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The Calculated Thermodynamic Properties of Superfluid Helium-4

James S. Brooks™ and Russell J. Donnelly

Institute of Theoretical Science and Department of Physics. University of Oregon. Eugene, Oregon 97403

Comprehensive tables of the primary thermodynamic properties of superfluid helium-4, such as the
specific heat and entropy. are presented as computed from the l.andau quasiparticle model, with the
aid of inelastic neutron scattering data. The neutron data are represented by continuous functions of
temperature, pressure, and wave number and certain excitation properties such as number density,
normal and superfluid densities are calculated directly from it. A discussion of the methods used in our
computations is included, and comparisons of computed and experimental results are made where
applicable. Certain inadequacies of present theoretical methods to describe the thermodynamic prop-
erties are reported, and the use of an effective spectrum is introduced to offset some of these difficulties.
Considerable experimental effort is also needed to improve the present situation.

Key words: Computed thermodynamic properties; entropy; equation of state; excitation spectrum:
helium-4; normal fluid helium-4; phonons: rotons: specific heat; superfluid helium-4.
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Nomenclature
Symbol or
expression | Physical quantity Unit symbol or value
m Helium-4 mass 6.646 X104 ¢
k Boltzmann’s constant 1.38054 % 10-323 J-K~!
h, (R) Planck’s constant, (+27) 6.6256 X 10-3 J-s
(1.0545 x 10-3 J-s)
P Pressure atm (1 atm=1.01325
.105 N.mf‘_’)
4 Molar volume cm?-mol-*
T Temperature K
PYT Pressure-Volume-Temperature.
the equation of state
SVP Saturated vapor pressure
T\ (P) The temperature at which liquid
helium-4 becomes a superfluid
for a given pressure K
helium 1 The non-superfluid state of liquid
(He 1) helium4.7 > T,
helium I ; The superfluid state of liquid
(He 1I) | helium4, I <1,
p ‘ Density gem™?
Pr i Density of the normal
] component gem™?
Ps |Density of the superfluid
| component gem™3
elk Energy of an excitation <’ K
w=c¢lh Frequency of an excitation rad-s-!
P Excitation momentum gemes™!
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Symbeol or
expression | Physical quantity Unit symbol or value
g=plh Wave number of excitation A-1(1 A-r=100%m 3
Do Momentum at the roton minimum|g-cms™?
Pe Momentum at which de/dp=1u; |g-cms-7
n(p) Distribution of excitations as a
function of momentum cm~?
A Roton energy K
Ay “Thermal” roton energy K
m Roton effective mass m
oy “Thermal” roton effective mass |m
I'fk Half width of scattered neutron
distribution + & X
S{g, w) Dynamic structure factor
S Entropy Jrg- K-t
Ui, Ha, g Velocity of first, second, fourth
sound mee~
iy, g Velocity of first, second sound,
uncorrected mes™!
Emaxlk Energy of maxon peak + & K
N, Roton number density em~3
N, Phonon number density cm™?
an Coefficients of excitation energy
series K-Ax
TS Coefficient of thermal expancion | K-
K Isothermal compressibility cm* dyne!
(2 Griineisen constant
L Latent heat Jogmt
F Helmholtz free energy Jgm!
[od Gibbs free energy Jog-?
w Enthalpy Jgt
Cr Specific  heat at  constant
pressure Jog-iK-t
Cr Specific heat at constant volume | J-.g= - K-?
y=Cp/C | Ratio of specific heats
Vo, Lo, Fo,
Qo W, Ground state (T'=0) values of
etc. guantities
Ve, Fy, @y, | Finite temperature values of
We. etc. quantities due to excitations
only

1. Introduction

Liquid helium is a rewarding subject for the study of
thermodynamic properties, especially because helium I1,
the lower temperature phase, exhibits the property of
superfluidity. The hydrodynamics of this phase are extra-
ordinary: both normal viscous behavior and superflow
may be exhibited in closely related experiments. Pheno-
menologically, one speaks of & “two-fluid" hehavior in
which the fluid {of density p) ' acts dynamically as if a
fraction of effective density p, flows as a normal fluid,
and a fraction of effective density py=p—p, flows as an
inviscid fluid. This two-fluid motion of helium II leads to
some very unusual resulis, such as the wave-like rather

t All symbuols used in this paper are defined in the section labeled Nomenclature,

? Figures in brackets indicate literature references in section 7

7 Experiments at liquid helium temperatures almast invariably use the 1958 vapor pressure
seale[12]. Caution should be used with earlier data,

than diffusive propagation of temperature fluctuations
(called second sound). Furthermore, the thermodynamic
properties are deeply related to the hydrodynamic: for
example, the Gibbs free energy is related to the square of
the relative velocity between the two fluide. We shall be
concerned principally with the static properties of helium
1l in which all net flow velocities are zero.

