Compilation and Evaluation of Solubility Data in the Mercury (I) Chloride-Water System

Cite as: Journal of Physical and Chemical Reference Data **9**, 1307 (1980); https://doi.org/10.1063/1.555633 Published Online: 15 October 2009

Y. Marcus

ARTICLES YOU MAY BE INTERESTED IN

Static Dielectric Constant of Water and Steam Journal of Physical and Chemical Reference Data **9**, 1291 (1980); https:// doi.org/10.1063/1.555632

The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions

Journal of Physical and Chemical Reference Data 14, 631 (1985); https://doi.org/10.1063/1.555732

The Solubility of Some Sparingly Soluble Salts of Zinc and Cadmium in Water and in Aqueous Electrolyte Solutions Journal of Physical and Chemical Reference Data **21**, 941 (1992); https://doi.org/10.1063/1.555909

Where in the world is AIP Publishing? Find out where we are exhibiting next

Journal of Physical and Chemical Reference Data **9**, 1307 (1980); https://doi.org/10.1063/1.555633 © 1980 American Institute of Physics for the National Institute of Standards and Technology.

Compilation and Evaluation of Solubility Data in the Mercury (I) Chloride-Water System

Y. Marcus

Department of Inorganic and Analytical Chemistry, The Hebrew University, Jerusalem, Israel

The more than one dozen papers dealing with the solubility of mercury (I) chloride in water or in aqueous chloride solutions have been compiled in the format set by the IUPAC Solubility Data Project, and have been evaluated. Mercury (I) chloride dissolves in water, forming the following species: Hg(OH), HgCl₂, HgOH⁺, HgCl⁺, Hg²⁺ and Hg₂OH⁺, in addition to H⁺ and Cl⁻. In excess chloride solutions it dissolves to give, mainly, HgCl,- and HgCl²-. Thus, many homogeneous equilibria have to be considered beside the two heterogeneous ones: $Hg_2Cl_2(s) = Hg_2^{2+}(aq) + 2Cl^{-}(aq)$ and $Hg_2^{2+}(aq) = Hg^{2+}(aq)$ + $H_{g}(\ell)$, of which K_{s0}^{*} and $(K_{s}^{*})^{-1}$, respectively, are the equilibrium constants. The papers in which the total solubility (sum of all the mercury containing aqueous species) and the solubility product (derived from e.m.f. data) are reported do not give as accurate and reliable quantities as are obtained from the appropriate standard electrode potentials. The following values are recommended as valid at 298.15 K: $\log (K_{s0}^{\circ}/mol^2kg^{-2}) = -17.844$ \pm 0.017, $d \log (K_{so}/mol^2 kg^{-2})/dT = (0.0622 \pm 0.0002) - (6.0 \pm 0.4) \times 10^{-4} (T/K)$ -298.15), $\Delta G_{s0}^{\circ} = 101.86 \pm 0.10 \text{ kJ mol}^{-1}$, $\Delta S_{s0}^{\circ} = -12.7 \pm 0.9 \text{ JK}^{-1} \text{ mol}^{-1}$, $\Delta H_{s0}^{\circ} = 98.08 \pm 0.18 \text{ kJ mol}^{-1}, \ \Delta C_{p,s0}^{\circ} = -0.36 \pm 0.04 \text{ JK}^{-1} \text{ mol}^{-1}$ (this item, tentatively), and $c_{\text{Hg}} = (8.4 \pm 1.6) \times 10^{-6} \text{ mol dm}^{-3}$ (the total aqueous solubility).

Key words: Compilation of solubility data; disproportionation of mercury (I); electromotive force measurements; mercury (I) chloride; solubility; solubility product; standard electrode potentials; standard thermodynamic functions.

Contents

age

1.	Introduct	ion
2.	Evaluatio	m
	2.1. So	lubility Measurements 1308
	2.2. E.	m.f. Measurements 1309
	2.3. Sta	andard Electrode Potentials 1310
	2.4. Ca	Iculated Solubility
3.	Recomme	ended Values 1311
	3.1. So	lubility Product Constant of Hg ₂ Cl ₂ 1311
	3.2. Sta	andard Thermodynamic Functions 1312
	3.3. Th	e Aqueous Solubility of Hg ₂ Cl ₂ 1313
4.		es
5.	Compilati	ion
		ta of Behrend (1893, 1894) 1314
		ta of Richards and Archibald (1902) 1315

1. Introduction

The Subcommittee on Solubility Data of Commission V.6, Equilibrium Data, Analytical Chemistry Division, International Union of Pure and Applied Chemistry, (secretariat: Oxford OX4 3YF, UK), is currently undertaking an extensive project of compiling and evaluating solubility data existing in the literature. As a part of this project, systems involving the

© 1981 by the U.S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society.

5.3.	Data of Sherrill (1903)	1317
5.4.	Data of Ley and Heimbucher (1904)	1318
5.5.	Data of Kohlrausch (1908)	1319
5.6.	Data of Herz (1911)	1320
5.7.	Data of Brodsky and Scherschewer (1926) .	1321
5.8.	Data of Eversole (1932)	1322
5.9.	Data of Garrett, Noble and Miller (1942)	1323
5.10.	Data of Law (1946)	1324
5.11.	Data of Jonsson, Qvarfort and Sillen (1947)	1325
5.12.	Data of Dry and Gledhill (1955)	1326
5.13.	Data of Galloway (1961)	1327
5.14.	Data of Hansen, Izatt and Christensen	
	(1963)	1328
5.15.	Other data	1329

Page

solubility of solids in liquids are being treated, and it became necessary to provide prospective authors of compilations and evaluations of such systems with a reasonably complicated, well worked out system as a sample. This led to the commissioning of the author with selecting such a system and providing this sample compilation and evaluation.

The mercury (I) chloride-water system appears to fulfill the requirements of being quite well documented in the literature, of providing reasonably complicated side effects which must be, and can be, dealth with, yet being amenable to a sufficiently rigorous treatment, so as to provide final, recommended values. It was therefore selected for presentation as a sample compilation and evaluation.

Three groups of papers have to be examined in order to obtain definite values for the solubility of mercury (1) in water. The first, refs. [1]–[7], deal with direct determinations of the solubility. The second, refs. [3], [8]–[14], deal with determination of the solubility product via e.m.f. measurements. The third, refs. [15], [18], [19], [21]–[28], pertains to papers in which the standard potentials of the calomel electrode and of the mercury/mercury (1) electrode are determined separately, without going on to calculate the solubility product. This last group of papers is not included in the compilation on solubilities. It turns out however, that it provides, over a temperature range, the best values of the solubility.

2. Evaluation

2.1. Solubility Measurements

Kohlrausch [1a]-[1c]¹ compared the specific conductivity of saturated mercury (I) chloride solutions at 0.5, 18.0, 24.6 and ~43 °C with that of 0 0005 mol dm⁻³ mercury (I) nitrate (stated as 0.001N HgNO₃), knowing its temperature coefficient for conductivity. The conductivity of the water used in the saturated solutions was probably [6] overcorrected for, while on the other hand, the contribution of the hydrolysis to the conductivity, which is overwhelming [6], was disregarded. Hence the value found for the solubility, $s = (5.9 \pm 3.0)$ $\times 10^{-6}$ mol dm⁻³ at 24.6 °C, is fortuitously of the right magnitude.

Richards and Archibald [2] measured the total solubility of mercury in saturated solutions of Hg_2Cl_2 in aqueous HCl, NaCl, and BaCl₂ at 25 °C, where $HgCl_4^2$ is the main mercury species, by precipitation as HgS. The equilibrium constant for the reaction

$$Hg_2Cl_2(s) + 2Cl^- = HgCl_4^2 + Hg(\ell); K_e^*(\approx K_{s114})$$
 (1)

(the solubility product for producing the 4-ligand complex of mercury (II), i.e., K_{s114}^{*}) is obtained from

$$\log K_{*} = \lim_{c_{\rm C} \to 0} [\log c_{\rm Hg}/c_{\rm CI}^{2}]$$

$$\cdot \log (1 + \beta_{*}\beta_{*}^{-1}c_{\rm CI}^{-2}) + \log y_{\rm n_{g}C_{\rm H}^{2}} - y_{\rm CI}^{2} -] \qquad (2)$$

The second term on the rhs is small at the experimental chloride concentrations c_{Cl} employed, hence activity coefficient corrections to the stability constants β_i of HgCl₂²⁻ⁱ can be neglected. The third term on the rhs, however, is of considerable size, and can be approximated as $-2Ac_{Cl}^{1/2}(1+1.6c_{Cl}^{1/2})^{-1} + \Delta bc_{Cl}$. The first term of this approximation is known, and any deviations from the modified Debye-Hückel behavior are included in the second term, and is extrapolated out at the limit. The main uncertainty enters here, since as the Δbc_{Cl} term decreases. The solubility data themselves cannot be extrapolated to zero

J. Phys. Chem. Ref. Data, Vol. 9, No. 4, 1980

excess chloride concentration to give the solubility of Hg_2Cl_2 in water. However, the solubility product can be calculated

$$\log K_{s0}^{\circ} = \log K_{e}^{\circ} + \log K_{e}^{\circ} - \log \beta_{4}$$
$$- \log \gamma_{vecc} \operatorname{NaCl}(in \operatorname{MaClog})$$
(3)

where K_r is the reproportionation constant for the equilibrium

$$Hg^{2+} + Hg(\ell) = Hg_2^{2+}; K_c$$
 (4)

The values adopted for the constants are log $K_{\star}^{*} = 1.94 \pm 0.01$ [15] and log (β_{4} (HgCl₂²)/mol⁻⁴ dm¹²) = 15.07 [16], the latter valid for 0.5 mol dm⁻³ NaClO₄ medium. The main errors in $K_{\star 0}^{*}$ arise from those in $K_{e}(\pm 12 \text{ to } 15\%)$ and in $\beta_{4}(\pm 15\%)$. The final value $K_{\star 0}^{*} = (1.86 \pm 0.37) \times 10^{-18} \text{ mol}^{2} \text{dm}^{-6}$ at 25 °C will be seen to be consistent with (but on the high side of) the value recommended further on.

Sherrill [3] presented one datum point, for the solubility of Hg_2Cl_2 in 1 mol dm⁻³ NaCl at 25 °C. A value of K_{ϵ} (equil. (1)) could be estimated by using the same value of Δb applicable to the NaCl data of Richards and Archibald [2] evaluated above. This led by means of (3) to $K_{s0} = 1.2 \times 10^{-18} \text{ mol}^2 \text{ dm}^{-6}$, with a large margin of uncertainty, but still consistent with the recommended value.

Eversole and McLachlan [4] determined the solubility of Hg_2Cl_2 in dilute acids, $HClO_4$ and HNO_3 at 25 °C. The only soluble species of importance which needs to be considered is $HgCl_2$, since the excess acid represses the hydrolysis. In aqueous solutions of Hg_2Cl_2 , a major species is soluble $Hg(OH)_2$ [6], and its non-formation in the dilute acid solutions decreases the solubility of mercury (1) chloride below what it is in water. The lack of sufficient data prevents the calculated, from the total solubilities c_{Hg} in the acids HA:

$$c_{Hg} = [Hg_{2}^{+}] + [Hg_{2}A^{+}] + [HgCl_{2}]$$

$$= (K_{s0}^{*}/4)^{1/3} \gamma_{\pm Hg_{2}Cl_{2}}^{1} [1 + \beta_{1A} [A^{-}] + 2 (K_{s0}^{*}/4)^{1/3} \beta_{1}K_{r}^{-1}]$$

$$+ K_{s0}^{*}K_{r}^{-1} \beta_{2}^{*} (\gamma_{\pm HgCl_{2}}/\gamma_{\pm HgCl_{2}})^{3}$$
(5)

The first term on the rhs of (5) is a relatively small (~20%) correction term, in which unity dominates over the other terms in the square brackets, and for which K_{s0} is obtained iteratively. Hence, activity coefficient corrections for β_{1A} (Hg₂ClO₄⁺ or Hg₂NO₃⁺) and β_1 (HgCl⁺) are unnecessary, while log $y_{\pm H_{\rm HS}Cl_2} = -2 \times 0.51$ [A⁻]^{1/2}/(I + 1.6[A⁻]^{1/2}). The value of the solubility product is therefore:

$$K_{s0} = \frac{c_{\rm Hg} - \text{the first term in the rhs of (5)}}{K_{\rm r}^{-1} \beta_2^2 (\gamma_{\pm \rm HgCl_2}/\gamma_{\pm \rm HgCl_2})^3}$$
(6)

It is a good approximation to equate the activity coefficient ratio of (the ionically dissociated parts of) $Hg^{2+} \cdot 2Cl^{-}$ and $Hg_{2}^{2+} \cdot 2Cl^{-}$ to unity, and in any case no systematic deviation of K_{so}^{*} calculated from (6) with $[A^{-}]$ could be seen. The precision of K_{so} depends on that of c_{Hg} while its accuracy depends

from

¹ Figures in brackets indicate literature references.

mainly on those of K_r and β_2° . The values adopted for these constants, $\log K_r^{\circ} = 1.94 \pm 0.01$ [15] and $\log (\beta_2^{\circ}/\text{mol}^{-2}\text{dm}^6) \approx 14.26 \pm 0.09$ [6] are responsible for the overall accuracy of the constant $\log K_{ro}^{\circ} = (1.84 \pm 0.37) \times 10^{-18} \text{ mol}^2\text{dm}^{-6}$ at 25 °C, again consistent with the recommended value, but a bit high.

The data of Garret et al. [5] can be treated in a manner similar to the one used on the data of Richards and Archibald [2], eq (2) and (3), but since there are much fewer data, no independent extrapolations could be made. Therefore, the Δb values obtained [2] for NaCl and CaCl₂ solutions were used for the calculation of K_e . The final value is $(1.12 \pm 0.23) \times 10^{-18} \text{ mol}^2 \text{dm}^{-6}$ at 25 °C, which is somewhat on the low side of the recommended value. (The fact that the data are on the mol kg⁻¹ scale produces a small complication, which can be overcome by using the known densities of the salt solutions and converting to mol dm⁻³.)

The work of Dry and Gledhill [6] has been very carefully done, and gives the best value for the solubility determined directly, $s_{H_{ex}Cl_{z}} = (7.5 \pm 0.3) \times 10^{-6}$ mol dm⁻³ at 25 °C. The method used, treating the filtered saturated solution with dilute HCl and a solution of dithizone in CCl₄, should produce dependable data, when compared with photometric readings from known solutions of HgCl₂. The value is within the limits of the recommended value below, although on the low side. However, the primary data were not disclosed, and no basis for the estimate [6] of the $\pm 4\%$ error was given by the authors. Therefore there is no good basis for preferring this lower value, in spite of its apparently higher precision.

The conductivity data of Dry and Cledhill [6] serve to establish the correctness of the value $[H^+] = (8.17 \pm 0.08) \times 10^{-6}$ mol dm⁻³, obtained primarily from the measured pH of the solutions. This concentration of the acid produced by hydrolysis is a highly important quantity for the establishment of the recommended value of the solubility, see below. Since a value of K_{s0} obtained from the work of previous authors [12] is used in the calculations [6] of the concentrations of the species, this work [6] cannot be used to obtain an independent value of the solubility product.

The work of Herz [7] should give a value of K_{s0}^{*} at 25 °C in conjunction with the use of a value of K_{s0}^{*} (HgO(s) + H₂O = Hg²⁺ +2OH⁻), provided that solid Hg₂O disproportionates to HgO(s) + Hg(ℓ). The best value of K_{s0}^{*} (HgO)=2.8×10⁻²⁶ [17], [18] (at 25 °C) however leads to a K_{s0}^{*} (Hg₂Cl₂) value which is about two orders of magnitude too small, the same value obtained if the existence of Hg₂O(s) is accepted [10b]. This could be due to the sluggish establishment of equilibrium in the presence of two insoluble solids (Hg₂Cl₂(s) and Hg₂O(s) or HgO(s) + Hg(ℓ)). The period during which the phases were equilibrated was not stated (it was only specified as "extended"), and the establishment of equilibrium was not demonstrated [7].

2.2. E.m.f. Measurements

Of the second group of papers dealing with determinations of \mathcal{K}_{s0} by means of e.m.f. measurements, Behrend's work [8] was pioneering, but of low precision. Since only one concentration of mercury (I) in its half cell and of KCl in the calomel half cell were used, an extrapolation procedure is excluded, the liquid junction potential cannot be adequately estimated in spite of Behrend's later attempt, and only rough estimates of the activity coefficients can be made. The value obtained 2×10^{-19} mol²dm⁻⁶ at 17 °C, is just an estimate of the order of magnitude. Similarly, Sherril's work [3] gives an estimate of [Hg²⁺] in a saturated Hg₂Cl₂ solution in 1 mol dm⁻³ NaCl, which leads to $K_{s0} = 0.44 \times 10^{-18}$ which is much too low. The estimate was, however, not supported by definite e.m.f. data on which it was purportedly based.

Ley and Heimbucher [9] provided fuller experimental information, but their data cannot either be used to extrapolate out liquid junction potentials. These were produced by their bridge electrolyte, 0.1 mol dm⁻³ KNO₃, with the half cell solutions 0.05 mol dm⁻³ Hg₂(ClO₄)₂ and 0.1 or 1.0 mol dm⁻³ KCl. With the more dilute KCl, the junction potentials could be rather small, estimated at ± 0.01 V, leading to a possible error of a factor of two in $K_{s0}^* = 1.48 \times 10^{-18}$ mol² dm⁻⁶ at 20 °C. This value is about twice the recommended value at 20 °C. On the other hand, Brodsky's work [10] using the cell

Hg/Hg2 (NO3)2,co, HNO3 0.005 mol dm -3/KNO3 satd./KCl.c

$$/\mathrm{Hg}_{2}\mathrm{Cl}_{2},\mathrm{Hg}$$
 (7)

permitted extrapolation to $c_{\circ} = 0$ (and less clearly to c=0), thus eliminating the liquid junction potentials, which are probably small in any case, through the use of a saturated KNO₃ bridge. The values obtained at four temperatures are rather close to the recommended values at these temperatures, the interpolated value for 25 °C being $(1.07 \pm 0.13) \times 10^{-18}$ mol²dm⁻⁶, definitely on the low side.

An improved extrapolation method was provided by Law [11], but the ionic strength was not kept constant as $x \rightarrow 0$ in the cell

$$Hg_{Hg_{2}Cl_{2}}/NaCl (1.5mx) mol kg^{-1}$$
,

 $HClO_4 (m - mx) \mod kg^{-1}/HClO_4 (m + 0.5mx) \mod kg^{-1}/10^{-1}$

$$H_{g_2} (ClO_4)_2 (0.5mx) \text{ mol } \text{kg}^{-1},$$

 $HClO_4 (m - mx) \text{ mol } \text{kg}^{-1}/\text{Hg}$ (8)

the extrapolation, hence, not eliminating sufficiently the liquid junction [14]. Law's data also result in an incorrect value of $E_{He/Hgx}^{\circ}^{2+}$ (see below), which, in turn, leads to a much too high value of $K_{e0}^{\circ} = 5.1 \times 10^{-18} \text{ mol}^2 \text{dm}^{-6}$ at 25 °C. Since Law's values were available only through secondary sources [14], [19], no further comments can be made on the discrepancy.

The work of Jonsson, Qvarfort and Sillen [12] and of Hansen, Izatt and Christensen [13] tried to overcome the liquid junction and activity coefficient problems by using a constant ionic medium of 0.50 mol dm⁻³ NaClO₄ (of which 0.01 mol dm⁻³ [12], 0.10 mol dm⁻³ [13], were HClO₄ rather than NaClO₄). The value obtained at 25 °C in this medium [12], $K_{*0} = (1.32 \pm 0.03) \times 10^{-17}$ mol dm⁻⁶, must be multiplied by y_{\pm}^{3} (Hg₂²⁺·2Cl⁻ trace in NaClO₄ medium) to obtain K_{s0}° . For this quantity the value 0.09 was suggested, but the evaluator failed to trace its origin through the references provided [12], [16], [20]. Application of this correction leads to $K_{s0} =$ $(1.19 \pm 0.03) \ 10^{-18} \ mol^2 dm^{-2}$ at 25 °C. A somewhat different value of the correction term [6], 0.101 ± 0.001 , leads to K_{s0} = $(1.33 \pm 0.03) \times 10^{-18} \text{ mol}^2 \text{dm}^{-6}$, which is rather near the recommended value, but a bit low. Again no details of the derivation of this γ_{\pm}^3 were provided [6]. The values of $K_{\pm 0}$ for 0.50 mol dm⁻³ NaClO₄ medium at 7 and 40 °C are [13] 6.4×10^{-19} and 6.29×10^{-17} mol²dm⁻⁶, respectively. Conversion to K_{a0}° requires estimates of $\gamma_{+}^{3}(\text{Hg}_{2}^{2+}\cdot 2\text{Cl}^{-}$ trace in NaClO₄ medium) at these temperatures. Acceptance of 0.10 ± 0.02 as valid for the range 7-40 °C, in lieu of any better values, leads to $K_{s0} = (6.5 \pm 1.3) \times 10^{-20}$ at 7 °C and $(6.9 \pm 1.4) \times 10^{-18}$ at 40 °C as the best estimates. These are about 30% lower than the recommended values.

No experimental details are provided in these studies [12], [13] to evaluate the results from the point of view of the purity of the reagents (e.g., contamination with bromide) or of the instrumentation used, although the former [12] contains enough details on the care with which the work was carried out to assure acceptability of the data on this account.

The work of Galloway [14] combined the merits of constant ionic strength media (for extrapolating away the effect of excess chloride concentrations) with the possibility to eliminate the activity coefficients by providing series of data at decreasing ionic strengths. The cell employed

Hg,Hg₂Cl₂/BaCl₂ (xm/2) mol kg⁻¹, HClO₄ (m - xm) mol kg⁻¹

 $/Ba(ClO_4)_2 (xm/3) \mod kg^{-1}$, $HClO_4 (m-xm) \mod kg^{-1}$

 $/\text{Hg}_2 (\text{CLO}_4)_2 (xm/3) \text{ mol kg}^{-1}$, $\text{HClO}_4 (m-xm) \text{ mol kg}^{-1}$

$$/\mathrm{Hg}_{2}\mathrm{Cl}_{2},\,\mathrm{Hg}$$
 (9)

was measured at 5 K intervals over the range 15 to 40 °C. At first extrapolation at constant m (and T) from $0.1 \le x \le 0.6$ to x = 0 was followed by adding an activity coefficient correction term, which carried the main burden of the second extrapolation from $0.01 \le m \le 0.05$ to m = 0. This device puts relatively small weights on this extrapolation on the one hand, and on inadequacies of the activity coefficient term on the other, leading to results of high validity. The final value of $K_{s0} =$ $(1.49 \pm 0.05) \times 10^{-18} \text{ mol}^2\text{kg}^{-2}$ (practically the same as $\text{mol}^2\text{dm}^{-6}$) does not differ significantly from the recommended value $(1.43 \pm 0.06) \times 10^{-18} \text{ mol}^2\text{kg}^{-2}$, both at 25 °C. For other temperatures there are increasing differences, but still within the combined uncertainities.

