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elastic Properties of Metals and Alloys. II. Copper 

H. M. Ledbetter and E. R. Naimon-;-

Cryogenics Division, lnstitllte for Basic Standards, NationalBureau of Standards, Boulder, Colorado 80302 

The elastic properties of copper have been compiled and reviewed. Polycrystalline elastic 
constants included are: Young's modulus, the shear mociululO, the bulk modulm, and PoislOon's 
ratio. Single·crystal constantlO of second·, third., and fourth·order are included. Over 200 refer· 
ences to the experimental literature are given. A few theoretical numbers are included. When 
suffieient data exist, hest values are recommended together with their standard errors. Effects 
on the elastic constants of tf'mperature, pressure, and mechanical (plastic) deformation are in· 
cluded. The Cauchy (central·force) relationships and the single·crystal-polycrystal relationship 
are also discussed. 

Key words: Bulk modulus; compressibility; copper; elastic constants; Poisson's ratio; shear 
modulus; single·crystal elastic coefficif'nts; Young's modulm:. 
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1. Introduction 

The purpose here is to present a compilation and a re
view of the elastic properties of copper. A similar study 
was reported by Ledbetter an,d Reed (1973) for iron~ 
nickel, and iron-nickel alloys. That refercncc also contains 

more complete discussions on some aspects of elasticity that 
are relevant here. These include: crystal physics and ther
modynamics of elastic constants; effects of temperature, 
pressure, etc.; and the relationship between elastic con
stants and other physical parameters, including the Debye 
temperature. 

Copper is especially interesting to metal physicists and 
to engineers; because, of its electronic structure, copper 
approximates a standard metal [Pippard (1960) J; it is 
used widely, technologically, elementally and alloyed. Both 
single crystal and polycrystalline elastic constants are in
cluded, and their interrelation~hip is discussed. These con
stants relate directly to interatomic forces in so'lids. The 
pulYlaysLalliut! l;um;laIll::; an:: Yuuug'::; llJuJulus, the :shear 

modulus, the bulk modulus (reciprocal compressibility), 
Poisson's ratio, etc. These are the constants used to charac
terize most engineering materials. 

More than two-hundred references are given to the 
experimental literature. The earliest elastic study on cop
per was repQrted by Wertheim (1848). The first tryogenic 
(S7 K) study was by Benton (1903) ~ The first high

temperature data were reported by Kikuta (1921), who 
measured the shear modulus from 298 to 1126 K. The 
highest temperature measurements were made by Koster 
(1948a, 1948b) for Young's modulus and by Koch and 
Dannecker (1915) for the shear modulus, 1230 and 1273 
K, respectively. 

Copper's second-order elastic constants (SOEC) were 
reported first by Goens (1933) and Kimura (1933). Sub
sequently, seventeen· additional sets of SOEC have been 
reported; nine of these included effects of temperature, 
three included pressure, and nine included alloying. A 
summary of experimental conditions for single-crystal stud
ies is given in table 1.1 Experimental second-order elastic 
stiffncsscs are givcn in tablc 2. 

Third-order single-crystal elastic constants (TOEC) were 
reported first by Hiki and Granato (1966); subsequently, 
five additional reports on third-order constants have been 
made. Experimental third-order elastic stiffnesses are given 
in table 3. 

Thus, the elastic proptrties of copper are probably better 
characterized than th05e of any other metal. 

2. Electronic Structure 

A symbiotic relationship exists between the studies of 
the elastic properties of metals and the electron theorv of 
metals. Calculations of elastic constants are convenient "and 
valid checks on proposed interatomic potentials. Observed 
elastic anomalies often provide a point of departure for 
extending the theoretical description of metals. 

The elastic properties of copper are strongly affected by 
its electronic structure, [Ar] 3d104s1.2 Coppe~:s ion cor~s 
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consist· of ap Ar rare-gas configuration plus a complete d 
shell. Thus, the outer-core electrons are loosely bound 

and' the ion-core volume is large relative to the atomi~ 
volume. Little difference exists between the valence (4s) 
electrons and the outer-core (3d) electrons. Thus~ many 
equilibrium properties should be determined mainly by 
ion-ion overlap; the Fermi-gas pressure due to valence
electron interactions is secondary. These equilibrium prop
erties include the interatomic spacing and the hulk mod
ulus. Since the core electrons are poorly shielded from the 
valence electrons, a strong valence-electron-ion-core at· 
tractive interaction occurs in copper. Effectively~ the 3d 
electrons create an additional potential well. Thus, the 
electron-ion system tends to contract because the 4s elec
trons, tend to occupy the well. Opposing this minimization 
of free-electron energy are the repulsive ion-ion interac
tions. Because of their strong radial dependence, these 
interactions contribute progressively more to higher deriv
atives of the energy. 'Whether ion cores are "hard" or 
"soft" affects energy only incidentally, but perfectly "hard" 
spher~s would determine precisely the interatomic spacing 
and would have an infinite bulk modulus. This valence
electron-ion-core interaction account5 roughly for the rel
atively high cohesion and high bulk modulus exhibited by 
copper. 

Simple theories predict cohesive energies for copper that 
are too low. Brooks ( 1958 ) surmised that the extra co
hesion is due to correlated motions of d-shell electrons and 
that these motions arise similar to van der Waals interac
tions. Overlap of the d shells makes such a model difficult 
to describe theoretically. 

Elastic properties are related intimately to the problem 
of cohesion since elastic stiffness coefficients are spatial 
derivatives of the interatomic potential, while cohesive en
ergy is related to the depth of the potential well. Usually, 
solids with higher cohesive energies also have higher elastic 
stiffness. 

3. Theoretical Calculation of Elastic Constants 

In a landmark paper, Fuchs (1936) was first to study 
the fundamental problem of cohesion in copper. He found 
that exchange and correlation interactions between 45 and 
3d electrons are important in copper, as are the ion-ion 
t'cpulsive interactions. Because of the difficulties of treating 

an eleven-electron problem, Fuchs considered the 3d elec
tron band to be rigid. The ion-ion repulsive interaction 
was treated by a modified Thomas-Fermi approach. Fuchs' 
calculations of the shear constants of copper were quite 
successful, obtaining C44 = 0.89 and C' = 0.26, in units of 
l0l1N/m2• Experimentally, C44=0.82 and C'=0.26 at 
o K as shown below in the figures for the temperature 
dependences of the Cij. 

Subsequently, numerous theoretical calculations of the 
elastic constants of copper have been reported. The most 

1 Tables have been placed at the end of this paper. 
2 This particular electronic-state assi~nmenl j,; nol unique. For ex

ample, in the Engel-Brewer theory of hondin)J:. copper is considered 
to have an [ArJ3d8 48111" <'iectronic ,,1.1"11('(.11n·. For present purposes 
the important point is that. the iOIl Co"" of (opper is large and stable. 
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recent calculations have used pseudopotentials and either 
the method of homogeneous deformation (after Fuchs ') 

or the method of long waves (after Born). These calcula

tions have been made by Srinivasan and Girirajan (1973) 
and by Thomas (1973). These calculations reveal many 
lJJJPurtaut da!;LiC 'pJ vpeJ lie::; vI cvppeJ L)Ji;il oj e verifJed 

experimentally. Some of these are discussed below. 

4. Second-Order Elastic Constants 
The second-order elastic constants of a solid describe 

its linear elastic behavior and are directly related to the 

harmonic part of the interatomic potential. Thus, the SOEC 
play an important role in determining the nature of force~ 
in solids. Besides being of fundamental interest, SOEC 
are often useful parameters in engineering design. 

The earliest measurements of SOEC were performed by 
static methods, which yield the isothermal elastic constants. 
Quantities such as Young's modulus, the shear, modulus~ 
and Poisson's ratio were measured for single crystals of 
various orie!ltaEons. These moduli are related to the single
crystal SOEC by simple mathematical transformations (see 
section 9). 

Most pre~ent-day mf>::l",lIrf>mf>nt~ of SOFr nc;p rlynFlmir 

methods. The advantages of dynamic methods include 
smaller specimen size~ simpler temperature control, avoid

ance of creep, and higher precision. Dynamic methods yield 
the adiabatic elastic constants. However, adiabatic and 
isothermal moduli are related by well-known thermody
namic equations. It is usually found that the difference be· 
tween adiabatic and isothermal elastic constants is a few 

percent or less, which is small compared to the error in 
static (isothermal) measurements. The difference for Cll • 

C12,and % (Cn + 2C12 ) is 9azBTT / (pCt ,) , where a is the 
linear thermal-expansion coefficient, B T is the isothermal 

hulk modulus, T is the temperaturs, p is the mass density, 

and Ct , is the specific heat. For copper at room tempera· 
ture this correction ir: 3.0 percent for the bulk modulus. 

There are no corrections for the shear moduli % (C 11-C 12) 
and CH • 

Earlier dynamic measurements were performed in the 
kilohertz region, where a standing-wave resonance was 
established in a system composed, at least partly, of the 
specimen under investigation. Higher precision than that 
of static methods was obtained from the measurement of 

a resonance frequency rather than a small displacement. 
These methods were reviewed by Read, WerL and ::\1etzgef 
(1959) . 

TIle most widely used method today employs frequencies 
near 10 MHz. A piezoelectric tranducer is cemented to 

one of two parane] faces of the specimen. An ultrasonic 
jJuh,e uf ,-.1 p::; uuration -is transmitted through the speci· 

men. The transit time of the pulse is related to the ultra
sonic velocity~ which in turn is related to the adiaba6c 

moduli. Interferometric techniques have made possible 
very high-precision measurements of ultrasonic velocities. 
Absolute accuracies of better than 0.1 percent and relatjye 
accuracies of 10-[; or better are possible. Such precision 

results in better determinations of temperature and pres-

surt dependences of the SOEC. A review of ultrasonic 
st1ldies of properties of solids, including various measure· 
ment techniques of ultrasonic velocities, was given recently 

by Ful1er~ Granato, Holder~ and Naimon (974). 
The SOEC of copper have been determined statically 

iillU uYlJiiJJllcolly. Despite limited precision, some of the 
static·method results (especially those of Goens (1933 'j ) 
are in excellent agreement with the more modern dynamic 

results. This is shown in table 2 where the static-method 
results are included and are labeled isothermal. 

