Refractive index of alkali halides and its wavelength and temperature derivatives

Cite as: Journal of Physical and Chemical Reference Data 5, 329 (1976); https://doi.org/10.1063/1.555536 Published Online: 15 October 2009

H. H. Li

ARTICLES YOU MAY BE INTERESTED IN

Refractive index of alkaline earth halides and its wavelength and temperature derivatives Journal of Physical and Chemical Reference Data **9**, 161 (1980); https://doi.org/10.1063/1.555616

Refractive index of silicon and germanium and its wavelength and temperature derivatives Journal of Physical and Chemical Reference Data **9**, 561 (1980); https:// doi.org/10.1063/1.555624

Optical constants of graphene measured by spectroscopic ellipsometry Applied Physics Letters **97**, 091904 (2010); https://doi.org/10.1063/1.3475393

Where in the world is AIP Publishing? Find out where we are exhibiting next

Refractive Index of Alkali Halides and Its Wavelength and Temperature Derivatives

H. H. Li

Center for Information and Numerical Data Analysis and Synthesis, Purdue University, West Lafayette, Indiana 47906

Refractive index data for 20 alkali halides are exhaustively surveyed, compiled, and analyzed. The most probable values at 293 K for the transparent region are generated for the materials for which experimental data are sufficiently abundant and reliable. Provisional values are also provided for the wavelength regions where available data are insufficient or missing. Reasonable estimations of refractive index for the very scantily measured materials were made by incorporating the dielectric constants and wavelengths of absorption peaks into a simplified dispersion equation. Temperature derivatives of refractive index for most of the alkali halides were unavailable. However, using the existing data for the five most commonly used alkali halides, novel empirical facts were discovered and dn/dT formulas were constructed for all of the alkali halides. The calculated dn/dT values agree remarkably well with the existing experimental data.

Key words: Alkali halides: optical constants: refractive index: temperature coefficient of refractive index.

Page

Page

Li	st of ?	Гables
Li	st of l	Figures
Li	st of S	Symbols
1.	Intro	duction
2.	Theo	pretical Background and Empirical
	Fo	rmulas
	2.1.	Refractive Index
	2.2. '	Temperature Derivative of Refractive In-
		dex, dn/dT
3.	Num	erical Data
	3.1.	Lithium Fluoride, LiF
	3.2.	Lithium Chloride, LiCl
	3.3.	Lithium Bromide, LiBr
	3.4.	Lithium Iodide, LiI
	3.5.	Sodium Fluoride, NaF
	3.6.	Sodium Chloride, NaCl
	3.7.	Sodium Bromide, NaBr

329	3.8. Sodium Iodide, NaI	408
331	3.9. Potassium Fluoride, KF	414
332	3.10. Potassium Chloride, KCl	421
332	3.11. Potassium Bromide, KBr	436
	3.12. Potassium Iodide, KI	449
336	3.13. Rubidium Fluoride, RbF	460
337	3.14. Rubidium Chloride, RbCl	466
	3.15. Rubidium Bromide, RbBr	474
339	3.16. Rubidium lodide, RbI	48 1
341	3.17. Cesium Fluoride, CsF	488
341	3.18. Cesium Chloride, CsCl	494
361	3.19. Cesium Bromide, CsBr	502
366	3.20. Cesium Iodide, Cs1	512
371	4. Conclusions and Recommendations	522
376	5. Acknowledgments	526
385	6. References	526
402		

Page

Page

List of Tables

1. Available Experimental Data Sets on the Refractive Index and Its Temperature Derivative..... 2. Some Physical Properties of Alkali Halides at Room Temperature..... 3. Available Parameters for Dispersion Equations of Alkali Halides at Room Temperatures..... 4. Some Useful Parameters for Dispersion Equations of Alkali Halides at Liquid Helium Temperature.....

^{5.} Parameters for the dn/dT Formulas of Alkali Halides at Room Temperature..... 342 333 6. Recommended Values on the Refractive Index and Its Wavelength and Temperature 335 Derivatives for LiF at 293 K..... 347 7. Source and Technical Information on the Refractive lndex and dn/dT measurements of 338 LiF..... 352 8. Experimental Data on the Refractive Index of LiF..... 355 339 9. Experimental Data on dn/dT of LiF..... 359 10. Comparison of Dispersion Equations Proposed for LiF..... 36011. Recommended Values on the Refractive Index and Its Wavelength and Temperature Derivatives for LiCl at 293 K..... 362

Copyright () 1976 by the U.S. Secretary of Commerce on behalf of the United States. This copyright will be assigned to the American Institute of Physics and the American Chemical Society, to whom all requests regarding reproduction should be addressed.

List of Tables – Continued

		Page
12.	Source and Technical Information on the Refractive Index and dn/dT measurements of	
13.	LiCl Experimental Data on the Refractive Index	365 365
14.	Recommended Values on the Refractive In- dex and Its Wavelength and Temperature	505
15.	Derivatives for LiBr at 293 K Source and Technical Information on the Re-	367
	fractive index and dn/dI measurements of LiBr	370
16.	Experimental Data on the Refractive Index of LiBr	370
17.	Recommended Values on the Refractive In- dex and Its Wavelength and Temperature Derivatives for LiL at 293 K	372
18.	Source and Technical Information on the Re fractive Index and dn/dT Measurements of	012
19.	LiI Experimental Data on the Refractive Index	375
20.	Recommended Values on the Refractive In- dex and Its Wavelength and Temperature	979
21.	Derivatives for NaF at 293 K Source and Technical Information on the Re-	377
n n	NaF	381
44.	of NaF	382
23. 24.	Experimental Data on dn/dT of NaF Comparison of Dispersion Equations Pro-	383
25.	Recommended Values on the Refractive In- dex and Its Wavelength and Temperature	384
26.	Derivatives for NaCl at 293 K Source and Technical Information on the Re- fractive Index and dn/dT Measurements of	387
27.	NaCl Experimental Data on the Refractive Index	392
28	of NaCl Experimental Data on dp/dT of NaCl	396
20. 29.	Comparison of Dispersion Equations Pro-	400
30.	Recommended Values on the Refractive In- dex and Its Wavelength and Temperature	401
31.	Derivatives for NaBr at 293 K Source and Technical Information on the Re- fractive Index and <i>dn/dT</i> Measurements	403
32.	of NaBr Experimental Data on the Refractive Index	407
22	of NaBr	407
ມບ.	dex and Its Wavelength and Temperature Derivatives for NaI at 293 K	409

		Page
34.	Source and Technical Information on the Re- fractive Index and dn/dT Measurements	
	of Nal	413
35.	Experimental Data on the Refractive Index	
	of Nal	413
36.	Recommended Values on the Refractive In-	
	dex and Its Wavelength and Temperature	
	Derivatives for KF at 293 K	415
37.	Source and Technical Information on the Re-	
	fractive Index and dn/dT Measurements	
	of KF	419
38.	Experimental Data on the Refractive Index	
	of KF	419
39.	Comparison of Dispersion Equations Pro-	
	posed for KF	420
40.	Recommended Values on the Refractive In-	
	dex and Its Wavelength and Temperature	
	Derivatives for KCl at 293 K	423
41.	Source and Technical Information on the Re-	
	fractive Index and dn/dT Measurements	
	of KCl	428
42.	Experimental Data on the Refractive Index	
	of KCl	431
43.	Experimental Data on dn/dT of KCl	434
44.	Comparison of Dispersion Equations Pro-	
	posed for KCl	435
45.	Recommended Values on the Refractive In-	
	dex and Its Wavelength and Temperature	
	Derivatives for KBr at 293 K	438
46.	Source and Technical Information on the Re-	
	fractive index and dn/dT Measurements	
	of KBr	443
47.	Experimental Data on the Refractive Index	
	of KBr	445
48.	Experimental Data on dn/dT of KBr	447
49.	Comparison of Dispersion Equations Pro-	
	posed for KBr	448
50.	Recommended Values on the Refractive In-	
	dex and Its Wavelength and Temperature	
	Derivatives for KI at 293 K	451
51.	Source and Technical Information on the Re-	
	fractive Index and dn/dT Measurements	
	of KI	455
52.	Experimental Data on the Refractive Index	
	of KI	457
53.	Experimental Data on dn/dT of KL	458
54.	Comparison of Dispersion Equations Pro-	
	posed for KI	459
55.	Recommended Values on the Refractive	
	Index and Its Wavelength and Tempera-	
	ture Derivatives for RbF at 293 K	461
56.	Source and Technical Information on the	
	Refractive Index and dn/dT Measurements	
	of RbF	465

List of Tables - Continued

Page

- 57. Experimental Data on the Refractive Index of RbF.....
- 58. Recommended Values on the Refractive Index and Its Wavelength and Temperature Derivatives for RbCl at 293 K.....
- 59. Source and Technical Information on the Refractive Index and dn/dT Measurements of RbCl.....
- 60. Experimental Data on the Refractive Index of RbCl.....
- 61. Experimental Data on dn/dT of RbCl.....
- 62. Comparison of Dispersion Equations Proposed for RbCl.....
- 63. Recommended Values on the Refractive Index and Its Wavelength and Temperature Derivatives for RbBr at 293 K......
- 64. Source and Technical Information on the Refractive Index and dn/dT Measurements of RbBr.....
- 65. Experimental Data on the Refractive Index of RbBr.....
- 66. Comparison of Dispersion Equations Proposed for RbBr.....
- 67. Recommended Values on the Refractive Index and Its Wavelength and Temperature Derivatives for RbI at 293 K.....
- 68. Source and Technical Information on the Refractive Index and dn/dT Measurements of RbI.....
- 69. Experimental Data on the Refractive Index of RbI.....
- 70. Comparison of Dispersion Equations Proposed for RbI.....
- 71. Recommended Values on the Refractive Index and Its Wavelength and Temperature Derivatives for CsF at 293 K.....
- 72. Source and Technical Information on the

1.	Absorption Spectrum of a Typical Alkali-
	Halide Crystal
2.	$(1/\lambda_u)$ $(d\lambda_u/dT)$ vs. Atomic Number of Alkali
	Ion of Alkali-Halide Crystals
3.	α'/α vs. Atomic Number of Alkali Ion of
	Alkali-Halide Crystals
4.	Refractive Index of LiF (transparent region)
5.	Refractive Index of LiF
6.	$dn/d\lambda$ of LiF
7.	dn/dT of LiF
8.	Refractive Index of LiCl
9.	$dn/d\lambda$ of LiCl
10.	dn/dT of LiCl
11.	Refractive Index of LiBr
12.	$dn/d\lambda$ of LiBr

	Refractive Index and dn/dT Measure-
465	ments of CsF
	73. Experimental Data on the Refractive Index of CsF
467	74. Recommended Values on the Refractive
	Index and Its Wavelength and Tempera- ture Derivatives for CsCl at 293 K
471	75. Source and Technical Information on the
	Refractive Index and dn/dT Measure-
472	ments of CsCl
472	76. Experimental Data on the Refractive Index
4770	
473	11. Comparison of Dispersion Equations Pro-
	28 Recommended Volves on the Refrective
475	Index and Its Wavelength and Tempera
410	ture Derivatives for CeBr at 203 K
	79 Source and Technical Information on the
479	Befractive Index and dn/dT Measure-
117	ments of CsBr
479	80. Experimental Data on the Refractive Index
	of CsBr
480	81. Experimental Data on dn/dt of CsBr
	82. Comparison of Dispersion equations Pro-
	posed for CsBR
482	83. Recommended Values on the Refractive
	Index and Its Wavelength and Tempera-
	ture Derivatives for CsI at 293 K
486	84. Source and Technical Information on the
	Refractive Index and dn/dT Measure-
486	ments of CsI
	85. Experimental Data on the Refractive Index
487	of CsI
	86. Experimental Data on dn/dT of CsI
400	87. Comparison of Dispersion Equations Pro-
489	posed for Cs1

List of Figures

Page		Page
	13. dn/dT of LiBr	369
334	14. Refractive Index of Lil	373
	15. $dn/d\lambda$ of LiI	374
341	16. dn/dT of LiI	374
	17. Refractive Index of NaF	379
342	18. $dn/d\lambda$ of NaF	380
349	19. dn/dT of NaF	380
350	20. Refractive Index of NaCl (transparent	
351	region)	389
351	21. Refractive Index of NaCl	390
363	22. $dn/d\lambda$ of NaCl	391
364	23. dn/dT of NaCl	391
364	24. Refractive Index of NaBr	405
368	25. $dn/d\lambda$ of NaBr	405
369	26. dn/dT of NaBr	406

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

Page

н. н. ц

List of Figures - Continued

		Page		Page
27.	Refractive Index of NaI	411	49. dn/dT of RbCl	470
28.	$dn/d\lambda$ of Nal	41]	50. Refractive Index of RbBr	477
29.	dn/dT of Nal	412	51. $dn/d\lambda$ of RbBr	477
30.	Refractive Index of KF	417	52. dn/dT of RbBr	478
31.	$dn/d\lambda$ of KF	417	53. Refractive Index of RbI	484
32.	dn/dT of KF	418	54. $dn/d\lambda$ of RbI	484
33.	Refractive Index of KCl (transparent		55. dn/dT of Rb1	485
	region)	425	56. Refractive Index of CsF	491
34.	Refractive Index of KCl	426	57. $dn/d\lambda$ of CsF	49 1
35.	$dn/d\lambda$ of KCl	427	58. <i>dn/dT</i> of CsF	492
36.	dn/dT of KCl	427	59. Refractive Index of CsCl	497
37.	Refractive Index of KBr (transparent		60. $dn/d\lambda$ of CsCl	498
	region)	440	61. <i>dn/dT</i> of CsCl	498
38.	Refractive Index of KBr	441	62. Refractive Index of CsBr	506
39.	$dn/d\lambda$ of KBr	442	63. $dn/d\lambda$ of CsBr	507
40.	dn/dT of KBr	44 2	64. dn/dT of CsBr	507
41.	Refractive Index of KI	453	65. Refractive Index of CsI	516
42.	$dn/d\lambda$ of KI	4.54	66. $dn/d\lambda$ of CsI	517
43.	dn/dT of KI	454	67. dn/dT of CsI	517
44.	Refractive Index of RbF	463	68. Refractive Index of Alkali Halides at 293 K	523
45.	$dn/d\lambda$ of RbF	463	69. Wavelength Derivative of Refractive Index	
46.	dn/dT of RbF	464	of Alkali Halides at 293 K	524
47.	Refractive Index of RbCl	469	70. Temperature Derivative of Refractive Index	
48.	$dn/d\lambda$ of RbCl	469	of Alkali Halides at 293 K	525

List of Symbols

a	Constant	Р	Electrical polarizability: also code for
A, A_0, A_1, A_2	Constants of dispersion equations		Pulfrich or Abbe refractometer
Ь	Constant	R	Code for reflection method
В	Constant; oxygen line of wavelength 0.687 µm	Т	Temperature; code for transmission method
с	Constant: velocity of light	v	Phase velocity of light in medium
C	Constant: hydrogen line of wavelength	V_{-}	Volume
	0.656 µm	α	Linear thermal expansion coefficient
D	Code for deviation method: also sodium	γ	Damping factor
	D doublet $\lambda \sim 0.5893 \ \mu m$	ε	Complex dielectric constant
F	Code for focal length method: also hydro-	ϵ_1	Real part of ϵ
1	gen line of wavelength 0.486 μ m	€u	Imaginary part of ϵ
Ŧ	Code for interference method	ε _s	Static dielectric constant
i I	Code for multilaver method	ϵ_{uv}	High-frequency dielectric constant
L	Code for inumation method	К	Extinction coefficient: oscillator strength
IVi	Code for immersion method	λ	Wavelength of light
n	Refractive index	λ	Wavelength of the ith absorption band
120	Refractive index of short (uv) wavelengths	λ_{t}	Wavelength of infrared absorption band
Ν	Complex refractive index: also density of harmonic oscillator	λ _u	Effective wavelength of ultraviolet absorp- tion band

1. Introduction

The purpose of this work is to present and review the available data and information on the refractive index of alkali halides, to critically evaluate, analyze, and synthesize ¹ the data, and to make recommendations for the most probable values of the refractive index, its wavelength derivative $dn/d\lambda$, and temperature derivative dn/dT.

The recommended and provisional values generated cover the widest possible transparent wavelength ranges and are for the purest form of alkali halide for which

¹ The term is used to connote the prediction, derivation, or estimation of data based on sound theoretical grounds and related experimental evidence.

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

measurements have been made. However, for the materials which have been very scantily measured or have not been measured at all, reasonable estimations are made for wide wavelength ranges.

The introductory text describes the general procedures and methods for the evaluation and synthesis of the available data and for the generation of recommended values. It also discusses the present status of the experimental data and other considerations concerning the body of data.

In the theoretical background section, the general theory of the refractive index and its temperature derivative is discussed. Correlations of the dielectric constants and the refractive index are described. An important result in this work is the discovery of empirical relationships which enable us to calculate dn/dT data at 293 K for some materials on which no data are available.

In the data presentation section we treat each material separately, review the individual pieces of available data and information, and describe the considerations involved in arriving at the final assessment and recommendation and the theoretical guidelines or semiempirical correlations on which the data analysis and synthesis are based. Figures and tables following the discussions present the recommended values, in addition to the original data, specimen characterization, and measurement information for the 283 sets of the data extracted from 100 documents in the primary literature. Distribution of the available data sets is shown in table 1.

In the conclusion, figures are presented in which all the recommended curves on the refractive index, $dn/d\lambda$

TABLE 1. AVAILABLE EXPERIMENTAL REFRACTIVE INDEX DATA AND ITS TEMPERATURE DERIVATIVE

		n			dn/dT	
	Data Sets	Transparent Region Wavelength Coverage	Quality of Data	Data Sets	Transparent Region Wavelength Coverage	Quality of Data
LiF	47	wide range	good	3	fair range	poor
LiCl	2	two wavelengths	poor	-	-	· -
LiBr	2	two wavelengths	poor	-	-	-
Lil	1	single wavelength	poor	-	-	-
NaF	15	wide range	good	2	fair range	poor
NaCl	49	wide range	good	10	fair range	fair
NaBr	5	limited to 0.2-0.67 µm	fair		-	-
Nal	I	single wavelength	poor	-	-	-
KF	5	limited to 0.21-0.59 µm	fair	-	-	-
KC1	38	wide range	good	8	fair range	fair
\mathbf{KBr}	27	wide range	good	5	limited to < 1 µm	poor
ΚI	21	wide range	fair	2	limited to < 1 µm	poor
RbF	1	single wavelength	poor	-	-	-
RbC1	3	limited to 0.19-0.66 µm	fair	-1	single wavelength	bad
RbBr	2	limited to 0.21-0.66 µm	fair	-	-	-
Rbl	3	limited to 0.18-0.66 µm	fair	-		-
CsF	1	single wavelength	poor	_		-
CsCl	6	limited to 0.22-0.67 µm	fair	-	-	-
CsBr	8	wide range	good	1	wide range av	erage valu
Csl	13	wide range	good	1	wide range	fair

and dn/dT are grouped for visual comparison. The accomplishments in this work are discussed and the need for further measurements is suggested.

The last section consists of the source references used in the extraction of data and/or information. Only original sources of data have been used in the analysis. The effective cut-off date for literature research was March 1975, while the earliest referenced source was dated 1874. With such a comprehensive compilation of information and presentation of results, the author believes that any scientist or optical engineer will find this report a great help in regard to refractive index and its temperature derivative.

For a transparent material, the refractive index, n, is defined as the ratio of the velocity, c, of electromagnetic radiation in vacuum to the phase velocity, v, of the same radiation in the material, i.e.,

$$n = c/v. \tag{1}$$

Since the index of refraction of air is only about 1.0003, n is conventionally measured with respect to air instead of vacuum and no correction is made.

In non-absorbing media, the refractive index is a real quantity, while in absorbing media a complex index of refraction, $N_{\rm s}$ is used. The complex index is defined as

$$N = n + i\kappa, \tag{2}$$

where κ is the extinction coefficient or absorption index. Both *n* and κ are frequency dependent. The real and imaginary parts of the square of the complex refractive index are the real and imaginary parts of the complex diclectric constant of the material, i.e.,

$$\boldsymbol{\epsilon} = \boldsymbol{\epsilon}_1 + i\boldsymbol{\epsilon}_2 = N^2 = (n^2 - \kappa^2) + i2n\kappa. \tag{3}$$

The dispersion in an optical material is intimately related to the microscopic structure of the material. On the short wavelength side, transmission is restricted by electronic excitation, and for long wavelengths by molecular vibrations and rotations. The width of the transparent spectral range increases as the energy for electronic excitation is increased and that for molecular vibrations decreased. Theoretical and experimental studies on the ionic crystals indicate that crystals having small ions with strong bonding have a wide ultraviolet transparency; this is true for alkali halides.

The alkali halides are typical ionic compounds and their physical properties are in general well understood. The majority of the alkali halides crystallize in the rock salt sturcture in which each cation (alkali metal ion) is surrounded by six nearest-neighbor anions (halogen ions), and each anion by six nearest-neighbor cations. The cations and anions are each situated on the points of separate face-centered cubic lattices, and these two lattices are interleaved with each other. This type of crystal is called the β -form. A few of the alkali halides normally crystallize in a slightly different arrangement, typified by the room-temperature structure of cesium chloride. In this structure, each cation is surrounded by eight nearest-neighbor anions and conversely. The cations and anions in this structure may be considered to occupy respectively the points of two interpenetrating simple cubic lattices. This type of crystal is called the α -form. A few physical properties of alkali-halide crystals are listed in table 2.

In order to utilize any dispersive medium, spectroscopists must have a knowledge of the index of refraction and $dn/d\lambda$ for all wavelengths transmitted by the medium. Such data are also useful to physicists for evaluating theoretical dispersion equations and for studying the forces between the constituents of the crystal. The alkaline halides, having the cubic structure, are favorable subjects for such studies.

In figure 1, we show a schematic view of the absorption spectrum of a typical alkali-halide crystal. At the right ($\sim 40 \ \mu m$) are seen the absorption peaks associated with optical phonons while nearer to the left (~ 0.15 μ m) are seen the absorption peaks associated with excitons. In the transparent region between these extremes the crystal absorbs little light and has a dispersion which can be characterized by a high-frequency dielectric constant $\epsilon_{uv} = n\sigma^2$, where n_0 is the refractive index at short wavelength. In absorbing regions of the spectrum, the imaginary part of ϵ is non-zero. Both the real and imaginary parts of ϵ can be obtained from the experimental reflectivity (preferably over a wide range of wavelengths) and the use of the Kramers-Kronig relation or the Lorentz oscillator model. In optical technology, the refractive index is needed only for the transparent region of the material. One does not have to carry out a complicated analysis and calculation to obtain the refractive index. Direct methods are available for high precision measurements. The minimum deviation method is usually used to obtain the refractive index to the fourth decimal place, and the interference method to the third.

Although alkali halides are, in principle, good optical materials, only five of them (LiF, NaCl, KCl, KBr and CsI) are commonly used because the others lack mechanical strength or are chemically or thermally unstable.

The applications of high-power infrared lasers, which are now being developed at a rapid rate, are partly limited by the lack of suitable transparent optical materials. As a result, much of the high-power laser research is directed toward finding adequate high-temperature window and dome materials in the wavelength region of 2 μ m to 6 μ m and near 10.6 μ m. The alkali halides have large transmission ranges spreading from the ultraviolet to the infrared and are available in large sizes and high purity. They are excellent materials for photochemists who are interested in ultraviolet transparency and for laser scientists who are concerned with infrared transmission. In spite of their intrinsic weaknesses, they are considered good window materials and are recommended by the National Materials Advisory Board [1]². Efforts are being made to improve their mechanical strength and thermal endurance without altering their optical properties, particularly the refractive index.

The refractive index of alkali halides and its temperature derivative have been surveyed and studied from time to time by a number of investigators, including Smakula [2], Ballard [3], Coblentz [4], and Winchell [5], to name just a few. Refractive index data are compiled in a number of handbooks such as those sponsored by Landolt-Börnstein [6], AIP [7], and CRC [8], etc. However, their main concern is to provide a general picture through a few particular sets of data. The purpose of the present work is quite different from that of the above-mentioned works. It has two major aims: (1) to exhaustively search the open literature so that a complete comphehensive bibliographic reference is compiled, and (2) to generate recommended values based on the existing experimental data on the refractive index

FIGURE I. Absorption Spectrum of a Typical Alkali-Halide Crystal

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

Material	Structure ^a	Space Group ^a	Density ^a (g cm ⁻³)	Melting ^c Point (K)	Energy ^d Gap (ev)	Solubility ^b in Water at 298 K (10 ² g cm ⁻³)	Molocular Weight ^C	Linear ^a Exp. Coef. at 293 K (10 ⁻⁶ K ⁻¹)	Thermal ^e Conductivity at 293 K (W m ⁻¹ K ⁻¹)	Specific ^c Feat at 298 K (cal mole ⁻¹ K ⁻¹)	e Transmission Region (µ m)	Young's Modulus (10 ¹⁰ N m ⁻²)	e llardness (Knoop No.
LiF	Cubic(NaCl)	Fm3m	2.601	1121.3	13.1	0.27	25.9374	33.2		9.994	0.12-9.0	6.481	102-113
LICI	Cubic (NaCI)	Fm3m	2.068	883 ± 2	~ 10	63.7	42, 397	43.8		11.479			
LiBr	Cubie (NaC1)	Fm:3m	3.46_{d}	823	~ 8.5	145.0	86, 848	49.8		11.692			
liil	Cubic (NaCl)	Fm3m	4.061	742	2°2	165.0	133.8434	59.4		11.970			
No IV	Cribio (NaC1)	անադ	9 70	1269 ± 2	10.5	4.22	41.9882	31.7		11. 198	0.19-15.0		
NaCl	Cubic Macul	Fm3m	2.16.	1073.8 ± 1.0	S. 57	35.7	58.448	39.7	6.4	12.072	0.21 - 26.0	3, 999	18.2
NaBr	Cubie (NaCI)	Fm3m	3.210	1020	7.7	116.0	102.907	42.3		12.285			
InI	Cubic (NaCl	Fm3m	3.665	933	≥ 5 . 8	184.0	149.901	45.5		12.482			
KF	Cubic (NaC1)	Fm3m	2.505	1131	10.5	92.3	58.1004	34. S		11.707			
KCI	Cubic (NaCI)	Fm3m	1.9917	1044	8.5	34.7	74.555	37.1	7.0	12.258	0.21 - 30.0	2.965	9.3
KBr	Cubic(NaCl)	Fm3m	2.754	1007	7.6	53.48	119.011	38.7	5.0	12.500	0.25-4(.0	2.689	7.0
КI	Cubic (NaCI)	Fm.3m	3.114	954	6.2	127.5	166.0064	40.8	3. 1	12.614	0.25-45.0	3, 151	
RbF	Cubic(NaCl)	Fm3m	2.88	1033	10.4	130.6	104.47	27.5					
RbCl	Cubic(NaCI)	Fm3m	2.76	988	8.3	77.0	120.92	36.0					
RbBr	Cubie (NaCI)	$\Gamma m 3m$	3.35	955	7.7	98.0	165.38	37.5					
IdSI	Cubie (NaCl)	Fm3m	3.55	516	5, 83	152.0	212.37	41.5					
t t	10 of the office		c c	920	0 0 F	0 196	151 000 L	39 0		12 420			
Cor.	Cubic (Facul)	The free	9000 C	44 510	0 0								
CsCl(A)	Cubic (NaCI)	Fm3m	3. 54 (calc.)	018 018	≥ 7.5	162.22	168, 358	46.3		12, 534			
CsBr	Cubie (CsCl)	Pm3m	4.433	909	7.0-8.0	124.3	212.81	47.4	0.94		0.3 -55.0	1.586	19.5
(.sl	Cubic(CsCl)	Pm3m	4.51	894	> 6.3	44.0	259.81	49.0	1.2		0.25-80.0	0.530	
 . .											,		
^a Informa of RbC1,	tion is taken fro , RbBr, RbI, an	m Americ: d CsF are	in Institute of P from Ref. [12].	hysics Handbo	ok, 3rd Edit	ion, Ref. [7],	except the li	iear expansi	on coefficients of	six materials; those of	IKF, RbF are from	Rcf. [11], v	zhile those
b Values :	are from Handbc	ok of Chen	nistry and Phys	ics, Ref. [8].									
c Values	are irom JANAF	Thermocl	hemical Tables,	Ref. [9].									
d Values ;	are obtained from	n Ref. 7,	117].										
e Values ;	are obtained from	n Handboo	k of Military Int	frared Technol	ogy, Rof. [-	10J.							

TABLE 2. SOME PHYSICAL PROPERTIES OF ALKALI HALIDES

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

REFRACTIVE INDEX OF ALKALI HALIDES

335

and a compensative derivative, dn/dT, so that critically evaluated numerical data are available for scientific and engineering use.

Scanning the open literature one finds that in most cases the measurements of refractive index were carried out at various temperatures and reduced to a reference temperature chosen according to the investigators' preference. Unfortunately, the temperature derivatives of refractive index for alkali halides are in general either only partially measured or not available. Therefore, it is highly desirable to reduce the existing refractive index data and present them at a uniform reference temperature. It is also important that the temperature derivative of refractive index be made available in the form of a function of wavelength constructed from existing dn/dT data and theory, so that the users can easily calculate the required values over a limited range of temperature.

The first task in generating recommended values was to analyze the data on the temperature derivative of refractive index. With the analyzed values of dn/dT, all the refractive index data were then reduced to the reference temperature of 293 K chosen for the present work. The corrected data were then subjected to evaluation and critical selection. Least-squares fitting of the selected data to a given equation was then carried out.

Recommended values for refractive index and the corresponding wavelength and temperature derivatives, $dn/d\lambda$ and dn/dT, are calculated from the correlating equations where sufficient experimental values are available. However, for the region where experimental evidence is either insufficient or poor, only provisional or typical values are provided. Data are presented at integral wavelengths with small increments for the transparent region. Intermediate values can be obtained by the following linear interpolations:

$$n_{\lambda'} = n_{\lambda} + \left(\frac{dn}{d\lambda}\right)_{\lambda} (\lambda' - \lambda),$$

$$n_{\lambda T'} = n_{\lambda T} + \left(\frac{dn}{dT}\right)_{\lambda} (T' - T).$$
(4)

The second expression in eq (4) is based on the fact that dn/dT is relatively independent of temperature over a fairly wide range of temperatures. However, the application of this expression should be limited to the temperature range 293 ± 50 K.

No attempt was made to analyze the refractive index data obtained at temperatues other than near room temperature, since the required data are generally inadequate. However, information and results belonging to this category are listed along with those at room temperature for the purpose of comparison and completeness. Moreover, some of the important physical parameters essential for the calculation of refractive

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

indices at low temperatures is also given in a latter section.

Inherent in the character of this work is the fact that we have drawn most heavily upon the scientific literature and feel a debt of gratitude to the authors whose results have been used.

2. Theoretical Background and Empirical Relations

The study of the propagation of light through matter, particularly solids, comprises one of the important and interesting branches of optics. The many and varied optical phenomena exhibited by solids include selective absorption, dispersion, double refraction, polarization effects, and electro-optical and magneto-optical effects. Many of the optical properties of solids can be understood on the basis of classical electromagnetic theory.

The macroscopic electromagnetic state of matter at a given point is described by four quantities:

- (1) The volume density of electric charge
- (2) The volume density of electric dipoles, called the polarization
- (3) The volume density of magnetic dipoles, called the magnetization
- (4) The electric current per unit area, called the current density

All of these quantities are considered to be macroscopically averaged in order to smooth out the microscopic variations due to the atomic makeup of matter. They are related to the macroscopically averaged electric and magnetic fields by the well-known Maxwell equations [114].

Detailed discussion of Maxwell's equations is beyond the scope of the present work. What we should bear in mind is that the general solution of Maxwell's equations is a wave function for electric or magnetic field. In the treatment of the interaction of light and matter, the light is considered as an oscillating electric field that engulfs the component molecules of matter. Each of the molecules may be considered to be a charged simple harmonic oscillator. When these component oscillators are driven by the engulfing electric field of light they become excited by that field and emit Huygens-like spherical wavelets. In the early development of the theory of propagation of light in matter, there was no practical alternative to treating the matter as a collection of charged harmonic oscillators subject, perhaps, to damping forces. Fortunately, the modern developments in the theory of matter and its interaction with radiation have shown that this simple model has broad utility, and that it can be employed in the discussion of refractive indices.

In this section, only a brief review of the theoretical background on the refractive index and its temperature derivative is given. A two-oscillator model is used to estimate the refractive index for those materials on which the index is available only at a single wavelength. Effort was largely concentrated in finding means for estimating the dn/dT data for the materials without available data. Empirical evidence was found and formulas were constructed and used to make reasonable estimate for dn/dT.

2.1. Refractive Index

Maxwell's theory gives the relationship

$$n^2 = \epsilon = 1 + P, \tag{5}$$

where *n* is the refractive index, ϵ the dielectric constant, and *P* the polarizability. If one treats the material as equivalent to a collection of harmonic oscillators resonant to radiation of various wavelengths λ_i , one can derive [114] the equation

$$n^2 - 1 = \sum_i \frac{c_i \lambda^2}{\lambda^2 - \lambda_i^2},\tag{6}$$

where λ is the wavelength of the incident radiation, and c_i is a constant which depends on the number of oscillators per unit volume and the "oscillator strength" of the oscillators resonant at wavelength λ_i . Equation (6) is generally called the Sellmeier formula. It can be derived by modern quantum theory from more sophisticated models of the solid, with λ_i denoting the wavelengths of the various absorption bands of the material.

For the transparent region, it was traditionally believed that the dispersion formula of the Sellmeier type best fits the alkali halides. The consequence of this was that most of the early experimental workers adopted eq (6) with the λ'_i s and c'_i s as adjustable empirical constants chosen only to fit the data, with no other experimental and theoretical basis. Nevertheless, this equation, if used correctly, gives a good deal of information concerning the position of absorption band, oscillator strength and the dielectric constant for static field, ϵ_s .

For the transparent region, eq (6) can be written as

$$\epsilon = n^2 = 1 + \sum_i \frac{a_i \lambda^2}{\lambda^2 - \lambda_i^2} + \sum_j \frac{b_j \lambda^2}{\lambda^2 - \lambda_j^2}.$$
 (7)

Terms in the first summation are contributions from the ultraviolet absorption bands and those in the second from the infrared absorption bands. In the infrared region, however, the λ_i 's of UV absorption peaks are much less than λ and eq (7) is reduced to

$$\epsilon = \epsilon_{uv} + \sum \frac{b_j \lambda^2}{\lambda^2 = \lambda_j^2}$$
(8)

where $\epsilon_{uv} = 1 + \sum a_i = \epsilon_s - \sum b_j$ is the high-frequency dielectric constant.

Real crystals are neither perfectly linear dielectrically, nor are they perfectly harmonic. The effect of nonlinearity and anharmonicity is to introduce a damping term [13]. Equation (8) is extended to become

$$\epsilon = \epsilon_1 + i\epsilon_2 = \epsilon_{\rm uv} + \sum_j \frac{b_j \lambda^2}{\lambda^2 - \lambda_j^2 - i\gamma_j \lambda}.$$
 (9)

Equation (9) is widely used in investigating the infrared optical properties of ionic crystals [14-16]. In the transparent wavelength region, the effects contributed from absorption bands are negligibly small. In such cases the damping terms can be omitted and eq (9) is reduced to the Sellmeier formula.

In an ideal application of eq (7), one would need to know the wavelength of all of the absorption peaks. This is very difficult in practice because of the large number of absorption peaks. In fact, only a few absorption peaks are accessible for experimental observation. In order to include the effects due to unobserved absorption bands on the refractive index in the transparent region, an equation similar to eq (7) is used to interpret the experimental data:

$$n^{2} = A + \sum_{i} \frac{a_{i}\lambda^{2}}{\lambda^{2} - \lambda_{i}^{2}} + \sum_{j} \frac{b_{j}\lambda^{2}}{\lambda^{2} - \lambda_{j}^{2}},$$
 (10)

where λ_i 's and λ_j 's are the observed wavelength of absorption bands. A is a constant which equals the quantity $1 + \sum_k a_k$ where a_k 's are the coefficients of the ultraviolet terms $\sum_k a_k \lambda^2 / (\lambda^2 - \lambda_k^2)$ with λ_k 's much smaller than the wavelengths in the transparent region. In the infrared region, the dominant contribution to the refractive index in the transparent region comes from the fundamental absorption hand while other absorption bands contribute little effect on the refractive index in the transparent region. As a result, in most cases, only one term due to the predominant contribution is included in eq (10). The relationships between the dielectric constants and the coefficients in the dispersion equation remain with no change:

$$\epsilon_{\rm uv} = A + \Sigma a_i, \tag{11}$$

and

$$\epsilon_s = A + \sum a_i + \sum b_i. \tag{12}$$

Fortunately, a wealth of experimental data on ϵ_{uv} , ϵ_s , λ_i , and λ_j is available for alkali halide crystals. In some cases, good values of a and b are also available to initiate a least-squares calculation. Table 3 displays all the selected values of available parameters. The available values of $(1/\lambda_1)$ $(d\lambda_1/dT)$ are also listed for calculation of the temperature derivative of the refractive index. In addition, the available values of damping factors, γ_j in eq (9), are also included for the purpose of completeness.

			Illumidate A heamfine Daalen ^G	and a second	Infrared Absorption Peaks		1 d l
Material	e s	e ^{uv}	λ_{1}	Wavelength $\lambda_{\rm J}$ ($\mu^{\rm m}$)	Oacillator Strength ^K T	Damping Factor γ_{I} (μ m)	λ ₁ dT (10-4 K ⁻¹
Liff	9.04	1.93		(2.79, 10.8 ^A	6.80, 0.11	1.967, 3.578	1.3
LICI	11.86	2.75	0.130, 0.143	49.26			~ 2.1
LiBr	13.23	3.16	0.156, 0.162, 0.173	57.80			~ 2.5
ITI	11.03	3.80	0.120. 0.140, 0.167, 0.176, 0.183, 0.197, 0.212	70.42			2.2
NaF	5.072	1.174	0.117	40.57			1.25
NaCl	5.90	2.33	0.050 0.100 0.128 0.158	60.98, 40.50, 120.34	3.2001, 0.0900, 0.334	2.281, 5.730, 198.39	~ 2.80
$\Gamma_{A}Br$	6.396	2.60	0.125, 0.145, 0.176, 0.188	74.63			~ 3.20
Nal	7.28	3.01	0.122, 0.141, 0.170, 0.187, 0.228	86.21			~ 2.90
KF	5.50	1.85	0.126	51.55			~ 2.30
KCI	4.85	2.17	0.13., 0.162	70.42			~ 2.70
KBr	4.90	2.36	0.146, 0.173, 0.187	\$7.72, 60.61	2.4881, 0.1885	4.561,13.940	3.60
Ы	5.09	2.65	0.129, 0.175, 0.187, 0.219	98.04, 69.44	2.1363, 0.2765	8.235, 20.932	3.40
e 10	, ,			00 63			2.5
IJAA	07-00 7 00	01 C	0.10; 0.10C	85 84			3.40
RbBr	4.86	2.34	0.123, 0.146, 0.155, 0.178, 0.191	1.4.29			3.80
IdhI	4,94	2.58	0.120, 0.134, 0.156, 0.179, 0.187, 0.223	132.45			3.6
CsF	8.08	2.16	0.110, 0.118, 0.136	"8.74			2.5
CsC1	6,95	2.63	0.119, 0.137, 0.145, 0.162	100.50, 80.00	4.0212, 0.2513	7.538,20.000	3.2
CsBr	6.38	2.78	0.120, 0.146, 0.160, 0.173, 0.187	136.05, 97.09	3.5688, 0.1131	8.163, 15.534	4.0
CsI	6.31	3,02	0.130, 0.147, 0.163, 0.177, 0.185, 0.206, 0.218	161.29, 117.65	3.2673, 0.0628	11.290, 17.648	3.4

^a Static dielectric constant data are from Rof. [13, 19, 20, 21, 118].

b High-frequency dielectric constant data are from Ref. [13, 21, 22].

^c The ultraviolet ubsorption peaks are measured by Hilsch and Pohl [23], Schneider and O Bryan [24], and Ramwchendran [17].

The order of the and γ_1^{s} sources points that one order of the λ_1^{s} . Data sources: see Ref. [13, 21]; for LiF see Ref. [14]; for NaCl see Ref. [15]; for KBr see Ref. [16]; for Sec. (23F; and CSI see Ref. [26]). For KISEE Ref. [25]; for CSE; and CSI see Ref. [26]. δ_1^{s} values of $(1/\lambda_1)$ (δ_1/δ_1) are from Tsay, et al. [18], except for LiI, RbF, RbI, and CSF, which are estimated from the pattern of $(1/\lambda_1)$ ($\delta_1\gamma/\delta_1$) variation of sodium and potassium halides. Values of $(1/\lambda_1)$ ($\delta_1\gamma/\delta_1$) variation of sodium and potassium halides. Values having an "--" sign in front are estimated from the Grüneisen approximation.

338

н. н. ц

For some materials, experimental data on n are insufficient to perform the least-squares fitting. Examples are LiCl, LiBr, CsF, for which n has been measured at only a single wavelength, the mean of sodium D lines. For such cases a means should be developed to obtain reasonable estimates by use of the available data for other properties which are intimately related to n. The following simplified equation (two-oscillator model) of the Sellmeier type is proposed for this purpose:

$$n^{2} = A + \frac{(\epsilon_{uv} - A)\lambda^{2}}{\lambda^{2} - \lambda_{u}^{2}} + \frac{(\epsilon_{s} - \epsilon_{uv})\lambda^{2}}{\lambda^{2} - \lambda_{l}^{2}}, \qquad (13)$$

where A is an adjustable parameter, λ_u the unweighted averaged value of the wavelengths of the ultraviolet absorption peaks, and λ_l the wavelength of the fundamental infrared absorption peak. The adjustable parameter A in eq (13) can be determined even if only one measurement of μ is available because the quantities ϵ_s , ϵ_{uv} , λ_u , and λ_l are available (see table 3).

Note that in the present work no attempt was made to analyze the refractive index data other than those obtained at temperatures near room temperature, because of insufficiency of data. However, information and data belonging to this category are listed along with those for room temperature (see section 3). In the far infrared region, the refractive indices at low temperatures are usually derived from the analysis on the reflection spectra. The static and high-frequency dielectric constants and the wavelengths of absorption peaks at low temperatures are either found by these analytic calculations or by direct measurements. In order to facilitate the calculation of the refractive indices at low temperatures, we have listed in table 4 the up-to-date values of important physical parameters which are essential in constructing the dispersion equation at low temperatures.

2.2. Temperature Derivative of Refractive Index, dn/dī

For users of the refractive index, information on the temperature derivative, dn/dT, is indispensable. The temperature dependence of the refractive index of crystals is of considerable interest in connection with a wide varie(y of optics applications. In the area of highpower lasers, dn/dT plays an important role in thermal lensing problems. A great deal of research effort is spent in finding the magnitude of dn/dT and its frequency dependence in the laser wavelength regions.

With regard to the thermo-optical behavior of the alkali halides in general, the existing data are not so useful as might be expected. Although a sizable body of experimental work on dn/dT exists, much of the data is concentrated in limited spectral regions, usually in the visible and near ultraviolet. Useful data outside these TABLE 4. SOME USEFUL PARAMETERS FOR DISPERSION EQUATIONS OF ALKALI HALIDES AT LIQUID HELIUM TEMPERATURE ($T\!=\!4,2$ K)

	۴s	εuv	$\lambda_{I}(\mu m)^{a}$	λu ^b
LiF	8.50	1.93	31.45	0.0724
LiCl	10.83	2.79	45.25	-
LiBr	11.95	3.22	53.48	-
LII		3.89	66.01	-
NaF	4.73	1.75	38.17	0.0808
NaCl	5.43	2.35	56.18	0.1169
NaBr	5.78	2.64	68.49	-
Nal	6.60	3.08	80.65	-
KF .	5.11	1.86	49.63	-
KC1	4.49	2.20	66.23	0.1101
KBr	4.52	2.39	81.30	0.1305
KI	4.68	2.68	91.32	0.1598
RbF	5.99	1.94	61.35	-
RbC1	4.58	2.20	79.37	-
RbBr	4.51	2.36	105.82	-
RbI	4.55	2.61	122.70	-
CsF	7,27	2.17	74.63	-
CsCl	6.68	2.67	93.90	~
CsBr	6.38	2.83	127.39	-
CsI	6.32	3.09	152.67	-

 $^{\rm g}$ Static dielectric constants and the wavelengths of transverse phonon are taken from Ref. [21].

b High-frequency dielectric constants and $\lambda_{\rm U}$ are taken from Ref. [13].

regions, especially in the intrared, are very often unavailable-a very discouraging fact to workers in laser research. It is, therefore, highly desirable to obtain a theoretical prescription which allows prediction of dn/dT over a wide range of wavelengths, based on at most a small number of known measurements.

Ramachandran [17] presented a semiempirical theory of thermo-optical effects in crystals, in which the dispersion was fitted to experimental data, employing a series of oscillator frequencies and strengths as adjustable parameters. A close correlation was found between temperature shifts of various parameters and those of the fundamental oscillator frequencies. Unfortunately, the parameters chosen were rather numerous and often physically obscure or not unique: no general prescription was presented for determining their temperature variations, which are necessary for calculating dn/dT. Tsay, Bendow, and Mitra [18] introduced a twooscillator model which accounts for the variation with temperature of the energy gap (electronic contribution to dn/dT) and the fundamental phonon frequency (lattice contribution to dn/dT). Although this model is useful in predicting valuable information, it fits the existing data rather poorly and is inadequate for generating recommended data. A somewhat modified approach is to formulate a semiempirical equation which serves the dual purpose of giving a good fit to existing data and a reasonable prediction of missing information.

For the transparent region where absorption can be ignored, the dispersion equation, eq (10), can be rewritten as

$$n^2 - 1 = B + \sum_i \frac{\kappa_i \lambda^2}{\lambda^2 - \lambda_i^2}, \qquad (14)$$

where B = A - 1. If one differentiates eq (14) with respect to temperature, one can arrive at the equation

$$2n \frac{dn}{dT} = \frac{dB}{dT} + \left(\frac{1}{N} \cdot \frac{dN}{dT}\right) \sum_{i} \frac{\kappa_{i}\lambda^{2}}{\lambda^{2} - \lambda_{i}^{2}} + \sum_{i} \frac{2\kappa_{i}\lambda^{4}}{(\lambda^{2} - \lambda_{i}^{2})^{2}} \left(\frac{1}{\lambda_{i}} \frac{d\lambda_{i}}{dT}\right), \quad (15)$$

since κ_i may be written as $\kappa'_i N \lambda_i^2$, where N is the number of oscillators per unit volume, and both N and λ_i are functions of temperature [108]. Since

$$-\frac{1}{N}\frac{dN}{dT} = \frac{1}{V}\frac{dV}{dT} = 3\alpha,$$
 (16)

where α is the linear thermal expansion coefficient. eq (15) may be written:

$$2n\frac{dn}{dT} = C - 3\alpha(n^2 - 1) + \sum_i F(\lambda, \lambda_i) \left(\frac{1}{\lambda_i} \frac{d\lambda_i}{dT}\right), \quad (17)$$

where C is effectively a constant over a limited temperature range and

$$F(\lambda, \lambda_i) = \frac{2\kappa_i \lambda^4}{(\lambda^2 - \lambda_i^2)^2}.$$

To this point, we have followed Ramachandran [17] closely. The second term on the right side of eq (17) expresses the change in refractive index resulting from a change in density, while the remaining terms give the change due to the shifting of the absorption bands with temperature.

In the following development, we will modify eq (17) to an empirical form which resembles Tsay's [18], but with adjustable parameters. As in arriving at eq (13), we replace the sum in eq (17) by two terms, one representing the effects of the bands in the ultraviolet region, associated with a mean wavelength λ_u , and the other arising from the fundamental infrared absorption band of wavelength λ_i . Thus eq (17) is simplified to

$$2n \frac{dn}{dT} = C - 3\alpha (n^2 - 1) + F(\lambda, \lambda_u) \left(\frac{1}{\lambda_u} \frac{d\lambda_u}{dT}\right) + F(\lambda, \lambda_l) \left(\frac{1}{\lambda_l} \frac{d\lambda_l}{dT}\right), \quad (18)$$

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

on replacing C, $2 \kappa_u(1/\lambda_u) (d\lambda_u/dT)$, and λ_u^2 by A_0, A_1 , and A_2 , respectively, we have

$$2n \frac{dn}{dT} = -3\alpha (n^2 - 1) + A_0$$
$$+ \frac{A_1 \lambda^4}{(\lambda^2 - A_2)^2} + \frac{2\kappa_I \lambda^4}{(\lambda^2 - \lambda_I^2)^2} \left(\frac{1}{\lambda_I} \frac{d\lambda_I}{dT}\right).$$
(19)

Since the quantities κ_1 , λ_1 , and $(1/\lambda_1) \cdot (d\lambda_1/dT)$ are experimentally available, this leaves in eq (19) only three adjustable parameters, A_0 , A_1 , and A_2 .

Although the adjustable parameters in eq (19) can be determined by a small number of experimental data, a wide wavelength range of the input data is required. Unfortunately, this condition is not satisfied by the existing data on the dn/dT of alkali halides. In fact, dn/dT has been measured for only seven of the alkali halides, in the following ranges.

LiF	0.21–1.08 μm and at 3.5 μm
NaF	$0.21-1.08~\mu\mathrm{m}$ and at 3.5 $\mu\mathrm{m}$ and 8.5 $\mu\mathrm{m}$
NaCl	0.21–8.85 μ m and at 10.6 μ m
KCl	$0.21-8.85 \ \mu m$ and at 10.6 μm and 21.0 μm
KBr	0.26–1.08 μm
KI	$0.25 - 1.08 \ \mu m$
CsI	0.30-46.24 μm

It is clear that meaningful least-squares calculations can only be carried out for the five materials (LiF, NaF, NaCl, KCl, and CsI) for which the available data cover a sizeable wavelength range. In the process of calculation we have found two empirical facts which gave clues to further reduce the unknown parameters in eq (19). The first is that the parameter A_2 in eq (19) turns out to be very close to the square of the wavelength of the uv absorption peak nearest the transparent region. The second relates to the quantity $(1/\lambda_u)$ $(d\lambda_u/dT) =$ $A_1/2\kappa_u$. In the case of NaF and NaCl this does not depend on the halide involved: a result that will be assumed to hold for the other alkali halides. This idea is also supported by the fact that a log-log plot of $(1/\lambda_u) \cdot (d\lambda_u/dT)$ against the atomic number Z of the four alkali ions for which data are available, is a straight line despite the variety of halide ions involved (see fig. 2). This figure shows that $(1/\lambda_u)$ $(d\lambda_u/dT)$ and Z are connected by a power law, and thus a reasonable value for the former quantity can be predicted for Rb (a dot in the figure), for which a more direct determination is not presently available. Only one unknown parameter, A_0 , in eq (19), then remains to be found in order to make a meaningful estimation for those materials on which no experimental data are available. This problem is solved and discussed in the next paragraph.

At an intermediate wavelength, λ , in the transparent region, the contribution from the infrared is negligible

REFRACTIVE INDEX OF ALKALI HALIDES

FIGURE 2. $(1/\lambda_u) (d\lambda_u/dT)$ vs Atomic Number of Alkali Ion of Alkali-Halide Crystals

(20)

and A_2 is much smaller than λ^2 . Equation (18) can then be reduced to

$$2n \frac{dn}{dT} = -3\alpha (n^2 - 1) + A_0 + 2 (\epsilon_{uv} - 1) \left(\frac{1}{\lambda_u} \frac{d\lambda_u}{dT}\right).$$

By treating the variation in index as due entirely to the change in density except at the extremes of the transmitting range, we define an effective linear thermal expansion coefficient α' such that

$$2n \frac{dn}{dT} = -3\alpha' \ (n^2 - 1). \tag{21}$$

The values of α' for LiF, NaCl, KCl, and CsI were evaluated at wavelength 1 μ m. It is interesting to find that the ratio, α'/α , is linearly related to the atomic number of the positive ion of alkali halides, as shown in figure 3. The prediction for Rb is indicated by a dot. The constant A_0 in eq (20) can be calculated by combining eqs (20) and (21):

$$A_0 = 3 \left(\alpha - \alpha'\right) \left(n^2 - 1\right) - 2 \left(\epsilon_{uv} - 1\right) \left(\frac{1}{\lambda_u} \frac{d\lambda_u}{dT}\right) \cdot (22)$$

With these empirical findings we are in a position to construct formulas of the form of eq (19) to calculate dn/dT for all alkali halides over a wide range of λ .

For convenience, we display in table 5 all the necessary parameter values for constructing dn/dT formulas, although some of the parameters are already listed in tables 2 and 3.

In view of the scantiness of dn/dT data and the nonunique temperature for observation, the dn/dT values calculated by the formulas constructed in this way agree remarkably well with the available data, as one can see in the next section. The prediction made for an unmeasured material can be considered as reasonable estimation. Here it should be emphasized that the dn/dT formulas developed in this work are only valid at 293 K. However, it seems reasonable to apply them in the range 293 ± 50 K.

3. Numerical Data

Reference data are generated through critical evaluation, analysis, and synthesis of the available experimental data. The procedure involves critical evaluation of the validity and accuracy of available data and information, resolution and reconciliation of disagreements in conflicting data, correlation of data in terms of various controlling parameters, curve fitting with theoretical or empirical equations, comparison of resulting values with theoretical predictions or with results derived from semi-theoretical relationships or from generalized empirical correlations, etc. Physical optical principles and semi-empirical techniques are employed to fill gaps and to extrapolate existing data so that the resulting recommended values are internally consistent and cover as wide a range of each of the controlling parameters as possible.

No attempt was made to analyze the thin film data and the reststrahlen region results because of scantiness of reliable information. However, experimental data of this sort are also presented in data tables along with those for the transparent region.

The compilation contains a number of figures and tables of refractive index and its derivatives as a func-

FIGURE 3. a'/a vs Atomic Number of Alkali Ion of Alkali-Halide Crystals

	$\frac{1}{\lambda_{u}}\frac{d\lambda_{u}}{dT}^{a}$	α'/α ^b	α ^c	$\frac{1}{\lambda_{I}}\frac{d\lambda_{I}}{dT}^{d}$	€uv ^{-1^d}	€s~€uv	$\lambda_I^{\ d}$	n ^e	A_2^{f}	Ai ^g	A ₀ ^h
LiF	6.5	0.57	3.32	13.0	0.93	7.11	32.79	1.387	$(0.0738)^2$	12.0922.7528.0836.40	-8.13
LiCl	6.5	0.57	4.38	21.0	1.75	9.11	49.26	1.659	$(0.143)^2$		-12.85
LiBr	6.5	0.57	4.98	25.0	2.16	10.07	57.80	1.779	$(0.173)^2$		-14.18
LiI	6.5	0.57	5.94	22.0	2.80	7.23	70.42	1.951	$(0.212)^2$		-14.90
NaF	2.3	0.65	3.17	12.5	$0.74 \\ 1.33 \\ 1.60 \\ 2.01$	3.332	40.57	1.322	(0.117) ²	3.404	-0.92
NaCl	2.3	0.65	3.97	28.0		3.56	60.98	1.532	(0.158) ²	6.118	-0.50
NaBr	2.3	0.65	4.23	32.0		3.796	74.63	1.622	(0.188) ²	7.360	-0.12
Nal	2.3	0.65	4.55	29.0		4.27	86.21	1.748	(0.228) ²	9.246	0.57
KF	1.45	0.73	3.48	23.0	0.85	3.65	51.55	$1.358 \\ 1.480 \\ 1.544 \\ 1.640$	(0.126) ²	2.465	-0.08
KCl	1.45	0.73	3.71	27.0	1.17	2.64	70.42		(0.162) ²	3.393	0.19
KBr	1.45	0.73	3.87	36.0	1.36	2.54	87.72		(0.187) ²	3.944	0.39
Kl	1.45	0.73	4.08	34.0	1.65	2.44	98.04		(0.219) ²	4.785	0.80
RbF	0.85	0.91	2.75	25.0	0.93	4.55	63.29	1.392	$(0.132)^2$	1.581	-0.89
RbCl	0.85	0.91	3.60	34.0	1.18	2.74	85.84	1.483	$(0.166)^2$	2.006	-0.84
RbBr	0.85	0.91	3.75	38.0	1.34	2.52	114.29	1.540	$(0.191)^2$	2.278	-0.89
RbI	0.85	0.91	4.15	36.0	1.58	2.36	132.45	1.623	$(0.223)^2$	2.686	-0.85
CsF	0.61	1.10	3.20	25.0	1.16	5.92	78.74	1.472	$(0.136)^2$	1.415	-2.54
CsCl	0.61	1.10	4.63	32.0	1.63	4.32	100.50	1.625	$(0.162)^2$	1.989	-4.27
CsBr	0.61	1.10	4.74	40.0	1.78	3.88	136.05	1.678	$(0.187)^2$	2.172	-4.75
CsI	0.61	1.10	4.90	34.0	2.02	3.57	161.29	1.757	$(0.218)^2$	2.464	-5.53

TABLE 5. PARAMETERS FOR THE dn/dT FORMULAS OF ALKALI HALIDES AT ROOM TEMPERATURE

From Figure 2. From Figure 3. From Table 2. From Table 3.

From Factors 1. is evaluated at wavelength of 1 µm. A₂ equals the square of the wavelength of the uv absorption peak (listed in Table 3) nearest the transparent region. A₁ = 2 (ϵ_{uv} -1) 1/ λ_{u} ($d\lambda_{u}$ /dT). obtained according to Eq. (22).

tion of wavelength. The conventions used in this presentation and special comments on the interpretation and use of the data are given below.

The refractive index of alkali halides and its wavelength and temperature derivatives are presented according to the material order listed in table 1. Original data are tabulated as they appear in the literature. However, energy expressed in units of wave number or electron volt was converted in all cases into wavelength in units of μ m.

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

In all figures containing experimental data, a data set is denoted by a ringed number. These numbers correspond to those given in the accompanying tables on source and technical information and experimental data. When several sets of data are too close together to be distinguishable, some of the data sets, though listed in the table, are omitted from the figure for the sake of clarity. For each of those omitted data, an asterisk is placed after the value in the experimental data table. The much heavier curves drawn in the figures represent the proposed values of the property. These heavy curves may be continuous or dashed. Heavy continuous (solid) curves represent recommended reference values. Accompanying sections of heavy dashed curves are used to represent the provisional values.

For the index n and dn/dT figures, the wavelength is plotted on a logarithmic scale in order to cover a wide wavelength range in a single plot. For the $dn/d\lambda$ figure, both $dn/d\lambda$ and λ are logarithmically plotted. For the four materials LiF, NaCl, KCl, and KBr, the refractive index data for the transparent region are replotted on an enlarged scale in order to show the details in the variation of the property.

The tables on source and technical information give for each set of data the following information: the reference number, author's name (or names), year of publication, experimental method used for the measurement, wavelength range covered by the data, temperature of observation, and description and characterization of the specimen and information on measurement conditions that are contained in the original paper. In these tables the code designations used for the experimental methods for refractive index determinations are as follows:

- D Deviation method (prism method)
- P Pulfrich or Abbe refractometer
- I Interference method
- T Transmission method
- R Reflection method
- M Immersion method
- L Multilayer method
- F Focal length method

The methods listed above are arranged in the order of the inherent accuracy and the popularity of their usages. The deviation method is the most popular and accurate means of determining the refractive indices to the fifth decimal place or better. The Pulfrich refractometer and interference technique can be used up to the fourth decimal place. Transmission, reflection, and immersion methods yield results good to the third place, while the multilayer and focal length results are no better than two or three places. For a comprehensive yet concise review of all these methods, the reader is referred to the text in [3] and [4].

For some materials, dispersion equations have been proposed in a number of earlier works. In such cases, a table listing a few typical proposed equations is given. All equations are converted to the form of eq (10) whenever possible so as to facilitate a visual comparison. This table is by no means an exhaustive collection; however, it gives the reader a general picture on the evolution of the dispersion formula used in the calculation of the refractive index. In the tables of recommended (including provisional) values, the values are presented with step-wise increasing increments in wavelength. The magnitudes of the increments vary with the slope and curvature of the curve to facilitate linear interpolations. The following scheme is uniformly adopted for this presentation.

xx7 1 1	т
Wavelength range	Increment
$< 0.30 \ \mu m$	$0.002~\mu$ m
0.30– 0.40 μm	$0.005 \ \mu m$
0.40- 0.60 μm	$0.01~\mu$ m
0.60- 1.00 μm	$0.02~\mu$ m
1.00- 5.00 μm	$0.05~\mu{ m m}$
5.00–10.00 μm	0.10 μm
10.00–20.00 µm	$0.20 \ \mu m$
$> 20.00 \ \mu m$	$0.50 \ \mu m$

In the tables, values for each property are given to the same number of decimal places in order to show the variation of the property and for tabular smoothness; this should not be interpreted as indicative of the accuracy of the values. The uncertainties of the tabulated values on the refractive index and dn/dT for each material in different wavelength ranges is given in the discussion pertaining to the material. In connection with this, the tabulated values are classified as "recommended values" or "provisional values." The criteria of the classification depend upon the level of confidence of the values as given below:

Uncertainty range	Classification
For refractive index:	
≤ 0.005	recommended
> 0.005	provisional

For dn/dT (in units of 10^{-5} K⁻¹):

	,
≤ 0.3	recommended
> 0.3	provisional

It should be noted that recommendations arc made only for the bulk material at 293 K in the transparent wavelength region.

In general, refractive indices obtained by the deviation method are reported to the fifth or sixth decimal place. However, detailed composition and characterization of the specimens are usually not clearly given by the researchers and impurities in the sample and conditions of the surfaces are decisive factors affecting the observed results. Therefore such highly accurate data can not be applied to a sample chosen at random. For this reason we do not attempt to recommend any particular set of data with the reported high accuracy, but to generate the most probable values for the pure crystals. As a result, the estimated uncertainties for the recommended values on the refractive index are higher than those of the reported data obtained by high-precision

measurements. In this work, the highest estimated accuracy of refractive index is to the fourth decimal place.

In each of the next twenty subsections, data and information on an alkali halide are presented in this order:

a brief text discussing the available data, a table of recommended (including provisional)

values on n, $dn/d\lambda$, and dn/dT,

a figure of n (sometimes two figures for clarity),

a figure of $dn/d\lambda$,

a figure of dn/dT,

a table of source and technical information,

a table of experimental data on n,

a table of experimental data on dn/dT (if any),

a table for comparison of proposed dispersion equations (if any).

In constructing the dispersion equation for a given material, the number of terms in the equation depends upon the available information on the wavelengths of absorption peaks. No attempt was made to equalize the number of terms for all the materials by introducing terms with unknown absorption peak positions. Although there exist many absorption bands which have not been observed, their effects on the transparent region are likely to be negligible. The overall effective contribution

from these unknown terms is included in the adjustable constant A of eq (10) of section 2 with the restriction that eqs (11) and (12) have to be satisfied. This was the standard procedure used in determining the number of terms in the dispersion equation of the materials NaF, NaCl, NaBr, KF, KCl, KBr, KI, RbCl, RbBr, and RbI for which available data were adequate. In the case of each of the four cesium halides, except CsF, only one of the two infrared absorption peaks was included in the calculation because the other contributed insignificantly to the refractive index. For each of the six materials, namely LiCl, LiBr, LiI, NaI, RbF, and CsF, the refractive index was measured for only a single wavelength, the means of the sodium D line. Therefore, in this case the dispersion equation was constructed based on the two oscillator model in which the effective ultraviolet absorption peak was derived from the linear average of the observed peaks. The weighted average was not used because the reported intensities were not reliable. The ultraviolet absorption peak of the remaining material, LiF, was not available; the effective uv peaks were therefore treated as an adjustable parameter. The result obtained in this case is in close agreement with that obtained by Tilton and Plyler [32].

3.1. Lithium Fluoride, LiF

Lithium fluoride is transparent from 0.12 to 9.0 μ m. In the region 0.25–4.5 μ m the dispersion is low and transmission is high. Less transmission and higher dispersion are found in the low ultraviolet and the infrared. In the low ultraviolet, optical components must be made very thin in order to obtain maximum transmission. Selected specimens of lithium fluoride, in moderately thin pieces, may be expected to transmit several percent of the light down to wavelengths as short as 0.11 μ m. Impurities in the crystal, poor polish, and layers of foreign material on the surface may reduce the transmission in the Schumann region down to a negligible quantity. In the infrared, transmission begins to fall off rapidly at 7 μ m, and a prism is useful to 5 μ m.

Optically speaking, lithium fluoride closely resembles calcium fluoride. However, lithium fluoride is preferable to calcium fluoride for use in prismatic form because of its much greater dispersion in the infrared and greater transparency in the extreme ultraviolet.

Unlike the other alkali halides, lithium fluoride is practically insoluble, and advantage is taken of this fact in the purification of the salt. High purity single crystals of lithium fluoride up to 4 kg in weight are commercially available and are suitable for making optical components in various sizes.

Measurements of the refractive index of lithium fluoride date back to 1927. The existing data cover a spectral range from 0.00236 to 600 μ m and at 2000 μ m. Based on the optical behavior of the material and the experimental techniques, these data fall quite naturally into two categories: the transparent region (~0.11 to ~9.0 μ m) and the absorption regions (~0.11 and \$9.0 μ m).

For the transparent region, since large sizes of LiF are easily obtained, the deviation method is commonly used with the sample in prismatic form. This method was adopted by a number of researchers: Gyulai [27] in 1927, Schneider [28] in 1935, Hohls [29] in 1937, Harting [30] in 1943, Durie [31] in 1950, and Tilton and Plyler [32] in 1951. The deviation method, though the oldest, is often considered as the most accurate; less accurate data can be obtained by the interference method.

Due to the high absorption in the low uv and far IR regions, the deviation method and interferometry cannot be used. Refractive indices are obtained either by measuring transmission of thin films or by theoretical analysis of the reflection spectra from the bulk material. Rough data may be due to difficulties in thin film preparation and inaccuracy in the reflectivity measurements. While numerous publications are available for the refractive index in the IR regions, only three sets of data exist in the low uv regions, for 0.00236-0.0113 μ m, 0.0496-0.1771 μ m, and 0.0898-0.1240 μ m. Collectively,

these works give a spectrum of the refractive index of LiF from $0.00236 \ \mu m$ to $2000 \ \mu m$.

Data obtained by deviation and interference methods are chosen for our data analysis and evaluation. Among the chosen sets, those measured by Tilton and Plyler [32] and Harting [30] are reliable, and heavy weights are therefore assigned to them. The accuracy of the values reported by Gyulai [27] is one unit in the third decimal place, although his values are given to the fourth place for the purpose of tabular smoothness. Hohls' data in the region 5.48-11.62 μ m are for thin films, resulting in large uncertainties because the properties of thin films are not unique, but vary widely with surface conditions, the process of preparation and the aging of the film specimens. Schneider's data [28] are extracted from a figure, with uncertainties depending on the operator's judgment, and resulting values that may be either consistently high or low. Data sets with large uncertainties are assigned low weights.

Since the selected data sets were measured at various temperatures, corrections should be made to reduce all of the data to 293 K. Not much dn/dT data are available; however, the results of the least squares fitting of the dn/dT data to eq (19), together with the results obtained for NaF, NaCl, KCl, and CsI, lead to the parameter values listed in table 5. This enabled us to construct the following expression for dn/dT in units of 10^{-5} K⁻¹, valid in the temperature range 293 ± 50 K:

$$2n \frac{dn}{dT} = -9.96 (n^2 - 1) - 8.13 + \frac{12.09 \lambda^4}{(\lambda^2 - 0.00544)^2} + \frac{184.86 \lambda^4}{(\lambda^2 - 1075.18)^2},$$
(23)

where λ is in units of μ m. Close agreement of the values calculated by this equation and the experimental data can be seen in the dn/dT figure. By use of this equation, the refractive index data obtained at temperatures other than 293 K were reduced to 293 K, allowing construction of a dispersion equation for LiF.

Dispersion equations for LiF were proposed from time to time by a number of authors and appeared in different forms. Table 10 lists the dispersion equations in chronological order, to facilitate a close comparison and reveal clues for choosing initial parameter values for iterative fitting calculations. The other necessary input parameters can be found in table 3. With the aid of the available information, least-squares fitting of the reduced data to the form of eq (10) was readily carried out and resulted in a dispersion equation of LiF at 293 K in the wavelength region $0.10-11.0 \ \mu m$.

$$n^{2} = 1 + \frac{0.92549 \ \lambda^{2}}{\lambda^{2} - (0.07376)^{2}} + \frac{6.96747 \ \lambda^{2}}{\lambda^{2} - (32.79)^{2}}$$
(24)

where λ is in units of μ m.

Equations (23) and (24) were used to generate the reference data given in the table of recommended values. The values of $dn/d\lambda$ were simply evaluated by the first derivative of eq (24). Although the values of n are given to the fifth decimal place and dn/dT to the second, they do not reflect the degree of accuracy and the extent of reliability. They are so given simply for smoothness of tabulation. For the proper use of the tabulated values the reader should follow the criteria given below.

For refractive index:

Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, ±
0.10- 0.15	2	0.01
0.15 - 0.25	3	0.001
0.25 - 0.35	4	0.0005
0.35 - 3.00	4	0.0002
3.00- 5.00	4	0.0005
5.00 - 7.00	3	0.001
7.00-11.0	3	0.006
For dn/dT :		
0.10- 0.15	1	0.9
0.15 - 2.00	2	0.2
2.00 - 10.00	2	0.3
10.0 -11.00	1	0.9

TABLE 6. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR LIF AT 293 K*

										· · · · · · · · · · · · · · · · · · ·	
		-dn/d	Tb/nb	2		$-dn/d\lambda$	dn/dT	2		-dn/dλ	dn/dT
A A	n	um ⁻¹	10-5 K-1	um .	n	um ⁻¹	10-5 K-1	um	n	um -1	10 ⁻⁵ K ⁻¹
μ		µ	10 1	patt.		,					
			_								
0.100	1.74862	13.91537	8.5E	8.228	1.42912	0.42100	-1.11	0.400	1.39894	0.06212	-1.68
0.102	1.71461	12.15892	7.48	0.222	1-42829	0.40814	-1.12	0.410	1.39834	0.05770	-1.69
0 104	4 60479	10 71 245	6.58	n. 274	1.62749	0.39583	-1.14	0.420	1.39778	0.05371	-1.70
0 104	1.07110	109/1242	5 93	0.225	4.47674	0 70/04	-1 15	0 / 30	4 30727	0 05011	-1 71
0.100	1.07 100	9.90019	2.01	0.220	4 42571	0 77929	-1.10	0.430	4 70678	0.05011	-1 77
0.100	1.02303	0.49100	5.10	0.220	1.42595	0.31200	-1.11	6.440	1.33010	0.04004	-1012
						• • • • •			4 30433		
0.110	1.63753	7.52719	4.59	0.230	1.42522	0.36180	-1.19	0.450	1.39633	0.04388	-1.75
0.112	1.62304	6.88641	4.0 <u>9</u>	0.232	1,42450	0.351 <u>36</u>	-1.20	0.460	1.39590	0.04118	-1.73
0.114	1.60992	6.24634	3.66	0.234	1.42381	0.34133	-1.21	0.470	1.39550	0.03871	-1.74
0.116	1.59800	5.68953	3.27	0.236	1.42314	0.33168	-1.23	0.480	1.39513	0.03646	-1.75
0.118	1.58711	5.20215	2.93	0.238	1.42248	0.32241	-1.24	0.490	1.39477	0.03440	-1.75
8.128	1.57715	4.77315	2.63	0.240	1.42185	8.31349	-1.25	0.580	1.39444	0.03251	-1.76
0.122	1.56700	4. 30369	2.35	0.242	1.42123	0.30491	-1.26	0.510	1.39412	0.03077	-1.76
0.124	1 55955	4.05618	2.11	0.244	1.42063	0.20664	-1.28	0.520	1.39782	0.02918	-1.77
0 125	1 55174	3 751.05	1.85	0.246	1.42004	0.28860	-1.20	0.530	1.30354	0.02770	-1.77
0.120	1000114	3 1 9 4 5 9	4 6 7	0.240	4 14017	0 20403	-1 20	0.500	1 20327	0 0 26 7 2	-4 79
U+128	1.54450	3.404%2	1.07	8+240	1.4194/	0.20102	-1.30	0.540	1.39327	0.02034	-1.10
		3 9. 75	4 . 7		4 44995		4		4 70707		
0.130	1.53778	3.24197	1.49	0.250	1.41892	0.27363	-1.31	0.550	1.39301	0.02509	-1./8
0.132	1.53152	3.02261	1.31	0.252	1.41838	0.26650	-1.32	0.560	1.39277	0.02393	-1.78
0.134	1.52568	2.82391	1.16	0.254	1.41785	0.25963	-1.33	0.570	1.39253	0.02285	-1.79
0.136	1.52021	2.64338	1.01	8.256	1.41734	0.25299	-1.34	0.580	1.39231	0.02185	-1.79
0.138	1.51509	2.47890	88.0	0.258	1.41684	0.24659	-1.35	0.590	1.39210	0.02092	-1.79
0.140	1.51029	2.32864	0.75	0.260	1.41635	0.24041	-1.36	0.600	1.39189	0.020.6	-1.80
0.142	1.50577	2.19112	0.64	0.262	1.41588	0.23444	-1.37	0.628	1.39151	0.01851	-1.80
0.446	1.50152	2.06468	0.53	1.264	4.41542	0.22867	-1.38	0.640	1.30115	0 01716	-1.81
0 444	1.50152	4 04 944	0.55	0.264	1.41.46	0.02240	-1 30	0 660	4 70097	0.017.10	-4 04
0.440	1.49/31	1.94044	0.42	0.200	1.41490	0.22310	-1.39	0.000	1.39002	0.01999	-1.01
0.140	1.49372	1.04127	0.34	0.200	1041492	0.21//1	-1.33	0.000	1.39051	0.01490	-1.02
	4 4 0 0 1 7	4 71075		0 070			- 4 - 4 - 0		4 200.00		4 4 4
0.150	1.49013	1.74220	0.25	0+270	1.41409	0.21250	-1.48	0.700	1.39022	0.01400	-1.82
0.152	1.48674	1.65061	0.1/	0.272	1.41367	0.20745	-1.41	0.720	1.38995	0.01327	-1.82
0.154	1.48353	1.56563	0.09	0.274	1.41326	0.20257	-1.42	0.740	1.38969	0.01258	-1.82
0.156	1.48048	1.486 <u>70</u>	0.02	8.276	1.4128 <u>6</u>	0.19785	-1.43	0.760	1.38944	0.01196	-1.83
0.158	1.47758	1.41326	-0.05	0.278	1.41247	0.19328	-1.43	0.780	1.38921	0.01142	-1.83
0.160	1.47482	1.34482	-0.11	0.280	1.41209	0.18885	-1.44	0.800	1.38898	0.01094	-1.83
0.162	1.47220	1.28096	-0.18	0.282	1.41172	0.18456	-1.45	0.820	1.38877	6.01051	-1.83
0.164	1.46969	1.22128	-0.23	9.284	1.41135	0.18040	-1.4E	0.843	1.38856	0.01014	-1.83
0.166	1.46731	1.16542	-1.29	0.286	1.41099	0.17637	-1.46	0.861	1.3883F	0.00981	-1.84
0.166	1.46503	1.11309	-0.34	0.266	1.41865	0.17246	-1-47	6.889	1-38817	0.00951	-1.84
0.170	1.46285	1.06398	-0.39	0.290	1.41031	D.15867	-1.47	0.900	1.38798	0.00925	-1.84
0.172	1.46077	1.01786	-0.46	0.202	1.40007	0.16500	-1.48	0.020	1 38781	0 000002	_1 9/.
0.176	1 15878	0.071.48	-1 / 8	0 201	1 10061	0 16147	-1 40	0 040	4 78763	0 0 0 0 0 0 2	-1 9/
0 470	1.456070	0 0 7 7 6 6	-0.50	0 000	1.40.504	0.10143	-1.43	0.940	1.30702	0.00002	-1.04
0.175	1.42007	0.93355	-0.52	0.296	1.40933	0.15/9/	-1.49	0.960	1.38745	0.00864	-1.84
0.1/8	1.40004	0.09510	-0.50	0.298	1.40901	0.15461	-1.50	0.980	1.38728	0.00849	-1.84
						· · · · ·					
U.180	1.45329	0.85885	-0.60	0.300	1.40871	0.15135	-1.50	1.000	1.38711	0.00835	-1.84
0.182	1.45161	0.82456	-0.64	0.305	1.40797	0.14359	-1.52	1.050	1.38670	0.00808	-1.84
0.184	1.44999	0.79215	-0.67	0.310	1.40727	0.13638	-1.53	1.100	1.38630	0.00791	-1.84
0.186	1.44844	0.76149	-0.71	0.315	1.40661	0.12965	-1.54	1.150	1.38591	0.00780	-1.84
0.188	1.44694	0.73245	-0.74	0.320	1.40597	0.12338	-1.5E	1.200	1.38552	0.00775	-1.84
0.190	1.44551	0.70493	-0.77	0.325	1.40537	0.11751	-1.57	1.250	1.38513	0.00774	-1.84
0.192	1.44412	0.678 22	-0.80	0.330	1.40480	0.11203	-1.58	1.300	1.38474	0.00777	-1 - 84
0.194	1.44279	0.65404	-0.83	0.335	1.40425	0.10689	-1.59	1-350	1.38435	0.00743	-1.84
0.196	1.44151	0.67049	-0.85	6.340	4.40373	0.10207	-1.60	4.400	1. 38306	0 00701	-1 84
1.198	1.44027	0.60814	-1.88	0.345	1.40327	0.00755	-1.61	1.450	1. 78752	0.000127	-1 -1
0.0100				3.049	1.40353	0.09199	-1.01	1.450	1.30395	0.00002	-104
6 344	4 1.7007	0 50504	-8 06		4 6000	0 00370	-1 (1	4 500	4 70747	0 0004	4
0.200	1.4536	0.20001	-0.90	10.350	1.402/5	0.09330	-1.61	1.500	1.38316	0.00814	-1.83
0.202	1,43/92	0.56653	-0.93	0.325	1.40230	0.08930	-1.62	1.550	1.38275	0.00828	-1-83
0.204	1.43005	0.74/20	-0.95	4.300	1.40185	U • U 8 5 5 4	-1.63	1.600	1.38233	0.00843	-1.83
0.205	1.43573	8.528/8	-0.97	0.365	1.40144	0.08200	-1.64	1.650	1.38190	0.00859	-1.83
0.208	1.43469	0.51121	-0.99	0.370	1.40104	0.07866	-1.64	1.700	1.38147	0.00876	-1.82
					_	-					
0.210	1.43368	0.49443	-1.02	0.375	1.40065	0.07550	-1.65	1.750	1.38103	0.00894	-1.82
0.212	1.43271	0.47840	-1.03	0.380	1.40028	0.07252	-1.66	1.800	1.38058	0.00913	-1.82
0.214	1.43177	0.46308	-1.05	0.385	1.39993	0.06970	-1.66	1.858	1,38011	0.00932	-1.82
0.216	1,43086	0.44844	-1.07	0.390	1.39959	0.06702	-1.67	1.900	1.37964	0.00952	-1-81
0.218	1.42998	0.43442	-1.89	0.395	1.39926	0.06451	-1.68	1.950	1.3791 6	0.00972	-1.81

λ µm	n	$-dn/d\lambda$ μ m ⁻¹	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	n	-dn/dλ µm ⁻¹	dn/dT 10 ⁻⁵ K ⁻¹	λ µm	n	$-dn/d\lambda$ μm^{-1}	dn/dT 10 ⁻⁵ K ⁻¹
2 000	1 77967	n n0007	-1.80	3.050	1.758.27	0.01055	at EF	6.800	1.26984	0.03790	-n FO
2.050	1 37 817	0.00355	-1.80	4.660	4.34628	0.01985	-1.54	6,900	1.26601	0.03868	-0.65
2.100	1.37766	0.01036	-1.80	4.050	1.34828	0.02013	-1.53	7.000	1.25210	0.03947	-0.60
2.150	1.37713	0.01057	-1.79	4.100	1.34727	0.02041	-1.52	7.100	1.25812	0.04027	-0.55
2.200	1.3/660	8.01679	-1.79	4.150	1.34624	0.02068	-1.51	7.200	1.25405	6.64108	-0.50
2.250	1.37605	0.01102	-1.78	4.200	1.34520	0.02095	-1.50	7.300	1.24990	0.04191	-0.45
2.300	1.37550	0.01124	-1.78	4.250	1.34414	0.02124	-1.49	7.480	1.24567	0.04275	-0.40
2.350	1.37493	0.01147	-1.77	4.300	1.34307	0.02153	-1.48	7.500	1.24135	0.04360	-0.35
2.400	1.37435	0.01170	-1.77	4.350	1.34199	0.02181	-1-47	7.600	1.23694	0.04447	-0.29
2.450	1.37376	0.01194	-1.76	4.400	1.34089	0.02210	-1.4E	7.700	1.23245	0.04536	-0.23
		=									
2.500	1.3731 <u>E</u>	0.01217	-1.7E	4.458	1.33578	6.02238	-1.45	7.888	1.22787	0.04626	-0.1/
2.550	1.37254	0.01241	-1./5	4.500	1.33865	0.02267	-1.44	7.900	1.22320	0.04/18	-0.11
2.600	1.3/192	0.01205	-1.75	4.550	1.33/51	0.02236	-1.43	8.000	1.21844	0.04811	°U°U5
2.050	1.3/128	0.01205	-10/4	4.000	1.33030	0.02355	-1.42	0.100	1.21350	0.04900	0.01
20100	1.3/903	0.01313	-1-14	4.050	1.00010	0.02394	-1.41	0.200	1.20002	0.05004	u.u o
2.750	1.36997	0.01737	-1-73	4.700	1.33401	0.02384	-1.39	8.300	1.20357	0.05102	0.15
2.800	1.36929	0.0136	-1.73	4.750	1.33281	0.02413	-1.38	8.400	1.19842	0.05203	0.22
2.850	1.36860	0.01300	-1.72	4.666	1.33159	0.02443	-1.37	6.500	1.19316	0.05306	0.29
2.900	1.36790	0.01411	-1.71	4.850	1.33036	0.02473	-1.36	8.600	1.18780	0.05411	0.37
2.958	1.36719	0.01435	-1.71	4.900	1.32912	0.02503	-1.34	8.700	1.18234	0.05519	0.45
3.000	1.36647	0.01460	-1.75	4.950	1.32788	0.02533	-1.33	8.800	1.17677	0.05628	0.53
3.850	1.36573	0.01485	-1.69	5.688	1.32659	0.02563	-1.32	8.908	1.1/108	8.05/40	8.51
3.100	1.30498	0.01511	-1.09	5.100	1.32399	0.02024	-1.29	9.000	1.10520	0.05054	9.70
2 200	1.30422	0.01530	-1.0C	5.200	1 31 95 2	0.027/0	-1.20	9.100	1 15731	0.05971	0.079
38200	1:20242	0.01002	-1001	20000	1.01002	0002793	-1024	7.200	1.12334	0.000.91	4.00
3.250	1.3626€	0.01587	-1.67	5.400	1.31584	0.02812	-1.21	9.300	1.14719	0.06213	0.97
3.300	1.3618€	0.01613	-1.66	5.500	1.31300	0.02876	-1.18	9.400	1.14091	0.06339	1.67
3.350	1.36105	0.01639	-1.65	5.600	1.31009	0.02941	-1.15	9.500	1.13451	0.06467	1.17
3.400	1.36022	0.01665	-1.64	5.700	1.30711	0.03007	-1.11	9.600	1.12798	0.06598	1.27
3.450	1.35938	0.01691	-1.64	5.800	1.30407	0.03073	-1.08	9.700	1,12131	0.06733	1.38
3 500	4 35 957	0 01717	-1 63	5 000	1.70007	6 63474	a1.0E	а дле	1 11/27	0 06877	4 40
3.556	1.35767	0.01/1/	-1.63	6.000	1.29779	0.03200	-1.01	0.000	1.10757	8.07047	1.64
3.600	1.35679	0.01770	-1.61	6.100	1.29455	0-03278	-0.98	10,000	1.10048	0.07150	1.73
3,650	1.35590	0.01706	-1.60	6.200	1.29123	0.03348	-0.94	10.200	1.08587	0.07452	1.08
3.700	1.35499	0.01823	-1.60	6.300	1.28785	6.03419	-0.90	10.480	1.07063	0.077 A2	2.25
								100,00			
3.750	1.35407	0.01850	-1.59	5.400	1.28440	0.03491	-0.86	10.600	1.05473	0.08122	2.54
3.800	1.35314	0.01877	-1.58	6.500	1.28087	0.03564	-0.82	10.800	1.03812	0.08483	2.85
3.850	1.35220	0.01904	-1.57	6.600	1.27727	0.03639	-0.78	11.000	1.0207E	0.08867	3.15
3.900	1.35124	0.01931	-1.56	6.700	1.27359	0.03714	-8.74				

TABLE 6. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR LIF AT 293 K (continued) *

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison, For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.1. The number of digits with an overstrike are not relevant to accuracy of the data.

FIGURE 4. Refractive Index of LiF (transparent region)

349

н. н. ц

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

Ē
Ţ
ΟF
S
E
E
MS
RI
SU
ΕA
X
E
7.
ģ
DN
<
ХE
â
Ä
ΥE
5
Ù.
R
R
ΗE
F
NC
z
g
ΥT
Ň
Æ
ΪŦ
A.L
õ
N.
CF.
Ξ
A
AN
ы
ЗС
5
ŝ
2
ĽΕ
AB.
Ľ

Cur. No.	Ref. No.	Author (s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications, and Remarks
Π.	14	Jasperse, J.R., Kahan, A., Plendl J.N., and Mitra, S.S.	l, 1966	щ	12. 5-50	7.5	Single crystal; high purity; specimen with hand polished surface optically flat to about $1/2$ - wave of sodium D line and annealed in vacuum for two days at a temperature of about $3/4$ of the melting temperature of the crystal; reflection spectrum analyzed by the Lorentz oscillator theory; data extracted from a smooth onrve.
5	14	Jasperse, J.R., et al.	1966	В	12, 550	295	Similar to above.
ო	14	Jasperse, J.R., et al.	1966	Я	12.5-50	605	Similar to above.
4	14	Jasperse, J.R., et al.	1966	В	12.5-50	1060 -	Similar to above.
ŝ	33	Bispinck, H.	1967	44	0. 4358, 0. 5461	298	Thin films of Liff deposited on a Sb substrate; reflection spectrum was taken and refractive index derived by solutions to Vasicel formulae; the author made eleven measurements on n for each wavelength at various phase angles but only the linear averaged value was extracted.
٥	32	Tilton, L.W. and Plyler, E.K.	1951	Q	0.4-5.9	296. 8	Synthetic crystal; prismatic specimens; digitized data were presented by the authors; the averaged temperature coefficient, dn/dT , was determined as -1.63×10^{-5} (constant within $\pm 0.05 \times 10^{-5}$) for the visible region (0.4 to 0.7 μ m) in the temperature range of 293.2 to 333.2 K; a table of dn/dT was also given.
2	34	Roessler, D.M. and Walker, W.C.	1967	н	0.0496-0.1771	500	Crystal; specimen with freshly cleared reflective surface; reflection spectrum of near-normal incidence was analyzed by Kramers-Kronig method; digitized data were given by the authors.
¢Ç	35	Kato, R.	1961	8	0.0898-0.1240	300	Single crystal; pure; specimens freshly cleaved; reflection spectrum at 15° incident angle was analyzed by Kramers-Kronig relation; data extracted from a figure.
σι	27	Gyulai, Z.	1927	Q	0.1935-0.5770	293	Crystal, prismatic specimen with faces of 12 x 15 mm^2 and apex argle of $30^{\circ}48'30''$; digitized data were presented by the author; accuracy of this set of data is one unit of the third decimal place.
10	36	Fröhlich, D.	1962	Ц	23. 2-37. 9	008	Crystal; specimens were coated with CsBr or Se whose refractive indices were known; reflectivities were measured before and after the coating; refractive index of Lif was then calculated by an equation where n was explicitly expressed in terms of the measured reflectivities and the known refractive index and thickness of coating materials; this method is called the multilayer method and is designated by L; uncertainty of the measurement amounted to 10%; data extracted from a figure.
11	37	Fröhlich, D.	1964	Г	27.5-38.0	300	Crystal; plate specimen; coating material was Se; multilayer method was used to deduce refractive index of LiF; data extracted from a figure.
12	37	Fröhlich, D.	1964	ч	27.5-38.0	200	Similar to above.
13	37	Fröhlich, D.	1964	Ч	27.5-38.0	10	Similar to above.
14	37	Fröhlich, D.	1964	Я	27,5-38,0	300	Crystal; plate specimen; reflection spectrum was analyzed by Kramers- Kronig relation; data extracted from a smooth curve.
15	37	Fröhlich, D.	1964	R	27.5-38.0	200	Similar to above.
1.6	37	Fröhlich, D.	1964	ы	27.5-38.0	02	Similar to above.

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

352

н. н. ц

(continued)
OF LIF
EMENTS
MEASUR
VD dn/dT
INDEX AI
ACTIVE 1
IE REFR.
N ON TH
INFORMATIC
ND TECHNICAL
SOURCE A
TABLE 7.

Specifications, and Remarks	Similar te above.	Similar te above.	Similar te above.	Crystal; plate specimens with thickness of 145 µm, 726 µm and 4.1 mm; transmission method was used to determine n; data extracted from a figure.	Crystal; prismatic specimen with faces of $3.1 \times 3.4 \text{ cm}^2$ and apex angle of $60^{\circ}0'20''$; estimated uncertainties in n were ≤ 0.0003 ; digitized data were given; dn/dT for two lines were determined by measuring n at 291 K and 353 K.	Crystal; plate specimens of 79. 5, 69. 5 and 148 μm in thickness; estimated uncertainties in refractive indices were ≤ 0.009 ; digitized data were given by the author.	Plate specimens; refractive indices were calculated from experimental information of reflection and absorption; digitized data were given by the author.	Single crystal; plate specimen with polished surface of 3×7 cm; reflection spectra of polarized light at incident angles of 20° and 70° were reduced by graphical solution to Fresnel formulae; data extracted from a figure.	Similar to above.	Similar to above.	Similar tc above.	Single crystal; high purity; grown by the method of Bridgman; prismatic specimen with a pex angle of 26° ; data extracted from a figure.	Crystal; prismatic specimen with apex angle of 30° ; uncertainties of 3×10^{-5} in the region 0.30 to 0.59 μ m and 1.0 $\times 10^{-4}$ in 0.66 to 2.06 μ m; digitized data were presented by the author.	Crystal; the author stated that the refractive indices were measured by F. Wolf on the specimen supplied by A. Smalula but no references were cited; digitized data were presented; dn/dT at 293 K for each wavelength was also given.	Single crystal; obtained from the Harshaw Chemical Company; specimens with polished surfaces; reflection spectrum of 5° incident angle was analyzed by the Kramers-Kronig method; data extracted from a smooth curve.	Similar to above.	Similar to above.	Similar to above.	Film specimens; film thickness was not specifically given but in the range of 0.117 to 0.634 µm; deposited by vacuum evaporation on glass sub- strates and sealed between glass plates; uncertainties of n were within 0.15; that extracted from a fgure in which experimental data points were plotted; the authors stated that the refractive index was independent of film thickness in the above mentioned range.
Temperature, K	300	200	70	300	291	291	291	293	423	573	873	298	293	293	135	210	300	355	298
Wavelength Range, µm	14.0-28.0	14.0-28.0	14.0-28.0	100-600	0.546-5.70	5.48-11.62	13. 0-55. 0	15.0-36.0	15.0 - 36.0	15.0-36.0	15.0-36.0	0.11-0.22	0.30-2.06	0.20-1.083	16.0-100.0	16.0-100.0	16.0-100.0	16.0-100.0	0.4-1.0
Method Used	Я	Ц	ч	T	Q ,	г	ы	R	R	R	п	Q	Q	Q	Я	R	В	Ч	ŕ
Ycar	1964	1964	1964	1956	1937	1937	1937	1958	1958	1958	1.958	1935	1950	1943	1960	1960	1960	1960	1971
Author (s)	Fröhlich, D.	Fröhlich, D.	Fröhlich, D.	Genzel, L. and Klier, M.	Hohls, H.W.	Hohis, H.W.	Hohis, H.W.	Ifeilmann, G	Heilmann, G.	Heilmann, G.	Heilmann, G.	Schneider, E.G.	Durie, D.S.L.	Harting, H.	Gottlieb, M.	Gottlieb, M.	Gottlieb, M.	Gottlieb, M.	Shklyarevskii, I.N., El-Shazli, A.F.A., and Govorushchenko, A.I.
Ref. No.	37	37	37	38	29	29	29	39	39	39	39	28	31	30	40	40	40	40	41
Cur. No.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35

REFRACTIVE INDEX OF ALKALI HALIDES

\sim
2
Æ
Ξ.
5
2
124
Ξ.
~
H.
2
Ľ.
2
8
6
2
5
¥.
63
<u> </u>
₹
Ę.
ň
z
<
×
Š
5
-
8
1
5
¥
æ
5
2
14
æ
μ
~
2
6
č.
2
Ξ
÷.
2
z
~
1
õ
ź.
Ξ
2
2
z
<
6
2
5
Ö
0
5
3
Ē
Υ.
۲

		TABUE 7. SOURCE AND 1	LECHINIC	CAL INFO	THE NO NOLLYWE	E REFRACTIVE IN	(1)6X AND du/dr MEASUREMENTS OF 1ÅF (continued)
No Cer	No.	, Author (s)	Year	Method Used	Wavelength Range, Pun	l'emperature. K	Specifications, and Remarks
36	41	Shklyarevskii, l. N., El-Shazli, A. F. A., und Govorushchenko, A. I.	161	T	0.4-1.0	298	Similar to above but for a different film thickness.
37	41	Shldyarevskii, J.N., et al.	1791	Ļ	0.4-1.0	298	Similar to above but for a different film thickness.
38	41	Shidyarevskii, I.N., ct al.	1971	Ļ	0.4-1.0	298	Similar to above but for a different film thickness.
39	42	Dukirskii, A. P., Savinov, E. P., Ershov, O. A., and Shopelev, Yu. F.	1964	X	0. 00236-0. U13	238	Film spectnens, ccaporated on Au or Al substrutes; relection specta were autiveed by using Presed's formulae; digitized data were presenved by the authors.
96	64	. Raynabeethan, S.	1947	Δ;	0. 4358-0. 5893	~298	Crystal: obtained from Harshaw Chemical Co.; pollshet apecimen of vize approximately 3 x x 3 z cm. spectrumer was eventeded to the prism of a Pultrich refractionneter by a suitable liquid in determining refraction induces: reported unpertautry 2 units in the 10th place of dou-imal; objetized data presented.
41	44	Zarzycki, J. and Nandin, F.	1963	Q	0.5461	1223	Mollen Lif's liquid prism formed by the kop surface of the mollen and an immersed included platham murror estimatori uner-fainty of 0. 0. in refrective index: fightHaed data were presented.
42	42	Spungenberg, K.	1923	×	0, 5933	295	Crystal; grown by slowly coaling of molecn, cleaved specimens were immersed into various injouts with house netricescope; conbur of crystal grains disapposed when the under a microscope; conbur of crystal grains disapposed when the refractive indices of the liquid and crystal matched closely; if was found, for sodium O line, 1, 391 $^{\circ}$ n _{Lip} ⁻¹ , 1, 302; therefore the value 1, 301 $^{\circ}$ ± 0, 0005 was laten.
43	46	Abeles, F.	1950	R,T	0.546	208	Thin film of LiF deposited on a glass substrates refractive index was derived from indextension of reflection. Internationsion and Diewster angles reported uncertainty 0, 002 ht n; digitized wildo was presented.
44	55	Dianov, E.M. and Irisova, N.A.	1967	F	2000	300	Plate specimens with various thicknesses, refractive index was determined from the indormation of the drawning index ferograms; digitized value was presented with uncertainty of 0.20.
45	47	Dinnov, E.M. and Irisova, N.A.	1967	1	2000	2.2	Similar to above.
46	13	Lowndes, R. P. and Martin, D. H.	1969	۵	0.4358-0.6438	290	Single crystal; prismatte sample; digitized data were given with uncertainty of ± 0.0004 .
47	13	Lowndes, R. P. and Martin, D. H.	8961	ß	0.4358-0.6438	4	Similar to above.