2.3. Standard Electrode Potentials

A third group of papers is now considered, in some of which the standard electrode potentials of the calomel electrode $E_{\text{Hg/Hgc2C}}^{\circ}$, and in others, those of the mercury/mercury(I) electrode, $E_{\text{Hg/Hgc2}}^{\circ}$ were determined, for purposes other than the calculation of the solubility product of mercury(I) chloride.

J. Phys. Chem. Ref. Data, Vol. 9, No. 4, 1980

These papers will not be reviewed here, since they have been reviewed quite adequately previously, and only the latest or "best" results will be presented here. The solubility constant can, obviously, be calculated from

$$\log K_{s0}^{\circ} = (E_{Hg/Hg_2Cl_2}^{\circ} - E_{Hg/Hg_2^{2+}}^{\circ})/(RT/2F) \ln 10.$$
(10)

The most extensive and careful study of the calomel electrode has been made over the years by Ives and his coworkers [21a]–[21d]. Their work is well confirmed by those of Ahluwalia and Cobble [22] and others (see refs. [14], [15]). The value for 25 °C is established at $E^{\circ}_{Hg/Hg_2Cl_2} = 0.26818 \pm 0.00002$ V [24] and at other temperatures can be obtained from

$$E^{\circ}_{\rm Hg/Hg_2Cl_2}(T)/V = 0.26818 \pm 0.00002$$

- (2.99 ± 0.03) 10⁻⁴ ΔT - (3.1 ± 0.3) 10⁻⁶(ΔT)² (11)

where $\Delta T - T/K = 298.15$, with an overall precision of ± 0.00004 V. The corresponding entropy term is $F(dE^*_{Hg/Hg2Cl_2}/dT) = 151.37 - 0.6044\Delta TJK^{-1} mol^{-1}$. At 298.15 K $\Delta S^{\circ} = -28.83$ JK⁻¹ mol⁻¹, compared with the value suggested by Ahluwalia and Cobble [22] -28.49 JK⁻¹ mol⁻¹.

The standard potential of the mercury/mercury(1) electrode has not been studied as extensively, and is not established to that degree of accuracy obtained for the calomel electrode. The thermodynamic functions of formation of Hg_2^{2+} (aq) were given in the latest NBS compilation [23] as $\Delta G_{\rm f}^* = 153.55$ kJ mol⁻¹ and $\Delta H_{\rm f}^* = 172.4$ kJ mol⁻¹ (the latter with one less significant digit than the former). These values lead to $E_{\rm Hg/Hg_2^{2+}}^*$ (298.15 K) = (0.79574 ± 0.00022) V and

$$E^{\circ}_{Hg/Hg2^{2+}} (T/K)/V$$

= $E^{\circ}_{Hg/Hg2^{2+}} (298.15)/V - 3.27 \times 10^{-4} \Delta T,$ (12)

where $\Delta T = T/K - 298.15$, with a precision of ± 0.00019 V. The apparent precision given here is based merely on the apparent precision (\pm one unit of the last significant digit) of the values in the compilation [23]. Another set of $E^{\circ}_{\text{Hg/Hg}^{2+}}(T)$ data was obtained by Read [24], (quoted in ref. [14]), with 0.7956 V for T = 298.15 K, $dE^{\circ}/dT = -2.97 \times 10^{-4}$ VK⁻¹ and an overall precision of ± 0.00014 V, in the range 15 to 45 °C. Most other workers used the old data of Linhart [25] corrected in one way or another, except for the more recent data of ElWakkad and Salem [26], of Bonner and Unietis [27], and of Schwarzenbach and Anderegg [28] who gave for $E^{\circ}_{\text{Hg/Hg2}^{2+}}$ (298.15 K) 0.7960 ± 0.0005 V, and 0.7966 ± 0.0010 V, respectively. The latest review of these data, by Venderzee and Swanson [15] selected the value (0.7960 ± 0.0005) V as the best for 298.15 K. As for the temperature coefficient, $dE^{\circ}/dT = -(3.25 \pm 0.06) \times 10^{-4} \text{ VK}^{-1}$ represents best both Read's [24] and the NBS [23] data.

The standard thermodynamic functions for the reaction

$$Hg_2Cl_2(s) = Hg_2^{2+}(aq) + 2Cl^{-}(aq)$$
 (13)

are obtained from

$$\Delta G_{a0}^{\circ} = 2F(E_{Hg/Hg_2Cl_2}^{\circ} - E_{Hg/Hg_2^{2+}}^{\circ})$$
(14)

and from $\Delta S_{so}^* = -(d\Delta G_{so}^*/dT) = 2Fd(E_{Hg/Hgg}^*2^+ - E_{Hg/Hgg}^*C_2)/dT$. The value at 298.15 K of $\Delta G_{so}^* = 101.86 \pm 0.10$ kJ mol⁻¹ is consistent with the other thermodynamic data [23]. However, $\Delta S_{so}^*/JK^{-1} \mod^{-1} = 5.06 \pm 1.25 - (1.21 \pm 0.12) \times 10^{-3} \Delta T$ (with $\Delta T = T/K - 298.15$), a positive entropy change resulting from (11), (12) and (14) leads to $\Delta H_{so}^* = 103.36 \pm 0.38$ kJ mol⁻¹ at 298.15 K. This differs considerably from the calorimetric value recently obtained by Vanderzee and Swanson [15], 98.08 \pm 0.18 kJ mol⁻¹. Since the latter work is very reliable, the fault must be sought with the temperature dependence of either one of the E^* values (or both) employed in (14), most probably in that of $E_{Hg/Hgg^{2+}}^*$, which is less well established.

In fact, the enthalpy of formation of Hg_2^{2+} (aq) given by Vanderzee and Swanson [15], $\Delta H_f^{\circ} = 166.82 \pm 0.21$ kJ mol⁻¹ differs considerably from that in the NBS compilation [23], 172.4 kJ mol⁻¹ and should be more reliable. Use of the newer value leads to the relation, obtained from the 25 °C standard potential and the enthalpy of precipitation of calomel

$$E^{\circ}_{Hg/H_{g2}^{2-}}(T)/V = 0.7960 \pm 0.0005$$
$$-(2.30 \pm 0.04) \ 10^{-4} \Delta T \tag{15}$$

as the more reliable value.

2.4. Calculated Solubility

The solubility of mercury(I) chloride in water is not, as was assumed in the very early studies, $(K_{s0}^{2}/4)^{1/3}$, because of the disproportionation of Hg_{2}^{2+} to give Hg^{2+} and $Hg(\ell)$, the complexing of Hg^{2+} with chloride, its hydrolysis, and to a lesser extent the hydrolysis of Hg_{2}^{2+} . The following analysis is based on the work of Dry and Gledhill [6], who showed that the saturated solution contains the following mercury species: $Hg(OH)_{2}$, $HgCl_{2}$, $HgOH^{+}$, $HgCl^{+}$, Hg_{2}^{2+} and $Hg_{2}OH^{+}$, in addition to H⁺ and Cl⁻ ions. The total concentration of mercury in the solution can be expressed as

$$c_{H_{g}} - [Hg_{2}^{2+}] \left\{ K_{R}^{\circ-1} \left[K_{W}^{\circ} \beta_{II2OH}^{\circ} (y_{Hg_{2}^{2+}} / y_{Hg(OH_{2}} y_{H^{+}}^{2}) [H^{+}]^{-2} \right. \right. \\ \left. + \beta_{II2CI}^{\circ} (y_{Hg_{2}^{2+}} y_{CI^{-}}^{2} y_{HgCI_{2}}) [CI^{-}]^{2} \right] \right\}$$

+
$$K_{w}\beta_{moh} (y_{Hg2^{2+}}/y_{HgOH^{+}} y_{H^{+}}) [H^{+}]^{-1}$$

+ $\beta_{mcl} (y_{Hg2^{2+}} y_{cl^{-}}/y_{HgCl^{+}}) [Cl^{-}]$
+ $2 + 2K_{w}\beta_{110H}^{\circ} (y_{Hg2^{2+}}/y_{Hg2OH^{+}}y_{H^{+}}) [H^{+}]^{-1}$ (16)

In this expression, the activity coefficients will be calculated according to the modified Debye-Hückel equation

$$\log \gamma_i = -0.51 z_i^2 I^{1/2} / (1 + 1.6 I^{1/2}) \tag{17}$$

where *I*, the ionic strength will be put equal to $[H^+]$, and z_i is the charge of the *i*-th ion. Since the ionic strength is very low, $I = [H^+] \approx 8.2 \times 10^{-6}$ mol dm⁻³, the activity coefficient corrections are quite small, and any deviation of (17) from the true behaviour leads to negligible errors. Other equations which must be considered are

$$[Hg_{2}^{2+}] [Cl^{-}]^{2} = K_{s0}^{s} y_{Hg_{2}^{2+}}^{-1} y_{Cl}^{-2}$$
(18)
$$[Cl^{-}] = 2(c_{Hg} - [HgCl_{2}] - \frac{1}{2} [HgCl^{+}])$$

$$\simeq 2(c_{\rm Hg} - [\rm HgCl_2]) \tag{19}$$

The approximation in (19) is permissible since, as will be found, $[HgCl_2]/c_{Hg} \approx 0.37$, but $[HgCl^+]/c_{Hg} \approx 0.01$. The hydrogen ion concentration, due to hydrolysis, obtained by pH measurements and confirmed by conductivity [6], is taken as $[H^+] = (8.17 \pm 0.08) \times 10^{-6} \text{ mol dm}^{-3} \text{ at } 25 \,^{\circ}\text{C}$. The following values of the constants appearing in (16) and valid for 25 $\,^{\circ}\text{C}$ will be used: $K_R^*(Hg^{2+} + Hg(\ell) = Hg_2^{2+}) = 10^{1.944 \pm 0.006} \, [15]$, $K_W^2 \beta_{1120H}^* \, (Hg^{2+} + 2H_2O = Hg(OH)_2 + 2H^+) = 10^{-5.65 \pm 0.12} \, [6]$, $\beta_{112C1}^* \, (Hg^{2+} + 2C1^- = HgCl_2) = 10^{19.26 \pm 0.09} \, [6]$, $\mathcal{K}_W \beta_{110H}^* \, (Hg^{2+} + C1^- = HgCl^+) = 10^{-3.49 \pm 0.27} \, [6]$, $\beta_{11C1}^* \, (Hg^{2+} + H_2O = Hg_2OH^+ + H^+) = 10^{-4.4 \pm 0.47} \, [6]$ and for $K_{s0}^* \, (Hg_2Cl_2 \, (s) = Hg^{2+} + 2C1^-) = 10^{-17.844 \pm 0.017} \, \text{ will be used.}$

The values quoted were estimated [6] as valid for the ionic strength of the saturated solution, from corrections applied to published values [16] valid for 0.50 mol dm⁻³ NaClO₄ medium. With these values of the constants, the value of [H⁺] and eq (16), (18) and (19), the following implicit equation is obtained (valid for 25 °C):

$$c_{\rm Hg}^{3} (1 - (3.09 \pm 0.65)/10^{6} c_{\rm Hg})^{2} = (4.25 \pm 0.05)$$

$$\times 10^{-21} \{ 10^{7.63 \pm 0.27} c_{\rm Hg} (1 - (3.09 \pm 0.65)/10^{6} c_{\rm Hg}) + 10^{14.85 \pm 0.09} c_{\rm Hg}^{2} (1 - (3.09 \pm 0.65)/10^{6} c_{\rm Hg})^{2} + (3.43 \pm 1.06) \times 10^{4} \}.$$
(20)

This was solved iteratively to give the value for the solubility

$$c_{\rm Hg} = (8.4 \pm 1.0) \times 10^{-6} \text{mol dm}^{-3}$$
 (21)

as the solubility of mercury(I) chloride in water at 25 °C. This value is consistent with the solubility measured directly [6], $(7.5\pm0.3)\times10^{-6}$ mol dm⁻³, as discussed above.

3. Recommended Values

3.1. Solubility Product Constant of Hg₂Cl₂

The above analysis and eq (10), (11) and (15) yield for the

J. Phys. Chem. Ref. Data, Vol. 9, No. 4, 1980

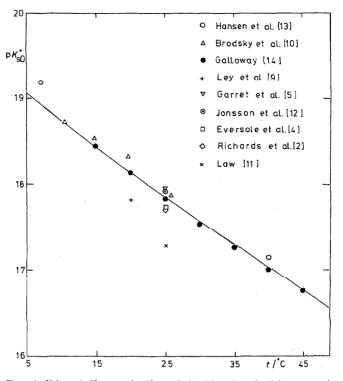


Figure 1. Values of pK_{sn}^{*} (= $-\log K_{sn}^{*}$) recalculated from the authors' data compared with the "recommended" values (continuous line).

solubility product of mercury(I) in water in the range 5 to 45 $^{\circ}\mathrm{C}$

$$\log(K_{s0}^{\circ}/mol^2kg^{-2}) = -17.844 \pm 0.017 + (0.0622)$$

$$\pm 0.0002)\Delta T - (3.0 \pm 0.2) \times 10^{-4} (\Delta T)^2$$
 (22)

where $\Delta T = T/K$ 298.15. The first term on the rhs represents the value for 25 °C

$$K_{s0}^{*}/\text{mol}^{2}\text{kg}^{-2}(298.15 \text{ K}) = (1.43_{3} \pm 0.05_{6}) \times 10^{-18}$$
 (23)

the relative error being $\pm 3.9\%$. The value in (mol dm⁻³)² units is 0.6% lower, i.e., insignificantly different. The values of log K_{s0}^{*} at different temperatures are plotted in figure 1, and compared there with values obtained by several authors.

3.2. Standard Thermodynamic Functions

There are several fixed quantities, selected above as reliable, to which the thermodynamic functions must conform. These are $E_{H_{\rm H}/H_{\rm F2}Cl_2}^{*}$ (298.15 K) = 0.26818±0.00002 V, $\Delta S_{298.15}^{*}$ (Hg/Hg₂Cl₂) = -28.83 JK⁻¹ mol⁻¹, $E_{\rm Hg/Hg_2}^{*}$ + (298.15 K) = 0.7960±0.0005 V and $\Delta H_{298.15}^{*}$ (Hg²₂ + (aq) + 2Cl⁻ (aq) = Hg₂Cl₂ (s)) = -98.08 + 0.18 kJ mol⁻¹. These lead to the following functions for reaction (13)

J. Phys. Chem. Ref. Data, Vol. 9, No. 4, 1980

 $\Delta G_{s0}^{\circ}/\text{kJ mol}^{-1} = 101.86 \pm 0.10 + (0.0127$ $\pm 0.0009)\Delta T + (0.60 \pm 0.06)$ $\times 10^{-3} (\Delta T)^{2} = -151.4$ $+ 0.345 T + 0.60 \times 10^{-3}T^{2} \quad (24)$

$$\Delta S_{s0}^{*}/\mathrm{JK}^{-1}\mathrm{mol}^{-1} = -12.7 \pm 0.9 - (1.20)$$

$$\pm 0.12)\Delta T = 345 - 1.20 T \tag{25}$$

$$\Delta H_{s0}^{*}/\text{kJ mol}^{-1} = 98.08 \pm 0.18 - (0.358 \pm 0.036)\Delta T - (0.60 \pm 0.06) \times 10^{-3} (\Delta T)^{2} = 151.4 - 0.60 \times 10^{-3} T^{2}$$
(26)

$$\Delta C_{p,s0}^{\circ} / J K^{-1} mol^{-1} = -(0.358 \pm 0.036) - (1.20 \pm 0.12) \times 10^{-3} \Delta T = -1.20 \times 10^{-3} T (tentative value) (27)$$

These functions have the following values at 25 °C:

$$\Delta G^{*}_{*0}(298.15) = 101.86 \pm 0.10 \text{ kJ mol}^{-1},$$

$$\Delta S^{*}_{*0}(298.15) = -12.70 \pm 0.9 \text{ JK}^{-1} \text{ mol}^{-1},$$

$$\Delta H^{*}_{*0}(298.15) = 98.08 \pm 0.18 \text{ kJ mol}^{-1}$$

$$\Delta C^{*}_{p,*0}(298.15) = 0.36 \pm 0.04 \text{ JK}^{-1} \text{mol}^{-1}$$

(tentative value) (28)

The uncertainty about $\Delta C^{\circ}_{p,s0}$ is due to the ignorance of $\Delta C^{\circ}_{p,f}$ (Hg2²⁺ (aq)), so that it is based solely on the second derivative of $E^{\circ}_{Hg/Hg2Cl_2}$. The standard entropy change vanishes at 14.4 °C (according to Galloway at 19.0 °C [14]).

3.3. The Aqueous Solubility of Hg₂Cl₂

The aqueous solubility of mercury(1) chloride at 25 $^{\circ}$ C is given by eq (16) to (20) as

$$c_{\rm He} = (8.4 \pm 1.0) \times 10^{-6} \, {\rm mol} \, {\rm dm}^{-3}$$
 (21)

The values at other temperatures cannot be calculated, since the temperature coefficients of the various constants and of the pH of the saturated solutions are unknown.

Acknowledgements

Acknowledgements. The help of Prof. H.L. Clever, in providing copies of hard to obtain literatuure sources, is gratefully acknowledged. Useful remarks and encouragement have been obtained from Profs. L.G. Hepler, D.N. Hume, A.S. Kertes, and G.H. Nancollas and Dr. M. Salomon.

4. References

- [1a] Kohlrausch, F., and Rosc, F., Z. physik. Chem. 12, 234 (1893).
- [1b] Kohlrausch, F., Z. physik. Chem. 44, 217 (1903).
- [1c] Kohlrausch, F., Z. physik. Chem. 64, 129 (1908).

- [2] Richards, T.W., and Archibald, E.H., Z. phys. Chem. 40, 385 (1902).
- [3] Sherrill, M.S., Z. physik. Chem. 43, 705 (1903).
- [4] Eversole, W.G., and McLachlan, R.W., J. Am. Chem. Soc. 54, 864 (1932).
- [5] Garrett, A.B., Noble. N. V., and Miller, S., J. Chem. Educ. 19, 485 (1942).
- [6] Dry, M.E., and Gledhill, J.A., Trans. Faraday Soc. 51, 1119 (1955).
 [7] Herz. W., Z. anorg. Chem. 70, 170 (1911).
- [8] Behrend, R., Z. physik. Chem. 11, 466 (1893); 15, 498 (1894).
- [9] Ley, H., and Heimbucher, C., Z. Elektrochem. 10, 301 (1904).
- [10a] Brodsky, A.E., and Scherschewer, J.M., Z. Elektrochem. 32, 1 (1926).
- [10b] Brodsky, A.E., Z. Elektrochem. 35, 833 (1929).
- [11] Law, J.T., M.S. Thesis, Univ. New Zealand, 1946.
- [12] Jonsson, J., Qvarfort, I., and Sillèn, L.G., Acta Chem. Scand. 1, 46 (1947).
- [13] Hansen, I.D., Izatt, R.M., and Christensen J.J., Inorg. Chem. 2, 1243 (1963).
- [14] Galloway, W.D., M.S. Thesis, Univ. New Zealand, 1961.
- [15] Vanderzee, C.E., and Swanson, J.A., J. Chem. Thermod. 6, 827 (1974).
- [16] Sillèn, L.G., Acta Chem. Scand. 3, 529 (1949).
- [17] Feitknecht, W., and Schindler, P., Pure Appl. Chem. 6, 130 (1963).
- [18] Hepler, L.G., and Olofsson, G., Chem. Rev. 75, 585 (1975).
- [19] Berecki, C., Biedermann, G., and Sillen, L.G., Report to (precursor of) Commission V.6, Analytical Division of IUPAC, 1953.
- [20] Qvarfort, I., and Sillèn, L.G., Acta Chem. Scand. 3, 517 (1949); Lindgren, B., Jonsson, A., and Sillèn, L.G., Acta Chem. Scand. 1, 479 (1947).
- [21a] Hills, G.J., and Ives, D.J.G., J. Chem. Soc, 318 (1951).
- [21b] Das, S.N., and Ives, D.J.G., J. Chem. Soc. 1619 (1962).
- [21c] Gupta, S.R., Hills, G.J., and Ives, D.J.G., Trans. Faraday Soc. 59, 1874 (1963).
- [21d] Ives, D.J.G., and Prasad, D., J. Chem. Soc. B 1649 (1970).
- [22] Ahluwalia, J.C., and Cobble, P.W., J. Am. Chem. Soc. 86, 5381 (1964).
- [23] Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M., and Schumm, R.H., U.S. Natl. Bureau Stand., Tech. Note 270-4 (1969).
- [24] Read. M.S. Thesis, Univ. New Zealand, 1960.
- [25] Linhart, G.A., J. Am. Chem. Soc. 38, 2356 (1916).
- [26] ElWakkad, S.E.S., and Salem, T.M., J. Phys. Chem. 54, 1371 (1950).
- [27] Bonner, O.D., and Unietis, F.A., J. Am. Chem. Soc. 75, 5111 (1953).
- [28] Schwarzenbach, G., and Anderegg, G., Helv. Chim. Acta 37, 1289 (1954).

