Thermodynamic Properties of Iron and Silicon

Cite as: Journal of Physical and Chemical Reference Data **15**, 967 (1986); https://doi.org/10.1063/1.555761 Submitted: 15 April 1985 . Published Online: 15 October 2009

P. D. Desai

ARTICLES YOU MAY BE INTERESTED IN

Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 ${\rm K}$

Journal of Applied Physics 56, 314 (1984); https://doi.org/10.1063/1.333965

Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity Journal of Applied Physics **32**, 1679 (1961); https://doi.org/10.1063/1.1728417

Thermal conductivity measurement from 30 to 750 K: the 3ω method Review of Scientific Instruments **61**, 802 (1990); https://doi.org/10.1063/1.1141498

Where in the world is AIP Publishing? Find out where we are exhibiting next

View Online

Journal of Physical and Chemical Reference Data **15**, 967 (1986); https://doi.org/10.1063/1.555761 © 1986 American Institute of Physics for the National Institute of Standards and Technology.

Thermodynamic Properties of Iron and Silicon

P. D. Desai

Center for Information and Numerical Data Analysis and Synthesis, Purdue University, West Lafayette, Indiana 47906

Received April 15, 1985; revised manuscript received September 24, 1985

This work reviews and discusses the data on the various thermodynamic properties of iron and silicon available through March 1984. These include heat capacity, enthalpy, enthalpies of transition and melting, vapor pressure, and enthalpy of vaporization. The recommended values for heat capacity, enthalpy, entropy, and Gibbs energy function cover the temperature range from 1 to 3200 K for iron and 1 to 3600 K for silicon. The recommended values for vapor pressure cover the temperature range from 298.15 to 3200 K for iron and 1 to 3600 K for silicon. The recommended values for vapor pressure cover the temperature range from 298.15 to 3200 K for iron and from 298.15 to 3600 K for silicon. These values are referred to temperatures based on the International Practical Temperature Scale of 1968. The energy units used are joules per mol (J mol⁻¹). The uncertainties in the recommended values of the heat capacity range from $\pm 1.5\%$ to $\pm 5\%$.

Key words: critical evaluation; data analysis; enthalpy; enthalpy of melting; enthalpy of transition; enthalpy of vaporization; Gibbs energy function; heat capacity; iron; recommended values; silicon; vapor pressure.

C	n	n	te	n	te
-	v		LC		ι.3

1.	Introduction	967
2.	Thermodynamic Properties of Iron	968
	2.1. Phase and Structure	968
	2.2. Low-Temperature Heat Capacity	968
	2.3. High-Temperature Heat Capacity (Solid) .	970
	2.4. High-Temperature Heat Capacity (Liquid)	972
	2.5. Ideal Gas Properties	972
	2.6. Vapor Pressure Data	972
	2.7. References	975
3.	Thermodynamic Properties of Silicon	976
	3.1. Phase and Structure	976
	3.2. Low-Temperature Heat Capacity	976
	3.3. High-Temperature Heat Capacity (Solid) .	979
	3.4. High-Temperature Heat Capacity (Liquid)	979
	3.5. Ideal Gas Properties	981
	3.6. Vapor Pressure Data	981
	3.7. References	982
4.	Acknowledgments	983
	• • • • • • • • • • • • • • • • • • •	

List of Tables

1.	Recommended low-temperature heat capacity of	
	iron	968

1. Introduction

The principal objective of this work is to critically evaluate and analyze all the available data on the heat capacity, enthalpy, and vapor pressure of iron and silicon and to

© 1986 by the U.S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society.

Reprints available from ACS; see Reprints List at back of issue.

2. Recommended high-temperature thermodynam	973
ic properties of iron	975
3. Recommended vapor pressure of iron	
4. Recommended low-temperature heat capacity of	976
silicon	
5. Recommended high-temperature thermodynam	979
ic properties of silicon	
6. Recommended high-temperature thermodynam	981
ic properties of Si ₂ (g) and Si ₃ (g)	982
7. Recommended vapor pressure of Si(g)	

List of Figures

	Liston i ganoa	969
1.	Low-temperature heat capacity of iron	971
2.	Percent deviation in C_p° values for iron	974
3.	Heat capacity of iron	977
4.	Low-temperature heat capacity of silicon	978
5.	Percent deviation in C_p° values for silicon	978
6.	Percent deviation in y values for silicon	980
7.	Heat capacity of silicon	

generate the recommended values of these and other thermodynamic properties from 1 K to the melting point and above.

The discussion of the thermodynamic properties and the details of data analysis are reported in Sec. 2 for iron and in Sec. 3 for silicon. The recommended values cover the temperature range from 1 to 3200 K for iron and from 1 to 3600 K for silicon.

The temperature dependence of the following thermo-

J. Phys. Chem. Ref. Data, Vol. 15, No. 3, 1986

dynamic properties are covered:

(1) Low-temperature (T < 298.15 K) heat capacity, C_p° ,

(2) High-temperature (T > 298.15 K) heat capacity, C_p° ,

(3) High-temperature enthalpies, $H^{\circ}(T) - H^{\circ}$ (298.15 K), and

(4) Vapor pressure, P.

of 1968 (IPTS-68).

The details of the data analysis have been discussed elsewhere. 1

2. Thermodynamic Properties of Iron 2.1. Phase and Structure

Alpha-iron has a bcc structure isotypic with W below 1185 K, fcc (γ -Fe) structure isotypic with Cu between 1185 and 1667 K, and bcc (δ -Fe) structure isotypic with W above 1667 K. These transition temperatures are based on the studies of Sale and Normanton.² Its atomic weight is 55.847. It is ferromagnetic at temperatures below 1043 K and paramagnetic above that temperature. Its melting point of 1811 \pm 3 K is based on the measurements of Treverton and Margrave, ³ Cezairliyan and McClure, ⁴ and of Boulanger.⁵ These temperatures and thermodynamic properties reported here

2.2. Low-Temperature Heat Capacity

are based on the International Practical Temperature Scale

There have been numerous measurements of the electronic specific heat coefficient γ and the Debye temperature θ_D . Some of them from which the recommended value is derived are listed below:

Source	γ ,mJ mol ⁻¹ K ⁻²	θ _D ,K
Dixon et al. ⁶	4.780 4.779	463.7 ± 1.1 426.6 + 1.8
Cheng et al. ⁷	4.979	445 ± 15
Shinozaki and Arrott ⁸	4.81 4.80 4.72	463 468 440
Arrott and Shinozaki9	4.80	
Marklund et al. ¹⁰	4.72 ± 0.039	
Mazur and Zacharko ¹¹	4.90	468
Arp et al. ¹²	4.90 ± 0.5	
Keesom and Kurrelmeyer ¹³	5.021	462
Duyckaerts ¹⁴	5.021	464.5
Recommended value	4.942 ± 0.11	465 ± 3

The recommended values below 5 K are derived from the recommended values for γ and θ_D using the following equation:

$$C_{p}^{\circ} = \gamma T + [1943.75/\theta_{\rm D}^{3}]T^{3}$$

Table 1. Recommended low-temperature heat capacity of iron

т	<u>_0</u>		0
ĸ	P	<u> </u>	$\frac{C_{p}}{1-1}$
	J-mol .K		J-201 -Y
1	0.004961	130	16.067
2	0.01004	140	17.120
3	0.01535	150	18.080
4	0.02101	160	18.895
5	0.02713	170	19.652
6	0.0335	175	20.011
7	0.0406	180	20.336
8	0.0487	190	20.952
9	0.0583	200	21.503
10	0.0698	210	21.981
15	0.138	220	22.423
20	0.256	225	22.640
25	0.456	230	22.847
30	0.743	240	23.245
40	1.552	250	23.612
50	2.804	260	23.962
60	4.496	270	24.282
70	6.534	273.1	5 24.380
75	7.538	280	24.580
80	8.518	290	24.864
90	10.338	298.1	5 25.084
100	12.067		
110	13.555		
120	14.879		
125	15.482		
C(01)	ectronic) = Y	T; $\gamma = 4.942 \pm 0.1$	1 mJ·mo1 ⁻¹ ·K
		Crystal. Fo(s)	Gas
15 K)-i	H ^O (O K) 448	1 ± 10 J·mol ⁻¹	6849 <u>+</u>

The recommended values from 5 to 20 K agree well with the following measurements: Keesom and Kurrelmeyer, ¹³ Duyckaerts, ¹⁴ and of Eucken and Werth. ¹⁵ The recommended values from 20 to 298.15 K agree well with the measurements of Eucken and Werth, ¹⁵ Stepakoff and Kaufman, ¹⁶ Kelley, ¹⁷ Simon and Swain, ¹⁸ and of Reddy and Reddy. ²⁰ Other results deviate from the recommended values as follows:

Source	Deviation, %
Griffiths and Griffiths ¹⁹	up to 7
Schroder and MacInnes ²¹	up to 26 ($<$ 140 K), -6 ($>$ 140 K)
Rodebush and Michalek ²²	8
Gunther ²³	up to - 12
Bendick and Pepperhoff ²⁴	agree well (> 80 K)
	-8 to 30 higher (< 80 K)

The recommended value of $C_p^{\circ} = 25.084 \text{ J mol}^{-1} \text{ K}^{-1}$ at 298.15 K is based on the data of Stepakoff and Kaufmann,¹⁶ Griffiths and Griffiths,¹⁹ and the lower end of the high-temperature data discussed in the next section. Integration of the recommended C_p° values yields $H^{\circ}(298.15 \text{ K}) = H^{\circ}(0 \text{ K}) = 4481 \pm 10 \text{ J mol}^{-1}$ and integration of C_p°/T values yields $S^{\circ}(298.15 \text{ K}) = 27.085 \pm 0.08 \text{ J mol}^{-1} \text{ K}^{-1}$. These values are tabulated in Table 1 and C_p° values are shown in Fig. 1 along with the experimental data.

