Reactivity of HO_2/O_2 Radicals in Aqueous Solution

Cite as: Journal of Physical and Chemical Reference Data 14, 1041 (1985); https://doi.org/10.1063/1.555739 Published Online: 15 October 2009

Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi, and Alberta B. Ross

Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O⁻ in Aqueous Solution Journal of Physical and Chemical Reference Data **17**, 513 (1988); https://doi.org/10.1063/1.555805

Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution Journal of Physical and Chemical Reference Data **17**, 1027 (1988); https:// doi.org/10.1063/1.555808

Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution Journal of Physical and Chemical Reference Data **18**, 1637 (1989); https:// doi.org/10.1063/1.555843

Journal of Physical and Chemical Reference Data 14, 1041 (1985); https://doi.org/10.1063/1.555739 © 1985 American Institute of Physics for the National Institute of Standards and Technology.

Reactivity of HO₂/O₂ Radicals in Aqueous Solution

Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi,

Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973

and

Alberta B. Ross

Radiation Chemistry Data Center, Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556

Kinetic data for the superoxide radical (HO₂ \rightleftharpoons O₂⁻ + H⁺, pK = 4.8) in aqueous solution have been critically assessed. Rate constants for reactions of O₂⁻ and HO₂ with more than 300 organic and inorganic ions, molecules and other transient species have been tabulated.

Key words: aqueous solution; chemical kinetics; data compilation; perhydroxyl radical; rate constants; review; superoxide radical.

Contents

1.	Introduction	1041
2.	Generation of HO_2/O_2^- in Aqueous Solution	1042
	2.1. Radiolytic and Photolytic Generation	
	of HO_2/O_2^-	1042
	2.2. Enzymatic Generation of O_2^-	1042
3.	Spectral Characteristics of HO ₂ /O ₂ ⁻	1043
4.	Detection of HO_2/O_2^- Radicals	1044
5.	Kinetics of Disproportionation of HO_2/O_2^- .	1044
6.	Reactions of HO_2/O_2^-	1044
	6.1 Kinetics	1044
	6.2 Criteria for Data Included in Table 3.	1048
.*	6.3 Explanation of Table 3	1048
7.	Abbreviations and Symbols	1049
8.	References to Text	1050
9.	References to Table 3	1086
10.	Molecular Formula Index	1092
11.	Compound Name Index	1096

1. Introduction

The past decade has seen a renewed interest in the possible role the superoxide/perhydroxyl (O_2^-/HO_2) radicals play in biological systems, in radiation and UV-photolysis induced oxidations in the presence of oxygen, in the autoxidation of industrially important chemicals, in the oxidation of numerous compounds in the atmosphere, etc. This, in turn, has resulted in a substantial increase in

List of Tables

1a.	Effective extinction coefficient of the total	
	radical concentration $[\mathbf{R} \cdot] = [\mathbf{HO}_2] + [\mathbf{O}_2^-]$	
	for selected wavelength and pH values	
	calculated by equation (III) at 23 °C	1043
1b.	Effective extinction coefficient of the total	
	radical concentration $[\mathbf{R} \cdot] = [\mathbf{HO}_2] + [\mathbf{O}_2^-]$	
	corrected for the absorption of hydrogen	
	peroxide formed during decay at 23 °C:	
	$\epsilon_{\text{decay}} = (\epsilon_{\text{R}} - 0.5 \epsilon_{\text{H}_2\text{O}_2}) \dots$	1044
2.	Properties of HO_2/O_2^- in aqueous solution.	1046
3.	Rate constants for reactions of HO_2/O_2^- in	
	aqueous solution	1052
	List of Figures	
1	Absorption masters of HO and OF	1042

1.	Absorption spectra of HO_2 and O_2	.1045
2.	Observed second-order rates as a function of	
	pH for the spontaneous disproportionation	
	of HO ₂ /O ₂ ⁻	1045

the number of studies describing the reactions between HO_2/O_2^- radicals and specific compounds in an effort to unravel the kinetics and mechanisms of some of these systems [1-7].^{a)}

In this introduction a brief discussion of the generation of HO_2/O_2^- radicals in aqueous solutions, the spectral characteristics and detection of these radicals and their kinetic properties will be presented. Finally, the acid-base dependent kinetic equations necessary for the description of HO_2/O_2^- reactions will be developed in detail as these kinetics are not well known. Although the kinetic

^{©1985} by the U.S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society.

Reprints available from ACS; see Reprints List at back of issue.

^{a)} Figures in brackets indicate literature references at the end of the text.

descriptions are applicable to many systems, they do not consider a number of important complications, i.e. those systems in which reactions of product transients with oxygen or hydrogen peroxide occur, possible chain reactions, etc.

It should be noted that this entire review is applicable to aqueous solutions or systems that retain aqueous characteristics only.

2. Generation of HO_2/O_2^- in Aqueous Solutions

While there are numerous reactions in which HO_2/O_2^- can be generated in aqueous solutions, only the three most commonly used methods involving radiolysis, photolysis and the xanthine oxidase system will be discussed here. Because of the similarity of the mechanisms, the generation of HO_2/O_2^- by radiolysis and photolysis will be discussed together.

2.1. Radiolytic and Photolytic Generation of HO_2/O_2^-

The initial energy deposition processes and hence the primary radical distribution are different for high energy ionizing radiation, Eq. (I), and VUV-photolysis, Eq. (II):

$$H_2O \longrightarrow H, e_{aq}^-, OH, H_2, H_2O_2, H_3O^+$$
 (I)

$$H_2O \xrightarrow{h\nu} H, OH$$
 (II)

However extensive studies have shown that the subsequent reactions by which the primary radicals H, e_{aq}^{-1} and OH are converted to HO₂/O₂⁻ in the presence of formate are similar:

$$e_{aq}^- + O_2 \rightarrow O_2^-$$
 (1)
 $k_1 = 2.0 \times 10^{10} \text{ L mol}^{-1} \text{s}^{-1} [8a]$

$$e_{aq}^{-} + H^{+} \rightarrow H$$
 (2)
 $k_{2} = 2.2 \times 10^{10} \text{ L mol}^{-1} \text{s}^{-1} [8a,b]$

II +
$$O_2 \rightarrow IIO_2$$

 $k_3 = 2 \times 10^{10} \text{ L mol}^{-1} \text{s}^{-1}$ [9]

(3)

$$\begin{array}{l} \text{HCO}_{2}^{-} + \text{OH} \rightarrow \text{CO}_{2}^{-} + \text{H}_{2}\text{O} \\ k_{4} = 3.5 \times 10^{9} \text{ L mol}^{-1}\text{s}^{-1} [10] \end{array}$$

$$CO_{2}^{-} + O_{2} \rightarrow CO_{2} + O_{2}^{-}$$

$$k_{6} = 2.4 \times 10^{9} \text{ L mol}^{-1} \text{s}^{-1} [12]$$
(6)

where the O_2^- radical is always in equilibrium with its conjugate acid, the perhydroxyl radical

$$\mathrm{HO}_2 \rightleftharpoons \mathrm{H}^+ + \mathrm{O}_2^- \tag{7,-7}$$

$$K_{\rm HO_2} = 1.6 \times 10^{-5} \text{ mol } \text{L}^{-1} \text{ (see Sec. 5)}$$

The formate system is particularily useful since the quantitative conversion of the primary radicals to HO_2/O_2^- , which occurs at near diffusion controlled rates, is independent of pH. Detailed methods for the preparation of aqueous HO_2/O_2^- solutions have been published [13,14].

Some alcohols (ethanol, methanol, 2-propanol) can be substituted for formate.

$$CH_3CH_2OH + OH \rightarrow CH_3CHOH + H_2O$$
 (8)

$$CH_3CH_2OH + OH \rightarrow CH_3CH_2O + H_2O$$
 (9)

$$CH_{3}CH_{2}O + CH_{3}CH_{2}OH \rightarrow CH_{3}CH_{2}OH + CH_{3}\dot{C}HOH$$
(10)

$$CH_{3}CH_{2}OH + H \rightarrow CH_{3}CHOH + H_{2}$$
(11)

$$CH_{3}\dot{C}HOH + O_{2} \rightarrow CH_{3}CH(\dot{O}_{2})OH$$
(12)

$$CH_{3}CH(O_{2})OH + OH^{-} \rightarrow CH_{3}CHO + H_{2}O + O_{2}^{-}$$
(13)

The quantity of alcohol must be sufficiently small such that the solution retains its aqueous characteristics. It should be noted that aqueous alcoholic systems are efficient only in the alkaline range since reaction (13) is base catalyzed. The preparation of such solutions has been described elsewhere [14–16].

One of the oldest methods for generating HO_2/O_2^- involves the radiolysis/photolysis of aqueous hydrogen peroxide solutions [17]. Here, after the initial primary radical formation, Eqs. (I) and (II), both e_{aq}^- and H are converted to OH radicals by reaction with peroxide,

$$e_{aq}^{-} + H_2 O_2 \rightarrow OH + OH^{-}$$
(14)

$$H + H_2O_2 \rightarrow OH + H_2O \tag{15}$$

while the photolysis of peroxide yields OH radicals directly,

$$H_2O_2 \rightarrow 2 \text{ OH.}$$
 (16)

The OH radicals then react with hydrogen peroxide to yield HO_2 ,

$$OH + H_2O_2 \rightarrow HO_2 + H_2O.$$
(17)

As has been shown earlier, in this system HO_2/O_2^- can be generated anaerobically as well as aerobically [18].

2.2. Enzymatic Generation of O₂⁻

Researchers in the biomedical fields preferentially use enzymatic methods for the generation of superoxide radicals as they are closest to *in vivo* situations. The mostfrequently used enzyme for this purpose is xanthine oxidase [19,20]. The overall process is given by reactions (18) and (19):

2400

2200

2000

1800

$$Enzyme-H_2 + 2 O_2 \rightarrow Enzyme + 2 H^+ + 2 O_2^- (18)$$

$$Enzyme-H_2 + O_2 \rightarrow Enzyme + H_2O_2$$
(19)

Preferred substrates for this enzyme are either xanthine or acetaldehyde which are oxidized to uric acid and acetic acid respectively while the enzyme is reduced by accepting two electrons. In the presence of molecular oxygen the reduced enzyme can lose these electrons by two different pathways, a univalent reaction step leading to O_2^{-1} formation (reaction 18) and a divalent reaction step (reaction 19) leading to direct formation of hydrogen peroxide. The predominance of one reaction over the other is controlled by the pH of the medium, the oxygen concentration and the turnover rate of the enzyme. Although this method has been used successfully in competition kinetics, it is limited to the pH range in which xanthine oxidase is active.

There appears to be a general consensus that the successful use of any of the superoxide generating methods depends strongly upon the absence of catalytic impurities in the system. The presence of certain metallic impurities is known not only to accelerate the spontaneous disproportionation of the HO_2/O_2^- radicals (see Sec. 5) thus causing a rapid build-up of hydrogen peroxide, but also to initiate Fenton-type reactions (Fe²⁺ + H₂O₂ \rightarrow Fe³⁺ + $OH + OH^{-}$ [21]) that could obscure the reaction(s) under study.

Spectral Characteristics of HO₂/O₂ 3.

Both HO₂ and O_2^- have distinct absorption spectra in the low UV region with maxima at 225 and 245 nm respectively, Fig. 1. The molar extinction coefficients used in this review were determined by the stopped-flow radiolysis technique [21a] and are based on the molar extinction coefficients of nitroform ($\epsilon^{350nm} = 14,800 \pm 200$ L mol⁻¹cm⁻¹, [22-24]) and cytochrome C ($\Delta \epsilon^{550nm}$ [Fe(II) cyt C - Fe(III)cyt C] = $21,100 \text{ Lmol}^{-1}\text{cm}^{-1}$ [25]) without assuming G values [26]. At pH 1.5 $\epsilon_{HO_2}^{225nm} = 1400 \pm 80$ L mol⁻¹cm⁻¹; at pH 10.5 $\epsilon_{O_2}^{245nm} = 2350 \pm 120$ L $mol^{-1}cm^{-1}$. As HO₂ and O₂⁻ are in equilibrium (7, -7) the effective molar extinction coefficient varies with pH; see Table 1a.

$$\epsilon_{\text{effective}} = [\frac{[\text{HO}_2]}{[\text{HO}_2] + [\text{O}_2^-]}]\epsilon_{\text{HO}_2} + [\frac{[\text{O}_2^-]}{[\text{O}_2^-] + [\text{HO}_2]}]\epsilon_{\text{O}_2} \text{ (III)}$$

It should be noted that these effective extinction coefficients refer to the total radical concentration prior to spontaneous disproportionation and thus prior to peroxide formation. Any extinction coefficients must be corrected for the absorption of H₂O₂ (from reactions 23 and 24) if they are to be used for computation of decay rates. Since, as indicated in reactions (23) and (24), a mole of HO_2 or O_2^- produces a half mole of H_2O_2 , the effective extinction coefficient has to be corrected for the absorbance of the latter:

$$\epsilon_{\text{effective (corrected)}} = (\epsilon_{\text{HO}_2/\text{O}_2^-} - 0.5 \epsilon_{\text{H}_2\text{O}_2}) \quad (IV)$$

These corrected extinction coefficients are found in Table 1b; it should be noted that the correction is most significant at low wavelengths and high pH.

02

FIG. 1. Absorption spectra of HO₂ in air-saturated HClO₄ solution at pH 1.5 and O_2^- in air-saturated 0.01 mol L^{-1} sodium formate solution containing 1×10^{-4} mol L⁻¹ EDTA at pH 10.5 [26].

TABLE 1a. Effective extinction coefficient ($\epsilon_{\text{effective}}^{\lambda}$, L mol⁻¹ cm⁻¹) of the total radical concentration $[\mathbf{R} \cdot] = [\mathbf{HO}_2] + [\mathbf{O}_2]$ for selected wavelength and pH values calculated by equation (III) at 23 °C

pН	€ ^{230nm}	ε ^{240nm}	€ ^{250nm}	€ ^{260nm}
0.5-1.5	1400	1260	915	540
2.0	1401	1261	917	542
2.5	1404	1265	922	547
3.0	1413	1277	936	562
3.5	1440	1312	979	699
4.0	1514	1410	1101	733
4.5	1679	1624	1366	1010
5.0	1911	1928	1745	1402
5.5	2093	2166	2038	1709
6.0	2181	2281	2181	1858
6.5	2214	2324	2234	1913
7.0	2225	2338	2252	1931
7.5	2228	2343	2257	1937
8.0-13.0	2230	2345	2260	1940

TABLE 1b. Effective extinction coefficient $(\epsilon_{\text{effective}(corrected)}^{\lambda}, L \text{ mol}^{-1} \text{ cm}^{-1})$ of the total radical concentration $[\mathbb{R}\cdot] = [\text{HO}_2] + [O_2^-]$ corrected for the absorption of H₂O₂ formed during decay, $\epsilon_{\text{for decay}} = (\epsilon_{\mathbb{R}} - 0.5 \epsilon_{\text{H2O}_2})$ at 23 °C^a

pH	ϵ^{230nm}	$\epsilon^{240 nm}$	$\epsilon^{250\text{nm}}$	€ ^{260nm}
0.5-1.5	1368	1241	904	534
2.0	1369	1242	906	536
2.5	1372	1246	911	541
3.0	1381	1248	925	556
3.5	1408	1293	968	693
4.0	1482	1391	1090	727
4.5	1647	1423	1355	1004
5.0	1879	1909	1734	1396
5.5	2061	2147	1949	1703
6.0	2149	2262	2170	1852
6.5	2182	2305	2223	1907
7.0	2193	2319	2241	1925
7.5	2196	2324	2246	1931
8.0-9.0	2198	2326	2248	1933
9.5	2195	2324	2248	1932
10.0	2188	2319	2244	1929
10.5	2175	2307	2235	1923
11.0	2150	2287	2219	1913
11.5	2100	2245	2188	1893
12.0	2053	2205	2156	1869
12.5	2025	2183	2139	1856
13.0	2015	2173	2134	1850

^a See [30] for the absorption spectrum of H_2O_2 .

4. Detection of HO₂/O₂ Radicals

A wide variety of methods has been used in the detection of HO_2/O_2^- radicals. The most direct of these is the optical detection of the low UV absorbances discussed in Sec. 3. In addition both HO_2 and O_2^- have characteristic electron spin resonance spectra with the former detectable at ambient temperatures in acidic solutions [27] while the latter can be detected only in ices at very low temperatures [28]. As a corollary to the esr technique, spin traps have also been used [29].

The most widely used method of detecting superoxide radicals is through the use of such chemical indicators as tetranitromethane, Nitro Blue Tetrazolium and cytochrome C which form products with intense optical absorbance:

 $C(NO_2)_4 + O_2^- \rightarrow C(NO_2)_3^- + NO_2 + O_2$ (20)

$$\operatorname{Cyt} C (\operatorname{Fe}^{3+}) + \operatorname{O}_2^- \to \operatorname{Cyt} C (\operatorname{Fe}^{2+}) + \operatorname{O}_2 \qquad (21)$$

$$NBT^{2+} + O_2^- \rightarrow 1/2 MF^+ + O_2$$
 (22)

The respective rate constants for reactions (20) to (22) are given in Table 3. All of these indicators are most advantageously used at pH near neutrality. Such indicators have been used competitively to determine relative reaction rates for other solutes with HO_2/O_2^- . Some of the compounds react by complicated mechanisms and should not be used in competition kinetics without consulting the original articles cited in Table 3.

5. Kinetics of Disproportionation of HO_2/O_2^-

Both HO₂ and O_2^- have been shown to disappear by second-order processes that vary with pH in aqueous solutions. Since HO₂ is always in equilibrium with O_2^- , reaction (7,-7), the spontaneous disproportionation can be described by the following reactions:

$$HO_2 + HO_2 \rightarrow H_2O_2 + O_2 \tag{23}$$

$$HO_2 + O_2^- + H_2O \rightarrow H_2O_2 + O_2 + OH^-$$
 (24)

An equation can be derived that gives the experimentally observed rates (k_{obs}) in terms of the rate constants for reactions (23) and (24) and the equilibrium constant K_{HO} .

$$k_{\rm obs} = \frac{k_{23} + k_{24}(K_{\rm HO_2}/[\rm H^+])}{(1 + K_{\rm HO_2}/[\rm H^+])^2}$$
(V)

A value for K_{HO_2} can be obtained independently from spectrophotometric measurements as well as from Eq. (V). As k_{obs} is invariant to pH in the range of 0.0 to 1.5, a value for k_{23} can be measured directly (i.e. $k_{obs} = k_{23}$ at pH 1.5). The rate constant k_{24} , however, must be calculated from Eq. (V), using k_{23} and K_{HO_2} . The results from a number of studies of the spontaneous disproportionation of HO_2/O_2^- , where the experimentally determined rates were all normalized by the molar extinction coefficients reported previously [26], yield the best average values of $k_{23} = (8.3 \pm 0.7) \times 10^5 \,\mathrm{L \ mol^{-1} s^{-1}} [26,30-33], k_{24} = (9.7)$ \pm 0.6) \times 10⁷ L mol⁻¹s⁻¹ [26,30,31,33] and $K_{\rm HO_2} =$ 1.6 \times $10^{-5} \text{ mol } L^{-1}$ [26,30,31,33-35,53] or pK_a(HO₂) = 4.8 ± 0.1. Although other studies have shown that pK_a can vary with ionic strength [36], $pK_a(HO_2)$ was found to be invariant within experimental error over a formate concentration of 10^{-3} – 10^{-1} mol L⁻¹. The curve shown in Figure 2 was calculated from these values and Eq. (V) and was found to be in very good agreement with the experimental data from a number of laboratories [30-33,37,38]

Two important features of Figure 2 should be noted. First, it is apparent that the curve has a slope of -1 above pH 6. At high pH, Eq. (V) reduces to

$$k_{\rm obs} = k_{24}[{\rm H}^+]/K_{{\rm HO}_2} = 6 \times 10^{12}[{\rm H}^+], \ {\rm L \ mol}^{-1}{\rm s}^{-1} \ ({\rm VI})$$

giving a convenient method for calculating the spontaneous rate of disproportionation at a specific pH (pH > 6). Secondly, since the lowest reported $k_{obs} = 0.3 \text{ L mol}^{-1}\text{s}^{-1}$ at pH 13 is still on the straight line and hence represents reaction (24), one can conclude that the rate for a reaction between two O_2^- radicals (e.g. $O_2^- + O_2^-$) in aqueous solutions is for all practical purposes negligible.

The kinetic and spectral data for HO_2 and O_2^- discussed above are listed in Table 2 along with other properties for the radicals in aqueous solution.

6. Reactions of HO₂/O₂ with Substrates 6.1. Kinetics

As mentioned previously, HO₂ is in a pH-dependent equilibrium with O_2^- . Further, many substrates can themselves ionize (equilibria (25,-25) and (26,-26)). Such

FIG. 2. Observed second-order rate constant, k_{obs} in Eq. (V), for the decay of HO₂/O₂⁻ plotted as a function of pH: ▲ Bielski and Allen [30], ●Marklund [37], × Sehested, et al. [38], ○ Bielski and Schwarz [32], □ Behar, et al. [31], ∇ Rabani and Nielsen [33].

dissociations not only influence the thermodynamics of the system but also the kinetics of reactions may be dramatically altered by protonation or dissociation. Hence, great care should be taken in extrapolating rate data reported at one pH in Table 3 to solutions of different pH. Ionization equilibria in substrates, including ionization of radical intermediates, are thus highly relevant to the chemistry of HO_2/O_2^- in aqueous media. A detailed kinetic treatment of such systems is given below, although it should be stressed that in many instances experimental conditions can be adjusted such that only one or two equilibria need be considered and the required kinetic treatment is then much simplified. A complete description of the interaction between HO_2/O_2^- and a species (QH_2) and its dissociation products (QH^-,Q^{2-}) , with the assumption that the initial reaction produces a free radical that can in turn react with HO_2/O_2^- or disproportionate, involves four equilibria and thirteen reactions:

Equilibria: $HO_2 \rightleftharpoons O_2^- + H^+$, $pK_1 = 4.8$ (7,-7)

$$QH_2 \rightleftharpoons QH^- + H^+, pK_2 \qquad (25, -25)$$

$$QH^{-} \rightleftharpoons Q^{2-} + H^{+}, pK_{3} \qquad (26, -26)$$

$$\mathbf{Q}\mathbf{H} \rightleftharpoons \mathbf{Q}\mathbf{\cdot}^{-} + \mathbf{H}^{+}, \mathbf{p}K_{4} \qquad (27, -27)$$

Reactions:
$$QH_2 + HO_2 \rightarrow QH_1 + H_2O_2$$
 (28)

Property	HO ₂ (aq)	O ₂ -(aq)
Reduction potential ^a ($O_2 + e^- \rightarrow O_2^-$), pH 7	7	-0.33 V [45,54,55]
pK _a	4.8 [26,30,31,33,35,53]	
Diffusion constant (cm ² s ⁻¹)		1.5 x 10 ^{-5 b} [48]
ΔH [*] ₁ (298 K) (kcal mol ⁻¹)	-8.6 ± 1 [47]	-5.9 ± 1 [47] -8 ± 2 [46]
$S^{\circ}(298 \text{ K}) \text{ (cal mol}^{-1} \text{ K}^{-1})$	33 ± 1 [47]	19 [47]
Enthalpy of hydration (kcal mol ⁻¹)		94 [46] 95 [47]
Free energy of hydration (kcal mol ⁻¹)		85 [49]
Entropy of hydration (cal K^{-1} mol ⁻¹)	-22 [49]	29.6 [49]
Enthalpy of ionization (kcal mol ⁻¹)	0 [46] 2.7 ± 0.7 [18] 1.0 [49]	
Entropy of ionization (cal K ⁻¹ mol ⁻¹)	17.4 [49]	
Electron affinity (eV)	$1.85 \pm 0.12^{\circ}$ [47]	
λ _{max} (nm)	225 [26]	245 [26]
$\epsilon_{\max}(L \mod^{-1} \operatorname{cm}^{-1})$	1400 ± 80 [26]	2350 ± 120 [26]
$k(\text{HO}_2 + \text{HO}_2) = (8.3 \pm 0.7) \text{ x } 10^5 \text{ (L mol}^2)$ (See Sec. 5)	⁻¹ s ⁻¹)	
$k(\text{HO}_2 + \text{O}_2^-) = (9.7 \pm 0.6) \text{ x } 10^7 \text{ (L mol}^{-1} \text{ (See Sec. 5)})$	¹ s ⁻¹)	
$E_{\rm a}({\rm HO}_2 + {\rm HO}_2) = 4.9-5.9 ({\rm kcal \ mol^{-1}}) [32,$.46]	
$E_{a}(HO_{2} + O_{2}^{-}) = 2.1 \text{ (kcal mol^{-1}) [32]}$		

(33)

(35)

(36)

TABLE 2. Properties of HO_2/O_2^- in aqueous solution

 $QH_2 + O_2^- \rightarrow QH_1 + HO_2^-$ (29)

$$QH^- + HO_2 \rightarrow QH + HO_2^-$$
 (30)

$$QH^- + O_2^- \rightarrow Q^{--} + HO_2^-$$
(31)

 $Q^{2-} + HO_2 \rightarrow Q^{-} + HO_2^{-}$ (32)

 $Q^{2-} + O_2^- \rightarrow$ (transient or product)

 $QH \cdot + HO_2 \rightarrow Q + H_2O_2$ (34)

 $QH \cdot + O_2^- \rightarrow Q + HO_2^-$

$$Q^{-} + HO_2 \rightarrow Q + HO_2^{-}$$

 $Q \cdot - + O_2^- \rightarrow \text{(transient or product)}$ (37)

$$QH \cdot + QH \cdot \rightarrow Q + QH_2$$
 (38)

$$QH \cdot + Q \cdot^{-} \to Q + QH^{-}$$
(39)

$$Q^{-} + Q^{-} \rightarrow Q + Q^{2-} \tag{40}$$

If all acid-base equilibria are ignored, this system reduces in principle to three second-order reactions that are in parallel and, in part, in series:

 $A + B \to C \tag{41}$

 $\mathbf{B} + \mathbf{C} \to \mathbf{D} \tag{42}$

REACTIVITY OF HO2/O2 RADICALS IN AQUEOUS SOLUTION

$$\mathbf{C} + \mathbf{C} \to \mathbf{D} + \mathbf{A} \tag{43}$$

Such a system has no simple solution; solutions for a mechanism involving only reactions (41) and (42) have been described in detail elsewhere [39-41] and are not trivial. However, experimental conditions can usually be adjusted such that two of the three reactions drop out, thus allowing for simple kinetic solutions. In the following kinetic development, reactions (41) through (43) will be discussed as independent systems and rate equations will be derived for the individual reactions in terms of their pH dependence.

A complete description of the initial step in the mechanism involves the equilibria (7, -7), (25, -25) and (26, -26) and reactions (28) to (33). The rate of disappearance of the radical ([R] = [HO₂] + [O₂⁻]) is given by:

$$-\frac{\mathbf{d}[\mathbf{R}]}{\mathbf{d}t} = k_{28}[\mathbf{Q}\mathbf{H}_{2}][\mathbf{H}\mathbf{O}_{2}] + k_{29}[\mathbf{Q}\mathbf{H}_{2}][\mathbf{O}_{2}^{-}] + k_{30}[\mathbf{Q}\mathbf{H}^{-}][\mathbf{H}\mathbf{O}_{2}] + k_{31}[\mathbf{Q}\mathbf{H}^{-}][\mathbf{O}_{2}^{-}] + k_{32}[\mathbf{Q}^{2-}][\mathbf{H}\mathbf{O}_{2}] + k_{33}[\mathbf{Q}^{2-}][\mathbf{O}_{2}^{-}]$$
(VII)

Rearrangement of the equilibria (7, -7), (25, -25) and (26, -26) leads to the following relationships:

$$[O_2^-] = [HO_2](K_{HO_2}/[H^+]) = [HO_2]Y_1$$
$$[QH^-] = [QH_2](K_{25}/[H^+]) = [QH_2]Y_2$$
$$[Q^{2-}] = [QH_2](K_{25}K_{26}/[H^+]^2) = [QH_2]Y_2Y_3$$

Substituting these relationships into Eq. (VII) leads to:

$$-\frac{d[\mathbf{R}]}{dt} = [HO_2][QH_2](k_{28} + k_{29}Y_1 + k_{30}Y_2 + k_{31}Y_1Y_2 + k_{32}Y_2Y_3 + k_{33}Y_1Y_2Y_3)$$
(VIII)

The total concentration of species S is given by $[S] = [QH_2] + [QH^-] + [Q^{2-}]$ or $[S] = [QH_2](1 + Y_2 + Y_2Y_3)$ and the total HO₂/O₂⁻ concentration is given by $[R] = [HO_2](1 + Y_1)$. Substituting these relationships into Eq. (VIII) gives:

$$\frac{\mathbf{d}[\mathbf{R}]}{\mathbf{d}t} = \frac{[\mathbf{R}][\mathbf{S}](k_{28} + k_{29}\mathbf{Y}_1 + k_{30}\mathbf{Y}_2 + k_{31}\mathbf{Y}_1\mathbf{Y}_2 + k_{32}\mathbf{Y}_2\mathbf{Y}_3 + k_{33}\mathbf{Y}_1\mathbf{Y}_2\mathbf{Y}_3)}{(1 + \mathbf{Y}_1)(1 + \mathbf{Y}_2 + \mathbf{Y}_2\mathbf{Y}_3)}$$
(IX)

Under first-order conditions where [S] is approximately constant, that is $[S] \ge [R]$, Eq. (IX) can be integrated to yield:

$$k = \frac{[\mathbf{S}](k_{28} + k_{29}\mathbf{Y}_1 + k_{30}\mathbf{Y}_2 + k_{31}\mathbf{Y}_1\mathbf{Y}_2 + k_{32}\mathbf{Y}_2\mathbf{Y}_3 + k_{33}\mathbf{Y}_1\mathbf{Y}_2\mathbf{Y}_3)}{(1 + \mathbf{Y}_1)(1 + \mathbf{Y}_2 + \mathbf{Y}_2\mathbf{Y}_3)}$$
(X)

where $k_{obs} = k/[S]$. Equation (X) describes the pH dependent kinetics of the reactions between HO₂/O₂⁻ and a compound with two pK's. This equation is simplified for compounds with one or no pK in the pH range studied. An example of this case can be found in the reaction between HO₂/O₂⁻ and tetranitromethane [23].

The model system becomes more complex if the reaction between QH_2 and HO_2/O_2^- produces a transient with an acid-base equilibrium (27, -27) that can also react with HO_2/O_2^- (reactions (34) to (37)). Following an analogous procedure to that used for the derivation of Eq. (V) and using the relationship

$$[Q^{-}] = [QH^{-}](K_{27}/[H^{+}]) = [QH^{-}]Y_{4}$$

one obtains (defining $[S \cdot] = [QH \cdot] + [Q \cdot])$:

$$-\frac{d[\mathbf{R}]}{dt} = \frac{[\mathbf{R}][\mathbf{S} \cdot](k_{34} + k_{35}\mathbf{Y}_1 + k_{36}\mathbf{Y}_4 + k_{37}\mathbf{Y}_1\mathbf{Y}_4)}{(1 + \mathbf{Y}_1)(1 + \mathbf{Y}_4)}$$
(XI)

Detailed solutions for equations of this general form, where $[R] \neq [S]$, are complex and will not be discussed here. Since radical-radical reactions of this nature generally occur on a very fast time scale, they can be measured only by fast kinetic techniques (flash photolysis or pulse radiolysis) where, with proper experimental design, equal amounts of [R] and [S-] are produced. Under these conditions Eq. (XI) can be integrated to yield:

$$k_{\rm obs} = \frac{(k_{34} + k_{35}Y_1 + k_{36}Y_4 + k_{37}Y_1Y_4)}{(1 + Y_1)(1 + Y_4)}$$
(XII)

This equation describes a second-order reaction between two radicals, both having pKs, in which the radicals are generated independently and not from reactions (28) to (33). In fact, under the experimental conditions being considered, S. is generated from the reactions between HO_2/O_2^- and S (as in the generalized reactions (41) and (42)). If the rate of the HO₂/O₂⁻-radical reaction (42) is much slower than the rate at which the radical is generated (41), then reaction (42) will never occur since all of the HO_2 is consumed in reaction (41). On the other hand, if the rate of reaction (42) is much faster than reaction (41) steady state conditions prevail and the overall reaction becomes $A + 2B \rightarrow D$. Therefore, the observed rate is now twice the true rate of reaction (41). This concept is introduced into Eq. (X) and (XII) by calculating the observed rates of reaction at a particular pH to determine which rate is faster at those specific experimental conditions and hence whether a factor of two must be included in Eq. (X). Such a situation has been described in the ascorbic acid system [42,43].

The final reaction in the model system involves the disproportionation of S as described by reactions (38) and (40). The rates of disappearance of the radicals [QH-] and $[Q^{--}]$ are given by:

$$-\frac{\mathrm{d}[\mathrm{QH}\cdot]}{\mathrm{d}t} = 2k_{38}[\mathrm{QH}\cdot]^2 + k_{39}[\mathrm{QH}\cdot][\mathrm{Q}\cdot^-] \qquad (\mathrm{XIII})$$

$$-\frac{d[Q\cdot^{-}]}{dt} = k_{39}[QH\cdot][Q\cdot^{-}] + 2k_{40}[Q\cdot^{-}]^{2} \qquad (XIV)$$

and, substituting the relationship derived from equilibrium (27, -27), the rate of disappearance of the total radical concentration is given by the sum of Eqs. (XIII) and (XIV)

$$-\frac{d([QH\cdot] + [Q\cdot^{-}])}{dt} = \frac{2[S\cdot]^2(k_{38} + k_{39}Y_4 + k_{40}Y_4)^2}{(1 + Y_4)^2}(XV)$$

and the observed second-order rate of disproportionation is merely

$$k_{\rm obs} = \frac{2(k_{38} + k_{39}Y_4 + k_{40}Y_4)^2}{(1 + Y_4)^2}$$
(XVI)

The kinetics described by Eq. (XVI) gives the rate at which reaction (43) occurs as a function of pH when the radical S has a pK. If reaction (43) occurs at a faster rate than reaction (42) then the system reduces to the formation of a transient which subsequently disappears by reaction with itself. In a system of this nature Eqs. (X) and (XVI) can be used independently to describe the kinetics of the entire system. As is apparent the kinetics that describe the spontaneous disproportionation of HO_2/O_2^- , Eq. (V), are merely a reduced form of Eq. (XVI) omitting the reaction of $(O_2^- + O_2^-)$ which is negligible as described in section 5.

6.2. Criteria for Assessment of the Kinetic Data

All of the data reported in Table 3 fall into two categories: (1) rate constants and (2) observed specific rates of reactions. An observed specific rate, $k(HO_2/O_2^- + X)$, is taken to represent a value valid under the specific experimental conditions reported by the authors whereas a rate constant, $k(HO_2 + X)$ or $k(O_2^- + X)$, is considered to be independent of pH (but not of temperature, ionic strength, etc.) and to represent the rate at which either HO_2 or O_2^- reacts with a given compound. A value of k_{obs} at a specific pH can be calculated by equation (X) if the rate constants for the reaction of HO₂ and O_2^- with that particular compound arc known.

The following criteria were considered with regard to all of the rate studies listed in this table:

1. Whether, when pseudo first-order conditions were used, the rates were determined over a broad concentration range and corrected, if necessary, for the spontaneous disproportionation of HO_2/O_2^- .

2. Whether the reaction was studied either as a function of pH or under conditions such that only one of the two species reacted. Thus, $k_{obs} = 10^8 \text{ L mol}^{-1} \text{ s}^{-1}$ at pH 8 must be for $k(O_2^- + X)$ and not $k(HO_2 + X)$, using equation (X), a limiting value for $k(HO_2 + X)$

X) of 10^{10} L mol⁻¹ s⁻¹ and assuming that the scavenger has no pK in this pH region.

3. Whether the reaction rate was found to be anomalous with respect to other studies of that particular reaction.

Comments relating to the above criteria are included in some entries in the table. In some studies it was impossible to ascertain details concerning either the experimental conditions or the kinetic analysis; such studies were nevertheless included in the table if they contained the only reported rates for these reactions.

Comments are also included when there are unexplained discrepancies in the data; the discrepancies may be due to differing experimental conditions or other reasons. It is hoped that further studies of some of these reactions will be carried out to resolve the conflicting data.

6.3. Explanation of Table 3

Table 3 contains rate constants for reactions of HO_2/O_2^- with various inorganic and organic solutes and other radical species in aqueous solution. The inorganic reactants are listed first, alphabetized by main element. Within the groupings by element the arrangement is in order of increasing oxidation state. Within a particular oxidation state for a metal, aquated ions are listed first followed by complexes with neutral ligands (amines), amino acids and other organic acids; polynuclear metal species are listed last. The metal ions are generally shown without ligated H₂O (and OH⁻ at high pH). The inorganic reactants are followed by the organic reactants, arranged alphabetically by name. Common names have been used in many cases and both a compound name index containing synonyms and a molecular formula index are provided as an aid to locating particular reactants.

The table entry number is followed by the name for the reactant. Reactions include products only when evidence for their identity has been reported. The radical has been given as either HO₂ or O_2^- when conditions were such that one species would predominate or when the study was carried out over a broad pH range with kinetic analvsis as described above. Where studies were under conditions insufficient to determine the individual rate constants, the radical has been given as HO_2/O_2^- and the observed specific rate should be understood to be for an unspecified mixture of the two radical species. When the studies were carried out near the pK of a reactant and the contributions of the individual species were not determined, the pK [51] has been included in the table entry and the rate constant should be understood to be for a mixture of reactant species.

When the rate constants were corrected by the original authors for ionic strength it has been noted (cor. for I). The reviewers did not attempt to make such corrections because of uncertainties such as actual charge on the ions, concentrations, etc. In some cases the reactant serves as a catalyst for the disproportionation of HO_2/O_2^- ; for example, superoxide dismutase (SOD) and a number of copper complexes catalyze the formation of hydrogen peroxide and oxygen by a mechanism involving successive reduction and oxidation of the metal center [51,52]. Rate constants which are for the overall catalyzed reaction,

$$2 O_2^- + 2 H_2O \xrightarrow{\text{cat.}} H_2O_2 + O_2 + 2 OH^-,$$

have been determined for various metal-centered species. Whenever the rate constants listed herein are for $k_{catalytic}$ the reaction is written accordingly or that information is given as a notation in the *Comments* column.

Error limits assigned by authors of the original papers have been included with the rate constants in column 3. Upper limits for rate constants for systems in which no reaction was observed have been included whenever they could be derived from the experimental conditions. Otherwise, the statement that no reaction was observed is included as a comment and the original paper should be consulted. In some cases the rate constants were calculated with reference to the rate constant for a competing reaction, which has been given in the *Comments* column.

The *Method* column includes the method of generation and detection of the radical; other details are given under *Comments*. The references to Table 3 are listed by serial number assigned by the Radiation Chemistry Data Center and included in the RCDC Bibliographic Data Base.

7. Abbreviations and Symbols

abs.	absorption
abstr.	abstraction
addn.	addition
alk.	alkaline
anal.	analysis
atm.	atmospheres (1.013 \times 10 ⁵ N m ⁻²)
biol.	biological method, biological assay
bpy	2,2'-bipyridine
tert-BuOH	tert-butyl alcohol
CTAB	hexadecyltrimethylammonium bromide
calcd.	calculated
chem.	chemical
c.k.	competition kinetics
concn.	concentration
condy.	conductivity
contg.	containing
cor.	corrected
cyt C	cytochrome C
DCIP	dichloroindophenol
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
detd.	determined
d.k.	decay kinetics (decay of radical absorption
	and bleaching of substrate absorption)
e-r.	electron radiolysis
ε	extinction coefficient (molar absorptivity)

E_{a}	activation energy
elec.	electrolysis, electrochemical method
EtOH	ethanol
esr	electron spin resonance
estd.	estimated
enz.	enzyme or enzymatic
FMN	flavin mononucleotide
f.p.	flash photolysis
formn.	formation
γ-r.	gamma radiolysis
G	radiation yield (molecules per 100 eV)
Ι	ionic strength
K	equilibrium constant
k	rate constant
$k_{ m catalytic}$	rate constant for the overall catalyzed reac-
	tion
meas.	measured
MF	monoformazan
NBT ²⁺	Nitro Blue Tetrazolium
obs.	observed
opt.	optical absorption
Pa	pascals (N m^{-2})
p.b.k.	product buildup kinctics
phot.	photolysis
pK _a	negative logarithm of the acid dissociation
	constant, e.g., where $AH + H_2O \rightleftharpoons A^-$
	$+ H_3O^+$
p.r.	pulse radiolysis
2-PrOH	2-propanol
Q	1,4-benzoquinone (used in Table 3 as a com-
	petitor)
redn.	reduction
rel.	relative
satd.	saturated
SDS	sodium dodecylsulfate
s.f.	stopped flow
SOD	superoxide dismutase
soln.	solution
TMPO	trimethylpyrroline N-oxide
TNM	tetranitromethane
X-r.	X-radiolysis

Acknowledgments

This review was generated at Brookhaven National Laboratory under contract with the US Department of Energy, and supported by its Office of Basic Energy Sciences, and at the Radiation Laboratory at the University of Notre Dame, which is operated under Contract DE-AC02-76ER0038 with the Department of Energy. The Radiation Chemistry Data Center is supported jointly by the National Bureau of Standards, Office of Standard Reference Data and by the Office of Basic Energy Sciences and the Office of Health and Environmental Research of the Department of Energy. This is Radiation Laboratory Document No. NDRL-2542. The authors would like to thank Dr. Peter Wardman for many helpful suggestions and comments concerning the introduction and Dr. W. Phillip Helman for assistance in preparation of the computer-readable files submitted for publication.

