Electrical resistivity of alkaline earth elements

Cite as: Journal of Physical and Chemical Reference Data **8**, 439 (1979); https://doi.org/10.1063/1.555599 Published Online: 15 October 2009

T. C. Chi

ARTICLES YOU MAY BE INTERESTED IN

Electrical resistivity of alkali elements

Journal of Physical and Chemical Reference Data 8, 339 (1979); https://doi.org/10.1063/1.555598

Electrical Resistivity of Ten Selected Binary Alloy Systems

Journal of Physical and Chemical Reference Data 12, 183 (1983); https://doi.org/10.1063/1.555684

Electrical resistivity of copper, gold, palladium, and silver

Journal of Physical and Chemical Reference Data 8, 1147 (1979); https://doi.org/10.1063/1.555614

Electrical Resistivity of Alkaline Earth Elements

T. C. Chi

Center for Information and Numerical Data Analysis and Synthesis, Purdue University, West Lafayette, Indiana 47906

This paper presents and discusses the available data and information on the electrical resistivity of alkaline earth elements (beryllium, magnesium, calcium, strontium, barium, and radium) and contains recommended or provisional reference values. The compiled data include all the experimental data available from the literature. The temperature range covered by the compiled data is from cryogenic temperatures to above the melting temperature of the elements. The recommended values are generated from critical evaluation, analysis, and synthesis of the available data and information and are given for both the total electrical resistivity and the intrinsic electrical resistivity. For most of the elements, the recommended values cover the temperature range from 1 K to 1000 K

Key words: Alkaline earth elements; barium, beryllium; calcium; electrical resistivity; magnesium; radium; strontium; temperature dependence.

Contents

	Page			Pag
List of Tables	439	4.	Measurement Information on the Electrical	
List of Figures	440		Resistivity of Beryllium	449
List of Symbols	440	5.	Experimental Data on the Electrical Resistivity	
1. Introduction	440		of Beryllium	454
2. Theoretical Background	442	6.	Recommended Electrical Resistivity of	
3. Data Evaluation and Generation of			Magnesium	459
Recommended Values	443	7.	Measurement Information on the Electrical	
4. Electrical Resistivity of Alkaline Earth Elements	445		Resistivity of Magnesium	463
4.1. Beryllium	445	8.	Experimental Data on the Electrical Resistivity	
4.2. Magnesium	458		of Magnesium	467
4.3. Calcium	470	9.	Recommended Electrical Resistivity of Calcium	470
4.4. Strontium	477		Measurement Information on the Electrical	
4.5. Barium	483		Resistivity of Calcium	473
4.6. Radium	491	11.	Experimental Data on the Electrical Resistivity	
5. Summary and Conclusions	493		of Calcium	475
6. Acknowledgements	495	12.	Recommended Electrical Resistivity of	
7. References	495		Strontium	478
8. Appendix	497	13.	Measurement Information on the Electrical	
8.1. Methods of Measuring Electrical Resistivity	497		Resistivity of Strontium	483
,		14.	Experimental Data on the Electrical Resistivity	
Paratter.			of Strontium	482
List of Tables		15.	Recommended Electrical Resistivity of Barium	484
1. Physical Constants of Alkaline Earth Elements	44]		Measurement Information on the Electrical	
2. Conversion Factors for Units of Electrical	441		Resistivity of Barium	487
Resistivity	442	17.	Experimental Data on the Electrical Resistivity	
3. Provisional Electrical Resistivity of Beryllium	446		of Barium	489
5. I fovisional electrical resistivity of Delymum	440	18.	Provisional Electrical Resistivity of Radium	491
© 1979 by the U.S. Secretary of Commerce on behalf of the	United	19.	Comparison of the Electrical Resistivity Data	
States. This copyright is assigned to the American Institu			from the Literature Data with the Present	
Physics and the American Chemical Society.			Recommended Values	493

Contents—Continued

	List of Figures				Page
	o g	Page	6.	Electrical Resistivity of Calcium	
1.	Relationship Between Intrinsic Resistivity,	8 -		(Logarithmic Plot)	471
	Residual Resistivity, and Total Resistivity	442	7.	Electrical Resistivity of Calcium (Linear Plot)	472
ก	•	11,22	8.	Electrical Resistivity of Strontium	
۷.	Electrical Resistivity of Beryllium	447		(Logarithmic Plot)	479
_	(Logarithmic Plot)	447	9.	Electrical Resistivity of Strontium	
3.	Electrical Resistivity of Beryllium			(Linear Plot)	480
	(Linear Plot)	448	10.	Electrical Resistivity of Barium	
4.	Electrical Resistivity of Magnesium			(Logarithmic Plot)	485
	(Logarithmic Plot)	461	11.	Electrical Resistivity of Barium (Linear Plot).	486
5.	Electrical Resistivity of Magnesium			Electrical Resistivity of Radium (Linear Plot)	492
	(Linear Plot)	462		Intrinsic Resistivity of Alkaline Earth Elements	494

List of Symbols

Α	Code for dc potentiometer method
R	Magnetic flux density; code for dc bridge method
č	Code for ac potentiometer method; constant
ñ	Code for ac bridge method
r F	Code for eddy current method
C	
A B C D E G I	Code for galvanometer amplifier method
	Code for induction method
$L_{ m F}$	Latent heat
M	Atomic weight
P	Pressure; constant
M P Q R	Code for Q-meter method
ĸ	Resistance
S_1	Constant
S_2	Constant
S_3^{-} T	Constant
${f T}$	Temperature
$T_{ m m}$	Melting point
$T_{ m c}$	Critical temperature
V	Voltmeter and ammeter direct reading
ρ	Electrical resistivity
ρο	Residual electrical resistivity
ρi	Intrinsic electrical resistivity
ρ_{\parallel}	Electrical resistivity parallel to the principal
- 11	crystal-axis
ο.	Electrical resistivity perpendicular to the principal
ρ_{\perp}	crystal-axis
$ heta_{ m D}$	Debye temperature
Δ_	Empirical temperature
$\theta_{ m R}$	Code for miscellaneous methods
•	Code for miscenaneous methods

1. Introduction

The purpose of this work is to present and discuss the available data and information on the electrical resistivity of alkaline earth elements, to critically evaluate, analyze, and synthesize the data, and to make recommendations for the best values of the electrical resistivity over a wide temperature range. Of this group of elements experimental electrical resistivity data are available in the world literature for Be, Mg, Ca, Sr, and Ba and there is no resistivity data for Ra.

Table 1 contains information on the densities, crystal structures, phase transition temperatures, and certain other

pertinent physical constants of the alkaline earth elements. This information is very useful in data analysis and synthesis. For example, the electrical resistivity of a material generally changes abruptly when the material undergoes any transformation. One must, therefore, be extremely cautious in attempting to extrapolate the electrical resistivity value across any transition temperature. No attempt has been made to critically evaluate the temperatures and constants given in table 1, and they should not be considered as recommended values.

This work is organized in six sections. In the theoretical background section, some results of the theory of electrical resistivity are presented and briefly discussed. In the section on data evaluation and generation of recommended values, the general procedures and methods for data evaluation and for the generation of recommended values are outlined.

In the data presentation section, the electrical resistivity of each of the alkaline earth elements is presented separately in the order of increasing atomic number. Values of electrical resistivities are given for both the solid and liquid states. For an element at moderate and high temperatures the true electrical resistivity values for different high-purity (99.9⁺) samples at each temperature should be but little different; therefore, a set of recommended electrical resistivity values can be given for a high-purity element. At low temperatures, however, the electrical resistivity values for different samples with small differences in impurity and/or imperfection differ greatly, and a set of recommended values applies only to a sample with that particular amount of impurity and imperfection. Thus, the low-temperature electrical resistivity of an element could be presented as a family of curves, each of which would be recommended for a sample with a particular amount of impurity and degree of imperfection, and hence a particular residual resistivity, ρ_0 . In this work, two well-defined curves are recommended for the full temperature range: one representing the intrinsic electrical resistivity, ρ_i , which is a unique function of temperature and is zero at absolute zero, and the other representing the total resistivity, ρ , for the purest form of each element on which measurements have

TABLE 1. PHYSICAL CONSTANTS OF ALKALINE EARTH ELEMENTS

Name	Atomic No.	Atomic ^b Weight	Density ^c kg m ⁻³ x10 ³	Crystal ^d Structure	Phase Transition Temp., K			Melting Point, K	Normal Boiling Point, K	Critical Temp., K
Beryllium (Be)	4	9.01218	1.85	c.p.h. (α) b.c.c. (β)	1530 (α-β)	1160	1031	1562	2749	6170
Magnesium (Mg)	12	24.305	1.74	c.p.h.		396 ± 54	330	922	1364	3537
Calcium (Ca)	20	40.08	1.55	f.c.c. (α) b.c.c. (β)	720±2 (α-β)	234±5	230	1113±2	1759	3273
Strontium (Sr)	38	87.62	2.60	f. c. c. (α) b.c.c. (γ)	830 (α-γ)	147±1	148	1042	1652	3064
Barium (Ba) Radium (Ra)	56 88	137.4 226.0254	3.5 5	b.c.c. (α)	1	10.5±1.8 89	116	1002±2 973	$\frac{2174}{1900}$	3670

a Information taken from Ref. [1].

been made. The latter curve at low temperatures is only applicable to the particularly characterized specimen with residual electrical resistivity clearly specified. These two curves approach each other closely, on a logarithmic scale, for temperatures above about 100 K. Figure 1 shows the relationship between ρ_i , ρ_0 , and ρ .

The recommended or provisional electrical resistivities are tabulated with uniform but step-wise increasing increments in temperature as the temperature increases. The estimated accuracy of the recommended or provisional values for each element in each different temperature range is given in the discussion. The asterisked values in the tables are interpolated, extrapolated, or estimated in the temperature ranges where no experimental data are available.

From the recommended values of ρ and ρ_i which are tabulated in this work, the electrical resistivity of a particular sample at low temperatures can be estimated in either of the following two ways. One way is to find the difference between the measured resistivity value and the recommended ρ value at the same low temperature (i.e. below 100 K) and then add this difference to the recommended ρ values at other temperatures. The second way is to compare the measured low temperature value with ρ_i , get the difference which is the residual resistivity of this particular sample, and then add this ρ_0 to the recommended ρ_i at the other temperatures.

In the figure showing experimental data, a data set that consists of a single point is denoted by a number enclosed by a square, and a curve that connects a set of data points is denoted by a ringed number. These numbers correspond to those in the data table and in the accompanying table on specimen characterization and measurement information. When several sets of data are too close together to be distinguishable, some of the data sets or data points, though listed in the table, are omitted from the figure for the sake of clarity. For all elements except francium, both logarithmic plotting and linear plotting of electrical resistivity are used in order that details may be clearly shown for both the low and high temperature regions. The recommended curves are presented in the same figure. The heavy solid

curve represents recommended values, and the dashed curves give provisional values. In figure, the melting point (M. P.), normal boiling point (N. B. P.), and critical temperature (C. T.) of the elements are indicated. Some of these transition points are also mentioned in the text. At the melting point the resistivity exhibits large discontinuity.

The tables on specimen characterization and measurement information give for each set of data the following information: the publication reference number, author's name, year of publication, experimental method used for the measurement, temperature range covered by the data, substance name and specimen designation, as well as the detailed description and characterization of the specimen and information on measurement conditions that are reported in the original paper. In these tables the code designations used for the experimental methods for electrical resistivity determination are as follows:

- A dc Potentiometer Method
- B dc Bridge Method
- C ac Potentiometer Method
- D ac Bridge Method
- E Eddy Current Method
- G Galvonometer Amplifier Method
- I Induction Method
- Q O-Meter Method
- V Voltmeter and Ammeter Direct Reading
- → Other than above and described in the remarks

For a comprehensive yet concise review of all these methods, the reader is referred to the references given in Appendix 8.1.

In the Thirteenth General Conference on Weights and Measures held in October 1967 in Paris, the unit "ohmmeter" (symbol: Ω m) was adopted as the SI unit for electrical resistivity. In this work, the SI units are used. Table 2 gives conversion factors which may be used to convert the electrical resistivity values in Ω m presented in this work to values in any of the several other units listed. It should be noted that certain of these conversion factors are not exact relationships.

b Atomic weights based on 12 C = 12 as adopted by the International Union of Pure and Applied Chemistry in 1971. The number in parentheses is the mass number of the isotope of longest known half life.

C Density values given for 293 K.

d Structure below the melting temperature.

e Deduced from specific heat measurements.

In the summary and conclusions section, figures are presented in which all the recommended curves on the intrinsic electrical resistivity are grouped together in order to facilitate a visual comparison.

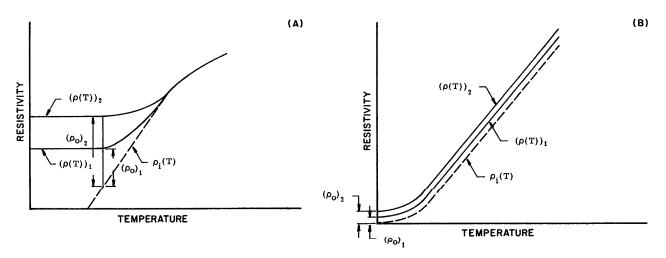


Figure 1. Relationship between intrinsic resistivity $\rho_i(T)$, residual resistivity, ρ_0 , and total resistivity, $\rho(T)$. (A) logarithm scale, (B) linear scale.

TABLE 2.	CONVERSION EA	ACTORS FOR III	NITS OF ELECTRI	ICAL RESISTIVITY*

MUL/TIPLY by appropriate factor to OBTAIN	abΩ cm	μΩcm	Ωст	statΩ cm	Ωm	Ω cir. mil ft ⁻¹	Ω in .	Ω ft.
abohm-centimeter (emu)	1	0.001	10 ⁻⁹	1.113×10 ⁻²¹	10 ⁻¹¹	6.015 x 10 ⁻³	3.937 x 10 ⁻¹⁰	3.281 x 10 ⁻¹
microohm- centimeter	1000	1	10-6	1.113 x 10 ⁻¹⁸	10-8	6.015	3.937 x 10 ⁻⁷	3.281 x 10 ⁻⁶
ohm-centimeter	10 ⁹	10^{6}	1	1.113 x 10 ⁻¹²	0.01	6.015 x 10 ⁶	0.3937	0.0328
statohm-centimeter (esu)	8.987×10 ²⁰	8.987×10^{17}	8.987 x 10 ¹¹	1	8.987 x 10 ⁹	5.406 x 10 ¹⁸	3.538 x 10 ¹¹	2.949 x 10 ¹⁰
ohm-meter	10 ¹¹	108	100	1.113 x 10 ⁻⁴⁰	1	6.015×10^{8}	39.37	3.281
ohm-circular mil per foot	166.2	0.1662	1.662 x 10 ⁻⁷	1.850 x 10 ⁻¹⁹	1.662 x 10 ⁻⁹	1	6.54 x 10 ⁻⁶	5.45 x 10 ⁻⁹
ohm-inch	2.54 x 109	2.54×10^6	2.54	2.827 x 10 ⁻¹²	0.0254	1.528×10^7	1	0.083
ohm-foot	3.048 x 10 ¹⁰	3.048×10^7	30.48	3.3924 x 10 ⁻¹¹	0.3048	1.833 x 10 ⁸	12	1

^{*}This table is based on the universal constants from "The International System of Units (SI)," National Bureau of Standards, NBS Special Publication 330, 43 pp, 1974.

2. Theoretical Background

The electrical resistivity, ρ , of a metal is often described approximately by the Matthiessen rule [2]¹

$$\rho(T) = \rho_0 + \rho_i(T), \qquad (1)$$

where ρ_0 is the residual resistivity at absolute zero temperature and ρ_i is the intrinsic resistivity, which is the temperature-dependent resistivity of an ideally pure sample of the metal. The quantity ρ_0 arises from the presence of impurities, defects, and strains in the metal lattice, while ρ_i is caused by the interaction of the conduction electrons with

² Figures in brackets indicate literature references in section 7.

the thermally induced vibrations of the lattice ions; that is, the phonons in the crystal. For a pure annealed sample at room temperature, ρ_0 is only a small fraction of the total resistivity. There are a number of mechanisms that could produce a deviation from the Matthiessen rule, resulting in a term $\Delta \rho$ which would appear on the right-hand side of equation (1). The first comprehensive survey deviations was made by J. Bass [3]. A more recent study by Cimberle et al. [4] brings references up to date.

The intrinsic resistivity due to electron-phonon interactions may be approximated by the Bloch-Grüneisen-relation [5]

$$\rho_{\rm i}(T) = \frac{C}{M \theta_{\rm R}} \left(\frac{T}{\theta_{\rm R}}\right)^5 \int_0^{\theta_{\rm R}/T} \frac{z^5 dz}{(e^z - 1) (1 - e^{-z})},$$
(2)

where C is a constant, M is the atomic weight, T is the absolute temperature, and $\theta_{\rm R}$ is an empirical temperature characterizing the metal's ideal electrical resistivity in the same way that the Debye temperature, $\theta_{\rm D}$, characterizes a solid's lattice specific heat. It is often true that $\theta_{\rm R} \approx \theta_{\rm D}$. Below about 0.1 $\theta_{\rm R}$ this relation reduces to

$$\rho_{\rm i}(T) \approx 124.4 \frac{C}{M} \frac{T^5}{\theta_{\rm R}^6} \tag{3}$$

At high temperatures, as $T \ge \theta_R$,

$$\rho_{\rm i}(T) \approx \frac{C}{4{\rm M}} \frac{T}{\theta_{\rm R}^2}$$
 (4)

The Grüneisen-Bloch equation is derivable only for idealized monovalent metals with Debye phonon spectra and spherical Fermi surfaces, totally neglecting the effect of Umklapp processes. However, because of its comparative simplicity, this equation is still a most valuable tool for analyzing and discussing experimental data.

The Grüneisen-Bloch equation never holds over the entire temperature range for the alkaline earth metals. By inverting the computation, one may intercompare the behavior of different metals by interpreting the experimental results in terms of deviations from the Grüneisen-Bloch equation. This is often done by employing θ_R as a variable parameter and computing the value that it must possess at any temperature in order that the Grüneisen-Bloch equation may agree with the experiment at that temperature.

In all alkaline earth metals the electrical resistivity increases abruptly at the melting point and shows weakly negative temperature dependence in the liquid phase. The sudden change is due to the greater disorder of the liquid state and the disappearance of any definite crystal structure.

Mott [6] has presented a simple and fairly successful theory of molten metals. He ignored the disordered positions and diffusive movements of the vibrating ions and assumed that near the melting point the ions of the liquid metal still maintain a more or less regular pattern. Using an Einstein model of single frequency oscillators he obtained

$$\left(\frac{\rho_{\rm L}}{\rho_{\rm S}}\right)_{T_{\rm m}} = \exp\left(\frac{80\,L_{\rm F}}{T_{\rm m}}\right),\tag{5}$$

where $\rho_{\rm L}$ and $\rho_{\rm S}$ are the electrical resistivities of the liquid and solid phases, $T_{\rm m}$ is the melting point, and $L_{\rm F}$ is the latent heat of fusion in kilojoules per mole. The calculated values of $(\rho_{\rm L}/\rho_{\rm S})_{T_{\rm m}}$ according to this formula compare moderately well with experimental data for alkaline earth metals.

A single crystal of a metal with a cubic crystal structure has an isotropic resistivity, and the resistivity of the polycrystalline material is the same, apart from a small extra contribution of a polycrystalline structure which may sometimes be caused by grain boundaries. But in a single crystal of a noncubic metal, the resistivity is often very anisotropic, its value depending on the direction of the current flow. Likewise, polycrystalline specimens of such metals, if preferentially oriented, as by rolling or drawing, will have direction-dependent resistive properties.

In isotropic metals with the close-packed hexagonal and rhombohedral (trigonal) structures, the electrical resistivity parallel to the principal crystalline axis is designated as $\rho_{//}$ and electrical resistivity perpendicular to the principal axis is designated as ρ_{\perp} . When values for $\rho_{//}$ and ρ_{\perp} have been determined for a single crystal, one may calculate a value of ρ for a polycrystalline sample without preferential orientation by using the equation of Voigt [7]:

$$\rho = \frac{3\rho// \quad \rho \perp}{2\rho// + \rho \perp} \tag{6}$$

Equation (6) has been used fairly commonly for the determination of ρ of a polycrystalline specimen from single crystal axial resistivities, and it usually gives satisfactory agreement with direct observation on polycrystalline specimen. However, Nichols [8] has found the relation

$$\rho = \frac{1}{3} (\rho_{//} + 2\rho_{\perp}) \tag{7}$$

to be more suitable for metals with a large anisotropy ratio, and to be perfect in the case of c.p.h. Mg.

3. Data Evaluation and Generation of Recommended Values

The data analysis and synthesis employed in this work, whenever possible, included critical evaluation of available data and related information, reconciliation of disagreements in conflicting data, correlation of data in terms of various parameters, and curve fitting with theoretical or empirical equations. Besides critical evaluation and analysis of the existing data, semiempirical techniques have been employed to fill gaps in data and to extrapolate existing data so that the resulting recommended values are internally consistent and cover as wide a range of temperature as possible.

In the critical evaluation of the validity of electrical resistivity data, any unusual dependence or anomaly was carefully investigated, the experimental technique was reviewed to see whether the actual boundary conditions in the experiment agreed with those assumed in the theory, and the author's estimations of uncertainty were checked to ensure that all the possible sources of errors were considered.

The sources of errors may have included uncertainty in the measurement of specimen dimensions and of the distance between the potential probes, uncertainty due to the effects of thermal expansion, uncertainty in temperature measurements, uncertainty in the sensitivity of measuring circuits, and so on.

Many authors have included detailed error estimates in their published papers, and from these it is possible to evaluate the uncertainty for a particular method. However, experience has shown that the uncertainty estimates of most authors are unreliable. In many cases the difference between the results of two sets of data is much larger than the sum of their stated uncertainties.

Besides evaluating and analyzing individual data sets, correlating data in terms of various relevant parameters was a valuable technique and frequently used in data analysis. These parameters may include purity, density, residual electrical resistivity and so on.

For a meaningful data correlation, information on specimen characterization is very important. A full description of the specimen should include, wherever applicable, the following: purity or chemical composition, type of crystal, crystal axis orientation for a single crystal, microstructure, grain size, preferred grain orientation, inhomogeneity or additional phases for a polycrystalline specimen, specimen shape and dimensions, method and procedure of fabrication, sample history or treatment, test environment, and pertinent physical properties such as density, hardness, and transition temperature. Data on poorly characterized materials can hardly be analyzed or used for data correlation.

Besides specimen characterization, a full description of experimental details should be given by the author in order that his data can be meaningfully evaluated and fully utilized. Sometimes, as an initial method of evaluating the quality of a paper, consideration might be given to the amount of experimental detail reported in the paper; lack of experimental detail might lead to the results being given less weight.

Our preliminary recommended values for the electrical resistivity of the alkaline earth elements were derived from experimental data that were considered reliable, using computer least-mean-square error fit to a modified Bloch-Grüneisen formula of the form

$$\rho_{\rm i}(T) = [S_1 + S_2 \times (T/\theta_{\rm R}) + S_3 \times (\theta_{\rm R}/T)^P] \Phi (\theta_{\rm R}/T)$$
(8)

where S_1 , S_2 and S_3 are the coefficients,

$$\theta_{\rm R} = (\theta_{\rm R})_{\rm 0} - CT, \qquad (9)$$

$$\Phi(\theta_{\rm R}/T) = 4(T/\theta_{\rm R})^5 \int_0^{\theta_{\rm R}/T} \frac{z^5 dz}{(e^z - 1) (1 - e^{-z})},$$
(10)

 $(\theta_{\rm R})_{\rm 0},~C,~P,~S_{\rm 1},~S_{\rm 2}$ and $S_{\rm 3}$ are used as the variable parameters.

The first term represents the basic Bloch-Grüneisen form; the second term was added in order to get a better fit to the high temperature data and the third term can resent a dominating low power law at very low temperatures. The computer provides a best fit to a fixed number of specified data points (T_n, ρ_n) minimizing the sum Q of the squares of the fractional errors with which ρ_n are represented by the fitting function $\rho = f(T)$. If desired, variable weights can be assigned to the data points, minimizing

$$Q = \Sigma_n W_n [(f(T_n) - \rho_n)/\rho_n]^2.$$
 (11)

The suitability of the form of eq (8) has been tested by fitting it to previously smoothed data for a number of metals. The r.m.s. fractional errors in these fits were as follows:

Li	$(80-450 \mathrm{K})$,	.0024
Na	$(50-350 \mathrm{K})$,	.012
K	(40-300 K),	.0044
$\mathbf{R}\mathbf{b}$	(30-273 K),	.012
$\mathbf{C}\mathbf{s}$	(30-273 K),	.009
Cu	(60-1200 K),	.005
Ag	(40-1200 K),	.004
$\overline{\mathbf{A}\mathbf{u}}$	(40-1200 K),	.0044
Mg	$(60-900 \mathrm{K}),$.007
Ca	(40-306) K),	.0056
Zn	(60-600 K),	.006
Al	(60-900 K),	.0033
Ni	(60-600 K),	.015
Fe	(80-1000 K),	.0095
Pd	(80-1300 K),	.003

In some cases errors in smoothing contributed to these fractional errors.

The final recommended values are obtained by extrapolating the resulting values from curve fitting values to somewhat lower and higher temperatures and correcting them for thermal linear expansion.

Thermal linear expansion correction is necessary since the electrical resistivity measurements are ordinarily made at constant pressure on a sample with dimensions that change with temperature. In deriving the resistivity ρ from a measured resistance R using an equation such as

$$\rho = RA/l \tag{12}$$

where l is length of the specimen and A its cross-section. It is common to use for A and l the values measured at room temperature. This will not cause serious error in the results of measurements over not-too-large temperature range, but the difference between

$$\rho_{\text{uncorrected}}(T) = R(T) A (293 \text{ K}) / l(293 \text{ K})$$
 (13)

and

$$\rho_{\text{corrected}}(T) = R(T) A(T) / l(T)$$
 (14)

should not be ignored. In the present work it has been important to determine which quantity was reported in the research paper and to bring the results to a common basis by using a relation such as

$$\rho_{\text{uncorrected}} (T) = \rho_{\text{corrected}} (T) \cdot \left(\frac{A (T)}{A (293 \text{ K})} \cdot \frac{l (293 \text{ K})}{l (\text{T})} \right)^{-1}$$

$$\rho_{\text{corrected}} (T) \left[1 + \frac{l (T) - l (293 \text{ K})}{l (293 \text{ K})} \right]^{-1}$$
(15)

before making comparisons. It should be noted that not all the methods of measuring ρ are equivalent to measuring

R, A, and l, and that the correction for dimensional changes with temperature may differ with different experimental set up. It has been most convenient to convert the data reported as $\rho_{\text{corrected}}$ (T) to that of $\rho_{\text{uncorrected}}$ (T) and to carry out the synthesis of all data as $\rho_{\text{uncorrected}}$ (T). The final results have, however, been corrected to and reported as $\rho_{\text{corrected}}$ (T).