FIG. 1. Low-temperature heat capacity of iron.

Source

2.3. High-Temperature Heat Capacity (Solid)

There have been numerous measurements of the heat capacity of α -iron. These generally agree with one another up to 1000 K. Near the Curie temperature, C_p° varies rapidly with temperature. In this region, from 1000 to 1060 K and in some cases up to 1185 K, comparatively large deviations in C_p° occur which could be, in many cases, reconciled by changing the temperature only slightly.

The recommended C_p° values for α -Fe in general agree well ($\pm 3\%$) except in the region near the Curie temperature region with the following measurements: Griffiths and Griffiths,¹⁹ Bendick and Pepperhoff,²⁴ Pepperhoff and Ettwig,²⁵ Rogez and Le Coze,²⁶ Kollie *et al.*,²⁸ Tsuchiya *et al.*,²⁹ Lyusternik,³⁰ Awbery and Griffiths,³² Sykes and Evans,³³ Normanton *et al.*,³⁴ Pallister,³⁵ Holetzko,³⁶ Wallace *et al.*,³⁷ Braun and Kohlhaas,³⁸ Braun,³⁹ and of Kraftmakher and Romashina.⁴⁴ Comparison of other measurements with the recommended values is as follows:

Schroder and MacInees ²¹	5 (300-430 K), 12 (440-1000 K)
Loribor et al 27	14 (> 1085 K)
Lankov et al.	± 0
Dench and Kubaschewski ³¹	6
Orehotsky and Schroder ⁴⁰	±4
Shanks et al.41	9 (< 930 K), -3 (> 1070 K)
Kollie ⁴²	± 6
McElroy ⁴³	± 4
Klinkhardt ⁴⁵	up to 6 (< 1000 K)
	\pm 7 (> 1070 K)
Lapp ⁴⁶	3 to 12 (< 975 K)
	-2 to -10 (>1060 K)
Esser and Baerlecken ⁴⁷	1 to 6 ($<$ 1000 K)
	\pm 6 (> 1070 K)
Kobayasi <i>et al.</i> ⁴⁸	± 5
Varchenko et al.49	-2 to 12

Additionally, measurements of Lederman *et al.*⁵⁰ near the Curie temperature yield as much as 15% lower C_p° values.

 α -Fe tranforms to γ -Fe at 1185 K and then to δ -Fe at 1667 K. The recommended values of $\Delta H_{\alpha-\gamma}$ and $\Delta H_{\gamma-\beta}$ are based on the following literature values:

Source	$\Delta H_{\alpha-\gamma}$	$\Delta H_{\gamma o \delta}$
Sale and Normanton ²	923 + 10	765 + 22
Bendick and Pepperhoff ²⁴	820	
Rogez and Le Coze ²⁶	900 + 20	850
Dench and Kubaschewski ³¹	900	837 + 30
Wallace et al.37	911 + 80	-
Braun and Kohlhaas ³⁸	910	850
McElrov ⁴³	901	
Anderson and Hultgren ⁵¹	942 + 80	
Olette and Ferrier ⁵²		1100 ± 290
Recommended value	900 ± 40	$850 \pm 80 \text{ J mol}^{-1}$

There appears to be an excellent agreement between several measurements reported for γ -Fe in the literature. The recommended values agree well ($\pm 2\%$) with the following measurements: Sale and Normanton,² Cezairliyan and McClure,⁴ Dench and Kubaschewski,³¹ Normanton *et* $al.,^{34}$ Wallace *et al.*,³⁷ Shanks *et al.*,⁴¹ and Lapp.⁴⁶ Other measurements compare with the recommended values as follows:

Source	Deviation,%
Bendick and Pepperhoff ²⁴	-5 to -14
Rogez and Le Coze ²⁶	-1 to -4
Larikov et al.27	8
Kollie et al. ²⁸	1 to 6
Awbery and Griffiths ³²	- 5
Pallister ³⁵	-1 to -10
Holetzko ³⁶	± 7
Braun ³⁹	-1 to -4
Orehotsky and Schroder ⁴⁰	-3
Kollie ⁴²	up to 8
Esser and Baerleeken ⁴⁷	10
Kobayasi ⁴⁸	± 5
Varchenko et al.49	+ 20

The recommended C_p° value for δ -Fe are based on the data of Cezairliyan and McClure.⁴ Data of Sale and Normanton² and of Dench and Kubaschewski³¹ are, respectively, 2% to 5% and 2.5% higher than the recommended values, and those of Braun³⁹ and of Morris *et al.*⁵⁴ are up to 7% and 9% lower, respectively, while those of Holetzko³⁶ are as much as 36% higher.

A systematic plot of percent deviation (up to $\pm 4\%$) in C_{p}° values from various measurements is shown in Fig. 2.

In addition to the direct C_p° measurements, there are several enthalpy studies reported in the literature. These compare with the enthalpy values obtained by integrating the recommended C_p° values as follows:

Source	Deviation, %				
Anderson and Hultgren ⁵¹	± 1.5				
Olette and Ferrier ⁵²	±1				
Ferrier and Olette ⁵³	up to -2				
Morris et al.54	± 0.5				
Jaeger et al.55	± 1.5				
Rapson ⁵⁶	up to -3.5				
Pattison and Willows57	- 1.5				
Umino ⁵⁸	4 (<1185 K)				
	± 1 (>1185 K)				
Umino ⁵⁹	-2.5 (<1185 K)				
	+ 5 (> 1185 K)				
Wust et al. ⁶⁰	± 3				
Oberhoffer and Grosse ⁶¹	+1				

FIG. 2. Percent deviation in C_p° values for iron.

J. Phys. Chem. Ref. Data, Vol. 15, No. 3, 1986

2.4. High-Temperature Heat Capacity (Liquid)

The recommended value for the enthalpy of melting, $\Delta_{fus} H^{\circ} = 13\ 810 \pm 300\ J\ mol^{-1}$, was obtained by extrapolating solid and liquid enthalpies to the melting point, $T_{fus} = 1811\ K$. This compares with the following values reported in the literature:

Source	$\Delta_{\rm fus} H^{\circ}$, J mol ⁻¹				
Braun and Kohlhaas ³⁸	14400 ± 300				
Ferrier and Olette ⁵³	13774 ± 380				
Morris et al.54	13 799 ± 400				
Umino ⁵⁸	16 170				
Umino ⁵⁹	15 340				
Wust et al.60	11 531				
Oberhoffer and Grosse ⁶¹	15 043				
Treverton and Margrave ⁶²	13836 ± 300				
Mogutunov and Tomilin ⁶³	13 782				
Vollmer et al.64	$14\ 393\ \pm\ 400$				

The following investigators have reported constant values for the C_p° of molten iron from their enthalpy measurements in the limited temperature range:

Source	C_p° , J mol ⁻¹ K ⁻¹			
Ferrier and Olette ⁵³	46.970			
Morris et al.54	40.481			
Umino ⁵⁸	45.331			
Treverton and Margrave ⁶²	43.062 ± 0.21			
Mogutunov and Tomilin ⁶³	46.986			
Vollmer et al.64	42.00			
Margrave ⁶⁵	46.6 ± 1.8			
Chetykhin et al.93	38.31			
Recommended value	46.632 ± 3.0			

Other quantities in Table 2 are calculated by integrating C_{ρ}° values. The recommended enthalpy values for liquid iron agree within $\pm 2\%$ of the data of Ferrier and Olette,⁵³ Morris *et al.*,⁵⁴ Pattison and Willows,⁵⁷ Umino,⁵⁹ and of Treverton and Margrave.⁶² The data of Umino⁵⁸ are up to 6% higher than the recommended values.

The recommended C_{ρ}° values reported in Table 2 are shown in Fig. 3 along with experimental data. Other quantities in Table 2 were calculated using the procedure outlined earlier.¹

The estimated uncertainties in the heat capacity are $\pm 3\%$ below 10 K, 1.5% from 10 to 298.15 K, $\pm 2\%$ from 298.15 to 1000 K, $\pm 5\%$ from 1060 to 1185 K, $\pm 2\%$ from 1185 and 1667 K (γ -Fe) and 1667 to 1811 K (δ -Fe), and $\pm 3\%$ in the liquid region. However, uncertainty near the Curie temperature is as much as $\pm 10\%$.

2.5. Ideal Gas Properties

Thermodynamic quantities for Fe(g) reported in Table 2 are calculated from $C_p^{\circ}(g)$ and $S^{\circ}(298.15 \text{ K})$ (g) values reported in Chase *et al.*⁶⁶

2.6. Vapor Pressure Data

Application of the third law test to the vapor pressure measurements gave the following enthalpy of sublimation at 298.15 K.

