Energy levels of nickel, Ni I through Ni XXVIII

Cite as: Journal of Physical and Chemical Reference Data **10**, 197 (1981); https:// doi.org/10.1063/1.555638 Published Online: 15 October 2009

Charles Corliss, and Jack Sugar

Energy levels of sodium Na I through Na XI Journal of Physical and Chemical Reference Data **10**, 153 (1981); https:// doi.org/10.1063/1.555637

Handbook of Basic Atomic Spectroscopic Data Journal of Physical and Chemical Reference Data **34**, 1559 (2005); https:// doi.org/10.1063/1.1800011

Energy Levels of Zinc, ZnI through ZnXXX Journal of Physical and Chemical Reference Data 24, 1803 (1995); https:// doi.org/10.1063/1.555971

Where in the world is AIP Publishing? Find out where we are exhibiting next

Journal of Physical and Chemical Reference Data 10, 197 (1981); https://doi.org/10.1063/1.555638 © 1981 American Institute of Physics for the National Institute of Standards and Technology.

Energy Levels of Nickel, Ni I through Ni XXVIII

Charles Corliss and Jack Sugar

National Measurement Laboratory, National Bureau of Standards, Washington, D.C. 20234

The energy levels of the nickel atom in all of its stages of ionization, as derived from the analyses of atomic spectra, have been critically compiled. In cases where only line classifications are reported in the literature, level values have been derived. Electron configurations, term designations, *J*-values, experimental *g*-values, and ionization energies are included.

Contents

Key Words: Atomic energy levels; atomic spectra; nickel energy levels.

	Page
Introduction	197
Energy Level Tables	200
Ni 1	200
Ni II	206
Ni 111	224
Ni IV	234
Ni v	241
Ni vi	250
Ni VII	258
Ni viii	260
Ni IX	262
Ni x	264
Ni x1	266
Ni XII	268
Ni XIII	270

Introduction

At the time of the compilation of atomic energy levels by Bacher and Goudsmit in 1932, only the first 2 of the 28 spectra of nickel had been studied. By 1952, Moore was able to compile levels for nine spectra of nickel. At that time, oxygen was the heaviest atom for which some levels of all stages of ionization were known. Today energy levels and ionization potentials are available for every stage of ionization of nickel. This is the result of the development of more energetic light sources, which was stimulated by the need to interpret new spectroscopic observations of the sun at short wavelengths from rocket and satellite-borne spectrographs. A new impetus for the interpretation of spectra of highly-ionized atoms has arisen from the investigation of hot laboratory plasmas generated to achieve nuclear fusion.

These activities have produced a substantial increase in spectroscopic information and have made the earlier compilations of energy levels inadequate. The NBS Atomic

	Page
Ni XIV	. 271
Ni xv	. 272
Ni XVI	. 273
Ni XVII	. 274
Ni XVIII	. 276
Ni XIX	. 278
Ni xx	. 280
Ni XXI	. 281
Ni XXII	. 282
Ni XXIII	. 283
Ni XXIV	. 284
Ni xxv	. 285
Ni XXVI	. 286
Ni xxvII	. 287
Ni xxviii	. 289

Energy Levels Data Center has undertaken the preparation new compilations of energy levels, the program at press dealing with the elements through nickel (Z=28). T material on each atom and its ions is being published separately. The compilations for iron by Reader and Sugar (1975); calcium, chromium, scandium, and vanadium by Sugar and Corliss (1979, 1977, 1980, 1978); manganese, titanium, and potassium by Corliss and Sugar (1977, 1979a, 1979b); and aluminum and magnesium by Martin and Zalubas (1979, 1980) have been published. The present work will be followed by similar investigations of the energy levels of cobalt and sodium. Later it is planned to prepare a single volume including the separate papers on the elements potassium through nickel (Z=19-28).

The present compilation comprises the energy levels of the nickel atom and all of its ions, as derived from analyses of atomic spectra. Although generally we used only published papers as sources of data, unpublished data have been included when they constituted a substantial improvement over material in the literature. Where only classifications of observed lines are given, we have derived the level values.

Ionization energies found in the literature are usually given in eV or in cm⁻¹. The conversion factor

^{© 1981} by the U.S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society.

 8065.479 ± 0.021 cm⁻¹/eV, given by Cohen and Taylor (1973), is used here.

In a few cases where Rydberg series were available but the ionization energy was not derived, we carried out the calculation. For a large number of ions, no suitable series are known. In these cases we have quoted values obtained by Lotz (1967) by a method of successive differences along isoelectronic sequences. The uncertainty in these values is estimated to be 1 to 10 units in the last significant figure given.

Nearly all of the data are the result of observations of various types of laboratory light sources. However, they are sometimes supplemented by data obtained from solar observations. This is particularly true where spin-forbidden lines are needed to establish the absolute energy of a system of excited levels and also where parity-forbidden transitions between levels of a ground configuration are used to obtain accurate relative energies for the low levels. Whenever both solar data and equivalent laboratory data are available, preference is generally given to the laboratory measurements in order to avoid the problem of blended lines of various elements in the solar spectrum.

When no observations are available to connect independent systems of levels, an estimate of the connecting energy is frequently made. Those level values affected by the estimate are denoted by +x following the value. The value of x is the systematic error of the estimate. For Ni XXVII and Ni XXVIII, which are isoelectronic with He I and H I, respectively, we give only calculated level values since they are more accurate than experimental x-ray wavelengths from which level values may be obtained.

For convenient general sources of wavelengths of nickel lines we refer the reader to the compilation by Kelly and Palumbo (1973) for wavelengths below 2000 Å, to the tables of spectral lines in the CRC Handbook of Chemistry and Physics (1979) and to Meggers, Corliss, and Scribner (1975).

We have included under the heading "Leading Percentages" the results of calculations that express the percentage composition of levels in terms of the basis states of a single configuration, or more than one configuration where configuration interaction has been included. Where these results contradict a designation derived from observation, and the calculation appears to be reliable, we have accepted the theoretical term-designation of a level to conform with its calculated leading percentage. In cases where the leading percentage is low, no designation is given.

In the columns of the present tables headed "Leading percentages" we give first the percentage of the basis state corresponding to the term name (when a designation is given); next the second largest percentage together with the related basis state. Sometimes the leading component in an alternative coupling scheme is given.

Of course, the percentage compositions cannot be considered to be as reliable as experimental quantities inasmuch as a new calculation based on a different approximation, such as the introduction of configuration interaction where none had been used before, might yield a different set of percentages. For some levels the percentages may change drastically in a new calculation. In the present tables, the percentages are taken mostly from published level-fitting calculations derived by least squares. When only *ab initio* calculations are found in the literature, we have used them if there appears to be a reasonable correspondence with the experimental data.

For configurations of equivalent d electrons, repeating terms of the same LS type may occur. These are theoretically distinguished by their seniority number. In the present compilation they are designated in the notation of Nielson and Koster (1963). For example, in the $3d^5$ configuration there are three ²D terms with seniorities of 1, 3, and 5. These terms are denoted as ²D1, ²D2, and ²D3, respectively, by Nielson and Koster. Martin, Zalubas, and Hagan (1978) give a complete summary of the coupling notations and conventions used here. The prefixing of terms by lower case letters (for example a ⁵D, z ⁵G, etc.) has been dropped except for Ni I, where their use in connection with various wavelength tables makes their retention desirable.

In assembling the data for each spectrum, we referred to the following bibliographies:

- i. papers cited by Moore (1952)
- ii. C. E. Moore (1969)
- iii. L. Hagan and W. C. Martin (1972)
- iv. L. Hagan (1977)
- v. card file of publications since June 1975 maintained by the NBS Atomic Energy Levels Data Center.

A selection of data was made that, in our judgment, represents the most accurate and reliable available. The text for each ion is not always a complete review of the literature but includes the major contributions. This compilation is derived from all material available to us as of October 1979.

Acknowledgments

Throughout this work we have made extensive use of the bibliographical files and reprint collection maintained in the Atomic Energy Levels Data Center by R. Zalubas and A. Albright. Our thanks are extended to them for generous cooperation. The compilation has also benefited greatly from the preprints that were provided by many of our colleagues.

We thank W. C. Martin for a critical reading of the manuscript.

This work was partially supported by the U.S. Department of Energy, Division of Magnetic Fusion Energy, and the National Aeronautics and Space Administration, Astrophysics Division.

References for Introduction

- Bacher, R. F., and Goudsmit, S. (1932), Atomic Energy States, (McGraw-Hill Book Co., N.Y.).
- Cohen, E. R., and Taylor, B. N. (1973), J. Phys. Chem. Ref. Data 2, 663.
- Corliss, C., and Sugar, J. (1977), Energy Levels of Manganese, Mn 1 through Mn XXV, J. Phys. Chem. Ref. Data 6, 1253.
- Corliss, C., and Sugar, J. (1979a), Energy Levels of Titanium, Ti 1 through Ti XXII, J. Phys. Chem. Ref. Data 8, 1.
- Corliss, C., and Sugar, J. (1979b), Energy Levels of Potassium; K t through K xix, J. Phys. Chem. Ref. Data 8, 1109.

- CRC Handbook of Chemistry and Physics (1979), p.E-217, Line Spectra of the Elements, Ed. by J. Reader and C. H. Corliss (CRC Press, Inc., Boca Raton, Fla.)
- Hagan, L. (1977), Bibliography on Atomic Energy Levels and Spectra, July 1971 through June 1975, Nat. Bur. Stand. (U.S.) Spec. Publ. 363, Suppl. 1 (U.S. Gov't Printing Office, Washington, D.C.).
- Hagan, L., and Martin, W. C. (1972), Bibliography on Atomic Energy Levels' and Spectra, July 1968 through June 1971, Nat. Bur. Stand. (U.S.) Spec. Publ. 363 (U.S. Gov't Printing Office, Washington, D.C.).
- Kelly, R. L., and Palumbo, L. J. (1973), Atomic and Ionic Emission Lines Below 2000 Angstroms-Hydrogen Through Krypton, NRL Report 7599 (U.S. Gov't Printing Office, Washington, D.C.).
- Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.
- Martin, W. C., and Zalubas, R. (1979), Energy Levels of Aluminum, Al 1 through Al XIII, J. Phys. Chem. Ref. Data 8, 817.
- Martin, W. C., Zalubas, R., and Hagan, L. (1978), Atomic Energy Levels— The Rare Earth Elements, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 60.
- Martin, W. C., and Zalubas, R. (1980), Energy Levels of Magnesium, Mg 1 through Mg XII, J. Phys. Chem. Ref. Data 9, 1.
- Meggers, W. F., Corliss, C. H., and Scribner, B. F. (1975), Nat. Bur. Stand. Monogr. 145.

- Moore, C. E. (1952), Atomic Energy Levels, Nat. Bur. Stand. (U.S.) Circ. 467, Vol. II (reissued as Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 35).
- Moore, C. E. (1969), Bibliography on the Analysis of Optical Atomic Spectra, Section 2, Nat. Bur. Stand. (U.S.), Spec. Publ. 306-2 (U.S. Gov't Printing Office, Washington, D.C.).
- Nielson, C. W., and Koster, G. F., Spectroscopic Coefficients for the pⁿ, dⁿ, and fⁿ Configurations, 275 pp. (M.I.T. Press, Cambridge, Mass., 1963).
- Reader, J., and Sugar, J. (1975), Energy Levels of Iron, Fe 1 through Fe XXVI, J. Phys. Chem. Ref. Data 4, 353.
- Sugar, J., and Corliss, C. (1977), Energy Levels of Chromium, Cr 1 through Cr XXIV, J. Phys. Chem. Ref. Data 6, 317.
- Sugar, J., and Corliss, C. (1978), Energy Levels of Vanadium, V1 through V XXIII, J. Phys. Chem. Ref. Data 7, 1191.
- Sugar, J., and Corliss, C. (1979), Energy Levels of Calcium, Ca 1 through Ca XX, J. Phys. Chem. Ref. Data 8, 865.
- Sugar, J., and Corliss, C. (1980), Energy Levels of Scandium, Sc 1 through Sc XX1, J. Phys. Chem. Ref. Data 9, 473.

Energy Level Tables

Niı

Z = 28

Ground state: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2 {}^3F_a$

Ionization energy = $61\ 600\pm10\ \mathrm{cm}^{-1}\ (7.6375\pm0.0012\ \mathrm{eV})$

The analysis of this spectrum is by Russell (1929), with a few changes of interpretation taken from recent theoretical studies. No energy levels have been found since his work 50 years ago. He outlined the previous work in his paper and increased the number of classified lines from 622 to 1071. His line list extends from 1963 to 18 040 Å.

The spectrum was reobserved by Burns and Sullivan (1947, 1948) from a vacuum arc with a Fabry-Perot interferometer. Three decimal place wavelengths were measured from 2173 to 8968 Å. From these they derived the three decimal place energy levels. Except for 10 level values retained from Russell, their values are given here. In the course of their work they measured about 400 lines not previously observed.

The five place g-values from the three lowest terms are from Childs, Fred, and Goodman (1966), Childs and Goodman (1968), and Childs and Greenebaum (1972). The three place g-values are from measurements of M.I.T. Zeeman patterns reported by Lindsley (1942). The remaining (two place) values are from Marvin and Baragar (1933) or Dijkstra (1937).

The composition of the levels of $3d^84s^2$ and $3d^94s$ was calculated with configuration interaction by Childs, Fred, and Goodman.

All of the known odd levels arise from the configurations $3d^94p$, $3d^84s4p$, and $3d^95p$. Roth (1970) calculated the composition of the levels of these configurations. His identifications and compositions are given here for all the odd terms. Of the 35 odd terms given here, 18 are unchanged from Russell's paper and 17 are from Roth. The original letter prefixes have been retained for older designations.

The ionization energy was determined from the three member $3d^9ns$ series by means of a Ritz formula giving the value 61 579 cm⁻¹. We have added a correction of 21 cm⁻¹ obtained from comparison with a corresponding longer *ns*-series in Cu 1.

References

Burns, K., and Sullivan, F. (1947), Science Studies St. Bonaventure College 13, No. 3; (1948), ibid. 14, No 3.

Childs, W. J., Fred, M., and Goodman, L. S. (1966), Phys. Rev. 141, 44.

Childs, W. J., and Goodman, L. S. (1968), Phys. Rev. 170, 136.

Childs, W. J., and Greenebaum, B. (1972), Phys. Rev. 6A, 105.

Dijkstra, H. (1937), Physica IV, 81.

Lindsley, C. H. (1942), J. Opt. Soc. Am. 32, 94.

Marvin, H. H., and Baragar, A. E. (1933), Phys. Rev. 43, 973.

Roth, C. (1970), J. Res. Nat. Bur. Stand. 74A, 715.

Russell, H. N. (1929), Phys. Rev. 34, 821.

Configuration	Term a ³ F	J	Level (cm ⁻¹)	g	Leading percentages				
$3d^8 4s^2$		$\alpha^{3}F$ 4 0.000	0.000	1.24965					
		3	1 332.153	1.08280			1		
		2	2 216.519	0.66956	95	1	¹ D		
$3d^{9}(^{2}\mathrm{D})4s$	a ⁸ D	3	204.786	1.33354					
	<i>w D</i>	2	879.813	1.15105	91	9	¹ D		
		1	1 713.080	0.49804					
$3d^9(^2\mathrm{D})4s$	a ¹ D	2	3 409.925	1.01297	89	9	³ D		
$3d^8 4s^2$	<i>b</i> ¹ D	2	13 521.352	1,143	70	26	³ P		
$3d^{10}$	<i>a</i> ¹ S	0	14 728.847						
$3d^8 4s^2$	$a^{3}P$	2	15 609.861	1.356	71	25	¹ D		
		1	15 734.018	1.497					
		0	16 017.317						
$3d^8 4s^2$	a ¹ G	4	22 102.349	0.99					

Ni 1

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages				
3d ⁸ (³ F)4s4p(³ P°)	z ⁵ D°	4 3 2 1 0	25 753.578 26 665.903 27 414.893 27 943.543 28 212.997	1.51 1.495 1.494 1.486	96 94 94 95 96					
3d ⁸ (³ F)4s4p(³ P°)	z ⁵ G°	6 5 4 3 2	27 260.891 27 580.411 28 068.091 28 578.046 29 013.228	1.32 1.276 1.171 0.945 0.364	100 88 87 90 96	10 8 6	°न् ^ट °न्द ^ट °न्द ^ट			
3d ⁸ (³ F)4s4p(³ P°)	z ⁵ F°	5 4 3 2 1	28 542.113 29 084.478 29 832.810 30 163.140 30 392.052	1.377 1.288 1.208 0.985 0.006	90 76 84 72 97	8 9 5 9	$3d^{8}({}^{3}\mathrm{F})4s4p({}^{3}\mathrm{P}^{\circ}) {}^{5}\mathrm{G}^{\circ}$ $3d^{9}({}^{2}\mathrm{D})4p {}^{3}\mathrm{F}^{\circ}$ $3d^{8}({}^{3}\mathrm{F})4s4p({}^{3}\mathrm{P}^{\circ}) {}^{5}\mathrm{G}^{\circ}$ $3d^{9}({}^{2}\mathrm{D})4p {}^{3}\mathrm{D}^{\circ}$			
3d ⁹ (² D)4p	z ³ P°	2 1 0	28 569.210 29 500.690 30 192.268	1.485 1.426	91 87 96	4 5	3d ⁹ (² D)4p ³ D°			
$3d^{9}(^{2}\mathrm{D})4p$	z ³ F°	3 4 2	29 320.782 29 481.020 30 619.440	1.086 1.287 0.740	48 79 72	27 12 10	$3d^9(^2\mathrm{D})4p\ ^1\mathrm{F^o}\ 3d^8(^3\mathrm{F})4s4p(^3\mathrm{P^o})\ ^5\mathrm{F^o}\ 3d^8(^3\mathrm{F})4s4p(^3\mathrm{P^o})\ ^3\mathrm{F^o}$			
$3d^{9}(^{2}\mathrm{D})4p$	z ³ D°	3 1	29 668.918 30 912.838	$1.300 \\ 0.552$	59 59	24 30	3d ⁸ (³ F)4s4p(³ P°) ³ D°			
$3d^8({}^3\mathrm{F})4s4p({}^3\mathrm{P}^\circ)$		2	29 888.505	1.044	28 ³ D	° 22	$3d^8({}^3\mathrm{F})4s4p({}^3\mathrm{P^\circ})\;{}^5\mathrm{F^\circ}$			
$3d^8(^3\mathrm{F})4s4p(^3\mathrm{P}^\circ)$	z ³ G°	5 4 3	30 922.763 30 979.789 31 786.210	1.214 1.052 0.761	96 91 95					
$3d^9(^2\mathrm{D})4p$	z ${}^{1}\mathrm{F}^{\circ}$	3	31 031.042	1.048	52	34	$3d^9(^2\text{D})4p\ ^3\text{F}^\circ$			
$3d^9(^2\mathrm{D})4p$	z ¹ D°	2	31 441.665	1.060	61	17	$3d^9(^2D)4p \ ^3D^{\circ}$			
$3d^8({}^3\mathrm{F})4s4p({}^3\mathrm{P}^\circ)$	³ F°	4	32 973.414	1.222	86					
		3 2	33 112.368 34 163.294	1.193 0.859	43 49	29 35	$3d^8({}^3\mathrm{F})4s4p({}^3\mathrm{P^\circ}) \; {}^3\mathrm{D^\circ}$ $3d^8({}^3\mathrm{F})4s4p({}^3\mathrm{P^\circ}) \; {}^3\mathrm{D^\circ}$			
$3d^9(^2\mathrm{D})4p$	z ¹ P°	1	32 982.280	1.005	95					
$3d^8({}^3\mathrm{F})4s4p({}^3\mathrm{P}^\circ)$	³ D°	3 1	33 500.854 34 ¤ 408.574	1.198 0.511	45 69	32 27	$3d^8(^3F)4s4p(^3P^\circ) \ ^3F^\circ 3d^9(^2D)4p \ ^3D^\circ$			
$3d^8(^3\mathbf{F})4s4p(^3\mathbf{P}^\circ)$	z ¹ G°	4	33 590.159	1.035	72	13	$3d^{8}(^{3}\text{F})4s4p(^{1}\text{P}^{\circ}) \ ^{3}\text{G}^{\circ}$			
$3d^8(^3\mathrm{F})4s4p(^3\mathrm{P}^\circ)$		2	33 610.916	0.973	39 ³ F°	31	$3d^{8}({}^{3}\mathrm{F})4s4p({}^{3}\mathrm{P}^{\circ}) \;{}^{3}\mathrm{D}^{\circ}$			
$3d^8(^3\mathrm{F})4s4p(^3\mathrm{P}^\circ)$	y ¹ F°	3	35 639.148	1.013	84	10	3d ⁸ (³ F)4s4p(³ P°) ³ F°			
$3d^8(^3\mathrm{F})4s4p(^3\mathrm{P}^\circ)$	y ¹ D°	2	36 600.805	1.013	82	8	$3d^{9}(^{2}\mathrm{D})4p^{-1}\mathrm{D}^{\circ}$			

Ni I-Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading	g percentages
$3d^8(^{3}P)4s4p(^{3}P^{\circ})$	⁵ P°	3 2	40 361.254 40 484.282		90 92	8	$3d^{8}(^{1}\mathrm{D})4s4p(^{3}\mathrm{P}^{\circ})^{-3}\mathrm{D}^{\circ}$
$3d^{8}(^{1}\text{D})4s4p(^{3}\text{P}^{\circ})$	³ F°	4	42 585.296	1 346	53	30	$3d^8({}^{3}\mathbf{P})4e4n({}^{3}\mathbf{P}^{\circ}) {}^{5}\mathbf{D}^{\circ}$
		3	42 767.900	1 218	66	90	500 (1) 15 1p (1) D
		2	42 954.234	0.840	80	2.0	
$3d^9(^2D)5s$	e ³ D	3	42 605.964	1.34			
		. 2	42 790.027	1.085			
		1	44 112.192				
$3d^{8}(^{1}\text{D})4s4p(^{3}\text{P}^{\circ})$	³ D°	3	42 621.048		41	39	$3d^8({}^3\mathrm{F})4_84_9({}^1\mathrm{P}^\circ){}^3\mathrm{D}^\circ$
		2	42 653.723		68	12	
		1	42 656.317	1.320	75	10	
$3d^8({}^3\mathrm{F})4s4p({}^1\mathrm{P}^\circ)$	³ G°	5	43 089.636	1.226	100		
		4	44 314 980	1 182	79	94	$3d^8(^3F)/(dn(^1D^{\circ}))^3F^{\circ}$
		3	44 565.10	1.044	91	24	5 <i>u</i> (r)484 <i>p</i> (r) r
$3d^8({}^3\mathrm{F})4s4p({}^1\mathrm{P}^\circ)$	³ F°	4	43 258 792	1 947	96	90	$3d^8({}^1\mathbf{D})/adm({}^3\mathbf{D}^{\circ})$
	-	3	45 281 152	0 770	77	30	$ou(D)$ 484 $p(\Gamma)$
		2	45 418 858	0.677	96		
		_	40 410.000	0.011	80		
$3d^{\circ}(^{1}D)4s4p(^{3}P^{\circ})$	°P°	1	43 464.019	1.390	59	23	$3d^{8}(^{3}P)4s4p(^{3}P^{\circ})^{3}P^{\circ}$
		2	43 933.428	1.476	44	27	$3d^{8}(^{3}\text{P})4s4p(^{3}\text{P}^{\circ})$ ⁵ D°
$Bd^{8}(^{3}\mathrm{F})4s4p(^{1}\mathrm{P}^{\circ})$	³ D°	3	43 654.974	1.243	34	29	$3d^{8}(^{1}\text{D})4s4p(^{3}\text{P}^{\circ})^{-3}\text{D}^{\circ}$
		2	44 475.158	1.155	56	15	$3d^{8}(^{1}\text{D})4s4p(^{3}\text{P}^{\circ})^{3}\text{D}^{\circ}$
		1	45 122.460	0.566	67	11	$3d^{8}(^{3}P)4s4p(^{3}P^{\circ})^{3}D^{\circ}$
$3d^8(^{3}\mathrm{P})4s4p(^{3}\mathrm{P}^{\circ})$	${}^{5}D^{\circ}$	3	44 206.185		58	17	$3d^{8}(^{1}\mathrm{D})4s4p(^{3}\mathrm{P}^{\circ})$ $^{3}\mathrm{D}^{\circ}$
$3d^9(^2\mathrm{D})5s$	e ¹ D	2	44 262.619	1.09			
$3d^8(^{3}\text{P})4s4p(^{3}\text{P}^{\circ})$		4	44 336.10		34	³ F° 30	$3d^{8}(^{3}\mathrm{F})4s4p(^{1}\mathrm{P}^{\circ})$ $^{3}\mathrm{F}^{\circ}$
$3d^{8}(^{3}P)4s4p(^{3}P^{\circ})$	$x {}^{8}P^{\circ}$	2	46 522.965		59	18	$3d^{8}(^{3}P)4s4p(^{3}P^{\circ})$ ⁵ S°
		1	47 208.228		47	19	$3d^{8}(^{3}P)4s4p(^{3}P^{\circ})^{3}D^{\circ}$
		0	47 686.625		63	30	$3d^{8}(^{1}\text{D})4s4p(^{3}\text{P}^{\circ})^{-3}\text{P}^{\circ}$
$3d^{8}(^{3}P)4s4p(^{3}P^{\circ})$	v ³ D°	3	47 030.148	1.331	90		
• • •		2	47 139.392	1.209	81		
4		1	47 424.830	0.726	66	14	$3d^8(^3P)4s4p(^3P^\circ)$ $^3P^\circ$
$3d^8(^{3}\mathrm{P})4s4p(^{3}\mathrm{P}^{\circ})$	⁵ S°	2	47 328.85		76	9	$3d^8(^{3}P)4s4p(^{3}P^{\circ}) ^{3}P^{\circ}$
$3d^8 4s({}^4\mathrm{F})5s$	e ${}^{5}\mathrm{F}$	5	48 466.530	1.40			
		4	49 086.030	1.33			
		3	49 777.619	1.23			
		2	50 346.477	0.95			
		1	50 744.593	0.20			
$3d^9(^2\mathrm{D})5p$	¹ F°	3	48 671.9		56	35	$3d^9(^2\mathbf{D})5p\ ^3\mathbf{F}^\circ$
$3d^9(^2\mathbf{D})5p$	${}^{3}\mathbf{F}^{\circ}$	4	48 715.2		84	13	$3d^{8}({}^{1}\mathrm{G})4s4p({}^{3}\mathrm{P}^{\circ}){}^{3}\mathrm{F}^{\circ}$
		2	50 039.18		57	30	$3d^{8}({}^{1}\text{G})4s4p({}^{3}\text{P}^{\circ}){}^{3}\text{F}^{\circ}$

Ni I-Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages			
$3d^{9}(^{2}\mathrm{D})5p$	w ³ P°	2 1 0	48 735.308 49 403.42 50 138.53		65 62 91	19 . 22 . 8	$3d^{9}(^{2}\mathrm{D})5p \ ^{1}\mathrm{D}^{\circ}$ $3d^{9}(^{2}\mathrm{D})5p \ ^{1}\mathrm{P}^{\circ}$ $3d^{8}(^{3}\mathrm{P})4s4p(^{3}\mathrm{P}^{\circ}) \ ^{3}\mathrm{P}^{\circ}$	
$3d^{8}(^{3}P)4s4p(^{3}P^{\circ})$	$^{1}\mathbf{P}^{\circ}$	1	48 817.6		83	6	3d ⁹ (² D)5p ¹ P°	
$3d^9(^2\mathrm{D})4d$	e ³ S	1	48 953.344	1.92				
$3d^8(^3P)4s4p(^3P^\circ)$	$^{1}D^{\circ}$	2	49 032.589		75	11	3d ⁹ (² D)5p ¹ D°	
$3d^9(^2\mathrm{D})4d$	e ³ G	5 4 3	49 158.529 49 174.811 50 677.599	$1.20 \\ 1.05 \\ 0.77$				
$3d^{9}(^{2}\mathrm{D})4d$	e ³ P	2 1 0	49 159.060 49 171.187 50 276.354	1.43 1.00				
$3d^9(^2\mathrm{D})5p$	$^{1}\mathbf{D}^{\circ}$	2	49 185.146		47	17	$3d^9(^2\mathrm{D})5p\ ^3\mathrm{P}^\circ$	
$3d^9(^2\mathrm{D})4d$	f ³ D	3 2 1	49 271.578 49 327.845 50 716.927	1.32 0.45	-			
$3d^{9}(^{2}\mathrm{D})4d$	e ³ F	3 4 2	49 313.851 49 332.643 50 834.435					
$3d^{9}(^{2}\mathrm{D})5p$	³ D°	3 2 1	49 327.56 50 689.490 50 851.22		59 69 80	14 11 10	${3d^9({}^2{ m D})5p} {}^1{ m F}^{\circ} \ {3d^9({}^2{ m D})5p} {}^1{ m D}^{\circ} \ {3d^8({}^3{ m F})4s4p}({}^1{ m P}^{\circ}) {}^3{ m D}^{\circ}$	
$3d^9(^2\mathrm{D})5p$		3	50 142.8		24	³ D° 23	3d ⁹ (² D)5p ³ F°	
$3d^9(^2\mathrm{D})5p$	$x {}^{1}P^{\circ}$	1	50 458.187		64	26	3d ⁹ (² D)5p ³ P°	
$3d^84s({}^4\mathrm{F})5s$	f ³ F	4 3 2	50 466.172 51 306.085 52 040.568	$1.27 \\ 1.08 \\ 0.67$				
$3d^9(^2\mathrm{D})4d$	e ¹ P	1	50 536.742	1.54				
$3d^9(^2\mathrm{D})4d$	e ¹ G	4	50 706.310	1.02				
$3d^9(^2\mathrm{D})4d$	$f^{1}\mathbf{D}$	2	50 754.137					
$3d^8({}^1\mathrm{G})4s4p({}^3\mathrm{P}^\circ)$	u ³ F°	4 3 2	50 789.5 51 124.8 51 343.80		81 61 57	12 27 32	3d ⁹ (² D)5p ³ F°	
$3d^9(^2\mathrm{D})4d$	e ¹ F	3	50 832.039					
$3d^8 4s^2$	e ¹ S	0	51 457.285					
3d ⁹ (² D)6s	g ³ D	3 2 1	52 197.482 52 271.716 53 703.899					

Ni 1—Continued

Configuration	Term	J	Level (cm ⁻¹)	Ë	Leading percentages
$3d^9(^2\mathrm{D})6\mathrm{s}$	g ¹ D	2	53 754.036		
$3d^8 4s(^2\mathbf{F})5s$	g ³ F	4 3 2	$54\ 237.136\\54\ 251.353\\55\ 873.78$	1.27 1.00	
$3d^9(^2\mathrm{D})5d$	$f^{3}S$	1	54 574.64		
$3d^9(^2\mathrm{D})5d$	f ³ G	5 4 3	54 659.759 54 667.928 56 172.704	1.03	
$3d^9(^2\mathrm{D})5d$	h ⁸ D	3 2	54 699.852 54 732.425		
$3d^9(^2\mathrm{D})5d$	h ³ F	4 3 2	$54\ 761.346\\54\ 772.940\\56\ 274.516$		
$3d^8 4s({}^2\mathrm{F})5s$	$f^{1}\mathbf{F}$	3	55 576.905	1.07	
$3d^9(^2\mathrm{D})5d$	f ¹ G	4	56 183.51		
$3d^9(^2\mathrm{D})5d$	g $^{1}\mathrm{F}$	3	56 262.92		
$3d^84s({}^4\mathrm{F})4d$	e ³ H	6 5 4	56 624.668 57 677.649 58 518.11		
$3d^84s({}^4\mathrm{F})4d$	ſ³₽	2 1 0	56 710.889 57 767.83 58 448.79		
$3d^8 4s({}^4\mathrm{F})4d$	i ³ F	4 3 2	56 766.523 57 968.08 58 629.84		
$3d^84s({}^4\mathrm{F})4d$	<i>g</i> ⁸ G	5 4 3	56 801.654 57 789.611 58 530.35		
$3d^84s({}^4\mathrm{F})4d$	e ⁵ P	3 2 1	56 821.553 57 586.7 58 525.507		
$3d^84s({}^4\mathrm{F})4d$	e ⁵ D	43	56 857.933 57 743.596		
3d ⁸ 4s(⁴ F)4d	e ⁵ H	7 6 5 4 3	56 885.249 57 762.106 58 520.923 59 039.693 59 188.78	1.26	
$3d^84s({}^4\mathrm{F})4d$	e ⁵ G	6 5 3 4 2	56 954.167 57 829.405 58 629.55 58 872.31 59 118.06		

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$3d^8 4s({}^4\mathrm{F})4d$	f⁵F	5 4 3 2 1	56 973.707 57 810.494 58 588.168 58 992.52 59 226.03		
$3d^84s({}^4\mathrm{F})4d$	i ⁸ D	3	57 103.946		
$3d^8 4s({}^4\mathrm{F})6s$	g ⁵ F	5	59 862.756		
Ni II (² D _{5/2})	Limit		61 600		
$3d^84s(^2\mathrm{F})4d$	j ${}^3\mathrm{F}$	4	61 832.47		
$3d^8 4s({}^2\mathrm{F})4d$	h $^{3}\mathrm{G}$	5	61 843.28		
$3d^8 4s(^2F) 4d$	f^{3} H	6	61 957.517		
$3d^84s({}^4\mathrm{F})5d$	f ⁵ H	7	62 782.614		
$3d^84s({}^4\mathrm{F})5d$	f ⁵ G	6	62 808.03		
$\frac{3d^8 4s({}^4\mathrm{F})5d}{}$	h ⁵ F	5	62 815.34		

ż

Ni 1—Continued

Z = 28

Co I isoelectronic sequence

Ground state: 1s²2s²2p⁶3s²3p⁶3d⁹ ²D_{5/2}

Ionization energy = 146541.56 ± 0.2 cm⁻¹ (18.16898 ± 0.00005 eV)

This compilation is based on the very extensive analysis of Shenstone (1970, 1971) with recent unpublished additions to $4d^85g$. He has observed 4300 lines between 700 and 10 000 Å with the hollow cathode and has established 320 even and 336 odd levels. The low configurations $3d^84s$ and $3d^74s^2$ are nearly complete. Long series in $3d^8ns$, nd, nf, and ng were observed. About half of the levels of the complex configuration $3d^74s4p$ are known.

The Zeeman effect data are from observations at M.I.T. reported by Lindsley (1942).

The leading percentages given here for the levels of $3d^84p$ were calculated by Roth (1969). Those for $3d^85p$ and $3d^74s4p$ are from Shadmi and Caspi (1972). These authors give percentages only for cases where the coupling is not pure. Repeating terms of the $3d^7$ parent configuration are distinguished by alphabetic prefixes. In these cases the percentage includes the sum over all contributing seniority states.

We have calculated the compositions of $3d^84s$, 5s, 4d, 5d, 4f, 5f, 6f, 5g, 6g and $3d^74s^2$ and give the leading percentages.

Shenstone found the limits of the $3d^8ns$ and nd series at 146 532.0 cm⁻¹ and of the ng series at 146 541.56 cm⁻¹. He has adopted the latter limit, which is used here.