In estimating the uncertainty of our recommended values, the accuracy that can be achieved by the various experimental techniques, the scatter of data, and the purity of the materials, among other factors, were taken into consideration. The uncertainty of a value is the maximum percentage deviation of the value from its true value. The ranges of uncertainties of recommended and provisional values are less than or equal to $\pm 5\%$ and greater than $\pm 5\%$, respectively.

4. Electrical Resistivity of Alkaline Earth Elements 4.1. Beryllium

Beryllium, with atomic number 4, is a steel-gray, very hard metal, similar to magnesium in appearance and in chemical properties. It has a close-packed hexagonal crystalline structure with a density of 1.85 g cm⁻³ at 293 K. It has been reported that the crystal transforms to a bodycentered cubic form at 1530 K, only 32 degrees below the melting point of 1562 K. The normal boiling point is about 2749 K. Its critical temperature has been estimated to be about 6170 K. Beryllium has only one stable isotope, ⁹Be, but four other radioactive isotopes are known. Beryllium ranks 46th in the order of abundance of elements in the continental crust of the earth (0.00028% by weight).

Temperature Dependence

There are 80 sets of experimental data available for the electrical resistivity of beryllium. The information on specimen characterization and measurement conditions for each of the data sets is given in table 4. The data are tabulated in table 5 and shown in figures 2 and 3. Determinations of the electrical resistivity for the solid phase cover continuously the temperature range from 1.35 to 1454 K.

Since beryllium is an anisotropic metal, resistivity values will vary according to the relation of the direction of the resistivity measurements to the hexagonal axis of the crystal. Grüneisen and Adenstedt [9] curves 16 and 17), Grüneisen and Erfling [10, 11] (curves 12–14, 48–50), Martin, Bunel and Tilbury [12] (curves 59 and 60) and Mitchell [13] (curves 51 and 52) are the investigators who have made measurements on single crystals. However, their results are inconsistent and a need clearly exists for further determination to be made.

Falge [14] has found that bulk beryllium becomes superconducting when cooled below 0.026 K. Yoshihivo and Glover [15] have measured the resistivity of thin film crystalline beryllium on a quartz substrate (curve 53) and found a superconducting transition temperature at about 9.3 K. Williams, Hinkle and Eatherly [16] investigated the neutron irradiation effects on the electrical resistivity of polycrystalline beryllium samples from 72 to 400 K (curves 34-43).

Most earlier determinations of the electrical resistivity of polycrystalline beryllium resulted in higher resistivities than the later ones. These results can be explained by the lower purity of the specimens and by the omission of a heat treatment, which appears to be essential. Powell [17] (curves 18-33) demonstrated the important effect that annealing at 973 K has on the resistivity; for his best polycrystalline specimen, ρ_{203} was lowered from 6.7 to $3.2 \times 10^{-8} \Omega$ m by such treatment. The resistivity values obtained by Losana [18] (curves 9–11) form an anomalous group from which it would seem that the samples have much lower purity than was claimed.

From the examination of the data available for the electrical resistivity, it is evident that there are deviations from the Matthiessen's Rule. The lowest values of ρ for polycrystalline beryllium were reported by Berteaux [19] (curve 44). From his graph, we obtained $\rho_{300} = 3.0 \times 10^{-8} \Omega$ m. However, this value is lower than those for all single crystal samples with perpendicular orientation, and the reported residual resistance ratio $R_{300}/R_{4.2} = 49$ is inconsistent with that shown in his graph, which gives $\rho_{300}/\rho_{4.2} = 200$. Therefore, his data were not considered in the generation of recommended values. Reich, Quang, Kinch, and Boumain [20] (curve 3) and Powell [17] (curve 23) have the next lowest electrical resistivity values for polycrystalline samples, and they are in fair agreement. Comparison of their data with the single crystal data indicates that these samples had highly preferred perpendicular orientation, as is known for the sample of Reich et al. (Although Powell has annealed his sample at 973 K, this temperature was too low for sample recrystallization). The above data and the low-temperature single-crystal data of Grüneisen were used to generate provisional values for the single crystal measured perpendicular to the c-axis. A least mean-square-error fit to the selected values of $\rho-\rho_0$ was made with a modified Bloch-Grüneisen equation (8), from 20 to 873 K. The following values were found for the coefficients in equation (8):

$$S_1$$
 S_2 S_3 25.945·10⁻⁸ Ω m $-1.996\cdot10^{-8}$ Ω m $0.3377\cdot10^{-8}$ Ω m $(\theta_R)_0$ C P 1327.9K 0.373 1.90

The resulting values calculated from equation (8) were extrapolated to lower and higher temperatures, corrected for thermal linear expansion, and the final provisional values were obtained.

Assuming that the anisotropy ratio of the resistivity can be used for the pure element and using the results of Grüneisen and Ersling [10] and of Mitchell [13] and the provisional values of electrical resistivity for single crystals measured perpendicular to the c-axis, the resistivity values for single crystals measured parallel to the c-axis were obtained. These values and the data of Grüneisen et al. were then fitted by the modified Bloch-Grüneisen equation (3) and the following results were obtained:

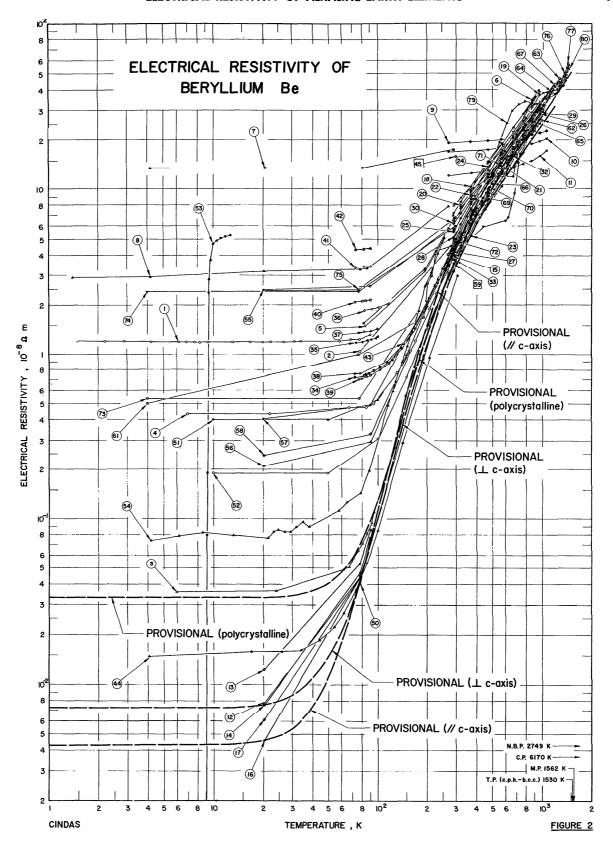
$$S_1$$
 S_2 S_3 $32.258 \cdot 10^{-8} \Omega m$ $11.776 \cdot 10^{-8} \Omega m$ $0.1815 \cdot 10^{-8} \Omega m$ $(\theta_R)_o$ C P 1196.1 K $.02085$ 1.90

By using equation (7) and the above single-crystal results, resistivity values for the polycrystalline specimen were calculated from 10 to 1200 K. Above 1200 K, our provisional values follow the trend of the experimental data of Tye [21] (curves 63–68) and of Ho and Wright [22] (curves 73–80). These values were then fitted by the modified Bloch-Grüneisen equation (8) with the following constants:

$$S_1$$
 S_2 S_3 $28.117 \cdot 10^{-8} \Omega m$ $2.0718 \cdot 10^{-8} \Omega m$ $0.2676 \cdot 10^{-8} \Omega m$ $(\theta_R)_0$ C P 1267.28 K 0.2253 1.90

No data are available for the electrical resistivity of beryllium above the phase transition temperature (1530 K) or in the liquid state.

The provisional values for the total and intrinsic electrical resistivities are listed in table 3, and those for the total resistivity are also shown in figures 2 and 3. The provisional values are corrected for the thermal linear expansion. The correction amounts to -0.15% at 1 K, -0.1% at 200 K. 0.3% at 500 K. 1.3% at 1000 K and 2.4% at 1500 K. The provisional values for the total electrical resistivity are for 99.9+% beryllium and those below 100 K are applicable to specimens with residual resistivities of $0.00718 \times 10^{-8} \Omega \text{ m} \ (\perp \text{ to } c\text{-axis}), 0.00426 \times 10^{-8} \Omega \text{ m} \ (//$ to c-axis), and $0.0332 \times 10^{-8} \Omega$ m (polycrystalline). The uncertainty of the provisional values for the total electrical resistivity is believed to be within 8% below 1000 K and within $\pm 10\%$ from 1000 K to 1500 K. Above 40 K, the uncertainty of the provisional values for the intrinsic resistivity is a little higher than that of the total electrical resistivity because of possible deviations from Matthiessen's Rule; below 40 K the uncertainty can be very large and values are not listed in the table.


TABLE 3. PROVISIONAL ELECTRICAL RESISTIVITY OF BERYLLIUM (Temperature Dependence)

[Temperature, T, K; Total Resistivity, ρ , $10^{-8}\Omega m$; Intrinsic Resistivity, ρ , $10^{-8}\Omega m$]

			Solid			
Т	_	o e-axis		c-axis	Polyc	rystalline
	ρ	ρ_i †	ρ	ρit	ρ	ρi t
1	0.0072		0.0043		0.0332	
4	0.0072		0.0043		0.0332	
7	0.0072		0.0043		0.0332	
10	0.0072		0.0043		0.0332	
15	0.0073		0.0044		0.0334	
20	0.0076		0.0046		0.0336	
25	0.0080		0.0049		0.0339	
30	0.0086		0.0054		0.0345	
35	0.0096		0.0062		0.0354	
40	0.0109	0.0037	0.0074	0.0031	0.0367	0.0035
45	0.0127	0.0055	0.0090	0.0047	0.0384	0.0052
50	0.0127	0.0033	0.0030	0.0047	0.0364	0.0032
60	0.0218	0.0146	0.0180	0.0137	0.0675	0.0143
70	0.0325	0.0253	0.0293	0.0250	0.0584	0.0252
80	0.0483	0.0411	0.0471	0.0428	0.0748	0.0416
90	0.0711	0.0639	0.0736	0.0693	0.0989	0.0657
.00	0.103	0.0954	0.111	0.107	0.133	0.0993
.10	0.144	0.137	0.163	0.159	0.178	0.145
.20	0.199	0.192	0.232	0,228	0.237	0.204
.30	0.266	0.259	0.318	0.314	0.311	0.278
40	0.349	0.342	0.424	0.420	0.401	0.368
50	0.447	0.440	0.550	0.546	0.510	0.477
75	0.758	0.751	0.95 6	0.952	0.851	0.818
00	1.16	1.15	1.48	1.48	1.29	1.26
25	1.64	1.63	2.11	2.11	1.82	1.79
50	2.18	2.17	2,82	2.82	2.42	2.39
	15 2.72	2.71	3.54	3.54	3.02	2.99
93	3.21	3.20	4.19	4.19	3.56	3.53
00	3.38	3.38	4.43	4.43	3.76	3.73
50	4.70	4.69	6.20	6.20	5.22	5.19
100	6.08	6.07	8.07	8.07	6.76	6.73
50	7.48	7.47	9.99	9.99	8.33	8.30
100 100	7.48 8.91	8.90	12.0	9.99 12.0	8.33 9.94	8.30 9.91
50	10.3	10.3	14.0	14.0	11.5	11.5
00	11.8	11.8	16.0	16.0	13.2	13.2
50	13.3	13.3				
	13.3		18.1	18.1	14.8	14.8
00		14.8	20.2	20.2	16.5	16.5
50	16.3	16.3	22.3	22.3	18.3	18.3
300	17.9	17.9	24.5	24.5	20.0	20.0
50	19.5	19.5	26.7	26.7	21.8	21.8
00	21.1	21.1	28.9	28.9	23.7	23.7
50	22.7	22.7	31.2	31.2	25.6	25.6
00	24.4	24.4	33,5	33.5	27.5	27.5
.00	27.8	27.8	38,3	38.3	31.5	31.5
00	31.5	31.5	43.3	43.3	35.7	35.7
00					40.1	40.1
00					44.8	44.8
00					49.9	~ 0

 $[\]uparrow$ At temperatures below 40 K, the uncertainty of ho_i is so large that values are not listed.

The provisional values for the total electrical resistivity are for 99.9+% beryllium and those below 100 K are applicable to specimens with residual resistivities of 0.00718 x $10^{-8}\Omega$ m (\perp to c-axis), 0.00426 x $10^{-8}\Omega$ m (/to c-axis), and 0.0332 x $10^{-8}\Omega$ m (Polycrystalline).

Name and Temp. Method Cur. Ref. Composition (weight percent), Specifications, and Remarks Author(s) Year Specimen Used Range, K No. No. Designation High purity; < 0.1 Mg, trace of Fe; specimen was obtained from A.D. Mackay; 1955 Α 2-295 Be 2 1 White, G.K. and Woods, S.B. sintered rod specimen, 4 mm in diameter; the connections to rods were made with indium solder. Commercial purity: cylindrical rod specimen 0.635 cm (1/4 in.) in diameter Spangler, G.E., Herman, M., 1962 E.A 77,293 Вe Arndt, E.J., Hoover, D.B., and 10 to 15 cm (4 to 6 in.) long. Damiano, V.V., Tint, G.S., and Lee, C.H. Pure; 0.2 BeO, 0.0085 Fe, <0.003 Al, <0.001 each Ni, Cr, 0.0015 Si, and 4.2-400 H1209 Reich, R., Kinh, V.Q., 1963 20 <0.0005 Mn; cast by induction; grain size 30-200 µ; specimen was annealed and Bonmarin, J. at 800 C for 150 hr. 1963 4.2~400 H978 Pure: 0.1 BeO, 0.126 Fe, 0.0045 Al, 0.009 Ni, 0.002 Si, < 0.001 Cr, and Reich, R., et al. 20 0.0007 Mn; specimen was cast by induction; grain size 30-200 u; specimen was annealed at 800 C for 150 hr. 1929 84-973 Commercially pure; 99.5 Be, trace of Al, Cr, Fe, Mn, Si, and < 0.5 Mg; Lewis. E.J. Be 1 specimen was obtained from the Bervllium Co. of America; specimen cross section was 0.792 cm² and 22.5 cm long. 1929 Similar to the above specimen; sample cross section was 0.803 cm² and length 84-973 Be 2 25 Lewis, E.J. was 18 cm. Pure; specimen was obtained from Beryllium Corp. of America. McLennan, J.C. and Niven, C.D. 1927 В 4.2-293 Be 0.5 Fe; specimen was prepared by melting; rod specimen dimension 1.5 x 1.5 x Messiner, W. and Voigt, B. 1930 1.35-273.16 Be 3 8 mm; electrical resistivity data were calculated from the resistance ratio, resistance at 273.16 K, specimen cross section, and potential probes distance: no thermal expansion correction. 273-1073 99.58 pure, 0.21 Al. 0.182 Fe. 0.0121 Cu, trace of Ca, C, Ni; specimen was Losana, L. 1939 Be 5 refined in beryllia crucibles under Ar atm. 10 Losana, L. 1939 273-1073 Be 6 99.781 pure, 0.17 Al, 0.042 Fe, and 0.011 Cu; specimen was refined in beryllia 18 crucibles under Ar atm. 11 1939 273-1073 Be 9 99.962 pure, trace of Zn, Fe; specimen was refined in beryllia crucibles under Losana, L. 18 Ar atm; density 1.816 g cm-3 at 291 K. Grüneisen, E. and Erfling, H.D. Pure; single crystal specimen with length perpendicular to hexagonal axis; 12 1940 20.36-273 Be 3 $\angle(J,X) = 12^{\circ}$, where $\angle(J,X)$ is the angle between the current and secondary axis. Pure; single crystal specimen with length perpendicular to hexagonal axis; Grüneisen, E. and Erfling, H.D. 1940 20.37-273 13 Be 4 10 $\angle (J,X) = 2^{\circ}$. Pure; single crystal specimen with length perpendicular to hexagonal axis; Grüneisen, E. and Erfling, H.D. 1940 20.34-273 14 10 Be 8 $\angle (J,X) = 30^{\circ}$. Pure: melting point = 1550.8 K, density = 1.856 g cm^{-3} . 15 Campbell, J.E., Goodwin, H.B., 1961 293.15 Be 28 Wagner, H.J., Douglas, R.W., and Allen. B.C.

J. Phys. Chem. Ref. Data, Vol. 8, No. 2, 1979

16

17

Grüneisen, E. and Adenstedt, H.

Grüneisen, E. and Adenstedt, H.

1938

1938

20.33-273

20.32-273

Be 2

Be 1

TABLE 4. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF BERYLLIUM Be (Temperature Dependence)

Pure; single crystal specimen with length parallel to hexagonal axis; specimen

Similar to the above specimen; length 1 cm. Reported error 1.5%.

1 mm in diameter and 1.55 cm in length; density 1.84 g cm⁻³. Reported error 1.5%.

TABLE 4. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF BERYLLIUM Be (Temperature Dependence) (continued)

Cur. No.		Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
18	17	Powell, R.W.	1953		293-973	Be No. B.7 (D) (i)	96.5 Be, 1.81 Mg, 1.52 F, 0.55 Fe, 0.06 Al, 0.035 Ca, 0.008 Cu, 0.005 Mn, and 0.032 C; bar 0.5 cm square section, 13.1 cm long machined from a chilled cast bar prepared from the Brush Beryllium's crude reactor products density 1.826.
19	17	Powell, R.W.	1953		293-973	Be No. B.7 (D) (i)	The above specimen; heat treated at 973 K.
20	17	Powell, R.W.	1953		293-973	Be No. B. 26 (1) (ii)	Bar 2.25 cm diameter and 7.7 cm long was machined from a chilled cast bar prepared from the Brush Beryllium Company's crude reactor products; density 1.842.
21	17	Powell, R.W.	1953		293-973	Be No. B. 26 (1) (ii)	The above specimen; heat treated at 973 K.
22	17	Powell, R.W.	1953		293-873	Be No. B. 26 (2) A (iii)	Bar 0.865 cm diameter and 1.884 cm long; this had come from the same casting as No. B.26(1) but after an attempt had been made to extrude the metal at 1000 C; subsequently the metal had been heated in vacuum for 1 hr and furnace cooled.
23	17	Powell, R.W.	1953		293-873	Be No. B. 26 (2) A (iii)	The above specimen; heat treated at 973 K.
24	17	Powell, R.W.	1953		293-973	Be No. B.28 (2) (iv)	98.5 Be, 0.13 Al, 0.18 Fe, 0.03 Cu, 0.05 Cl, Be insoluble in HCl 0.18; bar 2.23 cm diameter and 11.1 cm long was machined from a chilled cast bar prepared from German flake beryllium; density 1.823 g cm ⁻³ .
25	17	Powell, R.W.	1953		293-973	Be No. B. 28 (2) (iv)	The above specimen; heat treated at 973 K.
26	17	Powell, R.W.	1953		293-973	Be No. B47B (v)	Bar 2. 287 cm diameter and 15.72 cm long was machined from a chilled cast bar prepared from the Brush Beryllium Company's crude reactor product.
27	17	Powell, R.W.	1953		293-973	Be No. B47B (v)	The above specimen; heat treated at 973 K.
28	17	Powell, R.W.	1953		293-973	Be No. 2(b) (vi)	Bar 1.0 cm square section, 6.6 cm long; this was a block of beryllium by the "sintering" process by the American G.E.C.; density 1.83 g cm ⁻³ .
29	17	Powell, R.W.	1953		293-973	Be No. 2(b) (vi)	The above specimen; heat treated at 973 K.
30	17	Powell, R.W.	1953		293-973	Be (vii)	Slice approximately 0.33 cm thick, 0.62 cm wide, and 5 cm long; density 1.85 g cm ⁻³ .
31	17	Powell, R.W.	1953		293-973	Be (vii)	The above specimen; heat treated at 973 K.
32	17	Powell, R.W.	195 3		293-973	Be (xi)	Bar 1 in. in diameter and 6 in. long; density 1.865 g cm ⁻³ ; Mg and C main impurities, 0.34 Mg.
33	17	Powell, R.W.	1953		293-973	Be (xi)	The above specimen; heat treated at 973 K.
34	16	Williams, J.M., Hinkle, N.E., and Eatherly, W.P.	1972	A	72.5-402.	5 K38-1	Pure; specimen axis was parallel to the pressing condition. Reported error 2%.
35	16	Williams, J.M., et al.	1972	A	73.75-100.	41 K38-1	The above specimen; sample was irradiated by 7.41×10^{17} neutrons/cm ² with E > 1.0 MeV. Reported error 2%.

TABLE 4. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF BERYLLIUM Be (Temperature Dependence) (continued)

Cur.	Ref. No.	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
36	16	Williams, J.M., Hinkle, N.E., and Eatherly, W.P.	1972	A	82.78-99.57	K38-1	The above specimen; sample was irradiated by 1.02×10^{18} neutrons/cm ² with $E > 1.0$ MeV. Reported error 2%.
37	16	Williams, J.M., et al.	1972	A	82.52-117.74	4 K38 -1	The above specimen; sample was irradiated by 2.15 x 10^{18} neutrons/cm ² with E > 1.0 MeV. Reported error 2%.
38	16	Williams, J.M., et al.	1972	A	88.25-294.7	5 K38 -1	The above specimen; after irradiation the sample was annealed at 324.3 K.
39	16	Williams, J.M., et al.	1972	A	76.55-370.1	6 K3 7-1	Pure; specimen axis was perpendicular to the pressing condition. Reported error 2%.
40	16	Williams, J.M., et al.	1972	A	72.91-90	K37 -1	The above specimen; sample was irradiated by 2.53 x 10^{16} neutrons/cm ² with E > 1 MeV. Reported error 2%.
41	16	Williams, J.M., et al.	1972	A	73.35-90	K37-1	The above specimen; sample was irradiated by 6.19 x 10^{11} neutrons/cm ² with E > 1 MeV. Reported error 2%
42	16	Williams, J.M., et al.	1972	A	73.74-92.66	K37 -1	The above specimen; sample was irradiated by 10.53 x 10^{18} neutrons/cm ² with E > 1 MeV. Reported error 2%.
43	16	Williams, J.M., et al.	1972	A	71.28-329.70	6 K37-1	The above specimen; after irradiation the sample was annealed at 338.6 K.
44	19	Berteaux, F.	1970		4.1- 307.6		High purity; Debye temperature $\theta = 1160 \text{ K}_{\frac{1}{3}}$ data were extracted from the smooth grap
45	29	Bridgman, P.W.	1927	A	303		Pure; the specimen was a casted rod 4.6 mm in diameter and 9 cm long; the specimen was obtained from Dr. H.S. Cooper of the Kemet Laboratories; density at 293 K was found to be 1.820.
46*	30	Babkina, M.A., Zhermunskaya, L.B., Timofeeva, Z.A., and Tsukanova, N.V.	1972		~293		99.6 pure; 0.09 mm diameter wire specimen was obtained by casting, hot extraction, and hot drawing.
47*	30	Babkina, M.A., et al.	1972		~293		Similar to the above specimen; except it was tempered at 773 K.
48*	11	Erfling, H.D. and Grüneisen, E.	1942	A	79-273.1	5 Be _{//} 2	Pure; single crystal specimen with its axis parallel to hexagonal axis.
49*	11	Erfling, H.D. and Grüneisen, E.	1942	\mathbf{A}	273.15	Be <u></u> 8	Pure; single crystal specimen with its axis perpendicular to hexagonal axis.
50	11	Erfling, H.D. and Grüneisen, E.	1942	A	78-273.1	5 Be _{//} 6	Pure; single crystal specimen with its axis parallel to hexagonal axis.
51.	13	Mitchell, M.A.	1975	A	10-900	,,	Pure; single crystal specimen with its axis parallel to the hexagonal axis; sample dimension 2 x 2 x 19 mm; the specimen was grown by triple pars zone refining of pure Be in vacuum at the Franklin Institute Research Labs., data are extracted from the smoothed table; reported error 1.8%.
52	13	Mitchell, M.A.	1975	A	10-900		Similar to the above specimen except its axis is perpendicular to the hexagonal axis and sample dimension $4 \times 4 \times 41$ mm.; reported error 1.8%.
53	15	Yoshihiro, K. and Glover, R.E. III.	1974	A	9.0-13		99.95 pure; beryllium film were prepared by vacuum evaporation of distillation purified Be on crystalline quartz substrate; film thickness 150 Å; Ge resistance thermometer was used to measure the temperature; resistance per square data were reported; data were extracted from graph.
54	31	Yamaguchi, M., Takahashi, Y., Takasaki, Y., and Ohta, T.	1974		80-300		0.01 Ni, 0.008 Fe, 0.003 Mn, 0.002 Al, 0.002 Mg, 0.002 Si, 0.0001 Ca, 0.0001 Na, and < 0.0001 Cu; polycrystalline specimen was obtained from Johnson Matthey Co.; $\rho_{290}=7$ x 10^{-8} Ω m; data were extracted from the graph.

^{*} Not shown in the figure.

