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Diffusion in Copper and Copper Alloys 
Part IV. Diffusion in Systems Involving Elements of Group VIII 

Daniel B. Butrymowicz, John R. Manning, and Michael E. Read 

Metallurgy Division, Institute for Materials Research, National Bureau ofStanda.rds, Washington, D.C. 20234 

A survey, comparison, and critical analysis is presented of data compiled from the scientific litera­
ture concerning diffusion in copper alloy systems involving elements in Group VIII (Co, Fe, Ni, Pd, 
Pt, Rh, Ru). Here the term "copper alloy system" is interpreted in 'the broadest sense. For example, 
the review of diffusion in the Cu·M system reports all diffusion situations which involve both copper and 
element M, including diffusion of Cu·in M or in any binary, ternary or multicomponent alloy contai~ing 
M; diffusion of M in C~ or in any alloy containing Cu; and diffusion of any element in any alloy containing 
both Cu and M. Topics include volume diffusion, surface diffusion, grain boundary diffusion. tracer 
diffusion, alloy interdiffusion, electromigralion, thermo migration, dislocatjon.pip~ diffusion, and 
diffusion in molten metals. An extensive bibliography is presented along with figures, tabulaI" presenta· 
tion of data and discussion ofresults. 

Key words: Alloys; cobalt; copper; diffusion; electromigration; iron; nickel; palladium; platinum; 
rhodium; ruthenium; thermomigration. 
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1. Introduction 

1.1. Organization of Review According to Alloy System 

The present rcvic~ is the fourth in a series designed 

to provide data on diffusion in copper and copper alloys. 
The first paper [1] in the series covered copper self· 
diffusion. The second paper [2] of the series dealt with 
diffusion in the copper-silver and copper~gold systems. 
The third paper i3] reviewed diffusion in copper alloy 
systems which involved the elements of the groups lA, 
IIA, HID, IVD, VB, VIR, and VIIB. The present paper 

continues the coverage of diffusion in copper alloy sys­
tems. Data on diffusion in systems which involve copper 
and elements of group VIII are presented in this paper. 
Succeeding papers in this series will cover the remain· 
ing copper alloys. 

Each Cu-Malloy system (M=Co, Fe, Ni, Pd, Pt, Rh, 
Ru) will be reviewed independently as 0. unit; and each 

system is provided with an independently numbered 
list of references. The term "Copper alloy system" is 
interpreted in the broadest sense here. For example, 
the review of diffusion in the Cu~Fe system includes all 
diffusion situations which involve both copper and iron. 
This same format will be followed for all Cu·M systems. 
ACc.:Uldiug to this format, the Cu-Fc review trcata: 

(1) Diffusion of iron in pure copper 
(2) Diffusion of copper in pure iron 
(3) Diffusion of copper or iron in Cu-Fe binary alloys 

(4) Diffusion of impurities in Cu-Fe binary alloys 
(5) Diffusion in any ternary alloy containing both 

copper and iron (or in any multicomponent alloy 
containing both eopper and iron) 

(6) Diffusion of copper in any alloy containing iron 
(7) Diffusion of iron in any alloy containing copper. 
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For easy reference, a list of subsections is provided in 
the table of contents for each alloy system. Under the 
Cu-Fe system as an example, binary situations which 
involve only copper and iron (items 1, 2, and 3 in the 
above list) are discussed first and are presented in 
separate subsections under the Cu-Fe section. Then, 
ternary situations involving a third element in addition· 
to copper and iron are· presented. These ternary sub­
sections appear in alphabetical order according to the 
chemical symbol of the third element. Data of types 

4, 5, 6, and 7 all are included in each such subsection 
if available. If no diffusion data are available on a given 
three-component system, say Cu-Fe-M, then this system 
is simply not listed. Special diffusion effects, such as 
grain boundary diffusion, surface diffusion, electro­
migration, etc., are discussed in a final set of subsections. 

Diffusion measurements in quaternary and other 
higher order multicomponent alloys are not common in 
copper alloy systems. General discussions of diffusion 
in these alloys are presented in a single subsection 
entitled, for example, Cu-Fe-X. 

] .2. Methods Used to Present and Compare Data 

The primary quantities of interest for diffusion are 
the diffusion coefficient, D, and the activation energy 
for diffusion, Q. The diffusion coefficient is defined by 
the equa'tion 

) = -D(ae/ax), (1) 

where ac/ a x is the concentration gradient of the diffus­
ing species along a direction x of interest, and the 
diffusion flux, J, is the amount of diffusing species 
crossing unit urea normal to the x-axis per unit time. 

D, itself, is a constant of proportionality and usually is 
expressed in units of cm2 /s. Experimentally, D is usu­
ally found to depend exponentially on temperature 
according to an Arrhenius-type equation, 

D=Do exp (-Q/RT). (2) 

Thus,. a straight line is usually obtained when log D is 
plotted as· a function of T-l. Here, T is the absolute 
temperature, Do and Q are experimentally measured 
constants which can be determined from the intercept 
and the slope of that line, and R is the universal gas 
constant (1.987 cal· K -1 • mol-1 = 8.314 J . K -1 • mol-I). 

The quantity Q in eq (2) is usually found expressed in 

the literature in units of kcal/mol, or in units of kcal 
alone (with the mole understood). Usually Q can be 
determined to only two or three significant figures and 
has a value between 10,000 and 100,000 cal/mol. Thus, 
when Q is expressed directly in terms of cal/mol, as 
is sometimes found in the literature, the last few zeros 
before the decimal are not. significant figures. A second 
type of unit for Q frequently found in the literature is 
the electron volt or electron volt per atom. When this 
unit is reported, it is understood that R in eq (2) is re-

placed by Boltzmann's constant, k (equal to 1.3806 X 
10-23 J. K-1 or8.617 X IG-s eV . K-l). 

In alloys, the dependence of D and Q on alloy composi­
tion provides another variable which must be considered 
in addition to those previously discussed for self-dif­
fusion in pure copper [1]. Usually no consistent general 
equation can be written to express U:( c) at all concen~ 
trations, c. Thus, data on the composition d~pendence 
of D or Q is usually summarized in this review by dis­
playing the measured values on graphs of D or Q versus 

composition, rather than by use of equations. 
When the temperature dependence of D is considered, 

the best smooth line through the data often can be sum­
marized by expressing D in the form of eq (2). In the pres­
ent paper, the more reliable data usually are presented 
in display equations in the text in this form. In addition, 
individual Do and Q values may be quoted to provide 
information in summary form and expedite comparisons 
between differing measurements. Even for the tempera­
ture dependence of D. however. the most useful means 
of presenting and comparing data probably is by means 
of graphs, showing the diffusion coefficients themselves; 
in this case with log D plotted versus T-l. A number of 
these graphs are shown in the present review. 

The textual discussions provide commentary on the 
experiments reported and, wherever possible, a com­
parison and evaluation of the reliability of the experi­
mental methods and results. An attempt has been made 
here to provide comprehensive coverage. In cases where 
very little good data are available on a system, even poor 
data will be presented and discussed as providing some 
indication of diffusion behavior in that system. 

In choosing among various reported diffusion meas­
nTp.mp.nt~ fOT TP.1iHhllity, the internal consi!iltency and 

reproducibility of the data are considered important. 
For example, it is expected that the experimental points, 
expressed as log D, should fall very nearly on a straight 
line when plotted as a function of 1'-1, as given by eq (2). 
The degree of scatter from a line drawn through the, 
experimental points is usually assumed to provide a good 
indication of the accuracy of the data. Such a line will 
not be well-established if only a few measurements in 
a limited temperature range are reported. For this 
reason, data taken at many different temperatures and, 
over a wide temperature range normally are considered 
more reliable (in the absence of other considerations) 
and are more easily evaluated. 

At tempcraturcs near the melting point, volume djf­

fusion through regions of good crystal structure is 
normally predominant. At lower temperatures, diffusion 
along the easy paths provided by grain boundaries often 
becomes important. Most data reported in the literature 
are for diffusion at moderately high temperatures. 
above two-thirds of the melting point, where volume 
diffusion usually dominates. Nevertheless, grain­
boundary diffusion measurements also are reported 
in the review when available. A separate diffusion co­
efficient, Dgb, for diffusion in a grain-boundary can be 
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defined from -eq (1). A uniform Dgb value usually is 
assumed to apply to the entire grain-boundary volume, 
which is regarded as extending in two dimensions but 
having a fini~e width, a. With the grain-boundary re­
garded as a plane, one can say that the plane envi­
sioned in eq (1) normal to the concentration gradient 
will cut the grain-boundary plane along a line. Experi­

mentally~ the flux, J', crossing unit length of this line 
often is the quantity measured rather than the actual 
flux, j, per unit area, which is the quantity in eq (I)'. 
In such a case, taking the ratio )' / (ac/~x) yields 
D gb • 8. Thus, where grain-boundary diffusion results 
are quoted, D gb • 8 frequently is given instead of just 
D gb, with 8 being an unknown grain-boundary width, 
and D gb • 8 then being expressed in units of:cm3/s. 

A similar situation can arise in surface diffusion 
measurements if the surface is regarded as having a 
thickness, 8. More commonly though, the surface 
concentration is expressed in terms of the number of 
atoms, c', per unit area (rather than the number per 
unit volume). Then, the ratio, J'/-(iJc'/iJx), yields a 
conventional surface diffusion coefficient, ~, which 
can be expressed in the conventional units of cm2 /s. 

For fh'\sr.Tiptinn~ of l'ItRndard experimental tech. 

niques of measuring volume, grain·boundary, and 
surface diffusion coefficients, and related diffusion 
quantities, the reader is referred to general review ar­
ticles [4-8]. In addition, specific references and com­
ments are provided at points in the textual commentary 
where results from some of the less-standard types of 
measurements are discussed. 

1.3. Different Types of Diffusion Coefficients 

For diffusion in alloys. one must be particularly care­
fu] to establish the type of diffusion coefficient that is 
reported. There are two main types of diffusion experi­
ments in alloys frequently reported in the literature­
tracer diffusion coefficients and interdiffusion 
coefficients. 

An understanding of why tracer and interdiffusion 
experiments, which both define their diffusion co­
efficients, D, by means of eq (1), yield different dif­
fusion coefficient values can be gained by considering 
the physical arrangement of these measurements and 
the basic diffusion equations. The basic kinetic dif­
fusion equation for the atom Dux, J, of a diffusing 
species with respect to the end of a specimen can be 
written o.s 

(3) 

Here, D * is a quantity related to the atom jump fre­
quencies of the diffusing species; (v) F is the atom 
drift velocity from atomic driving forces; c is the 
concentration; and Vk is the velocity of the local lattice 
plane with respect to the ends of the specimen. It may 
be noted that eq (3). is similar to eq (1) but differs 
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in two respects: (1) eq (3) contains. two velocity-con­
centration terms, < v) F c and v icC , and (2) the coefficient 
of ac/ax in eq (3) is the specific quantity,D*, rather 
than a general diffusion coefficient,D. 

In a typical tracer diffusion experiment, a very thin 
layer of tracer atoms is deposited on the surface of a 
homogeneous o.lloy, and diffusion is carried out in the 

absence of driving forces. Here, the tracer atoms diffuse 
into an essentially unchanging homogeneous matrix, and. 
(V)F and Vk are zero. Consequently,\D* is the measured 
diffusion coefficient in this type of experiment, which 
results in D* being called the "tracer diffusion coeffi­
cient. " 

By contrast, in an interdiffusion experiment, two bulk 
specimens of different alloy composition are brought 
into contact, and atoms diffuse in both directions across 
the interface. These alloys usually have positive or nega­
tive energies of mixing, and atom drift velocities (v) Fcan 
arise from forces created by gradients in these energies. 
Also, the D* values of the various constituents usually 
are unequal. This inequality produces a net atom flux 
across the interface toward one end of the specimen and 
makes Vk differ· from zero. In simple interdiffusion 
experiments, where other driving forces are absent 7 

< v) F and Vk are proportional to ac/ax, and) still is found 
to be directly proportional to ac/ax. However, if one 
calculates an interdiffusion coefficient, D, from the ratio 
- )J(ac/ax) , as in eq (1), one should expect to find 
lJ ¥= D*. 

For a binary alloy, lJ is the same for both constituents. 
Thus, there are two, different tracer diffusion coeffi­
cients for the two constituents in a binary alloy (one for 
each constituent), but only one interdiffusion coefficient. 
The interdiffusion coefficient in some references is 
called the "chemical diffusion coefficient," or the 
"chemical interdiffusion coefficient." 

The interdiffusion coefficient, D, in a binary alloy 
containing con::;tituent::; A and B can be related to the 

tracer diffusion coefficients, D A * and DB *, for A and B 
atoms in that alloy by the equation 

(4) 

where N A and NB are the mole fractions of species A 
and B in the alloy, <P is the thermodynamic factor,and 
S is the vacancy wind factor. When either N A or N B 

goes to zero, both <P and S go to unity; so in. the limit of a 
very dilute binary alloy, jj should equal the tracer dif­
fusion coefficient of the dilute constituent. In non-dilute 
alloys, <PS can differ appreciably from unity, say by a 
factor of four. In these alloys, additional information 
(which is usually not availc-J.bl~) 011 lh~nnuuyJJallljc 

activity coefficients is needed to determine jj from 

DA * and DB*' 
A third type of diffusion coefficient in alloys is the 

intrinsic diffusion coefficient, D~. This coefficient is 
defined by eq (1) when) in that equation is defined as 
the atom flux of species i with respect to a local lattice 
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plane. Equations relating Df to other diffusion coeffi­
cients ar~ given, for example, in reference [9]. When Vk 

differs from zero, D~ will differ from D. When (v) F differs 
from zero, D~ will differ from Di*. 

In the discussion of Df and j) given above, it was as­
sumed that the only atomic driving force was that from 
the heat of mixing. If other driving forces of unknown 
magnitude are present in an experiment or if other lattice 
distortions contribute to Vk, the measured diffusion 
coefficient, [-j/(ac/ax)], will, of course, be affected. 
Usually in these cases, one refers to an "effective dif­
fusion coefficient" obtained from eq (1). 

In situations where the measured j or ac/ax values 
are believed to contain significant unknown ~rrors, 

an "apparent diffusion coefficient" may still be defined 
based on the apparent values of j and ac/ax (or of the 
other related quantities) which the particular experiment 
provides. 

Diffusion coefficients may show a strong dependence 
on alloy composition. This composition dependence 

can lead to very nonsymmetric concentration-versus­
distance profiles in some interdiffusion experiments. 
If a nonsymmetric profile is assumed to be symmetric, 
a single "average diffusion coefficient" can be cal­
culated for the experiment. Other methods of finding 
an average diffusion coefficient applicable to a given 
conct:lltration l'ange may give :5omewhat different 

results, since the types of averaging may differ. 
In ternary and higher-order multicomponent alloys, 

there will be more than one dependent concentration 
gradient. Then, instead of defining a single diffusion 
coefficient as in eq (1), it often is convenient to define 
'a set of partial diffusion coeficients, Dij, where 

(5) 

Here, j i is the flux of species i, and a Cj I ax is the concen­
tration gradient of species j. Since the sum of the con­
centration gradients or' all species in the crystal must 
equal zero, one of the concentration gradients must be' 
eliminated from the general expression if one wishes 
to obtain independent, partial diffusion coefficients. 
This gradient can arbitrarily be chosen to be anyone of 
the gradients, ac n/ax. Then, 

oc· 
j . = - ~ D'!I.-2.. 

I kI IJ a ' 
jFn X 

(6) 

where 
(7) 

For an n-component alloy, there are n-l independent 
partial diffusion coefficients, D[j. for each species i. 

In multi component alloys, partial diffusion coeffi­
cients can he either intrinsic diffusion coefficients or 
interdiffusion coefficients. Here again, the distinction 
is that the intrinsic diffusion coefficients are related 

to the fluxes with respect to local lattice planes, whereas 
the interdiffusion coefficients are related to fluxes 
measured relative to the undiffused ends of the 
specimen. 

Further discussion of the physical meaning of D*, DI 
and jj can be found in references [2], [3], and [10]. 

1.4. Other Diffusion Related Quantities 

In this review, the emphasis is on direCt measure­
ments of diffusion coefficiehts. There are, however, a 
number of diffusion-related phenomena, such as sinter­
ing, creep, gas-permeation rates, measurements of 
interface motion, and a variety of relaxation-time meas­
urements, from which estimates of diffusion rates can 
be made. These data are reported when it appears that 
significant diffusion information can be obtained from 
them. For example, diffusion activation energies 
often can be estimated from these diffusion-related 
phenomena. 

Temperature and alloy composition arc the major 
variables usually considered in reporting diffusion data. 
Nevertheless, diffusion rates also can be influenced by a 
number of other factors, such as pressure, electric 
fields, temperature gradients, ultrasonic vibration, and 
strain rates. When appropriate data are available, 
separate descriptions are provided in the reviews which 
report on these special effects. 

For diffusion as a function of pressure, p, it usually 
is possible to write 

D=D(p=O) exp (-pAV/kT), (8) 

where D (p = 0) is the value of the diffusion coefficient 
at zero pressure, and A V is called the measured activa­
tion volume. For hydrostatic pressures on metals,. very 
high pressures usually are required before D changes 
appreciably, since A V is usually of the order of an atomic 
volume. 

In the case of diffusion in an electric field, a critical 
quantity in determining the diffusion rates is the mea­
sured effective charge, q++, of the diffusing species, 
since the field E affects the drift velocity in eq (R.\ 

according to the equation 

( v) F I D * = q * * E (kT) - t • (9) 

Here q** may differ appreciably, however, from the 
actual charge of the diffusing species. }<'or diffusion in 
a temperature gradient, the measured heat of transport, 
Q * *, serves a similar function, with 

(10) 

These quantities are discllssed more fully, for example, 
in reference [3] and in other earlier reviews in this' 
series. 

'Discussions also are given there of the relation be­
tween gas permeation rates and diffusion. For example, 
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if K is the permeation rate through an alloy, Sis the solu­
bility, and D the diffusion coefficient, one can write for 
diffusion-controlled permeation [11, 12] 

K=DS. (11) 

In an interdiffusion experiment, the net shift with re­
spect to the ends of the specimen in the position of the 
original interface lattice plane is called the Kirkendall 
shift, Xk. This shift, which results from unequal intrinsic 
diffusion of components across the plane, can be mea­
sured, for example, by placing inert wires or other 
markers at this plane. For normal parabolic diffusion 
at constant temperature for diffusion time ." the Kirk­
endall shift will be proportional to .,1/2, since Xk == 

f; V k dt. and v Ir is proportional to .,-1/2. Here. Vir is the 

same velocity which appears in eq (3). "ror simple inter­
diffusion in a binary A·B alloy, v k is proportional to 
IYA - D~, and 

In parabolic diffusion, aN A/aX is proportional to .,-1/2, 

so ~q (12) yields Xk ex: 7 1/2, as expected 
In binary alloys, j) is related to the intrinsic diffusion 

cuefficieIll~ by 
(13) 

If D and Xk are measured at a binary alloy interface of 
known composition and concentration gradient, DJ... and 
Dh can be found from eqs (12) and (13). 

1.5. Note on References 

Many r~ferences are in non-English languages. Where 
English translations are available, it has been so noted 
in brackets following the original citation. The bulk of 
these translations are available from the National Tech­
nical Information Service (NTIS), Springfield, Va. 22151. 
Others are available from Henry Brutcher Technical 
Translations (HB), P.O. Box 157, Altadena, Calif. 91001; 
the British Iron and Steel Industry Translation Service 
(BISI), The Iron· and Steel Institute, 39 Victoria Street, 
London, S.W. 1, England; or the National Translation 
Center (NTC), 35 West 33rd Street, Chicago, Illinois 
61606. 
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2. Copper-Cobult 

2.1. Co*~ Cu 

The rates of diffusion of the radioactive tracer­
impurity 60CO into single crystals of high purity copper 
have been reported by Mackliet [1] and Sakamoto [2], 
both over reasonably large temperature ranges. Their 
results are in disagreement with each other as is seen 
from the plots of the temperature dependence of the 
diffusion coefficients obtained in their experiments. 
Ma~k1iet's high temperature data can he represented 

by the expression: 

D~o_Cu= 1.93 exp(-54.1 kcal· mol-1/RT) cm2/s, 

whereas Sakamoto's data can be represented by the 
expression: 

D to- Cu = 5.7 exp(- 55.2 kcal . mol-1/RT) cm2/s. 

Despite the nonlinear plot, Mackliefs data appear 
to be the more reliable since they were obtained from 
a m.ore careful experiment which resulted in greater 
accuracy and precision. 

Mackliet used high purity copper (99.998+ %) versus 
Sakamoto's copper of unspecified purity. 

Mter careful surface preparation, Mackliet annealed 
his single crystals and then electrodeposited his tracer 

60 Co. Sakamoto did not anneal his drum-shaped samples 
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Fl\;UlU; 1. The (facer diffusion coefficient of oOCo in single crystals of pure copper as a 
function of reciprocal absolute temperature. 

