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Scaled Equation of State Parameters for Gases in the Critical Region
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The anomalous thermodynamic behavior of fluids near the critical point can be described in terms
of scaling laws. In this paper we consider two critical region equations of state, to be referred to as
the NBS equation and the Linear Model parametric equation, that satisfy the scaling laws. A complete
formulation of the thermodynamic properties in terms of the two equations is given. The statistical
methods used for fitting these equations to experimental data are described. Each of the equations is
fitted to experimental equation of state data for six fluids, namely He3,iHe?, Xe, CO,, O,, and H,0. An
evaluation of the recorded experimental material is included. We find that the two equations represent
the experimental data in the range |T—T.|/T < 0.03 and |p—p.]/p. < 0.25 equally well and that the
exponents and amplitudes of the power laws deduced from the twe equations agree closely. The opti-
mum critical exponents appear to vary little from substance to substance. Moreover, a restricted
version of the Linear Model with only two freely adjustable constants, in addition to the critical point
parameters and the critical exponents, fits the data well in most cases, in agreement with expectations
based on universality of critical behavior. The principle of universality is discussed and applied to
predict critical region parameters for nine additional fluids, including several for which only limited

_ experimental information is available. These additional fluids are Ar, Kr,N», H,, CH,,CsH,, SF¢, NH;,
and D.0. We thus conclude with a single universal equation for the critical region of all fifteen Ruids
considered in this paper.

Key words: Air constituents; critical region parameters: ethylene; heavy noble gases: helium; Linea.
Model; methane; NBS equation; scaling laws; statistical analysis; steam; universality.
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1. Introduction

The purpese of this paper is to present an accurate

characterization of the anomalous thermodynamic
behavior in the critical region of a number of gases. The
need for a new characterization has been felt acutely in
the last 10 years, during which it became common
knowledge that the methods for data correlation used
until then had been inherently in error in the critical
region. We are referring here to the engineering calcula-
tions that make use of so-called “classical” equations
of state, i.e. equations which are analytical at the critical
point and which can be considered as improved versions
of van der Waals’ equation of state. Analytical equations
yield a critical isotherm that is asymptotically of the
third or of the fifth degree, a guadratic or a quartic
coexistence curve, a finite constant volume specific
heat C, in the one-phase region and an analytic vapor
pressure curve. On the other hand, real fluids have a
critical isotherm that is somewhat flatter than a fourth-
degree curve but not as flat as a fifth-degree curve, a
coexistence curve that is almost cubic, a weakly
divergent specific heat C, and a nonanalytic vapor
pressure curve.

In recent years, new thevries of critical phenomena
have produced a form for the equation of state in the
vicinity of the critical point which incorporates the
observed nonanalytic character of the thermodynamic
behavior and which also leads to a reduction of the
number of independent variables. The critical behavior
is associated with long range fluctuations in the system
and the physical properties depend primarily on a
single variable, namely the correlation length. There-
fore, the function which characterizes the anomalous
thermodynamic behavior near the critical point is a

Table Page
Model and NBS Equation .......c.c.ccocveninin. 35
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function of one variable, which is a combination of the '
two original independent variables, density and tempera-
ture. This reduction of the number of independent
variables in the critical region from two to one is known
as scaling. Furthermore, since the correlation length is
much larger than the range of the intermolecular inter-
action, the behavior of the system becomes highly in-
sensitive to details of the molecular interaction and,
thus, is expected to have a universal character. The
range of validity of such a scaled universal description
is determined by the requirement that the correlation
length be much larger than the range of the interaction.
This defines a region around the critical point which
we will call the critical region. In practice, this region
is located within approximately 25 percent of the
critical density and about 3 percent of the critical
temperature.

The literature on critical phenomena is rapidly in-
creasing. For a survey of the development of the subject
concerning one-component fluids the reader is referred
to some other papers of one of the authors [L1, L2, L3].2

This paper is organized as follows:

We first formulate in section 2 a description of the
thermodynamic behavior of fluids in terms of the scaling
laws. We then describe in section 3 two scaled equations
of state that have been used successfully. The first
equation is an equation formulated by Vicentini-Missoni.
Levelt Sengers and Green [V1] 1o which we shall refer,
for the sake of convenience, as the NBS equation. The
second equation is the Linear Model parametric equa-
tion proposed by Schofield, Litster and Ho [S1, S2].
Since the Linear Model is the most versatile of the two
equations, we give a list of the expressions for the

1Symbols in brackets indi literature ref

J. Phys. Chem. Ref. Data, Vol. 5, No. 1, 1976



4 LEVELT SENGERS, GREER, AND SENGERS

various .thermodynamic properties in terms of the Linear
Model in section 3.3.

A method for fitting the NBS equation to experimental
equation of state data was formulated earlier [V1]. For
the purpose of this paper it was also necessary to develop
a method of statistical analysis for fitting the Linear
Model to the experimental data. This method is de-
scribed in section 4.

We then proceed in section 5 to fit the NBS equa-
tion and the Linear Model to the equation of state data
of Habgood and Schneider for xenon [H1], the data of
Roach for helium* [R1], the data of Wallace and Meyer
for helium® [W1], the data of Michels et al. for carbon
dioxide [M1], the data of Rivkin et al. for steam [R2,
R3, R4] and the data of Weber for oxygen [W2]. In
each case, a detailed discussion is given of the experi-
mental accuracy, the choice of critical parameters and
the analysis of the coexistence curve. The optimum
fit for each of the two scaled equations is presented and
the results compared. Deviations between the experi-
mental and calculated data are pl(;tted and compared
with estimates of the experimental error. For the Linear
Model fits, we also present a complete error analysis
of the six adjustablc paramctcrs.

From the results obtained, we can derive the coef-
ficients and exponents of the power laws that describe
the anomalous behavior of a number of thermodynamic
properties on approaching the critical point. The values
of these coefficients and exponents are included in the
tables of critical region parameters presented in section
5. We also make a comparison with other independent
sources of experimental information, when available,
such as the data of Kierstead for helium? [K1, K2] and
the data of Estler, Wilcox and Hocken [E1] and those of
Thoen and Garland [T1]{or xenon.

We conclude this paper with a discussion of the ques-
tion of universality in section 6. The principle of uni-
versality requires the critical exponents to have the same
value for all fluids: furthermore, it implies that, in addi-
tion to the critical temperature, density and pressure,
only two other parameters can be freely chosen in the
scaled equation of state. Hence, the validity of this
principle would imply great economy in the description
of the thermodynamic behavior of fluids in the critical
region. The material gathered in this paper permits a
test of the principle of universality. We conclude that
universality holds at least within the accuracy of the
data available for six fluids. We then use this fur de-
veloping a description of the critical region for nine
additional fluids. We thus conclude with a list of critical
region parameters for 15 different fluids in terms
of a universal equation of state.

2. Thermodynamic Description in Terms of

Scaling Laws
2.1. Choice of Variables

If volume and temperature are chosen as the inde-
pendeni variables, then the characteristic thermo-

J. Phys. Chem. Ref. Data, Vol. 5, No. 1, 1976

dynamic potential is the Helmholtz free energy per mole;
in this description pressure P and volume V are con-
jugate variables and the equation of state P(V, T) is
obtained by differentiation of the Helmholiz free energy
with respect to V. On the other hand, if density and
temperature are chosen as the independent variables,
then the characteristic thermodynamic potential is the
Helmholtz free energy per unit volume; in that descrip-
tion chemical potential p and density p are conjugate
variables and the corresponding equation of state
u(p, T) is obtained by differentiation of the Helmholtz
free energy density with respect to p.

The choice of variables in which the scaling laws are
formulated is dictated by considerations of symmetry
which have been amply discussed elsewhere [L3,
V1]. Be it sufficient here to remind the reader that the
coexistence curve, when platted as a function of density,
shows considerably more symmetry than when plotted
as a function of volume, as illustrated in figure 1. An
equally striking difference in symmetry features is
noted above the critical temperature, when a wu(p)-
isotherm is compared with a P(¥)-isotherm, as illustrated

in figure 2: the u(p)-isotherms are antisymmetric with

respect to the point pe, m(pe), in contrast to P(V)-
isotherms.. These symmetry properties are perfectly
satisfied in the lattice gas model; for a real fluid they are
only satisfied asymptotically when the critical point is
approached. The scaling laws in the form we use them
do assume these symmetry properties. The scaling laws
are only valid asymptotically and, therefore, the range
of experimental validity has to be tested in each indi-
vidual case.

In view of these symmetry features we adopt density
p and temperature T as the independent variables. The
extensive thermodynamic functions, such as Helmholtz
free energy, 4, entropy, S, and heat capacity at constant
volume, C,, are taken per unit volume. The equation of
state to be considered will be the chemical potential,
W, as a function of p and 7. The basic thermodynamic
formulae are

T ARGON
-123
2o -1za 1/'?\\ ]
20¢| -
|

1307}

|
|

V/ Ve PP

FIGURE 1. The coexistence curve of argon in terms of volume and
temperature and in terms of density and temperature.
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FiGUuRe 2. P (V)-isotherms and wu(p)-isotherms of argon in the
critical region. In contrast to the P(V)-isotherms, the

n(p)-isotherms are nearly antisymmetric with respect

U = udp —SdT, (1.1a)
S=~(34/0T),, (1.1b)
C.=—T(324/5T?),, (1.1c)

u=(34/3p)», (1.1d)

while the pressure follows from a Legendre trans-
formation

—P=A-up.

The “generalized compressibility” (dpfon) s will
play an important role; it is related to the isothermal
compressibility Ky = — V-1(8V/8F ) r by the relation

(dpfop)r=pKy. (1.1f)
All properties are made dimensionless by expressing

them in units of appropriate combinations of critical
parameters. We thus define

p*=plpe, *=T|T., A*=A|P.,

w*=upfP., Ap*=(Ap)pJP., P*=P|P,,

S*=8T P, C¥=C,T/P,, K¥=KP..
(1.2)

The critical density and temperature in reduced units
will be occasionally indicated by p¥(=1) and T#(=1).
In addition we introduce quantities defined with respect
to their values at the critical point

AT*=T*—1=(T=T)/T.,

Ap*=p*—1=(p—pc)lp.. (1.3)

(1.1e) -

The chemical potential difference Aup plays an
important role in scaling. It is defined as
Ap=pnlp, T) = p(pe, T), (14)
where u(p., T) is the chemical potential on the critical
isochore at temperature T. If for real fluids the u(p)-
isotherms are truly antisymmetric near T, then w(p., T')
would have to be a regular function of temperature,
as it is in the lattice gas. In the scaled equations to be
used in this paper, regularity of u(p., T) is assumed.
For a further discussion we refer the reader to other

publications [G1,K2,14,V1, W3]
2.2. Powerlaws

It is assumed that the critical anomalies can be
described by power laws when the critical point is
approached alung a specific path such as the uitical
isochore, the critical isotherm or the coexistence
boundary. The power laws needed for the purpose of this
paper are defined as follows

Coexistence Curve

Ap*==B|AT*|# 2.1)
Critical Isotherm
Au*=D(Ap*)Ap*[>~1  (AT*=0) (2.2)
Compressibility
p*EKE = T (AT*)~7 (p* =1, AT* > 0) (2.3a)

p*KF=T"| AT* |~ (coexistence curve, AT* < 0)

(2.3b)
Specific Heat
G _A4 e
™= a {(AT*) 1}
(p*=1,AT* >0) (24a)
Cy_Ar | e
=AY -
(along coexistence curve, AT * < 0)
(2.4b)
C:" ATI % _a'”
T*"' arr{IAT I '—1}
(p™=1,AT* < 0,2-phase region) 2.4¢)

The paths along which these power lawe are defined
are indicated schematically in figure 3.

J. Phys. Chem. Ref. Data, Vol. 5, No. 1, 1976
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FIGURE 3. Special paths in the Ap—AT plane and power law ex-
ponents defined along them.

The scaling laws to be introduced in the subsequent

section impose a number of conditions upon the critical
exponents in the power laws. First, the exponents asso-
ciated with the behavior of C, and of Ky when the critical
temperature is approached from below, are taken to be
identical with the exponents that describe the behavior
of these same properties of C, and Kr, when the critical
temperature is approached from above:

a=a'=a', y=v'. (2.5)

Furthermore, the critical exponents «, 8, v, 8 are
assumed to satisfy the equalities

2—a=B(5+1), (2.6a)

y=B(8-1), (2.6b)
so that only two exponents can be chosen independently.
In this paper we shall use the exponent S of the coexis-
tence culve and the exponent 8 of the critical isotherm
as the two critical exponents to be selected.

2.3. Scaling Law for Equation of State and
Compressibility

The scaling laws are a phenomenological consequence
of the physical intuition that the anomalous critical
behavior depends on one length only, namely the corre-
lation length which measures the size of the critical
fluctuations [K3]. Hence, when appropriately reduced,
the anomalous part of the thermodynamic functions
must become a function of one, rather than two inde-

J. Phys. Chem. Ref. Data, Vol. 5, No. 1, 1976

pendent variables. This assumption can be formulated
mathematically by the hypothesis that the anomalous
part of the thermodynamic potentials is a generalized
homogeneous function of its variables [H2, L2, W3].

It is somewhat easier to visualize the scaling laws as a
straightforward generalization of a Taylor series ex-
pansion of the classical equation near the critical point,
first considered by van der Waals in 1893 [L1, V2]. If
we expand the reduced chemical potential of a classical
equation in powers of Ap* and AT* around the critical
point, we obtain

w* (Bp*, AT*) = u*(pe, To) + por (ATH) + . . .
+ pa(Bp*) (AT*) + . . .
+un (Bp) (AT + . . .

+ pao(Ap®)3+ . . . (2.7

The coefficients g0 and pso of the terms proportional to
Ap* and (Ap*)? in the expansion vanish as a con-
sequence of the definition of the critical point as a point
of marginal stability. The first two terms on the right
hand side in (2.7) are asymptotically equal to the chemi-
cal potential u*(p., T) on the critical isochore. Thus,
remembering the definition (1.4) of Au*, we have in
first approximation for a classical equation

%
A* = pao(Ap*)? [ 10 ST, @8)

mso (Bp*)*

The critical isotherm is obtained from (2.8) by setting
AT*=0; since Au*=0 at the coexistence curve, its
form is obtained by setting the term in square brackets
equal to zero for AT* < 0. Thus, in the classical theory
the critical isotherm has the asymptotic form Ap*=
D(Ap*)® with D=3 and 8=3, and the coexistence
curve has the asymptotic form Ap*==B|AT*|# with
B=(un/ps0)¥? and B=1/2. If we now define the
variable x as

x = AT*||Ap*|VE, 2.9
so that, at coexistbence, x==xq with
xo=B~%8, (2.10)
we may then rewrite the classical equation (2.8) as
A/.L*=Ap*lAp*lﬁ“[D(l-Fx/xo)]. (2.11H)

For real fluids S is not equal to 1/2 and 81is not equal to 3.
However, permitting arbitrary values for the exponents
B and & and allowing for a more general dependence
upon the variable x, we may generalize the classical
equation (2.11) to

Ap*= Ap*|Ap*|3-1h(x), (2.12)
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which is, in Griffiths’ formulation, the scaling law for the
chemical potential originally proposed by Widom [G1,
W3]. One can readily demonsirate that all the power

laws introduced in section 2.2, together with the expo--

nent equalities (2.5) and (2.6), are indeed implied by the
scaled form (2.12). Notice that Au™ is indeed a function
of only one variable x, when scaled by the antisym-
metric quantity Ap*|Ap*|>-1

The scaled equation for the compressibility p*2K} =
(8p*/au*)r follows immediately from (2.12)

p*ZK;=IAp*,1-5]: Sh(x) __;_éh_(ﬁ)_ }_,' (2.13)

dx

Thus, the compressibility is a function of the variable x
only, when scaled hy the symmetric quantity |Ap*|?-2.
The scaling variable x = AT*/| Ap* | V8 assumes the
value — xo at the phase boundary, the value 0 on the
critical isotherm and the value + @ on the critical iso-
chore. Since the chemical potential is a constant along
any isotherm in the two-phase region, Au* = 0 at co-
existence and, thus, i (— x0) = 0. The function h(x)
becomes infinite at the critical isochore. In addition to
the boundary conditions A (— x0) = 0 and k() = oo,
the function h(x) is restricted by several conditions,
formulated by Griffiths [G1]. These conditions arise
first of all from the requiremenis of thermodynamic
stability. Thus, for the compressibility to be positive,
it is necessary that ’
dh(x)-

Boh(x) = x 221

g (2.14)

as follows from (2.13). Additional conditions are imposed
on k{x) by the assumption that u(p, T) is an analytic
function throughout the one-phase region with the excep-
tion of the critical point and perhaps the phase boundary.
Thus, in this theory the existence of higher-order phase
transitions on special curves such as the critical iso-
therm or critical isochore is excluded. The analyticity
of uw(p, T) in the one-phase region, combined with the
assumed analyticity of u(p¢, I') mentioned earlier, im-
plies analyticity for the function Aup* (Ap*, AT*)
inside the one-phase region. The relation (2.12) then

implies that k(x) has 1o be analytic in x in the range

—x0 < % <®; it can,”therefore, be  expanded in a
power series in x at every point in this range. Spe-
cifically, an expansion

h(x) =3 ha, 2.15)

should be valid for small values of x (near the critical
isotherm). Analyticity at large x (at the critical isochore)
implies that, around x = %, A(x) can be expanded as
follows:

hix)= i B8 +1-20),

n=1

(2.16)

Notice that the leading term of this expansion is m;x¥
withy=g(8—-1).

2.4. Scaling Law for the Helmholtz Free Energy

The_basic scaling law (2.12) introduced in the pre-
ceding section represents the equation of state u (p, T).
However, an equation of state does not yield a complete
description of the thermodynamic behavior of the
system. It thus becomes necessary to inquire about
the scaled form of the corresponding thermodynamic
potential which is the Helmholtz free energy per unit
volume. Since p* = (84*/3p*)r we have, in terms of
the difference variables Ap*, Ap*:

( ad*

o) =ht e D+t @.17)

We, therefore, postulate that 4* assumes the form

A*=AX(T*) +p*u*(pk, T*) + A%(Ap*, AT*).
(2.18)

The integration constant A¥(T*) is an undetermined

function of temperature. From the antisymmetry of
Ap* and the relations (2.12) and (2.17), it follows that
the scaled part A% is symmetric in Ap* and, therefore,

~has the form

A¥=|Ap*}P+a(x). (2.19)

The new scaling function a{x) for the free energy is
related to the original scaling function h{x) for the
equation of state by

Bh(x) =—xa'(x) + B(6+ a(x), (2.20)

 where the prime denotes differentiation with respect to x.