5. Compilation

5.1. Data of Behrend (1893, 1894)

COMPONENTS :	DRIGINAL MEASUREMENTS:
1. Mercury(I) chloride, Hg ₂ Cl ₂ (10112-91-1)	Behrend, R., Z. Phys. Chem. (1893) <u>11</u> , 466; (1894) <u>15</u> , 498.
2. Potassium chloride, KCl (7447-40-7)	
3. Water, H ₂ 0 (7732-18-5)	
· · · · · · · · · · · · · · · · · · ·	
VARIABLES:	PREPARED BY:
One temperature	Y. Marcus, January 1978
One KC1 concentration	
EXPERIMENTAL VALUES:	
E.m.f. E at room temperature (17°C) of cell:	
	1
$Hg/Hg_2(NO_3)_2$ 0.05M, HNO_3 (?M)/0.1M KNO_3/Hg	4 6
found to be 0.356V and 0.360V in two experiments	-
value has to be multiplied by 1.092 to give	1
rection published by him in the second source	ce quoted (see below). From this is derived
(Y.M.)	
$\log \kappa_{s0}^{a}(Hg_{2}C1_{2}, 17^{\circ}C) = -17.10 - (E_{j}/V)/0.02$	2879
A realistic estimate for \mathbf{F} is 0 $\mathbf{D}^{\pm 0}$ (5)	$h_{0} = 100 \ k^{\circ} = -17 \ 1 \ (1 \ 7^{\dagger} = 10) = -18 \ 8^{\dagger} = 10$
A realistic estimate for E, is 0.05±0.03V, }	hence $\log x_{S0} = -17.1 - (1.741.0) \approx -18.841.0$
at 290X.	
\	
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
$\log \kappa_{SO}^{\circ}(Hg_2Cl_2, 17^{\circ}C) = -(2/0.05757)[(E/V) -$	Not stated
(\mathbf{r}_{j}/V)]-log($c_{Hg_{2}}(NO_{3})_{2}$ · c_{KC1}^{2})-	
$\log(y_{H_{2}}(NO)) \cdot y_{K_{1}}^{2} \cdot y_{K_{1}}^{2} =$	{
$\begin{cases} \log(y_{Hg_2}(NO_3)) \cdot y_{KC1} \cdot y_{KNO_3}^{-2} = \\ = -2(0.391 - E_37V)/0.05757 - \end{cases}$	
$\log(0.05 \cdot 0.1^2) - \log(0.55 \cdot 0.77^2/0.74^2)$	
$= -13.58 - (E_{1}/V)/0.02879 - 3.30-0.22$	
	}
$\approx -17.10 - (E_{j}/V)/0.02879$	(
$y_{\text{Hg}_2(NO_3)_2}$ estimated from value for	
$Ca(NO_3)_2^1$, value for that, KCl and KNO ₃ from	1 DOILINGTOD DEMORE FIOM TANGE OF D(-0.0020))
ref 2.	uncertainty of temperature (±2°C) and ac- tivity coefficient product (±10%), error of
Unthermostated cell, using an electrometer, a	log $K_{\rm s}$ is ±0.22.
resistance box and a Leclanche standard cell,	
constant to ca. ± 3 mV over two months.	REFERENCES:
	 Bonner, O.D., Unietis, F., J. Am. Chem. Soc. (1953) <u>75</u>, 5111.
1	Robinson, R.A., Stokes, R.H., Electrolyte
1	Solutions, Butterworth, London, 2nd Ed.,
	1959.
1	1
1	

J. Phys. Chem. Ref. Data. Vol. 9. No. 4. 1980

5.2. Data of Richards and Archibald (1902)

OMPONENTS:	ORIGINAL MEASUREMENTS:
. Mercury(I) chloride, Hg ₂ Cl ₂ (10112-91-1)	Richards, T.W., Archibald, E.H., Z. phys.
. Hydrochloric Acid, HC1 (7647-01-0)	Chem. (1902) <u>40</u> , 385.
-	
. Water, H ₂ O (7732-18-5)	
ARIABLES:	PREPARED BY:
HC1 concentration	Y. Marcus, January 1978
One temperature	
XPERIMENTAL VALUES:	· · · · · · · · · · · · · · · · · · ·
Solubility of Hg_2Cl_2 in aqueous HCl at 25°	C. Composition of the solutions:
$c_{\rm HC1}/{\rm mol \ dm}^{-3}$ $c'_{\rm Hg,total}/{\rm g \ dm}$	-3 $10^4 c_{\rm Hg,total}/\rm{mol~dm}^{-3}$
0.83 0.034	1.69
0.83 0.034	1.69
1.00 0.048	2.39
1.00 0.048	2.39
2.50 0.206	10.27
2.50 0.208	10.37
4.15 0.400	19.94
4.15 0.398	19.84
5.48 0.548 5.48 0.548	27.32 27.32
$\log \kappa_{e}^{\dot{o}}(\text{Hg}_{2}\text{Cl}_{2}(s) + 2\text{Cl}^{-} = \text{Hg}(\ell) + \text{HgC}$	
$\log \kappa_{e}^{b}(Hg_{2}C1_{2}(s) + 2C1^{-} = Hg(l) + HgC$	
$\log \kappa_{e}^{\bullet}(\text{Hg}_{2}\text{Cl}_{2}(s) + 2\text{Cl}^{-} = \text{Hg}(\mathfrak{k}) + \text{HgC}$ $\log \kappa_{s0}^{\bullet}(\text{Hg}_{2}\text{Cl}_{2}(s) = \text{Hg}_{2}^{2*} + 2\text{Cl}^{-}) = -1$ $data^{1-3}).$	$1_4^{2^-}$) = -3.93 [±] 0.01 (calculated by YM)
$\log \kappa_{e}^{b}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(\mathfrak{k}) + HgC$ $\log \kappa_{s0}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ $data^{1-3}).$ AUXILIARY	$1_4^{2^-}$) = -3.93 [±] 0.01 (calculated by YM) 7.72 [±] 0.08 (calculated by YM with additional
$\log \kappa_{e}^{b}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(\mathfrak{k}) + HgC$ $\log \kappa_{s0}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ $data^{1-3}).$ AUXILIARY	1 ₄ ²⁻) = -3.93 [±] 0.01 (calculated by YM) 7.72 [±] 0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS:
$\log K_{e}^{o}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(x) + HgC \log K_{sO}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1 data^{1-3}).$ AUXILIARY METHOD: $\log K_{e}^{o} = \log(c_{Hg,total}^{2}/c_{HCl}^{2}) - $	<pre>1₄²⁻) = -3.93[±]0.01 (calculated by YM) 7.72[±]0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg₂Cl₂ sublimed at low temperature, the</pre>
$\log K_{e}^{b}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(x) + HgC$ $\log K_{sO}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ $data^{1-3}).$ AUXILIARY 4ETHOD: $\log K_{e}^{o} = \log(c_{Hg,total}/c_{HCl}^{2}) -$	<pre>1₄²⁻) = -3.93[±]0.01 (calculated by YM) 7.72[±]0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg₂Cl₂ sublimed at low temperature, the</pre>
$\log \kappa_{e}^{b}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(k) + HgCl_{10}g \kappa_{s0}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ $data^{1-3}).$ AUXILIARY	<pre>1₄²⁻) = -3.93[±]0.01 (calculated by YM) 7.72[±]0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg₂Cl₂ sublimed at low temperature, the</pre>
$\log \kappa_{e}^{o}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(k) + HgC \log \kappa_{s0}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ $data^{1-3}).$ AUXILIARY ETHOD: $\log \kappa_{e}^{o} = \log(c_{Hg,total}/c_{HCl}^{2}) - \log(1+\beta_{5}\beta_{4}^{-1}c_{HCl}^{-1} + \beta_{2}\beta_{4}^{-1}c_{HCl}^{-2})^{ref}.$ $- 2Ar^{1/2}/(1+Br^{1/2}) + \Delta br;$	$1_4^{2^-}$) = -3.93 [±] 0.01 (calculated by YM) 7.72 [±] 0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg ₂ Cl ₂ sublimed at low temperature, the source shown to be immaterial. HCl was
$\log K_{e}^{b}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(k) + HgC$ $\log K_{sO}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ $data^{1-3}).$ AUXILIARY 4ETHOD: $\log K_{e}^{o} = \log(C_{Hg,total}/c_{HCl}^{2}) - \frac{1}{2}\log(1+\beta_{3}\beta_{4}^{-1}c_{HCl}^{-1} + \beta_{2}\beta_{4}^{-1}c_{HCl}^{-2})^{ref}.$	$1_4^{2^-}$) = -3.93 [±] 0.01 (calculated by YM) 7.72 [±] 0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg ₂ Cl ₂ sublimed at low temperature, the source shown to be immaterial. HCl was redistilled c.p. acid.
$\log K_{e}^{b}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(k) + HgC \log K_{s0}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ $data^{1-3}).$ $AUXILIARN$ $MUXILIARN$ $MUXILIARN = \log(c_{Hg,total}/c_{HCl}^{2}) - \log(1+\beta_{3}\beta_{4}^{-1}c_{HCl}^{-1} + \beta_{2}\beta_{4}^{-1}c_{HCl}^{-2})^{ref.} - 2AI^{1/2}/(1+BI^{1/2}) + \Delta bI;$ $A = 0.51, B = 1.6, I = c_{HCl}.$ Least squares calc. gave log $K_{e}^{o} = -3.93$ and	$1_4^{2^-}$) = -3.93 [±] 0.01 (calculated by YM) 7.72 [±] 0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg ₂ Cl ₂ sublimed at low temperature, the source shown to be immaterial. HCl was redistilled c.p. acid.
$\log K_{e}^{o}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(k) + HgC \log K_{sO}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ data ¹⁻³). METHOD: $\log K_{e}^{o} = \log(c_{Hg,total}/c_{HCl}^{2}) - \frac{1}{2}\log(1+\beta_{3}\beta_{4}^{-1}c_{HCl}^{-1} + \beta_{2}\beta_{4}^{-1}c_{HCl}^{-2})^{ref.} - 2AI^{1/2}/(1+BI^{1/2}) + \Delta bI;$ $A = 0.51, B = 1.6, I = c_{HCl}.$ Least squares calc. gave $\log K_{e}^{o} = -3.93$ and $\Delta b = -0.146.$ $\log K_{SO}^{o} = \log K_{e}^{o} + \log K_{r}(Hg^{2+}+Hg(k)) =$	<pre>14²⁻) = -3.93[±]0.01 (calculated by YM) 7.72[±]0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg₂Cl₂ sublimed at low temperature, the source shown to be immaterial. HCl was redistilled c.p. acid. ESTIMATED ERROR:</pre>
$\log k_{e}^{\circ}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(k) + HgC \log k_{s0}^{\circ}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ data ¹⁻³). METHOD: $\log k_{e}^{\circ} = \log(c_{Hg,total}/c_{HCl}^{2}) - \log(1+\beta_{3}\beta_{4}^{-1}c_{HCl}^{1} + \beta_{2}\beta_{4}^{-1}c_{HCl}^{-2})^{ref.} - 2Ar^{1/2}/(1+Br^{1/2}) + \Delta br;$ $A = 0.51, B = 1.6, I = c_{HCl}.$ Least squares calc. gave log $k_{e}^{\circ} = -3.93$ and $\Delta b = -0.146.$ $\log k_{s0}^{\circ} = \log k_{e}^{\circ} + \log k_{r}(Hg^{2+}+Hg(k)) = Hg_{2}^{2+})^{ref.} - \log \beta_{4}(Hg^{2+}+4cl^{-1})^{ref.} + Hg(k) = Hg_{2}^{2+})^{ref.} - \log \beta_{4}(Hg^{2+}+4cl^{-1})^{ref.} + \log k_{1}(Hg^{2+}+4cl^{-1})^{ref.} + \log k_{1}(Hg^$	<pre>14²⁻) = -3.93[±]0.01 (calculated by YM) 7.72[±]0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg₂Cl₂ sublimed at low temperature, the source shown to be immaterial. HCl was redistilled c.p. acid. ESTIMATED ERROR: log K^e_e: ±0.05 from least squares fitting</pre>
$\log K_{e}^{o}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(k) + HgC \log K_{s0}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ data ¹⁻³). METHOD: $\log K_{e}^{o} = \log(c_{Hg,total}/c_{HCl}^{2}) - \frac{1}{2}\log(1+\beta_{3}\beta_{4}^{-1}c_{HCl} + \beta_{2}\beta_{4}^{-1}c_{HCl})^{-2})^{ref.} - \frac{1}{2}ar^{1/2}/(1+Br^{1/2}) + \Delta br;$ $A = 0.51, B = 1.6, I = c_{HCl}.$ Least squares calc. gave $\log K_{e}^{o} = -3.93$ and $\Delta b = -0.146.$ $\log K_{s0}^{o} = \log K_{e}^{o} + \log K_{r}(Hg^{2+}+Hg(k)) = \frac{1}{2}Hg_{2}^{2+})^{ref.} - \frac{1}{2}\log \beta_{4}(Hg^{2+}+4cl^{-1})^{-1}HgCl_{4}^{2-})^{ref.} - 2 \log y(trace)$	$1_{4}^{2^{-}}) = -3.93^{\pm}0.01 \text{ (calculated by YM)}$ 7.72 [±] 0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg ₂ Cl ₂ sublimed at low temperature, the source shown to be immaterial. HCl was redistilled c.p. acid. ESTIMATED ERROR: log κ_{0}^{e} : ±0.05 from least squares fitting log κ_{50}^{e} : ±0.06 on log β_{4} , ±0.01 on log y _{NaCl} and ±0.02 on log κ_{T} yield total ±0.
$\log K_{e}^{o}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(k) + HgCl_{e}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ data ¹⁻³). METHOD: $\log K_{e}^{o} = \log(c_{Hg,total}/c_{HCl}^{2}) - \frac{1}{2}\log(1+\beta_{3}\beta_{4}^{-1}c_{HCl} + \beta_{2}\beta_{4}^{-1}c_{HCl})^{-2})^{ref.} - \frac{1}{2}ar^{1/2}/(1+Br^{1/2}) + \Delta br;$ $A = 0.51, B = 1.6, I = c_{HCl}.$ Least squares calc. gave $\log K_{e}^{o} = -3.93$ and $\Delta b = -0.146.$ $\log K_{SO}^{o} = \log K_{e}^{o} + \log K_{r}(Hg^{2+}+Hg(k)) = \frac{1}{2}Hg_{2}^{2+})^{ref.} - \frac{1}{2}\log \beta_{4}(Hg^{2+}+4cl^{-1})^{1}$ $HgCl_{4}^{2-})^{ref.} - \frac{2}{2} + \log g(trace)$ NaCl in 0.5M NaClO ₄) ^{ref. 3} =	$1_4^{2^-}$) = -3.93 [±] 0.01 (calculated by YM) 7.72 [±] 0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg ₂ Cl ₂ sublimed at low temperature, the source shown to be immaterial. HCl was redistilled c.p. acid. ESTIMATED ERROR: log κ_{0}^e : ±0.05 from least squares fitting log κ_{00}^e : ±0.06 on log β_4 , ±0.01 on log <u>y_{NaC1} and ±0.02 on log κ_T yield total ±0. REFERENCES:</u>
$\log K_{e}^{e}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(k) + HgCl_{e}^{e}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ data ¹⁻³). MUXILIARY METHOD: $\log K_{e}^{e} = \log(c_{Hg,total}/c_{HCl}^{2}) - (10g(1+8_{3}\beta_{4}^{-1}c_{HCl}^{-1}+\beta_{2}\beta_{4}^{-1}c_{HCl}^{-2})^{ref.} - 2Ar^{1/2}/(1+Br^{1/2}) + \Delta br;$ $A = 0.51, B = 1.6, I = c_{HCl}.$ Least squares calc. gave $\log K_{e}^{e} = -3.93$ and $\Delta b = -0.146.$ $\log K_{SO}^{e} = \log K_{e}^{e} + \log K_{r}(Hg^{2+}+Hg(k)) = Hg_{2}^{2+})^{ref.} - \log k_{4} (Hg^{2+}+4Cl^{-1})^{HgCl} + HgCl_{4}^{2-})^{ref.} - 2A \log y(trace)$ NaCl in 0.5M NaClO ₄) ^{ref. 3} = (-3.93+1.94-15.07-0.66) = -17.72.	$1_{4}^{2^{-}}) = -3.93^{\pm}0.01 \text{ (calculated by YM)}$ 7.72 [±] 0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg ₂ Cl ₂ sublimed at low temperature, the source shown to be immaterial. HCl was redistilled c.p. acid. ESTIMATED ERROR: log κ_{S0}° : ±0.05 from least squares fitting log κ_{S0}° : ±0.06 on log β_{4} , ±0.01 on log <u>y_{NaCl}</u> and ±0.02 on log κ_{r} yield total ±0. REFERENCES: 1. Hietanen, S., Sillèn, L.G., Ark. Kemi
$\log \kappa_{e}^{o}(\text{Hg}_{2}\text{Cl}_{2}(s) + 2\text{Cl}^{-} = \text{Hg}(\mathfrak{k}) + \text{HgC}(\mathfrak{k}) + 2\text{Cl}^{-}) = -1$ $\log \kappa_{e}^{o} = \log(c_{\text{Hg}, \text{total}}/c_{\text{HC}}^{2}) - \frac{1}{2} + 2\text{Cl}^{-}) + \frac{1}{2} + $	$1_{4}^{2^{-}}) = -3.93^{\pm}0.01 \text{ (calculated by YM)}$ 7.72 [±] 0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg ₂ Cl ₂ sublimed at low temperature, the source shown to be immaterial. HCl was redistilled c.p. acid. ESTIMATED ERROR: log K_{50}° : ±0.05 from least squares fitting log K_{50}° : ±0.06 on log β_{4} , ±0.01 on log <u>UNACL</u> and ±0.02 on log K_{T} yield total ±0. REFERENCES: 1. Hietanen, S., Sillèn, L.G., Ark. Kemi (1956) <u>10</u> , 103.
$\log k_{e}^{\circ}(\text{Hg}_{2}\text{Cl}_{2}(s) + 2\text{Cl}^{-} = \text{Hg}(k) + \text{HgC}_{10g} k_{s0}^{\circ}(\text{Hg}_{2}\text{Cl}_{2}(s) = \text{Hg}_{2}^{2+} 2\text{Cl}^{-}) = -1$ data ¹⁻³). METHOD: $\log k_{e}^{\circ} = \log(c_{\text{Hg}, \text{total}}/c_{\text{HCl}}^{2}) - \frac{1}{2} \log(1+\beta_{3}\beta_{4}^{-1}c_{\text{HCl}} + \beta_{2}\beta_{4}^{-1}c_{\text{HCl}} - 2)^{\text{ref.}} - \frac{1}{2} \log(1+\beta_{3}\beta_{4}^{-1}c_{\text{HCl}} + \beta_{2}\beta_{4}^{-1}c_{\text{HCl}} - 2)^{\text{ref.}} - 2Ar^{1/2}/(1+Br^{1/2}) + \Delta br;$ $A = 0.51, B = 1.6, I = c_{\text{HCl}}.$ Least squares calc. gave $\log k_{e}^{\circ} = -3.93$ and $\Delta b = -0.146.$ $\log k_{s0}^{\circ} = \log k_{e}^{\circ} + \log k_{r}(\text{Hg}^{2+}+\text{Hg}(k) = \frac{1}{2}k_{s2}^{2+})^{\text{ref.}} - 1 - \log \beta_{4}(\text{Hg}^{2+}+4c)^{-1} + \frac{1}{2}k_{s2}^{2-})^{\text{ref.}} - 2 + \log y(\text{trace})^{1/2} + \frac{1}{2}k_{s2}^{2-})^{\text{ref.}} - 2 + \log y(\text{trace})^{1/2} + \frac{1}{2}k_{s2}^{2-})^{1/2} + \frac{1}{2}k_{s2}^{2-} + \frac{1}{2}k_{s2}^$	$1_{4}^{2^{-}}) = -3.93^{\pm}0.01 \text{ (calculated by YM)}$ 7.72 [±] 0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg ₂ Cl ₂ sublimed at low temperature, the source shown to be immaterial. HCl was redistilled c.p. acid. ESTIMATED ERROR: log K_{0}^{e} : ±0.05 from least squares fitting log K_{00}^{e} : ±0.06 on log β_{4} , ±0.01 on log y _{NaCl} and ±0.02 on log K_{T} yield total ±0. REFERENCES: 1. Hietanen, S., Sillèn, L.G., Ark. Kemi (1956) <u>10</u> , 103. 2. Sillèn, L.G., Acta Chem. Scand. (1949) ± 539.
$\log K_{e}^{e}(Hg_{2}Cl_{2}(s) + 2Cl^{-} = Hg(k) + HgCl_{e}^{2}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ $\log K_{s0}^{o}(Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + 2Cl^{-}) = -1$ $data^{1-3}).$ AUXILIARM WETHOD: $\log (K_{e}^{o} = \log(c_{Hg}, total/c_{HC1}^{2}) - \frac{1}{2}\log(1+8_{3}\beta_{4}^{-1}c_{HC1}^{-1}+\beta_{2}\beta_{4}^{-1}c_{HC1}^{-2})^{ref.} - 2Ar^{1/2}/(1+Br^{1/2}) + \Delta br;$ $A = 0.51, B = 1.6, I = c_{HC1}.$ Least squares calc. gave $\log K_{e}^{o} = -3.93$ and $\Delta b = -0.146.$ $\log K_{s0}^{o} = \log K_{e}^{o} + \log K_{r}(Hg^{2+}+Hg(k)) = \frac{1}{2}HgCl_{4}^{2-})^{ref.} - 1 \log \beta_{4}(Hg^{2+}+4Cl^{-1}+HgCl_{4}^{2-})^{ref.} - 4 \log y(trace)$ $NaCl in 0.5M NaClo_{4})^{ref.} = -3.93+1.94-15.07-0.66 = -17.72.$ Excess HgCl ₂ shaken for >7 hr with 0.1 g Hg(k) and 50 ml HCl solution in glass vessel provided with purified rubber stopper in a thermostated bath at 25.00+0.05°C. To	$1_{4}^{2^{-}}) = -3.93^{\pm}0.01 \text{ (calculated by YM)}$ 7.72 [±] 0.08 (calculated by YM with additional INFORMATION SOURCE AND FURITY OF MATERIALS: Hg ₂ Cl ₂ sublimed at low temperature, the source shown to be immaterial. HCl was redistilled c.p. acid. ESTIMATED ERROR: log K_{SO}° : ±0.05 from least squares fitting log K_{SO}° : ±0.06 on log β_{4} , ±0.01 on log <u>yNaCl</u> and ±0.02 on log K_{T} yield total ±0. REFERENCES: 1. Hietanen, S., Sillèn, L.G., Ark. Kemi (1956) <u>10</u> , 103. 2. Sillèn, L.G., Acta Chem. Scand. (1949) <u>5</u> 39. 3. Estimated by YM from Robinson, R.A.,
$\log k_{e}^{\circ}(\text{Hg}_{2}\text{Cl}_{2}(s) + 2\text{Cl}^{-} = \text{Hg}(k) + \text{HgC}_{10g} k_{s0}^{\circ}(\text{Hg}_{2}\text{Cl}_{2}(s) = \text{Hg}_{2}^{2+} 2\text{Cl}^{-}) = -1$ data ¹⁻³). METHOD: $\log k_{e}^{\circ} = \log(c_{\text{Hg}, \text{total}}/c_{\text{HCl}}^{2}) - \frac{1}{2} \log(1+\beta_{3}\beta_{4}^{-1}c_{\text{HCl}} + \beta_{2}\beta_{4}^{-1}c_{\text{HCl}} - 2)^{\text{ref.}} - \frac{1}{2} \log(1+\beta_{3}\beta_{4}^{-1}c_{\text{HCl}} + \beta_{2}\beta_{4}^{-1}c_{\text{HCl}} - 2)^{\text{ref.}} - 2Ar^{1/2}/(1+Br^{1/2}) + \Delta br;$ $A = 0.51, B = 1.6, I = c_{\text{HCl}}.$ Least squares calc. gave $\log k_{e}^{\circ} = -3.93$ and $\Delta b = -0.146.$ $\log k_{s0}^{\circ} = \log k_{e}^{\circ} + \log k_{r}(\text{Hg}^{2+}+\text{Hg}(k) = \frac{1}{2}k_{s2}^{2+})^{\text{ref.}} - 1 - \log \beta_{4}(\text{Hg}^{2+}+4c)^{-1} + \frac{1}{2}k_{s2}^{2-})^{\text{ref.}} - 2 + \log y(\text{trace})^{1/2} + \frac{1}{2}k_{s2}^{2-})^{\text{ref.}} - 2 + \log y(\text{trace})^{1/2} + \frac{1}{2}k_{s2}^{2-})^{1/2} + \frac{1}{2}k_{s2}^{2-} + \frac{1}{2}k_{s2}^$	$1_{4}^{2^{-}}) = -3.93^{\pm}0.01 \text{ (calculated by YM)}$ 7.72 [±] 0.08 (calculated by YM with additional INFORMATION SOURCE AND PURITY OF MATERIALS: Hg_Cl_2 sublimed at low temperature, the source shown to be immaterial. HCl was redistilled c.p. acid. ESTIMATED ERROR: log K_{0}° : ±0.05 from least squares fitting log K_{0}° : ±0.06 on log β_{4} , ±0.01 on log <u>yNaC1</u> and ±0.02 on log K_{T} yield total ±0. REFERENCES: 1. Hietanen, S., Sillèn, L.G., Ark. Kemi (1956) <u>10</u> , 103. 2. Sillèn, L.G., Acta Chem. Scand. (1949) 539. 3. Estimated by YM from Robinson, R.A., Stokes, R.H., Electrolyte Solutions, Bur