5. Cauchy Relationships 
Because the Cauchy relationships are not satisfied in 

,most metals, including copper, it follows that the inter
atomic forces are noncentral. Cauchy relations are simple 
relations that can be derived when interatomic interactions 

are pure]ycentraJ, when all atoms are at centers of sym· 

metry~ and when the crystal is stress·free. For cubic crys· 
tal symmetry, which copper has~ the Cauchy relations for 
S01<.:C are C12 C44 ; the TOEC Cauchy relations are 
C112 = C166 and C123 = C144 = CS6. Hiki and Granato 
(1966) observed that the TOEC of copper obey the Cauchy 
relations much more dosely than do the SOEC. The in

terpretation that Hiki and Granato gave to their results 

was that short-range central forces, 1n this case adsing from 

d-shell overlap, play a progressively greater. role as one 
progresses from ca1culations of the energy to the 1attice 
constant and second·, third., and higher-order derivatives 
of the total energy. If short-range forces play a dOITlinant 
role in third-and higher.order elastic constants, then the 

nearest-neighbor atoms should make the most important 
r.ontributions. Hiki and Granato showed the fol1owing re
lations hold for copper jf only nearest-neighbor central
force interactions are considered: 

C12 C44 J12C11 , 

C112 = C166 = %C111~ and C123 = C144 = C456 = o. 
As shown by the data in tables 2 and 3: the third-order 
nearest-neighbor relations are satisfied to a much greater 

extent than are the second-order nearest-neighbor relations. 
Tf second-neighbor interactions are considered, then only 
the geometrical factor of % is affected in these interrela· 
tionships. The shift from % is small if the interatomic po
tential is short ranged. 

6. Third-Order Elastic Constants 
Third-order elastic constants ITOEC) are impOl'tant 

mainly because they describe the anharmonicity of inter
atomic potentials. Nonlinear stress-strain behavior 1S a di· 

rect consequence of non-vanishing elastic constants of 
hit;heJ than ~eC;VJJU uJueJ; iIl IiiCL~ o~ de~crj)Jed belvw~ uevl

ations from Hooke~s law can be used to determine the val

ues of the TOEC. TOEC have been studied mor.e for cop
per than for any ot]1er metal. These data are summarized 
jn table 3. 

Three methods have been med to determine the TOEC 
of copper, and they are di~cussed in the following para

graphs. 

J. Phys. Chern. Ref. Data, Vol. 3, No.4 1974 
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(a) Variations of Ultrasonic Wave Velodties due to Hydro. 

static or U niax/:al Stresses 

Only method (a) yields a complete set of TO£C; there· 
fore it is used most. Since copper is cubic~ it has three in· 
dependent SOEf (C~h CUI, :md ( 11 ) :md ~,ix indp.pendent 
TO£C (Cllh C112 , Cl23 , CH4 , C166; and C456 ). SOEC can 
be determined from ultrasonic wave velocities, and TOEC 
from stress derivatives of the wave velocities. 

Pressure·derivative data alone are insufficient for de· 
termining a complete set of TOEC since there are only 
three independent SOEC pressure derivatives. The follow
ing combinations of TOEC can be obtained from hydro
static-pressure experiments: 

-(C~ll +2C112 ) =3B(1 +dCll/dP) +C11 , (1) 

- (C123 + 2C112 ) = 3B ( -1 + dC12 / dP) + C121 (2) 

- (C14<i+2CI66) =3B(1 +dC44 /dP) +C44 , (3) 

where 

(4) 

is the bulk modulus and P is the pressure. 
The additional data needed for a complete set of TOEC 

can be 'Obtained by measuring the effects 'Of uniaxial stresses 
on wave velocities. When hydrostatic-stress and· uniaxial
stress data are c'Ombined to obtain a complete set of TOEC. 
the pr'Oblem is 'Often 'Overdetermined. (In fact,. for cubic 
symmetry, a complete set of TOEC can be determined 
from six or more independent uniaxial measurements.) 
This overdetermination permits a least-squares analysis to 
be made for· the "best" TOEC. Hydrostatic-stress data are 
more reliable than uniaxial-stress data and should be 
weighted accordingly in the data analysis. Reas'Ons for this 
inc1ude: (1) dislocations are affected by uniaxial stresses 
and contribute spuriously to the elastic strain~ (2) a pure 
hydrostatic stress is easier to obtain experimentally than 
a pure uniaxial stress, and (3) large uniaxial stresses cause 
plastic deformation while large hydrostatic stresses don't~ 
unless by some mechanism dilatational stress is converted 
to shear stress. 

For copper, the effects of hydrostatic stress on ultrasonic 
wave velocities were first measured by Lazarus (1949) 
and later by Daniels and Smith (1958). More recently 
Debesis (1971) and Ho, Poirier, and Ruoff (1971) investi
gated the effects of temperature on the hydrostatic-stress 
derivatives of SOEC 'Of copper. Hydrostatic-pressure deriv· 
ativeB of the seeond·o}"del dCltlLilj ljuIl~LaJJl~ uI ljupp~r ar~ 

given in table 4. 
Hiki and Granato (1966) were the first to measure a 

complete set of TOEC for copper. In fact, the results of 
Hiki and Granato (who measured the TOEC of silver and 
gold also) were the fi rst complete set for any metal. They 
used an ultrasonic interfer~metric meth'Od to detect smal1 
wave·vel'Ocity changes in crystals stressed hydrostatically 
and uniaxially. Their success encouraged further studies 
on copper, such as effects of temperature and al10ying on 
the TOEC lJs1ne only nnlwxlal-<;:tTess measurements, Salama, 

and Alers (1967) determined the TOEC of copper at 29;). 
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77, and 4 K. Their specimen was neutron irradiated to 
prevent dislocation motion. Salama and Alers (1968) also 
det~rmined the effect of alloying with nickel on the TOEC 
of copper; and Debesis (1971) measured the pressure de
rivatives of SOEC of copper-nickel al10ys as a function 'Of 
temperature. Recently, Cain and Thomas (1973) used 
hydrostatic-stress and uniaxial·stress measurements to ob
tain complete sets of TOEC for copper alloyed with 
aluminum. 
(b) Variations of the Finite-Amplitude Distortion of an 

Initially Sinusoidal Ultrasonz:c Wave 
Method (b) involves the propagation of large-amplitude 

longitudinal ultrasonic waves in a single crysta1. Because 
the material is nonlinear, an initially sinusoidal wave is 
distorted and harmonics of the fundamental frequency are 
generated. MCaSUl"Cment of the amplitude:s of the funda

menta] and second harmonics as a function 'Of path length 
.letermines certain combinations of TOEC, depending on 
the crystallographic pr'Opagation direction. For cubic crys
ta]s with l'Ongitudinal waves propagating in the [100], [110], 
or [111] direction: 

.K 100 =C111 ' (5) 

K llO =Y4,(Clll +3Cm +J2C66L (6) 

KIll =1/9(C111 +6CI12 + 12C144 + 24C166 (7) 
+ 2C123 + 16C456 ) • 

The K's are called nonlinearity parameters and have been 
measured in copper at room temperature by Gauster (1966) 
and by Ga uster and Breazeale (l Yb~), and as a function of 
temperature by Peters, Breazeale, and Pare (1970). This 
method avoids applying stresses to the crystal, but requires 
supplementary data from other experiments to determine 
a complete set of TOEC. Gauster and Breazeale (1968) 
reported complete sets of TOEC of copper by combining 
their results with the pressure-derivative data 'Of other 
workers. 

If method (b), which involves second-harm'Onic genera
tion~ is used to measure TOEC~ dislocation effects must be 
eliminated Bincc dislocation::! a)1\o lead to the generation of 

second harmonics. To .late, method (b) has had few ap
plications. A summary of the nonlinearity parameters K 
'Of single-crystal copper is given in table 5. 

(c) Deviation from Hooke's Law in Static Experiments 

Method (c) has been used to measure deviations from 
Huuk~'::i Ia w of :single-crystal whiskers of copp~r. The non
linear stress-strain relationship is 

where t: is the strain, P is the forcp per unit undeformed 
area, and E is' Young's monullls for lilt' 'T),stallographic 
direction of interest. The paraJlwlf'r:-; S alld , arc nonlinear
ity constants and represent IllI' 1Jfllllill";lr 1·laslic behavior. 
A summary of these COII:-;Ialib i:-; ;.i\1'1l ill tables 6 and 7. 
:Measuremenls of b hav,' 111"'1, 1l1;'oI" nil ,'opper whiskers 
wjt h (I ()()) <11m :111.1 (1 1 I) ",·;",11 ,II i .. , h mill 'lu> Tf>l::Jtlon_ 

ships 11I'IWI'('11 ,) ;llId '1'( IF(: 1,;1\1" I,..,"" dnived by Seeger 
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and Buck (1960). It is found that 0 100 is a function of 
Cll1 C1l2~ and C123 ; 0 100 is a function of all TOEC except 
C456 ; and (5 III is a function of all six TOEC. Measure
ments of (5 Ilk! were made by Powell and Skove (1968L 
by Riley and Skove (1973 L 'and by Kobayashi and Hiki 
(1973). Because this method does not determine a com
plete set of TOEC~ Powell and Skove (1968) and Riley 
and Skove (1973) supplemented their data with pressure
derivative data of others in order to report complete sets 
of TOEC. 

Because method (c) produced results that varied from 
sample to sample, Powell and Skove (1968) suggested that 
TOEC may be more structure-sensitive than are SOEC. 
However, Kobayashi and Hiki (1973) found an apparent 
yield-stress dependence, assumed to arise from defects on 
the specimen surfaces. Their analysis explained the experi. 
mental variations, and the true nonlinearity constants, pos· 
sessed by crystals without defects, were evaluated. 

The TOEC obtained by method (c) differ in principle 
hom those obtained by ulu asolliL: llletliOds. Method (c) 

involves static measurements~ and the resulting TOEC are 
isothermal stress derivatives of isothermal SOEL Ultra·, 
sonic techniques are dynamic~ and the resulting TOEC are 
"mixed/' being isothermal stress derivatives of adiabatic 
SOEC. Expressions relating the purely isothermal TOEC 
to the experimentally observed quantities have been derived 
by Puwell and 5kove (1967). Usually the differences be· 
tween isothermal and "mixed" constants are within experi
mental error limits; therefore, the differences' can usually 
be neglected. 

The conclusion by Hiki and Granato (1966) that the 
ion-ion overlap energy should contribute dominantly to the 
TOEC of copper was recently verified by Thomas (1973), 
who used a pseudopotential model to calculate the TOEC 
of copper. Thomas employed the method of homogeneous 
deformation and obtained good agreement with experiment. 
A similar c.alc.ulatlon W:l~ pprformp(J hy Sriniv:l!':::ln :m(J 

Girirajan (1973), who used the method of long waves 
and a pseudopotential mode1. The results also agree well 
with experiment and again indicate the dominant contri
bution of ion-ion overlap to TOEC of copper. Theoretical 
values for third-order elastic constants are included in table 
3. 