Data taken from Sakamoto [2]. Mackliet rn and Badrinarayanan et al. [4j The eJectrotransport data of Kuzmenko 
et aI. [23J are shown for comparison. 

after cutting and machining, or before electrodeposi­
tion. It is conceivable that the newly exposed surfaces 
of Sakamoto's specimens contained a worked layer, 
causing recrystallization and polycrystallinity during 
the diffusion anneals, which resulted in higher diffusion 
rates. 

Mackliet deposited a 60CO layer of 7.5 A or less, 
whereas Sakamoto's layer was considerably thicker 
(approximately 20 A). 

The temperatures in Mackliet's experiments ranged 
from 700 to 1077 °C (with furnace temperature excur­
sions of 1 0 C at the higher temperatures, and 1.5 °C at 
most other temperatures), and diffusion times of 4 hours 
to 40 days. Sakamoto's diffusion runs extended over the 
smaller temperature range of 700 to 950°C (the furnace 
temperature beIng held constant to within :t 2 "C) for 

periods of several hours to 20 days. 
Although the penetration curves of both authors 

indicated a strict proportionality between the logarithm 
of the specific activity and the square of the penetra­
tion depth, Sakamoto's possessed considerably more 
scatter. Taking these penetration plots, calculating from 
them the logarithms of the diffusion coefficients, and 
plotting log D versus the reciprocal of the absolute 
tempera.ture, one obtains a straight line from Sakamoto's 

data and a non-linear plot from Mackliet's data. (See 
figure 1). Because of the non-linearity of Mackliet's 
plot, Do and Q were calculated for both the initial and 
final portions of the curve with the aim of showing that 
the differences in slope and intercept for the two 
portions are much greater than the statistical errors in 
the individual values. The valut:::s of Do ami Q avvt:aI 
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in table 1. The unexpectedly large diffusion coefficients 
observed at the low temperature may be attributed to 
the randomly distributed dislocations ordinarily found 
in a metal. The contribution of such djsJocatjons to 
"apparent" volume diffusion have been pointed out by 
Hart [3). 

Subsequent isotope effect measurements for the 
diffusion of cohalt in polycrystalline copper by Badriri­
arayanan and Mathur [4] yielded coefficients which are 
in good agreement with those of Mackliet [1]. Their 
results are plotted in figure 1 and listed in table 2. 

TABLE 1. Tracer diffusion parameters of 
60Co in copper. Data taken 
from Mackliet [1]. 

840-1077 

700-800 

1.93 ± 3% 

0.39 ± 0.2% 

Q (kcal/mo1) 

54.1 ± 0.14% 

50.6 ± 0.01% 

TABLE 2. Tracer diffusion coefficients 
of GOeo in copper. Data taken 
from Badrinarayanan and Mathur 
r4]. 

T C'C) 

1033 

960 

890 

D* (cm2./ s ) 

2.43 x 10- 9 

2.26 x 10- 9 

2.14 x 10- 9 

5.75 x 10- 10 

5.71 x 10- 10 

2.15 x 10- 10 

1.95 x 10- 70 

2.2. Cu-Co InterdiHusion 

Interdiffusion coefficients have been measured as a 

function of comp08ltion in dilute, 8ingk-pha6c, Cu-Co 
alloys (containing as much as 2 wt% Co) [5,6]. The dif· 
fusion couples were constructed of spectroscopically 
pure, polycrystalline copper and cobah specimens and 
anneaJed at temperatures varying from 800 10 ]()7:i dc. 
The degree of interpf'n(>tralion in dw n-phast' was tit'-
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termined with an electron-probe micoanalyzer. Inter­
diffusion coefficients were calculated with the aid of the 
Matano method [7] and a modified Hall analysis. Hall's 
analytical evaluation of interdiffusion coefficient at 
low solute concentrations [8] was reanalyzed, taking into 
consideration the nonlinear behavl()r exhihited h-y the 
probability plots of their experimental data in these 
regions. Measurements were made at eight different 
temperatures (± 2°C), and the interdiffusion coeffi­
cients calculated at compositions up to 2 wt% cobalt 
(see fig. 2) appear to increase very rapidly at the more 
dilute cobalt concentrations. When the coefficients are 
plotted as a function of the reciprocal absolute tempera­

ture, an Arrhenius expression can be obtained. Figure 3 
gives the activation energy for interdiffusion as a func­
tion of cobalt concentration. The variation of the pre­
exponential factor with cobalt composition is shown in 
figure 4. Also plotted (for comparison) in figures 3 and 4 
are the activation energy and pre-exponential factor 
ohtained by Mackliet [11 in his;, radioactive tracer ex­

periments. 
There are no' other qualitative investigations of inter­

diffusion with which to compare the composition de­
pendencies found in these experiments. 

There has been a very brief and qualitative study of 
interdiffusion in the Cu-Co binary system reported [9]. 
The authors employed an x-ray microradiographic 
technique [10, 11) based on the use of an x-ray mono­
chromatic focusing technique of high resolution, using 
low order reflections in order to avoid the difficulty 
inherent in the KCl-~plitting of refleetiona of high orders. 

Copper was electrode posited onto polycrystalline 
(of unspecified grain size) alloy foils of composition 32.6 
at.% cobalt, balance copper. The diffusion couples were 
annealed at 800, 900, and 1oo0 oe (± 5 ee) for 4 hours. 
Analysis hy the combined diffraction microradiography 
technique revealed that cobalt diffuses along grain 
honndaries in copper hetwepn ROO ann 900 °e_ At Hl00 
cC, the dominant diffusion mechanism was volume dif­
fusion. 

Solid cobalt has been interdiffused with pure molten 
copper in the temperature range 1100 to 1300 "'C for 
times as long as ) 800 seconds [12]. Examination of the 
interface revealed that the molten copper moved into 
the solid cobalt principally by lattice djffusion. 

2.3. Cu-Co-Au 

The diffusion of radioactive 57CO into a CUa Au alloy 
has been sl udied 11:.q. Th(~ cliff usion coefficients were 
delermined ov('r till' /('1J),wrature range 650-900 'C. 
A thin layer ()(}O IItllllli(' layers) of ;,7CO was electrode­
p/):ijl(~d Oil luf'/;" f:,rnirwd polycrys(ulline alloy specr 

mens (1)](' alloys WI'I(' lIlade of components of an un­
:"p(~ci/i('d purity). AftC'r tilt> diffusion anneah, the 57CQ 
t'OIWI'II\ rat iOIl ~radil'l\\ wu~ determined through the 
IISf' or a "sl·lfHb~or"l iOIl mef.hod" [14-18]. The cal­
j'll\(I\(·.j IrlllTI dillll~ioll coefficients are listed in table 3. 
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A plot of the temperature dependence' of these data is 
shown in figure 5. A least-squares analysis of the data 
over the considered temperature range can be described 
by the following Arrhenius equation: 

D*CO-CU3Au=(4.2± 0.5) X 10-2 exp [-(2.00 

±O.04) eV· atom-1/kT] cm2Js. 

In addition to the given error in the value of the pre­
exponential factor, Do, there is a source of further un­
certainty of ± 10% to be considered. This additional 

'uncertainty in the value of Do arises because of the 
pre-exponential factor·s dependence on the geometry 

adopted for the activity measurements, as well as the 
choice of the absorption coefficient used in the 
calculations. 

2.4~ cu-co-o 

The interdiffusion of Co and CU2 0 at 800 and 1000 °C 
has been studied [19, 20], with special attention given to 

the reaction products (their rate of formation and their 
morphology) formed in the interdiffusion zone. 

2.5. Cu-Co-Ti-X 

Qualitative interdiffusion studies in the Cu-Co-Ti 
systems have been performed [21]. These studies were 
undertaken with regard to the diffusion soldering of 
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nAtA tSflk@n f .. nm Rrun' And Chriot.a. .... (6]. ThQ Activ.Qtion energy ohtAined in rodio.o.otive trooer diffueion expcri 

mente by Mackliet (11 is also shown for comparison. 

TABLE 3. Tracer diffusion coefficients 
of 57Co in CugAu. Data taken 
from Benci et al. [13]. 

T (OC)a D* (cm2/s) 

900 1. 08 x 10- 10 

850 4.77 x 10- 11 

800 1. 78 x 10- 11 

750 6.62 x 10- 12 

700 1.83 x 10- 12 

650 5.40 x 10- 13 

UTemperatures measured to ±2 °c. 

titanium and titanium alloys. No useful quantitative 
interdiffusion data were reported. 

2.6. Cu-Co·Zn 

The impurity diffusion of radioactive flO (:0 inlo Ilw 
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ordered super-lattice of CuZn (l3-brass) has been re­
ported [22]. The experiments were performed in the 

. temperature range 320-700 °C. The tracer was electro­
deposited on coarse-grained, polycrystalline, alloy (47.2 
at.% Zn) specimens of unspecified purity. 

After the diffusion anneals, the specimens were sec­
tioned on a lathe and the concentration gradients deter­
mined. From these data, the diffusion coeffici~Jllt5 w~ce 
calculated, and these are plotted in figure 6. A significant 
break was found in the curve at the transition tempera­
ture of 468°C, as has been noted for self-diffusion in 
l3.brass. In the disordered region above the transition 
temperature, the D versus (lIT) plot is linear, and 
the data follow the Arrhenius law: 

D=0.047exp (-26.90kcal·mol-1 /RT)cm2/s, 

obtained from a 1(~ast-s(Juares fit of the data. Very near, 
and just ahov(~ the transition temperature, there is a 
departure frol1l lillt~arily. 

At tlw trallsition .. ~mperature, where long-range 
order lwgins, til<' J) vnsus (lIT) curve begins decreas­
ing more rapidly, 

I n dIP ord"r,'c\ n·gi411l (helow 468°C), the logarith­
mil: 1'101 of J) Vf'rsus (liT) has a finite curvature. Since 
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the data do not fit a straight line, no frequency factor or 
activation energy is calculated for diffusion in the order­
ed super-lattice. 

The authors do relate by means of numerical and 
graphical interpolations their empirical curves of D (T) 
to a function of the long-range order parameter. 

2.7. Electromigration 

The elecuouanspon of 60CO ill cupver ha!:! uec:m 
studied [23]. The authors used an isothermal tracer tech­
nique [24, 25]. Using this method, a thin layer of less 
than.one micron of the radioactive tracer was electrolyti­
cally deposited on the end faces of two identical speci­
mens. The active surfaces were then placed in contact 
with each other and inserted between- the electrodes. 
A direct current of 2000 A was passed through the speci­
mens under vacuum. The current density was approxi­
mately ISO to 250 A/mm. Mter the experiment, the speci­
men was removed from the apparatus and separated 

at the plane of contact. The Gruzin residual-activity 
method [26] was employed to determine the distribution 
depth of the active material in the anode and cathode 
halves of the specimen. The diffusion coefficients 
determined in these experiments are listed in table 4. 
These D values are larger than those of Mackliet, being 
approximately the same as those of Sakamoto (see figure 

TABLE 4. Diffusion coefficients of 60Co 
in copper from electrotrans 
port experiments. Data taken 
from Kuzmenko et al. [23]. 

T (OC) D* (cm2/s) 

!:J!>b 8.7 x 10- 10 

945 7.0 x 10- 10 

939 6.3 x 10- 10 

922 4.4 x 10- 10 

882 1. 6 x 10- 10 

1). Because of the restricted temperature range and 

scatter in the data, no activation energy was calculated. 
In all the experiments the transport of the 60 Co was 

in the direction of the anode, thus indicating that the 
electron wind is the predominant force determining the 
mobility of the 60 Co ion in the copper lattice. Scattering 
cross sections and "effective charge ~umbers" were also 
calculated from these data. The author!:! did nul n:pu£L 
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, Data taken from Bend et al. [13]. 

the details of their spp.~imp.n prppsm'ltion, the precision 

of their data, or discuss possible error sources in their 
experiments, although the isothermal isotope technique 
utilized in the experiment has since been improved upon 
[27]. 

The elect!omigration of 58 Co has been investigated by 
Guilmin and coworkers [28] who employed a thin-layer 
technique (see e.g., refs. 29 31) in their experiments at 

1015°C. The radioactive cobalt impurities migrated 
towards the anode. An effective valency of -34 ± 5 was 
calculatedJrom the data. 

2.8. Thermomigration 

The thermomigration of cobalt in dilute solid CuoCo 
alloys has been reported [32, 33]. In both studies, a 
steady-state technique utilizing radioactive tracers 
was used to study the migration of the 60CO impurities. 
Spectrographi~ally pure copper (99_999%) was; used as 
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the sta.rting ma.terial in preparation of specimens eon­

taining a uniform concentration of the 60CO impurity. 
Mter removing the samples from the furnace, they were 
sectioned on a lathe and the radioactivity counted. 

Unfortunately, the results are conflicting. In the 
earlier investigation (32], the cobalt was found to mi­
grate towards the cold side of all the specimens, whereas 
in the most recent study [33], the opposite was found. 

2.9. Molten Metals 

The impurity diffusion coefficient of cobalt in liquid 
copper has been measured over the temperature range 
1100-1300 °C [34]. A modified capillary-reservoir tech­
nique was employed. The data will fit an Arrhenius-type 
equation wit.hin the limits of the experimental errors. 
For the liquid CuoCo system: 

D= (2.35 ±O.022 ) X 10-3 exp [-(11.39 
±O.26) kcal· mol-1/RT] em2/s. 
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After Bassani et aI. [22] 

These diffusion parameters are in contrast to those 
obtained from dissolution experiments [35] where the 
activation energy was determined to be 8.98 kcal/mol 
and pre-exponential factor, 2.4 X 10-4 cm2/s. 

Solid cobalt has been interdiffused with molten copper 
[12] and is discussed in section 2_2, Cu-Co Interdiffusion. 
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3. Copper-Iron 

3.1. Fe*~ Cu 

The rate of <;fifl'usion of radioactive iron in pure copper 
has been reported by a number of authors [1-9] .. Their 
results are shown in figure 7. The isotope effect measure­
ments of Mullen [5-7] appear to be the best values of 
all those reported. Mackliet's results [1, 2] were eon­

firmed by Mullen's careful experiments. Barreau et al. 
(8] obtained results which are in excellent agreement 
with Mullen and Mackliet. Tne experiments of Bernar­
dini and Cabane [9] are also in good agreement with 
Mackliet~ The only disagreement is in work published 
by Tomono and Ikushima [4] who later [10] conceded 
that pool-expelimclJlal It:dmique and cuntrol in lhdr 

experiments were responsible for the discrepancy. 
Mullen in his experiments plated 55 Fe and 59Fe 

isotopes onto single crystals of pure copper and diffused 
them at temperatures ranging from near the melting 
point down to 716°C. The specimens were sectioned 
after diffusion and the relative diffusivity of the two iron 
isotopes determined (see table 5). The tracer diffusion 
parameters, Do and Q, in the Arrhenius equation were 
determined by a least-squares fit of Mullen's data and 
most of Mackliet's data. The resulting Arrhenius­
expression with estimated errors is: 

D
F
: = (1.01 ±0.23) exp [~(50.95±0.46) 

kcal . mol-1/RT] cm2 /s, 

and should accurately indicate the rate of diffusion of 
iron tracers in copper in the temperature range 700-1050 
°C. This temperature dependence obtained from tracer­
sectioning techniques has been confirmed in experi­
ments where the Mosshauer effect was the tool em­
ployed [11-15]. 

Sotskov et al. [3] studied the motion of phase bound­
aries in the Fe-Cu system with radioactive isotopes. 
Assuming that the phase boundary motion is determined 
by diffusion processes occurring within the adjacent 
phases, they were able to calculate diffusion coefficients 
(approximately 10-10 cm 2/s) for radioactive iron diffus­
ing into pure copper in the temperature range 925-1050 
°C (see fig. 7). Although the resultant coefficients are of 
the right order of magnitude., they are somewhat less re­
liahle than the above-mentioned studies because of the 
additional factors introduced by the accompanying 
phase transformations. 

3.2. Cu*~ Fe 

The diffusion of radioactive 64 Cu has been measured 
by Lazan~v and Colikov [16-19], Anand and Agarwala 
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Data extracted from the investigations of /2-4, 6,8}. 

[20), and by Rothman and coworkers [21]. The re­
sults' are not in agreement (see fig. 8). The data of Roth­
man et a1. show a large discontinuity in the Arrhenius 
plot of the tracer diffusion coefficient at the al'}' trans­
formation temperature, whereas the data of the other 
two groups do not. 

As was demonstrated in the paper of Rothman et a1., 
the major discrepancy between the results probably 
was d.ue to grain boundary contributions which strongly 

affected the 'Y-phase measurements of Anand and 
Agarwala. Trapping of the diffusing copper by inclusions 
or impurities also possibly occurred in these experiments 
of Anand and Agarwala. The same may be said of the 
Soviet investigation. . 

In the" experiments of Rothman et at, two grades of 

iron were utilized, Armco iron and a higher purity grade, 
Ferrovac E. The 64 Cu isotope was evaporated onto the 
surfaces of these iron specimens and diffused at tem­
peratures in the range 850-1368 °e. The copper tracer 
diffusion coefficients obtained from Gaussian or near­
Gaussian penetration plots. are listed in table 6. The 
results indicated that the' grain boundary diffusion of 
copper was predominent at temperatures ;§ 815°C in 
the lY-pha~e. In the 'Y-phase. grain boundary diffusion 
predominated at temperatures ~ 1250 0c. Autoradio­
graphs confirmed the diffusion of copper in the grain 
boundaries. Additionally, autoradiographs from the less 
pure iron specimens indicated the agglomeration of 
64 Cu near the grain boundaries, leading the authors to 
speculate on the trapping of 64 Cu by inclusions or a 
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TABLE 5. Tracer diffusion coefficients of 55Fe in copper. Data taken from 
Mullen [6] . 

T COC) D~SFe (cm2/s) 1-DS9Fe/DS5Fe Isotope Effect (E) 

1056.1a 4.38 x 10- 9 0.0256 ± 0.0018b 0.742 ± 0.052b 

1056.1 4.46 x 10- 9 0.0235 ± 0.0012 0.681 ± 0.036 

927.4 5.16 x 10- 10 

927.4 5.11 x 10- 10 0.0234 ± 0.0015 0.679 ± 0.043 

767.3 2.10 x 10- 11 0.0224 ± 0.0010 0.650 ± 0.028 

716.8 5.76 x 10- 12 0.0203 ± 0.0018 0.590 ± 0.053 

aA1'1 te.mperatures ±1 °C. 

bErrors shown are least-squares standard error. 

TABLE 6. Tracer diffusion coefficients 
of 64Cu in pure iron. Data 
taken from Rothman et al. [21]. 

T (OC) Phase D* (cm2/s) 

1368a y S.20 x 10- 10 

1368 y 5.03 x 10- 10 

1315 y 2.56 x 10- 10 

1315 y 2.45 x 10- 70 

1285 y 1.55 x 10- 10. 

1285 y 1. 52 x 10- 10 

901.6b a 5.1 x 10- 11 

867.0 2.2 
- 11 

Q'. x 10 

854.5 a 1.8 x 10- 11 

aTemperatures in the y-phase measured to 
±3 °e. 

bTemperatures in the a.-phas e measured to 
±1 °C. 

precipitation process connected with impurities in 
solution. 

These results of Rothman et al. are consistent with 
the interdiffusion results of Speich and coworkers [22] 
who also found a discontinuity in the interdiffusion 
coefficient in the a/y transformation (see fig. 8). Since 
Speich et a1. mea5ured jnterdjffu~ion in di1ute Fe-Cu 
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(0-2 wt%) alloys" their measured interdiffusion co­
efficients should be nearly equal to D tu ..... Fe' In the 
y-phase, they report Do = 1.8 em 2/S and Q = 70.5 
kcal/mol. In the a-phase above the Curie temperature, 
Do=8.6 cm 2/s and Q=59.7 kcal/mol. Below the Curie 
temperature (759°C), an anomalous decrease in D 
occurs. This work is discussed more thoroughly in sec­
tion 3.5, on interdiffusion in Cu-Fe. 

The effect of minor alloying additions to iron (such as 
is found in mild steels) on the copper tracer diffusion 
co.efficient was investigated by Lindner and Karnik 
[23], and by Ras60ul and coworkers [2-1.]. In the experi­
ments by Lindner and Karnik, the iron contained 0.13% 
carbon (as well as 0.63% Mn, 0.16% .Ca, < 0.1% Si" 
Ni, Cr, Sand P). The tracer diffusion coefficients (see 
fig. 9) were determined by measuring the decrease in 
surface activity resulting from diffusion and absorption. 
Their measurements, made over a temperature range of 
800 tu 1200 °C, yidded diITul5ion coefi'lcientl5 which can 
be described by a single Arrhenius expression, with 
Do=3 cm2 /s and Q=61 kcal/mo1. On aD vs lIT plot, 
the line from this Arrhenius equation is comparable to 
that of Anand and Agarwala, showing no discontinuities 
and lying about midway between the separate lines 
describing diffusion of copper in pure a-iron and copper 
in pure y-iron, as determined by Speich et a1. and 
Rothman et a1. 

