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Elastic Properties of Zinc: A Compilation and a Review 

H. M. Ledbetter 

Cryogenics Division, National Bureau 0/ Standards, Boulder, Colorado 80302 

The p.lastic eonstant!'l of zine are coml1iled and reviewed: one hundred references are cited. The 
included elastic constants are: Young's modulus, shear modulus, bulk modulus, compressibility, 
Poisson's ratio, second-order single-crystal elastic stiffness and compliances. and third-order elastic 
stiffness. Temperature and elastic-anisotropy effects are also reviewed. Other topics are: sound 
velocities, elastic Debye temperature, Cauchy relationships, elastic stability, pressure effects, and 
theoretical studies. New ~olycrystalline data are computed from single-crystal data by tensor
averaging methods. 

Key words: Bulk modulus; compressibility; Debve temperature: elastic constants; Poisson's ratio; 
shear modulus; single-crystal elastic coefficients; sound velocities; Young's modulus; zinc. 
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Previous reports in this series discussed elastic proper
ties of iron, nickel, and iron-nickel alloys [IF and copper 
[2]. Reference 1 also discusses some solid-state elasticity 
concepts that are relevant here, including: crystal physics 
and thermodynamics; temperature effects; relationships 
between elastic constants and other physical properties, 
especially the elastic Debye temperature; and relationships 
between single-crystal and polycrystal elastic constants. 

The purpose here. is to present a compilation and a re
view of elastic properties of zinc. One hundred scientific 
and engineering publications are cited. Both single-crystal 
and polycrystal elastic constants are considered together 
with effects of familiar metallurgical variables on the 
constants. 

Zinc is used widely technologically. Some better-known 
applications include: galvanized iron and steel, die cast-

1 Figures in brackets indicate literature references at the end of this paper. 
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ings, solders, and alloys. Brasses (zinc-copper alloys) are 
perhaps the best-known and most useful zinc alloys. Prop
erties and applications of both zinc and its alloys are 
summarized elsewhere [3]. 

The first reasonably comprehensive review of aniso
tropic elastic-constant measurements, by Hearmon [4] in 
1946, cited only three hexagonal metals: cadmium, mag
nesium, and zinc. But, hexagonal-metal elastic-property 
studies have proliferated in recent years. Hearmon's [5] 
more recent review in 1969 cites sixteen hexagonal metals. 
Except for magnesium, and perhaps beryllium, zinc has 
received more experimental study than other hexagonal 
metals. Magnesium has been studied extensively theoreti
cally because its axial ratio is nearly ideal and because 
it is nearly elastically isotropic. As discussed below, a 
non-ideal axial ratio and a high elastic anisotropy make 

zinc studies more interesting but also more difficult. 

2. Zinc as a Metal 

Zinc seems at first to be a relatively simple metal with 
a relatively low atomic number (thirty). Its electronic 
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1182 H. M. LEDBETTER 

structure, [Ar ] 3 dlO4s2 
, indicates that the d band is filled 

and that complicated d-band/ s-band electronic interactions 
are possibly absent. Being diamagnetic, the properties of 
zinc do not depend on magnetic field. Its crystal structure 

. I k d h . 6322 IS C ose-pac e exagonal (space group = D4h :.= p-- = 
6 romc 

no. 194 = structurbericht type A3). Between zero tem-
perature and melting ( 692 K), zinc exhibits only one 
crystal structure; thus, its solid-state properties exhibit 
no unexpected discontinuities with temperature changes. 

Further scrutiny shows that zinc is not a simple metal; 
its complexities include: 

(1) 'Crystal structure. A pseudopotential calculation by 
Harrison [6] predicted that f.c.c zinc has a lower energy, 
than c.p.h. zinc, contrary to fact. A similar calculation 
pr.edicted correct crystal structures for aluminum and 

beryllium, metals essentially as complicated as zinc. In 
pseudopotential formulations o~ metallic cohesion, the 
total energy is factored into electrostatic, band-structure, 
free-electron (Fermi), and correlation energies; only the 
first two depend on crystal structure. Calculations' are 
done for zero temperature and do not, therefore, consider 
entropy in the phase-stability problem. 

Offsetting this prediction, Kaufman [7] predicted that 
c.p.h. zinc is the most stable phase, but that it would trans
form to b.c.c. at 1125 K and to f.c.c. at 1250 K if melting 
did not intervene. Kaufman's model is based on separating 
thermodynamic functions (free energy, enthalpy, entropy, 
etc.) into lattice, electronic, magnetic, etc. parts, which 
are evaluated from experimental measurements. This analy
sis assumes the additivity of corresponding-states specific 
heats. 

(2) Axial ratio. Hexagonal crystals that are most 
closely, or ideally, packed have a c/a ratio of (8/3) 1/2 = 

1.633. The ratio of zinc, 1.856, deviates considerably from 
ideal. Several attempts have been made to account for this 
unusually high axial ratio. The most convincing may be 
the pseudopotential calculation of Weaire [8] that showed 
the band-structure energy is a minimum when cia = 1.8. 

A similar calculation gave nearly correct axial ratios for 
beryllium, cadmium, mercury, and magnesium. It follows 
from the aYl::l1 ratio that thp. lntr::l-ha~al-plane interatomic 
bonds are stronger than the inter-basal-plane bonds. The 
basal cleavage. of zinc and its higher compressibility per
pendicular to the basal plane substantiate this. In terms 
of atomic packing, zinc atoms should be considered oblate 
spheroids rather than spheres. The atomic packing of zinc 
indicates the po'ssibility of covalent, or angular, bonding. 
However, Hume-Rothery [9] maintained that the valence 
and crystal structure of zinc cannot be rationalized by a 
tendency toward covalency. 

Thus, theoretical understanding. of . the stable crystal 
structure and axial ratio of zinc is incomplete. A factor 
in all these properties is Sop hybridization. As, discussed 
by Dehlinger [10], the symmetry of the wave function 
must be reconciled with the point-group symmetry; and 
this reconciliation affects the . spacing, packing, arrange
ment, and energy of atoms in crystals. Dehlinger discussed 
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zinc in terms of hybrid Sop wave functions that are aligned 
preferentially along the close-packed directions in the 
basal plane. As described below, the elastic behavior of 
zinc is also unusual; and usual theoretical models fail to 
describe its elastic properties. 

3. Hexagonal Elastic Symmetry 

From an elastic viewpoint, zinc is relatively compli
cated. To better understand the elasticity of zinc a few 
basic concepts are outlined. Further details can be found 
in Nye [11], Fedorov [12], and Musgrave [13]. The co
ordinate system used to describe the elastic constants in 
the present paper is shown in figure 1. 

x 
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c 

z 

c:r 
I 
I 
I 
I 
I 

FIGURE 1. Schematic diagram of a close-packed hexagonal unit cell 
defined hy a1, ~, and c. The orthogonal co-ordinate 
system used in Llil:s l'<tl'ta- i::; deuu ted by x, y, and z. 

Materials that are either isotropic or quasi-isotropic 
have only two independent elastic constants. By quasi
isotropic is meant a material that is macroscopically iso
tropic but microscopically anisotropic; polycrystalline ag
gregates of single crystals are good examples of quasi
isotropic materials. When a body is stressed below its 
elastic limit, its shape and volume change reversibly. The 
strain, e, is related to the stress by Hooke's law, e = SO", 
where S is the elastic compliance; or alternatively' the 
stress is related to the strain by 0" = Ce, where C is the 
elastic stiffness; and C and S are inverses. 



ELASTIC PROPERTIES OF ZINC 118~ 

Depending on symmetry, a crystal has up to twenty-one 
independent second-order elastic constants. Hooke's law 
for single crystals is 

(1) 

where Uij and Ekl are the second-rank stress and strain 
tensors and Ci;kl is the fourth-rank elastic-stiffness tensor. 
If the crystal has some elastic symmetry, then the number 
of independent Cijkl'S is less than twenty Qne. In eq (1) 
the usual rule of omitting the summation symbol is 
adopted; summation over the. values 1, 2, 3 is implied by 
all suffixes that occur twice in a term. 

Hexagonal crystals have five independent elastic con
stants. The elastic stiffnesses are displayed in eq (2) in 
the V oigt contracted notation in matrix form; 

011 C12 CIa 0 0 0 
{Jll CIa 0 0 0 

Cii = C33 0 0 0 (2) 
C44 0 0 

C44 0 
1 
- (Cll - C12 ) 

2 

where the matrix is symmetrical about its main diagonal, 
that is Ci ; = Cji. Equation (2) results simply from the 
existence of a six-fold rotation axis; the a -fditional sym
metry elements indicated above by the space group effect 
no further elastic-symmetry simplifications. Only one inde
pendent elastic shear constant, C44, appears in the Cij 
matrix. 

If this matrix is inverted to obtain the Si/S, the elastic 
compliance coefficients, then these can be related to the 
so-called practical elastic constants: E = Young's modu
lus, G = shear modulus, and v = Poisson's ratio as dis
played in the matrix equation: 

liEn -1l211Ell -1l311E33 0 0 0 
liEu -1I31IE33 0 0 0 

IIE33 0 0 0 (3) 
I/G44 0 0 

I/G44 0 
. 2 

- (1+1121) 
En 

where the Poisson ratios are given by 

Vii = . -Siil Sii (no sum). (4) 

If interatomic forces are central (independent of angle), . 
if ions are at centers of symmetry, and if the crystal is 
stress free, then the following relationships occur among 
the Ci/s:· 

(5) 

and 

(6) 

~hese are called the Cauchy relationships. For central 
forces, the C i j matrix becomes 

I 
Cll "3 C11 C44 0 0 0 

Cll C44 0 0 0 

Cij (central-force) 
C33 0 0 0 

C44 0 0 (7) 

C44 0 

If· a hexagonal crystal is elastically isotropic, all elastic 
constants have the same values in all directions. Then the 
following relationships hold among the Cds: 

Coo (8) 

(9) 

aqd 

(10) 

Thus, for an isotropic hexagonal crystal the Cij matrix is 

Cii (isotropic) = 

Cll Cll - 2C44 C11 - 2C44 0 0 0 
Cll C11 - 2C44 0 0 0 

Cn 0 0 0 (11) 

with two independent elastic constants. 

C44 0 0 
C44 0 

C44 

For the case of both central forces and elastic isotropy, 
the Cij matrix is 

1 I 
1 000 

3 3 

1 ! 0 0 0 
3 

Gii (central-force, isotropic) Cll 
1 000 (12) 

! 00 
3 

1 
- 0 
3 

1 
-
3 

with only one independent elastic constant. 

J. Phys. Chern. Ref. Data, Vol. 6, No.4, 1971 
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4. Strains Associated with Elastic Constants 

Crystalline elastic properties are more easily understood 
from physical or geometrical models that relate the strain 
response of a body to an applied load. These models can 
be summarized by linear combinations of the Ci/s that 
correspond to different strains. These strains cannot be 
chosen uniquely. The following set has proven useful. 