Further discussion, both theoretical and experimental, 
on nonlinear elastic properties can be found in Green 
(1973) together with many valuable references to the liter
ature on this topic. 

7. Fourth-Order Elastic Constants 
The accuracy involved in static tests js usually much 

less than that in ultrasonic mea:5Ul t:J1It:ul:::,. Abu, Ll1e Jlun
linear:ty constants 0 are relatively sensitive to small varia· 
tions in SOEC and TOEC; a 1 percent change in SOEC 
can cause changes in 0 as large as ] 0 percent. However, 
static tests provide higher strains and thm permit semi
quantitative . estimates of fourth-order elastic constants 
(FOEC) to be made. 

Limited results have been obtained for the FOEC of 

copper. Hiki, Thomas, and Granato (1967) used a con
tinuum model to derive expressions for the temperature 
dependence of the three SOEC. These expressions were in 
terms of secondo, third-, and fourth-order elastic constants. 
Using available lexperimental data for SOEC~ TOEC, and 
temperature derivatives of SOEC. they deduced informa
tion on certain FOEC. Their results agreed fairly well with 
those calculated earlier by Rose (1966). Further informa
tion on FOEC of copper was obtained by Riley and Skove 
(1973), who measured the nonlinearity constant , for 
copper whiskers with (lOm, <l10) , and O} D orienta
tions. This information provides three independent linear 
equations in the eleven FOEC for cubic symmetry. Using 
the theoretical FOEC of Rose ( 1966) and the experimental 
SO,Ee and TOEC Riley and Skove (1973) also calculated 
, and compared with their measured values. Order-of
magnitude agreement was obtained. Fourth-order elastic 
constant data are given in table 8. 

8. Polycrystalline Elastic Constants 
For technological uses, metals are almost always in poly

crystalline form. Polycrystals (aggregates of single crystals, 
or crystaHites) can usually be described by relationships 
for isotropic materials; some exceptions are noted in sec
tion 9. Several constants are used to describe the elastic 
behavior of isotropic materials. While only two of these 
lile jJl(Jepemlent, the uthers are useful for simply uescdbing 
a particular load-displacement or stress-strain situation. 

For convenience, the most common constants are de
scribed briefly here. Young's modulus E is appropriate to 
the case of uniaxial loading and is given by 

o=E €, (9) 
where 0 is the stress (force per unit area), f is the strain 
(fractional length change), and both are measured along 
the loading axis. The shear modulus G is appropriate to 
torsion, twisting, or pure or simple shear and is given by 

T=C)'.; (10) 

where T is the stress (tangential force per unit area) and y 

is the angle of shear. The bulk modulus B is appropriate 
to a uniform (hydrostatic) pressure and is given by 

P= _BAV. (11) 
v' 

where P is the pressure and AV/V is the volume strain 
(fractional volume change). Poisson's ratio v measures, 
for the case of uniaxial loading, the ratio of transverse 
strain to longitudinal strain and is given by 

ftransverse 

(12) 
€]ongitudinal 

From physical arguments it can be deduced that E, G, and 
B are always positive and that II has limits of -1 and + Y2. 
Negative values of II have never been reported for isotropic 
materials. In some engineering literature the reciprocal 
m= l/v is used. For metals v is typically near a value of 
Ys. If v=%, then B=E and G=o/~E. These approximate 
relationships are also typically observed in metals. As 
shown by the data in tables 9 and 10, for copper v=0.35, 
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B = 1.13 E, and G = 0~37 E; thus, copper 1s typically be
haved in the relative values of its elastic constant~. 

9. Relationship between Single-Crystal and 
Polycrystol Elastic Constants 

The linear elastic behavior of both isotropic and quasi
isotropic materials is described completely by two con
stants. These two elas6c. constants cannot be chosen 
uniquely. For example, an is~tropic material's elastic prop
terties can be described completely by Young's modulus 
E and Poisson's ratio v. They can be characterized equally 
well by the bulk modulus B and shear modulus C. Of the 
four material constants E, C, B, and J', only two are inde
pendent. The relationships among E, C, B, and v are 

E=9GB/(C+3B), (13) 

and 

% (3B - 2(;) / (3B + G) . (14) 

For present purposes Band C will be considered to be the 

two independent constants. Other material elastic constants, 
such as Lame's constants A and j.t, are also simply related 
to Band C: A=B-%G andp,=C. 

If a polycrystalline aggregate consists of small crystallites 
oriented randomly, then it is elastically quasi-isotropic and 
its elastic behavior can be described' ~y the above relation
ships. (Quasi-isotropic means macroscopically isotropic, 
but microscopically anisotropic; an aggregate of anisot
ropic crystallites is a good example of a quasi-isotropic 
material. The importance of distinguishing between isotropy 
and quasi-isotropy has been emphasized by Ledbetter 
(1973), for example.) In practice, aggregates may have 
preferred orientations of crystallites or crystallite sizes that 
are large with respect to the overall aggregate size; in this 
case the above equations do not strictly apply; the degree 
of their invalidity depends on the elastic anisotropy (defined 
below) of the crystallites in addition to the factors of 
crYEtallite orientations and sizes. 

In principle the quasi-isotropic constants are related to 
the single-crystal elaEtic constants. For a cubic material 
such as copper~ this means relating Band G to Cll • Cu , 

and C44 , that is determining B (Cij) and G (Cj ). For 
cubic symmetry B (G,:j) js uniquely determined, 

( 15) 

This relationship results because the .bulk modulus of a 
cubic material is a scalar invariant of the elastie constant 
tensor. Equation (15) aSEumes, of course, that crystallite 
boundarieEper se contribute nothing to the aggregate 
elastic properties. The validity of this assumption is borne 
out by the equality (within experimental error) of the 
POlYCrystalline and single-crystal bulk moduli of copper as 
shown in table ] O. 

The problem remains then to relate the quaEi-isotropic 
shear modulus G to the single-crystal elas6c moduli C/. 
No unique relationship exists. Since G concerns only 
shear (not dilatational) deformations, .]t is expected that 
only those C j related to shear deformations would enter in 
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the expression for G (Cij ) • For cubic materials there are 

two shear constants, C44 and C' = Y2 (Cll -C2)' Thus, G 
should depend somehow on these two constants. Physical 
reasoning requires that the value of G lie somewhere be
tween the values of C4 and C. If it should happen that 
CH = C', then G will have the same value. ]n this case the 
material is elasticallyiEotropic and G iE determined un
ambiguously. A measure of the anisotropy; or deviation 
from isotropy, is given by 

(]6) 

where A is known as the Zener anisotropy. Copper has a 
relatively high elastic anisotropy; from table 2 it fo]]ows 
that A = 3.2 at room temp~rature. The problem of deter
mining G (C, C44 ) can be reduced to finding the product 
of C., and a function of the anisotropy. This factorization 
permits general tabular or graphical solutions ior G /C 
as a function of A. 

By assuming homogeneous strain in an aggregate Voigt 
(1889) was the first to relate C to the C j . He ohstained 

Gy VsC'(2+3A). (17) 

The other extreme, namely homogeneous stress in an ag
gregate, was assumed by Reuss (J929), who obtained 

C =5C'_A_. 
R 3+2A 

(18) 

Obviously C y = C
H 

in the isotropic limit of A = ]. Later, 

Hil1 (1952) sho\ved that the quasi-isotropic shear modulus 
C should be bounded by Gy and G

R
, that is 

(19) 

Hill suggested an averaging of Gy and Gn to obtain an 

effective shear modulus. An arithmetic average gives 

(20) 

and a geometric average gives 

CVRll_g- =YGyGn · (21) 

Hill's method has been adopted widely and is referred to 
as the VRH approximation. Usually the arithmetjc mean 
is used. 

A variety of methods have developed for improving the 
VRH method. These include those by Hershey (954), 
Kroner (1958), Eshelby (1961), Hashin and Shtrikman 
0962L Aleksandrov (1966L and Kroner (19671. For 
cubic symmetry all of these methods predict a shear mod
u]us higher tIlan a VHH-a value. For copper, as shown m 

table 10, the C VRH-a value is already higher than the ob
served shear moduius polycrystalline copper. Thus, the above 
methods give values for G that are even further in error. 

An averaging metllod developed recently hy Ledbetter 
and Naimon (1974) does result in an effective shear mod
ulus that agrees much more closeJy with the observed poly
crystaWne value. This method assumes thaI the clastic 
Debye temperature (j is the same for silJl!lr' cr~'stals and 
polycrystals of the same material. '1'11(')' deriv('d an ex
pression for (, in terms of n. Ii and ,Ill' IlHl5S density p_ 
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The results in table 10 obtained by the Ledbetter-Naimon 
averaging method show the dose agreement for copper 
hetween the predicted value of G and the observed value. 
That the other quasi-isotropic constants of copper derived 
from Band G, namely E and l', also agree well with ob
served values is an indication, 'at least for copper, that equat
ing Debye temperatures leads to a better relationship be
tween single-crystal and polycrystal elastic constants. 

10. Temperature Dependence of the 
Elastic Constants 

The single-crystal eiastic constants of copper behave 
regularly with respect to temperature. The SOEC contin
uously decrease with increasing temperature: and for high 
temperatures (T>O/2) the decrease is linear. As the tem
perature, approaches 0 K, the SOEC approach their 1imiting 
value:; wiLll zew ::;]upe. The temperature variation of the 
SOEC of copper is shown in figures 1-7.3 

Tht temperature coefficients of the SOEC bf copper at 
room temptrature are listed in table 11. These coefficient~ 
are a measure of the relative change in the elastic constants 
due to temperature effects. As is the usual' case for metals, 
the temperature coefficients of the shear constants (C4~ 
and C') are largest in magnitude, being approximately 
twice the magnitude of the coefficients of the longitudinal 
constants (Cll and C L). The temperature coefficients of the 
bulk mon111m:: R ::mrl C,.;; are smallest '~n magnitude. 

As indicated in figure 8, data for the temperature de
pendence of TOEC of copper are less abundant than for 
the SOEC. Thus, it if: more difficult to make definitive 
statements about the behavior of TOEC with respect to 
temperature. It does appear, however~ that the TOEC do 
behave essentially linearly with respect to temperature. 
The constant C144 exhibits almost no temperature depend
ence; the constant C4!H> decreases slightly with tempera
ture; and the constants C1n, Cl66 , C122 , and Clll increase 
(become less negative) with increasing temperature. The 
nonlinearity parameters ]{ JOO , K 110 , and K 111 also in
crease linearily with temperature. 