On a deeper level, one has the Landau picture [1]2
in which the entire fluid is superfluid at absolute zero.
As the temperature® is raised, the heat content is
described entirely in terms of “‘elementary excitations”
of the superfluid. At low temperatures these are “pho-
nons”’, at higher temperatures more complex excitations

called “rotons” are excited.
The energy € (=hw) and momentum p (=#q) of the

elementary excitations in superfluid helium may be
represented by the excitation spectrum (dispersion
curve] first proposed by Landau [1] which is shown
schematically in figure 1. We will refer again to this

J. Phys. Chem. Ref. Dote, Vol. 6, No. 1, 1977
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FIGURE 1. A schemalic diagram of the excitation spectrum for

helium 11, Details and labels are discussed in the text.

figure in subsequent sections. In recent years many of
the features, and in some cases the entire dispersion
curve, have been measured by inelastic thermal
neutron scattering techniques for different pressures
and temperatures. (See for example references {2—-10].)
Landau has put forth a simple but elegant theory which
allows one to calculate the thermodynamic properties
of He II at low temperatures from the excitation
spectrum.

The purpose of this paper is to give an account of
the cquilibrium thermodynamic properties of He 1I
and related quantities such as the velocities of first,
second, and fourth sounds and properties of the ex-
citations themselves. These quantities are used in a
wide variety of contexts, both experimental and the-
oretical; and it is often important that the data for
different properties be thermodynamically consistent.
The ideal solution to this problem would be a critical
compilation of experimental properties over the entire
T-P plane for He I1, and some day this will undoubtedly
be possible. At the time this project was begun (1972),
the tables in the appendices of the books by Wilks [11]
and Donnelly [12] were the most complete available,
and far from adequate for the task undertaken here.

Another promising avenue is the use of Landau’s
theory mentioned above. The thermodynamic properties
along the vapor pressure curve have been extracted
from neutron secattering measurements with reasonable
success by Bendi, Cowan, and Yarnell [10]. We have,
then, the possibility that direct thermodynamic meas-
urements can be supplemented by the increasing body
of neutron data indicated by the references cited. In
particular, we were greatly encouraged by the appear-
ance in 1972 of the landmark study of neutron scattering
from rotons by Dietrich, Graf, Huang, and Passell at
Brookhaven National Laboratory [3].

The superfluid region of the helium P—T phase dia-
gram is shown schematically as the shaded portion of
figure 2. It is to this area that our analysis and sub-
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FIGURE 2. A schematic phase diagram for helium-4. The pressure
of the liquid-gas transition line has been exaggerated.
The hexagonal close-packed and body centered cubic
(bec) phases of the solid are shown, as are the loci of
zero thermal expansion (dashed lines).

sequent tabulations apply. For all pressures in this
shaded region, there is a temperature 7T\ (P) above
which the superfluid properties cease to exist, and one
has a classical liquid phase (called helium I). The line
which separates these two regions is called the lambda-
line, in recognition of the characteristic anomaly in the
specific heat observed along this line. In this paper,
we do not treat the thermodynamic properties in the
immediate vicinity of this line. Such a treatment has,
however, been undertaken in an earlier volume of this
Journal, by MecCarty [13], who has reported on the
thermodynamic properties of helium I; and IUPAC
Helium-4 tables by Angus, de Reuck, and McCarty [14]
are in the process of completion at the time of writing
of the present article.

The results described here are the result of a lengthy
series of investigations by our research group at the
University of Oregon. The first product of our analysis
of the Brookhaven data was a report on the Landau
parameters [15]. An early attempt at approximating
the dispersion curve in a piecewise fashion was reported
at LT13 [16]. This proved to be imprecise and was
succeeded by the series representation used in this
paper [17]. The results of these investigations were
summarized in the Ph. D. thesis of J. S. Brooks, which
appeared in 1673 [18] We issined the Tahles from that
thesis in the form of a University of Oregon Technical
Report in December 1973 [19], requesting contributions
from other laboratories. We were gratified to receive a
number of suggestions. corrections, and reports of new
experimental work. In particular, the thesis of Van
Degrift on the expansion coefficient [20]. and a syste-
matic study of first, sccond, and fourth sound by May
nard and Rudnick, began at UCLA, have been extremely
useful, as has some independent work on dispersion
curves by Dr. Maynard [21]. Since this work was sub-
mitted. the UCLA measurements have been completed
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and sent for publication as shown in [21].

The problem of the proper treatment of the statistical
mechanics of interacting Bose excitations has taken
considerable effort. Much confusion about the effects
of temperature-dependent levels and thermal expan-
sion has been removed with the recent appearance of
papers by Goodstein, Brooks, Donnelly, and Roberts
[22]. Roberts and Donnelly [23, 24} In particular, the
latter anthors have develaped the set of expressions
displayed in table I which allow the calculation of the
equilibrium properties of He II when the energy levels
of excitations are known from experiment. This is the
basis of the present calculated tables, which represent a
considerable advance in accuracy over the caleulations
in our earlier work [18, 19} For example, the need for
an cmpirical equation of statc is climinated altogether.