8. References to Text

- [1] Bielski, B.H.J., Gebicki, J.M., Species in irradiated oxygenated water, Advan. Radiat. Chem. 2: 177-279 (1970).
- [2] Czapski, G., Radiation chemistry of oxygenated aqueous solutions, Annu. Rev. Phys. Chem. 22: 171-208 (1971).
- [3] Bors, W., Saran, M., Lengfelder, E., Spoettl, R., Michel, C., The relevance of the superoxide anion radical in biological systems, Curr. Top. Radiat. Res. Quart. 9: 247-309 (1974).
- [4] Fee, J.A., Valentine, J.S., Chemical and physical properties of superoxide, *Superoxide and Superoxide Dismutases*, p. 19–60, A.M. Michelson, J.M. McCord and I. Fridovich (eds), Academic Press, New York, (1977).
- [5] Bors, W., Saran, M., Czapski, G., The nature of intermediates during biological oxygen activation, *Biological and Clinical As*pects of Superoxide and Superoxide Dismutase, p.1-31, W.H. Bannister and J.V. Bannister (eds), Elsevier/North Holland, New York, (1980).
- [6] Sawyer, D.T., Valentine, J.S., How super is superoxide? Acc. Chem. Res. 14: 393-400 (1981).
- [7] Allen, A.O., Bielski, B.H.J., Formation and disappearance of superoxide radicals in aqueous solution, *Superoxide Dismutase*, Vol. 1, p.125-41, L.W. Oberley (ed.), CRC Press, Boca Raton, FL (1982).
- [8] a. Keene, J. P., The absorption spectrum and some reaction constants of the hydrated electron, Radiat. Res. 22: 1-13 (1964); Gordon, S., Hart, E.J., Matheson, M.S., Rabani, J., Thomas, J.K., Reactions of the hydrated electron, Discuss. Faraday Soc. 36: 193-205 (1963). b. Dorfman, L.M., Taub, I.A., Pulse radiolysis studies. III. Elementary reactions in aqueous ethanol solution, J. Am. Chem. Soc. 85: 2370-4 (1963).
- [9] Anbar, M., Farhataziz, and Ross, A.B., Selected specific rates of reactions of transients from water in aqueous solution. II. Hydrogen atom. NSRDS-NBS-51, U.S. Dept. of Commerce, National Bureau of Standards, Washington, DC, 1975, 56p.
- [10] Willson, R.L., Greenstock, C.L., Adams, G.E., Wageman, R., Dorfman, L.M., The standardization of hydroxyl radical rate data from radiation chemistry., Int. J. Radiat. Phys. Chem. 3: 211-20 (1971).
- [11] Neta, P., Schuler, R.H., Effect of ionic dissociation of organic compounds on their rate of reaction with hydrogen atoms, J. Phys. Chem. 76: 2673-9(1972).
- [12] Adams, G.E., Willson, R.L., Pulse radiolysis studies on the oxidation of organic radicals in aqueous solution. Trans. Faraday Soc. 65: 2981-7 (1969).
- [13] Draganic, I.G., Draganic, Z.D., The Radiation Chemistry of Water, Academic Press, New York, 1971, 256p.
- [14] Bielski, B.H.J., Arudi, R.L., Preparation and stabilization of aqueous ethanolic superoxide solutions, Anal. Biochem. 133: 170-78 (1983).
- [15] Bothe, E., Schuchmann, M.N., Schulte-Frohlinde, D., von Sonntag, C., Hydroxyl radical-induced oxidation of ethanol in oxygenated aqueous solutions. A pulse radiolysis and product study, Z. Naturforsch., Teil B 38B: 212-9 (1983).
- [16] McDowell, M.S., Bakac, A., Espenson, J.H., A convenient route to superoxide ion in aqueous solution, Inorg. Chem. 22: 847-8 (1983).
- [17] Baxendale, J.H., Wilson, J.A., The photolysis of hydrogen peroxide at high light intensities, Trans. Faraday Soc. 53: 344-56 (1957).
- [18] Nadezhdin, A., Dunford, H.B., Oxidation of nicotinamide adenine dinucleotide by hydroperoxyl radical. A flash photolysis study, J. Phys. Chem. 83: 1957-61 (1979).
- [19] McCord, J.M., Beauchamp, C.O., Goscin, S., Misra, H.P., Fridovich, I., Superoxide and Superoxide Dismutase, Oxidases and

Related Redox Systems, Vol. I, T.E. King, S. Mason and M. Morrison (eds), University Press, Baltimore, MD, (1973)

- [20] Olson, J.S., Ballou, D.P., Palmer, G., Massey, V., The mechanism of action of xanthine oxidase, J. Biol. Chem. 249: 4363-82 (1974).
- [21] Fenton, H.J.H., Jackson, H., The oxidation of polyhydric alcohols in presence of iron, J. Chem. Soc. (London) 75: 1-11 (1899).
- [21a] Bielski, B.H.J., Richter, H.W., A study of the superoxide radical chemistry by stopped-flow radiolysis and radiation induced oxygen consumption, J. Am. Chem. Soc. 99: 3019-23 (1977).
- [22] Henglein, A., Langhoff, J., Schmidt, G., Tetranitromethane as a radical scavenger in radiation chemical studies, J. Phys. Chem. 63: 980 (1959).
- [23] Rabani, J., Mulac, W.A., Matheson, M.S., The pulse radiolysis of aqueous tetranitromethane. I. Rate constants and the extinction coefficient of e_{aq}. 11. Oxygenated solutions, J. Phys. Chem. 69: 53-70 (1965).
- [24] Bielski, B.H.J., Allen, A.O., Radiation chemistry of aqueous tetranitromethane solutions in the presence of air. J. Phys. Chem. 71: 4544-9 (1967).
- [25] Van Gelden, B.F., Slater, E.C., The extinction coefficient of cytochrome c, Biochim. Biophys. Acta 58: 593-95 (1962).
- [26] Bielski, B.H.J., Reevaluation of the spectral and kinetic properties of HO₂ and O₂⁻ free radicals, Photochem. Photobiol. 28: 645-9 (1978).
- [27] Saito, E., Bielski, B.H.J., The electron paramagnetic resonance spectrum of the HO₂ radical in aqueous solution, J. Am. Chem. Soc. 83: 4467 (1961).
- [28] Knowles, P.F., Gibson, J.F., Pick, F.M., Bray, R.C., Electronspin-resonance evidence for enzymic reduction of oxygen to a free radical, the superoxide ion, Biochem. J. 111: 53-8 (1969).
- [29] Harbour, J.R., Chow, V., Bolton, J.R., An electron spin resonance study of the spin adducts of OH and HO₂ radicals with nitrones in the ultraviolet photolysis of aqueous hydrogen peroxide solutions, Can. J. Chem. 52: 3549-53 (1974).
- [30] Bielski, B.H.J., Allen, A.O., Mechanism of the disproportionation of superoxide radicals, J. Phys. Chem. 81: 1048-50 (1977).
- [31] Behar, D., Czapski, G., Rabani, J., Dorfman, L.M., Schwarz, H.A., The acid dissociation constant and decay kinetics of the perhydroxyl radical, J. Phys. Chem. 74: 3209-13 (1970).
- [32] Bielski, B.H.J., Schwarz, H.A., The absorption spectra and kinetics of hydrogen sesquioxide and the perhydroxyl radical. J. Phys. Chem. 72: 3836-41 (1968).
- [33] Rabani, J., Nielson, S.O., Absorption spectrum and decay kinetics of O₂⁻ and HO₂ in aqueous solutions by pulse radiolysis. J. Phys. Chem. 73: 3736-44 (1969).
- [34] Getoff, N., Prucha, M., Spectroscopic and kinetic characteristics of HO₂ and O₂ species studied by pulse radiolysis, Z. Naturforsch., Teil A 38A: 589-90 (1983).
- [35] Barker, G.C., Fowles, P., Pulse radiolytic induced transient electrical conductance in liquid solutions. Part 3. Radiolysis of aqueous solutions of some inorganic systems, Trans. Faraday Soc. 66: 1661-9 (1970).
- [36] Perrin, D.D., Dempsey, B., Serjeant, E.P., pKa Prediction for Organic Acids and Bases, p.5-7, Chapman and Hall, London, (1981).
- [37] Marklund, S., Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase, J. Biol. Chem. 251: 7504-7 (1976).
- [38] Sehested, K., Bjergbakke, E., Rasmussen, O.L., Fricke, H., Reactions of H₂O₃ in the pulse-irradiated Fe(II)-O₂ system, J. Chem. Phys. 51: 3159-66 (1969).
- [39] Frost, A.A., Pearson, R.G., Kinetics and Mechanisms, p.165-71, John Wiley, New York, (1961).
- [40] Benson, S.W., The Foundations of Chemical Kinetics. Chapter 2. McGraw-Hill, New York, (1960).
- [41] Szabo, Z.G., Kinetic characterization of complex reaction systems, Comprehensive Chemical Kinetics, Vol. II, Chapter 1, C.H. Bamford and C.F.H. Tipper (eds), Elsevier, Amsterdam, (1969).
- [42] Nadezhdin, A.D., Dunford, H.B., The oxidation of ascorbic acid and hydroquinone by perhydroxyl radicals. A flash photolysis study, Can. J. Chem. 57: 3017-22 (1979).

- [43] Cabelli, D.E., Bielski, B.H.J., Kinetics and mechanism for the oxidation of ascorbic acid/ascorbate by HO₂/O₂⁻ radicals. A pulse radiolysis and stopped-flow photolysis study, J. Phys. Chem. 87: 1809-12 (1983).
- [44] Bielski, B. H.J., Saito, E., The activation energy for the disproportionation of the HO₂ radical in acid solutions, J. Phys. Chem. 66: 2266-8 (1962).
- [45] Wood, P.M., The redox potential of the system oxygensuperoxide, FEBS Lett. 44: 22-4 (1974).
- [46] Baxendale, J.H., Ward, M.D., Wardman, P., Heats of ionization of HO₂ and OH in aqueous solution, Trans. Faraday Soc. 67: 2532-7 (1971).
- [47] Benson, S.W., Nangia, P.S., Electron affinity of HO₂ and HO_x radicals, J. Am. Chem. Soc. 102: 2843-4 (1980).
- [48] Divisek, J., Kastening, B., Electrochemical generation and reactivity of the superoxide ion in aqueous solutions. J. Electroanal. Chem. Interfacial Electrochem. 65: 603-21 (1975).
- [49] Koppenol, W.H., Solvation of the superoxide anion, Oxy Radicals and their Scavenger Systems, Vol. 1, p.274-7, G. Cohen and R.A. Greenwald (eds), Elsevier Biomedical, New York, (1983).
- [50] pKs are taken from: CRC Handbook of Chemistry and Physics, R.C. Weast (ed.), 63rd ed., CRC Press, Boca Raton FL (1982); Kortum, G., Vogel, W. and Andrussow, K., Dissociation Constants of Organic Acids in Aqueous Solution, Butterworths,

London, (1961); Serjeant, E.P., and Dempsey, B., Ionisation Constants of Organic Acids in Aqueous Solution, IUPAC Chemical Data Series No. 23, Pergamon Press, Oxford, (1979); Perrin, D.D., Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London (1965), and Supplement (1972).

- [51] Klug-Roth, D., Fridovich, I., Rabani, J., Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase, J. Am. Chem. Soc. 95: 2786-90 (1973).
- [52] Fielden, E.M., Roberts, P.B., Bray, R.C., Lowe, D.J., Mautner, G.N., Rotilio, G., Calabrese, L., The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis, Biochem. J. 139: 49-60 (1974).
- [53] Getoff, N., Prucha, M., Spectroscopic and kinetic characteristics of HO₂ and O₂ species studied by pulse radiolysis, Z. Naturforsch., Teil A 38A: 589-90 (1983).
- [54] Ilan, Y.A., Meisel, D., Czapski, G., The redox potential of the $O_2-O_2^-$ system in aqueous media, Israel J. Chem. 12: 891-5 (1974).
- [55] Berdnikov, V.M., Zhuravleva, O.S., Thermodynamic characteristics of the hydroperoxy radical in aqueous solution, Russ. J. Phys. Chem. 46: 1521-3 (1972), transl. from Zh. Fiz. Khim. 46: 2658-60 (1972).

No.	Reaction	pН	$k (\mathrm{L} \ \mathrm{mol}^{-1} \mathrm{s}^{-1})$	Method	Comment	Ref.
1	Americium(IV) ion		· · · · · · · · · · · · · · · · · · ·			
. •	$HO_2 + Am^{4+} \rightarrow H^+ + Am^{3+} + O_2$	1	6.4×10^{7}	p.r., opt.	D.k. (Am^{iv}). k varies with pH due to dif-	771130
		2 3.2	5.2×10^{7} 5.0×10^{7}		recent degrees of hydrolysis of $Am(IV)$ at each pH.	77A243
		4.4	2.7×10^7		•	
2	Borate ion					
	$O_2^- + BO_3^{3-} \rightarrow$	10.0	<0.02	s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2	770046
					EDTA and 0.01–0.1 mol L^{-1} borate; no	
				.*	reaction.	
3	Tribromine ion					
	$\mathrm{HO}_2 + \mathrm{Br}_3^- \!\rightarrow\! \mathrm{H}^+ + \mathrm{Br}_2^- + \mathrm{Br}^- + \mathrm{O}_2$	27	< 10 ⁷	e-r.,	C.k. in formate-Br ₂ soln.; rel. to $k(O_2^- + D_2^-)$	720308
		2	$(1 \pm 0.5) \times 10^{8}$	p.r., opt.	INM = 2 × 10 ⁹ . C.k.; mechanistic anal.	650383
	$O_2^- + Br_3^- \rightarrow Br_2^- + Br^- + O_2$	7	$(3.8 \pm 0.7) \times 10^9$	e-r.,	C.k. in formate-Br ₂ soln.; soln. contains 0.2	720308
				chem.	mol L^{-1} Br ⁻ ; rel. to $k(O_2^- + TNM) = 2 \times 10^9$.	
4	Dibromine radical ion					
-	$HO_2 + Br_2^- \rightarrow HO_2^- + Br_2$	2	$6.5 imes 10^9$	γ-r.,	C.k. in soln. contg. $10^{-4} - 1 \mod L^{-1} \text{ KBr}$;	650055
		2	$(4.6 \pm 1.2) \times 10^9$	chem.	rel. to HO ₂ + Br ₂ and Br ₂ ⁻ + Br ₂ ⁻ . D k $\cdot k/c(Br^{-}) = (4.6 \pm 0.4) \times 10^{5}$ cm/c:	650383
		2	(4.0 ± 1.2) × 10	p.1., opt.	$D.k.; k/e(B_2) = (4.0 \pm 0.4) \times 10^{\circ} \text{ cm/s};$ more than one rate constant is involved in	050582
					calcn. k cor. using $\epsilon(360 \text{ nm}) = 9900 \text{ L}$	
		2	$(1.6 \pm 0.5) \times 10^9$	p.r., opt.	mol ϵ cm ϵ for Br ₂ . C.k.; obs. decay of Br ₂ at 360 nm (ϵ =	650383
			. ,	• • •	9600 L mol ⁻¹ cm ⁻¹); data fitting.	
5	Bromine					
	$\mathrm{HO}_2 + \mathrm{Br}_2 \rightarrow \mathrm{Br} + \mathrm{H}^+ + \mathrm{Br}^- + \mathrm{O}_2$	2.1-	$(1.1 \pm 0.5) \times 10^8$	e−r.,	C.k. in formate-Br ₂ soln.; rel. to $k(O_2^- + T_2)$	720308
		2.9 ~1	1.5×10^{8}	p.r., opt.	INM = 2 × 10 ² . C.k.; indirect estimation; more than one	650382
					rate constant is involved; uncertainty is	
	$O_{\overline{2}} + Br_2 \rightarrow Br_{\overline{2}} + O_2$	7	$(5.6 \pm 0.7) \times 10^9$	e-r.,	two-told. C.k. in formate-Br ₂ soln.: rel. to $k(O_2^- +$	720308
				chem.	TNM) = 2×10^9 .	
6	Hypobromous acid					
-	$O_2^- + HOBr \rightarrow Br + OH^- + O_2$	7	$(9.5 \pm 0.8) \times 10^8$	<i>e</i> -r.,	C.k. in formate-Br ₂ soln.; rel. to $k(O_2^- +$	720308
				chem.	$TNM) = 2 \times 10^9.$	
7	Carbonic acid, $pK_s = 6.46$, 10.3					
	$HO_2/O_2^- +$	10.1	<0.04	s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA	770046
	$HO_{\overline{2}} + CO_{\overline{3}}$				and $(0.1-2.5) \times 10^{-1}$ mol L ⁻¹ carbonate;	
			(1. 2) > 106		no reaction.	700404
		5.5	$(1-2) \times 10^{6}$	p.r., condy.	D.k. (rotating sector); CO_2 soln.	720404
				•		
8	Carbonate radical ion ^a $O_{2^{-}} + CO_{2^{-}} \rightarrow CO_{2^{-}}^{2^{-}} + O_{2^{-}}$		$(4 \pm 1) \times 10^8$	f.p., opt.	D.k. in O ₂ -satd. soln. contg. 0.2 mol L^{-1}	700247
				*>¥	CO_{3}^{2-} at 260 nm and 600 nm; ϵ (CO_{3}^{-}) =	
					1860 at 600 nm and 200 at 260 nm and $\epsilon(\Omega_{T}) = 1850 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$ at 260 nm	
		12.8	1.3×10^{8}	f.p., opt.	D.k. at 260 and 600 nm; ϵ (260) for $O_{\bar{z}} =$	677012
					900 and $\epsilon(600)$ for CO ₃ ⁻ = 1830 L mol ⁻¹	
		~13	$1.5 imes 10^9$	p.r., opt.	D.k. at 600 as well as 260 nm; ϵ (600) for	660001
				- • •	$CO_5^ 1.8 \times 10^3$, $\epsilon(260)$ for $O_2^ 1.22 \times 10^3$ L mol ⁻¹ cm ⁻¹ .	

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions

^{*}NOTE IN PROOF: A rate constant of $(3.0 \pm 0.5) \times 10^8$ has been determined by d.k. at 240 nm and 600 nm in carbonate solution at pH 10.1 (21 °C), with a small activation energy of 4.1 ± 0.7 kJ mol⁻¹ [private communication: G.V. Buxton and S. Dyster, 26 Nov. 1984].

REACTIVITY OF HO_2/O_2 RADICALS IN AQUEOUS SOLUTION

No.	Reaction	pН	$k (L mol^{-1}s^{-1})$	Method	Comment	Ref.
9	Cerium(III) ion $HO_2 + Ce^{3+} \rightarrow Ce^{4+} + H_2O_2$	0.4	$(2.1 \pm 0.2) \times 10^{5}$	p.r., opt.	P.b.k. at 320 nm, Ce(IV).	741107
10	Cerium(IV) ion HO ₂ + Ce ⁴⁺ \rightarrow H ⁺ + Ce ³⁺ + O ₂	0.4	\sim 2.7 × 10 ⁶	chem.	D.k.; flow technique; soln. cont. Ce(IV) + H_2O_2 ; calcd. rel. to HO_2 + Ce(III) using rate constant from [741107].	639017
11	Chloride ion $O_2^- + Cl^- \rightarrow$	11.02	<0.014	p.r., opt.	D.k. at 240 nm in O_2 -satd. formate soln., cor. for O_2^- decay. Stopped-flow (γ -r. or vacuum uv photolysis) also used. Authors feel that no reaction occurs.	80A04
12	Dichlorine radical ion $HO_2+Cl_2^-\rightarrow H^++Cl^-+Cl^-+O_2$	~1	(1.0 ± 0.1) × 10 ⁹	p.r., opt.	Calcd. fit to d.k. at 340 nm in O ₂ -satd. soln. contg. 0.05 mol L^{-1} Cl ⁻ and 0.15 mol L^{-1} HClO ₄ ; assumed $2k(Cl_2^- + Cl_2^-) = 4 \times 10^9$.	80A37
13	Chlorine HO ₂ + Cl ₂ \rightarrow H ⁺ + Cl ₂ ⁻ + O ₂	2	1 × 10 ⁹	p.r., opt.	D.k. at 260 nm (HO ₂) as well as 340 nm (Cl ₂ ⁻) in oxygenated soln. contg. 0.19 mol L^{-1} NaCl and 0.01 mol L^{-1} HClO ₄ ; k (HO ₂ + Cl ₃ ⁻) was taken to be identical to k (HO ₂ + Cl ₂).	81A22
4	Hypochlorous acid $O_2^- + HOCl \rightarrow Cl^- + OH + O_2$	8.5– 12.3	$(7.5 \pm 0.38) \times 10^{6}$	p.r., opt.	D.k. at 240 nm in O ₂ -satd. formate soln., k calcd. from k_{obs} vs pH study ($\sim 10^2 - 10^6$, see graph) and $K_{HCIO} = 3.8 \times 10^8$ mol L ⁻¹ . Stopped-flow (γ -r. or vacuum uv photolysis) also used.	80A04
15	Chlorite ion $O_{\overline{2}} + ClO_{\overline{2}} \rightarrow$	7.4– 11.3	<0.4	p.r., opt.	D.k. at 240 nm in O ₂ -satd. formate soln., cor. for O ₂ decay. Stopped-flow (γ -r. or vacuum uv photolysis) also used. Authors feel no reaction occurs.	80A04
16	Chlorine dioxide $O_2^- + ClO_2 \rightarrow ClO_2^- + O_2$	12	$(3.3 \pm 0.2) \times 10^9$	p.r., opt.	D.k. at 360 nm in soln. contg. 10^{-2} mol L ⁻¹ ClO ₂ ⁻ and 1.3 × 10^{-2} mol L ⁻¹ H ₂ O ₂ .	81A24
17 ·	Chlorate ion $O_2^- + ClO_3^- \rightarrow$	11.1	<0.003	p.r., opt.	D.k. at 240 nm O_2 -satd. formate soln., cor. for O_2^- decay. Stopped-flow (γ -r. or vac- uum uv photolysis) also used. Authors feel that no reaction occurs.	80A049
18	Perchlorate ion $O_2^- + ClO_4^- \rightarrow$	11.1		p.r., opt.	No reaction obs.; d.k. at 240 nm in O_2 -satd. formate soln., cor. for O_2^- decay.	80A049
19	Bis(2,2'-bipyridine)cobalt(II) ion $O_2^- + Co(bpy)_2^{2+} \rightarrow O_2Co(bpy)_2^{\pm}$		1.9 × 10 ⁶	p.r., opt.	P.b.k.; pH not given but probably 7-8.	771028
20	(2,3,9,10-Tetramethyl-1,4,8,11-tetraazacyc O_2^- + Co(tetraeneN ₄) ²⁺ \rightarrow O_2 Co(tetraeneN ₄) ⁺	lotetrad 7–8	eca-1,3,8,10-tetraene)c 1.6 × 10 ⁹	obalt(II) ion p.r., opt.	P.b.k.	771028
21	(5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraa $O_2^- + Co(4,11-dieneN_4)_2^{2+} \rightarrow O_2Co(4,11-dieneN_4)^+$	zacycio 7–8	tetradeca-4,11-diene)co 1.4×10^9	balt(II) ion p.r., opt.	P.b.k. in soln. contg. 1.3×10^{-3} mol L ⁻¹ O ₂ and 0.25 mol L ⁻¹ tert-BuOH.	771028

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions - Continued

TABLE 3.	Rate constants for reactions of HO_2/O_2^- in aqueous solutions	 Continued

No.	Reaction	рН	k (L mol ⁻¹ s ⁻¹)	Method	Comment	Ref.
22	1,3,6,8,10,13,16,19-Octaazabicyclo[0	5.6.6]eicosaned	cobalt(II) ion			
	O_2^- + Co(sepulchrate) ²⁺ → Co(sepulchrate) ³⁺ + H ₂ O ₂	11.3-12.6	$(4.6 \pm 1.1) \times 10^7$	f.p., opt.	P.b.k. at 480 nm in soln. contg. 2 mol L^{-1} 2-PrOH, 5 × 10 ⁻⁶ mol L^{-1} benzo- phenone, 4 × 10 ⁻⁵ mol L^{-1} EDTA and 0.004-0.04 mol L^{-1} KOH.	83A304
23	Nitrilotriacetatocobaltate(II) ion $O_2^- + CoNTA^- \rightarrow (CoNTAO_2)^{2-}$	7	$\leq 3 \times 10^8$	p.r.	Prod. reacted with another molecule of solute \rightarrow [CoNTAO ₂ CoNTA] ³⁻ , $k = 1.4 \times 10^7$. $\epsilon(300 \text{ nm}) = 4.5 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1}$	79A255
	$HO_2/O_2^- + CoNTA^- \rightarrow (CoNTAO_2)^{2-}$	5.0	$(1.5 \pm 0.2) \times 10^8$	p.r., opt.	Inner-sphere mechanism; spectral data for product given.	78A436
24	Ethylenediaminetetraacetatocobalta	te(II) ion				
	$HO_2/O_2^- + CoEDTA^{2-} \rightarrow$	5.0	$(2.0 \pm 0.3) \times 10^{6}$	p.r., opt.	Inner-sphere mechanism; spectral data for product given.	78A436
25	(2,3,9,10-Tetramethyl-1,4,8,11-tetra	azacyclotetra	deca-1,3,8,10-tetraene)	cobalt(III) io	n	
	$HO_2/O_2^- +$ Co(tetraeneN₄) $_2^{3+} \rightarrow$		<10 ⁵	p.r.	No reaction obs.; pH not given but proba- bly 7-8.	771028
26	Tetrakis(4–N-methylpyridyl)porphis	necobalt(III) i	on			
	$HO_2/O_2^- + CoTMpyP^{s_+} \rightarrow$	5.6 8.0	$(1.4 \pm 0.1) \times 10^7$ $(9.0 \pm 0.9) \times 10^5$	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L ⁻¹ Na formate and 2×10^{-3} mol L ⁻¹ phosphate buffer.	82A319
		10.1 9.7	$\begin{array}{l} 1 \times 10^{5} \\ 4 \times 10^{5} \end{array}$	enz, opt.	C.k., rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$, in soln. contg. 0.05 mol L ⁻¹ carbonate buffer (pH 10.1) or borate buffer (pH 9.7). Obs. increase in absorbance at 560 nm (NBT ²⁺ \rightarrow formazan); O ₂ ⁻ produced in xanthine/ xanthine oxidase system contg. catalase.	79R111
27	Tetrakis(p-sulfonatophenyl)porphing	itocobaltate(II	I) ion			
	$HO_2/O_2^- + CoTPPS^{3-} \rightarrow$	5.6 8.0	$\begin{array}{l} \leqslant 6 \times 10^{\rm s} \\ \leqslant 1 \times 10^{\rm s} \end{array}$	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L^{-1} Na formate and 2×10^{-3} mol L^{-1} phosphate buffer.	82A319
28	μ -Amido- μ -superoxidotetrakis(eth	ylenediamine)	dicobalt(III) ion			
	$\begin{array}{l} HO_2 \ + \ O_2[Co(en)_2]_2 NH_2^{4+} \ \rightarrow \\ H^+ \ + \ O_2[Co(en)_2]_2 NH_2^{2+} \ + \ O_2 \end{array}$	2.8-6.6	$(3.0 \pm 0.5) \times 10^{6}$	p.r., opt.	P.b.k. at 380 nm; calcd. from k_{obs} vs pH; product is peroxido complex.	.80A139
	$O_2^- + O_2[Co(en)_2]_2NH_2^{++} \rightarrow O_2[Co(en)_2]_2NH_2^{++} + O_2$	2.8-6.6	$(5.8 \pm 0.3) \times 10^{7}$	p.r., opt.	P.b.k. at 380 nm, calcd. from k_{obs} vs pH; product is peroxido complex.	80A 139
29	Decakis(cyano)-µ-superoxidodicob	altate(III) ion				
	$HO_{2} + O_{2}[Co(CN)_{3}]_{2}^{5-} \rightarrow H^{+} + O_{2}[Co(CN)_{5}]_{2}^{6-} + O_{2}$	2.8-6.6	$(4.7 \pm 0.3) \times 10^{5}$	p.r., opt.	D.k. at 310 nm in soln. contg. 0.1 mol L^{-1} formate ion studied as a function of pH; product is peroxido complex.	80A139
	$O_2^- + O_2[Co(CN)_5]_2^{5-} \rightarrow$	2.8-6.6		p.r., opt.	No reaction obs.; d.k. at 310 nm in solution contg. 0.1 mol L^{-1} formate.	80A139
30	Cyanocob(III)alamin O ₂ ⁻ + B12 →			p.r.	No reaction obs.; pH not given but as- sumed to be 6 11.	730116
31	$\begin{array}{l} \textbf{Copper(I) ions} \\ HO_2 + Cu^+ \rightarrow Cu^{2+} + H_2O_2 \end{array}$	2.3	2.3 × 10°	phot., opt.	Sector method; assume $k(\text{HO}_2 + \text{Cu}^{2+}) =$ 3.4 × 10 ⁷ and $k(\text{H}_2\text{O}_2 + \text{Cu}^+) =$ 4.7 × 10 ³	737514
		2.3	$6 imes 10^8$	phot., opt.	Rotating sector; $k(HO_2 + Cu^+)/k(H_2O_2^+ + Cu^+) = 2.4$; soln. cont. Cu^{2+} and 4.5	697082
	$O_2^- + Cu^+ \rightarrow OH + Cu^{2+} + H_2O_2$	~3-6.5	10 ¹⁰	p.r., opt.	D.k. at 245 nm in Cu^{2+} soln.	730112
32	Bis(1.10-phenanthroline)conner(I) i	on				
	$O_2^- + Cu(phen)_2^+ \rightarrow H_2O_2 + Cu(phen)_2^+$	7.0	$(2.95 \pm 0.3) \times 10^8$	p.r., opt.	D.k. at 435 nm in soln. contg. $0.05 \text{ mol } \text{L}^{-1}$ formate, 10^{-3} mol L^{-1} phosphate; 1,10-phenanthroline/Cu ²⁺ concn. = 2.0-2.5.	83A299

REACTIVITY OF HO2/O2 RADICALS IN AQUEOUS SOLUTION

No.	Reaction	pН	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
33	$HO_2 + Cu^{2+} \rightarrow H^+ + Cu^+ + O_2$	0.8-2	~ 10 ⁸	p.r., opt.	D.k. at 245 nm.	730112
	$\frac{\mathrm{HO}_{2}}{\mathrm{O}_{2}}^{-} + \mathrm{Cu}^{2+} \rightarrow \mathrm{H}^{+} + \mathrm{Cu}^{+} + \mathrm{O}_{2}$	2.3	3.4×10^7	phot., opt.	Sector method; $k(\text{HO}_2 + \text{Cu}^{2+})/k(\text{O}_2^- + \text{Cu}^{2+}) = 0.024$	737514
		2.3	1.5×10^7	f.p., opt.	D.k. at 254 nm. Rate may be too high by a factor of 2.	620050
	$O_2^- + Cu^{2+} \rightarrow Cu^+ + O_2$	8.0	$(4.81 \pm 0.27) \times 10^9$	p.r., opt.	D.k. at 245 nm (O_2^-); phosphate buffer.	82A448
		7.0	$(8.1 \pm 0.5) \times 10^9$	p.r., opt.	Observed rate; d.k. in soln. contg. 2 \times 10 ⁻³ mol L ⁻¹ Na formate and 10 ⁻³ mol L ⁻¹ Na formate (Cr(Cl))	82A281
		7.8	$(2.7 \pm 0.2) \times 10^{9}$	p.r., opt.	L ⁻¹ phosphate buffer and Cu(ClO ₄) ₂ . D.k. at 245 nm in O ₂ -satd. soln. contg. 10^{-3} mol L ⁻¹ Na formate and 10^{-6} mol L ⁻¹ Cu ²⁺ ; k similar in presence of serum albu-	741163
		~3-6.5	$8 imes 10^9$	p.r., opt.	min. Observed rate. D.k. at 245 nm. Rate determined from a broad pH range.	730112
34	Amminecopper(II) ion $O_2^- + CuNH_3^{++} \rightarrow$	5.8–8.5	$(2.2\pm0.6)\times10^{9}$	p.r., opt.	D.k. at 248 nm; $I = 1$	761021
35	Bisamminecopper(II) ion $O_2^- + Cu(NH_3)_2^{2+} \rightarrow Cu(NH_3)_2^{+} + O_2^-$	5.8-8.5	$(2.2 \pm 0.8) \times 10^{9}$	p.r., opt.	D.k. at 248 nm; $I = 1$.	761021
36	Trisamminecopper(II) ion $O_2 + Cu(NH_3)^{\frac{3}{2}+} \rightarrow$	5.8-8.5	(1.0 \pm 0.5) $ imes$ 10°	p.r., opt.	D.k. at 248 nm; $I = 1$.	761021
37	Tetraamminecopper(II) ion $O_2^- + Cu(NH_3)_4^{2+} \rightarrow$	5.8-8.5	$(2\pm0.8)\times10^8$	p.r., opt.	D.k. at 248 nm; $I = 1$; authors feel value could be doubtful.	761021
38	(5 7 7 12 12 14 Hexamethyl-1 4 8 11 tet	raazaevelo	tetradeca.4 11.diene)co	nner(II) ion		
50	$HO_2/O_2^- + Cu(4,11\text{-diene}N_4)_2^{2+} \rightarrow$	i unzucy cit	<105	p.r.	No reaction. pH not given but probably 7-8. Limiting value.	771028
39	Bis(1,10-phenanthroline)copper(II) ion					
	$O_2^- + Cu(phen)_2^{2+} \rightarrow O_2 + Cu(phen)_2^{+}$	7.0	$(1.93 \pm 0.07) \times 10^9$	p.r., opt.	D.k. at 435 nm in soln. contg. 0.05 mol L ⁻¹ formate, 10 ⁻³ mol L ⁻¹ phosphate; 1,10-phenanthroline/Cu ²⁺ concn. = 2.0-2.5. k(catalytic) = $(5.1 \pm 0.9) \times 10^8$.	83A299
40	Tetrakis(4- <i>N</i> -methylpyridyl)porphineco $HO_2/O_2^- + CuTMpyP^{4+} \rightarrow$	5.6 8.0	$ \begin{array}{c} & \mathbf{a} \\ & \leq 6 \times 10^5 \\ & \leq 7 \times 10^4 \end{array} $	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L^{-1} Na formate and 2×10^{-3} mol L^{-1} phosphate buffer.	82A319
41	Tetrakis_4_(N N N-trimethylammonio)n	henvlpornl	hineconner(II) ion			
••	$HO_{2}/O_{2}^{-} + CuTAPP^{4+} \rightarrow$	5.6	<5 × 10 ⁶	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol	82A319
		8.0	$\leq 1 \times 10^{6}$		L^{-1} Na formate and 2 \times 10 ⁻³ mol L^{-1} phosphate buffer.	
			<105		Method (enz. or p.r.) and pH not given; $k = k$ (catalytic); reaction in 0.5 mol L ⁻¹ carbonate buffer.	82R172
42	Tetrakis(p-sulfonatophenyl)porphinato	cuprate(II)	ion			
	HO ₂ /O ₂ ⁻ + CuTPPS ⁴⁻ →	5.6 8.0	$\leq 8 \times 10^{\circ}$ $\leq 5 \times 10^{4}$	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L ⁻¹ Na formate and 2×10^{-3} mol L ⁻¹ phosphate buffer.	82A319
43	Formatocopper(II) ion					
	$O_2^- + Cu(HCO_2)^+ \rightarrow O_2 + Cu(HCO_2)$		$(1.7 \pm 0.6) \times 10^9$	p.r., opt.	D.k. at 248 nm in soln. contg. $10^{-4} \text{ mol } \text{L}^{-1}$ Cu(II) and > $10^{-3} \text{ mol } \text{L}^{-1} \text{ HCO}_2^-$; $I = 2$;	761021

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions - Continued

pH not given but probably pH 6-7.