TABLE 4. MEASUREMENT INFORMATION OF THE ELECTRICAL RESISTIVITY OF BERYLLIUM Be (Temperature Dependence) (continued)

Cur. No.		Author(s)	Year	Method Used	Temp. Range,K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
55	32	Denton, H.W.	1947	A	20.2-273.2		Pure; cylindrical specimen 3.5 cm long and 0.3 cm in diameter was prepared by "sintering" process by the American G. E. C.; result of the x-ray examination show that the grains of order 10 ⁻³ cm in size, almost completely stain free, and with a small proportion of considerably smaller grains.
56	32	Denton, H.W.	1947	A	20.2-273.2		Similar to the above specimen except it was annealed at 988 K for 12 hr and for shorter periods over the temperature ranges: 943 K and 838-813 K during cooling; result of x-ray examination showed the removal of any residual strain and removal of very small grains.
57	32	Denton, H. W.	1947	A	20.2-273.2		Similar to the above specimen except it was further "quenched" in water from above 1023 K.
58	32	Denton, H. W.	1947	A	20.2-273.2		Similar to the above specimen except it was again receiving the 988 K heat treatment.
59	12	Martin, A.J., Bunce, J.E., and Tilburg, P.D.	1962	A	293	8C	Pure; 0.024 Mg, 0.003 Al, 0.037 Si, and 0.1 Fe; single crystal specimen approximately 0.5 in. in diameter and 6 in. long; crystal was extruded ingot stock by zone refining three times; the specimen was annealed in argon at 1133 K for 16 hr.
60	12	Martin, A.J., et al.	1962	A	293	1 5B	Similar to the above specimen except it was zone refining twice.
61	33	Kuczynski, G.C.	1960		4-300	QMV	Pure; the specimen was obtained from Brush Beryllium Corp., Cleveland, Ohio; melting point 1558 K; density 1.85 g/cm³; the specimen was annealed at 973 K for 1/2 hr; data were extracted from the figure.
62	33	Kuczynski, G.C.	1960		270-1000	QMV	Similar to the above specimen; the measurements were done by Battelle Institute staff; data were extracted from the figure.
63	21	Tye, R.P.	1968		295-1283	Be 2 (4921)	98.4 Be, 1.08 BeO, 0.15 C, 0.13 Fe, 0.09 Al, 0.01 Mg, 0.03 Si, 0.01 Mn, other metallic impurity 0.04; density 1.86 g cm³; hot pressed specimen is obtained from Brush Beryllium Company; cylindrical sample 13 mm in diameter and 100 mm in length; reported error 1%.
64	21	Tye, R.P.	1968		295-1249	Be 4 (5085)	98.2 Be, 1.7 BeO, 0.12 C, 0.13 Fe, 0.12 Al, 0.03 Mg, 0.04 Si, 0.01 Mn, other metallic impurity 0.04; density 1.853 g/cm³; other specifications are similar to the above specimen; reported error 1%.
65	21	Tye, R.P.	1968		299-1258	Be 6 (4814)	98.46 Be, 1.6 BeO, 0.12 C, 0.12 Fe, 0.09 Al, 0.01 Mg, 0.03 Si, 0.01 Mn, other metallic impurity 0.04; density 1.86 g/cm³; other specifications are similar to the above specimen; reported error 1%.
66	21	Tye, R.P.	1968		295-1276	Be 8 (4814)	Similar to the above specimen; reported error 1%.
67	21	Tye, R.P.	1968		297-1268	Be 9 (4811)	98.41 Be, 1.64 BeO, 0.12 C, 0.12 Fe, 0.09 Al, 0.01 Mg, 0.03 Si, 0.01 Mn, other metallic impurity 0.04; density 1.86 g/cm³; other specifications are similar to the above specimen; reported error 1%.
68	21	Tye, R.P.	1968		298-1266	Be 11 (4811)	Similar to the above specimen, reported error 1%
69	34	Tye, R.P. and Quinn, J.F.	1968		293-859	Be 1	Pure; 2 BeO, 0.15 C, 0.18 Fe, 0.08 Si, 0.08 Mg, 0.16 Al, and 0.04 other metallic impurities; specimen are obtained from Brush Beryllium Company; cylindrical specimen 13 mm in diameter and 100 mm in length.

TABLE 4. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF BERYLLIUM Be (Temperature Dependence) (continued)

Cur. No.	Ref. No.	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
70	34	Tye, R.P. and Quinn, J.F.	1968		293-860	Be 2	Similar to the above specimen.
71	34	Tye, R.P. and Quinn, J.F.	1968		293-807	Ве 3	Similar to the above specimen.
72	34	Tye, R.P. and Quinn, J.F.	1968		293-825	Be 5	Similar to the above specimen.
73	22	Ho, J. and Wright, E.S.	1960	В	4-300	T1 Y2-2	Pure; 0.087 nonmetallic impurity, 0.094 metallic impurity; the specimens were 2 in. long and 0.1 in. by 0.5 in. rectangular bars or 0.25 in. diameter cylinders Leeds and Northup Precision Kelvin Bridge was used for measurements; measurements were made in vacuum.
74	22	Ho, J. and Wright, E.S.	1960	В	4-300	T3 Y2-3	Pure; 0.144 nonmetallic impurity, 0.222 metallic impurity; other specifications similar to the above specimen.
75	22	Ho, J. and Wright, E.S.	1960	В	4-300	T3 Y2-4	Similar to the above specimen.
76	22	Ho, J. and Wright, E.S.	1960	В	295-1416	Y6825	0.947 O, 0.0013 H, 0.0071 N, 0.003 Mg, 0.015 Al, 0.01 Si, 0.001 Ca, 0.002 Ti, 0.008 Cr, 0.005 Mn, 0.15 Fe, 0.01 Ni, and 0.004 Cu; measurements below 973 K were made in vacuum, purified argon are admitted at higher temperatures to retard the evaporation of specimen; data were extracted from the figure; other specifications are similar to the above specimens.
77	22	Ho, J. and Wright, E.S.	1960	В	292-1447	Y9384	0.54 O, 0.0106 N, 0.006 Mg, 0.05 Al, 0.008 Si, 0.002 Ca, 0.004 Ti, 0.01 Cr, 0.008 Mn, 0.15 Fe, 0.015 Ni, and 0.01 Cu; other specifications are similar to the above specimen.
78	22	Ho, J. and Wright, E.S.	1960	В	295-1454	Y6826	0.827 O, 0.0012 H, 0.0026 N, 0.01 Mg, 0.03 Al, 0.02 Si, 0.002 Ca, 0.002 Ti, 0.01 Cr, 0.006 Mn, 0.15 Fe, 0.015 Ni, and 0.01 Cu; other specifications are similar to the above specimen.
79	22	Ho, J. and Wright, E.S.	1960	В	303-1409	YB 1000	0.786 O, 0.0056 N, 0.015 Mg, 0.03 Al, 0.008 Si, 0.002 Ca, 0.002 Ti, 0.01 Cr, 0.01 Mn, 0.15 Fe, 0.02 Ni, and 0.015 Cu; other specifications are similar to the above specimen.
80	22	Ho, J. and Wright, E.S.	1960	В	380-1454	LYB 11 02	0.635 O, 0.0101 H, 0.005 N, 0.02 Mg, 0.04 Al, 0.04 Si, 0.002 Ca, 0.004 Ti, 0.02 Cr, 0.008 Mn, 0.2 Fe, 0.02 Ni, and 0.01 Cu; other specifications are similar to the above specimen.

TABLE 5. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF BERYLLIUM Be (Temperature Dependence)

P					[Tem	perature, T,	K; Resistivity,	, 10 ⁻⁸ Ωm]	•		,	
1.5 1.22 331 4.83 7.77 29.00 673 13.9 373 10.4 323 7.7	т	ρ	${f T}$	ρ	T	ρ	Т	ρ	т	ρ	т	ρ
1.22 1.22 372 5.07 977 34.55 773 14.4 473 14.8 373 9.2 2.9 1.22 407 7.12 963 40.00 873 15.0 573 16.2 473 12.3 4.2 1.20 447 8.17 2087 973 15.1 673 24.0 573 15.2 6.9 1.20 CURVE 4 CURVE 7 1073 17.4 773 29.2 673 15.2 6.9 1.20 CURVE 4 2.3.6 CURVE 12 873 33.5 6.2 1.20 7 0.435 30.6 13.6 CURVE 12 873 33.5 6.3 1.20 7 0.435 30.1 13.7 20.36 0.0078 CURVE 19 223 3.2 6.3 1.20 67 0.476 293 17.6 78 0.0482 6.3 1.20 85 0.476 293 17.6 78 0.0482 6.3 1.20 94 0.50 CURVE 8 273.15 3.12 323 6.2 473 8.1 19.9 1.20 94 0.50 CURVE 8 273.15 3.12 323 6.2 473 8.1 22.3 1.20 132 0.774 373 8.2 573 11.1 22.5 1.20 132 0.774 373 8.2 573 11.1 22.6 1.20 159 1.06 1.41 2.972 CURVE 13 473 12.4 673 13.5 31.1 1.22 170 1.23 4.20 2.972 31.1 1.22 209 1.23 4.20 2.972 31.1 1.22 209 1.23 3.25 65.14 3.352 90.35 0.0888 873 31.8 24.0 1.25 228 3.25 66.14 3.352 90.35 0.0888 873 31.8 277 1.06a9.07 447 5.57 373 19.4 20.35 0.0073 32.8 200 1.33 309 4.70 200 200 200 200 200 200 201 1.33 309 4.70 200 200 200 200 200 200 200 201 201 201 200 200 200 200 200 200 200 200 200 201 201 200 2	CUR	<u>VE 1</u>	CURVE	3 (cont.)	CURVE	6 (cont.)	CURVE	11 (cont.)	CURVE	18 (cont.)	CURVE	22 (cont.)
2.2 1.22	1.5	1.22	331	4.83								
1.120		1.22	372									
CURVE 2					963	40.00						
1.20			447	8.17	CTT							
1.20			arn	DUD 4	CUF	IVE 7	1073	17.4			673	19.2
8.3 1.20 7 0.435 20.6 13.6 20.6 13.6 20.3			<u>CU</u>	RVE 4	4.9	19.6	CITE	VF 19			CIT	WE 99
1. 1. 20			7	0.425			CON	111 12	910	30.0	CUR	VE 25
13.1							20.36	0.0078	CUR	VE 19	293	3.2
16.7 1.20 85 0.476												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-00				293	5.1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					CUF	RVE 8						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			132						373	8.2	573	11.1
31.1 1.22							CUR	VE 13	473	12.4	673	13.5
Section Sect				1.23								
Curve 1	34.0		209								873	20.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
90.0 1.33											CUR	VE 24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					273.16	7.946	273.15	3.13**	973	37.6	200	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	90.0	1.33			CIT	77T2 O	CITD	7777 1.4	OIT.	T.T. 00		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GTTD				CUP	IVE 9	CUR	VE 14	CUR	VE ZU		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CUR	VE Z			272	10 /	20.35	0.0076	202	7 1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	88	1 00 0 07										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			441	0.01								
CURVE 3 84 1.50 773 20.7 CURVE 15 673 19.9 973 33.9 6 0.036 196 3.22 873 21.6 773 23.8 773 23.8 24 0.0365 294 6.45 973 22.1 293.15 4.0 873 27.8 CURVE 25 20.0495 31.5 9.75 1073 22.8 293.15 4.0 873 27.8 CURVE 26 20.0495 31.8 CURVE 26 20.053 0.0045 20.0049 973 31.8 CURVE 26 20.00496 674 22.45 20.33 0.00458 20.00499 973 31.8 293 5.6 6.7 76 0.0649 674 22.45 20.33 0.00458 293 4.1 473 11.9 86 0.0820 880 32.45 473 17.6 273.15 3.58 323 5.1 573 15.5* 92 0.00454* 293 4.1 473 11.9 473	293	4.00±0.01	CU	RVE 5								
6 0.036 196 3.22 873 21.2 CURVE 15 673 19.9 973 33.9 24 0.0365 294 6.45 973 22.1 293.15 4.0 873 27.8 CURVE 25 62 0.0495 381.5 9.75 1073 22.8 CURVE 16 CURVE 21 293 5.6 67 0.0510 496 14.64 CURVE 16 CURVE 21 293 5.6 71 0.0585 588 18.60 CURVE 10 CURVE 21 293 5.6 81 0.0719 785 27.55 273 17.1 79.02 0.0454* 293 4.1 473 11.9 86 0.0820 880 32.45 473 17.6 273.15 3.58 323 5.1 573 15.5* 92 0.0949 973 39.00 673 18.2 373 6.7 673 19.4 95 0.111 873 19.0 CURVE 17 <td< td=""><td>CUR</td><td>VE 3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	CUR	VE 3										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		··	84	1.50			CUR	VE 15		19.9	973	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	0.036	196		873	21.6				23.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	0.0365	294	6.45			293.15	4.0			CUR	VE 25
71 0.0585 588 18.60 CURVE 10 20.33 0.00458 CURVE 21 323 6.7 76 0.0649 674 22.45 20.33 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00454 20.23 0.00454 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00458 20.23 0.00478 20.23 0.00478 20.20 20.20 20.20 0.00616 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 <td< td=""><td></td><td></td><td></td><td></td><td>1073</td><td>22.8</td><td></td><td></td><td>973</td><td>31.8</td><td></td><td></td></td<>					1073	22.8			973	31.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							CUR	<u>VE 16</u>				
81 0.0719 785 27.55 273 17.1 79.02 0.0454* 293 4.1 473 11.9 86 0.0820 880 32.45 473 17.6 273.15 3.58 323 5.1 573 15.5* 92 0.0949 973 39.00 673 18.2 373 6.7 673 19.4 95 0.111 873 19.0 CURVE 17 473 10.2 773 23.6 123 0.276 CURVE 6 973 19.8 573 13.9 873 27.9 148 0.561 1073 20.6 20.32 0.00616 673 17.8 973 32.8 170 0.830 82 1.56 78.52 0.047* 773 21.9 182 1.01 196 3.33 CURVE 11 273.15 3.58* 873 26.3 CURVE 26 209 1.52 295 6.76 973 30.9 293 5.8 246 2.38 485 14.85 373 </td <td></td> <td></td> <td></td> <td></td> <td>CUI</td> <td>RVE 10</td> <td></td> <td></td> <td>CUR</td> <td><u>VE 21</u></td> <td></td> <td></td>					CUI	RVE 10			CUR	<u>VE 21</u>		
86 0.0820 880 32.45 473 17.6 273.15 3.58 323 5.1 573 15.5* 92 0.0949 973 39.00 673 18.2 373 6.7 673 19.4 95 0.111 873 19.0 CURVE 17 473 10.2 773 23.6 123 0.276 CURVE 6 973 19.8 573 13.9 873 27.9 148 0.561 1073 20.6 20.32 0.00616 673 17.8 973 32.8 170 0.830 82 1.56 78.52 0.047** 773 21.9 182 1.01 196 3.33 CURVE 11 273.15 3.58* 873 26.3 CURVE 26 209 1.52 295 6.76 973 30.9 293 5.8 246 2.38 485 14.85 373 12.6 200.00616 673 17.8 973 30.9 259 1.52 295 6.76 973 30.9 973 30.9 973 30.9 229 1.95 370 9.83 273 12.2 CURVE 18 20.00616<					0.00	a == a			000			
92 0.0949 973 39.00 673 18.2 373 6.7 673 19.4 95 0.111 873 19.0 CURVE 17 473 10.2 773 23.6 123 0.276 CURVE 6 973 19.8 78.52 0.00616 673 17.8 973 32.8 170 0.830 82 1.56 78.52 0.047* 773 21.9 182 1.01 196 3.33 CURVE 11 273.15 3.58* 873 26.3 CURVE 26 209 1.52 295 6.76 973 12.2 CURVE 18 293 5.8 246 2.38 485 14.85 373 12.6 CURVE 18 293 7.2 293 5.8 270 2.86 578 19.05 473 13.0 293 7.2												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							273.15	3.58				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			973	39.00			CITD	VT 17				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95 199		CIT	DVE 6			CUR	VE II				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u>co.</u>	ITV IS O			20.32	0.00616				
182 1.01 196 3.33 CURVE 11 273.15 3.58* 873 26.3 CURVE 26 209 1.52 295 6.76 973 30.9 229 1.95 370 9.83 273 12.2 CURVE 18 293 5.8 246 2.38 485 14.85 373 12.6 CURVE 22 323 6.7* 270 2.86 578 19.05 473 13.0 293 7.2 CURVE 22 373 8.2*			82	1 56	1075	20.0					213	02.0
209 1,52 295 6.76 973 30.9 229 1,95 370 9.83 273 12.2 CURVE 18 293 5.8 246 2.38 485 14.85 373 12.6 CURVE 22 323 6.7* 270 2.86 578 19.05 473 13.0 293 7.2 373 8.2*					CUR	VE 11					CUR	VE 26
229 1.95 370 9.83 273 12.2 CURVE 18 293 5.8 246 2.38 485 14.85 373 12.6 CURVE 22 323 6.7* 270 2.86 578 19.05 473 13.0 293 7.2 373 8.2*								· ·				
246 2.38 485 14.85 373 12.6 CURVE 22 323 6.7* 270 2.86 578 19.05 473 13.0 293 7.2 373 8.2*					273	12.2	CUR	VE 18			293	5.8
270 2.86 578 19.05 473 13.0 293 7.2 373 $8.2*$			485		373	12.6			CUR	VE 22	323	
309 4.31 676 23.90 573 13.4 323 8.4 293 6.7 473 11.3												
	309	4.31	676	23.90	573	13.4	323	8.4	293	6.7	473	11.3

^{*} Not shown in figure.

TABLE 5.	EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF BERYLLIUM	Ве	(Temperature Dependence)	(continued)
----------	--	----	--------------------------	-------------

								, -	-	, ,	
T	ρ	${f T}$	ρ	T	ρ	T	ρ	T	ρ	Т	ρ
CURVE	26 (cont.)	CURV	E 30 (cont.)	CURVE 3	34 (cont.)	CURVE 3	(cont.)	CURV	E 44	CURVE 5	51 (cont.)
E 77 9	14.6	673	19.2*	122.6	0.9631	79.83	0.7113	4.1	0.0148	250	3.35
573 673	18.1	773	23.0	159.1	1.363	85.58	0.7303	10.7	0.0158	300	5.10
773	21.8	873	27.3	201.0	2.107	91.01	0.7478	26.0	0.0158	350	6.90
873	25.6	973	32.0	225.1	2.639	103.37	0.8021	34.6	0.0162	400	8.70
973	29.2	0.10		265.5	3.662	111.13	0.8466	44.3	0.0186	500	12.70
010	20.2	CU	RVE 31	300.1	4.637	117.91	0.8901	54.3	0.0224	600	17.10
CUR	VE 27			325.1	5.375	141.81	1.105	62.4	0.0269	700	21.90
		293	5.1*	348.2	6.093	170.68	1.455	73.8	0.0371	800	27.10
293	4.2	323	6.1	366.0	6.638	197.64	1.967	85.5	0.0537	900	33.20
323	5.0	373	7.7	402.5	7.799	234.31	2.751	100.0	0.0851		
373	6.6	473	11.0			257.97	3.339	142.9	0.295	CURY	VE 52
473	9.9	573	14.5*	CURY	VE 35	282.62	3.985	208.9	0.955		
573	13.3	673	18.3			312.70	4.783	307.6	3.02	10	0.19
673	16.9	773	22.2*	73.75	1.195	339.84	5.609			50	0.19
773	20.7	873	26.5	80.64	1.214	364.16	6.341	CURV	E 45	100	0.31
873	24.4	973	31.6	86.18	1.231	370.16	6.518*			150	0.73
973	29.2*			91.18	1.247	A *****		303	10.6	200	1.45
		CU	RVE 32	92.12	1.253*	CURY	E 40	CTIDI	TT 40.	250	2.45
CUR	VE 28			97.70	1.279	" " 0 0 "	0.400	CURV	E 46*	300	3.67
		293	4.3	100.41	1,292	72.91	2.109	000	5 0	350	5.00
293	5.2	323	5.2	C† m r	. TT. 00	80.46	2.132	293	5.0	400	6.40
323	6.2*	373	6.6*	CURY	VE 36	84.21	2.149	CITION	T. 45%	500	9.40
373	7.7	473	9.6	00 50	1 005	90.00	2.168	CURV	E 47*	600 700	12.63
473	10.9	573	12.8	82.52	1.865	CITOI	ITC 44	293	4.5	800	16.03 19.70
573	14.5	673	16.2	9 1. 77 10 1. 34	1.899 1.948	CURY	/E 41	293	4.0	900	23.90
673	18.2*	773 873	20.0 24.0	115.90	2.053	73.35	3.410	CURV	F 10*	300	43.90
773	22.2	973	28.3	117.74	2.066	82.81	3.435	CORV	D 40	CIIR	VE 53
873 973	26.4 30.8	913	40.0	711.14	2.000	91.00	3.458	78.95	0.045	0010	VII 00
913	30.0	CT	RVE 33	CIIBA	VE 37	31.00	0.400	89.97	0.0763	9.00	0.00
CIID	VE 29	<u>00</u>	IIVE 33	0010	711 01	CURY	TE 42	273.15	3.58	9.15	0.08
COR	VE ZO	293	3.8	82.78	1.382	0011	111111111111111111111111111111111111111	210,20	0.00	9.27	0.19
293	4.1*	323	4.6	90.12	1.407	73.74	4.376	CURV	E 49*	9.40	2.40
323	5.0*	373	6.1	99.57	1.453	82.45	4.401	<u> </u>		9.47	2.84
373	6.6*	473	9.1	00.0	1. 100	90.00	4.425	273.15	3.12	9.61	3.76
473	9.9*	573	12.4	CURY	VE 38	92.66	4.385*			9.75	3.98
573	13.5	673	16.0			v= v =v		CURV	Æ 50	10.09	4.72
673	17.1	773	19.8	88.25	0.7697	CURY	Æ 43	78.29	0.00404	10.54	4.96
773	20.9	873	23.8	114.85	0.9032			79.63	0.04125	11.10	5.17
873	25.2	973	28.3*	139.38	1.126	71.28	0.7213*	89.97	0.0728	11.97	5.29
973	29.9			171.55	1.564	82.95	0.7445	273.15	3.56	12.79	5.34
		CU	RVE 34	205.87	2.219	102.42	0.8256*				
CUR	VE 30			234.48	2.863	145.03	1.173	CURV	E 51	CUI	RVE 54
		72.		265.20	3.655*	194.01	1.925				
293	6.3	84.		294.75	4.487	214.21	2.945*	10	0.41	4.2	0.074
323	7.2	88.4				245.83	3.060	50	0.41	6.2	0.079
373	8.8	94.9		CURY	/E 39	286.44	4.121	100	0.53	8.6	0.083
473	12.1	95.0				302.62	4.563*	150	1.00	13.3	0.080
573	15.5*	103.8	3 0.8351	76.55	0.7058	329.76	5.343	200	2.00	21.5	0.077

^{*} Not shown in figure.

TABLE 5. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF BERYLLIUM Be (Temperature Dependence) (continued)

	1111	JIII O. DIXI I		TITL OIL THE DEL	30 11(1011B 1(B)	MOTIVITIES DE	JI I I I I I I I	be (remperatur	e 13 openacioe	(Communaca)	
${f T}$	ρ	T	ρ	T	ρ	T	ρ	T	ρ	Т	ρ
CURVE 5	4 (cont.)	CURY	/ <u>E 58</u> *	CURVE 6	3 (cont.)	CURVE 5	7 (cont.)	CUR	VE 71	CURVE	76 (cont.)
23.3	0.084	20.2	0.245	1173.5	40.66	959.3	28.81	293	4.66*	962	31.9
24.8	0.086	90.2	0.333	1246	44.20	1045.5	32.40	293	4.78*	1008	34.4
27.2	0.084	273.2	3.500*	1283	46.90	1133	38.30	432.5	8.45	1055	35.2
	0.084	413.4	3. 300	1200	40.00	1208	42.20	447	9.10	1122	20.2
29.4		OTTO	TD 50	CURV	T 04				14.10	1122	38.2 39.3
31.8	0.090	CURY	/ E 59	CURV	L 64	1268	45.60	562			39.3
35.0	0.096			20- 2	4 501		T 40	642	14.10	1250	44.7
38.0	0.090	293	3.60	295.2	4.50*	CURY	E 68	718	19.02	1329	46.1
39.8	0.097*			371.3	6.51*			807	22.40	1353	48.8
57.4	0.114	CURY	/E 60*	549	12.32	297.5	4.70*			1378	50.1
64.9	0.127			641.5	15.20	396	7.43*	CUR	VE 72	1416	54.5
78.2	0.145	293	4.38	864.3	24.03	495	10.82				
88.3	0.198			1010.1	29.92	626.5	15. 03	293	4.58*	CUF	IVE 77
116.4	0.491	CURY	VE 61	1158	39.10	778.2	20.41	294	4.76*		
124.7	0.600			1249	44.10	883	24.83	303.5	4.88	292	5.1*
128.8	0.689	4	0.5			1107.5	36.20	628	16.00	456	7.6
141.9	0.903	76	1.0	CURV	E 65	1172	40.90	674	17.00	572	10.4
151.4	1.14	191	1.7			1266	44.80	755	20.20	655	15.7
162.9	1.39	202	2.7	298.6	4.61*			825	23.30	704	19.5
167.5	1.58*	215	3.0	374.3	6.88	CURY	E 69			918	36.4
177.0	1.86	228	4.3	483.4	10.18			CUR	VE 73	967	37.3
187.5	2.21	281	4.6	630	15.15	293	4.56*	<u> </u>	<u> </u>	1022	38.5
195.4	2.63	292	4.9*	769	20.42	293	4.58*	4	0.54	1085	38.9
211.3	3.15	302	5.2	908	25.72	293	4.64	77	0.54	1180	40.4
216.8	3.39*	302	0. 2	999	30.12	404	7.73*	300	4.03	1245	40.3
224.4	3.67*	CURV	TE 69	1121	37.10	441	8.92	300	7.00	1306	43.1
233.3	4.13	CONV	10 02	1258	44.90	461	9.55	CUR	717 74	1339	44.9
255. 9		270	4.1	1200	44. 30	531	12.23	CUR	VE 14	1339 1408	44.9
	5.13	320	5.5	CURV	To co	551 550	10.40	4	2.42		49.4
276.1	6.30*		7.5	CURV	E 00		12.58			1447	58.1
290.4	7.00	376		005	4.054	859	24.20	77	2.43	CIT	37T) =0
		423	8.2	295	4.25*	0	***	300	6.03	CUR	VE 78
CURV	E 55	727	18.3	396	7.10	CURY	/E 70	arm	ee	20.5	
	2 40	800	20.3	506.3	10.74	000		CUR	/E 75	295	4.1*
20, 2	2.49	880	22.4	614.2	14.42	293	4.66*			442	6.0
90.2	2.61	931	24.5	746.2	18.93	293	4.70*	4	2.40*	605	6.5
273.2	5.86	1000	26,4	885.2	24.52	293	4.73*	77	2.49	628	6.8
				972.9	28.12	367	6.24	300	6.80	682	9.5
CURV	E 56	CURY	VE 63	1113.5	35.50	466	8.54			726	14.7
				1276	45.30	482	10.30	CUR	VE 76	743	16.6
20,2	0.21	295.1	4.05*			614	15.30			807	20.0
90,2	0.297	395.5	6.99	CURV	E 67	641	16.00	295	6.5*	904	22.8
273.2	3.50	526.3	11.22			663	16.80	393	9.1	1005	32.5
		635.5	14.88	299.3	4.72	713	18.70	452	10.1	1067	35.3
CURY	E 57	677	15.53	393	7.40	808	22.80	508	12.0	1158	38.0
		812	21.30	500.5	10.95	870	24.60	670	11.9	1274	42.6
20,2	0.407	900	24.83	665.5	16.95		-	766	23.9	1300	44.6
90,2	0.499	1012.5	30.22	739.3	19.60			819	23.9 30.9	1370	48.3
273.2	3.700	1099	35.60	876.3	25.15			905	28.0	1428	51.3
				5.5.0						1454	56.7

^{*} Not shown in figure.

EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF BERYLLIUM	Ве	(Temperature Dependence)	(continued)

${f T}$	ρ
CURY	VE 79
303 380 560 617 661 730 791 891 943 1055 1163 1257 1354 1394	4.8* 8.8 19.5 26.3 30.0 32.9 34.1 33.7 32.9 36.5 38.6 39.1 42.8 45.6 47.0
CURY	VE 80
380 494 950 1105 1207 1295 1393 1454	10.1 12.0 30.6 36.0 37.8 41.7 48.9 53.8

TABLE 5.