OMPONENTS :			ORIGINAL ME	ASUREMENIS:			
Mercury(I)	chloride, Hg ₂ Cl ₂	2 (10112-91-1)	Richards	, T.W., Arc	hibald, E.H.,		
	loride, NaCl (764	-	Z. phys. Chem. (1902), 385.				
. Calcium d	chloride, CaCl ₂ (1	10043-52-4)					
	loride, BaCl ₂ (10						
) (7732-18-5)						
<i>matterit</i> , <i>m</i> ₂	, (,, 02 10 5)				1. A.		
ARIABLES:			PREPARED BY	:			
NaCl, CaCl	2 or BaCl ₂ conce	entrations	Y. Marcu	is, January	1978		
One temper							
XPERIMENTAL	VALUES .						
	v of Hg ₂ Cl ₂ in aqu	ueous chlorides a	t 25°C. Con	mosition of	the solutions:		
NaC1	¹⁰ ^C Hg, total	CaCl ₂	^C Hg,total	^C BaCl ₂	¹⁰ ^C Hg,total		
mol dm^{-3}	10 ⁴ c _{Hg,total} mol dm ⁻³	moldm ⁻³ n	101 dm ⁻³	mol dm ⁻³	mol dm ⁻³		
1.00	2.04	0.36	1.10	0.50	2.19		
2.00	6.43	0.50	1.64	0.75	4.39		
2.50	9.67	1.00	4.04	1.00	5.33		
3.80	18.9	1.25	5.88	1.50	11.5		
5.00	32.1	1.76	11.5		· .		
Pemarke.	c calcul	ated by compiler	from a	$(a dm^{-3} d$	ata which are ave	7 200	
Remarks.	Hg,total	area by compiler	Hg,to	tal ^{/g um} d	ata, which are ave	rage:	
of two exp	periments at each	concentration.	Data also p	resented for	2.32 and 2.93 mol	dm	
					resented as equiva		
				reaction of the second s			
	alculated here.						
dm , reca							
		2					
		$Hg(\ell) + HgCl^{2-}$	= -3.98 for	NaCl soluti	lons 7		
	$_{2}^{C1}(s) + 2C1^{-} = 1$	Hg(1) + HgCl ₄ ²⁻)	= -3.98 for	NaCl soluti	ions	04	
		Hg(l) + HgCl ₄ ²⁻)	= -3.94 for	CaCl ₂ solut	ions av.= -3.95±0	.06	
		$Hg(\ell) + HgCl_4^{2-})$	= -3.94 for	CaCl ₂ solut	ions av.= -3.95±0	.06	
log κ _e (Hg	2 ^{C1} 2(s) + 2C1 ⁻ = 1		= -3.94 for = -3.93 for	CaCl ₂ solut BaCl ₂ solut	ions av.= -3.95±0	.06	
log κ _e (Hg	2 ^{C1} 2(s) + 2C1 ⁻ = 1		= -3.94 for = -3.93 for	CaCl ₂ solut BaCl ₂ solut	ions av.= -3.95±0	.06	
log κ _e (Hg	2 ^{C1} 2(s) + 2C1 ⁻ = 1		= -3.94 for = -3.93 for	CaCl ₂ solut BaCl ₂ solut	ions av.= -3.95±0	.06	
log κ _e (Hg	2 ^{C1} 2(s) + 2C1 ⁻ = 1		= -3.94 for = -3.93 for	CaCl ₂ solut BaCl ₂ solut	ions av.= -3.95±0	.06	
log κ _e (Hg	2 ^{C1} 2(s) + 2C1 ⁻ = 1		= -3.94 for = -3.93 for	CaCl ₂ solut BaCl ₂ solut	ions av.= -3.95±0	.06	
log κ _e (Hg	2 ^{C1} 2(s) + 2C1 ⁻ = 1		= -3.94 for = -3.93 for	CaCl ₂ solut BaCl ₂ solut	ions av.= -3.95±0	.06	
log κ _e (Hg	2 ^{C1} 2(s) + 2C1 ⁻ = 1	+ 2C1 ⁻) = -17.74 ⁴	= -3.94 for = -3.93 for	CaCl ₂ solut BaCl ₂ solut average for	ions av.= -3.95±0	.06	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{SO}^{\circ}(H)$	$_{2}^{C1}(s) + 2C1^{-} = 1$ $g_{2}^{C1}(s) = Hg_{2}^{2+}$	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY	= -3.94 for = -3.93 for :0.09 on the INFORMATIO: SOURCE AND	CaCl ₂ solut BaCl ₂ solut average for	<pre>ions av.= -3.95¹0 ions defined three series. MATERIALS:</pre>		
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{SO}^{\circ}(H)$	$_{2}^{C1}(s) + 2C1^{-} = 1$ $g_{2}^{C1}(s) = Hg_{2}^{2+}$	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY	= -3.94 for = -3.93 for :0.09 on the INFORMATIO: SOURCE AND Hg ₂ Cl ₂ s	CaCl ₂ solut BaCl ₂ solut average for PURITY OF ublimed at	<pre>ions av.= -3.95¹0 ions the three series. MATERIALS: low temperature, th</pre>	e	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{SO}^{\circ}(H)$ METHOD:	$_{2}^{C1}(s) + 2C1^{-} = 1$ $g_{2}^{C1}(s) = Hg_{2}^{2+}$	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY	= -3.94 for = -3.93 for :0.09 on the INFORMATIO: SOURCE AND Hg ₂ Cl ₂ s	CaCl ₂ solut BaCl ₂ solut average for PURITY OF ublimed at	<pre>ions av.= -3.95¹0 ions defined three series. MATERIALS:</pre>	e	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{s0}^{\circ}(Hg)$ $METHOD:$ $\log \kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$	$_{2}^{C1}(s) + 2C1^{-} = 1$ $g_{2}^{C1}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})^{c_{1}}$	+ $2C1^{-}$) = -17.74 ⁴ AUXILIARY (1) - log (1+ ef. ² - $2Ar^{1/2}/$	<pre>= -3.94 for = -3.93 for :0.09 on the INFORMATION SOURCE AND Hg₂Cl₂s source s cipitate</pre>	CaCl ₂ solut BaCl ₂ solut average for PURITY OF I ublimed at hown to be	<pre>ions av.= -3.95¹0 ions the three series. MATERIALS: low temperature, th</pre>	ie ore-	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{s0}^{\circ}(H)$ $METHOD:$ $\log \kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/2})$	$_{2}Cl_{2}(s) + 2Cl^{-} = 1$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})^{-1}$ $c_{1}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MC1}^{-2})^{T}$ $^{2}) + \Delta bI; A=0.51,$	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY (1) - log (1+ ref. ² - $2AI^{1/2}/B=1.6$, M=Na, $\frac{1}{2}$ Ca	= -3.94 for = -3.93 for = -3.93 for = -0.09 on the INFORMATION SOURCE AND Hg ₂ Cl ₂ s source s cipitate	CaCl ₂ solut BaCl ₂ solut average for PURITY OF I ublimed at hown to be d from solut	ATERIALS: NATERIALS: Now temperature, th immaterial. NaCl p	ie ore- e-	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{s0}^{\circ}(H)$ $METHOD:$ $\log \kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/2})$	$_{2}^{C1}(s) + 2C1^{-} = 1$ $g_{2}^{C1}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})^{c_{1}}$	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY (1) - log (1+ ref. ² - $2AI^{1/2}/B=1.6$, M=Na, $\frac{1}{2}$ Ca	= -3.94 for = -3.93 for = -3.93 for = -0.09 on the INFORMATION $Hg_2Cl_2 s$ source s cipitate crystall	CaCl ₂ solut BaCl ₂ solut average for PURITY OF I ublimed at hown to be d from solut ized, CaCl ₂	AATERIALS: NATERIALS: Now temperature, th immaterial. NaCl p tion by HCl, then r prepared from pure	e re- e	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{s0}^{\circ}(Hg)$ METHOD: $\log \kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/})$ or $\frac{1}{2}Ba$.	$_{2}Cl_{2}(s) + 2Cl^{-} = 1$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})$ $_{1}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MC1}^{-2})^{r}$ $_{2}^{2}) + \Delta bI; A=0.51,$ Least squares cal	+ 2C1 ⁻) = -17.74 [±] AUXILIARY (1) - log (1+ ef. ² - $2AT^{1/2}/$ <i>B</i> =1.6, M=Na, $\frac{1}{2}$ Ca c. gave log K_{e}°	= -3.94 for = -3.93 for = -3.93 for = -0.09 on the INFORMATION SOURCE AND Hg ₂ Cl ₂ s source s cipitate crystall Ca (NO ₃) ₂	CaCl ₂ solut BaCl ₂ solut average for PURITY OF i ublimed at hown to be d from solut ized, CaCl ₂ , converted	AATERIALS: NATERIALS: Now temperature, th immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca	e re- e	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{s0}^{\circ}(Hg)$ METHOD: $\log \kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/2})$ or $\frac{1}{2}Ba$. values gi	$_{2}Cl_{2}(s) + 2Cl^{-} = 1$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2}$ $c_{1}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MC1}^{-2})^{r}$ $^{2}) + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY (1) - log (1+ ef. ² - 2AI ^{1/2} / <i>B</i> =1.6, M=Na, $\frac{1}{2}$ Ca c. gave log K_{e}^{o} for NaC1, 0.198	= -3.94 for = -3.93 for = -3.93 for = -0.09 on the INFORMATION SOURCE AND Hg ₂ Cl ₂ s source s cipitate crystall Ca (NO ₃) ₂	CaCl ₂ solut BaCl ₂ solut average for PURITY OF I ublimed at hown to be d from solut ized, CaCl ₂	AATERIALS: NATERIALS: Now temperature, th immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca	e re- e	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{s0}^{\circ}(H)$ $METHOD:$ $\log \kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/})$ or $\frac{1}{2}Ba.$ values gifor CaCl ₂	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2+}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{2})^{T}$ $_{2}^{-1} + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY (1) - log (1+ tef. ² - 2AI ^{1/2} / <i>B</i> =1.6, M=Na, $\frac{1}{2}$ Ca c. gave log K_{e}^{o} for NaC1, 0.198 MC1 ₂ .	= -3.94 for = -3.93 for = -3.93 for = -0.09 on the INFORMATION SOURCE AND Hg ₂ Cl ₂ s source s cipitate crystall Ca (NO ₃) ₂	CaCl ₂ solut BaCl ₂ solut average for PURITY OF i ublimed at hown to be d from solut ized, CaCl ₂ , converted	AATERIALS: NATERIALS: Now temperature, th immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca	e ere-	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{S0}^{\circ}(H)$ METHOD: $\log \kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/} \text{ or } \frac{1}{2}Ba.$ values gifor CaCl ₂ $\log \kappa_{S0}^{\circ} =$	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2+}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})$ $_{Cl}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{-2})^{T}$ $_{2}^{2}) + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log K_{e}^{e} + log K_{r}(Hg^{2})$	+ 2C1 ⁻) = -17.74 [±] AUXILIARY (1) - log (1+ ref. ² - 2AI ^{1/2} / B=1.6, M=Na, $\frac{1}{2}$ Ca c. gave log K_{e}^{o} for NaC1, 0.198 MC1 ₂ .	= -3.94 for = -3.93 for = -3.93 for = -0.09 on the INFORMATION Hg_2Cl_2 s source s cipitate crystall Ca (NO ₃) ₂ and then	CaCl ₂ solut BaCl ₂ solut average for PURITY OF 1 ublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall	ions av.= -3.95 ¹⁰ ions the three series. MATERIALS: low temperature, th immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca ized.	e re- Cl ₂	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{s0}^{\circ}(H)$ $\frac{\text{METHOD:}}{\log \kappa_{e}^{\circ}} = \beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/} \text{ or } \frac{1}{2}Ba. \text{ values gi}$ for CaCl ₂ $\log \kappa_{s0}^{\circ} = Hg_{2}^{-2}\text{ , r}$	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2+}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})^{r}$ $_{Cl}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{2})^{r}$ $_{2}^{2}) + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log \kappa_{e}^{*} + log \kappa_{r}(Hg^{2})^{r}$	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY AUXILIARY $(1) - \log (1 + \frac{1}{2}) - 2AI^{1/2} / \frac{1}{2}$ $B = 1.6, M = Na, \frac{1}{2}Ca$ c. gave log K_e^o for NaC1, 0.198 $MC1_2$. $(1 + \frac{1}{2}) = \frac{1}{2}$	= -3.94 for = -3.93 for = -3.93 for = -3.93 for = -3.93 for = -3.93 for = -3.93 for = -3.94 for = -3.93 for = -3.92 for = -3.	CaCl ₂ solut BaCl ₂ solut average for PURITY OF 1 ublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall	AATERIALS: NATERIALS: Now temperature, th immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca	e re- cc1 ₂	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{s0}^{\circ}(H)$ $\frac{\text{METHOD:}}{\log \kappa_{e}^{\circ}} = \beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/} \text{ or } \frac{1}{2}Ba. \text{ values gi}$ for CaCl ₂ $\log \kappa_{s0}^{\circ} = Hg_{2}^{-2}\text{ , r}$	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2+}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})$ $_{Cl}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{-2})^{T}$ $_{2}^{2}) + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log K_{e}^{e} + log K_{r}(Hg^{2})$	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY AUXILIARY $(1) - \log (1 + \frac{1}{2}) - 2AI^{1/2} / \frac{1}{2}$ $B = 1.6, M = Na, \frac{1}{2}Ca$ c. gave log K_e^o for NaC1, 0.198 $MC1_2$. $(1 + \frac{1}{2}) = \frac{1}{2}$	<pre>= -3.94 for = -3.93 for :0.09 on the INFORMATION SOURCE AND Hg_Cl_2 s source s cipitate crystall Ca (NO₃)₂ and them ESTIMATED Squares</pre>	CaCl ₂ solut BaCl ₂ solut average for PURITY OF 1 ublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall: ERROR: log fitting. 1	tions av.= -3.95 ¹⁰ tions to the three series. MATERIALS: low temperature, the immaterial. NaCl p tion by HCl, then r prepared from purce to CaCO ₃ and to Ca ized. κ_{e}° : ±0.06 from let κ_{e}° : ±0.06 on let	e re- cCl ₂ ccl ₂	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{S0}^{\circ}(H)$ $METHOD:$ $\log \kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/} \text{ or } \frac{1}{2}Ba.$ values gifor CaCl ₂ $\log \kappa_{S0}^{\circ} =$ $Hg_{2}^{-2+})^{r}$ $HgCl_{4}^{-2-}$	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2l}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2l}$ $log(c_{Hg,total}/c_{MC}^{2}$ $c_{1}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{-2})^{T}$ $^{2}) + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log \kappa_{e}^{\circ} + log \kappa_{r}(Hg^{2})^{\circ}$ $ref.1_{-} log \beta_{4} (Hg^{2})$	+ 2C1 ⁻) = -17.74 [±] AUXILIARY AUXILIARY auxiliary auxiliar	= -3.94 for = -3.93 for = -3.94 for = -3.93 for = -3.94 for = -3.95 for = -3	CaCl ₂ solut BaCl ₂ solut average for PURITY OF ublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall: ERROR: log fitting. log log y _{NaCl}	tions av.= -3.95 ¹⁰ tions to the three series. MATERIALS: low temperature, the immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca ized. K_{e}° : ±0.06 from let	e re- cCl ₂ ccl ₂	
log $\kappa_{e}^{\circ}(Hg)$ log $\kappa_{s0}^{\circ}(H)$ METHOD: log $\kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/}$ or $\frac{1}{2}Ba$. values gi for CaCl ₂ log $\kappa_{s0}^{\circ} =$ $Hg_{2}^{-2+})^{r}$ $HgCl_{4}^{2-}$ NaClO ₄)	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2+}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2}$ $_{Cl}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{-2})^{r}$ $_{2}^{2}) + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log k_{e}^{e} + log k_{r}(Hg^{2}$ $ref.1_{-} log \beta_{4}(Hg^{2+})$ $ref.2_{-} 4 log y(t)$ $ref.3_{-} 3.95+1.94-1$	+ 2C1 ⁻) = -17.74 [±] AUXILIARY AUXILIARY auxiliary auxiliar	= -3.94 for = -3.93 for = -3.94 for = -3.93 for = -3.94 for = -3.93 for = -3.94 for = -3	CaCl ₂ solut BaCl ₂ solut average for PURITY OF ublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall: ERROR: log fitting. log log y _{NaCl}	tions av.= -3.95 ¹⁰ tions to the three series. MATERIALS: low temperature, the immaterial. NaCl p tion by HCl, then r prepared from purce to CaCO ₃ and to Ca ized. κ_{e}° : ±0.06 from let κ_{e}° : ±0.06 on let	e re- cCl ₂ ccl ₂	
$\log \kappa_{e}^{\circ}(Hg)$ $\log \kappa_{S0}^{\circ}(Hg)$ $METHOD:$ $\log \kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/})$ or $\frac{1}{2}Ba.$ values gifor CaCl ₂ $\log \kappa_{S0}^{\circ} =$ $Hg_{2}^{-2}r)^{T}$ $HgCl_{4}^{-2} =$ $NaClO_{4})$	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2+}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{-2})^{r}$ $_{2}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{-2})^{r}$ $_{2}^{2}) + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log \kappa_{e}^{e} + log \kappa_{r}(Hg^{2})^{ef.1} - log \beta_{4}(Hg^{2+})^{ref.2} - 4 log y(t)^{ref.2} - 4 log y(t)^{ref.3} = 3.95+1.94$ $-17.74^{\pm}0.008.$	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY AUXILIARY $_{11}$) - log (1+ $_{12}$) - log (1+ $_{12}$) - 2AI ^{1/2} / $B=1.6$, M=Na, $\frac{1}{2}$ Ca c. gave log K_{e}^{o} for NaC1, 0.198 $_{12}$ $_{12}$ $_{12}$ $_{13}$ $_{14}$ $_{16}$ $_{17}$ $_{16}$ $_{17}$ $_{16}$ $_{16}$ $_{16}$ $_{16}$ $_{16}$ $_{16}$ $_{16}$ $_{16}$ $_{16}$ $_{16}$ $_{16}$ $_{17}$ $_{16}$ $_{17}$ $_{16}$	<pre>= -3.94 for = -3.93 for = 0.09 on the INFORMATION SOURCE AND Hg_Cl_2 s source s cipitate crystall Ca (NO₃)₂ and then ESTIMATED squares ±0.01 on yield ±0 REFERENCE</pre>	CaCl ₂ solut BaCl ₂ solut average for PURITY OF i ublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall: ERROR: log fitting. 1 log y _{NaCl}	tions av.= -3.95 [±] 0 tions to the three series. MATERIALS: Now temperature, the immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca ized. K_{e}° : ±0.06 from 16 og κ_{SO}° : ±0.06 on 1c and ±0.02 on 10g K	e re- cCl ₂ east ps R ₂ yie	
log κ_e° (Hg. log κ_{S0}° (H. METHOD: log $\kappa_e^{\circ} =$ $\beta_3 \beta_4^{-1} c_M$ $(1+BI^{1/}$ or $\frac{1}{2}Ba$. values gi for CaCl ₂ log $\kappa_{S0}^{\circ} =$ Hg ₂ ²⁺) ^r HgCl ₄ ²⁻ NaClO ₄) Excess Hg	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2+}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})^{-1}$ $c_{1}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{-2})^{T}$ $^{2}) + \Delta bT; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log \kappa_{e}^{e} + log \kappa_{r}(Hg^{2})^{ef.1}$ $ref{1} - log \beta_{4} (Hg^{2-})^{ref.2} - 4 log y(tref{3}^{-} = 3.95+1.94)$ $-17.74^{\pm}0.008.$ $c_{2}Cl_{2}$ shaken for >	+ 2C1 ⁻) = -17.74 [±] AUXILIARY AUXILIARY E_1) - log (1+ $ef.^2 - 2AI^{1/2}/$ $B=1.6, M=Na, \frac{1}{2}Ca$ c. gave log K_e^o for NaC1, 0.198 $AC1_2$. $E^++Hg(l) =$ $E^++4C1^- =$ Errace NaC1 in 0.51 $E^+-15.07-0.66 =$ E^- 7 hr with 0.1 g	<pre>= -3.94 for = -3.93 for = -3.93 for = 0.09 on the INFORMATION SOURCE AND Hg_Cl_2 s source s cipitate crystall Ca (NO₃)₂ and then ESTIMATED squares ±0.01 on yield ±0 REFERENCE 1. Hietane</pre>	CaCl ₂ solut BaCl ₂ solut average for PURITY OF I ublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall: ERROR: log fitting. 1 log y _{NaCl} S: m, S., Sill	tions av.= -3.95 ¹⁰ tions to the three series. MATERIALS: low temperature, the immaterial. NaCl p tion by HCl, then r prepared from purce to CaCO ₃ and to Ca ized. κ_{e}° : ±0.06 from let κ_{e}° : ±0.06 on let	e re- cCl ₂ east ps R ₂ yie	
log $\kappa_{e}^{\circ}(Hg)$ log $\kappa_{s0}^{\circ}(H)$ METHOD: log $\kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/}$ or $\frac{1}{2}Ba$. values gi for CaCl ₂ log $\kappa_{S0}^{\circ} =$ $Hg_{2}^{-2+})^{T}$ $HgCl_{4}^{-2-}$ NaClO ₄) Excess Hg(ℓ) and	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2+}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})^{-1} + \beta_{2}\beta_{4}^{-1}c_{-2}^{-2})^{T}$ $_{2}^{-1} + \beta_{2}\beta_{4}^{-1}c_{-2}^{-2})^{T}$ $_{2}^{2}) + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log \kappa_{e}^{e+} \log \kappa_{r}(Hg^{2+})^{ef.1} - \log \beta_{4}(Hg^{2+})^{ef.2} - 4 \log y(t)^{ef.2}$ $ref{3}^{2} = 3.95+1.9417.74^{\pm}0.008.$ $_{2}Cl_{2}$ shaken for > $_{2}Cl_{2}$ shaken for >	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY AUXILIARY a_1) - log (1+ $ef.^2 - 2AI^{1/2}/B=1.6, M=Na, \frac{1}{2}Ca$ c. gave log K_e^o for NaC1, 0.198 a_2C1_2 . $a_1^*+Hg(\pounds)=a_2^*+Hg(\pounds)=a_2^*+Hg(\pounds)=a_2^*$ $a_2^*+Hg(\pounds)=a_2^*+Hg(\pounds)=a_2^*$ $a_3^*+Hg(\pounds)=a_3^*$ $a_4^*+hg(\pounds)=a_3^*$ $a_5^*+Hg(\pounds)=a_3^*$ $a_5^*+Hg(\pounds)=a_3^*$ $a_5^*+Hg(\pounds)=a_3^*$ $a_5^*-hg(\pounds)=a_5^*$ $a_5^*-hg(-hg(-hg(-hg(-hg(-hg(-hg(-hg(-hg(-hg($	= -3.94 for = -3.93 for = -3.94 for = -3.93 for = -3.93 for = -3.94 for = -3.93 for = -3.94 for = -3.93 for = -3.94 for = -3	CaCl ₂ solut BaCl ₂ solut average for PURITY OF tublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall: ERROR: log fitting. log log y _{NaCl} S: m, S., Sill 10, 103.	tions av. = -3.95 [±] 0 tions to the three series. WATERIALS: low temperature, the immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca ized. K_{e}° : ±0.06 from le og κ_{0}° : ±0.06 on lo and ±0.02 on log K	$C1_2$	
log $\kappa_{e}^{\circ}(Hg)$ log $\kappa_{s0}^{\circ}(Hg)$ METHOD: log $\kappa_{e}^{\circ} =$ $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/}$ or $\frac{1}{2}Ba$. values gi for CaCl ₂ log $\kappa_{S0}^{\circ} =$ Hg_{2}^{-2} , T $HgCl_{4}^{-2}$ NaClO ₄) Excess Hg Hg(ℓ_{1}) and BaCl ₂ in	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2+}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})^{-1} + \beta_{2}\beta_{4}^{-1}c_{-2}^{-2})^{T}$ $_{2}^{-1} + \beta_{2}\beta_{4}^{-1}c_{-2}^{-2})^{T}$ $_{2}^{2}) + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log \kappa_{e}^{e+} \log \kappa_{r}(Hg^{2+})^{ef.1} - \log \beta_{4}(Hg^{2+})^{ef.2} - 4 \log y(t)^{ef.2}$ $ref{3}^{2} = 3.95+1.9417.74^{\pm}0.008.$ $_{2}Cl_{2}$ shaken for > $_{2}Cl_{2}$ shaken for >	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY AUXILIARY a_1) - log (1+ $ef.^2 - 2AI^{1/2}/$ $B=1.6, M=Na, \frac{1}{2}Ca$ c. gave log K_e^o for NaC1, 0.198 a_2 a_2 a_4 + Hg(\pounds) = a_4 + 4C1 ⁻ = a_4 + 4C1 ⁻ = a_4 + 4C1 ⁻ = a_5 + 4	= -3.94 for = -3.93 for = -3.94 for = -3.93 for = -3.94 for = -3.93 for = -3.94 for = -3.94 for = -3.93 for = -3.94 for = -3	CaCl ₂ solut BaCl ₂ solut average for PURITY OF tublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall: ERROR: log fitting. log log y _{NaCl} S: m, S., Sill 10, 103.	tions av.= -3.95 [±] 0 tions to the three series. MATERIALS: Now temperature, the immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca ized. K_{e}° : ±0.06 from 16 og κ_{SO}° : ±0.06 on 1c and ±0.02 on 10g K	$C1_2$	
log κ_{e}° (Hg log κ_{s0}° (H METHOD: log κ_{e}° = $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/})$ or $\frac{1}{2}Ba$. values gi for CaCl ₂ log κ_{S0}° = Hg ²⁺) ^T HgCl ₄ ²⁻ NaClO ₄) = Excess Hg Hg(ℓ) and BaCl ₂ in rubber st	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2+}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})^{r}$ $_{1}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{-2})^{r}$ $_{2}^{2}) + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log \kappa_{e}^{e+} log \kappa_{r}(Hg^{2})^{ref.2} - 4 log y(t)^{ref.2} - 4 log y(t)^{ref.2} - 3.95+1.94-$ $_{1}^{-17.74^{\pm}0.008}.$ $_{2}Cl_{2}$ shaken for > $_{2}Sl_{2}$ shaken for > $_{2}Sl_{3}$ svessel prov	+ 2C1 ⁻) = -17.74 ⁴ AUXILIARY AUXILIARY $_{11}$) - 10g (1+ $^{12}e^{-2} - 2AI^{1/2}/$ $B=1.6, M=Na, \frac{1}{2}Ca$ c. gave log K_{e}^{o} for NaC1, 0.198 $^{12}e^{-1}$ $^{12}e^{$	= -3.94 for = -3.93 for = -3.94 for = -3.93 for = -3.94 for = -3.93 for = -3.94 for = -3.93 for = -3.94 for = -3	CaCl ₂ solut BaCl ₂ solut average for PURITY OF 1 ublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall: ERROR: log fitting. la log y _{NaCl} S: m, S., Sill 10, 103. L.G., Acta	tions av. = -3.95 [±] 0 tions to the three series. MATERIALS: Now temperature, the immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca ized. K_{e}° : ±0.06 from 16 og κ_{SO}° : ±0.06 on 10 and ±0.02 on 10g K chem. Scand. (1949)	$\frac{1}{1}$	
log κ_{e}° (Hg. log κ_{S0}° (H. METHOD: log κ_{e}° = $\beta_{3}\beta_{4}^{-1}c_{M}$ $(1+BI^{1/}$ or $\frac{1}{2}Ba$. values gi for CaCl ₂ log κ_{S0}° = Hg ₂ ²⁺) ^r HgCl ₄ ²⁻ NaClO ₄) = Excess Hg Hg(k) and BaCl ₂ in rubber st 2500^{\pm}0.05	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2+}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2+}$ $log(c_{Hg,total}/c_{MC}^{2})$ $_{1}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{-2})^{r}$ $_{2}^{2}) + \Delta bI; A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log \kappa_{e}^{e} + log \kappa_{r}(Hg^{2})$ $ref.1_{-} log \beta_{4}(Hg^{2+})$ $ref.3_{-} 3.95+1.94-$ $_{17.74^{\pm}0.008,}$ $_{2}Cl_{2}$ shaken for > $_{3}lass vessel provo opper in thermost$	+ 2C1 ⁻) = -17.74 [±] AUXILIARY AUXILIARY E_1) - log (1+ $ef.^2 - 2AT^{1/2}/$ $B=1.6, M=Na, \frac{1}{2}Ca$ c. gave log K_e^o for NaC1, 0.198 $AC1_2$. $E^++Hg(l) =$ $E^++4C1^- =$ Erace NaC1 in 0.51 E^+ . $E^+ + 4C1^- =$ E^+ hwith 0.1 g $AC1_2$ or E^+ hwith 0.1 g $AC1_2$ or E^+ here E^+ or E^+ here E^- or E^- here E^- here E^- or E^- here E^- or E^- here E^- here E^- or E^- here E^- here	= -3.94 for = -3.93 for = -3.94 for = -3	CaCl ₂ solut BaCl ₂ solut average for PURITY OF I ublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall ERROR: log fitting. 1 log y _{NaCl} S: m, S., Sill 10, 103. L.G., Acta	tions av. = -3.95 [±] 0 tions to the three series. MATERIALS: low temperature, the immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca ized. K_{e}° : ±0.06 from 1e og K_{S0}° : ±0.06 on 1c and ±0.02 on log K chem. Scand. (1949 from Robinson, R.A	$\frac{1}{1}$	
log κ_{e}° (Hg. log κ_{s0}° (H. METHOD: log κ_{e}° = $\beta_{3}\beta_{4}^{-1}c_{M}$ (1+BI ¹ / or $\frac{1}{2}Ba$. values gi for CaCl ₂ log κ_{S0}° = Hg ₂ ²⁺) ^T HgCl ₄ ²⁻ NaClO ₄) = Excess Hg Hg(ℓ) and BaCl ₂ in rubber st 2500 ² 0.05	$_{2}Cl_{2}(s) + 2Cl^{-} = Hg_{2}^{2l}$ $g_{2}Cl_{2}(s) = Hg_{2}^{2l}$ $log(c_{Hg,total}/c_{MC}^{2})^{c}$ $_{1}^{-1} + \beta_{2}\beta_{4}^{-1}c_{MCl}^{-2})^{r}$ $_{2}^{2}) + \Delta bI; \ A=0.51,$ Least squares cal ven and $\Delta b=0.160$ and 0.136 for Ba $log \kappa_{e}^{+} + log \kappa_{r}(Hg^{2})^{ref.2} - 4 \log y(tref. 3_{=} 3.95+1.94-17.74^{\pm}0.008.$ $T_{2}Cl_{2}$ shaken for > $I_{2}Cl_{2}$ shaken for >	+ 2C1 ⁻) = -17.74 [±] AUXILIARY AUXILIARY a_1) - log (1+ $ef.^2 - 2AI^{1/2}/B=1.6, M=Na, \frac{1}{2}Ca$ c. gave log K_e^o for NaC1, 0.198 aC1 ₂ . $a_{+}^{+}+Hg(\pounds)=a_{+}^{+}$ + 4C1 ⁻ = arace NaC1 in 0.51 acc. arace NaC1 in 0.51 acc.	= -3.94 for = -3.93 for = -3.93 for :0.09 on the INFORMATION SOURCE AND Hg_2Cl_2 s source s cipitate crystall Ca (NO_3) 2 and then ESTIMATED M ESTIMATED M ESTIMATED M ESTIMATED M Squares ± 0.01 on yield ± 0 REFERENCE 1. Hietane (1956) ed 2. Sillèn, 539. 3. Estimat Stokes,	CaCl ₂ solut BaCl ₂ solut average for PURITY OF ublimed at hown to be d from solut ized, CaCl ₂ , converted recrystall ERROR: log fitting. 1 log y _{NaCl} .09. S: m, S., Sill 10, 103. L.G., Acta ced by Y.M. R.H., Elec	tions av. = -3.95 [±] 0 tions to the three series. MATERIALS: Now temperature, the immaterial. NaCl p tion by HCl, then r prepared from pure to CaCO ₃ and to Ca ized. K_{e}° : ±0.06 from 16 og κ_{SO}° : ±0.06 on 10 and ±0.02 on 10g K chem. Scand. (1949)	$\frac{1}{1}$	