TABLE 3.	Rate constants for	\cdot reactions of HO ₂ /O ₂ ⁻	in aqueous solutions		Continued
----------	--------------------	---	----------------------	--	-----------

No.	Reaction	pН	k (L mol ⁻¹ s ⁻¹)	Method	Comment	Ref.
44	Copper(II) formate O ₂ ⁻ + Cu(HCO ₂) ₂ →		3 × 10 ⁸	p.r., opt.	D.k. at 248 nm; correct to a factor of 2; calculated using stability constants; $I = 2$; pH not given but probably pH 6-7.	761021
45	Trisformatocuprate(II) ion $O_2^- + Cu(HCO_2)_3^- \rightarrow$		8.0 × 10 ⁸	p.r., opt.	D.k. at 248 nm; correct to a factor of 2; calculated using stability constants; $I = 2$; pH not given but probably pH 6-7.	761021
46	Tetrakisformatocuprate(II) ion $O_2^- + Cu(HCO_2)_4^2 \rightarrow$		$(4.0 \pm 1.5) \times 10^8$	p.r., opt.	D.k. at 248 nm; calcd. using stability con- stants; $I = 2$; pH not given but probably pH 6-7.	761021
47	Bis(2-pyridinecarboxylato)copper(II) HO ₂ /O ₂ ⁻ + Cu(2-pyCO ₂) ₂ →		2×10^6	enz., opt.	D.k. at 250 nm (p.r.) in N ₂ O/O ₂ (4:1) satd. soln. contg. 0.1 mol L ⁻¹ formate gave k (catalytic) = 1.4×10^8 ; pH not given, probably 8.5.	83A209
48	DL-Alaninatocopper(II) ion HO ₂ /O ₂ ⁻ + Cu(Ala) ⁺ \rightarrow	7.4	(2.8-3.5) × 10 ⁶	p.r., opt.	D.k. at 280 nm in soln. contg. 10^{-2} mol L ⁻¹ alanine, 5 × 10^{-3} mol L ⁻¹ formate and (1-3) × 10^{-4} mol L ⁻¹ Cu ²⁺ .	761021
49	Alanylhistidinatocopper(II) O ₂ ⁻ + Cu(AlaHis) →	8.0	$(8.75 \pm 0.41) \times 10^7$	p.r., opt.	D.k. at 245 nm (O_2^-); phosphate buffer.	82A448
50	Glutamatocopper(II) ion HO ₂ /O ₂ ⁻ + Cu(Glu) ⁺ →	7.1	(1-2) × 10 ⁶	p.r., opt.	D.k. at 280 nm in soln. contg. (1 or 3) \times 10 ⁻⁴ mol L ⁻¹ Cu ²⁺ and 0.1 mol L ⁻¹ glutamate.	761021
51	Glycinatocopper(II) ion	70	2.1×10^{6}	n r ont	D k at 280 nm in soln contra 5×10^{-3} mol	761021
	$O_2 + Ou(O_2) \rightarrow$	1.5	2.1 × 10	p.r., op.	L ⁻¹ formate and 2×10^{-3} mol L ⁻¹ gly- cine; $k = \sim 1 \times 10^{6}$ with 1 mol L ⁻¹ gly-	101021
		8.0	$(4.1 \pm 0.6) \times 10^{6}$	p.r., opt.	cine at pH 6 (d.K. at 248 nm). D.k. at 275 nm in N ₂ O-O ₂ -satd. soln. contg. 5×10^{-2} mol L ⁻¹ glycine and 10^{-4} mol L ⁻¹ Cu(ClO ₄) ₂ ; same when formate was added.	761082
52	Glycylglycinatocopper(II) ion HO ₂ /O ₂ ⁻ + Cu(GlyGly) ⁺ \rightarrow	6.7	(1.9-2.0) × 10 ⁷	p.r., opt.	D.k. at 280 nm in soln. contg. $1-2 \times 10^{-4}$ mol L ⁻¹ Cu ²⁺ and 10^{-2} mol L ⁻¹ gly-cylglycine.	761021
53	Bis(glycylhistidinato)cuprate(II) ion $O_2^- + Cu(GlyHis)_2^- \rightarrow$	7.8	$(3.0 \pm 0.2) \times 10^8$	p.r., opt.	D.k. at 245 nm in O ₂ -satd. soln. contg. 10^{-3} mol L ⁻¹ Na formate and $10^{-5}-10^{-6}$ mol L ⁻¹ Cu ²⁺ ; k similar in presence of se- rum albumin.	741163
54	Bis(glycylhistidylleucinato)cuprate(II) ion $O_2^- + Cu(GlyHisLeu)_2^- \rightarrow$	7.8	$(2.1 \pm 0.2) \times 10^{8}$	p.r., opt.	D.k. at 245 nm in O ₂ -satd. soln. contg. for- mate ion and ~10 ⁻⁶ mol L ⁻¹ complex; $k = 1 \times 10^8$ in presence of bovine serum albumin. Concn. varied giving true pseudo first-order conditions.	75A243 741163

REACTIVITY OF HO2/O2 RADICALS IN AQUEOUS SOLUTION

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

No.	Reaction	pH	$k (\mathrm{L} \ \mathrm{mol}^{-1} \mathrm{s}^{-\mathrm{i}})$	Method	Comment	Ref.
55	Bis(histidinato)copper(II) ion, conjugate mo $HO_2/O_2^- + Cu(His)_2H^+ \rightarrow$	noacid 2-7	$(3.4 \pm 0.9) \times 10^8$	p.r., opt.	D.k. at 250 nm in soln. contg. 0.1 mol L ⁻¹ formate, 4×10^{-4} mol L ⁻¹ histidine and 1-100 × 10 ⁻⁶ mol L ⁻¹ Cu(II) acetate; $k = k_{catalytic}$.	80 A 175
56	Histidylalaninatocopper(II) O ₂ ⁻ + Cu(HisAla) →	8.0	$(4.52 \pm 0.34) \times 10^9$	p.r., opt.	D.k. at 245 nm (O ₂); phosphate buffer.	82 A 448
57	Histidylphenylalaninatocopper(II) O_2^- + Cu(HisPhe) \rightarrow	8.0	$(3.57 \pm 0.38) \times 10^9$	p.r., opt.	D.k. at 245 nm (O ₂ ⁻); phosphate buffer.	82 A 448
58	Histidyltyrosinatocopper(II) O ₂ ⁻ + Cu(HisTyr) →	8.0	$(2.42 \pm 0.23) \times 10^9$	p.r., opt.	D.k. at 245 nm (O₂); phosphate buffer.	82A448
59	Histidylvalinatocopper(II) O ₂ ⁻ + Cu(HisVal) →	8.0	$(2.22 \pm 0.27) \times 10^9$	p.r., opt.	D.k. at 245 nm (O₂); phosphate buffer.	82A448
60	L-Hydroxyprolinecopper(II) ion HO ₂ /O ₂ ⁻ + Cu(Hyp) ⁺ →	8.1	1.2 × 10 ⁶	p.r., opt.	D.k. at 270 nm in soln. contg. 5×10^{-3} mol L^{-1} formate, 2×10^{-3} mol L^{-1} hydroxy- proline and 5×10^{-5} mol L^{-1} Cu ²⁺ ; $k = 1.0 \times 10^{6}$ with 10^{-4} mol L^{-1} Cu ²⁺ and 9.0 $\times 10^{5}$ with 10^{-4} mol L^{-1} Cu ²⁺ and 10^{-2} mol L^{-1} hydroxyproline at pH 7.7.	761021
61	Bis(lysinato)copper(II) O₂¯ + Cu(Lys)2 →	7.8	$(5.6 \pm 1) \times 10^8$	p.r., opt.	D.k. at 245 nm in O ₂ -satd. soln. contg. 10^{-3} mol L ⁻¹ Na formate and 10^{-5} - 10^{-6} mol L ⁻¹ Cu ²⁺ ; k similar in presence of serum albumin.	741163
62	1-Methioninatocopper(II) ion HO ₂ /O ₂ ⁻ + Cu(Met) ⁺ \rightarrow	7.1 7.8	5.6×10^{6} 6.8×10^{6}	р.г., орt.	D.k. at 280 nm in soln. contg. 5×10^{-2} mol L^{-1} methionine and 10^{-4} mol L^{-1} Cu ²⁺ ; at pH 7.8 $k = 8 \times 10^{6}$ with $[Cu^{2+}] = 2 \times 10^{-4}$ and at pH 7.1 $k = 4.8 \times 10^{6}$ with $[Cu^{2+}] = 3 \times 10^{-4}$ mol L^{-1} .	761021
63	Phenylalanylhistidinatocopper(II) HO ₂ /O ₂ ⁻ + Cu(PheHis) →	8.0	$(9.90 \pm 1.20) \times 10^4$	p.r., opt.	D.k. at 245 nm (O_2^-); phosphate buffer.	82 A 448
64	L – Prolinatocopper(II) ion HO ₂ /O ₂ ⁻ + Cu(Pro) ⁺ →	7.5	5×10^{5}	p.r., opt.	D.k. at 270 nm in soln. contg. 10^{-4} mol L ⁻¹ Cu ²⁺ and 10^{-3} mol L ⁻¹ proline.	761021
65	Bis(tyrosinato)copper(II) O ₂ ⁻ + Cu(Tyr) ₂ →	7.4- 7.8	$(1.0 \pm 0.1) \times 10^9$	p.r., opt.	D.k. at 245 nm in O_2 -satd. soln. contg. for- mate ion and ~10 ⁻⁶ mol L ⁻¹ complex; same result in presence of 0.11 g L ⁻¹ bo- vine serum albumin.	75A243
66	L-Valinatocopper(II) ion $HO_2/O_2^- + Cu(Val)^+ \rightarrow$	6.2 8.1	2.4×10^{8} 1.7×10^{6}	p.r., opt.	D.k. at 280 nm in soln. contg. 10^{-4} mol L ⁻¹ Cu ²⁺ and 0.5 × 10 ⁻³ (pH 8.1) or 10^{-2} mol L ⁻¹ (pH 6.2) valine.	761021
67	Valylhistidinatocopper(II) $HO_2/O_2^- + Cu(ValHis) \rightarrow$	8.0	$(1.01 \pm 0.16) \ge 10^5$	p.r., opt.	D.k. at 245 nm (O_2^-); phosphate buffer.	82A448

TABLE 3. Rate constants for reactions of HO_2/O_2 in aqueous solutions – Continued

No.	Reaction	pН	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
		. <u></u>	nanat <u>i na ka</u> y na kaya kati na aka			
68	Ethylenediaminetetraacetatocuprate(II) ion				
	$O_2^- + CuEDTA^{2-} \rightarrow$	6.8- 9.8	<105	p.r., opt.	Soln. cont. 2×10^{-8} mol L ⁻¹ Cu ²⁺ , 10^{-6} mol L ⁻¹ EDTA.	82A281
69	Bis(salicylato)copper(II) $O_2^- + Cu(Sal)_2 \rightarrow$	7.5	$(1.64 \pm 0.15) \times 10^9$	p.r., opt.	D.k. at 250 nm in O2-satd. soln. contg. formate and 1-5 \times 10^{-6} mol L^{-1} Cu ^{II} .	78A309
70	Bis(diisopropylsalicylato)copper(II) $O_2^- + Cu(2-PrSal)_2 \rightarrow$	7.5	$(2.4 \pm 0.12) \times 10^9$	p.r., opt.	D.k. at 250 nm in O ₂ -satd. soln. contg. for- mate and 2.2-5.4 \times 10 ⁻⁶ mol L ⁻¹ Cu ^{II} .	78A309
71	Bis(acetylsalicylato)copper(II) $O_2^- + Cu(AcSal)_2 \rightarrow$	7.5	$(0.96 \pm 0.20) \times 10^9$	p.r., opt.	D.k. at 250 nm in O ₂ satd. soln. contg. formate and 1.1-8.4 \times 10 ⁻⁶ mol L ⁻¹ Cu ^{II} .	78A309
72	Bis(<i>p</i> -aminosalicylato)copper(II) O_2^- + Cu(NH ₂ Sal) ₂ →	7.5	$(0.79 \pm 0.16) \times 10^9$	p.r., opt.	D.k. at 250 nm in O ₂ -satd. soln. contg. formate and $2-10 \times 10^{-6}$ mol L ⁻¹ Cu ^{II} .	78A309
73	Bic conner (2. [2. (nyridyl) athyliminomet	hyllnyri	dina)]imidazala hridaad oo	mnlov	·	
15	$O_{\overline{2}}^{-}$ + Cu(pip)ImCu(pip) ³⁺ \rightarrow	~ 8	$(1.7 \pm 1) \times 10^8$	p.r., opt.	D.k. at 250 nm in soln. contg. $10^{-2} \mod L^{-1}$ formate.	81A430
74	Copper(2-[2-(pyridy])ethyliminomethy]]	byridin	e) zinc(2-[2-(nvridvl)ethvli	minomethylln	vridine) imidazole bridged complex	
	$O_2^- + Cu(pip)ImZn(pip)^{3+} \rightarrow$	~8	$(5.9 \pm 1.0) \times 10^8$	p.r., opt.	D.k. at 250 nm in soln. contg. 10^{-2} mol L ⁻¹ formate	81A430
75	Penicillaminecopper complex					
	$\mathrm{HO}_{2}/\mathrm{O}_{2}^{-} + \mathrm{Cu}_{14}(\mathrm{Pen})_{12}\mathrm{Cl}^{5-} \rightarrow$	7.0	$(4.5 \pm 0.5) \times 10^8$	p.r., opt.	D.k. at 250 nm in O ₂ -satd. soln. contg. 10^{-2} mol L ⁻¹ formate and 10^{-6} - 10^{-5} mol L ⁻¹ penicillamine.	79A072
		3.1 5.0 7.0	$(9.2 \pm 1.5) \times 10^{8}$ $(3.15 \pm 0.82) \times 10^{9}$ $(6.8 \pm 1.5) \times 10^{8}$	p.r., opt.	D.k. in soln. contg. 0.05 mol L^{-1} formate and 0.91-9.1 \times 10 ⁻⁶ mol L^{-1} Cu penicil- lamine	79A455
		8.9	$(5.1 \pm 0.6) \times 10^8$			
			4.2×10^8		1:1 in EDTA ($k = 1.1 \times 10^8$ in 1:10 EDTA, ten-fold excess of EDTA); $k =$	81R192
					7.8×10^8 in 1:1 KCN ($k = 8.2 \times 10^7$ in 1:10 KCN, ten-fold excess of KCN); con-	
			See comment		[Cu ¹ ,Cu ^{II} ,(D-penicillamine),,Cl ³⁻ does	80R 189
					not catalyze Q_2^- dismutation but rather de- composes to simpler Cu complexes which	
	$O_2^- + Cu_{14}(Pen)_{12}Cl^{5-} \rightarrow$	3–9	$2.0 imes 10^8$	p.r., opt.	D.k. (see 79A072, 79R055) in presence of 10^{-8} - 10^{-6} mol L ⁻¹ Cu complex; reaction	80Z241
					thought to involve sulfur: Cu(I)SR + O_2^- \rightarrow Cu(I)-SR + O_2 and Cu(I)-SR + O_2^- \rightarrow Cu(I)SR + O_2^- . Slight variation in k_{obs} with $=$ U	
			$(1.54 \pm 0.5) \times 10^{9}$	p.r., opt.	D.k. Refer to [79A072] for experimental details	79R055
76	Copper indomethacin		3.2×10^9		1:1 in EDTA ($k < 10^7$ in 1:10 EDTA,	81 R 192
	$HO_2/O_2^- + Cu_2I_4 \rightarrow$				ten-fold excess of EDTA); $k = 4.1 \times 10^9$ in 1:1 KCN ($k < 10^7$ in 1:10 KCN, ten-fold excess of KCN); conditions and pH not given	
	$O_2^- + Cu_2I_4 \rightarrow$	7.0	$(6.0 \pm 0.3) \times 10^9$	p.r., opt.	D.k. at 250 nm in soln. contg. 10^{-2} mol L ⁻¹ formate; in 50/50 (v/v) acetonitrile-water $k = (1, 1, \pm, 0, 4) \times 10^9$	80A201
		6.6	6×10^{9}	p.r., opt.	D.k. in soln. contg. 0.05 mol L^{-1} formate and 9.8-83 \times 10 ⁻⁸ mol L^{-1} Cu in- domethacin.	79A455

REACTIVITY OF HO2/O2 RADICALS IN AQUEOUS SOLUTION

TABLE 3. Rate constants for reactions of IIO_2/O_2^- in aqueous solutions --- Continued

No.	Reaction	рН	$k (L mol^{-1}s^{-1})$	Method	Comment	Ref.
77	Iron(II) ion HO ₂ + Fe ²⁺ \rightarrow Fe ³⁺ ·HO ₂ ⁻	1	$(1.2 \pm 0.5) \times 10^{6}$	p.r., opt.	P.b.k. at 250 nm at 25°C; $I = 1.0$; $k = 9.1 \times 10^5$ at 20°C; $E_s = 10.0 \pm 1.0$ kcal/mol (42 kJ/mol); supercedes [640090] and [690434].	730038
78	Tris(1,10-phenanthroline)iron(II) ion $O_2^- + Fe(phen)_3^{2+} \rightarrow$	10.1	1×10^{5}	enz., opt.	C.k.; rel. to $k(O_2^- + \text{NBT}^{2+}) = 6 \times 10^4$.	79A018
79	Bis(4,7-diphenyl-1,10-phenanthroline) O_2^- + Fe(Ph ₂ phen) ₂ ²⁺ \rightarrow	iron(II) ion (7.0	(Bathophenanthroline) $<2.8 imes10^{5}$	p.r., opt.	D.k. at 310 nm in 0.1 mol L^{-1} Na formate contg. 10^{-1} mol L^{-1} phosphate buffer.	82A449
80	Dicyanotetrakis(4-N-methylpyridyl)po O_2^- + FeTMpyP(CN) $^{2+}_2 \rightarrow$ O_2 + FeTMpyP(CN) $^{2+}_2$	orphineiron(I 10.2	I) ion (3.1 \pm 0.6) \times 10 ⁶	p.r., opt.	Calcd. from equil. concn. formed in O ₂ -satd. soln. of Fe ^{III} complex and reduced (Fe ^{II}) complex; $k_{obs} = (1.7 \pm 0.3) \times 10^6$ in presence of formate.	82A119
81	Tetrakis(4-N-methylpyridyl)porphinei HO ₃ /O ⁻ ₇ + FeTMpyP(Im) $^{++}_{+}$ \rightarrow OH ⁻ + H ₂ O ₂ + FeTMpyP(Im) $^{5+}_{2}$	ron(II)-diimi	dazole complex (3.8 ± 0.7) $\times 10^6$	p.r., opt.	P b k. Measured in absence of formate. k in presence of formate = $(1.3 \pm 0.6) \times 10^6$. Probably pH 8.0.	82A119
82	Tetrakis(4- <i>N</i> -methylpyridyl)porphinei HO_2/O_2^- + FeTMpyP(His) ⁴⁺ \rightarrow OH ⁻ + H ₂ O ₂ + FeTMpyP(His) ⁵⁺	ron(II)-dihis	tidine complex $(3.1 \pm 0.5) \times 10^6$	p.r., opt.	P.b.k. Measured in absence of formate. k in presence of formate = $(1.7 \pm 0.3) \times 10^6$. Probably pH 8.0.	82A119
83	Ferrocyanide ion $HO_2 + Fe(CN)_6^{4-} \rightarrow Fe(CN)_6^{3-}$ $+ HO_7^{-}$	0.46-4.37	$(3.0 \pm 1.5) \times 10^4$	p.r., opt.	P.b.k. at 420-460 nm; pH effects obs.	720431
		~2	1.64 × 10 ⁵	p.r., opt.	P.b.k. at 420 nm (ferricyanide). Soln. cont. 5 \times 10 ⁻³ mol L ⁻¹ ferrocyanide.	650007
84	Potassium hexacyanoferrate(II) ion HO ₂ + KFe(CN) $_{6}^{3-} \rightarrow$	0-6.5	$(3.0 \pm 1.5) \times 10^4$	p.r., opt.	P.b.k. at 420 nm.	720431
85	Hydrogen hexacyanoferrate(II) ion HO ₂ + HFe(CN) $_{6}^{3-} \rightarrow$	0.46–4.37	$(1.4 \pm 0.1) \times 10^{5}$	p.r., opt.	P.b.k. at 420–460 nm.	720431
86	Dihydrogen hexacyanoferrate(II) ion $HO_2 + H_2Fe(CN)_6^{2-} \rightarrow$	0.46-4.37	$(1.0 \pm 0.3) \times 10^4$	p.r., opt.	P.b.k. at 420–460 nm.	720431
87	Ethylenediaminetetraacetatoferrate(II) ion	0			
	$O_2^- + FeEDTA^{2-} \rightarrow Fe(O_2)EDTA^{3-}$	10.4	~8×10°	s.f., opt.	P.b.k. at 520 nm; soln. cont. 10^{-6} mol L ⁻¹ complex; $I = 1$.	83A163
		10.4	$(3 \pm 0.3) \times 10^{6}$	p.r., opt.	P.b.k. at 310–350 nm in soln. contg. 0.1 mol L^{-1} Na formate.	82A449
		7.8	2 × 10°	p.r., opt.	D.k. at 250 nm.	82A446
		10.1 9.7	3 × 10° 4 × 10 ⁵	enz., opt. enz, opt.	C.k.; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$. C.k.; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$, in 0.05 mol L ⁻¹ borate buffer. Obs. increase in absorbance at 560 nm (NBT ²⁺ \rightarrow for- mazan); O_2^- produced in xanthine/ xanthine oxidaes system contracted as	79A018 79R111
		9–10	$(2\pm0.3) imes10^6$	p.r., opt.	P.b.k. at 300 nm in air-satd. soln. contg. 10^{-2} mol L ⁻¹ Na formate and 0.5-2 × 10^{-3} mol L ⁻¹ carbonate buffer; at pH 11-12 k is 50% higher; above pH 9 the sub- strate is a hydroxo complex.	771088

No.	Reaction	рН	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
88	Diathylanatriaminanantagaatatafarrata	(I) ion D_{α}	$t_{anac} E_{a^{2+1}}$			
00	O_2^- + FeDTPA ³⁻ \rightarrow	7.0	$(2 \pm 0.5) \times 10^7$	p.r., opt.	P.b.k. at 310 nm in 0.1 mol L^{-1} Na formate contg. 10^{-1} mol L^{-1} phosphate buffer.	82A449
		10.1	1×10^{5}	enz., opt.	C.k.; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$.	79A018
89	Adenosine triphosphate-iron(II) comple	х	•			
	$O_2^- + Fe^{\mu}ATP \rightarrow$	7.0	$(1.1 \pm 0.1) \times 10^{6}$	p.r., opt.	P.b.k. at 310 nm in 0.1 mol L^{-1} Na formate contg. 10^{-1} mol L^{-1} phosphate buffer.	82 A449
90	Iron(III) ions					
	$HO_2 + Fe^{rr} \rightarrow H^r + Fe^{rr} + O_2$	2.74	$\frac{2 \times 10^{\circ}}{3.1 \times 10^{\circ}}$	p.r., opt.	In H ₂ SO ₄ soln.; calcd. rel. to $k(HO_2 + Fe^{2+}) = 1 \times 10^6$; in HClO ₄ soln. $k = 2.1 \times 10^5$ and 1.0×10^6 , resp. at pH 1.51 and 2.74.	690413
		1	\sim 4 \times 10 ⁵	γ-r., chem.	C.k. using $k(HO_2 + Fe^{2+})/k(HO_2 + Fe^{3+}) = 30[H^+]$ from data in [730038].	690642
			6.6×10^{3}	γ-r., chem.	C.k.; calcd. using data from [730038]; rel. to HO ₂ + Fe ²⁺ = 1.2×10^6 ; 0.25 mol L ⁻¹	600102
					H_2SO_4 .	
		2.1	1.2×10^{5}	γ-r.,	C.k.; calcd. using data from [730038]; rel.	580004
		0.4 2.7	$< 1.2 \times 10^{\circ}$ 3.6 × 10 ⁵	chem.	to $HO_2 + Fe^{2\tau} = 1.2 \times 10^{\circ}$. C.k.: calcd using data from [730038]: rel	570010
		2.0	1.32×10^{5}	chem.	to $HO_2 + Fe^{2+} = 1.2 \times 10^6$.	570010
91	Bis(4.7-diphenyl-1.10-phenanthrolineiro	n(III) ion				
	O_2^- + Fe(Ph ₂ phen) ³⁺ \rightarrow	7.0	<4 × 10 ⁴	p.r., opt.	D.k. at 300-320 nm in 0.1 mol L^{-1} Na for- mate contg. 10^{-1} mol L^{-1} phosphate buffer.	82A449
92	Tetrakis(4-N-methylpyridyl)porphineiro	on(III) ion				
	O ₂ ⁻ + FeTMpyP ^{>+} → [FeTMpyP-O ₂] ⁴⁺	5.6 8.0	$(1.7 \pm 0.2) \times 10^9$ $(2 \pm 0.2) \times 10^9$ (cor. for <i>I</i>)	p.r., opt.	D.k. at 420 as well as p.b.k. at 445 nm in O ₂ -satd. soln. contg. 0.1 mol L ⁻¹ tert- BuOH; $k_{obs} = 3.8 \times 10^8$ at pH 8.0 and 3.1 $\times 10^8$ at pH 5.6 in the presence of 0.1 mol L ⁻¹ formate; at pH 10.1 in soln. contg. 0.05 mol L ⁻¹ carbonate $k = (3.9 \pm 0.4) \times 10^8$.	82A119
		5.6	$(2.2 \pm 0.2) \times 10^{8}$	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol	82A319
		8.0	$(3.0 \pm 0.3) \times 10^8$		L^{-1} Na formate and 2 \times 10 ⁻³ mol L^{-1} phosphate buffer.	
		7.8	\sim (7 ± 2) × 10 ⁸	p.r., opt.	D.k. at 350 nm (also obs. at 580 nm) indi- cated different product from $e_{\overline{aq}}$ or $CO_{\overline{2}}$ reaction, interpreted as adduct formn.; obs. rate includes aggregates of Fe com- plex	81A207
		7.8	\sim 3 × 10 ⁷	p.r., opt.	D.k. at 280 and 296 nm in O ₂ -satd. soln. contg. 10^{-3} mol L ⁻¹ phosphate buffer, 5 × 10^{-3} mol L ⁻¹ formate and 2 × 10^{-4} mol L ⁻¹ EDTA.	81A207
		10.1	3 × 10 ⁷	enz., opt.	C.k.; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$; obs. decrease in redn. of nitro blue tet- razolium to formazan at 560 nm; biphasic, $k = 2 \times 10^6$ in phase II.	79A018
		9.7 10.1	1×10^{7} 3×10^{7}	enz, opt.	C.k.; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$, in 0.05 mol L ⁻¹ borate buffer at pH 9.7 (0.05 mol L ⁻¹ carbonate buffer at pH 10.1). Obs. increase in absorbance at 560 nm (NBT ²⁺ \rightarrow formazan); O ₂ ⁻ produced in xanthine/ xanthine oxidase system contg. catalase; imidazole complex had similar reactivity.	79R111
93	Tetrakis(4- <i>N</i> -methylpyridyl)porphineiro $O_2^- + [FeTMpyP-O_2]^{4+} \rightarrow OH^- +$ $OH^- + FeTMpyP^{5+} + H_2O_2$	on(III)-supe 8.1	eroxide complex (2.3 \pm 0.3) \times 10 ⁹	p.r., opt.	Calcd. from equil. concn. formed in O_2 -satd. soln. of Fe ^{III} complex and O_2^- adduct $(I = 10^{-3})$; in presence of formate $k = (7.6 \pm 1.0) \times 10^8$.	82A119

REACTIVITY OF HO_2/O_2^- RADICALS IN AQUEOUS SOLUTION

1061

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

Nó.	Reaction	pH	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
04	Disconstatuation A mathematical marsh	mairan	(III) ion			
94	$\begin{array}{l} D(y) = D($	10.2	$(2.0 \pm 0.2) \times 10^6$	p.r., opt.	D.k. as 435 as well as p.b.k. at 470 nm in soln. contg. 2.0×10^{-3} mol L ⁻¹ KCN and $1-5 \times 10^{-5}$ mol L ⁻¹ Fe ^{III} complex.	82A119
95	Tetraakis(4-N-methylpyridyl)porphineiror	(III)-d	iimidazole complex			
	$O_2^- + FeTMpyP(Im)_2^{s_+} \rightarrow FeTMpyP(Im)_2^{t_+} + O_2$	8.0	$(1.0 \pm 0.1) \times 10^{6}$	p.r., opt.	P.b.k at 450 nm in O ₂ -satd. soln. contg. 1– 2.5×10 ⁻⁵ mol L^{-1} Fe ^{III} TMpyP and 4×10 ⁻² mol L^{-1} imidazole and 0.5 mol L^{-1} formate.	82A119
		9.7	9×10^{5}	enz., opt.	C.k. in 0.05 mol L ⁻¹ borate buffer; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$.	79R111
96	Tetrakis(4-N-methylpyridyl)porphineiron(III)-dil	histidine complex			
	$HO_2/O_2^- + FeTMpyP(His)_2^{5+} \rightarrow FeTMpyP(His)_2^{4+} + O_2$	8.0	$(1.2 \pm 0.1) \times 10^{6}$	p.r., opt.	P.b.k.	82A119
97	Tetrakis-4-(N N N-trimethylammonio)nhe	vloor	hineiron(III) ion			
,,	HO ₂ /O ₂ ⁻ + FeTAPP ⁵⁺ \rightarrow	iy ipor j	See comment	·	Method (enz. or p.r.) or pH not given; $k(\text{catalytic}) = 5 \times 10^5$; reaction in 0.5 mol L^{-1} carbonate buffer.	82R172
98	Tetrakis(p-sulfonatophenyl)porphineferra	e(III)	ion			
	$HO_2/O_2^- + FeTPPS^{3-} \rightarrow$	5.6 8.0	$(8 \pm 0.8) \times 10^{6}$ $(1.2 \pm 0.1) \times 10^{6}$	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L ⁻¹ Na formate and 2×10^{-3} mol L ⁻¹ phosphate buffer and 0.1 mol L ⁻¹ NaCl.	82A319
	O ₂ + FeTPPS ^{3−} →	9.7 10.1	$\begin{array}{l} 4 \times 10^{5} \\ 6 \times 10^{5} \end{array}$	enz, opt.	C.k.; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$, in 0.05 mol L ⁻¹ borate buffer at pH 9.7 (0.05 mol L ⁻¹ carbonate buffer at pH 10.1). Obs. increase in absorbance at 560 nm (NBT ²⁺ \rightarrow formazan); O ₂ ⁻ produced in xanthine/ xanthine oxidase system contg. catalase; BSA and imidazole complexes had similar reactivity.	79R111
					reactivity.	
99	Tetrakis(p-sulfonatophenyl)porphineferrat	e(III)-	diimidazole complex			
	$O_2^- + FeTPPS(Im)_2^{3-} \rightarrow$	9.7	3×10^{5}	enz.	C.k. in 0.05 mol L ⁻¹ borate buffer; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$.	79R111
100	Tetrakis(n-sulfanatanhenvl)nornhineferra	e(III)-	hovine serum alhumin c	omnley		
100	O_2^- + FeTPPS(BSA) ⁵⁻ \rightarrow	9.7 10.1	$\begin{array}{c} 5 \times 10^5 \\ 6 \times 10^5 \end{array}$	enz.	C.k. in 0.05 mol L ⁻¹ borate buffer (in carbonate buffer at pH 10.1); rel. to $k(O_2^- + C_2^-)$	79 R 111
					$NB1^{a+} = 6 \times 10^{a}$	
101	Ferricyanide ion					
	$O_2^- + Fe(CN)_0^{\delta^-} \rightarrow O_2 + Fc(CN)_0^{\delta^-}$	9.5- 9.7	$(2.7 \pm 0.9) \times 10^{2}$ (cor. for I)	p.r., opt.	P.b.k. at 420–440 nm.	720431
102	Potassium hexacyanoferrate(III) ion					
	$O_2^- + KFe(CN)_{e}^{2-} \rightarrow KFe(CN)_{e}^{3-} + O_2$	9.5 9.7	$(6.2 \pm 0.6) \times 10^3$ (cor. for I)	p.r., opt.	P.b.k. at 420–440 nm.	720431
103	Hydroxybis(2-pyridinecarboxylato)iron(I)	D				
	$HO_2/O_2^- + Fe(2-pyCO_2)_2OH \rightarrow$	8.5	See comment	p.r., opt.	D.k. at 250 nm in N ₂ O/O ₂ (4:1) satd. soln. contg. 0.1 mol L^{-1} formate; k (catalytic) = 9.3×10^4 .	83A209
104	N-Hydroxyethylenediaminetriacetatoferra	te(III)				
	HO_2/O_2^- + FeHETA \rightarrow	6.0 7.0	3.8×10^{6} 7.6×10^{5}	p.r., opt.	D.k. at 250 nm (O_2^-) as well as 280–300 nm (Fe^{III}) in O_2 -satd. soln. contg. 0.02 mol L^{-1} formate ion, 5×10^{-3} mol L^{-1} phosphate buffer and 10^{-4} mol L^{-1} complex.	83A158

No.	Reaction	pН	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
105 1	Ethylenediaminetetraacetatoferrate(III) ion O ₂ ⁻ + FeEDTA ⁻ → FeEDTA ²⁻ + O ₂		2 × 10 ⁶	s.f., opt.	P.b.k at 520 nm, data taken above pH 9.5 and compared with earlier data at a variety of ionic strengths and pH to give $k=2$ $\times 10^{6}$ [H ⁺]/[H ⁺] + K _a assuming that FeEDTA(OH) ³⁻ is unreactive (pK _a for FeEDTA(H ₂ O) ²⁻ = 7.6). Velocity in- creases with ionic strength. At pH 10.4 and $I = 1 k \approx 8 \times 10^{6}$.	83A163
		6.0 7.0 8.0	$3.1 imes 10^{6}$ $1.9 imes 10^{6}$ $5.0 imes 10^{5}$	p.r., opt.	D.k. at 250 nm (O_2^-) as well as 280-300 nm (Fe^{II}) in O ₂ -satd. soln. contg. 0.02 mol L ⁻¹ formate ion, 5×10^{-3} mol L ⁻¹ phosphate	83A158
		5.65 6.0 6.5 6.75 7.0 7.5 7.6 7.75 8.0 8.5 9.0 9.5 10.0	$\begin{array}{c} (6.2 \pm 1.0) \times 10^{6} \\ (3.6 \pm 0.3) \times 10^{6} \\ (1.8 \pm 0.2) \times 10^{6} \\ (1.5 \pm 0.12) \times 10^{6} \\ (1.3 \pm 0.15) \times 10^{5} \\ (8 \pm 1) \times 10^{5} \\ (7 \pm 0.8) \times 10^{5} \\ (5 \pm 0.05) \times 10^{5} \\ (3 \pm 0.5) \times 10^{5} \\ (2 \pm 0.5) \times 10^{5} \\ (2 \pm 0.5) \times 10^{5} \\ < 0.1 \\ < 0.1 \\ < 0.1 \end{array}$	p.r., opt.	buffer and 10^{-4} mol L ⁻¹ complex. D.k. at 310–340 nm in O ₂ -satd. soln. contg. 0.1 mol L ⁻¹ Na formate and 1–20 × 10^{-4} mol L ⁻¹ chelate.	82A449
		8.4	1.5×10^{5}	p.r., opt.	D.k. at 250 nm (O_2^-) in O_2 -satd. soln. contg. 0.1 mol L ⁻¹ EtOH, 1 × 10 ⁻⁴ mol L ⁻¹ EDTA	82A446
		10.1	2×10^5	enz., opt.	C.k.; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$.	79A018
		10.1	3×10^{5}	enz.,	C.k.; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$; $k = 4 \times 10^5$ in borate buffer at pH 9.7.	79R111
		5.8 7 8.1 9	5×10^{6} 1.8×10^{6} 4.6×10^{5} $\sim 10^{5}$	ор p.r., opt.	= 4 × 10 in borate buffer at pH 9.7. D.k. at 300 nm in O_2 -satd. soln. contg. 10^{-4} mol L ⁻¹ complex, 10^{-2} mol L ⁻¹ Na for- mate and 2 × 10^{-3} mol L ⁻¹ phosphate buffer at pH 5.8-7.2. 10^{-3} mol L ⁻¹ borax buffer at pH 8.1 and $0.5-1 \times 10^{-3}$ mol L ⁻¹ carbonate buffer at pH 9; above the pK at 7.6 the substrate is a budgard according to the pK at	771088
106	Diethylenetriaminepentaacetatoferrate(II) $HO_{1}/O_{2}^{-} + FeDTPA^{2-} \rightarrow$	ion ()	< 104	pr opt	D_k at 250 nm (O_{-}^{-}) as well as 280–300 nm	83A158
		7.0 8.0	<10 ⁴ <10 ⁴	pri, opi	(Fe ^{III}) in O ₂ -satd. soln. contg. 0.02 mol L ⁻¹ formate ion, 5×10^{-3} mol L ⁻¹ phosphate buffer and 10^{-4} mol L ⁻¹ complex	
		7.0	< 10 ⁵	p.r., opt.	D.k. at 300–320 nm in 0.1 mol L^{-1} Na for- mate contg. 10^{-1} mol L^{-1} phosphate buffer	82A449
	O_2^- + FeDTPA ²⁻ \rightarrow	10.1	0.8 × 10 ⁵	enz., opt.	C.k.; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$.	79A018
107	Adenosine triphosphate-iron(III) complex	-	4.05			
	HO_2/O_2^- + Fe ^m ATP \rightarrow	7.0	<103	p.r., opt.	D.k. at 300-320 nm in 0.1 mol L^{-1} Na for- mate contg. 10^{-1} mol L^{-1} phosphate buffer.	82A449
108	Desferrioxamine B $HO_2/O_2^- + DB \rightarrow$	7.0	$<2 \times 10^{5}$	p.r., opt.	D.k. at 450-550 nm in 0.1 mol L^{-1} Na for- mate contg. 10^{-1} mol L^{-1} phosphate buffer.	82A449
109	HO ₂ /O ₂ ⁻ + Fe ³⁺ heme \rightarrow	9.7	~1 × 10 ⁴	enz, opt.	C.k.; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$, in 0.05 mol L ⁻¹ borate buffer. Obs. increase in absorbance at 560 nm (NBT ²⁺ \rightarrow for- mazan); O ₂ ⁻ produced in xanthine/ xanthine oxidase system contg. catalase;	79R111

imidazole complex had similar reactivity.

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions - Continued

REACTIVITY OF HO_2/O_2 RADICALS IN AQUEOUS SOLUTION

No.	Reaction	pH	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
110	Hemin-diimidazole complex	0.7	2 > 104			705 111
	$O_2^- + \text{Hemin}(\text{Im})_2 \rightarrow$	9.7	~3 × 10*		C.k. in soln. contg. 0.05 mol L^{-1} borate buffer; rel. to $k(O_2^- + NBT^{2+}) = 6 \times 10^4$.	79R111
111	Hydroxyprotoferrihaem dimer		.1 7 103			
	$HO_2/O_2^- + H_2OFe^{III}porOFe^{III}porOH^{n-} \rightarrow$	9.2	<1.7 × 10°	p.r., opt.	No reaction in soln. contg. 0.1 mol L^{-1} formate and O ₂ ; $I = 0.1$. Limiting rate.	761071
112	Hydrogen $HO_2/O_2^- + H_2 \rightarrow H + H_2O_2$	~2	<1	phot.	Data fitting: soln. under 10–100 atm H ₂ .	767025
		-		Priori		101025
113	Hydrogen ion					7(1122
	$O_2 + H^+ \rightarrow HO_2$	4	$(5 \pm 1) \times 10^{10}$	p.r., opt.	P.b.K. (and d.K.) at 2/0 nm in O_2 -said. soln. contg. 10^{-4} HClO ₄ ; protonation reaction.	/61132
		~2	7.2×10^{10}	phot.	Data fitting.	767025
			4.8 × 10 ¹⁰	elec., pol.	D.k.	759347
114	Iodine					
	$HO_2/O_2^- + I_2 \rightarrow I_2^- + H^+ + O_2$	3.9	$\leq 1 \times 10^8$	p.r., opt.	P.b.k. at 410 nm, in air-satd. soln. contg. $0.4-1 \times 10^{-4}$ mol L ⁻¹ I ₂ and $0.3-2 \times 10^{-2}$	83A901
	$O_2^- + I_2 \rightarrow I_2^- + \cup_2$	3.9–5.5	5.5×10^{9}	p.r., opt.	P.b.k. at 410 nm in air-satd. soln. contg. $0.4-1 \times 10^{-4} \text{ mol } L^{-1} I_2 \text{ and } 0.3-2 \times 10^{-2} \text{ mol } L^{-1} \text{ formate ion.}$	83A901
115	Triiodine ion					
	$O_{\tilde{2}} + I_{\bar{3}} \to I_{\bar{2}} + I^{-} + O_{2}$	3.9–5.5	$8 imes 10^8$	p.r., opt.	P.b.k. at 700 nm in air-satd. soln. contg. 5 $\times 10^{-3}$ mol L ⁻¹ I ⁻ , 0.4-1 $\times 10^{-4}$ mol L ⁻¹ I ₂ and 0.3-2 $\times 10^{-2}$ formate ion.	83A901
116	Manganese(II) ions					
	$\mathrm{HO}_{2}/\mathrm{O}_{2}^{-} + \mathrm{Mn}^{2+} \to \mathrm{MnO}_{2}^{+}$		$(1.1 \pm 0.2) \times 10^8$	p.r., opt.	P.b.k. at 275 nm in soln. contg. 0.01 mol L^{-1} formate and oxygen; $k = 7.0 \times 10^7$ at $I = 0.5$ (NaClO ₄) and 3.2×10^7 in 0.5 mol L^{-1} formate. pH probably 6.7.	761109
117	Manganese(II) pyrophosphate complex					
	$\mathrm{HO}_{2}/\mathrm{O}_{2}^{-} + \mathrm{Mn}(\mathrm{II}) \rightarrow \mathrm{Mn}(\mathrm{III}) + \mathrm{H}_{2}\mathrm{O}_{2}$	1.1 6.5	1.31×10^{6} 2.6×10^{7}	p.r., opt.	P.b.k. at 260 nm in soln. contg. 10^{-2} mol L^{-1} Na pyrophosphate, 10^{-2} mol L^{-1} formate, $1.5-5 \times 10^{-4}$ mol L^{-1} Mn(II); k varies from 3×10^5 to 4.4×10^7 with pH 0.14.7 18	84A910
	$O_2^- + Mn(II) \rightarrow Mn(III) + H_2O_2$	7.3	1.3×10^7	p.r., opt.	10^{-4} mol L ⁻¹ MnSO ₄ , 10^{-4} mol L ⁻¹ pyro-	82A455
		7.8	$\sim 6 imes 10^{6}$	enz.,	P.b.k. at 258 nm; ϵ (Mn ³⁺) = 6 × 10 ³ mol	76R190
				opt.	L ⁻¹ cm ⁻¹ ; xanthine-xanthine oxidase sys- tem contg. 10^{-5} mol L ⁻¹ MnCl ₂ , 5×10^{-2} mol L ⁻¹ Na pyrophosphate and SOD, as- suming $k(O_2^- + SOD) = 2.3 \times 10^9$.	
118	Manganese(II) sulfate					
	$HO_2 + MnSO_4 \rightarrow Mn(O_2)SO_4^-$	2.7-3.4	$\sim 6 \times 10^6$	p.r., opt.	P.b.k. at 230-270 nm in soln. contg. $1-2 \times 10^{-2}$ mol L ⁻¹ Mn ²⁺ , 0.1 mol L ⁻¹ Na sulfate and 5-20 $\times 10^{-1}$ mol L ⁻¹ formate. Com- plex mechanism.	84A910
	$O_2^- + MnSO_4 \rightarrow Mn(O_2)SO_4^-$	5.1-5.6	5.2×10^7	p.r., opt.	P.b.k. at 270 nm in soln. contg. $1-5 \times 10^{-3}$ mol L ⁻¹ Mn ²⁺ . 0.1 mol L ⁻¹ Na sulfate and	84A910

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

J. Phys. Chem. Ref. Data, Vol. 14, No. 4, 1985

 $1-2 \times 10^{-3}$ mol L $^{-1}$ formate.