J. Phys. Chem. Ref. Data, Vol. 8, No. 2, 1979

^{*} Not shown in figure.

4.2. Magnesium

Magnesium, with atomic number 12, is a silvery-white, light, and fairly tough metal. It has a close-packed hexagonal crystalline structure with a density of 1.74 g cm⁻³ at 293 K, which is 35% lighter than aluminum. It melts at 922 K and boils at about 1364 K. Its critical temperature has been estimated to be 3537 K. Naturally occuring magnesium is composed of three stable isotopes, the most abundant being ²⁴Mg, which constitutes 78.7%. Five other radioactive isotopes are known to exist. Magnesium is the seventh most abundant element in the continental crust of the earth (2.33% by weight).

Temperature Dependence

There are 59 sets of experimental data available for the electrical resistivity of magnesium. The information on specimen characterization and measurement condition for each of the data sets is given in table 7. The data are tabulated in table 8 and shown in figures 4 and 5. Determinations of the electrical resistivity for both the solid and liquid phases cover continuously the temperature range from 1 to 1171 K.

Since monocrystalline magnesium is an anisotropic metal, resistivity values will vary with the direction of the resistivity measurements relative to the hexagonal axis of the crystal. Goens and Schmidt [35–37] (curves 46–59), Alderson and Hund [38] (curves 41 and 42), and Nichols [8] (curves 12–17) have made measurements on single crystals up to 473 K.

Only one data set is available for amorphous magnesium. Ferrier and Herrell [39] (curve 44) have measured the electrical resistivity of an amorphous specimen, which was produced by vapor quenching at liquid nitrogen temperature (curve 44). At 273 K the electrical resistivity of amorphous magnesium is about 4.5 times that of the polycrystalline material.

The resistivity minimum apparent in the results of Rorschack and Herlin [40] (curve 11), Spohr and Webber [41] (curves 19 and 20), and Sharkoff [42] (curves 38-40), can be attributed to an impurity effect caused by trace amounts of certain transition metals in solid solution [43].

Most earlier determinations of the electrical resistivity of polycrystalline magnesium resulted in higher resistivities than the recent ones. These results can be explained by the lower purity of the specimens. The present recommended values are based on the data of Roll and Motz [44] (curve 8), Delaplace et al. [45] (curves 23 and 24), Das and Gerritsen [46] (curve 29), Hedgcock and Muir [47] (curve 32), Seth and Wood [48] (curve 34), and Powell, Hickman and Tye [49] (curves 36 and 37). A least-meansquare-error fit to weighted values of $\rho-\rho_0$, uncorrected for thermal expansion of the material, was made with the modified Bloch-Grüneisen equation (8) from 20 to 900 K. Weights are assigned to individual data sets in such a way that they have approximately equal weight at the low and high temperature range. The following results were obtained for the coefficients in equation (8):

The Debye temperature deduced from the specific heat measurements is $396\pm54K$, in rough agreement with our θ_R . Correction to the fitted values for thermal linear expansion yielded the final recommended values.

The recommended electrical resistivity values for single crystals of magnesium as measured along the c-axis are based on the data of Alderson and Hund [38] (curve 41), Toens and Schmidt [35] (curves 46-59), and Nichols [8] (curve 17). A least-mean-square error fit to their data for $\rho-\rho_0$ was made with the modified Bloch-Grüneisen equation (8) from 15 to 472 K. The following values were found for the coefficients in equation (8):

The resulting values were corrected for thermal linear expansion to get the final recommended values. The recommended values above 472 K are estimated.

The recommended electrical resistivity values for single crystals measured perpendicular to the c-axis are based on the data of Alderson and Hund [38] (curve 42), Goens and Schmidt [35] (curves 46–59), and Nichols [8] (curve 12). A least-mean-square error fit to their data for ρ - ρ 0 was made with the modified Bloch-Grüneisen equation (8) from 15 to 469 K. The following values were found for the coefficients in equation (8):

S₁ S₂ S₃
8.04·10⁻⁸Ω m -1.06·10⁻⁸Ω m 0.349·10⁻⁸Ω m
(
$$\theta_{\rm R}$$
)₀ C P
522 K 0.202 1.90

The resulting values were corrected for thermal linear expansion to get the final recommended values. The recommended values above 469 K are estimated.

By using equation (7) and the above single crystal results, the resistivity values for the polycrystalline material can be calculated. The resulting calculated values are within $\pm 3\%$ of the recommended values obtained from the experimental data for polycrystalline specimens. This indicates that the grains in the polycrystalline specimens were essentially random in orientation.

There are three data sets available on the electrical resistivity of magnesium in the liquid state. Van Zytveld et al. [50] (curve 28) found a very small temperature dependence of the electrical resistivity. Scala and Robertson [51] (curve 43) found a weak negative temperature dependence, while Roll and Motz [44] (curve 8) found a positive temperature dependence. Comparison with the electrical resistivity data of other alkaline earth elements in the liquid state suggests that the electrical resistivity of liquid magnesium should have a weak negative temperature dependence. The data of Scala et al. have been normalized by matching their values with the data of Van Zytveld et al.

at the melting point, 922 K. The normalized values from 922 to 1171 K were fitted with a linear equation to obtain:

$$\rho(T) = 26.1 - 0.0016 \times (T - 922)$$

$$922 \text{ K} \le T \le 1200 \text{ K}$$
(12)

where ρ is in units of $10^{-8}\Omega$ m and T in K. At the melting point (922 K), the electrical resistivity of magnesium in the liquid state is about 76% higher than that of the solid state.

The recommended values for the total and intrinsic electrical resistivities are listed in table 6, and those for the total resistivity are also shown in figures 4 and 5. The recommended values are corrected for the thermal expansion. The correction amounts to -0.48% at 1 K, -0.20% at 200 K, 0.57% at 500 K and 1.90% at 900 K. The recommended values for the total electrical resistivity are for $99.9^+\%$ magnesium and those below 100 K are appli-

TABLE 6. RECOMMENDED ELECTRICAL RESISTIVITY OF MAGNESIUM (Temperature Dependence)

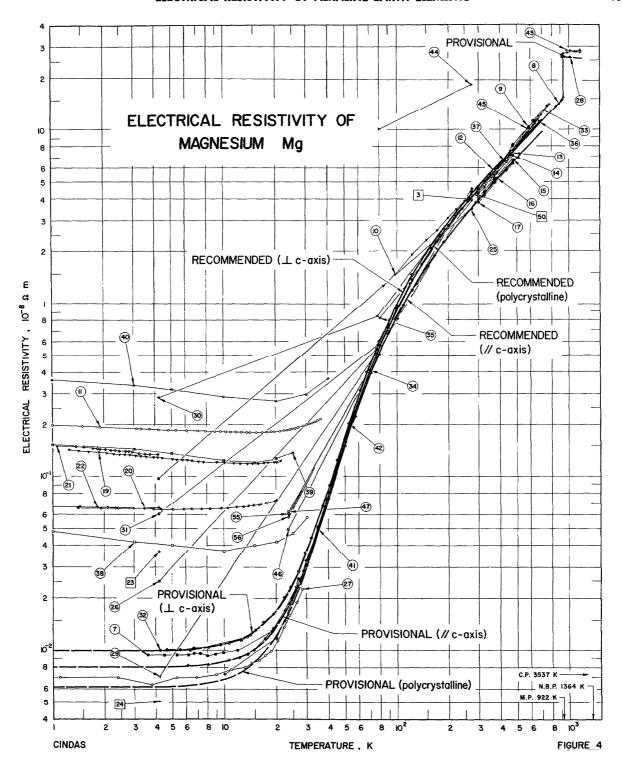
[Temperature, T, K; Total Resistivity, ρ , $10^{-8} \Omega m$; Intrinsic Resistivity, ρ , $10^{-8} \Omega m$]

			Solid			
т	// to c	-axis	⊥ to c	-axis	Polycry	stalline
-	ρ	$ ho_{i}$	ρ	$ ho_{ ext{i}}$	ρ	$ ho_{\mathbf{i}}$
1	0.0080*		0.0100*		0.0062*	
4	0.0080*		0.0100*		0.0062*	
7	0.0082*		0.0100*		0.0064*	
10	0.0086*		0.0108*		0.0069*	
15	0.0101*		0.0130*		0.0086*	
20	0.0136*		0.0175*		0.0123*	
25	0.0204*		0.0255*		0.0193*	
30	0.0320	0.0240	0.0383	0.0283	0.0309	0.0247
35	0.0502	0.0422	0.0572	0.0472	0.0488	0.0426
40	0.0760	0.0680	0.0837	0.0737	0.0744	0.0682
4 5	0.110	0.102	0.119	0.109	0.109	0.102
50	0.151	0.143	0.164	0.154	0.151	0.145
60	0.255	0.247	0.282	0.272	0.261	0.255
70	0.381	0.373	0.430	0.420	0.398	0.392
80	0.520	0.512	0.603	0.593	0.557	0.551
90	0.671	0.663	0.789	0.778	0.728	0.722
100	0.827	0.819	0.983	0.973	0.908	0.902
110	0.986	0.978	1.18	1.17	1.10	1.09
120	1.15	1.14	1.38	1.37	1.28	1.27
130	1.31	1.30	1.58	1.57	1.47	1.46
140	1.47	1.46	1.77	1.76	1.66	1.65
150	1.63	1.62	1.96	1.95	1.84	1.83
175	2.02	2.01	2.44	2.43	2.30	2.29
200	2.42	2.41	2.90	2.89	2.75	2.74
225	2.81	2.80	3.35	3.34	3.19	3.18
250	3.19	3.18	3.80	3.79	3.61	3.60
273.15	3.54	3.53	4.20	4.19	4.05	4.04
293	3.84	3.83	4.55	4.54	4.39	4.38
300	3.94	3.93	4.67	4.66	4.51	4.50
350	4.68	4.67	5.52	5.51	5.36	5.35
400	5.42	5.41	6.39	6.38	6.19	6.18
450	6.16	6.15	7.25	7.24	7.03	7.02
500	6.90	6.89	8.09	8.08	7.86	7.85
550	7.53	7.52	8.93	8.92	8.69	8.68
600	8.35	8.34	9.76	9.75	9.52	9.51

^{*} Provisional Values

The recommended values for the total electrical resistivity are for 99.9 $^{+}\%$ magnesium and those below 100 K are applicable only to specimens with residual resistivities of 0.008·10 $^{-8}\Omega$ m (//to c-axis), 0.01·10 $^{-8}\Omega$ m (\perp to c-axis), and 0.0062·10 $^{-8}\Omega$ m (polycrystalline).

TABLE6. RECOMMENDED ELECTRICAL RESISTIVITY OF MAGNESIUM (Continued) (Temperature Dependence)


[Temperature, T, K; Total Resistivity, ρ , $10^{-8} \Omega m$; Intrinsic Resistivity, ρ_1 , $10^{-8} \Omega m$]

			Se	olid			Liq	uid	
Т	// to	c-axis	⊥ to c-	axis	Polye	rystalline	т		
1	$ ho$ $ ho_{ m i}$		ρ	$ ho_{\mathbf{i}}$	ρ	$ ho_{i}$		Ø	
650	9.07	9.06	10.6	10.6	10.4	10.4	922	26.1*	
700	9.78	9.77	11.4	11.4	11.2	11.2	950	26.1*	
750					12.0	12.0	1000	26.0*	
800					12.8	12.8	1050	25.9*	
850					13.6	13.6	1100	25.8*	
900					14.4	14.4	1150	25.7*	
922					14.7	14.7	1200	25.6*	

^{*} Provisional Values.

cable only to specimens with residual resistivities of $0.008 \cdot 10^{-8}\Omega$ m(//to c-axis), $0.01 \cdot 10^{-8}\Omega$ m (\perp to c-axis), and $0.0062 \cdot 10^{-8}\Omega$ m (polycrystalline). The uncertainty in the recommended values for the total electrical resistivity is believed to be within $\pm 8\%$ below 30 K, $\pm 5\%$ from 30 to 100 K, $\pm 3\%$ from 100 to 600 K, $\pm 5\%$ from 600 to

922 K, and within $\pm 10\%$ above 922 K. Above 30 K the uncertainty in the recommended values for the intrinsic resistivity is slightly higher than that in the total electrical resistivity, because of possible deviations from the Matthiessen's Rule; below 30 K the values are very uncertain and are not listed in the table.

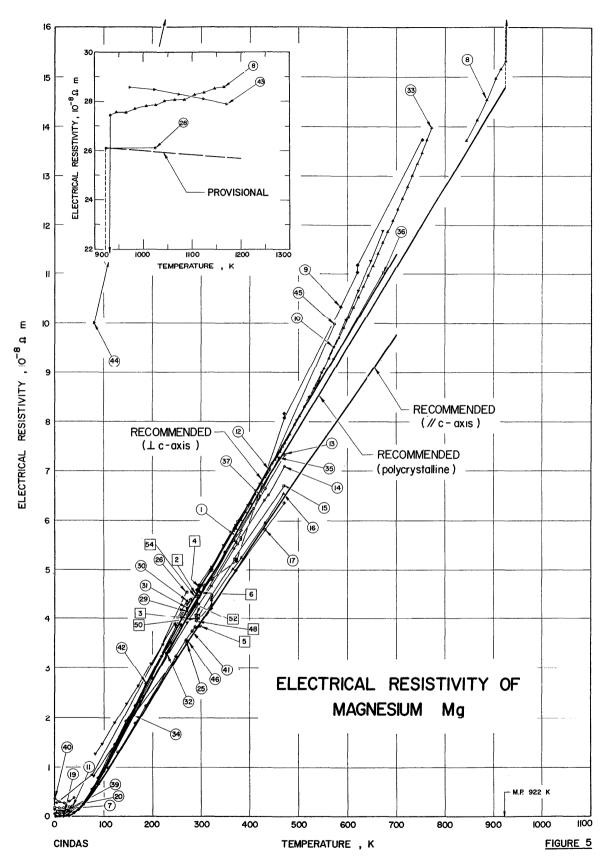


TABLE 7. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF MAGNESIUM Mg (Temperature Dependence)

	Ref. No.	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
1	52	Lorentz, L.	1881		273,373	Mg	Pure.
2	53	Das, K.B. and Gerritsen, A.N.	1962		293	Mg	Spectrographically pure magnesium (Joinson-Matthey, Ltd., Lab. No. 4220); samples were alternately annealed at 400 C for 90 min; the samples varied in width from 0.15 to 0.311 cm, in thickness from 0.0037 to 0.0167 cm, and in length from 3.59 to 10.55 cm.
3	54	Vand, V.	1943		273	$\mathbf{M}\mathbf{g}$	Pure.
4	55	Baveja, K.D.	1961	M	299	Mg	Pure; the electrical resistivity was measured by magnetic damping method; unammealed specimen; diameter 0.2497 cm, thickness 0.0858 cm disc sample.
5	33	Kuczynski, G.C.	1960		300	$^{ m Mg}$ _	Pure.
6	33	Kuczynski, G.C.	1960		300	Mg//	Pure.
7	56	Hedgcock, F.T., Mair, W. B. and Wallingfold, E.	1960		3-26,30	0 Mg	<0.001 each A1, Fe, Mn, Pb, Si, Zn, <0.01 each Ca, Sn, <0.0005 Ni; the sample was made by Dow Chemical Co; the sample was annealed at 450 C for 43 hr in atm of helium gas. Reported error 1%.
8	44	Roll, A. and Motz, H.	1957	R	844-1166		99.8 pure; in solid and liquid states; M.P. 923 K; data corrected for thermal linear expansion. Reported error 1%.
9	57	Schofield, F.H.	1924	V	293-753		99.6 purity magnesium specimen was extruded to 0.75 in. diameter from a billet 5 in. in diameter; annealed at 360 C for 6 hr, and allowed to cool slowly; density at 294 K = 1.75 gm/cm³. Reported error 1%.
10	58	Niccolai, G.	1908		84-673		Pure.
11	40	Rorschach, H.E. and Herlin, M.A.	1951		1.5-36		Pure, bulk cylindrical sample; the resistivity was obtained by measuring the mutual inductance of two coaxial coils surrounding the sample.
12	8	Nichols, J. L.	1955	В	273-497		0.0036 C, 0.0005 Fe, 0.0002 Mn, 0.001 Ca, 0.0019 each K, Na, 0.0004 H_2 , <0.01 Zn, <0.0005 Pb, <0.0001 each Al, Cu, Sr, B, <0.001 each Si, Sn, <0.0003 Ni; single crystal samples, 0.50 in. in diameter and 7 in. long, were grown in a gradient furnace; a Kelvin Double Bridge was used in conjunction with a high-sensitivity D'Arsonval type galvanometer for the resistance measurements; $\cos^2\phi = 0.002$, ϕ is the angle between sample's axis and c-
13	8	Nichols, J.L.	1955	В	273-497		Similar to the above specimen; $\cos^2 \phi = 0.213$.
14	8	Nichols, J. L.	1955	В	273-497		Similar to the above specimer; $\cos^2 \phi = 0.430$.
15	8	Nichols, J. L.	1955	В	273-497		Similar to the above specimen; $\cos^2 \phi = 0.667$.
16	8	Nichols, J.L.	1955	В	273-497		Similar to the above specimen; $\cos^2 \phi = 0.841$.
17	8	Nichols, J.L.	1955	В	273-497		Similar to the above specimen; $\cos^2 \phi = 0.990$.
18*	59	Salkovitz, E.I.,	1957		300		99.98 pure, annealed extruded polycrystalline stripes; specimen width from 0.412 cm to 0.640 cm, thickness from 0.212 cm to 0.240 cm, and length from 9.54 cm to 29.3 cm; resistivity was obtained by using the Reeves modification of Kelvin double bridge.
19	41	Spohr, D.A. and Webber, R.T.	1957		1-25	Mg (Fe)	99.98 ⁺ Mg, 0.013 Fe, 0.0013 Pb, 0.0023 Mn; cold-worked polycrystal from Johnson-Matthey and Co., London, England; the rod specimen was about 3.2 mm in diameter and 9 cm long. Reported error 0.3%.

^{*} Not shown in figure.

TABLE 7. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF MAGNESIUM Mg (Temperature Dependence) (continued)

Cur. No.	Ref. No.	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
20	41	Spohr, D.A. and Webber, R.T.	1957		1-25	Mg (Mn)	99.95 ⁺ Mg, 0.043 Mn, 0.001 each Fe, Si, 0.0011 each Pb, Sn, 0.0002 Al, 0.0001 each Cu, Ni, 0.0048 Zn, 0.0012 Ca; annealed polycrystal rod, 3.2 mm in diameter and 9 cm long; prepared by Dow Chemical Co. Reported error 0.
21	60	Hein, R.A. and Falge, R.L.	1957		0.3-4.3	Mg (Fe)	99.98 Mg, 0.013 Fe, 0.0023 Mn, 0.0013 Pb; cold-worked polycrystal rod 3.2 mm in diameter and 9 cm long; specimen was obtained from Johnson-Matthey and Co., England.
22	60	Hein, R.A. and Falge, R.L.	1957		0.3-4.3	Mg (Mn)	99.95 Mg, 0.043 Mn. C.001 each Fe, Si, 0.0011 each Pb, Sn, 0.0002 Al, 0.0001 each Cu, Ni, 0.0048 Zn, 0.0012 Ca; annealed polycrystal rod 3.2 mm in diameter and 9 cm long; specimen was prepared by Dow Chemical Co.
23	45	Delaplace, J.,	1968		4.2,300	Mg 1	99.95 pure wire specimen; 0.2 mm in diameter; $R_{300~\rm K}/R_{4.2~\rm K}$ = 120.
4	45	Delaplace, J.,	1968		4.2,300	Mg 2	99.999 pure zone refined wire specimen; 0.2 mm in diameter; $\rm R_{300~K}/R_{4.2~K}$ = 870.
25	61	Hedgeock, F.T. and Muir, W.B.	1961		4.2,273	Mg	$0.04 \text{ Mn}, R_{4.2}/R_{273} = 0.028.$
6	62	Bijvoet, J., deHon, B., Dekker, J.A., and Rathenau, G.W.	1962		4.2-273	D Mg	Pure magnesium sample was supplied by Dow Chemical International.
7	63	Panova, G.Kh., Zhernov, A.P., and Kutaitsev, V.I.	1968	Α	1.2-20	Mg	Pure magnesium wire sample 1 mm in diameter and 50 mm in length was pre- pared by drawing through a die and annealing subsequently in a helium atm at 350 C. Reported error 1.2%.
28	50	Van Zytveld, J.B., Enderby, J.E., and Collings, E.W.	1972	A	924,1023	Mg	99.98 pure, <0.001 each Al, Si, Zn, <0.0005 each Cu, Pb, 0.003 Fe, 0.002 Mn, <0.0001 Ni, <0.003 each C, O ₂ , <0.005 H ₂ , 0.0015 N ₂ ; sample was obtained from Koch Light Lab. Ltd. Reported error 4%.
29	46	Das, S.B. and Gerritsen, A.N.	1964	A	4.2-273	Mg	<0.01 Ca, <0.02 Zn, <0.0001 each Al, Cu, 0.001 Fe, 0.0011 Mn, <0.0002 Ni, 0.0005 Pb, <0.001 each Si, Sn; specimen was supplied by Dow Metal Products Co; polycrystalline specimen; $R_{4.2}/R_{273}=1.7 \times 10^{-3}$.
30	46	Das, S.B. and Gerritsen, A.N.	1964	·A	4.2-273	0.16 Li	0.16 Li, <0.001 each Al, Cu, Mn, Zn, <0.01 each Ca, Sn, <0.0005 Fe, 0.0009 Ni, <0.002 Pb, <0.005 Si; polycrystalline specimen was supplied by Dow Metal Products Co; $R_{4.2}/R_{273} = 0.0655$.
31	46	Das, S.B. and Gerritsen, A.N.	1964	A	4.2-273	0.047 Sn	0.047 Sn, $<$ 0.001 each Al, Cu, Fe, Mn, $<$ 0.01 Ca, $<$ 0.0003 each Ni, Pb, $<$ 0.0001 Si, 0.003 Zr; polycrystalline specimen was supplied by Dow Metal Products Co; R _{4.2} /R ₂₇₃ = 0.0144.
B 2	47	Hedgcock, F.T. and Muir, W.B.	1964	D	4.27-571.2	728	Pure; specimen was rolled into 0.01 in. strips, etched, cut into 0.125 x 4 in. and annealed in a helium atm at 7 cm of Hg at 450 C for 12 hr; $R_{4.2}/R_{273} = 2.467 \times 10^{-3}$.
33	64	Grube, G. and Burkhardt, A.	1929	В	373-773		99.93 Pure; 0.018 Si, 0.052 Fe, and trace of Al, Cu; the electrical resistivity was measured in 1 atm pressure of very pure hydrogen.
3 4	48	Seth, R.S. and Woods, S.B.		1970	10-295		<0.0014 impurity; obtained from Johnson Matthey, and Mallory, Ltd., Canada; prepared by Dow Chemical Co. from sublimed magnesium that was at least 99.98 pure after fabrication; slightly non-uniform 0.035 in. diameter wire drawn through 0.032 in. diamond die to produce uniform, smooth wire; annealed at \$50 C for 8 hr in 10 torr H ₂ .
35	65	Staebler, J.	1929		80-460		Pure; 3 cm x 1.23 cm.

Name and Cur. Ref. Method Temp. Author(s) Year Specimen Composition (weight percent), Specifications, and Remarks No. No. Used Range, K Designation 36 Powell, R.W., Hickman, M.J., 1964 293-673 Mg 1 99.95 Mg, 0.033 Al, 0.012 Zn; 1.9 cm diameter x 30 cm long; supplied by the Metallurgy Division of the National Physical Laboratory; forged and heat and Tye, R.P. 37 Powell, R.W., et al. 1964 293-423 Mg 2 99.98 Mg, 0.017 Al. 0.004 Zn; 0.635 cm diameter x 10 cm long; supplied by Messrs. Johnson, Matthey and Co., Ltd. Sharkoff, E.G. 1953 1.0-30 Sample No. 765 99.98 Mg, 0.01 Mn, 0.003 Zn, 0.0012 Pb, 0.001 Ca, < 0.001 each Si, Sn, 0.008 Fe, 0.0002 Al, < 0.0001 each Cu, Ni; 0.310 cm diameter x 9.03 cm long. Sharkoff, E.G. 1953 1.0-25 Sample No. 767 99.95 Mg, 0.043 Mn, 0.0048 Zn, 0.0012 Ca, 0.0011 each Pb, Sn, 0.0010 Fe, <0.001 Si, 0.0002 Al, <0.0001 each Cu, Ni; 0.307 cm diameter x 8.93 cm Sharkoff, E.G. 1953 1.0-40 Sample No. 370 99.87 Mg, 0.12 Mn, 0.0036 Zn, 0.0014 Pb, 0.0011 Fe, < 0.001 each Si, Sn, 0.0006 Ca, 0.0002 Al, < 0.0002 Ni, 0.0001 Cu; 0.305 cm diameter x 9.35 41 38 Alderson, J.E.A. and Hurd, C.M. 1975 A Mg 1, Mg 2 99.9 purity; single crystals; for Mg 1 specimen - 0.315 mm thick, probe separation 6.325 cm, angle between c-axis and sample's axis θ = 6.5°, ρ_{273} K/ ρ_{res} = 420; for Mg2 - 0.295 mm thick, probe separation 5.36 cm, θ = 70.5° ρ_{273} K/ ρ_{res} = 440; longitudinal resistivity (p//) data were obtained. 42 38 Alderson, J.E.A. and Hurd, C.M. 1975 Α 3-300 Mg 1, Mg 2 Same as the above specimen; transverse resistivity (ρ_1) data were obtained. Scala, E. and Robertson, W.D. 1953 Α 973-1171 99.975 Mg, 0.01 Cu, 0.004 Al, 0.003 Pb, and 0.003 Si; in liquid state; supplied by Dominion Magnesium, Ltd.; contained in a graphite tube about 0.6 cm I.D. and 13 cm long. Ferrier, F.P. and Herrell, D.J. 1970 80,273 Pure; amorphous specimen was obtained by vapor quenching at liquid nitrogen temperature; data was extracted from the figure. Pure; density 1.7398 g cm⁻³; melting point 823 K; boiling point 1383 K. 45 Heal. T.J. 1958 273-573 Goens, E. and Schmid, E. 1936 20.35-373.15 Mg 50 Pure: single crystal specimens were grown from the melt of 99,95 pure starting material; cylindrical specimen is about 4.53 cm in length and 0.1369 cm in radius; angle o between sample axis and the hexagonal axis is 14°30', resistance ratio are reported, the resistivity are calculated from p(291.15 K) = $3.813 \cdot 10^{-8} \,\Omega \text{m}$. Goens, E. and Schmid, E. 1936 XI 35 20.35-373.15 Similar to the above specimen except the specimen is about 14.56 cm in length, 0.2463 cm in radius; $\phi = 18^{\circ}20$ and $\rho(291.15 \text{ K}) = 3.848 \cdot 10^{-8} \,\Omega\text{m}$. Goens, E. and Schmid, E. 1936 291.15 xvSimilar to the above specimen except the specimen is about 11.38 cm in length, 0.2452 cm in radius; and $\phi = 29^{\circ}$. Goens, E. and Schmid, E. 35 1936 291.15 XIXSimilar to the above specimen except the specimen is about 9.193 cm in length and 0.1647 cm in radius; and $\phi = 34^{\circ}30$. Goens, E. and Schmid, E. 1936 291.15 35 90 Similar to the above specimen except $\phi = 49^{\circ}$.