5.3.	Data	of	Sherrill	(1903)
------	------	----	----------	--------

COMPONENTS :	ORIGINAL MEASUREMENTS:
. Mercury(I) chloride, Hg ₂ Cl ₂ (10112-91-1)	Sherrill, M.S., Z. physik. Chem. (1903) 43,
2. Sodium chloride, NaCl (7647-14-5)	705.
3. Water, H ₂ 0 (7732-18-5)	
VARIABLES:	PREPARED BY:
One NaCl concentration One temperature	Y. Marcus, January 1978
EXPERIMENTAL VALUES:	L
(a) Total solubility of Hg ₂ Cl ₂ (s) in aqueon	us NaCl, 1 mol dm ⁻³ , at 25°C is 1.51×10^{-4}
mol dm ⁻³ . (b) Concentration of species [Hg ²⁺] in aque Hg ₂ Cl ₂ (s) at 25°C is 5.3×10 ⁻²⁰ mol dm ⁻¹	eous NaCl, 1 mol dm ⁻³ , at equilibrium with ³ .
From datum (b), $K_{(Hg^{2+} + Hg(l) = Hg_2^{2+}) = 1$ the NaCl of 0.75, the author obtained	120 ¹ and the assumed degree of dissociation of
log K_{s} (Hg ₂ Cl ₂ (s) = Hg ₂ ²⁺ + 2Cl ⁻) = log Calculated (Y.M.) from datum (b), K_{s} (Hg ²⁺ +H _i efficient of calcium chloride ³ in 1 mol dm	5.3×10^{-20} + log 120 + 2 log(1×0.75) = -17.45 g(2) = Hg2 ²⁺) = 88 [±] 4 ² and the activity co-
$\log \kappa_{\rm s}^{\circ}({\rm Hg_2Cl_2(s)} = {\rm Hg_2^{2+}} + 2{\rm Cl^-}) = \log \frac{1}{2}$ $= -18.36$	$5.3 \times 10^{-20} + \log 88 + 2 \log 1 + 3(-0.344) =$
Calculated (Y.M.) from datum (a): log K (H	$g_2Cl_2(s) + 2Cl^2 = Hg(\ell) + HgCl_{\mu}^{2-} = -4.1$
· · · · · · · · · · · · · · · · · · ·	$g^{2^{+}} + 4C1^{-} = HgCl_4^{2^{-}})^{ref.5} - 4 \log y_{NaC1} =$
$\log K_{g} = \log K_{e} + \log K_{r} - \log \beta_{4}(H)$	$g^{-1} + 4CI = HgCI_{4}^{-1}$ - 4 log y_{NaCI}^{-1}
= -4.1+1.94-15.07-0.66 = -17.9	
= -4.1+1.94-15.07-0.66 = -17.9	INFORMATION
= -4.1+1.94-15.07-0.66 = -17.9	
<pre>= -4.1+1.94-15.07-0.66 = -17.9 AUXILIARY METHOD: (a) This datum appears in Table 18 of the</pre>	INFORMATION SOURCE AND PURITY OF MATERIALS:
<pre>= -4.1+1.94-15.07-0.66 = -17.9 AUXILIARY METHOD: (a) This datum appears in Table 18 of the paper; the accompanying text does not make i clear that it is the author's own deter- mination, rather than Richards and Arch- ibald's⁶, but the value does not appear in</pre>	INFORMATION SOURCE AND PURITY OF MATERIALS:
<pre>= -4.1+1.94-15.07-0.66 = -17.9 AUXILIARY METHOD: (a) This datum appears in Table 18 of the paper; the accompanying text does not make i clear that it is the author's own deter- mination, rather than Richards and Arch-</pre>	INFORMATION SOURCE AND PURITY OF MATERIALS: t Pure commercial salts (Kahlbaum), not further purified.
 = -4.1+1.94-15.07-0.66 = -17.9 AUXILIARY METHOD: (a) This datum appears in Table 18 of the paper; the accompanying text does not make i clear that it is the author's own determination, rather than Richards and Archibald's⁶, but the value does not appear in these authors' paper. (b) This datum apparently obtained from E.m. measurements, but these have not been specified. E.m.f. measured by compensation method using capillary electrometer as null instrument. 	INFORMATION SOURCE AND PURITY OF MATERIALS: Pure commercial salts (Kahlbaum), not further purified. f
 = -4.1+1.94-15.07-0.66 = -17.9 AUXILIARY METHOD: (a) This datum appears in Table 18 of the paper; the accompanying text does not make i clear that it is the author's own determination, rather than Richards and Archibald's⁶, but the value does not appear in these authors' paper. (b) This datum apparently obtained from E.m. measurements, but these have not been specified. E.m.f. measured by compensation method using capillary electrometer as null instrument. Cells, not described, kept in thermostated bath at 25°. Total mercury in solution de- 	INFORMATION SOURCE AND PURITY OF MATERIALS: Pure commercial salts (Kahlbaum), not further purified. f
 = -4.1+1.94-15.07-0.66 = -17.9 AUXILIARY METHOD: (a) This datum appears in Table 18 of the paper; the accompanying text does not make i clear that it is the author's own determination, rather than Richards and Archibald's⁶, but the value does not appear in these authors' paper. (b) This datum apparently obtained from E.m. measurements, but these have not been specified. E.m.f. measured by compensation method using capillary electrometer as null instrument. 	INFORMATION SOURCE AND PURITY OF MATERIALS: Pure commercial salts (Kahlbaum), not further purified. f
 = -4.1+1.94-15.07-0.66 = -17.9 AUXILIARY METHOD: (a) This datum appears in Table 18 of the paper; the accompanying text does not make i clear that it is the author's own determination, rather than Richards and Archibald's⁶, but the value does not appear in these authors' paper. (b) This datum apparently obtained from E.m. measurements, but these have not been specified. E.m.f. measured by compensation method using capillary electrometer as null instrument. Cells, not described, kept in thermostated bath at 25°. Total mercury in solution determined by precipitation as HgS gravi- 	INFORMATION SOURCE AND PURITY OF MATERIALS: Pure commercial salts (Kahlbaum), not further purified. f ESTIMATED ERROR: Large, since experimental details are not given. REFERENCES: 1. Abel, E., Z. anorg. Chem. (1901) 26, 361. 2. Hietanen, S., Sillén, J.
 = -4.1+1.94-15.07-0.66 = -17.9 AUXILIARY METHOD: (a) This datum appears in Table 18 of the paper; the accompanying text does not make i clear that it is the author's own determination, rather than Richards and Archibald's⁶, but the value does not appear in these authors' paper. (b) This datum apparently obtained from E.m. measurements, but these have not been specified. E.m.f. measured by compensation method using capillary electrometer as null instrument. Cells, not described, kept in thermostated bath at 25°. Total mercury in solution determined by precipitation as HgS gravi- 	INFORMATION SOURCE AND PURITY OF MATERIALS: Pure commercial salts (Kahlbaum), not further purified. f ESTINATED ERROR: Large, since experimental details are not given. REFERENCES: 1. Abel, E., Z. anorg. Chem. (1901) 26, 361. 2. Hietanen, S., Sillén, L. Ark. Kemi (1956) 10, 103. 3. Bonner, 0. b. Unietis, F., J. Am. Chem. Soc. (1953) 75.
 = -4.1+1.94-15.07-0.66 = -17.9 AUXILIARY METHOD: (a) This datum appears in Table 18 of the paper; the accompanying text does not make i clear that it is the author's own determination, rather than Richards and Archibald's⁶, but the value does not appear in these authors' paper. (b) This datum apparently obtained from E.m. measurements, but these have not been specified. E.m.f. measured by compensation method using capillary electrometer as null instrument. Cells, not described, kept in thermostated bath at 25°. Total mercury in solution determined by precipitation as HgS gravi- 	INFORMATION SOURCE AND PURITY OF MATERIALS: Pure commercial salts (Kahlbaum), not further purified. f ESTIMATED ERROR: Large, since experimental details are not given. REFERENCES: 1. Abel, E., Z. anorg. Chem. (1901) 26, 361. 2. Hietanen, S., Sillén, L. Ark. Kemi (1956) 10, 103. 3. Bonner, O.D.

5.4. Data of Ley and Heimbucher (1904)

CONDONENTC .	OPT CINAL NO CONTRACTOR
COMPONENTS:	ORIGINAL MEASUREMENTS:
. Mercury (I) chloride, Hg ₂ Cl ₂ (10112-91-1)	Ley, H., Heimbucher, C., Z. Elektrochem. (1904) 10, 301.
. Potassium chloride, KCl (7447-40-7)	(111), 11, 111
. Water, H ₂ O (7732-18-5)	
VARIABLES:	PREPARED BY:
Two KC1 concentrations	Y. Marcus, January 1978
One temperature	1. Marcus, January 1970
	· · · · · · · · · · · · · · · · · · ·
EXPERIMENTAL VALUES:	· · · · · · · · · · · · · · · · · · ·
The e.m.f. E of the following cell determine	_
Hg/Hg ₂ (C10 ₄) ₂ 0.05M/0.1M KNO ₃ /Hg ₂ C1 ₂ (s)	, cM KC1/Hg (M = mol dm ^{-3}).
Found 5-2 2	
c = 0.1M $E/V = 0.4193$ 0.4197 c = 1.0M $E/V = 0.4721$ 0.4717	0.4200 0.4199
Authors took $[Hg_2^{2+}] = 0.047M$ in 0.05M $Hg_2(0, 0.73 as its degree of dissociation. For 0.3 used were 0.86 and 0.75 respectively. For the two KCI concentrations they calculated$	1M and 1.0M KC1 the degrees of dissociation
$\log \kappa_0^{\circ}(\text{Hg}_2\text{Cl}_2(s) = \text{Hg}_2^{2+} + 2\text{Cl}^-) = -17.3$	83 ($c = 0.1M$) and -17.95 ($c = 1.0M$).
Calculated from the data (YM), avoiding rour	
(RT/2F)In 10 at 20°C (0.02908V), and the autand hydrolysis	thors' estimate of "degree of dissociation"
$\log R_{c0}^{\circ} = -18.03(c = 0.1M)$ and -17.95 (c	= 1.0M).
No correction for any liquid junction potent	
NO COllection for any require junction potent	tials can, nowever, be applied.
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
E.m.f. measured by compensation method. De- gree of hydrolysis by comparing rate of in- version of sucrose by 0.05M $Hg_2(ClO_4)_2$ with that by (1/250)M $HClQ_4$. Degree of dissocia- tion by comparing conductivity of 0.05M $Hg_2(ClO_4)_2$ with that of 0.05M $Ba(ClO_4)_2$ in an unspecified manner.	$Hg_2(C10_4)_2$ obtained by dissolving Hg_20 (pr pared by precipitating purest (Merck) $Hg_2(NO_3)_2$ with NaOH) in 2M HC104, and re- crystallizing from water. This was then dissolved in conductivity water. Excess
Capillary electrometer used as null detector	
in e.m.f. measurements.	
	ESTIMATED ERROR: Main error in assumed at tivity coefficients (authors' "degree of dissociation"), ± 0.08 units in log $\kappa_{\rm S}$ (af rounding off errors corrected).
	REFERENCES:
•	

COMPONENTS : ORIGINAL MEASUREMENTS: 1. Mercury(I) chloride, Hg₂Cl₂ [10112-91-1] Kohlrausch, F., Z. physik. Chem. (1908) 64, 129. 2. Water, H₂O [7732-18-5] VARIABLES: PREPARED BY: Four temperatures Y. Marcus, January 1978 EXPERIMENTAL VALUES: Solubilities $s_{\rm Hg}$ given in mg mercury(I) chloride per dm⁻² of saturated solution: t/°C 24.6 (43) 0.5 18.0 s_{Hg}/mg dm⁻³ 10⁶s_{Hg}/mol dm^{-3**} 7 1.4 2.1* 2.8 3.0 4.4 5.9 15 ^{*}In the earliest study¹, the estimated solubility at this temperature was 3.1 mg dm⁻³. ** Calculated by YM. AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS; Described in earlier work^{1,2}. Hg₂Cl₂ pre-The conductivity of saturated solutions of Hg_2Cl_2 compared with that of 5×10^{-4} mol dm⁻³ cipitated from aqueous solution of $Hg_2(NO_3)_2$, taking into account its tem-Hg2(NO3)2.xH2O with excess HC1. Some reperature coefficient and the expansibility examined after 2.5 years' storage. of the solutions. Hydrolysis recognized as contributing to the conductivity, but not corrected for. The apparatus and procedure were described in earlier work 1,2 . Material as finely divided powder suspended in conductivity water as often as Deeded until constant conductivity achieved. Daylight was excluded. Conductivity of the ESTIMATED ERROR: Author's estimate: data could be 50% water employed subtracted from that of the wrong. saturated solution. **REFERENCES:** Kohlrausch, F., Rose, F., Z. physik. Chem. (1893) <u>12</u>, 234.
 Kohlrausch, F., Rose, F., Z. physik. Chem. (1903) <u>44</u>, 197.