н. н. е

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

.54

[Wavelength, λ, μ m; Refractive Index, n]

u	(cont.) .0 K	0.84% 0.91% 0.97% 1.04% 1.13%	1. 42 1. 64 1. 64 2. 24 2. 24 2. 57 3. 34	2.93* 2.68* 2.51* 2.28* 1.94	1. 77 1. 67 1. 67 1. 53 1. 53 1. 49 1. 49 1. 49 1. 49 1. 46 0. 56*	$\begin{array}{c} 0.95 \\ 0.84 \\ 0.67 \\ 0.67 \\ 0.62 \\ 0.62 \\ 0.65 \\ 0.65 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.12 \\ 0.96 \\ 0.12 \\ 0.96 \\ 0.12 \\ 0.96 \\ 0.12 \\ 0.96 \\ 0.12 \\ 0.96 \\ 0.12 \\ 0.96 \\ 0.12 \\ 0.96 \\ 0.12 \\ 0.$
ĸ	$\frac{\text{CURVE } 7}{\text{T} = 300}$	0,0943 0,0946 0,0956 0,0954 0,0957 0,0957	0.0965 0.0969 0.0972 0.0980 0.0984 0.0984	0.0999 0.1008 0.1016 0.1033 0.1055 0.1078 0.1102	$\begin{array}{c} 0.1121\\ 0.1124\\ 0.1131\\ 0.1240\\ 0.1378\\ 0.1378\\ 0.1550\\ 0.1550\\ 0.1771\\ T=\overline{300}\\ 0.0898\end{array}$	0.0905 0.0912 0.0919 0.0923 0.0933 0.0954 0.0954 0.0958 0.0958 0.0958 0.0958 0.0958 0.0958 0.0958 0.0958 0.0958 0.0958 0.0958
ц	7 (cont.) 00. 0 K	1.17* 1.15* 1.13* 1.13* 1.11*	1. 14* 1. 16* 1. 18* 1. 19* 1. 16* 1. 12*	1.09% 1.06% 0.99% 1.00%	1. 12% 1. 12% 1. 17% 1. 19% 1. 25% 1. 25% 1. 32% 1. 32% 1. 32%	1, 32 1, 32 1, 23 1, 25 1, 15 1, 15 0, 85 0, 84 0, 88 0, 84 0, 80 0, 80 0
` ~	$\frac{\text{CURVE}}{\text{T}=5}$	0.0667 0.0674 0.0674 0.0677 0.0689 0.0689	0.0704 0.0710 0.0713 0.0717 0.0717 0.0734 0.0756 0.0756	0.0770 0.0775 0.0775 0.0785 0.0785 0.0785 0.0780 0.0780 0.0780 0.0800 0.0800	0.0821 0.0822 0.0843 0.08443 0.0855 0.0856 0.0867 0.0867 0.0873 0.0886 0.0886 0.0886	$\begin{array}{c} 0. \ 0.892\\ 0. \ 0.895\\ 0. \ 0.895\\ 0. \ 0.895\\ 0. \ 0.902\\ 0. \ 0.912\\ 0. \ 0.912\\ 0. \ 0.922\\ 0. \ 0.922\\ 0. \ 0.922\\ 0. \ 0.922\\ 0. \ 0.922\\ 0. \ 0.922\\ 0. \ 0.922\\ 0. \ 0.932\\ 0.932\\$
ц	(cont.) 6.8 K	1. 38699 1. 38610 1. 38296 1. 38051 1. 37904 1. 37613	1.37530 1.37663 1.37063 1.38856 1.38856 1.3292 1.3292	1.31394 1.3(494 1.3(089 1.3(089 <u>.0</u> K	0.42% 0.42% 0.42% 0.42% 0.42% 0.42% 0.42% 0.42% 0.43%	0.5(* 0.53* 0.53* 0.63* 0.63* 0.93* 1.03* 1.13* 1.13* 1.23* 1.23*
~ ~	$\frac{\text{CURVE 6}}{\text{T} = 29}$	1.0140 1.1287 1.5295 1.8131 1.9701 2.2493	2. 3254 2. 7144 3. 2432 3. 5078 4. 258 4. 866 5. 1456	5. 4638 5. 7637 5. 894 T = 300	0.0496 0.0506 0.0517 0.0523 0.0523 0.0532 0.0533 0.0533 0.0533 0.0533	0.0540 0.0541 0.0544 0.0544 0.0553 0.0558 0.0558 0.0554 0.0554 0.0554 0.0554 0.0559 0.0559 0.0559 0.0620 0.0620 0.0653
u	3 (cont.) 15.0 K	4.69 5.63 5.03 4.33 33 33	(11 ± 4 ± 10 ± 10 ± 10 ± 10 ± 10 ± 10 ± 1	0.61 0.47 0.37 0.45 0.45 0.55	0.81 1.82 1.82 1.82 3.65 4.11 4.11 4.27 4.27 8.0 K	1. 434 1. 434 1. 405 1. 405 6.8 K 6.8 K 1. 39844 1. 39542 1. 39497 1. 39226 1. 39102
ĸ	$\frac{CURVE}{T=60}$	33.78 34.84 35.71 37.04 40.16 44.64	$T = \frac{CURV}{1 = 106}$ 12.50 13.74	$\begin{array}{c} 14.39\\ 15.29\\ 16.03\\ 16.89\\ 18.12\\ 19.92\\ 21.10\end{array}$	25,00 29,50 31,55 31,55 31,55 31,55 40,32 40,32 46,32 46,32 46,32 46,30 77 20 20 77 20 20 20 20 20 20 20 20 20 20 20 20 20	$\begin{array}{c} 0.4358\\ 0.5461\\ 0.5461\\ T=290\\ T=290\\ 0.44678\\ 0.44678\\ 0.44678\\ 0.44678\\ 0.46780\\ 0.5480\\ 0.5481\\ 0.54$
ц	<u>2 (cont.)</u> 295.0 K	0.15 0.20 0.29 0.29 0.25 0.21	$\begin{array}{c} 0.19\\ 0.21\\ 0.39\\ 0.64\\ 1.02\\ 1.34\\ 1.34\end{array}$	2.34 8.14 3.17 3.97 5.29 71 3.97	VE3 05.0 K 0.81* 0.68* 0.57* 0.57* 0.57* 0.20*	0.24 0.21 0.21 0.447 1.22 1.22 1.22 1.22 1.388 3.1 1.22 1.388 3.1 1.22 1.388 3.1 1.22 1.388 3.1 1.22 1.388 3.1 1.22 1.32 1.32 1.32 1.32 1.32 1.32
X	$\frac{\text{CURVE}}{\text{T}=2}$	17. 36 18. 18 19. 57 20. 20 20. 96 21. 88	22. 52 23. 64 25. 00 27. 47 28. 82 29. 85 30. 58	31.45 32.79 32.79 33.56 33.97 38.02 38.02 41.15 45.45	$\begin{array}{c} CUR\\ T=60\\ 12,50\\ 13,85\\ 13,85\\ 14,64\\ 15,04\\ 15,04\\ 15,04\\ 15,04\\ \end{array}$	$\begin{array}{c} 15.\\ 15.\\ 15.\\ 15.\\ 17.\\ 28.\\ 23.\\ 23.\\ 23.\\ 23.\\ 23.\\ 23.\\ 23.\\ 23$
u	<u>ve 1</u> .5 K	0.82 0.73 0.67 0.57 0.57 0.50	0.45 0.31 0.114 0.01 0.07 0.07 0.19	0.19 0.13 0.08 0.14 0.35 0.35	0.82 20.095 5.90 3.82 3.82 3.82 3.82 3.82 3.82 3.54	$\frac{VE}{15.0}$ K 0.81* 0.75* 0.56* 0.56* 0.57* 0.45* 0.12 0.12 0.12 0.12 0.12
ĸ	$\frac{\text{CUR}}{\text{T}=7}$	12.50 13.00 13.35 13.68 13.85 13.85	14. 33 14. 66 14. 90 15. 08 15. 43 16. 37 18. 98	19.49 20.62 21.60 22.94 25.00 28.25 29.41	30.30 30.77 21.15 33.11 34.72 36.10 37.74 40.16 43.10 46.95	$\begin{array}{c} T = \frac{CUR}{2!} \\ T = \frac{2}{2!} \\ T = \frac{2}{2!}$

* Not shown in figure.

	γ n	$\frac{\text{CURVE 19 (cont.)}}{\text{T} = 70, 0 \text{ K}}$	15.3 0.093* 15.9 0.073* 16.4 0.073*	17.0 0.085	18.1 0.121*	19.2 0.192*	19.4 0.192* 90.2 0.141*	22.1 0.101*	23.8 0.076 25.4 0.076*	26.6 0.096*	27.4 0.131* 27.9 0.178*	28.5 0.243	29.0 0.300*	CURVE 20	T = 300.0 K	101 3,08	111 3.06	128 3.07	163 3.09	180 3.10	197 3.06	224 3.08	255 3.05	355 3.08	368 3.04	384 3.04	399 5,05 419 3.04	442 3.04	443 3.07	403 3,04	519 3.04	550 3.04	593 3.07				
	u Y	$\frac{\text{CURVE 17}(\text{cont.})}{\text{T} = 303, 0 \text{ K}}$	18.6 0.202* 19.3 0.256 10.7 0.775	20. 1 0. 275*		22.4 0.194* 23.0 0.185*	23.6 0.185*	25.2 0.220*	25.9 0.247* 96.6 0.994	27.4 0.340*	28.1 0.411* 29.0 0.514*		$\frac{\text{CURVE 18}}{\text{T} - 360 0 \text{ K}}$		14.0 0.548*	12.0 0.343	15.2 0.115*	15.8 0.086*	16.4 0.086* 17.2 0.103	17.9 0.138*	18.9 0.201*	19.5 0.240*	19.6 0.240*	21.4 0.154	22.4 0.132	23.6 0.132*	25.1 0.160% 26.1 0.195%	26.8 0.225*		21.9 0.31.1%	29.0 0.456*		CURVE 19	T = 70.0 K	14.0 0.548*	14.5 0.352* 15.0 0.129*	100T A APT
; Refractive Index, n	γ n	$\frac{CURVE 15}{T = 200, 0 K}$	26.0 0.15 28.3 0.30%	30, 3 0, 94*	31.1 1.91 91 7 9 49	31.9 4.53	32.0 6.81	33. 2 9. 12	34.5 7.27 96.5 6.05	36.7 5.34	37.9 4.90	CURVE 16	T = 70, 0 K	26.0 0.08		30.4 0.94*	30.9 1.90*	31.2 3.00	31.9 5.59 31.9 8.84	32.2 10.97	32.5 11.08	32.8 10.97	33.2 9.98	34.9 6.08	35.9 5.24	36.7 4.81	31.4 4.49	CURVE 17	T = 300, 0 K		14.0 0.046* 14.5 0.343*	15.0 0.154*	15.2 0.120*	15.6 0.100* 16.2 0.100*	16.8 0.109	17.4 0.132 17.9 0.157	
[Wavelength, λ, μm;	λ n	$\frac{\text{CURVE 12 (cont.)}}{\text{T} = 200.0 \text{ K}}$	33.4 8.71* 33.9 8.25 23.9 7.25	35.0 6.71	36.2 5.73	61.3 D. LY	CURVE 13	I = 10.0 L		30.0 0.93	30.5 1.21 30.0 1.68	31.5 5.09	32,4 9,65 32,0 0,44	33.5 8.21*	34.0 7.23	34.4 0.51 35.0 6.00*	35.9 5.18	36.9 4.72	38.0 4,41	CURVE 14	T = 300.0 K		26.0 0.27*	29.4 0.58	30.0 0.76	30.4 0.98	30.8 1.20* 31 3 1 50	31.7 2.41	32.2 3.73	32, 5 4, 99	32, 3 0, 96 33, 3 8, 01	33.5 8.19	34.0 8,18*	34.7 7.24* 25.3 6.47	36.3 5.80	36.7 5.47	01°1 0'14
	γ n	$\frac{\text{CURVE 10}}{\text{T} = 300.0 \text{ K}}$	30.1 1.51 31.1 2.61	32. 0 0. 18 32. 7 8. 09	32.9 9.00	33. 2 5. 51 33. 9 7. 83	34.4 7.01	34.9 6.38	36.7 5.31	10°7 6'10	$\frac{\text{CURVE 11}}{7-300-0-K}$		27.6 0.34	28.5 0.51		29.0 0.63 30.0 1.28	30.4 1.56	31.5 2.69	32.0 4.46 32.6 6.34	32.9 9.24	33.4 8.63	34.4 7.37	34.8 6.90	37.0 5.39	37.9 5.10		$\frac{\text{CURVE } 12}{\text{T} - 300 \text{ O V}}$		27.5 0.21	28.0 0.29	29.5 0.64*	30.0 0.65	30.4 1.04		32.4 8.95	32.9 9.22*	
	λ n	$\frac{\text{CURVE 8}}{\text{T} = 300, 0 \text{ K}}$	0.0984 2.06* 0.0992 2.32*	0.1000 2.32 0.1008 2.28	0.1016 2.20*	0.1026 2.14* 0.1033 2.06*	0.1041 2.00	0.1087 1.78	0.1126 1.67	0.1148 1.63 0.1192 1.57	0.1240 1.57	CTRVE 9	T = 293.2 K	0.1935 1.4450	0.1990 1.4413	0.2026 1.4390 0.2063 1.4367	0.2100 1.4346	0.2144 1.4319	0.2194 1.4300	0.2319 1.4244	0.257 1.4162	0.275 1.4118	0.313 1.4070	0.334 I.4039 0.365 1.4013	0.405 1.3983*	0.436 1.3967*	0.546 1.3929 0.577 1.3010	V. U. I. I. U. U. V.	CURVE 10	T = 300.0 K	93.9 0.19	24.5 0.21	25.5 0.27	26.3 0.29	Z1.5 U.40* 28.7 0.66*	29.4 0.95	

* Not shown in figure.

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

356

TABLE 8. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF LiF (continued)

н. н. ц

	а	$\frac{3 VE}{2} = \frac{29}{293.2 K}$	46 1.39845* 58 1.39681* 63 1.30681*	75 1.39209	1. 3907	65 1.3901	08 I.3887	81 1.3782		CURVE 30 = 293.2 K		905 1.4402*	360 1.4323*	1470 1.4273* 142145	828 1.41942	365 1.41792	537 1.41504	5993 1.41402 2025 1 41188	3936 1.41025	9676 1.40903)215 1.40818*	[317 1.40669*	5410 1.40425* 5631 1.40121*	064 1.39937)466 1.39851*	3583 L.39684* 2619 1 20480	1. 39300 1. 39300	3756 1.39209*	3930 1.39204*	5628 I.39085	165Z L.39003*	23667 1 38687	1.38877	1247 1.38844*	1.38780	[398].38702	3303 1.38657			
	X		0.40	0.58	0.66	0.70	0.84	2.05		υĘ	4	0.19	0.21	0 27 0	0.24	0.25	0.26	0.26	0.28	0.29	0.30	0, 31	0.36	0.39	0.40	0.43	0.54	0.58	* 0.58	0.65	00		0.81	0.84	0.91	1.01	1.05	11		
	л n	$\frac{\text{CURVE 27 (cont.}}{\text{T} = 873.2 \text{ K}}$	26.0 0.96 27.0 1.13	28.0 I.22	30.0 1.62*	31.0 1.80*		33.4 2.02*	33.9 2.15	34.3 2.23 24.0 2.23	35.5 2.10	35.9 2.03		T - 908 0 V	VI / *0007 - 1	0.1183 1.650	0.1216 1.619	0.1234 1.609	0.1269 1.577 0.1269 1.577	0.1332 1.551	0.1396 1.529	0.1434 1.517	0.1462 1.509 0 1490 1 500	0.1515 1.496	0.1545 1.490	0.1578 1.486	0.1539 1.475	0.1374 1.472	0.1788 1.461	0.1835 1.455	0.1872 1.452	0.1341 1.440 0 9046 1 440	0 2134 1.434	0.2174 1.432		CURVE 29	T = 293, 2 K	0.3021 1.408	0.3341 1.404	
[u	-	<u>nt.</u>)	03	44 24	24				23*	25	32*	39*	45*	54	51 63	68	79	86*	09 33*	52*	74	53	94 99	49	42	24*	04		X		46*	34	-00	47	55	60	66 70	77	87	
Refractive Index,	τ γ .	$\frac{\text{CURVE 25 (cc}}{\text{T} = 423.2 }$	34.0 4. 34.4 4.	35.0 3. 25.5	36.0 3.		CURVE 26	I = 9/3.2	16.1 0.	17.0 0.	19-0	20.0 0.	21.0 0.	22.0 0.	23.0 0. 24.0 0.	25.0 0.	26.0 0.	27.0 0.	28.0 I.	30.0	31.0 1.	33.0 2.	33.5	34.4 3.	35.0 3.	35.5	J0.U 4.	CURVE 27	T = 873.21		15.0 0.	16.0	18 1 0.	19.0	20.0 0.	21.0 0.	22.0	24.0 0.	25.0 0.	
relength, λ, μm;	п	<u>5 24</u> • 2 K	0.22* 0.12*	0.12*	0.25*	0.27	0.25*	0. 19*	0.16*	0.19*	0.22*	0.28*	0.41*	0.52	0.87 1.42	3.01	3.57	7.02*	1.23* 6 56	6. 03*	5.75*		2 25	47.	0.17	0.18*	0.32*	0.37*	0.37	0.33	0.35	0.40*	0.42*	0.55	0.67*	0.83*	1.11	1, 01 2, 93	3.83	
[Wav	×	$\frac{\text{CURVI}}{\text{T} = 293}$	15.0 16.0	17.0	19.0	20.0	21.0	22.0	23.7	25.0	20.0	27.9	29.0	30.0	31.9	32.9	33.0	33.9	34.5	35.5	36.0	•	CURVI	077 = T	16.1	17.0	19.0	20.0	21.0	22.0	23.0	24.0	0.02	27.0	28.0	28.9	30.0	31.9	33.4	
	и	<u>22 (cont.)</u> 291. 2 K	1.215* 1.195*	1.203*	1.173*	1.155*	1.155*	1.136*	1.107*	1.109*	1.081*	1.083*	1.070*	1.046*	1 037*	1.009*	1.022*	1.000	0° 090%	0.961*	0.952*	0.919*	0.873*	0.827*	3 VE 23	291.2 K	0 75%	0.65*	0.50*	0.40*	0.20*	0.15*	-07 °0	4.4	4.0	3.7	3,4 0,4	0° 77	3.0	ļ
	X	$\frac{CURVE}{T} =$	8.05 8.30	8.32	00 00 00 00 00 00 00 00 00 00 00 00 00	8.92	9.18	9.29 9.48	9.62	9.79	9.9 10.02	10.12	10.3	10.39	10.46	10.79	10.82	11.0	11.21	11.6	11.62	12.0	12.5	8 .ZT	cm	II L	19.0	13.5	14.0	14.5	15.0	15.25	15.50	6) °CT	40.	41.	43.	45 . 48	55.	
	я	<u>URVE 21</u> = 291.2 K	1.3928* 1.3881	1.3863*	1. 3828 1. 3828	1.3811	1.3797	1.3782	1.3736	1.3717	1.369L	1.3618	1.3585*	1. 3544	1.3507	1. 3384	1.3336	1.3282	1.3233	1.3183	1. 3058		URVE 22	= 291.2 K	1.310*	1.314*	1.308* 1.911*	1.308*	1.303*	1.264*	1.259*	1.260*	1.248*	-202* 1.203*	1.248*	1.229*	1.239*	1.222*	1.213*	×.
	۲	υĘ	0.546 0.80	1.02	1.48	1.67	1.83	2°00	2.40	2.60	2,80	3.30	3.50	3.70	3,90	4.50	4.70	4.90	5.10	5.50 5	5.70		оl ⁴	H	5.48	5.53	5.62	0. 00 5. 78	5.83	6.70	6.73	6.91	6.94	06 L	7.35	7.40	7.58	7.73	8.02	

TABLE 8. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF MIF (continued)

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

* Not shown in figure.

(continued)
OF LiF
INDEX (
ACTIVE
E REFR
HT NO
L DATA
EXPERIMENTA
TABLE 8.

[Wavelength, λ , μ m; Refractive Index, n]

п F 46*	0.0 K	1.396	1.392	1.391	E 47*	1.399	1. 397	1.395	1.394	1.393																			
λ CURV	T = 29	0.4358 0.4678 0.4600 0.4800	0.5780).5893).6438	$\frac{CURV}{T=4}$	0.4358	0.4800	0.5086 0.5461	0.5780	0.6438																			
λ n CITRVE 38 (comt)	T = 298.0 K	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CURVE 39 T = 298, 0 K	0,00236 0,99886*** 0,00234 0,99886**	0,0067 0,99180	0.0113 0.9833	$\frac{\text{CUHVE} 40}{\text{T} = 298.0 \text{ K}}$	0.4358 1.39724	0, 5461 1, 39341	0, 5853 L. 39260	$\frac{\text{CURVE 41}}{T = 1923 - 2 \text{ K}}$		0.5461 1.32	CURVE 42	$T \approx 295.2 K$	0.5853 1.3915	CURVE 43	T = 298.0 K	0.546 1.369	CITPUE 44	T = 300.0 K		2000. 3.02	CURVE 45	T = 77.0 K	0000 0 03	2000. 2.30		
n V torot 90	38, 0 K	1.380 1.373 1.359	1. 361 1. 364	1. 363 1. 362	1. 30 JE 37	38.0 K	1.291 1.386	1.285	1.385	1. 273	1.575	1. 270	1.270	1. 359*	1.259* 1.354	1. 256	1.561*	VE 38	18° U IV	1.585	1.377	1.577	1.370	1.364	1.370	1.364	1.360	1.356	1.356
γ	T = 2	0.586 0.646 0.762	0.824 0.880 0.914	0.942 0.970	CURV	1 1	0.408 0.438	0.468	0.526	0. 556 0. 586	0.614	0.678	0.700	0.880	0,909 0,938	0.970	0*990	CUR	27 # T	0.408	0.570	0.597	0.618	0.690	0.737	0.768	0.824	0.884	0.914
	T = 355.0 K	23.26 0.299 23.98 0.318 24.94 0.369	25.11 0.445* 26.46 0.602 28.17 1.04*	29.33 1.99* 30.77 3.85*	32.08 9.80 34.60 6.24* 35.71 4.36*	37.45 3.69* 40.00 3.29*	45.45 3.01* 55.56 2.90*	100.00 2.90*	CURVE 35	T = 298.0 K	0.408 1.400	0.468 1.381	0.498 1.380 0.596 1.270	0.556 1.378	0.586 1.375 0.646 1.367	0.678 1.366	0.711 1.370 0.732 1.367	0.762 1.372	0.792 1.371 0.821 1.368	0.909 1.359	0.970 1.354	0.998 1.361		T = 298.0 K		0.408 1.396	0.438 1.392 0.468 1.391	0.498 1.390	0.526 1.375
α γ	$\frac{\text{UUKVE 32 (cont.)}}{\text{T} = 210.0 \text{ K}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55, 56 2.90* 100.00 2.90*	$\frac{\text{CURVE } 33}{\text{T} = 300.0 \text{ K}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.39 0.138* 18.38 0.190*	19.72 0.283* 20.37 0.298*		22.27 0.237	23.04 0.237 24.10 0.257*	25.00 0.299*	26.88 0.542*		30.77 3.85*	32.57 11.26 34.60 6.24*	35.71 4.36*	37.45 3.69* 40.00 3.99*	45.45 3.01*	55.56 2.90* 100.00 2.90*		T = 355.0 K	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16.37 0.129*	15. di 0. 161 *	18.59 0.232*	19.92 0.339*	20.41 0.352* 20.88 0.352*	21.37 0.327*	22.42 0.299*
γ n	T = 135.0 K	16.31 0.090* 16.95 0.090* 17.67 0.109*	15.62 0.156 15.23 0.172* 19.80 0.172*	25.98 0.104* 25.00 0.104*	26.04 0.127* 26.60 0.163* 27.70 0.413*	25.17 1.04 25.33 1.99	30. 77 3.85 32.36 17.83	34.60 6.24	37.45 3.69	4C.00 3.29		100,00 2,30	CURVE 32	VI A *AT7 = T	16.10 0.112* 16.45 0.102*	16.72 0.103*	17.42 0.118* 19.15 0.159*	16.08 0.204*	19.69 0.219* 20.62 0.219*	21.98 0.199*	22.78 0.187* 23.70 0.187*	24.81 0.207*	25.08 0.249*	26.74 0.300 27 17 0.484	28.17 1.04*	29.33 1.99*	30.77 3.85*	34.60 6.24*	35.71 4.36*

* Not shown in figure.

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

358

 $\begin{array}{c} 1. \ 3964\\ 1. \ 3953\\ 1. \ 3948\\ 1. \ 3948\\ 1. \ 3941\\ 1. \ 3929\\ 1. \ 3922\\ 1. \ 3917\\ 1. \ 3912\end{array}$

 $\begin{array}{c} 1.\ 3993\\ 1.\ 3981\\ 1.\ 3974\\ 1.\ 3974\\ 1.\ 3957\\ 1.\ 3947\\ 1.\ 3945\\ 1.\ 3945\\ 1.\ 3945\\ 1.\ 3945\\ 1.\ 3938\\ \end{array}$

TABLE 9. EXPERIMENTAL DATA ON dn/dT OF LiF

Ę	
-	
ġ	2
ž	
Ť	
à	
ក	•
÷	
F	
1	
÷	
2	
ļ,	
\$	
4	
1	
1	
-	
į	
É	
1	
1	

Mean Temperature, Tm, Kl	λ dn/dT	$\frac{\text{CURVE 30 (cont.)}}{\text{T}_{m} = 293.0 \text{ K}}$	0.81095 - 2.2 0.84247 - 2.2	0.91230 - 2.3	1.01398 -2.9	1.08303 -2.8											
fractive Index, dn/dT, 10 ⁻⁵ K ⁻¹ ;	λ dn/dT	$\frac{\text{CURVE 30 (cont.)}}{\Gamma_{\text{m}} = 293.0 \text{ K}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.31317 -1.5	0.33415 -1.6	0.36631 - 1.6	0.39064 -1.7	0.40466 - 1.7	0.43583 -1.3	0.48613 -1.6	0.54607 -1.7	0.58756 -1.8	0.58930 -1.8	0.65628 -1.8	0.70652 -1.8	0.72814 - 2.1	0.76820 -1.6
Temperature Derivative of Re	λ dn/dT	$T\frac{CURVE 21}{m} = 322.0 \text{ K}$	0.546 2.3 3.50 1.6	- 	CURVE 30	$T_{m} = 293.0 K$		0.19905 - 1.2	0.21360 -1.3	0.22470 - 1.5	0.23998 -1.3	0.24828 -1.7	0.25365 - 1.2	0.26537 - 1.2	0.26993 - 1.2	0.28035 -1.4	0.28936 -1.4
[Wavelength, λ, μm;	λ dn/dT	$\frac{CURVE 6 (cont.)}{T_{m} = 313.0 \text{ K}}$	$\begin{array}{cccc} 0.56 & -1.65 \\ 0.57 & -1.65 \end{array}$	0.58 -1.66	0.59 -1.66	0.60 -1.66	0.61 -1.66	0.62 -1.67	0.63 -1.67	0.64 -1.67	0.65 -1.67	0.66 -1.67	0.67 -1.67	0.68 -1.67	0.69 -1.67	0.70 -1.67	
	λ dn/dT	$T\frac{CURVF.6}{m} = 313.0 \text{ K}$	$\begin{array}{cccc} 0.40 & -1.58 \\ 0.41 & -1.58 \end{array}$	0.42 -1.59	0.43 -1.59	0.44 - 1.60	0.45 -1.60	0.46 -1.61	0.47 -1.61	0.48 -1.62	0.49 -1.62	0.50 -1.63	0.51 -1.63	0.52 -1.63	0.53 -1.64	0.54 - 1.64	0.55 -1.65

REFRACTIVE INDEX OF ALKALI HALIDES

TABLE 10.	COMPARISON OF	DISPERSION	EQUATIONS	PROPOSED	FOR LiF

Source	Wavelength and Temperature Ranges	Dispersion Equation λ in μ m; ν in cm ⁻¹
Harting, H. [30] 1943	0. 199-1. 083 μm 293 K	$n = 1.38282 + \frac{0.00405}{(\lambda - 0.1137)^{1.1}}$
Radhakrishnan, T. [48] 1948	0. 1935-15. 0 μm 293 K	$n^2 = 1.34880 + \frac{0.57862 \lambda^2}{\lambda^2 - (0.09022)^2} + \frac{7.34258 \lambda^2}{\lambda^2 - (33.266)^2}$
Tilton, L.W. and Plyler, E.K. [32] 1951	0.4-5.9 <u>µ</u> m 297 K	$n^{2} = 1 + \frac{0.92556295 \lambda^{2}}{\lambda^{2} - (0.07291)^{2}} + \frac{5.1281966 \lambda^{2}}{\lambda^{2} - (28.247)^{2}}$
Herzberger, M. and Salzberg, C. D. 1962 [115]	0.5-6.0 µm 298 K	$n = 1.38761 + \frac{0.001796}{\lambda^2 - (0.16733)^2} - \frac{0.000041}{(\lambda^2 - (0.16733)^2)} - 0.00023045 \lambda^2 - 0.00000557 \lambda^4$
Jasperse, J.R., Kahan, A., Plendl, J.N., and Mitra, S.S. [14] 1966	12.5-50.0 <u>µ</u> n 295 K	$n^{2}-k^{2} = \epsilon_{uv} + \sum_{i} \frac{4\pi\rho_{i}\nu_{i}^{2}(\nu_{i}^{2}-\nu^{2})}{(\nu_{i}^{2}-\nu^{2})^{2}+(\gamma_{i}\nu)^{2}}$
		$2nk = \sum_{i} \frac{4\pi \rho_{i} v_{i}^{2} (\gamma_{i} \nu)}{(v_{i}^{2} - \nu^{2})^{2} + (\gamma_{i} \nu)^{2}} *$
Present work 1975	0.10-11.0 μm 293 K	$n^{2} = 1 + \frac{0.92549 \lambda^{2}}{\lambda^{2} - (0.07376)^{2}} + \frac{6.96747 \lambda^{2}}{\lambda^{2} - (32.790)^{2}}$

* $i = 1, 2; \nu_1 = 306 \text{ cm}^{-1}, \nu_2 = 503 \text{ cm}^{-1}; \gamma_1/\nu_1 = 0.0600, \gamma_2/\nu_2 = 0.180; 4\pi\rho_1 = 6.80, 4\pi\rho_2 = 0.110; \epsilon_{\rm UV} = 1.90, \epsilon_{\rm S} = 8.81.$

3.2. Lithium Chloride, LiCl

The only available measurement on the refractive index of solid LiCl was made for one spectral line, the sodium D line. by Spangenberg [45] in 1923 using the immersion method. For molten LiCl, Zarzyski and Naudin [44] determined the index for the Hg green line at a temperature of 888 K.

The reasons for the scantiness of the data are the difficulties in crystal growing and sample preparation. A number of other physical properties of LiCl were investigated: values are given in tables 2 and 3. Although there is only one value of n available, a dispersion equation can be based on the knowledge of the dielectric constants and the characteristic absorption peaks. Using the values of known parameters from table 3 and the value of Spangenberg, we obtain

$$\begin{aligned} & \epsilon_s = 11.86, \\ & \epsilon_{uv} = 2.75, \\ & \lambda_u = 0.137 \ \mu\text{m} \ \text{(averaged value of two peaks),} \end{aligned}$$

 $\lambda_l = 49.26 \ \mu \mathrm{m},$

$$n = 1.662$$
 for $\lambda = 0.5893 \ \mu m$.

The adjustable parameter A of eq (13) was found to be 2.51. This leads to a dispersion equation of LiCl which is valid at 293 K in the transparent region, 0.17 to 16.0 μ m:

$$n^{2} = 2.51 + \frac{0.24 \lambda^{2}}{\lambda^{2} - (0.137)^{2}} + \frac{9.11 \lambda^{2}}{\lambda^{2} - (49.26)^{2}}, \quad (25)$$

where λ is in units of μ m.

No experimental data on dn/dT are available. However, our empirical parameter values in table 5 were used to construct a formula for estimating dn/dT in the transparent region:

$$2n\frac{dn}{dT} = -13.14 (n^2 - 1) - 12.85$$
(26)

$$+\frac{22.75 \,^{\Lambda^4}}{(\lambda^2-0.02045)^2}+\frac{582.02 \,^{\Lambda^4}}{(\lambda^2-2426.55)^2},$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m.

Equations (25) and (26) were used to generate the reference data given in the table of recommended values. As noted, these equations are based totally on the available data on the thermal linear expansion, dielectric constants, the wavelengths of absorption peaks, and the empirical parameters. Consequently, the accuracies of the estimated values are governed by the uncertainties of the above mentioned parameters. The following criteria are indicated by careful studies of the parameters.

For refractive index:

Wavelength range	Meaningful decimal place	Estimated		
(press)	acciniai piace	uncontainty, =		
0.17- 0.30	2	0.05		
0.30 - 1.00	3	0.005		
1.00-5.00	3	0.008		
5.00- 9.00	2	0.01		
9.00-16.00	2	0.02		

For dn/dT:

0.17-0.32	1	0.9
0.32 - 12.0	1	0.4
12.0 - 16.0	1	0.9

λ μm	n	-dn/dλ µm ⁻¹	dn/dT 10 ⁻⁵ K ⁻¹	λ μπ	n	~dn/dλ μm ⁻¹	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	n	-dn/dλ µm ^{−i}	dn/dT 10 ⁻⁵ K ⁻¹
0.170 0.172 0.174 0.174 0.176 0.178	1.78 <u>732</u> 1.77 <u>944</u> 1.77 <u>235</u> 1.76 <u>604</u> 1.76030	4.17 <u>475</u> 3.72 <u>295</u> 3.34 <u>016</u> 3.01 <u>301</u> 2.73122	62.78 55.45 49.37 44.2 29.92	0.290 0.292 0.294 0.296 0.298	1.67 $\frac{688}{1.67852}$ 1.67 $\frac{817}{1.67783}$ 1.67 $\frac{783}{1.67749}$	U • 18295 U • 17788 U • 17788 U • 17301 D • 16832 U • 16381	0.88 0.79 0.60 0.51	0.900 0.920 0.940 0.960 0.980	1.659 <u>11</u> 1.658 <u>95</u> 1.658 <u>88</u> 1.658 <u>77</u> 1.65867	0.005 <u>94</u> 0.005 <u>73</u> 0.005 <u>54</u> 0.005 <u>37</u> 0.005 <u>2</u> 2	
0.180 0.182 0.184 0.186 0.186	1.75 <u>509</u> 1.75 <u>034</u> 1.74 <u>598</u> 1.74 <u>198</u> 1.73 <u>829</u>	2.48 <u>678</u> 2.27 <u>337</u> 2.08 <u>597</u> 1.92 <u>051</u> 1.77 <u>371</u>	36.2 <u>(</u> 32.97 30.1 <u>6</u> 27.6 <u>9</u> 25.51	0.300 0.305 0.310 0.315 0.320	1.677 <u>17</u> 1.676 <u>40</u> 1.675 <u>68</u> 1.675 <u>80</u> 1.675 <u>80</u> 1.674 <u>36</u>	$\begin{array}{c} 0.159\overline{47} \\ 0.149\overline{31} \\ 0.149\overline{31} \\ 0.140\overline{05} \\ 0.13157 \\ 0.12381 \end{array}$	0 • 4 <u>2</u> 0 • 2 <u>3</u> 0 • 0 <u>14</u> - 0 • 31	1.000 1.050 1.100 1.150 1.200	1.658 <u>56</u> 1.658 <u>32</u> 1.658 <u>08</u> 1.657 <u>86</u> 1.657 <u>64</u>	0.005 <u>03</u> 0.004 <u>81</u> 0.004 <u>60</u> 0.004 <u>45</u> 0.004 <u>34</u>	-3.69 -3.69 -3.719 -3.719 -3.714
0.190 0.192 0.194 0.196 0.198	1.73487 1.73 <u>170</u> 1.72 <u>576</u> 1.72 <u>576</u> 1.72 <u>502</u> 1.72345	1.64 <u>286</u> 1.52 <u>574</u> 1.42 <u>056</u> 1.32 <u>560</u> 1.23971	23.57 21.84 20.20 18.88 17.60	0.325 0.330 0.335 6.340 0.345	1.67376 1.67319 1.67266 1.67215 1.67267	0.116 <u>67</u> 0.110 <u>10</u> 0.104 <u>05</u> 0.0984 <u>5</u> 0.09827	-0.4 -0.60 -0.75 -0.85 -0.95	1.250 1.300 1.350 1.400 1.400 1.450	1.657 <u>42</u> 1.657 <u>21</u> 1.657 <u>00</u> 1.656 <u>79</u> 1.656 <u>58</u>	0.004 <u>26</u> 0.004 <u>21</u> 0.004 <u>19</u> 0.004 <u>19</u> 0.004 <u>19</u> 0.004 <u>20</u>	-3.76 -3.77 -3.70 -3.79 -3.79
0.200 0.202 0.204 0.206 0.208	1.72 <u>105</u> 1.71 <u>668</u> 1.71 <u>668</u> 1.71 <u>469</u> 1.71 <u>281</u>	1.16 <u>174</u> 1.89 <u>076</u> 1.02 <u>594</u> 0.96 <u>661</u> 0.91215	16.4 <u>5</u> 15.39 14.42 13.53 12.71	0.350 0.355 0.360 0.365 0.365 0.370	1.67122 1.67079 1.670 <u>38</u> 1.65999 1.66962	0.088 <u>46</u> 0.084 <u>00</u> 0.079 <u>84</u> 0.075 <u>98</u> 0.072 <u>37</u>	- 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1	1.500 1.550 1.600 1.650 1.650 1.700	1.656 <u>37</u> 1.656 <u>16</u> 1.655 <u>94</u> 1.655 <u>73</u> 1.655 <u>51</u>	$\begin{array}{c} 0.004\frac{25}{5} \\ 0.004\frac{26}{31} \\ 0.004\frac{31}{36} \\ 0.004\frac{36}{36} \\ 0.004\frac{36}{43} \end{array}$	- 3 - 6 - 6 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8
0.210 0.212 0.214 0.214 0.216 0.218	1.71 <u>104</u> 1.70 <u>536</u> 1.70 <u>776</u> 1.70 <u>627</u> 1.70484	0.86206 0.81588 0.77 <u>322</u> 0.73 <u>373</u> 0.69715	11.9 <u>5</u> 11.2 <u>6</u> 10.6 <u>1</u> 10.0 <u>1</u> 9.44	6.375 5.380 6.365 6.390 8.395	1.66926 1.66893 1.66860 1.66850 1.66830	C.C6899 C.C6584 C.C6288 C.C6011 C.C6011 C.C5751	-1.55 -1.63 -1.70 -1.77 -1.84	1.750 1.800 1.850 1.900 1.950	1.655 <u>28</u> 1.655 <u>06</u> 1.654 <u>83</u> 1.654 <u>59</u> 1.654 <u>3</u> 6	$\begin{array}{c} 0.004 \overline{49} \\ 0.004 \overline{57} \\ 0.004 \overline{57} \\ 0.004 \overline{54} \\ 0.004 \overline{51} \\ 0.004 \overline{51} \\ 0.004 \overline{51} \end{array}$	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6.220 0.222 0.224 0.226 0.228	1.70 <u>348</u> 1.70 <u>216</u> 1.70 <u>95</u> 1.69 <u>978</u> 1.69865	0.66 <u>368</u> 0.63 <u>141</u> 0.60 <u>188</u> 0.57 <u>432</u> 0.54855	8.99 <u>12</u> 8.49 <u>15</u> 7.52 7.12	0。400 0。410 0。420 0。420 0。440	1.66772 1.66719 1.66671 1.666 <u>71</u> 1.666 <u>26</u> 1.66584	0.055 <u>07</u> 0.050 <u>60</u> 0.046 <u>63</u> 0.043 <u>09</u> 0.03992	-1.9 <u>6</u> -2.023 -2.13 -2.23 -2.32	2.000 2.050 2.100 2.150 2.200	1.654 <u>11</u> 1.653 <u>87</u> 1.653 <u>61</u> 1.653 <u>36</u> 1.653 <u>10</u>	0.004 <u>90</u> 0.004 <u>90</u> 0.005 <u>08</u> 0.005 <u>18</u> 0.005 <u>18</u> 0.005 <u>2</u> 7	- 3 - 8 - 5 - 8 - 5 - 8 - 3 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8
6.232 0.232 0.234 0.236 0.238	1.69 <u>756</u> 1.69 <u>655</u> 1.69 <u>557</u> 1.69 <u>463</u> 1.69373	0.52441 0.50 <u>178</u> 0.48 <u>054</u> 0.46 <u>057</u> 0.44177	6.7 <u>4</u> 6.3 <u>64</u> 5.7 <u>1</u> 5.41	0.490 0.460 0.470 0.480 0.490	1.665 <u>46</u> 1.665 <u>10</u> 1.664 <u>77</u> 1.664 <u>46</u> 1.66417	0.037 <u>07</u> 0.034 <u>50</u> 0.032 <u>19</u> 0.030 <u>09</u> 0.02818		2.290 2.300 2.350 2.400 2.430	1.652 <u>55</u> 1.652 <u>56</u> 1.652 <u>28</u> 1.652 <u>00</u> 1.65171	0.005 <u>37</u> 0.005 <u>47</u> 0.005 <u>58</u> 0.005 <u>68</u> 0.005 <u>78</u>	କ କ କ କ ତେ କ କ କ ତେ କ କ କ ତେ କ କ ତେ କ ତେ
0.240 0.242 0.244 0.244 0.248 0.248	1.69 <u>286</u> 1.69 <u>203</u> 1.69 <u>123</u> 1.69 <u>047</u> 1.68973	0.42 <u>406</u> 0.40 <u>736</u> 0.39 <u>158</u> 0.37 <u>667</u> 0.36258	5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0。500 0,510 0、520 0、530 0、540	1.66389 1.66364 1.66364 1.66317 1.66295	0.026 <u>44</u> 0.024 <u>86</u> 0.023 <u>41</u> 0.022 <u>09</u> 0.020 <u>87</u>	-2.7 <u>4</u> -2.75 -2.84 -2.8 <u>8</u> -2.93	2.500 2.550 2.600 2.650 2.700	1.651 <u>42</u> 1.651 <u>13</u> 1.650 <u>52</u> 1.650 <u>52</u> 1.650 <u>52</u>	0.005 <u>69</u> 0.005 <u>99</u> 0.006 <u>10</u> 0.006 <u>21</u> 0.006 <u>32</u>	- 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0.250 0.252 0.254 0.256 0.256 0.258	1.68 <u>901</u> 1.68 <u>833</u> 1.68 <u>767</u> 1.68 <u>763</u> 1.68 <u>642</u>	0.34 <u>920</u> 0.33 <u>653</u> 0.32 <u>451</u> 0.31 <u>310</u> 0.30225	3.64 3.64 3.25 3.26 3.26	0.550 0.550 0.570 0.580 0.590	1.66275 1.66258 1.662 <u>38</u> 1.662 <u>20</u> 1.66204	G.019 <u>75</u> D.010 <u>72</u> G.017 <u>77</u> G.016 <u>69</u> G.016 <u>08</u>	-2.97 -3.01 -3.04 -3.04 -3.11	2.750 2.800 2.850 2.900 2.900 2.950	1.649 <u>88</u> 1.649 <u>56</u> 1.649 <u>23</u> 1.648 <u>89</u> 1.648 <u>55</u>	0.00643 0.00654 0.00655 0.00676 0.00676 0.00676	-3.82 -3.82 -3.81 -3.81 -3.81
0.260 0.262 0.264 0.266 0.266 0.266	1.68 <u>582</u> 1.68 <u>525</u> 1.68 <u>469</u> 1.68 <u>416</u> 1.68 <u>416</u> 1.68 <u>364</u>	$\begin{array}{c} 0.29 \overline{193} \\ 0.28 \overline{211} \\ 0.28 \overline{211} \\ 0.27 \overline{276} \\ 0.26 \overline{364} \\ 0.25 \overline{333} \end{array}$	2	0 • 600 0 • 620 0 • 640 0 • 660 0 • 660	1.66186 1.66159 1.66132 1.66186 1.66188	0.015 <u>32</u> 0.013 <u>97</u> 0.012 <u>81</u> 0.011 <u>79</u> 0.011 <u>79</u>	- 3 . 2 - 3	3.000 3.050 3.100 3.150 3.200	$1.648\overline{21} \\ 1.647\underline{86} \\ 1.647\underline{50} \\ 1.647\underline{50} \\ 1.647\underline{13} \\ 1.64676 \\ 1.66676 \\$	0.006 <u>99</u> 0.007 <u>10</u> 0.007 <u>21</u> 0.007 <u>33</u> 0.00744	-3.85 -3.88 -3.88 -3.88 -3.88 -3.88 -3.88 -3.7 -3.7
0.270 0.272 0.274 0.276 0.276 0.278	$1.68\frac{313}{1.68\frac{265}{1}}$ $1.68\frac{265}{1.68\frac{218}{1}}$ $1.68\frac{172}{1.68\frac{128}{1}}$	0.24721 0.23945 0.23203 0.22494 0.21815	2.55 1.61 1.65 1.55	0°700 0°720 0°740 0°740 0°760 0°760	1.660 1.660 1.660 1.660 1.660 1.659 93	0.010 <u>13</u> 0.009 <u>45</u> 0.008 <u>85</u> 0.008 <u>32</u> 0.008 <u>32</u> 0.00785	-3.4 <u>5</u> -3.44 <u>3</u> -3.44 <u>8</u> -3.48	3 • 250 3 • 300 3 • 350 3 • 400 3 • 450	$1.646\overline{39}$ 1.64601 1.64502 1.64523 1.64523 1.64483	0.007 <u>56</u> 0.007 <u>67</u> 0.00779 0.00790 0.00790 0.00802	- 3 • 7 0 - 3 • 7 0 - 3 • 7 8 - 3 • 7 8 - 3 • 7 8 - 3 • 7 8
0.280 0.282 0.284 0.286 0.286	1.68 <u>085</u> 1.68 <u>043</u> 1.68 <u>003</u> 1.67 <u>963</u> 1.67 <u>963</u>	0.21 0.20 0.19 0.19 0.19 37 0.18 82 0.18 82 3	1.31 1.31 1.200 1.000 0.000	0.800 0.820 0.840 0.860 0.860	1.659 <u>77</u> 1.659 <u>63</u> 1.659 <u>49</u> 1.659 <u>36</u> 1.659 <u>23</u>	0.00744 0.00707 0.00673 0.00673 0.00644 0.00618	- 3 . 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.500 3.550 3.600 3.650 3.700	$1.644\overline{43}$ 1.64402 $1.643\overline{60}$ $1.643\overline{16}$ $1.643\overline{16}$ $1.642\overline{75}$	0.00814 0.00825 0.00837 0.00837 0.00849 0.00849	-3.77 -3.77 -3.76 -3.76 -3.76

TABLE 11. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR LICI AT 293 K *

TABLE 11. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR LiC1 AT 293 K (continued)*

λ µm	n	$-dn/d\lambda$ μm^{-1}	dn/dT 10~5 K~1	λ μm	n	$-dn/d\lambda$ μm^{-1}	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	n .	$-dn/d\lambda$ μm^{-1}	dn/dT 10 ⁻⁵ K ⁻¹
3.750 3.800 3.850 3.900	1.642 <u>32</u> 1.641 <u>88</u> 1.641 <u>44</u> 1.641 <u>44</u>	0.008 <u>72</u> 0.008 <u>84</u> 0.008 <u>96</u> 0.009 <u>08</u>	- 3 • 7 <u>5</u> - 3 • 7 <u>5</u> - 3 • 7 <u>4</u> - 3 • 7 <u>4</u>	6 • 100 6 • 200 6 • 300 6 • 400	1.61 <u>501</u> 1.61 <u>353</u> 1.61 <u>203</u> 1.61 <u>049</u>	0.01 <u>464</u> 0.01 <u>491</u> 0.01 <u>518</u> 0.01 <u>518</u>	- 3.4 <u>4</u> - 3.4 <u>2</u> - 3.4 <u>2</u> - 3.4 <u>0</u> - 3.39	9.700 9.800 9.900 10.000	1.54 <u>355</u> 1.54 <u>098</u> 1.53 <u>838</u> 1.53 <u>573</u>	0.02 <u>554</u> 0.02 <u>589</u> 0.02 <u>624</u> 0.02 <u>624</u>	-2.4 <u>7</u> -2.4 <u>3</u> -2.4 <u>0</u> -2.3 <u>6</u>
3.950 4.000 4.050 4.100 4.150	1.64053 1.64057 1.63960 1.63912 1.63864	0.00920 0.009 <u>22</u> 0.009 <u>44</u> 0.009 <u>55</u> 0.009 <u>55</u>	-3.73 -3.7 <u>3</u> -3.7 <u>2</u> -3.7 <u>2</u> -3.7 <u>5</u>	6.500 6.600 6.700 6.800 6.900	1.60894 1.60735 1.60574 1.60410 1.60243	0.01572 0.01599 0.01627 0.01655 0.01655 0.01683	-3.37 -3.3 <u>5</u> -3.3 <u>5</u> -3.3 <u>1</u> -3.20	10.200 10.400 10.600 10.800 11.000	1.53034 $1.52\overline{481}$ 1.51912 1.51328 1.50729	0.02732 0.02 <u>805</u> 0.02 <u>880</u> 0.02 <u>957</u> 0.03035	-2.27 -2.1 <u>5</u> -2.10 -2.00 -1.91
4.200 4.250 4.300 4.350	1.63815 1.637 <u>66</u> 1.637 <u>16</u> 1.636 <u>55</u> 1.636 <u>14</u>	0.00980 0.009 <u>93</u> 0.01005 0.010 <u>17</u> 0.010 <u>17</u>	-3.71 -3.70 -3.70 -3.60	7°008 7°100 7°200 7°200 7°200	1.60073 1.59 <u>901</u> 1.59725 1.59547 1.59366	0.01711 0.01739 0.01768 0.01796 0.01796	-3.2E -3.2E -3.22 -3.20 -3.20	11.200 11.400 11.600 11.800	1.50114 1.49 <u>483</u> 1.48 <u>835</u> 1.48 <u>171</u> 1.48 <u>171</u>	$\begin{array}{c} 0.03115\\ 8.03197\\ 0.03280\\ 0.03385\\ 0.03452\\ 0.03452\\ \end{array}$	-1.81 -1.7 <u>0</u> -1.59 -1.48
4.450 4.500 4.550 4.600	1.635 <u>10</u> 1.635 <u>10</u> 1.634 <u>57</u> 1.634 <u>04</u>	$\begin{array}{c} 0.010\overline{41} \\ 0.010\overline{41} \\ 0.010\overline{66} \\ 0.010\overline{66} \\ 0.010\overline{78} \end{array}$	-3.68 -3.68 -3.67 -3.67	7.500 7.600 7.700 7.800	1.59182 1.58995 1.58805 1.58612	0.01 <u>854</u> 0.01 <u>884</u> 0.01 <u>913</u> 0.01 <u>943</u>	-3.15 -3.15 -3.1 <u>6</u> -3.07	12.400 12.400 12.600 12.800	1.46 <u>072</u> 1.45 <u>336</u> 1.45 <u>336</u> 1.44 <u>582</u>	0.03542 0.03542 0.03 <u>633</u> 0.03 <u>727</u> 0.03 <u>623</u>	-1.1 <u>1</u> -1.1 <u>1</u> -0.5 <u>8</u> -0.8 <u>4</u>
4.650 4.700 4.800 4.850	1.63349 1.63295 1.632 <u>39</u> 1.631 <u>83</u> 1.6312E	$\begin{array}{c} 0.01091\\ 0.01103\\ 0.011\overline{16}\\ 0.011\overline{28}\\ 0.01128\\ 0.01141\end{array}$	-3.65 -3.65 -3.64 -3.64 -3.64	7.900 8.000 8.100 8.200 8.300	1.584 <u>17</u> 1.58218 1.58016 1.57 <u>811</u> 1.57603	0.019730.020030.02030.02040.02040.02095	-3.05 -3.02 -2.99 -2.97 -2.97	13.000 13.200 13.400 13.600 13.600	1.438071.430131.421981.413621.40505	0.03921 0.04022 0.04126 0.04 <u>126</u> 0.04 <u>233</u> 0.04 <u>342</u>	-0.54 -0.38 -0.22 +0.22
4.900 4.950 5.000 5.100	1.630 <u>69</u> 1.63011 1.62 <u>952</u> 1.62833	$\begin{array}{c} 0.011 \frac{11}{53} \\ 0.011 \frac{53}{66} \\ 0.011 \frac{176}{56} \\ 0.01204 \end{array}$	-3.62 -3.62 -3.61 -3.61	8.400 8.500 8.600 8.700	1.57392 1.57178 1.56961 1.56740	0.02 <u>126</u> 0.02157 0.02 <u>189</u> 0.02 <u>221</u>	-2.88 -2.88 -2.88	14.000 14.200 14.400 14.600	1.39 <u>625</u> 1.38723 1.37 <u>796</u> 1.36846	0.04 <u>455</u> 0.04 <u>571</u> 0.04 <u>691</u> 0.04 <u>814</u>	0.14 0.32 0.52 0.73
5.200 5.300 5.400 5.500	1.62712 1.62587 1.62461 1.62331	0.01 <u>229</u> 0.01 <u>255</u> 0.01280 0.01 <u>306</u>	-3.5 <u>6</u> -3.57 -3.56 -3.56	8.800 8.900 9.000 9.100	1.56 <u>516</u> 1.56 <u>290</u> 1.56059 1.55 <u>826</u>	0.02 <u>253</u> 0.02 <u>285</u> 0.02 <u>318</u> 0.02 <u>351</u>	-2.7 <u>9</u> -2.7 <u>5</u> -2.7 <u>5</u> -2.7 <u>5</u>	14.800 15.000 15.200 15.400	1.35 <u>871</u> 1.34 <u>869</u> 1.33841 1.32 <u>786</u>	0.04 <u>941</u> 0.05 <u>073</u> 0.05 <u>208</u> 0.05 <u>349</u>	$ \begin{array}{c} 0 \cdot 9\overline{4} \\ 1 \cdot 16 \\ 1 \cdot 40 \\ 1 \cdot 6\overline{4} \end{array} $
5.600 5.700 5.800 5.900	1.62 <u>199</u> 1.62 <u>065</u> 1.61 <u>928</u> 1.61788	0.01 <u>332</u> 0.01 <u>358</u> 0.01 <u>384</u> 0.01 <u>411</u>	-3.5 <u>2</u> -3.5 <u>1</u> -3.4 <u>5</u> -3.48	9.200 9.300 9.400 9.500	1.55 <u>589</u> 1.55 <u>349</u> 1.55 <u>106</u> 1.54859	0.02 <u>384</u> 0.02 <u>417</u> 0.02 <u>451</u> 0.02485	-2.65 -2.65 -2.56 -2.56 -2.56	15.600 15.800 16.000	1.31 <u>701</u> 1.30 <u>588</u> 1.29443	0.05 <u>494</u> 0.05 <u>644</u> 0.05800	1.9 <u>0</u> 2.1 <u>7</u> 2.45

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.2. The number of digits with an overstrike are not relevant to accuracy of the data.

FIGURE 8. Refractive Index of LiCl
H. H. LI

TABLE 12. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dn/dT MEASUREMENTS OF LICI

Specifications, and Remarks	Molten _iCl; filled into a 60° prismatic platinum container with silica glass windows of 4 mm diameter; uncertainty of 0.001 in measured n; digitized data were presented.	LiCl was formed by slowly cooling the melt in a Pt crucible; refractive index for mean of sodum D lines was measured by the immersion method.
Temperature, K	888	295
Wavelength Range, µm	0.5461	0. 5893
Method Used	Q	М
Year	1963	1923
Author (s)	Zarzycki, J. and Naudin, F.	Spangenberg, K.
. Ref. No.	44	45
Cur No.	-	73

0.5893 1.662

3.3. Lithium Bromide, LiBr

The only available measurement on the refractive index of crystalline LiBr was made for one spectral line, the sodium D line, by Spangenberg [45] using the immersion method. For molten LiBr, Zarzyski and Naudin [44] determined the index for the Hg green line at a temperature of 843 K.

The reasons for the scantiness of the data are the difficulties in crystal growing and sample preparation. A number of other physical properties of LiBr were investigated; values are given in tables 2 and 3. Although there is only one value of n available, a dispersion equation can be constructed by incorporating the available data on the dielectric constants, the wavelengths of absorption peaks, etc., into a two-oscillator dispersion equation. Using the values of known parameters listed in table 3 and the available refractive index, we obtain

 $\epsilon_s = 13.23$,

 $\epsilon_{uv} = 3.16$,

 $\lambda_u = 0.164 \ \mu m$ (averaged value of three peaks),

 $\lambda_i = 57.80 \ \mu m$,

n = 1.784 for $\lambda = 0.5893 \ \mu m$.

The constant A of eq (13) is found to be 2.88. This leads to a dispersion equation for LiBr valid at 293 K in the transparent region, $0.21-20 \ \mu m$:

$$n^{2} = 2.88 + \frac{0.28 \lambda^{2}}{\lambda^{2} - (0.164)^{2}} + \frac{10.07 \lambda^{2}}{\lambda^{2} - (57.80)^{2}}, \quad (27)$$

where λ is in units of μ m.

No experimental data on dn/dT are available. However, our empirical findings in table 5 were used to assemble a formula of LiBr for the transparent region:

$$2n \frac{dn}{dT} = -14.94 (n^2 - 1) - 14.18$$

$$+ \frac{28.08 \lambda^4}{(\lambda^2 - 0.02993)^2} + \frac{503.50 \lambda^4}{(\lambda^2 - 3340.84)^2},$$
(28)

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m.

Equations (27) and (28) were used to generate the reference data given in the table of recommended values. Since these equation are based totally on the data on the thermal linear expansion, the dielectric constants, the wavelengths of absorption peaks, and the empirical parameters, the accuracies of the calculated values are controlled by the uncertainties in these quantities. The following criteria were established after these correlated parameters were carefully studied.

For refractive index:

Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, \pm
0.21- 0.30	2	0.01
0.30- 1.00	3	0.005
1.00- 6.00	3	0.008
6.00-11.00	2	0.01
11.00-20.00	2	0.05
For dn/dT:		
0.21- 0.40	1	0.9
0.40-13.0	1	0.4
13.00 - 20.0	1	0.9

REFRACTIVE INDEX OF ALKALI HALIDES

TABLE 14. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR LIBr AT 293 K *

		1. / 1	3- (30)	· ·		dr/d	dn/dT)		-dn/d	dn/dT
λ	n	~an/ax		λ.	n	-uu/ux	10=5 12=1	~	n		10=5 V =1
μm	-	µm	10-5 K-1	μ^{m}		µm -	10 ° K	μ^{m}		μ^{m} -	10 . V .
·											
			_				_				_
0.210	1.89674	2.81741	57.73	0.375	1.79605	0.12220	-0.59	1.750	1.77574	0.00378	-4.99
0.212	1-89133	2.59187	52.59	0.380	1.79545	0.11608	-0.7E	1.898	1.77555	0.00380	-4.00
0.244	1 00275	0 70 700	10 17	0 785	4 704 00	0 44079	-0.07	4 950	4 77576	0 00707	
0.214	1.00035	2.39208	40.12	0.302	1.19409	0.11030	-4-31	1.020	1.11536	0.00383	-2.00
0.216	1.88175	2.21428	44.20	0.390	1.79435	8.10507	-1.06	1.900	1.77516	0.00386	-5.00
0.218	1.87748	2.05535	40.74	8.395	1.79384	6.10012	-1.20	1.950	1.77497	0.00390	-5.01
0 220	4 97 75 2	4 01 277	77 67	a /.aa	1 70375	0 005/8	-1 32	2 666	4 771.77	0 00304	-5 04
0.220	1.01 352	1.912/3	31.01	0.400	1.79335	0.09540	-1.3-	2.000	1.11411	0.00394	-2.64
0.222	1.86982	1.78425	34.93	0.410	1.79244	0.08/09	-1.58	2.050	1.//458	0.00399	-2.02
0.224	1.86637	1.66811	32.47	0.420	1.79160	0.07969	-1.80	2.100	1.77438	6.08464	-5.02
0.226	1.86314	1.56278	30.25	0.430	1.79084	0.07315	-2.00	2.153	1.77417	0.00409	-5.62
0.228	1 . 86 011	1.46696	28.25	0.440	1.79014	0.06735	-2.10	2.200	1.77397	0.01415	-5.62
0.220	1000011	1.400,0	20425	0.440	10//014				1011031		2002
						· · · · · · · · · · · · · · · · · · ·	a 57				
0.230	1.65/27	1.3/955	26.43	0.450	1.78949	U. U62 <u>17</u>	-2.35	2.258	1.//3/E	0.004 <u>21</u>	-5.03
0.232	1.85459	1.29958	24.77	0.460	1.78889	0.05754	-2.50	2.300	1.77354	6.00427	-5.83
0.234	1.85207	1.22 € 25	23.25	0.470	1.78834	0.65338	-2.64	2.350	1.77333	0.00434	-5.03
0 236	1 . 8/. 06.8	1 15 993	21 85	0 480	1 78782	0 0.063	2 77	2 6 00	4 77344	0 004 1.0	-5 03
0.230	1.04.300	1.190034	21.00	0.400	1.10102	0.04905	- 2 . 1	2.4400	1.77211	0.00440	-2.03
0.238	1.84/43	1.096/1	20.57	0.490	1.78/34	0.54625	+2.89	2.450	1.//285	0.00447	-2.83
							_				
0.240	1.84529	1.03936	19.39	0.508	1.78690	0.04318	-3.00	2.500	1.77266	0.00454	-5.03
8.242	1.84327	6.98629	18-31	8.510	1.78648	0.04039	-3.10	2.550	1.77243	0.00461	-5-03
0.244	1 8/ 1 3/	0 07710	17.20	0.520	1 786 00	0 07795	-7 10	2 6 0 0	1 77:20	0 00/60	-5 07
0.244	1.04134	0.50110	11.23	0.520	1.70005	0.03705	-3.13	2.000	1.11220	0.00400	-2.03
0.240	1.83952	0.89141	16.34	0.530	1.78572	8.03554	-3.28	2.650	1.(/19/	0.004/5	-5.03
0.248	1.83778	0.84891	15.47	0.540	1.78538	0.03342	-3.3€	2.700	1.77173	0.00483	-5.03
8.250	1.83612	0.80970	14.65	0.550	1.78505	0.03148	-3.43	2.758	1.77148	0.09491	-5-03
0.252	1.83454	0.77233	13.88	0.560	1.78475	0.02060	-3.50	2.800	1.77124	0.00408	-5.03
0.252	1.03474	0.77233	13.00	0.500	1010415	0.02555	-3.54	2.000	1.11124	0.00430	-2.03
0+254	1.83303	0.73/11	13.1/	0.570	1.78440	0.02805	-3.5/	2.858	1.11098	0.00506	-5.63
0.256	1.83158	0.70541	12.49	0.580	1.78419	0.02654	-3.63	2.900	1.77073	0.00514	-5.03
0.258	1.83020	0.67509	11.8E	0.590	1.78393	0.02514	-3.69	2.958	1.77047	0.00522	-5.02
8.260	1.82888	0.64852	11.27	0.600	1.78368	0-02384	-3.75	3.000	1.77021	0.00520	-5.02
0 262	4 82762	0 61 096	10 21	0 620	4 78 7 27	0 024 57	-7 95	3 0 5 0	4 74 601	0 00527	-5 07
0.202	1.02/02	0.01300	10011	0.020	100020	0.02155	-3.05	3.090	1.0554	0.00557	-9.02
0.264	1.82 <u>640</u>	0.59468	10.18	0.540	1.78282	0.01954	-3.94	3.100	1./69 <u>6/</u>	0.00545	-5.62
0.266	1.82524	0.57 <u>096</u>	.9 . 6 <u>8</u>	0.660	1.78245	0.01781	-4.02	3.150	1.76940	0.00554	-5.02
0.268	1.82412	8.54859	9.21	0.680	1.78211	0.01630	-4.69	3.200	1.76912	0.00562	-5.02
				•••••							
0.270	4 82 30 /	0 52715	8 75	8 780	4 784 70	0 04/09	-1 12	7 250	4 76 987	0 005 70	-5 01
0.270	1.02.004	0.52740	0.10	0.700	1.101/3	0.01430	-4.10	3.290	1.10003	0.005/0	-2.01
0.272	1.82201	0.50/49	8.35	8.720	1.78150	0.01382	-4.22	3.344	1.76855	0.00578	-5.01
0.274	1.82101	0.48860	7.93	8.740	1.78124	0.01279	-4.27	3.350	1.76826	0.00586	-5.01
0.276	1.82005	8.47871	7.54	0.760	1.78099	0.01188	-4.32	3.400	1.76796	0.00595	-5.01
0.278	1.81913	0.45375	7.18	0.780	1.78076	0.01108	= 4.37	3.460	1.76766	0 0 0 6 73	-5 60
	1001 710	0.45075	1.10		1.10010	0.01100	- 4 • 0 1	5.470	1.10100	0.00000	- 2.00
	4 44 7 7	0 1 3 3 4 4	6 A 5				· .				
0.200	1.01024	0.43/20	0.02	0.000	1./0025	0.01036	-4.4 <u>1</u>	3.500	1.16/32	0.00011	-5.60
0.282	1.81738	0.42237	6.50	0.820	1.78035	0.00971	-4.45	3,550	1.76705	0.00620	-5.00
0.284	1.81655	0.40785	6.18	0.840	1.78016	0.00914	-4.48	3.600	1.76674	0.00628	-5.00
0.286	1 . 81 574	R. 39404	5.88	0.860	1.77698	0.00862	+4.52	3.650	1.76642	0.00637	-4.00
0.288	4 . 84 4 07	0.70000	5.50	0.000	4 776 44	0.000002	-4 57	3 300	1 76610	0.005 45	
4.200	1.01431	0.00000	2025	9.009	1011201	0.00010	-4.55	3.100	1.70010	0.00045	-4.33
	4 4 4 7 7 7 7		e - T	· · · ·							
0.290	1.81 <u>422</u>	U.SE <u>836</u>	5.3 <u>1</u>	0.900	1.779 <u>66</u>	0.00774	-4.57	3.750	1.76578	0.006 <u>5</u> 4	-4.99
0.292	1.81350	0.35641	5.04	0.920	1.77950	0.00736	-4.60	3.800	1.76545	0.00662	-4.98
0.294	1.81279	0.34502	4.70	0.940	1.77036	0.00704	-4.57	3. 850	1.76512	0.00671	-4.09
8 206	4 44 24 2	1 771.44	1. 55	0 050	4 77022	0 00070	-1. 68	3 0 0 0	1 761.70	0.00071	7.20
0 200	4 94416	0.20275	4.35	0.400	1.77922	0.000/0	-4.02	3.900	1.104/0	0.006/9	-4.98
0.290	1.01140	0.32315	4.31	0.480	1.//909	0.00642	-4.07	3.950	1.75444		-4.97
							-			_	_
0.300	1.81082	0.31381	4.09	1.000	1.77897	0.00617	-4.69	4.000	1.76409	0.00697	-4.97
0.305	1.80931	0.25081	3.5Ē	1.058	1.77 867	0.00562	-4.73	4.050	1.76374	0.00705	-4.97
0.310	1.88701	6.27845	3.00	1.100	1.7781.0	0.00540	- 4. 77	4.100	1.76379	0 0 0 7 4 4	
6.315	1.80660	0.26163	2.65	1 120	4.77945	0 000013		4.100	4 76 20 2	0.00714	-4.30
0.300	1.000000	9.02122	<u> </u>	1.120	1.11015	0.00405		4.150	1.10:02	0.00/23	-4.50
u.32U	1.00539	0.23468	2.25	1.200	1 • /7792	U.C0458	-4+83	4.200	1.7626€	0.00732	-4.96
_			-		_	_	_			_	_
0.325	1.80426	0.21940	1.88	1.250	1.77769	0.00437	-4.86	4.250	1.76229	0.00740	-4.95
0,330	1.80319	0.20550	1.55	1.300	1.77748	0.00420	-4.88	4.388	1.76192	0.00740	-4.05
0.335	1.60220	8-19282	1.24	1.360	1.777.27	0.104007	-4.08	- 4. KEN	1.76157	0.00747	-4 07
0 740	4 00437	0 40407	1°57	1.020	1 7770	0.00407			1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00120	~ 7 • 7 4
0.340	1.00126	0.10123	0.42	1.400	1.1/107	0.00397	-4.31	4.400	1./6116	U.U07 <u>67</u>	-4.54
U.345	1.80038	0.17060	0.68	1.450	1.77688	69200.0	-4.93	4.450	1.76078	0.00776	-4.93
	_	_	_								
0.350	1.79956	0.160 24	0.43	1.500	1.77668	0.00283	-4.94	4.500	1.76030	0.00785	-4.93
0.355	1.79877	0.15185	0.27	1.550	1.77640	0.00780	-4.95	4.550	1.75000	0-00704	- 4 - 6 - 7
0.360	1 70.801	0 14755	-0.07	4 6 7 0	1 77 6 70	0 00 7 70	-1. 66	1. 600	1 75050	0.000	
0.000	1.79044	0.14322	- 4. 94	1.000	1.11030	u.u.u.a/8	-4.90	4.000	1.12:25	u.uuo <u>u</u> 2	
0.365	1.797 <u>34</u>	0.135 <u>88</u>	-0.2 <u>2</u>	1.650	1.776 <u>1</u> 1	0.00377	-4.97	4.650	1.759 <u>1</u> 9	0.008 <u>1</u> 1	-4.92
0.370	1.7966 €	0.12878	-0.41	1.700	1.77593	0.00377	-4.98	4.700	1.75878	0.00820	-4.91

.

λ μm	Ľ	-dn/dλ µm ⁻¹	dn/dT 10 ⁻⁵ K ⁻¹	λ μαα	Ũ	- ձո/ձձ _ տո_։	dr/dT 10 ⊸ K –1	ک پیتم	n	-dn/di jon ⁻¹	da/dT 10 → K∹
4.750 4.800 4.850 4.900 4.900	1.75837 1.757 <u>95</u> 1.757 <u>53</u> 1.757 <u>11</u> 1.76627	0.00829 0.00829 0.00847 0.00847 0.00847 0.00847	-4. 9901 -4. 9901 -4. 9001 -4. 9001 -4. 9001 -4. 9001 -4. 9001 -4. 9001 -4. 9001 	8 • 100 5 • 200 6 • 300 6 • 409 8 • 500	1.72000 1.71651 1.71700 1.71547 1.71392	0.01478 0.01499 0.01620 0.01620 0.01545 0.01562	- 4 6 5 5 - 4 6 5 5 - 4 6 6 5 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	13,400 13,600 13,600 14,000 14,000	1.00875 1.60308 1.59 <u>720</u> 1.59 <u>138</u> 1.59 <u>138</u>	0 • 0 2 0 0 4 0 • 0 2 8 6 6 0 • 0 2 9 2 9 0 • 0 2 9 2 9 0 • 0 2 9 9 3 0 • 0 3 0 5 8	• 2 2 5 • 2 2 2 5 • 3 2 4 • 2 2 2 4 • 2 2 4 • 2 2 4 • 2 2 4 • 2 4
5,000 5,100 5,200 5,300 5,400	1.755 <u>36</u> 1.755 <u>36</u> 1.754 <u>45</u> 1.753 <u>53</u> 1.75260	0.00875 0.00875 0.008453 0.00911 0.00929 0.00948	- 4 4 4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.600 8.700 6.800 8.900 9.000	1.71234 1.71075 1.70913 1.70753 1.70753 1.70584	6.01 <u>564</u> 0.01 <u>605</u> 0.01 <u>627</u> 0.01 <u>649</u> 0.01 <u>649</u> 0.01 <u>649</u>	- 4 4 2 2 4 - 4 4 4 - 4 4 4 - 4 4 6 - 4 4 - 4 6 - 4 6 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	14.400 14.600 14.800 15.000 15.200	1.57 <u>913</u> 1.57 <u>281</u> 1.56 <u>63</u> € 1.55 <u>576</u> 1.55 <u>50</u> 3	0.03125 0.03198 0.03282 0.03333 0.03333 0.03405	- 1.50 - 1.50 - 1.50 - 1.50 - 1.42
5.500 5.600 5.700 5.300 5.300	1.751 1.750 1.750 1.749 1.740 1.740 1.74752	0.009 <u>68</u> 0.009 <u>85</u> 0.010 <u>04</u> 0.010 <u>04</u> 0.010 <u>45</u>	-4.82 -4.82 -4.82 -4.57 -4.57	9.100 9.200 9.300 9.400 9.500	1.70 <u>415</u> 1.70 <u>245</u> 1.70 <u>072</u> 1.69 <u>797</u> 1.69720	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\$	-4.12 -4.12 -4.12 -4.02 -4.00	15.400 5.600 5.000 5.000 16.200	$ \begin{array}{c} 1.54\overline{(14)}\\ 1.53\overline{(11)}\\ 1.53\overline{(13)}\\ 1.53\overline{(13)}\\ 1.51\overline{(10)}\\ 1.51(10)$	0.03479 0.03554 0.03554 0.03551 0.03710 0.03791	- 2 2 2 - 2 -
6.000 6.100 6.200 6.300 5.400	$\begin{array}{c} 1 & 74 \overline{557} \\ 1 & 74 \overline{550} \\ 1 & 74 \overline{441} \\ 1 & 74 \overline{331} \\ 1 & 74 \overline{218} \end{array}$	$\begin{array}{c} 0.01 \overline{0.01079} \\ 0.01 \overline{079} \\ 0.01 \overline{079} \\ 0.01 \overline{117} \\ 0.01 \overline{137} \end{array}$	-4.775 -4.275 -4.275 -4.275	5.800 9.700 9.800 9.900 18.000	1.69 <u>541</u> 1.69 <u>359</u> 1.69 <u>375</u> 1.69 <u>175</u> 1.68 <u>989</u> 1.68 <u>989</u>	0.01005 0.01020 0.01020 0.01075 0.01075 0.01075	-4.00 -4.00 -3.00 -3.00 -3.00 -3.00 -3.00 -3.00 -3.00 	16.400 16.600 15.800 17.000 17.200	1.50 <u>942</u> 1.50 <u>155</u> 1.49 <u>350</u> 1.48 <u>540</u> 1.48 <u>540</u>	0.03874 8.03958 0.04045 0.04045 0.04234 0.04225	-0.44 -0.28 -0.13 0.13 0.34
5.500 5.600 6.700 6.800 6.900	1.73 <u>748</u> 1.73 <u>748</u> 1.73 <u>748</u> 1.73 <u>748</u> 1.73525	0.01 <u>156</u> 0.01 <u>175</u> 0.01 <u>214</u> 0.01 <u>214</u> 0.01 <u>234</u>		10.200 10.400 10.609 10.800 11.000	1.68 <u>416</u> 1.68 <u>022</u> 1.67 <u>619</u> 1.67 <u>206</u> 1.67 <u>206</u> 1.67 <u>82</u>	0.01945 0.01953 0.02042 0.02091 0.02091	-3.60 -3.77 -3.77 -3.60 -3.60	17.400 17.600 17.800 15.000 18.200	1.46 <u>850</u> 1.45 <u>977</u> 1.45 <u>084</u> 1.44 <u>175</u> 1.43 <u>238</u>	$\begin{array}{c} 0.04 \overline{319} \\ 0.044 \overline{15} \\ 0.04 \overline{514} \\ 0.04 \overline{514} \\ 0.04 \overline{515} \\ 0.04 \overline{515} \\ 0.04 \overline{19} \end{array}$	0.5 5.7 1.02 1.5 5 1.5 5 5 5
7.000 7.100 7.200 7.300 7.400	1.73 <u>501</u> 1.73 <u>375</u> 1.73 <u>248</u> 1.73 <u>116</u> 1.72983	$\begin{array}{c} 0.01 \overline{254} \\ 0.01 \overline{274} \\ 0.01 \overline{274} \\ 0.01 \overline{314} \\ 0.01 \overline{314} \\ 0.01 \overline{34} \end{array}$	• (4) (5)	12.200 11.400 11.600 11.800 12.000	1.66 <u>349</u> 1.659 <u>06</u> 1.65 <u>452</u> 1.65 <u>452</u> 1.64 <u>588</u> 1.64 <u>513</u>	6.02 <u>191</u> 0.02 <u>243</u> 0.02 <u>243</u> 0.02 <u>295</u> 0.02 <u>348</u> 0.02 <u>348</u>		18.408 15.600 18.800 19.000 19.200	1.42 <u>283</u> 1.41 <u>307</u> 1.40 <u>308</u> 1.39 <u>286</u> 1.38 <u>241</u>	5.54827 0.04937 0.05051 0.05168 0.05289	1.76 2.03 2.31 2.50 2.51
7.500 7.600 7.705 7.800 7.900	1.72 <u>849</u> 1.72 <u>713</u> 1.72 <u>574</u> 1.72 <u>436</u> 1.72291	D.01354 0.01374 0.01375 0.0145 0.01436	-4.520 -4.500 -4.42 -4.42 -4.44	12.200 12.400 12.600 12.800 13.000	1.64 <u>027</u> 1.63 <u>531</u> 1.63 <u>023</u> 1.62 <u>503</u> 1.61972	0.024 <u>56</u> 0.02 <u>512</u> 0.02 <u>568</u> 0.02 <u>568</u> 0.02 <u>626</u> 0.02 <u>684</u>		19.400 19.600 19.800 20.000	1,37 <u>170</u> 1,36 <u>075</u> 1,34 <u>953</u> 1,33804	8.05 <u>414</u> 0.05 <u>543</u> 0.05 <u>677</u> 0.05814	3 • 2 3 3 • 5 <u>6</u> 3 • 5 <u>6</u> 4 • 2 6

TABLE 14. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE FOR LIBY AT 293 K (continued)*

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.3. The number of digits with an overstrike are not relevant to accuracy of the data.

1d1	SI	mtainer with silica glass certainty of 0,005 in measured
T TO GENERATION TO THE ADDRESS AND	Specifications and Remar	Molton LiBr; filled into a 60° prismatic Pt c windows of 4 mm diameter; estimated um n; digitized lata were presented.
UN LUE REFRACT	'l'emperature, K	843
INF ORMATION	Wavelength Range, µm	0.5461
CHNICAL	Method Used	D
T GNP 1	Year	1963
MARIA 19, 2000	Author(s)	Zarzycki, J. and Naudhn, F.
	Ref. No.	44
Ì	Cur No.	1

LiBr was formed by slow cooling of the melt on the lid of a Pt crucible and then peeled off; refractive index for mean of sodium D lines was measured by the *immersion* method.

295

0.5893

N

1923

Spangenberg, K.

45

2

/dT MEASUREMENTS OF LIBY A ND dn 2

TABLE 16. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF LIBE

(Wavelength, λ , μm ; Refractive Index, n]

0.5461 1.600 $\frac{\text{CURVE 1}}{\text{T} = 843.2 \text{ K}}$ 0.5893 1.784 ŭ $\frac{\text{CURVE 2}}{\text{T} = 295.2 \text{ K}}$ ۲

3.4 lithium lodide, Lil

Only one value of the refractive index of LiI is available, measured by Spangenberg [45] in 1923. Such scantiness of data is probably due to difficulties in crystal growing and sample preparation. A number of other physical properties of LiI are known; some values are given in tables 2 and 3. With this single value of n, the dispersion equation can still be constructed by utilizing the available information on the dielectric constants and the wavelengths of absorption peaks.

Using the values of known parameters listed in table 3 and the available value of n, we find

$$\epsilon_s = 11.03$$

 $\epsilon_{uv} = 3.80,$

 $\lambda_u = 0.171 \ \mu m$ (averaged value of 7 peaks)

 $\lambda_I = 70.42 \ \mu m$,

n = 1.955 for $\lambda = 0.5893 \ \mu m$.

The value of the parameter A of eq (13) was found to be 3.55. This leads to a dispersion equation for LiI which is valid at 293 K in the transparent region, $0.25-25 \ \mu m$:

$$n^{2} = 3.55 + \frac{0.25 \lambda^{2}}{\lambda^{2} - (0.171)^{2}} + \frac{7.23 \lambda^{2}}{\lambda^{2} - (70.42)^{2}}, \quad (29)$$

where λ is in units of μ m.

No experimental data on dn/dT are available. However, our empirical parameters in table 5 lead to a formula for dn/dT in the transparent region:

$$2n \frac{dn}{dT} = -17.82 \ (n^2 - 1) - 14.90 \tag{30}$$

$$+\frac{36.40 \lambda^4}{(\lambda^2-0.04494)^2}+\frac{318.12 \lambda^4}{(\lambda^2-4958.98)^2},$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m.

Equations (29) and (30) were used to generate the recommended values. Since the construction of these equations is based totally on the available data on the thermal linear expansion, the dielectric constants, the wavelengths of absorption peaks, and the empirical parameters, the reliability of the calculated values is governed by the uncertainties of these quantities. The following accuracies were estimated after carefully studying the correlated properties:

For refractive index:

Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, \pm
		14.2 L
0.25 - 0.30	2	0.01
0.30 - 1.00	3	0.005
1.00-8.00	3	0.008
8.00-13.00	2	0.01
13.00 - 25.00	2	0.03
For dn/dT :		
0.25- 0.55	.1	0.9
0.55 - 20.00	1	0.5
20.00 - 25.00	1	0.9

λ μm	n	-dn/dλ µm ⁻ⁱ	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	n	$-dn/d\lambda$ μm^{-1}	dn/dT 10 ⁻⁵ K ⁻¹		λ μm	n	-dn/dλ µm ^{−i}	dn/dT 10 ⁻⁵ K ⁻¹
D.250 C.252 O.254 C.256 C.258	2.00 <u>492</u> 2.00 <u>331</u> 2.00 <u>178</u> 2.00 <u>033</u> 1.99894	0.82 <u>424</u> 0.78 <u>349</u> 0.74 <u>563</u> 0.71 <u>038</u> 0.67752	97.8 <u>6</u> 89.1 <u>9</u> 81.6 <u>4</u> 75.0 <u>3</u> 69.19	0.550 0.560 0.570 0.580 0.580	1.956 <u>10</u> 1.955 <u>82</u> 1.955 <u>57</u> 1.955 <u>33</u> 1.95510	$\begin{array}{c} 0 \cdot 027 \overline{94} \\ 0 \cdot 026 \overline{30} \\ 0 \cdot 024 \overline{80} \\ 0 \cdot 023 \overline{42} \\ 0 \cdot 023 \overline{42} \\ 0 \cdot 022 \overline{14} \end{array}$	-3.85 -4.00 -4.14 -4.28 -4.20		2.750 2.800 2.850 2.900 2.950	1.94677 1.946 <u>66</u> 1.946 <u>55</u> 1.946 <u>43</u> 1.946 <u>3</u> 1	0.00225 0.00228 0.00231 0.00233 0.00233 0.00236	$-7.1\overline{3}$ $-7.1\overline{4}$ $-7.1\overline{4}$ $-7.1\overline{4}$ $-7.1\overline{4}$ $-7.1\overline{4}$
0.269 0.262 0.264 0.266 0.268	1.997 <u>62</u> 1.99 <u>635</u> 1.99 <u>514</u> 1.99 <u>399</u> 1.99 <u>288</u>	0.64 <u>682</u> 0.61 <u>812</u> 0.59 <u>123</u> 0.56 <u>602</u> 0.54 <u>234</u>	64.0 <u>2</u> 59.4 <u>(</u> 55.2 <u>6</u> 51.5 <u>3</u> 48.1€	0.600 0.620 0.640 0.660 0.680	1.954 <u>89</u> 1.954 <u>49</u> 1.954 <u>13</u> 1.953 <u>81</u> 1.95351	0.020 <u>96</u> 0.01885 0.017 <u>03</u> 0.015 <u>45</u> 0.01407	-4.52 -4.73 -4.91 -5.08 -5.23		3.000 3.050 3.100 3.150 3.200	1.946 <u>19</u> 1.946 <u>07</u> 1.945 <u>95</u> 1.945 <u>83</u> 1.94570	0.002 <u>40</u> 0.002 <u>43</u> 0.002 <u>46</u> 0.002 <u>49</u> 0.002 <u>52</u>	-7.14 -7.15 -7.15 -7.15 -7.15
0.270 0.272 0.274 0.276 0.276 0.278	1.99 <u>182</u> 1.99 <u>080</u> 1.98 <u>982</u> 1.98 <u>888</u> 1.98798	0.52 <u>007</u> 0.49 <u>911</u> 0.47 <u>935</u> 0.46 <u>071</u> 0.44 <u>310</u>	45.1 <u>C</u> 42.3 <u>2</u> 39.7 <u>7</u> 37.4 <u>4</u> 35.29	0.700 0.720 0.740 0.760 0.780	1.953 <u>24</u> 1.952 <u>99</u> 1.952 <u>77</u> 1.952 <u>56</u> 1.952 <u>37</u>	0.012 <u>86</u> 0.011 <u>80</u> 0.010 <u>86</u> 0.010 <u>03</u> 0.00929	-5.3 -5.48 -5.59 -5.69 -5.78		3.250 3.300 3.350 3.400 3.450	1.945 <u>57</u> 1.945 <u>45</u> 1.945 <u>32</u> 1.945 <u>18</u> 1.945 <u>05</u>	0.002 <u>56</u> 0.002 <u>59</u> 0.002 <u>62</u> 0.002 <u>66</u> 0.002 <u>69</u>	-7.15 -7.15 -7.15 -7.15 -7.15 -7.15
0.280 0.282 0.284 0.286 0.286 0.288	1.98711 1.98627 1.98546 1.98469 1.98394	$\begin{array}{c} 0.42 \overline{645} \\ 0.41 \overline{070} \\ 0.39 \overline{577} \\ 0.38 \overline{161} \\ 0.36 \overline{817} \end{array}$	33.3 <u>1</u> 31.4 <u>9</u> 29.79 28.2 <u>2</u> 26.7E	0.800 0.820 0.840 0.860 0.860	1.952 <u>19</u> 1.952 <u>02</u> 1.951 <u>87</u> 1.951 <u>72</u> 1.951 <u>58</u>	0.008 <u>63</u> 0.008 <u>04</u> 0.007 <u>50</u> 0.007 <u>03</u> 0.00659	-5.8 <u>6</u> -5.9 <u>4</u> -6.0 <u>1</u> -6.0 <u>7</u> -6.1 <u>3</u>	·	3.500 3.550 3.600 3.650 3.700	1.944 <u>91</u> 1.944 <u>78</u> 1.944 <u>64</u> 1.944 <u>50</u> 1.944 <u>3</u> E	0.00272 0.00276 0.00279 0.0028 <u>3</u> 0.00286	-7.15 -7.15 -7.15 -7.15 -7.15 -7.15
0.290 0.292 0.294 0.296 0.298	1.98 <u>321</u> 1.98 <u>251</u> 1.98 <u>184</u> 1.98 <u>119</u> 1.98 <u>056</u>	0.35 <u>541</u> 0.34 <u>327</u> 0.33 <u>173</u> 0.32 <u>073</u> 0.31025	25.3 <u>9</u> 24.1 <u>2</u> 22.9 <u>2</u> 21.8 <u>1</u> 20.75	0.900 0.920 0.940 0.960 0.980	$1.951 \frac{46}{34} \\ 1.951 \frac{34}{34} \\ 1.951 \frac{22}{1} \\ 1.951 \frac{11}{1} \\ 1.951 \frac{01}{01} $	0.006 <u>20</u> 0.005 <u>85</u> 0.005 <u>53</u> 0.005 <u>23</u> 0.004 <u>97</u>	-6.1 <u>9</u> -6.2 <u>4</u> -6.2 <u>8</u> -6.3 <u>3</u> -6.37		3.750 3.800 3.850 3.900 3.950	1.944 <u>21</u> 1.94407 1.943 <u>92</u> 1.943 <u>77</u> 1.94362	0.002 <u>90</u> 0.002 <u>94</u> 0.002 <u>97</u> 0.003 <u>01</u> 0.003 <u>04</u>	-7.15 -7.15 -7.15 -7.15 -7.15 -7.15
0.300 0.305 0.310 0.315 0.320	1.979 <u>95</u> 1.978 <u>50</u> 1.977 <u>17</u> 1.975 <u>93</u> 1.97478	0.300 <u>26</u> 0.277 <u>22</u> 0.256 <u>64</u> 0.238 <u>18</u> 0.22156	19.7 <u>7</u> 17.54 15.6 <u>0</u> 13.9 <u>1</u> 12.41	1.000 1.050 1.100 1.150 1.200	1.950 <u>92</u> 1.950 <u>69</u> 1.950 <u>49</u> 1.950 <u>31</u> 1.95015	$\begin{array}{c} 0.004 \overline{72} \\ 0.004 \overline{20} \\ 0.003 \overline{78} \\ 0.003 \overline{44} \\ 0.003 \overline{16} \end{array}$	-6.4 <u>1</u> -6.4 <u>9</u> -6.57 -6.6 <u>3</u> -6.68		4.000 4.050 4.100 4.150 4.200	$1.943\overline{46} \\ 1.943\overline{31} \\ 1.943\overline{15} \\ 1.943\overline{15} \\ 1.942\overline{99} \\ 1.942\overline{83} \\ 1.9$	0.003 <u>08</u> 0.003 <u>12</u> 0.003 <u>15</u> 0.003 <u>19</u> 0.003 <u>23</u>	-7.1 <u>5</u> -7.15 -7.14 -7.14 -7.14
0.325 0.330 0.335 0.340 0.345	1.97371 1.97272 1.97178 1.97091 1.97099	0.206 0.192 <u>96</u> 0.180 <u>60</u> 0.169 <u>35</u> 0.15906	11.0 <u>9</u> 9.9 <u>1</u> 8.8 <u>5</u> 7.9 <u>0</u> 7.03	1.250 1.300 1.350 1.400 1.450	1.950 <u>00</u> 1.949 <u>86</u> 1.949 <u>72</u> 1.949 <u>60</u> 1.94948	0.002 <u>93</u> 0.002 <u>74</u> 0.002 <u>58</u> 0.002 <u>46</u> 0.002 <u>35</u>	-6.73 -6.77 -6.81 -6.84 -6.87		4.250 4.300 4.350 4.400 4.450	1.942 <u>67</u> 1.942 <u>51</u> 1.942 <u>34</u> 1.942 <u>17</u> 1.94200	0.003 <u>26</u> 0.003 <u>30</u> 0.003 <u>34</u> 0.003 <u>37</u> 0.00341	$-7.1\overline{4}$ -7.1 <u>4</u> -7.1 <u>4</u> -7.1 <u>4</u> -7.1 <u>4</u> -7.1 <u>4</u>
0.350 0.355 0.360 0.365 0.370	1.969 <u>32</u> 1.968 <u>59</u> 1.967 <u>91</u> 1.967 <u>26</u> 1.967 <u>65</u>	$\begin{array}{c} 0.149\overline{64} \\ 0.14100 \\ 0.133\overline{04} \\ 0.12571 \\ 0.11893 \\ \end{array}$	6.2 <u>5</u> 5.5 <u>5</u> 4.2 <u>5</u> 5.5 <u>8</u> 8.2 <u>8</u> 4.2 <u>8</u> 3.7	1.500 1.550 1.600 1.650 1.700	1.949 <u>36</u> 1.949 <u>25</u> 1.949 <u>14</u> 1.949 <u>04</u> 1.948 <u>93</u>	0.002 <u>26</u> 0.002 <u>19</u> 0.002 <u>13</u> 0.002 <u>09</u> 0.00205	-6.9 <u>7</u> -6.9 <u>7</u> -6.9 <u>4</u> -6.9 <u>6</u> -6.98		4.500 4.550 4.600 4.650 4.700	$1.941\overline{83} \\ 1.941\overline{66} \\ 1.941\overline{46} \\ 1.941\overline{31} \\ 1.941\overline{31} \\ 1.941\overline{13} \\ 1.9$	0.0034 <u>5</u> 0.00349 0.003 <u>52</u> 0.003 <u>56</u> 0.00356	$-7.1\overline{3}$ $-7.1\overline{3}$ $-7.1\overline{3}$ $-7.1\overline{3}$ $-7.1\overline{3}$ $-7.1\overline{3}$
0.375 0.380 0.385 0.390 0.395	1.966 <u>07</u> 1.965 <u>52</u> 1.965 <u>00</u> 1.964 <u>50</u> 1.96403	0.112 <u>67</u> 0.106 <u>85</u> 0.101 <u>46</u> 0.096 <u>44</u> 0.09176	3.22 2.7 <u>5</u> 2.3 <u>1</u> 1.9 <u>0</u> 1.52	1.750 1.800 1.850 1.900 1.950	1.948 <u>83</u> 1.948 <u>73</u> 1.948 <u>63</u> 1.948 <u>53</u> 1.94843	0.00202 0.00200 0.00199 0.00198 0.00198	-7.0 <u>0</u> -7.0 <u>1</u> -7.0 <u>2</u> -7.0 <u>3</u> -7.05		4.750 4.800 4.850 4.900 4.950	1.940 <u>95</u> 1.940 <u>77</u> 1.940 <u>58</u> 1.940 <u>39</u> 1.940 <u>39</u> 1.94021	0.003 <u>64</u> 0.003 <u>67</u> 0.003 <u>71</u> 0.003 <u>75</u> 0.00379	-7.1 <u>3</u> -7.1 <u>2</u> -7.1 <u>2</u> -7.1 <u>2</u> -7.1 <u>2</u> -7.1 <u>2</u>
0.400 0.410 0.420 0.430 0.430	1.963 <u>59</u> 1.962 <u>75</u> 1.961 <u>99</u> 1.961 <u>30</u> 1.96066	0.087 <u>39</u> 0.079 <u>50</u> 0.072 <u>57</u> 0.066 <u>47</u> 0.06106	1.17 0.53 -0.03 -0.54 -0.58	2.000 2.050 2.100 2.150 2.200	1.948 <u>33</u> 1.948 <u>23</u> 1.948 <u>14</u> 1.948 <u>04</u> 1.947 <u>94</u>	0.00197 0.00198 0.00199 0.00199 0.00199 0.00199 0.00201	-7.0 <u>6</u> -7.0 <u>7</u> -7.0 <u>7</u> -7.0 <u>8</u> -7.09		5.000 5.100 5.200 5.300 5.400	1.940 <u>02</u> 1.939 <u>63</u> 1.939 <u>23</u> 1.938 <u>83</u> 1.93842	0.003 <u>83</u> 0.003 <u>90</u> 0.003 <u>98</u> 0.004 <u>06</u> 0.00413	-7.1 <u>2</u> -7.1 <u>1</u> -7.1 <u>1</u> -7.1 <u>0</u> -7.10
0.450 0.460 0.470 0.480 0.480 0.490	1.960 <u>08</u> 1.95954 1.959 <u>04</u> 1.958 <u>57</u> 1.95814	0.056 <u>24</u> 0.051 <u>95</u> 0.048 <u>09</u> 0.044 <u>63</u> 0.044 <u>51</u>	-1.3 <u>8</u> -1.74 -2.0 <u>7</u> -2.3 <u>6</u> -2.63	2.250 2.300 2.350 2.400 2.450	1.947 <u>84</u> 1.947 <u>73</u> 1.947 <u>63</u> 1.947 <u>53</u> 1.94742	0.002 <u>02</u> 0.002 <u>04</u> 0.002 <u>06</u> 0.002 <u>08</u> 0.00210	-7.0 <u>9</u> -7.1 <u>0</u> -7.1 <u>1</u> -7.1 <u>1</u> -7.1 <u>1</u>		5.500 5.600 5.700 5.800 5.900	1.938 <u>01</u> 1.937 <u>56</u> 1.937 <u>15</u> 1.936 <u>71</u> 1.93626	$\begin{array}{c} 0.004\frac{21}{21} \\ 0.004\frac{29}{37} \\ 0.004\frac{37}{52} \\ 0.004\frac{45}{52} \\ 0.004\frac{52}{52} \end{array}$	-7.0 <u>9</u> -7.0 <u>9</u> -7.0 <u>8</u> -7.0 <u>8</u> -7.07
0.500 0.510 0.520 0.530 0.540	1.95774 1.957 <u>37</u> 1.957 <u>02</u> 1.956 <u>69</u> 1.956 <u>38</u>	0.038 <u>68</u> 0.038 <u>68</u> 0.03379 0.03166 0.02972	-2.88 -3.11 -3.31 -3.51 -3.68	2.500 2.550 2.600 2.650 2.700	1.947 <u>32</u> 1.947 <u>21</u> 1.947 <u>10</u> 1.947 <u>00</u> 1.94689	0.002 <u>12</u> 0.002 <u>14</u> 0.002 <u>17</u> 0.002 <u>19</u> 0.002 <u>22</u>	-7.12 -7.12 -7.13 -7.13 -7.13		6.000 6.100 6.200 6.300 6.400	1.93580 1.935 <u>34</u> 1.934 <u>87</u> 1.934 <u>39</u> 1.93390	0.004 <u>60</u> 0.004 <u>68</u> 0.004 <u>76</u> 0.004 <u>84</u> 0.004 <u>84</u>	-7.06 -7.06 -7.05 -7.05 -7.04

TABLE 17. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR LII AT 293 K*

λ μm	n	$-dn/d\lambda$ μ^{m-1}	dn/dT 10-5 K-1	λ µm	n	-dn/dλ μm ⁻¹	dn/dT 10-5 K-1	λ µm	n	-dn/dλ µm ^{−i}	dn/dT 10 ^{−5} K ^{−1}
6.500	1.93340	0.00500	-7.03	9.700	1.91318	0.00768	-6.73	15.800	1.84845	0.01382	-5.59
6.600	1.93290	0.00508	-7.02	9.800	1.91240	0.00777	-6.72	16.000	1.84566	0.01405	-5.53
6.700	1.93239	0.00516	-7.02	9.900	1.91162	0.00786	-6.71	16.200	1.84283	0.01429	-5.48
6.800	1.93187	0.00524	-7.01	10.000	1.91003	0.00795	-6.69	16.400	1.03995	0.01453	-5.42
6.900	1.93134	0.00532	-7.00	10.200	1.90922	0.00813	-0.0/	16.600	1.83702	0.01477	-5.30
7.000	1.93080	0.00540	-7.00	10.400	1.90758	0.00831	-6.64	16.800	1.83404	0.01502	•5.30
7.100	1.93026	0.00548	-6,99	10.600	1.90590	0.00849	-6.61	17.000	1.83101	0.01526	-5.24
7.200	1.92971	0.00557	-6.98	10.800	1.90418	0.00868	-6.59	17.200	1.82793	0.01552	-5.18
7.300	1.92914	0.005 65	-6.97	11.000	1.90243	0.00886	-6.5E	17.400	1.82480	0.01577	-5.11
7.400	1.92858	0.00573	-6.9Ē	11.200	1.90064	0.00905	-6.53	17.600	1.82162	0.01603	-5.05
7.500	1.62800	0.00591	.F. 9F	11.400	1. 89881	0.00023	+6.50	17.800	1.81839	0.01529	-4.98
7.600	1.92741	0.00589	-6.95	11.600	1.89594	0.00942	-6.47	18.000	1.81511	0.01655	-4.91
7.700	1.92682	0.00598	-6.94	11.800	1.89504	0.00961	-6.43	18.200	1.81177	0.01682	-4.84
7.800	1.92622	0.00000	-6.93	12.000	1.89310	0.00981	-6.40	18.408	1.80838	0.01709	-4.77
7.900	1.92561	0.00614	-6.92	12.200	1.89112	0.01000	-6.37	18.600	1.80494	0.01736	-4.69
	4 00100	0.00007	6 07	40 400	4 4 4 0 4 0	0.0400	- 6 77	40 000	4 00 4 4 4	0 04 764	-1 5
C.UUU 8 400	1.92499	0.00623	-6.91	12.400	1.88910	0.01019	-0.33	10.000		0.01/04	-4.01
8.200	1.92373	0.00639	-6.89	12.800	1.88494	0.01059	-5.26	19.200	1.79427	D-01/32	-4.46
8.300	1.92308	0.00548	-6.88	13.000	1.88280	0.01079	-6.22	19.480	1.79060	0.01850	-4.37
8.400	1.92243	0.00656	-6.87	13.200	1.88063	0.01099	-6.10	19.600	1.78687	0.01879	-4.29
	1032240		0.07	100200	1000000			1,0000			4465
8.500	1.92177	0.00665	-6.80	13.400	1.87841	0.01120	-6.15	19.800	1.78308	0.01909	-4.20
8.600	1.92110	0.00673	-6.85	13.600	1.87615	0.01140	-6.11	20.000	1.77 923	0.01939	-4.11
8.700	1.92043	0.00682	-6.84	13.800	1.87385	0.01161	-6.0 <u>ē</u>	20.500	1.76934	0.02017	-3.8 <u>8</u>
8.800	1.91974	0.00690	-6.83	14.000	1.87150	0.01182	-6.02	21.000	1.75906	0.02097	-3.63
8.900	1.91904	0.00699	-6.82	14.200	1.86912	0.01204	-5.98	21.500	1.74837	0.02180	-3.37
9.000	1.91834	0.00707	-6.81	14.400	1.86669	0.01225	-5.93	22.000	1.73725	0.02267	-3.05
9.100	1.91763	0.00716	-6.81	14.600	1.85421	0.01247	-5.89	22.500	1.72569	0.02358	-2.70
9.200	1.91691	0.00725	-6.79	14.800	1.86170	0.01269	-5-84	23.000	1.71367	0.02452	-2.47
9.300	1.91618	0.00733	-6.78	15.000	1.85914	0.01291	-5.79	23.500	1.70116	0.02551	-2.13
5.400	1.91544	0.00742	-6.77	15.200	1.85654	0.01313	-5.74	24.000	1.68815	0.02653	-1.77
										_	_
9.500	1.91478	0.00751	-6.75	15.400	1.85389	0.01336	-5.69	24.500	1.67462	0.02 <u>761</u>	-1.3 <u>8</u>
9.600	1.91394	0.00760	-6.74	15.600	1.85119	0.01359	-5.64	25.000	1.66054	0.02874	-0.96

 TABLE 17.
 RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR LII AT 293 K (continued)*

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.4. The number of digits with an overstrike are not relevant to accuracy of the data.