TABLE 7. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF MAGNESIUM Mg (Temperature Dependence) (continued)

51%

Goens, E. and Schmid, E.

1936

291.15

XVI

Similar to the above specimen except the specimen is 6.304 cm in length,

0.16 cm in radius and $\phi = 52^{\circ}45$.

^{*} Not shown in figure.

TABLE 7. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF MAGNESIUM Mg (Temperature Dependence) (continued)

Cur.	Ref. No.	Author(s)	Year	Method Temp. Used Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
52	35	Goens, E. and Schmid, E.	1936	291.15	169	Similar to the above specimen except the specimen is about 6.628 cm in length, 0.2002 cm in radius and $\phi=55^{\circ}20$ '.
53**	35	Goens, E. and Schmid, E.	1936	291.15	94	Similar to the above specimen except the specimen is about 10.36 cm in length, 0.1765 cm in radius and $\phi=63^\circ$.
54	35	Goens, E. and Schmid, E.	1936	291.15	85	Similar to the above specimen except the specimen is about 8.486 cm in length, 0.1858 cm in radius and $\phi=73^{\circ}50$.
55*	35	Goens, E. and Schmid, E.	1936	20. 35-373. 15	5 116	Similar to the above specimen except the specimen is about 8.202 cm in length, 0.2053 cm in radius, $\phi = 80^\circ$; resistance ratio at different temperatures were reported, the electrical resistivity data are calculated for $\rho(291.15 \text{ K}) = 4.492 \cdot 10^{-8} \Omega \text{m}$.
56*	35	Goens, E. and Schmid, E.	1936	20.35-373.15	188	Similar to the above specimen except $\phi=82^\circ$; the electrical resistivity data are calculated from resistance ratio data and $\rho(291.15~{\rm K})=4.516^\circ\cdot10^{-8}~\Omega{\rm m}.$
5 7 *	35	Goens, E. and Schmid, E.	1936	20. 35-373, 15	162	Similar to the above specimen except the specimen is about 5.448 cm in length, 0.1919 cm in radius; the electrical resistivity data are calculated for resistance ratio data and $\rho(291.15~{\rm K})=4.492\cdot 10^{-8}~{\rm \Omega m}$.
58*	36,37	7 Goens, E. and Schmid, E.	1931	291.15	$ ho_{oldsymbol{\perp}}$	Pure; single crystal specimen; specimen's axis perpendicular to the hexagonal axis; resistivity temperature coefficient 0.00416/K (273-373 K).
59*	36,37	7 Goens, E. and Schmid, E.	1931	291.15	٩//	Pure; single crystal specimen; specimen's axis parallel to the hexagonal axis; resistivity temperature coefficient $0.00427/\mathrm{K}$ (273-373 K).

^{*} Not shown in figure.

ELECTRICAL RESISTIVITY OF ALKALINE EARTH ELEMENTS

TABLE 8. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF MAGNESIUM Mg (Temperature Dependence) [Temperature, T, K; Resistivity, ρ , 10-8 Ω m]

${f T}$	ρ	T	ρ	${f T}$	ρ	T	ρ	T	ρ	T	ρ
CUF	RVE 1	CURVE 8	(cont.)	CURVE	10 (cont.)	CURVE	11 (cont.)	CURV	E 16	CURVE :	19 (cont.)
273.15 373.15	4.09 5.71	92 4 933 945	15.34 27.47 27.56	448 473 4 9 8	7.132 7.576 8.031	31.2 32.4 33.7	0.2028 0.2059 0.2088	297.5 323.1 323.1	4.009 4.302 4.382	12.57 13.70 14.77	0.1189 0.1189 0.1187
	RVE 2	965 983	27.56 27.69 27.82	523 548	8.508 9.002 9.536	34.7 36.3	0.2118 0.2165	367.9 384.1	5.024 5.257 5.967	15.86 17.13 18.06	0.1189 0.1194 0.1200
293 CUF	4.51 ±0.15 RVE 3	1006 1025 1043	27.87 28.01	573 598 623	10.080 10.672		VE 12	433.1 471.7	6.555	19.66 20.30	$0.1214 \\ 0.1219$
273	4.00	1065 1085 1105	28.08 28.08 28.29	648 673	11.285 11.893	297.5 297.5 322.6	4.578 4.630 4.999	<u>CURV</u> 297.5	7 <u>E 17</u> 3.853	21. 26 CUR	0.1231 VE 20
	RVE 4	1125 1146 1166	28.36 28.54 28.59		<u>VE 11</u> 0. 1996	323.5 369.2 377.1	5.022 5.807 5.998	323.3 373.7 433.1	4.225 4.992 5.813	1.41 1.92	0.0659 0.0655
299 CUF	4.663 RVE 5	1173	28.70	1.0 1.6 1.9	0.1996 0.1966 0.1946	433.1 442.2	6.841 7.047	472.3	6.361	2. 42 2. 98	0.0653 0.0651
300	3.85	CUR	<u>VE 9</u>	3.1 3.3 3.7	0.1906 0.1898 0.1890	468.9	7.500 VE 13	<u>CURV</u> 300	7E 18* 4.45	3.46 3.91 4.34	0.0651 0.0648 0.0648
	RVE 6	293.1 374.5	4.59 6.19*	4.2 4.8	0.1879 0.1868	297.5	4.431	CURV		5.06 5.85	0.0646 0.0647
300	4.55 RVE 7	374.2 374.2 472.3	6.21 6.18 8.17	5.3 6.1 7.1	0.1861 0.1850 0.1842	297.5 323.4 368.9	4.468 4.822 5.603	1.25 1.42	0.1430 0.1412	6.51 7.49 8.36	0.0648 0.0648 0.0650
3.6	0.0094	472.6 587.1	8.08 10.35	7.9 8.9	0.1835 0.1829	383.8 408.5	5.808 6.245	1.63 1.86	0.1397 0.1385	9.70 10.61	0.0653 0.0656
4.5 5.3 6.2	0.0094 0.0094 0.0094	621.7 621.1 753.2	11.21 11.04 13.74	9.6 10.3 11.0	0.1825 0.1821 0.1817	433.1 474.1	6.654 7.331	2.08 2.27 2.48	0.1370 0.1359 0.1347	11.96 13.05 13.88	0.0661 0.0668 0.0672
6.7 7.3	0.0096 0.0096	CURY	/E 10	11.8 12.7 13.6	0.1813 0.1811 0.1808	<u>CUR</u> 297.5	<u>VE 14</u> 4.306	2.65 2.84 3.07	0.1340 0.1331 0.1321	14.97 16.18 16.54	0.0679 0.0688 0.0692
8.0 8.9 9.9	0.0093 0.0095 0.0097	84 98	$\begin{matrix} 1.275 \\ 1.471 \end{matrix}$	14.2 15.5	0.1806 0.1805	323.7 369.7	4.677 5.435	3.30 3.55	0.1313 0.1303	17.65 19.87	$0.0703 \\ 0.0725$
12.0 18.9 23.8	0.01 0.013 0.0186	123 148 173	1.907 2.300 2.643	16.7 17.7 18.9	0.1807 0.1812 0.1820	377.6 383.1 383.1	5.521 5.619 5.653	3.93 4.14 4.40	0.1295 0.1289 0.1281	20. 22	0.0732 VE 21
26.8	0.0259	198 223	3.105 3.491	19.6 21.1	0.1826 0.1839	432.9 440.8	6.411 6.526	5.04 5.34	0.1265 0.1259	0.24	0.1692
CUI 844	RVE 8 13.73	248 273 298	3.894 4.312 4.700	22.4 23.3 24.1	0.1855 0.1867 0.1878	473.8	7.091 VE 15	5.71 6.17 6.51	$0.1250 \\ 0.1240 \\ 0.1233$	0.25 0.27 0.28	0.1682 0.1675 0.1663
866 885	14.15 14.56	323 348	5.069 5.507	24.9 25.8	0.1891 0.1907	297.5	4.080	7.11 7.63	0.1224 0.1216	0.36 0.40	0.1647 0.1651
904 914	14.99 15.18	873 398 4 2 3	5.915 6.318 6.735	26.8 28.9 30.2	0.1929 0.1974 0.2011	322.4 324.0 370.5 471.2	4.439 4.48 5.227 6.700	9.13 10.11 11.55	0.1216 0.1200 0.1193	0.42 0.44 0.52	0.1636 0.1624 0.1613

^{*} Not shown in figure.

	TAB	LE 8. EXPER	IMENTAL DATA	ON THE ELEC	TRICAL RES	SISTIVITY OF M	AGNESIUM M	g (Temperatur	e Dependence	(continued)	
T	ρ	T	ρ	T	ρ	T	Q	T	ρ	${f T}$	ρ
CURVE	21 (cont.)	CUR	VE 26	CUR	VE 32	CURVI	E 33 (cont.)	cu	RVE 36	CUR	VE 41
0.61	0.1604	4.2	0.025	4.27	0.010	603	10.141	293	4.5 *	6.17	0.0082
0.68	0.1591	77	0.55	6.34	0.010	613	10.345	323	5.01*	6.67	0.0082*
0.72	0.1597	273	4.55	14.15	0.012*	623	10.558	373	5.85*	8.02	0.0083
0.81	0.1569	a	**** OM	20.10	0.016*	633	10.762	473	7.57*	9.44	0.0086*
0.88	0.1570	CUR	<u>VE 27</u>	24.76 34.86	0.022* 0.051	643 653	10.980 11.198	573 673	9.30	10.64 11.25	0.0088 0.0089*
1.07	0.1510	1.1	0.0070	41.32	0.051	663	11.436	673	11.04	12.36	0.0091
1.37 1.53	0.1493 0.1493	2.4	0.0070	59.39	0.003	673	11.661	CI	RVE 37	12.88	0.0093*
1.53 1.73	0.1493	3.8	0.0070	79.9	0.530*	683	11.880	<u>C 0</u>	IVE 51	13.62	0.0095
1.73	0.1456	5.3	0.0070	89.3	0.720	693	12.118	293	4.34	14.09	0.0098*
1.89	0.1447	6.9	0.0070	107.4	1.053*	703	12.347	323	4.85	14.96	0.0100
2.04	0.1440	9.0	0.0073	124.3	1.371	713	12.564	373	5.70*	15.92	0.0111*
2.19	0.1429	11.0	0.0078	146.5	1.786*	723	12.803	423	6.51	17.10	0.0118
2.32	0.1422	13.1	0.0080	177.1	2.342	733	13.039			17.62	0.0123*
2.45	0.1413	14.4	0.0085	198.3	2.732*	743	13.262	CU	RVE 38	19.23	0.0135
2.68	0.1401	16.0	0.0088	230.5	3.310	753	13.498			21.00	0.0154*
2.79	0.1400	17.3	0.0094	273.1	4.052*	763	13.751	1	0.048	22.34	0.0171
2.93	0.1390	18.6	0.0099	292.2	4.368	773	14.000	3	0.042	24.16	0.0200*
3.21	0.1369	20.3	0.0114	309.6	4.656*			5	0.040	26.00	0.0232
3.26	0.1366*	22.1	0.0136	329.8	4.996*	<u>cu</u>	RVE 34	10	0.037	27.04	0.0253*
3.49	0.1359	22.9	0.0147	351.0	5.353	10	0.00732	15	0.040	28.78	0.0286
3.55	0.1359*	23.8	0.0159	371.2	5.693*	20	0.01347	20	0.042	29.52	0.0327
3.71	0.1352	26.2	0.0190	CIT.	777.00	30	0.0311	25	0.047	30.98	0.0379*
4.15	0.1344	28.2	0.0225	CUR	VE 33	40	0.07499	30	0.058	31.34	0.0390*
CIT.	T/T 00	OT THE	77E 00	373	E 048	50	0.1533	CI	D17E 00	34.92 37.07	0.0498 0.0604
CUR	$\overline{ m VE~22}$	CUR	VE 28	373 383	5.843 6.019	60	0.2661	<u>UU</u>	RVE 39	38.38	0.0678*
0.27	0.0689	924	26.1 ± 0.7	393	6.184	70	0.4072	1	0.153	40.37	0.0808
0.27	0.0689	1024	26.1 ± 0.7 26.1 ± 0.7	403	6.357	80	0.56,83	3	0.133	42.57	0.0871*
0.32	0.0681	1024	20.1 ±0.1	413	6.538	90	0.7443	5 5	0.136	44.37	0.0071
1.44	0.0669	CITE	VE 29	423	6.719*	100	0.9284	10	0.123	48.21	0.134
1.82	0.0662	001	<u> </u>	433	6.889	120	1.3078	15	0.120	50.71	0.158
2.09	0.0660	4.2	0.00709	443	7.063*	140	1.6900	20	0.127	52.98	0.181*
2.34	0.0659	78	0.538	453	7.244	160	2.069	25	0.137	57.43	0.223
4.20	0.0654	273	4.17	463	7.406	180	2.442			61.11	0.282
				473	7.591*	200	2.808	CU	RVE 40	67.0	0.318*
CUR	VE 23	CUR	VE 30	483	7.758	220	3.169			71.0	0.398
4.2	0.037			493	7.952	240	3.525	1	0.365	79.0	0.508
300	4.440*	4.2	0.287	503	8.120	$\frac{260}{273.2}$	3.877 4.108	3	0.34	89.0	0.668
		78	0.848	513	8.317	295	4.108 4.487*	5	0.32	101	0.818
CUR	VE 24	273	4.38	523	8.493*			10	0.29	110	0.988
4.2	0.0051			533	8.684	CU	RVE 35	20	0.275	111	1.018*
300	4.437*	CUR	VE 31	543	8.839			30	0.30	123	1.208
			0.001	553 543	9.099	80	0.82	40	0.37	132	1.308
CUR	VE 25	4.2	0.061	563	9.307	273	3.91			146	1.628*
4.0	0.000	78	0.573	573	9.522*	373	5.56			153	1.708*
4.2	0.098	273	4.23	583	$9.721 \\ 9.929$	460	7.27			158	1.768*
273	3.5 ± 0.5			593	∂. ∀∆∀					166	1.898
										175	2.048*

^{*} Not shown in figure.

(continued)

16.95

17.79

19.15

20.70

22.24

24.16

25.89

26.86

28.78

29.65

31.48

31.70

34.36 37.07

38.92

40.56

42.08

45.00

48.50

0.0146

0.0152*

0.0163

0.0184*

0.0201

0.0232

0.0264*

0.0285

0.0319*

0.0363

0.0430*

0.0444

0.0749

0.0883

0.124

0.0947*

0.148 *

0.0551* 0.0673

28.6

28.5

28.3*

28.1

27.9

10.00

18.20

3.90*

5.54*

CURVE 44

CURVE 45

273.15 3.90* 373.15 5.54* 573.15 10.00

973

1023

1074

1124

1171

80

273

	TAB	LE 8. EXPER	IMENTAL DA	ATA ON THE ELE	CTRICAL RESIS	STIVITY OF MA	GNESIUM	Mg (Temperature Dependence)
т	ρ	${f T}$	ρ	T	ρ	${f T}$	ρ	
CURVE 4	1 (cont.)	CURVE 42	(cont.)	CURV	<u>E 46</u>	CURVE	55 (cont.) *	
188	2.258	50.83	0.174*	20.35	0.0492*	90.05	0.795	
224	2.838*	52.62	0.202	77.90	0.505	273.15	4.179	
250	3.248	57.16	0.249*	90.05	0.686*	291.15	4.492	
263	3.438*	61.53	0.314	273.15	3.543	373.15	5.916	
271	3.568	63.0	0.34*	291.15	3.813*			
280	3.708*	67.0	0.40	373.15	5.044*	CURV	E 56 [₩]	
283	3.748	72.0	0.47*		-,	-		
289	3.838	79.0	0.60	CURV	E 47 [#]	20.35	0.0579	
200	5.000	89.0	0.79			77.90	0.582	
CURV	/E 42	101	0.98	20.35	0.062	90.05	0.797	
0020.		109	1.20*	77.90	0.503	273.15	4.201	
4.65	0.0101	111	1.16*	90.05	0.685	291.15	4.516	
4.86	0.0101*	123	1.47	273.15	3.576	373.15	5.949	
5.22	0.0101*	132	1.56*	291.15	3.848			
5.55	0.0101	147	1.93	373.15	5.087	CURV	⁷ E 57 [*] ∗	
6.00	0.0102*	153	2.03*				**************************************	
6.61	0.0103	157	2.11*	CURV	E 48	20.35	0.0573	
7.26	0.0103*	166	2.26			77.90	0.579	
8.11	0.0105	175	2.45*	291.15	3.957	90.05	0.793	
9.55	0.0103	188	2.69			273,15	4.179	
10.72	0.0111	225	3.38*	CURV	E 49*	291.15	4.492	
11.22	0.0113*	250	3.85			373.15	5.917	
12.20	0.0115	263	4.08	291.15	3.993			
12.83	0.0113	272	4.24*			CURV	E 58*	
13.52	0.0121	280	4.40	CURV	E 50	<u> </u>		
14.03	0.0123	284	4.44*			291.15	4.54	
14.79	0.0126*	289	4.56*	291.15	4.218			
15.07	0.0131		-, -,			CURV	E 59*	
15.85	0.0131*	CURVE	43	CURV	E 51*	<u> </u>		
10.00	0.0143	2 3111 2		30111		201 15	9 77	

291.15

291.15

291.15

291.15

20.35 77.90

4.272

4.283

4.373

4.468

0.0602

0.582

CURVE 52

CURVE 53*

CURVE 54

CURVE 55*

291.15

3.77

×	Not	shown	in	figu	re.

469

4.3. Calcium

Calcium, with atomic number 20, is a silvery-white moderately soft metal. It has a face-centered cubic crystalline structure, which transforms to body-centered cubic form around 720 K. Its density is 1.55 gm cm⁻³ at 293 K. It melts at 113 K and boils at 1795 K. Impure calcium can also occur in a close-packed hexagonal form, which is stabilized by the impurities in calcium and is stable between about 523 and 720 K. Naturally occurring calcium is composed of six stable isotopes, the most abundant being ⁴⁰Ca which constitutes 96.97%. Eight other radioactive isotopes are known to exist. Calcium is the fifth most abundant element in the earth's continental crust, of which it forms 4.15% by weight.

Temperature Dependence

There are 16 sets of experimental data available for the electrical resistivity of calcium. The information on specimen characterization and measurement condition for each of the data sets is given in table 10. The data are tabulated in table 11 and shown in figures 6 and 7. Determinations of the electrical resistivity for both the solid and liquid states cover continuously the temperature range from 1.36 to 1138 K.

The data for the electrical resistivity of calcium show considerable scatter. Around room temperature, there is a sudden jump from the low-temperature data to those above room temperature as if there is a phase transition. This discrepancy is probably due to specimen contamination at higher temperatures. Katerberg et al. [68] (curve 10) found a small discontinuity near the phase transition temperature around 720 K. The data of Smith et al. [69] (curves 4 and 5) also show slope changes near the transition, which, however, give a quite different shape from that indicated by the data of Katerberg. The data of Swischer [70] (curves 14-16) do not show any discontinuities. The recommended values were generated based on the data of Cook and Laubitz [71] (curve 12) and Kayser and Soderquist [72] (curve 1). A least-mean-square-error fit was made with the modified Bloch-Grüneisen equation (8) to the selected data for $\rho-\rho_0$ from 30 to 300 K and to the estimated values up to 1113 K. At the phase transition temperature around 720 K the possible discontinuity was ignored. The following results were obtained for the coefficients in equation (8):

$$S_1$$
 S_2 S_3 $3.341 \cdot 10^{-8}\Omega$ m $0.296 \cdot 10^{-8}\Omega$ m $0.087 \cdot 10^{-8}\Omega$ m $(\theta_R)_o$ C P 300.9 K 0.0281 2.0

The Debye temperature deduced from specific heat measurements is 234 ± 5 K which is about 20% lower than the present value for $\theta_{\rm R}$. The resulting values from equation (8) were then corrected for thermal linear expansion to become the final recommended values.

TABLE 9. RECOMMENDED ELECTRICAL RESISTIVITY OF CALCIUM

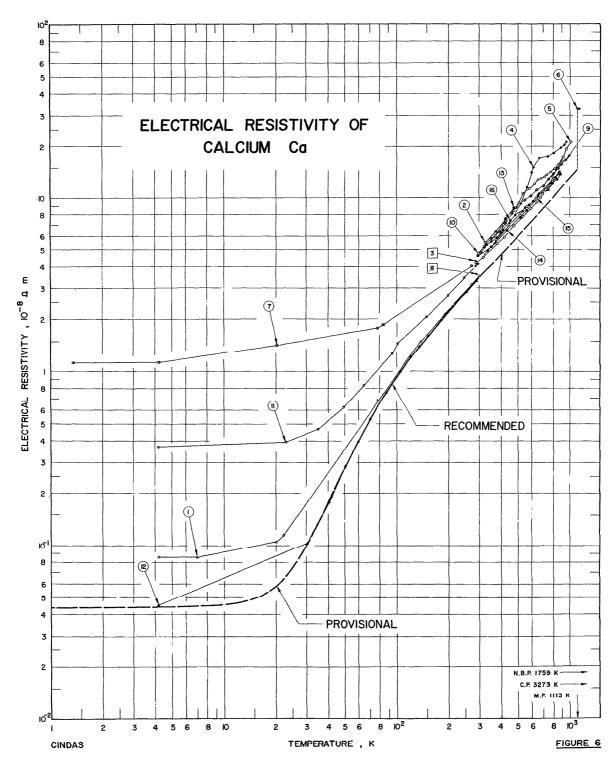
[Temperature, T, K	Total Resistivity, o,	10 ⁻⁸ Ω m; Intrinsic Resistivity	y, ρ _i , 10 ⁻⁸ Ω m]
--------------------	-----------------------	---	---

\mathbf{T}	ρ	$ ho_{\mathbf{i}}$	Т	ρ	$ ho_{\mathrm{i}}$
1	0.045*		250	2.82	2.77
4	0.045*		273.15	3.11	3.06
7	0.046*		293	3.36	3.31
10	0.047*		300	3.45	3.40
15	0.051*		350	4.09*	4.04
20	0.060*		400	4.73*	4.68
25	0.075*		450	5.37*	5.32*
30	0.100*		500	6.02*	5.97*
35	0.133*		550	6.68*	6.63
40	0.175	0.130	600	7.35*	7.30
45	0.224	0.179	650	8.02*	7.97
50	0.277	0.232	700	8.70*	8.65
60	0.396	0.351	750	9.38*	9.33
70	0.522	0.477	800	10.0 *	10.0
80	0.652	0.607	850	10.7 *	10.7
90	0.782	0.737	900	11.4 *	11.4 *
100	0.913	0.868	950	12.1 *	12.1 *
110	1.04	0.997	1000	12.8 *	12.8
120	1.17	1.12	1100	14.3 *	14.3
130	1.30	1.25	1113	14.5 *	14.5
140	1.43	1.38			
150	1.56	1.51			
175	1.88	1.83			
200	2.19	2.14			
225	2.51	2.46			

ρ

т

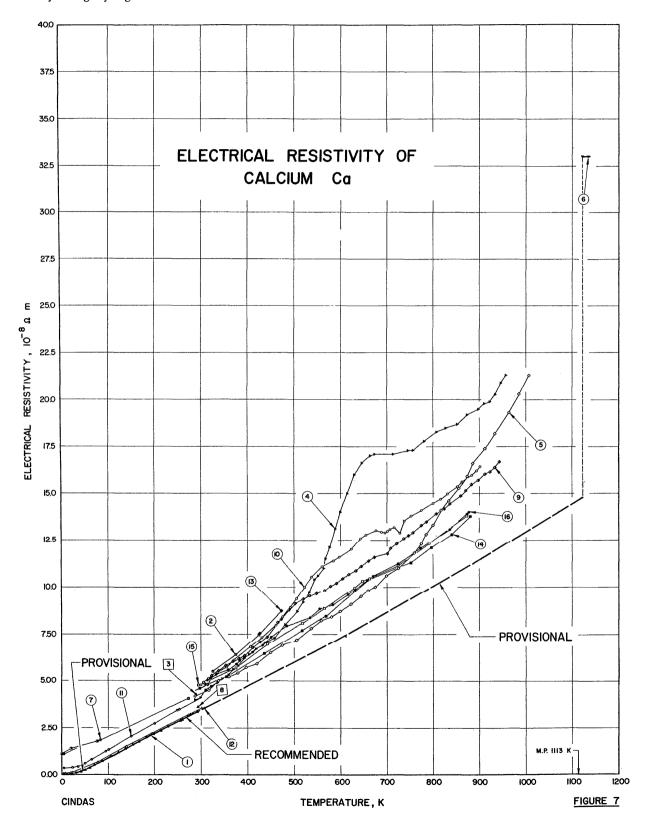
1113 1150


^{*} Provisional values.

The recommended values for the total electrical resistivity are for 99.964% pure calcium and those at temperatures below 30 K are applicable only to a specimen with residual resistivity of 0.045 x 10^8 Ω m.

Only one data set is available on the electrical resistivity of calcium in the liquid state. Van Zytveld et al. [50] (curve 6) found that the temperature dependence of electrical resistivity is small and weakly negative. At the melting point (1113 K), the electrical resistivity of calcium in the liquid state is about 126% higher than that of solid calcium.

The recommended values for the total and intrinsic electrical resistivities are listed in table 9, and those for the


total resistivity are also shown in figures 6 and 7. The recommended values for the total electrical resistivity are for $99.96^+\%$ calcium and those below 30 K are applicable only to a specimen with residual resistivity of $0.045\cdot 10^{-8}\Omega$ m. The recommended values from 1 to 293 K are corrected for the thermal linear expansion. The correction amounts to -0.47% at 1 K, -0.38% at 100 K and -0.2% at 200 K. The uncertainty in the recommended values for the total electrical resistivity is believed to be

J. Phys. Chem. Ref. Data, Vol. 8, No. 2, 1979

within $\pm 10\%$ below 40 K, within $\pm 5\%$ from 40 to 300 K, and within $\pm 20\%$ from 300 to 1150 K. Above 40 K the uncertainty in the recommended values for the intrinsic resistivity is slightly higher than that in the total electrical

resistivity because of the possible deviations from the Matthiesen's Rule; below 40 K the ρ_i values are very uncertain and are not listed in the table.