Source	$\Delta_{\rm sub} H^{\circ} (298.15 \text{ K}), \text{ kJ mol}^{-1}$
Smith and Shuttleworth, ⁶⁷ 1273–1773 K, Knudsen method	422.07 ± 1.24
Nesmeyanov and Trapp, ⁶⁸ 1327–1518 K, Knudsen method	417.97 ± 1.09
Myles and Aldred, ⁶⁹ 1451–1677 K, Knudsen method	414.77 ± 0.76
Saxer, ⁷⁰ 1507–1657 K, Knudsen method	414.72 ± 1.90
Gulbransen and Andrew, ⁷¹ 1298–1423 K, Langmuir method	423.10 ± 1.79
Turkdogan and Leake, ⁷² 1873 K, Transport method	424.44
Speiser <i>et al.</i> , ⁷³ 1725–1826 K, Calculated from Knudsen method for Fe–Ni alloys	415.12 <u>+</u> 2.32
McCabe et al., ⁷⁴ 1497, 1506 K, Knudsen method	417.47 ± 0.25
Burlakov, ⁷⁵ 1302–1505 K, Langmuir method First sample	406.74 ± 1.92
1291–1529 K, second sample	405.67 ± 2.32
Isotope exchange method	+00.04 <u>+</u> 3.42
Morris et al., ⁷⁷ 1810–1889 K, Transport method	416.67 ± 0.33
Vintaikin, ⁷⁸ 1400–1600 K, Knudsen method	417.54 ± 1.17
Kornev, ⁷⁹ 1464–1623 K, Knudsen method	406.17 ± 3.47
Edwards et al., ⁸⁰ 1356–1519 K, Langmuir method	418.12 ± 0.96
Wessel, ⁸¹ 1500–1800 K, Knudsen method	408.22 ± 2.51
Darken and Gurry, ⁸² 1873 K, Langmuir method	420.84
Marshall et al., ⁸³ 1317–1579 K, Langmuir method	408.09 ± 2.34
Jones et al., ⁸⁴ 1270–1580 K, Langmuir method	405.27 ± 1.49
Alcock and Kubik, ⁸⁵ 1810–1895 K, Knudsen method	416.73 ± 0.13
Lindscheid and Lange, ⁸⁶	413.43 + 4.28
1773–1870 K, torsion method	417.27 ± 2.84
Svyazhin <i>et al.</i> , ⁸⁷ 1993–2363 K Carrier gas transportation method	402.70 ± 0.40
Karasev et al., ⁸⁸ 1873–2023 K, Evaporation method	421.56 ± 3.22
Yavoyskii et al., ⁸⁹ 1908–2293 K. Carrier gas transportation method	409.35 + 3.97
Chegodaev et al., ⁹⁰ 1273-2200 K, Langmuir method	438.08 ± 1.60
Lindscheid and Lange, ²¹ 1622–1878 K, Knudsen method	413.09 ± 2.20 414.78 ± 2.28
1024-18/3 K, torsion method	403.65 ± 2.52
Absorption method	

Recommended value

415.47 ± 1.25

Table 2. Recommended high-temperature thermodynamic properties of iron⁸

		Condens	ed phase			Gas pha	e Fe(s)	
_	c°		-0		c°		-9	
-I		$\frac{\mathbf{H}^{-}-\mathbf{H}^{-}(\mathbf{Tr})}{\mathbf{Tr}}$	<u>s</u>	-10^{-1} (Tr) /T	<u> </u>	$\frac{\mathbf{H}^{*}-\mathbf{H}^{*}(\mathbf{T}_{\mathbf{r}})}{\mathbf{T}_{\mathbf{r}}}$		$\frac{-16^{-H^{-}(T_r)}}{-1}$
	J. BOI . F	J • 1001	·····	mol •K	J•m01 •L	J·mol		mol •K
298.15	25.084	0	0.000	27.085	25,673	0	0.000	180.376
300	25.131	48	0.155	27.085	25.681	48	0.159	180.376
3 50	26.321	1334	4.122	27.397	25.703	1334	4.123	180.689
400	27.427	2677	7.710	28.102	25.531	2615	7.545	181.385
430	28.332	4076	11.004	29.031	25.254	3885	10.538	152.280
500	29.639	5531	14.066	30.090	24.891	5139	13.180	183.279
550	30.810	7042	16.947	31.229	24.537	6374	15.535	184.322
600	32.008	8612	19.678	32.410	24.200	7593	17.656	185.378
650	33.260	10243	22.289	33.615	23,892	8795	19.580	186.426
700	34,618	11940	24.805	34.833	23.610	9982	21.341	187.457
750	36.153	13709	27.246	36.053	23.354	11156	22.960	188.462
800	37.924	15559	29.633	37.270	23.133	12318	24.461	189.439
850	40.170	17508	31.995	38.483	22.936	13470	25.857	190,386
900	43.157	19587	34.370	39.692	22.765	14612	27.163	191.304
925	45.152	20690	35.579	40.297	22.688	15180	27.786	191.751
950	47.642	21 84 8	36.815	40.902	22.617	15747	28.390	192.190
975	50.691	23076	38.090	41.507	22.551	16312	28.977	192.623
1000	54.458	24389	39.419	42.115	22.489	16874	29.547	193.049
1010	56.815	24944	39.972	42.360	22.465	17099	29.771	193.217
1020	60.140	25528	40.548	42.605	22.442	17323	29.992	193.385
1030	65.490	26154	41.159	42.852	22 421	17548	10 211	107 660
1035	69,420	26491	41.486	42.976	22.411	17660	30.319	193.530
1040	74.900	26851	41.833	43.100	22.401	17772	30.427	193 748
1042	78.690	27004	41.980	43.149	22.397	17816	30.470	193.748
1043	83.770	27085	42.058	43.175	22.395	17839	30.492	193.764
1044	74.540	27163	42.133	43.199	77 999	19961		
1046	68.270	27306	42.269	43.249	22.389	17906	30 556	103 813
1048	63.980	27438	42.395	43.298	22.384	17951	30.599	193.846
1050	60.900	27563	42.514	43.349	22.381	17996	30.641	193.878
1055	56.348	27854	42.791	43.474	22.372	18108	30.747	193.959
1060	53.850	28129	43.051	43 499	77 367	1 89 90	30 863	104 040
1070	50.138	28642	43.533	43.849	22.344	18443	31 063	194.040
1080	47.462	29129	43.986	44.099	22.328	18667	31.271	194 367
1090	45.675	29595	44.414	44.348	22.311	18890	31.477	194.523
1100	44.350	30044	44.825	44.597	22.297	19113	31.681	194.681
1125	42.223	31124	45.795	45.214	22 260	19670	32 181	164 077
1150	41.063	32164	46.709	45.826	27.229	20226	32.101	195.072
1175	40.262	33178	47.583	46.431	22.203	20779	33 148	195 840
1185(a)	40.000	33581	47.923	46.669	22.195	21001	33.336	195.990
1185(γ)	33.775	34481	48.682	46.669	22.195	21001	33.336	195,990
1200	33.905	34989	49.108	47 036	22 184	21226	12 616	106 211
1250	34.353	36695	50.501	48.230	22 141	21330	33.013	190.211
1300	34.809	38424	51.857	49.385	22.138	23551	34.310	197 648
1350	35.280	40176	53.179	50.504	22.139	24659	36 774	100 224
1400	35.750	41952	54.471	51.590	22.154	25766	37.029	199 001
1450	36.220	43751	55 734	87 648	20 189	20100		
1500	36.690	45574	56 970	52.045	22.183	26874	37.807	199.649
1550	37.161	47420	58,180	54.672	22.230	2/304	30.300	200.280
1600	37,630	49290	59.368	55.646	77 344	30713	39.290	200.893
1650	38.100	51183	60.533	56.597	22.434	31333	40.687	202 073
1667(*)	38,260	51 83 2	60 024	56 014	77 469	31844	40.000	
1667(5)	40,400	52687	61.434	56.914	44.903	31715	40.917	202.268
1700	41.454	54033	62.216	\$7.527	44.903 77 417	31/13	40.917	202.268
1750	43.051	56145	63.461	58.463	22 610	3243/ 33484	41.335	202.042
1800	44.649	58338	64.696	59.371	22.727	34719	42.641	203,19/
1811/6)	46 000		64.060				42.021	AV3.133
1811/0)	45.000	38831	04.909	59.569	22.748	34969	42.790	203.857
1900	46.632	74701	14.393	39.369	22.748	34969	42.790	203.857
2000	46 .632	81348	77 100	61.301	22.938	37003	43.986	204.787
2200	46.632	90714	\$1.634	67.484	43.213	39311	43.070	205.791
2400	46 630	100041					47.308	TO1.090
2600	70.034 A6 627	100347	80.492	71.093	24.363	48820	49.401	209.436
2800	40.034	118603	87.424 87 884	74.445	24.974	53754	51.375	211.077
3000	46 627	128020	94.88V	77.375	25.589	58810	53.249	212.621
3110	46.632	133140	90.098 97 £97	81 800	20.209	63989	55.035	214.081
1100			21.041	01.077	40.334	60 <i>8</i> 92	55.986	214.853
3 2 0 0	40.632	137380	99.124	83.278	26.840	69295	56.747	215.468
T	a-y = 1185 K	48	- 900 ±	40 J·mol ⁻¹	۵S	0.759 ± 0.0	34 J·mo1 ⁻¹	·r ⁻¹
т	y-8 = 1667 K	۵ ۳,-	-8 = 850 ±	80 J·mol ⁻¹	۵۵ _{۲-8} =	0.510 ± 0.0	48 J·mol ⁻¹	· x ⁻¹
Т	fus = 1811 K	Afus	B ^o - 1381	$0 \pm 300 \text{ J} \cdot \text{mol}^{-1}$	4 fus S°	• 7.626 ± 0.	160 J·mol	¹ · g ⁻¹

^aEnthalpy reference temperature = Tr = 298.15 K.