No.	Reaction	pH	$k (L \text{ mol}^{-1}\text{s}^{-1})$	Method	Comment	Ref.
119	Manganese(11) formate $HO_2 + Mn(HCO_2)_2 \rightarrow Mn(O_2)(HCO_2)_2^-$	2.2-3.0	$\sim 6 \times 10^{6}$	p.r., opt.	P.b.k. at 260 nm, $3-18 \times 10^{-3}$ mol L ⁻¹ Mn ²⁺ , and 0.4 mol L ⁻¹ formate. Complex mechanism	84A910
	$O_2^- + Mn(HCO_2)_2 \rightarrow Mn(O_2)(HCO_2)_2^-$	5.7-7.1	4.3×10^{7}	p.r., opt.	P.b.k. at 270 nm in soln. contg. 4.15×10^{-3} mol L ⁻¹ Mn ²⁺ and 0.4 mol L ⁻¹ formate.	84A910
120	Nitrilotriacetatomanganate(II) ion	n				
	$HO_2/O_2^- + MnNTA^- \rightarrow$	4.5 5.5	4.0×10^{8} 1.2×10^{8}	p.r., opt.	P.b.k. at 350 and 470 nm.	78A436
121	Ethylenediaminetetraacetatomana	anate(II) ion				
	$HO_2/O_2^- + MnEDTA^{2-} \rightarrow$	4.5	3.0×10^7	p.r., opt.	P.b.k. at 350 and 475 nm.	78A436
		5.5	$7.5 imes10^{6}$			
122	Tetrakis(4-N-methylovridyl)nornh	inemanganes	(III) ion			
122	O_{2}^{-} + MnTMpyP ³⁺ \rightarrow	5.6	$(5.1 \pm 0.5) \times 10^7$	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol	82A319
		8.0	$(4.0 \pm 0.4) \times 10^7$		L^{-1} Na formate and 2 \times 10 ⁻³ mol L^{-1}	
		10.1	2.2×10^7	enz	phosphate buffer. Beauchamp-Fridovich assay; rel. to Nitro Blue Tetrazolium conversion to formazan (NBT ²⁺ rate not given).	81R125
123	Tetrakis-4-(N, N, N -trimethylamm HO ₂ /O ₂ ⁻ + MnTAPP ⁵⁺ \rightarrow	5.6 8.0	$\begin{array}{l} \text{ orphinemanganese(III) io} \\ (1.3 \pm 0.1) \times 10^7 \\ (2.9 \pm 0.3) \times 10^6 \end{array}$	n p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L ⁻¹ Na formate and 2×10^{-3} mol L ⁻¹	82A319
	$O_2^- + MnTAPP^{s_+} \rightarrow$		See comment		phosphate buffer. Method not given (enz. or p.r.), k (cataly- tic) = 3×10^6 ; pH not given, reaction in $0.5 \text{ mol } \text{L}^{-1}$ carbonate buffer. Probably pH 8-10.	82 R 172
124	Tatrakis(n-sulfanatanhanyl)narnh	inatomangang	te(III) ion			
124	$HO_2/O_2^- + MnTPPS^{3-} \rightarrow$	5.6	$\leq 6 \times 10^5$	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol	82A319
		8.0	$\leqslant 7 \times 10^4$	r - / - r -	L^{-1} Na formate and 2 \times 10 ⁻³ mol L^{-1} phosphate buffer.	
125	Ethylenediaminetetraacetatomang	anate(III) ior	L			
	$O_2^- + MnEDTA^- \rightarrow MnEDTA^{2-} + O_2$. 10.0	\sim (5 ± 1) × 10 ⁴	KO ₂ , s.f., opt.	D.k. at 500 nm (Mn ^{III}); soln. contains KMn ^{III} EDTA which is probably a hydroxo species.	79A329
126	1.2-Cvclohexanediaminetetraaceta	atomanganate	III) ion			
	$HO_2/O_2^- + MnCyDTA^- \rightarrow O_2 + MnCyDTA^{2-}$		$\sim 1 \times 10^{6}$	KO2, opt., s.f.	D.k. at 500 nm; pH not given explicitly.	79A329
127	Permanganate ion HO ₂ /O ₂ ⁻ + MnO ₄ ⁻ \rightarrow H ⁺ + MnO ₄ ⁻ + O ₂	2	8 × 10 ⁶	p.r., opt.	D.k.	650385
128	Octacyanomolybdate(IV) ion $HO_2/O_2^- + Mo(CN)_8^{+-} \rightarrow Mo(CN)_8^{} + H_2O_2$	2.0	$(5.7 \pm 0.6) \times 10^4$	p.r., opt.	P.b.k. at 385 nm in soln. contg. 0.3 mol L^{-1} formate and HClO ₄ and O ₂ .	761140
129	$\begin{array}{l} \textbf{Octacyanomolybdate(V) ion}\\ \textbf{O}_2^- + \textbf{Mo}(\textbf{CN})_8^{3^-} \rightarrow\\ \textbf{Mo}(\textbf{CN})_8^{4^-} + \textbf{O}_2 \end{array}$	8.3–10.4	$(3.0 \pm 0.3) \times 10^{5}$	p.r., opt.	D.k. at 385 nm in soln. contg. O_2 and Mo(IV), Mo(V), and 5 \times 10 ⁻³ mol L ⁻¹ NaClO ₄ .	761140
120	Artida nadical					
130	Aziue radical $O_2^- + \cdot N_3 \rightarrow N_3^- + O_2$		$(1.2 \pm 0.2) \times 10^{10}$	p.r., opt.	D.k. in O ₂ -satd. soln at 278 nm; cor. for $k(\cdot N_3 + \cdot N_3)$; pH not given explicitly, probably 8.5-10.8.	81A2.16

REACTIVITY OF HO₂/O₂ RADICALS IN AQUEOUS SOLUTION

No.	Reaction	pH	$k (L \text{ mol}^{-1}\text{s}^{-1})$	Method	Comment	Ref.			
131	Hydroxylamine, $pK_a = 6$ HO ₂ + NH ₂ OH ⁺ /NH ₂ OH \rightarrow	1.1-10.5	<44	p.r., s.f., opt.	D.k. at 250–270 nm in soln. contg. 0.01–0.2 mol L^{-1} NH ₂ OH, 0.001–1 mol L^{-1} for-	84A908			
	$O_2^- + NH_2OH_2^+/NH_2OH \rightarrow$	1.1–10.5	<35	p.r., s.f., opt.	hate and EDTA; studied as a function of pH. See paper for limiting rates at all pH. Authors feel there is negligible reaction. D.k. at 250-270 nm, 0.01-0.2 mol L^{-1} NH ₂ OH, 0.001-1 mol L^{-1} formate, EDTA; studied as a function of pH. See paper for limiting rates at all pH Authors	84A908			
					feel there is negligible reaction.				
132	Nitrogen dioxide $HO_2 + NO_2 \rightarrow HO_2NO_2$	1.85	$4 imes 10^9$	p.r., opt.	Deduced from p.b.k. at 350 nm and d.k. of transient (nitroform) in soln. contg. oxy-	750347			
					gen, formic acid and tetranitromethane; reverse reaction is interpreted to have $k = 0.014 \pm 0.002$ s ⁻¹ .				
133	Nitrite ion								
	$\frac{\mathrm{HO}_2/\mathrm{O}_2^- + \mathrm{NO}_2^-}{\mathrm{NO}_2^{2-} + \mathrm{O}_2} \rightarrow$		$5 \times 10^{\circ}$	γ-r.	Obs. $G(NF^{-})$ in soln. contg. tetranitromethane.	750403			
134	24 577121714. Hovemathyl. 1 4 8 11-tetraggevelotetradesenaniskal(II) ion								
104	$HO_2 + Ni(aneN_4)^{2+} \rightarrow$ H ⁺ + O ₂ + Ni(aneN ₄) ³⁺	0.3	$(1.1 \pm 0.2) \times 10^7$	p.r., opt.	P.b.k. in soln. contg. H_2O_2 and 0.5 mol L^{-1} acid; acid catalyzed.	79A038			
125									
135	Tetrakis(4- N -methylpyridyl)porphi HO ₂ /O ₂ ⁻ + NiTMpyP ⁴⁺ \rightarrow	5.6 8.0	$ \begin{array}{l} \bullet \\ \leqslant 6 \times 10^5 \\ \leqslant 8 \times 10^4 \end{array} $	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L^{-1} Na formate and 2×10^{-3} mol L^{-1} phosphate buffer.	82A319			
136	Tetrakis-4-(N.N.N-trimethylammo	nio)nhenvluorn	hipenickel(11) ion						
	HO_2/O_2^- + NiTAPP ⁴⁺ \rightarrow	5.6 8.0	$ 8 \times 10^{5} $	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L^{-1} Na formate and 2×10^{-3} mol L^{-1} phosphate buffer.	82A319			
137	Tetrakis(<i>p</i> -sulfonatophenyl)porphi	natonickelate(I	I) ion						
	$HO_2/O_2^- + NiTPPS^{4-} \rightarrow$	5.6 8.0	$ \begin{array}{l} \leqslant 6 \times 10^{5} \\ \leqslant 7 \times 10^{4} \end{array} $	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L^{-1} Na formate and 2×10^{-3} mol L^{-1} phosphate buffer.	82A319			
138	5,7,7,12,12,14-Hexamethyl-1,4,8,1	1-tetraazacyclo	tetradecanenickel(III)	ion		-			
	$HO_2/O_2^- + Ni(aneN_4)^+ \rightarrow Ni(aneN_4)^{2+} + O_2$	2.0	$(1.0 \pm 0.2) \times 10^{\circ}$	p.r., opt.	D.K.	79A038			
	$O_2^- + Ni(aneN_4)^{3+} \rightarrow Ni(aneN_4)^{2+} + O_2$	6.2	$(2.1 \pm 0.4) \times 10^9$	p.r., opt.	D.k.	79A038			
139	5,7,7,12,12,14-Hexamethyl-1.4.8.1	1-tetraazacyclo	tetradeca-4,11-dieneni	ickel(III) ion					
	$HO_2/O_2^- + Ni(4,11\text{-diene}N_4)^{3+}$ $\rightarrow Ni(4,11\text{-diene}N_4)^{2+} + O_2$	2.0	$(1.6 \pm 0.3) \times 10^{5}$	p.r., opt.	D.k.	79A038			
	$O_2^- + \text{Ni}(4,11\text{-dieneN}_4)^{3+} \rightarrow \text{Ni}(4,11\text{-dieneN}_4)^{2+} + O_2$	6.2	$(1.6 \pm 0.4) \times 10^9$	p.r., opt.	D.k.	79A038			
140	5,7,7,12,12,14-Hexamethyl-1,4,8,1	1-tetraazacyclo	tetradeca-1,4,8,11-teti	aenenickel(II)	I) ion				
	HO_2/O_2^- + Ni(1,4,8,11-tetraeneN ₄) ³⁺ → O_2 +	2.0	$(8.5 \pm 1.0) \times 10^5$	p.r., opt.	D.k.	79A038			

 $(1.0 \pm 0.2) \times 10^9$ p.r., opt. D.k.

Ni(1,4,8,11-tetraeneN₄)²⁺

Ni(1,4,8,11-tetraeneN₄)²⁺

 $O_2^- + Ni(1,4,8,11-tetraeneN_4)^{3+}$ 6.2 $\rightarrow O_2 +$

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

79A038

No.	Reaction	pH	$k (L mol^{-1}s^{-1})$	Method	Comment	Ref.
141	Hydroxyl HO ₂ + OH \rightarrow H ₂ O ₃	0.46-6.76	0.71 × 10 ¹⁰	p.r., opt.	Calcd. from G values for oxygenated aque- ous H_2O_2 with sulfuric and perchloric acid: product deta, in [630075].	680014
	$O_2^- + OH \rightarrow OH^- + O_2$	0.46-6.76	1.01 × 10 ¹⁰	p.r., opt.	Calcd. from G values for oxygenated aque- ous H_2O_2 with sulfuric and perchloric acid.	680014
142	Oxygen ion(1-) $O_2^- + O^- \rightarrow OH^- + OH^- + O_2$	13-14	$(6.0 \pm 1.0) \times 10^8$	p.r., opt.	D.k. at 430 nm (O_3^-) as well simultaneous buildup at 250 nm (O_2^-) and decay, in soln. satd. with 4 MPa N ₂ O and 0-1 MPa O ₂ ; computer simulation.	82A133
143	Hydrogen peroxide HO ₂ + H ₂ O ₂ → OH +	0.5-3.5	0.50 ± 0.09	γ-r.,	Obs. oxygen yield in 0.08-1.5 mol L^{-1}	79A001
	$H_2O + O_2$	2.3	3.0 ± 0.6	chem. γ-r.,	H_2O_2 soln.; pH independent rate. Calcd. from obs. decrease in $[H_2O_2]$ under	78A362
		~2	<5	chem. phot.	2 atm N ₂ or O ₂ . Data fitting; soln. under 10–100 atm. H ₂ .	767025
		0.8-1.5	0.20 ± 0.01	γ-r., chem.	C.k.; obs. $G(-H_2O_2)$; includes $k(H_2O_2 + H_2O_2 \rightarrow H_3O^+ + O_2 + OH)$; rel. to $k(HO_2 + HO_2) = 1.1 \times 10^6$	690643
		1	1×10^{-2}	γ-r., chem.	Mechanistic fit; k at 10°C; $[H_2O_2] \sim 1-35$ mol L ⁻¹ .	650046
	$HO_2/O_2^- + H_2O_2 \rightarrow OH + H_2O + O_2$	nat.	1.1	γ-r., chem.	k at O°C. no pH effects considered.	530014
		nat.	3.7 ± 1.6	phot., chem.	Propagation step in chain reaction; k at 25°C; no pH effects considered.	530014
	$O_2^- + H_2O_2 \rightarrow OH^- + OH + O_2$	7.0–9.9	0.13 ± 0.07	γ-r., chem.	Obs. O ₂ yield as function of $[H_2O_2]$ in soln. contg. 0.08-1.5 mol L ⁻¹ H ₂ O ₂ ; assumed values of radical combination rates and pK: pH independent rate.	79A001
		5.4–7.85	2.25 ± 0.20	γ-r., chem.	Obs. $G(-H_2O_2)$ vs dose rate or $[H_2O_2]$.	78A364
		9.6	<0.23 ± 0.09	γ-r.	Anal. for hydroxylated products in soln. contg. 5×10^{-4} mol L ⁻¹ benzoate and H ₂ O ₂ .	78A389
		5.4-9.4	<10 ⁻⁴	KO2	No redn. of 7×10^{-3} mol L ⁻¹ p- nitrosodimethylaniline obs. (by OH formed in reaction). Limiting value.	779154
144	Hydroperoxide ion $O_2^- + HO_2^- \rightarrow H_2O_2 + O_2$	8.9–12.7	<2	KO2, opt.	D.k at ~250 nm.	769352
145	$\begin{array}{l} \textbf{Ozone} \\ O_2^- + O_3 \rightarrow O_3^- + O_2 \end{array}$	8.410.3	$(1.52 \pm 0.05) \times 10^9$	p.r., opt.	P.b.k. at 430 nm in soln. contg. 0.025–0.1 mol L^{-1} HCO ₃ /CO ₃ ²⁻ and (0.41–1.71) × 10 ⁻⁴ mol L^{-1} ozone.	83A117
146	Osmium tetroxide $HO_2 + OsO_4 \rightarrow H^+ + O_2 + OsO_4^-$	<1	5.7 × 10 ⁵	γ-r., chem.	C.k.; obs. $G(H_2O_2)$; dose rate 9.7 × 10 ¹⁸ eV cm ⁻³ h ⁻¹ ; rel. to $k(HO_2 + HO_2) = 2.35 \times 10^6$.	640050
147	Pentaammine(isonicotinamide)ruth $HO_2/O_2^- + Ru(NH_3)sisn^{2+} \rightarrow$ $HO_2^- + Ru(NH_3)sisn^{3+}$	enium(II) ion 2.35	$(9.07 \pm 0.54) imes 10^{6}$	p.r., opt.	P.b.k. in soln. contg. 0.1 mol L^{-1} formic acid, k for third-order H ⁺ catalyzed reaction $<5.7 \times 10^6 L^2 \text{ mol}^{-2} \text{ s}^{-1}$.	80A317
148	Pentaammine(isonicotinamide)ruth HO ₂ + Ru(NH ₃) $sisn^{3+} \rightarrow H^+ +$	enium(III) ion 3.3–4.9	$< 2.0 \times 10^{6}$	p.r., opt.	P.b.k.; $I = 0.1$.	80A317
	$\begin{array}{rcl} Ru(NH_3)_5isn^{2+} + O_2 \\ O_2^- &+ & Ru(NH_3)_5isn^{3+} &\rightarrow \\ Ru(NH_3)_5isn^{2+} &+ & O_2 \end{array}$	3.86-4.91	$(2.18 \pm 0.19) \times 10^8$	p.r., opt.	P.b.k. in O_2 -satd. soln. contg. formate; $I = 0.1$	80A317

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

REACTIVITY OF HO_2/O_2 RADICALS IN AQUEOUS SOLUTION

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions - Continued

No.	Reaction	pH	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
	· · · · · · · · · · · · · · · · · · ·			<u></u>		
149	$\begin{array}{l} \textbf{Tris(2,2'\text{-bipyridinc})ruthenium(III) ion} \\ HO_2 + Ru(bpy)^{\frac{3}{2}+} \rightarrow H^+ + \\ Ru(bpy)^{\frac{3}{2}+} + O_2 \end{array}$	~1	$(1.25 \pm 0.1) \times 10^{7}$	f.p., opt.	D.k. at 450 nm in air-satd. soln. contg. 0.5 mol L^{-1} H ₂ SO ₄ .	82A198
150	Sulfide ion HO ₂ /O ₂ ⁻ + S ²⁻ \rightarrow	7.8	$1.5 imes10^{6}$	enz., opt.	Xanthine-xanthine oxidase system; c.k., rel. to $k(\text{HO}_2/\text{O}_2^- + \text{adrenaline}) = 4 \times 10^4$.	76R183
151	Sulfite ion $HO_2/O_2^- + SO_3^{2-} \rightarrow$ $SO_3^- + OH^- + H_2O_2$	9.8	82	p.r., opt.	D.k. at 245 nm in aerated soln. contg. 3×10^{-3} mol L ⁻¹ sulfite ion and 0.3 mol L ⁻¹ formate ion; data fitting with $2k(O_7^- + O_2^-) = 2500$ and $\epsilon(O_2^-) = 2000$ L mol ⁻¹ cm ⁻¹ .	. 81G067
152	$\begin{array}{l} \textbf{Thiocyanogen} \\ HO_2 + SCN \rightarrow H^+ + SCN^- + O_2 \end{array}$	1	1.6 × 10 ⁹	p.r., opt.	C.k.; pH effect on decay SCN + SCN \rightarrow (SCN) ₂ .	650386
153	Tellurate(IV) ion HO ₂ + TeO ₃ ²⁻ \rightarrow TeO ₃ + OH	0.4	1.9 × 10 ²	γ-r., chem.	C.k.; more than one rate involved in calcn.; rel. to $k(HO_2 + HO_2) = 2.5 \times 10^6$.	680356
154	Thorium(IV) ion $HO_2 + Th^{4+} \rightarrow Th(IV)-HO_2$	1	$(1.8 \pm 0.2) \times 10^{6}$	p.r., opt.	P.b.k.	741107
		~1	≥ 5 × 10°	esr	D.k. as well as p.b.k.; radical from Ce(IV)-H ₂ O ₂ .	739071
155	Thorium(IV)-hydroperoxy complex HO ₂ + Th(IV)-HO ₂ \rightarrow Th ⁴⁺ + H ₂ O ₂ + O ₂	1	$(8.0 \pm 2.0) \times 10^{5}$	esr	Radical from Ce(IV)-H ₂ O ₂ ; $k(\text{Th}(\text{IV})\text{-HO}_2 \rightarrow \text{Th}(\text{IV}) + \text{H}_2\text{O}_2 + \text{O}_2)$ $= (5 \pm 2) \times 10^2.$	739071
156	Thallium(II) ion $HO_2 + Tl^{2+} \rightarrow H^+ + Tl^+ + O_2$	1	$(2.5 \pm 1) \times 10^{9}$	p.r., opt.	D.k. (Tl ²⁺); rel. to $k(Tl^{2+} + Tl^{2+}) = 2.3 \times 10^{\circ}$.	660097
157	Uranyl(VI) ion $HO_2 + UO_2^{2+} \rightarrow UO_2 - HO_2^{2+}$	1 .	$(1.5 \pm 0.1) \times 10^{5}$	p.r., opt.	P.b.k. and d.k.	741107
		~1	$> 1 \times 10^{5}$	esr	D.k. as well as p.b.k.; radical from Ce(IV)-H ₂ O ₂ .	739071
158	Dioxouranium(VI)-hydroperoxy compl HO ₂ + UO ₂ -HO ²⁺ \rightarrow UO ²⁺ +	ex	$(5 \pm 1) \times 10^{5}$	D.T., ODL	P.b.k. and d.k.: $k(UO^{2+}-HO_{2} \rightarrow UO^{2+} +$	741107
	$H_2O_2 + O_2$	~1	$(9.0 \pm 1.5) \times 10^{5}$	esr.	$H_2O_2 + O_2 = (8 \pm 2) \times 10^4$. P.b.k. as well as d.k.	739071
		-	,			
159	Oxoperoxyvanadium(IV) ion $HO_2/O_2^- + VO(O_2)^+ \rightarrow$		$(9.4 \pm 1) \times 10^4$	esr	Radical from Ce(IV)-H ₂ O ₂ ; flow tech- nique; 0.1 mol L ⁻¹ HClO ₄ soln.; rel. to $k(HO_2 + HO_2) = 9 \times 10^5$.	709058
160	Tetrakis(4-N-methylpyridyl)porphinate	ezinc(II) io)n			00.1010
	$HO_2/O_2^- + ZnTMpyP^{4+} \rightarrow$	5.6 8.0	$\begin{array}{l} \leqslant 8 \times 10^{5} \\ \leqslant 7 \times 10^{4} \end{array}$	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L ⁻¹ Na formate and 2×10^{-3} mol L ⁻¹ phosphate buffer.	82A319
	$O_2^- + ZnTMpyP^{4+} \rightarrow$		See comment		Method not given (enz. or p.r.), k (cataly- tic) $\leq 10^5$; pH not given, reaction in 0.5 mol L ⁻¹ carbonate buffer.	82R172
161	Tetrakis-4-(<i>N</i> , <i>N</i> , <i>N</i> -trimethylammonio)	ohenylporp	hinezinc(II) ion			
	$HO_2/O_2^- + ZnTAPP^{4+} \rightarrow$	5.6 8.0	$\begin{array}{l} \leqslant 8 \times 10^{5} \\ \leqslant 1 \times 10^{5} \end{array}$	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L ⁻¹ Na formate and 2×10^{-3} mol L ⁻¹ phosphate buffer.	82A319

No:	Reaction	рН	$k (L mol^{-1}s^{-1})$	Method	Comment	Ref.
162	Tetrakis(p -sulfonatophenyl)porphin HO ₂ /O ₂ ⁻ + Z _n TPPS ⁴⁻ \rightarrow	natozineate(II) 5.6 8.0	ion $\leqslant 6 \times 10^{5}$ $\leqslant 7 \times 10^{4}$	p.r., opt.	D.k. at 254 nm in soln. contg. 5×10^{-3} mol L^{-1} Na formate and 2×10^{-3} mol L^{-1} phosphate buffer.	82A319
163	Bis(2-pyridinecarboxylato)zinc(II) HO ₂ /O ₂ ⁻ + Zn(2-pyCO ₂) ₂ →			p.r., opt.	D.k. at 250 nm in N ₂ O/O ₂ (4:1) satd. soln. contg. 0.1 mol L^{-1} formate; pH not given, probably 8.5; no reaction obs.	83A209
164	Acetate ion $O_2^- + CH_3CO_2^- \rightarrow$	10.1	<0.06	e−r., s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA and 0.01–0.1 mol L^{-1} acetate; no reaction.	770046
165	2-Acetylaminofluorene HO ₂ /O ₂ ⁻ + C ₁₃ H ₉ NHCOCH ₃ \rightarrow		~3.5 × 10 ⁷	p.r.	C.k. in soln. contg. 0.01 mol L^{-1} CTAB; rel. to $k (O_2^- + Q) = 9.5 \times 10^8$. pH not given.	78A367
166	Acetyl peroxide $HO_2/O_2^- + (CH_3CO)_2O_2 \rightarrow$		2×10^7	p.r., opt.	C.k. with benzoquinone; pH not given.	81A374
167	Adrenaline HO ₂ /O ₂ ⁻ + Adr \rightarrow AdrO + H ₂ O ₂	7.8 9.5	$5.4 imes 10^4$ $2.5 imes 10^4$	enz., opt.	P.b.k. at 485 nm (buildup of adre- nochrome); xanthine-xanthine oxidase sys-	78A483
		7.8	4.0 × 10 ⁴	enz., opt.	tem, no buffers. Xanthine-xanthine oxidase system; c.k. with Cu,Zn-SOD from spinach, $k(O_2^- + SOD) = 2.3 \times 10^9$.	76R183
168	Adrenalone $HO_2/O_2^- + Adr \rightarrow AdrO_2$	7.0	$(2.34 \pm 0.31) \times 10^{7}$	p.r.	C.k.; rel. to $k(O_2^- + DCIP) = 2.14 \times 10^8$.	79A240
169	DI-Alanine, $pK_a = 2.3, 9.8$ HO ₂ + Ala \rightarrow	1.6	<44 ± 11.0	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹	79A358
	$O_2^- + Ala \rightarrow$	10.0	<0.06 ± 0.02	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ alanine, no reaction.	79A358
170	Alloxan $HO_2/O_2^- + Al \rightarrow O_2 + \cdot AlH$	5.7	(5 ± 1) × 10 ⁵	p.r., opt.	Buildup and decay of dialuric acid (275 nm) and semiquinone at 310 and 370 nm in soln contg. 0.1 mol L ⁻¹ formate ion, 1.46 \times 10 ⁻⁴ mol L ⁻¹ O ₂ , 5 \times 10 ⁻³ mol L ⁻¹ alloxan; assumed mechanism, ϵ (-AIH) = 4000(275), 4900(310) and 1900(370 nm), ϵ (A1) = 16000(275) and 160(310 nm).	81A271
171	Alloxan semiquinone HO ₂ /O ₂ ⁻ + ·AlH \rightarrow Al + H ₂ O ₂	5.7	$(2.5 \pm 0.5) \times 10^8$	p.r., opt.	Buildup and decay of dialuric acid (275 nm) and semiquinone at 310 and 370 nm in soln contg. 0.1 mol L ⁻¹ formate ion, 1.46 \times 10 ⁻⁴ mol L ⁻¹ O ₂ , 5 \times 10 ⁻³ mol L ⁻¹ alloxan; assumed mechanism, ϵ (-AIH) = 4000(275), 4900(310) and 1900(370 nm), ϵ (AI) = 16000(275) and 160(310 nm).	81A271
172	Arachidonate ion $O_2^- + A^- \rightarrow$	alk.	10 ⁻² -10 ⁻¹	s.f., opt.	Anaerobic conditions; 85% v/v EtOH in 0.001-0.01 mol L^{-1} KOH/H ₂ O. D.k. at	83A087
		11.0	<1	p.r., opt.	240-270 nm. Reaction negligible. D.k. in soln. contg. 0.6 mol L^{-1} formate, 0.01 mol L^{-1} arachidonate.	78A365

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

HEACTIVITY OF HO₂/O₂ RADICALS IN AQUEOUS SOLUTION

TABLE 3.	Rate constants for reactions of HO ₂ /O ₂ in aqueous solutions — Continued								
	рН	k (L mol ⁻¹ s ⁻¹)	Method	Comment	Ref.				
	acid	$(3.05 \pm 0.29) \times 10^3$	s.f., opt.	85% v/v ethanolic soln.; d.k. at 240–270 nm; 0.05 mol L^{-1} H ₂ SO ₄ .	83A087				
.82, 9, 12.5	1.6	<63.0 ± 14.0	γ–r., s.f., opt.	D.k. in O_2 -satd. soln. contg. formate and 5×10^{-5} mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ arginine: upper limit.	79A358				
	10.1	<0.13 ± 0.03	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5×10^{-5} mol L ⁻¹ EDTA and 0.15 mol L ⁻¹ arginine; no reaction.	79A358				

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions --- Continued

No.

Reaction

_						
173	Arachidonic acid $HO_2 + AH \rightarrow$	acid	$(3.05 \pm 0.29) \times 10^3$	s.f., opt.	85% v/v ethanolic soln.; d.k. at 240–270 nm; 0.05 mol L^{-1} H ₂ SO ₄ .	83A087
174	L-Argininc, $pK_a - 1.62$, 9, 12.5 HO ₂ + Arg \rightarrow	1.6	<63.0 ± 14.0	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5×10^{-5} mol L ⁻¹ EDTA and 0.1 mol L ⁻¹	79A358
	$O_2^- + Arg \rightarrow$	10.1	<0.13 ± 0.03	γ-r., s.f., opt.	arginine; upper mint. D.k. in O_2 -satd. soln. contg. formate and 5×10^{-5} mol L^{-1} EDTA and 0.15 mol L^{-1} arginine; no reaction.	79A358
175	Ascorbate oxidase HO ₂ /O ₂ ⁻ + AAO →	7.5		p.r., opt.	D.k. at 250 and 610 nm in oxygenated soln. contg. 2×10^{-6} mol L ⁻¹ AAO and 0.1 mol L ⁻¹ formate ion; no bleaching at 610 nm; no reaction obs.	83A147
176	Ascorbate radical anion $HO_2 + \cdot A^- \rightarrow HO_2^- + A$	1.42–2.72	$(5.0 \pm 0.5) \times 10^9$	p.r., opt.	D.k. at 360 nm (A. ⁻) in O ₂ -satd. soln. contg. (0.1 1) \times 10 ⁻³ mol L ⁻¹ AH.	83A103
	$O_2^- + A^- \rightarrow OH^- + HO^- + A$	7.8, 8.0	$(2.6 \pm 0.4) \times 10^{8}$	p.r., opt.	D.k. at 360 nm (A· $$) in O ₂ -satd. soln.	83A103
		7.4	<2.3 × 10 ⁸	chem., opt.	Estd. from $k(AH^- + O_2)[AH^-]/k(\cdot A^- + O_2)[\cdot AH] = 22 s^{-1} detd. in soln. contg. ascorbate, catalase, FeEDTA- and SOD, followed at 265 nm.$	83R034
177	Ascorbic acid, $pK_a = 4.1$ HO ₂ + AH ₂ $\rightarrow \cdot A^-$ + H ₂ O ₂	0.3-1.0	1.6 × 10 ⁴	s.f., opt.	D.k. in soln. contg. 0.1 mol L^{-1} formate	83A103
	$HO_2 + AH^- \rightarrow A^- + H_2O_2$	3-8		s.f., opt.	Fitting process gave $k + 0.356k(O_2^- + 0.100)$	83A103
	$HO_2/O_2^- + AH_2/AH^- \rightarrow A^-$	~3	$(1.25 \pm 0.15) \times 10^{6}$	f.p., opt.	AH_2 = 1.22 × 10 ² . P.b.k. at 360 nm; cor. for $\cdot A^-$ decay; detd.	79A340
	$\begin{array}{l} + H_2O_2 \\ HO_2/O_2^- + AH_2/AH^- \rightarrow A^- \\ + H_2O_2 \end{array}$	7.4	2.7×10^{5}	enz., opt.	from pH dependence (3-8); $I = 0.02$. D.k. at 249.6 nm in soln. contg. 0.1 mol L^{-1} phosphate buffer and xanthine- xanthine oxidase. Observed rate. Rel. to $k(O_{-}^{-1} + SOD) = 1.0 \times 10^{9}$	751031
	$O_2^- + AH^- \rightarrow HO_2^- + \cdot A^-$	3-8	$(5.75 \pm 0.35) \times 10^4$	f.p., opt.	$R(O_2 + SOD) = 1.9 \times 10^{-1}$ P.b.k. at 360 nm; cor. for A^- decay; detd.	79A340
		9.9	$(1.52 \pm 0.1) \times 10^{5}$	s.f., opt.	From pH dependence (3-8); $I = 0.02$. D.k. at 270 nm in air-satd. soln. contg. 0.2 mol L ⁻¹ formate and 2 × 10 ⁻⁴ mol L ⁻¹ EDTA; cor. for O ₂ ⁻ decay. Factor of 2 should be considered to recalculate rate	770046
	$O_2^- + AH^- \rightarrow$ unidentified product	8.2–11.0	5 × 10 ⁴	s.f., opt.	D.k. in soln. contg. 0.1 mol L^{-1} formate ion. Rate taken from pH vs k_{obs} study. Products not determined.	83A103
178	DL-Asparagine, $pK_{1} = 2.213, 8.85$					
	$HO_2 + Asn \rightarrow$	1.4	<53.8 ± 10.0	γ–r., s.f., opt.	D.k. in O ₂ -satd. formate soln. contg. 5×10^{-5} mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ as-	79A358
	$O_2^- + Asn \rightarrow$	10.1	$< 0.16 \pm 0.02$	γ–r., s.f., opt.	D.k. in O ₂ -satd. formate soln. contg. 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ asparagine; no reaction.	79A358
179	DL-Aspartic acid, $pK_a = 2.1, 4.0, 9$.82				
	$HO_2 + Asp \rightarrow$	1.5	$<12.0 \pm 4.0$	γ–r., s.f., opt.	D.k. in O ₂ -satd. formate soln. contg. 5×10^{-5} mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ aspartic acid: upper limit.	79A358
	$O_2^- + Asp \rightarrow$	10.0	$<0.18 \pm 0.04$	γ-r., s.f., opt.	D.k. in O ₂ -satd. formate soln. contg. 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ aspartic acid; no reaction.	79A358

No.	Reaction	pН	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
180	Benzidine HO ₂ /O ₂ ⁻ + H ₂ NC ₆ H ₄ C ₆ H ₄ NH ₂ \rightarrow		>25 × 10 ⁷	p.r.	C.k.; rel. to $k(O_2^- + Q) = 9.5 \times 10^8$; pH' not given	78A367
181	Benzo[a]pyrene HO ₂ /O ₂ ⁻ + C ₂₀ H ₁₂ →		<1 × 107	p.r.	C.k.; rel. to $k(O_2^- + Q) = 9.5 \times 10^8$; pH not given.	78A367
182	1,4-Benzoquinone	_				
	$O_2^- + Q \rightarrow Q^{} + O_2$	~1	$(9 \pm 1) \times 10^{\circ}$	p.r., opt.	P.b.k. at 410 nm in O ₂ -satd. soln. contg. 0.5 mol L^{-1} tert-BuOH.	761056
		6.9	9.0 × 10 ⁸ (±10%)	p.r., opt.	P.b.k. at 430 nm in soln. contg. 0.1 mol L^{-1} formate, 2×10^{-5} mol L^{-1} Q and 7×10^{-4} mol L^{-1} Q.	730049
		7.0	$9.8 imes 10^8$	p.r., opt.	P.b.k. at 430 nm in soln. contg. 5×10^{-5} mol L ⁻¹ Q.	730068
		~7	9.6 × 10 ⁸	p.r., opt.	P.b.k. at 430 nm in O_2 —satd. soln. contg. 10^{-4} mol L^{-1} Q and 1.0 mol L^{-1} tert-BuOH.	710619
183	Bilirubin HO ₂ /O ₂ ⁻ + C ₃₃ H ₃₆ N ₄ O ₆ \rightarrow	8.3	2.3 × 10 ⁴	enz., opt.	D.k. at 446 nm; xanthine-xanthine oxidase system.	82R164
184	Biliverdin HO ₂ /O ₂ ⁻ + C ₃₃ H ₃₄ N ₄ O ₆ \rightarrow	8.3	7×10^3	enz., opt.	D.k. at 377 or 650 nm; xanthine-xanthine oxidase system.	82R164
185	1,1'-Bis(2-hydroxyethyl)-4,4'-bipyridin	ium radica	l ion(1+)			
	$O_2 + BP^{+} \rightarrow$	6.8	$(12.0 \pm 1) \times 10^{8}$	p.r.	Ar-satd. soln. contg. 10^{-3} mol L ⁻¹ BP ²⁺ 2Cl ⁻ , 0.1 mol L ⁻¹ Na formate and ~0.3% O ₂ .	78A321
186	$\begin{array}{l} N\text{-}Bromo\text{-}2,2,6,6\text{-}tetramethylpiperidine}\\ HO_2/O_2^- + (CH_3)_4C_3H_6NBr \rightarrow \\ Br^- + (CH_3)_4C_5H_6N\cdot + O_2 \end{array}$	9.2	1.1 × 10 ³	KO ₂ , esr	Estd. from formn of nitroxide radical by subsequent reaction. DMSO/H ₂ O system contg. 18-crown-6.	79 A 184
187	tert-Butyl allyl peroxide					
	$O_2 + ROOR' \rightarrow$			s.f., opt <u>.</u>	D.k. at 250–270 nm in 80% EtOH soln. with 10^{-2} mol L ⁻¹ KOH, 1×10^{-5} mol L ⁻¹ EDTA, 1.2×10^{-3} mol L ⁻¹ O ₂ ; per- oxide concn. 3×10^{-3} mol L ⁻¹ ; no reac- tion obs.	84A909
	$HO_2 + ROOR' \rightarrow$			s.f., opt.	D.k. at 250-270 nm in 80% EtOH soln. with 5×10^{-2} mol L ⁻¹ H ₂ SO ₄ , 1×10^{-5} mol L ⁻¹ EDTA, 1.2×10^{-3} mol L ⁻¹ O ₂ ; peroxide concn. 3.8×10^{-2} mol L ⁻¹ ; no reaction obs.	84A909
188	tert-Butylbydroquinone					
	$HO_2 + (CH_3)_3CC_6H_3 - 1,4 - (OH)_2 \rightarrow$	0.5–1.0	1.2×10^4	s.f., opt.	D.k. at 240-250 nm in soln. contg. 10^{-2} mol L ⁻¹ formate, EDTA, and substrate from 10^{-4} -2 × 10^{-3} mol L ⁻¹	83A902
	$O_2^- + (CH_3)_3 CC_6 H_3 - 1,4 - (OH)_2 \rightarrow$	5.0-7.0	5×10^4	s.f., opt.	D.k. at 240×10^{-1} mol D $^{-2}$ mol L ⁻¹ formate, EDTA, and substrate from 10^{-4} -2 × 10^{-3} mol L ⁻¹ .	83A902
189	Catechol					
	HO_2 + 1,2-C ₆ H ₄ (OH) ₂ → O_2^- + 1,2-C ₆ H ₄ (OH) ₂ →	0.5–9 0.5–9	$(4.7 \pm 0.5) \times 10^4$ $(2.7 \pm 0.3) \times 10^5$	s.f., opt. s.f., opt.	D.k. at 245 nm; soln. prepd. as in [83G122]. D.k. at 245 nm; soln. prepd. as in [83G122].	82Z254 82Z254

REACTIVITY OF HO_2/O_2 RADICALS IN AQUEOUS SOLUTION

TABLE 3.	Rate constants for reactions of HO_2/O_2^- in aqueous solutions	1	Continued
----------	---	---	-----------

No.	Reaction	pН	$k (L \text{ mol}^{-1}\text{s}^{-1})$	Method	Comment	Ref.
190	Ceruloplasmin HO ₂ /O ₂ ⁻ + Ceruloplasmin →	7.8	1.8 × 10 ⁶	p.r., opt.	D.k. at 610 nm in air-satd. soln. contg. for- mate (type 1 Cu ^{II}). No change in absorp- tion at 330 nm and no marked increase in O_2^- decay at 250 nm. Authors note that this rate may be due to CO_2^- radicals and not O_2^- .	80A220
191	Citrate ion $O_2^- + R(CO_2^-)_3 \rightarrow$	10.1	<0.14	e-r., s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA and 0.01–0.1 mol L^{-1} citrate; no reaction	770046
192	Crocin $O_2^- + \operatorname{crocin} \rightarrow$	5.9		X-r.	No bleaching in oxygenated soln. contg. Na formate; at low pH bleaching occurs indicating HO_2 reactivity.	82R027
193	4-Cyanophenyl- <i>N-tert</i> -butylnitrone HO ₂ /O ₂ ⁻ + 4-CN-PBN \rightarrow OH ⁻ + 4-CN-PBN(OOH)		<6 × 10 ⁶	p.r., opt.	C.k. in O ₂ -satd. soln. contg. <i>tert</i> -BuOH or formate; obs. Q ⁻⁷ at 420 nm; rel. to $k(O_2^- + Q) = 1.0 \times 10^9$; Cf. [80A176], this value seems high.	82A184
194	Cyclobexylperoxy $HO_2 + c - C_6H_{11}O_2 \rightarrow c - C_6H_{11}O_2H + - O_2 - O_2^- + c - C_6H_{11}O_2 \rightarrow c - C_6H_{11}O_2H + O_2$	1.85 6-8	2.26×10^{6} 2.54×10^{8}	γ−r., chem. γ−r., chem.	Detd. H_2O_2 and RO_2H yields; assume $k(RO_2 + RO_2) = 2.7 \times 10^6$; pH not given. Detd. from pH dependence of H_2O_2 and RO_2H yields; assume $k(RO_2 + RO_2) = 2.7 \times 10^6$.	670737 670737
195	Cysteine, pK _s =2, 8.14, 10.34 HO ₂ + CysH ⁺ →	1.4	<601.0 ± 85.0	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ cysteine; also detd. by O ₂ -consumption.	79A358
	$HO_2/O_2^- + Cys \rightarrow$	3-5.1	$\sim 1.8 \times 10^4$	γ-r., chem.	upper limit. Obs. increase in $G(H_2O_2)$ with pH.	740188
	$O_2^- + Cys \rightarrow$	7 10.9	$>5 \times 10^{4}$ <15 ± 2.0	γ-r., chem. γ-r., s.f., opt.	Obs. $G(H_2O_2)$ as function of dose. D.k. in O_2 -satd. soln. contg. formate and 5 $\times 10^{-5}$ mol L ⁻¹ EDTA and 0.05 mol L ⁻¹ cysteine; no reaction.	700882 79A358
196	L-Cystine, $pK_{1} = 7.85$, 9.85, 11.8, 12.4 $O_{2}^{-} + Cyt \rightarrow$	10.0	<0.40 ± 0.07	γ–r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 5 \times 10 ⁻⁴ mol L ⁻¹ cystine; no reaction.	79A358
197	Cytochrome C (ferri), $pK_a = 7.45$, 9.2 HO ₂ + Cyt C (Fe ³⁺) \rightarrow O ₂ + Cyt C (Fe ²⁺)	1.2-6.2		p.r., opt.	No reaction obs.	753093
	$O_2^- + Cyt C (Fe^{2+}) \rightarrow O_2 + Cyt C (Fe^{2+})$	1.84	~6 × 10*	p.r., opt. phot., s.f., opt.	No reaction obs. (550 nm); c.k. D.k. at 550 nm in soln. contg. 10.2 mol L ¹ EtOH. pH not certain in EtOH/H ₂ O mix- ture.	710327 82A021
		7.8 7.3	6×10^{5} 5.84 × 10 ⁵	p.r., opt. f.p., opt.	D.k. at 250 nm. D.k. in soin. contg. 2×10^{-2} mol L ⁻¹ te- tramethylenediamine, 10^{-5} mol L ⁻¹ EDTA, 6×10^{-5} mol L ⁻¹ FMN and 1-4 $\times 10^{-5}$ mol L ⁻¹ cvt C	82A446 82A269
		7.8	$(2.6 \pm 0.1) \times 10^{5}$	p.r., opt.	P.b.k. at 550 nm in soin. contg. 5×10^{-2} mol L ⁻¹ phosphate, 1×10^{-4} mol L ⁻¹ EDTA; pH dependence and effect of ad- ded Cu ²⁺ , see FIGURE 2.	82A281