TABLE 10. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF CALCIUM	Ca (Temperature Dependence)
M a. J	

	Ref.	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
1	72	Kayser, F.Y. and Soderquist, S.D.	1967		4.2-300	Ca	99.96 Ca, 0.025 Sr, 0.005 O_2 , 0.003 H_2 , 0.0015 Mg, 0.0011 Mn; 0.0625 indiameter wire specimens; annealed for 2 hr at 525 K under 8 x 10 ⁻⁶ torr; $\rho_{273.2 \text{ K}} = 3.16 \ \mu\Omega$ cm, reported error ±2%.
2	73	Cook, J.G. and Van der Meer, M.P.	1973		325-425	Ca	99 ⁺ purity, smoothed values extracted from table, data uncorrected for thermal expansion; resistance ratio 3.
3	74	Rinck, E.	1931		289	Ca	Pure calcium was prepared by diffusion technique, $1.245~\mathrm{cm}$ in diameter and $10~\mathrm{cm}$ long cylindrical sample.
4	69	Smith, J. F., Carlson, D. N., and Vest, R. W.	1956	В	273-973	Ca A	99.66 Ca, 0.3 Mg, 0.025 N, 0.006 Fe, 0.001 Al, 0.004 Mn; sample was heated at 600 C for 8 hr after four successive distillation at 900 C; 0.2 in. in diameter and 5 in. long.
5	69	Smith, J. F., et al.	1956	В	273-973	Ca C	99.96 Ca, 0.01 Mg, 0.011 N, 0.010 Fe, 0.001 Al, 0.005 Mn; 0.2 in. in diameter and 5 in. long.
6	50	Van Zytveld, J.B., Enderby, J.E., and Collings, E.M.	1972		1123-1138		99.9 pure, 0.001 each Al, Fe, 0.02 N ₂ , 0.001-0.002 each Co, Be, B, 0.001-0.02 Li, 0.01-0.05 Mg; sample was obtained from Atomergic Chemetals Co.
7	27	Meissner, W. and Voigt, B.	1930	→	1.36-273.16	6 Ca 1	Pure; specimen was enclosed in a glass tube filled with helium gas; specimen dimension 1.2 x 1.2 x 59 mm; electrical resistance was measured by compensation method with a mirror galvanometer; no thermal expansion correction for electrical resistivity data.
8	75	Frank, V. and Jeppesen, O.G.	1953		293. 15	Ca	99 ⁺ Ca; 0.203 \pm 0.002 mm thickness, 17 mm width, 48 mm long; density = 1.543 \pm 0.004 g cm ⁻³ , lattice constant = 5.59 \pm 0.01 x 10 ⁻⁸ cm (face-centered cubic).
9	68	Katerberg, J., Niemeyer, S., Penning, D., and Van Zytveld, J.B.	1975	A	308-944		99.5 pure, major metallic impurities were other alkaline earth metals; specimen was supplied by Atomergic Chemetals Co.; the sample was mounted on stainless steel and high purity alumina with their surfaces exposed to the dynamic vacuum; measurements were taken with sample held under an atmosphere pressure of pure intert gas; data was extracted from figure.
10	68	Katerberg, J., et al.	1975	A	300-902		Similar to the above specimen except it was supplied by Hall Co.; data was extracted from the graph.
11	71	Cook, J.G., Laubitz, M.J., and Van der Meer, M.P.	1975	A	4.2-299.3	Ca 2	High purity (99% pure) Ca was sublimed at 1100 K in an Ar atmosphere of 6 mm Hg onto a 304 stainless steel plate kept near 570 K; cylindrical sample was cast from the purified by filling 1.2 cm diameter tubes with dendrites, welding caps onto their ends, heating them above the melting points of Ca in a vacuum furnace and then slowly cooling them; the resistance ratio near 10.
12	71	Cook, J.G., et al.	1975	D	4,2-306.27	7 Ca 3	Similar to the above specimen; except Ta tubing and caps were used; the resistance ratio was near 70.
13	71	Cook, J.G., et al.	1975	Α	324.09-4731	Ca 1	99% pure commercial calcium.
14	70	Swisher, C.L.	1917	В	297-569	О	99.57 pure; specimen was obtained from Kalilbaum; wire specimen 0.23 cm in diameter and 10.4 cm in length; measurements were taken in vacuum.
15	70	Swisher, C.L.	1917	В	295-631	P	Similar to the above specimen; except 0.27 cm in diameter and 10.0 cm in length.

TABLE 10. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF CALCIUM Ca (Temperature Dependence) (Continued)

Cur.	Ref. No.	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
16	70	Swisher, C.L.	1917	В	295-535	Q	Similar to the above specimen; except 0.275 cm in diameter and 7.5 cm in length.

TABLE 11. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF CALCIUM Ca (Temperature Dependence)

[Temperature, T, K; Resistivity, ρ, 10⁻⁶ Ωm]

Ť	ρ	Т	ρ	T	ρ	T	ρ	${f T}$	ρ	T	ρ
CUR	<u>VE 1</u>	CUR	VE 4 (cont.)	CURVE	5 (cont.)	CURVI	E 9 (cont.)	CURVE	10 (cont.)	CURVE	12 (cont.)
4.2	0.085	589	13.1	800	13.3	520	9.34*	538	10.54	50.61	0.2871
7.1	0.085	600	14.0	818	14.1	534	9.53*	561	11.09*	60.07	0.3978
19.5	0.105	614	15.0	834	14.6	54 8	9.65	585	11.38 11.56*	70.96	0.5315
22.2	0.115	630	16.0	856	15. 3	565	9.80*	597	11.56**	87.54	0.758
77.4	0.685	646	16.6	874	15.9	579	10.03*	623	12.01	106.31	1.003
139.7	1.50	664	17.0	886	16.6	591	10.20	642	12.56*	122.07	1.213
191.0	2.14	674	17.1	913	17.4	604	10.44*	654	12.77	137.48	1.408
194.9	2.20	714	17.1	934	18.2	617	10.67*	676	13.01*	153.72	1.615
273.5	3.17	746	17.3	964	19.3	633	10.85*	689	12.93	167.70	1.794*
301.1	3.53	758	17.3	986	20.3	645	11.11	696	12.90*	183.43	1.991
		782	17.8	1007	21.3	660	11.38*	701	12.98*	198.37	2.179
CUR	VE 2	808	18.3			672	11.58*	707	13.07*	198.37	2.179*
		828	18.5	CUR	VE 6	701	11.75	716	13.16	214.63	2.379
325	5.50	853	18.7			708	12.02* 12.27*	728	12.87 F	229.00	2.564
375	6.37	874	19.2	1123	33.0 ± 1.4	721	12.27*	738	13.53	255.20	2.886
425	7.46	899	19.5	1136	33.0 ± 1.4	737	12.57* 12.75*	753	13.79*	259.47	2.945
		911	19.8	OTTO:	****	747	12.75"	775	14.08 14.47*	277.46	3.203
CUR	VE 3	923	19.9	CUR	<u>VE 7</u>	757	12.93	800		291.13	3.325
	4.0	934	20.3	- 00		775	13. 28* 13. 47*	816	14.70	305.53	3.507*
289	4.3	946	20.9	1.36	1.131	786	13.47"	831	14.97* 15.35*	306.27	3.545
arm:	****	958	21.3	4.22	1. 137	807	13.85 14.15**	853 863	15. 35 15. 60	CITT	TIT 10
CUR	VE 4	~	TOTAL F	20.45	1.432	824	14.15" 14.44*	884	15.95*	CUR	VE 13
0.07	4.0	<u>C</u>	TRVE 5	77.59	1.781	837	14.44" 14.85	884 894	16.19*	324.49	5.501*
287	4.0	0.07	4.0	83.57	1.856	860	14.85	902	16.19"	373.87	6.378*
299	4.1	287 317	4.2 4.5	273.16	4.050	871	15.16* 15.48*	902	10.41	427.5	7.521
310 322	$\frac{4.5}{4.7}$	338	4.5 5.0	CUR	VT. 0	884 898	15.48" 15.70	CIID	VE 11	473.1	8.720
322 335	4.7	360	5.0 5.2*	COR	VE 8		16.01*	CUR	VE II	473.1	8.720
346	5.1	380	5.4 5.4	293.15	3.60 ± 0.03	913 924	16.15*	4.2	0.369	CITO	VE 14
359	5.3	398	5.7	293, 10	3.00 ±0.03	934	16.15*	23.0	0.393	CUR	VE 14
370	5.6	420	5.9	CURV	717.0	934 944	16.66	35.0	0.468	297	4.6
381	5.8	450	6.5	COR	VE 9	944	10.00	49.6	0.400	356	5.2
395	6.2	475	6.9	308	4 09	CIT	RVE 10	64.6	0.833	437	5. 2 6. 44
404	6.4	506	7.2	315	4.83 4.78*	<u>CO.</u>	RVE 10	94.89	1.261	517	7.68
419	6.7	537	7.8	323	5.26	300	4.78	101.46		569	8.44
433	6.9	559	8.2	338	5.53*	305	4.90*	150.68		657	10.36
445	7.1	580	8.4	354	5.80	316	5.09	200.01	9 794	753	11.28
459	7.3	599	8.7	369	6.03*	336	5.45*	200.42	2.734 2.758*	797	12.08
482	8.0	622	9.1	382	6.19*	355	5.71*	249.70		841	12.80
507	8.7	643	9.5	395	6.34	371	6.09	253.62		881	13.76
520	9.2	659	9.8	412	6.76*	407	6.82	299.3	4.139*	001	10.10
533	9.7	675	10.0	412 428	7.08	432	7.31*	477.3	4. 133	CIID	VE 15
544	10.4	699	10.6	428 443	7.08 7.35*	432 462	7.96*	CITE	VE 12	CUR	A E 79
553	10.4	725	11.0	443 466	7.35 8.10	462 476	7.96. 8.40	COR	V 11 14	295	4.76
564	11.0	760	11.8	474	8. 29**	492	8.89*	4.2	0.045*	375	5.66
567	11.5	775	12.3	490	8.80	506	9.37	30.43		443	6.97
577	12.1	785	12.8	503	9.11*	523	9.99*	40.34		518	8.07
011	~~. +	100	14.0	000	0.11	040	0.00	70.04	0.4111	0.0	0.01

^{*} Not shown in figure.

TABLE 11. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF CALCIUM Ca (Temperature Dependence) (Continued) [Temperature, T, K; Resistivity, ρ , 10⁻⁸ Ω m]

T	ρ
CURVE	15 (cont.)
565 631	8.85 9.95
647	10.30
663	10.45
724	11.12 12.30
79 1 873	13.80
CUR	VE 16
295	4.78*
314	5.02
321	5.14
333	5.33
359	5. 56
377	5.88
384	6.05
411 451	6.50 7.33
484	7. 93
535	8.36
555	8. 73
583	9.04
616	9. 58
631	9.87
670	10.59
725	11.23
773	12.05
836	13.05 13.88
873 878	13.88 14.00
0.10	14.00

^{*} Not shown in figure.

4.4. Strontium

Strontium, with atomic number 38 is a silvery-white metal, resembling calcium in its properties but softer. It exists in three structural modifications: face-centered cubic α -Sr stable below 488 K, close-packed hexagonal β -Sr stable between 488 and 815 K, and body-centered cubic γ -Sr stable above 815 K. The density of α -Sr is 2.60 g cm⁻³ at 293 K. The metal melts at 1042 K and boils at about 1645 K. At room temperature and a high pressure of 3.5 × 109 Pa, α-Sr undergoes a phase transformation to a body-centered cubic structure similar to y-Sr. Naturally occurring strontium is composed of four stable isotopes, the most abundant being 88Sr which constitutes 82.56%. Twelve other radioactive isotopes are known to exist, one of which, the longestlived 90Sr with a half life of 28.1 years, is of great importance. This radioactive isotope is one of the best long-lived high energy beta emitters known and is very useful. But it also is a product of nuclear fallout and presents a health problem. Strontium is the fifteenth most abundant element in the continental crust of the earth (0.0375% by weight).

Temperature Dependence

There are 11 sets of experimental data available for the temperature dependence of the electrical resistivity of strontium. The information on specimen characterization and measurement condition for each of the data sets is given in table 13. The data are tabulated in table 14 and shown in figures 8 and 9. Determinations of the electrical resistivity for both the solid and liquid states cover the temperature range from 1.32 to 1093 K.

The data of Messiner and Voigt [27] (curves 8 and 9), Rinck [76] (curve 11), McWhan, Rice, and Schmidt [77] (curves 1-3), and Rashid and Kayser [78] (curve 4) were not for high-purity specimens. At temperatures below 815 K the recommended values are based on the data of Cook and Van der Meer [73] (curve 6), Rashid and Kayser [78] (curve 5), and Katerberg et al. [68] (curve 10). These three sets of data for 99.5% pure specimens appear to be reasonably consistent. At least-mean-square-error fit was made with the modified Bloch-Grüneisen equation (8) to the selected data for $\rho-\rho_0$ from 50 to 800 K. The following results were obtained for the coefficients in equation (8):

$$S_1$$
 S_3 S_4 S_6 $6.015 \cdot 10^{-6} \Omega$ m $-0.02743 \cdot 10^{8-} \Omega$ m 0 $(\theta_R)_0$ C P 142.7 K 0.0108 0

The Debye temperature deduced from specific heat measurements is 147 K which is very close to the present value for θ_R . The resulting values from equation (8) were then corrected for thermal linear expansion to become the final recommended values.

There appears to be no discontinuity in the electrical resistivity at the temperature of 488 K where the transition from α -Sr to β -Sr occurs. However, at the β -Sr to γ -Sr transition around 815 K, there is a sudden jump of about 40% in the resistivity values. Above 815 K the recommended resistivity values are based on the data of Katerberg et al. [68] (curve 10). Their data were fitted with a linear logarithmic equation up to the melting point resulting in the following equation:

$$\log_{10\rho} = 1.6233 + 1.137 \times \log_{10} T$$

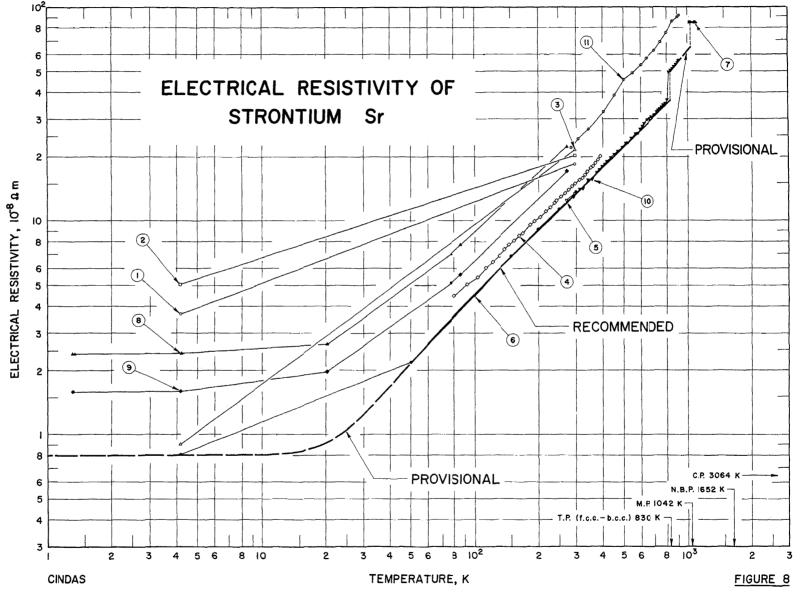
$$815 \text{ K} < T < 1042 \text{ K}$$
(13)

Only one set of data is available on the electrical resistivity of strontium in the liquid state. Van Zytveld et al. [50] (curve 7) found that the temperature dependence of electrical resistivity is small and weakly negative. At the melting point (1042 K), the electrical resistivity of strontium in the liquid state is about 31% higher than that of solid strontium.

The recommended values for the total and intrinsic electrical resistivities of strontium are listed in table 12, and those for the total electrical resistivity are also shown in figures 8 and 9. The recommended values for the total electrical resistivity are for 99.95+% pure strontium and those at temperatures below 30 K are applicable only to a specimen with residual resistivity of $0.80 \times 10^{-8} \Omega$ m. The recommended values from 1 to 293 K are corrected for the thermal linear expansion. The correction amounts to -0.54% at 1 K, -0.42% at 100 K, and -0.21% at 200 K. The uncertainty in the recommended values for the total electrical resistivity is believed to be within $\pm 10\%$ below 50 K, within $\pm 5\%$ from 50 to 815 K, within $\pm 10\%$ from 815 to 1042 K and within $\pm 20\%$ above 1042 K. Above 40 K, the uncertainty in the recommended values for the intrinsic resistivity is slightly higher than that in the total electrical resistivity because of the possible deviations from the Matthiessan's Rule; below 40 K pi values are very uncertain and are not listed in the table.

TABLE 12. RECOMMENDED ELECTRICAL RESISTIVITY OF STRONTIUM (Temperature Dependence)

[Temperature, T, K; Total Resistivity, ρ , $10^{-8}\,\Omega$ m; Intrinsic Resistivity, ρ_1 , $10^{-8}\,\Omega$ m]


C-	7	*	4

Т	ρ	$ ho_{\mathbf{i}}$	Т	ρ	$\rho_{\mathbf{i}}$
1	0.800*		250	11.3	10.5
4 7	0.800*		273.15	12.3	11.5
	0.800*		293	13.2	12.4
10	0.805*		300	13.5	12.7
15	0.835*		350	15. 7	14.9
20	0.918*		400	17.8	17.0
25	1.065*		450	20.0	19.2
30	1.257*		500	22.2	21.4
35	1.460*		550	24.5	23.7
40	1.700*		600	26.7	25.9
45	1.94*	1. 14*	650	28.9	28.1
50	2.18	1.38	700	31.2	30.4
60	2.68	1.88	750	33.4	32.6
70	3.16	2.36	800	35.6	34.8
80	3.64	2.84	815	36.1	35.3
90	4.12	3.32	815	48.8*	48.0*
100	4.58	3.78	950	54.5*	53.7*
110	5.04	4.24	1000	62.2*	61.4*
120	5.50	4.70	1042	65.6*	64.8*
130	5.94	5.14			
140	6.39	5.59			
150	6.84	6.04	1		
175	7.95	7.15	1		
200	9.04	8.24	1		
225	10.2	9.35	l .		

Li	quid
Т	ρ
1042	84.8*
1093	84.7*

^{*} Provisional values

The recommended values for the total electrical resistivity are for 99.95 $^{+}\%$ pure strontium and those at temperatures below 30 K are applicable only to a specimen with residual resistivity of 0.80 x $10^{-8}\Omega$ m.

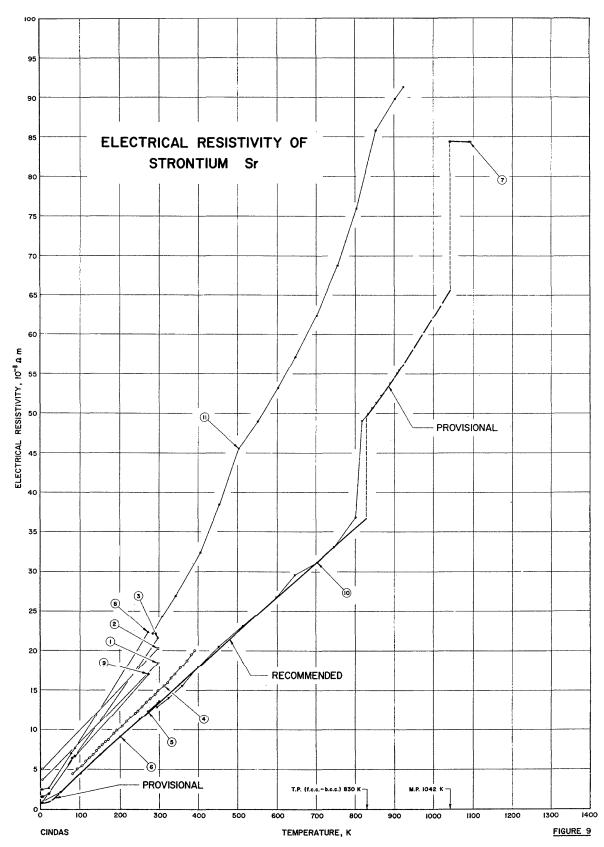


TABLE 13. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF STRONTIUM Sr (Temperature Dependence)

Cur. No.	Ref. No.	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
1	77	McWhan, D.B., Rice, T.M., and Schmidt, P.H.	1969	A	4.2,298	Sr 4	98.1 Sr, 1.9 (Mg, Ca, Ba), 0.04 other; $R_{298/4.2} = 5$; samples were made from metal purified by fractional distillation.
2	77	McWhan, D.B., et al.	1969	A	4.2,298	Sr 5	98.8 Sr, 1.2 (Mg, Ca, Ba), 0.05 other; $R_{298/4,2} = 4$.
3	77	McWhan, D.B., et al.	1969	A	4.2,298	Sr 6	98.6 Sr, 1.4 (Mg, Ca, Ba), 0.03 other; $R_{298/4.2} = 24$.
4	78	Rashid, M.S. and Kayser, F.X.	1971		80-400	Sr	98^+ Sr, 0.2 each Ba, Ca, 0.025 Mg, 0.03 each Fe, $\rm N_2$, 0.015 Al, 0.05 (Li Na+K); 3.8 mm diameter, 10 mm long wire specimen annealed at 470 K for 16 hr, 3 times.
5	78	Rashid, M.S. and Kayser, F.X.	1971		273,298	Sr (distilled)	Same as above except the specimen was distilled at 1140 K.
6	73	Cook, J.G. and Van der Meer, M.P.	1973		4.2-300	Sr	99 ⁺ purity; $\rho_{(273,2)}/\rho_{(4,2)} = 15.5$
7	50	Van Zytveld, J.B., Enderby, J.E., and Collings, E.M.	1972		1043-1093	Sr	99.5 pure, < 0.08 Fe, 0.05 each Al, N_2 , Ba, Mg, Ca, 0.01 Cl ₂ , 0.1 others; specimen was obtained from Atomergic Chemetals Co.
8	27	Meissner, W. and Voigt, B.	1930	→	1.32-273	Sr 1	<0.1 Fe; specimer was in a glass tube with helium; specimen size was 0.5 x 2.5 x 34 mm; the electrical resistance was measured by compensation method with a mirror galvanometer; no thermal expansion correction for electrical resistivity data.
9	27	Meissner, W. and Voigt, B.	1930	→	1.32-273	Sr 2	Similar to the above specimen except it was heated in vacuo for 3 hr at 160 C
10	68	Katerberg, J., Niemeyer, S., Penning, D., and Van Zytveld, J.B.	1975	A	294-912		99.5-99.7 purity specimen was obtained from Atomergic Chemetals Co.; the measurements were taken with sample held under an atm of pure inert gas; data were extracted from figure.
11	76	Rinck, E.	1952	A			Pure, double distilled specimen was obtained from Pechiney Co.; cylindrical specimen about 10 cm long; melting point 1041 K; data were extracted from graph.

J. Phys. Chem. Ref. Data, Vol. 8, No. 2, 1979

TABLE 14. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF STRONIUM Sr (Temperature Dependence)

[Temperature, T, K; Resistivity, ρ, 10⁻⁸ Ωm]

т	ρ	Т	ρ	T	ρ	T	ρ	T	ρ
CURVE 1		CURVE 4	CURVE 4 (cont.)		(cont.)	CURVE	10 (cont.)	CURVE	11 (cont.)
4.2	3.7.	302.6	15.13*	20.40	2,662	763	33.81	756	68.8
298	18.5	312.2	15.59	77.75	7.005	779	34.59	775	70.2*
290	10.0	317.1	15.77*	86.32	7.717	793	35.23	787	71.0*
CUR	VE 2	321.7	15.92	273.16	22.31	804	36.60	794	73.4*
COR	VIII I	326.7	16.09*	210.10	22.01	819	49.02	804	76.0
4.2	5.08	330.8	16.53	CUR	VF 0	835	49.98	815	79.0*
298	20.3	335.6	16.71*	0010	VL 3	844	50.64	825	82.6*
490	20.0	340.1	17.03	1.32	1.586	856	51.33	834	84.2*
CIT	177E 0		17.22*				52.27	846	85.0*
CUR	RVE 3	344.9		4.20	1.595	869			
		349.6	17.35*	20.40	1.978	892	53.89	855	85.9
4.2	0.90	353.9	17.82	77.75	5.143	908	55.03	864	86.4*
298	21.6	358.5	17.99*	86.32	5.639	913	55.43	876	87.3*
		362.8	18.17	273.16	17.02			888	88.4*
CUR	RVE 4	367.3	18.51*			CUR	<u>VE 11</u>	904	89.9
		371.6	18.77	CURV	E 10			913	90.6*
80.2	4.49	377.4	18.96*			285	22.1	926	91.4
92.8	5.07	379.7	19.24*	294	12.94	309	24.3		
104.1	5.47	383.6	19.53	310	13.63	322	25.2*		
113.9	6.02	388.1	19.80*	322	14.21	343	26.9		
122.9	6.42	391.0	20.05	342	15.14	365	28.8*		
132.1	6.86			359	15.84	388	30.6*		
140.1	7.38	CUR	VE 5	378	16.72	406	32.4		
147.8	7.76	***************************************		390	17.28	420	34.1*		
155.4	8.09	272.7	12.46	399	17.70	431	35.1*		
163.1	8.51	297.9	13.46	408	18.01*	444	36.6*		
170.9	8.76			414	18.26	4 55	38.5		
184.8	9.55	CUR	VE 6	422	18.62	469	40.7*		
192.2	9.93			438	19.38	479	42.7*		
198.8	10.13*	4.2	0.806	454	20.12	491	44.4*		
205.0	10.47	50	2.18	471	20.84	504	45.6		
211.1	10.73*	100	4.50	499	22.00	514	46.9*		
217.1	11.07	150	6.82	514	22.75	526	47.6*		
222.8	11.35*	200	9.12	527	23.42	539	48.3*		
228.9	11.64	250	11.38	548	24.33	552	49.0		
234.3	11.88*	273	12.5 *	570	25.26	560	50.2*		
239.7	12.15	300	13.65	587	25.92	570	50.6*		
245.9	12.43	000	10.00	602	26.80	583	51.2*		
251.2	12.69×	CITE	VE 7	617	27.60	593	52.0*		
256.3	12.98	<u>C011</u>	VE	629	28.20	604	53.3		
262.0	13.25*	1043	84.8 ± 2.0				55.2*		
				648	29.00	624			
267.4	13.49	1093	84.65 ± 2.0	667	29.76	648	57.2		
272.2	13.75*	OTT.	T/TP 0	683	30.38	668	58.8*		
277.4	13.99	CUR	<u>VE 8</u>	697	30.96*	685	60.4*		
282.9	14.28		0.440	706	31.31	702	62.5		
288.0	14.50	1.32	2.416	724	32.11	716	64.3*		
292.4	14.69×	1.35	2.416	737	32.66	735	66.3*		
297.7	14.93	4.21	2.416	747	33.14	741	67.2*		

^{*}Not shown in figure.

