Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases

Cite as: Journal of Physical and Chemical Reference Data 15, 1 (1986); https://doi.org/10.1063/1.555770 Published Online: 15 October 2009

Ian Carmichael, and Gordon L. Hug

ARTICLES YOU MAY BE INTERESTED IN

Extinction Coefficients of Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases: A Least-Squares Analysis

Journal of Physical and Chemical Reference Data 16, 239 (1987); https://doi.org/10.1063/1.555782

Triplet-Singlet Transitions in Organic Molecules. Lifetime Measurements of the Triplet State The Journal of Chemical Physics 17, 905 (1949); https://doi.org/10.1063/1.1747085

A Theory for the Triplet-Triplet Absorption Spectra of Porphyrins
The Journal of Chemical Physics 33, 1523 (1960); https://doi.org/10.1063/1.1731436

Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases

Ian Carmichael and Gordon L. Hug

Radiation Chemistry Data Center, Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, U.S.A.

We present a compilation of spectral parameters associated with triplet-triplet absorption of organic molecules in condensed media. The wavelengths of maximum absorbance and the corresponding extinction coefficients, where known, have been critically evaluated. Other data, for example, lifetimes, energies and energy transfer rates, relevant to the triplet states of these molecules are included by way of comments but have not been subjected to a similar scrutiny. Work in the gas phase has been omitted, as have theoretical studies. We provide an introduction to triplet state processes in solution and solids, developing the conceptual background and offering an historical perspective on the detection and measurement of triplet state absorption. Techniques employed to populate the triplet state are reviewed and the various approaches to the estimation of the extinction coefficient of triplet-triplet absorption are critically discussed. A statistical analysis of the available data is presented and recommendations for a hierarchical choice of extinction coefficients are made. Data collection is expected to be complete through the end of 1984. Compound name, molecular formula and author indexes are appended.

Key words: condensed phase; data compilation; extinction coefficients; glass, organic; lifetimes; photophysical processes; review; solution; triplet states; triplet-triplet absorption.

Contents

1.	Introduction		2		3.1.5.	Special Problems in Flash	
	1.1. Conceptual B	ackground	3			Photolysis	11
	1.2. Historical Per	rspective	4		3.1.6.	Summary of Advantages and	
2.	Methods for Popul	ating and Detecting the				Disadvantages	12
			5	3.2.	Single	t Depletion (SD) Method	12
	2.1. Generation of	f Triplets by Pulse			3.2.1.	=	12
			6		3.2.2.	Reconstruction of True Transient	
	2.1.1. Theor	retical Concepts	6			Absorbance	13
		al Considerations for Pulse			3.2.3.	Corrections for Triplet Decay	13
		lysis	6		3.2.4.		
		Triplets by Photolysis	7			Disadvantages	13
		retical Concepts	7	3.3.	Total	Depletion (TD) Method	14
		al Considerations for			3.3.1.	=	14
	_	lysis	7		3.3.2.		
	2.3. Miscellaneous	Methods	9			deactivation Model	14
3.	Methods for Measu				3.3.3.		15
			9		3.3.4.		
		sfer (ET) Method	9			Disadvantages	15
		iption of Method	9	3.4.	Relativ	ve Actinometry (RA) Method	15
		c Corrections	9		3.4.1.	Description of Method	15
	3.1.3. Uncer	tainty in Probability of			3.4.2.	· · · · · · · · · · · · · · · · · · ·	
		fer	10			Depletion	15
		al Problems in Radiolytic			3.4.3.	Corrections for Triplet Decay	15
		ation	10		3.4.4.	<u>=</u> -	16
					3.4.5.	Extensions	16
					3.4.6.	Summary of Advantages and	
		of Commerce on behalf of the Un				Disadvantages	16
	 This copyright is assign ne American Chemical So 	ned to the American Institute of Phy	SICS	3.5.	Intensi	ity Variation (IV) Method	16
		see Reprints List at back of issue.		5.5.		Description of Method	16
PI		TO THE PARTY DIDE ME OMOR OF 100MC.			3.5.1.	- coording of hiomog	

		3.3.2.	Summary of Advantages and		٥.	Arrangement of the Data Table	28
			Disadvantages	17		5.1. List of Abbreviations	29
	3.6.	Kineti	c Method (KM)	17		5.2. List of Symbols	29
		3.6.1.	Description of Method	17	6.	Acknowledgments	
		3.6.2.	An Alternative Derivation of		7.	References to Text	30
			the Kinetic Method	17	8.	Table 6. Spectral parameters for triplet-triplet	
		3.6.3.	Summary of Advantages and			absorption of organic molecules in condensed	
			Disadvantages	19		phases	33
	3.7.	Partial	Saturation (SM) Method	19	9.	References to Table 6	84
		3.7.1.			10.	Indexes to Table 6	
		3.7.2.	An Alternate Model for			10.1. Compound Name Index 2	
			Photoexcitation	19		10.2. Compound Formula Index	
		3.7.3.	Summary of Advantages and			10.3. Author Index	
			Disadvantages	20			
	3.8.	Misce	laneous Methods for Measuring			list of Tables	
		Extino	tion Coefficients	20		List of Tables	
		3.8.1.	Electron Spin Resonance (ESR).	20	1.	The ideal on the decree for the decree of	_
		3.8.2.	Other Comparative Techniques			Excitation methods per 5-year period	5
			(HAT,ELT,RF)	21	2. 3.	Extinction methods per 5-year period	24
		3.8.3.	Pulsed Intensity Variation				24
			(PIV)	21	4. 5.	ANOVA table for anthracene	
4.	Eval	luation	Procedure	22		Average extinction coefficients	20
	4.1.	Gener	al Methodology	22	6.	Spectral parameters for triplet-triplet	
	4.2.		sistical Analysis	23		absorption of organic molecules in condensed	22
		4.2.1.				phases	33
			Temperature Effects	23			
		4.2.2.	Mean ϵ and Confidence			List of Figures	
			Intervals	25			
		4.2.3.	Discussion of Statistical Results .	26	1.	Rate processes connecting electronic energy	
	43	Tontot	ivo Standard c'a	27		lovolo	1

1. Introduction

In 1971, as part of the classic volumes on organic molecular photophysics edited by the late J.B. Birks, Labhart and Heinzelmann contributed a review which contained an extensive compilation of spectral data relevant to the absorption of light by the excited triplet state of organic molecules in condensed phases. The energies of absorption maxima in both fluid solution and in various glasses and solids were recorded together with the corresponding extinction coefficients where known. This compilation was neither limited to a specific class of compounds nor to a particular experimental method as had been the case with previous reviews^{2,3}. Data on the polarization properties of triplet-triplet absorption transitions in rigid matrices were also listed, and a bibliography of theoretical calculations on and assignments of triplet spectra was given. A short discussion of all techniques then currently in use for both transient excitation and extinction coefficient determination was provided and the importance of correct identification of the absorbing species was highlighted.

Some years later Bensasson and Land produced a review⁴ on the physical properties of excited states which also contained a compilation of extinction coefficients of triplet-triplet absorption maxima for a range of organic molecules, some of biological importance, in solution. This review was limited to those measurements made by

the comparative energy transfer technique introduced by Land⁵ and subsequently developed together with several coworkers. Some previous data obtained under similar experimental conditions, but by different approaches, were also listed by way of comparison. These reviews have served to illustrate the ubiquitousness and importance of the triplet state in a wide variety of photochemical and photophysical phenomena, under conditions ranging from steady illumination to pulse radiolysis.

With the availability of commercial laser flash photolysis equipment and nanosecond pulse radiolysis facilities and the subsequent explosion of time-resolved studies monitored by light absorption, the need for routine identification of transients has become crucial. One of the main transients observed in organic nonaqueous solution in such experiments is the triplet state. Whether this state is itself under investigation, or whether the purpose of study is to eliminate or implicate the triplet state as a precursor for a longer-lived species such as a free radical, a compilation of spectral characteristics of triplet-triplet absorption is of great value.

The quantification of such photophysical processes as intersystem crossing requires the knowledge of the triplet state concentration. One method to obtain this information relies on the existence of a dependable estimate of the extinction coefficient for triplet-triplet absorption⁶. This then can lead to the determination of the quantum yield for triplet formation and, subsequently, if the appropriate

lifetime data, ideally measured under closely similar experimental conditions, is available, to the calculation of the rate of intersystem crossing. However, while the qualitative shapes of the transient absorption spectra are relatively routinely measured, though often unsatisfactorily reported⁷, the determination of reliable extinction coefficients is both more difficult and tedious. Clearly an evaluation of the existing extinction data is in order.

For these reasons we have undertaken the compilation and critical evaluation of information relative to the triplet-triplet absorption spectra of organic molecules in condensed phases. In the course of laying the foundations of this work we have published three bibliographies⁸⁻¹⁰ citing the relevant works in the literature up through the end of 1984. These lists were produced with the assistance of our local bibliographic data base¹¹, and it is our intention to provide regular updates to this series whenever the number of appropriate references accumulated is sufficient. From these bibliographic lists we have culled the data presented in the main body of this work, the table of the wavelengths of maximum absorbance (λ_{max}) and extinction coefficients (ϵ_{max}), where determined. Attention has been paid to the critical evaluation of these data as discussed below. In the comments associated with each entry in the table are found numerous other relevant data such as triplet state lifetimes, energies and energy transfer rate constants. No effort has been expended on this data to provide a comparable evaluation of these numbers which must thus be regarded as simply the authors' reported values. The subject of this work is then triplettriplet absorption spectra of organic molecules in condensed media, i.e. solution, glass, liquid and solid. Gas phase studies are not included. For completeness, and to enhance the usefulness of the present document we have also scanned the literature for the period rather thoroughly covered in the work of Labhart and Heinzelmann. However we have addressed neither the compilation nor the evaluation of theoretical calculations on the triplettriplet absorption process and provide no update to that section of their review.

We begin with a conceptual introduction to the photophysical processes involved in triplet-triplet absorption, followed by an historical perspective on the discovery and characterization of the triplet state. In Sec. 2. we provide a discussion of the methods commonly used for populating the excited triplet state focusing on the differences between photolysis and radiolysis and the problems and advantages inherent in each technique. The various methods which have been used for the estimation of the extinction coefficient of triplet-triplet absorption are critically analyzed in Sec. 3. Seven principal approaches are outlined, numerous required corrections and precautions are pointed out, possible extensions are illustrated and each technique is evaluated in the light of its advantages or disadvantages. Several less used methods are catalogued in Sec. 3.8. A discussion of the data evaluation procedure follows in Sec. 4. The arrangement of the principal data table, Table 6, is presented in Sec. 5. and lists of abbreviations and symbols used are given.

Since this compilation derives from part of a series of computer accessible numerical data bases under construction at the Radiation Chemistry Data Center, we are able to include, in an automatic fashion, a number of indexes which we hope will enhance the usefulness of this work. We have provided a compound name index, a molecular formula index and an author index.

1.1. Conceptual Background

Triplet states can be generated in several ways. We will discuss the direct intramolecular photoproduction of triplet states in the process of introducing the general photophysical scheme, saving until later photosensitization and pulse radiolysis techniques, where the triplet energy is transferred intermolecularly from the triplet manifold of another solute or the solvent, respectively. When an organic molecule, M, is excited, it is most likely to go to an excited singlet state,

1.1
$${}^{1}M + h\nu \rightarrow {}^{1}M$$
, k_{ex}

where $k_{\rm ex}$ is the intensity dependent excitation rate. The excited singlet state, ${}^{\rm l}{\rm M}^{\star}$, will then decay via several independent processes, again both intermolecular and intramolecular. Intramolecularly it can undergo photochemistry, with rate constant $k_{\rm pc}$, intersystem crossing, $k_{\rm isc}$, internal conversion, $k_{\rm ic}$, or fluorescence, $k_{\rm f}$.

These decay channels are represented by the following four processes:

1.2
$${}^{1}M^{\bullet} \rightarrow \text{products}, \qquad k_{pc}$$
1.3 ${}^{1}M^{\bullet} \rightarrow {}^{3}M^{\bullet} + \text{heat}, \qquad k_{isc}$
1.4 ${}^{1}M^{\bullet} \rightarrow {}^{1}M + \text{heat}, \qquad k_{ic}$
1.5 ${}^{1}M^{\bullet} \rightarrow {}^{1}M + h\nu_{f}, \qquad k_{f}$

In the usual kinetic scheme these processes are independent, and the singlet state decays exponentially with a rate constant,

$$k_{\rm S} = k_{\rm pc} + k_{\rm isc} + k_{\rm ic} + k_{\rm f},$$
 (1.1)

which is equal to the inverse of the measured fluorescence lifetime. Triplet states are thus generated directly by the intersystem crossing process, 1.3. The quantum yield, Φ_T for production of the triplet state in this scheme is simply given by

$$\Phi_{\rm T} = k_{\rm isc}/k_{\rm S} . \tag{1.2}$$

Schematically, these elementary processes may be summarized in the energy level diagram displayed in Fig. 1.

Depending on the frequency of the incident radiation, the initial state achieved in the absorption event, I.I, may lie in the vibrational manifold associated with the first electronically excited state (S_1) or that of a higher singlet (S_n) . Rapid radiationless deactivation (vibrational relaxation and internal conversion) soon (rate constant $10^{11}-10^{13}$ s⁻¹) leads to population of S_1 (Kasha's Rule¹²),

FIG. 1. Rate processes connecting electronic energy levels.

though in exceptional cases radiative emission from S_2 has been observed¹³. These processes are of course in competition with intersystem crossing and photochemistry from the higher excited singlet states, but because of the high rates of internal conversion, this competition is generally ineffective.

Figure 1 also provides an illustration of the decay channels available to the triplet state (again within the above simplified model). Triplet states once formed can undergo similar processes to those of the singlet state. The intramolecular processes are again photochemistry, with rate constant $k'_{\rm pc}$, (reverse) intersystem crossing, $k'_{\rm isc}$, and phosphorescence, $k_{\rm p}$.

1.6
$${}^{3}M^{\bullet} \rightarrow \text{products}, \qquad k'_{pc}$$
1.7 ${}^{3}M^{\bullet} \rightarrow {}^{1}M + \text{heat}, \qquad k'_{isc}$
1.8 ${}^{3}M^{\bullet} \rightarrow {}^{1}M + h\nu_{p}, \qquad k_{p}$

The intramolecular decay is usually observed to be exponential with a decay rate constant of

$$k_{\rm T} = k'_{\rm pc} + k'_{\rm isc} + k_{\rm p}.$$
 (1.3)

Phosphorescence is almost always absent in fluid media because of collision-induced intersystem crossing.

Energy transfer from the singlet manifold, process 1.3, is, of course, spin-forbidden, but the presence of several small interactions, both intramolecular and intermolecular, serve to make the process weakly allowed. Such radiationless transitions may lead to an excited vibrational level of the lowest triplet state (T_1) or that of a higher electronic origin (T_n) . Rapid radiationless deactivation (vibrational relaxation and internal conversion) within the triplet manifold soon (rate constant $\sim 10^{11} \, \mathrm{s}^{-1}$) leads to population of the lowest electronic state, T_1 , though in exceptional cases triplet-triplet fluorescence has been observed¹⁴. Again these processes compete with

(reverse) intersystem crossing and photochemistry and again this competition is generally ineffective. In addition, once thermal equilibration has occurred, a further deactivation channel is open, provided the necessary thermal energy is available.

1.9
$${}^{3}\text{M}^{*} + \text{heat} \rightarrow {}^{1}\text{M}^{*}.$$
 k_{isc}''

This process leads to a type of delayed fluorescence.

In the presence of radiation of a suitable frequency, the relaxed triplet excited state, ³M*, can again absorb photons populating higher triplet states with characteristic probabilities,

1.10
$${}^{3}M^{*} + h\nu' \rightarrow {}^{3}M^{**}$$
. k'_{ex}

This process, then, is triplet-triplet absorption, $T_n \leftarrow T_1$ in terms of the symbols used above, the subject of the present compilation.

1.2. Historical Perspective

The discovery of the nature of the "phosphorescent state" of photoexcited organic molecules as the triplet and its detection in absorption have led to the development of triplet-triplet absorption spectroscopy as an important tool in quantitative photochemistry and in the study of photophysical and, more recently, radiation chemical processes in general. But it was really with the study of phosphorescence that the history of triplet states of organic molecules began. The origin of phosphorescence was a research puzzle until Lewis and Kasha ascribed the phosphorescing state to an excited state with a total electronic spin of 1, namely a triplet excited state¹⁵. Throughout the early history of the phenomena implicating the triplet state (up to and including the Lewis and Kasha work and indeed for many years thereafter) phosphorescence spectra and decay characteristics remained the primary method of studying these transient states. However even before the nature of the phosphorescing state was assigned to the triplet state, Lewis and coworkers had recorded that state in absorption¹⁶. Such early work employed high intensity continuous light sources and was limited by the lifetime of the metastable state to viscous media.

By maintaining a boric acid glass at low temperature and monitoring the bleaching of the ground state absorbance, Lewis et al. were able to estimate the extinction coefficient of the phosphorescing state of fluorescein relative to that of the ground state. This was the first use, in the study of the triplet state, of the method we designate singlet depletion, employed here in specially favourable circumstances since distinct spectral regions of transient and ground state absorption could be found. Some years after the clarification of the states participant in triplettriplet absorption, again using a photostationary technique, McClure¹⁷ recorded transient spectra of a number of aromatic molecules in EPA glass at liquid nitrogen temperature. To deduce the extinction coefficients of the observed transitions he introduced the new method of intensity variation.

A big breakthrough in the absorption studies of triplet states came when Porter and Windsor¹⁸ applied the then recently developed technique of flash photolysis 19,20. The introduction of this excitation source allowed the facile detection of triplet-triplet absorption in fluid media, thus extending considerably not only the range of materials and solvents open to investigation but also the time scale available for observation. Studies of triplet states in fluid solution on the microsecond time range, which is generally inaccessible to phosphorescence monitoring, now became possible. Porter and Windsor²¹ were able to obtain an absorption spectrum for anthracene in liquid hexane and used the singlet depletion criterion to estimate extinction coefficients far in excess of McClure's values. (Improvements in the intensity variation technique later confirmed that the original measurements by this method were indeed in error.)

The introduction of the technique of electron pulse radiolysis²²⁻²⁵ and its use to produce triplet states of organic molecules by Dainton et al.²⁶ provided access to a wider range of compounds by removing the limitation formerly imposed by low quantum yields of intersystem crossing. It was, however, four years before Land⁵ was able to report extinction coefficients using this excitation source, through the development of an estimation method involving triplet energy transfer. (See Sec. 3.1. for details).

Finally the late 1960's brought the introduction of pulsed laser techniques²⁷ to the study of triplet states. Further developments in this equipment, namely the application of Q-switching, together with advances in the associated hardware for photoelectric detection eventually brought flash photolysis to the nanosecond time scale²⁸. Shorter lived transients such as the carbonyl triplets²⁹ in fluid solution could now be studied. Picosecond pulse photolysis techniques³⁰, made possible through the phenomenon of mode-locking, have also been used to study triplets31,32 on the picosecond timescale. The much wider availability of commercial nanosecond laser flash photolysis equipment, together with the inherent lower cost of associated detection apparatus, make the nanosecond work much more extensive and the derived data more reliable.

Based on the number of entries corresponding to each of the four principal excitation techniques, Table 1 summarizes their introduction and development over five year spans. However we expect that the numbers in the 80–84 row will be underestimated due to unavoidable timelags in our collection procedure. (Abbreviations are explained in appended list).

Roughly parallel to the development of new and faster techniques for the population of the triplet state has been the growth of the associated methods for estimating the extinction coefficient of the transient population. Singlet depletion and intensity variation initially deployed in photostationary experiments, as mentioned above, have been extended as needed to accommodate the use of pulsed sources. The kinetic method has been used with modulated excitation sources, while relative actinometry

and energy transfer techniques were also popularized with the introduction of flash photolysis and pulse radiolysis. Several other comparative techniques based on electron and hydrogen atom transfer have also been developed and exploited mainly with the help of laser facilities. Sec. 3. presents a critical discussion of these methods, and here we trace the growth in the application of these methods to the study of the triplet state in Table 2 below. This table lists the number of entries in the data base per 5-year period for several popular methods. (Again an explanation of the symbols used can be found in the lists appended to Sec. 5.)

TABLE 1. Excitation methods per 5-year period

Period	LP	FP	PR	PS	Total
50 54	0	19	0	32	51
55-59	0	75	0	9	84
60-64	0	88	4	11	104
65-69	23	166	63	193	452
70-74	121	222	80	45	569
75-79	443	218	75	26	795
80-84	768	174	67	32	1046
Total	1355	962	289	350	3103

^aHorizontal totals reflect the presence of entries assigned to methods other than those specifically indicated in the vertical columns.

TABLE 2. Extinction methods per 5-year period

Period	ET	SD	TD	RA	KM	IV	Total
50-54	0	3	0	0	0	3	6
55-59	0	17	0	0	0	0	17
60-64	0	11	0	0	0	0	11
65-69	28	54	11	3	12	22	173
70-74	73	45	19	. 8	31	0	185
75-79	93	49	37	28	7	1	255
80-84	96	75	68	28	13	1	320
Total	290	225	135	67	63	27	972

^aHorizontal totals again reflect the presence of entries assigned to methods other than those specifically indicated in the vertical columns.

2. Methods for Populating and Detecting the Triplet State

There are two basic methods for achieving substantial triplet state populations: photolysis with light in the visible or, more commonly, ultraviolet spectral regions and radiolysis with ionizing radiation, usually high energy electrons. In fluid solution, where the triplet state lifetime is on the order of microseconds, both techniques are generally applied in a pulsed form. In low temperature glasses, where triplets can endure for up to about 30 seconds, steady irradiation can be usefully employed.

Experimental setups for the detection of triplet-triplet absorption spectra differ greatly, but there are at least two elements common to almost all of these experiments. First of all every experiment has an "exciting" source to produce triplet state species. Second, each experiment has a

"monitoring" light source to probe their absorbance. In laser photolysis setups the laser often provides both monitoring and exciting light when used with suitable frequency multiplication and light path adjustment. Additionally, if a complete spectrum is desired, the laser pulse can be used to generate a continuum as a monitoring source.

Details of the detection equipment will not be given. We mention only the following historical development. In the earliest flash photolysis systems the transient spectrum was photographed, and the changes in optical density laboriously converted from densitometer measurements of the exposure intensity. With the growth of efforts to discern the mechanism of the various rate processes involved, kinetic spectroscopy using photomultipliers became popular. Here the decay of the transient is monitored at a particular wavelength. When this pattern has been recorded at several observational wavelengths, the entire spectrum may be judiciously reconstructed. More recently the introduction of vidicon, and later reticon, detectors has offered a way to fulfil both of the above functions simultaneously.

We discuss the two primary excitation sources, starting with pulse radiolysis, focusing on the special features of each method, and mention some problems encountered in the respective detection process.

2.1. Generation of Triplets by Pulse Radiolysis

In the technique of pulse radiolysis the sample is irradiated by short bursts of ionizing radiation. Most commonly, pulses of high energy (1-20 MeV) electrons extracted from a linear accelerator or Van de Graaff generator are employed. Initially, the usable pulse width was of the order of a few microseconds, but steady improvement in equipment design soon made the nanosecond regime attainable.

2.1.1. Theoretical Concepts

The deposition of energy from these injected electrons does not discriminate among the chemical components of the systems irradiated. Thus in a dilute solution, which is almost always employed in the study of triplet-triplet absorption, the radiation is absorbed almost exclusively by the solvent, S, which is consequently ionized,

2.1 S
$$\longrightarrow$$
 $^2S^+ + e^-$,

to give solvent radical cations and electrons. The subsequent mechanism of solute excitation depends to a large extent on the properties of the solvent.

In polar solvents, such as water and the lower alcohols, the ionized electron is rapidly thermalized and readily solvated. Thus on the nanosecond time scale the reactive species are the various oxidizing and reducing radicals and radical ions formed from the solvent. These intermediates are also stabilized by solvation. Correspondingly, solute radical ions (and other redox or radical addition products) are predominantly produced by pulse radiolysis in polar solvents.

If the solvent lacks the driving force for electron and (radical) ion solvation, by virtue of its nonpolar character, then radical recombination will promptly occur. In room temperature hexane, for example, the electrons are largely (90%) captured by their parent cations, the particles being unable to escape from their mutual Coulombic attraction. While this geminate recombination is complete within a few nanoseconds, those electrons which do escape recombine homogeneously over a much longer microsecond timescale. With the addition of an electron (or hole) acceptor, A, these processes can be intercepted to produce solute radical ions.

2.2
$$e^{-} + A \rightarrow {}^{2}A^{-},$$

2.3 ${}^{2}S^{+} + A \rightarrow {}^{2}A^{+} + S.$

These species then recombine to give both singlet and triplet solute excited states.

2.4
$${}^{2}A^{+} + {}^{2}A^{-} \rightarrow {}^{3}A^{*} ({}^{1}A^{*}) + A.$$

In general the solvent radical cation can also participate in this neutralization process,

2.5
$${}^{2}S^{+} + {}^{2}A^{-} \rightarrow {}^{3}A^{*} ({}^{1}A^{*}) + S.$$

Further triplets may then be formed by intersystem crossing from the singlet manifold.

A further complication ensues in the above scheme if the solvent itself possesses long-lived excited states, for example benzene (but note that the triplet state lifetime in neat benzene is strongly dependent on the purity of the liquid³³). Electron attachment

2.6
$$e^- + S \rightarrow {}^2S^-$$

is followed by solvent radical ion recombination to give solvent excited states.

2.7
$${}^{2}S^{+} + {}^{2}S^{-} \rightarrow {}^{3}S^{*} ({}^{1}S^{*}) + S.$$

Energy transfer may then occur from the excited states of the solvent molecules to those of the solute in a spin-selective fashion.

2.8
$${}^{1}S^{*} + A \rightarrow S + {}^{1}A^{*},$$

2.9 ${}^{3}S^{*} + A \rightarrow S + {}^{3}A^{*}.$

Again intersystem crossing may augment the solute triplet yield.

The above simplified picture has been debated in the literature for several years. Clearly each individual solvent must be carefully examined to determine the extent to which a given process contributes to the overall triplet yield. Within these limitations the scheme presented serves as an extremely useful guideline.

2.1.2. Special Considerations for Pulse Radiolysis

The absorption intensity of a transient created by such pulses of electrons depends both on the dose per pulse and the G value (100 eV yield) for that transient in addition to its intrinsic extinction coefficient at the monitoring wavelength. For a typical triplet with G=2 say, to obtain an optical density of 0.1 at a wavelength where the ex-

tinction coefficient is on the order of 10^4 L mol⁻¹ cm⁻¹ over a path length of 1 cm, requires a dose per pulse in excess of 2.5 Gy (1 Gy=1 gray = 1 J kg⁻¹).

Van de Graaff generators with pulse widths on the order of a few nanoseconds can produce bursts of 3 MeV electrons to give a maximum dose of about 20 Gy. Care must be taken in quantitative work to ensure a sufficiently low dark charge to beam charge ratio when operating under conditions of high dose per pulse or high pulse repetition rate.

Single-pulse generators such as the Febetron eliminate the dark current problem completely and can deliver doses of up to 5000 Gy in a 25 ns pulse of 2 MeV electrons. Problems arise from the lack of penetration depth of such electrons. If they are stopped within the sample severe space charge distortions of the dose distribution result³⁴. In addition spurious optical effects on the microsecond time scale have been observed³⁵ in typical experimental geometries, presumably due to pressure waves generated by the radiation source.

The incremental acceleration of electron by repeated traversal of microwave fields in a linear accelerator has proved to be the most versatile source of ionizing radiation for transient spectroscopy. Coupled with powerful computerized signal averaging techniques to reduce noise, the characteristics of reproducible ~ 5 ns pulses of ~ 20 MeV electrons delivering a dose per pulse of ~ 100 Gy has made this the method of choice for irradiation of fluid samples. Certain problems specific to optical detection of intermediates created by nanosecond pulse radiolysis have been summarized by Hunt et al.³⁶. More recently, modern technology has enabled the resolution of the fine-structure components of linear accelerator pulses, pushing the domain of excitation by this method into the picosecond time range. This is much in analogy to the development of mode-locked lasers, though quantitative work on this timescale still remains problematic due to instabilities in the integrated yield arising from pulse to pulse jitter in both the electron beam and the analyzing light.

Electron linear accelerators produce their own source of analyzing light. Broad band (ultraviolet to infrared) Cerenkov radiation, emitted by electrons traveling above the speed of light pertinent to the solvent under study can be used for the detection of transients. A stroboscopic pulse radiolysis system capable of picosecond time resolution which implements this light as a probe has been reported³⁷.

The principal advantage of the technique of pulse radiolysis then lies in the possibility of populating the excited triplet state of molecules which have intrinsically low efficiency for intersystem crossing. Note however that to study species with short excited state lifetimes, substantial concentrations (\sim 0.1 mol L⁻¹) of solute are required. For the simple reason of solubility this problem can set a limitation on the usefulness of the technique.

Extensive reviews of the development of this field and the instrumentation required have been provided by Dorfman³⁸ and Hunt³⁹.

2.2. Generation of Triplets by Photolysis

The sources of light employed to excite molecules to the triplet state are quite varied. Intense steady-state sources have been a popular excitation source for samples in glasses; long triplet state lifetimes allow large steadystate concentrations of triplets to build up. Conventional flash lamps have provided most of the triplet-triplet absorption spectra recorded up to the middle 1970's. Their short, but intense, pulses make them ideal for studying spectra and kinetics on the µs time scale, which is in the range of the lifetimes of many triplets in fluid solution. In order to study shorter lived triplets such as those of aromatics ketones, it is most convenient to use Q-switched lasers²⁹ to get into the nanosecond time range. Recently mode-locked lasers have been used to study triplets (including rise times) in the picosecond time range⁴⁰. Nonpulsed lasers (continuous wave lasers) have also been used in much the same fashion as conventional steadystate light sources.

2.2.1. Theoretical Concepts

Triplet states are generated in two ways by photons. In the first method, exemplified in Sec. 1.1. of the above introduction, the compound under study, irradiated within its ground state absorption band, absorbs the photon as in process 1.1, going first to a singlet excited state. The excited molecule then undergoes intersystem crossing, process 1.3, to reach the triplet state.

Should the efficiency of this process be low, another technique is available⁴¹. In this method another molecule, M_1 with a suitable intense ground state absorption and high quantum yield for subsequent triplet state formation is added to the solution (usually in excess). This species intercepts the light energy and transfers it via the intermediary of a triplet state to the triplet state of the compound under study, M_2 during collisions.

$$2.10 {}^{3}M_{1}^{\bullet} + {}^{1}M_{2} \rightarrow {}^{1}M_{1} + {}^{3}M_{2}^{\bullet}.$$

At least in dilute solution, excited singlet states are usually too short lived to participate in an analogous singletsinglet energy transfer, though several examples have been documented⁴². This photosensitization technique will generally be successful provided the triplet energy of the sensitizer (donor) is at least $8-12 \text{ kJ mol}^{-1}$ greater than that of the acceptor 43,44. Given a suitable energy difference as a driving force, it is usually assumed that triplet-triplet energy transfer proceeds with unit efficiency. However this assumption is often erroneous and detailed kinetic analysis is then required to produce valid estimates of the triplet state concentration of acceptor molecules formed and its temporal evolution. Such corrections are discussed in Sec. 3.1.2. If the acceptor itself absorbs the incident radiation further adjustments must be made to the estimated extinction coefficients.

2.2.2. Special Considerations for Photolysis

Steady-state light sources have often been used with a modulator. In some cases the modulation of the light source has been used to enhance the signal/noise ratio of the signal⁴⁵, enabling the study of very low triplet concentrations. This is particularly effective when combined with a phase-sensitive detection system⁴⁶. In other cases a modulated light source has been used in connection with the kinetic method to measure extinction coefficients^{47,48}. Modulated moderate intensity light sources are also useful if the sample under study is susceptible to photodecomposition by more intense pulse techniques⁴⁹.

The advent of laser flash photolysis with relatively monochromatic pulses greatly enhanced the accuracy to which the total energy absorbed by a species in solution could be measured. Previously, conventional flash techniques with intense but polychromatic sources, had made this estimation difficult. This feature enabled, in principle, substantial improvements in the results derived from both the pulsed intensity variation and relative actinometry methods discussed below (Secs. 3.8.3. and 3.4. respectively).

The monitoring light sources that measure the spectrum of the transients have not been nearly as varied in type as have been the exciting sources. They are usually a fairly weak source, for instance of the arc-lamp type. Sometimes the sources have been pulsed to increase their intensity or modulated as part of phase-sensitive detection systems ⁴⁶.

A more salient feature of analyzing beams is their spatial arrangement with reference to the path of the exciting light. Both in-line (front-face) and crossed beam (rightangle) geometries are popular. This arrangement of the exciting and monitoring beams can be of crucial importance when using photons to generate the triplet states. The concentration of triplets is central to the determination of extinction coefficients, but this concentration varies along the exciting beam according to Beer's Law. When right-angle monitoring is used, the particular region sampled, along the exciting beam, is one in which the concentration is uniform along the direction of the monitoring beam. Thus kinetics (especially second-order kinetics) can be measured accurately, but spectra are more difficult to obtain since the region sampled will not in general be near the front face of the cell where the concentration of transients is greatest.

In-line monitoring of the triplets has the disadvantage that the observation is along a gradient in the concentration. Unless the concentration of the triplets is kept low, for example with the optical density of triplet absorption < 0.05, 50 the kinetics can be severely distorted when looking at second-order reactions 51. In-line monitoring, however, has an advantage in that it is possible to easily access the region of high concentration of triplets near the surface of the cell on which the exciting light is incident. On the other hand the usual way of calculating concentration from the optical density, in regions where the ground state does not absorb,

$$\Delta OD = c_T^* [^3M^*] \ell, \qquad (2.1)$$

will not be meaningful because of the variation in [3M*] with the distance across the cell along the exciting light

beam. An early work by Ross⁵² provided an estimate of the effect of such nonuniform triplet concentrations on the absorption spectrum recorded during steady-state experiments in glasses. In that study it was concluded that while the general features of the spectrum should be preserved, band to band distortion was not ruled out. Further corrections are discussed in Sec. 3.

There are indeed several other possible sources of spectral distortion. If there is substantial singlet depletion, i.e. removal of ground state molecules in the path of excitation, the resulting difference spectra can offer only a limited guide to triplet-triplet absorption maxima in the vicinity of regions of negative Δ OD. On the other hand, this effect can be very useful because it can often give a quantitative indication of the amount of ground state population that has been converted into triplets. This is the basis for the method of measuring extinction coefficients of triplet-triplet transitions discussed in Sec. 3.2. However due to possible distortions, while we retain difference spectra that are clearly removed from the singlet depletion region in this compilation, we do not report maxima of spectra near the singlet depletion region of uncorrected spectra.

Light scattering of the monitoring beam can cause distortions in the form of the spectral shape and can also shift the position of the spectra in some cases. The intensity of scattered light varies as $1/\lambda^4$ and so becomes a problem in the ultraviolet. In addition conventional monitoring sources usually have very low output in the ultraviolet, and thus they are susceptible to light scattering from the more intense visible regions. The effect on the spectra can be seen by the following example. The experimental optical density is given by

$$\Delta OD_{exp} = \log_{10} \{ (I_0 + I_s) / (I + I_s') \},$$
 (2.2)

where I_0 is the incident light which is measured before the pulse, I_s is the intensity of the visible scattered light that is measured along with I_0 , I is the true intensity of the transmitted light through the solution containing the transient, and I_s' is the excess scattered light from the visible that is measured along with I. $\Delta OD_{\rm exp}$ is the experimentally measured optical density which is just the equal to the logarithm (to the base ten) of the total intensity measured before the pulse divided by the intensity at some specific time during the decay of the transient. The true optical density is given by

$$\Delta OD_{\text{true}} = \log_{10}(I_0/I). \tag{2.3}$$

 ΔOD_{true} can be written in terms of ΔOD_{exp} as

$$\Delta OD_{true} = -\log_{10} \{ (1 + I_s/I_0) \exp(-2.3\Delta OD_{exp}) - (I_s/I_0) \}.$$
 (2.4)

If we consider an example in which scattered light constitutes 50% of the incident and also the transmitted beams, then $(I'_s/I_0) = 1 = (I_s/I_0)$. If we also assume $\Delta OD_{exp} - 0.01$, then $\Delta OD_{true} \sim 0.02$. For a second example take the same numbers except for $(I'_s/I_0) = 0.996$. This would mean that not as much light is being scattered from the visible while the transient is present. $\Delta OD_{true} \sim 0.018$

in this case. These examples illustrate the general behavior of excess scattered light on the true spectrum. This effect is often seen on the "blue" side of absorption peaks in the ultraviolet, namely the "blue" side of the uncorrected spectra is suppressed.

Distortions of the spectra can also arise from improper overlap of the analyzing and exciting beams. Proper overlap means that the analyzing beam should go only through the region of the cell that is excited and that the cell should be excited across the total width of the cell in right angle apparatus. In a right-angle setup, if the cell is not excited over the whole width, then the optical path is not the same as the path through the excited region of the cell⁵³. This does not lead to a distortion, but it leads to an incorrect concentration of the transient. The distortion of the spectra due to incorrect overlap comes when the analyzing beam samples regions of the cell that contain no excited molecules. In effect this extra light is scattered light, and the equations that Bazin and Ebbesen⁵³ derive for the relationship between the true optical density and the experimental optical density are very similar to Eq. (2.4) above for scattered light. Such distortions can lead to large errors in measuring extinction coefficients.

Novel sources of nonuniform concentration of transients are hot spots generated in a sample photolyzed by a pulse of laser light (T. W. Ebbesen and M. Bazin, unpublished data). The equations derived by Ebbesen and Bazin in this extension are similar to those reported in their earlier work⁵³ and indicate the possibility of large effects because lasers can cause very severe non-uniformities in transient concentration.

Extensive reviews of the development of pulsed photolytic techniques and the instrumentation involved have been provided by Porter and West⁵⁴ and West⁵⁵.

2.3. Miscellaneous Methods

While there exist other methods for the formation of the triplet states of organic molecules, for example enzymolysis⁵⁶ and thermolysis⁵⁷, we know of no reports concerning the estimation of the extinction coefficients of triplet-triplet absorption in these ways and of none in which new spectra, otherwise unobserved, have been recorded.

3. Methods for Measuring Extinction Coefficients

We discuss seven principal techniques currently in use for the determination of the extinction coefficient for triplet-triplet absorption. Special problems, extensions of the basic method, and advantages and disadvantages of each approach are documented. Several features (e.g. required corrections) are common to more than one technique. To avoid repetition these items are detailed only on their first occurrence. The various methods are presented approximately in order of number of entries in our database, energy transfer being the most frequently adopted approach. Miscellaneous methods are collected in Sec. 3.8.

3.1. Energy Transfer (ET) Method

3.1.1. Description of Method

The energy transfer method is currently one of the most widespread methods of measuring extinction coefficients. It was originally used for measuring extinction coefficients of triplet states generated by pulse radiolysis and later extended to include population by pulsed laser photolysis. Energy transfer methods have been criticized because of uncertainties in the probability of transfer. However over the past few years this method for measuring triplet state extinction coefficients has been improved and can now yield reliable results when used carefully.

The basic idea of the method is quite simple. Two compounds are placed in a cell. One compound, R, has a triplet state whose extinction coefficient is well-known. The other compound, T, is the compound whose extinction coefficient is to be determined. In the ideal experiment, one of the triplet states (either R's or T's) is initially populated, and the other triplet state is not populated. The compound with the initially populated triplet is chosen so that it can act as the triplet donor of the pair of triplet states. It does not matter whether R or T acts as the triplet donor. After the donor triplet is populated it can then transfer its energy to the acceptor triplet. This is done by collisional quenching involving the exchange interaction⁵⁹. In the ideal experiment where the triplet lifetimes of the isolated molecules are infinite on the time scale of the quenching experiment, every donor triplet molecule produces exactly one acceptor triplet molecule. The "one donor triplet yielding one acceptor triplet molecule" is the heart of the method because it allows one to get a handle on the persistent problem of measuring extinction coefficients of transients, namely determining the concentration of the transient. So in the ideal experiment the initial concentration of the donor triplet is equal to the final concentration of the accepter triplet and so

$$\epsilon_{\rm T}^{\bullet} = \epsilon_{\rm R}^{\bullet} \left(\Delta {\rm OD_T} / \Delta {\rm OD_R} \right).$$
 (3.1)

In this equation ϵ_T^* is the unknown extinction coefficient, and ϵ_R^* is the reference extinction coefficient and the superscript "*" refers to the excited state. The meaning of the ΔOD 's depends on whether T or R is functioning as the donor. The ΔOD of the compound serving as the donor is set equal to the ΔOD extrapolated back to time zero, and the ΔOD of the compound serving as the acceptor is set equal to the ΔOD at infinite time.

3.1.2. Kinetic Corrections

Corrections need to be made for several things when the conditions are not as described above. One problem occurs because the probability for transfer from donor, D, to acceptor, A, is not always unity. In addition to populating the acceptor triplet, the donor triplet can decay by other paths. In well degassed solutions, the most likely path is by unimolecular, radiationless decay to the ground state. The kinetic scheme is often modelled by the following reactions:

Scheme I

$$3.1$$
 $^{3}D^{*} \rightarrow ^{1}D, \qquad k_{D}$

3.2
$${}^{3}D^{*} + {}^{1}A \rightarrow {}^{1}D + {}^{3}A^{*}, \qquad k_{et}$$

$$3.3$$
 $^{3}A^{\bullet} \rightarrow {}^{1}A, \qquad k_{A}$

Ignoring the last process, the probability of transfer, P_{tr}, is

$$P_{tr} = k_{et}[^{1}A] / (k_{et}[^{1}A] + k_{D}).$$
 (3.2)

The concentration of the acceptor is reduced by this factor. So an equation analogous to Eq. (3.1) can be written with

$$\epsilon_{A}^{*} = \epsilon_{D}^{*} \left(\Delta OD_{A} / \Delta OD_{D} \right) / P_{tr}.$$
 (3.3)

In order to make this correction one has to know $k_{\rm D}$ and $k_{\rm et}[^1{\rm A}]$. The unimolecular decay rate constant of the donor, $k_{\rm D}$, is just the rate constant of the decay of the donor triplet measured in the absence of the acceptor, but with all other conditions similar to those in the actual energy transfer experiment. If the acceptor is then added to the cell, the combination $k_{\rm D} + k_{\rm et}[^1{\rm A}]$ can then be measured as an effective first-order decay rate constant of the donor triplet. This effective first-order rate constant is the sum of the donor's unimolecular decay rate constant and the pseudo first-order, energy transfer rate constant, $k_{\rm et}[^1{\rm A}]$. With the measurement of $k_{\rm D} + k_{\rm et}[^1{\rm A}]$ and $k_{\rm D}$, $P_{\rm tr}$ can be calculated using Eq. (3.2).

Two precautions are often taken when applying this kinetic correction factor. First, care is taken to eliminate second-order decay of the donor triplets. These processes could complicate the kinetic scheme. Second, $k_{\rm D}+k_{\rm el}[^{\rm I}{\rm A}]$ is often measured by checking both the decay rate constant of the donor absorption and also the inverse rise time of the acceptor triplet. If the kinetic scheme is as simple as the model assumed above, these two rate constants should be the same. If they are not, complicating factors have probably entered the analysis.