Rassoul and coworkers (also working with a mild 
steel) made their meMmrements over a hroarl tempera­

ture range 80 as to encompass both the a- and y-phases 
and the t wo·phase region between them. Their iron 
(stee] ]020) specimens contained 0.20% carbon, and a 
thin-layer method [25, 26] of determining the copper 
tracer djffu~ion coefficient was employed. Figure 9 
eontains tlw Arrhenius plots of these data. The diffusion 
codJlcienl1'\ are several orders of magnitude higher than 
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Tilt' eift'ct of the Curie temperature and the air phase transition on the rate of tracer diffu~ion is rt'udily apl':ln'uL 
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dents as determined by Speich and coworkers [22) are also shown for comparison. 
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other results reported above, which is surpnsmg. 
Nevertheless, a pronounced discontinuity in diffusion 
coefficient values is found at each phase boundary. 
Reliable activation energies probably should not be 
expected from this data because of the small number of 
measurements in each phase. The authors' published 
Do and Q values appear to be in error and are incon· 
sistent with their published diffusion coefficient values. 

Self·diffusion studies of radioactive Iron isoloP4':-; III 

Fe-Cu alloys (containing 0.6 a1.% eu) in thp narrow 

temperature range of 840 to 880°C were in(~ondusivc' 
[27J. The copper alloying addition apparently did not 
cause a change in the value of the iron self-diffusion 
rate when in pure a-iron. Values of the coefficients were 
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FIGURE 9. The copper tracer diffusion coefficient in mild steels as a function of recip­
rocal absolute temperature. 

The effect of minor alloying additions and phase transformations is readily apparent. Data excerpted from the papers 
of Lindner and Karnik {23j, and RasSioul and coworkers (24]. 

of the order of 10-12 cm2 /s in the temperature range 
investigated. Although an isotope effect was looked for, 
none was found. 

Zhukhovitskii and coworkers [28] measured iron 
self-diffusion rates in two-phase Cu-Fe alloys. In their 
experiments, thick layers of 1l9Fe were electrolytically 

TABLE 7. Effective diffusion coefficient5 
of 59Fe in Fe-eu alloys. Data 
taken from Zhukhovitskii et al. 
r 2 8] • 

Fe-Gu Alloy D* (cm2js) 
(wt% eu) 900 °C 1000 °e 

5.0 5.0 x 10- 73 
3.37 x 10- 12 

9.9 4.29 x 1U- 12 

19.1 7.S x 10- 13 5.84 x 10- 12 

40.9 1. 08 x 10- 12 6.45 x 10- n~ 

50.4 1. 63 x 10- 12 

60.8 2.37 x 10-:- 12 
9.28 x 10- 12 

79.8 4.75 x 10- 12 
1. 89 x 10- 11 

90.0 8.35 x 10- 12 3.40 x 10- 11 

97.6 2.24 x 10- 11 6.13 x 10- 11 
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deposited on a number of alloys (see table 7). The dif­
fusion temperatures were 900 and 1000 ""C. After dif­
fusion anneals of 100 to 150 hours in vacuum, the loss 
in ,B-activity was measured, and an effective iron self­
diffusion coefficient determined using the analysis 
described by Zhukhovitskii, Kryukov, and Geodakyan 
[29, 30]. The coefficients are termed "effective" dif-
fusion coefficients since the measurement encompasses 
the mobilities in two different phases as weB as grain 
boundaries. The results of the calculations are listed in 
table 7. Figure 10 shows how the iron mobility varies 
with copper concentration. The authors compared their 

results to those predicted by several theoretical models 
[31, 32]. Meeting with little success, they instead of­
fered a new mathematical treatment. 

Iron self-diffusion coefficients were shown to be af­
fected by the presence of copper (0.27 at.%) in a-iron 
single crystals [33]. Measurements made in the tem­
perature range 778-901 °C revealed a dehaneement in 

the iron-tracer mobility relative to pure iron crystals 
(see table 8). Although the temperature range of the 
investigation was rather narrow and measurements 
were made at only three temperatures, a curvature was 
found in the Arrhenius plot and "did not allow an activa­
tion energy to be determined. 

An isotope effect for iron self-diffsuion in single crys­
tals of a·iron containing 0.27 at. % copper did not differ 
(within experimental error) from those measurements 
made with pure iron specimens (34]. The isotope effect 
values (0.39 at 778.3 °C, and 0.45 at 901°C) are close 
to those obtained in earlier experiments [35] by other 
workers. 
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FIGURE 10. Effective diffusion coefficients of s9Fe as a function of copper concentration 
in Fe·eu alloys at 900 and 1000 dc. 

Data laken from Hsin el al. [28}. 

3.4. Cu*~ Cu-Fe 

Dilute alloying additions or iron to pure copper have 
been found to decrease the rate of copper self-diffusion 
in the neighborhood of 1020 °C [36]. Utilized in the 
serial-sectioning experiments were polycrystalline and 
single crystal alloy specimens. Alloy compositions, 
temperatures, and tracer diffusion coefficients are 
listed in table 9. The results can be expressed mathe­
matically. by the relation: 

D~~ Cu.Fe = D~u-> CU (1 + b . ere), 

where b= (-5 ± 1.5) and ere = atom fraction of iron 
soolute. 

Lazarev and Golikov [16, 18] investigated both the 
volume and grain boundary diffusion coefficients of 
64 Cu, not only in pure iron, but also iron alloys containing 
0.18 and 1.2 wt% Cu. Since the results they obtained in 
their pure iron specimens are in conflict with more 
reliable investigations, some strong doubts must be cast 
upon these tracer studies in Fe-eu alloys. 

3.5. Cu-Fe Interdiffusion 

Although a variety of interdiffusion studies have been 
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TABLE 8. Tracer diffusion coefficients 
of S9Pe in single crystals of 
Fe-eu (0.27 at.%). Data from 
Irmer et a1. [331. 

T COC) D* (cm2/s) 

901 4.7 x 10- 12 

809 5.24 x 10- 13 

778.3 2.07 x 10- 13 

TABLE 9. Tracer diffusion coefficients 
of 64CU in Cu~Fe alloys. Data 
taken £rom Bocquet [36]. 

eu-Fe Allay D* (cm2 /s) 
(at.% Fe) 

1078 1. 44 :t 0.04 4.68 x 10- 9 

1021 0 (pure eu) 2.3U x lU- 9 

1023 0.2 :t 0.01 2.08 x 10- 9 

0.5 ± 0.02 2.04 x 10- 9 

1020 1.38 ± 0.04 2.12 x 10- 9 

1. 45 ± 0.04 1. 95 x 10- 9 

2.40 ± 0.05 1. 98 x 10- 9 

992 1. 82 ± 0.04 1.26 x 10- 9 

performed in the Cu-Fe system (with a variety of re­
sults), the two most definitive investigations [22, 37) 
are in disagreement with each other. Speich and COw 

workers [22) determined interdiffusion coefficients 
(and solubility limits of copper) in the alpha and gamma 
phases of the Fe-Cu system from concentration-pene­
tration curves obtained from the electron-probe micro­
analysis of copper-plated polycrystalline iron diffusion 
couples. In the other study, Krishtal and coworkers 
[37] also employed an electron microprobe to analyze 
their couples, finding concentration-dependent inter­
djffusion coefficients. The results of Krishtal et a1. are 
not in agreement with the carefully performed tracer 
experiments of Rothman et al. (Cu in Fe) [21] or Mullen 
(Fe in Cu) [6]. whereas the data obtained by Speich 
et a1. (who only measured the interdiffusion of copper 
in iron) are in good agreement with the appropriate 
tracer data. 

Speich et a1. performed their interdiffusion experi-
ments in the temperature range 700-1020 °C. The con­
centration-penetration data were analyzed under the 
assumption of a concentration-independent interdiffu­
sion coefficient (because of the low solubility of copper 
in the a· and ")I-phases of iron [38]. The appropriate 
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solution to the diffusion equations (39-41] (with some 
iteration) yielded the interdiffusion coefficients (average 
values) shown in figure 8 and listed in table 10. 

TABLE 10. Average copper interdiffusion 
coefficients in the Fe-Cu 
system. Data taken from 
Speich et al. (22). 

T COC) Phasea jj (cm2/s)b 

1020 y 2.63 x 10- 12 

989 Y 1.04 x 10- 12 

960 y 4.82 x 10- 13 

929 y 3.31 x 10- 13 

859 0. 2.68 x 10- 11 

832 Ct 1.18 x 10- 11 

805 Ct 6.97 x 10- 12 

776 2.00 x 10- 12 

750 0; 8.77 x 10- 73 

730 0; 2.10 x 10- 1 ,; 

699 a 8.09 x 10- 14 

a T11e ill tenll ffu::> lun coefficient in the 
a-phase (0-2 wt%) and the y-phase (0-5 
wt%) is assumed to be concentration 
independent. 

bThe mean deviation waS no greater than 
±20% of the average value. 

An anomalous decrease of the interdiffusion coeffi­
cient is. found to occur below the Curie temperature 
(--- 759°C)) not unlike that found for other substitutional 
elements diffusing in iron. Additionally, a large dis­
continuity in the temperature dependence of the inter­
diffusion coefficient is observed at the air transforma· 
tion, similar to the discontinuity in the Arrhenius plot 
of the copper tracer diffusion coefficient data of Roth­
man et al. [21]. 

The interdiffusion coefficients of copper and a-iron 
(over the composition range 0--2 wt% Cu) in the para· 
magnetic temperature range (776-859 °C) obey an 
Arrhenius equation. A least.squares fit to the data 
gives the following Arrhenius equation: 

D=8.6 exp (-59.7 kcaI' mol-1 /RT) cm2/s, 

to describe the interdiffusion coefficient. Similarly, the 
interdjffusion coefficients of copper and y.iron (0--5 
wt % eu) can he described by the Arrhenius equation: 

D= 1.8 exp(-70.5 kcal' mol-1IRT) cm2/s. 
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Speich and coworkers experienced a great deal of 
difficulty in obtaining reproducible concentration­
penetration curves in their interdiffusion experiments 
with y-iron. The low lattice diffusivity of the copper and 
the rapid diffusion of copper along austenite grain 
boundaries combined to mask the true interdiffusion 
coefficient. 

Other interdiffusion investigations have been of a 
mostly qualitative nature. Arnold (42] and Ponomarenko 
[ 43] observed very little interdiffusion of copper in iron 
at temperatures in the neighborhood of 1000 °C. Guillet 
and Bernard [44], Arkharov et al. [45], as well as 
Bokstein and coworkers [46] observed the preferential 
movement of copper in the grain boundaries of com-
mercially pure iron during interduffusion \ studies. The 
results obtained from interdiffusion inve&tigations 
utilizing copper and mild or plain carbon steels also 

show that the copper migration is essentially through 
the grain boundaries [47-49]. Kuczynski and Alexander 
[50] made a metallographic study of the interdiffusion 
occurring at interfaces formed during the sintering of 
copper wires to flat iron blocks (and vice versa). 

Sirca and coworkers [51-62] interdiffused copper and 
iron, where the copper was molten and the iron was ill 
the form of a crucible. The results indicated that volume 
diffusion was very slow- the intergranular penetration 
of copper being predominant. Nevertheless, an approxi­
mate value of 10-11 cm2/s for the copper interdiffusion 
coefficient at llOO °C was estimated. Sirca also added 
phosphorus, silicon, beryllium, chromium, tin, antimony, 
and aluminum to the copper and observed the effect of 
these dilute alloying additions on the interdiffusion 
process. Only phosphorus, beryllium, and silicon were 
found to moderate the grain boundary penetration of 
copper. 

Gorbunov, in his book [63], reports experiments with 
copper diffusion coatings on iron. The iron surface was 
saturated with copper by being packed in five copper 
powders at temperatures 1150 to 1250 °C. It was found 
that the thickness of the copper coatings increased with 
temperature and duration of the cementation anneal. 

The interdiffusion processes occurring between cop­
per and steels has attracted much attention. Melford 
[,47] plated copper onto a mild steel, interdiffl,lsed at 
875°C, and then investigated the microsegregation of 
the copper at grain boundaries with an electron-probe 
microanalyzer. Bozhko [48] correlated the width of the 
interdiffusion zone with\ grain: boundary purity in' steels. 
Rolls and Badelek [49] interdiffused copper and plain­
carbon steels and found that the copper penetration was 
essentially intergranular at llOO °C, and volume at 
1200 °C. Pokhmurskii and coworkers [64-70] have 
investigated the effect of protective coatings of copper 
on iron and steel during fatigue and corrosion-fatigue. 

3.6. Cu-Fe-Ag 

Arkharov et al. (71] qualitatively followed the inter-

diffusion processes occurring between silver and 
polycrystalline Cu-Fe alloys (0.001-0.04 wt% Fe) at 
500°C. The silver penetration was primarily through 
the grain boundaries rather than through the lattice. 
Varying iron concentrations caused no substantial 
changes in the interdiffusion of the silver. The addition 
of antimony and beryllium to the Cu-Fe alloys and their 
effects on the interdiffusion process were also observed. 

Arkharov and coworkers (45] also examined the 
interdiffusion occurring between silver and copper­
bearing steels at 900°C. Metallographic examination· 
revealed little or no preferential diffusion of silver in 
the grain boundaries of the steels. 

3.7. Cu-Fe-AI 

When copper, containing aluminum alloy additions 
uf 2.5 i:lIlU 8 i:lL. %, Wi:l:S iIlLt::n.lifTulSt::u wiLh hUll aL 1100 
°C, the aluminum was observed to cause an acceleration 
in the grain boundary diffusion rate of copper [60, 61]' 

3.8. Cu-Fe-B 

The experiments of Lazarev and Golikov [18, 19], 
described in sections 3.2 and 3.4, revealed that dilute 
alloying additions of boron (0.003 wt%) to iron have 
little effect on copper diffusing through the lattice in 
alpha or gamma-iron. Boron does reduce·the amount of 
copper diffusing in the iron grain boundaries. See figure 
12. 

3.9. Cu-Fe-Be 

Copper, containing beryllium (3.25 at. %), when 
interdiffused with iron in the temperature range 1000-
1100 °C, was found to exhibit a minimum amount of 
grain boundary penetration [60, 61]. 

3.10. Cu-Fe-C 

The influence of copper on the mobility of carbon in 

iron and steel has attracted inter~st because of its 
obvious techn'ological importance. The results from a 
number of early papers [72-761 indicate that the effect 
of the copper alloying additions is minimal, moderating 
the carbon mobility in a- and y..;iron, if anything. More 
recently though, Krishtal in his book [77, p. 105] writes 
of "slight" enhancement of the carbon mobility in 
austenite due to the presence of copper. Effective 
diffusion coefficients for carbon in the multiphase 
ternary alloys were calculated with the data obtained 
from metallographic investigation and weight losses 
during decarburization. The results are summarized 
in table 11. 

Rolls and Badelek [49] have reported the results of a 
preliminary study of the influence of carbon on the 
interdiffusion of copper in plain carbon-stee1s at IlOO 
and 1200 °C. The results revealed that the mode of 
copper diffusion in austenite was essential1y inter­
granular at llOO °C and volume diffusion at 1200 °C in 
the steel specimens of low carbon content (0.2% C 
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TABLE 11. Effective carbon diffusion coefficients in austenitic Fe-C-Cu 
alloys. Data taken from Krishta1 [77]. 

Fe-C-Cu A110ya 
(a t. % Cu) 

Diffusion Coefficients 
(10 -7 cm2 /s) 

Q (kca1/mo1) 

920 950 990 1050 1100 
°C °C °C °C °C 

1. 02 1. 78 2.51 3.64 6.51 

2.04 1. 98 2.66 4.07 7.01 

3.10 2.14 2.88 4.59 7.67 

3.95 2.40 3.26 4.85 8.32 

aCarbon content approximately 4 at.%. 

versus specimens containing 0.85% C). Electron-probe 
microanalysis, both perpendicular and parallel to the 
copper/steel interface, revealed copper-enriched zones 
in the substrate of the high-carbon steel at llOO °C, 
whereas there was found to be a linear decrease in 
copper concentration with distance from the interface 
displayed by the low-carbon steel. For interdiffusion 
anneals at 1200 °C, both of the low and high-carbon 
steels showed the presence of copper-rich bands in the 
substrate parallel to the interface, although copper 
concentrations were 1.5 times higher in the high-carbon 
steel. 

Other [53-57] unpublished research notes that carbon 
hinders the mobility of copper during the interdiffusion 
of copper and iron. 

3.11. Cu-Fe-Cr 

The tracer diffusion of 59Fe in Cu-Cr alloys (0.8% Cr) 
was found by Barreau and coworkers [8] to be essentially 
the same as the lattice diffusion rate in unalloyed 
O.F.H.C. copper. These results are discussed in sections 
3.1 and 3.21. 

When copper containing a dilute alloying addition of 
chromium (0.92%) was interdiffused with pure iron at 
llUU "'C, very little copper penetration was observed 
[60, 61]. The copper was apparently tied up at the inter­
face where several phases were formed during inter­
diffusion. 

A metallographic examination of the diffusion 
processes encountered during the sintering (at 1300°C) 
of Fe-Cr-Cu alloys (containing 2-18% Cr and 4% Cu) 
has been reported by Ahmed [78], and Ahmed and 
coworkers [79]. 

3.12. Cu-Fe-Mo 

The experiments of Lazarev and Golikov [17-19], 
described in sections 3.2 and 3.4, showed that dilute 
alloying additions of molybdenum (0.7- 1.0 wt%) have 
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10.1 1.0 x 10- 1 31. 6 

11. 0 8.7 x 10- 2 31.1 

11. 9 8.1 x 10- 2 30.6 

12.6 6.92 x 10- 2 30.0 

little effect on copper diffusing through the lattice in a 
and 'Y·iron. Molybdenum does reduce the amount of 
copper diffusing in the iron grain boundaries. See 
figure 12. 

3.13. Cu-Fe-Ni 

The effect of copper diffusion on the magnetic 
properties of permalloy films (Ni-Fe alloys) has resulted 
in several investigations [80- 86]. 

The data of Crowther [80], and Grishechkin and co­
workers [83] are in essential agreement. The inter­
diffusion process occurring between thin films of copper 
and Ni-Fe alloys required an activation energy of 34 
kcal/mol. 

The interdiffusion experiments of von N eida and 
Hagedorn [81] yielded an activation energy 47.3 kcal/ 
mol. Why their value of the activation energy should be 
so much higher is not readily apparent. Since all three 
investigations dealt with thin films, something more 
than a simple lattice interdiffusion process may have 
been measured in these experiments. 

The interdiffusion processes occurring between 
Monel (70%Ni-30%Cu) and steel during industrial 
heat treating operations (temperature range 9OG-IOOO °C) 
were observed by Golovanenko [87]. The interdiffusion 
of iron into the Cu-Ni alloy led to the formation of 
multiphase zones at the interface. 

Smiryagin and Kvurt [SS] investigated the effect of 

copper on the rate of iron diffusion in nickel- finding 
that it causes an increase. 

3.14. Cu-Fe-O 

Rapp and coworkers [89] interdiffused pure iron and 
Cu2 0 at ] 000 ° C and then examined the reaction prod­
ucts formed. Copper and iron oxide were found to exist 
in an aggregate arrangement. The kinetics of this dis­
placement reaction are presented in detail [90]. 
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TABLE 12. Effective carbon diffusion coefficients in austenitic Fe-5i-C-Cu alloys. 
Data taken £rom Krishta1 [77]. 

Fe-5i-C-Cu A110ya Diffusion Coefficients Do (cm2/s) 
( 1 0 • 7 cm 2 / 5 ) 

Q (kcal/mo1) 

(at. % 5i) (at. % Cu) 890 920 950990 1050 1100 
0c °c °C °C °c °c 

1.2 0.09 2.34 3.10 4.03 5.75 

1.2 0.21 2.S7 3.31 4.31 6.03 

1.2 0.30 2.75 3.55 4.56 6.45 

1.2 0.39 2.92 3.89 4.80 6.92 

1.2 0.48 3.02 4.26 5.31 7.41 

aAt eutectoid compositions. 

3.15. Cu-Fe-P 

Sirca [52, 60, 61] interdiffused copper, contammg 
small amounts of phosphorus (up to 1.2%), and iron at 
temperatures up to BOO ° C. His results indicate that 
the phosphorus additions minimized the amount of 
copper diffusion down the iron grain boundaries. 

The changes in the microstructure of Fe-Cu alloys 
induced by the diffusion of phosphorus (from a vapor 
phase) at 1950 DC were observed by Claussen [91]. The 
results were much the same as those observed in low 
carbon-steels. Hauk [92] concludes in her review that 
phosphorus accelerates copper mobility in steel. 