There are three independent ways to deform a hexag
onalcrystal and conserve its volume .. 

(1) ! (Cu - C:L2). This strain deforms the .equilateral 

hexagonal unit-cell base so that its area is unchanged, but 
angles between base vectors are changed. The c axis is 
unaffected. 

(2) C44• This strain shears on the basal plane, leaving 
the basal plane unaffected but tilting the c axis with re
spect to the basal plane. 

(3) C = ~ (Cll + C12 + 2CS3 - 4C13). This strain 

compresses (stretches) the c axis and at the same time 
expands (contracts) the basal plane uniformly by n.n 

amount such that volume is conserved. Thus, symmetry 
is unaffected but axial ratio is changed. 

In hexagonal lattices there· is one deformation that di
lates uniformly: 

1 . 
(4) B = 9(2Cll + CS3 + 2C1:2 + 4C13). This strain 

amounts to expanding or contracting all vectors uniformly 
so that the c/ a ratio is invariant and the basal plane 
retains its equilateral hexagonal shape. No shears are 
involved in this strain. 

The symmetry condition CG6 

important consequence in hexagonal crystals. C 66 is the 
shear constant on the (100) plane in a [010] direction, 

while ~ (C11 ~ C,.?) is the shear constant on the (110) 

plane in a [fiO] direction. Thus, the elastic shear con
stant for all planes in the [001] zone is the same, inde~ 
pendent of thc particular ahcar plane or ahcar direction. 
This condition is called transverse isotropy. It means the 
elastic constants are invariant to arbitrary rotations 
around the z axis; in the xy plane, hexagonal crystals 
are elastically isotropic. 

At first, it appears that hexagonal materials, with five 
independent elastic constants, are more complicated than 
cubic materials, with three independent elastic constants. 
In most cases, this is wrong. For example, Lifshitz and 
Rosentzweig [14] gave a closed-form solution for the 
elastic Green's tensor in hexagonal crystals; for cubic 
crystals they gave a closed-form solution only in the limit 
of elastic isotropy. Similary, Pynn [IS] gave an exact 
analytic expression for the elastic Debye temperature of 
hexagonal crystals; for cubic crystals, an iterative, a 
series-expansion, or an approximational method must be 
used. 
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5. Experimental Second-Order Single-Crystal 
Elastic Constants 

The second-order single-crystal elastic constants of· zinc 
are given in tables I and 2 for the Si/S and the Ci/s, 
respectively. All data known to be reported in the litera
ture are included in the tables together with some useful 
derived quantities. Reported Si/S were converted to Ci/s, 
and vice versa, by matrix inversion. Reconimended values 
are also given in the tables; they were obtained by aver
aging arithmetically, without weighting, the data for all 
representative specimens. All data were included in the 
averages except outlying observations, which wereidenti
fied by deviations of greater than 1.5 (1', where (1' is the 
usual standard deviation based on an assumed normal 
di~tribution. Di:5Cdldt:d, ur outlyiug, valuelS are indicated 
by parentheses; and they were not included in either the 
average values or in the standard deviations. The per
centage llncertalntiAS given in the tables are the standard 
deviation divided by the average value times one hun
dred. This is a useful uncertainty statement except when 
the elastic constant .is near zero, as in the case of S1'2 for 
example. 

Zinc has been an interesting subject in experimental 
elasticity. It was the first hexagonal metal for which the 
complete set of second-order elastic constants, the Si/S, 
was determined. The pioneering study by Griineisen and 
Goens [16] in 1924 was made possible by their prepar
ing sufficiently large oriented single crystals by "seeding." 
Large crystals facilitate lateral-strain measurements. Most 
previous studies on zinc used specimens prepared from 
compacted powders. Their study was the first of its type 
following Voigt's [17] classic studies. Excluding some 
previous studies on copper,. the Griineisen and Goens 

study represents the first complete study of the single
crystal elastic constants of a metal. Th.eir object was to 

determine the Debye-characteristic-frequency limits, which 
determine specific heat, thermal expansion, and other 

properties. Their study is also unique in being the first 

description of the velocity of sound in a hexagonal crys
taL Two experimental methods were used. Young's mod. 

ulus was measured in transverse oscillation to reduce the 

risk of plastically deforming the zinc crystals. The tor
sional modulus was determined in a static torsional experi

ment using mirrors on the specimen to amplify the strain. 
Griineisen and Goens were also first to use vibrational 

methods on non-cubic crystals. Perhaps the most striking 
result of the Griineisen and Goens 'study is the exception
ally large ratio of KII to Kl., the linear compressibilities 
parallel and perpendicular to the six-fold axis. As shown 

in figure 15, Kill Kl. is about 8 for zinc. This is extra
ordinary since,. for example, the ratio of electrical resis

tivity parallel and perpendicular to the six-fold axis is 

only 1.05. As shown in table 1, their experimental results, 

obtained about fifty years ago, basically agree with the 

best recent results. 
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TABLE 1. Single-crystal second-order elastic-compliance coefficients of zinc at room temperature; units are 10-11 m;2/N. Values in parentheses were discounted as outlying observations. 

- -

Source Sl1 833 S44 S12 813 S66 Kif KJ. K 2813+844 Experimental method 

Griineisen, Goens [16] 0.80 2.82 2.5C ( -0.05) -0.605 (1.70) (1.61) 0.145 1.90 1.290 Static: extension & torsion 
! Dynamic: resonance 

Bridgman [18,68] 0.823 2.638 2.500 v.034 -0.664 1.578 1.298 0.195 1.687 1.172 Static: extension, compressio n 
& torsion 

Goens [19] 0.84 2.87 (2.64) 0.11 -0.775 1.46 1.320 0.175 1.670 1.09 Static: bending & torsion 
Dynamic: resonance 

Hanson [20] 0.808 2.628 2.5]5 (0.157) ( -0.785) (1.302) (1.058) 0.180 (1.418) (0.945) $tatic: bending & torsion; 
Evanwall zinc 

Hanson [20] (0.770) 2.766 2.440 0.045 -0.639 1.450 1.488 0.176 1.840 1.162 Static: bending & tension; 
Horsehead zinc 

Bridgman [21] 1.377 0.160 1.697 Static: compression 
Tyndall [22] (0.770) 2.766 2.440 0.083 -0.693 1.374 1.380 0.160 1.700 1.054 Analysis of Hanson & Bridl 

man data 
Read. [23] 0.835 2.85 1.13 Dynamic: resonance 
Bridgman [69] 1.631 _ Static: pressure piston 
Wert, Tyndall [24] 0.838 2.838 2.61 0.053 -0.731 1.57 1.377 0.160 1.696 1.146 Static: extension & torsion . 

bending 
Dynamic: resonance, Kn an 

KJ. from Bridgman 
Alers, Neighbors [25] 0.841 2.823 2.5'78 0.055 -0.747 1.572 1.329 0.148 1.625 1.082 Derived from Cij 

Waterman [26] 0.795 (2.541) 2.597 0.005 -0.616 1.580 1.309 ' 0.184 1.677 1.365 Derived from Cij, avg. valu 
of C13 used 

Musgrave [23] 0.826 2.748 2.500 0.')33 ( -0.567) 1.587 1.614 (0;292) (2.198) 1.366 Dynamic 

Average values 0.823 2.775 2.520 0.052 -0.684 1.521 1.388 0.168 1.712 1.164 
Standard deviations 0.018 0.085 0.063 0'[)32 0.063 0.081 ·0.102 0.016 0.088 0.131 
Percentage uncertainties 2 3 3 62 9 5 7 10 5 11 
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TABLE 2. Single-crystal second-order elastic-stiffness coefficients of zinc at room temperature, units are 1011 N/m2 • Values in parentheses 
1 

were discounted as outlying observations. In this table, B = - ~Cij. 
9 i,j=l,S 

Source Cn CS3 C44 

Griineisen, Goens [16] 1.608 0.542 0.400 
Bridgeman [18,68] 1.590 0.621 0.400 
Goens [19] 1.626 0.623 0.379 
Hanson [20] (1.776) (0.740) 0.398 
Hanson [20] 1.625 0.553 0.410 
Tyndall [221 1.716 0.610 0.410 
Wert, Tyndall [24] 1.609 0.610 0.383 
Alers, Neighbors [25] 1.637 0.635 0.388 
Waterman [26] 1.628 0.627 0.385 

Musgrave [28] (1.430) (0.500) 0.400 

A verage values 1.630 0.603 0.394 
Standard deviations 0.038 0.035 0.01l 
Percentage uncertainty 2 6 3 

Bridgman [18] independently reported the elastic con
stants of zinc. Except for the sign of 81'2, his measure
ments agree r.easonably well with the Griineisen and Goens 
value·s. Subsequent measurements showed that Bridgman's 
positive Sl'2 is correct, even though this is distinctly ab
normal. All other hexagonal metals for which single
crystal elastic constants have been reported have negative 
81'2 values. In the sense of Bridgman, Sl!2 is a "rectangu
lar" constant relating the stress perpendicular to the x 
plaIH:l to the straiu perpendicular to the y plane, ur v iL:e 

versa. Hooke'slaw in this case is 

(13) 

For zinc, the Poisson ratio defined by 

(14) 

is negative. Physically, this means a tensile stress along the 
y axis causes an elastic expansion along the x axis, con
trary to the usual situation where all directions perpendic
ular to the tensile axis are contracted. Since S13 823 

is negative, the Poisson ratio V13 is positive and the strain 
S12 = .- V·3'2 8 a = - V;;8a is a contraction, as is typical. 
Dridgman believed hilS IllOle dhecL llleal!;Ul'emenLs were 

better than those of Griineisen and Goens, who used only 
two measurement modes on differently oriented rods: ex
tension and torsion. Their S./s were computed to best 

describe the 8ij orientation dependence. 
Stimulated by Bridgman's results, Goens [19] recon

sidered the second-order elastic constants of zinc, particu
larly concerning Sl/S sign. All previous measurements 
by Griineisen and Goens were repeated, a new specimen 
was added, and the torsion-bending coupling problem was 
accounted for in the torsion experiments. Much better 
agreement was achieveq among the torsion data, and new 
Si/S were proposed, as shown in table 1. However, agree~ 
ment with DdJ~llla.ll'l:i H:l::;ull::; wa::; haldly impluvell, except 

J. Phys. Chem. Ref. Data, Vol. 6, No.4, 1977 

C12 C13 Ca6 B Experimental method 

(0.431) 0.437 (0.588) 0.708 Derived from Si/S 
0.323 0.482 0.634 0.708 Derived from Sij'S 
0.256 0.508 0.685 0.713 Derived from Sij'S 

0.240 (0.602) (0.769) (0.798) Derived from Sij'S 
(0.171) 0.415 0.690 0.645 Derived from Si/S 
0.261 0.495 0.728 0.727 Derived from Sit'S 
0.335 0.501 0.637 0.722 Derived from Sij'S 
0364 0.530 0.636 0.751 Dynamic: pulse 

0.362 - 0.633 0.693* Dynamic: pulse, * avg. 
value of C13 used 

(0.170) (0.330) 0.630 (0.558) Dynamic: pulse 

0.306 0.481 0.659 0.700 

0.052 0.041 0.037 0.031 
17 9 6 4 

for S1'2'S sign. In adjusting his data, Goens matched his 
measurements along symmetry axes, where torsion-bend. 
ing. effects don't occur, to Bridgman's KII and Kl. values, 
which were considered especially accurate. Another diffi
culty with, the Griineisen-Goens crystals is that they were 
drawn from a melt; thus,. they were neither perfectly cir
cular nor uniform in cross section. Goens was the first 
to realize -that in static experiments on zinc stresses due 
to handling and testing can exceed its yield stress. Goens's 
contributiull to the tOl:sion-bendillg coupling problem ia 

especially significant, and it has stimulated many subse
quent studies. 