The computations reported here have been carried
out by James Gibbons on a Hewlett-Packard 2100 A
computer.

2. Theoretical Background

Although several authors have discussed the Landau
spectrum and theory in detail (see, for example, Wilks
{11], Donnelly [12], Keller [25], Khalatnikov [26]) we
present here a brief description for completeness.
Landau’s theory for superfluid helium is based on the
assumption that the thermal excitations in the liquid
can be described as constituting a weakly interacting
gas with the energy spectrum given as the solid line in
ficure 1. It is also assumed that these excitations obey
Bose statistics, and therefore the number density of
excitations of a particular momentum, n(p) is given by

n(p)zij_i? [CE(P)IA"T__I]—X. (1)

X

From this expression, we see that the low-lying regions
of the energy spectrum will contribute predominantly
to the thermodynamic properties, and referring to figure
1 we find that there are two such regions on interest.
The first is for small momenta, where the spectrum is
approximately linear, and is called the phonon branch.
The other is the energy minimum about momentum
Do. which is nearly parabolic and is called the roton
branch, or roton minimum. Here the energy is much
higher, but the density of states is also very large.

The experimentally observed values of the minimum
roton energy A are large enough that the Boltzmann
distribution is an adequate approximation to eqg (1).
As a rough guide to thinking of the thermodynamics
of helium 1I, it is sufficient to recognize that below 1 X,
the phonon excitations are the more numerous and
dominate the thermal properties, whereas at higher
temperatures the number of rotons increases exponen-
tially with temperature, and rotons become predominant
thermodynamically above 1 K.

If one knows the dispersion curve of the excitations,
it is straightforward io construct a partition function
and proceed by standard statistical mechanical methods
to compute the entire set of equilibrium properties of
the liquid. As we shall see, this ideal is far from realiz-
able today.

At very low temperatures, when the liquid is rela-
tively free of excitations, inelastically scattered neutrons
are observed to form a very sharp spectrum, limited
only by the insirumental resolution of the analyzing
spectrometer. The location of this spectral line is taken
as a measure of the transfer of energy from the incoming
neutron beam to single phonons in the liguid, for a given
momentum transfer p set by the spectrometer. The
result of many such measurements is an excitation
spcetrum such as is shown in figurc 3. It appears the
oretically reasonable, and experimentally fairly certain,
that the observed excitation spectrum can be identified
with the dispersion curve of the elementary excitations
in the fluid at low iemperatures.

20 T : : ! T T
L A/k=868K ;.. ]
Q, =189
16 b o= Q.1 b
< 12 Velocity of sound-
~ reached here 4
>
o
g :
)
A ]
O ; 1 L A 1 1
0 1.0 2.0 I 30
Wave number (A7)
Ficure 3. The experimentally determined excitation spectrum at

1.1 K, SVP. The dots are the neutron scattering data
of Cowley and Woods [2]: the solid line is egs (20) and
{14). The error bar is the smallest experimental error,
and is not to be associated with any one data point.

At higher temperatures, however, Yarnell et al. [9],
and Henshaw and Woods [5] observed that the widths
of the scattered specira increase rapidly with tempera-
tures. For rotons (at (¢} in fig. 1) the linewidths, as
measured by the half-width at half maximum I, approach
the magnitude of the energy itself as T approaches
T\ (.e., '~ A as T'— T\). This means, among other
things, that the lifetimes of the excitations are decreas-
ing rapidly with increasing temperature. Furthermore,
the roton energy A is observed to decrease with increas-
ing T and increasing F.

The scattered neutron intensity is proportional to
the dynamic structure factor S (g, w) which is in turn
related to density-density correlations in the fluid. The
unfolding of the experimental scattered neutron spectra
in terms of assumed forms for S(g, w) has been dis-
cussed in detail by Dietrich et al. [3]. To the best of

J. Phys. Chem. Ref. Data, Vol. 6, No. 1, 1977
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our knowledge at the time of writing. no one has been
able to make a rigorous connection between S(g, w)
at finite temperatures and the energies which enter

the thermodynamic calculations. Dietrich et al. [3] have
included the linewidth I' in their thermodynamic cal-
culations in an ad hoc way; perhaps a complete theory
will require considerable information on the observed
line shape.

If one were to brush aside the considerations of the
last paragraph and try to work with the unfolded dis-
persion curve €(q), one would still have the problem
of treating the statistical mechanics of interacting Bose
excitations whose interactions are manifested by an
observed dependence of €(q) on T and P. Bendt, Cowan,
and Yarnell [10] argue that when €(q) is a function of
T alone, the entropy should be given by

V[ [A»ln(1+n.)+%f—] ¢*dg, @)

where n is the Bose distribution function (1). Roberts
and Donnelly [23] have presented arguments to show
that even at arbitrary 7 and P, (1) and (2) are still valid
provided €(q) is available from experiment. They have
presented a way in which all the thermodynamic prop-
erties may be consistently deduced from experimental
dispersion curves [24]. We show in table I the expres-
sions which they have derived for the quantities of
interest in the present study. In table I we have omitted
the subscripts on ap and xr for clarity.