The temperature variations of the quasi-isotropic elastic 
constant:s of po]ycl-y~ldl1i/le cup per are shown in figure~ 

9-12. The data scatter shown there is much larger than 
in the single-crystal case. Also shown are curves deduced 
from averaging single-crystal data and curves obtained 
from a least-squares fit of a semi-theoretical function to 
the polycrystalIine data. For both Young's modulus E and 
the shear modulus G, the decrease with temperature is 
sleeper than that deduced from single-crystal data. In fact 
the magnitude of the temperature coefficient of G is ap
proximately twice that of C44 and C'. The most obvious 
interpretation . of thi" pfl'prt js that grain boundaries 

"soften" the elastic moduli at higher temperatures, especially 
the shear modulus. The bulk modulus B also seems to de
crease faster than the single-crystal curve, while Poisson~s 
ratio parallels the singh~-crystal curve. (1' inereases with 
increasing temperature, which is regular behavior for Pois
son's ratio.) The paucity of data for both Band l' as a 
function of temperature preclude:" deciding whether thc~('" 

pa,r~meters also have different averaged-single-crystal and 
polycrystal values. It is probably not significant that all 
tre data of figure 11 (based on relative measurements) 
lie below the averaged single-crystal data for B. Tempera
ture derivatives of E, G, B, and l' are given in table 12; 
these were determined by fitting a semi~theoreticaI function 
to the polycrystal data after excluding outlying observa
tions, and from a VRH-arithmetic average of the single
crystal data at different temperatures. 

11. Alloying Effects 
'While the principal object of this study was the elastic 

properties of unalloyed copper, it seems useful to at least 
indicate what studies have been made to determine the 
effect of alloying on the elastic properties of copper. This 
is' done in table 1 for single crystals and in table 13 for 
polycrystals, and is included as a possible aid to those in
terested ,in the wide variety of properties that can be 
achieved in copper alloys. The elastic properties of copper
ziJJC dlluYh, .iuduu.iIlg all of the solid-solution phases, is 

the subject of a compilation and review now in progress 
by. the present authors. 

12. Mechanical-Deformation Effects 
Mechanical deformation affects elastic properties of met

als in two ways. First~ for both single crystals and poly
crystals, p]ast·ic deformation alters the elastic constants 
per se by introducing lattice imperfections (vacancies, 
interstitials, dislocations) and by creating residual stresses 
and :shaiu:; il1 lIle uduJIneu matedal. A second effect arises 
in polycrystals-texture, a non-random distribution of 
grain orientations-that makes the polycrystalline aggre
gate elastieally anisotropic. W11ile texture can often be ne· 
glected, particularly if the degree of texture is small or 
if the Zener elastic anisotropy factor is near unity, it is 
a real property of most aggregates; a random distribution 
of crystal1ite orientations is really an JdealizatlOl1. 

Texture arises in plastically deformed aggregates because 
certain lattice planes and directions tend to align with 
thp. prinr.ip.fll rliTPr.tlon<;; of p19c;tic Row. Depending on the 

type of stress-uniaxiaL biaxial, etc.-various types of tex
ture arise. Copper is typical of many I.c.c. metals; it ha~ 
a [111]-[100J wire texture and a (110) [112] principal 
rolling texture. While textures are usually studied by x-ray 
diffraction methods, elastic constant measurements can also 
provide information on texture since they are sensitive to 
anisotropy. 

. The relationship between texture and elastic properties 
was discussed recently and very comprehensively by Green 
(1973). Copper was included in his discussion and his ref
erences; thus, further discussion on this topic needs to be 
only cursory. 

References to texture studies together with some of the 
available data are given ,in table 9. Recrystallization
texture data are included along with deformation-texture 
data. 'While few authors haye attempted to do so, it should 

"Figures have been piaced at the end of this paper. 

J. Phys. Chern. Ref. Dota, Vol. 3, No.4, 1974 



904 H. M. LEDBEnER AND E. R. NAIMON 

be realized, as emphasized by Bradfield and Purse), (1953), 
that the quasi-isotropic elastic constant~ can be determined 
from measurements on a textured aggregate. Examination 
of table 9 shows also that while the effect of texture on 
Young's modulus is well defined, the effect of texture on 

the shear modulus or on Poisson\ ratio has not been stud· 
ied experimentally. One would expect no effect of texture 
on the bulk modulus of a cubic metal. , 

The effects of mechanical deformation on the elastic 
constants of polycrystalline copper, untextured, are not 
well defined. There are several possible reasons for this: 
the complexity of the plastic deformation process; the am
biguity in defining plastic strain; the distinction, in terms 
of dislocation models and in terms of observed behavior, 
between micro, low, medium, and high plastic strains; the 
different met,110ds for imparting plastic deformation-shear, 
extension, compression, bending, rolling, etc.: t'he p055ible 

anisotropic effect of the deformation process" for example, 
uniaxial extensjon may change the shear modulus differently 

along the loading dir~ction than along the transverse d.irec. 
tions; and last, specimens that are believed to be relatIvely 
free of texture may be textured. 

Some single.crystal mechanical-deformation·effect data 
are available; these are given in table 2. The general reo 
sult shown there is that all of the CiJ are either unaffected 
or reduced sljgbtly by plastic deformation. However~ addi. 
tional detailed studies on single crystals using different 
deformation modes and considering dislocation models of 
the deformation process would be useful toward under· 
standing the effects of' plastic deformation on elastic 
propenjes. 

13. Concluding Remarks 
Copper is well characterized elastically, perhaps better 

than any other metal. At room temperature, poIycrystalline 
copper is especially well defined with respect to Young's 
modulus (standard error = 0.6 percent L the shear mod
u1us (s.e. :L.b percent), the bulk modulus (s.e. 2.8 per· 
cent Land Pojsson:s ratio (s.e. = 2.6 percent). (The stand" 
ard error of the arithmetic mean is defined as alVn, where 
0' is thf:' <;;hmdard de"iation and n is the number of obr,er 

vations.) Single·crystal parameters are even better charac· 
terized: the second·order elastic stiffnesses Cll~ C12 , and 
C44 all 'have standard errors of 0.2 percent or less. Despite 

the difficu1ty of measurements: the larger third·order elastic 
stiffnesses of copper (C 111 , C112~ and CJGB ) have standard 
errors of 4 percent or Jess. Fourth·order elastic stiffnesses 
of copper arc known approximately. 

Not only has copper been much studied elastically, but 
its elastic properties exhibit an unusually ideal behavior. 
Anomalies in elastic constants due to magnetic transitions. 
crystal-structure transitions, etc. are absent in copper. The 
te~perature behavior of copper's elastic moduli is classic
continuously decreasing with increasing temperature, reI· 
ative flatness at low temperatures, zero slope at T = 0 K, 
and linear behavior at high temperatures. 

The temperature dependences of the elastic constants of 
copper are also well characterized, At room tpmrpr::ltnre, 
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1 dC-, 
the temp'erature derivatives - _1_1 have standard errors 

Cj dT 
of 6,percent or less. From these, temperature derivatives of 
E, B~ G~ and }I can be derived that have only slightly larger 
errors. This is a more reliable approach than averaging 
the polycrystalline temperature derivatives to obtain aver· 

1 dE 
age values of - -, - ~ etc. 

E dT 
Quasi-isotropic elastic constants (E, G, B~ Y, etc.)' de

termined by averaging single.crystal elastic stiffnesses (the 
Cjj ) have lower standard errors than those obtained by 
measurements on polycrystalline specimens. Thus, the single
crystal data.averaging approach is appealing when highly 
accurate quasi.isotropic data are desired. However, the 
attractiveness of this approach is reduced by the multi· 
plicit); of suggested averaging methods; the deviations 
among results obtained by various methods far exceed the 
combined errors due to imprecisions in the C j and their 
compounding due to the averaging calculations. 

net;UJIllJJeJlJatiu1J:: fur further wurk on the ela::tic prup· 

erties of copper include: (]) better delineation of the' bulk 
modulus and Poisson's ratio as a function of temperature; 

, (2) further experimental and theoretical studies of l1igher. 
order, especially fourth-order, elastic constants since these 
directlv reveal the anharmonic part of the interatomic po· 
tential; (3) experimental and theoretical studies of the 
problem of avera~dng single-crystal propertjes to obtain 
quasi-isotropic properties; (4) careful studies of the effects 
of mechanical deformation on elastic properties of single 
crystals; and (5) studies to rlf'tprminf' t'hf' pfFpC't of tp'\'tnrf' 

on polycrystalline elastic constants other than Y oung~s 
modulus. 
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Notes on Tables 
Some comments are required for a satisfactory reading 

of the tables. The following principal notations are used 
in the tables: 

B = bulk modulus 
single-crystal elastic stiffn(~::;!'('s (nlll\\lwr of sub· 
scripts denotes order 't 

(d) deformed plastically 
E= Young's mooull1s 
f = frequency 

C = shear modllJlI:-; 
h hour I ~ I 
K =fk;..>Tf"'" [",h'il' 

OFHC IIY \'~!"II, 1'1"" II; .. II ,', ,", I ", I" ; I" 
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P=pressure 

rv = relative value 
T = temperature 

"v/=]ongitudinal wave velocity (pl'/=B+4;'3GJ 
l' = Poisson~8 ratio 

p = mass denslty 
~:. = see comment column 

Vnless jndicated by (d) =' deformed plastically or by an

other comment~ data can he assumed to represent annealed 

~pecimem:. Recommended values of cJ.astic constants, given 

at the bottom of the tables, were obtained by averaging 

arithmetically, without weighting factors, the data foran

nealed specimens. All data were included in the average 

except those deviating by more than ±].5 a from the mean; 

IT is the standard deviatiOll, and the standard error of the 

arHhmetic mean a / \/ n is reported as the imprecision, 

where n is the number of observations. For a large num

ber of obsef"!;atiom: (greater than twenty), the 95 per
cent confidence interval for the arithmetic mean x is 
given approximately by .x ± 2('J'/Vn. The limits 
x±CJ'j'Vn define a confidence interval of about 
70 percent for the arithmetic mean. Other interpretation~ 

of the ~tandard error of the mean can be found in standard 

works )on statistic~. Despite large deviations of some ob

servations from the average yalue in the polycrYEta]]inf' 
cases, no systematic trend could be detected. Variants that 

were considered in attemp1in~ to detect a trend include: 

13tatic yersus dynamic measurements and impurity COJ1CeJl

tratiom. Other variables that might be lmportant, but for 

which convincing data are lacking, include; grain. size, 
gTain orientation distribution (texture), segregation of 

impurities at grain boundaries. and stress-strain states. 
Some readers will be interested in compr~ssibjlity data; 

compressibility X is Elmpl)' tIle reciprocal of the bulk mod

uJu~. The recommended compresEibility of copper is 
X=B-l =0.741 X 10-11' m 2jN. 

recomm, 
Entries in parenthese~ were derived from the given data, 

usually by the formula~ 

E 
v=--l. 