Believing that the scatter among the results of Griineisen 
and Goens, Bridgman, and Goens required further study, 
Hanson [20] performed bending and torsional tests on 
differently oriented cylindrical rods of two grades of 
"pure" zinc .. Significant differences were found in the 
elastic constants, as shown in table 1. Hanson believed 
these differences were real, that they reflected small varia
tions in the amounts and kinds of impurities, and that 
they did not result from experimental or treatment errors. 
This astonishing conclusion contradicted the general belief 
that elastic constants are "structure insensitive," relatively 
unaffected by either chemical impurities or mechanical 
deformation. ' 

Bridgman [21] telSled Hans un's hypothesis by mealSUX

ing the compressibility of both grades of zinc tested by 
Hanson. As shown in table 1, Hanson's compressibilities 
differed by about forty percent. Hanson's were 

given to Bridgman, and some new specimens were pre
pared from. the same stock materials. Bridgman found 
no difference in the compressibilities and concluded that 
Hanson's measurements contained large errors. Bridgman 
suggested two error sources: a systematic experimental 
error due to specimen strains, and error accumulation in 
computation. As pointed out by Bridgman, in Hanson's 
experiment the variable interconnectivity is such that a 
one percent error in Sl1' 833 , or SH gives an eighteen 
pen.:eul e.rror ill 812, a twenty-twu ptaceut enOl in 5 13, 
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an eighty-one percent error in Kif, and a forty-seven per
cent error in K. Bridgman's specimen-strain argument 
was. supported by the fact that Hanson's data for the 
highest-impurity-content zinc, which would have a higher 
yield stress and, therefore, the lowest plastic strain due 
to handling and treatment, agreed best with other reported 
data. Bridgman again advocated for materials with low' 
yield stress that "direct" methods should be used and 
bending experiments should be avoided. 

Tyndall [22] attempted to salvage the situation for 
Hanson, who was Tyndall's student. Hanson's hypothesis 
concerning composition sensitivity was abandoned. Tyn
dall proposed new, self-consistent 5 i /s based on Hanson's 
and Bridgman's measurements ana called them a "more 
satisfactory set of constants than any previously pro
posed." The Griineisen and Goens data were neglected 
because "their measurements were made in part by a 
dynamic method." As shown in table I, Tyndall should 
not have neglected their data; their 5 i /s are closer to the 
best values than are the Sij'S proposed by Tyndall. 

In an internal-friction study on zinc, Read [23] meas
ured three of the elastic constants of zinc by a resonance 
composite-oscillator method. His values agree almost 
exactly with the best values given in table l. 

Wert and Tyndall [24] reported a twenty-five-crystal 
study using both static and dynamic methods, a depar
ture from Tyndall's viewpoint concerning the validity of 
dynamic measurements. These results agree most clearly 
with those reported by Read [23] and by Goens [19]. 
Wert and Tyndall also used Bridgman's [21] Kif and Kl 
values to fill out their set of 5 i /s. 

In 1950, tluee independent ultra:5onic pube experiments 

on zinc were reported. The Ci/s, rather than the Si/S 
were determined directly for the first time. Alers and 
Np-ighborSl [25] reported a complete set of Ci/s between 
4 and 670 K. (Zinc melts at 692 K.) Their measure
ments, made at 10 MHz, demonstrated there is no appre
ciable frequency dependence of the elastic constants of 
zinc. Waterman [26] measured four Ci/s as part of an 
attenuation study. Garland and Dalven [27] focused on . 
the temperature range 4-77 K using an experimental 
method resembling that used by Alers and Neighbors. 
They had access to a cylindrical single crystal 5.5 em 
long and 8.1 em in diameter. 

The most recent report of the elastic constants of zim: 

was by Musgrave [28]. His Cij values are considerably 
lower than the best values in table 2; the reason for this 
is unclear. 

Swartz and Elbaum [29] did not report c.ij values, but 
they measured them during a preliminary study of the 
thinl-ordp.r p-laSltic constants; of zinc, and they reported 
their Ci;'s agreed within 0.5 percent with those reported 
by Alers and Neighbors. 

Thus, both the Si/S and the Cij'S of zinc are reason
ably well known except for S12 (sixty-one percent uncer
taint'y), Sl'2 (seventeen percent uncertainty), and C13 

(thirteen percent uncertainty). 

. 6. Temperature Variations of SecondaOrder 
Single-Crystal Elastic Constants 

In a Debye model, which is characterized by a har
monic interatomic potential, elastic constants do not 
change with temperature. Thus, elastic-constant tempera_ 
ture-dependence is a higher-order effect, related to third
order and fourth-order elastic constants. 

Despite considerable study on the problem, elastic
constant/temperature relationships cannot be described 
simply theoretically. Temperature behavior cannot be pre
dicted a priori, and elastic-constant/temperature anomalies 
cannot be explained even a posteriori. Interested readers 
may consult the review by Leibfried and Ludwig [30], 
which deals in depth with anharmonic effects, and the 
recent study by Garber and Granato [31,321, which uses 
a quasiharmonic-anisotropic-continuum model. 

Second-order elastic-constant temperature dependencies 
are usually described by various semi-empirical models. 
A representative example is due to Varshni [33], and it 
is based on an Einstein-osciUator model. In this model, 
elastic constants vary with temperature according to 

C = Co - sj[exp(t/T) - I}, (15) 

which contains three adjustable parameters: Co is the 
elastic constant at zero temperature1' t is the Einstein 
temperature (electronic effects being absent), and - s/ t 
is the high-temperature slope dC/dr. Varshni did not 
apply this equation to zinc, but he showed it described 
accurately the Cij temperature behavior of many mate
rials, including magnesium, which is c.p.h. Materials obey

ing eq (15), at least approximately, are described herein 
as regular. Ci/s with regular temperature behavior show 
zero slope at zero temperature in accordance with the 
third law of thermodynamics; monotonically decreasing 
values with increasing temperature, and a linear slope at 
high temperatures. For the Si/S, regular behavior means 
the same thing except that the elastic constants increase 

. monotonically with increasing temperature. 

Sij temperature dependencies are shown in figures 2-7. 
These data are taken mainly from Alers and Neighbors 
.[25]. A similar study by Garland and Dalven [27] be
tween 4. and 77 K confirms the Alers and Neighbors' 
results almost exactly in this temperature range. W tal and 

Tyndall [24] reported the 511 and S38 temperature de
pendencies between room temperature and 658 K. The 
agreement for Sa is good, but the agreement for SSg, 
which was measured indirectly, is poorer, especially at 
higher temperatures. Wert and Tyndall also repo:r;ted a 
maximum in 2S13 + S44 at about 475 K that was not 
observed by Alers and Neighbors. The cause of this dis
crepancy is unclear. All the 5 i /s except 5:c2, exhibit essen
tially regular temperature behavior. The reason for this 
exception is also unclear. As described above, 51:2 is the 

only Sij with an anomalous sign. The temperature varia

tions of the shear constants S55 and 366 are regular. 

J. Phys. Chem. Ref. Data, Voi. 6, No.4, 1971 



1188 H. M. LEDBETTER 

1.2 

1.1 

z 
....... 

N 

9 

r-...I. / ..... E 1.0 ..... 
I 

/ f' 
;: 

VI 
0.9 

LLI 

~ 
c:( 

0.8 ..... 
....J 
c.. 
:;;: 
0 

/ / 
~ 
~ 

u 

::: 0.7 

VI 
c:( 
....J 
I.I.J 

0.6 

0.5 
o 100 200 300 400 500 600 70 

TEMPERATURE (K) 

FIGURE 2. Temperature depend~nee of the elastic compliance 
811 = 822, 

.10 

.09 

j1l~ 
z .08 
....... 

N 

..... E - (I \ I ..... 
I 

.07 0 
...... 

N ..... 
til 

LLI .06 
u 
z 
c:( 

~ 
c.. 

.05 :;;: 
0 
u 

.... 
.04 til 

j \ 
/ ~ V 

/ 

\ 
/ 6 

c:( 
....J 
LLI 

.03 

100 200 300 400 500 600 700 

TEMPERATURE (K) 

FIGURE 3. Temperature dependence of the elastic compliance 51'2' 

Cij temperature coefficients are collected in table 3. 
While only two sets have been reported, their agreement 
is surprisingly good. 

TABLE 3. Temperature coefficients, (} Cij/a T, of zinc at room tem
perature in units of 107 N/m2 'K-1 

?h (Cn-
Source Cll C12 C13 C33 C44 C12) 

Alers, 
Neighbors [25] -6.65 0.13 -1.71 -2.82 -3.39 

Swartz, 
Elbaum [29] -6.61 0.19 -2.02 -2.89 -3.40 
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Certain useful combinations of the Si/S can be formed, 
and their temperature dependencies are shown in figures 
8-11. The linear compressibility perpendicular to the six
fold axis is relatively low' and essentially temperature 
independent. Both linear compressibilities show· small ir
regularities in their temperature. dependencies. The hulk 
compressibility increases smoothly with increasing tem
perature. The bulk modulus shows similar, hut inverse, 
behavior. All the shear stiffnesses decrease regularly with 
temperature. Surprisingly, C44, the shear constant for the 
basal plane, does not decrease as the melting point is 
approached. As discussed by Born [34], shear moduli 
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decreases are often premonitory to melting. Based on the 
weaker atomic honds perpendicular to the hasal plane, 
a lattice softening associated with the CH mode would 
be expected a priori. In fact, the temperature hehaviors 
o£ the three shear modes C44, (Cll - Cm) /2, and (ell + 
em + 2C33 - 4C'13) /6 are basically the same, showing 
no anomalous softening before melting. 
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7. Elastic Anisotropy 

Zinc is highly anisotropic elastically, and it is impor
tant to try to clul.rar.tp.rizp. this bp.havior. Unlikp. r.nhir, 

crystals, which have a single anisotropy index, the Zener 
anisotropy 2C44/(Cll - C1!2) , hexagonal crystals have 
several anisotropy indexes. No generally accepted anisot
ropy indexes have emerged for hexagonal crystals, and 
several are considered here. Three were given above in 
eqs Ol-lO in terms of the Ci/s. However, except for the 
ratio C66/C4,.4, none of these correspond to· physically 
simple strains because they involve both shear and dilata
tional deformations. 