3.16. Cu-Fe-Sb 

The addition of antimony (up to 8%) to copper was 
found to hinder copper interdiffusion when the alloys 
were interdiffused with pure iron at lloo °C [60, 61]. 
The decelerating effect increased with increased 
antimony content. There appeared to be little or no 
effect of the antimony on the migration of copper in 
the iron grain boundaries. 

3.17. Cu-Fe-Si 

Sire::. [60, 61] interdHfnsed iron ::.nd C:n.S1(2%) 
alloys at lloo DC. His. results indicate that copper 
diffusion was primarily via the lattice with a minimal 
grain boundary contribution. 

Bozhko [48], while studying the mechanism by which 
molten copper penetrates into steels, observed that 
grain boundaries enriched with silicon were probably 
responsible for the lack of penetration of liquid copper 

into a 4.5% silicon-steel. 

3.18. Cu-Fe-Sn 

Dilute alloying additions of tin (1.9%) appear to 
hinder the interdiffusion of copper at lloo °C in CufFe 
couples [60, 61]. The autoradiographic results of these 

9.11 13.0 2.04 x 10- 2 26.4 

9.56 13.8 2.14 x 10- 2 26.4 

10.2 14.5 2.29 x 10- 2 26.4 

10.8 15.9 2.34 x 10- 2 26.3 

11. 6 16.6 2.52 x 10- 2 26.3 

experiments indicate that the copper and tin migrate 
primarily through the grain boundaries. 

3.19. Cu-Fe-Zr 

The interdiffusion of copper with Zircaloy-2 .(a 
Zr-alloy whose major alloying constituent is 1.38% 
Sn) over the temperature range 500-600 °C has been 
studied [93] at annealing times of up to 500 hours. The 
width of the interdiffusion zone was measured asa 
function of time. The existence of several intermetallic 
compounds in the interfacial area was noted. For a 
more detailed discussion, see the section dealing with 
Cu-Zr interdiffusion in Part III of this review series [94]. 

3.20. Cu-Fe-X 

The effect of copper alloying additions to ternary 
alloys of Fe-Si-C and the consequent influence on the 
carbon -mobility was investigated by Krishtnl [771-

Effective diffusion coefficients of carbon in austenite 
were calculated (for the eutectoid compositions) from 
decarburization data and are tabulated in table 12. The 
results indicate a very slight acceleration in the carbon 
diffusion rate. 

Hume and coworkers [95, 96] interdiffused copper and 
scvcral selccted stainlcss steels over the temperature 

range 600-1050 DC. The stainless steels chosen had 
nominal compositions of 17Cr·13Ni-2.5Mo, 25Cr-20Ni, 
and 25Cr-12Ni·3W. The results revealed that, in the 
solid state, copper interdiffuses very slowly (maximum 
penetration at 1050 °C after 10,000 hours was only 3 mm; 
at 700 DC, less than 30 microns in 10,000 hours), Well 
defined grain boundary penetration of the copper was 
observed. Copper penetration was found to be de­
pendent upon nickel content and metallographic struc­
ture. A noticeable Kirkendall effect was recorded, lead· 

ing to considerable porosity in the copper adjacent to the 
interface. Similar interdiffusion experiments were done 
with copper in the liquid state (1100-1200 ° C). Rapid 
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penetration rates by the liquid copper and lack of a 
defined interface made the recording of any quantitativt~ 

data impossible. 
Interdiffusion between copper and steel that had been 

bonded by explosive welding was investigated by Trueb 
[97]. He found the interdiffusion rate to vary cyclically 
along the weld interface, probably because of the unique 
concentration and distribution of lattice defects that 
characterize explosively-bonded interfaces. 

Interdiffusion processes occurring in Cu-Ni plated 
carbon-steels and Cu-Ni.Cr plated carbon-steels (during 

anneals at 200 to 600°C for 50 to 600 hours) were 
followed by Csokan and coworkers [98] with an electron 
microprobe and metallographic analysis. 

Iron-silicon diffusion coatings on copper were found 
to be multiphase and somewhat protective of the sub­
strate in some acids [99]. 

Sirca [60, 61], in addition to his interdiffusion studies 
with liquid copper and iron, also interdiffused molten 
copper with a number of austenite and ferritic steels. 
Interdiffusion was allowed to take place between 1000 
and 1100 °C. Grain boundary diffusion of the copper 
was found to predominate in the austenite steels 
(18-8 stainless, manganese steels, nonmagnetic steels, 
and Ni-Cr steels). Preferential diffusion of the copper 
down grain boundaries was absent in the ferritic steels 
(Cr-steels, Si-steels, and V-steels) employed in the 
investigation. 

The radiation enhancement of diffusion in Ni-Fe-Cu­
Mo alloys has been reported by Ferro and Soardo [82]. 
Evidence on the contribution to the radiation-enhanced 
diffusion from mechanisms other than the excess­
vacancy one was 'obtained from experiments on direc­
tional ordering in the alloys. The authors suggest that 
some sort of interatitinlcy meehaniam givea rise to reor­

dering during irradiation and that the excess vacancy 
concentration introduced by the irradiation contributes 
to diffusion only if the ordering takes place after 
irradiation. 

3.21. Grain Boundary Diffusion 

A quantitative measurement of the rate of radio­
active iron diffusing in the grain boundaries of pure 
copper has been reported by Barreauet a!. [8]. In their 
experiments, radioactive 59Fe was electrolytically de­
posited onto polycrystalline (mean grain size ~ 250 /Lm) 
copper (O.H.F.C. grade) specimens and diffused at 
temperatures from 460-1070 °C. Below 700°C, signifi· 
cent grain boundary contributions to the total diffusion 
process were revealed in autoradiographs of the speci­
mens. Using Fisher's.analysis (100], they found that the 
following Arrhenius expression approximately charac­
terized the grain boundary diffusion rate of 59Fe in 
copper: 

8· Dgb =6.04x 10-3 exp [-(50.5±10.0) kcal . mol-I! 
RT] cm3 /s. 
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wlwre () is the grain boundary width. 
The grain boundary diffusion of copper in alpha-iron 

has been measured. Experiments in the a-phase have 
been reported by Bergh [101, 102], and Golikov and 
Lazarev [16-18]. The results of these two independent 
studies are in disagreement. Bergh [101, 102] used a 
novel experimental technique based upon chemical 
interdiH·usion and special chemical separation pro­
cedures [103] in his investigation. In the experiment, a 
small piece of pure a-iron was covered with a copper 
layer and then interdiffused at the desired temperature. 

By measuring the grain boundary length per unit area of 
iron surface, establishing the copper concentration 
gradient in the mouths of grain boundaries, and de­
termining the amount of copper introduced by diffusion 
(both through the lattice and grain boundaries), a grain 
boundary diffusion coefficient can be derived. 

TABLE 13. Copper grain boundary diffusion 
coefficients in a-Fe. Data 
taken from Bergh [102]. 

T (OC) Dgb (cm2 /s) 

772 2.5 x 10- g 

692 1.2 x 10- 8 

677 9.0 x 10- 9 

The results are tabulated in table 13 and shown in 
figure 11. When a straight line is fitted to the three data 
points, an activation energy and pre-exponential factor 
are found, giving the following Arrhenius expression: 

The error in the grain boundary diffusion coefficient, 
± 12% (due principally to the x-ray fluo~escence and 
microprobe analysis errors), yields an error of ± 7.0 
kcal/mol in the activation energy and ± 10 cm2/s in 
the pre-exponential factor. . 

Lazarev and Golikov [16-18], in measuring the rate 
of copper diffusion in the grain boundaries of alpha-iron, 
used an extension of Gruzin's method of measuring the 
residual activity to determine grain boundary diffusion 
coefficients [104, 105]. 

Radioactive 64CU was electrodeposited onto the 
surface of the iron specimens and diffusion annealing 
was done in the temperature range 707-870 0c. The 
temperature dependence of the calculated coefficients 
is displayed in figure 12. Also determined in these 
experiments was the effect of dilute alloying additions 
of copper (0.2 and 1.22 wt%), boron (0.003 wt%), and 
molybdenum (1.0 wt%). As can be seen in the Arrhenius 
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FIGURE 11. The grain boundary diffusion coefficient of copper in a-iron as a function 
of the reciprocal absolute temperature. 

The lemperature dependence can be described hy the Arrhenius expression: D'b=80 exp (-43,4 kc:i1 • mol" '!R1) 
cm'/s. Dala from Bergh \102]' 

plots, the values of the multiplicative factor, (). D gb , 

which characterizes the mobility of copper in the grain 
boundaries, is less for t.he alloys than pure iron - the 
differences increasing at lower temperatures. The 
Arrhenius expressions found suitable to describe the 

grain boundary diffusion process were: 

for pure iron: 

(). DV.b= 2.2 X ]0- 8 exp (-28.0 kcal' mol-1/RT) em3/s, 

and for the Fe-Cu (0.2 wt%) alloy: 

fj . D!!'o= 6.5 X 10-6 exp (-38.0 kcal' mol- 1/RT) ems/so 

The authuTs, frum their enOl' aJlaly~hs, claim thal tlH:'! 

greatest deviation from the mean of three experiments 
is 30% for the multiplicative factor, 0 . Dgb • 

Lazarev and Golikov [19] also measured the rate of 
copper diffusion in the grain boundaries of gamma-iron. 
The experimental technique in these measurements was 

that of serial sectioning (although the data and calcula­
tions were handled in the same manner as the above 
investigations with alpha-iron). The results, shown in 
figure 12, revealed a temperature dependence in the 
gamma-iron which is best described by the following 
equation: 

o . D!!.b= 1.6 X 10-6 exp (- 42.5 kcal . mol-1/RT) cm3Js. 

As in the alpha-phase, the addition of !:imall 4uaHliLietl of 
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boron (0.003 wt%) or molybdenum (0.7 wt%) decreases 
the mobility of copper in the grain boundaries of gamma· 
iron (see fig. 12). 

One wonders at the sensitivity of the experimental 
technique employed by Lazarev and Golikov [16-19] 
:;ince the volume diffu:5ion coefficient5 they obtained fOl-

64CU diffusing in pure iron failed to reveal an anomaly 
when' passing through the Curie temperature. 

There have been a number of other studies dealing 
with the penetration and microsegregation of copper in 
iron grain boundaries. Sakharova [106] , in her investiga­
tion on the diffusion of copper into commercial iron at 
1300 °C, noted that copper moved between the grains. 

Melford [47] observed the grain boundary diffusion of 
copper in commercial mild steels, as did Rolls and 
Badelek [49]. The grain boundary diffusion of molten 
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copper in iron and steels has been st"udied. Sirca and 
coworkers [51, 52, 60-62] were interested in the effects 
of a number of alloying additions on penetration rates. 
Bozhko [48] found that the activation energy for the grain 
boundary diffusion of molten copper into iron and 
:'Ited wa:5 dependent on the comp05ition of the matel-ial. 

This composition dependence has been noted by other 
authors [107-109]. The occurrence of copper grain 
boundary diffusion during the welding and brazing of 
copper and its alloys to iron and steels has also attracted 
much attention [108, 1l0-1l2]. 

Hough and Rolls, in a series of papers [107-109], 
have reported on liqUid copper diffusion in iron during 
high temperature creep studies, finding that grain 
boundary penetration of the copper to be a significant 
factor in the embrittlement of the iron. 
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FIGURE 13. The surface diffusion coefficient of iron on copper as a function of reciprocal 
absolute temperature. 

Pokhmurski and coworkers [64-68], who employed 
copper as a protective coating on iron and steels during 
fatigue and corrosion-fatigue studies, observed the 
grain boundary penetration of copper into the substrate 
materials. 

3.22. Surface DiHusion 

A series of papers by Bergh [101, 103, 113, 114] 
report the results of his surface diffusion studies· of 
copper on alpha and gamma-iron, and of iron on copper. 
In his experiments, Bergh relied on an unconventional 
but simple technique, where a very flat regular-shaped 
ribbon (uf kuuwn weight) of the diffusing metal was 
placed on a comparatively large; polished flat specimen 
of the host metal. Beneath the ribbon, the diffusant 
will enter the host metal via volume diffusion whereas 
on the surface, surface diffusion occurs, starting from 

the ribbon circumference (which is also a phase bound­
ary), The amount of diffusant taking part in the surface 
diffusion process is determined from the ribbon weight 
after the diffusion anneal with the appropriate deduc­
tions for losses due to volume diffusion and evaporation. 
The chemical concentration gradient is used as an 
approximation of the driving force. In table 14 are 
listed the calculated values of the surface diffusion 
coefficients for iron on copper. When these values are 
plotted as a function of reciprocal absolute temperature 
(see fig. 13), a straight line can be fitted to the few data 
points obtained and an Arrhenius expression derived 
to characterize the iron :!Surface diffu5ion proce:'j~. The 

resulting expression (with the author's own estimate 
of errors) is: 

Ds= (1.1±0.1) X I04 exp [-(47.8±3.0) 
kcal' mol-1/RT] cfIil/s. 
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The anisotropy of copper diffusion on the (110) and (l12) surfaces of ferrite is evident. The lines drawn through the 
d .. t .. point. in Alpha.iron A.P th .. r"~1I1t of ollr I"a.l-.quare analysis of the author's data points. For (110) the Arrhenius 
equation is D= 13.1 exp (-25.4 kcal . mol-'/RT) cm 2/s, and for the (112), D=9.3 exp (-21.8 kcal· mol-'/RT) cnil(s. 
Data taken from Bergh 1l13l 

~imi1arly calculated for the surface diffusion of 
copper on gamma-iron are the values tabulated in, 
table 15. The Arrhenius expression (see ,fig. 14) used to 
describe the copper surface diffusion coefficient is: 

Ds= (21.4±2.1) exp[-(27.9±1.8) 
kcal' mol-1/RT] cm2 /s. 

The surface diffusion of copper on ferrite exhibited 
a fair amount of anisotropy-diffusion on {1l2}-planes 
requiring a lower activation energy (see table 16). The 
resulting coefficients, when plotted as a function of 
reciprocal absolute temperature (fig. 14), can he fitted 
to a straight line, and separate pre-exponential factors 
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and activation energies delerlUlJ1t~d fUI difTu::;ion on the 

two crystal planes. For copper on {OIl} -oriented ferrite 
grains, 

Ds = (10.5 ± 1.0) exp [-(25.5 ± 1.6) 
kcal' mol-1/RT] cm2 /s 

will suffice, whereas diffusion on the {1l2} -oriented 
grains, the following expression is adequate: 

Ds= (1.3 ±O.l) exp [-(2l.5 ± 1.4) 
kcal· mol-1/RT] cm/s. 

Surprisingly, the a/y transformation did not appear 
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TABLE 14. Iron surface diffusion 
coefficients on copper. 
Data taken from Bergh 
[113] . 

T COC) Ds (cm2/s) 

Ylb 2 .• l x 1U- 5 

891 1.1 x 10- 5 

850 6.0 x 10- 6 

817 3.0 x 10- 6 

TABLE 15. Copper surface diffusion 
coefficients on y-Fe. Data 
taken from Bergh [113]. 

T COe) Ds (cm2/s) 

978 2.9 x 10- 4 

945 2.1 x 10- 4 

928 1.8 x 10- 4 

TABLE 16. Copper surface diffusion 
coefficients on a-Fe. Data 
taken from Bergh [113]. 

Ds (cm2/s) 
{OIl} {lIZ} 

826 1.14 x 10- 4 4.2 x 10- 5 

788 7.6 x 10 
-5 

3.0 x 10 
:; 

750 4.8 x 10- 5 2.0 x 10- 5 

to exert much influence on the surface . diffusion 
processes. 

The results which Bergh published in (l03] are less 
accurate than those he subsequently published in [113] 
for copper diffusing on the surface of alpha~iron. 

Bergh has also observed the Ostwald ripening of 
particles, precipated on the surface of an Fe-eu (3 
at.%) alloy fIll). From his measurements, he concludes 
that the process is surface·diffusion controlled, the 
cuan;tmiug 1 att:: LdJl~ Ut::(Jt::JHlt::Ill Ull tht:: orientalion uf 
individual grains. He describes a method for measuring 
surface diffusion coefficients (when the lattice diffusion 

and evaporation losses are minimal). 

3.23. Electromigration 

The electro migration of radioactive f>9Fe impurities. 
in copper has been reported in a number of papers 
[112, US, 117]. In all of the . investigations, the iron 
isotope migrated towards the anode. 

3.24. Mohen Meta's 

The diffusion of iron in liquid copper has been 
measured over the temperature range 1100-1300 °c 
with a modified reservoir technique {lIB]. The data 
(within the limits of experimental error) can be fitted to 
the following Arrhenius equation: 

D= (3.59 ±O.5d X 10-3 exp [- (l2.34± 0.38) 
kcal' mol-J(RT] cm2/s. 

Diffusion coefficients obtained from dissolution rate 
experiments [119} are approximately a factor of two 
greater than the previously-mentioned investigation 
[118]. Recent studies [120-122] do show that the dis­
solution rate is dependent on the activity of iron in the 
bulk liquid and that the presence of oxygen will mark· 
edly increase the dissolution rate. Additional experi· 
ments [123, 1243 reveal the rate of dissolution of 'Solid 
iron in molten copper increasing with increasing tem­
perature and rotational speed. 

The reader is referred to the earlier sections 3.5, 
3.] 7, 3.20, and 3.21 for more data dealing with diffusion 
in liquid/solid systems. 
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4. Copper-Nickel 

4.1. Ni*-+ Cu 

A number of investigators have diffused radioactive 
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FIGURE 16. The tracer diffusion coefficients of nickel in copper plotted as a function of 
reciprocal absolute temperature for temperatures < 450°C. 

Mackliet's [3] equation for high temperature is extrapolated for comparison. The data ploued are estimates from 
Bonzel's work [9] on 63Ni in electropolished fine-grained electrolytic copper (99.995% pure). 

cobalt), with diffusion times such that they obtained 
sufficient 64 Cu penetration to allow themselves to do 
lathe-sectioning over two decades of specific activity. 

The calculated copper tracer diffusion coefficients 
are listed in table 18, and plotted in figure 17 as a 
function of reciprocal absolute temperature. When a 
straight line is fitted to this data, the following Arrhenius 
expression (with the appropriate limits) can be obtained 
to describe the volume diffusion process: 

D~U-Ni =(5.7:!:~:A) X 10-1 exp [- (61.7 ± 

2.2) kcal· mol-t/RT] cm2/s. 

J. Phys. Chern. Ref. Data, Vol,S, No.1, 1976 

Copper self-diffusion measurements made con­
currently are in ~o()d agreement with the most de­
pendable of those measurements (see section 1.6, 
reference 1, on self-diffusion in pure copper). 

Helfmeier and FeHer-Kniepmeier ~19-2.3] pertormed 
experiment~ of the thin-fi]m variety and used an electron­
probe mJeroanalyzer to measure the copper concentra­
tion profil«~. Their results are also plotted in figure 17 
for cOJllparisoll. The fact that their measured copper 
diffuloiion ,'ol'f1iciNlts are somewhat lower than PYPt;'l'!tprl 

might 114' attrihuted to the relatively high copper con· 
cl'lllralilllls 'HTurring close to the nickel surface during 
till' diffusion process. The concentration dependence of 
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TABLE 17. Tracer diffusion coefficients 
of 63Ni in copper. After data 
of Mack1iet [3]. 

T (OC) D* (cm2/s) 

1075.8 1. 98 x 10- 9 

979.8 3.57 x 10- 10 

900.0 7.87 x 10- 11 

847.2 2.61 x 10- 11 

791.5 6.82 x 10- 12 

742.6a 1.94 x 10- 12 

742.6a 1. 84 x 10- 12 

aFrom opposite faces of same specimen. 

TABLE 18. Tracer diffusion coefficients 
o£ 64Cu in nickel. After data 
of Monma et a1. [6]. 

T (OC) D* (cm2/s) 

1359 3.1 x 10- 9 

1274 1. 32 x 10- 9 

1202 3.3 x 10- 10 

1149 1. 98 x 10- 10 

1054 4.1 x 10- 11 ' 

the copper diffusion coefficient in this region very 
likely affected their results. 

4.3. Ni* ~ Ni-Cu 

Monma et al. (6) diffused 6:~Ni into Ni-Cu alloys in 
addition to the pure metal investigations mentioned in 
the previous two sections. The alloys (}3.0, 45.4 and 78.5 
at.% Cu) were large-grained polycrystalline specimens. 
These specimens were sectioned on a lathe after the 
tracer was diffused at temperatures ranging from 1050 
to ]430 °C and the activity counted to reveal the depth 
of tl:!Ni penetration. The calculated tracer diffusion 
coefficients are listed in table 19 and plotted in figure 
18 as a function of reciprocal absolute temperature. The 
resultin~ Arrhenius expressions (with probable errors 
obtained trom fitting a straight line to the data) for each 
of the respective alloys are: 

for the Ni-Cu03 at.% alloy). 

TABLE 19. Tracer diffusion coefficien~s 
of 63Ni in Ni-Cu alloys. After 
data of Monma et a1. [6]. 