Because of the analytic properties of 2(x), a(x) is also
analytic in the range —xy < x < . The general solution
of the differential equation (2.20) is

2| xft-e x
a= £ | E[ " at) —px 2 b aylyi=nin,
X i X1 Jiry

(2.21)

with a=2—B(8+1) and x; a value of x in the range
0<zx<ow The first term on the right hand side is
manifestly nonanalytic at x=0. Since a(x) has to be
analytic, the nonanalyticity of the first term on the right
hand side in (2.21) has to be cancelled by the value
of the lower limit of the integral. That is, once k(x) is
known, a(x) is uniquely determined through analyticity.
In those cases where h{x) is of a sufficiently simple
functional form for the integral in (2.20) to be evaluated
explicitly (as in the Linear Model version of the para-
metric equation of state, to be discussed subsequently),
a{x) has a unique, explicit functional form. The function
a(x) can be expanded in powers of x everywhere in the

J. Phys. Chem. Ref. Data, Vol. 5, No. 1, 1976
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range = ae < x < oo, Specifically, we have, for small x

3
alx)= E ax”,

n=0

(2.22)

where the coefficients a, are related to the coefficients
hy in the expression (2.15) by

__ Bh,

a .
"2 an

(2.23)

Using this expansion (2.22), Griffiths [G1] obtains for
values of x within the radius of convergence | x |=xo of
the power series expansion (2.15) of A(y)

ax) = £ 4 Bhux

—Bxlxl""fdy]yl a-3[h(y) — hyy — hol.  (2.24)

On the other hand, the general solution (2.21) may be
written as

a(x)=Cat-e+ Bar~e J’x dyy*~*h(y), (2.25)

for all x > 0. The constant C is defined as

In the region of overlap, the general solution (2.25) has
to equal the solution (2.24). Therefore, we find? for the
constant C .

C=—p8 J: dy y* 73 [My) — hyy — ho).  (2.26)

In summary, the equations (2.24) and (2.25), together
with the expression (2.26) for the constant C, allow us
to calculate the scaling function a(x) for the free energy
from the scaling function h(x) for the equation of state.

2.5. Scaled Expressions for the Thermodynamic Functions
in Terms of h(x) and a(x)

Chemical Potential

One-phase Ap* = Ap* | Ap* | 3-h(x) (2.27a)

Two-phase Ap*=0 (2.27b)
Compressibility

p*KF =] 8p* "2 [3h(x) — B xh ()] (2.28)

# Contrary 1o equation (28) in ref. [G1], this expressiun fur € containg the trac (s}, not s

series expansion arvund y=40,
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Helmholtz Free Energy

One-phase
A¥=A (T*)+ p*u*(pX,T*)+ |Ap*[***a(x) (2.29a)
Two-phase
AR =AF(T*) + p*p* (p%, T*) + x5~ 2a(—xo) |AT*{2-@
(2.29b)
Pressure
One-phase
*=— AT (T*) + Ap*|Ap* |2~k (x)
+1Ap* |3+ 1{h(x) —a(x)} (2.30a)
Two-phase (vapor pressure)
Pt =—A%(T*) —xg-2a(—xo) |[AT*|2-«  (2.30b)

Entropy

One-phase SE=AF(T*) | p*u* (pk, TF)

+{Ap*|t1-aEg’ (x)|  (2.31a)
Two-phase  —S*=AF'(T*)+p*u*' (p*,T*)
— (2—a)xgAal— xo) |AT*|3~« (2.31b)

Heat Capacity

One-phase —CHIT*=AE" (T*) + p*u*"' (pk,T*)

+ |Ap*|-8a’" (x) (2.32a)
One-phase, at phase boundary —CHT*=A%"' (T*)

+o*u (pF, T*) +aga" (—x) [AT*|=  (2.32b)

Two-phase ~CHIT =4 (T") +p " " (ps, T*)
4+ (2—a) A—-a)x§2a(—x) |AT*|~  (2.32¢)
Jump across phase boundary
A= CHT*)=Bxe—th' (—x0) [AT*|=  (2.32d)

In these expressions primes denote differentiation with
respect to the relevant variable; for A& (T™*) and
w*(p¥, T*) this variable is the temperature T*, for the
functions A{x) and a{x) this variable is x. In the two-
phase region the density p* is to be interpreted as the
average density of the system.

3. Scaled Equations of State
3.1.. NBS Equaticn

The scaled oxprossions prescnted in section 2.5 are
not useful for data correlation unless one specifies an
exphicit form for the function fi(x) or a(x). However,



CRITICAL REGION PARAMETERS 9

the choices are severely restricted by the conditions
formulated by Griffiths as discussed in section 2.3. A
closed form for h(x) that fulfills most, but not ali, of
these conditions was proposed by Vicentini-Missoni,
Levelt Sengers and Green [V1]. We shall refer to this
equation as the NBS equation; it is defined as

28 (y-1)/28
h(x)=E1("—':ﬂ)[1+Ez("—11‘3) ]7

0 0
(3.1

This equation contains the critical parameters p., T,
(through the definition of x), two critical exponents, 8, vy,
and three constants, xo, E; and E». As we shall see, the
exponents 8 and y and the parameter E: vary only
slightly from substance to substance and are probably
universal as discussed in chapter 6. The constants xg
and E, on the other hand, vary considerably from sub-
stance to substance.

The coeflicients of the power laws defined in section
2.2 are related to the constants in the NBS equation by

B=x5#, (3.2)
D=E,(1+E,)\r-1i2E, (3.3)
T=xyE EG V28, (3.4a)
' =B, (3.4b)

/T = B-1E}-v)28, (3.4¢)

No simple explicit formulae can be given for the specific
heat coefficients A+, A7, A in terms of the constants
of the NBS equation.

The NBS equation has two singularities, one at
x=—x¢ (coexisience curve) and the other at x=w
(critical isochore). The function is analytic in the range
—x0 < x <. However, the expansion for large values
of x has, in addition to the terms x7, x¥-2# as required
by (2.16), also spurious terms, the leading one being
proportional to x”-1. As a consequence, only the first
and the second density derivatives of the chemical
potential at x = o exist. This may, however, be sufficient
for most practical purposes.

From the NBS equation one can readily calculate the
compreesibility as a function of Ap* and AT* using
(2.28). However, the equation has the disadvantage that
the corresponding free energy function a(x) cannot be
derived in closed form, but must be obtained by numeri-
cal integration. Techniques for doing this have been
discussed by Vicentini-Missoni et al. [L5, V1] and by
Schmidt [S3].

3.2. linear Model Parametric Equation

We have seen that the requirement of analyticity of
thermodynamic behavior in the one-phase region except

at the critical point, led to a number of conditions on
the function h(x). These conditions cannot be met
readily by a single expression in closed form. Further-
more, even if one were able to find a closed form ex-
pression for the function h(x), it still could probably
not be integrated analytically to yield a closed form
expression for the function a(x). Finally, the fact that
both x and A(x) become infinite on the critical isochore
leads to complications in the presentation of data.

The problems with analyticity can be overcome rigor-
ously by using parametric scaled equations introduced
by Schofield [S1] and Josephson [J1]. This formulation
entails a transformation from the physical variables,
Ap* and AT*, into two parametric variables, r and 6.
The variable r is meant in some sense, to describe a
“distance from the critical point” and the variable 6
a “location on a contour of constant r.”” The idea of
this approach is to incorporate all anomalies repre-
sented by the power laws in the r-dependence, while
keeping the 6O-dependence strictly analytic. In this
way, nonanalyticities are confined to r=0, the critical
point, and no irregularities will appear anywhere else
in the one-phase region.

‘The manner in which the thermodynamic \}arjab]es
are expressed in terms of r and € is not unique {F1j.
The constraints that the power laws and the scaling
laws are preserved are met by the following choice

AT*=rT(9), (3.5a)
Ap*=rEM(0), (3.5b)
Au*=rfH (0). (3.5¢)

On constructing the ratios Ap*/(Ap*)|Ap*|®-! and
x=AT*/|Ap*|V8, one sees immediately that both ratios
depend on 6 alone, so that the scaling law (2.12) is im-
plied by the parametric representation (3.5).

Choices compatible with the observed lowest-order
symmetry are those for which M(0) and H (@) are anti-
symmetric functions and T(8) is a symmetric function
of 6. The parameter 6 can be chosen to span the range
—1 to +1, such that it equals zero on the critical
isochore and =1 on the coexistence boundary, as indi-
cated schematically in figure 4. For the functions
T(0), M(0) and H(6), the simplest choices compatible

with these requirements are

T(8)=1—b262, (3.6a)
M(6) = ke, (3.6b)
H(6)=a(0)8(1—62), a(f) symmetric in 0, {3.6¢)

where & and & (b > 1) are adjustable constants. In this
representation § assumes the value =1/ on the critical
isotherm.

J. Phys. Chem. Ref. Date, Vol. 5, No. 1, 1976
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AT

8=-1/b ap

6--1 8=+

COEXISTENCE
BOUNDARY

FIGURE 4. Schematic representation of the variable 6 in the para-
metric equation of state.

In this formulation a(8) is still an unknown function
of 8. When a(6)=a is assumed to be a constant inde-
pendent of 6, then (3.6) represents the Linear Model
parametric equations introduced by Schofield [S1]. The
name refers to the linear dependence of the function
M(@) on 6. If a is taken to be a constant, then the
linearity of M (@) is a consequence that can be investi-
gated experimentally [H3]. However, in order to verify
the validity of the Linear Model with the methods of
statistical analysis, we have found it more convenient
to start from the linear equation (3.6b) for M(6) and to
check whether the experimental values of a(f) are
indeed independent of 6.

The constant b? is constrained by thermodynamic
‘stability to a value in the range [H4] '

1<b< (1-28)-1. 3.7

The constant £ is related to the constant xo, introduced
earlier in (2.10), by

k= [(8*~1)/x0]". ' 3.8

In addition to the critical parameters p. and T, the
Linear Model has thus two adjustable exponents, S,
8, and three adjustable constants, b, k and a, which is
the same number of adjustable parameters as in the
NBS equation. Again there are indications that one of
thcs¢ adjustablc constants is redundant. Schofield,
Litster and Ho have, therefore, suggested that 5% not be
considered independent, but that it may be calculated
from [S2]

5—3 .
(6—-1)(1—2pB)

We shall refer to the Linear Model subject to condition

P —
bSLH -

3.9)

J. Phys. Chem. Ref. Data, Vol. 5, No. 1, 1976

(3.9) as the restricted Linear Model. While some authors
automatically include equation (3.9) in the definition of
the Linear Model, we leave 4?2 as as independent adjust-
able parameter, subject only to the constraint imposed
by (3.8). As the data analyses to be discussed reveal.

the value of b* from equation (3.9) is actually the best
choice in most cases.

The coefficients of the power laws defined in section

2.2 are related to the constants in the Linear Model
equations by

B=k(b*—1)-F=x5", (3.10)
D=ak-%b%-3(b2—1), (3.11)

I'=kfa, (3.12a)

= (62—1)"{1~b2(1—2B) } k/2a, (3.12b)
I =2(b2~-1)1-7{1—52(1-2B) }-1, (3.12¢)
A*=—(2=a) (1—a)afo, (3.13a)

Ar=—aB(b2—1)2{1 —b2(1—28)}-3[{(1—a)
T1—-b2(1—-28)1-28b2(1—28)} {(8+1)fo

+ (6~_1)f2+_ (8-3)f1}—28{1—b2(1~28)}
{(6—1)£+2(8—3)f1}],  (3.13b)
A== (2—a) (1—a)a(fot+ fo+fs) (b2—1)="%
(3.13c)

In (3.13) we have introduced the symbols fo, f2, f4
defined as [H4]

_ak{8—-3—b*a(8—1)}

o= i —war G4
. ak{B(8—3)—ba(1—28)}
fo=+ 22 (1—a)a , (3.14b)
_ ak(1-28)
fom—BU=2B), (3.14c)

We note that, in contrast to the NBS equation, the coeffi-
cients A+, A-, A of the specific heat anomalies can all
be expressed explicitly in closed form.
3.3. Thermodynamic Properties in Terms of the linear
Model

In calculating thermodynamic functions from the
equation of state, it is necessary to perform an inte-
gration of the equation of state that often cannot be
performed in closed form. It is here that a major advan-
tage of the Linear Model is apparent. The simplicity of
the function M(6) permits integration in closed form
so that the free energy and other thermodynamic
properties can be obtained in closed parametric form.

In this section we present a summary of all relevant
thermodynamic functions in terms of the Linear Model.
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With some minor differences we use the notation of
Hohenberg and Barmatz who first presented a list of
these formulas {H4].

Variables
AT*=r(1 —b*#*)

Ap* =10 (3.15)
—l=é=<1
Chemical Potential
One-phase ApX* =rfa0(1— 6?) (3.16a)
Two-phase Au*=0 (3.16b)
Compressibility
prikE = % 136+ 6120»2{1;22;((11:2(;;)) T36=1]
3.17)
Helmholtz Free Energy
One-phase  A* =AF(T*) +p*u*(ps, TF)
+r-a( fo+ f26°+ £o04) (3.18a)
Two-phase A*=AF(T*) + p*p*(pt, TF)
+r2e(fo+ ot fi) (3.18b)
Pressure
One-phase P¥=— 4%(T*) + %81 — 6%)
+ P {akt?(1— 8 ) — fo—f2 67— 60"} (3.19a)
Two-phase (vapor pressure)
Pryp=— A& (TH~2(fo+ £+ 1)  (3.19p)
Entropy
One-phase —S*=AF{T*)+p*u* (pF, T*)
+pe— 6202‘(‘; —5 209
Two-phase —8*=AX¥(T*)+p*u* (p¥, T*)
+r]_a(2—a)(fe+f2+f4) (3.20h)

1-—-5%

Heat Capacity

One-phase —C¥T*=A3"(T*)+p*u*" (0¥, T*)
B(axaz"aa)
O R i Sovih b s X A, 3.
IR TEr T ER
Two-phase —CXT*=AF"(T*)+p*u*"'(pk, T*)

2=a)A=a)(fotfrtfi)

+re =92 (3.21b)
where
a;={1—a){1—b20%(1~2B)} —2B5%0*(1—28)
2:= {8+ 1)fo+ (8 —1)fo02+ (3 —3) fo 0 (3.22)

a3 =286%{1—b*0*(1 = 2B) H(8—~ 1)f: +2(56—3) £, 6°}

while the quantities fs, /2, f4 are defined by (3.14).
4. Method of Statistical Analysis

4.1. Introduction

The purpese of the statistical data analysis presented
in this paper is to answer the following two questions:
(1) do the proposed scaled eguations of state represent
the experimental data 1o within their random error, and
{2) how do the random experimental errors affect the
accuracy of the parameters determined in the fit? The
1echniques of linear least squares can only be used to
answer these guestions under very restrictive condi-
tions. Thus, only the dependent variable is supposed to
be subject to error, and the functional form has to be
linear in the parameters that are to be determined. The
cases we study here violate both conditions and there
are, therefore, no rigorous statistical tools available
for our purpose.

Statistical techniques for fitiing the NBS equation to
experimental equation of state data were developed
earlier [V1). For the purpose of this paper it was also
necessary to develop a statistical method for fitting the
Linear Model! to the experimental data. This task is nat
trivial; the model is not only nonlinear in several of the
adjustable parameters, but also transformations have
to be made from the physical to the parametric variables.

The approach we have taken is, to apply the methods
of linear least-squares statistics under the assumption
that the function can be linearized in the parameters in
at least a small range of parameter values near the
optimum set. We will first summarize some results of
bnear least-squares statistics that we have used, and
then proceed to show how these results can be adapted
to the more general nonlinear problems encountered in
aur work. In describing the method of statistical analysis
we shall follow Natrella and Scheffé in using a matrix
formulation wherever practical { L6, N1, S4].

4.2. linear least-Squares Analysis

The general problem of linear least-squares is to fit
a set of n observations Y;, subject to random error, 10 a
linear combination of a set of % functions X, . . . Xi
of the independent variables which are free of error and
whose values are indicated by Xy;, . . ., Xy (=1 ...
n). It is convenient to consider the observable ¥ as an
n-dimensional column vector denoted by Y. The set of
function values X;, . . ., Xus =1 . . . n) can then

J. Phys. Chem. Ref. Data, Vol. 5, No. 1, 1976
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be represented by a matrix X of n rows and k columns.
The expectation value E (Y) of Y is assumed to be a
vector of the form

E (Y)=XB. @1

Here B is.a k-dimensional column vector representing
the & adjustable parameters multiplying the functions’
D. R, ¢

The varianves and vuvariances of the observable ¥
are conveniently described by

VarY =028, 4.2)

where B is the n X n variance-covariance matrix of the
experimental data.

If the independent variables are free of error, then the
fundamental theorem of least squares says that un-
biased, most probably estimates for the parameters 8
are obtained by minimizing the sum-of-squares SS, given
by

SS = (Y—XB)™B-(Y—XB), @.3)

with respeet to the @s. The superscript T denotcs a
transpose. The optimized set 8 is calculated from the

so-called normal equations

X"B-1XB=XTB-Y. 4.4)

The variance-covariance matrix of the coefficients B is
the inverse of the matrix of normal equations. We have

Var = (X"B-'X) ~o2. @.5)

The variance o2, if not known a priori from repeated

measurements, can be estimated from the observed

deviations from the fitted function, ¥ —XB, as
P R1TR-1 ”

O-y,est.'—n__k [Y—-XB1"B~'[Y—XH]. (4.6)

In the case that the experimental data are uncor-

related, the matrix B in equation (4.2) is diagonal, and
we have, for each experimental point Y;,

al/=a}Bi. 4.7
The inverse of the n X n diagonal matrix with elements
Bii is another n X n diagonal matrix called the weight
matrix. If we call its elements w;, then the expression
(4.6) for the variance of the fit, o}, goes over into the
more familiar form

; 1
O‘Jj=n~k2 w,Siz,

(4.8)

with $;=Y;—(XB)i=VYi exp— Yi,cae- The absolute
value of o2 will depend on the values chosen for the
elements of the matrix B, through (4.2) or (4.7). Thus,
if the diagonal elements of B are chosen to be equal to
Bi=0%;, or those of the weight matrix to wi=1[0%,,
then we have assigned absolute weights. The value of
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oZ may be estimated according to (4.6) or (4.8). The
variance o2, when absolute weights are given, is called
the reduced variance x?; it is generally estimated from
(4.6). If this estimate is based on a large number of
experimental points, x2 will be quite close to unity. In
fact, x? is distributed as chi-square, and, if the number of
degrees of freedom is appreciable, as is true in most of
our applications, x? will exceed the value unity by 0.1
or more by chance in no more than 30 percent of the
cases [B1, N1].