There are three independent elastic shear constants for 
hexagonal crystals; thus, three shear-type anisotropy ratios 
can be defined: (Values of the Cij'S are substituted from 
table 2.) 

(1/6)(C11 + C12 + 2C33 - 4C13) 

CH. 
4.33 (16) 

J. Phys. Chem. Ref. Data, Vol. 6, No.4, 1917 
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and 

(17) 

(1/3)(Cll +" C12 + 2C33 - 4C13) = 2.64 . 
,Cll - C12 

(18) " 

If zinc were elastically isotropic, all these ratios would 
he unity . 

One useful anisotropy index can be obtained from the 
Si;'l5; 

S33 
A4 = ~S = 3.36, 

11 
(19) 

the Y oung's-modulus ratio perpendicular and parallel to 
the six-fold axis. This result for zinc is consistent with 
the higher atomic-packing density in the basal plane. 

It is also useful to have an anisotropy index for a 
purely dilatational (no shear components) deformation 
mode. The most obvious index is 

2813 + S33 
. = 8.98, 

8 11 + 8 12 + B13 

(20) 

the linear-compressibility ratio parallel and perpendicular 
to the six-fold axis. Again, this tendency, although per-
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haps not its magnitude, is expected from the difference 
in atomic packing parallel and perpendicular to the basal 
plane. 

The high elastic anisotropy of zinc is demonstrated 
further in figures 12-17, which sho"\\T the directional de~ 
pendencies of Young's modulus, torsion modulus, linear 
compressibilities, and some of the Poisson ratios. These 
figures were generated from the data in table 2 and the 
relationships: 

(811 + 8 33 - 8)X2 
+ (8 - 2811)x + 8 11, 

(21) 

G~O) = K 8,,(0) + 8,,(0») = 8" + [(811 - 8,,) - ~8"J 
(1 - x) + 2(811 + 8 33 - S)x(1 - x), (22) 

K(O) 8 11 + 8 12 + 813 - (811 - 8 33 + 8 12 - 8 13) x, 
(23) 

1131(0) 
8 13(6) 

(24) ---, 
8 33(0) 

1I32(fJ) 
8 23(0) 

(25) 
- 8 33(0)' 

where X= cos20, (26) 

8 = 2813 + 8 44, (27) 

813(8) = X813 + (1 x) 812, (28) 

8 23(0) = 823(2x2 -2x + 1) 
(29) + ~(1 - T.)(S22 + 8 23 - 4,8H ) , 

and B is the angle between the axial direction and the 
c axis. Because of the complete rotational symmetry about 
the c axis, the elastic constants depend on only one angle, 
O. If zinc were elastically isotropic, all its representation 
surfaces would be spheres, and figures 12-17 would he 
circular sections. Figures 12-15 are symmetrical about 
the z axis; figures 16 and 17are not. 

Four anisotropy~ratio temperature dependencies are 
shown in figure 18. Those ratios involving only shear 
constants-At, A:z, A.a-show slight temperature depe~d. 
ence. Also, A4 , which describes uniaxial stretching ani
sotropy~ is almost temperature independent. The usual 
three anisotropy ratios for hexagonal crystals are shown 
versus temperature in figure 19. Again, no significant 
departures from usual behavior are shown. It is insignifi
cant whether these ratios decrease or increase with tern-

. perature; only the change matters because the reciprocal 
ratios are equally valid anisotropy indexes. 

The temperature dependence of As, shown in figure 20, 
is interesting. Its temperature dependence is determined 
mostly by Ku since KJ.. is relatively constant over a wide 
range of temperature. The increase in A'5 is accompanied 

by an increase in the c/ a ratio, tending to confirm the 
above statements concerning atomic-packing-density effects 
on linear compressibilities. The small temperature depend
ence of KJ.. is also interesting. It suggests that atomic bond. 
ing within the basal plane is basically different from bond. 
ing perpendicular to the plane. Wallace [35] suggested 
that covalent bonds may occur in the basal plane of zinc, 
but this suggestion has not been developed further. 