5.5. Data of Kohlrausch (1908)

5.6.	Data	of	Herz	(1911)	
------	------	----	------	--------	--

COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Mercury(I) chloride, Hg ₂ Cl ₂ (10112-91-1)	
2. Potassium hydroxide, KOH (1310-58-3)	Herz, W., Z. Anorg. Chem. (1911) <u>70</u> , 170.
3. Potassium chloride, KCl (7447-40-7)	
4. Water, H ₂ O (7732-18-5)	
VARIABLES:	PREPARED BY:
One temperature, varying KOH and KC1 concentrations.	Y. Marcus, January 1978
EXPERIMENTAL VALUES:	
The composition of the aqueous salts in eq Hg ₂ 0 (= Hg(ℓ) + Hg0 ?) ¹ determined at 25°C	uilibrium with a mixture of solid Hg_2Cl_2 and :
$c_{\rm KOL}/{\rm mol} {\rm dm}^{-3}$ 0.038	0.018 0.009
$c_{\rm KOH}'$ mol dm ⁻³ 0.038 $c_{\rm KCI}$ /mol dm ⁻³ 2.177	1.087 0.543
Calculated (YM): $\log \kappa_{s} (Hg_{2}Cl_{2}(s) = Hg_{2}^{2+} + Hg^{2+} + 20H^{-}) + \log \kappa (Hg^{2+} + Hg(k) = (ref. 2) + 1.94 (ref. 3) - 0.03 (ref. 4)$	2C1 ⁻) = log $(c_{\text{KC1}}/c_{\text{KOH}})^2$ + log κ (HgO(s) = Hg ₂ ²⁺) + log $(y_{\pm \text{KC1}}/y_{\pm \text{KOH}})^2$ = 3.61±0.04-25.4 = -19.9±0.1.
Alternatively, if existence of solid Hg ₂ 0 κ_s (Hg ₂ 0(s) = Hg ₂ ²⁺ + 20H ⁻) = 1.8×10 ⁻²⁴ (re	is accepted, with the solubility product f. 5), then
$\log K_{s}(Hg_{2}Cl_{2}(s)) = \log K_{s}(Hg_{2}O(s)) + \log(s)$	
$= -23.74 + 3.61 \pm 0.04 - 0.03$	
	20.10-0.05.
	20.10-0.05.
AUXILIARY	INFORMATION
AUXILIARY METHOD: Excess solid Hg ₂ Cl ₂ shaken at 25°C for an	INFORMATION Source and purity of materials, Not given
AUXILIARY METHOD: Excess solid Hg ₂ Cl ₂ shaken at 25°C for an extended period (unspecified) with aqueous KOH. The remaining base titrated with standardized acid to the phenolphthalein endpoint. The KCl content of the equili- brium solution obtained by difference.	INFORMATION Source and purity of materials; Not given
AUXILIARY METHOD: Excess solid Hg ₂ Cl ₂ shaken at 25°C for an extended period (unspecified) with aqueous KOH. The remaining base titrated with standardized acid to the phenolphthalein endpoint. The KCl content of the equili-	INFORMATION Source and purity of materials, Not given
AUXILIARY METHOD: Excess solid Hg ₂ Cl ₂ shaken at 25°C for an extended period (unspecified) with aqueous KOH. The remaining base titrated with standardized acid to the phenolphthalein endpoint. The KCl content of the equili- brium solution obtained by difference. Solids assumed to be Hg ₂ Cl ₂ and Hg ₂ O, but	INFORMATION SOURCE AND PURITY OF MATERIALS; Not given
AUXILIARY METHOD: Excess solid Hg ₂ Cl ₂ shaken at 25°C for an extended period (unspecified) with aqueous KOH. The remaining base titrated with standardized acid to the phenolphthalein endpoint. The KCl content of the equili- brium solution obtained by difference. Solids assumed to be Hg ₂ Cl ₂ and Hg ₂ O, but	INFORMATION Source and purity of materials, Not given
AUXILIARY METHOD: Excess solid Hg ₂ Cl ₂ shaken at 25°C for an extended period (unspecified) with aqueous KOH. The remaining base titrated with standardized acid to the phenolphthalein endpoint. The KCl content of the equili- brium solution obtained by difference. Solids assumed to be Hg ₂ Cl ₂ and Hg ₂ O, but	INFORMATION SOURCE AND PURITY OF MATERIALS; Not given ESTIMATED ERROR: Main error arises from ig norance of the nature of the solid "Hg ₂ 0," hence from K _S of Hg ⁰² . The concentrations

5.7. Data of Brodsky and Scherschewer (1926)

COMPONENTS:				ORT	GTNAL N	FASIIR	FMENTS		
1. Mercury(I) chloride, Hg ₂ Cl ₂ (10112-91-1)					ORIGINAL MEASUREMENTS:				
2. Potassium chloride, KC1 (7447-40-7)									r, J.M., Z.
3. Water, H ₂ O (7732-18-5)					DICKU	Tochen	. (152	6) 32,	1.
5. Water, n ₂ 0 (7752-16-5)									
						•			
Temperature					PARED	BY:			
					. Marcu	is, Jan	wary 1	978	
KC1 concentration $Hg_2(NO_3)_2$ concentration							•		
EXPERIMENTAL VALUES:			······	J	·····	······		<u></u>	
					_	3.			
The e.m.f. of the follo									
Hg/Hg ₂ (NO ₃) ₂ c ₀ M, HNO ₃ (0.005M ⁻	/ KN0 ₃	satd./Hg	^g 2 ^{C1} 2	₂ (s), K	C1cM/H	łg		
$c_{mol dm}^{-3} t/^{\circ}C$	10.8		.1	14.9	•	. [19.	2	26.5
$c/mol dm^{-3}$		0.1	0.01	0.1	0.5	1.0	0.1	1.0	0.1
								ted to	
0.0466	3756	4133	3754 4	4124	4475	4664	4103		4089
0.0233 0.01165	3524 3463	4080 4023		4067 4002	4424 4366	4608 4555	4054 4000	4609	4032 3977
0.00583	3399	3959		3949			3934	4488	3914
0.00291	3275	3866		3879	4233		3881	4475	3833
0.00146 0.000728	3256 3185	3825 3751		3807 3700			3813 3781	4435 4360	3749 3667
0.000364	3077	3627		3611	3958			4328	
1 " [*] (U- C1 (-)	10 7	into on					10 7		15 ooto of
$\log K_{0}^{*}(\text{Hg}_{2}\text{Cl}_{2}(s) = \text{Hg}_{2}^{2+}+2\text{Cl}^{-})$	-18./	2-0.09	-1	8.54-	±0.05		-18.5	3-0.05	-17.88±0.05
Hg ₂ +2C1 J	L		l						
· · · · ·			UXILIARY	TNF	ORMATT				
MEMIOD.								MARTINI	110
METHOD: log κ_{SO}° lim [(-2FE/RTln $c_{O}^{\rightarrow 0}$	10)+1og	$c_c^2 y$	$\frac{2}{4}$					MATERI	
° c _o →0		0	-KC1						d from salt of
where $y_{\pm KC1}$ is activity	coeffic	ient o	f KCl a	tľ	undisclosed source.				
temp. T and molar concen	tratior	nc. A	uthors'						
values of F and $y_{\pm KC1}^1$ rep	placed	by mod	lern						
values. Extrapolation t	o c _o =0	intend	led to						
eliminate $y_{K^+}/y_{Hg_2}^{2+y}C1^-$	•								-
E.m.f. measured by compe		n metho	d with						
calibrated Weston cell standard, a mirror galvanometer as null instrument, and half-									
					ESTIMATED ERROR: Errors given for log K_{s0}° are the nonsystematic errors from the re-				
cells which were interco									s from the re- E, c_0 , c and T,
tency. No thermostat wa	-			an	d the e	extrap	olation	1. The	systematic error
and temperatures steady	-						e latte	er 15 l	ess than ±0.1.
and competatores steady		al	10436.	1.	FERENC		.E. 7	. Elekt	rochem. (1929) <u>35</u> ,
				1.	833.	ы, п	,	· LICKU	10chem. (1929) <u>55</u> ,

5.8. Data of Eversole (1	932)
--------------------------	------

OMPONENTS :	ORIGINAL MEASUREMENTS:			
. Mercury(I) chloride, Hg ₂ Cl ₂ (10112-91-1) 2. Perchloric acid, HClO ₄ (7601-90-3)	Eversole, W.G., McLachlan, R.W., J. Am. Chem. Soc. (1932) <u>52</u> , 864.			
5. Nitric acid, HNO ₃ (7697-37-2)				
Water, H ₂ O (7732-18-5)				
ARIABLES:				
One temperature, several concentrations of	PREPARED BY: Y. Marcus, January 1978			
$HC10_4$ or HNO_3 .				
XPERIMENTAL VALUES:				
solutions of the acids	n equilibrium with solid Hg_2Cl_2 at 25.0°C in			
$c_{\rm HC10_4}/mo1 dm^{-3}$: 0.0005 0.005	0.01 0.1 0.2			
$10^{6}c_{\text{Hg(total)}}/\text{mol dm}^{-3}$: 4.7 4.8	5.0 5.5 6.3			
^C HNO ₃ /mol dm ⁻³ : 0.005 0.01	0.1			
10 ⁶ c _{Hg(total)} /mol dm ⁻³ : 5.2 5.6	5.8			
Calculated (Y.M.): The contributions of the species $HgNO_3^+$, $HgOH^+$, $Hg(OH)_2$ are negligible, those of $Hg_2ClO_4^+$, $Hg_2NO_3^+$ and $HgCl^+$ are small ¹⁻³ , so that $Hg_2^{2^+}$ and $HgCl_2$ are the main species. Thus to a good approximation				
	$(\kappa_{s0}^{\circ}/4)^{1/3} \beta_1 \kappa_r^{-1} + \kappa_{s0}^{\circ} \kappa_r^{-1} \beta_2 (y_{\pm HgC1_2}/y_{\pm Hg_2C1_2})^3$			
Following estimates were used: $y_{\pm \text{Hg}_2\text{Cl}_2} \approx \frac{3}{2}$ 0.9 mol dm ⁻³ : β_{\pm} cm $\gamma_{\pm} = 2.25$ mol dm ⁻³ : β_{\pm} cm				
$(10^{-1})^{-1}$				
$K = 10^{1.94}$. These gave for all acid conce	ntrations by a short iteration the consistent			
$K_r = 10^{1.94}$. These gave for all acid concern	ntrations by a short iteration the consistent			
$K_r = 10^{1.94}$. These gave for all acid concervalue log $K_{SO}^{\circ} = -17.74^{\pm}0.02$.	ntrations by a short iteration the consistent			
$K_r = 10^{1.94}$. These gave for all acid concern	ntrations by a short iteration the consistent			
$K_r = 10^{1.94}$. These gave for all acid concern	ntrations by a short iteration the consistent			
$K_r = 10^{1.54}$. These gave for all acid concern	ntrations by a short iteration the consistent			
$K_r = 10^{1.5^n}$. These gave for all acid concervalue log $K_{SO}^{\circ} = -17.74^{\pm}0.02$.	ntrations by a short iteration the consistent			
K _r = 10 ^{1.94} . These gave for all acid concervalue log K _{SO} [°] = -17.74 [±] 0.02.	ntrations by a short iteration the consistent			
<pre>K_r = 10^{1.34}. These gave for all acid concer value log K^o_{SO} = -17.74[±]0.02. AUXILIARY METHOD:</pre>	INFORMATION SOURCE AND PURITY OF MATERIALS;			
<pre>K_r = 10^{1.9}". These gave for all acid concer value log K^o_{SO} = -17.74[±]0.02. AUXILIARY</pre>	INFORMATION SOURCE AND PURITY OF MATERIALS: H ₂ O redistilled from KMnO ₄ ; KC1, c.p. twic recryst. from redist. H ₂ O; Hg ₂ (ClO ₄) ₂ pre- pared by authors ⁴ ; HNO ₃ , c.p., twice re- distilled and nitrous gases expelled; HC10 distilled in vacuum.			
<pre>K_r = 10^{1.3}". These gave for all acid concer value log K_{SO}[*] = -17.74[±]0.02. AUXILIARY METHOD: Increasing volumes of very dilute (10⁻⁴ mol dm⁻³) aqueous Hg₂(ClO₄)₂ and KCl added together with excess water, until in- cipient precipitation could be observed by Tyndall effect. Equilibrium tested by cooling 0.2°C, then reheating to 25.0°C, with no change in results. Solubility given as that solution which is just short of showing Tyndall effect. Solutions agitated for >4 hrs at 25°C regulated to</pre>	INFORMATION SOURCE AND PURITY OF MATERIALS: H ₂ O redistilled from KMnO ₄ ; KCl, c.p. twic recryst. from redist. H ₂ O; Hg ₂ (ClO ₄) ₂ pre- pared by authors ⁴ ; HNO ₃ , c.p., twice re- distilled and nitrous gases expelled; HClO distilled in vacuum.			

5.9. Data of Garrett, Noble and Miller (1942)

COMPONENTS :	ORIGINAL MEASUREMENTS:	
1. Mercury(I) chloride, Hg ₂ Cl ₂ (10112-91-1)	Garrett, A.B., Noble, M.V., Miller, S.,	
2a. Sodium chloride, NaCl (7647-14-5)	J. Chem. Educ. (1942) <u>19</u> , 485.	
2b. Calcium chloride, CaCl ₂ (10043-52-4)		
3. Water (7732-18-5)		
VARIABLES:	PREPARED BY:	
One temperature, several NaCl or CaCl ₂ concentrations	Y. Marcus, January 1978	
EXPERIMENTAL VALUES:		
1. The solubility of Hg ₂ Cl ₂ in water at 2	5° C is 5.9×10 ⁻⁶ mol (kg H ₂ O) ⁻¹ .	
2. The solubility of Hg_2Cl_2 in aqueous sal		
$\frac{m/mol \ kg^{-1}}{m/mol \ kg^{-1}} = \frac{c^*/mol \ dm^{-3}}{m} = \frac{10^6 m}{H_{g,total}/r}$	$\frac{10^6 c_{\text{Hg,total}} \text{ mol } \text{dm}^{-3}}{\text{Hg,total}}$	
NaCl 0.101 0.100 8.1	8.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86.7 177.	
CaCl ₂ 0.374 0.370 48.		
0.528 0.522 74.		
1.05 1.02 170.	165.	
Calculatod (Y.M.). Calculatod also log K	$s_0 = \lim_{n \to \infty} [\log(c_{Hg,total}/c_{C1}^2)]$	
	$m_{C1} \rightarrow 0$ $m_{$	
	$\binom{1}{2} \binom{1}{1 + BI^{1/2}} + \log K_r (Hg^{2+} + Hg(\ell)) = Hg_2^{2+}$	
$-\log \beta_4 - 4 \log y_{\pm} (\text{trace NaCl in 0.5M NaCl0}_4)^{\text{ref.3}} = -17.95^{\pm}0.08.$		
- log β_A - 4 log y_{\pm} (trace NaCl in 0.5M)		
- log β_4 - 4 log y_{\pm} (trace NaCl in 0.5M)		
- log β_4 - 4 log y_{\pm} (trace NaCl in 0.5M)		
- log β_4 - 4 log y_{\pm} (trace NaCl in 0.5M)		
- log β_4 - 4 log y_{\pm} (trace NaCl in 0.5M)		
- log β_4 - 4 log y_{\pm} (trace NaCl in 0.5M)		
- log β_4 - 4 log y_{\pm} (trace NaCl in 0.5M)		
- log β_4 - 4 log y_{\pm} (trace NaCl in 0.5M)		
- log β ₄ - 4 log y _± (trace NaCl in 0.5M)		
- log β ₄ - 4 log y _± (trace NaCl in 0.5M)		
	INFORMATION	
	INFORMATION SOURCE AND PURITY OF MATERIALS:	
AUXILIARY METHOD:	SOURCE AND PURITY OF MATERIALS:	
AUXILIARY METHOD: $\beta_{i}(\text{Hg}^{2+} + i\text{C1}^{-} = \text{HgC1}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2$	SOURCE AND PURITY OF MATERIALS:	
$\begin{array}{c} \text{AUXILIARY} \\ \hline \text{METHOD:} \\ \beta_{i}(\text{Hg}^{2+}, i\text{Cl}^{-} = \text{HgCl}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2 \\ 10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo} \end{array}$	SOURCE AND PURITY OF MATERIALS:	
AUXILIARY METHOD: $\beta_{j}(\text{Hg}^{2+}, i\text{Cl}^{-} = \text{HgCl}_{j}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}.^{1} A = 0.51 \text{ and } B =$	SOURCE AND PURITY OF MATERIALS:	
$\begin{array}{c} \text{AUXILIARY} \\ \hline \text{METHOD:} \\ \beta_{i}(\text{Hg}^{2+}, i\text{Cl}^{-} = \text{HgCl}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2 \\ 10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo} \end{array}$	SOURCE AND PURITY OF MATERIALS:	
AUXILIARY METHOD: $\beta_{j}(\text{Hg}^{2+}, i\text{Cl}^{-} = \text{HgCl}_{j}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}.^{1} A = 0.51 \text{ and } B =$	SOURCE AND PURITY OF MATERIALS:	
AUXILIARY METHOD: $\beta_{i}(\text{Hg}^{2+}, iC1^{-} = \text{HgC1}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaC10}_{4}$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form	SOURCE AND PURITY OF MATERIALS:	
AUXILIARY METHOD: $\beta_{j}(\text{Hg}^{2+}, i\text{Cl}^{-} = \text{HgCl}_{j}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra-	SOURCE AND PURITY OF MATERIALS:	
AUXILIARY METHOD: $\beta_i(\text{Hg}^{2+} i\text{Cl}^- = \text{HgCl}_i^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_4.^1 \text{ A} = 0.51 \text{ and B} =$ 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra- polation. $K(\text{Hg}^{2+} + \text{Hg}(\ell) = \text{Hg}_2^{2+}) = 88$	SOURCE AND PURITY OF MATERIALS:	
AUXILIARY METHOD: $\beta_{j}(\text{Hg}^{2+}, i\text{Cl}^{-} = \text{HgCl}_{j}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra-	SOURCE AND PURITY OF MATERIALS: , No details given.	
AUXILIARY METHOD: $\beta_i(\text{Hg}^{2+}, i\text{Cl}^- = \text{HgCl}_i^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_4$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra- polation. $K(\text{Hg}^{2+} + \text{Hg}(\text{L}) = \text{Hg}_2^{2+}) = 88$ (ref. 2).	SOURCE AND PURITY OF MATERIALS: , No details given. r ESTIMATED ERROR: Mainly from activity	
AUXILIARY METHOD: $\beta_{i}(\text{Hg}^{2+} i\text{Cl}^{-} = \text{HgCl}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra- polation. $K(\text{Hg}^{2+} + \text{Hg}(l) = \text{Hg}_{2}^{2+}) = 88$ (ref. 2). No details are given of the apparatus and	SOURCE AND PURITY OF MATERIALS: , No details given. T ESTIMATED ERROR: Mainly from activity coefficient terms, necessitating the extra-	
AUXILIARY METHOD: $\beta_i(\text{Hg}^{2+}, i\text{Cl}^- = \text{HgCl}_i^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_4$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra- polation. $K(\text{Hg}^{2+} + \text{Hg}(\text{L}) = \text{Hg}_2^{2+}) = 88$ (ref. 2).	SOURCE AND PURITY OF MATERIALS: , No details given. T ESTIMATED ERROR: Mainly from activity coefficient terms, necessitating the extra-	
AUXILIARY METHOD: $\beta_{i}(\text{Hg}^{2+} i\text{Cl}^{-} = \text{HgCl}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra- polation. $K(\text{Hg}^{2+} + \text{Hg}(l) = \text{Hg}_{2}^{2+}) = 88$ (ref. 2). No details are given of the apparatus and	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: Mainly from activity coefficient terms, necessitating the extra- polation, and uncertainties in the constants.	
AUXILIARY METHOD: $\beta_{i}(\text{Hg}^{2+} i\text{Cl}^{-} = \text{HgCl}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra- polation. $K(\text{Hg}^{2+} + \text{Hg}(l) = \text{Hg}_{2}^{2+}) = 88$ (ref. 2). No details are given of the apparatus and	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: Mainly from activity coefficient terms, necessitating the extra- polation, and uncertainties in the constants. REFERENCES: 1. Sillen, L.G., Acta Chom.	
AUXILIARY METHOD: $\beta_{i}(\text{Hg}^{2+} i\text{Cl}^{-} = \text{HgCl}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra- polation. $K(\text{Hg}^{2+} + \text{Hg}(l) = \text{Hg}_{2}^{2+}) = 88$ (ref. 2). No details are given of the apparatus and	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: Mainly from activity coefficient terms, necessitating the extra- polation, and uncertainties in the constants. REFERENCES: 1. Sillen, L.G., Acta Chem. Scand. (1949) 3. 539.	
AUXILIARY METHOD: $\beta_{i}(\text{Hg}^{2+} i\text{Cl}^{-} = \text{HgCl}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra- polation. $K(\text{Hg}^{2+} + \text{Hg}(l) = \text{Hg}_{2}^{2+}) = 88$ (ref. 2). No details are given of the apparatus and	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: Mainly from activity coefficient terms, necessitating the extra- polation, and uncertainties in the constants. REFERENCES: 1. Sillen, L.G., Acta Chom.	
AUXILIARY METHOD: $\beta_{i}(\text{Hg}^{2+} i\text{Cl}^{-} = \text{HgCl}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra- polation. $K(\text{Hg}^{2+} + \text{Hg}(l) = \text{Hg}_{2}^{2+}) = 88$ (ref. 2). No details are given of the apparatus and	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: Mainly from activity coefficient terms, necessitating the extra- polation, and uncertainties in the constants. REFERENCES: 1. Sillèn, L.G., Acta Chom. Scand. (1949) 3. 539. 2. Hietanen, S., Sillèn, L.G., Arkiv Kemi	
AUXILIARY METHOD: $\beta_{i}(\text{Hg}^{2+} i\text{Cl}^{-} = \text{HgCl}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra- polation. $K(\text{Hg}^{2+} + \text{Hg}(l) = \text{Hg}_{2}^{2+}) = 88$ (ref. 2). No details are given of the apparatus and	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: Mainly from activity coefficient terms, necessitating the extra- polation, and uncertainties in the constants. REFERENCES: 1. Sillèn, L.G., Acta Chom. Scand. (1949) 3. 539. 2. Hietanen, S., Sillèn, L.G., Arkiv Kemi (1956) 10, 103. 3. Estimated (YM) from Robinson, R.A., Hiukea R.H., Electrolyte Solutions, Butterworth,	
AUXILIARY METHOD: $\beta_{i}(\text{Hg}^{2+} i\text{Cl}^{-} = \text{HgCl}_{i}^{2-i}) = 10^{13.22} \text{ for } i=2$ $10^{14.07} \text{ for } i=3, 10^{15.07} \text{ for } i=4, \text{ valid fo}$ $0.5M \text{ (mol dm}^{-3}) \text{ NaClO}_{4}$. ¹ A = 0.51 and B = 1.6, I = ionic strength, is arbitrary form of activity coefficient term, the rest of which is taken into account by the extra- polation. $K(\text{Hg}^{2+} + \text{Hg}(l) = \text{Hg}_{2}^{2+}) = 88$ (ref. 2). No details are given of the apparatus and	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: Mainly from activity coefficient terms, necessitating the extra- polation, and uncertainties in the constants. REFERENCES: 1. Sillen, L.G., Acta Chem. Scand. (1949) <u>3</u> . 539. 2. Hietanen, S., Sillen, L.G., Arkiv Kemi (1956) <u>10</u> , 103. 3. Estimated (YM) from Robinson, R.A., Hights.	