Thus, if in a particular fit using absolute weights a
value of the reduced variance is obtained that greatly
exceeds unity, closer scrutiny of the procedures may
reveal one or more of the following problems.

(1) The experimental variances O'fh. have been under-
‘estimated so that weights have been assigned that are
too large. In most cases, the information needed for
independent determination of the o%;, namely repeated
‘'measurements at each point, is simply not available and
the variances o, have to be estimated using our insight
into the experimental method used, or information about
it provided by the experimenter. Thus, an inordinately
large (or, for that mattcr, small) valuc of x* may reveal
that our understanding of the experimental accuracy
is incomplete.

(2) The model function used is wrong. The functional
form used may be incorrect, or one or more fixed param-
eters have been assigned wrong values. In either case,
the experimental function values will depart from the
calculated ones in a systematic way, while at least -
some of the deviations will grossly exceed the estimated
standard deviation o,. If the functional form has been
incorrectly, the model function has to be
rejected. If, however, only some parameters have been
chosen incorrectly, the .possibility exists of improving
the fit and decreasing the value of x? by modifying the
parameters in the fit. In fact, minimization of x*® by
stepwise variation of parameters in the fitting function
is a technique we have extensively used in this paper.

(3) One or more experimental points are in error. In
order to determine whether this is the case, the indi-
vidual deviations between experimental and predicted
values are inspected. Here the assignment of absolute
weights is a very useful tool. Each deviation is compared
with the estimated standard deviation at the same point,
oy;= (1/w;) V2. For the numbers of data points handled
here, deviations larger thaua thiee times the standard
deviation are unlikely to occur by chance, and points at
which such deviations occur have to be rejected unless
factors listed under (1) or (2) are present.

Summarizing, our procedure will be to make an
absolute weight assignment on the basis of our insight
into the experimental procedure, and then to minimize
x2 by variation of adjustable parameters in the model
function. The adequacy of the model function and the
absence of erroneous data can be tested using the prop-
ertics of the reduced variance x2 and the distribution
of individual errors oy

chosen
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4.3. Nonlinear Least-Squares Analysis

The data analysis in the present paper will fall almost
invariably outside the reach of linear least-squares
fitting procedures. The reasons are one or more of the
following, :

(1) The model functions used are nonlinear in one or
more of the parameters.

"(2) Independent as well as dependent variables are
subject to error.

The methods of linear least-squares, as sketched in
the previous section, will, however, still be anoroxi-
mately valid if the functional form used can be ex-
panded to linear order for parameter values near the

optimum ones. This assumption is basic to the work
that follows. .

In matrix formulation we have, instead of the linear
relation E(Y )= X3, the more general form

E(Y)=YX, ). @.9)

Expanding the functional form Y(X. B) in the vicinity
of the parameter set 8°, we obtain

E(Y)=Y(X, B°)+Ya(B—B°).

Here Yz is the nXk matrix of derivatives 8Yi/38;,
i=1...n, j=1. ..k Note that the relation
(4.10) is linear in the parameter adjustments g— 8°,
the derivatives Yy replacing the functions X in (4.1).
In the linear case, we minimized the weighted sum of
squares of the differences ¥Y—E (Y) with respect to
B; now, we minimize Y — E(Y) —Y (X, B°) with respect
to the B’s. Note that Y~Y(X, B°) are the experimental
residuals AY°=1Y.,,— ¥ea, calculated with respect to
the parameter set B°. Consequently, we have reduced
the nonlinear problem of fitting ¥ to Y(X, B8)-to a linear
least-squares problem, namely that of fitting the ““zero-
order” residuals AY® to the derivatives Y. In practice,
these derivatives are obtained analytically or nu-
merically from the function ¥ (X, B8°) at the parameter
values 8°. .

The calculation of the adjustments B-— B° proceeds
parallel w the calculativns of the s sketched in the
previous section. In particular, the variances and co-
variances of the parameter adjustments B— B° and,
therefore those of the B’s themselves, are calculated
from the equivalent of (4.5):

4.10)

Var (B—B°)=Var B= (Y}B-1Yp)-'a2. (4.11)

The procedure we have generally followed in this paper
is to calculate the “best” parameter set 8°from a com-
bined stepwise variation/least-squares fit to the data, in
which some parameters were kept fixed in those cases
where they were well-known. After the value of x2 could
no longer be lowered by further parameter changes con-
sidered reasonable in the physical context, the lineariza-
tion procedure was used for the sole purpose of obtaining
the variance-covariance matrix (4.11) for all parameters
involved. This way, the errors and correlations of all

parameters including those occurring nonlinearly could
be estimated.

4.4 Nonlinear Least-Squares and Propagation of Error

Having outlined the procedures for statistical treat-
ment of parameters occurring nonlinearly, we now turn
to the sccond obstacle to ueage of linear least-squares,
namely, the fact that independent as well as dependent
variables are subject to error. Thus, we want to make
adjustments not only in the dependent, but also in the
independent variables. A sum of squares has to be
minimized while weighted so as to reflect not only the
accuracy of the different variables, but also the “steep-
ness” of the functional dependence on each of these
variables. A slight generalization of the linearization
procedure outlined in the previous section will be
EeCe[/kary.

Since all variables are subject to error, there is no
point in distinguishing between dependent and inde-
pendent variables. So we lump all variables together
and denote the collection by Z, an m-dimensional vector
of observables. :

Then the functional relationship between the ex-
pectation values of the Z’s which includes the adjustable
parameters ;... Bk, can be written as a set of
condition equations

F;{E(Zl) .« . E(Zm)’ 6! . e ﬁ’f}=0i
: (4.12)
F{E(Zy) . . . E(Zn);. B1 . . - B} =0.

Thus.the n condition equations F (Z, B)=0 replace the
n linear equations E(Y)—XB=0, given in (4.1). While
in the linear problem the sum Zw;{Y;—E(Y;)}2 was
‘minimized with respect to the #’s with E(Y)—Xg=0,
-we will now want to minimize Lwi{Z;—E(Z;)}? with
respect to the 8's, while fulfilling the conditions (4.12).
To this eénd, we again linearize the equations (4.12), by
expanding around a set of parameter values 8° and a set
of Z values for which we take the experimentally
mcasured sct.
We then obtain
F=FHZ—-E(Z)}+Fs(Bi~B5). (4.13)
Here F°=F{Z, B°} and F; is the mXn matrix of
derivatives 0F;/0Z;, i=1 ... m, j=1.. . n, and
Fg is the nxk matrix of derivatives —3F;/dp,

j=1...n,I=1...k We can write (4.13) more
" compactly as
F°—FsAB=F]AZ, (4.14)
where '
AB=p—p" (4.15)

Now suppose we minimize the weighted sum of squares

SS:

SS= (F°—FsAB)"L Y (F°~FsAB),  (4.16)

J. Phys. Chem. Ref. Data, Vol. 5, No. 1, 1976
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with respect to A B. Here the n X n matrix L is defined
by

L=F}F,. @.17)
Using (4.14), it is easily seen that
(F°—FpABY L (F°—FsAB)
=[FIAZ]T[FIF,]*[FIAZ]
=(AZ)T(AZ). (4.18)

Thus the sum of squares of F°—.F3Aﬁ, weighted by
the matrix L, equals the unweighted sum of squares of
the adjustments AZ. Therefore, by solving the linear
least-squares problem (4.16) we achieve a minimiza-
tion of the sum of squares of the AZ.

By analogy with (4.3) and (4.4), the solution of minimi-
zation of (4.16) is

FEIL-FgAB=F}L-'F°, 4.19)

while

Var AB= (FLL-Fg)-10%. (4.20)

Then, the adjustments of the experimental Z values
follow from

AZ=FzL"*(F°—FAB). 4.21)

So far, the AZ have been treated as being of equal
weight. The extension to correlated data of unequal
variance is entirely straightforward. The variance of Z
is now given by

VarZ=0%4, 4.22)

where 4 is an m X m matrix. The L matrix in (4.17) is
generalized to

L' =FLAF;. (4.23)
The adjustments of the 8’s are calculated from
FEL' ' FuAp = FIL'-F°. (4.24)

Comparing (4.24) with (4.4) we see that the new matrix
L’'-! plays the role of the former weight matrix B-1.

The variance-covariance matrix of the adjustments
AB is given by

Var AB= (F}L'-'Fg)~‘0}, (4.25)
while the adjustments of the Z follow from
AZ=AF;L' -1 (F°—FgAB). (4.26)

The results (4.22) through (4.26) are sufficiently gen-
eral to be applicable to a variety of nonlinear least-
squares problems. One such problem, of particular
interest to us here, is that of the case in which all
variables are subject to error. For simplicity, we will
assume that the dependent variable Y, an n-dimensional
vector, can be explicitly expressed as a function of

independent variables X,, X., such that
E(Y)=Y(EX),E(X2), . . 581 . -Bi)- 4.27)

J. Phys, Chem. Ref. Data, Vol. 5, Ne. 1, 1976

We will assume that the errors in dependent and
independent variables are uncorrelated but of unequal
variance. Thus

Var Z=0%A4, (4.28)
where A is an mXm diagonal matrix. The first n
elements A‘i?), i=1 . . . n,refer to the variances of the
Y, the next n elements Ag), i=1. .. n, to the vari-
ances of the first independent variable X,, etc. The
condition equations (4.12) are now replaced by (4.27)
expressing the expectation values of the n-dimensional
vector Y as a function of the expectation values of the
independent variables X;, X;, and the adjustable
parameters f. Therefore, the matrix of derivatives,
Fz, now consists of a vertical stack of nXn square
diagonal matrices: the first one, involving the derivatives
oF[0Y, to 9F[dY ., being a unit matrix, the second one
having diagonal elements dF/6X,;, i=1 . . . n, etc. It
follows that the matrix L’ in (4.23) is diagonal, of size
n X n, with elements of the form

L;1J=A$?)+A§_}) (BYi/BXn)Z-l-Ag (3Yi/aXqi )2+ . . .
i ‘ (4.29)

(Strictly speaking, (4.29) is oversimplified, since instead
of Y and X, their expectation values should have been
used.)

Thus the fact that all variables are subject to error
is, in this linear approximation, accounted for by
modifying the absolute weight of the individual points
Yi(X1i, Xoi . . .) to a new weight w; such that

wil = A9+ AD@Yi[0X1)? + AD@Y X0 + . . .
(4.30)

The use of these modified weights is the equivalent of
the procedure of “propagation of error”.

In the present work, propagation of error has been
used extensively. However, for the sake of completion
we mention that the calculation of AB, the variance-’
covariance matrix and of AY and AX proceeds straight-
forwardly according to (4.24), (4.25) and (4.26). It may
be pointed out that the adjustments are partitioned
between the independent and dependent variables in the
following way

AYi=
CAO
T ' (F°—FgApB)i,
A5?1+A§g)(§—x,¥—f)z+Agf’ (—af’%)z+. . '
17 2i.
4.31)
AXy=
AP
(oY \2 aY;i\?
(0) (1 L (2)
A,.‘,. + A4 ((’)X;,-) +Aﬂ. (ani)+ C e

(52 ) o= Fasp).
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4.5. Fitting the linear Model

The Linear Model, as formulated in section 3.2, con-
tains seven parameters, namely, p¢, Tc, B8, 8, a, bZ and k
or xo. The values of these parameters are determined
by the following procedures. First, the critical density
p is determined either as the point of antisymmetry of
the Ap-isotherms or from the diameter of the coexis-
tence curve [L7, V1]; it is verified whether both proce-
dures yield the same value for p. within the precision of
the analysis. The coefficient x¢ and the exponent B are
determined from power law fits to coexistence curve
data in accordance with [L7].

(pﬁquid_p;as)/2=\x6ﬁ|AT*iB7 (4.32)
starting with a best estimate for T'.. The parameters T,
8. b? and a are then determined from an analysis of
experimental Au* data as a function of density and
temperature. It is checked whether the optimum value
obtained for T is consistent with the value used in (4.32).
The critical pressure P, appears only as a normalization
factor in the calculation of Au* and is, therefore, not
important in the analysis; it is simply taken as the experi-
mental pressure corresponding to the density and tem-
perature attributed to the eritical point.

The problem is thus reduced to that of finding the
optimum values of T, &, b and a from the experimental
Ap* as a function of density and temperature, as-
suming that p., B and xo are known. We proceed as
follows. For a given choice of T, & and b we construct,
for each T, p pair, the quantity

AT 1562
T |Ap* |8 kue| |y

x

(4.33)

with %k determined through equation (3.8). Egquation
(4.33) is solved by standard numerical methods to yield
a value of the parameter 6 for each experimental
(AT*, Ap*) point. As a next step the quantity a(9) is
calculated as

- A - *
a(8)= Al h(x)= _@ﬂ&—] lawr] (4.34)

1—67 1—62 |Ap*|®
Hence, each experimental value of Au* as a function
of Ap* and AT* is converted into an “experimental”
value of a(6) as a function of 6. For the Linear Model
to be valid, a(8) must be independent of 8 to within the
precision of the experiments. The weighted average
a of the experimental a(8) values is determined to-
gether with the reduced variance x%. The procedure is
then repeated for other choices of T., & and b2, until
a minimum value of X2 is returned from the fit.

An absclute weight assignment to the experimental
a(6) is obtained as follows. First, an estimate is made of
the experimental error in chemical potential, density
and temperature. Let or%, 0.+ and o, be the esti-

mated standard deviations of the reduced temperature
T#*, the reduced density p*, and the reduced chemical
potential u*, respectively. Using the law of propagation
of errors (4.30), we write

oa \2 2
a’¢2,=<-—q") 0‘%*+(i‘i) 2%
AT* /o ux Ap* pk ux

2
+( ba ) oix  (4.35)
™ ok, o

Because of the intervening transformation to parametric
variables, the calculation of the variance of ais a little
complicated. We first calculate the variance of 6
using (4.33) and the experimental errors or* and o,*
and then calculate the variance in a (8) due to the direct
error in Ap* and Au* and the propagated errors in 8
from Ap* and AT* We thus obtain

oi=ar )] () o) +( 3ow ) to-aw:

T u* j ‘
+( v ] (4.36)

with

{(6—1)(1—6%) +262} (1 —5%6%)

9O = e —2p) 11— %)

. (4.36a)

To each experimental value a;=a(6;) we thus assign
the weight wq;=1/0%; with ¢%, given by (4.36). The
variance s® of the average of a(8), a, over all N data
points is

. [S@iewr ] v
s2= 2(1/0092 —a No1’ 4.37)

and the reduced variance x? equals

,2___:.‘?.2 2 _.l_ (4 38
XTNege; -38)
Assuming that the experimental errors have been prop-
erly estimated, the Linear Model provides a valid

representation of the data, if x® is of order unity as dis-
cussed in section 4.2,

4.6. Error Estimation for the Parameters in the Llinear
- Model

Suppose that a minimum is found on the x2 surface
after stepwise variation of T,. 8, b%, keeping p., 8 and
xo fixed. The location of the minimum determines all
parameters in the Linear Model, namely a in addition
to the six just mentioned. The question now arises as to

J. Phys: Chem. Ref. Data, Vol. 5, No. 1, 1976
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what kind of variahility wonld have existed in these
seven parameters, had they all been varied simulta-
neously. The results of section 4.3 will be used to answer
this question. As was shown in (4.10), the functional form
for the quantity a, given by (4.34) in combination with
(4.33), should be expanded in the vicinity of the “best”
parameter set. The matrix Yz of derivatives of the
functional form with respect to all derivatives, occurring
in (4.10), is then used to form the matrix of normal
equations, the inverse of which, cf. (4.11), forms the
variance-covariance matrix of the parameters.

For the Linear Model, the matrix of derivatives Yg
can be calculated analytically. Again, the transformation
to parametric variables presenis some complications,
but these are not insurmountable. Thus, as a first step,
the derivatives of 6 with respect to the adjustable
parameters T., p., xo, b are calculated from (4.33).
Then, the derivativee of a with respect to all parameters
are calculated from (4.34) realizing that there is, in addi-
tion to the direct dependence on p, xo, b2, 8, also an
implicit dependence on these parameters through 6.
The resulting derivatives of a with respect to the six
adjustable parameters T., p.. 8. x0, 8. b? are presented
in the Appendix and can be evaluated in a straight-
furward mdanner.

Since. a is an adjustable parameter itself, the matrix
Y contains a column of unity, in addition to the deriva-
tives of a with respect to the six other parameters. One
problem was encountered in constructing the matrix
Yg. It turned out that the derivative (da/db)g is constant
for the choice =102 ., defined in (3.9). As a conse-
quence, two columns of the matrix Yg are proportional
1o each other. If &% is close to b2 ,;, the adjusiments of
a and b will be nearly dependent. Thus, the adjustments
of a and b cannot be separated in the cases we have
studied. The practical course we have taken is, to ascribe
the contribution arising from the unit column in Y; to
errors in b2 and to quote as error in a the experimental
standard deviations defined by (4.37).

In the fits to the Linear Model. we have performed the
error calculation as outlined above, and we present for
each gas, in addition to the standard deviation of each
individual parameter, the variance-covariance matrix
of the six parameters with diagonal elements normalized
to unity.

4.7. Fitting the NBS Equation
The NBS equation

-+ 287(y-1)/28
dur= (8p%) |89 1By (S222) [ 14, (L2,
¢

X0
(4.39)
was fitted to experimental Au*(Ap*. AT*) data by the
same procedure used earlier in reference [V1] The

parameters p.. x¢ and B are again determined {rom an
analysis of coexisience curve date and from symmetry
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conditions and have the same values as used in fitting
the Linear Model. Then for a given choice of T, and v,
an experimental quantity G(x) is constructed as

[G(x)]m=[m“ | (—x—"—)]zﬁ/w_”, (4.40)

[Ap* 2 \ x+ x0

with x=AT*/|Ap*|V&.
According to the NBS equation (4.39), the quantity
G(x) is a linear function of the experimental variable

{(x+x0)/ (xo}w

[G(x)]care= EZPIY-D [1 +E, <1i19)23]. (4.41)

Xo

Thus, a weighted linear least-square fit of equation
(4.41) to the experimental values of G(x) yields, for
ecach choicc of & (or %) and T, an intcrcept E38/(v-1)
and slope E,E?8/v-1, from which values of E, and E,
are extracted; in addition a value is obtained for the
reduced variance x? of each fit. The parameters 8 and
T, are then varied in fine steps, until a minimum value
is obtained for x%.

The absolute weight assighment to the experimental
values of G(x) is obtained by calculating the variance
of G(x) from the estimated standard deviations O,
o,+ and Ty using the law of propagation of errors (4.30):

G \2 G \? aG \*?
2 — (O 2 A 2 el 2
76 (aT*)p*_m ot <6p*)p e % T (3[.1.*)7.* ,Tw
(4.42)
which, using (4.33), reduces to
LG )
2 — G2 P
T (=) (y—l AT*/ \x-+xo
Op*\2 x 2 o, \2 '
+ §— ————— + ( ) ] 4.43
(Ap*) { B(x+x0)} Au* ( )

The absolute weight assigned to each experimental G
value is the inverse of o2, given by (4.43).