TaBLE I.  Expressions for thermodynamic quantities
Vi [=[ne N
S =R [kT+ 1n(l+n)} ¢*dg

v s [ e[ G5 G, e
ar Tf [(ap> '2(?_;)P,T] 7dq

14 TdT
F Vy+
Fo¥) J TJo )
®  euP s [(EE[TE(E) g
] m] T

3n ag {dn
W aoP)t— [ ¥ g ) ——(—) .
oPr+3 f de [ o 3 \ogher |90
Y ("] _Cﬁ](ﬁ_n‘ ]
Cr 27* .Jo ¢ { (6T)t'. ¢ 3 f)q)l’.T ¢*da

V (= [an\ ,
g, E(a—T)r,ﬂ dq
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3. Experimental Data Used in the Analysis

In this section the experimental data underlying the
Landau theory is discussed.

3.1. Data Obtained by the Inelastic Scattering of Thermal
Neutrons from Helium I

The energies and line widths of the elementary
excitations of helium II are obtained from examination
of inelastically scattered thermal neutrons. The tech-
niques are discussed in detail, for example, in a recent
review article by Woods and Cowley [8]. We shall use the
measured energy spectrum, following Bendt, Cowan, and
Yarnell [10], as the basis for our computations of the
thermodynamic properties of helium II from the Landau
theory. A comnpletely determined experimental excitation
spectrum is shown in figure 3 fur T=1.1 K, at the SVP.
The shape of this spectrum is a complicated function of
pressure and temperature, and to use the landau
theory one must first know the detailed spectrum for
every value of P and 7. A complete set of data for a
single pressure and temperature such as is shown in
figure 3 is a major experimental undertaking. Hence it is
necessary to find a method of estimating the energy
spectrum for general P and T accurate enough that
derivatives such as appear in table I may be accurately
determined. In the sections below, we discuss the salient
features of the excitation spectrum obtained from
various kinds of experiments, and in section 3.1.e we
describe a method of representing the spectrum as a
power series in momentum, with pressure- and
temperature-dependent coefficients.

3.1.a. The Phonon Branch

For momentum p decreasing to zero, the phonon
branch of the energy spectrum approaches linearity,
in accordance with theoretical predictions (cf. Feenberg
[27]). Here we take the energy spectrum, as indicated
at (a) in figure 1, to be

lim €(p)=up, (3)
p—0

where u; is the velocity of ultrasonic (first) sound, a
temperature- and pressure-dependent quantity which
may be determined experimentally either from the slope
of the excitation spectrum in the zero momentum limit,
or more conveniently from experimental first sound data
(see section 4.2.a).

The first non-linear terms correcting eq. (3) for small,
but non-zere, momenta have been the subject of much
controversy in the literature in recent years (see
Svensson, Woods, and Martel [7], and references there-
in). These terms may affect the behavior of, for example,
the specific heat at temperatures below 0.45 K, as
suggested by Phillips, Waterfield, and Hoffer [28]. We
will return to this question in section 3.1.e.
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3.1.b. The Maxon Branch

The elementary excitations which have energies at
or near the first energy maximum, (b) in figure 1, have
come to be called “maxons”. This part of the spectrum
has been measured at 1.1 K, at the vapor pressure as
indicated in figure 3, and the peak position has been
determined for various pressures at 1.18 K by Graf,
Minkiewicz. Mgller, and Passell [6] Measurements
have also been made by Henshaw and Woods at the
vapor pressure and 25.3 atm [4]. From the existing data
on the maxon part of the spectrum, we conclude that
the peak energy is density dependent only, since no
shift in the peak position in momentum space has been
observed. Very little data exists on the temperature
dependence of the maxon peak. Figure 1 of Bendt,
Cowan, and Yarnell [10] and figure 20 of Cowley and
Woods [2] suggest it decreases slowly with tempera-
ture. Because the maxon energies are relatively high,
their contribution to the thermal properties is very
small, and the details of this part of the spectrum are
not critical to the computations in this paper.

We represent the density dependence of the maxon
energy by the expression

€max (0, po)/k=Eo~+ E1po+ Esp§+ E3pi, (4a)

where po is the density at T=0 and the coefficients
FEy are

Eo=—216.5072 (K)
E;=3998.6005 (K-g-cm?)
E,=—23028.6027 (K - g% - cm)
E;=44199.7232 (K- g - cm?)
Equation 4a is a fit to the neutron data of Cowley and

Woods [2] and Graf et al. [6] and is plotted with the data
in figure 4. The rather slow temperature dependence of

150
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135 l ‘ . .
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FIGURE 4. The density dependence of the maxon peak. Triangle.
Cowley, and Woods [2): circles. Graf et al. [6]: solid
line. eq (4).

the peak is represented by
€max (T P) = €max (0, po) (1-0.452 X 10-377), (4b)

Values of €., (T, P) are given in table 21, the conver-
sion to pressure being obtained from the equation of
state.