J. Phys. Chem. Ref. Data, Vol. 15, No. 3, 1986

FIG. 3. Heat capacity of iron.

P. D. DESAI

Table 3. Recommended wapor pressure of iron^{a, b}

Fe(s, 1) = Fe(g)

т		AGO	AHO	
K	a tm	J·mol ⁻¹		atm K
298.15	1.65 x 10-65	369766	415470	10-10 1220
300	4 65 - 10-65	369483	415470	10-9 1296
400	5 65 - 10-47	354157	415408	10-8 1382
500	3.96 - 10-36	338876	415078	10-7 1480
600	6.61 x 10 ⁻²⁹	323689	414451	10-6 1593
				10 ⁻⁵ 1726
700	9.32 x 10 ⁻²⁴	308633	413512	10-4 1888
800	6.62 x 10 ⁻²⁰	293735	412229	10 ⁻³ 2091
900	6.40×10^{-17}	279019	410495	10 ⁻² 2346
1000	1.52×10^{-14}	264536	407955	10 ⁻¹ 2678
1100	1.29×10^{-12}	250378	404539	1 3110
1185 (a)	3.06 x 10 ⁻¹¹	238525	402890	$\Delta_{\rm ward} S^0(3110 \ {\rm K}) = 112.29 \ \pm \ 0.40$
1185(y)	3.06 x 10 ⁻¹¹	238525	401990	J-mol-1-E-1
1200	5.10 x 10 ⁻¹¹	236460	401817	
1300	1.12 x 10 ⁻⁹	222728	400597	$\Delta_{sub} H^0(0 \mathbb{K}) = 413.102 \pm (1.26)$
1400	1.58 x 10 ⁻⁸	209095	399284	kJ·mol ⁻¹
1500	1.55×10^{-7}	195558	397880	
1600	1.13 x 10 ⁻⁶	182118	396393	
1667(y)	3.75 x 10 ⁻⁶	173168	395353	
1667(8)	3.75 x 10 ⁻⁶	173168	394503	
1700	6.51 x 10 ⁻⁶	168792	393894	
1800	3.05 x 10-5	155608	391851	
1811(6)	3.58 x 10 ⁻⁵	154164	391608	
1811(2)	3.58 x 10 ⁻⁵	154164	377798	
2000	3.78×10^{-4}	131050	373393	
2200	2.87×10^{-3}	107043	368764	
2400	1.53×10^{-2}	83447	364249	
2600	6.17 x 10^{-2}	60227	359857	
2800	0.201	37341	355587	
3000	0.553	14754	351439	
3110	1.000	0	349213	
3200	1.328	-7538	347385	

"1 atm = 101325 Pa

^DAGO refers to $\Lambda_{sub}G^{O}$ when T $\langle T_{fus}$ and $\Lambda_{wap}G^{O}$ when T $\rangle T_{fus}$ (and similarly for AEO).

The values for ΔG° , p, and ΔH° reported in Table 3 are calculated using $\Delta_{sub} H^{\circ}$ (298.15 K) and the Gibbs energy values for Fe(s,l) and Fe(g) from Table 2.

Most of the measurements for the thermodynamic properties have been carried out on the International Practical Temperature Scale of 1948 or 1958 (IPTS-48 or IPTS-58). It is worth noting that the effect of conversion of these properties to IPTS-68 is well within the uncertainty of these values.

2.7. References

¹P. D. Desai, "Thermodynamic Properties of Aluminum, Nickel, and Titanium," J. Phys. Chem. Ref. Data (to be published).

²F. R. Sale and A. S. Normanton, "A Spherical Adiabatic Calorimeter," in Metallurgical Chemistry Symposium 1971 (National Physical Laboratory, Teddington, England, 1972), pp. 19-28.

²J. A. Treverton and J. L. Margrave, J. Chem. Thermodyn. 3, 473 (1971).

⁴A. Cezairliyan and J. L. McClure, J. Res. Natl. Bur. Stand. Sect. A 78, 1 (1974).

- ⁵C. Boulanger, C. R. Acad. Sci. 241, 1133 (1955).
- ⁶M. Dixon, F. E. Hoare, T. M. Holden, and D. E. Moody, Proc. R. Soc. London Ser. A 285, 561 (1965).

⁷C. H. Cheng, C. T. Wei, and P. A. Beck, Phys. Rev. **120**, 426 (1960).

⁸S. S. Shinozaki and A. Arrott, Phys. Rev. 152, 611 (1966).

- ⁹A. Arrott and S. Shinozaki, Ann. Acad. Sci. Fenn. Ser. A 210, 31 (1966).
- ¹⁰K. Marklund, L. Hoel, K. Spahr, and T. Lindqvist, J. Low Temp. Phys. 5, 227 (1971).
- ¹¹J. Mazur and W. Zacharko, Acta Phys. Pol. 32, 501 (1967).
- ¹²V. Arp, D. Edmonds, and R. Petersen, Phys. Rev. Lett. 3, 212 (1959).
- ¹³W. H. Keesom and B. Kurrelmeyer, Physica (The Hague) 6, 633 (1939).
- ¹⁴G. Duyckaerts, Physica (The Hague) 6, 401 (1939).
- ¹⁵A. Eucken and H. Werth, Z. Anorg. Allg. Chem. 188, 152 (1930).
- ¹⁶G. L. Stepakoff and L. Kaufman, Acta Metall. 16, 13 (1968).
- ¹⁷K. K. Kelley, J. Chem. Phys. 11, 16 (1943).
- ¹⁸F. Simon and R. C. Swain, Z. Phys. Chem. Abt. B 28, 189 (1935).

- ¹⁹E. H. Griffiths and E. Griffiths, Proc. R. Soc. London Ser. A 90, 557 (1914)
- ²⁰B. P. N. Reddy and P. J. Reddy, Phys. Status Solidi A 22, 219 (1974).
- ²¹K. Schroder and W. M. MacInnes, J. Sci. Instrum. Suppl. 2, 2, 959 (1969).
- ²²W. H. Rodebush and J. C. Michalek, J. Am. Chem. Soc. 47, 2117 (1925).
- ²³P. Gunther, Ann. Phys. (Paris) 51, 828 (1916).
- ²⁴W. Bendick and W. Pepperhoff, Acta Metall. 30, 679 (1982).
- ²⁵W. Pepperhoff, and H. H. Ettwig, Z. Angew. Phys. 22, 496 (1967).
- ²⁶J. Rogez and J. Le Coze, Rev. Phys. Appl. 15, 341 (1980).
- ²⁷L. N. Larikov, Yu. V. Usov, and A. V. Zolotukhin, Metallofizika (75), 55 (1979).
- ²⁸T. G. Kollie, D. L. McElroy, M. Barisoni, and C. R. Brooks, ORNL Report No. ORNL-4380, 1969, 33 pp. [N69-27239].
- ²⁹M. Tsuchiya, M. Izumiyama, and Y. Imai, J. Jpn. Inst. Met. 35, 839 (1971).
- ³⁰V. Ye. Lyusternik, Phys. Met. Metallogr. (USSR) 19, 48 (1965).
- ³¹W. A. Dench and O. Kubaschewski, J. Iron Steel Inst. London 201, 140 (1963).
- ³²J. H. Awbery and E. Griffiths, Proc. R. Soc. London Ser. A 174, 1 (1940).
- ³³C. Sykes and H. Evans, J. Iron Steel Inst. London 138, 125 (1938).
- ³⁴A. S. Normanton, P. E. Bloomfield, F. R. Sale, and B. B. Argent, Met. Sci. J. 9, 510 (1975).
- ³⁵P. R. Pallister, J. Iron Steel Inst. London 161, 87 (1949).
- ³⁶H. Holetzko, dissertation (University of Koln, 1958); quoted by F. Krauss. Z. Metallkd. 49, 386 (1958).
- ³⁷D. C. Wallace, P. H. Sidles, and G. C. Danielson, J. Appl. Phys. 31, 168 (1960).
- ³⁸M. Braun and R. Kohlhaas, Phys. Status Solidi 12, 429 (1965).
- ³⁹M. Braun, Inaugural dissertation (University of Koln, 1964).
- ⁴⁰J. L. Orehotsky and K. Schroder, J. Phys. E 3, 889 (1970).
- ⁴¹H. R. Shanks, A. H. Klein, and G. C. Danielson, J. Appl. Phys. 38, 2885 (1967).
- ⁴²T. G. Kollie, ORNL Report No. ORNL-TM-1187, 1965.
- ⁴³D. L. McElroy, Ph.D. thesis (University of Tennessee, Knoxville, 1957).
- ⁴⁴Ya. A. Kraftmakher and T. Ya. Romashina, Tverd. Tela. 7, 2532 (1965).
- ⁴⁵H. Klinkhardt, Ann. Phys. (Paris) 84, 167 (1927).
- ⁴⁶C. Lapp, Ann. Phys. (Paris) 6, 826 (1936).
- ⁴⁷H. Esser and H. Baerlecken, Arch. Eisenhuttenw. 14, 617 (1941).
- ⁴⁸K. Kobayasi, T. Ohmori, and Y. Fujimura, High Temp.-High Pressures 11, 459 (1979).
- ⁴⁹A. A. Varchenko, Ya. A. Kraftmakher, and T. Yu. Pinegina, High Temp. (USSR) 16, 720 (1978).
- ⁵⁰F. L. Lederman, M. B. Salamon, and L. W. Shacklette, Phys. Rev. B 9, 2981 (1974).
- ⁵¹P. D. Anderson and R. Hultgren, Trans. Metail. Soc. AIME 224, 842 (1962).
- ⁵²M. Olette and A. Ferrier, in The Physical Chemistry of Metallic Solutions and Intermetallic Compounds (National Physical Laboratory, Teddington, England, 1959), Symposium No. 9, Paper 4H, pp. 100-109.
- 53A. Ferrier and M. Olette, C. R. Acad. Sci. 254, 2322 (1962).
- ⁵⁴J. P. Morris, E. F. Foerster, C. W. Schultz, and G. R. Zellars, U.S. Bur. Mines Rep. Invest. 6723 (1966).
- ⁵⁵F. M. Jaeger, E. Rosenbohm, and A. J. Zuithoff, Recl. Trav. Chim. Pays-Bas 57, 1313 (1938).
- ⁵⁶R. L. Rapson, M. S. thesis (Air Force Institute of Technology, WPAFB, 1965) (School of Engineering Report No. GME/ME/65-1).
- ⁵⁷J. R. Pattison and P. W. Willows, J. Iron Steel Inst. London 183, 390 (1956).
- 58S. Umino, Sci. Rep. Tohoku Imp. Univ. Ser. 1 18, 91 (1929).
- ⁵⁹S. Umino, Sci. Rep. Tohoku Imp. Univ. Ser. 1 15, 597 (1926).
- ⁶⁰F. Wust, A. Meuthen, and R. Durrer, Forsch. Geb. Ingenieurwes. VDI-Forsch. 204 (1918).
- ⁶¹P. Oberhoffer and W. Grosse, Stahl Eisen 47, 576 (1927).
- ⁶²J. A. Treverton and J. L. Margrave, J. Chem. Thermodyn. 3, 473 (1971). ⁶³B. M. Mogutunov and I. A. Tomilin, Izv. Akad Nauk SSSR Met. 4, 28 (1967)
- ⁶⁴O. Vollmer, R. Kohlhaas, and M. Braun, Z. Naturforsch. Teil A 21, 181 (1966).
- ⁶⁵J. L. Margrave, Rice University Report No. N71-20542, 1970.
- ⁶⁶M. W. Chase, Jr., J. L. Curnutt, J. R. Downey, Jr., R. A. McDonaid, A. N.
- Syverud, and E. A. Valenzuela, J. Phys. Chem. Ref. Data 11, 695 (1982). ⁶⁷R. Smith and R. Shuttleworth, Trans. Metall. Soc. AIME 233, 806 (1965).
- 68N. Nesmeyanov and G. Trapp, Zh. Fiz. Khim. 38, 2931 (1964) [Russ. J.