The rise time of the acceptor is often obscured by the decay of the acceptor. For instance, the rise and decay kinetics of the acceptor in Scheme I is given by

$$[{}^{3}\mathbf{A}^{*}] = \mathbf{W} \times \{\exp(-k_{\mathbf{A}}t) - \exp(-k_{\mathbf{e}t}[{}^{1}\mathbf{A}]t - k_{\mathbf{D}}t)\}, (3.4)$$

where

$$W = [{}^{3}D^{*}]_{0} k_{et}[{}^{1}A] / (k_{D} + k_{et}[{}^{1}A] - k_{A}), \qquad (3.5)$$

and where $[^{3}D^{*}]_{0}$ is the initial triplet concentration of the donor. If k_{A} is not small compared to the argument of the second exponential in Eq. (3.4), then the growth of A will be complicated by the first term in Eq. (3.4).

When k_A is not small compared to $k_{\rm el}[^1A] + k_{\rm D}$, a modification to Eq. (3.3) is often used⁶⁰. The maximum of the decay curve represented by Eq. (3.4) is the one unique feature of the curve. The time at which this point is reached is found by differentiating Eq. (3.4) and setting the derivative to zero. This time is given by

$$t_{\text{max}} = \frac{\ln\{k_{\text{A}}/(k_{\text{el}}[^{1}A] + k_{\text{D}})\}}{k_{\text{A}} - k_{\text{el}}[^{1}A] - k_{\text{D}}}.$$
 (3.6)

This time, t_{max} , and the measured $\Delta \text{OD}_A(t_{\text{max}})$ can be used to find the ΔOD_A needed for Eq. (3.3) in the following manner. First one can calculate [${}^3\text{A}^*$] at t_{max} for the Eqs. (3.4,3.5). Second one can calculate [${}^3\text{A}^*$] as $t \to \infty$ under the Eqs. (3.4,3.5) for $k_A = 0$, that is no decay of ${}^3\text{A}^*$. Taking the ratio of these two results gives a simple correction factor, and the final result is

$$\Delta OD_A = \Delta OD_A(t_{max}) \times \exp(k_A t_{max}). \tag{3.7}$$

This is the ΔOD_A that is to be used in Eq. (3.3) to obtain the sought for ϵ_A^* . In order to do the kinetic correction in Eq. (3.7), an extra rate constant, k_A , must be obtained in addition to the rate constants needed to calculate P_{tr} . If $[^3A^*]$ cannot be directly populated, then k_A must be obtained from a fit to the two-exponential decay given by Eq. (3.4).

3.1.3. Uncertainty in Probability of Transfer

Even after the two kinetic corrections are made, there still remains an uncertainty in the energy transfer method. This uncertainty involves the probability of transfer. With the two kinetic corrections already discussed, account can be taken of the unimolecular decay of both the donor, Eq. (3.3), and the acceptor, Eqs. (3.3,3.7). Nothing can be done in this scheme if the acceptor deactivates the donor without the acceptor itself being excited.

3.4
$${}^{3}D^{*} + {}^{1}A \rightarrow {}^{1}D + {}^{1}A, \qquad k_{DA}$$

Eq. (3.2) would have to be modified by the pseudo first-order rate constant, $k_{DA} \Gamma A$ to read

$$P_{tr} = k_{et}[^{1}A] / (k_{DA}[^{1}A] + k_{et}[^{1}A] + k_{D}).$$
 (3.8)

The concentration dependence of this process and the qualitative kinetics are the same as that in Scheme I alone, and, on a routine basis, it is not easy to check whether this type of deactivation of ³D is occurring.

3.1.4. Special Problems in Radiolytic Excitation

There are special problems with both photoexcitation and radiolytic excitation methods. In pulse radiolysis, benzophenone has been the most widely used triplet donor. The benzophenone triplet can either transfer its energy to the acceptor via reaction 3.2 in Scheme I or it can abstract a hydrogen from the solvent and form a ketyl radical.

3.5
$$(C_6H_5)_2CO + C_6H_6 \rightarrow (C_6H_5)_2COH + C_6H_5$$

By varing the concentration of the acceptor, the amount of benzophenone ketyl radical will also vary. The absorption spectrum of the ketyl radical is well-known⁵, and variations in its spectrum reflect the competition between reactions 3.2 and 3.5.

The first problem with the radiolytic method arises out of one of its strengths. One of the attractive features of the method is that the extinction coefficient of the ketyl radical can be independently and reliably measured by pulse radiolysis. As a general rule it true that measurements of extinction coefficients in aqueous solution of radicals will

be more reliable when measured by pulse radiolysis than by flash photolysis. This is due mainly to the existence of reliable G values of the radicals in aqueous solution and also due to the fact that in radiolysis, uniform concentrations of the transients can be generated throughout the cell. The problem arises precisely because the well established extinction coefficient of the ketyl radical is known in water; whereas the radiolytic generation of triplets can be done only in hydrocarbon solvents where radiolytic yields are not at all well established. The procedure that is used is that the extinction coefficient of the ketyl radical in the hydrocarbon solvent is calculated from the extinction coefficient in water by assuming that the oscillator strength is independent of solvent 61 .

The second special problem with the pulse radiolysis is that there is part of the ketyl radical population that cannot be scavenged. The unscavengeable fraction of ketyl radicals can be quite large. In applications it is assumed that the unscavengeable fraction is constant, independent of the acceptor concentration.⁴

The third special problem with the radiolysis method is that ketyl radicals themselves are often reactive with the acceptors. This is not a problem with hydrocarbons, but with quinones and acridines the method cannot be used⁴.

There are pulse radiolytic methods, of course, which do not involve the competitive step of ketyl radical formation. In these methods, a potential triplet donor, for example biphenyl, is present at roughly 100 times the acceptor concentration. The donor triplets are formed by energy transfer from the solvent triplets. This pulse radiolysis technique is more analogous to the flash photolytic method in that it does not require competition between two reactive paths with the subsequent formation of two transients which may or may not interfere with one another.

3.1.5. Special Problems in Flash Photolysis

The complications unique to the photolytic method are bound up with the production of nonuniform distributions of transients according to Beer's Law. Using the differential form of the law, namely that $\Delta I = -2.3\epsilon_{\rm D}[^{\rm 1}{\rm D}]I\Delta x$, one can see that the number of photons absorbed in a volume of unit cross section and of depth Δx (during unit time) is equal in magnitude to $abs(\Delta I)$. To convert this number, $abs(\Delta I)$, of excited molecules into a concentration that varies with x across the cell, one must divide the number of excited molecules by the volume (1 unit cross section $\times \Delta x$) containing them. In addition one needs to multiply by the duration of the exciting pulse, Γ_p , and by the triplet quantum yield, Φ_T , which results in

$$[^{3}D^{*}](x) = 2303 \epsilon_{D} [^{1}D] I_{D}(x) \Gamma_{D} \Phi_{T}(D),$$
 (3.9)

In Eq. (3.9), $I_p(x)$ is the intensity of the photolyzing light at x, [¹D] is the concentration of the absorbing species whose extinction coefficient at the exciting frequency is ϵ_D . When the x-dependence of $I_p(x)$ is displayed, using the integrated form of Beer's Law, $I = I_0 \exp\{-2.3\epsilon_D[^1D]x\}$, Eq. (3.9) becomes

$$[^{3}D^{*}](x) = 2303 \epsilon_{D} [^{1}D] I_{P}^{0} \exp(-2.3\epsilon_{D} [^{1}D] x) \times \Gamma_{P} \Phi_{T}(D), \qquad (3.10)$$

where I_p^0 is the incident intensity of the photolyzing light. When $[^1D]$ and ϵ_D are small enough, ie.

$$\epsilon_{\rm D} \,[^{1}{\rm D}] \, x \, \cong \, 0.05, \tag{3.11}$$

then the exponential in Eq. (3.10) is approximately unity and $[^{3}D^{\bullet}](x)$ is roughly constant across the cell⁵⁰. This is the usual technique to obtain uniform concentration distributions in flash photolysis. However, this technique often fails when the absorbance of the resulting transient is low because then a larger concentration of donor is needed than is allowed by condition (3.11).

When no light is absorbed by the acceptor, the non-uniform distribution does not present a problem even at concentrations where Eq. (3.11) is no longer valid. The following discussion is for a linear arrangement of the monitoring and photolyzing light. Placing the excited state concentration given by Eq. (3.10) into the differential form of Beer's Law for the monitoring light intensity, $I_{\rm m}$, the effective optical density,

$$OD = \log_{10}(I_{\rm m}^0/I_{\rm m}), \tag{3.12}$$

is found by integration to give

$$OD(\lambda_m) = \epsilon_D^{\bullet}(\lambda_m) \left\{ \frac{\left(\left[{}^{3}D^{\bullet} \right]_{x=0} - \left[{}^{3}D^{\bullet} \right]_{x=\ell} \right)}{\epsilon_D(\lambda_p)[{}^{1}D]\ell} \right\} \ell, \quad (3.13)$$

where quantities without asterisks refer to the ground state, and ℓ is the optical path length of the cell. Even though Eq. (3.13) does not look immediately like the conventional formula for an optical density, namely OD $= \epsilon_D^{1/3} D^{1/2} \ell$, it can be understood as such if the quantity in curly brackets is interpreted as an effective concentration. From Eq. (3.13), it can be seen that the effective concentration, in front-face experiments, is equal to the difference between the true triplet concentrations at the front and back faces of the cell divided by the optical density of the solution at the exciting wavelength, λ_{p} . Note that this interpretation of an effective concentration keeps intact the important relationships between extinction coefficient and optical density, namely that they are proportional to each other and that the λ_m -dependence of the right-hand side of Eq. (3.13) is only in the factor ϵ_D^* . (In most of the equations in this work we will use the traditional form for the optical density, but it should be kept in mind that for front-face alignment the concentration of the transient refers to an effective concentration defined by the expression in curly brackets in Eq. (3.13)).

The complications arise when the acceptor starts to absorb the exciting light directly. Even when the quantum yield of direct triplet formation is zero for the acceptor, problems can enter. Because of the problem of extrapolating the donor absorbance accurately back to zero time when an acceptor is present, the initial optical density can be taken from a measurement before the acceptor is added to the cell. Then an inner filter effect so can occur just as is common in emission spectroscopy⁶². The

basic equations for numbers of the excited state species now become

$$[^{3}\mathbf{A}^{*}](x) = 2303 \, \mathbf{P}_{tr} \Phi_{T}(\mathbf{D}) \Gamma_{p} \, \epsilon_{D} \, [^{1}\mathbf{D}] \times I_{p}^{0} \exp\{-2.3(\epsilon_{D} \, [^{1}\mathbf{D}] + \epsilon_{A} \, [^{1}\mathbf{A}])x\}$$
(3.14)

and Eq. (3.10). There is no inner filter effect with only the donor in the cell, Eq. (3.10); so after integrating the differential form of Beer's Law using separately Eq. (3.10) and Eq. (3.14) and dividing the two resulting equations, one obtains Eq. (3.15) which is a modification to Eq. (3.3).

$$\epsilon_{A}^{*}(\lambda_{m}^{A}) = C_{inner}\epsilon_{D}^{*}(\lambda_{m}^{D}) (\Delta OD_{A} / \Delta OD_{D}) / P_{tr},$$
 (3.15)

where

$$C_{inner} = N_{inner} / D_{inner}, (3.16)$$

$$N_{\text{inner}} = \{ \epsilon_{D}(\lambda_{p}) [^{1}D] \ell \}$$

$$\times (1 - \exp\{-2.3\epsilon_{D}(\lambda_{p}) [^{1}D] \ell - 2.3\epsilon_{A}(\lambda_{p}) [^{1}A] \ell \}), \qquad (3.17)$$

$$D_{inner} = \{ \epsilon_{D}(\lambda_{p}) [^{1}D] \ell' + \epsilon_{A}(\lambda_{p}) [^{1}A] \ell' \}$$

$$\times (1 - \exp\{-2.3\epsilon_{D}(\lambda_{p}) [^{1}D] \ell'\}), \qquad (3.18)$$

and λ_p is the exciting wavelength. The terms $\epsilon_D(\lambda_p) [^1D] \ell$ and $\epsilon_D(\lambda_p) [^1D] \ell + \epsilon_A(\lambda_p) [^1A] \ell$ are easily accessible to measurement because they are just the usual optical densities of the unexcited solutions at the exciting wavelength and thus can be measured with an ordinary absorption spectrometer. This correction is not necessary when the absorbance of the donor is measured in the presence of the acceptor because inner filter effects will be the same for both the donor and acceptor triplet, and both will cancel. Even when the absorbance of the donor is measured separately, as long as the concentration of the donor is such that

$$\epsilon_{\mathrm{D}}(\lambda_{\mathrm{p}}) [^{1}\mathrm{D}] \ \ell >> \epsilon_{\mathrm{A}}(\lambda_{\mathrm{p}}) [^{1}\mathrm{A}] \ \ell,$$
 (3.19)

C_{inner} will approach unity and Eq. (3.3) will hold.

When the quantum yield for direct triplet formation in the acceptor is not zero, the corrections for the acceptor absorbing the exciting light are even more complicated. In order to present the results simply, we assume that both the donor and acceptor absorbances are made with both species present, eliminating the correction of type containing C_{inner} in Eq. (3.15). With this qualification, the basic concentration equations, for the case where the acceptor absorbs and forms triplets directly, are

$$[{}^{3}A^{*}](x) = 2303 P_{tr}\Phi_{T}(D)\epsilon_{D}[{}^{1}D]\Gamma_{p} I_{p}^{0}$$

$$\times \exp\{-2.3(\epsilon_{D}[{}^{1}D] + \epsilon_{A}[{}^{1}A])x\}$$

$$+ 2303 \Phi_{T}(A) \epsilon_{A} [{}^{1}A] \Gamma_{p} I_{p}^{0}$$

$$\times \exp\{-2.3(\epsilon_{D}[{}^{1}D] + \epsilon_{A}[{}^{1}A])x\}$$
(3.20)

and

$$[^{3}D^{\bullet}](x) = 2303 \Phi_{T}(D) \epsilon_{D} [^{1}D] \Gamma_{p}$$

 $\times I_{p}^{0} \exp\{-2.3(\epsilon_{D} [^{1}D] + \epsilon_{A} [^{1}A])x\}.$ (3.21)

Using these equations with Beer's Law gives the equation

$$\epsilon_{A}^{\star} = \epsilon_{D}^{\star} (\Delta OD_{A} / \Delta OD_{D})$$

$$\times \frac{\Phi_{T}(D)\epsilon_{D} [^{1}D]}{P_{tr}\Phi_{T}(D)\epsilon_{D} [^{1}D] + \Phi_{T}(A)\epsilon_{A} [^{1}A]}$$
(3.22)

which is the analog of Eqs. (3.3,3.15).

3.1.6. Summary of Advantages and Disadvantages

In summary, the energy transfer method has an advantage over the singlet depletion method in that it does not depend on overlaps of the ground-singlet and triplet-triplet absorption spectra. In addition using the pulse radiolysis excitation method, independent reference extinction coefficients can be obtained because of accurate dosimetry in radiolysis experiments. However the accuracy of the method is only as good as the reference extinction coefficients. The disadvantages and limitations of the energy transfer method have been discussed above. The most troublesome problem is the uncertainty in the probability of transfer. This is mainly manifested in the process of collisional deactivation without energy transfer, namely reaction 3.4.

3.2. Singlet Depletion (SD) Method

3.2.1. Description of Method

If the measurement of the change in OD due to the population of the triplet state can be extended into a spectral region in which the starting material (singlet) absorbs, then another technique is generally available for the estimation of the extinction coefficient of triplet-triplet absorption. This is the method of singlet depletion.

The precision of the technique can be considerably enhanced if the accessible region is one in which the underlying singlet absorption is sharply structured, as will be seen below.

Assuming that all the molecules which are pumped out of the starting ground state, S_0 either return to S_0 or populate the lowest triplet state, T_1 within the time scale of the observations, then the change in optical density may be simply expressed as

$$\Delta OD = (\epsilon_T^* - \epsilon_S) [^3M^*] \ell, \qquad (3.23)$$

where $[^3M^*]$ is the concentration of the triplet state at the time of observation and ℓ is the optical path length of the monitoring beam in the sample (which can usually be determined with reasonable precision).

From the resulting difference spectrum (ΔOD as a function of observational wavelength), the triplet-triplet spectrum may be reconstructed in a number of ways which are documented in Sec. 3.2.2.

It is often assumed that a region of the conventional ground state absorption spectrum $(S_n \leftarrow S_0)$ can be located (and accessed for excitation) where the triplets

formed on excitation will not absorb. Thus if the change in optical density, ΔOD_s , due to singlet depletion at this wavelength, λ_l , is measured, then

$$\Delta OD_{S}(\lambda_{1}) = -\epsilon_{S} [^{3}M^{*}] \ell, \qquad (3.24)$$

assuming, of course, all find their way to the lowest excited triplet state, T_1 . The triplet extinction follows simply by using the value of [3M] from Eq. (3.24) and by observing the change in absorbance, ΔOD_T , at some further wavelength, λ_2 , where the ground state molecule is known not to absorb.

$$\Delta OD_{T}(\lambda_{2}) = \epsilon_{T}^{*} [^{3}M^{*}] \ell. \qquad (3.25)$$

If it is assumed that the nascent triplet state does not absorb in the spectral region where the singlet depletion is monitored, then an upper limit to ϵ_T^* will be derived. In many cases this assumption will be unjustified and the more complicated procedures documented below must be adopted to recover correct quantitative estimates of $[{}^3M^*]$ and thus ϵ_T^* .

3.2.2. Reconstruction of True Triplet-triplet Absorbance

Labhart⁴⁵ recasts equation (3.23) to give the optical density, OD_T, due to triplet-triplet absorption as

$$OD_{T} \equiv \epsilon_{T}^{*} [^{3}M^{*}] \ell = \Delta OD + \epsilon_{S} [^{3}M^{*}] \ell. \quad (3.26)$$

It is then possible, by trial and error, to find a value of $[{}^{3}M^{*}]$ such that OD_{T} shows no evidence of the peaks in the original singlet absorption spectrum. If $[{}^{3}M^{*}]$ is chosen to be too large, then the peaks of the predicted triplet spectrum will coincide with those of the underlying singlet. Too small a value for $[{}^{3}M^{*}]$ aligns the peaks of the triplet spectrum with troughs in the singlet absorbance. Upper and lower limits for $[{}^{3}M^{*}]$ are thus readily established.

Dawson⁶³ assumes that the triplet extinction coefficient did not change between the wavelength of the peak, λ_1 of a strong singlet absorption and an adjacent trough, λ_2 . This gives an equation for $[^3M^*]$ in terms of the ΔODs and the ground state extinction only.

$$\mathscr{E}\left[{}^{3}\mathbf{M}^{*}\right] = \frac{\Delta \mathrm{OD}(\lambda_{1}) - \Delta \mathrm{OD}(\lambda_{2})}{\epsilon_{S}(\lambda_{2}) - \epsilon_{S}(\lambda_{1})} \tag{3.27}$$

The resulting value for the concentration of triplets may be checked, in a similar fashion through the region of overlapping singlet absorption. Bowers and Porter⁶⁴ had previously derived an equation similar to Eq. (3.27). In that work the wavelengths, λ_1 and λ_2 , were chosen to bracket a strong singlet absorption and the value for ϵ_T^* was again assumed constant in this range. Unfortunately their Eq. 1 contains a misprint with extinction coefficients instead of Δ OD's in the denominator.

By utilizing the change in OD at both troughs neighboring a strong singlet peak, and at the peak itself, Hadley and Keller⁶⁵ obtain three simultaneous equations for [³M*] and the triplet extinction at the three wavelengths in question. These are

$$\Delta OD(\lambda_i) = \{ \epsilon_T^*(\lambda_i) - \epsilon_S(\lambda_i) \} [^3M^*] \ell ; i = 1, 2, 3, (3.28)$$

Assuming that the triplet extinction changes linearly over the spanned wavelength range provides a fourth relation,

$$\frac{\epsilon_{\mathbf{T}}^{\star}(\lambda_1) - \epsilon_{\mathbf{T}}^{\star}(\lambda_2)}{\epsilon_{\mathbf{T}}^{\star}(\lambda_3) - \epsilon_{\mathbf{T}}^{\star}(\lambda_2)} = (\lambda_1 - \lambda_2)/(\lambda_3 - \lambda_2), \tag{3.29}$$

which is sufficient to allow solution for [³M*]. An alternative choice for the observation wavelengths is made by Pavlopoulos⁶⁶. Assuming that the triplet extinction coefficient varies linearly

$$\epsilon_{\rm T}^{\star}(\lambda) = A + B \lambda$$
 (3.30)

over the region between the onset of a ground state absorption band, λ_a , and the isosbestic point in the difference spectrum, λ_c , and recording the change in optical density at these wavelengths and also at some intermediate wavelength, λ_b , again leads to a set of equations which may be solved for the triplet concentration. Noting that, at the isosbestic point,

$$\epsilon_{\rm T}^{\bullet}(\lambda_{\rm c}) = \epsilon_{\rm S}(\lambda_{\rm c})$$
 (3.31)

these equations may be written as

$$\Delta OD(\lambda_a) = (A + B \lambda_a) [^3M^*] \ell, \qquad (3.32)$$

$$\Delta OD(\lambda_b) = \{ (A + B \lambda_b - \epsilon_s(\lambda_b)) [^3M^*] \ell, \quad (3.33)$$

and

$$\epsilon_{\rm S}(\lambda_{\rm c}) = {\rm A} + {\rm B} \lambda_{\rm c},$$
 (3.34)

and A,B and [3M*] may be recovered.

The success of these methods obviously depends on the existence of accessible spectral regions where $S_n \leftarrow S_0$ and $T_n \leftarrow T_1$ transitions overlap, which is often found to be the case.

3.2.3. Corrections for Triplet Decay

As long as no (irreversible) photochemistry has occurred upon excitation, no corrections for triplet decay are required. In a pulsed laser experiment, after the excited singlet has decayed, the original population will be distributed between the ground state and the triplet state only. Changes in OD at the depletion and observation wavelength should thus simply be measured after equivalent time delays.

3.2.4. Summary of Advantages and Disadvantages

Obviously, if other channels are open (eg. photochemical) and can be quantified, appropriate corrections can be made — but these complications would greatly reduce the usefulness of this method and detract from its principal advantage, its simplicity. This simplicity rests in the fact that no detailed knowledge is required concerning the rate constants of the various participating elementary radiationless processes.

Though this method is free from kinetic considerations one practical weakness remains. In the singlet depletion region no precise knowledge of the triplet absorption profile can be gained without recourse to one of the approximation schemes discussed above. Only at an isosbestic point in the difference spectrum can a certain value of the triplet extinction coefficient be given. The values at other wavelengths are critically dependent on the functional form for $\epsilon(\lambda)$ chosen above.

3.3. Total Depletion (TD) Method

3.3.1. Description of Method

It is often assumed that by simply increasing the intensity of a pulse of exciting radiation complete conversion of a suitably small ground state concentration to the triplet manifold is possible, provided, of course, that the quantum yield of intersystem crossing is not negligibly small. Thus [3M*] is simply set equal to [1M].

Kinetic considerations based on a simple two-state model for the population of the triplet state may be used to justify the assumption of complete conversion⁶⁷. In this model the intermediacy of the excited singlet state is neglected and the excitation process is modelled by two kinetic equations,

$$\frac{\mathrm{d}[^{1}\mathrm{M}]}{\mathrm{d}t} = -2303\epsilon_{\mathrm{S}}I_{\mathrm{p}}(t)\Phi_{\mathrm{T}}[^{1}\mathrm{M}] \qquad (3.35)$$

and

$$\frac{\mathrm{d}[{}^{3}\mathbf{M}^{\star}]}{\mathrm{d}t} = +2303\epsilon_{\mathrm{S}}I_{\mathrm{p}}(t)\Phi_{\mathrm{T}}[{}^{1}\mathbf{M}]. \tag{3.36}$$

The excitation rate, k_{ex} has been explicitly defined as

$$k_{\rm ex} = 2303 \, \epsilon_{\rm S} \, I_{\rm p}(t) \tag{3.37}$$

to clearly exhibit its intensity dependence, ϵ_S is the extinction coefficient of the ground state at the photolyzing wavelength and optically thin samples are assumed. Solving these equation for $[^3M^*]$ with the initial conditions $[^1M] = [^1M]_0$ and $[^3M^*] = 0$ gives

$$[{}^{3}M^{*}] = [{}^{1}M]_{0}(1 - \exp\{-2303\epsilon_{5}I_{0}\Phi_{T}t\})$$
 (3.38)

for the concentration of triplet at time, t, after a pulse of constant intensity, I_p , is turned on. In the limit of infinite excitation intensity the exponential vanishes and Eq. (3.38) collapses to give the initial concentration of the ground state. Notice that the triplet state is not allowed to decay in this model.

If it is assumed that the ground state is totally depleted then a lower limit can be set on the extinction estimation. While this assumption may indeed be valid for systems studied by conventional flash photolysis 18,68 it does not hold, in general, when laser pulses of a few (or a few tens of) nanoseconds duration are employed 69 . Under such conditions kinetic limitations become important and the participation of S_1 must be accounted for. Below we formulate a model which adequately encompasses such features.

3.3.2. A Three-state Excitation-deactivation Model

To describe the detailed time development of the population of an excited state, Processes 1.1-1.8 may be modelled by a set of three coupled kinetic equations

$$\frac{d[{}^{1}M]}{dt} = -k_{ex}[{}^{1}M] + (k_{f} + k_{ic})[{}^{1}M^{*}] + k_{T}[{}^{3}M^{*}], (3.39)$$

$$\frac{\mathrm{d}[{}^{1}\mathbf{M}^{\star}]}{\mathrm{d}t} = k_{\mathrm{ex}}[{}^{1}\mathbf{M}] - k_{\mathrm{S}}[{}^{1}\mathbf{M}^{\star}], \tag{3.40}$$

and

$$\frac{d[^{3}M^{*}]}{dt} = k_{isc}[^{1}M^{*}] - k_{T}[^{3}M^{*}]. \tag{3.41}$$

Note that loss by photochemical processes has been explicitly neglected. For several choices of pulse shape these equations may be solved analytically. For example, for a square pulse of width, Γ_p , the triplet concentration at some time, t, after the pulse, is given by 69

$$[{}^{3}M^{*}]_{l} = [{}^{3}M^{*}]_{\Gamma_{p}} \exp\{-(t-\Gamma_{p})k_{T}\}$$

$$+ \{k_{isc}/(k_{S}-k_{T})\}[{}^{1}M^{*}]_{\Gamma_{p}}$$

$$\times (\exp\{-(t-\Gamma_{p})k_{T}\} - \exp\{-(t-\Gamma_{p})k_{S}\}), (3.42)$$

where $[^{3}M^{*}]_{\Gamma_{p}}$ and $[^{1}M^{*}]_{\Gamma_{p}}$ are the end-of-pulse values of the triplet and excited singlet state concentrations respectively. In the limit of an infinitely short (δ -function) pulse, as the excitation intensity grows toward infinity and when the sampling time, t, is sufficiently long that the excited singlet has decayed then

$$[{}^{3}\mathbf{M}^{*}]_{\iota} / [{}^{1}\mathbf{M}]_{0} = \Phi_{\mathrm{T}}$$
 (3.43)

However, for a finite pulse width there will exist a finite end-of-pulse concentration of both T_1 and S_1 regardless of the excitation intensity. Indeed, in the limit of infinite excitation rate (or, equivalently, intensity) we find 69

$$[{}^{3}\mathbf{M}^{*}]_{t} = [{}^{1}\mathbf{M}]_{0} \frac{k_{\text{isc}}}{(k_{\text{T}} + k_{\text{isc}})}$$

$$\times \{ (1 - \exp\{-(k_{\text{T}} + k_{\text{isc}})\Gamma_{\text{p}}\}) \exp\{-k_{\text{T}}(t - \Gamma_{\text{p}})\} + (k_{\text{T}} + k_{\text{isc}}\exp\{-(k_{\text{T}} + k_{\text{isc}})\Gamma_{\text{p}}\})$$

$$\times \frac{\exp\{-(t - \Gamma_{\text{p}})k_{\text{T}}\} - \exp\{-(t - \Gamma_{\text{p}})k_{\text{S}}\}}{k_{\text{S}} - k_{\text{T}}} \}. (3.44)$$

Only in the limit of sufficiently fast singlet decay (or sufficiently long pulse duration) can complete conversion be attained. For a small number of systems examined previously (polycyclic aromatic hydrocarbons) we find⁶⁹ that 95% conversion can be expected only when

$$\tau_{\rm S} \leqslant \Phi_{\rm T} \Gamma_{\rm p} / 2.$$
 (3.45)

If this inequality is not satisfied for the system under study then a systematic error will be introduced into the extinction coefficient of triplet-triplet transitions if the concentration of the absorbing triplet is simply set equal to that of the starting ground state. The method will afford, in general, only a lower limit of the true extinction coefficient.

3.3.3. Corrections for Triplet Decay

In a pulsed laser experiment the change in optical density at the wavelength of observation will be a function of time. Usually these changes are extrapolated back to "zero" time (i.e. immediately after the pulse) by assuming a simple single exponential decay of the triplet absorbance. This point should of course be checked and for this purpose the initial ground state concentration should generally be kept as low as possible. Complications in the decay curve due to triplet-triplet annihilation may thus be avoided.

3.3.4. Summary of Advantages and Disadvantages

The principal advantage of the total depletion method is that it offers a simple direct estimate of the triplet concentration and hence of the triplet-triplet extinction coefficient.

Empirically, the approach to total depletion is inferred from a saturation in the Δ OD at some monitoring wavelength as the excitation intensity rises. The assumption then is that the asymptote toward infinite intensity represents complete conversion. Unfortunately, especially in laser photolysis, many other sources of this apparent saturation are possible. Multiphotonic processes⁷⁰ including biphotonic ionization71,72 and excited state absorption⁷¹⁻⁷³ have been shown to produce a similar behavior. In order to reduce the chance of interference from such spurious phenomena a partial saturation method has been developed71 which is discussed below in Sec. 3.7. However even when these and other complications such as photochemical decomposition can be avoided one basic problem still remains. The desired conversion to the triplet state may be kinetically unattainable within a typical pulse duration⁶⁹, although the observed ΔOD may still appear to saturate.

3.4. Relative Actinometry (RA) Method

3.4.1. Description of Method

The basic principle of the technique defined here as relative actinometry is simple⁷⁴. A comparison is made between the change in optical density produced in some solvent, S_T at some wavelength, λ_1 upon excitation of the triplet, T for which the extinction coefficient, ϵ_T^* is required and that change produced under comparable conditions (but in a separate sample) in some reference triplet,

R of known extinction coefficient, ϵ_R^* at some wavelength, λ_2 (not necessarliy equal to λ_1) in another solvent, S_R . The concentrations of the ground state precursors of T and R are adjusted, based on a knowledge of their respective absorption spectra so that the same number of excitation photons are absorbed by both sample and reference.

If ΔOD_R is the observed change in optical density due to the formation of the triplet state, R and ΔOD_T that change for T, then, if $\Phi_T(R)$ is the (known) quantum yield for intersystem crossing in the reference compound in the same solvent, S_R in which the extinction coefficient ϵ_R^* was determined (under the same conditions of excitation), then the extinction coefficient of the unknown triplet state is given by

$$\epsilon_{\mathrm{T}}^{\star}(\lambda_{\mathrm{I}}) = \frac{\Delta \mathrm{OD}_{\mathrm{T}} \; \Phi_{\mathrm{T}}(\mathrm{R})}{\Delta \mathrm{OD}_{\mathrm{R}} \; \Phi_{\mathrm{T}}(\mathrm{T})} \; \epsilon_{\mathrm{R}}^{\star}(\lambda_{\mathrm{2}}), \tag{3.46}$$

where $\Phi_T(T)$ is the quantum yield for intersystem crossing leading to the triplet state of unknown extinction (and again measured in the appropriate solvent, S_T under similar excitation conditions).

3.4.2. Corrections for Singlet Depletion

As written, Eq. (3.46) requires that the ground state depletion (in OD) is negligible at the respective wavelengths of observation. Thus either the starting singlets do not absorb appreciably at λ_1 and λ_2 respectively or the excitation intensity is kept low. This latter factor weighs significantly in the use of a laser source in this technique. Considerable care must be taken to ensure that all the excitation beam is channeled into the appropriate photophysical processes and none is lost to $S_n \leftarrow S_1$ (biphotonic) absorption for instance, if this process does not exclusively lead to population of the triplet manifold.

If such singlet depletion is, in fact, a problem, it will be evidenced by the presence of curvature in a ΔOD vs intensity plot. Restricting the excitation intensity to the initial linear region is then recommended. The extrapolation of ΔOD 's observed in a nonlinear regime is problematical since the curvature may also be due to other effects.

Often the respective singlet ground states also absorb the monitoring radiation. The extinction coefficients appearing in Eq. (3.46) may be altered to take this feature into account to give

$$\{\boldsymbol{\varepsilon}_{T}^{\star}(\boldsymbol{\lambda}_{1}) - \boldsymbol{\varepsilon}_{S}^{T}(\boldsymbol{\lambda}_{1})\} = \frac{\Delta OD_{T}\Phi_{T}(R)}{\Delta OD_{R}\Phi_{T}(T)}\{\boldsymbol{\varepsilon}_{R}^{\star}(\boldsymbol{\lambda}_{2}) - \boldsymbol{\varepsilon}_{S}^{R}(\boldsymbol{\lambda}_{2})\}, \quad (3.47)$$

where ϵ_S^T is the extinction coefficient of the ground state absorption $(S_n \leftarrow S_0)$, eventually leading to the triplet, T, at the indicated wavelength. The extinction coefficient, ϵ_S^R , is similarly defined for the reference compound.

3.4.3. Corrections for Triplet Decay

Comments entirely similar to those presented in Sec. 3.3.3., applicable to the technique of total depletion are again relevant to the method of relative actinometry.

3.4.4. Corrections for Laser Excitation

The achievement of an equal initial excitation population in both sample and reference is usually performed by matching starting ODs in a separate "conventional" spectrometer. If a laser is then employed to populate the respective transients, questions of bandpass differences should be addressed. These are, in general, difficult to answer. However, to be most suitable the relevant photophysical properties (such as the spectral band shapes) of both sample and reference should be comparable.

3.4.5. Extensions

Obviously, if the initial ODs are different but known then the differential excitation probability may be accounted for by the inclusion of a simple multiplicative factor in either of Eq. (3.46) or Eq. (3.47), whichever is appropriate to the experimental situation.

There is also no need to restrict the reference to another triplet-triplet absorption. The benzophenone ketyl radical, for which formation quantum yields are known, has also provided a useful actinometer.

Recently an interesting extension of the relative actinometry method has been presented⁷⁵ which removes the need for a knowledge of the quantum yields for triplet formation. The triplet populations formed in both the sample and the reference cells are scavenged by biacetyl and the intensities of the resulting phosphorescence are compared. The extinction coefficients are then related by

$$\epsilon_{T}^{*}(\lambda_{1}) = \frac{\Delta OD_{T} \ I_{p}(R)}{\Delta OD_{R} \ I_{p}(T)} \epsilon_{R}^{*}(\lambda_{2}). \tag{3.48}$$

The ratio, $I_p(R)/I_p(T)$ of the phosphorescence intensities then takes the place of that involving the triplet yields, though assumptions as to the extent of conversion of individual triplets must be confirmed or kinetic considerations cannot be obviated.

3.4.6. Summary of Advantages and Disadvantages

The principal disadvantage in the technique of relative actinometry as outlined above is the required knowledge of the respective quantum yields for intersystem crossing. Indeed, the method is most commonly used to determine these yields given estimates of the triplet-triplet extinction coefficients 76 . If the quantum yields are known (and not inferred from those measured or estimated in disparate experimental circumstances as is unfortunately common), if the Δ OD can be satisfactorily extrapolated and if the appropriate precautions are taken when singlet depletion is a complicating factor, then this technique should yield extinction coefficients of comparable accuracy of those derived from the other methods documented here.

3.5. Intensity Variation (IV) Method

3.5.1. Description of Method

The intensity variation method was one of the first techniques to be used to measure extinction coefficients of triplet states¹⁷. The initial application gave results which

turned out to be several orders of magnitude too low. Later applications of the method^{77,78}, however gave values that were in accord with those results obtained with different techniques.

The derivation of the method is again based on the kinetic equations for Processes 1.1-1.8, given by Eqs. (3.40) and (3.41). However, conventionally, a steady-state approximation for both singlet and triplet excited states is made and the depletion of the ground state is specifically neglected leading to

$$[{}^{3}\mathbf{M}^{*}]/[{}^{1}\mathbf{M}] = 2303 \ \tau_{\mathrm{T}} \ \epsilon_{\mathrm{S}} \ I_{\mathrm{p}}(x) \ \Phi_{\mathrm{T}}.$$
 (3.49)

Here τ_T is the measured triplet lifetime, for example the measured phosphorescence lifetime in glassy solutions and the concentrations are measured at some volume element in the cell at distance, x, along the optical path, from the point of incidence of the photolyzing light. Φ_T is the probability of forming the triplet state from the lowest excited singlet. To obtain extinction information then, it is thus necessary to know the quantum yield for intersystem crossing, Φ_T .

At the time of the inception of this technique, the triplet yield could be related to experimentally measured values in several ways¹⁷. In particular, it could be related to the ratio, R, of the fluorescence to phosphorescence quantum yields and also to the total luminescence quantum yield, Φ . If internal conversion takes place from the singlet state but no intersystem crossing occurs from the triplet to the ground state then

$$\Phi_{\rm T} = \Phi/(R + 1).$$
 (3.50)

If the reverse is true, then

$$\Phi_{\rm T} = (R + 1 - R\Phi)/(R + 1).$$
 (3.51)

If only intersystem crossing from the singlet state occurs, then

$$\Phi_{\rm T} = 1/(R+1) = 1 - \Phi_{\rm f}.$$
 (3.52)

Currently many other approaches are in use for determining Φ_T . These methods have been comprehensively reviewed most recently by Wilkinson⁷⁹.

Using Beer's Law for the intensity variation with x, one gets, for an in-line arrangement of the monitoring and photolyzing light, in a manner analogous to the pulsed excitation results of Eqs. (3.9,3.10) that

$$OD = \epsilon_T^* \Phi_T I_p^0 (1 - \exp\{-2.3\epsilon_S [^1M] \ell\}) \times 10^3.$$
 (3.53)

In this equation, everything is assumed known except for the extinction coefficient of the triplet. The intensity, I_p^0 , is varied, and from the slope of the plot of OD vs I_p^0 , one can calculate the extinction coefficient.

The derivation given above follows closely that of Keller and Hadley⁷⁷. They take Eq. (3.53) one step further and assume that the exponential makes no contribution because of a large OD of the ground state at the exciting wavelength. However this is not likely to be the usual case because OD's are usually of the order of unity or lower; in which case the exponential cannot be ignored.

McClure¹⁷ used a modification of this derivation in which the initial concentration, $[^1M]_0$ appeared instead of the concentration of ground state, $[^1M]$ in the steady-state mixture as the denominator of the lefthand side of Eq. (3.49). This lead to a more complicated expression for the conversion to the triplet state. In particular, the intensity dependence varied as 1/(1/I + constant). This equation reduces to the one given above when the concentration of triplet is low and when the ground state is not depleted significantly in the steady-state. However because of this dependence, McClure chose to plot 1/OD vs. $1/I_p^0$. In effect this means that he was emphasizing the OD at infinite I_p^0 ; whereas Keller and Hadley were able to extrapolate their OD vs I_p^0 plots easily to zero I_p^0 which is in conformity to the assumptions of the method.

3.5.2. Summary of Advantages and Disadvantages

This method has been applied to glassy systems with weak steady-state illumination. Under these conditions this method is at its best because neither the energy-transfer nor the singlet-depletion methods can be used.

Beyond these conditions, the method becomes cumbersome. Like some of the other methods photochemistry can cause problems. However in addition one needs a very complete knowledge of the photophysics of the molecule before one can use the method. First of all one must decide which of the three cases to use for Φ_T in Eqs. (3.50–3.52). Then the triplet lifetime and the ratio, R, of fluorescence and phosphorescence yields must be known under conditions of the experiment. That is the minimum information that must be available in addition to the intensity variation measurements. For some of the forms of Φ_T , the absolute luminescence yield must also be known. Finally if the method is to be used, the 1/OD vs. $1/I_p^0$ is more susceptible to extrapolation errors than plotting OD vs. I_p^0 .

3.6. Kinetic Method (KM)

3.6.1. Description of Method

Another approach employed to estimate the triplet extinction coefficient, closely related to the intensity variation technique of Sec. 3.5., is termed here the kinetic method. This method was developed originally in conjunction with phosphorescence studies⁸⁰, and later, independently, applied to triplet-triplet absorption spectroscopy^{47,48,81}. The basis of this technique also lies in Eqs. (3.40–3.41). It is convenient for the present derivation to rewrite these as

$$\frac{\mathrm{d}[{}^{1}\mathbf{M}^{*}]}{\mathrm{d}t} = k_{\mathrm{ex}} \left\{ [{}^{1}\mathbf{M}]_{0} - [{}^{1}\mathbf{M}^{*}] - [{}^{3}\mathbf{M}^{*}] \right\} - k_{\mathrm{S}} [{}^{1}\mathbf{M}^{*}], (3.54)$$

and

$$\frac{\mathrm{d}[{}^{3}\mathbf{M}^{\bullet}]}{\mathrm{d}t} = k_{\mathrm{isc}} \left[{}^{1}\mathbf{M}^{\bullet}\right] - k_{\mathrm{T}} \left[{}^{3}\mathbf{M}^{\bullet}\right], \tag{3.55}$$

where k_S and k_T are defined in Eqs. (1.1) and (1.3) respectively and $[^{1}M]_0$ is the initial concentration of solute.

In the photostationary state it is assumed that $d[^{1}M^{*}]/dt = 0$ which implies

$$[{}^{1}M^{*}] = k_{ex} \{ [{}^{1}M]_{0} - [{}^{3}M^{*}] \} / (k_{ex} + k_{s}).$$
 (3.56)

Then, from equation (3.55) and using the fact that $[{}^{3}M^{*}]_{0}$ = 0.

$$[{}^{3}\mathbf{M}^{*}] = \gamma [{}^{1}\mathbf{M}]_{0} \frac{1 - \exp\{-(\gamma + k_{\mathrm{T}})t\}}{\gamma + k_{\mathrm{T}}},$$
 (3.57)

where the (excitation intensity dependent) constant γ is given by

$$\gamma = \frac{k_{\rm ex} \ k_{\rm isc}}{k_{\rm ex} + k_{\rm S}}$$
 (3.58)

At long times, i.e. t >> $(\gamma + k_T)^{-1}$ equation (3.57) may be reduced to

$$[{}^{3}\mathbf{M}^{*}]_{\infty} = \frac{\gamma \, [{}^{1}\mathbf{M}]_{0}}{\gamma + k_{\mathrm{T}}} \,. \tag{3.59}$$

Defining the (excitation flux dependent) rise time of the triplet-triplet absorbance, τ_r as

$$\tau_{\rm r} = \frac{k_{\rm S} + k_{\rm ex}}{k_{\rm ex} (k_{\rm T} + k_{\rm isc}) + k_{\rm T} k_{\rm S}}$$
(3.60)

and the triplet decay time as

$$\tau_{\rm T} = 1/k_{\rm T} \,, \tag{3.61}$$

then equation (3.59) for the photostationary triplet concentration may be recast as

$$[{}^{3}\mathbf{M}^{*}]_{\infty} = [{}^{1}\mathbf{M}]_{0} (1 - \tau_{r} / \tau_{T}).$$
 (3.62)

Thus determination of the growth time of triplet absorption and its decay time after cessation of excitation allows the straightforward estimation of the triplet concentration.