3.1.c. The Roton Minimum

The region of the spectrum denoted (c) in figure 1 is
called the “roton minimum” and can be very well repre-
sented by Landau’s parabolic expression

€roton = A+ (p—po)*/2p, o)

where A is the minimum roton energy, or energy gap,
po is the roton momcntum at minimum cnergy, and u is
the effective mass of excitation near po. These three
quantities which describe the roton minimum are called
the “Landau parameters”, and have the typical values at
1.1 K, SVP of A/k=8.68 K, po/a=1.91A-1, and p=
0.16 m. The temperature, pressure, and density depend-
ence of these parameters are best known from the exper-
imental work of Dietrich et al. [3], who find that A and
u decrease with increasing temperature and/or pressure,
but that p is a function of density only:

polfi=3.64 pt3 A-1. ©)

Values of eq (6) are given in table 24.

Donnelly [15} has provided simple relations for the
density dependence of A and . at T=0, and also for the
relation between A and u at finite temperatures:

Ap, 0)/k= (16.99—57.31p) (K), (7N

u(p, 0)=(0.32—1.103p) (m). 8)
and
pp, T) _Ap, T) )
w(p,0)  Ap, 0)

An expression which describes the temperature and
density dependence of A(p,T)/k has been given by
Brooks and Donnelly [16]:

A(p,T A(p,0 aN,
—(‘,’c ) _ (’z_ ) —%T (1—7’), (10)
where gy, is the normal fluid density and N, is the roton
numhber density (both quantities will be discussed in sec-
tion 4). Here, a=8.75X10-28cm?*-K. Equation (10)
gives a good qualitative description of the data of Diet-
rich et al. [3] to within 20% for Afand u through eq (9)]
below the lambda point. These expressions are dis-
cussed in detail by Brooks [18].

Recently, motivated by (10), we have performed a
lcast squarcs fit on thc data for A and ., using expree-
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sions of the form Ar=—5.002661 X 10* (K-g~*cm®)

L , and
A(p, ) k= A+ Avp+ Aze'T/p+ Ase®p U, = 0.3420601 m)

+ (B +Aep+ Agp?)e* (K)  (11)
Up=1.239037 (m-K)
and
ly=—1.238153  (m-g'-cmd)
}L(p,T) = U] + UzetT+ ng+ U4€rT/p+ (U;',

[—— K -lige -3
+Usp) e (m), (12) Us= —0.2234561 (m-K-t-g-em—3)
Here, t=—A(p, 0)/kT, and the coefficients of eqgs (11) Us = — 13429.95 (m)
and (12) are:

Ug=632197.06 (m-g-'-cm?
Ay = 17.41647 (K)
The experimental roton energy gap and effective mass

A, =—60.48823 (K-g~'-cm?) are shown in figures 5 and 6 with the results of eqs (11)
and (12) respectively. Although eqs (11) and (12) sug-
Az =—0.5307478 (grcm~—3) gest an expansion in terms of the roton number density,
no particular theoretical significance can be attached to
Ay =1.817261 X 104 (K-g=T-em?) the terms in these equations.
We will see in section 3.1.f below that the experimental
As = —1.351398 X 107 (K) values of A and u described in this section will have to
be adjusted slightly to obtain the accurate thermodyna-
Ag = 1.621499 X 108 (K-g='-emd) mic information from the Landau theory.
9
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x
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T

f L L. | L | | i I ] |

OI.O 1.2 1.4 L€ L€ 2.C
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FIGURE 5. Least squares fit of eq (11} fo the expenimental roton energy gap 4. Data at SVP, Henshaw
and Woods [5]{solid circles), Cowley and Woods [2] topen circle): data at higher pressures,
Dietrich et al. [3].
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FicURE G. Least squates fit uf cg (12) 1o the experimental roton effective mass u. Data point at

SVP, Cowley and Woods [2]: data at higher pressures, Dietrich et al. [3].