2C . 

and 

B 
EG 

3(3G-£\ 

These formulas tend to give large errors in l' and B~ but 

the numbers are still useful. 
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Table 1. (cont'd) Su:nmary of experimental conditions In single-crystal studies; 
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Waldorf (1960) 

AIers, Thompson (1961) 
(Extrapolated from 270 K) 

Epstein, Carlson (1965) 

';'<,.212. Himmel (1966) 

i>'C',:'?cto (1966) 
.. 

- ~ -- - . :~~2.'= (1971) 

\.... :-: =- :- ~, . : . : 2_ :. :' hall (1 971) 

Deoesis (1 0 71) 

Moment (1972) 

Average values 

Standard errors 
-- ---------

Table 2. Second- order adiabatic elastic stiffnesses C .. of copper 
1J 1 2 

at room temperature; entries bave units of 10 1 N/m 

C
ll 

C
12 

C C' B C
L 

Comments 
44 

].698 1.226 0.753 0.236 1. 383 2.215 Isothermal 

1. 733 1. 182 0.612 0.276 1.366 2.069 Is othe rrral 

1.764 1. 292 0.753 0.263 1. 449 2.254 Isothermal 

1. 710 1. 239 0.756 0.236 1. 396 2.230 

1.70 1. 24 0.645 0.23 1. 39 2.12 

1. 683 1. 221 0.754 0.231 1. 375 2.206 

1. 6839 1. 2142 0.7539 0.2348 1.3708 2.2030 

1. 684 1. 214 0.755 0.235 1. 371 2.204 

1. 679 1. 245 0.7511 0.2332 1. 370 2.197 

1. 6897 1.2203 0.7540 0.2347 1. 3768 2.2090 

1. 693 1.222 0.753 0.236 1.379 2.210 99.98 
1. 687 1. 217 0.750 0.235 1. 374 2.202 99.999, annealed 
1.690 1. 218 0.753 0.236 . 1.375 2.207 99.999, annealed, irradiated 
1. 666 1. 204 0.753 0.231 1. 358 2. 170 99. 999, deformed 5% 
1. 680 1. 212 0.745 0.234 1. 368 2. 191 99.999, deformed 5%, irradiated 

1. 697 0.753 [IOO] orientation, ultrasonic 
1.684 1. 212 0.757 0.236 1.369 2.205 (110] orientation, ultrasonic 
1. 683 [100] orientation, resonance 

2.213 [11 0] orientation, resonance 

1. 700 1. 225 0.758 0.2355 1.385 2.223 

1. 661 1. 199 0.756 0.231 1.353 2. 186 

1. 692 1. 219 0.754 0.237 1. 377 2.209 

Extrapolated from alloy data. 

1. 6960 1. 2276 0.7556 0.2342 1.3838 2.2174 

1.695 1. 223 0.757 0.237 1. 380 2.215 Extrapolated from alloy data. 

1. 691 1. 222 0.7542 0.2346 1. 376 2.211 

0.002 0.003 0.0005 0.0005 0.002 C. 003 
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Table 3. Third-order single-,:::rystal elastic constants C"
k 

of copper at room temperature; 
11 lJ 2 

entries have units of 10 N/m. 
-- - --- -

Reference C
1ll 

C
Il2 

G
123 

G
144 

C
166 

G
456 

Comments 

Hiki, Grmato (1966) -12.71 -3. 14 -0.50 -0.03 -7.80 -0.95 

Salama. Alers (967) -15.0 -3.5 -2.5 -1. 35 -6.45 -0.16 

Salama, A1ers (1968) -13.90 -7.78 -1. 81 -1.40 -6.48 -0. 16 

Gauster, Breazeale (1968) -14.27 -5.21 -1. 09 +8.54 -8.36 -5.47 Data supplemented with pressure derivatives 
of Lazarus (1949). 

Gauster, Breazeale (l968) -14.27 -3.66 -0.98 +0.64 -7.49_ +0.44 Data supplemented with pressure_derivatives 
of Daniels, Smith (1958). 

Gauster, Breazeale (1968) -14.27 -7.78 -2.65 -0.06 -7.71 +1. 17 Data supplemented with pressure derivatives 
of Hiki, Grana.to (1966). 

Gauster, Breazeale (J 968) -14.27 -B.87 -1. 77 -0.63 :"7.44 +0.66 Data supplemented with pressure derivatives 
of Salama, Ale rs (1967). 

Powell, Skove (1 S68) -14.31 -B.47 -1.24 +0.75 -7.50 +0.43 Isothermal; data supplemented with pressure 
derivatives of Lazarus {l949). 

Powell, Skove (1968) -12.28 -6.34 +0.95 +3.20 -5.74 -1. 36 Isothermal; data supplemented with pressure 
derivatives of Daniels, Smith (1958). 

Powell, Skove (1968) -12.99 -8.11 -1.69 +0.87 .7.96 +0.1(5 Isothermal; data supplemented with pressure 
derivatives of Hiki, Granato (1966). 

Riley, Skove (1973) -11. 7 -6.5 +1.54 +1.4 -4.8 -I. 3 Isothermal; data supplemented with pressure 
derivatives of Lazarus (1949). 

Riley, Sl,ove (1973) -13.7 -8.6 -0.65 -0.95 -6. 6 +0.4 Isothermal; data supplemented with pressure 
derivatives of Daniels, Smith (1958). 

Riley, Skove (1973) -12.4 -8.2 -1. 1 -1. 0 _7.0 +0.70 Isothermal; data supplemented with pressure 
derivatives of Hiki, Granato (1966). 

Riley, Skove (I 973) -12.7 -8.2 -0.72 -0.69 .6.7 +0.4 Isothermal; data supplemented with pressure 
derivatives of Salama. Alers (1968). 

Average values -13.5 -8.0 -1. 2 0.66 -7.2 .0. 32 

Standard e-rrors 0.3 O. 3 0.3 O. 7 0.3 0.4 

Theoretical values 
Rose (196{) -10.40 -7.70 +0.92 +0.92 -7.70 +0.92 Central- force model. 

Srinivasan, Gi rirajan (1973) - 16.:>8 -8.40 +0.80 -0.02 -8.26 +0.12 Pseudopotential; method of long waves. 

Thomas (I973) -17.02 -9.65 -0.10 +0,34 -8.32 +0.12 Pseudopotential; method of hc:mlogeneous defor 
'---~---- -- ---~ --- - -- ------- _L--. - - ----------
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910 H. M. LEDBETTER AND E. R. NAIMON 

Table 4. Hydrostatic-pressure derivatives of the elastlc constants of copper at room temperature. 

Reference dCll/dP dC
12

/dP c1C
44

/dP dC 'ldP dB/dP 

Lazarus (1949) 4.67 3.53 O. W:! 0.57 3.91 

Daniels, Smith (1958) 6.36 5.20 2.35 0.58 5.59 

Hiki, Granato (1966) 5.94 5. 19 2.63 0.375 5.44 

Salama, AleTs (1967) 6.4 5.5 2..5 0.45 5.8 

Salama, Alers (1968) 5.9Z 5.02 2.36 0 0 45 5.3Z 

Bridgman (1949) 5.3 

Rice et al. (1958) 4. 1 

Al1tshuler et al. (1958) 4.8 

Debesis (1971) 6.19' 5.08 2.33 0.556 5.45 

110 et al. (1971 ) 5.1)5 4.')4 2.24 0.50 5.28 

4:92 2. 18 0.50 5. 10 

O. 24 O. 23 0.03 O. 20 

Table 5. Nonlinearity parameters of single-crystal copper at room temperature; 

entries have in units of lOll N/m
2

. 

Reference K (l 00) 

Gauster (1966) - 9.63 

Gauster. Breazeale (1968) -14. 3 

Gauster, Breazeale (1968) -12.7 

Gauster. Breazeale (1968) -15,0 

Peters et al. (1970) -13.9 

Average values 13. 1 

Standard errors o. 9 

J. Phys. Chem. Ref. Doto, Vol. 3, No.4, i974 

K (110) 

-19.48 

-32.5 

-32.7 

-29.5 

-31. 2 

- 29. 1 

2.5 

K (Ill > 

-16. 55 

-25.9 

-29.5 

-27.2 

-25.7 

- 25. 0 

2. 2 

Comments 

Calculated from data of Hiki,and 
Granato (1966). 

C""lculated fronl dutu of Sulunlu, 

Aler s (1967) 



ELASTIC PROPERTIES OF METALS AND ALLOYS 

Table 6 . Nonlinearity constants of single- crystal copper whiskers at room temperature. 

Reference °(100) °(110) °(111 ) 
Comments 

Powell, Skove (1968) -3.3 4.8 2.1 

Powell, Skove (1968) -4.7 10.8 3.8 Calculated from third -order data 
of Hiki, Granato (966). 

Riley, Skove (1973) -4.4 8.9 2.1 

Riley, Skove (973) -4.6 10.7 3.8 Calculated from third-order data 
of Hiki, Granato (966). 

Riley, Skove (1973) -2.2, 7.2 2.7 Calculated from third-order data 
of Salama. Alers (1968). 

Kobayashi, Hiki 0973 ) -4.3 10.0 3.5 

Kobayashi, Hihi (l 973) -1.51 10.57 3.76 Calculated fro:rn third-order data 

of Hiki, Granato (1966). 

Kobayashi, Hiki (1973) -2'.00 7.23 2.68 Calculated from third-order data 
of Salama, Alers (1967). 

Average values - 3.8 8.,8 3. 1 

I Stl'lnnl'l'l"n prrOr!' 0.4 0.8 O. 3 

Table, 7. Nonlinearity constants; of single-crystal copper whiskers at room temperature 

ReferenCe c (100) 

Riley, Skove (1973) 66 ± 25 

Riley, Skove (973) 70 

Riley, Skove (1973) 35 

184 ± 25 20 ± 10 

Comments 

Static test; deviations from 
Hooke I slaw. 