References

Lindsley, C. H. (1942), J. Opt. Soc. Am. **32**, 387.

Roth, C. (1969), J. Res. Nat. Bur. Stand. **73A**, 125. Shadmi, Y., and Caspi, E. (1972), J. Res. Nat. Bur. Stand. **76A**, 125. Shenstone, A. G. (1970), J. Res. Nat. Bur. Stand. **74A**, 801.

Shenstone, A. G. (1971), J. Res. Nat. Bur. Stand. 75A, 335.

Configuration	Term	J	J Level (cm ⁻¹)	g	Leading percentages			
3 <i>d</i> ⁹	$^{2}\mathbf{D}$	⁵ /2 ³ /2	0.00 1 506.94					
$3d^8(^3\mathrm{F})4s$	⁴ F	9/2 7/2 5/2 3/2	8 393.90 9 330.04 10 115.66 10 663.89	$1.355 \\ 1.244 \\ 1.023 \\ 0.397$	100 98 99 99	2 1 1	(³ F) ² F (³ F) ² F (¹ D) ² D	
$3d^8({}^3\mathrm{F})4s$	${}^{2}\mathbf{F}$	7/2 5/2	13 550.39 14 995.57	$\begin{array}{c}1.141\\0.866\end{array}$	98 98	2 1	(³ F) ⁴ F (¹ D) ² D	
3d ⁸ (³ P)4s	⁴ P	5/2 3/2 1/2	23 108.28 24 788.20 24 835.93	1.428 2.667	54 78 100	46 22	(¹ D) ² D	
$3d^{8}(^{1}\mathrm{D})4s$	$^{2}\mathrm{D}$	³ / ₂ ⁵ / ₂	23 796.18 25 036.38	1.045 1.368	75 53	22 46	(³ P) ⁴ P	
$3d^8(^3\mathrm{P})4s$	$^{2}\mathrm{P}$	³ / ₂ ¹ / ₂	29 070.93 29 593.46	1.322 0.670	97 100	3	(¹ D) ² D	
$3d^8({}^1\mathrm{G})4s$	² G	9/2 7/2	32 499.53 32 523.54	1.135 0.895	100 100			
$3d^7 4s^2$	${}^{4}\mathbf{F}$	9/2 7/2 5/2 3/2	51 045.46 52 205.95 53 037.93 53 601.19		100 100 100 100			

Ni 11

Ni 11-Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lead	ing percentages	M
$3d^8({}^3\mathrm{F})4n$	4D°	7/2	51 557 85	1.420	94			
ou (1) 4p	Ľ	5/	59 798 45	1 365	03			
		3/	59 691 60	1 1 1 9 6	04		(⁸ D) ⁴ D°	
		$\frac{1}{1}$	51 170 00	1.100	94	4	$(\mathbf{r})\mathbf{D}$	
		72	54 170.20	-0.005	96			
$3d^{8}({}^{3}\mathrm{F})4p$	⁴ G°	9/2	53 365.17	1.156	67	23	$(^{3}\mathbf{F})$ ² G°	
•		11/2	53 496.49	1.305	100			
		7/2	54 262 63	1 025	81	10	$({}^{3}F) {}^{4}F^{\circ}$	
		5/2	55 018.71	0.616	94	5	(³ F) ⁴ F°	
0.18.27	4	٩,					3-2-2-2-	
$3d^{\circ}(^{\circ}\mathbf{F})4p$	* Ľ	³ / ₂	54 557.05	1.26	80	19	$({}^{\circ}\mathbf{F}) {}^{\circ}\mathbf{G}^{\circ}$	
		1/2	55 417.83	1.184	76	10	$(^{3}\mathbf{F})^{2}\mathbf{F}^{o}$	
		5/2	56 075.26	0.985	87	6	(^{3}F) ⁴ G°	
		³ / ₂	56 424.49	0.412	95			
$3d^{8}({}^{3}\mathrm{F})4n$	$^{2}G^{\circ}$	9/	55 299 65	1 1 52	58	39	$({}^{3}F) {}^{4}G^{\circ}$	
		7/0	56 371.41	0.940	84	8	$({}^{3}\mathbf{F}) {}^{4}\mathbf{G}^{\circ}$	
		12	00 07 1. pr			. 0	(1) 4	
$3d^{8}(^{3}F)4p$	${}^{2}\mathbf{F}^{\circ}$	7/2	57 080.55	1.154	81	11	$({}^{3}F) {}^{4}F^{\circ}$	
		$\frac{5}{2}$	58 493.21	0.946	74	20	(³ F) ² D°	
9,38(315)/	2n°	5/	EN 100 10	1 110			(3m) 2m	
5a (r)4p	D	7 ₂ 3/	57 420.16	1.116	74	20	$(\mathbf{P}) \mathbf{F}$	
		72	58 705.95	0.795	89	7	('U' (U')	
$3d^8(^3\mathrm{P})4p$ ⁴ P	${}^{4}\mathbf{P}^{\circ}$	5/2	66 571.34	1.48	73	20	$(^{1}\mathbf{D})^{2}\mathbf{D}^{\circ}$	
		3/2	66 579.71	1,550	73	12	$(^{1}D)^{2}P^{\circ}$	
		1/2	67 031.02	2.331	85	11	$(^{1}D)^{2}P^{\circ}$	
2 J ⁸ (¹ D) (m	200	5/	00 001 01	0.000		_	(3m) Ame	
5a (D)4p	r	72	67 694.64	0.960	84	8	(°P) *P*	
		'/ ₂	68 131.21	1.200	86	9	(°P) *D°	
$3d^7 4s^2$	⁴ P	5/2	67 880.16		100			
		3/2	$68\ 156.57$		94	6	^{2}P	
		1/2	68 709.76		98	2	_	<i>,</i>
2,1 ⁸ (1D)/n	² ח•	3/	CO 151 01	1 09	05	10	(3m) 4m.	
ou (D)4p	D	⁷ 2 5/	00 104.01 60 795 00	1.02	60	18	(P) P $(^{3}P) 4P^{\circ}$	
		12	00 733.30	1.204	(4	19	(r) r	
$3d^{8}(^{1}D)4p$	${}^{2}\mathbf{P}^{\circ}$	1/2	68 281.62	1.008	61	23	$({}^{8}P) {}^{2}P^{\circ}$	
		3/2	68 965.65	1.305	64	15	(¹ D) ² D°	
2 17 102	² C	9/	50 950 0A				2	
ou 48	u	$\frac{7}{7}$	10 358.94		91	3	-H	
		72	71 457.74		100			
$3d^{8}(^{3}P)4p$	⁴ D°	⁵ /2	70 635.46	1.325	83	9	(³ P) ² D°	
		3/2	70 706.77	1.190	91	4	$({}^{3}F) {}^{4}D^{\circ}$	`
		1/2	70 748.70		95	4	$({}^{3}F) {}^{4}D^{\circ}$	
		7/2	70 778.12	1.385	87	9	(^{1}D) $^{2}F^{\circ}$	
3d ⁸ (³ P)/p	² n°	5,	71 770 09	1.940	077		(³ D) 4D°	
ou (r)4p	D	3/2	11 110.83	1.240	87	10	$(^{3}P)^{2}D^{3}$	
		72	12 310.42	0.844	82	11	('P) ' P'	
$3d^{8}(^{3}P)4p$	$^{2}P^{\circ}$	3/0	72 985.65	1.326	67	16	$(^{1}D) ^{2}P^{\circ}$	
	-	1/2	73 903.25	1.039	70	24	$(^{1}D)^{2}P^{\circ}$	
		'2						
$3d^7 4s^2$	$^{2}\mathbf{P}$	³ /2	73 893.73		85	8	² D2	

Ni II-Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages			
3d ⁸ (³ P)4p	$^{2}S^{\circ}$	1/2	74 283.33		94	4	(¹ D) ² P°	`
$3d^8(^3\mathrm{P})4p$	⁴ S°	³ /2	74 300.93	-	97			
3d ⁸ (¹ G)4p	² H°	9/2 11/2	75 149.48 75 721.68	0.903 1.119	100 100			
3d ⁸ (¹ G)4p	² F°	7/2 5/2	75 917.63 76 402.03	1.165	94 95	4	(¹ D) ² F*	
$3d^7 4s^2$	2 H	¹¹ / ₂ 9/ ₂	76 727.36 77 736.79		100 97	3	² G	
$3d^7 4s^2$	² D2	5/2 3/2	77 332.47 78 955.45		77 72	23 18	² D1	
3d ⁸ (¹ G)4p	²G°	7/2 9/2	79 823.03 79 923.88		99 100			
3d ⁷ (⁴ F)4s4p(³ P°)	⁶ F°	$ \begin{array}{c} 11/2 \\ 9/2 \\ 7/2 \\ 5/2 \\ 3/2 \\ 1/2 \\ 1/2 \end{array} $	86 343.21 86 870.03 87 538.09 88 128.56 88 582.01 88 881.59					
$3d^7(^4\mathrm{F})4s4p(^3\mathrm{P}^\circ)$	⁶ D°	9/2 7/2	88 171.88 89 100.49					
3d ⁷ (⁴ F)4s4p(³ P [•])	⁶ G°	¹¹ / ₂ 9/ ₂ 7/ ₂ 5/ ₂	89 460.35 89 918.47 90 275.30 90 526.18?					
3d ⁸ (³ F)5s	⁴ F	9/2 7/2 5/2 8/2	91 800.05 92 325.85 93 390.06 94 067.14	1.350 1.188 1.02 0.392	100 61 88 99	39 12 1	(³ F) ² F (³ F) ² F (¹ D) ² D	
$3d^7 4s^2$	${}^{2}\mathbf{F}$	⁵ /2 7/2	92 373.45 92 792.08		100 100			
3d ⁸ (³ F)5s	${}^{2}\mathbf{F}$	7/2 5/2	93 528.44 94 729.25	$1.166 \\ 0.865$	61 87	39 12	⁴ F	
3d ⁷ (⁴ F)4s4p(³ P°)	4 <u>F</u> 10	9/2 7/2 5/2 3/2	94 283.94 94 705.93 95 332.53 95 893.76					
3d ⁷ (⁴ F)4s4p(³ P°)	⁴ G°	¹¹ / ₂ ⁹ / ₂ 7/ ₂ ⁵ / ₂	94 396.74 95 017.71 95 573.39 96 052.48					
3d ⁷ (⁴ F)4s4p(³ P [•])	⁴ D°	7/2 5/2 3/2 1/2	96 535.87 97 273.83 97 799.66 98 122.63					

Configuration	Term	J	Level	g		Lead	ing percentages	
$3d^7({}^4\mathrm{F})4s4p({}^3\mathrm{P}^\circ)$	² G°	9/2 7/2	98 276.70 99 844.13					
3d ⁸ (³ F)4d	4 D	$\begin{array}{c} 7_{2} \\ 5_{2} \\ 1_{2} \\ 1_{2} \\ 3_{2} \end{array}$	98 467.25 99 559.33 100 010.17 100 078.78		90 42 69 49	7 39 16 45	(³ F) ⁴ F (³ F) ⁴ P (³ F) ⁴ P (³ F) ² P	
$3d^8(^3\mathrm{F})4d$	⁴ P	5/2 1/2 8/2	98 561.22 100 845.41 100 490.95		57 66 73	40 26 12	(³ P) ⁴ D (³ F) ⁴ D (³ F) ⁴ D	
$3d^8(^3\mathrm{F})4d$	⁴ H	$\begin{array}{c c} & & & & 13/2 \\ & & & 11/2 \\ & & & 9/2 \\ & & & & 9/2 \\ & & & & & 7/2 \end{array}$	98 822.55 100 309.29 100 332.09 101 144.63		100 54 52 62	32 22 28	(³ F) ² H (³ F) ² H (³ F) ⁴ G	
$3d^8(^3\mathrm{F})4d$	2 H	¹¹ / ₂ . 9/ ₂	98 969.44 101 357.20		47 55	45 19	(³ F) ⁴ H	
$3d^8(^3\mathbf{F})4d$	$^{2}\mathrm{P}$	³ / ₂ 1/ ₂	99 040.75 101 246.16		44 77	29 18	(³ F) ⁴ D (³ F) ⁴ P	
$3d^8({}^3\mathrm{F})4d$	⁴ G	¹¹ / ₂ ⁵ / ₂	99 132.78 101 366.14		78 68	21 28	(³ F) ² H (³ F) ⁴ F	
$3d^8(^3\mathrm{F})4d$	4F	9/2 7/2 3/2	99 154.81 100 592.98 101 258.01		63 40 89	31 27 8	(³ F) ⁴ G (³ F) ⁴ H (³ F) ⁴ D	
$3d^8(^3\mathrm{F})4d$	${}^{2}\mathbf{F}$	7/2 5/2	99 340.55 101 247.37		58 47	23 31	(^{3}F) ^{4}F	
$3d^7({}^4\mathrm{F})4s4p({}^3\mathrm{P}^\circ)$	² F°	7/2 5/2	99 418.61 100 609.01					
$3d^8(^3\mathrm{F})4d$	² G	9/2 7/2	99 442.86 101 740.27		45 72	21 13	(³ F) ⁴ F (³ F) ⁴ G	
$3d^8(^3\mathrm{F})4d$		⁵ /2	100 389.52		42 ² F	25	$({}^{3}F) {}^{4}F$	
$3d^{8}({}^{3}\mathrm{F})4d$		7/2	100 475.82		34 ⁴ G	34	$(^{3}F)^{2}F$	
$3d^8(^3\mathrm{F})4d$		9/2	100 619.26		32 ² G	8 30	(³ F) ⁴ G	
$3d^{7}({}^{4}\mathrm{F})4s4p({}^{3}\mathrm{P}^{\circ})$	² D°	⁵ /2 ³ /2	101 754.80 102 742.74					
$3d^8({}^3\mathrm{F})4d$	² D	5/2 3/2	$\begin{array}{c} 103 \ 025.58 \\ 103 \ 663.50 \end{array}$		85 90	9 4	(³ F) ² F (¹ D) ² D	
3d ⁸ (³ F)5p	4D°	7/2 5/2 3/2 1/2	103 653.03 104 503.22 105 439.85 106 022.79					
$3d^8(^3\mathrm{F})5p$	² G°	⁹ / ₂ 7/ ₂	104 081.04 106 620.53		60 58	32 24	⁴G° ⁴G°	

Ni 11-Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leadi	ng percentages
3d ⁸ (³ F)5p	⁴ G°	¹¹ / ₂ 7/2 9/2 5/2	104 147.29 105 499.05 105 588.89 106 283.16		55 41	24 38	² G° ² G°
3d ⁸ (³ F)5p	⁴₽°	9/2 7/2 5/2 3/2	104 298.23 104 646.52 105 668.78 106 369.30		39 53	33 24	² F° ⁴ G°
$3d^8({}^3\mathrm{F})5p$	² F°	7/2 5/2	105 838.06 107 082.21		46	82	4F°
$3d^8(^3\mathrm{F})5p$	² D°	⁵ /2 ³ /2	105 861.19 107 142.12				
$3d^{7}(^{4}\mathrm{P})4s4p(^{3}\mathrm{P}^{\circ})$	⁶ D°	9/2	105 981.50?				
3d ⁸ (¹ D)5s	² D	⁵ /2 3/2	106 007.89 106 133.14		80 87	20 9	(³ P) ⁴ P (³ P) ² P
$3d^{7}({}^{4}\mathrm{P})4s4p({}^{3}\mathrm{P}^{\circ})$	⁴ S°	3/2	107 737.81				
3d ⁸ (³ P)5s	⁴ P	5/2 3/2 1/2	108 368.05 108 548.61 108 763.32		80 94 98	20 5 2	(¹ D) ² D (¹ D) ² D (³ P) ² P
$3d^{7}(^{4}\mathrm{P})4s4p(^{3}\mathrm{P}^{\circ})$	6Po	3/2	109 038.84				
$3d^7(^2\mathrm{G})4s4p(^3\mathrm{P}^\circ)$	4F.o	9/2 7/2 5/2 3/2	109 148.05 109 846.00 110 573.36 111 120.54				
3d ⁸ (³ P)5s	$^{2}\mathbf{P}$	³ / ₂ ¹ / ₂	109 269.83 109 675.72		90 98	7 2	(¹ D) ² D (³ P) ⁴ P
		⁹ / ₂	110 021.92				
$3d^{7}(^{2}\text{G})4s4p(^{3}\text{P}^{\circ})$	⁴ G°	7/2	111 783.79				
$3d^7(^4\mathrm{F})4s4p(^1\mathrm{P}^\circ)$	⁴ G°	¹¹ / ₂ ⁹ / ₂ ⁵ / ₂	112 422.19? 113 753.04 115 108.09		67 50	28 28	⁴₽° ²F°
$3d^8(^1\mathrm{D})4d$	${}^{2}\mathrm{F}$	5/2 7/2	112 686.30 112 719.75		66 77	13 19	(¹ D) ² D (³ P) ⁴ D
$3d^8(^1\mathrm{D})4d$	$^{2}\mathrm{D}$	³ / ₂ ⁵ / ₂	112 906.93 113 407.31		62 55	22 25	(⁸ P) ² D - (¹ D) ² F
$3d^8(^1\mathrm{D})4d$	^{2}G	9/2 7/2	113 172.96 113 177.61		84 86	15 10	(³ P) ⁴ F (³ P) ² F
$3d^8(^1\mathrm{D})4d$	² P	¹ / ₂ ³ / ₂	113 225.06 113 408.71		78 77	13 13	(³ P) ⁴ D

Ni II-Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ing percentages
$3d^7({}^4\mathrm{F})4s4p({}^1\mathrm{P}^\circ)$	4F°	9/2 5/2 3/2	113 321.95 115 120.00? 115 592.25?		63 61 42		34 16 30	⁴ G° ² F° ⁴ D°
$3d^8(^1\mathrm{D})4d$	^{2}S	1/2	113 623.10		85		10	(³ P) ⁴ P
$3d^7 4s4p$		7/2	114 052.04		29	⁴G°	28	4F°
3d ⁸ (³ P)4d	4D	7/2 5/2 3/2 1/2	114 836.63 114 874.88 114 942.42 114 970.19		79 72 79 87		20 19 11 12	(¹ D) ² F (¹ D) ² D (¹ D) ² P (¹ D) ² P
3d ⁷ (² H)4s4p(³ P°)	⁴ G°	$\begin{array}{c} 11_{/2} \\ 9_{/2} \\ 7_{/2} \\ 5_{/2} \end{array}$	114 858.88 115 612.88 116 275.81 116 754.93					
$3d^7(^2\mathrm{P})4s4p(^3\mathrm{P}^\circ)$	$^{2}D^{\circ}$	³ /2 5/2	114 869.35 116 893.98		62 50		33	⁴ D°
$3d^7(^2\mathrm{G})4s4p(^3\mathrm{P}^\circ)$	² F°	7/2	115 000.25		51		22	⁴ D°
3d ⁸ (¹ G)5s	$^{2}\mathrm{G}$	9/2 7/2	115 081.36 115 085.36		100 100			
$3d^7 4s4p$	⁴ D°	7/2	115 209.85		55		18	² F°
$3d^7 4s4p$		5/2	115 565.98		32	⁴ D°	25	⁴ F°
3d ⁸ (³ P)4d	4F	9/2 7/2 5/2 3/2 3/2	115 739.15 115 827.12 115 956.71 116 167.76 <i>115 785.06</i>		84 82 68 97		15 8 13 1	(¹ D) ² G (³ P) ² F (³ P) ⁴ P
$3d^7 4s^2$	2 D1	5/2	115 870.28		77		23	² D2
$3d^8(^{3}\mathrm{P})4d$	${}^{2}\mathbf{F}$	7/2	116 145.69		82		11	(³ P) ⁴ F
$3d^8(^3\mathrm{P})4d$		5/2	116 191.47		38	$^{2}\mathrm{D}$	24	(³ P) ⁴ F
3d ⁸ (³ P)4d	⁴ P	1/2 3/2 5/2	116 261.81 116 312.34 116 732.51		86 85 41		11 8 28	(¹ D) ² S (¹ D) ² P (³ P) ² D
$3d^7 4s4p$	⁴ D°	7/2	116 512.06					
$3d^8(^3\mathrm{P})4d$	$^{2}\mathbf{P}$	1/2 3/2	$\frac{116}{116} \frac{786.42}{838.33}$		89 91		7 4	(¹ D) ² P (³ P) ² D
3d ⁸ (³ F)6s	⁴ F	9/2 7/2 5/2 3/2	116 833.15 117 074.70 118 314.82 119 100.06					

Ni II-Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Leadi	ng percentages	
$3d^7(a \ ^2\mathrm{D})4s4p(^3\mathrm{P}^\circ)$	4 F 10	⁹ / ₂ 7/ ₂	117 573.68 117 972.47						
$3d^{7}(^{2}\mathrm{P})4s4p(^{3}\mathrm{P}^{\circ})$		8/2	117 662.11		37	⁴ S°	12	2 D°	
$3d^8(^1\mathrm{D})5p$	$^{2}D^{\circ}$	³ /2 5/2	117 763.91 117 872.78		36 65		12	² P°	
$3d^{7}(^{2}\text{H})4s4p(^{3}\text{P}^{\circ})$	²I°	¹¹ / ₂ 13/ ₂	118 248.98 119 010.21						
$3d^8({}^3\mathrm{F})6s$	${}^{2}\mathbf{F}$	7/2 5/2	118 294.17 119 315.44						
$3d^8(^1\mathrm{D})5p$	² F°	⁵ / ₂ 7/ ₂	118 379.11 118 563.39						
$3d^8(^1\mathrm{D})5p$		3/2	118 442.81		37	$^{2}P^{\bullet}$	35	² D°	
$3d^8(^1\mathrm{D})5p$	$^{2}\mathbf{P}^{\circ}$	1/2	118 631.95		50		29	$3d^74s4p$ ⁴ D°	
$3d^8({}^3\mathrm{F_4})4f$	²[1]°	1/2 3/2	118 774.76 118 809.34?		100 87		13	² [2]°	
$3d^8({}^3\mathrm{F_4})4f$	²[7]°	¹⁸ / ₂ 15/ ₂	118 803.82 118 848.92		100 100				
$3d^8({}^3\mathrm{F}_4)4f$	²[2]°	5/2 3/2	118 828.61 118 877.09		92 87		8 13	² [3]° ² [1]°	
$3d^8({}^3\mathrm{F_4})4f$	²[3]°	7/2 5/2	118 874.11 118 897.94		97 92		3 8	²[4]° ²[2]°	
$3d^8({}^3\mathrm{F_4})4f$	²[6]°	¹¹ / ₂ 13/ ₂	118 892.99 118 893.24		99 100				
$3d^8({}^3\mathrm{F_4})4f$	²[4]°	9/2 7/2	118 914.34 118 923.20		99 97		3	² [3]°	
$3d^8({}^3\mathrm{F}_4)4f$	² [5]°	⁹ /2 11/2	118 927.02 118 939.53		99 99	·			
$3d^8(^3\mathrm{F})5d$	4D	7/2 1/2 3/2	119 656.25 121 111.90 121 115.59		84 48 44		13 30 34	⁴ F ² P ² P	
$3d^8({}^3\mathrm{F})5d$	⁴ P	5/2 1/2	119 665.29 121 925.16		67 51		30 43	⁴ D ⁴ D	
$3d^8(^3\mathrm{F})5d$	⁴H	¹⁸ / ₂ ¹¹ / ₂ ⁹ / ₂ ⁷ / ₂	119 773.60 121 180.55 121 190.34 122 047.29		100 59 59 77		30 27 18	²H ²H ⁴G .	
$3d^8(^3\mathrm{P})5p$	4 P °	5/2 3/2 1/2	119 796.98 120 166.52 120 316.02		51 36	,	19 17	(¹ D) ² D *	

Ni II--Continued

Configuration	Term	J	Level	g		Lea	ding percentages	3
$3d^3(^3\mathbf{F})5d$	4G	¹¹ / ₂ 7/ ₂ 9/ ₂ 5/ ₂	119 833.00 121 240.90 121 294.67 122 144.99		53 42 43 59	3- 3- 2 3- 3-	${}^{4} {}^{4}H$ ${}^{5} {}^{2}F$ ${}^{5} {}^{2}G$ ${}^{5} {}^{4}F$	
$3d^8(^3\mathrm{F})5d$	² H	¹¹ / ₂ 9/ ₂	119 889.47 122 140.71		56 59	3 2	6 ⁴ G 5 ⁴ H	
$3d^8(^3\mathrm{F})5d$	² P	³ /2 1/2	119 909.72 122 112.94?		59 65	1	8 $^{4}\mathbf{p}$ 6 $^{4}\mathbf{p}$	
$3d^8(^3\mathrm{F})5d$	⁴ F	9/2 7/2 3/2	119 913.33 121 317.89 122 084.79		59 41 62	3 3 2	4 ⁴ G 0 ² G 6 ⁴ D	·
$3d^8(^3\mathrm{F})5d$	$^{2}\mathbf{F}$	7/2 5/2	120 002.86 122 175.42?		60 52	2 2	$\begin{array}{cc} 0 & {}^4\mathrm{F} \\ 0 & {}^2\mathrm{D} \end{array}$	
$3d^8(^3\mathrm{F})5d$	² G	9/2 7/2	120 044.95 122 270.05		58 61	2 1	3 ⁴ F 8 ⁴ G	
$3d^{8}(^{3}\mathrm{F})5d$		5/2	120 144.17		37	² D 1	8 ⁴ D	
$3d^8({}^3\mathbf{F}_3)4f$	² [1]°	¹ / ₂ ³ / ₂	120 189.55 120 199.18		60 88	4	0 ² [0]° 2 ² [2]°	
$3d^8({}^3\mathrm{F}_3)4f$	²[2]°	5/2 8/2	120 203.49 120 222.89		99 88	1	$\begin{array}{ccc} 1 & {}^2[3]^{\circ} \\ 2 & {}^2[1]^{\circ} \end{array}$	
$3d^8({}^3\mathrm{F}_3)4f$	²[6]°	¹¹ / ₂ 13/ ₂	120 211.30 120 218.22		100 100			
$3d^8({}^3\mathrm{F}_3)4f$	²[3]°	7/2 5/2	120 250.17 120 271.97		98 99		$\begin{array}{ccc} 1 & 2[4]^{\circ} \\ 1 & 2[2]^{\circ} \end{array}$	
$3d^8(^3\mathbf{F}_3)4f$	² [4]°	7/2 9/2	120 268.81 120 281.11		98 97	-	$\begin{array}{ccc} 1 & {}^{2}[3]^{\circ} \\ 3 & {}^{2}[5]^{\circ} \end{array}$	
$3d^{8}({}^{3}\mathrm{F}_{3})4f$	²[5]°	¹¹ / ₂ 9/ ₂	120 270.44 120 272.53		100 97		3 ² [4]°	
$3d^{\hat{8}}({}^{3}\mathrm{P})5p$	⁴ D°	$\frac{7}{2}$	120 903.31 121 325.09 121 385.80		81 63 54	2	7 ² D°	
$3d^8({}^3\mathrm{F_2})4f$	²[1]°	γ_{2} $3_{/2}$ $1_{/2}$ $1_{/2}$	121 561.06 121 042.52 121 090.71		83 90 99		9 ² [2]°	
$3d^8(^3\mathrm{P})5p$		³ /2	121 042.57		35	² P° 1	8 $^{2}\mathbf{D}^{\circ}$	
$3d^8(^3\mathrm{P})5p$	² D°	5/2	121 050.66		57	2	0 ⁴ D°	· .
$3d^8(^3\mathrm{F})6p$	4G°	11/2	121 120.37					
$3d^8(^3\mathrm{F}_2)4f$	² [5]°	¹¹ / ₂ 9/ ₂	121 120.88 121 125.41		99 99			

Configuration	Term	J	Level (cm ⁻¹)	g			Leadi	ing percent	ages		
$3d^8({}^3\mathrm{F}_2)4f$	² [2]°	5/2 3/2	121 146.98 121 161.81		94 90		5 9	${}^{2}[3]^{\circ}$ ${}^{2}[1]^{\circ}$			
$3d^8({}^3\mathrm{F}_2)4f$	² [4]°	7/2 9/2	121 178.56 121 180.54		86 99		13	² [3]°			
$3d^8(^3\mathbf{F}_2)4f$	²[3]°	7/2 5/2	121 192.32 121 194.14	-	86 94		13 5	${}^{2}[4]^{\circ}$ ${}^{2}[2]^{\circ}$			
$3d^8({}^3\mathrm{F})5d$		⁵ /2	121 227.80		37	⁴ D	36	² F			
3d ⁸ (¹ G)4d	² I	$^{11}_{13/2}$	121 437.68 121 476.56		100 100						
$3d^8(^3\mathrm{P})5p$	⁴ S°	3/2	121 456.30		43		23	$^{2}\mathrm{D}^{\circ}$			
$3d^7(^2\mathrm{H})4s4p(^3\mathrm{P}^\circ)$	² G°	9/2 7/2	121 692.55 121 862.57								
		3/2	121 699.02								
$3d^8(^3\mathrm{P})5p$		3/2	121 800.34		32	${}^{2}\mathbf{P}^{\circ}$	28	$^{2}\mathrm{D}^{\circ}$			
3d ⁸ (¹ G)4d	²F	5/2 7/2	122 080.25 122 086.58		99 100						
$3d^8(^3\mathrm{F})6p$	⁴ F°	⁹ /2	122 441.22							·	•
$3d^8({}^1\mathrm{G})4d$	² H	⁹ / ₂ ¹¹ / ₂	122 790.41 122 821.63		100 100						
$3d^8(^3\mathrm{F})6p$	⁴ D°	"/ ₂	122 812.97								
3d ⁸ (¹ G)4d	² G	⁹ / ₂ 7/ ₂	$122\ 837.33\\122\ 847.60$		99 100						
3d ⁸ (³ F)6p	² G°	9/2	123 434.60								
$3d^7(^2\mathrm{H})4s4p(^3\mathrm{P}^\circ)$	² H°	⁹ / ₂ ¹¹ / ₂	124 652.00 125 003.41								
$3d^8({}^1\mathrm{G})5p$	² H°	⁹ / ₂ ¹¹ / ₂	126 679.98 126 857.97								
$3d^{7}(^{4}\mathrm{P})4s4p(^{1}\mathrm{P}^{\circ})$	4 S°	³ / ₂	126 738.82								
$3d^8({}^1\mathrm{G})5p$	² F°	7/2 5/2	127 219.57 127 331.60								
3d ⁸ (³ F)7s	⁴ F	9/2 7/2 5/2 3/2	127 867.13 127 991.56 129 294.51 130 135.19								
$3d^8({}^1\mathrm{G})5p$	² G°	⁹ / ₂ 7/ ₂	127 885.86 127 895.33						·		

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages			
$3d^8({}^3\mathrm{F}_4)5f$	² [1]°	³ / ₂ 1/ ₂	128 732.03 128 799.72		87 100	13	² [2]°	
$3d^8({}^3\mathrm{F_4})5f$	²[2]°	⁵ /2 3/2	128 803.23 128 822.23		92 87	8 13	² [3]° ² [1]°	
$3d^8({}^3\mathrm{F}_4)5f$	²[7]°	$^{13}_{15/2}$	128 818.41 128 827.05		100 100			
$3d^8({}^3\mathrm{F}_4)5f$	² [3]°	7/2 5/2	128 827.15 128 853.87		97 92	8	² [2]°	
$3d^8({}^3\mathrm{F_4})5f$	² [6]°	¹¹ / ₂ 13/ ₂	128 837.11 128 855.60		99 100			
$3d^8({}^3\mathrm{F}_4)5f$	² [4]°	9/2 7/2	128 853.91 128 867.00?		100 97			
$3d^8({}^3\mathrm{F}_4)5f$	² [5]°	⁹ / ₂ ¹¹ / ₂	128 862.49 128 869.89		100 100			
$3d^8({}^3\mathrm{F}_4)5g$	² [0]	¹ /2	128 937.47		100			
$3d^8({}^3\mathrm{F_4})5g$	² [1]	³ /2 1/2	128 939.76 128 939.76		100 100			
$3d^8({}^3\mathrm{F}_4)5g$	² [2]	5/2 3/2	128 944.36 128 944.36		100 100			
$3d^8({}^3\mathrm{F_4})5g$	² [8]	¹⁷ / ₂ ¹⁵ / ₂	128 946.17 128 946.15		100 100			
$3d^8({}^3\mathrm{F}_4)5g$	² [3]	7/2 5/2	128 950.84 128 950.89		100 100			
$3d^8({}^3\mathrm{F}_4)5g$	² [4]	9/2 7/2	128 958.34 128 958.40		100 100			
$3d^8({}^3\mathbf{F}_4)5g$	² [7]	¹⁵ / ₂ ¹³ / ₂	128 960.74 128 960.74		100 100			
$3d^8({}^3\mathrm{F}_4)5g$	² [5]	¹¹ / ₂ 9/ ₂	128 964.63 128 964.62		100 100			
$3d^8({}^3\mathrm{F}_4)5g$	² [6]	¹³ / ₂	128 966.51		100			
$3d^8(^3\mathrm{F})7s$	2 F	7/2 7/2 5/2	128 966.51 129 271.72 130 236.26		100			
$3d^8(^3\mathrm{F})6d$	4p	5/2 3/2 1/2	129 284.50 129 479.73 130 710.85					
$3d^8(^3\mathrm{F})6d$	4D	7/2 5/2 3/2	129 297.91 129 842.33 130 942.30					

Ni II—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading	; percenta	ges
3d ⁸ (³ F)6d	⁴ H	¹³ / ₂ ¹¹ / ₂ ⁹ / ₂ ⁷ / ₂	129 367.91 129 396.04 130 757.51 131 637.10					·
$3d^8(^3\mathrm{F})6d$	4F	9/2 7/2 5/2 3/2	129 419.58 129 474.27 130 730.53 131 620.45					
3d ⁸ (³ F)6d	⁴G	¹¹ / ₂ 9/ ₂ 7/ ₂ 5/ ₂	129 424.03 129 503.24 130 815.91 131 670.87					
$3d^7(^4\text{P})4s4p(^1\text{P}^\circ)$	⁴ D°	7/2 5/2 8/2 1/2	129 782.07 129 988.05 130 331.78 130 570.42					
$3d^8({}^3\mathrm{F}_3)5f$	²[0]°	1/2	130 147.87		51	49	² [1]°	
$3d^8({}^3\mathrm{F}_3)5f$	² [1]°	³ /2	130 174.03		88	11	² [2]°	
$3d^8({}^3\mathrm{F}_3)5f$	²[2]°	⁵ /2 ³ /2	130 184.39 130 197.23		100 88	12	² [1]°	
$3d^8({}^3\mathrm{F}_3)5f$	² [6]°	¹¹ / ₂ 13/ ₂	130 184.61 130 187.81		100 100			
$3d^{8}({}^{3}\mathrm{F}_{3})5f$	²[5]°	¹¹ / ₂ 9/ ₂	130 205.62 130 206.90		100 98			
$3d^8({}^3\mathrm{F}_3)5f$	²[3]°	7/2 5/2	130 208.89 130 227.52		97 100			
$3d^8({}^3\mathrm{F}_3)5f$	²[4]°	9/2 7/2	130 215.50 130 225.87		98 97			`
$3d^8({}^3\mathrm{F}_3)5g$	² [1]	³ / ₂ 1/ ₂	130 301.40 130 301.40		100 100			
$3d^8({}^3\mathrm{F}_3)5g$	² [2]	5/2 3/2	130 306.97 130 306.97		99 99			
$3d^8({}^3\mathrm{F}_3)5g$	² [7]	$^{15}_{13/2}$	130 308.71 130 308.71		100 100			
$3d^8({}^3\mathrm{F}_3)5g$	² [3]	7/2 5/2	130 314.07 130 314.07		99 99			
$3d^8({}^3\mathrm{F}_3)5g$	² [4]	9/2 7/2	130 320.97 130 320.94		100 100	,		
$3d^8({}^3\mathrm{F}_3)5g$	² [6]	¹¹ / ₂ 13/ ₂	130 321.73 130 321.73		99 99			

.