3.1.d. The Shoulder Beyond the Roton Minimum

Recent neutron scattering experimental results (Graf,
Minkiewicz, Mgller, and Passell [6] indicate that for
momenta larger than po/f the slope of the specuum
approaches the velocity of sound at a momentum p./A
(=215 A*‘) , as shown at point (d) in figure 1 and by
the arrow in figure 3. The spectrum then bends over and
approaches twice the roton energy (curve B in figure
1), finally terminating at a momentum p'. The experi-
mental spectrum in figure 3 also has this qualitative
teature. This behavior for large momenta was predicted
by Pitaevskii [29] to be

er(p)=2A—aexp[—a/(p'—p)], (13)
where « and a are constants to be determined. Neutron
measurements have not yet been made over a sufficient
range to provide information for the dependence of eq
(13), and in particular a and a, on temperature and
pressure. Fortunately, like the maxon peak, this region
of the spectrum has litde thermodysamic content, and
it is sufficient for our purposes to locate the momentum
P to the right of p, at which de/dp from eq (5) reaches
the slope of the velocity of first sound u,, and to represent
the dispersion curve as a straight line of slope u; above
Pe» terminating at p/ﬁ=3.0/§x". This is curve C in figure
1, which is given by

ep)=ur (P—pc)+ €(pe)

P p,. (14)

where

Pe= pliz + Po. (15)

This approximation is also indicated in figure 3 as the
straight line above p /% = 2.15A 1.

3.1.e. APolynomial Representation for the Excitation Spectrum

We may summarize the behavior of the excitation
spectrum described in the previous sections in the fol-
lowing way:

The excitation spectrum starts out at zero momentum
and energy with the slope u;. Hence

€(0)=0; €(0)=u, (16)
at point (a) of figure 1. Here €' (p) =de(p)/dp. For mo-
mentum increasing from zero, the spectrum attains its
first maximum at 1.1A-1, and

e(LIA- ) =€nas € (L1IA-1)=0, (17)
at point (b) in figure 1. Continuing down to the roton
minimum, we find that the parabolic representation
near pg provides us with the relations
€(po) =14 € (po)=0; €'{po)=1/n, (18)
at point (c) of figure 1. Beyond the roton minimum. for
momentum p. where the slope approaches the velocity
at sound, we finally have

€ (po) =1 1193

at point (d) in figure 1.
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Clearly, egs (16) through (19) represent the most
important features of the excitation spectrum. We have
discovered, partially guided by theoretical considera-
tions (see Feenberg [27]), that a polynomial in
momentum without a gquadratic term

€(p)k=u1p+ asp®+ asp* -+ asp®+ asp®+ a:p”+ asp®,
(20)

is an excellent representation for the excitation spectrum
in the momentum interval 0 < p < p., and that by using
eq (14) for the interval po/A < p/A < 3.0 A-1, onehas a
continuous expression for the spectrum which may be
used to great advantage in the computation of thermo-
dynamic properties based upon the Landau theory. Note
that if eq (20) is continued above pe, it diverges nega-
tively, as indicated by the dotted line in figure 1. Hence
care must be used to apply eq (14) above pe.

The coefficients a, of eq (20) may be obtained for any
temperature and pressure by applying the conditions
imposed by egs (16) through (19), which in turn will
depend on T and P. Since there is no constant term, and
the first coefficient must be u.. the problem of determin-
ing the coefficients a, is reduced to solving six equations
with six unknowns, at any temperature and pressure.

The degree to which eqs (20) and (14) fit the neutron
scattering data is shown as the solid line in figure 3 at
1.1 K, SVP, and again by the solid lines in figure 7 at

20 T T T T T
X
>~
&
o
Lt
=
L
} A L
G & 20 30
¢}
MOMENTUM (A1)
Ficure 7. The excitation spectrum at two pressures at 1.1 K.

Dots, SVP, open circles, 25.3 atmi, Henshaw and Woods
[4]: triangles, 1.25 K, 24.26 atm. Dietrich et al. [3]: solid
lines, eqs (20) and (14).
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1.1 X, at SYP, and at 25.3 aim. The experimental values
were used in egs (16} through (19) to obtain these plots.
One can appreciaie {from figure 7 how the spectrum
changes with pressure.

As mentioned in section 3.1.a, a coniroversy surrounds
the exaci form that eq (20) should have for small
momenta. We make here several comments concerning
our choice of eq (20). First, we found that a series with
no guadratic term was by far the best fit to the neutron
data. A detailed comparison of several series is given by
Brooks [18]. Secondly, one can see by inspection of the
resulis of such calculations that the coefficient of the
first nonlinear term as changes sign upon increasing
pressure. We find this to be consistent with the results
of Phillips et al. [28] (see Brooks and Donnelly [17]).
Finally, the form of eq (20) has prompted us to make
some calculations concerning the low temperature
behavior of the second sound velocity (Brooks and Don-
nelly [30]). The second sound velocity is quite sensitive
to the leading terms in (20) and a careful measurement
would serve as a check on the form we have chosen [30].