For the NBS equation we did not conduct a detailed
error analysis of all parameters, as was done for the
Linear Model. First, the necessary derivatives were
hard to obtain analytically. Secondly, in view of the fact
that it is integrable and that it satisfies all the conditions
of analyticity, the Linear Model seems the more funda-
mental approach. Since the NBS' equation and the
Linear Model have the same number of adjustable
parameters and appear to fit the data equally well, we
expect that the error estimates for the critical exponents
in the two equations will be the same.

5. Data Evaluation and Resulis of Analysis
5.1. Introduction

The NBS equation and the Linear Model were fitied
to chemical potential data as a function of density and
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temperature. Most of the available experimental data
are pressure data as a function of density at selected
temperatures. Values for the chemical potential differ-
ence Au were obtained by integrating P(p) data along
isotherms

P(p,T)
Ap= f p-1dP, (5.1)

'Ppe.T)
using the Gibbs-Duhem relation (oP{op)r=p.

Tables of Au as a function of density and temperature
for Xe, He? and CO; were presented earlier in reference
{V1]. We found it desirable to repeat the calculations
for CO; and we present a somewhat revised table of
Au values. We have also made a few corrections in the
table of Au values previously reported for He®. For
He3 we have used the Au values tabulated by Wallace
and Meyer [W4]. For sieam a computer program for
numerical integration was written in view of the large
amount of experimental data. However, the PV data of
steam are rather widely spaced in density which reduces
the accuracy of the values deduced for Au. Weber’s
data [W2] for O, being density profile data, did not
require numerical integration.

In order to fit the NBS equation it is necessary that
the pressure data be converted into chemical potential
data. In this paper we want to make an-intercomparison
between the NBS equation and the Linear Model and
to present sets of consistent parameters so that the two
scaled equations of states can be used interchangeably.

- Therefore, for the purpose of this paper the two scaled
equations of state are fitted to the same set of input
data, i.e. chemical potential data. However, as a conse-
quence of its integrability, it is in principle possible to
fit the Linear Model directly to the experimental
pressure data. A method for doing this has been de-
veloped in collaboration with Murphy [M2, M3].

For each gas we give a detailed discussion of the
accuracy of the experimental data, the choice of critical
parameters, the results of an analysis of the coexistence
curve and optimum values for the parameters in the two
scaled equations. For both equations of staie we pre-
sent a plot of deviations of the experimental Au values
from the fitted curve. In order to show the guality of
the fit we consider normalized deviations (Aupk..—
Apdac)/opux, where oy,+ is the total estimated un-
certainty in Au* due to the uncertainties op«, o ,» and
o u*in temperature, density and chemical potential

*\ 2 %\ 2 ‘
02 ,=o?, (aA"‘ ) +a?, (‘m“ ) +o2,. (5.2
p* T*

Ay ™\ oT* ap* n

Since the density is usually several orders more pre-
cisely known than the small increments in pressure
along the near-critical isotherms, the estimated error,
0,+ in the chemical potential u* was taken to be twice
the estimated error op« in the pressure.

For the Linear Model we also present a plot of normal-
ized deviations (a—a)/aq of the experimental a(0)

values from the average value @, where o, was defined
in (4.36); these plots show directly to what extent the
Linear Model approximation to the parametric repre-
sentation is justified.

It turns out that the NBS equation and the Linear
Model represent the experimental data equally well. If
the two equations are equivalent, then one way of inter-
relating the parameters in the two equations explicitly,
is to require that both equations yield the same coe-
flicients D and T in the power laws (2.2) and (2.3) with
the result [C1]:

pE-3Ny—1) 728
E;1=[-’—b—2:1‘—:| -1, (5.3)
a(bt—1)”
E,= EAEy— 2R 5.4)

These relations are approximately satisfied by the
parameters of the best fits.

The NBS equation is a convenient equation, when one
needs only to calculate the chemical potential or the
compressibility as a function of density and temperature.
Closed form expressions for the singular contributions
to the other thermodynamic functions can only be given
in terms of the Linear Model parameters. Use of the
Linear Model requires that equation (4.33) be inverted
to determine the value of the parametric variable 6 as
a function of Ap* and AT*.

In the tables of equation of state parameters we also
present the corresponding values of the coefficients and
exponents of all power laws defined in section 2.2. The
coefficients A%, A7 and 4 for the specific heat anomaly
are given for the Linear Model only. Calculation of the
specific heat from the NBS equation is tedious; we made
some checks which indicated that the NBS equation
yields the same values for the coefficients A+, A} and 4 i
to within about one percent. However, these coefficients
do vary strongly with changes in the values assumed for
the critical exponents 8 and 8.

The equations presented in this paper yield an
accurate description of the chemical potential and the
compressibility. The coefficients for the specific heat
C, are given for the sake of completeness and con-
sistency. An analysis of experimental C, data in terms of
a scaled equation of state has been attempted by a few
authors, but with limited success [B2, H5, M4]. In
analyzing C; dala vne encounters the following complica-
tions. The exponent « of the specific heat anomaly is -
small . and very sensitive to small changes in the values
of the exponents 8 and 8. Since the anomaly is weak,
the background terms A%’ (T*) and pu™*’ (pF, T*)
in (3.21) play a crucial role in the analysis; these back-
ground terms cannot be deduced from the equations of
state presented here. Moreover, C, being a second
derivative, one cannot exclude the possibility that ex-
tended scaling terms need to be included if one wants
to describe the C, data in the density and temperature
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range under consideration [C2]. A systematic analysis
of the C, data in terms of scaled equations of state
requires, therefore, further research which is outside
the scope of this paper. i

In all tables in this paper the thermodynamic variables
are expressed in Sl-units. That is, the pressure is ex-
pressed in MPa (megapascals), the density in kg/m3
and the temperature in kelvins or degrees C. However,
in the discussion we occasionally also refer to pressure
in terms of bars (=0.1 MPa), atmospheres (=0.101325
MPa) or Torrs (=0.101325/760 MPa).

5.2. Xenon

5.2.a. Data Sources for Xenon

The critical constants and vapor pressure of xenon
were first measured by Patterson, Cripps and Whytlaw-
Gray in 1912 [P1]. An accurate determination of the
entire vapor pressure curve was made by Michels and
Wassenaar in Amsterdam in 1950 [M5]. Within their
combined errors the Amsterdam values agreed with
the old data. An extensive set of PVT data for xenon,
covering temperatures from 16.65 °C to 100 °C and
pressures up to 400 atmospheres, were reported by
Beattie, Barriault and Brierley in 1951 [B3]. However,
these data are not suitable for a scaled analysis, because

they include only one isotherm in the critical region

proper.

The equation of state and coexistence curve of xenon
in the critical region were determined in great detail,
with high accuracy, and with full appreciation of
gravity effects, by Schneider and coworkers 'at the
National Research Council in Canada in the 1950’s
[H1, W5].

In the coexistence curve experiment Weinberger
and Schneider {W5] used glass cells, approximately 1
cm in diameter and 10 cm long, that could be held in
horizonial or vertical position, thus enabling them to
assess the effects of gravity. The gas densities were
measured by weight to 0.2 percent accuracy. The
temperature stability was hetter than 1 mK. However,
the data span only a narrow temperature range- and,
therefore, in spite of the high quality of the measure-
ments, they are not suitable for an accurate determina-
tion of the coexistence curve parameters B and 3.

The equation of state work, conducted by Habgood
and Schneider on xenon [H1], is a prime example of
careful and accurate critical region experimentation. A
horizontal glass vessel of 1 cm i.d. was connected to a
filling system that included a weighing bomb, and to a
pressure measuring system in a mercury U tube placed
inside the thermostat. The gas height was thus limited
to a maximum of 16 mm, noxious volumes were avoided
completely and the pressure was measured at a well-
determined level neéar the center of the bumb. The
temperature was controlled to =1 mK, the density was
again measured to £=0.2 percent by a weighing tech-
nique, while the pressure was measured with a re-
producibility better than =0.001 atm. Two sets of data
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were obtained, one for the P —T relation along a number
of isochores, the other for the P-V relation along a set
of isotherms. The existence of some small discrepancies
between the two data sets was noticed earlier, the iso-
choric data appearing to be more consistent and more
precise [V1]. The isochoric data form the basis for the
analysis presented here.

New coexistence curve data were recently reported
by Cornfeld and Carr [C3], who revived the method of
twin cells first used by Young in 1891 [Y1]. The data
cover a range of 80 degrees below T, and are of good
quality. However, there are no data points closer than
1.8 °C from T, a limitation which is inherent in Young’s
method.

Two sources of density versus height profiles for
xenon in the immediate vicinity of the critical point
have recently become available. The first source is the
work of Wilcox, Estler and Hocken [El], in which the
refractive index gradient was studied by a laser beam
interference technique. The vicinity of the critical
point, |AT*| < 10-4, was mapped out in this experiment
and the coexistence curve was studied over the range
10-5 < |AT*} < 5% 10-2 The second source is an experi-
ment reported by Thoen and Garland, who combined
sound velocity and sound absorption measurements
with a determination of the dielectric constant as a
function of height [T1]. We shall compare the results
of both profile experiments with the results of our
analysis of Schneider’s PV'T data in section 5.2.1.

In addition to this equation of state work, direct
measurements of the specific heat C, of xenon have
also been reported. The data were obtained by Edwards,
Lipa and Buckingham [E2] at the critical density as a
function of temperature. The measurements were con-
ducted with an adiabatic calorimeter in a “‘ramping”
mode, the rate of temperature increase at constant heat
input being inversely proportional to Cy. The height of
the cell was 1 em and gravity effects are expected to
be important for reduced temperatures smaller than
2% 101 (j.e. |[T—T. < 0.006 °C). From the data range
not affected by gravity, Buckingham and coworkers
deduced a value 1/8 for the exponent a.

5.2.b. The Coexistence Curve of Xenon

The coexistence curve measurements of Weinberger
and Schneider [W5] span a range of temperatures from
15 °C to the critical tcmpcrature 16.59 °C. The data
obtained with the vertical bomb are affected by gravity
in almost the entire experimental temperature range.
Hohenberg and Barmatz [H4] have shown that the
experimentally observed relationship between the tem-
perature of meniscus disappearance and the filling
density in the field of gravity can be described on the
basis of the Linear Mudel with 8—0.851. For the data
obtained with the horizontal bomb, gravity effects are
expected to become appreciable at temperatures within
0.3 °C of the critical temperature. The gravity effects
to be expected in these data were recently calculated
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by one of us using the NBS equation and they are
presented in table 1 [L2].

TABLE 1.
" in horizontal bomb, 1.2 em high (p=average filling density; p=true
interface density)

Expected gravity effect on the coexistence curve of xenon

T.—T.°C \ |G-ppe| | Te=Tc | |G=ppe |
0.001 0.0397 . 0.095 0.0033
0.006 0.0257 0.254 0.0011
0.020 0.0138 0.496 0.0005
0.045 'I 0.0073

It would have been possible to fit the data to the power
law (2.1) after applying the gravity corrections. However,
the wisdom of such a procedure is questionable. Since
a stirrer was used in the experiment, we do not know
whether the full profile was actually developed as
pointed out by Hohenberg and Barmatz [H4]. In deter-
mining the coexistence curve parameters we have, there-
fore, only considered the 8 data points available below
16.476 °C. Using absolute weights as described in
reference [L7], we find 8=0.358+0.002 for a choice of
T.=289.744 K and B=0.350=+0.002 for a choice of
T.=289.736 K, the higher value of T, corresponding to
the lowest standard deviation of the power law fit.
However, in this experiment T, was directly observed
to be (289.740+0.001) K; the corresponding value of
B is 0.354+0.002. Since gravity effects flatten the
coexistence curve, the true value of 8 may be slightly
higher. For the noble gases argon and krypton Pings and
coworkers recently found 8=0.357 [G2, W6). '

In table 2 we present a list of values recently reported
for the exponent 8 of xenon.

The coexistence curve data of Cornfeld and Carr
[C3] span a large range in temperature. Since they do
not include measurements within 1 °C of the critical
temperature, gravity corrections do not need to be
considered. The data yield a value 8=0.3620.005

which is rather insensitive to the choice of T, and the
temperature range of the fit” However, on the basis of
data taken previously with another method, Carr and
coworkers have suggested that 8 would become smaller
for temperature ranges closer to the critical temperature
[S5].

From the interferometric experiments performed by
Wilcox, Estler and Hocken [E1] the exponent 8 was
obtained in two distinctly different ways. On the one
hand, the coexistence curve was determined in the range
10-5< |AT*| <5X10-2 and it was found that the ex-
ponent B decreased when the range of the power law
fit was shrunk. While 8 was somewhat larger than 0.35
when the data were fitted in the range 10-2 < |AT*| <5
X 10-2, the value of that exponent appeared to become
as low as 0.337 in the range 10-® < |AT*| < 10-2. On
the other hand, a scaled fit to all profile data in the even
narrower temperature range — 10~4 < AT* <+ 10-4 re-
turned the value B=0.357, compatible with the “large
range” values deduced from the coexistence curve
data.

_ Thoen and Garland [T1] report 8=0.357=0.002 for
data in the range |AT*| < 10-2

We conclude that the true value of the exponent 8
for a substance as extensively and carefully studied as
xenon is still not entirely clear. A satisfactory resolution
of these discrepancies may depend on our insight into
the nature of the order parameter and the corrections
to scaling.

For the purpose of analyzing the PVT data of
Schneider and coworkers we have used the value
B=0.350 which in hindsight, may be somewhat low.
With this choice for B the data of Weinberger and
Schneider yield the value 0.186 for the coeflicient xo.

5.2.c. The Equation of State Data and Critical Parameters for Xenon.

The values of the critical parameters for xenon are
rather well established. A survey of the values reported

TaBLE 2. Values reported for the critical exponent 8 of xenon

Experimenters Ref. Data analyzed by Ref. Method of Range of AT* Value of g
analysis
Cornfeldand Carr................. [C3] | J. M. H. Levelt [L3] | power law........ ©0.1> |AT*] >0.005 0.362 =0.004
Sengers. power law........ 0.06 > |AT*| > 0.005 0.362 =0.005
Wilcox, Estler, Hocken.......... [E1] | same authors................ [E1] | power law........ 0.001 > |AT*| > 0.00001 | 0.337 =+0.003
power law........ 0.05 > |AT*| >0.00001 | 0.344 +0.003
power law........ 0.05 > |AT*| > 0.001 0.353 =*0.001
power law........ 0.05 > |AT*| > 0.01 0.357 £0.001
compressibility | -0.0001 < AT* < 0.00us |- 0.3520 = 0.0006
model. ' .
Wilcox’s scaled | —0.0001 < AT* <0.0001 0.3583 =+ 0.0002
equation.
Thoen and Garland............... {T1] | same authors................ [T1] | power law........ —0.01 < AT* < 0.001 0.357 *0.002
Weinberger and Schneider..... [W5] | present authors............. ccceneens power law........ 0.06 > |AT*| > 0.004 0.354 =*0.002
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_TasiLE 3. Critical parameters reported for xenon

__Authors _ Tk | Poatm . | pekem® | Ref
Patterson et al ..c.oeeevveinieiinnnnennnnne. 289.75 58.22 1155 ‘ [P1]
Weinberger, Schneider. 289.740 = 0.001 1105 [W5]
Whiteway, Mason ..... 289.74 *0.01 \ 1110 [{W7j
Habgood, Schneider.. 289.740 =0.003 [ 57.636 % 0.005 1099 [H1]
Cornfeld, Carr ...... 289.74 1113 [C3]
Thoen, Garland ..... . 289.793 [T1}
Buckingham et @l ........cccevineieeennnns 289.694 =+ 0.002 (from fit to Cy) [E2]
289.73 (from max. relax. time)
TaBLE 4. Reduced equation of state data for xenon for the critical parameters in the literature is presented
e in table 3. By direct observation Weinberger and
T.K Ap*e 104 - A* 2 L Schneider [W5] found T.= (289.740=0.001) K: this
o value was confirmed by Habgood and Schneider [H1]
289,940 —0.1347 —8.96+0.35 2.140 to within +0.003 K. Therefore, in fitting the xenon data
289.940 —0.1319 —7.43+0.35 2.910 the critical temperature was not treated as an adjustable
289.940 —0.0916 —3.74=0.35 4.434 parameter, but fixed at the value T;=289.740 K.
ggz'g:g ;g'gg’z? "8-9413'35 2.046 x 10 Using the law of rectilinear diameter Weinberger and
+
289,940 10,0614 Il-igzo.zg ?‘3;13 i }g Schneider deduced for the critical density p.=1105
289.940 +0.1456 4+9.510.35 1.912 kg/m® Habgood and Schneider feel that a slightly
higher value of p. would be consistent with their data.
;gg-}:g _g-;i‘g —13.04£0.35 3.281 Whiteway and Mason [W7] have reported p.=1110
— — +
200,140 —0.0916 _léggzgig 3'&3 kg/m?, while Cornfeld and Carr have obtained p.=
200.140 | —0.0499 —1.8740.35 3.993 % 10 1113 kg/m®. We have found that a value p.=1110 kg/m3
290.140 +0.0301 +1.45+0.35 1.660 X 102 gives good antisymmetry of the supercritical chemical
290.140 +0.0614 +38.56 £0.35 2.249 X 10 potential isotherms. .
290.140 +0.1456 +15.46£0.36 2.824 The critical pressure follows from the data of Habgood
200,340 —0.1347 ~17.70+0.36 4.491 and Schneider, once the value of T, is chosen: P =
290.340 —0.1319 —16.10=0.36 4.630 57.636 atm = 5.8400 MPa at T.=289.740 K.