FIGURE 14. Refractive Index of Lil

TABLE 18. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND 4n/dT MEASUREMENTS OF LAI

	Specifications and Remarks	Lil was produced by the reaction of $2HI + 2LiCo_3 \rightarrow 2LiI + H_5CO_3$ and then slowly solidified; refractive index for mean of sodium D lines was measured by the immersion method.
	Temperature, K	295
-	Wavelength Range, µm	0.5893
	Method Uscd	М
	Year	1923
	Author (s)	Spangenberg, K.
	r. Ref. No.	45
	Cur	-

TABLE 19. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF LII

[Wavelength, \, µm; Refractive Index, n]

 $T = \frac{CURVE}{295.2} \frac{1}{K}$ 0.5893 1.955

Я

~

3.5. Sodium Fluoride, NaF

Sodium fluoride is less hygroscopic than the other alkali halides, with the exception of lithium fluoride. It is transparent over the same range as calcium fluoride, a wider range than that of lithium fluoride. It is not satisfactory mechanically, but it has some uses in cases where a particularly low refractive index is needed. It can be easily evaporated as a thin film and can be used for reflection-reducing coatings, since it has one of the simple crystal structures. A number of the characteristic physical properties have been measured: those related to the dispersion of NaF are listed in table 3.

Available data on the refractive index of NaF are not abundant, mainly because of its mechanical weakness. The ultraviolet absorption region was investigated by Sano [49], the transparent region by Hohls [29], Harting [30], Kublitzky [50], and Spangenberg [45], and the infrared region by Randall [51]. Zarzyski and Naudin [44] obtained n for molten NaF at the Hg green line at a temperature of 1273 K. After carefully reviewing of all of these investigations, we selected the data reported by Hohls [29], Harting [30], Kublitzky [50], and Spangenberg [45] as the basis for the generation of reference data. Among the selected data, those of Harting [30] and Hohls [29] (curve 3 in fig. 17) are reliable and receive heavy weight in the analysis. The accuracy of Kublitzky's value is one unit of the third decimal place, although his values are reported to the fourth place. Three sets (curves 4, 5, and 6) of Hohls' measurements are for thin films and therefore are not consistent with those of bulk materials. Values reported by Spangenberg are inaccurate. Low weights were given to the data sets with low accuracies.

It appears that all the chosen data were obtained at temperatures close to 293 K and that the dn/dT values are small (less than $-1.5 \times 10^{-5} K^{-1}$), so that corrections to the chosen data are not significant. However, knowledge of dn/dT is indispensable for reducing the *n* values to other temperatures. Limited experimental data on dn/dT were reported by Hohls and Harting. The results of the least squares fitting of the dn/dTdata to eq (19), together with the results obtained for LiF, NaCl, KCl and CsI, lead to the empirical parameter values listed in table 5. These enable us to construct a formula

$$2n\frac{dn}{dT} = -9.51(n^2 - 1) - 0.92$$

$$+\frac{3.404\lambda^4}{(\lambda^2-0.01369)^2}+\frac{83.30\lambda^4}{(\lambda^2-1645.92)^2},\qquad(31)$$

for estimating dn/dT of NaF in units of $10^{-5}K^{-1}$. Values calculated by this equation agree very well with the available data as shown in figure 19.

Radhakrishnan [48] worked out a formula to correlate the dispersion and the characteristic absorption peaks. His formula gives values of 6.00, 0.114 μ m and 45 μ m for the static dielectric constant, and the wavelengths of ultraviolet absorption and infrared absorption peaks, respectively, in considerable disagreement with the values now available (see table 3).

After making temperature corrections to the chosen data on *n*, the resulting values were least-squares fitted to eq (10) with the aid of appropriate parameters from table 3. We get as the dispersion equation of NaF at 293 K in the transparent region, 0.15-17.00 μ m,

$$n^{2} = 1.41572 + \frac{0.32785 \lambda^{2}}{\lambda^{2} - (0.117)^{2}} + \frac{3.18248 \lambda^{2}}{\lambda^{2} - (40.57)^{2}}, \qquad (32)$$

where λ is in units of μ m.

Equations (31) and (32) were used to generate the reference data given in table 17; $dn/d\lambda$ values were evaluated by taking the first derivative of eq (32). The generated values are given to extra decimal places for the purpose of tabular smoothness. The uncertainties in the values are as follows:

For refractive index:

Wavelength range (µm)	Meaningful decimal place	Estimated uncertainty, ±		
0.15- 0.20	3	0.006		
0.20-11.00	4	0.0005		
11.00-17.00	3	0.006		
For dn/dT :				
0.15- 0.18	1	0.9		
0.18- 3.00	1	0.1		
3.00-13.00	1	0.4		
13.00-17.00	1	0.9		

REFRACTIVE INDEX OF ALKALI HALIDES

TABLE 20. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR NaF AT 293 K *

λ μm	n	-dn/dλ μm ⁻¹	dn/dT 10 ^{−5} K ^{−1}	λ µm	n	-dn/dλ μm ⁻¹	dn/dT 10⊸ K-1	λ μm	ם	-dn/dλ μm ⁻¹	dn/dT 10⊸ K-1
											·=
0.150	1.500 <u>9E</u>	5.77746	3.12	0.270	1.34879	0.25264	-1.32	0.700	1.32365	0.01148	-1.65
0.192	1.49004	5.10504	2.30	0.274	1.34020	0.24943	-1.33	0.740	1.32323	0.01004	-1.69
0.156	1.47141	4.19767	1.97	0.276	1.34731	0.23585	-1.34	0.760	1.32303	0.00922	-1.70
0.158	1.46341	3.81182	1.68	0.278	1.34684	0.22945	-1.35	0.780	1.32285	0.00862	-1.70
0.160	1.45613	3.47E17	1.43	0.280	1.34639	0.22329	-1.36	0.800	1.32265	0.00809	-1.70
0.162	1.44948	3.18237	1.20	0.282	1.34595	0.21735	-1.35	0.820	1.32253	0.00/61	-1./0
0.104	1 44330	2 6 9 2 3 74	1.00	0.286	1.34552	0.21104	-1.37	0.040	1 32230	0.00/10	-1.70
0.168	1.43258	2.49144	0.67	0.288	1.34470	0.20082	-1.38	0.880	1.32211	0.00645	-1.70
0.170	1.42778	2.30975	0.52	0.290	1.3443 <u>0</u>	0.1957 <u>0</u>	-1.3 <u>9</u>	0.900	1.32198	0.0861 <u>4</u>	-1.7 <u>ī</u>
0.172	1.42333	2.14684	0.39	0.292	1.34391	0.19076	-1.40	0.920	1.3218 <u>E</u>	0.00585	-1.71
0.174	1.41918	2.00822	0.27	0.294	1.34354	0.18600	-1,40	0.940	1.32175	0.00559	-1.71
0.175	1.41532	1.86//8	0.17	0.296	1.3431/	0.18140	-1.41	U.96U. 0.080	1.32104	0.00535	-1./1
0.110	1.411/0	1.14/1/	0.07	0.230	1.34201	0.1/035	-1.41	0.500	1.32193	0.00515	-1.11
0.180	1.40832	1.63868	-0.02	0.300	1.3424 <u>E</u>	0.17266	-1.42	1.000	1.32143	0.00496	-1.71
0.182	1.40514	1.5:923	-0.11	0.305	1.34163	0.16294	-1.43	1.050	1.32120	0.00455	-1.(1
0.186	1.39934	1.36501	-0.25	0.315	1.34009	0.14464	-1.4Ē	1.150	1.32077	0.00397	-1.71
0.188	1.39669	1.28848	-0.32	0.320	1.33939	0.13671	-1.47	1.200	1.32058	0.00376	-1.71
0.190	1.39419	1.21802	-0.38	0.325	1.33872	0.12938	-1.48	1.250	1.32039	0.00361	-1.71
0.192	1.39182	1.15300	-0.44	0.330	1.33809	0.12257	-1.49	1.300	1.3202 <u>2</u>	0.00348	-1.7 <u>1</u>
0.194	1.38957	1.09289	-0.49	0.335	1.33750	0.11626	-1.50	1.350	1.32005	0.00338	-1.71
0.196	1.38744	1.03720	-0.54	0.340	1.33693	0.11839	-1.51	1.480	1.31588		-1.71
V.190	1.30942	0.90552	-0.53	0.045	.1.33639		-1.91	10420	1.019/1		-1.11
0.200	1.38350	0.93747	-8.6 <u>3</u>	0.350	1.33588	0.09982	-1.52	1.500	1.31955	0.00322	-1.71
9.202	1.3816/	0.892/2	-0.67	0.355	1.33539	0.09505	-1.23	1.550	1.31939	0.00320	-1./1
0.204	1.37826	0.81200	-0.75	0.365	1.33449	0.09001	-1.54	1.650	1.31907	0.00319	-1.71
0.208	1.37668	0.77553	-0.78	0.370	1.33407	0.08253	-1.55	1.700	1.31891	0.00320	-1.71
0.210	1.37516	0.74136	-0.81	0.375	1.3336Ē	0.07886	-1.55	1.750	1.31875	0.00322	-1.71
0.212	1.37371	0.70931	-0.84	0.380	1.33328	0.07542	-1.5 <u>6</u>	1.800	1.31859	0.00324	-1.7 <u>ī</u>
0.214	1.37232	0.67921	-0.87	0.385	1.33291	0.07218	-1.57	1.850	1.31843	0.00327	-1.71
0.218	1.36972	0.62425	-8.93	0.395	1.33222	0.06626	-1.58	1.900	1.31820	0.00334	-1.71
0.220	1.36849	8.59913	-0.95	0.400	1.33189	0.06354	-1.58	2.000	1.31793	0.00338	-1.71
0.222	1.36732	0.57543	-0.97	0.410	1.33128	0.05857	-1.59	2.050	1.3177 €	0.00342	-1.71
0.224	1.36619	0.55305	-0.00	0.420	1.33072	0.05411	-1.60	2.100	1.31759	0.03347	-1.71
0.226	1.36510	0.53188	-1.02	0.430	1.3302 <u>0</u>	0.05012	-1.60	2.150	1.31741	0.09352	-1.70
0.228	1.36406	0.51185	-1.84	0.440	1.32971	0.04652	-1.61	2.200	1.31724	0.00357	-1.70
0.230	1.36306	0.45287	-1.06	0.450	1.32927	0.04327	-1.62	2.250	1.31706	0.00362	-1.70
0.232	1.36209	0.47488	-1.08	0.460	1.32885	0.04033	-1.62	2.300	1.31687	0.00368	-1.70
0 234	1.30110	0 445/81	-1.09	0.470	1.32846	0.03/00	-1.03	2.354	1.31009	0.003/4	-1.70
0.238	1.35939	0.42619	-1.13	0.490	1.32775	0.03302	-1.64	2.450	1.31631	0.00386	-1.70
0.240	1.35855	0.41153	-1.14	0.500	1.32743	0.03100	-1.64	2.500	1.31611	0.00392	-1.70
0.242	1.35774	0.39757	-1.1Ē	0.510	1.32713	0.02915	-1.65	2.550	1.31592	0.00398	-1.69
0.244	1.35696	0.38428	-1.17	0.520	1.32685	0.02745	-1.65	2.600	1.31572	0.00405	-1.69
0.246 0.248	1.35621	0.37160	-1.19	0.530	1.32650	0.02500	-1.65	2.650	1.31551	0.00411	-1.65
				0.040	1002033			Cerdu	1001501		
0.250	1.35477	8.34797	-1.21	0.550	1.32609	0.02312	-1.6 <u>E</u>	2.750	1.31509	0.00425	-1.69
0.264	1.353498	0.32646	-1.22	U+76U 0.570	1.32545	0.02189	-1.67	2.000	1.31488	0.00431	-1.69
0.256	1.35278	0.31632	-1.25	0.580	1.32545	0.01970	-1.67	2.900	1.31444	0.00445	-1.68
0.258	1.35215	0.30667	-1.26	0.590	1.32526	0.01873	-1.67	2.950	1.31422	0.00452	-1.68
0.260	1.35155	0.29743	-1.27	0.600	1.32508	0.01782	-1.67	3.000	1.31399	0.00459	-1.68
0.262	1.3509 <u>E</u>	0.28858	-1.28	0.620	1.32474	0.01619	-1.68	3.050	1.31376	0.00465	-1.68
8.264	1.35040	0.28009	-1.29	0.640	1.32443	0.01477	-1.68	3.100	1.31352	0.00473	-1.68
0.200	1.34984	0.2/195	-1.30	0.560	1.32415	0.01353	-1.68	3.150	1.31329	0.00480	-1.67
u •200	1.34331	U.20414	-1.31	1000 U	1.35383	0.01244	-1.03	3.200	1.31304	0.00488	-1+0/

2		-dn/dλ	dn/dT	λ		-dn/dλ	dn/dT	λ		-dn/dλ	dn/dT
μm	n	µm ^{−1}	10 ⁻⁵ K ⁻¹	μm	n	µm −1	10 ⁻⁵ K ⁻¹	μm	n	μm^{-1}	10 ⁻⁵ K ⁻¹
		_				_		······································		_	
3.250	1.31280	0.00495	-1.67	5.600	1.2968 <u>8</u>	0.0087 <u>0</u>	-1.5 <u>3</u>	9.700	1.24525	0.01695	-0.98
3.300	1.31255	0.00502	-1.67	5.700	1.29600	0.00887	-1.52	9.800	1.24355	0.01719	-8.96
3.350	1.31230	0.00510	-1.67	5.800	1.29511	0.0904	-1.51	9.900	1.24182	0.01743	-0.94
3.400	1.31204	0.0051 <u>7</u>	-1.6Ē	5.900	1.29419	0.00922	-1.50	10.000	1•2400Ē	0.017E8	-0.92
3.450	1.31178	8.08524	-1.6Ē	6.000	1.2932€	0.00939	-1.5C	10.200	1.23E4E	0.01818	-0.88
3.500	1.31152	0.00532	-1.66	6.100	1.29231	0.00957	-1.49	10.400	1.23279	0.01869	-0.83
3.550	1.31125	0.00539	-1.6E	6.200	1.29135	0.00975	-1.48	10.600	1.22900	0.01921	-0.78
3.600	1.31098	0.00547	-1.65	6.300	1.29037	0.00993	-1.47	10.800	1.22510	0.01975	-0.73
3.658	1.31070	0.00554	-1.65	6.400	1.28936	0.01011	-1.4E	11.000	1.22110	0.02029	-0.68
3.700	1.31042	0.00562	-1.65	6.500	1.28834	0.01029	-1.45	11.200	1.21698	0.02085	-0.63
7 750	1 71017	0 00570	-1 48	6 680	1 20775	0 01047	-1 15	11 600	1 24276	0 0 21 / 7	-0.57
3 . 1	1.31014	0.00570	-1.05	6.000	1.20131	0.01041	-1 47	11 600	1 200/4	0 0 2 2 0 2	-0.51
3.800	1.30 905	0.0057	-1.05	0.700	1.2002	0.01000	-1.43	11.000	1.20041	0.02202	-0.7
3.850	1.30956	V-UU585	-1.64	6.800	1.2851/	0.01084	-1-42	11.800	1.20395	0.02262	-0.42
3.900	1.30921	0.00593	-1.04	6.900	1.28408	0.01103	-1.41	12.000	1.14435	0.02324	-0.38
3.950	1.30897	0.00600	-1.64	7.000	1.28297	0.01122	-1.39	12.200	1.19465	0.02387	-0.32
4.000	1.39867	0.00668	-1.63	7.100	1.28184	0.01141	-1.38	12.400	1.18981	0-02452	-0.25
4.050	1.30836	0.00616	-1.63	7.200	1.28069	0.01160	-1.37	12.600	1.18484	0-02519	-0.17
4.100	1.30805	0.00624	-1.63	7.300	1.27952	0.01179	-1.36	12.800	1.17974	0.02588	-0.09
4.158	1.30774	0.00631	-1.63	7.400	1.27833	0.01199	-1.35	13.000	1.17449	0.02658	-0.01
4.200	1.30742	0.00639	-1.62	7.500	1.27712	0.01218	-1.34	13.200	1.16910	0.02731	0.07
4.250	1. 70710	a AAE 17	-1.67	7 600	4 275 40	0 01270	-1.32	17.400	1 16357	5 0 28 č F	n 15
4.200	1.30677	0.00655	23-12	7.700	4-27465	0.01258	-1-31	13.680	1-15788	0-02887	
4.350	1.30644	Eaann.0	-1.52	7.800	1.27338	0.01278	-1.30	13.800	1.15204	0.02062	n 3E
1. 1.00	1.30611	0.00671	-1.61	7.000	1 27200	0.01270	-1.28	14 000	1 1/673	0 0 20 66	0 45
4.400	1.30577	0.00679	-1.61	8.000	1.27078	0.01230	-1.27	14.208	1.13986	0.03128	0.55
40420	10000000							1.0200			••••
4.500	1.30543	0.00687	-1.61	8.100	1.26945	0.01339	-1.20	14.480	1.13251	0.03216	0.6Ē
4.550	1.30508	0.00695	-1.60	8.200	1.26810	0.01360	-1.24	14.600	1.12699	0.03306	0.78
4.600	1.30474	0.06703	-1.60	8.300	1.26673	0.01381	-1.23	14.800	1.12029	0.03399	0.90
4.650	1.30438	0.00711	-1.60	8.400	1.26534	0.01402	-1.21	15.000	1.11340	0.03495	1.03
4.700	1.30402	C.0071 9	-1.59	8.500	1.26393	0.01423	-1.20	15.200	1.10631	0.03595	1.16
4.750	1.30366	0.00727	-1.59	8.600	1.26250	8.61445	-1.18	15.480	1.09901	0.03699	1.31
4.800	1.30330	0.00736	-1.5¢	8.700	1.26104	0.01466	-1.16	15.600	1.09151	0.03806	1.45
4.850	1.30293	0.00744	-1.58	8.800	1.25956	0.01488	-1.15	15.800	1.08379	0-03917	1.61
4-980	1.30255	8-00752	-1.58	8.900	1.25805	0.01540	-1-13	16.000	1.07581	0.040 77	1.77
4.950	1.30217	0.00760	-1.58	9.000	1.25654	0.01532	-1.11	16.200	1.06765	0.04153	1.94
5.000	1.30179	0.00768	-1.57	9.100	1.25500	0.01555	-1.10	16.400	1.05922	0.04278	2.13
5.100	1.30102	0.00765	-1.57	9.200	1.25343	0.01578	-1.08	16.600	1.05054	0.04408	2.32
5.200	1.30022	0.00802	-1.56	9.300	1.25184	0.01601	-1.0 <u>E</u>	16.800	1.04159	0.04543	2.52
5.300	1.2994 <u>1</u>	0.00819	-1.5 <u>5</u>	9.400	1.25023	0.0162 <u>4</u>	-1.04	17.000	1.03236	0.04685	2.73
5.400	1.29859	0.00836	-1.55	9.500	1.24860	0.01647	-1.02				

TABLE 20. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR NaF AT 293 K (continued)*

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.5. The number of digits with an overstrike are not relevant to accuracy of the data.

379

381

	۲.	<u>9 (cont.)</u> 93.2 K	1.3314 1.3300% 1.3260% 1.3251%	<u>VE 10</u> 77.0 K	2.25 2.24 2.22	2.22 2.21	2.20 2.20	<u>VE 11</u> 4.2 K	2.74	2. 61 2. 61	2, 55 2, 50	2.45 2.41	2.37 2.34	2.31 5.52	2.26	2.24	2.21	VE 12	273. Z K	1.25	<u>IVE 13</u> 295, 2 K	1 990604	1. 33006	1.32801 1.32580* 1.32447
	Y	$\frac{\text{CURVE}}{T=2}$	0.405 0.435 0.5461 0.578	T =	137.5 160.3 185.2	215.1 255.1	277.8 343.6		57.5	59. 7 62. 3	65.9 69.4	73.3	85.1 92.3	100.9	126.7	145.8	222.2	COL	T = T	0.5461		967 V	0. 447	0.501 0.5877 0.688
	u	<u>8 (cont.)</u> 93.2 K	1. 34999% 1. 34881 1. 34645% 1. 34462%	1. 34325 1. 34232* 1. 34062	1. 33482* 1. 33290* 1. 33194*	1.33025 1.32818*	1.32640* 1.32552	1. 32549* 1. 32436 1. 32372*	1.32349* 1.32307	1.32272 * 1.32247 *	1.32198 1.32150*	1.32125	/E 9 3.2 K	0000	1.3854*	1.3805*	1.3745*	1.3691*	1,3665* 1,3630	1.3606*	1, 3525 1, 3512*	1.3491*	1. 3417*	1.3401* 1.3342
	X	$\frac{\text{CURVE}}{T=2!}$	0.26537 0.26993 0.28035 0.29836	0.29676 0.30215 0.31317 0.31317	0.3064 0.39064 0.40466	0.43583	0.54607 0.58756	0. 58930 0. 65628 0. 70652	0.72814 0.76820	0.81095 0.84247	0.91230	1.08303	T = 292		0.193	0.199 0.90955	0.206	0.21444	0.21946 0.227	0.231	0.2537	0.265	0.30215	0.313 0.366
																								* *
Index, n]	u	RVE 6 291.2 K	1.262 1.251 1.241 1.233	1.222	1.163 1.142	1.093	1.034 1.000	0.963 0.924 0.881	(. 838	291.2 K	(.82	(.75 (.70	(. 65 (. 55	(.45	(.25	0.24	,	 	3.2	RVE 8	293.2 N	50 1.3704	70 I.3643* 98 I.35793	28 1.35500 55 1.35325
; Refractive	X		9.9.9.9.9 9.8	11.3 11.3	13.2 13.8 14.3	15.9	16.7 17.3	18.1 18.6 19.3	19.7		20.0	20.5 21.0	21.5 22.0	22.5	8.5 8.5	24.0 AB	996	ន ន	53	gl ^e	т = т 0.199(0.213	0.239	0. 248
dength, λ, μm	u	<u>(cont.)</u> 2 K	1.2346* 1.2309* 1.2273* 1.2231	$\frac{4}{2}$ K	1.248* 1.245* 1.240	1.232*	1.211* 1.200	1. 183 1. 165* 1. 148	1.126* 1.070	1.044 1.004	5	2 K	1.261	1.241*	1.229* 1.220*	1.207	1.182*	1.150* 1.150*	1,131	1.086*	1.031* 1.031*	0.967	0.931* 0.893	0.854
[Wave	Ŷ	$\frac{\text{CURVE 3}}{\text{T} = 291.}$	10.30 10.50 10.70 10.90	$\frac{\text{CURVE}}{\text{T}=291}$	9, 30 9, 65 10, 03	10.41	11.26 11.74	12.23 12.75 13.35	13.97 15.37	16.10 16.98	CURVE	T = 291.	8.8 9.7	10.0	10.3	11.2	12.3	13.0	14.2	15.5	16.2 16.8 17.3	18.0	18.7 19.2	19.7
	'n	<u>VE 3</u> 1.2 K	1.3258 1.3227 1.3209 1.3209	1.3195 1.3185% 1.3183%	1.3173* 1.3165 1.3165	1.3149* 1.3134	1.3125* 1.3115*	1.3099 1.3091* 1.3080*	1.3055 1.3039*	1.3025* 1.3010*	1.2994 1.2978*	1.2957*	1.2925*	1.2883*	1.2863* 1.2842*	1.2819*	1.2771	1.274% 1.272%	1.2694*	1.2638	1.2583* 1.2583*	1.2520	1.2486* 1.2453*	1.2418 1.2382
	ĸ	$T = \frac{CJR}{29}$	0.546 0.80 1.02 1.27	1.48 1.67 1.83	2.20 2.40 2.40	2.80 3.10	3.30 3.50	3.70 3.90 4.10	4.50 4.70	4.90 5.10	5.30	5.70	6.10	6.50	6. 70 6. 90	7.10	7.50	7.70	8,10 0,20	8,50 8,50	8,68 8,90 10	9.30	9,50 9,70	9.90 10.10
					. •																			
	u	<u>VE 1</u> 8.0 K	1.06 0.95 0.80 0.64	0.64* 0.71 1.16	2,92 4,23 9,88 9,88	2.87* 2.40	2.13* 1.92	1.77* 1.71	<u>VE 2</u> 15.0 K	1.41*	1.37	1.19	0.85	0.98	1.25	2,63	3.15	3.09* 2.65	2,33*	2.08 1.93*	1.84 1.70*	1.58*	1.56	
	۲	$\frac{CUR}{T=T}$	0.10847 0.10962 0.11030 0.1119	0.11220 0.11312 0.11512	$\begin{array}{c} 0.11652\\ 0.11707\\ 0.11741\\ 0.11741 \end{array}$	0.11864 0.11864 0.11956	0.12084 0.12275	0.12625 0.12834	T = 29	0.09918	0.10744	0.10972	0.11250	0.11448	0.11565	0.11841	0.11979	0.12025 0.12119	0.12215	0.12336	0.12574 0.12874 0.12874	0.13505	0.13776	

* Not shown in figure.

L

TABLE 22. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF NaF

J. Phys. Chem. Ref. ata, Vol. 5, No. 2, 1976

382

TABLE 22. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF NaF (continued)

[Wavelength, Å, µm; Refractive Indax, n]

r.	<u>5 (cont.)</u> * 0 K	1. 3293 1. 3286 1. 3286	1. 3271		
×	$\frac{\text{CURVE 1}!}{\text{T} = \frac{4}{4}.}$	0.5461 0.5730 0.5893	0.6438		
ч	<u>E 14</u> * .0 K	1.3299 1.3284 1.9280	1.3271 1.3259 1.3252 1.3250	1.3241 E 15* K	1.3331* 1.3317 1.3311 1.3311 1.2302
~	T = 290	0.4358 0.4678 0.4600	0.5086 0.5461 0.5780 0.5893	0.6438 $\frac{CURV}{T = 4.0}$	0.4358 0.4678 0.4800 0.5086

TABLE 23. EXPERIMENTAL DATA ON dn/dT OF NaF

 μ m; Temperature Derivative of Refractive Index, dn/dT, 10⁻⁵ K⁻¹; Mean Temperature, T_{m} , K

[Wavelength, A, µm; Temperature Derivative of Refractive	/dT λ dn/dT λ dn/dT	$\frac{3}{.0} \text{ K} \qquad \frac{\text{CURVE 8 (cont.)}}{\text{T}_{\text{m}} = 293.0 \text{ K}} \qquad \frac{\text{CURVE 8 (cont.)}}{\text{T}_{\text{m}} = 293.0 \text{ K}}$	1.6 0.31317 -1.8 1.01398 -1.8 1.6 0.33415 -1.6 1.08303 -1.3	0.7 0.36531 -1.3 0.39164 -1.6	$\frac{8}{0}$ K 0.40666 -1.7 0.43583 -1.4	0.8 0.48513 -1.7	0.9 0.54307 -1.6	1.2 0.58756 -1.6	1.5 0.58930 -1.6	1.4 0.65528 -1.7	1.5 0.70652 -1.3	1.4 0.72814 -1.3	1.5 0.76820 -1.8	L.5 0.81095 -1.3	1.7 0.84247 -1.8	1.4 0.91230 -1.6	
	dn/dT	<u>VE 3</u> 322.0 K	-1.6 -1.6	-0.7	<u>ve 8</u> 293.0 K	-0.8	-0.9	-1.2	-1.5	-1.4	-1.5	-1.4	-1.5	-1.5	-1.7	-1.4	
	~	T _m =	0.546 3.5	8.5		0.21360	0.22470	0.23998	0.24828	0.25365	0.26537	0.26993	0.28035	0.29836	0.29676	0.30215	

Source	Wavelength and Temperature Ranges	Dispersion Equation λ in μ m; ν in cm ⁻¹
Harting, H. [30] 1943	0.199-1.083 μm 293 K	$n = 1.31862 + \frac{0.00252}{(\lambda - 0.1006)^{1.4}}$
Radhakrishnan, T. [48] 1948	0.1860-10.10 µm 293 K	$n^2 = 1.426664 + \frac{0.32052 \lambda^2}{\lambda^2 - 0.013056} + \frac{4.25284 \lambda^2}{\lambda^2 - 2044.8}$
Present work 1975	0.15-17.00 μm 293 K	$n^2 \approx 1.41572 + \frac{0.32785 \lambda^2}{\lambda^2 - (0.117)^2} + \frac{3.18248 \lambda^2}{\lambda^2 - (40.57)^2}$

TABLE 24. COMPARISON OF DISPERSION EQUATIONS PROPOSED FOR NAF

3.6. Sodium Chloride, NaCl

Rock salt is uniformly transparent from 0.2 μ m in the ultraviolet to 12 μ m in the infrared. In the region of 15 μ m the absorption increases rapidly. Rock salt in moderately thin pieces may be expected to transmit several percent of the light up to wavelengths as long as 26.0 μ m. However, a plate 1 cm in thickness is completely opaque to radiation of wavelengths greater than 20 μ m.

Rock salt has long been a favorite material for infrared spectroscopy. It polishes easily and, although hygroscopic, can be protected by evaporated plastic coatings. It shows excellent dispersion over its entire transmission range. It has been difficult, however, to obtain natural rock salt crystals of sufficient size and purity for making optical components. As crystalgrowing techniques advanced, synthetic sodium chloride crystals have been grown up to 11.3 kg in weight commercially, making this material readily available for large optical parts and stimulating the design and construction of infrared instruments.

Measurement of the refractive index of sodium chloride dates back to 1871, when Stefan [53] determined the refractive indices of a rock salt prism for lines B, D, and F. Since then, a large amount of data in the transparent region has been contributed by a number of investigators, among them are Martens [54], Paschen [55], and Langley [56]. They used either the deviation method or interferometry in their experiments. It was not until 1929 that measurements were carried out beyond the transparent region. Kellner [57] determined refractive indices of NaCl in 23-35 μ m region, based on information on transmission and reflection of thin specimens. Data in the infrared region are now available up to 300 μ m and at 2000 μ m. Most of the IR data were determined from the analysis of the reflection spectra.

After a careful review of the available data, six data sets measured by Martens [54], Paschen [55], Hohls [29], Harting [30], Rubens and Nichols [58], and Rubens and Trowbridge [59], were selected as the basis for reference data generation because of the consistency of their results. Data sets which are not selected were either reported as poor values or were determined by inadequate methods. Data for the absorption regions were not included in the analysis but are given here for completeness of data presentation. Note that the selected data, except those of Harting, were obtained at a temperature of 291 K. A temperature correction should be made to reduce them to 293 K.

The temperature coefficient dn/dT is available over a large part of the transmission region of NaCl. Based on the existing data on dn/dT and the parameters from tables 2 and 3, a least-squares fitting of the data to eq (19) was made. The results, together with those obtained for LiF, NaF, KCl and CsI, provided clues that led to the parameters listed in table 5. With the aid of these parameters we were able to construct a formula for calculating dn/dT for NaCl:

$$2n \frac{dn}{dT} = -11.91 \ (n^2 - 1) - 0.50 + \frac{6.118 \ \lambda^4}{(\lambda^2 - 0.02496)^2} + \frac{199.36 \ \lambda^4}{(\lambda^2 - 3718.56)^2}, \quad (33)$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m.

In figure 23, values calculated by eq (33) are compared with the experimental data. It appears that for wavelengths less than 2 microns the calculated values are higher than experimental data, while for longer wavelengths the reverse is true. After a careful review of the data on dn/dT and the table of source and technical information, we find that data sets 34, 42, 43 and 45 were obtained at mean temperatures of about 330 K, which is about 40 degrees higher than 293 K, while data set 44 was obtained at temperatures about 20 degrees lower than 293 K. Although we stated in connection with eq (4) that dn/dT is found to be relatively independent of temperature over a fairly wide range of temperatures, it has been in fact observed in halide crystals that the absolute value of dn/dT increases somewhat with increasing temperature. This fact is demonstrated clearly by eq (33), as can be seen in figure 23 in the wavelength region below 2 μ m. In the higher wavelength region, the existing data are insufficient to test the dn/dTformula, but the correctness of this formula can be substantiated by two facts. The first is that the calculated curve is approximately parallel to curve 44, which is consistent with the observed dn/dT behaviors. The second is that the empirically constructed formula for CsI predicts correct values for CsI in the long wavelength region, as is discussed in subsection 3.20 and is assumed to be generally the case here.

Equation (33) was used to make temperature corrections to the selected data sets which were obtained at temperatures other than the selected reference temperature, 293 K.

Various dispersion formulas have been reported by a number of authors, in different forms. Table 29 contains a number of typical formulae. They have all been reduced, wherever possible, to standard forms so that a close comparison can be easily made. From the information in tables 29 and 3, input parameters for leastsquares fitting were obtained. The calculation yielded the following dispersion equation for NaCl at 293 K in the transparent region, 0.20–30.00 μ m,

$$n^{2} = 1.00055 + \frac{0.19800\lambda^{2}}{\lambda^{2} - (0.050)^{2}} + \frac{0.48398\lambda^{2}}{\lambda^{2} - (0.100)^{2}} + \frac{0.38696\lambda^{2}}{\lambda^{2} - (0.128)^{2}} + \frac{0.25998\lambda^{2}}{\lambda^{2} - (0.158)^{2}} + \frac{0.08796\lambda^{2}}{\lambda^{2} - (40.50)^{2}} + \frac{3.17064\lambda^{2}}{\lambda^{2} - (60.98)^{2}} + \frac{0.30038\lambda^{2}}{\lambda^{2} - (120.34)^{2}}, \quad (34)$$

where λ is in units of μ m.

Equations (33) and (34) were used to generate the reference data given in the table of recommended values; $dn/d\lambda$ values were evaluated from the first derivative of eq (34). The numbers in the table of recommended values do not reflect the degree of accuracy and extent of reliability; extra decimal places are given for tabular smoothness. Actual uncertainites are as follows.

For refractive index:

Wavelength range	Meaningful	Estimated
(um)	decimal place	uncertainty +
0.20 0.25	occiniai piace	
0.20- 0.23		0.000
0.25 - 0.35	4	0.0005
0.35 - 10.00	4	0.0001
10.00-15.00	4	0.0003
15.00-25.00	3	0.006
25.00-30.00	3	0.02
For dn/dT :		
0.20- 0.24	1	0.8
0.24- 4.00	1	0.2
4.00 - 15.00	1	0.4
15.00-20.00	1	0.6
20.00-30.00	1	0.9

REFRACTIVE INDEX OF ALKALI HALIDES

TABLE 25. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR NaCl AT 203 K \star

n	-dn/dλ μm ⁻¹	dn/dT 10 ⁻⁵ K ⁻¹	λ µm	n	-dn/dλ µm ^{−i}	dn/dT 10⊸ K~1	λ µm	n	-dn/dλ μm ⁻¹	dn/dT 10 ⁻⁵ K-
20000	6 44700	4 E E	0 750	1 58202	8 76701	-2 76	1 500	1.52822	0 00440	-7.73
20017	1 75 8 99	4.02	0 765	1.590222	0.34950	-2 70	1 550	1.52407	0.00445	-3 33
77807	4.19000	7 45	0.355	1.57857	0.33236	-2.81	1.600	1.52787	0.00710	- 3.32
76236	4.43040	2 4 4	8.345	1.57690	8.31636	-2.84	1.658	1.52763	8.0036Å	-3.32
75431	3.89222	2.55	0.370	1.57536	0.30142	-2.8E	1.700	1.52745	0.00348	-3.32
74676	3.65792	2.1Ē	8.375	1.57389	0.28744	-2.87	1.750	1.5272 8	0.00331	-3.3
73966	3.44506	1.81	0.380	1.57248	0.27435	-2.89	1.800	1.52712	0.00316	-3.3
73297	3.25098	1.50	0.385	1.57114	0.26207	-2.91	1.850	1.52697	0.00302	-3.32
72665	3.07344	1.21	0.390	1.56986	0.25053	-2.93	1.900	1.52682	0.00291	-3.3
72066	2.91051	9.96	0.395	1.56864	0.23969	-2.94	1.950	1.52668	0.00281	-3.3
71499	2.76058	0.72	0.400	1.56746	0.22949	-2.95	2.000	1.52654	0.00272	-3.3
70961	2.62223	0.50	0.410	1.50526	0.21081	-2.98	2.050	1.52640	0.00264	-3.3
60450	2.49426	0.30	0,420	1 - 56 324	0.1941/	-3.00	2-100	1.52627	0.00257	-3-3
69499	2.26536	-0.05	0.430	1.55965	0.16593	-3.03	2.200	1.52602	0.00252	-3.3
60055	2 4 6 2 74	-6 24	0.450	1.55805	1. 15 700	-3.05	2.250	1.57500	6.00212	-7.7
68634	2.06606	-0.35	0.450	1.56657	0.14304	-3.08	2.300	1.5257	0.00230	-3.3
68229	1.97747	-0.40	0.470	1.55519	0.13320	-3.09	2.350	1.52566	0.00236	-3.3
67842	1.89370	0.61	0.480	1.55390	0.12427	-3.11	2.488	1.52554	0.00233	-3.3
67471	1.81516	-0.73	0.490	1.55270	0.11614	-3.12	2.450	1.52543	0.00231	-3.3
67116	1.74140	-0.84	0.500	1.55157	0.10872	-3.13	2.500	1.52531	0.00229	-3.3
66774	1.67204	-8.94	0.510	1.55052	0.10193	-3.14	2.550	1.52520	0.00228	-3.3
66447	1.60671	-1.04	0.520	1.54953	0.09571	-3.15	2.600	1.52509	0.00227	-3.3
66132	1.54512	-1.13	0.530	1.54861	0.0900 <u>0</u>	-3.1 <u>E</u>	2.650	1.52497	0.00226	-3.3
65828	1.48697	-1.21	0.540	1.54773	0.08474	-3.17	2.700	1.52486	0.00226	-3.3
6553 <u>7</u>	1.4320 <u>0</u>	-1.29	0.550	1.54691	0.07989	-3.17	2.750	1.52475	0.00225	-3.3
65255	1.37559	-1.36	0.560	1.54 €13	0.07542	-3.18	2.800	1.52463	0.00226	-3.3
64984	1.330/1	-1.43	0.570	1.54540	0.07128	-3.19	2.850	1.52452	0.00226	-3.3
64723 64471	1.28398	-1.50 -1.50	0.560	1.54405	0.06744	-3.20	2.900	1.52441	0.00226	-3.3
54 0 0 T	4 407/5			1 81.717	0 00050	7 07		1 50.17		
63901	1.15740	-1.68	0.620	1.54228	0.05463	-3.27	3.050	1.52417	0.00220	- 3.3
63764	1.11925	-1.73	0.640	1. 54124	0.0404	-3.23	3.100	1.52395	0.00223	- 7 - 7
F3544	1.08291	-1.70	0.660	1.54030	0.04493	-3.23	3.150	1.52386	0.00230	- 3 - 3
63331	1.04826	-1.83	0.680	1.53944	0.04095	-3.24	3.200	1.52372	0.00232	-3.3
63124	1.01520	-1.88	0.700	1.53865	0.03744	-3.25	3.250	1.52361	0.00234	-3.3
62924	0.98363	-1.92	0.720	1.53794	0.03433	-3.25	3.300	1.52349	0.00235	-3.3
62731	0.95347	-1.97	0.740	1.53728	0.03156	-3.2E	3.350	1.52337	0.00237	-3.3
62543	0.92462	-2.01	0.760	1.53667	0.02909	-3.2E	3.400	1.52325	0.00239	-3.3
62361	0.89702	-2.04	0.780	1.53611	0.02689	-3.27	3.450	1.52313	0.00241	-3.3
62184	0.87060	-2.08	0.800	1.53560	0.02490	-3.27	3.500	1.52301	0.00242	-3.3
62012	0.84528	-2.12	0.828	1.53512	0.02312	-3.28	3.550	1.52289	0.00244	-3.3
61 846	0.82100	-2.15	0.840	1.53467	0.0215 <u>0</u>	-3.28	3.600	1.52277	0.00246	-3.3
6168 <u>4</u> 61527	0.79772	-2.18	0.860	1.53426	0.02004	-3.28 -3.29	3.650	1.52264	0.00249	-3.3
					=					
013/4	8.75391	-2.24	0.900	1.23351	U.U1752	-3.25	3.750	1.52239	0.00253	-3.3
64008	8 74 34	-2.21	0.920	1.5331/	0.01042	-3.29	3.800	1.52226	0.00255	-5-3
CT 000	0.1134/	-2.30	0.040	1.53285	0 04457	-3.29	3.850	1.72214	0.00257	
60 803	0.67600	-2.35	0.900	1.53227	0.01366	-3.30	3.900	1.52100	0.0026 <u>0</u> 0.00262	-3.3
68655	0.65840	-2.37	1.000	1.63200	N . N1 280	-3,30	4,000	1.59177	0.00262	
60350	0.61701	-2.43	1.050	1.53140	0.01124	-3,30	4.000	1.57464	0.00205	-1.9
60052	6.57923	-2.48	1.100	1.53088	0.00984	-3.31	4.100	1.52145	0.00275	- 3.2
59771	0.54465	-2.53	1.150	1.53041	0.00871	-3.31	4.150	1.52136	0.00272	-3.2
59506	0.51291	-2.57	1.200	1.53000	0.00777	-3.31	4.200	1.52121	0.00275	-3.2
59257	0.48373	-2.61	1.250	1.52963	0.00698	-3.31	4.256	1.52107	0.00277	-3.2
59022	0.45683	-2.64	1.300	1.52930	0.00631	-3.32	4.300	1.52093	0.00280	-3.2
58888	0.43199	-2.68	1.350	1.52900	0.00574	-3.32	4.350	1.52070	0.00283	-3.2
58590	0.40900	-2.71	1.400	1.52873	0.00526	-3.32	4.400	1.52065	0.00285	-3.2
58391	0.38769	-2.74	1.450	1.52847	0.00484	-3.32	4.458	1.52050	0.00288	-3.2
59257 59022 58800 58590 58391		0.48373 0.45683 0.43199 0.40900 0.38769	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.48373 -2.61 1.250 1.52963 0.00696 0.45563 -2.64 1.300 1.52930 0.00574 0.43199 -2.66 1.350 1.52900 0.00574 0.40900 -2.71 1.400 1.52873 0.00526 0.38769 -2.74 1.450 1.52847 0.00484	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

				·							
		-dn/d	Tb/ab			-dn/d	dn/dT)		-dn/d	dn/dT
	n		10=5 12=1	· ^	n		10-5 K-1	um i	n	-un/ux	10-512-1
μ m		μ	10 • K -	μu μ		μ	10 1	μ		μ	10 - K -
			_		~	-					_
4.500	1.52036	0.00291	-3.28	8.400	1.50432	0.00541	-3.11	15.600	1.44466	0.01158	-2.20
4.550	1.52021	0.00293	-3.28	8.500	1.50377	0.00543	-3.10	15.800	1.44233	0.01179	-2.15
4.600	1.52006	0.00296	-3.28	8.600	1.50322	0.00555	-3.09	16.000	1.43995	0.01201	-2.11
4.650	1.51992	0.00299	-3.28	8.708	1.5026E	0.00562	-3.09	16.200	1.43753	0.01223	-2.0Ē
4.788	1.51977	0.80302	-3.28	8.800	1.50210	0.00570	-3-08	16.400	1.43506	0-01245	-2-12
1. 760	4 54067	0 00705	-7 25	8 088	1.50152	0.00577	-3.DŽ	16.600	1.47255	0.01258	-1.07
4 6 7 9 0	4 540/6	0.00305	-7 27	0.000	4 50192	0 005977	-3.05	46 900	1 432 55	0 04204	-1.07
4.000	1.51940	0.00200	-3.27	5.000	4 500 76	0 00504	-7 02	47 000	4 4 2 7 7 0	0 01231	-1.95
4.090	1.51931		-3.21	9.100	1.50030	0.00591	-3.00	17.000	1.42130	0.01314	-1.00
4.900	1.51915	0.00313	-3.27	9.200	1.49915	0.00599	-3.05	17.200	1.424/3	0.01338	-1.01
4.550	1.51899	0.00316	-3.21	9.380	1.49916	0.00000	-3.04	1/.400	1.42203	U-01362	-1.75
	-				=	=					
5.000	1.51883	0.00319	-3.2 <u>7</u>	9.400	1.4985 <u>5</u>	0.00613	-3.0 <u>3</u>	17.600	1.41928	0.01386	-1.70
5.100	1.51851	0.00325	-3.26	9.500	1.49793	0.00621	-3.03	17.800	1.41649	0.01411	-1.64
5.200	1.51818	0.00331	-3.2Ē	9.600	1.49731	0.00628	-3.02	18.000	1.41364	0.01437	-1.58
5.300	1.51785	0.00327	-3.28	9.700	1.49668	0.00635	-3.01	18.200	1.41074	0.01463	-1.51
5.400	1.51751	0.00343	-3.25	9.800	1.49604	0.00643	-3.00	18.400	1.40779	0.01489	-1.45
					·						
5.500	1.51716	0.00749	-3.25	9.980	1.49539	0.00651	-2.99	18.600	1.48478	0.01516	-1.38
5.600	1.51641	0.00355	-3.25	10.000	1.49473	0.00658	-2.00	18-800	1.40173	0.01543	-1.31
5.700	1.51645	0.00361	-3.25	10.200	1.49760	0.00675	-2.97	19.000	1.39851	0.01570	-1.25
5 000	1 54600	0 00360	-7 27	10 / 60	4 49296	D8260 0	_2 OF	10 200	1 7061.6	0 01500	-1.15
5 000	1 51509	0.00200	-3.24	10.400	4 40065	0 00705	-2 07	19.200	1 30222	0 01627	-1 10
2.900	1.91912	0.003/4	-3.24	10.000	1.49000	0.00105	-2.030	170400	1. 3 3522	0.01021	-1.03
6 000	4 54575			40 800	4 4 4 4 4 2 2	0 00720	-2.04	40 688	4 79907	0 04657	-1 01
6.000	1.51534	0.00320	- 3. 23	10.000	1.40922	0.00720	-2.91	19+000	1.30093	0.01051	-1-01
8.100	1.51490	0.00387	-3.23	11.000	1.40//6	0.00730	-2.03	19.000	1.30559	0.01000	-0.95
6.200	1.5145/	0.00343	-3.22	11.200	1.40020	0.00/52	-2.01	20.000	1.30219	0.01/1/	-0.04
6.300	1.5141/	0.00344	-3.22	11.400	1.484/5	0.00769	-2.05	20.500	1.3/341	0.01/95	-0.62
6.400	1.51377	0.00406	-3.21	11.600	1.48328	0.00785	-2.83	21.000	1.36423	0.01878	-0.38
		·									
6.500	1.51336	0.00412	-3.21	11.800	1•4816 <u>2</u>	0.00802	-2.81	21.500	1.35462	0.01965	-0.11
6.600	1.51294	0.08419	-3.21	12.000	1.48000	0.00010	-2.70	22.000	1.34457	0.02057	0.17
6.700	1.51252	0.00425	-3.20	12.200	1.47834	0.00835	-2.76	22.500	1.33404	0.02154	0.48
6.800	1.51209	0.00432	-3.20	12.400	1.47665	0.00852	-2.73	23.000	1.32302	0.02257	0.82
6.900	1.5116Ē	0.00429	-3.19	12.600	1.47493	0.00870	-2.71	23.508	1.31147	0.02366	1.15
		_	_						. –		
7.000	1.51122	0.00445	-3.19	12.800	1.47318	0.00887	-2.68	24.000	1.29935	0.02482	1.58
7.100	1.51077	0.00452	-3.18	13.000	1.47138	0.0905	-2.65	24.500	1.28663	0.02606	2.02
7.200	1.51031	0.09458	-3.18	13.200	1.46956	0.00923	-2.62	25.000	1.27328	0.02738	2.50
7.300	1.50985	0.00465	-3.17	13.400	1.46769	0.00941	-2.59	25.500	1.25923	4.02880	3.02
7.400	1.50938	0.00472	-3.17	13.600	1.46579	0.00960	-2.56	26.000	1.24445	0.03033	3.59
7.500	1.50891	0.00479	-3.1Ē	13.808	1.46385	0.00978	-2.53	26.500	1.22888	0.03198	4.2T
7.600	1.50847	0.00486	-3.15	14.000	1.46188	0.00997	-2.50	27.000	1.21257	0.03376	4.90
7.700	1.50794	8.00402	-3.15	14.200	1.45986	0.01016	-2.47	27.500	1.19510	0.03570	5.65
7.800	1.50745	0.00450	-3.14	14.400	1.45781	0.01035	-2.47	28.000	1.17677	0.03704	6.40
7.000	1.50607	0.00439	_ 3 41	16 600	4 15579	0.01030	-2.40	20 600	4 45705	0 04043	7 17
	1.50034	0.00500	-3.14	140000	1042572	0.01022	-2.39	20.200	1.12152	0.04013	7.41
8.000	1.50643	0.00513	-3.13	14.800	1.45350	0.01075	-2.35	29.000	1.13656	0.04250	8.47
8.100	1.53591	0.00520	-3.13	15.000	1.45142	0.01005	-2.35	29.500	1.11/61	0.04557	9.58
8.200	1.50520	0.00520	-3.17	16 200	1.44024	0 011199	-2 25	20 000	4 00007	0 04077	10 12
8.200	1 50103	0 0052/	-7 44	12.000	4 444761	0.01110	-2.02	30.000	1.03031	0.040/0	10.02
0.000	1. 20400	u.uu>34	-3.11	17.400	1.44090	0.01136	-2.24				

TABLE 25. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR NaCl AT 293 K (continued)*

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.6. The number of digits with an overstrike are not relevant to accuracy of the data.

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

H. H. LI

FIGURE 23. dn/dT of NaCl

		TAPTE 20. OCONCE	TONY	CUNICAL	INF UKMATION	W THE REFRACT	VE INDEX AND COMPANIEMENTS OF NACI
Cur No.	. Ref. No.	Author (s)	Ycar	Method Used	Wavelength Range, µm	Temperature, ·K	Specifications, and Remarks
I	60	Borel, G.A.	1895	D	0.214-0.589	288	Crystal; prismatic specimen; digitized data were presented.
63	15	Genzel, L., Happ, H., and Weber, R.	, 1959	Т	2.50-300.0	298	Plate specimens of various thickness; absorption coefficients and reflications were determined from transmitted intensities, refractive indices were then calculated by using the Lorentz formulae; data extracted from a figure.
က	61	Cartwright, C.H. and Czerny, M.	1934	Я	145.0-231.0	298	Thin plate specimen; refractive indices were obtained from analysis of the reflection spectrum; data extracted from a figure.
4	19	Cartwright, C.H. and Czerny, M.	1934	Ŧ	193. 0-232. 0	298	Thin plate specimen of 237 µm in thickness, refractive indices were deduced from informaticn of transmission; data extracted from a figure.
ŝ	19	Cartwright, C.H. ard Czerny, M.	1934	Т	152.0-208.0	298	Similar to above but specimen of 147 μ m in thickness.
9	61	Cartwright, C.H. and Czerny, M.	1934	Т	163.0-201.0	298	Similar to above but specimen of 97 µm in thickness.
7	29	Hohls, H.W.	1937	н	18.1-27.3	291	Crystal; thin plate specimen of 394 µm in thickness; digitized data were presented by the author.
80	29	Hohls, H.W.	1937	I	18.3-27.2	291	Similar to above but specimen of 354 µm in thickness.
6	29	Hohls, H.W.	1937	1	19.2-28.0	291	Similar to above but specimen of 190 µm in thickness.
10	62	Geick, R.	1962	т, к	55, 67	298	Crystal; film specimen; formed by vacuum evaporation onto polyethylene glycol or cellulose membrane substrate; transmission curve of the specimen was obtained; reflection curve from a NaCl plate was also measured; based on the above experimental information, refractive indices were deduced by a graphical method (see this reference for detailed discussion); inaccuracy of this method resulted in vary large errors in the Δn and Δn by the author.
11	62	Geick, R.	1962	т, в	70-166	298	Similar to above but specimen of 40 μm in thickness was cut from a NaCl plate, uncertainly in a bout 3%.
12	62	Geick, R.	1962	Я	11.6-202.3	298	Crystal; plate specimen; reflection spectrum of normal incidence was analyzed by Kramers-Krong relation; data extracted from a smooth curve.
13	63	Vinogradov, E.A., Dianov, E.M., and Irisova, N.A.	1965	I .	2000	298	Plate specimens with thicknesses of 1.5 to 9.0 mm and diameter of 50 mm; refractive index was determined from the transmission of a Michelson interferometer; digitized detum was presented by the author; uncertainty in n was 0.014.
14	30	Harting, H.	1943	A	0.20-1.083	293	Crystal; the author stated that the refractive indices were measured by F. Wolf on the specimen supplied by A. Smakula but no references were cited; digitized data were presented by the author; dn/dT at 293 K for each wavelength was also given.
12	55	Paschen, F.	1908	Ω.	0.486-15.920	291	Crystal; prismatic specimen with height of 6 cm, width of 7.5 cm and apex angle of 50° ; digitized data were presented by the author; dn/dT at temperature 285-294 K was found to be -3.5×10^{-5} K ⁻¹ for the wavelength 0.58932 µm.

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

392

Ê
(continued
laCl
OF 1
MENTS
SUREN
MEA
/dT
0 dh
INA N
INDEX
TIVE
RAC
REF
THE
NON
IATIO
WEORM
Г Г
ECHNICA
LT CIN
RCE A
sot
TABLE 26.

Marteles, F. F. 101 D 1/16-0,165 291 Crystel, primults specimenes (increasion of two prisms are of observable) Caeray, M. 180 T, R 36-40 20 Crystel, primults specimenes (increasion of cynotic) seals and specimenes (increasion of cynotic) seals and specimenes (increasion searce) 20 2	76 0	Author(s)	4	{ear	Method Used	Wavelength Range, µm	Temperature, K	Specifications, and Remarks
Czerzy, M. 130 T, R. 35–46 298 Crystal labe systemes of annotation method can be found in that reference. Barbaren, M. 154 D 0.546 7.3-2401 Crystal labe systemes of annotation method can be found in that reference. Barbaren, M. 154 D 0.546 7.3-2401 Crystal lape systemes with a seconstant in the reference. Barbaren, M. 151 P 0.546 70 7.3-2411 2.311 fab		Martens, F.F.		1901	Q	0.185-0.768	291	Crystal; prismatic specimens; dimension of two prisms as follows: heights of 3.8 and 5.4 cm respectively, sides of 3.8 x 2.0 cm and 5.4 x 2. cm, apex angles of 40°4'27" and 60°9'23"; averaged digitized values of the results obtained from these two prisms were presented by the author.
Barcharon, M. 151 D 0.566 7.3-2-91 Crystally generates generating for miserify. I, 25 st. Morent of 27.5. St. Ap/T at temperature angles: measurements performed at 2, e. 0.64 generating for 2012. St. Ap/T at temperature angles: measurements performed at 2, e. 0.64 generating for 2012. St. Ap/T at temperature angles: measurements performed at 2, e. 0.64 generating for the attract or measurements performed at 2, e. 0.64 generating for the attract or measurements were necessarily obtained from the fareyawer formed at 2, e. 0.64 generating for the attract or measurements were necessarily obtained from the fareyawer former angles: measurements of the advector performed at 2, e. 0.64 generating for the attract or measurement of the advector performed by finding the foot 1 and 1.04 for the another at 2, and 1.04 for attracted at 2, and 1.04 for 3.04 for 3.04 for 3.04 for attracted at 2, and 1.04 for 3.04 for 3.04 for		Czerny, M.		1930	Т, Я	35~46	298	Crystal; plate specimens of various thicknesses; refractive indices were deduced from the measurements of transmission reflection; digitized data were presented; details of calculation method can be found in this reference.
Roeseler, D.M. atd Walker, W.C. 1968 R 0.0476-0.2460 300 Crystal: obtained from the Earshaw Chemican settion spectrum were reduced by frammes-richtan settion settion settion settional acquiterial learnes. Marcoux, J. 1971 F 0.4-0.7 1074 Noten sait yrow mole applies in the intronse set formed a cylinicrial learnes. Marcoux, J. 1971 F 0.4-0.7 1074 Noten sait yrow mole applies in the condinance of the author. Marcoux, J. 1971 F 0.5460 1079 Similar to bow. Marcoux, J. 1971 F 0.5460 1079 Similar to bow. Marcoux, J. 1971 F 0.5460 1079 Similar to bow. Marcoux, J. 1986 T 2000 298 Natural crystal: plate specimens of 1.2 and 1.3 cm thu the author. Marcoux, J. 1929 T,R 23-38 Similar to bow. Similar to bow. Kellner, L. 1929 T,R 23-38 Natural crystal: plate specimens of 1.2 and 1.3 cm through the speciments of 1.2 and 1.4 cm tho anthor. Mittokerich, V.V. 1929 T,R 23-38 Crystal: plate speciments of 1.		Barbaron, M.		1951	Ð	0. 546	73, 2-291	Crystal; prismate specimer with 1.2 cm in height, 1.3 cm in width and about 60° apex angle; measurements performed at $\lambda = 0.546$ µm; dn/dT was found to be -3.67×10^{-5} K ⁻⁴ and remaining as a constant in the temperature range from 291.2 K down to 173.2 K; dn/dT at temperature 73.2 K was found to be -2.5×10^{-5} K ⁻¹ ; digitized data were presented by the author.
Marccux, J,1971F 0.4 - 0.7 1074Molte salt; Vycor tube filled with the molten salt formed a cylindrical let refractive indices were elemented by the author.Marcoux, J.1971F 0.5460 1079Similar to above.Marcoux, J.1996T2000298Natural crystali plate specimans dirugup at estimated film eachMarcoux, J.1929T, R2000298Natural crystali plate specimens diructure sciencesMitskerich, V.V.1929T, R23-38298Natural crystali plate specimens diructure sciencesMitskerich, V.V.1963T, R23-38298Crystali plate specimens diructure sciencesMitskerich, V.V.1963T, R23-38298Crystali plate specimens diructure sciencesMitskerich, V.V.1963N21-179298Crystali plate specimens diructure sciencesMitskerich, V.V.1963N21-179298No specifications and fala scure sciences of 0.010 was beeneneess.Rubons, H. and Nehols, E.F.1897D $0.434-22.23$ 291Crystali thin, starp prismatic specimen with apex angle of 10^557 digiticRubons, H. and Nehols, E.F.1897D $0.434-5.746$ <		Roessler, D.M. ard W	/alker, W.C. 1	1968	Я	0.0476-0.2480	300	Crystal; obtained from the Earshaw Chemical Company, Cleveland, Ohio; spacimens with cleaved surfaces; reflection spectrum were reduced by Kramers-Kronig analysis; digitized data were presented by the authors
Marcoux, J. 1971 F 0.5460 1079 Similar to above. Dianov, E.M. and Irisova, N.A. 1966 T 2000 298 Natural crystal: plate specimens of 1.2 and 1.8 cm intifceness and 5.0 cm Dianov, E.M. and Irisova, N.A. 1966 T 2000 298 Natural crystal: plate specimens of 1.2 and 1.8 cm intifceness and 5.0 cm Kellner, L. 1929 T,R 23-38 298 Crystal: plate specimens of fulcinesses 55, 1.81 and 3.4 gm; information transmitted interferograms through the specimens of the authors. Mitskevich, V.V. 1929 T,R 23-38 298 Crystal: plate specimens of thicknesses 55, 1.81 and 3.4 gm; information transmission and tenfoction was used to deduce refractive indices: distruction transmission and tenfoction was used to deduce of 10° 53'i digitize dust were presented by the authors. Mitskevich, V.V. 1963 21-179 298 No pecifications and data cource were given; data extracted from a figure dust were presented by the authors. Rubons, H. and Nichols, E.F. 1891 0 0.434-22.3 291 Crystal: thin, slarp prismatic specimen with apex angle of 10° 53'i digitize dust were presented by the authors. Rubons, H. and Nichols, E.F. 1891 0 0.434-25.3 291 Crystal: thin, slarp prismatic specimen with apex angle of 10° 53'i digitize dust		Marccux, J.		171	Σ.	0.4-0.7	1074	Molten salt; Vycor tube filled with the molten salt formed a cylindrical len refractive indices were cetermined by finding the focal lengths of the lens at given vavelengths; uncertainty of 0,005 was estimated in each n; digtized data were presented by the author.
Dianov, E.M. and Irisova, N.A.196T2000298Natural crystal; plate specimens of 1.2 and 1.8 cm in thickness and 5.0 cmKellner, I.1929T,R23-38298Crystal; plate specimens of 0.014 was presented by the authorKellner, I.1929T,R23-38298Crystal; plate specimens of 1.2 and 3.6 cm; information of transmitted interferograms through the specimens of the specimens of 0.014 was presented by the author.Kellner, I.1929T,R23-38298Crystal; plate specimens of the curves warelength 500 µm was deduced from a figure distance.Mitskevich, V.V.196221-179298Crystal; plate specimens of 1.2 and 3.6 cm; information of transmitted interferograms through the specimens of the author.Mitskevich, V.V.196221-179298Vasta prismission and reflection was used to deduce refractive indices; distance dista were presented by the author.Rubons, H. and Nichols, E.F.1897D0.434-22.3291Crystal; thin, sharp prismitic specimen with apex angle of 10°53; digitized dista were presented.Rubens, H. and Trowbridge, A.1897D9.95-17.93291Crystal; thin, sharp prismitic specimen with apex angle of 10°53; digitized dista wereRubens, H.1897D0.434-5.746291Crystal; thin, sharp prismitic specimen with apex angle of 10°53; digitized dista wereRubens, H.1897D0.434-8.307291Crystal; thin, sharp prismitic specimen with apex angle of 10°53; digitized dista wereRubens, H.1891D0.434-8.307291Crystal; prismatic specimen with a		Marcoux, J.	-	1971	Ŀч	0.5460	1079	Similar to above,
Kellner, L.1929T,R23-38298Crystal; plate specimens of fuictnesses 55, 181 and 346 µm; information of transmission and reflection was used to deduce refractive indices; digitized data were presented by the author.Mitskevich, V.V.196221-179298No specifications and data source were given; data extracted from a figure this set of data is listed in data table for the purpose of completeness.Rubens, H. and Nichols, E.F.1897D0.434-22.3291Crystal; thin, sharp prismatic specimen with apex angle of 10°53'; digitized data were presented by the authors.Rubens, H. and Trowbridge, A.1897D0.434-5.746291Crystal; thin, sharp prismatic specimen with apex angle of 10°53'; digitized data were presented.Rubens, H. and Srow, B.W.1892D0.434-5.746291Crystal; thin, sharp prismatic specimen with apex angle of 10°53'; digitized data were presented.Rubens, H.1892D0.434-5.746291Crystal; prismatic specimen with apex angle of 10°53'; digitized data were presented.Rubens, H.1892D0.434-5.746291Crystal; prismatic specimen with apex angle of 10°53'; digitized data were presented.Rubens, H.1892D0.434-5.746291Crystal; prismatic specimen with apex angle of 10°53'; digitized data were presented.Rubens, H.1892D0.434-8.77291Crystal; prismatic specimen with apex angle of 10°53'; digitized data were presented.Rubens, H.1892D0.434-8.67291Crystal; prismatic specimen with apex angle of 0.°5'; digitized data were presented.Rubens, H		Dianov, E.M. and Iris	ova, N.A. J	9961	H	2000	298	Natural crystal; plate specimens of 1. 2 and 1. 8 cm in thickness and 5.0 ci in diameter; refractive index at wavelength 2000 µm was deduced from the information of transmitted interferograms through the specimens; digitized datum with an uncertainty of 0.014 was presented by the autho
Mitskevich, V.V.196321-179298No specifications and data source were given; data extracted from a figureRubens, H. and Nichols, E.F.1897D0.434-22.3291Crystal; thin, sharp prismatic specimen with apex angle of 10°53'; digitizRubens, H. and Trowbridge, A.1897D9.95-17.93291Crystal; thin, sharp prismatic specimen with apex angle of 10°53'; digitizRubens, H. and Trowbridge, A.1897D9.95-17.93291Crystal; thin, sharp prismatic specimen with apex angle of 10°53'; digitizRubens, H.1892D0.434-5.746291Crystal; thin, sharp prismatic specimen with apex angle of 10°53'; digitized data wereRubens, H.1892D0.434-5.746291Crystal; prismatic specimen with apex angle of 10°53'; digitized data wereRubens, H.1892D0.434-8.77291Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and atRubens, H.1892D0.434-8.67291Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and atRubens, H.1892D0.434-8.67291Crystal; prismatic specimen with apex angle of 60°2'; digitized data wereRubens, H.1892D0.434-8.67291Crystal; prismatic specimen with apex angle of 60°2'; digitized data wereRubens, H.1892D0.434-8.67291Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and atRubens, H.1895D0.434-8.67291Crystal; prismatic specimen with apex angle of 60°2'; digitized data were<		Kellner, L.	-	1929	т, к	23-38	298	Crys.al; plate specimens of thicknesses 55, 181 and 346 µm; information c transmission and reflection was used to deduce refractive indices; digitized data were presented by the author.
Rubens, H. and Nichols, E. F.1897D0.434-22.3291Crystal; thin, sharp prismatic specimen with apex angle of 10°53'; digitiz data were presented by the authors.Rubens, H. and Trowbridge, A.1897D9.95-17.93291Crystal; thin, sharp prismatic specimen with apex angle of 10°53'; digitiz data were presented.Rubens, H.1892D0.434-5.746291Crystal; prismatic specimen with apex angle of 10°53'; digitized data were presented.Rubens, H.1892D0.434-5.746291Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and ar angle of 60°2'; digitized data were presented.Rubens, H.1892D0.434-8.67291Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and ar angle of 60°2'; digitized data were presented.Rubens, H.1891D0.434-8.67291Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and ar angle of 60°2'; digitized data were prismatic specimen with apex angle of 60°2'; digitized data were angle of 60°2'; digitized data were angle of 60°2'; digitized data wereRubens, H.1891D0.434-8.67291Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and ar angle of 60°2'; digitized data wereRubens, H.1895D0.434-8.67291Crystal; prismatic specimen with apex angle of 60°2'; digitized data were		Mitskevich, V.V.	[1962		21-179	298	No specifications and data source were given; data extracted from a figure this set of data is listed in data table for the purpose of completeness.
Rubens, H. and Trowbridge, A.1897D9.95-17.93291Crystal; thin, sharp prismatic specimen with apex angle of 10°53°; digitized data were presented.Rubens, H.1892D0.434-5.746291Crystal; prismatic specimen with apex angle of 60°21°; digitized data were presented.Rubens, H.1892D0.434-5.746291Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and a angle of 60°21; digitized data were angle of 60°21; digitized data were angle of 60°21; digitized data were and a presented.Rubens, H.1892D0.434-8.67291Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and a angle of 60°21; digitized data were angle of 60°21; digitized data were 	-	Rubens, H. and Nichol.	s, E.F. 1	1897	Ð	0.434-22.3	291	Crystal; thin, sharp prismztic specimen with apex angle of 10°53'; digitize data were presented by the authors.
Rubens, H.1892D0.434-5.746291Crystal; prismatic specimen with apex angle of 60°2'; digitized data were presented.Rubens, H. and Srow, B.W.1892, 1901D0.434-8.307291Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and ap angle of 60°2'; digitized data were presented.Rubens, H.1895, 1895,D0.434-8.67291Crystal; prismatic specimen with apex angle of 60°2'; digitized data were presented.Rubens, H.1895, 1894D0.434-8.67291Crystal; prismatic specimen with apex angle of 60°2'; digitized data were presented.		Rubens, H. and Trowb:	ridge, A. 1	1897	Ð	9.95-17.93	291	Crystal; thin, sharp prism the specimen with apex angle of 10° 53'; digitized d that were presented.
Rubens, H. and Srow, B.W.1892,D0.434-8.307291Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and ap1901angle of 60°2; digitized data wcre presented.1895,D0.434-8.67291Crystal; prismatic specimen with apex angle of 60°2; digitized data wereRubens, H.1895,D0.434-8.67291Crystal; prismatic specimen with apex angle of 60°2; digitized data wereRubens, H.18940.434-8.67291Crystal; prismatic specimen with apex angle of 60°2; digitized data were		Rubens, H.	E.	1892	Q	0.434-5.746	291	Crystal; prismatic specimen with a pex angle of $60^\circ 2^\circ;$ digitized data were presented.
Rubens, H. 1895, D 0.434-8.67 291 Crystal; prismatic specimen with apex angle of 60°21; digitized data were presented by the author; this paper contained the same set of data in th author's 1894 paper but with revised wavelengths.		Rubens, H. and Srow,	B.W. 1	1892 , 901	Ð	0.434-8.307	291	Crystal; prismatic specimen with height of 4.5 cm, edge of 3.5 cm and ap angle of 60° Z; digitized data wcre presented.
	•	Rubens, H.		1895 , 1894	D	0.434-8.67	291	Crystal; prismatic specimen with apex angle of 60°21; digitized data were presented by the author; this paper contained the same set of data in th author's 1894 paper but with revised wavelengths.

REFRACTIVE INDEX OF ALKALI HALIDES

ASUREMENTS OF NaCl (continued)	Specifications, and Remarks	imen with large, clear cleavage faces; specimen was prism of a Pulfrich refractometer by a suitable liquid tent of refractive indax; digitized data were presented.	uto a 60° prismatic Pt container with silloa glass windows r; estimated uncertainty of 0.001 in n; digitized values y the author.	specimen with apex angle of $59^{\circ}371161/2^{\prime\prime}$; digitized data	mens of thicknesses ranging from 21.5 to 147 µm cut from indices were derived from information on transmission as of various thicknesses; the authors presented digitized best fit curve.	smattle specimen of apex angle $26^{\circ}17^{\circ}20^{\circ}$; refractive index was determined by the Abbe autocollinating spectrometer; as presented; dn/dT of lines, C, D, F and G in the tem- com 13.2 to $39, 4$ C were also given.	Ined from Harshaw Chemical Co, or grown by the method ation followed by a zcne melting in an atmosphere of quartz ampoules (eleaved pechinens of 8 mm x 10 mm x nension; thinner specimen (\sim 0.08 mm) was prepared ressing small pieces of zone-refined crystalls between sy carbon plates in vacuum; reflection spectra were attangle of 10° and transmission spectra at normal live indices were deduced by Kramers-Kronig method; om a figure.			Ih various thicknesses; refractive index was determined tion of transmitted interferograms; digitized value was neertainty of 0,01.		ı with apex angle of about 60° ; temperature not specified, e assumed; digitized hata presented.	1 of 60° apex angle; measurements were made at various aging from 15 to 20, 5C and then reduced to 18 C by own $dn/dT = -0.0000373$; the averaged value was pre-	specimen with apex angle of 39°331, height of 38 mm; 0 mm ² ; specimen was placed in a heating chamber; ere made at various temperatures ranging from 23.4 to IT were deduced; averaged results were presented in this reference contairs dh/dT only.
NDEX AND dn/dT ME		Crystal; plate spec cemented to the in the measurem	Molten salt; filled in of 4 mm diamete were presented t	Crystal; prismatic were presentel.	Crystal; plate speci bulk; refractive i through specimen data read from a	Natural crystal; pri of sodium D line digitized value w perature range fi	Single crystal; obtai of vacuum distill choirine using a 0,2 ~4mm in din by melting and p two parallel glas obtained at incidence; refract data extracted fr	Similar to above.	Similar to above.	Plate specimens wil from the informa presented with u	Similar to above.	Prismatic specimen room temperatur	Prismatic specimen temperatures rai using the then In sented.	Crystal; prismatic i surface of 38 x 2 measurements w 100.4 C and dn/ć digttized values;
IE REFRACTIVE I	Temperature, K	298	1093	291	298	290	298	78	10	300	77	298	291	296. 6-373. 6
DRMATION ON TH	Wavelength Range, µm	0.4358-0.5893	0, 5461	0.441-0.768	70-120	0.589	0.10-0.25	0.10-0.25	0.10-0.25	2000	2000	0.2143-0.6437	0.589	0.202-0.643
CAL INFO	Method Used	<u>е</u> ,	D	α	F.	D	ы	ы	æ	1	I	D	Q	Q
TECHN	Year	1947	1963	1902	1933	1892	1968, 1967	1968 , 1967	1968, 1967	1967	1967	1889	1891	1902
TABLE 26. SOURCE AND	Author (s)	Ramaseshan, S.	Zarzycki, J. and Naudin, F.	Martens, F.F.	Cartwright, C.H. and Czerny, M.	Pultrich, C.	Miyata, T. and Tomiki, T.	Miyata, T. and Tomiki, T.	Miyeta, T. and Tomiki, T.	Diamov, E.M. and Irisova, N.A.	Dianov, E.M. and Irisova, N.A.	Joubin, P.	Duter, M.H.	Micheli, F.J.
	. Ref. No.	43	44	74	75	76	77,	77, 78	77, 78	47	47	64	80	81
	Cur No.	30	31	32	33	34	35	36	37	38	39	40	41	42

н. н. ц

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

394

(continued)	
OURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dn/dT MEASUREMENTS OF NaCI	
TABLE 26.	

Specifications, and Remarks	ic specimen with apex angle of 59° 38'17", height of 6 cm and edge m; specimen was placed inside a heating chamber regulated to C; measurements were made at various temperatures ranging 18 to 100 C and dh/dT's were deduced; results of dh/dT were nied in digitized values; refractive indices at 18 and 100 C were d, however, they were not extracted because it was impossible d accurately to be consistent with given dh/dT's.	ic specimen placed in a temperature regulated chamber; mea- tents were made at various temperatures ranging from -26 C to digitized data were given; this paper contains dn/dT data only.	to specimen with apex angle of 56° 9'32"; refractive indices were ured by the minimum deviation method; temperature coefficients ractive index for three lines, B, D, and F were also determined range from 12.2 to 91.6 C by heating the prism; digitized data presented.	to above but a different prism with apex angle of $42^{\circ}2'49''$; the vature range in determining the temperature coefficients was 20.5 to 93.7 C.	ic specimen with apex angle of about 59.9°; digitized data were uted.	o above.	ic specimen with apex angle of about 60° ; measurements were at various temperatures depended on weather conditions; ded data were presented.	ystal; prismatic sample; digitized data were given with uncertainty 0004.	o above.	ystal; disc specimens of 1-18 mm in thickness; refractive index dium D line was determined by immersion method; digitized value eported with uncertainty of ± 0.0005 ; temperature was not specified range was given.	ecimen placed in a CO ₂ laser resonator; the temperature coefficient ractive index was determined by measuring the drift of resonator 1 length, casused by a definite change of sample temperature (cooled
	Prismat of 3 (±0.5 from prese tore	Prismat surei 20 C;	Prismat meas of re in the	Similar temp from	Prismat prese	Similar	Prismat mede digiti	Single c of ±0	Similar	Single c for s was 1 but a	Plate sp of re optic
Temperature, K	291-373	247-293	290	295	293	293	272-300	290	4	281-308	293-308
Wavelength Range, µm	0.656-9.85	0.492-5.95	0.397-0.760	0.397-0.687	0.7604-3.4090	0.4861-6.4790	0.396-5.30	0.4358-0.6438	0.4358-0.6438	0.589	10.6
Method	А ,	Ð	A	Q	Ð	Ð	D	A	A	W	I
Year	1911	1911	1871	1871	1900	1900	1886	1968	1968	1972	1972
Author(s)	Liebreich, E.	Liebreich, E.	Steian, J.M.	Stefan, J.M.	Langley, S.P.	Langley, S.P.	Langley, S.P.	Lowdes, R. P. and Martin, D.H.	Lowdes, R.P. and Martin, D.H.	Fedyukina, G.N. and Zlenko, V. Ya.	Kolosovskii, O.A. and Ustimenko, L.N.
. Ref. No.	83	83	53	53	56	56	84	13	13	112	113
Cur No.	43	44	45	46	47	48	49	50	51	52	53

395

	ต่	<u>4 (cont.)</u> 3.2 K	1.56996	1.56050	1, 55327	1.54730	1.54428*	1.54416	1.54052	1.53851	1.53777	1.53547	1.53476	1.53346	1.53116	0110011	E 15	L.2 K		1.553399* 1 544919*	1.044013* 1 540679*	1. 538633	1.536712*	1.536138	1.534011	1.532435	1. 530372*	1.525863	1.524534	1.523173	1.521648	1.518978	1.516014	1.513628	1.511062	1.508318	1.505035	1. 494722	1.481816	1.471720	1.460547	1.454404	1.447494 1.441032
	۲	$\frac{\text{CURVE 1}}{\text{T} = 29}$	0.39064	0.43583	0.48613	0.54607	0.58756	0.58930	0.65628	0.70652	0.72814	0.81095	0.84247	0.91230	1. 08303		CURV	T = 29		0.486149	0. 20932 0 656204	0.706548	0.766529	0.78576	0.88398	0.98220	1,1786	1. 105U	2.9466	3. 5359	4.12524	5.0092	5.8932	6.4825	7. 0718	7.6611	8008 J.	10 0184	11.7864	12.9650	14.1436	14.7330	15.3223 15.9116
	r	<u>12</u> 0 K	1.52*	1.01	0.67	0.49	0.49	0.21	0.21	0.36	0.88	7.69	7.65*	6.07	0.14 4 39	3.93	3.52*	3.22	2.90	2.62	2.42	4.44	13	0 K		2.43		<u>9 K</u>	4 2	1.7963	1.7355	1.7038	1.6721^{*}	1.65878	1.65112^{*}	1.63680*	1.63202 1 69914±	1. 61479 1. 61479	1.60943*	1.60578	1.59915	1.58874	1.57684
	ĸ	$\frac{\text{CURVE}}{\text{T} = 298.}$	11.6 24 7	31.6	35.2	36.1	42.9	47.9	51.3	55.1	56.9	0.86	62.2	63. 5 61 - 5	60.0 66 9	69.1	72.8	80.4	99.0	127.6	L74.3	202.3	CURVE	T = 298.		2310.		<u>T - 993</u>	007 - T	0.15905	0.21360	0.22470	0.25998	0.24828	0.25365	0.26537	0.26993	0 25036	0.25676	0.30215	0.31317	0.33415	0.36631
x, n]	u	<u>(cont.)</u> .0 K	3,18 3,13*	3.09*	3.05	3.01*	2.98*	2.95	2.92*	2.90	2.87	2.83* 2.83*	2.81*	2.79*	2.10 9 74*	2.72*	2.71*	2.69*	2.67	2.66%	2.64* 0.63*	2.63* 2.61*	2.60	2.59*	2.58*	2.57*	2.56*	2.54 9 532	2.52*	2.51*	2.51*	2.50	2.49*	2.49*	2.48*	2.48*	2.47*	2.41* 0 47*	2.46	01.04			
Refractive Inde	ĸ	$\frac{\text{CURVE 11}}{\text{T} = 298}$	82 84	86	88	06	92	94	96	98	100	104	106	108	119	114	116	118	120	122	124	126	130	132	134	136	138	140	146	146	148	150	152	154	156	158	160	701	166	nn 1			
elength, λ , μ m;	u	2 K	1.414* 1.400*	1.391*	1.375*	1.358*	1.340*	1.304	1.283*	1.251	1.225	1.192**	6 0	2 K	1 405%	1.374*	1.339*	1.259*	1.148			. O. IV	0.54	0.74*	1.02	1.45	2.18	3.99 6.67	0.01 7 81	7.05	6.31	5.52	5.00	4.61			.0 K	9 09	0,00 3 63	3.51 3.51	3.40	3.31	3.24*
[Wave	ĸ	$\frac{\text{CURVE}}{\text{T} = 291.}$	18.3 19.0	19.8	20.4	21.1	21.9	23.9	24.8	25.4	26.5	21.2	CURVE	T = 291.	6 01	20.3	21.5	24.6	28.0			J. = 298.	55	56	57	58	59	60	10	63	64	65	66	67		CURVE	T = 298.	02	01	74	76 76	78	80
	u	<u>3 (cont.)</u> 8.0 K	2.48 2.56	2.36	2.65*	2.55*		14	<u>0</u> K		2.46	2. 52 2. 45		E 5	N IN	2.60	2.63	2.55	2.49*	•		UK	2.52	2.60		<u>E 7</u>	-2 K	017 1	1.413 1 403%	1.394	1.381*	1.368*	1.352	1.318*	. 1.299*	1.278	1.254^{*}	1 9000 T	1 175	T• 110			
	Y	$\frac{\text{CURVE}}{\text{T}=29}$	174.2 100 0	199.8	230.9	230.9		CURVE	T = 2.98.		193.9	215.7 231.7		CURV	T = 2.93	152.9	171.0	187.2	207.2		T CURV	I = 295	163.0	200.8		CURV	T = 291	- - -	18.1	19.4	20.0	20.7	21.3	22.8	23.6	24.2	25.0	20.02	0°07	0.14			
	u	<u>7E 1</u> 8.2 K	1.73216*	1 69014*	1 68837*	1.64624	1.62704	1.59304	1.58627	1.58365	1.57855	1. 54443	E 2	• 0 K	1 20	1.53	1.51	1.51	1.49	1.49	I.44*	L.39 1.36	0.66	0.50*	0.40	0.47*	0.53	0.48	0.41	6.38	4.32	3.50	3.23	2.92	2.74	2.65	2.59 2.40±	2.48*	c	<u>مار</u>		2.66	2.56*
	Y	$\frac{CURV}{T=28}$	0.214	0.926	0.231	0. 257	0.274	0.325	0.340	0.346	0.361	0. 589	CURV	T = 298	12 0	10.2	7.66	9.82	12.88	15.89	17.62	20.32	34, 36	35.73	36.98	38.02	38.90	40.27	42.40	64.42	68.71	74.13	78.70	88.31	97.50	108.14	119.40	J.T • J.6Z		T = 298		146.9	146.9

* Not shown in figure.

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

TABLE 27. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF NaCI

	u	<u>9 (cont.)</u>).0 K	2.69 2.55 2.46	2.40	2.25	2.17	1.91	1.84* 1.75	1.69	1.65	E 20	4.2 K	1.423	1.414	1.402	5	79.2 K		1.413	/E 22	98.0 K	2.43		VE 23	VI 0.00	1.340	1.330	1.324	1.321	1.310	1.306	1.302	1.299 1.000	1.310	
	×	$\frac{\text{CURVE }1}{\text{T}=300}$	0.16313 0.16421 0.16531	0.16642	0.16984	0.17219	0. 18367	0.19074	0.22542	0.24796	CURV	T = 107	0.4047	0.5000	0.6943		$T = 10^{\circ}$	1	0.5460	CURV	T = 20	2000.			37 II T	23	24	26	27	87 87	308	31	32	34 34	
	ц	<u>(cont.)</u> .0 K	1.82* 1.82 1.67	1.58 1 54	1.51	1.49 1 50	1.52	1.54 1.55	1. 59	1.63 1.65	1.66	1.67	1.66	1.66	1.65 1.65	1.64	1.64 1.63	1.61	1.59	1.50	1.44	1.36 1.36	1.33	1.34	1.42	1.51	1.74	1.84	2.00	2.12 2.30	2.42	2.59	2.72	2.90	
	~	$\frac{\text{CURVE 19}}{\text{T} = 300}$	0.11271 0.11374 0.11596	0.11308	0.11921	0.11979	0.12275	0.12324	0.12351	0.12915	0.13476	0.13776	0.14389	0.14169	0.14251 0.14416	0.14586	0.14572	0.14348	0.14937	0.15120	0.15212	0.15344	0.15401	0.15440	0.15536	0.15595	0.15634 0 15694	0.15734	0.15794	0.15834 0.15205	0.15996	0.15997	0.16099	0. 16207	
					•																														
dex, n]	u	<u>9 (cont.)</u> 0. 0 K	0, 78* 0, 79* 0, 81	0,82*	0,85*	0,86*	, 80 , 89 , 89	0,91*	0, 98*	1.02	1,10%	1.16°	1.21*	1.19*	1.17* 1.16*	1.14*	1.12*	1.10	1.14^{*}	1.15*	1.19*	1.21*	1,24*	1,22*	1,20	1,12*	1.10*	1,09	1.15*	1.24*	1.40	1,49*	1.57*	1.64 1.75	
Refractive In	~	$\frac{\text{CURVE 1}}{\text{T} = 30}$	0.084340 0.084628 0.084628	0.085210	0.085799	0,086097	0.087004	0.087310	0.088557	0.089194	0.090496	0,091837	0.094641	0.09537	0.09574 0.09611	0.09648	0.09686	0.09840	0.09879	0.09958	0.10039	0.10162	0.10246	0.10332	0.10507	0.10597	0.10642	0.10734	0.10781	0.10828	0, 10923 0, 10923	0.10972	0.11020	0.11169	
ıgth, λ, μm;	:	nt.)	87% 88% 88%	*88	87* 87*	87*	88* 88*	89	92 19	92*	*06	88*	8/* 86	86*	87* 88*	89*	90 00*	*06	89*	87 85*	84*	82*	82*	82*	80%	*62	77*	74*	74*	74*	76* 76*	76*	77	77* 76*	
[Wavele	۲	$\frac{\text{CURVE 19 (compared of 1})}{\text{T} = 300, 0 \text{ I}}$	0.057665 0. 0.058788 0. 0.059321 0.	0.059606 0.	0.060478 0.	0.061376 0.	0.061682 0. 0.061990 0.	0.062302 0.	0.063255 0.	0.063579 0.	0.064238 0.	0.064573 0.	0.064911 0. 0.065598 0.	0.065947 0.	0.066299 0. 0 06656 0.	0.067016 0.	0.067380 0.	0.068121 0.	0.068878 0.	0.070045 0.	0.071665 0.	0.072503 0.	0.073361 0.	0.073798 0.	0.074240 0.0.075139 0.0.	0.075598 0.	0.076061 0.	0.077006 0.	0.077975 0.	0.078968 0.	0.079987 0. 0.080506 0.	0.081033 0.	0.081566 0.	0. 083208 U. 0. 083770 0.	
												•		•					•					•					Ū						
	ц	<u>r (cont.)</u> 8. 0 K	0.42* 0.40	0.52	0.48% 0.40%	0.20	F. 18		1.55514	1.55381*	1.55040	1.54857*	1.54792*	E 19	0.0 K	0.83	0.82*	0.83*	0.83*	0.82	0.81*	0.81*	0.82*	0.83*	0.85	0.85%	0.83*	0.80*	0.79*	0.80*	0.80%	0.82*	0.83	0.84* 0.85*	1
	X	$\frac{\text{CURVE 1}}{\text{T} = 29}$	37 38 39	40	41	46	CITRV	11	0.546	0.546	0.546	0.546	0.546	CURV	T = 3)(0.047685	0.048430	0.048811 0.049198	0.049592	0.049791	0.05121	0.051658	0.051874	0.052092	0.052983	0.053440	0.053671	0.054377	0.054855	0.055102	0.055348 0.055548	0.055847	0.056355	0.056612 0.056872	
	п	<u>VE 16</u> 91.2 K	1.89332 1.88558* 1.82609	1.80254*	1.79580* 1 79016	1.76948	1.75413 1 74366	1.73221*	1.71711 1.70516*	1.68840	1.65541	1.64604*	1.63904 1.63417*	1.62687*	1.62083	1.60187	1.59954*	1.58601 1.57916*	1,56889	1.56530* 1.50530*	1. 55947	1.55554* 1.55554*	1.55071	1.54829	1.54724* 1 54607	1.54413*	1.54185	1.54105 1 54047*	1. 53982	1.53644		<u>VE 1/</u> 98.0 K		0.64 0.50*	n in figure.
	ĸ	$\frac{CUR}{T} = \frac{2!}{2!}$	0.185 0.186 0.186	0.197	0.198	0.204	0.208	0.214	0.219 0.224	0.231	0.242	0.257	0.263	0.274	0.281	0.308	0.312	0.340	0.394	0.410	0.441 0.441	0.467	0.508	0.533	0.546	0.589	0.627	0.643 0.656	0.670	0.768	1 min	= 5 = 5	1	35 36	* Not show

TABLE 27. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF NaCl (continued)

REFRACTIVE INDEX OF ALKALI HALIDES

397

	u Y	$\frac{\text{CURVE 36}}{\text{T} = 78, 0 \text{ K}}$	0.1058 1.58 0.1079 1.99 0.1094 2.34 0.1103 2.34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1120 2.18* 0.1142 2.18* 0.1151 2.02	0.1163 1.82* 0.1173 1.72* 0.1190 1.72	0.1234 1.91*	0.1303 1.97	$\begin{array}{c} 0.1325 & 1.97 \\ 0.1373 & 1.88 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1487 1.25	0.1498 1.04 0.1500 0.96	0.1520 1.07	0.1529 1.43*	0.1550 2.60		0.1578 3.40*	0.1588 3.03*		0.1645 2.30	0.1673 2.17*	0.1710 2.06 0.1766 1.96*	0.1851 1.87	0,2102 1.77* 0,2480 1.68*		CURVE 37	T = 10.0 K	0.1040 1.50*	0.1050 1.48*
	ч ү.	$\frac{\text{CURVE } 35}{\text{T} = 298, 0 \text{ K}}$	0.1033 1.51 0.1039 1.48* 0.1050 1.48*	0.1056 1.56* 0.1066 1.56* 0.1081 1.72	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1131 2.18 0.1143 2.08* 0.1159 1.99*		0.1235 1.69	0.1263 1.78* 0.1289 1.78	0.1298 1.80 0.1318 1.77*	0.1338 1.77* 0.1349 1.78*	0.1379 1.78*	0.1398 1.76*	0.1449 1.71*	0.1487 1.71* 0.1501 1.67	0.1521 1.48*		0.1540 1.43 0 1550 1 55%	0.1566 1.85	0.1602 3.08	0.1619 3.23*	0.1627 2.96		0.1694 $2.26*$	0.1725 2.14*	0.1813 1.94*	0.1893 1.86*	0.1980 1.80% 0.2053 1.77		0.2480 2.67*
tm; Refractive Index, nj	r Y	$\frac{\text{CURVE }30}{\text{T}=298, 0 \text{ K}}$	0.4358 1.5605 0.5461 1.5475 0.5893 1.5443	$\frac{\text{CURVE } 31}{T = 1093 \ 2} \text{ K}$	0.5461 1.424	$\frac{\text{CURVE } 32}{\text{T} = 291, 2 \text{ K}}$	0.441 1.55962*	0.486 1.55338*	0.508 1.55089* 0.533 1.54848	0.546 1.54745* 0.560 1.54629*	0.589 1.54431* 0.627 1.5407*	0.643 1.54125*	0.656 1.54067*	0.768 1.53666*	of anding	T = 298.0 K		70. 4.25 79 5 58	75. 3.42	77.5 3.25	60. 3.11 85. 2.94	90. 2.83	95. 2.76	105. 2.65	110. 2.60	120. 2.51		$\frac{\text{CURVE } 34}{\text{T} = 290.7 \text{ K}}$		0. 308 L. 3440
[Wavelength, λ, μ	Ч У И	$\frac{CURVE 28 (cont.)}{T = 291.2 K}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.107 1.5305 1.186 1.5299 1.277 1.5293*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1. 845 1. 5270 2. 076 1. 5264	2.771 1.5247 2.771 1.5247	3. 320 1. 5230 3. 320 1. 5230	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.647 1.5163 0 207 1 5190	0. JUI 1. DI JO	CURVE 29	V 7 .167 = 1	0.434 1.5607	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.656 1.5404	0.840 1.5345	1.761 1.5271	2.35 1.5255	3, 34 I. 5233 4, 01 1. 5216	4.65 1.5197		5.78 1.5121 6.78 1.5121	7.22 1.5102	8.04 1.5064	8.67 1.5030			
	n X	$\frac{CURVE}{T} = \frac{25}{291.2}$	0.434 1.5607* 0.589 1.5441* 8.67 1.5030	20.57 1.3735 22.3 1.340	$\frac{\text{CURVE 26}}{\text{T} = 291.2 \text{ K}}$	9.95 1.4951 11.88 1.4805	15.89 1.44.0	17.93 I.4148	$\frac{\text{CURVE } 27}{\text{T} = 291.2} \text{K}$	0.434 1.5607*	0.485 1.5531	0.656 1.5404*	0.819 1.5350	0.955 1.5323	1.043 1.53.3	1.275 1.5292	1.434 1.5283		2.296 1.5255	2.870 1.5242	5, 746 1, 5221 5, 746 1, 5179	0 TO TT 0 T 1 TO	CURVE 28	I = 291.2 K	0.434 1.5607*	0.589 1.5441*	0.656 1.5404	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.831 1.5347	0,876 1,5337
	у n	$\frac{\text{CURVE 23 (cont.)}}{T = 298.0 \text{ K}}$	35 1.330 36 1.376* 37 1.461	$\frac{\text{CURVE } 24}{\text{T} = 298, 0 \text{ K}}$	21 1.36 23 1.34	28 1.19 30 0.96	35 0.79 37 0.57	39 0.40 40 0.47	41 0.50 42 0.47	44 0.40 46 0.20	72 3.39	75 3.52 3.52	76 3.26	78 3.01	80 3.30	81 3.10 85 2.80	88 2.72	88 2.58	97 2,79 97 9,79	98 2.63	102 2.63	108 2.53	114 2.53	119 2.50 119 2.26	126 2.33	129 4.40 148 2.52	155 2.40	179 2.37		

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

398

TABLE 27. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF NaCl (continued)

* Not shown in figure.

(continued)
r NaCI
õ
NDEX
CTIVE
REFRA
N THE
DATA O
EXPERIMENTAL I
TABLE 27.

[Wavelength, λ , μ m; Refractive Index, **n**]

u	0 K	$ \begin{array}{c} 1 5606 \\ 1 5555 \\ 1 556741 \\ 1 556741 \\ 1 55675 \\ 1 55675 \\ 1 55675 \\ 1 55675 \\ 1 55675 \\ 1 55676 $	
~	$\frac{\text{CUEVE}}{\text{T}=290.0}$	$\begin{array}{c} 0.4358\\ 0.4678\\ 0.56461\\ 0.5780\\ 0.5780\\ 0.5780\\ 0.5780\\ 0.5780\\ 0.5780\\ 0.5780\\ 0.5780\\ 0.5780\\ 0.5780\\ 0.4678\\ 0.4678\\ 0.4678\\ 0.5780\\ 0.5893\\ 0.5893\\ 0.5893\\ 0.5893\\ 0.589\\ 0$	
и	<u>48 (cont.)</u> 293.0 K	$\begin{array}{c} 1. 530139\\ 1. 530139\\ 1. 529699\\ 1. 529452\\ 1. 528144\\ 1. 528144\\ 1. 528144\\ 1. 528144\\ 1. 5281487\\ 1. 5286213\\ 1. 527813\\ 1. 527856\\ 1. 522856\\ 1. 522856\\ 1. 524897\\ 1. 524867\\ 1. 524867\\ 1. 524867\\ 1. 524867\\ 1. 524867\\ 1. 524867\\ 1. 524867\\ 1. 522856\\ 1. 524870\\ 1. 524870\\ 1. 522856\\ 1. 524870\\ 1. 524870\\ 1. 524870\\ 1. 522867\\ 1. 524870\\ 1. 522867\\ 1. 522867\\ 1. 52286\\ 1. 5286\\ 1$	
X	$\frac{\text{CURVE}}{T=2}$	$\begin{array}{c} 1.2016\\ 1.2016\\ 1.4872\\ 1.4872\\ 1.4872\\ 1.4872\\ 1.4872\\ 1.4872\\ 1.4872\\ 1.4872\\ 1.4770\\ 1.4770\\ 1.4770\\ 1.4770\\ 1.4720\\ 1.4720\\ 1.4720\\ 1.4720\\ 1.4720\\ 1.4720\\ 1.4720\\ 1.4720\\ 1.4720\\ 1.4720\\ 1.4770\\ 1.4770\\ 1.75940\\ 1.75$	
. u	<u>47 (cont.)</u> 93.0 K	L: 525578* L: 52413** L: 52413** L: 524128* L: 523155* L: 523155* L: 523155* L: 5231539* L: 5231539* L: 5231539* L: 5231539* L: 5231539* L: 552456 L: 552456 L: 552456 L: 552456 L: 552456 L: 552456 L: 552456 L: 552456 L: 552456 L: 55361940 L: 5549001 L: 5549001 L: 5549001 L: 5549001 L: 5549001 L: 5549001 L: 554901 L: 554901 L: 554901 L: 554901 L: 554901 L: 5539150 L: 554901 L: 5539151 L: 5539152 L: 5539152 L: 5539151 L: 5539152 L: 5539151 L: 55391	
ĸ	$\frac{\text{CURVE}}{\text{T}=2}$	$\begin{array}{c} 2.4496\\ 2.2575\\ 3.0500\\ 3.2575\\ 3.0500\\ 3.2100\\ 3.2100\\ 3.2100\\ 3.2000\\ 3.2001\\ 3.2000\\ 3.2001\\ 3.2000\\ 3.2000\\ 3.2000\\ 0.2575\\ 0.4937\\ 0.4937\\ 0.4937\\ 0.4937\\ 0.4937\\ 0.4937\\ 0.4937\\ 0.5756\\ 0.57$	
, r	<u>URVE 46</u> = 295.0 K	$ \begin{array}{c} 1.56806 \\ 1.56304 \\ 1.56304 \\ 1.56304 \\ 1.55304 \\ 1.55304 \\ 1.55304 \\ 1.553002 \\ 1.54002 \\ 1.54002 \\ 1.538002 \\ 1.538002 \\ 1.53800 \\ 1.53800 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.533076 \\ 1.530574 \\ 1.530574 \\ 1.530574 \\ 1.530576 \\ 1.530576 \\ 1.530576 \\ 1.530576 \\ 1.530576 \\ 1.530576 \\ 1.530576 \\ 1.530576 \\ 1.530576 \\ 1.530576 \\ 1.530576 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552066 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552055 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552055 \\ 1.552056 \\ 1.552056 \\ 1.552056 \\ 1.552055 \\ 1.5$	
X	, OF	2,2,2,2,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,	
ц	VE 38 00.0 K	2. 43 2. 43 7.0 K 7.0 K 7.0 K 7.0 K 2. 35 2. 35 1. 69900 1. 64370 1. 64370 1. 63391 1. 61465 1. 63391 1. 63391 1. 55377 1. 55391 1. 55391 1. 55391 1. 55391 1. 55391 1. 55439 1. 554339 1. 554339	
ĸ	$\frac{\text{CURV}}{\text{T}=30}$	$\begin{array}{c} \text{CURV} \\ \overline{\Gamma}=\overline{7}\\ \overline{\Gamma}=\overline{7}\\ \overline{\Gamma}=\overline{7}\\ \overline{\Gamma}=\overline{2}\\ 0.25455\\ 0.23125\\ 0.23125\\ 0.23470\\ 0.238566\\ 0.234655\\ 0.234655\\ 0.24015\\ 0.238566\\ 0.238566\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.238656\\ 0.24716\\ 0.589\\ 0.589\\ 0.589\\ 0.589\\ 0.586\\ 0.666\\ 0.586\\ 0.666\\ 0.586\\ 0.586\\ 0.666\\ 0.586$	
u	7 (cont.) .0 K	111122222235523552355555555555555555555	
ĸ	$\frac{\text{CURVE 3}}{\text{T} = 10}$	0, 1056 0, 1074 0, 1076 0, 1096 0, 1096 0, 1108 0, 1108 0, 11108 0, 11109 0, 11179 0, 11179 0, 11179 0, 11256 0, 11457 0, 11457 0, 11457 0, 11457 0, 11457 0, 11457 0, 11457 0, 11572 0, 11577 0, 115777 0, 115777 0, 115777 0, 1157770 0, 1157770 0, 1157770 0, 11577700 0, 115777000000000000000000000000000000000	ATTA AALT .