Ni 11-Continued

Configuration	Term	J	Level (cm ⁻¹)	g		es		
$3d^8({}^3\mathrm{F}_3)5g$	² [5]	¹¹ / ₂ 9/ ₂	130 324.72 130 324.72		100 100			
$3d^8(^3\mathrm{F})7p$	⁴ F°	9/2	130 470.90					
$3d^8(^3\mathrm{F})7p$	⁴ D°	7/2	130 480.55					
$3d^8(^3\mathrm{F})7p$	⁴ G°	11/2	130 661.32					
$3d^8(^3\mathrm{F})6d$	$^{2}\mathrm{P}$	³ / ₂ 1/ ₂	130 691.35 131 655.83					
$3d^8(^3\mathrm{F})6d$	$^{2}\mathrm{H}$	¹¹ / ₂ 9/ ₂	$\begin{array}{c} 130\ 751.03\\ 131\ 686.56\end{array}$					
$3d^8(^3\mathrm{F})6d$	² F	7/2 5/2	130 765.26 131 796.26					
$3d^8(^3\mathrm{F})6d$	^{2}G	⁹ /2 7/2	130 801.33 131 750.73					
3d ⁸ (¹ D)6s	$^{2}\mathrm{D}$	5/2 8/2	130 900.65 130 942.36					
$3d^8(^3\mathbf{F})6d$	$^{2}\mathrm{D}$	⁵ /2	131 032.01	l				
$3d^8({}^3\mathrm{F}_2)5f$	² [1]°	1/2 3/2	131 063.85 131 075.78		99 87	12	² [2]°	
$3d^8({}^3\mathrm{F}_2)5f$	² [5]°	⁹ / ₂ ¹¹ / ₂	131 093.30 131 122.28?		99 99			
$3d^8({}^3\mathrm{F}_2)5f$	² [2]°	5/2	131 103.18		91	8	² [3]°	
$3d^8({}^3\mathrm{F}_2)5f$	² [4]°	9/2 7/2	131 115.28 131 124.96		99 66	33	² [3]°	
$3d^8({}^3\mathrm{F}_2)5f$	² [3]°	⁵ /2	131 133.58		91	8	² [2]°	·
$3d^8({}^3\mathrm{F}_2)5g$	² [2]°	5/2 3/2	131 211.85 131 211.85		99 99	1 1	$({}^{1}D_{2}) \cdot {}^{2}[2]$	
$3d^8({}^3\mathrm{F}_2)5g$	² [6]°	¹³ / ₂ 11/ ₂	131 218.56 131 218.56		99 99			
$3d^8({}^3\mathrm{F}_2)5g$	²[3]°	7/2 5/2	131 222.98 131 222.98		99 99			
$3d^8({}^8\mathrm{F}_2)5g$	² [4]°	9/2 7.	131 232.83		99			
$3d^8({}^3\mathrm{F}_2)5g$	²[5]°	"/2 11/2 9/2	131 232.83 131 233.31 131 233.31		99 99 99			
$3d^7(^2\mathrm{G})4s4p(^1\mathrm{P}^\circ)$	² H°	11/2 9/2	131 424.32? 132 311.98?					

217

Ni 11—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages			
$3d^7(^4\mathrm{P})4s4p(^1\mathrm{P}^\circ)$	⁴ P°	5/2 1/2 3/2	131 834.94 132 120.70 132 225.15					
$3d^8(^3\mathrm{F})7p$	$^{2}G^{\circ}$	⁹ /2	131 928.77					
$3d^8(^1\mathrm{D}_2)4f$	²[3]°	5/2 7/2	132 729.48 132 869.16		82 75	16 14	$({}^{3}P_{2}) {}^{2}[3]^{\circ}$ $({}^{3}P_{2}) {}^{2}[3]^{\circ}$	
$3d^8(^1\mathrm{D}_2)4f$	² [4]°	⁹ / ₂ 7/ ₂	132 818.16 132 846.53		83 75	16 15	${({}^{3}P_{2})} {}^{2}[4]^{\circ} \ {({}^{3}P_{2})} {}^{2}[4]^{\circ}$	
$3d^8(^1\mathrm{D}_2)4f$	² [2]°	5/2 3/2	132 912.15 132 927.97		83 83	15 15	$({}^{3}P_{2}) {}^{2}[2]^{\circ} ({}^{3}P_{2}) {}^{2}[2]^{\circ}$	
$3d^{8}(^{1}\mathrm{D}_{2})4f$	² [1]°	³ / ₂ ¹ / ₂	132 982.51 133 001.47		84 84	16 16	$({}^{3}P_{2}) {}^{2}[1]^{\circ}$ $({}^{3}P_{2}) {}^{2}[1]^{\circ}$	
$3d^8(^1\mathrm{D}_2)4f$	² [5]°	¹¹ / ₂ 9/ ₂	133-014.08 133-031.00		83 83	16 16	$({}^{3}P_{2}) {}^{2}[5]^{\circ}$ $({}^{3}P_{2}) {}^{2}[5]^{\circ}$	
$3d^7(^2\mathrm{G})4s4p(^1\mathrm{P}^\circ)$	² F°	7/2 5/2	133 169.92 134 208.30					
$3d^{7}({}^{2}\mathrm{F})4s4p({}^{3}\mathrm{P}^{\circ})$	⁴ F°	3/2 5/2 7/2 9/2	133 190.19? 133 209.30 133 528.02 133 853.04					
3d ⁸ (³ P)6s	4P	⁵ / ₂ 3/ ₂ 1/ ₂	133 443.89 133 613.99 133 857.73					
$3d^7(^2\mathrm{G})4s4p(^1\mathrm{P}^\circ)$	$^{2}\mathrm{G}^{\circ}$	9/2 7/2	133 445.75 134 380.82				·	
$3d^{7}(^{2}\text{F})4s4p(^{3}\text{P}^{\circ})$	⁴ G°	¹¹ / ₂	133 625.96	-				
3d ⁸ (³ F)8s	4F	9/2 7/2 5/2 3/2	133 715.13 133 809.76 135 116.72 135 983.22					
$3d^8(^1\mathrm{D})5d$	${}^{2}\mathrm{F}$	7/2 5/2	133 734.98 133 735.26		81 68	13 14	(³ P) ⁴ D (¹ D) ² D	
$3d^{7}(^{2}\mathrm{F})4s4p(^{3}\mathrm{P}^{\circ})$	⁴ D°	7_{2} 5_{2} 3_{2} 1_{2}	133 850.83 133 973.33 134 156.28 134 283.76					
$3d^8(^3P)6s$	² P	³ /2 1/2	$133\ 862.21\\134\ 241.96$					
$3d^8(^1\mathrm{D})5d$	² D	³ /2 5/2	$\frac{133\ 903.00}{134\ 053.05}$		80 69	7 16	$({}^{3}P) {}^{2}D$ $({}^{1}D) {}^{2}F$	

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages				
$3d^8(^1\mathrm{D})5d$	² G	9/2 7/2	133 922.91 133 929.88		83 84	16 11	(³ P) ⁴ F (³ P) ² F		
$3d^8(^1\text{D})5d$	² P	¹ / ₂ ³ / ₂	133 954.85 134 067.76		82 84	8 9	(³ P) ² P (³ P) ⁴ P		
$3d^8({}^3\mathrm{F_4})6f$	² [7]°	¹³ / ₂ 15/ ₂	134 238.44 134 251.30		100 100				
$3d^8({}^3\mathrm{F_4})6f$	² [1]°	³ /2	134 249.72		87	13	² [2]°		
$3d^8({}^3\mathrm{F_4})6f$	²[3]°	7/2 5/2	134 252.85 134 294.99	×	97 91	3 9	² [4]° ² [2]°		
$3d^8({}^3\mathrm{F}_4)6f$	²[2]°	³ / ₂ ⁵ / ₂	134 254.69 134 256.05		87 91	13 9	² [1]° ² [3]°		
$3d^8({}^3\mathrm{F_4})6f$	²[4]°	7/2 9/2	134 262.07 134 271.59		97 100	3	²[3]°		
$3d^8({}^3\mathrm{F}_4)6f$	²[6]°	$^{13}/_{2}$ $^{11}/_{2}$	134 267.20 134 274.62		100 99	1	² [5]°		
$3d^8({}^3\mathrm{F_4})6f$	²[5]°	¹¹ / ₂ ⁹ / ₂	134 281.66 134 286.38		99 100	1	²[6]°		
$3d^8({}^3\mathrm{F}_4)6g$	² [8]	¹⁵ / ₂ 17/ ₂	134 316.80 134 325.15		100 100				
$3d^8({}^3\mathrm{F}_4)6g$	² [7]	¹³ / ₂ 15/ ₂	134 316.85 134 325.15		100 100				
$3d^8({}^3\mathrm{F}_4)6g$	² [1]	³ / ₂	134 323.88		100				
$3d^8({}^3\mathrm{F}_4)6g$	² [2]	⁵ /2 3/2	134 323.88 134 334.46?		100 100				
$3d^8({}^3\mathrm{F}_4)6g$	² [3]	7/2 5/2	$\begin{array}{c} 134 \ 327.54 \\ 134 \ 327.61 \end{array}$		100 100				
$3d^8({}^3\mathrm{F}_4)6g$	² [4]	⁹ / ₂ 7/ ₂	134 331.84 134 331.89	~	100 100				
$3d^8({}^3\mathrm{F}_4)6g$	² [5]	¹¹ / ₂ ⁹ / ₂	134 333.41 134 336.68		100 100				
$3d^8({}^3\mathrm{F_4})6g$	² [6]	¹³ / ₂ ¹¹ / ₂	134 333.41 134 336.68		100 100				
$3d^{8}({}^{3}\mathrm{F})7d$	⁴ D	7/2 5/2 3/	134 527.24 134 978.47						
$3d^8(^3\mathrm{F})7d$	⁴ P	72 5/2 3/2	$130 054.50 \\134 539.37 \\134 670.07$						

Ni 11-Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading	percentages	
3d ⁸ (³ F)7d	⁴ H	13/2 11/2 9/2 7/2	134 583.07 134 597.43 135 960.08 136 895.36?					
3d ⁸ (³ F)7d	4F	9/2 7/2 5/2 3/2	134 607.37 134 642.09 135 901.96 136 852.44					
3d ⁸ (³ F)7d	⁴G	¹¹ / ₂ 9/2 7/2 5/2	134 614.55 134 658.60 135 986.06 136 899.34					
$3d^{7}(^{2}\mathrm{F})4s4p(^{3}\mathrm{P}^{\circ})$	$^{2}\mathrm{D}^{\circ}$	⁵ /2 ³ /2	134 783.14 134 964.78					
$3d^7(^2\mathrm{P})4s4p(^1\mathrm{P}^\circ)$	² P°	¹ / ₂ ³ / ₂	135 053.14 135 382.53					
$3d^8({}^3\mathrm{F})8s$	²F	7/2 5/2	135 100.45 136 050.53					、
$3d^{7}(^{2}\mathrm{P})4s4p(^{1}\mathrm{P}^{\circ})$	² D°	⁵ /2 ³ /2	135 258.92 136 461.10					
$3d^8({}^3\mathrm{F})8p$	⁴ G°	⁹ / ₂ ¹¹ / ₂	135 261.99 135 338.01					
$3d^{8}(^{3}\mathrm{P}_{2})4f$	² [4]°	7/2 9/2	135 400.67 135 435.26		46 83	37 16	$({}^{3}P_{2}) {}^{2}[3]^{\circ} ({}^{1}D_{2}) {}^{2}[4]^{\circ}$	
$3d^8(^3\mathrm{P}_2)4f$	²[3]°	7/ ₂ 5/ ₂	135 444.47 135 461.55		46 71	38 14	${({}^{3}P_{2})} {}^{2}[4]^{\circ} \ {({}^{1}D_{2})} {}^{2}[3]^{\circ}$	į
		7/2	135 464.86					
$3d^8({}^3\mathrm{P}_2)4f$	² [2]°	³ / ₂ ⁵ / ₂	135 493.26 135 512.92		82 71	13 12	${({}^{1}D_{2})} {}^{2}[2]^{\circ} \ {({}^{3}P_{2})} {}^{2}[3]^{\circ}$	
$3d^8(^3\mathrm{P}_2)4f$	²[5]°	¹¹ / ₂ 9/ ₂	135 538.61? 135 580.25		84 84	16 16	${({}^{1}D_{2})} {}^{2}[5]^{\circ} \ {({}^{1}D_{2})} {}^{2}[5]^{\circ}$	
		⁹ / ₂	135 558.80					
$3d^8({}^3\mathrm{F}_3)6f$	² [1]°	1/2 3/2	135 599.00 135 619.91		59 86	41 14	² [0]° ² [2]°	
$3d^8({}^3\mathrm{F}_3)6f$	² [6]°	¹¹ / ₂ ¹³ / ₂	135 606.20 135 606.30		100 100			
$3d^{\circ}8(^{3}F_{3})6f$	²[2]°	⁵ /2 ³ /2	135 618.08 135 623.59		100 85	14	² [1]°	
$3d^8({}^3\mathbf{F}_3)6f$	²[3]°	7/2 5/2	135 622.60 135 630.63		97 100	3	² [4]°	

Ni 11-Continued

Configuration	on Term	J	Level (cm ⁻¹)	g		Leading	percentages	
$3d^8({}^3\mathrm{F}_3)6f$	² [5]°	9/2 11/2	135 628.41 135 645.10		96 100	4	² [4]°	
$3d^8({}^3\mathrm{F}_3)6f$	² [4]°	7/2 9/2	135 629.40 135 640.53		97 96	3	² [3]° ² [5]°	
$3d^8(^3\mathrm{P}_2)4f$	² [1]°	³ / ₂ 1/ ₂	135 652.93 135 670.49		84 84	16 16	${({}^{1}D_{2})} {}^{2}[1]^{\circ} \ {({}^{1}D_{2})} {}^{2}[1]^{\circ}$	
$3d^8({}^3\mathrm{F}_3)6g$	² [7]	¹³ / ₂ 15/ ₂	135 678.18? 135 686.64		100 100			
$3d^8({}^3\mathrm{F}_3)6g$	² [6]	¹³ / ₂ 11/ ₂	135 686.64 135 693.57		100 100			
$3d^8({}^3\mathrm{F}_3)6g$	² [3]	7/2 5/2	135 693.43 135 693.43		99 99			
$3d^8({}^3\mathrm{F}_3)6g$	² [4]	⁹ / ₂	135 693.57		100			
$3d^8({}^3\mathrm{F}_3)6g$	² [5]	9/2	135 695.67		100			
$3d^{7}(^{2}\mathrm{F})4s4p(^{3}\mathrm{P}^{\circ})$	² G°	7/2 9/2	135 746.06 136 076.26					
$3d^8({}^3\mathrm{P}_1)4f$	² [2]°	³ /2	135 746.13		93	4	$(^{1}D_{2})^{2}[2]^{\circ}$	
$3d^8(^3\mathbf{P}_1)4f$	² [3]°	⁵ /2 7/2	135 849.41 135 879.41		100 100			
$3d^8({}^3\mathrm{F})7d$	² F	7/2 5/2	135 944.40 136 959.86					
$3d^8(^3\mathrm{P}_0)4f$	² [3]°	7/2 5/2	135 954.09 136 122.61		99 99			
$3d^8({}^3\mathrm{F})7d$	$^{2}\mathrm{H}$	¹¹ / ₂ ⁹ / ₂	$\frac{135\ 956.01}{136\ 880.56}$					
$3d^8(^3\mathbf{F})7d$	² G	9/2 7/2	135 977.31 136 936.82					
$3d^{8}({}^{3}\mathrm{F})7d$	$^{2}\mathrm{D}$	⁵ /2	136 031.43	-				
3d ⁸ (³ P)5d	⁴ D	7/2 5/2 1/2 3/2	136 201.46 136 288.60 136 290.83? 136 327.55		81 77 91 83	16 14 8 7	(¹ D) ² F (¹ D) ² D (¹ D) ² P (¹ D) ² D	
$3d^8(^1\mathrm{D})6p$	² F°	"/ ₂	<i>136 392.85</i>					
$3d^8({}^3\mathbf{F}_2)6f$	²[5]° ²[1]°	¹¹ / ₂ 9/ ₂ 1/	136 508.20 136 524.42 126 512 20		99 99	1 1	$\binom{{}^{1}\mathbf{D}_{2}}{\binom{{}^{1}\mathbf{D}_{2}}{2}} \binom{{}^{2}[5]}{[5]}$	
ou (r ₂)oj	[1]	3/2 3/2	136 531.26		99 85	1 14	$({}^{3}D_{2}) {}^{2}[1]$ $({}^{3}F_{2}) {}^{2}[2]$ °	

Ni II-Continued

Configuration	Term	j	Level	g		Leading	percentages
3d ⁸ (³ P)5d	⁴ F	9/2 7/2 5/2	136 519.28 136 589.35 136 766.49		84 62 74	16 24 17	(¹ D) ² G (³ P) ² F (³ P) ² D
$3d^8({}^3\mathrm{F}_2)6f$	² [4]°	7/2 9/2	136 542.28 136 546.50	د.	68 99	31 1	$\binom{{}^{3}F_{2}}{{}^{1}D_{2}} \binom{{}^{2}[3]^{\circ}}{{}^{2}[4]^{\circ}}$
$3d^8({}^3\mathrm{F}_2)6f$	² [3]°	7/2 5/2	136 547.13 136 548.55		68 89	31 10	² [4]° ² [2]°
$3d^8({}^3\mathrm{F}_2)6g$	² [6]	¹¹ / ₂ ¹³ / ₂	136 596.04 136 596.04		99 99		
$3d^8({}^3\mathrm{F}_2)6g$	² [5]	11/2	136 598.73?		99		
$3d^8({}^3\mathrm{F}_2)6g$	² [4]	7/2	136 604.79?		99		
$3d^8(^3\mathrm{F})8p$	² G°	9/2 7/2	136 673.64 137 562.74				
$3d^8(^{3}\mathrm{P})5d$	⁴ P	1/2 5/2	136 725.33 136 960.75		82 58	12 37	(^{1}D) ^{2}S (^{3}P) ^{2}F
$3d^8(^3P)5d$		3/2	136 732.74		31 2 D	31	(³ P) ⁴ P
$3d^8(^3P)5d$		³ /2	136 899.33		$38 {}^{4}\mathbf{F}$	37	⁴ P
$3d^8(^3\mathrm{F})7d$	² P	¹ / ₂	136 955.28				
3d ⁸ (³ F)9s	⁴ F	9/2 7/2 5/2 3/2	137 188.58 137 236.28 138 575.69 139 456.75				
$3d^8(^3\mathrm{P})5d$	² P	1/2 3/2	137 211.93 137 278.22?		85 67	8 19	(¹ D) ² P (³ P) ² D
$3d^8({}^3\mathrm{F}_4)7f$	² [2]°	⁵ /2	137 519.23	<i>,</i>			
$3d^8({}^3\mathrm{F}_4)7f$	² [7]°	¹⁵ /2	137 519.63				
$3d^8({}^3\mathrm{F}_4)7f$	² [3]°	7/2 5/2	137 523.51 137 526.73				
$3d^8({}^3\mathrm{F}_4)7f$	²[6]°	¹³ / ₂ ¹¹ / ₂	137 529.37 137 535.83				
$3d^8({}^3\mathrm{F_4})7f$	² [4]°	9/2 7/2	137 531.18 137 535.96				
$3d^8({}^3\mathrm{F}_4)7g$	² [8]°	¹⁵ / ₂ ¹⁷ / ₂	$\begin{array}{c} 137 568.00 \\ 137 568.02 \end{array}$				
$3d^8({}^3\mathrm{F}_4)7g$	² [6]°	¹³ / ₂ ¹¹ / ₂	137 573.19 137 573.19				•
$3d^8({}^3\mathrm{F}_4)7g$	² [5]°	11/2	137 575.14				

Ni II-Continued

 Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$3d^8(^3\mathbf{F})8d$	4p	5/2	137 706.71		
$3d^8(^3\mathrm{F})8d$	⁴ D	7/2 5/2	137 707.26 138 014.53		
$3d^8(^3\mathbf{F})8d$	⁴ H	¹³ / ₂ ¹¹ / ₂	137 735.22 137 742.95		
$3d^8(^3\mathrm{F})8d$	${}^{4}\mathrm{F}$	9/2 7/2	137 753.87 137 776.55		
$3d^8(^3\mathrm{F})8d$	⁴ G	¹¹ / ₂ 9/2	137 754.78 137 782.50?		
$3d^8(^3\mathrm{F})9p$	⁴ F°	⁹ / ₂	138 121.88	-	
$3d^7(^2\mathrm{F})4s4p(^1\mathrm{P}^\circ)$	² G°	⁹ / ₂	138 495.84?		
$3d^8(^3\mathrm{F})9s$	${}^{2}\mathbf{F}$	7/2 5/2	138 563.71 139 492.10		
$3d^8(^3P)6p$	${}^{4}\mathrm{D}^{\circ}$	7/2	138 841.00		
$3d^8({}^3\mathrm{F}_3)7f$	² [6]°	¹³ /2	138 888.93		`
$3d^8({}^3\mathrm{F}_3)7g$	² [7]°	¹⁵ /2	138 928.70		
$3d^{8}(^{3}\mathrm{F})8d$	2 H	¹¹ /2	139 103.05		
$3d^8({}^3\mathrm{F}_2)7g$	²[6]°	¹³ /2	139 834.24		
$3d^8({}^1\mathrm{G})6s$	² G	9/2 7/2	140 006.17 140 008.76		
Ni III (⁸ F ₄)	Limit		146 541.56		

ż

Z = 28

Fe I isoelectronic sequence

Ground state: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 {}^3F_4$

Ionization energy = $284\ 900\pm 200\ \text{cm}^{-1}\ (35.32\pm 0.02\ \text{eV})$

This analysis has been made by Shenstone (1954) and extended by Garcia-Riquelme (1958) who has also provided unpublished results.

Shenstone's line list includes the range 600-3000 Å. The spectrum has been reobserved and extended by Garcia-Riquelme and Velasco (1955) in the range 2300-8600 Å.

Some of Shenstone's identifications in $3d^74p$ have been changed by Roth (1968) in his theoretical study. He calculated the percentage compositions of the $3d^74p$ terms.

The $3d^8$ and $3d^74s$ configurations have been studied theoretically by Shadmi (1962) and by Shadmi, Caspi, and Oreg (1969). The leading percentages of the $3d^8$ levels are taken from Pasternak and Goldschmidt (1972).

Some changes in the $3d^74s$ ³P and ³D levels suggested by Shadmi (1962) and agreed to by Shenstone are incorporated in this compilation.

Garcia-Riquelme has provided new terms for the known configurations $3d^8$, $3d^74s$, and $3d^74p$ and has extended the analysis further with the discovery of terms from the configurations $3d^64s^2$, $3d^74d$, $3d^75p$, $3d^74f$, $3d^76s$, $3d^75d$, and $3d^75g$. With her new measurements, she has determined

values to two decimal places for all levels above the ground configuration and has calculated percentage compositions for $3d^74d$, 4f, 5p, 5d, and 5g. In a few cases, we have changed her designations to correspond with her percentages.

In all the calculations, the percentages for the two ^{2}D states of $3d^{7}$, distinguished by seniority, include the sum of contributions from both states. They are distinguished by the prefixes A and B.

The ionization energy has been determined by us from the $3d^{7}({}^{4}F)ns$ (n=4,5,6) series.

References

Garcia-Riquelme, O., and Velasco, R. (1955), Anales Real Soc. Esp. Fis. Quim A51, 41.

Garcia-Riquelme, O. (1958), J. Opt. Soc. Am. 48, 183.

Pasternak, A., and Goldschmidt, Z. B. (1972), Phys. Rev. A6, 55.

Roth, C. (1968), J. Res. Nat. Bur. Stand. 72A, 505.

Shadmi, Y. (1962), Bull. Res. Council Israel 10F, 109.

Shadmi, Y., Caspi, E., and Oreg, J. (1969), J. Res. Nat. Bur. Stand. 73A, 173.

Shenstone, A. G. (1954), J. Opt. Soc. Am. 44, 749.