Assuming that the monitoring beam does not significantly deplete the ground singlet state (through transitions to higher singlet states for example) then the relation

$$OD_{T} = \epsilon_{T}^{*} [^{3}M^{*}]_{m} \ell \qquad (3.63)$$

is valid and ϵ_T^* may be estimated.

3.6.2. An Alternative Derivation of the Kinetic Method

As opposed to the technique of intensity variation, the kinetic method is inherently a nonstationary approach. It is thus not clear that the traditional method^{47,48,80} of solving equations (3.54) and (3.55) using the steady state approximation, as described in Sec. 3.6.1., is valid. In fact it turns out that this approximation is unnecessary and leads to an unsatisfactory conceptualization. Thus the following is a more elaborate derivation than is usually given. From this derivation it can be easily seen how the usual equations arise and under what conditions the usual equations apply.

The scheme and mechanism are identical to the intensity variation method. However the kinetic method is a time-dependent method. The photolyzing light is turned on as a very long square pulse. Initially the triplet signal builds up after the pulse is switched on. This build-up is

taken to be exponential with a characteristic time, τ_{T} . When the light of the pulse is turned off at the end of the square pulse, the triplet decays with a lifetime of τ_{T} , given by Eq. (3.61). These two lifetimes can easily be measured as indicated above, the derivation of the kinetic method relates them to the fraction of triplets in a steady-state mixture that has evolved during the duration of the photolyzing pulse.

A consistent derivation of Eq. (3.57), with a rise time given by Eq. (3.60), starts with a solution of the Eqs. (3.54,3.55) for the initial conditions $[^3M^*]_0 = [^1M^*]_0 = 0$. The general solutions are given by

$$[{}^{1}M^{*}] = -G_{-}\exp\{m_{+}t\} + G_{+}\exp\{m_{-}t\} + \alpha$$
 (3.64)

$$[^{3}M^{*}] = -Z_{+}G_{-}\exp\{m_{+}t\}$$

+ $Z_{-}G_{+}\exp\{m_{-}t\} + \beta,$ (3.65)

where

$$m_{\pm} = -(k_{\rm ex} + k_{\rm S} + k_{\rm T})/2$$

$$\pm 1/2*\sqrt{\{(k_{\rm ex} + k_{\rm S} - k_{\rm T})^2 - 4k_{\rm ex}k_{\rm isc}\}}, \qquad (3.66)$$

$$G_{\pm} = \frac{\alpha(k_{ex} + k_{S} + m_{\pm}) - k_{ex}\beta}{m_{-} - m_{+}},$$
 (3.67)

$$Z_{\pm} = (k_{\rm ex} + k_{\rm S} + m_{\pm})/k_{\rm ex},$$
 (3.68)

$$k_{\rm S} = k_{\rm f} + k_{\rm isc} + k_{\rm ic},$$
 (3.69)

$$\alpha = k_{\rm T} k_{\rm ex} {}^{1} M_{\rm lo} / (k_{\rm ex} k_{\rm T} + k_{\rm ex} k_{\rm isc} + k_{\rm S} k_{\rm T}),$$
 (3.70)

and

$$\beta = \alpha k_{\rm isc}/k_{\rm T}. \tag{3.71}$$

It can be seen immediately that this derivation gives results that are quite different in general from the results of the standard derivation of Sec. 3.6.1. The results given by Eqs. (3.64—3.71) hold for the duration of the square pulse, given the conditions of no triplets and excited singlets at the beginning of the pulse.

In order to make further progress in reducing the double exponential behavior of the general results in Eqs. (3.65, 3.66) to the single exponential rise time expression of Eq. (3.60), it is necessary to make several approximations. The first step is to remove the radical in Eq. (3.66) by making an appropriate expansion. There are several ways in which this can be done. The most convenient way is to rewrite the radical as

$$\sqrt{\{(k_{c_A} + k_S + k_T)^2 - 4(k_{c_A}k_T + k_{c_A}k_{isc} + k_Sk_T)\}},$$
(3.72)

to then extract a factor of $(k_{\rm ex} + k_{\rm S} + k_{\rm T})$, and finally to expand the remaining radical, $\sqrt{[1-Y]}$, where

$$Y = \frac{4(k_{\rm ex}k_{\rm T} + k_{\rm ex}k_{\rm isc} + k_{\rm S}k_{\rm T})}{(k_{\rm ex} + k_{\rm S} + k_{\rm T})^2}.$$
 (3.73)

The expansion is allowed if Y < 1. Y must be ≤ 1 or the radical will be imaginary. After making the expansion,

$$m_+ \sim -\frac{k_{ex} + k_S}{(k_{ex} + k_S + k_T)\tau_c} + O(1)$$
 (3.74)

and, as always,

$$m_{-} = -(k_{ex} + k_{S} + k_{T}) - m_{+},$$
 (3.75)

where τ_r is defined by Eq. (3.60). From Eqs. (3.74, 3.75), it can be seen that if

$$(k_{\rm ex} + k_{\rm S}) >> k_{\rm T},$$
 (3.76)

then

$$m_{+} \sim -\tau_{r}^{-1}$$
 (3.77)

and

$$m_- \sim -(k_{ex} + k_S + k_T) + \tau_T^{-1}$$
. (3.78)

The value of m_+ is exactly what is required of one of the exponentials in Eq. (3.65) if the simplified theory of Sec. 3.6.1. is to be obtained. Furthermore, since m_- contains the measured fluorescence rate constant, one expects it to be too fast to see on the time resolution of most instrumentation conventionally employed in the kinetic method. Mathematically, this empirical requirement that $m_- >> m_+$ can be written as

$$(k_{\rm ex} + k_{\rm S}) >> \tau_{\rm r}^{-1}$$
 (3.79)

since one can neglect $k_{\rm T}$ in Eq. (3.78) for m₋ by the condition in Eq. (3.76). So ignoring the second exponential in Eq. (3.65), Eq. (3.65) can be written as

$$[{}^{3}M^{*}] \sim \beta \{1 - (Z_{+}G_{-}/\beta)\exp(m_{+}t)\}.$$
 (3.80)

If conditions can be found such that the coefficient of the exponential, Z_+G_-/β , can be shown to be one, then under those conditions Eq. (3.57) will hold. Using the definitions of Z_+ and G_- and applying the conditions in Eqs. (3.76, 3.79) to the expression for Z_+G_-/β becomes

$$Z_+G_-/\beta = \{k_{\rm ex} - (\tau_{\rm r}^{-1} - k_{\rm T})k_{\rm T}/k_{\rm isc}\}/k_{\rm ex}.$$
 (3.81)

This does reduce to one if

$$k_{\rm ex} > > (\tau_{\rm e}^{-1} - k_{\rm T}) k_{\rm T} / k_{\rm iso},$$
 (3.82)

Thus Eq. (3.65) reduces to the traditional result of Eq. (3.57) under the approximations in Eqs. (3.76, 3.79, 3.82).

Even though the standard result holds, the standard justification does not necessarily hold. Applying the three approximations in Eqs. (3.76, 3.79, 3.82) to the ratio of G_- , the coefficient of $\exp\{m_+t\}$ in Eq. (3.65) for $[{}^{t}M^{*}]$, to α , the time-independent part of $[{}^{t}M^{*}]$ in the same equation, gives

$$G_{-}/\alpha = \{k_{ex}/(k_{ex} + k_{S})\} \times (k_{isc}/k_{T}).$$
 (3.83)

Only if this expression is small does the steady-state condition for [${}^{1}M^{*}$] hold. The second factor on the r.h.s of Eq. (3.83) is equal to β/α by Eq. (3.71), and β/α is the ratio of the time-independent concentrations of the triplet to singlet. This ratio is not likely to be small in a glass where $k_{\rm T}$ may be quite slow and where $k_{\rm isc}$ will still have to be large enough compared to the natural fluorescence lifetime or no triplet will be able to form. The only way for

the time-dependent part of $[{}^{1}M^{*}]$ to be small would be for the first factor on the r.h.s. of Eq. (3.83) to be small. This means that the excitation rate constant, $k_{\rm ex}$, must be very small compared to the decay rate constant for the singlet state, $k_{\rm S}$.

3.6.3. Summary of Advantages and Disadvantages

The parallel derivations of the intensity variation technique in Sec. 3.5.1. and the traditional approach to the kinetic method outlined in Sec. 3.6.1. suggest the close kinship of these two methods⁸¹. Both are usually applied to studies in glassy systems because of the inherent mechanical limitations of rotating sector excitation devices which require long triplet lifetimes. The kinetic method has some advantage over the intensity variation technique in that not as many assumptions need be made about the photophysics involved. Rather this information is obtained directly.

3.7. Partial Saturation (SM) Method

3.7.1. Description of the Method

Recently a method⁷¹ was developed that makes use of the large photon fluxes available with lasers. It is different from the total depletion method, which was discussed in Sec. 3.3., but the final form of the descriptive equations is very similar to the expressions employed in that approach. Originally the technique was devised for a situation other than triplet-triplet absorption, but the method has been applied in this field in the last few years.

The basic equation of the method is derived from a two-state model of the excitation process, where the two states considered are the ground state and the triplet state. In the partial saturation method, the ground state may become significantly depleted, and its kinetic behavior can no longer be ignored. The two kinetic equations for the excitation process in this model are given by Eqs. (3.35) and (3.36). Combining the solution given in Eq. (3.38) for the initial conditions $[{}^{1}M] = [{}^{1}M]_{0}$ and $[{}^{3}M^{*}] = 0$ with the expression for optical density change given by Eq. (3.23) gives

$$\Delta OD = a(1 - \exp\{-bI_p\}),$$
 (3.84)

where

$$a = (\epsilon_T^* - \epsilon_S)[^1M]_0 \ell \qquad (3.85)$$

and

$$b = 2303\epsilon_{\rm S}t\Phi_{\rm T} \tag{3.86}$$

We will refer to Eq. (3.84) as Lachish's equation for identification purposes. The intermediate excited singlet does not appear in the equations even though it is the state that is initially populated by the radiation. Eq. (3.84) is used by fitting the data to the two-parameter functional form. The excitation intensities must be high enough so that the plot of Δ OD vs. I_p reaches a nonlinear region, a partial saturation region, or the method will not work. When the exponential in eq. (3.84) is expanded in low I_p , the leading term is linear in I_p with a coefficient proportional to (a \times

b). There is no constant term, so a and b cannot be determined separately, and thus the ϵ_T^* also cannot be determined independently of Φ_T .

Even though one must use fairly high intensities to reach the nonlinear region, the intensities are lower than those needed to obtain total depletion. Herein lies the advantage of the method over the total depletion method whenever photochemistry is involved.

3.7.2. An Alternate Model for Photoexcitation

In order to see under what conditions the singlet can be ignored in a kinetic model of excitation, we solve a more complete model for the excitation process⁸². The equations in this model will apply only while a square pulse of intensity I_p is on, and the decay of the triplet state will be ignored, as was also done in the two-state model described in Sec. 3.7.1. Such a model for excitation can be written as the following rate equations:

$$\frac{d[{}^{1}M]}{dt} = (k_{f} + k_{ic})[{}^{1}M^{*}] - k_{ex}[{}^{1}M], \qquad (3.87)$$

$$\frac{d[{}^{1}M^{\bullet}]}{dt} - k_{ex}[{}^{1}M] = k_{s}[{}^{1}M^{\bullet}], \qquad (3.88)$$

and

$$\frac{\mathrm{d}[^{3}\mathrm{M}^{*}]}{\mathrm{d}t} = k_{\mathrm{isc}}[^{1}\mathrm{M}^{*}]. \tag{3.89}$$

Notice that these equations are simply Eqs. (3.39-3.41) with k_T =0 (chosen to correspond with the two-state model above).

The solution to these kinetic equations, using the same initial conditions as in Sec. 3.7.1., together with $[{}^{1}M^{*}]_{0}=0$, is

$$[^{1}M] = \Xi((\lambda_{2} - k_{isc}) \exp\{-\lambda_{2}t\}/\lambda_{2} + (k_{isc} - \lambda_{3}) \exp\{-\lambda_{3}t\}/\lambda_{3}),$$
(3.90)

$$[{}^{1}M^{*}] = \Xi(-\exp\{-\lambda_{2}t\} + \exp\{-\lambda_{3}t\}), (3.91)$$

and

$$[^{3}M^{\bullet}] = k_{isc}\Xi(\exp\{-\lambda_{2}t\}/\lambda_{2} - \exp\{-\lambda_{3}t\}/\lambda_{3} + (\lambda_{2}-\lambda_{3})/\lambda_{2}\lambda_{3}).$$
(3.92)

The definitions of the symbols used in Eqs. (3.90), (3.91), and (3.92) are

$$\Xi = k_{\rm ex}[^{1}\mathbf{M}]_{0}/(\lambda_{2}-\lambda_{3}), \qquad (3.93)$$

$$\lambda_2 = (X+Y)/2,$$
 (3.94)

$$\lambda_3 = (X - Y)/2,$$
 (3.95)

where

$$X = k_{ex} + k_f + k_{ic} + k_{isc}$$

= $k_{ex} + k_S$ (3.96)

and

$$Y = \sqrt{(X^2 - 4k_{isc}k_{ex})}$$
. (3.97)

In order to relate this to Lachish's equation, one can expand Eq. (3.92) in a systematic fashion. This is done by rewritting Eq. (3.97) as

$$Y = X \sqrt{1 - 4k_{isc}k_{ex}/X^2}$$
 (3.98)

and expanding everything as a power series in

$$\gamma = k_{\rm isc}k_{\rm ex}/X^2. \tag{3.99}$$

The series is valid if

$$k_{\rm isc}k_{\rm ex} < (k_{\rm ex} + k_{\rm S})^2$$
. (3.100)

The lowest order term in such an expansion is

$$[{}^{3}M^{*}] \sim [{}^{1}M]_{0}(1 - \exp\{-\lambda_{3}t\}) + O(\gamma).$$
 (3.101)

This is almost in the form of Lachish's equation. Using the inequality of Eq. (3.100)

$$\lambda_3 \sim k_{\rm ex} k_{\rm isc} / (k_{\rm ex} + k_{\rm S}).$$
 (3.102)

If the further assertion that

$$k_{\rm ex} << k_{\rm S} \tag{3.103}$$

holds, then

$$\lambda_3 \sim k_{\rm ex} k_{\rm isc} / k_{\rm S} = k_{\rm ex} \Phi_{\rm T} \qquad (3.104)$$

and Eq. (3.101) finally reduces to

$$[{}^{3}\mathbf{M}^{\bullet}] = [{}^{1}\mathbf{M}]_{0}(1 - \exp\{-k_{\rm ex}\Phi_{\rm T}t\}).$$
 (3.105)

Since $k_{\rm ex}$ is proportional to $I_{\rm p}$ by Eq. (3.37), Eq. (3.105) is equivalent to Lachish's equation.

Thus in order for the two-state model for exciting the triplet state to be valid the condition in Eq. (3.103) must hold. This means that k_{ex} must be in general much smaller than 108 s⁻¹. Two examples of photon densities can be used to illustrate whether this is a reasonable expectation or not. In one report⁶⁷ the onset of saturation occurred with pulses of 1.2×10^{-8} einsteins/cm², and in another experiment⁷² nonlinearity was observed at 0.2 MW/cm². Taking a moderate absorbance of the ground state of ϵ_s = 5000 L mol⁻¹ cm⁻¹, these two measurements translate into $k_{\rm ex}$'s of 1.4 \times 10⁷ s⁻¹ and 6.7 \times 10⁷ s⁻¹, respectively. However the photon intensities in these two experiments are too large for the condition in Eq. (3.103) to be wellsatisfied if the singlet lifetime is 10^{-8} s. So in such cases, the a and b parameters obtained by fitting the Lachish equation to the experimental data may not be related to the experimental quantities that they are supposed to represent in Eqs. (3.85) and (3.86).

3.7.3. Summary of Advantages and Disadvantages

The partial saturation method is basically a curvefitting technique. In order to get extinction coefficients from the Lachish formula, high enough intensities must be reached for the ΔOD vs I_p curves to exhibit nonlinearities. However if the power densities and ground state ϵ_s 's are such that $k_{\rm ex}$ is of the order of k_s , then the more exact formula Eq. (3.92) must apply, but it is not simply related to ϵ_T . If the adverse condition of $k_{\rm ex} \sim k_s$ applies, but the formula $\Delta OD = a(1-\exp\{-bI\})$ is used anyway, it is still likely that some fit will be obtained since the exact equation looks, in form, something like the Lachish equation. However the meaning of the extinction coefficients obtained by this method will be in doubt.

If this method can be used in an intensity region where the Lachish formula is valid, then the method has distinct advantages over the total depletion method. The advantages lie in that one can operate in some intermediately intense laser excitation regions that may not be plagued with multiphotonic effects such as intensity quenching due to excitation by the laser of the excited states, 73 multiphotonic ionization or photochemistry via the excited states, 72,83,84 or other true multiphotonic processes. 70

The problem of course is whether a suitable intermediate excitation intensity range does exist for the molecular system under study. This will depend on the laser intensity, I_p , the ground state extinction coefficient, ϵ_s , and the singlet state lifetime, k_s^{-1} ; all of these are components of the condition in Eq. (3.103). If the intensity is too small, no extinction coefficients can be obtained by the method since Δ OD vs I_p must exhibit some nonlinear behavior. However this nonlinear behavior must be due only to saturation, not to the nonlinear processes listed in the last paragraph. Furthermore the intensity must be low enough so that $k_{ex} << k_s$ or the simple formula will not apply.

3.8. Miscellaneous Methods for Measuring Extinction Coefficients

3.8.1. Electron Spin Resonance (ESR)

Most of the methods used to measure triplet extinction coefficients try to avoid the difficult problem of measuring the triplet concentration directly. On the other hand the ESR method tackles this problem directly. The method makes use of the property that molecules in the triplet state are paramagnetic and thus have an esr signal⁸⁵.

Brinen and coworkers^{86,87} and Alfimov et al.⁸⁸ have developed this method. The former workers make use of an equation⁸⁹ which relates the concentration of triplets, N_T , which has selection rule $\Delta m = 2$ to the concentration of a free radical, N_T , which has selection rule $\Delta m = 1$. These concentrations are related by the following formula

$$N_T = N_r(15/8) \{(h\nu)^2/(D^2+3E^2)\} (I_T/I_r),$$
 (3.106)

where I_T and I_r are the integrated microwave absorptions of the triplet and radical, respectively, $h\nu$ is the microwave energy, and D and E are the zero-field splitting parameters of the triplet. The factor containing D and E can be evaluated using the method of Kubo and Tomita⁹⁰ which relates it to the first moment, μ_1 , of the triplet esr spectrum by the formula,

$$\mu_1 = (4\pi/7)(D^2 + 3E^2)\nu/(h\nu)^2.$$
 (3.107)

The advantage of this method is that it attempts to determine the triplet concentration directly. A disadvantage is that the Eq. (3.106) is derived for a uniform concentration of triplets, but the concentration from optical

excitation is governed by Beer's Law. One way to minimize the effects of this last problem is to use small concentrations. Then the variable concentration represented by Eq. (3.10) can be expanded to keep only the first term, and the concentration is roughly constant⁵⁰.

3.8.2. Other Comparative Techniques (ELT, HAT, RF)

In the energy transfer technique there is the transfer of triplet energy from (to) a donor (acceptor) compound with known extinction coefficient to (from) the acceptor (donor) whose extinction coefficient is sought. Particularly with the development of nanosecond pulsed laser and electron sources the possibility of quantifying other photochemical quenching has been realized. Thus the extinction coefficient of the triplet state of 5-nitro-2-furoic acid has been estimated relative to the radical cations of various amines from which it has abstracted an electron⁹¹ (ELT). Hydrogen atom abstraction (HAT) by ketone triplets leads to the corresponding ketyl radicals for which extinction data is often independently obtainable. Photoreduction of benzophenone by lactams has been used in this fashion to evaluate the triplet properties of the ketone⁹². These approaches assume of course that some estimate of the amount of conversion of the triplet state can be obtained and that appropriate corrections can be made for the absorbance accompanying the production of the associated ionic and radical species.

The basis of another comparative method (RF) rests in the observations of Lavalette et al. ⁹³ They have noted that the oscillator strength of the principal triplet-triplet absorption peaks in a series of aromatic hydrocarbons remains roughly constant for a given molecule in a range of solvents. Apart from a (usually small) refractive index correction, this consistency is expected on theoretical grounds, and the result serves as a basis for another useful comparative technique.

To estimate the oscillator strength, f, associated with a particular triplet-triplet absorption band, the area under the absorption profile expressed as a function of wavenumber must be measured. Note also that the extinction coefficient must first be known. Thus if we integrate the identity of Eq. (3.26)

$$\int OD(\nu) d\nu = \int \epsilon_T^* [^3M^*] \ell', \qquad (3.108)$$

$$= \alpha_n f[^3M^*] \ell, \qquad (3.109)$$

where the constant of proportionality, α_n , contains only fundamental constants and the solvent refractive index.

Using Eq. (3.26) once more to eliminate the unknown product, $[^3M^*]$ ℓ , gives an equation relating the oscillator strength to the area under the experimentally determined OD curve scaled to the maximum value of the extinction coefficient for the band.

$$\frac{\epsilon_{\rm T}^*(\nu_{\rm max})}{{\rm OD}(\nu_{\rm max})} \int {\rm OD}(\nu) \, d\nu = \alpha_{\rm n} f. \tag{3.110}$$

If the empirical OD curve is normalized to unit maximum absorbance and the enclosed area termed Σ , then

$$\alpha_{\rm n} f = \epsilon_{\rm T}^*(\nu_{\rm max}) \Sigma. \tag{3.111}$$

Thus for some compound in a certain solvent, if either the oscillator strength is known or if the extinction coefficient is available *and* an appropriate area can be measured, then simply repeating this area measurement in subsequent solvents allows the determination of the corresponding extinction coefficients.

We note again that strictly this procedure ignores the variation in refractive index in a set of solvents. A number of experimental difficulties also arise. Often the complete spectral shape for a given electronic band cannot be detected. Thus some extrapolation of the observed OD is usually necessary. Often, the assumption of "triangular" bands is made, and the area is approximated as the product of the height and halfwidth, δ , (i.e. full width at half maximum). In terms of the area, Σ , defined above this simplification amounts to a direct comparison of halfwidths.

$$\alpha_{\rm n} f = \epsilon_{\rm T}^*(\nu_{\rm max}) \delta. \tag{3.112}$$

Preferably, some extrapolation of the observed OD should be attempted. Commonly the bands are assumed to be symmetrical around their maxima (as a function of wavenumber). Obviously, the OD observed must be strictly attributable to the unknown triplet state or else corrections such as those documented in the foregoing sections must be assessed. Also the electronic nature of the band must remain reasonably intact in the disparate solvating environments.

3.8.3. Pulsed Intensity Variation

The formulation of the intensity variation technique presented in Sec. 3.4. above, with its steady-state assumptions, is adequate under conditions of steady illumination⁷⁷ or conventional flash photolysis⁷⁸. With nanosecond pulsed excitation, however, a time-dependent solution of the corresponding kinetic equations must be sought. Such a solution, for low intensity, is possible for a square pulse within the context of the simple two-state model given in Eqs. (3.35-3.38) above. If the pulse is of width, Γ_p and the excitation rate, k_{ex} , is as in Eq. (3.37), then we find⁸²

$$[^{3}M^{*}]_{\Gamma_{p}}/[^{1}M]_{0} \sim \Gamma_{p}\Phi_{T}k_{ex} - (\Gamma_{p}\Phi_{T}k_{ex})^{2}/2.$$
 (3.113)

Triplet decay within the pulse has been specifically neglected. For a fixed pulse width a linear variation of ΔOD with pulse intensity is thus expected at low intensities. The slope of this line is proportional to the product of the triplet yield and the required extinction coefficient ⁹⁴. This approach has recently been adopted ⁹⁵ to suggest a refinement of the triplet extinction coefficient for benzophenone, a commonly used reference value.

Solution of the three-state model given in Eqs. (3.39-3.41) again with the assumption of no triplet decay during the pulse leads to a more complex limiting behavior. The end-of-pulse triplet concentration is given by⁸²

$$[{}^{3}M^{*}]_{\Gamma_{p}}/[{}^{1}M]_{0} \sim \Gamma_{p}\Phi_{T}k_{ex} + k_{ex}\Phi_{T}\exp(-k_{S}\Gamma_{p})/k_{S} + O(k_{ex}^{2}).$$
 (3.114)

It thus appears that even at low intensities a further requirement must be met to achieve correspondence with the simple result presented above; the rate constant for singlet deactivation must be sufficiently fast to reduce the contribution of the second term in Eq. (3.114). Otherwise a false estimate of the extinction coefficient will be obtained. However, empirically, the change in optical density upon laser photolysis is recorded after the induced fluorescence has subsided. Thus a more suitable comparison with the two-state result of Eq. (3.113) is provided by the long-time solution of the three-state approach which is⁸²

$$[{}^{3}M^{*}]_{\infty}/[{}^{1}M]_{0} \sim \Gamma_{p}\Phi_{T}k_{ex} - (\Gamma_{p}\Phi_{T}k_{ex})^{2}/2 + k_{ex}^{2}(\Phi_{T}^{2} - \Phi_{T})\{\Gamma_{p}/k_{S} + \exp(-k_{S}\Gamma_{p})/k_{S}^{2}\}.$$
(3.115)

This expression differs from the commonly used limiting form of Eq. (3.113) only in terms of second order in $k_{\rm ex}$. Thus, provided no curvature is observed in plots of ΔOD against intensity, the simple relation

$$[{}^{3}M^{*}]/[{}^{1}M]_{0} \sim \Gamma_{p}\Phi_{T}k_{ex}$$
 (3.116)

will be valid.

The principal disadvantage of this technique is, of course, that Φ_T must be known. This problem is weighed against the fact that at low intensities complications such as photochemistry can be alleviated.

4. Evaluation Procedure

4.1. General Methodology

The above discussions of the problems encountered in the application of the various types of excitation sources in Sec. 2. and, in particular, of the advantages and disadvantages inherent in the methods employed to determine the extinction coefficients of triplet-triplet absorption bands listed in Sec. 3., serve as a framework for a scientific evaluation of the wavelength maxima and extinction coefficient data presented in Table 6.

Thus we have pointed out various precautions and corrections required in each method and have outlined their respective domains of applicability. It was initially intended to develop an automatic evaluation procedure based on a quality indicator derived from a list of requirements which, ideally, would have to be satisfied to ensure sound application of the experimental extinction techniques. Unfortunately, in the course of extracting data in the primary literature, we regularly encountered inadequate reporting of experimental methodology. This defi-

ciency should hopefully be remedied in the future if the guidelines for the presentation of photchemical and photophysical data issued by IUPAC^{96,97} are routinely followed. For the purposes of the present compilation we have had to judge the data firstly on a case by case basis as they were converted for entry into our database and save any global comparison until this compilation was near completion. This procedure represents, then, a first step in our evaluation.

Many decisions and interpretations had to be made merely to get the data into our structured data file. Insufficient information was often present in a given work to fulfil even the minimum requirements for tabulation. In this case similar articles by the same authors could often be found and some extrapolation made to glean the necessary data for entry into the table. If this extrapolation was very great, it was documented in the comments column. A most common inadequacy was failure to mention the solvent system used.

A problem central to the kinetic spectroscopy of transients is the identification of the absorbing species. We indicate the method(s) adopted, where these were reported, in the comments for each entry in the main data table. Often, however, comparison with an earlier spectrum of the same molecule or a closely similar compound is implied (if not stated), and this comment has not been included. Of course we are careful to note or eliminate bands which have been interpreted or proven by later authors to be due to other species. Oxygen quenching, the susceptibility of the transient to aeration or oxygenation of the ambient medium, has been most widely quoted as an identification method. Unfortunately the decay rates of many transient species are reduced in the presence of oxygen either through photochemical quenching or energy transfer. For triplet states, the most likely process is thought to be98

4.1
$${}^{3}M^{*} + {}^{3}O_{2} \rightarrow {}^{1}M + {}^{1}O_{2}^{*}$$

Another popular technique involves the sensitization of (by) the transient by (of) well characterized triplet state species. In this method it is implicitly assumed that only ${}^3D^* \rightarrow {}^3A^*$ transitions are effective in transferring energy to (from) the triplet states of known acceptors (donors). However, both ${}^3D^* \rightarrow {}^1A^*$ energy transfer 99 and ${}^1D^* \rightarrow {}^3A^*$ energy transfer 100 have been reported, though the latter is quite rare. These two approaches are most reliable when some estimate of the quenching rates involved is given or when multiple references have been used, for example in an effort to bracket the triplet energy of the unknown sample.

If the absorption can be followed in a glassy matrix, and if the observed transient lifetime matches the decay of phosphorescence, then a triplet state can be confidently assigned. This technique is particularly useful carried out at a number of distinct wavelengths. Corresponding decay times would thus eliminate the possibility of multiple transients. Again in glassy samples, if the transient can be detected by ESR techniques, then the presence of $\Delta m =$

2 transitions in the ESR spectrum provides convincing evidence of its triplet nature. Another interesting technique involves an additional monitoring of a fluorescence signal. If the square of the transient absorbance can be correlated with the intensity of delayed luminescence arising from triplet-triplet annihilation, then a triplet state source is likely⁹⁴.

Simply observing a first-order decay of the absorption signal on a time scale appropriate for triplet disappearence under the conditions used, has been cited by some authors as evidence for triplet state participation. Radicals often vanish through second order processes and can be longer lived. But this method is obviously not free from criticism. Over the course of this work we have formed the impression that serious identification strategies are only attempted when the assignment is either novel or questionable.

Another example of a problem encountered in the data extraction phase is the precise chemical nature of the triplet species, for instance the state of ionization especially when the solvent is water. This problem was addressed by collecting pK_a 's (or pK_b 's) of the triplet conjugate acids (or conjugate bases), by including these in the comments and then by analyzing which triplet species should be present at the pH specified.

As we have stated previously, there exists a good deal of agreement among the values reported by various workers, using different excitation methods for the wavelength maxima of the triplet-triplet absorption spectrum of a particular compound in a particular environment. Solvent shifts in λ_{max} are also consistently documented in general. An exception however is found in the values of λ_{max} derived from uncorrected difference spectra. As a difference spectrum approaches the singlet depletion, SD, region, Δ OD drops precipitously. This effect can add spurious maxima and/or greatly shift maxima that occur in or near the SD region. For this reason we have attempted to avoid quoting maxima near the SD region which have been clearly obtained directly from difference spectra. Also we have not attempted to locate such peaks on published difference spectra. Indeed we have often simply omitted mention of original articles which record spectral data derived solely from such difference spectra. This criterion, unfortunately, means that we have excluded more data relevant to such molecules as porphyrins and chlorophylls than was our original intent. Most reports of triplet-triplet absorption in these compounds contain only uncorrected difference spectra and. in addition, such spectra occur almost entirely in the SD region.

Unfortunately, the relative reproducibility revealed in the various measurements of λ_{max} , is not present in the corresponding estimations of the extinction coefficient, ϵ_{max} . Data for the same molecule in different solvents are of course subject to a wide scatter. However, data for the same solvent/molecule system, but obtained by different measurement techniques, are still inconsistent. Two of the principal methods employed to determine the extinction coefficient of triplet-triplet absorption, the energy trans-

fer method, ET, (see Sec. 3.1.) and that of relative actinometry, RA, (see Sec. 3.4.) as well as a number of the less widespread approaches (see Sec. 3.8.2.) are comparative techniques. Ideally the data derived from these methods should form a network within which questions of internal consistency both within a given technique and across a range of approaches could be answered. A number of problems remain which currently prohibit the achievement of such a goal. Usually authors mentioned the standards that they used for reference in some detail. However quite often the authors would quote a standard that was measured in a totally different solvent. The reference ϵ may have been measured in a similar solvent, but this does not automatically guarantee that it will be unchanged in the solvent that the authors found convenient to study. A good deal of work has been done to document⁹³ that this apparent neglect of solvent effects underlies much of the apparent discrepancies between ϵ_{max} measured in different laboratories (even if this determination is performed by the same technique). In fact it was shown that the use of oscillator strengths would serve to be a better guide to relating the absorption spectrum of a solute in one solvent with its spectrum in another solvent⁹³.

This empirical rule that oscillator strengths are relatively independent of solvent has a theoretical justification. Most of the well-studied spectra are allowed transitions; thus solvent effects, being first- or second-order perturbations, will not contribute a very large fraction to the transition matrix elements, which are directly related to oscillator strengths and not to ϵ 's. In order to deal with this problem for this compilation, we made a special effort to report, in the comments for comparative methods, both the reference ϵ used in addition to the solvent which was used to get that particular reference ϵ and the relevant oscillator strengths if given.

In summary, then, roughly 30% of the entries in the Table contain extinction information. Of these, about 40% are relative measurements which can be checked for internal consistency. Data derived from other techniques lie outside of this network, and their quality must be judged accordingly.

4.2. A Statistical Analysis

4.2.1. Statistical Test of Solvent and Temperature Effects

As a further step in a quantitative evaluation of the triplet-triplet extinction coefficients, we undertook a short statistical analysis of the data. One of the first things that strikes an observer of the extinction coefficient measurements is that there is a large variation between the values derived for most compounds for which multiple determinations exist. The question arises as to whether these variations are so large as to swamp more systematic scatter arising for example in solvent effects. Some progress¹⁰¹ has already been made in evaluating photophysical and photochemical data by ignoring solvent effects and by treating all the variation between measurements as random.

To judge whether or not the systematic variations can be ignored, we ran a series of statistical tests on one of the key compounds. The approach chosen was a t test which gauges the validity of the hypothesis that two sample distributions had the same mean. The test assumes that the variances of the two sample distributions are the same, but unknown. The procedure is described by Ostle and Mensing. 102 A test statistic, T, is used in the method, and T is defined by

$$T = (\langle X_1 \rangle - \langle X_2 \rangle) / \sqrt{\{S^2(1/n_1 + 1/n_2)\}}, \quad (4.1)$$

where S^2 is the estimate of the common variance given by

$$S^{2} = \{(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2}\}/(n_{1}+n_{2}-1)$$
 (4.2)

and where $\langle X_i \rangle$, n_i , and s_i are the mean, size, and sample standard deviation, respectively, of the ith sample. The critical region of the test is given by

$$abs(T) \ge t_{(1-\alpha/2)(n_1+n_2-2)}$$
 (4.3)

t is obtained from tables of Student's t-distribution, and $\alpha \times 100\%$ is called the level of significance of the test. The level of significance is the probability that one will reject a true hypothesis for the given test procedure. Traditionally, the acceptance or rejection of hypotheses is based on a 5% level of significance, or even on a 1% level if it is really important to avoid rejecting a true hypothesis. The test is done by first calculating T, from Eq. (4.1) and then checking to see whether the calculated T falls in the region defined in Eq. (4.3) for the chosen level of significance. If T falls in this region, then the hypothesis is rejected.

Five such *t*-tests were run on the anthracene data using 31 measurements. The 2800 value was discarded because of a systematic error in the measurement, and another value was discarded from these initial tests because no solvent conditions were given. Five separate tests were run, but tests were made on three general areas. First the data was tested to see if the measurements in polar environments and nonpolar environments had different means. Second it was tested whether measurements at low-temperature and room temperature had the same means. Third it was tested whether measurements in benzene vs other nonpolar solvents were different.

In all of the five specific tests for anthracene, the hypotheses that "the means are equal" in all cases could not be rejected at the 5% level of significance. In fact the observed values of the test statistics were just significant at the "levels of significance" ranging from 14 to 30%, see Table 3. These values, being in the range of 14 to 30%, are well above the traditional levels of 5% or 1%. This implies that if one chooses to reject the hypotheses that "the means are equal", then one runs quite a large risk, 14 to 30%, of rejecting a true hypothesis.

The simple sequence of t-tests just described is only one way to test for the equality of a series of means. It can lead to several problems; one of which is the problem of transitivity of the means. This problem is that if one tests means two-by-two it is possible to find no significant differences from the tests even when the differences are

present. This could happen if not all possible pairs are tested. However if all pairs of means are tested two-by-two then it becomes more likely that a mistake will enter in the form of a rejection of a true hypothesis. 103

In order to circumvent the problems of doing a large number of two-by-two tests, but yet being able to test all the means, one can use an F-test along the lines of a technique called Analysis of Variance (ANOVA). The specific test we chose is described on pp. 123-5 of Ostle and Mensing¹⁰² with the ANOVA for an unequal number of experimental units described¹⁰² on pp. 295-7. The hypothesis to be considered is that "the means of all the groups are equal" as opposed to the alternate hypothesis that "at least one of the group means is different than the other means." In the ANOVA technique one compares the variation within the groups to variations among the groups. If the variation among the groups is significant relative to that within the group, then the hypothesis that the means are equal is rejected.

For the ANOVA, we chose five groups related to solvent and temperature among the anthracene measurements. The five groups were polar-RT, polar-LT, benzene-RT, cyclohexane-RT, and nonpolar-RT. RT and LT refer to room temperature and to low temperature, respectively. The nonpolar group did not contain any benzene or cyclohexane data. With this five-level classification of the same 31 measurements of anthracene as in the t-tests, we obtained an F-ratio of about 1. This indicated that the hypothesis was not to be rejected at the usual levels of significance. However since there may be extreme values that are significantly affecting this result, we used Chauvenet's criterion (see Sec. 4.2.2.) on the data to check for such outliers. The value of 118000 failed and was rejected. With this revision of the data groups we performed the ANOVA again and obtained the traditional ANOVA table given in Table 4.

TABLE 3. t tests of solvent effects in anthracene

Dual comparisons	No. in samples	t test statistic	f* /%	
Polar / Nonpolar (RTb)	9/16	1.06	30	
Polar (KT) / Polar (LT°)	9/6	1.61	14	
All (RT) / All (LT)	25/6	1.21	24	
Benzene / other Nonpolar	6/10	1.09	30	
Benzene / Cyclohexane	6/5	1.17	28	

^a Comparison is statistically significant at f %.

TABLE 4. ANOVA table for anthracene a

Source of Variation	Degrees of Freedom	Sum of Squares /× 109	Mean Square /× 108	F Ratio
Mean	1	111	1110	_
Among Groups	4	1.11	2.78	1.15
Within Groups	25	6.05	2.42	_
Total	30	111		

^{*} Excluding outlier.

^b Room temperature.

^c Low temperature (usually 77 K).

The F-ratio of 1.15 was compared to an F-distribution with 4 and 25 degrees of freedom and was found to be not significant at the traditional levels. The F-ratio would have to be about 3 before one could reject the equality of the group means at a 5% level.

Both the *t*-tests and the ANOVA have limitations. They complement each other in the sense that the ANOVA assumes that all of the groups have the same variance, but each *t*-test makes a separate assumption about the equality of the variances of the means that it is testing. The ANOVA is more limited in this sense, but it has the advantage that it tests the means only once as discussed above.

One feature that is shared by both tests is the assumption of an underlying normal distribution. It is relatively easy to test whether the large distribution of 30 measurements used in the ANOVA is normal or not. The procedure we chose was the Kolmogorov-Smirnov test, described in a textbook by DeGroot¹⁰⁴ on pp. 465–8. The largest difference, D_{n}^* between the empirical distribution function and the distribution from a standard normal distribution was 0.10 for the data used in the ANOVA above. Following through the rest of the procedures for the Kolmogorov-Smirnov test, we found a tail region of over 90%, which is very far from the 5% or 1% tails traditionally used in rejecting the hypothesis that the distribution is normal.

Another assumption of the statistical models underlying the t-tests and the ANOVA is that the variances of the normal distributions of the groups being tested are equal. One can also test this assumption if one uses an F-test. The F statistic chosen 102 is

$$F = s_1^2 / s_2^2 (4.4)$$

where the rejection region of the test is

$$F \geqslant F_{(1-\alpha/2)(n_1-1,n_2-1)}$$
 (4.5)

or

$$F \le F_{(\alpha/2)(n_1-1,n_2-1)}$$
 (4.6)

As before s_i and n_i are the sample standard deviation and size of the ith sample, respectively, and the F's on the righthand sides of Eqs. (4.5,4.6) are taken from tables of the F-distribution with n_1-1 and n_2-1 degrees of freedom. The variances of the five pairs of groups in Table 3 were tested using this test, and none of the five tests showed any statistically significant result.

In summary the t-tests and the ANOVA both failed to detect differences between the means of the groups of anthracene measurements based on solvent and temperature. This does not imply that the measurements all truly come from the same distribution and that there are no solvent or temperature effects. But it does indicate that, given the data in the literature, we cannot reject the hypothesis that there is no statistically significant difference between the means of the various solvent-temperature groups.

4.2.2. Mean ϵ and Confidence Intervals

Based on the results of the statistical tests of solvent and temperature effects on anthracene, we proceeded with the statistical analysis by ignoring these effects. We studied the 32 compounds that had five or more measurements at a particular wavelength. The number five was chosen because it allows reasonable statistics to be done, such as using Chauvenet's criterion.

Since the samples were taken from a distribution whose mean and variance are both unknown, we used the t factor to calculate the confidence interval. ¹⁰² The assumption made here is that the sample is distributed normally with unknown mean and variance. The 95% confidence interval was calculated from

$$CI = t_{0.975(N-1)} \times s / \sqrt{N},$$
 (4.7)

where s is the sample standard deviation and N is the number of measurements. The values of $t_{0.975(N-1)}$ were taken from tables of the t-distribution. The calculated means of the samples of measurements on the various compounds are given in Table 5 along with the calculated 95% confidence intervals.

In an attempt to critically evaluate the data, we chose Chauvenet's criterion to examine the individual measurements on each of the 32 compounds. The guiding principle 105 of Chauvenet's criterion is that individual measurements should not inordinately influence the calculation of the mean of a sample. If an individual measurement has a much larger (or smaller) deviation from the mean than any other measurements, then it will pull the value of the mean toward it to a much greater extent than other measurements pull the mean toward themselves. Measurements that do affect the mean in such an unwanted fashion can be identified and eliminated from the sample if desired. The explicit form is such that if the deviation from the mean, d_i, is greater than q, where q is given by

$$1 - \{1/s\sqrt{(2\pi)}\} \times \int_{-q}^{+q} \exp\{-y^2/(2s)\} dy = 1/(2N),$$
(4.8)

then the ith measurement can be eliminated from the calculation of the mean. This is Chauvenet's criterion.

Chauvenet's criterion gives a more flexible procedure than simply discarding measurements that are 2 (or some other fixed number of) standard deviations away from the mean. ¹⁰¹ For the same sample standard deviation, s, a sample with N=5 would throw away measurements that had $d_i \ge 1.68 \times s$. However, a sample with N=30 would not throw away a measurement unless $d_i \ge 2.39 \times s$. This implies that the criterion is much more tolerant of large deviations in large samples than it is in small samples, which is just another way of saying that the mean of a small sample is more sensitive to a large deviation than is the mean of a large sample.

