceptv)

Den Buurman {1970) rv Strair amplitude, Resonant bar 99,999

isochronal anneal (~ 280 kHz)
Den Buurman, rv Strain atr;plitude, Resonant bar
Snoep (1972a) strain cycles (fatigue) | (~ 170 Hz) 99.999
Den Buurman, rv Strain amplitude, Torsion pendulum 99.999
Snoep (1972b) strain cycles (fatigue)
Druyvesteyn, 1.276 0.473 1.41 '0.35 Alloying: Zn Resonant bar
Meyering (1941)
Druyvesteyn, Schannen, rv Plastic torsional Torsion pendulum 99.999
Swaving (1959) strain, annealing
Druyvesteyn, rv Plastic strain, Lems (1962) 99.999
Blaisse (1962) strain temp.,

annealing

iy 2
Ebert (1935) 1.37 P = 0-5000 kg/cm AL/t comparative
Eisner, Ottlyk (1963) 1.32 -Appliad d,c. potential| Stress-strain 99.99
Faninger (1969) .27 0.480 (1.19) 0.327 Alloying: Ni Mechanical, x-ray Commercial
electrolytic

Fantozzi, Boulanger, TV Plastic strain, Resonant bar 99.999, OFHC
Gobin (1968) annealing (~ 2 kHz)
Fantozzi, Calvet, rv Plastic strain, Resonant bar 99.93 Grain size~ 1 mm
Gobin (1967) isothermal and (~ 2 kHz)

isochronal annealing
Fins 013D 1.30 T = 233-353 K Resonant bar

1,257 Resonant bar Annealed 1/2 h at 400°C

Frederick {1947 1.27 0.47 (1.44) 0.341 T = 78-644 K Pulse-echo

(0.5~15 MHz)

vis
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Table 9. Room-temperature elastic properties of polycrystalline copper (cont'd)
Reference E G B v Variables Studied Method Composition Comments
11 -
10 N/rn2 (except v)
Fukuroi, 1.10 Alloying: Ni Bending interferometer | Extrapolated from Anncaled 6 h at 800°C
Shibuya (1950} . 99 Cu alloy
Greer, Bucknall (1964) 1.300 Alloying: Ni, Zn; Resonant bar
T =77-542 K {~1 kHz)
Griineisen (1907a), (1907b}| 1,229 Free transverse Pure p=28.% g/cm3
oscillations, inter- '
ferometer
Griineisen (1908a), (1908b)| 1,226 0,455 1,34 0.352
1.286 0,462 (1.98) 0.391 0.2%As, 0.04%Fe,
1% Ni )
1.279 0.457 1.31 0.368 0.15%As, 0.03%Fe,
trace Ni
Griineisen (1910} 1.22 (0.48) 1.37 0.35 Bulk modulus: 3
T = 82-438 K Rod, p = 8,96 g/em’,
1.25 (0.47) 1.30 0.34 Tube, p = 8.85 g/cm’
Guillet (1939), {1940) 1. 24> Alloying: Al, Sn, Zn Pendulum of 99.9%9
. LeRoelland, Sorin
Guye, Schapper {1910} 0.335 T = 78-373 K Torsional pendulum
Haskins (1961) T = 4-350 K Ultrasonic(2, 5 MFHz) Long, vel, =0, 479
x10° cm sec”
Hopkin, Pursey, 1,30 0.457 1.39 0.340 Alloying: Al, As, Au,| Rescnant bar 99.99 Single-crystal data also
Markham (1970) Ga, Ge, In, Mn, Ni,
Si, Sn, Zn
Ide (1936) 1.25 0.459 1.67 {0.362) Resonant bar-,
longitudinal
Iokibe, Sakai (1921) 0.52 T = 298-790 K Torsional pendulum Electrolytic purity Annealed 400°C
0.47(d) Hard drawn wire
Jaquerod, 1.260 T =273-373 K Tarsional pendulum Commercial
Miigeli (1931)
Joshi, Bhatnagar (1969) 0.450 T = 308-676 K Torsional pendulum Commercial
(~ 70 Hz)
0.426 T = 301-664 K Spectroscopic

SAOTIY ANV STV1IW 4O S31LHId0Ud DILSVHE
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Table 9. Room-temperature elastic properties of polycrystalline copper {cont'd)

Reference

E G B v
71011 I\‘/m2 {except v)

Variables Studied

Method

Composition

Comments

Joshi, Bhatnagar (1970)