Ni-Cu Alloy 
(at.% eu) 

13 

45.4 

78.5 

T (OC) 

1345 

1296 

1201 

1152 
1106 

1203 
1201 

1154 

1154 

1098 

1064 

1025 

1113 

1110 

1110 

1097a 

1067 

1043 
1027a 

1006 

968 

949 

949 

930 
914 Ci 

D* (cm2/s) 

2.7 x 10- 9 

1. 22 x 10- 9 

3.0 x 10- 10 

1. 30 x 10- 10 

4.5 "" 10~11 

1.46 x 10- 9 

1. 70 x 10- 9 

7.7 x 10- 10 

7.1 x 10- 10 

2.4 x 10~10 

1. 58 x 10- 10 

6.8 x 10- 11 

9.8 x 10- 10 

9.0 x 10- 10 

8.7 x 10- 10 

7.6 x 10- 10 

5.5 x 10- 10 

4.4 x 10- 10 

2.0 x 10- 10 

2.3 x 10- 10 

1.14 x 10- 10 

8.7 x 10- 11 

8.5 x 10- 11 

6.2 x 10- 11 

4.4 x 10- 11 

aSpecimens from different ingot. 

D~-;i= (35:ID exp[-(74.9± 1.7) k{'al' mol'-I/RT] el11:1/ s: 

for the Ni-Cu(4S.4 at.%) alloy. 

and for the Nj·Cu(78.,s al.(j() .dloy. 

JJ~i=(6.3:!:1:5) X JO-:1{,xp [-(4Y.7± 

0.5) I-. ("a I . 11101 I/RT] em'lls. 

Other tracer diffusioJl measurements leu ill Ni. alld (:u 
in CuI made by MOllllla el al. at tht· salllt> tinw as til(' 

J. Phys. Chern. Ref. Data, Vol. 5, No.1, 1976 
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above alloy measurements are in good agreement with 
the most reliable measurements of other researchers. 
This record of experimental consistency may reasonably 

lead 10 ('ordidl'lH'f' in these expressions for the aHoy 
tracer dillusion rates. 

TIll' ;\('1 ivai ion (~nergy for the diffusion of nickel in 
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Ni-Cu alloys (containing 0.5 to ]0% Cu) was found to be 
concentration dependent by Bystrov and coworkers (24]. 

D~u = (1.5~~:~) exp [- (63.0± 

141 

0.07) kcal· mol- I /RT),cm 2/s; 
4.4. Cu * ~ Ni-Cu 

In addition to their nickel tracer studies (discussed 
in the preceeding section),. Monma and coworkers [6] 
diffused 1i4CU tracers into the same Ni-Cu alloys at the 
same temperatures, and with the same experimental 
technique. The results. listed in table 20, are plotted in 
figure 19 as a function of reciprocal absolute tempera­
IlIrp_ The 1i4r.lJ diffusion rates in the three aHoys can be 

represented by the following Arrhenius equations: 

for the Ni-Cu (13 at.%) alloy. 

for the Ni-Cu (45_4 aL %) alloy, 

D~t1= (2.3±O.1) exp [-(60.3± 

0.3) kcal' mol-I/RT] cm 2/s; 

for the Ni-Cu (78.5 at.%) alloy, 

D~lI = (1.9: tg) exp [ - (55.3 ± 

1.9) kcal' mo]-I/RT] cm 2/s. 
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lABLE 2U. Tracer diffusion coefficients 
of 64Cu in Ni-Cu alloys. After 
data of Monma et al. [6]. 

Ni-Cu Alloy T (OC) 
(at.% Cu) 

13 

45.4 

78.5 

1359 
1'274 

1202 

1149 

1'054 

1210 

1201 
1179 

1120 

1041 
985 

1112 
1057 

1028 

985 

936 

880 

863 

D* 

5.8 

1. 93 

6.4 

3.0 
6.8 

3.0 
2.7 
1.86 

7.6 

2.1 
7.6 

3.0 
2.1 

9.9 

3.8 

2.3 

5.6 

4.5 

(cm2/~ ) 

x 10- 9 

x 10- 9 

x 10- 10 

x 10- 70 

x 10- 11 

x 10- 9 

x 10- 9 

x 10- 9 

x 10- 10 

x 10- 10 

x 10- 11 

x 10- 9 

x 10- 9 

x 10- 10 

x 10- 70 

x 10- 70 

x 10- 11 

x 10- 17 

The errors shown are all probable errors. The same com­
ments made previously with regard to diffusion of nickel 
tracers in these alloys applies here also. 

Smirnov and coworkers [25] found that small alloying 
adrlitions of nickel (1 at.%) to pure copper had little or 
no effect on the rate of self-diffusion of the fi",CU tracer 
in the temperature range 760 to 890 ° C. 

4.5. Cu-Ni Interdiffusion 

The copper-nickel binary has been often selected for 
interdiffusion and Kirkendall-effect measurements. The 
I 110::; l It'celll jllve::;li~aljllm; [12, 26-3S]. which make u~e 

of the electron microprobe as an analytical tool, have 
yielded the most reliable data. 

At 1000 °C. Crundhoff [27]. Crundhoff and Heumann 
[26, 32], and Levasseuer and Philibert 129] obtained 
interdiffusion coefficients and partial diffusion coeffi­
cients over the entire concentration range of this binary 
system. This concentration dependence is exhibited in 
figure 20, where the three coefficients are plotted from 
the most rt'cently publi~hed data of Heumann and 
Crundhoff 132]. The experimental data taken by 
Heumann and (~rundhoff are in very good agreement 
with the data calculated from. Manning's theory [36, 37]. 
The t'xperinwntal data of I.evasst>ur and Phililwrt 129] 
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at this temperature all' Il1 agreement with Heumann 
and Grundhoff. Hehenkamp [30] also performed inter­
diffusion experiments at 1000 °C but confined his 
investigation to alloy concentrations of less than 28 
wt% copper. 

Investigations at temperatures other than 1000 °C 
were carried out by Brunei and coworkers [12, 31]. 
Some of these measurements' were simply used to 
obtain diffusion coefficients at infinite dilution with no 
interdiffusion coefficients being reported 02]. Other 
measurements were used to calculate (using either the 
Matano [~8] or Hall methods [39]) interdiffusion coeffi­
cients as a function of composition at 710, 765, 806, 866, 
906, 940, 983, and 1066 °C (see figure 21). Included in 
these results are some data from the thesis of Masson 
[28]. Arrhenius plots are made for fixed compositions 
and these are shown in figure 22. The activation energies 
obtained for these Arrhenius plots are shown in figure 
23 as a function of copper concentration. 

Bastow and Kirkwood [40], and Maher [41] obtained 
similar results in their interdiffusion experiments 
performed at 890 and 1000 0c. These results are ap­
proximately half as large as those obtained by Brunei 
and coworker:"> [31]. Bastow and Kirkwood abo obtai~ed 
values of the interdiffusion coefficient close to the 
solidus in copper-rich alloys (see figure 24 for these 
results as well as those at lower temperatures). In fact, 
their values are at temperatures higher than the solidus 
line shown by Hansen [42]. These studies all utilized 

, electron-microprobe as the means of analysis. 
In agreement with these investigations are results 

obtained by da Silva [43], and da Silva and Mehl [44] at 
947 and 1054 °C, and by Thomas and Birchenall [45] at 
1022 0c. Both of these groups of investigators sectioned 
their diffusion couples and chemically analyzed the 
turnings to determine their concentration-penetration 
curves. The interdiffusion coefficients calculated from 
using the Matano analysis are plotted as a function of 
composition in figure 25. NyHas and coworkers [46] have 
since reanalyzed the data of da Silva and Mehl [44]. 

\1ehta and Axon [47] in a single experiment at 950 DC 
obtained coefficients close to those obtained by da 
Silva and Mehl (Mehta and Axon also placed thin inter­
mpdiatp l:lYPr~ of gold, tin, 7.in~, or ~arJmium at thf> 
interface to determine the effect on the concentration­
penetration profiles). 

The data of Mizuno, Ogawa, and Hirone [48] was 
re-evaluated by Freise and Sauer [49], bringing it more 
in line with what ont> might expect to find at 900°C. 

Tenney amI coworkers [50-53] interdiffused copper 
and nickel at 900°C and obtained results that are 
consistt>nt wil h I host, found by other researchers. 

Pines and coworkers have published papers dealing 
with interdiffusion in the Cu-Ni system in the tempera­
t lire rangt· 400 to 1000 °C [54-58]. Krishtal et al. [59] 
ohtained volllnw diffusion activation energies that are 
in agrt'('rrwnt wil h those of other researchers [44, 45. 56]. 
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The Pines and Krishtal groups both uti1ized similar 
experimental techniques (x-ray diffraction) [54, 60, 61]. 

Borovskii and Ugaste [62] interdiffused pure copper 
and nickel at 1000 and 1020 ° C and calculated interdiffu­
sion coefficients using Matano·s method [38]. Hall's 
method [39]. Baroody's method [63], and a "generalized 
analytic method" that they themselves describe. They 
conclude that the experimental determination of con­
centration-penetration curves is the main considera­
tion - the different methods of calculation giving little 
variation in values of the interdiffusion coefficients. 

Austin and Richard [5,64-67], while studying the 
grain boundary diffusion of nickel into copper, measured 
interdiffusion coefficients at 750 ° C as a function of 
composition. Use of the Matano analysis gave values that 
are consistent with theresuIts described at the beginning 
of this section. 

lnterdiffusion coefficients were measured in Cu-Ni 
alloys using vapor-deposited films between 375 and 
500 ° C by Paulson [68]. The thin films contained 
composition modulations between 8 and 60 A. The inter-

diffusion coefficients I which varied between 10-21 and 
10- \H cm'2/s) were strongly composition dependent, with 
a minimum occurring between 60 and 70 a1.% Ni. 

Diffusion couples of pure copper and pure nickel were 
interdiffused at 1000 0 C for 4 hours, and the concentra­
tion-penetration profiles were determined with a thermo­
electric microprobe as the analytical tool [69]. The 
instrument yielded reproducible data, which gave results 
comparable to electron-microprobe analysis. 

Reuter and Sichting [701 performed an x-ray Houres­

cence study of the interdiffusion between copper and 
nickel in the somewhat lower temperature range of 
6OO-800°C. 

Johnson [71]. in a relatively early Rtudy, interdiffused 
radioactive nickel isotopes with pure copper and found 
that the isotopes diffused at rates inversely proportional 
to the square roots of their masseR. 

Early studies [38, 72-931 of interdiffusion occurring 
between copper and nickel. although good experiments 
in their time, have been superseded by more recent 
investigations. 
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The role of discontinuities present in the surfaces of 
each half of the diffusion couple has been the topic of 
experiments performed by Walker and Lewis [94. 95]. 
Levasseur and Philibert [96]. and Ceguzin and co­

workers 197]. 

diffusion COf'fTici('nts from their measurements made at 

1060°C, 
The intf'rdiffusion processes o('('urrin~ durin~ the 

sinterjn~ of ("opper and nickel have heen widely in­
vestil,!:ated 187-90, 100-138]. The results of such sinter­
in~ studi('s. al lwst, confirm tilt' results obtained from 
t h(, more conventional interdiffusion experinwl1ts 

perfurnwd wit h massive couples. 

Bimetal vapor-solid djffusion couples were utilized 

by Balluffi and Seigle 198. 99] in their experiments. and 
they were able to calculate the difference in the intrinsic 
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FIGURE 21. The interdifl'usion coefficients in Cu·Ni alloys at various temperatures as a 
function of copper concentration calculated from the Matano method. 

After the data of Brunei et al. [31]. 

Similarly, results have been obtained from experi­

ments with thin films,foils,etc. [14, 17,18, 132, 139-155] 
although extraneous effects are often included in what 
are supposed to be pure lattice diffusion measurements. 

Because of the large number of interdiffusion studies 
utilizing copper and nickel, a fair number of papers 
have been devoted to the dimensional changes, marker 
motion and/or Kirkendall effect found in the diffusion 
couples [91, 99, 112, 119, 134, 153, 156':"'163]. Where 
measurements were made, marker motion was in the 
direction of the copper·rich side of the diffusion couple 
indicated that copper diffuses faster than nickel. 

Porosity in the interdiffusion zone has also attracted 
the attention of numerous investigators [41, 91, 93, 
97-99, 113, 119, 134, 153, 156-i73]-the bulk of the 
research being of a qualitative nature.' 

Other studies [174-176] have been devoted to the 

aspect of diffusion coatings, the production of multilayer 

metal systems [177], bond degradation mechanisms in 
composites [178J, free energy flow during interdiffusion 
[179], and effect of plastic deformation [180, 181]. 

4.6. Cu-Ni-As 

Helfmeier [19, 23], and Helfmeier and Fel1er­
Kniepmeier [21] studied the influence of small concen· 
trations (2.7 at.%) of arsenic on the diffusion coefficient 
of copper in nickel at the temperature 843°C. (The 
coefficient would be equivalent to the. tracer diffusion 
coefficient since the thin-film solutiun to the diffusion 
equation was employed - the penetration plots being 
obtained with· a microprobe.) A significant enhancement 
(three times as high as in pure nickel) was noted in the 
single test specimen. 
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After the data of Brunei et aI. [3)]. and Masson [28]. 

4.7. Cu-Ni-Au 

Helfmeier [19, 23], and Helfmeier and Feller-Kniep­
meier [21], studied the influence of small concentrations 
(0.06 and 0.15 at.%) of gold on the diffusion coefficient of 
copper in nickel at temperatures ranging from 741 to 
1000 °C. Coefficients measured in nickel specimens al­
loyed with 0.15 at.% gold were the same as those 
measure in pure nickel at temperatures of 903 and 

1000 °C,.although at 843°C there was a positive devia­
tion of 28%. Copper diffusion coefficients obtained from 
measurements on a nickel alloy containing 0.06 a1.% 
gold at a temperature of 741 0 C were 47% greater than 
those measured in pure nickel specimens. 

Mehta and Axon [47] interdiffused pure copper and 
nickel with a thin foil of gold at the interface. The 
effect of this gold layer on the interdiffusion processes 
was minimal, a slight retardation possibly occurring in 
the composition range 60-80 at. % copper. 
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4.8. Cu-Ni-C 

The reader is referred to section 4.33, Molten Metals, 
for a discussion of carbon diffusion in liquid Cu-Ni 
alloys. 

4.9. Cu-Ni-Cd 

Mehta and Axon [47] interdiffused pure copper and 
nickel with a thin foil of cadmium at the interface. The 
effect of this cadmium layer. (0.()(){)()2 inches) on the 
interdiffusion process was to accelerate the copper 
mobility in nickel and retard the nickel mobility in 
copper. 

4.10. Cu-Ni-Cr 

The addition of small quantities of chromium (0.8%) 
to pure copper does not have any measureable effect 
of the ni ckel tracer diffusion coefficient [12]. 
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After the data of Brunei et aJ. [31J. 

4_ 11_ Cu-Ni-Ff!! 

Diffusion phenomena occurring in this ternary 
system are reviewed in the section 3.13., Cu-Fe-Ni, 
dealing with copper-iron alloys. 

4.12. Cu-Ni-Ge 

There is evidence that copper penetration in ger­
manium is enhanced when the germanium was doped 
with nickel [182-184]. 

4.13. Cu-Ni-H 

Hydrogen diffusion in bimetallic strips of copper­
nickel and the subsequent deflection caused by the 
diffusion has been of interest to Cermak and Kufudakis 

[185, 186]. From the measurements of diffusion-induced 
elastic deformation, diffusivities of hydrogen in nickel 
and copper are calculated and compared to values 
obtained from more traditional experimental techniques. 

4.14. Cu-Ni-Mn 

The rate of diffusion of manganese in Cu-Ni-Mn 
alloys was measured over a temperature range of 
846-} 046 0 C [187]. The experimental technique [188] 
employed involved the evaporation of manganese in a 

vacuum from thin alloy foils and measuring the weight­
loss of the foils (the Cu and the Ni were assumed to have 
a negligible vapor pressure at the annealing tempera­
tures). The evaporation of the manganese from the sur­
face produces a concentration gradient in the alloy, 
thus requiring additional manganese to be transported 
to the surface by diffusion. Taking into account the 
quantity of evaporated (diffused) substances, the authors 
Were able to determine a "diffusion coefficient" of the 
component (Mn) with the higher vapor pressure. The 
activation energy for this process was 62.7 kcal/mol. 

Sinf~p. rhp. "urface composition was maintained at nearly 
zero manganese concentration, this value is only an 
average figure over the manganese composition range 
0-16 at. %. In addition to the inherent shortcomings in the 
experimental technique used in the study, the authors 
make no mention of a prediffusion anneal of their poly­
crystalline specimens. Recrystallization and grain 
growth in their cold-rolled foils also may have occurred 

during the diffusion anneals. 
The preliminary results of a more recent study of 

manganese diffusion have been reported '[189]. Alloys 
of the three binary systems (Cu-Mn, Cu-Ni, Mn-Ni) 
were diffused at 800 0 C for 336 hours. The x-ray inten­
sities obtained from electron microprobe analysis were 
converted to concentrations by Ziebold and Ogilvie's 
method [190]. The concentration-penetration curves 
revealed nonideal thermodynamic behavior and "up­
hill" diffusion of manganese in which managanese 
diffuses from a level of 21.5 at.% to a band of 33.9 at.%. 
An activity plot versus penetration of this same data 
showed a monotonic decrease, as should be expected. 

4.15. Cu-Ni-Mo 

The diffusion of radioactive nickel in molybdenum­
coated copper specimens has been measured at 700 <> C 
[191]. The rate of diffusion of the 63Ni was accelerated 
(relative to pure copper) with the increasing. percent (by 
volume) of molybdenum. 

4.16. Cu-Ni-O 

The oxidation of Cu-Ni alloys and the role diffusion 
plays in the oxidation mechanism has been attracting 
attention since 1923 [192-199]. In discussing the 
experimental results, the influence of diffusion on the 
oxidation process is often described by Wagner's 
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After the data of Baslow and Kirkwood 140~ 

rlalysis. More recently though, Rapp and coworkers 
:00] interdiffused nickel with Cu20 at 1000 °C and 
xamined the reactions occurring in the diffusion zone. 
l layer of copper and NiO was found after 72 hours of· 
eating. Diffusion, rather than interface control, was 
ietermined to be rate-limiting. 

4.17. Cu-Ni-Pd 

Helfmeier [19, 23] and Feller-Kniepmeier [21] studied 
the influence of small concentrations (0.27 at.%) of 
palladium on the diffusion coefficient of copper in 
nickel in the temperature range 843-1050 0 C. (The 
coefficient would be equivalent to the tracer diffusion 
coefficient since the thin-film solution to the diffusion 
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equation was employed; the penetration plots being 
obtained with a microprobe.) Although no apparent 
effect was noted on the copper mobility at the upper 
portion of the temperature range, some enhancement 
was found at the lower temperatures. 

4.18. Cu-Ni-Si 

The simultaneous interdiffusion of nickel and silicon 
in copper was one of the first investigations into the rates 
of diffusion in ternary systems. In these early investiga­
tions, Rhines and Mehl [201, 202] attempted to see 
whether the two solutes (Ni and Si) in a quasi-binary 
ternary system (Cu~Ni2Si) diffused in stoichiometric 
proportions, despite a radical difference in the separate 



DIFFUSION IN COPPER AND· COPPER ALLOYS 

COPPER CONCENTRATION (wt. %) 

149 

10 30 50 70 90 

1.5 
• 1054 °C . (DaSilva et 01.) 
o 1022°C (Thomas et 01.) 
• 947°C (DaSilva et 01.1 

-., 
........ 

N 
E 
u 

t­
Z 
LLI 
(3 
u:: 
LL. 
l&J 
o u 

e 

6 

4 

2 

6 

4 

3 x 10-11 ~_-L.. __ .L...-_--L. __ .L-_--L. __ """'_--L. __ """'_--'-_---' 
o W ~ ~ ~ 00 

COPPER CONCENTRATION (at. %) 

FIGURE 25. The variation of the interdiO'usion coefficient with copper concentration 
in the Cu-Ni system. 

After the paper of VilDles and Birchenall (260) of data by Da Silva and Mehl [44). and Thomas and BirchenaU [45]. 

rates of diffusion of each solute (Ni and Si) when diffus­
ing alone in the solvent (copper) lattice. 

With the experimental technique,' ternary alloy rods 
(containing approximately 4 wt% Ni2Si and 8 wt% 
NbSi) were electroplated with copper (2 mm thickness) 
and intp.rdiffusp.d for the times and temperatnres listed 
in table 21. Upon completion of interdiffusion, the 
simultaneous penetration· profiles of silicon and nickel 
were determined by machining successive layers from 
the specimens in a precision lathe, and then chemically 
analyzing the turnings. The Matano-ana1ysis [81] was 
applied to the concentration-penetration data to ca1cu­
late diffusion coefficients which are plotted in figures 26 
and 27. The results of the calculations are also listed in 
table 22 and are compared with D values. for nickel 
[80, 81] and for silicon [203] interdiffusing separately 
into copper. 