290.340 —0.0916 —8.57+0.35 1.130 X 10 The PVT data of Habgood and Schneider [H1] along
;~£~34§ —0.0499 —2.68=0.35 5.939x 10 isochores were combined to form isotherms and then
.34 +0.0614 +5.80£0.35 3.324 % 10 : : : :

converted into chemical potential data by numerical

.340 +0. .59+0, . . . . .
290.34 0.1456 +20.59=20.36 8.736 intcgration as discussed in scetion 5.1. The reduced
290.740 —0.1319 ~26.83+0.36 { 7.051 chemical potential data Au¥ are tabulated in table 4 as
290.740 —0.0916 | —15.77:£03 . 1817x10 a function of temperature T and density Ap*. For the
igg‘xg —g.g:gg _Zgz‘fggé ggzix ig, convenience of the user we have also listed the values of
290.740 —0.0251 —3.52+0.35 6.057 X 102 (x+ x0)xa for ,the mdmdua.l data pm‘nts. I‘he. value
290.740 —0.0095 —1.410.35 1.117 % 104 used for reducing the chemical potential data is u.=
290.740 +0.0614 +9.49+0.35 5.473 X 10 P /p.=0.05192 atm m3/kg.
200,740 +0.1456 +81.400.36 5.561
5.2.d. Analysis of the Xenon Data in Terms of the NBS Equation
291.140 —0.1319 —~—37.69£0.37 9.471 .
291,140 ~0.0916 ~23.050.36 2.504 x 10 The fit of the NBS equation to the xenon data was
291.140 —0.0499 ~10.80£0.36 1.372x 102 carried out .by fixing p.=1110 kg/m3, x,=0.186 and
291.140 —0.0387 —8.2420.36 2.830 x wz B=10.350, varying & and T, over a two-dimensional grid
—_— — -+ ~ . .
291.140 0.0279 5.8720.36 719010 and adjusting E; and E, at each point on the grid by
291.140 —0.0251- —5.28+0.36 9.735 % 10? . . N F
291.140 —0.0095 —9.180.36 1.564 X 10+ the method of least squares as described in section 4.7.
291.140 +0.0614 +14.12::0.36 7.622 X 10 For the absolute weight assignment the experimental
291.140 +0.1456 +43.12+0.37 7.385 errors were estimated as
( .

291540 | -—0.1319 ~—48.55+0.37 1.189x 10 — -5 0
291340 | —0.0916 ~29.602.0.87 3.191 % 10 . =0.34% 10-* (0.001 °C),
291.540 -0.0499 ~14.44+0.36 1.762 X 102 »
291.540 ~0.0387 ~11.48+0.36 3.635 x 102 0,x=2%107%, 0,:=0.35X10"%. (5.9
291.540 -0.0095 —2.73+0.36 2.011 %104
291.540 + 0.0301 | 8.99+0.36 7.436 % 10° At each point on the grid we calculated the value of
291.540 +0.0614 +19.280.36 9.771X 10 the reduced varianee x?; part of the x? surface is shown

8p.=1110 kg/m3.
b P.lp.=0.05192 atm - m3/kg=0.005261 MPa-m%ke.
¢T.=289.740 K, B=0.350, x,=0.186.
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in table 5. The fit is insensitive to the choices of 8 and
T.. At T,=289.740 K the best fit corresponds to §=4.53,
but x? is almost independent of T, and increases only
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TaBLE 5. The values of x* as a function of 8 and T, for Xe.
NBS equation with 8=0.35, x,=0.186

6=447 | 450 453 | 456

T,=289.739 K 2.27 2.08 199 | 1.9
289.740 K 2.95 2.08 199 | 20
280.741 K 2.25 2.08 199 | 201

slowly with variations in 8. The reason for this behavior
is likely to be found in the very narrow temperature
range spanned by the data, so that the parameters are
ill-determined even though the quality of the data is
excellent.

We have also made some fits using the parameters
20=0.1743 and 8=0.362 deduced from Cornfeld and
Carr’s coexistence curve data. This choice led to a
slightly improved fit, with minimum x* values near 1.84.

5.2.e. Analysis of the Xenon Data in Terms of the Linear Model

The fit of the Linear Model to the xenon data was
carried out by again fixing p., x¢ and B, varying 8, T and
b* on a three-dimensional grid and calculating the
average value & of a(8) at each point on the grid as
described in section 4.5. The assignment of absolute
errors was again based on the estimated errors in. AT*,
Ap* and Au* given in (5.5). The quality of the fit was
insensitive to the choice of T, and b2 We, therefore,
preferred the experimental value 289.740 K for T, and
made the choice b*>=5%,,. defined in (3.9) for the
restricted Linear Model. For this choice of 42, we show
part of the x2 surface in table 6. The minimum value of x?
is obtained for 8= 4.46, slightly lower than the optimum
value 8=4.53 for the NBS equation. However, in view
of the shallowness of the x2 surface, this difference is
not significant.

For the Linear Model fit we calculated the variance-
covariance matrix for simultaneous variation of all
parameters, as described in section 4.6. This matrix
is shown in table 7 with the diagonal elements nor-
unity. We also display
covariance matrix when all parameters except T, are
considered variable.

maklized to the wvariance-

5.2.f. Critical Region Parameters for Xenon

The parameters for the best restricted Linear Modes
fit to the xenon data with 7,=289.740 K and §=4.46 are
presented in table 8. We also list the corresponding
values of the coefficients and exponents of the power
laws defined in section 2.2.

TABLE 6. The values of x? as a function of § for Xe. Linear Model with
B=10.35, x9=0.186, b*=b}, ,, T.=289.740 K.

8 x2. ) x3?
4.40 1.56 4.46 1.46
4.42 1.51 4.48 1.46
4.44 1.48 4.50 1.49

TaBLe 7. Correlation matrix of parameters. Linear Model fit for
xenon
T, Pe X0 B 8 b
T. 1
pe | —0.005 1
Xo - 0.44 +0.34 1
B +0.53 —0.39 —0.99y 1
K] —0.71 +0.27 +0.94 —0.97 1
b +0.02 +0.34 +0.87 —0.82 +0.66 1
Pe X0 B 3 b
Pe 1
%o +0.37 1
B —0.36 —0.998 1
b +0.37 +0.99 —0.99 1
b +0.34 +0.98 -0.99 +0.96 i 1

The errors quoted tor p, xo, 8, & and b? are those
corresponding to one standard deviation in the five-
parameter linearized error calculation- with T, kept
constant. The error quoted for a is the standard devia-
tion of the mean of a(8) as obtained in the Linear Model
fit.

As explained in scctions 3.2 and 4.6, in our analysis
the test of the validity of the Linear Model approxima-
tion of the parametric equation of state is formulated as

TaBLE 8. Critical region parameters for Xe from data of Schneider-et al. for the best restricted
Linear Model and for the equivalent and the optimum NBS equauon

Lincar Modcl Equivalent NBS Optimum NBS
equation equation

P, 5.8400 MPa P, 5.8400 MPa P, 5.8400 MPa
Be (1110+0.3) kg/m® Pe 1110 kg/m? Pe 1110 kg/m3
T. 289.740 X Te 289.740 K T. 289.740 K
%o 0.186+0.10 Xo 0.186 Xo 0.186
B 0.350:£0.04 B 0.350 B 0.350
8 . 4.46+0.3 3 4.46 3 4.53
a 17.682+0.5 E, 2.4798 E, 2.7276
b 1.4066 +0.04 E, 0.32184 : E, 0.35069
X 1.21 X 1.53 X 1.41
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TABLE 8. Critical region parameters for Xe from data of Schneider et al. for the best restricted
Linear Model and for the equivalent and the optimum NBS equation— Continued

Linear Model Equivalent NBS Optimum NBS
equation equation

a 0.089 o 0.089 o 0.065
v 1211 ¥ 1.211 v 1.236
B 1.802 B 1.802 B 1.802
D 2.721 D 2.697 . D 3.018
r 0.07436 r 0.07402 r 0.06528
T 0.01777 r 0.01841 I 0.01606
rr 4.18 rir 4.02 rr 4.06
A+ 211
Ap 0.0727
Aq 3.94

the test of whether the individual experimental values of
the quantity a(6) are constant to within their experi-
mental accuracy. For this purpose we present in figure 5
a plot of the normalized deviations of a(8) from the aver-
age value @, with o, defined in (4.36), as a function of
(x+ xo)fxo. In vrder to show the accuracy to which the
Linear Model describes the original experimental Au*
data, we present in figure 6 a plot of the normalized
deviations  (Au¥.,—Au,)/oa* with oa.* defined
in (5.2).

In table 8 we also present the parameters for the
equivalent NBS equation, that is the NBS equation with
the same value §=4.46 as in the Linear Model fit, as
well as for the optimum NBS equation with §=4.53. A
plot of the normalized deviations (Apd, ,~Apg, ) /oaus
for the optimum NBS equation is presented in figure 7.

5.2.g. Comparison with Results of Other Authors

As mentioned in section 5.2.a. two other sets of thermo-
dynamic measurements for xenon are available from
which critical region parameters have been derived. One
set consists of the laser interferometry measurements of
density profiles obtained by Estler, Wilcox and Hocken.
The data were obtained in the narrow temperature band
—10-4< AT < 10-4 around critical, approaching T, as
close as 10-7. The data and their analysis can be found
in Estler’s Ph.D. thesis [E1].
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FiGure 5. Plot of normalized deviations (a—a)/o. as a function of
(x +x0)/xe for the optimum Linear Model fit to the
xenon data.

J. Phys. Chem. Ref. Data, Vol. 5, No. 1, 1976

Xe  Linear Mode! x 289.94 K
0 2904 K
+4 — &
o 290.34 K
— o 290.74 K
v 29114 K
" a =] [
o 2 A v © 29154 K
Q
S, [T @ *a °F°
qg‘n,wf.,_‘__‘__o.,jgv..olw_.__o_m_
(S AA °[:|X Py < 6"‘0 Ov
s x o°
[~ o]
*; x DXO
< -2 v v
4 i | | | |
1 10 102 103 104 10°
X+Xo

Xo
FIGURE 6. Plot of normalized deviations (Apé,—Buiac)/oauas a
function of (x+x0)/xo for xenon when the data are
represented by the Linear Model.

Xe NBS Equation

+ 289.94 K
i R 0 29014 K
a 29034 K
I o 25074 K
o] 21— AD ° v 29114 K
° v © 29154 K
* O A
ét‘ o o o ° ©
ES s x o
! t?()——é-— —_ —, — —-vg—v—ol — e 0 —
x © x o o ©
3 e v
*% — 20
o
ok By
v v
-4 | | ‘ |
1 10 102 10 10 10°
X+ Xo
Xo
FIGURE 7. DPlut of normalized deviations (Au¥p— Audac)/oau-as o

function of (x+ x¢)/xo for xenon, when the data are
represented by the optimum NBS Equation.

Estler et al. did not analyze their data in terms of
the scaled equations used in this paper, but instead
analyzed the data in terms of a more general scaled
parametric equation proposed by Wilcox [W8] and also
in terms of a “compressibility model” scaled parametric
equation proposed by Ho and Litster [H6]. The values
thus obtained by Estler et al. for the coefficients and
exponents in the various power laws are listed in table
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.9. Of the two scaled equations used by Estler et al., the
.compressibility model has the same number of adjusta-
ble parameters, namely five, as the restricted Linear
Model used in our analysis. With the exception of the
value of the coefficient D for the critical isotherm, the
critical region parameters determined by Estler et al.
from their density profiles are in good agreement with
the values deduced by us from the PVT data of
Schneider et al. Although the value of D is extremely
sensitive to the choice of 8, the & values preferred by
Estler do not differ enough from our choice to warrant
the large difference in D and the deduction of its value
from the density profile data should be reconsidered.

TaBLE 9. Critical region power law parameters for Xe reported by
other authors .

Thoen and Garland®

Estler et al.® Estler et al.®

[E1] [E1] {T1]
a 0.054 +0.001 0.093 +0.002 0.079
B 0.3583 +=0.0002 0.3520 = 0.0006 0.357
Y 1.2296 + 0.0005 1.203 +0.002 1.207
d '4.432 =0.001 4.418 +0.002 4.38
B 1.823 1.687 1.843
D 1.837 1.767 2.852
r 0.0663 0.0922 0.0676
T 0.0182 0.0222 0.0168
rir-  3.654 4.145 4.030

2 Analysis in terms of Wilcox’s parametric equation.
b Analysis in terms of compressibility model parametric equation.
¢ Analysis in terms of restricted Linear Model.

The second set of thermodynamic data for the critical
region of xenon is that of Thoen and Garland who meas-
ured density versus height profiles simultaneously from
the velocity and adsorption of sound [T1]. The coexis-
tence curve was measured to vield values for B and §.
Compressibility data on the critical isochore reported by
Smith, Giglio and Benedek [S6] were used to fix the
value of the coefficient ' in the power law for the
compressibility. The other parameters in the restricted
Linear Model were then varied to fit the zero-frequency
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speed of sound. The values thus obtained for the
coefficients and the exponents in the power laws are
presented in the last column of table 9. The Linear
Model parameters obtained by Thoen and Garland are in
quite close agreement with our choice.

The values reported in the literature for the exponent
B of the coexistence curve were discussed in section
5.2.b. A survey of the values reported for the exponent y
of xenon is presented in table 10. The original high value,
1.26, assigned by Vicentini-Missoni et al. must be
attributed to a choice of T, at a value lower than ob-
served experimentally. All other values recently reported
appear to be in reasonable agreement and a value near
1.21 seems to emerge as highly probable.

5.2.h. Discussion

Xenun is the first gas for which highly accurate
density profile data can be compared with good PVT
data. Such a comparison is of crucial importance.
Good agreement between the two sets of data would
imply that the asymptotic range of the validity of the
scaling laws in fluids is large, so that valid conclusions
regarding the asymptotic behavior of the equation
of state near the critical point can be drawn from an
analysis of PVT data taken in the fairly large range of
25 percent in Ap* and several percent in AT*. This
statement can also be reversed. Accurate data, such as
the density profile data, obtained in the limited range
|AT*| < 104 could then be used to predict the equa-
tion of state in a range covering several percent in
AT¥*. Until recently, it was much harder to obtain these
density profile data than to obtain conventional equa-
tion of state data. The main limitation was not the
accuracy of the method (refractive index or capacitance
measurement) but the failure to meet the extreme
demands of temperature control. This situation, how-
ever, has been reversed since highly stable thermostats
were developed by Wilcox and coworkers [E1]. With
temperature stability of the order of 10 uK, the measure-
ment of a complete isotherm by laser interference tech-

TaBLE 10. Values reported for the critical exponent ¥ of xenon

Expcrimenters Ref. Data analyzed by Refl. | Method of analysis Rdnge of AT™ Value of y
Habgood and Schneider......... [H1] | Vicentini-Missoni [V1] | NBS equation...... 0.0006 <AT<0.006 | 1.26 =+0.06
et al.
Habgood and Schneider......... [H1] | present authors ............yecccceunen Linear Model ...... 0.0006 < AT <0.006 | 1.21 =0.03
Smith, Giglio, Benedek .......... [S6] Smith, Giglio, [S6] power law........... 0.0001 < AT <0.03 1.21 =+0.03
Benedek
Wilcox, Estler, Hocken.......... I [E1] | Wilcox, Estler, [E1] | power law........... 0.0001 < AT <0.1 1.260 =0.002
Hocken
power law........... 0.00001 < AT < 0.001 1.232 =-0.006
compressibility ~0.0001 < AT < (.0001 | 1.2296+0.0005
model
- Wilcox’s scaled —0.0001 < AT < 0.0001 | 1.203 =+0.002
equation
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niques takes no more than a day of almost fully auto-
matic data generation.

Regarding the agreement of the optical and PVT
data, however, the situation is not quite as hopeful
as table 9 suggests. For one thing, those exponents
£, that arc obtaincd by dircct count of thc number of
fringes disappearing at the interface [E1, B8], have
a tendency to vary with the range and to become quite
low, about 0.33, in the range AT* < 10-*. Moreover,
recent determinations of density profiles in a number
of fluids [H7] do not confirm the Stoneybrook result
but lead to lower values for 8. In contrast, preempting
the results of our analysis of the density profile data
of oxygen (table 32), the exponents obtained for this
gas in the gravity-affected region AT* < 10™* agree
very well with the results we have obtained for other
fluids in larger ranges around critical, which suggests
that the range of validity of the asymptotic laws is large.

Since the agreement of the results of profile studies
and those of PV'T data has not been proven beyond all
reasonable doubt, the question about the range of
validity of the scaling laws in fluids must be considered
nnresolved.

5.3. Helium 4

5.3.a. Introductory Comments

The discovery of helium in 1868 occurred at about
the same time that Andrews discovered the existence
of a gas-liquid critical point in carbon dioxide. Shortly
thereafter van der Waals formulated his equation of
state and the law of corresponding states. Although a
respectable number of “permanent” gases had been
liquified before the turn of the century, helium was not
among those. The question whether helium would have
a critical point as well, caused lively debate and much
speculation. An experimental attempt to answer this
qucestion had to wait until the invention of the Dewar
vessel in 1892. Then, physicists at the University of
Leiden started moving deliberately towards the lique-
faction of helium. From the behavior of the isotherms
at low temperatures, determined in the first years of
this century, Kamerlingh Onnes estimated a critical
temperature of 5 K or 6 K on the basis of corresponding
states [K4). Moreover, his determination of the Joule-
Thomson inversion temperature led him to the conclu-
sion that liquefaction of helium would be feasible by a
Joule-Thomson process using hvdrogen at reduced
pressures as a cooling agent. The liquefaction of helium
was achieved by Kamerlingh Onnes in 1908 and rough
estimates of the critical temperature and density were
obtained [K5].

The first accurate determination of the critical
parameters was reported in 1911, namely T,=5.25 K
and P.= 1718 Torr [K6]. At the same time supercon-
ductivity was discovered and the research at Leiden
began to take a distinctly new direction. As a result,
the liquefaction of helium and the early determination
of its critical parameters marked not only a high point in
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the 40-year-old research on the equation of state of gases,
but also the onset of a decline of interest in such stud-
ies. Kamerlingh Onnes’ critical parameters of helium
were enshrined in Keesom’s classical book on the sub-
ject [K7]. They were incorporated in the 1958 helium
vapor pressurc scale which still forms thc basis for
thermometry at low temperatures. Only in the late
fifties did a renewed interest in critical phenomena lead
to new experimental studies of the critical region of
helium. Since then, a wealth of material has been
gathered which forms the basis for the correlation
presented here.

In the course of this century many attempts have been
made to correlate the properties of helium, a survey of
which falls outside the scope of this article. The most
recent correlation was conducted by McCarty for this
journal [M6] and we refer to his article for general
references to the literature. It was McCarty’s goal to
fit data for a number of thermodynamic properties of
helium over a large range of temperatures and densities.
Due to the nature of the equations used by him, McCarty
had to exclude the critical region from his correlation.
Thus the present section an the eritical region proper-
ties of helium may be considered a complement to
McCarty’s correlation.