No.	Reaction	рН	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
		7.2	8.0 × 10 ⁵	p.r., opt.	D.k. at 550 nm in soln. contg. <i>tert</i> -BuOH or glycerol as OH scavenger; k decreases with added detergent; $k = 5 \times 10^4$ extrap-	82N062
		~7	8.0×10^5	p.r., opt.	olated to infinite SDS concn. D.k. at 550 nm in soln. contg. 0.1 mol L^{-1} formate and 2 × 10 ⁻³ mol L^{-1} phosphate;	79A312
		9.0	$(2.6 \pm 0.2) \times 10^{5}$	p.r., opt.	P.b.k. at 550 nm in air-satd. soln. contg. 0.01 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA.	78A361
		9.0	$(2.6 \pm 0.2) \times 10^{5}$	e-r., s.f., opt.	P.b.k. at 550 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 2×10^{-4} mol L^{-1} EDTA and 5-20 $\times 10^{-5}$ mol L^{-1} cyt C; cor. for Q_{-2} decay.	770046
		7.4 8.5	$(5 \pm 0.3) \times 10^{5}$ $(2 \pm 0.2) \times 10^{5}$	p.r., opt.	D.k. at 550 nm in O_2 -satd. soln. contg. 0.1 mol L^{-1} Na formate; also in D_2O (no isotope effect).	771096
		6.6 7.3 8.7 9.2	$\begin{array}{l} 6.2 \times 10^{5} \\ 5.0 \times 10^{5} \\ 2.6 \times 10^{5} \\ 2.0 \times 10^{5} \end{array}$	p.r., opt.	D.k. at 450 and 550 nm in soln. contg. Na formate and O_2 ; $I = 0.1$; E_a , ΔS^{\ddagger} , ΔH^{\ddagger} and I discussed.	761127
		7.1	$(3.1 \pm 0.1) \times 10^{6}$ (cor. for I)	p.r., opt.	P.b.k. at 550 nm in soln. contg. 10^{-3} mol L^{-1} phosphate buffer, 2×10^{-3} mol L^{-1} formate and 2×10^{-5} mol L^{-1} EDTA and 2×10^{-3} mol L^{-1} O ₂ ; $I = 0.1$; observed rate.	761163
		7	2.4×10^{6}	p.r., opt.	P.b.k. k_{obs} vs pH given for pH 6.0-10.5.	751012
		9.3 4.7–6.7	1.5×10^{-9} (1.4 ± 0.15) × 10 ⁶	p.r., opt.	P.b.k. at 550 nm; from pH effect $k = 3.0 \times 10^4$ for the form present above pH 7.45 (pK _a cyt C = 7.45, 9.2). The form present above pH 9.2 does not react	753093
		8.5	$1.1 imes 10^{s}$	p.r., opt.	P.b.k. at 550 nm; at pH 10.4 $k = 8 \times 10^3$.	710327
		8.4	1.6×10^{5}	esr	D.k.; O_2^- from tetraacetylriboflavin + O_2 . Observed rate.	699128
198	Cytochrome C, acetylated HO ₂ /O ₂ ⁻ + Ac-cyt C \rightarrow	~7	3.5×10^{5}	p.r., opt.	D.k. at 550 nm in soln. contg. 0.1 mol L^{-1} formate; $I = 0.1$.	79A312
199	Cytochrome C, carboxymethylated O_2^- + Cxm-cyt C \rightarrow			p.r.	No reaction obs.	79A312
200	Cytochrome C, succinylated O_2^- + Succ-cyt C \rightarrow			p.r.	No reaction obs.	79A312
201	Cytochrome C (ferro) HO ₂ /O ₂ ⁻ + Cyt C (Fe ²⁺) \rightarrow H ₂ O ₂ + Cyt C (Fe ³⁺)	5.3	$5 imes 10^5$ to $5 imes 10^6$	p.r., opt.	D.k. at 550 nm; estimated value studied at a single pH.	753093
202	Cytochrome P-450 O ₂ ⁻ + cyt P-450 →			p.r.	No reaction obs.	79A036
203	Cytochrome f (Fe ³⁺) $O_{\overline{2}} + Cyt f (Fe^{3+}) \rightarrow Cyt f$ (Fe ²⁺)	7.8	6.1 × 10 ⁶	enz., opt.	Xanthine-xanthine oxidase system; soln. cont. phosphate (5 \times 10 ⁻² mol L ⁻¹) and EDTA (10 ⁻⁴ mol L ⁻¹).	77R240
204	Dialuric acid $HO_2/O_2^- + AlH_2 \rightarrow H_2O_2 + AlH$	5.7	<10 ³	p.r., opt.	Buildup and decay of dialuric acid (275 nm) and semiquinone at 310 and 370 nm in soln contg. 0.1 mol L^{-1} formate ion, 1.46 \times 10 ⁻⁴ mol L^{-1} O ₂ , 5 \times 10 ⁻³ mol L^{-1} alloxan; assumed mechanism, ϵ (AIH) = 4000(275), 4900(310) and 1900(370 nm), ϵ (AI) - 16000(275) and 160(310 nm).	81 A 271

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions - Continued

REACTIVITY OF HO_2/O_2 RADICALS IN AQUEOUS SOLUTION

1073

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

No.	Reaction	pН	$k (\mathrm{L} \ \mathrm{mol}^{-1} \mathrm{s}^{-1})$	Method	Comment	Ref.
205	Diamide (Diazenedicarboxylic acid bise HO ₂ /O ₂ ⁻ + ((CH ₃) ₂ NCON=) ₂ \rightarrow	limethylan ∼7	nide) <10 ⁶	p.r., opt.	P.b.k. at 400 nm in soln. contg. 0.1 mol L^{-1} formate and 10 ⁻⁴ mol L^{-1} substrate; <3% electron transfer.	751194
206	1,4-Diazabicyclo [2,2,2]octane $O_2^- + DABCO \rightarrow$	7.2		р.г.	D.k. at 270 nm; no reaction obs.	78R103
207	2,5-Dichloro - <i>p</i> -benzoquinone $O_2^- + 2,5-Cl_2Q \rightarrow$	7.0	1.1 × 10°	p.r., opt.	P.b.k. at 430 nm in soln. contg. 5×10^{-5} mol L ⁻¹ quinone.	730068
208	2,5-Dichlorohydroquinone $O_2^- + Cl_2C_6H_2(OH)_2 \rightarrow$ 2,5- $Cl_2Q^- + H_2O_2$	7.0	1.3 × 10 ⁷	p.r., opt.	P.b.k. in O ₂ -satd. soln. contg. 10^{-3} mol L ⁻¹ quinone, 0.1 mol L ⁻¹ formate.	751011
209	2,6-Dichloroindophenolate ion $O_{\overline{2}}^{-} + DCIP^{-} \rightarrow O_{2}^{-} + DCIP^{2-}$	7.0	$(2.14 \pm 0.05) \times 10^8$	p.r., opt.	C.k., rel. to $k(O_2^- + SOD) = 3.7 \times 10^9$.	79A240
		~7	$\sim 1.5 \times 10^{8}$	p.r., opt.	D.k. at 600 nm (oxidized DCIP) in O ₂ -satd. soln. contg. tert-BuOH and (1-6) $\times 10^{-4}$ mol L ⁻¹ DCIP.	761056
		~7	$(1.7 \pm 0.3) \times 10^8$	p.r., opt.	D.k. at 430 nm in soln. contg. 5×10^{-5} mol L^{-1} substrate; rel. to $k(O_2^- + Q) = 9 \times 10^8$.	761056
210	3,4-Dihydroxyacetophenone $O_{\overline{2}} + (HO)_2C_6H_3COCH_3 \rightarrow$	7	$(2.94 \pm 0.22) \times 10^{7}$	p.r.	C.k.; rel. to $k(O_2^- + DCIP^-) = 2.14 \times 10^8$.	79A303
211	3,4-Dihydroxybenzaldehyde $O_2^- + (HO)_2C_6H_3CHO \rightarrow$	7	$(1.40 \pm 0.03) \times 10^7$	p.r.	C.k.; rel. to $k(O_2^- + DCIP^-) = 2.14 \times 10^8$.	79A303
212	4,5-Dihydroxy- <i>m</i> -benzenedisulfonate i	on	1.0×10^{7}		Neutral pU accumade no huffort rol to	70 4 014
	$HO_{2}/O_{2}^{-} + (HO)_{2}C_{6}H_{2}(SO_{3})_{2}^{-} \rightarrow$ $O_{2}^{-} + (HO)_{2}C_{6}H_{2}(SO_{3})_{2}^{2-} \rightarrow$	7	1.5×10^{8}	p.r. p.r. opt.	$k(O_2^- + DCIP^-) = 2.1 \times 10^8$. C.k.; rel. to $k(O_2^- + O) = 9 \times 10^8$.	751087
		7	$5 imes 10^8$	p.r., opt.	P.b.k. at 400 nm.	751087
213	2,5-Dihydroxybenzoic acid HO ₂ + (HO) ₂ C ₆ H ₃ CO ₂ H →	0.5-1.5	$(3.9 \pm 0.3) \times 10^4$	s.f., opt.	D.k. at 245-255 nm; soln. prepd. as in [83G122].	82Z254
214	5,8-Dihydroxy-1,4-naphthoquinone HO ₂ /O ₇ + NO(OH) ₂ \rightarrow O ₂ + NQ(OH) ₂	5.2	(5.8 \pm 0.5) $ imes$ 10 ⁸	p.r., opt.	P.b.k. at 380 nm in air-satd. soln. contg. 0.1 mol L^{-1} formate and phosphate buffer; from equilibrium constant = 5.6, $k_{\text{reverse}} =$ $(1.1 \pm 0.2) \times 10^8$.	83A039
215	2,3-Dimethyl-1,4-benzoquinone $O_2^- + 2,3-(CH_3)_2Q \rightarrow 2,3-(CH_3)_2Q^{} + O_2$	7	$(4.5 \pm 1) \times 10^8$	p.r., opt.	P.b.k.	730125
216	2,5-Dimethyl-1,4-benzoquinone $O_2^- + 2,5-(CH_3)_2Q \rightarrow [2,5-(CH_3)_2Q]^- + O_2$	7.2	1.7 × 10 ⁸	p.r., opt.	P.b.k. (semiquinone) in soln. contg. 0.1 mol L^{-1} Na formate and 1.25-12.5 \times 10 ⁻⁴ mol	761063
		7.0	$7.5 imes 10^8$	p.r., opt.	P.b.k. at 430 nm in soln. contg. 5×10^{-5} mol L ⁻¹ quinone	730068
		7	$(3.6 \pm 1) \times 10^{8}$	p.r., opt.	P.b.k.	730125

107	4
-----	---

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

No.	Reaction	рН	k (L mol ⁻¹ s ⁻¹)	Method	Comment	Ref.
217	2,6-Dimethylbenzoquinone $O_2^- + 2,6-(CH_3)_2Q \rightarrow [2,6-(CH_3)_2Q]^- + O_2$	7	$(5.8 \pm 1) \times 10^{8}$	p.r., opt.	P.b.k.	730125
218	.1,1°-Dimethyl-4,4°-bipyridinium ra HO ₂ + MV· ⁺ →	dical ion (1+) 3.5	2.1 × 10 ⁹	p.r., opt.	D.k. in soln. contg. $4-16 \times 10^{-2}$ mol L ⁻¹ H ₂ O ₂ ; G(HO ₂) = 5.98, 6.51 assumed from	83A043
	$O_2^- + MV^+ \rightarrow$	7	$2.8 imes 10^9$	p.r., opt.	D.k. in soln. contg. $4-16 \times 10^{-2}$ mol L ⁻¹ H ₂ O ₂ ; G(HO ₂) = 6.15 assumed from OH + H ₀ O ₂ = 60.	83A043
		6.8	$(9.2 \pm 1.1) \times 10^8$	p.r.	Ar-satd. soln. contg. 10^{-3} mol L ⁻¹ MV ²⁺ 2Cl ⁻ and 0.1 mol L ⁻¹ Na formate and $\sim 0.3\%$ O ₂ .	78A321
			$6.5 imes 10^8$	p.r., opt.	Calcd. from d.k.; $k(O_2 + MV^+) = 7.7 \times 10^8$.	731074
219	2,3-Dimethylnaphthoquinone $O_2^- + 2,3-(CH_3)_2NQ \rightarrow 2,3-(CH_3)_2NQ^- + O_2$	7	4 × 10 ⁶	p.r., opt.	Detd. from equil. const. and d.k. of semi- quinone in soln. contg. 10^{-3} mol L^{-1} qui- none, 5 mol L^{-1} 2-PrOH and 1 mol L^{-1} acetone.	730125
220	5,5-Dimethyl-1-pyrroline-N-oxide HO ₂ /O ₂ ⁻ + DMPO \rightarrow		6.6×10^{3}	esr	Calcd. from effect of pH (5-9) on k_{obs} ; c.k. with SOD; rel. to $k(O_2^- + Fe^{3+} \text{ cyt } C) =$	80A176
	O₁ + DMPO →	7.8	10	enz., esr	$6 \times 10^{\circ}$. Spin trapping; rel. to $k(O_2^- + TMPO) = 7$	80A176
		8.0	15.7	phot., c sr	Spin trapping; c.k. with SOD; rel. to $k(O_2^- + Fe^{3+} \text{ cyt } C) = 6 \times 10^5$. Studied from pH 5-9.	80A176
221	Diphenoquinone $O_2^- + O = C_6H_4C_6H_4 = O \rightarrow OC_6H_4C_6H_4 = O$	7.0	$1.4 imes 10^9$ (±10%)	p.r., opt.	P.b.k. at 400 nm in soln. contg. 5×10^{-5} mol L ⁻¹ quinone.	730068
222	1,1'-Diphenyl-4,4'-bipyridinium rad O ₂ ⁻ + BP· ⁺ →	dical ion (1+)	$(6.2 \pm 2.0) \times 10^9$	p.r.	Ar-satd. soln. contg. 10^{-3} mol L ⁻¹ BP ²⁺ 2Cl ⁻ and 0.1 mol L ⁻¹ formate and ~0.3% O ₂ ; pH not given.	78A321
223	Dithiothreitol HO₂/O₂¯ + DTT →	-7.8	1.0 × 10 ⁶	enz., opt.	Xanthine-xanthine oxidase system; c.k., rel. to $k(HO_2/O_2^- + \text{ adrenaline}) = 4 \times 10^4$.	76R183
224	Duroquinone $O_2^- + DQ \rightarrow DQ^{} + O_2$	7	1.0 × 10 ⁷	p.r., opt.	D.k. (semiquinone) in soln. contg. Na for-	751090
		7	$(4.5 \pm 1.5) \times 10^6$	p.r., opt.	Detd. from equil. const. and d.k. of semi- quinone in soln. contg. 5 mol L^{-1} 2-PrOH and 2 mol L^{-1} acetone.	730125
225	Ethylene HO ₂ /O ₂ ⁻ + H ₂ C=CH ₂ \rightarrow		2×10^{5}	γ-r., chem.	C.k.; pH not given; rel. to $k(HO_2 + Fe^{2+})$ calcd. from value taken from [730038].	670037
226	1,1'-Ethylene-2,2'-bipyridinium rad O ₂ ⁻ + BP· ⁺ →	lical ion (1+)	$(4.8 \pm 0.5) \times 10^8$	p.r.	Ar-contg. soln. contg. 10^{-3} mol L ⁻¹ BP ²⁺ 2Cl ⁻ and 0.1 mol L ⁻¹ Na formate and ~0.3% O ₂ ; pH not given.	78A321

REACTIVITY OF HO₂/O₂ RADICALS IN AQUEOUS SOLUTION

1075

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

 No.	Reaction	pН	$k (L mol^{-1}s^{-1})$	Method	Comment	Ref.
		-	· · · ·			
227	Ethylenediaminetetraacetate ion					
	$O_2^- + [CH_2N(CH_2CO_2^-)_2]_2 \rightarrow$	9.9	<0.01	e-r., s.f.,	D.k. at 250 nm in air-satd. soln. contg. 0.2	770046
				opt.	mol L^{-1} formate and 0.01-0.1 mol L^{-1} EDTA; no reaction obs.	
220	2 Tabul 4 hadrons 2 5 5 taimethad 1) overelijie.	-			
228	$HO_2/O_2^- + OXANO \rightarrow$	7.8	6.7×10^{3}	enz, opt.	C.k. in xanthine oxidase system, rel. to	82R165
					$k(O_2^- + \text{cyt C}) = 6 \times 10^5.$	
229	Ferredoxin (spinach)					
	HO_2/O_2^- + Ferredoxin \rightarrow	7.7	<104	p.r., opt.	D.k. in soln. contg. 6.5×10^{-2} mol L ⁻¹	78R208
					phosphate ouner.	
230	Flavin adenine dinucleotide semiqu $\Omega_{-}^{-} \pm F \Delta D H_{-} \rightarrow$	inone 7	$(2.2 \pm 0.2) \times 10^8$	nr opt	D k at 540 nm in aerated soln contr 0.01	814375
	$O_2 + IADIN \rightarrow$	•	(2.2 2 0.2) × 10	p.r., op.	mol L^{-1} formate ion and 8×10^{-5} mol L^{-1}	0111375
					flavin.	
231	Flavin mononucleotide semiquinon	e .				
	$HO_2 + FMNH \rightarrow$	2.5-4.0	$6.2 \times 10^{\circ}$	p.r., opt.	D.k. at 540 nm in aerated soln. contg. 0.01 mol L^{-1} formate and 8 \times 10 ⁻⁵ mol L^{-1}	81A375
					flavin. Studied from pH 2-8.	01 4 975
	$O_2^- + FMNH \rightarrow$	7	$(3.2 \pm 0.2) \times 10^{\circ}$	p.r., opt.	D.k. at 540 nm m aerated soln. contg. 0.01 mol L^{-1} formate ion and 8×10^{-5} mol L^{-1}	81A375
					flavin. Studied as a function of pH 2-8.	
232	Formate ion					
	$O_2^- + HCO_2^- \rightarrow$	10.1	<0.01	e-r., s.f.,	D.k. at 250 nm in air-satd. soln. contg. 5 \times 10 ⁻⁴ mol J = 1 formate and 1 \times 10 ⁻⁴ mol	770046
				0.00	L^{-1} EDTA; no reaction obs.	
233	Fumarate ion			ι.		
	O ₂ +	10.1	<0.10	<i>e-</i> r., s.f.,	D.k. at 250 nm in air-satd. soln. contg.	770046
	$trans-^{-}O_2CCH = CHCO_2^{-} \rightarrow$			opt.	0.01-0.1 mol L^{-1} fumarate, 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA: no reac-	
					tion obs.	
234	L-Glutamic acid, $pK_{a} = 2.06, 4.26,$	9.85				
	$HO_2 + Glu \rightarrow$	1.6	$<30.0 \pm 6.0$	γ-r., s.f.,	D.k. in O_2 -satd. soln. contg. formate and	79A358
				opt.	tamic acid; upper limit.	
	$O_2^- + Glu \rightarrow$	8.7	<0.39 ± 0.07	γ-r., s.f.,	D.k. in O ₂ -satd. soln. contg. formate and 5	79A358
				opt.	\times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.025 mol L ⁻¹ glutamic acid; no reaction obs.	
725	1-Clutamine nK - 217 012					
235	$HO_2 + Gln \rightarrow$	1.5	<23.0 ± 6.0	γ-r., s.f.,	D.k. in O ₂ -satd. soln. contg. formate and 5	79A358
				opt.	\times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹	de la composición de
	$O_2^- + Gln \rightarrow$	10.0	$<0.25 \pm 0.05$	γ-r., s.f.,	D.k. in O ₂ -satd. soln. contg. formate and 5	79A358
				opt.	\times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹	
					giutamme no reaction ods.	
236	Glutathione, $pK_a = 2, 3.59, 8.75, 9$.65 7 8	6.7×10^{5}	0.7.7	Vanthing conthing and an anti-	760 100
	$HO_2/O_2 + OSH \rightarrow$	7.0	0.7 X 10	opt.	rel. to $k(HO_2/O_2^- + adrenaline) = 4 \times$	/01(185
					10 ⁴ .	
237	Glyceraldehyde-3-phosphate dehyd	rogenase-NA	DH complex			
	HU₂ + GPDH-NADH →	4.8-9.5	2.00×10^{7}	p.r., opt.	D.k. in soln. contg. 0.05 mol L^{-1} phosphate. 10^{-5} mol L^{-1} EDTA 10^{-4} mol I^{-1}	80A413
					NADH and 2.5×10^{-4} mol L ⁻¹ O ₂ and	
		•			6.48×10^{-3} mol L ⁻¹ enzyme; estd. from k_{obs} vs pH; O ₂ ⁻ unreactive.	

No.	Reaction	рН	$k (L mol^{-1}s^{-1})$	Method	Comment	Ref.
238	Glycine, p.K= 2,35, 9,78					
	$HO_2 + Gly \rightarrow$	1.5	<48.6 ± 4.0	γ-1., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 10^{-5} mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ glycine: upper limit.	79A358
	$O_2^- + Gly \rightarrow$	8.8	<0.42 ± 0.12	γ-r., s.f., opt.	D.k. in O_2 -satd. soln. contg. formate and 10^{-5} mol L^{-1} EDTA and 0.1 mol L^{-1} glycine no reaction obs.	79A358
239	Hemocyanin HO_2/O_2^- + Hemocyanin \rightarrow	8.0	< 10 ⁶	p.r., opŧ.	No reaction obs. at 290 nm in O ₂ -satd. soln. contg. 2×10^{-2} mol L ⁻¹ Na formate.	761021
240	L-Histidine, $pK_{a} = 1.80, 6.04, 9.33$	1.0	-05 0 J 14 0			70 4 250
	$HO_2 + HIS \rightarrow$	1.8	《95.0 ± 14.0	γ-1., s.1., opt.	D.k. in O_2 -satal soin. contg. formate and 5 × 10 ⁻⁵ mol L ⁻¹ EDTA and 0.05 mol L ⁻¹	/9A338
	$O_2^- + His \rightarrow$	10.0	<1.00 ± 0.21	γ-r., s.f., opt.	Institutine; upper limit. D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.15 mol L ⁻¹ histidine no reaction obs.	79A358
241	Homocysteine $HO_2/O_2^- + Hcy \rightarrow$	7.8	4.6 × 10 ⁵	enz., opt.	Xanthine-xanthine oxidase system; c.k., rel. to $k(\text{HO}_2/\text{O}_2^- + \text{adrenaline}) = 4 \times 10^4$.	76R183
242	1-Hydroperoxy-2-cyclooctene HO ₂ + c -C ₈ H ₁₃ O ₂ H →			s.f., opt.	D.k. at 250–270 nm in 80% EtOH soln. with 5×10^{-2} mol L ⁻¹ H ₂ SO ₄ , 1×10^{-5} mol L ⁻¹ EDTA, 1.2×10^{-3} mol L ⁻¹ O ₂ . Peroxide conc.r 4.0×10^{-2} mol L ⁻¹ . No	84A909
	$O_2^- + c - C_8 H_{13} O_2 H \rightarrow$	• • •		s.f., opt.	reaction obs. D.k. at 250-270 nm in 80% EtOH soln. with 10^{-2} mol L ⁻¹ KOH,, 1×10^{-5} mol L ⁻¹ EDTA, 1.2×10^{-3} mol L ⁻¹ O ₂ . Per- oxide concn. 3×10^{-3} mol L ⁻¹ . No reac- tion obs.	84A909
243	Hydroquinone HO ₂ + 1.4 -C ₆ H ₄ (OH) ₂ \rightarrow	0.4-3.5	$(0.85 \pm 0.1) \times 10^4$	f.p., opt.	P.b.k. at 290 nm: value could be twice as	79A340
	$OC_6H_4OH + H_2O_2$ $HO_2/O_7^- + 1.4-C_6H_4(OH)_2 \rightarrow$	~7	1.7×10^{7}	p.r.	fast, see paper for discussion. Soln. cont. 10^{-3} mol L ⁻¹ QH ₂ .	751011
	$Q - H_2O_2$	7.0	$(1.6 \pm 0.1) \times 10^{7}$	p.r., opt.	P.b.k. at 430 nm in soln. contg. 10^{-3} mol L^{-1} QH ₂ , 1.3 × 10^{-3} mol L^{-1} O ₂ and 1 mol L^{-1} tert-BuOH	730068
244	1-Hydroxyethyldioxy HO ₂ /O ₂ ⁻ + CH ₃ C(\dot{O}_2)HOH \rightarrow CH ₃ CO ₂ H + H ₂ O + O ₂	3	~107		Calcd. from product distribution and other reaction rates.	83A056
245	6-Hydroxy-2,5,7,8-tetramethylchro	man-2-carhox	ylic acid			007054
	$HO_2 + HTC-CO_2H \rightarrow$	acid	$(2.02 \pm 0.18) \times 10^{\circ}$	s.f., opt.	D.k. at 254 nm; carried out in 85% EtOH contg. 0.022 mol L^{-1} H ₂ SO ₄ .	82Z254
246	6-Hydroxy-2,5,7,8-tetramethylchro	man-2-carbox	ylate ion			
	$HO_2/O_2^- + HTC-CO_2^- \rightarrow$	7.4	1.7 × 10 ⁴	enz., opt.	D.k. at 249.6 nm in xanthine-xanthine ox- idase system contg. 10^{-4} mol L ⁻¹ EDTA, 10^{-1} mol L ⁻¹ phosphate buffer and 2 × 10^{-4} mol L ⁻¹ substrate.	75R176
	$O_2^- + \text{HTC-CO}_2^- \rightarrow$	alk.		s.f., opt.	D.k. at 254 nm; carried out in 85% EtOH contg. 0.01 mol L^{-1} KOH. No reaction obs.	82Z254
247	3-(6-Hydroxy-2,5,7,8-tetramethylcl	roman-2-yl)p 7 4	Topionate ion 5.9×10^3	e n 7	D k at 248.9 nm in soln contr 4×10^{-4}	78R 210
	$HTC-CH_2CH_2CO_2^- \rightarrow$	(.4		opt.	mol L^{-1} substrate, 1×10^{-4} mol L^{-1} EDTA, 4×10^{-5} mol L^{-1} xanthine, and 0.1 mol L^{-1} phosphate buffer.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions - Continued

REACTIVITY OF HO₂/O₂ RADICALS IN AQUEOUS SOLUTION

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions - Continued

No.	Reaction	pН	k (L mol ⁻¹ s ⁻¹)	Method	Comment	Ref.
248	Imidazole, $pK_a = 6.96$ $O_2^- + Im \rightarrow$	10.1	<0.02	e-r., s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA and 0.01–0.1 mol L^{-1} mol L^{-1} imidazole; no reaction obs.	770046
249	Indigodisulfonate ion HO ₂ + IDS ²⁻ \rightarrow O ₂ + IDS ³⁻ +	0.4	$2.0 imes 10^4$	γ-r., opt.	C.k.; $G(HO_2) = 3.6$; value recaled. using	680059
	$ \begin{array}{l} \mathrm{H^{+}}\\ \mathrm{O_{2}^{-}} + \mathrm{IDS^{2-}} \rightarrow \mathrm{O_{2}} + \mathrm{IDS^{3-}} \end{array} \end{array} $	7	9 × 10 ⁵	p.r., opt.	$k(HO_2 + HO_2) = 8.6 \times 10^\circ$. D.k. of IDS ²⁻ in soln. contg. Na formate and oxygen	751090
250	Indigotetrasulfonate ion $HO_2 + ITS^{4-} \rightarrow O_2 + ITS^{5-}$	0.4	1.8 × 10 ³	γ-r., opt.	C.k.; $G(HO_2) = 3.6$; value recaled. using $k(HO_2 + HO_2) = 8.6 \times 10^5$.	680059
251	Indigotrisulfonate ion HO ₂ + ITS ³⁻ \rightarrow O ₂ + ITS ⁴⁻	0.4	1.1×10^{4}	γ-r., opt.	C.k.; $G(HO_2) = 3.6$; value recalcd. using $k(HO_2 + HO_2) = 8.6 \times 10^5$.	680059
252	Indomethacin $HO_2/O_2^- + In \rightarrow$	7.0	$(2.6 \pm 0.1) \times 10^6$	p.r., opt.	D.k. at 250 nm in soln. contg. 10^{-2} mol L ⁻¹ formate.	80A201
253	DL-Isoleucine, $pK_a = 2.318, 9.758$ HO ₂ + Ile \rightarrow	1.4	<38.9 ± 5.0	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹	79A358
	$O_2^- + Ile \rightarrow$	8.0	<2.00 ± 0.40	γ-r., s.f., opt.	solution: solution in the solution is a solution of the solution of the solution of the solution is a solution of the solutio	79A358
254	Laccase $HO_2/O_2^- + Laccase \rightarrow$	6.0	≥ 2 × 10 ⁶	p.r., opt.	Transient adduct obs. in soln. contg. 0.01 mol L^{-1} potassium phosphate, 95×10^{-6} mol L^{-1} laccase, and 0.1 mol L^{-1} formate; addn. followed by Cu ²⁺ redn.; complex kinetics.	82A422
255	Lactate ion $O_2^- + CH_3CHOHCO_2^- \rightarrow$	10.0	<0.50	e-r., s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA and 0.01–0.1 mol L^{-1} lactate; no reaction.	770046
256	L-Leucine, $pK_1 = 2.328$, 9.744 HO ₂ + Leu \rightarrow	1.4	<23.0 ± 4.0	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹	79A358
	$O_2^- + Leu \rightarrow$	9.9	<0.21 ± 0.02	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ leucine; no reaction.	79A358
257	Linoleate hydroperoxide $HO_2/O_2^- + HO_2L^- \rightarrow$		$7.4 imes 10^3$	enz, opt.	Rate inferred from ratio of SOD inhibition of linoleate oxidation, HO_2 may be reactive form	82R039
		8.1	7×10^3	enz, opt.	P.b.k. at 235 nm in soln. contg. 6.3×10^{-8} mol L ⁻¹ xanthine oxidase, 4.8×10^{-2} mol L ⁻¹ acetaldehyde, 10^{-3} mol L ⁻¹ linoleic acid and phosphate.	78R207
	$O_2^- + HO_2L^- \rightarrow$	7		p.r.	No reaction obs. in soln. contg. formate and O_2 .	79A295
258	Linoleate ion $O_2^- + L^- \rightarrow$		10 ⁻² -10 ⁻¹	s.f., opt.	85% v/v ethanolic soln.; d.k. at 240–270 nm. Strongly alk. conditions (0.001–0.01 mol L^{-1} KOH). Negligible reaction.	83A087

No.	Reaction	pH	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
259	Linoleic acid					
207	$HO_2 + LH \rightarrow$		$(1.18 \pm 0.20) \times 10^3$	s.f., opt.	85% v/v ethanolic soln.; d.k. at 240–270 nm; 0.05 mol L^{-1} $H_2SO_4.$	83A087
260	Linoleic acid hydroperoxide			a .		
	$HO_2 + HO_2LH \rightarrow$			s.i., opt.	D.k. at $250-270$ nm in 80% EtOH soin. with 5×10^{-2} mol L^{-1} H ₂ SO ₄ , 1×10^{-5} mol L^{-1} EDTA, 1.2×10^{-3} mol L^{-1} O ₂ . Peroxide concn. 2×10^{-3} mol L^{-1} No reaction obs	84A905
	$O_2^- + HO_2LH \rightarrow$			s.f., opt.	D.k. at 250–270 nm in 80% EtOH soln. with 10^{-2} mol L ⁻¹ KOH,, 1×10^{-5} mol L ⁻¹ EDTA, 1.2×10^{-3} mol L ⁻¹ O ₂ . Per- oxide concn. 3×10^{-3} mol L ⁻¹ . No reac- tion obs.	84A909
261	Linolenzte ion				$(\mathbf{r}_{i}, \mathbf{r}_{i}) \in \mathcal{L}_{i}$	
	$O_2^- + L^- \rightarrow$	alk.	10 ⁻² -10 ⁻¹	s.f., opt.	85% v/v EtOH in 0.001–0.01 mol L^{-1} KOH/H ₂ O, Anaerobic conditions. D.k. at 240–270 nm. Reaction negligible.	83A087
		11	<1	p.r., opt.	D.k. in soln. contg. 0.06 mol L^{-1} formate and 0.01 mol L^{-1} lipid.	78A365
262	Linolenic acid		(1.70 + 0.25) > 103	. 6 4	85% or (re-other all - or her - 1.1, - + 2.40, 270)	02 4 002
	$HO_2 + LH \rightarrow$		$(1.70 \pm 0.35) \times 10^{9}$	s.I., opt.	85% V/V ethanolic soln.; d.k. at 240–270 nm; 0.05 mol L^{-1} H ₂ SO ₄ .	83AU87
263	Lipoxidase (soybean)	2.00	$(7.0 \pm 1.0) \times 10^{6}$			80 4 204
	$HO_2/O_2 + LOX \rightarrow$	3.98	$(7.0 \pm 1.0) \times 10^{-10}$	р.г., орі.	F.b.k. in O_2 -said, some control of the molecular formate ion and 5×10^{-6} mol L ⁻¹ lipo- xidase, product is Fe(III) vellow enzyme.	60A290
	$O_2^- + LOX \rightarrow$	9.3		p.r., opt.	P.b.k. in O_2 -satd. soln. contg. 0.1 mol L ⁻¹ formate ion. No reaction obs.	80A296
264	Luminol radical		1 4 109			
	$O_2^- + Ium \rightarrow IumO_2H$)./ 11	$1.4 \times 10^{\circ}$ 2×10^{8}	p.r., opt.	D.k. at 430 nm in soln. contg. 10^{-1} mol L ⁻¹ luminol and 10^{-1} mol L ⁻¹ H ₂ O ₂ ; pK _a for	80A221
					luminol hydroperoxide detd. to be 9.3 \pm 0.3; pH range of 7.7-11.0 studied.	
265	DL-Lysine, $pK_s = 5.05, 10.53, 11.8$	2				
	$HO_2 + Lys \rightarrow$	1.4	$<13.3 \pm 3.0$	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ lysing: upper limit	79A358
	$O_{2}^{-} + Ly_{S} \rightarrow$	8.5	<3.30 ± 0.03	γ-r., s.f., opt.	D.k. in O_2 -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ lysine; no reaction obs.	79A358
266	ι-Malate ion O ₂ ⁻ + ⁻ O ₂ CCH ₂ CHOHCO ₂ ⁻ →	10.1	<0.11	e-r., s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA and 0.01–0.1 mol L^{-1} malate; no reaction obs.	770046
267	Maleate ion	10.0	-0.00		Die et 250 um in ein ertet onle comta 0.2	770046
	$C_2 + c_1 c_2 - O_2 CCH = CHCO_2 \rightarrow$	10.0	<u><u></u>0.00</u>	e-1., 8.1., opt.	mol L ⁻¹ formate and 10 ⁻⁴ mol L ⁻¹ EDTA and 10 ⁻⁴ -5 \times 10 ⁻² mol L ⁻¹ maleate; no reaction obs.	770040
268	Methemoglobin					
	$HO_2/O_2^- + Fe^{3+}Hb \rightarrow Fe^{2+}HbO_2$	7.8	1.4×10^3	γ-r. p.r.	Rel. to $k(O_2^- + HO_2) = 8.5 \times 10^7$; soln. contg. 0.16 mol L ⁻¹ formate and O ₂ . No reaction detected: pH not given.	78A366 761137
		7	6×10^3	γ-r., enz.	Rel. to O_2^- + Fe ²⁺ HbO ₂ .	763093

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

REACTIVITY OF HO₂/O₂ RADICALS IN AQUEOUS SOLUTION

No.	Reaction	pН	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
269	Methional HO ₂ /O ₂ ⁻ + CH ₃ SCH ₂ CH ₂ CHO \rightarrow	7		p.r., opt.	D.k. at 240–260 nm; first order $k = 5.2 \times 10^3 \text{ s}^{-1}$. Authors suggest sluggish reaction.	761038
270	DL-Methionine, $pK_a = 2.2, 9.2$ HO ₂ + Met \rightarrow	1.5	<48.8 ± 15.0	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹	79A358
	$O_2^- + Met \rightarrow$	8.3	<0.33 ± 0.05	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻ EDTA and 0.1 mol L ⁻¹ methionone; no reaction obs.	79A358
271	4-Methoxyphenyl- <i>N-tert</i> -butylnitro HO ₂ /O ₂ ⁻ + 4-CH ₃ O-PBN \rightarrow OH ⁻ + 4-CH ₃ O-PBN(OOH)	one .	<1 × 10 ⁶	p.r., opt.	C.k. in O ₂ -satd. soln. contg. <i>tert</i> -BuOH or formate; obs. Q at 420 nm; rel. to $k(O_2^- + Q) = 1.0 \times 10^9$; See [80A176], limit seems high.	82A184
272	Methyl-1,4-benzoquinone $O_2^- + MeQ \rightarrow MeQ^{} + O_2$	7.0	$8.0 imes 10^8$	p.r., opt.	P.b.k. at 430 nm in soln. contg. 5×10^{-5}	730068
		7	$(7.6 \pm 1) \times 10^{8}$	p.r., opt.	P.b.k. (semiquinone)	730125
273	3-Methylcholanthrene IIO ₂ / O_2^- + C ₂₁ II ₁₆ \rightarrow		$1.1 imes 10^{\circ}$	р.г.	C.k. in soln. contg. 0.01 mol L^{-1} CTAB; rel. to $k(O_2^- + Q) = 9.5 \times 10^8$; pH not given.	78A367
274	$\begin{array}{llllllllllllllllllllllllllllllllllll$	7.0	1.7 × 10 ⁷	p.r.	Soln. cont. 10^{-3} mol L ⁻¹ QH ₂ .	751011
275	1-Methylimidazole, p $K_a = 6.95$ O ₂ + 1-CH ₃ Im \rightarrow	10.1	<0.15	e-r., s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA and 0.01–0.1 mol L^{-1} 1-methylimidazole; no reaction obs.	770046
276	2-Methylimidazole, $pK_a = 6.95$ $O_2^- + 2$ -CH ₃ Im \rightarrow	10.1	<0.18	e-r., s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA and 0.01–0.1 mol L^{-1} 2-methylimidazole; no reaction obs.	770046
277	2-Methyl-1,4-naphthoquinone $O_2^- + 2$ -CH ₃ -NQ \rightarrow $O_2^- + 2$ -CH ₃ -NQ $-$	7	3.8×10^7	p.r., opt.	D.k. of semiquinone.	751090
278	4-Methylphenyl- <i>N-tert</i> -hutylnitron HO ₂ /O ₂ ⁻ + 4-CH ₃ -PBN → OH ⁻ + 4-CH ₃ -PBN(OOH)	e	<1 × 10 ⁶	p.r., opt.	C.k. in O ₂ -satd. soln. contg. <i>tert</i> -BuOH or formate; obs. Q ⁻ at 420 nm; rel. to $k(O_2^- + Q) = 1.0 \times 10^9$; See [80A176], limit seems high.	82A184
279	Metmyoglobin O₂ ⁻ + ferriMb →			р.г.	No reaction detected; pH not given.	761137
280	NADH-Lactate dehydrogenase con HO ₂ + NADH-LDH \rightarrow O ₂ + NADH-LDH \rightarrow	mplex 4.5–9 7.5–9.0	$\sim 2 \times 10^{6}$ (1.0 ± 0.2) × 10 ⁵	p.r. p.r., opt.	Rate calcd. from pH study. D.k. of NADH (varying chain length) at 380 nm in air-satd. soln. contg. 0.1 mol L^{-1}	763048 763048

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

4.5-9.0 studied.