4.5. Barium

Barium, with atomic number 56, is a soft, silver-white metal, resembling calcium chemically. It oxidizes very easily in air, melts at 1002 K, and boils at 2174 K. Its density is $3.5~{\rm g~cm^{-3}}$ at 293 K. The critical temperature of barium has been estimated to be 3670 K. Barium crystal has a body-centered cubic structure. At a pressure of about 5.9×10^9 Pa, the body-centered cubic structure transforms to a close-packed hexagonal form. Naturally occurring barium is composed of seven stable isotopes, the most abundant being $^{138}{\rm Ba}$, which constitutes 71.66%. Thirteen other radioactive isotopes are known to exist. Barium is the fourteenth most abundant element in the continental crust of the earth (0.0524%) by weight).

Temperature Dependence

There are 21 sets of experimental data available for the electrical resistivity of barium. The information on specimen characterization and measurement condition for each of the data sets is given in table 16. The data are tabulated in table 17 and shown in figures 10 and 11. Determinations of the electrical resistivity for both the solid and liquid states cover continuously the temperature range from 1.26 to 1451 K.

The data for the electrical resistivity of barium show considerable scatter. At low temperatures, the data of Meissner and Voight [27] (curve 5), Meissner, Franz, and Westerhoff [79] (curve 10), and of Rashid and Kayser [80] (curves 6 and 7) are not for high-purity specimen. Above room temperature, Rinck [81] found a distinct slope change about 650 K (curve 13) which he assumed to be due to phase change at this temperature. The data of Grüntherodt, Hause, and Kunzi [82] (curve 9) are similar to Rinck's. The data of Grube and Dietrich [83] (curve 14) also show a discontinuity near 650 K, which however, exhibits quite a different nature from that indicated by the data of Rinck. The data of Katerberg, Nieneyer, Penning, and Van Zytveld [68] (curves 11 and 12) show no slope change at 650 K, but show a slope change near 530 K. Cook and Laubitz [84] presented data for pure and hydrogen charged Ba from 300 to 750 K (curves 15-21). Their data for pure barium differ from all previous data and show no evidence of transition at any temperature.

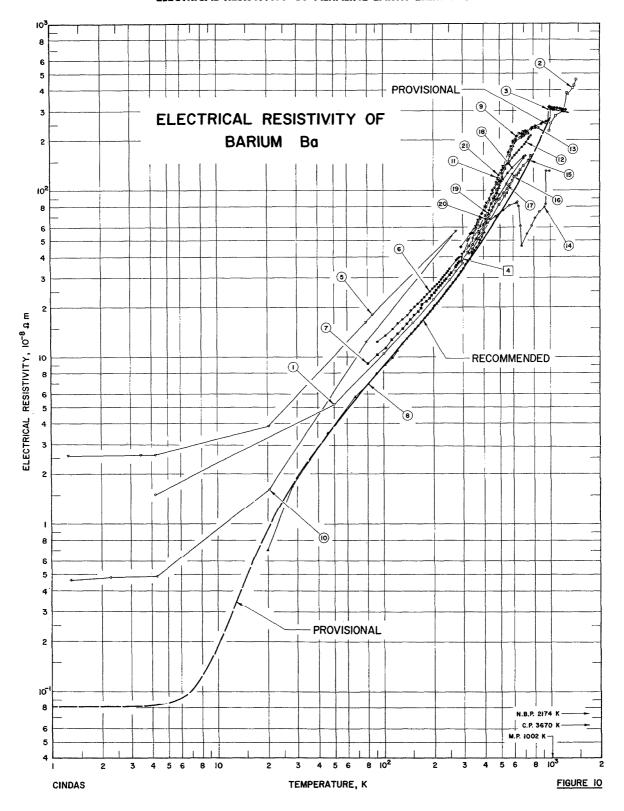
A least-mean-square-error fit was made with the modified Bloch-Grüneisen equation (8) to the data of Cook and Laubitz [84] (with correction for the effect of hydrogen) and of Rashid and Kayser [80] (curve 8) from 30 to 750 K. The following results were obtained for the coefficients in equation (8):

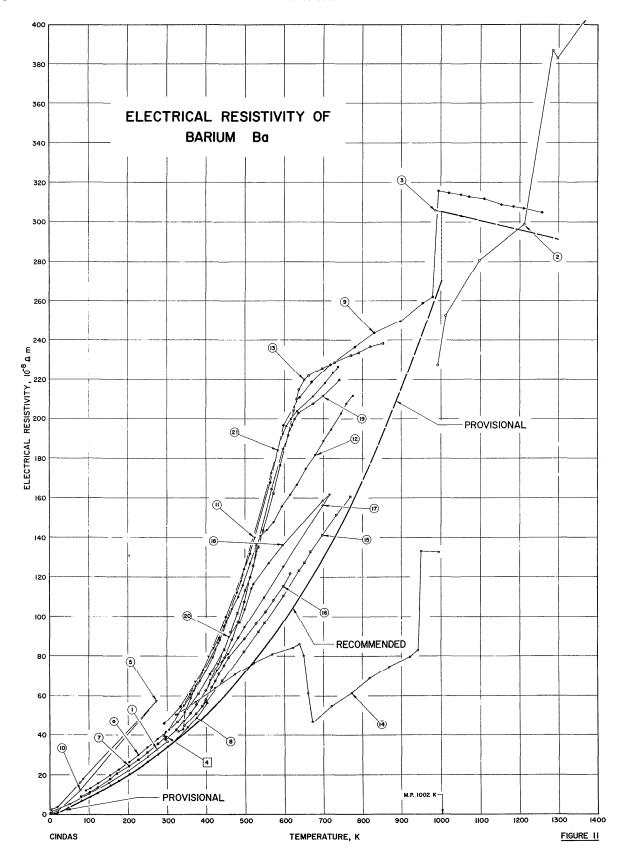
$$S_1$$
 S_2 S_3 $(\theta_R)_0$ C P 5.870·10⁻⁸ Ω m 0.3428·10⁻⁸ Ω m 0 72.8 K 0.0252 0

The Debye temperature deduced from specific heat measurements is 110 K which is almost 40% higher than the present value for θ_R . The resulting values from equation (8) were then corrected for the thermal linear expansion and extrapolated to lower and higher temperatures to become the final recommended values.

There are three data sets available on the electrical resistivity of barium in the liquid state. Van Zytveld, Enderberg, and Collings [50] (curve 3) and Grüntherodt et al. [82] (curve 9) found that the temperature dependence of the electrical resistivity of liquid barium is small and weakly negative. However, Genter and Grosse [85] (curve 2) found a very large positive temperature dependence. On comparison with the electrical resistivity data for other alkaline earth elements in the liquid state, indicated that the electrical resistivity of liquid barium should have a weakly negative dependence on temperature. The data of Van Zytveld et al. and of Grüntherodt et al. were normalized by matching their values at the melting point of 1002 K. The normalized values were then least-mean-squareerror fitted with a linear equation to yield the provisional values. At the melting point (1002 K), the electrical resistivity of barium in the liquid state is about 25% higher than that of solid barium.

The recommended values for the total and intrinsic electrical resistivities are listed in table 15, and those for the total resistivity are also shown in figures 10 and 11. The recommended values for the total electrical resistivity are for 99.5+% pure barium and those at temperatures below 100 K are applicable only to a specimen with residual resistivity of $0.08 \times 10^{-8} \Omega$ m. The recommended values from 1 to 293 K are corrected for the thermal linear expansion. The correction amounts to -0.5% at 1 K, -0.37%at 100 K, and -0.18% at 200 K. The uncertainty in the recommended values for the total electrical resistivity is believed to be within $\pm 10\%$ below 30 K, within $\pm 5\%$ from 30 to 750 K, and within $\pm 10\%$ from 750 to 1300 K. Above 40 K the uncertainty in the recommended values for the intrinsic resistivity is slightly highter than that in the total electrical resistivity because of the possible deviations from the Matthiesen's Rule; below 40 K the pi values are very uncertain and are not listed in the table.


TABLE 15. RECOMMENDED ELECTRICAL RESISTIVITY OF BARIUM (Temperature Dependence)


[Temperature, T, K; Total Resistivity, ρ , 10^{-8} G m; Intrinsic Resistivity, ρ_i , 10^{-8} G m]

T.	ρ	$ ho_{\mathbf{i}}$	T	ρ.	$ ho_{ m i}$
1	0.081*		250	26.9	26.8
4 7	0.082*		273.15	30.2	30.1
7	0.104*		293	33.2	33.1
10	0.189*		300	34.3	34.2
15	0.501*		350	42.4	42.3
20	0.940*		400	51.4	51.3
25	1.42 *		450	61.4	61.3
30	1.92 *		500	72.4	72.3
35	2.41 *		550	84.7	84.6
40	2.91 *		600	98.2	98.1
45	3.39	3.31	650	113.	113.
50	3.88	3.80	700	130.	130.
60	4.86	4.78	750	148.	148.
70	5.84	5.76	800	168. *	168.
80	6.83	6.75	900	216. *	216
90	7.83	7.75	950	244. *	244.
100	8.85	8.77	1000	275. *	275.
110	9.89	9.81	1002	276. *	276.
120	11.0	10.9			
130	12.0	11.9			
140	13.1	13.0			
150	14.3	14.2	1		
175	17.2	17.1	1		
200	20.2	20.1	1		
225	23.5	23.4	11		

Liquid					
T	ρ				
1002	306. *				
1050	303. *				

Provisional values The recommended values for the total electrical resistivity are for 99.5 4 % pure barium and those at temperatures below 100 K are applicable only to a specimen with residual resistivity of $0.081 \times 10^{-8} \Omega$ m.

_
. Phys
Chem.
Ref.
Data,
<u>ŏ</u>
œ
Š.
72
1979

TABLE 16.	MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF BARIUM	Ba (Temperature Dependence)

Cur. No.		Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
1	73	Cook, J.G. and Van der Meer, M.P.	1973		4.2-300		99 $^+$ purity; $\rho_{(273)}/\rho_{(4.2)} = 21.8$; data were extracted from the smooth table.
2	85	Genter, R.B. and Grosse, A.V.	1971		993-1500		99.97 pure, 0.03 each Ca, Sr; liquid barium was contained in a Type 304 stainless steel tube about 0.5 in O.D., 0.421 in I.D. and 10 in. long; the sample was obtained from Mackay Metals, New York.
3	50	Van Zytveld, J.B., Enderby, J.E., and Collings, E.M.	1972		988,1053		99.5 Ba, < 0.1 each Sr, Na, C, < 0.05 each Al, Fe, N ₂ , Zn; specimen was obtained from Atomergic Chemetals Co.
4	86	Müller, W.E.	1967		300		Pure;
5	27	Meissner, W. and Voigt, B.	1930		1.26-273	Ba 1	Pure; specimen was placed in a glass tube filled with helium; sample size 0.2 x 4 x 40 mm; the electrical resistance was measured by compensation method, a mirror galvanometer was used.
6	80	Rashid, M.S. and Kayser, F.X.	1971	A	80-300	1	99.0 pure Ba bar was obtained from Charles Pfizer Co., Inc.; it was extruded to 0.254 cm diameter wire and 3 cm long specimen; the specimen was in b.c.c. structure.
7	80	Rashid, M.S. and Kayser, F.X.	1971	A	80-300	2	Similar to the above specimen except it was in recrystallized treatment at $470~\mathrm{K}$ for $16~\mathrm{hr}$.
8	80	Rashid, M.S. and Kayser, F.X.	1971	A	20-400	3	Similar to the above specimen except it was double distilled and annealed at 400 K for 4 days; $\rho(300 \text{ K})/\rho(4.2 \text{ K}) = 400 \sim 900$.
9	82	Güntherodt, H.J., Hauser, E., and Künzi, H.V.	1975	c	292-1258		99.5 pure; the specimen was supplied by Fluka; a thin-wall vacuum tight stain- less steel crucible was used in measurement; the specimens were etched first in methyl alcohol and then in toluene, then the specimens were trans- ferred to the measuring cell and the open end of the crucible was pressed together; data were extracted from the figure; reported error 4%.
10	79	Meissner, W., Franz, H., and Westerhoff, H.	1932		1.3-273.16		Pure; the specimen was obtained from Dr. Friderich; relative resistance data were reported; resistance at temperature 273.16 K, $R_0=3.12\times 10^{-8}~\Omega$; the resistivity data were obtained by using $\rho_{273,16}_{\rm K}=57.6\times 10^{-8}~\Omega$ m.
11	68	Katerberg, J., Niemeyer, S., Penning, D., and Van Zytveld, J.B.	1975	A	295-524		99.5-99.7 purity specimen was obtained from Atomergic Chemetals Co.; the experiment was measured with the sample held under an atm of pure argon; data were extracted from figure.
12	68	Katerberg, J., et al.	1975	A	328-776		Similar to the above specimen.
13	81	Rinck, F.	1931	A			Pure; double distilled specimen was prepared by Prof. Guntz; cylindrical specimen 10 cm long, 1.215 cm in diameter; because of crack only small section of the specimen was used to measure the resistance; melting point 984 K; data were extracted from figure.
14	83	Grube, G. and Dietrich, A.	1938		322-995		98.72 Ba, 0.31 Mg, 0.18 Zn, 0.25 Si, 0.05 Fe + Al, 0.33 Cl, rest $N_2 + O_2$; melting point 950 ±2 K; the specimen was obtained from I.G. Farbenindustrie Aktiengesellschaft, Bitterfeld.
15	84	Cook, J. G., and Laubitz, M.J.	1976		344-770	Ba3	Pure; specimen was prepared by sublimation at 1173 K in He at 8 mm Hg, a 405 stainless steel pot was used; a Ta tube degassed at 1173 K was filled with Ba dendrites and welded shut at both ends and it was kept at 1173 K in vacuum for three days in order to drive off as much H as possible, finally the Ta was removed from the Ba casting using a lathe in a glove box containing linert gas; the residual resistance ratio of the sample was 55; measurements were taken with increasing temperature; data were extracted from the smooth figure; no thermal expansion correction on data.

TABLE 16. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF BARIUM Ba (Temperature Dependence) (continued)

Cur. No.	Ref. No.	Author(s)	Year	Method Temp. Used Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
16	84	Cook, J.G. and Laubitz, M.J.	1976	344-615	Ba3	The above specimen; the sample was first cooled to 620 K and after a 10 hr period measurements were taken with decreasing temperature.
17	84	Cook, J.G. and Laubitz, M.J.	1976	423-716	Ва3	The above specimen was allowed to react with $\rm H_2$ at 535 K; measurements were taken with increasing temperature.
18	84	Cook, J.G. and Laubitz, M.J.	1976	485-716	Ba3	The above specimen; measurements were taken with decreasing temperature.
19	84	Cook, J.G. and Laubitz, M.J.	1976	295-742	Ва3	The above specimen was allowed for ${\rm H_2}$ charging at 620 K; measurements were taken with increasing temperature.
20	84	Cook, J.G. and Laubitz, M.J.	1976	295-742	Ba3	The above specimen; measurements were taken with decreasing temperature.
21	84	Cook, J.G. and Laubitz, M.J.	1976	324-739	Ba2	Commercially pure; residual resistance ratio was 10; data were extracted from the smooth figure and without thermal expansion correction.

TABLE 17. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF BARIUM Ba (Temperature Dependence) [Temperature, T, K; Resistivity, ρ , $10^{-8} \Omega m$]

Ţ	ρ	т	ρ	T	ρ	T	ρ	T	ρ	Т	ρ
CUE	RVE 1	CURVI	E 6 (comt.)	CURVI	E 7 (cont.)	CURV	E 8 (cont.)	CURVE	9 (cont.)	CURVE	12 (cont.)
4.2	1.51	139	17.9 19.1	250 255	31.4 32.2	301 306	$34.3 \\ 35.2*$	1154 1185	309 308	573 594	148 156
50	5.21	146		255 271	34.8	311	36.2	1211	307	616	162
100	10.51	154	20.1	271 276	35.8	316	36.9*	1258	305	633	167
150	16.14	161	21.0	276 281	36.7	320	37.8	1200	303	655	175
200	22.34	170	22.0			320 325	38.5	CITE	RVE 10	680	182
250	29.25	176	23.0	286	37.7		39.3	<u>CUI</u>	VEIU	701	189
273	33.0	183	24.0	296	39.3	331	39.3 40.3*	1.30	0.459	701 720	195
300	36.9	190	24.8	C)	ETD TIES O	333		2,24	0.474	746	203
		197	25.8	<u>U</u>	URVE 8	339	41.2*	4.26	0.482	759	208
CUI	RVE 2	203	26.6			343	42.2	20.47	1.61	759 776	212
		209	27.5	20	0.7	348	43.2*		12.3	110	212
993	228	216	28.4	28	1.7	352	44.0	78.18 273.16	57.6*	CHI	TTE 10
1013	253	221	29.3	46	3.5	356	44.9*	273.10	97.0	COR	IVE 13
1098	281	226	30.2	67	5.8	361	46.0	OTT	15771 4.4	200	40.0
1212	299	232	31.0	81	6.9	365	47.1*	<u>UU</u>	RVE 11	290	40.0
1286	387	238	32.0	91	8.0	369	48.0*	00.5	40.1	326	46.9
1298	383	244	32.9	102	9.0	376	49.1	295	40.1	346	51.7*
1396	412	249	34.0	113	9.9	377	49.9*	306	44.3	380	61.1 70.8
1412	429	275	38.2	122	11.0	382	51.0	326	51.4 57.1*	410	83.1
1451	465	280	39.1	130	12.0	386	52.2*	342		446	92.0
		2 85	40.0	139	12.8	391	53.4	357 372	62.4	463	
CUI	RVE 3	296	41.9	147	13.9	395	54.5*		67.2	480	101.8
				155	14.7	399	55.7*	391	73.3*	500	113.4
988	306.0 ± 11	<u>C</u> 1	URVE 7	161	15. 5	403	56.6	407	79.2	513	120.0
1053	303.4 ± 11			169	16.3			419	83.3	521	126.0
		80	9.2	176	17.2	<u>Ct</u>	JRVE 9	434	89.3	535	135.2
CUI	RVE 4	92	10.4	184	18.0			446	94.7	546	143.7
		103	11.4	190	18.8	292	46	462	106*	573	162.5
300	39	113	12.8	198	19.6	334	55	489	118	590	176.8
		122	13.8	203	20.5	393	73	527	140	610	191.8
CUI	RVE 5	131	14.9	210	21.2	451	100			624	204.3
		139	15.9	215	21.9	513	132	CUI	RVE 12	633	210.3
1.26	2.57	146	16.9	222	22.7	565	168			638	215.2
3.44	2.59	154	18.0	227	23.4	599	197	329	42.4	652	220.1
4.21	2.59	162	18.8	233	24.2	639	211	338	43.3	663	222.3
20.45	3.863	170	19.8	238	25.1	670	219	343	53.7	683	224.7
78.00	16.38	171	20.9	244	25.9	719	228	360	59.6	698	226.2
85.68	18.14	183	21.7	250	26.6	782	237	374	66.0	729	229.2
273.16	57.6	190	22.6	254	27.4*	832	244	435	88	772	232.7
		196	23.6	261	28.2	898	250	451	97	791	234.1
CUI	RVE 6	203	24.5	266	28.7*	955	259	466	104	820	237.0
		209	25.3	271	29.6	980	262	482	110	854	238.7
92	12.4	215	26.2	276	30.3	995	316	494	116		
103	13.5	220	27.0	281	31.2	1021	315	513	127	CU	RVE 14
114	14.7	226	27.9	287	31.9*	1051	314	529	136		- -
122	16.0	233	28.8	291	32.9	1073	313	540	141	322	50.9
130	16.9	238	29.6	295	33.5*	1111	312	556	144	373	57.1

^{*} Not shown in figure.

ELECTRICAL RESISTIVITY OF ALKALINE EARTH ELEMENTS

TABLE 17. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF BARIUM Ba (Temperature Dependence) (continued)

т	ρ	т	ρ	Т	ρ
CURV	E 14 (cont.)	CURVI	E 16 (cont.)	<u>C</u>	URVE 20
423	64.0	552	102.5	295	38.0
473	70.7	572	108.3	322	42.8
523	76.7	598	115.6	343	47.5
570	81.0	615	121.9	360	51.5
623	84.1			375	55.8
639	85.9	cτ	RVE 17	399	62.7°
650	80.3	****		411	67.7
661	61.4	423	67.3*	431	76.0
672	46.9	432	70.9*	458	89.7
721	55.2	456	81.1	479	101.7
773	61.5	482	89.2	498	113.4
819	68.9	498	94.6	528	133.0
869	74.7	548	109.7	568	164.6
922	79.8	598	125.5	598	184.9
942	83.0	699	156.6	620	197.1
950	132.9	716	161.9	627	200.1
995	132.7			637	203.1
		<u>C</u> T	JRVE 18	674	207.8
CI	JRVE 15			700	211.9
		485	96.9	742	219.9
344	44.9	49 8	103.8		
374	51.4	516	114.4	<u>C</u>	URVE 21
390	55.1	521	116.6		
400	57. 1	560	127.1	324	50.6
441	67.6	597	136.3	343	55.4
497	82.3	699	159.0	368	62.5
534	92.1	716	161.9*	384	67.6
550	96.6			399	72.6
598	110.6	<u>Ct</u>	JRVE 19	417	79.5
638	123.6			431	86.6
652	127.5	295	38.0	453	97.8
668	133.0	322	42.8	479	112.2
698	141.4	343	47.5	498	124.2
734	151.6	360	51.5	568	172.8
770	161.0	375	55.8	584	184.3
	TD177 10	399	62.7	598	192.7
<u>U</u>	URVE 16	428	72.7	606	196.5
044	44.9*	447	79.4	618	200.2
$\frac{344}{374}$	51.4*	$rac{466}{482}$	88.3 97.0	634	204.1
390	55.1*	498	107.6	67 4 705	211.5
399	58.2	528	133.0	705	218.3
415	64.3	568	164.6	739	223.8
423	67.3	598	184.9	199	227.0
432	70.9	620	197.1		
446	75.4	627	200.1		
458	79.4	637	203.1		
498	88.7	674	207.8		
528	96.3	700	211.9		
		742	219.9		

^{*} Not shown in figure.

4.6. Radium

Radium, with atomic number 88, is a brilliant white, radioactive metal, and is the last member of Group II A elements. Its density has been estimated to be about 5 g cm⁻³, which is, however, questionable. The melting and boiling points of radium have been given as about 973 K and 1900 K, respectively. Radium has no stable isotope and has sixteen radioactive isotopes known to exist, with half-lives ranging from less than 1 millisecond (216 Ra) to 1620 years (226 Ra). One gram of the longest-lived 226 Ra undergoes 3.7×10^{10} disintegrations per second; this amount of radioactivity has been defined as one curie. Radium occurs in nature and is present in all uranium minerals in trace quantities.

Temperature Dependence

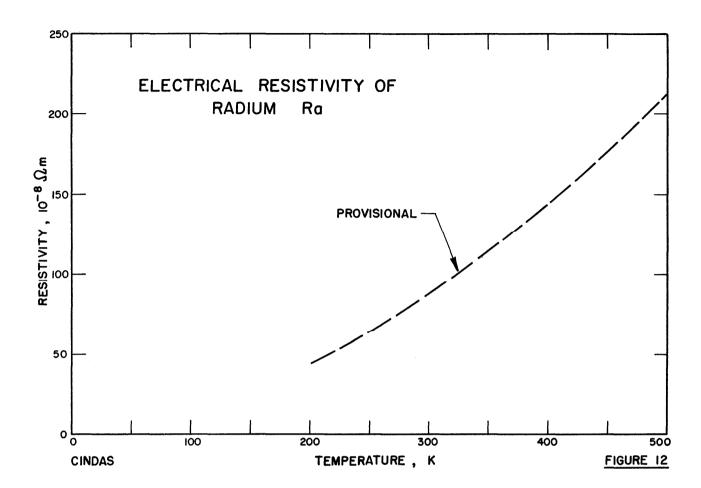
Although no information appears to have been published regarding the electrical resistivity of radium, a value of 0.186 W cm⁻¹ K⁻¹ attributed to Chirkin [87] for the room temperature thermal conductivity of radium does appear in the Handbook of the Physico-chemical Properties of the Elements edited by Samsonov [88]. Neither the basis of this value nor its probable reliability is known.

We have roughly estimated the lattice thermal conductivity of radium at 293 K to be 0.13 W cm⁻¹ K⁻¹ by extrapolation to the atomic number 88 of a curve drawn through the

lattice thermal conductivity values of calcium, strontium, and barium in a logarithmic graph of lattice thermal conductivity versus atomic number. The lattice thermal conductivity values of calcium, strontium, and barium are taken from Cook and Van der Meer [73]. Using the Wiedermann-Franz-Lorenz law, the electrical resistivity at 293 K is estimated to be $41 \times 10^{-8} \Omega$ m.

On the basis of the expected similarities between radium and other cubic-structure alkaline earth elements, namely calcium, strontium, and barium, we have roughly estimated the provisional intrinsic electrical resistivity of radium from 200 to 500 K by a least-mean-square-error fitting to the intrinsic electrical resistivity values of calcium, strontium, barium with a logarithmic equation with temperature and atomic number as the independent variables. The resulting equation is as follows:

$$\log_{10} \rho_{\rm i} = -0.95 \log_{10} T -
1.18 \log_{10} Z + 1.37 \log_{10} T \times \log_{10} Z$$
(14)


where Z is the atomic number and T is the absolute temperature.

The provisional values are listed in table 18 and shown in figure 12. The uncertainty in the provisional values is believed to be within $\pm 80\%$. The room temperature electrical resistivity value is about two times of the value calculated from Chirkin's thermal conductivity data.

TABLE 18. PROVISIONAL ELECTRICAL RESISTIVITY OF RADIUM (Temperature Dependence)

[Temperature,	Т,	К:	Intrinsic Resistivity	, O:,	10 ⁻⁸ Ω m]
---------------	----	----	-----------------------	-------	-----------------------

T	ρi
200	44
225	54
250	65
273.15	76
293	85
300	88
350	115
400	145
450	177
500	212

5. Summary and Conclusions

The electrical resistivities of alkaline earth elements have been surveyed and studied over the years by a number of investigators, including Meaden [89] Cook, Laubitz, and Van der Meer [71, 73, 84]. Electrical resistivity data are presented also in a number of handbooks such as those of Kaye and Laby [90], Landolt-Börnstein [91], AIP [92], CRC [93], etc. However, their main concern is to provide a general picture by giving only one or a few particular sets of data, and only a limited temperature range is covered.

The purpose of the present work is quite different from that of the above mentioned works. There are two major aims: (1) to exhaustively search the open literature so that all the available experimental data are comprehensively compiled, and (2) to generate recommended reference values by critical evaluation, analysis, and synthesis of the existing experimental data. These aims are now achieved. This work has presented the most comprehensively compiled experimental data and information on the electrical resistivity of alkaline earth elements and has provided the recommended reference values over a very wide range of temperature. The recommended values were obtained by

least squares fitting of the selected experimental data or by correlating the relating properties.

