Erratum: Thermodynamic Properties of Ammonia

Cite as: Journal of Physical and Chemical Reference Data 8, 577 (1979); https://doi.org/10.1063/1.555597
Published Online: 15 October 2009

Lester Harr, and John S. Gallagher

ARTICLES YOU MAY BE INTERESTED IN

Thermodynamic properties of ammonia
Journal of Physical and Chemical Reference Data 7, 635 (1978); https://doi.org/10.1063/1.555579

Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane

Survey and Assessment of Available Measurements on Thermodynamic Properties of the Mixture /Water+Ammonia/
Journal of Physical and Chemical Reference Data 27, 45 (1998); https://doi.org/10.1063/1.556014
Errata

Erratum: Thermodynamic Properties of Ammonia

Lester Harr and John S. Gallagher

National Measurement Laboratory, National Bureau of Standards, Washington, D.C. 20234

Appendix A:

1. Column headed “Free energy, G/RT.” Entries should be increased by $0.572 + \ln T$.
2. Columns headed “Isothermal compressibility.” Values tabulated refer to the units “reciprocal atmospheres.”
 To obtain values in units of “reciprocal bars” the entries should be multiplied by $1/1.01325$.
3. Column headed “$(dP/dT)_\rho$.” The correct column heading should be “dP/dT.” Values tabulated refer to units “atm/K.” To obtain values in units of “bar/K” the tabulated values should be multiplied by 1.01325.

Appendix B:

1. Column headed “Isothermal compression.” The heading should read “Isothermal Compressibility.” The entries refer to units “reciprocal atmospheres.” To obtain values in units of “reciprocal bars” the entries should be multiplied by $1/1.01325$.
2. The tabulated values on the row referring to $P = 100$ bar and $T = 400$ K (p. 749) should be replaced by:

 $400 \ 8.9767 \ 11140 \ 8.8470 \ 387.59 \ 297.82 \ 15.7674 \ 2.9991 \ 0.0317$

Text:

1. P. 652, following eq (15). The defining relation for A should be:

 $$A = \left(1 + \rho \frac{\partial Q}{\partial \rho} - \rho_T \frac{\partial Q}{\partial T} - \rho_T \frac{\partial^2 Q}{\partial T \partial \rho}\right)^2.$$

2. P. 661, following eq (8a). The defining relation for α should be:

 $$\alpha = A,$$

 where A is defined in item 1, immediately above.