TABLE 5. Average extinction coefficients

Compound Name (λ _{max} /nm) ^a	No.	$<\epsilon>$ /L mol ⁻¹ cm ⁻¹	95% confidence interval	ϵ (benzene) ^b /L mol ⁻¹ cm ⁻¹	ε(cyclohexane) ^b / L mol ⁻¹ cm ⁻¹	
1. Acridine (440)	12	23900	±3250 (±14.%)	24300	31500	
2. Anthracene (430)	31	61000	$\pm 5670 (\pm 9\%)$	45500	64700	
3. Benz[a]anthracene (490)	10	23300	$\pm 4190 (\pm 18.\%)$	20500	28800	
4. Benzo[a]coronene (570)	5	22300	$\pm 4170 (\pm 19\%)$	-		
5. Benzophenone (525)	17	7640	$\pm 1050 (\pm 14.\%)$	7630		
6. Biphenyl (360)	8	36600	$\pm 6300 (\pm 17.\%)$	27100	42800	
7. Carbazole (425)	6	14000	$\pm 3110 (\pm 22\%)$	-		
8. 3-Carbethoxypsoralen (450) °	7	4620	$\pm 1870 (\pm 40\%)$			
9. β-apo-14'-Carotenal (480)	4	120000	$\pm 9840 (\pm 8\%)$			
10. Chloranil (510)	5	6810	$\pm 1170 (\pm 17\%)$	***************************************		
11. Chrysene (580)	7	30000	$\pm 13700 (\pm 46\%)$	****		
12. Dibenz[a,h]anthracene (580)	6	21600	$\pm 10000 (\pm 46\%)$	Manufacture Annual Control of the Co		
13. 9,10-Diphenylanthracene (445)	6	16500	$\pm 2230 \ (\pm 13\%)$			
14. DPB (390)	5 ^d	52600	$\pm 8890 (\pm 17\%)$			
15. DPH (420)	7	112000	$\pm 5390 (\pm 5\%)$			
16. DPO (440)	7	189000	$\pm 22900 (\pm 12\%)$		*****	
17. Duroquinone (490)	10	6180	$\pm 1330 (\pm 21.\%)$	6950	5330	
18. Methylene Blue+ (420)	4	10800	$\pm 3760 (\pm 35\%)$			
19. Methylene Blue+, protonated (370)	4	13800	±1910 (±14%)	-		
20. C ₁₇ -aldehyde (440)	7ª	59600	$\pm 6640 (\pm 11\%)$	*		
21. Naphthalene (415)	16	22500	$\pm 5230 (\pm 23\%)$	13200	24500	
22. Naphthalene-d ₈ (415)	6	23500	$\pm 11700 (\pm 50\%)$			
23. 5-Nitro-2-furoic acid (490)	5 ^d	20700	$\pm 1550 \ (\pm 7\%)$			
24. Phenanthrene (490)	10	26900	$\pm 6500 (\pm 24\%)$	15700	25200	
25. Pyrene (415)	5	36400	$\pm 14700 (\pm 40\%)$	20900	30400	
26. 1-Pyrenecarboxaldehyde (440)	10 ^d	18400	$\pm 311 \; (\pm 2\%)$	***********		
27. 11-cis-Retinal (450)	6	49700	±20300 (±41%)			
28. all-trans-Retinal (450)	14	71000	$\pm 3420 \ (\pm 5.\%)$			
29. TMPD (620)	5	15300	$\pm 6610 (\pm 43\%)$	-	12200	
30. Triphenylene (430)	9	12700	$\pm 4120 (\pm 32\%)$			
31. $Ru(byp)_3^{2+}$ (370)	5	27600	$\pm 1830 (\pm 7\%)$		***************************************	
32. Zinc(II) phthalocyanine (480)	5	33300	$\pm 15400 (\pm 46\%)$			

^a Nominal wavelength maximum (large environmental and instrumental shifts are often present).

The measurements that do not satisfy Chauvenet's criterion for the 32 compounds studied are marked in Table 6. These values are not included in the averages listed in Table 5. There are two other type of measurements that we have excluded from the averages in Table 5 and have marked in Table 6.

The first includes measurements that are commonly acknowledged to contain systematic errors. In this class we have marked only values from some of the first papers to measure extinction coefficients of triplet-triplet absorption. These values are uniformly too small by an order of magnitude or so.

The second type of measurement that we have excluded from averages in Table 5 are measurements in mixed crystals, neat liquids and micelles. These measurements are also uniformly low compared to other measurements. In this case however, we believe the values are low for a good physical reason. It seems likely that there are intermolecular interactions between the chromo-

phores that are causing the hypochromic effect. This intermolecular effect is well studied in DNA (see Chase and Rhodes 106 for a theoretical review). A similar effect is still likely in mixed crystals. Depending on the host, intermolecular communication between the guest molecules is possible.

4.2.3. Discussion of Statistical Results

The above statistical analysis can be summarized as follows: Based on the statistical tests on the anthracene data, we found no statistically significant solvent or temperature effects. Furthermore the data for anthracene appear to follow a normal distribution. Generalizing these two statistical results to all the compounds, we calculated means and 95% confidence intervals for those compounds with more than five measurements. In addition we chose again Chauvenet's criterion to tag outliers in the data.

However, as is well known from other varieties of molecular spectroscopy, solvent and temperature effects

^b Data from R. Bensasson and E.J. Land, Trans. Faraday Soc. 67, 1904 (1971).

c 450 nm not necessarily a maximum.

^d Average computed from one paper only. Scatter in the data for these compounds is likely due to real solvent and temperature effects.

do in fact exist. The question then arises as to how the statistical results obtained above should be viewed.

To support the view that solvent and temperature effects are significant in this data, one only needs to look at Table 6 and see how the extinction coefficients often go up, particularly in glasses at low temperature. So the data do in fact show systematic variations due to solvent and temperature. Furthermore the compounds tagged with superscript "d" in Table 5 are reported in single papers and should therefore give some indication of the solvent effect because systematic errors due to different laboratories are "blocked out", in the statistical sense. Finally the widely used standards⁶¹ listed in the last two columns of Table 5 show a significant deviation between cyclohexane and benzene which might not be expected to be so large because of the similarity of the physical properties of these two solvents.

The conflict between the lack of statistically significant solvent effects and the appearance of them in the several forms as listed above can be rationalized, of course. The resolution of the conflict most likely lies in the random experimental errors in the difficult measurements and in the various systematic errors between laboratories and methods. These errors are large enough so that the discrepancies between measurements within solvent groups are comparable to or larger than fluctuations among solvent catagories. A quantitative test of this was given above in the ANOVA procedure on the anthracene data.

The sources of these systematic errors due to methods have already been discussed extensively in Sec. 3. For convenience we list some of the more prominent conclusions here again. Singlet depletion (SD) gives an upper bound due to underlying triplet absorption. Total depletion (TD) gives a lower bound due to lower triplet concentrations either from competing photophysical (multiphotonic) or photochemical processes or from insufficient laser pulse length. Results from the energy transfer (ET) technique can be either high or low due to lack of unit probability of energy transfer (high when the unknown is the triplet donor and low when the unknown is the triplet acceptor).

The systematic errors due to variations between laboratories may partially be accounted for by the systematic errors incurred by the choice of method, but an additional source is to be found among the various procedures adopted in different laboratories. Some of the more prominent of these include improper overlap of monitoring beam with exciting beam,53 monochromator slits too wide for sharp spectra (particularly important for the aromatic hydrocarbons, leading extinction coefficients being too low), 50 different standard extinction coefficients for relative methods like energy transfer and relative actinometry, improper calibration of monochromator (making these standards even more tenuous in relative methods and throwing off the singlet wavelength where the standard ϵ is measured in singlet depletion measurements), and insufficient number of wavelength measurements to clearly define the absorption peaks. Many of the commonly used reference extinction coefficients are unfortunately for compounds with particularly sharp spectra such as anthracene.

4.3. Tentative Standard ϵ 's

Taking into account that experimental errors, both methodological and instrumental, seem to induce variations in the data that are greater than, or of the same order as, the solvent effects, it is tempting to use the average extinction coefficients in Table 5 as standards. We feel it would be premature to do this at this time. However lacking further analysis, we would recommend that these values represent some of the best ϵ 's that are available at this time.

Until further analysis can be performed, we recommend that a hierarchy of values be used. First we would still recommend the Bensasson-Land values⁶¹ in the last two columns of Table 5 if the solvents used are benzene or cyclohexane. The only exception to this is that 7220 L mol⁻¹ cm⁻¹ should be used for benzophenone in benzene.⁹⁵ For these measurements great care was taken to make these values stand as bench marks. Our only reservation is that these measurements were made using primarily the energy transfer method and are susceptible to its weaknesses. The measurements are also susceptible to the usual instrumental errors, but great care seems to have been taken to avoid the instrumental pitfalls in these two works.

On the next level of the hierarchy of values, we tentatively recommend the average values in Table 5. These values are not equally recommended and should only be used in a nested hierarchy. The hierarchy we recommend can be used as follows: First, for compounds that have values in one of the last two columns of Table 5, use the average ϵ 's only for solvents that are not benzene or cyclohexane. Second, use the average values of ϵ for all other compounds with exceptions being made for the compounds with confidence intervals exceeding $\pm 30\%$. Third, average ϵ 's for compounds with large confidence intervals of over $\pm 30\%$ should not be used as a standard in a relative measurement of an unknown extinction coefficient (or quantum yield) unless no other compound with a more reliable standard can be used.

At this point it should be noted that the average ϵ 's with their accompanying confidence intervals are not always consistent with the values in the last two columns of Table 5. This is true even for the compounds with confidence intervals of less than $\pm 30\%$. The most notable example is the Bensasson-Land value⁶¹ for anthracene in benzene which falls outside the computed 95% confidence interval. The suggested hierarchy is set up to favor the Bensasson-Land values in this case.

Of the 10 compounds in Table 5 with confidence intervals exceeding $\pm 30\%$, most have small sample sizes. The sources of the large confidence intervals vary somewhat among the compounds. Over half of these compounds are aromatic hydrocarbons with sharp peaks that sharpen even further at low temperature. With the small sample sizes, our assumptions of normality and comparable experimental variations vs. solvent variations may not hold

for these compounds. For example in the case of chrysene there are only 7 measurements. Of these, three are measurements in low temperature glasses and have $\epsilon > 36000$ L mol $^{-1}$ cm $^{-1}$. Another of the 7 measurements was an early 107 measurement that seems unusually low at 8800 L mol $^{-1}$ cm $^{-1}$. For chrysene Chauvenet's criterion does not help because of the particular scatter of the data. Furthermore there seems to be a well-founded physical reason for the scatter, namely sharper spectra at lower temperature, violating our assumption that temperature effects are comparable with experimental errors.

Another of the 10 compounds with larger than $\pm 30\%$ confidence intervals that is not well represented by the average ϵ 's is 11-cis-retinal. Like the aromatic hydrocarbons, it has a large confidence interval. In addition some workers¹⁰⁸ believe in a common triplet state for some polyene trans and cis isomers. If this were so in the all-trans and 11-cis isomers of retinal, then 11-cis-retinal should have an $\epsilon \sim 70000$ L mol⁻¹ cm⁻¹. This points to the two values¹⁰⁹ of 27000 L mol⁻¹ cm⁻¹ as either suspiciously low or as showing unusual solvent effects.

A word should be said about the decision to cut the recommended ϵ 's to compounds with $\pm 30\%$ confidence intervals. First of all, $\pm 30\%$ is roughly on the most pessimistic limits of reported "error" limits by the authors of papers reporting extinction coefficients. In fact rarely are error bars stated as being more than $\pm 25\%$. However after spending much time evaluating the data, we tend to favor the more pessimistic estimates. In addition the average ϵ 's with confidence limits of less than $\pm 30\%$ tend to fall close to or between the Bensasson-Land values in the last two columns of Table 5.

As mentioned above the recomended hierarchy of values is only tentative and is contingent on further work. It was hoped that further evaluation could be done using the principle that oscillator strengths do not change with solvent. Although this approach is promising, it is difficult to carry out on a large scale because one must have complete spectra in each solvent. Another approach that seems more feasible is a global fit¹⁰¹ using the recommended values obtained to correct all the ϵ 's obtained from relative measurements. Using a consistent set of values as standards for the relative measurements should in itself be an improvement over the present analysis.

Arrangement of the Data Table

Table 6, the data table, contains over 3000 entries. These are grouped under the name of the compound to which they pertain. The compounds themselves are numbered and listed alphabetically, with secondary attention being paid to numerical substituent locations. Common names are employed and we rely on the use of a compound name index, which contains both synonyms and inverted names, and a molecular formula index to help locate specific data.

Multiple entries which occur for a particular compound are further ordered alphabetically by the solvent name or abbreviation. Final questions of tabular precedence are settled by appeal to the serial number accorded to each paper upon acquisition for our local bibliographic database.¹¹

In addition to specifying the ambient medium, the "solvent" column reports, in parentheses, the temperature at which the measurement was carried out. If no temperature is shown then room temperature may be assumed unless otherwise noted in the comments.

The slash (/) in the "method" column separates the excitation method from the extinction determination technique. An explanation of the abbreviations used for each is given below. Occasionally the only reported data has been obtained as an average of unquoted primary values from different methods. In this case both methods are included and separated by an ampersand.

The third column contains the heart of the compilation: the wavelength(s), λ_{max} of maximum triplet-triplet absorbance together with the corresponding extinction coefficient(s), ϵ_{max} , where estimated. Multiple entries are presented in order of decreasing wavelength (i.e. in increasing energy). We highlight the following use of two superscripts:

- * implies that data have been obtained by computerassisted digitization¹¹⁰ from a spectrum in the cited reference,
- b implies that the (wavelength, extinction coefficient) pair are not necessarily related to a spectral peak.

Other superscripts are used as indicated in the footnotes.

The fourth column, the "comments" column, collects information from a number of separate items in our database. In the table this construction is evidenced by the presence of semicolons (;) delimitating the items. Primary comments comprise an identification technique if reported. This is indicated by a preceding ‡. If this symbol is absent then no attempt to verify the nature of the transient, other than by similarity to a previous measurement, is mentioned in the article from which the data have been taken. Other comments, such as relative intensities in multiply peaked spectra, if stated or derived from a figure in the original work are included next. When a comparative method has been used to determine the extinction coefficient, the data relative to which the estimation has been made (if reported) are present in a set form giving both wavelength and extinction coefficient of the standard employed, as well as the solvent in which these values were obtained. Details of any additional assumptions, such as triplet yields in the relative actinometry technique, which were made by the original authors to enable the comparison, are also included. Further specification of, for example, the solvent system, e.g. ratio of mixture, etc. are then given together with any other information relevant to the evaluation of the data in the wavelength-extinction column.

The remainder of the comment is constructed in a fixed format from entries for triplet state lifetimes (μ s), pH of solution, half-life of transient (if second order processes

are present and unsubtracted), oscillator strength of reported transition, rate constant for energy transfer to (or from) the species indicated earlier in the comment and rise-time of the triplet-triplet absorption. We note here again that these associated data, while relevant to the study and characterization of triplet states in general, have not been subjected to a procedure of critical evaluation.

The last column contains the serial number which may be used to locate the reference in the list provided subsequent to the table.

5.1. Lists of Abbreviations

We have made use of the following abbreviations in the body of the Table. These are mainly confined to the "Method" column though some do appear in the "Comments" column.

a. Triplet State Population Method

-	
CWL	Continuous wave laser excitation
FP	Flash photolysis
LP	Laser photolysis (pulsed)
MOD	Modulated excitation (e.g. rotating sector)
PR	Pulse radiolysis
PS	Photostationary
-ET	(coupled with energy transfer)

b. Extinction Coefficient Estimation Method

See comments
Electron transfer
Electron spin resonance intensity
Energy transfer
Hydrogen atom transfer
Intensity variation
Kinetic method
Pulsed intensity variation
Relative actinometry
Constant oscillator strength
Singlet depletion
Partial saturation
Total depletion

In addition, to conserve space, a number of solvents and mixtures have been abbreviated. These are mainly confined to the "Solvent" column and are listed below.

AOT	Di-(2-ethylhexyl) sodium sulfosuccinate
BuOH	Butanol (isomer unspecified)
1-BuOH	1-Butanol
tert-BuOH	Itert-Butyl alcohol
	Di(trifluoromethyl)methanol
CTAB	Cetyltrimethylammonium bromide
CTAC	Cetyltrimethylammonium chloride
DDDAB	Didodecyldimethylammonium bromide
DMF	Dimethyl formamide
DMSO	Dimethyl sulfoxide
DODAC	Dioctadecyldimethylammonium chloride
DTB	Dodecyltrimethylammonium bromide
EPA	Diethyl ether/Isopentane/Absolute
	ethanol (5:5:2)
EtOH	Ethanol

Et_2O	Diethyl ether
MCH	Methylcyclohexane
MeOH	Methanol
3-MH	3-Methylhexane
3-MP	2-Methylpentane
MTHF	Methyltetrahydrofuran (isomer
	unspecified)
2-MTHF	2-Methyltetrahydrofuran
PFMCH	Perfluoromethylcyclohexane
PMMA	Poly(methylmethacrylate)
PPFO	Potassium perfluorooctylsulfonate
PrOH	Propanol (isomer unspecified)
1-PrOH	1-Propanol
2-PrOH	2-Propanol
PVA	Poly(vinyl alcohol)
SDS	Sodium dodecyl sulfate surfactant
SHS	Sodium hexadecyl sulfate surfactant
SPFO	Sodium perfluorooctanoate
THF	Tetrahydrofuran

5.2. Lists of Symbols

The following symbols, used in the body of the text are collected here for convenience.

a.		bilities

Φ	total luminescence yield
$\Phi_{ m f}$	quantum yield of fluorescence
$\Phi_{\mathtt{T}}$	quantum yield for triplet state formation
$\Phi_{T}(A)$	quantum yield for triplet state formation in
	triplet energy acceptor, A
$\Phi_{T}(D)$	quantum yield for triplet state formation in
	triplet energy donor, D
$\Phi_{T}(\mathbf{R})$	quantum yield for triplet state formation in
	reference compound, R
$\Phi_{T}(T)$	quantum yield for triplet state formation in
	unknown compound, T
\mathbf{P}_{tr}	probability of triplet-triplet energy transfer

extinction coefficient for ground (singlet)

b. Extinction coefficients

 ϵ_{A}

	state of energy acceptor, A
$\epsilon_{\rm A}^{ullet}$	extinction coefficient for excited (triplet) state of A
€D	extinction coefficient for ground (singlet) state of energy donor, D
$\epsilon_{\mathrm{D}}^{ullet}$	extinction coefficient for excited (triplet) state of D
€R	extinction coefficient for excited (triplet) state of reference triplet, R
€s	extinction coefficient for ground singlet state, S, of arbitrary molecule
$\epsilon_{\mathrm{T}}^{ullet}$	extinction coefficient for excited (triplet) state of unknown triplet, T
_	

c. Intensities

intensiti	es
$I_{p}(\mathbf{R})$	intensity of sensitized phosphorescence
	from reference compound
$I_{p}(T)$	intensity of sensitized phosphorescence
-	from unknown compound
I	true transmitted light intensity

0	I. CARMICHAEL	AND G. L. H	UG
I_0	incident light intensity	ΔOD_D	change in OD of donor (triplet)
$I_{\mathfrak{m}}$	intensity of monitoring light		extrapolated to time zero
$I_{ m m}^{ m o}$	incident intensity of monitoring light	ΔOD_s	change in OD due to isolated singlet decay
I_{p}	intensity of photolyzing light	ΔOD_T	change in OD due to isolated triplet growth
$I_{\rm p}^{\rm o}$	incident intensity of photolyzing light	h Doto e	- amatamta
I_{s}	scattered light intensity in absence of	h. Rate o	
_	excitation	k_{A}	rate constant for acceptor triplet state
$I_{ m s}'$	scattered light intensity in presence of	1-	deactivation
	excitation	$k_{ m D}$	rate constant for donor triplet state deactivation
d. Miscel	llaneous	k_{DA}	rate constant for ET without acceptor
$A_{\rm r}$	integrated microwave absorbance of	DA.	excitation
•	reference radical	$k_{ m et}$	rate constant for triplet energy transfer
A_{T}	integrated microwave absorbance of triplet	k_{ex}	rate constant for ground state photo-
	state		excitation
l	optical path length (of monitoring beam)	k_{ex}'	rate constant for excited state photo-
x	measure of distance on along monitoring		excitation
	path	$k_{\rm ic}$	rate constant for internal conversion in the
$ au_{ extsf{T}}$	triplet state lifetime		singlet manifold
$ au_{ m r}$	(excitation rate dependent) rise time of	$oldsymbol{k}_{ ext{isc}}$	rate constant for singlet to triplet inter-
	triplet-triplet absorption		system crossing
[M]	concentration of M	$k_{ m isc}^{\prime}$	rate constant for triplet to singlet inter-
$[\mathbf{M}]_0$	concentration of M at time zero		system crossing
$[\mathbf{M}]_{\infty}$	concentration of M at long times	$k_{ m isc}^{\prime\prime}$	rate constant for T_1 to S_1 intersystem cross-
$[\mathbf{M}]_{x=0}$	concentration of M at front face of cell		ing
$[\mathbf{M}]_{x=\ell}$	concentration of M at rear of cell	$k_{\mathtt{p}}$	rate constant for phophorescence
34.1		$k_{ m pc}$	rate constant for photochemistry from S ₁
e. Moleci	ular species	$k_{\scriptscriptstyle \mathtt{p} \circ}^{ \prime}$	rate constant for photochemistry from T ₁
^l A ^l A*	singlet ground state of energy acceptor, A	$k_{\mathtt{S}}$	rate constant for singlet state deactivation
${}^{2}A^{-}$	singlet excited state of A	k_{T}	rate constant for triplet state deactivation
${}^{3}A$	radical anion of A		
$^{1}\mathbf{D}$	triplet excited state of A		6. Acknowledgments
¹ D,	singlet ground state of energy donor, D	The Rad	liation Chemistry Data Center is supported
³D,	singlet excited state of D		the National Bureau of Standards, Office of
¹M	triplet excited state of D		eference Data and by the Office of Basic En-
IVI	singlet ground state of arbitrary molecule, M		es of the Department of Energy. This is Radi-
${}^{1}\mathbf{M}^{\bullet}$	singlet excited state of M	ation Labor	ratory Document No. NDRL – 2690.
$^{3}M^{\bullet}$	triplet excited state of M	The auth	ors thank Dr. W. P. Helman for the initial
³ M**	higher triplet excited state of M, reached by	•	nt of the software required to construct the
	TTA		rom our numerical database and to derive the
-1 S	singlet ground state of solvent molecule, S		. A. B. Ross is also thanked for her continuing
¹ S*	singlet excited state of S		and support of this work. The authors would
2S+	radical cation of S		to thank Drs. R. F. Ganey and S. Arndt for
20-		ceveral inct	mictive convergations on statistical analysis of

data.

f. Molecular states

2**S**-

3S*

 S_0 molecular (singlet) ground state S_1 lowest excited singlet state S_n higher excited singlet state T_1 lowest triplet (excited) state T_n higher excited triplet state

triplet excited state of S

radical anion of S

g. Optical densities

OD optical density

 OD_T OD ascribed to triplet state absorbance

 Δ OD change in OD on excitation ΔOD_A change in OD of acceptor (triplet)

extrapolated to long times

several instructive conversations on statistical analysis of

¹H. Labhart and W. Heinzelmann, "Triplet-Triplet Absorption Spectra of Organic Molecules," in Organic Molecular Photophysics, Vol. 1, J. B. Birks, Editor (Wiley, New York, 1973) p. 297.

7. References to Text

²J. B. Birks, *Photophysics of Aromatic Molecules* (Wiley-Interscience, London, 1970).

³A. K. Chibisov, Russ. Chem. Rev. 39, 891 (1970).

⁴R. Bensasson and E. J. Land, "Physical Properties of Excited States: A General Method for Measuring Triplet-Triplet Extinction Coefficients, Singlet-Triplet Intersystem Crossing Efficiencies, and Related Parameters," in Photochemical and Photobiological Reviews, Vol. 3, K. C. Smith, Editor (Plenum Press, New York, 1978) p. 163.

⁵E. J. Land, Proc. R. Soc. London, Ser. A 305, 457 (1968).

6W. Heinzelmann and H. Labhart, Chem. Phys. Lett. 4, 20 (1969).

- ⁷J. C. Scaiano, J. Photochem. 18, 395 (1982).
- ⁸I. Carmichael and G. L. Hug, Radiat. Phys. Chem. 20, 119 (1982).
- ⁹I. Carmichael and G. L. Hug, Radiat. Phys. Chem. 20, 179 (1982).
- ¹⁰I. Carmichael and G. L. Hug, Radiat. Phys. Chem. 26, 229 (1985).
- ¹¹W. P. Helman and A. B. Ross, Radiat. Phys. Chem. 16, 425 (1980).
- ¹²M. Kasha, Discuss. Faraday Soc. (9), 14 (1950).
- ¹³J. B. Birks, Chem. Phys. Lett. 17, 370 (1972).
- ¹⁴G. D. Gillespie and E. C. Lim, J. Chem. Phys. 65, 2022 (1976).
- ¹⁵G. N. Lewis and M. Kasha, J. Am. Chem. Soc. 66, 2100 (1944).
- ¹⁶G. N. Lewis, D. Lipkin, and T. T. Magel, J. Am. Chem. Soc. 63, 3005 (1941).
- ¹⁷D. S. McClure, J. Chem. Phys. 19, 670 (1951).
- ¹⁸G. Porter and M. W. Windsor, J. Chem. Phys. 21, 2088 (1953).
- ¹⁹R. G. W. Norrish and G. Porter, Nature 164, 658 (1949).
- ²⁰G. Porter, Proc. R. Soc. London, Ser. A 200, 284 (1950).
- ²¹G. Porter and M. W. Windsor, Discuss. Faraday Soc. (17), 178 (1954).
- ²²M. S. Matheson and L. M. Dorfman, J. Chem. Phys. **32**, 1870 (1960).
- ²³R. L. McCarthy and A. MacLachlan, Trans. Faraday Soc. 56, 1187 (1960).
- ²⁴J. P. Keene, Nature 188, 843 (1960).
- ²⁵J. W. Boag and R. E. Steel, British Empire Cancer Campaign Report 38, Part II, 1960, p. 251.
- ²⁶F. S. Dainton, T. J. Kemp, G. A. Salmon, and J. P. Keene, Nature 203, 1050 (1964).
- ²⁷R. M. Danziger, K. H. Bar-Eli, and K. Weiss, J. Phys. Chem. 71, 2633 (1967).
- ²⁸R. McNeil, J. T. Richards, and J. K. Thomas, J. Phys. Chem. 74, 2290 (1970).
- ²⁹G. Porter and M. R. Topp, Proc. R. Soc. London, Ser. A 315, 163 (1970).
- ³⁰P. M. Rentzepis, Science **169**, 239 (1970).
- ³¹N. Mataga, and N. Nakashima, Spectrosc. Lett. 8, 275 (1975).
- ³²R. M. Hochstrasser, D. L. Narva, and A. C. Nelson, Chem. Phys. Lett. 43, 15 (1976).
- ³³R. V. Bensasson, J. T. Richards, and J. K. Thomas, Chem. Phys. Lett. 9, 13 (1971).
- ³⁴C. Willis, O. A. Miller, A. E. Rothwell, and A. W. Boyd, Radiat. Res. 35, 428 (1968).
- 35D. C. Walker and S. C. Wallace, Chem. Phys. Lett. 6, 111 (1970).
- ³⁶J. W. Hunt, C. L. Greenstock, and M. J. Bronskill, Int. J. Radiat. Phys. Chem. 4, 87 (1972).
- ³⁷J. E. Aldrich, P. Foldvary, J. W. Hunt, W. B. Taylor, and R. K. Wolff, Rev. Sci. Instrum. 43, 991 (1972).
- ³⁸L. M. Dorfman, "Pulse Radiolysis," in *Techniques in Chemistry*, 3rd Edition, Part II. Vol. 6, G. G. Hammes, Editor (Wiley-Interscience, New York, 1974) p. 463.
- ³⁹J. W. Hunt, "Early Events in Radiation Chemistry," in Advances in Radiation Chemistry, Vol. 5, M. Burton and J. L. Magee, Editors, (Wiley-Interscience, New York, 1976) p. 185.
- ⁴⁰V. Sundstrom, P. M. Rentzepis, and E. C. Lim, J. Chem. Phys. 66, 4287 (1977).
- ⁴¹M. Chessin, R. Livingston, and T. G. Truscott, Trans. Faraday Soc. 62, 1519 (1966).
- ⁴²J. T. Dubois and M. Cox, J. Chem. Phys. 38, 2536 (1963).
- ⁴³H. L. J. Baeckstroem and K. Sandros, Acta Chem. Scand. 12, 823 (1958)
- ⁴⁴G. Porter and F. Wilkinson, Trans. Faraday Soc. 57, 1686 (1961).
- ⁴⁵H. Labhart, Helv. Chim. Acta 47, 2279 (1964).
- ⁴⁶U. B. Ranalder, H. Kaenzig, and U. P. Wild, J. Photochem. 4, 97 (1975).
- ⁴⁷M. V. Alfimov, I. G. Batekha, Y. B. Sheck, and V. I. Gerko, Spectrochim. Acta 27, 329 (1971).
- ⁴⁸D. Lavalette, C. R. Seances Acad. Sci., Ser. B 266, 279 (1968).
- ⁴⁹T. F. Hunter and A. I. Younis, J. Chem. Soc., Faraday Trans. 1 75, 550 (1979).
- ⁵⁰C. A. Parker, *Photoluminescence of Solutions* (Elsevier, Amsterdam, 1968).
- ⁵¹J. W. Boag, Trans. Faraday Society **64**, 677 (1968).
- ⁵²I. G. Ross, J. Opt. Soc. Am. 44, 40 (1954).
- ⁵³M. Bazin and T. W. Ebbesen, Photochem. Photobiol. 37, 675 (1983).

- ⁵⁴G. Porter and M. A. West, "Flash Photolysis" in *Techniques in Chemistry*, 3rd Edition, Part II, Vol. 6, G. G. Hammes, Editor (Wiley-Interscience, New York, 1974) p. 367.
- 55M. A. West, Photochemistry (Specialist Periodical Reports, Chem. Soc., London) 8, 3 (1977).
- ⁵⁶G. Cilento, Acc. Chem. Res. 13, 225 (1980).
- ⁵⁷N. J. Turro, P. Lechtken, G. Schuster, J. Orell, H. C. Steinmetzer, and W. Adam, J. Am. Chem. Soc. 96, 1627 (1974).
- ⁵⁸J. T. Richards and J. K. Thomas, Trans. Faraday Soc. 66, 621 (1970),
 ⁵⁹D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
- ⁶⁰C. Capellos and B. H. J. Bielski, Kinetic Systems (Krieger, Huntington, N.Y., 1980).
- N.Y., 1980).

 61R. Bensasson and E. J. Land, Trans. Faraday Soc. 67, 1904 (1971).
- ⁶²T. Takemura, P. K. Das, G. Hug, and R. S. Becker, J. Am. Chem. Soc. 100, 2626 (1978).
- 63W. R. Dawson, J. Opt. Soc. Am. 58, 222 (1968).
- ⁶⁴P. G. Bowers and G. Porter, Proc. R. Soc. London, Ser. A 299, 348 (1967).
- 65S. G. Hadley and R. A. Keller, J. Phys. Chem. 73, 4351 (1969).
- 66T. G. Pavlopoulos, J. Opt. Soc. Am. 63, 180 (1973).
- ⁶⁷R. Bensasson, C. R. Goldschmidt, E. J. Land, and T. G. Truscott, Photochem. Photobiol. 28, 277 (1978).
- Linschitz and K. Sarkanen, J. Am. Chem. Soc. 80, 4826 (1958).
 Carmichael and G. L. Hug, J. Phys. Chem. 89, 4036 (1985).
- ⁷⁰M. R. Topp, Appl. Spectrosc. Rev. 14, 1 (1978).
- ⁷¹U. Lachish, A. Shafferman, and G. Stein, J. Chem. Phys. 64, 4205 (1976).
- ⁷²M. M. Fisher, B. Veyret, and K. Weiss, Chem. Phys. Lett. 28, 60 (1974).
- ⁷³S. Speiser, R. van der Werf, J. Kommandeur, Chem. Phys. 1, 297 (1973).
- Lutz, E. Breheret, and L. Lindqvist, J. Phys. Chem. 77, 1758 (1973).
 A. Corval, P. Jardon, and R. Gautron, J. Chim. Phys.-Chim. Biol. 79,
- 335 (1982). ⁷⁶B. Amand and R. Bensasson, Chem. Phys. Lett. **34**, 44 (1975).
- ¹⁷R. A. Keller and S. G. Hadley, J. Chem. Phys. 42, 2382 (1965).
- ⁷⁸W. G. Herkstroeter and D. S. McClure, J. Am. Chem. Soc. **90**, 4522 (1968).
- ⁷⁹F. Wilkinson, "Triplet Quantum Yields and Singlet-Triplet Intersystem Crossing," in *Organic Molecular Photophysics*, Vol. 2, J. B. Birks, Editor (Wiley, New York, 1975) p. 95.
- 80 V. A. Smirnov and M. V. Alfimov, Kinetica Kataliz. 7, 583 (1966).
 81 D. Lavalette, J. Chim. Phys. 66, 1853 (1969).
- 82G. L. Hug and I. Carmichael, J. Photochem. 31, 179 (1985).
- ⁸³M. S. Grodowski, B. Veyret, and K. Weiss, Photochem. Photobiol. 26, 341 (1977).
- ⁸⁴B. Veyret, S. G. Davis, M. Yoshida, and K. Weiss, J. Am. Chem. Soc. 100, 3283 (1978).
- 85C. A. Hutchinson, Jr., and B. W. Magnum, J. Chem. Phys. 29, 952 (1958).
- 86J. S. Brinen, J. Chem. Phys. 49, 586 (1968).
- ⁸⁷J. S. Brinen and M. K. Orloff, J. Chem. Phys. 51, 527 (1969).
- ⁸⁸M. V. Alfimov, N. Y. Buben, A. I. Pristupa, and V. N. Shamshev, Opt. Spectrosc. 20, 232 (1966).
- V. Aleksandrov and K. K. Pukhov, Opt. Spektrosk. 17, 944 (1964).
 R. Kubo and K. Tomita, J. Phys. Soc. Jpn., 9, 888 (1954).
- ⁹¹T. J. Kemp and L. J. A. Martins, J. Chem. Soc., Faraday Trans. 1 77, 1425 (1981).
- ⁹²R. V. Bensasson and J.-C. Gramain, J. Chem. Soc., Faraday Trans. 1 76, 1801 (1980).
- ⁹³D. Lavalette, R. Bensasson, B. Amand, and E. J. Land, Chem. Phys. Lett. 10, 331 (1971).
- ⁹⁴L. J. Andrews, A. Deroulede, and H. Linschitz, J. Phys. Chem. **82**, 2304 (1978).
- 95 J. K. Hurley, N. Sinai, and H. Linschitz, Photochem. Photobiol. 38, 9 (1983).
- 96A. A. Lamola and M. S. Wrighton, Pure Appl. Chem. 54, 1251 (1982).
- ⁹⁷A. A. Lamola and M. S. Wrighton, Pure Appl. Chem. 56, 939 (1984).
- 98B. Stevens and B. E. Algar, Ann. N.Y. Acad. Sci. 171, 50 (1970).
- ⁹⁹R. G. Bennett, R. P. Schwenker, and R. E. Kellogg, J. Chem. Phys. 41, 3040 (1964).

- 100V. L. Ermolaev and E. B. Sveshnikova, Opt. Spectrosc. 28, 324 (1970).
- 101 F. Wilkinson and J. G. Brummer, J. Phys. Chem. Ref. Data 10, 809 (1981).
- 102B. Ostle and R. W. Mensing, Statistics in Research, 3rd. edition (The Iowa State Univ. Press, Ames, 1975).
- 103SAS User's Guide: Statistics, 1982 edition (SAS Institute, Cary, NC, 1982).
- 104M. H. DeGroot, Probability and Statistics (Addison-Wesley, Reading, MA, 1975).
- 105A. G. Worthing and J. Geffner, Treatment of Experimental Data (Wiley, New York, 1943).
- 106W. Rhodes and M. Chase, Rev. Modern Physics 39, 348 (1967).
- ¹⁰⁷G. Porter and M. W. Windsor, Proc. R. Soc. London, Ser. A 245, 238 (1958).
- ¹⁰⁸H. Hamaguchi, H. Okamoto, and M. Tasumi, Chem. Lett. (4), 549 (1984).

 109R. Bensasson and E. J. Land, Nouv. J. Chim. 2, 503 (1978).

 NES SUBS 60 (National Bureau of Standards
- ¹¹⁰G. L. Hug, NSRDS-NBS 69 (National Bureau of Standards, Washington, DC, 1981).