A comparison of electrical resistivity data from the literature with the present recommended values are shown in table 19. Table 19 shows that the recommended electrical resistivity values from the various sources are quite different, up to 100% in some cases, that the more recent values are not necessarily closer to the truth, and that many of the values contained in popular handbooks are much in error. This attests to the need of reliable reference values such as those generated in the present work.

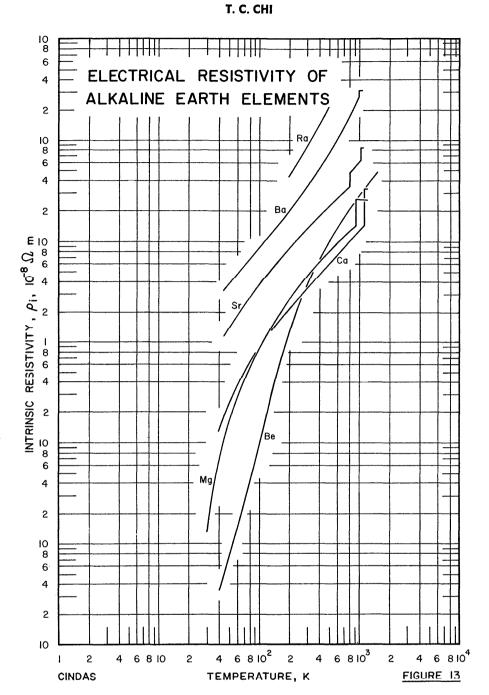

With a view to bring out any similarities or differences between the recommended values for the alkaline earth elements, the recommended values of the intrinsic resistivities for all the six elements are shown together in Figure 13. It can be seen from figure 13 that the electrical resistivities of calcium, strontium, barium, and radium which have cubic crystalline structure, form a nice family of curves with systematic variations, those of heavier elements being the higher. The electrical resistivities of beryllium and magnesium, which have hexagonal crystalline structure, vary differently from the above mentioned and from each other. Their cross-over is due to the fact that beryllium has a much higher melting point.

TABLE 19. COMPARISON OF ELECTRICAL RESISTIVITY DATA FROM THE LITERATURE WITH THE PRESENT RECOMMENDED VALUES

		Total Resistivity, ρ , $10^{-8}\Omega$ m								
Element	Temperature K	Present work (1976)	CRC (1974)	AIP† (1972)	Kaye & Laby (1966)		Landolt & Börnstein (1960)	Cook, et al. (1973-6)		
vannova	20	0,0336		0.0054	_	0.0054	-	-		
D.	273.15	3.02	4.0 (293K)	2.72	2.8	2.72	3.2	-		
Ве	1000	27.5	_	-	26 (973 K)	_	-	-		
	1500	49.9	-	-	· -	-	-			
	20	0.0123	_	0.0125	-	0.0125	-	-		
7.00	273.15	4.05	4.45 (293 K)	3.94	3.9	3.94	4.31			
Mg	922	14.7	- '	_	_	_	-	_		
	1200	25.6	-	-	-	-	-	-		
	20	0.0600	-	_	······································		_	0.104 (30 K		
G -	273.15	3.11	3.91	3.61 (293 K	6.8	3.6 (295 K	4.06	3.20 (277 K		
Ca	1000	12.8	-	_ `	-	<u> </u>	_	_ `		
	1150	33.0	- .	-	-	-	-	-		
	20	0.918	-	2.48	-	2.48	-	_		
Ch.	273.15	12.3	23.0 (293 K)	21.8	23	21.8	30.3	12.5		
Sr	1000	62.2	-	-		_	-	_		
	1093	84.7	-	-	-	-	-	~		
	20	0.940	_	0.98	-	0.98	_			
D.,	273.15	30.2	-	36.3	60	36.3	36.0	33		
Ba	1000	275	-	- "	-	_	-	-		
	1050	303	-	_		_	-	-		
	200	44*	-		-	-	÷	_		
Ra	273.15	76*	-	-	-	_	_	_		
	500	212*	-	-	-	_	_	-		

^{*} Intrinsic resistivity

[†] The values in the AIP Handbook are taken from the book by Meaden so that they are identical.

6. Acknowledgements

This work is sponsored by the Defense Logistics Agency (DLA), U.S. Department of Defense (DOD). The work was prepared under the auspices of the Thermophysical and Electronic Properties Information Analysis Center (TEPIAC), a DOD information analysis center. The center is operated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS), Purdue University.

The author is grateful to H. M. James and C. Y. Ho of CINDAS's senior staff for their valuable guidance and suggestions.

7. References

- [1] Touloukian, Y. S., Kirby, R. Y., Taylor, R. E., and Desai, P. D., "Thermal Expansion—Metallic Elements and Alloys," Volume 12 of Thermophysical Properties of Matter—The TPRC Data Series, Plenum Press, New York, 1440 pp. (1975). (T80643)
- [2] Matthiessen, A. and Vogt, C., "The Influence of the Temperature on the Electrical Conductivity of Alloys," Ann. Phys., 122, 19-68 (1864). (E62373)
- [3] Bass, J., "Deviations from Matthiessen's Rule," Adv. Phys. 21 (91), 431-604 (1972). (E82610)
- [4] Cimberle, M. R., Bobel, G., and Rizzuto, C., "Deviations from Matthiessen's Rule at Low Temperatures: An Experimental Comparison Between Various Alloy Systems," Adv. Phys. 23 (4), 639-71 (1974). (E65579)
- [5] Grüneisen, E., "The Dependence of the Electrical Resistivity of Pure Metals from the Temperature," Ann. Phys., 16(5), 530-40 (1933). (E58987)
- [6] Mott, N. F., "The Resistance of Liquid Metals," Proc. Roy. Soc. (London), 146A, 465-72 (1934). (E60808)
- [7] Voigt, W., Textbook of Crystalphysics, Teubner, Leipzig, p. 959 (1928). (E100568)
- [8] Nichols, J. L., "Orientation and Temperature Effects on the Electrical Resistivity of High-Purity Magnesium," J. Appl. Phy., 26(4), 470-72 (1955). (E19181)
- [9] Gruneisen, E. and Adenstedt, H., "The Effect of Transverse Magnetic Fields Upon the Electrical and Thermal Conductivity of Pure Metals at Low Temperatures," Ann. Phys. 5, 31(8), 714-44 (1938). (E58988)
- [10] Grüneisen, E. and Erfling, H. D., "Electric and Thermal Resistance of Beryllium Crystals in a Transverse Magnetic Field," Ann. Phys. 38, 399-420 (1940). (E59509)
- [11] Erfling, H. D. and Grüneisen, E., "Further Studies of Beryllium Crystals in Transverse and Longitudinal Magnetic Field," Anual der Physik 2, 5(41), 89-99 (1942). (E58989)
- [12] Martin, A. J., Bunce, J. E. J., and Tilbury, P. D., "A Study of the Electrical Conductivity of Beryllium and the Effect of Purity," J. Less-Common Metals, 4(2), 191-198 (1962). (E10676)
- [13] Mitchell, M. A., "Electrical Resistivity of Beryllium," J. Appl. Phys. 46 (11), 4742-6 (1975). (E90107)
- [14] Falge, R. L., Jr., "Superconductivity of Hexagonal Beryllium," Physics Letter, A 24, 579 (1967). (E29835)
- [15] Yoshihiro, K. and Glover, R. E., III, "Carrier Concentration and the Superconducting Beryllium Films," Proc. Int. Conf. Low Temp. Phys. 13th 1972, 3, 547-51 (1974). (E88045)
- [16] Williams, J. M., Hinkle, N. E., and Eatherly, W. P., "Effect of Neutron Irradiation at Cryogenic Temperatures and Subsequent Annealing on the Thermal Conductivity and Electrical Resistivity of Beryllium," Oak Ridge Natl. Lab. Rept. 1972 ORNL-TM-3914, 145 pp. (1972). (E49673)
- [17] Powell, R. W., "The Thermal and Electrical Conductivities of Beryllium," Phil. Mag., 44 (353), 645-663 (1953). (E15807)

- [18] Losana, L., "Investigation on Beryllium," Aluminio 8, 67-75 (1939). (E64840)
- [19] Berteaux, F., "Electrical and Thermal Properties of Superconductors," Rev. Gen. Elec., 79 (1), 7-14 (1970). (E61643)
- [20] Reich, R., Kinch, V. Q., and Bonmarin, J., "Study of Resistivity of Beryllium Samples of Different Purities as a Function of Temperature and Determination of Debye Temperatures of this Metal (F)," Academic des Sciences. Compt. Rend., 256 (26), 5558-61 (1963). (E12551)
- [21] Tye, R. P., "Thermophysical Properties of Hot Pressed Beryllium," Dynatech Rept. 796 NASA-CR-9627, 1, 1-33 (1968). (E66505)
- [22] Ho, J., and Wright, E. S., "Electrical Resistivity of Beryllium," Lockheed Aircraft Corp. Missiles and Space Div. Rept. No. LMSD-288140. Contract No. Nord. 17017 AD-241 410, 1-1/14-1 (1960). (E11609)
- [23] White, G. K., and Woods, S. B., "Thermal and Electrical Conductivities of Solids at Low Temperatures," Can. J. Phys., 33, 58-73 (1955). (E12395)
- [24] Spangler, G. E., Herman, M., Arndt, E. J., Hoover, D. B., Damiano, V. V., Tint, G. S., and Lee, C. H., "Preparation and Evaluation of High Purity Beryllium," Frank Inst. Lab. for Res. and Development. Final Rept., Oct. 1961-Oct. 1962. F-B 1933, Contract No. Now 62-05360d (1962). (E17649)
- [25] Lewis, E. J., "Some Thermal and Electrical Properties of Beryllium," Phys. Rev. 34(12), 1575-87 (1929). (E16875)
- [26] McLennan, J. C. and Niven, C. D., "Electrical Conductivity at Low Temperatures," Phil. Mag. 4, 386-404 (1927). (21015)
- [27] Meissner W., and Voigt, B., "Measurements with the Help of of Liquid Helium XI, Resistance of Pure Metals at Low Temperature," Ann. Physik, 5, 7, 761-97, 892-936 (1930). (E58984)
- [28] Campbell, J. F., Goodwin, H. B., Wagner, H. J., Douglas, R. W., and Allen, B.C., "Introduction to Metals for Elevated-Temperature Use," Battelle Memorial Inst. Defense Metals Information Center, Columbus, Ohio, DMIC Rept. 160, 1-92 (1961). (E100432)
- [29] Bridgman, P. W., "The Compressibility and Pressure Coefficient of Resistance of Ten Elements," Proc. Amer. Acad., 62, 207-26 (1927). (E65793)
- [30] Babkina, M. A., Zhermunskaya, L. B., Timofeeva, Z. A., and Tsukanova, N. V., "The Properties of Fine Beryllium Wire," Metal Science and Heat Treatment (8), 674-6 (1972). (E63245)
- [31] Yamaguchi, M., Takahashi, Y., Takasaki, Y., and Ohta, T., "A Note on the Transport Properties of Metallic Beryllium," Bull. Fac. Eng. Yokohama Natl. Univ. (Japan) 23 (2), 175-78 (1974). (E67169)
- [32] Denton, H. W., "Low Temperature Electrical Resistivity of Uranium and Beryllium," A. E. R. E. Rept. No. G/R 101 (1947). (E94476)
- [33] Kuczynski, G. C., "Electronic Structure of Beryllium," Lock-heed Aircraft Corp. Missiles and Space Div., Rept. No. LMSD-288140 ASTIA AD-241 140, 1-23 (1960). (E13591)
- [34] Tye, R. P. and Quinn, J. E., "Thermal Conductivity of Hot Pressed Beryllium Blak," Proc. Symp. Thermophys. Prop., 4th Univ. Maryland, April 1-4, 1968, 144-9 (1968). (E72906)
- [35] Goene, F. and Schmid, E., "Elastical Constants, Electrical Resistivity and Thermal Expansion of the Magnesium Crystal," Physik. Z. 37(11), 385-91 (1936). (E63870)
- [36] Goens, E. and Schmid, E., "Determining a Few Physical Properties of Magnesium Crystals," Natuwissenschaften 18, 376-77 (1931). (E61211)
- [37] Schmid, E., "Contributions to Physics and Metallography of Magnesium," Z. Electr. Chem., 37, 447-59 (1931). (E100431)
- [38] Alderson, J. E. A. and Hurd, C. M., "Anisotropic Temperature—Dependent Resistivity of Cd, Zn, and Mg," Phys. Rev. B 12(2), 501-08 (1975). (E87165)

[39] Ferrier, R. P. and Herrell, D. J., "Conduction in Amorphous Mg-Bi and Mg-Sh Alloys," J. Non-Cryst. Solids 2(3), 278-83 (1970). (E75407)

- [40] Rorschach, H. E., and Herlin, M. A., "Low Temperature Resistance Minimum in Magnesium Measured by a Mutual Inductance Method," Phys. Rev. 81(3), 467 (1951). (E18602)
- [41] Spohn, D. A., and Webber, R. T., "Resistance Minimum of Magnesium—Electrical and Thermal Resistivities," Phys. Rev. 105 (5), 1427-33 (1957) (E19401)
- [42] Sharkoff, E. G., "Impurity Effects on the Thermal Conductivity of Magnesium at Low Temperature, Ph.D., Thesis," Massachusetts Institute of Technology, 78 pp. (1953). (E100430)
- [43] Kondo, J., "Resistance Minimum in Dilute Magnetic Alloys," Progr. Theor. Phys. (Kyoto), 32(1), 37-49 (1964). (E62131)
- [44] Roll, A., and Motz, H., "The Electrical Resistivity of Molten Metals," Z. Metallk. 48 (5), 272-80 (1957). (E60873)
- [45] Delaplace, J. et al., "Low Temperature Neutron Radiation Damage and Recovery in Magnesium," Phys. Statucs Solidi, 30(1), 119-26 (1968). (E37908)
- [46] Das, S. B., and Gerritsen, A. N. "Deviation from the Matthiessen Rule Due Possible Changes in the Phonon Spectrum of Dilute Magnesium Alloys," Phys. Rev. 135 (4A), A1081-8 (1964). (E59020)
- [47] Hedgcock, F. T., and Muir, W. B., "Influence of Lattice Scattering on Matthiessen's Rule in Dilute Binary Magnesium Alloys," Phys. Rev., 136(2A), A561-8 (1964). (E17556)
- [48] Seth, R. S., and Woods, S. B., "Electrical Resistivity and Deviations from Matthiessen's Rule in Dilute Alloys of Aluminum, Cadmium, Silver and Magnesium," Phys. Rev., B2(8), 2961-72 (1970). (E45213)
- [49] Powell, R. W., Hickman, M. J., and Tye, R. P., "The Thermal and Electrical Conductivity of Magnesium and Some Magnesium and Some Magnesium Alloys," Metallurgia, 70 (420), 159-63 (1964). (E17259)
- [50] Van Zytveld, J. B., Enderby, J. E., and Collings, E. M., "Electrical Resistivities of Liquid Alkaline Earth Metals," J. Phys. (Metal Phys.), F2, 73-78 (1972). (E59114)
- [51] Scala, E., and Robertson, W. D., "Electrical Resistivity of Liquid Metals and of Dilute Liquid Metallic Solutions," Trans. Amer. Inst. Mining Eng. 197, 1141-47 (1953). (E61314)
- [52] Lorenz, L., "The Thermal and Electrical Conductivities of Metals," III Weber Das Leitungsvermögen Der Metalle Für Wärme and Elektricität, Ann. Physik, 13(3), 582-606 (1881). (E89796)
- [53] Das, R. B., and Gerritsen, A. N., "Electrical Resistivity of Dilute Alloys of Magnesium and Neodymium," J. Appl. Phys., 33(1), 3301-04 (1962). (E7218)
- [54] Vand, V., "A Theory of the Irreversible Electrical Resistance Chances of Metallic Films Evaporated in Vacuum," Physical Society, Proceedings 55 (3) 222-47 (1943). (E10697)
- [55] Baveja, K. D., "Electrical Resistivities of Metals by the Method of Magnetic Damping," J. Sci. and Industrial Res., 20B, 343-44 (1961). (E11676)
- [56] Hedgcock, F. T., Muir, W. B., and Walbingfold, E., "The Electrical Resistance of Dilute Magnesium and Aluminum Alloys at Low Temperature," Can. J. Phys. 38(3), 376-84 (1960). (E14737)
- [57] Schofield, F. H., "The Thermal and Electrical Conductivities of Some Pure Metals," Royal Soc. of London, Proc. 107, 206-27 (1925). (E27041)
- [58] Niccolai, G., "Electrical Resistivity of Metals Between Very High and Very Low Temperatures," Ueber Den Elektrischen Widerstand Der Metalle Zwischen Sehr Hohen Und Sehr Tiefen Temperaturen, Physikalische Z. 9(11), 367-72 (1908). (E27515)

- [59] Salkovitz, E. I., et al., "Transport Properties of Dilute Binary Magnesium Alloys," Phys. Rev. 105 (3), 887-96 (1957). (E19397)
- [60] Hein, R. A., and Falge, R. L., "Resistance Minimum of Magnesium—Electrical Resistivity Below 1 Degree K," Phys. Rev. 109 (4), 1433-4 (1957). (E19402)
- [61] Hedgcock, F. T., and Muir, W. B., "Thermoelectric Effects in Magnetism, Zinc, and Aluminum Containing Traces of Manganese," Phys. Soc. Japn., J., 16(2), 2599-2600 (1961). (E9937)
- [62] Bijvoet, J., et al., "The Electrical Resistivities of Dilute Magnesium—Niobium and Magnesium—Gadolinium Alloys," Solid State Comm., 1(7), 237-40 (1963). (E12977)
- [63] Panova, G. KH., et al., "Some Characteristic Features of the Temperature Dependence of the Electrical Resistivity of Magnesium Alloys Containing Heavy Non-Magnetic Impurities," Soviet Phys. JETP, 26(2), 283-85 (1968). (E34246)
- [64] Grube, G. and Burkhardt, A., "The Electrical Conductivity, the Thermal Expansion and the Hardness of Mg-Zn Alloys," Z. Elektro Chem. 35 (6), 315 (1929). (E60551)
- [65] Staebler, J., "Electrical and Thermal Conductivity and the Number of Wiedermann Franz of Light Metals and Magnesium Alloys," Ph.D. Thesis—Tech. Hochschule (of Breslau), 35 pp. (1929). (E22782)
- [66] Mannchen, W., "Heat Conductivity, Electrical Conductivity and the Lorenz Number for a Few Light Metal Alloys," Z. Metallk, 23, 193-6 (1931). (E64153)
- [67] Heal, T. J., "Magnesium and Its Alloys," Nuclear Eng., 3 (23), 52-61 (1958). (E61251)
- [68] Katerberg, J., Niemeyer, S., Penning, D., and Van Zytveld, J. B., "Electronic Properties and Phase Transitions in Ca, Sr and Ba at Elevated Temperatures," J. Phys., F5(5), LT4-9 (1975). (E90862)
- [69] Smith, J. F., Carlson, O. N., and Vest, R. W., "Allotropic Modifications of Calcium," J. Electro. Chem. Soc., 103, 409 (1956). (E59130)
- [70] Swischer, C. L., "The Specific Resistance and Thermo-Electric Power of Metallic Calcium," Phys. Rev. 10(6), 601-8 (1917). (E92411)
- [71] Cook, J. G., Laubitz, M. J., and Van de Meer, M. R., "The Electrical Resistivity, Thermal Conductivity, and Thermoelectric Power of Calcium from 30 K to 300 K," Can. J. Phys. 53, 486-97 (1975). (E66318)
- [72] Kayser, F. X. and Sederquist, S. D., "The Electrical Resistivity of f.c.c. Calcium from 4.2 to 300 °K," J. Phys. Chem. Solids, 28, 2343–46 (1967). (E32629)
- [73] Cook, J. G. and Van der Meer, M. P., "The Transport Properties of Ca, Sr and Ba," J. Phys., F3 (8), L130-33 (1973). (E51817)
- [74] Rinck, E., "Concerning an Allotropic Transformation of Calcium in the Solid State," Compt. rend. Acad. Sci. Paris, 192, 421 (1931). (E59045)
- [75] Frank, V. and Jeppessen, O. G., "The Hall Coefficient of Calcium, Phys. Rev. 89, 1153 (1950). (E18657)
- [76] Rinck, E., "The Allotropic Transformation of Strontium," Compt. Rend. Acad. Sci. Paris, 234, 845-47 (1952). (E74448)
- [77] McWham, D. B., Rice, T. M., and Schmid, P. H., "Metal-Semiconductor Transition in Ytterbium and Strontium at High Pressure," Phys. Rev., 177(3), 1063-71 (1969). E38228)
- [78] Rashid, M. S., and Kayser, F. X., "The Electrical Resistivity of a Commercial Grade of Strontium from 80° to 400° K," J. Less-Common Metals, 24(1), 107-8 (1971). (E48982)
- [79] Meissner, W., Franz, H., and Westerhoff, H., "Measurements with the Aid of Liquid Helium. 15. Resistance of Barium, Indium, Thallium, Graphite and Titanium at Low Temperatures," Ann. der Physik, 5, 13, 555-63 (1932). (E58986)
- [80] Rashid, M. S., and Kayser, F. X., "The Electrical Resistivity of Distilled Barium from 20 to 400 K," J. Less-Common Met., (Switzerland), 24(3) (1971). (E59603)

- [81] Kinck, E., "The Allotropic Transformation of Solid State Barium," C. R. Acad. Sci. Paris 193, 1328-30 (1931). (E74656)
- [82] Güntherodt, H. J., Hauser, E., and Künzi, H. V., "The Electrical Resistivity of Liquid Barium," J. Physics, F5 (5), 889-92 (1975). (E91899)
- [83] Grube, G., and Dietrich, A., "Electrical Conductivity and Phase Diagram at Binary Alloys. The Alloys of Barium with Bismuth, Magnesium and Lead," Z. Elektro. Chem. 44(10) (1938). (E5960)
- [84] Cook, J. G., and Laubitz, M. J., "The Electrical Resistivity and Thermopower of Pure and of Hydrogen-charged Barium," Can. J. Phys., 54(9), 928-37 (1976). (E96888)
- [85] Genter, R. B. and Grosse, A. V., "Electrical Conductivity of Liquid Barium and an Estimate of Its Thermal Conductivity," High Temperature Science, 3(6), 504-10 (1971). (E60097)
- [86] Müller, W. E., "Optical Properties and Electron Band of Europium and Barium," Phys. Kondens, Materic. 6, 243-68 (1967). (E32852)
- [87] Chirkin, V. S., Thermal Conductivity of Industrial Materials, Mashgiz (1962).
- [88] Samsonov, G. V., (Editor), Handbook of the Physicochemical Properties of the Elements, IFI/Plenum Data Corp., New York, 141 pp. (1968).
- [89] Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York, 218 pp. (1965).
- [90] Kaye, G. W., and Laby, T. H., Tables of Physical and Chemical Constants and Some Mathematical Functions, Thirteenth Edition, John Wiley and Sons, Inc., New York, p. 92 (1966).
- [91] Landolt, H. H., "Numerical Values and Functions of Physics, Chemistry, Astronomy, Geophysics, and Technics," Vol. 6 of Electrical Properties I, Berlin, Springer, 959 pp. (1960).
- [92] Gray, P. E. (Editor), American Institute of Physics Handbook, 3rd Edition, McGraw Hill Book Co., New York, 2342 pp. (1972).
- [93] Weast, R. C. (Editor), Handbook of Chemistry and Physics, 54th Edition, The Chemical Rubber Co., Ohio (1974).
- [94] Laws, F. A., Electrical Measurements, 2nd Edition, McGraw Hill Book Co., Inc., New York, 739 pp. (1938).
- [95] van der Pauw, L. J., "A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape," Phillips Tech. Rev., 20(8), 220-4 (1958-9). (E59185)
- [96] MacDonald, D. K. C., Handbuch der Physik, Vol. XIV (1956). (E80894)
- [97] Chambers, R. G., and Park, J. C., "Measurement of Electrical Resistivity by a Mutual Inductance Method," Brit. J. Appl. Phys. 12, 507-10 (1961). (E59158)
- [98] Zimmerman, J. E., "Measurement of Electrical Resistivity of Bulk Metals," Rev. Sci. Instrum., 32(4), 402-5 (1961). (E58976)
- [99] Radenac, A., Lacoste, M., and Roux, C., "Apparatus Designed to Measure the Electrical Resistivity of Metals and Alloys by the Rotating Field Method up to About 2000 K," Rev. Int. Hautes Temp. Refract., 7, 389-96 (1970). (E58993)
- [100] Cezairliyan, A., and McClure, J. L., "Thermophysical Measurements on Iron Above 1500 K, Using a Transient (subsecond) Technique," J. Res. Nat. Bur. Stand., 78A(1), 1-4 (1974). (E53710)
- [101] Bean, C. P., DeBlois, R. W., and Nesbitt, L. B., "Eddy-Current Method for Measuring the Resistivity of Metals," J. Appl. Phys., 30, 1976-80 (1959). (E59131)

8. Appendix

8.1. Methods of Measuring Electrical Resistivity

A. Steady State Methods

- 1. Voltmeter and ammeter direct reading (V) [94, p. 159, 119, pp. 244-5]
- 2. dc Potentiometer Method (A) [89, pp. 151-8]
 - a. 4-probe potentiometric method
- 3. dc Bridge Method (B) [89, pp. 141-51]
 - a. Kelvin Double Bridge
 - b. Mueller Bridge
 - c. Wheatstone Bridge
- 4. van der Pauw Method (P), [95]
- 5. Galvanometer Amplifier Method (G), [96, pp. 159-62]

B. Non-steady State Methods

- 1. Periodic currents involved
 - a. Direct connection to sample
 - (1) ac Potentiometric Method (C) [89, pp. 161-2]
 - (2) ac Bridge Method (D) [89, p. 162]
 - (3) Q-Meter Method (Q)
 - b. No connection to sample
 - (1) Mutual Inductance Method (M) [97]
 - (2) Self-inductance Method (S) [98]
 - (3) Rotating Field Method (R) [99]
- 2. Non-periodic currents involved
 - a. Direct connection to sample
 - (1) Transient (subsecond) technique (T) [100]
- b. No connection to sample
 - (1) Eddy current decay method (E) [101, 89, p. 103]

C. General Comments

1. Code "I" means Induction Method
This is a combination of Items B.1b. and B.2.b.
above. Subsumed under I is M, R, S, or E. Used
only if author indicates induction method used and

does not report which specific one.

2. The symbol "→" is used if method described by the author is not sufficient to assign a specific code presently used. For example, if the author stated that "ac Method" was used in his measurement but no specifics were given, the following wording would be used in the column Composition, Specifications, and Remarks: "Experimental method described as an ac method." In the column for Method Used on the Specification Table the following symbol would appear: →.