3.1.f. The Effective Sharp Spectrum for Thermodynamics

i we use the neutron model dispersion curves de-
scribed in the previous section te compuie, say, the
entropy from table I, we discover that the agreement
with the calorimetrically determined entropy is quite
good at low temperatures for all pressures. At higher
temperatures, however, the calculated entropy lies
markedly higher. For example, at the vapor pressure,
the calculated entropy exceeds the experimental by
17% at ~ 2.1 K; at 15 atmospheres the calculated entropy
is 11% high at ~1.9 K, and at 20 atmospheres it is 23%
high at ~ 1.8 K. This same trend may be seen in figure 17
of Dietrich et al. [3] who, however, made a correction
to the formula for S by an additional integration over
the linewidth. T'he departures between calculated and
measured entropy occur at about the same value of
(Tx—T) at all pressures, and correspond to the tem-
peratures at which the linewidths of the scattered
neutron distributions start to grow rapidly. The re-
sulting problem in interpretation has been referred to
in section 2 above.

Following Brooks [18] we have investigated the idea
of constructing an effective dispersion spectrum, which
represents the energies which yield thermodynamic
tesulls in accord with experiment. This is done by noting
that the only constraint among eqs (16)-(19) which can
be varied at all readily within experimental uncertainty
is the exact value of A in (18) [and also of u since it is
computed from eq (9)]. We therefore allow A 10 float,
retaining all other constraints as before, and produce a
dispersion curve identical with the neutron data except
for the precise value of A, computing » from eq (9).
This spectrum assumes there is some effective sharp
frequency (that is, [ — 0) for each value of ¢; since
there is but one adjustment, the resulting effective
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spectrum is unique. An extensive numerical investiga-
tion has demonstrated the great utility of such a
spectrum.

We find:

(1) The effective spectrum is capable of yielding ac-
curate thermodynamic results over all pressures and
temperatures up to ~ (T, — 0.1 K). All quantities calcu-
lated from table I and this spectrum appear to be in
reasonable agreement with experiment.

(2) The effective spectrum is consistent with the
observed functional form of the spectrum determined
by neutron scattering. It coincides with the neutron
spectrum within experimental error at low temperatures,
and at high temperatures the difference between the
observed and effective values of A is such that (Aesective —
Aneutron) <T.

(3) Because the effective specirum is unique, the
exact value of A can be chosen by reference to more
than one thermodynamic quantity. We have used en-
tropy, expansion coefficient, and normal fluid density.

(4) The points listed above allow one to guess that
the effective spectrum is probably a reasonable repre-

sentation of the energies of elementary excitations of

helium II.
3.2. The Thermodynamic Data

In order to use the formulas provided by the Landau
theory, we need an equation of state to relate the pres-
sure, volume (or density), and temperature, and from
which we may obtain the velocity of first sound. Like-
wise, to test the results of our computations, we need
calorimetric data, primarily entropy and specific heat.
We now discuss these experimental data.

3.2.a. The Equation of State

Many of the parameters of the excitation spectrum
depend on the density, and terms in the density, or
molar volume, appear in expressions of the Landau
theory (table I). It is therefore imperative to have a
suitable equation of state or “PVT” relation. Our rela-
tionship is based upon the work of Abraham, Eckstein;
Ketterson, Kuchnir, and Roach [31], who showed that
as T — 0, the equation of state can be written

P=Ac(p—po) +A:1(p—po)*+ 4:(p—po)?, 21)

where py is the density at P— 0, T— 0; 4, ~ 560 atm
glem3, 4, = 1.097 X 10¢ atm g2cm®, and 4, = 7.33 X
10% atm g2cm®. The “ground state” molar volume,
Vo(P)=V (0, P) is calculated from eq. (21) by a root-
searching technique.

Before the methods which led to the expressions in
table I were developed, an empirical equation of state
generalizing (21) was developed by Brooks [18]. This
empirical equation of staie was based on (21) and the
data of Boghosian and Meyer [32], Elwell and Meyer [33],
and Kerr and Taylor [34]. It was sufficiently accurate tc

give a good account of the density and isothermal
compressibility, but was not sufficiently accurate to
calculate the expansion coefficient.

Since this work was begun, a thesis has appeared by
Craig Van Degrift [20] which employs the dielectiric
method for determining the density and expansion
coefficient at the vapor pressure. Dr. Van Degrift has
kindly supplied to us a table of data corrected to zero
pressure. We have abstracted some of his data in table
I1. His complete results are in the process of preparation
for publication. We should like to encourage the
acquisition of data of comparable accuracy at a series
of higher pressures.