REFRACTIVE INDEX OF ALKALI HALIDES

399
[Wavelength, λ , μ m; Temperature Derivative of Retractive Index, dn/cT, 10⁻⁵ K⁻¹; Mean Temperature, T_m , K]

			4		
λ dn/dT	~	dn/dT	~	dn/dT	
$\frac{\text{CURVE } 14}{\text{T}_{\text{m}} = 293.0} \text{ K}$	$\frac{CURVE}{Tm} =$	<u>34 (cont.)</u> 332.0 K	$\frac{\text{CURVE}}{\text{Tm}} = 1$	<u>44 (cont.)</u> 270.0 K	
0.21360 -0.9 0.22470 -0.9 0.23998 -1.7	0.589 0.656	-3.629 -3.639	0.502 0.589 0.589	-2.42 -2.46 -2.67	
0. 24828 -2. 1 0. 25365 -2. 5	T CUR	<u>ve 42</u> 335.0 K	0.589 0.678	-2.66 -2.70	
0.26993 -2.2	0.202	2.987	1.3	-3.14 -3.34	
0.28035 -2.2	0.206	2.085 1.428	2.0	-2.91	
0.29676 -2.8	0.214	0.712	2.1	-2.85	
0.31317 - 2.8	0.224	-0.324	3.2	-2.75	
0.33415 - 2.9	0.226	-0.516	4.15	-2.80	
0.39064 -2.9	0.231	-0.890	5.0	-2,83	
0.40466 -3.0	0.257	-2.105	5.95	-2.91	
0.43583 -3.2 0.48612 -3.5	0.274	-2.493	5,95	-3.23	
0.54607 - 3.3	0.298	-2.848	CUR	VE 45	
0.58756 -3.3	0.313	-2.981	H = U	<u>325.0</u> K	
0.65628 -3.4	0.340	-3.184	0.486	-3.65*	
0.70652 -3.5	0.361	-3.309	0.589	-3.76	
0.72814 -3.4	0.441	-3.537	0.687	-3.74	
0.76820 -3.5	0.467	-3.566	CTTP.	17 AS*	
0.84247 -3.5	0.508	-3,628	$T_m = 3$	330.0 K	
0.91230 -3.8	0.589	-3.733*			
1.01398 -3.7 1.08303 -3.2	0.643	-3.747	0.486	-3.62 -3.70	
7 • 0 - 00000 • T	CUR	VE 43	0.687	-3.74	
CURVE 15	T H	332.0 K			
$T_{m} = 290.0 K$	0.656	-3.764	T	/E 53 100.0 K	
0.58932 -3.35	1.1	-3.751	Ē		
	1.6	-3.664	10.6	-3, 2	
CURVE 18	1.7	-3, 333			
1m = 232.0 K	3. 30 4.96	-3.281			
0.546 -3.67	6.4 9 85	-3.241			
CURVE 34	ro •o	. 4. 040			
$T_{m} = 332.0$ K	$T_{m} = 0$	7 <u>70.0</u> K			
0.434 -3.473	1				
0.486 -3.537	0.492	-2.30			
* Not shown in figure.	ł				

Source	Wavelength and Temperature Ranges	Dispersion Equation λ in μ m; ν in cm ⁻¹
Rubens, H. and Nichols, E.F. [58] 1897	0.434-22.3 μm 291 K	$n^{2} = 1.1875 + \frac{1.1410 \lambda^{2}}{\lambda^{2} - (0.1273)^{2}} + \frac{2.8505 \lambda^{2}}{\lambda^{2} - (56.119)^{2}}$
Martens, F.F. [54] 1901	0.185-0.768 μm 291 K	$n^{2} = 1.155992 + \frac{0.855461 \lambda^{2}}{\lambda^{2} - (0.110725)^{2}} + \frac{0.317791 \lambda^{2}}{\lambda^{2} - (0.156320)}$
		$+ \frac{1.620760 \lambda^2}{\lambda^2 - (51.2)^2} - 0.000309178 \lambda^2$
Paschen, F. [55] 1908	0.48-15.92 µm 291 K	$n^{2} = 1.2593 + \frac{0.8611 \lambda^{2}}{\lambda^{2} - (0.1219)^{2}} + \frac{0.2098 \lambda^{2}}{\lambda^{2} - (0.1596)^{2}}$
		$+\frac{3.350 \lambda^2}{\lambda^2 \sim (60.0)^2}$
Czerny, M. [64] 1930	35.0-46.0 µm 298 K	$n^{2} = 1 + \frac{0.05217 \lambda^{2}}{\lambda^{2} - (0.03470)^{2}} + \frac{1.00447 \lambda^{2}}{\lambda^{2} - (0.10850)^{2}}$
		$+ \frac{0.27095 \lambda^2}{\lambda^2 - (0.15839)^2} + \frac{3.5075 \lambda^2}{\lambda^2 - (61.674)^2}$
Harting, H. [30] 1943	0, 199-1. 083 µm 293 K	$n = 1.52448 + \frac{0.00626}{(\lambda - 0.1010)^{1.66}}$
Rammachandran, N. [17] 1947	0.185-22.3 µm 291 K	$n^{2} = I + \frac{0.187895 \lambda^{2}}{\lambda^{2} - (0.0500)^{2}} + \frac{0.497649 \lambda^{2}}{\lambda^{2} - (0.1000)^{2}}$
		$+\frac{0.384897 \lambda^2}{\lambda^2 - (0.1280)^2} +\frac{0.259500 \lambda^2}{\lambda^2 - (0.1580)^2}$
		$+\frac{3.4740 \lambda^2}{\lambda^2 - (61.1)^2}$
Genzel, L., Happ, H., and Weber, R. [15] 1958	2.5-300.0 µm	$n^{2}-k^{2} = \epsilon_{uv} + \sum_{i} \frac{c_{i} (\nu_{i}^{2} - \nu^{2})}{(\nu_{i}^{2} - \nu^{2})^{2} + (\gamma_{i} \nu)^{2}},$
		$2nk = \sum_{i} \frac{c_{i} \gamma_{i} \nu}{(\nu_{i}^{2} - \nu^{2})^{2} + (\gamma_{i} \nu)^{2}} *$
Present work 1975	0.20-30.00 μm 293 K	$n^{2} = 1.00055 + \frac{0.19800 \lambda^{2}}{\lambda^{2} - (0.050)^{2}} + \frac{0.46398 \lambda^{2}}{\lambda^{2} - (0.100)^{2}}$
		$+\frac{0.38696 \lambda^2}{\lambda^2 - (0.128)^2} + \frac{0.25998 \lambda^2}{\lambda^2 - (0.158)^2}$
		+ $\frac{0.08796 \lambda^2}{\lambda^2 - (40.50)^2}$ + $\frac{3.17064 \lambda^2}{\lambda^2 - (60.98)^2}$
		+ _0.30038 λ ²

TABLE 29. COMPARISON OF DISPERSION EQUATIONS PROPOSED FOR NaCl

*i = 1, 2, 3; ν_1 = 246.9 cm⁻¹, ν_2 = 163.9 cm⁻¹, ν_3 = 53.1 cm⁻¹; γ_1 = 34.933 cm⁻¹, γ_2 = 6.133 cm⁻¹, γ_3 = 137.000 cm⁻¹; c_1 = 0.55 x 10⁴ (cm⁻¹)², c_2 = 8.60 x 10⁴ (cm⁻¹)², c_3 = 0.23 x 10⁴ (cm⁻¹)².

3.7. Sodium Bromide, NaBr

Sodium bromide is very hygroscopic and highly soluble in water and is therefore not a useful material for making optical components despite its transparency over a wide wavelength region from about 0.25 to more than 30 μ m. While NaBr is not useful for ordinary applications, it is an interesting material for scientific research. The wavelength of ultraviolet absorption peaks has been measured by Hilsch and Pohl [23] and by Schneider and O'Bryan [24] and that in the infrared was reported by Lowndes and Martin [13], who also investigated the dielectric constants. The results obtained by these investigators are shown in table 3.

Experimental work on the refractive index of NaBr is very scanty and is limited in the near ultraviolet and visible regions. Only five documents could be found in the open literature. By a careful review of the available data sets one finds that only two sets of data, those of Cyulai [27] and Wulff and Schaller [85], can be used to carry out analysis; the others are either inaccurate or otherwise unsuitable. The accuracy of the data of Gyulai is one unit of the third decimal place, though the values in his paper are given to the fourth for the purpose of tabular smoothness. The uncertainty of the single value of Wulff and Schaller is 0.0001. Bauer's film data appears too low in comparison with the bulk material data and Spangenberg's values [45] are clearly inaccurate, probably because of the hygroscopic character of NaBr and the use of an inadequate method. The single measurement of Zarzyski and Naudin [44] is for molten NaBr.

Gyulai's data were obtained at a temperature of 339 K, 46 degrees higher than the temperature chosen for reference data generation. Since the temperature derivative of refractive index of NaBr in the visible region is of the order of $-4.0 \times 10^{-5} \text{K}^{-1}$ [18], temperature corrections to Gyulai's values are significant, about two units in the third decimal place. Information on dn/dT is needed to carry out these corrections, but it is unavailable. Reasonable estimation of dn/dT can be made by the following formula, constructed from the parameters listed in table 5.

$$2n\frac{dn}{dT} = -12.69(n^2 - 1) - 0.12 + \frac{7.36\lambda^4}{(\lambda^2 - 0.03534)^2} + \frac{242.94\lambda^2}{(\lambda^2 - 5569.64)^2}, \quad (35)$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ is μ m. dn/dT values in the visible region given by eq (35) are about -4.0×10^{-5} K⁻¹, close to those proposed by Tsay [18].

By use of eq (35), data reported by Gyulai and Wulff and Schaller were reduced to 293 K, ready for the leastsquares calculations. The other necessary input parameters were taken from table 3. The result of the curve fitting calculations is a dispersion equation for NaBr at 293 K in the transparent region, $0.21-34.0 \ \mu m$.

$$n^{2} = 1.06728 + \frac{1.10463\lambda^{2}}{\lambda^{2} - (0.125)^{2}} + \frac{0.18816\lambda^{2}}{\lambda^{2} - (0.145)^{2}} + \frac{0.00243\lambda^{2}}{\lambda^{2} - (0.176)^{2}} + \frac{0.24454\lambda^{2}}{\lambda^{2} - (0.188)^{2}} + \frac{3.7960\lambda^{2}}{\lambda^{2} - (74.63)^{2}}, \quad (36)$$

where λ is in units of μ m.

Equations (35) and (36) were used to generate the recommended values on the refractive index and its wavelength and temperature derivatives. Note that in the table of recommended values the values are given to more decimal places than their accuracies, for the purpose of tabular smoothness and visual continuity. In order to use the values properly, the readers should follow the criteria given below.

For refractive index:

Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, \pm
0.21- 0.24	2	0.02
0.24 - 0.40	3	0.002
0.40- 0.70	3	0.001
0.70- 8.00	3	0.002
8.00-20.00	3	0.006
20.00-25.00	3	0.008
25.00-34.00	2	0.02
For dn/dT :		
0.21- 0.28	1	0.9
0.28 - 22.00	1	0.4
22.00-34.00	1	0.9

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

7

REFRACTIVE INDEX OF ALKALI HALIDES

TABLE 30. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR NaBr AT 293 K \star

		1 / 15	1 / 100			1. (1)	1. (170			1 / 12	. /
λ	n	-απ/αλ	an/ar	λ	n	-an/ax	an/a1	λ	n	-dn/dλ	dn/dT
Lum -		μm1	10 ⁻⁵ K ⁻¹	um	ц	um -1	10 ⁻⁵ K ⁻¹	um "	ш	um ⁻¹	10 ⁻⁵ K ⁻¹
-				r.		-		<u> </u>			
			.		4 40415	a				· · · · · ·	+
0.210	2.09223	14.24150	. 34•31	0.375	1.69142	0.48064	-3.13	1.750	1.61704	0.00424	-4.04
0.212	2.06563	12.43524	28.95	0.380	1.68907	0.45759	-3.18	1.800	1.61683	0.00398	-4.84
0.214	2 04 225	10 95874	24.60	0 785	4 68684	0 47607	-7 27	4 950	4 64667	0 00776	-1. 07
0.004	2.04225	10.30014	24.03	46305	1.00004	0.43007	-3422	1.020	1.01004	0.003/4	-4.02
0.216	2.02149	9.80870	21.23	0.390	1.68471	0.41595	-3.25	1.900	1.61646	0.00354	-4.05
0.218	2.00288	8.83064	18.38	0.395	1.68268	0.39710	-3-29	1.950	1.61628	0.00335	-4.05
									1		
			_								
0.220	1.98607	8.00877	16.01	0.400	1.68074	0.37943	-3.32	2.000	1.61€12	0.00319	-4.05
R-222	1.97077	7.38980	14.17	9.440	1.67711	0.36726	-7.78	2.050	1 61505	0.00707	-4 05
	1 05 2 3 6	6 36 00F								0.00304	
0.224	1.95070	6./0985	12.31	0.420	1.6/3/8	0.318/4	-3.45	2.100	1.61582	0.08291	-4.05
0.226	1.94388	6.18786	10.84	8.430	1.67072	0.29339	-3.47	2.150	1.61567	0.00279	-4.05
0.228	1.93197	5.77192	0.58	0.440	1.66700	0. 27076	-7.61	2.200	4 64664	0 00250	-1.05
		2010122		0	1000/ 50	0027070	0.01	2.200	1.01014	0000203	-4002
			_								
0.230	1.92091	5.33088	8.47	0.450	1.66530	0.25048	-3.55	2.250	1.61540	0.00259	-4.05
0 272	4 04 6 6 2	1 077EL	7 5 6		4 66 7 8 8	0 17176	. 7	0 700	4 445 20	0.00057	
0.232	1.91005	4.9/354	1.26	0.400	1.00200	0.20224	-3.50	2.300	1.01928	0.00251	-4.05
0.234	1.90099	4.65529	6.64	0.478	1.€6065	0.21578	-3.61	2.350	1.61515	0.00243	-4.05
0.236	1.89197	4.36965	5.48	0.480	1.65856	n 20080	-7.67	2.400	1 64507	0 00217	-6 OE
0 278	4 88 750	4 4 4 2 0 0	5 10	0 400	4 65663	0 10770			1.01.00	0.00237	
0.230	1.00320	4.11500	J • C U	0.4430	1.02005	4.10/30	-3.55	2+450	1.01492	0.00231	-4.05
8.240	1.87551	3.87855	4.50	0.500	1.65481	8.17510	-3.60	2.500	1.61480	0.00275	-6.0E
0 240	4 46 707	7 6 6 6 4 7		0.500	17223 <u>9</u>	0011000		2.5900	1.01404	0.00222	
4.542	T*00171	3.0CC <u>14</u>	4 • U <u>4</u>	0.510	1.0312	0.16388	-3.71	2.550	1.01469	u. 08220	-4.05
0.244	1.86083	3.47.215	3.54	0.520	1.65153	0.15363	-3.72	2.600	1.61458	0.08216	-4.05
0.246	1.85407	3.29434	3.09	8.530	1.65004	1.14424	-3.74	2.650	1.61449	0.00212	
000040	1 0 7 7 7	2 4 2 4 4 4		0.900	1.0004	0.11121	-3.14	2.000	1.01440	0.00212	-4.42
U • 24 0	1.84765	3.13865	2.05	0.540	1.04864	0.13562	-3.76	2.700	1.61437	0.00209	-4.05
8.250	1.841 54	2.98005	2.34	0.550	1. 647 27	6.12760	-1 77	2 758	4 644 23	0 0.020	-4
0.250	1004134	2.50000	2001	0.000	1.64133	0.12/23	-3.11	2.198	1.01427	0.00500	-4.05
0.252	1.83572	2.840 <u>62</u>	1.97	0.560	1.64609	0.12038	-3.79	2.800	1.61416	0.00204	-4.05
0.254	1.83017	2.71132	1.65	0.570	1.64492	0.11363	-3.60	2.050	1.61406	0.00201	-4.05
8.256	1.82487	2.56115	1.36	0.580	4 . 64 784	0 40770	-7 81	2 0 6 6	4 64 706	0 000 00	a f
	4 44 9 10			0.500	1.04301	0.10/33	-3.01	2.900	1.01330	0.00133	-4.02
U•250	1.01900	2.4/920	1.11	0.590	1.84277	0.10161	-3.82	2.950	1.61386	0.00198	-4.05
0.260	1.81495	2.37471	0.85	0.600	1.54178	0.09624	-7 87	3.000	4 64776	0 0 0 4 0 6	-1. CE
0 26 2	4 84 8 20	0.07607		0.000		0.03024		5.000	1.013/6	0.00130	-4.02
4.202	1.01054	2.21031	0.02	0.020	1.63445	0.08661	-3.85	3.050	1.61367	0.00195	-4.15
0.264	1.80583	2.18539	0.41	0.640	1.€3831	0.07825	-3.87	3.100	1.61357	0.00194	-4.05
0.266	1.40155	2.19942	0.21	0.660	1.63682	0 07005	-7 89	7 4 5 0	4 647.7	0 004 07	
0.000	1 202/2		0. <u>.</u> .	4.000	1.00002	0.010.32	-3.00	2.124	1.01347	0.00193	-4.04
0.200	1.79/43	2.018:9	0.03	0.000	1.23540	0.06455	-3.90	3.200	1.61338	0.00193	-4.04
0.271	1.79347	1.94249	-0.17	0.700	1 63422	0 05904	-7 07	2 350	4 64774	0 001 00	
0 272	4 70000		<u> </u>	0.700	1.00123	0.02021	-2+31	3.258	1.01326	0.00192	-4.84
0.212	1.10300	1.8/0/1	-0.31	0.720	1.63218	0.05392	-3.92	3.300	1.61318	0.00192	-4.04
0.274	1.78599	1.80294	-0.4E	0.740	1.63207	0.04949	-3.93	3.350	1-61309	0.00192	-4.84
0.275	1.78245	1.73885	-0-62	0.760	4.57147	0 04555	-7 01	7 4 00	4 64 200		
0.070	1 77 0 47	10130022	-0.04	0.700	1.00112	0.04355	-2.34	3.400	1.61299	0.00192	-4.04
0.278	1.77903	1.6/818	-0.73	0.780	1.63024	0.04201	-3.94	3.450	1.61290	0.00192	-4.84
0.280	1.77677	1.62067	-0.92	0 000	4 62011	0 07000	7 67	7 600			
			-0.00	0.000	1.002944	0.03005	-3.35	3.500	1.61280	0.00192	-4.04
0.282	1.77254	1.56610	-0.98	0.820	1.62869	0.03600	-3.9E	3.558	1.61270	0.00192	-4.04
0.284	1.76946	1.51426	-1.09	0.840	1.62799	0.03343	-3.96	3.600	1 61 261	0.00107	-6 01
0.286	1.76640	4	-1 10	0 96 0	4 6 77 72	0 07440	3 63		1	0.00133	-4.04
0.200	1.70043	1.4042/	-1-13	0.000	1.02/35	0.03110	-3.97	3.650	1.61251	0.00193	-4.04
u. 288	1./6360	1.41805	-1.29	0.880	1.62675	0.02899	-3.97	3.708	1.61247	0.00194	-4.04
							-				
1.201	1.765.44	4.37775	-1.30	8 0.85	1 62610		-7 -5				.
0 0 2 70	1.0001	1.01000		0.400	1.02019	U • U 2 / <u>U 7</u>	-3.98	5.750	1.61232	0.00195	-4.04
0.292	1./5811	1.33073	-1+47	0.920	1.€2567	0.02532	-3.98	3.800	1.61222	0.00195	-4.04
0.294	1.75549	1.29006	-1.5E	0.940	1.62517	0.02373	-3.00	3.850	1.61242	0 00104	-1. 01
N. 206	1.75205	1.25404	-1.61	0 060	4 69170	A AAAA	2022	3.050	1.0101010	0.00130	
	1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	1.025121	-1.04	0.900	1.52412	u •uzz <u>zr</u>	-3.59	3.900	1.61202	0.00197	-4.04
8.298	1.75048	1.21407	-t.72	0.980	1.62428	0.02093	-3.99	3.950	1-61193	0.00198	-4-03
								-			
0.300	1.74870	1.170 54	-1.7C	1.000	4 63700	0 04057	- 4	,			=
0 705		A + 10 24	1.1.1.2	T+000	1.02300	0.019/0	-4.00	4.000	1.61183	0.00199	-4.03
0.305	1./4241	1.09617	-1.96	1.050	1.62296	0.01703	-4.01	4.050	1.61173	0.00200	-4.03
0.310	1.73711	1.02201	-2.17	1.100	1. 62217	0.01100	-4 . NT	6 400	1 64427	0 0000	-1
0 74 5	4 77917	0 05407	- 2 2	4 4 5 -		0.01405		44100	1.01103	0.00201	-4.03
0.315	1.1321/	6 • 22 4 2 (-2.24	1.150	1.12147	0.013 <u>04</u>	-4.0 <u>2</u>	4.150	1.61152	0.00203	-4.03
0.320	1 • / 2755	0.89416	-2.36	1.200	1.62086	0.01153	-4.02	4.200	1.61147	0.00204	-4.03
0.325	4 72322	0	-2 12	4 36 5	4 (00 ===		=				-
0.327	1012322	0.03082	-2.45	1.250	1.20 <u>31</u>	0.01026	-4.02	4.250	1.61132	0.00205	-4.03
0.330	1.71916	0.78830	-2.5Ē	1.300	1.61983	0.0091A	-4.03	4-368	1.61122	0.00207	-4.07
0.335	1.71577	0.74274	-2.6E	1.750	4 640 70	0 00 0 0 0				0.000207	
0 740	1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 4 1 7 4 10	- L • <u>U 5</u>	T 0 3 3 0	T. CTA24	0.00027	-4.05	4.350	1.61111	0.00208	-4.03
0.340	1./11/3	0.09901	-2.13	1.400	1.t19 <u>0</u> 0	0.00748	-4.03	4.400	1.61101	0.00209	-4.03
u. 345	1.70833	0.66057	-2.80	1.450	1. €1864	0.00681	-4.04	4.458	1.61891	0.00211	-4.03
0.750	4 70 54 7	0 69477	- 2 1 7								
4+374	1010215	0.0245/	-2.01	1.500	1.01832	0.00622	-4.84	4.500	1.61080	0.00212	-4.03
0.355	1.70208	0.59130	-2.93	1.550	1.61802	0.00571	-4.04	4.550	1.61065	0.00214	-4.17
0.360	1.69920	0.560.00	-2.00	1.600	1 . 64 77/	0 005 27	-4 01				7.15
8 775					1.01/14	0.00521	-4.04	4.000	1.01059	U.UU2 <u>15</u>	-4.0 <u>2</u>
0.365	1.09047	U.531 <u>9</u> 2	- 3. 84	1.650	1.61749	0.00488	-4.04	4.650	1.61048	0.00217	-4.02
0.370	1.69388	0.50526	-3.09	1.700	1.61725	0.00455	-4.05	4.700	1.61077	0.00240	-4.03
	•						7007		T=01001	a	- 4002

λ µm	п	-dn/dλ µm ^{−1}	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	а	-dn/dλ µm ^{−1}	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	n	$-dn/d\lambda$ μm^{-1}	dn/dT 10 ⁻⁵ K ⁻¹
4.750 4.800 4.850	1.6102E 1.61015 1.61004	0.002 <u>20</u> 0.002 <u>22</u> 0.00223	-4.02 -4.02 -4.02	9.000 9.100 9.200	1.597 <u>31</u> 1.596 <u>91</u> 1.59650	0.003 <u>98</u> 0.004 <u>03</u> 0.004 <u>03</u>	-3.88 -3.87 -3.87	17.000 17.200 17.400	1.549 <u>00</u> 1.547 <u>32</u> 1.54562	0.008 <u>32</u> 0.00845 0.00858	-3.1 <u>6</u> -3.1 <u>3</u> -3.10
4.900 4.950	1.609 <u>93</u> 1.60981	0.002 <u>25</u> 0.00227	-4.02 -4.02	9.300 9.400	1.5960 <u>9</u> 1.59568	0.00412	-3.87 -3.87	17.600 17.800	1.543 <u>89</u> 1.542 <u>13</u>	0.008 <u>72</u> 0.00885	-3.07 -3.04
5.000 5.100	1.60970 1.60947	0.00229	-4.0 <u>1</u> -4.01	9.500	1.5952 <u>6</u> 1.59484	0.004 <u>22</u> 0.004 <u>26</u>	-3.85 -3.85	18.000 18.200	1.540 <u>35</u> 1.53854	0.008 <u>98</u> 0.00912	-3.00 -2.97
5.200 5.300 5.400	1.60923		-4.01 -4.01 -4.01	9.700 9.800 9.900	1.594 <u>41</u> 1.593 <u>97</u> 1.593 <u>54</u>		-3.84 -3.84 -3.83	18.400 18.600 18.800	1.53670 1.534 <u>84</u> 1.53295	0.00925	-2.93 -2.90 -2.86
5.500	1.60 851	0.00247	-4.0 <u>C</u>	10.000	1.59309	0.00445	-3.83	19.000	1.53102	0.00967	-2.82
5.600 5.700 5.800	1.608 <u>26</u> 1.608 <u>01</u> 1.60775		-4.00 -4.00 -4.00	10.200 10.400 10.600	1.592 <u>19</u> 1.591 <u>27</u> 1.590 <u>33</u>	0.00455 0.00465 0.00475	-3.81 -3.80 -3.79	19.200 19.400 19.600	1.52908	0.00982 0.00996 0.01011	-2.79 -2.75 -2.71
5.900	1.60745	0.002 22	-3.99	10.800	1.58937	0.00485	-3.78	19.800	1.52305	0.01026	-2.66
6.000 6.100 6.200	1.60 723	0.002 <u>66</u> 0.002 <u>70</u> 0.002 <u>74</u>	-3.99 -3.99 -3.90	11.000 11.200 11.400	1.588 <u>39</u> 1.587 <u>39</u> 1.566 <u>3</u> 6	0.00495 0.00505 0.00515	-3.77 -3.7 <u>5</u> -3.74	20.000 20.500 21.000	1.520 <u>99</u> 1.515 <u>69</u> 1.510 <u>20</u>		-2.62 -2.5 <u>1</u> -2.39
6.300 6.400	1.60641 1.60613	0.002 <u>79</u> 0.00283	-3.98 -3.98	11.600 11.800	1.585 <u>34</u> 1.584 <u>28</u>	0.00525	-3.73 -3.71	21.500 22.000	1.504 <u>51</u> 1.49861	0.01158 0.01200	-2.26 -2.12
6.500 6.600	1.60585	$0.002\frac{87}{0.00291}$	-3.98 -3.97	12.000	1.58319	$0.005\overline{45}$ $0.005\overline{56}$	-3.70 -3.68	22.500 23.000	1.492 <u>51</u> 1.486 <u>18</u>	$0.012\overline{43}$ $0.012\overline{88}$	-1.98 -1.82
6.700 6.800 6.900	1.60526 1.604 <u>97</u> 1.60466	0.002 <u>95</u> 0.003 <u>00</u> 0.003 0 4	-3.97 -3.97 -3.9E	12.400 12.600 12.800	1.579 <u>83</u> 1.57866	0.00566 0.00577 0.00588	-3.67 -3.65 -3.63	23.500 24.000 24.508	1.479 <u>62</u> 1.472 <u>83</u> 1.46580	0.01334 0.01382 0.01431	-1.66 -1.48 -1.29
7.000	$1.604\frac{36}{36}$ 1.60405		-3.9Ē	13.000	1.57748	0.005 <u>98</u> 0.00609	-3.62 -3.60	25.000	1.45852	0.01482	-1.09
7.200	1.60373 1.60341	$0.00317 \\ 0.00321$	-3.95 -3.95	13.400	1.57504	0.00620	-3.58 -3.5E	26.000 26.500	1.44316	0.01591 0.01648	-0.65 -0.40
7.400 7.500	1.60276	0.00326	-3.95 -3.94	13.800	1.571252	0.00642	-3.54 -3.52	27.000 27.500	1.42668	0.01708	-0.14 0.15
7.600 7.700 7.800	1.60243		-3.94 -3.93 -3.93	14.200 14.400	1.569 <u>91</u> 1.568 <u>57</u>	0.00664	-3.50 -3.48	28.000 28.500	1.40897	0.01835	0.45
7.900	1.60141	0.00348	-3.93	14.800	1.56582	0.00699	-3.44	29.500	1.37990	0.02047	1.45
8.000 8.100 8.200	1.60106 1.60070 1.60034	0.00352 0.00357 0.003€1	-3.92 -3.92 -3.91	15.000 15.200 15.400	1.56441 1.56298 1.56152	0.00710	-3.42 -3.40 -3.37	30.000 30.500 31.008	1.36947 1.35865 1.34742		1.88 2.31 2.77
8.30D 8.400	1.59998 1.59961	0.00366	-3.91 -3.91	15.600	1.55854	0.00746	-3.35 -3.32	31.500	1.33574	0.02380	3.2E 3.79
8.500	1.599 <u>24</u> 1.598 <u>86</u>	0.003 <u>75</u> 0.003 <u>79</u>	-3.9 <u>0</u> -3.90	16.000	1.557 <u>01</u> 1.555 <u>46</u>	0.007 <u>70</u> 0.007 <u>82</u>	-3.30 -3.27	32.500 33.080	1.31 <u>100</u> 1.29787	0.02 <u>573</u> 0.02 <u>678</u>	4.3Ē 4.9 <u>7</u>
8.800 8.900	1.598 <u>48</u> 1.598 <u>10</u> 1.59770	0.003 <u>84</u> 0.003 <u>89</u> 0.003 <u>93</u>	-3.89 -3.89 -3.88	16.400 16.600 16.800	1.553 <u>88</u> 1.55228 1.55065	0.007 <u>95</u> 0.008 <u>07</u> 0.00820	-3.24 -3.2 <u>2</u> -3.19	33.500 34.000	1.28421 1.26998	0.02 <u>788</u> 0.02906	5.6 <u>3</u> 6.35

TABLE 30. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR NaBr AT 293 K (continued)*

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.7. The number of digits with an overstrike are not relevant to accuracy of the data.

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

H. H. LI

Cur. No.	Reć. No.	Author (s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications, and Remarks
4	27	Gyulai, Z.	1927	Ð	0.206-0.615	339	Crystal; prismatic specimens with faces of $15 \times 24 \text{ mm}^2$ and apex angle of $37^{\prime}14^{\prime}$; digitized data were presented with accuracy of one unit of the third decimal place.
2	86	Bauer, G.	1934	ы	0.254-0.546	298	Crystal; thin film specimen with slight wedge shape by vacuum evaporation onto a quartz substrate and then sintered; reflectance was determined from reflected Newton's interference pattern; refractive indices were then derived and digitized values were presented.
e	44	Zarzycki, J. and Naudin, F.	1963	Ω,	0. 5461	1053	Molten NaBr; filled into a 60° prismatic platinum container with sillea glass windows of 4 mm diameter; uncertainty of 0,001 in measured n; digitized values were presented.
4	45	Spangenberg, K.	1923, 1934	A	0.5016-0.6678	298	Crystal; grown by slow evaporation from pure solution; cubic specimen with edge of 1 cm; polished specimen was cemented to the prism of a Pulfrich refractometer by a monbromonaphthalene methylene iodide mixture; because of hydratfon of the crystal, the specimen was polished frequently during experimental measurements; digitized data were presented.
ci Ci	85	Wulff, P. and Schaller, D.	1934	A	0. 5896	298	Crystal; specimen was suspended in a mixture of $C_{10}H_7Br$ + $C_{6}H_8Cl$ during refractive index determination; digitized value were presented with uncertainty of 0.0001.
			TABL	E 32. E	XPERIMENTAL D.	ATA ON THE REF	RACTIVE INDEX OF NaBr

TABLE 31. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND m/dT MEASUREMENTS OF NABT

EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF NaBr [Wavelength, \, µm; Refractive Index, n]

۲	ri	ĸ	đ	~	п
$T = \frac{CUR}{33}$	<u>VE 1</u> 39. 2 K	$\frac{\text{CURVE 1}}{\text{T} = 33}$	<u>(cont.)</u> 9.2 K	T = 26	<u>VE 4</u> 98.0 K
0.2063 0.2100 0.2144	2.1226 2.1006 2.0450	0.546 0.577 0.615	1. 6462 1. 6424 1. 6382	0.5016 0.546 0.5877	1.6524 1.6459* 1.6416
0.2265 0.2312	1.9456	$T = \frac{CUR}{29}$	VE 2 18.0 K	0.5678	1.6347*
0.254 0.265 0.289	1.8323 1.8033 1.7611	0.254 0.313	1.543 1.505	$T = \frac{CUR}{29}$	<u>VE 5</u> 98.0 K
0.296 0.313 0.334	1.7515 1.7452 * 1.7334 1.7146	0.366 0.435 0.546	1.490 1.477 1.465	0.5896	1.6439
0.365 0.405 0.436	1.6950 1.6775 1.6673	$T \approx \frac{CUR}{105}$	<u>VE 3</u> 3.2 K		
0.492 * Not sh	1.6547 own in figure.	0.5461	1. 505		

407

H. H. LI

3.8. Sodium Iodide, Nal

Refractive index data of NaI are available only for a single line, mean of sodium D lines, reported by Spangenberg [45] in 1923. The reasons for such scantiness of data are probably the difficulties in crystal growing and sample preparation. It is fortunate that the essential parameters for constructing a dispersion equation of NaI are available through the literature, as listed in table 3. Using the values from table 3 and the available value of n:

$$\epsilon_s = 7.28$$

 $\epsilon_{uv} = 3.01,$

 $\lambda_u = 0.170 \ \mu m$ (averaged value of 5 peaks),

 $\lambda_1 - 86.21 \ \mu \text{m},$ $n = 1.7745 \text{ for } \lambda = 0.5893 \ \mu \text{m},$

the adjustable parameter A of eq (13) is computed to be 1.478. This leads to the dispersion equation for NaI at 293 K in the transparent region, 0.25-40.00 μ m.

$$n^{2} = 1.478 + \frac{1.532\lambda^{2}}{\lambda^{2} - (0.170)^{2}} + \frac{4.27\lambda^{2}}{\lambda^{2} - (86.21)^{2}}, \quad (37)$$

where *n* is in units of μ m.

No experimental data on dn/dT for NaI are available, but, with our empirical findings, reasonable estimations on dn/dT can be made by a formula constructed by using the predicted parameters of table 5,

$$2n\frac{dn}{dT} = -13.65 \ (n^2 - 1) + 0.57$$
$$+ \frac{9.246\lambda^4}{(\lambda^2 - 0.05198)^2} + \frac{247.66\lambda^4}{(\lambda^2 - 7432.16)^2}, \qquad (38)$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m.

Equations (37) and (38) were used to generate the recommended values. Since these equations were derived from the available data on the thermal linear expansion, the dielectric constants, the wavelengths of absorption peaks, and the empirical parameters, the accuracies of the generated values are controlled by the uncertainties of these component properties. In order to properly use the recommended data table, we have carefully reviewed each of the correlated properties and set up the following criteria that the readers should follow.

For refractive index:

0.35-30.00

30.00-40.00

Wavelength range (μm)	Meaningful decimal place	Estimated uncertainty, \pm
0.25- 0.40	2	0.02
0.40- 1.00	3	0.005
1.00-20.00	2	0.01
20.00-40.00	2	0.02
For dn/dT :		
0.25- 0.35	0	> 1

1

0

0.8

> 1

TABLE 33. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR NaI AT 293 K*

		-dn/d)	dn/dT	່		-dn/dλ	dn/dT	λ.		-dn/dλ	dn/dT
um -	n	um ⁻¹	10-5 K-1	um	'n	um ⁻¹	10 ⁻⁵ K-4	m	n .	µm ^{−1}	10 ⁻⁵ K ⁻¹
								-			· · · ·
										· · · · · · · · · · · · · · · · · · ·	=
0.250	2.08830	4.71300	67.66	0.550	1.78091	0.18284	-4-38	2.750	1.73538	0.00215	-5.05
0.252	2.07109	4.49855	57.08	0.560	1.77914	0.1/211	-4-41	2.800	1.73527	0.00210	
0.254	2.06230	4.29888	48.75	0.570	1.77747	0.16223	-4.45	2.850	1.73517	0.00206	-5-85
0.256	2.05389	4.11160	42.05	0.580	1.77589	0.15311	-4-48	2.900	1.73506	0.00202	-5.05
0.258	2.04585	3.93603	36.59	0.590	1.77440	0.14468	-4.50	2.950	1.7349E	0.00198	-5.05
	·									· · · · · · ·	· · · · · · · · · · · · · · · · · · ·
0.260	2.03814	3.77123	32.06	0.600	1.77300	0.13687	-4-53	3.000	1.73487	0.00195	-2.85
0.262	2.03075	3.61132	28.27	0.620	1.//040	0.12209		3.858	1.734/7	0.00192	-2.02
0.264	2.02367	3.47053	25.86	0.640	1./080/	0.110/9	-4.02	3.108	1.73467	0.00103	-2-02
0.266	2.01687	3.33.216	22.31	0.660	1. (05 90	0.10025	-4-62	3.150	1.73458	0.0018/	-2.45
0.268	2.01033	3.28357	19.94	0.550	1.70405	0.09104	-4.00	3.200	1./3449	8.00105	-2.05
	· · · · · · · · · · · · · · · · · · ·				1 76 0 77		4 77	3 0 6 8	·	0 00 107	E OF
0.270	2.09405	3.08119	17.00	0.700	1.76231	0.08294	-4.71	3.250	1.73440	0.00183	
0.272	1.99000	2.90549	10.00	0.720	1.100/2	0.05000	-4.74	3.300	1.73430	0.00101	-5.05
0.274	1.99210	2.07000	14.45	0.740	1.75927	0.00940	-4+/5	3.329	1.73421	0.00170	-5.05
0.278	1 08117	2.65 707	14.83	0.780	1.75672	0.05870	-4.80	3.450	1.73484	0.00177	-5.84
0.510	1.90111	2.000090	11.000		1	4445075		0.470	100 0 40 4		2004
	1 07 505	2. 54	10 74	0 000	1.75550	0.0E1.20	-4 03	7 500	1 7270F	0.80474	-5 07
0.282	1.07.022	2.47404	9.74	0.000	1.75454	0.05923	-4-97	3.500	1.72796	0-00475	-5-01
0.284	1.96604	2.34765	8.81	0.020	1.75357	0.04650	-4.84	3.600	1.73377	0.00175	-5.84
8.286	1.96137	2.30746	7.98	0.860	1.75264	0.04329	-4.85	3.650	1.73364	0.00174	-5.04
0.288	1.95683	2.23109	7.23	8.880	1.75184	0.04031	-4.87	3.700	1.73360	0.00174	-5.84
0.290	1.95244	2.15832	6. 55	0.940	1.75106	0.03759	-4.88	3.750	1.73251	0.00173	-5.04
0.292	1.94820	2.08892	5.93	0.920	1.75033	0.03512	-4.89	3.800	1.73342	0.00173	-5.04
0.294	1.94408	2.02268	5.35	0.940	1.74966	0.03287	-4.89	3.850	1.73334	0.00173	-5.04
0.296	1.94010	1.95943	4.83	0.960	1.74902	0.03081	-4.90	3.900	1.73325	0.00173	-5.84
0.298	1.93625	1.89898	4.34	0.980	1.74842	0.02892	-4.91	3.950	1.73316	0.00173	-5.04
$\{ x_i \} \in \{ x_i \}$	1997 - <u>199</u> 7	· · · ·	• · · · · · · · · · · · · · · · · · · ·	1	n iz						
0.300	1.93251	1.84118	3.89	1.000	1.74786	0.02719	-4.92	4.000	1.73308	0.00173	-5.04
0.305	1.92364	1.70727	2.91	1.050	1.74660	0.02344	-4.93	4.050	1.73295	0.09173	-5.04
0.310	1.91541	1.58688	2.09	1.100	1.74551	0.02 <u>036</u>	-4.9 <u>5</u>	4.100	1.73290	0.00 <u>174</u>	-5.04
0.315	1.90775	1.47827	1. <u>4(</u>	1.150	1.74455	0.01782	-4.96	4.150	1.73282	0.00 <u>174</u>	-5.04
0.328	1.90861	1.37997	0.80	1.200	1.74372	0.01570	-4.97	4,200	1.73273	0.00175	-5.84
			. ==								
0.325	1.89394	1.29073	0.29	1.250	1.74298	0.01391	-4.98	4.250	1.73264	0.00175	-5.04
0.330	1.00(04	1.20947	-0.15	1.300	1.742.32	0.01240	-4.99	4.300	1.73256	0.00176	-2-84
0.332	1 97 5 77	1.13530	-0.24	1.350	1.74173	0.01111	-4.99	4.370	1.73247	0.001/6	-2.84
0.340	1.07033	1.00741	-0.00	1.400	1 7/077	0.01001	-5.00	4+400	1.73230	8.001//	-2.04
0.349	1.01113	1.00513	-1.10	1.450	1.14013	0.00300	-2.00	4.478	1./ 322 9	0+00111	72+04
0.350	1.86627	n . 94 787	-1-45	1.500	1.74030	0.00823	-5.01	4.500	1.73520	0-00178	-5.03
0.355	1.86165	0.89511	-1.69	1.550	1.73991	0.00751	-5.01	4.550	1.73211	0.00170	-5.03
0.360	1.85731	0.84E40	-1.91	1.600	1.73955	0.00689	-5.02	4.600	1.73202	0.00180	-5.03
8.365	1.85319	0.80123	-2.11	1.650	1.73922	0.00633	-5.02	4.650	1.73193	0.00181	-5-03
0.370	1.84929	0.75958	-2.28	1.700	1.73891	0.00585	-5.02	4.700	1.73184	0.00182	-5.83
0.375	1.84559	0.72081	-2.44	1.750	1.73863	0.00542	-5.03	4.750	1.73175	0.00182	-5.03
0.380	1.84208	0.68477	-2.59	1.800	1.73837	0.00504	-5.03	4.800	1.73166	0.00183	-5.03
0.385	1.83874	0.65120	-2.72	1.850	1.73813	0.00470	-5.03	4.858	1.73157	0.00184	-5.03
0.390	1.83556	0.61989	-2.84	1.900	1.73790	0.00440	-5.03	4.900	1.73148	0.00185	-5.03
0.395	1.83254	0.59065	-2.95	1.950	1.73768	0.00413	-5.03	4.958	1.73138	0.00186	-5.03
116		· · · · · · · · · · · · · · · · · · ·	- 11 <u>-</u> -	a de la construi-	· · · · · · · · · · · · · · · · · · ·	i i i <u> </u>	· _				
0.400	1.82965	0.5€3 <u>30</u>	-3.0E	2.000	1.73748	0.00389	-5.03	5.000	1.73129	0.00188	-5.03
0.410	1.82427	0.51367	-3.24	2.050	1.73729	0.00368	-5.04	5.100	1.73110	0.00190	-5.03
0.420	1.81936	0.46992	-3.40	2.100	1.73712	0.00348	-5.04	5.200	1.73091	0.00192	-5.02
0.430	1.81486	0.43119	-3.54	2.150	1.73695	0.00331	-5.04	5.300	1.73072	0.00194	-5.02
u • 440	1.81072	0.39676	-3.66	2.200	1.73678	0.00315	-5.04	5.400	1.73052	0.00197	-5.02
	4 846 77			·	4	A 44 TE -	·				7
U-450	1.00041	0.36602	-3.77	2.250	1./3663	u. 00 301	-2.04	5.500	1.73032	0.00200	-5.02
0.400	1.00339	0.33848	-3.80	2.500	1.13048	U.UU288	-2.04	5.600	1./3012	0.00202	-5-82
0.4/0	1.00013	0.313/3	-3.94	2.350	1.73234	0.00276	-2.04	5.700	1.2992	0.00205	-2-01
0.400	1.70478	0.27422	-4.02	2.4400	1.72400	0.00200	-2.04	5.000	1.72050	0.00208	-2.01
0.470	1017430	0.51 155		2.450	1013000	0.00250	-2.04	2.900	7.15326	0.00210	-3+8T
0.500	1.70169	1.25204	-4.15	2.560	1. 12505	0.007/4	-5.07	6 000	1.72020	0.00747	-s n4
0.510	1.78927	0.27676	-4.25	2,550	1.73683	0.00240	-5.04	5,188	1.7200	0.00213	-5.04
0.520	1.78605	0.22179	-4.25	2.600	1.73574	0.00233	-5.04	6.200	1.72804		-5.00
0.530	1.78481	0.20720	-4.30	2.650	1.73560	0.00226	-5.05	6.300	1.72864	8.00222	-5.07
0.540	1.78240	0.19450	-4.34	2.700	1.73548	0.00220	-5.05	6.400	1.72842	0.00225	-5.00
		********			20.0240		2002		241 CU7C		

		-dn/d)	Th/ab	2		-dn/d)	dn/dT	λ.		$-dn/d\lambda$	dn/dT
	'n	· · · · ·	10-5 K-1	im.	n	um -1	10-5 K-1	um .	n	um -1	10-5 K-1
μ		· µu	10 1			M	10 11	pp			10 11
6.500	1.72819	0.00228	-5.00	11.400	1.71299	A. CO.39A	-4.87	19,800	1.66 -03	0.00762	+4 . N G
6 600	4 72706	0 00 274	-6.05	44 600	1.71210	0.00405	-4.81	20.000	1.66360	0.00772	-4.05
6.000	1 70777	0.00221	-4.15	11.000	4 744 77	0 00403	-1. 90	20.000	4 66057	0.00772	-4.00
6./00	1.72773	0.00234	-4.99	11.800	1.71137	0.00413		20.980	1.03457	0.00/90	-3-35
E.800	1.72749	0.00237	-4.99	12.000	1./1054	0.00421	-4.74	21.000	1.65552	0.00824	-3-91
6.900	1.72725	0.08240	-4.99	12.200	1.70969	0.00428	-4.77	21.500	1.65133	0.00851	-3.83
			_				_			·	
7.000	1.72701	0.00243	-4.98	12.400	1.70882	0.00436	-4.7 <u>E</u>	22.000	1.64 <u>701</u>	0.00878	-3.7 <u>5</u>
7.100	1.72677	0.00 <u>247</u>	-4.98	12.600	1.70 <u>794</u>	0.00444	-4.75	22.500	1.64 <u>255</u>	0.00 <u>906</u>	-3.66
7.200	1.72652	0.00250	-4.98	12.800	1.70705	0.00452	-4.74	23.000	1.63795	0.00935	-3.57
7.300	1.72627	0.00253	-4.98	13.000	1. 70 E14	0.00460	-4.73	23.500	1.63320	0.00965	-3.47
7.400	1.72601	0.00256	-4.97	13.200	1.70521	0.00467	-4.71	24.000	1.62230	0.00395	-3.37
7.500	1.72575	0.00260	+4.97	13.400	1.78427	0.00475	-4.78	24.500	1.62324	0.01026	-3.26
7.600	1.72549	0.00263	-4.97	13.600	1.70331	0.00483	-4.69	25.000	1.61803	0.01058	-3.15
7.700	1.72523	8.00266	-4.95	13.800	1.70233	6.00403	-4.47	25.500	1.61266	0.01091	-3-07
7 000	1 72/06	0 00 270	-4.90	14 000	4 70474	0 00 500	-4 65	26 000	4 60 74 7	0 04425	-3 00
7.000	1 70450	0.00270	-4.90	14.000	4 70074	0.00500	-4.65	20.000	1.00/12	0.01125	-2.30
1.900	1.72409	0.002/3	-4.90	14.200	1.70034	0.00508	-4.05	20.900	1.00141	0.01100	-2.10
	4 70 444	n na <u>776</u>		44 488	4 60074	0 00546			4 50 550	0.04 405	
	1.72441	0.00210	-4.30	14.400	1.09931	0.00510	-4.03	27.000	1.59552	0.01132	-2.02
8-100	1-72414	0.00280	~ 4. 95	14-600	1.69627	0-00524	-4-62	27.500	1.58 <u>945</u>	0-01232	-2.47
8.200	1.72305	0.00283	-4.95	14.890	1.69/21	0.00533	-4.00	28.000	1.58320	0.012/0	-2.31
8.300	1.72357	8.00286	-4.95	15.000	1.69614	0.00541	-4-29	28.500	1.57275	0.01309	-2.14
8.400	1.72328	0.00290	-4.94	15.200	1.69505	0.00550	-4.57	29.000	1.57010	0.01349	-1.96
			–				=				
8.500	1.72299	0.00293	-4.94	15.400	1.89 <u>394</u>	0.00 <u>558</u>	-4.55	29.500	1.56 <u>325</u>	0.01 <u>391</u>	-1. <u>77</u>
8.600	1.72270	0.00297	-4.94	15.600	1.E9 <u>282</u>	0.00 <u>567</u>	-4.54	30.000	1.55 <u>619</u>	0.01434	-1.57
8.700	1.72240	0.00300	-4.93	15.800	1.€9168	0.00575	-4.52	30.500	1.54891	0.01478	-1.36
8.800	1.72 <u>210</u>	0.00304	-4.93	16.000	1.69052	0.00584	-4.50	31.000	1.54141	0.01524	-1.14
8.900	1.72179	0.00387	-4.92	16.200	1.68934	0.00593	-4.49	31.500	1.53367	0.01572	-0.90
			_				_				
9.000	1.72 <u>148</u>	0.00 <u>311</u>	-4.92	16.400	1.68815	0.00601	-4.4 <u>7</u>	32.000	1.52 <u>568</u>	0.01621	-0.65
9.100	1.72 <u>117</u>	0.00314	-4.9 <u>2</u>	16.600	1.68 <u>693</u>	0.00 <u>610</u>	-4.45	32.500	1.51745	0.01672	-0.38
9.200	1.72085	0.00 <u>318</u>	-4.91	16.800	1.68578	0.00619	-4.43	33.000	1.50896	0.01725	-0.10
9.300	1.72053	0.00321	-4.91	17.000	1.68446	0.00628	-4.41	33.500	1.50020	0.01780	0.19
9.400	1.72021	0.00325	-4.91	17.200	1.68319	0.00€37	-4.39	34.000	1.49116	0.01837	0.51
9.500	1.71 988	0.00328	-4.90	17.400	1.68191	0.00€46	-4.37	34.500	1.48182	0.01896	0.84
9.600	1.71955	0.00332	-4.90	17.600	1.€8061	0.00656	-4.35	35.000	1.47219	0.01958	1.20
9.700	1.71922	0.00335	-4.89	17.800	1.67929	0.00665	-4.33	35.500	1.46224	0.02023	1.58
9.800	1.71888	0.00339	-4.89	18.000	1.67795	0.00674	-4.31	36.000	1.45196	0.02050	1.58
9.900	1.71854	0.00343	-4.89	18.200	1.67659	0.00684	-4.28	36.500	1.44133	0-02160	2.40
10.000	1.71820	0.00346	-4.82	18.400	1.67521	0.00693	-4.26	37.080	1.43035	0.02233	2.85
10.200	1.71750	0.00353	-4.87	18.600	1.67 382	0.00703	-4.24	37.500	1.41900	0.02310	3.34
10.400	1.71678	0.00361	-4.85	18.800	1.67 240	0.00712	-4.21	38.000	1.40725	0.02300	3.45
10.600	1.71605	0.00768	-4.85	19.000	1.67007	0.00722	-6 10	79 500	1 70500	0 02630	4 4 4 7
10.800	1.71531	0.00375	-4.85	19.200	1. 66954	0.00772	-4.16	30.000	1.38250	0.02562	7. <u>9</u> 0
			4803	A 30 C U U	1010331			070000	1000530		4030
11.000	1.71455	0.00383	-4. AL	19.400	1. 66 804	0.00742	-4-14	39.507	1.36066	0.02655	5 24
11.200	1.71378	0.00300	-4.83	19.600	1.56655	0.80752	-4.11	60.000	1.36805	0.02752	2.01
	10.10.0	00000000	4000	* 14000	1400033		-4011		T# 03222	0.02/32	0.21

 TABLE 33.
 RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR NaI AT 293 K (continued)*

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.8. The number of digits with an overstrike are not relevant to accuracy of the data.

FIGURE 28. $dn/d\lambda$ of NaI

н. н. и

TABLE 34. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dn/dT MEASUREMENTS OF NaI

Specifications, and Remarks	Clear, cubic and good crystal produced by slow evaporation of NaI-alcoholic solution at 70 C; refractive index for mean of sodium D lines was measured by the immersion method.
Temperature, K	295
Wavelength Range, µm	0. 5893
Method Used	M
Year	1923
Author(s)	Spangenberg, K.
. Ref. No.	45
Cur No.	

REFRACTIVE INDEX OF ALKALI HALIDES

 TABLE 35. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF Nai

 [Wavelength, \lambda, µm; Refractive Index, n]

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

 $\frac{\text{CURVE 1}}{T = 295.2 \text{ K}}$ 0.5893 1.7745

u

~

3.9. Potassium Fluoride, KF

Potassium fluoride is not a suitable material for optical components beacuse of its hygroscopic character and the difficulty of growing crystals. However, it is an interesting subject for basic research and scientific studies because of its simple crystal structure and its transparency in the ultraviolet region. The wavelengths of the characteristic absorption peaks and the electrical properties have been studied by many investigators. Listed in table 3 are a few important results which were used in out analysis of data.

The refractive index of KF has not been extensively measured. Among the five sets of refractive index data found in the literature, three were measured for a single spectral line, the sodium D line, one for the melt, and one for a limited spectral range from 0.21 to 0.58 μ m.

Upon careful examination of the available data, we found the following: (1) Kublitzky's values [50] are reported to the fourth decimal place, although the accuracy is one unit in the third decimal place. We have used his reported values as the basis of our work. (2) Results of Spangenberg [45] and of Wulff [07] are inconsistent, although the same experimental method was used. The discrepancy cannot be accounted for by the temperature difference, because dn/dT (about $-1.2 \times$ 10^{-5} K^{-1} [18]) is too small to account for such a big deviation, about 0.0019, in *n* nor can the discrepancies between the results of Kublitzky and those of Wulff be accounted in this way. (3) There are no dn/dT data available.

Since the data of Kublitzky were obtained at a temperature of 330 K, they had to be reduced to 293 K. Since no dn/dT data was available, the empirical parameters in table 5 were used to construct the following expression for dn/dT in units of 10^{-5} K⁻¹, valid in the temperature range 293 ± 50 K:

$$2n \frac{dn}{dT} = -10.44 \ (n^2 - 1) - 0.08 + \frac{2.465\lambda^4}{(\lambda^2 - 0.01588)^2} + \frac{167.90\lambda^4}{(\lambda^2 - 2657.40)^2}, \quad (39)$$

where λ is in units of μ m. The dn/dT values calculated by eq (39) for the visible region are about $-2.0 \times 10^{-5} \,\mathrm{K^{-1}}$. Compared with Tsay's [18] value, our value is about 0.8×10^{-5} K⁻¹ too large, but there is no direct experimental evidence to substantiate either one of the predictions. However, since the dn/dT formulas constructed by our empirical parameters lead to predictions for the material in agreement with experimental data, we have reason to believe that eq (39) gives reasonable dn/dT value for KF. By use of this equation, Kublitzky's values were reduced to 293 K.

A dispersion equation of KF at 330 K was proposed by Radhakrishnan [48] on the basis of Kublitzky's measurements. Since the wavelength of the fundamental phonon was not known then, the adjustable constants in his equation were chosen to fit the data without reference to the infrared absorption peak, as shown in table 39. With the available information in table 3, the least-squares fitting of the reduced data to eq (10) led to our dispersion equation for KF at 293 K in the transparent region, 0.15-22.0 μ m.

$$n^{2} = 1.55083 + \frac{0.29162\lambda^{2}}{\lambda^{2} - (0.126)^{2}} + \frac{3.60001\lambda^{2}}{\lambda^{2} - (51.55)^{2}}, \quad (40)$$

where λ is in units of μ m.

Equations (39) and (40) are used to generate the recommended values. Since more decimal places than needed are given to the property values for the purpose of tabular smoothness, the readers are advised to follow the criteria given below in order to use the recommended values properly.

For refractive index:

Wavelength range	Meaningful	Estimated
(µm)	decimal place	uncertainty, ±
0.15- 0.18	2	0.05
0.18- 0.21	3	0.005
0.21 - 1.00	3	0.002
1.00- 6.00	3	0.004
6.00-14.00	3	0.008
14.00-22.00	2	0.05
For dn/dT :		
0.15-17.00	1	0.5
17.00-22.00	1	0.9

TABLE 36. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR KF AT 293 K \ast

		dn /d)	dn /dT	``		-dn/d	dn /dT	``		-dn/d	dn /dT
A	n			A	n			~	n		10-5 72-1
µm .		µpm •	10 ° K-1	μm.		μ m ·	10 . 7 .	μ		µm -	10 - K - K
0 160	1 50417	0 02 854	7 42	8 276	1 38602	0 277 44	-2 55	0 700	1 36872	0 0 1 1 20	- 2 17
0 462	4 57571	9 54 <u>954</u>	7 65	0 272	4 70677	0 26020	-2 05	0 720	1 36050	0 04042	-2 77
0.122	1.5/ 5/4	0.24024	3.44	0.272	1.30037	0.20920	-2.00	0.720	1.30050	0.01042	-2.00
0.154	1.55979	1.43690	2.42	0.274	1.38584	0.20140	-2.47	U.74U	1.36030	0.00965	-2.33
0.156	1.54586	6.52 <u>809</u>	1.89	0.276	1.38533	0.25395	-2.07	0.760	1.36012	0.00896	-2.33
0.158	1.53358	5.77548	1.44	0.278	1.38483	0.24674	-2.08	0.780	1.35994	0.00834	-2.33
0.160	1.52268	5.14514	1.07	0.280	1.38434	0.23982	-2.08	0.800	1.35978	0.00779	-2.34
0.162	1.51293	4.61192	0.75	0.282	1.38387	0.23316	-2.09	0.826	1.35963	0.00730	-2.34
0.164	1.50418	4.15681	0.48	0.284	1.38341	0.22677	-2.10	0-840	1.35949	0.00685	-2.34
0.166	4 40626	7 76526	0 27	0 286	1 78206	0 22062	-2.40	0 860	4 35076	0 00615	-2 37
0 460	1.49020	3.11920	0.27	0 200	1.302.50	0 04470	-2.10	0.000	4 75007	0.00045	-2.34
U • 1 6 0	1.40.300	3.42594	0.03	4.200	1.30292	0.214/0	-2.11	U + 00U	1.32453	0.00003	-2.34
			=				·				
0.170	1.48253	3.12997	-0.15	0.290	1.38210	0.20900	-2.11	0.900	1.35911	0.005/6	-2.34
0.172	1.47 <u>654</u>	2.87 027	-0.3 <u>1</u>	0.292	1.381 <u>69</u>	0.203 <u>51</u>	-2.1 <u>2</u>	0.920	1.359 <u>00</u>	0.00546	-2.34
0.174	1.47103	2.64114	-0.45	0.294	1.38129	0.19822	-2.12	0.940	1.35889	0.00519	-2.34
0.176	1.46595	2.43798	-0.56	0.296	1.30090	0.19312	-2.13	0.960	1.35079	0.00495	-2.34
0.178	1.46126	2.25700	-0.69	0.298	1.38051	0.18820	-2.13	0.980	1.35870	0.00472	-2.34
0.180	1.45691	2.09511	-0.80	0-300	1.38014	0.18346	-2.13	1-000	1.35860	0.00452	-2.34
0.182	1.45287	1.94970	-0.80	0.305	1.37925	0.17231	-2.14	1.050	1.36830	0.00402	-2.34
0 404	4 44014	4 94 9 62	-0.07	0 74 0	4 77962	0 46 200	-2 45	1 100	4 75 94 0	0.00707	-2 34
0.104	4 44550	4 70005	-1 05	0.310	4 77767	0.10209	-2.15	4 450	4 7540.2	0 00766	-2.34
0.100	1.449999	1.70000	-1.05	0.319	1.377000	0.15209	-2.10	1.150	1.35002	0.00344	-2.34
u•108	1.44230	1.99247	-1.12	U. 320	1.3/089	U-14404	-2.1/	1.200	1.35/85	0.00322	-2.35
			. –							·	
0.190	1.43921	1.494 <u>55</u>	-1.18	0.325	1.37619	0.13606	-2.18	1.250	1.35769	0.00303	-2.35
0.192	1.43631	1.4(517	-1.24	0.330	1.37553	0.128E8	-2.19	1.300	1.35755	0.00288	-2.35
0.194	1.43359	1.32338	-1.30	8.335	1.37490	0.12185	-2.19	1.350	1.35740	0.00276	-2.35
0.196	1.43102	1.24834	-1.35	0.340	1.37431	0.11551	-2.20	1.400	1.35727	0.00266	-2.35
0.198	1.42859	1.17933	-1.39	8.345	1.37375	0.10962	+2.21	1.450	1.35714	0.00210	-2.35
	1.42000				100.015	0010,02		10420	1000114		2.005
0 200	1 42670	4 44577	-4 47	0 750	4 777 74	0 10/14	-2 21	4 5 8 8	4 75704	0 00357	- 2 25
0.202	1 42412	1.05409	-1.44	0.350	1 37 370	0.10414	-2.12	1.500	1.35/01	0.00253	-2.32
0 204	4 4 2 2 0 6	1 00267	-1.40	0 360	1.37270	0.00504	-2.22	1.550	1.39009	0.00240	-2.034
0.000	1.42200	1.00203	-1.5	0.300	1.01222	0.09427	-2.22	1.000	1.320/0	0.00244	-2.34
0.206	1.42011	0.95223	-1.52	0.365	1.3/176	0.08982	-2.23	1.650	1.35664	8.00242	-2.34
0.208	1.41825	0.90541	-1.58	8.370	1.37132	0.08565	-2.23	1.700	1.35652	0.00240	-2.34
	-		_				_				
0.210	1-41649	0.861 (5	-1.61	0.375	1.37090	0.08175	-2.24	1.750	1.35640	0-00240	-2.34
0.212	1.41480	0.82126	-1.E4	0.380	1.37050	0.07809	-2.24	1.800	1.35628	0.00239	-2.34
0.214	1.41320	0.78336	-1.67	0.385	1.37012	0.07465	-2.24	1.850	1.3561E	0.00240	-2.34
0.216	1.41167	8.74794	-1.69	0.390	1.36976	0.07142	-2.25	1.900	1.35604	0.80241	-2.34
0.218	1.41021	0.71478	-1.72	0.305	1.36941	0.06838	-2.2F	1.950	1.35502	0.00242	-2.34
		••••		••••	1000341				1000000	0000142	-2.04
0.220	4.488.91	0 69760	-1 75	0 480	4 76007		- 2 25	2 0 0 0	4 755 00	0 00017	T
0 222	4 40767	0.65454	-1.74	0.440	1.30901	0.00552	- 2 • 2 2	2.000	1.32200	0.00243	-2.34
0.222	1.40/4/	0.05451	-1.10	0.410	1.30044	0.00027	-2.25	2.050	1.35568	0.00245	-2.34
0.224	1.40619	0.05103	-1.78	0.420	1.36787	0.05558	-2.27	2.100	1.35555	0.00248	-2.3 <u>4</u>
0.226	1.40496	0.60128	-1.80	0.430	1.367 <u>33</u>	0.05139	-2.2 <u>7</u>	2.150	1.35543	0.00250	-2.34
0.228	1.40378	0.57697	-1.82	0.440	1.36684	0.04762	-2.28	2.200	1.35530	0.00253	-2.34
			-		·		-				_
0.230	1.482 <u>65</u>	0.554 <u>05</u>	-1.8 <u>3</u>	0.450	1.36638	0.04423	-2.28	2.250	1.35518	0.00256	-2.34
0.232	1.40157	0.53241	-1.85	0.460	1.36595	0.04116	-2.28	2.300	1.35505	0.00259	-2.34
0.234	1.40052	0.51195	-1.87	0.470	1.36555	0.03838	-2.25	2.350	1.35492	0.00262	-2-33
0.236	1.39952	0.492E0	-1.88	0.480	1.36518	0.83585	-2.20	2.400	1.35478	0.00266	-2.33
0.238	1.39855	0.47428	-1.89	0.490	1.36484	0.03355	-2.25	2.450	1.35465	0.00269	-2.33
											2.000
0.240	1.39762	1.45604	-1. 01	8-500	1.364 54	0.03455	-2.30	2 5 6 4	1.35/54	0.0027	-2 22
8.242	1.30672	0.440.44	-1.07	8 5 4 7	1.364.24	0.03053	-2.30	2.5700	4 75.35	0.002/3	- 2 • 3 3
0 244	1 70505	0 424 90	-1.92	0.910	1.30421	0.02353	-2.30	2.550	1.35430	0.00277	-2.33
0.244	1.39200	0.42400	-1.42	0.520	1.30392	0.02//6	-2.30	2.600	1.35424	0.00281	-2.3 <u>3</u>
U+240	1.39502	0.40994	-1.94	0.530	1.36365	0.02615	-2.30	2.650	1.354 <u>10</u>	0.00285	-2.33
0.248	1.39422	0.35581	-1,98	0.540	1.36340	0.02466	-2.31	2.700	1.35395	0.00289	-2.33
_			_			_	_				
0.250	1.39344	0.38236	-1.97	0.550	1.36316	0.02328	-2.31	2.750	1.35381	0.00293	-2.33
0.252	1.39269	0.36955	-1.98	0.560	1.36293	0.02202	-2.31	2.800	1.35366	0.00298	-2.32
8.254	1.39196	0.35734	-1.99	0.570	1.36272	0.02085	-2.31	2.850	1.35351	0.00302	-2.32
0.256	1.39126	0.34570	-2.00	0.580	1.36251	0.01976	-2.31	2.900	1.35336	0.00306	-2.32
0.258	1.39058	0.33458	-2.01	0.590	1.36232	0.01875	-2.32	2.950	1.35320	0.00344	-2.35
								20,00			
0.260	1.38000	0.32307	-2.04	0 600	1.36311	0 04707	-2 37	7 000	4 35365	0 00745	- 2 25
0 343	4 700332	0 34 300		0.000	1.30514	0.01102	-2.32	3.466	1.35305	0.00015	-2.02
0 0 2 5 4	4 78965	0.31302	- 2.02	0.028	1.30180	0.01014	- 2 . 32	3.050	1.35289	0.00320	-2.32
0.204	1.30000	0.30412	-2.003	0.040	1.30149	0.01468	-2.32	3.100	1.352/3	0.00324	-2.32
0.200	1.38806	0.25484	-2.84	0.860	1.36121	0.01340	-2.32	3.150	1.352 <u>5 E</u>	0.00329	-2.32
0.268	1.38748	0.28596	-2.05	0.680	1.36095	0.01228	-Z.33	3.208	1.35240	0.00334	-2.31

λ μπο	Ľ	-dn/dλ μm ⁻¹	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	n	-dn/dλ μm ⁻¹	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	n	-dn/dλ μm~i	dn/dT 10 ⁻⁵ K ⁻¹
3.250 3.300 3.350 3.400 3.450	1.35223 1.3520E 1.35189 1.35171 1.35171	0.003 <u>38</u> 0.0034 <u>3</u> 0.003 <u>48</u> 0.003 <u>48</u> 0.003 <u>52</u> 0.00357	- 2 2 2 3 3 1 - 2 2 2 3 3 3 1 - 2 2 2 3 3 3 1 - 2 2 2 2 3 3 3 1 - 2 2 2 2 3 3 1	6.200 6.300 6.400 6.500 6.500	1.33781 1.33716 1.33649 1.33582 1.33513	0.00648 0.00659 0.00671 0.00682 0.00682 0.00682	-2.17 -2.17 -2.17 -2.16 -2.16 -2.15	11.800 12.000 12.200 12.400 12.600	1.281 <u>96</u> 1.279 <u>15</u> 1.276 <u>28</u> 1.273 <u>34</u> 1.270 <u>33</u>	0.01389 0.01421 0.01453 0.01486 0.01486 0.01520	-1.49 -1.45 -1.41 -1.36 -1.32
3.500 3.550 3.600 3.600 3.600 3.600	1.351 <u>3E</u> 1.351 <u>17</u> 1.350 <u>99</u> 1.356 <u>80</u> 1.35661	0.003 <u>62</u> 0.003 <u>67</u> 0.003 <u>72</u> 0.003 <u>77</u> 0.003 <u>77</u>	-2.30 -2.30 -2.30 -2.30 -2.30	6.700 6.800 6.900 7.000 7.100	1.334 <u>43</u> 1.333 <u>72</u> 1.33300 1.332 <u>26</u> 1.33152	0.007 <u>05</u> 0.007 <u>16</u> 0.00728 0.00740 0.00752	$ \begin{array}{r} -2 \cdot 1 \overline{\underline{3}} \\ -2 \cdot 1 \overline{\underline{3}} \\ -2 \cdot 1 \overline{\underline{3}} \\ -2 \cdot 1 \underline{2} \\ -2 \cdot 1 \underline{2} \\ -2 \cdot 1 \overline{2} \end{array} $	12.800 13.000 13.200 13.400 13.600	1.267 <u>26</u> 1.264 <u>12</u> 1.260 <u>90</u> 1.257 <u>62</u> 1.25426	0.015 <u>54</u> 0.015 <u>89</u> 0.016 <u>24</u> 0.016 <u>60</u> 0.016 <u>60</u>	-1.27 -1.22 -1.17 -1.12 -1.86
3.750 3.800 3.850 3.900 3.950	1.35042 1.35022 1.35003 1.34983 1.34983 1.34963	0.003 <u>87</u> 0.003 <u>92</u> 0.003 <u>97</u> 0.004 <u>02</u> 0.004 <u>02</u>	-2.30 -2.30 -2.20 -2.20 -2.20	7。200 7。300 7。400 7。500 7。600	1.33076 1.32999 1.32921 1.32842 1.32842 1.32761	0.007 <u>63</u> 0.00775 0.00787 0.007 <u>89</u> 0.007 <u>99</u> 0.00811	-2.10 -2.05 -2.05 -2.08 -2.07	13.800 14.000 14.200 14.400 14.600	$1.250\overline{63} \\ 1.24732 \\ 1.24\overline{732} \\ 1.24\overline{374} \\ 1.24\overline{008} \\ 1.23\overline{633} $	0.017 <u>34</u> 0.01772 0.01 <u>811</u> 0.01 <u>851</u> 0.01 <u>851</u>	-1.00 -0.94 -0.88 -0.82 -0.82 -0.82
4.000 4.050 4.100 4.150 4.200	1.349 <u>42</u> 1.349 <u>21</u> 1.349 <u>08</u> 1.34879 1.34858	$\begin{array}{c} 0.004 \overline{12} \\ 0.004 \overline{17} \\ 0.004 \overline{22} \\ 0.004 \overline{27} \\ 0.004 \overline{27} \\ 0.004 \overline{32} \end{array}$		7.700 7.800 7.900 8.000 8.100	1.32679 1.32596 1.325 <u>96</u> 1.325 <u>12</u> 1.324 <u>27</u> 1.32340	0.008 <u>23</u> 0.008 <u>35</u> 0.00848 0.00860 0.00860 0.00872	-2.05 -2.05 -2.03 -2.03 -2.03	14.800 15.000 15.200 15.400 15.600	1.23 <u>251</u> 1.22 <u>861</u> 1.22 <u>461</u> 1.22 <u>054</u> 1.21€37	0.01 <u>932</u> 0.01 <u>974</u> 0.020 <u>17</u> 0.020 <u>61</u> 0.02105	-0.6 <u>8</u> -0.6 <u>1</u> -0.5 <u>3</u> -0.4 <u>6</u> -0.38
4.250 4.300 4.350 4.400 4.450	1.348 <u>36</u> 1.348 <u>14</u> 1.347 <u>92</u> 1.347 <u>69</u> 1.347 <u>4</u> 6	0.004 <u>37</u> 0.004 <u>42</u> 0.004 <u>42</u> 0.004 <u>48</u> 0.004 <u>53</u> 0.004 <u>58</u>	-2,2 -2,2 -2,27 -2,27 -2,27 -2,27 -2,27	8.200 8.300 8.400 8.500 8.500 8.600	1.32252 1.32153 1.32073 1.31981 1.31988	0.00885 0.008 <u>97</u> 0.009 <u>10</u> 0.00922 0.00935	-2.01 -2.00 -1.99 -1.98 -1.97	15.800 16.000 16.200 16.400 16.600	1.21 <u>211</u> 1.20 <u>776</u> 1.20 <u>332</u> 1.19 <u>878</u> 1.19 <u>414</u>	0.02 <u>151</u> 0.02 <u>198</u> 0.02 <u>246</u> 0.02 <u>294</u> 0.02 <u>294</u> 8.02 <u>344</u>	-0.29 -0.21 -0.11 -0.02 0.08
4.500 4.550 4.600 4.650 4.700	1.347 <u>23</u> 1.347 <u>00</u> 1.346 <u>77</u> 1.346 <u>53</u> 1.34629	$\begin{array}{c} 0.004\overline{\underline{63}}\\ 0.004\overline{\underline{68}}\\ 0.004\overline{\underline{79}}\\ 0.004\overline{\underline{79}}\\ 0.004\overline{\underline{79}}\\ 0.004\overline{\underline{84}} \end{array}$	-2.27 -2.27 -2.28 -2.28 -2.28	8.700 8.800 8.900 9.000 9.100	1.317 <u>94</u> 1.316 <u>99</u> 1.316 <u>02</u> 1.315 <u>04</u> 1.315 <u>04</u>	0.009 <u>48</u> 0.009 <u>61</u> 0.009 <u>74</u> 0.009 <u>87</u> 0.009 <u>87</u>	-1.9 <u>6</u> -1.9 <u>5</u> -1.9 <u>5</u> -1.9 <u>2</u> -1.91	16.800 17.000 17.200 17.400 17.600	1.18 <u>940</u> 1.1845 1.17 <u>961</u> 1.17 <u>45</u> 1.17 <u>45</u> 1.16 <u>93</u> 9	0.02395 0.02448 0.02501 0.02556 0.02556 0.02613	0.1 0.29 0.40 0.51 0.53
4.750 4.800 4.850 4.900 4.950	1.346 <u>04</u> 1.345 <u>80</u> 1.345 <u>55</u> 1.345 <u>30</u> 1.34504	2.004 <u>89</u> 0.004 <u>95</u> 0.005 <u>60</u> 0.005 <u>05</u> 0.00511	- 2 2 2 2 2 2 2	9.200 9.300 9.400 9.500 9.600	1.313 <u>04</u> 1.312 <u>02</u> 1.310 <u>99</u> 1.309 <u>94</u> 1.30888	0.010 <u>13</u> 0.010 <u>26</u> 0.010 <u>40</u> 0.010 <u>53</u> 0.010 <u>53</u> 0.01067	-1.95 -1.85 -1.88 -1.85 -1.85	17.000 18.000 18.200 18.400 18.600	1.16 <u>410</u> 1.15 <u>870</u> 1.15 <u>319</u> 1.14 <u>754</u> 1.14177	0.02 <u>670</u> 0.02 <u>730</u> 0.02 <u>790</u> 0.02 <u>853</u> 0.02 <u>91</u> 7	0.75 0.88 1.02 1.16 1.30
5.000 5.100 5.200 5.300 5.400	1.34479 1.34427 1.34373 1.34373 1.34319 1.34264	0.005 <u>16</u> C.005 <u>27</u> 0.005 <u>38</u> 0.005 <u>48</u> 0.005 <u>48</u>	-2.24 -2.23 -2.23 -2.23 -2.23 -2.23	9.700 9.800 9.908 10.000 10.200	1.307 <u>81</u> 1.30672 1.30562 1.304 <u>50</u> 1.30223	C.C1080 O.C1094 G.C1108 G.C1122 O.C1122	-1.84 -1.82 -1.81 -1.80 -1.77	18.800 19.000 19.200 19.400 19.600	1.13 <u>587</u> 1.12 <u>984</u> 1.12 <u>367</u> 1.11 <u>736</u> 1.11 <u>736</u>	0.02 <u>983</u> 0.03051 0.03121 0.03192 0.03266	1.4 <u>6</u> 1.61 1.78 1.95 2.13
5.500 5.600 5.700 5.800 5.900	1.34207 1.34150 1.34091 1.34031 1.34031 1.33970	0.005 <u>70</u> C.005 <u>81</u> 0.005 <u>92</u> 0.006 <u>03</u> 0.00614	-2.22 -2.21 -2.21 -2.21 -2.21 -2.19	10.400 10.600 10.800 11.000 11.200	1.299 <u>91</u> 1.297 <u>52</u> 1.295 <u>08</u> 1.292 <u>58</u> 1.292 <u>58</u> 1.290 <u>01</u>	0.011 <u>78</u> 0.012 <u>07</u> 0.012 <u>36</u> 0.012 <u>36</u> 0.012 <u>66</u> 0.012 <u>96</u>	-1.74 -1.70 -1.67 -1.64 -1.60	19.800 20.000 20.500 21.000 21.500	1.10 <u>429</u> 1.09 <u>753</u> 1.07 <u>991</u> 1.06 <u>121</u> 1.04134	0.03 <u>343</u> 0.03 <u>421</u> 0.03 <u>629</u> <i>D.D3<u>854</u> 0.04099</i>	2.32 2.52 3.64 3.64 4.30
6.000 6.100	1.33908 1.33845	0.006 <u>25</u> 0.006 <u>37</u>	-2.15 -2.18	11.400 11.600	1.287 <u>39</u> 1.28471	0.013 <u>26</u> 0.013 <u>57</u>	-1.57 -1.53	22.000	1.02018	0.04367	5.04

TABLE 36. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR KF AT 298 K (continued)*

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.9. The number of digits with an overstrike are not relevant to accuracy of the data.

FIGURE 30. Refractive Index of KF

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

н. н. ц

418

∦					Wavelength		
Cur. No.	Ref. No.	Author(s)	Year	Method Used	wavelangu Range,	Temperature, K	Specifications, and Remarks
1	50	Kublitzky, A.	1934	D	0.214-0.578	330	Crystal, grown by Kyropoulos method; prismatic specimen with height of 15 mm, side length 20 mm and prism angle 54°18°33"; digitized data were presented with accuracy of one unit of the third decimal place.
2	44	Zarzycki, J, and Naudin, F,	1963	A	0.5461	1173	Molten KF; liquid prism formed by the top surface of the melt and an immersed, inclined platinum mirror; estimated uncertainty of 0.01 in measured n; digitized data were presented.
ი	45	Spangenberg, K.	1923	X	0. 58!3	295	Crystal produced ty heating KF-Glycerin solution at 80 C; it was found that when specimen was mbedded in either of the two mixtures, $G_{\rm PJ}$ A, + $G_{\rm r}$ H ₀ and HCO CH ₃ + $(G_{\rm H})_2$ CO ₂ , and illuminated by sodium light the contour of KF grain disappeared; the refractive indices of the mixtures was found that 1.360 < mg r < 1.362; mg r was therefore derived as 1.361 + 0.012.
4	87 . 38	Wulf, P. and Heigl, A. Wulff, P.	193 1, 1928	M	0.58%	298	Crystal; grown by slowly cooling melt from 900 C in HF atmosphere; clear, transparent specimen was suspended in an alcohol-xylol mixture; digitized datum was presented with uncertainty 0,00004.
ы. 10	87 . 88	Wulff, P. and Heigl, A. Wulff, P.	1931, 1928	M	0.58	298	Similar to above but crystal grown from a saturated KF-alcohol solution; estimated uncertainty of 0,00008 in refractive index.
			TAB	LE 38. É	XPERIMENTAL	DATA ON THE RE	RACTIVE INDEX OF KF
					[Wavelength, 	., µm; Refractive h	dex, n]
~		п Х п					
밍 _드	RVE 330.2	$\frac{1}{2}K \qquad \qquad \frac{CURVE}{T} = \frac{295.2}{295.2}K$					
	•		2				

TABLE 37. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dn/dT MEASUREMENTS OF KF

х п	$\frac{\text{CURVE 3}}{\text{T} = 295.2 \text{ K}}$	0.5893 1.361 $\frac{CURVE 4}{T = 298.0 K}$	0.589 1.36290 <u>CURVE 5</u> T = 298.0 K	0.589 1.36280	1
u	<u>TE 1</u> 0.2 K	1,4111 1,4081* 1,4040 1,4017	1. 3855 1. 3855 1. 3661 1. 3617	1. 3010 <u>5. 2</u> K	1.28 wn in figure.
۲	T = 33	0.21444 0.21946 0.227 0.231 0.231	0.27488 0.27488 0.435 0.5461	$\frac{CURV}{T = 117}$	0.5461 * Not sho

Source	Wavelength and Temperature Ranges	Dispersion Equation λ in μ m; ν in cm ⁻ⁱ
Radhaki islman, T. [40] 1934	0.21 0.58 µm 330 K	$n^2 = 1.84782 + \frac{0.00435}{\lambda^2 - (0.126)^2} - 0.03017 \lambda^2$
Present work 1975	0.15-22.0 µm 293 К	$n^{2} = 1.55083 + \frac{0.29162 \lambda^{2}}{\lambda^{2} - (0.126)^{2}} + \frac{3.60001 \lambda^{2}}{\lambda^{2} - (51.55)}$

TABLE 39. COMPARISON OF DISPERSION EQUATIONS PROPOSED FO	OR I	ΚF
--	------	----

3.10. Potassium Chloride, KCl

Potassium chloride is widely used in spectroscopy, since its optical properties make it a convenient window and prism material from the ultraviolet to the infrared regions. The transmission range is about 0.21 to 30 μ m. A plate 1 cm in thickness transmits radiation up to 24 μ m. Since strong absorption occurs near the transmission limits, the useful transmission range of KCl is about 0.38 to 21 μ m. Of all the substances which are otherwise suitable for optical parts, KCl is transparent over a wide range of the infrared spectrum.

KCl is grown in the same way as NaCl, but sometimes multiple crystals instead of single-crystal ingots result. Therefore, large prisms are somewhat rare and expensive. Crystals 30 cm in diameter are available.

Measurement of the refractive index of potassium chloride dates back to 1871, when Stefan [53] determined the refractive index of a sylvite prism for the B, D, and F of Fraunhofer lines. Later work, represented by Rubens [72], Martens [54], Paschen [55], and Gyulai [27], provided a large amount of data in the transparent region. Measurements beyond the transparent region were not made until 1934 when Cartwright, et al. [61] analyzed the reflection and transmission spectra of KC1 thin films in the infrared region, 126 to 232 μm . In the low ultraviolet region, Tomiki [89] published values obtained by analyzing the reflection spectra. Refractive index data are now available for a wide wavelength range from 0.106 to 232 μm .

By a careful examination of the available data and information, five data sets provided by Martens [54], Paschen [55], Hohls [29], Harting [30], and Rubens and Nichols [58], were selected as the basis for reference data generation. The values of Hohls were obtained for a very thin plate specimen, and are slightly lower than those for bulk material. Data sets which are not selected were either reported with unreliable values or were measured under inadequate conditions. Data in the absorption regions were not analyzed, but are included here for completeness of presentation. Since the selected data were obtained at various temperatures, the temperature derivative, dn/dT, was needed to reduce the data to 293 K.

Measurements of the temperature coefficient of the refractive index, dn/dT, made available in the wavelength region from 0.21 to 21.0 μ m by a number of investigators, were sufficient to carry out a least-squares fitting calculation. Potassium chloride is among the five materials which provided the empirical results that led to the parameters in table 5. With the aid of these parameters we constructed a formula for estimating dn/dT over a broader range of λ :

$$2n \frac{dn}{dT} = -11.13 (n^2 - 1) + 0.19 + \frac{3.393\lambda^4}{(\lambda^2 - 0.02624)^2} + \frac{142.56\lambda^4}{(\lambda^2 - 4958.98)^2}, \quad (41)$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ is in μ m.

In figure 36, the results calculated by eq (41) are compared with the experimental data. It appears that for wavelengths longer than five microns the calculated values are in general lower than the observed values. and that in the short wavelength region, $0.25-0.50 \ \mu m$, the curve is higher than experiment. By a review of the sources, one can find that data sets 32, 34, and 36 (32 and 36 not shown in fig. 36) were obtained at about 330 K, some 40 degrees higher than 293 K, while data set 35 was obtained at a mean temperature about 15 degrees lower than 293 K. The trend of these data indicates that the absolute value of dn/dT increases with increasing temperature. Although dn/dT data of curve 9 were obtained at a mean temperature of 293, they appeared to be randomly scattered and not consistent with the trend demonstrated by curves 34 and 35.

It can be safely said that eq (41) predicts correct dn/dT values for wavelengths smaller than five microns. For wavelengths larger than five microns, experimental evidence is not sufficient to substantiate the predictions made by eq (41). However, the fact that the empirically constructed dn/dT formula for CsI predicts correct values for CsI in the long wavelength region, as discussed in subsection 3.20, gives strong evidence that eq (41) can be used to calculate the dn/dT data for KCl in the long wavelength region.

Equation (41) was used to make temperature corrections on the selected data sets which were obtained at temperatures other than the reference temperature, 293 K.

Dispersion formulas of KCl have been proposed from time to time by a number of authors, and have appeared in different forms. Table 44 contains a number of typical formulas. They have all been reduced, wherever possible, to standard forms so that a visual comparison can be easily made. From tables 3 and 44, preliminary parameters for a least-squares fitting were obtained. The calculation yielded the following dispersion equation for KCl at 293 K in the transparent region, $0.18-35.0 \ \mu m$.

$$n^{2} = 1.26486 + \frac{0.30523\lambda^{2}}{\lambda^{2} - (0.100)^{2}} + \frac{0.41620\lambda^{2}}{\lambda^{2} - (0.131)^{2}} + \frac{0.18870\lambda^{2}}{\lambda^{2} - (0.162)^{2}} + \frac{2.6200\lambda^{2}}{\lambda^{2} - (70.42)^{2}}, \quad (42)$$

where λ is in units of μ m.

н. н. ц

Equations (41) and (42) were used to generate the recommended values. The values appearing in the table of recommended values do not reflect the degree of accuracy; extra decimal places are given simply for tabular smoothness. In order to use the table properly, the reader should follow the criteria given below.