Configuration	Term	J	Level (cm ⁻¹)	Leading	; percentages
$3d^8$	³ F	4	0.0	100	
	-	3	1 360.7	100	
		2	2 269.6	99	
$3d^8$	¹ D	2	14 031.6	83	$16 ^{3}P$
$3d^8$	³ P	2	16 661.6	84	$16 {}^{1}\mathbf{D}$
		1	16 977.8	100	
		0	17 230.7	100	
$3d^8$	¹ G	4	23 108.7	100	
$3d^8$	¹ S	0	52 532.0	100	
$3d^{7}({}^{4}\mathrm{F})4s$	⁵ F	5	53 703.93		
	_	4	54 657.83		
		3	55 406.29		
		2	55 952.21		
		1	56 308.24		
$3d^{7}({}^{4}\mathrm{F})4s$	³ F	4	61 338.58		
~~~ ( /	_	3	62 605.58		
		2	63 471.93		

Ni m

## Ni III—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading perc	entages
$3d^{7}({}^{4}\mathrm{P})4s$	⁵ P	3	71 067.35		
		2	71 384.10		
		1	71 842.42		
$3d^7(^2\mathrm{G})4s$	³ G	5	75 123.65		
		4	75 646.61		
		3	76 237.25		
$3d^7(^4\mathrm{P})4s$	³ P	2	78 303.54	47	53 $(^{2}P)^{3}P$
		1	78 482.43	52	35
		0	78 657.55	48	46
$3d^7(^2\mathrm{P})4s$	³ P	2	79 143.01	47	53 $({}^{4}P) {}^{3}P$
		1	79 749.22	56	39
		0	80 621.10	43	51
$3d^7(^2\mathrm{G})4s$	. ¹ G	4	79 250.11		
$3d^7(^2\mathrm{H})4s$	³ H	6	81 686.80		
		5	82 193.80		
		4	82 826.40		
$3d^7(a \ ^2\mathbf{D})4s$	³ D	3	82 172.60		
		1	82 277.26	54	41 $(^{2}\mathbf{P})^{-1}\mathbf{P}$
		2	83 033.45		
$3d^7(^2\mathrm{P})4s$	$^{1}\mathbf{P}$	1	84 604.10	48	40 $(a^{2}D)^{1}D$
$3d^7(^2\mathrm{H})4s$	1 H	5	85 834.20		
$3d^7(a \ ^2\mathrm{D})4s$	¹ D	2	86 645.88		
$3d^{7}({}^{2}\mathrm{F})4s$	³ F	2	97 841.60		
		3	97 995.81		
		4	98 237.93		
$3d^7(^2\mathrm{F})4s$	$^{1}\mathbf{F}$	3	101 954.90		
$3d^7({}^4\mathrm{F})4p$	⁵ F°	5	110 212.80	94	5 $({}^{4}\mathbf{F}) {}^{5}\mathbf{G}^{\circ}$
		4	110 371.35	65	29 $({}^{4}F) {}^{5}D^{\circ}$
		3	111 221.20	78	17 $({}^{4}F) {}^{5}D^{\circ}$
		2	111 914.53	88	9 (4F) ³ D°
		1	112 401.05	96	
$3d^{\prime\prime}({}^{4}\mathrm{F})4p$	⁵ D°	4	111 898.65	63	26 $({}^{4}\mathbf{F}) {}^{5}\mathbf{F}^{\circ}$
		3	112 935.43	73	13 $({}^{4}\mathbf{F}) {}^{5}\mathbf{F}^{*}$
		1	113 031.47	- 78	8 $({}^{4}\mathbf{P}) {}^{5}\mathbf{G}^{*}$
		0	114 295.45	91	3 (1) 3 D° 8 (4P) 5 D°
$3d^7({}^4\mathrm{F})4p$	⁵ G°	6	112 787.85	100	
· •		5	113 140.92	82	12 $({}^{4}\mathbf{F}) {}^{3}\mathbf{G}^{\circ}$
		4	113 705.12	84	8 ( ⁴ F) ⁵ G°
		3	114 110.20	86	7 $({}^{4}\mathbf{F})  {}^{5}\mathbf{F}^{\circ}$
			114 371.01	88	5 $({}^{4}F) {}^{5}D^{\circ}$

Ni III—Continued

Configuration	ation Term $J$ Level (cm ⁻¹ )		Level (cm ⁻¹ )	Leading percentages		
0 7 . 1	3	-				(4m) 5m
$3d'(^{*}\mathrm{F})4p$	°G°	5	115 272.26	87	13	$(\mathbf{F})^{\circ}\mathbf{G}^{\circ}$
		4	116 674.39	83	9	$({}^{+}F') {}^{+}F''$
		3	117 606.35	88	7	(*F') ⁵ F ¹⁶
$3d^7({}^4\mathrm{F})4p$	³ É'°	4	116 191.93	85	10	( ⁴ F) ³ G°
-		3	117 250.80	83	8	$({}^{4}F) {}^{3}G^{\circ}$
		2	118 114.95	92		
$3d^{7}({}^{4}\mathrm{F})An$	³ D°	3	118 745 95	00	5	(4F) 3F.º
ou (1)+p		2	119 669 54	90 02	0	( 1. ) 1.
		1	120 272.32	93		
a 7/10 9m 1	2_					
$3d'(b^2D)4s$	°D	1	121 192.93			
		2	121 411.60			
		3	121 802.45			
$3d^7(^4\mathrm{P})4p$	⁵ S°	2	122 282.40	99		
$3d^{7}(b^{2}D)4s$	¹ D	.2	125 433.55			
	r_					
$3d'(^{4}P)4p$	°D°	2	129 913.10	82	7	( ⁴ F) ⁵ D°
		3	129 954.00	84	7	
		1	129 957.95	75	7	
		0	130 190.05	86	8	
		4	130 312.30	93	. 6	
$3d^7({}^4\mathrm{P})4p$	³ S°	1	130 863.50	53	12	$(^{2}P)^{3}S^{\circ}$
$3d^{7}(^{2}\mathrm{G})4p$	³ H°	5	131 500.50	74	15	$({}^{2}G) {}^{1}H'$
		4	132 156.50	61	28	$(^{2}G)^{3}F^{\circ}$
		6	132 168.60	96		· · · · -
$3d^{7}(^{2}G)An$	312.0	1	191 700 00	41	99	$(^{2}C)^{3}U^{\circ}$
<i>ou</i> ( <i>u</i> )+ <i>p</i>		2	199 159 50	41	00 11	$(20)^{3}$
		2	133 138.90	78 94	11	( ) ) )
	-					
$3d'(^4P)4p$	°P.	2	132 818.26	45	21	$(^{2}P)$ $^{3}P^{\circ}$
		3	133 095.89	71	19	$({}^{4}P) {}^{3}D^{\circ}$
		1	133 339.70	73	20	$(^{4}P)$ $^{3}S^{\circ}$
$3d^{7}(^{2}P)4n$	³ P°	0	132 864 8	69	19	$(a^{2}D)^{3}$
	-	1	133 276 70	45	19	$({}^{4}P){}^{3}D^{\circ}$
		2	133 642.58	49	10	$(^{2}P)^{3}D^{\circ}$
$3d^7(^2\mathrm{G})4p$	¹ G°	4	133 324.70	47	24	( ² G) ³ F°
$2a^{7}(4D)/m$	300	9	199 900 01	05	20	(4m) 5m°
ou ( <b>Г</b> )4p		0	100 000.04	60	20	( <b>Γ</b> ) <b>Γ</b> (4 <b>D</b> ) 5 <b>D</b> ⁰
		4	100 000.97	42	37	$(\mathbf{r})^{T}\mathbf{P}^{T}$
		1	133 039.34	54	15	$(\mathbf{r})^{T}\mathbf{D}^{T}$
$3d^7(^2\mathrm{G})4p$	³ G°	5	133 692.00	78	19	$({}^{2}G)$ ${}^{1}H$
		3	134 334.79	70	16	$(^{2}G)$ ¹ F°
		4	134 414.77	73	14	$(^{2}G)^{-1}G^{2}$
$3d^7(^2\mathrm{G})4p$	¹ H°	5	134 217.60	62	23	$(^{2}G)^{-3}H^{3}$
$3d^7(^2\mathrm{G})4p$	${}^{1}\mathbf{F}^{\circ}$	3	135 023.20	57	15	$(^{2}G)^{-3}G'$
	1			N		

`

Configuration	n Term $J$ Level (cm ⁻¹ )			Leading percentages			
$3d^{7}(^{4}\mathrm{P})4p$	³ P°	0	135 334.90	52	35	( ² P) ¹ S°	
		2	135 350.33	75	10	(a ² D) ³ P°	
		1	136 098.70	78	11	$(^{2}P)$ $^{3}D^{\circ}$	
$3d^7(^2\mathrm{P})4p$	³ D°	2	136 813.20	41	29	$(^{2}P)^{-1}D^{\circ}$	
-		3	136 967.00	77	8	$(a^{2}D)^{3}F^{\circ}$	
		1	137 362.36	54	15	$(a^{2}\mathrm{D})^{3}\mathrm{D}^{\circ}$	
$3d^7(^2\mathrm{H})4p$	³ G°	5	137 020.20	94	5	( ² F) ³ G°	
		4	138 030.90	90	5		
		3	138 852.20	85	6		
$3d^7(^2\mathrm{P})4p$		2	137 631.60	24 ³ D°	20	${}^{1}\mathbf{D}^{\circ}$	
$3d^{7}(^{2}\mathrm{H})4p$	³ I°	6	137 391.30	74	25	$(^{2}H)$ $^{1}I^{\circ}$	
		7	137 991.40	100			
		5	138 060.40	95			
$3d^7(^2\mathrm{P})4p$	^I S°	0	138 146.48	61	39	( ⁴ P) ³ P°	
$3d^{7}(a^{2}D)4p$	³ D°	3	138 487.40	79	11	$(a^{2}D)^{3}F^{\circ}$	
		1	138 979.20	50	27	$(^{2}P)$ ¹ P°	
		2	139 253.70	63	10	( ² P) ³ D ^o	
$3d^7(^2\mathrm{H})4p$	¹ I°	6	139 633.90	74	24	( ² H) ³ I°	
$3d^{7}(a^{2}D)4p$	³ F"	4	140 184.65				
		3	140 544.52	71	8	$(^{2}P)$ $^{3}D^{\circ}$	
		2	140 885.40	73	10	$(a {}^{2}D) {}^{3}D^{\circ}$	
$3d^7(^2\mathrm{P})4p$	³ S°	1	140 885.15	67	8	$(^{2}P)$ $^{1}P^{\circ}$	
$3d^7(^2\mathbf{P})4p$	${}^{1}\mathbf{P}^{\circ}$	1	141 414.10	49	17	$(a^{2}D)^{3}D^{\circ}$	
$3d^7(^2\mathrm{H})4p$	³ H°	6	142 187.80	. 98			
		5	142 575.60	95			
		4	143 002.70	95			
$3d^7(a \ ^2\mathrm{D})4p$	¹ D°	2	142 433.95	46	29	$(a^{2}D)^{3}P^{\circ}$	
$3d^{7}(a^{2}D)4p$	³ P°	2	143 560.16	48	24	$(a^{2}D)^{1}D^{\circ}$	
		1	144 624.55	67	11	$(^{2}P)$ $^{3}P^{\circ}$	
		0	145 088.45	80	15	$(^{2}P)^{-3}P^{\circ}$	
$3d^7(a \ ^2\mathrm{D})4p$	¹ F°	3	143 864.80	73	16	$(^{2}G)$ ¹ F°	
$3d^7(^2\mathrm{H})4p$	¹ G°	4	144 153.00	70	27	$(^2G)\ ^1G^{\bullet}$	
$3d^7(a^2\mathrm{D})4p$	¹ P°	1	145 950.15	88			
$3d^7(^2\mathrm{H})4p$	¹ H°	5	146 325.80	96			
$3d^6 4s^2$	⁵ D	4	153 256.35				
		3	154 170.37				
$3d^7(^2\mathrm{F})4p$	¹ D°	2	155 071.00	60	32	$(^{2}\mathbf{F})$ $^{3}\mathbf{F}^{\bullet}$	

Ni III-Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading pe	rcentages
$3d^{7}({}^{2}\mathrm{F})4n$	³ C°	3	155 443 30	89	10 ( ² F) ³ F°
	ŭ	4	155 841 40	79	$15 (^{2}F)^{3}F^{\circ}$
		5	156 808.70	94	$5 (^{2}H) ^{3}G^{\circ}$
9 J ² (2E) A.	3130	9	150 111 00		(273) 3750
$3a (-\mathbf{r}) 4p$	"F"	3	156 411.20	68	$19 ({}^{2}\mathbf{F}) {}^{3}\mathbf{D}^{3}$
			150 522.87	64	$29 (^{2}F) ^{1}D^{2}$
		4	130 972.08	50	28 (°F) 'G'
$3d^7(^2\mathrm{F})4p$	³ D°	3	156 853.00	72	$18 ({}^{2}F) {}^{3}F^{\circ}$
		2	157 154.27	85	8 $({}^{2}\mathbf{F}) {}^{1}\mathbf{D}^{\circ}$
		1	157 235.16	93	5 $(b^{2}D)^{3}D^{3}$
$3d^7(^2\mathrm{F})4p$	¹ G°	4	157 375.42	65	32 ( ² F) ³ F°
$3d^7(^2\mathrm{F})4p$	¹ F°	3	161 754.89	97	
$3d^{7}(b^{2}D)4p$	³ P°	2	176 487.10	99	
× ×		1	176 583.20	98	
		0	176 736.40	99	
$3d^{7}(h^{2}D)4n$	311.0	2	177 805 60	00	
5u (0 D) 4p	L L	2	179 151 50	90	
		4	170 401.00 170 989 NN	90	
		T.	115 202.00	51	
$3d^7({}^4\mathrm{F})4d$	⁵ F	5	181 019.08	90	8 ⁵ G
		4	181 482.95	83	$8 {}^{5}G$
		3	181 996.70	80	$8 {}^{5}D$
		2	$182\ 587.83$	.87	5 ${}^{5}D$
		1	183 035.25	95	2 ⁵ D
$3d^7(b\ ^2\mathrm{D})4p$	$^{1}\mathbf{P}^{\circ}$	1	181 203.4	95	,
$3d^7(b\ ^2\mathrm{D})4p$	¹ F°	3	181 658.4	97	
$3d^7({}^4\mathrm{F})4d$	⁵ G	6	181 840.00	96	4 ⁵ H
		5	$182 \ 327.13$	63	26 3 G
		4	183 041.45	71 .	13 3 G
		3	$183\ 637.76$	81	4 ³ G
		2	184 124.86	74	$17 {}^{5}\mathbf{P}$
$3d^{7}({}^{4}\mathrm{F})5s$	⁵ F	5	181 998.15	99	
		4	182 798.20	84	14 ${}^{3}\mathbf{F}$
		3	183 612.67	93	
		2	$184\ 220.35$	97	
		1	184 609.57	99	
$3d^{7}({}^{4}\mathrm{F})4d$	⁵ H	7	182 508.30	99	
		6	183 126.19	59	39 3 H
		5	$183 \ 904.88$	80	14 ${}^{3}\mathbf{H}$
		4	$184 \ 510.75$	88	$5^{3}G$
		3	184 944.95	81	$17 {}^{3}G$
$3d^7({}^4\mathrm{F})4d$	${}^{5}P$	3	182 524.69	83	9 ⁵ D
		2	183 575.58	55	21 ⁵ G
		1	184 375.68	59	$38 {}^{5}D$
•					

Configuration	Term	J	Level (cm ⁻¹ )	Leading per	centa	ages
$3d^7(4\mathbf{F})Ad$	³ G	5	183 052 20	66	24	${}^{5}G$
5 <i>a</i> (1)4 <i>a</i>		4	183 859 72	74	16	${}^{5}G$
,		3	184 346.50	74	15	⁵ H
$3d^{7}({}^{4}\mathrm{F})4d$	5D	4	183 464.88	85	9	${}^{5}\mathbf{F}$
	_	3	184 518.20	64	13	$^{3}D$
		2	185 067.15	55	25	$^{3}D$
		1	185 116.05	46	38	${}^{5}\mathbf{P}$
		ō	185 147.23	98		
$3d^{7}(b^{2}D)4p$	³ D°	1	183 717.00	95		
· -		2	183 872.00	73	25	${}^{1}D^{\circ}$
		3	184 723.10	96		
$3d^7({}^4\mathrm{F})4d$	³ D	3	183 839.47	71	14	5 D
		2	184 623.54	66	15	
		1	185 543.70	82	12	
$3d^{7}({}^{4}\mathrm{F})5s$	³ F	4	184 037.62	85	14	${}^{5}\mathbf{F}$
		3	185 248.15	93		
	-	2	186 073.40	97		
$3d^{7}({}^{4}\mathrm{F})4d$	³ H	6	184 166.57	60	37	⁵ H
		5	184 805.62	80	15	
		4	185 639.13	91	5	
$3d^7({}^4\mathrm{F})4d$	³ F	4	187 351.88	86	5	$(^{2}G)$ $^{3}F$
		3	188 140.54	84	6	
		2	188 622.87	85	6	
$3d^7({}^4\mathrm{F})4d$	³ P	2	187 493.38	87	5	$({}^{4}P) {}^{3}P$
		1	188 542.82	90	6	
		0	189 056.90	91	6	
$3d^7({}^4\mathrm{F})5p$	⁵ F°	5	199 919.08	91	8	⁵ G°
-		4	200 076.35	49	42	${}^{5}D^{\circ}$
		3	200 962.97	64	27	${}^{5}\mathrm{D}^{\circ}$
		2	201 725.23	80	15	${}^{5}\mathrm{D}^{\circ}$
		1	202 263.08	94	6	⁵ D°
$3d^7({}^4\mathrm{F})5p$	⁵ G°	6	200 747.06	99		
-		5	201 033.68	48	43	³ G°
		4	201 969.90	67	14	³ F°
		3	202 608.20	76	11	⁵ F°
		2	203 020.07	78	10	⁵ D°
$3d^7({}^4\mathrm{F})5p$	⁵ D°	4	200 935.60	54	29	⁵ F°
		3	201 829.46	60	19	${}^{5}\mathbf{F}^{\circ}$
		2	202 487.82	71	17	⁵ G°
		1	202 898.94	92	6	${}^{5}\mathbf{F}^{\circ}$
		0	203 078.46	98		
$3d^7({}^4\mathrm{F})5p$	³ F°	4	202 074.33	71	5	⁵ F°
		3	203 360.52	57	29	³ D°
		2	203 739.65	58	38	³ D°

B T 4		~		
N1	ш—	Con	tini	led

Configuration	Term	J	Level (cm ⁻¹ )	Leadir	ig percent	ages
9.7 (415) 5-	3/10	, F	909 195 81	F 4	4.4	5 <u>G</u> •
5a ( T)5p	G	0 4	202 122.84	54 75	44	U
		4 9	203 197.33	10	19	
		0	203 970.33	60	1	
$3d^{7}({}^{4}\mathrm{F})5p$	³ D°	3	202 624.51	62	30	³ F°
-		2	204 242.07	57	38	³ F°
		1.	204 677.95	. 98		
9.76(51) 4:4-	500	4	001 101 10			
5a (D)484p	D	4	204 404.12			
		0 0	204 714.93			
		2 1	203 002.31			
		0	205 327.00			
		Ŭ				
$3d^6(^5\mathrm{D})4s4p$	⁵ F°	5	206 925.18			
		4	207 382.10			
		3	207 744.30			
		2	208 005.7			
$3d^{6}(^{5}\mathrm{D})4s4p$	³ D°	3	212 312.5			
*		2	213 016.8			
,		1	213 490.0			
$2d^{6}(5D)/a/n$	31270	4	010 Q97 7			
a(D)4s4p	r	4 9	212 037.7			
		ວ ດ ·	213 313.01			
		2	214 744.0			
$3d^{7}({}^{4}\mathrm{F}_{9/2})4f$	² [ ¹¹ / ₂ ]°	6	221 187.25	99		
		5	221 195.35	88	11	$2[\frac{9}{2}]^{\circ}$
2d7 (4F ) AF	219/ 70	A	991 956 09	00		
5a (19/2)4/	L /2J	4 5	001 969 50	98	11	2511/ 70
		J	221 200.00	00	11	[ /2]
$3d^{7}({}^{4}\mathrm{F}_{9/2})4f$	2 [ 13/2] °	7	221 286.78	99		
		6	221 292.92	99		
9.17/412 14.6	257/70	9	221 250 00	22		
$5u (r_{9/2})4/$	[/2]	о 4	221 300.90	99		
		4	221 388.14	98		
$3d^{7}({}^{4}\mathrm{F}_{9/2})4f$	² [ ¹⁵ / ₂ ]°	8 -	221 433.20	99		
		7	221 444.15	99		
$3d^7(4\mathbf{F}) \Lambda f$	219/ 70	5	999 155 BB	94		
54 ( <b>F</b> 7/2) <b>H</b>	L /2 J	4	222 466.47	94 89	9	² [ ⁷ / ₂ ]°
7 4						. 23
$3d'({}^4\mathrm{F}_{9/2})4f$	² [ ⁹ / ₂ ]°	3	221 476.68	99		
$3d^{7}({}^{4}\mathrm{F}_{7/2})4f$	² [ ¹¹ / ₂ ]°	6	222 494.65	99		
s = 1/2/ =f	L'23	5	222 529.55	94		
$3d^{7}({}^{4}\mathbf{F}_{7/2})4f$	2[7/]0	3	222 516.60	97		
· · · · · · · · · · · · · · · · · · ·		4	222 547.50	89	10	$2[\frac{9}{2}]^{\circ}$
0.17.417	2:5/ 70	0	202 520 00	~-		
$3a'(\mathbf{F}_{7/2})4f$	~[ ⁷ 2]°	პ ი	222 230.00	97		
		Z	222 571.37	98		

## Ni III—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading p	ercenta	ages
$3d^{7}({}^{4}\mathbf{F}_{\pi/2})4f$	2[13/_].	7	222 596.30	99		
Star ( 1 1/2) 1	L '23	6	222 599.70	99		
$3d^{7}(4\mathbf{F}_{m})/f$	2[7/_].	Л	999 987 NN	08		
5 <i>a</i> (1 ² 5/2)4 <i>j</i>	L /2.1	3	223 329.77	87	12	² [ ⁵ / ₂ ]°
$2d^{7}(4\mathbf{F}) \Lambda f$	2r5/ Jo	Q	999 LAC 91	0F	10	217/ 10
5a (15/2)4/	[ ⁷ 2]	2	223 375.18	80 97	12	[/2]
2.J7 (4FF ) AF	219/10	5	0021.21.10	00		
04 (15/2)4/	[ /2]	4	223 314.77	98		
$3d^7({}^4\mathbf{F}_{evo})4f$	² [ ¹¹ / ₂ ]°	5	223 461 15	99		
Gar ( x 5/2) 1	L '21	6	223 469.90	99		
$3d^{7}({}^{4}\mathrm{F}_{5/2})4f$	² [ ³ / ₂ ]°	2	223 481.25	99		
		1	223 491.34	99		
$3d^7({}^4\mathrm{F}_{3/2})4f$	²[ ⁵ / ₂ ]°	3	223 957.54	97		
		2	224 026.05	97		
$3d^{7}({}^{4}\mathrm{F}_{3/2})4f$	² [ ⁹ / ₂ ]°	4	223 989.02	99		
		5	224 020.91	99		
$3d^7({}^4\mathrm{F})6s$	⁵ F	5	225 784.20	99		350
		4	226 290.44	44	55	°Р' 3т
		3 2	227 985.66	90	26 9	${}^{3}\mathbf{F}$
$3d^{7}({}^{4}\mathrm{F})5d$	⁵ F	5	225 918.35	79	20	⁵ G
00 (1)00	-	4	226 118.80	55	34	$^{5}D$
		1	228 042.24	62	24	${}^{5}\mathbf{D}$
$3d^7({}^4\mathrm{F})5d$	⁵ G	6	226 124.64	91	8	${}^{5}\mathbf{H}$
		5	227 433.80	41	34	³ G
		$\frac{3}{2}$	$\begin{array}{c} 227 \ 963.02 \\ 228 \ 483.54 \end{array}$	43 68	17 13	°D ⁵ F
	511	-	000 900 90			
$3d^{-}(\mathbf{F})5d$	H	6	220 380.30	99	33	³ H
		5	227 726.91	61	26	³ H
		4	228 434.45	76	10	$^{3}\mathrm{H}$
		3	228 955.36	55	42	³ G
$3d^7({}^4\mathrm{F})5d$	⁵ P	3	226 532.85	51	30	${}^{5}\mathbf{D}$
		2	227 767.03	53	26	⁵ F
		1	228 329.40	42	31	°D
$3d^7({}^4\mathrm{F})5d$	$^{3}\mathrm{G}$	5	226 603.73	51	30	⁵ G
	-	4	228 195.11	46	34	ัG ⁵ น
		ა	228 898.30	40	34	11
$3d^7({}^4\mathrm{F})5d$	³ H	6	226 686.28	66	31	۶H
		5	228 609.82	59	29	
		4	229 291.50	79	12	
$3d^7({}^4\mathrm{F})5d$		3	226 757.78	37 ³ D	27	${}^{5}\mathbf{P}$
Ni III—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading perce	ntages
	5				5
$3d'(*\mathbf{F})5d$	J'D	4	227 091.99	42 3	7°G
		3	228-363.94	46 2	3 °F
		0	228 736.36	99	-
		2	228 819.73	56 2	0 ⁵ P
		1	229 057.39	38 3	$1  {}^{5}\mathbf{P}$
$3d^{7}({}^{4}\mathrm{F})6s$	³ F	4	227 288.70	44 5	5 ⁵ F
		3	228 290.97	73 2	 6
		2	229 036.43	90	9
$3d^7({}^4\mathrm{F})5d$	·	2	227 346.84	35 ⁵ F 1	5 ${}^{5}\mathbf{P}$
$3d^7({}^4\mathrm{F})5d$	³ D	3	227 459.43	48 2	$6  {}^{5}\mathbf{F}$
		2	228 273.42	62 1	8 ⁵ G
		1	228 879.50	59 2	$1  {}^{5}\mathbf{P}$
$3d^7({}^4\mathrm{F})5d$		- 4	227 553.40	30 ⁵ F 2	7 ³ G
$3d^{7}({}^{4}\mathrm{F})5d$	³ F	4	230 169.90	89	6 ³ G
. ,		3	231 033.56	84	3 ³ G
		2	231 548.58	83	2 $^{3}D$
2.7 (417) 5.4	30	0	220.010.0		(4-1) 3-
3a (F)3a	P	Z	230 219.9	87	7 $(\mathbf{F})^{3}\mathbf{D}$
			231 309.0	93	$3 ({}^{\mathbf{r}}\mathbf{F}) {}^{\mathbf{s}}\mathbf{D}$
,		0	231 761.8	97	2 (*P) *P
$3d^7({}^4\mathbf{F}_{a,a})5\sigma$	2 15/1	8	911 969 75	07	
000 ( 1 g/2/05	L /2J	7	244 267 15	93	
			m11 001.10	20	
$3d^{7}({}^{4}\mathrm{F}_{0/2})5g$	² [ ¹¹ / ₂ ]	6	244 264 23	86 10	2[13/2]
· 0/L/ O	1.21	5	244 264.28	72 2	$7 \frac{2[9/_2]}{2}$
$3d'({}^{4}\mathrm{F}_{9/2})5g$	$2[\frac{13}{2}]$	7	244 289.88	94	
		6	244 290.37	86 13	$3 \frac{2}{11/2}$
7 - 4	0-0				<u> </u>
$3d'({}^4\mathrm{F}_{9/2})5g$	² [ ⁹ / ₂ ]	4	244 306.13	53 40	$3 \frac{2}{7/2}$
		5	244 306.20	71 27	$7 \frac{2[11/2]}{2}$
0.17/4m >r	2017/1	0	01101000		
$3d^{-}(\mathbf{F}_{9/2})5g$		9	244 343.23	, 99	
		8	244 343.20	98	
$3d^7({}^4\mathrm{F}_{7/2})5g$	$2^{2}[\frac{13}{2}]$	6	245 471.20	87 11	² [ ¹¹ / ₂ ]
$3d'({}^4\mathrm{F}_{7/2})5g$	² [ ¹¹ / ₂ ]	5	$245 \ 488.31$	60 38	$3^{2}[\frac{9}{2}]$
		6	245 495.36	89 10	$2^{2}[\frac{13}{2}]$
a 7/4 - a -	9-15	_			
$3d^{(4}\mathbf{F}_{7/2})5g$	[ [10/2]	7	245 528.40	96	
$2d^{7}(4\mathbf{E}) = 5\pi$	259/ 1	E	945 599 50		211/1
$3a (r_{7/2}) 3g$	[/2]	0	240 002.09	60 35	$\begin{bmatrix} 2 \\ 2 \\ 2 \\ 7 \\ 1 \end{bmatrix}$
		4	240 012.01	70 28	5 [72]
$3d^{7}({}^{4}\mathrm{F}_{\mathrm{cus}})5\sigma$	2[9/_1	4	246 364 86	96	
···· ( 15/2/08	L '2J	5	246 376 24	55 49	2[11/2]
				50 42	· [ '2]
$3d^7({}^4\mathrm{F}_{5/2})5g$	² [ ¹³ / ₂ ]	6	246 385.97	97	
012. 0					

## Ni III—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading percentages	
$3d^7({}^4\mathrm{F}_{3/2})5g$	² [ ⁹ / ₂ ]	4 5	246 938.98 246 954.87	72 58	$\begin{array}{ccc} 26 & {}^{2}[{}^{7}\!\!/_{2}] \\ 40 & {}^{2}[{}^{11}\!\!/_{2}] \end{array}$
Ni IV ( ⁴ F _{9/2} )	Limit		284 900		

Z = 28

Mn I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^6 3d^7 {}^4F_{9/2}$ 

Ionization energy =  $443 \ 000 \ \text{cm}^{-1} \ (54.9 \ \text{eV})$ 

The first work on Ni IV was reported by Poppe (1968), who found two quartets in the  $3d^7$  configuration and quartets and sextets from  $3d^64s$  and  $3d^64p$ . The sextets and quartets were connected by intercombinations found by Garcia-Riquelme (1968).

The present compilation is taken from an extension of the analysis by Poppe (1976). The  $3d^7-3d^64p$  array was observed in the region 390-710 Å and the  $3d^64s-3d^64p$  array in the region 1210-1830 Å. All levels of  $3d^7$  have been found. The uncertainty of measurement in the short wavelength array is 2 or 3 cm⁻¹ and in the longer one, about 0.5 cm⁻¹.

The leading percentages were calculated by Poppe (1976). We use the designations of Nielson and Koster (see introduction) to represent the seniorities.

The ionization energy is from Lotz (1967).

### References

Garcia-Riquelme, O. (1968), Physica 40, 27. Lotz, W. (1967), J. Opt. Soc. Am. 57, 873. Poppe, R. (1968), Physica 40, 17. Poppe, R. (1976), Physica 81C, 351.

Configuration	Term	J	Level (cm ⁻¹ )	Leading per	rcenta	ages
$3d^7$	4F	9/2	0.0	100		
502	-	7/2	1 189.7	100		
		5/2	2 042.5	100		
		3/2	2 621.1	100		
$3d^7$	⁴ P	5/2	18 118.6	100		
		3/2	18 366.8	93	7	$^{2}P$
		$\frac{1}{2}$	18 958.4	97	3	$^{2}\mathbf{P}$
$3d^7$	² G	9/2	19 829.6	97	2	$^{2}\mathrm{H}$
		7/2	20 947.6	100		
$3d^{7}$	$^{2}\mathbf{P}$	8/2	23 648.9	83	8	$^{2}\text{D2}$
		1/2	24 651.4	97	3	⁴P
$3d^7$	2 _H	11/0	26 649.1	100		
		9/2	27 677.6	98	2	$^{2}G$
$3d^7$	² D2	5/2	27 096.5	77	23	$^{2}D1$
		3/2	28 777.7	72	18	
$3d^7$	2 ₁	5/0	43 437.5	100		
- Cu	_	7/2	43 858.6	100		
$3d^7$	² D1	3/2	67 360.0	80	20	$^{2}D2$
		5/2	67 989.8	77	23	
$3d^{6}(^{5}\mathrm{D})4s$	⁶ D	9/2	110 410.6	100		
	-	7/2	111 195.8	100		
		5/,	111 763.3	100		
a		3/2	112 151.9	100		
		1/2	112 379.3	100		

Ni IV

Ni IV—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading	percenta	ages
$3d^{6}({}^{5}\mathrm{D})4s$	⁴D	7/0	120 909 5	100		
00 (12) 10	2	5/	121 807 7	100		
		/2 3/	100 906 1	100		
		⁷ 2	122 386.1	100		
		1/2	$122\ 717.4$	99		
$3d^{6}(^{3}\text{P2})4s$	⁴ P	5/	138 446.2	62	37	( ³ P1) ⁴ P
04 (12/10	-	3/	140 949 0	02	07	(**) *
		1/2	140 545.0	60	35	
		⁷ 2	141 561.2	60	36	
$3d^{6}(^{3}\mathrm{H})4s$	⁴ H	13/2	139 289.4	100		
,		11/	139 619 2	09		$(^{3}C)$ $^{4}C$
		9/2	190 002 7	30	2	(3c) 4c
		72	139 880.1	94	3	(G) G
		1/ ₂	140 140.9	96	2	(°G) ⁴G
$3d^{6}({}^{3}\mathrm{F2})4s$	4F	9/	141 220.3	72	21	$({}^{3}F1) {}^{4}F$
000 ( 1	-	$\frac{12}{7/}$	141 577 9	7.4	21	( ) .
		/2 5/	141 011.2	14	20	
		⁷ 2	141 832.0	77	20	
		%	$142\ 023.5$	80	19	
3d ⁶ ( ³ G)4e	4G	11/2	144 815 1	71	28	( ³ H) ² H
Ju (U)40	u	9/2	145 700 0	11	20	(311) 11
		72	145 702.2	76	18	(-H) -H
		1/2	$146\ 061.5$	88	4	$(^{\circ}F2)^{2}F$
		∛₂	146 153.8	90	6	$({}^{3}F2) {}^{2}F$
$3d^{6}(^{3}\text{P2})4s$	$^{2}P$	³ /2	145 192.1	60	36	( ³ P1) ² P
0. 16/377.1	2**	11/	115 000 5			(30) 40
$3d^{\circ}(^{\circ}H)4s$	-H	1.1/2	145 962.5	71	27	$(^{\circ}G)^{\circ}G$
		⁹ / ₂	$146 \ 194.3$	78	17	
$3d^{6}(^{3}\text{F2})/2e$	2 _F	7/.	147 635 9	69	10	$({}^{3}F1) {}^{2}F$
00 (12)48	1	5/0	148 358.2	74	18	(11)1
		. 2				
$3d^{6}({}^{3}\mathrm{G})4s$	² G	9/2	151 574.7	97	3	$(^{3}H)^{2}H$
	-	7/2	152 343.7	95	4	$({}^{3}F2) {}^{2}F$
C - 9	1-	9,				
$3d^{\circ}(^{\circ}\mathrm{D})4s$	"D	⁹ / ₂	$153\ 313.8$	99		
		∂%2	$153\ 338.8$	98		
		1/2	153 349.4	99		
		7/2	153 533.6	100		t.
		/2	100 000.0	100		
$3d^{6}(^{1}\text{I})4s$	² I	13/2	$155\ 253.7$	100		
···· ( • ) -··		11/2	155 308.7	99		
<b>C</b> 1	0	0.				100.90
$3d^{\circ}(^{1}\text{G2})4s$	∣ "G	$\frac{\gamma_2}{2}$	156 294.0	65	32	(*G1) <b>*</b> G
		⁷ / ₂	$156\ 351.2$	65	32	
2,76(3D) /~	2m	3/	159 /98 5	04	Å	( ¹ D9) ² D
0a (D)48		/2 5/	150 010 /		4	$(D_{i})$ D
		72	199 010.4	96	2	
$3d^{6}({}^{1}\mathrm{F})A_{0}$	2 <b>F</b>	7/	171 406 0	99		
UL ( 1 / 28	T,	5/2	171 408.0	98		
		- 2				
$3d^{6}(^{5}D)4p$	⁶ D°	9/0	175 569.5	98		
- · · · / T	_	7/2	175 869 1	96	2	$({}^{5}D) {}^{6}F^{\circ}$
		5/	176 01.7 1	07	-	· / A
		3/2	110 241.1	91		
		⁷ 2	176 554.4	98		
		1/2	176 749.0	99		
	1	1	and the second se	I		

Ni IV-Continued

						че <i>со</i>
$3d^{6}({}^{3}\mathrm{F1})4s$	⁴ F	3/2	179 583.0	80	20	$({}^{3}F2) {}^{4}F$
		9/2	179 655.0	78	22	· · · ·
		5/2	179 724.0	79	20	
		7/2	179 792.0	78	20	
$3d^{6}({}^{5}\mathrm{D})4p$	⁶ F°	11/2	181.931.5	100		
	_	9/2	182 044.9	94	4	( ⁵ D) ⁴ F°
		7/2	182 125.6	93	3	$({}^{5}D) {}^{4}F^{\circ}$
		5/2	182 206.8	95	2	$\binom{5}{1}$ $\binom{4}{1}$
		3/2	182 259.9	96	2	$({}^{5}D) {}^{4}D^{9}$
		1/2	182 288.4	97	-	
$3d^{6}(^{5}\mathrm{D})4p$	⁶ P°	7/2	184 099.1	84	11	( ⁵ D) ⁴ D°
_		5/2	185 505.3		9	( = / <b>_</b>
		3/2	186 441.4	94	4	
$d^{6}(^{5}\mathrm{D})4p$	⁴ D°	7/2	185 890.0	83	13	( ⁵ <b>D</b> ) ⁶ <b>P</b> °
		5/2	186 516.1	84	10	$(^{5}\mathbf{D})^{6}\mathbf{P}^{\circ}$
		3/2	186 957.2	89	4	$({}^{5}\mathbf{D}) {}^{6}\mathbf{P}^{\circ}$
		1/2	187 225.7	93	3	( ⁵ D) ⁶ F°
$d^{6}({}^{3}\mathrm{F1})4s$	$^{2}\mathbf{F}$	7/0	185 967.0	. 77	91	$(^{3}F2)^{2}F$
		5/2	185 997.0	80	20	(14) 1
$d^{6}({}^{5}\mathrm{D})4p$	400	9/	186 470 1	04	4	( ⁵ D) ⁶ E°
	-	7/2	187 570 3	04 05	. 4	$\binom{5}{1}$ $\binom{5}{1}$
		5/2	188 320 1	90 06	ა ი	( ⁵ D) ⁶ E°
		3/2	188 824.2	97	2	(D) F
$d^{6}(^{5}\mathbf{D})4n$	4 <b>D</b> °	5/	100 890 9	07		
а ( D)4p	r	3/	190 030.3	97		
			192 033.5	98 98		
$\frac{16}{101}$	20	9/	100 004 7			(100) ² 0
a (G1)4s	G	1/2 1/2	190 864.7 190 932.8	66 66	33 33	(*G2) *G
	400	3/	005 111 1			(370) 470
$Sa^{(PZ)}4p$	5	⁹ / ₂	205 114.1	44	19	(°P2) *P*
$3d^6(^3\mathrm{H})4p$	⁴ G°	¹¹ / ₂	206 005.3	68	21	$(^{3}F2)$ $^{4}G^{\circ}$
		72	206 340.9	51	28	
		$\frac{\gamma_2}{5}$	206 645.7	45	34	
		⁹ 2	206 847.0	42	38	
$3d^{6}(^{3}\text{P2})4p$		⁵ / ₂	206 523.2	$27  {}^{4}\mathbf{P}^{\circ}$	23	$(^{3}P1)$ $^{4}P^{\circ}$
$3d^{6}(^{3}\mathrm{H})4p$	4 <b>I</b> °	11/2	206 740.7	51	35	$({}^{3}H) {}^{4}H^{\circ}$