5.3.b. On the Temperature Scale in the Critical Region of He*

The critical region of He* presents a unique experi-
mental complication, since the internationally accepted
temperature scale [B4, V3] in this region is based on the
vapor pressure-temperature relation of He? itself. The
use of the so-called T'sq scale has two major disadvantages
for studying the critical region of He?. First of all, the
scale extends only up to the critical point and is not
defined above T.. Secondly, the scale is based on an
analytic representation of the vapor pressure relation,
which, according to present-day insights, must fail at
the critical point. In addition to these fundamental
difficulties, there is evidence that the Tsg scale deviates
from the thermodynamic scale by as much as 10 mK
near 5 K [C4]. Furthermore, the slope near T, is too low,
perhaps by as much as 5 percent. Finally, the scale is
based on a vapor pressure relation that terminates at
a pressure that is supercritical {K2, M4]. The procedure
adopted by most experimenters is to use a secondary
thermometer, usually a carbon or germanijum resistor,
which is calibrated with respect to the He* vapor
pressure at temperatures not too close to the critical
temperature. An analytical representation of the resist-
ance as a function of temperature is then used to
extrapolate to the critical temperature and upwards.
Kierstead [K1, K2] had his germanium thermometers
calibrated with respect to the NBS provisional scale
based on acoustic thermometry [P2].

This arbitrariness in the thermometric procedures
makes it difficult to compare experiments from different
laboratories. It will also contribute to the uncertainty of
reported critical exponents; however, the effect of
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smooth deviations from the thermodynamic scale is
expected to be small for the larger exponents, because
the large changes in the anomalous property occur over
small temperature intervals.

5.3.c. Data Sources for He*

The revival of experimentation in the critical region of
He? in the sixties had a precursor in the highly accurate
redetermination of the coexistence curve by Edwards
and coworkers [E3, E4, ES). Edwards measured the
refractive indices of the coexisting phases using a Jamin
interferometer. The cell was immersed in a bath of
liquid helium, the vapor pressure of the bath being an
indication of the temperature. The main experimental
questions in this work are, whether the vapor pressure

of the bath did indeed indicate the temperature of the

cell, and whether the ahsalute fringe count for the liquid
phase had been achieved. In the initial interpretation of
the data some difficulties were encountered which must
be attributed to the fact that the critical temperature was
assumed to have the value determined by Kamerlingh
Onnes. When it was realized by Moldover and Little
[M7] that T, is much lower than Kamerlingh Onnes’
value, all data of Edwards fell right into place. In the
most recent analysis of his data Edwards [E6] reports
T.=5.18988 K and 8= 0.3598, in substantial agreement
with later work. The value of the exponent 8 is quite
close to that found for other fluids. -
The work of Moldover and Little on the specific heat
C, of He! [M7, M8] established the existence of a weak
divergence very much like that found by Voronel and
coworkers for heavier gases [B5, V4]. The specific heat
was measured in an adiabatic calorimeter along five
isochores including the critical. The critical temperature
was established as (5.189%0.001) K on the T scale,
and the critical density as p.= (69.58£0.07) kg/m3
[M4]. The actual temperature measurements were
performed with carbon resistors, calibrated repeatedly
with respect to the vapor pressure of helium. A careful

assessment was made of the possible errors introduced

by the nananalyticity of Ty and by the extrapolation
above T..

The first set of measurements of the equation of state
of He* in the critical region is that of Roach and Douglass
[R1, R5]. In these experiments, a capacitor was im-
mersed in the cell with fluid He* under investigation.
The capacitance was measured as a function of pressure
and tcmperature. thermometer was
clamped directly to the capacitor assembly, and cali-
brated along the coexistence curve of He?* before each
run. A three-constant resistance-temperature relation
was used for inter- and extrapolation. The pressure
deformation of the capacitor was obtained somewhat
indirectly, namely, through intercomparison with
Edwards’ refractive index data on the liquid side of
the coexistence curve. In calculating densities from the
dielectric constant measurements the Clausius-Mosotti
function (e—1)/(e+?2) was assumed to he a linear

A germanium

function of the density p. This assumption leads to some
questions concerning the accuracy of the value 69.0
kg/m?® reported for the critical density p.; in reduced
units, however, the reported densities should be quite
precise. Roach reports T.=5.1888 K and 8=0.354 from
his own analysis of the coexistence curve. The pressure
was measured on a guartz Bourdon gauge with a re-
producibility close to 0.1 Torr==+0.6 X10~* P, but
the absolute accuracy of the pressure is at most 1 part
in 104 of the critical pressure. The effect of gravity
introduces a problem in this experiment. The problem
is not in the spacing of the capacitance plates which
was only 0.0025 cm, but is associated with the fact
that the pressure was not measured at the level of the

‘capacitance. A long vertical capillary connected the

Bourdon gage with the top of the sample cell, which
itself was several cm high. Consequently, the measured
pressures differ by an inestimable amount from the
pressures at the location where the dielectric constant
is measured. :

Roach’s data, provided prior to publication, were
first scaled by Vicentini-Missoni, Levelt Sengers and
Green [V1]. In this paper we present a refined analysis
of the published data [R1] (which differ from the pre-
publication data in a few details), using both the NBS
equation and the Linear Model.

Roach’s work was followed by new precise data
published by Kierstead {K1, K2]. Kierstead measured
the values of pressure increments along isochores using
a differential quartz Bourdon gage of low range, with
10-3 Torr rcsolution. A reference pressure, known to
0.1 Torr but stabilized to 10-3 Torr, was used. The
values of (dP/dT)y, so obtained, have an estimated
precision of 0.1 percent, while the density of each iso-
chore was determined to 1 part in 5000 by gas expansion
into known volumes. Hydrostatic heads were kept quite
small in this experiment; the sample cell was only 1 mm
high and the filling tube was brought out horizontally
and was heated 1o temperatures far above T, at a short
distance from the cell. The total gas head was estimated
to be only 0.035 Torr. Temperatures were measnred on
two germanium thermometers calibrated on the NBS
acoustical scale. The resolution of the temperature was
0.3 uK, but the long-term stability of the thermometers
was not better than 0.5 mK.

In his first paper [K2], Kierstead reported three
isochores within 1 percent of the critical density.
From these data he concluded that P.= (1706.12 = 0.10)
Torr, p.= (69.64+0.07) kg/m® and T.=(5.1983+
0.0021) X on the NBS provisional scale. Calculating the
temperature on the Tss scale from his observed critical
pressure, he obtained T.= (5.18992 +0.00010) K. In his
second paper [K1], Kierstead reported work on 29
isochores within 20 percent of the critical density. This
work did not result in a new absolute value for T,
because of a shift in calibration of the germanium
thermometers. The critical density was found io be
pe= (69.580%0.014) kg/m3, in good agreement with the
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previous determination. The value of p., reported by
Kierstead, is in excellent agreement with other volu-
metric determinations of this quantity, namely p.=
(69.58 =0.07) kg/m3 as determined by Moldover [M4]
and p.= (69.76+0.20) kg/m® as determined by El
Hadi and Durieux [E7]. On the other hand, the more
“indirect determinations of p. from refractive index or
dielectric constant measurements yield somewhat lower
values,- namely p.= (69.323 +0.069) kg/m?® as found
by Edwards [E6] and p.=69.0 kg/m?® as found by
Roach [R1]. We feel that Kierstead’s values for this
quantity is most reliable.

In his second paper, Kierstead also presented an
analysis of his data in terms of the Linear Model
equation of state, covering a range of =3 percent in
reduced temperature and =20 percent in reduced
density. However, the deviation plots revealed some
systematic deviations as a function of density indicating
that the antisymmetry of u(p), as assumed in the
Linear Model, was not satisfied to within the precision
of the data. He then proceeded to describe his data
within their error in terms of a more general parametric
equation. The critical region parameters deduced from
Kierstead’s data will be further discussed in section
5.3.h.

5.3.d. The Coexistence Curve of He4

A survey of the values reported in the literature for
the critical parameters and the coexistence curve
parameters of He? is presented in table 11.

We have made several attempts at analyzing Roach’s
coexistence curve data, but with less than total success.
Since gas and liquid densities were not measured in
cunditions of coexistence, it is necessary to rcprescnt
the data as

lo—bl/pe=|p~ p.+ CAT*|/p,=B|AT*I8,  (5.6)

where p=p,—CAT* is the equation of the diameter of
the coexistence curve [L7].

Since, in calculating the densities from the observed
dielectric constant, the Clausius-Mosotti function was
assumed to be a linear function of p, one must allow
for the poeeibility that the slope of the diameter, C, may
be different from the slope deduced from other direct

determinations of coexisting densities. Consequently,
in fitting equation (5.6) to the data we needed to treat
pe> Te, B, B and C as adjustable parameters.

We have determined the parameters B and 8 by the
method of least squares, while the parameters p., T and
C were varied on a grid. The four data points closest to
the critical point were excluded from the analysis be-
cause of errors due to gravity. The inclusion of other
points in the fit resulted in values for the critical tem-
perature and density which were not sharply defined.
This results from the scatter of the data near the critical
point being more than one would estimate on the basis
of the experimental accuracy, which leads to large values
of and shallow minima for the reduced variance x2. If
the power law fit is restricted to data points with
|AT*| >0.01, then x2? exhibits a more pronounced
dependence pn the choice for T and p.. The optimum
value. for T, is then found to lie in the range 5.188 K to
5.189 K and for p. in the range 68.96 kg/m3 to 69.02
kg/m3. Values for the exponent 8 in the range 0.349 to
0.359 are compatible with Roach’s data, as long as T’ is
chosen accordingly. Values for the reduced slope in the
vicinity of p/p.=0.12 implied by the measurements of
Edwards [E4] and El Hadi [E7] are also in accord with
the data of Roach.

Since the value of the exponent B is not sharply
defined from the data of Roach, we have decided to lean
heavily on Kierstead’s finding that 8=0.355. We have,
therefore, selecied a power law fit to Roach’s coexist-
ence curve that yielded B=0.35556, occurring at
T.=5.188 K. The corresponding value of the coefficient
B is 1:426 which implies x0=0.3687. Tt is with these
choices of B and x, that we have analyzed Roach’s
data in terms of the NBS cquation and the Linear

Model.

5.3.e. The Equation of State Data for He*

The chemical potential data, calculated from the PVT
data of Roach by the procedure described in section 5.1,
are presented in table 12. The data are the same as those
listed in reference [V1) except for some minor adjusi-
ments in the reduction factors. The chemical potential
data w(p) exhibit antisymmetry in the range Ap* ==%25
percent with vespect to the density p.=69.3 keg/m3.
Although the absolute values of Roach’s densities are

TABLE 11. Values reported for the critical and coexistence curve parameters of He?*

Authors P., Torr T K per kg/m? B B
Kamerlingh Onnes [B4)................... 1718 5.1994
Mathias et al. [M9]......c..ooeevrenieenrne 69.3
Reach [R1}.ooniiiiiiiiiiiiiin, 1705.0 5.1888 69.0 0.354 =0.010 1.47
Edwards [E6)..........ccovceiivincinnnnnn. 1705.84 =0.86 5.1897 %0.0007

5.18988 == 0.00008 69.323 +0.069 0.3598 = 0.0060 1.417+0.024

Moldover [M4].......ccccovvivvieinreeinnnnnn, 5.1891 =0.0007 69.58 +0.07
ElHadietal. [E7].......cooooiivivinnnin 69.76 =0.2
Kierstead I [K2].... 1706.12+0.10 5.18992 =+ 0.00010 69.64 +0.07 0.3554 = 0.003 1.395
Kierstead 11 [K1].......ccoiinienvennnae, ’ 69.58 +0.02
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4n ‘doubt because of the conversion from measured
dielectric constants, the shift of 0.5 percent, between
-the critical density p.=69.0 kg/m? from the coexistence
curve and the value p=69.3 kg/m3 from the point of
antisymmetry of the isotherms, is a matter of internal
consistency and, therefore, reason for worry. It is
perhaps related to a lack of complete antisymmetry of
the u(p) isotherms noticed by Kierstead [K1].

In table 12 we have listed Au* as a function of Ap*
and T. The experimental densities were reduced by the
factor p.=69.3 kg/m3 and the experimental chemical
sotential values by the factor w.=P Jp.=24.60 Torr
ndkg.

TABLE 12. Reduced equation of state data for He*

' * a 4 *a x + xﬂ e
T, K ap 10%: ppr b o
5.1097 +0.3343 +27.0x1.5 0.1026
5.1097 +0.3522 +67.5%1.7 0.2250
5.1406 —0.3586 —176.8+1.8 0.5520
5.1406 -0.3319 ~103.1%1.6 0.4431
5.1406 —10.2986 | —353x1.4 0.2500
5.1406 +0.2973 +38.0+1.4 0.2407
5.1406 +0.3201 +71.9x1.5 0.3832
5.1406 +0.3400 +124.41.7 0.4795
5.1663 ~0.3563 ~257.8+1.9 0.7885
5.1663 —0.3356 —188.6+1.7 0.7499
5.1663 —0.3004 ~100.8=1.5 0.6584
5.1663 —0.2654 —4.2x1.4 0.5158
5.1063 - 0.2355 —-15.1*1.3 0.3225
5.1663 +0.2266 +12.6=1.3 0.2445
5.1663 +0.2561 +38.2+1.3 0.4651
5.1663 +0.2752 +61.8+1.4 0.5628
5.1663 +0.2965 +95.9+1.5 0.6457
5.1795 ~0.2856 ~98.0+1.4 0.8403
5.1795 ~0.2519 ~51.1+1.3 0.7728
5.1795 ~0.2189 —23.1%1.3 0.6627
5.1795 ~0.2019 ~13.4+1.3 0.5764
5.1795 +0.1856 +9.5+1.2 0.4632
5.1795 +0.1955 +11.5+1.2 0.5366
5.1795 +0,2159 +24.1:+1.3 0.6492
5.1795 +0.2315 +36.6+1.3 0.7116
5.1822 +0.1990 +17.5x1.3 0.6912
5.1822 +0.2162 +29.1+1.3 0.7554
5.1822 +0.2313 +41.1x1.3 0.7978
5.1835 ~0.2022 ~22,0+1.3 0.7656
5.1835 ~0.1805 ~11.9+1.2 0.6777
5.1862 +0.1887 +18.7+1.2 0.8692
5.1862 +0.2110 +32.9+1.3 0.9044
51862 | +0.2355 +54.5+1.3 0.9298
1 .

5.1869 —0.1970 —21.8x1.3 0.9193
5.1869 —0.1753 ~11.7£1.2 0.8880
5.1929 —0.3567 —340.4x2.0 1.042

5.1929 —0.3163 —203.8+1.6 1.059

5.1929 —-0.2794 —120.1=1.4 1.083

5.1929 ~0.2392 ~61.5+1.3 1.128

5.1929 —0.2038 —31.4x1.3 1.202

TaBLE 12. Reduced equation of state data for He%. — Continued

x+x,%¢
T,.K Ap*? 10%-Ap*2-® —_—
Xo
5.1929 —0.1639 —13.4+1.2 1.372
5.1929 +0.1361 +8.5+1.2 1.628
5.1929 +0.1771 421.1=1.2 1.200
5.1929 +0.2118 +41.8x1.3 1.181
5.1929 +0.2499 +79.4+1.4 1.114
5.1929 +0.2823 +129.9+1.5 1.081
5.1929 +0.3110 +190.5+1.6 1.061
5.1929 +0.3456 +291.3+1.9 1.046
5.2011 —0.3494 —340.7+1.9 1.127
5.2011 —0.3088 —210.2+1.6 1.179
5.2011 —0.2691 —124.2+1.4 1.264
5.2011 —0.2325 —74.2+1.3 1.399
5.2011 —0.1977 ~42.0+1.3 1.629
5.2011 —~0.1534 —19.9-+12 2.984
5.2011 —0.1198 —-9.8+1.2 3.575
5.2011 +0.1286 +11.1+1.2 3.109
5.2011 +0.1737 +26.4+1.2 1.905
5.2011 +0.2111 +51.4+1.3 1.523
5.2011 +0.2534 +98.2+1.4 1.313
5.2011 + 0.2906 +161.8x+1.5 1.213
5.2011 +0.3299 +263.4+1.8 1.149
5.2205 —0.3019 —238.6x1.6 1.486
5.2205 ~0.2504 —129.6+1.4 1.822
5.2205 —0.2007 —-69.0+1.3 2.531
5.2205 - 0.1405 —~30.7+1.2 5.170
5.2205 —0.0851 ~14.1+1.2 1.808 X 10
5.2205 +0.0801 +13.0+1.2 2.128 %10
5.2205 +0.1094 +23.2+1.2 9.441
5.2205 +0.1658 +46.9+1.2 3.620
5.2205 +0.2144 +87.4+1.3 2.2711
5.2205 +0.2563 +144.7£1.4 1.770
5.2205 +0.3009 +236.2:+1.6 1.490
5.2637 —0.2599 —240.2:+1.5 2.739
5.2637 —0.1996 —133.3+1.3 4.656
5.2637 ~0.1453 ~77.2+1.3 9.923
5.2637 -0.0879 ~40.0+1.2 3.771x10
5.2637 —0.0367 —15.6x1.2 4,305 x10%
5.2637 +0.0154 +7.0x1.2 4.886 x 103
5.2637 +0.0719 +329+1.2 6.565 % 10
5.2637 +0.1284 +66.6+1.3 1.363 X 10
5.2637 +0.2006 +137.8x 1.8 4.604
5.2637 +0.2772 +283.0+1.6 2.451
5.3142 -0.0986 —-80.9+1.3 4.545% 10
5.3142 - 0.0452 -33.6:+1.3 3.999 X 102
5.3142 +0.0595 +49.6+1.3 1.852 x 102
5.3142 +0.1107 +97.2+1.3 3.307x 10

4 p.=60.3 kg/m?.
5 P/pe=24.60 Torr - m3/kg= 0.003279 MPa - m3/kg.
¢ T.=5.1885 K, B=0.35556, x¢=0.3687.

5.3.f. Analysis of the He4 Doto in Terms of the NBS Equation

The fit of the NBS equation to the He* data was
carried out by fixing p.=69.3 kg/m3, xo=0.3687 and
B=10.35556, varying & and T, on a grid and adjusting
E, and E, at each point on the grid by the method of
least squares as described in section 4.7. For the abso-
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lute weight assignment the experimental errors were
estimated as

op=0.5%10" (0.25 mK),  0.=3.3X 10-2,

o,»=1.2X10"4 (5.7)
At each point on the grid we calculated the value of the
reduced variance x?; part of the ¥ surface is shown in
table 13.

The optimum fit occurs at §=4.36 and T,=5.1885 K,
but the minimum x? is considerably larger than unity.
As can be seen from figure 10 to be presented in section
5.3.h, no data points deviate by more than four standard
deviations. Hence, the high value of x2 is probably due
to an underestimate of the experimental error in at
least one variable. A 10 percent increase in ¥? occurs
when T, deviates by about 1 mK from its optimum value
or when 8 deviates by about 0.04 from its optimum
value.

TaBLE 13. The values of x* as a function of § and T, for He!.
NBS equation with 8=0.35556 and xo=0.3687.