For refractive index:

Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, \pm
0.18- 0.20	2	0.01
0.20- 0.24	3	0.005
0.24- 0.35	4	0.0005
0.35 - 10.00	4	0.0001
10.00 - 15.00	4	0.0002
15.00-21.00	4	0.0005
21.00-30.00	3	0.006
30.00-35.00	3	0.008
For dn/dT :		
0.18- 0.20	1	0.9
0.20-4.0	1	0.3
4.00-15.00	1	0.5
15.00 - 35.00	1	0.9

TABLE 40. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR KCI AT 293 K *

	-					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				-	·
λ		-dn/dλ	dn/dT	λ		-dn/dλ	dn/dT	λ	n	$-dn/d\lambda$	dn/dT
µm	4	μm-1	10 ⁻⁵ K ⁻¹	_µm		µm ⁻¹	10 ⁻⁵ K ⁻¹	μm		μ _μ m ⁻¹	10-5 K-1
л. 18П [.]	1 80 775	15 07659	17.26	9.300	1.54558	0.59645	•2.75	1.000	1.47983	0.01099	-3.20
0.100	1 86 707	17 50007	47 74	0,300	1. \$4273	0.55253	-2.78	1.058	1.47932	0.00953	-3.20
0 194	4 87897	11 65209	11 08	0.310	1. 54005	0.51798	-2.81	1.100	1.47887	0.00833	-3.20
0 496	1 84 785	10 19970	0.01	0.315	1.63764	8.48642	-2.84	1,150	1.47848	0.00734	-3.21
0.188	1.79789	9.00918	7.36	0.320	1.53518	0.45752	-2.86	1.200	1.47813	0.00652	-3.21
			· · · · ·			- : -					
0.190	1.78087	8.04152	6.04 4.95	0.325	1.53296	0.43099	-2.88	1.250	1.47755	0.00582	-3.21
0.104	1 75184	6 66 6 6 6	4.01	0.335	1.52889	8. 38407	-2.92	1.350	1.47730	8.00474	-3.21
04134	1.77037	5.97413	3.28	0.340	1.52703	0.36327	-2.93	1.400	1.47768	0.08431	-3.21
0.198	1.72789	5.47 316	2.64	8.345	1.52526	0.34402	-2.95	1.450	1.47687	0.00394	-3.21
			· · · -		· · · · · · · · · · · · · · · · · · ·						
0.200	1.71739	5.03730	2.09	0.350	1.52358	0.32617	-2.96	1.500	1.47668	0.00363	-3.21
0 284	4 60.97%	4.05513	1.10	0.355	1.52049	0.20417	-2.68	1.680	1 47636	0 003312	-3.21
0 286	1.60841	4.01702	0.83	0.365	1. 51 985	0.27980	-3.00	1.658	1.47619	0.08201	-3.21
0.208	1.68265	3.75007	0.51	0.370	1.51769	0.26638	-3.01	1.700	1.47 605	0.00273	-3.21
	4 67570	3 500 55	a 17	0 775	4 54670	0 2570E	-7 03	4 750	4 47503	0 00257	-7 21
0.210	1.66940	3.20254	-0.02	0.3/5	1.51534	0.24949	-3,82	1.90	1.47690	0.0025/	-3.21
0.214	1.66 224	3.00504	-1.25	0.385	1 51 305	0.23117	-3,03	1.850	1.47568	0.00230	-3,21
0.216	1.65620	2.91720	-0.45	0.390	1.51283	0.22087	-3.04	1.900	1.47557	0.00219	-3.21
0.218	1.65053	2.75404	-0.63	0.395	1.51175	0.21114	-3.05	1.950	1.47546	0.00210	-3.21
0.220	1 61.547	2 601.21	-0.97	n 400	1.54075	0.20204	-7.02	2 444	1.67572	0.00204	-3. 24
4.222	1.6491/	2.4674	-0.01	0.400	1.50.070	0.19570	-3.07	2.000	1.47535	0.00407	-3.24
0.224	1.63530	2.34405	-1.08	0.420	1. 50 573	0.17058	-3.01	2.400	1.4751 6	0.00197	-3.21
8.226	1.63073	2.22436	-1.28	0.430	1. 50 537	0.15736	-3.05	2.158	1.47587	0.00181	-3.21
0.228	1.62639	2.11635	-1.32	0.440	1.50386	0.14551	-3.10	2.200	1.47498	0.00176	-3.21
		·				-					
0.230	1.62226	2.01614	-1.42	0.450	1.50245	0.13485	-3.10	2.250	1.47489	0.001/2	-3.21
0.232	1.61457	1.87610	-1.52	0.400	1.20112	0.11654	-3.12	2.300	1.47401	0.00100	-3.21
0.236	1.61898	1.75519	-1.69	0.480	1.69882	0.10865	-3.12	2.400	1.47464	0.00161	-3.21
0.238	1.60754	1.67946	-1.76	0.490	1.49777	0.10147	-3.13	2.450	1.47457	0.00158	-3.21
		=					=				
0.240	1.00420	1.608:3	-1.83	0.500	1.49679	0.09493	-3.13	2.500	1.47449	0.00156	-3.21
1.244	1.500111	1.47051	-1.96	0.520	1.49501	0.08347	-3.14	2.550	1 4 47677	0.00194	-3 21
8.246	1.59510	1.42872	-2.01	0.530	1.49501	0.07965	-3.45	2.650	1.67625	0.00192	-3.21
0.248	1.59240	1.36534	-2.07	0.540	1.49344	0.07383	-3.15	2.700	1.47410	0.00150	-3.21
			=							-	
0.250	1.589/2	1.31310	-2.1 <u>2</u>	0.550	1.49272	0.06957	-3.15	2.750	1.47411	0.00149	-3.20
8 254	1.50/15	1.203//	-2.10	0.570	1+49205	0.00204	-3.10	2.000	1.4/403	0.00140	-3.20
0.256	1 58220	1 47260	-2 25	0.540	1 49141	0.00201	-3.10	2.050	1.4/390	0.00147	-3.20
0.258	1.57.997	1.13116	-2.28	0.590	1.49023	0.05553	-3.16	2.950	1.47381	0.00146	-3.20
											·
U.260	1.57775	1.09149	-2.32	0.600	1.48969	0.05263	-3.17	3.000	1.47374	0.00146	-3.20
0.202	1.7/204	1.05382	-2.35	0.020	1.40009	0.04/42	-3.1/	3.050	1.47367	0.00146	-3.20
0.264	1.57453	1.01203	-2.37	0.040	1.40//9	0.074290	-3.1/	3.100	1.47.359	0.00140	-3.20
1.268	1.56960	0.95158	-2.45	0.680	1.48623	0.03546	-3.18	3-208	1.47345	0.00140	-3.20
		A	· · =		A A=	é=		÷	=		. . .
0.270	1.565772	0.92070	-2.47	0.700	1.48555	0.03239	-3.18	3.250	1.47337	0.00147	-3.20
0.274	1.56442	0.09120	-2.50	0 744	1.640493	0.02750	-3.10	3.300	1.4/330	0.00148	-3.28
0.276	1.562420	0.00317	-2.52	U + / 4.U A - 76 A	1.4.20430	0.002121	-3.19	3.350	1.47323	0.00145	-3.20
0.278	1.56881	0.81070	-2.57	0.740	1.48336	8.82310	-3.10	3.460	1.47789	0.00149	-3-20
								J. 4 J U			~~
0.280	1.55921	0.78618	-2.59	0.800	1.48291	0.02146	-3.19	3.500	1.47300	0.00150	-3.20
0.282	1.55767	0.76272	-2.61	0.820	1.48250	0.01990	-3.19	3.550	1.47293	0.00151	-3.20
0.284	1.55616	0.74026	-2.63	0.840	1.48212	0.01850	-3.19	3.600	1.47285	0.00152	-3.20
0.288	1.55329	0.69809	-2.65	0.880	1.48143	0.01/23	-3.20	3.050 3.798	1.47278	0.00153	-3.20
								5-100			
0.290	1.55191	0.67830	-2.68	0.900	1.48111	0.01502	-3.20	3.750	1.47262	0.00155	-3.1¢
0.292	1.55057	0.65930	-2.70	0.920	1.48082	0.01407	-3.20	3.800	1.47254	0.00156	•3.15
0.294	1.54927	0.64105	-2.71	0.940	1.48055	0.01319	-3.20	3.050	1.47247	0.00157	-3-15
0.290	1.54679	0.02352	-2.74	0.920	1.490030	0.01165	-3.20	3.900	1.4/239	0.00150	-3.10
89£70	107070		- 2019	9 0 3 G U	T-40000	A		30779	104/231	AAAAT33	-Veli

TABLE 40. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR KCI AT 293 K (continued)*

λ µm	n	$-dn/d\lambda$ $\mu^{m^{-1}}$	dn/dT 10-5 K-1	λ μm	n	-dn/dλ μ ^{m -1}	dn/dT 10-5 K-1	λ μm	n	$-dn/d\lambda$ μm^{-1}	dn/dT 10 ⁻⁵ K ⁻¹
4.000 4.050 4.100 4.150 4.200	1.4722 <u>3</u> 1.4721 <u>5</u> 1.4720 <u>7</u> 1.47198 1.47198	0.0016 <u>1</u> 0.0016 <u>2</u> 0.0016 <u>3</u> 0.00164 0.00166	-3.19 -3.19 -3.19 -3.19 -3.19 -3.19	8.100 8.200 8.300 8.400 8.500	1.4629 <u>0</u> 1.4626 <u>0</u> 1.4622 <u>9</u> 1.4619 <u>8</u> 1.4619 <u>8</u>	0.00302 0.00306 0.00310 0.00314 0.00314 0.00318	-3.10 -3.10 -3.10 -3.09 -3.09 -3.09	16.400 16.600 16.800 17.000 17.200	1.4229 <u>5</u> 1.4215 <u>8</u> 1.4201 <u>8</u> 1.41877 1.41733	0.00681 0.00692 0.00703 0.00714 0.00725	- 2 2 5 5 5 4 2 9 - 2 2 5 5 5 4 2 9 - 2 2 5 5 9 - 2 2 5 4 9
4.250 4.300 4.350 4.400 4.400	1.47182 1.47173 1.47165 1.47165 1.47156 1.47148	0.00167 0.00168 0.00170 0.00171 0.00171 0.00173	-3.1 <u>9</u> -3.1 <u>9</u> -3.1 <u>9</u> -3.19 -3.19	8.600 8.700 8.800 8.900 9.000	1.4613 <u>4</u> 1.4610 <u>2</u> 1.4606 <u>9</u> 1.4603 <u>6</u> 1.46032	0.0032 <u>2</u> 0.0032 <u>6</u> 0.0033 <u>0</u> 0.0033 <u>4</u> 0.00338	-3.0 <u>5</u> -3.0 <u>8</u> -3.08 -3.08 -3.08 -3.07	17.400 17.600 17.800 18.000 18.200	1.41587 1.4143 <u>8</u> 1.41287 1.41134 1.40979	0.0073 <u>7</u> 0.0074 <u>8</u> 0.00760 0.00772 0.00773	-2.47 -2.45 -2.42 -2.39 -2.37
4.500 4.550 4.600 4.650 4.700	1.4713 <u>9</u> 1.4713 <u>0</u> 1.4712 <u>2</u> 1.4711 <u>3</u> 1.4711 <u>3</u> 1.47104	0.0017 <u>4</u> 0.0017 <u>6</u> 0.0017 <u>7</u> 0.0017 <u>9</u> 0.00180	-3.1 <u>8</u> -3.1 <u>8</u> -3.1 <u>8</u> -3.1 <u>8</u> -3.1 <u>8</u> -3.18	9.100 9.200 9.300 9.400 9.500	1.4596 <u>8</u> 1.4593 <u>4</u> 1.4593 <u>9</u> 1.4586 <u>4</u> 1.45828	0.0034 <u>2</u> 0.0034 <u>6</u> 0.0035 <u>0</u> 0.0035 <u>4</u> 0.0035 <u>4</u> 0.0035 <u>8</u>	-3.0 <u>7</u> -3.0 <u>6</u> -3.0 <u>6</u> -3.0 <u>6</u> -3.0 <u>6</u>	18.400 18.600 18.800 19.000 19.200	1.4082 <u>1</u> 1.4066 <u>1</u> 1.4049 <u>5</u> 1.4033 <u>3</u> 1.4016 <u>5</u>	0.0079 <u>5</u> 0.00808 0.00020 0.00832 0.00832 0.00832	-2.34 -2.31 -2.25 -2.25 -2.22
4.750 4.800 4.850 4.900 4.950	1.4709 <u>5</u> 1.4708 <u>5</u> 1.4707 <u>6</u> 1.4706 <u>7</u> 1.47058	0.0018 <u>2</u> 0.0018 <u>3</u> 0.0018 <u>5</u> 0.0018 <u>7</u> 0.0018 <u>7</u> 0.00188	-3.1 <u>8</u> -3.18 -3.18 -3.18 -3.18 -3.18	9.600 9.700 9.800 9.900 10.000	1.4579 <u>2</u> 1.4575 <u>6</u> 1.4571 <u>9</u> 1.4568 <u>2</u> 1.45644	0.0036 <u>2</u> 0.0036 <u>6</u> 0.0037 <u>1</u> 0.0037 <u>5</u> 0.0037 <u>9</u>	-3.05 -3.05 -3.04 -3.04 -3.03	19.400 19.600 19.800 20.000 20.500	1.3999 <u>5</u> 1.39822 1.39647 1.3946 <u>9</u> 1.39012	0.00857 0.00870 0.00883 0.00887 0.00897 0.00897	-2.19 -2.16 -2.13 -2.09 -2.00
5.000 5.100 5.200 5.300 5.400	1.47048 1.47029 1.47010 1.46990 1.46970	0.00190 0.0019 <u>3</u> 0.00196 0.0020 <u>0</u> 0.0020 <u>3</u>	-3.18 -3.18 -3.17 -3.17 -3.17 -3.17	10.200 10.400 10.600 10.800 11.000	1.45567 1.45489 1.45409 1.45327 1.45327 1.45244	0.00387 0.00396 0.0040 <u>4</u> 0.0041 <u>3</u> 0.00421	-3.02 -3.02 -3.01 -3.00 -3.00 -2.99	21.000 21.500 22.000 22.500 23.000	1.385 <u>38</u> 1.380 <u>47</u> 1.375 <u>37</u> 1.370 <u>09</u> 1.36461	0.009 <u>65</u> 0.010 <u>01</u> 0.010 <u>38</u> 0.010 <u>76</u> 0.01116	-1.9 <u>1</u> -1.81 -1.70 -1.58 -1.46
5.500 5.600 5.700 5.800 5.900	1.4694 <u>9</u> 1.4692 <u>8</u> 1.46907 1.4688 <u>6</u> 1.46884	0.0020 <u>6</u> 0.0021 <u>0</u> 0.0021 <u>3</u> 0.0021 <u>7</u> 0.00220	$ \begin{array}{r} -3.1\overline{7} \\ -3.1\overline{7} \\ -3.1\overline{6} \\ -3.1\overline{6} \\ -3.1\overline{6} \\ -3.1\overline{6} \end{array} $	11.200 11.400 11.600 11.800 12.000	1.4515 <u>9</u> 1.45072 1.4498 <u>4</u> 1.4489 <u>3</u> 1.44801	0.0043 <u>0</u> 0.0043 <u>9</u> 0.00447 0.0045 <u>6</u> 0.00455	-2.98 -2.97 -2.96 -2.94 -2.93	23.500 24.000 24.500 25.000 25.500	1.358 <u>92</u> 1.3530 <u>3</u> 1.346 <u>92</u> 1.340 <u>59</u> 1.33402	0.011 <u>57</u> 0.012 <u>00</u> 0.012 <u>44</u> 0.012 <u>90</u> 0.01338	-1.33 -1.18 -1.03 -0.87 -0.69
6.000 6.100 6.200 6.300 6.400	1.4684 <u>2</u> 1.4681 <u>9</u> 1.4679 <u>6</u> 1.4677 <u>3</u> 1.46749	0.0022 <u>4</u> 0.0022 <u>7</u> 0.0023 <u>1</u> 0.0023 <u>5</u> 0.00238	-3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1	12.200 12.400 12.600 12.800 13.000	1.44707 1.4461 <u>1</u> 1.4451 <u>4</u> 1.4441 <u>5</u> 1.44313	0.0047 <u>4</u> 0.0048 <u>3</u> 0.0049 <u>2</u> 0.0050 <u>1</u> 0.00511	-2.9 <u>7</u> -2.9 <u>1</u> -2.9 <u>0</u> -2.8 <u>8</u> -2.87	26.000 26.508 27.000 27.500 28.000	1.32721 1.32014 1.31281 1.30520 1.29731	0.013 <u>88</u> 0.014 <u>39</u> 0.014 <u>93</u> 0.015 <u>50</u> 0.015 <u>50</u>	-0.51 -0.30 -0.09 0.14 0.39
6.500 6.600 6.700 6.800 6.900	1.4672 <u>5</u> 1.4670 <u>1</u> 1.4667 <u>6</u> 1.4665 <u>1</u> 1.4662 <u>6</u>	0.0024 <u>2</u> 0.0024 <u>6</u> 0.0024 <u>9</u> 0.0025 <u>3</u> 0.0025 <u>7</u>	$ \begin{array}{r} -3.1\overline{5} \\ -3.1\overline{4} \\ -3.1\overline{4} \\ -3.1\overline{4} \\ -3.1\overline{4} \\ -3.1\overline{4} \end{array} $	13.200 13.400 13.600 13.800 14.000	1.44210 1.44105 1.43999 1.43890 1.43779	0.00520 0.00529 0.00539 0.00539 0.00548 0.00558	-2.8 <u>6</u> -2.8 <u>4</u> -2.8 <u>3</u> -2.8 <u>2</u> -2.8 <u>2</u> -2.8 <u>0</u>	28.500 29.000 29.500 30.000 30.500	1.289 <u>11</u> 1.280 <u>60</u> 1.271 <u>75</u> 1.262 <u>56</u> 1.25301	0.016 <u>71</u> 0.017 <u>35</u> 0.018 <u>03</u> 0.018 <u>74</u> 0.01949	0.6 <u>5</u> 0.94 1.25 1.58 1.93
7.000 7.100 7.200 7.300 7.400	1.4660 <u>0</u> 1.4657 <u>4</u> 1.4654 <u>7</u> 1.4652 <u>0</u> 1.46493	0.0028 <u>0</u> 0.0026 <u>4</u> 0.0026 <u>8</u> 0.00272 0.00275	-3.1 <u>3</u> -3.1 <u>3</u> -3.1 <u>3</u> -3.1 <u>3</u> -3.1 <u>3</u>	14.200 14.400 14.600 14.800 15.000	$ \begin{array}{r} 1.4366\overline{7} \\ 1.4355\underline{2} \\ 1.4343\underline{6} \\ 1.4331\overline{7} \\ 1.4319\overline{7} \\ 1.4319\overline{7} \\ \end{array} $	C.CO56 <u>8</u> C.CO57 <u>8</u> D.CO57 <u>8</u> D.CO59 <u>8</u> C.CO608	-2.7 <u>9</u> -2.77 -2.75 -2.7 <u>4</u> -2.72	31.000 31.508 32.000 32.500 33.000	1.24307 1.23273 1.221 <u>96</u> 1.210 <u>75</u> 1.19906	0.020 <u>27</u> 0.021 <u>10</u> 0.021 <u>97</u> 0.022 <u>90</u> 0.02388	$2 \cdot 3\frac{1}{2} \\ 2 \cdot 7\frac{3}{3} \\ 3 \cdot 17 \\ 3 \cdot 17 \\ 4 \cdot 17 $
7.500 7.600 7.700 7.800 7.900	1.4646 <u>5</u> 1.4643 <u>7</u> 1.46438 1.46379 1.46350	0.0027 <u>9</u> 0.00283 0.00287 0.00291 0.00295	-3.1 <u>2</u> -3.1 <u>2</u> -3.1 <u>1</u> -3.1 <u>1</u> -3.1 <u>1</u>	15.200 15.400 15.600 15.800 16.000	$1.4387\overline{4} \\ 1.42950 \\ 1.4282\overline{3} \\ 1.4289\overline{4} \\ 1.4269\overline{4} \\ 1.4256\overline{3} \\ 1.4256$	0.0061 <u>8</u> 0.00628 0.00638 0.00639 0.00649 0.00660	-2.70 -2.68 -2.66 -2.64 -2.63	33.500 34.000 34.500 35.000	1.186 <u>86</u> 1.174 <u>13</u> 1.160 <u>84</u> 1.14693	0.024 <u>91</u> 0.026 <u>01</u> 0.027 <u>19</u> 0.02844	4.7 <u>3</u> 5.34 6.00 6.72

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.10. The number of digits with an overstrike are not relevant to accuracy of the data.

J. Phys Cham Ref Data Vol 5. No. 2. 1976

H. H. LI

FIGURE 36. dn/dT of KCl

	ethod; specimens tographically erature, re- the Fresnel	en of 1.5 mm ; digitized dium D line > -0.0001/°C.	of 23 mm,	nalysis of the the experimen-	s were obtained 1 from a figure		data were		asured by F. mees were ch wavelength	im and apex rrature around 2 µm.	mm and apex	se; reflection 3d data were	cal lens; gths of the o ±0.005;	
Specifications, and Remarks	Single crystal; grown in an open furnace by the Kyropolous m freshly cleaved in vacuum; reflection spectra recorded ph for incident angles of 20°, 45°, 70°, and 75° at room temp fractive indices were obtained from graphical solutions to equations; data extracted from a figure.	Crystal; grown from melt in the Haën Co.,; cleaved specim thick was suspended in a mixture of m-Xylol-amyl acetate datum was presented with uncertainty 0.00003; dn/dT of so in the temperature range from 18° C to 25° was found to b	Synthetic crystal; prismatic specimen of height 18 mm, side and apex angle of 62°91; digitized data were presented.	Thin plate specimen; refractive indices were obtained from a reflection spectrum; data extracted from a figure in which tal data were plotted.	Thin plate specimen of 123 µm in thickness; refractive indice from analysis of the transmission spectrum; data extracte in which the experimental data plotted.	Similar to above but specimen of 163 µm in thickness.	Crystal; thin plate specimen of 445 μm in thickness; digitized presented.	Similar to above out plate thickness 325 µm.	Crystal; the author stated that the refractive indices were me Wolf on the specimen supplied by A. Smakula but no refere cited; digitized data were presented; dn/dT at 293 K for ea was also given.	Natural crystal; prismatic specimen of height 5 cm, width 4 c angle 53.3°; digitized data were presented; dn/dT at tempe 15 C was found to be -0.000034 $\rm K^{-1}$ for wavelength 0.5893	Crystal; prismatic specimen of height 13 mm, surface 13 x 1 angle 38.9°; digitized data were presented.	Crystals suppliedby Harshaw Chemical Co., or by Westinghou spectra were analyzed by Kramers-Kronig method; digitiz presented.	Molten KCI; Vycor tube filled with the melt formed a cylindri refractive indices were determined by finding the focal lean lens at given vavelengths; uncertainty in n was estimated t digitized data were presented.	
Temperature, K	298	298	321	298	298	298	298	298	293	288	291	300	1049	
Wavelength Range, µ¤n	0.16-0.20	0.589	0.202-0.615	126-232	137-227	190-215	18.2-28.8	18.7-28.2	0.213-1.0831	. 58932-17. 680	0.185-0.768	0476-0.2480	0.40-0.70	
fethod Used	R	W	D	£	H	г	I	I	D	с 0	Ð	Я	۲u .	
Year ^N	1967	1931 , 1928	1927	1934	1934	1934	1937	1937	1943	1908	1901, 1902	1968	1971	
Author(s)	Vishnevskii, V.N., Kulik, L.N., and Romanyuk, N.A.	Wulff, P. and Heig!, A.	Gyulai, Z.	Cartwright, C.H. and Czerny, M.	Cartwright, C.H. and Czerny, M.	Cartwright, C.H. and Czerny, M.	Hohls, H.W.	Hohls, H.W.	Harting, H.	Paschen, F.	Martens, F.F. Martens, F.F.	Roessler, D.M. and Walker, W.C.	Marcoux, J.	
Rcf. No.	06	87 . 88	27	61	61	61	29	29	30	55	54 . 74	66	67	
Cur. No.	1	8	ę	4	2	9	7	00	6	10	11	12	13	

H. H. LI

~ ~ ~	ef. Io.	Author(s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications, and Remarks
-	2 Durou, C Moutou, (Girandou, J.C., and	1973	Ъ.	0.6328	298	Aqueous solution of KCl was prepared by dissolving anhydrous Morck p.a. salt in double-distilled water; refractive indices of solutions of molarity 0.01, was measured by a Pulfrich refractometer.
-	2 Durou, C.	, et al.	1973	e A	0.6328	298	Similar to above but solution of molarity 0.05.
-	12 Durou, C.	., et al.	1973	ĥ	0.6328	298	Similar to above but solution of molarity 0.1.
m	39 Tomiki, 1		1967	~	0.107-0.214	295	Single crystal; grown by Kyropoulos method in a Pt-orucible; reflection spectrum was analyzed by Kramers-Kronig relation; data extracted from
ő	6 11 11 11 11 11 11 11 11 11 11 11 11 11			. F		ŝ	a figure.
n ñń	9 Tomiki, J		1961	4 . C4	0.106-0.207	10	similar to above. Similar to above.
· + + + + + + + + + + + + + + + + + + +	12 Lukirskii, Ershov, C	A. P., Savinov, E. P., J.A., and Shepelev, Yu. F.	1964	Я	0.0067,0.0113	298	Film specimens; evaporated on Au or Al substrates; reflection spectra were analyzed by using Freenel's formulae; digitized data were presented.
iO.	8 Rubens, I	I. and Niehols, E.F.	1897	Р Д	0.434-22.5	291	Crystal; thin, sharp prismatic specimen with apex angle of 12°39'10"; digitized data were presented by the authors.
5	9 Rubens, I	I. and Trowbridge, A.	1897	Q .	10.01-18.10	291	Crystal; thin, sharp prismaic specimen with apex angle of 12°39'10"; digitized data were presented.
P- 1	1 Rubens, I	I. and Snow, B.W.	1892	A	0.434-8.022	291	Crystal; prismatic specimen with height of 1.4 cm, edge of 2.0 cm and apex angle of 59°54'; digitized data were presented.
	2, Rubens, F		1895 , 1894	Q	0.434-7.08	291	Crystal; prismatic specimen with apex angle of 59°54'; digitized data were presented by the author; this paper contained the same set of data in the auchor's 1894 paper but with revised wavelengths.
6	3 Trowbrid	;e, A.	1895	с С	0.982-11.197	~288	Crystal; prismatic specimen with height about 2.0 cm, edge about 3.1/2 cm and apex angle of 33°46'47"; the temperature of the specimen was main- tained at about 15 C; digitized data were presented by the author.
र्त ा	3 Ramasesh	an, S.	1947	А	0.4358-0.5893	~298	Crystal; grown by the method of slow evaporation of a saturated solution; plate specimen with polished faces; specimen was comented to the prism of a Pulfrich refractometer by a suitable liquid in the determination of refractive index; digitized data were presented.
च्चे ं	4 Zarzycki,	J. and Naudin, F.	1963, 1971	Q	0. 5461	1073	Molten KC1, filled into a 60° prismatic Pt container with silica glass window of 4 mm diameter; estimated uncertainty of 0.001 in n; digitized data were presented.
~	4 Martens,	F. F.	1902	A	0.441-0.643	291	Crystal; prismatic specimen with apex angle of 37°4512.8"; digitized data were presented.
.	4 Wulff, P.	and Anderson, T.F.	1935	A	0. 2313-0. 5086	295	Single crystal; prismatic specimen with apex angle of $53^{\circ}36'30'' \pm 10''$; results obtaired agreed very well with those obtained by other prism with apex angle of $53^{\circ}42'10''$ but at a temperature of 296.2 K; digitized data were presented.
	6 Pulfrich,	5	1892	С С	0. 589	290	Natural crystal; prismatic specimen $\omega_1 \approx \alpha_2 \approx \alpha_2 = 30^\circ 1^4 30^\circ$; refractive inlex of sodium D line was determined by an Abbe autocollimating spectrometer; digitized value was presented; dn/dT of lines C, D, F, and G ¹ in the temperature range from 19.6 C to 99.4 C were also given.

TABLE 41. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dn/dT MEASUREMENTS OF KCl (continued)

INDEX ANE dn/dT MEASUREMENTS OF KCl (continued)	Specifications, and Remarks	Natural crystal; prismatic specimen with apex angle of 60° ; measurements were made at 22.5 and 23 C and then reduced to 20 C by using the then knowr $dn/dT = -c$, 0000346; the averaged value was presented.	Prismatic specimen with apex angle of $39^{\circ}36^{\circ}30^{\circ}$, height of 3.5 cm and edge of 2.8 cm; specimen was placed inside a heating chamber regulated to ± 0.5 C; measurements were made at various temperatures ranging from 18 to 100 C and dn/dT 's were deduced; results of dn/dT were presented in digitized values; refractive indices at 18 C and 100 C were plotted, however, they were not extracted because it was impossible to read accurately to be consistent vith given dn/dT 's.	Prismatic specimen placed in ϵ temperature regulated chamber; measurements were made at various temperatures ranging from -50 C to 20 C; digitized data were presented; this paper contains dn/dT only.	Prismatic specimen with apex angle of 65° 43'13"; refractive indices wore measured by the minimum deviation method; temperature coefficients of refractive index for three lines, B, D, and F, were also determined in the temperature range from 15 to 94 C by heating the prism; digitized data were presented.	Crystal; six prismatic specimens with apex angles about 39. 6° ; averaged values of refractive indices were presented with uncertainties of less than 2 units in the fourth decimal place; temperature was not given, room temperature assumed.	Single crystal; prismatic sample; digitized data were given with uncertainty of ± 0.0004 .	Similar to above.	Single crystal; disc specimens of 1-18 mm in thickness; refractive index for sodium D line was determined by immersion method; digitized value was reported with uncertainty of $\pm 0,0005$; temperature was not specified but a range was given.	Plate spectmen placed in a CO_2 laser resonator; the temperature coefficient of refractive index was determined by measuring the drift of resonator optical length, easused by a definite change of sample temperature (cooled from about 308 K to 293 K); digitized value presented with loss than 1% error.
IE REFRACTIVE]	Temperature, K	293	291-373	223-293	293	298	290	4	281-308	293~308
ORMATION ON TI	Wavelength Range, µm	0. 589	0. 589-8. 85	0. 589-6. 75	0. 397-0. 760	0.486-0.656	0.4358-0.6438	0.4358-0.6438	0.589	10.6
CAL INF	Method Used	D	Q	Q	Q	Q	D	D	M	1
TECHNI	Year	1891	1161	1911	1871	1904	1968	1968	1972	1972
TABLE 41. SOURCE AND	Author (s)	Dufet, M.H.	Liebreich, E.	Liebreich, E.	Stefan, J.M.	Sprockhoff, M.	Lawndes, R. P. and Martin, D.H.	Lawndes, R. P. and Martin, D. H.	Fedyuktina, G.N. and Zlenko, V.Ya.	Kolosovskii, O.A. and Ustimenko, L.N.
	. Ref. No.	80	. 83	83	53	95	13	13	112	113
	Cur. No.	33	34	35	36	37	38	39	01	41

430

TABLE 42. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF KCI IWaveleneth A.: Refractive Index. nl

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

* Not shown in figure.

REFRACTIVE INDEX OF ALKALI HALIDES

431

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	λ CTRVF 1	n 2 (cont)	λ Δ CHRVE 1	avelength, A, F n 2 (cont.)	1m; Keiractive ind λ CHRV	lex, nj n E 14	λ CURV	n E 19	λ CURVΞ 2	n 0 (cont.)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CUP	VE = 30	<u>2 (cont.)</u> 0.0 K	$\frac{\text{CURVE 1}}{\text{T} = 30}$	<u>2 (cont.)</u> 0.0 K	T = 100	<u>'E 14</u> 54.2 K	T = 29	<u>E 19</u> 5.0 K	$\overline{T} = 78$	K K
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	216	1.23	0.1550	1.11	0. 5460	1.383	0.1070	1.66 1.57	0.1604 0.1612	4.45* 3.63*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	240	1.11	0.1560	1.04	CURV	<u>TE 15</u>	0.1176	1.33	5191 0	3.30*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		246 250	1.05 1.01	0.1579	1.02	I = 30	0.U K	0.1230	1.23	0.1635	2.78*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	255	0.96*	0.1590	1.14	26.455	1.3740	0.1254	1.06	0.1651	2.55^{*}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	260	0.89*	0.1594	1.19	32.468	1,2078*	0.1272	0.82*	0.1671	2.35*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	265	0.81%	0.1598	1.26	38.610	0.9863* 0.8879*	0.1280	1.15	0.1725	2.06*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	886 0.77% 0.1604 1.42 43.2900 0.7334 0.1335 2.04* 0.2138 1.70% 201 0.77% 0.1606 1.55 45.790 0.7334 0.1335 2.04* 0.2133 1.66% 201 0.77% 0.1612 1.55 45.572 0.7349 0.1357 1.66 0.2133 1.66% 201 0.66% 0.1611 1.74 45.572 0.77436 0.1357 1.13 0.1066 1.87 201 0.96% 0.1611 2.00 5.546% 0.1556 0.1567 1.13 0.1066 1.87 201 0.196% 0.1623 2.00 5.566% 0.1576 0.1567 1.17 201 0.196% 0.1623 2.00 5.566% 0.1576% 0.1566 0.1567 201 0.1633 2.16 0.1566 0.1566 0.1566 0.1566 0.1566 201 0.1667 0.1623 2.60% 0.1666 0.1566 0.1166		512	0.67*	0.1602	1.36	42, 194	0.8872*	0.1320	1.84	0.1774	1.95
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	286	0.67*	0.1604	1.42	43.2900	0.7834*	0.1332	2.04	0.2033	1.70*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	292	0.71*	0.1606	1.48	44.444	0.6730*	0.1355	2.17^{*}	0.2138	1.66*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.12	294 201	0.75*	0.1608	1.55	45.249	0,5470%	0.1399 0 1404	1.03 1.60	1 ari	71 91
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.12	262	0.79%	0.1610	1.55% 1 65	46,512	0.5470% 0 7145☆	0.1550	1.15	T = 1(10 K
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	202	0.86*	0.1614	1.71	47.847	0.7145*	0.1560	1.13		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	302	0.89*	0.1616	1.80*	50.000	0.5546*	0.1561	1.10	0.1060	1.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	304	0.92*	0.1619	2.00	52.083	0.4266*	0.1571	1.13^{*}	0.1080	1.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.13	05	0.95*	0.1621	2.10*	54.054	0.3750*	0.1585	1.24	0, 1116	1.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.13	900	1.99%	0.1625	2.20* 9 90*	50 ENE	0.1570*	0. 1596	1.44	0.1163	1.49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.13	0213	1.18	0.1627	2.40%	63.694	0.2249*	0.1608	1.80*	0.1182	1.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	618	1.34	0.1629	2.49*	64.935	0.3006*	0.1621	2.39*	0.1206	1.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.13	326	1.53	0.1631	2.58*	70.922	6.2806*	0.1625	Z.45%	0, 1229 0 1959	1.20 0 08±
738 1.00 0.1573 3.15* 85.470 2.9648* 0.1667 3.05* 0.1274 0.57* 733 1.85 0.1664 3.08* 97.087 2.6915* 0.1650 3.04* 0.1276 0.57* 425 1.76 0.1673 2.83* 121.951 2.4099* 0.1650 3.04* 0.1296 0.57* 420 1.66 0.1673 2.83* 121.951 2.4099* 0.1650 3.04* 0.1311 1.88 450 1.67 0.1667 2.03* 0.1317 1.232 2.27* 0.1317 1.88 451 1.66 0.1807 1.88 $T=298.0 K$ 0.1673 2.63* 0.1317 1.82 467 1.68 0.1907 1.80 0.1321 0.1327 0.1377 1.94 476 1.71 0.2264 1.63* 0.6328 1.33134 0.1717 2.21* 0.1447 1.74 476 1.71 0.2264 1.63* 0.1744 2.10* 0.1447 1.74 476 1.71 0.2264 1.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		333	1.68	0.1636	2.76* 9 07*	78 740	4.0114* 3.5975*	0. 1644	3.02*	0.1266	0.63*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		078 278	1.90	0.1653	3.15%	85.470	2.9648*	0.1647	3.05*	0.1274	0.58*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.1	393	1.85	0.1664	3.08*	97.087	2.6915*	0.1650	3.04*	0.1286	0.57*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	425	1.76	0.1675	2.83*	121.951	2.4099*	0.1655	2.98*	0.1297	0.84%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	442	1.71	0.1698	2.42*	22.222	5° 3014	0.1675	2.00*	0, 1325	2. 27*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0	001	20°T	0 1771	2 03*	CURV	71:16	0.1691	2.41*	0.1337	2.27*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	467	1.68	0.1837	1.88	T = 29	8.0 K	0.1715	2.22*	0.1372	1.94
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	472	1.69	0.1907	1.80			0.1717	2.21*	0.1442	1.74
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	476	1.70	0.2066	1.69*	0.6328	1.33134	0.1744	2.10*	0.1447	1.81
4.0 1.11* 0.2400 1.39* $T = 238.0 K$ 0.1000 1.81 0.1476 1.82 512 1.54 $T = 1045.2 K$ 0.6328 1.33174* 0.2033 1.70* 0.1519 0.94* 521 1.45 $T = 1045.2 K$ 0.6328 1.33174* 0.2046 1.70* 0.1519 0.94* 531 1.33 0.6328 1.33174* 0.2046 1.70* 0.1553 0.76* 534 1.29 0.4047 1.395 $CURVE 18$ 0.2046 1.70* 0.1552 0.88* 534 1.29 0.4047 1.395 $T = 238.0 K$ 0.2138 1.66 0.1552 1.18 534 1.29 0.6000 1.390 $T = 238.0 K$ 0.218VE 20 0.1565 1.00 538 1.24 0.6000 1.390 $T = 238.0 K$ 0.1598 2.80* 0.1565 1.21 541 1.14 0.6943 1.376 0.6328 1.3327* 0.1598 2.80* 0.1577 2.34*	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	480	1.71	4077 °N	1.63*		76 10	0.1807 0 1807	101	0 1467	1.90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1-0	C 01	1.71% 1.68	0.440			8.0 K	0.1900	1.81	0.1476	1.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		212	1.54	CURV	TE 13	1		0.2033	1.70	0,1519	0.94*
131 1.34 0.4047 1.395 CURVE 18 0.2138 1.66 0.1553 0.88% 334 1.29 0.4047 1.395 CURVE 18 0.1562 1.18 336 1.27 0.5000 1.390 $T = 298.0 K$ CURVE 20 0.1562 1.08 386 1.27 0.6000 1.380 $T = 238.0 K$ CURVE 20 0.1565 1.01 386 1.27 0.6000 1.380 $T = 238.0 K$ CURVE 20 0.1565 1.01 387 1.24 0.6943 1.376 0.6328 .33227* 0.1598 2.80* 0.1571 2.34* 46 1.14 0.6943 1.376 0.6328 .33227* 0.1598 2.80* 0.1571 2.34*	131 1.34 0.4047 1.395 $CURVE 18$ 0.2138 1.66 0.1553 0.88* 134 1.29 0.4047 1.395 $CURVE 18$ 0.1562 1.18 136 1.27 0.5000 1.390 $T = 298.0 K$ $T = 298.0 K$ 0.1562 1.18 14 1.27 0.6000 1.380 0.6328 1.33227* 0.1598 0.1565 1.21 14 1.14 0.6943 1.376 0.6328 1.33227* 0.1598 2.80* 0.1571 2.34*	0.15	51	1.45	T = 10	19.2 K	0.6328	1.33174*	0.2046	1.70*	0.1534	•91.0
334 1.29 0.4647 1.395 $CURVE 18$ 0.1565 1.1562 1.1562 1.1562 1.1562 1.1562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.0562 1.2162 0.15652 1.21622 0.15652 1.21622 0.15652 1.21622 0.15652 1.216222 1.21622	134 1.29 0.4047 1.395 $CURVE 18$ 0.1056 1.165 136 1.27 0.5000 1.390 $T = 298.0 K$ $T = 78. K$ 0.1565 1.00 136 1.27 0.6000 1.380 0.6528 $(.33227*)$ 0.1598 $2.80*$ 0.1565 1.21 14 1.14 0.6943 1.376 0.6328 $(.33227*)$ 0.1598 $2.80*$ 0.1577 $2.34*$	0.15	531	1.34					0.2138	1.66	0.1553	0.88%
36 1.27 0.5000 1.390 $\mathbf{I} = \mathbf{Z95.0 K}$ $\mathbf{V.00 L.00}$ $\mathbf{I.00 L.00}$ 38 1.24 0.6000 1.380 0.1565 1.21 42 1.19 0.6943 1.376 0.6328 1.33227* 0.1598 2.80* 0.1571 2.34* 46 1.14 0.6943 1.376 0.6328 1.33227* 0.1598 2.80* 0.1571 2.34*	36 1.27 0.5000 1.380 $T = 298.0 \text{K}$ 0.1565 1.21 38 1.24 0.6000 1.380 0.1565 1.21 42 1.19 0.6943 1.376 0.6328 1.33227* 0.1598 2.80* 0.1571 2.34* 46 1.14 0.6943 1.376 0.6328 1.33227* 0.1598 2.80* 0.1571 2.34*	0.15	34	1.29	0.4047	1.395	CURV	<u>E 18</u>	Salto	00	0.1562	1.18
342 1.19 0.6943 1.376 0.6328 1.33227* 0.1598 2.80* 0.1571 2.34* 346 1.14 0.6943 1.376 0.6328 1.3327* 0.1598 2.80* 0.1571 2.34*	42 1.19 0.6943 1.376 0.6328 :.33227* 0.1598 2.80* 0.1571 2.34* 346 1.14	0.1	538	1.24	0.6000	1.380	27 = I	Q* U IV	T = T	78. K	0.1565	1.21
546 1.14	546 1.14	0.1	542	1.19	0.6943	1.376	0.6328	1,33227*	0.1598	2.80*	0.1571	2.34*
		0.1	546	1.14								

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

432

TABLE 42. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF KC1 (continued)

(continued)	
THE REFRACTIVE INDEX OF KCI	
EXPERIMENTAL DATA ON	
TABLE 42.	

[Wavelength, λ , μ m; Fefractive Index, n]

γ n	$\frac{\text{CURVE 39}^{*}}{\text{T} = 4.0 \text{ K}}$	$\begin{array}{c} 0.4358 & 1.5122 \\ 0.5086 & 1.5008 \\ 0.5461 & 1.5008 \\ 0.5780 & 1.4986 \\ 0.5893 & 1.4986 \\ 0.5893 & 1.4914 \\ 0.6438 & 1.4918 \\ T = 281.0 - 308.0 \text{ K} \\ 0.589 & 1.4913 \\ 0.589 & 1.4913 \\ \end{array}$
ц	VE 31 (cont.) = 295.2 K	$\begin{array}{cccccc} 4.9 & 1.56364\% \\ 1.50378\% \\ 1.50378\% \\ 1.50378\% \\ 1.50018\% \\ 1.50018\% \\ 1.50018\% \\ 1.50018\% \\ 1.50018\% \\ 1.50018\% \\ 1.50018\% \\ 1.50018\% \\ 1.49384 \\ 32 \\ 1.49384 \\ 32 \\ 1.490232 \\ 1.490294 \\ 32 \\ 1.490294 \\ 1.490294 \\ 32 \\ 1.490294 \\ 1.49031 \\ 1.49965 \\ 1.49965 \\ 1.48977 \\ 1.51061 \\ 1.48977 \\ 1.51061 \\ 1.48976 \\ 1.48965 \\ 1.48965 \\ 1.48965 \\ 1.48965 \\ 1.48965 \\ 1.48965 \\ 1.48965 \\ 1.48965 \\ 1.48965 \\ 1.49337 \\ 1.49361 \\ 1.49361 \\ 1.49361 \\ 1.49361 \\ 1.49361 \\ 1.4907 \\ 1.4907 \\ 1.890 \\ 1.4907 \\ 1.49007 \\ 1.49$
X	CUR	22.00 44.00 52
и	<u>ave 27</u> 288. 2 K	1. 47967* 1. 47747* 1. 47747* 1. 47747* 1. 47563* 1. 47563* 1. 47563* 1. 47565* 1. 47365* 1. 47365* 1. 47365* 1. 47365* 1. 47365* 1. 47365* 1. 46029* 1. 46038* 1. 46629* 1. 466393 1. 45936 1. 45946 1. 49397 1. 49397 1. 49397 1. 49307 1. 49307 1. 49307 1. 49307 1. 49307 1. 49307 1. 49306 1. 49307 1. 49307 1. 49307 1. 49307 1. 49307 1. 49306 1. 49306 1. 49307 1. 49307 1. 49307 1. 49306 1. 49306 1. 49306 1. 49306 1. 49306 1. 49306 1. 49306 1. 49306 1. 49307 1. 49306 1. 49306 1. 49306 1. 49306 1. 49306 1. 49306 1. 49307 1. 49307 1. 49306 1. 49307 1. 49307 1. 49307 1. 49307 1. 49307 1. 49307 1. 49306 1. 49307 1. 49307 1. 49306 1. 49306 1. 49307 1. 49307 1. 49307 1. 49307 1. 49306 1. 49306 1. 49306 1. 49307 1. 49307 1. 49307 1. 49306 1. 49306 1. 49307 1. 49306 1. 49306 1. 49307 1. 49306 1. 49306 1. 49307 1. 49307 1. 49306 1. 49307 1. 49506 1. 49307 1. 49306 1. 49307 1. 49306 1. 49307 1. 49306 1. 49307 1. 49
ĸ	u ⊐u CΩ	$\begin{array}{c} 0. & 982 \\ 1.1 & 771 \\ 1.7 & 771 \\ 1.7 & 771 \\ 1.7 & 771 \\ 1.7 & 771 \\ 1.7 & 771 \\ 2.3 & 571 \\ 2.3 & 571 \\ 2.3 & 571 \\ 2.3 & 571 \\ 2.3 & 571 \\ 2.3 & 571 \\ 2.3 & 571 \\ 2.3 & 571 \\ 2.3 & 571 \\ 2.3 & 571 \\ 1.1 & 197 \\ $
ц	<u>RVE 25</u> 291.2 K	1. 5048* 1. 49805* 1. 49805* 1. 49805* 1. 49805* 1. 48655* 1. 48655* 1. 4761 1. 4776 1. 47717 1. 4776 1. 47717 1. 4776 1. 4776 1. 4776 1. 4776 1. 4776 1. 47717 1. 4776 1. 4776 1. 47717 1. 4776 1. 4776 1. 47717 1. 4776 1. 47717 1. 4776 1. 47717 1. 4776 1. 47717 1. 4776 1. 4769 1. 4776 1. 4776 1. 4776 1. 4776 1. 4776 1. 4776 1. 4776 1. 4776 1. 4776 1. 4769 1. 4776 1. 4776 1. 4776 1. 4776 1. 4776 1. 4769 1. 4776 1. 4769 1. 4776 1. 4769 1. 4769 1
۲		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
u	<u>21 (cont.)</u> 0.0 K	3. 88* 3. 92* 2. 37* 2. 339* 5. 02* 5. 00* 5. 00* 4. 00* 4. 00* 5. 00* 1. 00* 3. 43* 5. 00* 1. 00* 3. 43* 5. 00* 1. 00* 2. 80* 2. 92* 1. 95* 1. 95* 1. 66* 1. 66* 1. 66* 1. 66* 1. 69\$ 1. 69\$ 1. 69\$ 1. 69\$ 1. 69\$ 1. 69\$ 1. 69\$ 1. 69\$ 1. 6048* 1. 4500* 1. 4501 1. 4561 1. 4108 1. 4
ĸ	$\frac{\text{CURVE}}{\text{T}=1}$	$\begin{array}{c} 0.1575\\ 0.1576\\ 0.1588\\ 0.1588\\ 0.1596\\ 0.1596\\ 0.1596\\ 0.1596\\ 0.1596\\ 0.1596\\ 0.1608\\ 0.1608\\ 0.1614\\ 0.1614\\ 0.1678\\ 0.1667\\ 0.1678\\ 0.1678\\ 0.1678\\ 0.1774\\ 0.1608\\ 0.1774\\ 0.1774\\ 0.1774\\ 0.1774\\ 0.1608\\ 0.1774\\$

433

TABLE 43. EXPERIMENTAL DATA ON dn/dT OF KCI

[Wavelength, A, µm; Temperature Derivative of Refractive Index, dn/dT, 10⁻⁵ K⁻¹; Mean Temperature, T_m, K] -2.86 -2.91 -2.90 -2.90 -2.82 -3.07 -2.82 -2.60 -2.60 -2.47 $\frac{\text{CURVE 35 (cont.)}}{\text{T}_{\text{III}} = 258.0 \text{ K}}$ $\frac{\text{CURVE } 36^{*}}{\text{T}_{\text{III}}} = 328.0 \text{ K}$ -3.46 -3.46 -3.49 dn/dT 0.486 0.589 0.687 1.9 2.05 2.65 2.65 2.95 3.25 3.25 3.25 3.25 3.25 5.75 6.75 6.75 ~ -3.528 -3.475 -3.475 -3.572 -3.540 -3.330 -3.114 -0.63 -2.52 -2.64* -2.75* -2.81* -3.14* $\frac{\text{CURVE 34 (cont.)}}{\text{T}_{m} = 332.0 \text{ K}}$ dn/dT $T_{m} = 258.0 \text{ K}$ 4.0 5.0 5.1 6.55 8.85 8.85 21.0 $\begin{array}{c} 0.589\\ 0.589\\ 0.589\\ 0.589\\ 0.589\\ 0.589\\ 1.0\end{array}$ 3.65 ~ -3.449 -3.498 -3.575 -3.575 -3.664 -3.646 -3.625 -3.608 $T\frac{\text{CURVE 10}}{\text{m} = 289.0} \text{ K}$ $T_{m} = 333.0 \text{ K}$ $T_{m} = \frac{\text{CURVE } 34}{332.0 \text{ K}}$ 0.58932 -3.4* dn/dT 0.434 0.486 0.589 0.656 $\begin{array}{c} 0.589 \\ 1.4 \\ 2.6 \\ 3.2 \end{array}$ ~ $\frac{\text{CURVE 9 (cont.)}}{\text{T}_{m} = 293.2 \text{ K}}$ -3.5 -3.5 -3.5* -3.5* dn/dT ŧ۵ -3.5 -3.5 -3.5 -3.5 -3.3 -3.5 -3.1 -3.1 -3.3 -3.3 -3.4 ကဲ့ 0.33415 0.36631 0.39064 0.40466 0.43583 0.48613 0.54607 0.58756 0.58756 0.58756 0.56528 0.76528 0.76528 0.76820 0.72814 0.76820 0.81095 0.81095 0.81095 0.81095 0.81095 0.81033 0.01338 1.0138 1.01338 ~ -0.0001dn/dT $T_{m} = \frac{\text{CURVE 2}}{295.0} \text{ K}$ $T_{m} = \frac{\text{CURVE 9}}{293.2 \text{ K}}$ 0.0 -3.5 0 σ. .3.0 ς'n ç. ÷ N N 0.213600.224700.239980.25365 0.25365 0.26993 0.28935 0.28936 0.28936 0.28936 0.29676 0.30215 0.31317 .248280.589~ 0

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

-3.9

10.6

 $T_{m} = \frac{CUEVE}{300.0} \frac{41}{K}$

* Not shown in figure.

TABLE 44. COMPARISON OF DISPERSION EQUATIONS PROPOSED FOR KC1

Source	Wavelength and Temperature Ranges	Dispersion Equation λ in μ m; ν in cm ⁻⁴
Rubens, H. and Nichols, E.F. [58] 1897	0.434-22.5 μm 291 K	$n^{2} = 1.5329 + \frac{0.6410 \lambda^{2}}{\lambda^{2} - (0.1530)^{2}} + \frac{2.3792 \lambda^{2}}{\lambda^{2} - (67.21)^{2}}$
Martens, F.F. [54] 1901	0.185-0.768 µm 291 K	$n^{2} = 1.25841 + \frac{0.672011 \lambda^{2}}{\lambda^{2} - (0.115265)^{2}} + \frac{0.244603 \lambda^{2}}{\lambda^{2} - (0.160730)^{2}}$ 1.93343 \lambda^{2}
Paschen, F. [55] 1908	0.58-17.70 μm 288 K	$n^{2} = 1.200970 + \frac{0.700711 \lambda^{2}}{\lambda^{2} - (0.109125)^{2}} + \frac{0.273286 \lambda^{2}}{\lambda^{2} - (0.159859)^{2}} + \frac{1.691652 \lambda^{2}}{\lambda^{2} - (57.380)^{2}}$
Harting, H. [30] 1943	0.213-1.083 μm 293 K	$n = 1.47298 + \frac{0.00545}{(\lambda - 0.1045)^{1.59}}$
Radhakrishnan, T. [48] 1948	0.185-22.5 μm 291 K	$n^{2} = 1.243412 + \frac{0.357302 \ \lambda^{2}}{\lambda^{2} - 0.01000} + \frac{0.037010 \ \lambda^{2}}{\lambda^{2} - 0.017161}$
		$+ \frac{0.198086 \lambda^2}{\lambda^2 - 0.026244} + \frac{2.514254 \lambda^2}{\lambda^2 - 4998.5}$
Present work 1975	0.18-35.0 μm 293 K	$\mathbf{n}^2 = 1 \cdot 26486 + \frac{0 \cdot 30523 \ \lambda^2}{\lambda^2 - (0 \cdot 100)^2} + \frac{0 \cdot 41620 \ \lambda^2}{\lambda^2 - (0 \cdot 131)^2}$
		$+\frac{0.18870 \lambda^2}{\lambda^2 - (0.162)^2} + \frac{2.620 \lambda^2}{\lambda^2 - (70.42)^2}$
3.11. Potassium Bromide, KBr

Potassium bromide has optical characteristics similar to those of rock salt, but, having a higher molecular weight, it transmits further into the infrared. Crystals up to 11 kg are available from Harshaw Chemical Company. Very pure samples have been obtained and they can be cleaved easily. KBr is of interest to designers of optical instruments because of its transparency in the infrared region. Although KBr is transparent from 0.20 to 42 μ m, the useful region is from 0.3 to 30 μ m because strong absorption occurs near the transparency limits.

Measurements of the refractive index of KBr date back to 1874. For the transparent region experimental values were obtained mainly by the deviation method. For low ultraviolet and far infrared wavelengths there were no measurements until 1967, when Vishnevskii, et al. [90] reported their results for the region from 0.170 to 0.197 μ m and Handi, et al. [16] reported results for the region 35 to 770 μ m.

After carefully reviewing this work, we have selected the data sets reported by Spindler and Rodney [96], Stephens, et al. [97], Forrest [98], Harting [30], and Gundelach [99] as the basis of the generation of reference data. Data sets which were not selected either reported poor values or were determined by inadequate methods. Data for thin films are not consistent with those for the bulk material. The properties of the thin film vary widely with the surface conditions, the treatment of the sample and the thickness and aging of the film. As a consequence, the thin film data are useless unless a protecting coating was deposited to preserve its characteristics. Data for the absorption regions were not included in the analysis, but are presented here for completeness. Note that the selected data were obtained at different temperatures: the effect of temperature variations should be corrected before they were used for data analysis.

Data on the temperature coefficient of refractive index, dn/dT, of KBr are very scanty and limited. Only five sets were found, covering the wavelength range from 0.26 to 1.1 μ m. Among the available data, those of Spindler and Rodney [96] are reasonably good, and those of Harting [11] show a wide scatter and are not internally consistent. The single value of Stephen, et al. [97] is a rough averaged value of dn/dT in a wavelength range of 0.404 to 25.14 µm at 295 K, and is consistent with the results of Spindler and Rodney. The single value reported by Forrest [98] is the average value of dn/dT in a wavelength range of 0.40 to 0.77 μ m at a mean temperature of 301 K and is consistent with the other data sets. The single measurement of Korth [100] is not accurate. The available data on dn/dT are not suitable for a curvefitting calculation, because the wavelength coverage of the acceptable data is not wide enough to make evident the effects due to the thermal shifts of absorption peaks. However, by use of our novel findings, reasonable estimation of dn/dT for a wide wavelength range is not a problem. The empirical parameter values in table 5 were used to construct the dn/dT for a wide wavelength range is not a problem. The empirical parameter values in table 5 were used to construct the dn/dT formula of KBr for the whole transparent region:

$$2n \frac{dn}{dT} = -11.61 (n^2 - 1) + 0.39 + \frac{3.944\lambda^4}{(\lambda^2 - 0.03497)^2} + \frac{182.88\lambda^4}{(\lambda^2 - 7694.80)^2}, \quad (43)$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m.

A comparison of the values calculated by eq (43) and the existing data is shown in figure 40. It appears that the calculated values are in general higher than the experimental values, but we have reason to believe that eq (43) predicts correct dn/dT values for the whole transparent region.

1. It has been observed in halide crystals that the absolute value of dn/dT increases with increasing temperature. Spindler and Rodney obtained dn/dT at 295 K; our dn/dT, for 293 K, should be located above their values. This is clearly shown in figure 40, where the calculated curve is above and roughly parallel to curve 5. Although the separation of these two curves seems too large to account for only two degrees in temperature difference, it is within the uncertainties in our calculation and the experiment.

2. In the case of CsI, the empirically constructed formula predicts correct dn/dT values in the long wavelength region, as discussed in subsection 3.20. One can expect this is to be the case here.

Spindler and Rodney derived an empirical relation (given in table 49) between dn/dT and wavelength, based on their experimental results. This expression indicated that dn/dT increases with increasing wavelength in the visible region 0.4 to 0.71 μ m, but no attempt was made to derive dn/dT beyond the visible region.

Equation (43) was used to make temperature corrections to the selected data sets which were obtained at temperatures other than 293 K.

Quite a few dispersion equations have been proposed from time to time by a number of authors, and in various forms. Table 49 displays a few of typical formulas. They have all been reduced, wherever possible, to standard forms so as to facilitate a visual comparison. From the information in tables 3 and 49, preliminary parameters for least-squares fitting were obtained. The calculation yielded the following dispersion equation for KBr at 293 K in the transparent region, 0.20 to 42.0 μ m.

REFRACTIVE INDEX OF ALKALI HALIDES

$$n^{2} = 1.39408 + \frac{0.79221\lambda^{4}}{\lambda^{2} - (0.146)^{2}} + \frac{0.01981\lambda^{2}}{\lambda^{2} - (0.173)^{2}} + \frac{0.15587\lambda^{2}}{\lambda^{2} - (0.187)^{2}} + \frac{0.17673\lambda^{2}}{\lambda^{2} - (60.61)^{2}} + \frac{2.06217\lambda^{2}}{\lambda^{2} - (87.72)^{2}}, \quad (44)$$

where λ is in units of μ m.

Equations (43) and (44) were used to generate the recommended values. The property values are given to more decimal places than needed simply for the purpose of tabular smoothness. In order to use the table of recommended values properly, the readers should follow the following criteria:

For refractive index:

Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, \pm
0.20 - 0.25	3	0.006
0.25- 0.35	4	0.0005
0.35 - 0.40	4	0.0002
0.40 - 20.00	4	0.0001
20.00-26.00	4	0.0005
26.00-35.00	3	0.006
35.00-42.00	3	0.008
For dn/dT :		
0.20- 0.25	1	0.9
0.25 - 4.0	1	0.3
4.00 - 30.00	J	0.5
30.00-42.00	1	0.9

TABLE 45. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR KBr AT 293 K*

-dn/dλ μm⁻¹ dn/dT 10⁻⁵ K⁻¹ $-dn/d\lambda$ dn/dT 10⁻⁵ K⁻¹ $-dn/d\lambda$ μm^{-1} dn/dT 10-5 K-1 λ λ n n μm^{-1} n μm цт um 0.52777 0.200 2.09953 25.67045 50.07 37.98 8.358 1.61167 1.60911 -3.24 1.500 1.53999 0.00482 -3.72 0.355 -3.26 1.550 0.202 2.01607 17.06858 29.63 0.360 1.60668 0.47251 -3.29 1.600 1.53955 0.00404 -3.72 0.204 1.98456 14.46978 1.95778 12.49468 23.60 1.53935 0.00372 0.206 0.365 1.60438 0.44792 -3.31 1.650 -3.72 0.42509 -3.72 1. 60 220 -3.34 19.11 0.208 0.370 1.700 1.6001<u>3</u> 1.5981<u>6</u> 1.59628 0.4038<u>6</u> 0.3840<u>9</u> 0.3656<u>6</u> $1.934\overline{40}$ 10.949 $\overline{10}$ 1.91378 9.71023 15.6€ -3.36 1.5390<u>1</u> 1.5388<u>6</u> 1.5387<u>1</u> 0.0031<u>9</u> 0.0029<u>6</u> 0.00277 -3.72 0.375 1.758 0.210 9.71023 12.95 0.212 0.380 1-800 0.214 1.89540 0.385 -3.39 -3.72 1.858 7.85462 1.59450 0.34844 -3.41 1.53858 -3.72 0.216 1.87888 9.02 0.390 1.900 0.00259 7.14379 0.218 1.86390 7.56 0.395 1.950 0.00244 0.00230 -3.7<u>3</u> 0.31725 1.85023 6.538 21 6.34 1.59117 -3.44 2.000 1.53833 0.220 0.400 1.53822 1.53812 1.53802 6.01238 5.55551 5.32 1.58814 -3.4€ 0.00217 -3.73 0.222 0.410 2.050 1.82614 0.26560 -3.48 2.100 0.420 0.224 1.81544 5.15407 3.69 0.00196 -3.73 0.226 0.430 1.58282 0.24410 -3.50 2.150 8.228 1.80549 4.79875 8.448 1.58048 0.22494 -3.52 2.200 1.53792 0.00187 -3.13 4.482<u>21</u> 4.198<u>59</u> 3.943<u>13</u> 3.711<u>96</u> 2.4<u>7</u> 1.9<u>7</u> 1.5<u>3</u> 1.14 0.79 1.5783<u>1</u> 1.57632 1.5744<u>6</u> 1.57274 1.796<u>22</u> 1.787<u>54</u> 1.779<u>40</u> -3.7<u>3</u> -3.7<u>3</u> -3.7<u>3</u> 0.20780 -3.54 2.250 1.53783 0.230 0.450 0.00179 0.1924<u>2</u> 0.1785<u>6</u> 0.16605 1.53774 1.5376<u>6</u> 1.5375<u>0</u> $0.0017\frac{1}{0.00164}$ $0.0016\frac{4}{50}$ 0.232 0.460 -3.55 2.300 -3.5<u>€</u> -3.57 0.470 0.234 2.350 0.236 1.77175 0.480 2.400 -3.7 -3.73 1.57114 0.15471 -3.58 1.53750 0.00153 0.238 1.76454 3.50187 0.490 2.450 1.75773 1.75129 1.745<u>18</u> 1.56964 1.56825 1.56694 $\begin{array}{r}
0.1444\overline{1} \\
0.1350\overline{3} \\
0.1264\overline{7}
\end{array}$ -3.5<u>9</u> -3.60 1.5374<u>2</u> 1.5373<u>5</u> 1.5372<u>8</u> -3.72 -3.72 -3.72 3.31020 0.240 0.48 0.500 2,500 0.00148 0.0014<u>3</u> 0.00139 0.00135 3.13471 0.20 30.0-2.550 0.242 0.510 -3.61 0.244 0.520 2.600 2.82502 1.5657<u>1</u> 1.5645E -3.61 1.53721 -3.72 0.246 1.73939 -0.29 0.530 0.11863 2.650 0.00132 -0.49 1.73388 0.248 0.540 0.11144 2.700 2.5607<u>5</u> 2.44277 2.3330<u>0</u> 0.250 1.7286<u>3</u> 1.7236<u>3</u> 1.7188<u>5</u> -0.68 0.550 1.56348 0.10484 -3.6<u>3</u> -3.63 -3.64 2.750 1.53708 0.00129 -3.72 -0.86 0.560 1.56247 2.800 1.53702 0.00126 -3.72 0.252 0.254 0.09316 -1.16 2.900 1.71429 1.56060 -3.64 1.53689 0.00121 -3.72 0.256 2.230 84 0.580 0.08797 2,13502 -1.30 0.590 0.08318 0.258 2.950 1.70575 2.04554 -1.42 +3.65 1.55894 0.07873 1.53677 0.260 0.600 3.000 0.00117 -3.72 -3.6<u>7</u> 1.96164 -1.54 1.53672 1.70174 0.620 0.07077 $0.0011\overline{0}$ 0.00114 $0.0011\overline{3}$ -3.72 0.262 3.050 -1.64 1.55610 0.06386 0.264 1.69790 0.640 3.100 1.53660 0.266 1.69421 1.80878 -1.74 0.660 1.55488 0.05784 -3.67 3.150 -3.72 1.6906 -3.67 0.268 1.73900 -1.84 0.680 3.200 0.00112 1.67321 1.6872<u>5</u> 1.6839<u>6</u> -1.92 -3.72 -3.72 -3.72 -3.72 -3.72 -3.72 1.55278 0.04793 1.5364<u>9</u> 1.5364<u>3</u> 1.5363<u>8</u> -3.68 8.270 0.700 3.250 0.00111 -2.00 0.720 -3.68 -3.68 0.272 0.04383 0.04019 0.03695 1.55186 3.300 0.00110 0.274 1.55233 -2.08 6.748 1.5510<u>2</u> 1.5502<u>5</u> 3.350 1.68080 0.00109 -2.15 0.760 1.53633 0.276 1.67775 1.49673 -3.69 3.400 0.00108 1.44405 0.278 1.67481 -2.21 1.54954 -3.69 0.03406 3.450 0.00108 1.3940<u>8</u> 1.3466<u>2</u> 0.03146 -3.72 -3.72 -3.72 -3.72 1.5488<u>8</u> 1.5482<u>8</u> 1.54772 -3.69 1.53622 1.5361E 0.280 0.00107 1.67197 -2.27 0.800 3.500 1.66923 -2.33 -3.70 3.550 0.282 0.820 0.00107 1.30152 1.25862 1.21776 1.5361<u>1</u> 1.5360<u>6</u> 0.284 1.66659 -2.39 0.840 0.02703 -3.70 3.600 0.00106 1.66403 1.54720 0.02513 -3.70 0.00106 0.286 -2.44 0.860 3.650 0.288 1.66155 -2.49 -3.70 3.700 1.53600 -3.72 0.880 0.00106 1.5462ē 1.5458<u>4</u> 1.5454<u>4</u> 1.54507 0.290 1.65915 1.17823 -2.53 0.02183 -3.70 0.980 3.750 1.53595 0.00106 -3.72 1.14170 -2.58 0.920 -3.70 0.292 1.65683 0.02041 -3.72 3.800 1.53590 0.00106 1.5358<u>5</u> 1.5357<u>9</u> 1.5357<u>4</u> 0.294 1.65459 0.940 0.01910 -3.71 3.850 1.65241 0.296 1.07240 -2.66 0.960 0.01791 -3.71 3.900 0.00106 -3.72 1.65030 0.980 1.54472 0.298 1.04003 -2.69 -3.73 -3.72 3.950 0.00106 1.64825 1.00907 -2.73 1.54440 0.01582 -3.71 0.300 1.000 4.000 1.53569 0.00106 -2.8<u>1</u> -2.8<u>8</u> -2.9<u>4</u> -3.7<u>1</u> -3.7<u>1</u> -3.7<u>2</u> -3.72 0.305 1.64338 0.93730 1.54366 0.0010<u>6</u> 0.00107 0.00107 -3.72 -3.72 -3.72 -3.72 1.050 1.53563 0.01364 4.050 1.63886 0.87271 1.54303 0.310 1.100 0.01186 4.100 0.315 1.150 0.01039 4.150 1.53653 0.00107 1.54198 0.320 1.63071 0.76146 -3.00 0.00916 1,200 4.200 1.62702 0.71337 -3.05 1.54155 -3.72 4.250 0.325 1.250 0.00812 1.53542 0.00107 -3.72 -3.72 -3.72 -3.72 -3.72 -3.72 -3.09 -3.13 -3.1<u>7</u> 1.62357 0.66952 1.5353<u>7</u> 1.5353<u>1</u> 1.5352<u>6</u> 1.53520 0.330 0.00724 0.00649 0.00585 0.00530 1.300 4.300 -3.72 0.00108 0.6294<u>2</u> 0.592€<u>6</u> 0.55888 1.5408<u>3</u> 1.5405<u>2</u> 1.54024 1.62032 1.61727 1.61439 1.350 0.335 -3.71 0.340 4.400 -3.71 0.345 -3.21 1.450 -3.71 4.450 0.00109

TABLE 45. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR KBr AT 293 K (continued)*

				·			• • •				
λ	n	-dn/dλ μm ⁻ⁱ	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	n	-dn/dλ µm ^{−1}	dn/dT 10 ⁻⁵ K ⁻¹	λ µm	n	-dn/dλ µm ⁻¹	dn/dT 10 ⁻⁵ K ⁻¹
		- -									
4.500	1.53515	0.00110	-3.71	9.200	1.52812	0.0019/	-3.65	18.800	1.49/98	0.00444	-3.23
4.550	1.53509	0.00110	-3.11	9.300	1.52/92	0.00199	-3.64	19.000	1.49/09	0.00450	-3.22
4.600	1.73704	8.06111	-3.71	9.400	1.52//2	0.00282	-3.64	19.200	1.49010	0.00425	-3.20
4.000	1.53490	0.00111	-3.71	9.500	1.52731	0.00204	-3.64	19.680	1.49520	0.00462	-3.17
40100	1.93493	0.00112	-3071	30000	1		-0.04	136044	114 9433	4.04400	
4.750	1.53487	0.00112	-3.71	9.700	1.52710	0.0208	-3.63	19.800	1.49339	0.00475	-3.15
4.800	1.53482	0.00113	-3.71	9.800	1.52689	0.00211	-3.63	20.000	1.49243	0.00481	-3.14
4.850	1.5347Ē	0.00114	-3.71	9.900	1.52668	0.00213	-3.63	20.500	1.48999	0.00497	-3.09
4.900	1.5347Ū	0.00114	-3.71	10.000	1.52647	0.00215	-3.63	21.000	1.4874Ē	0.00514	-3.05
4.950	1.53464	0.00115	-3.71	10.200	1.52603	0.00220	-3.62	21.500	1•48485	0.00531	-3.00
5.000	1.63460	0.00115	-7.71	10.400	1. 52559	0.00224	-3.67	22.000	1.48215	0.00548	-2.95
5,100	1.53447	0.00117	-3.71	10.600	1.52514	0.00229	-3.61	22.500	1.47937	0.00566	-2.89
5.200	1.63435	0.00119	+3.71	10.800	1.52467	0.00233	-3.61	23.000	1.47650	0.00584	-2.83
5.300	1.93423	0.00120	-3.71	11.000	1.52420	0.00230	-3.60	23.500	1.47353	0.00602	-2.77
5.400	1.53411	0.00122	-3.71	11.200	1.52372	0.00243	-3.60	24.000	1.47047	0.00622	-2.71
E 500	4 57705	0 00427		44 400	4 50707	0 00 247	-7 50	01. 500	4 1.6775	0 00644	-7 57
5.500	1 57785	0.00123	-3.70	44 689	1.52323	0.00252	-3.59	24+200	1 46486	0.00662	-2.04
F. 700	1.63376	0.00127	-3.70	11.800	1.52222	0.00257	-3.58	25.500	1.46070	0.00682	-2.40
5.900	1.63361	B. 88128	-3.70	12.000	1.52171	0.00251	-3-57	26.000	1-45723	0.00704	-2.41
5.900	1.53348	6.00130	-3.70	12.200	1.52118	0.00266	-3.57	26.500	1.45366	0.00726	-2.32
			· .		· 	· · · · ·					
6.000	1.53335	0.00132	-3.7 <u>E</u>	12.400	1.52064	0.0271	-3.55	27.000	1.44998	0.00748	-2.23
6.100	1.53322	0.00134	-3.70	12.600	1.52009	0.00276	-3.55	27.500	1.44618	0.00772	-2.13
6.300	1.63205	0.00137	-3.65	12.000	1.51994	0.00201	-3.54	28.500	1.43821	0.08821	-1.97
f.400	1.53281	6.00129	-3.60	13.200	1.51840	0.00200	-3.53	29.005	1.43404	0.00847	-1.81
6.500	1.53267	0.00141	-3.69	13.400	1.51781	0.00296	-3.52	29.508	1.42974	0.00873	-1.68
6.600	1.53253	0.00143	-3.69	13.600	1.51721	0.00301	-3.52	30.000	1.42531	0.00901	-1.5E
E.700	1.53238	0.00145	-3.69	13.800	1.51661	0.0306	-3.51	30.500	1.42073	0.00930	-1.42
6.800	1.53224	0.00147	-3.69	14.000	1.51599	0.00311	-3.50	31.000	1.41601	0.00959	-1.27
6.900	1.53209	0.00149	-3.69	14.200	1.51536	0.00316	-3.49	31.500	1.41114	0.00990	-1.12
7.000	1.53194	0.00191	-3.68	14.400	1.51473	0.00321	-3.48	32.000	1.40611	0.01022	-0.95
7.100	1.53179	0.00153	-3.68	14.600	1.51408	0.00326	-3.47	32.500	1.40091	0.01055	-0.79
7.200	1.53163	0.00155	-3.62	14.800	1.51342	0.00331	-3.47	33.000	1.39555	0.01090	-0.61
7.300	1.53148	0.00157	-3.68	15.000	1.51275	0.00337	-3.4 <u>E</u>	33.500	1.39001	0.01126	-0.42
7.400	1.53132	0.00159	-3.68	15.200	1.51208	0.00342	-3.45	34.000	1.38429	0.01163	-0.23
7.500	1.5311 €	0.00161	-3.68	15.400	1.51139	0.60347	-3.44	34.500	1.37838	0.01202	0.01
7.600	1.53100	0.00163	-3.68	15.600	1.51069	0.00352	-3.43	35.000	1.37227	0.01243	0.2
7.700	1.53083	0.00165	-3.67	15.800	1.50 998	0.00358	-3.42	35.500	1.36595	0.01286	0.4
7.800	1.53067	0.00167	-3.67	16.000	1.50926	0.00363	-3-41	36.000	1.35941	0.01331	0.73
7.000	1.53050	0.00169	-3.67	16.200	1.50852	0.00369	-3.40	36.500	1.35264	8-01377	1.01
8.000	1.53033	0.00171	-3.67	16.400	1.50778	0.00374	-3.39	37.000	1.34563	0.01477	1.30
8.100	1.53015	0.00174	-3.67	16.600	1.50703	0.00380	-3.37	37.500	1.33837	0.01478	1.60
8.200	1.52998	0.00176	-3.67	16.800	1.50626	0.00385	-3.3E	38.000	1.33084	0.01533	1.93
8.300	1.52980	0.00178	-3.66	17.000	1.50548	0.00391	-3.35	38.500	1.32304	0.015 90	2.28
8.400	1.52962	0.00180	-3.6Ē	17.200	1.50470	0.00397	-3.34	39.000	1.31494	0.01650	2.65
8. .	 			·		· · · · · · · · · · · · · · · · · · ·	· · = ·			· · · · · · · · · · · · · · · · · · ·	
8.500	1.52944	0.00182	-3.6 <u>6</u>	17.400	1.50390	0.00402	-3.33	39.500	1.30653	0.01714	3.84
8.600	1.52926	0.00184	-3.66	17.600	1.50309	0.00408	-3.31	40.000	1.29779	0.01782	3.46
0.700	1.52907	0.00186	-3.66	17.800	1.50227	0.00414	-3.30	46.508	1.28870	0.01854	3.91
0.000	1.52889	0.00189	-3.65	18.000	1.50143	0.00420	-3.29	41.000	1.27924	0.01930	4.39
0.4900	1.92018	0.00191	-3.65	10.200	1.20028	0.00426	-3.21	41.500	1.20438	0.02012	4+51
9.000	1.52851	0.00193	-3.65	18.400	1.49973	0.00432	-3.2Ē	42.000	1.25911	0.02099	5.45
9.100	1.52831	0.00195	-3.65	18.600	1.49886	0.00438	-3.25				

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.11. The number of digits with an overstrike are not relevant to accuracy of the data.

н. н. ц

FIGURE 40. dn/dT of KBr

mperature, K	Single srystal; grown in an open furnace by the Kyropolous method; specimens freshly cleaved in vacuum: reflection spectra recorded photographically for incident angles of 20°, 45°, 70° and 75° at room temperature; re- fractive indices suce obtained from graphical solutions to the Fresnel equations; data extracted from a figure.	4 Crystal; sample was cut into a prism shape to avoid interference on reflective tivity measurements; reflection spectrum was recorded at an incident angle of 15° and analyzed with Lorentz two linear damped oscillars model; data extracted from a smooth curve.	72 Similar to above.	300 Similar to above.	295 Crystal; grown by the Harshaw Chemical Corporation; prismatic specimens of apex angle 80°, 60°, and 30° respectively; refractive index determina- tions were made at temperatures near 11°, 22°, and 27 C for 11 spectral lines and the values of dn/dT were then derived; all observed data were then adjusted to 22 C; digitized data were presented.	321 Crystal; prismatic specimens with faces of 16 x 16 mm ² ; apex angles of 59 ^o and 30 ^o respectively; digitized data were presented; accuracy of this set of cata is 0.001.	295 Crystal; prismatic specimen obtained from Perkin-Elmer Corporation; in- dices determired by minimum deviation; uncertainty about 1.0 x 10^{-5} ; digitized data presented; measurements were also made at 13.5° and 31.0 C a rough averaged value of -4.0 x $10^{-5}/^{\circ}$ C for dn/dT obtained; typegraphical error in dispersion equation of 1953 gaper, corrected in 1972 publication.	295 Similar to above but refractive indices were determined with known incident angles.	293 Crystal; prismatic specimen with 60° apex angle; refractive indices were determined at various temperatures ranging from 21.4 C to 34.0 C and then reduced to 20.0 C by the experimentally determined temperature coefficient, dn/dT ; dn/dT ; dn/dT was found to be practically a constant over the wavelength region and the temperature range studied; the average value of dn/dT was -4.4 K 10 ⁻⁵ E-4; estimated uncertainty of 0.0001 in n; digitized data were presented.	293 The above author used a second sample measured at three wavelengths; obtained higher results, about 0.0001 greater in absolute value, but dis- persions remained practically the same.	293 Crystal; the author stated that the refractive indices were measured by F. Wolf on the specimen supplied by Smakula, A. but no references were cited; digitized data were presented; dn/dT at 293 K for each wavelength was also given.	311 Single crystal; grown by the Kyropoulos method; plate specimens with thick- nesses ranging from 151.0 to 396.7 μ m; refractive indices were mea- sured by interferometry; averaged results were reported in digitized values; dn/dT for waveleagth 0, 546 μ m was found to be -3.6 x 10 ⁻⁵ K ⁻¹
Wavelength Tem Range, µm	0.170-0.197	35-770	35-770	47-625	0.40-0.71	0.21-0.62	0. 40-25. 14	1.01-25.14	0.405-0.770	. 4861-0. 6563	0.20-1.10	14.0-26.7
Method Used	сц.	ы	В	В	Q	Ð	A	D	Ω	С ·	Д	1
Year	1967	, 1967	1967	1967	1952	1927	1953 1972	1953	1942	1942	1943	1933
Author (s)	Vishnevskii, V.N., Kulik, L.N., and Romanyuk, N.A.	Handi, A., Claudel, J., Chanal, D. Strimer, P., and Vergnet, P.	Handi, A., et al.	Handi, A., et al.	Spindler, R.J. and Rodney, W.S.	Gyulai, Z.	Stephens, R.E., Plyler, E.K., Rodney, W.S., and Spindler, F.J., June, K.R.	Stephens, R.E., et al.	Forrest, J.W.	Forrest, J.W.	Harting, H.	Korth, K.
. Ref. No.	06	16	16	16	96	27	97 116	97	86	6 8	30	100
Cur No.	H	67	ŝ	4	Ω	9	2	80	б	10	11	12

TABLE 46. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dn/dT MEASUREMENTS OF KBr

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

REFRACTIVE INDEX OF ALKALI HALIDES

Method Wavelength Temperature, Specifications, and Remarks Used µm	30 D 0. 768-18. 10 298 Crystal; prismatic specimen with height 4 cm, side 6 cm and apex angle 59°25'30"; digitized data ware presented.	30 I 20.10-28.50 298 Crystal; plate specimens with thicknesses of 70 and 170 µm respectively; refractive indices were determined from interference information; digitized data were presented.	71 F 0. 40-0. 70 1003 Molten KBr; Vycor tube filled with the melt formed a cylindrical lens; refractive indices were determined by finding the focal lengths of the lens at given wavelengths; uncertainty in n was estimated to ± 0.005 ; digitized data were presented.	71 F 0.5460 1008 Similar to above.	69 R 27,0–278.0 300 Crystal: reflection spectrum was measured by the technique of asymmetri Fourier-transform spectroscopy and refractive indices were then deter mined; data extracted from a figure.	34 R 0.254-0.546 298 Crystal; thin film specimen with slight wedge shape by vacuum evaporation onto a quartz substrate and then sintered; reflectance was determined from reflected interference patterns; refractive indices were calculated from the equation, $R = (n_q - n^2/n_q + n^2)^2$, where n the refractive index of the film and n_0 of quartz; digitized data were presented.	34 R 0.254-0.546 298 Similar to above but for other film.	47 P 0. 4358-0. 5893 298 Crystal; grown by the method of slow evaporation of a saturated solution; plate specimen with polished faces; specimen was cemented to the prism of a Pulfrich refraction refraction the by a suitable liquid in determining the refractive index; digitized data were presented with uncertainty one unit in the fourth place of decinal.	 D 0, 5461 1043 Molten KBr, fillec into a 60° prismatic Pt container with silica widows of 4 mm diameter; estimated uncertainty of 0.001 in n; digitized data were presented. 	74 D 0.439-0.656 298 Crystal; prismatic specimens of apex angles 40°36', 43°45' and 45°33' respectively; mean values of the results from three prisms were presented in digitized values; temperature was not specified, room temperature assumed.	67 T 27-204 298 KBr plate of 0,0122 cm thick was placed in one arm of a far infrared Michelson interferometer to obtain the asymmetric interferogram; spectrogram was analyzed by Fourier transformation; data extracted from a figure with one percent uncertainty in n-1.	04 D 0.486-0.656 298 Crystal; four prismatic specimens with apex angle about 42.1°; averaged values of refractive indices were presented with uncertainties of less than 2 units in the fourth decimal places; temperature was not given. room temperature assumed.	¹⁸ D 0.4358-0.6438 290 Single crystal; pr:smatic sample; digitized data were given with uncertaint of ± 0.0004 .	i8 D 0.4358-0.6438 4 Similar to above.	² M 0.589 281-308 Single crystal; disc specimers of 1-18 mm in thickness; refractive index for sodium D line was determined by immersion method; digitized value was reported with uncertainty of \pm 0.0007; temperature was not specifie
Method Used	D	I	Ъ.	ы	щ	с	В	с ц	D	Q	T	а ^к	Ð	Q	M
Year	1930	1930	1971	1971	1969	1934	1934	1947	1963	1874	1967	1904	1968	1968	1972
Author (s)	Gundelach, E.	Gundelach, E.	Marcoux, J.	Marcoux, J.	Johnson, D.W. and Bell, E.E.	Bauer, G.	Bauer, G.	Ramasestan, S.	Zarzycki, J. and Nardin, F.	Topsëe, H. and Christiansen, C.	Bell, E. E.	Sprockhoff, M.	Lawndes, R. P. and Martin, D.H.	Lawndes, R. P. and Martin, D. H.	Fedyukina, G.N. and Zlenko, V.Ya.
. Ref. No.	66	66	67	29	91	86	86	43	44	101	102	95	13	13	112
Cur. No.	13	14	15	16	17	18	19	50	21	22	23	24	25	26	27

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

444

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE 47. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF KBr

TABLE 47. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF KBr (continued)

q

5684

5748 5725

 $T = \frac{CURVE 27*}{281.0-308.0 K}$ 1.5605 1.5596 1.5558 1.59041.5738 $\begin{array}{c} 1.5697\\ 1.5689\\ 1.5649\\ \end{array}$ 1.5592 1.5814L. 5729 [Wavelength, λ , μ m; Refractive Index, n] $\frac{\text{CURVE 25*}}{\text{T} = 290.0 \text{ K}}$ $\frac{\text{CURVE 26}^{*}}{\text{T} = 4.0 \text{ K}}$ 0.5086 0.5461 0.5780 0.5893 0.6438 0.4358 0.4678 0.4358 0.4678 0.4678 0.4800 0.5086 0.5461 0.5780 0.5893 0.5893 0.6438 0.48000.589 \sim $\begin{array}{c} 1.5214\\ 1.5715\\ 1.5715\\ 1.5593\\ 1.5546\end{array}$. 33% 1.25% 1.25% 1.25% 1.05% ÷30° 38. 33 20% .14 - 15÷ ¤ $\frac{\text{CURVE 22}}{\text{T} = 298.0 \text{ K}}$ $\frac{\text{CURVE } 23}{\text{T} = 298.0 \text{ K}}$ 1.451.45.42 ž1. $\frac{\text{CURVE 24}}{\text{T} = 298. \text{ K}}$.45 40 0.439 0.486 0.589 0.656 $\begin{array}{c} 227, 93\\ 20, 20\\ 32, 15\\ 33, 67\\ 33, 15\\ 33, 67\\ 33, 67\\ 33, 36\\ 37, 46\\ 34, 49\\ 44, 44\\ 45, 45\\ 45, 45\\ 45, 45\\ 45, 45\\ 45, 45\\ 45, 45\\ 45, 45\\ 45, 45\\ 45, 45\\ 45, 45\\ 73\\ 46, 73\\ 48, 56\\ 112\\ 112\\ 10, 82\\ 51, 126\\ 99\\ 111\\ 36, 121\\ 99\\ 111\\ 36, 121\\ 36\\ 111\\ 36, 121\\ 36\\ 111\\ 36\\ 1$ $\begin{array}{c} 1.5813\\ 1.5631\\ 1.5585\end{array}$ $\frac{\text{CURVE 17 (cont.)}}{\text{T} = 300.0 \text{ K}}$ $\begin{array}{c} 0.\ 79*\\ 0.\ 58*\\ 0.\ 29*\\ 0.\ 29*\\ 1.\ 73*\\ 3.\ 39*\\ 2.\ 33*\\ 2.\ 32*\\ 2.\ 3$ 0, 90% 0, 90% 0, 76% $\begin{array}{c} 1.572\\ 1.526\\ 1.526\\ 1.510\\ 1.476\end{array}$ $\begin{array}{c} 1.531\\ 1.500\\ 1.500\\ 1.484\\ 1.474\\ 1.467\\ 1.467\end{array}$ $\frac{\text{CURVE 21}}{\text{T} = 1043.2} \text{ K}$ $\frac{\text{CURVE 20}}{\text{T} \approx 298.0 \text{ K}}$ ď $\frac{\text{CURVE 18}}{\text{T} = 298, 0 \text{ K}}$ $\frac{\text{CURVE 19}}{\text{T} = 298, 0 \text{ K}}$ 0. 4358 0. 5461 0. 5893 0.254 0.313 0.366 0.546 0.254 0.313 0.366 0.435 0.546 ~ 1.4867 1.4786% 1.4682 1.4632 1.4636 1.4555 1.4382% 1.4382% 1.4163 1.5290 1.5255 1.5255 1.5209 1.5146 1.5146 1.5080 1.4983* $\begin{array}{c} 1.5492 \\ 1.5437 \\ 1.5414 \\ 1.5414 \\ 1.5385 \end{array}$. 5367 5339 5325 $\begin{array}{c} 1.512\\ 1.475\\ 1.460\\ 1.455\\ 1.455\end{array}$ 0.5460 1.465 c $\frac{\text{CURVE 16}}{\text{T} = 1008.2 \text{ K}}$ $\frac{\text{CURVE } 14}{\text{T}' = 298.2 \text{ K}}$ $\frac{\text{CURVE } 15}{\text{T} = 1003.2\text{K}}$ $\frac{\text{CURVE } 13}{\text{T} = 298.2 \text{ K}}$ $\frac{\text{CURVE } 17}{\text{T} = 300.0 \text{ K}}$ 0.4047 0.5000 0.6000 0.6943 $\begin{array}{c} 0.768\\ 0.982\\ 1.179\\ 1.768\\ 2.357\\ 3.536\\ 4.714\\ 5.893\\ 5.5893\\ 5.5893\\ 5.5893\\ 5.2893\\ 5.2893\\ 5.2893\\ 10.018\\ 11.768\\ 11.768\\ 11.768\\ 11.768\\ 11.768\\ 12.965\\ 11.768\\ 12.965\\ 11.768\\ 12.965\\$ 20.1021.3722.8023.4524.4326.3028.50 \sim

5813

5776

1. 57165 1. 5596 1. 55485

0.486 0.589 0.656

0.5461 1.455

 $1.36 \\ 1.43 \\ 1.26 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.$

27.3 33.9 41.5 46.5

TABLE 48. EXPERIMENTAL DATA ON dn/dT OF KBr

[Wavelength, A, µm; Temperature Derivative of Refractive Index, dn/dT, 10-5 K⁻¹; Mean Temperature, T_m, K]

λ dn/dT	$\frac{\text{CURVE } 12}{\text{T}_{\text{m}} = 337.0} \text{ K}$	0.546 -3.6
λ dn/dT	$\frac{\text{CURVE 11 (cont.)}}{\text{T}_{m}} = 293.0 \text{ K}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
λ dn/dT	$\frac{\text{CURVE 9}}{\text{T}_{\text{III}}} = 301.0 \text{ K}$	$\begin{array}{rll} 0.40-0.77 & -4.4*\\ \hline CURVE 11 \\ T_{III} = 293.0 \ K \\ 0.26537 & -2.5 \\ 0.26336 & -3.6 \\ 0.28336 & -3.6 \\ 0.28335 & -3.6 \\ 0.28335 & -3.6 \\ 0.28335 & -3.6 \\ 0.28335 & -3.6 \\ 0.28335 & -4.7 \\ 0.33315 & -4.7 \\ 0.33315 & -4.7 \\ 0.33315 & -4.2 \\ 0.49466 & -4.2 \\ 0.49353 & -4.2 \\ 0.43583 & -4.2 \\ \end{array}$
λ dn/dT	$T_{m} = \frac{CURVE 5}{295.0} K$	$\begin{array}{c} 0.\ 4047 & -3.\ 675 \\ 0.\ 4047 & -3.\ 675 \\ 0.\ 4358 & -3.\ 710 \\ 0.\ 4361 & -3.\ 837 \\ 0.\ 4361 & -3.\ 837 \\ 0.\ 4916 & -3.\ 7397 \\ 0.\ 5086 & -3.\ 943 \\ 0.\ 5086 & -3.\ 943 \\ 0.\ 5086 & -3.\ 943 \\ 0.\ 5087 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 061 \\ 0.\ 6907 & -4.\ 081 \\ 0.\ 6907 & -4.\ 0.\ 0. \\ 0.\ 404-25.\ 14 & -4.\ 0^* \\ 0.\ 404-25.\ 14 & -4.\ 0^* \end{array}$

* Not shown in figure.

TABLE 49. COMPARISON OF DISPERSION EQUATIONS PROPOSED FOR KBr

Wavelength and Temperature Ranges	Dispersion Equation λ in μ m; ν in cm ⁻ⁱ
0.213-1.083 μm 293 K	$n = 1.53472 + \frac{0.00771}{(\lambda - 0.1229)^{1.554}}$
0.214-10.02 µm 298 K and 321 K	$n^{2} = 1.4725 + \frac{0.6204 \lambda^{2}}{\lambda^{2} - (0.146)^{2}} + \frac{0.2674 \lambda^{2}}{\lambda^{2} - (0.182)^{2}} + \frac{2.2847 \lambda^{2}}{\lambda^{2} - (85.824)^{2}}$
0.40-25.14 µm 295 K	$\begin{split} n^2 &= 2.361323 - 0.000311497 \ \lambda^2 - 0.000000058613 \\ &+ \frac{0.007676}{\lambda^2} + \frac{0.0156569}{\lambda^2 - 0.0324} \end{split}$
0.40-0.71 μm 295 K	$\begin{split} n^2 &= 2.3618102 - 0.00058072 \ \lambda^2 + \frac{0.02305269}{\lambda^2 - 0.0245381} \\ dn/dT &= -(31.742 + 13.21 \ \dot{\lambda}) \ \times 10^{-6} \end{split}$
47-625 μm 300 K	$\begin{split} n^{2} - k^{2} &= \epsilon_{uv} + \sum_{i} 4\pi \rho_{i} \frac{1 - \Omega_{i}^{2}}{(1 - \Omega_{i}^{2})^{2} + (\delta_{i} \Omega_{i})^{2}} ,\\ 2nk &= \sum_{i} 4\pi \rho_{i} \frac{\delta_{i} \Omega_{j}}{(1 - \Omega_{i}^{2})^{2} + (\delta_{i} \Omega_{i})^{2}} * \end{split}$
0.20-42.0 μm 293 K	$\pi^{2} = 1.39408 + \frac{0.79221 \lambda^{2}}{\lambda^{2} - (0.146)^{2}} + \frac{0.01981 \lambda^{2}}{\lambda^{2} - (0.173)^{2}} + \frac{0.15587 \lambda^{2}}{\lambda^{2} - (0.187)^{2}} + \frac{0.17673 \lambda^{2}}{\lambda^{2} - (60.61)^{2}} + \frac{2.06217 \lambda^{2}}{\lambda^{2}}$
	Wavelength and Temperature Ranges 0.213-1.083 µm 293 K 0.214-10.02 µm 298 K and 321 K 0.40-25.14 µm 295 K 0.40-0.71 µm 295 K 47-625 µm 300 K 0.20-42.0 µm 293 K

3.12. Potassium lodide, Kl

Potassium iodide is valuable as prism material, but it is too hygroscopic (being about twice as soluble in water as potassium bromide) and too soft for field use. It is also soluble in alcohol and in ammonia. Ingots 19 cm in diameter are available. Although KI is one of the softest rocksalt-structure alkali halides, not a suitable optical material, its wide transparency, 0.25 to 50 μ m, draws attention in crystal structure research. Fundamental absorptions in the ultraviolet and infrared regions, static and high-frequency dielectric constants have been measured by a number of investigators, and the results are listed in table 3.

Reasonable amounts of data on the refractive index of KI are available in the open literature. By careful examination of the available data we find that for the transparent wavelength region the results of Gyulai [27] and Harting [30] are consistent (with temperature effects considered) to the fourth decimal place in spite of the fact that Gyulai quoted an accuracy of one unit at the third decimal place. Korth's values [100], although being reported to the fourth decimal place, are good only to the third place. Bauer's values appear too low to be considered as useful data because of his use of thin films, and the unfavorable surface conditions of the samples. Data reported by Sprockhoff [95] and Topsöe and Christiansen [101] appear slightly too high at the assumed temperature; they either observed at a considerably lower temperature or used inadequate samples.

In the infrared region, 40 μ m and up, data were leduced by analyzing the information on reflection and aransmission spectra. Data are available from the figures of Hadni, et al. [16], Edlridge, et al. [103], and Berg, et al. [104]. They are not included in the data analysis but are presented here for completeness.

Data measured by Gyulai, Harting, and Korth were adopted for our analysis. The selected data sets were obtained at different temperatures: Gyulai's measured at 339 K, Harting's at 293 K, and Korth's at 311 K. Information on dn/dT is needed to carry out temperature corrections on the selected data sets, but little is available.

Data on dn/dT were given by Harting [30] and Korth [100]. The values reported by Harting are for a waveength region from 0.248 to 1.083 μ m and a temperature of 293 K. Although this data set covers a sufficient wavelength range for a curve fitting calculation, its unfavorable scatter led to unreasonable values of the adjustable parameters in eq (19). A single but reliable value was given by Korth for the Hg green line at a mean temperature of 337 K. As a consequence of the lack of reasonable data, temperature effect corrections to the available data on refractive index were never considered in early survey works or in handbooks. In the present work, however, this problem was solved by our empirical discoveries by which the unknown parameters of eq (19) for each of the alkali halides were predicted. This enabled us to construct a dn/dT formula for KI at 293 K in the transparent region:

$$2n \frac{dn}{dT} = -12.24 (n^2 - 1) + 0.80 + \frac{4.785 \lambda^4}{(\lambda^2 - 0.04796)^2} + \frac{165.92 \lambda^4}{(\lambda^2 - 9611.84)^2}, \quad (45)$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m.

In figure 43, the values calculated by eq (45) are compared with the experimental data. It appears that our calculated values do not agree with those reported by Harting. However, we have reasons to believe that eq (45) predicts satisfactory dn/dT values for KI.

1. The figure shows that the curve of eq (45) is the lower envelope of Harting's data. If the uncertainties of Harting's measurements are the deviations of the points from the averaged position, our predictions are considered to be in acceptable agreement with the Harting's values.

2. Although it has been observed in halide crystals that the absolute value of dn/dT increases with increasing temperature, the variation is small in a fairly wide range of temperatures. This is the basis of the second expression of eq (4). It is clearly shown in figure 43 that our predictions are located at a reasonable distance from Korth's data point, in view of the difference in temperatures.

3. The predictions of the dn/dT formula for CsI based on the empirical parameters of table 5 agree closely with the data in the long wavelength region as discussed in subsection 3.20. We assume that this is also the case for KI.

Based on the above discussions, eq (45) was confidently used to reduce the selected refractive index data to 293 K.

Ramachandran [17] attempted to construct dispersion equations to fit the data provided by Gyulai and Korth, respectively, and found two equations, one for wavelengths from 0.206 to 0.615 μ m at 339 K, and the other for wavelengths from 4 to 29 µm at 311 K, as shown in table 54. Note that these equations do not include the contributions of absorption bands located at the other end of the transparent region. This will lead to improper extrapolations. It is our goal to work out a formula which includes the effects due to the absorption bands at both ends of the transparent region, and yields the refractive indices for the whole transparent region at a chosen reference temperature, 293 K. Based on the information in tables 3 and 54, input parameters for least-squares fitting were obtained. The result of the fitting is a dispersion equation for KI at 293 K in the transparent region, $0.25-50 \ \mu m$.

H. H. LI

$n^{2} = 1.47285 + \frac{0.16512\lambda^{2}}{\lambda^{2} - (0.129)^{2}} + \frac{0.41222\lambda^{2}}{\lambda^{2} - (0.175)^{2}} + \frac{0.44163\lambda^{2}}{\lambda^{2} - (0.187)^{2}} + \frac{0.16076\lambda^{2}}{\lambda^{2} - (0.219)^{2}} + \frac{0.33571\lambda^{2}}{\lambda^{2} - (69.44)^{2}} + \frac{1.92474\lambda^{2}}{\lambda^{2} - (98.04)^{2}},$ (46)

For refractive index:

Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, \pm
0.25- 0.35	3	0.008
0.35 - 10.00	3	0.002
10.00 - 25.00	3	0.003
25.00-40.00	3	0.006
40.00-50.00	3	0.009
For dn/dT :		
0.25- 0.27	1	0.9
0.27 - 2.00	1	0.3
2.00-30.00	1	0.4
30.00-40.00	1	0.5
40.00-50.00	1	0.9

where λ is in units of $\mu m.$

Equations (45) and (46) were used to generate the recommended values for n, $dn/d\lambda$, and dn/dT. More decimal places are given than are needed, for tabular smoothness. Readers are advised to use the criteria given below in order to insure the proper usage of the table of recommended values.

REFRACTIVE INDEX OF ALKALI HALIDES

TABLE 50. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH ANL TEMPERATURE DERIVATIVES FOR KI AT 293 K \star

		. /	. /			. /	3 / 100			. /	
λ	n	-dn/dλ	an/a'i	λ	n	-απ/αλ	an/ar	λ	n .	-αn/dλ	dn/dT
um	· ·	um -1	10 ⁻⁶ K ⁻¹	um		µm -1	10⊸ K-1	um		um ~1	10 ⁻⁵ K ⁻¹
	-	F		~		-		F-		<i>F</i>	
8.258	2.04933	8.61824	12.21	0.550	1.67229	0.17742	-4-31	2.758	1-62962	0.00160	-4.49
0 252	2 87287	7 04820	40 44	0 560	4. 67857	0.16660	-4.33	2.800	1.62054	0.00155	-4.40
0.292	2.03203	7.91020	10.74	0.000	1.000	0.1009		2.0000	1.02324	0.00155	
0.254	2.01/63	7.38383	8.84	0.570	1.0095	0.19084	-4.33	2.050	1.02940	0.00150	-4.49
0.256	2.00357	E.77157	7.55	6.580	1.66743	0.14776	-4.34	2.900	1.62939	0.00146	-4.49
0.258	1.99850	6.30265	6.48	0.590	1.66599	0.13940	-4.35	2.950	1.62931	0.00142	-4.48
					· · · · · · · ·					· · · · · · ·	
0.260	1.97832	5.885 <u>99</u>	5.5 <u>2</u>	0.080	1.20404	0.1316/	-4.30	3.000	1.62924	0.00138	-4+48
0.262	1.96693	5.51344	4.67	0.620	1.86215	0.11789	-4.37	3.050	1.62918	0.00135	-4.48
0.264	1.95624	5.17847	3.94	0.640	1. 65991	0.10601	-4.38	3.108	1.62911	8.68131	-4.48
8 266	4 04 640	1. 47576	7 25		4 65700	0 00574	-1. 20	7 450	4 62000	0 004 20	-1. 1.9
u.200	1.94019	4.0/2/0	3.20	0.000	1.03/30	0.09971		3.190	1.02304	0.00123	
•268	1.93672	4.50098	2.71	0.080	1.65607	0.08673		3.200	1.02898	0.00126	-4.48
					a transformation and the						
.270	1.92777	4.35052	2.19	0.700	1.65442	0.17887	-4.41	3.258	1.62892	0.00123	-4.48
272	4 04 0 7 0	4 4 2 4 30	4 72	0.720	4 65 201	0 07404	-4.41	3 700	4 62886	0 004 24	-1. 1.8
	1. 31 330	4.16103	1.12	0.0720	1.05231	0.01134		3.300	1002000	0.00121	
3.274	1.91127	3.91104	1.31	0	1.05154	u • 005 <u>62</u>	~4•4 <u>2</u>	3.350	1.62680	0.00119	-4.+48
0.276	1.90365	3.71734	0.93	0.760	1.65028	0.06039	-4.42	3.400	1.62874	0.00117	-4.48
0.278	1.89640	3.52845	0.60	0.780	1.64912	8.05555	-4.43	3.450	1.62868	0.00115	-4.48
	4 0001-				A 44 0 00	0 454 55		7 500	4 6000	0.004 77	· · · ·
0.280	1.88949	3.3/221	0.29	0.005.0	1.64805	0.05122	-4.45	3.500	1.02602	v.vu114	-4.40
8.282	1.88290	3.219 <u>0</u> 5	0.01	0.820	1.64707	0.04734	-4.44	3.550	1.62857	0.00112	-4.48
0.284	1.87660	3.07600	-0.25	0.840	1.64615	0.04385	-4.44	3.600	1.62851	0.00111	-4.48
0.286	1.87059	2.942 23	-0.40	0.860	1.64531	6.64070	-4.44	3.650	1.62846	0.00110	-4.48
0.244	1.86497	2 84 8 84	-0.70	0.800	1 . 64 15 7	0.03785	-4-45	3,700	1.628.0	0.00400	-4 1.0
u.200	1.00403	2.01004	-0.10	10000	1.04472	0.03/02	-4045	3.100	1.02040	n •A0160	
	<u>. </u>		-				_		<u> </u>	·	- i <u>-</u> -
0.290	1.85931	2.70142	-0.90	0.900	1.64379	0.03526	-4.45	3.750	1.62835	0.00107	-4.48
0.292	1.85402	2.59209	-1.09	0.920	1.64311	0.03291	-4.45	3.800	1.62829	8.00107	-4.48
0 20%	1 86 8 04	2 48642	a1 25	0 940	4 . 64 24 8	0.03077	-4.45	3.850	4 62824	0.00106	-4 48
0.234	1.040 34	2.40346	-1020	0.040	1 614 90	0.00077		3 000	1.02024	0.00100	
0.290	1.04405	2.3.202	-1.42	0.950	1.04100	0.02001		3.900	1.02019	0.00105	-4.40
0.298	1.83936	2.30188	-1.56	0.980	1.€4132	0.02702	-4.46	3.950	1.62814	0.00104	-4.48
0.300	1.83484	2.216 08	-1.70	1.000	1. 64080	0.02537	-4.4E	4.000	1.62808	0.00184	-4.48
0.305	1 82426	2.02165	-2 00	4.050	1.67062	0.02182	-4.45	4.050	1.62803	0.00103	-4 48
0.000	1.02420			1.450	1.03902	0.02102		4.000	1.02000	0.00103	
0.310	1.81459	1.05105	-2.25	1.100	1.03861	0.01631	-4.41	4.100	1.62/98	0.00103	-4.40
0.315	1.80571	1.70258	-2.4 <u>8</u>	1.150	1.€37 <u>72</u>	0.016 <u>51</u>	-4.47	.4.150	1.627 <u>93</u>	0.00102	-4.48
0.320	1.79753	1.57057	-2.6E	1.200	1.63695	0.01450	-4.47	4.200	1.62788	0.00102	-4.48
	A						-				
0.325	1.78998	1.45721	-2.83	1.250	1. 53627	0.01282	-4.47	4.250	1.62783	0.00152	-4.48
0 770	4 70200	4 76076	-2.07	4 700	4 67566	0 04470	7.74	4.200	4 (277	0.00102	
0.330	1.10290	1.34030	-2.91	1.300	1.03500	0.01133		4.500	1.02//0	0.00102	-4.40
0.335	1.77648	1.2:427	-3.09	1.350	1.63512	0.01018	-4.48	4.350	1.62773	0.00101	-4.48
0.340	1.770 <u>42</u>	1.169 <u>51</u>	-3.2 <u>1</u>	1.400	1.634 <u>64</u>	0.00913	-4.4 <u>8</u>	4.400	1.62768	0.00101	-4.48
0.345	1.76477	1.85287	-3.30	1.450	1.63421	0.00824	-4.48	4.458	1-62762	0.00101	-4.48
0 750	4 7501.0	4 0 3 7 7 7	-7 70	4 540	4 67763	0 00766	-1. 4.0	6 600	4 60757	0.004 04	
4.390	1.19340	1.02333		1.500	1.03302	0.00/40		4.500	1.02/5/	0.00101	
. 8 . 355	1./54 <u>52</u>	0.9t0 <u>04</u>	-3.4 <u>7</u>	1.550	1.133 <u>46</u>	0.00E <u>78</u>	-4.48	4.550	1.62/52	0.00101	-4.48
0.360	1.74987	0.90226	-3.54	1.600	1.63314	0.00€18	-4.48	4.600	1.62747	0.00101	-4.48
0.365	1.74549	0.84937	-3.69	1.650	1.63284	0.00566	-4.48	4.650	1.62742	0.00101	-4.48
0.370	1.741 37	0.80084	-7.66	1.700	4. 63257	0.01520	-6.68	4.700	4 62727	0.00101	-4 4.9
0.010	1014101	0000004	-0.00	1.100	1.0257	0.00520	- 46 40	40100	1.02101	0.00101	-4040
	4 7777	0 70000			4 6-075	n na i 📅			4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
4.3/5	1.13/40	0.75620	-3./1	1.750	1.03232	0.00400	-4.40	4.720	1.02/32	0.00101	-4.40
0.380	1.73380	U.715 <u>04</u>	•3.7 <u>6</u>	1.800	1.63209	U. CO4 <u>43</u>	-4.48	4.800	1.62727	0.00102	-4.48
0.385	1.73032	0.67701	-3.80	1.850	1.63188	0.00411	-4.48	4.850	1.62722	0.00102	-4.48
1.391	1.72703	0.641.81	-3.84	1.010	1.63168	0.00382	-4.48	4.900	1.62717	0.00102	-4.47
0 705	1 72200	0 60046	_ 2 0 0	4 050	4 67440	0 00757	- 4 4 4	4.500	4 60740	0.00102	
0.399	1./2390	0.00410	-3.00	1.950	1.63144	4.60357	-4+48	4.990	1.62/12	0.00102	-4-47
				· · · · ·			-	.		·	
0.400	1./2093	0.57882	-3.91	2.000	1.63132	0.002 <u>34</u>	-4+48	5.000	1.627 <u>87</u>	0.001 <u>02</u>	-4.47
0.410	1.71542	0.52427	-3.97	2.050	1.63116	0.00313	-4.48	5.100	1.62696	0.00103	-4.47
0.420	1.71142	8-47672	-4.02	2.100	1.63104	0.00204	-4.48	5,200	1.62686	1.00104	-4.47
0.470	1.70507	0.47505	-1. 05	2 464	4 670 04	0 00 277		E 704	4 6 26 77	0 00107	
0.400	1 7 1 2 0 /	0.43545	-4.00	2.178	1.02005	0.002//		2.308	1.020/5	0.00105	
U+44U	1.701/1	0.02032	-4.10	2.200	1.030/3	U•U0262	-4:49	5 • 4 U Ü	1.02005	0.00105	-4.47
			_ • •	•	· · ·	· · _ ·	· _		_	_	1997 - <u>1</u> 5
0.450	1.69789	0.36581	-4.13	2.250	1.63060	0.00248	-4.49	5.586	1.62(55	0.00106	-4.47
0.460	1.69438	0.33690	-4.1Ē	2.300	1.63048	0.00235	-4.49	5.600	1.62644	0.00107	-4-47
8.470	1.60117	0.31100	-4.10	2.360	1.630 27	0.00227	-4.40	5.704	1.62677	0.004.00	
0 - 770 8	4 69947	0 20205		2.000	4 634 37	0.00223		50100	4 6 76 77	0.00140	
u + + 0 U	1.00012	0.00135		2.4400	1.5025	0.00213	- 것 • 것 볼	5.000	1.02622	0.00109	-4.47
0.490	1.68537	0.26714	-4.23	Z.450	1.03016	0.00203	-4.49	5.900	1.62611	0.00110	-4.47
			1 - N		1.1		-		-		1.1 A.
0.500	1.68280	0.24837	-4.25	2.500	1.63005	0.00194	-4.40	6.000	1.62600	0.00112	-4-47
0.540	1.680.0	0.22430	-4.25	2.550	1 62004	0.00400	-4.10	6 400	1.62500	0.00147	- 1.7
0.0010	1.00040	0.01100	7. 2.	2.0990	1.00390	a		0.100	102903	- 0.00110	
0.520	1.07016	0.21596	-4.28	2.600	1.02987	0.00179	-4+45	0.200	1.02578	0.00114	-4.40
0.530	1.676 <u>0</u> 8	0.20193	-4.29	2.650	1.€29 <u>7</u> 8	0.00172	-4.49	6.300	1.625 <u>6</u> 6	0.00115	-4.46
0.540	1.67412	0.18913	-4.30	2,700	1.62970	0.00166	-4.49	6.408	1.62555	0.00116	-4.46
	—							-			1.