<b>A</b>		13/5	206 754.5	48	38	$(^{3}H)$ ⁴ H°
		9/5	208 046.8	46	19	$({}^{3}H) {}^{4}H^{\circ}$
		15/2	208 149.5	99		( /
$d^6(^3\mathrm{H})4p$	、 、	⁹ /2	206 865.5	43 ⁴ I°	37	⁴ H°
$d^{6}(^{3}\mathrm{H})4n$	⁴ H°	7/2	207 136 0	47	20	( ³ H) ² G*
···· ( ····· / ····		11/2	208 595.3	45	44	$(^{3}H)^{4}I^{\circ}$
		13/2	208 631.3	51	40	$({}^{3}H) {}^{4}I^{\circ}$
$3d^{6}(^{3}P2)4n$	⁴ P°	1/2	207 846.2	48	41	( ³ P1) ⁴ P°

# Ni IV—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Le	ading perce	enta	ages
$3d^6(^3\mathrm{P2})4p$		⁵ /2	208 009.1	32	² D°	20	( ³ P1) ² D°
$3d^6(^3\mathrm{P2})4p$		⁷ /2	208 330.7	22	⁴ D°	19	( ³ F2) ⁴ F°
$3d^6(^3\mathrm{P2})4p$		³ /2	208 461.0	22	⁴ S°	13	${}^{4}\mathrm{P}^{\circ}$
$3d^6(^3\mathrm{F2})4p$	${}^{4}\mathbf{F}^{\circ}$	⁵ /2	208 605.7	54		18	$({}^{3}F1) {}^{4}F^{\circ}$
		9/2 9/2	208 766.9 208 933.6	63 49		20 18	
$3d^6(^3\mathrm{P2})4p$	${}^{4}\mathrm{D}^{\circ}$	7/2	208 912.1	39		21	$({}^{3}\text{P1}) {}^{4}\text{D}^{\circ}$
		⁴ ∕2	210 313.3	59	Ð -	28	(°P1) *D°
$3d^{\circ}(^{\circ}\mathrm{H})4p$		"∕₂	209 131.9	37	²G°	23	( ⁸ H) ⁴ H [°]
$3d^6(^3\mathrm{H})4p$		7/ ₂	209 391.4	34	² G°	16	$({}^{3}F2) {}^{4}F^{\circ}$
$3d^6(^3\mathrm{P2})4p$		³ / ₂	209 985.1	18	² D°	16	( ⁸ P2) ⁴ P°
$3d^6({}^3\mathrm{F2})4p$	⁴ D°	7/2 5/	210 121.8	49		10	$({}^{3}F1) {}^{4}D^{\circ}$
		⁹ / ₂ 3/	210 943.6	37		20	$(^{\circ}P2)^{*}D^{\circ}$
		1/2	211 240.0	49		10	(D) D $(^{3}F1) ^{4}D^{\circ}$
		12	211 001.7	01		12	
$3d^6(^3\mathrm{H})4p$	² I°	$\frac{13}{2}$ 11/	210 177.0 210 987 5	86		11	$(^{3}\mathrm{H})$ ⁴ I°
		12	210 307.5	00		4	
$3d^6(^3\mathrm{F2})4p$		⁵ / ₂	210 590.6	24	⁴ D°	23	( ³ P2) ⁴ D°
$3d^6(^3\mathrm{P2})4p$		³ /2	211 027.6	20	⁴ D°	18	$({}^{8}F2) {}^{4}D^{\circ}$
$3d^6({}^3\mathrm{F2})4p$	⁴ G°	⁹ / ₂	212 150.9	37		20	$(^{3}H)$ $^{4}G^{\circ}$
		[/] 2	212 207.0	53		17	
$-3d^6(^3\text{F2})4p$		⁵ /2	212 275.9	24	² F°	19	$({}^{3}F2) {}^{4}G^{\circ}$
$3d^6({}^3\mathrm{F2})4p$		7/ ₂	212 281.8	26	⁴ G°	17	$(^{3}H)$ $^{4}G^{\circ}$
$3d^6({}^3\mathrm{F2})4p$		"/ ₂	213 131.1	24	${}^{2}\mathbf{F}^{\circ}$	14	( ³ H) ⁴ G°
$3d^{6}(^{3}\text{G})4p$	⁴ F°	⁹ / ₂	213 408.6	57		25	$(^{3}G)$ $^{4}G^{\circ}$
		1/2	214 101.0	37		41	$({}^{3}G) {}^{4}G^{\circ}$
		3/2 3/	215 516.8	43		30	$({}^{6}G) {}^{4}G^{\circ}$
2 J ⁶ ( ³ II) (m		2 5/	210 041.3	68	400	15	$(\mathbf{D}) \mathbf{r}$
$3u(\Pi)4p$		⁷ 2	213 412.1	28	G 1	18	(F2) G
$3d^{\circ}(^{3}\mathrm{G})4p$		""/ ₂	213 606.9	31	*G°	30	²H°
$3d^{\circ}(^{3}\text{P2})4p$		¹ / ₂	213 640.2	31	^z P°	23	( ³ P1) ² P°
$3d^6(^3\mathrm{F2})4p$		⁹ / ₂	213 739.7	33	² G°	20	( ³ G) ² H°
$3d^6(^3\mathrm{P2})4p$	$^{2}\mathbf{P}^{\circ}$	³ / ₂	214 055.8	50	:	33	( ³ P1) ² P°
$3d^6(^3\mathrm{G})4p$	⁴ G°	¹¹ / ₂	214 316.8	47		21	$({}^{3}H) {}^{2}H^{\circ}$
		⁵ / ₂	214 718.1	46	:	27	$\binom{{}^{3}G}{{}^{2}}$
		$\frac{\eta_{2}}{\tau_{1}}$	214 910.5	40		16	$(^{\circ}H)^{2}H^{\circ}$
		72	Z10 ZYZ.Y	39		33	(G) <b>F</b>

Ni IV-Continued

Johniguration	Term	J	Level (cm ⁻¹ )	Leading	percent	ages
$3d^6({}^3\mathrm{F2})4p$		%	214 587.4	21 $^{2}G^{\circ}$	16	( ³ H) ² H°
$3d^{6}(^{3}\text{F2})4p$	² G°	7/2	214 622.8	60	14	( ³ F1) ² G°
$3d^{6}({}^{3}\mathrm{G})4n$	4110	13/	<i>215 506 6</i>	96	11	( ³ LT) ⁴ LJ°
00 ( 0, p	**	11/2	215 684 5	79	10	$(^{3}\mathbf{U})^{2}\mathbf{U}^{\circ}$
		7/2	915 791 5	70	10	(1) $(311)$ $4110$
		9/2 9/2	215 724.5	73	12 9	$(^{3}H)^{4}H^{\circ}$
$3d^{6}(^{3}\text{P2})4p$	$^{2}S^{\circ}$	1/2	215 531.0	47	19	( ³ P1) ² S°
$3d^{6}({}^{3}\mathrm{F2})4n$	² D°	5/	917 1.11. 9	<u>c</u> 7	10	( ³ D9) ² D°
000 ( <b>1</b> = ) 10		3/2 3/2	217 939.7	64	10	$(\mathbf{r}_{2})\mathbf{D}$
$3d^{6}(^{3}\mathrm{H})4p$	$^{2}\mathrm{H}^{\circ}$	11/2	218 860.6	48	42	( ³ G) ² H°
$3d^{6}(^{3}\text{G})4n$	2F.o	5/	919 559 1	477	10	$(3n) 2n^{3}$
500 ( Ca) 1p	*	7/2	210 000.4 910 806 0	41	19	(D) r
		12	213 830.0	52	, 16	
$3d^6(^3\mathrm{G})4p$	² H°	⁹ / ₂	219 765.0	43	39	$(^{3}H)$ $^{2}H^{\circ}$
$3d^6({}^1\mathrm{I})4p$	² K°	13/2	220 762.6	97	2	( ¹ I) ² I°
		15/2	222 202.8	99		
$3d^{6}({}^{3}\mathrm{G})4p$	² G°	9/2	221 991.0	71	18	$(^{3}H)$ ² G°
-		7/2	222 029.3	71	10	(11) G
$3d^6(^3\mathrm{D})4p$	⁴ P°	5/2	222 333.3	87	3	$({}^{3}P2) {}^{4}P^{\circ}$
	_	3/	222 662 9	74	0 0	$(^{3}D)^{2}P^{\circ}$
		1/2	223 225.4	66	13	$(^{3}D)^{4}D^{\circ}$
$3d^{6}(^{1}\text{G2})4p$	² H°	9/2	222 705 5	44	17	( ¹ I) ² H°
			225 758.5	36	27	$(^{1}G1)^{2}H^{2}$
$3d^{6}({}^{1}\mathrm{I})4p$	² H°	11/2	222 993 3	53	95	$(^{1}C2)^{2}H^{2}$
		9/2	225 903.7	61	25 15	$(^{1}G1)^{2}H^{2}$
$3d^6(^3\mathrm{D})4p$		1/2	223 785.4	33 ⁴ D°	26	( ³ D) ⁴ P°
$3d^{6}(^{3}\text{D})4p$	400	5/	291 021 2	59	17	$(^{3}C)$ 4F°
ou ( 2) ip	1	7/2	224 021.0 991, 891, Q	30	10	$(G) \mathbf{r}$
		⁹ / ₂	225 096.4	73	12	$(^{3}G)^{4}F^{\circ}$
$3d^6(^3\mathrm{D})4p$		7/2	224 075.3	24 ⁴ F°	10	$(^{1}G2) ^{2}F^{\circ}$
$3d^6(^3\mathrm{D})4p$		3/2	224 174.0	$30  {}^{4}\mathrm{D}^{\circ}$	30	( ³ D) ² P°
9-16(109)4-	200	7,	001.100.0			1
3a (G2)4p	G	9/2 9/	224 463.6 224 761 5	44 50	18	('G1) ² G°
a					21	
$3d^{\circ}(^{\circ}\mathrm{D})4p$	*D°	$\frac{\gamma_2}{\pi^2}$	224 645.7	68	14	$(^{3}D) ^{4}F^{\circ}$
		1/2	225 136.9	54	13	$(^{1}\text{G2})^{2}\text{F}^{\circ}$
$3d^{6}(^{3}\text{D})4n$	2 _{D°}	3/	221 926 0	41	4.1	( ³ n) 4nº
u (u) p	1	1/2	224 996 5	41	41	$(\mathbf{D})\mathbf{D}$
		/2	~~~ 000.0	40	30	
n millan		5/	995 1.31 G	34 ² F°	15	$({}^{1}C1) {}^{2}F^{\circ}$

Configuration	Term	J	Level (cm ⁻¹ )	Leading p	ercent	ages
$3d^6(^1\mathrm{I})4p$	² I°	¹³ / ₂ ¹¹ / ₂	226 685.0 226 702.5	98 82	2 10	( ¹ I) ² K° ( ¹ I) ² H°
$3d^6(^3\mathrm{D})4p$	$^{2}\mathrm{D}^{\circ}$	³ /2 5/2	227 181.1 227 549.4	76 86	7 3	$(^{1}D2)^{2}H$ $(^{1}F)^{2}D^{2}$
$3d^6(^1\text{D2})4p$	² P°	3/2 1/	228 214.2 229 207 0	34	23	$(^{1}S2)^{2}P$
2~ ⁶ ( ³ D)4n	250	72	232 897.0	40	27	( ¹ D9) ²
5u (D) 4p	ľ	5/2 5/2	229 269.5	54	14 20	(D2) 1
$3d^6(^1\mathrm{S2})4p$		1/2	229 297.5	32 ² P°	26	$(^{1}\text{D2})^{2}\text{I}$
$3d^6(^1\text{D2})4p$		⁵ / ₂	231 091.8	$31  {}^{2}\mathbf{D}^{\mathbf{o}}$	17	( ¹ D2) ² I
$3d^6(^1\text{D2})4p$	$^{2}D^{\circ}$	³ / ₂	231 742.0	62	12	$(^{1}\text{D1})^{2}$ ]
$3d^6(^1\text{D2})4p$		⁵ / ₂	232 272.7	$30  {}^{2}\mathrm{D}^{\circ}$	25	² F°
$3d^6(^1\text{D2})4p$	² F°	7/2	232 539.5	51	13	$(^{1}\text{D1})^{2}\text{I}$
$3d^6(^1\mathrm{S2})4p$		3/2	234 019.5	$37  {}^{2}\mathbf{P}^{\circ}$	24	$(^{1}\text{D2})^{2}\text{I}$
$3d^6({}^1\mathrm{F})4p$	² G°	7/2 9/2	237 480.3 238 957.8	90 93	2 2	( ³ G) ² G ( ¹ G2) ² G
$3d^6({}^1\mathrm{F})4p$	$^{2}D^{\circ}$	5/2 3/2	239 009.7 240 094.2	63 70	15 9	( ¹ D2) ² ]
$3d^{6}(^{3}\mathrm{P1})4p$	⁴ D°	1/2	241 172.4	37	37	( ³ F1) ⁴ I
$3d^6(^3\mathrm{F1})4p$	⁴ D°	$\frac{3}{2}{5}$	241 540.0	35	32	( ³ P1) ⁴ I
		7/2 7/2	241 817.9 241 939.0	43 50	29 23	
$3d^6({}^1\mathrm{F})4p$	² F°	5/2 7/2	243 520.1 243 542.0	83 82	4 4	( ¹ G2) ² H
$3d^{6}({}^{3}\mathrm{F1})4p$	⁴ G°	7/2	247 731.7	77	17	( ³ F2) ⁴ C
		³ / ₂ 11/ ₂	248 218.0 248 855.4	74 78	18 20	
$3d^6(^3\mathrm{P1})4p$	⁴ S°	³ /2	249 130.0	74	24	( ³ P2) ⁴ S
$3d^6({}^3\mathrm{F1})4p$	² D°	³ /2 ⁵ /2	250 951.0 251 694.3	49 46	24 23	$(^{8}P1)$ $^{2}I$
$3d^{6}(^{3}\text{F1})4p$ -	² G°	9/2 7/	251 773.6 050 500 0	66	17	( ³ F2) ² C
$3d^{6}(^{3}\mathrm{P1})4p$	⁴ P°	5/2	252 354.0	37	29	( ³ P2) ⁴ P
$3d^{6}({}^{3}\mathrm{F1})4p$		3/2	252 975.4	32 ⁴ D°	23	( ³ P1) ⁴ D
· · · · · ·				4179		(301) 40

Ni IV—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading percent	ages
$3d^6({}^3\mathrm{F1})4p$	4 <b>F</b> °	³ /2 7/2 5/2 9/2	253 579.3 253 639.1 254 123.7 254 300.0	$\begin{array}{cccc} 57 & 18 \\ 40 & 16 \\ 40 & 17 \\ 66 & 24 \end{array}$	( ³ F2) ⁴ F° ( ³ P1) ⁴ D° ( ³ F1) ⁴ D° ( ³ F2) ⁴ F°
$3d^{6}(^{3}\mathrm{F1})4p$		7/2	254 663.4	26 ⁴ F° 22	$(^{3}P1)$ $^{4}D^{\circ}$
$3d^{6}(^{3}\mathrm{F1})4p$		³ /2	255 064.0	27 ² D° 23	$(^{3}P1)$ $^{2}D^{\circ}$
$3d^6({}^3\mathrm{F1})4p$	² F°	7/2 5/2	257 018.0 257 406.4	54 23 66 25	( ³ F2) ² F°
$3d^6({}^1\mathrm{G1})4p$	² H°	⁹ / ₂ ¹¹ / ₂	258 672.8 260 065.1	59         33           62         35	$(^{1}G2)$ $^{2}H^{\circ}$
$3d^6({}^1\mathrm{G1})4p$		7/ ₂	260 355.5	31 ² F° 23	$(^{1}G1)$ $^{2}G^{\circ}$
$3d^{6}({}^{1}\mathrm{G1})4p$	² F°	⁵ /2	261 226.3	55 26	$(^{1}G2)$ $^{2}F^{\circ}$
$3d^6({}^1\mathrm{G1})4p$	² G°	9/2 7/2	262 275.5 262 538.7	64 27 44 19	$(^{1}G2)$ $^{2}G^{\circ}$
$3d^6(^1\mathrm{D1})4p$	² D°	³ /2 ⁵ /2	282 179.5 282 645.2	79 17 79 17	$(^{1}\mathbf{D2})^{2}\mathbf{D}^{*}$
Ni v ( ⁵ D ₄ )	Limit		443 000		

Z = 28

Cr I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{6-5} D_4$ 

Ionization energy =  $613\ 500\pm500\ \mathrm{cm}^{-1}\ (76.1\pm0.6\ \mathrm{eV})$ 

The  $3d^6-3d^54p$  transition array between 300 and 425 Å has been observed and analysed by Raassen, van Kleef, and Metsch (1976). They have found all but the high ¹S level of  $3d^6$  and 177 out of 214 levels of  $3d^54p$ . The uncertainty of the level values is about  $\pm 0.5$  cm⁻¹.

Raassen and van Kleef (1977) found 37 more levels of  $3d^54p$  and observed and analysed the  $3d^54s-3d^54p$  transition array between 990 and 1400 Å. They also found one term in each of the configurations  $3d^55p$ ,  $3d^54f$  and  $3d^55f$ .

Raassen and van Kleef derived the ionization energy from the two-member np and nf series. We have confirmed their value to within 200 cm⁻¹ by recalculating the  $3d^{5}({}^{6}S)nf$   ${}^{5}F$ series limit and assuming a value for  $n^{*}(5f) \cdot n^{*}(4f)$  of 0.9952 taken from Zn II. Accordingly, we reduced their uncertainty estimate of  $\pm 3000$  cm⁻¹ to  $\pm 500$  cm⁻¹.

#### References

Raassen, A. J. J., and van Kleef, Th. A. M. (1977), Physica 85C, 180.

Ν	i	v

Configuration	Term	J	Level (cm ⁻¹ )	Leadin	g percen	tages
$3d^6$	5D	4	0.0	100		
		3	889.7	100		
		2	$1\ 489.9$	100		
		1	1 871.5	100		
		0	2 057.6	100		
$3d^6$	³ P2	2	26 153.0	62	38	³ P1
		1	28 697.6	63	37	
		0	29 640.0	62	36	
$3d^6$	³ H	6	27 111.2	99	1	¹ I
		5	27 578.2	97	3	³ G
		4	27 858.8	88	5	³ F2
$3d^6$	$^{3}F2$	4	29 123.7	68	20	³ F1
		3	29 570.8	75	20	
		2	29 899.2	80	20	
$3d^6$	³ G	5	33 256.5	97	3	3 H
		4	34 061.7	93	4	³ F2
		3	34 416.4	96	4	$^{3}F2$
$3d^6$	¹ I	6	41 252.2	99	1	³ H
$3d^6$	³ D	2	41 626.9	97	2	¹ D2
		1	41 701.1	100		
		3	41 920.2	100		
$3d^6$	¹ G2	4	42 208.1	65	33	¹ G1
$3d^6$	^I S2	0	47 699.7	76	22	¹ S1
$3d^6$	¹ D2	2	48 607.0	76	21	¹ D1
$3d^6$	$^{1}\mathbf{F}$	3	57 924.1	98	1	3 F1

Raassen, A. J. J., van Kleef, Th. A. M., and Metsch, B. C. (1976), Physica 84C, 133.

Ni v—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leadin	g percent	ages
$3d^6$	⁸ P1	0	66 737 8	64	26	³ P2
		1	67 547 9	63	97	است ع
		2	69 156.1	62	38	
$3d^6$	³ F1	2	68 632.1	80	20	³ F2
		4	68 718.7	77	22	
		3	68 854.7	78	20	
$3d^6$	¹ G1	4	77 899.5	66	34	¹ G2
$3d^6$	¹ D1	2	104 420.5	78	22	¹ D2
$3d^5(^6\mathrm{S})4s$	⁷ S	3	164 525.9	100		
$3d^5(^6\mathrm{S})4s$	⁵ S	2	178 019.8	100		
$3d^{5}({}^{4}G)As$	50	6	208 046 4			
ou (U/33	u	L R	200 040.4 900 191 0	100		
		0	200 131.0	100	-	/2171 . 31
			200 101.0 200 169 7	99	1	(- <b>F</b> I) <b>'</b>
		4	208 163.7	100		
		3	208 164.6	100		
$3d^5(^4P)4s$	${}^{5}\mathbf{P}$	3	212 095.8	90	9	( ⁴ D) ⁵ D
		2	212 253.4	91	8	
		1	212 455.7	96	4	3
$3d^{5}(^{4}\text{D})4s$	5n	4	216 189 9	QQ	1	( ⁴ C) ³ C
04 (17/40		0	210 105.5	33	1	(0) 0 (4n) 3n
		1	210 303.7	98	. Z	$(\mathbf{r})\mathbf{r}$
		1	210 434.7	94	4	('P) 'P
		3	216 590.5	91 90	8	('P) 'P ( ⁴ P) ⁵ P
					Ū	(1)1
$3d^{\circ}(^{*}\mathrm{G})4s$	³ G	5	217 048.7	100		
		3	217 101.0	99	1	$(^{2}\text{F1})^{1}$
		4	217 129.1	99	1	( ⁴ D) ⁵ D
$3d^{5}(^{4}P)4s$	³ P	2	221 087 6	99	0	( ⁴ ח ⁸
	-	ī	221 429.0	92	6	$(\mathbf{D})\mathbf{D}$
9.15/40)/-	35		005 000 5			
$3a^{-1}(D)4s$	^o D	3	225 200.7	99		
			225 545.1	94	6	$(^{4}P) ^{3}P$
		2	225 616.5	90	9	( ⁴ P) ³ P
$3d^{5}(^{2}\mathrm{I})4s$	³ I	6	229 408.8	99	1	$(^{2}H)^{3}H$
		5	229 413.0	99	- 1	$(^{2}H)^{8}H$
		7	229 440.6	100		\ _ <i>/</i> 13
$3d^{5}(^{2}D3)4e$	³ D	2	232 515 0	<b>F F</b>	10	(2E1) 3r
0 ( 10/10		9	202 040.7	99 50	19	$(\mathbf{r} 1)^{\mathbf{r}}\mathbf{h}$
4		1	404 000.0	50	17	("F1)"
		L T	232 910.8	50	34	(*F) °F
$3d^5(^2\mathbf{I})4s$	¹ I	6	233 839.2	98	2	( ² H) ³ H
$3d^{5}({}^{4}\mathrm{F})4s$	5F	5	234 082.1	98	2	$(^{2}G2)^{3}G$
		4	234 125.4	92	5	$(^{2}F1)^{3}F$
		3	234 275.2	89	8	$(^{2}F1)^{3}F$
		2	234 412 7	70	92	( ² F1) ³
	1	1	235 116 5	10 Er	617	( ² 1) ² ³
	1	1 1	1 200 110.0	60	27	( UO) I

Configuration	Term	J	Level (cm ⁻¹ )	Leading percentages		iges
$3d^{5}(^{2}\text{F1})4s$	3F	4	235 420.6	92	6	$({}^{4}F) {}^{5}F$
000 (11)10	-	2	235 736 5	36	23	$(^{2}D3)^{3}D$
		3	236 454.1	69	16	$(^{2}D3)^{3}D$
$3d^5(^2\mathrm{D}3)4s$	¹ D	2	239 107.7	55	23	$(^{2}F1)$ $^{3}F$
$3d^{5}(^{2}\mathrm{F1})4s$	${}^{1}\mathbf{F}$	3	240 193.8	83	6	$(^{2}G2)$ $^{3}G$
$3d^{5}(^{2}\mathrm{H})4s$	3H	4	240 959.6	71	24	$(^{2}G2)^{3}G$
000 (11) 10		5	241 082 2	69	28	$(^{2}G2)^{3}G$
		6	241 773.6	97	2	$(^{2}I)^{1}I$
9.15/20014-	30	9	949 900 4		10	(4E) 3E
3a (-G2)4s	G	3	242 290.4	19	12	(F) F (4107) 3107
		4	242 504.3	45	28	$(\mathbf{r})$ $\mathbf{r}$
		5	242 862.6	66	30	("H) "H
$3d^{5}(^{6}S)4n$	⁷ P°	2	242 837.0	99	1	( ⁶ S) ⁵ P°
		3	24.3 608.5	98	2	( ⁶ S) ⁵ P°
		4	244 900.5	100	-	( - ) -
$9 J^{5} (4T^{2}) A_{2}$	31	9	949 966 9	02	9	( ² F9) ³ F
5 <i>u</i> ( <b>F</b> )45	Ľ	4	240 200.2	55	20	$\binom{2}{2}\binom{2}{2}\binom{3}{2}$
		4	240 001.0 040 070 5	62	30	$(02)^{3}C$
		3	243 370.3	83	14	$(\mathbf{u}_2)$ G
$3d^5(^2\mathrm{H})4s$	¹ H	5	246 240.9	96	4	$(^{2}G2)$ $^{3}G$
$3d^5(^2\text{G2})4s$	¹ G	4	247 049.1	63	33	$(^{2}F2)$ $^{3}F$
$3d^{5}(^{2}\text{F2})4s$	³ F	3	247 104.9	97	1	$({}^{4}F) {}^{5}F$
		2	247 165.0	96	3	$({}^{4}F) {}^{3}F$
		4	247 281.8	63	29	$(^{2}G2)$ $^{1}G$
$3d^{5}(^{2}\mathrm{F2})4s$	${}^{1}\mathbf{F}$	3	251 654.9	96	2	$({}^{4}F) {}^{3}F$
$3d^{5}(^{6}S)4n$	⁵ p°	3	253 862.7	96	2	$(^{6}S)$ ⁷ P°
0a ( 0)4p	*	2	254 495 6	97	1	$({}^{4}\mathbf{D}) {}^{5}\mathbf{P}^{\circ}$
		1	254 885.0	98	1	$(^4D)$ ⁵ P°
a 15 9au i	30		050 005 0			
$3d^{\circ}(^{2}S)4s$	°S		253 905.2	100		
$3d^{5}(^{2}\text{D2})4s$	³ D	1	263 700.9	100		
	_	2	263 735.7	99		
		3	263 805.8	99		
$3d^{5}(^{2}\text{D2})4s$	¹ D	2	268 273.9	99		
$3d^{5}(^{2}\text{G1})4s$	³ G	5	274 695.4	100		
		4	274 738.6	100		
		3	274 773.5	100		
$3d^{5}(^{2}\text{G1})4s$	¹ G	4	279 199.5	100		
3d5(4C)/m	500	9	284 215 5	92	А	( ⁴ G) ³ F°
$\partial u (G) 4p$	U U	2	981, 91.00	QA	7 Q	$({}^{4}G)$ ${}^{5}H^{\circ}$
		1	981, 908 0	Q1	14	$({}^{4}G)$ ${}^{5}H^{\circ}$
		- 14 E	204 200.0	20 01	14	$({}^{4}G){}^{5}H^{\circ}$
		6	284 579.5	84	14	( ⁴ G) ^{′5} H°

Ni v-	-Continued
-------	------------

Configuration	Term	figuration Term		Level (cm ⁻¹ )	Leading percentages		
$3d^{5}(4C)/n$	5110	2	986 999 G	00	p	( ⁴ C) ⁵ C°	
3a(G)4p		0	200 233.0 996 706 6	00	10	$(^{4}G)^{5}G^{\circ}$	
	1	5	200700.0	82	12	$(4C)^{5}E^{\circ}$	
		. 0	287 127.2	75	11	(G) F	
		0	287 645.9	86	13	(G)	
		17	288 021.6	100			
$3d^5(^4P)4p$	⁵ D°	1	287 755.5	63	20	( ⁴ D) ⁵ D°	
		2	287 782.1	45	18	$({}^{4}G) {}^{5}F^{\circ}$	
		0	290 262.0	64	19	( ⁴ D) ⁵ D°	
9-15(40) 4-	51730	~	000 000 0			(4c) 5110	
5a (G)4p	r	0	287 900.9	75	8	$({}^{4}G) {}^{5}H$	
		4	288 161.6	71	10	$(^{*}D)$ $^{5}F^{*}$	
			289 163.0	71	11	(*D) ⁵ F ¹⁰	
		2	289 247.1	52	13	$(^{4}P) ^{5}D^{\circ}$	
		3	289 298.0	40	32	$({}^{4}P) {}^{5}D^{\circ}$	
$3d^5({}^4\mathrm{G})4p$		3	287 960.0	$39$ ${}^5\mathrm{F}^{\circ}$	25	( ⁴ P) ⁵ D°	
$3d^5(4\mathbf{D})/m$	500	9	000 077 0	90	0	(4(1) 51500	
5a (1)4p	0	2	400 011.3	88 8	9	(G) r	
$3d^{5}({}^{4}\mathrm{P})4p$	⁵ P°	3	290 757.0	44	32	$({}^{4}D) {}^{5}P^{\circ}$	
		2	291 390.0	58	26	( = ) =	
		1	291 541.7	71	15		
		-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• •	10		
$3d^{5}({}^{4}\mathrm{G})4p$	³ F°	2	291 097.7	84	4	$({}^{4}G) {}^{5}G^{\circ}$	
		3	291 328.5	81	4	$({}^{4}F) {}^{3}F^{\circ}$	
		4	291 554.6	88	4	$({}^{4}\mathbf{F}) {}^{3}\mathbf{F}^{\circ}$	
9.J ⁵ (4C) (-	3110	C	001 001 /			400 5770	
5a (G)4p	'n	6	291 891.4	93	3	(*G) °H°	
		5	292 353.4	94	2	(*G) "H°	
		4	292 631.0	95	2	(4) °H°	
$3d^{5}(^{4}\mathrm{P})4p$	³ P°	2	292 983.0	52	18	$(^{4}D) ^{3}P^{\circ}$	
	_	1	293 120 0	53	19	(2)1	
	_	0	293 867.0	65	20		
	_						
$3d^{\circ}(^{4}\mathrm{D})4p$	⁵ F°	1	293 833.8	73	17	$({}^{4}G) {}^{5}F^{\circ}$	
		2	294 086.0	76	15		
		3	294 443.3	76	11-		
		4	294 939.6	79	8		
,		5	295 444.3	91	6		
2.1 ⁵ (4D) 4-	500		ODC FOL D			(4m) 5m	
ou (D)4p	<u>u</u>	Ŭ	290 2/4.0	51	18	$(\mathbf{P})^{\circ}\mathbf{D}^{\circ}$	
		4	290 919.3	68	22		
		2	297 013.9	54	17		
		1	297 417.9	51	17		
		0	298 060.0	63	22		
$3d^{5}({}^{4}\mathrm{G})4n$	³ G°	3	296 847 1	00	9	$({}^{4}\mathbf{F}) {}^{3}\mathbf{C}^{\circ}$	
and any Mr.		Λ	296 897 0	2U 0.1	<u>د</u> د	(4F) 3/1°	
•		5	906 Q99 Q	00 21	Z	$(\mathbf{f}) \mathbf{G}$	
			430 304.J	92	Z	(G) T	
$3d^5(^4\mathrm{P})4p$	³ D°	3	297 418.1	60	14	( ⁴ D) ⁵ P°	
· *		2	297 842.5	57	18	/ 1	
0 15 11-	. e						
$3d^{\circ}(^{4}\mathrm{D})4p$	P°		297 982.8	40	36	$({}^{4}P) {}^{3}D^{\circ}$	
		2	299 045.6	39	19	( ⁴ P) ⁵ P°	
	1	1					

Ni	v—Continued
747	v - Commueu

Configuration	Term	J	Level (cm ⁻¹ )	Lea	ding percent	ages
$3d^5(^4\mathrm{P})4p$		1	298 600.6	30	³ D° 29	( ⁴ D) ⁵ P°
$3d^{5}({}^{4}\mathrm{D})4n$	³ D°	3	298 972 3	43	15	$({}^{4}P) {}^{5}P^{\circ}$
500 (D)4p		2	300 224.9	74	8	$({}^{4}\overline{F}) {}^{3}\overline{D}^{\circ}$
		1	300 563.3	65	17	$(^{4}P)^{3}D^{\circ}$
$3d^5(^4\mathrm{D})4p$		3	300 201.0	36	³ D° 31	$(^4D)$ ⁵ P°
$3d^{5}(^{4}\mathrm{D})4p$	³ F°	4	300 918.1	84	5	$(^{2}G2)$ $^{3}F^{\circ}$
-		3	301 470.2	76	8	( ⁴ P) ³ D°
		2	301 553.0	80	7	( ⁴ P) ³ D°
$3d^5(^4\mathrm{P})4p$	³ S°	1	303 249.5	91	3	( ⁴ D) ³ P°
$3d^5(^4\mathrm{D})4p$	$^{3}P^{\circ}$	0	305 386.9	72	22	( ⁴ P) ³ P°
-		1	305 838.1	66	21	
		2	306 377.8	63	25	
$3d^5(^2\mathrm{I})4p$	³ K°	6	305 590.8	69	26	$({}^{2}I) {}^{3}I^{\circ}$
		7	305 996.3	56	34	$({}^{2}I) {}^{3}I^{\circ}$
		8	308 138.8	100		
$3d^5(^2\mathrm{I})4p$	³ I°	5	306 049.0	64	19	$(^{2}I)$ $^{1}H^{\circ}$
		6	207 200 7	52	26	$(^{2}I)^{8}K^{\circ}$
		7	308 317 3	62	38	$\binom{2}{1} \frac{3}{10} \frac{3}{10}$
		'	000 017.0	02	00	( *) **
$3d^{5}(^{2}\text{D1})4s$	³ D	3	306 962 9	77	23	$(^{2}D3)^{-3}D$
		2	307 025 2	77	23	(133) 1
		1	307 105.1	76	23	
		1	001 100.1			
$3d^{5}(^{2}\text{D}3)4p$	³ F°	2	307 731.1	21	25	$({}^{2}F1) {}^{3}F^{\circ}$
	_	3	308 592.0	37	23	
		4	310 212.6	39	25	
$3d^5(^2\mathrm{I})4p$	¹ H°	5	308 804.1	52	29	( ² I) ³ I°
$3d^5(^2\mathrm{D}3)4p$		2	308 943.0	29	³ F° 21	${}^{1}\mathbf{D}^{\circ}$
0.15(21)4	3770	C	200 201 0		177	(21) 3To
$3d^{3}(-1)4p$	H	5	309 204.0	73	17	(1) 1 $(2_{\rm T})$ 1 1 1 2 °
		0	309 919.5	18	11	$\binom{1}{2}$ $\binom{2}{2}$ $\binom{3}{2}$
		4	309 952.5	79	б	(G2) H
$3d^5(^2\mathrm{I})4p$	${}^{1}\mathbf{K}^{\circ}$	7	309 743.6	91	5	$(^{2}I)$ ³ K°
$3d^{5}(^{2}\mathrm{D1})4s$	$^{1}\mathbf{D}$	2	311 470.3	77	23	$(^{2}D3)^{-1}D$
$2d^{5}(^{2}D^{2})/n$	300	9	911 966 5	40	15	$({}^{2}\mathbf{F1}) {}^{3}\mathbf{D}^{\circ}$
5a (D5)4p	Ĩ	0	313 577.3	66	. 20	$(^{2}\text{D1})^{3}\text{P}^{\circ}$
3,75(211)/~	lC.	1	312 008 2	24	19	( ² <b>H</b> ) ¹ <b>G</b> °
ou ( r1)4p	ď	-	012 000.0	40	12	( ± ± + / Nut
$3d^{\circ}(^{2}\mathrm{D}3)4p$		1	312 291.0	31	" <b>P"</b> 28	(*D3) °D°
$3d^{5}(^{2}\mathrm{F1})4p$	³ G°	3	312 463.3	43	20	$({}^{2}F1) {}^{3}F^{\circ}$
		5	314 702.2	70	23	(*F) "G"

Ni v—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading p	percent	ages
$3d^{5}({}^{4}\mathrm{F})4n$	5 _{C°}	9	319.778 9	79	0	( ² F1) ³ F
0u (1)4p	u	2	919 889 /	10	9 10	$(11)$ $r^{2}$ $(2n^{2})$ $3r^{3}$
		4	919 001 9	40	19	(10) L (41) 5100
		4	313 201.3	72	5	$(\mathbf{r})\mathbf{r}$
		9	313 404.7	56	15	$(^{-}F1)^{-}U$
		ь	314 756.4	53	42	(1) 1
$3d^5(^2\mathrm{F1})4p$	,	3	312 953.6	33 ³ D°	31	( ⁴ F) ⁵ G°
$3d^5(^2\text{D3})4p$		1	313 679.0	29 ³ D°	27	( ² D3) ³ F
$3d^5(^2\text{D}3)4p$	$^{3}D^{\circ}$	2	313 686.6	45	15	( ² D1) ³ I
$3d^5(^2\mathrm{F1})4p$		3	313 919.8	23 ³ D°	22	( ² D3) ³ I
$3d^5(^2\mathrm{F1})4p$		4	314 208.8	30 ³ F°	30	( ² F1) ³ G
$3d^5(^2\mathrm{I})4p$	${}^{1}I^{\circ}$	6	314 392.0	44	38	( ⁴ F) ⁵ G°
9 15/41314	5570		041 500 0			(d.m.) 5m -
$3a^{\circ}(\mathbf{F})4p$	l "H."	3	314 562.8	61	25	(*F) D°
		4	314 599.2	39	21	$({}^{4}\mathbf{F}) {}^{5}\mathbf{D}^{\circ}$
		2	314 834.7	42	23	$({}^{4}\mathrm{F}) {}^{5}\mathrm{D}^{\circ}$
		1	315 152.8	74	9	$({}^{4}F) {}^{5}D^{\circ}$
		5	315 168.2	65	. 9	( ⁴ F) ⁵ G°
$3d^5(^2\text{F1})4p$	³ D°	1	315 300.7	51	19	$(^{2}D3)^{-1}F$
$3d^5(^2\mathrm{F1})4p$		3	315 326.2	25 ³ G°	14	$(^{2}\text{D3})^{-1}\text{F}$
$3d^5(^2\mathrm{F1})4p$		2	315 366.1	32 ³ D°	18	( ⁴ F) ⁵ F°
$3d^{5}(^{2}G2)4n$	³ н°	4	915 970 1	91	90	( ² 11) ³ 11
0 <i>a</i> ( 0 <i>a</i> /1 <i>p</i>	**	5	202 002 F	01 90	29	(11) 11
		6	325 148.4	. 45	28 37	
$3d^{5}(^{2}\mathrm{H})4p$	³ H°	5	315 990.5	30	36	$(^{2}G2)^{3}F$
		6	317 327.3	39	35	
		4	323 926.3	44	36	
$3d^5(^2\mathrm{D}3)4p$	-	4	316 068.8	20 ³ F°	18	( ² F1) ³ G
$3d^{5}(^{2}\mathrm{F1})4p$		2	316 165.4	31 ³ F°	17	( ² F1) ³ D
$3d^{5}(^{2}\mathrm{F1})4p$		3	316 280.3	19 ³ F°	14	$(^{2}D3)^{-1}F$
$3d^{5}(^{2}\mathrm{H})4p$	³ G°	5	316 726.6	47	14	$(^{2}G2)^{3}G$
$3d^{5}({}^{4}\mathrm{F})4n$	⁵ D°	A	916 744 0	44		(41) 5100
Ju (I) Th		3	917 999 A	44	24	( <b>F</b> ) ⁻ <b>F</b> ⁻ (4)(2) 5)(2)
		0	011 202.0	39	17	$(\mathbf{r})^{*}\mathbf{F}^{*}$
			311 402.3	88	7	$(^{-}D3)^{\circ}P$
			317 477.9 917 517 5	76 er	9	$({}^{*}F) {}^{5}F^{\circ}$
2,35(211)1-			916 000 0	60	15	(r) r (2ma) 3~
$\partial u (\mathbf{r}_1) 4 \mathbf{p}$		4	310 887.8	36 G	12	("F2) "G
3d°("F)4p		3	317 376.8	22 ° <b>D</b> °	20	("H) ³ G'
$3d^{5}(^{2}D3)An$	$  {}^{1}P^{\circ}$	1	319 073.4	45	22	$(^{2}F1)^{3}D$

# Ni v—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading perc	enta	ages
$3d^{5}(^{2}\mathrm{H})4p$	3 ¹ °	5	319 076.2	85	6	$(^{2}H)^{3}H^{\circ}$
		6	319 860.4	78	8	$(^{2}\mathrm{H})^{1}\mathrm{I}^{\circ}$
		7	320 783.1	95	2	( ² I) ³ I°
$3d^5(^2\text{G2})4p$		4	319 138.7	25 ¹ <b>G</b> °	18	$(^{2}F1)$ $^{1}G^{\circ}$
$3d^5({}^4\mathrm{F})4p$	³ G°	3	319 620.2	38	32	$(^{2}G2)$ $^{3}G^{\circ}$
		5	319 652.7	65	15	
		4	319 899.1	57	15	
$3d^5(^2\mathrm{F1})4p$	$^{1}\mathbf{D}^{\circ}$	2	319 926.5	51	29	$(^{2}D3)$ $^{1}D^{\circ}$
$3d^5(^2\text{G2})4p$	³ F°	3	320 513.8	41	18	( ⁴ F) ³ G°
	ļ	2	321 018.3	57	11	$({}^{4}F) {}^{3}F^{\circ}$
		4	321 056.4	54	13	$(^{2}G2)$ $^{1}G^{\circ}$
$3d^5(^2\mathrm{F1})4p$	^I F°	3	321 081.9	52	17	( ² G2) ⁸ F°