No.	Reaction	pН	$k (L \text{ mol}^{-1}\text{s}^{-1})$	Method	Comment	Ref.
281	1,2-Naphthoquinone $O_2^- + 1,2-NQ \rightarrow 1,2-NQ^- + O_2$	7.0	7.2 × 10 ⁸	p.r., opt.	P.b.k. at 365 nm in soln. contg. 5×10^{-6} mol L ⁻¹ quinone.	730068
282	1,2-Naphthoquinone-4-sulfonate ion $O_2^- + 4-SO_3NQ^- \rightarrow$	7.0	8.4 × 10 ⁸	p.r., opt.	P.b.k. at 365 nm in soln. contg. 5 \times 10 ⁻⁵ mol L ⁻¹ quinone.	730068
283	1,4-Naphthoquinone-2-sulfonate ion $O_2^- + 2 \cdot SO_3 NQ^- \rightarrow 2 \cdot SO_3 NQ^- \rightarrow 0$	7.0	6.6 × 10 ⁸	p.r., opt.	P.b.k. at 400 nm in soln. contg. 5×10^{-5}	730068
	$2-50_{3}$ MQ: $+0_{2}$	6.8	$(2.5 \pm 0.4) \times 10^{8}$	p.r., opt.	not L quinone. P.b.k. at 402 nm (semiquinone) in soln. contg. 0.2 mol L^{-1} glycine satd. with N_2O/O_{25} same result with formate instead of glycine.	761082
284	2-Naphthylamine HO ₂ /O ₂ ⁻ + 2-NpNH ₂ →		1.3×10^{7}	p.r .	C.k.; rel. to $k(O_2^- + Q) = 9.5 \times 10^8$; pH not given.	78A367
285	Nicotinamide adenine dinucleotide, re $HO_2 + NADH \rightarrow$ $H_2O_2 + [NAD]$	duced 4.4-6.3	$(1.8 \pm 0.2) \times 10^{5}$	f.p., opt.	D.k. at 340 and 366 nm. Value calcd. from k_{obs} vs pH study. Buffered with acetate or phoenbate $(I = 0.03)$ Ω^{-1} is uncertainty	79A170
	$HO_2/O_2^- + NADH \rightarrow$	5.1	$< 3.5 \times 10^{4}$	elec.,	Phosphate $(1 = 0.03)$. O ₂ is unreactive. Opt. detection at 450 nm in soln. contg.	78R209
	$ \begin{array}{l} H_2O_2 + [NAD] \\ O_2^- + NADH \rightarrow \\ H_2O_2 + [NAD] \end{array} $	8.6	<27	opt. X-r., biol.	0.01 mol L^{-1} acetate. Estd. in soln. contg. KBr and O_2 .	710158
286	Nitro Blue Tetrazolium $O_2^- + NBT^{2+} \rightarrow O_2 + NBT^{+}$	7–11	$(5.88 \pm 0.12) \times 10^4$	phot., s.f., opt.	P.b.k. at 530 nm in soln. contg. 5×10^{-3} mol L ⁻¹ formate and 0.25-1.25 $\times 10^{-3}$ mol L ⁻¹ O ₂ and 2×10^{-5} mol L ⁻¹ EDTA, mixed with 0.2 mol L ⁻¹ phosphate soln.	80A085
		9.8	5.94 × 10 ⁴	e-r., s.f., opt.	contg. $(0.4-1.8) \times 10^{-3} \text{ NBT}^{2+}$. P.b.k. at 560 nm in air-satd. soln. contg. 0.2 mol L ⁻¹ formate and 2 × 10 ⁻⁴ mol L ⁻¹ EDTA and (0.2-1) × 10 ⁻³ mol L ⁻¹ NBT ²⁺ ; cor. for O ₂ ⁻ decay.	770046
287	4-Nitrophenyl- <i>N</i> -tert-butylnitrone HO ₂ /O ₂ ⁻ + 4-NO ₂ -PBN \rightarrow OH ⁻ + 4-NO ₂ -PBN(OOH)		<3 × 10 ⁶	p.r., opt.	C.k. in O ₂ -satd. soln. contg. <i>tert</i> -BuOH or formate; obs. Q ⁻⁷ at 420 nm; rel. to $k(O_2^- + Q) = 1.0 \times 10^9$; See [80A176], limit seems high.	82A184
288	9,11-Octadecadienoate ion $O_2^- + OD^- \rightarrow$	alk.	≼0.01	s.f., opt.	85% v/v EtOH in 0.001-0.01 mol L^{-1} KOH/H ₂ O. Anaerobic conditions. D.k. at 240–270 nm. Reaction negligible. Mixture with 10,12-octadecadienoate ion.	83A087
289	9,11-Octadecadienoic acid HO ₂ + ODH →	acid		s.f., opt.	85% v/v EtOH in 0.05 mol L^{-1} H ₂ SO ₄ /H ₂ O. Anacrobic conditions. D.k. at 240–270 nm. Mixture with 10,12-isomer. No reaction obs.	83A087
290	Oleate ion $O_2^- + Ol^- \rightarrow$	alk.	≼0.01	s.f., opt.	85% v/v EtOH in 0.001–0.01 mol L^{-1} KOH/H ₂ O. Anaerobic conditions. D.k. at 240–270 nm. Reaction negligible.	83A087
291	Oleic acid HO ₂ + OlH →	acid		s.f., opt.	No reaction obs.; 85% v/v ethanolic soln.; d.k. at 240-270 nm; 0.05 mol L ⁻¹ H ₂ SO ₄ .	83A087

REACTIVITY OF HO_2/O_2^{-} RADICALS IN AQUEOUS SOLUTION

1081

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

No.	Reaction	pH	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
292	Oleic acid hydroperoxide HO ₂ + HO ₂ -OlH →	acid		s.f., opt.	D.k. at 250-270 nm in 80% EtOH soln.	84A909
					with 5×10^{-2} mol L ⁻¹ H ₂ SO ₄ , 1×10^{-5} mol L ⁻¹ EDTA, 1.2×10^{-3} mol L ⁻¹ O ₂ . Peroxide concn. 3.8×10^{-2} mol L ⁻¹ . No reaction obs.	
	$O_2^- + HO_2 - Ol^- \rightarrow$	alk.		s.f., opt.	D.k. at 250-270 nm in 80% EtOH soln. with 10^{-2} mol L ⁻¹ KOH, 1×10^{-5} mol L ⁻¹ EDTA, 1.2×10^{-3} mol L ⁻¹ O ₂ . Per- oxide concn. 3×10^{-3} mol L ⁻¹ . No reac- tion obs.	84A909
293	Oxalate ion $O_2^- + -O_2CCO_2^- \rightarrow$	10.0	<0.20	e-r., s.f.,	D.k. at 250 nm in air-satd. soln. contg. 0.2	770046
				opt.	mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA and (5-50) × 10^{-3} mol L^{-1} oxalate; no reaction obs.	
294	2-Oxoglutarate ion $O_2^- + -O_2CCH_2CH_2COCO_2^- \rightarrow$	10.1	<0.30	e-r., s.f.,	D.k. at 250 nm in air-satd. soln. contg. 0.2	770046
				opt.	mol L formate and 10 fmol L EDIA and 0.01-0.02 mol L ⁻¹ 2-oxoglutarate; no reaction obs.	
295	Oxyhemoglobin HO ₂ /O ₂ ⁻⁺ + Fe ²⁺ HbO ₂ \rightarrow	7.8	$<5 \times 10^{2}$	p.r., opt.	Obs. no change at 430 nm in soln. contg. O ₂ and 0.16 mol L^{-1} formate; γ -r. showed slight oxidation	78A366
		7	$(4\pm1) imes10^3$	γ-r., enz.	Obs. inhibition of SOD; rel. to O_2^- + Methemoglobin.	763093
296	Peroxidase Compound I					
	HO_2 + HRP Compound I \rightarrow HRP Compound II	3.8-8.8	2.2 × 10 ⁸	p.r., opt.	D.k.; calcd. value from pH study and curve fitting; soln cont. 4.7 \times 10 ⁻⁶ mol L ⁻¹ Compound I, 1.5 \times 10 ⁻⁵ mol L ⁻¹ per- oxide, 2.5 \times 10 ⁻⁴ mol L ⁻¹ O ₂ , as well as pherebate and formate	741148
	O_2^- + HRP Compound I \rightarrow HRP Compound II	7.2-8.8	1.6 × 10 ⁶	p.r., opt.	D.k. as well as p.b.k.	741148
297	Peroxidase (horseradish)					
	$HO_2/O_2^- + HRP \rightarrow$	5.1	$1.5 imes 10^{5}$	elec., opt.	Opt. detection at 450 nm, 0.01 mol L^{-1} acetate.	78 R 209
		5.0 5.5	$\sim 3.5 \times 10^{8}$ $\sim 2.5 \times 10^{8}$	enz., opt.	Obs. form. of oxyperoxidase at 418 nm in soln. contg. 0.1 mol L^{-1} acetate, 1.5 × 10^{-6} mol L^{-1} H ₂ O ₂ , 10^{-4} mol L^{-1} NADH, 8.4 × 10^{-6} mol L^{-1} HRP and 0.64–13 ×	733173
			: *		10^{-6} mol L ⁻¹ SOD. Rel. to $k(\Omega_2^- + SOD)$.	
298	Peroxyhydrothymine radical HO ₂ /O ₂ + 5-MeUO ₂		$\sim 6 \times 10^6$	p.r., opt.	D.k. at 270 nm in oxygenated soln, conta	741151
	O ₂ + 5-MeUO ₂ H				dihydrothymine; hydroperoxide formn. occurs at about the same rate as the second order decay of the peroxy radical; pH not given.	
299	1-Phenylalanine, $pK_a = 2.16, 9.1$ HO ₂ + Phe \rightarrow	1.3	<180.0 ± 50.0	γ-r., s.f., opt.	D.k. in O_2 -satd. soln. contg. formate and 5×10^{-5} mol L ⁻¹ EDTA and 0.1 mol L ⁻¹	79A358
	$O_2^- + Phe \rightarrow$	10.1	$<0.36 \pm 0.05$	phot.	pnenyiaianine; upper limit. C.k. with NBT^{2+} in soln. contg. 0.043 mol L^{-1} phenylalanine; no reaction obs.	79A358

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

No.	Reaction	pН	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
300	Phenyl- <i>N-tert</i> -butylnitrone HO ₂ /O ₂ ⁻ + PBN \rightarrow OH ⁻ + PB- N(OOH)		<1 × 10 ⁶	p.r., opt.	C.k. in O ₂ -satd. soln. contg. <i>tert</i> -BuOH or formate; obs. Q at 420 nm; rel. to $k(O_2^-$ + Q) = 1.0 × 10°; See [80A176], limit seems high.	82A184
301	Phloroglucinol HO ₂ + C ₆ H ₃ (OH) ₃ →	0.5–1.5	$(2.3\pm0.3)\times10^3$	s.f., opt.	D.k. at 242 nm; soln. prepd. as in [83G122].	82Z254
302	Plastocyanin HO ₂ /O ₂ ⁻ + Plastocyanin →	8.0	< 10 ⁶	p.r., opt.	No reaction obs. at 290 nm in O2-satd. soln. contg. 2 \times 10 ⁻² mol L ⁻¹ Na formate.	761021
303	1-Proline, $pK_s = 1.952, 10.640$ HO ₂ + Pro \rightarrow	1.4	<17.3 ± 3.0	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate ion and 5×10^{-5} mol L ⁻¹ EDTA and 0.1 mol	79A358
	$O_2^- + Pro \rightarrow$	10.0	$< 0.16 \pm 0.05$	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate ion and 5×10^{-5} mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ proline; no reaction obs.	79A358
304	Pyruvate ion $O_2^- + CH_3COCO_2^- \rightarrow$	10.0	<0.10	<i>e-</i> r., s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA and $(1-10) \times 10^{-3}$ mol L^{-1} pyruvate; no reaction obs.	770046
305	Resorcinol HO ₂ + 1,3-C ₆ H ₄ (OH) ₂ \rightarrow O ₂ + 1,3-C ₆ H ₄ (OH) ₂ \rightarrow	0.5–1.5 5.0–8.5	$(4.1 \pm 0.1) \times 10^3$ 2.0 ± 1	s.f., opt. s.f., opt.	D.k. at 242 nm; soln. prepd. as in [83G122]. D.k. at 242 nm; soln. prepd. as in [83G122].	82Z254 82Z254 83A902
306	Riboflavin semiquinone O ₂ ⁻ + RFH· →	7	$(7.1 \pm 0.2) \times 10^8$	p.r., opt.	D.k. at 540 nm in aerated soln. contg. 0.01 mol L^{-1} formate ion and 8×10^{-5} mol L^{-1} flavin.	81A375
307	pi-Serine, $pK_{2} = 2.186, 9.208$					
	$HO_2 + Ser \rightarrow$	1.2	<54.6 ± 8.0	γ-r., s.r., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ serine: upper limit.	79A358
	$O_2^- + Ser \rightarrow$	9.0	<0.53 ± 0.04	γ-r., s.f., opt.	D.k. in O_2 -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ serine; no reaction.	79A358
308	Succinate ion $O_2^- + {}^-O_2CCH_2CH_2CO_2^- \rightarrow$	9.9	<0.25	e-r., s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 0.1 mol L^{-1} EDTA and 0.01-0.1 mol L^{-1} succinate; no reaction obs.	770046
309 [.]	Sulfacetamide HO ₂ /O ₂ ⁻ + SA →	6.5	7×10^7	p.r., opt.	P.b.k. at 470 nm ($\epsilon_{470} = 155 \text{ L mol}^{-1} \text{ cm}^{-1}$) in O ₂ -satd. soln. contg. 10 ⁻¹ mol L ⁻¹ Na formate and 10 ⁻³ mol L ⁻¹ substrate.	82A138
310	Superoxide dismutase (Co,Co) $2 O_2^- + 2 H_2O \xrightarrow{SOD} H_2O_2 + O_2 + 2 OH^-$	7.4 9.4	$(1.9 \pm 0.3) \times 10^{8}$ $(1.5 \pm 0.2) \times 10^{9}$	p.r., opt.	(Co,Co) protein. D.k. at 250 nm in pres- ence of phosphate or pyrophosphate buffer and 0.1 mol L ⁻¹ EtOH and 10 ⁻⁴ mol L ⁻¹ EDTA; also obs. d.k. and p.b.k. at 575 nm (Co). Partial inhibition in presence of phosphate leading to $k \sim 1.9-2.3 \times 10^8$ at pH 9.4.	82R132

REACTIVITY OF HO2/O2 RADICALS IN AQUEOUS SOLUTION

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions - Continued

No.	Reaction	pH	k (L mol ⁻¹ s ⁻¹)	Method	Comment	Ref.
311	Superoxide dismutase (Co,Zn)	7.4	$(2.3 \pm 0.3) \times 10^{8}$	p.r., opt.	(Co,Zn) protein. D.k. at 250 nm in pres-	82 R 132
	$2 O_2^- + 2 H_2 O \xrightarrow{} H_2 O_2 + O_2 + 2 OH^-$	9.4	$(1.6 \pm 0.2) \times 10^9$	• • •	ence of phosphate or pyrophosphate buffer and 0.1 mol L^{-1} EtOH and 10 ⁻⁴ mol L^{-1} EDTA; also obs. d.k. and p.b.k. at 575 nm (Co).	
312	Superoxide dismutase (Cu,Co) $2 O_2^- + 2 H_2O \xrightarrow{\text{SOD}} \rightarrow$	9	$(3.23 \pm 0.14) \times 10^{9}$	p.r., opt.	(Cu,Co) protein. Soln. cont. 0.01 mol L^{-1} EtOH, 2 \times 10 ⁻³ mol L^{-1} Na pyro-	77R237
	$H_2O_2 + O_2 + 2 OH^{-1}$	7.4	$(1.3 \pm 0.1) \times 10^9$	p.r., opt.	phosphate, 1×10^{-1} mol L ⁻¹ EDTA. D.k., Cu,Co enzyme. pH not varied but system shown previously to be indepen- dent of pH.	75A243
313	Superoxide dismutase (Fe) $2 O_2^- + 2 H_2O \xrightarrow{SOD}$ $H_2O_2 + O_2 + 2 OH^-$	8 6.2-10.1	$5.5 imes 10^8$ (6.1 ± 1.3) × 10 ⁸	p.r., opt.	D.k. at 250 nm; SOD from marine bacte- rium (Fe-contg.); soln. contg. 0.1 mol L^{-1} EtOH. Rate drops as pH increases. Second step as fast as first.	771127
314	Superoxide dismutase (Mn) $2 O_2^- + 2 H_2O \xrightarrow{SOD}$	6.5 10.2	7.3×10^{8} 1.2×10^{8}	p.r., opt.	D.k. at 250 nm; SOD from Bacillus stearo- thermophilus (Mn-contg.); soln. contg.	77 A 231
	$H_2O_2 + O_2 + 2 OH$	9.5	4 × 10 ⁸		EtOFI and formate. Observed rate. D.k. at 250 nm; $k = 7.5 \times 10^9$ for human SOD (Cu-Zn contg.); $k = 3 \times 10^9$ for bovine SOD (Cu-Zn contg.). Observed rate	769352
		7.9	$(1.3 \pm 0.15) \times 10^9$	p.r., opt.	D.k. at 248 nm; E.coli Mn enzyme. Ob- served rate.	743059
315	Superoxide dismutase $2 O_2^- + 2 H_2O \xrightarrow{SOD}$ $H_2O_2 + O_2 + 2 OH^-$	7.3	1.75 × 10 ⁹	f.p., opt.	Effect of bovine liver SOD on reduction rate constant of cyt C; d.k. in soln. contg. 2×10^{-2} mol L ⁻¹ tetramethylethylene- diamine, 10^{-5} mol L ⁻¹ EDTA, 6×10^{-5} mol L ⁻¹ FMN and $\sim 10^{-5}$ mol L ⁻¹ cyt C	82A269
		80	$(5.37 \pm 0.42) \times 10^{9}$	n r ont	and SOD; d.k. without cyt C gave $k = 1.7$ × 10 ⁹ .	87 4 449
		~8	$(1.3 \pm 0.1) \times 10^9$	p.r., opt. p.r., opt.	D.k. at 250 nm in soln. contg. 10^{-2} mol L ⁻¹ formate.	81A430
		7.0	$(2.6 \pm 0.3) \times 10^{9}$	p.r., opt.	D.k. at 250 nm in oxygenated solution contg. 10^{-2} mol L^{-1} formate. Observed rate.	80A201
		7.8	1.8×10^{9}	p.r., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.1 mol L^{-1} formate. Observed rate.	80A220
		7.0	3.0 × 10 ⁹	p.r., opt.	D.k. at 250 nm in oxygenated soln. contg. 3×10^{-2} mol L ⁻¹ formate and 2-4 × 10 ⁻⁷ mol L ⁻¹ SOD; cor. for decay in absence of SOD; pH dependent (~4 to 7); reaction is interpreted to be $k(O_2^- + Cu^{II}) = k(O_2^- + Cu^{II}) = k(HO_2 + Cu^{II})$ and pH de- pendence due to conversion of SOD to	80A391
		7.2	$(1.6 \pm 0.64) \times 10^9$	p.r., opt.	inactive form by H ⁺ . Observed rate. D.k.; protein from E. gracilis gave $k = (2.12 \pm 0.22) \times 10^{2}$	79R055
		8.9	$5.6 imes 10^8$	p.r.	$(0.13 \pm 0.30) \times 10^{\circ}$. Observed rate. D.k. at 480 nm. Other rates detd. by data fitting with model	77A194
		8–9	$(3.70 \pm 0.18) \times 10^9$	p.r., opt.	Soln. cont. 1×10^{-4} mol L ⁻¹ EDTA, 0.1 mol L ⁻¹ EtOH, 5×10^{-4} mol L ⁻¹ sodium pyrophosphate; $k = (3.30 \pm 0.16) \times 10^9$ in soln. contg. 2×10^{-3} mol L ⁻¹ Na pyro- phosphate and 0.085 mol L ⁻¹ EtOH.	77A275

No.	Reaction	pН	$k (L \text{ mol}^{-1} \text{s}^{-1})$	Method	Comment	Ref.
		9	$(3.15 \pm 0.14) \times 10^9$	p.r., opt.	Soln. cont. 0.01 mol L^{-1} EtOH, 2 × 10 ⁻³ mol L^{-1} Na pyrophosphate, 1 × 10 ⁻⁴ mol L^{-1} EDTA.	77R237
		7.2	$(2.3 \pm 0.2) \times 10^9$	p.r., opt.	Obs. decrease in transmittance at 550 nm $(Fe^{3+} \text{ cyt C})$, soln. also contains EDTA, phosphate buffer and formate; observed rate	761163
		10.1	0.73 × 10 ⁹	KO2, s.f., opt.	D.k. at 275 nm in soln. contg. borate and EDTA and bovine SOD contg. Cu. Ob-	769257
		7.5–7.7	$(1.3 \pm 0.1) \times 10^9$	p.r., opt.	b.k. at 245 nm in O_2 -satd. soln. contg. for- mate ion 10^{-4} mol L^{-1} EDTA and $(1-5) \times 10^{-6}$ mol L^{-1} Cu,Zn enzyme; k per equiv- alent of Cu; same result in presence of 0.11 g L^{-1} bovine serum albumin. pH not var- ied but system shown previously to be in- dependent of pH.	75A243
		9.0–9.9	$(2.37 \pm 0.18) \times 10^{9}$	p.r., opt.	D.k. at 250 nm; bovine Cu-Zn enzyme; supersedes [723066].	743017
		9-10.2	$2.3 imes 10^9$	elec., pol.	Obs. increased O ₂ formn, with enzyme addn.	743132
		7.5	$(1.2 \pm 0.2) \times 10^9$	p.r., opt.	D.k. at 650 nm; soln. contains Na formate and EDTA; enzyme from bovine blood. Observed rate.	730109
		5.0–9.5	$\sim 2 \times 10^{9}$	chem., biol., opt.	C.k. (bovine Cu-Zn enzyme); assume $k(O_2^- + \text{cyt C}) = 1.1 \times 10^5$ and $k(O_2^- + \text{TNM}) = 1.9 \times 10^9$; also detd. for Mn and Fe-contr. enzymes.	733052
		5.7-10.5	$1.5 imes 10^9$	p.r., opt.	D.k. at 690 nm; Cu enzyme from human blood.	733132
		7 4.8–9.5	$(1.4 \pm 0.2) \times 10^9$ 2.3×10^9	p.r., opt. p.r., opt.	D.k. at 245 nm; enzyme from bovine blood k studied as a function of pH.	721007 723078
316	Tartrate ion $O_{\overline{2}} + (CHOHCO_{\overline{2}})_2 \rightarrow$	10.1	<0.14	e-r., s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA and 0.01–0.1 mol L^{-1} tartrate; no reaction.	770046
317	1,1'-Tetramethylene-2,2'-bipyridin	ium radical i	on (1+)			
	$O_2^- + BP^+ \rightarrow$	6,8	$(13.0 \pm 1) \times 10^8$	p.r.	Ar-satd. soln. cont. 10^{-3} mol L ⁻¹ BP ²⁺ 2Cl ⁻ , 0.1 mol L ⁻¹ Na formate and ~0.3% O ₂ .	78A321
318	2,2,6,6-Tetramethylpiperidine-N-0 HO ₂ /O ₂ ⁻ + TEMPO →	9.2	730		Calcd. rate. Soln. cont. 0.1 mol L^{-1} borate, 2 × 10 ⁻⁴ mol L^{-1} EDTA, 10 ⁻⁷ mol L^{-1} catalase; phosphate adjusted.	79 A .184
319	2,2,6,6-Tetramethylpiperidin-1-ol HO ₂ /O ₂ + TEMPOH \rightarrow	7.8	1.7 × 10 ³	enz., opt.	C.k. in xanthine oxidase system, rel. to $k(O_2^- + \text{cyt C}) = 6 \times 10^5$.	82R165
320	Tetranitromethane HO ₂ + C(NO ₂) ₄ \rightarrow	06	< 10 ⁵	p.r., opt.	P.b.k.; calcd. value from rate equation and	650183
	$NO_2 + H^+ + C(NO_2)_3^- + O_2$ $O_2^- + C(NO_2)_4 \rightarrow$	5.6-6.2	$(1.9 \pm 0.4) \times 10^{9}$	p.r., opt.	рн study. P.b.k.; pH 0–6.2 studied.	650183
	1102 + 0(1102)3 + 02		$(2.0\pm0.4)\times10^9$	p.r., opt.	P.b.k.; pH not given.	640133
321	pt-Threenine, $pK_{2} = 2.088, 9.10$					
140	$HO_2 + Thr \rightarrow$	1.4	<12.5 ± 4.0	γ-r., s.f., opt.	D.k. in O ₂ -satd. formate soln. contg. 5×10^{-5} mol L ⁻¹ EDTA and 0.1 mol L ⁻¹ threenine: upper limit.	79A358
	$O_2^- + Thr \rightarrow$	10.1	<0.21 ± 0.05	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.15 mol L ⁻¹ threenine: no reaction.	79A358

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

REACTIVITY OF HO_2/O_2 RADICALS IN AQUEOUS SOLUTION

TABLE 3. Rate constants for reactions of HO_2/O_2^- in aqueous solutions – Continued

No.	Reaction	рН	$k (\mathrm{L} \mathrm{mol}^{-1} \mathrm{s}^{-1})$	Method	Comment	Ref.
322	α-Tocopherol HO ₂ + C ₂₉ H ₅₀ O ₂ →	acid	2.0×10^5	s.f., opt.	Soln. cont. 0.022 mol L^{-1} H ₂ SO ₄ , 85% EtOH, and 0.025-0.1 mol L^{-1}	82A403
	$O_2^- + C_{29}H_{50}O_2 \rightarrow$	alk.		s.f., opt.	α -tocopherol. Soln. cont. 0.01 mol L ⁻¹ KOH, 85% EtOH, and 0.025 -0.1 mol L ⁻¹ α -tocopherol. No reaction obs.	82A403
323	Tributylammoniobutyldioxy $O_2^- + (C_4H_9)_3N^+(O_2C_4H_8) \rightarrow O_3^-$	~12-13	6 × 10 ⁷	p.r., opt.	P.b.k. (O_3^-) in soln. contg. O_2 , 0.1 mol L^{-1} KOH and R_4N^+ . Concn. of O_2^- and cation varied.	78A095
324	Triethylammonioethyldioxy $O_2^- + (C_2H_3)_3N^+(O_2CHCH_3) \rightarrow O_3^-$	~12-13	4×10^8	p.r., opt.	P.b.k. (O_3^-) in soln. contg. O_2 , 0.1 mol L^{-1} KOH and R_4N^+ . Concn. of O_2^- and cation varied.	78A095
325	Trimethylammoniomethyldioxy $O_2^- + (CH_3)_3N^+(O_2CH_2) \rightarrow O_3^-$	~12-13	3×10^8	p.r., opt.	P.b.k. (O_2^-) in soln. contg. O_2 , 0.1 mol L^{-1} KOH and R_4N^+ . Concn. of O_2^- and cation varied.	78A095
326	1,1'-Trimethylene-2,2'-bipyridinium Oz¯ + BP·+ →	radical ion (6.8	$(12.0 \pm 1) \times 10^8$	p.r.	Ar-satd. soln. contg. 10^{-3} mol L ⁻¹ BP ²⁺ 2Cl ⁻ and 0.1 mol L ⁻¹ formate and ~0.3% O ₂ .	78A321
327	2,5,5-Trimethyl-1-pyrroline N-oxid	8	-	•		80 A 17(
	$HO_2/O_2^- + TMPO \rightarrow$	7.8	/	enz., esr	Spin trapping; c.k. with SOD; rel. to $\kappa(O_2 + Fe^{3+} \text{ cyt } C) = 6 \times 10^5$.	80A170
		8.1	1.44	enz., esr	Spin trapping; rel. to $k(O_2^- + O_2^-) = 5.1 \times 10^4$. Xanthine-xanthine oxidase system.	80A176
328	Tripropylammoniopropyldioxy O2¯ + (C3H7)3N ⁺ (O2C3H6) → O3¯	~12-13	8 × 10 ⁷	p.r., opt.	P.b.k. $(O_{\overline{2}})$ in soln. contg. O_2 , 0.1 mol L^{-1} KOH and R_4N^+ . Concn. of $O_{\overline{2}}^-$ and cation varied.	78A095
329	Tris(hydroxymethyl)aminomethane $O_2^- + (HOCH_2)_3CNH_2 \rightarrow$	10.1	<0.001	s.f., opt.	D.k. at 250 nm in air-satd. soln. contg. 0.2 mol L^{-1} formate and 10^{-4} mol L^{-1} EDTA	770046
					and 0.01–0.1 mol L^{-1} substrate; no reaction.	
330	L-Tryptophan, $pK_a = 2.43, 9.44, 11$.73				
	O ₂ ⁻ + TrpH →	10.6	<24.0 ± 3.00	phot., opt.	C.k. with NBT ²⁺ ; obs. at 560 nm in soln. contg. 5×10^{-5} mol L ⁻¹ EDTA and 0.02 mol L ⁻¹ tryptophan; no reaction.	79 A 358
331	L-Tyrosine, $pK_1 = 2.2, 9.2, 10.5$ $O_2^- + TyrOH \rightarrow$	10.8	<10.00 ± 2.00	phot., opt.	C.k. with NBT ²⁺ ; obs. at 560 nm in soln. contg. 5×10^{-5} mol L ⁻¹ EDTA and 0.005 mol L ⁻¹ tyrosine; no reaction.	79A358
332	DL-Valine, $pK_s = 2.3, 9.7$ HO ₂ + Val \rightarrow	1.5	<10.5 ± 1.3	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.1 mol L ⁻¹	79A358
	$O_2^- + Val \rightarrow$	10.1	<0.18 ± 0.02	γ-r., s.f., opt.	D.k. in O ₂ -satd. soln. contg. formate and 5 \times 10 ⁻⁵ mol L ⁻¹ EDTA and 0.15 mol L ⁻¹ valine; no reaction obs.	79A358
333	Vitamin K_1 HO ₂ /O ₂ ⁻ + Me(phytyl)NQ \rightarrow Me(phytyl)NQ· ⁻ + O ₂	7	<2 × 10 ⁵	p.r., opt.	Detd. from equil. const. and d.k. of semi- quinone. Soln. contg. 7 mol L^{-1} 2-PrOH and 1 mol L^{-1} acetone.	730125

9. References to Table 3

- 530014 The primary radical yield in water. A comparison of the photolysis and radiolysis of solutions of hydrogen peroxide. Dainton, F.S.; Rowbottom, J. Trans. Faraday Soc. 49: 1160-73 (1953).
- 570010 Studies in the radiolysis of ferrous sulfate solutions. II. Effect of acid concentration in solutions containing oxygen. Allen, A.O.; Hogan, V.D.; Rothschild, W.G. Radiat. Res. 7: 603-8 (1957).
- 580004 Studies in the radiolysis of ferrous sulfate solutions. III. Airfree solutions at higher pH. Rothschild, W.G.; Allen, A.O. Radiat. Res. 8: 101-110 (1958).
- 600102 Effect of ferric ion on the γ-ray induced oxidation of ferrous ion. Dobson, G.; Hughes, G. Trans. Faraday Soc. 57: 1117-22 (1960).
- 620050 The flash photolysis of water and aqueous solutions. Baxendale, J.H. Radiat. Res. 17: 312-26 (1962).
- 630075 The formation and decay of H₂O₃ and HO₂ in electronirradiated aqueous solutions. Czapski, G.; Bielski, B.H.J. J. Phys. Chem. 67: 2180-4 (1963).
- 639017 The kinetics of the oxidation of hydrogen peroxide by cerium(IV). Czapski, G., Dielski, D.H.J.; Sutin, N. J. Phys. Chem. 67: 201-3 (1963).
- 640050 Catalyse d'oxydations radiolytiques en solution aqueuse par le tetroxyde d'osmium. Dran, J.-C.; Haissinsky, M. J. Chim. Phys. 61. 1421-7 (1964).
- 640090 Pulse radiolysis of ferrous sulfate solution. Keene, J.P. Radiat. Res. 22: 14-20 (1964).
- 640133 Pulsradiolytische Untersuchung schneller Reaktionen von hydratisierten Elektronen, freien Radikalen und Ionen mit Tetranitromethan in waessriger Loesung. Asmus, K.-D.; Henglein, A.; Ebert, M.; Keene, J.P. Ber. Bunsenges. Phys. Chem. 68: 657-63 (1964).
- 650007 Spectroscopic studies of reactions of the OH radical in aqueous solutions. Reaction of OH with the ferrocyanide ion. Adams, G.E.; Boag, J.W.; Michael, B.D. Trans. Faraday Soc. 61: 492-505 (1965).
- 650046 Photolysis and radiolysis of concentrated aqueous solutions of hydrogen peroxide. Currie, D.J.; Dainton, F.S. Trans. Faraday Soc. 61: 1156-65 (1965).
- 650055 Radiolysis of aerated solutions of potassium bromide. Rafi, A.; Sutton, H.C. Trans. Faraday Soc. 61: 877–90 (1965).
- 650183 The pulse radiolysis of aqueous tetranitromethane. I. Rate constants and the extinction coefficient of e_{aq}. II. Oxygenated solutions. Rabani, J.; Mulac, W.A.; Matheson, M.S. J. Phys. Chem. 69: 53-70 (1965).
- 650382 Radical yields and kinetics in the pulse radiolysis of potassium bromide solutions. Sutton, H.C.; Adams, G.E.; Boag, J.W.; Michael, B.D. Pulse Radiolysis, p.61-81, Ebert, M.; Keene, J.P.; Swallow, A.J.; Baxendale, J.H. (eds.), Academic Press, New York (1965).
- 650383 Pulse radiolysis of aerated aqueous potassium bromide solutions. Cercek, B.; Ebert, M.; Gilbert, C.W.; Swallow, A.J. Pulse Radiolysis, p.83-98, Ebert, M.; Keene, J.P.; Swallow, A.J.; Baxendale, J.H. (eds.), Academic Press, New York (1965).
- 650385 Determination of some fast reaction rates using the pulsed radiolysis of permanganate solutions. Baxendale, J.H.; Keene, J.P.; Stott, D.A. Pulse Radiolysis, p.107-15, Ebert, M.; Keene, J.P.; Swallow, A.J.; Baxendale, J.H. (eds.), Academic Press, New York (1965).
- 650386 The pulse radiolysis of aqueous solutions of thiocyanate ion. Adams, G.E.; Boag, J.W.; Currant, J.; Michael, B.D. Pulse Radiolysis, p.117-29, Ebert, M.; Keene, J.P.; Swallow, A.J.; Baxendale, J.H. (eds.), Academic Press, New York (1965).
- 660001 Transient species produced in irradiated water and aqueous solutions containing oxygen. Adams, G.E.; Boag, J.W.; Michael, B.D. Proc. Roy. Soc. (London) Ser. A 289: 321-41 (1966).

- 660097 Novel valence states of thallium as studied by pulse radiolysis. Cercek, B.; Ebert, M.; Swallow, A.J. J. Chem. Soc. Pt. A 612-5 (1966).
- 670037 The influence of ethylene on the radiolytic oxidation of ferrous sulphate. Basson, R.A.; du Plessis, T.A. J. Chem. Soc. Pt. A 778-781 (1967).
- 670737 Peroxide formation in the radiolysis of aqueous hydrocarbon solutions. Shastri, L.V.; Srinivasan, K.; Rama Rao, K.V.S. *Proc. Nuclear and Radiation Chemistry Symposium*, Poona, India, March 6-9, 1967.
- 677012 Flash photolysis in the vacuum ultraviolet region of SO²⁻, CO²⁻, and OH⁻ ions in aqueous solutions. Hayon, E.; McGarvey, J.J. J. Phys. Chem. 71: 1472-7 (1967).
- 680014 Rate constants of OH with HO₂, O₂⁻, and H₂O₂⁺ from hydrogen peroxide formation in pulse-irradiated oxygenated water. Sehested, K.; Rasmussen, O.L.; Fricke, H. J. Phys. Chem. 72: 626-31 (1968).
- 680059 Geschwindigkeitskonstanten der Reaktion einiger Farbstoffe mit HO₂-Radikalen und hydratisierten Elektronen, gebildet durch ⁶⁰Co-γ-Radiolyse von waessrigen Loesungen. Rakintzis, N.Th. Z. Phys. Chem. (Frankfurt Am Main) 57: 99-102 (1968).
- 680356 Radiolyse de solutions aqueuses du tellure par les rayons γ. III. Solutions acides. Haissinsky, M. J. Chim. Phys. 65. 1386–92 (1968).
- 690413 Reactions of H₂O₃ in the pulse-irradiated Fe(II)-O₂ system. Sehested, K.; Bjergbakke, E.; Rasmussen, O.L.; Fricke, H. J. Chem. Phys. 51: 3159-66 (1969).
- 690434 Pulse-radiolysis study of some unstable complexes of iron. Jayson, G.G.; Keene, J.P.; Stirling, D.A.; Swallow, A.J. Trans. Faraday Soc. 65: 2453-64 (1969).
- 690642 Comportement cinetique des radicaux HO₂ et de leur forme acide vis-a-vis des ions ferreux et ferriques. Pucheault, J.; Ferradini, C.; Buu, A. Int. J. Radiat. Phys. Chem. 1: 209-18 (1969).
- 690643 Radiolyse de solutions acides et aerees de peroxyde d'hydrogene. Ferradini, C.; Seide, C. Int. J. Radiat. Phys. Chem. 1: 219-28 (1969).
- 697082 The photochemical decomposition of hydrogen peroxide in the presence of bivalent copper ions. Berdnikov, V.M.; Kozlov, Yu.N.; Purmal, A.P. Khim. Vys. Energ. 3: 321-4 (1969).
- 699128 Direct demonstration of superoxide anion production during the oxidation of reduced flavin and of its catalytic decomposition by erythrocuprein. Ballou, D.; Palmer, G.; Massey, V. Biochem. Biophys. Res. Commun. 36: 898-904 (1969).
- 700247 Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions. Behar, D.; Czapski, G.; Duchovny, I. J. Phys. Chem. 74: 2206-10 (1970).
- 700882 The radiolysis of oxygenated cysteine solutions at neutral pH. The role of RSSR and O₂⁻. Barton, J.P.; Packer, J.E. Int. J. Radiat. Phys. Chem. 2: 159-66 (1970).
- 709058 ESR study of a complex formation between HO₂ radical and peroxy-vanadium (V) ion. Samuni, A.; Czapski, G. Isr. J. Chem. 8: 563-73 (1970).
- 710158 One-electron reactions in biochemical systems as studied by pulse radiolysis. IV. Oxidation of dihydronicotinamideadenine dinucleotide. Land, E.J.; Swallow, A.J. Biochim. Biophys. Acta 234: 34-42 (1971).
- 710327 One-electron reactions in biochemical systems as studied by pulse radiolysis. V. Cytochrome c. Land, E.J.; Swallow, A.J. Arch. Biochem. Biophys. 145: 365-72 (1971).
- 710619 Pulse radiolysis studies of electron transfer in aqueous quinone solutions. Willson, R.L. Trans. Faraday Soc. 67: 3020-9 (1971).
- 720308 Reactions of the HO_2 radical in aqueous solution with bromine and related compounds. Sutton, H.C.; Downes, M.T. J. Coated Fabr. 68: 1498-507 (1972).
- 720404 Electrical conductivity techniques for studying the kinetics of radiation-induced chemical reactions in aqueous solutions. Schmidt, K.H. Int. J. Radiat. Phys. Chem. 4: 439-68 (1972).

- 720431 Pulse radiolysis of the aqueous ferro-ferricyanide system. I. The reactions of OH, HO₂, and O₂⁻ radicals. Zehavi, D.; Rabani, J. J. Phys. Chem. 76: 3703-9 (1972).
- 721007 Decay of the HO₂ and O₂⁻ radicals catalyzed by superoxide dismutase. A pulse radiolytic investigation. Rabani, J.; Klug, D.; Fridovich, I. Isr. J. Chem. 10: 1095-1106 (1972).
- 723066 A pulse radiolysis study of superoxide dismutase. Rotilio, G.; Bray, R.C.; Fielden, E.M. Biochim. Biophys. Acta 268: 605-9 (1972).
- 723078 A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. Klug, D.; Rabani, J.; Fridovich, I. J. Biol. Chem. 247: 4839-42 (1972).
- 730038 Oxidation of ferrous ions by perhydroxyl radicals. Jayson, G.G.; Parsons, B.J.; Swallow, A.J. J. Chem. Soc., Faraday Trans. 1 69: 236-42 (1973).
- 730049 Comparison between the electron transfer reactions from free radicals and their corresponding peroxy radicals to quinones. Simic, M.; Hayon, E. Biochem. Biophys. Res. Commun. 50: 364-9 (1973).
- 730068 Experimental determination of the redox potential of the superoxide radical ·O₂⁻. Rao, P.S.; Hayon, E. Biochem. Biophys. Res. Commun. 51: 468-73 (1973).
- 730109 Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase. Klug-Roth, D.; Fridovich, I.; Rabani, J. J. Am. Chem. Soc. 95: 2786-90 (1973).
- 730112 Pulse radiolytic investigations of the catalyzed disproportionation of peroxy radicals. Aqueous cupric ions. Rabani, J.; Klug-Roth, D.; Lilie, J. J. Phys. Chem. 77: 1169-75 (1973).
- 730116 The reduction of cobalamin. A pulse radiolysis study. Faraggi, M.; Leopold, J.G. Biochem. Biophys. Res. Commun. 50: 413-20 (1973).
- 730125 Semiquinone free radicals and oxygen. Pulse radiolysis study of one electron transfer equilibria. Patel, K.B.; Willson, R.L. J. Chem. Soc., Faraday Trans. 1 69: 814-25 (1973).
- 731074 Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for the mode of action of bipyridyl herbicides. Farrington, J.A.; Ebert, M.; Land, E.J.; Fletcher, K. Biochim. Biophys. Acta 314: 372-81 (1973).
- 733052 Superoxide dismutase. A comparison of rate constants. Forman, H.J.; Fridovich, I. Arch. Biochem. Biophys. 158: 396-400 (1973).
- 733132 The superoxide dismutase activity of human erythrocuprein. Bannister, J.V.; Bannister, W.H.; Bray, R.C.; Fielden, E.M.; Roberts, P.B.; Rotilio, G. FEBS (Fed. Eur. Biochem. Soc.) Lett. 32: 303-6 (1973).
- 733173 One-electron transfer reactions in biochemical systems. VIII. Kinetic study of superoxide dismutase. Sawada, Y.; Yamazaki, I. Biochim. Biophys. Acta 327: 257-65 (1973).
- 737514 Photodecomposition of hydrogen peroxide in the presence of copper ions. IV. Determination of rate constants of elementary reactions. Kozlov, Yu.N.; Berdnikov, V.M. Russ. J. Phys. Chem. (Engl. Transl.) 47: 338-40 (1973) Translated from: Zh. Fiz. Khim. 47(3): 598-602 (1973).
- 739071 Hydroperoxyl radical reactions. I. Electron paramagnetic resonance study of the complexation of HO₂ with some metal ions. Meisel, D.; Czapski, G.; Samuni, A. J. Am. Chem. Soc. 95: 4148-53 (1973).
- 740188 The radiolysis of aqueous solutions of cysteine in the presence of oxygen. Al-Thannon, A.A.; Barton, J.P.; Packer, J.E.; Sims, R.J.; Trumbore, C.N.; Winchester, R.V. Int. J. Radiat. Phys. Chem. 6: 233-48 (1974).
- 741107 Hydroperoxyl radical reactions. III. Pulse-radiolytic study of the reaction of the hydroperoxyl radical with some metal ions. Meisel, D.; Ilan, Y.A.; Czapski, G. J. Phys. Chem. 78: 2330-4 (1974).
- 741148 Study of peroxidase mechanisms by pulse radiolysis. III. The rate of reaction of O₂⁻ and HO₂ radicals with horseradish peroxidase compound I. Bielski, B.H.J.; Gebicki, J.M. Biochim. Biophys. Acta 364: 233-5 (1974).