TABLE 50. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR KI AT 293 K (continued)*

						_		_			
		dm (4)	da /dT			-dn/d	dn /dT	``		-dn/d	dn/dT
λ	n	-01/0/	10-5 1/-1	A .	n		10-5 2-1		n	-un/ux	10-5 22-1
μm		μm ⁻¹	10-0 K ·	, µm		μ	10	µ m		µmu -	10 . K .
6 500	4 605 47	0 000	-1 1.E	42 888	4 644 04	0 00 225	-4 72	26 500	4 56222	0 00557	-7 61
C.580	1.02943	0.00110		12.000	1. (1401	0.00225	-4.32	20.900	1.50323	0.00557	-3.54
6.600	1.62531	0.00119	-4-40	13.000	1.01430	0.00228	-4.34	27.000	1.20041	0.005/3	-3-48
6.700	1.62519	0.00120	-4.4 <u>E</u>	13.200	1. €1 3 <u>90</u>	0.00232	-4.34	27.500	1.55750	0.00590	-3.42
6.800	1.62507	0.00122	-4.46	13.400	1.61343	0.00236	-4.33	28.000	1.55451	0.00607	-3.36
6.900	1.62495	0.00123	-4.4E	13.600	1.61296	0.00240	-4.33	28.500	1.55143	0.00624	-3.29
7.000	4 62482	0.00125	-h. 4F	13.800	1.61247	0.00244	-4.32	29.000	1.54827	0.00642	-1.21
7 400	1.02402	0 00125	-4.45	44 000	4 644 09	0 00244	-4.34	20 500	4 545027	0 000042	-7 4 -
7.100	1.02410	0.00120		14.000	1.01130	0.00240		23.200	1.54502	0.000000	-3-19
7.200	1.62457	0.00128	-4-45	14.200	1.1148	0.00252	-4.01	30.000	1.54107	0.00079	-3.40
7.300	1.624 <u>44</u>	0.00129	-4.45	14.400	1.E10 <u>97</u>	0.002 <u>56</u>	-4.30	30.500	1.53822	0.00699	-3.00
7.400	1.62431	0.00131	-4.45	14.600	1.€1046	0.00260	-4.29	31.000	1.53468	0.00719	-2.92
7.500	1.62418	0.00132	-4.45	14.800	1.60993	0.00264	-4.29	31.500	1.53103	0.00739	-2.83
7.600	1.62405	0.00176	-4.45	15.000	1. FR940	0.00268	-4.28	32.000	1.5272P	0.00761	-2.71
7 700	4 62704	0 001 75	-4 45	45 280	1 60996	0 00272	-1. 27	32 600	1 52362	0 007 97	-2 61
7.700	1.02331	0.00125		12.200	1.00000	0.00272		32.500	1.52042	0.00103	-2.04
7.800	1.623/8	0.0012/		19.400	1.00031	0.00270	-4.27		1.51345	0.000000	-2.57
1.900	1.62364	0.00138	-4.44	15.600	1.60//6	0.00590	-4.26	33.508	1.51537	0.00829	-2.44
			_								
8.000	1.62350	0.00140	-4.44	15.800	1.60719	0.00284	-4.25	34.000	1.51116	0.00853	-2.32
8.100	1.62336	0.00141	+4.44	16.000	1.60662	0.00288	-4.25	34.500	1.50683	0.00878	-2.21
8.200	1.62322	0.00143	-4.44	16.200	1.60604	0.00293	-4.24	35.000	1.50238	0.00904	-2.88
8.300	1.62307	6.00145	-4.44	16.400	1.60545	0.00207	-4.23	35.500	1.49779	0.00931	-1.05
8.400	4 62203	0.00116	-4. 64	16.600	1.60485	0.00301	-4.22	36.000	1.49306	0 000 00	-1 - 2
0.400	1.022.33	0.001-0		10.000	1.00405	0.00001	- 4066	50.000	1.49000	0.00355	-1.05
	4 (2070	0 000 10	1.15	46 000	4 604 05	0 00705	4	76 600	4 4 8 8 0 0 0	a aaa aa	
8.500	1.622/8	0.00148	-4.43	16.800	1.00425	0.00305	-4.21	36.500	1.48820	0.00388	-1.68
8.600	1.622 <u>63</u>	0.00150	-4.4 <u>3</u>	17.000	1.603 <u>63</u>	0.00310	-4.21	37.000	1.483 <u>18</u>	0.01018	-1.53
8.700	1.62248	0.00151	-4.43	17.200	1.60301	0.00314	-4.20	37.500	1.47802	0.01049	-1.37
008.8	1.62233	0.00153	-4.43	17.400	1.60238	0.00318	-4.19	38.000	1.47269	0.01082	-1.20
8.900	1.62218	0.00155	-4.43	17.600	1.60174	0.00323	-4.18	38.560	1.46720	0.01115	-1.02
0 000	1 62202	0 004 25	-4.47	17 800	1.60100	0.00327	-1 15	30.000	4 46453	0 044 51	-0.87
3.100	1.62186	0.00150	-4.43	18.000	1.60043	0.00332		39.500	1.45540	0.011.51	-0.65
0.200	4 62474	0 00450	-4.45	10 0000	4 50076	0.00000	-4.10	40 800	1 44000	0.04226	-0.05
5.200	1.021/1	0.00100		104200	1.53976	0.00230	-4.12	40.000	1.44900	0.01220	-0.44
9.300	1.62155	0.00101	-4-42	18.400	1.59908	0.00341	-4.14	40.500	1.44343	0.01266	-0.23
9.400	1.62138	0.00113	•4•4Z	18.600	1.59840	0.00345	-4.13	41.000	1.43700	0.01307	0.00
		_	_			·					
9.500	1.62122	0.00165	-4.42	18.800	1.59770	0.00350	-4.12	41.500	1.43035	8.01351	0.24
9.600	1.62105	0.00166	-4.42	19.000	1.59700	0.00354	-4.11	42.000	1.42348	0.01397	0.49
9.700	1.62085	0.001 €8	-4.41	19.200	1.59628	0.00359	-4.10	42.500	1.41638	0.01445	0.76
9.808	1.62072	0.00170	-4.41	19.400	1.59556	0.00364	-4.09	43,000	1.40903	0.01496	1.04
9.900	1.62055	0.00172	-4.41	19.600	1.59483	0.00368	-4.08	43.500	1.40144	0 01540	4 34
	1002033	0.00115		194000	1023403			43.540	1.40141	0.01949	1.34
48 888	4 (00 77	0 004 75	- 4 1 7	40 000	4 501 25	· ···	-/ -=		4 303		.
10.000	1.62031	0.001/3	-4.41	19.000	1.59409	U.CO373	-4.07	44.000	1.39353	U.01605	1.65
10.200	1.62002	0.001 <u>77</u>	-4.41	20.000	1.59334	0.00378	-4.06	44.500	1.38536	0.01664	1.99
10.400	1.619 <u>67</u>	0.00180	-4.40	20.500	1.59142	0.00390	-4.03	45.000	1.37688	0.01727	2.34
10.600	1.61930	0.00184	-4.40	21.000	1.58944	6.00402	-4.00	45.500	1.36808	0.01793	2.71
10.800	1.61893	0.00188	-4.39	21.500	1.58739	0.00415	-3.97	46.000	1.35895	0.01863	3.11
11.000	1.61855	0.00191	-4.30	22.000	1.58520	0.01420	-3,93	46-500	1.34945	0.01037	5.9.5
11.200	1.61817	0.00105	-4.30	22.500	1.58112	0.00444	-3 00	47 000	1 37057	0 0 0 0 4 6	3 07
11.400	4 64 777	0 00109	-4 79	27 804	4 590012	0 00441		47.000	4 30000	0.00010	2.7
44 600	4 64 7 77	0.00130		23.000	1.20000	0.00454	-3.85	4/ . 500	1.32928	0.02101	4 • 4 4
TT+000	1.61/3/	0.00202	-4.30	23.500	1.5/857	u-00468	-3.82	48.000	1.31855	0.02191	4.94
11.800	1.61696	0.00206	-4.37	24.000	1.57620	0.00482	-3.78	40.500	1.3073€	0.02287	5.48
		—									_
12.000	1.61655	0.00209	-4.37	24.500	1.57375	0.00496	-3.73	49.000	1.29567	0.02390	6.05
12.200	1.61613	0.00213	-4.3E	25.000	1.57124	0.00511	-3.69	49.500	1.28344	0.02501	6.66
12.400	1.61570	0.00217	-4.36	25.500	1.56864	0.00526	-3.64	50.000	1.27064	0.02621	7.31
12.600	1.61526	0.00221	-4.35	26.000	1.56594	0.00544	-3.50		202.001		
					A	0000011	0055				

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.12. The number of digits with an overstrike are not relevant to accuracy of the data.

н. н. и

· · · · · · · · · · · · · · · · · · ·	Specifications, and Remarks	Single orystal; 115°-incident reflection spectrum was analyzed by Kramers- Kronig method; data extracted from a curve.	Similar to above.	Similar to above.	Similar to above but analyzed by a two-oscillator Lorentz theory.	Similar to above.	Similar to above.	Single crystal; grown by Kyropoulos method; prismatic specimen of height 12 mm, edge length 15 mm, and apex angle 35°48'37"; digitized data were presented with accuracy of one unit of the third decimal place.	Crystal; the author did not give specifications but mentioned that the specimen- was supplied by A. Smalula and measured by F. Wolf; digitized data were presented; dn/dT at each wavelength was also presented.	Single crystal; grown by Kyropoulos method; prismatic specimen with side surface 5.8 x 8.5 cm ² and apex angle 49° 13'0'' ± 90 ''; digitized data were presented; du/dT for wavelength 0.546 µm was found to be -5.0 x 10^{-5} K ⁻¹ in the temperature range from 38 to 90 °C.	Single crystal; grown by Kyropoulos method; plate specimens of thicknesses ranging from 162.9 to 250 μ m; averaged results were presented in digitized values.	Single crystal of natural KI; obtained from the Harshaw Chemical Co.; specimens of thickness ranging from 0.01 to 1.0 cm with slight wedge shape in order to oliminste interference fringes; transmission and reflectivity were measured by a Fourier spectrometer and refractive indices were derived; data extracted from a figure.	Crystal; obtained from Harshaw Chemical Co.; transmission specimen with optically usable circular area as large as 1, 91 cm in diameter; reflection specimen with thickness of about 1 cm and one polisible surface; refractive indices were determined from transmission and reflection measurements employing a Michelsion interferometer operated in the asymmetric mode; data extracted from a figure.	Crystal; thin film of 1230 µm in thickness by vacuum evaporation; digitized data were presented.	Similar to above but film thickness of 1178 µm.	Similar to above but film thickness of 1138 µm.	Similar to above but film thickness of 623 μ m.	Similar to above but film thickness of 548 μ m.
	Temperature, K	290	77	4	290	77	4	339	293	311	311	300	300	293	293	293	293	293
	Wavelength Range, µm	40-667	40-667	40-667	37-323	37-313	37-323	0.206-0.615	0.248-1.083	0.546-18.10	14-29	45-181	40-526	0.406-0.570	0.427-0.631	0.458-0.604	0.461,0.609	0.412,0.535
, , , , , , , , , , , , , , , , , , ,	Mcthod Used	R	В	В	В	Я	н	D	Ð	А.	H .	т, в	т, в	I	I	I	I	н
	Ycar	1968	1968	1968	1968	1968	1968	1927	1943	1933	1933	1973	1971	1934	1934	1934	1934	1934
	Author (s)	Hadni, A., Claudel, J., Morlot, G., and Strimer, P.	Hadni, A., et al.	Hadni, A., et al.	Hadni, A., et al.	Hadni, A., et al.	Hadni, A., et al.	Gyulai, Z.	Harting, H.	Korth, K.	Korth, K.	Eldridge, J.E. and Kembry, K.A.	Berg, J.I. and Bell, E.E.	Bauer, G.	Bauer, G.	Bauer, G.	Bauer, G.	Bauer, G.
	tr. Ref. 5. No.	1 25	3 25	3 25	1 25	5 25	3 25	1 27	30	0 100	100	103	104	86	98	86	86	86
	, Öŭ		~4	<i></i>	4		÷	-	.		10	11	12	13	14	15	16	17

TABLE 51. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dn/dT MEASUREMENTS OF KI

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

REFRACTIVE INDEX OF ALKALI HALIDES

455

TABLE 51. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dn/dT MEASUREMENTS OF KI (continued)

ļ		6.9	aged s room	ertainty	
	Specifications, and Remarks	Crystal; prismatic specimens of apex angles $35^{\circ}5'$, $41^{\circ}12'$ and $43^{\circ}12'$ r spectively; mean values of measurements from the three prisms werp resented in digitized values; temperature was not specified, room temperature assumed.	Crystal; four prismatic specimens with apex angles of about 45. 5°; ave: values of refractive indices were presented with uncertainties of less than 2 units in the fourth decimal place; temperature was not given, temperature assumed.	Single crystal; prismatic sample; digitized data were presented with unof ± 0.0004 .	Similar to above.
	Temperature, K	298	298	290	4
	Wavelength Range, µm	0.486-0.656	0.486-0.656	0.4358-0.6438	0.4358-0.6438
	Method Used	Q	Q	A	Ð
	Year	1874	1904	1968	1968
	Author (s)	Topsöe, H. and Christiansen, C.	Sprockheff, M.	Lawndes, R.P. and Martin, D.H.	Lawndes, R. P. and Martin, D. H.
	Ref No.	101	95	13	13
	Cur. No.	18	19	20	21

KI
OF
INDEX
THE REFRACTIVE
NO
EXPERIMENTAL DATA
TABLE 52.

[Wavelength, λ , μ m; Refractive Index, r]

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

REFRACTIVE INDEX OF ALKALI HALIDES

457

ц	<u>11 (cont.)</u> * .0 K	1.6852 1.6804 1.6786 1.6722		rre, T _m , K]
X	$\frac{\text{CURVE 2}}{\text{T} = 4}$	0.5461 0.5780 0.5893 0.5893 0.6438		an Temperatı
u	E 20* 0.0 K	1.7042 1.6917 1.6888 1.6888 1.6809 1.6686 1.6668	1. 0380 0 K 1. 7161 1. 7042	1.7006 1.6937 1.6937 dn/dT OF KI 'dT, 10 ⁻⁵ K ⁻¹ ; Me
~	$\frac{CURV}{T=29}$	0,4358 0,4678 0,4678 0,4800 0,5086 0,5461 0,5489 0,5789	$\begin{array}{c} 0.0438 \\ CURV \\ T = 4 \\ 0.4358 \\ 0.4678 \end{array}$	0.4800 0.5086 TAL DATA Ol tive Index, dn.
ц	<u>VE 17</u> 93. 2 K	1.507 1.466 1.466 <u>98.0 K</u> 1.6871	1.6584 1.6584 98.0 K 1.6880	1.6674 1.65935 53. EXPERIMEN rivative of Refrac
~	$\frac{CUR}{T=2}$	$\begin{array}{c} 0.4126\\ 0.5351\\ 1=2\\ T=2\\ 0.486\\ 0.486\end{array}$	0.656 T = 2 0.486	0.589 0.656 TABLE mperature De
u	<u>4 (cont.)</u> 3.2 K	1.612 1.607 3.2 K 1.610*	1. 592 1. 592 <u>3. 2 K</u> 1. 482	1.466 mgth, λ, µm; Те
×	$\frac{\text{CURVE 1}}{\text{T} = 29}$	$0.5424 \\ 0.6306 \\ T = 29 \\ 0.4581 \\ 0.4581 \\ 0.5500 \\ 0$	$\begin{array}{c} 0.5200 \\ 0.6039 \\ T = 29 \\ 1 = 29 \\ 0.4614 \end{array}$	0.6092 [Wavel
u	(cont.) 0 K	2.28 2.33 2.33 2.33 2.33 2.33 2.33 2.43 1.65 1.65	1.627 1.627 1.620 <u>2 K</u>	1.621
X	$\frac{\text{CURVE 12}}{\text{T} = 300.}$	526.0 526.3 T = 293. 0.4066	0.4459 0.5005 0.5694 CURVE T = 293.	0.4771 0.4771

γ	$\frac{\text{CURVE 8 (cont.)}}{\text{T}_{m} = 293.0 \text{ K}}$	0.58930 -3.8	0.65628 -4.1	0.72814 - 3.7	0.76820 -3.1	0.81095 -3.9	0.84247 - 3.1	0.91230 -3.5	1.01398 -4.5	1.08303 -4.3		CURVE 9	$T_{m} = 337.0 K$	I	0.546 -5.0			
ц	7E 8 3.0 K	13.1	10.2	3°3	1.4	0.0	-1.4	-1.7	-1.6	-2.2	-3.0	-3.1	-3.7	-2.8	-4.1	-3.0	-3.8	
ч	$T_{m} = \frac{CURV}{29}$.24828	. 25365	.26993	.28035	. 28936	. 29676	. 30215	. 31317	. 33415	. 36631	.39064	.40466	.43583	.48613	.54607	. 58756	

* Not shown in figure.

458

Source	Wavelength and Temperature Ranges	Dispersion Equation λ in μ m; ν in cm ⁻¹
Harting, H. [30] 1943	0.248-1.083 µm 293 K	$n = 1.61974 + \frac{0.01509}{(\lambda - 0.1737)^{1.28}}$
Ramachandran, G.N. [17] 1947	4.0-29.0 µm 311 K	$\mathbf{n}^2 = 2.6499 + \frac{2.530 \lambda^2}{\lambda^2 - (102.0)^2}$
Ramachandran, G.N. [17] 1947	0.253-0.615 µm 339 K	$n^{2} = 1.4532 + \frac{0.2150 \lambda^{2}}{\lambda^{2} - (0.1290)^{2}} + \frac{0.8027 \lambda^{2}}{\lambda^{2} - (0.1805)}$
		$+ \frac{0.1780 \lambda^2}{\lambda^2 - (0.2190)^2}$
Hadni, A., Caludel, J., Morlot, G., and Strimer, P. [25] 1968	40-667 µm 290 K	$n^{2}-k^{2} = \epsilon_{uv} + \sum_{i} 4\pi\rho_{i} \frac{1-\Omega_{i}^{2}}{(1-\Omega_{i}^{2})^{2} + (\delta_{i} \Omega_{i})^{2}},$ $2nk = \sum_{i} 4\pi\rho_{i} \frac{\delta_{i} \Omega_{i}}{2} * \frac{\delta_{i} \Omega_{i}}{2} + \frac{\delta_{i} \Omega_$
Present work 1975	0.25-50.0 μm 293 K	$n^{2} = 1.47285 + \frac{0.16512 \lambda^{2}}{\lambda^{2} - (0.129)^{2}} + \frac{0.41222 \lambda^{2}}{\lambda^{2} - (0.175)^{2}}$
· · · · ·		$+\frac{0.44103 \lambda^{2}}{\lambda^{2} - (0.187)^{2}} + \frac{0.16076 \lambda^{2}}{\lambda^{2} - (0.219)^{2}} + \frac{0.33571 \lambda^{2}}{\lambda^{2} - (69.44)^{2}} + \frac{1.92474 \lambda^{2}}{\lambda^{2} - (98.04)}$

TABLE 54. COMPARISON OF DISPERSION EQUATIONS PROPOSED FOR KI

3.13. Rubidium Fluoride, RbF

The refractive index of RbF is available only for a single spectral line, the sodium D line, measured by Spangenberg [45] in 1923 using the immersion method. One of the reasons for the scantiness of the data is difficulty in crystal growing. Though little attention was paid to the refractive index measurement, a number of other physical properties of RbF were investigated. Values of a few of them are given in tables 2 and 3. Although there is only a single value of n available, a dispersion equation can be formed by correlating the dielectric constants and the wavelengths of absorption peaks to the refractive index by the two-oscillator model. Using the values of known parameters from table 3 and the available value of n:

$$\begin{split} \epsilon_{\rm s} &= 6.48, \\ \epsilon_{\rm uv} &= 1.93, \\ \lambda_{\rm u} &= 0.124 \ \mu {\rm m} \ ({\rm average \ of \ two \ peaks}), \\ \lambda_{\rm l} &= 63.29 \ \mu {\rm m}, \\ n &= 1.398 \ {\rm for} \ \lambda &= 0.5893 \ \mu {\rm m} \end{split}$$

the value of the adjustable parameter A of eq (13) is found to be 1.395. This leads to a dispersion equation for RbF at 293 K in the transparent region from 0.15– 25.0 μ m.

$$n^{2} = 1.395 + \frac{0.535\lambda^{2}}{\lambda^{2} - (0.124)^{2}} + \frac{4.55\lambda^{2}}{\lambda^{2} - (63.29)^{2}}, \qquad (47)$$

where λ is in units of μ m.

No experimental data on dn/dT are available. Our empirical parameter values in table 5 were used to construct a dn/dT formula for the transparent region:

$$2n \frac{dn}{dT} = -8.25 (n^2 - 1) - 0.89 + \frac{1.581\lambda^4}{(\lambda^2 - 0.01742)^2} + \frac{227.50\lambda^4}{(\lambda^2 - 4005.62)^2}, \quad (48)$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m.

Equations (47) and (48) were used to generate the recommended values of refractive index and its wavelength and temperature derivatives. In the table of recommended values, more decimal places than needed are given, for tabular smoothness and internal comparison. The readers are advised to follow the criteria given below in order to find meaningful values from the table.

For refractive index:

Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, \pm
0.15- 0.21	2	0.02
0.21- 0.30	3	0.008
0.30- 0.40	3	0.006
0.40- 1.50	3	0.005
1.50 - 8.00	3	0.006
8.00-11.00	3	0.008
11.00-15.00	3	0.02
15.00 - 25.00	2	0.03
For dn/dT :		
0.15- 1.00	1	0.8
1.00-10.00	1	0.6
10.00 - 20.00	1	0.8
20.00 - 25.00	0	≥1

.

TABLE 55. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR RbF AT 293 K \ast

λ μm	n	-dn/dλ µm ⁻¹	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	n	-dn/dλ μm ⁻¹	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	<u> </u>	$-dn/d\lambda$ μm^{-1}	dn/dT 10 ⁻⁵ K ⁻¹
0.150 0.152 0.154 0.156 0.158	1.75 <u>633</u> 1.73 <u>044</u> 1.70 <u>772</u> 1.68 <u>762</u> 1.66971	13.84 <u>325</u> 12.09 <u>909</u> 10.66 <u>528</u> 9.47 <u>186</u> 8.46764	3.6 <u>8</u> 2.5 <u>4</u> 1.6 <u>8</u> 1.02 0.50	0.270 0.272 0.274 0.276 0.278	1.439 <u>76</u> 1.438 <u>85</u> 1.437 <u>95</u> 1.437 <u>08</u> 1.436 <u>24</u>	0.466 <u>41</u> 0.452 <u>94</u> 0.440 <u>02</u> 0.427 <u>60</u> 0.41567	-2.44 -2.44 -2.44 -2.44 -2.44 -2.44	0.700 0.720 0.740 0.760 0.780	1.395 <u>27</u> 1.394 <u>91</u> 1.394 <u>57</u> 1.394 <u>57</u> 1.393 <u>98</u>	0.018 <u>89</u> 0.017 <u>37</u> 0.016 <u>01</u> 0.014 <u>80</u> 0.01372	-2.5 <u>1</u> -2.5 <u>1</u> -2.5 <u>1</u> -2.5 <u>1</u> -2.5 <u>1</u>
0.160 0.162 0.164 0.166 0.168	1.65 <u>365</u> 1.63 <u>917</u> 1.62 <u>605</u> 1.61 <u>411</u> 1.60 <u>320</u>	7.61 <u>443</u> 6.88 <u>328</u> 6.25 <u>186</u> 5.70 <u>278</u> 5.22226	0.09 -0.25 -0.53 -0.76 -0.95	0.280 0.282 0.284 0.286 0.286	1.435 <u>42</u> 1.434 <u>62</u> 1.433 <u>85</u> 1.433 <u>09</u> 1.432 <u>36</u>	0.404 <u>21</u> 0.393 <u>18</u> 0.382 <u>57</u> 0.372 <u>35</u> 0.362 <u>52</u>	-2.45 -2.45 -2.45 -2.45 -2.45	0.800 0.820 0.840 0.860 0.880	1.39372 1.39347 1.39324 1.39302 1.39302 1.39282	0.01275 0.01188 0.01110 0.01038 0.00974	-2.51 -2.51 -2.51 -2.51 -2.51
0.170 0.172 0.174 0.176 8.178	1.59 <u>318</u> 1.58 <u>397</u> 1.57 <u>545</u> 1.56 <u>757</u> 1.56025	4.79 <u>934</u> 4.42 <u>513</u> 4.09 <u>243</u> 3.79 <u>531</u> 3.52 888	-1.12 -1.26 -1.38 -1.49 -1.58	D.290 C.292 D.294 C.296 D.296	1.431 <u>64</u> 1.430 <u>95</u> 1.430 <u>27</u> 1.429 <u>61</u> 1.42896	0.353 <u>04</u> 0.343 <u>91</u> 0.335 <u>10</u> 0.326 <u>61</u> 0.31041	-2.4 <u>6</u> -2.4 <u>6</u> -2.4 <u>6</u> -2.4 <u>6</u> -2.4 <u>6</u>	0.900 0.920 0.940 0.960 0.980	1.392 <u>63</u> 1.3924£ 1.392 <u>29</u> 1.392 <u>13</u> 1.391 <u>98</u>	$\begin{array}{c} 0.009\overline{15} \\ 0.008\overline{62} \\ 0.008\overline{13} \\ 0.007\overline{69} \\ 0.007\overline{29} \end{array}$	-2.51 -2.51 -2.51 -2.51 -2.51
0.180 0.182 0.184 0.186 0.188	1.55 <u>344</u> 1.54 <u>708</u> 1.54 <u>114</u> 1.53 <u>557</u> 1.53034	3.28 <u>904</u> 3.07 <u>238</u> 2.87 <u>601</u> 2.69 <u>747</u> 2.53 <u>468</u>	-1.6 <u>6</u> -1.7 <u>3</u> -1.7 <u>9</u> -1.8 <u>5</u> -1.90	0.300 0.305 0.310 0.315 0.320	1.428 <u>33</u> 1.426 <u>83</u> 1.425 <u>41</u> 1.425 <u>41</u> 1.422 <u>82</u>	0.310 <u>50</u> 0.291 <u>89</u> 0.274 <u>79</u> 0.259 <u>06</u> 0.244 <u>55</u>	-2.4 E -2.47 -2.47 -2.47 -2.48	1.000 1.050 1.100 1.150 1.200	1.391 <u>84</u> 1.391 <u>52</u> 1.391 <u>23</u> 1.390 <u>97</u> 1.390 <u>73</u>	$\begin{array}{r} 0.006\overline{91} \\ 0.006\overline{11} \\ 0.005\overline{46} \\ 0.004\overline{92} \\ 0.004\overline{48} \end{array}$	-2.51 -2.51 -2.51 -2.51 -2.51 -2.51
0.190 0.192 0.194 0.195 0.198	1.52 <u>542</u> 1.52 <u>078</u> 1.51 <u>641</u> 1.51 <u>228</u> 1.50837	$2.38\frac{584}{940}$ $2.12\frac{403}{2.00857}$ 1.90201	-1.9 <u>4</u> -1.9 <u>9</u> -2.0 <u>2</u> -2.0 <u>5</u> -2.08	0.325 0.330 0.335 0.340 0.345	$1.421\overline{63} \\ 1.42050 \\ 1.41944 \\ 1.41843 \\ 1.41843 \\ 1.41747 $	0.231 <u>15</u> 0.2187 <u>5</u> 0.207 <u>25</u> 0.196 <u>57</u> 0.18664	-2.48 -2.48 -2.48 -2.48 -2.48 -2.48	1.250 1.300 1.350 1.400 1.458	1.390 <u>52</u> 1.390 <u>32</u> 1.390 <u>14</u> 1.389 <u>97</u> 1.38980	$\begin{array}{r} 0.004\overline{11} \\ 0.003\underline{81} \\ 0.003\underline{55} \\ 0.003\underline{55} \\ 0.003\underline{34} \\ 0.003\underline{16} \end{array}$	-2.51 -2.51 -2.51 -2.51 -2.51
0.200 0.202 0.204 0.206 0.208	1.50 <u>467</u> 1.50 <u>115</u> 1.49 <u>781</u> 1.49 <u>464</u> 1.49162	1.80 <u>346</u> 1.71 <u>213</u> 1.627 <u>36</u> 1.54 <u>852</u> 1.47508	-2.1 <u>1</u> -2.1 <u>4</u> -2.1 <u>6</u> -2.1 <u>8</u> -2.20	0.350 0.355 0.360 0.365 0.365 0.370	1.416561.415701.414871.414091.41334	0.17740 0.16877 0.16071 0.153 <u>18</u> 0.14612	-2.49 -2.49 -2.49 -2.49 -2.49 -2.49	1.500 1.550 1.600 1.650 1.700	1.389 <u>65</u> 1.389 <u>50</u> 1.389 <u>36</u> 1.389 <u>36</u> 1.389 <u>22</u> 1.38909	0.00301 0.00288 0.00277 0.00268 0.00268	-2.51 -2.51 -2.51 -2.51 -2.50
0.210 0.212 0.214 0.216 0.218	1.48874 1.48599 1.483 <u>36</u> 1.480 <u>85</u> 1.47846	1.406 <u>56</u> 1.342 <u>54</u> 1.282 <u>63</u> 1.226 <u>49</u> 1.17381	-2.22 -2.23 -2.25 -2.26 -2.28	0.375 0.380 0.385 0.390 0.395	1.412 <u>63</u> 1.411 <u>95</u> 1.411 <u>29</u> 1.410 <u>67</u> 1.41007	0.139 <u>51</u> 0.133 <u>30</u> 0.127 <u>46</u> 0.121 <u>97</u> 0.11681	-2.4 <u>9</u> -2.4 <u>9</u> -2.50 -2.50	1.750 1.800 1.850 1.900 1.950	1.388 <u>96</u> 1.388 <u>84</u> 1.388 <u>71</u> 1.388 <u>59</u> 1.38847	0.00255 0.00250 0.00246 0.00243 0.00240	-2.50 -2.50 -2.50 -2.50 -2.50
0.220 0.222 0.224 0.226 0.228	1.476 <u>16</u> 1.473 <u>96</u> 1.471 <u>84</u> 1.469 <u>82</u> 1.46787	1.124 <u>33</u> 1.07778 1.033 <u>94</u> 0.992 <u>62</u> 0.953 <u>61</u>	-2.29 -2.30 -2.31 -2.32 -2.33	0.400 0.410 0.420 0.430 0.440	1.409 <u>50</u> 1.408 <u>43</u> 1.407 <u>44</u> 1.406 <u>53</u> 1.40568	0.111 <u>93</u> 0.103 <u>00</u> 0.095 <u>01</u> 0.087 <u>86</u> 0.08142	-2.50 -2.50 -2.50 -2.50 -2.50	2.000 2.050 2.100 2.150 2.200	1.388 <u>35</u> 1.388 <u>23</u> 1.388 <u>11</u> 1.387 <u>99</u> 1.38788	0.002 <u>39</u> 0.002 <u>37</u> 0.002 <u>37</u> 0.002 <u>36</u> 0.002 <u>36</u>	-2.50 -2.50 -2.50 -2.50 -2.50
0.230 0.232 0.234 0.236 0.238	1.465 <u>00</u> 1.464 <u>20</u> 1.462 <u>47</u> 1.460 <u>81</u> 1.459 <u>20</u>	0.91676 0.881 <u>91</u> 0.848 <u>92</u> 0.817 <u>66</u> 0.78801	-2.34 -2.35 -2.35 -2.36 -2.37	0.450 0.46B 0.470 0.480 0.490	1.404 <u>90</u> 1.404 <u>17</u> 1.403 <u>49</u> 1.402 <u>85</u> 1.4022E	0.07561 0.070 <u>36</u> 0.065 <u>60</u> 0.061 <u>27</u> 0.057 <u>32</u>	-2.50 -2.50 -2.50 -2.50 -2.50	2.250 2.300 2.350 2.400 2.450	1.38776 1.38764 1.38752 1.38740 1.38728	$\begin{array}{c} 0.00237\\ 0.00238\\ 0.00239\\ 0.00240\\ 0.00242\\ 0.00242\\ \end{array}$	-2.50 -2.50 -2.50 -2.50 -2.50
0.240 0.242 0.244 0.246 0.248	1.45/05 1.4561E 1.45472 1.45333 1.45199	0.733 <u>14</u> 0.707 <u>73</u> 0.663 <u>55</u> 0.660 <u>52</u>		0.500 0.510 0.520 0.530 0.540	1.401/1 1.40118 1.40070 1.40024 1.39980	0.05371 0.05041 0.04738 0.04459 0.04203	-2.51 -2.51 -2.51 -2.51 -2.51	2.500 2.550 2.600 2.650 2.700	1.38/10 1.38704 1.38691 1.38679 1.38666	0.00243 0.00245 0.00248 0.00250 0.00250	-2.50 -2.50 -2.49 -2.49 -2.49
0.250	1.44943 1.44943 1.44822 1.44704 1.44704	0.61765 0.59768 0.57862 0.56040	-2.4 <u>0</u> -2.4 <u>0</u> -2.4 <u>1</u> -2.4 <u>1</u> -2.4 <u>2</u>	0.500	$1.39940 \\ 1.39901 \\ 1.39864 \\ 1.39864 \\ 1.39797 \\ 1.39797 \\ 1.39757 \\ 1.39$	0.03986 0.03748 0.03546 0.03546 0.03358 0.03184	-2.51 -2.51 -2.51 -2.51 -2.51	2.750 2.800 2.850 2.900 2.950	1.38654 1.38641 1.38628 1.38615 1.38602		-2.49 -2.49 -2.49 -2.49 -2.49 -2.49
0.262 0.264 0.265 0.268	1.44373 1.44269 1.44169 1.44071	0.526 <u>32</u> 0.510 <u>37</u> 0.495 <u>09</u> 0.48045	-2.4 <u>3</u> -2.4 <u>3</u> -2.4 <u>3</u> -2.4 <u>3</u>	0.620 0.640 0.660 0.680	1.397 <u>09</u> 1.396 <u>57</u> 1.396 <u>09</u> 1.39566	0.027 <u>31</u> 0.024 <u>78</u> 0.022 <u>56</u> 0.02061	-2.5 <u>1</u> -2.5 <u>1</u> -2.5 <u>1</u> -2.5 <u>1</u>	3.050 3.100 3.150 3.200	1.385 <u>75</u> 1.385 <u>61</u> 1.385 <u>47</u> 1.385 <u>33</u>	0.002 <u>72</u> 0.002 <u>75</u> 0.002 <u>79</u> 0.00282	-2.4 <u>9</u> -2.4 <u>9</u> -2.4 <u>9</u> -2.4 <u>9</u> -2.4 <u>9</u>

TABLE 55.RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND
TEMPERATURE DERIVATIVES FOR RbF (continued)*

		4- 1-12	an /am	``		dn/d	dn/dT			dn/d	dn /dT
'λ	n	-an/al	an/ai	λ.	n	-an/ax	un/u1	~	n	-an/ax	01/01
um		μ m ⁻¹	10 - 5 K - 1	цm	_	um -	10-° K-1	μ m	-	um - i	10 -⇒ K -
				•							
7 750	4 74540	0 00305	- 2 4 4	6 400	4 27570	0 005 17	-2 76	42 600	4 74005	0 04476	-1 07
3.290	1.36519	0.00205	-2.40	0.0400	1.07200	0.00543	-2.03	12.000	1.01792	0.011/0	-1.41
3.300	1.38505	0.00289	-2.48	6.500	1.37175	0.00552	-2.39	12.800	1.31758	0.01200	-1.88
3.350	1.38490	0.00292	-2.48	6.680	1.37119	0.00561	-2.35	13.000	1.31515	0.01224	-1.86
3 4 6 6	4 38475	0 00 206	-2.48	6 700	1.37063	0.00570	-2.38	13.200	1. 31268	0 01210	-4 97
3.400	1.004/5	0.00230	-2.10		1.37005	0.00570	- 2	130200	1. 21200	0.01245	-1.00
3.450	1.38461	0.00299	-2.48	5.844	1.3/805	0.005/9	-2.30	13.400	1.31010	0.012/4	-1.80
3,500	1.38445	0.09303	-2.48	6.900	1.36947	0.00588	-2.37	13.600	1.30758	0.01299	-1.77
3 550	1 701 70	0 00 300		7 868	4 76 9 0 0	0 005 07	- 2 77	47 900	4 30.00	0 04 7 77	
3.558	1.30430	0.00300	-2.40	/.000	1.30000	0.00997	-2.01	10.000	1.30436	0.01354	-1• <u>[4</u>
3.600	1.38415	0.00310	-2.48	7.100	1.36827	0.00606	-2.36	14.000	1.30229	0.01350	-1.71
3.650	1.38399	0.00314	-2.48	7.200	1.36766	0.00615	-2.3E	14.200	1.29956	0.01376	-1.67
3.700	1 78787	0.00318	-2.48	7.300	1.76704	0.00625	-2.35	14.400	1.20678	0.01403	-1.57
5.100	1.30303		-2040	1.0000	1000104	0.00025	2.000	140400	1.55,10	0.01402	-1+64
			_								_
3.750	1.38367	0.00321	-2.47	7.400	1.36641	0.00€34	-2.35	14.600	1.29395	0.01430	-1.60
3.800	1.38351	0.00325	-2.47	7.500	1.36578	0.00643	-2.34	14.808	1.29106	0.01457	-1.57
7 950	4 78775	0 00 720	-2 17	7 600	4 76547	0 00652	-2 31	15 000	4 28842	0 04 4 86	4 57
3.890	1.30335	0.00323	-2.47	7.000	1.30913	0.00052	-2.0.7	19.000	1.20012	0.01405	-1.55
3.900	1.38318	0.003 <u>33</u>	-2.4 <u>/</u>	7.700	1.36447	0.00662	-2.33	15.200	1.28512	0.01513	-1.49
3,950	1.38302	0.00337	-2.47	7.800	1.36380	0.00671	-2.33	15.400	1.2820E	0.01542	-1.45
4.000	1.38285	0.00344	-2.47	7.000	1.36313	0.00684	-2.32	15.600	1.27805	0.01574	-1.47
	1.30203	0.00.0	-2.41	7.500	1.30313	0.00001	- 20 3 2	15.000	1.27035	0.012/1	
4.050	1.38268	0.00344	-2.47	8.000	1.36244	0.00690	-2.32	15.800	1.2/5/8	0.01600	-1.35
4.100	1.38250	0.00348	-2.47	8.100	1.36175	0.00699	-2.31	16.000	1.27255	0.01630	-1.32
4.150	1.38233	0.00352	-2.47	8.288	1.36104	0.00709	-2.31	16.288	1.26926	0.01660	-1.27
4.200	1.38215	0.00316	-2.45	8.700	1.36033	0.00719	-2.30	16.400	1.26591	0.01691	-1.00
40200	TOOLT	0.000.0		0.000	1.000000		2000	100400	1020331	0.010.01	- 1
		• • • • • •	a . 7								=
4.250	1.38197	0.00360	-2.48	8.400	1.35961	0.00728	-2.29	16,600	1.26250	0.01723	-1.17
4.300	1.38179	0.00364	-2.4E	8.500	1.35887	0.00738	-2.29	16.800	1.25902	0.01754	-1.12
4.350	1.38161	0.003EA	= 2.45	8.600	1.35813	0.00748	-2.28	17.000	1.25548	0.01797	-1 07
4 6 0 5 0	4 704101	0.000000		0.000	4 363 34	0.00740		17.000	1.29940	0.01/0/	-1.07
4.400	1.30142	0.00372	-2-4-	A./00	1+35/36	0.00/5/	-2.21	17.200	1.25187	0.01820	-1.02
4.450	1.38124	0.00376	-2.46	8.860	1.35t62	0.00/6/	-2.21	17.400	1.24820	0.01853	-0.96
4.500	1.38105	0.00380	-2.4Ē	8.900	1.35584	0.00777	-2.2E	17.600	1.24446	0.01887	-0.90
4.550	1.38085	0.00385	-2-48	9.000	1.35506	0.00787	-2.25	17.800	1.24065	0.01022	-0.84
	4 790 66	0 00 200	-2 1 -	0 480	4 75/ 27	0 00707	-2.35	40 000	4 07 677	3 04 057	
4.000	1.300000	0.00309	-2.4 <u>2</u>	9.100	1.35427	0.00/9/	-2.25	18.000	1.23077	0.01957	-0.11
4.650	1.380 <u>47</u>	0.003 <u>93</u>	-2-45	9.200	1.35347	0.00807	-2.24	18.200	1.23282	0.01993	-0.71
4.700	1.38027	0.00397	-2.45	9.300	1.35266	0.00817	-2.23	18.400	1.22880	0.02030	-0.64
							· .				
4 758	1 38007	0.00481	-2.15	0 488	1 351 81	0 00 8 27	-2 27	40 600	4 33476	0 0 0 0 6 7	-0 57
	4 33001/	0.004.01	- 20 42	5.400	1 0 0 1 04	4.00021	-2.23	10.000	1.22410	0.02007	-0.57
4 - 800	1.3/98/	0.00405	-2.45	9.500	1.35100	0.00837	-2.22	18.800	1.22053	0.02105	-0.50
4.850	1.37966	0.00409	-2.45	9.600	1.35016	0.00847	-2.21	19.000	1.21628	0.02143	-0.42
4.900	1.37946	0.00413	-2.45	9.700	1.34931	0.00857	-2.20	19.200	1.21196	0.02183	-8.35
4.950	1.37925	0.00418	·2. 4L	0.800	1.34845	0.00867	-2.20	10.400	1 20755	0 02222	-0.27
					1000049			120400	1020199	*******	-0.661
	4 770 4	a aa. 77	· .				· · · -	·			
5.000	1.37904	0.004 <u>22</u>	-2.44	9.900	1.347 <u>58</u>	0.00878	-2.19	19.600	1.20306	0.02264	-0.18
5.100	1.37861	0.00430	-2.44	10.000	1.34669	0.00888	-2.18	19.800	1.19849	0.02306	-0-10
5.200	1.37818	0.00479	-2.44	10.200	1.34490	0.00909	-2.16	28.008	1.10384	0.02760	-0 04
E 700	4 7777	0 004 47	- 2 4 3	40 400	4 74 706	0.00030			1.1.5004	0.02.049	-0.01
5.300	1.0///4	0.00447	-2.43	10.400	1.34300	0.00930	-2-15	20.500	1.18182	0.02459	0.23
5.400	1.37729	0.00456	-2.43	10.600	1.34118	0.00951	-2.13	21.000	1.16924	0.02576	0.49
5.500	1.37683	0.004 24	-2.43	10.800	1.33926	0.00972	-2.11	21.500	1.15 60 5	0.02700	0.77
5.600	1.37636	0.00477	-2.42	11.000	1.33720	0.0000	-2.05	22 0.00	4 44 33 7	0 0 2 8 7 4	
5 700	4 77 5 6 6	0 00475		11.0000	4 335 65	0.00334	- <u></u>	22.000	1.14223	0.02031	1.08
9.700	1.3/ 208	0.00482	-2.42	11.200	1.33528	u.010 <u>16</u>	-2.07	22.500	1.12773	0.02 <u>9</u> 70	1.42
5.800	1.375 <u>39</u>	0.004 <u>9</u> 0	-2.42	11.400	1.33323	0.01038	-2.05	23.000	1.11252	0.03117	1.80
5.900	1.37490	0.00499	-2.41	11.600	1.33113	0.01060	-2.03	23.500	1.09654	0.03275	2.21
6.000	1.37440	0.80508	-2.41	11.800	1.32898	0.010.73	-2.01	24.000	1.07974	0.03666	2.66
6.100	1.373.00	0.00644	-2 /4	42 000	4 726 00	0 044000	4 00	24. 500	4 00 214	0.03444	2.00
C + 1 0 0	1.01.000	0.00910	-2041	12.000	1.32000	0.01100	-1.90	24.508	1.00208	U.U.3626	3.16
c•200	1.3/335	0.00525	-2.40	12.200	1.32456	0.01129	-1.96	25.000	1.04347	0.03821	3.71
6.300	1.37283	0.00534	-2.40	12.400	1.32228	0.01152	-1.94				

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.13. The number of digits with an overstrike are not relevant to accuracy of the data.

FIGURE 44. Refractive Index of RbF

FIGURE 45. $dn/d\lambda$ of RbF

н. н. ц

TABLE 56. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dh/dT MEASUREMENTS OF RDF

		p
	Specifications, and Remarks	RbF was produced by the reaction $2RbCo_3 + 2HF \rightarrow 2RbF + H_2CO_3$ in a Picrucible; refractive index for mean of sodium D lines was determin by the immersion method.
	Temperature, K	295
	Wavelength Range, µm	0, 5893
	Method Used	W
-	Year	1923
	Author (s)	Spangenberg, K.
	. Ref. No.	45
	Cur No.	 ,

TABLE 57. TXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF RbF

[Wavelength, λ , μ m; Refractive Index, n]

T = 295.2 K0.5893 1.398

~

3.14. Rubidium Chloride, RbCl

Rubidium chloride is hygroscopic and must be carefully handled to preserve the surface polish. The transmission region of RbCl is approximately from 0.18 to 40 µm. The gradual decrease in transmittance at shorter wavelengths is due to surface scattering that is caused by the roughness of the surface, and not to absorption or scattering within the material itself [105].

The available data on the refractive index of RbCl are very limited; only three reports were found. Sprockhoff [95], in 1904, was probably the first to measure the refractive index of RbCl for three spectral lines (the C, D, and F lines), by the minimum deviation method. These three values remained unchecked until Gyulai [27], in 1927, performed experiments for an extended wavelength region from 0.19 to 0.58 μ m by the deviation method at an elevated temperature, 321 K. The accuracy of his measurements is one unit of the third decimal place, but the reported values are given to the fourth place for tabular smoothness. The refractive index for sodium D line was remeasured using the immersion method at room temperature by Wulff and Heigl [87] in 1928, and the result deviated from that of Sprockhoff only in the fourth decimal place. In addition, the temperature derivative, dn/dT, for sodium D line in the temperature range from 296 to 298 K was determined, and a value of $-1.0 \times 10^{-4} \text{K}^{-1}$ was reported. This value is obviously inaccurate.

The values reported by Gyulai [27] were adopted in the present work to generate reference data on the refractive index of RbCl. Since the data was obtained at a temperature of 321 K, dn/dT is needed to reduce this set of data to 293 K. No experimental data on daldT are available to carry out the corrections, but our empirical findings permit reasonable estimation of dn/dT for a wide wavelength range. Using the predicted parameters in table 5, the following dn/dT formula was constructed for RbCl:

$$2n \frac{dn}{dT} = -10.80(n^2 - 1) - 0.84 + \frac{2.006\lambda^4}{(\lambda^2 - 0.02756)^2} + \frac{186.32\lambda^4}{(\lambda^2 - 7368.51)^2}, \quad (49)$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m. This equation was used to reduce Gyulai's data to 293 K. Radharkrishnan [48] worked out a dispersion formula

(shown in table 62) expressing the refractive indices of

RbCl in terms of its characteristic absorption peaks, using Gyulai's data. The wavelengths of ultraviolet absorption peaks, indicated by his equation, agree with the measured values listed in table 3. However, no information concerning the infrared absorption peak and dielectric constants was given. This leads to large uncertainties in the long wavelength region. Since the wavelength of the fundamental infrared absorption peak and the dielectric constants for high and low frequencies are now available (see table 3), a better formula of the Sellmeier type can be constructed, and the extrapolation into the infrared can be carried out with less uncertainty. By using the known parameters with eq (10), the least-squares fitting of Gyulai's data (reduced to 293 K) yielded a dispersion equation for RbCl at 293 K in the transparent region, 0.18-40.0 µm.

 $n^2 = 1.47558$

$$+\frac{0.56600\,\lambda^{\circ}}{\lambda^{2}-(0.138)^{2}}+\frac{0.14493\,\lambda^{\circ}}{\lambda^{2}-(0.166)^{2}}+\frac{2.74000\,\lambda^{\circ}}{\lambda^{2}-(85.84)^{2}},$$
(50)

where λ is in units of μ m.

Equations (49) and (50) are used to generate the reference data given in the table of recommended values on refractive index, $dn/d\lambda$ and dn/dT. In this table, more decimal places than needed are given for the purpose of tabular smoothness. In order to use this table properly, the readers should follow the criteria given helow.

For refractive index:

Wavelength range	Meaningful	Estimated
(µm)	decimal place	uncertainty, \pm
0.18- 0.20	2	0.02
0.20- 0.25	3	0.005
0.25- 0.35	3	0.004
0.35- 1.50	3	0.002
1.50-10.00	3	0.004
10.00-21.00	3	0.008
21.00-40.00	2	0.02
For dn/dT :		
0.18- 0.20	0	≥1
0.20-30.00	1	0.5
30.00-40.00	0	≥1

TABLE 58. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR RbCl AT 293 K *

λ μm	n	-dn/dλ μm ⁻ⁱ	dn/dT 10 ⁻⁵ K ⁻¹	λ µm	n	-dn/dλ µm ⁻ⁱ	dn/dT 10 ⁻⁵ K ⁻¹	λ μnn	n	$-dn/d\lambda$ μ^{m-1}	dn/dT 10 ⁻⁵ K ⁻¹
0.180 0.182 0.184 0.186 0.188	1.95 <u>396</u> 1.91 <u>553</u> 1.88 <u>364</u> 1.85 <u>657</u> 1.83318	21.24 <u>517</u> 17.40 <u>495</u> 14.62 <u>800</u> 12.53 <u>754</u> 10.91 <u>305</u>	$ \begin{array}{r} 15 \cdot \overline{0} \ \overline{0} \\ 10 \cdot \overline{81} \\ 7 \cdot \overline{87} \\ 5 \cdot \overline{72} \\ 4 \cdot \overline{10} \\ \end{array} $	0.300 0.305 0.310 0.315 0.320	1.549 <u>94</u> 1.546 <u>98</u> 1.544 <u>22</u> 1.541 <u>63</u> 1.53928	0.612 <u>69</u> 0.572 <u>05</u> 0.535 <u>14</u> 0.501 <u>52</u> 0.47081	-3.8 <u>1</u> -3.8 <u>3</u> -3.8 <u>4</u> -3.8 <u>5</u> -3.8 <u>5</u>	1.000 1.050 1.100 1.150 1.200	1.483 <u>65</u> 1.483 <u>1 €</u> 1.482 <u>73</u> 1.482 <u>35</u> 1.482 <u>35</u>	0.010 0.00921 0.00803 0.00706 0.00706	-3.94 -3.94 -3.94 -3.94 -3.94
0.190 0.192 0.194 0.196 0.198	1.81 <u>269</u> 1.79 <u>455</u> 1.77 <u>832</u> 1.76 <u>370</u> 1.75043	9.61 <u>788</u> 8.56 <u>336</u> 7.68 <u>963</u> 6.95 <u>498</u> 6.32 <u>948</u>	2.85 1.86 1.07 0.42 -0.11	0.325 0.330 0.335 0.340 0.345	1.536 <u>91</u> 1.534 <u>77</u> 1.53274 1.530 <u>83</u> 1.52903	0.442 <u>70</u> 0.416 <u>90</u> 0.393 <u>16</u> 0.371 <u>29</u> 0.35108	-3.8 <u>6</u> -3.8 <u>7</u> -3.8 <u>8</u> -3.8 <u>8</u> -3.89	1.250 1.300 1.350 1.400 1.450	1.48172 1.481 <u>46</u> 1.481 <u>22</u> 1.481 <u>01</u> 1.48082	0.005 <u>56</u> 0.004 <u>98</u> 0.004 <u>49</u> 0.004 <u>07</u> 0.00370	-3.9 <u>4</u> -3.9 <u>4</u> -3.9 <u>4</u> -3.9 <u>4</u> -3.9 <u>4</u>
0.200 0.202 0.204 0.206 0.208	1.738 <u>32</u> 1.72722 1.71699 1.707 <u>53</u> 1.69875	5.791 <u>14</u> 5.323 <u>48</u> 4.913 <u>87</u> 4.552 <u>51</u> 4.231£8	-0.5 <u>6</u> -0.9 <u>3</u> -1.2 <u>5</u> -1.5 <u>2</u> -1.76	0.350 0.355 0.360 0.365 0.370	1.527 <u>32</u> 1.52570 1.524 <u>17</u> 1.522 <u>71</u> 1.521 <u>32</u>	0.332 <u>39</u> 0.315 <u>06</u> 0.298 <u>97</u> 0.284 <u>00</u> 0.284 <u>00</u>	-3.89 -3.90 -3.90 -3.91 -3.91	1.500 1.550 1.600 1.650 1.700	1.480 <u>64</u> 1.480 <u>48</u> 1.480 <u>33</u> 1.480 <u>19</u> 1.4800€	0.003 <u>39</u> 0.003 <u>12</u> 0.002 <u>88</u> 0.002 <u>88</u> 0.002 <u>67</u> 0.00249	- 3.94 - 3.94 - 3.94 - 3.94 - 3.94 - 3.94
0.210 0.212 0.214 0.216 0.218	1.690 <u>58</u> 1.68295 1.67581 1.66911 1.66281	3.945 <u>28</u> 3.688 <u>06</u> 3.456 <u>20</u> 3.246 <u>25</u> 3.05540	-1.97 -2.15 -2.30 -2.44 -2.57	0.375 0.380 0.385 0.390 0.395	1.520 <u>01</u> 1.51875 1.517 <u>56</u> 1.516 <u>42</u> 1.515 <u>33</u>	0.257 <u>05</u> 0.244 <u>91</u> 0.233 <u>54</u> 0.222 <u>90</u> 0.21291	-3.9 <u>1</u> -3.9 <u>1</u> -3.9 <u>2</u> -3.9 <u>2</u> -3.9 <u>2</u>	1.750 1.800 1.850 1.900 1.950	1.479 <u>94</u> 1.479 <u>82</u> 1.479 <u>72</u> 1.479 <u>52</u> 1.47952	0.802 <u>33</u> 0.002 <u>19</u> 0.002 <u>06</u> 0.001 <u>95</u> 0.001 <u>85</u>	-3.94 -3.94 -3.94 -3.94 -3.94
0.220 0.222 0.224 0.226 0.228	1.656 <u>88</u> 1.651 <u>28</u> 1.645 <u>98</u> 1.640 <u>97</u> 1.63621	2.881 <u>30</u> 2.721 <u>97</u> 2.575 <u>73</u> 2.441 <u>11</u> 2.31689	-2.6 <u>8</u> -2.77 -2.86 -2.94 -3.91	0.400 8.410 0.420 0.430 0.440	$1.514\overline{29} \\ 1.51234 \\ 1.51055 \\ 1.50891 \\ 1.50739 \\ 1$	0.203 <u>54</u> 0.186 <u>44</u> 0.171 <u>26</u> 0.157 <u>74</u> 0.145 65	-3.9 <u>2</u> -3.9 <u>2</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u>	2.000 2.050 2.100 2.150 2.200	1.479 <u>43</u> 1.479 <u>35</u> 1.479 <u>26</u> 1.479 <u>18</u> 1.479 <u>11</u>	0.001 <u>76</u> 0.001 <u>69</u> 0.001 <u>62</u> 0.001 <u>56</u> 0.001 <u>56</u>	-3.94 -3.94 -3.93 -3.93 -3.93 -3.93
0.230 0.232 0.234 0.236 0.238	1.631 <u>69</u> 1.62740 1.623 <u>31</u> 1.619 <u>41</u> 1.61569	2.201 <u>98</u> 2.095 <u>44</u> 1.996 <u>47</u> 1.904 <u>34</u> 1.81842	-3.08 -3.14 -3.19 -3.24 -3.29	0.450 0.460 0.470 0.480 0.480	1.505 <u>99</u> 1.504 <u>69</u> 1.503 <u>49</u> 1.502 <u>36</u> 1.50132	0.134 <u>60</u> 0.125 <u>03</u> 0.116 <u>21</u> 0.108 <u>22</u> 0.10097	-3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>4</u> -3.9 <u>4</u> -3.94	2.250 2.300 2.350 2.400 2.450	1.479 <u>03</u> 1.478 <u>96</u> 1.478 <u>89</u> 1.478 <u>83</u> 1.478 <u>83</u>	$\begin{array}{c} 0.001 \overline{45} \\ 0.001 \overline{41} \\ 0.001 \overline{37} \\ 0.001 \overline{33} \\ 0.001 \overline{30} \end{array}$	-3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.93
0.240 0.242 0.244 0.246 0.248	1.612 <u>13</u> 1.608 <u>73</u> 1.605 <u>47</u> 1.602 <u>36</u> 1.59937	1,738 <u>15</u> 1.663 <u>04</u> 1.592 <u>64</u> 1.526 <u>56</u> 1.46446	-3.3 <u>3</u> -3.37 -3.4 <u>0</u> -3.4 <u>3</u> -3.4 <u>5</u>	0.500 0.510 0.520 0.530 0.540	1.500 <u>34</u> 1.499 <u>43</u> 1.498 <u>57</u> 1.497 <u>77</u> 1.49702	0.094 <u>36</u> 0.088 <u>34</u> 0.082 <u>83</u> 0.077 <u>78</u> 0.07314	- 3 • 94 - 3 • 94 - 3 • 94 - 3 • 94 - 3 • 94	2.500 2.550 2.600 2.650 2.700	1.478 <u>70</u> 1.478 <u>63</u> 1.478 <u>57</u> 1.478 <u>51</u> 1.47845	$\begin{array}{c} 0.001 \overline{27} \\ 0.001 \overline{25} \\ 0.001 \overline{23} \\ 0.001 \overline{21} \\ 0.001 \overline{19} \end{array}$	-3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.93
0.250 0.252 0.254 0.256 0.258	1.596 <u>50</u> 1.593 <u>74</u> 1.591 <u>09</u> 1.588 <u>54</u> 1.58609	$1.406 \overline{01} \\ 1.350 \overline{92} \\ 1.298 \overline{95} \\ 1.249 \overline{85} \\ 1.203 \overline{43} $	-3.4 <u>9</u> -3.5 <u>2</u> -3.5 <u>4</u> -3.5 <u>6</u> -3.58	0.550 0.560 0.570 0.580 0.580	1.496 <u>31</u> 1.495 <u>64</u> 1.495 <u>01</u> 1.494 <u>41</u> 1.49385	0.068 <u>87</u> 0.064 <u>93</u> 0.061 <u>29</u> 0.057 <u>93</u> 0.05481	-3.94 -3.94 -3.94 -3.94 -3.94	2.750 2.800 2.850 2.900 2.900	1.478 <u>39</u> 1.478 <u>33</u> 1.478 <u>27</u> 1.478 <u>22</u> 1.478 <u>16</u>	$\begin{array}{r} 0.001\overline{18} \\ 0.001\overline{16} \\ 0.001\overline{15} \\ 0.001\overline{15} \\ 0.001\overline{14} \\ 0.001\overline{14} \end{array}$	-3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u>
0.260 0.262 0.264 0.266 0.268	1.583 <u>73</u> 1.581 <u>45</u> 1.579 <u>25</u> 1.577 <u>13</u> 1.57509	$1.159\overline{47} \\ 1.117\overline{23} \\ 1.078\overline{32} \\ 1.040\overline{81} \\ 1.005\overline{17}$	-3.60 -3.62 -3.64 -3.65 -3.65	0.600 0.620 0.640 0.660 0.680	1.493 <u>31</u> 1.492 <u>33</u> 1.491 <u>44</u> 1.490 <u>64</u> 1.489 <u>91</u>	D.051 <u>92</u> D.046 <u>73</u> D.042 <u>22</u> D.038 <u>29</u> D.034 <u>84</u>	- 3.94 - 3.94 - 3.94 - 3.94 - 3.94 - 3.94	3.000 3.050 3.100 3.150 3.200	1.478 <u>10</u> 1.478 <u>05</u> 1.477 <u>99</u> 1.477 <u>94</u> 1.47788	$\begin{array}{c} 0.001\overline{13} \\ 0.001\underline{12} \\ 0.001\underline{12} \\ 0.001\underline{12} \\ 0.001\underline{12} \\ 0.001\underline{11} \end{array}$	-3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.93
0.270 0.272 0.274 0.276 0.278	1.573 <u>11</u> 1.571 <u>20</u> 1.569 <u>36</u> 1.567 <u>57</u> 1.56584	0.971 <u>27</u> 0.939 <u>00</u> 0.90825 0.878 <u>54</u> 0.85898	-3.6 <u>8</u> -3.6 <u>9</u> -3.7 <u>1</u> -3.7 <u>2</u> -3.73	0.700 0.720 0.740 0.760 0.760	1•489 <u>24</u> 1•488 <u>63</u> 1•488 <u>07</u> 1•487 <u>56</u> 1•48709	0.031 <u>79</u> 0.029 <u>10</u> 0.026 <u>71</u> 0.024 <u>59</u> 0.022€8	- 3.94 - 3.94 - 3.94 - 3.94 - 3.94	3.250 3.300 3.350 3.400 3.400	1.477 <u>82</u> 1.477 <u>77</u> 1.477 <u>71</u> 1.477 <u>66</u> 1.47760	0.001 <u>11</u> 0.001 <u>11</u> 0.001 <u>11</u> 0.001 <u>11</u> 0.001 <u>11</u> 0.00112	-3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u>
0.280 0.282 0.284 0.286 0.288	1.564 <u>16</u> 1.562 <u>54</u> 1.560 <u>97</u> 1.559 <u>44</u> 1.55796	0.824 <u>27</u> 0.798 <u>76</u> 0.774 <u>37</u> 0.7510 <u>3</u> 0.728€9	-3.74 -3.75 -3.7 <u>6</u> -3.7 <u>6</u> -3.7 <u>6</u> -3.77	0.810 0.820 0.840 0.860 0.880	1.48 6 <u>65</u> 1.48 6 <u>25</u> 1.485 <u>87</u> 1.485 <u>53</u> 1.485 <u>20</u>	0.020 <u>97</u> 0.01944 0.018 <u>05</u> 0.01679 0.01566	-3.9 <u>4</u> -3.9 <u>4</u> -3.9 <u>4</u> -3.94 -3.94	3.500 3.550 3.600 3.650 3.700	1.477 <u>55</u> 1.477 <u>49</u> 1.477 <u>43</u> 1.477 <u>38</u> 1.477 <u>38</u>	0.00112 0.00112 0.00112 0.00113 0.00113 0.00113	-3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.9 <u>3</u> -3.92
0.290 0.292 0.294 0.296 0.298	1.556 <u>53</u> 1.555 <u>13</u> 1.553 <u>78</u> 1.552 <u>46</u> 1.55119	0.707 <u>29</u> 0.686 <u>78</u> 0.667 <u>10</u> 0.648 <u>22</u> 0.62010	-3.7 <u>8</u> -3.79 -3.79 -3.8[-3.8]	0.900 0.920 0.940 0.960 0.980	1•484 <u>90</u> 1•484 <u>62</u> 1•484 <u>35</u> 1•484 <u>10</u> 1•48387	0.014 <u>62</u> 0.01368 0.012 <u>82</u> 0.01203 0.01131	-3.94 -3.94 -3.94 -3.94 -3.94 -3.94	3.750 3.800 3.850 3.900 3.950	1.477 <u>26</u> 1.477 <u>21</u> 1.477 <u>15</u> 1.477 <u>05</u> 1.47703	$\begin{array}{c} 0.001 \overline{14} \\ 0.001 \underline{14} \\ 0.001 \underline{15} \\ 0.001 \underline{15} \\ 0.001 \underline{15} \\ 0.001 \underline{16} \end{array}$	-3.9 <u>2</u> -3.92 -3.92 -3.92 -3.92

TABLE 58. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR RbCl AT 293 K (continued)*

` `		-dn/d	dn/dT	2		-dn/d	dn/dT	,		- dn/d)	dn/dT
	n	-un/ux	10-5 K-1		n	um -1	10-5 K-1		n	· · · · · · · · · · · · · · · · · · ·	10-5 12-1
μ		µ uu	10 - 12 -	μu		, put	10. 12	p in the second se		μ	10 . K .
4.000	1.47698	0.00117	-3-92	8.400	1.46977	0.00218	+3.8F	17-608	1.4374F	0.00496	-3.48
4.050	1.47692	0.00118	• 3. 92	8.500	1.46955	0.00221	-3.86	17.800	1.43647	0.00503	-3.45
4.050	4 47696	0 00110	-7 02	9 600	4 16032	0 00221	-7.95	18 000	4 47515	0.00/03	-7.42
4.100	1.47000	0.00110	-3.92	0.000	1.40932	0.00224	-3.00	10.000	1.43242	0.00910	-3-12
4.150	1.47680	0.06119	-3.92	8.700	1.46910	0.00226	-3-85	18.200	1.43442	0.00517	-3.43
4.200	1.47674	0.00120	-3.92	8.800	1.46887	0.00229	-3.85	18.400	1.43338	0.00525	-3.42
		_	-			_	-		_		_
4.250	1.47668	0.00121	-3.92	8.900	1.468 <u>64</u>	0.00232	-3.85	18.600	1.43233	0.00532	-3.40
4.300	1.47662	0.00121	-3.92	9.000	1.46841	0.00234	-3.85	18.800	1.43125	0.00539	-3.38
4.350	1.47656	0.00122	-3.92	9.100	1.46817	0.00237	-3.84	19.000	1.43017	0.00546	-3.37
4.400	1.47650	0.00123	-3.92	9.200	1.46793	0.00240	-3.84	19.200	1.42907	0.00554	-3.35
4.450	1.47644	0.00124	-3.92	9.300	1.46769	0.00243	-3.84	19.400	1.42795	0-00561	-3.33
44424	1040044										
6 E00	4 1.7677	0 00475	-7 07	0 480	4 46 745	0 002/5	-7 05	10 688	4 1.2607		-7 11
4.500	4 47674	0.00125	-7 02	0 500	4 46720	6 60245	- 7 6 7	10.000	1.42660	0 00576	-3 20
4.550	1.47001	0.00120	- 3. 32	5.500	1.40/20	0.00240	-3.03	13.000	1.42900	0.00578	-3.30
4.600	1.47 625	0.00127	-3-95	9.000	1.40095	0.00251	-3.03	20.000	1.42452	0.00584	-3.28
4.650	1.47618	0.00128	-3.92	9.700	1.46670	0.00253	-3.83	20.500	1.42155	0.00603	-3.23
4.700	1.47 €12	0.00129	-3.92	9.800	1.46€45	0.00256	-3.83	21.000	1.41849	0.00623	-3-18
4.750	1.47605	0.00130	-3.92	9.900	1.46619	0.00259	-3.82	21.500	1.41532	0.00643	-3.12
4.800	1.47595	0.00131	-3.91	10.000	1.46593	0.00262	-3.82	22.000	1.41205	0.00664	-3.0E
4.850	1.47592	0.00132	-3.91	10.200	1.46540	0.00267	-3.82	22.500	1.40868	0.00685	-3.00
4.900	1.47586	0.00133	-3.41	10.400	1.46486	0.00273	-3-81	23.000	1.40520	0.00707	-2.93
4.950	1.47575	0.00134	-3.91	10.600	1.46431	0.00278	+3.81	23.500	1.40162	0.00729	-2.86
40,550	1.4.27	0000104	0.51	100000	1040401		0001	200300	1040101		2.00
5 000	4 1.7573	0 004 75	-7.01	40 000	4 16775	0 00 000	- 7 00	24. 0.80	4 70702	0 00754	
9.000	1.41972	0.00135	- 3. 34	10.000	1.403/5	0.00204	-3.00	24.000	1.33/32	0.00/51	-2.13
5.100	1.4/229	0.00127	-3.91	11.000	1.40317	0.00296	-3.79	24.500	1.39410	0.007/2	-2.11
5.200	1.4/545	0.00129	-2-41	11.200	1.40223	0.00295	-3-75	25.000	1.39017	0.00/98	-2.63
5.300	1.475 31	0.00141	-3.91	11.400	1.46199	0.00301	-3.78	25.500	1.38(12	0.00823	-2.54
5.400	1.47517	0.00144	-3.91	11.600	1.46138	0.00307	-3.78	26.000	1.38194	0.00848	-2.45
			-								
5.500	1.47502	0.00146	-3.91	11.800	1.46076	0.00313	-3.77	26.500	1.37763	0.00874	-2.35
5.600	1.47488	0.00148	-3.91	12.000	1.46013	0.00318	-3.7Ĕ	27.000	1.37320	0.00901	-2.24
5.700	1.47473	0.00150	-3.90	12.200	1.45949	0.00324	- 3.75	27.500	1.36863	0.00928	-2.13
5.800	1.47457	0.00153	-3.90	12-480	1.45883	0.00730	-3.75	28.000	1.36392	0.00956	-2.01
5.900	1.47442	0.00175	-3.97	12.600	1.45817	6.00336	-3.75	28.500	1.35907	0.00985	-1.88
	1.446			11.000	1442011		0.14	200000	1.02201		1.00
6 000	4 47436	0 004 57	-3 00	12 888	4 1.571.0	6 60363	-7 77	20 000	4 75/07	0 04 045	-1 72
6 400	1.4/420	0.00157	- 3. 50	12.000		0.00372	-3.12	29.000	1.35401	0.01013	-1.19
6.100	1.4/41	0.00100	-3.95	13.000	1.42000	0.00245	-3-15	29.900	1.34891	0.01040	•1• <u>c1</u>
C.200	1.4/394	0.00122	-3-90	13.200	1.45610	0.00354	-3.12	30.000	1.34361	0.010//	-1.40
6.300	1.47378	0.00165	-3.90	13.400	1.45538	0.00360	-3.7 <u>1</u>	30.500	1.33 <u>814</u>	0.01 <u>110</u>	-1. <u>30</u>
6.400	1.47362	0.00167	-3.89	13.600	1.45466	0.00366	-3.70	31.000	1.33250	0.01144	-1.13
E.500	1.473 <u>45</u>	0.001 <u>70</u>	-3.89	13.800	1.45392	0.00372	-3.69	31.500	1.32678	0.01179	-0.95
6.600	1.47328	0.00172	-3.89	14.000	1.45317	0.00378	-3.68	32.000	1.32071	0.01215	-0.76
6.700	1.47310	0.00175	-3.85	14.200	1.45240	0.00385	-3.67	32.500	1.31454	0.01253	-0.56
6.800	1.47293	0.00177	-3.85	14.400	1.45163	0.00391	-3.6E	33.000	1.30818	0-01252	-0-35
6.900	1.47275	0.80180	-3.89	14.600	1.45084	0.00397	-3.65	33.500	1.30162	0.01332	-0.12
										0001002	
7.000	1-47257	0.00182	-3.89	14.800	1.45004	0.00403	-3.64	34.000	1.29485	0 01 374	0.13
7 100	4 47278	0.00195		45 000	4 44627	0 00440	-7 67	74 500	4 29700	0.01374	0.10
7 . 100	1.472.30	0 00105	-3.00	15.000	1.44920	0.00410	-3.63	34.500	1.20/00	0.01417	U • <u>3 0</u>
7.200	1.4/200	0.00107	-3.00	15.200	1.44040	0.00410	-3.02	35.000	1.20009	0.01462	0.65
1.300	1.4/201	0.00190	-3.02	15.400	1.44/50	0.00423	-3.61	35.500	1.27326	0.01509	0.94
/.400	1.4/182	0.00192	- 3. 88	15.600	1.44671	0.00429	-3.60	36.000	1.26560	0.01557	1.25
<u> </u>		· · · · ·	-								_
7.500	1.471 <u>63</u>	0.001 <u>95</u>	-3-88	15.800	1.44585	0.00436	-3.59	36.500	1.25768	0.01608	1.57
7.600	1.47143	0.00197	-3.88	16.000	1.44497	0.00442	-3.58	37.000	1.24951	0.01661	1.92
7.700	1.47123	0.00200	-3.87	16.200	1.44408	0.00449	-3.57	37.500	1.24107	0.01716	2.29
7.800	1.47103	0.00203	-3.87	16.400	1.44317	0.00455	-3.55	38.000	1.23235	0.01774	2.69
7.900	1.47083	0.00205	-3.87	16.600	1.44226	0.00462	-3.54	38.500	1.22333	0.01834	3.11
											~ * * * *
8.000	1.470 62	0.00209	-3.87	16.800	1.441 20	0.00450	-3.57	30 840	1.21200	0 01 007	7 22
8 100	4.470.44	0.00240	-7 97	47 000	4 64070	0 00409	-3.53	20 200	4 20475	0.01031	3.50
8 200	4 470 20	0.00210	-3.07	47 000	4 47040	0.004/0	-3.22	39.700	1.20435	0.01363	4.05
0.200	1.4/020	0.00213	- 3. 0 <u>C</u>	17.200	1.43942	0.00482	-3.50	40.000	1.19437	0.02032	4.56
0.000	1+40380	U+0CZ16	-3+00	17+400	1.43545	U.UU489	-3.49				

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.14. The number of digits with an overstrike are not relevant to accuracy of the data.

FIGURE 47. Refractive Index of RbCl

H. H. LI

470

TABLE 59. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dn/dT MEASUREMENTS OF RbCI

Specifications, and Remarks	Crystal; prismatic spectmea with face of $11 \times 10 \text{ mm}^2$ and apex angle of 59° 41.40°; digitized data were presented with accuracy of one unit in the third decimal place.	Crystal; prepared by first slowly evaporating a saturated solution of RbC1 and then melting in a dry atmosphere of HC1 and N, mixture, crystalized by slowly cooling; retractive index for sodium D line was desermined by the immersion method; digitized datum was presented with uncertainty of 0.0003; dn/dT of sodium D line in the temperature range from 25 C to 25 C was found as -0.0001/°C.	Crystal; six prismatic specimens with apex angle of about 39, 7° ; averaged values of refractive indices were presented with uncertainties of less than 2 units in the fourth decimal place; temperature was not given, room temperature assurred.
Temperature, K	321	298	298
 Wavelength Range, µm	0.193-0.577	0. 589	0.486-0.656
Method Used	Q	м	A
Year	1927	1931 1928	1904
Author (s)	Gyulai, Z.	Wulff, P. and Heigl, A.	Sprockhoff, M.
. Ref. No.	27	87	95
Cur No.	н	~	ŝ

 $\lambda \, dn/dT \\ \frac{CURVE}{T_{m} = 297.0} \frac{3}{K} \\ 0.589 \, -0.0001^{*}$

* Not shown in figure.

Source	Wavelength and Temperature Ranges	Dispersion Equation λ in μm; ν in cm ^{−i}
Radhakrishnan, T. [48] 1948	0.193-0.546 μm 321 K	$n^{2} = 1.4752 + \frac{0.55511 \lambda^{2}}{\lambda^{2} - (0.133)^{2}} + \frac{0.15241 \lambda^{2}}{\lambda^{2} - (0.166)^{2}}$
		- 0.0004 λ^2
Present work 1975	0.18-40.0 µm 293 K	$\mathbf{n}^2 = 1.47558 + \frac{0.56600\lambda^2}{\lambda^2 - (0.138)^2} + \frac{0.14493\lambda^2}{\lambda^2 - (0.166)^2}$
		$+\frac{2.740 \lambda^2}{\lambda^2 - (85.84)^2}$

TABLE 62. COMPARISON OF DISPERSION FOUATIONS PROPOSED FOR RbCl

3.15. Rubidium Bromide, RbBr

Rubidium bromide is hygroscopic and must be handled with great care to protect the surface polish. A plate of moderate thickness with properly polished surfaces is transparent from 0.25 to 40 μ m. Roughness of the surfaces causes a considerable decrease in transmittance. It is found that the gradual decrease in transmittance at shorter wavelengths is caused by imperfection of the surface and not by absorption or scattering within the material itself [105].

Only two sets of measurements were found in the open literature. In 1904, Sprackhoff [95] measured refractive indices of RbBr for three spectral lines, namely the C, D, and F lines, by the minimum deviation method. Thirty years later, Kublitzky [50] used the same technique in measurements for more lines in a region from 0.219 to 0.58 μ m at a temperature of 308 K. The accuracy of his measurements is one unit in the third decimal place, but his reported values are given to the fourth place for the purpose of tabular smoothness. Scantiness of available data leaves us no choice but to use Kublitzky's measurements as the basis for generating reference data. Information on dn/dT is needed to reduce Kublitzky's values from 308 to 293 K, but it is not available. This is not a problem, because we have found empirical parameters which are used to construct dn/dT formulas, and have proved to give correct predictions, as is discussed in subsections 3.11 and 3.12. Using the parameter values in table 5, we are led to the following equation for dn/dT for RbBr at 293 K in the transparent region:

$$2n \frac{dn}{dT} = -11.25(n^2 - 1) - 0.89 + \frac{2.278\lambda^4}{(\lambda^2 - 0.03648)^2} + \frac{191.52\lambda^4}{(\lambda^2 - 13062.20)^2},$$
 (51)

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m. This equation was used to make temperature corrections to the selected data.

Radhakrishnan [48] attempted to correlate the dispersion and absorption bands by means of a dispersion formula and obtained an equation valid at 308 K, as shown in table 66. His equation yields wavelengths of ultraviolet absorption peaks which agree closely with those obtained by direct measurements (see table 3) but gives no information concerning the infrared absorption peak. As a consequence, extrapolation using this equation will be uncertain. We have constructed a better formula of the Sellmeier type, which gives the refractive index at wavelengths beyond Kublitzky's work with less uncertainty. Using the information in tables 3 and 66, the input parameters for the least-squares fitting were obtained, the result is a dispersion equation for RbBr at 293 K in the transparent region:

$$n^{2} = 1.45931 + \frac{0.16301\lambda^{2}}{\lambda^{2} - (0.123)^{2}} + \frac{0.29841\lambda^{2}}{\lambda^{2} - (0.146)^{2}} + \frac{0.17198\lambda^{2}}{\lambda^{2} - (0.155)^{2}} + \frac{0.12186\lambda^{2}}{\lambda^{2} - (0.178)^{2}} + \frac{0.13039\lambda^{2}}{\lambda^{2} - (0.191)^{2}} + \frac{2.520\lambda^{2}}{\lambda^{2} - (114.29)^{2}}$$
(52)

where λ is in units of μ m.

Equations (51) and (52) are used to generate the recommended values of refractive index, $dn/d\lambda$ and dn/dT. In this table, more decimal places than needed are given for the purpose of tabular smoothness. In order to obtain meaningful values from the table, readers are advised to follow the criteria given below.

For refractive index:

Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, \pm
0.21- 0.22	2	0.02
0.22- 0.30	3	0.005
0.30- 0.40	3	0.003
0.40- 1.50	3	0.002
1.50 - 15.00	3	0.004
15.00-30.00	3	0.006
30.00-40.00	3	0.008
40.00-50.00	2	0.02
For dn/dT :		
0.21- 0.22	0	≥1
0.22 - 40.00	1	0.5
40.00-50.00	0	≥1

TABLE 63.RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND
TEMPERATURE DERIVATIVES FOR RbBr AT 293 K*

			an /am	``		_dn /d)	dn /dT			-dn/d	dn/dT
··λ		-an/ax	anyar		n	-un/un	unyur	~	n	· un/ux	uny un
um .		um -1	10 ⁻⁵ K ⁻¹	um.	-	um 1	10-° K-1	um	-	Lim 1	10-2 K-1
						F				· ·	
						_	_		<u> </u>		_
5.210	1.96224	14.17331	11.04	0.375	1.59199	0.39372	-4.40	1.750	1.53345	0.00289	-4.49
	4 03 5 0 0	10.06373		0 700	4 500 27	0 17454	- 1 10	4 0 0 0	4 57774	0 80200	-1 10
0.212	1.93580	12.20353	0.30	0.300	1.59007	0+3/4 <u>04</u>		1.000	1.22521	4.44.450	-4.49
0.214	1.91 292	18.75791	6.34	6.385	1.58825	0.35571	-4.41	1.850	1.53318	0.00249	-4.49
000044						0 770/7	1.1.5	4 000	4 53300	0.00070	
8.216	1.89266	9.54 <u>3//</u>	4 • <u>7 4</u>	0.390	1.50052	U. 338 <u>83</u>	-4.42	1.900	1.23300	0.00232	-4.42
0.218	1.87460	8.54614	3.47	0.395	1.58486	0.32268	-4.42	1.950	1.53295	0.00217	-4.49
	2001 100			•••••							
	_	· · ·							_		· · · _
0.220	1.85836	7.71337	2.44	0.400	1.58329	0.30776	-4.43	2.000	1.53284	0.00203	-4.45
1 222	4 91.766	7 00001	4 50	0.440	4.58035	0.28060	-4.44	2.059	1.53275	0.00101	-4.40
	1.04000	1.000.01	A	.0.0440		0.00000	· ?•???	20030			
0.224	1.83026	6,48579	0.89	0.420	1.57766	0.25684	-4.44	2.100	1.53205	0.00180	-4.49
8.226	1.81798	5-88447	0.30	0.430	1.57528	0.23573	-4-45	2.158	1.5325F	0.00170	-4.40
U.LLU	1.011.30	2.00447		0.400							
8.528	1.80668	5.42979	-0.21	0.440	1.57294	0.21095	-4.40	2.200	1.53248	0.08101	
				,							
0 070	4 700 20	E 0 304E	n 61. ·	n 1.50	4 670 96	0 20040	-1. 1.2	3 350	4 57540	0 00457	- 4 40
0.230	1.79022	2.02012	-0.04	0.470	1.21000	0.20019	-4.40	2.200	1.53640	0.00123	-4042
0.232	1.78652	4.67645	-1.01	0,460	1.56893	0.18518	-4.48	2.300	1.53233	0.08146	-4.49
8 074	4 77740	1. 75410	- 4 77	0 1.70	A 56745	0 47460	-1. 1.7	3 750	4 57226	0 004 70	1. 5
0.234	1.11143	4.30140	-1.00	0.4470	1+20/12	0 • TI T <u>00</u>	<u>-4.47</u>	2.390	1.932220	0.00133	-4.47
0.236	1.76986	4.07945	-1.61	0 • 480	1.56549	0.15950	-4.47	2.400	1.53219	0.00133	-4.48
0.238	1.7611F	3.825 53	-1-85	0.498	1. 56395	0.14848	-4.47	2-458	1.53212	0-00127	-4-48
0.200	THIOTIC	0.02300	- 1000	0.730	10,000,00	0.14040		20490	Telocat	0000101	
			4.1		1. L		· · ·				·
0.240	1.75374	3,59617	-2.08	0.500	1- 56252	0.13849	-4-47	2.500	1.5320 6	0.00122	-4-48
						1 100 43			1	0.001	7
0.242	1./4676	3.38788	-2.2 <u>7</u>	0.510	1.56118	0.12940	-4.48	2.550	1.53200	. 0.00118	-4.48
0.244	1.74017	3.19808	-2.45	0.520	1.55993	0.12111	-4.48	2.600	1.53194	0.00114	-4.48
0 214	1.77705	3.021.27	-2.47	0 570	1.55076	0.14751	-4 1.0	2.650	1.57480	0.01444	-4
0.240	Te12242	0.02455	-2.00	0.530	102010	4 . 11 3 24		2.000	1.00104	0.00110	
0.248	1.72807	2.86534	-2.74	0.540	1.55766	0.10659	-4.48	2.700	1.53183	0.00106	-4.48
				· · · · · ·							
						· · · · = = =	=	· ···		· · · · = =	· . .
0.250	1.72248	2.71887	-2.87	0.550	1.55662	0.10022	-4.48	2.750	1.53178	0.00103	-4.48
0.252	1.71718	2.58375	-2.98	0.560	1. 55565	0.09436	-4.48	2.800	1.53173	0.00100	-4.48
				0.500			7.72		1.201.00	0000100	
0.254	1.71214	2.45877	-3.08	0.570	1.55473	0.08896	-4-48	2.858	1.53168	0.00097	-4.48
0.256	1.70734	2.34291	-3.18	0.580	1.55387	0.08397	-4.48	2.900	1.53163	0.00095	-4.48
0.070	1 70 0 77		1 12	A 500	4 65 3 65	0 07070	1.12	0.050	4 534 50	A A A A A A	
0.298	1.102//	2.22525	-3.25	0.590	1.5395	0-01330	-4.43	2.950	1.53199	0.00092	-4.48
0 260	1 608.0	2 47500	- 2 . 71	8.600	4 65229	0 07508	- 1 10	7 0 0 0	4 57454	0 0 0 0 0 0	-6 60
0.200	1.09040	2.13200	-3.34	0.004	1+55220	0.01200		3.000	1.20124	.0.000.20	-4.440
0.262	1.69422	2.041 <u>49</u>	-3.41	8.620	1.55086	0.06743	-4.49	3.050	1.53150	83000.0	-4.48
0.264	1.69823	1.95408	-3.48	8.640	1.54958	0.06081	-4.49	3,188	1.53145	0.00087	=4.48
0.000		4 07000		0.0040			112		1 5 3 4 7 3	0.0000	7.70
0.265	1.68648	1.87225	-3.54	0.000	1.54842	0.05504	-4.49	3.150	1.53141	0.00085	-4.48
0.268	1.68273	1.79551	-3.59	0.680	1.54737	0.04009	-4.40	3.208	1.53137	0.00084	+4.48
						••••					4040
	· · · _	·	· _		· · · · · · · · · · · · · · · · · · ·	· · · _	_				·
0.270	1.67922	1.72343	-3.64	0.700	1.54642	0.04555	-4.49	3.250	1.53133	0.000002	-4+40
N.272	1 . 67 584	1.65553	-7.60	0.750	1. 54555	0.04163	-4.49	3.300	4. 53120	0.00084	-4.48
	1.01.04						7.74	0.040	1.55125	0.000001	
0.274	1.67259	1.591//	-3.75	8.740	1.:4475	6.63815	-4.49	3.358	1.53125	0.00080	-4.48
0.276	1.66947	1.531 54	-3.78	0.760	1.54402	0.03506	-4.49	3.400	1.53121	0.00079	-4.48
0 070	4 6661.6	4 67657	7 04	0 700	4 51 774	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 53443	A 000 70	
0.210	1.00040	1+4/40/	-3.01	U • / CU	1.54334	0.03230	-4.45	3.450	1.53117		-4.48
										*	
0 280	4 66757	4 4 20 90	-7 95	0.00	4 51.272	0 02002	-h 15	7 500	4 57447	0.000 22	-1 10
.0.200	1.00321	1.45 803	-3.02	0.000	1.54212	0.02902		3.508	1.53113	0.000 <u>77</u>	-4.40
0.282	1.66078	1.36999	-3-88	9.820	1.54215	0.02760	-4.49	3.550	1.53109	0.00876	-4.48
1.284	1.65809	1.32176	-3.91	0.848	1. 54162	0.02559	-4.40	3.680	1.53105	0.00076	-4.48
	1000000			0.040				0.000	1.55105	0.00070	
0.200	1.65549	1.27601	-3.94	0.860	1.54112	0.82378	-4.49	3.650	1.53181	0.00075	-4.48
0.288	1.65298	1.23256	-3.97	0.880	1.54066	0.02214	-4.40	3.700	1.53098	0.00075	-4.48
			- -	فسناد فير		· · · · · ·	· · ·				
0.290	1.65056	1.19128	-3.99	0.900	1.54024	0.02065	-4-49	3.750	1.53094	0.08874	-4.48
0.292	1.64821	1.15200	-4.02	0.920	1.53984	0.01920	-4.40	3.800	1.53.000	0.00074	-4-48
0 001	4 4 5 5 6	4 44 1 60	-1 57	0.040				2	4 5 2 4 5 4		
0.294	1.045 95	1.11400	-4.04	0.948	1.53946	U+U18 <u>65</u>	-4.49	3.850	1.530 <u>86</u>	0.00073	-4.48
0.296	1.64375	1.07897	-4.86	0.960	1.53912	0.01691	-4.49	3,908	1.53083	0.00073	-4.48
6.298	1.64163	1.04498	-4.08	0.980	1.53879	6.01588	- 4 . 65	3.050	1 5 70 7 6	0 00073	- 4 4 9
	TA04103	T=04420		94300	Te20012	A. AT200		. 30 338	102012	0000013	
						_	_				
0.300	1.63957	1.01255	-4.10	1.000	1.53848	0.01402	-4-40	4.880	1.53076	0.00077	-4-49
5 705	4 671.70			4. 07-				70000	4 5 3 9 1 6	0.00073	7.72
0.309	1.034/0	0.93123	-4.1 <u>4</u>	1.050	1.53//9	U.U1285	-4.49	4.050	1.53872.	U.U0072	-4.48
0.310	1.63018	0.87854	-4.18	1.100	1.53719	0.01116	-4-49	4.10R	1.53061	0.00072	-4-48
0 745	1 625 00	0 94034	-1. 24	4 450	4 57577	0 00076			4 53000	0 00076	
0.315	1.052 30	0.01021	-4+67	1+150	T+23601	n.nn.a <u>ve</u>	=++4일	. 4.150	1.53065	0.00072	-4.48
0.320	1.62207	0.75576	-4.24	1.200	1.53621	0.00859	-4.49	4.200	1.53061	0.00072	-4.48
	·· · · · · · · · · · · · · · · · · · ·		·		· · · · · · · · · · · · · · · · · · ·			·			_
8.325	1.61842	0.70644	-4.26	1.250	1.53580	0.00760	-4.49	4.250	1.53057	0.00072	-4.48
8.330	1.61500	0.66164	-4.28	1.360	1.53545	0.00676	-4.40	4.300	1.53055	0 00072	-4 10
A	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					0000070	7.74		1020024	0.00012	
0.335	1.011 <u>80</u>	V+620 <u>81</u>	-4.3 <u>C</u>	1.358	1.53513	u.co6 <u>05</u>	-4_49	4.350	1.530 <u>50</u>	0.00072	-4.48
0.340	1.60879	6.58350	-4.32	1.400	1.53484	0.00544	-4.40	4.400	1.53047	0.00072	-4.48
0.74F	1.60.504	6.51074	-4. 22	4 450	1.574.50	0.00404	-4 10	1. 1.00	4 5 70 1.3	0 000 70	
0.049	T+ 00 2 30	0.04331		T 9 4 3 0	T#23420	000431	- 4 + 4 3	4+450	1.0043	0.00072	
· · ·											
0.350	1.60 320	8.51752	-4.35	1.500	1.53675	0.00445	-4.40	4.500	1.53570	0.00073	-4.4.5
			<u>-</u>	1.000		0.00742	· · · · · · · · · · · · · · · · · · ·			0.000/2	
6.355	1.00077	0.48902	-4.35	1.550	1.53413	0.00406	-4.49	4.550	1.53036	0.00073	-4.48
0.360	1.59839	0.4 (236	-4.37	1.600	1.53394	0.00371	-4.49	4.600	1.53032	0.00073	-4.48
0.76F	1. 50641	6 1.2775	-4 70	4 650	4 57770	0 00 740	-1. 1.7	1. 200	4 570 30	0 00077	_1 1
0.000	1.99014	0.43112		T+C20	1.23316	0.00340	- 4 • 4 3	4+020	1.20029	0.0000/3	-4.40
0.370	1.59401	0.41489	-4.39	1.700	1.53360	0.00313	-4.49	4.700	1.53825	0.00073	-4.48

TABLE 63.	RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND
	TEMPERATURE DERIVATIVES FOR RbBr AT 293 K (continued)*

à		-dn/dλ	dn/dT	λ	_	-dn/dλ	dn/dT	λ	_	-dn/dλ	dn/dT
um	n	um -1	10 ⁻⁵ K ⁻¹	<u>um</u>	n	um -1	10-5 K-1	цm	п	um -1	10-5 K-1
-						•		•			
			· _				-				
4.750	1.53021	0.00073	-4.48	10.200	1.52477	0.00132	-4.43	23.500	1.49457	0.00331	-4.05
4.800	1.53018	0.00074	-4.48	10.400	1.52450	0.00135	-4.43	24.000	1.49290	0.00340	-4.03
4.850	1.53014	0.00074	-4.47	10.600	1.52423	0.00138	-4.42	24.500	1.49118	0.00348	-4.00
4.900	1.53010	0.0074	+4.47	10.800	1.52395	0.00140	-4.42	25.000	1.48941	0.00357	-3.67
4 050	1.53006	0.00074	-4.47	11.000	1. 62367	0.00143	-4.42	25.500	1 48760	0 00755	-7 07
4.550	1.55460	0.000/4		11.000	1.25001	0.00140		23.300	1.40106	0.00300	-3.54
	4 536 43	· · · · · · · · · · · · · · · · · · ·		44 566	4 10770	0 00415	· 17		4 4 95 75	0 003 77	
5.000	1.53003	0.000/5	-4-47	11.200	1.2338	0.00140	-4-41	26.000	1.485/5	0.00376	-3.91
5.100	1.52995	0.00075	-4.47	11.400	1.52309	0.00148	-4.41	26.500	1.48385	0.00385	-3.88
5.200	1.529 <u>88</u>	0.00076	-4.47	11.600	1.52279	0.001 <u>51</u>	-4.41	27.000	1.48190	0.00394	-3.85
5.300	1.52980	0.00077	-4.47	11.800	1.52248	0.001 <u>54</u>	-4.41	27.500	1.47990	0.00404	-3.81
5.400	1.52972	0.00077	-4.47	12.000	1.52217	0.00156	-4.40	28.000	1.47786	0.00414	-3.77
5.500	1.52965	C.00078	-4.47	12.200	1.52186	0.00159	-4.40	28.500	1.47577	0.00424	-3.73
5.600	1.52957	0.00079	-4-47	12.400	1-52154	0.00162	-4.40	29.000	1-47362	0.00434	•3.FC
5.700	1.52949	0.00080	-4.47	12.600	1 - 521 21	0.00164	-4.30	20.500	1.47113	0.00404	-3 65
5.800	1 . 52944	0.00081	-4.47	12.800	4 520 88	0 00167	-1. 70	30 000	4 . 6 6 9 8	0 004 54	-7.61
5.000	1.62033	0.00032	-4.47	13.000	1.52056	0.08170	-4.35	30.000	1 46688	0.00454	-3.51
20 300	1072 300	0.00002		13.000	1052054	0.00110	-4005	30.500	1940000	0.00405	-3.90
c	4 50034	0.000	1 17	47.000	4 500 22		4 -5	34 955	A		
0.000	1.52324	0.00083	-4-4-	13.200	1.2020	0.001/3	-4.30	31.000	1.46453	0.00476	-3.51
6.100	1.52916	0.00084	-4.47	13.400	1.51985	0.00175	-4.38	31.500	1.46212	C.004 <u>87</u>	-3.4 <u>E</u>
6.200	1.529 <u>08</u>	0.00085	-4.47	13.600	1.519 <u>50</u>	0.00178	-4.38	32.000	1.45966	0.00498	-3.41
6.380	1.52899	0.000.86	+4.4 <u>7</u>	13.000	1.21914	0.00181	-4.3 <u>7</u>	32.500	1.45714	0.00509	-3.35
6.400	1.52891	0.00087	-4.47	14.000	1.51877	0.00184	-4.37	33.000	1.45457	0.00521	-3.29
£.500	1.52882	88330.0	-4.4E	14.200	1.51840	0.00187	-4.3E	33.508	1.45193	0.00533	-3.23
E.600	1.52873	0.00089	-4.42	14.400	1.51803	0.00189	-4.36	34.000	1.44924	0-00545	-3.17
6.700	1.52864	0.00090	-4.45	14.600	1. 51 765	0.00192	-4.36	34.500	1.44649	0.00557	-7 10
6.800	1.52855	0.00091	-4-4F	14.800	1.51726	0.00195	-4.35	35.000	1.44367	0.00570	- 7 0 3
6.900	1.52846	0.00002	-4.45	15.000	1. 51686	0.00108	-4.35	35.500	1.66079	0.00570	-3.05
	1.22040	0.000.72	7070	10.000	1.51000	0.00130	-4005	35.500	1.440/9	0.00502	-2.90
7 000	4 52877	0 00007	-1. 1.2	45 388	4 6461.7	0 0000	- 4 - 71	74 000	4 4 7 7 6 6	a	a . .
7 . 000	1.52037	0.00033		15.200	1.51641	0.00201		30.000	1.43/05	0.00525	-2.85
7+100	1.52827	0.00094	-4.4 <u>E</u>	15.400	1.51606	0.00204	-4.34	36.500	1.43484	0.00609	-2.81
7.200	1.52818	0.00095	-4.42	15.600	1.51565	0.00207	-4.33	37.000	1.431 <u>76</u>	0.00622	-2.7 <u>2</u>
7.300	1.52808	0.00097	-4.4 <u>E</u>	15.800	1.515 <u>24</u>	0.00209	-4.3 <u>3</u>	37.500	1.428 <u>61</u>	0.006 <u>36</u>	-2.64
7.400	1.52798	0.00098	-4.46	16.000	1.51481	0.00212	~4.32	38.000	1.42540	0.00650	-2.55
7.500	1.52789	0.00099	-4.4E	16.200	1.51439	0.00215	-4.32	38.500	1.42211	0.00665	-2.45
7.600	1.52779	0.00100	-4.4E	16.400	1.51395	0.00218	-4.31	39.000	1.41875	0.00679	-2.35
7.700	1.52769	0.00101	-4.45	16.688	1.51351	0.00221	-4.31	39.500	1.41532	0.00694	-2.25
7.800	1.52758	0.00102	-4.45	16.800	1.51307	8.68224	-4.30	40.000	1.41181	6.00710	-2.14
7.900	1.52748	0.00164	-4.45	17.000	1. 11262	0.00227	-4.30	40.500	1.40822	0 00726	-2 03
				2,0000	1071000		4000	404200	1.40022		-2.003
8.000	1.52738	0-00105	-4.45	47 200	4 51 24 5	0 00270	-1. 20	44 000	4 40 455	0 00 710	
8 100	1 52727	0 00105	-4 45	17 400	4 54470	0.00230	-4.23	41.000	1.40455	0.00742	-1. <u>51</u>
8.200	1.52747	0 00407	-4.45	47 6900	1.511.0	0.00233	- 4 • 2 3	41.500	1.40080	0.00758	-1.79
8 700	4 52711	0.00107		17.000	1.51123	0.00236	-4.28	42.000	1.39697	0.00775	-1. <u>66</u>
0.300	1.52700	0.00160		17.800	1.510/5	0.00239	-4-28	42.500	1.39 <u>305</u>	0.00 <u>793</u>	-1. <u>53</u>
0.400	1.52095	0.00110	-4.45	18.000	1.51027	U.CO242	-4.27	43.000	1.38904	0.00810	-1.39
		• • • • • •			·		-				
8.500	1.52684	0.00111	-4.45	18.200	1.50978	0.00245	-4.26	43.500	1.38494	0.00829	-1.24
8.600	1.52673	0.00112	-4.45	18.400	1.50929	0.00248	-4.26	44.000	1.38075	0.00847	-1.09
8.700	1.52661	0.00113	-4.45	18.600	1.50879	0.00251	-4.25	44.500	1.37647	0.00867	-0.93
8.800	1.52650	0.00115	-4.44	18.800	1.50829	0.00254	-4.25	45.000	1.3720 4	0.00886	-0.76
8.900	1.52638	0.00116	-4.44	19.000	1.50778	0.00257	-4.24	45.500	1.36760	0.00006	-1.50
			-								
9.000	1.52627	0.00117	-4.44	19.200	1.50726	0.00250	-4.23	46.000	1.36 70 2	0.00027	-0.4
9,100	1.52615	6.00118	-4.44	19.400	1. 50 573	0.00264	-4 . 27	46.500	1.35.077	0.000727	- 0 - 41
9.200	1.52603	0.00120	-4.44	19.600	1. 50620	0.00267	-1 2 <u>2</u>	40.000	1 75757	0.00240	-0.21
9,300	1. 52504	0.00120	- 4. 1.7	10 000	4 20220	0 00207	-4066	47.000	1.32323	0.00410	-0.01
9.400	1.52579	0.00121		T20000	1.000/	0.002/8	-4.23	47.500	1.34863	0.00993	0.20
3.400				C.0.0.000	10:0215	0.00213	-4.20	40.000	1.34360	0.01916	0.41
0 500	4 60575	0 00×=									
2.000	1.5256/	0.00123	-4.44	20.500	1.50374	0.00281	-4.19	48.500	1.33846	0.01040	0.64
9.000	1.52554	0.00125	-4.44	21.000	1.502 <u>31</u>	0.00289	-4.17	49 .00 0	1.33320	0.01064	0.88
9.700	1.52542	0.00126	-4.43	21.500	1.50085	0.00297	-4.15	49.500	1.32782	0.01090	1.13
9-800	1.52529	0.00127	-4.43	22.000	1-49934	8-00305	-4.12	50.000	1.32231	0.01116	1.40
9.900	1.52516	0.00129	-4.43	22.500	1.49779	0.00314	-4.10				

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertaintic, of tabulated values in various wavelength ranges, see the text of subsection 3.15. The number of digits with an overstrike are not relevant to accuracy of the data.