$3d^5(^2\mathrm{H})4p$	1 <b>I</b> °	6	322 324.2	76	9	$(^{2}H)$ $^{3}H^{\circ}$
$2d^{5}(4\mathbf{F})/n$	300	9	200 196 1			(200) 300
5u ( r )4p	D	2	900 617 6	54	10	(12) r (2179) 317°
		1	200 081.5	50	10	$(\mathbf{r}_{2})\mathbf{r}_{1}$
		, <u> </u>	922 304.3	19	1	$(\mathbf{D})\mathbf{D}$
$3d^5({}^4\mathrm{F})4p$	³ F°	4	322 820.8	60	28	$({}^{2}F2) {}^{3}F^{\circ}$
		3	323 532.2	60	17	
		2	323 853.1	53	20	
$3d^5(^2\text{G2})4p$	³ G°	5	324 980.2	25	21	$(^{2}F2)$ $^{3}G^{\circ}$
		3	325 211.9	30	29	
		4	325 222.9	27	28	· *
$3d^5(^2\mathrm{F2})4p$		4	325 558.6	32 ¹ G°	13	$(^{2}G2)$ $^{1}G^{\circ}$
$3d^{5}({}^{2}\mathrm{F2})4n$	3Fo	2	325 982 2	26	23	$({}^{4}\mathrm{F}) {}^{3}\mathrm{F}^{\circ}$
000 ( <b>1</b> = ) <b>1</b> p	-	3	326 029 9	48	13	( . / .
		4	326 876.3	44	14	
$3d^5(^2\text{G2})4p$	¹ H°	5	326 337.1	53	26	$(^{2}H)$ $^{1}H^{\circ}$
$3d^5(^2\text{G2})4p$	¹ F°	3	326 739.0	58	6	$(^{2}G2)$ $^{3}G^{\circ}$
$3d^5(^2\mathrm{F2})4p$	¹ D°	2	327 122.7	60	24	$(^{2}F2)$ $^{3}F^{\circ}$
$3d^5(^2\mathrm{H})4p$	¹ H°	5	327 356.6	63	29	$(^{2}G2)$ $^{1}H^{\circ}$
$3d^{5}(^{2}\mathrm{F2})4p$	³ D°	1	329 462.3	55	21	( ² S) ³ P°
-		2	329 776.3	70	12	$({}^{2}F1) {}^{3}D^{\circ}$
		3	329 872.9	47	12	$(^{2}F2)$ $^{3}G^{\circ}$
$3d^{5}(^{2}\text{F2})4n$	³ G°	3	329 614.3	27	33	$(^{2}H)$ ³ G°
		4	330 297.6	47	37	
		5	330 718.1	58	31	
$3d^{5}(^{2}S)4n$	³ p•	0	329 618 5	83	13	( ² D2) ³ P°
en ( n ) p		1	330 370.7	- 58	23	$(^{2}F2)^{3}D^{\circ}$
		2	331 678.2	74	16	$(^{2}D2)$ $^{3}P^{\circ}$

Ni v—Continued										
Configuration	Term	J	Level (cm ⁻¹ )	Leadin	g percent	ages				
$3d^5(^2\mathrm{H})4p$	¹ G°	4	332 995.6	39	37	$(^{2}F2)^{/1}G^{\circ}$				
$3d^5(^2\mathrm{S})4p$	$^{1}\mathbf{P}^{\circ}$	1	334 477.2	. 70	19	$(^{2}D2)$ $^{1}P^{\circ}$				
$3d^5(^2\text{F2})4p$	${}^{1}\mathbf{F}^{\circ}$	3	334 727.6	88	4	$(^{2}F1)$ $^{1}F^{\circ}$				
$3d^5(^2\text{D2})4p$	³ F°	2 . 3 4	342 894.6 343 281.0 344 911.2	67 50 92	21 27 5	$(^{2}D2)$ $^{3}D^{\circ}$ $(^{2}D2)$ $^{3}D^{\circ}$ $(^{2}G2)$ $^{3}F^{\circ}$				
$3d^5(^2\text{D2})4p$	³ D°	$\begin{vmatrix} 1\\2\\3 \end{vmatrix}$	343 478.2 343 905.7 344 805.3	89 65 60	2 21 33	( ² D2) ³ P° ( ² D2) ³ F° ( ² D2) ³ F°				
$3d^5(^2\text{D2})4p$	${}^{1}\mathbf{F}^{\circ}$	3	345 936.1	72	12	$(^{2}G1)$ $^{1}F^{\circ}$				
$3d^5(^2\text{D2})4p$	۶₽°	2 0 1	346 912.4 346 920.2 346 959.5	72 85 76	16 14 15	( ² S) ³ P°				
$3d^5(^2\text{D2})4p$	$^{1}\mathbf{P}^{\circ}$	1	348 477.9	72	17	$(^{2}S)$ ¹ P°				
0.15/2000	Ima	0	2125122			(200) 100				

		4	344 911.2	92	5	$(^{2}G2)$ ³ F°
$9.75(^{2}T)9)/m$	300	1	9191700	20	0	(2D9) 3D°
3a (DZ)4p	D	1	343 410.2	89	2 91	$(D2)^{2}$ P $(^{2}D2)^{3}$ F°
		2	241 205 2	60	21	$(D_2)^{-1}$ $(^2D_2)^{-3}F^{\circ}$
		0	544 005.5	00	00	$(D_{\alpha})$ r
$3d^5(^2\text{D2})4p$	${}^{1}\mathbf{F}^{\circ}$	3	345 936.1	72	12	$(^{2}G1)^{-1}F^{\circ}$
		ļ				
$3d^{\circ}(^{2}\text{D2})4p$	³ P°	2	346 912.4	72	16	$(^{2}S)$ ³ P°
		0	346 920.2	85	14	
		1	346 959.5	76	15	
$3d^{5}(^{2}D2)4n$	¹ P°	1	348 477 9	72	17	$(^{2}S)$ ¹ P°
50 ( 152) ip			040 411.0	•	11	(0)1
$3d^{5}(^{2}\text{D2})4p$	¹ D°	2	349 546.0	87	5	$(^{2}F2)$ $^{1}D^{\circ}$
-						
$3d^{\circ}(^{2}\mathrm{G1})4p$	°H°	4	353 071.6	47	31	$({}^{2}G1) {}^{3}F^{\circ}$
		5	353 548.7	76	15	$({}^{2}G1) {}^{3}G^{\circ}$
		6	354 989.6	98	2	( ² I) ³ H°
$3d^{5}(^{2}C1)4n$	31210	4	959 917 1	50	40	$(^{2}C_{1})^{3}U^{9}$
<i>Su</i> ( G1)4 <i>p</i>	L.	2	252 041.1	50	40	$(^{2}C1)^{3}C^{\circ}$
		2	255 150 0	00	00 C	$(01)^{3}$ E°
			555 150.0	50	0	$(\mathbf{D}\mathbf{I})\mathbf{I}$
$3d^{5}(^{2}\text{G1})4p$	³ G°	3	355 398.0	59	36	$({}^{2}G1) {}^{3}F^{\circ}$
		4	355 765.2	80	9	$(^{2}G1)$ $^{3}F^{\circ}$
		5	356 036.3	78	18	$(^{2}G1)$ $^{3}H^{\circ}$
9.15/20114	1770	-	AFO 105 0			(201) 300
$3d^{\circ}(G1)4p$	H.	5	358 475.6	90	4	("GI) "G"
$3d^{5}(^{2}\text{G1})4n$	¹ G°	4	358 760 0	93	2	$({}^{2}G1) {}^{3}F^{\circ}$
50 ( G1 / 1p	ŭ		00010010	00	-	( ( ) )
$3d^{5}(^{2}\text{G1})4p$	${}^{1}F^{\circ}$	3	360 059.7	78	10	$(^{2}D2)^{-1}F^{\circ}$
5 9						0
$3d^{\circ}(^{2}\mathrm{P})4p$	³ P°	0	368 440.5	75	20	$(^{2}D1) ^{3}P^{\circ}$
		1	368 749.7	73	21	
		2	369 649.1	72	23	
$3d^5(^2\mathbf{P})An$	³ n°	9	271 8027	57	07	$(^{2}\mathbf{P})^{1}\mathbf{D}^{\circ}$
00 (1)40		1	374 808 1	. 90	2 ( 5	$(^{2}D1)^{3}D^{\circ}$
		3	376 171 6	80	7	$\binom{2}{D1} \frac{3}{D^{\circ}}$
,		Ŭ	010 411.0	00	,	
$3d^{5}(^{2}\mathrm{P})4p$	$^{1}D^{\circ}$	2	377 059.1	49	33	$(^{2}P)^{-3}D^{\circ}$
$3d^5(^2\mathrm{P})4p$	³ S°	1	378 555.0	90	7	$(^{2}P)$ $^{1}P^{\circ}$
- 5 0	1					2
$3d^{\circ}(^{2}\mathrm{P})4p$	'P°	1	380 165.6	68	16	(2D1) 2P

# Ni v—Continued

Configuration	onfiguration Term		Level (cm ⁻¹ )	Leading percentages		
$3d^{5}(^{2}\text{D1})4p$	³ F°	2	386 968.8	63	20	$(^{2}D3)$ $^{3}F^{\circ}$
	_	3	387 333.4	60	19	( , _
		4	388 698.9	72	22	
	0			4		
$3d^{5}(^{2}\mathrm{D1})4p$	³ D°	1	388 746.1	71	21	$(^{2}D3) ^{3}D^{\circ}$
		2	389 571.8	60	18	
		3	390 478.2	60	18	
$3d^5(^2\mathrm{D1})4p$	$^{1}D^{\circ}$	2	390 675.1	44	16	( ² P) ¹ D°
$3d^5(^2\mathrm{D1})4p$	³ P°	2	392 413.5	43	21	( ² P) ³ P°
$3d^5(^2\mathrm{D1})4p$	¹ F°	3	392 957.1	69	21	( ² D3) ¹ F°
$3d^5({}^6\mathrm{S})5p$	⁵ P°	3	423 533			
		2	423 782			
		1	423 935			
$3d^{5}(^{6}S)4f$	⁵ F°	2	139 119			
ou ( 0)-1	1	1	439 420			
		3	439 423			
-		4	439 427			
		5	439 434			
$3d^{5}(^{6}S)5f$	540	5	502 124			
00 ( D) 0j	-	4	502 1.3.3			
		3	502 137			
		1	502 143			
		2	502 148			
Ni VI ( ⁶ S _{5/2} )	Limit		613 500			

### Ni vi

Z = 28

V I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 {}^6S_{5/2}$ 

Ionization energy =  $870\ 000\ {\rm cm}^{-1}\ (108\ {\rm eV})$ 

The resonance multiplet  $3d^5 \, {}^6S-3d^44p \, {}^6P^\circ$  was identified by Kruger and Gilroy (1935). Extensive work on this spectrum is in progress at the Zeeman Laboratorium. The  $3d^5$ ,  $3d^44s$ , and  $3d^44p$  configurations were analysed by Raassen (1980), who kindly supplied his results for inclusion here before publication. The percentage compositions of the levels are also due to Raassen.

The ionization energy is from Lotz (1967).

### References

Kruger, P. G., and Gilroy, H. T. (1935), Phys. Rev. 48, 720.
Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.
Raassen, A. J. J. (1980), Physica 100C, 404.

Configuration	Term	J	Level (cm ⁻¹ )	Leading	percent	ages
$3d^5$	⁶ S	⁵ /2	0.0	100		
$3d^5$	⁴ G	11/2	41 920.9	100		
		5/2	42 003.6	99	1	2 F1
		9/2	42 023.2	100		
		7/2	42 035.1	100		
$3d^5$	⁴ P	5/2	45 884.2	90	9	⁴D
		3/2	46 104.4	92	7	
		1/2	46 324.8	97	3	
$3d^5$	⁴ D	7/2	50 331.0	99		
		$\frac{1}{2}$	50 643.5	97	3	⁴P
		5/2	50 777.6	90	9	⁴ P
		3/2	50 780.5	92	7	⁴ P
$3d^5$	² I	¹¹ / ₂	61 196.0	98	2	${}^{2}\mathbf{H}$
		¹³ / ₂	61 279.5	100		
$3d^5$	$^{2}D3$	5/2	64 152.4	52	29	${}^{2}\mathbf{F1}$
		3/2	65 173.5	71	22	$^{2}\mathrm{D1}$
$3d^5$	² F1	7/2	67 085.1	93	3	⁴ F
$3d^5$	⁴ F	5/2	68 444.9	· 51	39	2 F1
		9/2	68 551.2	95	4	$^{2}G2$
		$\frac{7}{1_2}$	68 801.7	94	4	2 F1
		3/2	69 173.5	92	6	² D3
$3d^5$		⁵ /2	69 447.0	47 4 F	31	² F1
$3d^{5}$	$^{2}\mathrm{H}$	%	72 908.8	74	24	$^{2}G2$
		11) ₂	73 756.6	98	2	$^{2}I$
$3d^5$	$^{2}G2$	7/2	74 627.7	98	1	⁴ F
		$9 \tilde{1}_{2}$	75 441.7	72	25	² H
$3d^5$	2 F2	5/2	79 391.4	98	1	${}^{4}\mathrm{F}$
an and		7/	79 608 3	97	9	

#### Ni vı

Configuration	Term	J	Level (cm ⁻¹ )	Leading percentages		
$3d^5$	2 S	1/2	86 532.1	100		
$3d^5$	² D2	³ /2 5/2	$96\ 461.2$ $96\ 566.5$	100 99	$1^{2}$ F2	
$3d^5$	² G1	9/2 7/	107 848.3	100		
$3d^5$	$^{2}\mathrm{P}$	12 3/2	107 887.0	99	1 ² D1	
_		1/2	130 025.9	100		
$3d^5$	² D1	³ /2 ³ /2	140 922.2 141 006.8	77 2 76 2	3 ² D3 3	
$3d^4({}^5\mathrm{D})4s$	⁶ D	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{7}{2}$	295 882.7 296 198.1 296 696.7 297 350.5	100 100 100 100		
		9/2	298 130.5	100		
$3d^4({}^5\mathrm{D})4s$	⁴ D	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{7}{2}$	307 843.9 308 323.8 309 054.9 309 977.1	99 100 100 100		
$3d^4(^3\text{P2})4s$	4P	1/2 3/2 5/2	328 437.2 330 001.6 332 344.8	59 38 60 38 61 38	8 ( ³ P1) ⁴ P 8	
$3d^4(^3\mathrm{H})4s$	⁴ H	⁷ / ₂ 9/ ₂ 11/ ₂ 13/ ₂	329 486.2 329 754.2 330 141.0 330 580.5	97 96 96 97 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97	2 ( ⁸ G) ⁴ G 3 ( ⁸ G) ⁴ G 2 ( ⁸ G) ⁴ G	
$3d^4({}^3\mathrm{F2})4s$	4F	³ /2 ⁵ /2 ⁷ /2 9/2	332 031.8 332 051.6 332 175.4 332 343.6	78 22 74 20 72 19 73 18	2 ( ³ F1) ⁴ F ) }	
$3d^4(^3\mathrm{G})4s$	⁴G	5/2 7/2 9/2 11/2	335 384.5 335 976.0 336 344.9 336 430.4	91 ( 90 7 73 18 78 19	$ \begin{array}{c} 5 & ({}^{8}F2) {}^{4}F \\ 7 & ({}^{8}F2) {}^{4}F \\ 6 & ({}^{3}H) {}^{2}H \\ 6 & ({}^{3}H) {}^{2}H \end{array} $	
$3d^4(^{3}\text{P2})4s$	$^{2}\mathrm{P}$	¹ / ₂ ³ / ₂	336 404.8 339 260.1	59 38 60 37	( ³ P1) ² P	
$3d^4(^3\mathrm{H})4s$	2 H	⁹ / ₂ ¹¹ / ₂	337 007.7 337 993.9	78 19 79 20	( ⁸ G) ⁴ G	
$3d^4({}^3\mathrm{F2})4\mathrm{s}$	${}^{2}\mathbf{F}$	5/2 7/2	339 482.4 339 335.8	76 20 70 17	$({}^{3}F1) {}^{2}F$	
$3d^4({}^3\mathrm{G})4s$	² G	7/2 9/2	343 052.0 343 842.6	90 é 96 2	5 ( ³ F2) ² F 2 ( ³ H) ² H	
				1		

Configuration	Term	J	Leyel (cm ⁻¹ )	Leadin	g percent	ages
$2d^{4}(^{3}D)/c$	40	7/	343 999 6	00		
5u (D) 48		5/	344 202 5	99 08		
		3/	944 200.0	20		
		/2	044 441.4	98		
$3d^4({}^1G2)4s$	$^{2}G$	9/2	347 278 5	64	31	$({}^{1}G1) {}^{2}C$
002 ( 012/H)	ŭ	7/2	347 445 2	62	30	
		12	LOIT TTOL	04	00	
$3d^{4}({}^{1}\mathrm{I})4s$	2 I	13/2	347 892.4	100		
		11/2	347 963.9	99	1	$(^{3}H)$ $^{2}H$
a Milani	2-	5.				
$3d^{*}(^{\circ}\mathrm{D})4s$	L D	1/2 3/	351 033.0	99		(100) 27
		⁷ 2	351 304.0	98	1	(*D2) *L
$3d^4(^{1}S2)4s$	$^{2}S$	1/2	351 096 2	78	20	$(^{1}S1)^{2}S$
04 (02)40		12	001 000.2	15	20	
$3d^{4}(^{1}\text{D2})4s$	$^{2}D$	5/2	358 716.6	77	20	$(^{1}D1)^{2}I$
		3/2	358 827.9	77	20	
1 -1	0	_				o. ,
$3d^{4}({}^{1}\mathrm{F})4s$	² F	2/2	366 289.8	98	1	$({}^{3}F1) {}^{4}F$
		1/2	366 299.8	98	1	
2d ⁴ (3D1)/a	40	5/	974 949 0	01		( ³ ma) 4m
5u (P1)4s	r	/2 3/	014 040.0	61	38	(PZ) P
		12	310 343.1	60	38	
$3d^4({}^3\mathrm{F1})4s$	⁴ F	9/0	375 673.0	81	19	$({}^{3}F2) {}^{4}F$
000 (11)10	-	3/2	375 870.8	78	22	(
		7/0	375 927.1	79	20	
		5/2	375 949.8	78	21	
	C C					F 4
$3d^{4}(^{3}\mathrm{D})4p$	°F'°	. 1/2	380 756.7	99	1	(°D) *D
		⁹ / ₂	381 163.8	99		. 5m. dama
		⁹ / ₂	381 832.8	99	1	(°D) ⁴ F°
		1/2 9.	382 758.9	98	1	$(^{0}D)^{4}F^{0}$
		³ / ₂	383 960.2	98	1	(°D) *F°
<i>,</i>		11/2	385 520.9	100		
$3d^4(^3F1)/a$	23	7/	382 677 1	80	10	( ³ म9) ² म
04 (11)48	<b>A</b> .	5/2	382 889 1	79	19	( <b>1</b> [·] <i>L</i> ) <b>1</b> [·]
		/2	562 665.1	16	21	
$3d^4(^{5}\text{D})4p$	6 <b>P</b> °	3/2	383 557.8	91	6	( ⁵ D) ⁴ P°
*		5/2	383 739.8	. 94	4	( ⁵ D) ⁴ P°
		7/2	384 096.5	98	1	( ⁵ D) ⁶ D°
0.14(5	4	1.	201 01 01			
$3d^{-}(^{\circ}\mathrm{D})4p$	[*] P°	¹ /2 3/	384 747.4	68	29	("D) "D"
		7 ₂ 57	386 157.3	55	33	
		72	389 700.4	55	42	
$3d^4({}^{5}\mathrm{D})4n$	⁶ D°	5/	387 849 9	54	ସନ	( ⁵ D) ⁴ P°
		1/2	388 918 6	71	, 90 90	$(^{5}\mathbf{D})^{4}\mathbf{P}^{\circ}$
-		3/2	389 214 0	64	4 <i>3</i> 95	$({}^{5}\mathbf{D}) {}^{4}\mathbf{P}^{\circ}$
		7/2	389 213 1	· Q./	66 A	$({}^{5}D) {}^{4}F^{\circ}$
		9/2	389 883.2		4 10	$(^{5}D)^{4}F^{\circ}$
		'Z			**	( <del></del> / *
$3d^4({}^1\text{G1})4s$	$^{2}G$	7/2	389 362.5	66	33	$(^{1}G2)^{2}G$
	J	⁹ / ₂	389 299.6	67	33	

Ni vı—Continued

# Ni vı—Continued

			· · · · · · · · · · · · · · · · · · ·			
$3d^{4}(^{5}\mathrm{D})4p$	⁴ F°	3/,	392 808.1	94	2	$(^{3}G)$ ⁴ F°
		5/2	393 072.0	93	2	$(^{3}G)$ ⁴ F°
		7/0	393 468.2	91	4	$({}^{5}D) {}^{6}D^{\circ}$
		9/2	394 061.0	85	11	( ⁵ D) ⁶ D°
$3d^{4}(^{5}\mathrm{D})4p$	⁴ D°	1/2	400 962.1	96	1	( ³ D) ⁴ D°
· · · •		3/2	401 280.9	96	1	
		5/	401 720.9	96	1	
		7/2	402 171.3	96	2	
$3d^4({}^{3}\mathrm{H})4n$	4H°	7/2	411 669.4	74	20	$({}^{3}G) {}^{4}H$
		9/	412 095 6	70	19	<b>x</b> - <b>y</b>
		11/	419 751 1	79	17	
		13/2	413 631.6	77	13	
$2 d^{4} (302) 4 n$	4 <b>D</b> °	1/	1.19 91,8 9	47	90	( ³ P1) ⁴ D°
$\partial u (\mathbf{r} \omega) + p$		3/	412 240.2	41	04 91	(11) D
		⁷ 2 5/	410 000.1	41	00	
		72	410 144.0	38 ,	26	
$3d^4(^3\mathrm{F2})4p$	⁴ G°	⁵ / ₂	415 382.0	40	23	$({}^{3}G) {}^{4}G^{\circ}$
		1/2	415 640.8	25	16	(°G) °G°
		⁹ / ₂	420 080.0	40	40	$(^{3}H) ^{4}G^{\circ}$
		11/2	420 623.4	58	22	$(^{3}\mathrm{H})$ $^{4}\mathrm{G}^{\circ}$
$3d^4({}^{3}\mathrm{H})4p$	⁴ I°	9/0	415 754.3	45	11	$({}^{3}\mathrm{H}) {}^{2}\mathrm{G}^{\circ}$
	_	il	417 164 1	63	14	$(^{8}H) ^{4}G^{\circ}$
		13/2	118 553 6	90	8	$(^{3}H)^{4}H^{\circ}$
		15/2	419 533.5	99	1	$(^{1}I)^{2}K^{\circ}$
$3d^4(^3\mathrm{H})4p$		⁹ / ₂	416 422.3	43 ⁴ I°	11	$(^{3}F2)$ $^{4}G^{\circ}$
$3d^4({}^{3}\mathrm{P2})4p$	⁴ P°	1/2	416 459.0	35	20	$(^{3}P1) ^{4}P^{\circ}$
· · · ·		3/2	418 491.4	45	25	
		5/2	420 308.9	50	28	
2.4 ⁴ ( ³ F2)4n	400	7/	116 1.99 0	21	99	( ³ P2) ⁴ D°
$3u(r_2)_4p$	D D	$\binom{2}{1}$	100 960 1	40	15	$(^{3}\mathbf{F}^{1}), ^{4}\mathbf{D}^{9}$
		¹ 2 ³ /2	422 437.2	42 37	12	$(^{3}F1)^{4}D^{\circ}$
9-14(311)4-		11/	117 590 1	24 ⁴ C°	, 95	( ³ LI) 41°
$3a^{-(H)}4p$		1/2	417 338.4	34 G	25	(п) і
$3d^{4}(^{3}\mathrm{H})4p$	$^{2}G^{\circ}$	7/2	417 717.7	38	16	$({}^{3}F2) {}^{2}G^{\circ}$
-		9/2	418 368.8	32	18	
$3d^4(^3\text{F2})4p$		³ /2	418 713.4	28 ⁴ F°	21	( ³ F2) ² D°
$3d^4(^3\mathrm{H})4p$		⁵ / ₂	419 390.5	30 ⁴ G°	26	$({}^{3}F2) {}^{4}G^{\circ}$
$3d^4({}^3\mathrm{F2})4p$		⁵ /2	419 844.7	39 ⁴ F°	14	$(^{3}H)$ $^{4}G^{\circ}$
$3d^4(^3\mathrm{H})4p$	⁴ G°	7/2	419 863.3	47	32	$(^{3}F2)$ $^{4}G^{\circ}$
$3d^4(^3\text{P2})4p$		¹ /2	419 961.5	23 ⁴ P°	18	$(^{3}P1)$ $^{2}S^{\circ}$
$3d^4({}^3\mathrm{F2})4p$	⁴ F°	7/2 9/2	420 553.2 420 835.3	63 58	11 13	${({}^{3}F1)} {}^{4}F^{\circ}$ ${({}^{3}G)} {}^{4}F^{\circ}$

Ni vı—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading per	rcent	ages
$3d^4(^3\text{P2})4p$		³ /2	420 722.0	$26  {}^{2}\mathbf{P}^{\circ}$	18	( ³ P2) ⁴ S°
$3d^4({}^3\text{F2})4p$		⁵ /2	421 324.3	19 ² D°	15	( ³ F2) ⁴ F°
$3d^4({}^3\text{F2})4p$		3/2	421 607.2	24 ⁴ F°	20	( ³ F2) ² D°
$3d^4({}^3\text{F2})4p$		⁵ /2	421 894.0	$15 \ ^{2}D^{\circ}$	14	$^{4}\mathrm{D}^{\circ}$
$3d^4(^3\text{P2})4p$		7/2	422 306.6	21 ⁴ D°	20	$(^{3}G)$ $^{4}F^{\circ}$
$3d^4(^{8}\mathrm{H})4p$	² I°	11/2	422 642.4	80	6	( ¹ I) ² I°
		¹³ / ₂	422 711.8	82	11	$(^{3}G)$ ⁴ H°
$3d^4({}^3\mathrm{G})4p$		⁵ /2	422 897.8	22 ² F°	16	( ³ F2) ⁴ D°
$3d^4(^3\mathrm{H})4p$		⁹ / ₂	423 065.5	36 ² H°	20	$(^{3}G)$ $^{4}H^{\circ}$
$3d^4(^3\mathrm{G})4p$	⁴ H°	7/2 9/	423 341.4	70	20	$({}^{3}\text{H}) {}^{4}\text{H}^{\circ}$
		⁷ 2 11/	424 537.0	54	18	$(^{3}H)^{2}H^{3}$
		13/2	425 507.0	39 75	39	$\binom{3}{4}$
$3d^4({}^3G)4n$		7/2	423 645 8	10 4 <b>F</b> °	14	$(^{3}\mathbf{D})^{2}\mathbf{F}^{\circ}$
$3d^4({}^3P2)4n$		1/	429 646 8	20 ² D°	10	( <b>D</b> ) T
$2a^{4}(^{3}C)/m$		3/	425 040.0	29 P	18	( <b>F</b> 2) <b>D</b>
$3u(G)_{4p}$	4770	/2 9.	423 710.5	26 F	12	(°F2) °F°
3d"("G)4p	*F.*	⁹ / ₂ ⁵ / ₂	423 763.3 424 217.9	52 39	15 16	( ³ F2) ⁴ F ^o ( ³ F2) ⁴ D ^o
$3d^4(^3\mathrm{G})4p$		3/2	424 235.1	21 ⁴ F°	20	( ³ P2) ² P°
$3d^4(^3\text{F2})4p$		7/2	424 346.1	25 ⁴ D°	20	( ³ G) ⁴ F°
$3d^4(^3\mathrm{G})4p$		·11/2	424 363.7	36 4 <mark>4</mark> 4°	30	$(^{3}H)$ $^{2}H^{\circ}$
$3d^4(^3\text{P2})4p$	² D°	3/2	425 703.1	39	27	( ³ P1) ² D°
$3d^4(^3\text{F2})4p$		₺⁄2	427 096.5	26 ² F°	20	$(^{3}P2)$ $^{2}D^{\circ}$
$3d^4(^3\text{P2})4p$		5/2	427 342.2	$27  {}^{2}\mathbf{D}^{\circ}$	26	$(^{3}F2)$ $^{2}F^{\circ}$
$3d^4(^3\text{F2})4p$		7/2	427 575.0	24 ² G°	13	$({}^{3}F1) {}^{2}G^{\circ}$
$3d^4({}^3\mathrm{G})4p$		11/2	427 702.7	38 ² H°	21	$(^{3}G)$ $^{4}G^{\circ}$
$3d^4({}^3\mathrm{G})4p$		⁹ / ₂	427 995.6	22 ⁴ G°	15	( ³ H) ⁴ G°
$3d^4(^3\mathrm{G})4p$		⁹ / ₂	428 051.5	37 ² H°	15	$(^{3}H)$ $^{2}G^{\circ}$
$3d^4(^3\text{F2})4p$	${}^{2}\mathbf{F}^{\circ}$	7/2	428 221.4	46	32	$(^{3}G)$ $^{2}F^{\circ}$
$3d^{4}(^{3}G)4p$	⁴ G°	5/2	428 496.5	50	29	$({}^{3}\mathrm{H}) {}^{4}\mathrm{G}^{\circ}$
· · · · - <b>F</b>	_	7/2	428 866.5	45	20	$(^{3}H)$ $^{4}G^{\circ}$
		9/2	429 486.3	36	15	$(^{3}G)$ $^{2}H^{\circ}$
		11/2	430 033.3	43	25	$({}^{3}G) {}^{2}H^{\circ}$

Configuration	Term	J	Level (cm ⁻¹ )	Leading perc	enta	ages
$3d^4(^3\mathrm{D})4p$	⁴ D°	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{7}{2}$ $\frac{5}{2}$	430 898.8 430 971.9 431 912.6 439 995 7	78 69 77 46	9 12 6 33	$({}^{3}D) {}^{2}P^{\circ}$ $({}^{3}D) {}^{4}P^{\circ}$ $({}^{3}D) {}^{4}F^{\circ}$ $({}^{3}D) {}^{4}P^{\circ}$
$3d^4(^3\mathrm{D})4p$	⁴₽°	5/2 3/2 1/2	431 019.9 433 462.5 434 281.6	56 74 88	32 9 7	( ³ D) ⁴ D° ( ³ D) ⁴ D° ( ³ P2) ⁴ P°
$3d^4({}^1\mathrm{I})4p$	² I°	¹³ / ₂ ¹¹ / ₂	432 616.6 432 932.0	66 88	27 5	( ¹ I) ² K° ( ³ H) ² I°
$3d^4({}^1\mathrm{G2})4p$	² <b>F</b> °	7/2 5/2	432 800.1 434 997.0	46 42	21 20	$({}^{1}G1) {}^{2}F^{\circ}$
$3d^4(^3\mathrm{G})4p$	² G°	9/2 7/2	433 371.2 433 517.3	53 49	20 17	$(^{3}H)$ $^{2}G^{\circ}$
$3d^4(^1\mathrm{S2})4p$	² P°	1/2 3/2	433 936.9 440 168.6	37 30	33 16	( ³ D) ² P°
$3d^4(^1\text{G2})4p$	² H°	⁹ / ₂ ¹¹ / ₂	434 167.3 435 011.5	47	22 20	( ¹ G1) ² H°
$3d^4(^3\mathrm{D})4p$	4F°	3/2 5/2 7/2 9/2	434 200.9 434 625.7 435 116.2 435 459.4	63 54 65 77	21 15 19 19	( ³ G) ⁴ F°
$3d^4(^3\mathrm{D})4p$	² <b>p</b> •	³ / ₂ ¹ / ₂	434 995.8 440 689.3	54 47	26 27	$(^{1}S2)$ $^{2}P^{\circ}$
$3d^4({}^1\mathrm{I})4p$ .	² K°	¹³ / ₂ ¹⁵ / ₂	- 435 165.4 436 550.3	71 99	28 1	$({}^{1}I) {}^{2}I^{\circ}$ $({}^{3}H) {}^{4}I^{\circ}$
$3d^4(^1\text{G2})4p$	² G°	7/2 9/2	437 919.7 438 639.4	45 41	29 30	( ¹ G1) ² G°
$3d^4(^1\mathrm{I})4p$	² H°	¹¹ / ₂ 9/ ₂	440 038.7 440 917.9	70 82	10 11	$(^{3}G)$ $^{2}H^{\circ}$
$3d^4(^3\mathrm{D})4p$	² F°	7/2 5/2	441 216.1 441 785.7	65 42	11 14	( ³ G) ² F° ( ³ D) ² D°
$3d^4(^3\mathrm{D})4p$		⁵ /2	441 401.2	$_{30}$ $^{2}\mathrm{D}^{\circ}$	21	( ³ D) ² F°
$3d^4(^3\mathrm{D})4p$	² D°	³ /2	442_620.7	53	13	( ¹ D2) ² D°
$3d^4(^1\text{D2})4p$	² D°	³ / ₂ 5/ ₂	444 252.2 444 784.2	40 · 24	22 26	( ³ D) ² D°
$3d^4(^1\text{D2})4p$	² F°	5/2 7/2	446 061.2 446 863.8	44 47	11 31	$({}^{1}D2) \; {}^{2}D^{\circ} \\ ({}^{1}F) \; {}^{2}F^{\circ}$
$3d^4({}^1\mathrm{F})4p$	² F°	⁵ / ₂ ⁷ / ₂	451 041.3 451 859.4	64 47	14 27	( ¹ D2) ² F°

Ni vi-Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading pe	rcentages
$3d^4({}^1D2)4n$	2 <b>p</b> ∘	3/0	451 622.9	65	$13 (^{1}D1) ^{2}P^{\circ}$
		1/2	451 642.0	72	14
					· 1
$3d^4({}^1\mathrm{F})4p$	² G°	1/2	453 983.0	86	5 $({}^{1}\mathbf{F}) {}^{2}\mathbf{F}^{\circ}$
		1/2	455 890.5	92	$4 (G2) G^{*}$
$3d^4({}^{1}\mathrm{F})4n$	² D°	5/	456 815 6	53	$17 (^{8}P1)^{2}D^{\circ}$
		3/2	458 772.2	49	14 $({}^{3}F1) {}^{4}F^{\circ}$
					9
$3d^{4}({}^{3}\mathrm{F1})4p$	⁴ F°	$\frac{\eta_{2}}{\tau_{1}}$	460 364.6	61	9 ( ${}^{0}P1$ ) ${}^{4}D^{\circ}$
		3/	400 535.9	66	$8 (^{3}F2) ^{4}F^{\circ}$
		9/2	460 004.0	83	$\frac{9}{10}$ $(^{3}F2)$ $^{4}F^{\circ}$
		12	701 11010		10 (12) 1
$3d^4(^{3}\text{P1})4p$	⁴ P°	3/2	461 437.8	30	14 $(^{3}P2)$ $^{4}P^{\circ}$
· ·		∛₂	463 301.5	45	22
$9 - 4(^{3}D1) A_{m}$		5/	161 600 G	21 ⁴ D°	$(^{3}F1)^{4}F^{\circ}$
Ju (11)4p		/2	401 022.0	21 D	20 (11) 1
$3d^{4}(^{3}\text{P1})4p$		7/2	462 443.1	32 ⁴ D°	20 $({}^{3}F1) {}^{4}D^{\circ}$
4 9		9.		4	.2
$3d^{4}(^{3}\text{P1})4p$		∂ ⁹ / ₂	462 884.1	24 <b>4P</b> °	21 (°P1) *D*
$3d^{4}(^{3}\text{P1})4n$		1/2	462 903 6	31 ⁴ P°	21 ( ³ P1) ⁴ D°
00 ( 1 1) lp		/2	40.000.0		
$3d^4({}^3\mathrm{F1})4p$	⁴ G°	5/2	464 027.8	44	23 $({}^{3}F1) {}^{2}F^{\circ}$
		1/2	464 807.8	35	$32 ({}^{3}F1) {}^{2}F^{\circ}$
		$\frac{\eta_2}{11}$	466 065.2	70	21 ( ${}^{3}F2$ ) ${}^{3}G^{*}$
		72	405 754.3	76	22 (FZ) G
$3d^4({}^1\mathrm{F})4p$		⁵⁄₂	465 552.7	25 ² D°	19 ( ³ P1) ² D°
$3d^4({}^1\mathbf{F})4p$		3/2	466 034.2	29 ² D°	21 $(^{3}P1)$ $^{2}D^{\circ}$
$3d^{4}(^{3}\text{F1})4p$	² F°	7/0	466 1.33.7	36	$35 ({}^{3}F1) {}^{4}G^{\circ}$
		5/2	466 649.1	47	20
6 9	4-	9.			2
$3d^{*}(^{\circ}\mathrm{P1})4p$	*S°	[%] 2	471 106.8	48	44 $(^{\circ}P2)^{4}S^{\circ}$
$3d^{4}(^{3}\text{F1})4n$	4D°	7/0	172 197 3	47	$17 (^{3}P1) ^{4}D^{\circ}$
900 ( x x ) xp		5/2	473 292.4	48	$18 (^{3}F2) ^{4}D^{\circ}$
		3/2	473 656.4	48	19 $({}^{3}F2) {}^{4}D^{\circ}$
		1/2	473 727.6	51	20 $({}^{3}F2) {}^{4}D^{\circ}$
9.74(3171) 4	200	9/	170 570 5		(3tra) 200
$\partial a (\mathbf{r}_1) 4 p$	G	7/2	472 579.5	72	20 (F2) G
		12	410 001.0		
$3d^4(^{3}\text{P1})4p$	² P°	3/2	472 833.0	61	27 ( ³ P2) ² P°
		1/2	473 869.5	59	26
$2d^{4}(^{1}C1)4n$	2 <b>LI</b> •	9/	176 999 1	90	24 ( ¹ G1) ² G°
ou ( Or)zh	11	11/2	479 481.8	65	1 ( ¹ G2) ² H°
		.2	,,		
$3d^4({}^1\mathrm{G1})4p$	² G°	"/ ₂	476 935.6	52	32 $({}^{1}\text{G2}) {}^{2}\text{G}^{\circ}$
9.44(3ma) A	200	1/	1.77 177 1		(3D1) 2Co
ou (F2)4p		/2	4// 1//.1	66	41 ( <b>Г</b> І́) (
			1		

# Ni vi-Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading p	ercent	ages
$3d^4({}^1\mathrm{G1})4p$		⁹ / ₂	479 046.3	35 ² G°	26	$(^{1}G1)$ $^{2}H^{\circ}$
$3d^4({}^1\mathrm{G1})4p$	² F°	7/2 5/2	480 189.3 480 724.2	54 57	18 19	( ¹ G2) ² F°
$3d^4({}^3{ m F1})4p$	² D°	5/2 3/2	483 043.4 483 480 9	47 45	18 21	( ³ F2) ² D° ( ³ P1) ² D°
$3d^4(^1\mathrm{D1})4p$	² P°	3/2 1/	498 773.0	75	15 16	( ¹ D2) ² P°
$3d^4(^1\text{D1})4p$	. ² F°	⁵ /2	505 150.5	69	18	$(^{1}\text{D2})^{2}\text{F}^{\circ}$
$3d^4(^1\mathrm{D1})4p$	$^{2}\mathrm{D}^{\circ}$	.7 ₂ 3/2	507 300.4	73 72	19 26	$(^{1}\text{D2})^{2}\text{D}^{\circ}$
$3d^4({}^{1}S1)4p$	²p°	⁵ /2	512 113.2 540 394.1	71 74	25 20	( ¹ S2) ² P°
N; $y_{\rm H}$ ( ⁵ D )	Limit	3/2	<i>543 115.6</i> 870 000	74	20	

### Ni vii

Z = 28

Ti I isoelectronic sequence

Ground state:  $1s^22s^22p^63s^23p^63d^{45}D_0$ 

Ionization energy =  $1\ 070\ 000\ cm^{-1}\ (133\ eV)$ 

The  $3d^4-3d^34p$  transition array of this spectrum between 205 and 231 Å was observed and analysed by Phillips and Kruger (1938). Henrichs (1975) has revised that work from new observations and isoelectronic comparisons. His results are given here. The uncertainty of the level values is about  $\pm 5$  cm⁻¹.

The ionization energy is from Lotz (1967).

### References

Henrichs, H. F. (1975), Astron. Astrophys. 44, 41. Phillips, L. W., and Kruger, P. G. (1938), Phys. Rev. 54, 839. Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

INI VII					
Configuration	Term	J	Level (cm ⁻¹ )		
$3d^4$	⁵ <b>D</b>	0	0		
	_	ĩ	279		
		$\overline{2}$	804		
		3	1 520		
		4	2 392		
$3d^4$	³ P2	0	30 077		
		1	31 836		
		2	34 555		
$3d^4$	${}^{3}\mathrm{H}$	4	31 672		
	J	5	32 286		
		6	32 877		
$3d^4$	³ F2	2	34 247		
		3	34 317		
		4	34 576		
$3d^4$	³ G	3	38 160		