It can be seen that the D values for nickel are rela­
tively little affected at either of the experimental tem­
peratures by the presence of silicon. The D values for 
silicon, however, are greatly decreased by the presence 
of the simultaneously diffusing nickel. Also, with in­
creasing dilute solutions, the rate of silicon diffusion 
becomes increasingly greater than that of nickel (see 
figure 28). It is interesting to note that the interaction of 
nickel and silicon (while interdiffusing simultaneously 
in copper) is such as to approach the ratio of Ni2Si, 
with rapidly diffusing silicon retarded by the more slowly 
diffusing nickel, and the slowly diffusing nickel little, 
if any, affected by the presence of silicon. 

4.19. Cu-Ni-Sn 

Mehta and Axon [47]· interdiffused pure copper and 
nickel with a thin foil of tin at the interface. The effect 

J. Phys. Chem. Ref. Data, Vol. 5, No.1, 1976 
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TABLE 21. Conditions for interdiffusion in the Cu-Si-Ni system studied by 
Meh1 and Rhines [201, 202]. 

1000 ± 1 

850 ± 1 

850 ± 1 

Diffusion Time 
(s) 

8.38 x 10 4 

4.45 x 10 6 

4.64 x 10 6 

Alloy Composition (wt%) 

eu Ni Si 

91. 89 6.54 1. 57 

95.99 3.20 0.81 

96.02 3.18 0.80 

TABLE 22. Comparison of interdiffusion coefficients of nickel and silicon 
in r.l1-Ni-Si alloys. Data taken from Meh1 and Rhines [201. 202]. 

T (0 C) Composition D (10 "10 cm 2js) 
(at. %) 

Ni Ni Si Si 
(alone) (with Si) (alone) (wi th Ni) 

1 Si and/or 2 Ni 

1000 2 Si and/or 4 Ni 

3 Si and/or 6 Ni 

1 Si and/or 2 Ni 
850 

1.5 Si and/or 3 Ni 

of this tin layer (0.00002 inches) on the interdiffusion 
process was to accelerate the nickel mobility in copper 
and retard the copper mobility in nickel. 

4.20. Cu-Ni-Ti 

Helfmeiel- [19], and IIelfmeier and Feller-Knicpmcicr 
[21] studied the influenc~ of titanium impurities (0.18 
at. %) on the diffusion coefficient of copper in nickel in 
t.he t.emperature range 843-1050 °e. (The coefficient 
would be equivalent to the tracer diffusion coefficient 
since the thin-film solution to the diffusion equation was 
employed; the penetration plots being obtained with a 
microprobe.) No apparent effect of the low titanium con­
centration was noted on the copper mobility over the 
temperature range investigated. 

4.21'. Cu-Ni-W 

Blinkin and coworkers [11, 191] diffused radioactive 
63Ni into copper reinforced with tungsten fibers. In 
the temperature range investigated, 700-850 °C, the 
rate of nickel diffusion increased with increased 
tungsten concentration (volume percent). Near the 
melting point of copper, the tracer diffusion coefficients 
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10 6 71 14 

6 6 98 8 

5 7 150 8 

2 0.7 13 1 

1.5 0.7 23 1 

were approximately the same, regardless of tungsten 
fiber content. 

4.22. Cu-Ni-Zn 

The tracer diffusion of 67CU, 66Ni, and 65Zn in copper­
rich solid solutions of this ternary system have been 
reported in a series of papers by Anusavice and co­
workers [204-207]. In all their experiments, the radio­
active tracers were electroplated onto polycrygtallinp 

ternary alloys, given a diffusion anneal, and sectioned 
on a lathe. Activity analysis yielded penetration plots 
from which the tracer diffusion coefficients were calcu­
lated by the method of least-squares. 

Arrhenius plots of the three tracer diffusion coeffi­
cients in the various compositions (up to 30 at.% nickel 
and zinc) are shown in figures 29-40. From the slope of 
these least-squares plots, activation energies for dif­
fusion and pre-exponential factors were determined 
(along with the probable errors) and these are presented 
in tables 23, 24 and 25. The activation energies for 
diffusion of the three tracers vary from 40 to 55 kcal/mol 
for all compositions studied, being the greatest for the 
binary high-nickel alloys and decreasing to the lowest 
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for binary, high-zinc alloys. All three tracer diffusivities 
decrease as nickel is added, and increase as zinc is 
added to pure copper. 

The composIlIon dependence of the pre-exponential 
factors tends to parallel that dependence found for the 
activation energies. 

The diffusivities of the three tracers are consisteritly 
of the order: 

D;n > D ~u > D:i ' 

and the activation energies are (except for compositions 
near the Cu-Ni binary) in the order: 

QNi > Qcu > Qzn. 

The results for the tracer diffusion of nickel in pure 
copper obtained by Anusavice and coworkers are com­
pared with those obtained by other researchers in 
figure IS. 

The tracer results reported by Co_rth [208] on the 
diffusion of 63Ni in a-brass (Cu-15% Zn) single crystals 
are inconsistent (activation energies too low) with the 
experiments of Anusavice et a!. 
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FIGURE 28. The interdiffusion coefficient of silicon and nickel diffusing together for 
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After the data of Mehl and Rhines [201). 

TABLE 23. Diffusion parameters and conditions for 6 7 Cu tracer diffusion 
in Cu and Cu-Ni-Zn alloys. Data taken from Anusavice et a1. 
[204]. 

Composition (at.%) 

Cu Ni Zn 

99.999 

82.72 12.55 4.73 

72.04 11.21 16.75 

65.06 10.82 24.12 

69.68 19.42 10.90 

63.95 20.80 15.25 

55.17 20.59 24.24 

60.97 29.49 9.54 

47.12 33.08 19.80 

40.30 30".7029.00 

Temperature 
(OC) 

740-1045 

785-:-1003 

740-1003 

783-943 

800-1050 

752-1003 

748-949 

904-1050 

866-1065 

807-966 

DO 
(cm2/s) 

O 30 +0 .. 04 
· - 0.02 

0.36 ± 0.05 

O 33+0.04 
· -0.03 

O 21 +0.04 
· -0.03 

O 18 +0.05 
· -0.03 

0.10 ± 0.01 

O 11
+0.01 

· - 0.02 

O 55 +0.17 
· -0.13 

O 58
+0.33 

· - 0.21 

O 72 +0.25 
· -0.19 

Q 
(kca1/mo1) 

48.3 ± 0.2 

49.2 ± 0.3 

46.8 ± 0.2 

44.0 ± 0.4 

47.9 ± 0.5 

45.4 ± 0.3 

43.9 ± 0.3 

52.2 ± 0.7 

50.8 ± 1.1 

50.3 ± 0.7 
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FIGURE 29. The tracer diffusion coefficient of 67CU in pure copper and several binary 
Cu-Ni alloys as a function of reciprocal absolute temperature. 

Slraight lines drawn are the result of a least.squares analysis of the displayed data points. All data taken from Anu· 
savice and DeHoff (204J. 

The Zener relaxation in alloys in the a-solid solution 
region of the Cu-Ni-Zn ternary system has been in­
vestigated by Coleman and Wert [209]. 

. 'Multiphase interdiffusion studies in the Cu-Ni-Zn 
sY5tem have been undertaken by several groupe of 

investigators [210-216]. The studies for the most part 
have utilized procedures which did not allow for the 
quantitative treatment of the obtained data. Boundary 
shifts, structures, and morphology of boundary inter­
faces are usually the data reported in these papers. 
Coates [215], and Coates and Kirkaldy [216] did report 
nickel interdiffusion coefficients (at 775 0 C) in the a- and 
,a-phases of this ternary system. Solid-solid djffusion 
couples constructed of ternary alloys were employed to 
obtain these coefficients (listed in ta.ble 26). 

Gertsriken and coworkers [217-219] studied the effect 
of dilute alloying additions on the rate of vacuum 
evaporation (at constant temperature) of zinc from 
a-brasses. The initially published results indicated that 
nickel (up to 2 at.%) a.lloying additions had no cffect on 

the rate of zinc evaporation from a-brasses (containing 
approximately 21 at.% Zn) in the temperature range 
600-800 0 C. Later experiments r2191 revealed these 
results to be in error, wIth slight enhancement in the 
vaporization rates being noted. 

Mehta and Axon [47] interdiffused pure copper and 
nickel with a thin foil of zinc at the interface. The effect 
of this. zinc layer on the interdiffussion processes was 
minimal; a slight retardation possibly occurring in the 
composition range 60-BO at.% copper. 

J. Phys. Chem. Ref. Data, Vol. 5, No.1. 1976 
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FIGURE 30. The tracer diffusion coefficients of 66Ni in pure copper and binary Cu-Ni 
alloys as a function of reciprocal absolute temperature. 

The straight lines shown are the result of a least·squares analysis. Data taken from Anusavice and DeHoff [2M]. 

4.23. Cu-Ni-X 

The research performed by Sirca and coworkers 
[220, 221] on copper diffusion rates in nickel-hearing 
steels 1S reviewerl parliPT in thp t.lI.Fp al1oy~ ~pr.tion. 

Perrin [222] has interdiffused nickel-bearing steels 
with copper-tin bronzes, following the diffusion process 
metallographically. 

The interdiffusion processes occurring between 
electro·deposited layers Cu-Ni-Zn-Pb and Cu·Ni-Zn·Fe 
at relatively low temperatures « 212°C) was examined 
by Creydt and;· coworkers, [223, 224] with' an electron-

. microprobe analyzer. 
The joining of several titanium alloys with interlayers 

of copper, nickel, and cobalt has been studied by 
Shinyaev and Bondarev [225]. 

Some increase in the wear and oxidation resistance of 
copper at high temperatures has been achieved by the 
diffusion saturation of specimen surfaces with aluminum, 
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nickel, and zirconium [226]. 
Interdiffusiun jJruce~~es uccurring in Cu-Ni and 

Cu-Ni-Cr-plated carbon-steels (after anneals of 50 to 
600 h at temperatures of 200-600 °C) have been ex­
aminprl with thp. aid of an electron microprobe as well 
as conventional metallography [227]. The deterioration 
of mechanical and surface properties of these electro­
plated metals was in part ascribed to the interdiffusion 
occurring across the interfaces of these layers. 

The diffusion of interstitial elements in several 
Ni-Cu-Fe base metals was found to be minimized when 
brazed with a Ni·Mn-Si-Cu filler metal (relative to a 
number of other filler metals used under similar brazing 
conditions) [228]. 

Interdiffusion between slide bearing alloys [Pb-In(lO 
wt%), Pb·ln(l3 wt%), Pb-In(20 wt%), Pb·Cu·Sn(12 wt%), 
Pb-Cu-Sn(l6 wt%), Pb-Cu-Sn(20 wt%)] and their back­
ing alloys (Cu·Pb-Sn) was investigated by Semlitsch 
[229]. Nickel was inserted as a diffusion barrier to 
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prevent the interdiffusion of Sn and In. Experiments 
were performed at 100, 170, and 220 °C for up to 3000 
hours to test the integrity of the nickel barrier. The 
interdiffusion zone was examined with an electron-beam 
microprobe analyzer for enrichment in one or more of 
the clements and formation of one or more intermetallic 

phases, e.g., Nialn, Niln, (Ni,Cu)sSn, and/or (Ni,Cu)3Sn4' . 

4.24. Dislocation Pipe Diffusion 

Bernardini 'and Cabane [230] diffused radioactive 
63 Ni into high purity single crystals of copper over the 
temperature range 465-616 ° C. The· penetration curves 
were obtained after counting the residual activity from 
the sectioned sample. To calculate the pipe-diffusivity, 
D pipe (defined as equal to the product D: . A . k, where 
n; is the tra~er tlifi'llsivity ln the tll~locatlon~, A i~ 

the effective .cross-sectional area of the dislocation pipe, 
and k is the ratio of the concentration of the diffusing 
element along the dislocation, Cd, to its concentration in 
the lattice, C v), of 63Ni in single crystals of copper, the 
mathematical analysis of Pavlov [231] and Brebec [232] 
(both based on Fisher's arguments [233]) were employed. 
The results are ploited in figure 41 as a function of 
reciprocal absolute temperature. The data are fitted 
with a straight line which can· be expressed by the 
following Arrhenius equation: 

D p1pe =6.3 X 10-13 exp (-42 kcal· mol-1/RT) cm2/s. 

Errors are estimated to be ± 40% in the pipe diffusion 
coefficient and ± 3 kcal/mol in the activation energy 
for diffusion along the dislocations. 

J. Phys. Chem. Ref. Data, Vol. 5, No.1, 1976 
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4.25. Grain Boundary DiHusion 

Thc diffu8ion of copper along tIlt:: gn:lin boundaries 
of nickel has been studied and reported by Barnes [234, 
235]. The e~periments, performed at 1000· °C, involved 
the bonding of alternate layers of thin copper and nickel 
strips which, after interdiffusion, were etched to reveal 
the contours' of concentration in the neighborhood of a 
grain boundary where preferential diffusion had taken 
place. 

The diffusion of nickel into grain boundaries in pure 
copper has been investigated by Austin and Richard 
[5, 64, 66, 67], K rh.hta] and coworkers [59], Yukawa and 

Sinnott [1], Unnam and coworkers [15], and Houska [16]. 
In their experiments, Austin and Richard fabricated 

copper bicrystals of varying tilt angles, upon which 
nickel was electrode posited and diffused at a tempera­
ture of 750°C for varying lengths of time (up to 240 
hours). The specimens were then sectioned, and con­
centration contours from the grain boundary and the 
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lateral lattice diffusion were measured by means of 
electron-probe microanalysis, From thi~ data, the 

product of the grain boundary width (8) and grain 
boundary diffusion coefficient CD gb) were calculated 
from both Fisher's [233J and Whipple's [2361 solutions. 
The results of the calculations reveal the nickel grain 
boundary diffusion coefficient to be concentration de-

.. pendent·, At the lower concentration « 3 at. % nickel), 
the coefficient is essentially constant for the high angle, 
45° boundaries, For lower tilt angles (30 and 22°), the 
grain boundary diffusion coefficient decreases for con­
centrations greater than 0.5 at. % nickel. The amnnnt 

of grain boundary diffusion was found to decrease 
rapidly at nickel concentrations above 5 at. % nickel. 

Krishtal et a1. [59] performed their experiments at 500, 
700, and 800 0 C and determined Heffective diffusion 
coefficients." Analyzing their specimens by x-ray diffrac­
tion [54, 61], and utilizing Hassner's relation [237], the 
product of the grain boundary diffusion coefficient times 
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FIGURE 33. The tracer diffusion coefficients of 67CU and 66Ni in binary Cu·Zn alloys and 
ternarY Cu-Ni·Zn alloys as a function of reciprocal absolute temperature. 

The straight lines drawn are the result of a least·squares analysis of the data. All data taken from Anusavice and 
DeHoff [204]. 

the grain width could be calculated. Between 700 and 
800 ° C, the activation energy for nickel grain boundary 
diffusion was 23.0 kcal/mol. More recently, Krishtal 
et al. [230] dUdlyztJ Lht {;uuLriLuLiuJIIs uf Jhslu{':HLiuns. 

The autoradiographic study of Yukawa and Sinnott [1] 
revealed the dependence of 63Ni penetration on the 
degree of crystallographic misfit between the grain5l. 
forming the boundary (maximum penetration occurring 
at maximum misfit). Their experiments were performed 
in the temperature range 650-925 °c. 

Unnam and coworkers [15] diffused thin films of nickel 
on a (lll)-oriented copper crystal at 600and 900 °C and 
calculated activation energies and. pre-exponential 
factors for grain boundary (as wcll as volume) diffusion 

which are in agreement with earlier published values. 

4.26. Suriace Diffusion 

Gal and Gruzin [239] diffused rHdioactive 63 Ni over 
the (100) and (111) surfaces of pure copper at tem­
peratures ranging from 900 to 1050 0 C. The activation 
fmergy for diffll~ion on .th~ (l00) cry~tal face was 33 
kcal/mol, and over the (111) face, 48.5 kcal/mol. Similar 
experiments performed on polycrystalline specimens 
yielded an activation energy of 37.4 kcal/mol. 

Pines and coworkers [240] have studied surface 
diffusion in thin films (-10- 6 cm) using, electron­
diffraction techniques. Measurements of "effective 
diffu::sion eoefficient::s" were mnde in the temperature 

J. Phys. Chern. Ref. Data, Vol. 5, No.1, 1976 
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FIGURE 34. The tracer diffusion coefficients of G1eu and 66Ni in ternary alloys of Cu· 
Ni·Zn as a function of reciprocal absolute temperature. 

The 8traie;ht lines shown are the result of a least-squares analysis: Data taken from Anusavice and DeHoff [204j. 

range 630-790 0 C. The results of the calculations are 
plotted in figure 42 as a function of reciprocal absolute 
temperature. The pure surface diffusion coefficient is 
estimated to be five to 10 times the value of the effective 
diffusion coefficient. 

Geguzin and coworkers [239, 241] determined a 
surface diffusion .coefficient at 1000 °C which had a 
concentration dependence. Their results indicate that 
surface diffusion takes place in a surface laver whose 
depth is greater than an interatomic spacing. 

Torkar and Neuhold [116] sintered unpressed nickel 
and copper powders. From magnetic measurements 
they attempted to sort out the activation energies for 
the surface and volume diffusion processes. 

4.27. Electromigration 

Stepper [242]~ and Stepper and Wever [243, 244] 
passed direct currents through a Cu-Ni(l.O at.%) alloy 
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and found that the nickel was transported towards the 
anode portion of the specimen. The values obtained for 
the effective valence are unrealistically high, as are 
calculated nickel diffusion coefficients. 

4.28. Thermomigration 

Meechan [245, 246] interdiffused copper and nickel 
in large temperature gradients in the range 2000-3000 
°C/cm. The width of the zone was established with a 
microhardness, coloration, or an etching technique, and 
it wag found that interdiffusion wag appreciably altered 
by the temperature gradients. 

Schroerschwarz and Heitkamp [247] used the method 
of stationary redistribution of radioactive 63Ni impurities 
in a linear temperature gradient in pure copper. The 
nickel impurities were found to be enriched on the hot 
side, corresponding to a negative heat of transport. 
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FIGURE 35. The tracer diffusion coefficients of 61CU and 66Ni in a binary Cu·Zn alloy and 
a ternary alloy of Cu·Ni·Zn as a function of reciprocal absolute temperature. 

The straight lines shown are the result of a least-squares analysis of the data taken from Anusavice and DeHoff[204J. 

4.29. Pressure EHeds 

Clay and Gn:~tm wuutl [173] jIIl~rtliffu8ed copper and 
nickel at 850°C over a range of pressures from 0.7-60 
MN/m2 in argon gas. Five tungsten wires were embedded 
at the interface to act as inert markers. and after ear.h 
diffusion anneal, marker displacement measured. The 
size, number, and distribution of voids forming on the 
copper-rich side of the couple were examined in optical 
and scanning electron microscopes. 1t was found that 
in the early stages of interdiffusion voids nucleate and 
increase in size and number, reaching a maximum size, 
whereupon they shrink and finally disappear. Hydro­

static pressure exerted during interdiffusion reduces 
total porosity, maximum size of the pores, as well as 
the time of growth. A hydrostatic pressure of ap­
proximately 20 MN/m2 at 850°C suppresses pore forma-

tion completely, although the authors detected no 
pre55ure effect on the rate of interdiffusion. The :same 

authors conclude from their results that void formation 
neither enhances nor retards the interdiffusion process 
they observed in their couples. 

Barnes and Mazey [165] applied hydrostatic pressures 
of --- 15 MN/m2 and reduced (or eliminated) void forma­
tion in their diffusion couples of Cu and Ni. 

Geguzin ~nd coworkers [163, 171J noted that the 
application of increasing hydrostatic pressure in their 
interdiffusion experiments would increase marker veloc­
ity and decrease pore formation. The surface relief of 

specimens during the interdiffusion of copper and nickel 
resulting from the application of low hydrostatic pres­
sure has been of some concern, especially the role of 
pores, dislocations, and free surfaces {97]. 
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The straight lines shown are the result of a least.squares analysis. Dala laken from Anusavice and DeHoff [204J. 

4.30. Ultrasonic Vibration 

The influence of ultrasonic vibrations on the inter­
diffusion of copper and nickel has been reported [248]. 
The amount of diffusion was detennined from metal­
lographic examination and microhardness readings of 
the interdiffusion zone. In the temperature range 
950-1050 °C, a measureahle acceleration was noted. 

4.31. Creep 

HilZ;h-temperature tensile creep studies [249. 250J 
using Cu-Ni(O-lOO% Cu alloys) revealed that the activa­
tion energy for steady-state creep is close to that for 
the lattice self-diffusion of the tracer component in the 
alloys. More recent low-stress creep experiments l251] 
in single phase alloys of Cu-Ni yield diffusion coefficients 
which are near values reported for interdiffusion 
coefficients. 