TaBLE II. Density differences and expansion coefficients corrected
to P = 0 as determined by Van Degrift [20]. po = 0.145119 g/cm?®

T ! (p—po)|pox 108 | @p (K1) X 208

0.30 —2.255 29.49
0.35 —4.122 45.96
0.40 -~ 6.931 67.28
0.45 —10.94 93.93
0.50 — 16.42 126.3
0.55 —23.67 164.5
0.60 —32.95 207.7
0.65 —44.49 254.2
0.70 —58.37 300.5
0.75 — 74.46 342.1
0.80 —92.40 373.3
0.85 —111.5 387.9
0.90 —130.8 380.2
0.95 —149.1 345.4
1.00 — 164.8 279.8
1.05 —176.5 181.0
1.10 —182.4 47.48
1.15 —180.6 —122.3
1.20 —169.5 —330.4
1.25 —146.9 — 580.2
1.30 —110.7 — 876.4
1.35 —58.43 —1223.0
1.40 12.50 —1622.0
1.45 104.5 —2062.0
1.50 218.9 —2511.0
1.55 356.7 —3045.0
1.60 524.0 — 3652.0
1.65 722.8 ~ 4304.0
1.70 955.7 — 5015.0
1.75 1226.0 — 5806.0
1.80 1539.0 — 6699.0
1.85 1899.0 — 7724.0¢
190 2315.0 — 8022.0
1.95 2791.0 - 10360.0
2.00 3360.0 —12140.0
2.05 4025.0 - 14480.0
2.10 4833.0 — 17990.0
2.15 5896.0 — 25880.6

3.2.b. The Calerimetric Date

The most fundamental calorimetric property directly
accessible experimentally is the entropy S, which can
be measured in an unusual way by employing the thermo-
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mechanical effect. The entropy is calculated from the
relation

o AT 22)

where AP and AT are the differences in pressure and
temperature between two chambers of helium II con-
nected by a superleak. This relation, which is a direct
result of the two fluid nature of superfluid helium, is
discussed in the standard references [11, 12, 25, 26].

The specific heat C may be obtained by conventional
calorimeiric methods, and the entropy may be com-
puted from the results by the relation

TC .
S=fﬁdT' 23)

The entropy is available from the thermomechanical
effect data of Van den Meijdenberg, Taconis, and De
Bruyn Ouboter [35] in the temperature range 1.15<
T<2.05 K and pressure range 0 <P <25 atm. The
specific heat capacity measurements of Wiebes [36]
cover the same range of pressure, but the temperature
range 0.3<7=<1.65 K. We have used these two sets of
data in our analysis, since they cover nearly the entire
superfluid phase, and are in reasonable mutual
agreement.

The specific heat has also been measured by Phillips,
Waterfield, and Hoffer [28]. Through the kindness of
Professor Phillips and Dr. Hoffer we have had access
to some of their original calorimetric measurements,
which are in satisfactory agreement with those of
Wiebes (see, for example, Brooks and Donnelly [17],
figure 2). The publication of the final data from these
experiments is still awaited.

4. Computational Methods and Comparison of
Computed Values With Experiment

In this section we discuss the way in which each of
the tabulated properties given in Appendix A is obtained,
and dcscribe to what degree of accuracy the computed
values agree with the corresponding experimental data.
Direct references are made to the tables.

4.1. Generation of the Effective Specirum

We discussed in section 3.1.f above, the concept of an
effective sharp spectrum for thermodynamics. It differs
from the spectrum of section 3.1.e. only in allowing the
value of €(ps) = A to float, its exact value being chosen
by comparison of the calculated quantities with experi-
ment. In the original tables computed by Brooks [18],
the procedure was to adjust A and thus the effective
mass through eq (9), so that the calculated entropy
agrees with the experimental entropy at all temperatures

J. Phys. Chem. Ref. Data, Vol. 6, No. 1, 1977

and pressures at which the roton part of the spectrum
contributes significantly. This method had the disadvan-
tage that even with quite accurate values of S, the expan-
sion coefhcient calculated from (3S/3P)r could be
quite poor. Dr. Jay Maynard of UCLA drew our attention
to the fact that the normal fluid density (cf. section 4.4.b.)
is weighted heavily toward higher momenta, and hence
is also a useful measure of the effective roton gap. We
decided, therefore, that for the generation of the effec-
tive spectrum for this work, we would endeavor to employ
a method which would incorporate all available thermo-
dynamic evidence: from entropy, expansion coefficient,
and normal fluid density.

James Gibbons undertook the job of computing the
effective spectrum. This proved to be an arduous task
because of the great sensitivity of the thermodynamies
to minor changes of the spectrum in the vicinity of the
roton minimum. The first step was a weighted fit to
experimental values of S and «, making use of the
Maxwell relations (3V/91)p=— (0S/0F)r. This produced
a set of polynomials in the pressure at 0.1 K tempera-
ture intervals. Since the tables are tabulated in 0.05 K
intervale, thie data was interpolated by a sccond degrec
polynomial in temperature fitted to three local points to
find the best fit to data at 0.05 K intervals. A new set of
polynomials in pressure were then generated from T=
1 Kto7=2.2 K in 0.05 X intervals. Special care had to
be taken near the lambda line because of the existence
of large high-order derivatives. An iterative root-search-
ing method was then used to find what one could call
AS, @) from eq (2), in all cases calculating u from eq (9).

The second step was to interpolate the experimental
data on p,/p, which also exists chiefly on 0.1 K incre-
ments, by a procedure analogous to that used for S
and a. The end result of a similar root search was