J. Phys. Chem. Ref. Data, Vol. 15, No. 3, 1986

Phys. Chem. 38 (12), 1593 (1964)].

- ⁶⁹K. M. Myles and A. T. Aldred, J. Phys. Chem. 68, 64 (1964).
- ⁷⁰R. K. Saxer, Ph.D. thesis (Ohio State University, 1962) [Univ. Microfilms No. 63-811.

⁷¹E. A. Gulbransen and K. F. Andrew, Trans. Metall. Soc. AIME 221, 1247 (1961).

- ⁷²E. T. Turkdogan and L. E. Leake, Trans. Metall. Soc. AIME 218, 1136 (1960).
- ⁷³R. Speiser, A. J. Jacobs, and J. W. Spretnak, Trans. Metall. Soc. AIME 215, 185 (1959).
- ⁷⁴C. L. McCabe, R. G. Hudson, and H. W. Paxton, Trans. Metall. Soc. AIME 212, 102 (1958).
- ⁷⁵V. D. Burlakov, Fiz. Met. Metalloved. 5, 91 (1957) [Phys. Met. Metallogr. (USSR) 5, 72 (1957)].
- ⁷⁶L. I. Ivanov, thesis (Metallurgy Institute, Academy of Sciences of the USSR, 1957).
- ⁷⁷J. P. Morris, G. R. Zellars, S. L. Payne, and R. L. Kipp, U.S. Bur. Mines Rep. Invest. 5364 (1957).
- ⁷⁸E. Z. Vintaikin, Dokl. Akad. Nauk SSSR 117, 632 (1957).
- ⁷⁹Yu. V. Kornev, Probl. Metalloved. Fiz. Met. 4, 432 (1955).
- ⁸⁰J. W. Edwards, H. L. Johnston, and W. E. Ditmars, J. Am. Chem. Soc. 75, 4729 (1951).
- ⁸¹G. Wessel, Z. Phys. 130, 539 (1951).
- ⁸²L. S. Darken and R. W. Gurry, J. Am. Chem. Soc. 68, 798 (1946).
- ⁸³A. L. Marshall, R. W. Dornte, and F. J. Norton, J. Am. Chem. Soc. 59, 1161 (1937).
- ⁸⁴H. A. Jones, I. Langmuir, and G. M. J. Mackay, Phys. Rev. 30, 201 (1927).
- ⁸⁵C. B. Alcock and A. Kubik, Trans. Inst. Mining Met. Sec. C 77, 220 (1968).
- ⁸⁶H. Lindscheid and K. W. Lange, Z. Metallkd. 61, 193 (1970).
- ⁸⁷A. G. Svyazhin, A. F. Vishkarev, and V. I. Yovoisky, Russ. Metall. 5, 42 (1968).
- ⁸⁸Yu. A. Karasev, L. Sh. Tsemekhman, and S. E. Vaisburd, Russ. J. Phys. Chem. 45, 1172 (1971).
- ⁸⁹V. I. Yavoyskii, A. G. Svyazhin, A. F. Vishkarev, N. K. Pin, D. A. Romanovich, and G. M. Chursin, Russ. Metall. 3, 24 (1971).
- 90A. I. Chegodaev, E. L. Dubinin, A. I. Timofeev, N. A. Vatolin, and V. I. Kapitanov, Russ. J. Phys. Chem. 52, 1229 (1978).
- ⁹¹H. Lindscheid and K. W. Lange, Z. Metallkd. 66, 546 (1975).
- 92A. M. Nemets and G. I. Nokolaev, J. Appl. Spectrosc. (USSR) 21, 1145 (1974).
- ⁹³V. I. Chetykhin, I. N. Zedina, and S. Ye. Vaisburd, Inzh. Fiz. Zh. 34, 870 (1978).

3. Thermodynamic Properties of Silicon

3.1. Phase and Structure

Silicon has an fcc (A4) crystal structure isotypic with diamond.¹ Its atomic weight is 28.0855 and melting point is 1687 ± 2 K (IPTS-68). The melting point is based on the following measurements (IPTS-68):

Source	$T_{\rm fus}$, K				
Lucas and Urbain ²	1685 ± 1				
Kantor et al. ³	1692 ± 4				
Olette ⁴	1687 + 2				
Hansen et al. ⁵	1685 ± 5				
Gayler ⁶	1690 ± 2				
Hoffman and Schulze ⁷	1685 ± 2				

Table 4. Recommended low-temperature heat capacity of silicon

	C ^o p	_T	C ^o p
K	J-mol ⁻¹ -K ⁻¹	Ľ	J·mol ⁻¹ ·K ⁻¹
1	0.000007740	120	9.250
2	0.00006192	125	9.721
3	0.0002092	130	10.186
4	0.0004937	140	11.107
5	0.0009665	150	11.955
6	0.001669	160	12.776
7	0.002651	170	13.556
8	0.003960	175	13.921
9	0.005637	180	14.286
10	0.007740	190	14.990
15	0.03054	200	15.642
20	0.09456	210	16.223
25	0.2385	220	16.761
30	0.481	225	17.037
35	0.810	230	17.291
40	1.237	240	17.778
45	1.710	250	18.219
50	2.205	260	18,625
60	3.230	270	19.015
70	4.251	273.15	19.133
75	4.765	280	19,381
80	5.283	290	19.738
90	6.293	298.15	20.007
100	7.296	300	20.066
110	8.285		
C _{(ele}	$retronic) = \gamma T$	γ = 0.000	J.mo1-1.K-2
Crystal, Si(s)	Gas, Si(g)	1/2 Si2(8)	1/3 Si ₃ (
(298.15 K)-H ⁰ (0 K) = 3214 <u>+</u> 10	7550 <u>+</u> 0.3	4632 <u>+</u> 0.3	` 4651 <u>+</u> 0.6 J⋅ma
(298.15 K) = 18.806±0.08	167.870 <u>+</u> 0.0008	114.843 <u>+</u> 0.4	42 89.495 <u>+</u> 2.0 J∙