- 741151 Formation and decay of peroxy radicals of some pyrimidine derivatives in water. Simic, M.; Hayon, E. FEBS (Fed. Eur. Biochem. Soc.) Lett. 44: 334-6 (1974).
- 741163 Superoxide dismutase activity of low molecular weight Cu²⁺-chelates studied by pulse radiolysis. Brigelius, R.; Spoettl, R.; Bors, W.; Lengfelder, E.; Saran, M.; Weser, U. FEBS (Fed. Eur. Biochem. Soc.) Lett. 47: 72-5 (1974).
- 743017 The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Fielden, E.M.; Roberts, P.B.; Bray, R.C.; Lowe, D.J.; Mautner, G.N.; Rotilio, G.; Calabrese, L. Biochem. J. 139: 49-60 (1974).
- 743059 The catalytic mechanism of the manganese-containing superoxide dismutase of Escherichia coli studied by pulse radiolysis. Pick, M.; Rabani, J.; Yost, F.; Fridovich, I. J. Am. Chem. Soc. 96: 7329-33 (1974).
- 743132 Determination of the superoxide dismutase activity and rate constants by the polarographic catalytic currents method. Rigo, A.; Tomat, R.; Rotilio, G. J. Electroanal. Chem. Interfacial Electrochem. 57: 291-6 (1974).
- 750347 Reactions of the hydroperoxyl radical (HO₂) with nitrogen dioxide and tetranitromethane in aqueous solution. Sutton, H.C. J. Chem. Soc., Faraday Trans. 1 71: 2142-7 (1975).
- 750403 Influence des ions NO_2^- dans les radiolyses γ de solutions aqueuses neutres de tetranitromethane et formiate. Julien, R. Int. J. Radiat. Phys. Chem. 7: 741-8 (1975).
- 751011 Redox potentials of free radicals. IV. Superoxide and hydroperoxy radicals -O₂⁻ and -HO₂. Rao, P.S.; Hayon, E. J. Phys. Chem. 79: 397-402 (1975).
- 751012 Free radical reduction of ferricytochrome-C. Simic, M.G.; Taub, I.A.; Tocci, J.; Hurwitz, P.A. Biochem. Biophys. Res. Commun. 62: 161-7 (1975).
- 751031 Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Nishikimi, M. Biochem. Biophys. Res. Commun. 63: 463-8 (1975).
- 751087 The oxidation of tiron by superoxide anion. Kinetics of the reaction in aqueous solution and in chloroplasts. Greenstock, C.L.; Miller, R.W. Biochim. Biophys. Acta 396: 11-6 (1975).
- 751090 One-electron transfer equilibria and redox potentials of radicals studied by pulse radiolysis. Meisel, D.; Czapski, G. J. Phys. Chem. 79: 1503-9 (1975).
- 751194 Radiation chemical studies of the sensitizer Diamide. Whillans, D.W.; Neta, P. Radiat. Res. 64: 416-30 (1975).
- 753093 The reaction between the superoxide anion radical and cytochrome c. Butler, J.; Jayson, G.G.; Swallow, A.J. Biochim. Biophys. Acta 408: 215-22 (1975).
- 759347 Electrochemical generation and reactivity of the superoxide ion in aqueous solutions. Divisek, J.; Kastening, B. J. Electroanal. Chem. Interfacial Electrochem. 65: 603-21 (1975).
- 75A243 Superoxide dismutase activity of Cu(Tyr)₂ and Cu, Coerythrocuprein. Brigelius, R.; Hartmann, H.-J.; Bors, W.; Saran, M.; Lengfelder, E.; Weser, U. Hoppe-Seyler's Z. Physiol. Chem. 356: 739-45 (1975).
- 75R176 Oxidation of α-tocopherol model compound by superoxide anion. Nishikimi, M.; Machlin, L.J. Arch. Biochem. Biophys. 170: 684-9 (1975).
- 761021 Pulse radiolytic studies on reactions of aqueous superoxide radicals with copper(II) complexes. Klug-Roth, D.; Rabani, J. J. Phys. Chem. 80: 588-91 (1976).
- 761038 Reactions of oxygen radical species with methional: A pulse radiolysis study. Bors, W.; Lengfelder, E.; Saran, M.; Fuchs, C.; Michel, C. Biochem. Biophys. Res. Commun. 70: 81-7 (1976).
- 761056 Determination of superoxide (O₂⁻) radical anion reaction rates using pulse radiolysis. Greenstock, C.L.; Ruddock, G.W. Int. J. Radiat. Phys. Chem. 8: 367-9 (1976).
- 761063 The one-electron transfer redox potentials of free radicals. I. The oxygen/superoxide system. Ilan, Y.A.; Czapski, G.; Meisel, D. Biochim. Biophys. Acta 430: 209-24 (1976).
- 761071 One-electron reduction of a ferrihaem. Butler, J.; Jayson, G.G.; Swallow, A.J. J. Chem. Soc., Faraday Trans. 1 72: 1391-402 (1976).

- 761082 Pulse radiolytic investigations of peroxy radicals in aqueous solutions of acetate and glycine. Abramovitch, S.; Rabani, J. J. Phys. Chem. 80: 1562-5 (1976).
- 761109 Pulse radiolytic studies of aqueous Mn(ClO₄)₂ solutions. Pick-Kaplan, M.; Rabani, J. J. Phys. Chem. 80: 1840-3 (1976).
- 761127 Reactions of the ferri-ferrocytochrome-c system with superoxide/oxygen and CO₂ /CO₂ studied by fast pulse radiolysis. Seki, H.; Ilan, Y.A.; Ilan, Y.; Stein, G. Biochim. Biophys. Acta 440: 573-86 (1976).
- 761132 On some fundamental reactions in radiation chemistry: Nanosecond pulse radiolysis. Ilan, Y.; Rabani, J. Int. J. Radiat. Phys. Chem. 8: 609-11 (1976).
- 761137 One electron reduction of metmyoglobin and methemoglobin and the reaction of the reduced molecule with oxygen. Ilan, Y.A.; Rabani, J.; Czapski, G. Biochim. Biophys. Acta 446: 277-86 (1976).
- 761140 Steady state and pulse radiolysis studies of molybdenum octacyanate in aqueous solution. Faraggi, M. J. Phys. Chem. 80: 2316-20 (1976).
- 761163 The kinetics of the reduction of cytochrome c by the superoxide anion radical. Koppenol, W.H.; Van Buuren, K.J.H.; Butler, J.; Braams, R. Biochim. Biophys. Acta 449: 157-68 (1976).
- 763048 Re-evaluation of the kinetics of lactate dehydrogenasecatalyzed chain oxidation of nicotinamide adenine dinucleotide by superoxide radicals in the presence of ethylenediaminetetraacetate. Bielski, B.H.J.; Chan, P.C. J. Biol. Chem. 251: 3841-4 (1976).
- 763093 The rate of reaction of superoxide radical ion with oxyhaemoglobin and methaemoglobin. Sutton, H.C.; Roberts, P.B.; Winterbourn, C.C. Biochem. J. 155: 503-10 (1976).
- 767025 Photoreduction of hydrogen peroxide by hydrogen. Field, R.J.; Noyes, R.M.; Postlethwaite, D. J. Phys. Chem. 80: 223-9 (1976).
- 769257 Stopped flow spectrophotometric observation of superoxide dismutation in aqueous solution. McClune, G.J.; Fee, J.A. FEBS (Fed. Eur. Biochem. Soc.) Lett. 67: 294-8 (1976).
- 769352 Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase. Marklund, S. J. Biol. Chem. 251: 7504-7 (1976).
- 76R183 Reactivity of thiols with superoxide radicals. Asada, K.; Kanematsu, S. Agr. Biol. Chem. 40: 1891-2 (1976).
- 76R190 Oxidation of manganous pyrophosphate by superoxide radicals and illuminated spinach chloroplasts. Kono, Y.; Takahashi, M.-A.; Asada, K. Arch. Biochem. Biophys. 174: 454-62 (1976).
- 770046 A study of the superoxide radical chemistry by stopped-flow radiolysis and radiation induced oxygen consumption. Bielski, B.H.J.; Richter, H.W. J. Am. Chem. Soc. 99: 3019-23 (1977).
- 771028 Addition of superoxide radical anion to cobalt(II) macrocyclic complexes in aqueous solution. Simic, M.G.; Hoffman, M.Z. J. Am. Chem. Soc. 99: 2370-1 (1977).
- 771088 The reaction of superoxide radical with iron complexes of EDTA studied by pulse radiolysis. Ilan, Y.A.; Czapski, G. Biochim. Biophys. Acta 498: 386-94 (1977).
- 771096 H/²H isotope effect in redox reactions of cytochrome c. Ilan, Y.; Shinar, R.; Stein, G. Biochim. Biophys. Acta 461: 15-24 (1977).
- 771127 A pulse-radiolysis study of the catalytic mechanism of the iron-containing superoxide dismutase from Photobacterium leiognathi. Lavelle, F.; McAdam, M.E.; Fielden, E.M.; Roberts, P.B.; Puget, K.; Michelson, M. Biochem. J. 161: 3-11 (1977).
- 771130 Use of the method of pulsed radiolysis to investigate the properties of americium(IV) in aqueous solutions. Pikaev, A.K.;
 Shilov, V.P.; Spitsyn, V.I. Dokl. Phys. Chem. 232: 70-3 (1977)
 Translated from: Dokl. Akad. Nauk SSSR 232: 387-90 (1977).
- 779154 An attempt to evaluate the rate of the Haber-Weiss reaction by using OH radical scavengers. Rigo, A.; Stevanato, R.; Finazzi-Agro, A.; Rotilio, G. FEBS Lett. **80**: 130-2 (1977).
- J. Phys. Chem. Ref. Data, Vol. 14, No. 4, 1985

- 77A194 A pulse-radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus. A kinetic model for the enzyme action. McAdam, M.E.; Fox, R.A.; Lavelle, F.; Fielden, E.M. Biochem. J. 165: 71-9 (1977).
- 77A231 A pulse-radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus. Further studies on the properties of the enzyme. McAdam, M.E.; Lavelle, F.; Fox, R.A.; Fielden, E.M. Biochem. J. 165: 81-7 (1977).
- 77A275 A consideration of the effects of added solutes on the activity of bovine superoxide dismutase. McAdam, M.E. Biochem. J. 161: 697-9 (1977).
- 77R237 The involvement of the bridging imidazolate in the catalytic mechanism of action of bovine superoxide dismutase. McAdam, M.E.; Fielden, E.M.; Lavelle, F.; Calabrese, L.; Cocco, D.; Rotilio, G. Biochem. J. 167: 271-4 (1977).
- 77R240 Formation of active oxygen and its fate in chloroplasts. Asada, K.; Takahashi, M.; Tanaka, K.; Nakano, Y. Biochemical and Medical Aspects of Active Oxygen, p.45-63, O. Hayaishi and K. Asada (eds.), University Park Press, Tokyo (1977).
- 78A095 Pulse radiolysis of tetraalkylammonium hydroxides in alkaline solution containing oxygen. Bobrowski, K.; Suwalski, J.P.; Zagorski Z.P. Radiat. Phys. Chem. 11: 71-6 (1978).
- 78A309 Pulse radiolytically generated superoxide and Cu(II)-salicylates. Younes, M.; Lengfelder, E.; Zienau, S.; Weser, U. Biochem. Biophys. Res. Commun. 81: 576-80 (1978).
- 78A321 Bipyridylium quaternary salts and related compounds. Part 6. Pulse radiolysis studies of the reaction of paraquat radical analogues with oxygen. Farrington, J.A.; Ebert, M.; Land, E.J. J. Chem. Soc., Faraday Trans. 1 74: 665-75 (1978).
- 78A361 Reevaluation of the spectral and kinetic properties of HO₂ and O_2^- free radicals. Bielski, B.H.J. Photochem. Photobiol. 28: 645-9 (1978).
- 78A362 The Haber-Weiss cycle. Koppenol, W.H.; Butler, J.; van Leeuwen, J.W. Photochem. Photobiol. 28: 655-60 (1978).
- 78A364 The reaction between superoxide anion and hydrogen peroxide. Ferradini, C.; Foos, J.; Houee, C.; Pucheault, J. Photochem. Photobiol. 28: 697-700 (1978).
- 78A365 Pulse radiolysis studies in model lipid systems: Formation and behavior of peroxy radicals in fatty acids. Hasegawa, K.; Patterson, L.K. Photochem. Photobiol. 28: 817-23 (1978).
- 78A366 Gamma and pulse radiolysis studies of the reaction between superoxide ions and oxyhemoglobin-methemoglobin system. Ferradini, C.; Foos, J.; Gilles, L.; Haristoy, D.; Pucheault, J. Photochem. Photobiol. 28: 851-5 (1978).
- 78A367 Radiation activation of carcinogens and the role of •OH and O₂⁻. Greenstock, C.L.; Ruddock, G.W. Photochem. Photobiol. 28: 877-80 (1978).
- 78A389 Study of the Haber-Weiss reaction using a sensitive method for detection of OH radicals. Melhuish, W.H.; Sutton, H.C. J. Chem. Soc., Chem. Commun. : 970-1 (1978).
- 78A436 Oxidation of first-row bivalent transition-metal complexes containing ethylenediaminetetra-acetate and nitrilotriacetate ligands by free radicals: A pulse-radiolysis study. Lati, J.; Meyerstein, D. J. Chem. Soc., Dalton Trans. : 1105–18 (1978).
- 78A483 Kinetic investigations of the autoxidation of adrenalin. Bors,
 W.; Michel, C.; Saran, M.; Lengfelder, E. Z. Naturforsch., Teil
 C 33C: 891-6 (1978).
- 78R103 The effect of 1,4-diazabicyclo[2.2.2]octane on the radiosensitivity of bacteria. Anderson, R.F.; Patel, K.B. Photochem. Photobiol. 28: 881-5 (1978).
- 78R207 The role of the superoxide anion in the xanthine oxidaseinduced autoxidation of linoleic acid. Thomas, M.J.; Mehl, K.S.; Pryor, W.A. Biochem. Biophys. Res. Commun. 83: 927-32 (1978).
- 78R208 Oxygen activation in isolated chloroplasts. Mechanism of ferredoxin-dependent ethylene formation from methionine. Elstner, E.F.; Saran, M.; Bors, W.; Lengfelder, E. Eur. J. Biochem. 89: 61-6 (1978).

- 78R209 The oscillating peroxidase-oxidase reaction in an open system. Analysis of the reaction mechanism. Olsen, L.F. Biochim. Biophys. Acta 527: 212-20 (1978).
- 78R210 Oxidation of α-tocopherol with O₂. Yagi, K.; Yamada, H.; Nishikimi, M. *Tocopherol, Oxygen and Biomembranes*, p.1-11, C. de Duve and O. Hayaishi (eds.), Elsevier, North Holland Biomedical Press (1978).
- 79A001 Kinetics of the interaction of HO₂ and O₂⁻ radicals with hydrogen peroxide. The Haber-Weiss reaction. Weinstein, J.; Bielski, B.H.J. J. Am. Chem. Soc. 101: 58-62 (1979).
- 79A014 Pulse-radiolytic investigations of catechols and catecholamines. II. Reactions of Tiron with oxygen radical species. Bors, W.; Saran, M.; Michel, C. Biochim. Biophys. Acta 582: 537-42 (1979).
- 79A018 Superoxide dismutase activities of an iron porphyrin and other iron complexes. Pasternack, R.F.; Halliwell, B. J. Am. Chem. Soc. 101: 1026-31 (1979).
- 79A036 Electron transfer from pyridinyl radicals, hydrated electrons, CO₂.⁻ and O₂.⁻ to bacterial cytochrome P450. Debey, P.; Land, E.J.; Santus, R.; Swallow, A.J. Biochem. Biophys. Res. Commun. 86: 953-60 (1979).
- 79A038 Radical oxidation of nickel(II) complexes of tetraazamacrocyclic ligands and the reactions of the resulting nickel(III) complexes: A pulse-radiolysis and flash-photolysis study. Whitburn, K.D.; Laurence, G.S. J. Chem. Soc., Dalton Trans. : 139-48 (1979).
- 79A072 Functional aspects of the superoxide dismutative action of Cu-penicillamine. Lengfelder, E.; Fuchs, C.; Younes, M.; Weser, U. Biochim. Biophys. Acta 567: 492-502 (1979).
- 79A170 Oxidation of nicotinamide adenine dinucleotide by hydroperoxyl radical. A flash photolysis study. Nadezhdin, A.; Dunford, H.B. J. Phys. Chem. 83: 1957-61 (1979).
- 79A184 Detection of superoxide ion in aqueous media by Nhalopiperidines. Rigo, A.; Argese, E.; Orsega, E.F.; Viglino, P. Inorg. Chim. Acta 35: 161-4 (1979).
- 79A240 Pulse-radiolytic investigations of catechols and catecholamines. 3. Adrenalone. Bors, W.; Saran, M.; Michel, C. J. Phys. Chem. 83: 2447-52 (1979).
- 79A255 Radiation chemistry of cobalt(II) nitrilotriacetate in aqueous solutions. Bhattacharyya, S.N.; Srisankar, E.V. J. Chem. Soc., Faraday Trans. 1 75: 2089-99 (1979).
- 79A295 Superoxide anions do not react with hydroperoxides. Bors, W.; Michel, C.; Saran, M. FEBS Lett. 107: 403-6 (1979).
- 79A303 Pulse-radiolytic investigations of catechols and catecholamines. 4. 3,4-Dihydroxybenzaldehyde and 3,4-dihydroxyacetophenone. Bors, W.; Saran, M.; Michel, C. J. Phys. Chem. 83: 3084-8 (1979).
- 79A312 Partitioning of electrostatic and conformational contributions in the redox reactions of modified cytochromes c. Ilan, Y.; Shafferman, A.; Feinberg, B.A.; Lau, Y.-K. Biochim. Biophys. Acta 548: 565-78 (1979).
- 79A329 Superoxide and manganese(III). Reactions of Mn-EDTA and Mn-CyDTA complexes with O₂⁻. X-ray structure of KMnEDTA·2H₂O. Stein, J.; Fackler, J.P., Jr.; McClune, G.J.; Fee, J.A.; Chan. L.T. Inorg. Chem. 18: 3511-9 (1979).
- 79A340 The oxidation of ascorbic acid and hydroquinone by perhydroxyl radicals. A flash photolysis study. Nadezhdin, A.D.; Dunford, H.B. Can. J. Chem. 57: 3017-22 (1979).
- 79A358 Reaction rates of superoxide radicals with the essential amino acids. Bielski, B.H.J.; Shiue, G.G. Oxygen Free Radicals and Tissue Damage, p.43-56, Ciba Foundation Symposium 65 (New Series), Excerpta Medica, New York (1979).
- 79A455 Reactivity of Cu(indomethacin), and Cu-penicillamine with O₂⁻. Lengfelder, E.; Sellinger, K.-H.; Weser, U. Metalloproteins, Structure, Molecular Function and Clinical Aspects, p.136-41, U. Weser (ed.), Georg Theime Verlag, Stuttgart (1979).
- 79R055 Cyanide insensitive iron superoxide dismutase in Euglena gracilis. Comparison of the reliabilities of different test systems for superoxide dismutases. Lengfelder, E.; Elstner, E.F. Z. Naturforsch., Teil C 34C: 374-80 (1979).

- 79R111 Catalysis of the disproportionation of superoxide by metalloporphyrins. Pasternack, R.F.; Skowronek, W.R., Jr. J. Inorg. Biochem. 11: 261-7 (1979).
- 80A049 Rate of reaction of superoxide radical with chloridecontaining species. Long, C.A.; Bielski, B.H.J. J. Phys. Chem. 84: 555-7 (1980).
- 80A085 Reduction of nitro blue tetrazolium by CO₂⁻ and O₂⁻ radicals. Bielski, B.H.J.; Shiue, G.G.; Bajuk, S. J. Phys. Chem. 84: 830-3 (1980).
- 80A139 Reaction between superoxide ion and the superoxide coordinated in a cobalt(III) complex. Natarajan, P.; Raghavan, N.V. J. Am. Chem. Soc. 102: 4518-9 (1980).
- 80A175 Reaction of superoxide radicals with copper(II)-histidine complexes. Weinstein, J.; Bielski, B.H.J. J. Am. Chem. Soc. 102: 4916-9 (1980).
- 80A176 Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. Finkelstein, E.; Rosen, G.M.; Rauckman, E.J. J. Am. Chem. Soc. 102: 4994-9 (1980).
- 80A201 Structure of Cu₂(indomethacin)₄ and the reaction with superoxide in aprotic systems. Weser, U.; Sellinger, K.-H.; Lengfelder, E.; Werner, W.; Straehle, J. Biochim. Biophys. Acta 631: 232-45 (1980).
- 80A220 Does caeruloplasmin dismute superoxide? No. Bannister, J.V.; Bannister, W.H.; Hill, H.A.O.; Mahood, J.F.; Willson, R.L.; Wolfenden, B.S.; FEBS Lett. 118: 127-9 (1980).
- 80A221 Role of a peroxide intermediate in the chemiluminescence of luminol. A mechanistic study. Merenyi, G.; Lind, J.S. J. Am. Chem. Soc. 102: 5830-05 (1980).
- 80A296 The oxidation of soybean lipoxygenase-1: A pulse-radiolysis study. Allen, J.C.; Navaratnam, S.; Parsons, B.J.; Phillips, G.O.; Swallow, A.J. Biochem. Soc. Trans. 8: 121-2 (1980).
- 80A317 Superoxide reactions with (isonicotinamide)pentaammineruthenium(II) and (III). Stanbury, D. M.; Mulac, W. A.; Sullivan, J. C.; Taube, H. Inorg. Chem. 19: 3735-40 (1980).
- 80A378 Some reactions of the dichloride anion radical. Navaratnam, S.; Parsons, B.J.; Swallow, A.J. Radiat. Phys. Chem. 15: 159-61 (1980).
- 80A391 Pulse radiolysis investigation of the interaction of bovine superoxide dismutase with organic free radicals. O'Neill, P.; Fielden, E.M. Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase, p.357-63, Proc. Fed. European Biochem. Soc. Sym. No. 62, J.V. Bannister and H.A.O. Hill (eds.), Elsevier, New York, NY (1980).
- 80A413 Glyceraldehyde-3-phosphate dehydrogenase-catalyzed chain oxidation of reduced nicotinamide adenine dinucleotide by perhydroxyl radicals. Chan, P.C.; Bielski, B.H.J. J. Biol. Chem. 255: 874-6 (1980).
- 80R189 Does copper-D-penicillamine catalyze the dismutation of O₂? Robertson, P.,Jr.; Fridovich, I. Arch. Biochem. Biophys. 203: 830-1 (1980).
- 80Z241 Superoxide dismutation by Cu-penicillamine. Lengfelder, E.; Elstner, E.F.; Younes, M.; Weser, U. Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase, p.347-56, Proc. Fed. European Biochem. Soc. Sym. No. 62, J.V. Bannister and H.A.O. Hill (eds.). Elsevier, New York, NY (1980).
- 81A207 Superoxide dismuting activity of an iron porphyrin. Ilan, Y.; Rabani, J.; Fridovich, I.; Pasternack, R.F. Inorg. Nucl. Chem. Lett. 17: 93-6 (1981).
- 81A216 The reactivity of the azide radical N₃ towards dioxygen species. Eriksen, T.E.; Lind, J.; Merenyi, G. Radiochem. Radioanal. Lett. 48: 405-10 (1981).
- 81A227 Reaction between HO₂, and chlorine in aqueous solution. Bjergbakke, E.; Navaratnam, S.; Parsons, B.J. J. Am. Chem. Soc. 103: 5926-8 (1981).
- 81A242 Generation of chlorine dioxide from ClO₂ by pulse radiolysis. Eriksen, T.E.; Lind, J.; Merenyi, G. J. Chem. Soc., Faraday Trans. 1 77: 2115-23 (1981).
- 81A271 Radiolysis study of the alloxan-dialuric acid couple. II. The autoxidation of dialuric acid. Houee-Levin, C.; Gardes-Albert, M.; Ferradini, C.; Pucheault, J. Radiat. Res. 88: 20-8 (1981).

- 81A374 Kinetic studies of peroxides and peroxy radicals, and their reactions with biological molecules. Greenstock, C.L.; Wiebe, R.H. Oxygen and Oxy-Radicals in Chemistry and Biology, p.119-31, M.A.J. Rodgers and E.L. Powers (eds.), Academic Press, New York, NY (1981).
- 81A375 The reactions of oxygen and superoxide ions with flavosemiquinone radicals. Anderson, R.F. Oxygen and Oxy-Radicals in Chemistry and Biology, p.597-600, M.A.J. Rodgers and E.L. Powers (eds.), Academic Press, New York, NY (1981).
- 81A430 Imidazole-bridged copper complexes as Cu₂Zn₂-superoxide dismutase models. Weser, U.; Schubotz, L.M.; Lengfelder, E. J. Mol. Catal. 13: 249–61 (1981).
- 81G067 A radiolysis study of the role of superoxide ion in the oxidation of sulfite by oxygen. Sadat-Shafai, T.; Pucheault, J.; Ferradini, C. Radiat. Phys. Chem. 17: 283-8 (1981).
- 81R125 Catalysis of the disproportionation of superoxide by metalloporphyrins. III. Pasternack, R.F.; Banth, A.; Pasternack, J.M.; Johnson, C.S. J. Inorg. Biochem. 15: 261-7 (1981).
- 81R192 Superoxide dismutation by low molecular weight Cucomplexes. Lengfelder, E.; Weser, U. Bull. Europ. Physiopath. Resp. 17: 73-80 (1981).
- 82A021 Generation of superoxide radicals by photolysis of oxygenated ethanol solutions. Bielski, B.H.J.; Gebicki, J.M. J. Am. Chem. Soc. 104: 796-8 (1982).
- 82A119 Chemical properties of water-soluble porphyrins. 2. The reaction of iron(III) tetrakis(4-N-methylpyridyl)porphyrin with the superoxide radical dioxygen couple. Solomon, D.; Peretz, P.; Faraggi, M. J. Phys. Chem. 86: 1842-9 (1982).
- 82A133 Ultraviolet spectrum and decay of the ozonide ion radical, O₃⁻, in strong alkaline solution. Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E.J. J. Phys. Chem. 86: 2066-9 (1982).
- 82A138 Primary processes in the photochemistry of aqueous sulphacetamide: A laser flash photolysis and pulse radiolysis study. Land, E.J.; Navaratnam, S.; Parsons, B.J.; Phillips, G.O. Photochem. Photobiol. 35: 637-42 (1982).
- 82A184 Substituent effects in the kinetic analysis of free radical reactions with nitrone spin traps. Greenstock, C.L.; Wiebe, R.H. Can. J. Chem. 60: 1560-4 (1982).
- 82A198 The mechanisms of photoredox systems involving Ru(bpy)²⁺, O₂ and Fe^{III}. Albery, W.J.; Foulds, A.W.; Darwent, J.R. J. Photochem. 19: 37-54 (1982).
- 82A269 A flash-photometric method for determination of reactivity of superoxide: Application of superoxide dismutase assay. Takahashi, M.; Asada, K. J. Biochem. (Tokyo) 91: 889-96 (1982).
- 82A281 Kinetics and mechanism of the reduction of ferricytochrome c by the superoxide anion. Butler, J.; Koppenol, W.H.; Margoliash, E. J. Biol. Chem. 257: 10747-50 (1982).
- 82A319 Chemical properties of water-soluble porphyrins. 3. The reaction of superoxide radicals with some metalloporphyrins. Peretz, P.; Solomon, D.; Weinraub, D.; Faraggi, M. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 42: 449-56 (1982).
- 82A403 Reaction of HO₂/O₂⁻ with α-tocopherol in ethanolic solutions. Arudi, R.L.; Sutherland, M.W.; Bielski, B.H.J. Oxy Radicals and their Scavenger Systems, Vol. 1, p. 26-31, Elsevier Biomedical, New York (1983) (3rd International Conference on Superoxide and Superoxide Dismutase, Ellenville, NY, 3 Oct 1982).
- 82A422 Radical scavenging and electron-transfer reactions in polyporus versicolor laccase. A pulse radiolysis study. Guissani, A.; Henry, Y.; Gilles, L. Biophys. Chem. 15: 177-90 (1982).
- 82A446 Iron-ethylenediaminetetraacetic acid (EDTA)-catalyzed superoxide dismutation revisited: An explanation of why the dismutase activity of Fe-EDTA cannot be detected in the cytochrome c/xanthine oxidase assay system. Bull, C.; Fee, J.A.; O'Neill, P.; Fielden, E.M. Arch. Biochem. Biophys. 215: 551-5 (1982).

- 82A448 Catalytic activity studies of some copper(II)-histidinecontaining dipeptide complexes on aqueous superoxide ion dismutation. Amar, C.; Vilkas, E.; Foos, J. J. Inorg. Biochem. 17: 313-23 (1982).
- 82A449 Reaction of iron-EDTA chelates with the superoxide radical. Butler, J.; Halliwell, B. Arch. Biochem. Biophys. 218: 174-8 (1982).
- 82A455 On the mechanism of the catalytic scavenging of superoxide radical by manganese pyrophosphate: A pulse radiolysis study. Goetz, F.; Lengfelder, E. Oxy Radicals and Their Scavenger Systems, Vol. 1, Molecular Aspects, p.228-33, G. Cohen and R.A. Greenwald (eds.), Elsevier Biomedical, New York, NY (Pub. 1983).
- 82A456 Mechanistic study of superoxide dismutation by "zinc-free" bovine superoxide dismutase. O'Neill, P.; Fielden, E.M.; Cocco, D.; Calabrese, L.; Rotilio, G. Oxy Radicals and Their Scavenger Systems, Vol. 1, Molecular Aspects, p.316-9, G. Cohen and R.A. Greenwald (eds.), Elsevier Biomedical, New York, NY (Pub. 1983).
- 82N062 The influence of a detergent on the reactivity of cytochrome c towards the superoxide radical as measured by pulse radiolysis. Heijman, M.G.J.; Nauta, H.; Levine, Y.K. Biochim. Biophys. Acta 704: 560-3 (1982).
- 82R027 Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons. Bors, W.; Saran, M.; Michel, C. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 41: 493-501 (1982).
- 82R039 The role of superoxide in xanthine oxidase-induced autooxidation of linoleic acid. Thomas, M.J.; Mehl, K.S.; Pryor, W.A. J. Biol. Chem. 257: 8343-7 (1982).
- 82R132 Evidence for catalytic dismutation of superoxide by cobalt(II) derivatives of bovine superoxide dismutase in aqueous solution as studied by pulse radiolysis. O'Neill, P.; Fielden, E.M.; Cocco, D.; Rotilio, G.; Calabrese, L. Biochem. J. 205: 181-7 (1982).
- 82R164 A reaction of the superoxide radical with tetrapyrroles. Robertson, P., Jr.; Fridovich, I. Arch. Biochem. Biophys. 213: 353-7 (1982).
- 82R165 A method for the detection of superoxide in biological systems. Rosen, G.M.; Finkelstein, E.; Rauckman, E.J. Arch. Biochem. Biophys. 215: 367-78 (1982).
- 82R172 Catalysis of the disproportionation of superoxide by metalloporphyrins. Pasternack, R.F.; Pysnik, D. Oxy Radicals and Their Scavenger Systems, Vol. 1, Molecular Aspects, p.151-6, G. Cohen and R.A. Greenwald (eds.), Elsevier Biomedical, New York, NY (Pub. 1983).
- 82Z254 Evaluation of the reactivities of HO₂/O₂⁻ with compounds of biological interest. Bielski, B.H.J. Oxy Radicals and Their Scavenger Systems, Vol. 1, Molecular Aspects, p.1-7, G. Cohen and R.A. Greenwald (eds.), Elsevier Biomedical, New York, NY (Pub. 1983) (Experimental details deposited at the Radiation Chemistry Data Center).
- 83A039 Reduction of the naphthazarin molecule as studied by pulse radiolysis. Part 1. Addition of a single electron. Land, E.J.; Mukherjee, T.; Swallow, A.J.; Bruce, J.M. J. Chem. Soc., Faraday Trans. 1 79: 391-404 (1983).
- 83A043 Methyl viologen radical reactions with several oxidizing agents. Levey, G.; Ebbesen, T.W. J. Phys. Chem. 87: 829-32 (1983).
- 83A056 Hydroxyl radical-induced oxidation of ethanol in oxygenated aqueous solutions. A pulse radiolysis and product study. Bothe, E.; Schuchmann, M.N.; Schulte-Frohlinde, D.; von Sonntag. C. Z. Naturforsch., Teil B 38B: 212-9 (1983).
- 83A087 A study of the reactivity of HO₂/O₂⁻ with unsaturated fatty acids. Bielski, B.H.J.; Arudi, R.L.; Sutherland, M.W. J. Biol. Chem. 258: 4759-61 (1983).
- 83A103 Kinetics and mechanism for the oxidation of ascorbic acid/ ascorbate by HO₂/O₂⁻ radicals. A pulse radiolysis and stoppedflow photolysis study. Cabelli, D.E.; Bielski, B.H.J. J. Phys. Chem. 87: 1809-12 (1983).

- 83A117 Rate constants and products of the reactions of e_{aq} , O_2^- and H with ozone in aqueous solutions. Schested, K.; Holcman, J.; Hart, E.J. J. Phys. Chem. 87: 1951-4 (1983).
- 83A147 Pulse-radiolysis studies on the interaction of one-electronreduced species with ascorbate oxidase in aqueous solution. O'Neill, P.; Fielden, E.M.; Finazzi-Agro, A.; Avigliano, L. Biochem. J. 209: 167-74 (1983).
- 83A158 The kinetics of the reaction of superoxide radical with Fe(III) complexes of EDTA, DETAPAC [diethylenetriamin-epentaacetic acid] and HEDTA [N-(2-hydroxyethyl)-ethylenediaminetriacetic acid, trisodium salt hydrate]. Buettner, G.R.; Doherty, T.P.; Patterson, L.K. FEBS Lett. 158: 143-6 (1983).
- 83A163 The mechanism of Fe-EDTA catalyzed superoxide dismutation. Bull, C.; McClune, G.J.; Fee, J.A. J. Am. Chem. Soc. 105: 5290-300 (1983).
- 83A209 The reaction of superoxide radicals with metal picolinate complexes. Bannister, W.H.; Bannister, J.V.; Searle, A.J.F.; Thornalley, P.J. Inorg. Chim. Acta. 78: 139-42 (1983).
- 83A299 The mechanisms of the dismutation of superoxide catalyzed by Cu(II)-phenanthroline complex and of the oxidation of Cu(I)-phenanthroline complex by oxygen in aqueous solution. Goldstein, S.; Czapski, G. J. Am. Chem. Soc. 105: 7276-80 (1983).
- 83A304 Kinetics of the superoxide radical oxidation of Co(sepulchrate)²⁺.
 A flash photolytic study. Bakac, A.; Espenson, J.H.; Creaser, I.I.; Sargeson, A.M. J. Am. Chem. Soc. 105: 7624-8 (1983).

- 83A901 Schwarz, H.A., Unpublished data (deposited at the Radiation Chemistry Data Center).
- 83A902 Spectral and kinetic properties of the products resulting from reactions of HO₂/O₂⁻ with manganese(II) complexes. Bielski, B.H.J.; Arudi, R.L.; Cabelli, D.E. Oxygen Radicals Chem. Biol., W. Bors, M. Saran and D. Tait, eds., de Gruyter, Berlin, publ. 1984, p. 1-15. (Proc. 3rd Int. Conf. Oxygen Radicals in Chem. and Biol., 10-15 Jul 1983, Munich).
- 83G122 Preparation and stabilization of aqueous/ethanolic superoxide solutions. Bielski, B.H.J.; Arudi, R.L. Anal. Biochem. 133: 170-8 (1983).
- 83R034 Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen. Effect of superoxide dismutase. Scarpa, M.; Stevanato, R.; Viglino, P.; Rigo, A. J. Biol. Chem. 258: 6695-7 (1983).
- 84A908 A reevaluation of the reactivity of hydroxylamine with O₂⁻/HO₂. Bielski, B.H.J.; Arudi, R.L.; Cabelli, D.E.; Bors, W. Anal. Biochem. 142: 207-9 (1984).
- 84A909 Studies of the reactivity of HO₂/O₂⁻ with unsaturated hydroperoxides in ethanolic solutions. Thomas. M.J.; Sutherland. M.W.; Arudi, R.L.; Bielski, B.H.J. Arch. Biochem. Biophys. 233: 772-5 (1984).
- 84A910 Pulse radiolysis study of the kinetics and mechanisms of the reactions between manganese(II) complexes and HO₂/O₂⁻ radicals.
 1. Sulfate, formate, and pyrophosphate complexes. Cabelli, D.E.; Bielski, B.H.J. J. Phys. Chem., 88: 3111-5 (1984).