Kallend, Davies (1971)

Kaniak, Miillner (1972)

Katzenelsohn (1887)

Kawai (1930)

Kawai (1931)

Keefer, Sosin (1963)

Kiewiet (1886)

*ikuta (1921)

Kohlrausch, Loomis (1870)

1,207
1.003
1.08-1.36{d)
0.359
1.20
1.24
0.461 (1.33) (0.345)
rv
1.21] 0.431
0.422
0.382(d)
0,369
1.222 0.452 1.366 0.350
0.416
1,17
0.382

T - 309-674 K

T = 303-661 K
Rolling direction

Radiation dosage
(a-particles),
annealing 78-140 K

Plastic strain,
annealing tempera-
ture

Plastic strain,
annealing tempera-
ture

Isochronal annealing

after electron irra-
diation at 20 K

T = 298-1126 K
T = 298-1177 K

T = 293-1273 K

Flexural resonance
(~ 80 Hz)

Resonant bar

Transverse vibration

Torsional pendulum

Stress-sirain slope

Torsion, optical lever

Resonant bar

Torsional pendulum

Resorant bar

Torsional pendulum

Torsional pendulum

Commercial purity

S»ectroscopic
parity

Commercial purity

99.88

Commercial purity

Electrolytic purity

Commercial purity

Electrolytic

Initial grain size 0.035 mm,
cold rolled to 95% reduction

7-15 um foils; * gives fre-
quency data, proportional to El/z

Annealed wire
Drawn wire

Average value

916
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Table 9.

Room-temperature elastic properties of polycrystalline copper (cont'd)

Reference

E G B v

10“ N/m‘2 {exceptyv)

Variables Studied

Method

Composition

Comments

Koiwa, Hasiguti {(1967)

Korntheuer,
Svoboda {1969)

Kdster {(1950)

Kdster {1940)
Kdster (1948a), (1948bi

Késter (1953)

KSster,
Rauscher (1948)

Kralik (1969)

Kuntze (1928)
Kupffer, Zippritz

Kurnakow, Rapke (1914)

Lawson (1941)

Leidheiser,
Sloope {1970}

Lems (1962)

*

1.23 0.455 1,36 0.35

1.258

1.09

rv

Isochronal annealing
to 433 K after 10%
plastic shear strain
at 78 K

Whisker cross-sec-
tion 5-120 um

Temp. coefficients
T=19.3-1173 K

T =93-1230 K

Alloying: Au, Ni, Pqd,
Pt

Isochronal annealing
after fatiguing at 90 K

Stress

Film thickness
700-5000 A

Annealing tempera-
ture 83-333 K after
plastic strain of 1-9%
at 83 K

Torsional pendulum

Stress-strain

Resonant bar
Longitudinal and

transverse deforma-
tion

Resonant bar
(~ 20 kHz)

Stress-strain

Longitudinal deforma-
tion

Composite oscillator
Bulge apparatus

Resonant frequency
{0.9-2.5 kHz)

Zone-refined

Electrolytic,
oxygen-free

Electrolytic

Oxygen-{ree

99.999

#Reports oscillation periods

#Varies with whisker
diameter, see their fig. 4

Annealed wire

Vv, = 0,367 x 106 em/sec

1

E independent of thickness

1 mm sheet
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Room-temperature elastic properties of polycrystalline copper (zont'd)

Table 9.
Reference E B \Y Variables Studied Method Composition Comments
11 2
10 N/m” (exceptv)
Lems (1964) rv Annealing tempera- Resonant frequency 39,999
ture 78-350 K after
plastic strain at 78 K
Lienkkeri, 1.27 0.475 1.37 (0.337) Alloying: Al Mtrasonic pulse 79.99 Grain size = 0.02 mm,
Lihteenkorva (1973) (10 MHz) 0 =8.939 g/cm’
Liu, Alers (1966) 1.04-1.37(d) Alloying: Zn, roll- Reasonant bar 9. 99+ p = 8.94 g/cm’
ing direction
Lobdell, Shinopulos, 1.24 (0,469) (1.17) 0.323 Stress-strain OFHC
Fillio (1963) )
Lozinskii (1961} 1.237 T = 293-993 K
Liicke, Roth, rv Strain amplitude, Torsional vibrations 99.999 < 0.1 mm sheet
Sokolowski {1973) annealing tempera- (~ 5 kHz)
ture, irradiation
temperature
(1.5-MeV electrons)
_vtton, Kamber, 1.26 Rolling direction; Transverse vihrations OFHC Grain size = 0.03 mm
“ell, Barrett, random T=298-563 K; | (250-425 Hz)
v (1962) oriented T=298-823 K
1.15 Alloying: Ni Static, helical coils
1.1 Alloying: Ni Vibtator-controlled 99.972 p =8.93 g/C'm3
eI oscillator (600-800 Hz)
1. 28(4) T = 20-300 K Stress-strain initial OFHC Hard drawn
slope
Flesxural resonmance 99.999 #*Modulus defect related to