FIGURE 50. Refractive Index of RbBr

FIGURE 52. dn/dT of RbBr

TABLE 64. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dn/dT MEASUREMENTS OF RbB+

Cur No.	Ref No.	f. Author(s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications, and Remarks
-	50) Kublitzky, A.	1934	Ū	0.219-0.578	308	Crystal; grown by the Kyropoulos method; prismatic specimen with height of 20 mm, side of 20 mm, and apex angle 55°43'43''; digitized data were presented with accuracy of one unit of the third decimal place.
73	95	i Sprockhoff, M.	1904	Q	0.486-0.656	298	Crystal; eight prismatic specimens with apex angle of about 36.3°; averaged probable values of refractive indices were presented; temperature was not given, room temperature assumed.

TABLE 65. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF RbBr

[Wavelength, λ , μ m; Refractive Index, n]

γ	$\frac{\text{CURVE 1 (cont.)}}{T = 308.2 \text{ K}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.361 1.5960 0.366 1.5945 0.405 1.5807	0.435 1.5725 0.5461 1.5550 0.578 1.5523	$\frac{\text{CURVE 2}}{\text{T} = 298.0 \text{ K}}$	0.486 1.5646 0.589 1.5528 0.656 1.5483
ц	<u>TE 1</u> 3. 2 K	1.8610 1.8137 1.7888	1.7644 1.7433 1.7120	1.7036 1.6868 1.6711 1.6625	1.6520 1.6505 1.6427	1.6413 1.6367 1.6266 1.6170
X	T = 308	$\begin{array}{c} 0.21946\\ 0.227\\ 0.231\end{array}$	0.237 0.2428 0.2537	0.2573 0.265 0.27488 0.28035	0.288 0.28936 0.29673	0.29806 0.30215 0.313 0.326

	COMPADIADI		TIOTIA DIONO	DDODODD	TOD DLD.
		THE COSPERSION	H L H (A T H HSS	DRIPUSED	HIR RORT
1 m m 00	COMPRENDOR		000111010		

Source	Wavelength and Temperature Ranges	Dispersion Equation λ in μ m; ν in cm ⁻¹
Radhahrichnan, T. [48] 1948	0.219-0.546 μm 308 K	$n^{2} = 1.4500 + \frac{0.2000 \lambda^{2}}{\lambda^{2} - 0.015129} + \frac{0.3651 \lambda^{2}}{\lambda^{2} - 0.022650}$
		+ $\frac{0.3224 \lambda^2}{\lambda^2 - 0.033124}$
Present work 1975	0.21-50.0 μm 293 K	$n^{2} = 1.45931 + \frac{0.16301 \lambda^{2}}{\lambda^{2} - (0.123)^{2}} + \frac{0.29841 \lambda^{2}}{\lambda^{2} - (0.146)^{2}}$
		$+\frac{0.17198\lambda^2}{\lambda^2-(0.155)^2}+\frac{0.12186\lambda^2}{\lambda^2-(0.178)^2}$
		$+ \frac{0.13039 \lambda^2}{\lambda^2 - (0.191)^2} + \frac{2.520 \lambda^2}{\lambda^2 - (114.29)^2}$

3.16. Rubidium lodide, Rbl

Rubidium iodide is the most hygroscopic of the rubidium halides and care must be exercised in handling it to preserve the surface condition, which plays an important role in its transparency. A plate of RbI a few mm thick with well-polished surface is transparent from 0.25 to more than 50 μ m. The gradual decrease in transmittance at shorter wavelengths is due to surface scattering that is caused by the roughness of the surface and not by absorption or scattering within the material itself [105].

As with the other rubidium halides there are few data available; only two sets of data were found for the transparent region, those of Sprockhoff [95] (for C, D, and F lines) and Kublitzky [50] (for the region 0.25–0.58 μ m). In the ultraviolet, Baldini and Rigaldi [106] investigated a narrow spectral region, 0.18 to 0.25 μ m, deriving the optical constants of thin films of RbI from the reflection spectra. The wavelengths of the ultraviolet absorption peaks derived from this work are inconsistent with those observed for the bulk material.

Because of the lack of data, we had to rely on Kublitzky's data as the basis for generating the reference data. The accuracy of this set of data is one unit in the third decimal place, but the reported values are given to the fourth place. However, we used the reported values in the data analysis. Since this data set was obtained at a temperature of 309 K, the temperature coefficient of the refractive index is needed to reduce the data to 293 K. Experimental values are not available. In the present work, values of dn/dT can be estimated for a wide wavelength range, using our empirical findings discussed in subsection 2.2. Using the parameters values from table 5, a dn/dT formula was constructed for RbI in the transparent region:

$$2n \frac{dn}{dT} = -12.45 \ (n^2 - 1) - 0.85$$
$$+ \frac{2.606 \lambda^4}{(\lambda^2 - 0.04973)^2} + \frac{169.92 \lambda^4}{(\lambda^2 - 17543.00)^2}, \qquad (53)$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m. This equation was used to reduce Kublitzky's data to 293 K.

Radhakrishnan [48] obtained a dispersion formula (shown in table 70) based on Kublitzky's data. This formula gives the wavelengths of three ultraviolet absorption peaks, which agree with those studied by Hilsch and Pohl [23] and Schneider and O'Bryan [24] (see table 3), but it gives no information concerning the infrared absorption peak and the dielectric constants. Naturally, extrapolated values for the long wavelengths as given by this equation have large uncertainties. It is therefore not an adequate formula for a wide wavelength range. Using the information in tables 3 and 70, the input parameters for the least-square fitting of the data to eq (10) were obtained. The calculation yielded a dispersion equation for RbI at 293 K in the transparent region, 0.24 to 64.0 μ m.

 $n^2 = 1.60563$

$$+\frac{0.00947\lambda^{2}}{\lambda^{2}-(0.120)^{2}}+\frac{0.01073\lambda^{2}}{\lambda^{2}-(0.134)^{2}}+\frac{0.00136\lambda^{2}}{\lambda^{2}-(0.156)^{2}}$$
$$+\frac{0.41864\lambda^{2}}{\lambda^{2}-(0.179)^{2}}+\frac{0.41771\lambda^{2}}{\lambda^{2}-(0.187)^{2}}+\frac{0.13707\lambda^{2}}{\lambda^{2}-(0.223)^{2}}$$
$$+\frac{2.36091\lambda^{2}}{\lambda^{2}-(132.45)^{2}},$$
(54)

where λ is in units of μ m.

Equations (53) and (54) were used to generate the recommended values of refractive index, $dn/d\lambda$ and dn/dT for RbI. Since more decimal places than needed are given for the purpose of tabular smoothness, readers are advised to follow the criteria given below in order to use the recommended values correctly.

For refractive index:

45.00-64.00

Wavelength range	Meaningful	Estimated
(µm)	decimal place	uncertainty, \pm
0.24- 0.25	2	0.02
0.25- 0.30	3	0.004
0.30- 0.40	3	0.003
0.40- 1.50	.3	0.002
1.50 - 20.00	3	0.003
20.00-30.00	3	0.006
30.00-50.00	3	0.009
50.00-64.00	2	0.02
For dn/dT :		
0.24- 0.27	0	≥Ì
0 27-45 00	1	0.5

0

≥1

TABLE 67. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR Rbi AT 293 K *

λ	n	-dn/dλ	dn/dT	λ	n	-dn/dλ	dn/dT	λ		-dn/dλ	dn/dT
μm		μ ^m	10-5 K-4	μpm	_	μm -•	10-5 K-4	μm	· · · · · · · · · · · · · · · · · · ·	μm	10 ⁻⁵ K ⁻¹
0.240	2.15543	17.73825	22.65	0.500	1.66302	0.23302	-5.61	2.500	1.61414	0.00162	-5.61
0.242	2.09444	13.16729	13.37	0.520	1.65868	0.20233	-5.61	2.500	1.61398	0.00154	-5.61
0.246	2.06972	11.61245	10.34	0.530	1.65672	0.18907	-5.62	2.658	1.61391	0.00141	-5.61
0.248	2.04779	10.36036	7.98	0.540	1.€5489	0.17697	-5.62	2.700	1.61384	0.00134	-5.61
0.250	2.02813	9.33153	6.10	0.550	1.65318	0.16592	-5.62	2.758	1.61378	0.00129	-5.61
0.254	1.99416	7.74277	4. <u>57</u> 3.32	0.500	1.65006	0.14652	-5.62	2.800	1.61365	0.00124	-5.61
0.256	1.97931	7.11712	2.27	0.580	1.64864	0.13798	-5.62	2.900	1.61359	0.00114	-5.61
0.258	1.96564	6.57440	1.40	0.590	1.64730	0.13011	-5.62	2.950	1.61354	0.00110	-5.61
0.260	1.95297	6.09925	0.65	0.600	1.64603	0.12284	-5.62	3.000	1.61348	0.00107	-5.61
0.264	1.93022	5.30714	-0.53	0.020	1.643/1	0.10989	-5.63	3.050	1.61343	0.00103	-5.61
0.266	1.91995	4.97370	-1.01	0.660	1. 63975	0.04909	-5.63	3.150	1.61333	0.000 97	-5.61
0.268	1.91030	4.67375	-1.43	0.680	1.63805	0.08069	-5.63	3.200	1.61328	0.00094	-5.61
0.270	1.90123	4.40257	-1.79	0.700	1. €3652	0.07333	-5.63	3.250	1.613 <u>24</u>	0.00091	-5.61
0.272	1.89268	4.15627	-2.11	0.720	1.63512	0.06685	-5.63	3.300	1.61319	0.000.89	-5.61
0.276	1.87694	3.72607	-2.65	0.760	1.63267	0.05606	-5.63	3.400	1.61311	0.00086	-5.61
0.278	1.86968	3.53724	-2.85	0.780	1.€3159	0.05154	-5.63	3.450	1.61306	0.00082	-5.61
0.280	1.86278	3.36326	-3.09	0.800	1.€3060	0.04750	-5.63	3.500	1.61302	0.00080	-5.61
0.282	1.85622	3.20250	-3.28	0.820	1.62969	0.04389	-5.62	3.550	1.61298	0.00079	-5.61
0.284	1.84300	3.05357	-3.44	0.840	1.62884	0.04063	-5.62	3.600	1.61294	0.00077	-5.61
0.288	1.83829	2.78652	-3.73	0.880	1.62733	0.03504	-5.62	3.700	1.61287	0.00074	-5.61
0.290	1.83284	2.68643	-3.86	0.900	1.62666	0.03264	-5.62	3.750	1.61283	0.00073	-5.61
0.292	1.82762	2-55419	-3.97	0.920	1.62603	C.03045	-5.62	3.800	1.61280	0.00072	-5.60
0.296	1.81782	2.35053	-4.17	0.940	1.62544	0.02645	-5.62	3.000	1.61271	0.000/1	-5.60
0.298	1.81322	2.25792	-4.2E	0.980	1.62437	0.02497	-5.62	3.950	1.61269	0.00069	-5.60
0.300	1.80879	2.17879	-4.34	1.000	1.62389	0.02344	-5.62	4.000	1.61266	0.00068	-5.60
0.305	1.78900	1.807409	-4.52	1.050	1.62280		-5.62	4.050	1.61262	0.00067	-5.60
0.315	1.78037	1.65300	-4.79	1.150	1.62105	0.01520	-5.62	4.150	1.61259	0.000000	-5.60
0.320	1.77244	1.52185	-4.90	1.200	1.62034	0.01333	-5.62	4.200	1.61252	0.00065	-5.60
0.325	1.76513	1.40514	-4.99	1.250	1. 1971	0.01177	-5.62	4.250	1.61249	0.00054	-5.60
0.330	1.75210		-5.08	1.300	1.81916	0.01045	-5.62	4.300	1.61246	0.00064	-5.60
0.340	1.74627	1.124 €9	-5.18	1.400	1.61822	0.00932	-5.62	4.358	1.61243		-5.60
0.345	1.74084	1.04935	-5.23	1.450	1.€1783	0.00751	-5.62	4.450	1.61237	0.00062	-5.60
0.350	1.73576	0.98114	-5.2 <u>7</u>	1.500	1. 81747	0.00679	-5.61	4.500	1.61234	0.00062	-5.60
0.355	1.73101	0.91920	-5.31	1.550	1.61715	0.00616	-5.61	4.550	1.61230	0.00061	-5.60
0.365	1.72238	0.802//	-5.34	1.650	1.11185	0.00560	-5.61	4.600	1.61227	0.00061	-5.60
0.370	1.71844	0.76399	-5.39	1.700	1.61634	0.00469	-5.61	4.050	1.61221		-5.60
0.375	1.71473	0.720 <u>E2</u>	-5.42	1.758	1.E16 <u>12</u>	0.00431	-5.61	4.750	1.61218	0.00060	-5.60
0.380	1.71123	0.68070	-5.44	1.800	1.61591	0.00397	-5.61	4.800	1.61215	0.00060	-5.60
0.390	1.70479	0.60984	-5.40	1.850	1.61572	0.00367	-5.61	4.850	1.61212	0.00060	-5.60
0.395	1.70182	0.57831	-5.49	1.950	1.61538	0.00316	-5.61	4.950	1.61206	0.00059	-5.6U
0.400	1.69900	0.54905	-5.5 <u>C</u>	2.000	1.61523	0.00294	-5.61	5.000	1.61203	0.00059	-5-60
0.410	1.69378	0.49E54	-5.52	2.050	1.61508	0.00275	-5.61	5.100	1.61197	0.00059	-5.60
U•42U 0•430	1.68474	0.45086	-5.54	2.100	1.61495	0.00257	-5.61	5.200	1.61192	0.000 59	-5.60
0.440	1.68081	0.37578	-5.57	2.200	1.€1471	0.00226	-5.61	5.400	1.61180	0.00059	-5.60 -5.60
0.450	1.67721	0.34472	-5.58	2.250	1. €1 460	0.00213	-5.61	5.500	1.61174	0.000 59	-5.60
0.460	1.67391	0.31716	-5.58	2.300	1.61450	0.00201	-5.61	5.600	1.61168	0.000 59	-5.60
0.4/0	1.66804	0.29218	-5.60	2.350	1.61440	0.00190	-5.61	5.700	1.61162	0.00060	-5.60
0.490	1.66544	0.25082	-5.60	2.450	1.61422	0.00171	-5.61	5.900	1.61150	0.00060	-5.60

TABLE 67. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR RbI AT 293 K (continued)*

λ μm	n	$-dn/d\lambda$ μm^{-1}	dn/dT 10 ⁻⁵ K ⁻¹	λ μ_m	- n	-dn/dλ µm ^{−i}	dn/dT 10 ⁻⁵ K ⁻¹	λ μαι	n	-dn/dλ μm ⁻ⁱ	dn/dT 10 ⁻⁵ K-4
6.000 6.100 6.200 6.300 6.400	1.61144 1.611 <u>38</u> 1.611 <u>32</u> 1.611 <u>26</u> 1.61119	U.000 <u>61</u> 0.000 <u>61</u> 0.000 <u>61</u> 0.000 <u>62</u> 0.000 <u>62</u>	-5.6 <u>0</u> -5.6 <u>0</u> -5.6 <u>0</u> -5.5 <u>9</u> -5.59	14.000 14.200 14.400 14.600 14.800	1.604 <u>41</u> 1.604 <u>16</u> 1.603 <u>91</u> 1.603 <u>66</u> 1.60341	0.00121 0.00123 0.00124 0.00126 0.00128	- 5 5 5 2 - 5 5 5 5 5 5 2 - 5 5 5 5 2 - 5 5 5 5 5 2 - 5 5 5 5 5 2 - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	35.000 35.500 36.000 36.500 37.000	1.55673 1.55496 1.55316 1.551 <u>33</u> 1.54945	$\begin{array}{c} 0.003 \overline{50} \\ 0.003 \overline{57} \\ 0.003 \overline{64} \\ 0.003 \overline{71} \\ 0.003 \overline{78} \end{array}$	-4.7 <u>9</u> -4.7 <u>6</u> -4.72 -4.68 -4.64
6.500 6.600 6.700 6.800 6.900	1.611 <u>13</u> 1.611 <u>07</u> 1.611 <u>01</u> 1.610 <u>94</u> 1.61088	$\begin{array}{c} 0.000\overline{63} \\ 0.000\overline{63} \\ 0.000\overline{64} \\ 0.000\overline{64} \\ 0.000\overline{65} \end{array}$	-5.59 -5.59 -5.59 -5.59 -5.59	15.000 15.200 15.400 15.600 15.800	1. 603 <u>15</u> 1. 60289 1. 602 <u>62</u> 1. 602 <u>36</u> 1. 602 <u>36</u>	$\begin{array}{c} 0.001 \overline{30} \\ 0.001 \overline{32} \\ 0.001 \overline{33} \\ 0.001 \overline{35} \\ 0.001 \overline{35} \\ 0.001 \overline{37} \end{array}$	-5.5 <u>1</u> -5.5 <u>1</u> -5.5 <u>1</u> -5.5 <u>1</u> -5.50	37.500 38.000 38.500 39.000 39.500	1.547 <u>54</u> 1.545 <u>60</u> 1.543 <u>61</u> 1.541 <u>59</u> 1.53953	0.003 <u>85</u> 0.003 <u>93</u> 0.004 <u>01</u> 0.004 <u>08</u> 0.004 <u>08</u>	-4.60 -4.56 -4.51 -4.47 -4.42
7.000 7.100 7.200 7.300 7.400	1.610 <u>81</u> 1.61075 1.61068 1.610 <u>61</u> 1.610 <u>55</u>	0.000 <u>65</u> 0.00066 0.000 <u>66</u> 0.000 <u>67</u> 0.000 <u>67</u>	-5.59 -5.59 -5.59 -5.59 -5.59 -5.59	16.000 16.200 16.400 16.600 16.800	1.60181 1.60153 1.60124 1.60096 1.60067	$\begin{array}{c} 0.001\overline{39} \\ 0.00141 \\ 0.00143 \\ 0.001\overline{43} \\ 0.001\overline{45} \\ 0.00146 \end{array}$	-5.50 -5.50 -5.49 -5.49	40.000 40.500 41.000 41.500 42.000	1.53743 1.53529 1.533 <u>11</u> 1.530 <u>89</u> 1.52863	0.004 <u>24</u> 0.004 <u>32</u> 0.004 <u>40</u> 0.004 <u>40</u> 0.004 <u>49</u> 0.00457	-4.37 -4.32 -4.26 -4.21 -4.15
7.500 7.600 7.700 7.800 7.900	$1.610\overline{48} \\ 1.610\overline{41} \\ 1.610\overline{34} \\ 1.610\overline{27} \\ 1.610\overline{27} \\ 1.610\overline{20}$	0.000 <u>68</u> 0.000 <u>69</u> 0.000 <u>70</u> 0.000 <u>70</u> 0.000 <u>71</u>	-5.59 -5.59 -5.59 -5.59 -5.59 -5.59 -5.59	17.000 17.200 17.400 17.600 17.800	1.600 <u>37</u> 1.600 <u>07</u> 1.59977 1.599 <u>47</u> 1.59916	0.001 <u>48</u> 0.001 <u>50</u> 0.001 <u>52</u> 0.001 <u>54</u> 0.001 <u>54</u>	-5.4 <u>8</u> -5.4 <u>8</u> -5.4 <u>7</u> -5.47	42.500 43.000 43.500 44.000 44.500	1.526 <u>32</u> 1.523 <u>97</u> 1.521 <u>57</u> 1.519 <u>13</u> 1.51665	0.004 <u>66</u> 0.004 <u>74</u> 0.004 <u>83</u> 0.004 <u>93</u> 0.00502	-4.05 -4.03 -3.96 -3.89 -3.82
8.000 8.100 8.200 8.300 8.400	$1.610\overline{13} \\ 1.610\overline{00} \\ 1.609\overline{99} \\ 1.609\overline{91} \\ 1.609\overline{84} \\ 1.60984 $	0.000 <u>72</u> 0.000 <u>72</u> 0.000 <u>73</u> 0.000 <u>74</u> 0.000 <u>74</u>	-5.55 55.55 -5.55 -5.55 -5.55 -5.55	18.000 18.200 18.400 18.600 18.800	1.598 <u>84</u> 1.598 <u>53</u> 1.598 <u>20</u> 1.597 <u>88</u> 1.597 <u>88</u>	C.001 <u>50</u> C.C01 <u>60</u> C.C01 <u>61</u> D.C01 <u>63</u> C.C01 <u>63</u>	-5.4 <u>7</u> -5.4 <u>6</u> -5.4 <u>6</u> -5.4 <u>5</u> -5.4 <u>5</u>	45.000 45.500 46.000 46.500 47.000	1.514 <u>12</u> 1.511 <u>54</u> 1.508 <u>91</u> 1.506 <u>23</u> 1.50350	$\begin{array}{c} 0.005 \overline{11} \\ 0.005 \overline{21} \\ 0.005 \overline{31} \\ 0.005 \overline{41} \\ 0.005 \overline{51} \end{array}$	-3.75 -3.68 -3.60 -3.52 -3.44
8.500 8.600 8.700 8.800 8.900	1.60976 1.60969 1.60961 1.60953 1.60946	0.00075 0.00076 0.00077 0.00077 0.00077	-5.58 -5.58 -5.58 -5.58 -5.58	19.000 19.200 19.400 19.600 19.800	1.59722 1.59688 1.59654 1.59620 1.59585	0.001 <u>67</u> 0.001 <u>69</u> 0.001 <u>71</u> 0.001 <u>73</u> 0.001 <u>73</u>	-5.4 <u>5</u> -5.4 <u>4</u> -5.4 <u>4</u> -5.4 <u>3</u> -5.4 <u>3</u>	47.500 48.000 48.500 49.000 49.500	1.50072 1.49789 1.49501 1.49207 1.48907	0.00561 0.00572 0.00582 0.00593 0.00593 0.00604	-3.35 -3.26 -3.17 -3.07 -2.97
9.000 9.100 9.200 9.300 9.400	1.609 <u>38</u> 1.609 <u>30</u> 1.609 <u>22</u> 1.609 <u>14</u> 1.609 <u>06</u>	0.00079 0.00080 0.00080 0.00081 0.00081 0.00082	-5.58 -5.58 -5.558 -5.558 -5.57	20.000 20.500 21.000 21.500 22.000	1.59550 1.594 <u>60</u> 1.593 <u>68</u> 1.592 <u>73</u> 1.59176	0.00177 0.00182 0.00187 0.00192 0.00192 0.00197	-5.43 -5.41 -5.40 -5.38	50.000 50.500 51.000 51.500 52.000	1.48 <u>602</u> 1.48 <u>292</u> 1.47 <u>975</u> 1.47 <u>652</u> 1.47 <u>652</u>	0.00 <u>616</u> 0.00 <u>627</u> 0.00 <u>639</u> 0.00 <u>652</u> 0.00 <u>652</u>	-2.86 -2.76 -2.64 -2.53 -2.41
9.500 9.600 9.700 9.800 9.900	1.608 <u>97</u> 1.608 <u>89</u> 1.608 <u>81</u> 1.608 <u>72</u> 1.608 <u>64</u>	0.00883 0.00084 0.00084 0.00084 0.00085 0.00085	-5.57 -5.57 -5.57 -5.57 -5.57	22.500 23.000 23.500 24.000 24.500	1.590 <u>76</u> 1.589 <u>74</u> 1.58869 1.587 <u>62</u> 1.58651	0.00202 0.00207 0.00212 0.00218 0.00218 0.00223	-5.36 -5.35 -5.34 -5.32 -5.31	52.500 53.000 53.500 54.000 54.500	1.46 <u>588</u> 1.46 <u>64</u> 7 1.46 <u>295</u> 1.45 <u>944</u> 1.45 <u>582</u>	0.00 <u>677</u> 0.00 <u>690</u> 0.00 <u>703</u> 0.00 <u>716</u> 0.00 <u>730</u>	-2.28 -2.15 -2.02 -1.88 -1.73
10.000 10.200 10.400 10.600 10.800	1.608 <u>55</u> 1.608 <u>37</u> 1.608 <u>20</u> 1.608 <u>01</u> 1.60783	0.00087 0.00088 0.00090 0.00092 0.00092	-5.57 -5.57 -5.57 -5.56 -5.56	25.000 25.500 26.000 26.500 27.000	1.585 <u>39</u> 1.584 <u>23</u> 1.583 <u>05</u> 1.581 <u>84</u> 1.58060	0 • 00 2 28 0 • 00 2 34 0 • 00 2 34 0 • 00 2 39 0 • 00 2 45 0 • 00 250	-5.29 -5.27 -5.26 -5.24 -5.24	55.000 55.500 56.00D 56.500 57.000	1.45 <u>214</u> 1.44 <u>838</u> 1.44 <u>455</u> 1.44 <u>064</u> 1.43 <u>666</u>	0.00 <u>744</u> 0.00 <u>759</u> 0.00 <u>774</u> 0.00 <u>789</u> 0.00 <u>804</u>	-1. <u>58</u> -1.42 -1. <u>26</u> -1. <u>09</u> -0.92
11.000 11.200 11.400 11.600 11.800	1.607 <u>64</u> 1.607 <u>45</u> 1.607 <u>25</u> 1.607 <u>05</u> 1.60685	0.000 <u>95</u> 0.000 <u>97</u> 0.000 <u>98</u> 0.001 <u>00</u> 0.0010 <u>0</u>	-5.56 -5.56 -5.56 -5.56 -5.55	27.500 28.000 28.500 29.000 29.500	1.579 <u>33</u> 1.578 <u>04</u> 1.576 <u>72</u> 1.575 <u>36</u> 1.57398	0.00256 0.00262 0.00268 0.00268 0.00273 0.00279	-5.20 -5.18 -5.16 -5.14 -5.11	57.500 58.000 58.500 59.000 59.500	1.43 <u>260</u> 1.42 <u>846</u> 1.42 <u>423</u> 1.41 <u>993</u> 1.41 <u>993</u>	C.CC <u>820</u> 0.00836 0.00853 0.00853 C.00870 0.00888	$\begin{array}{r} -0.\overline{73} \\ -0.\overline{54} \\ -0.\overline{35} \\ -0.\overline{14} \\ 0.\overline{07} \end{array}$
12.000 12.200 12.400 12.600 12.800	1.606 <u>65</u> 1.606 <u>44</u> 1.606 <u>23</u> 1.606 <u>01</u> 1.60579	$\begin{array}{c} 0.001 \overline{03} \\ 0.001 \overline{05} \\ 0.001 \overline{05} \\ 0.001 \overline{07} \\ 0.001 \overline{09} \\ 0.001 \overline{10} \\ 0.001 \overline{10} \end{array}$	-5.55 -5.55 -5.55 -5.55 -5.54	30.000 30.500 31.000 31.500 32.000	1.572 <u>57</u> 1.571 <u>13</u> 1.569 <u>66</u> 1.560 <u>15</u> 1.56662	0.002 <u>85</u> 0.002 <u>91</u> 0.002 <u>98</u> 0.002 <u>98</u> 0.003 <u>04</u> 0.00310	-5.0 <u>9</u> -5.0 <u>6</u> -5.0 <u>14</u> -5.0 <u>1</u> -4.98	60.000 69.500 61.000 61.500 62.000	1.41 <u>105</u> 1.40 <u>647</u> 1.40 <u>180</u> 1.39 <u>704</u> 1.39 <u>217</u>	0.00 <u>906</u> 0.00 <u>924</u> 0.00 <u>943</u> 0.00 <u>963</u> 0.00 <u>983</u>	0. <u>29</u> 0. <u>52</u> 0. <u>76</u> 1. <u>01</u> 1.27
13.000 13.200 13.400 13.600 13.800	1.605 <u>57</u> 1.605 <u>34</u> 1.605 <u>11</u> 1.604 <u>88</u> 1.604 <u>65</u>	0.001 <u>12</u> 0.001 <u>14</u> 0.001 <u>16</u> 0.001 <u>17</u> 0.001 <u>17</u>	-5.5 <u>4</u> -5.5 <u>4</u> -5.5 <u>54</u> -5.5 <u>3</u> -5.5 <u>3</u>	32.500 33.000 33.500 34.000 34.500	1.565 <u>05</u> 1.563 <u>45</u> 1.561 <u>82</u> 1.560 <u>16</u> 1.55846	0.003 <u>16</u> 0.003 <u>23</u> 0.003 <u>30</u> 0.003 <u>36</u> 0.003 <u>4</u> 3	-4.95 -4.95 -4.80 -4.80 -4.80 -4.80	62.500 63.000 63.500 64.000	1.38 <u>721</u> 1.38 <u>214</u> 1.37 <u>696</u> 1.37167	0.01003 0.01025 0.01046 0.01069	1.54 1.82 2. <u>11</u> 2.42

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.16. The number of digits with an overstrike are not relevant to accuracy of the data. н. н. ц

FIGURE 55. dn/dT of RbI

IT MEASUREMENTS OF Rbi
dav
AND
VE INDEX
CTI
REFRA
THE
NO N
NFORMATION
AL D
TECHNICI
AND
SOURCE
TABLE 68.

Specifications, and Remarks	Crystel: grown by the Kyropoulos method; prismatic specimen with height of 25 mm, side of 30 mm and apex angle of 52°21'40''; digtized data were presented with accuracy of one unit of the third decimal face.	Thin fim of Rbl, by vacuum sublimation onto a fused silica plate; refrac- tive indices were determined from information of normal-incident reflection and transmission; data extracted from a figure; reported unertainty 16.	Crystal; seven prismatic specimens with apex angles of about 44.3°; averaged probable values of measurements were presented; tempera- turs was not given, room temperature assumed.
Temperature, K	309	298	. 298
Wavelength Range, µm	0. 253-0. 578	0,18-0.25	0.486-1.656
Method Usec	۵	Т, R	a
Year	1934	1970,	1904
Author (s)	Kublitzky, A.	Baldini, G. and Rigaldi, L.	Sprockhoff, M.
Ref. No.	50	106	95
Cur. No.	-	~	ი

TABLE 69. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF Rbi

efractive Index, n)																	
λ, μm; R																	
avelength,	Ħ	<u>((cont.)</u> * 8. 0 K	1.998 1.805	0.904	1,200	1.702	2,199	2.497	2.277	2.067		VE 3	8. C K		1.6672	1.6474	1.6397
[W	~	$\frac{\text{CURVE 2}}{\text{T} = 29}$	0.2000 0.2051	0.2098	0.2202	0.2240	0.2274	0.2299	0.2397	0.2499		curr	T = 29		0.486	0.589	0.656
	8	(cont.) 9.0 K	1.6667 1.6589	1.6515	COLO •1	/E 2 *	8.0 K		1.198	1.203	1.300	1.302	1.403	1.496	1.496	1.413	2.298
	×	$\frac{\text{CURVE 1}}{T = 30}$	$0.47999 \\ 0.5086$	0.5461	010-0	CUR	T = 29		0.1806	0.1825	0.1867	0.1881	0.1898	0.1912	0.1920	0.1933	0.1960
			0 8			8	80	2		80	.0		•	-	-		
	•	<u>VE 1</u> 9.0 K	1.995	1.921	1.860	1.836	1.815	1.812	1.801	1.783	1.764	1.745	1.738	1.725	1.721	1.696	1.681
	۲	$T = \frac{CUR}{3C}$	0.2537 0.2573	0.265 0.27488	0.28035	0.288	0.29673	0,29806	0.30215	0.313	0.326	0.340	0.347	0.361	0.366	0.405	0.435

* Not shown in figure.

н. н. ц

186

Source	Wavelength and Temperature Ranges	Dispersion Equation λ in μ m; ν in cm ⁻¹
Radhakrishnan, T. [48] 1948	0.25-0.546 μm 309 K	$n^{2} = 1.6017 + \frac{0.01749 \lambda^{2}}{\lambda^{2} - 0.015625} + \frac{0.83466 \lambda^{2}}{\lambda^{2} - 0.033489}$
		$+\frac{0.13917 \lambda^2}{\lambda^2 - 0.049729}$
Present work 1975	0.24-64 μm 293 K	$n^{2} = 1.60563 + \frac{0.00947 \lambda^{2}}{\lambda^{2} - (0.120)^{2}} + \frac{0.01073 \lambda^{2}}{\lambda^{2} - (0.134)^{2}}$
		$+\frac{0.00136 \lambda^2}{\lambda^2 - (0.156)^2} + \frac{0.41864 \lambda^2}{\lambda^2 - (0.179)^2}$
		$+\frac{0.41771\lambda^2}{\lambda^2-(0.187)^2}+\frac{0.13707\lambda^2}{\lambda^2-(0.223)^2}$
		$+\frac{2.36091\lambda^2}{\lambda^2-(132.45)^2}$

TABLE 70. COMPARISON OF DISPERSION EQUATIONS PROPOSED FOR RbI

3.17. Cesium Fluoride, CsF

The refractive index of CsF for a single spectral line, the sodium D line, was obtained by Spangenberg [45] using the immersion method. He gave two values for n, one for α -CsF, and the other for β -CsF. The fact that there is one measured value of n only for one wavelength does not prevent us from making a reasonable estimate of the refractive indices for a wide transparent region because there exist known property parameters intimately related to the refractive index, enabling us to make the necessary calculations. Using the values from table 3 and the available n:

$$\epsilon_s = 8.08$$

 $\epsilon_{uv} = 2.16,$

 $\lambda_{u} = 0.121 \ \mu m$ (averaged value of 3 peaks),

 $\lambda_1 = 78.74 \ \mu m$,

n = 1.478 (of α -CsF), for $\lambda = 0.5893 \ \mu$ m,

the adjustable constant A of eq (13) is found to be 1.60. This leads to a dispersion equation for α -CsF at 293 K in the transparent region, 0.15–30.0 μ m.

$$n^{2} = 1.60 + \frac{0.56\lambda^{2}}{\lambda^{2} - (0.121)^{2}} + \frac{5.92\lambda^{2}}{\lambda^{2} - (78.74)^{2}}, \quad (55)$$

where λ is in units of μ m.

If we used the refractive index of β -CsF, the value of A would be negative, which is not an acceptable solution.

No experimental data on dn/dT are available, but our

empirical parameter values in table 5 were used to construct a dn/dT formula for the transparent region:

$$2n \frac{dn}{dT} = -9.60 \ (n^2 - 1) - 2.54 + \frac{1.42\lambda^4}{(\lambda^2 - 0.01850)^2} + \frac{296.00\lambda^4}{(\lambda^2 - 6199.99)^2},$$
(56)

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m.

Equations (55) and (56) were used to generate the recommended values of the refractive index, $dn/d\lambda$ and dn/dT for CsF. As noted, these equations are based totally on the available data on the thermal linear expansion, dielectric constants, the wavelengths of absorption peaks, and our empirical parameters. As a consequence, the accuracies of the estimated values are governed by the uncertainties in the above mentioned parameters. The following criteria are recommended.

For refractive index:

Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, \pm
0.15- 0.19	2	0.02
0.19- 0.30	3	0.008
0.30- 1.50	3	0.003
1.50-10.00	3	0.006
10.00-16.00	3	0.008
16.00-30.00	2	0.03
For dn/dT :		
0.15- 0.16	0	≥1
0.16 - 22.00	1	0.5
22.00-30.00	0	≥1

TABLE 71. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR CsF AT 293 K*

``		-dn/d)	dn/dT	2		$-dn/d\lambda$	dn/dT	λ		$-dn/d\lambda$	dn/dT
um .	n	um ~1	10-5 K-1	um	n	um -1	10-5 K-1	μm	n	um -1	10-5 K-1
	•	μu	10 13								
0.150	1.78976	11.12562	5.89	0.270	1.51679	8.43017	-4.12	0.700	1.47539	6.81767	-4.17
0.152	1.76884	9-83716	3.56	0.272	1.51595	8.41751	-4.12	0.720	1.47505	0.01624	-4.17
0.154	1.75027	8.75062	1.07	0.274	1.51512	0.40613	-4.15	0.740	1.47676	0.01496	-4.17
0.154	4 7772021	3 04 044	1071	0 236	4 641930	0 204 02	-4.45	0 7 6 0	4 47475	0 0 1 4 3 0 3	-4.47
0.150	1.13309	7.84914	0.01	0.270	1.51432	0.39402	- 4 - 1	0.700	1.4/4492	0.01303	~~~ <u>~</u>
0.158	1./18/8	1.0/2/5	-0.06	0.278	1.51354	0.38394	-4.12	0.780	1.4/419	0.01281	-4.1/
			_				_		·		
0.160	1.70 <u>532</u>	6.40 <u>526</u>	-0.7 <u>2</u>	0.280	1.51278	0.373 <u>48</u>	-4.13	0.800	1.473 <u>94</u>	0.011 <u>90</u>	-4.1 <u>7</u>
0.162	1.69310	5.82715	-1.24	6.282	1.51205	0.36341	-4.13	0.820	1.47371	0.01108	-4.17
0.164	1.68196	5.32313	-1.65	0.284	1.51133	0.35371	-4.13	0.840	1.47350	0.01033	-4.17
8.166	1.67177	4.88181	-1.00	0.286	1.51063	0.34438	-4.13	0.860	1.47330	0.00966	-4.17
0.168	1.66241	4.40106	-2.27	0.288	1.50995	0.33530	-4.12	6.880	1.47311	<u></u>	-4.17
9.100	1000141	4443100		00200	10.00000	0000000	4040				7821
0 478	4 65 770	1. 41.537	- 2 5	6 206	4 50030	0 396 79	-1. +1	0 000	4 1.7907	0 000 20	-1. 13
0.1/0	1.653/6	4.14537	= 2 • 5 <u>t</u>	0.290	1.50929	0.02012	-4.1%	0.900	1.4/293	0.000.00	-4.1/
0.1/2	1.64586	3.83748	-2.65	8.292	1.50805	6 . 318 <u>36</u>	-4.14	0.920	1.4/2/1	0.00200	-4.17
0.174	1.63840	3.56208	-2.86	0.294	1.50802	0.31029	-4.14	0.940	1.47261	0.00754	-4.17
0.176	1.63153	3.31475	-2.95	0.296	1.50740	0.30251	-4.14	0.960	1.47247	0.00712	-4.17
0.178	1.62513	3.09161	-3.11	0.298	1.50681	0.29500	-4.14	0.980	1.47233	0.00674	-4.17
6.180	1.61915	2.89017	-3.22	6.360	1.50622	0.28774	-4.16	1.000	1.47220	0.00638	-4.17
0.187	4.61355	2 70740	.7. 74	0.304	4 F0 4 9 2	0.27055	-4.47	1.050	1.47107	8.00562	-4.17
0.105	4 6 6 6 7 4	2 51 0117	- 2 - 2 -	0.005	4 50 400	0.021000	-4.42	10000	4 1.7425	0 000002	-13
0.154	1.00831	2.54825	-3-3-	0.310	1.50352	0.22440		1.100	1.4/103	0.000000	***1/
0.180	1.00335	2.32854	* 3 • 4 5	0.515	1.50228	0.24049	-4.12	1.150	1.4/140	0.00449	-4.1/
9.188	1.59875	2.24953	- 3. 52	0.320	1.50111	0.22714	-4.15	1.200	1.47118	0.00407	-4.17
			-			_	_				-
0.190	1.59438	2.12190	-3.57	6.325	1.50000	0.21480	-4.15	1.250	1.47099	0.00372	-4.17
0.192	1.59025	2.00453	-3.62	0.330	1.49896	6.20337	-4.1E	1.300	1.47081	0.00343	-4.17
0.194	1.58635	1.89636	-3.66	6.335	1.497 97	0.19276	-4.16	1.350	1.47064	0.00318	-4.17
0.196	1.58266	1.79F45	-3.76	8.346	1.49783	6.18291	-4.1F	1.480	1.47049	0.00297	-4.17
8.498	1 57016	4 7 7 7 7 6	-3.74	0.746	1.49614	6.47376	-4.16	1.450	4.47075	0 00280	-6 47
	1404 910	1010320	- 35 / 4	0.042	1.43014	0.01:014	-4610	10400	1.41635	0.000200	- 4671
	4 53500	4 4 4 9 77			4 4 05 20	a		4 5 8 8		0 000 77	
0.200	1.5/504	1.61825	-3.11	0.350	1.49529	0.10519	-4.1 <u>C</u>	1.500	1.4/021	0.08265	-4.1/
0.202	1.5/209	1.53001	-3.80	8.355	1.49449	0.15/21	-4.10	1.550	1.4/008	0.00252	-4.1(
0.204	1.56968	1.46450	- 3.82	0.360	1.49372	0.14975	-4.16	1.600	1.46996	0.00242	-4.17
0.206	1.56682	1.39544	-3.85	0.365	1.49299	0.14278	-4.16	1.650	1.46984	0.00233	-4.17
0.208	1.56410	1.33097	-3.87	0.370	1.49229	0.13624	-4.16	1.700	1.46972	0.00225	-4.17
0.210	1.56150	1.27070	-3.89	0.375	1.49162	0.13011	-4.15	1.750	1-46961	0.00219	-4.16
0.212	1.55901	1.21428	-3.91	0.380	1.49199	0.12435	-4.15	1.800	1.46951	0.00214	-4.15
0.214	1.55664	1.16170	-3.02	6.345	1.49038	0.41866	-4.17	1.860	1.46940	0.00209	-4.16
0 246	4 55 1 77	4 44476	-7 01	0 700	4 4 90 00	0 44 7 64	-4 47	1.000	4 46030	0 000203	-4.42
0.210	1.55437	1.111/4	- 3. 94	0.390	1.40900	0 + 11 2 8 4	-4.17	1.900	1.40930	0.00200	-4.1 <u>c</u>
0.218	1.55219	1.06508	-3.95	0.395	1.48924	0.10904	-4.1/	1.958	1.45919	0.00203	-4.10
			-				-				_
6.220	1.55010	1.02117	-3.97	0.400	1.48871	0.10452	-4.1 <u>7</u>	2.000	1.46909	0.00200	-4.16
0.222	1.54810	0.97981	-3.98	0.410	1.48771	0.09621	-4.17	2.050	1.46899	0.00199	-4.1E
0.224	1.54618	0.94080	-3.99	0.420	1.48678	0.08879	-4.17	2.100	1.46889	0.00197	-4.16
0.226	1.54434	0.90397	- 4. 81	0.436	1.48593	0.08212	-4.17	2.156	1.46880	6.00197	-4.16
6.228	1.54257	0.86016	-6.01	8.440	4.48514	0.07613	-1. 17	2 200	4 1.6970	0 001 06	-4.15
		9.00,10	4442	0.440	1040314	2001010	.4.0 7 1	L.CUU	1040010	200110C	
6.230	1.540 46	6.876 24	-4.02	0.450	1.48460	0.07077	-4 17	2 250	4 46860	0 00105	-4 15
6.272	1.67000			0 4 4 5 0	4 1.6370	0.01012	-4.17	2.270	4 1 6 9 8 9 9	0.00120	-4.10
0+232	1.22422	0.00500	-4.12	0.400	1.403/2	0.06582	-4.1(2.300	1.46850	0.00196	-4.16
0.234	1.53764	0.77551	-4.04	6.470	1.48308	0.06138	-4.17	2.350	1.46840	0.00196	-4.16
0.236	1.53612	6 .747 <u>48</u>	-4.04	0.480	1.48249	0.057 <u>33</u>	-4c1 <u>7</u>	2.400	1.46831	0.00197	-4.16
0.230	1.53465	0.72067	-4.05	0.490	1.48194	0.05365	-4.17	2.450	1.46821	0.00198	-4.16
			_								
0.240	1.53323	0.69558	-4.0E	0.500	1.48142	0.05028	-4.17	2.500	1.46811	0.00199	-4.16
0.242	1.53187	0.67153	-4.06	0.510	1.48093	0.04719	-4.17	2.550	1.46801	0.00200	-4.16
6.244	1.53055	0.64855	-4.07	0.520	1.48047	0.04476	-4.17	2.600	1.46701	0.00204	-4.45
0.246	1.52037	0.62605	-4.07	0.220	1.440 04/	£ 51.472	-4 43	20000	4 46701 31	0 0 0 2 0 2	-4010
0.00	4 52021	0 6 6 6 7 6 7	-4.01	0 6 6 6	1.70004	0 07077	-4.17	2.070	1040/01	0.00203	-4.10
₩• ∠40	1.72004	0.00008	-4.Uč	0.540	1.4/904	0.03936	-4.1/	2.700	1.46770	0.00205	-4.16
						· · · · · · ·					
0,250	1.52684	0.58626	-4.08	0.550	1.47925	0.03714	-4.1 <u>7</u>	2.750	1.46760	0.00206	-4.15
0.252	1.52569	0.56735	-4.09	0.560	1.47889	0.03510	-4.17	2.800	1.46750	0.00208	-4.15
0.254	1.52457	0.54929	-4.09	0.570	1,47855	0.03320	-4.17	2.850	1.46739	0.00210	-4.15
0.256	1.52349	0.53203	-4.09	0.580	1.47823	0.03145	-4.17	2.900	1.4672	0.00212	-4.15
0.258	1.52245	0.51553	-4.10	0.590	1.47792	0.02982	-4.17	2.958	1.4671 8	0.00214	-4.15
_											
8,260	1.52153	6.49974	-4.10	8.600	1.47763	0.02830	-4.17	3.000	1.46707	0.00217	=4.1E
0.262	4.520/5	0.40453	-4.45	0 6 7 7	4 17700	0.02030	-6 47	3 • U U U 7 AEA	4 1.2207	0 00217	
8.202	1 64 0 45	0.040402	- 4010	0.020	1 1 7 6 7 7	0.00027		3.050	1.40031	0.00219	-4.15
0.204	1071242	0.4/014		0.040	1.4/001	0.02319	-4.1/	3.100	1.40000	0.00221	-4.12
0.206	1.51857	0.45626	-4.11	0.660	1.47616	0.02111	-4.17	3.150	1.46€ <u>74</u>	0,002 <u>24</u>	-4.15
0.268	1.51767	0.44294	-4.11	0.680	1.47576	0.01928	-4.17	3.200	1.46663	0.00226	-4.15

TABLE 71. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR CsF AT 293 K (continued)*

_						2. (2)	1 / 100			3- 133	1. / 100
λ		-dn/dλ	dn/dT	λ	n	-dn/dλ	dn/d'l	λ	n	-dn/dλ	dn/d'l
im	Ð	. m =1	10-5 K-1	um	11	µm ^{−1}	10 ⁻⁵ K ⁻¹	um.	11	μm ⁻¹	10 ⁻⁵ K ⁻¹
parts.		- 1	10 11						-		
			=			a aa. . .		43	4 1 4 1 1 1		
3.250	1.46652	6.06229	-4.15	6.700.	1.45499	0.00448	-4.0/	13.800	1.49444	0.00933	-3.t <u>2</u>
3.300	1.46640	0.00231	+4.1E	6.800	1.45454	0.00455	-4.BE	14.000	1.40242	0.01017	-3.60
			F			0 00170	1 07	44 000	4 1.00 53	0 040 75	
3.350	1.40629	0.00234	-4.15	0.900	1,40408	0.00402	-4.00	14.200	1.40057	0.01035	-3.20
2.400	1.46617	0.00237	-4.15	7.000	1.45362	0.00469	-4.QE	14.400	1.39828	0.01053	-3.55
3 450	4 1.6685	0 00 2 70	-4 41	7 400	4 46245	0 001.76	-1. 05	14.600	4 70616	0 04071	-7.57
2.450	1.40009	0.00239	-4.14	Letan	1.49315	0.004/0	-4005	7440000	1.03616	0.010/1	-3.95
									_		
3.566	1.46593	0.00242	-4.14	7.200	1.45267	C.CG483	-4.05	14.800	1.39400	0.01090	-3.51
7 550	4 46594	0 00215	-4 44	7 780	4 45249	0 00400	-1. 54	15.000	1.30180	0.04108	-7.40
3.990	1.40201	0.002-5	-4.17	7.500	1.49210	0.00430	-4.04	12.000	1.39100	0401100	*3**2
3.600	1.46569	0.00248	-4.14	7.400	1.45169	G.C0497	-4.04	15.200	1.38956	0.01127	-3.46
3.658	1.46556	0.00270	-4.16	7.500	1.45119	0.00504	-4.84	15.400	1.38729	0-01146	-3.44
3 700	4 46555	0 000277		7 600	4 45050	0 00544	-1 07	15 600	4 784.09	0 04425	-7 / -
3+/00	1.40543	0.00253	-4+14	1.000	1.42000	0.00011	-4.03	12.005	1.30430	0.01105	-3+41
3.750	1.46531	0.00256	-4-14	7.700	1.45017	6.00518	-4.03	15.888	1.38263	0.01185	-3.38
	4 46549	0 00 750		7 900	4 44044	0 005 25	-1. 05	16 0.00	4 70021	0 04204	-7 72
3.000	1.40210	0.00259	-4.14	1.000	1.44904	0.00925	-4.02	TC+DOD	1.30024	0.01204	-3.30
3.850	1.46505	0.00262	-4.14	7.908	1.44911	0.00532	-4.02	16.200	1.37781	0.01224	-3.33
3.000	1.46492	0.00285	-4.44	8.000	1.44858	0.00530	-4.02	16.400	1.37534	0.01244	-3.36
					1044050			10.400	1.07 204		
3.950	1.404/8	0.00218	-4.14	8.100	1.44884	0.00547	-4.01	16.600	1.3/283	0.01265	-3.27
4.000	1.46465	0.00274	-4.11	8.200	1.44749	8.00554	-4.03	16.800	1.37020	0.01285	- 3. 27.
	1.10102	a a a a c a f a	·	0.200		4 4 4 9 9 9 4	· · · · · · · ·	100000	1.01012	a . a . c . c . c . c . c . c . c . c .	- 2 • 5 -
4.050	1.46451	0.00274	-4.13	8.300	1.44693	0.00561	-4.00	17.000	1.36769	0.01306	-3.21
4.100	1.464 37	0.00277	-4.13	8.400	1.44636	0.00568	-4.00	17.200	1.36506	0.01327	-3.18
10100	1 1 1 1 1 1 1	0.000			1 1 1 0 0 0	0000000			1 1 0 0 0 0		
4.150	1.46424	0.00280	-4.13	8.500	1.445/9	0.005/6	-3.49	17.400	1.36234	0.01348	-3-14
4.200	1.46409	0.00283	-4.13	8.600	1.44521	0.00583	-3.99	17.600	1.35967	0.01370	-3.11
1 250	4 46705	0 00 2 46	-1. 17		4 444 67	A 60500	-7 00	47	1 75604	0 04 204	-7 07
4.250	1.40335	0.00200		0.100	1.44403	0.002 20	-0.52	11.0000	1.05651	0.010.21	-3.01
4.300	1.46381	0.00289	-4.13	8.800	1.44403	0.00598	-3.98	18.000	1.35410	6.61413	-3.04
4.350	1.46366	0.00202	-4.13	8.000	1.44343	0.00605	-3.98	18.200	1.35126	0.01435	-3.00
4 4 6 9 6	4 4 6 3 6 0	0.0000		0.000	4 44040	0 00000	3 0 3	40 400	4 74 976	0 04450	2.00
4.400	1.40322	0.00295	4.10	9.000	1.44202	0.00012	-2.31	10.400	1.34030	0.01450	-2.30
4.450	1.46337	C.00299	-4.13	9.100	1.44221	0.00620	-3.97	18.609	1.34542	8.01481	-2.92
			•								
	4 46 3 22	0 00707	-1. 17	0 200	4 44450	0 006 07	-7 07	40.000	4 74 21.1	0 04501	- 2 - 6 6
4.500	1.40.222	0.000002	-4.13	9.200	1.44120	U • UUC <u>21</u>	-3.35	10.000	1.34244	0.01 <u>204</u>	-2.00
4.550	1.46307	0.00305	-4.12	9.300	1.44095	C.CB635	-3.96	19.000	1.33941	0.01527	-2.84
4.600	1.46291	0.00308	-4.17	9.488	1.44031	0.00647	-3.95	19.200	1.33633	0.01551	-2.00
1	4 10 270	0 00744	1 A B	0 500	4 17077	0 00010	7 67	10 100	4 33 300		
4.000	1.402/2	0.00311	-4.1 <u>2</u>	3.200	1.43907	0.00049	-3.94	19+400	1.33220	0.015/5	-2.10
4.700	1.46260	0.00314	-4.12	9.600	1.43901	0.00657	-3.94	19.600	1.33003	0.01599	-2.71
1. 750	4 1.6 211	0 00740	-1. 13	0 700	4 1.7075	0 00665	- 7 07	40 000	4 70604	0 04604	2 6 7
40720	1.40244	0.00010		90100	1.43035	0.00002	-2.45	19.000	1.32 201	0.01024	-2.01
4.800	1.462 <u>28</u>	0.003 <u>21</u>	-4.12	9_808	1.43769	8.886 <u>72</u>	-3.93	20.000	1.32 <u>353</u>	0.01649	-2.62
4.850	1.46212	0.00324	-4.12	9,900	1.43701	0.00680	-3.92	26.508	1.31513	0.01713	-2.50
6 000	4 16406	0 00337	-1.45	40 000	4 1.76 77	6 606 97	-7.05	04 000	4 3061.0	0 04 770	
44 900	1.401 90	0.00321	-4.12	10.000	1.43033	0.00001	-3+92	21.000	1.30040	0.01//9	-2.35
4.950	1.46180	0.00331	-4.12	10.200	1.43494	0.00703	-3.90	21.500	1.29734	0.01848	-2.22
5 000	1 46183	0 0073.	-1. 44	40 //00	4 67787	n nn 740	-7 95	22 860	1 28 200	0 04040	- 2 67
	1.70103	0.000004		10.4400	4040002	0.00/10		22.000	1020132	0.01213	- 4.07
5.100	1.46129	0.00340	-4.11	10.600	1.43206	0.00734	-3.88	22.500	1.27814	0.01993	-1.90
5.200	1.46995	0.00347	-4.11	10.800	1.43058	0.00749	-3.87	23.000	1.26799	0.02070	-1.73
5 700	4 16 0 50	0 00373		44 860	4 400 07	0 00365		63 500			
5.000	1.40000	0.000233		11.000	1.42907	0.00765	-3.02	23.500	1.25143	U.U2151	-1. <u>54</u>
5.400	1.46024	0.00300	-4.10	11.200	1.42752	0.00781	-3.84	. 24.000	1.24€47	0.02234	-1.34
5,500	1.45 988	0.003 77	-4.10	11.400	1.42594	0.00707	-3.83	26.500	1.23564	0-02122	-1.15
E / 80	1 15 051	0 00 2 2 7		44 5 4 4	1 1 1 1 1 1 1			27000	1 2 2 2 2 0 2	0.0000000	
2.000	1.45951	0.003 <u>7</u> 3	-4.1 <u>Ľ</u>	11.600	1.42433	v•v08 <u>1</u> 3	-3.81	25.000	1.22325	0.02414	-0.89
5.700	1.45913	0.00380	-4.10	11.800	1.42269	0.00829	-3.8C	25.500	1.21894	0.02510	-8. <u>E4</u>
5.800	1.45875	0.00387	-4. NG	12.000	1.42102	0.00815	-3 78	26.000	4.40841	0 0 26 4 0	-0 36
5.000	1 10010	5 0 0 0 0 0 0 0	7.22	121000		0.00042		20.000	4.13014	0.02010	-0.35
9.900	1.45030	0.01.93	-4.09	12.200	1.41931	u.008E2	-3.76	26.500	1.18463	0.02716	-0.07
6.000	1.45796	G.86486	-4.09	12.400	1.41757	0.00879	-3.75	27.000	1.17097	0.02828	0.26
6.100	1.45754	0.00407	-1. 0.8	12 600	4 645.00	0 00000	- 7 7 7	37 664	4 45655	0.00015	
0.100	1.10100	0.00401		15.000	1.11200	0.00035	-3.13	210200	1.13632	0.02945	4.26
6.200	1.45715	0.00414	-4.08	12.800	1.41399	0.00912	-3.71	28.000	1.14151	0.03069	0.95
6.300	1.45673	0.08421	-4.08	13.000	1.41215	0.00020	-3.70	28.550	1.12584	0-03204	1.76
6 400	4 1.5674	0 00427		47 200	4 440 07	0 00025	-7 60		4 40 01 0	0.000001	1.33
0.4400	1.49031	0.00427	-4.00	13.200	1041051	0.00946	-3.05	29.080	1.19949	0.03341	1.78
6.500	1.45588	0.00474	-4.07	13.400	1.48836	0.10056	-3. FF	29.566	1.8021.2	0 034.90	2 25
6 6 6 6 6	4 4EEEE	0 00474	_1.07	47 600	4 40615		2 27		1 0 76 76		5.55
C*000	1+42244	0+00441		10.000	1+40542	0.00301	-3.64	JU.UU	3+07458	U•U 3648	2.76

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.17. The number of digits with an overstrike are not relevant to accuracy of the data.

FIGURE 56. Refractive Index of CsF

FIGURE 58. dn/dT of CsF

Cur. Ref.	to from the t	Wethod	Wavelength	Temperature,	Cunnifitantions and Domartes
No. No.	Author (S)	rear Used	nange,	К	opeciations, and relidence
1 45 Spangen	berg, K.	1923 M	0.5893	295	Crystal formed by slowly cooling melt, immersion method was used, two values on the refractive index for mean of sodium D lines were obtained; 1.478 \pm 0.005 was attributed to α -CsF and 1.578 \pm 0.005 to β -CsF.
		TABLE 73.	SXPERIMENTAL I	ATA ON THE REI	RACTIVE INDEX OF CSF
			[Wavelength, λ	, µm; Refractive I	ndex, n]
u Y					
$\frac{\text{CURVE 1}}{\text{T} = 295.2 \text{ K}}$					
0. 5893 1. 578 0. 5893 1. 478					
			·		
	·				

REFRACTIVE INDEX OF ALKALI HALIDES

3.18. Cesium Chloride, CsCl

Cesium chloride is very hygroscopic and highly soluble in water. It is, therefore, an unsatisfactory material for making optical parts, despite its optical transparency over a fairly wide wavelength region. While CsCl is not suitable for ordinary applications, it is an interesting object for scientific studies. The wavelengths of absorption bands in the ultraviolet region have been measured by Hilsch and Pohl [23] and by Schneider and O'Bryan [24]. Lowndes and Martin [13] measured the infrared absorption band and the dielectric constant. In table 3, the results of the above work are listed.

Because it is an unfavorable material for optical use, there have been few measurements of the refractive index. For the transparent region, only four data sets covering a limited wavelength range were found in the literature. Upon careful examination, one finds that the works of Wulff, et al. (the first three listed in table 75) produced reliable results which can be used as the basis for the reference data generation. Results reported by Sprockhoff appear to be unreliable, as the given values seem too high for the assumed temperature. The large discrepancies may be attributed either to the measurements being made at a lower temperature than was reported, or to the measurements being made on impure specimens. In the infrared region, Vergnat, et al. [26] obtained refractive indices for powdered CsCl by analyzing the reflection spectrum. This set of data is presented here for completeness, but it was not used for data analysis.

Data reported by Wulff, et al. were obtained at a temperature of 298 K, five degrees higher than our chosen reference temperature. Since the value of dn/dT of CsCl is about $6.0 \times 10^{-5} K^{-1}$ in the visible region [18], a temperature correction of about 3 units in the fourth decimal place needs to be made.

Although there is not a single experimental value of dn/dT available in the literature, we can make reasonable estimates of dn/dT over a wide wavelength range, using our empirical discoveries. Using the parameter values in table 5, the following dn/dT formula was constructed for CsCl:

$$2n \frac{dn}{dT} = -13.89 \ (n^2 - 1) - 4.27 + \frac{1.989 \lambda^4}{(\lambda^2 - 0.02624)^2} + \frac{276.48 \lambda^4}{(\lambda^2 - 10100.25)^2}, \qquad (57)$$

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m. Equation (57) was used to calculate dn/dT values for reducing Wulff's data to 293 K.

With the information available from table 3, a least-squares fitting of the reduced data to eq (10) was carried out. It resulted in a dispersion equation for CsCl at 293 K in the transparent region, $0.18-40.0 \ \mu m$.

$$n^{2} = 1.33013 + \frac{0.98369 \ \lambda^{2}}{\lambda^{2} - (0.119)^{2}} + \frac{0.00009 \ \lambda^{2}}{\lambda^{2} - (0.137)^{2}}$$

$$+ \frac{0.00018 \ \lambda^{2}}{\lambda^{2} - (0.145)^{2}} + \frac{0.30914 \ \lambda^{2}}{\lambda^{2} - (0.162)^{2}} + \frac{4.320 \ \lambda^{2}}{\lambda^{2} - (100.50)^{2}},$$
(58)

where λ is in units of μ m.

In practical use, the contributions of the third and fourth term are small and can be neglected; they are given here for completeness. Equations (57) and (58) were used to generate recommended values of refractive index $dn/d\lambda$ and dn/dT. In the tables, the property values are given to more decimal places than needed, for tabular smoothness. In order to use the recommended values correctly, readers should follow the criteria given below.

For refractive index:

Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, \pm
0.18- 0.20	2	0.01
0.20- 0.30	3	0.005
0.30 - 0.40	3	0.003
0.40- 1.50	3	0.001
1.50 - 20.00	3	0.003
20.00-30.00	. 3	0.006
30.00-40.00	- 3	0.008
For dn/dT :		
0.18- 0.19	0	≥ 1
0.19-30.00	1	0.4
30.00 - 40.00	1	0.9

TABLE 74. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR CSCI AT 293 K *

λ	n	-dn/dλ	dn/dT	λ	. n	-ān/āλ	dn/dT	λ	n	-dn/dλ	dn/dT
μ111	n	µm -1	10-5 K-1	μm		httm _,	10-5 K-1	μm		μm-1	10 ⁻⁵ K ⁻¹
6.100	2.10 910	21.24300	-0.10	0.360	1.11295	0.77401	-7.93	1.000	1.62E <u>43</u>	0.014 <u>34</u>	~7•69
6.182	2.13013	17.95727	-1.73	6.305	1.78920	0.72456	-7.93	1.050	1.62576	0.01240	-7.69
0.186	2.06801	13.46361	-3.79	0.315	1.70240	0.63830	-7.92	1.150	1.62467	6.00948	-7.69
0.188	2.04273	11.87 219	-4.40	0.320	1.69931	0.60056	-7.91	1.200	1.62423	0.00835	-7.68
6.190	2.02031	10.57845	-5.03	0.325	1.69639	G.565 <u>51</u>	-7.91	1.250	1.62383	8.00745	-7.68
8.192	2.00027	9.50056	-5.50	0.330	1.69364	0.53400 8.60466	-7.90	1.300	1.62348	0.00666	-7.68
0.196	1.96580	7 82241	-6.17	0.340	1.68859	0.47738	-7.89	1.400	1.62288	0.00542	-7.68
0,198	1.95083	7.15853	-6.42	0.345	1.E8627	0.45220	-7.85	1.450	1.62262	0.00492	-7.68
0.200	1.93711	6.58236	-6.63	0.350	1.68407	0.42984	-7.82	1.500	1.62235	0.00449	-7.68
0.204	1.91275	5.63414	-6-96	0.360	1.88000	0.38693	-7.87	1.600	1.62198	6.80379	-7.67
0.206	1.90185	5.21624	-7.02	0.365	1.67811	0.36810	-7.87	1.658	1.62179	0.00350	-7.67
0.200	1.031/1	4.68859	-1020	U • 37 U	1.1/231	0.35052	-/.8t	1.700	1.62162	0.00325	-7.67
0.210	1.85231	4.57384	-7.30	0.375	1.67460	0.23409	-7.8	1.750	1.62147	6.00303	-7.67
0.214	1.86513	4.03314	-7.45	0.385	1.67141	0.30430	-7.85	1.850	1.62118	0.00266	-7.67
0.210	1.85730	3.19978	•7.51 -7 57	0.390	1.66993	8.29877	-7.85	1.900	1.62105	0.00251	-7.67
0	1+0+332	0.0000		0.050	1.00000	0.27607	-/.04	10958	1.62093	6.09237	. = / e C /
0.220	1.83634	3.39230	-7.62	8°408 8°448	1.66714	0.26612	-7.84	2.000	1.62082	0.00224	-7.67
0.224	1.83008	3.04915	-7.69	0.420	1.66225	0.22480	-7.83	2.100	1.62060	0.00204	-7.67
8.226	1.82413	2.89736	-7.73	0.430	1.66009	0.20742	-7.82	2.150	1.62050	0.00195	-7.67
08220	1.01040	2012031		0.440	1.65010	0.19164	-7.61	2.200	1.62041	0.0018/	-7.66
0.230	1.81310	2.50565	-7.78 -7.86	0.450	1.65625	0.177 <u>81</u>	-7.81	2.250	1.62032	0.00188	-7.6 <u>E</u>
6.234	1.80307	2.35286	-7.82	0.470	1.65294	0.15371	-7.79	2.350	1.62014	0.00168	-7.65
0.236	1.79839	2.28765	-7.84	0.480	1.65046	0.14332	-7.79	2.400	1.62006	0.00163	-7.66
0 246	4 70053	2 00300		0 6 6 6 6	1105007		-7.73	20450	1.01330	0.00150	-7.00
0.242	1.78552	2.01083	-7.88	0.500	1.64878	0.12525	-7.78 -7.78	2.500	1.61990	0.00154	-7.66 -7.67
8.244	1.78158	1,929 68	-7.89	0.520	1.64643	0.11015	-7.77	2.600	1.61975	0.00147	-7.66
0.240	1.77416	1.85335	-7.90	0.530	1.64536	0.10353	-7.77	2.650	1.61968	0.00144	-7.66
0.250	4 77057	4 74 780	-7 0 3	0 550	4 66353	0.00400		0.700	1.01.01	0.00141	
0.252	1.76731	1.64957	-7.92	0.560	1.64252	0.09102	-7.7E	2•/5U 2•800	1.6194	0.00139	-7.66
0.254	1.76407	1.58900	-7.92	0.570	1.64168	0.08184	-7.75	2.850	1.61940	0.00134	-7.66
0.255	1.75794	1.53167	-7.93	0.580	1.64088	0.07740	-7.75	2.900	1.61934	0.00133	-7.6 <u>6</u>
0.260	1.75504	1.62583	.7.93	0.600	4 670/7	A 06010E0	- 7 78	2 0 0 0	1.01927		-/.00
0.262	1.75224	1.37688	-7.94	0.620	1.63809	0.06258	-7.74	3.058	1.61921	0.00129	-7.66
0.264	1.74953	1.33037	-7.94	6.640	1.63690	0.05660	-7.74	3.100	1.61908	6.00128	-7.66
0.268	1.74438	1.28613	-7.94	0.680	1.63583	0.05136	-7.73	3.150	1.61901	0.00127	-7.6 <u>6</u>
0.270	1.74194	1.20387	-7.92	0.700	1.63305	0.04274	-7.75	2 250	4 64607	0 004 00	-1.00
0.272	1.73957	1.16559	-7.94	0.720	1.63313	0.03912	-7.72	3.300	1.61882	0.00125	-7.65
0.274	1.73727	1.12905	-7.94	0.740	1.63238	0.03593	-7.72	3.350	1.61876	0.00125	-7.65
0.278	1.73289	1.06021	-7.94	0.760 0.780	1.631 <u>69</u> 1.63106	0.03308	-7.72	3.400 3.450	1.61870	C.00125 C.00125	-7.65
0.280	1.73080	1.02891	-7.94	0.800	1.63047	0.02823	-7.73	3.500	1.61857	0.00125	-7.FE
0.282	1.72878	<u>35</u> 899.0	-7.94	0.820	1.(2993	0.02617	-7.71	3.550	1.61851	0.00125	-7.65
V.284 0.286	1 . 12681	0.98914 0.94117	-7.94	0.840 0.860	1.62942	0.02431	-7.71	3.600	1.61845	0.00125	-7.65
0.288	1.72305	0.91425	-7.94	0.880	1. (2852	0.02109	-7.70	3.700	1.61832	0.00125	-7.65
0.290	1.72124	0.88847	-7.94	0.900	1.62811	0.01970	-7.70	3.750	1.61826	6.00125	-7.65
0.292	1.71770	0.839 <u>5</u> 5	-7.94	0.920	1-62773	0.01843	-7.70	3.800	1.61820	0.00126	-7.65
0.296	1.71613	0.81710	-7.93	0.960	1.62704	0.01621	-7.75	3.900	1.61807	0.00126	-7.65
0.298	1.71452	0.79514	-7.93	0.980	1. 82872	0.01524	-7.69	3.950	1.61801	6.00127	-7.65

496

TABLE 74. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR CsC1 AT 293 K (continued)*

·											
2		$-dn/d\lambda$	dn/dT	λ		-dn/dλ	dn/dT	λ		-dn/da	dn/dT
um.	n	um -1	10 ⁻⁵ K ⁻¹	μm	n	um -1	10-5 K-1	<u>u</u> m	n	<u>µ</u> m ^{−1}	10 ⁻⁵ K ⁻¹
				F							
			-		_		-				-
4.000	1.617 <u>95</u>	0.00127	-7.65	8.400	1.61032	0.00229	-7.57	17.600	1.57690	0.00508	-7.18
4.050	1.61788	0.00128	-7.65	8.500	1.61009	0.00231	-7.51	17.800	1.57588	8.00515	-7.1 <u>7</u>
4.100	i.617 82	0.00129	-7.65	8.600	1.60986	0.00234	-7.57	18.000	1.57484	0.00522	-7.15
4.150	1.61775	0.00129	-7.65	8.700	1.60963	0.00237	-7.57	18.200	1.57379	0.08529	-7.14
4.200	1.61765	0.00130	-7.64	8.800	1.60939	0.00240	~7.57	18.400	1.57272	0.00536	-7.13
											_
4.250	1.61762	0.00131	-7.64	8.900	1.60915	0.00242	-7.5 <u>E</u>	18.600	1.57165	0.00543	-7.1 <u>1</u>
4.300	1.61756	0.00131	-7.64	9.000	1.60890	0.00245	-7.5€	18.800	1.57055	0.00550	-7.10
4.350	1.61749	0.00132	-7.64	9.100	1.60866	0.00248	-7.5E	19.000	1.56945	0.00557	-7.08
4.400	1.61743	0.00133	-7.64	9.200	1. (0841	0.00251	-7.5E	19.200	1.56832	0.00564	-7.0Ē
4.450	1.61736	0.00134	-7.64	9.300	1.60816	0.00253	-7.55	19.400	1.5671 9	0.00571	-7.05
4.500	1.61725	0.00134	~7.64	9.400	1.60790	0.00256	-7.55	19.600	1.56604	0.00579	-7.03
4.558	1.61723	0.00125	-7.64	9.500	1. 20764	0.00259	-7.55	19.800	1.56487	0.00586	-7.01
4.600	1.61716	0.00136	-7.64	9.600	1.60738	0.00262	-7.54	20.000	1.56369	0.00593	-7.00
4.650	1.61709	0.00137	-7.64	9.700	1.60712	0.00265	-7.54	26.508	1.56068	0.00612	-6.95
4.700	1.61702	0.00138	-7.64	9.800	1.60685	0.00267	-7.54	21.000	1.55758	0.00631	-6.91
4.750	1.61695	0.00139	-7.64	9.980	1.60659	0.00270	-7.54	21.500	1.55437	0.00650	-6.86
4.800	1.61688	0.00140	-7.64	10.000	1. 0631	0.00273	-7.53	22.000	1.55108	0.00669	-6.80
4.850	1.61681	0.00141	-7.84	10.200	1.60576	0.00279	-7.53	22.500	1.54768	0.00689	-6.75
4.900	1.61674	8.00142	-7.64	10.400	1.€0520	0.00284	-7.52	23.000	1.54418	0.00710	-6.69
4.958	1.61667	0.00143	-7.64	10.600	1. 10 463	0.00290	-7.52	23.500	1.54058	0.00730	-6.63
5.000	1.61660	0.00144	-7.63	10.800	1.60404	0.00296	-7.51	24.000	1.53688	0.00751	-6.57
5.100	1.61645	0.00146	-7.63	11.600	1.60344	0.00302	-7.50	24.508	1.53307	0.00773	-6.50
5.200	1.61631	0.00140	-7.63	11.200	1.60203	0.00307	-7.50	25.000	1.52915	0.00795	-6.43
5.300	1.61616	0.00150	-7.63	11.400	1.60221	0.00313	-7.45	25.500	1.52512	0.00817	-6.36
5.400	1.61601	0.00152	-7.63	11.600	1.60158	0.00319	-7.48	26.000	1.52098	0.00840	-6.28
5.500	1.61585	6.00155	-7.63	11.800	1.60094	0.00325	-7.48	26.500	1.51672	0.00863	-6.20
5.600	1.61570	0.00157	-7.63	12.000	1.€0028	0.00331	-7.47	27.000	1.51235	0.00887	-6.11
5.700	1.61554	0.00159	-7.63	12.200	1.59961	C.00337	-7.46	27.500	1.50785	0.00912	-6.02
5.800	1.61538	0.00162	-7.62	12,400	i.59893	0.00343	-7.45	28.000	1.50323	0.00936	-5.93
5.900	1.61521	0.00164	-7.62	12.600	1.59824	0.00349	-7.45	28.500	1.49849	0.00962	-5.83
							_		-		
6.000	1.61505	0.00166	-7-62	12.800	1.59754	0.00355	-7.44	29.000	1.49361	0.00988	-5.72
E.100	1.61488	0.00119	-7.62	13.000	1.59682	0.00361	-7.43	29.500	1.48860	0.01015	-5.6 <u>1</u>
E.200	1.61471	0.0C171	-7.62	13.200	1.59609	0.003 <u>E7</u>	-7.42	30.000	1.48346	0.01043	-5.50
E-300	1.61454	0.00174	-7.62	13.400	1.59535	0.00373	-7.41	30.500	1.47818	0.01071	-5.38
6.400	1.61436	0.00175	-7.61	13.600	1.59460	0.00379	-7.48	31.000	1.47275	0.01100	-5.25
	4 44 76	4 44 75	7 (7			· · · · · · · · · · · · · · · · · · ·					
0.500	1.61419	0.001/9	-(.01	13.800	1.59384	0.00325	- / • 45	31.500	2.46/18	8.01129	-5.12
6.000	1+61401	0.00101	1001	14.000	1.59300	0.00391	-1.32	32.000	· 1•46146	0.01160	-4.9/
6.700	1.01302	0.00184	-/.01	14.200	1.59227	0.00398	-/.34	32.500	1.45558	0.01191	-4-85
E.800	1.61364	0.00120	-1.01	14.400	1.5914/	0.00404	-1.31	33.000	1.44954	0.01223	-4.E <u>7</u>
6.900	1.01345	0.00189	-/.01	14.000	1.59066	0.00410	-/.St	33.500	1.44334	0.01255	-4.51
7,000	1 . 61 3 24	0.00107	-7.FT	14-900	1. 58087	0.00444	-7.37	34,000	1.47600	0.01204	-4 27
7 4 0 0	4 61 307	0.00151	-7 60	14.000	1.50903	6 604 57	-7 7	34.5000	4 6 30 4 4	0.01231	-4.33
7 200	4 64 2 87	0 00107	-7.66	15 3000	1 58844	0 00 - 23	-7 77	340900	1.43044	0.01326	
7 200	1 61268	0 00157	-7600	45 400	4 58737	0 00425	-7 70	35.000	4 14690	0.01302	-3.90
7.400	1 61200	0.00133	-7 68	15.400	4 58640	0 004.00	-7 34	76 000	4 / 0077	0.041.70	-3.10
1.400	1.01540	0.00202	-/.00	12.000	1.20040	0.00442	-1.51	30.000	1.40970	0.01430	-3.95
7.500	1 . 61 227	0.00204	-7.50	15-800	1.58554	0.00440	-7.20	36,500	1.40256	0.01177	.3. 27
7.600	1.61207	0.00207	-7.5C	15,880	1.58460	0.00455	-7.28	37.000	1.39405	0.01549	-3.33
7.700	1.61186	0.00210	-7.50	16.200	1.58360	A. 04459	-7.27	37.500	1.39725	8.01520	-2.85
7.800	1.61165	0.00210	7.50	16-400	1.58276	0.00460	-7.25	38,000	1. 37676	0.01401	-2 5 -
7,900	1.61147	0.00215	-7.50	16.600	1. 5.81 84	0.00420	-7.25	38,600	1.37124	8.04667	-2.34
	1.011.01	STORE19		100000	10101	212212	1020		1.01101	0.01000	-2001
8.000	1.61177	0.00218	-7.58	16-800	1. 580 86	0.00481	•7.23	39,000	1. 36285	0.01605	-2.15
8,180	1.61100	0.00220	-7.58	17.000	1.57989	R. 864 AA	-7.22	39.500	1.35424	0.01755	-1.71
8.200	1.61078	0.00223	-7.58	17.200	1.57891	0.00405	-7.21	40,000	1.34530	0.01795	-1.39
8,300	1.61055	0.00226	-7.58	17.400	1.577 04	0.00502	-7.20	70 V U U U	1004203	24021 39	****

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.18. The number of digits with an overstrike are not relevant to accuracy of the data.

REFRACTIVE INDEX OF ALKALI HALIDES

н. н. и

TABLE 75. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND 4n/4T MEASUREMENTS OF CsCI

Curr. Ref. No.Autior (s)Your UsedMethod Image, mTemperature, KSpecifications, and Remarks38Wuift, P. and Sedaller, D.1934M0.439-0.671298Crystal i specinen was suporded in a Cultificand dura were presented with unstruce duri retracting of 0.0001.384Wuift, P. and Raibrson, T.F.1935D0.2265-0.5379298Crystal i specinen was suporded in a Cultificand dura were presented with uncertainty of retracting of 0.0001.384Wuift, F. and Ausherson, T.F.1935D0.2265-0.5379298Crystal i specinen was suporded in a Cultificand dura were presented with uncertainty of retracting of 0.0001.384Wuift, F. and Riefl, A.1935D0.2265-0.5379298Crystal i prismite specimen with appex angles of about 51°221; average results were presented in digitized dura were presented with uncertainty of results were presented in digitized dura were presented with uncertainty of results were presented in digitized dura was proving of the mail in a stream of Ni-HOI mixtu stream stream of Ni-HOI mixtu stream stream stream stream stream of Ni-HOI mixtu stream stream st			'ng.	pe	ure; e 00003.	erence fuced a		aged not
Ctr. Ref. Author (s) Year Method Wavelength Temperature, K Ro. No. No. No. No. $Vavelength$ Temperature, K Ro. No. No. No. $Vavelength$ Temperature, K $Vavelength$ Temperature, K Ro. No. No. No. $Vavelength$ Temperature, K $Vavelength$ Temperature, K Ro. No. No. No. $Vavelength$ $Vavelength$ Temperature, K $Vavelength$ $Vavelength$ $Vavelength$ Ro. No. No. 1934 M $0.480-0.611$ 298 $Savelength$ $Vavelength$ $Vaveleng$		Specifications, and Remarks	Crystal; specimen was suspended in a C ₁₀ H ₇ Br and C ₆ H ₅ Cl mixture dur refractive index determination; digitized data were presented with certainties of 0, 0001.	Crystal; prismatic specimens with apex angles of about 51°22'; avera- results were presented in digitized values.	Crystal; grown by slow cooling of the melt in a strearn of N _i -HCl mixt specimen 1.5 mm thick was immersed in a mono bromonaphthaien cedar oil mixture; digitized datum was presented with uncertainty (Powder; pure; pressed into a 15° wedge shape specimen to avoid inter effect during reflectance measurements; refractive indices were de by Lorentz analysis to the reflection spectrum; data extracted from figure.	Similar to above; curves for 30 K and 25 K were plotted too close to b distinguished.	Crystal; six prismatic specimens with apex angles of about 35. 3°; ave probable values of measurements were presented; lemperature wai given, room temperature assumed.
Cur. Ref. Ho.Autior(s)YearMethod UsedWavelength itonge, μm 385Wulft, P. and Schaller, D.1934M0.480-0.671294Wulft, P. and Antierson, T.F.1935D0.2265-0.5379387Wulft, F. and Antierson, T.F.1935M0.539426Vergrat, P., Cleudel, J., Honril, 1939M0.539526Vergrat, P., Cleudel, J., Honril, F.1956R0.5370526Vergrat, P., et al.1959R50-200696Sprochoff, M.1959R50-200		Temperature, K	298,	298	298	390	80, 25	298
Ctr. Ref.Author (s)YearMethodHo.No.No.YearMethodHo.No.1934MHo.Nuff, P. and Schaller, D.1935DHo.Wuff, P. and Antierson, T.F.1935DHo.Wuff, F. and Antierson, T.F.1935DHo.Wuff, F. and Antierson, T.F.1935DHo.Wuff, F. and Antierson, T.F.1935DHo.Wuff, F. and Ineigh, A.1936MHo.SVergrat, P., Claudel, J., Homth, 1939RHo.A., Strimer, P., and Vermillard, F.1955RHo.SVergrat, P., et al.1959RHo.Sprockhoff, M.1904D		Wavelength Range, µm	0.480-0.671	0.2265-0.5379	0, 539	53200	50-200	0.486-0.556
Ctr. Ref.Author(s)YearHo.No.Author(s)YearHo.No.1934Ho.SWuiff, P., and Scheller, D.1935Ho.Wuiff, P., and Antherson, T. F.1935Ho.Wuiff, F., and Rickt, A.1935Ho.BWuiff, F., and Rickl, A.1936Ho.BWuiff, F., and Rickl, A.1938Ho.BVergrat, P., Cleudel, J., Hondh, 1038Ho.A., Strimer, P., and Vermillard, F.1939Ho.A., Strimer, P., et al.1939Ho.Sprochhoff, M.1934		Method Used	М	Q	М	×	н	Q
Cur. Ref.Author(s)Ho No.Naiff, P. and Schaller, D.BWuiff, P. and Autherson, T. F.BWuiff, P. and Indel, A.BWuiff, F. and Indel, A.BVergrat, P., Cleudel, J., Hondh,AZ6Vergrat, P., Cleudel, J., Hondh,526Vergrat, P., Cleudel, J., Hondh,695Sprockhoff, M.		Year	1934	1935	1931, 1928	1959 2.	1959	1.934
Curr. Ref. Mo. No. 3. 85 2. 94 4. 26 4. 26 6 95 6 95	a y sana ana ana ang ang ang ang ang ang ang	Auticr(s)	Wuff, P. and Schaller, D.	Wuiff, P. and Anierson, T. F.	Wu Ω , Γ , and Heigl, A.	Vergrat, P., Cleudel, J., Homth, A., Strimer, P., and Vermillard, I	Vergrat, P., et al.	Sprockhoff, M.
्र स्टिन्स संस्थाल संस्थान स्य स्थान संस्यान संस्थान संस्यान संस्यान संस्यान संस्यान संस्यान संस्यान संस्यान संस्यान संस्यान सार सार सार सार सार सार सार सार सार सार		Ref. No.	55 2	54	87, 83	86	26	96
		Cter. No.	~ `	au .	×.	<i></i>	io.	9

499

Index,	
Reractive	
um;	
ź	
[Wavelength,	

ľ

u V	$\frac{\text{CURVE 6 (cont.)}}{\text{T} = 298. \text{ K}}$	0.589 1.6418 0.656 1.6377					
u Y	$\frac{\text{CURVE 4 (cont.)}}{\text{T} = 290. \text{ K}}$	100.70 5.61 101.73 5.89 103.31 6.11 110.74 4.91 110.74 4.91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.05 1.02 54.98 0.86 57.27 0.66 61.35 0.26 64.10 0.15 75.93 0.15 81.77 0.32 88.26 0.63 89.93 0.63 89.93 0.63 89.93 0.96	92.42 1.97 95.93 7.91 95.97 8.17 97.47 7.41 99.70 6.12 102.35 5.35 105.46 4.28	112.61 3.93 117.51 3.70 123.15 3.48 131.75 3.27 146.84 3.04 166.67 2.89 200.00 2.79	$\frac{\text{CURVE } 6}{\text{T} = 298. \text{ K}}$ 0.486 1.6523
u y	$\frac{\text{CURVE }1}{\text{T}=298. \text{ K}}$	0.48001 1.6510 0.54610 1.6434 0.58962 1.6397 0.67078 1.6347	$\begin{array}{l} \displaystyle \frac{CURVE}{T}=\frac{2}{298}, \frac{K}{K}\\ 0.2265 & 1.8226 \\ 0.2212 & 1.8161\\ 0.2212 & 1.8097\\ 0.2573 & 1.7687\\ 0.2749 & 1.7567\\ 0.2749 & 1.7139\\ 0.2981 & 1.7139\\ 0.2981 & 1.7139\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} \frac{CURVE}{T} = \frac{3}{298. \text{ K}} \\ 0.589 & 1.33966 \\ \frac{CURVE}{T} = \frac{4}{290. \text{ K}} \end{array}$	53. 39 0. 95 58. 07 0. 59 60. 83 0. 44 64. 31 0. 28 67. 02 0. 28 81. 50 0. 50 81. 50 0. 50 90. 09 0. 80	92.34 1.02 94.79 1.60 97.94 3.00 98.91 3.87 * Not shown in figure.

Source	Wavelength and Temperature Ranges	Dispersion Equation λ ln μm; ν in cm ⁻ⁱ				
Vergnai, P., Claudel, J., Hadni, A., Strimer, P., and Vermillard, F. [26] 1969	53-200 µm 290 K	$n^{2}-k^{2} = \epsilon_{uv} + \sum_{i} 4\pi\rho_{i} \frac{\nu_{i}^{2} (\nu_{i}^{2} - \nu^{2})}{(\nu_{i}^{2} - \nu^{2})^{2} + \delta_{i}^{2} \nu_{i}^{2} \nu^{2}},$ $2nk = \sum_{i} 4\pi\rho_{i} \frac{\nu_{i}^{3} \nu \delta_{i}}{(\nu_{i}^{2} - \nu^{2})^{2} + \delta_{i}^{2} \nu_{i}^{2} \nu^{2}} *$				
Present work 1975	0.18-40.0 μm 293 K	$n^{2} = 1.33013 + \frac{0.98369 \lambda^{2}}{\lambda^{2} - (0.119)^{2}} + \frac{0.00009 \lambda^{2}}{\lambda^{2} - (0.137)^{2}}$				
		$+ \frac{0.00018 \lambda^2}{\lambda^2 - (0.145)^2} + \frac{0.30914 \lambda^2}{\lambda^2 - (0.162)^2}$ + $\frac{4.320 \lambda^2}{\lambda^2 - (0.162)^2}$				

TABLE 77. COMPARISON OF DISPERSION EQUATIONS PROPOSED FOR CsCl

 $*i = 1, 2; \ \mu_1 = 99 \ \mathrm{cm}^{-1}; \ \mu_2 = 125 \ \mathrm{cm}^{-1}; \ \delta_1 = 0.075, \ \delta_2 = 0.25; \ \rho_1 = 0.32, \ \rho_2 = 0.020; \ \epsilon_{\mathrm{uv}} = 2.7, \ \epsilon_{\mathrm{s}} = 6.98.$

3.19. Cesium Bromide, CsBr

Early measurements of the refractive index of CsBr were made by Sprockhoff [95] in 1904. He used the minimum deviation method to determine the refractive indices for three visible spectral lines, 0.486, 0.589, and 0.656 μ m. Although his values were presented to 4 decimal places, the temperatures at which the data were obtained were not specified; the significance of the data is thus uncertain.

In the following 50 years, no other measurement of the refractive index of CsBr was reported. The main reasons for this long blank period were the difficulties in crystal growing. Large crystals suitable for optical components were not available. It was not until 1953 that large crystals of CsBr of reasonably good optical quality were successfully grown, providing a new material for infrared studies in the range beyond the 25μ m limit of KBr, out to about 40 μ m. A mixed crystal of thallium bromide-iodide, known as KRS-5. was previously the only material available for use in this region.

The dispersion of CsBr compares favorably with that of KRS-5 beyond 20 microns, and when the effects of inhomogeneity and reflection losses are considered the resolving power of a CsBr prism is much better.

The refractive index in the transparent region of CsBr was extensively and precisely measured by Rodney and Spindler [107, 108] in 1952 and 1953. The minimum deviation method was used for a wide wavelength range from 0.365 to 39.22 μ m. Rodney and Spindler [107] worked out a dispersion equation of CsBr as shown in table 82. They pointed out that five of the seven constants in that equation were determined by means of a simultaneous solution. The constants appearing in the denominators of two terms represent the infrared and ultraviolet absorption bands. The ultraviolet term was determined by taking a weighted mean of several measured bands. The infrared term is an estimate based on information on CsCl, and is probably too low.

Refractive indices of CsBr in the infrared absorption region, $30-275 \ \mu m$, were derived by Geick [109] in 1961, based on the analysis of transmission and nearly-normal reflection spectra. He concluded that an absorption peak was located at 136.7 μm . The infrared region up to 200 μm was reinvestigated by Vergnat, et al. [26] in 1969. The Lorentz damped-oscillator model was used to analyze the normal reflection spectra. Two absorption peaks were found at 97.09 and 133.33 μm , with the one of longer wavelength predominating. These results indicated that the wavelength in the infrared term used by Rodney and Spindler was low.

In the millimeter-wavelength region, the refractive index at 2000 μ m was determined by Dianov and Irisova [47] in 1967. The result, $n^2 = 6.55$ at room temperature, agrees closely with the value of static dielectric constant given by Vergnat, et al. [26]. This completes the record of activities in determining the refractive index of CsBr.

In view of the available information discussed above, we used the two data sets by Rodney and Spindler [107, 108] as the basis for generation of recommended values. Since the data sets were reported at temperatures of 300 and 297 K respectively, temperature corrections were needed to reduce the selected data to 293 K. However, there was little data on which to base such corrections. Rodney and Spindler [107] reported an averaged dn/dT value of -7.9×10^{-5} K⁻¹ for the wavelength range 0.36-39 μ m, but no detailed variation of dn/dT was given.

In the present research this obstacle was removed by our empirical methods, as discussed in subsection 2.2. With the aid of the predicted parameters in table 5, we constructed a formula for dn/dT values for CsBr over the entire transparent region:

$$2n \frac{dn}{dT} = -14.22 \ (n^2 - 1) - 4.75$$

$$+ \frac{2.172 \ \lambda^4}{(\lambda^2 - 0.03497)^2} + \frac{310.40 \ \lambda^4}{(\lambda^2 - 18509 \ 60)^2},$$
(59)

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m.

The results of this process and encouraging. In figure 64, it is evident that our averaged value of dn/dT in the transparent region is about -8.2×10^{-5} K⁻¹, while the value of Rodney and Spindler is -7.9×10^{-5} K⁻¹. In the better set of the selected data, Rodney and Spindler [107] obtained refractive indices at temperatures ranging from 297 to 304 K, and then reduced to 300 K with accuracies within ± 1 or 2×10^{-5} . If the errors are totally due to the uncertainties of dn/dT, which is very likely, the uncertainty in dn/dT is about 0.3×10^{-5} K⁻¹ or higher. The accuracy of the other set is perhaps less than 0.0001. Therefore, it can be safely said that the predictions of eq (59) are reasonable. The selected data were reduced to 293 K using this equation.

From the information in tables 3 and 82, input parameters for a least-squares fitting were obtained. The calculation resulted in a dispersion equation for CsBr at 293 K in the transparent region, $0.21-55.0 \mu m$.

$$n^{2} = 1.14600 + \frac{1.26628 \lambda^{2}}{\lambda^{2} - (0.120)^{2}} + \frac{0.01137 \lambda^{2}}{\lambda^{2} - (0.146)^{2}} + \frac{0.00975 \lambda^{2}}{\lambda^{2} - (0.160)^{2}} + \frac{0.00672 \lambda^{2}}{\lambda^{2} - (0.173)^{2}} + \frac{0.34557\lambda^{2}}{\lambda^{2} - (0.187)^{2}} + \frac{3.76339\lambda^{2}}{\lambda^{2} - (136.05)^{2}},$$
(60)

where λ is in units of μ m.