\ / 

~~~~-4--~~--~~~+--+--+-~--~~~~y 
1~xlOllN{11\2 

/ \ 

FICURE I? Polar plot of Young',. mildulu,., which i,. <;;ymmetrlcal 

about the z axis. This is a central section of the repre
sentation surface of the Young's modulus. The length 
of the radius vector from the origin to the surface is 
proportional to Young's modulus in that direction. If 
zinc were elastically isotropic, the surface would be 
spherical. 

\ / 

~--1---r-~---r~~--~-+--~--+--4~y 

O.5xlOllN/m2 

FIGURE 13. Polar plot of the torsional modulus. See figure cap
tion 12 . 
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/ 

1.0 

FIGURE 14. Polar plot of the ratio of the shear and Young's 
moduli. See figure caption 12. 

\ 

\ 

FIGURE 15, Polar plot of the linear compressibility, See figure 
caption 12. 
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0.25 

FIGURE 16. Polar plot of the Poisson ratio Pal' Dashed curve indio 
cates n~gative values. Along the y direction, this is 
the Poisson ratio P'2l' This figure is not symmetrical 
about the z axis since VIS =1= P'21' 

/ 

FIGURE 17, Polar plot of Poisson's ratio V3!2' Along y direction 
this is the ~oisson ratio v:2S' This figure is not sym
metrical ahout the z axi~ since l'l'll =1= l'::l3" 

8. Elastic Stability 

The elastic potential free energy 

(30) 

must be positive. definite, cp 0 at the equilihrium, unde
formed state and cp ;> U for any state of mechanical 
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deformation. This requires that the Cirmatrix principal 
minors are all positive-definite. From eq (2), there are 
three independent stability conditions for hexagonal 
crystals: 

ell > e12, (31) 

Gu , > 0, (32) 

and 

(Cu + C12)C33 > 2C~3' or CU C33 > Ci3' (33) 

Equations (31 and 32) are identical to the cubic-sym
metry stability conditions and eq (33) reduces to (ell -
C12 ) > 0 if ell and C1'2 are substituted for Css and C1S' 

respectively. 
The following sta.bility ratios are obtained for zinc a.t 

room temperature from data in table 2: 

Thus, zinc is quite stahle with respect to all elastic defor
mations. It shows no strong tendency to become unstable 
with increasing temperature or pressure or with small 
amounts of common alloying elements. 
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Elastic-stability-criteria temperature dependencies are 
shown in figure 21. Zinc becomes less stable with increas
ing temperatures, but it remains stable at temperatures 
near its melting point. It would be interesting to study 
carefully the C H --C n shear mode at temperatures very 

near the melting point. 
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9. Central Forces 

If atoms are at centers of symmetry, if interatomic 
forces are purely central (angular forces are absent), 
and if the crystal is stress free, then the so-called Cauchy 
relationships are obtained among the elastic constants. 
For hexagonal crystals there are two Cauchy relation
ships for the second-order elastic constants: 

(34) 

and 

eu = 3C12• (35} 

The first corresponds to the familiar C1'2 = CH Cauchy 
relationship for cubic crystals. These relationships are 

necessary but not sufficient conditions .for central inter

atomic forces existing in crystals. These relationships can 

be satisfied accidently in crystals hound by noncentral 
interatomic forces. 

For zinc, as shown by the data in table 2, C13/C44 = 

1.37 and CU /3C1'2 = 1.50. Thus, the Cauchy relationships 
do notJ hold for zinc. This means either that internal 
strains break the Cauchy relationships or that the inter
. atomic potential has a strong non-central oomponent. The 

latter is consistent with the above discussion concerning 
possible covalent bonds existing within the basal planes; 
forces localized to a plane are obviously non-central. 
However, other non-central forces might also have a role 
in zinc. For example, in hexagonal metals CI3 - C« is 
sometimes interpreted as equal to the electron-gas bulk 
modulus, Be. A free-electron-model calculation for Be 
gives a value considerably larger thanC13 - Cw • This 
implies that some valence electrons are not free and that 
they may contribute to covalent-type bonding. 

Deviations from the two 'Cauchy relationships change 
considerably with temperature, as shown in figure 22 . 
The relationship iilVolving the shear constant C"'4 is better 

satisfied ~t low temperatures. The relationship between 
ell and C12 is better satisfied at high temperatures; ex
trapolation shows that this relationship is satisfied exactly 
at the melting temperature. 
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10. Experimental Polycrystalline Elastic 
Constants 

Polycrystalline elastic-constant data are collected in table 
4 for E = Young's modulus, G shear modulus, B = 
hulk modulus, K = compressibility, and v poisson's 
ratio. The relative paucity of data is surprising considel-
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ing the many practical uses for zinc and its alloys in the 
form of polycrystalline aggregates. As discussed in the 
next section, this situation can be remedied by using the 
single-crystal elastic-constant data. 

11. Polycrystalline Elastic _Constants Computed 
from Single-Crystal Data 

Computing polycrystalline elastic constants from single
crystal elastic constants is part of the more general 
average-tensor-property problem. Elastic constants are 
fourth-rank tensors, and their average values were dis
cussed first by Voigt [36] in 1889. As pointed out by 
Landau and Lifshitz [37], "There is ... no general rela
tion between the moduli of elasticity of a polycrystal and 
those of a single crystal of the same substance." Thus, 
many different, and some very ingenious, approximations 
to the elastic-constant averaging problem have been sug
gested. This subject has not heen reviewed critically; but 
Ledbetter [38] discussed eight averaging methods for 
cubic crystals, a symmetry case where more than twenty 
averaging methods have been proposed. For cubic sym
metry, the averaging problem requires solving for the 
macroscopic shear modulus, G, because the second inde
pendent macroscopic elastic constant, the bulk modulus, 
B, is known unambiguously for cubic crystals. 

For hexagonal symmetry, the ave.raging problem is 
more complicated because there are uncertainties in aver. 
aging for both Band G. Using the Cij data from table 2, 
results are given in table 5 for five averaging methods. 
The results are spread considerably, but either Hill's [39] 
or Pcr~8flda's [40] mcthod givcs "typical" values when 

,compared with existing polycrystalline data. Thus, either 
averaging method can be considered to give reasonable 
results for zinc. All complete C ij data sets in table 2 were 
averaged by Hill's method and the results are given in 
table 6 together with the Voigt and Reuss shear moduli, 
Gv and GR , which are intermediate calculation results. 

The compressibility, K, in table 6 is simply the reciprocal 
of B in the table. The Hill bulk modulus is: 

(36) 

where 

1 ' 
Bv = 9(2C11 + C 33 + 2C12 + 4C13), (37) 

and 

The Hill shear modulus is: 

(39) 

where 

1 
Gv = 15 (2C11 + C33 - C12. - 2C13 + 6Gi4 + 3C66), 

(40) 

and 

1 
GEl = 15(8811 + 4833 - 4812 - 8813 + 6844 + 3866), 

(41) 

Averaged-polycrystalline elastic-constant uncertainties' 
are two to five percent due to Cij uncertainties and due 
to propagation of error. This is an important result: given 
the validity of the averaging method, then polycrystalline 
elastic constants can be obtained more accurately by aver-

TABLE 4. Experimental elastic constants of poly crystalline zinc. E, G, and B have units of 1011 N/m2 ; K has units of 10-11 m2/N; 
", is dimensionless. Values in parentheses are derived from other data. 

Source E G B K 11 Comments Method 

Gruneisen [70] t206 Cited in Koster [75] Static 
Richards [71] 0.59 1.7 Static 
Adams et al. [72] 0.574 1.74 Static 
Bridgman [I 8, 68J 0.642 1.558 Static 
!::iieglerschmidt £'73J O.H:>7 O.2YY i(oHing direction !::italic 

0.991 0.226 Transverse direction 
Bridgman [21] 0.589 1.697 Static 
Guillet [74] 0.785 Cited in Koster [75] 
Bridgman [69] 0.613 1.632 Static 
Koster [75] ..0.992 Dynamic: resonance 
Wegria et aL [41] 1.005 0.437 (0.478) (2.090) (0.150) 200° C rolling temperature Dynamic: resonance 

i 1.030 0.503 (0.360) (2.774) (0.024) Room.temperature rolled 

Average values 0.97 0.47 0.60 1.66 0.26 
Standard deviations 0.14 0.05 0.03 0.08 0.05 
Percentage uncertainties 14 10 5 5 20 

J. Phys. Chem. Ref. Data, Vol. 6, No.4, 1971 
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aging single-crystal data than by many measurements on 
polycrystals. One problem always encountered in measur
ing polycrystalline elastic constants is texture, non-random 
distribution of orientations of crystallites comprising the 
aggregate. Textures are an acute problem in zinc because 
it has high elastic anisotropy. Thus, the polycrystalline 
elastic constants of zinc are best estimated 'by the aver
aged single-crystal elastic constants shown in table 6. The 
H subscript indicates they were obtained by averaging 
the single-crystal data using the Hill [39] arithmetic 
method. 

12. Temperature Dependence of the 
Polycrystalline Elastic Constants 

Only one report [41] exists on the temperature depend
ence of the polycrystalline elastic constants of zinc; it is 
limited to the Young's and shear moduli and to tempera
Lures between room temperature and 575 K. To remedy 
this data scarcity, the single-crystal-elastic-constant/tem
perature data described above were, converted to poly. 
crystalline values. Peresada's [4'()] averaging method was 

used because it is computationally simple, it avoids the 

TABLE 5. Practical elastic constants E = Young's modulus, G = 

shear modulus, B = hulk modulus, K = compressibility, 
P = Poisson's ratio obtained by averaging room-tempera· 
ture single-crystal elastic data by several methods. E, G, 
and B have units of 1011. N/m2; K has units of 10-11 

m2 /N; P is dimensionless. The Peselnick and Meister 
values are arithmetic averages of their two hounds. 

Averaging method E G B K p 

Voigt [36] 1.121 0.448 0.751 1.332 0.251 
Peselnick, Meister [76] 1.026 0.410 0.686 1.459 0.251 
Hill [39] 0.993 0.395 0.683 1.464 0.258 
Peresada [40] 1.010 0.403 0.680 1.471 0.253 
Reuss [77] 0.863 0.341 0.615 1.626 0.266 

Average values 1.003 0.399 0.683 1.470 0.256 

Cij or Sij averaging dilemma, and it gives reasonable re
sults. In Peres ada's method, the bulk modulus is 

(42) 

where Bv and BR are the Voigt and Reuss bulk moduli 
described above. The' shear modulus is given by equating 
the determinants of the 6 X 6 Cij matrices for the hexag
onal and isotropic cases, and the result is 

where 

(44) 

The Young's modulus and Poisson's ratio are then given 
by the usual isotropic-media relationships: ' 

E 9GBj(G + 3B), 

and 

1) = E/(2G) - L (4h) 

Calculation results for Young's modulus, the shear modu
lus, and Poisson's ratio ar~ shown in figures 23-25. All 
three curves show regular behavior. Room-temperature 
values of the temperature derivatives are given in table 7. 

13. Sound Velocities 

Sound velocities are related intimately to the elastic 
constants. In fact, sound-velocity measurements provide a 
convenient and accurate method for determining the elas
tic constants. Both resonance and pulse techniques yield 
sound velocities, v, that are related to the elastic constants, 
C, by a general relationship 

(47) 

where p is the mass density. 

TABLE 6. Practical elastic constants E = Young's modulus, G = shear modulus, B = hulk modulus, K compressibility and 'II 