Mende, Biehl (173

Wire diameter
8-40 pm

(~ 660 H=)

Bending resonance

dislocation loop length, give
frequency data where E ~

Average of 18 values

816
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Room-temperature clastic properties of polycrystalline copper (cont'd)

Table 9.
Referznce B B v Variables Studied Method Composition Comments
11
10 N/n’l2 {except v}
Mercadier (1891) . 207
M'Farlane 15 0.434 (1.09) i0.325) Torsional pendulum Annealed
C.464 Quenched
Miller .27
Morrow (1903} 1.33(d) Mirror, lever Drawn
apparatus
Munse, Weil {1951)* 14 T - 77-477 K, Stress-strain initial OFHC Annealed
specimen thickness, slope
rolling direction
L93{(h) Cold rolled 6%
.16 Electrolytic tough Annealed
pitch
. 83(a) Cold rolled 6%
17 Deoxidized Annealed
. 94(d) Cold rolled 6%
*Young's modulus data for
cold-rolled and annealed
specimens seem to be inter-
changed in the original paper.
N:elsen (1963) Low temperature Resonant bar 99,999+ *Reports resonant frequency f,
{< 15 K} proton where E ~ f%; reports modulus
{8.9 MeV) bombard- defect
ment, annealing
Okuda (1963} Plastic strain at 4 K, | Inverted torsion 99,999 Annealed 1 h at 800°C:
annealing temperature| pendulum *givés period of oscillation t,
where E ~ t-2
Okuda, Nakanii, Neutron irradiation Transverge vibration 99,999
Takamura, Maeta (196§) {> 0.1 MeV), strain {cantilever) resonance
amplitude, annealing
temperature
Orlov, Fedotov {1966) 16% 0.38% Alloying: Ni T =673 K
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Tasle 9.

Rcom-temperature elastic properties of polycrystalline copper (cont'd)

Reference

Pizati (1877}, (1878),
(1879)

Reed, Mikesell {1967)

Rizhards (1907)

Richards, Bartlett (1913)

Richards, Brink (1907)

Rcth,
Naundorf (1968), (1970)

Schaefer (1901)
Schaefer (1902)

Burton (1949)

Schneider,

Schwinning,
Strobel {1934)

Searle (pre-1914)

rv

-

.04

.30

.971

.23

B

11 2
10 N/m” ({except v}

Variables Studied

Method

Composition

Cemments

0.389

0.445

0.389

0.389

0.448

{1.53)

1.85

0.642)

(1.61)

0.17)

0,245

0.361

T = 4-29¢ K;
alloying: Ni, Zn,
others

T = 4-295 K

Isochronal annealing
temperatire after

3 MeV elzctron
irradiation at 120 K

T =87-293 K

T = 293-573 K

Stress-strain initial
slope

Av/v with respect to

He

Glass piezometer

a1/t

Flexural resonance
{~ 2.5 kliz)

Bending interferometer

Rotating plate,
ultrasound

Stress-strain

DHPC

DHPC

Commercial
electrolytic

99.999

Chemically pure

Pure

Annealed,

Cold drawn 26%

! = 0,741
B /13Fe 0

Cu'