C~lculated from SOEC and 
TOEC of Hiki, Granato (966) 
and from theoretical FOEC of 
Rose (1966). 

Calculated from SOEC and 
TOEC of Salama, Alers (1968) 
and from theoretical FOEC of 

Table 8. Fourth-ordeT elastic stiffnesses of copper; entries have units of lOll N/m
2

. 

Reference 

Hiki: Thomas, 
Granato (1967) 

ROSE (1966) 

101 50.5 

74.49 42.33 

50.5 o 

47.56 -2.62 

Commf>nt!': 

Detennined from tempera.· 
ture dependence of SOEC 
assuming nearest-neighbor 
central forces. 

Central-force model, many
neighbors. 

911 
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Reference 

Alers, Choi, Liu (1967) 

Alers, Liu (1967) 

Amagat (1891) 

Aoyama, Fllkuroi (1941) 

Bennett, Davies (1949) 

Benton (I 901 ) 

Benton (1903) 

Bez- Bard:li (1935) 

Biller, Helow (1969) 

BiTch (19~7l 

\:?:Jet. 
. ~ ~ '.~ ~t (1'~'~ -; ) 

: .~ ,., ~ . 

::; --: :- ': c:-. i. !! ~ :- ~ I. i 1 ~ -: 4 I 

E 

1. C9-1. 34ld) 

1.16-1.3')(d) 

1. 21 

1.27 

rv 

I. 16 

1. 27 

1.277 

1. P(d) 
1.27 

) .358(d) 
) . 373 
1.275(d) 
) .310 

Table 9. Room-temperature elastic properties of poly crystalline copper 

G R \! 

lOll N/m
l 

(except v) 

(0.456) 1. 16 (0.350) 

0.34) 

0.429 (I. 31) 0.348 

0.468 I. 36 0.364 

0.346 

Variables Studied 

Neutron irradiation. 
rolling direction, 
rolling temperature 

Rolling temperatur'e, 
rolling direction. 
alloying: Zn 

T = 78, 289 K 

T = ZSH-I1'iO K 

T = 87 K 

T = 93-473 K 

P = 1 -4000 atTn 
(_. O. 4G Pal 

T = ?i-873 K, 
anm~::l1ing temp. 

T=4.5-300K 

Method 

Res~nant har. longi
tudhal 

Res~nant bar 

Resonant bar 
(0. :- 2.0 kHz), 
t rilrs ve r se 

Interference apparahls 

Str£ss~ strilin 

Angle of total reflec
tion of ultrasonic waves 
0-20 MHz) 

Resonant har 
(9-17 kHz) 

Resonant har 

Resonant har 
(8-~0 kH7.) 

Simultaneous bending 
and torsion 

Resonant bar 
(10-50 kH7.) 

Composition 

Cathode copper 

99.99 

0.95Ni, O.O.02Mn, 
0.02 Fe, bal. Cu 

99.98 

Commercial 
electrolytic 

99.999 

Commercially pure 

Comments 

Cold worked to 95'70 reduction 

Cold worked to 95'70 reduction 

BC/BFe = 0.79 

p = 8. 70 g/ cm 
3 

, pvf = 1.84 x lOll N/m l 

8.904 g/cm
3 

Temp. data given as 
resonance frequencies 

':'G/E = 0.371 
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Reference 

Bradfield, Pursey (1953) 

Bridgman il923) 

Bridgman i1949) 

Brouwer (1965) 

Brouwer, Groenenboom-
Eygelaar (! 967) 

Brune r, Mecs (1963) 

Bunge, Ebert, 
Gunther (1969) 

Cabarat, Guillet, 
LeRoux (1949) 

Chang, Hultgren (I 965) 

Chelnokov (1964) 

Collet (1967) 

Davis (1943) 

DeKock, Crans, 
Druyvesteyn (I965) 

E 

1.301 
1.296 

rv 

rv 

rv 

1.210 

1.248 

~t' 

1. 06(d) 

rv 

Table 9. Room-temperature elastic properties of polycrystalline coppey (-cont'd) 

G B \J Va:-iables Studied Method Composition 

1011 N/m
2 

(except \I) 

0.480 (1.498) 0.350 Annealing tempera- Longitudinal, torsional NPL pure 

0.483 (I. 364) 0.342 ture v:bration (20-150 kHz) 

1.340(d) T = 303, 348 K Pressure cylinder, Comrnercial rod 

1.345 linear compressibility 

1.364 rela ti ve to ir on 99.987 

1.379 Pressure cylinder, 99.999 
lever piezometer 

rv Plastic strain at Resonant bar, bending 

T = 70 K-

rv Plastic strain at Resonant bar, bending 

T = 77 K and torsion 

Annealing tempera- Resonant bar 
ture after plastic 
deformation at 4 K 

Rolling di rection. Resonant bar 99.92 

amount of plastic 
deformation 

Allo'fing: Sn, Zn Resonant bar 

1.348 

Plastic strain, Resonant bar 
annealing time 

rv Plastic strain • Torsion pendulum 99.999 
vibration amplitude, 
T = 77 K 

T = 303-508 K Stress- strain OFHC 

rv Plastic elo"ngation, Simultaneous bending 
torsion and torsion 

i 

Conunents 

Annealed 3 h at 550 c C 
Annealed thoroughly 

Randorn specimen 

*Relative resonance 
frequencies 

Plastically strained 80/0 
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Reference 

Den Buurman (1970) 

Den Buurman. 
Snoep (l972a) 

Den Duurman, 
Snoep (J 972b) 

Druyvesteyn. 
Meyering (1941) 

Druyvesteyn, Schannen. 
Swaying (1959) 

Druyvesteyn, 
Blaisse (1962) 

Ebert (I 935) 

Eisner. Ottlyk (1963) 

Faninger (\969) 

Fantozzi, Boulanger. 
Gobin (1968) 

t?!lto7-zi, Calvet. 
Cobin (1967) 

~. ". - •. -. I 1 ::: ~ 2-' 

i." ():- =- ~ ' .... : . 

:: ~ I.'" r I 1 ~. :,":; \. (Il):; 7) 

F r c c1 (' r i ,:" i 1 e, -1 ! \ 

E 

1.216 

rv 

1 .32 

1.2, 

rv 

rv 

1. 30 

1.257 

1,2' 

Table 9. ROOln-temperature elastic properties of polycrystalline copper (cont'd) 

G B \) Variables Studied Method Composition 

1011 N/m2 (exceptv) 

rv Sh'air. amplitude. Resonant bar 99.999 
isoeh,onal anneal (~ 280 kHz) 

rv Strain amplitude. Resonant bar 
strain cycles (fatigue) (~170Hz) 99.999 

rv Strain amplitude. Torsion pendulum 99.999 
strain cycles (fatigue) 

0.473 1.41 0.35 Alloying: Zn Resonant bar 

rv Plastic torsional Torsion pendulum 99.999 

strain, an,nealing 

Plastic strain, Lems (962) 99.999 

strain temp .• 
annealing 

1.37 P = 0-5000 kg/em 
2 M.lt comparative 

Applied d. c. potential Stre5s- strain 99.99 

0.4RO (l . 19\ 0.327 Alloying: Ni Mechanical. x-ray COlnmercial 
electrolytic 

Plastic strain, Resonant bar 99.999. OFHC 

annealing (~2 kHz) 

Plastic str ain, Resonant bar 99.93 

isothermal and (~2 kHz) 

isochronal annealing 

T = 233- 353 K Resonant bar 

Resonant bar 

0.47 (1.44) 0.341 T := 78-644 K P1.:1se-echo 
(0.5-15 MHz) 

Com:rnents 

Grain size ~ I mm 

Annealed 1/2 h at 400°C 
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Refer·ence 

Fukuroi. 
Shibu1a (1950) 

Greer. Bucknall (1964) 

].1.0 

1.300 

Gruneisen (I 907a). (I907b) I 1.229 

Gruneisen (l908a). (l908b) I 1. 226 
1.286 

1.279 

Gri.ineisen (1910) r 1.22 

Guillet. (1939), 0(40) 

Guye, Schapper (1910) 

Haskins (I961) 

Hopkin. Pursey, 
Markham (19 70) 

Ide (I936) 

Iokibe. Sakai (I 921 ) 

Jaquerod, 
Mugeli (1931) 

Joshi, Bhatnagar (1969) 

1. 25 

1. 24 

1. 30 

1. 25 

1.260 

E 

.T2.ble 9. Room-temperature elastic properties of p::>lycrysta.llinc copper (cont'd) 

G B v 
11 2· 

10 N/m (except v) 

0.455 1. 34 0.352 
0.462 (1. 98) 0.391 

0.457 1. 31 0.368 

(0.48) 1. 37 0.35 

(0.47) 1.30 0.34 

0.335 

0.457 I. 39 0.340 

0.459 1. 67 (0.362) 

0.52 
0.47(d) 

0.450 

0.426 

Variables Studied Method Composition 

Alloying: Ni Bending interferometer I Extrapolated from 
99 Cu aHoy 

Alloying: Ni, Zn; 

T = 77-542 K 

Bulk modulus: 
T = 82-438 K 

Alloying: Al., Sn, Zn 

Resonant bal 
(~l kHz) 

F:;ee transverse 
ol'cillations. inter
ferometer 

Pendulum of 
.L~Rolland, Sorin 

T = 78-373 K I TorsionalpendulmTI 

T '" 4-350 K I Ultrasonic(2. 5 MHz) 

Alloying: Al. As, Au, I Resonant bar 
Ga. Ge. In, Mn, Ni, 
Si. Sn. Zn 

T = 298- 790 1< 

T = 273-~73 K 

T = 308-076 K 

T = 301-664 K 

Resonant ba:-. 
longitudi na 1 

Torsional pEndulum 

Torsional pEndulum 

Torsional pt:ndulmTI 
(~70 Hz) 

Pure 

O. 2'VoAs. O. 04'VoFe, 
l%Ni 
0.lS%As,O.030/0Fe, 
trace Ni. 

99.99 

99.99 

Electrolytic PHrit'i 

Commercial. 