Poisson',s ratio derived from single.crystal elastic data by Hill's method. Units are 1011 N/m2 for E, G, and B; 10-11 m2JN 
for K; and 'II is dimensionless. 

Source EH GH BH KH PH Gv GR 

Griineisen, Goens [16] 0.977 0.395 0.617 1.620 0.236 0.441 0.349 
Bridgman [18, 68] 1.018 0.411 0.649 1.542 0.239 0.463 0.358 
Goens [19] 1.004 0.403 0.656 1.525 0.245 0.462 0.343 
Hanson [20] (1.092) (0.435) (0.752) (1.330) 0.258 (0.503) 0.366 
Hanson [20J 0.971 0.397 0.584 1.713 0.223 0.496 0.369 
Tyndall [22] (1.063) (0.432) 0.658 1.521 0.231 0.496 0.367 
Wert, Tyndall [24] 0.983 0.393 0.656 1.525 0.250 0.447 (0.339) 
Alers, Neighbors [25] 0.996 0.396 0.683 1.464 0.257 0.448 0.343 
Waterman [26] 1.005 0.405 0.645 1.551 0.240 0.451 0.359 
Musgrave [28] 0.965 0.408 (0.506) (1.974) ~O:182) 0.455 0.360 

Average values 0.990 0.401 0.644 1.558 0.242 0.462 0.357 
Standard deviations 0.019 0.007 0.030 0.076 0.012 0.020 0.010 
Percentage uncertainties 2 2 5 5 5 4 3 

J. Phys. Chem. Ref. Data, Vol. 6, No.4, 1977 
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FIGURE 23. Temperature dependence of the polycrystalline Young's 
modulus computed by averaging single-crystal data. 
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. modulus computed by averaging single-crystal data. 
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FIGURE 25. Temperature dependence of the polycrystalline Pois
son's ratio computed by averaging single-crystal data. 

Two kinds of sound waves can be propagated in solids: 
longitudinal waves and transverse waves, where the par
ticle displacements are parallel and perpendicular, respec· 
tiveiy, to the propagation direction. The longitudinal-wave 
velocity in a quasi-isotropic material is 

Vi [(B + ~G)I p]I/2, (48) 

and the transverse-wave velocity is 

Vt = (GI p)1/2. (49) 

TABLE 7. Temperature coefficients, (l/C) (oCloT), of the poly· 
crystalline elastic constants of zinc at room temperature 
in units of 1~ /K. 

Source E G B p K 

Alers, Neighbors [25] -5.55 -5.96 -3.16 2.38 2.86 

The mean velocity is given by a reciprocal-cube average 

Vm- 3 (50) 

where there are two transversely polarized waves for each 
longitudinally polarized wave. 

J. Phys. Chern. Ref. Data, Vol. 6, No.4, 1911 
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In a single crystal, waves are generally neither purely 
longitudinal nor purely transverse, but they are mixed 
modes that are either quasi-longitudinal or quasi-trans
verse. Wave velocities in single crystals are given by the 
three pv2 roots of the Christoffel equation 

(51) 

where Gijk~ is the fourth·rank ela~tic constant tensor, Xi 

are unit-wave-vector components relative to the crystal 
axes, and 8il is the Kronecker delta. For each wave vector 
x, there are'three distinct real roots pV2 to eq (51). The 
mean velocity for the single crystal is then 

3vm - 3 = L va- 3 dft/47r, (52) 
a=1,3 

where the Vll!'S are roots of eq (51) and dn is the solid
angle increment. 

Sound velocities in zinc are shown versus temperature 

in figure 26. All three velocities are well behaved, decreas
ing 'smoothly with increasing temperature. Obviously, the 
mean velocity is determined mainly by the transverse 
velocity. 
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FIGURE 26. Temperature dependencies of the longitudinal, trans
verse, and mean sound velocities computed from the 
averaged single-crystal data. 

14. Elastic Debye Temperature 

The single parameter providing most information about 
the widest range of solid-state phenomena is the Debye 
temperature, (), which can be determined by various meth
ods, including: calorimetric, x-ray, electrical resistivity, 
and elastic. The calorimetric method, which measures spe
cific heat versus temperature at low temperatures and fits 
the data to a (T / ()) 3 curve, is the most familiar. At zero 
temperature, the elastic and the calorimetric Debye tem
peratures are identical. However, the elastic method for 
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determining () has several advantages: the experiment is 
simpler; results are less inaccurate (0.1 percent'inaccu
racies in wave velocities are achievable) ; the elastic Debye 
temperature ha~ a much smaller temperature dependence, 
especially at low temperatures; the elastic method is more 
direct; and there are no non-lattice contributions. 

The elastic Debye temperature is proportional to the 
mean elastic wave velocity: 

() (53) 

where 

= ~(_3 )1/3 
K k 47rVa ' 

(54) 

where h is Planck's constant, k is Boltzmann's constant, 
and Va is the atomic volume. The mean acoustic-wave 
velocity is given by, eq ( 50) . 

The reported Debye temperatures of zinc are given in 
Table 8. Only elastic and calorimetric values are included 
because they are more reliable. The data spread is sur~ 
prisingly wide. Clearly many of thel5e value::;, both calori

metric and elastic, are incorrect because of the high aniso
tropy of zinc. In the elastic case, high anisotropy means 
that the· usual approximational methods for reducing the 
Ci/s to () are insufficient and that more exact computa
tional procedures are required. The heat capacity of a 
highly anisotropic material is also difficult to analyze; it 
may contain a T5 term as well as linear and cubic terms. 
Garland and Silverman [42] discussed this problem, and 
they concluded that the best calorimetric () value is 322 K 
and the best elastic () value is 328 K. Because the two 
values must, be identical, because the elastic value is con
sidered more accurate, and because the elastic, value has 
been determined carefully by both Alers and Neighbors 
[25] and Garland and Dalven [27], the value recom
mended here is () = 328 K. 

The Debye-theta temperature dependence is shown in 
figure 27. It was computed from Alers and Neighbors' 
[25] Gils using Peresada's [40] averaging method. Be
cause Peres ada's method is only approximate, the calcu-
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FIGURE 27. Temperature dependence of the elastic Debye tempera
ture computed from averaged single-crystal data and 
fitted to the recommended zero-temperature value from 
table 8. 



ELASTIC PROPERTIES OF ZINC 1199 

lated curve was fitted to () = 328 K at T = 0 K. The 

temperature dependence calculated by Peresada's method 

should be quite reliable even though the absolute values 

differ slightly from exact-calculation results. 

TABLE 8. Debye temperature, (), of zinc in kelvins 

Source 

Griineisen, Goens [78] 
Clusius, Harteck [79] 
Keesom, Ende [80] 

Keesom, Haantjes [8U 

Silvidi. Daunt [82] 

Post [83] 

Blackman [84] 

Blackman [84] 

Smith [85] 
Betts, Bhatia, Horton l86J 

Keesom, Pearlman [87] 

Alers, Neighbors [88] 
Alers, Neighbors [88] 

Garland, Dalven [27] 
Seidel, Keesom [89] 
Zavaritskii [90] 
Wolcott [91] 

Srinivasan [92] 
Garland, Silverman [42] 

Zimmerman, Crane [93] 

Anderson [94, 95] 

Reddy [96] 

Robie, Edwards [97] 

() 

305 
205 
321 

235 

291 

231.1 

305 

301 

306 
303.5 

308 

320 
327.1 

327 
309 
340 
328.7 

Comments 

Average elastic-wave velocities 
Heat capacity 
Heat capacity, recalculated 

by Keesom and Pearlman 
[87] 

Heat capacity, reported in 
Holm [98] 

Heat capacity, powders and 
bulk 

Analysis of Griineisen, Goens 
[78] room-temperature data 

Numerical integration, after 
Griineisen 

Hopf-Lechner-type calcula-
tion, after Honnefelder 

Heat capacity 
Polynomial expansion of 

Griineisen, Goens room
temperature data 

Recommended value in a re
view paper 

Graphical integration 
Series-expansion method of 

Betts et al. [86] 
Numerical integration 
Heat capacity 
Temperature-wave method 
Numerical integration of Gar-

land, Dalven [26] data 
319 Heat capacity 
322 Analysis of existing heat-

capacity data 
336 Heat capacity, single crystal 

and polycrystal 
328.3 Numerical integration of 

A lp.T~, Np.ighhoT!>. [24] data 
222 Boas [99] method for average 

wave velocities 
304 Numerical integration of 

Alers, Neighbors [24] data 

Recommended value 328 

1 s. Third-Order Single-Crystal Elastic Constants 

Third-order elastic constants reflect the anharmonic 

forces in crystals. These constants' are related to various 
other anharmonic phenomena: thermal expansion, tem

perature dependence of second-order. elastic constants, 

pressure dependence of second-order elastic constants 
adiabatic-isothermal elastic-constant differences, tempera: 
ture variation of the high-temperature specific heat, and 
lattice-wave interactions. The relationship among different 
orders of elastic constants is shown by expanding the 
elastic-deformation free energy, cp, in the deformation 
strains, Bi: 

(55) 

where Cij, Cijk, and Cijkl are the second-order, third-order 
and fourth-order elastic constants, respectively. Fourth: 
order elastic constants have been measured or calculated 
for some materials, but not yet for zinc. 

Zinc was the first hexagonal metal for which a set of 

third-order elastic constants was determined [29]. Certain 
linear combinations of the third-order elastic constants .of 
zinc were also determined r 431 by studying Hooke's-law 
deviations in filamentary crystals (whiskers). Discrepan
cies between these two studies may be related to the im
purity method of locking dislocations so that the disloca
tion strain does not lower the measured elastic constant. 
Swartz and Elbaum's [29] measurements are supported 
by the calculations of Srinivasan and Ramji Rao [44], 
who assumed that anharmonic terms arise only from the 
'central part of the two-body interaction between first, sec
ond, and third neighbors. The input for their twelve
parameter model was the second-order elastic constants 
and data from dispersion relations. The third-order elastic 
constants of zinc are collected in table 9. These constants 
are approximately an order of magnitude larger than the 
second-order constants and they are negative. 

16. Pressure Derivatives 

The five hydrostatic pressure derivatives of the elastic 
constants of hexagonal crystals are related to the ten third. 
unl~r dwslic cow:;lallls, and they al~e often determined sepa

rately because a hydrostatic experiment is simpler than a 

uniaxial-stress experiment. Since third~order elastic con
sLanls an~ lelated to the third derivative of the interatomic 

potential with respect to strain, pressure derivatives can 

give further information concerning the interatomic po
l~lllial. Also, they have pl~actical applications in high

pressure applications where precisely knoVOl elastic con

stants are important. 
Reported hydrostatic pressure derivatives of the elastic 

constants of zinc are given in table 10. Agreement between 

experimental and theoretical results is quite impressive 

TABLE 9. Third-order single-crystal elastic-stiffness coefficients in units of 1011 N/m2 

Source Clll Cll2 Cll3 C123 C133 C344 C333 C22'2 C144 C155 Comments 

Swartz, Elbaum [29] -17.6 -4.4 -2.7 -2.1 -3.5 -4.4 - 7.2 -24.1 -0.1 +2.5 Experimental 
Srinivasan, Ramji -21.9 -6.5 -5.3 0.1 -7.8 -7.8 -25.9 -24.4 -1.1 -4.9 Theoretical, based on Cij's 

Rao [44] and dispersion relations 

J. Phys. Chem. Ref. Data, Vol. 6, No.4, 1911 
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considering the generally anomalous elastic behavior of 
zinc. Any lattice model of zinc should be able to predict 
these results before it can be considered seriously for 
general applications. To date, no studies on the tempera
ture dependencies of the pressure derivatives have been 
reported. 

17. Theoretical Studies 

A priori predictions of the elastic constants of zinc have 
proven quite poor. Reasons for this failure of theory in