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
1	Acenaphthene				
••	Benzene	LP-ET	422	†Triplet ET from acetophenone	82A29
	EtOH (293 K)	FP	433	+ 111plot 21 from acotopilotone	68E09
	EtOH (77 K)	MOD/KM	430, 6000 ± 1500		737055
	Acenaphthylene, cis-photod	imor			
••	Benzene (293 K)	LP-ET	455	‡Oxygen quenching and triplet ET from benzophenone and acetophenone; $\tau_{\rm T}=2.2~\mu {\rm s}$	82A29
	Acenaphthylene, trans-phot Benzene (293 K)	odimer LP-ET	455	†Triplet ET from acetophenone; $\tau_{\rm T}=0.12~\mu {\rm s}$	82A29
	20120110 (275 11)	21-21	100	4 Triplet 131 from acceptatione, 71 — 0.12 µs	UZAZ)
•	1-Acenaphthyl-1-phenylethy Benzene	lene LP-ET	502°	†Triplet PT from months and annual an	047000
	Denzene	Lr-Ei	424ª	†Triplet ET from xanthone and oxygen quenching; $\tau_T = 0.087 \mu s$	84B00
i_	1'-Acetonaphthone				
	Water/tert-BuOH	FP	510°	Solvent mixture contains "1-5%" tert-BuOH for solu-	767189
				bility; very broad diffuse band; pH ∼6	
j.	2'-Acetonaphthone				
	Benzene	PR/ET	430, 10500	e relative to benzophenone ketyl radical in cy- clohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained from a simultaneous least squares fit of data from	71E36
				several compounds making use of cyclohexane to benzene ϵ_{max} ratios of 1.83 for naphthalene and 1.45	
	**	* D	10.1	for anthracene	
	Heptane	LP	424 404	Most intense peak at 424 nm	78A26
	Water (ford DecOM	ED	384	0.1	
	Water/tert-BuOH	FP	440ª	Solvent mixture contains "1-5%" tert-BuOH for solubility; shoulder at 420 nm; pH ~6	767189
•	Acetone Acetonitrile (296 K)	FP	202	+Dhambaran Jan 48 1 C	
	, ,		~302	†Phosphorescence decay; $\tau_T = 47 \pm 6 \mu s$	717489
	Liquid paraffin Methylene chloride	FP LP	324 240	Solvent viscosity was 0.19 N·s/m²	58E00
				†Phosphorescence decay and oxygen quenching; τ_T = 6.3 μ s	84B05
	Water	LP/ET	300^{6} , 600 ± 100	ϵ relative to sodium 1,5-naphthalenedisulfonate in water ($\epsilon_{445} = 9900 \text{ L mol}^{-1} \text{ cm}^{-1}$); kinetic correction	82B04
				made in ET measurement; $\tau_{\rm T} = 5.0 \ \mu \rm s$; $k_{\rm et} = 3.6 \times 10^9 \ \rm L \ mol^{-1} \ s^{-1}$	
١.	Acetophenone				
	? (81 K)	FP/SD	330, 1300	†Phosphorescence decay; glass was either 1:3:3 1-methylPrOH to Et ₂ O to isooctane or 1:9 MCH to mixture of EtOH and MeOH; $\tau_{\rm T}=(1\pm0.1)\times10^4$	77B02
	Acetonitrile	LP/RA	320a, 12600a	μs ϵ relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630 \text{ L mol}^{-1} \text{ cm}^{-1}$, assuming no solvent effect from	737198
	Cyclohexane	I P/PT	440a 1900a	benzene), and taking all the triplet yields to be unity	717170
	Sycionicadife	LP/ET	449°, 1800° 406°, 2100°	tOxygen quenching, triplet ET to naphthalene, and quenching by piperylene; ϵ relative to naphthalene in cyclohexane ($\epsilon_{412.5} = 22600 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 0.23 \mu\text{s}$	111175
	Cyclohexane	LP/RA	441°, 1900°	ϵ relative to benzophenone in cyclohexane (ϵ_{533} =	737198
	- j ***********************************	24 / ACA	401°, 2100°	7630 L mol ⁻¹ cm ⁻¹ , assuming no solvent effect from benzene), and taking all the triplet yields to be unity; there was a more intense maximum <300 nm	13/170

I. CARMICHAEL AND G. L. HUG

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	EtOH	LP/ET&RA	323°, 6300°	ϵ relative to naphthalene in cyclohexane ($\epsilon_{412.5} = 22600$ L mol ⁻¹ cm ⁻¹), assuming no solvent effects, for ET method; ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 10300$ L mol ⁻¹ cm ⁻¹), assuming no solvent effects and taking $\Phi_{\rm T}({\rm acetophenone}) = 1 = \Phi_{\rm T}({\rm benzophenone})$, and ϵ relative to benz[a] anthracene in cyclohexane ($\epsilon_{480} = 25100$ L mol ⁻¹ cm ⁻¹), assuming no solvent effects and taking $\Phi_{\rm T}({\rm acetophenone}) = 1$ and $\Phi_{\rm T}({\rm benz}[a]$ anthracene) = 0.82, for RA method; there was a shoulder at ~495° nm.; $\tau_{\rm T} = 0.14~\mu s$	717179
	Liquid paraffin	FP	281.5 265	Solvent viscosity was 0.03 N·s/m²	58E001
	Water	FP	335	$\tau_{\rm T} = \sim 100 \; \mu \rm s$	727098
	Water	LP/RA	337", 13100°	E relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630$ L mol ⁻¹ cm ⁻¹ , assuming no solvent effect from benzene), and taking all the triplet yields to be unity	
€.	Acetophenone, conjugate ac	id			
	Sulfuric acid	LP	359ª	5 mol L^{-1} H ₂ SO ₄ ; solvent was 4:1 water to acetonitrile; pK _a 0.63 \pm 0.07	84E456
10.	2-Acetoxy-2-methyl-1-pher	yl-1-propanone			
	Benzene	LP	440 410	†Phosphorescence decay, oxygen quenching (1.6 \times 10 ⁹ L mol ⁻¹ s ⁻¹); relative intensities (3:3:10); $\tau_T = 1.9 \pm 1.9$	80E642
	Cyclohexane	LP	330 440 410 330	0.2 μs †Phosphorescence decay, oxygen quenching; relative intensities (3:3:10); $\tau_{\rm T}=1.9\pm0.2~\mu s$	80E642
11.	Acetylacetone				*****
	EiOH/MeOH (118 K)	FP	480	Solvent was 3:1 EtOH to MeOH	68B005
12.	1-Acetylanthracene EtOH (93 K)	PS	500		66B001
in	0. 4 - 4-1 - 41				
13.	9-Acetylanthracene ? (81 K)	FP/SD	426, 20000	†Phosphorescence decay; glass was either 1:3:3 1-methylPrOH to Et ₂ O to isooctane or 1:9 MCH to mixture of EtOH and MeOH; $\tau_{\rm T}=(2.8\pm0.3)\times10^4$	77B022
	Acetonitrile	· LP	421ª	μs Delay 320 ps	84B154
	EPA (77 K)	FP	429	$\tau_{\rm T} = 2.95 \times 10^4 \mu \rm s$	82E338
	Toluene	LP	410	tOxygen quenching; rise time of 0.02 \pm 0.004 ns	777635
14.	4-Acetylbiphenyl				
	? (81 K)	FP/SD	435, 130000	tPhosphorescence decay; glass was either 1:3:3 1-methylPrOH to Et ₂ O to isooctane or 1:9 MCH to mixture of EtOH and MeOH; $\tau_T=(1.7\pm0.2)\times10^4$ μs	77B022
15.	3-Acetyl-9,10-epoxy-9,10-d	lihydrophenanthre I.P	ne 395	†Oxygen quenching	79A17
14	N /2 A saturbal 15 : : :				
10.	N-(2-Acetylphenyl)acetami EtOH	LP	430	‡Oxygen quenching (5.6 \times 10 ⁸ L mol ⁻¹ s ⁻¹); $\tau_T = 10$ μs	78E308
	Hexane	LP/TD	450, 8900	$\tau_{\rm T} = 8.5 \ \mu \text{s}$; oscillator strength = 0.18	78E308
	Water	LP	430	†Oxygen quenching (2.2 \times 10° L mol ⁻¹ s ⁻¹); ionic strength 0.01 mol L ⁻¹ ; $\tau_{\rm T} = 6.5~\mu{\rm s}$; pH 7.5	
17.	N-(2-Acetylphenyl)formam	iide			
*	ЕЮН	LP/RF	450, 9000	†Oxygen quenching $(2.2 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; ϵ relative to N-(2-acetylphenyl)formamide in hexane $(\epsilon_{450} = 8100 \text{ L mol}^{-1} \text{ cm}^{-1})$ assuming oscillator strength independent of solvent; $\tau_{\rm T} = 10 \ \mu \text{s}$	78E308

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Hexane	LP/TD	450, 6500		78E308
	Hexane	PR-ET/RA	450, 8100	†Triplet ET from benzene; ϵ relative to naphthalene in hexane ($\epsilon_{\text{max}} = 24500 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming same ET rate from benzene; $\tau_{\text{T}} = 7.7 \mu\text{s}$; oscillator strength = 0.18	78E308
	Water	LP	450	†Oxygen quenching (3 \times 10 ⁹ L mol ⁻¹ s ⁻¹); ionic strength 0.01 mol L ⁻¹ ; $\tau_T = 4.1 \mu s$; pH 7.5	78E308
	Water	LP	450	$\tau_{\rm T}=7~\mu{\rm s};~{\rm pH}~6.5$	78E308
18.	N-(2-Acetylphenyl)-N-meth	vlacetamide			
	EtOH	LP/RA	430, <1100	ϵ relative to naphthalene in hexane ($\Phi_{\rm T}=0.8$, $\epsilon_{\rm max}=24500$ L mol $^{-1}$ cm $^{-1}$) taking $\Phi_{\rm T}=0.6$ for N-(2-Acetylphenyl)-N-methylacetamide in EtOH; $\tau_{\rm T}=0.2$ μs	78E308
	Hexane	LP	420	$\tau_{\rm T}=0.2~\mu{\rm s}$	78E308
	Hexane	PR-ET/RA	420, 1200	†Triplet ET from benzene; ϵ relative to naphthalene in hexane (ϵ_{max} = 24500 L mol ⁻¹ cm ⁻¹) assuming same ET rate from benzene; τ_{T} = 0.2 μ s; oscillator strength = 0.02	78E308
	Water	LP	430	†Oxygen quenching (6 \times 10 ⁸ L mol ⁻¹ s ⁻¹); ionic strength 0.01 mol L ⁻¹ ; $\tau_T = 7 \mu s$; pH 7.5	78E308
19.	N-(2-Acetylphenyl)-N-meth	ylformamide			
	1-PrOH	LP	445	$\tau_{\rm T}=0.3~\mu{\rm s}$	78E308
	EtOH	LP/RA	445, <1100	ϵ relative to naphthalene in hexane ($\Phi_{\rm T}=0.8$, $\epsilon_{\rm max}=24500$ L mol ⁻¹ cm ⁻¹) taking $\Phi_{\rm T}=0.6$ for N-(2-Acetylphenyl)-N-methylformamide in EtOH; $\tau_{\rm T}=0.6~\mu{\rm s}$	78E308
	Hexane	LP	420	$\tau_{\rm T}=0.2~\mu{\rm s}$	78E308
	Hexane	PR-ET/RA	420, 850	†Triplet ET from benzene; ϵ relative to naphthalene in hexane ($\epsilon_{\text{max}} = 24500 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming same ET rate from benzene; $\tau_{\text{T}} = 0.2 \ \mu\text{s}$; oscillator strength = 0.02	78E308
	Water	LP	445	‡Oxygen quenching (5.2 \times 10 ⁸ L mol ⁻¹ s ⁻¹); ionic strength 0.01 mol L ⁻¹ ; $\tau_T = 8.8 \mu s$; pH 7.5	78Æ308
20.	3-Acetyltriptycene				
	Cyclohexane (289.5 K)	LP	550		83E483
21.	N-Acetyl-L-tryptophanamid	le '			
	Water	LP	460	Buffered; pH 7.0	81A232
22.	Acridan EtOH (93 K)	PS	520	Shoulder at 580 nm	69E214
22	A> 39				
23.	Acridine 2-PrOH	LP	983 ± 5		83E392
	Acetonitrile	LP	440 ± 1 978 ± 2		92E202
	Acetonique	LF	434 ± 1	•	83E392
	Argon (13 K)	CWL	425.1	Infrared vibrational structure also observed	79B043
	Benzene	FP/TD	520°, 2000° 440, 25000 435, 12000° 375°, 3000°	Uncertain correction of estimated peaks for SD; $\tau_T = 10^4 \ \mu s$	677498
			355°, 10000° 340°, 7000°		
	Benzene	FP/SD	440, 80000°	Delay 93 μs	677259
	Benzene	PR/ET	440, 24300	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained from a simultaneous least squares fit of data from several compounds making use of cyclohexane to benzene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for anthracene	71E360

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

о.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Benzene	FP/TD	442, 27000		77625
	Benzene (296 K)	LP	990	Shoulder at 415 nm	81E14
			870ª		
			781°		
			699ª		
			518ª		
			440		
	Benzene	LP	980 ± 2		83E3
			442 ± 1		
	CCl ₄	LP	981 ± 2		83E3
			442 ± 1		
	Cyclohexane	PR/ET	432.5, 26300	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361.3} = 35400 \text{ L}$ mol ⁻¹ cm ⁻¹); author reported mean of 2 measurements (this one and another with a different ref. cmpd.) as $28800 \pm 7200 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$	68072
	Cyclohexane	PR/ET	432.5, 31300	ϵ relative to naphthalene in cyclohexane ($\epsilon_{4 2.5} = 22600$ L mol ⁻¹ cm ⁻¹); author reported mean of 2 measurements (this one and another with a different ref.	6807
				cmpd.) as $28800 \pm 7200 \text{ L mol}^{-1} \text{ cm}^{-1}$	
	Cyclohexane	PR/ET	432.5, 31500	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); reference ϵ obtained by starting from $\epsilon_{max} = 3220 \text{ L mol}^{-1} \text{ cm}^{-1}$ for this ketyl radical in water and assuming the f of the ketyl radical is independent of solvent; final ϵ obtained from a simultaneous least squares fit to data from	71E3
				several compounds	
	EtOH	FP	440	Broad absorption < 290 nm also assigned to triplet; a	66A(
				band at 520 nm, which had been assigned to the triplet	
				in water [61E008], was seen to decay at a different rate	
			440 40000	and was not assigned to the triplet in EtOH	71/0
	EtOH	FP/ET	440, 18500 424 ^b , 8900	Triplet ET from eosin and proflavine; ϵ relative to eosin in EtOH ($\epsilon_{580} = 9400 \text{ L mol}^{-1} \text{ cm}^{-1}$) and proflavine in EtOH ($\epsilon_{550} = 11000 \text{ L mol}^{-1} \text{ cm}^{-1}$)	7162
	EtOH	FP	985	Most intense peak at 440 nm	7762
			870	•	
			778		
			440		
	EtOH	LP/ET	440, 22500	ϵ relative to Methylene Blue cation ($\epsilon_{860} = 27000 \text{ L}$ mol ⁻¹ cm ⁻¹); solvent and temperature assumed; $\tau_T = 14 \mu s$	78E
	Hexane	LP	435	·	79B(
	Hexane	LP	980 ± 2	145 ps delay	83E
	TACABIIC	LF	980 ± 2 430 ± 1		. خوری
	Hexane	LP	430 ± 1 433	Delay 320 ps	84B
	LIVAGIIC	1 ·· 1	407	worms and be	
	Isooctane	LP	430	A band was also observed at 511° nm, but a similar	7672
	Isoociane	Li	408 ^a	band at 530 nm in MeOH was assigned to a precursor of the triplet state; rise time of 0.01 ns	, 0, 2
	MeOH	LP	983 ± 5		83E
			438 ± 1		
	PMMA (77 K)	PS	440	Band seen at 480 nm and was attributed to a photo-	70E
	•		420	product	
	PMMA (293 K)	FP	438	$\tau_{\rm T}=1.9\times10^4~\mu{\rm s}$	70E
			418		
	РММА	FP	980 863° 776° 702°	Shoulder at 424 nm; 441 nm peak 10 times more intense than any other peak	82E
			480°		
			441°		
	PVA	FP	980ª	Most intense peak at 450 nm; $\tau_T = 23.8 \times 10^3 \mu s$	7762
			870°		
			780ª		

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

lo.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Water	FP	443	$pK_b = 8.4$; a peak reported at 520 nm was later [66A003] shown to decay at a different rate than the	61E00
	Water (296 K)	FP-ET/ET	443, 14500	440 nm peak in EtOH; pH Basic \dagger Triplet ET from naphthalene-1,5-disulfonate; ϵ relative to proflavine conjugate acid in water ($\epsilon_{549} = 5700$	80B05
	Water	FP/TD	443	L mol ⁻¹ cm ⁻¹); $\tau_T = \sim 450 \mu s$; pH 10.86 ϵ method assumed from text; pH 12.0	80F00
			353b, 7000		
	Water (296 K)	FP/ET	880 443, 20000 ± 2000	ϵ relative to proflavine in water ($\epsilon_{549} = 8000 \text{ L mol}^{-1}$ cm ⁻¹); pH Basic	81E14
	Water	LP	855° 746° 694° 510°	Most intense peak at 441 nm; pH 12.7	81E55
	Water (296 K)	FP/TD	441 ^a 880, 1800 ^a 753 ^a , 1100 ^a 689 ^a , 730 ^a	Shoulder at 420 nm; pH Basic	81E14
			657°, 470° 521°, 1500° 443, 19400 ± 1400		
	Water	LP	983 ± 5 862° 775° 658° 443 ± 1	pH ∼13	83E39
	tert-BuOH	FP/TD	436, 26000		77625
4.	Acridine-d ₉				
	Benzene Fluorene-d ₈ (240 K)	FP/TD MOD	442, 26000 450	Single crystal	776251 83F33
	1 14010110 48 (210 12)	,,,,,,,		omg.e oryona.	031 33
5.	Acridine Orange, conjuga EtOH	te monoacid FP/TD	400 125000	mU Acidio	72707.
	EtOH/Et ₂ O (90 K)	PS/SD	490, 135000 1270, 54000° 1050°, 16000° 645, 10500° 540, 10000° 390, 4000°	pH Acidic Solvent was 2:1 EtOH to Et ₂ O	57B00
			285, 57000 ^a 245, 18000 ^a 205, 16000 ^a		
	Glycerol (293 K)	FP	670° 620° 580°	Solvent has added glucose	77617
	MeOH	FP/TD	610, 9400 560, 9200	$pK_a(MeOH) = 11.2; \tau_T = 105 \mu s; pH Acidic$	79E21
	PMMA (77 K)	PS	1208° 654° 549°	Relative intensities (10:3:3); shoulders at 1090 ^a and 1002 ^a nm; solvent contains 2-chloroethanol; pH 4.0	69B00
	Water	FP/TD	530, 9500 480, 14000 280, 35000	r _T = ~3000 μs, pII 3	74718
6.	Acridine Orange, free bas		410 40000	***	====
	EtOH MeOH	FP/TD FP/TD	410, 42000 550, 7800 410, 39900	pH Basic $\tau_{\rm T}=285~\mu{\rm s};$ pH Basic	72707 79E21
	PMMA (193 K) PMMA (77 K)	PS PS	530 1210 1100 1020	Shoulders at 630 and 545 nm	59B00 65B00

 ${\tt TABLE~6.} \quad {\tt Spectral~parameters~for~triplet-triplet~absorption~of~organic~molecules~in~condensed~phases-Continued}$

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Water	FP/TD	550, 7000 410, 37000 270, 40000	†Triplet ET to acridine; neutral form; an absorption was observable out to 900 nm; $\tau_{\rm T}=3.3\times10^3~\mu{\rm s}$; pH 12	71B002
27.	Acridine Yellow, conjugate Boric acid (77 K)	e monoacid PS	1000		65B004
	Glycerol (293 K)	FP	620 660 ^a	Solvent has added glucose	776171
	PMMA (77 K)	PS	550° 1000°	Shoulders at 575° and 532° nm; solvent contains 2-chloroethanol; pH 4.0	69B007
28.	Acridine, conjugate acid Water (296 K)	FP-ET/ET	490, 5500	†Triplet ET from naphthalene-1,5-disulfonate and to Methylene Blue; ϵ relative to proflavine conjugate acid in water ($\epsilon_{549} = 5700 \text{ L mol}^{-1} \text{ cm}^{-1}$); pK _a = 5.6;	80B057
	Water (296 K)	LP-ET/TD	770 490, 7700 ± 800	$τ_T$ — 670 μs; pH 1.0 †Triplet ET from disodium naphthalene-1,5- disulfonate; pH Acidic	81E147
29.	9(10 <i>H</i>)-Acridone Benzene	LP/ET	620, 37800	†Triplet ET to anthracene, oxygen quenching; ϵ relative to anthracene in benzene ($\epsilon_{430} = 45500 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{\rm T} = 20 \mu\text{s}$	766377
	EtOH (300 K)	FP	580 310	$f_{T} = 20 \ \mu s$	81E649
	Pyridine	LP	605°	†Triplet ET to anthracene; H-bonded species; $\tau_T=3.3$ μs	766377
30.	Acriflavine cation EPA (77 K)	PS	640 540	‡Phosphorescence decay; EPA was 8:3:5 Et ₂ O to isopentane to EtOH; "trypaflavine"	63F021
	Glycerol (293 K)	FP	620° 550°	Solvent has added glucose	776171 79E219
	МеОН	FP/TD	620, 8600	Peak at 490 nm obscured by singlet absorption (authors); $\tau_T = 110 \mu s$; pH Basic	79E217
	PMMA (193 K)	PS	555 530	Shoulders at 650 and 505 nm	65B004
	PMMA (77 K)	PS	1300 1190 1080 940 800		032
	PMMA (77 K)	PS	650 1060 ⁴ 679 ⁸ 541 ⁸	Relative intensities (10:3:3); shoulder at 952 ^a nm; solvent contains 2-chloroethanol; pH 4.0	69B007
31.	Alloxazine EtOH	LP/SD	500, 13000 438°	†Phosphorescence decay at 77 K; 438 nm peak may be distorted by SD; $\tau_{\rm T}=13~\mu{\rm s}$	737439
	Water	LP	550 420	to the contract of the contra	737439
	Water	LP	560 420	‡Oxygen quenching; $\tau_T = 9 \mu s$; pH 6	737439
	Water	LP/RA	520, 7000 400°, 12600° 275°, 28000°	‡Oxygen quenching; energy transfer to oxygen; lifetime measured at 560 nm; ϵ relative to anthracene in cyclohexane ($\Phi_{\rm T}=0.71,\epsilon_{423}=64700~{\rm L~mol^{-1}~cm^{-1}}$) and using $\Phi_{\rm T}=0.31$ for alloxazine in water; shoulder around 360 nm; $\tau_{\rm T}=9.1~{\rm \mu s}$; pH 2.2; $k_{\rm et}=(1.7\pm0.2)$ $\times~10^{9}~{\rm L~mol^{-1}~s^{-1}}$	777617

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
32.	Amiloride Water	LP/ET	400, 6300	†Triplet ET from benzophenone; pH was not specified and the p K_a of the triplet was not determined so the state of protonation of the triplet is uncertain; ϵ relative to benzophenone in water ($\epsilon_{520} = 5800 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 40 \ \mu\text{s}$	84A227
33.	9-Aminoacridine Water	LP	885° 826° 794° 476°	Most intense peak at 476 nm; pH 12.7	81E552
34.	1-Amino-4-anilinoanthraquin Benzene	one PR-ET/ET	550, 27000	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene assuming ground state dimerization; $\tau_{\rm T}=8.3$ $\mu_{\rm S}$; $E_{\rm T}=123\cdot151$ kJ mol ⁻¹ ; $k_{\rm et}=3.3\times10^9$ L mol ⁻¹ s ⁻¹	761122
35.	2-Aminoanthracene, conjuga Water/Alcohol	te acid FP	424 400*	Solvent was 1:1 water to alcohol; pK _a 3.3; pH 1.25	68B008
36.	1-Aminoanthraquinone Benzene	PR/ET	550°, 2000	‡Triplet ET from triplet donors and triplet ET to triplet acceptors; ϵ relative to naphthalene in benzene (ϵ_{425} = 13200 L mol ⁻¹ cm ⁻¹); τ_T = 5 μ s	720392
37.	2-Aminoanthraquinone Benzene	PR/ET	599ª, 7140ª	†Triplet ET from triplet donors and triplet ET to triplet acceptors; ϵ relative to naphthalene in benzene (ϵ_{425} = 13200 L mol ⁻¹ cm ⁻¹); $\tau_T = 5 \mu s$	720392
38.	6-Amino-7H-benz[de]anthrac 2-PrOH	cen-7-one LP	610° 570° 515°	Shoulder at 540 nm; half-life = 3.7 \pm 0.2 μs	757427
	Benzene	LP	617° 579° 540°	‡Oxygen quenching (1.2 \times 10 9 L mol $^{-1}$ s $^{-1}$); half-life = 2.3 \pm 0.1 μ s	757427
39.	2-Aminobenzoic acid EtOH (93 K)	PS	472° 395°	Shoulder at 435° nm	66B001
40.	4-Aminobenzoic acid EtOH (93 K)	PS	412° 364°		66B001
41.	3-Aminobenzophenone Propylene glycol (203 K)	FP	561* 455°	†Phosphorescence decay	67E105
42.	4-Aminobenzophenone Propylene glycol (203 K)	FP	638° 466°	†Phosphorescence decay	67E105
43.	4-Aminobiphenyl Toluene/EtOH (77 K)	MOD	438ª	Glass was 19:1 toluene to EtOH	719059
44.	2-Aminofluorene EtOH/Et ₂ O (77 K)	MOD/KM	425, 10600 ± 4200	Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the con-	719059
	Toluene/EtOH (77 K)	MOD	430°	text Glass was 19:1 toluene to EtOH; shoulder at 466°	719059

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
45.	1-Amino-4-hydroxyanthraq	uinone			
	Benzene	PR-ET/ET	500, 28000	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene assuming ground state dimerization; $\tau_{\rm T}=6.7$ $\mu \rm s$; $E_{\rm T}=123$ - 176 kJ mol ⁻¹ ; $k_{\rm et}=3.0\times10^9$ L mol ⁻¹ s ⁻¹	761122
46.	4-Amino-4'-hydroxybiphen	yl			
	EtOH/Et ₂ O (77 K)	MOD/KM	425, 24000 ± 9600	Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	719059
	Toluene/EtOH (77 K)	MOD	428a	Glass was 19:1 toluene to EtOH	719059
47	2-Amino-3-(4-methoxy-6-be	nzothiazolyl)nzor	sionata ion		
47.	Water	Enzotmazotyt/proj LP/ET	370, 8000	Oxygen quenching and triplet ET to crocetin; ϵ rela-	84A024
			,	tive to crocetin in water ($\epsilon_{470} = 75000 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ considered an upper limit; $\tau_{\text{T}} = 64 \mu\text{s}$; pH 13; $k_{\text{et}} = 1.7 \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$	0 II 10 2 I
	Water	LP/TD	370, 5000	‡Oxygen quenching and triplet ET to crocetin; ϵ considered a lower limit; pH 13	84A024
48.	1-Amino-4-(N-methylamino)anthraquinone			
	Benzene	PR-ET/ET	575, 27000	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene assuming ground state dimerization; $\tau_{\rm T}=3.6$ µs; $E_{\rm T}=97$ - 123 kJ mol ⁻¹ ; $k_{\rm et}=4.2\times10^9$ L mol ⁻¹ s ⁻¹	761122
49	7-Amino-4-methylcarbostyr	ril			
٠,٠	EtOH	FP/ET	600 ^b , 46200 ± 4500 430 ^b , 7050 ± 700 350 ^b , 28800 ± 2900	ϵ relative to anthracene in EtOH ($\epsilon_{420}=75000~\rm L$ mol ⁻¹ cm ⁻¹); there were no distinct maxima between 350 and 600 nm; $k_{\rm et}=(1.4\pm0.5)\times10^{10}~\rm L~mol^{-1}~s^{-1}$	747049
50.	3-Amino-N-methylphthalim	nide		•	
	Benzene	FP	450	Lifetime limited by aeration; $\tau_T = 0.260 \mu s$	757522
	EtOH Water	FP/TD FP	495, 1100 540	Lifetime limited by aeration; $\tau_T = 0.920 \ \mu s$ Lifetime limited by aeration; $\tau_T = > 1 \ \mu s$	757522 757522
51.	4'-Aminomethyl-4,5',8-trir EtOH	methylpsoralen LP/ET	460°, 24200	Triplet ET to retinol; € relative to retinol (€ref un-	80E156
	EION	LF/E1	400 , 24200	specified); quenched by ground state (10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 100 \ \mu \rm s$	8015130
52.	1-Amino-7-nitrofluorene EPA (77 K)	PS	770°,570°		78E057
53.	1-Amino-4-nitronaphthalen	e			
	Benzene	LP	470	tOxygen quenching (2.0 × 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 1.5$	776195
	EPA (77 K)	PS/KM	650, 2730 ± 135 480, 7500 ± 375	$μs$ †Phosphorescence decay; $τ_T = (1.88 \pm 0.11) \times 10^5 μs$	78E057
	PMMA	FP	440, 28000 ± 14000 665 470	Relative intensities (2:5)	776195
	PMMA (123 K)	FP	665	†Phosphorescence decay; $τ_T = 1.5 \times 10^5 \mu s$	776195
	PVA (123 K)	FP	695ª		776195
54.	trans-4-Amino-4'-nitrostill	bene.			
- "	Glycerol triacetate	LP	772		78B088
	Glycerol triacetate (198 K)	LP	760		78B088
55.	N-[2-(3-Amino-1-oxopropyl)phenyl formami	de		
	EtOH	LP	460	‡Oxygen quenching (3 × 10 ⁸ L mol ⁻¹ s ⁻¹); $\tau_T = 1 \mu s$	
	Water	LP	435	†Oxygen quenching (2 \times 10° L mol ⁻¹ s ⁻¹); ionic strength 0.01 mol L ⁻¹ ; $\tau_T = 3.4 \mu s$; pH 7.5	78E308

TRIPLET-TRIPLET ABSORPTION SPECTRA OF ORGANIC MOLECULES

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
56.	9-Aminophenanthrene Toluene/EtOH (77 K)	MOD	473°	Glass was 19:1 toluene to EtOH; shoulder at 431a nm	719059
57.	2-Amino-4-[3H]pteridinone				
	Water	LP/HAT	550, 2000 385 ^b , 2770 360 ^a , 4700 ^a 325 ^b , 3780	tOxygen quenching $(1.3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; hydrogen abstraction from guanosine; ϵ_{550} relative to semireduced radical in water ($\epsilon_{480} = 2300 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ_{385} and ϵ_{325} are at isosbestic points in difference spectrum; 400 ns delay; $\tau_T = 2.3 \pm 0.2 \mu \text{s}$; pH 9.2	81E151.
	Water	LP	460	400 ns delay, $pK_a = 9.5-10$; $\tau_T = 0.5 \ \mu s$; pH 12	81E151
	Water	LP	600 415	100 ns delay; $\tau_T = 0.3 \ \mu s$; pH 9.2	81E151
58.	2-Aminopurine Acetonitrile (300 K)	FP	430	Oxygen quenching and quenching by 2,4-hexadienol;	756270
	Water (300 K)	FP	405	$\tau_{\rm T} = 83 \pm 10$ μs tOxygen quenching and quenching by 2,4-hexadienol; $\tau_{\rm T} = 55 \pm 4$ μs	756270
59.	2-Aminopyridine			,	
	2-PrOH (163 K) EPA (107 K)	FP FP	390° 390	†Phosphorescence decay; $\tau_T = \sim 1.8 \times 10^3 \mu s$ †Phosphorescence decay; $\tau_T = \sim 2.6 \times 10^3 \mu s$	78E062 78E062
60.	4-Aminopyridine EPA (103 K)	FP	395	†Phosphorescence decay; $\tau_{\rm T} = \sim 4.0 \times 10^4 \ \mu {\rm s}$	78E062
61.	Aniline EPA (77 K)	FP	420° 320°	‡Phosphorescence decay; 320 nm was the more intense peak	69E215
62	1-Anilinonaphthalene				
OZ.	Cyclohexane	LP	550		77E543
	MeOH/Water	LP	580	‡Quenching by oxygen and trans-stilbene	82E359
63.	Anisole				
	Water	LP	252*	Lifetime was measured at pH 7.5; there was a broad maximum between \sim 350 and \sim 430 nm; shoulder at 279 nm; spectrum is the difference between spectra at 20 ns and 15 μ s; $\tau_T = 3.3 \pm 0.2 \mu$ s; pH 8.5	757161
64.	Anthracene				
	Acetonitrile	FP	438* 400*	Relative intensities (2:1); solvent contains dimeth- ylmercury	78A324
	Anthracene	PR	630° 610° 570° 540°	Triplet exciton	80E230
	Benzene	FP	430		58E002
	Benzene	FP	430	A value was given for an "integrated extinction coefficient" of 35000, but no details were provided; $\tau_T = 2900 \ \mu s$	60E005
	Benzene	PR/ET	427.5, 71500	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 10300$ L mol ⁻¹ cm ⁻¹)	690087
	Benzene	PR/ET	427.5, 61300	ϵ relative to naphthalene in benzene ($\epsilon_{max} = 17500 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$)	690087
	Benzene	PR/ET	430, 45500 408*, 15600* 391*, 3700*	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{\max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained from a simultaneous least squares fit of data from several compounds making use of cyclohexane to benzene ϵ_{\max} ratios of 1.83 for naphthalene and 1.45 for anthracene; λ_{\max} originally quoted as 432.5 nm but corrected in [757282]	71E360
	Benzene	PR	427.5		720206
	Benzene	FP/SD	$428.5, 53000 \pm 1900$	ϵ method assumes linear variation of triplet spectrum in SD region	767147

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

	_		/nm /L mol ⁻¹ cm ⁻¹		
	Benzene	LP/SD	431, 69000	ϵ is upper limit (authors)	80B09
	Benzene	LP/ET	431, 42000 ± 4000	†Triplet ET from benzophenone; ϵ relative to benzophenone in benzene ($\epsilon_{533} = 7200 \text{ L mol}^{-1} \text{ cm}^{-1}$); $k_{\text{et}} = 0.49 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	80B09
	Benzonitrile	LP/RF	429^{a} , 24000 ± 1500 405^{a} , 10200^{a}	ϵ relative to anthracene in toluene ($\epsilon_{428.5} = 42000 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$)	83F07
	Benzophenone (77 K)	PS-ET	441 415	Relative intensities (1:1); sample was a single crystal	64B00
	Benzophenone (77 K)	PS	442.5	Single crystal; from polarization measurements, the 442.5 nm band was assigned ${}^3B_{3g} \leftarrow {}^3B_{1g}$; the $T_1 \leftarrow S_0$ absorption of benzophenone starting at 413.4 nm obscured the shape of the second T-T band of anthracene	68B00
	Benzophenone (303 K)	PR	435	Solution; triplet ET from benzophenone; $k_{\rm et} = (1.6 \pm 0.1) \times 10^9$ L mol ⁻¹ s ⁻¹	70011
	Bromobenzene	FP	436	Half-life = $430 \pm 50 \mu s$	58E0
	Bromobenzene	FP	439	A value was given for an "integrated extinction coeffi- cient" of 32500, but no details were given; $\tau_T = 1590$ µs	60E00
	CTAB	LP	420	Aqueous micelles	83N0
	Chlorobenzene	FP	431	Half-life = $790 \pm 150 \mu s$	58E00
	Chloroform	FP	430	•	58E0
	Cyclohexane	FP	425	$\tau_{\rm T} = 160 \ \mu \rm s$	62E0
	Cyclohexane	PR/ET	420, 57200 \pm 14300	ϵ relative to benzophenone ketyl radical in water ($\epsilon_{537.5}$ = 3220 L mol ⁻¹ cm ⁻¹), assuming this value for $\epsilon_{542.5}$ in cyclohexane	68072
	Cyclohexane (77 K)	PS	468.2	•	69E2
			431.0 425.2 418.1 402.0 381.0 316.5		
	Cyclohexane	PR	427.5		7106
-	Cyclohexane	PR/ET	422.5, 64700 402 ^a , 19800 ^a	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{\rm max} - 3700 \ {\rm L~mol^{-1}~cm^{-1}}$); reference ϵ obtained by starting from $\epsilon_{\rm max} = 3220 \ {\rm L~mol^{-1}~cm^{-1}}$ for this ketyl radical in water and assuming the f of the ketyl radical is independent of solvent; final ϵ obtained from a simultaneous least squares fit to data from several compounds; shoulder at 388° nm; $\lambda_{\rm max}$ originally quoted as 425 nm but corrected in [757282]	71E3
	Cyclohexane	FP/SD	422.5, 85700 \pm 3200	ε method assumes linear variation of triplet spectrum in SD region	76714
	Cyclohexane	LP/RF	423, 52500	ϵ relative to anthracene in benzene ($\epsilon_{431}=42000$ L mol ⁻¹ cm ⁻¹) assuming oscillator independent of solvent	80B0
	Cyclohexane	LP/SD	423, 69500	ϵ is upper limit (authors)	80B09
	Decalin	FP	430	$\tau_{\rm T}=2630~\mu{\rm s}$	60E0
	Dioxane	PR	425 410		65000
	EPA (77 K)	PS/IV	427, $2800^{\circ} \pm 130$	†Phosphorescence decay; ϵ is too low; 1st transition assigned as $^3L_a \rightarrow ^3C_b$	51E0
	EPA (77 K)	PS/SD	427.0, 45000 404.0, 12000	ϵ 's are lower limits; $ au_{ m T} = < 1 imes 10^5 \mu { m s}$	54B0
	EPA (77 K)	PS/KM	516 ^a , 1600 ^a 497 ^a , 800 ^a 481 ^a , 2100 ^a 467 ^a , 1300 ^a 428 ^a , 52800 ^a 407 ^a , 14100 ^a	Solvent, temperature and extinction method assumed from earlier work; polarization also measured	69E2
	EPA (77 K)	PS/IV	427, 58000	λ_{max} assumed from previous work; ε estimated by extrapolation to infinite excitation rate	69E2
	EPA (77 K)	FP/SD	427.3, ≥90000		69F3

TRIPLET-TRIPLET ABSORPTION SPECTRA OF ORGANIC MOLECULES

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

ο,	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Epoxy plastic (296 K)	LP	420 390		686058
	EtOH	FP	420.0 398.0	$\tau_{\rm T} = 150 \pm 45 \; \mu \rm s$	54E001
	EtOH (93 K)	PS	427 403	Relative intensities (10:3)	66B001
	EtOH	FP/ET	440 ^b , 2300 426 ^b , 21000 424 ^b , 36000 421, 52000 420 ^b , 49000	Triplet ET from eosin and proflavine; ϵ relative to eosin in EtOH ($\epsilon_{580} = 9400 \text{ L mol}^{-1} \text{ cm}^{-1}$) and proflavine in EtOH ($\epsilon_{550} = 11000 \text{ L mol}^{-1} \text{ cm}^{-1}$)	716235
	EtOH	FP/SD	420, 75000 ± 5000 400, 28000 ± 2000 376, 5750 ± 400 356, 3350 ± 250 335, 2250 ± 150	$\tau_T = 3000 \pm 2000 \; \mu s$	747049
	EtOH	FP/TD	419, 50000 \pm 5000		756293
	EtOH (77 K)	MOD	424	Halfwidth 380 cm ⁻¹	777538
	EtOH	FP/TD	420, 60000		776258
	EtOH	FP-ET/RA	694 ^b , 52	ϵ relative to anthracene in EtOH ($\epsilon_{421} = 52000 \text{ L}$ mol ⁻¹ cm ⁻¹)	78E01
	EtOH	LP/ET	420, 63500	ϵ relative to Methylene Blue cation ($\epsilon_{600} - 27000 \text{ L}$ mol ⁻¹ cm ⁻¹); solvent and temperature assumed; $\tau_T = 25 \mu s$	78E39
	EtOH	LP/SD	421, 54000	€ is upper limit (authors)	80B09
	EtOH	LP/RF	421, 48500	ϵ relative to anthracene in benzene ($\epsilon_{431} = 42000 \text{ L}$ mol ⁻¹ cm ⁻¹) assuming oscillator independent of solvent	80B09
	EtOH	LP/COM	418, 72000	Triplet concentration calculated by kinetic simulation and corrected for optical geometry; ϵ value assumes $\Phi_T = 0.7$; oxygen quenching $(3.8 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$	82B12
	EtOH/MeOH (113 K)	FP/TD	425,90000	Solvent was 3:1 EtOH to MeOH	67B00
	EtOH/MeOH (104 K)	PS	426 403	Solvent was 3:1 EtOH to MeOH; polarization also measured; shoulder at 382 nm	68E10
	EIOH/MeOH/2-MTHF (113 K)	FP/SD	885", 250° 840°, 260° 800°, 160° 787°, 150° 763°, 180° 752°, 110° 730°, 130° 709°, 130° 699°, 130°	Glass was 3:1:4 EtOH to MeOH to 2-MTHF	69800
	EtOH/MeOH (113 K)	FP/TD	690°, 120° 645°, 130° 888, 260° 844°, 300	†Phosphorescence decay; shoulders at 657°, 551°, 526°, 486°, 453°, 271°, and 268° nm; 6 electronic transitions	72B00
			801°, 190° 788°, 190° 764°, 210° 751°, 140° 729°, 160° 719°, 190° 709°, 150° 697°, 180° 687°, 170° 538°, 540° 516, 3000 504°, 2000° 497°, 2300° 479°, 3600°	were assigned with 0-0's at 888, 516, 425.3, 328.7, 271.3, and 262.4 nm; oscillator strength = 0.002, 0.04, 0.25, 0.03, ~0.01, 0.8	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