Commercial 

Spectroscopic 

Comments 

Annealed 6 h at ROO 0 C 

p := 8. q6 g/cm
3 

3 
Rod, p = 8.96 g/cm ~ 
Tube, p = R.89 g/cm-

Long' vel. = O. 479 
xlO ern sec- 1 

Single· crystal data also 

Annea:ed 400 0 C 
Ha.rd drawn wire 
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Reference 

Joshi, Bhatnagar (1970) 

Kallend, Davies (1971) 

Kaniak, MillIner (J 972) 

Kat7.enelsohn (1887) 

Kawai (1930) 

Kawai (l931) 

Keefer. Sosin (J 9(,3) 

Eie\\,;et (I886) 

,<:kuta (1921) 

• '1:l"l,6) 

! :~: 3 -\ 

,-,:"",=:,~~,;- (191S) 

:-;·~:'1 r?, '';0'::: 

Kohlr;\tl~c:h. Loomi~ (1870) 

.E 

1.207 

1.003 

1.08-1.36(d) 

1.2') 

1. 24 

1. 21 

1.222 

1.17 

Table 9. Room-temperature elastic properties of polycrystalline copper (cont'd) 

G B 

1 N/m
2 

(except v) 

0.359 

0.461 

0.431 

0.422 
0.382(d) 

0.369 

0.452 

0.416 

0.382 

(1. 33) 

1.366 

v 

(0.345) 

0,350 

Variables Studied 

T 309-674 K 

T =~03-661 K 

Rolling direction 

Radiation dosage 
(a-particles). 
rtnneaHng 78-140 K 

Plastic strain, 
annealing tempera
ture 

Plastic strain, 
annealing tempera
ture 

Isochronal annealing 
after electron irra
diation at 20 K 

T=29B-1126K 
T=29B-1177K 

T - 293-1273 K 

Method 

Flex1lral resonance 
(~ BO Hz) 

Resonant bar 

TransvcrBe vibrCltion 

TorSIonal pendulum 

Stress- strain sbpe 

Composition 

Commercial purity 

S')e ctros c opi c 
p'uity 

ComTnercial purity 

99.88 

C:>mmercial purity 

Electrolytic purity 

Torsion, optical lever I C'1mmercia1 p1lrity 

Resonant har 

Electrolytic 

Torsional pendulum 

Resor:ant bar 

Torsional pendulum 

Torsional penduIUlTl 

Comments 

Initial grain size 0.035 ITlm, 
colo rolled to 95'70 reouction 

7-15 ~m foils; ':' gives fre-
quency data, proportional to E 1/2. 

Annealed wire 
Drawn wire 

Average value 
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Reference 

Kalwa. Hasiguti (19671 

. 
Korntheuer, 
Svoboda (969) 

Koster (1950) 

Koster (1940) 

R.oster (1 948a}. (l948bl 

Foster {l953} 

i<;oster, 
'Hauscher (1948) 

Kralik (1969) 

i<;untze (I 92B) 

Kupffer, Zcppritz 

Kurnakow. Rapke (1914) 

Lawson (l941) 

Leidheiser, 
Sloope (1970) 

Lems (I 962) 

E 

':c 

1. 23 

1. 22 

1. 29 

1. 26 

1. 29 

rv 

1. 21 

1.258 

1. 09 

rv 

1. 24 

rv 

Table 9. Room-temperature elastic properties of polycrystalline copper (cant'd) 

G B " Variables Studied Method Composi tian 

lOll N/m
2 

(except,,) 
- .- --

~! Isochronal annealing Torsional pendulum Zone-refined 

to 433 K a(ter 10% 
plastic shear strain 
at 78 K 

Whisker croSs-sec- Stress- strain 
tion 5-120~m2 

0,455 1. 36 0.35 Temp. coefficients· 
T ~ 19.3-1173 K 

T ~ 93-1230 K Resonant. bar 

0,34 Longi tudinal and Electrolytic. 
transverse deforma- oxygen-free 
tion 

Alloying: Au, Ni, Pd, 
Pt 

Isochronal annealing Resonant bar Electrolytic 

after fatiguing at 90 K (~ 20 kHz) 

Stress~ strain 

Longitudinal deforma-
tion 

Stress Composite oscillat.or Oxygen- free 

Film thickness Bulge apparatus 
700- 5000 A 

Annealing tempera- Resonant frequency 99.999 
ture 83-333 K after (0.9-2.5 kHz) 
plastic strain of 1-9% 
at 83 K 

Comments 

':'Reports oscillation periods 

':'Varies with whisker 
diameter, see their fig. 4 

Annealed wire 

V t = 0.367 x 106 em/sec 

E independent of thickness 

1 mm sheet 
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Reference 

Lems (J 964) 

Lenkked, 
LiihteenkorvCl (1973) 

Liu, AJers (1966) 

Lobdell, Shinopulos. 
Fillio (l 963) 

Lozinskii (J 961) 

Liicke, Roth, 
Soko1()w~ld (19 7 3) 

~.\"tton. Kalnber. 
.c. :·-:'e11. l3a.rrett. 
~ ':'. ': :.'~ \. (1 9 (, 2 ) 

::···.·':0. 
. · . ...:.:1 

: :·-;-0) 

-. "'<:y. 

Mende. Biehl IJ :':_" 

E 

rv 

1. 27 

1 . 04- 1 . 37 (d) 

1. 24 

1.237 

rv 

1. 2(, 

1. 15 

1. II 

! .2R(rl) 

~ :) 

Table 9. Room-temperature elastic properties of polycrystalline copper (,:ont'd) 

G B v 

1 N/m
2 

(exceptv) 

0.475 1.37 (0.337) 

(0.469) (1. 17) 0.323 

Variables Studied 

Annealing tempera
ture 78- 350 K after 
pli'lst.ic st.rilin 'l.t 78 K 

Alloying: Al 

Alloying: Zn, roll~ 
ing direction 

T = 293-993 K 

Strain amplitude, 
annealing temperi'l
ture, irradia.tion 
temperah're 
(1. 5-McV electrons) 

Method 

Resonant frequ~ncy 

l'ltr~sonic PU1fC 
(10 MH7.) 

Resona.nt har 

Stress- strain 

Torsional vibrati ons 
(~, 5 kHz) 

Rolling direction; I Transverse vibrations 
random T=298-563 K; (250-425 Hz) 
oriente:-1 T=298-823 K 

Alloying: Ni I Static, helical coils 

Composition 

19.999 

19.99 

19.99+ 

OFHC 

99.999 

orHC 

Alloying: Ni Vibtator-controlled I 99.972 

T = 20- 300 K 

Wire diameter 
8-40~Tn 

oscillator (600-800 Hz) 

Stress- strain initial 
slope 

Fle"'lral rf'SOl1C1ncc 
(~, 600 1-17.) 

Reniling resonance 

OFHe 

99.999 

Comments 

Grain size = 0.02 mln, 
D '" 8.939 g/Cln 3 

(1 = 8.94 g/CTn 3 

< O. I lnm sheet 

Grain size '" 0.03 lnln 

p = 8.93g/cln3 

Hard drawn 

':'Modulus defect !"c1a.ted to 
dislocation loop length, give 
frequency data. where E,~ f2 

Average of 18 values 
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Table 9. Room-tern-perature clastic properties of polycrystalline copper (cont'd) 

-

Refer~nce E G B V Vllrlables Studied Method Com-position 

lOll N/m
2 

(except v) 
---

M~rcadier (1891) 1.207 

M'Farlane 1. 15 (J.434 (1.09) :0.325) Torsional pendulum 

C.464 

Miller 1. 27 

Morrow (1903) ).33(d) Mirror, lever 
apparatus 

Mltnse, Weil (1951 P 1.14 T ~ 77-477 K, Stress-Iltrain initial OFHC 

specimen thickness, slope 
rolling direction 

O.93(rl) 

l. 16 Electro1yti~ tough 
pitch 

0.83(d) 
1.17 Deoxidized 

0.94(d) 

N'elsen (1963) ,:~ Low ternperature Resonant baT 99.999+ 

« 1 5 K) proton 
(8.9 MeV) bombard-
rnent, annealing 

Okuda (J 963) ~~ Plastic strain at 4 K, Inverted torsion 99.999 
annealing temperature penduluTTl 

O'<;uda, Nakanii, * Neutron irradiation Transverse vibration 99.999 

T.3.kamura. Maeta (l96~) (> 0, I Me V), strain (cantilever) resonance 
amplitude. annealing 
temperature 

Orlov. Fedotov (1966) 1.16':< O. 38~" Alloying: Ni 

Comments 

Annealed 
Quenched 

Drawn 

Annealed 

Cold rolled 6"10 
Annealed 

Cold rolled 6% 
Annealed 
Cold rolled 6% 
*Young's modulus data fo_r 
cold- To!led and annealed 
specimens seem to be inter-
changed in the original paper. 

~'Reports resonant frequency f, 
where E ~ f2; reports rnod1l1us 
defect 

Annealed 1 h at 800" C; 
'~gives period of oscillation t. 
where E ~ t- 2 

T = 673 K 
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Reference 

z 
~ Pi3ati (1877). (1878), 
~A (1879) 

-0 ..... 
A 

Reed, Mikesell (967) 

Ri.:hards (1907) 

Ri:ha rds, Bartlett (1915) 

Richards, Brink (I 907) 

Rcth, 
Naundorf (1968), (I970) 

Schaefer (1901) 

Schaefer (1902) 

5C{lneiof:r. Surton (194<}) 

Schwinning. 
Strobel 11934) 

Searle (pre- 1914) 

E 

1. 04 

1. 30 

rv 

" 0.971 

l. 23 

1. 14 
1. 20 
0.71 
1. 09 

1. 20 

Ta")le 9. Rcom- temperature elastic properties of polycrystalline copper (contid) 

G B \I 

I N/TI1 ~ (except \II 

0.389 

0.445 ().53) (0.17) 

1. 85 

1.32':' 

1. 96 

0.389 (0.642) 0.245 

0.389 

0.448 0.61) 0.361 

Variables Studied 

T=4-29~K; 

alloying: Ni. Zn, 
others 
T = 4-295 K 

Isochronal annealing 
teTI1perahre after 
3 MeV ebctron 
irradiation at 120 K 

T = 87-293 K 

T = 293- 573 K 

Method 

Stress- strain initial 
'sIope 

IJ v/v with respect to 
Hg 

Glass piezoTI1et.er 

6'(/{ 

Flexural resonance 
(~, 2.5 kHz) 

COITlpO S1 tion 

DH?C 

DHPC 

ComTI1ercial 
electrolytic 

99.999 

Bending interferometerl CheTI1ically pure 

Rotating plate. 
ultrasound 

Stress- strain Pllrc 

Ccmmcnts 

Annealed 

Cold drawn 26% 

13 /B = 0.741 
Cu Fe 

HaTI1mered, turned; 