6=4.32\ 4.34 4.36\ 4.38] 4.40‘ 4‘421 4.44

T.=5.1875 K 3.69{ 3.28) 296 2.75| 2.62{ 2.56| 2.59
5.1880 K 3.06| 2.82| 2.62] 2.53] 2.53} 2.60]| 2.70
5.1885 K 2,721 2.59] 252 2.56| 2.65| 2.79| 3.02

5.1890}([ 2591 256| 2.62| 2.76] 292

5.3.9. Anclysis of the He’ Data in Terms of the Linear Model

The fit of the Linear Model to the He* data was
carried out by again fixing p., xo and B, varying 8§, T,
and b2 on a grid and calculating the average value a
of a(#) at each point of the grid, as described in section
4.5. The absolute error assignment was again based on
the estimated errors in AT*, Ap* and Au* given in
(5.7). The best fits were obtained for values of 42 near
the value b% . corresponding to the restricted Linear
Model. The x? surface, obtained with this particular
choice b2 =’b§LH, is shown in table 14.

TABLE 14. The values of X as a function of & and T, for He®.
Linear Model with 8=0.35556, xo=0.3687, b2=bZg

values of 8 and T, for the NBS equation (4.36 .04,
5.1885+.001) and for the restricted Linear Model
(4.34 = .04, 5.1885 =+ .001) are in agreement.

For the Linear Model fit we calculaied the variance-
covariance matrix for simultaneous variation of all
adjustable parameters, as described in section 4.6.
This matrix is shown in table 15 with the diagonal
elements normalized to unity.

TABLE 15. Correlation matrix of parameters. Linear Model fit for He*

8§=4.30 4.32‘ 4.34‘ 4.36 ( 4.38-‘ 4.40 | 4.42
T.=5.1875 K | 3.22 2.98j 2.83] 2.76 | 2.76 | 2.85} 3.00
5.1880 K 2771 2.61| 2.53 | 2.54 | 2.62) 2.77| 3.00
5.1885 K 2.53 | 2.44 | 2.44 | 2.52 | 2.67 | 2.90| 3.20
5.1890 K 2.49| 2.48| 2.55| 2.70 | 2.93 { 3.23| 3.60

i

A minimum x? is obtained at 6=4.34 and T.= 5.1885
K. A 10 percent increase in x? cqrresponds to ap-
proximately 1 mK in 7, or 0.04 in &. Thus the optimum
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T. Pe %o h B s b
!
T, 1 ;
pe | +0.11 1
% | —058 | —015" 1
g | +073 |[+016 | —098 1
b) —-095 | —017 | +0.66 | —0.79 1
b L +0.09 —0.03 +0.70 —0.55 —0.07 1

5.3.h. Critical Region Parameters for He*

The parameters for the best restricied Linear Model
and the NBS equation, as deduced from the data of
Roach [R1], are presented in table 16. We also list the
corresponding values of the coefficients and exponents
of the power laws defined in section 4.2.

The errors quoted for pg, T, xo, 8,8 and b2 are those
corresponding to one standard deviation in the six-
parameter linearized error calculativn, The error guoted
for @ is the standard deviation of the mean of a(8) in
the Linear Model fit.

In figure 8 we show the normalized deviations of a(8)
from the average value d for the Linear Model fit.
Plots of the normalized deviations of the experimental
chemical potential data are presented in figures 9 and
10 for the Linear Model and the NBS equation,
respectively.

In table 17 we present critical region parameters for
He* deduced from the (3P/8T), data of Kierstead. The
Linear Model parameters, presented in the first column
of table 17, are those obtained by Kierstead himself
[K1]. 1t should be remembered, however, that Kier-
stead’s data do not conform to the Linear Model to
within their accuracy. The Linear Model parameters
from Kierstead’s data are in good agreement with the
Linear Model parameters deduced by us from the data
of Roach. The agreement confirms the absence of any
large systematic deviations between the measurements
of Roach and the values calculated on the basis of
Kierstead's Linear Model parameters [K1]. Since the
data of Kierstead exhibit less scatter than those of
Roach, Kierstead’s Linear Model parameters should be
used prefcrably.

In table 17 we also present the parameters for the
NBS equation equivalent with Kierstead’s parameters
for the Linear Model. These parameters were not de-
termined by fitting Kierstead’s experimental data
directly, but were deduced from the Linear Model
parameters using the relations (5.3) and (5.4).
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TaBrE 17. Critical region parameters for He? from data of Kierstead

Ficure 9. Plot of normalized deviations (Apds,— Apdae)/oay- as a
function of (x-+xe)/%e. for He?, when the data are repre-
sented by the Linear Model.

Linear Model NBS equation Linear Model Equivalent NBS
equation
P, 0.22726 MPa ( 1704.6 Torr) P, 0.22726 MPa - - . . -
pe  (69.3+0.02) kg/m? pe 393 kg/m? . 0.22746 MPa (1706.12 Torr) . 0.22746 MPa
. T. {5.1885:0.001) K (Tss) T, 5.1885 K (T:s) Pe (69.58 =0.20) kg/m? pe 69.58 kg/m?
%o 0.3687 = 0.02 %o 0.3687 T. (5.189920.00010) K (Tss) T. 5.18992
B 0.35556 +0.006 B 0.35556 Xo gzg::—' 060(1)?) " Xo 0.392
) 4.34x0.06 8 4.34 B K +0.002 J¢] 0.3554
a 6.413x0.1 E, 2.6522 Y " 1.1743 £0.0005 y 1.1743
B%,  1.3888+0.006 E: 031763 a 6.0530.016 E, 28461
X 1.56 X 1.61 By 13649 E. 027156
X 1.5
a 0.101 @ 0.101
b 1.188 y 1.188 « 0.115 a 0.115
B 1.426 B 1.426 8 4.304 8 4.304
D 2.863 D 2.852 B 1.395 B 1.395
r 0.1589 r 0.1560 D 3.019 D 3.019
™ 0.03985 T 0.04099 r 0.1611 r 0.1611
rr 3.99 rr 3.8 r 0.04089 r 0.04158
A+ 0.524 rmr 3.94 rir 3.87
At 0.0220 A 0.442 .
45 1.13 A7 0.0191
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FIGURE 8. Plot of normalized deviations (o~ @)/o. as a function of o . C .
(x+2x0)}/xo for the optimum Linear Model fit to the He* FiGuRe 10, Plot ?f normalized deviations (A, = Apfai) o a5 @
data. function of (x+x0)/xo for He*, when the data are
represented by the NBS Equation.
DBIK© 5IEEY K
He* Linear Model a5MB6K o 51929 K 5.4. Helium 3
451663 K x 5200 K
951795 K ® 52205 K
- . o e51822K v 62831 K 5.4.a. Data Sources for He®
* . s .
- v X SlEBZKC A8 TMTK In contrast to the study of the critical region of He?,
vl . “ .% P 4 the work on He? spans no more than a decade or two.
L8 | Cwopd "L, . . Only by the late fifties had enough He? been collected
3 %o Iy ;’v‘°p & ‘s v as a fission product in reactors for its bulk properties
WE [T E A S e A to be determined. Sydoriak, Grilly and Hammel at Los
x5 e . y y
3 e JE Alamos [G3, S7] determined the critical parameters of
-2 - - He? in 1949; the year hefore these parameters had heen
------ x predicied by De Boer and Lunbeck on the basis of
-4l | P | | ! ! quantum-mechanical corresponding states [D1}. The
0% LU 1 2 10° 0? 0 Los Alamos group then proceeded to explore the PVT
4 E . 1° N ~
%o surface of He?, first in the liquid phase [$8] and then

along a great number of isochores from supercritical

temperatures down o the coexistence curve [S9, S10,
S11].
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Concurrently with the Los Alamos PFT work,
Moldover measured the specific heat C, of He® and
demonstrated that it was weakly divergent at the
critical point [M8].

A systematic study of the equation of state in the
critical region of He® was undertaken by Chase and
Zimmerman in the mid-sixties [C5]. The dielectric
constant was determined as a function of pressure
and temperature. The coexistence curve and a large
number of isvtherms weile measuied and- analyzed {ur
the critical exponents g, v, and 8. A full report on the
results of these measurements was published only
recently. In the meantime, a large body of thermo-
dynamic data for He? in the critical region originated
from Meyer’s group at Duke University. The equation of
state was determined by Wallace and Meyer [W1];
using the same sample of He?, the specific heat C, was
subsequently measured by Brown and Meyer [B2]

The PVT data were obtained by measuring the
diclectric constant of a sample of He? as a function of
pressure and temperature in a cell with an effective
height of less than 1.5 mm. The hydrostatic gas head
was kept small by bringing the fill capillary out hori-
zontally and heating it well above the critical tempera-
ture before it bent upwards. The pressure was measured
on a quartz Bourdon gauge with a resolution of 4 X 10-*
atm. and an accuracy of 3 X104 atm. Temperatures
were measured with a germanium resistor calibrated
with respect to the vapor pressure of He?. The ther-
mometer had a sensitivity of 5 uK and a stability of
20 pK.

A limited number of data points were obtained for a
sample of He3 with 10 ppm He? impurity. The main body
of data, to be considered in this analysis, was obtained
for a sample with 250 ppm He* impurity.

The experimental data cover a range of |Ap*|=0.5
in density and —~0.1 <AT* <0.05 in temperature. Wal-
lace and Meyer have also integrated the PVT data to ob-
tain tables of Au* as a function of density and tempera-
ture; they have these tabulated data available on request
[W4]. In view of the large amount of data it is not prac-
tical to reproduce the tabulated values in this paper.

Wallace and Meyer made an analysis of their equation
of state data in terms of the NBS equation [W1]. In this
paper we present a new analysis of the data with both
the NBS equation and the Linear Model. For this purpose
we consider the chemical potential data in the range
|Ap*|=0.25 and at temperatures 3.27981 K<T=<
3.36699 K. This range is comparable to the range in
which scaling laws were found to describe the data for
other gases.

5.4.b. The Coexistence Curve of He3

Wallace and Meyer report the following values for
the coexistence curve parameters of He? [W1].
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T.= (3.3105+0.0002) K pc=(41.45+0.2) kg/m?
(5.8)

B=0.361%0.005 B=1.31

We have repeated the coexistence curve analysis
principally because the value 0.361 for 8 is substantially
higher than for other fluids. Our results can be sum-
marized as follows. If all points are included in the fit, a
minimum standard deviation of order unity occurs for
T.=3.3099 K and 8=0.3583. However, if the furthest
point is omitted, a substantially better fit, with standard
deviation 0.6, is obtained with T,=3.3103 K and
B = 0.3648. We have conducted power law fits with
several pairs of T, and 8 and found the fits to be very
insensitive to the choice. We have ultimately settled on
the value 8=0.3583 for the following reasons: the trend
in B values from Xe to He* does not lead one to expect
any strong increase in 8 for He3: and the lower 8 of
0.358 corresponds with a T, value below 3.31 K for
which there is independent evidence in the specific
heat experiment on the same sample by Brown and
Meyer [B2].

5.4.c. Critical Region Parameters for He?

The fit of the NBS equation te the He® data was
carried out by fixing p.=41.45 kg/m3, x0=0.48043 and
B=0.35831, varying & and T, on a grid and adjusting
E, and E; at each point on the grid by the method of

_ least squares as described in section 4.7. The fit of the

Linear Model to the He® data was carried out by again
fixing p., xo and B, varying 8, T, and b2 on a grid and
calculating the average value a of a () at each point of
the grid, as described in section 4.5. For the absolute
weight
estimated as

assignment the experimental errors were

op=0.9X10-4 (0.3 mK), 0, =5X10"4,

0,=12x10"%. (5.9)
The Linear Model fit was quite insensitive to the choice
of b2 which, therefore, was identified with b"’SLH.

Both the NBS equation and the Linear Model yielded
values of x? between 0.8 and 0.9 which varied only
slowly with 8 and T.. Hence, these parameters are not
well defined from the data. In table 18 we present the
parameters for the Linear Model and the NBS equation
that correspond to §=4.26 and T.=3.3099 K as deter-
mined from the optimum restricted Linear Model ht.
We also list the corresponding values of the coeflicients
and exponents of the power laws defined in section 4.2.

The errors quoted for p., T, x0, B, 8 and b2 are those
corresponding to one standard deviation in the six-
parameter linearized error calculation. The error
estimate thus obtained for p. is certainly too small.
Wallace and Meyer quote an error of = 0.02 kg/m? from
their analysis of the coexistence curve. The error
quoted for a is the standard deviation of the mean of
a (0) in the Linear Model fit.
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TaBLE 18. Critical region parameters for He? from data of Wallace

and Meyer

Linear Model NBS equation
P, 0.11678 MPa (859.6 Torr) | P.  0.11678 MPa (859.6 Torr)
Pe (41.45+0.004) kg/m? Pe 41.45 kg/m3
T. (3.3099+0.003) K (Tss) T, 3.3099 K (Tss)
Xo 0.48043 +0.02 o 0.48043
B 0.35831+0.005 B 0.35831
8 4.26+£0.04 8 4.26
a 4.1559+0.1 E, 2.6532
b 1.3639 +0.003 E, 0.25773
X 0.90 X 0.89
@ 0.115 a 0.115
b% 1.168 v 1.168
B 1.300 B 1.300
D 2.810 D 2.800
T 0.2178 r 0.2200
r 0.05638 I 0.05736
T 3.86 T 3.84
A 0.271
Af 0.01
Ay 0.685

For the Linear Model fit we also calculated the
variance-covariance matrix for simultaneous variation
of all adjustable parameters, as described in section 4.6.
This matrix is shown -in table 19 with the diagonal
elements normalized to unity.

TaBLE 19. Correlation matrix of parameters. Linear Model fit for He®

T, Pe %o B 8 b
T, 1
pe | —0.06 1
x0 | —0.73 +0.05 1
B +0.81 -0.05 —0.99 1
8 —0.93 +0.07 +0.89 —0.93 1
b —0.24 —0.01 +0.78 —0.72 +0.41 1

In figure 11 we show the normalized deviations of
a(6) from the average value a for the Linear Model fit
at a number of representative temperatures. However,
the deviations are not random: for Ap* <0 the experi-
mental a values are systematically higher than the
average value and for Ap* >0 the experimental a
values: are systematically lower than the average value.
This behavior indicates a lack of perfect antisymmetry
in the chemical potential data in contrast to a claim of
Wallace and Meyer [W1]. The lack of antisymmetry is
more apparent in figures 12 and 13, where we have
plotted the normalized deviations of the chemical
potential itself for the Linear Model and the NBS
equation, respectively. These results do not necessarily
mmply that the original PV'T data of Wallace and Meyer
are not consistent with our scaled equations. It is
possible that systematic deviations were introduced by
the numerical procedure followed by Wallace and Meyer

in converting the pressure data into chemical potential
data. We hope to resolve this issue in the future by
fitting the Linear Model to the original PVT data
directly, using a technique recently developed by
Murphy and the authors [M2, M3].
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Wallace and Meyer deduced the following parameters
for the NBS equation
T.=3.3105K B=0.361 E,=2.53

(5.10)
x0=0.475 §=4.23 E,=0.44
There are no substantial differences between their fit
and ours, except for the value of the critical temperature,
T.. In our opinion, a lower value of T, is definitely
indicated. Our best value, T,=(3.3099+0.003) K,

removes the discrepancy between Wallace and Meyer’s

value, T.= (3.3105+0.0002) K, based on the equation,

of state [W1] .and Brown and Meyer's value, T.=
(3.3092+0.0006) K, based on specific heat data for the
same sample of He® [B2].

Chase and Zimmerman [C5] obtained T, = (3.30930 =
0.005) K, which agrees with our and Brown and Meyer’s
values within combined error. The critical exponents
reported by Chase and Zimmerman, $=0.3653=*
0.005, §=4.12=+0.15, and y=1.1920.03 do not differ
significantly from the values we have derived from
Wallace and Meyer’s data (table 18).

Huang and Ho have determined a set of Linear

Model parameters for He3 by accepting the values re-
ported by Wallace and Meyer for T, 8 and 8 and then
determining optimum values for a and k with the
result @ = 4.17 and k(= oI') = 0.909 [H5]). Again, ex-
cept for T., their parameters are quite close to the
parameters obtained by us.

5.5. Carbon Dioxide
5.5.a. Data Sources for Carbon Dioxide

Since the original discovery of the critical point by
Andrews in 1869 [Al] and the equation of state work
conducted by Amagat around 1890 {A2], carbon dioxide
has continued to be the object of many studies. The
principal . reason for this interest is probably the con-
venient location of its critical temperature (31 °C).
The information concerning the thermodynamic be-
havior of CO, has been very important in the centext
of the development of equations of state, beginning with
that of van der Waals [VZ], and in relation to the under-
“standing of critical phenomena. Recently, a super-
critical thermodynamic power cycle has been proposed
which would make an accurate formulation of the
critical thermodynamic behavior of CO, an eminently
practical enterprise [F2].

Work of high accuracy on the equation of state in
the critical region started with the measurements of
Meyers and Van Dusen at the National Bureau of
Standards in 1933 [M10]. Though this work is of out-
standing guality, its scope is oo Hited fur data corre-
lation. The largest single body of PVT data for CO; is
that provided by the classical work of Michels and co-
workers in the thirties [M1, M11]. Whereas data outside
the critical region were taken by the piezometer method
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refined. by Michels, the data in the critical region,
spanning temperatures from 2 °C to 40 °C, and densities
from 0.2 p. to 1.7 p, were taken in a glass cell, in which
a fixed amount of gas was confined by means of mercury
transferred from a weighing bomb. The density deter-
mination was believed to be correct to at least 1:3000,
while the pressure was measured to =0.001 atm. The
temperature was measured to within 5 millidegrees.
There are, however;, some problems with the tempera-
ture scale to be discussed in section 5.5.c. Wentor{
measured a few PV isotherms of CO; in 1956, but the
data were confined to a narrow temperature range
within 0.1 °C from the critical temperature [W9].
Concerning the more modern work on CO:, we men-
tion the refractive index versus height measurements
conducted by Lorentzen [L.8] and the subsequent more
detailed studies of the coexistence curve and the density
profiles by Schmidt and Straub [S12, S13]. The intensity
of light scattered by CO; near the critical point has been
studied by White and Maccabee [W10} and by Lunacek
and Cannell [L9); these measurements have yielded
values for the exponents y and y'. Levelt Sengers and
Chen have recently determined the vapor pressure
curve and the P~T relation along the critical isochore
in some detail and with an accuracy of 0.001 bar and 1
millidegree in pressure and temperature, respectively
[L10]. The critical density and temperature were re-
cently redetermined under well-conirolled conditions
by Moldover [M12). The specific heat of CO; was meas-
ured in a ramping experiment by Lipa, Edwards and
Buckingham [L11] superseding the earlier work of
Michels and Strijland [M13]. The data were corrected

for gravity effects by Hohenberg and Barmatz [H4] and

by Schmidt [S3]. The low frequency sound velocity of
CO; in the vicinity of the critical point was studied by
Carome and coworkers [F'3, F4].