Continued 463°, 2900° 444°, 5000° 425°, 3, 90000 427°, 2900° 381°, 1900° 381°, 1900° 382°, 1400° 312°, 2200° 322°, 3300° 262°, 4, 900000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 900000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 90000 262°, 4, 9000	Solvent	Method λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm	Comment	Ref.
Continued 444′, 5000° 447′, 5000° 402′, 25000° 381°, 1000° 381°, 1000° 381°, 1000° 381°, 1000° 381°, 1000° 381°, 1000° 381°, 220° 302°, 230° 262.4, 90000	FtOH/MeOH	463° 2900°		
425.3, 90000 4027, 25000° 381°, 10000° 328.7, 1400° 314°, 2200° 300°, 2200° 262.4, 900000 262.4, 90000 262.4, 90000 262.4, 90000 262.4, 90000 262.4, 90000 262.4, 90000 262.4, 90000 262.4, 90000 262.4, 90000 262.4, 90000 262.4, 900000 262.4, 900000 262.4, 900000 262.4, 9000000000000000000000000000000000000				
402, 25000	(Continued)			
381-1, 10000-1314-2, 2000-1314-2, 2000-1314-2, 2000-1302-2, 2300-262-4, 90000 Ethyl acetate				
328.7, 1400° 3144, 2200° 302, 2300° 262.4, 90000 Ethyla cetate				
314, 2200° 302°, 2300° 262.4, 90000			•	
2027, 2200° 262.4, 90000 Ethylene glycol FP 469 Relative intensities (_:10:3); τ _T = 3800 ± 150 μs 401				
2624, 90000 0.8 μs delay; G(triplets) estimated assuming ε independent of solvent Relative intensities (:10:3); τ _T = 3800 ± 150 μs		314 ^a , 2200 ^a		
Ethyl acetate		302°, 2300°	•	
Ethylene glycol FP 469 Relative intensities (_:10:3); τ _T = 3800 ± 150 μs		262.4, 90000		
425 401 401 401 401 401 402.4 426.6 402.4 402.4 426.6 402.6 426.6 402.4 426.6 426.6 402.4 426.6 426.6 426.6 402.4 426.6	Ethyl acetate	PR 420		76109
425 401 401 402.4 426.6 402.4 426.6 402.4 426.6 402.4 426.6 402.4 426.6 402.4 426.6 402.4 426.6 402.4 426.6 402.4 426.6 402.4 426.6 402.4 426.6 402.4 426.6 426.6 426.6 426.6 426.6 426.6 426.6 426.4 426.6 426.6 426.4 426.6 426.4 426.6 426.4 426.6 426.4 426.6 426.4 426.6 426.4 426.6 426.4 426.6 426.4 426.6 426.6 426.4 426.6 426.6 426.6 426.6 426.4 426.6 4	Ethylene glycol	FP 469	Relative intensities (\pm :10:3); $\tau_T = 3800 \pm 150 \mu s$	61E0
Glycerol FP 426.6 402.4		425	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	
Glycerol FP 426.6 $\tau_T = 5500 \pm 600 \mu s$ 402.4 Half-life = 9400 ± 1500 μs 402.4 Half-life = 9400 ± 1500 μs 428 66800 ± 13400 $\tau_T = 18000 \mu s$ 429.5 Lifetime measured at 298 K; $\tau_T = 18000 \mu s$ 429.5 Solvent was 9:1 heptane to carbon disulfide Heptane (77 K) PS 429.5 Half-life = 100 μs 398 $\tau_T = 18000 \mu s$ 405 Hexane FP 420.3 Half-life = 100 μs 398.0, 27400° ± 5480 Hexane FP 420 $\tau_T = 18000 \mu s$ 405 Hexane FP 465 Relative intensities ($\tau_T = 18000 \mu s$ 423 $\tau_T = 18000 \mu s$ 423 $\tau_T = 18000 \mu s$ 423 $\tau_T = 18000 \mu s$ 425 Hexane FP 465 Relative intensities ($\tau_T = 18000 \mu s$ 426 $\tau_T = 18000 \mu s$ 427 $\tau_T = 18000 \mu s$ 428 $\tau_T = 18000 \mu s$ 429 $\tau_T = 18000 \mu s$ 429 $\tau_T = 18000 \mu s$ 429 $\tau_T = 18000 \mu s$ 420 $\tau_T = 18000 \mu s$ 420 $\tau_T = 18000 \mu s$ 421 $\tau_T = 18000 \mu s$ 422 $\tau_T = 18000 \mu s$ 423 $\tau_T = 18000 \mu s$ 423 $\tau_T = 18000 \mu s$ 423 $\tau_T = 18000 \mu s$ 420 $\tau_T = 18000 \mu s$ 421 $\tau_T = 18000 \mu s$ 422 $\tau_T = 18000 \mu s$ 423 $\tau_T = 18000 \mu s$ 424 and 401 mm were assigned to the same electronic transition; 421 $\tau_T = 18000 \mu s$ 421 $\tau_T = 18000 \mu s$ 421 $\tau_T = 18000 \mu s$ 422 $\tau_T = 18000 \mu s$ 423 $\tau_T = 18000 \mu s$ 424 $\tau_T = 18000 \mu s$ 425 $\tau_T = 18000 \mu s$ 421 $\tau_T = 18000 \mu s$ 421 $\tau_T = 18000 \mu s$ 422 $\tau_T = 18000 \mu s$ 423 $\tau_T = 18000 \mu s$ 424 $\tau_T = 18000 \mu s$ 425 $\tau_T = 18000 \mu s$ 426 $\tau_T = 18000 \mu s$ 421 $\tau_T = 18000 \mu s$ 422 $\tau_T = 18000 \mu s$ 423 $\tau_T = 180000 \mu s$ 424 $\tau_T = 180000 \mu s$ 425 $\tau_T = 180000 \mu s$ 426 $\tau_T = 180000 \mu s$ 427 $\tau_T = 180000 \mu s$ 428 $\tau_T = 180000 \mu s$ 421 $\tau_T = 180000 \mu s$ 422 $\tau_T = 1800000 \mu s$ 423 $\tau_T = 1800000 \mu s$ 424 $\tau_T = 1800000 \mu s$ 425 $\tau_T = 18000000 \mu s$ 426				
402.4 Half-life = 9400 ± 1500 μs Lifetime measured at 298 K; τ _T = 18000 μs 425, 66800 ± 13400 Lifetime measured at 298 K; τ _T = 18000 μs 420, 20700 ± 4140 Heptane (77 K) PS 421 Solvent was 9:1 heptane to carbon disulfide Heptane (77 K) PS 429.5 405 Hexane	Tiveerol		$\tau_{\rm T} = 5500 \pm 600 \mathrm{ms}$	54E0
Glycerol (283 K) FP/SD 428 425, 66800 ± 13400 420, 66800 ± 13400 420, 20700 ± 4140 Heptane	31,00101		71 = 3300 ± 000 µa	3120
Heptane	Shapeol		Welf life - 0400 + 1500 us	58E0
Heptane	•			
Heptane	Jiyceroi (283 K)	· ·	Litetime measured at 298 K; $\tau_T = 18000 \mu\text{s}$	65E0
Heptane (Carbon disulfide FP 421 Solvent was 9:1 heptane to carbon disulfide Heptane (77 K) PS 429.5 420.5 405 Hexane FP 420.3 118000° ± 23600 398.0, 27400° ± 5480 A value was given for an "integrated extinction coefficient" of 46000, but no details were provided; τ _T = 2900 μs Relative intensities (:10:3); τ _T = 910 ± 83 μs 400 Hexane FP 465 Relative intensities (:10:3); τ _T = 910 ± 83 μs 400 Hexane LP 420 250 ns delay: relative intensities (4:1): formed from diethylaniline excipler; rise time of ~110 ns τ _T = 370 ± 110 μs 110	-			
Hexane	-	· -		58E0
Hexane FP 420.3 Half-life 100 μs 398	Heptane/Carbon disulfide	FP 421	Solvent was 9:1 heptane to carbon disulfide	58E0
Hexane	Heptane (77 K)	PS 429.5		67B0
Hexane FP/SD 420.3, 118000° ± 23600 398.0, 27400° ± 5480 Hexane FP 420 A value was given for an "integrated extinction coefficient" of 46000, but no details were provided; $\tau_T = 2900 \mu s$ Hexane FP 465 Relative intensities (:10:3); $\tau_T = 910 \pm 83 \mu s$ Hexane LP 420 250 ns delay; relative intensities (4:1); formed from diethylaniline exciplex; rise time of ~110 ns $\tau_T = 370 \pm 110 \mu s$ Liquid paraffin FP 420.0 $\tau_T = 370 \pm 110 \mu s$ Liquid paraffin FP/SD 468, 2000 Solvent had viscosity of 0.03 N·s/m²; bands at 424 and 401 nm were assigned to the same electronic transition; oscillator strength = 0.01, 0.4 Liquid paraffin FP/TD 424°, 63000 ± 5000 MCH LP 421° 421° 421 Harl-life = 1100 ± 200 μs Viscosity of solvent was 0.167 N·s/m²; $\tau_T = 9100 \mu s$ Viscosity of solvent was 0.167 N·s/m²; $\tau_T = 9100 \mu s$ Viscosity of solvent was 0.167 N·s/m²; $\tau_T = 9100 \mu s$ Viscosity of solvent was 0.167 N·s/m²; $\tau_T = 9100 \mu s$ 421 nm peak was the more intense 402° 421 nm peak was the more intense PMMA (298 K) FP/RA 895, 250 ± 50 ‡ Decay matches the triplet decay at 424 nm; ε relative to anthracene in liquid paraffin ($\epsilon_{LM} = 71500 L mol^{-1}$ cm ⁻¹); $\tau_T = 3.4 \times 10^4 \mu s$ PMMA (298 K) FP/RA 894 Shoulders at ~860° and 640° nm 851° 776° 771° 776° 717° 776° 717° 717° 71	ه	405		
Hexane FP/SD 420.3, 118000° ± 23600 398.0, 27400° ± 5480 4 Value was given for an "integrated extinction coefficient" of 46000, but no details were provided; $\tau_T = 2900 \ \mu s$ Hexane FP 465 465 Relative intensities (:10:3); $\tau_T = 910 \pm 83 \ \mu s$ Hexane LP 420 420 250 ns delay; relative intensities (4:1); formed from diethylaniline exciplex; rise time of ~110 ns Liquid paraffin FP 420 400 Solvent had viscosity of 0.03 N·s/m²; bands at 424 and 401 nm were assigned to the same electronic transition; oscillator strength = 0.01, 0.4 Liquid paraffin FP 425 Half-life = 1100 ± 200 \ μs Liquid paraffin FP 424 sq. 63000 ± 5000 MCH LP 421° 424°, 63000 ± 5000 PMMA (300 K) FP 895, 250 ± 50 The paraffin (e ₁₂₄ = 71500 L mol ⁻¹ to an thracene in liquid paraffin (e ₁₂₄ = 71500 L mol ⁻¹ to an thracene i	Hexane		Half-life = $100 \mu s$	53E0
Hexane FP 420 A value was given for an "integrated extinction coefficient" of 46000, but no details were provided; $\tau_T = 2900 \mu s$ Hexane FP 465 Relative intensities (:10:3); $\tau_T = 910 \pm 83 \mu s$ 400 Hexane LP 420 250 ns delay: relative intensities (4:1); formed from diethylaniline exciplex; rise time of ~110 ns Liquid paraffin FP 420.0 $\tau_T = 370 \pm 110 \mu s$ Liquid paraffin FP/SD 468, 2000 Solvent had viscosity of 0.03 N·s/m²; bands at 424 and 424, 71500 401 nm were assigned to the same electronic transition; oscillator strength = 0.01, 0.4 Liquid paraffin FP 425 Half-life = 1100 ± 200 μs Liquid paraffin FP 424 Viscosity of solvent was 0.167 N·s/m²; $\tau_T = 9100 \mu s$ Liquid paraffin FP/TD 424°, 63000 ± 5000 MCH LP 421° 421° 421 nm peak was the more intense PMMA (300 K) FP 423.7 Relative intensities (100:26); half-life = 1.22 × 10⁴ μs PMMA (298 K) FP/RA 895, 250 ± 50 ‡ Decay matches the triplet decay at 424 nm; ε relative to anthracene in liquid paraffin ($\epsilon_{424} = 71500 L mol^{-1} cm^{-1}$); $\tau_T = 3.4 \times 10^4 \mu s$ PMMA FP 894° Shoulders at ~860° and 640° nm PMMA (293 K) LP 426° 426 nm peak was the most intense				
Hexane FP 465 Relative intensities (:10:3); $\tau_T = 910 \pm 83 \mu s$ 423 400 Hexane LP 420 250 ns delay: relative intensities (4:1); formed from diethylaniline exciplex; rise time of ~110 ns Liquid paraffin FP 420.0 $\tau_T = 370 \pm 110 \mu s$ 401.0 Liquid paraffin FP/SD 468, 2000 Solvent had viscosity of 0.03 N·s/m²; bands at 424 and 401 nm were assigned to the same electronic transition; oscillator strength = 0.01, 0.4 Liquid petrolatum FP 425 Half-life = 1100 ± 200 \(\mu s \) 100 \(\mu s \)	Texane	•	10 Oxygen quenching; $\tau_T = 84.0 \pm 11 \ \mu s$	54E0
Hexane FP 465 Relative intensities (:10:3); $\tau_T = 910 \pm 83 \ \mu s$ 423 400 Hexane LP 420 250 ns delay: relative intensities (4:1): formed from diethylaniline exciplex; rise time of ~110 ns Liquid paraffin FP 420.0 $\tau_T = 370 \pm 110 \ \mu s$ Liquid paraffin FP/SD 468, 2000 Solvent had viscosity of 0.03 N·s/m²; bands at 424 and 424, 71500 401 nm were assigned to the same electronic transition; oscillator strength = 0.01, 0.4 Liquid paraffin FP 425 Half-life = 1100 ± 200 \(\mu s\) Liquid paraffin FP 424, 63000 ± 5000 MCH LP 421a Viscosity of solvent was 0.167 N·s/m²; $\tau_T = 9100 \ \mu s$ Viscosity of solvent was 0.167	Hexane	FP 420	A value was given for an "integrated extinction coeffi-	60E0
Hexane FP 465 Relative intensities (:10:3); $\tau_T = 910 \pm 83 \ \mu s$ Hexane LP 420 250 ns delay; relative intensities (4:1); formed from diethylaniline exciplex; rise time of ~110 ns Liquid paraffin FP 420.0 $\tau_T = 370 \pm 110 \ \mu s$ Liquid paraffin FP/SD 468, 2000 Solvent had viscosity of 0.03 N·s/m²; bands at 424 and 401 nm were assigned to the same electronic transition; oscillator strength = 0.01, 0.4 Liquid petrolatum FP 425 Half-life = 1100 ± 200 \ \mu s Liquid paraffin FP 424 Viscosity of solvent was 0.167 N·s/m²; $\tau_T = 9100 \ \mu s$ Liquid paraffin FP/TD 424°, 63000 ± 5000 421 nm peak was the more intense MCH LP 421° 421 nm peak was the more intense PMMA (300 K) FP 423.7 Relative intensities (100:26); half-life = 1.22 × 10⁴ \ \mu s PMMA (298 K) FP/RA 895, 250 ± 50 1Decay matches the triplet decay at 424 nm; \(\epsilon \) relative to anthracene in liquid paraffin (\(\epsilon \) \(\epsilon		•	· · · · · · · · · · · · · · · · · · ·	
Hexane LP 420 250 ns delay; relative intensities (4:1); formed from diethylaniline exciplex; rise time of ~110 ns	Hexane	FP 465	•	61E0
Hexane LP 420 250 ns delay; relative intensities (4:1); formed from diethylaniline exciplex; rise time of ~110 ns			2000000 (22,2000), 11	
Hexane LP 420 door diethylaniline exciplex; rise time of ~110 ns Liquid paraffin FP 420.0 $\tau_T = 370 \pm 110 \mu s$ Liquid paraffin FP/SD 468, 2000 dol 1.0 $\tau_T = 370 \pm 110 \mu s$ Liquid paraffin FP/SD 468, 2000 dol 1.0 $\tau_T = 370 \pm 110 \mu s$ Liquid paraffin FP 468, 2000 dol 1.0 $\tau_T = 370 \pm 110 \mu s$ Liquid paraffin FP 425 dol 1.0 $\tau_T = 370 \mu s$ Liquid paraffin FP 425 dol 1.0 $\tau_T = 370 \mu s$ Liquid paraffin FP 424 dol 1.0 $\tau_T = 370 \mu s$ Liquid paraffin FP/TD 424°, 63000 ± 5000 dol 5000 dol 5000 dol 1.0 $\tau_T = 370 \mu s$ MCH LP 421° 421 nm peak was the more intense dol 1.6 $\tau_T = 370 \mu s$ PMMA (300 K) FP 423.7 dol 1.1 do				
Liquid paraffin FP 420.0 $\tau_{T} = 370 \pm 110 \ \mu s$ Liquid paraffin FP/SD 468, 2000 Solvent had viscosity of 0.03 N·s/m²; bands at 424 and 401, nm were assigned to the same electronic transition; oscillator strength = 0.01, 0.4 Liquid paraffin FP 425 Half-life = $1100 \pm 200 \ \mu s$ Liquid paraffin FP 424 Viscosity of solvent was 0.167 N·s/m²; $\tau_{T} = 9100 \ \mu s$ Liquid paraffin FP/TD 424°, 63000 \pm 5000 MCH LP 421° 421 at 1 m peak was the more intense PMMA (300 K) FP 423.7 Relative intensities (100:26); half-life = $1.22 \times 10^4 \ \mu s$ PMMA (298 K) FP/RA 895, 250 \pm 50 \pm 1 Decay matches the triplet decay at 424 nm; ϵ relative to anthracene in liquid paraffin ($\epsilon_{t24} = 71500 \ L$ mol ⁻¹ 807° cm ⁻¹); $\tau_{T} = 3.4 \times 10^4 \ \mu s$ PMMA FP 894° Shoulders at ~860° and 640° nm PMMA (293 K) LP 426° 426 nm peak was the most intense	(Tamama		250 no deless relative intensities (4.1). formed from	7760
Liquid paraffin FP 420.0 $_{\rm A01.0}$ $\tau_{\rm T} = 370 \pm 110 \mu s$ Liquid paraffin FP/SD 468, 2000 $_{\rm A02.0}$ Solvent had viscosity of 0.03 N·s/m²; bands at 424 and 401 nm were assigned to the same electronic transition; oscillator strength = 0.01, 0.4 Liquid petrolatum FP 425 Half-life = 1100 ± 200 μs Liquid paraffin FP 424 Viscosity of solvent was 0.167 N·s/m²; $\tau_{\rm T} = 9100 \mu s$ Liquid paraffin FP/TD 424°, 63000 ± 5000 MCH LP 421° 421 nm peak was the more intense PMMA (300 K) FP 423.7 Relative intensities (100:26); half-life = 1.22 × 10⁴ μs PMMA (298 K) FP/RA 895, 250 ± 50 psp. 250 ± 50	нехапе			//00
Liquid paraffin FP/SD 468, 2000 Solvent had viscosity of 0.03 N·s/m²; bands at 424 and 424, 71500 401 nm were assigned to the same electronic transition; oscillator strength = 0.01, 0.4	r !! 1 ee			EATO
Liquid paraffin	Liquid parattin		$\tau_{\rm T} = 3/0 \pm 110 \mu \rm s$	54E0
424, 71500 401 nm were assigned to the same electronic transition; oscillator strength = 0.01, 0.4				
Liquid petrolatum FP 425 Half-life = 1100 ± 200 μs Liquid paraffin FP 424 Viscosity of solvent was 0.167 N·s/m²; τ _T = 9100 μs Liquid paraffin FP 424 Viscosity of solvent was 0.167 N·s/m²; τ _T = 9100 μs Liquid paraffin FP/TD 424°, 63000 ± 5000 MCH LP 421° 421 nm peak was the more intense 402° PMMA (300 K) FP 423.7 Relative intensities (100:26); half-life = 1.22 × 10⁴ μs PMMA (298 K) FP/RA 895, 250 ± 50 ‡Decay matches the triplet decay at 424 nm; ε relative to anthracene in liquid paraffin (ε ₄₂₄ = 71500 L mol ⁻¹ 807° cm ⁻¹); τ _T = 3.4 × 10⁴ μs PMMA FP 894° Shoulders at ~860° and 640° nm PMMA FP 894° Shoulders at ~860° and 640° nm PMMA FP 894° Shoulders at ~860° and 640° nm PMMA FP 426° 426° 426° nm peak was the most intense	Liquid paraffin			58E0
Liquid petrolatum FP 425 Half-life = $1100 \pm 200 \mu s$ Liquid paraffin FP 424 Viscosity of solvent was 0.167 N·s/m² ; $\tau_T = 9100 \mu s$ Liquid paraffin FP/TD 424° , 63000 ± 5000 421 nm peak was the more intense MCH LP 421° 421 nm peak was the more intense PMMA (300 K) FP 423.7 Relative intensities ($100:26$); half-life = $1.22 \times 10^4 \mu s$ PMMA (298 K) FP/RA 895, 250 ± 50 ‡Decay matches the triplet decay at 424 nm; ϵ relative to anthracene in liquid paraffin ($\epsilon_{424} = 71500 \text{ L mol}^{-1}$); $\tau_T = 3.4 \times 10^4 \mu s$ PMMA FP 894° Shoulders at $\sim 860^{\circ}$ and 640° nm PMMA FP 894° Shoulders at $\sim 860^{\circ}$ and 640° nm PMMA (293 K) LP 426° 426 nm peak was the most intense		424, 71500		
Liquid paraffin		401, 24300	oscillator strength $= 0.01, 0.4$	
Liquid paraffin MCH LP 421 ^a 421 mp peak was the more intense 402 ^a PMMA (300 K) FP 423.7 Relative intensities (100:26); half-life = 1.22 × 10 ⁴ μs 401.1 PMMA (298 K) FP/RA 895, 250 ± 50 1Decay matches the triplet decay at 424 nm; ε relative 852 ^a to anthracene in liquid paraffin (ε ₄₂₄ = 71500 L mol ⁻¹ 807 ^a 776 ^a 771 ^a PMMA FP 894 ^a Shoulders at ~860 ^a and 640 ^a nm 851 ^a 812 ^a 801 ^a 776 ^c 717 ^a PMMA (293 K) LP 426 nm peak was the most intense	Liquid petrolatum	FP 425	Half-life = $1100 \pm 200 \mu s$	58E0
MCH LP 421 ^a 421 nm peak was the more intense 402 ^a PMMA (300 K) FP 423.7 Relative intensities (100:26); half-life = 1.22 × 10 ⁴ μs 401.1 PMMA (298 K) FP/RA 895, 250 ± 50 ‡Decay matches the triplet decay at 424 nm; ε relative to anthracene in liquid paraffin (ε ₄₂₄ = 71500 L mol ⁻¹ 807 ^a cm ⁻¹); τ _T = 3.4 × 10 ⁴ μs 796 ^a 771 ^a PMMA FP 894 ^a Shoulders at ~860 ^a and 640 ^a nm 851 ^a 812 ^a 801 ^a 776 ^c 717 ^a PMMA (293 K) LP 426 ^a 426 nm peak was the most intense	Liquid paraffin	FP 424	Viscosity of solvent was 0.167 N·s/m ² ; $\tau_T = 9100 \mu s$	62E0
MCH LP 421 ^a 421 nm peak was the more intense 402 ^a PMMA (300 K) FP 423.7 Relative intensities (100:26); half-life = 1.22 × 10 ⁴ μs 401.1 PMMA (298 K) FP/RA 895, 250 ± 50 ‡Decay matches the triplet decay at 424 nm; ε relative to anthracene in liquid paraffin (ε ₄₂₄ = 71500 L mol ⁻¹ 807 ^a cm ⁻¹); τ _T = 3.4 × 10 ⁴ μs 796 ^a 771 ^a PMMA FP 894 ^a Shoulders at ~860 ^a and 640 ^a nm 851 ^a 812 ^a 801 ^a 776 ^c 717 ^a PMMA (293 K) LP 426 ^a 426 nm peak was the most intense	Liquid paraffin	FP/TD 424° , 63000 ± 5000		67E0
PMMA (300 K) FP 423.7 and 401.1 Relative intensities (100:26); half-life = 1.22 × 10 ⁴ μs PMMA (298 K) FP/RA 895, 250 ± 50 ‡Decay matches the triplet decay at 424 nm; ε relative to anthracene in liquid paraffin (ε424 = 71500 L mol ⁻¹ cm ⁻¹); τ _T = 3.4 × 10 ⁴ μs PMMA FP 894* solution solutio			421 nm peak was the more intense	82F3
PMMA (300 K) FP 423.7 and 401.1 Relative intensities (100:26); half-life = 1.22 × 10 ⁴ μs PMMA (298 K) FP/RA 895, 250 ± 50 ‡Decay matches the triplet decay at 424 nm; ε relative to anthracene in liquid paraffin (ε424 = 71500 L mol ⁻¹ cm ⁻¹); τ _T = 3.4 × 10 ⁴ μs PMMA FP 894* solution solutio			·	
PMMA (298 K) FP/RA 895, 250 \pm 50	PMMA (300 K)		Relative intensities (100:26): half-life = 1.22×10^4 us	62E0
PMMA (298 K) FP/RA 895, 250 ± 50 ‡ Decay matches the triplet decay at 424 nm; ϵ relative to anthracene in liquid paraffin ($\epsilon_{424} = 71500$ L mol ⁻¹ 807° cm ⁻¹); $\tau_T = 3.4 \times 10^4$ μs PMMA FP 894° Shoulders at ~860° and 640° nm 851° 812° 801° 776° 717° PMMA (293 K) LP 426° 426 nm peak was the most intense	\			
$852^{a} & to anthracene in liquid paraffin (\epsilon_{424} = 71500 \text{ L mol}^{-1} 807^{a} & cm^{-1}); \tau_{T} = 3.4 \times 10^{4} \text{ µs} 771^{a} 771^{a} 894^{a} & Shoulders at ~860^{a} and 640^{a} nm 851^{a} & 812^{a} 801^{a} & 776^{a} 717^{a} 717^{a} PMMA (293 K) & LP & 426^{a} & 426 \text{ nm peak was the most intense}$	PMMA (298 K)		tDecay matches the triplet decay at 424 nm: € relative	66E0
807 ^a cm ⁻¹); $\tau_T = 3.4 \times 10^4 \mu s$ 776 ^a 771 ^a PMMA FP 894 ^a Shoulders at ~860 ^a and 640 ^a nm 851 ^a 812 ^a 801 ^a 776 ^a 717 ^a PMMA (293 K) LP 426 nm peak was the most intense				
796° 771° PMMA FP 894° 894° Shoulders at ~860° and 640° nm 851° 812° 801° 776° 717° PMMA (293 K) LP 426° 426 nm peak was the most intense			cm^{-1}): $\tau_{\tau} = 3.4 \times 10^4 \text{ us}$	
PMMA FP 894* Shoulders at ~860* and 640* nm 851* 812* 801* 776* 776* 717* PMMA (293 K) LP 426* 426 nm peak was the most intense			on), 11 = 3.4 × 10 pm	
PMMA FP 894* Shoulders at ~860* and 640* nm 851* 812* 801* 776* 717* PMMA (293 K) LP 426* 426 nm peak was the most intense				
851 ^a 812 ^a 801 ^a 776 ^a 717 ^a PMMA (293 K) LP 426 ^a 426 nm peak was the most intense	0)()()		Chauldon at 9604 and 6408	71B0
812a 801a 776a 717a PMMA (293 K) LP 426a 426 nm peak was the most intense	rmmA		Shoulders at ~800° and 040° nm	/100
801 ^a 776 ^a 717 ^a PMMA (293 K) LP 426 ^a 426 nm peak was the most intense				
776° 717° PMMA (293 K) LP 426° 426 nm peak was the most intense				
717° PMMA (293 K) LP 426° 426 nm peak was the most intense				
PMMA (293 K) LP 426 ^a 426 nm peak was the most intense		776 °		
		717ª		
	PMMA (293 K)	LP 426a	426 nm peak was the most intense	7470
	,			
386°				
Polystyrene FP 433 $\tau_T = 2.6 \times 10^4 \mu s$	Polystyrana		~~ ~ 2.6 ∨ 10 ⁴ µs	64E0

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Polystyrene	PR	435	$G\epsilon$ varied with the concentration of anthracene; 72% of the anthracene copolymerizes with polystyrene	672086
	Polystyrene Propane	PR FP/TD	436ª 422.5, 52000	$G\epsilon_{436} = 10000^{a} \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed})$ ϵ assumes OD saturation is equivalent to total depletion	701073 79A346
	THF	FP	428	$\tau_{\rm T} = 3770 \ \mu \rm s$	60E005
	Toluene	LP	430° 409°	430 nm was the more intense peak	717126
	Toluene (77 K)	MOD	434	Halfwidth 490 cm ⁻¹	777538
	Toluene	LP/RA	428.5, 42000	ϵ relative to anthracene in benzene ($\Phi_T=0.72,\epsilon_{428.5}=42000\ L\ mol^{-1}\ cm^{-1}$) assuming $\Phi_T=0.72$ for anthracene in toluene	82E451
	Triton X-100 Water/tert-BuOH	LP FP	420 420ª	Aqueous micelles Solvent mixture contains "1-5%" $tert$ -BuOH for solubility; pH ~ 6	83N082 767189
65.	Anthracene-d ₁₀				
	Cyclohexane (77 K)	PS	467.1 445.0 427.5 421.5 413.6 407.0 398.0	Relative intensities (1:1:2:10:6:4:4)	69E211
	EPA (77 K)	PS/SD	426, 115000		68E105
	Et ₂ O/EtOH/Toluene (77 K)	PS/ESR	425, 75000	†ESR; solvent was 2:1:1 Et ₂ O to EtOH to toluene; only most intense visible peak reported; assignment	696115
	EtOH/MeOH (104 K)	PS	424 401	³ B _{3g} ← ³ B _{2u} , oscillator strength = 0.27 Solvent was 3:1 EtOH to MeOH; polarization also measured; shoulder at 382 nm	68E102
	PMMA (298 K)	FP	894° 851° 811°	†Decay matches the triplet decay at 424 nm; $\tau_T = 8.4 \times 10^4 \mu s$	66E085
			796° 760°		
	PMMA (293 K)	CWL	428° 404°	†Phosphorescence decay; maxima shift to the red with increase in applied pressure; spectrum measured at 5.4 kbar and assigned to the ${}^{3}B_{10}^{-} \leftarrow {}^{3}B_{20}^{+}$ transition; relative intensities (8:1); at atmospheric pressure principal maximum is at 424 nm; $\tau_{\rm T}=85\times10^{3}~\mu{\rm s}$	76B012
	PMMA (293 K)	CWL	888ª 840ª 785ª 715ª	†Phosphorescence decay; spectrum measured at 2.0 kbar and assigned to the ${}^3B_{1e}^+ \leftarrow {}^3B_{2e}^+$ transition; only principal maxima reported here; at atmospheric pressure lowest energy maximum is at 895 nm; $\tau_T = 85 \times 10^3 \ \mu s$	76B012
66.	Anthracene/Chloranil Liquid paraffin	MOD	420	Mull	71E361
67 .	9-Anthracenescetic scid, me	othyl ester			
	Water/Acetonitrile	FP	427ª 404ª	†Oxygen quenching; solvent 4:1 water to acetonitrile; 427 nm peak was the more intense; $\tau_T=59~\mu s$	747389
68.	Anthracene-9-carboxaldehy	de			
	EPA (77 K)	FP	455	$\tau_{\mathrm{T}} = 1700 \; \mu \mathrm{s}$	82E338
69.	Anthracene-9-carboxamide EPA (77 K)	FP	433	$\tau_{\rm T}=3.96\times10^4\mu{\rm s}$	82E338
70.	Anthracene-9-carboxylic act	id FP	431	$\tau_{\rm T}=3.45\times 10^4~\mu{\rm s}$	82E338

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

MTHF (100 K)	Ο.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm	Comment 1-1	Ref.
MTHF (100 K)	1.					
MTHF (100 K) LP 355° 322° Anthracene-tetracene photodimer MCH LP 442° Air-saturated solution 82F3 [2.2[1,4):9,10)-Anthracenophane 2-MTHF (77 K) LP-ET 510° 440° - anti-12.2[1,4)-Anthracenophane 2-MTHF (77 K) LP-ET 510° 1Triplet ET from biacetyl 79B0 440° - anti-12.2[1,4)-Anthracenophane 2-MTHF (77 K) LP-ET 510° 1Triplet ET from biacetyl 79B0 440° - anti-12.2[1,4)-Anthracenophane 2-MTHF (77 K) LP-ET 510° 1Triplet ET from biacetyl 79B0 450° 450° 450° 450° 450° 450° 450° 450		2-MTHF (77 K)	LP			84B01
3222 3224						
Anthracene-tetracene photodimer MCH LP 442° Air-saturated solution 82F3 [2.21(A,499.40)-Anthracenophane 2-MTHF (77 K) LP-ET 510° 40° 40° 40° . anti-4(2.2)(1.4)-Anthracenophane 2-MTHF (77 K) LP-ET 510° 475° . syn-(2.2)(1.4)-Anthracenophane 2-MTHF (77 K) LP-ET 510° 475° . syn-(2.2)(1.4)-Anthracenophane 2-MTHF (77 K) LP-ET 680° 50° 460° . Anthraquisone Benzene PR/ET 390, 10200 1Triplet ET from biacetyl 7980 . Anthraquisone Benzene PR/ET 390, 10200 1Triplet ET from benzophenone and triplet ET to anthracene, ε relative to benzophenone in benzene (4522) = 7630 L mol - (am - 1), τ = 0.2 μs 10×μsen quenching, triplet ET to β-carotene, τ τ = 81F1 0.11 μs 10×μsen quenching, triplet ET to β-carotene, τ τ = 81F1 0.11 μs 10×μsen quenching, triplet ET to β-carotene, τ τ = 81F1 0.11 μs 10×μsen quenching, τ τ = 3400 μs 83EC 67BC 1.1 μs 10×μsen quenching, τ τ = 3400 μs 83EC 67BC 1.1 μs 10×μsen quenching, τ τ = 41 μs; pH 7 81F1 1.1 μs 11 μ		MTHF (100 K)	LP		Oxygen quenching; $\tau_T = 2 \mu s$	82A0
MCH				322ª		
MCH	,	Anthropono-totrogona nhot	odimor			
(2.2)(1,4)·9,10·Anthracenophane 2-MTHF (77 K) LP-ET 510° 480° 440° 475°	۷.	-		443a	Air coturated colution	821534
2-MTHF (77 K) LP-ET 510° 440° 480° 440° 300 440° 301 42.2](1,4)-Anthracenophane 2-MTHF (77 K) LP-ET 510° 475° 310 17riplet ET from biacetyl 79B0 310 17riplet ET from biacetyl 79B0 311 17riplet ET from biacetyl 79B0 312 17riplet ET from biacetyl 79B0 313 17riplet ET from biacetyl 79B0 314 17riplet ET from biacetyl 79B0 315 17riplet ET from biacetyl 79B0 316 17riplet ET from biacetyl 79B0 317 17riplet ET from biacetyl 79B0 318 17riplet ET from biacetyl 79B0 319 17riplet ET from biacetyl 79B0 319 17riplet ET from biacetyl 79B0 310 17riplet ET from bi		MCII	Li	772	All-Saturated Solution	021.3
480° 440°	3.	[2.2](1,4)(9,10)-Anthraceno	phane			
Authraquinone Authrace Aut		2-MTHF (77 K)	LP-ET		†Triplet ET from biacetyl	79B0
2.mtH (77 K)				480°		
2-MTHF (77 K) LP-ET 510 475 5. syn-4.2.2(1.4)-Anthracesophane 2-MTHF (77 K) LP-ET 680° 475° 5. syn-4.2.2(1.4)-Anthracesophane 2-MTHF (77 K) LP-ET 680° 460° 5. Anthraquinone Benzene PR/ET 390, 10200 370 1Triplet ET from biacetyl 79B0 5. Anthraquinone Benzene PR/ET 390, 10200 1Triplet ET from benzophenone and triplet ET to anthracene; relative to benzophenone in benzene (s3225 = 7630 L mol¹ - (m² ¬¹); τ τ = 0.2 μs EPA (77 K) FP 365° 1Ol.1 μs EPA (77 K) FP 365° 1Phosphorescence decay; τ τ = 3400 μs 63FB0 Toluene LP 371° 1Phosphorescence decay; τ τ = 3400 μs 63FB0 Toluene LP 371° 1Phosphorescence decay; τ τ = 3400 μs 63FB0 Anthraquinone-2,6-disulfonate ion Water FP 390 1Oxygen quenching; τ τ = < 1 μs; pH 7 81F1 3. Anthraquinone-2,6-disulfonate ion Acetonitrile LP 579° 1Oxygen quenching; τ τ = < 1 μs; pH 7 81F1 3. Anthraquinone-2-sulfonate ion Acetonitrile LP 456° 10x				440 ^a		
2-MTHF (77 K) LP-ET 510 475° ym-{2.2}(1.4)-Anthracesophane 2-MTHF (77 K) LP-ET 680° 500° 460° Anthraquinone Benzene PR/ET 390, 10200 370 1Triplet ET from biacetyl 79B0 Anthraquinone Benzene PR/ET 390, 10200 370 1Triplet ET from benzophenone and triplet ET to anthracene; relative to benzophenone in benzene (5325 = 7630 L mol ⁻¹ cm ⁻¹); τ τ = 0.2 μs Benzene FP 370 10xygen quenching, triplet ET to β-carotene; τ τ = 81F1 0.11 μs EPA (77 K) FP 365° 1Phosphorescence decay; τ = 3400 μs 63FB0 Toluene LP 371° 1Phosphorescence decay; τ = 3400 μs 63FB0 Anthraquinone-2,6-disulfonate ion Water FP 390 1Oxygen quenching; τ τ = < 1 μs; pH 7 81F1 Anthraquinone-2,6-disulfonate ion Acetonitrile LP 579° 1Oxygen quenching; τ τ = < 1 μs; pH 7 81F1 Anthraquinone-2-sulfonate ion Acetonitrile LP 579° 10xygen quenching; τ τ = < 1 μs; pH 7 83F0 451° 378° 38360 2-Asthroate ion Water LP 456° 5pectral data extrapolated back to 15 ns; pH ~ 6 83B0 411° 380° 2-Asthroate ion Water/Alcohol FP 434° 5olvent was 1:1 water to alcohol; pK _n (triplet 68B0 Cyclohexane FP 440° 2-anthroic acid) 6.0; pH 13 1-Anthrol Cyclohexane FP 440° 2-anthroic acid) 6.0; pH 13 1-Anthrol Spectral data extrapolated back to 15 ns; pH ~ 6 83B0 Triplet ET from perylene; ε relative to perylene in cyclohexane (suo = 13000 Lmol ⁻¹ cm ⁻¹); τ τ = 295 μs 18imilarity to 1-anthryl diisopropyl borate spectrum; 7172 439 510 nm was the more intense peak		auti (2.2)(1.4) Anthunosnos	-hana			
475° 475°	٠.			510ª	tTriplet ET from biacetyl	79B0
2-MTHF (77 K)			2. 2.		, mp.or 22 nom oneony.	.,20
2-MTHF (77 K)						
650° 500° 460°	i.					
500° 460°		2-MTHF (77 K)	LP-ET		†Triplet ET from biacetyl	79B0
Anthraquinone Benzene PR/ET 390, 10200 1 Triplet ET from benzophenone and triplet ET to anthracene; ε relative to benzophenone in benzene (ε ₃₂₃ = 7630 L mol ⁻¹ cm ⁻¹); τ ₇ = 0.2 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 EPA (77 K) FP 365° 1 Phosphorescence decay; τ ₇ = 3400 μs 83EC 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 1 Phosphorescence decay; τ ₇ = 3400 μs 83EC 10 xygen quenching 1 xygen 1 x						
Anthraquinone Benzene PR/ET 390, 10200 Triplet ET from benzophenone and triplet ET to anthracene, ε relative to benzophenone in benzene (ε,323.5) 10200						
Benzene PR/ET 390, 10200 † Triplet ET from benzophenone and triplet ET to anthracene; ε relative to benzophenone in benzene (ε _{0.22}) = 7630 L mol ⁻¹ cm ⁻¹ ; τ ₇ = 0.2 μs 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene (ε _{0.22}) 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 10 Nygen quenching, triplet ET to β-carotene; τ ₇ = 3400 μs 33E0 Nygen quenching, triplet ET to β-carotene; τ ₇ = 3400 μs 33E0 Nygen quenching, triplet ET to β-carotene; τ ₇ = 41 μs, pH 7 10 Nygen quenching, triplet ET from benzone decay in EPA at 77 K; delay 300 ns 10 Nygen quenching; τ ₇ = < 1 μs, pH 7 10 Nygen quenching, triplet ET from benzone decay in EPA at 77 K; delay 300 ns 10 Nygen quenching, triplet ET from benzone decay in EPA at 77 K; delay 300 ns 10 Nygen quenching, triplet ET from benzone decay in EPA at 77 K; delay 300 ns 10 Nygen quenching, triplet ET from benzone decay in EPA at 77 K; delay 300 ns 10 Nygen quenching, triplet ET from benzone decay; τ ₇ = 24 μs, pH 7 Nygen quenching, triplet ET from benzone decay; τ ₇ = 24 μs, pH 7 Nygen quenching, triplet ET from benzone decay; τ ₇ = 240 μs 10 Nygen quenching, triplet ET from benzone decay; τ ₇ = 240 μs 10 Nygen quenching, triplet ET from benzone decay; τ ₇ = 240 μs 10 Nygen quenching; τ ₇ = 24 μs, pH 7 Nygen				460ª		
Benzene PR/ET 390, 10200 1 Triplet ET from benzophenone and triplet ET to anthracene; ε relative to benzophenone in benzene (ε _{0.22}) 2 7630 L mol ⁻¹ cm ⁻¹ ; τ ₇ = 0.2 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = 81F1 0.11 μs 10 xygen quenching; τ ₇ = < 1 μs; pH 7 0.11 μs 10 xygen quenching; τ ₇ = < 1 μs; pH 7 0.11 μs 10 xygen quenching; τ ₇ = < 1 μs; pH 7 0.11 μs 10 xygen quenching, triplet ET to β-carotene; τ ₇ = < 1 μs; pH 7 0.11 μs 10 xygen quenching, triplet ET form berylene; α to μs 10 μs 10 xygen quenching, triplet ET form berylene; α to μs 10 μs 10 xygen quenching, triplet ET form berylene; α to μs 10 μ		Anthroquinone				
Benzene FP 370 thracene; ε relative to benzophenone in benzene (€3223 = 7630 L mol ⁻¹ cm ⁻¹); τ ₇ = 0.2 μs	•	•	PR/ET	390, 10200	Triplet ET from benzophenone and triplet ET to an-	7203
Benzene FP 370 10xygen quenching, triplet ET to β-carotene; τ _T = 81F1		201100110		•		
EPA (77 K) FP 365° 1 Phosphorescence decay; τ _T = 3400 μs 83EC						
EPA (77 K) FP 365°		Benzene	FP	370	Oxygen quenching, triplet ET to β -carotene; τ_T =	81F1
EiOH/MeOH (113 K) FP/TD 370, >2000 Solvent was 3:1 EiOH to MeOH; lower limit assumes total ground state depletion 1					•	
Toluene LP 371° total ground state depletion 1Phosphorescence decay in EPA at 77 K; delay 300 ns 83E0						
Toluene LP 371° 1Phosphorescence decay in EPA at 77 K; delay 300 ns 83E0 Anthraquinone-2,6-disulfonate ion Water FP 390 1Oxygen quenching; τ _T = < 1 μs; pH 7 81F1 Anthraquinone-2-sulfonate ion Acetonitrile LP 579° Delay 40 ns 83B0 451° 378° Water LP 456° Spectral data extrapolated back to 15 ns; pH ~ 6 83B0 411° 380° 2-Anthroate ion Water/Alcohol FP 434° Solvent was 1:1 water to alcohol; pK ₃ (triplet 68B0 409° 2-anthroic acid) 6.0; pH 13 1-Anthrol Cyclohexane FP 440° Triplet ET from perylene; ε relative to perylene in cyclohexane (ε ₄₈₀ = 13000 L mol ⁻¹ cm ⁻¹); τ _T = 295 μs Isooctane FP 510 1Similarity to 1-anthryl diisopropyl borate spectrum; 7172 2-Anthrol Isooctane FP 442 1Similarity to 2-anthryl diisopropyl borate spectrum 7172 2-Anthrol Isooctane FP 442 1Similarity to 2-anthryl diisopropyl borate spectrum 7172		EtOH/MeOH (113 K)	FP/TD	370, > 2000	•	67B0
7. Anthraquinone-2,6-disulfonate ion Water FP 390 ‡Oxygen quenching; τ _T = < 1 μs; pH 7 81F1 3. Anthraquinone-2-sulfonate ion Acetonitrile LP 579 ^Δ Delay 40 ns 83B0 473 ^Δ 451 ^Δ 378 ^Δ Water LP 456 ^Δ 5pectral data extrapolated back to 15 ns; pH ~ 6 83B0 2. Anthroate ion Water/Alcohol FP 434 ^Δ Cyclohexane FP 440 ^Δ Cyclohexane FP 440, 28300 Triplet ET from perylene; ε relative to perylene in cyclohexane (ε40 = 13000 L mol - 1 cm - 1); τ _T = 295 μs Isooctane FP 510 ‡Similarity to 1-anthryl diisopropyl borate spectrum; 7172 2. Anthrol Isooctane FP 442 ‡Similarity to 2-anthryl diisopropyl borate spectrum 7172 298 2. 9-Anthrol		Toluene	I D	371ª		83E0
Water FP 390 †Oxygen quenching; τ _T = < 1 μs; pH 7 81F1		Toruciic	Li	371	ti nosphotescence decay in Di A at 17 It, delay 500 is	۰۰۰
3. Anthraquinone-2-sulfonate ion Acetonitrile LP 579a 473a 451a 378a Water LP 456b Spectral data extrapolated back to 15 ns; pH ~ 6 83BC 2-Anthroate ion Water/Alcohol FP 434a 409a Solvent was 1:1 water to alcohol; pK _s (triplet 68BC 2-anthroic acid) 6.0; pH 13 3. 1-Anthrol Cyclohexane Cyclohexane FP 440a Cyclohexane LP/ET 440, 28300 Triplet ET from perylene; ε relative to perylene in cyclohexane (ε480 = 13000 L mol ⁻¹ cm ⁻¹); τ _T = 295 μs Isooctane FP 510 15imilarity to 1-anthryl diisopropyl borate spectrum; 7172 439 510 nm was the more intense peak 1. 2-Anthrol Isooctane FP 442 15imilarity to 2-anthryl diisopropyl borate spectrum 7172	7.	Anthraquinone-2,6-disulfor	nate ion			
Acetonitrile LP 579° Delay 40 ns 83BC		Water	FP	390	tOxygen quenching; $\tau_T = \langle 1 \mu s; pH 7 \rangle$	81F1
Acetonitrile LP 579° Delay 40 ns 83BC			_		•	
Water LP 456° Spectral data extrapolated back to 15 ns; pH ~ 6 83BC 411° 380° Spectral data extrapolated back to 15 ns; pH ~ 6 83BC 411° 380° Solvent was 1:1 water to alcohol; p K_a (triplet 68BC 409° 2-anthroic acid) 6.0; pH 13	3.			5702	Delay 40 ns	83190
Water LP 456° Spectral data extrapolated back to 15 ns; pH ~ 6 83BC		Accionanc	LI		Delay 40 lis	00.00
Water LP 456° Spectral data extrapolated back to 15 ns; pH ~ 6 83BG 411° 380° 2-Anthroate ion Water/Alcohol FP 434° Solvent was 1:1 water to alcohol; pK _s (triplet 68BG 409° 2-anthroic acid) 6.0; pH 13 3. 1-Anthrol Cyclohexane FP 440° 7676 Cyclohexane LP/ET 440, 28300 Triplet ET from perylene; ε relative to perylene in cyclohexane (ε480 = 13000 L mol -1 cm -1); τ _T = 295 μs Isooctane FP 510 ‡Similarity to 1-anthryl diisopropyl borate spectrum; 7172 439 510 nm was the more intense peak 2. 2-Anthrol Isooctane FP 442 ‡Similarity to 2-anthryl diisopropyl borate spectrum 7172 298						
Water LP 456° Spectral data extrapolated back to 15 ns; pH ~ 6 83BC 411° 380° 2-Anthroate ion Water/Alcohol FP 434° Solvent was 1:1 water to alcohol; p K_a (triplet 68BC 409° 2-anthroic acid) 6.0; pH 13 3. 1-Anthrol Cyclohexane FP 440° Triplet ET from perylene; ϵ relative to perylene in 7773 cyclohexane ($\epsilon_{480} = 13000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 295 \text{ µs}$ Isooctane FP 510 1Similarity to 1-anthryl diisopropyl borate spectrum; 7172 439 510 nm was the more intense peak						
411 ^a 380 ^a 2-Anthroate ion Water/Alcohol FP 434 ^a Solvent was 1:1 water to alcohol; pK _a (triplet 68BG 409 ^a 2-anthroic acid) 6.0; pH 13 1-Anthrol Cyclohexane FP 440 ^a Cyclohexane LP/ET 440, 28300 Triplet ET from perylene; ε relative to perylene in 7773 cyclohexane (ε ₄₈₀ = 13000 L mol ⁻¹ cm ⁻¹); τ _T = 295 μs Isooctane FP 510 Similarity to 1-anthryl diisopropyl borate spectrum; 7172 439 510 nm was the more intense peak 1. 2-Anthrol Isooctane FP 442 Solvent was 1:1 water to alcohol; pK _a (triplet 68BG FP 7676 FP 510 Solvent was 1:1 water to alcohol; pK _a (triplet 68BG FP 7676 FP 440 ^a 7773 Cyclohexane (ε ₄₈₀ = 13000 L mol ⁻¹ cm ⁻¹); τ _T = 295 μs Similarity to 1-anthryl diisopropyl borate spectrum; 7172 439 Similarity to 2-anthryl diisopropyl borate spectrum 7172		Water	T D		Spectral data extrapolated back to 15 ns; nH ~ 6	83B0
380° 2-Anthroate ion Water/Alcohol FP 434° 409° 2-anthroic acid) 6.0; pH 13 3-2-anthroic acid) 6.0; pH 13 3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-		Water	D 1		opeonin data entrapolated outsit to 12 113, p22	****
Water/Alcohol FP 434° Solvent was 1:1 water to alcohol; pK _s (triplet 68B0 409° 2-anthroic acid) 6.0; pH 13						
Water/Alcohol FP 434° Solvent was 1:1 water to alcohol; pK _s (triplet 68BC 409° 2-anthroic acid) 6.0; pH 13						
409 ^a 2-anthroic acid) 6.0; pH 13 1. Anthrol Cyclohexane FP 440 ^a 7676 Cyclohexane LP/ET 440, 28300 Triplet ET from perylene; ε relative to perylene in 7773 cyclohexane (ε ₄₈₀ = 13000 L mol ⁻¹ cm ⁻¹); τ _T = 295 μs Isooctane FP 510 ‡Similarity to 1-anthryl diisopropyl borate spectrum; 7172 439 510 nm was the more intense peak 1. 2-Anthrol Isooctane FP 442 ‡Similarity to 2-anthryl diisopropyl borate spectrum 7172 298	9.			44.0	01	60.00
1. 1-Anthrol Cyclohexane Cyclohexane Cyclohexane LP/ET 440, 28300 Triplet ET from perylene; ε relative to perylene in 7773 cyclohexane (ε ₄₈₀ = 13000 L mol ⁻¹ cm ⁻¹); τ _T = 295 μs Isooctane FP 510 15imilarity to 1-anthryl diisopropyl borate spectrum; 7172 439 510 nm was the more intense peak 1. 2-Anthrol Isooctane FP 442 298 15imilarity to 2-anthryl diisopropyl borate spectrum 7172		Water/Alcohol	FP			OSBC
Cyclohexane Cyclohexane LP/ET 440, 28300 Triplet ET from perylene; ε relative to perylene in cyclohexane (ε ₄₈₀ = 13000 L mol ⁻¹ cm ⁻¹); τ _T = 295 μs Isooctane FP 510 439 510 nm was the more intense peak 1. 2-Anthrol Isooctane FP 442 298 1 Similarity to 2-anthryl diisopropyl borate spectrum 7172				409"	2-anthroic acid) 6.0; pH 13	
Cyclohexane Cyclohexane LP/ET 440, 28300 Triplet ET from perylene; ε relative to perylene in cyclohexane (ε ₄₈₀ = 13000 L mol ⁻¹ cm ⁻¹); τ _T = 295 μs Isooctane FP 510 439 Similarity to 1-anthryl diisopropyl borate spectrum; 7172 439 1. 2-Anthrol Isooctane FP 442 298 1. Similarity to 2-anthryl diisopropyl borate spectrum 7172 298	3.	1-Anthrol				
Cyclohexane LP/ET 440, 28300 Triplet ET from perylene; ε relative to perylene in 7773 cyclohexane (ε ₄₈₀ = 13000 L mol ⁻¹ cm ⁻¹); τ _T = 295 μs Isooctane FP 510 439 Similarity to 1-anthryl diisopropyl borate spectrum; 7172 439 1. 2-Anthrol Isooctane FP 442 298 1. Similarity to 2-anthryl diisopropyl borate spectrum 7172 298			FP	440a		7676
Isooctane FP 510 439 Similarity to 1-anthryl diisopropyl borate spectrum; 7172 439 510 nm was the more intense peak 1. 2-Anthrol Isooctane FP 442 298 1. Similarity to 2-anthryl diisopropyl borate spectrum 7172 298		•			Triplet ET from perylene; ϵ relative to perylene in	7773
439 510 nm was the more intense peak 1. 2-Anthrol Isooctane FP 442 †Similarity to 2-anthryl diisopropyl borate spectrum 7172 298		· ·		•		
I. 2-Anthrol Isooctane FP 442 †Similarity to 2-anthryl diisopropyl borate spectrum 7172 298		Isooctane	FP	510	\$Similarity to 1-anthryl diisopropyl borate spectrum;	7172
Isooctane FP 442 †Similarity to 2-anthryl diisopropyl borate spectrum 7172 298				439	510 nm was the more intense peak	
Isooctane FP 442 †Similarity to 2-anthryl diisopropyl borate spectrum 7172 298		2 Anthurl				
298 2. 9-Anthrol	١.			442	t Similarity to 2-anthrul disconvenul harata enactrum	7177
2. 9-Anthrol		asoociane	rr		13mmarity to 2-animy unsopropyr ourate spectrum	.112
				470		
	2.	9-Anthrol				
	-	MeOH (300 K)	LP	430		82B1