3.2. Low-Temperature Heat Capacity

The recommended values agree well with the data of Keesom and Seidel,⁸ Flubacher et al.,⁹ Kalishevich et al.,¹⁰ and of Anderson.¹¹ The data of Gul'tyaev and Petrov¹² are up to 4% lower and those of Russell¹³ are up to 6% higher near 300 K. Additionally, three data sets reported graphically in small figures which appeared to be a one-and-the-same investigation by Letun et al.,¹⁴ Gel'd and Krentis,¹⁵ and by Letun and Gel'd¹⁶ are in fair agreement with the recommended values. The data of Pearlman and Keesom¹⁷ are up to 30% higher below 4 K, 7% higher from 50 to 100 K, agree slightly higher from 12 to 50 K. The recommended values of C_{n}° are in agreement with the values of Hultgren et al.¹⁸ and of Glushko et al.19

Within the experimental uncertainty, the electronic specific heat coefficient γ is equal to 0.000 J mol⁻¹ K⁻² and Debye temperature $\theta_{\rm D} = 631$ K. Mertig *et al.*⁴³ report a value of 528 ± 20 K for the Debye temperature of amorphous silicon. Integration of the recommended C_p° values yield $II^{\circ}(298.15 \text{ K}) - II^{\circ}(0 \text{ K}) - 3214 \text{ J mol}^{-1}$ and integration of C_{p}°/T values yield $S^{\circ}(298.15 \text{ K}) = 18.806 \ (\pm 0.08)$ $J \text{ mol}^{-1} \text{ K}^{-1}$ which are in agreement with those recommended by the CODATA Task Group.²⁰ These values are reported in Table 4 and C_{p}° values are shown in Fig. 4 along with the experimental data.

FIG. 4. Low-temperature heat capacity of silicon.

FIG. 6. Percent deviation in y values for silicon.

J. Phys. Chem. Ref. Data, Vol. 15, No. 3, 1986

3.3. High-Temperature Heat Capacity (Solid)

There are only a few data sets available in this temperature range. The recommended C_p° values are generated by critically evaluating heat capacity and enthalpy data simultaneously. Agreement between C_p° and enthalpy data available in the literature and the recommended values is as follows:

Source	C_p° deviation, %
Kantor et al. ³	up to 0.9
Hultgren <i>et al.</i> ¹⁸	up to -0.5 (< 700 K)
•	up to $-1.0 (> 1000 \text{ K})$
Glushko <i>et al.</i> ¹⁹	-1 (< 300 K)
North and Gilchrist ²¹	up to -4
Dismukes et al. ²²	-1 to 10 (scatter considerably)
Kurosawa et al.23	up to 4
Gerlich et al.24	up to 5
Dennison ²³	-0.2 to -3.9

Carina

Source	y deviation, %			
Kantor et al.3	-0.4 to -1.2			
Olette ⁴	up to - 1.0			
Serebrennikov and Gel'd ²⁶	up to $3.5 (< 800 \text{ K})$			
	up to $-1.0 (> 800 \text{ K})$			
Magnus ²⁷	up to - 1.0			
Golutvin and Maslennikova ²⁸	8-16			

A systematic plot of percent deviation in C_p° values from various measurements is shown in Fig. 5. A systematic plot of percent deviation in y values

$$y = [H^{\circ}(T) - H^{\circ}(298.15 \text{ K})]/(T - 298.15)$$

from various measurements is shown in Fig. 6.

3.4. High-Temperature Heat Capacity (Liquid)

The recommended value for the enthalpy of melting, $\Delta_{\rm fus} H^\circ = 50\ 250\pm 600\ {\rm J\ mol}^{-1}$ was obtained by extrapo-

	Condensed phase				Get phase Fe(g)				
т	c°	$H^{0}-H^{0}(T_{T})$	s° -	{G ⁰ -H ⁰ (Tr)]/T	ငို	H ^o -H ^o (Tr)	s°	-[G ⁰ -H ⁰ (Tr)]/T	
ĸ	J·mol ⁻¹ ·K ⁻¹	J-mo1 ⁻¹	J.mo1-1.K-1		$\overline{J \cdot mo1^{-1} \cdot K^{-1}}$	J.mo1-1	J·mo1 ⁻¹ ·K ⁻¹		
298.15	20.007	0	0.000	18,806	22.251	0	0.000	167.870	
300	20.066	37	0,124	18.806	22.234	41	0.138	167.870	
3 50	21.324	1075	3.320	19.056	21.852	1143	3.533	168.138	
400	22.258	2164	6.228	19.624	21.613	2229	6.436	168.734	
450	23,000	3297	8.897	20.376	21.441	3305	8.970	169.495	
500	23.588	4462	11.349	21.232	21.316	4374	11.223	170.346	
550	24.047	5654	13.623	22.149	21,222	5437	13.249	171.233	
600	24.420	6865	15.728	23.093	21.153	6496	15.094	172.137	
650	24.748	8095	17.699	24.051	21.098	7553	16.783	173.034	
700	25.050	9339	19.541	25,006	21.057	8606	18.346	173.922	
750	25.334	10600	21.282	25.955	21.025	9659	19.797	174.789	
800	25.608	11872	22.923	26.889	21.000	10709	21.154	175.638	
850	25.865	13160	24.487	27.810	20.982	11759	22.420	176.462	
900	26.110	14459	25.969	28.710	20.971	12807	23.626	177.265	
950	26.344	15771	27.390	29.595	20.967	13856	24.758	178.043	
1000	26.569	17093	28.744	30.457	20.968	14904	25.835	178.801	
1100	26.988	19771	31.296	32.128	20.989	17002	27.834	180.248	
1200	27.360	22489	33.661	33.726	21.033	19102	29.662	181.613	
1300	27.707	25242	35.864	35.253	21.099	21209	31.348	182.904	
1400	28.045	28030	37.930	36.715	21.183	23323	32.915	184.126	
1500	28.372	30851	39.876	38.115	21.282	25446	34.379	185.285	
1600	28.674	33703	41.717	39.458	21.394	27580	35.757	186.389	
1687(s)	28.930	36210	43.245	40.587	21.497	29446	36.891	187.307	
1687(í)	27.200	86460	73.032	40.587	21.497	29446	36.891	187.307	
1700	27.200	86814	73.241	40.980	21.513	29725	37.057	187.442	
1800	27.200	89534	74.796	43.861	21.638	31882	38.290	188.448	
1900	27.200	92254	76.266	46.518	21.764	34053	39.463	189.411	
2000	27.200	94974	77.661	48.981	21.889	36235	40.583	190.335	
2200	27.200	100414	80.254	53.417	22.129	40637	42.681	192.079	
2400	27.200	105854	82.620	57.321	22.346	45085	44.615	193.700	
2600	27.200	111294	84.798	60.798	22.535	49574	46.412	195.215	
2800	27.200	116734	86.813	63.929	22.692	54097	48.088	196.637	
3000	27.200	122174	88.690	66.771	22.819	58648	49.658	197.978	
3200	27.200	127614	90.445	69.372	22.918	63222	51.134	199.247	
3400	27.200	133054	92.094	71.767	22.992	67813	52.525	200.450	
3490	27.200	135502	92.796	72.776	23.018	69863	53.126	200.972	
3 500	27.200	135774	92.883	72.896	23.021	70114	53.192	201.030	
3514	27.200	136155	92.992	73.052	23.025	70436	53.284	201.110	
3600	27.200	138494	93.649	73.985	23.046	72418	53.840	201.594	
1	fus = 1687 K	^A fu	"H ^o = 50250	$) \pm 600 \text{ J} \cdot \text{mol}^{-1}$	A _{fus} S ^o	= 29.787 ± 0	.356 J·m	51 ⁻¹ ⋅ I ⁻¹	

Table 5. R	ecommended 1	high-temperature	thermodynamic	properties	of	silicon
------------	--------------	------------------	---------------	------------	----	---------

Enthalpy reference temperature = Tr = 298.15 K.

J. Phys. Chem. Ref. Data, Vol. 15, No. 3, 1986

J. Phys. Chem. Ref. Data, Vol. 15, No. 3, 1986

FIG. 7. Heat capacity of silicon.