Hammered, turned;
B B = 0.803
Cu/ Fe

=c.7
BC“/BFC €.755

%B = 1.38 wken corrected for
iron standard according to
Bridgman (1923}

Annealed (650°C, 1/2 h), static
Hard drawn, static

Annealed, dynamic

Hard drawn, dynamic

0z6
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Table 9. Room-temperature elastic properties of polycrystalline copper {cont'd)
Reference E B v Variables Studied Method Composition Comments
2
10ll N/m" (exceptv)
Shrivastava, 1.00 (0.421) (0.532) 0.187 Flexural, torsional
Joshi (1972) : resonance
Simpson, Sosin, rv Annealing tempera- 7 99.999
Johnson (1972) ture after electron
irradiation
Simpson, Sosin, rv Annealing time, 99.9, 99.99
Edwards, Seiffert (1971) annealing tempera-
ture after 1 MeV
electron irradiation
Simpson, Sosin, rv Annealing time, Resonant bar 99.999
Seiffert (1971) annealing tempera- {~ 0.5 kH=z)
) ture after 1 MeV
electron irradiation
Smith (1953) 1,13 Plastic extension Free-free resonance 93.984 (OFHC) Annealed 3 h at 500°C,
1-8%, anncaling 0.06 mm grain size
50-100°C
Soliman, Youssef, 0.64-0,93 Annealing tempera- Stress-strain initial 93,96 (Electrolytic)| Wires 0.56 mm diameter
Essawi (1971) ture after drawing, slope
plastic strain, grain
size
Sosin (1962) rv Annealing tempera- Resonant bar 99.999
ture after electron
(1 MeV)irradiation
at 4 K
Sosin, rv Irradiation dosage Cantilever resonance 99.999
Bienvenue (1960) (0.75 MeV), anneal- (400-600 Hz)
ing temperature after
irradiation
Stokes (1960) 1.27 T=73-773 K Transverse vibration High conductivity
resorance
Stromeyer (1894) 15 0.503 (1.08) 0.322 Interference apparatus Rolled bar
27 (0.463) (1.65) 0.373 Cast
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Table 9. Room-temperature elastic properties of polycrystalline copper (cont'd)
Reference B v Variables Studied Method Composition Comments
1011 N/m2 (except v)
Subrahmanyam, 1.232 0.449 (1.603) {0.372) Plate thickness Ultrasoric wedge 0.9 mm plate
Krisha Murty (1963) B
Subrahmanyam, 1.232 0.449 (1.603) (0.372) Alloying: Ag, Au, Ni, | Ultrasoric wedge 0.94 mm plate
Krishnamurty (1963) Pb
’ 3
Sutherland (1891) 1.351 T = 389-375 K .p =8.95 g/em
Talashkevich, Kostin, 1.220 0.459 {(1.189) (0.329) Dynamic M1l Copper _Wire ~ 7 mm diameter,
Aleksandrov {1964) corisider texture problem
1,203 0.451 {1.206) (0.334) M3 Copper
Tomlinson (1886) 1.290 0.439 {1,049) (0.469)
Townsend, DiCarlo, Irradiation flux of 99.999 Wire 0.013 em dia., vac.
Nielsen, Stabell (1969) 10 MeV protons at annealed 600-900°C,
T<15K RRR = 1000, *relative
frequency
van den Beukel, TV Plastic torsion strain| Torsional vibrations 99.999 Plastically strained torsionally
Brouwer (1968) to 18%, alloying: Au ) 0.19%
van den Beukel, rvy Vibration amplitude Torsional vibrations
Deelen (1967)
Voigt (1884) ~ 0,25 Electrolytically deposited
“oigt (1893) 1.064 Impure cast plate
“Wawra (1967) 1,326 0.460 (3.76) (0.441) Annealing treatment, Longitudinal, torsional| Electrolytic Annealed at 500°C 3 h
alloying: Zn resonance
swra beo i) 1.28 0.460 {1.96) (0.391) Annealing treatment, Longitudinal, torsional Recrystallized
alloying: Zn resonance
Wenzl, Werscher, v Neutron irradiation Helical spring 99.999 Annealed 2 h at 600°C

Fischer, Enhrensperger,
Papathanassopoulos
(1971)

at 4 K

vibration (50-300 Hz)

[44:]
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Table 9. Room-temperature elastic properties of polycrystalline copper (cont'd)