J. Phys. Chem. Ref. Data, Vol. 15, No. 1, 1986

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
83.	Anthrone				
	? (81 K)	FP/SD	341, 74000	†Phosphorescence decay; glass was either 1:3:3 1-methylPrOH to Et ₂ O to isooctane or 1:9 MCH to mixture of EtOH and MeOH; $\tau_T = 1800 \pm 200 \ \mu s$	77B022
	Benzene	LP	530° 385	†Triplet ET, oxygen quenching; decay times limited in oxygen saturated solution; shoulder around 420 nm; relative intensities (1:10); $\tau_T = 0.170~\mu s$; rise time of $0.070~\pm~0.020~ns$	766464
	Benzene	LP	~580	tQuenching by oxygen, di-tert-butylnitroxide, and dienes	82B102
	Hexane	LP	560	Rise time of 0.050 ± 0.020 ns	84E077
	Isooctane	FP	423 395 380	Some bands at 635 and 545 nm bands were unassigned	
84.	1-Anthryl diisopropyl borate				
	Triisopropyl borate	FP	830 745 688 505 428	428 nm was the most intense peak	717266
85.	2-Anthryl diisopropyl borate Triisopropyl borate	FP	520 427.5 405		717266
			330		
86.	9-Anthryl diisopropyl borate				
	Triisopropyl borate	FP	425 403 340		717266
			305 282		
87.	9-Anthryl ethenyl ketone EPA (77 K)	FP	430	2.12.37.104	025220
	EFA (// K)	FF	430	$\tau_{\rm T}=3.13\times10^4~\mu{\rm s}$	82E338
88.	1-(2-Anthryl)-2-(2-naphthyl)e	thylene			
	Benzene	PR/ET	635 ± 3 , 62000 ± 9300 460 ± 3 , 50000 ± 7500	tOxygen quenching; ϵ relative to biphenyl in benzene ($\epsilon_{359} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{\rm T} = 88 \mu\text{s}$	84E111
	Bromobenzene	LP	640 ± 3 590 ^a	‡Azulene quenching; $\tau_T = 58 \mu s$	84E111
			465 ± 3 439^a	•	
	мсн	LP	621 ^a 567 ^a 451 ^a 425 ^a		84E111
			723		
89.	1-(2-Anthryl)-2-phenylethyle Benzene	ne PR/ET	$620 \pm 3,41000 \pm 6000$	tOxygen quenching; ε relative to biphenyl in benzene	84E111
	Bromobenzene	LP	455 ± 3 , 60000 ± 9000 630 ± 3	$(\epsilon_{359} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}); \tau_{\text{T}} = 117 \mu\text{s}$ \$\pm\$ \$Azulene quenching; \tau_{\text{T}} = 40 \mu\$	84E111
			579 ^a 460 ± 3 438 ^a		
	мсн	LP	611° 559° 449° 421°	Shoulder at 520° nm	84E111
90	1-(2-Anthryl), 2-(2-thionyl) of	vlene			
7 U.	1-(2-Anthryl)-2-(2-thienyl)eth Benzene	PR/ET	630 ± 3, 47000 ± 7000 455 ± 3, 38000 ± 5700	‡Oxygen quenching; ϵ relative to biphenyl in benzene ($\epsilon_{259}=27100~{\rm L~mol^{-1}~cm^{-1}}$); $\tau_{\rm T}=19~{\rm \mu s}$	84E111

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Bromobenzene	LP	635 ± 3 581°	\downarrow Azulene quenching; $\tau_{\rm T}=22~\mu{\rm s}$	84E111
	мсн	LP	460 ± 3 619 ^a 566 ^a 448 ^a 420 ^a	Shoulder at 527° nm	84E111
91.	Astacene Benzene	PR-ET	580	t Triplet ET from naphthalene; $\tau_T = 6.2 \mu s$	80A143
92.	Astaxanthin Benzene	PR-ET	580	†Triplet ET from naphthalene; method not explicit; $\tau_{\rm T}$ = 6.2 μs	81B097
93.	Auramine O PMMA (77 K)	PS	1300 1200 1090 700		65B004
94.	Aurophosphine, conjugate Glycerol (293 K)	te monoacid FP	690° 610° 550°	Solvent has added glucose	776171
95.	Azulene Acetonitrile	LP	360	†Triplet ET from benzophenone, oxygen quenching (8 \times 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T}=3~\mu{\rm s}$	81F275
	Benzene	LP/ET	360, 4000	**Triplet ET from benzophenone and other donors, oxygen quenching $(6 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}; \epsilon \text{ relative to})$ benzophenone in benzene $(\epsilon_{\text{max}} = 7600 \text{ L mol}^{-1} \text{ cm}^{-1})$ assuming unit transfer efficiency; [84E491] sees no maximum down to 345 nm; $\tau_{\text{T}} = 4 \mu \text{s}$	81F275
	Benzene	PR	<345	†Triplet ET to perylene and from 1,3-cyclohexadiene; spectrum corrected for SD by monitoring singlet at 620 nm; $\tau_T = 11 \pm 1 \mu s$	84E491
96.	Azure A Water	FP	790	$pK_a = 7.0 \pm 0.1$	67C001
97.	Azure A cation Water	FP/SD	840 ^h , 10000	‡Oxygen and I ⁻ quenching; $pK_b = 6.3$; structure of the spectrum could not be discerned because it was not corrected for SD; pH 9	70E293
98.	Azure B Water	FP	800	$pK_a = 7.2 \pm 0.1$	67C001
99.	Azure C Water	FP	810	$pK_a = 7.4 \pm 0.1$	67C001
100.	Bacteriochlorophyll EtOH/Pyridine	LP/SD	631°, 18500° 588°, 19600° 515°, 21500° 400°, 46700° 323°, 38300°	†Triplet ET; solvent was 7:3 EtOH to pyridine; shoulder at 691° nm; τ_T = 74 \pm 4 μs	733184
	Pyridine	FP/SD	655, 9300 620, 11500 410, 22200	$\tau_{\rm T}=85\pm13~\mu{\rm s}$	60E006
	Pyridine	LP/SD	616 ^a , 20800 ^a 512 ^a , 19500 ^a 405 ^a , 41000 ^a	‡Triplet ET; shoulder at 690° nm; $\tau_{\rm T} = 89 \pm 5 \ \mu {\rm s}$	733184

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

lo.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
01.	Benz[a]acridine				
	EPA (77 K)	PS	497	Relative intensities (10:9); "1,2-benzacridine"; $\tau_T = 3$	54B00
	T	DC.	470	\times 10 ⁵ μ s	£4700
	Isopentane/MCH (77 K)	PS	497	$\tau_{\rm T} = < 5 \times 10^5 \mu \rm s$	54B00
02.	Benz[c]acridine				
	EPA (77 K)	PS	510	Relative intensities (10:9); "3,4-benzacridine"; $\tau_T = 4$	54B00
			480	× 10 ⁵ μs	
12	Benz[b]acridin-12(5H)-one				
<i>.</i>	EtOH (300 K)	FP/ET	590, 45000	ϵ relative to anthracene in EtOH ($\epsilon_{421} = 52000 \text{ L}$	81E64
	2.011 (500 11)	/	380	mol ⁻¹ cm ⁻¹); "6,7-benzacridinone"	,
				, , , , , , , , , , , , , , , , , , , ,	
)4.	Benzaldehyde	~D	450	0.1 / 1 / 0.00 N / 2 / 200 1.004	F07700
	Liquid paraffin	FP	470	Solvent viscosity was 0.03 N·s/m²; 470 and 364 nm	58E00
			364 320	bands were assigned to one electronic transition, and	
			320 307	the other two bands were assigned to another elec- tronic transition; relative intensities (11:18:100:86)	
				wanderday, admire intermeted (11/10/100/00)	
5.	Benzamide				
	Liquid paraffin	FP	505	•	58E00
			300	signed to 2 different electronic transitions	
6.	Benz[a]anthracene				
	2-MTHF (77 K)	PS/ESR	493, 43600°	‡ESR; shoulder at 410° nm; "1,2-benzanthracene"; os-	68D2
	, ,		469°, 22700°,c	cillator strength $= 0.43$	
			441*, 19200*.°		
	Benzene	FP	538	Relative intensities (10:100:65:50:30); $\tau_T = 160 \pm 13$	61E00
			488	μs	
			458		
			435 402		
	Benzene	PR/ET	490, 20500	ϵ relative to benzophenone ketyl radical in cy-	71E36
	Delizatio	11021	450, 20500	clohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained	,,,,,,
				from a simultaneous least squares fit of data from	
				several compounds making use of cyclohexane to ben-	
				zene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for	
				anthracene	
	Benzonitrile	LP/RF	490°, 12000 ± 800	ϵ relative to benz[a]anthracene in toluene (ϵ_{490} =	83F07
	Cualabanana	DD /CT	466 ^a , 9800 ^a	15000 L mol ⁻¹ cm ⁻¹)	(0070
	Cyclohexane	PR/ET	$480, 25100 \pm 6270$	ε relative to benzophenone ketyl radical in water (ε _{537.5}	68072
				= 3220 L mol ⁻¹ cm ⁻¹), assuming this value for $\epsilon_{542.5}$ in cyclohexane	
	Cyclohexane	LP	480	tRise time of transient was the same as the decay time	68B00
	•		: 	of the singlet	00200
	Cyclohexane	LP	540	. .	70E2
			490		
			461		
	Cyclohexane	PR/ET	480, 28800	ϵ relative to benzophenone ketyl radical in cy-	71E3
				clohexane ($\epsilon_{\text{max}} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); reference ϵ	
				obtained by starting from $\epsilon_{max} = 3220 \text{ L mol}^{-1} \text{ cm}^{-1}$	
				for this ketyl radical in water and assuming the f of the	
				ketyl radical is independent of solvent; final ϵ obtained from a simultaneous least squares fit to data from	
				several compounds	
	Cyclohexane	LP	543	350 ns delay	73746
	• •		483	-	
			457		
			429		
	EPA (77 K)	PS	489.0	‡Phosphorescence decay; 1st transition assigned as ³ L _a	51E00
			473.3	\rightarrow 3C_b	
			459.3		
	EPA (77 K)	PS	489.0	tPhosphorescence decay; relative intensities	54B00
			460.8	(100:58:54); unresolved shoulder at 474 nm; $\tau_T = (3 \pm 1)^{-1}$	
			434	$1) \times 10^{5} \mu s$	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm	Comment -1	Ref.
	EPA (77 K)	PS	710 645	Weak bands in the red only studied	67B005
	EPA (77 K)	PS/SD	590 487.5, 29000 465², 18200²	EPA in this work was 4:4:1 isopentane to Et ₂ O to absolute EtOH	68E104
	EPA (77 K)	PS	433°, 13600° 709.2 645.2 589.9	Relative intensities (7:5:6:4:100:42:70:44:27:20)	69E211
			543.5 489.0 471.9		
			460.8 434.8 411.0		
	EPA (77 K)	PS/IV	384.0 488, 28800	λ_{max} assumed from previous work; ϵ estimated by extrapolation to infinite excitation rate	69E212
	EtOH (293 K)	FP	540 482	rapolation to immite oxeration rate	68E098
	EtOH (293 K) EtOH (77 K)	LP MOD	442° 486	Halfwidth 440 cm ⁻¹	697226 777538
	EtOH (// k)	LP	480° 450° 430°	Relative intensities (6:4.2:4); 1.8 µs delay; solution contains Ag ions	78E554
	Heptane (77 K)	PS	487 460 437.4 413		67B007
	Hexane	FP	402 485.0 450.1 429.9		54E001
	Hexane	MOD/SD	480°, 24500° 455°, 18200° 430°, 13800° 360°, 2800° 295°, 43700°	Shoulders at 410 nm and 387 nm; $\tau_T = 100 \ \mu s$	64E015
	Hexane (300 K)	MOD/SD	279*, 31600* 531, 2500 481, 26000 455, 21000 427, 17000 407, 9000 360, 2800 345, 3600 302, 40000 274, 30000 247, 24000		69E208
	Isopentane/MCH (77 K)	PS	486.6 459 430	Relative intensities (100:62:55); unresolved shoulder at 472 nm	54B001
	Liquid paraffin	FP/SD	540, 3000 485, 23400 461, 19700 434.5, 12400 415, 8900 315	Solvent had viscosity of 0.03 N·s/m ² ; 3 electronic transitions were assigned; all bands belong to the 2nd electronic transition except the bands at 540 and 315 nm; oscillator strength = 0.02, 0.34,	58E001
	Naphthalene (373 K)	PR	495 475 435	Solution; relative intensities (100:83:66); delay 300 ns; $k_{\rm ct}=1.1\times10^{10}~{\rm L~mol^{-1}~s^{-1}}$	700114

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\begin{array}{ccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-1} \end{array}$	Comment	Ref.
	Nonane (77 K)	PS	490.0 463.6 460.0 432.0	Relative intensities (100:42:70:44:27:20)	69E211
	D 414 4 (204 K)	T.D.	410.0		(0,000
	PMMA (296 K)	LP	490 460 430		686058
	PMMA (296 K)	PS	488° 461°		68E104
	РММА	LP	435° 540 490 461		70E288
	Toluene (77 K)	MOD	495	Halfwidth 460 cm ⁻¹	777538
	Toluene	LP/ET	490°, 15000 ± 1000 466°, 10600°	ϵ relative to anthracene in toluene ($\epsilon_{428.5} = 42000 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$)	
107.	7H-Benz[de]anthracen-7-	one			
	1,1,2-Trichloro- trifluoroethane	LP	484°	tOxygen quenching (1.2 \times 10 9 L mol ⁻¹ s ⁻¹)	757427
	Benzene Benzene (298 K)	LP LP	490 500	Half-life = $1.0 \pm 0.1 \mu s$	757427
	Delizene (290 K)	LF	460		82E204
	МеОН	LP	490*	Half-life $-1.8 \pm 0.1 \mu s$	757427
108.	Benz[a]azulene Benzene	LP	430		81F275
109.	Benzene				
	Cyclohexane	LP/IV	235, 11000	†Oxygen quenching; 106 ns delay; shoulder ~310 nm ($f \sim 0.12$); ϵ assumes $\Phi_T = 0.23$; assignment $2^3E_{2g} \leftarrow {}^3B_{10}$; oscillator strength = ~0.35	80B023
	EtOH/MeOH (113 K)	FP	429.6 ± 0.5 $\sim 412.5 \pm 1.0$	†Phosphorescence decay; glass was 3:1 EtOH to MeOH; band assigned to ${}^{3}E_{2g} \leftarrow {}^{3}B_{1u}^{+}$	69E207
110.	Benzene-do				
	3-MP/MCH (103 K)	FP	426.5 ± 0.5 $\sim 412.5 \pm 1.0$	†Phosphorescence decay; glass was 1:1 3-MP to MCH; band assigned to ${}^{3}E_{1\bar{z}_{R}} \leftarrow {}^{3}B_{1u}^{+}$	69E207
	EtOH/MeOH (113 K)	FP	425.0 ± 0.5 $\sim 407.5 \pm 1.0$	1Phosphorescence decay; glass was 3:1 EtOH to MeOH; hand assigned to ${}^{3}E_{2g}^{-} \leftarrow {}^{3}B_{1u}^{+}$	69E207
111	Benzidine				
••••	EtOH (77 K)	MOD/KM	$460,22000 \pm 5500$	"4,4'-Diaminobiphenyl"	737055
	EtOH/Et ₂ O (77 K)	MOD/KM	460, 49000 ± 20000	Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	719059
	Toluene/EtOH (77 K)	MOD	461*	Glass was 19:1 toluene to EtOH	719059
112.	Benzil				
	Acetonitrile/Water	LP	480*	Solvent was 88:12 acetonitrile to water by volume	79E690
	Benzil (295 K)	LP	510	Triplet exciton in crystal; halfwidth 2860 cm ⁻¹	78E538
	Benzil (77 K)	LP	510	Triplet exciton in crystal; halfwidth 2320 cm ⁻¹	78E538
	Liquid paraffin	FP	486.5	Solvent viscosity was 0.03 N·s/m ² ; bands were as-	58E001
	Polystyrene	PR	380 469ª	signed to different electronic transitions $G\epsilon_{469} = 4200^{\text{a}} \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed}); \tau_{\text{T}}$	701073
				= 36 μs	
113.	Benzil/Triethylamine				
	Acetonitrile/Water	LP	600°	Solvent was 88:12 acetonitrile to water; possible triplet exciplex, but resembles benzil radical cation; $\tau_{\rm T}=0.055~\mu{\rm s}$	79E690

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
114.	Benzo[a]carbazole EtOH	FP	680° 569	Most intense peak at 569 nm	766421
			438 390 365		
115	Description beauty		303		
115.	Benzo[b]carbazole EtOH	FP	620° 500	Most intense peak at 500 nm; shoulder around 475 nm	766421
			420 345		
116	Benzo[c]carbazole				
110.	EtOH	FP	528 380 352	Most intense peak at 528 nm; shoulder around 600 nm	766421
117.	Benzo[b]chrysene				
	Benzene	MOD	570 530 450	Relative intensities (100:64:39)	71E361
	Liquid paraffin	MOD	570 450	Mull; relative intensities (100:78); shoulder at 530 nm with relative intensity 71; $\tau_T=53~\mu s$	71E361
118.	Benzo[a]coronene				
	2-MTHF (77 K)	PS/ESR PS/SD	588, 25500 423, 38800 5718, 358004	tESR; assignments ${}^{3}B_{2} \leftarrow {}^{3}B_{2}$, ${}^{3}A_{1} \leftarrow {}^{3}B_{2}$; oscillator strength = 0.28, 0.18 EPA in this work was 4:4:1 isopentane to Et ₂ O to	696115 68E104
	EPA (77 K)		571*, 25800* 420*, 37600*	absolute EtOH; "1,2-benzcoronene"	
	PMMA (296 K)	PS	568° 418°		68E104
	PMMA (77 K) PMMA (296 K) PMMA (293 K)	PS/SD PS/SD CWL/KM	568*, 21900* 568*, 20300* 1090, ~200 943 826 588, 18000 568 417, 36200	Shoulders at 588°, 532°, and 488° nm; $\tau_T = 4.3 \times 10^6 \mu s$ Shoulders at 585° and 538° nm; $\tau_T = 2.9 \times 10^6 \mu s$ Three transitions were identified with the 0-0 bands identified by their extinction coefficients; the lowest triplet state was assigned as ${}^3B_2^+$, and the excited states were assigned as ${}^3B_2^+$, ${}^3B_2^-$, and ${}^3A_1^-$ in increasing energy; the ϵ_{417} is for the compound in EPA at 77 K; oscillator strength = 0.06, 0.24, 0.19	69E216 69E216 707230
119.	Benzoflavine PMMA (77 K)	PS	1300		65B004
			1210 1100 930 800 750		
120.	Benzo[a]fluorene	FP	620ª	Most interes week at 405 pm	766421
	Heptane	rr	600° 440° 405°	Most intense peak at 405 nm	700421
121.	Benzo[b]fluorene				
121.	Heptane	FP	620° 441 419 392 377 365	Most intense peak at 441 nm; shoulder around 465 nm	766421
122.	Benzo[c]fluorene				
	Heptane	FP	490° 350°	More intense peak at 490 nm; shoulder around 460 nm	766421

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ _{max} , /nm	ϵ _{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
123.	Benzoic acid					
	Isopentane/MCH	FP/COM	320, - 315ª	~1000	to MCH; $\epsilon_{\rm max}$ was estimated based on $\Phi_{\rm T}$ being 0.99; shoulders at 344° and 304° nm; delay 10 μ s; $\tau_{\rm T}=(2.80$	756077
	Liquid paraffin	FP	310		± 0.10) × 10 ⁶ µs Solvent viscosity was 0.19 N·s/m ²	58E00
24.	Benzoin					
	Benzoin (295 K)	LP	455° 430° 390°		Triplet exciton in crystal	78E53
	Liquid paraffin	FP	476 370		Solvent viscosity was 0.19 N·s/m ² ; relative intensities (95:100)	58E00
25.	Benzo[c][1,5]naphthyridine					
23.	EtOH/Et ₂ O (77 K)	PS	758 676 610 570 532		Solvent was 3:2 EtOH to Et ₂ O; relative intensities (14:34:43:77:94:100:77:70); $E_T = 270 \text{ kJ mol}^{-1}$	80B13
			505 474 439			
26.	Benzo[c][1,6]naphthyridine			*		
	EtOH/Et ₂ O (77 K)	PS .	557 525		Solvent was 3:2 EtOH to Et ₂ O; relative intensities (100:85); $E_T = 276 \text{ kJ mol}^{-1}$	80B13
27.	Benzo[c][1,7]naphthyridine					
	EtOH/Et ₂ O (77 K)		Solvent was 3:2 EtOH to Et ₂ O; relative intensities (77:100:97:65); $E_T = 269 \text{ kJ mol}^{-1}$	80B13		
			435			
20	Benzonitrile					
20.	EPA (77 K)	FP	490 430		tPhosphorescence decay, molecular orbital calculations; ϵ roughly 200 L mol ⁻¹ cm ⁻¹ (method unspecified); $\tau_{\rm T}=3.5~\mu{\rm s}$	776213
29.	Benzo[rst]pentaphene					
	Benzene	MOD	490 460		Relative intensities (100:44); "3,4,9,10-dibenzpyrene"; $\tau_{\rm T} = 170~\mu{\rm s}$	71E36
	Cyclohexane	LP	495		$\tau_{\rm T} = 170~\mu{\rm s}$	70E28
	Cyclohexane	LP	714		370 ns delay	737463
			694 676			
			654			
			637			
			621			
			613 581			
	Liquid paraffin	MOD	490 460		Mull; relative intensities (100:45); $\tau_{\rm T}=150~\mu{\rm s}$	71 E 36
20	Pangalahi hamilan					
JU.	Benzo[ghi]perylene Benzene	MOD	570		Relative intensities (11:23:100); "1,12-benzoperylene";	71E36
			520		$\tau_{\rm T} = 150 \mu \text{s}$	/ 1110
			470			
	Cyclohexane	LP	690		370 ns delay; authors reassign "490" nm band to T _n ←	737463
			667		T_1 , [686058] suggested that it was $S_n \leftarrow S_1$	
	•		637			
			575			
			529			
			483			
			461			

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	EPA (77 K)	PS/SD	467, 40000 ± 4000		68E105
	PMMA (296 K)	LP	465 425		686058
	PMMA (77 K)	PS/SD	465°, 39900°		696020
	PMMA (296 K)	PS/SD	463°, 38900°		696020
	PMMA (293 K)	CWL/KM	1000, ~150 781, ~500 699	Four transitions were identified with the 0-0 bands identified by their extinction coefficients; the lowest triplet was ${}^{3}B_{2}^{+}$, and the other states were $({}^{3}A_{1}^{+})$, ${}^{3}A_{1}^{-}$,	707230
			637 568, ~7000	${}^{3}B_{2}^{-}$, and ${}^{3}A_{1}^{-}$ in increasing energy; the ϵ_{568} is for the compound in EPA at 77 K; oscillator strength =	
			529	$\sim 10^{-3}$, 0.02, > 0.07 , 0.39	
			493		
			465, 38300 439		
131.	Benzo[c]phenanthrene				
	Acetonitrile	FP	520	"3,4-Benzphenanthrene"; radical cation also observed at 450 nm; solvent contains dimethylmercury; $\tau_T = \sim 200 \ \mu s$	78A324
	Cyclohexane	LP	517		70E288
	Hexane	FP	517.1		54E001
	Hexane	FP/SD	517, 4800 400, 1580	Bands were assigned to 2 different electronic transitions; oscillator strength $= 0.05, 0.03$	58E001
	PMMA	LP	517	, ,	70E288
132.	Benzophenazine		5404	AD	005555
	Toluene (293 K)	FP	530° 500°	†Phosphorescence decay in EPA at 77 K, oxygen quenching; isomer unspecified	80E778
133.	Benzophenone				
	2-PrOH	LP	535	$\tau_{\rm T} = 0.046 \pm 0.006 \mu{\rm s}$	70E288
	Acetonitrile	LP	520 330°	†Triplet ET to cis-3-methylpent-2-ene; relative intensities (1:2); $\tau_T = 0.71 \ \mu s$; $k_{et} = 2.7 \times 10^8 \ L \ mol^{-1} \ s^{-1}$	80B087
	Acetonitrile	LP/HAT	520, 6500 ± 400 320, ~11500	ϵ relative to benzophenone ketyl radical in water (ϵ_{540} = 3220 L mol ⁻¹ cm ⁻¹) assuming ϵ_{ref} unchanged in acetonitrile; hydrogen atom transfer from 2-piperidone ($k_{HAT} = 9.7 \times 10^6$ L mol ⁻¹ s ⁻¹); $\tau_T = 14$ μ s	80E416
	Acetonitrile	LP	525	20 ps delay	80A206
	Acetonitrile/Water	LP/RF	520, 6500 315, 11800	Solvent was 9:1 acetonitrile to water; ϵ relative to benzophenone in acetonitrile ($\epsilon_{520} = 6500 \text{ L mol}^{-1} \text{ cm}^{-1}$)	84B033
	Benzene	FP/HAT	525 ^b , 6000 ± 3000	tSpecific quenching by heavy metal chelates; ϵ relative to benzophenone ketyl radical in benzene ($\epsilon_{525} = 7000 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ calculated by estimating that 10% of the triplets form ketyl radicals; $\tau_T = 10 \pm 5 \mu \text{s}$	63E007
	Benzene	PR	530	$G\epsilon_{530} = 11700 \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed});$ half-life = 2.11 μ s	64B006
	Benzene	PR/ET	532.5, 9100	ϵ relative to anthracene in cyclohexane ($\epsilon_{420} = 57200 \text{ L}$ mol ⁻¹ cm ⁻¹); author reported mean of 4 measurements (this one and 3 others with different ref. cmpds.) as $10300 \pm 2570 \text{ L mol}^{-1} \text{ cm}^{-1}$	680727
	Benzene	PR/ET	532.5, 12000	ϵ relative to naphthalene in cyclohexane ($\epsilon_{412.5} = 22600$ L mol ⁻¹ cm ⁻¹); author reported mean of 4 measurements (this one and 3 others with different ref. cmpds.) as 10300 ± 2570 L mol ⁻¹ cm ⁻¹	680727
	Benzene	PR/ET	532.5, 9700	ϵ relative to benz[a]anthracene in cyclohexane ($\epsilon_{480} = 25100 \text{ L mol}^{-1} \text{ cm}^{-1}$); author reported mean of 4 measurements (this one and 3 others with different ref. cmpds.) as $10300 \pm 2570 \text{ L mol}^{-1} \text{ cm}^{-1}$	680727
	Benzene	PR/ET	532.5, 10600	ϵ relative to phenanthrene in cyclohexane ($\epsilon_{482.5} = 21000 \text{ L mol}^{-1} \text{ cm}^{-1}$); author reported mean of 4 measurements (this one and 3 others with different ref. cmpds.) as $10300 \pm 2570 \text{ L mol}^{-1} \text{ cm}^{-1}$	680727

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

0.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Benzene	LP	535	$ au_{\mathrm{T}} = 2.5 \pm 0.3 \; \mu \mathrm{s}$	70E288
	Benzene-d ₆	LP	535	$\tau_{\rm T} = 3.45 \pm 0.30 \mu {\rm s}$	70E288
	Benzene	PR/ET	532.5, 7630	ϵ relative to benzophenone ketyl radical in cy-	71E360
	Benzene	FK/E1	332.3, 7030	clohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained from a simultaneous least squares fit of data from	/12500
				several compounds making use of cyclohexane to benzene ϵ_{\max} ratios of 1.83 for naphthalene and 1.45 for anthracene	
	Benzene	FP/RA	525, 7000	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{max}=4160~L~mol^{-1}~cm^{-1}$), taking $\Phi_T=1$ in benzene and $\Phi_{ketyl}=1$ in cyclohexane; reference ϵ of	717009
				ketyl radical was taken as the average of 3220 in water and 5100 L mol ⁻¹ cm ⁻¹ in 2-PrOH/water; $\tau_T = 12 \pm 2 \mu s$	
	Benzene	PR	528ª	‡ Triplet ET from benzene; $k_{e1} = (1.3 \pm 0.2) \times 10^{11} L$ mol ⁻¹ s ⁻¹	751124
	Benzene	LP	528°		751124
	Benzene	LP	535	$\tau_{\rm T} = 3.57 \ \mu \rm s$	79A17
	Benzene	LP	525	·	80B021
			325		
	Benzene	LP/RA	533, 7200	ϵ relative to potassium ferrioxalate actinometer assuming $\Phi_T=1.0$ for benzophenone in benzene	80B090
	Benzene	LP/ET	533°, 7100 ± 800	†Triplet ET to naphthalene; ϵ relative to naphthalene in benzene ($\epsilon_{425} = 13000 \text{ L mol}^{-1} \text{ cm}^{-1}$)	81A17
	Benzene	LP/PIV	$530,7220 \pm 320$		83B06
	Benzophenone (303 K)	PR	540	Liquid; if 90% of the absorption at 540 nm is due to triplets and if $\epsilon = 10300$ L mol ⁻¹ cm ⁻¹ , then G(triplets) = 2.2 ± 0.1 triplets/(100 eV absorbed).; half-life = 0.46 μ s	700114
	Benzophenone (77 K)	LP	543 450	Triplet exciton in crystal; halfwidth of 543 nm band 2450 cm ⁻¹ ; $\tau_T = \sim 1000 \mu s$	78E538
	Benzophenone (295 K)	LP	543	Triplet exciton in crystal; halfwidth 3000 cm ⁻¹	78E53
	Benzophenone	LP	540*	†Phosphorescence decay; absorption monitored by diffuse-reflectance spectroscopy	84E04
	Cyclohexane	LP	535	$\tau_{\rm T} = 0.30 \pm 0.02 \ \mu {\rm s}$	70E28
	Cyclohexane	PR	535ª	•	751124
	Dioxane	LP	535	$\tau_{\rm T} = 0.20 \pm 0.02 \; \mu {\rm s}$	70E28
	Diphenyl ether	LP	~540	$\tau_{\rm T} = (160 \pm 20) \times 10^{-3} \mu{\rm s}$	78B07
	EPA (77 K)	FP	535		55E002
	EtOH	LP	535	$\tau_{\rm T} = 0.104 \pm 0.015 \ \mu {\rm s}$	70E28
	EtOH	LP/COM	545, 7300 510°, 6500°	ϵ estimated by scaling by halfwidth of band (3220 cm ⁻¹) relative to that in hexane; $\tau_T = 0.08 \ \mu s$	79B14
	Heptane	LP	530	Delay 320 ps	84B154
	Hexafluorobenzene	LP	535	$\tau_{\rm T} = 0.435 \pm 0.40 \; \mu {\rm s}$	70E28
	Hexane	LP/IV	525, 10300 500°, 9600°	ϵ estimated assuming $\Phi_T = 1.0$ for benzophenone in hexane, corrected for triplet decay and ketyl radical	79B14
			445*, 5000*	formation during the pulse, and extrapolated to zero	
	Isopentane (77 K)	FP	310 ^a , 15000 ^a 543 ^a	intensity; halfwidth 2650 cm ⁻¹ ; $\tau_T = 0.29 \mu s$ †Phosphorescence decay	67E10
	мсн	LP	326ª 520ª		757117
	PFMCH	FP	529° 530°	†Phoenhorascance decay, most intense most ince =4 210	757112
	11 MO11	1.1	520° 520° 319°	†Phosphorescence decay; most intense peak was at 319 nm; $\tau_T = 400 \ \mu s$	747390
	PMMA (293 K)	FP/RA	606 532, 4200 ± 100	tPhosphorescence decay; ϵ relative to benzophenone ketyl radical in 2-PrOH/water ($\epsilon_{546} = 5100 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming Φ_{T} was the same in PMMA and ethylene glycol and assuming ϵ for ketyl radical same in 2-PrOH/water and ethylene glycol; delay 100 μ s	66E09
	PMMA (80 K)	FP	606	Decay of absorption was equal to decay of phos-	66E09
		• •	532	phorescence at 293, 220, and 100 K; delay 100 μs	0013030

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ε_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.		
	PPFO	LP/SM	520, 2460° ± 350	Aqueous micelle, potassium perfluorooctylsulfonate; ϵ method needs the assumption of $\Phi_T = 1$ for benzophenone in the micelle since only linear intensity dependence observed; $\tau_T = 7.87 \ \mu s$	81N156		
	SPFO	LP/SM	520, 2660° ± 380	· · · · · · · · · · · · · · · · · · ·	81N156		
	Trichlorotrifluoroethane	FP	526 317	tOxygen quenching and no hydrogens available in the solvent to form ketyl radicals; $\tau_T = 20 \mu s$	67B006		
	Water	FP	525 315	pH 12.7	727098		
	Water	FP	525	Delay 20 μ s; $\tau_T = 65 \pm 6 \mu$ s	72A02		
	Water	FP	525 315	$\tau_{\rm T} = \sim 100 \ \mu \rm s$; pH Neutral	727098		
	Water	LP/HAT	$520, 5750 \pm 400$ $320, \sim 8350$	ϵ relative to benzophenone ketyl radical in water (ϵ_{540} = 3220 L mol ⁻¹ cm ⁻¹); hydrogen atom transfer from 2-piperidone ($k_{\text{HAT}} = 14.8 \times 10^4 \text{ L mol}^{-1} \text{ s}^{-1}$); $\tau_{\text{T}} = 40 \mu\text{s}$	80E416		
	Water	LP/RA	$520, 5800 \pm 400$	ϵ relative to naphthalene in cyclohexane ($\epsilon_{414}=24500$ L mol ⁻¹ cm ⁻¹ , $\Phi_T=0.75$) assuming $\Phi_T=1$ for benzophenone in water	80E416		
	Water/Acetonitrile	LP	525	Solvent was 4:1 water to acetonitrile; 200 ns delay; τ_T = 31 μ s; E_T = 288 kJ mol ⁻¹	82A08		
134.	. ,						
	Sulfuric acid	LP	505	5 mol L ⁻¹ H ₂ SO ₄ ; solvent was 4:1 water to acetonitrile; pK _a 0.20 \pm 0.02; τ_T = 0.017 μ s	84E45		
135.	Benzo[a]pyrene/DNA	Banzala Inurana /DNA					
	Water	LP	480	‡Oxygen quenching (2.0 \times 10 ⁸ L mol ⁻¹ s ⁻¹); deproteinated calf thymus DNA; $\tau_{\rm T} = 3.5 \times 10^4 \ \mu {\rm s}$	766403		
136.	Benzo[e]pyrene/DNA						
	Water	LP	560ª	‡Oxygen quenching (1.6 \times 10 ⁸ L mol ⁻¹ s ⁻¹); deproteinated calf thymus DNA; $\tau_{\rm T} = 1.55 \times 10^4 \ \mu \rm s$	766403		
137.	Benzo[a]pyrene						
٠,٠	Benzene	MOD	475	Called "3,4-benzpyrene" in paper; $\tau_T = 84 \mu s$	71E36		
	Cyclohexane	LP	500 475	†Rise time of transient was the same as the decay time of the singlet; "3,4-benzpyrene"	68B00		
	Cyclohexane (296 K)	FP	465	Shoulder at 440 nm; $\tau_T = 8700 \mu s$	78A34		
	EPA (77 K)	PS	504 477.3 467.9 444	Relative intensities (31:95:100:76); "3,4-benzopyrene"	54B00		
	PMMA (77 K)	PS	470 442 419	Named "3,4-benzopyrene" in paper	70E29		
	Toluene/EtOH (77 K)	MOD	557ª	Glass was 19:1 toluene to EtOH; shoulders at 606°, 427°, and 380° nm; called "1,2-benzopyrene" in paper	719059		
	Water (296 K)	FP	465	Solution contains 2% SDS; shoulder at 445 nm; radical cation also observed ($\lambda_{max} = 550$ nm); $\tau_T = 2.38 \times 10^4$ μs	78A34		
	Water (296 K)	FP	470	Caffeine (1%) added as solubilizing agent; radical cation also observed ($\lambda_{max}=550$ nm); $\tau_{T}=2040~\mu s$	78A34		
138.							
	Benzene	MOD	560	Called "1,2-benzpyrene" in paper; $\tau_T = 120 \mu s$	71E36		
	EPA (77 K)	PS/IV	555, 17800	λ_{max} assumed from previous work; ϵ estimated by extrapolation to infinite excitation rate	69E21		
	EPA (77 K)	PS/KM	588°, 7500° 555°, 16100° 519°, 9300°	Solvent, temperature and extinction method assumed from earlier work; polarization also measured	69E21		

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	EtOH/MeOH/THF (assumed 77 K)	PS	587.5 558.5 456	Glass was 3:1:4 EtOH to MeOH to THF; the origin of another band was assigned to 392 nm; the 4 bands were assigned to 4 different electronic transitions; T_1 was assigned as ${}^3B_2^+$, and the other 4 states were assigned as ${}^3A_1^-$ for 587.5 nm and 456 nm and ${}^3B_2^-$ for the other 2; "1,2-benzopyrene"	70В003
139.	Benzo[f]quinoline EPA (77 K)	PS ·	517 482	Relative intensities (10:8:5); "5,6-benzoquinoline"; τ_T = 2.6 \times 10 ⁶ μ s	54B001
			~452	= 2.0 × 10 µs	
	EtOH/Et ₂ O (77 K)	PS	833 735 662 515	Solvent was 3:2 EtOH to Et ₂ O; relative intensities $(<5:<5:<5:100:74:49)$; $E_T - 262$ kJ mol ⁻¹	80B130
			448		
	Isopentane/MCH (77 K) PMMA (77 K)	PS PS	510 500 470 440	$\tau_T = 1.8 \times 10^6$ μs †Phosphorescence decay (?); $\tau_T = 3.3 \times 10^6$ μs	54B001 70E291
140.	Benzo[h]quinoline EPA (77 K)	PS	500 465	Relative intensities (10:8:5); "7,8-benzoquinoline"; $\tau_{\rm T}$ = 2.1 \times 10 ⁶ $\mu {\rm s}$	54B001
	EtOH/Et ₂ O (77 K)	PS	~440 500 465 437	Solvent was 3:2 EtOH to Et ₂ O; relative intensities (100:84:55); $E_T=262~kJ~mol^{-1}$	80B130
	Isopentane/MCH (77 K)	PS	505	Relative intensities (10:9); $\tau_{\rm T}=1.4\times10^6~\mu{\rm s}$	54B001
	PMMA (293 K)	FP	~465 490 460	†Phosphorescence decay (?); decay was non-exponential, and lifetime was calculated from a terminal 1st-order rate constant; $\tau_T = 1.1 \times 10^6 \mu s$	70E29
	PMMA (77 K)	PS	490 460 433	tPhosphorescence decay (?); $\tau_{\rm T} = 1.9 \times 10^6 \mu \rm s$	70E29
	Dance Claute aliaint				
141.	Benzo[f]quinolizinium Acetonitrile	FP	575°	$ au_T = 125 \pm 5 \mu s$	81A34
142.	Benzo[h]quinolizinium				
	Acetonitrile	FP	575°	$ au_{\mathrm{T}} = 120 \pm 5 \; \mu \mathrm{s}$	81A34
43.	1,4-Benzoquinone				
	EtOH	LP	450	100 ps delay	79B007
	Water	LP	410	tOxygen quenching (2.4 \times 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T}=0.53$ $\mu{\rm s}$	80B112
144	Benzo[b]triphenylene/Chle	orenil			
	PMMA	PS	620 540	Charge transfer complex; most intense peak at 450 nm	766652
			450*		
			420° 410° 400°		
145	Benzo[b]triphenylene		•		
17).	2-MTHF (77 K)	PS/ESR	454, 31000	tESR; only most intense visible peak reported; "1,2,3,4-dibenzanthracene"; oscillator strength = 0.20	696115
	Benzene Cyclohexane	MOD LP	450 440	$\tau_T = 90 \ \mu s$ 1 Rise time of transient was the same as the decay time	71E361 68B006
				of the singlet	
	Epoxy plastic (296 K)	LP	425		686058