clude: a relatively complicated crystal structure; two ions 
per unit cell introduce internal-strain possibilities; a non
ideal c/ a ratio; a relatively high atomic number; and 
d-band/conduction-band hybridization. Accounting for 
these factors makes calculations more difficult and extends 
usual models beyond their useful limits. 

Nevertheless, it is valuable to review the calculations 
and their implications because an intimate, often syner
gistic, relationship exists between theory and experiment 
in solid-state elasticity. First, central-force calculations are 
reviewed; then more sophisticated models, such as the 
pseudopotential, are considered briefly. 

Expressions for the elastic constants of a hexagonal lat

tice bound by central forces were given by Hayes [45], 
extending the approach of Born [34] for cubic lattices. 

These expressions can be used to calculate the Ci/s from 
any central-force interatomic potential-lennard-Jones, 
Mie-Griineisen, Born-Mayer, Morse, Rydberg, Coulomb, 
etc. But these expressions apply only to lattices with ideal 

cia ratios. 

TABLE 10. Pressure derivatives, OCij/OP 

Source ell Ca3 C44 C66 C12 C13 

Swartz, Elbaum [29] 7.52 7.32- 4.02 1.48 
Srinivasan, 

Ramji Rao [44] 7.70 6.50 3.94 2.10 3.51 4.72 

A rather complete central-force calculation of the elastic 
constants of zinc was reported by Rose and Ramsey [46]. 

From both Morse and Rydberg potential functions, they 

calculated second-order and third-order elastic constants. 
The calculation was successful for magnesium, which has 
a nearly ideal c/ a ratio, but it failed for zinc. In fact, a 
negative value of C44 was predicted .. Based on the Born 

and Huang [47] stability criteria, c.H is always positive 

in a mechanically stable lattice. 
Assuming a screened-Coulomb potential function, 

Czachor and Pindor [43] calculated the second-order elas
tic constants of zinc. This model also gives a negative C44 • 

The authors concluded that "ion-ion interactions of the 
proposed type either do not appear or play a rather un

important role." An alternative'view is' that this model 
is simply incomplete. 

Some useful expressions for contributions to first-order, 
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second-order, and third-order elastic constants were de
rived by Cousins [49] for hexagonal metals with arbitrary 
axial ratios. 

Expressions for hexagonal elastic constants that include 
both non-ideal c/ a ratios and non-central, arhitrary vol
ume-dependent energies were given by Johnson [50]; his 
example potentials were limited to central forces. 

Bulk moduli of simple metals were discussed by Jones 
[51] in terms of three energies: ionic-repulsion, electro
static, and Fermi. Because of the large ratio of the atomic
sphere diameter to the ionic-sphere diameter in zinc, the 
ionic-repulsion-energy contribution to the elastic constants 
is expected to be relatively small. If the electrostatic term 

'is also small, and Jones justifies this, then the bulkmodu
Ius is determined by the Fermi energy alone. Jones showed 
thl'lt thp. Fp.rmi-energy contrihutlon to the bulk modulus is 

(56) 

where Vo is the atomic volume, Ef is the Fermi energy, 
and r is the interatomic distance. For zinc, Br = 8.03 X 
1011 N/m2

, which exceeds the observed value of 6.06. 

J ones interpreted this to mean that Ef)' the energy of the 
lowest state in the conduction band, contributes to the 
hulk modulus of zinc and that it has a minimum at r 

sufficiently less than rf) so that (ePE/or) r=ro is negative. 
The first model-pseudopotential calculation of the elastic 

constants of zinc was reported by Cousins [52], who con-
- 1· 

sidered the three shear constants C44, "2(Cll - C1'2)' and 

! (Cll + C12 +2C33 - 4C13 ). Cousins' results were very 

poor,. but he believed they could be improved by modify

ing the energy-wavenumber relationship. Cousins did not 
find a negative CH , but one far too small. Thus, theoreti

cal calculations of the elastic constants of zinc have failed. 

Successful lattice dynamics calculations were done for 
both beryllium (c/a = 1.57) and magnesium (c/a = 1.63) 

by King and Cutler [53,54]. However, no similar calcu
lations have been reported for hexagonal metals where 

cia exceeds ideal. Their calculations are of the first

principles pseudopotential type where the input informa

tion consists of: free-ion eigenfunctions and eigenenergies; 
unit-cell dimensions; atomic number; and valence. 

No theoretical values of the elastic constants of zinc are 

reported in this review because they are too uncertain 
relative to the experimental values. Considerable theoreti

cal study is in progress, and significant results may emerge 

soon. In particular, one anticipates that pseudopotential 
calculations for zinc have not yet matured. In other sys

tems, these calculations have proven useful in elucidating 
various problems relevant to zinc, including: relative phase 

stability, axial ratio, defect properties, alloying effects, 
pressure-volume relationships, lattice dynamics, thermo

dynamic properties, and elastic constants. 
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18. Miscellaneous Topics 

Many studies have been reported that relate closely to 
the elastic properties of zinc. These studies are of two 
types: those that contribute further understanding of elas
tic properties and those that use the elastic constants to 
deduce non-elastic properties. 

In lattice dynamics, the elastic constants are related to 
the dispersion-curve slopes at infinite wavelength. Several 
theoretical lattice-dynamics studies on zinc have been re
ported [44, 55-60]. And some experimentallattice-dynam
ics studies on zinc have been· reported [61-62]. 

The plastic properties of zinc, such as resistance to plas
jc deformation, fracture strength, and malleability, were 
related to the elastic properties by Pugh [63]. 

The elastic-constant combinations of zinc that are rele
vant to x-ray diffraction studies have been derived by 
Evenschor and co-workers [64-65]. 

'Elastic-anisotropy effects on dislocation properties in 
zinc have been considered by Fisher and Alfred [66]. 

The problems of root-mean-square atomic displacements 
and x-ray Debye temperatures in zinc were considered by 
Sk.dluu amI Ki:1lZ [67]. 

19. Conclusions and Recommendations for 
Further Studies 

In the single-crystal elastic-constant case: 
(1) Room-temperature values are well defined experi

mentally. Further studies here should focus on 8 1'2, C1'2' 
and C13• 

(2) Based on the careful studies of Alers and Neigh
bors [25] and Ga:r;land and Dalven [27], low-temperature 
values are also well defined experimentally. 

(3) A third high-temperature experiment would be use
ful to resolve small discrepancies between the Alers and 
Neighbors [25] study and the Wert and Tyndall [24] 
study. Whether 2813 +844 has a maximum or increases 
continuously with temperature is uncertain. 

( 4) Also, it would be valuable to verify the abrupt 
decrease in 81:2 near the melting point since changes of 
elastic constants near phase transitions are important from 
the viewpoints of lattice instabilities and soft vibrational 
modes. Elastic-constant measurements very close to the 
melting point might elucidate the problem of the bonding 
of zinc. . 

(5) Third-order elastic constants are reasonably well 
defined, but it would be interesting to know their tempera
ture dependencies so that zero-temperature values would 
be available as checks on theoretical models of the elastic 
constants of zinc. 

( 6) The theoretical situation for zinc is dismal. Better 
theoretical models are required for predicting and cor
relating the elastic properties. Improved pseudopotential 
calculations seem appropriate here. -

(7) Despite the poor theoretical situation, experimental 
studies on zinc-alloy single crystals are ·appropriate. 

(8) Effects of well-defined plastic deformations on. the 

elastic constants of zinc would' be very interesting. Dis
location behavior in zinc seems to be relatively wen under

. stood; thus, effects of dislocations on the elastic constants 
could be assessed. 

,In the polycrystalline elastic-constant case: 
(9) The problem of the polycrystalline elastic constants 

of zinc is ripe for experimental study, particularly at low 
temperatures. For example, not one ultrasonic-pulse ex
periment on polycrystalline zinc has been reported. Reso
nance experiments are less effective here because they 
measure only E and G accurately and both B and v are 
also of considerable interest. 

(10) Effects of alloying and mechanical deformation 
have not been studied to. any extent. 

(11) .The problem of averaging-converting single
crystal elastic constants to polycrystalline elastic con
stants-should . be pursued vigorously for hexagonal 
metals. 

( 12) As shown by the data in table 8, the . Debye. 
temperature problem needs a careful review, comparing 
calorimetric and elastic data and distinguishing carefully 
the many numerical methods in the elastic case. 

Acknowledgment 

This study was supported by the NBS Office of Standard 
. Reference Data. Dr. E. R. Naimon of Rockwell Interna

tional (Rocky Flats) contributed a critical reading of the 
manuscript. 

20. References 

[1] Ledbetter, H. M., and Reed, R. P:, Elastic properties of 
metals and alloys. I. Iron, nickel, and iron-nickel alloys, 
J. Phys. Chern. Ref. Data 2, 531-618 (1973). 

[2] Ledbetter, H. M., and Naimon, E. R., Elastic properties of 
metals and alloys. II. Copper, J. Phys. Chern. Ref. Data 
3, 897-935 (1974). 

[3] Horvick, E. W., Zinc, Machine Design 42 (No.4), 77-79 
(1970). 

[4] Hearmon, R. F. S., The elastic constants of anisotropic 
. materials, Rev. Mod. Phys. 18,409-440 (1946). 

[5] Hearmon, R. F. S.; The elastic constants of non-piezoelectric 
r.ry~t:'ll~, in NlI.m.p:rirrrJ nrrtn nnrl. F1J.n.r.tionni Rl'.latinR~h.i[l-'1 

in Science and Technology, Group III, Vol. 1, K. H. Hell
wege and A. M. Hellwege, eds., Springer.Verlag, Berlin 
(1%9). 

[6] Harrison, W. A., Electronic structure and thc properties of 

metals. II. Application to zinc, Phys. Rev~ 12,9, 519-527 
(1963). 

[7] Kaufman, L. and Bernstein, H., Co"mputer Calculation of 
Phase Diagrams, Academic, New York (1970). 

[8] Weaire, D., The structure of the divalent simple metals, 
J. Phys. C 1, 2W--221 (1968). 

[9] Hume-Rothery, W., Atomic Theory for Students of Metal
lurgy, Institute of Metals, London (1948). 

[IO] Dehlinger, V., Theoretische Metallkunde, Springer-Verlag, 
Berlin (1955). 

[U] Nye, J. F., Physical Properties of Crystals, Oxford V.P., 
London (1957). -

[12] Fedorov, F. I., Theory of Elastic Waves in Crystals, Plenum, 
New York (1968). 

J. Phys. Chem. Ref. Data, Vol. 6, No.4, 1971 



1202 H. M. LEDBETTER 

[I3] Musgrave, M. J. P., Crystal Acoustics, Holden-Day, San 
Francisco (1970). 

[14] Lifshitz, I. M., and Rozentsveig, L. N., Zh. Eksp. Teor. Fiz. 
16, 967-980 (1946). 

[IS] Pynn, R, The 0 K Debye temperature of hexagonal close
packed metals, Can. J. Phys. 49, 1690-1692 (1971). 

[16] Grlineisen, E., and Goens, E., Untersuchungen an Metall
kristallen. I. Elastische Konstanten von Zink und Cad
mium, Z. Phys. 26, 235-49 (1924). 

[17] Voigt, W., Lehrbuch der Kristallphysik, Teubner, Berlin 
(1928) . 

[I8] Bridgman, P. W., Certain physical properties. of single 
crystals of tungsten, antimony, bismuth, tellurium, cad
mium, zinc, and tin, Proc. Am. Acad. Arts Sci. 60, 
305-383 (1925). 

[19] Goens, E., Uber eine verbesserts Apparatur zur statischen 
Bestimmung des Drillungsmoduls von Kristallstaben und 