		4	38 746		
		5	39 247		
$3d^3({}^4\mathrm{F})4p$	³ D°	1	467 015		
		2	471 976		
		3	473 360		
$3d^3({}^4\mathrm{F})4p$	⁵ D°	2	467 705		
		3	468 690		
	l l	1	469 175		
		4	469 844		
$3d^{3}({}^{4}\mathrm{F})4p$	${}^{5}\mathbf{F}^{\circ}$	2	470 056		
		3	471 096		
		1	471 250		
		4	472 067		
		5	472 907		
$3d^3({}^4\mathrm{F})4p$	³ G°	3	476 258		
_		4	477 261		
		5	478 534		

AT:

258

Configuration	Term	J	Level (cm ⁻¹ )
$3d^{3}({}^{4}\mathrm{F})4p$	³ F°	2	479 950
000 ( = ) - F		3	481 091
		4	482 229
$3d^{3}(^{4}P)4n$	⁵ P°	. 1	486 151
000 ( 1 ) -p		2	487 207
		3	488 665
$3d^{3}(^{2}G)An$	³ G°	3	4.93 743
		4	495 087
		5	496 340
$3d^{3}(^{2}H)4n$	³ G°	5	511 464
50 ( 11)+p	ŭ	4	511 698
		3	511 991
Ni VIII ( ⁴ F _{3/2} )	Limit		1 070 000

	Ni	VII-	Con	tin	ued
--	----	------	-----	-----	-----

#### Ni vili

Z = 28

Sc I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 {}^4F_{3/2}$ 

Ionization energy =  $1 \ 310 \ 000 \ \text{cm}^{-1} \ (162 \ \text{eV})$ 

Anderson and Mack (1941) observed and classified 132 lines between 163 and 189 Å in the  $3d^3-3d^24p$  transition array. The uncertainty in the level values is about 10 cm⁻¹, which corresponds to an error of about 0.003 Å in the wavelengths.

The separation of the ⁴F and ⁴P terms in  $3d^3$  is confirmed by the calculations of Racah (1954). The doublet system has been questioned by Bowen (1960), on the basis of isoelectronic extrapolations, but the objection does not seem to be well substantiated.

The configurations  $3d^3$ ,  $3d^24s$ , and  $3d^24p$  have been calculated by Kancerevicius, Ramonas, and Uspalis (1976), using Hartree-Fock methods.

The ionization energy is from Lotz (1967).

#### References

Anderson, E. E., and Mack, J. E. (1941), Phys. Rev. 59, 717.

Bowen, I. S. (1960), Astrophys. J. 132, 1.

Kancerevicius, A., Ramonas, A., and Uspalis, K. (1976), Lietuvos Fizikos Rinkinys 16, 49.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Racah, G. (1954), Bull. Res. Council Israel 3, 290.

Configuration	Term	J	Level (cm ⁻¹ )
$3d^3$	4F	³ /2 5/2 7/2 9/2	0 1 012 2 184 3 721
$3d^3$	⁴ P	¹ /2 ³ /2 ⁵ /2	23 261 23 710 24 669
$3d^3$	² G	7/2 9/2	26 977 28 068
$3d^3$	² D2	⁵ /2 ³ /2	34 689 35 120
$3d^3$	²H	⁹ / ₂ ¹¹ / ₂	36 754 37 475
$3d^2(^3\mathrm{F})4p$	⁴G°	5/2 7/2 9/2 11/2	565 124 566 964 569 564 572 969
$3d^2(^3\mathrm{F})4p$	4 <b>F</b> °	3/2 5/2 7/2 9/2	565 388 566 831 568 746 570 960
$3d^2(^3\mathrm{F})4p$	$^{2}D^{\circ}$	³ /2 ⁵ /2	569 667 571 845
$3d^2(^3\mathrm{F})4p$	⁴ D°	3/2 1/2 5/2 7/2	569 839 570 353 571 517 573 327

Ni vm

INI VIII-Continue
-------------------

Configuration	Term	J	Level (cm ⁻¹ )
$3d^2(^3\mathrm{F})4p$	²F°	5/2 7/2	570 546 571 804
$3d^2(^3\mathrm{F})4p$	² G°	7/2 9/2	581 337 583 241
$3d^2(^3\mathrm{P})4p$	4S°	3/2	587 305
3d ² ( ³ P)4p	4D°	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{7}{2}$	590 764 592 175 594 068 596 908
3d ² ( ³ P)4p	4 <b>p</b> •	1/2 3/2 5/2	596 770 596 905 598 570
$3d^2({}^1\mathrm{G})4p$	²G°	7/2 9/2	598 638 599 079
$3d^2({}^1\mathrm{G})4p$	² H°	⁹ / ₂ ¹¹ / ₂	613 417 615 725
Ni IX $({}^{3}\mathbf{F}_{2})$	Limit	_	1 310 000

Ni IX

Z = 28

Ca I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 {}^3F_2$ 

Ionization energy =  $1560\ 000\ cm^{-1}\ (193\ eV)$ 

Most of the analysis was given by Alexander, Feldman, Fraenkel, and Hoory (1966). The levels are obtained from the improved measurements and corrected classifications by Even-Zohar and Fraenkel (1968). The uncertainty of the level values is about  $\pm 30$  cm⁻¹. The singlet system, the  ${}^{3}P_{2}$ of  $3d^{2}$ , and the  ${}^{3}D_{3}$  of 3d4f are based on an estimated value for the  $3d^{2}$  ¹D term by Alexander et al. The value of the systematic shift is expected to be a few hundred cm⁻¹.

Fawcett, Ridgeley, and Ekberg (1980) classified the transition array  $3p^{6}3d^{2}-3p^{5}3d^{3}$ . Their wavelength accuracy is given as  $\pm 0.007$  Å.

The  $3d^{2}$  ¹G term is based on a tentative identification of a coronal line at 7144 Å by Pryce (1964).

The ionization energy is from Lotz (1967).

### References

Alexander, E., Feldman, U., Fraenkel, B. S., and Hoory, S. (1966), J. Opt. Soc. Am. 56, 651.

Even-Zohar, M., and Fraenkel, B. S. (1968), J. Opt. Soc. Am. 58, 1420.

Fawcett, B.C., Ridgeley, A., and Ekberg, J.O. (1980), Phys. Scr. 21, 155.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Pryce, M. H. L. (1964), Astrophys. J. 140, 1192.

Ni	IX

Configuration	Term	J	Level (cm ⁻¹ )
2-6(10)2-12	317	0	0
sp(s)sa	r	2	1 880
		4	4 070
$3p^6(^1\mathrm{S})3d^2$	¹ D	2	$21\ 900+x$
$3p^6(^1\mathrm{S})3d^2$	³ P	2	27 160+x
$3p^6(^1\mathrm{S})3d^2$	¹ G	4	$35\ 898 + x?$
$3p^{5}(^{2}P^{\circ})3d^{3}(^{2}H)$	³ G°	3	601 300
•	-	4	604 000
		5	608 530
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{3}(^{2}\mathrm{G})$	¹ H°	5	640 360+x
$3p^{5}(^{2}P^{\circ})3d^{3}(^{4}F)$	³ F°	2	661 050
•		3	664 080
		4	667 080
$3p^{5}(^{2}P^{\circ})3d^{3}(^{4}F)$	³ D°	1	709 210
-		3	711 510
		2	711 520
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{3}(^{2}\mathrm{H})$	¹ G°	4	716 110+x
$3p^{6}(^{1}S)3d4f$	⁸ F°	2	977 130
		3	977 680
		4	978 740
$3p^{6}(^{1}S)3d4f$	³ G°	3	983 700
		4	985 140
		5	985 940
$3p^{6}({}^{1}S)3d4f$	¹ <b>D</b> °	2	984 630+x

Ni 1x—C	ontinued
---------	----------

Configuration	Term	J	Level (cm ⁻¹ )
$3p^6(^1S)3d4f$	¹ F°	3	986 960+x
$3p^6(^1\mathrm{S})3d4f$	³ D°	3	988 760+x
Ni x ( ² D _{3/2} )	Limit		1 560 000

Z = 28

K I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{-2}D_{3/2}$ 

Ionization energy =  $1 812 000 \text{ cm}^{-1} (224.6 \text{ eV})$ 

Observations of Ni X were first reported by Alexander, Feldman, and Fraenkel (1965), who reported the 3d-4f and 5f doublets. The series was extended to 7f by Even-Zohar and Fraenkel (1968), who noted that the 6f and 7f terms may be perturbed by the  $3p^53d4d$  configuration. Their measurements are given here. We find that the nf terms do not follow a regular Rydberg series.

Gabriel, Fawcett, and Jordan (1966) identified the  $3p^53d^2$  ( 3F ) 2D  and ( 3F ) 2F  terms. The  2P  term was added by Goldsmith and Fraenkel (1970). With new observations, Ramonas and Ryabtsev (1980) determined the ( 1G ) 2F  and ( 1D ) 2F  terms and improved the level values. Their results are given for the  $3p^53d^2$  levels and for the  $3p^63d$   2D  ground term interval. They also obtained the  $3p^64p$  term.

The analysis of the  $3p^53d4s$  configuration is by Hoory, Goldsmith, Fraenkel, and Feldman (1970). These levels have an uncertainty of about  $\pm 50$  cm⁻¹.

The ionization energy is from Lotz (1967).

#### References

- Alexander, E., Feldman, U., and Fraenkel, B. S. (1965), J. Opt. Soc. Am. 55, 650.
- Even-Zohar, M., and Fraenkel, B. S. (1968), J. Opt. Soc. Am. 58, 1420.
- Gabriel, A. H., Fawcett, B. C., and Jordan, C. (1966), Proc. Phys. Soc. 87, 825.
- Goldsmith, S., and Fraenkel, B. S. (1970), Astrophys. J. 161, 317.
- Hoory, S., Goldsmith, S., Fraenkel, B. S., and Feldman, U. (1970), Astrophys. J. 160, 781.
- Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Ramonas, A. A., and Ryabtsev, A. N. (1980), Opt. Spectrosc. 48, 631.

Configuration	Term	J	Level (cm ⁻¹ )
$3p^6 3d$	² D	³ / ₂ ⁵ / ₂	0 3 178
$3p^5(^2\mathbf{P}^\circ)3d^2(^1\mathbf{G})$	² F°	5/2 7/2	505 283 509 751
$3p^5(^2\mathbf{P}^{\circ})3d^2(^1\mathbf{D})$	² F°	7/2 5/2	522 391 540 725
$3p^5(^2P^\circ)3d^2(^3F)$	² F°	⁵ / ₂ 7/ ₂	625 091 634 583
$3p^5(^2\mathrm{P^\circ})3d^2(^3\mathrm{P})$	² P°	$^{1/_{2}}_{3/_{2}}$	684 552 689 365
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{2}(^{3}\mathrm{F})$	² D°	5/2 3/2	692 890 693 404
$3p^64p$	² P°	1/2 3/2	773 647 779 600
$3p^6 4f$	² F°	5/2 7/2	1 093 360 1 093 440
$3p^5 3d(^3\mathrm{P}^\circ)4s$	² P°	$^{1/_{2}}_{3/_{2}}$	1 140 510 1 148 420
$3p^5 3d(^3F^\circ)4s$	⁴ F°	7/2 5/2	1 154 390 1 156 550

Ni x

Configuration	Term	J	Level (cm ⁻¹ )
$3p^5 3d(^3\mathrm{F}^\circ)4s$	²₽°	7/2 5/2	1 161 930 1 169 300
$3p^5 3d(^3D^\circ)4s$	⁴ D°	7/2 5/2	1 184 390 1 187 750
$3p^5 3d({}^1\mathrm{F}^{\circ})4s$	² F°	7/2	1 198 260
$3p^5 3d(^3D^\circ)4s$	² D°	³ /2 5/2	1 203 270 1 206 410
$3p^6 5f$	² F°	5/2 7/2	1 349 580 1 349 690
$3p^6 6f$	²F°	7/2 5/2	1 502 720 1 502 810
$3p^67f$	² F°	5/2 7/2	1 617 890 1 618 310
Ni XI $({}^{1}S_{0})$	Limit		1 812 000

Ni x—Continued

Z = 28

Ar-I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^{6-1}S_0$ 

Ionization energy =  $2589\ 000\ \text{cm}^{-1}\ (321.0\ \text{eV})$ 

Swartz et al. (1976) identified the transition array  $3p^53d-3p^54f$  in the region of 81 Å-94 Å. With their classifications and the forbidden transitions within the  $3p^53d$  configuration identified in the solar corona by Svensson et al. (1974) and by Sandlin and Tousey (1979), these configurations were determined. The ¹P° term is from the laboratory observations of Even-Zohar and Fraenkel (1968). The uncertainty in the  $3p^53d$  level values varies from  $\pm 10 \text{ cm}^{-1}$  to  $\pm 100 \text{ cm}^{-1}$  while that of the  $3p^54f$  levels is  $\sim 100 \text{ cm}^{-1}$ .

The  $3p^54s$  and 4d configurations are taken from observations of resonance lines by Even-Zohar and Fraenkel

between 60 and 80 Å, and the level values are uncertain by about 300  $\text{cm}^{-1}$ .

The ionization energy is from Lotz (1967).

### References

- Even-Zohar, M., and Fraenkel, B. S. (1968), J. Opt. Soc. Am. 58, 1420. Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.
- Sandlin, G. D., and Tousey, R. (1979), Astrophys. J. 227, L 107.
- Svensson, L. A., Ekberg, J. O., and Edlén, B. (1974), Solar Physics 34, 173.
- Swartz, M., Kastner, S. O., Goldsmith, L., and Neupert, W. (1976), J. Opt. Soc. Am. 66, 240.

Configuration	Term	J	Level (cm ⁻¹ )
$3s^2 3p^6$	$^{1}S$	0	0
$3s^2 3p^5 3d$	³ P°	0	469 310
*		1	472 950
		2	480 770
$3s^2 3p^5 3d$	³ F°	4	493 060
1		3	496 950
$3s^2 3p^5 3d$	³ D°	3	597 990
	2	1	534 810
		2	539 070
$3s^2 3p^5 3d$	¹ D°	2	530 050
$3s^2  3p^5  3d$	¹ F°	3	543 040
$3s^2  3p^5  3d$	${}^{1}\mathbf{P}^{\circ}$	1	673 850
$3s^2  3p^5  4s$	${}^3\mathrm{P}^{\circ}$	1	1 269 940
$3s^2  3p^5  4s$	¹ P°	- 1	1 292 110
$3s^2  3p^5  4d$	³ P°	1	1 571 310
$3s^2 3p^5 4d$	${}^{1}\mathbf{P}^{\circ}$	1	1 594 130
$3s^2 3n^5 ({}^2P_{0,0}^{\circ})4f$	² [ ³ / ₆ ]	1	1 701 800
	L.21	$\frac{1}{2}$	1 704 300
$3a^2 3n^5(^2\mathbf{p}^\circ) M^{\epsilon}$	2[9/]	5	1 706 400
$v_{3/2} + (r_{3/2}) + f$	L /2J	4	1 708 600
		_	
$3s^2 3p^5(^2\mathbf{P}^{\circ}_{3/2})4f$	² [ ⁵ / ₂ ]	3	1 708 300

Ni xı

Configuration	Term	J	Level (cm ⁻¹ )
$3s^2 3p^5(^2\mathbf{P}^{\circ}_{3/2})4f$	² [ ⁷ / ₂ ]	4	1 716 400
$3s^2 3p^5(^2\mathrm{P}^{\circ}_{1/2})4f$	² [ ⁵ / ₂ ]	3 2	1 732 900 1 739 400
$3s^2 3p^5(^2\mathbf{P}^{\circ}_{1/2})4f$	² [ ⁷ / ₂ ]	3 4	1 736 000 1 736 400
Ni хп ( ² Р _{3/2} )	Limit		2 589 000

* * *		$\sim$		
NJ 3	V7	1 nn	\$7.93	מאמינו
TAT	A1	COL		uvu
### Ni xii

Z = 28

Cl 1 isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^{5-2} P_{3/2}^{\circ}$ 

Ionization energy = 2 840 000 cm⁻¹ (352 eV)

Laboratory observations of the  $3p^5-3p^43d$  resonance array by Goldsmith and Fraenkel (1970) give a value for the ground term interval of 23 520±20 cm⁻¹ or 4250.5 Å for the forbidden transition. This value is confirmed by the calculated interval of 23 511 cm⁻¹ by Nussbaumer (1976).

The portion of the  $3p^43d$  configuration below 600 000 cm⁻¹ is taken from the study of coronal spectra by Edlén and Smitt (1978). Their level values are adjusted here to the calculated energies of Nussbaumer (1976), from which we adopted the value 454 000 for the  $({}^{3}P){}^{4}D_{7/2}$  level. The value of "x" may be  $\pm 1000$  cm⁻¹ or larger. The higher  $3p^43d$  terms are from Goldsmith and Fraenkel (1970); the uncertainty is  $\pm 20$  cm⁻¹. The designations of the parent terms of  $3p^43d$  are taken from the calculations of Bromage,

Cowan, and Fawcett (1977) for the isoelectronic spectrum Fe X.

The  $3p^54s$ ,  $3p^54d$ , and  $3p^54f$  terms are from the observations of Fawcett, Cowan, and Hayes (1972) near 70 Å and are uncertain by  $\pm 500$  cm⁻¹.

The ionization energy is from Lotz (1967).

# References

Bromage, G. E., Cowan, R. D., and Fawcett, B. C. (1977), Physics Scripta 15, 177.

Edlén, B., and Smitt, R. (1978), Solar Physics 57, 329.

Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. B5, 2143.

Goldsmith, S., and Fraenkel, B. S. (1970), Astrophys. J. 161, 317.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Nussbaumer, H. (1976), Astron. Astrophys. 48, 93.

Configuration	Term	J	Level (cm ⁻¹ )
$3p^5$	² P°	³ / ₂ ¹ / ₂	0 23 520
$3p^4(^3\mathrm{P})3d$	⁴ D	7/2	$454\ 000+x$
$3p^4(^3P)3d$	⁴ F	9/2 7/2	$\begin{array}{c} 485\ 570 + x \\ 492\ 750 + x \end{array}$
$3p^4(^3\mathbf{P})3d$	² F -	7/2	513 290+x
$3p^4(^1\mathrm{D})3d$	² G	7/2 9/2	526 960 + x 527 230 + x
$3p^4(^1\text{D})3d$	$^{2}\mathrm{F}$	7/2	567 200+x
$3p^4(^1\text{D})3d$	² S	1/2	622 840
$3p^4(^{3}P)3d$ .	² P	$^{3/_{2}}_{1/_{2}}$	648 620 657 240
$3p^4(^3\mathrm{P})3d$	² D	⁵ /2 3/2	657 230 676 370
$3p^4(^3P)4s$	² P	³ / ₂ 1/ ₂	1 374 200 1 385 600
3p ⁴ ( ¹ D)4s	² D	5/2 3/2	1 401 000 1 401 600
$3p^{4}(^{3}P)4d$	2 D	5/2	1 666 100

Ni хн

Configuration	Term	J	Level (cm ⁻¹ )			
$3p^4(^{3}P)4f$	4F°	⁹ / ₂	1 797 400+x			
$3p^4(^{3}\mathrm{P})4f$	⁴ G°	¹¹ / ₂ 9/ ₂	1 808 000+x 1 811 400+x			
$3p^4(^1\mathbf{D})4f$	² H°	¹¹ / ₂	1 848 400+x			
Ni XIII $({}^{3}P_{2})$	Limit		2 840 000			

Ni xu-Continued

### Ni XIII

Z = 28

S I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^4 {}^{3}P_2$ 

Ionization energy =  $3\ 080\ 000\ \text{cm}^{-1}\ (384\ \text{eV})$ 

Svensson (1971) calculated the levels of the ground configuration with a stated accuracy of  $\pm 10-50$  cm⁻¹. From these he made the following classifications of solar coronal lines within this configuration:  ${}^{3}P_{2}{}^{-1}D_{2}$  at 2126.7 Å (in vac.) and  ${}^{3}P_{2}{}^{-3}P_{1}$  at 5115.8 Å (in air). New measurements of the coronal spectrum observed from Skylab by Sandlin, Brueckner, and Tousey (1977) provide the more accurate wavelength of 2126.17 $\pm 0.02$  Å for  ${}^{3}P_{2}{}^{-1}D_{2}$ , and a new line at 1277.23 $\pm 0.01$  Å for  ${}^{3}P_{1}{}^{-1}S_{0}$ . A predicted value for  ${}^{3}P_{0}$  is taken from Svensson's calculation.

The  $3s3p^5$  and  $3s^23p^33d$  levels are from laboratory observations of Fawcett and Hayes (1972) between 155 and 305 Å and are uncertain by about  $\pm 50$  cm⁻¹.

The  $3p^34d$  levels are from the observations of Fawcett, Cowan, and Hayes (1972) at 56 Å. The uncertainty is about  $\pm 500 \text{ cm}^{-1}$ . They also observed levels in  $3p^34f$  terms, but they are not connected with this system.

The ionization energy is taken from Lotz (1967).

### References

Fawcett, B. C., and Hayes, R. W. (1972), J. Phys. B5, 366.

Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. **B5**, 2143. Lotz, W. (1967), J. Opt. Soc. Am. **57**, 873.

Sandlin, G. D., Brueckner, G. E., and Tousey, R. (1977), Astrophys. J. 214, 898.

Svensson, L. A. (1971), Solar Physics 18, 232.

Configuration	Term	Term J Level (cm ⁻¹ )		Term J	
$3s^2 3p^4$	³Р	2 1 0	0.0 19 541.8 20 000 + x		
$3s^2 3p^4$	¹ D	2	47 032.9		
$3s^2 3p^4$	¹ S	. 0	97 836.2		
$3s3p^5$	³ P°	2	<i>329 700</i>		
$3s^2 3p^3(^2\mathrm{D}^\circ) 3d$	³ P°	2	609 200		
$3s^2 3p^3 ({}^4\mathrm{S}^\circ) 3d$	³ D°	3 2 1	634 000 644 660 649 840+x		
$3s^2 3p^3(^2\mathrm{D}^\circ) 3d$	¹ D°	2	666 000		
$3s^2 3p^3(^2\mathrm{D^{\circ}})3d$	¹ F°	3	681 750		
$3s^2 3p^3(^2\mathrm{D^\circ}) 3d$	$^{1}\mathbf{P}^{\circ}$	1	715 960		
$3s^2 3p^3 ({}^4\mathrm{S}^\circ) 4d$	$^{3}D^{\circ}$	3	1 767 700		
$3s^2 3p^3(^2D^{\circ})4d$	${}^{1}\mathbf{D}^{\circ}$	2	1 820 400		
$3s^2 3p^3(^2\mathbf{D}^{\circ})4d$	¹ F ¹ °	3	1 827 000		
Ni XIV $({}^{4}S^{\circ}_{3/2})$	Limit		3 080 000		

#### Ni xm

P I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^3 {}^4S^{\circ}_{3/2}$ 

Ionization energy =  $3 \ 470 \ 000 \ \mathrm{cm}^{-1}$  (430 eV)

The levels of the  $3s^23p^3$  configuration are determined from identifications of solar coronal lines by Svensson (1971) and Sandlin, Brueckner, and Tousey (1977). The values are from wavelengths given in the latter paper reporting spectra observed from Skylab and measured with an uncertainty of  $\pm 0.01$  Å. The calculated value for  ${}^{2}P_{3/2}$  is from Svensson, with an estimated uncertainty of  $\pm 50$  cm⁻¹.

The  $3s3p^4$  and  $3s^23p^23d$  levels are from the observations of Fawcett and Hayes (1972) between 160 and 320 Å and are uncertain by about  $\pm 60$  cm⁻¹.

The  $3p^24d$  levels are from the observations of Fawcett, Cowan, and Hayes (1972). The uncertainty is about  $\pm 500$  cm⁻¹.

The ionization energy is taken from Lotz (1967).

### References

Fawcett, B. C., and Hayes, R. W. (1972), J. Phys. B5, 366.

Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. B5, 2143.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Sandlin, G. D., Brueckner, G. E., and Tousey, R. (1977), Astrophys. J. 214, 898.

Svensson, L. A. (1971), Solar Physics 18, 232.

Configuration	Term	J	Level (cm ⁻¹ )
$3s^2 3p^3$	⁴ S°	3/2	0.0
$3s^2 3p^3$	² D°	³ / ₂ ⁵ / ₂	45 767.8 53 569.0
$3s^2 3p^3$	$^{2}P^{\circ}$		85 126.7 96 630+x
3s3p ⁴	⁴ P	5/2 3/2	315 930 330 830
$3s3p^4$	² D	5/2	396 000
$3s3p^4$	$^{2}\mathrm{P}$	³ /2	447 750
$3s^2 3p^2(^3\mathbf{P})3d$	4p	5/2 3/2 1/2	583 530 589 310 594 810
$3s^2 3p^2({}^1\mathrm{D})3d$	² D	³ / ₂ 5/ ₂	632 280 634 430
$3s^2 3p^2({}^1\mathrm{D})3d$	² P	¹ / ₂ ³ / ₂	648 320 660 710+x
$3s^2 3p^2({}^1\mathrm{D})3d$	${}^{2}\mathrm{F}$	7/2	662 780
$3s^2 3p^2(^3\mathrm{P})3d$	² D	5/2 3/2	690 560+x 691 930
$3s^2  3p^2  4d$	$^{2}\mathbf{P}$	³ /2	1 628 400
$3s^2 3p^2 4d$	$^{2}\mathrm{D}$	5/2	1 653 100
Ni XV $({}^{3}P_{0})$	Limit		3 470 000

Ni xiv

Si I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^2 {}^{3}P_0$ 

Ionization energy =  $3740000 \text{ cm}^{-1}$  (464 eV)

The levels of the  $3s^23p^2$  configuration are determined from measurements of solar coronal lines and are uncertain by less than  $1 \text{ cm}^{-1}$ . The ³P values are from Svensson's (1971) compilation and the ¹D value is from the measurement by Sandlin, Brueckner, and Tousey (1977) of spectra observed from Skylab.

The  $3s3p^3$  and  $3s^23p3d$  levels are from the analysis by Fawcett and Hayes (1972) based on observations between 170 and 320 Å; they are uncertain by about  $\pm 60$  cm⁻¹.

The 3p4s, 3p4d, and 3p4f levels are from the observations of Fawcett, Cowan, and Hayes (1972) and of Kastner,

Swartz, Bhatia, and Lapides (1978). The uncertainty is about  $\pm 500 \text{ cm}^{-1}$ .

The ionization energy is from Lotz (1967).

#### References

Fawcett, B. C., and Hayes, R. W. (1972), J. Phys. B5, 366.

Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. B5, 2143.

Kastner, S. O., Swartz, M., Bhatia, A. K., and Lapides, J. (1978), J. Opt. Soc. Am. 68, 1558.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Sandlin, G. D., Brueckner, G. E., and Tousey, R. (1977), Astrophys. J. 214, 898.

Svensson, L. A. (1971), Solar Physics 18, 232.

Configuration	Term	J	Level (cm ⁻¹ )
	3n	0	0.0
3s ² 3p ²	P	0	0.0
			27 376.5
$3s^2 3p^2$		2	62 852.1
$3s3p^3$	³ D°	2	335 710
	_	3	340 850
$3s3p^3$	³ S°	1	478 010
$3s3p^3$	¹ P°	1	509 200
$3s^2 3n3d$	³ P°	2	555 830
00 op 00	-	1	565 930
$3s^2 3p3d$	¹ D°	2	574_330
$3s^2 3p 3d$	³ D°	1	582 760
· · · · · · · ·		3	585 170
		2	586 410
$3s^2  3p3d$	1 Fro	3	638 460
$3s^2 3p4s$	³ P°	2	1 730 700
$3s^2 3p4d$	³ D°	2	2 018 400
1		3	2 020 500
$3s^2  3p4d$	³ F°	3	2 042 500
$3s^2 3p4d$	¹ F°	3	2 053 000
$3s^2 3p4f$	¹ G	4	2 185 600
Ni xvi $(^{2}P_{1,n}^{2})$	Limit		3 740 000

Ni xv

# Ni xvi

Z = 28

Al I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^2 3p^{-2} P_{1/2}^{\circ}$ 

Ionization energy =  $4\ 020\ 000\ \mathrm{cm}^{-1}\ (499\ \mathrm{eV})$ 

The  $3s^2 3p$ ,  $3s 3p^2$ , and  $3s^2 3d$  configurations are from the line classifications near 200 Å of Fawcett and Hayes (1972). They estimate the wavelength uncertainty to be  $\pm 0.03$  Å ( $\pm 75$  cm⁻¹). The  $3s^2 4d$  and 4f levels are from wavelengths near 50 Å classified by Fawcett, Cowan, and Hayes (1972) and are uncertain by several hundred cm⁻¹.

The ionization energy is from Lotz (1967).

# References

Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. **B5**, 2143. Fawcett, B. C., and Hayes, R. W. (1972), J. Phys. **B5**, 366. Lotz, W. (1967), J. Opt. Soc. Am. **57**, 873.

Configuration	Term	J	Level (cm ⁻¹ )		
3s ² 3p	$^{2}P^{\circ}$	1/2 3/2	0 27 810		
$3s3p^2$	² D	⁵ /2	351 020		
$3s3p^2$	$^{2}S$	¹ / ₂	417 480		
$3s3p^2$	² P	1/2 3/2	448 230 457 920		
$3s^2 3d$	² D	³ / ₂ ⁵ / ₂	539 870 543 170		
$3s^2 4d$	$^{2}\mathrm{D}$	³ / ₂ ⁵ / ₂	2 119 400 2 121 100		
$3s^2 4f$	² F°	7/2 5/2	2 228 500 2 228 600		
Ni xvii ( ¹ S ₀ )	Limit		4 020 000		

### Ni xvi

### Ni XVII

Z = 28

Mg I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s^{2-1}S_0$ 

Ionization energy =  $4\ 607\ 800\pm1000\ \mathrm{cm}^{-1}\ (571.30\pm0.12\ \mathrm{eV})$ 

Wavelength identifications were first made by Fawcett, Gabriel, Irons, Peacock, and Saunders (1966) in the range of 42 Å to 52 Å. The measurements were improved and extended to 33 Å by Feldman, Katz, Behring, and Cohen (1971). Further work in this region and from 197 Å to 285 Å by Fawcett, Cowan, and Hayes (1972) completed the presently known energy levels, with the addition of 3s3p ¹P₁° and 3s6f ³F₄° by Fawcett and Hayes (1972). The measurements by Feldman et al. served as the primary source of wavelengths. The levels of 3s4f ³F° are derived from the measurements of Behring, Cohen, and Feldman (1972).

The triplet system has not been connected to the ground state by observed lines. We calculated the position of  $3s3p \ ^{3}P_{1}^{\circ}$  relative to  $3s3p \ ^{1}P_{1}^{\circ}$  by the method of successive differences along the isoelectronic sequence. The value of "x" is within 1000 cm⁻¹.

The 3p3d-3p4f transition array has been observed at 55 Å by Kastner, Swartz, Bhatia, and Lapides (1978) but it is unconnected with the present configurations.

We derived the ionization energy from the three member 3snd ³D series. The 6*f* term does not follow the *nf* series quantum defect trend.