J. Phys. Chem. Ref. Data, Vol. 5, No.1, 1976 

4.32. Irradiation-Enhanced Diffusion 

Bonzel [7] has studied the influence of alpha-irradia­
tion (3 MeV a-particles) on the diffusion of radioactive 
1l3Ni in polycrystalline copper. In the temperature range 
210-285 °C, the diffusion caused by irradiation was 
found to be independent of temperature (see figure 43); 
the tracer diffusion coefficient being of the order of 

10-18 cm2/s. Brimhall [252] has also observed void 
formation in Cu-Ni alloys. 

4.33. Molten Metals 

The diffusion of nickel in liquid co pper lUi!:! Leen 

investigated by Ejima and Kameda [253]. Their measure­
ments were made over the temperature range of 1100-
1300 °C using a mooifieif r.apillary-reservoir method. 
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The straight lines shown are the result of a least.squares analysis of the data taken from Anusavice and DeHoff [2(4). 

The data fit the following Arrhenius-type equation: 

D--(1.7 1 ±0.3o) x 10-3 exp [-(10.5 

±0.31) kcal· mol-1/RT] cm2/s. 

Gerlach and Leidel [254], also relying on the capillary­
reservoir technique, measured the diffusion coefficients 
of nickel in copper-base alloys (containing 0.025, 0.25, 
2.5, and 3.25 at. % Ni) over the temperature range 
1150-1400 °C. Their data can be described by the 
parameters in table 27. 

The dissolution kinetics of nickel in· molten copper 

over the temperature range 1100-1400 QC was examined 
by Shurygin and Shantarin [255]. Using similar tech­
niques, Ereminko and Churakov studied the dissolution 
kinetics of graphite [256] and chromium carbide [257] 
in Cu-Ni(20 wt%) and Cu-Ni(40 wt%) alloy melts. 

The diff'usivity of oxygen in molten copper (at 1200 
QC) was found to be increased by the addition of 5 at. % 
nickel [258]. 

Rinaldi and coworkers [259] measured diffusion coeffi­
cients of the order of 10-5 cm2/s in ternary alloys from 
the aluminum-rich corner of the AI-Cu-Ni system while 
studying the growth of ternary composites from the melt. 
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TABLE 24. Diffusion parameters for bbNi tracer diffusion in eu, eu-Zn, and 
Cu-Ni-Zn alloys. Data taken from Anusavice et a1. [204]. 

Composition (at.%) Temperature Do Q 
C°e) (cm2/s) Ckca1/mo1) 

Cu Ni Zn 

99.999 855-1055 1 94+0 . 73 
· -0.50 55.6 ± 0.8 

90.25 9.75 791-995 1 06+0 . 25 
· -0.16 52.3 ± 0.4 

80.08 19.92 777-946 o 22+ 0 . 05 
· -0.04 46.6 ± 0.5 

70.94 29.06 739-895 0.12 ± 0.02 43.2 ± 0'.4 

82.72 12.55 4.73 779-1027 o 13+ 0 . 03 
· - 0.02 49.6 ± O.'S 

72.04 11. 21 16.75 784-999 o 16+ 0 . 14 
· -0.13 47.8 ± O.S 

69.68 19.'12 10.90 837-101\1 0.12 ± 0.02 4 g. 7 ± 0.4 

65.06 10.82 24.12 794-959 o 0844+0.0180 
· -0.0149 45.2 ± 0.5 

63.95 20.80 15.25 837-1013 o 091 7 1 0 . 033 2 
· -0.0243 48.2 ± 0.7 

60.97 29.49 9.54 904-1074 o 42+ 0 . 11 
· -0.09 54.4 ± 0.6 

55.17 20.59 24.24 791-983 o 0990+0.0320 
· -0.0245 46.9 ± 0.7 

47.12 33.08 19.80 870-1050 o 33+ 0 . 09 
· - 0.07 52.8 ± 0.6 

40.30 30.70 29.00 885-995 o 31+ 0 . 10 
· -0.09 S1. {) ± 0.7 
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TABLE 25. Diffusion parameters for 65Zn tracer diffusion in Cu, Cu~Ni, and 
Cu-Ni-Zn alloys. Data taken from Anusavice et a1. I204J. 

Composition (at.%) Temperature Do Q 
COC) (cm2/s) Ckca1/mo1) 

Cu Ni Zn 

99.999 800-1040 0.24 0.05 45.1 ± 0.5 

90.7 9.3 759-1040 o 36+ 0 . 22 
· -0.14 47.8 ± 1.1 

81. 8 18.2 795-1005 o 89+ 0 . 36 
· -0.26 51. 3 ± 0.8 

71. 4 28.6 870-1080 l' 37+1 . 18 
· -0.63 54.1 ± 1.5 

80.4 9.3 10.3 750-1005 0.49 ± 0.05 46.8 ± 0.2 

70.2 9.3 20.5 750-976 1 14+ 0 . 24 
· - 0.23 46.9 ± 0.4 

60.1 9.1 30.8 700-901 o 39+ 0 . 62 
· - 0.24 41.4 ± 3.2 

70.8 18.8 10.4 800-1040 o 36+0 . 17 
· -0.11 47.7 ± 0.9 

60.6 18.6 20.8 800-1011 1 09+ 0 . 60 
· - 0.39 48.1 ± 1.0 

50.3 18.7 31. 0 748-940 o 73+ 0 . 19 
· -.O.lS 44.7 ± 0.5 

61. 2 28.2 10.6 855-1041 1 44+ 0. 58 
· -0.41 52.6 ± 0.8 

50.8 28.2 21.0 800-1005 1 17+ 0. 69 
· - 0.40 49.9 ± 1.1 

40.7 27.9 31. 4 760-976 1 15+0 . 39 
· -0.26 47.4 ± 0.7 

TABLE 26. Nickel interdiffusion coefficients in Cu-Zn-Ni ternary alloys at 
175°C. Data taken from Coates and Kirkaldy [215-216]. 

Couple Configuration and Composition (wt%) DNi (cm2/s) 

Cu-ZnC3S.0) - NiCS.O) / Cu-Zn(3S.2) - Ni C 2.5) 1. 35 ± 0.15 x 10- 10 

Cu-Zn(44.1) - Ni(2.5) / Cu-Zn(44.0) - NiCS.O) 6.4 ± 0.9 x 10- 8 

CU-Zn(45.9) - Ni(7.5) / Cu-Zn(46.0) - NiC10.0) 3.5 ± 0.7 x 10- 8 
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TABLE 27. Parameters for the diffusion of 
nickel in liquid Cu-Ni alloys 
in the temperature range 1150-
1400 cc. From the experiments 
of Gerlach and Leidel [254]. 

Cu-Ni Alloy Do Q 
(at.% Ni) ( 1 0 - 3 cm 2 / 5 ) .(kca1/mo1) 

0.025 5.90 :t 0.8 12.96 :t 1.10 

0.25 2.31 ± 0.35 7.69 ± 0.90 

2.5 17.9 ± 1.5 9.90 ± 0.83 

3.25 58.1 ± 4.5 12.56 ± 1. 00 

-------
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5. Copper-Palladium 

5.1. Pd* ~ Cu 

The diffusion of radioactive tracers in single crystals 
of pure copper has been measured in the temperature 
range 807-1055°C by conventional· tracer-sectioning 
methods [1]. The loapd was electrodeposited onto the 
cleetropolished copper surfaces, diffused, sectioned on a 

precision lathe, and the chips counted. to determine 
the amount of activity contained. The palladium tracer 
diffusion coefficients were calculated by the method of 
least-squares from the linearized Gaussian penetration­
plots and. are listed in table 28. A plot of the diffusion 
coefficients as a function of temperature is shown in 
figure 44. A least-squares fit of the data gives the 
straight line shown, and the diffusion parameters can 
be expressed by the Arrhenius expression: 

D* = (1. 71 ~8:if) exp[- (54.37 ± 0.30)kcal . mol-1jRT] 

The quoted errors are the standard-errors obtained from 
a least-squares treatment of the d.ata. 

Although no other tracer experiments· have been re­
ported, the above results appear to have been arrived 
at after careful experimental technique and are probably 
quite reliable. 

5.2. Cu·Pd Interdiffusion 

Analysis of interdiffusion phenomena in the Cu·Pd 
system began with Matano [2] and continued with the 

studies of Birchenall and coworkers [3,4], two Soviet 
~nvestigations [5,6], and most recently, Badia and Vignes 
[7, 8], and Neukam [9]. All of the results (except those 
of Matano, who assumed a concentration-independence 
shown to be untrue by later studies) are plotted in figure 
45. In this figure, the interdiffusion coefficients are 
displayed as a function of composition for various 
temperatures. Also shown are the li~iting values for 
palladium diffusion in copperas determined by radio-
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TABLE 28. Tracer diffusion coefficients 
of l03Pd in pure single 
crystals of copper as deter­
mined by Peterson [1]. 

Temperature D* 
( °C) (cm 2 /s) 

1055.6 2.00 x 10- 9 
1. 99 x 10- 9 

1015.2 1. 01 x 10- 9 
1. 01 x 10- 9 

987.6 6.11 x 10- 10 

6.23 x 10- 10 

953.0 3.48 x 10- 10 

3.42 x 10- 10 

902.0 1. 30 x 10- 10 
1. 33 x 10- 10 

7.90 - 11 
872.9 x 10_ 11 7.64 x 10 

843.5 3.92 x 10- 11 
3. 77 x 10- 11 

1. 68 - 11 
007.0 x 10_ 11 1.66 x 10 

active tracers [1]. The concentration-dependence of the. 
interdiffusion coefficient is apparent at all temperatures. i 

The data reported by Badia and Vignes [7, 8, 29] 
temperature range 931-1061 °C appear to be quite 
r~liable. The interdiffusion coefficients were calculated 
by the Matano analysis [10] and the Hall analysis [11] 
from data obtained with an electron-microprobe analyzer 
on incremental couples. In agreement with the data 
of Badia and Vignes is that of Neukam, taken in the 
temperature range 775-1040 °e. 

The two sets of data [5, 6] reported at 859, 950, and 
1019 °C appear to originate from the same experiments, 
although the separate publications show small differ­
ences in the concentration dependencies. The experi­
mental technique again involved electron-microprobe 
analysis for determining the concentration gradients 
and the Matano and Hall analyses for . calculation of 
interdiffusion coefficients, but the diffusion couples were 
constructed of the pure metals_ The authors estimate 
the accuracy of the inter diffusion coefficients to be of 
the order of ] S to 20%, with the temperatures heing 
in error as much as 5 to 7°C. In view. of the possible 
errors, these results should be used with caution. Also, 
the concentration-dependence reported for the dilute 
solid solutions are probably not correct. More reliable 
values of the interdiffusion coefficients in the copper­
rich alloys can probably be obtained by extrapolating 
the data from the moreconcentrated solid solutions 

through the dilute region to the palladium tracer 
diffusion coefficients ~see dashed lines in figure 45). 

The results [3, 4] reported at 878, 972, and 1038 °C 
are too few and scattered to establish definite trends 
and should only be considered as providing a correct 
order-of-magnitude. 

The interdiffusion of 8 J.tm-thick deposits of palladium 
and single crystals of copper at 900 °C was followed 
with x-ray diffraction by Tenney and Talty [12]. Their. 
data are displayed in figure 45 for comparison. 

The effect of coherency strains on interdiffusion in 
thin films of Cu-Pd alloys (containing 70-90 at.% Pd) 
has been measured [13, 14]. In these experiments, 
composition-modulated Cu-Pd thin. films (total thickness 
of the films ranged from 0.3 to 0.8 J.tm) were interdifI'used 
at temperatures between 355 to 440°C (±0.05 °C), and 
the decay rate of the composition modulations and 
the state of coherency were determined from x-ray 
diffraction measurements. Effective interdiffusion co­
efficients (which were dependent on the wavelength of 
the composition modulations) were calculated and 
found to progressively decrease with the loss of co­
herency (coherency strains acting as a driving force). 

Extrapolation of the observed (effective) interdiffusivities 
to infinite wavelength should yield the true bulk inter­
diffusivities, and these values are shown in figure 46 
for the composition Cu-Pd (89.8 at. %). An extrapolation 
of these low-temperature bulk interdiffusivities to 
higher temperatures is also shown in the same figure. 

The interdiffusion of bulk copper specimens and thin 

foils of palladium has been observed in the temperature 
range 330-530 °C [15]. With the aid of an electron 
microscope, the . formation and growth of· the inter­
metallic phase, .a-CuPd, was observed continuously 
during the heating of the specimens. Concentration 
profiles in the interdiffusion zone were determined 
with an electron-microprobe analyzer- discontinuities 
being present at the phase boundaries. 

5.3. Cu-Pd-H 

The effect of ordering on hydrogen movement in the 
alloy CUaPd has been studied [16]. The temperature de­
pendence of the rate of permeation, P(cma . mm/cm2 • 

s . atm 1/2), and the diffusion coefficients, D(cm2/s), 
were measured in the temperature range 300-700 °C. 
The experimental procedures and apparatus employed 
(see references 17-19) yielded errors of :j:3% in the 
measurement of permeation rates, and ±5%in the diffu­
sion coefficients, according to the authors. The results of 
the experiment" are plottp.d 1n fignre" 47 ann 4R a" a 
function of reciprocal absolute temperature. The in­
fluence of ordering on the permeation rates and diffusion 
coefficients is evident in the figure. Measurements made 
with alloy specimens that had been heated-and-cooled 
from 300 to 730 °e indicated the effects of short-range 
order. Specimens that had been given long (20,45, and 
70 h) isothermal anneals at 1.00 °C exhibited the ef-

J. Phys. Chem. Ref. Data, Vol. 5, No.1, 1976 



178 BUTRYMOWICZ, MANNING, AND READ 

M.P. 
1083 

TEMPERATURE (Oel 
1000 900 800 

2 

10-9 

8 
";; 
...... 

6 '" E 
~ 

I- 4 
Z 
W 
(3 
ii: 
I.&.. 
W 2 0 
(.) 

z 
0 
en 
:::> 10-10 
LL. 
La.. 8 
E 
a:: 6 
w 
0 « 
0: 4 
I-

* 0 

2 

10-11 L..-___ ..a.-___ .... ___ --'-___ --L _______ "--__ ~ 

7 a 9 10 

FIGURE 44. The tracer diffusion coefficients of loapd in pure single crystals of copper 
as a function of reciprocal absolute temperature. 

Dala laken from Peterson (1). 

fects of long-range order. The reversibility of the trans­
formation is demonstrated by the measurements made 
on alloy specimens that were heated to above the tran­
sition temperature ( - 46U "C) and cooled. In the region 
of linear temperature dependence, the results can be ex· 
pressed by Arrhenius, equations, with the parameters 
listcd in tables 29 and 30. 

The diffusion of hydrogen (and deuterium) in Cu-Pd 
alloys at relatively low temperatures (25-130°C) has 
been investigated [20]. The alloys ranged in copper con­
tent from 0 to 58 at. %. Although the hydrogen diffusion 
coefficients were relatively insensitive to alloy composi­
tion, marked changes occurred at the a-f3 phase change. 

At elevated temperature, Cu-Pd alloys form a con­
tinuous a-phase(fcc) across the phase diagram [21], 
but at lower temperatures, 400-600 °C, ordering takes 
place at compositions above approximately 50 at. % 

J. Phys. Chem. Ref. Data, Vol. 5, No.1, 1976 

copper. At 350°C and in the absence of hydrogen, there 
exists a stable a-phase(fcc), an ordered f3-phase(bcc), 
and an intermediate two-phase region. The author noted 
that dissolved hydwgt:ll 5hift15 the phasc boundaries to 
higher palladium concentrations. 

The hydrogen diffusion coefficients were calculated 
from measurements made of the time-dependence of 
the electrical resistivity in given sections of alloy foil 
specimens, with the resistivity being related to the 
hydrogen concentration. The room temperature (25°C) 
diffusion coefficients are listed in table 31, along with 
alloy compositions, pre diffusion heat-treatments (which 
usually took place at 350°C), and the phases present 
before diffusion (determined by x-ray diffraction). 
Measurements near 130 °C are listed in table 32 for a 
Cu-Pd(47.5 at.%) alloy. The large increase in the 
hydrogen diffusion coefficient at the a-f3 transition is 
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FIGURE 45. The interdiffusion coefficients in Cu·Pd as a function of copper concp.ntra· 
lion. 

Data at 1061 ·C taken from reference [8.29). at 1053 ·C from reference (8), at 1038 ·C from reference [3. 4], at l000·C 
from reference [8J, at 972 ·C from reference [3], at 968 ·C from reference [8], at 93) ·C from reference (8), at 900 ·C 
from reference [12], and at 878 ·C from reference [3). The differing data shown at temperatures 1019,950, and 859 ·C 
appears to have been obtained from the Bame experiments [5, 6). The diffusion of palladium tracer in pore copper is 
shown for comparison (tracer data excerpted from reference [I)). 
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FIGURE 46. The interdiffusion coefficients as a function of the reciprocal absolute 
temperature for the composition Cu.Pd(89.8 at%}. 

The low temperature results obtained with incoherent thin films (I4] of the metals are extrapolated to the high 
temperature regime and compared with data taken from the experiments of Thomas and Birchenall [3]. Vignes and 
Birchenall [29J. and Badia [8J. 

TABLE 29. Parameters for the rates of permeation and diffusion of hydrogen 
in a disordered alloy of eU3Pd. Data taken from Vykhodets et al. 
[16] . 

Permeation Parameters Diffusion Parameters 
Tt!ll1pe-ratu-re Po Qp Do Qd (Oe) cm 3 ·mm . 

( !) (kca1/mo1) (cm 2 /s ) (kca1/mo1) 
cm 2 • s .atm 2 

>480 2.5 x 10- 2 8.30 2.80 x 10- 3 9.65 

<410 1. 06 x 10- 2 7.77 1. 80 x 10- 3 8.50 
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FIGURE 47. The temperature dependence of the diffusion coefficient, D(cm2/s), of 
hydrogen in a Cu 3Pd alloy. 

The data pointe "A" conespond to heating-and-cooling from 300 to 730 ·C; the discontinuities in the linear behavior 

occurring near the critical temperature are caused by the creation (or destruction) oC short-range order. The data 
points "8", "C", and "D", are measurements made on specimens that had undergone an isothermal anneal at 4QO ·C, 
for 20.45, and 70 hours, respectively. to allow ordering to take place. The data points "E" and uFn were taken from 
measurements on alloy specimens that had heen heated to above the order·disorder transition temperature and then 
cooled (to demonstrate the reversibility of the transformation reliability of their measurements). Data taken from 
Vykhodets et al. (16]. 

attributed to the decrease in the activation energy for 
diffusion. 

Measurements of the deuterium diffusion coefficient 
ina Cu-Pd(47.5 at. %) alloy (,B·phase) at a temperature 
of 25 °C were also made in these experiments. The 
value (3.2 ±O.2) X 10-5 cm2/s was calculated (compared 
to 4.9 x 10-5 cm 2/s for hydrog~n). 

5.4. Cu-Pd-Ni 

The addition of 0.27 at. % palladium to pure nickel 
single crystals was found to increase the rate of copper 
diffusion at 843.3 °C [22, 23]. The impurity diffusion 
coefficient of copper in nickel was found to be 17 % 

higher than measurements made in pure nickel speci­
mens. Similar measurements between 903.3 and 1050 
°C showed that palladium additions had no. effect on 
the copper diffusion rates at these temperatures. 

5.5 Cu-Pd-O 

The high temperature (850-1000 DC) oxidation of 
Cu-Pd(5.19-95.14 at.%) alloys has heen investigated 
[24]. The relationship between the oxidation-rate 
constants and various diffusion coefficients in the 
reaction zones are derived. The results and conclusions 
reached in these experiments were subsequently re­
analyzed by Wagner [25]. 
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FIGURE 48. The temperature dependence of the permeability (or rate of permeation), 
P(cm3 ·mm/em2 ·s·atml /2 ), of hydrogen in a CnaPd alloy. 

The data pointe "A" correspond to heating and colling from 300 to 730 ·C; the diacontinuities in the linear beha,vior 
occurring near the critical temperature are caused by the creation (or destruction) of short-range order. The data points 
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45, and 70 hours, respectively. 10 allow ordering to take place. The data points "EM and "F" were taken from measure­
ments on alloy specimens that had been heated 10 Bbove the order-disOl'der transition temperBture, and then cooled 
(10 demonstrate the reversibility of the transformation reliability of their measurements). Data taken from Vykhodets 
et al. [16]. 