ihre Anwendung auf Zink-Einkristalle, Ann. Phys. 16, 
193-209 (1933). 

[20] Hanson, A. W., Elastic behavior and elastic constants of 
zinc single crystals, Phys. Rev. 45, 324-331 (1934). 

[21] Bridgman, P. W., On the effect of slight impurities on the 
claatic con8tanta, particularly the C1:nnprea8ibility of zinc, 

Phys. Rev. 47, 393-397 (1935). 
[22] Tyndall, E. P. T., Note on the probable value of the elastic 

constants of the zinc crystal, Phys. Rev. 47, 398-399 
(1935) . 

[23] Read, T. A., The internal friction of single metal crystals, 
Phys. Rev. 58, 371-801 (1940). 

[24] Wert, C. A., and Tyndall, E. P. T., Elasticity of zinc 
crystals, J. Appl. Phys. 20, 587-589 (1949)_ 

[25] Alers, G. A., and Neighbors, J. R, The elastic constants 
of zinc between 4.2 and 670 K, J. Phys. Chem. Solids 7, 
58-64 (1958). 

[26] Waterman, P. c., Orientation dependence of ultrasonic at
tenuation in zinc, J. Appl. Phys. 19, 1190-1195 (1958). 

[27] Garland, C. W., and Dalven, R., Elastic constants of zinc 
from 4.2 K to 77.6 K, Phys. Rev. Ill, 1232-1234 (1951). 

[28] Musgrave, M. J. P., Calculations relating to the propaga
tion of elastic waves in anisotropic media, NPL Basic 
Physics Division Report No.7 (196l). Cited in Ref. 101. 

[29] Swartz, K. D., and Elbaum, C., Third-order elastic con
stants of zinc, Phys. Rev. B 1, 1512-1517 (1970). 

[30] Leibfried, G., and Ludwig, W., Theory of anharmonic ef
fects in crystals, in Solid State Physics, Vol. 12, F. Seitz 
and D. Turnbull. ed .• Academic. New York (1961). 

[31] Garher, J. A., and Granato, A. V., Theory of the tempera
ture dependence of second·order elastic constants in cuhic 
materials, Phys. Rev. 11,3990-3997 (1975). 

[32] Ga:t:ber, J. A., and Granato, A_ V" Fourth-order elagtic con

stants and the temperature dependence of second-order 
elastic constants in cubic materials, Phys. Rev. II, 
3998-4007 (1975). 

[33] Var8hni, Y. P., Temperature dependence of the clastio 

constants, Phys. Rev. B 2, 3952-3958 (1970). 
[34] Born, M., On the stability of crystal lattices. I, Proc. Cambro 

PhiL Soc. 36, 160--172 (1940). 
[35] Wallace, W. E., Bonding in the zinc family metals, J. Chem. 

Phys. 23, 2281-2294 (1955). 
[36] Voigt, W., Ueber die Beziehung zwischen den beiden Elas

ticitats-constanten isotroper Korper, Ann. Physik 38, 
573-587 (1889). 

[37] Landau, L. D., and Lifshitz, E. M., Theory 0/ Elasticity, 
Pergamon, Lodon (1959), p. 40. 

[38] Ledbetter, H. M., Estimation of Debye temperatures by 
averaging elastic coefficients, J. Appl. Phys. 44, 1451-
1454 (1973). 

[39] Hill, R., The elastic behavior of a crystalline aggregate, 
Proc. Phys. Soc. Lond. A65, 349-354 (1952). 

J. Phys. Chem. Ref. Data, Vol. 6, No.4, 1977 

[40] Peresada, G. I., On the calculation of elastic moduli of 
polycrystalline systems from single crystal data, Phys. 
Status Solidi (a) 4, K23-K27 (1971). 

[41] Wegria, ]., Gouzou, J., and Habraken, L., Variations m me 
elastic moduli of pure zinc and zinc alloys in relation to 
temperature, C.R.M. 31, 47-56 (1972). 

[42] Garland, C. W., and Silverman, J., Analysis of specific heat 
data for zinc, resolution of the calorimetric and elastic 0 

discrepancy, J. Chem.Phys. 34, 781-782 (1%1). 
[43] Powell, B. E., and Skove, M. J., Combinations of third

order elastic constants of zinc and cadmium, J. Appl. 
Phys. 4, 666-667 (1973). 

[44] Srinivasan, R, and Ramji Rao, R., Anharmonic properties 
of the hexagonal metals, magnesium, zinc and beryllium. 
I. Lattice dynamics and third order elastic constants, J. 
Phys. Chern. Solids 32, 1769-1788 (1971). 

[45] Hayes, E. F., Elastic constants for' a h.c.p. structure bound 
by central forces, Phil. Mag. 14, 415-419 (1966). 

[46] Rose, M. F:, and Ramsey, K. '1'., Higher order elastic con
stants in h.c.p. crystals, Phys. Status Solidi 25, 103-108 
(1968) . 

[47] Born, M. and Huang, K., Dynamical Theory 0/ Crystal 
Lattices, Oxford U.P., London (1954). 

[48] Czachor, A., and Pindor, A., Dependence of calculated elas
tic constants on the cia ratio of hexagonal close-packed 
metals. Phys. Status Solidi 20, K17-K20 (967). 

[49] Cousins, C. S. G., Contributions to the first-, second- and 
third-order elastic shear constants of hexagonal metals 
for arbitrary axial ratio, 1. Phys. C 1, 478-485 (1%8). 

[SOl Johnson, R A., Relationship between two-body interatomic 
potentials in a lattice model and elastic constants, Phys. 
Rev. B 6, 2094-2100 (1972). 

[51] Jones, H., Structural and elastic properties of metals, 
Physica 15, 13-22 (1949). 

[52J Cousins, C. S. G., The calculation of the elastic shear con
stants of hexagonal metals using the optimized model 
potential, J. Phys. C 3, 1677-1692 (1970). 

[53] King, W. F., and Cutler, P. H., Lattice dynamics of beryl
lium from a first-principles nonlocal pseudopotential ap
proach, Phys. Rev. B 2, 1733-1742 (1970). 

[54] King, W. F.. and Cutler, P. H., Lattice dynamics of mag
nesium from a first-principles nonlocal pesudopotential 
approach, Phys. Rev. B 3, 2485-2496 (1971). 

[55] Slutsky, L. ]., and Garland, C. C. W., Lattice dynamics 
of hexagonal close-packed me tab, J. Chern. Phys. 26, 

787-793 (1957). 

[56] Young, J. A., and Koppel, J. V., Lattice vibrational spectra 
of beryllium, magnesium, and zinc, Phys. Rev. 134, 
A1476-A1479 (1964). 

[57] DeWames, R. E., Wolfram, T., and Lehman, G. W., Lattice 
dynamics, heat capacities, and Debye-W aUer factors for 
Be and Zn using a modified axially symmetric model, 
Phys. Rev. 138, A717-A728 (1965). 

[58] Gupta, R. P., and Dayal, B., Lattice dynamics of zinc, Phys. 
Status Solidi 13,519-527 (1966). 

[59] Brovman, E. G., Kagan, Yu., and Kholas, A., Theory of the 
vibrational spectra of hexagonal metals, Soviet Phys.
Solid State 11, 733-740 (1969). 

[60] Trott, A. J., and Heald, P. T., The lattice dynamics of the 
hexagonal close-packed metals, Phys. Status Solidi (b) 
46, 361-363 (1971). 

[61] Marliskewski, E., Cold neutron measurement of the phonon 
dispersion-relation for a zinc single-crystal, Phys. Lett. 1, 
338-339 (1962). 

[62] Borgonovi, G., Caglioti, G., and Antal. J. ]., A study, of 
the crystal dynamics of zinc, Phys. Rev. 132, 683-688 
(1963) . 



ELASTIC PROPERTIES OF ZINC 1203 

[63] Pugh, S. F., Relations between the elastic moduli and the 
plastic properties of poly crystalline pure metals, Phil. 
Mag. 45, 823-843 (1954). 

(64] Evenschor, P. D., Frohlich, W., and Hauk, V., Calculation 
of x·ray elastic constants from single crystal coefficients 
of hexagonally crystallizing metals, Z. Metallk. 62, 38-42 
(1972). (In German.) 

[65] Evenschor, P. D., and Hauk, V., Calculation of x-ray elastic 
constants from single crystal coefficients of hexagonally 
crystallizing metals, Z. Metallk. 63, 798-801 (1972). (In 
German). 

[66] Fisher, E. S., and Alfred, L. C. R., Effects of elastic ani
sotropy on dislocations in hcp metals, Trans. Met. Soc. 
AIME 242, 157~1586 (1968). 

[67] Skelton, E. L., and Katz, J. L., Examination of the thermal 
variation of the mean square atomic displacements in zinc 
and evaluation of the associated Debye temperature, Phys~ 
Rev. 171,801-808 (1968). 

[blj] Bridgman, P. W., Some properties Qf single metal crystals, 
Proc. Nat. Acad., Sci. 10, 411-415 (1924). 

[69] Bridgman, P. W., Rough compressions of 177 sub'stances to 
40,000 kg/cmz, Proc. Am. Acad. Arts Sci. 76, 71-87 
(1948). 

[70] Griineisen, E., Die elastischen Konstanten der Metalle bei 
kleinen Deformationen, Ann. Phys. 22, 801-851 (1907). 

[71] Richards, T. W., Die Zusammendriickbarkeit der Elemente, 
Z. Elektrochem. 13, 519-520 (1907). 

[72] Adams, L. H., Williamson, E. D., and Johnston, J., The 
determination of the compressibility of solids at high 
pressures, J. Amer. Chern. Soc. 41, 12-42 (1919). 

[73J Sieglerschmidt, H., Bestimmung der Poissonschen Zahl J.L 

gewalzter Zinkbleche, Z. MetaIlk. 24, 5~56 (1932). 
[74] Guillet, L., Le Genie civil 116, 29 (1940). Cited in Ref. 75. 
[75] Koster, W., Die Temperaturabhangigheit des Elastizitats

moduls reiner Metalle, Z. Metallk. 39, 1-9 (1948). 
[76] Peselnick, L., and Meister, R., Variational method of deter

mining effective moduli of polycrystals: (a) hexagonal 
symmetry, (b) trigonal symmetry, J. Appl. Phys. 36, 
2879-2883 (1965). 

[77] Reuss, A., Calculation of the elastic limit of solid solutions 
on the basis of plasticity conditions for single crystals, 
Z. Angew. Math. Mech. 9, 49-58 (1929). 

[78] Gruneisen, E., and Goens, E., Untersuchungen an Metall
kristallen. II. Spezifische Warme und elektrischer Wider
stand von Zink und Cadmium, Z. Physik 26, 250-273 
(1921,) . 

[79] Clusius, K., and Harteck, P., Z. Phys. Chern. 134, 243 
( 1928). Reported in Ref. 100. 

[80] Keesom, P. H., and van den Ende, 1. M., Proc. Arnst. 
Akad. Sci. 35, 143 (1932). Reported in Ref. 87. 

[81] Keesom, W. II., and Haantjes, ]., Physica 2, 986 (1935). 
Reported in Ref. 98. 

[82] Silvidi, A. A., and Daunt, J. G., Electronic specific heats in 
tungsten and zinc, Phys. Rev. 77, 125-129 (1950). 

[83] Post, E. J., On the characteristic temperatures of single 
crystals and the dispersion of the "Debye heat waves" 
Can. J. Phys. 31, 112-119 (1953). ' 

[84] Blackman, M., The specific heat of solids, in Handbuch deT 
Physik, Vol. VII-I, S. Flugge, ed., Springer-Verlag, Berlin 
(1955) . 

[851 Smith, P. L.~ The specific heats of magnesium and, zinc, 
Phil. Mag. 46, 744-750 (1955). 

[86] Betts, D. D., Bhatia, A. B., and Horton, G. K., Debye 
characteristic temperatures of certain noncubic crystals, 
Phys. Rev. 104,43-47 (1956). 

[87] Keesom, P. H., and Pearlman, N., Low temperature heat 
capacity of solids, in Handbuch der Physik, Vol. XIV-I, 
S. Flugge, ed., Springer-Verlag, Berlin (1956). 

[88] Alers, G. A., and Neighbors, J. R.. Comparison of the 
Debye (J determined from elastic constants and calorim. 
etry, Rev. Mod. Phys. 31, 67~680 (1959). 

[R9] Spillpl, \", Ilnll Kppo;;om, P_ R., Specific heat of gallium and 
zinc in the normal and superconducting states, Phys. Rev. 
112, 1083-1088 (1958). 

[90] Zavaritskii, N. V., Investigation of the thermal properties of 
~uven,;uIH.lUl,;wn;. 11., J. E.lI.vLl. ThcUl. Phy !>. (USSR) 34, 

1116-1124 (1958). 

[91] Wolcott, N. M., Debye e of hexagonal crystals at 0 K, J. 
Chern. Phys. 31, 536-540 (1959). 

[92] Srinivasan, T.' M., Lattice and electronic specific heats of 
zinc and cadmium, Proc. Indian Acad. Sci. 49, 61-65 
(1959) . 

[93] Zimmerman, J. E., and' Crane, L. T., Anomalous lattice spe
cific heat of gold and zinc at liquid helium temperatures, 
Phys. Rev. 126, 513-516 (1962). 

[94] Anderson, O. L., A simplified method for calculating the 
Debye temperature from elastic constants, J. Phys. Chern. 
Solids 24, 909-917 (1963). 

[95] Anderson, O. L., Determination and some uses of isotropic 
elastic constants of polycrystalline aggregates using single
crystal data, in Physical Acoustics, Vol. III-B, W. P. 
Mason, ed., Academic, N ew York (1965). 

[96] Reddy, P. J., Calculation of the Debye temperatures of 
crystals, Physica 29, 63-66 (1963). 

[97] Robie, R. A., and Edwards. 1. L., Some Debye temperatures 
from single-crystal elastic constant data, J. Appl. Phys. 
37, 2659-2663 (1966). 

[98] Holm, M. W., Debye characteristic temperatures table and 
bibliography, AEC Report IDO-16399 (1957). 

[99] Boas, W., Physics 0/ Metals and Alloys, Melbourne U. P., 
Carlton, Victoria (1947). 

[100] Blackman, M., The theory of the cpecific heat of solids, 

Rep. Prog. Phys. 8, 11-30 (941). 

[l011 Simmons, G., and Wang, H., Single Crystal Elastic Constants 
and Calculated Aggregate 'properties: A Handbook, M.I.T. 
Press, Cambridge, Mass. (1971). 

J. Phys. Chem. Ref. Data, Vol. 6, No.4, 1977 