Eeference ' E G B v Variables Studied Method Composition . Comments
1 2
101 N/m" (except v)
Wertheim (1848) 1,140
Youngs (1958) 1,20 n.46 (1.02) 0.303 Optical diffraction
grating
Zakharov (1962) © 1,288 Neutron irradiation, Flexural vibrations 99.95 (Electrolytic)| Annealed 600°C 2 h
: vibration amplitude
Zetzsche, Hauser (1962) rv Irradiation 99.985
Average values 1.235 0. 454 1.402 0. 350
Standard errors 0.007 0.012 0.03¢ 0.009
Table 10. Summary of average values and standard errors of elastic
constants of copper at room temperszturc; all entries, except
v, have units of 10!1lN/m?.
Polycrystal B Single-crystal
E = 1.235 %= 0,007 C;p; = 1..691 %= 0.002
G = 0.454 + 0,012 C,p = 1,222 + 0.003
B = 1.402 + 0.039 Cas = 0.7542 % 0.0005
v = 0.350 = 0,009 c’ = 0.2346 % 0.0005
B = 1,376 + 0.002
C. = 2.211 £ 0.003
Polycrystal derived from single-crystal data Cyap = -13.5 % 0.3
VRH-Arithmetic Ledbetter, Naimon Cy12 = -8.0 + 0.3
E = 1.273 1.222 + 0.003 Ciras =-1.2 # 0.3
G = 0.473 0.452 = 0.(001 Ciyeq = 0.66 + 0.7
B = 1.378 1.378 % 0.002 Cias = -7.2 % 0.3
v o= 0. 346 0.352 £ 0,004 Cy4se = -0.32 = 0.4
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Table 11. Temperature ccefficients of the second-order elastic
constants of copper at room temperature; entries }xave

units of 10T k!,

To

1 9C 1 ac’ 1 9y, 1 4G4 T 1 _dB
¢ 4 >
Reference 44 dT Cc’ dT Cll a7 CL d‘T CIZ 4T B dT Comments
Goens {1933); Goens, -3.0 -3.1 -1.8 ~2.1 -1.2 -1.5 ‘Room-temperature and
Weerts (1936) 80 K values only
Overton, Gaffney (1955) -3.7 -4.3 -2.1 -2.4 -1.2 -1.6 4.2 - 300 K data
Rayne {1959) -3.2 -4.1 -2.0 -2.2 -1.1 -1.5 4.2 - 300 K data
Waldorf (1960) -3.3 -4.1 -2.1 -2.3 -1.4 -1.7 4,2 - 300 K data
Alers,AThompson {1961} ~-3.4 -4.2 ~1.9 -2.1 -1.0 -1.3 4.2 - 250 K data
Chang, Himmel (1966) -3.6 -4.4 -2.4 -2.6 -1.6 -1.9 300 - 800 K data
Debesis (1971) -3.4 -4.4 -2.1 -2.3 -1.2 -1.5 297, 195, and 77 K
values only
(Ckara, Marshall (1971) -4.0 -4.6 -2.1 -2.5 -1.1 -1.,5 4,2 - 300 K data; 0.23 at.
Au
alues -3.5 -4.2 -2.1 -2.3 -1.2 -1.6
- rreors 0.1 0.2 0.1 0.1 0.1 0.1
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Table 12.

925

Temperature Coefficients, at Room Temperature, of the

Polycrystalline elastic constants of co'pper; entries have

units of 107% K-1.

1dE 146 148 ldv
E 4T G 4T B 4T v daT
Polycrystal data -4.8 -7.1
Averaged single-crystal data -3.6 -3.9 -1.6 0.8

Table 13. Summary of studies on the effects of alloying on
the polycrystalline elastic constants of copper.
Parameter
Reference E G B v Alloy Element(s)

Alers, Liu (1967) x Zn

Cabarat, Guillet, LeRoux(1949) |x Sn, Zn

Druyvesteyn, Meyering (1941) x x X X Zn

Faninger (1969) x x (x) x Ni

Fukuroi, Shibuya {1950) X Ni

Greer, Bucknall (1964) x Ni. Zn

Guillet (1939), (1940) x Al, Sn, Zn

Hopkin, Pursey, Markham (1970)|x x X X Al, As, Au, Ga,
Ge, In, Mn, Ni,
Si, Sn, Zn

Koster, Rauscher (1948) x Au, Ni, Pd, Pt

Lenkkeri, Lihteenkorva (1973) [x x  x  (x) Al

Liu, Alers (1966) X Zn

Masumoto, Saito (1944) x Ni

Masumoto, Saito, Sawaya (1970) | x Ni

Orlov, Fedotov (1966) x x Ni

Reed, Mikesell (1967) X x (x) (x) Ni & others, Zn &
others

Subrahmanyam, Krishnamurty

(1963) x x (x) (x) Ag, Au, Ni, Pb

Wawra (1967) x x (x) (x) Zn

Wawra (1968) x x (x) (x) Zn
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TEMPERATURE (K)

Ficure 10. Temperature variation of shear modulus of copper.
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