5.6. Surface DiHusion 

Diffusion on thin (-- 10-6 cm) films of copper and palla­
dium hal5 been reported [26]. In the~eexperiment~, 

copper and palladium were evaporated onto each other 
to form the specimen couples. The degree of spreading 
was followed with electron diffraction (the technique 
described in an earlier paper [27]), with the lattice con­
stants determin~d from diffraction patterns yielding 
the corresponding concentrations. The diffusion con-

stants that were calculated were termed "effective 
surlace diffusion coefficients." The calculation leading to 
such constants [28] includes not only surlace diffusion, 
but volume diffusion contributions as well and is bascd 

upon half-plane source geometry. Most likely, though, 
other accompanying proc'esses are included in this dif­
fusion constant. The rates of migration were found to he 
dependent on film thickness. The data are plotted in 
figure 49 for copper on palladium, and in figure 50 for 
palladium on copper. 
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TABLE 31.. Rooin-temperature [25 °C}:,.di£fusioncoef±liprents ofH 2 i1i Cu-Pda11dys. 
Specimencompositions,pre-:diffusion heat.treatments (and the resulting 
phases) are also listed. Hydrogen will shift thephase'boundaries to 
higher'pa11adium concentration. Data taken from Piper [20]. 

Cu- Pd' Alloy 
(at.% Cu) 

o 
15.3 

41.5 

44.7 

47.8 

50.1 

52.5' 

55.4 

57.1 

Pre-Diffusion Heat Treatment 
T (Oe) H2 Pressure Time 

(atm. ) 

2S 

350 

350 
350 
350 

350 
350 
350 

350 
350 
350 
350 
350 

350 
350 
350 
350 
350 
350 
350 
350 

350 
350 
350 
350 

,350 
350 
350 

1 2 wks 
as received 

o 

o 
5 

120 

o 
5 

120 

o 
o 
o 
5 

120 
as received 

o 
o 
o 
o 
5 
5 

6.7 
6.7 

o 
o 
o 
S 

o 
o 
5 

2 days 

1 wk 
1 wk 
2~ wks 

1 wk 
1 wk 
21z. wks 

2 days 
2 days 
1 wk 
1 wk 
2~ wks 

1 day 
2 days 
2 days 
1 wk 
3~ h 
1 wk 
3 wks 
3 wks 

2 days 
2 days 
1 wk 
1 wk 

2 days 
2 days 
2 days 

aSpecimen rebuilt and experiment repeated. 

Phases Present 
in Specimen 

a-Pd-H 
a 

a,/3 

a,/3 
a,S 
a,S 

a,S 
a,S 
OI,~ 

a,~ 

a,S 
a,S 
a,S 
/3 
a 
a,S 
a,S 
a,S 
/3, (a) 
/3 
13 
a 
e 

/3 
t3 
8 
13 

/3 
t3 
S 

bExtra long sample employed to improve accuracy of experiment. 
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Hydrogen Diffusion 
Coefficient (cm2/s) 

2 
4 

1 x 10- 6 

1.4 x 1'0- 6 
9.4 x 10- 6 
2 4 io- 5 

a • x 10"';; Z.S x 

9.0 x 10- 6 
2.3 x 10- 5 
5.3 y 10- 5 

4.7 x 10- 6 
1.7 x 10- 5 
2.1 x 10- 5 
4.3 x 10- 5 
'5.6·x 10- 5 

2 x 10- 6 
4.6 x 10- 5 
3.2 x 10- 5 

3.6 x 10- 5 
4.9 x 10- 5 
5.8 x 10- 5 
5.0 x 10- 5 

4.9 x 10- 5 
4.9 x 10- 5 

3.0 x 10- 5 
4.1 x 10- 5 
6.0 x io- 5 
4.6 x 10.,5 

3.5 x 10- 5 
5.2 x 10- 5 

b5.2 x 10- 5 
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TABLE 32. Diffusion coefficients of hydrogen at elevated temperatures (-130 
°C) in an alloy of Cu-Pd (47.5 at.%) compared to room temperature 
(25°C) values. Pre-diffusion heat treatments are listed in 
addition. From the data of Piper[20]~ 

Pre-Diffusion Heat Treatment Diffusidn Maasurement 
T (OC) Hydrogen Time of Diffusion Diffusion 

Pressure Anneal Temperature Coefficient 
(atm. ) (0 C) (cm 2 / s) 

350 0 2 days 25 3.6 x 10- 5 

350 0 2 days 132 10.3 x 10- 5 

350 0 2 days 27 3.2 x 10- 5 

350 0 2 days 137 8.9 x 10- 5 

350 6.7 3 wks 25 4.9 x 10- 5 

350 6.7 3 wks 121 13.2 x 10- 5 

350 6.7 3 wks 133 15.2 x 10- 5 

185 
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FIGURE 50. The effective surface diffusion of palladium!on thin films of copper as a 
function of reciprocal absolute temperature. 

The palladium spreads on the copper foil and contains bulk diffusion contributions. The constants are dependent 
on the .copper foil thickness (110 A and 22() A). From the data of Grebennik and Z),man {2.6]. 
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FIGURE 51. Diffusion coefficients of platinum in polycrystalline copper as a function of 
Tecipr()():U ab!;;olute temperAture. 

Johnson and Faulkenbe~ [1] ulled I-Pt Btl a tracer, whereu Fogel'80D et al. ~] em~loyed a thin film 01 plaanum. 

TABLE 33. Tracer diffusion coefficients tained from the solution to the diffusion equation for 
the case of diffusion from a very thin layer into R j;\p.mi. 

infinite body [3-6]. The temperature dependence of 
the platinum diffusion coefficients (see table 34) meas­
ured in the temperature range 750-1075 o.C (± 2°) is 
illustrated in figure 51. The Arrhenius equation (with 
probable errors) arrived at after a least-squares 
analysis is: 

T 

o£ 19Smpt in pure polycrystalline 
copper. Data from Johnson 
and Faulkenberry [1]. 

(±2°C) D* (cm2js) 

997 1.64 x 10- 10 

950 1.14 x 10- 10 

906 4.69 x 10- 11 

843 2.36 x 10- 11 

J. Phys. Chem. Ref. Data, Vol. 5, No.1, 1976 

D Pt-+Cu = (0.67 :~::96) exp [- (55.7 ± 0.78) 

kcal·mol-1/RT] cm2/s. 

These values of the pre-exponential' factor and activa· 
tion energy are more in agreement with those values 
found for other metals in this periodic group (Ni and Pd). 
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TABLE 34. Diffusion coefficient of 
platinum from an electro­
deposited thin layer into 
polycrystalline copper. 
From data of Foge1'son et 
al. [2]. 

T (±2°C) D (cm 2 / s) 

1075 7.0 x 10- 10 

1050 3.8 x 10- 10 

1009 2.0 x 10- 10 

950 7.3 x 10- 11 

DOO 3.0 10- 11 

856 1.2 x 10 - 11 

800 2.8 x 10- 12 

750 8.5 x 10- 13 

6.2. Cu*~ Pt 

Concurrent with their previously described experi­
ments, Johnson and Faulkenberry [1] also measured the 
diffusion rates of radioactive 64CU in chemically pure 
polycrysta1line platinum over the temperature range 
1098-1375 °C (±20). The experimental procedures 
employed were similar to those employed and described 
for their platinum tracer diffusion studies in pure copper. 
The results of their experiments are summarized in 
table 35 and figure 52. A least-squares method was 

TABLE 35. Tracer diffusion coefficients 
of 64Cu in pure po1ycrysta11ine 
platinum. Data from Johnson 
and Faulkenberry [1]. 

T (± 2 ° C) D* (cm2/s) 

1375 7.93 x 10- 10 

1290 4.06 x 10- 10 

1199 1. 02 x 10- 10 

1098 2.32 x 10 - 11 

utilized to fit the measured tracer diffusion coefficients 
to the straight line shown in figure 52. The resulting 
Arrhenius expression (with probable errors) used to 

describe the diffusion process is: 

DCu*~Pt = (0.074 ~::O) exp [- (59.5±2.4) 

kcal' mol-1/RT] cm2/s. 

No other investigations have been reported to confirm 
these data. 

6.3. Pt*~ Cu-Pt 

In addition to their investigations with pure copper, 
Johnson and Faulkenberry [1] also diffused platinum 
tracers into a series of Cu-Pt alloys. Of the four com­
positions studied [Cu-Pt(9.8, 24.6, 49.4,and 74.5 at.%)], 
two had the nominal composition for the intermetallic 
compounds (CuaPt and CuPt), and the remaining two 
were located on the copper-rich and platinum-rich side 
of the phase diagram. As in their experiments with pure 
copper, the relative concentration of the diffusion 
platinum in the annealed specimens were determined 

by measuring the relative activities of radioactive 
platinum in each sample section. The calculated plati­
num diffusion coefficients are listed in table 36 and 
plotted as a function of reciprocal absolute temperature 
in figure 53. The straight lines were fitted using a least­
squares fit of the tracer diffusion coefficients to the 
Arrhenius equation. The diffusion constants (and their 
probable errors) defining these lines are listed in 
table 36 along with the other experimental data. 

The large amount of scatter evident in the specimen 
containing 9.8 at. % platinum was attributed to a "flake" 
forming on the plated portion of the specimen and which 
subsequently broke off during the first lathe-sectioning 
cut. 

6.4. Cu* ~ Cu-Pt 

Johnson and Faulkenberry [1] measured the MCU 
diffusion coefficients in the same alloys employed in the 
platinum tracer diffusion studies described in the pre­
vious section. Again, the experimental teehniqup. wa~ thp. 

same as described in the previous section - electro­
deposition of the copper tracer followed by diffusion 
anneals and subsequent lathe-sectioning, counting, etc. 

, The calculated copper tracer diffusion coefficients are 
summarized in table 37 and plotted as a function of 
reciprocal absolute temperature in figure 54. A least­
:squares fit of the diffusion coefficients to the Arrhenius 

equation YIelds the straight line shown in the figure. 
The values of the pre-exponential and activation energy 
(and their probable errors) are listed in table 37. 

It should be noted here that in these experiments of 
Johnson and Faulkenberry (as well as the previously 
discussed work of theirs), they experienced a deviation 
from linearity in their concentration-penetration relation­
ship when the concentrations were plotted on semilog 
paper against the square of the penetration distance, 

J. Phys. Chem. Ref. Data, Vol. 5, No.1, 1976 
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FIGURE 52. Tracer diffusion coefficients of &teu in polycrystalllne platinum as a func 
lion of reciprocal absolute temperature. 

Data laken from the experiments of Johnl!On and Faulkenberry [1). 

thus causing some uncertainty in their measurements. 
Additionally, the preparation of their alloys, particularly 
near the compositions CuPt and CUaPt, proved to be 
difficult, with the very brittle alloys often cracking. The 
possibility of a new phase forming in some of the couples 
was mentioned by the authors. 

In view of the experimental problems which plagued 
Johnson and Faulkenberry, their results should be 
treated with a great deal of caution. Their numbers are 
shown here in sections 6.1 to 6.4 only because of the 
paucity of data available for this alloy system. 

6.5. Cu-Pt Interdlffuslon 

Matano [7], and Kubaschewski and Ebert [8] in early 
publications reported widely varying activation energieg 
for interdiffusion between copper and platinum. The 
more recent studies have employed the electron· 
microprobe an~lyzer, and include the investigations of 

J. Phys. Chern. Ref. Data, Vol. 5, No.1, 1976 

Hartley and Steedly' [9], and Ogilvie et al. [10] The former 
never published the results of their experiments in the 
temperature range 794-1021 QC, whereas the latter 
noted the considerable difficulty incurred in bonding 
the sandwich couples (both pure metal couples and 
incremental couples) of this alloy system, as well as 

the development of a considerable amount of non­
Kirkendall porosity at the interfaces of the couples. 
AltholJgh concentration versus distance data (at temper· 
atures from 794 to 1021 °C) were determined, no 
diffusion coefficients were calculated for the 24 couples 
studied. The concentration gradients obtained from 
experiments at 794 nc exhibited two discuntinuities in 

concentration, probably caused by long-range ordering 
in the alloy, Also found was that the marker-interlace 
concentration was nearly pure copper in the diffusion 
zones of couples constructed of pure copper and 
p1atinum, and those couples of pure copper bonded 
to a Cu·Pt alloy. 
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TABLE 36. Tracer diffusion coefficients and diffusion parameters of ~9Smpt 
in po1ycrysta11ine Cu-Pt alloys. After data of Johnson and 
Faulkenberry [1]. 

Cu-Pt Alloy T (±2°C) D* (cm2/s) Diffusion Parameters 
(at.%/wt% Pt) Do (cm2/s) Q (kca1/mo1) 

1058 2.86 -10 x 10_ 10 1057 1.84 x 10_ 11 
9.8/25 1000 9.52 x 10_ 11 

952 2.70 x 10_ 11 906 2.08 x 10 

o 093+ 0 . 42 \ 
· -0.076 52.6 ± 4.3 

1094 1.18 - 10 
x 10 _ 11 

24.6/50 1055 5.46 x 10_ 11 1001 2.84 x 10_ 11 
946 1. 07 x 10 

o 019+ 0 . 041 51.4 ± 3.0 · -0.013 

1287 4.12 - 10 x 10_ 11 
49.4/75 1171 6.47 x 10_11 

1140 3.69 x 10_ 12 1034 7.57 x 10 

o 066+ 0 . 126 59.5 ± 3.0 · -0.044 

1382 2.81 -10 x 10_ 11 
74.S/90 1288 5.70 x 10_ 11 1171 1. 93 x 10_ 12 

1140 9.30 x 10 

o 022+ 0 . 081 60.3 ± 4.7 · -0.017 

TABLE 37. Tracer diffusion coefficients and diffusion parameters of 64Cu in 
po1ycrysta11ine Cu-Pt alloys. Data from Johnson and Faulkenberry 
[1] . 

Cu-Pt Alloy T (±2°C) D* (cm2/s) Diffusion Parameters 
(at. %/wt% Pt) 

Do (cm2/s) Q (kca1/mo1) 

1046 2.09 
-9- 1 1+1 . 8 52.8 ± 2.5 x 10_ 10 · - 0.7 

9.8/25 990 6.75 x 10_ 10 
939 3.26 x 10_ 10 899 1. 63 x 10 

1096 1.13 -9 o 53+1. 01 54.7 3.9 x 10_
10 · -0.42 ± 

24.6/50 1054 4.09 x 10_
10 1002 2.27 x 10 _ 11 

947 8.63 x 10 

1293 2.38 -9 o 027+ 0. 022 51. 0 1.7 x 10_ 10 ± 
1203 7.00 · -0.012 

49.4/75 x 10_ 10 
1104 2.66 x 10_ 11 
1000 4.90 x 10 

1385 2.08 -9 o 67+ 0 . 83 64.4 1.2 x 10_ 10 · - 0.37 ± 

74.5/90 1290 7.40 x 10_
10 1199 1. 52 .x 10_ 11 1098 3.94 x 10 
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function of reciprocal absolute temperature. 

Data taken from the experiments of Johnson and Faulkenberry [1]. 

6.6. Cu-Pt-O 

Wagner [II] has made a theoretical analysis of the 
concurrent diffusion processes occurring during the 
internal oxidation of Cu-Pt alloys where Cu20 is formed 
as an external scale (as well as deeper in the Cu-Pt 
alloy due to inward diffusion of oxygen). 
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TABLE 38. Impurity diffusion coefficients 
of rhodium in thin polycrystal­
line copper foils. Data' excerpted 
from Fogel 1 son et a. [1]. 

T (Oe) 

1075. 

1050 

100'0 

950 

,907· 

856 

800 

75U 

experimental technique contained a maximum error of 
25%. 

These diffusion coefficients are plotted as a function 
of reciprocal absolute temperature in figure 55. The 
straight line shown in the figure was calculated by a 
least-squares analysis and can be expressed by the 
Arrhenius equation: 

0.6) kcal· mol-1/RT] cm2/s. 

There are no other data with which to compare these 
results. It may be noted that although the experimental 
method employed by the authors is not as accurate as 
some of the traditional radioactive-tracer sectioning 
techniques, the above results are not unusual when 
compared to other transition metals, and particularly 
those of the same group (Pd, Ni). 
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D (crn2/s) 

1.3 x 10- 9 

8.1 x 10- 10 

3.5 x 10- 10 

1.4 x 10- 10 

6.6 x 10- 11 

2.0 x 10- 11 

4.7 x 10- 12 

1.4 x 10- 12 

8. Copper-Ruthenium 

8.1. Ru*~ Cu 

The tracer diffusion coefficient of l03Ru in high­
purity single crystals of copper has been measured in the 
temperature range 725-1062 °C [1-4]. Ruthenium 
penetration curves in copper were obtained through the 
electrolytic dissolution of thin layers of the diffused 
specimens and counting the activity contained therein. 
From these penetration plots, the tracer diffusion coeffi­
cients were calculated (see fig. 56 and table 39) and 
found to· have a linear temperature dependence in the 
range 950-1062 °C. This dependence can be expressed 
by the Arrhenius equation: 

D~u_cu=8.5 exp (-61.50 kcal' mol-1/RT) cm2/s. 

The authors estimate that an error of 5-10% to be 
present in the value of the tracer diffusion coefficient 
and ±l kcal in the activation energy. 

The large positive deviations from linearity below 
approximately 950°C are attributed to the dislocation 
network (5 X 106 dislocations per square centimeter 
present in the single crystals used) and the. segregation 
of the solute along these line defects. 

8.2. Dislocation Pipe DiHusion 

Taking the data discussed above, Bernardini and 
Cabane [2-4] separated out the enhancement aD (the 
difference, aD, is defined as the experimentally­
measured tracer diffusion coefficient, D!eas., minus the 
true tracer diffusion coefficient, D*) due to the presence 
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[7] and Brebec [8] (both based on Fisher's arguments 
[9]) were employed. The results are shown in table 41 
and plotted in figure 58 as a function of reciprocal 
absolute temperature. The data are fitted with a straight 
line which can be expressed by the Arrhenius equation: 

D pipe = 2.6 X 10-13 exp (-33 kcal' mol-1/RT) cm2/s. 

Errors are estimated to be ±40% in the pipe diffusion 
coefficient, and ±3 kcal/mol in the activation energy 
for diffusion along the dislocations. 
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TABLE 39. Tracer diffusion coefficients 
of l03Ru in pure single crys­
tal copper. Data from 
Bernardini [2]. 

1062 

1033 

1020 

1015 

1003 

984 

980 
955 

948 

912 
894 

857 

857 
848 

833 

830 

807 

800 

750 

750 

750 

D* (cm2/s) 

8.4 

4.5 

3.9 

3.3 

2.7 

1.8 

1.7 
1.1 

9.2 
a

3 

3.6 

1.7 

1.4 
1.4 

1 
as 

5.2 

4.5 
b1.5 
a 6 
as 

x 10- 10 

x 10-. 10 

x 10- 10 

~ 10- 10 

x 10- 10 

x 10- 10 

x 10- 10 

x 10- 10 

x 10- 11 

x 10- 12 

x 10- 11 

x 10- 71 

x 10- 11 

x 10- 11 

x 10- 11 

x 10- 12 

x 10- 12 

x 10- 12 

x 10- 12 

x 10- 13 

x 10- 13 

aDetermined from the initial part of the 
penetration curve where the tr€atment 
time was such that CDv·t)~ < 5 x 10-Q cm. 

bDetermi~ed from the initial part of the 
penetration curve where the treatment 
time was such that CD ·t)~ > 5 x 10~ cm. v 
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'894 

857 

848 

'.833 

807 
800 

752 

'Cdn2./s.) 

D~Ol 

3.6 x 1.1' 2.8 x 10- 11 

1~ 7 x 1-0- 11 

1.4 x 10,;.1J 

.1 x 10"" 11: 

4.5 x to"" 12 

1.2 x 10- 1,1 

9.3 x 10- 12 

6.4 x 10,..12 

10"':12 

2.6. x 10-12, 

1..5 x 10,- 12 7.0 x 10- 13 

TABLE 41. Pipe diffusion coefficients' 
of .ruthenium in copper along 
dislocat.ions.·Data from' 
Bernardini [2]. 

T COe) Dpipe (cm2:js) 

840 6.5 x 10.:- 20 

'809 1 x 10- 19 

780 3~6 x 10- 2.0 

750 2.4 x 10- 20 

750 1..8 x 10:- 2 0 

77.0 2.1 x 10- 20 

700 1 x 10- 20 

'689 9.5 x 10-.21 

672 7 x 10- 21 

' .. Loglo . 

-0.54 

-.0.3& 

'. -0.'30 

. -0 ~.2S 

-0. 2~Q . 

-0,13 

-0.06 



200 

VI ...... 
N 

E 
~ 

.... 
Z 
W 
u 
G: 
l.L. 
W 
0 
U 

Z 
0 
(j) 
:::> 
l.L. 
LL 
Ci 
W 
D-
a:: 

2 

10-19 

8 

6 

4 

z 

10-20 

8 

6 

4 

2 

BUTRYMOWICZ, MANNING, AND READ 

TEMPERATURE (OC) 
900 800 100 

0 

0 

0 

0 

0 

0 

10-218~------~------~9--------~------~IO--------~------~1I 
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