980

P. D. DESAI

	Gas phase 1/2 Si ₂ (g)			Gas phase 1/3 Si ₃ (g)				
<u> </u>	$\frac{c_p^o}{J \cdot m o 1^{-1} \cdot \mathbf{K}^{-1}}$	$\frac{B^{\circ}-B^{\circ}(T_{T})}{J \cdot m \circ 1}$	<u> </u>	$-[G^{0}-\mu^{0}(T_{T})]/T$ mol ⁻¹ ·K ⁻¹	$\frac{C_p^o}{J \cdot m o 1^{-1} \cdot \kappa^{-1}}$	$\frac{B^{0}-B^{0}(T_{T})}{J \cdot m^{-1}}$	\$ ^o	-[G ⁰ -H ⁰ (T _x)]/T ·mo1 ⁻¹ ·K ⁻¹
298.15	17.235	0	0.000	114.843	18.932	0	0.000	89.495
300	17.252	32	0.107	114.843	18.948	35	0.117	89,495
400	18.152	1802	5.193	115.531	19.641	1968	5.672	90.248
500	19.083	3663	9.343	116.859	20.015	3952	10.099	91.690
600	20.031	5619	12.906	118.384	20.234	5965	13.769	93.322
700	20.881	7666	16.060	119.951	20.373	7996	16.899	94.971
800	21.549	97 89	18.894	121.500	20.467	10038	19.626	96.573
900	22.017	11969	21.461	123.005	20.531	12088	22.041	98,104
1000	22.304	14187	23.797	124,453	20.578	14144	24.207	99.557
1100	22.450	16425	25.931	125.841	20.615	16204	26.170	100.934
1200	22.495	18673	27.887	127.168	20.642	18267	27.965	102.237
1300	22.475	20922	29.687	128.436	20.662	20332	29.618	103.473
1400	22.414	23167	31.350	129.645	20.678	22399	31.150	104.645
1500	22.331	25404	32.894	130.801	20.692	24468	32.577	105.760
1600	22.239	27633	34.332	131.905	20.703	26537	33.913	106.822
1687	22.156	29564	35.507	132.825	20.712	28339	35.008	107.705
1700	22.144	29852	35.678	132,961	20.713	28608	35.168	107.835
1800	22.052	32062	36.941	133.972	20.722	30680	36.352	108.803
1900	21.964	34263	38.131	134.941	20.728	32753	37.473	109.730
2000	21.884	36455	39.255	135.871	20.733	34826	38.536	110.618
2200	21.743	40817	41.334	137.624	20.741	38973	40.512	112.292
2400	21.628	45154	43.221	139.250	20.750	43122	42.318	113.845
2600	21.535	49470	44.948	140.764	20.755	47273	43.979	115.292
2800	21.458	53769	46.541	142.181	20.758	51424	45.517	116.646
3000	21.389	58053	48.019	143.511	20.761	55576	46.949	117.919
3200	21.324	62325	49.398	144.764	20.760	59728	48.289	119.119
3400	21.255	66583	50.688	145.948	20,760	63880	49.548	120.254
3490	21.220	68494	51.243	146.460	20.760	65749	50.091	120.747
3 50 0	21.217	68706	51.304	146.516	20.760	65956	50.149	120.800
3514	21.210	69003	51.389	146.595	20.760	66247	50.232	120.875
3600	21.177	70826	51.900	147.069	20.760	68032	50.733	121.330

Table 6. Recommended high-temperature thermodynamic properties of Si, and Si,

*Enthalpy reference temperature = Tr = 298.15 K.

lating solid and liquid enthalpies to the melting point, $T_{\rm fus} = 1687$ K. This compares with the value of $50\ 000 \pm 750$ J mol⁻¹ reported by Kantor *et al.*³ and of $50\ 600 \pm 400$ J mol⁻¹ given by Olette.⁴ C_p° (1) = 27.200 ± 1.50 J mol⁻¹ K⁻¹ was assumed to be constant to the boil ing point based on the constant value 29.71 J mol⁻¹ K⁻¹ of Kantor *et al.*³ 25.52 J mol⁻¹ K⁻¹ of Olette,⁴ and 26.20 J mol⁻¹ K⁻¹ of Chetykhin *et al.*⁴⁵

Other thermodynamic quantities reported in Table 5 are calculated from C_p° values. The recommended C_p° values are shown in Fig. 7 along with experimental data.

The estimated uncertainties in the heat capacity are about $\pm 3\%$ below 10 K, $\pm 2\%$ from 10 to 298.15 K, $\pm 3\%$ from 298.15 to the melting point, and $\pm 5\%$ in the liquid region.

3.5. Ideal Gas Properties

Thermodynamic quantities for Si(g), Si₂(g), and Si₃(g) reported in Tables 5 and 6 are calculated from C_{ρ}° and S° (298.15 K) values reported by Glushko *et al.*¹⁹ for Si(g) and Si₂ and by Brewer⁴⁴ for Si₃.

Brewer's calculation for $Si_3(g)$ was preferred since it provided a smaller vibrational partition function. This is based on theoretical calculations indicating that the bending frequency, which is very anharmonic, should increase rapidly as the end atoms start approaching one another more closely with higher vibrational energies.

3.6. Vapor Pressure Data

Various vapor pressure measurements were tested with the aid of the third law. At experimental temperatures the vapor is predominantly monatomic Si(g) (99% at 2000 K). These numerical third law calculations yielded the following $\Delta_{sub} H^{\circ}$ (298.15 K) values:

Source	$\Delta_{sub}H^{\circ}$ (298.15 K),kJ mol ⁻¹
Chegodaev et al., ²⁹ 1273–2223 K, Evaporation method	444.46 ± 3.2
Nannichi, ³⁰ 1399–1527 K, Langmuir method	451.45 ± 2.2
Davis <i>et al.</i> , ³¹ 1848–2003 K, Knudsen method	453.71 ± 3.9
Grieveson and Alcock, ³² 1640–2054 K, Transport method	448.74 ± 4.4
Batdorf and Smits, ³³ 1473–1601 K, Langmuir method	455.79 <u>+</u> 2.2

Gulbransen et al.,34 1373-1623 K	448.10 <u>+</u> 2.7
Alcock and Grieveson, ³⁵ 1680–1785 K, Knudsen method	451.01 ± 0.21
Drowart and De Maria, ³⁶ 1703–2160 K, Mass spectrometer	447.37 <u>+</u> 0.64
Bodrov et al., ³⁷ 1697–2085 K, Atomic absorption method	457.05 ± 1.4
Tseplyaeva et al., ³⁸ 1485–1593 K, Knudsen method	383.97 ± 1.8
Baur and Brunner, ³⁹ 1980–2160 K, Boiling point method	374.19 ± 3.7
Ruff and Konschak, ⁴⁰ 2163–2468 K, Boiling point method	362.63 ± 10.6
Van Wartenberg, ⁴¹ 1473–1873 K, Transport method	371.68 ± 8.5
Recommended value	450.00 + 4.0

Stull *et al.*⁴² indicated that earlier boiling point measurements yielded considerably lower $\Delta_{sub}H^{\circ}$ (298.15 K) values possibly due to decomposition of the alumina and silicon carbide containers. Recently Bodrov *et al.*³⁷ pointed out that these lower values might be due to the formation of SiO. Therefore, no weight was given to these low values.

For completeness of this report, the values for p_{total} reported in Table 7 are calculated using $\Delta_{sub} H^{\circ}$ (298.15 K) and the Gibbs energy values for Si(s,1) and Si(g) from Table 5 and $\Delta_{sub} H^{\circ}$ (298.15 K) = 294 972 J mol⁻¹ for 1/2 Si₂ and $\Delta_{sub} H^{\circ}$ (298.15 K) = 212 000 J mol⁻¹ for 1/3 Si₃, both values taken from Stull *et al.*⁴²

Table 7. Recommended wapor pressure of silicon[®] [Temperature, K; wapor pressure, atm.]

T	PSi	PSi2	PSi3	^p total
298.15	8.875 x 10-72	4.768 x 10-94	4.482 x 10-101	8.88 x 10-72
300	2.719 = 10 11	2.069 ± 10 43	2.161 x 10 100	2.72 . 10 71
400	1.059 x 10 1	9.580 x 10	1.031×10^{-72}	1.06 x 10 1
500	5.994 x 10 40	2.289 x 10 32	3.962 x 10 30	5.99 x 10 40
600	4.067 x 10 ⁻³²	3.947 x 10 ⁻⁴²	4.324 x 10 ⁻⁴⁵	4.07 x 10 ⁻³²
700	1.582×10^{-26}	7.890 x 10 ⁻³⁵	3.195 x 10-37	1.58 x 10-26
800	2.443 x 10^{-22}	2.317×10^{-29}	2.471×10^{-31}	2.44 x 10-22
900	4.389 x 10 19	4.090 x 10 25	9.152×10^{-27}	4.39 x 10 ⁻¹⁹
1000	1.552 x 10 10	1.010 x 10 21	4.043 x 10 23	1.55 x 10 10
1100	2.335×10^{-14}	5.974 x 10 ⁻¹⁹	3.809 x 10 ⁻²⁰	2.34 ± 10^{-14}
1200	1.370×10^{-12}	1.209×10^{-16}	1.126×10^{-17}	1.37×10^{-12}
1300	4.278 x 10 11	1.073×10^{-14}	1.369 x 10 13	4.28 x 10 11
1400	8.133 x 10 ⁻¹⁰	4.982 x 10 13	8.228 x 10 14	8.14 x 10 ⁻¹⁰
1500	1.040 x 10	1.378×10^{-11}	2.835×10^{-12}	1.04×10^{-8}
1600	9.636 x 10 ⁻⁸	2.502 x 10 ⁻¹⁰	6.206 x 10 ⁻¹¹	9.67 x 10 ⁻⁸
1687(:)	5.377 x 10 ⁻⁷	2.343×10^{-9}	6.684×10^{-10}	5.41 x 10 ⁻⁷
1687 (2)	5.377 x 10 .	2.343 x 10	6.684 x 10 10	5.41 x 10
1700	6.662 x 10	3.038 x 10	8.599 x 10 1	6.70 x 10
1800	3.117 x 10_,	1.969 x 10 %	5.252 x 10	3.14 x 10_
1900	1.238 x 10 ⁻⁵	1.044 x 10 ⁻⁷	2.634 x 10 ⁻⁰	1.25 x 10 ⁻³
2000	4.274 ± 10^{-5}	4.674×10^{-7}	1.117×10^{-7}	4.33×10^{-5}
2200	3.619 x 10	6.167 x 10	1.335 x 10	3.69 x 10
2400	2.137 x 10_3	5.240 x 10	1.036 x 10 ⁻⁵	2.20 x 10
2600	9.563 x 10	3.176 x 10	5.781 x 10 ⁻⁵	9.94 x 10
2800	3.444 x 10 ⁻²	1.477 x 10 ⁻³	2.490 x 10	3.62 x 10 ⁻²
3000	0.104	5.561 x 10-3	8.736 x 10 ⁻⁴	0.110
3200	0.274	1.763 ± 10^{-2}	2.594 x 10 -3	0.294
3400	0.643	4.856×10^{-2}	6.716 x 10 ⁻³	0.698
3490	0.914	7.380×10^{-2}	9.960 x 10 ⁻³	0.998
3500	0.949	7.702×10^{-2}	1.035 x 10 ⁻²	1.036
3514	1.000	8.196 x 10 ⁻²	1.097 ± 10^{-2}	1.093
3600	1.369	0.119	1.552×10^{-2}	1.504