### References

- Behring, W. E., Cohen, R., and Feldman, U. (1972), Astrophys. J. 175, 493.
- Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. B5, 2143.
- Fawcett, B. C., Gabriel, A. H., Irons, F. E., Peacock, N. J., and Saunders, P. A. H. (1966), Proc. Phys. Soc. **88**, 1051.
- Fawcett, B. C., and Hayes, R. W. (1972), J. Phys. B5, 366.
- Feldman, U., Katz, L., Behring, W. E., and Cohen, L. (1971), J. Opt. Soc. Am. 61, 91.
- Kastner, S. O., Swartz, M., Bhatia, A. K., and Lapides, J. (1978), J. Opt. Soc. Am. 68, 1558.

Configuration	Term	J	Level (cm ⁻¹ )
3s ²	¹ S	0	0
3s3p	³ P°	0	267720 + x
1		1	$276\ 000+x$
		2	296 980+x
3s3p	$^{1}\mathbf{P}^{\circ}$	1	401 320
$3p^2$	⁸ P	0	$631\ 200+x$
-%-		1	$647\ 100+x$
		2	$672\ 800+x$
$3p^2$	¹ D	2	638 800
3s3d	³ D	1	774500 + r
3000		2	$776\ 300+x$
		3	$778\ 900+x$
3s3d	¹ D	2	864 500
3s4s	³ S	1	2 190 830 + $x$
3s4p	¹ P°	1	2 333 450
3s4d	³ D	1	2497350+x
		2	2498460+x
		3	$2\ 500\ 500+x$
3s4d	¹ D	2	2 499 400

Ni xvn

<b>N</b> .7 *		<u></u>	3
191	XVII-	- Contin	1100
* * *	** * **	~~~~	wvu

Configuration	Term	J	Level (cm ⁻¹ )
3 <i>p</i> 4 <i>s</i>	³ P°	2	2 546 100+x
3 <i>s</i> 4 <i>f</i>	³ F°	2 3 4	2 588 200+x 2 588 400+x 2 588 600+x
3s4f	¹ F°	3	2 601 200
3s5p	$^{1}P^{\circ}$	1	3 234 300
3 <i>s5d</i>	³ D	1 2 3	$\begin{array}{c} 3 \ 275 \ 330 + x \\ 3 \ 275 \ 400 + x \\ 3 \ 276 \ 100 + x \end{array}$
3s5f	³ F°	4 3,2	3 316 000+x 3 316 100+x
3s6f	³ F°	4	3 723 500?+x
Ni xviii ( ² S _{1/2} )	Limit		4 706 800

# Ni xviii

Z = 28

Na I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^6 3s {}^2S_{1/2}$ 

Ionization energy =  $4\,895\,900\pm300\,\,\mathrm{cm}^{-1}\,(607.02\pm0.04\,\,\mathrm{eV})$ 

From Edlén's (1978) study of the Na I isoelectronic sequence, smoothed-out values for the 3p ²P and 3d ²D term positions are adopted here. An uncertainty estimate of  $\pm 30$  cm⁻¹ is assigned to them, corresponding to the maximum deviation of the calculated wavelengths from those observed by Sandlin et al. (1976). We have rounded off the level values to the nearest 10 cm⁻¹.

Except for the 3d-4f doublet measured by Edlén (1936), we obtained the *nf* terms from the 3d-nf measurements reported by Feldman et al. (1971). They also found the 4s, np(n=4-6), and nd(n=4-8) terms. Their measurement uncertainty of  $\pm 0.01$  Å leads to an energy level uncertainty of  $\pm 1000$  cm⁻¹.

The 4f-5g doublet was found by Kononov et al. (1977) and confirmed by Edlén (1978) by using a polarization formula.

Feldman and Cohen (1967) identified the  $2p^63s-2p^53s^2$  transitions at 14 Å.

Edlén derived the value for the ionization energy from the *nf* series.

#### References

- Edlén, B. (1936), Z. Phys. 100, 621.
- Edlén, B. (1978), Physica Scripta 17, 565.
- Feldman, U., and Cohen, L. (1967), J. Opt. Soc. Am. 57, 1128.
- Feldman, U., Katz, L., Behring, W., and Cohen, L. (1971), J. Opt. Soc. Am. 61, 91.
- Kononov, E. Y., Kovalev, V. I., Ryabtsev, A. N., and Churilov, S. S. (1977), Sov. J. Quantum Electronics 7, 111.
- Sandlin, G. D., Brueckner, G. E. Scherrer, V. E., and Tousey, R. (1976), Astrophys. J. 205, L47.

Configuration	Term	J	Level (cm ⁻¹ )
$2p^{6}(^{1}S)3s$	$^{2}S$	¹ / ₂	0
$2p^6({}^1\mathrm{S})3p$	² P°	¹ /2 ⁸ /2	311 980 342 500
$2p^6({}^1\mathrm{S})3d$	² D	³ /2 ⁵ /2	765 640 770 300
$2p^6({}^1\mathrm{S})4s$	$^{2}S$	¹ / ₂	2 301 800
$2p^6(^1\mathrm{S})4p$	² P°	¹ / ₂ ³ / ₂	2 426 100 2 438 100
$2p^6(^1\mathrm{S})4d$	² D	³ /2 ⁵ /2	2 594 400 2 596 500
$2p^6(^1\mathrm{S})4f$	² F°	⁵ /2 7/2	2 666 240 2 667 110
$2p^6(^1S)5p$	² P°	$\frac{1}{2}$ $\frac{3}{2}$	3 352 400 3 358 100
$2p^6(^1\mathrm{S})5d$	² D	³ / ₂ ⁵ / ₂	3 433 700 3 434 600
$2p^{6}({}^{1}\mathrm{S})5f$	² F'°	⁵ /2 7/2	3 469 100 3 469 400
$2p^6(^1\mathrm{S})5g$	² G	7/2 9/2	3 473 000 3 473 300

Ni xvm

# **ENERGY LEVELS OF NICKEL**

Configuration	Term	J	Level (cm ⁻¹ )
$2p^6({}^1\mathrm{S})6p$	² P°	¹ / ₂ ³ / ₂	3 839 400 3 843 200
$2p^6({}^1\mathrm{S})6d$	2 D	³ / ₂ ⁵ / ₂	3 885 700 3 886 100
$2p^6({}^1\mathrm{S})6f$	² F°	⁵ / ₂ 7/ ₂	3 905 800 3 906 100
$2p^6(^1\mathrm{S})7d$	$^{2}\mathrm{D}$	⁵ /2	4 156 700
$2p^6({}^1\mathrm{S})7f$	² F°	⁵ /2 7/2	4 169 000 4 169 100
$2p^{6}({}^{1}\mathrm{S})8d$	² D	³ / ₂ ⁵ / ₂	4 331 100 4 331 300
$2p^{6}(^{1}S)8f$	² <b>F</b> °	7/2	4 339 400
Ni XIX $({}^{1}S_{0})$	Limit		4 895 900
$2p^5 3s^2$	$^{2}\mathrm{P}^{\circ}$	³ / ₂ ¹ / ₂	6 959 000 7 092 000

# NI xviii—Continued

Ne 1 isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^{6-1}S_0$ 

Ionization energy =  $12 \ 430 \ 000 \pm 20 \ 000 \ \text{cm}^{-1} \ (1541 \pm 2 \ \text{eV})$ 

Only resonance lines are classified by this system of energy levels. The first line identifications were made by Feldman, Cohen, and Swartz (1967), who reported transitions from the  $2p^53s$ ,  $2p^53d$  and  $2s2p^63p$  configuration. To these were added terms of  $2p^54d$  by Feldman and Cohen (1967). These were augmented by the work of Swartz, Kastner, Rothe, and Neupert (1971), who observed lines orginating from  $2p^54s$ ,  $2p^55d$ , and  $2p^56d$ .

By means of a very low pressure laboratory light source (a tokamak), Klapisch, Bar Shalom, Schwob, Fraenkel, Breton, de Michelis, Finkenthal, and Mattoli (1978) observed the magnetic dipole transition from  $2p^53s$   ${}^{3}P_{2}^{\circ}$  to the ground state. Their wavelengths for the  $2p^{5}3s$  and  $2p^{5}3d$  lines (at  $\sim 13$  Å) are used here. They are given to the thousandths place with no uncertainty estimate.

We have assigned designations and given percentages to the  $2p^53s$  and  $2p^53d$  configurations based on our own calculations. Both Jl and LS-leading percentages are listed for the  $2p^53s$  levels. The Jl-coupling designations for the  $2p^54s$  and  $2p^5nd$  (n=4,5,6) levels were obtained by comparison with isoelectronic ions.

Kastner, Behring, and Cohen (1975) identified transitions between  $2p^53p$  and  $2p^54d$ , but there is no connection with the levels given here.

We derived the ionization energy from the  $2s^22p^5({}^2P_{3/2}^{\circ})nd^2[3/2]^{\circ}$  series for n=3 to 6 (the 3d member is designated  ${}^3D_1^{\circ}$ ).

### References

Feldman, U., Cohen, L., and Swartz, M. (1967) Astrophys. J. 148, 585.

- Feldman, U., and Cohen, R. (1967) Astrophys. J. 149, 45.
- Kastner, S. O., Behring, W. E., and Cohen, L. (1975), Astrophys. J. 199, 777.
- Klapisch, M., Bar Shalom, A., Schwob, J. L., Fraenkel, B. S., Breton, C., de Michelis, C., Finkenthal, M., and Mattoli, M. (1978), Phys. Lett. 69A, 34.
- Swartz, M., Kastner, S., Rothe, E., and Neupert, W. (1971), J. Phys. B4, 1747.

Configuration	Term	J	Level (cm ⁻¹ )		Lead	ing per	centages	
$2s^2 2p^6$	¹ S	0	0					
$2s^2 2p^5(^2\mathbf{P}^{\circ}_{3/2})3s$	( ³ / ₂ , ¹ / ₂ )°	2 1	7 104 000 7 125 000	100 98	or or	100 53	³ P° ¹ P°	
$2s^2 2p^5(^2\mathbb{P}^{\circ}_{1/2})3s$	( ¹ / ₂ , ¹ / ₂ )°	1	7 263 000	98	or	53	${}^{3}P^{\circ}$	
$2s^2 2p^5 3d$	³ P°	1	7 813 000	91		9	³ D°	
$2s^2 2p^5 3d$	⁸ D°	1	7 906 000	67		28	${}^{1}\mathbf{P}^{\circ}$	
$2s^2 2p^5  3d$	¹ P°	1	8 052 000	72		24	³ D°	
$2s2p^6$ $3p$	³ P°	1	8 628 000					
$2s2p^6 3p$	$^{1}\mathbf{P}^{\circ}$	1	8 673 000					
$2s^2 2p^5(^2\mathrm{P}^\circ_{3/2})4s$	( ³ / ₂ , ¹ / ₂ )°	1	.9 600 000					
$2s^2 2p^5(^2\mathbf{P_{1/2}^{o}})4s$	$(\frac{1}{2},\frac{1}{2})^{\circ}$	1	9 700 000					
$2s^2 2p^5(^2\mathrm{P}^{\circ}_{3/2})4d$	² [ ³ / ₂ ]°	1	9 901 000					
$2s^2 2p^5(^2\mathbf{P}^{\circ}_{1/2})4d$	² [ ³ / ₂ ]°	1	10 030 000					

Ni xix

# ENERGY LEVELS OF NICKEL

Ni	xix-	-Continu	ıed
	TFILL .	001101110	

Configuration	Term	J	Level (cm ⁻¹ )	Leading percentages
$2s^2 2p^5(^2\mathrm{P}^\circ_{3/2})5d$	²[¾2]°	1	10 820 000	
$2s^2 2p^5(^2\mathrm{P}_{1/2}^{\circ})5d$	² [ ³ / ₂ ]°	1	10 940 000	
$2s^2 2p^5(^2\mathrm{P}^{ullet}_{3/2})6d$	² [ ³ / ₂ ]°	1	11 310 000	
$2s^2 2p^5(^2\mathrm{P}^{\circ}_{1/2}) 6d$	² [ ³ / ₂ ]°	1	11 450 000	
Ni xx ( ² P _{3/2} )	Limit		12 430 000	

# Ni xx

Z = 28

F I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^{5} {}^{2}P^{\circ}_{3/2}$ 

Ionization energy =  $13\ 290\ 000\ \text{cm}^{-1}\ (1648\ \text{eV})$ 

The  $2s^22p^5$  and  $2s2p^6$  configurations were determined by Doschek, Feldman, Cowan, and Cohen (1974) by the measurement of the  ${}^2P^{\circ}-{}^2S$  doublet near 90 Å with a relative accuracy of  $\pm 0.01$  Å. The higher levels are from Boiko, Pikuz, Safronova, and Faenov (1978), who measured 20 lines of this ion at 12 Å with an uncertainty of  $\pm 0.003$  Å. Their classifications are based on Hartree-Fock calculations of the level structure. The ionization energy was obtained from Lotz (1967).

### References

Boiko, V. A., Pikuz, S. A., Safronova, A. S., and Faenov, A. Y. (1978), Opt. Spectrosc. 44, 498.

Doschek, G. A., Feldman, U., Cowan, R. D., and Cohen, L. (1974), Astrophys. J. 188, 417.

Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873.

Configuration	Term	J	Level (cm ⁻¹ )
$2s^2 2p^5$	² P°	³ / ₂ 1/ ₂	0 144 100
$2s2p^6$	² S	1/2	1 202 400
$2s^2 2p^4(^3\mathrm{P})3s$	$^{2}\mathbf{P}$	³ / ₂ ¹ / ₂	7 545 000 7 677 000
$2s^2 2p^4(^3\mathbf{P})3s$	⁴ P	3/2	7 649 000
$2s^2 2p^4({}^1\mathrm{D})3s$	2 D	⁵ /2 ³ /2	7 736 000 7 742 000
$2s^2 2p^4({}^{8}\mathrm{P})3d$	⁴ P	1/2 3/2 5/2	8 232 000 8 249 000 8 260 000
$2s^2 2p^4(^{3}\mathrm{P})3d$	2 D	³ /2 5/2	8 323 000 8 358 000
$2s^2 2p^4(^{3}\mathrm{P})3d$	² P	⁸ / ₂	8 359 000
$2s^2 2p^4({}^{1}\mathrm{D})3d$	$^{2}S$	¹ / ₂	8 429 000
$2s^2 2p^4({}^1\mathrm{D})3d$	² D	5/2 3/2	8 450 000 8 494 000
$2s^2 2p^4({}^1\mathrm{D})3d$	² P	³ / ₂ 1/ ₂	8 455 000 8 503 000
$2s^2 2p^4({}^1\mathrm{S})3d$	$^{2}\mathrm{D}$	³ /2	8 667 000
$V_1 XXI (^{8}P_2)$	Limit		13 290 000

Ni xx

# Ni XXI

### Z = 28

O I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^{4} {}^{3}P_{2}$ 

lonization energy =  $14\ 160\ 000\ \mathrm{cm}^{-1}\ (1756\ \mathrm{eV})$ 

The  $2s^22p^4-2s2p^5$  transition array at 100 Å was identified by Doschek, Feldman, Cowan, and Cohen (1974). An intersystem transition,  $2s^22p^4 {}^{3}P_2-2s2p^5 {}^{1}P_1^{\circ}$ , has been observed by Kononov et al. (1976) at 69.62 Å. This is consistent with the solar flare line at 471.15 Å identified by Widing (1978) as the  $2s^22p^4({}^{3}P_2-{}^{1}D_2)$  transition. The  $2p^6$ level is obtained from its combination with  $2s2p^5$ , found by Doschek, Feldman, Davis, and Cowan (1975).

The identification by Swartz, Kastner, Rothe, and Neupert (1971) of the  $2s^22p^33s\ ^3S_1^\circ$  level from three transitions to the ground term is inconsistent with the ground term splitting.

The ionization energy is from Lotz (1967).

### References

- Doschek, G. A., Feldman, U., Cowan, R. D., and Cohen, L. (1974), Astrophys. J. 188, 417.
- Doschek, G. A., Feldman, U., Davis, J., and Cowan, R. D. (1975), Phys. Rev. A12, 980.
- Kononov, E. Y., Ryabtsev, A. N., Safronova, U. I., and Churilov, S. S. (1976), J. Phys. B9, L477.

Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873.

Swartz, M., Kastner, S., Rothe, E., and Neupert, W. (1971), J. Phys. B4, 747.

Widing, K. G. (1978), Astrophys. J. 222, 735.

Configuration	Term	J	Level (cm ⁻¹ )
$2s^2 2n^4$	³ р	2	0
me my			92 800
		1	128 300
$2s^2 2p^4$	¹ D	2	212 300
$2s^2 2p^4$	¹ S	0	406 800
$2s2p^5$	³ P°	2	1 043 300
• -		1	1 126 000
		0	1 193 200
$2s2p^5$	¹ P°	1	1 436 400
$2p^6$	¹ S	0	2 404 200
Ni XXII ( ⁴ S _{2/2} )	Limit		14 160 000

Ni xxi

# Ni xxII

Z = 28

N I isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^{3/4} S_{3/2}^{\circ}$ 

Ionization energy = 15 280 000 cm⁻¹ (1894 eV)

The transition array  $2s^22p^3-2s2p^4$  has been observed by Doschek, Feldman, Cowan, and Cohen (1974) between 80 and 118 Å. Since no intersystem transitions have been observed, we obtained a value for  $2s^22p^{3/2}D_{5/2}^{\circ}$  by extending the predicted values in the N I sequence, given by Fawcett (1975), to nickel. The ionization energy is from Lotz (1967).

# References

Doschek, G. A., Feldman, U., Cowan, R. D., and Cohen, L. (1974), Astrophys. J. 188, 417.

Fawcett, B. C. (1975), Atomic Data and Nuclear Data Tables 16, 135. Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Configuration	Term	J	Level (cm ⁻¹ )
$2s^2 2p^3$	⁴ S°	3/2	0
$2s^2 2p^3$	² D°	³ / ₂ ⁵ / ₂	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$2s2p^4$	⁴ P	5/2 3/2	848 100 943 000
$2s2p^4$	$^{-2}$ D	³ / ₂ 5/ ₂	$   \begin{array}{r}     1 \ 148 \ 400 + x \\     1 \ 175 \ 500 + x   \end{array} $
$2s2p^4$	² P	3/2	1 371 100 + x
Ni xxIII ( ³ P ₀ )	Limit		15 280 000

### Ni xx11

# Ni xxIII

Z = 28

C 1 isoelectronic sequence

Ground state:  $1s^2 2s^2 2p^2 {}^3P_0$ 

lonization energy =  $16\ 220\ 000\ {\rm cm}^{-1}\ (2011\ {\rm eV})$ 

No transition to the ground state of Ni XXIII has been identified. The excited levels are based on the value predicted by Feldman, Doschek, Cowan, and Cohen (1975) for  $2s^22p^{2/3}P_2$ . They observed the transition  $2s^22p^{2/3}P_2-2s2p^{3/3}S_1^{\circ}$  at 91.83 Å.

The ionization energy is from Lotz (1967).

## References

Feldman, U., Doschek, G. A., Cowan, R. D., and Cohen, L. (1975), Astrophys. J. 196, 613.
Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Configuration	Term	J	Level (cm ⁻¹ )
$2s^2 2p^2$	${}^{3}\mathrm{P}$	$0 \\ 1$	0
		2	$162\ 800+x$
$2s2p^3$	³ S°	1	1 252 000 + x
Ni XXIV $(^{2}P_{1/2}^{\circ})$	Limit		16 220 000

### Ni xxm

### Ni xxiv

Z = 28

B 1 isoelectronic sequence

Ground state:  $1s^2 2s^2 2p {}^2 P_{1/2}^{\circ}$ 

Ionization energy =  $17\ 190\ 000\ \text{cm}^{-1}\ (2131\ \text{eV})$ 

Fawcett and Cowan (1975) calculated the value of the  $2s^22p\ ^2P^{\circ}_{3/2}$  level. Doschek, Feldman, and Cohen (1975) observed the  $2s^22p\ ^2P^{\circ}_{3/2}-2s2p^{2\ ^2}P_{3/2}$  transition at  $102.05\pm0.02$  Å.

The ionization energy is from Lotz (1967).

# References

Doschek, G. A., Feldman, U., and Cohen, I. (1975), J. Opt. Soc. Am. 65, 463.

Fawcett, B. C., and Cowan, R. D. (1975), Mon. Not. R. Astron. Soc. 171, 1. Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Configuration	Term	J	Level (cm ⁻¹ )
$2s^2 2p$	$^{2}\mathrm{P}^{\circ}$	¹ / ₂ ³ / ₂	0 164 000+x
$2s2p^2$	$^{2}\mathrm{P}$	³ /2	1 144 000+ <i>x</i>
Ni xxv $({}^{1}S_{0})$	Limit		17 190 000

### Ni xxiv

Be 1 isoelectronic sequence

Ground state:  $1s^2 2s^{2-1}S_0$ 

Ionization energy =  $18510\ 000\ \text{cm}^{-1}\ (2295\ \text{eV})$ 

Edlén (1979) has tentatively identified the  $2s^2 {}^{1}S_0 - 2s2p {}^{3}P_1^{\circ}$  resonance line of Ni XXV in solar-flare spectra on the basis of his study of the Be I isoelectronic sequence. Its wavelength at  $239.03 \pm 0.03$  Å was from the observations by Dere (1978). The  $2s^2 {}^{1}S_0 - 2s2p {}^{1}P_1^{\circ}$  transition at  $117.81 \pm 0.08$  Å was obtained from the observations of Kastner, Neupert, and Swartz (1974). The rest of the level values are from the observations of laser-produced plasmas by Boiko, Pikuz, Safronova, and Faenov (1977) or by Fawcett, Ridgeley, and Hughes (1979) and have an uncertainty of  $\pm 3000$  cm⁻¹.

The ionization energy is from Lotz (1967).

### References

- Boiko, V. A., Pikuz, S. A., Safronova, U. I., and Faenov, A. Y. (1977), J. Phys. B 10, 1253.
- Dere, K. P. (1978), Astrophy. J. 221, 1062.
- Edlén, B. (1979), Phys. Scr. 20, 129.
- Fawcett, B. C., Ridgeley, A., and Hughes, T. P. (1979), Mon. Not. R. Astr. Soc. 188, 365.
- Kastner, S. O., Neupert, W. M., and Swartz, M. (1974), Astrophys. J. 191, 261.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Configuration	Term	J	Level (cm ⁻¹ )
$2s^2$	¹ S	0	. 0
2s2p	³ P°	0	386 000
		$\frac{1}{2}$	418 360 553 000
2s2p	¹ P°	1	848 800
2s3s	³ S	1	10 451 000
2s3p	³ P°	1	10 689 000
2s3p	¹ P°	1	10 707 000
2p3p	³ D	1	10 750 000
x		$\frac{2}{3}$	11 153 000 11 299 000
2s3d	$^{3}\mathrm{D}$	$1 \\ 2 \\ 3$	10 802 000 10 804 000 10 816 000
2s3d	¹ D	2	10 882 000
2p3p	$^{1}\mathbf{P}$	1	11 163 000
2p3p	³ P	2	11 270 000
2p3p	$^{3}S$	1	11 311 000
2s3s	¹ S	0	11 479 000
Ni XXVI $({}^{2}S_{1/2})$	Limit		18 510 000

### Ni xxv

## Ni xxvi

Z = 28

Li t isoelectronic sequence

Ground state:  $1s^2 2s {}^2 S_{1/2}$ 

Ionization energy =  $19\ 351\ 000\pm5000\ \mathrm{cm}^{-1}\ (2399.2\pm0.6\ \mathrm{eV})$ 

The 2s-2p resonance lines at 165 and 234 Å have been measured in the spectra of a solar flare by Sandlin, Brueckner, Scherrer, and Tousey (1976) with an uncertainty of  $\pm 0.05$  Å. Fawcett, Ridgeley, and Hughes (1979) determined the 3s, 3p, and 3d terms from observations at 9 Å of a laser-produced plasma. Their measurement uncertainty is  $\pm 0.01$  Å.

From measurements of spark spectra at  $\sim 1.6$  Å, Safronova and Sidelnikov (1977) determined the levels above the ionization energy. No estimated uncertainty is given but wavelengths to four decimal places are reported. The ionization energy was calculated by Edlén (1979) from a semi-empirical analysis of the Li I isoelectronic sequence. He has also given predicted values for wavelengths in this sequence.

## References

Edlén, B. (1979), Phys. Scr. 19, 255.

Fawcett, B. C., Ridgeley, A., and Hughes, T. P. (1979), Mon. Not. R. Astr. Soc. 188, 365.

Safronova, U. I., and Sidelnikov, Y. V. (1977), Prikl. Spektrosk. 5, 7.

Sandlin, G. D., Breuckner, G. E., Scherrer, V. E., and Tousey, R. (1976), Astrophys. J. 205, L47.

, , , , , , , , , , , , , , , , , , ,	T		
Configuration	Term	J	Level (cm ⁻¹ )
1s ² 2s	2 S	¹ / ₂	0
1s ² 2p	² <b>P°</b>	1/2 3/2	427 000 604 500
1s ² 3s	² S	¹ / ₂	10 880 000
1s ² 3p	$^{2}\mathbf{P}^{\circ}$	$\frac{1}{2}$	10 983 000 11 036 000
$1s^2 3d$	² D	³ / ₂ ⁵ / ₂	11 077 000 11 092 000
Ni XXVII $({}^{1}S_{0})$	Limit		19 351 000
$1s(^{2}S)2s2p(^{3}P^{\circ})$	4p°	1/2 3/2	62 193 000 62 228 000
$1s(^2S)2s2p(^1P^\circ)$	² <b>P°</b>	1/2 3/2	62 516 000 62 617 000
$1s(^{2}S)2p^{2}(^{3}P)$	⁴ P	³ / ₂ ¹ / ₂	62 697 000 62 783 000
$1s(^{2}\mathrm{S})2s2p(^{3}\mathrm{P}^{\circ})$	$^{2}\mathbf{P}^{\circ}$	¹ / ₂	62 755 000
$1s(^{2}S)2p^{2}(^{3}P)$	² P	$\frac{1}{2}$ $\frac{3}{2}$	62 997 000 63 210 000
$1s(^{2}S)2p^{2}(^{1}D)$	$^{2}\mathbf{D}$	³ / ₂ ⁵ / ₂	63 008 000 63 085 000
$1s(^{2}S)2p^{2}(^{1}S)$	² S	¹ / ₂	63 397 000

### Ni xxvi

## Ni xxvii

Z = 28

He 1 isoelectronic sequence

Ground state:  $1s^{2}$  ¹S₀

Ionization energy = 82 990 000  $\pm 10$  000 cm⁻¹ (10 289.54  $\pm 1.2$  eV)

The theoretical values calculated by Ermolaev and Jones (1974) for the singlet and triplet S and P° terms of this twoelectron ion are expected to be as accurate as the observed values, and we have quoted them up to n=5. They have also calculated the mixing coefficients for the ¹P₁° and ³P₁° states which we give as percentage compositions. The uncertainty of the ionization energy and level values is estimated to be of the order of  $\pm 10\ 000\ \text{cm}^{-1}$ , due to the uncertainty of the Lamb shift. For comparison, the  $1s^2$  ¹S₀-1s2p ¹P₁° transition of this ion has been observed by Safronova and Sidelnikov (1977) in a vacuum spark. They place 1s2p ¹P₁° at 62 925 000 cm⁻¹. Theoretical values for levels above the ionization energy are reported by Vainshtein and Safronova (1976). The low terms are quoted here with bracketed values.

### References

Ermolaev, A. M., and Jones, M. (1974), J. Phys. B 7, 199. Safronova, U. I., and Sidelnikov, Y. V. (1977), Prikl. Spektrosk. 5, 7. Vainshtein, L. A., and Safronova, U. I. (1976), Preprint No. 146, P. N. Lebedev Phys. Inst. Acad. Sci. USSR, Moscow.

Configuration	Term	J	Level (cm ⁻¹ )	Leading percentages
$1s^2$	¹ S	0	0	
1s2s	³ S	1	[62 368 000]	
1 <i>s</i> 2 <i>p</i>	3 <b>P</b> •	0 1 2	[62 625 000] [62 644 000] [62 806 000]	89 11 ¹ H
1s2s	¹ S	0	[62 644 000]	
1s2p	¹ P°	1	[62 962 000]	89 11 ³ F
1s3s	³ S	1	[73 909 000]	
1 <i>s</i> 3p	³ <b>₽</b> °	0 1 2	[ <i>73 980 000</i> ] [ <i>73 985 000</i> ] [ <i>74 034 000</i> ]	88 12 ¹ F
1s3s	¹ S	0	[73 982 000]	
1s3p	¹ <b>P°</b>	1	[74 076 000]	88 12 ³ F
1s4s	³ S	1	[77 907 000]	
1 <i>s</i> 4 <i>s</i>	¹ S	0	[77 936 000]	
ls4p	3 <b>P</b> •	0 1 2	[ <i>77 936 000</i> ] [ <i>77 938 000</i> ] [ <i>77 959 000</i> ]	88 12 ¹ F
1s4p	¹ P°	1	[77 976 000]	88 12 ³ P
1s5s	³ S	1	[79 746 000]	
1 <i>s5s</i>	¹ S	0	[79 761 000]	

### Ni xxvII

# Ni xxvn—Continued

Configuration	Term	J	Level (cm ⁻¹ )	Leading percent	ages	
1s5p	³ P°	0 1 2	[ <i>79 762 000</i> ] [ <i>79 763 000</i> ] [ <i>79 773 000</i> ]	87 .	13	¹ P°
1s5p	¹ P°	1	[79 782 000]	87	13	³ P°
Ni xxviii ( ² S _{1/2} )	Limit		82 990 000			
$2s^2$	¹ <b>S</b>	0	[127 153 000]			
2s2p	3 <b>P</b> •	0 1 2	[ <i>127 187 000</i> ] [ <i>127 229 000</i> ] [ <i>127 399 000</i> ]			
$2p^2$	³Р	0 1 2	[127 479 000] [127 595 000] [127 654 000]			
2s2p	¹ P°	1	[127 700 000]			
$2p^2$	$^{1}\mathbf{D}$	2	[127 866 000]			
$2p^2$	$^{1}S$	0	[128 156 000]			

288

# Ni xxvIII

## Z = 28

H 1 isoelectronic sequence

Ground state: 1s ²S_{1/2}

lonization energy = 86 908  $200 \pm 500 \text{ cm}^{-1}$  (10 775.33 $\pm 0.06 \text{ eV}$ )

No observations of this spectrum are available. Theoretical values calculated by Erikson for terms of this hydrogen-like ion are given below through n=5. The binding energy of the ls electron is reported with an uncertainty of  $\pm 500$  cm⁻¹; the

levels measured from the ground state taken as zero will also have this uncertainty.

# Reference

Erikson, G. W. (1977), J. Phys. Chem. Ref. Data 6, 831.

Configuration	Term	J	Level (cm ⁻¹ )
1s	$^{2}S$	1/2	0
2p	² P°	¹ / ₂ ³ / ₂	[65 112 810] [65 343 770]
2s	$^{2}S$	1/2	[65 118 940]
3p	² P°	¹ / ₂ ³ / ₂	[ <i>77 247 110</i> ] [ <i>77 315 600</i> ]
3 <i>s</i>	$^{2}\mathbf{S}$	1/2	[77 248 950]
3 <i>d</i>	2 D	³ / ₂ ⁵ / ₂	[77 315 480] [77 337 860]
4p	² P°	¹ / ₂ ³ / ₂	[ <i>81 484 660</i> ] [ <i>81 513 530</i> ]
4 <i>s</i>	$^{2}S$	¹ / ₂	[81 485 440]
4 <i>d</i>	2 D	³ / ₂ ⁵ / ₂	[81 513 480] [81 522 930]
4 <i>f</i>	² F°	5/2 7/2	[ <i>81 522 910</i> ] [ <i>81 527 620</i> ]
5p	$^{2}\mathbf{P}^{\circ}$	1/2 3/2	[ <i>83 442 020</i> ] [ <i>83 456 780</i> ]
58	$^{2}\mathbf{S}$	1/2	[83 442 420]
5d	$^{2}\mathbf{D}$	³ / ₂ ⁵ / ₂	[83 456 760] [83 461 600]
5f	² <b>F</b> ⁰	⁵ / ₂ 7/ ₂	[ <i>83 461 590</i> ] [ <i>83 464 000</i> ]
5g	$^{2}\mathrm{G}$	7/2 9/2	[83 463 990] [83 465 430]
	Limit		<u>86 908</u> 200

### Ni xxviii

289