OMPONENTS:	ORIGINAL MEASUREMENTS:
 Mercury(I) chloride, Hg₂Cl₂ (10112-91-1) Sodium chloride, NaCl (7647-14-5) Perchloric acid, HCl0₄ (7601-90-3) Water, H₂O (7732-18-5) 	Law, J.T., M.S. Thesis, University of New Zealand, 1946.
WARIABLES: Temperatures, between 15 and 45°C; con- centrations of NaCl and HClO ₄ .	PREPARED BY: Y. Marcus, January 1978
EXPERIMENTAL VALUES:	L
E.m.f.'s of the cell Hg/Hg ₂ Cl ₂ (s), NaCl (1.5 <i>mx</i>)m, HClO ₄ (<i>m-mx</i>)m HClO ₄ (<i>m-mx</i>)m/Hg	
measured at 5K intervals between 288.15 \leq ranges 0.02 \leq m \leq 0.05 and 0.2 \leq x \leq 0.6.	T/K ≤ 318.15 for various concentrations in the The results were summarized as follows:
	= 0.5108V _{int} = 0.5110V for <i>T/K</i> =298.15 (ref. 1
$\Delta H^{\circ}/kJ \mod^{-1} = 42.947 + 4.588 \pi^2$ (ref.	
$\Delta s^{\circ}/JK^{-1}mo1^{-1} = -324.3+0.9177T$ (ref.	
3. $E^{\circ}(\text{Hg/Hg}_2^{2+}) = 0.7789V$ for $T/K = 298$	
Calculated (Y.M.) from 1. $\log R_{SO}^{o}(Hg_2Cl_2)$	
Calculated (Y.M.) from 1. $\log K_{SO}^{\circ}(Hg_2Cl_2(s_{SO})^{\circ})$ from 2. $\log K_{SO}^{\circ} = -\Delta G^{\circ}/RT \ln 10 = -98849.5/$	
from 2. log $\kappa_{s0}^{\circ} = -\Delta G^{\circ} / RT \ln 10 = -98849.5 /$	
from 2. $\log \kappa_{s0}^{\circ} = -\Delta G^{\circ} / RT \ln 10 = -98849.5 /$	5708 = -17.318; /(RTln 10/2F) = (-0.7789+0.2680)/0.02958 =
from 2. $\log \kappa_{S0}^{\circ} = -\Delta G^{\circ} / RT \ln 10 = -98849.5 /$ from 3. $\log \kappa_{S0}^{\circ} = (-0.7789 + E^{\circ} (Hg/Hg_2Cl_2))$	5708 = -17.318; /(RTln 10/2F) = (-0.7789+0.2680)/0.02958 =
from 2. $\log \kappa_{S0}^{\circ} = -\Delta G^{\circ} / RT \ln 10 = -98849.5 /$ from 3. $\log \kappa_{S0}^{\circ} = (-0.7789 + E^{\circ} (Hg/Hg_2Cl_2))$ = -17.272, all at 298.15k	5708 = -17.318; /(RTln 10/2F) = (-0.7789+0.2680)/0.02958 =
from 2. $\log \kappa_{S0}^{\circ} = -\Delta G^{\circ} / RT \ln 10 = -98849.5 /$ from 3. $\log \kappa_{S0}^{\circ} = (-0.7789 + E^{\circ} (Hg/Hg_2Cl_2))$ = -17.272, all at 298.15k	5708 = -17.318; /(RTln 10/2F) = (-0.7789+0.2680)/0.02958 =
from 2. $\log K_{SO}^{\circ} = -\Delta G^{\circ} / RT \ln 10 = -98849.5 /$ from 3. $\log K_{SO}^{\circ} = (-0.7789 + E^{\circ} (Hg/Hg_2 Cl_2))$ = -17.272, all at 298.15k	5708 = -17.318; /(RTln 10/2F) = (-0.7789+0.2680)/0.02958 = INFORMATION
from 2. $\log K_{SO}^{\circ} = -\Delta G^{\circ}/RT \ln 10 = -98849.5/$ from 3. $\log K_{SO}^{\circ} = (-0.7789+E^{\circ}(Hg/Hg_2C1_2))$ = -17.272, all at 298.15k AUXILIARY METHOD: Information as to apparatus/procedure is not available to evaluator, who saw only	5708 = -17.318; /(RTln 10/2F) = (-0.7789+0.2680)/0.02958 = INFORMATION SOURCE AND PURITY OF MATERIALS; Information is not available to evaluator, who saw only quotations of the work in
from 2. $\log K_{SO}^{\circ} = -\Delta G^{\circ}/RT \ln 10 = -98849.5/$ from 3. $\log K_{SO}^{\circ} = (-0.7789+E^{\circ}(Hg/Hg_2C1_2))$ = -17.272, all at 298.15k AUXILIARY METHOD: Information as to apparatus/procedure is not available to evaluator, who saw only	5708 = -17.318; /(RTln 10/2F) = (-0.7789+0.2680)/0.02958 = INFORMATION SOURCE AND PURITY OF MATERIALS; Information is not available to evaluator, who saw only quotations of the work in
from 2. $\log K_{SO}^{\circ} = -\Delta G^{\circ}/RT \ln 10 = -98849.5/$ from 3. $\log K_{SO}^{\circ} = (-0.7789+E^{\circ}(Hg/Hg_2C1_2))$ = -17.272, all at 298.15k AUXILIARY METHOD: Information as to apparatus/procedure is not available to evaluator, who saw only	5708 = -17.318; /(RTln 10/2F) = (-0.7789+0.2680)/0.02958 = INFORMATION SOURCE AND PURITY OF MATERIALS; Information is not available to evaluator, who saw only quotations of the work in

5.11. Data of Jonsson, Qvarfort and Sillèn (1947)

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>1. Mercury(I) chloride, Hg₂Cl₂ (10112-91-1)</pre>		
2. Sodium chloride, NaCl (7647-14-5)	Jonsson, A., Qvarfort, I., Sillèn, L.G., Acta Chem. Scand. (1947) 1, 461.	
3. Sodium perchlorate, NaClO ₄ (7601-89-0)		
4. Water, H_2^{0} (7732-18-5)		
ARIABLES:	DDEDADEN DV.	
	PREPARED BY:	
One temperature, constant ionic strength,	Y. Marcus, January 1978.	
variable NaCl concentration.		
EXPERIMENTAL VALUES:		
Measured at 25°C:		
1) E.m.f. $E/V = E_1^{\circ}/V + (RT/2F) \ln(b/mo1 \text{ dm}^{-3})$) of cell	
	10 ₄) ₂ БМ, НС10 ₄ 0.010М, NaC10 ₄ 0.490-3Б М/Нg	
$(E_1^{\circ} = authors' "millimolar potential" E$	10^{+} (0 <i>R</i> (<i>f</i>) <i>f</i>) in 10; M = mot cm f .	
-3		
2) Em.f. $E/V = E_2^{\circ}/V - (RT/F) \ln(c/mol dm^{-3})$ or		
	₂ (s), NaCl cM, HClO ₄ 0.010M, NaClO ₄ 0.490-cM/H	
$(E_2^{\circ} \approx \text{authors' "mi})$	llimolar potential" E_{1x}^+ ($3RT/F$) ln 10)	
For one experiment, b was specified as 4.83 :		
$c = 0.05 (v/cm^3)/(100 + v/cm^3)M$. For v see u		
Six values of $\Delta E^{\circ} - E_2^{\circ} - E_1^{\circ}$ obtained over a pr $\Delta E^{\circ}/V = -0.4990$, -0.4994 , -0.4995 , -0.4995 , d average: -0.4993 ± 0.0003 . Hence log $K_{S0}^{\circ} = \Delta M$ 0.5M NaClO ₄ medium. Correction for activity of log $K_S = -17.93$.	-0.4993, -0.4995 E°/(RT/2F)ln 10 = -16.88 ± 0.01 for	
$\Delta E^{\circ}/V = -0.4990$, -0.4994 , -0.4995 , -0.4995 , A	-0.4993, -0.4995 E°/(RT/2F)ln 10 = -16.88 ± 0.01 for	
$\Delta E^{\circ}/V = -0.4990$, -0.4994 , -0.4995 , -0.4995 , $average: -0.4993 \pm 0.0003$. Hence $\log K'_{S0} = \Delta t$ 0.5M NaClO ₄ medium. Correction for activity of $\log K_{\rm S} = -17.93$.	-0.4993, -0.4995 E°/(RT/2F)ln 10 = -16.88 ± 0.01 for	
$\Delta E^{\circ}/V = -0.4990$, -0.4994 , -0.4995 , -0.4995 , $dentarrow average: -0.4993 \pm 0.0003. Hence \log K_{S0}^{i} = \Delta R_{S0}^{i}0.5M NaClO4 medium. Correction for activity \log K_{S}^{i} = -17.93.$	-0.4993, -0.4995 $\overline{z}^{\circ}/(RT/2F) \ln 10 = -16.88 \pm 0.01$ for coefficients ² is -1.05, hence INFORMATION	
$\Delta E^{\circ}/V = -0.4990$, -0.4994 , -0.4995 , -0.4995 , average: -0.4993 ± 0.0003 . Hence $\log K_{S0}^{i} = \Delta i$ $0.5M \text{ NaClO}_{4}$ medium. Correction for activity $\log K_{S} = -17.93$. AUXILIARY METHOD:	-0.4993, -0.4995 $E^{\circ}/(RT/2F) \ln 10 = -16.88 \pm 0.01$ for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS:	
$\Delta E^{\circ}/V = -0.4990$, -0.4994 , -0.4995 , -0.4995 , average: -0.4993 ± 0.0003 . Hence $\log K_{S0}^{i} = \Delta i$ $0.5M \text{ NaClO}_{4}$ medium. Correction for activity $\log K_{S} = -17.93$. AUXILIARY METHOD: 100cm ³ of a solution containing <i>b</i> M	-0.4993, -0.4995 $E^{\circ}/(RT/2F) \ln 10 = -16.88 \pm 0.01$ for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaCl0 ₄ thrice recrystallized from 70%	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, \\ \text{average:} -0.4993 \pm 0.0003. \text{ Hence } \log K_{S0}^{\dagger} = \Delta I \\ 0.5M \text{ NaClO}_4 \text{ medium. Correction for activity of } \\ \log K_S = -17.93. \\ \\ \text{AUXILIARY} \\ \hline \text{METHOD:} \\ 100 \text{cm}^3 \text{ of a solution containing bM} \\ \text{Hg}_2(\text{ClO}_4)_2 + 0.008b \text{ M Hg}(\text{ClO}_4)_2 + 0.010M \\ \text{HClO}_4 + 0.490 - 3b \text{ M NaClO}_4, \text{ connected via} \\ \hline \end{array}$	-0.4993, -0.4995 $\mathbf{z}^{\circ}/(RT/2F) \ln 10 = -16.88 \pm 0.01$ for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaCl0 ₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg ₂ (Cl0 ₄) ₂	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, \\ \text{average:} -0.4993 \pm 0.0003. \text{ Hence } \log K_{S0}^{\dagger} = \Delta t$ 0.5M NaClO ₄ medium. Correction for activity of log $K_{S}^{\dagger} = -17.93.$ AUXILIARY METHOD: 100cm ³ of a solution containing bM Hg ₂ (ClO ₄) ₂ + 0.008b M Hg(ClO ₄) ₂ + 0.010M HClO ₄ + 0.490 - 3b M NaClO ₄ , connected via a 0.5 M NaClO ₄ bridge to the Hg, Hg ₂ Cl ₂ (s),	-0.4993, -0.4995 $E^{\circ}/(RT/2F) \ln 10 = -16.88 \pm 0.01$ for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaCl04 thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg2(Cl04)2 prepared ⁴ from Hg, Hg0 (Merck) and	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, \\ \text{average:} -0.4993 \pm 0.0003. \text{ Hence } \log K_{S0}^{'} = \Delta I \\ 0.5M \text{ NaClO}_4 \text{ medium. Correction for activity of } \\ \log K_S = -17.93. \\ \\ \text{AUXILIARY} \\ \text{METHOD:} \\ 100 \text{ cm}^3 \text{ of a solution containing } bM \\ \text{Hg}_2(\text{ClO}_4)_2 + 0.008b \text{ M Hg}(\text{ClO}_4)_2 + 0.010M \\ \text{HClO}_4 + 0.490 - 3b \text{ M NaClO}_4, \text{ connected via} \\ \text{a } 0.5 \text{ M NaClO}_4 \text{ bridge to the Hg, Hg}_2(2_1(s)), \\ \text{4M NaCl reference electrode, were titrated} \\ \end{array}$	-0.4993, -0.4995 E°/(RT/2F)ln 10 = -16.88 ± 0.01 for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaClO ₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg ₂ (ClO ₄) ₂ prepared ⁴ from Hg, HgO (Merck) and HClO ₄ (Schering) analytical reagents.	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0}^{!} = \Delta I$ 0.5M NaClO ₄ medium. Correction for activity of log K _S = -17.93. AUXILIARY METHOD: 100cm ³ of a solution containing bM Hg ₂ (ClO ₄) ₂ + 0.008b M Hg(ClO ₄) ₂ + 0.010M Hg ₂ (ClO ₄) ₂ + 0.008b M Hg(ClO ₄) ₂ + 0.010M HGClO ₄ + 0.490 - 3b M NaClO ₄ , connected via a 0.5 M NaClO ₄ bridge to the Hg, Hg ₂ Cl ₂ (s), 4M NaCl reference electrode, were titrated with vcm ³ of a solution containing cM NaCl + 0.010 M HClO ₄ + 0.490 - cM NaClO ₄ .	-0.4993, -0.4995 $E^{\circ}/(RT/2F) \ln 10 = -16.88 \pm 0.01$ for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaClO ₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg ₂ (ClO ₄) ₂ prepared ⁴ from Hg, HgO (Merck) and HClO ₄ (Schering) analytical reagents. Hg ₂ Cl ₂ was formed during titrations, but no description given of that salt in the	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003.$ Hence log $K_{S0}^{\dagger} = \Delta I$ 0.5M NaClO ₄ medium. Correction for activity of log $K_{S}^{\dagger} = -17.93.$ AUXILIARY METHOD: 100cm^{3} of a solution containing bM Hg ₂ (ClO ₄) ₂ + 0.008b M Hg(ClO ₄) ₂ + 0.010M HClO ₄ + 0.490 - 3b M NaClO ₄ , connected via a 0.5 M NaClO ₄ bridge to the Hg, Hg ₂ Cl ₂ (s), 4M NaCl reference electrode, were titrated with vcm ³ of a solution containing cM NaCl + 0.010 M HClO ₄ + 0.490 - cM NaClO ₄ . Care was taken to exclude O ₂ from the	-0.4993, -0.4995 E°/(RT/2F)ln 10 = -16.88 ± 0.01 for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaClO ₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg ₂ (ClO ₄) ₂ prepared ⁴ from Hg, HgO (Merck) and HClO ₄ (Schering) analytical reagents. Hg ₂ Cl ₂ was formed during titrations, but	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0} = \Delta i$ 0.5M NaClO ₄ medium. Correction for activity of log K _S = -17.93. AUXILIARY METHOD: 100cm ³ of a solution containing bM Hg ₂ (ClO ₄) ₂ + 0.008b M Hg(ClO ₄) ₂ + 0.010M HClO ₄ + 0.490 - 3b M NaClO ₄ , connected via a 0.5 M NaClO ₄ bridge to the Hg, Hg ₂ Cl ₂ (s), 4M NaCl reference electrode, were titrated with vcm ³ of a solution containing cM NaCl + 0.010 M HClO ₄ + 0.490 - cM NaClO ₄ . Care was taken to exclude O ₂ from the solutions by bubbling purified and water vapor presaturated nitrogen. Salt bridge	-0.4993, -0.4995 $E^{\circ}/(RT/2F) \ln 10 = -16.88 \pm 0.01$ for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaClO ₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg2(ClO ₄) ₂ prepared ⁴ from Hg, HgO (Merck) and HClO ₄ (Schering) analytical reagents. Hg2Cl ₂ was formed during titrations, but no description given of that salt in the	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0} = \Delta I$ $0.5M \text{ NaClO}_4 \text{ medium. Correction for activity of log } K_S = -17.93.$ AUXILIARY METHOD: $100 \text{ cm}^3 \text{ of a solution containing } bM$ $Hg_2(ClO_4)_2 + 0.008b \text{ M } Hg(ClO_4)_2 + 0.010M$ $HClO_4 + 0.490 - 3b \text{ M } \text{NaClO}_4, \text{ connected via}$ $a 0.5 \text{ M } \text{ NaClO}_4 \text{ bridge to the } \text{Hg}, \text{ Hg}_2\text{Cl}_2(\text{s}),$ $4M \text{ NaCl reference electrode, were titrated with vcm^3 of a solution containing } cM \text{ NaCl} + 0.010 \text{ M } \text{HClO}_4 + 0.490 - cM \text{ NaClO}_4.$ Care was taken to exclude O ₂ from the solutions by bubbling purified and water vapor presaturated hitrogen. Salt bridge designed to minimize diffusion of	-0.4993, -0.4995 $E^{\circ}/(RT/2F) \ln 10 = -16.88 \pm 0.01$ for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaClO ₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg2(ClO ₄) ₂ prepared ⁴ from Hg, HgO (Merck) and HClO ₄ (Schering) analytical reagents. Hg2Cl ₂ was formed during titrations, but no description given of that salt in the	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0} = \Delta i$ 0.5M NaClO ₄ medium. Correction for activity of log K _S = -17.93. AUXILIARY METHOD: 100cm ³ of a solution containing bM Hg ₂ (ClO ₄) ₂ + 0.008b M Hg(ClO ₄) ₂ + 0.010M HClO ₄ + 0.490 - 3b M NaClO ₄ , connected via a 0.5 M NaClO ₄ bridge to the Hg, Hg ₂ Cl ₂ (s), 4M NaCl reference electrode, were titrated with vcm ³ of a solution containing cM NaCl + 0.010 M HClO ₄ + 0.490 - cM NaClO ₄ . Care was taken to exclude O ₂ from the solutions by bubbling purified and water vapor presaturated nitrogen. Salt bridge	-0.4993, -0.4995 $E^{\circ}/(RT/2F) \ln 10 = -16.88 \pm 0.01$ for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaClO ₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg2(ClO ₄) ₂ prepared ⁴ from Hg, HgO (Merck) and HClO ₄ (Schering) analytical reagents. Hg2Cl ₂ was formed during titrations, but no description given of that salt in the	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0} = \Delta i$ 0.5M NaClO ₄ medium. Correction for activity of log K _S = -17.93. AUXILIARY METHOD: 100cm ³ of a solution containing bM Hg ₂ (ClO ₄) ₂ + 0.008b M Hg(ClO ₄) ₂ + 0.010M HClO ₄ + 0.490 - 3b M NaClO ₄ , connected via a 0.5 M NaClO ₄ bridge to the Hg, Hg ₂ Cl ₂ (s), 4M NaCl reference electrode, were titrated with vcm ³ of a solution containing cM NaCl + 0.010 M HClO ₄ + 0.490 - cM NaClO ₄ . Care was taken to exclude O ₂ from the solutions by bubbling purified and water vapor presaturated nitrogen. Salt bridge designed to minimize diffusion of contaminating ions. E.m.f. measured to t 0.1 mV by Radiometer potentiometer, calibrated with Weston cell, or with	-0.4993, -0.4995 E°/(RT/2F)ln 10 = -16.88 ± 0.01 for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaClO ₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg2(ClO ₄) ₂ prepared ⁴ from Hg, HgO (Merck) and HClO ₄ (Schering) analytical reagents. Hg2Cl ₂ was formed during titrations, but no description given of that salt in the (left hand) reference electrode.	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0} = \Delta I$ $0.5M \text{ NaClO}_4$ medium. Correction for activity of log $K_S = -17.93$. AUXILIARY METHOD: 100 cm^3 of a solution containing bM Hg ₂ (ClO ₄) ₂ + 0.008b M Hg(ClO ₄) ₂ + 0.010M HClO ₄ + 0.490 - 3b M NaClO ₄ , connected via a 0.5 M NaClO ₄ bridge to the Hg, Hg ₂ Cl ₂ (S), 4M NaCl reference electrode, were titrated with vcm ³ of a solution containing cM NaCl + 0.010 M HClO ₄ + 0.490 - cM NaClO ₄ . Care was taken to exclude O ₂ from the solutions by bubbling purified and water vapor presaturated hitrogen. Salt bridge designed to minimize diffusion of contaminating ions. E.m.f. measured to $1 \cdot 0.1 \text{ W by Radiometer potentiometer,}$ calibrated with Weston cell, or with Raps or Jensen compensators and Multiflex galvanometer to $\stackrel{\circ}{=} 0.05 \text{ mV}$. Temperature kept at 25.0 - 0.1°C of all parts of	-0.4993, -0.4995 E°/(RT/2F)ln 10 = -16.88 ± 0.01 for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaClO ₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg2(ClO ₄) ₂ prepared ⁴ from Hg, HgO (Merck) and HClO ₄ (Schering) analytical reagents. Hg2Cl ₂ was formed during titrations, but no description given of that salt in the (left hand) reference electrode.	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0} = \Delta i$ $0.5M \text{ NaClO}_4$ medium. Correction for activity of log $K_S = -17.93$. AUXILIARY METHOD: 100 cm^3 of a solution containing bM Hg ₂ (ClO ₄) ₂ + 0.008b M Hg(ClO ₄) ₂ + 0.010M HClO ₄ + 0.490 - 3b M NaClO ₄ , connected via a 0.5 M NaClO ₄ bridge to the Hg, Hg ₂ Cl ₂ (s), 4M NaCl reference electrode, were titrated with vcm ³ of a solution containing cM NaCl + 0.010 M HClO ₄ + 0.490 - cM NaClO ₄ . Care was taken to exclude O ₂ from the solutions by bubbling purified and water vapor presaturated hitrogen. Salt bridge designed to minimize diffusion of contaminating ions. E.m.f. measured to \pm 0.1 mV by Radiometer potentiometer, calibrated with Weston cell, or with Raps or Jensen compensators and Multiflex galvanometer to \pm 0.05 mV. Temperature	<pre>-0.4993, -0.4995 E°/(RT/2F)ln 10 = -16.88 ± 0.01 for coefficients² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaClO₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide³. Hg twice distilled. Hg₂(ClO₄)₂ prepared⁴ from Hg, HgO (Merck) and HClO₄ (Schering) analytical reagents. Hg₂Cl₂ was formed during titrations, but no description given of that salt in the (left hand) reference electrode. ESTIMATED ERROR: Error in log K¹₅ is ± 0.01, from ± 0.3mV error in ΔE⁵.</pre>	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0}^{\dagger} = \Delta t0.5M \text{ NaClO}_4 medium. Correction for activity of log K_s = -17.93.AUXILIARYMETHOD:100cm3 of a solution containing bMHg2(ClO4)2 + 0.008b M Hg(ClO4)2 + 0.010MHClO4 + 0.490 - 3b M NaClO4, connected via.a 0.5 M NaClO4 bridge to the Hg, Hg2Cl2(s),4M NaCl reference electrode, were titratedwith vcm3 of a solution containing cM NaCl +0.010 M HClO4 + 0.490 - cM NaClO4.Care was taken to exclude O2 from thesolutions by bubbling purified and watervapor presaturated nitrogen. Salt bridgedesigned to minimize diffusion ofcontaminating ions. E.m.f. measured tot \cdot 0.1 \text{ m Vby Radiometer potentiometer,}calibrated with Weston cell, or withRaps or Jensen compensators and Multiflexgalvanometer to t \cdot 0.5 \text{ mV}. Temperaturekept at 25.0 t - 0.1^{\circ}C of all parts of$	 -0.4993, -0.4995 E°/(RT/2F)ln 10 = -16.88 ± 0.01 for coefficients² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaCl04 thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide³. Hg twice distilled. Hg2(Cl04)2 prepared⁴ from Hg, Hg0 (Merck) and HCl04 (Schering) analytical reagents. Hg2Cl2 was formed during titrations, but no description given of that salt in the (left hand) reference electrode. ESTIMATED ERROR: Error in log K¹₅₀ is ± 0.01, from ± 0.3mV error in ΔE°. REFERENCES: 1. Sillèn, L.G., Svensk Kem. 	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0}^{\dagger} = \Delta t0.5M \text{ NaClO}_4 medium. Correction for activity of\log K_s = -17.93.MUXILIARYMETHOD:100cm3 of a solution containing bMHg2(ClO4)2 + 0.008b M Hg(ClO4)2 + 0.010MHClO4 + 0.490 - 3b M NaClO4, connected via.a 0.5 M NaClO4 bridge to the Hg, Hg2Cl2(s),4M NaCl reference electrode, were titratedwith vcm3 of a solution containing cM NaCl +0.010 M HClO4 + 0.490 - cM NaClO4.Care was taken to exclude O2 from thesolutions by bubbling purified and watervapor presaturated nitrogen. Salt bridgedesigned to minimize diffusion ofcontaminating ions. E.m.f. measured tot cdot cdot $	-0.4993, -0.4995 $E^{\circ}/(RT/2F) \ln 10 = -16.88 \pm 0.01$ for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaClO ₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg ₂ (ClO ₄) ₂ prepared ⁴ from Hg, HgO (Merck) and HClO ₄ (Schering) analytical reagents. Hg ₂ Cl ₂ was formed during titrations, but no description given of that salt in the (left hand) reference electrode. ESTIMATED ERROR: Error in log K' ₅₀ is ± 0.01, from ± 0.3mV error in ΔE° . REFERENCES: 1. Sillèn, L.G., Svensk Kem. Tidskr. (1946) 58, 52. 2. Sillèn, L.G., Acta Chem. Scand. (1949)	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0}^{\dagger} = \Delta t0.5M \text{ NaClO}_4 medium. Correction for activity of\log K_s = -17.93.MUXILIARYMETHOD:100cm3 of a solution containing bMHg2(ClO4)2 + 0.008b M Hg(ClO4)2 + 0.010MHClO4 + 0.490 - 3b M NaClO4, connected via.a 0.5 M NaClO4 bridge to the Hg, Hg2Cl2(s),4M NaCl reference electrode, were titratedwith vcm3 of a solution containing cM NaCl +0.010 M HClO4 + 0.490 - cM NaClO4.Care was taken to exclude O2 from thesolutions by bubbling purified and watervapor presaturated nitrogen. Salt bridgedesigned to minimize diffusion ofcontaminating ions. E.m.f. measured tot cdot cdot $	 -0.4993, -0.4995 E°/(RT/2F)ln 10 = -16.88 ± 0.01 for coefficients² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaCl0, thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide³. Hg twice distilled. Hg₂(Cl0₄)₂ prepared⁴ from Hg, HgO (Merck) and HCl0₄ (Schering) analytical reagents. Hg₂Cl₂ was formed during titrations, but no description given of that salt in the (left hand) reference electrode. ESTIMATED ERROR: Error in log K¹₅₀ is ± 0.01, from ± 0.3mV error in ΔE⁶. REFERENCES: 1. Sillèn, L.G., Svensk Kem. Tidskr. (1946) 58, 52. 2. Sillèn, L.G., Acta Chem. Scand. (1949) 3, 539; Qvarfort, I., Sillèn, L.G., Acta 	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0}^{\dagger} = \Delta t0.5M \ NaClO_4 medium. Correction for activity of\log K_s = -17.93.MUXILIARYMETHOD:100cm3 of a solution containing bMHg2(ClO4)2 + 0.008b M Hg(ClO4)2 + 0.010MHClO4 + 0.490 - 3b M NaClO4, connected via.a 0.5 M NaClO4 bridge to the Hg, Hg2Cl2(s),4M NaCl reference electrode, were titratedwith vcm3 of a solution containing cM NaCl +0.010 M HClO4 + 0.490 - cM NaClO4.Care was taken to exclude O2 from thesolutions by bubbling purified and watervapor presaturated hitrogen. Salt bridgedesigned to minimize diffusion ofcontaminating ions. E.m.f. measured tot \ 0.1 \ W by Radiometer potentiometer, calibrated with Weston cell, or with Raps or Jensen compensators and Multiflex galvanometer to t \ 0.5 \ W. Temperaturekept at 25.0 t \ 0.1^{\circ}C of all parts of$	-0.4993, -0.4995 $E^{\circ}/(RT/2F) \ln 10 = -16.88 \pm 0.01$ for coefficients ² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaClO ₄ thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide ³ . Hg twice distilled. Hg ₂ (ClO ₄) ₂ prepared ⁴ from Hg, HgO (Merck) and HClO ₄ (Schering) analytical reagents. Hg ₂ Cl ₂ was formed during titrations, but no description given of that salt in the (left hand) reference electrode. ESTIMATED ERROR: Error in log K_{10}° is ± 0.01, from ± 0.3mV error in ΔE° . REFERENCES: 1. Sillèn, L.G., Syensk Kem. Tidskr. (1946) 58, 52. 2. Sillèn, L.G., Acta Chem. Scand. (1949) 3, 539; QVarfort, I., Sillèn, L.G., Acta Chem. Scand. (1949) 3, 517.	
$\Delta E^{\circ}/V = -0.4990, -0.4994, -0.4995, -0.4995, average: -0.4993 \pm 0.0003. Hence log K_{S0}^{\dagger} = \Delta t0.5M \ NaClO_4 medium. Correction for activity of\log K_s = -17.93.MUXILIARYMETHOD:100cm3 of a solution containing bMHg2(ClO4)2 + 0.008b M Hg(ClO4)2 + 0.010MHClO4 + 0.490 - 3b M NaClO4, connected via.a 0.5 M NaClO4 bridge to the Hg, Hg2Cl2(s),4M NaCl reference electrode, were titratedwith vcm3 of a solution containing cM NaCl +0.010 M HClO4 + 0.490 - cM NaClO4.Care was taken to exclude O2 from thesolutions by bubbling purified and watervapor presaturated hitrogen. Salt bridgedesigned to minimize diffusion ofcontaminating ions. E.m.f. measured tot \ 0.1 \ W by Radiometer potentiometer, calibrated with Weston cell, or with Raps or Jensen compensators and Multiflex galvanometer to t \ 0.5 \ W. Temperaturekept at 25.0 t \ 0.1^{\circ}C of all parts of$	 -0.4993, -0.4995 E°/(RT/2F)ln 10 = -16.88 ± 0.01 for coefficients² is -1.05, hence INFORMATION SOURCE AND PURITY OF MATERIALS: NaCl04, thrice recrystallized from 70% ethanol and dried. NaCl freed from bromide³. Hg twice distilled. Hg2(Cl04)2 prepared⁴ from Hg, Hg0 (Merck) and HCl04 (Schering) analytical reagents. Hg2Cl2 was formed during titrations, but no description given of that salt in the (left hand) reference electrode. ESTIMATED ERROR: Error in log K¹₅₀ is ± 0.01, from ± 0.3mV error in ΔE⁶. REFERENCES: 1. Sillèn, L.G., Svensk Kem. Tidskr. (1946) <u>58</u>, 52. 2. Sillèn, L.G., Acta Chem. Scand. (1949) 3, 539; Qvarfort, I., Sillèn, L.G., Acta 	