C₅H₁₀CuNO₂⁺ L-Valinatocopper(II) ion 66

10. Molecular Formula Index

		$C_5H_{10}N_2O_3$	L-Glutamine 235
Am ⁴⁺	Americium(IV) ion 1	$C_5H_{11}CuNO_2S^+$	L-Methioninatocopper(II) ion 62
BO_{3}^{3-}	Borate ion 2	$C_5H_{11}NO_2$	DL-Valine 332
BrHO	Hypobromous acid 6	C ₄ H ₁₁ NO ₂ S	pl-Methionine 270
Br ₂	Bromine 5	C/FeKN ²⁻	Potassium hexacyanoferrate(III) ion
Br ₂	Dibromine radical ion 4	001 0111 10	102
Br ₂	Tribromine ion 3	C/FeKN ³⁻	Potassium hexacyanoferrate(II) ion
CHCuO ⁺	Formatocopper(II) ion 43	Col CITI 10	84
	Formate ion 232	$C E_0 N^{3-}$	Forriovanide ion 101
	Corbonic soid 7	$C_6\Gamma C N_6$	Ferrequiride ion 101
CH_2O_3	This sum a sen 152	$C_6 \Gamma e I N_6$	Ferrocyanide ion 65
CNS CN O	Thiocyanogen 152	C ₆ HFein ₆	Hydrogen nexacyanoierrate(11) ion
CN_4O_8	Tetrantrometnane 320	a trano	85
CO_3	Carbonate radical ion 8	$C_6H_2Cl_2O_2$	2,5-Dichloro- <i>p</i> -benzoquinone 20/
$C_2H_2CuO_4$	Copper(II) formate 44	$C_6H_2FeN_6^{-1}$	Dihydrogen hexacyanoferrate(II) ion
$C_2H_2MnO_4$	Manganese(II) formate 119		86
$C_2H_3O_2^{}$	Acetate ion 164	$C_6H_4Cl_2O_2$	2,5-Dichlorohydroquinone 208
C_2H_4	Ethylene 225	$C_6H_4O_2$	1,4-Benzoquinone 182
$C_2H_4CuNO_2^+$	Glycinatocopper(II) ion 51	$C_6H_4O_8S_2^{2-}$	4,5-Dihydroxy-m-benzenedisulfonate
C ₂ H ₅ NO ₂	Glycine 238		ion 212
$C_2H_5O_3$	1-Hydroxyethyldioxy 244	$C_6H_5O_7^{3-}$	Citrate ion 191
$C_2 O_4^{2-}$	Oxalate ion 293	C ₆ H ₆ CoNO ₆	Nitrilotriacetatocobaltate(II) ion 23
$C_3H_3CuO_6^-$	Trisformatocuprate(II) ion 45	C ₆ H ₆ MnNO ₆	Nitrilotriacetatomanganate(II) ion
$C_{1}H_{1}O_{1}^{-}$	Pvruvate ion 304	• • •	120
C ₁ H ₄ N ₂	Imidazole 248	C ₆ H ₆ O ₂	Catechol 189
C.H.O.	Lactate ion 255	- 00 - 2	Hydroquinone 243
C ₂ II ₇ CuNO ⁺	pr-Alaninatocopper(II) ion 48		Resorcinol 305
C ₂ H ₂ NO ₂	pr-Alanine 169	CHO	Phloroglucinol 301
C.H.NO.S	Cysteine 195	CHO7	Ascorbate radical anion 176
C.H.NO.	Dy-Serine 307	CHO.	Assorbic acid 177
$C_{3}H_{7}NO_{3}$	Alloyan 170	C.H.N.O.	L-Histidine 240
$C H O^{2-}$	Fumerate ion 233	$C_{1}H_{1}NO$	5.5-Dimethyl_1-pyrroline_N-oxyl 220
$C_{4}II_{2}O_{4}$	Malasta ion 267		Cuelehowylperew 104
CHNO		$C_6\Pi_{11}O_2$	1 4 Disastisuale[2 2 2] store 206
$C_4H_3N_2O_4$	Alloxan semiquinone 1/1	$C_6H_{12}N_2$	1,4-Diazabicycio[2.2.2]ociane 200
C ₄ H ₄ CuO ₈	Tetrakistormatocuprate(11) ion 46	$C_6H_{12}N_2O_4S_2$	L-Cystine 190
$C_4H_4N_2O_4$	Dialuric acid 204	$C_6H_{12}N_4O_2$	Diamide 205
$C_4H_4O_4^2$	Succinate ion 308	$C_6H_{13}NO_2$	DL-Isoleucine 253
$C_4H_4O_5^2$	L-Malate ion 266		L-Leucine 256
$C_4H_4O_6^2$	Tartrate ion 316	$C_6H_{14}N_2O_2$	DL-Lysine 265
$C_4H_6CuN_2O_3^+$	Glycylglycinatocopper(II) ion 52	$C_6H_{14}N_4O_2$	L-Arginine 174
$C_4H_6N_2$	1-Methylimidazole 275	$C_6H_{21}N_7ORu^{2+}$	Pentaammine(isonicotinamide)-
	2-Methylimidazole 276		ruthenium(II) ion 147
$C_4H_6O_4$	Acetyl peroxide 166	$C_6H_{21}N_7ORu^{3+}$	Pentaammine(isonicotinamide)-
C ₄ H ₇ NO ₄	DL-Aspartic acid 179		ruthenium(III) ion 148
$C_4H_8N_2O_3$	DL-Asparagine 178	$C_7H_6O_2$	Methyl-1,4-benzoquinone 272
C ₄ H ₈ OS	Methional 269	$C_7H_6O_3$	3,4-Dihydroxybenzaldehyde 211
C ₄ H ₉ NO ₂ S	Homocysteine 241	$C_7H_6O_4$	2,5-Dihydroxybenzoic acid 213
C ₄ H ₉ NO ₃	DL-Threonine 321	$C_7H_8O_2$	Methylhydroquinone 274
$C_4H_{10}O_2S_2$	Dithiothreitol 223	C ₇ H ₁₃ NO	2,5,5-Trimethyl-1-pyrroline-N-oxyl
C ₄ H ₁₁ NO ₃	Tris(hydroxymethyl)aminomethane	, 15	327
	329	C ₂ H ₁₄ O ₂	tert-Butyl allyl peroxide 187
C.H.,NO ⁺	Trimethylammoniomethyldioxy 325	C ₀ H ₄ N ₂ O ₂	Luminol radical 264
$C_{\rm c}H_{\rm O}^{2-}$	2-Oxoglutarate ion 294	C.H.O.	2.3-Dimethyl-1.4-benzoquinone 215
C.H.N.O	Peroxyhydrothymine radical 208	~88 ~ 2	2.5-Dimethyl-1.4-henzoquinone 216
$C H C_{1}NO^{+}$	Drolingtoconner(II) ion 64		2.6 Dimethylbenzoquinone 217
$C \mathbf{U} C_{110} \mathbf{U} \mathbf{U} \mathbf{U}_{2}^{+}$	Uudroxymrolinoconner(II) ion 60	CHO	2.0-Dinicity tool20quillolic 217
	Clutomatocompar(II) is = 50		Sulfacetamide 200
C H NO	Draling 202	$C_8 \Pi_{10} \Pi_2 C_3 S$	M Hydrogyothylanodiamina
$C_5 \Pi_9 INO_2$	L-Proline 303	$C_8 m_{11} ren_2 O_7$	IV-Hydroxyethylenediamine-
$C_5H_9NO_4$	L-Glutamic acid 234		triacetatoierrate(III) 104

REACTIVITY OF HO_2/O_2^- RADICALS IN AQUEOUS SOLUTION

$C_8H_{19}NO_2^+$	Triethylammonioethyldioxy 324	$C_{12}H_8O_2$	Diphenoquinone 221
$C_8H_{34}Co_2N_9O_2^{4+}$	μ-Amido-μ-superoxidotetrakis- (ethylenediamine)dicobalt(III)] ion	$C_{12}H_9FeN_2O_5$	Hydroxybis(2-pyridinecarboxylato)- iron(III) 103
	28	CuHuO	2 3-Dimethylpenhthoquinone 219
C MoN ³⁻	Octacyanomolybdate(V) ion 129	$C_{12}H_{10}O_2$	Benzidine 180
$C_8MON_8^{4-}$	Octacyanomolybdate(IV) ion 128	$C_{12}H_{12}N_2^+$	1 1'-Ethylene-2 2'-binyridinium
C.H. NO.	-Phenylalanine 290		radical ion $(1+)$ 226
C.H.NO.	A drenalone 168	C.H.N.	1 1'-Dimethyl-4 4'-bipyridinium
C91111103	I-Tyrosine 331		radical ion $(1 \pm)$ 218
C.H.,NO	Adrenaline 167	CuHuN ₂ O	4-Cyanophenyl-N-tert-butylnitrone
C ₂ H ₁ C ₁ N ₂ O ₂	Alanylhistidinatocopper(II) 49	012-114-120	193
C91114Cu1 44C3	Histidylalaninatocopper(II) 56	CHNO	4-Methylphenyl-N-tert-butylnitrone
C.H.,BrN	N-Bromo-2.2.6. 6-tetramethyl-		278
Cyrrisbirt	niperidine 186	CuaHuaNOa	4-Methoxynhenyl-N-tert-butyl-
C.H. NO	2266-Tetramethylpiperidine-N-oxyl		nitrone 271
	318	C.H.C.N.O.+	Bis(histidinato)conner(II) ion
C.H. NO	2.2.6. Tetramethylpiperidin-1-01.319	01211190011605	conjugate monoacid 55
$C_{\rm s}C_{\rm s}N_{\rm s}O_{\rm s}^{\rm 5-}$	Decakis(cvano)-u-superoxido-	C.H.C.N.O.	Bis(lysinato)conper(II) 61
	dicobaltate(III) ion 29	$C_{12}H_{26}Out_{4}O_{4}$	Tripropylammoniopropyldioxy 328
CH.O.S ⁻	1 2-Naphthoquinone-4-sulfonate ion	$C_{12}H_{27}C_{0}N_{1}^{2+}$	1 3 6 8 10 13 16 19 Octaazabievelo-
C10115055	787		[6 6 6]eicosanecobalt(II) ion 22
	1 4. Nanhthoguinone-2-sulfonste ion	C.H.N ⁺	1 1' Trimethylene 2 2' hinyridinium
	783		radical ion (1.t.) 326
C.H.O.	1 2-Naphthoquinone 281	C.H.CuO.	$\frac{1}{1000} = \frac{1}{1000} = 1$
$C_{10}H_6O_2$	5 8-Dihydroxy-1 4-naphthoquinone	$C_{14}H_{10}CuO_6$	Bis(n-aminosalicylato)conner(II) 72
	214	$C_{14}H_{12}C_{11}V_{2}C_{6}$	1 1'-Tetromethylene-2 2'-
C. H.N	2.Nanhthylamine 284		bipyridinium radical ion $(1 \perp)$ 317
$C_{10}H_{\rm H}C_0N_{\rm H}O_{\rm s}^{2-}$	Ethylenediaminetetraacetato-	C.H.OT	6-Hydroxy-2 5 7 8-tetramethyl-
	cobaltate(II) ion 24		chroman-2-carboxylate ion 246
CuaHuaCuNaO ²⁻	Ethylenediaminetetraacetato-	CuHurFeN.O2-	Diethylenetriaminenentaacetato-
010112001 1208	cuprate(II) ion 68	01411181 01 130 10	ferrate(III) ion 106
CuoHuaFeNaO	Ethylenediaminetetraacetato-	CuHuFeN ₂ O ³ -	Diethylenetriaminepentaacetato-
0101121 011208	ferrate(III) ion 105	Q1411182 01 (30 10	ferrate(II) ion 88
CuaHuaFeNaO ²	Ethylenediaminetetraacetato-	CuHuMnNaO	1.2-Cycloberanediaminetetra-
	ferrate(II) ion 87	014111811111 1208	acetatomanganate(III) ion 126
CueHueMnNaO	Ethylenediaminetetraacetato-	C.H.N.O.+	1 1'-Bis(2-hydroxyethyl)-4 4'-
010111200	manganate(III) ion 125		bipyridinium radical ion $(1+)$ 185
$C_{10}H_{12}MnN_2O_8^{2-}$	Ethylenediaminetetraacetato-	CuHuO	6-Hydroxy-2.5.7.8-tetramethyl-
- 10 12 2 - 8	manganate(II) ion 121	014-18-04	chroman-2-carboxylic acid 245
$C_{10}H_{12}N_2O_8^{4-}$	Ethylenediaminetetraacetate ion 227	$C_{14}H_{22}C_0N_1O_2^{2+}$	Diaqua(2,3,9,10-tetramethyl-
$C_{10}H_{12}O_{2}$	Duroquinone 224	014-2200011402	1.4.8.11-tetraazacvolotetradeca-
$C_{10}H_{14}O_2$	tert-Butylhydroguinone 188		1 3 8 10-tetraene)cobalt(II) ion 20
$C_{10}H_{14}FeN_{5}O_{12}P_{1}^{2-}$	Adenosine triphosphate-iron(II)	$C_{12}H_{22}C_0N_1O_2^{3+}$	Diagua(2,3,9,10-tetramethyl-
010-10- 01 0 13- 3	complex 89	014-1280011402	1 4 8 11-tetraazacvolotetradeca-
C ₁₀ H ₁₄ FeN ₄ O ₁₂ P ₂	Adenosine triphosphate-iron(III)		1.3.8.10-tetraene)cobalt(III) ion 25
01011101 01 (30 131 3	complex 107	CuHuNO	2-A cetylaminofluorene 165
C10H17N2OcS	Glutathione 236		Histidylphenylalaninatocopper(II) 57
$C_{11}H_{*}O_{2}$	2-Methyl-1.4-naphthoguinone 277	01318 0 01 (40)	Phenylalanylhistidinatocopper(II) 63
CuHuN ₂ O ₂	I-Tryptophan 330	C.,H.,CuN.O.	Histidyltyrosinatocopper(II) 58
$C_1H_1N_2O_2$	4-Nitrophenyl- <i>N-tert</i> -butylnitrone	$C_{\rm L}H_{\rm N}O_{\rm L}S^{4-}$	Indigotetrasulfonate ion 250
-1114- 2-3	287	$C_{16}H_7N_2O_{11}S_3^{3-}$	Indigotrisulfonate ion 251
CuH ₁₅ NO	Phenyl- <i>N</i> - <i>tert</i> -butylnitrone 300	$C_{14}H_{0}N_{2}O_{0}S_{2}^{2-}$	Indigodisulfonate ion 249
$C_{11}H_{10}C_{11}N_{1}O_{2}$	Histidylyalinatocopper(II) 59	$C_{12}H_{22}C_{11}N_{2}O_{2}^{2-}$	Bis(glycylhistidinato)cuprate(II) ion
11 10	Valylhistidinatocopper(II) 67	10-20	53
C ₁₂ H ₆ Cl ₂ NO ₇	2,6-Dichloroindophenolate ion 209	C16H22O4	3-(6-Hydroxy-2.5.7.8-tetramethyl-
C ₁₂ H ₈ CuN ₂ O ₄	Bis(2-pyridinecarboxylato)copper(II)	- 1022 - 4	chroman-2-yl)propionic acid 247
14 U = 2 = 4	47	C16H28N4Ni ³⁺	5.7.7.12.12.14-Hexamethyl-
$C_{12}H_8N_2O_4Zn$	Bis(2-pyridinecarboxylato)zinc(II)	10404	1.4.8.11-tetraazacvclotetradeca-
12 U 2 T	163		1,4,8,11-tetraenenickel(III) ion 140

$C_{16}H_{32}N_4Ni^{3+}$	5,7,7,12,12,14-Hexamethyl- 1,4,8,11-tetraazacyclotetradeca- 4,11-dienenickel(III) ion 139	$\begin{array}{c} C_{29}H_{50}O_2\\ C_{30}H_{24}N_6Ru^{3+} \end{array}$	α-Tocopherol 322 Tris(2,2'-bipyridine)ruthenium(III) ion 149
$C_{16}H_{35}NO_{2}^{+}$	Tributylammoniobutyldioxy 323	$C_{31}H_{46}O_2$	Vitamin K ₁ 333
$C_{16}H_{36}C_0N_4O_2^{2+}$	Diagua(5,7,7,12,14,14-hexamethyl-	$C_{33}H_{34}N_4O_6$	Biliverdin 184
	1.4.8.11-tetraazacvclotetradeca-	$C_{12}H_{16}N_4O_6$	Bilirubin 183
	4 11-diene)cobalt(II) ion 21	CuH _m ClFeN ₁ O ₄	Hemin 109
$C_{16}H_{36}CuN_4O_2^{2+}$	Diaqua(5,7,7,12,12,14-hexamethyl- 1.4.8.11-tetraazacvclotetradeca-	$C_{36}H_{24}FeN_6^{2+}$	Tris(1,10-phenanthroline)iron(II) ion 78
	4,11-diene)copper(II) ion 38	$C_{40}H_{30}N_{10}O_6^{2+}$	Nitro Blue Tetrazolium 286
$C_{16}H_{36}N_4Ni^{2+}$	5,7,7,12,12,14-Hexamethyl-	C40H40ClFeN8O4	Hemin-diimidazole complex 110
	1,4,8,11-tetraazacyclotetradecane- nickel(II) ion 134	$C_{44}H_{24}CoN_4O_{12}S_4^{3-}$	Tetrakis(p-sulfonatophenyl)- porphinatocobaltate(III) ion 27
$C_{16}H_{36}N_4Ni^{3+}$	5,7,7,12,12,14-Hexamethyl- 1,4,8,11-tetraazacyclotetradecane-	$C_{44}H_{24}CuN_4O_{12}S_4^{4-1}$	Tetrakis(p-sulfonatophenyl)- porphinatocuprate(II) ion 42
	nickel(III) ion 138	$C_{44}H_{24}FeN_4O_{12}S_4^{3-}$	Tetrakis(p-sulfonatophenyl)-
$C_{17}H_{21}N_2O_6$	Riboflavin semiquinone 306		porphineferrate(III) ion 98
$C_{18}H_{14}CuO_8$	Bis(acetylsalicylato)copper(II) 71	$C_{44}H_{24}MnN_4O_{12}S_4^{3-1}$	Tetrakis(p-sulfonatophenyl)-
$C_{18}H_{20}CuN_2O_6$	Bis(tyrosinato)copper(II) 65		porphinatomanganate(III) ion 124
$C_{18}H_{27}O_{2}^{-}$	Arachidonate ion 172	$C_{44}H_{24}N_4NiO_{12}S_4^{4-}$	Tetrakis(p-sulfonatophenyl)-
$C_{10}H_{20}O_{2}^{-}$	Linolenate ion 261	- ++ 2+ + - 12 +	porphinatonickelate(II) ion 137
$C_{10}=2502$	Linolenic acid 262	C44H24N4O12S4Zn4-	Tetrakis(<i>p</i> -sulfonatophenyl)-
$C_{10}=-30 \otimes 2$	Linoleate ion 258	-4424-14-12-4	porphinatozincate(II) ion 162
018413102	9 11-Octadecadiencate ion 288	C.H.CoN ⁵⁺	Tetrakis(4-N-methylpyridyl)-
СНО	Linoleic acid 250	044113600138	porphineochalt(III) ion 26
$C_{18} \Pi_{32} O_2$	0.11 Ostadagadianaia agid 290	$C \cup C_{n} M^{4+}$	Totrolio(A N mothylpyridyl)
C II O-	9,11-Octadecadienoic acid 209	$C_{44}\Pi_{36}Culv_8$	retrakis(4-/v-methylpyhdyl)-
$C_{18} H_{33} O_2$	Linglasta hadronenavida 257	C II E-NP+	Totalia(A N mothed model)
$C_{18}H_{33}O_4$	Linoleate hydroperoxide 257	C44H36Feing	
$C_{18}H_{34}O_2$			porphineiron(III) ion 92
$C_{18}H_{34}O_4$	Linoleic acid hydroperoxide 200	$C_{44}H_{36}Fein_8O_2$	i etrakis(4-/v-metnyipyridyi)-
$C_{18}H_{36}O_4$	Oleic acid hydroperoxide 292		porphineiron(III)-superoxide
$C_{19}H_{16}CINO_4$	Indomethacin 252		complex 93
$C_{20}H_{12}$	Benzo[a]pyrene 181	$C_{44}H_{36}MnN_8^{J+}$	Tetrakis(4-N-methylpyridyl)-
$C_{20}H_{16}C_{0}N_{4}^{2+}$	Bis(2,2'-bipyridine)cobalt(II) ion 19		porphinemanganese(III) ion 122
$C_{20}H_{32}O_2$	Arachidonic acid 173	C ₄₄ H ₃₆ N ₈ Ni ⁴⁺	Tetrakis(4-N-methylpyridyl)-
$C_{21}H_{16}$	3-Methylcholanthrene 273		porphinenickel(II) ion 135
$C_{21}H_{29}N_7O_{14}P$	Nicotinamide adenine dinucleotide, reduced 285	$C_{44}H_{36}N_8Zn^{4+}$	Tetrakis(4-N-methylpyridyl)- porphinatezinc(II) ion 160
$C_{22}H_{18}N_2^+$	1,1'-Diphenyl-4,4'-bipyridinium	$C_{44}H_{64}O_{24}$	Crocin 192
	radical ion $(1+)$ 222	$C_{46}H_{36}FeN_{10}^{2+}$	Dicyanotetrakis(4-N-methyl-
$C_{24}H_{16}CuN_{4}^{+}$	Bis(1,10-phenanthroline)copper(I)		pyridyl)porphineiron(II) ion 80
	ion 32	$C_{46}H_{36}FeN_{10}^{3+}$	Dicyanotetrakis(4-N-methyl-
$C_{24}H_{16}CuN_4^{2+}$	Bis(1,10-phenanthroline)copper(II)		pyridyl)porphineiron(III) ion 94
	ion 39	$C_{48}H_{32}FeN_4^{2+}$	Bis(4,7-diphenyl-1,10-phenanth-
C28H49N4O8	Desferrioxamine B 108	10 52 1	roline)iron(II) ion 79
$C_{25} = 46 = 40 = 8$ $C_{25} = 146 CuO_{5}$	Bis(diisopropylsalicylato)coppcr(II)	$C_{48}H_{32}FcN_{4}^{3+}$	Bis(4.7-diphenvl-1.10-phenanth-
-2034 0	70	- 40524	roline)iron(III) ion 91
$C_{27}H_{33}N_9O_5P_2$	Flavin mononucleotide semiquinone 231	$C_{50}H_{32}FeN_8O_{12}S_4^{3-}$	Tetrakis(p-sulfonatophenyl)- porphineferrate(III)-diimidazole
$C_{10}H_{4}C_{11}N_{10}O_{0}^{2-}$	Bis(glycylhistidylleucinato)-	1	complex 99
-2840 10 - 8	cuprate(II) ion 54	CtoH44FeN4+	Tetrakis(4-N-methylpyridyl)-
$C_{29}H_{34}CuN_8Zn^{3+}$	Copper(2-[2-(pyridyl)ethylimino- methyl]pyridine) zinc(2-[2-	0,00-1442 01 (12	porphineiron(II)-diimidazole complex 81
	(pyridyl)ethyliminomethyll-	C ₅₀ H ₄₄ FeN ⁵⁺	Tetrakis(4-N-methylpyridyl)-
	nvridine) imidazole bridged com-	- 30	porphineiron(III)-diimidazole
	nley 74		complex 95
C H C: N ³⁺	Pica 17 Bis[copper() [2.(puridul)athul	C.H. FeN O4+	Tetrakis(A-N-methylnyridyl)-
291134UU21N8	iminomethyllnyridine)limidarala	C5611541 CIN14O4	norphineiron(II) dihistidine
	bridged complex 73		complex 82
	- I		-

1094

REACTIVITY OF HO_2/O_2 RADICALS IN AQUEOUS SOLUTION

$C_{56}H_{54}FeN_{14}O_4^{5+}$	Tetrakis(4-N-methylpyridyl)- porphineiron(III)-dihistidine complex 96	$CuH_9N_3^{2+}$ $CuH_{12}N_4^{2+}$ Fe^{2+}	Trisamminecopper(II) ion 36 Tetraamminecopper(II) ion 37 Iron(II) ion 77
$C_{56}H_{60}CuN_8^{4+}$	Tetrakis-4-(N,N,N-trimethyl-	Fe ³⁺	Iron(III) ion 90
	ammonio)phenylporphine-	\mathbf{H}^+	Hydrogen ion 113
	copper(II) ion 41	HO	Hydroxyl 141
C ₅₆ H ₆₀ FeN ⁵⁺	Tetrakis-4-(N,N,N-trimethyl-	HO_2^-	Hydroperoxide ion 144
	ammonio)phenylporphine- iron(III) ion 97	HO_2Th^{4+}	Thorium(IV)-hydroperoxy complex 155
$C_{56}H_{60}MnN_8^{5+}$	Tetrakis-4-(N,N,N-trimethyl- ammonio)phenylporphine-	$HO_4 U^{2+}$	Dioxouranium(VI)-hydroperoxy complex 158
	manganese(III) ion 123	\mathbf{H}_{2}	Hydrogen 112
$C_{56}H_{60}N_8Ni^{4+}$	Tetrakis-4- $(N, N, N$ -trimethyl-	H_2O_2	Hydrogen peroxide 143
	ammonio)phenylporphine-	H ₃ NO	Hydroxylamine 131
	nickel(II) ion 136	I ₂	Iodine 114
$C_{56}H_{60}N_8Zn^{4+}$	Tetrakis-4-(N,N,N-trimethyl-	$\overline{I_3}$	Triiodine ion 115
	ammonio)phenylporphinezinc(II)	Mn^{2+}	Manganese(II) ion 116
	ion 161	MnO ₄	Permanganate ion 127
C ₆₃ H ₉₀ CoN ₁₄ O ₁₄ P	Cyanocob(III)alamin 30	MnO ₄ S	Manganese(II) sulfate 118
$C_{76}H_{60}Cl_4Cu_2N_4O_{16}$	Copper indomethacin 76	$Mn_2O_7P_2$	Manganese(II) pyrophosphate 117
Ce ⁴⁺	Cerium(IV) ion 10	NO_2	Nitrogen dioxide 132
Cl ⁻	Chloride ion 11	$NO_2^{}$	Nitrite ion 133
ClHO	Hypochlorous acid 14	N_3	Azide radical 130
ClO ₂	Chlorine dioxide 16	0-	Oxygen $ion(1-)$ 142
ClO_2^-	Chlorite ion 15	$O_2 U^{2+}$	Uranyl(VI) ion 157
ClO_3^-	Chlorate ion 17	O_3	Ozone 145
ClO ₄	Perchlorate ion 18	$O_{3}S^{2-}$	Sulfite ion 151
Cl_2	Chlorine 13	$O_3 Te^{2-}$	Tellurate(IV) ion 153
Cl_2^-	Dichlorine radical ion 12	O_3V^+	Oxoperoxyvanadium(IV) ion 159
Cu ⁺	Copper(I) ion 31	O ₄ Os	Osmium tetroxide 146
Cu ²⁺	Copper(II) ion 33	S ²⁻	Sulfide ion 150
CuH ₃ N ²⁺	Amminecopper(II) ion 34	Th⁴+	Thorium(IV) ion 154
$CuH_6N_2^{2+}$	Bisamminecopper(II) ion 35	T1 ²⁺	Thallium(II) ion 156

11. Compound Name Index

Acetate ion 164 2-Acetylaminofluorene 165 Acetylcytochrome C 198 Acetyl peroxide 166 Adenosine triphosphate-iron(II) complex 89 Adenosine triphosphate-iron(III) complex 107 Adrenaline 167 Adrenalone 168 DL-Alaninatocopper(II) ion 48 DL-Alanine 169 Alanylhistidinatocopper(II) 49 Alloxan 170 Alloxan semiquinone 171 Americium(IV) ion 1 μ -Amido- μ -superoxidotetrakis(ethylenediamine) dicobalt(III)] ion 28 2-Amino-2-(hydroxymethyl)-1,3-propanediol 329 2-Aminonaphthalene 284 DL-2-Aminosuccinamic acid 178 **DL-Aminosuccinic acid 179** Amminecopper(II) ion 34 Arachidonate ion 172 Arachidonic acid 173 L-Arginine 174 Ascorbate oxidase 175 Ascorbate radical anion 176 Ascorbate ion 177 Ascorbic acid 177 DL-Asparagine 178 DL-Aspartic acid 179 Azide radical 130 1,1'-Azobis(N,N-dimethylformamide) 205 Azodicarboxylic acid bis(dimethylamide) 205 Bathophenanthrolineiron(II) ion 79 Bathophenanthrolineiron(III) ion 91 Benzene, 2,5-dichloro-1,4-dihydroxy- 208 Benzene, 1,2-dihydroxy- 189 Benzene, 1,3-dihydroxy- 305 Benzene, 1,4-dihydroxy- 243 Benzene, 1,4-dihydroxy-2-(1,1-dimethylethyl)- 188 Benzene, 1,4-dihydroxy-2-methyl- 274 Benzene, 1,3,5-trihydroxy- 301 Benzidine 180 2H-1-Benzopyran-2-carboxylic acid, 3,4-dihydro-6hydroxy-2,5,7,8-tetramethyl- 245 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8 tetramethyl-2-(4,8,12-trimethyltridecyl)-, 322 1,2-Benzopyrene 181 3,4-Benzopyrene 181 Benzo[a]pyrene 181 1,4-Benzoquinone 182 1,4-Benzoquinone, 2,5-dichloro- 207 1,4-Benzoquinone, 2,3-dimethyl- 215 1,4-Benzoquinone, 2,5-dimethyl- 216 1,4-Benzoquinone, 2,6-dimethyl- 217 1,4-Benzoquinone, methyl- 272 1,4-Benzoquinone, tetramethyl- 224

Bilirubin 183 Biliverdin 184 1,1'-Biphenyl-4,4'-diamine 180 Bis(acetylsalicylato)copper(II) 71 Bis(p-aminosalicylato)copper(II) 72 Bisamminecopper(II) ion 35 Bis(2,2'-bipyridine)cobalt(II) ion 19 Bis[copper(2-[2-(pyridyl)ethyliminomethyl]pyridine)]imidazole bridged complex 73 Bis(diisopropylsalicylato)copper(II) 70 Bis(4,7-diphenyl-1,10-phenanthroline)iron(II) ion 79 Bis(4,7-diphenyl-1,10-phenanthroline)iron(III) ion 91 Bis(glycylhistidinato)cuprate(II) ion 53 Bis(glycylhistidylleucinato)cuprate(II) ion 54 Bis(histidinato)copper(II) ion, conjugate monoacid 55 1,1'-Bis(2-hydroxyethyl)-4,4'-bipyridinium radical ion(1+) 185 Bis(lysinato)copper(II) 61 Bis(1,10-phenanthroline)copper(II) ion 39 Bis(1,10-phenanthroline)copper(I) ion 32 Bis(2-pyridinecarboxylato)copper(II) 47 Bis(2-pyridinecarboxylato)zinc(II) 163 Bis(salicylato)copper(II) 69 Bis(tyrosinato)copper(II) 65 Borate ion 2 Bromine 5 N-Bromo-2,2,6,6-tetramethylpiperidine 186 tert-Butyl allyl peroxide 187 1,1'-Butylene-2,2'-bipyridinium radical cation 317 tert-Butylhydroquinone 188 *N-tert*-Butyl- α -phenylnitrone 300 Carbonate radical ion 8 Carbonate ion 7 Carbonic acid 7 Carboxymethylcytochrome C 199 Catechol 189 Cerium(III) ion 9 Cerium(IV) ion 10 Ceruloplasmin 190 Chlorate ion 17 Chloride ion 11 Chlorine 13 Chlorine dioxide 16 Chlorite ion 15 1-(4-Chlorobenzoyl)-5-methoxy-2-methylindoleacetic acid 252 6-Chromanol, 2-carboxy-2,5,7,8-tetramethyl- 245 6-Chromanol, 2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)- 322 Citrate ion 191 Cleland's Reagent, 223 Copper(II) formate 44 Copper(I) ions 31 Copper(II) ions 33 Copper indomethacin 76 Copper oxidase 254 Copper(2-[2-(pyridyl)ethyliminomethyl]pyridine) zinc(2-[2-(pyridyl)ethyliminomethyl]pyridine) imidazole bridged complex 74

REACTIVITY OF HO2/O7 RADICALS IN AQUEOUS SOLUTION

Crocin 192 Cvanocob(III)alamin 30 4-Cyanophenyl-N-tert-butylnitrone 193 1,2-Cyclohexanediaminetetraacetatomanganate(III) ion 126 Cyclohexylperoxy 194 Cysteine 195 L-Cystine 196 Cytochrome C (ferro) 201 Cytochrome C (ferri) 197 Cytochrome C, acetylated 198 Cytochrome C, carboxymethylated 199 Cytochrome C, succinylated 200 Cytochrome P-450 202 Cytochrome c₆ 203 Cytochrome f (Fe³⁺) 203 Decakis(cyano)-µ-superoxidodicobaltate(III) ion 29 Desferal 108 Desferrioxamine B 108 Diacetyl peroxide 166 Dialuric acid 204 Diamide 205 4,4'-Diaminobiphenyl 180 8.8'-Diapo- ψ , ψ -carotendioic acid, bis(6-O- β -D-gluco pyranosyl- β -p-glucopyranosyl) ester 192 1,4-Diazabicyclo[2.2.2]octane 206 Dibromine radical ion 4 Dichlorine radical ion 12 2,5-Dichloro-p-benzoquinone 207 2,5-Dichloro-1,4-dihydroxybenzene 208 2,5-Dichlorohydroquinone 208 2,6-Dichloroindophenolate ion 209 Dicyanotetrakis(4-N-methylpyridyl)porphineiron(II) ion 80 Dicyanotetrakis(4-N-methylpyridyl)porphineiron(III) ion 94 Diethylenetriaminepentaacetatoferrate(II) ion 88 Diethylenetriaminepentaacetatoferrate(III) ion 106 Dihydrogen hexacyanoferrate(II) ion 86 1,2-Dihydro-3-methylbenz[j]aceanthrylene 273 3,4-Dihydroxyacetophenone 210 3,4-Dihydroxybenzaldehyde 211 1.2-Dihvdroxvbenzene 189 1,3-Dihydroxybenzene 305 1,4-Dihydroxybenzene 243 4.5-Dihvdroxy-m-benzenedisulfonate ion 212 2,5-Dihydroxybenzoic acid 213 1,4-Dihydroxy(1,1-dimethylethyl)benzene 188 3,4-Dihydroxy- α -methylaminoacetophenone 168 l-3,4-Dihydroxy- α -(methylaminomethyl)benzyl alcohol 167 1,4-Dihydroxy(methyl)benzene 274 5,8-Dihydroxy-1,4-naphthoquinone 214 threo-1,4-Dimercapto-2,3-butanediol, 223 2,3-Dimethyl-1,4-benzoquinone 215 2,5-Dimethyl-1,4-benzoquinone 216 2,6-Dimethylbenzoquinone 217 1,1'-Dimethyl-4,4'-bipyridinium radical ion (1+) 218

2,3-Dimethylnaphthoquinone 219 5,5-Dimethyl-1-pyrroline-N-oxide 220 Dioxouranium(VI)-hydroperoxy complex 158 Diphenoquinone 221 1,1'-Diphenyl-4,4'-bipyridinium radical ion (1+) 222 Dithiothreitol 223 Duroquinone 224 5,8,11,14-Eicosatetraenoic acid 173 Epinephrine 167 Ethylene 225 1,1'-Ethylene-2,2'-bipyridinium radical ion (1+) 226 Ethylenediaminetetraacetatocobaltate(II) ion 24 Ethylenediaminetetraacetatocuprate(II) ion 68 Ethylenediaminetetraacetatoferrate(II) ion 87 Ethylenediaminetetraacetatoferrate(III) ion 105 Ethylenediaminetetraacetatomanganate(II) ion 121 Ethylenediaminetetraacetatomanganate(III) ion 125 Ethylenediaminetetraacetate ion 227 2-Ethyl-1-hydroxy-2,5,5-trimethyl-3-oxazolidine 228 Ferredoxin (spinach) 229 Ferricyanide ion 101 Ferricytochrome C 197 Ferriheme chloride 109 Ferrimyoglobin 279 Ferriperoxidase 297 Ferrocyanide ion 83 Ferrocytochrome C 201 Ferroxidase 190 Flavin adenine dinucleotide semiguinone 230 Flavin mononucleotide semiquinone 231 N-9H-Fluoren-2-ylacetamide 165 Formate ion 232 Formatocopper(II) ion 43 Fumarate ion 233 Fungal laccase 254 Gentisic acid 213 Glutamatocopper(II) ion 50 L-Glutamic acid 234 L-Glutamine 235 γ -L-Glutamyl-L-cysteinylglycine 236 Glutathione 236 Glyceraldehyde-3-phosphate dehydrogenase-NADH complex 237 Glycinatocopper(II) ion 51 Glycine 238 Glycylglycinatocopper(II) ion 52 Hemin 109 Hemin-diimidazole complex 110 Hemocyanin 239 Hexacyanoferrate(III) ion 101 Hexacyanoferrate(II) ion 83 (5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene)cobalt(II) ion 21 (5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene)copper(II) ion 38 5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecanenickel(II) ion 134 5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecanenickel(III) ion 138

5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-dienenickel(III) ion 139 5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-1,4,8,11-tetraenenickel(III) ion 140 L-Histidine 240 Histidylalaninatocopper(II) 56 Histidylphenylalaninatocopper(II) 57 Histidyltyrosinatocopper(II) 58 Histidylvalinatocopper(II) 59 Homocysteine 241 Horseradish Peroxidase 297 Horseradish Peroxidase Compound I 296 Hydrogen 112 Hydrogen hexacyanoferrate(II) ion 85 Hydrogen ion 113 Hydrogen peroxide 143 Hydroperoxide ion 144 1-Hydroperoxy-2-cyclooctene 242 Hydroperoxylinoleate ion 257 Hydroquinone 243 Hydrothymine radical, peroxy- 298 Hydroxybis(2-pyridinecarboxylato)iron(III) 103 1-Hydroxyethyldioxv 244 N-Hydroxyethylenediaminetriacetatoferrate(III) 104 Hydroxyl radical 141 Hvdroxvlamine 131 3-(p-Hydroxyphenyl)-L-alanine 331 L-Hydroxyprolinecopper(II) ion 60 2-Hydroxypropionate ion 255 Hydroxyprotoferrihaem dimer 111 6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid 245 6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylate ion 246 3-(6-Hydroxy-2,5,7,8-tetramethylchroman-2-yl)propionic acid 247 5-Hydroxy-2,4,6-trioxopyrimidine 204 Hypobromous acid 6 Hypochlorous acid 14 Imidazole 248 Indigodisulfonate ion 249 Indigotetrasulfonate ion 250 Indigotrisulfonate ion 251 Indomethacin 252 Indomethacincopper complex 76 Iodine 114 Iron(II) ions 77 Iron(III) ions 90 **DL-Isoleucine 253** 2-Ketoglutarate ion 294 Laccase 254 Lactate ion 255 L-Leucine 256 Linoleate hydroperoxide 257 Linoleate ion 258 Linoleic acid 259 Linoleic acid hydroperoxide 260 Linolenate ion 261 Linolenic acid 262

Lipoxidase (soybean) 263 Luminol radical 264 DL-Lysine 265 L-Malate ion 266 Maleate ion 267 Manganese(II) formate 119 Manganese(II) ions 116 Manganese(II) pyrophosphate complex 117 Manganese(II) sulfate 118 Menadione 277 Methemoglobin 268 Methional 269 L-Methioninatocopper(II) ion 62 DL-Methionine 270 4-Methoxyphenyl-N-tert-butylnitrone 271 Methyl-1,4-benzoquinone 272 20-Methylcholanthrene 273 3-Methylcholanthrene 273 2-Methyl-N-[4-cyanophenyl)methylene]-2propanamine 193 Methylhydroquinone 274 1-Methylimidazole 275 2-Methylimidazole 276 2-Methyl-N-[(4-methoxyphenyl)methylene]-2-propanamine 271 2-Methyl-N-[(4-methylphenyl)methylene]-2-propanamine 278 2-Methyl-1,4-naphthoquinone 277 2-Methyl-N-[4-nitrophenyl)methylene]-2-propanamine 287 4-Methylphenyl-N-tert-butylnitrone 278 2-Methyl-N-phenylmethylene-2-propanamine 300 2-Methyl-3-phytyl-1,4-naphthoquinone 333 3-Methylthiopropionaldehyde 269 Methyl viologen radical cation 218 Metmyoglobin 279 NADH-Lactate dehydrogenase 280 2-Naphthalenamine 284 Naphthazarin 214 1,2-Naphthoquinone 281 1,4-Naphthoquinone, 5,8-dihydroxy- 214 1,4-Naphthoquinone, 2-methyl- 277 1.4-Naphthoguinone. 2-methyl-3-(3.7.11.15tetramethyl-2-hexadecenyl)- 333 1,2-Naphthoquinone-4-sulfonate ion 282 1,4-Naphthoquinone-2-sulfonate ion 283 2-Naphthylamine 284 Nicotinamide adenine dinucleotide, reduced 285 Nitrilotriacetatocobaltate(II) ion 23 Nitrilotriacetatomanganate(II) ion 120 Nitrite ion 133 Nitro Blue Tetrazolium 286 Nitrogen dioxide 132 4-Nitrophenyl-N-tert-butylnitrone 287 1,3,6,8,10,13,16,19-Octaazabicyclo[6.6.6]eicosanecobalt(II) ion 22 Octacyanomolybdate(IV) ion 128 Octacyanomolybdate(V) ion 129 9.11-Octadecadienoate ion 288

REACTIVITY OF HO₂/O₂ RADICALS IN AQUEOUS SOLUTION

9,11-Octadecadienoic acid 289 9,12-Octadecadienoate ion 258 9,12-Octadecadienoic acid 259 9-Octadecenoate ion 290 9-Octadecenoic acid 291 Oleate ion 290 Oleic acid 291 Oleic acid hydroperoxide 292 Osmium tetroxide 146 Oxalate ion 293 Oxide radical ion 142 2-Oxoglutarate ion 294 Oxoperoxyvanadium(IV) ion 159 Oxygenase, monophenol mono- 254 Oxyhemoglobin 295 Ozone 145 Penicillaminecopper complex 75 Pentaammine(isonicotinamide)ruthenium(II) ion 147 Pentaammine(isonicotinamide)ruthenium(III) ion 148 Perchlorate ion 18 Permanganate ion 127 Peroxidase Compound I 296 Peroxidase (horseradish) 297 Peroxyhydrothymine radical 298 L-Phenylalanine 299 Phenylalanylhistidinatocopper(II) 63 Phenyl-N-tert-butylnitrone 300 Phloroglucinol 301 Plastocyanin 302 Potassium hexacyanoferrate(II) ion 84 Potassium hexacyanoferrate(III) ion 102 L-Prolinatocopper(II) ion 64 L-Proline 303 1,1'-Propylene-2,2'-bipyridinium radical cation 326 Protocatechualdehyde 211 2,4,5,6-Pyrimidinetetrone 170 2,4,5,6-Pyrimidinetetrone H-adduct 171 Pyrocatechol 189 Pyruvate ion 304 **Quinone 182** Resorcinol 305 Riboflavin semiquinone 306 DL-Serine 307 Succinate ion 308 Succinylcytochrome C 200 Sulfacetamide 309 Sulfide ion 150 Sulfite ion 151 Superoxide dismutase 310-315 Tartrate ion 316 Tellurate(IV) ion 153 Tetraakis(4-N-methylpyridyl)porphineiron(III)-diimidazole complex 95 Tetraamminecopper(II) ion 37 Tetrakisformatocuprate(II) ion 46 Tetrakis(4-N-methylpyridyl)porphinecobalt(III) ion 26 Tetrakis(4-N-methylpyridyl)porphinecopper(II) ion 40 Tetrakis(4-N-methylpyridyl)porphineiron(II)-diimidazole complex 81

Tetrakis(4-N-methylpyridyl)porphineiron(II)-dihistidine complex 82 Tetrakis(4-N-methylpyridyl)porphineiron(III) ion 92 Tetrakis(4-N-methylpyridyl)porphineiron(III)-superoxide complex 93 Tetrakis(4-N-methylpyridyl)porphineiron(III)-dihistidine complex 96 Tetrakis(4-N-methylpyridyl)porphinemanganese(III) ion 122 Tetrakis(4-N-methylpyridyl)porphinenickel(II) ion 135 Tetrakis(4-N-methylpyridyl)porphinatezinc(II) ion 160 Tetrakis(p-sulfonatophenyl)porphinatocobaltate(III) ion 27 Tetrakis(p-sulfonatophenyl)porphinatocuprate(II) ion 42 Tetrakis(p-sulfonatophenyl)porphineferrate(III) ion 98 Tetrakis(p-sulfonatophenyl)porphineferrate(III)diimidazole complex 99 Tetrakis(p-sulfonatophenyl)porphineferrate(III)-bovine serum albumin complex 100 Tetrakis(p-sulfonatophenyl)porphinatomanganate(III) ion 124 Tetrakis(p-sulfonatophenyl)porphinatonickelate(II) ion 137 Tetrakis(p-sulfonatophenyl)porphinatozincate(II) ion 162 Tetrakis-4-(N,N,N-trimethylammonio)phenylporphinecopper(II) ion 41 Tetrakis-4-(N,N,N-trimethylammonio)phenylporphineiron(III) ion 97 Tetrakis-4-(N,N,N-trimethylammonio)phenylporphinemanganese(III) ion 123 Tetrakis-4-(N,N,N-trimethylammonio)phenylporphinenickel(II) ion 136 Tetrakis-4-(N,N,N-trimethylammonio)phenylporphinezinc(II) ion 161 Tetramethyl-p-benzoquinone 224 N, N, N', N'-Tetramethyl-1,2-diazenedicarboxamide 205 1,3,5,8-Tetramethyl-2,4-divinylporphine-6,7-dipropionic acid ferrichloride 109 1,1'-Tetramethylene-2,2'-bipyridinium radical ion (1+) 317 2,2,6,6-Tetramethylpiperidine-N-oxyl 318 2,2,6,6-Tetramethylpiperidin-1-ol 319 (2,3,9,10-Tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene)cobalt(II) ion 20 (2,3,9,10-Tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene)cobalt(III) ion 25 Tetranitromethane 320 Thallium(II) ion 156 Thiocyanogen 152 Thorium(IV)-hydroperoxy complex 155 Thorium(IV) ion 154 **DL-Threonine 321** Thymine radical, peroxy- 298 Tiron dianion 212 α -Tocopherol 322 p-Toluquinone 272 Tribromine ion 3 Tributylammoniobutyldioxy 323

Triethylammonioethyldioxy 324 1,3,5-Trihydroxybenzene 301 Triiodine ion 115 Trimethylammoniomethyldioxy 325 1,1'-Trimethylene-2,2'-bipyridinium radical ion (1+) 326 2,5,5-Trimethyl-1-pyrroline *N*-oxide 327 Tripropylammoniopropyldioxy 328 Trisamminecopper(II) ion 36 Tris(2,2'-bipyridine)ruthenium(III) ion 149 Trisformatocuprate(II) ion 45 Tris(hydroxymethyl)aminomethane 329 Tris(1,10-phenanthroline)iron(II) ion 78 Trolox 245 Trolox anion 246 L-Tryptophan 330 L-Tyrosine 331 Uranyl(VI) ion 157 L-Valinatocopper(II) ion 66 DL-Valine 332 Valylhistidinatocopper(II) 67 Vitamin B12 30 Vitamin K₁ 333 Zinc(II) 2-picolinate 163 Zinc(II) tetrakis(4-N-methylpyridyl)porphyrin 160 Zinc(II) tetrakis(p-sulfonatophenyl)porphyrin 162 Zinc(II) tetrakis(4-trimethylammoniophenyl) porphyrin 161

1100