Equations (59) and (60) are used to generate the recommended values of refractive index, and its wavelength and temperature derivatives. The property values are given to more decimal places than needed to assure tabular smoothness. In using values from the table, readers should follow the criteria given below. For refractive index:

Wavelength range (µm)	Meaningful decimal place	Estimated uncertainty, ±
0.21- 0.25	2	0.01
0.25- 0.35	4	0.0003
0.35 - 30.00	4	0.0001
30.00 - 40.00	4	0.0005
40.00-55.00	3	0.006
For dn/dT :		
0.21- 0.22	0	≥]
0.22 - 40.00	1	0.4
40.00-55.00	1	0.9

TABLE 78. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR CsBr AT 293 K*

		-									
		(<i>د</i>) بيد	an /am	``		-dn/d	dn/dT	``		-dn/d	dn/dT
λ	n	-au/a/	anyar	۸	n	-uu/ux	unyun	~	n	-000/07	
um		um ⊷i	10 - K - I	um (μm	10 - K -	<u>µ</u> m		µm	10-5 K-1
				<u> </u>							
	0 10 000	44 44 000	4 17	A 336	4 94 65 3	A 40645		4 758	4 67404		
0.210	2.18200	10.14 901	-1. <u>73</u>	4.3/5	1.7409/	0.4094 <u>2</u>	-0.01	1.750	1.01131	0.00313	-0.37
0.212	2.15191	14.08686	-2.85	0.380	1.74419	0.46565	-8.60	1.800	1.67173	0.00344	-8.39
8 24 5	3 42565	43 431.56	-7 76	0 795	4 74402	0 66368	-8.60	1.850	1 67155	0.00340	-8 30
0.214	C+15 242	15945460	- 36 / 4	4.005	1014172	4.44.540	-0.00	1.054	1.0/150	0.00013	-0.33
0.216	2.10201	11.0€295	-4.46	0.398	1.73975	0.42277	-8.60	1.900	1.67141	0.00297	-8.39
0 24 9	2 0.0 105	0 0 1 1 27	-5.84	0.305	4.73760	0. 60 170	- A . 50	1.950	1.67127	0.00277	- A . 7C
n • 5 † 0	T # 00 T 0 2	- 34361CI	-2004	0.035	1010101	0.40000		40,000	1.001111		-0.03
					·	_			_		_
0.220	2.06216	8.97850	-5.53	0.480	1.73571	0.38524	-8.59	2.000	1.67113	0.00259	-8.39
	C 04 E04		-5 07	0 440	4 77207	0 35022	- 9 5 9	2 9 6 9	4 67404	0 0 0 2 2	- 9 7 0
4.222	2.04204	0.10054	-2.33	0.410	1.13203	0.39222	-0.50	2.0000	1.01101	0.00243	-0.03
0.224	2.02941	7.47224	-6.27	0.420	1.72866	0.32304	-8.57	2.100	1.67089	0.00228	-8.39
0 226	2 04 500	6 86 970	-6 55	0 430	1 72555	1.20712	-9 57	2.158	4.67078	0.00215	a 8. 30
0.220	2.01203	0.00010	-0.55	4.430	1072990	0.23116	-0.57	2.150		0000012	-0.03
0.228	2.00189	6.3414/	-6.86	0.440	1./22/1	0.27490	-8.96	2.200	1.0/00/	0.00203	-8-38
0 270	1 CA 069	5 97757	-7 02	0 460	1.72007	0.26774	-8 55	2.258	1.67058	0.00102	-8.38
0.200	1 . 20 200	5.01105	-1002	0.450	101200-	0.000		2.220	1.07020	000013	
0.232	1.97834	5.48896	-7.20	0.460	1.71763	0.23472	-8.55	2.300	1.67048	0.00182	-8.38
0.234	1.96778	5-10124	-7.36	0.470	1.71537	0.21797	-8.54	2.350	1.67039	0.00173	-8.38
	10,00,770							0 / 00	4 6 7074	0 00467	2 <u>2</u>
0.230	1.95/91	4.11324	-/.56	8.4488	1. (132/	0.20202	-0.24	2.400	1.0/031	0.00102	-0.30
0.238	1.94866	4.47932	-7.62	0.490	1.71131	0.18909	-8.53	2.458	1.67023	0.00157	-8.38
					-						
			=			· · · · ·		·	· · · · · · · · · · · · · · · · · · ·		
0.240	1.93 <u>99</u> 7	4.21 <u>31</u> 9	-7.7 <u>3</u>	0.500	1.70948	0.17660	-8.53	2.500	1.67015	0.00150	-8.38
0.242	1.93179	3.97173	-7.82	0.510	1.70777	0.16522	-8.52	2.550	1.67008	0.00144	-8.38
8 244	4 02/17	3 75 4 44	-7 07	0 5 2 6	4 70645	6 454 6		2 6 8 8	1.67004	0 004 7	
U • 2 4 4	1+92407	3 . 1 2 1 64		0.520	1010011	0+12403	-0.55	2.0000	1+01001	0.00130	-0.30
0.246	1.91677	3.55088	-7.98	0.530	1.70467	0.14531	-8.51	2.650	1.66994	0.00133	-8.38
8.248	1.00986	3.36662	• A . 0 L	0.540	1.78326	8.13657	-8.51	2.700	1.66987	0.00128	-8.38
		3400002		00040		*******	V •		100000		0.00
	-	<u> </u>			· _	-	· _		-	-	_
0.250	1.90 330	3.19717	-8.10	0.550	1.70194	0.12854	-8.50	2.750	1.66981	0.00123	-8.38
8 252	4 90705	2 04004	- 8 4 F	0 560	4.70060	0 12111	- 9 50	2.000	1.66075	0.00110	- 9 . 3 9
0.292	1.03105	3.04031	-0.15	0.500	1.10003	0.15114	-0.20	2.000	1.00315	0.00112	-0.30
0.254	1.89113	2.89642	-8.20	0.570	1.69952	0.11431	-8.56	2.850	1.66969	0.00115	-8.38
8,256	1.88547	2.76250	-8.25	0.580	1.69840	0.10799	-8.49	2.900	1.66964	0.00112	-8.38
0 05 0	4 00007	0 67056	- 9 25	0 500	4 40775	A 40.041	- 0 1 0	2 050	4 46 65	0 00400	
0.290	1.09001	2.000000	-0.20	0.0220	1.09/39	0.10214	-0.43	2.95U	1.00.20	0.00103	-0.30
0.260	1.87491	2.52225	-8-32	0.600	1. 59636	0.09672	-8.48	3.000	1.66953	0.00106	-8.38
0.0200			-0.02		1.0000	000000	-0.70			0.00100	-0.00
0.262	1.86998	2.41418	-8.35	0.520	1.29455	0.08643	-8.48	3.090	1.0948	0.00103	-8.38
0.264	1.86525	2.31317	-8.38	0.640	1. 89287	0.07854	-8.47	3.100	1.66942	0.00100	-8.38
0 266	1.86072	2 21 8 50	-8.47	0.660	1. 601 38	0.07117	-8.47	7.450	1.66037	0.00009	-8.38
0.200	1.000/2	2.01012	-0.46	0.000	1.03130	0.0/11/	-0.41	3.190	1.00337	0.00030	-0.30
0.268	1.85637	2.12587	-8.43	0.680	1.69002	0.06471	-8.4E	3.200	1.66933	0.00096	-8.38
0 070	4 05 24 0	2 84650	- 0 1 2	0 700	4 60070	0 0000	34 0-	7 950	4 66 620	0 00007	0 75
0.270	1.02513	2.84652	-0.42	0.700	1.000/0	0.02302	-0.45	3.270	1.00.20	0.00034	-0.30
0.272	1.84818	1.96810	-8.47	0.720	1.68765	0.05399	-8.45	3.300	1.66923	0.00092	-8.38
1.274	1.84432	1.89420	-8-48	0.740	1.68662	0.84952	-8.45	3.350	1.66919	ก่อกกัดกั	-8.38
	4 04 06	4 00140			4 4 4 5 6 5			2 / 40			
0.276	1.04000	1.02440	-0.56	0.100	1.00001	0.04554	-0.45	3.400	1.00314	0.00089	-0.38
0.278	1.83702	1.75860	-8.51	0.780	1.€8480	0.04198	-8.44	3.450	1.66910	0.00088	-8.38
					-		-				
		.			· · · · · · · · · · · · · · · · · · ·		–				
0.200	1.83356	1.69628	-8.5 <u>2</u>	0.800	1.69333	0.03878	-8.44	3.500	1.66905	0.00086	-0.30
0.282	1.83023	1.63726	-8.54	0.820	1.68324	0.03591	-8.44	3.550	1.66901	0.00085	-8.38
0 284	4.82701	1.58170	-8.55	0.840	1.68755	0.07772	-8 47	7 600	4 66807	0 0000	- 9 7 9
0.204	1000101			0.040	1.00232	000002		0.000	1.00037	0.00004	-0.30
0.286	1.82390	1.52819	-8.56	0.850	1.68191	0.03097	-8.43	3.650	1.66893	0.00083	-8.37
8.288	1.82090	1.47772	-8.56	0_888	1. 58131	0.02884	-8.43	3.788	1.66280	0.00082	+8.37
									2000000		
			- - -		=				=		
0.290	1.81799	1.42972	-8.57	8.900	1.68075	0.02691	-8.43	3.750	1.66885	0.00081	-8.37
8.292	1.81518	1.38402	-8.58	0-920	1.68023	0.02515	-8.43	3.800	1.66.481	กิลกกกลกิ	-8-17
8 201	4 94 91 F	4 71.01.0		0.040	4 6707			7 454			
4.6274	1.01242	1.34040	-0.20	u • 940	T* C1 212	0.02354	-0.4 <u>/</u>	3.890	1.000//	0.0008 <u>0</u>	-0.37
0.296	1.80982	1.29896	-8.59	0.960	1.67929	0.02206	-8.42	3.900	1.66873	0.00079	-8.37
0.298	1.80725	1.25077	- A. 50	0.040	1.67 885	0.82874	-8.47	3 050	1.66860	1.18474	-8 27
	1000120	A . L . 300		40708	Ten. C00	0.02011		0 + 720	¥ • 0 0 0 0 9	0.00010	-0.31
	· · · · - -		.			. –	_	1	-		-
0.300	1.80478	1.22147	-8.60	1.000	1.67846	0.01947	-8.42	4.000	1.6865	0.00078	-8.37
0.305	1.79880	1.13300	-8.61	1.050	1. 67755	0.01679	-8.41	4.050	1.66861	0.00077	-8.37
	A 743.5						12•7÷	40020	100001		-0.31
0.310	1.19342	1.05531	-0.01	1.100	1.0/6/7	8.81457	-8.41	4.100	1.66857	0.00077	-8.37
0.315	1.78833	0.98448	-8.62	1.150	1.67689	0.01274	-8.41	4.150	1.66853	0.00077	-8-37
0.320	1.78357	0-92841	-8.62	1.200	1. (7550	0.01120	-8.41	4.200	1.66849	0.00075	-8.37
	20.0001	0072041			2001000				*******	0.00010	-0+37
	· _	-			·	-	_				
0.325	1.77 911	0.86225	-8.62	1.250	1.67497	0.00491	-8.40	4.250	1. 66845	0.00076	+8.37
0.770	1.77601	0.80034	-8.47	4 300	4 67.00	0.00000		1 700	4 6 6 9 4 9	0 00079	
4.000	2011994	0.00320	-0.C <u>C</u>	1.300	T.C. 420	u.uu.oo <u>2</u>	-0.4 <u>U</u>	4.300	1.00042	n•n <u>nn</u> ()	-0.3 <u>/</u>
0.335	1.77101	0.76091	-8.62	1.350	1.67408	0.00788	-8.40	4.350	1.66838	0.00076	-8.37
0.348	1.767 39	8.71660	-8.62	1-460	1.67274	0-0070A	-8.40	6-400	1-66831	0-00076	- 8 - 27
8 768	4 76 701	0 67507		4					4 6 6 9 9		
4.345	1010384	0.01291	-0.02	1.450	1.51331	0.00039	-0.46	4.498	1.00030	0.00075	-8.37
0,750	1.76057	6.67817	-8.45	4 200	1.67207	0.00570	- 8 1.0	6 680	1.66427	0.00075	- 8 77
8 325				1.000	1.01.001	0.00512	- 2.072	7.500	**00CL	0.00013	-0.51
4.395	1.15/45	0.6039 <u>2</u>	-0.62	1.550	1.t/279	0.00526	-8.39	4.550	1.6682 <u>3</u>	0.00075	-8.37
0.360	1.75451	0.57198	-8.61	1.600	1.67254	0.00480	-8.39	4-600	1.6681 2	0.00075	-8-37
0.345	1.75177	6 61210	-R. 41	4	4 67 224	0 00465		1. 284	4 6604	0 00076	
0.009	1012113	0.24240	-0.01	1.020	1.01231	0.00440	-0.37	4.020	1.0012	0.0001.2	-0.3/
u.37U	1.74908	0.51454	-8.61	1.700	1.67210	0.00404	-8.39	4.708	1.66811	0.00075	-8.37

REFRACTIVE INDEX OF ALKALI HALIDES

TABLE 78. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR CSBr AT 293 K (continued)*

λ μm	n	$-dn/d\lambda$ μm^{-1}	dn/dT 10 ⁻⁵ K ⁻¹	$\lambda \mu^{m}$	n	$-dn/d\lambda$ μ^{m-1}	dn/dT 10 ⁻⁵ K ⁻¹	λ μm	n	-dn/dλ μm ⁻ⁱ	dn/dT 10 ⁻⁵ K ⁻¹
4 • 750 4 • 800 4 • 850 4 • 900 4 • 950	1.6680 <u>8</u> 1.6680 <u>4</u> 1.66800 1.66796 1.66793	0.08075 0.00075 0.00076 0.00076 0.00076 8.00076	- 8.37 - 8.37 - 8.37 - 8.37 - 8.37 - 8.37	10.800 11.000 11.200 11.400 11.600	1.6619Ē 1.6616 <u>8</u> 1.6614 <u>1</u> 1.6611 <u>2</u> 1.66083	0.0013 <u>5</u> 0.0013 <u>8</u> 0.0014 <u>0</u> 0.0014 <u>3</u> 0.0014 <u>3</u> 0.00145	-8.31 -8.31 -8.30 -8.30 -8.30 -8.30	26.500 27.000 27.500 28.000 28.500	1.6239 <u>5</u> 1.62217 1.62032 1.61842 1.61848	0.00359 0.00367 0.00375 0.00384 0.00382	-7.8 <u>1</u> -7.78 -7.75 -7.72 -7.69
5.000 5.100 5.200 5.300 5.400	1.6678 <u>9</u> 1.6678 <u>1</u> 1.66773 1.66766 1.66758	0.0007 <u>6</u> 0.0007 <u>6</u> 0.0007 <u>7</u> 0.0007 <u>7</u> 0.0007 <u>7</u>	- 8.37 - 8.37 - 8.37 - 8.37 - 8.36 - 8.36	11.800 12.000 12.200 12.400 12.600	1.66054 1.66024 1.65994 1.65963 1.65932	0.0014 <u>8</u> 0.0015 <u>0</u> 0.0015 <u>3</u> 0.0015 <u>5</u> 0.0015 <u>5</u> 0.00158	-8.30 -8.29 -8.29 -8.29 -8.29 -8.28	29.000 29.500 30.000 30.500 31.000	1.61450 1.61247 1.61040 1.6082 <u>9</u> 1.60613	0.0040 <u>1</u> 0.0041 <u>0</u> 0.00419 0.0042 <u>8</u> 0.0042 <u>8</u> 0.00437	-7.62 -7.62 -7.55 -7.55 -7.51
5.500 5.600 5.700 5.800 5.900	1.66750 1.6674 <u>2</u> 1.6673 <u>4</u> 1.6672 <u>6</u> 1.66718	0.0007 <u>8</u> 0.00079 0.0008 <u>0</u> 0.0008 <u>1</u> 0.0008 <u>1</u>	-8.3 <u>6</u> -8.3 <u>6</u> -8.3 <u>6</u> -8.3 <u>6</u> -8.3 <u>6</u>	12.800 13.000 13.200 13.400 13.600	1.65900 1.65868 1.65835 1.65801 1.65801 1.65767	0.0016 <u>1</u> 0.0016 <u>3</u> 0.0016 <u>6</u> 0.0016 <u>8</u> 0.0016 <u>8</u>	-8.28 -8.28 -8.27 -8.27 -8.27 -8.26	31.500 32.000 32.500 33.000 33.500	1.60392 1.60167 1.59937 1.59702 1.59462	0.0044 <u>6</u> 0.0045 <u>5</u> 0.0046 <u>5</u> 0.0047 <u>4</u> 0.00484	-7.42 -7.42 -7.38 -7.33 -7.28
5.000 6.100 6.200 6.300 6.405	1.66710 1.66702 1.66694 1.66685 1.66677	0.00082 0.00083 0.00084 0.00084 0.00085 0.00085	- 8.36 - 8.36 - 8.36 - 8.36 - 8.36 - 8.36	13.800 14.000 14.200 14.400 14.600	1.65733 1.65698 1.65662 1.65626 1.65626 1.6590	0.00174 0.00176 0.00179 0.00181 0.00181 0.00184	-8.2 <u>6</u> -8.2 <u>6</u> -8.2 <u>5</u> -8.2 <u>5</u> -8.2 <u>5</u> -8.25	34.000 34.500 35.000 35.500 36.000	1.5921 E 1.58968 1.58714 1.58454 1.58454 1.58189	0.00494 0.00504 0.00514 0.00525 0.00535	-7.23 -7.18 -7.13 -7.07 -7.01
6.500 6.600 6.700 6.800 6.900	1.6666 <u>8</u> 1.6665 <u>5</u> 1.6665 <u>1</u> 1.6663 <u>3</u> 1.6663 <u>3</u>	0.0008 <u>6</u> 0.0008 <u>7</u> 0.0008 <u>8</u> 0.0008 <u>8</u> 0.0008 <u>9</u> 0.00080	- 8.36 - 8.36 - 8.35 - 8.35 - 8.35 - 8.35	14.800 15.000 15.200 15.400 15.600	1.6555 <u>3</u> 1.6551 <u>5</u> 1.6547 <u>7</u> 1.6543 <u>6</u> 1.65399	0.00187 0.00189 0.00192 0.00192 0.00193 0.00197	-8.24 -8.24 -8.23 -8.23 -8.23 -8.22	36.500 37.000 37.500 30.000 38.500	1.5791 <u>9</u> 1.5764 <u>3</u> 1.57362 1.57367 1.57078 1.56784	0.0054 <u>6</u> 0.00557 0.00568 0.00579 0.00590	-6.9 <u>5</u> -6.89 -6.89 -6.75 -6.68
7.000 7.100 7.200 7.300 7.400	1.6662 <u>4</u> 1.66614 1.6660 <u>5</u> 1.6659 <u>6</u> 1.6658 <u>6</u>	0.0009 <u>1</u> 0.0009 <u>2</u> 0.0009 <u>3</u> 0.0009 <u>3</u> 0.0009 <u>4</u> 0.00095	-8,35 -8,35 -8,35 -8,35 -8,35	15.800 16.000 16.200 16.400 16.600	1.65359 1.65319 1.65278 1.65237 1.65237 1.65195	0.0020 <u>0</u> 0.0020 <u>3</u> 0.0020 <u>6</u> 0.0020 <u>8</u> 0.0020 <u>8</u> 0.00211	-8.22 -8.21 -8.21 -8.20 -8.20 -8.20	39.000 39.500 40.000 40.500 41.000	1.5648 1.56182 1.55872 1.555 <u>57</u> 1.55235	0.0060 <u>2</u> 0.0061 <u>3</u> 0.006 <u>25</u> 0.006 <u>37</u> 0.006 <u>37</u>	-6.61 -6.54 -6.46 -6.37 -6.29
7.500 7.600 7.700 7.800 7.900	1.66577 1.66567 1.66557 1.66547 1.66537	0.00097 0.00098 0.00099 0.00100 0.00101	-8.35 -8.35 -8.35 -8.34 -8.34 -8.34	16.800 17.000 17.200 17.400 17.600	1.65152 1.65109 1.65066 1.65022 1.64977	0.0021 <u>4</u> 0.0021 <u>6</u> 0.0021 <u>9</u> 0.0022 <u>2</u> 0.0022 <u>5</u>	-8.20 -8.19 -8.18 -8.18 -8.18 -8.17	41.500 42.000 42.500 43.000 43.500	1.549 <u>07</u> 1.54573 1.542 <u>32</u> 1.538 <u>85</u> 1.53531	0.006 <u>62</u> 0.0067 <u>5</u> 0.00688 0.007 <u>61</u> 0.00715	-6.20 -6.11 -6.01 -5.92 -5.81
8.000 8.100 8.200 8.300 8.400	1.6652 <u>7</u> 1.66517 1.66506 1.66496 1.66485	0.0010 <u>2</u> 0.0010 <u>3</u> 0.0010 <u>4</u> 0.0010 <u>5</u> 0.00107	- 8. 3 <u>4</u> - 8. 3 <u>4</u>	17.800 18.000 18.200 18.400 18.600	1.6493 <u>2</u> 1.6488 <u>6</u> 1.6484 <u>0</u> 1.6479 <u>3</u> 1.64745	0.0022 <u>7</u> 0.0023 <u>0</u> 0.0023 <u>3</u> 0.0023 <u>6</u> 0.0023 <u>9</u>	-8.17 -8.16 -8.16 -8.15 -8.15 -8.15	44.000 44.500 45.000 45.500 46.000	1.53170 1.52802 1.52427 1.52045 1.51656	0.00729 0.0074 <u>3</u> 0.00757 0.00771 0.00786	-5.7 <u>1</u> -5.6 <u>0</u> -5.4 <u>8</u> -5.3 <u>6</u> -5.24
8.500 8.600 8.700 8.800 8.900	$1.66475 \\ 1.66464 \\ 1.66453 \\ 1.66445 \\ 1.66445 \\ 1.66445 \\ 1.66431 \\ 1.66$	$\begin{array}{c} 0.0010\overline{8} \\ 0.0010\overline{9} \\ 0.00110\overline{9} \\ 0.0011\overline{1} \\ 0.0011\overline{1} \\ 0.0011\overline{2} \end{array}$	-8.34 -8.34 -8.34 -8.33 -8.33	18.800 19.000 19.200 19.400 19.600	1.64697 1.6464 <u>9</u> 1.6460 <u>0</u> 1.6455 <u>0</u> 1.64500	0.0024 <u>1</u> 0.0024 <u>4</u> 0.0024 <u>7</u> 0.0025 <u>0</u> 0.0025 <u>3</u>	-8.14 -8.13 -8.13 -8.12 -8.12 -8.11	46.500 47.000 47.500 48.000 48.500	1.512 <u>59</u> 1.508 <u>55</u> 1.504 <u>42</u> 1.500 <u>22</u> 1.49594	0.008 <u>01</u> 0.008 <u>17</u> 0.008 <u>33</u> 0.008 <u>49</u> 0.008 <u>5</u>	-5.1 <u>1</u> -4.5 <u>8</u> -4.70 -4.55
9.000 9.100 9.200 9.300 9.400	1.66419 1.66408 1.66396 1.66385 1.66373	0.0011 <u>3</u> 0.00115 0.00116 0.00117 0.00117 0.00118	- 8.33 - 8.33 - 8.33 - 8.33 - 8.33 - 8.33	19.800 20.000 20.500 21.000 21.500	1.6444 <u>9</u> 1.64397 1.64266 1.64132 1.63993	0.0025 <u>6</u> 0.00259 0.0026 <u>6</u> 0.0027 <u>3</u> 0.00281	-8.11 -8.10 -8.08 -8.07 -8.05	49.000 49.500 50.000 50.500 51.000	1.491 <u>57</u> 1.487 <u>12</u> 1.482 <u>58</u> 1.477 <u>95</u> 1.47323	0.008 <u>82</u> 0.008 <u>99</u> 0.00917 0.009 <u>35</u> 0.009 <u>53</u>	-4.393 -4.23 -4.26 -3.89 -3.71
9.500 9.600 9.800 9.800 9.900	1.6636 <u>1</u> 1.6634 <u>9</u> 1.66337 1.66325 1.66312	0.00119 6.00121 0.00122 0.00123 0.00123 0.00124	- 8. 33 - 8. 33 - 8. 32 - 8. 32 - 8. 32 - 8. 32	22.000 22.500 23.000 23.500 24.000	1.63851 1.63705 1.63555 1.63402 1.63245	0.00288 0.00296 0.00296 0.00311 0.00319	-8.03 -8.01 -7.99 -7.97 -7.97	51.500 52.000 52.500 53.000 53.500	$1.468\overline{42} \\ 1.463\overline{51} \\ 1.458\overline{51} \\ 1.458\overline{51} \\ 1.453\overline{41} \\ 1.448\overline{21} $	0.00972 0.00991 0.01010 0.01030 0.01030 0.01051	-3.52 -3.32 -3.12 -2.91 -2.5
10.000 10.200 10.400 10.600	1.6630 <u>0</u> 1.6627 <u>5</u> 1.6624 <u>9</u> 1.66222	C.00125 C.00128 C.00130 C.00133	-8.32 -8.32 -8.32 -8.31	24.500 25.000 25.500 26.000	1.63083 1.62918 1.62749 1.62779 1.62576	0.00326 0.00334 0.00342 0.00350	-7.92 -7.89 -7.87 -7.87 -7.84	54.000 54.500 55.000	1.442 <u>90</u> 1.437 <u>48</u> 1.43193	0.010 <u>72</u> 0.010 <u>94</u> 0.01116	-2.4 <u>E</u> -2.2 <u>3</u> -1.98

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.19. The number of digits with an overstrike are not relevant to accuracy of the data.

H. H. LI

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

FIGURE 64. dn/dT of CsBr
TABLE 79. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND ⁴h/dt MEASUREMENTS OF CSBr

ngth Temperature, Specifications, and Remarks	22 300 Crystal; two large samples one grown by the Harshaw Chemical Co. of Cleveland, Ohio and the other grown at the National Bureau of Standards; prismatic specimens with faces of about 4 square inches; refractive indices of the two crystals were measured at temperatures ranging from 24 to 31 C and the averaged dn/dT in the wavelength region and tomperature range considered was -7.9 x 10^{-5} K ⁻¹ for both specimens; all of the data were then adjuste to that at 27 C and presented in digitized values accurate to within ± 1 or 2 x 10^{-5} in refractive indices for wavelengths shorter than 30 µm.	48 297 Crystal; grown by the Harshaw Chemical Co.; prismatic specimen with apex angle of 53° digitized data were presented; the accuracy of these data, outside the visible region, might not be greater than $\pm 1 \times 10^{-4}$ in refrac- tive index.	298 Crystal; thin-film and plare specimens prepared by vacuum evaporation onto a substrate of celhulose lacquer membrane for CsBr films with thickness from 0.2 to 25 m. by scraphing from a bulk for thickness from 25 µm to 1 mm; specimens with thickness from 1 mm to 1 cm obtained from commercial production and polished to plane parallel; transmission and nearly-normal-incident reflection spectra were measured and analyzed by the methoć discussed in this reference; digitized data were presented with error of 5%; refractive indices for wavelengths from 36 to 65 µm were extrapolated graphically.	290 Single crystal; specimen of 15° wedge in order to avoid the effect of inter- ference during reflectance measurements; reflection spectrum was mea- sured at incident angle less than 15°; refractive indices were determined by Lorentz analysis; data extracted from a figure.	80, 25 Similar to above; the curves for 80 K and 25 K appeared to coincide, hard to distinguish.	300 Plate specimens with various thicknesses: refractive index was determined from information of transmitted interferograms; digitized value was presented with uncertainty of 0.01.	77 Similar to above but uncertainty of 0, 015.	56 298 Crystal; sever prismatic specimens with apex angles of about 37.2°; aver- aged probable values of measurements were presented; temperature was not given, coom temperature assumed.
ethod Wavele Jsed Rang	D 0,365-39	D 0.365-34	r. R 30-27	R 60-20	R 70-20(I 2000	I 2000	D 0.486-0.(
car Metl	953 I	952 I	961 T,	E69	69 H	1 L L L L L	67 I	04 D
Author(s) Y	Rodney, W.S. and Spindler, R.J. 1	Rodney, W.S. ard Spindler, R.J. 1	Geick, R.	Vergnat, P., Claudel, J., Haudi, A., I Strimer, P., and Vermillard, F.	Vergnat, P., et al. 1	Diancv, E.M. and Irisova, N.A. 19	Diancv, E.M. and Irisova, N.A. 15	Sprockhoff, M. 15
. Ref. No.	01	08	60	26	56	5	17	95

508

	u	<u>5 (cont.)</u> , 25. K	1.11 0.85	0.20	0.20	0.10 0.20	0.52	1.17	9.46	7.83	6.30	0.00 4.55	4.05	3.66	3.38	3.11	70.77	IVE 6	00.0 K		2.56	WF 7	77.0 K		2.53	WF 8	298. K		1.7126 1 6084	1.6924	1.1700 °T								
	X	$\frac{\text{CURVE}}{\text{T} = 80.}$	70.92 77.04	61. 37 86. 28	102.25	114.55 120.34	123.00	124.69	128 87	130.04	132.80	137.74	147.06	154.08	164.47	180.83	200.00	CUF	- - -		2000.				2000.				0.486	0.656	•••								
	u	3 (cont.) 98.0 K	2.88% 2.86	2, 83* 2, 83*	2.82*	2.80 2.79*	2. 78*	2.77*	*1.1.*Z	•	VE 4	90°0 K	1.34	1.34	1.12	0.99*	0.50	0.32	0.43	0.43	0.32	10.0	1.16*	2.92	4.12	0. 83 6 90	5.94 *	5.34	4.88 4.43	4.40 1.09	3.69	3.48	3.09	VTF 5			1.34	1.22	
	×	$\frac{\text{CURVE}}{\text{T}=2!}$	225 230	235 240	245	250 255	260	265	270	013	CUR	T = 2	60.79	68.82	74.24	77.76	82. L7 84 75	86.66	92.00	101.63	108.81	12.20	124.38	128.04	130.55	132.80	138.31	140.45	143.68	154 00	161.55	172.71	200.00		T = 80	I	50.68	58.21 66.18	,
lex, n]	u	3 (cont.) 8.0 K	0.491 0.449	0.382° 0.321	0.287*	0.284	0.323*	0.359	0.417%	0.622*	0.801*	1.13	3.00	4.89	6.24	6.18	5.72% 5.72%	5.07*	4.81	4.59	4.38*	4. Z3*	4• LL 3.99%	3.88	3.78*	3.69%	3.54%	3.47	3.42%	v. 30°	3.28	3.24	3.16°	3.10 2.05	3.00	2.97*	2.94*	2.92 2.90*	
efractive Ind	Y	$\frac{\text{CURVE}}{\text{T} = 29}$	104 106	108	112	114	118	120	122	126 126	128	130	134	136	138	140	142	146	148	150	152	154	158	160	162	164	168 168	170	172	174	178	180	185	190	200	205	210	215 220	2
, μm; R																																							÷
velength, λ.	q	<u>3 (cont.)</u> 38.0 K	1.571* 1.565*	1.558* ·1.552*	1.546	1.539* 1.539*	1.524*	1.516	1.508*	1.491*	1.482*	1.472*	1.451%	1.440*	1.429*	1.417	1.405*	1.38%	1.365	1.35*	1.33*	1.315*	1.30*	1.27	1.24*	1.20*	1.215*	1.06*	1.000	0.924*	0.842* 0.744	0.618*	0.497*	0.426*	0.449*	0.495*	0.551	0.579	
[Way	۲	$\frac{\text{CURVE}}{\text{T} = 29}$	38 39	40 41	42	43	44 45	46	47	48 49	50	51	20	54	55	56	57	00 10	60	61	62	63	64 65	66	68	20	27	76	78	80	87 84	86	88	06	76 76	96	98	100	TOT
	ц	<u>(cont.)</u> 7.2 K	1.69725* 1.69707	1.69221* 1.69127*	1.69048*	1.68805*	1.6778*	1.6760*	1.6736	1.6725* 1.6717*	1.6688*	1.6681*	L. 0003 1 6661±	1.6630*	1.6614*	1.6561*	1.6549*	1.62037	1.6481*	1.6420*	1.6386*	1.6360*	1.6324	1.6253*	1.6230*	1.6165	1.6131*	1.6077*	1.6020	1.5960*	т С	.0 K		1.606*	1.507±	1.592*	1.587*	1.582* 1 577	
	~	$\frac{\text{CURVE 2}}{\text{T} = 29}$	0.5876 0.5893	0.6438	0.6678	0.7065	0.8189 1.0139	1.1287	1.3622	1. 5295	3.3610	4.258	0.344 6 415	9.724	11. 035	14.29	14.98	17 40	18, 16	20.57	21.79	22.76	23.92 95 16	25.97	26.60	28.33	29, 15 29, 81	30.69	33. 11	34.48	CITRV	T = 296		31	22.52	34	35	36	ō
	u	E1 .2K	1.75118 1.75050*	1.73344 1.72333*	1. 70189	1.69202	1.67766 1.67584*	1.67237	1.67158*	1.66866 1.66794	1.66587	1.66283	1.66118*	1.65474*	1.65375*	1.64967*	1.64795*	1.694184	1.63565*	1.63234*	1.62817	1.62521*	1.62284*	1.60749	1.60591*	1.60198*	1.59584* 1 58835*	1.58284	1. 58069*	1.57183*	1.55990	E 2	-2 K		1.7514* 1 7607*	1,73360*	1.72351*	1.71169	1. 10400T
	, X	$T = \frac{CURV}{300}$	0.365015 0.366288	0.404656	0.546074	0.643847	1.01398 1 19266	1. 52952	1.7011	3.3610 4 258	6.465	9.724	11.035	14.29 14 98	15.48	17.40	18.16	20.57	00.12	23.86	25.16	25.97	26.63	29. 54 30 54	30.91	31.70	33.00 34 48	35.45	35.90	37.52	39.22	CURV	T = 297		0.3650 0.3669	0.4047 0.4047	0.4358	0.4861	T0%C *0

TABLE 80. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF C8Br

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

* Not shown in figure.

REFRACTIVE INDEX OF ALKALI HALIDES

509

[Wavelength, A, µm; Temperature Derivative of Refractive Index, dn/dT, 10-5 K-1; Mean Temperature, T_m, K]

 $T_{m} = \frac{CURVE 1}{306.0 K}$ 0.365-39.20 -7.9* dn/dT ~

* Not shown in figure.

_ Dispersion Equation λ in μ m; ν in cm⁻¹ Wavelength and Temperature Ranges Source Rodney, W.S. and Spindler, R.J. [107] 1953 0.36-40 µm 300 K λ^2 $+\frac{41110.49}{\lambda^2-(119.96)^2}+\frac{0.0290764}{\lambda^2-(0.15800)^2}$ $n^{2} - k^{2} = \epsilon_{uv} + \sum_{i} 4\pi \rho_{i} \frac{\nu_{i}^{2} (\nu_{i}^{2} - \nu^{2})}{(\nu_{i}^{2} - \nu^{2})^{2} + \delta_{i}^{2} \nu_{i}^{2} \nu^{2}} ,$ Vergnat, P., Claudel, J., Hadni, A., Strimer, P., and Vermillard, F. [26] 1969 53-200 μm 290 K $2nk = \sum_{i} 4\pi \rho_{i} \frac{\nu_{i}^{3} \nu \delta_{i}}{(\nu_{i}^{2} - \nu^{2})^{2} + \delta_{i}^{2} \nu_{i}^{2} \nu^{2}}$ $n^2 = 1.14600 + \frac{1.26628 \lambda^2}{\lambda^2 - (0.120)^2} + \frac{0.01137 \lambda^2}{\lambda^2 - (0.146)^2}$ 0.21-55.0 μm 293 K Present work 1975 + $\frac{0.00975 \lambda^2}{\lambda^2 - (0.160)^2}$ + $\frac{0.00672 \lambda^2}{\lambda^2 - (0.173)^2}$ $+ \frac{0.34557 \lambda^2}{\lambda^2 - (0.187)^2} + \frac{3.76339 \lambda^2}{\lambda^2 - (136.05)^2}$

TABLE 82. COMPARISON OF DISPERSION EQUATIONS PROPOSED FOR CsBr

 $\overline{\mathbf{*i} = 1, 2; \nu_1 = 75 \text{ cm}^{-1}, \nu_2 = 103 \text{ cm}^{-1}; \delta_1 = 0.06, \delta_2 = 0.16; \rho_1 = 0.284, \rho_2 = 0.009; \epsilon_{uv} = 2.88, \epsilon_s = 6.57.$

3.20. Cesium Iodide, Csl

Early measurements on the refractive index of CsI were made by Sprockhoff [95] in 1904, using a minimum deviation method for three visible spectral lines, 0.486, 0.589, and 0.656 μ m. Although his values were presented to four decimal places, the temperature at which the data were taken was not specified. These three values were the only available data for about 50 years. The main reason for such a long period of inactivity was the difficulty in growing adequate crystals. Large and good quality crystals suitable for optical components were not available; also, the need for infrared transparency was not generally felt.

It was not until 1955 that the refractive index for the wide range of transmission (0.29 to 53 μ m) was measured by Rodney [110] on several cesium iodide samples grown by the Harshaw Chemical Company. The refractive indices were measured at temperatures near 15, 24, and 34 °C by the deviation method. The temperature derivatives of refractive index were determined for each wavelength and all data were reduced to 24 °C. He adopted a dispersion equation of the Sellmeier type, simplified to five terms, to fit the reduced data. Although his dispersion equation fitted his data quite well, more terms could have been included to advantage, since information on more than five absorption bands was then available.

In the ultraviolet region, $0.20-0.25 \ \mu$ m, Lamatsch, Rossel, and Sauer [111] derived the refractive indices from information on the transmission and reflection spectra. Since they used vacuum-evaporated thin film samples, the wavelengths of the two absorption bands obtained are higher than that of the bulk material. Large discrepancies between this set of data and that calculated from Rodney's work are to be expected.

Values of the refractive index beyond the transparent region in the infrared were obtained by Vergnat, et al. [26] in 1969, by analyzing the reflection spectrum. They found that the wavelengths of infrared absorption bands are 117.65 and 161.29 μ m at room temperature. One of the two values is in close agreement with that of Rodney, as shown in table 87. As a matter of fact, the predominant contribution to the absorption is due to the one band that Rodney used.

In the millimeter wavelength region, the refractive index at 2000 μ m was obtained by Dianov and Irisova [47] in 1966. Their result, $n^2 = 6.452$ at room temperature, agree to the first decimal place with the static dielectric constant given by Vergnat, et al. [26]. This completes the record of the published activities in determining the refractive index of CsI.

From the available information, the data of Rodney were adopted as the basis for the generation of recommended values. Since this set of data was measured at a temperature of 297 K, corrections had to be made to reduce the data to 293 K. Rodney [110] discussed the temperature derivative of the refractive index quite thoroughly in his paper; however, an equation for calculating dn/dT in general was not given.

The temperature coefficient of the refractive index of CsI unlike that of other alkali halides, has been measured over the whole transparent region. Using the existing data on dn/dT and the parameters in tables 2 and 3, a least-squares fitting of the data to eq (19) was carried out. The results, together with those obtained for LiF, NaF, NaCl, and KCl, provided the basis for the procedure discussed in subsection 2.2; see also figures 2 and 3. These results were used to predict the unknown parameters of eq (19) for all the twenty alkali halides, as given in table 5. With these parameters we can construct a formula for calculating dn/dT for CsI.

$$2n \frac{dn}{dT} = -14.70 (n^2 - 1) - 5.53 + \frac{2.464 \lambda^4}{(\lambda^2 - 0.04752)^2} + \frac{242.76 \lambda^4}{(\lambda^2 - 26014.46)^2},$$
(61)

where dn/dT is in units of 10^{-5} K⁻¹ and λ in μ m.

Comparison of the predictions of eq (61) and the experimental data shown in figure 67 shows excellent agreement except at two points, at about 0.30 and 0.35 μ m. From the fact that the constructed dn/dT formulas always agree with experimental data at low wavelengths, as shown in dn/dT figures of LiF, NaF, NaCl, and KCl, we believe that eq (61) gives reasonable estimates in the low wavelength region. Equation (61) is confidently used to reduce the selected data to 293 K.

As listed in table 3, the ultraviolet absorption spectrum of CsI between 0.10 and 0.24 μ m consists of seven absorption peaks. The infrared spectrum comprises two fundamental absorption peaks, but the dominant effect on the refractive index is due to the peak at 161.29 μ m. In the present work, the effects of all the absorption peaks on the refractive index in the transparent region are taken into consideration, and the best fit equation is used to calculate the refractive index of CsI at 293 K in the transparent region, 0.25-67.0 μ m.

$$n^{2} = 1.27587 + \frac{0.68689 \lambda^{2}}{\lambda^{2} - (0.130)^{2}} + \frac{0.26090 \lambda^{2}}{\lambda^{2} - (0.147)^{2}} + \frac{0.06256 \lambda^{2}}{\lambda^{2} - (0.163)^{2}} + \frac{0.06527 \lambda^{2}}{\lambda^{2} - (0.177)^{2}} + \frac{0.14991 \lambda^{2}}{\lambda^{2} - (0.185)^{2}} + \frac{0.51818 \lambda^{2}}{\lambda^{2} - (0.206)^{2}} + \frac{0.01918 \lambda^{2}}{\lambda^{2} - (0.218)^{2}} + \frac{3.38229 \lambda^{2}}{\lambda^{2} - (161.29)^{2}},$$
(62)

where λ is in units of μ m.

Equations (61) and (62) were used to generate the recommended values of refractive index and its wavelength and temperature derivatives. In the table of recommended values, more decimal places than needed are given, for tabular smoothness and internal comparison. In using values from the table, readers should follow the criteria given below.

For refractive index:		
Wavelength range	Meaningful	Estimated
(μm)	decimal place	uncertainty, \pm
0.25- 0.35	4	0.0002
0.35 - 20.00	4	0.0001
20.00-40.00	4	0.0002
40.00-50.00	4	0.0005
50.00-67.00	3	0.001
For dn/dT :		
0.25 - 0.35	1	0.8
0.35 - 1.00	1	0.5
1.00-50.00	1	0.3
50.00-67.00	0	1

TABLE 83. RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES FOR C81 AT 293 K \ast

_				• .							
λ	n	-dn/dT	dn/dT	λ	n	-dn/dλ	dn/dT	λ	n	-dn/dλ	dn/dT
_µm _		µm ~	10 K-4	μm		µm.•	10-0 K -	μm		µm -	10 ⁻⁵ K ⁻¹
		_									
0.250	2.20938	8.763 <u>58</u>	-4.46	0.550	1.7945 <u>1</u>	0.20657	-9.6 <u>7</u>	2.750	1.74479	0.00157	-9.48
0.252	2.19248	8.14296	- <u>5</u> .1 <u>5</u>	0.560	1.79250	0.19420	-9.6E	2.800	1.74471	0.00150	-9.48
0.254	2.17676	7.59006	-5.74	0.570	1.79062	0.18284	-9.EE	2.850	1.74464	0.00144	-9.48
0.250	2.10208	6 65010	-6.23	0.500	1.78884	0 16270	-9.65	2.900	1.74457	0.00138	-9.48
0+290	2.14034	C-05010	-0.05	0.590	1.10111	0.102/0	-9.05	2.950	1./4450	0.00132	-9.40
0.260	2.13545	6.24803	-7.01	0.608	1.78559	0.15376	-9.54	3.000	1.74643	0.00127	-9.48
0.262	2.12333	5.88336	-7.32	0.620	1.78268	0.13780	-9.63	3.050	1.74437	0.00122	-9.48
0.264	2.11190	5.55137	-7.59	0.640	1.78006	0.12402	-9.62	3.100	1.74431	0.00118	-9.48
0.266	2.1011 <u>0</u>	5.2481 <u>0</u>	-7.82	0.660	1.77770	0.11206	-9.61	3.150	1.74425	9.00114	-9.48
0.268	2.09089	4.97019	-8.03	0.680	1.77557	0.10162	-9.61	3.200	1.74420	0.00110	-9.48
0 270	2 00424	1. 741.70	- 0 24	0 700	4 77767	a ana.7	o (7	7 050	· ····		a . .
0.272	2.07202	4 . / 14/0	-0.21	0.720	1 77 4 96	0 09/30	-9.50	3.270	1.74414		-9.48
0.274	2.06328	4.26183	-8.51	0.740	1.77025	0.07725	-3.55	3.300	1 7 4 4 0 9	0.00103	-9.40
0.276	2.05496	4.06037	-8.64	8.768	1.76477	8.07097	-9.58	3.400	1.74390	0.00100	-9.40
0.278	2.04703	3.07335	-0.75	0.760	1.76741	0.06525	-9.58	3.450	1.74394	0.00095	-9.48
	-		_		_	_	_		_	· _	
0.280	2.03946	3.69938	-8.85	0.800	1.76615	0.06018	-9.57	3.500	1.74390	0.00092	-9.48
0.282	2.03222	3.53722	-8.94	0.820	1.76500	0.05564	-9.57	3.550	1.74385	0.00090	-9.48
8.284	2.02530	3.38578	-9.02	0.840	1.76392	0.05155	-9.5 <u>6</u>	3.600	1.74381	0.00087	-9.48
0.288	2.01232	3.74411	-9.09	0-860	1.76293	0-04785	-9-56	3.650	1.74376	0.00085	-9.48
		0011107	- 2010	0.000	1.10501	0.04451	-3.90	3.700	1.14212	0.00003	-9.40
0.290	2.00622	2.98675	-9.21	0.908	1.76115	0.04147	-9.55	3.758	1.74367	0.00082	• 9 . 4 8
0.292	2.00037	2.86963	-9.27	0.920	1.76035	0.03871	-9.55	3.800	1.74364	0.000.80	-9.47
0.294	1.99474	2.75938	-9.32	0.940	1.75960	0.03619	-9.55	3.850	1.74360	6.00078	-9.47
0.296	1.9893 <u>2</u>	2.65545	-9.3 <u>E</u>	0.960	1.75890	0.03389	-9.54	3.900	1.74356	0.00077	-9.47
0.298	1.98411	2.55736	-9.40	0.980	1.75824	0.03178	-9.54	3.950	1.74352	0.00075	-9.47
0 700	1 07 00 0	3 1.61.60	-0 11	4 000	4 35 363	0 0000T	0 FT				
0.305	1-96731	2.25300	-9.44	1.050	1.75625	0.02564	-9.54	4.000	1.74345		-9-47
0.310	1.95651	2.06932	-9.57	1.100	1.75505	0.02929	-9.53	4.000	1.74345	0.000073	-9.47
0.315	1.94658	1.90644	-9.62	1.150	1.75401	0.01938	-9.52	4.158	1.74338	8.0007Z	-9.47
0.320	1.93741	1.76199	-9.EE	1.200	1.75310	0.01701	-9.52	4.200	1.74334	0.00069	-9.47
	_	_	_		_	· _					
0.325	1.92893	1.63323	-9.69	1.250	1.75230	0.01502	-9.51	4.250	1.7433 <u>1</u>	0.00068	-9.47
0.330	1.92106	1.51/93	-9.71	1.300	1.75160	0.01333	-9.51	4.300	1.74327	0.00068	-9.4 <u>7</u>
0.369	1.913/3	1 32055	-9-75	1.350	1.75097	0.01109	-9.51	4.350	1.74324	0.00067	-9.47
0.345	1.90050	1.23587	-9.7F	1.450	1.74990	0.00059	-9.51	4.460	1.74321	0.00065	-9.47
			2010	1.470	10/4350	0000320	-3050	41470	1.74317	0.00005	-9.47
0.350	1.89453	1.15880	-9.77	1.500	1.74944	0.00865	-9.50	4.500	1.74314	0.00065	-9.47
0.355	1.88891	1.08854	-9.7Ē	1.550	1.74903	0.00784	-9.50	4.550	1.74311	0.00064	-9.47
0.360	1.88363	1.02430	~9.7 <u>₹</u>	1.600	1.7486 <u>E</u>	0.00713	-9.50	4.600	1.7430 E	0.00063	-9.47
8.365	1.87866	0.96541	-9.78	1.650	1.74832	0.00651	-9.50	4.650	1.7430 <u>5</u>	0.000 E3	-9.47
0.370	1.0/39/	0.91128	-9.78	1.700	1.74801	0.00596	-9.50	4.700	1.74302	0.00062	-9.47
0.375	1.86954	0.86143	-9.79	1.750	1.74779	0.CJE47	-9.50	4.750	1 7420	0 00065	-0.43
0.380	1.86535	0.81540	-9.75	1.800	1.74746	0.00547	-9.40	4.800	1.74290	0.00002	-9.47
0.385	1.86138	0.77282	-9.70	1.850	1.74721	0.00465	-9.45	4.850	1.74292	0.00061	-9.47
0.390	1.85762	0.73335	-9.78	1.900	1.74699	0.00430	-9.49	4.900	1.74285	0.00061	-9.47
0.395	1.85404	0.69670	-9.78	1.950	1.74678	0.00399	-9.45	4.958	1.7428E	0.00060	-9.47
0 4 0 0	A 4506T	0 66960									_
0.400	1.84437	0.67440	-9.78	2.000	1.74659	0.00371	-9.49	5.000	1.74283	0.00060	-9.4 <u>7</u>
0.420	1.83850	0.54754	-9.75	2.050	1.74541	0 00340	-9.49	5.100	1.74277	0.00059	-9.47
0.430	1.8333E	0.50042	-9.76	2.150	1.74600	0.00223	- 3.43	2.200	1.742/1	0.00059	-9.47
0.440	1.82857	0.45882	-9.75	2.200	1.74594	0.00203	-9.49	5.400	1.74260	0.00059	-9.47
· · · · · · · · · · · · · · · · · · ·		_	-								
0.450	1.82417	0.42192	-9.74	2.250	1.74581	0.00266	-9.45	5.500	1.74254	0.00058	-9.47
0.460	1.82012	0.38905	-9.73	2.300	1.74568	0.0251	-9.49	5.600	1.74248	0.00058	-9.47
U+4/0 0 /.en	1.0163/	0.35965	-9.73	2.350	1.74555	0.00236	-9.49	5.700	1.74242	0.00058	-9.47
0.400	1.80970	0.300FA	-9.72 -9.71	2.400	1.74544	0-00223	-9.48	5.800	1.74237	0.00058	-9.47
		3000350	2017		T014233	0.00511	-3.40	2.900	1.74231	0.00058	-9.47
0.500	1.80672	0.28802	-9.70	2.500	1.74523	0.00200	-9.48	6.000	1.74225	0.00058	-9.4F
0.510	1.80393	0.26856	-9.69	2.550	1.74513	0.00190	-9.48	6.100	1.7421 5	0.00058	-9.4E
0.520	1.80134	0.25088	-9.69	2.600	1.74504	0.00181	-9.48	6.200	1.74213	0.00058	-9.4Ē
0.530	1.79891	0.23476	-9.68	2.650	1.74495	0.00172	-9.48	6.300	1.74207	0.00058	-9.46
0.540	1./9664	u.22004	-9.67	2.700	1.74487	0.00164	-9.48	6.400	1.74202	0.00059	-9.48

REFRACTIVE INDEX OF ALKALI HALIDES

TABLE 83.RECOMMENDED VALUES ON THE REFRACTIVE INDEX AND ITS WAVELENGTH AND
TEMPERATURE DERIVATIVES FOR CsI AT 293 K (continued)*

		_					-				
3		-dn/dλ	dn/dT	λ		-dn/dλ	dn/dT	λ	_	-dn/dλ	dn/dT
um	n	um-1	10 ⁻⁵ K ⁻¹	μm	п	µm ^{−1}	10 ⁻⁵ K ⁻¹	μm	щ	µm ^{−1}	10 ⁻⁵ K ⁻¹
				F							
			_		_	_			_	_	_
6.500	1.74196	0.00059	-9.4Ē	15.000	1.73478	0.00115	-9.39	37.500	1.68686	0.00323	-8.72
£.600	1.74190	0.00059	-9,4E	15.200	1.73455	0.00117	-9.39	38.000	1.68523	0.00329	-8.69
6.700	1.74184	0.00060	-9.4Ē	15.400	1.73431	0.00118	-9.39	38.500	1.68358	0.00334	-8.EĒ
6.800	1.74178	0.00060	-9.4E	15.600	1.73408	0.00120	-9.3E	39.000	1.68183	0.00340	-8.62
6.900	1.74172	0.00060	-9.46	15.800	1.73383	0.00122	-9.38	39.500	1.68017	0.00346	-8.55
7.000	1.7416F	0.00061	-9.4F	16.000	1.73359	0.00123	-9.38	40.000	1.67843	0.00352	-8.56
7.100	1.74160	13000.0	-9.4F	16.200	1.73334	0.00125	-9.38	40.500	1.67666	0.00358	-8.53
7 200	1 76155	0 000002	-9.45	16.400	1.73309	0.00126	-9.37	41.000	1.67485	0.00364	-8.49
7 200	4 74467	0 00062	- 3.40	16 600	4 73287	0.00120	-9.37	41.500	1.67302	0.00370	-8-45
7.000	4 74447	0.00002	- 3.40	46 888	1 77259	0 00120	-9.37	42.000	1.6711 5	0.00376	-8.42
/.400	1.74141	0.00002	- 30 40	10.000	1.13290	0.00123	- 5 . 57	42.000	1.01112	0.00070	-0.42
7 500	4 74475	0 0 0 0 6 7	-0 15	17 000	4 77275	0 00131	-9 37	42.500	1.66026	0.00382	-8.38
7.500	1.74135	0.000053		47 200	1 77205	0 00131	-9.37	42.500	4 66733	0.00380	- 8.30
7.000	1.74125	0.00000		17.00	4 77470	0 00476	-0.36	43.000	1 66577	0 00305	-9 30
7.700	1.74122	0.00004	<u> </u>	17.400	1.731/9	0.00134	- 3 - 3 - 2	43.500	4 66770	0.000395	-0.30
7.800	1./4116	0.00014	-9-4-	1/.600	1 . / 31 52	0.00130	-9.35	44.000	1.00330	0.00401	-0.20
1.900	1.74109	0.00005	-9.45	17.800	1./3124	0.0015/	-9.35	44.200	1.00126	0.00400	-0.61
	4 74 4 7	0.000/2	-0.4	40	4 37907	0 00435	-0 75	LE 000	1 65075	0 00447	-9.47
8.000	1.74103	0.000000	-9-42	10.000	1.13091	0.00139	- 3 • 35	42.000	1.02320	0+00415	-0.1/
8.100	1.74096	0.00066	-9.45	18.200	1.13069	0.00141	-9.35	45.500	1.05/21	0.00421	-0.12
8.200	1.7409 <u>0</u>	0.00067	-9.45	18.400	1.73041	0.00142	-9.34	46.000	1.65509	0.00428	-8-08
8.300	1.74083	0.00067	-9.45	18.600	1.73012	0.00144	-9.34	46.500	1.65293	8.00435	-8-03
8.400	1.7407Ē	0.000€8	-9.45	18.800	1.72983	0.00146	-9.34	47.000	1.65073	0.00442	-/.58
		.	_ +			-	· -=				
8.500	1.74069	0.0006 <u>8</u>	-9.45	19.000	1.72954	0.00147	-9.33	47.500	1.64851	0.00449	-7.92
8.600	1.74063	0.0006 <u>9</u>	-9.4 <u>5</u>	19.200	1.72924	0.0014 <u>9</u>	-9.33	48.000	1.64624	0.00456	-7.87
8.700	1.74056	0.0007 <u>0</u>	-9•4 <u>5</u>	19.480	1.72894	6.60151	-9.33	48.500	1.04394	0.00464	-7.81
008.8	1.74049	0.0007 <u>0</u>	-9.45	19.600	1.72864	0.00152	-9.3 <u>2</u>	49.000	1.64161	0.0047 <u>1</u>	-7.7 <u>6</u>
8.900	1.74042	0.00071	-9.45	19.800	1.72833	0.00154	-9.32	49.500	1.63923	0.00479	-7.70
	_	· _ ·	_		_		_		_		
9.000	1.7403 <u>4</u>	0.00072	-9.4 <u>5</u>	20.000	1.7280 <u>2</u>	0.0015	-9.32	50.000	1.63682	0.00486	-7.64
9.100	1.74027	0.00072	-9.45	20.500	1.72723	0.00160	-9.3 <u>1</u>	50.500	1.63437	0.00494	-7. <u>58</u>
9.200	1.74020	0.00073	-9.45	21.000	1.72642	0.00164	-9.30	51.000	1.63188	0.00502	-7.51
9.300	1.74013	0.00073	-9.45	21.500	1.72559	0.00168	-9.25	51.500	1.62935	0.00510	-7.45
9.400	1.74005	0.00074	-9.44	22.000	1.72474	0.00172	-9.28	52.000	1.62679	0.00518	-7.38
9.500	1.73998	0.00075	-9.44	22.500	1.72387	C.00177	-9.27	52.500	1.62418	0.00526	-7.31
9.600	1.73990	0.00075	-9.44	23.000	1.72298	0.00181	-9.26	53.000	1.62153	0.00534	-7.23
9.700	1.73983	0.00076	-9.44	23.500	1.7220 €	0.00185	-9.25	53.500	1.61884	0.00543	-7.16
9.800	1.73975	0.00077	-9.44	24.000	1.72112	0.00190	-9.23	54.000	1.61610	0.00551	-7.08
9.900	1.73967	0.00077	-9.44	24.500	1.72016	0.00194	-9.22	54.500	1.61232	0.00560	-7.00
10.000	1.73960	0.00878	-9.44	25.000	1.71918	0.00199	-9.21	55.000	1.61050	0.00569	-6.92
10.200	1.73944	0.000.0	-9.44	25.500	1.71817	0.00203	-9.20	55.500	1.60764	0.00578	-6.84
10.400	1.73928	0.00081	-9.44	26.000	1.71715	0.00208	-9.18	56.000	1.60473	0.00587	-6.75
10.600	1.73911	0.00082	-9.44	26.500	1.71610	0.00212	-9.17	56.500	1.60177	0.00596	-6.66
18.800	1.73895	0.00084	-9.43	27.000	1.71502	0.00217	-9.15	57.000	1.59877	0.00605	-6-57
			••								
11.000	1.73878	0.00085	-9.43	27.500	1.71393	0.00221	-9.14	57.500	1.59572	0.00615	-6-47
11.200	1.73861	0.00087	-9.43	28.000	1.71281	0.00226	-9.12	58.000	1.59262	0.00625	-6-37
11.400	1.73843	0.00088	-9.43	28-500	1.71167	0.00234	-9.17	58.500	1.58947	0.00674	-6.27
11.600	1.73826	e 8030.3	-9.43	29.000	1. 71050	0.00236	-0.10	59.000	1.58628	0.00645	6 - 17
11.800	1.73808	0.00091	-9.43	29.500	1.70931	0.00200	-9.07	59.500	1.58303	0.00655	-6.06
									11,0000.0	0100055	-0.00
12.000	1.7378	0.00092	-9.42	30.000	1.70810	0.00245	-9.1Ē	60.000	1.57973	0.00665	-5- 45
12.200	1.73771	49000.0	-9.42	30.500	1.70686	0.00250	-9.01	60.500	1.57637	0.00676	-5. 83
12.400	1.73759	30000.0	-9.42	31.000	1.70560	0.00250	-9.13	61.000	1.67207	0.006.07	5 71
12.600	1.73735	0.00007	-0.12	31.500	1.70.434	0.00255	-0 00	64 600	1 54054	0 00000	
12.800	1.73713	0.0004A	-9.42	32.000	1.70300	0.00265	-8-98	62-000	1.56690	8,84700	-5.47
	10,00110				10/0000				1.000000		2041
13.000	1.73693	0.00100	-9.41	32.500	1.70166	0.00270	-8-9F	62-500	1.56262	0.00720	-5-34
13,200	1.73673	0.00104	-9.41	33.000	1.70030	0.00275	-8.CL	63.000	1.55.270	0.00720	5.20
13,400	1.73667	0.00101	-9.44	33 604	1.60004	0.00212	- 20 20	63 200	1.55540	0.00744	-5 04
13.600	1.73632	8.80103	- 70 41	34,000	1.69750	0.00295	-0.32	64.000	1.55126	0.00754	-9.00
13.800	1.73611	0.00105	-9.41	34.500	1. F9606	0.00203	-8-A7	64.500	1.54755	0.00750	-4.77
					1.1000				1024122		
14.000	1.73580	0.00107	-9.47	35.000	1. 59460	0.0020	-8-8F	65-000	1.54369	0.007.00	-4- 62
14,200	1.7356	0.00100	-9.40	35.600	1.60710	0.00200	-8.82	65.500	1.57077	0.00702	-4-45
14.400	1.77547	0.00103	-0.17	36 000	1 60450	0.00001		66 000	4 53574	0.001.33	-4.70
44 400	4 7767	0.00111		76 584	1.0000	0.00207	-0.00		4 5 3 5 1 5	0.000000	
14.000	1 7760-	0.00112	- 7.45	30.500	1.29004	0.00312	-0.((00.500	1.53168	0.00819	-4.14
14.000	1./3501	0.00114	- 2. 32	37.000	1.00846	0.0031/	-0./4	0/.000	1.52/55	0.00833	-3.96

* In this table more decimal places are reported than warranted merely for the purpose of tabular smoothness and internal comparison. For meaningful decimal places and uncertainties of tabulated values in various wavelength ranges, see the text of subsection 3.20. The number of digits with an overstrike are not relevant to accuracy of the data. н. н. ц

FIGURE 65. Refractive Index of CsI

J. Phys. Cham Pof Nata, Vol. 5, No. 2, 1976

Figure 66. $dn/d\lambda$ of CsI

FIGURE 67. dn/dT of CsI

					-		
Cur. No.	Ref. No.	Author (s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications, and Remarks
H	110	Rodney, W.S.	1955	a	0.296-53.12	297	Crystal; grown by the Harshaw Chemical Co.; prismatic specimen with apex angle of 25°; refractive indices were measured at temperatures near 16, 24 and 30 C, and dn/cT were then determined for each wavelength and all data were reduced to 24 C; digitized data were presented; smoothed dn/dT's were given.
61	111	Lamatsch, H., Rossel, J., and Saurer, E.	1972	Т, R	0.20-0.25	300	Thin film vacuum evaporated on the substrate of fused silica; refractive indices were derived from the transmission and normal incident reflec- tion spectra; data extracted from a figure.
ი	111	Lamatsch, H., et al.	1972	T,R	0.20-0.25	77	Similar to above.
4	68	Dianov, E.M. and Irisova, N.A.	1966	Ŧ	2000	298	P are specimens of 0.65 and 2.2 cm in thickness and 5.0 cm in diameter; refractive index was derived from the information of transmission interferogram; digitized datum was presented with an uncertainty of 0.01.
сı	26	Vergnat, P., Claudel, J., Handi, A., Strimer, P., and Vermillard, F.	1969	ц	101-308	290	Single crystal; specimen of 15° wedge in order to avoid the effect of inter- ference during reflectance measurements; reflection spectrum was mea- sured at incident angle less than 15°; refractive indices were deduced by Lorentz analysis; data extracted from a figure.
9	26	Vergnat, P., et al.	1969	Я	144 - 306	80	Similar to above.
2	26	Vergnat, P., et al.	1969	В	66-306	25	Similar to above.
0 0	26	Vergnat, P., et al.	1969	æ	90-198	290	Similar to above but refractive indices were deduced by Kramers-Kronig method.
6	26	Vergnat, P., et al.	1969	В	107-222	80	Similar to above.
10	26	Vergnat, P., et al.	1969	н	85-325	25	Similar to above.
11	47	Dianov, E.M. and Irisova, N.A.	1967	I [`]	2000	300	Plate specimens with various thicknesses; refractive index was determined from the information of transmitted interferograms; digitized value was presented with uncertainty of 0.01.
12	47	Dianov, E.M. and Irisova, N.A.	1967	I	2000	77	Similar to above.
13	95	Sprockhoff, M.	1904	Ð	0.486-0.656	298	Crystal; seven prismatic specimens with apex angles of about 40°; averaged

TABLE 84. SOURCE AND TECHNICAL INFORMATION ON THE REFRACTIVE INDEX AND dn/dT MEASUREMENTS OF CSI

rystal; seven prismatic specimens with apex angles of about 40°; avera values of measurements were presented; temperature was not given, room temperature assumed.

	u	<u>E 9 (cont.)</u> : 80, 0 K	3 0.87 1.54 1.18,93	• • 00 9 6.64	0 5.64	3 4.40*	2 3.90 3 5.50	5 3.29	3 3.04*	URVE 10	= 25.0 K	1 27	6 1.22*	2 0.99	9 0.87	0.68*	8 0.32	8 0.11		0 0.30% 3 1.54%	4 26.55*	3 7.74*	4 6.26	0 0.04*	3 4.40*	2 3.90*	3 3.57* 5 3.29*	3 3.04*	2 2.89	61. 77 0	URVE 11	= 300.0 K	c T	Z. 04			
	~	$\frac{CURV}{T}$	147.06 149.03 153.63	161.2	164.2	171.5	177.6	196.8	221.7	U	μ	85.1	90°0	94.5	94 . 0	102.6	108.5	126.5	140.4	140.0	153.1	158.7	162.3	167 5	171.5	177.6	196.8	221.7	260.4	324,0	0	T	0000	*000*			
	u	7 (cont.) 5.0 K	0.50 1.00 19.85	6.88	6.04 5 19	0. 10 4. 69	4.21	3.47	3.21	2.89	2.82	01/15 0	80.0 K		1.24	0.99	0.82	0.82	0.65	0.74	0.96	1.34	1.86°	3. 22 6 50	8.75	7.04	5.49 4.57	3. 59	3.31	RVF 9	80.0 K		0.51	0.09	0.09	0.38	
	۲	$\frac{\text{CURVE}}{\text{T}=2}$	150.15 152.44 154.80	159.77	162.34	170.07	124 16	193.42	205.76	250.00	305.81	11.0	T = 2		90 . 66	90.71 102.88	106.16	117.79	126.42	135.87	146.41	149.93	153.14	156.49	164.47	168.92	173.91 180.51	187.62	197.63		5 " 2 E-	I	107.07	131 75	141.84	145.35	
x, n]	u	cont.) 0 K	1.09 1.56 3.19	4.40 5.39	5.74	4.20	3.56 2.25	3. 22 3. 22	3.08	16.2	E 6	40	0.00	0.30	0.74	14.37	8.02	7.00	5.88	5.05 4 41	3.97	3.65	3.40	3.13 2.00	2.82 2.82		E 7 0 K		1.55	1.55	1.25	1.00	0.69 ĉ. ĉ <u>ĉ</u>	0.29	0.00	0.00	
Refractive Inde	×	$\frac{\text{CURVE 5}}{\text{T}=290.}$	147.71 152.21 156.74	160.00	165.84	177.62	202,84	233.64	253.81	301.03	CURV	" no = T	144.93	151.29	153.85	154.80 157.73	161.55	163.40	166.67	170.65	181.82	194.55	208.33	226.24	305, 81		T = 25.		66.67	76.34	00.02 11 89	99° E0	105. 82	110.26	127.71	145.14	
th, λ, μm; l			×		÷		×		ž		×	_	. *	ž	×						£ %																
'aveleng'	я ,	<u>3 (cont.</u> 7.0 K	2 1.79 5 2.50 5 2.50	0 2:08	5 2.00	2 I.98 8 1.65	9 1.66	9 1.82 8 2.00	5 2.05	80 T-80	5 1.48	01 - 1 0 0 - 1 - 10	7 2.28	3 2.50	9 2.24	6 1.21 0 1.47	9 1.73	9 1.78	8 1.88	6 1.97	7 2.15	1 2.20	3 2.17		98.0 K		2.54	S UE 5	90°0 K		0,84	0.63	0.49	0.42	0.49	0.76	
w]	×	$\frac{\text{CURVE}}{\text{T}=7}$	0.208	0.209	0.210	0.211	0.212	0.213	0.215	0.216	0.216	912.0	0.217	0.218	0.218	0.219	0.220	0.221	0.222	0.224	0.220	0.240	0.248				2000.	CUI	T = 2	10 101	101 03	108.93	113.51	128.70	134.23	144.09	
	ц	<u>1 (cont.)</u> 97.2 K	1.66297 1.65954* 1.65069	1.64614* 1.63941	1.62923*	1.61925	AVE 2	00.J K	1.94	1.72	1.75*	1.77*	1.81 2.58	2.39	2.25	2.22*	2.158	1.41	1.45	2.27	2.40 9.46*	2.27	2.09	2.05	2.04	2.21	2.27	2.26		IVE 3	7.0 R	2.22	2.19	2.15*	2.03 2.01	1.93	
	γ	$\frac{\text{CURVE}}{\text{T}=2}$	44.05 44.97 47.05	47.98 49.40	51.48	53.12		T = 3	0.2014	0.2034	0.2064	0.2073	0.2083	0.2104	0.2115	0.2134	0.2173	0.2194	0.2203	0.2213	0. 2223	0.2243	0.2250	0.2262	0.2274	0.2314	0.2345	0.2497			1	0.2018	0.2031	0.2044	0.2068	0.2071	
	u	<u>E1</u> 2 K	1.98704 1.97347 1.95095	1.94978* 1.91457	1.89815	1.88212* 1.87822	1.84725	1.83015 1.80395	1. 79495	1.78902 1 78864*	1. 77920	1.76290	1.76098 1.75681	1.75401	1.75037	1.74877	1. 74449	1.74353	1.74278	1. 73937	1.73844 1 73629	1. 73516	1.73429	1.73122	1.73030 1.72982*	1.72820	1.72662 1.72305	1.72116	1.71865	1.71532	1.71194	1. 70018	1.69571	1.69224	1.68649 1.68046*	1.67650	n in figure.
	X	$\frac{\text{CURV}}{\text{T} = 297}$	0.296728 0.30215 0.31256	0.31317 0.33414	0.34662	0.361051	0.404656	0.435835	0.546074	0.576960	0.643847	0.85212	0.89440 1 01398	1.12866	1.3673	1.52952	1107.1	3.4188	4.258	9.724	11.035 13 95	14.29	14.98	17.40	18.16 18.47	19.50	20.57 22.57	23.82	25.16	26.63	28.38	30 . 70 33, 00	34.48	25.67	27 . 56 39. 38	40.43	* Not show

TABLE 85. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF CSI

[Wavelength, λ , μ m; Refractive Index, n]

J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

1.8115 1.7876 1.77845*

Я	
Tm,	
dn/dT, 10 ⁻⁵ K ⁻¹ ; Mean Temperature, '	
Temperature Derivative of Refractive Index,	
ü	
~	
[Wavelength,	

dn/dT

~

																	-	
/ <u>E 1</u> 196.0 K	-0.800	-0.872	-0.973	-0.944	-0.978	-0.993	-1.003	-0,986	-0.995	-0.975	-0.952	-0.890	-0.932*	-0.889	-0.873	-0.843	-0.816	
$T_{m} = \frac{CUR}{2}$	0.305	0.352	0.410	0.422	0.469	0.519	0.541	0.566	0.644	1.030	2.729	12.417	19.498	26.607	36.141	43.752	46.238	

* Not shown in figure.

TABLE 87. COMPARISON OF DISPERSION EQUATIONS PROPOSED FOR CsI

Source	Wavelength and Temperature Ranges	Dispersion Equation λ in μ m; ν in cm ⁻¹
Rodney, W.S. [110] 1955	0.29-53.0 μm 207 K	$n^{2} = 1 + \frac{0.34617251 \lambda^{2}}{\lambda^{2} - (0.0229567)^{2}} + \frac{1.0080886 \lambda^{2}}{\lambda^{2} - (0.1466)^{2}}$
		$+ \frac{0.28551800 \lambda^2}{\lambda^2 - (0.1810)^2} + \frac{0.39743178}{\lambda^2 - (0.2120)^2}$
		$+\frac{3.3605359}{\lambda^2-(161.0)^2}$
Vergnat, P., Claudel, J., Hadni, A., Strimer, P., and Vermillard, F. [26] 1969	53-200 μm 290 K	$n^{2}-k^{2} = \epsilon_{uv} + \sum_{i} 4\eta \rho_{i} \frac{\nu_{i}^{2} (\nu_{i}^{2} - \nu^{2})}{(\nu_{i}^{2} - \nu^{2})^{2} + \delta_{i}^{2} \nu_{i}^{2} \nu^{2}} ,$ $2nk = \sum_{i} 4\eta \rho_{i} \frac{\nu_{i}^{3} \nu \delta_{i}}{(\nu_{i}^{2} - \nu^{2})^{2} + \delta_{i}^{2} \nu_{i}^{2} \nu^{2}} *$
Present work 1975	0.28-67.0μm 293 K	$n^2 = 1.27587 + \frac{0.68689 \lambda^2}{\lambda^2 - (0.130)^2} + \frac{0.26090 \lambda^2}{\lambda^2 - (0.147)^2}$
		$+\frac{0.06256 \lambda^2}{\lambda^2 - (0.163)^2} + \frac{0.06527 \lambda^2}{\lambda^2 - (0.177)^2}$
		$+\frac{0.14991\lambda^2}{\lambda^2-(0.185)^2}+\frac{0.51818\lambda^2}{\lambda^2-(0.206)^2}$
		$+\frac{0.01918\lambda^2}{\lambda^2-(0.218)^2}+\frac{3.38229\lambda^2}{\lambda^2-(161.29)^2}$

 $\lambda_{i} = 1, 2; \ \nu_{1} = 62 \ \mathrm{cm}^{-i}, \ \nu_{2} = 85 \ \mathrm{cm}^{-i}; \ \delta_{1} = 0.07, \ \delta_{2} = 0.15; \ \rho_{1} = 0.26, \ \rho_{2} = 0.005; \ \epsilon_{\mathrm{uv}} = 3.22, \ \epsilon_{\mathrm{s}} = 6.56.$

4. Conclusions and Recommendations

Experimental data on the refractive index of alkali halides and its temperature coefficient are exhaustively surveyed and reviewed. In addition, a number of physical properties which are related to the dispersion phenomena are selected from the open literature.

The distribution of the refractive index data among the twenty alkali halides is not even. LiF, NaCl, KCl, and KBr were extensively measured; NaF, KI, CsBr, and CsI received reasonable care; NaBr, KF, RbCl, RbBr, RbI, and CsCl were scantily and limitedly observed; while LiCl, LiBr, LiI, NaI, RbF, and CsF were practically totally ignored, except at a single wavelength.

The situation is even worse in the case of the temperature coefficient of refractive index. LiF, NaF, NaCl, KCl, and CsI were scantily investigated over a sizable wavelength range; KBr and KI were measured only over a limited wavelength region. No observation was made for the remaining 13 alkali halides. The purpose of the present work is to generate recommended values on the refractive index and its temperature coefficient for all of the twenty alkali halides. This objective is now achieved. Equations (23) to (62) were constructed by either least-squares fitting of the selected available data to eq (10) or by correlating the related properties and empirical parameters.

Based on the dn/dT data of the five materials, LiF, NaF, NaCl, KCl, and CsI, two interesting facts were discovered (as discussed in section 2.2) and used to predict the unknown parameters of eq (19) for all the alkali halides. The results calculated by the constructed dn/dT formulas agree very well with the available data.

Equations (23) to (62) were used to generate recommended values of n, $dn/d\lambda$ and dn/dT for bulk materials at 293 K; these are summarized in figures 68, 69, and 70. It should be noted that the formulas based on scanty or null data are subject to further modification and expansion when experimental data are available.

FIGURE 68. Refractive Index of Alkali Halides at 293 K

FIGURE 69. Wavelength Derivative of Refractive Index of Alkali Halides at 293 K

REFRACTIVE INDEX OF ALKALI HALIDES

The technology related to high-power infrared lasers is progressing rapidly and, consequently, there is an increasing need for determining the effects that exposures to high-power laser beams have on materials. Among other things, the refractive index of alkali halides at elevated temperatures are needed. Unfortunately, an exhaustive survey of the literature, as in the present work, shows that refractive indices are only available at about room temperature and at a few specified temperatures such as that of liquid nitrogen, liquid helium, etc. In a limited number of cases, the temperature coefficient of refractive index has also been measured in the vicinity of room temperature. Because of this lack in high-temperature data, some of the recent effort has been devoted to obtaining refractive indices at elevated temperatures. However, these activities are focused only on measurements at a few spectral lines characterizing the lasers of interest. Consequently, our basic knowledge of the refractive index at high temperatures is still scanty. For the purpose of providing useful data to modern science and technology, as well as for the future development of optical devices, a well-planned and systematic program of measurement of the refractive index for selected materials, including alkali halides, over a wide range of temperatures and wavelengths is highly recommended.

5. Acknowledgments

This work is jointly supported by the Office of Standard Reference Data (OSRD) of the National Bureau of Standards (NBS), U.S. Department of Commerce and by the Defense Supply Agency (DSA), U.S. Department of Defense (DOD). The part of work supported by DSA was under the auspices of the Thermophysical and Electronic Properties Information Analysis Center (TEPIAC), a DOD Information Analysis Center.

The author is grateful to I. H. Malitson of NBS and L. A. Harris of the Research Materials Information Center, Oak Ridge National Laboratory (RMIC/ORNL), for their valuable suggestions and helpful discussions. The author wishes to thank T. Connolly of RMIC/ORNL for his assistance in review of the completeness of bibliographic coverage. Contributions of J. B. Lee during the early stages of this work are also acknowledged.

6. References

- National Materials Advisory Board, "High-Power Infrared-Laser Windows," National Academy of Sciences-National Academy of Engineering, Washington, D.C., Publication NMAB-292, 168 pp., 1972.
- [2] Smakula, A., "Physical Properties of Optical Crystals with Special Reference to Infrared," Office of Technical Services, U.S. Dept. of Commerce Document No. 111,052, 286 pp., 1952.
- Ballard, S. S., McCarthy, K. A., and Wolfe, W. L., "Optical Materials for Infrared Instrumentation," Michigan Univ., Willow Run Lab., Rept. No. 2389-11-5, 115 pp., 1959.
 [AD 217 367]
- [4] Coblentz, W. W., "Transmission and Refraction Data on
- J. Phys. Chem. Ref. Data, Vol. 5, No. 2, 1976

Standard Lens and Prism Material with Special Reference to Infrared Spectroradiometry," J. Opt. Soc. Amer., 4, 432-47, 1920.

- [5] Winchell, A. N., and Winchell, H., The Microscopical Characters of Artificial Inorganic Solid Substances, 3d Edition, Academic Press, New York and London, 1964.
- [6] Landolt-Börnstein, Physikalisch-Chemische Tabellen, 5th Edition, Vol. 2, 911–22, 1923: Vol. 3, 1467–72, 1935: 6th Edition, Vol. 2, No. 8, 2–405–2–432, 1962.
- [7] Gray, D. E. (Editor), American Institute of Physics Handbook, 3d Edition, McGraw-Hill Book Co., New York, 2342 pp., 1972.
- [8] Weast, R. C. (Editor), Handbook of Chemistry and Physics, The Chemical Rubber Co., Ohio, 1969.
- [9] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables," National Standard Reference Data Series – National Bureau of Standards NSRDS-NBS 37, 1141 pp., 1971.
- [10] Wolfe, W. L., Handbook of Military Infrared Technology, U.S. Government Printing Office, Washington, D.C., 906 pp., 1965.
- [11] Trost, K. F., "Thermal Expansion of Alkali Halidee of the Na-Cl Type at High and Low Temperatures," Z. Naturforsch., B18(8), 662-4, 1963.
- [12] Kirchner, H. P., Scheetz, H. A., Brown, W. R., and Smyth, H. T., "Investigation of Theoretical and Practical Aspects of the Thermal Expansion of Ceramic Materials," Cornell Aeronautical Lab. Rept., 101 pp., 1962. [AD296188]
- [13] Lowndes, R. P., and Martin, D. H., "Dielectric Dispersion and the Structures of Ionic Lattices," Proc. Roy. Soc., A308, 473-96, 1969.
- [14] Jasperse, J. R., Kahan, A., and Plendl, J. N., "Temperature Dependence of Infrared Dispersion in Ionic Crystals LiF and MgO," Phys. Rev., 146(2), 526-42, 1966.
- [15] Genzel, H. H., and Weber, R., "Dispersion Measurement on NaCl, KCl, and KBr Between 0.3 and 3 mm Wavelength," Z. Phys. 154, 13-8, 1959.
- [16] Handi, A., Claudel, J., Chanal, D., Strimer, P., and Vergnat, P., "Optical Constants of Potassium Bromide in the Far Infrared," Phys. Rev., 163(3), 836-43, 1967.
- [17] Ramachandran, G. N., "Thermo-optic Behavior of Solids, v. Alkali Halides," Proc. Indian Acad. Sci., 25A, 481-97, 1947.
- [18] Tsay, Y. F., Bendow, B., and Mitra, S. S., "Theory of the Temperature Derivative of the Refractive Index in Transparent Crystals," Phys. Rev., B8(6), 2688-96, 1973.
- [19] Lowndes, R. P., "The Temperature Dependence of the Static Dielectric Constant of Alkali, Silver, and Thallium Halides," Phys. Lett., 21(1), 26-7, 1966.
- [20] Andeen, C., Fontanella, J., and Donald, S., "Low-Frequency Dielectric Constant of LiF, NaF, NaCl, NaBr, KCl. and KBr by the Method of Substitution," Phys. Rev., B2 (12), 5068-73, 1970.
- [21] Kartheuser, E., "Polarons in Ionic Crystals and Polar Semiconductors," (Devreese, J. T., Editor), North-Holland/ American Elsevier, 717-33, 1972.
- [22] Hodby, J. W., Borders, J. A., and Brown, F. C., "Cyclotron Resonance of the Polaron in KCl, KBr, KI, RbCl, AgCl, AgBr, and TlCl," Phys. Rev. Lett., 19(17), 952-5, 1967.
- [23] Hilsch, R., and Pohl, R. W., "Dispersion Frequencies of Alkali Halides in the Schumann Region," Z. Phys., 59, 812-9, 1930.
- [24] Schneider, E. G., and O'Bryan, H. M., "The Absorption of Ionic Crystals in the Ultraviolet," Phys. Rev., 51(5), 293-8, 1937.
- [25] Handi, A., Claudel, J., Morlot, G., and Strimer, P., "Transmission and Reflection Spectra of Pure and Doped Potassium Iodide at Low Temperatures," Appl. Opt., 7(1), 161-5, 1968.
- [26] Vergnat, P., Claudel, J., Handi, A., Strimer, P., and Vermillard, F., "Far Infrared Optical Constants of Cesium Halides at Low Temperatures," J. Phys., 30(8-9), 723-35, 1969.
- [27] Gyulai, Z., "The Dispersion of Some Alkali Halides in Ultraviolet Region," Z. Phys., 46, 80-7, 1927.
- [28] Schneider, E. G., "Optical Properties of Lithium Fluoride in the Extreme Ultraviolet," Phys. Rev., 49(9), 341-5, 1936.

- [29] Hohls, H. W., "Dispersion and Absorption of Lithium Fluoride and Sodium Fluoride in the Infrared," Ann. Phys., 29, 433-48, 1937.
- [30] Harting, H., "The Optical Aspect of Some Crystals and Their Representation by the Hartmann Equation," Z. Instrum., 63, 125-31, 1943.
- [31] Durie, D. S. L., "The Refractive Indices of Lithium Fluoride," J. Opt. Soc. Amer., 40(12), 878-9, 1950.
- [32] Tilton, W. L., and Plyler, E. K., "Refractivity of Lithium Fluoride With Application to the Calibration of Infrared Spectrometers," J. Res. Nat. Bur. Stand., 47(1), 25–30, 1951.
- [33] Bispinck, H., "Optical Determination of the Thickness and Refractive Index of Non-Absorbing Thin Films on the Metallic or Glass Substrates," Optik, 25(3), 237-48, 1967.
- [34] Roessler, D. M., and Walker, W. C., "Optical Constants of Magnesium Oxide and Lithium Fluoride in the Far Ultraviolet," J. Opt. Soc. Amer., 57, 835-6, 1967.
- [35] Kato, R., "Optical Properties of LiF in the Extreme Ultraviolet," J. Phys. Soc. Jap., 16, 2525-33, 1961.
- [36] Fröhlich, D., "The Optical Constants of LiF in the Region of Infrared Characteristic Frequencies," Z. Phys., 169, 114-25, 1962.
- [37] Fröhlich, D., "Temperature Dependence of the Optical Constants of LiF in Region of Infrared Characteristic Frequencies,"
 Z. Phys., 177, 126-37, 1964.
- [38] Genzel, L., and Klier, M., "Spectral Investigations in the Region Around 1 mm Wavelength. III. Dispersion Measurements on LiF," Z. Phys., 144, 25-30, 1956.
- [39] Heilmann, G., "The Temperature Dependence on the Optical Constants of LiF in the Region of Infrared Characteristic Frequencies," Z. Phys., 152, 368-83, 1958.
- [40] Gottlieb, M., "Optical Properties of Lithium Fluoride in the Infrared," J. Opt. Soc. Amer., 50(4), 343-9, 1960.
- [41] Shklyarevskii, I. N., El-Shazli, A. F. A., and Govorushchenko, A. I., "Dispersion of the Refractive Index in Magnesium Fluoride, Lithium Fluoride, and Cryolite Films," Opt. Spektrosk., 32/4), 769-71, 1971.
- [42] Lukirskii, A. P., Savinov, E. P., Ershov, O. A., and Shepelev, Yu. F., "Reflection Coefficients of Radiation in the Wavelength Range from 23.6 to 113 Å for a Number of Elements and Substances and the Determination of Refractive Index and Absorption Coefficients," Opt. Spectros. (USSR), 16(2), 168-72, 1964.
- [43] Ramaseshan, S., "Faraday Effect in Some Cubic Crystals," Ind. Acad. Sci., Proc., A25, 459-66, 1947.
- [44] Zarzyski, J., and Naudin, F., "Index of Refraction and Re-
- fractivity of Molten Salts," Compt. Rend., 256, 1282-5, 1963.
 [45] Spangenberg, K., "Density and Refraction of Alkali Halides,"
 Z. Kristallogr., 57, 494-534, 1923.
- [46] Abeles, F., "The Determination of the Refractive Index and Thickness of Transparent Thin Films," J. Phys. Radium, 11(7), 310-14, 1950.
- [47] Dianov, E. M., and Irisova, N. A., "Measurement of the Refractive Index of Crystals Having NaCl- and CsCl-Type Structures," Sov. Phys. Solid State, 8(7), 1807-8, 1967.
- [48] Radhakrishnan, T., "The Dispersion Formulae of the Alkali Halides," Proc. Indian Acad. Sci., 27A, 165-70, 1948.
- [49] Sano, R., "Optical Properties of NaF Single Crystals in VUV Region," J. Phys. Soc. Jap., 27(3), 695-705, 1969.
- [50] Kublitzky, A., "Some Optical Constants of Alkali-Halide Crystals," Ann. Phys., 5, 20, 793-808, 1934.
- [51] Randall, C. M., "Interferometric Measurements of the Far IR Refractive Index of NaF at Low Temperature," U.S. Air Force Rept. SAMSO-TR-70-304, 1970. [AD711064]
- [52] Randall, C. M., "Interferometric Measurements of the Far-Infrared Refractive Index of NaF at Low Temperature," Aspen International Conference on Fourier Spectroscopy (1970), 371-6, 1971.

- [53] Stefan, J. M., "The Influence of Heat on the Light Refraction of Solids," Sitzungsber. Akad. Wiss. Wien, 2, 63, 223-45, 1871.
- [54] Martens, F. F., "The Dispersion of Ultraviolet Radiation," Ann. Phys., 6, 603-40, 1901.
- [55] Paschen, F., "The Dispersion of Rocksalt and Sylvite in Infrared," Ann. Phys., 26, 120-38, 1908.
- [56] Langley, S. P., "The Dispersion of Rock Salt and Fluorite," Ann. Astrophys. Obs. Smithsonian Inst., 1, 219-37, 1900.
- [57] Kellner, L., "Investigations in the Spectral Region Between 20 and 40 Microns," Z. Phys., 56, 215-34, 1929.
- [58] Rubens, H., and Nichols, E. F., "Experiments With Heat Radiations of Long Wavelengths," Ann. Phys. Chem., 60, 418-62, 1897.
- [59] Rubens, H., and Trowbridge, A., "Contribution to the Knowledge on the Refractive Index and Absorption of Infrared Radiation for Rocksalt and Sylvite," Ann. Phys. Chem., 60, 724-39, 1897.
- [60] Borel, G. A., "The Refraction and Dispersion of Ultraviolet Radiation in Some Crystallized Substances," Compt. Rend., 120, 1404-6, 1895.
- [61] Cartwright, C. H., and Czerny, M., "Dispersion Measurements on NaCl and KCl in the Far Infrared Region. II.," Z. Phys., 90, 457-67, 1934.
- [62] Geick, R., "Dispersion of NaCl in the Region of Infrared Characteristic Frequencies," Z. Phys., 166, 122-47, 1962.
- [63] Vinogradov, E. A., Dianov, E. M., and Irisova, N. A., "Michelson Interferometer Used in Measuring the Refractive Index of Dielectrical Materials in the Region of the 2 mm Wavelength," Radiotekh. Elektron., 10, 1804–8, 1965.
- [64] Czerny, M., "Measurements on the Refractive Index of NaCl in the Infrared to Prove the Dispersion Theory," Z. Phys., 65, 600-31, 1930.
- [65] Barbaron, M., "Refraction of Solids Measured at Low Temperature," Ann. Phys., 6, 899-959, 1951.
- [66] Roessler, D. M., and Walker, W. C., "Optical Constants of Sodium Chloride and Potassium Chloride in the Far Ultraviolet," J. Opt. Soc. Amer., 58, 279-81, 1968.
- [67] Marcoux, J., "Measurement of the Index of Refraction of Some Molted Ionic Salts," Rev. Sci. Instrum., 42(5), 600-2, 1971.
- [68] Dianov, E. M., and Irisova, N. A., "Determination of the Absorption Coefficient of Solids in the Short-Wave Region of the Millimeter Band," J. Appl. Spectros. (USSR), 5(2), 187-9, 1966.
- [69] Mitskevich, V. V., "Dynamical Theory of NaCl-Type Ionic Crystals. II. Dielectric and Optical Properties," Sov. Phys. Solid State, 3(10), 2211-7, 1962.
- [70] Rubens, H., "The Dispersion of Infrared Radiation," Wied. Ann., 45, 238-61, 1092.
- [71] Rubens, H., and Snow, B. W., "Refraction of Long Wavelength Radiation in Rocksalt, Sylvite, and Fluorite," Wied. Ann., 46, 529-41, 1892.
- [72] Rubens, H., "The Ketteler-Helmholtz Dispersion Formula," Wied. Ann., 54, 476–85, 1895.
- [73] Rubens, H., "The Dispersion of Infrared Radiation in Fluorite," Wied. Ann., 51, 381-95, 1894.
- [74] Martens, F. F., "The Dispersion of Fluorite, Sylvite, Rocksalt, Quartz, and Calcite, as Well as the Dispersion of Diamond," Ann. Phys., 8, 459-65, 1902.
- [75] Cartwright, C. H., and Czerny, M., "Dispersion Measurements on NaCl in the Far Infrared," Z. Phys., 85, 269-77, 1933.
- [76] Pulfrich, C., "The Influence of the Temperature on the Refraction of Glasses," Ann. Phys. Chem., 45(4), 609-65, 1892.
- [77] Miyata, T., and Tomiki, T., "Optical Studies of NaCl Single Crystals in 10 eV Region. II. The Spectra of Conductivity at Low Temperatures, Absorption Constant and Energy Loss," J. Phys. Soc. Jap., 24(6), 1286-302, 1968.
- [78] Miyata, T., and Tomiki, T., "The Urbach Tails and Reflection Spectra of NaCl Single Crystals," J. Phys. Soc. Jap., 22(1), 209-18, 1967.

- [79] Joubin, P., "The Rotary Magnetic Dispersion," Ann. Chim. Phys., 6, 16, 78-144, 1889.
- [80] Dufet, M. H., "Comparative Measurements of the Refractive Indices Measured by the Prism and the Total Reflection," Soc. Francaise Min. Cristallo. Bull., 14, 130-48, 1891.
- [81] Micheli, F. J., "The Influence of the Temperature on the Ultraviolet Radiation Dispersion in Fluorite, Rocksalt, Quartz, and Calcite," Ann. Phys., 4, 7, 772-89, 1902.
- [82] Liebreich, E., "The Change of the Refractive Index With the Temperature in the Infrared Region for Rocksalt, Sylvite, and Fluorite," Verh. Deut. Phys. Ges., 13(1), 1 18, 1911.
- [83] Liebreich, E., "The Optical Temperature Coefficient for Rocksalt, Sylvite, and Fluorite in the Region of Lower Temperatures," Verh. Deut. Phys. Ges., 13(18-19), 700-12, 1911.
- [84] Langley, S. P., "The Invisible Spectra," Ann. Chem. Phys., 6, 9, 433-506, 1886.
- [85] Wulff, P., and Schaller, D., "Refractometric Measurements on Crystals and Comparison of Isomorphic Salts With Noble Gas Resembling and Non-Resembling Cationo. 8. Com munication About Refraction and Dispersion of Crystals," Z. Kristallogr., 87, 43-71, 1934.
- [86] Bauer, G., "Absolute Values of the Optical Absorption Constants of Alkali-Halide Crystals in the Region of Their Ultraviolet Characteristic Frequencies," Ann. Phys., 5, 19, 434-64, 1934.
- [87] Wulff, P., and Heigl, A., "Refractometric Measurements on Crystals," Z. Kristallogr., 77, 84-121, 1931.
- [88] Wulff, P., "An Interferometric Method to Determine the Refraction in Crystals," Z. Elektrochem., 34, 611-6, 1928.
- [89] Tomiki, T., "Optical Constants and Exciton States in KCl Single Crystals. 1. The Low Temperature Properties," J. Phys. Soc. Jap., 22(2), 463-87, 1967.
- [90] Vishnevskii, V. N., Kulik, L. N., and Romanyuk, N. A., "On the Refractive Properties of Alkali-Halide Single Crystals in the Vacuum Ultraviolet Region," Opt. Spectros. (USSR), 22(4), 317-8, 1967.
- [91] Johnson, K. W., and Bell, E. E., "Far-Infrared Optical Properties of KCl and KBr," Phys. Rev., 187(3), 1044-52, 1969.
- [92] Durou, C., Giraudou, J., and Moutou, C., "Refractive Indices of Aqueous Solutions of CuSO₄, ZnSO₄, AgNO₃, KCl, and H₂SO₄ for He-Ne Laser Light at θ =25 C," J. Chem. Eng. Data, **18**(3), 289-90, 1973.
- [93] Trowbridge, A., "The Dispersion of Sylvite and the Reflectivity of Metals," Ann. Phys., 3, 65, 595-620, 1898.
- [94] Wulff, P., and Anderson, T. F., "A New Rotating Prism Method to Photographic Determination of the Dispersion. II. Report on Refraction and Dispersion of Crystals," Z. Phys., 94, 28-37, 1935.
- [95] Sprockhoff, M., "Contributions to the Relationships Between the Crystal and Its Chemical Stability," Neues Jahrb. Mineral., Geol. Palaeont., Beilage, 18, 117-54, 1904.
- [96] Spindler, R. J., and Rodney, W. S., "Refractivity of Potassium Bromide for Visible Wavelengths," J. Res. Nat. Bur. Stand., 49(4), 253-62, 1952.
- [97] Stephens, R. E., Plyler, E. K., Rodney, W. S., and Spindler, R. J., "Refractive Index of Potassium Bromide for Infrared Radiant Energy," J. Opt. Soc. Amer., 43(2), 110-2, 1953.

- [98] Forrest, J. W., "Refractive Index Values for Potassium Bromide," J. Opt. Soc. Amer. 32, 382, 1942.
- [99] Gundelach, E., "The Dispersion of KBr Crystal in the Infrared,"
 Z. Phys., 66, 775-83, 1930.
- [100] Korth, K., "Dispersion Measurements on Potassium Bromide and Potassium Iodide in the Infrared Region," Z. Phys., 84, 677-85, 1933.
- [101] Topsoe, H., and Christiansen, C., "Optical Researches on Some Series of Isomorphous Substances," Ann. Chem., Phys., 1, 5-99, 1874.
- [102] Bell, E. E., "The Use of Asymmetric Interferograms in Transmittance Measurements," J. Phys., 28(3-4), C2-18-25, 1967.
- [103] Eldridge, J. E., and Kembry, K. A., "Further Measurements and Calculations of the Far-Infrared Anharmonic Optical Properties of KI Between 12 and 300 K," Phys. Rev., B8(2), 746-55, 1973.
- [104] Berg, J. I., and Bell, E. E., "Far-Infrared Optical Constants of KI," Phys. Rev., B4(10), 3572-80, 1971.
- [105] McCarthy, D. E., "Transmittance of Six Optical Materiale from 0.2 μm to 3.0 μm," Appl. Opt., 7(6), 1243, 1968.
- [106] Baldini, G., and Rigaldi, L., "Ultraviolet Optical Constants of Thin Films Determined by Reflectance Measurements," J. Opt. Soc. Amer., 60(4), 495-8, 1970.
- [107] Rodney, W. S., and Spindler, R. J., "Refractive Index of Cesium Bromide for Ultraviolet, Visible, and Infrared Wavelengths,"
 J. Res. Nat. Bur. Stand., 51(3), 123-6, 1953.
- [108] Rodney, W. S., and Spindler, R. J., "Refractive Indices of Cesium Bromide," J. Opt. Soc. Amer., 42(6), 431, 1952.
- [109] Geick, R., "Dispersion Measurements on CsBr in the Region of Its Infrared Characteristic Frequencies," Z. Phys., 163, 499-522, 1961.
- [110] Rodney, W. S., "Optical Properties of Cesium Iodide," J. Opt. Soc. Amer., 45(11), 987-92, 1955.
- [111] Lamatsch, H., Rossel, J., and Saurer, E., "The Optical Constants of Csl in the Excitonic Region," Phys. Status Solidi. B49(1), 311-6, 1972.
- [112] Fedyukina, G. N., and Zlenko, V. Ya., "Determination of the Refractive Index of Transparent Bodies using a Scratch and Immersion Liquids," Zap. Vses. Mineral. Obshchest., 101(3), 374-5, 1972.
- [113] Kolosovskii, O. A., and Ustimenko, L. N., "Measurement of the Temperature Coefficient of the Refractive Index of Infrared Materials Using a CO₂ Laser," Opt. Spectros. USSR., 33(4), 430-1, 1972.
- [114] Fowles. G. R., Introduction to Modern Optics, Holt, Rinehart and Winston, Inc., New York, 304 pp., 1968.
- [115] Herzberger, M., and Salzberg, C. D., "Refractive Indices of Infrared Optical Materials and Color Correction of IR Levels," J. Opt. Soc. Amer., 52, 420-3, 1962.
- [116] June, K. R., "Error in the KBr Dispersion Equation," Appl. Opt., 11(7), 1655, 1972.
- [117] Strehlow, W. H., and Cook, E. L., "Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators," 2(1), 163-99, 1973.
- [118] Young, K. F., and Frederikse, H. P. R., "Compilation of the Static Dielectric Constant of Inorganic Solids," 2(2), 313-409, 1973.