For -the purpuse of a scaled analysis, the primary
source is still the set of data of Michels, et al., because
of their extent and accuracy. The other experiments
can be used for several purposes. The coexistence curve
data of Schmidt and Straub supplement the coexistence
curve data of Michels which become rather scant and
inaccurate very close to T.. The vapor pressure curve
of Levelt Sengers and Chen serves as a check on
Michels’ temperature scale. Moldover’s redetermination
of the critical point corrects Michels’ estimate for T,
and eorrobhorates his choice for the critical density.
The light scattering data give additional insight in the
value of the exponent vy for the compressibility.

5.5.5. The Coexistence Curve of Carbon Diexide

A reanalysis of the coexistence curve data for COq
was recently published by Levelt Sengers, Siraub and

" Vicentini-Missoni [L7]. The principal conclusions of

interest are that the exponent 8 is between 0.347 and
0.351, T, to be associated with Michels’ experiment is
somewhat below the value 31.04 °C favored by Michels,
and the values of T, for the two samples studied by
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Schmidt and Straub are 30.99 °C and 31.03 °C, re-
spectively, on the Tys scale.

For our analysis we shall use 8=10.3486 together
with' x0=0.14185 and a critical  density p.= 23/
amagat =467.8 kg/m3. The value of the critical tempera-
Aure T will be adjusted to optimize the fit.

The critical temperature and density were recently
redetermined by Moldover by visual observation of
meniscus disappearance [M12]. We refer 10 his paper
for a critical evaluation of about a dozen of the more
reliable determinations of the critical parameters for
CO;. According to Moldover the most probable value
of the critical parameters for CO; are

T.= (304.127 =0.004) K (Tgs)
= (30.977+0.004) °C (Tes)
pe= (468 +2) keg/m? (5.11)

P = (72.789%0.007) atm = (7.3753 = 0.0007) MPa.

'The value of the critical pressure was obtained by him
from the vapor pressure measurements of Levelt
Sengers and Chen [L10], given his own value for the
critical teniperature.

5.5.c. On the Temperature Scale of Michels’ Data

In Michels’ experiments, the temperature of the
thermostat was read on mercury thermometers divided
to 0.01 °C and calibrated at P.T.R. in Berlin. In the
course of the experiment, the vapor pressure was de-
termined at nine subcritical temperatures. These vapor
pressures differ systematically from those of Meyers
and Van Dusen in 1933 [M10] and those of Levelt
Sengers and Chen in 1971 [L10]. While the latter two
sets of data agree to the equivalent of 0.01 °C, the
disagreement with Michels’ data is the equivalent of
0.08 °C at 25 °C and 0.02 °C at a temperature 0.03 °C
helow the eritical temperature. A similar systematic
difference is noticeable al lower temperatures between

TABLE 20. Apparent differences between the Ty scale and the
temperatures reporied by Michels et al. [L10]

Tw, Michels [M1, M11] ! Ty—Tas || T, Michels [M1, M11] | Ty= T
°C ! °C °C o
2.853 0.070 28.052 0.035
10.822 0.069 29.929 0.029
19.874 0.068 30.409 0.032
25.070 0.085 | 31.013 0.022
25.208 0.085 |

\
Michels’ data and a set of vapor pressure data obtained
in the same laboratory at a later date [M14]. Since we
have reasons to believe that Michels’ sample purity was
very high and that his pressure scale was correct to at
least T part in 5000, we prefer to explain the observed
differences in terms of the temperature scales used.
Since both Meyers and Van Dusen’s data and the Levelt
Sengers and Chen data were obtained on the Ty scale,

we can use the observed differences in vapor pressure
to infer the relationship between Michels’ temperature
scale and the T4s scale. The results are summarized in
table 20.

At this point, we can try to infer the consequences
of this scale correction on the values of T, as obtained
from Michels” data. We reach our conclusion in three
steps: a) as we shall see, a scaled analysis of Michels’
PVT data leads to values for T, between 30.99 °C and
31.03 °C on Michels scale: b) applying a correction of
—0.03 °C, in accordance with table 20, brings T, into
the range 30.96 °C to 31.00 °C on T4s; c) a further correc-
tion of —0.01 °C [R6] brings T, into the range 30.95 °C
to 30.99 °C on Tes. This result is in satisfactory agree-
ment with the value 30.977 °C as determined by
Moldover on the T scale.

It is more difficult to decide how much the temperature
scales differ at temperatures above the critical tempera-
ture, since the pressure differences will depend on how
accurately the critical density was realized in the experi-
ment of Levelt Sengers and Chen. For the purpose of
this correlation, which is concerned with a temperature
range from 1 °C below T, to 10 °C above T, it was not
considered urgent to correct Michels’ temperature
scale. It should, however, be kept in mind that an offset
in scale of 0.07° at 25 °C and 0.01° at 31 °C would affect
first temperature derivatives by as much as 1 percent
and should be taken into account when C, values,
predicted on the basis of an equation of state deduced
from Michels’ data, are compared with experimental
C. data obtained on the international temperature
scale.

5.5.d. The Equotion of State Data for Carbon Dioxide
The experimental PVT data of Michels et al. [M1]

were converted into chemical potential data by nu-
merical integration as discussed in section 5.1. The
resulting values for the reduced chemical potential
Ap* are tabulated in table 21 as a function of tempera-
ture T and density Ap*. The value used for reducing
potential data is p =P [p =0.3083
atm/amagat = 0.01577 MPa m?/kg. The table is a slightly
Tevised version of a table presented in an earlier
paper (V1]

the cheminal

TaBLE 21. Reduced equation of state data for carbon dioxide
T, K Ap*a 104 - Apet aob xtxe ™
Xa
303.079 +0.2834 +8.2x0.8 6.726 X 102
303.559 —0.2422 —~7.7+0.8 1.862 % 10~
303.559 +0.2382 +6.0x0.7 1.464 % 10!
304.163 —0.2179 —27.3x+0.7 1.506
304.163 —{.1859 —13.9+0.7 1.009
304.163 —{0.1550 —6.1%0.7 1.015
304.163 —0.1288 —2.8x0.7 1.025
304.163 +0.1302 +3.1x0.7 1.024
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TaBLE 21. Reduced equation of state data for carbon dioxide

— Continued
T, K Ap*e 104+ Ap*2® Xt ™
Xg
304.163 +0.1520 +6.120.7 1.015
304.163 +0.2121 +24.2+07 | 1.006
304.163 +0.2714 +70.60.9 1.003
304.335 —0.2100 —31.0+0.7 1.357
304.335 —0.1518 —10.5%0.7 1.905
304.335 —0.1057 —4.3x0.7 3.557
304.335 —0.0699 —2.5+0.7 9.380
304.335 ~0.0373 —0.9+0.7 5.190 X 10
304.335 +0.0476 +1.3+0.7 2.625% 10
304.335 +0.0948 +3.5%0.7 4.498
304.335 +0.1503 +10.8+0.7 1.932
304.335 +0.2091 +31.0+0.7 1.361
304.470 ; —0.2097 —37.8=0.7 1.634
304.470 [ —0.1523 —15.1+0.7 2.590
304.470 —0.1058 —6.8+0.7 5.513
304.470 —0.0693 —3.6+0.7 1.621 X 10
304.470 —0.0372 —1.7x0.7 9.144x 10
304.470 +0.0473 +1.72+0.7 4.652x%10
304.470 +0.0961 +5.220.7 6.949
304.470 +0.1513 +14.9+0.7 2.619
304.470 +0.2096 +37.6+0.6 1.636
304.673 —0.2645 ~101.2=09 | 1.539
304.673 —0.2117 —49.2+0.8 2.021
304.673 ~0.1502 —20.1%0.7 3.736
304.673 —0.0860 —7.6x0.7 1.454 %10
304.673 +0.0950 +8.3%0.7 1.117x 10
304.673 +0.1467 +19.120.7 3.925
304.673 +0.2027 +42.820.7 2.157
305.204 —0.2921 ~187.3%1.0 1.826
305.204 —~0.2465 ~114.40.9 2.345
305.204 ~0.1905 —61.2+0.7 3818 .
305.204 | ~0.1193 ~26.20.7 L177% 10
305.204 | —0.0511 ~8.6£0.7 1.239 % 10?
305.204 | -+0.0386 +6.3+0.7 2.751 x 10
305.204 . +0.1398 +34.1:0.7 7.834
305.204 +0.2232 +87.6%0.8 2.786
307.871 f -0.2737 ~362.8+1.3 4.538
307.871 , —0.1995 —206.3:+1.0 9.771
307.871 ’ - 0.1004 —03.2:x0.8 5.000 % 10
307.871 +0.0976 +83.00.8 6.916 X 10
307.871 ‘ +0.2141 +236.81.0 8.161 .
313.237 —0.0698 ~ 1608414 4.372 % 102
313.237 +0.0095 +21.41.3 1.329 x 10
313.237 | +0.113¢ | +271.6%14 1.095 x 107
X, L

0 =0.2x10* (0.006 K), op*=3.3 X104

ow=065Xx10~1  (5.12)
At each point on the grid we calculated the value of
the reduced variance x?2; part of the x2 surface is shown
in table 22,

TABLE 22. The values of x? as a function of 8 and T, for CO,, NBS
equation with 8=10.3486 and x,=10.14185.

5=4.41 444 [ 4.47 1 4.50

7,=30.98°C 2.41 TR 1.37
30.99 °C 1.69 1.27 1.14 1.32
30.00°C 1.28 1.06 1.14 1.49
31.01°C 1.08 1.06 1.32 1.85
31.02°C 1.08 1.27 1.85 2.34

The minimum values of x? are obtained for T.= 31.00
°C and 31.01 °C and 8=4.44. The x2 increases by about
10 percent when T, is changed by 0.01 °C and & by 0.03
from their optimum values. The variations of T, and 3§,
however, are strongly coupled and lower values of T,
correspond to high values of §. This explains why in
an earlier fit [V1], where a coarse grid and a slightly
different 8 was used, a minimum was found at
T.=30.96 °C and 8=14.6. We now believe that the higher
value of T, around 31.01 °C, is a better choice. The
value is corroborated by the most recent determination
of the critical temperature of CO, as discussed in
section 5.5.c.

5.5.f. Analysis of the CO, Dato in Terms of the Linear Model

The fit of the Linear Model to the CO. data was
carried out by again fixing p., xo and B, varying & and
T. and 4% on a grid and calculating the average value
a of a(8) at each point of the grid, as described in
section 4.5. The absolute error assignment was again
based on the estimated error in AT*, Ap* and Au* given
in (5.12). Among all gases studied in this paper, CO; was
the only case in which the optimum value of the Linear
Model parameter b? differed from the restricted Linear
Model value b%,, The optimum Linear Model fit was
obtained for 2= 1.80; for this value of b*> we show part
of the x? surface in table 23. We note that x? attains

TABLE 23. The values of x* as a function of 8 and T, for CO,. Linear
Model with 8=0.3486, xo=0.14185, b2=1.80.

apn =923A7 amaga) =467 R kgfm3
v P /p.=0.3075 atm/amagat =0.01577 MPa - m%kg.
¢ T.=304.16 K, 8=0.3486, x,=0.14185.

5.5.e. Analysis of the CO; Data in Terms of the NBS Equation

The fit of the NBS equation to the CO; data was
carried out by fixing p.= 236.7 amagat =467.8 kg/m?,
x0=0.14185 and B=0.3486, varying & and T, on a grid
adjusting E, and E. at each point on the grid by the
method of least squares as described in section 4.7.
For the absolute weight assignment the experimental
errors were cstimated as

J. Phys. Chem. Ref. Data, Yol. 5, No. 1, 1976

5=4.40 { 4.42 4.44 4.46 4.48

T.=30.99°C 259 | 195 | 153 | 132 | 131
31.00°C ;184 | 140 | 118 | 117 | 1.36
31.01°C 1 137 | 114 | 101 129 | 1.68

31.02°C 117 113 1.30 1.67 2.24

a minimum value of 1.11 at the same parameter values
T.=31.01 *C and 8=4.44 as those corresponding to the
optimum fit of the NBS equation. When b? was re-
stricted to &% . x* attained the minimum value 1.70
which is substantially higher than that obtained with the
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unrestricted Linear Model; the location of the minimum,
however, occurs at the same value of 8.

For the Linear Model fit we calculated the variance-
covariance matrix for simultaneous variation of all
adjustable parameters, as described in section 4.6.
This matrix is shown in table 24 with the diagonal
elements normalized to unity.

TABLE 24. Correlation matrix of parameters. Linear Model fit for

CO;.
Tc Pc X0 B 8 7 b
T. | 1
pe | +0.12 1
o -0.66 | —0.33 1
B | 4078 | +031 | —097 1
8 —0.88 -0.24 +0.91 -0.95 1
b —~0.03 -0.31 +0.60 ~0.54 +0.26 1

5.5.g. Critical Region Parameters for CO,

The parameters for the best fit of the Linear Model
and the NBS equation to the data of Michels et al.
[M1] are presented in table 25. We also list the cor-
responding values of the coefficients and exponents
of the power laws defined in section 4.2.

TABLE 25. Critical region parameters for CO» from data of Michels
et al. for the optimum Linear Model and NBS equation -

Linear Model NBS equation
P, 7.3755 MPa P, 7.3755 MPa
Pe (467.8+0.07) kg/m® Pe 467.8kg/m®
T. (304.16+0.01) K T, 304.16 K
%o 0.14185+0.005 %o 0.14185
8 0.3486 + 0.004 8 0.3486
8 4.44x0.05 3 4.44
a 28.021 0.3 E, 2.1779
b2 1.800 == 0.005 E, 0.25344
X 1.05 X 1.03
a 0.104 a 0.104
v . 1199 v 1.199
B 1.975 B 1.975
D 2.353 D 2.323
r 0.06522 r 0.06533
r 0.01419 IN 0.01539
i 4.60 rr 4.25
A+ 2.20 ' '
A7 0.0148
A 5.13

The errors quoted for p, T., x0, B, 8 and b* are those
corrcsponding to one standard deviation in the six-
parameter linearized error calculation. The error
quoted for a is the standard deviation of the mean of
a(#) in the Linear Model fit.

In figure 14 we show the normalized ceviations of
a(#) from the average value d for the Linear Model
fit. Plots of the normalized deviations of the experi-
mental chemical potential data are presented in hgures

15 and 16 for the Linear Model and the NBS equation,
respectively.

In table 26 we present the parameters for the re-
stricted Linear Model (4*=05%,) and the equivalent
NBS equation.

In collaboration with Murphy we have developed a
method for fitting the Linear Model to the experimental
pressures directly. Linear Model parameters recently
obtained by this new technique are shown in table
27 [M2]. The direct fit to the pressures confirms our
conclusion that for Michels’ data the optimum Linear
Model fit has a b* that differs from the value of 42,
corresponding to the restricted Linear Model.
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FIGURE 14. Plot of normalized deviations (a—a)/o. as a function of
{2+ x0)/x¢ for the optimum Linear Model fit to the CO;

data.
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FIGURE 15. Plot of normalized deviations (Aptep— Dutarc) o ppunas a
function of (x+2x0)/x¢ for CO;z, when the data are
represented by the Linear Model.
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FIGURE 16.  Plot of normalized deviations (Aud,— Autac)/oa, as a
function of (x+xq)/xe for CO;, when the data are
represented by the NBS Equation.
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TABLE 26. Critical region parameters for CO; from data of Michels
et al. for the restricted Linear Model and the equivalent
NBS equation

Restricted Linear Model Equivalent NBS equation
P. 7.3722 MPa P, 7.3722MPa
Pe 467.8 kg/m? Pe 467.8 kg/m?
T, 304.14K T. 304.14K
EN 0.14185 X 0.14185
B 0.3486 B 0.3486
8 4.44 ) 4.44
a 21.835 E, 2.1379.
b 1.3824 E, 0.27170
X 1.30 X 1.12
a 0.104 o 0.104
y 1.199 y 1.199
B 1.975 B 1.975
D 2.271 D 2.290
r 0.06472 I 0.06525
I 0.01553 ' I 0.01568
Vi 4.17 e 4.16
A+ 2.67
A7 0.093
A5 5.58

TABLE 27. Linear Model parameters for CO; obtained from a direct

pressure fit [M2]

Linear Model Restricted Linear Model
Pe 467.8 kg/m? Pe 467.8 kg/m?
T. 304.18 K T. 304.16 K
Xo 0.141856 X0 0.14185
e 0.3486 B 0.3486
8 4.37 ) ‘ 4.38
a 24.48 a 19.56
b? 1.70 b l 1.3484

5.5.h. Comparison with Results of Other Authors

In table 28 we present a survey of the values reported
for the critical exponent y of CO,. The value 1.26,
initially reported from an analysis of the CO, data in
terms of the NBS equation [V1], was too high for the
reasons given in section 5.5.e.

White and Maccabee [W10] and Lunacek and Cannell
[L9] measured the intensity of scattered light on the
critical isochore and analyzed the data in terms of a

power law. White and Maccabee found a low value
¥ =1.17 when a power law was fitted to the data in a
large range of temperatures above T, Lunacek and
Cannell report a larger value y = 1.22, although the two
sets of light scattering data do agree in their range of
overlap. Lunacek and Cannell, however, put more
emphasis on the data very close to T, a region where
the corrections in White and Maccabee’s experiment
become very large. All factors considered, our present
value y=1.20 for CO; seems very reasonable.

There is, nevertheless, definitely room for improve-
ment of our knowledge of the value for the exponent vy
of CO,. That the reported values of 7y for such a care-
fully studied substance spans a range from 1.17 to 1.22
is unsatisfactory.

White and Maccabee have recently made an attempt
to describe the chemical potential data, the light
scattering data and the Cy data of CO; simultaneously
in terms of the Linear Model. In this analysis they have
revised their value for y upwards to y=1.217 [W11].

Several authors have proposed Linear Model param-
eters for CO; [C6, H4] but these proposals are not
based on a detailed independent examination of the
experimental data.

The specific heat C, of CO. was measured by Lipa,
‘Edwards and Buckingham using a sample with a height
of 1 mm [L11]. Hohenberg and Barmatz calculated the
gravity corrections for a cell of this height and found
them to be less than 1 percent in the entire experimental
range [H4]. Buckingham and coworkers represented
their data by a power law of the form

*|AT* -+ B

Co_
== (T>T.),

(5.13)
%—'-‘A;I [AT*|~e+B~ (T<T,),

with the parameters a=0.125, 4+ =5.583, B+=—3.457
and A;=10.473<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>