BCu/SFe = 0.803 

BCu/BFc = C. 755 

':'B = 1.38 wren corrected for 
iron standard according to 
BridgTI1an (I 923) 

An"nealed (650° C, 1/2 h). static 
Hard drawn, static 
Annealed, drnaTI1ic 
Ha rd drawn. dynamic 
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Reference 

Shrivastava. 
Joshi (I 972) 

Simpson. Sosin. 
Johnson (1972) 

Simpson. Sosin, 
Edwards, Seiffert (1971) 

SiYnpson. Sosin. 
Seiffert (I 971) 

Smith (1953) 

Soliman, Youssef, 
Essawi (1971) 

So sin (I962) 

Sosin. 
Bienvenue (1960) 

Stokes (1960) 

Stromeyer (1894) 

,E 

1. 00 

rv 

rv 

rv 

1. 13 

0.64-0.93 

rv 

rv 

1. 27 

1. 15 
1. 27 

,Table 9. ::toom-temperature ehstic properties of polycrystalline copper (cont'd) 

G B \.l Variables Studied Method Composition 

1011 N/m2 (except\.l) 

(0.421) (0.532) 0.187 Flexural, torsional 
resonance 

Anncaling tCrrlpC ra- 99.999 
ture after electron 
irradiation 

Annealing time, 99.9. 99.99 
annealing tempera-
ture after 1 MeV 
electrot1 irradiation 

Annealing time. Resonant bar 99.999 
annealing tempera- (~ 0.5 kHz) 

ture after 1 MeV 
electron irradiation 

Plastic extension Free·free resonance 91.984 (OFHC) 

1- 8"70. annealing 
50-100"C 

Annealing ternpera- Stress- st.rai.n initial 91. % (Electrolytic) 
ture after drawing. slope 
plastic strain. grain 
size 

Annealing tempera- Resonant bar 99.999 
ture after electron 
(I MeV) irradiation 
at 4 K 

Irradiation dosage Cantilever resonance 99.999 
(0.75 MeV), anneal- (400-600 Ih) 
ing tem.perat.ure after 
irradiation 

T := 73- 773 K Tran5verse vibration High conductivity 
resonance 

0.503 (1.08) 0.322 Interference apparatus 
(0.463) (1.65) 0.373 

Commcnts 

Annealed 3 hat 500 0 C. 
0.06 m.rn grain si.ze 

Wires 0.56 rnm diameter 

Rolled bar 
Cast 
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Reference 

Subrahmanyam, 
Krisha Murty (1963) 

Subrahrnanyam, 
Krishnamurty (1963) 

Sutherland (1891) 

Ta1ashkevich, Kostin, 
Aleksandrov (1964) 

Tomlinson (1886) 

Townsend, DiCarlo, 
Nielsen, Stab ell (1969) 

van den Beukel, 
Brouwer (1968) 

van den Beuke1, 
Dee1en (967) 

Voigt (1884) 

':cigt (1893) 

·,':,,\'.·ra (1967) 

s' 

V,-e:1z1, ~'e:-3..:her. 

Fischer, Ehren5perger. 
Papathanassopoulos 
(1971) 

E G 

1.232 0.449 

1.232 0.449 

1.351 

1.220 0.459 

1.203 0.451 

1.290 0.439 

rv 

rv 

1.064 

1.326 0.460 

1. 28 o 460 

ry 

Table 9. Room-temperature elastic properties of polycrystalline copper (cont'.d) 

B v Variables Studied I Method Composition 

N/m
2 

(except v) 

(1. 603) (0.372) Plate thickness I Ultrasoric wedge 

(1.603) (0.372) Alloying: Ag, Au, Ni, Ultrasodc wedge 
Pb 

T = 389-375 K 

(1. 189) (0.329) Dynamic Ml Copper 

(1.206) (0.334) M3 Copper 

(1.049) (0.469) 

Irradiation flux of 99.999 
10 MeV protons at 
T < 15 K 

P'.,tic 'onioo "ra;o I Tor,ion.' vibr.tio", 99. <)99 
to 18%. alloying: Au 

Vibration amplitude Torsion;t1 vibrations 

~ 0.25 

ImpUTe cast plate 

(3.76) (0.441) Annealing treatment, Longitudinal. torsional I Electrolytic 
alloying: Zn resonance 

(1. 96) (0.391) Annealing treatment. Longitudinal. 'onion.' 1 
alloying: Zn resonance 

Neutron irradiation Helical spring 99.999 
at 4 K vibration (50- 300 Hz) 

Comments 

0.9 mm plate 

0.94 mm plate 

. P = 8.95 g!cm 
3 

Wire ~ 7 mm diameter, 
consider texture problem 

Wire 0.013 cm dia .. vac. 
annealed 600- 900 0 C. 
RRR = 1000, ':'re1ativc 
frequency 

Plastically strained torsionally 
0.19% 

Electrolytically deposited 

Annealed at 500 0 C 3 h 

Recrystallized 

Annealed 2 h at 600 0 C 
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Heference 

Wertheim (1848) 1.140 

Youngs (1958) 1. 20 

Zakharov (1962) 1.288 

Zetzsche. Hauser (1962) rv' 

Average values 1 235 

Standard errors o 007 
--- -----

Table 9. Room-temperature elastic properties of polycrystalline copper (cont'd) 
-------- ---

E G B v Variables Studied Method Gom.position 

1011 N/m. 
2 

(eKcept v) 

0.46 (I.02) 0.303 Optical diffraction 
grating 

Neutron irradiation. Flexural vibrations 99.95 (Electrolytic) 

E 

G 

B 

v 

0.454 1.402 

0.012 0.039 

Table 10. 

Polycrystal 

1. 235 ± O. 007 

0.454 ± 0.012 

1.402 ± 0.039 

0.350 ± 0.009 

vibration amplitu~e 

Irradiation 99.985 

0.350 

0.009 

Summary of average values and standard errors of elastic 
constants of copper at room temperature; all entries, except 
v, have units,of 10IIN/rna. 

-----

Single-crystal 

Cll 1.691 ± 0.002 

C l <! 1. 222 ± 0.003 

C 44 0.7542 ± 0.0005 

c i 0.2346 ± 0.0005 

B 1. 376 ± 0.002 

G L 2.211 ± 0.003 
Polycrystal .. de~ivcd from single- crystal data 

CIll -l3.5 ± 0.3 

VRH-Arithmetic Ledbetter. Naimon GIla -8.0 ± 0.3 

E 1.273 1.222 ± O.CO} C 123 -1.2 ± 0.3 

G 0.473 0.452 ± 0.001 G 144 0.66 ± 0.7 

B 1. 378 1.378 ± 0.002 C l aa -7.2 ± 0.3 

v 0.346 0.352 ± 0.004 C 4sa -0.32 ± 0.4 

-

Com.ments 

-

Annealed 600· C 2 h 

---- - ---_ ... _-- -----
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I dC,=4 

Reference C
44 

""dT 

Goens (933); Goens, -3.0 
Weerts (1936) 

Overton, Gaffney (1955) -3.7 

Rayne (1959) -3.2 

Waldorf (I960) -3.3 

Alers, ThoITlpson (1961) - 3.4 

Chang, HimITlel (I 966) - 3. 6 

Debesis (1971) - 3.4 

C1;ar3, :\'larshall (t971) -4.0 

:·O.':~ "allIes -3.5 

:--.:":-c~· S O. 1 

Table 11. Temperature coefficients of the second-order elastic 
constants of copper at room temperature; entries !lave 

-4 -1 
units of 10 K 

1 dC' _1_ dCII I deL I deiz 

C'dT ---- ----
ell dT C

L 
dT C

l2 
dT 

- 3.1 -1. 8 - 2.1 -1.2 

-4.3 -2. I -Z.4 -1.2 

-4.1 -2.0 - 2.2 -1. 1 

- 4. I -2. 1 - 2.3 -1. 4 

-4. Z -1. 9 - Z. 1 -1.0 

-4.4 -2.4 -2.6 -1:6 

-4.4 -2.1 - 2.3 -1.2 

-4.6 -2.1 -2.5 -1.1 

-4.2 -2.1 - 2.3 -1.2 

0.2 O. 1 O. 1 O. 1 

_l~ 
B dT Comments 

-1.5 Room-temperature and 
80 .K values only 

-1.6 4.2 - 300 K data 

-1.5 4.2-300Kdata 

~1.7 4.2 - 300 K data 

-1.3 4.2 - 250 K data 

-1.9 300 - 800 K data 

-1.5 297, 195, and 77 K 
values only 

-1.5 4.2 - 300 K data; 0.23 at. 
Au 

-1. 6 . 
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ELASTIC PROPERTIES OF METALS AND ALLOYS 

Table 12. Temperature Coefficients, at Room Temperature, of the 
Polycrystalline elastic constants of copper; entries have 
units of 10-4 K-l. 

l. dE 1 dG l. dB 2.~ 
EdT G dT B dT \) dT 

Po1ycrysta1 data -4.8 -7.1 

Averaged single -crystal data - 3.6 -3.9 -1.6 0.8 

Table 13. Summary of studies on the effects of alloying on 
the polycrystalline elastic constants of copper. 

Reference E 

A1ers, Liu (1967) x 

Cabarat, Guillet, LeRoux (1949) x 

Druyvesteyn, Meyering (1941) x 

Faninger (1969) x 

Fukuroi, Shibuya (1950) ·x 

Greer, Bucknall (1964) x 

Guillet (1939), (1940) x 

Hopkin, Pursey, Markham(1970) x 

Koster, Rauscher (1948) 

Lenkkeri, Lahteenkorva (1973) x 

Liu, Alers (1966) x 

Masumoto, Saito (1944) x 

Masumoto, Saito, Sawaya (1970) x 

Or1ov, Fedotov (1966) 

Reed, Mikesell (1967) 

Subrahmanyam, Krishnamurty 
( 1963) 

Wawra (1967) 

Wawra (1968) 

x 

x 

x 

x 

x 

Parameter 

·G B 

x x x 

x (x) x 

x x x 

x x (x) 

x 

x (x) (x) 

x (x) (x) 

x (x) (x) 

x (x) (x) 

Alloy Element(s) 

Zn 

Sn, Zn 

Zn 

Ni 

Ni 

Ni. Zn 

Al, Sn, Zn 

AI, As, Au, Ga, 
Ge, In, lv1n, Ni, 
Si, Sn, Zn 

Au, Ni, Pd, Pt 

Al 

Zn 

Ni 

Ni 

Ni 

Ni & others. Zn & 
others 

Ag. Au, Ni, Pb 

Zn 

Zn 

925 
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