5.12.	Data	of	Dry	and	Gledhill	(1955)
-------	------	----	-----	-----	----------	--------

	ORIGINAL MEASUREMENTS:
 Mercury(I) chloride, Hg₂Cl₂ (10112-91-1) Water, H₂O (7732-18-5) 	Dry, M.E., Gledhill, J.A., Trans. Faraday Soc. (1955) <u>51</u> , 1119.
VARIABLES:	PREPARED BY:
One temperature	Y. Marcus, January 1978
EXPERIMENTAL VALUES:	
1. Conductivity of a saturated aqueous Hg_2C1_2	solution at 25°C is $350.8\pm1.0 \ \mu \text{Sm}^{-1}$.
2. The pH of a saturated aqueous Hg ₂ Cl ₂ solut	ion at 25°C is 5.085±0.010.
3. The total concentration of soluble mercury lution at 25°C is $(7.5\pm0.3)\times10^{-6}$ mol dm ⁻³ .	species in a saturated aqueous Hg_2Cl_2 so-
In an iterative procedure, utilizing equilibr: coefficient terms, authors estimated following present in the saturated solution:	ium constants ¹⁻³ and estimates of activity g concentrations, in 10^{-6} mol dm ⁻³ to be
H ⁺ 8.17 [±] 0.08; Cl ⁻ 8.40 [±] 0.14; Hg(OH) ₂	
HgC1 ⁺ 0.027; Hg ₂ ²⁺ 0.0190 [±] 0.0001; HgOH	• 0.014.
These values sum up to the total concentration conductivity (which is 99.5% due to H^{\dagger} and Cl ² hence:). The ionic strength is 8.4×10^{-5} mol dm ⁻³ ,
$\log K_{S0}^{\circ} (Hg_2Cl_2(s) = Hg_2^{2+} + 2Cl_{-}) = \log(1.5)$	9×10^{-1} + 2 $\log(8.4 \times 10^{-1})$ + 3 $\log y_{\pm Hg_2Cl_2}$
AUXILIARY	INFORMATION
AUXILIARY METHOD:	INFORMATION SOURCE AND PURITY OF MATERIALS:
METHOD: Conductivity data extrapolated to zero time to correct for ion exchange with vessel walls, and to zero bubbling rate of nitrogen. Total mercury determined with dithizone ⁴ at 490 nm in supernatant solutions filtered through a sintered glass filter, made 0.06 mol dm ⁻³ in HCl. Treatment with Cl ₂ and boiling gave same results as without treatment. Dithizone applied in equal volume of CCl ₄ , and spectro- photometric readings compared with those from known amounts of HgCl ₂ , similarly treated. The pH measured with a glass electrode pH-	SOURCE AND PURITY OF MATERIALS: Hg_2Cl_2 was precipitated in the cold from pure $Hg_2(NO_3)_2$ or $Hg_2(ClO_4)_2$ with KCl so- lutions at equivalent concentrations, di- gested and washed 50 times with conductivit water. Latter had conductivities between 1.1 and 2.4 μ Sm ⁻¹ .
METHOD: Conductivity data extrapolated to zero time to correct for ion exchange with vessel walls, and to zero bubbling rate of nitrogen. Total mercury determined with dithizone ⁴ at 490 nm in supernatant solutions filtered through a sintered glass filter, made 0.06 mol dm ⁻³ in HCl. Treatment with Cl ₂ and boiling gave same results as without treatment. Dithizone applied in equal volume of CCl ₄ , and spectro- photometric readings compared with those from known amounts of HgCl ₂ , similarly treated.	SOURCE AND PURITY OF MATERIALS: Hg ₂ Cl ₂ was precipitated in the cold from pure Hg ₂ (NO ₃) ₂ or Hg ₂ (ClO ₄) ₂ with KCl so- lutions at equivalent concentrations, di- gested and washed 50 times with conductivit water. Latter had conductivities between 1.1 and 2.4 µSm ⁻¹ . ESTIMATED ERROR: No data provided to eval- uate the reported random error of 4% of the total solubility, but procedure re- ported should eliminate systematic errors.

5.13. Data of Galloway (1961)

COMPONENTS:	ORIGINAL MEASUREMENTS:	
 Mercury(I) chloride, Hg₂Cl₂ (10112-91-1) Barium chloride, BaCl₂ (10361-37-2) Perchloric acid, HClO₄ (7601-90-3) Meters H O (7772 18 5) 	Galloway, W.J., M.S. Thesis, Univ. of New Zealand, 1961.	
 4. Water, H₂0 (7732-18-5) VARIABLES: Seven temperatures, five ionic strengths 	PREPARED BY: Y. Marcus, January 1978	
EXPERIMENTAL VALUES: Measured and reported e.m.f. E of the cell Hg,Hg ₂ Cl ₂ /BaCl ₂ (1/2)xmm, HClO ₄ (1-x)mm/Ba(ClO ₄) ₂ (1/3)xmm, HClO ₄ (1-x)mm/ Hg ₂ (ClO ₄) ₂ (1/3)xmm, HClO ₄ (1-x)mm/Hg ₂ Cl ₂ , Hg at seven temperatures at intervals of 5°C from 15 to 45°C, varying the concentrations is the range 0.005 \leq m (five values) \leq 0.05 and 0.1 \leq x (four values) \leq 0.6. Calculated and reported the double limit lim[lim (E-(3RT/2F)ln(xm/3)-(RT/F)ln 2)+3RTAm ^{1/2} / (1+m ^{1/2})] = -(RT/2F)lnK ^o _{EO} m+0 x+0(m=const.) t/°C 15 20 25 30 35 40 45 -(RT/2F)lnx ^o _{SO} /V 0.5273 0.5272 0.5273 0.5277 0.5280 0.5284 0.5291 Expressed this as the polynomial -(RT/2F)lnK ^o _{SO} /V= 1.3587-7.59×10 ⁻³ T + 2.273×10 ⁻⁵ T ² - 2.222×10 ⁻⁸ T ³ from least squares fitting. Hence obtained expressions for the standard thermodynamic functions for the process Hg ₂ Cl ₂ (s) = Hg ₂ ²⁺ (aq)+2Cl ⁻ (aq) as a function of T, and specifically for T = 298.15K: log K ^o _{SO} = -17.827, ΔGo_{S} = 101.77 kJ mol ⁻¹ , ΔHo_{S} = 99.65 kJ mol ⁻¹ and ΔSo_{S} = -7.10 JK ⁻¹ 		
AUXILIARY	INFORMATION	
METHOD: Extrapolation procedure for E° of the cell removes first the effect of the chloride concentration at a constant ionic strength, m, and then extrapolates to zero ionic strength a function partly corrected for ac- tivity coefficients. The points at $m=0.00$ Sm were disregarded in this extrapolation (to avoid hydrolysis effects). Other activity coefficient expressions, within reason, lead to similar results. A Cambridge Instrument potentiometer, with calibrated Weston std. cell (1.01861V), Gal-	SOURCE AND PURITY OF MATERIALS: Analytical reagent HC10 ₄ , BaCl ₂ , HC1, Ba(OH) ₂ ; pre- pared solutions of Hg ₂ (C10 ₄) ₂ by dissolving HgO in HC10 ₄ , recrystallizing twice from di- lute HC10 ₄ , and reducing with Hg under CO ₂ atmosphere, and keeping it with CO ₂ and Hg. Prepared Hg ₂ Cl ₂ by anodic dissolution of Hg in dilute HC1, washing with HC1 and H ₂ O and drying. Ba(C10 ₄) ₂ prepared by dissolving Ba(OH) ₂ in HC10 ₄ .	
vanometer readable to 0.2 mA, permitting precision of ± 0.1 mV (at $45^{\circ}C \pm 0.2$ mV). Tem- perature regulated to $\pm 0.02^{\circ}C$. Electrodes prepared according to Hilles and Ives ¹ . De- oxygenated N ₂ bubbled through solutions or kept above them for removal of 0 ₂ .	ESTIMATED ERROR: The precision of log K_{S0}° is ±0.003, while the accuracy is within ±0.014. REFERENCES: 1. Hills, G.J., Ives, D.J.G., J. Chem. Soc. (1951) <u>154</u> , 311.	

5.14. Data of Hansen, Izatt and Christensen (1963)

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Mercury(I) chloride, Hg₂Cl₂ (10112-91-1) Sodium chloride, NaCl (7647-14-5) 	Hansen, L.D., Izatt, R.M., Christensen, J.J Inorg. Chem. (1963) <u>2</u> , 1243.
3. Sodium perchlorate, NaClO _{λ} (7601-89-0)	
4. Water, H ₂ O (7732-18-5)	
2	
VARIABLES:	PREPARED BY:
Two temperatures, constant ionic strength, variable NaCl concentration.	Y. Marcus, January 1978
EXPERIMENTAL VALUES:	
Measured e.m.f. of cells (M = mol dm^{-3})	
Hg,Hg ₂ Cl ₂ (s)/NaClO ₄ 0.40M, HClO ₄ 0.1M/H	lg ₂ (C10 ₄) ₂ bM, NaC10 ₄ (0.40-3b)M,
HC10 ₄ 0.10M/Hg	-2 4 2 4
	da Cl (c) NoCl an NoClO (0.40 a)M
Hg,Hg ₂ Cl ₂ (s)/NaClO ₄ 0.40M, HClO ₄ 0.1M/H	$m_2 c_2(s)$, Naci cm, Nacio ₄ (0.40-c)M,
HC10 ₄ 0.10M/Hg	
No primary data reported, only final resul	ts of calculations:
$\log \kappa'_{SQ} = -18.19$ at 7°C $\log \kappa'_{SQ} = -16$.16 at 40°C
valid for 0.40M NaClO ₄ + 0.10M HClO ₄ medium	
closely those of Jonsson, Qvarfort and Sil	
coefficient term for 0.49M NaClO ₄ +0.01M HC	10_{A} at 25°C is taken to be valid also for
0.40M NaClO_4 +0.10M HClO $_4$ medium at 7 and 4	0°C, then
0.40M NaCl0 ₄ +0.10M HCl0 ₄ medium at 7 and 4 log κ_{S0}° = -19.24 at 7°C log κ_{S0}° = -1	
$\log x_{S0}^{\circ} = -19.24 \text{ at } 7^{\circ}\text{C}$ $\log x_{S0}^{\circ} = -1$	
$\log x_{S0}^{\circ} = -19.24 \text{ at } 7^{\circ}\text{C}$ $\log x_{S0}^{\circ} = -1$	7.21 at 40°C
$\log K_{S0}^{\circ}$ = -19.24 at 7°C $\log K_{S0}^{\circ}$ = -1	7.21 at 40°C
$\log \kappa_{SO}^{\circ} = -19.24 \text{ at } 7^{\circ}\text{C} \qquad \log \kappa_{SO}^{\circ} = -1$ AUXILIARY METHOD: Procedure of measurement similar to that in ref. 1, except that E° for Hg/Hg2 ²⁺ ob- tained from the appropriate concentration cell, rather than from titration, while E° for Hg/Hg2Cl2-2Cl ⁻ obtained from titration of freshly precipitated Hg2Cl2 with excess	7.21 at 40°C INFORMATION SOURCE AND PURITY OF MATERIALS: Solutions of HClO ₄ , NaClO ₄ and NaCl pre- pared from commercial reagents of highest purity. Hg ₂ (ClO ₄) ₂ solutions prepared by equilibrating Hg, HgO and HClO ₄ and fil- tration. ESTIMATED ERROR: Precision given by author: on log κ_{50} is ±0.007. Precision for log κ_{50} due to uncertainty in activity coefficient term is ±0.08.
$\log \kappa_{SO}^{\circ} = -19.24 \text{ at } 7^{\circ}\text{C} \qquad \log \kappa_{SO}^{\circ} = -1$ AUXILIARY METHOD: Procedure of measurement similar to that in ref. 1, except that E° for Hg/Hg2 ²⁺ ob- tained from the appropriate concentration cell, rather than from titration, while E° for Hg/Hg2Cl2-2Cl ⁻ obtained from titration of freshly precipitated Hg2Cl2 with excess	7.21 at 40°C INFORMATION SOURCE AND PURITY OF MATERIALS: Solutions of HClO ₄ , NaClO ₄ and NaCl pre- pared from commercial reagents of highest purity. Hg2(ClO ₄) ₂ solutions prepared by equilibrating Hg, HgO and HClO ₄ and fil- tration. ESTIMATED ERROR: Precision given by authors on log x ¹ ₂ O is ±0.007. Precision for log x ² ₅ O due to uncertainty in activity coefficient term is ±0.08. REFERENCES:
$\log \kappa_{SO}^{\circ} = -19.24 \text{ at } 7^{\circ}\text{C} \qquad \log \kappa_{SO}^{\circ} = -1$ AUXILIARY METHOD: Procedure of measurement similar to that in ref. 1, except that E° for Hg/Hg2 ²⁺ ob- tained from the appropriate concentration cell, rather than from titration, while E° for Hg/Hg2Cl2-2Cl ⁻ obtained from titration of freshly precipitated Hg2Cl2 with excess	7.21 at 40°C INFORMATION SOURCE AND PURITY OF MATERIALS: Solutions of HClO ₄ , NaClO ₄ and NaCl pre- pared from commercial reagents of highest purity. Hg ₂ (ClO ₄) ₂ solutions prepared by equilibrating Hg. HgO and HClO ₄ and fil- tration. ESTIMATED ERROR: Precision given by author on log K ¹ ₂ O is [±] 0.007. Precision for log K ² _{SO} due to uncertainty in activity coefficient term is [±] 0.08.
$\log \kappa_{SO}^{\circ} = -19.24 \text{ at } 7^{\circ}\text{C} \qquad \log \kappa_{SO}^{\circ} = -1$ AUXILIARY METHOD: Procedure of measurement similar to that in ref. 1, except that E° for Hg/Hg2 ²⁺ ob- tained from the appropriate concentration cell, rather than from titration, while E° for Hg/Hg2Cl2-2Cl ⁻ obtained from titration of freshly precipitated Hg2Cl2 with excess	7.21 at 40°C INFORMATION SOURCE AND PURITY OF MATERIALS: Solutions of HClO ₄ , NaClO ₄ and NaCl prepared from commercial reagents of highest purity. Hg ₂ (ClO ₄) ₂ solutions prepared by equilibrating Hg. HgO and HClO ₄ and filtration. ESTIMATED ERROR: Precision given by author: on log K ¹ ₂ O is [±] 0.007. Precision for log K [*] ₂ O is [±] 0.08. REFERENCES: 1. Jonsson, A., Qvarfort, I., Sillèn, L.G.,

5.15.	Other	data
-------	-------	------

COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Mercury(I) chloride, Hg ₂ Cl ₂ (10112-91-1)	Unknown ¹
2. Water, H ₂ O (7732-18-5)	
2 10 20 (1) 20 (1) 20 2)	
·	
VARIABLES:	PREPARED BY:
Three temperatures	Y. Marcus, January 1978
EXPERIMENTAL VALUES:	
The solubility of Hg_2Cl_2 in water given as	
t/°C 0 20 40	
$10^{6}s_{Hg}/mo1 kg^{-1}$ 3.0 4.9 12.7	
, , , , , , , , , , , , , , , , , , ,	
The solubility product is reported as 2×10	$^{-18}$ mol ² kg ⁻² at 25°C
AUXILIARY	INFORMATION
ME THOD :	SOURCE AND PURITY OF MATERIALS:
The report appears in a compilation ¹	
The report appears in a compilation ¹ which does not give its sources.	
	ESTIMATED ERROR:
	REFERENCES:
	1. Freier, R.K., Aqueous Solutions, de
	Gruyter, Berlin (1976), p. 68.