⁴1 atm = 101325 Pa

J. Phys. Chem. Ref. Data, Vol. 15, No. 3, 1986

Si(s,l)	= Si(g, 1	atm)
---------	-----------	------

$\Delta_{\rm sub} H^{\circ} (298.15 \text{ K}) = 450.000 \pm 4.2$	p _{total} , atm	<i>Т</i> , К
$\Delta_{\rm sub} H^{\circ}(0 \mathrm{K}) = 445.664$		
$\Delta_{\rm vap} S^{\circ} (3513 \text{ K}) = 109.380 \pm 1.14$	10 ⁻¹⁰	1329
	10-9	1408
$Si(s,1) = 1/2 Si_2(g,1 \text{ atm})$	10^{-8}	1499
$\Lambda = H^{\circ}(298.15 \text{ K}) = 294.972 \pm 6.3$	10-7	1602
$\Delta_{sub} H^{\circ}(0 \text{ K}) = 293.554$	10-6	1725
	10 ⁻⁵	1883
$Si(s1) = 1/3 Si_{2}(g1 atm)$	10-4	2074
	_ 10 ⁻³	2308
$\Delta_{\rm sub} H^{\circ} (298.15 \text{ K}) = 212.000 \pm 14.0$	10^{-2}	2601
$\Delta_{\rm sub}H^{\circ}(0~{\rm K})=210.563$	10-1	2980
	1	3490

Most of the measurements for the thermodynamic properties have been carried out on the International Practical Temperature Scale of 1948 or 1958. It is worth noting that the effect of conversion of these properties to IPTS-68 is well within the uncertainty of these values.

3.7. References

¹W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1984), Vol. 2.

- ²L. D. Lucas and G. Urbain, C. R. Acad. Sci. 225, 2414 (1962).
- ³P. B. Kantor, A. N. Kisel, and E. N. Fomichev, Ukr. Fiz. Zh. (Ukr. Ed.) 5, 358 (1960).
- ⁴M. Olette, C. R. Acad. Sci. 244, 1033 (1957).
- ⁵M. Hansen, H. D. Kessler, and D. J. McPherson, Trans. Am. Soc. Met. 44, 518 (1952).
- ⁶M. L. V. Gayler, Nature (London) 142, 478 (1938).
- ⁷F. Hoffman and A. Schulze, Phys. Z. 38, 901 (1938).
- ⁸P. H. Keesom and G. Seidel, Phys. Rev. 113, 33 (1959).
- ⁹P. Flubacher, A. J. Leadbetter, and J. A. Morrison, Philos. Mag. 4, 273 (1959).
- ¹⁰G. I. Kalishevich, P. V. Gel'd, and R. P. Krentis, Russ. J. Phys. Chem. 39, 1602 (1965).
- ¹¹C. T. Anderson, J. Am. Chem. Soc. 52, 2301 (1930).
- ¹²P. V. Gul'tyaev and A. V. Petrov, Sov. Phys.-Solid State 1, 330 (1959).
- ¹³A. S. Russell, Phys. Z. 13, 59 (1912).
- ¹⁴S. M. Letun, P. V. Gel'd, and N. N. Serebrennikov, Russ. Metall. 6, 97 (1965).
- ¹⁵P. V. Gel'd and R. P. Krentis, in *Experimental Techniques and Methods for High Temperature Measurements* (Nauka, Moscow, 1966), pp. 197–205.
- ¹⁶S. M. Letun and P. V. Gel'd, Elektrokhim. Margantsa Akad. Nauk Gruz. SSR 3, 287 (1967).
- ¹⁷N. Pearlman and P. H. Keesom, Phys. Rev. 88, 398 (1952).
- ¹⁸R. H. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, *Selected Values of Thermodynamic Properties of the Elements* (ASM, Metals Park, OH, 1973).
- ¹⁹V. P. Glushko, L. V. Gurvich, G. A. Bergman, I. V. Veitz, V. A. Medvedev, G. A. Khachkuruzov, and V. S. Yungman, *Thermodynamic Properties of Individual Substances* (High Temperature Institute, Academy of Sciences of the USSR, Moscow, 1979), Vol. II.
- ²⁰Report of the CODATA Task Group, J. Chem. Thermodyn. 10, 903 (1978).
- ²¹B. North and K. E. Gilchrist, Ceram. Bull. 60, 549 (1981).
- ²²J. P. Dismukes, L. Ekstrom, E. F. Hockings, I. Kudman, N. E. Lindenblad, R. E. Miller, F. D. Rosi, and E. F. Steigmeier, "Thermoelectric Materials for Power Conversion," RCA Laboratories Quarterly Progress Report, 1963 [AD 441 793].

²³T. Kurosawa, R. Hasegawa, and T. Yogihashi, Trans. Natl. Res. Inst. Metals (Tokyo) 7, 222 (1965).

²⁴D. Gerlich, B. Abeles, and R. E. Miller, J. Appl. Phys. 36, 76 (1965).

- ²⁵D. H. Dennison, Institute for Atomic Research, Ames, IA: quoted by H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, Phys. Rev. 130, 1743 (1963).
- ²⁶N. M. Serebrennikov and P. V. Gel'd, Dokl. Akad. Nauk SSSR 87, 1021 (1952).
- ²⁷A. Magnus, Ann. Phys. (Leipzig) 70, 303 (1923).
- ²⁸Yu. M. Golutvin and E. G. Maslennikova, Russ. Metall. (2), 129 (1968).
 ²⁹A. I. Chegodaev, E. L. Dubinin, A. I. Timofeev, N. A. Vatolin, and V. I.
- Kapitanov, Russ. J. Phys. Chem. 52, 1229 (1978).
- ³⁰Y. Nannichi, Jpn. J. Appl. Phys. 2, 586 (1963).
- ³¹S. G. Davis, D. F. Anthrop, and A. W. Searcy, J. Chem. Phys. **34**, 659 (1961).
- ³²P. Grieveson and C. B. Alcock, in *Special Ceramics*, edited by P. Popper (Heywood, London, 1960), pp. 183–208.
- ³³R. L. Batdorf and F. M. Smits, J. Appl. Phys. 30, 259 (1959).
- ³⁴E. A. Gulbransen, K. F. Andrew, and F. A. Brassart, J. Electrochem. 113, 834 (1966).
- ³⁵C. B. Alcock and P. Grieveson, J. Inst. Met. **90**, 304 (1961).
- ³⁶J. Drowart and G. De Maria, in *Proceedings of the Conference on Silicon Carbide*, edited by J. R. O'Connor and J. Smiltens (Pergamon, New York, 1960), pp. 16–23.
- ³⁷N. V. Bodrov, G. I. Nikolaev, and A. M. Nemets, Inorg. Mater. (USSR) **19**, 639 (1983).
- ³⁸A. V. Tseplyaeva, Yu. A. Priselkov, and V. V. Karelin, Vestn. Mosk. Univ. 15, 36 (1960).
- ³⁹E. Baur and R. Brunner, Helv. Chim. Acta 17, 958 (1934).

⁴⁰O. Ruff and M. Konschak, Z. Elektrochem. 32, 515 (1926).

⁴¹H. Van Wartenberg, Z. Elektrochem. 19, 482 (1913).

- ⁴²D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed., (U.S. GPO, Washington, DC, 1971), NSRDS-NBS 37.
- ⁴³M. Mertig, G. Pompe, and E. Hegenbarth, Solid State Commun. 49, 369 (1984).
- ⁴⁴L. Brewer (private communications, University of California, Berkeley, 1984).
- ⁴⁵V. I. Chetykhin, I. N. Zedina, and S. Ye. Vaisburd, Inzh. Fiz. Zh. 34, 870 (1978).

4. Acknowledgments

This work was supported by the Office of Standard Reference Data (OSRD) of the National Bureau of Standards (NBS), U.S. Department of Commerce. Part of the documentary activity essential to this work was benefited from the comprehensive data base of the Thermophysical and Electronic Properties Information Analysis Center (TE-PIAC), which is supported by the Defense Logistics Agency (DLA) of the U.S. Department of Defense. The author wishes to express appreciation to Dr. John R. Rumble, Jr. of the NBS/OSRD for his guidance and to Professor Leo Brewer of the University of California for calculating thermodynamic properties of Si₃. The assistance of Mr. S. T. McDowell for graphics, and Mrs. D. M. Lenartz for typing is also acknowledged.