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	PMMA	LP	445		70E288
	PMMA (293 K)	CWL/KM	752, 1300 680 613	Two transitions were assigned with the 0-0 bands identified by their extinction coefficients; both transitions are assigned as ${}^{3}B_{2}^{-} \leftarrow {}^{3}B_{2}^{+}$; oscillator strength = 0.10,	707230
			568 446, 28800 422	0.27	
			400		
	PMMA	PS	612ª	Most intense peak at 455 nm	766652
			596ª	•	
			578ª		
			540ª		
			498ª		
			455°		
			425° 412°		
			396ª		
46.	1-Benzoylacetone	ED	420	0.1	(2700
	EtOH/MeOH (118 K)	FP	438	Solvent was 3:1 EtOH to MeOH	.68B00:
147.			551 7200	Afficiation from an 11 or 1 or 1 or 1 or 1	007705
	Cyclohexane (293 K)	FP/RA	551, 7200	‡Triplet ET to biacetyl, oxygen quenching; ϵ relative to naphthalene in cyclohexane ($\epsilon_{414} = 24500 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{\rm T} = 1000 \mu\text{s}$	82E37
48.	9-Benzoylanthracene				
	Benzene	LP	434		84B11
			408		
	EPA (77 K)	FP	430	430 nm peak was the more intense, $\tau_{\rm T} = 3.31 \times 10^4 \mu \rm s$	82E33
	Toluene	LP	406ª 420	$$Oxygen quenching; rise time of 0.02 \pm 0.004 ns$	777635
140	9-Benzoyi-10-bromoanthr	egono			
. .	EPA (77 K)	FP	430	$\tau_{\rm T} = 170 \ \mu \rm s$	82E33
150.	9-Benzoyl-10-chloroanthr				
	EPA (77 K)	FP	432	$\tau_{\rm T} = 3800 \ \mu s$	82E33
	Toluene	LP	415	Oxygen quenching; rise time of 0.052 \pm 0.002 ns	777635
151.	9-Benzoyl-10-cyanoanthra	acene			
	Toluene	LP	430	‡Oxygen quenching	777635
152.	2-Benzoyl-N-methyl-β-na	phthiazoline			
	EtOH	FP	630	‡Oxygen quenching (6.6 \times 10 ¹⁰ L mol ⁻¹ s ⁻¹); 50 μ s delay; $\tau_{\rm T}=480~\mu{\rm s}$	78E53
	THF	FP/SD	640, 16000 620 ^b , 15000	tOxygen quenching; 50 μ s delay; $\tau_T = 380 \ \mu$ s	78E53
			440, 8000°		
	THF	FP/SD	640, 16000 440, 13000	‡Oxygen quenching (6.6 \times 10 ¹⁰ L mol ⁻¹ s ⁻¹); 50 μ s delay; $\tau_{\rm T} = 390 \ \mu$ s	79E30
152	8-Benzoylnaphtho[de-2.3.	Albiovolo[2 2 2]no	no-7 6 8-trione		
133.	EPA (103 K)	LP	430	†Phosphorescence decay, oxygen quenching	81F390
	Diff (100 A)		380	triosphoreseemee accus, oxygen queneming	011 07
	MCH (173 K)	LP	430 380	†Phosphorescence decay, oxygen quenching; $\tau_{\rm T}=1.0$	81F39
	0 D		300	μs	
154.	9-Benzoyl-10-nitroanthrac Benzene	cene LP	431ª	Delay 400 ns	80E88
	Benzene (293 K)	LP	~450	170 ps delay; growth followed at 452 nm; rise time of $(82 \pm 6) \times 10^{-3}$ ns	
	EPA (77 K)	FP	~450	$\tau_{\rm T} = 1.6 \times 10^4 \mu \rm s$	80B084
	EPA (77 K)	FP	436°	$\tau_{\rm T} = 1.6 \times 10^4 \mu \rm s$	80E88
	. ,			•	

J. Phys. Chem. Ref. Data, Vol. 15, No. 1, 1986

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

lo.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
155.	2-Benzoylpyridine PFMCH	FP	526° 331°	Shoulder at 539° nm; 331 nm peak was the more intense; $\tau_T = 480 \mu s$	747390
56.	3-Benzoylpyridine PFMCH	FP	523° 305°	†Phosphorescence decay; 305 nm peak was the more intense; $\tau_{\rm T}=110~\mu {\rm s}$	747390
57.	4-Benzoylpyridine PFMCH	FP	510° 490° 319°	†Phosphorescence decay; most intense peak at 319 nm; "phenyl-4-pyridyl ketone"; $\tau_{\rm T}=240~\mu{\rm s}$	747390
58.	1-Benzoyl-3,3,3-trifluor EtOH/MeOH (118 K)		633	Solvent was 3:1 EtOH to MeOH	68 B0 0
59.	Benzyl 9-anthroate Acetonitrile	FP	425	Radical anion ($\lambda_{max} = 550$ nm) also observed; $\tau_T = 1100 \mu s$	80A03
	Benzene	FP/?	430, 63000 410, 28000 ^a	ϵ method unspecified; $\tau_{\rm T}=6100~\mu{\rm s}$	80A03
60 .	1-Benzylisoquinoline-N EtOH	-oxide FP	392	$ au_{\mathrm{T}}=2.9~\mu\mathrm{s}$	72710
61.	Benzyl phenyl ketone, o Sulfuric acid	conjugate acid LP	359*	5 mol L^{-1} H ₂ SO ₄ ; solvent was 4:1 water to acetonitrile; pK ₄ 0.35 \pm 0.05	84E45
62.	3-Benzyl-3-phenylphena Benzene	unthro[9,10- <i>b</i>]fura LP	n- 2(3H)-one 490*	tOxygen quenching and triplet ET to 1-methylnaphthalene	84E52
63.	3-Benzyl-3,4,5-triphenyl	l-2(3 <i>H</i>)-furanone			
	Benzene	LP/ET	$375 \pm 5, 14000 \pm 2800$	‡Oxygen quenching; ϵ relative to benzophenone in benzene ($\epsilon_{532}=7600~L~mol^{-1}~cm^{-1}$); $\tau_T=8.2\pm1.2~\mu s;~k_{et}=2.7\times10^9~L~mol^{-1}~s^{-1}$	84E52
64.	Biacetyl 2-PrOH	FP	1060 910 800 725 330 304 210	‡Oxygen quenching; delay 0 μs	697092
	Benzene Benzene	PR PR/ET	317 315, 6200	†Phosphorescence half-life; half-life = 120 μ s †Phosphorescence decay; ϵ relative to benz[a]anthracene in cyclohexane ($\epsilon_{480} = 25100 \text{ L}$ mol ⁻¹ cm ⁻¹); author reported the mean of 2 measurements with this and another ref. cmpd. as $6400 \pm 1600 \text{ L}$ mol ⁻¹ cm ⁻¹	68038 68072
	Benzene	PR/ET	315, 6600	†Phosphorescence decay; ϵ relative to anthracene in cyclohexane ($\epsilon_{420} = 57200 \text{ L mol}^{-1} \text{ cm}^{-1}$); author reported the mean of 2 measurements with this and an-	68072
	Benzene	PR/ET	315, 5160	other ref. cmpd. as $6400 \pm 1600 \text{ L mol}^{-1} \text{ cm}^{-1}$ ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{\text{max}} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained from a simultaneous least squares fit of data from several compounds making use of cyclohexane to benzene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for anthracene	71E36

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol $^{-1}$ cm $^{-1}$	Comment	Ref.
	CCl ₄	FP	1056 916 796 720 330 310	‡Oxygen quenching	697092
	EtOH	LP/RF	220 740, 1760	ϵ relative to biacetyl in 2-PrOH ($\epsilon_{725} = 1710 \text{ L mol}^{-1}$ cm ⁻¹); $\tau_{\rm T} = 3.4 \pm 1.0 \mu{\rm s}$	84E162
	Liquid paraffin	FP	317	Solvent viscosity was 0.03 N·s/m ²	58E001
165.	9,9'-Bianthryl MeOH	LP	425		776431
166.	9,9'-Bicarbazole				
	Cyclohexane	FP	410° 370°	†Triplet ET to anthracene; carbazyl radicals ($\lambda_{max}=600$ nm) also observed; $\tau_{\rm T}=120~\mu s$	78A368
	Hexane	FP	420	Oxygen and piperylene quenching; "dicarbazyl"	757573
167.	Bifluorenylidene Liquid paraffin	FP/TD	440, >110000	tPhosphorescence decay in MCH/Isopentane glass at 77K; solvent was "viscous paraffin", viscosity 1.75 P; $\tau_{\rm T}=(2.2\pm0.2)\times10^3~\mu{\rm s}$	767488
	MCH/Isopentane (77 K)	FP	440	thosphorescence decay; glass was 1:1 MCH to isopentane by volume; $\tau_T = (0.94 \pm 0.03) \times 10^6 \mu s$	767488
168.	Bilirubin Benzene	PR/ET	500, 8800	†Triplet ET from biphenyl and to β -carotene, oxygen quenching (8.2 × 10 ⁸ L mol ⁻¹ s ⁻¹); ϵ relative to biphenyl in benzene (ϵ_{305} – 27100 L mol ⁻¹ cm ⁻¹); half-life = 9 μ s; $E_T = \sim 150$ kJ mol ⁻¹ ; $k_{et} = 4.4 \times 10^9$ L mol ⁻¹ s ⁻¹	761168
169.	Biliverdin Acetone	PR-ET/ET	700°, 16000°	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene ($\epsilon_{360}=27100~\rm L~mol^{-1}~cm^{-1}$), assuming ϵ_{ref} independent of solvent; more intense maximum below 400 nm not observed; half-life = 11.7 μ s; $E_T=\sim90~\rm kJ~mol^{-1}$; $k_{\rm et}=7.4\times10^9~\rm L~mol^{-1}~s^{-1}$	79E136
170.	Biliverdin, dimethyl ester Benzene	PR-ET/ET	800°, 14000° 400°, 55000°	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene ($\epsilon_{360} = 27100 \text{ L mol}^{-1}$; half-life = 6.7 μ s; $E_T = \sim 90 \text{ kJ mol}^{-1}$; $k_{et} = 1.05 \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$	79 E 136
171.	1,1'-Binaphthyl 2-MTHF	LP-ET	610ª	†Triplet ET from benzoquinone, oxygen quenching, triplet quenching; 2 µs delay; shoulder at 550 nm	777241
	2-MTHF (123 K)	LP-ET	610 ^a 530 ^a 415 ^a 395 ^a	†Oxygen quenching, triplet quenching; 10 μs delay	777241
	2-MTHF (83 K)	LP-ET	530° 415°	‡Oxygen quenching, triplet quenching; 14 ms delay	777241
	Benzene (299 K)	PR/ET	395 ^a 615 ^b , 12000 608 ^a	Shoulder at 407^a nm; ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 7630 \text{ L mol}^{-1} \text{ cm}^{-1}$)	741006
	Toluene	PR	605	• • • • • • • • • • • • • • • • • • • •	771048
172.	2,2'-Binaphthyl Benzene (299 K)	PR/ET	637° 601° 450°, 24000 440°	Shoulder at 554^{a} nm; ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 7630$ L mol ⁻¹ cm ⁻¹); 440 nm was the most intense peak	741006

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

lo.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
73.	Biphenyl				
- 1	2-PrOH/Isooctane/Et ₂ O (81 K)	FP	371*	†Phosphorescence decay; glass was 1:3:3 2-PrOH to isooctane to Et ₂ O	81B119
	3-MH (77 K) 3-MP	PR PR	375 360	tPhosphorescence decay; $\tau_T = 3.7 \times 10^6 \mu s$ $G \epsilon_{300} = 16600 \text{L mol}^{-1} \text{cm}^{-1} / (100 \text{eV absorbed});$ half-life = 3.4 μs	771059 6 4B 006
	3-MP (77 K) Acetone	PS/ESR PR	375, 28200 360	$\pm ESR$; oscillator strength = ~ 0.27	69B002 710186
	Alcohol/Ether (77 K)	MOD	370	Glass was 2:1 alcohol to ether	76E682
	Benzene	PR/ET	359, 27100	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{\text{max}} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained from a simultaneous least squares fit of data from several compounds making use of cyclohexane to benzene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for	71E360
		- 1		anthracene; corrected λ_{max} quoted from reference [78Z194]	
	Benzene	PR	370		761024
	Boric acid	PS	360	Glass	777388
	BuOH (~80 K)	FP/COM	363, 300 ^d	ϵ estimated from numerical simulation of triplet state kinetics; $\tau_T = (3.93 \pm 0.1) \times 10^6 \mu s$	67B010
	BuOH (~80 K)	FP/IV	363, 250 ^d	ϵ estimated by extrapolation to infinite excitation rate	67B010
	Cyclohexane	PR/ET	361.3, 33000	ϵ relative to anthracene in cyclohexane ($\epsilon_{420} = 57200 \text{ L}$ mol ⁻¹ cm ⁻¹); author reported mean of 2 measurements (this one and another with a different ref. cmpd.) as $35400 \pm 8850 \text{ L}$ mol ⁻¹ cm ⁻¹	680727
	Cyclohexane	PR/ET	361.3, 37700	ϵ relative to benz[a] anthracene in cyclohexane ($\epsilon_{480} = 25100 \text{ L mol}^{-1} \text{ cm}^{-1}$); author reported mean of 2 measurements (this one and another with a different ref. cmpd.) as 35400 \pm 8850 L mol}^{-1} \text{ cm}^{-1}	680727
	Cyclohexane	PR/FT	361:3, 42800	contains a street in the proposition of the ketyl radical in cyclohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); reference ϵ obtained by starting from $\epsilon_{max} = 3220 \text{ L mol}^{-1} \text{ cm}^{-1}$ for this ketyl radical in water and assuming the f of the ketyl radical is independent of solvent; final ϵ obtained	71E360
		, .		from a simultaneous least squares fit to data from several compounds	
	EPA (77 K)	PS/KM	630°, 1600°		747247
		I O/ Kill	577*, 2000* 529*, 1800*	Two electronic bands, the 2nd starting at 370 nm; e-method assumed on basis of earlier work by authors; oscillator strength = 0.07, 0.42	147347
			488*, 2100* 458*, 1900* 428*, 1500* 370, 35800		
	gar t		357°, 27000°		
	EtOH/Et ₂ O (77 K)	MOD/KM	365, 7000° ± 2100	Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	719059
	EtOH/MeOH (113 K)	FP/SD	625*, 500° 571*, 800°	tPhosphorescence decays; shoulders at 685 and 334* nm; glass was 3:1 EtOH to MeOH; three electronic	70E290
			526°, 750°	states were tentatively assigned as ${}^3A_g^+$, ${}^3B_{3g}^-$, and ${}^3A_g^-$	
			484, 1200*	for the 0-0 bands of 685, 484, and 370 nm, respectively;	
			452°, 900°	T^1 was ${}^3B_{1u}^+$	
	·		$424^{a}, 600^{a}$ $370, 50000 \pm 10000$		
	Ethyl acetate	'R	352*, 30000° 360	0.8 μ s delay; $G(\text{triplets})$ estimated assuming ϵ indepen-	761080
	Herana (300 V)	MOD/SD	260 29500	dent of solvent	(00000
	Hexane (300 K) Liquid paraffin	FP FP	360, 38500 368.5	$\tau_T = 130 \pm 5 \mu s$ Solvent viscosity was 0.03 N·s/m ² ; relative intensities	69E208
	Liquid paraffin (290 K)	PR	352 363	(100:69)	700277
	Endana hararim (520 Pr)	TV		Delay 20 μ s; $\tau_T = 85 \mu$ s	700277
	PMMA	PR	370		692001

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	PVA (81 K)	FP	373ª	†Phosphorescence decay	81B119
	Polystyrene	PR	375	$G\epsilon = 11000 \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed}); \tau_{\text{T}} = 2 \times 10^4 \mu\text{s}$	672086
	Polystyrene (77 K) Polystyrene	COM PR	370 385 ^a	Method was "photolysis"	692001
	Toluene/EtOH (77 K)	MOD	366ª	$G\epsilon_{385} = 6000^{a} \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed})$ Glass was 19:1 toluene to EtOH	701073 719059
174.	Biphenyl-d ₁₀ EtOH/Et ₂ O (77 K)	MOD/KM	365, 7000 ± 2100	Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	719059
175.	4-Biphenylcarboxaldehyde Alcohol/Ether (77 K)	MOD	440	Glass was 2:1 alcohol to ether	76E682
76.	Biphenylene				
	Benzene	PR/ET	350, 10000	†Triplet ET from naphthalene and triplet ET to anthracene; ϵ relative to naphthalene in benzene ($\epsilon_{max} = 13200 \text{ L mol}^{-1} \text{ cm}^{-1}$); half-life = 80 μ s	720464
	Cyclohexane	FP-ET/SD	339, 10000	†Triplet ET from naphthalene and triplet ET to anthracene; τ ₁ - 100 μs; oscillator strength - 0.13	720464
177.	2-Biphenylphenylbenzoxaz	ole			
	Benzene	LP/SD	560, 45000	‡Oxygen quenching (1.5 \times 10 ⁹ L mol ⁻¹ s ⁻¹); 100 ns delay; "PBBO"; $\tau_T = 0.325 \ \mu s$	777265
78.	2-(4-Biphenylyl)benzoxazol			•	
	Pentane	LP/TD	$460, 2500 \pm 250$	Shoulders at 536°, 495°, and 405° nm; $\tau_T = 0.70 \pm 0.07$ μ s	82E632
179.	1-(4-Biphenylyl)-3-chloro-1				
	Benzene CCl ₄	FP FP	425 425	†Physical quenching by free radical; $\tau_T = 140 \mu s$ †Physical quenching by free radical; $\tau_T = 90 \mu s$	83P212 83P212
	·			, 43 4	
80.	1-(2-Biphenylyl)-1-phenylet Cyclohexane	thylene LP/?	370, 17000 ± 3000	tOxygen quenching; $\tau_{\rm T}=1.75~\mu{\rm s}$	78 E 448
81	2-(4-Biphenylyl)-5-phenyl-1	3 4-ovadiazole			
.01.	Benzene	LP	510	‡Oxygen quenching (1.0 \times 10 9 L mol $^{-1}$ s $^{-1}$); 100 ns delay; $\tau_{\rm T}=0.460~\mu s$	777265
82.	2-(4-Biphenylyl)-5-phenylo	xazole			
	Dioxane	LP/TD	530, 61000 ± 250 498 ^a 455 ^a 426 ^a	$\tau_{\mathrm{T}} = 0.62 \pm 0.06 \; \mu \mathrm{s}$	82E632
	Pentane	LP/TD	$540,71500 \pm 250$ 499^{a} 417^{a}	$ au_{\mathrm{T}} = 0.35 \pm 0.04~\mu\mathrm{s}$	82E632
183.	5''-[1,1'-Biphenyl]-4-yl-1,1 2-PrOH/Isooctane/Et ₂ O	1':4',1'':3'', 1' FP	'':4''',1''''-quinquephenyl 576a	†Phosphorescence decay; glass was 1:3:3 2-PrOH to	81B110
	(81 K)	TT	533° 498° 455°	isooctane to ether; most intense peak at 455 nm; "1,3,5-tris(biphenyl-4-yl)benzene"; $\tau_{\rm T}=2.2\times10^6~\mu{\rm s}$	oibii.
	Alcohol/Ether (77 K)	MOD	349ª 572 44 6	Glass was 2:1 alcohol to ether	76E682
184.	2,2'-Biquinoline				
	Water/EtOH	FP	600ª 460ª	Solvent was 3:2 water to EtOH by volume; 20 μ s delay; pH 7.5	79E799
			400° 420°	delay, pii 1.5	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{n}	max -1 cm ⁻¹	Comment	Ref.
185.	6,6'-Biquinoline, conjugate	diacid				
	Water/EtOH	FP	590° 450°		Relative intensities (1:2); solvent was 2:1 water to EtOH by volume; 20 μ s delay; p $K_a = 3.8 \pm 0.5$; pH 1.2	79E79
186.						
	Water/EtOH	FP	610 ^a 415 ^a		Solvent was 3:2 water to EtOH by volume; 20 μ s delay; p $K_a = 5.8 \pm 0.5$; pH 0.4	79E79
187.	6,6'-Biquinoline, conjugate	monoacid				
	Water/EtOH	FP	580° 410°		Relative intensities (1:2); solvent was 3:2 water to EtOH; 20 μ s delay; p $K_a = 5.6 \pm 0.5$; pH 5.0	79 E 79
188.	Bis(2,2'-hipyridine)dichloro	oiridium(III) ion				
	DMF/Water	LP	577°		Shoulders at 528a and 509a nm; solvent was 9:11 di-	79B 09
			554ª		methylformamide to water	
			490° 470°			
			470° 458°			
			442°			
			431ª			
	DMF/Water	LP	600s		Shoulders at 534 ^a , 439 ^a , and 419 ^a nm; solvent was 19:1	79B09
			565°		dimethylformamide to water	
			505°			
			469ª			
	Water	. D	454ª		61 11	
	Water	LP	488 ^a 468 ^a		Shoulder at 419 ^a nm	79 B 09
			459°			
			439°			
189.	2,5-Bis(5-tert-butyl-2-benzo	xazolyl)thionhene				
	Benzene	LP/SD	520, 160000		‡Oxygen quenching (2.1 \times 10 9 L mol $^{-1}$ s $^{-1}$); 100 ns delay; "BBOT"; τ_T = 0.240 μs	777265
190.	4,4'-Bis(dimethylamino)ben	zophenone				
	EtOH	FP	500ª		†Triplet ET to naphthalene, oxygen quenching; decay	777603
			405ª		measured at 500 nm, lifetime = 25 μ s in cyclohexane; "Michler's ketone"; τ_T = 20 μ s; k_{et} = (9.9 \pm 0.1) \times 10° L mol ⁻¹ s ⁻¹	
191.	6,6'-Bis(dimethylamino)-3,3 BuOH	'-diethyl-2,2'-thi FP	acarbocyanine io	dide		777036
102	1.7 Dis(dimethylomine) 1.4	Chamtatrian 2 and	_			
. , 2.	1,7-Bis(dimethylamino)-1,4, PrOH	о-периитеп-3-оп FP	800		Oxygen quenching and triplet ET from anthracene	221272
			000		and benzo[rst]pentaphene and to azulene, perylene, and tetracene	63E/3
193.	2,5-Bis[7-(dimethylamino)-2	.4.6-heptatrienvlid	lene cyclonentano	one		
	Toluene	FP	850	-	tOxygen quenching and triplet ET from anthracene	83E73
			730		and benzo[rst]pentaphene and to azulene, perylene, and tetracene	
194.	1,9-Bis(dimethylamino)-1,3,	6,8-nonatetraen-5	-one			
	PrOH	FP	750		tOxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E73
	Toluene	FP	820		Oxygen quenching and triplet ET from anthracene	83E73
			610		and benzo[rst]pentaphene and to azulene, perylene, and tetracene	
95.	1,9-Bis(dimethylamino)-1,4,	5,8-nonatetraen-3-	one			
	PrOH	FP	550		Oxygen quenching and triplet ET from anthracene	83E73
					and benzo[rst]pentaphene and to azulene, perylene, and tetracene	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , /nm	ϵ_{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
196.	all-trans-1,15-Bis(dir	nethylamino)-1,3,6,8	,10,12,14-ре	ntadecaheptaen-5-o	ne	
	Toluene	FP	630		Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E737
197.	2,6-Bis[5-(dimethylar	nino)-2,4-pentadieny	lidene]cyclo	hexanone		
	Heptane	FP	886ª 782ª 619ª		Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E73
	PrOH	FP	950 680		Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E73
	Toluene	FP	910 640		Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E73
198.	2,5-Bis[5-(dimethylar	nino)-2,4-pentadieny	lidenelcyclo	pentanone		
	Toluene	FP	900 635	_	Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	63E731
199.	2,6-Bis[3-(dimethylar	nino)-2-propenyliden	e]cyclohexa	none		
	PrOH	FP	800		‡Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E73
	Toluene	ГP	750 600		†Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E73
200.	4,4'-Bis(dimethylam	ino)thiobenzophenon	e			
	Benzene	LP/RA	490 ±	5, 7200 ± 1400 5, 14400 ± 2900	ϵ relative to benzophenone in benzene ($\epsilon_{532.5}=7630~L$ mol ⁻¹ cm ⁻¹), taking $\Phi_T=0.4$ at 337 nm excitation and taking $\Phi_T=1$ for benzophenone; $\tau_T=1.3~\pm~0.1~\mu s$	84A22
201.	all-trans-1,13-Bis(dis	nethylamino)-1,3,5,8	.10.12-tride	cahexaen-7-one		
	Toluene	FP	900 670		‡Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E73
202.	all-trans-1,13-Bis(di	nethylamino)-1,3,6,8	,10,12-tride	cahexaen-5-one		
	PrOH	FP	740		Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E73
	Toluene	FP	600		Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E73
203.	all-trans -1,11-Bis(di	methylamino)-1,3,6,8	,10-undecar	entaen-5-one		
	PrOH	FP	870		Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E73
	Toluene	FP	680		‡Oxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E73
204.	Bis(dimethylformami	ide)phthalocyaninato	ruthenium((I)		
	Acetonitrile	LP	52 7 ª		Another maximum at 359° was near a SD region; $\tau_T = 0.165~\mu s$	83E26
205.	Bis(dimethylsulfoxid	e)phthalocyaninatori	uthenium(II)		
	Acetonitrile	LP	485ª		Another maximum at 352° nm was near a SD region	83E26

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , /nm	$\epsilon_{\rm max}$ /L mol ⁻¹ cm ⁻¹	Comment	Ref.
206.	Bis(dimethylsulfoxide)phtha	alocyaninatorutl	nenium(I)	I)/1,4-Dinitrobenzer	ne _	
	Acetonitrile	LP	525ª		Triplet exciplex; another maximum at 409 ^a nm was near a SD region	83E262
207.	1,4-Bis(methylamino)anthra	-				
	Benzene	PR-ET/ET	550, 2	20000	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene assuming ground state dimerization; $\tau_{\rm T}=5.9$ μ s; $E_{\rm T}=97$ - 151 kJ mol ⁻¹ ; $k_{\rm et}=8.1\times10^9$ L mol ⁻¹ s ⁻¹	761122
208.	1,1-Bis(1-naphthyl)ethylene					
	Benzene	LP-ET	444ª		†Triplet ET from xanthone and oxygen quenching; τ_T = 0.22 μs	84B007
209.	trans-1,2-Bis(1-naphthyl)et	hylene				
	Benzene	LP/ET	530 ±	± 3, 30000 ± 4500	‡Quenching by oxygen, a nitroxide free radical, and azulene; ϵ relative to fluorenone in benzene ($\epsilon_{435} = 6000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 0.91 \pm 0.14 \mu\text{s}$; $k_{et} = (7.4 \pm 1.1) \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	84E237
	Bromobenzene	LP	535 ±	± 3	$\tau_{\rm T} = 0.67 \pm 0.10 \ \mu \rm s$	84E237
210.	trans-1,2-Bis(2-naphthyl)et	hylene				
	Benzene	LP/ET	430 ±	± 3, 20000 ± 3000	‡Quenching by oxygen, a nitroxide free radical, and azulene; ϵ relative to fluorenone in benzene ($\epsilon_{435} = 6000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 0.21 \pm 0.03 \ \mu\text{s}$; $k_{\text{et}} = (7.7 \pm 1.2) \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	84E237
	Bromobenzene	LP	435 ±	± 3	$\tau_{\rm T} = 0.17 \pm 0.03 \; \mu {\rm s}$	84E237
211.	9,10-Bis(phenylethynyl)ant	hracene				
	Acetonitrile	LP-ET	~480)*	†Triplet ET from benzophenone; delay 5 μ s	82E509
212.	rac-Bis[1-(1-pyrenyl)ethyl]	ether				
	Hexane	LP	513a		Most intense peak at 415 nm	83B137
			479° 415			
	•		390			
213.	Bonellin EtOH (298 K)	LP/TD	443b,	40000° 9500 ± 500 10000°	†Triplet ET from anthracene, oxygen quenching (1.7 \times 10 ⁸ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 430 \pm 50$ µs; $E_{\rm T} = 180 \pm 20$ kJ mol ⁻¹ ; $k_{\rm ct} = (2.0 \pm 1.0) \times 10^8$ L mol ⁻¹ s ⁻¹	80E593
214.	Brilliant Sulfaflavine anion	1				
	EPA	CWL/SD	575, i	1800	Glass was 1:1 mixture of standard EPA and EtOH	73E346
215.	9-Bromoanthracene					
	Acetonitrile	LP	424ª 400ª		†Oxygen quenching; 424 nm peak was the more intense; $\tau_{\rm T}=19.5~\mu{\rm s}$	84B110
	Benzene	PR/ET	430, 4	48000	ϵ relative to naphthalene in benzene ($\epsilon_{max} = 17500 \text{ L}$	690087
	Benzene	PR/ET	430, 4	47700	mol ⁻¹ cm ⁻¹) ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 10300$ L mol ⁻¹ cm ⁻¹)	690087
	Cyclohexane	FP	425		$\tau_{\rm T} = 43 \ \mu \rm s$	62E009
	Cyclohexane	PR	425		•	690087
	Cyclohexane	FP/SD	423.5	, 66500 ± 3250	ε method assumes linear variation of triplet spectrum in SD region	767147
	Dioxane	PR	425			690087
	EPA (77 K)	LP	430		$ au_{\mathrm{T}} = 200~\mu\mathrm{s}$	84B110
	Liquid paraffin	FP	405 419		Viscosity of solvent was 0.167 N·s/m²; $\tau_{\rm T}=110~\mu {\rm s}$	62E009
216	4-Promohinhanul					
210.	4-Bromobiphenyl Toluene	PR	390		†Oxygen quenching; $\tau_T = \sim 4 \mu s$	80A235
			-,-		1 1 0 200 dannarrow 60 + 1 1 102	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

lo.	Solvent	Method	λ _{max} , /nm	ϵ_{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
217.	4-Bromo-1-cyanoisoquinoli	ue-N-oxide				
	Cyclohexane	FP	427		$\tau_{\rm T} = 1.7 \ \mu \rm s$	72719
	EtOH	FP	420		$\tau_{\rm T}=4.0~\mu{\rm s}$	7271
218.	N-[2-[(2-Rromo-6-cyano-4-)	itrophenyl)az	o]-5-[(2-cyan	oethyl)(2-hydroxyc	thyl)amino}-4-methoxyphenyl]acetamide	
	2-MTHF (103 K)	LP	680		Shoulder at 780 nm; triplet not observable above 211	80B1
			410		K; below 116 K lifetime constant; $\tau_T = 130 \mu s$	
	Dibutyl terephthalate	LP	685		Possibilities other than triplet character excluded; τ_T	80B1
			400		$= 0.023 \ \mu s$	
	Glycerol triacetate	LP	685		Shoulder at 780 nm; $\tau_T = 0.014 \mu s$	80B1
			400			
	Glycerol triacetate	LP	685		Shoulder at 790 nm; below 221 K lifetime constant; τ_T	80B1
	(203 K)		400		= 83 μs	
19	N-[2-[(2-Bromo-4 6-dinitro	honvilazal-5.	(O-cyanosth	vI)(2-hvdrovvothvI)	amino]-4-methoxyphenyl]acetamide	
	1,3-Dibromobenzene	LP	700	yi)(2-nyuroxyetnyi)	Shoulder at 780 nm; $\tau_T = 0.010 \mu s$	80B
	1,5-Dioromodenzene	Li	390		Shoulder at 700 hill, $r_T = 0.010 \ \mu s$	OUD.
	1-Phenylethanol	LP	700		Shoulder at 780 nm; $\tau_T = 0.012 \mu s$	80B
	1-1 henylethanor	L 1	400		Shoulder at 760 mm, 77 = 0.012 μs	001
	2-MTHF (103 K)	LP	700		tOverson supposing triplet vintually not absorbed	80B
	2-M1111 (103 K)	LF	400		‡Oxygen quenching; triplet virtually not observable above \sim 273 K; below 111 K lifetime constant; $\tau_T =$	ουв
					100 μs	
	2-MTHF	LP	800-70	0	$\tau_{\rm T} = \leqslant 0.008~\mu \rm s$	80B
	2-PrOH	LP	800-70		$\tau_{\mathrm{T}} = 0.012~\mu\mathrm{s}$	80B
	Biphenyl/Diphenyl ether	LP	700	•	Shoulder at 800 nm; solvent was 1:3 biphenyl to diph-	80B
	py-ypy-y		420		enyl ether; $\tau_T = 0.008 \mu s$	
	Dibutyl terephthalate	LP	700		Possibilities other than triplet character of the tran-	80B
	2 loady's torophinalate	2,	400		sient excluded; shoulder at 750 nm; $\tau_T = 0.026 \ \mu s$	002
	Glycerol triacetate	LP	695		Shoulder at 770 nm; $r_T = 0.012 \mu s$	80B
	Oryceror triaceate		400		5110 at at 770 mm, 71 = 0.012 ps	UUD
	Glycerol triacetate (203 K)	LP	720		Below 220 K lifetime constant; $\tau_T = 100 \mu s$	80B
	PMMA	LP	680		Shoulder at 740 nm	80B
	o-Terphenyl/Diphenyl	LP	695		Shoulder at 780 nm; solvent was 1:1 o-terphenyl to	80B
	ether		400		diphenyl ether; $\tau_T = 0.010 \ \mu s$	
20.	4-[(2-Bromo-4,6-dinitrophe	vi)azol- <i>N.N-</i>	dimethylhen:	zenamine		
	2-MTHF (103 K)	LP	700		Lifetime measured at 138 K; triplet not observable	80B
	2 111111 (100 12)		410		above 138 K; below 100 K lifetime (500 μs) constant;	002
		7 D	700		$ au_{\rm T} = 0.014 \; \mu \text{s}$	con
	Glycerol triacetate (203 K)	LP	700		Lifetime measured at 247 K; triplet not observable above 247 K; $\tau_T = 0.020 \mu s$	80B
21.	4-Bromoisoquinoline-N-oxi	de				
	Water	FP	382		$\tau_{\rm T}=0.96~\mu{\rm s}$	7271
22	Bromo(methanol)(phthaloc	zaninoto)rhodi	inm(III)			
	Acetonitrile/2-PrOH	LP/SD	640 ^b , 9	100	Solvent was 2.6 mol L ⁻¹ 2-PrOH	83F
	Proceedings of Four	LI, OD	590b, 2		DOIVER WAS ZIO MOI D' 2 TIOT	001
••	400 400 441					
23.	1-(Bromomethyl)naphthale	ie LP	426		Solvent was either MeOH or cyclohexane	84A
	•	21	120		borrene was entire risection by ordinate	0
24.	1-Bromonaphthalene			4 #00		
	CTAB	LP/TD	425, 11		Aqueous micelle; ε method corrects for TT-	81N
			400°, 7	7000°	annihilation in micellar environment and gives upper limit; shoulder at 370 nm; $\tau_T = 50 \mu s$	
	Cyclohexane	FP	424			62E
	•		424		$\tau_{\rm T} = 270 \ \mu \rm s$ Polative intensities (2.1)	
	Cyclohexane (77 K)	PS	414.5		Relative intensities (2:1)	69E
	Et O /Pontone /77 V)	pe	392.0		Polotice intensities (2.1)	60E
	Et ₂ O/Pentane (77 K)	PS	415.5		Relative intensities (2:1)	69E
			202			
	Ethylana alessal	ED	393		Palating intermities (100.60.25); - 920 ± 140	6117
	Ethylene glycol	FP	393 420 398		Relative intensities (100:60:25); $\tau_{\rm T}=830\pm140~\mu{\rm s}$	61E

TRIPLET-TRIPLET ABSORPTION SPECTRA OF ORGANIC MOLECULES

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ _{max} , /nm	ε _{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Hexane	FP	419 398 375		Relative intensities (100:55:20); $\tau_{\rm T}=83\pm14~\mu{\rm s}$	61E005
	Hexane	LP	425		Delay 500 ps	82E303
		PR	420		Oxygen quenching; $\tau_T = \sim 9 \mu s$	80A23
	Toluene	rk	420		toxygen quenching; $\tau_T = \sim 9 \ \mu s$	0UA 23.
225.	2-Bromonaphthalene					
	Cyclohexane	FP	425		$\tau_{\rm T} = 150 \ \mu \rm s$	62E009
	Cyclohexane (77 K)	PS	417 390		Relative intensities (100:55:10)	69E21
	ED. (65 YZ)	no.	370		ADI 1	51T00
	EPA (77 K)	PS	421.8		‡Phosphorescence decay	51E00
	EPA (77 K)	FP	423			55E002
		·	398			
	Hexane	FP	417.5			54E00
			392.9			
	Hexane	FP	417.5		Relative intensities (100:61:29)	58E00
			394			
			372			
	Liquid paraffin	FP	423		Viscosity of solvent was 0.167 N·s/m ² ; $\tau_T = 2300 \mu s$	62E009
116	A [(2 Promo A nitronhouse	Damal M M dim	athrilhannan.			
220.	4-[(2-Bromo-4-nitrophenyl		-	amine	TP-1 1-44 -111- 1 106 TZ 1-4 106 TZ 116-	00010
	2-MTHF (77 K)	LP	700		Triplet not observable above 125 K; below 106 K life-	80B10
	EPA (89 K)	LP	400 710		time constant; $\tau_{\rm T} = 100 \ \mu s$	80B10
	EIA (65 K)	Li	390			90110
	E-OHAM-OH (112 V)	T D			Solvent was 4:1 EtOH to MeOH	00D10
	EtOH/MeOH (113 K)	LP	700		Solvent was 4:1 EtOH to MeOH	80B10
	Classed tolerates	T D	390		Ticalar and Annual Annu	00710
	Glycerol triacetate	LP	680			80B10
	(203 K)	. D	400		above 247 K; $\tau_{\rm T} = 0.014 \ \mu s$	
	MCH/Toluene (113 K)	LP	700		Solvent was 1:1 MCH to toluene	80B10
			390			
•	PMMA	LP	690			80B10
227.	9-Bromophenanthrene					
	Cyclohexane	FP	482.5		$\tau_{\rm T} = 115 \ \mu s$	62E00
	Liquid paraffin	FP	482.5		Viscosity of solvent was 0.167 N·s/m ² ; $\tau_T = 710 \mu s$	62E00
228.	1-Bromopyrene					
	EtOH (293 K)	LP	505ª		More intense absorption below 425 nm	697226
			476ª			
220	trans-4-Bromostilbene					
· .	2-MTHF (135 K)	LP	392		First peak most intense, a 0.00	707227
	2-W1111 (135 K)	1.71	373		First peak most intense; $\tau_T = 0.02 \mu s$	79E37
	•					
	2-MTHF (135 K)	T D	352		Triplet charaction not charactely charactely 125 W	70174
	2-M1111 (133 K)	LP	392		• • •	79E64
			373		ported lifetime constant below 104 K; $\tau_T = 480 \mu s$	
	1 MD (00 W)	7 D	352		<u>.</u>	
	3-MP (88 K)	LP	393			79E64
			376			
	ED4 (120 E)		355		man . A	
	EPA (130 K)	LP	393		First peak most intense; $\tau_T = 0.02 \mu s$	79E37
			372			
	EDA (100 tr)		355		m / 4 . 4	
	EPA (108 K)	LP	393		Triplet absorption not observable above 130 K; re-	79E64
			372		ported lifetime constant below 97 K; $\tau_T = 500 \mu s$	
			355			
	EtOH (138 K)	LP	391		Relative intensities (4:3:1); triplet absorption not ob-	79E64
			372		servable above 143 K; reported lifetime constant be-	
			352		low 115 K; $\tau_{\rm T} = 480 \ \mu \rm s$	
	EtOH (143 K)	ŁР			low 115 K; $\tau_T = 480 \ \mu s$ First peak most intense; $\tau_T = 0.1 \ \mu s$	79E37
	EtOH (143 K)	LP	352		and the second s	79E37

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

N o.	Solvent	Method	λ _{max} , /nm /	ϵ_{max} $\text{L mol}^{-1} \text{ cm}^{-1}$	Comment	Ref.
	EtOH/MeOH (103 K)	LP	392 372		Solvent was 4:1 EtOH to MeOH	79E64
	G1 1 (00 (TT)		352			
	Glycerol (286 K)	LP	395		First peak most intense; $\tau_T = 0.03 \mu s$	79E37
			375			
	Gl 1 (102 K)	T.D.	354		The transfer with the transfer and	70E/4
	Glycerol (193 K)	LP	395		Relative intensities (4:3:1); triplet absorption not ob-	79E64
			375		servable above 286 K; reported lifetime constant be-	
	Givennal tringetate	T D	354		low 209 K; $\tau_T = 450 \mu s$	701764
	Glycerol triacetate	LP	390		Triplet absorption not observable above 243 K; re-	79E64
	(233 K)		370		ported lifetime constant below 207 K; $\tau_T = 440 \mu s$	
	Glycerol triacetate	LP	352		First work most interest at 0.02 up	70122
	(243 K)	LF	390 370		First peak most intense; $\tau_T = 0.03 \ \mu s$	79E37
	(243 K)		352			
	MCH/Isohexane (114 K)	LP	392		First peak most intense; $\tau_T = 0.3 \mu s$	79E37
	MCID ISOIRMAN (114 IL)	L.	372		i iist peak most mense, τη = 0.5 μs	171231
			352			
	MCH/Isohexane (77 K)	LP	392		Solvent was 1:1 MCH to isohexane by volume; triplet	79E64
	, , , , , , , , , , , , , , , , , , , ,		372		absorption not observable above 114 K; reported life-	
			352		time constant below 100 K; $\tau_T = 450 \mu s$	
230.	2-Bromotriphenylene					
	EtOH/MeOH (113 K)	FP/TD	430, > 8	3000	Solvent was 3:1 EtOH to MeOH; lower limit assumes total ground state depletion	67B00
231.	2-Butanone					
	Methylene chloride	LP	245		tPhosphorescence decay and oxygen quenching; $\tau_T = 1.4 \ \mu s$	84B05
232.	• •					
	Benzene (298 K)	LP	451ª		$\tau_{\rm T}=0.5~\mu{\rm s}$	84A03
			430° 400°			
233.	4-tert-Butyl-3,5-dinitroanis	ole				
	CF₃CH₂OH	LP	441ª		†Quenching by oxygen and tetramethyldiazetine dioxida.	84E03
	e.				ide; $\tau_{\rm T}=3.5~\mu{\rm s}$	
23 4 .	2-[1-(Butylimino)ethyl]-5-n		40		An and the second second	5050
	Benzene (295 K)	LP	430 ^a		Oxygen quenching and triplet ET to compound by triplet donors	12131
235.	2-tert-Butyl-4-methylindaz	ole				
	EtOH (103 K)	MOD/SD	409ª, 84	00ª	Shoulders at 388° and 294° nm; another maximum $<$ 250 nm; $\tau_{\rm T} = (9.1 \pm 0.8) \times 10^5 \mu s$	71624
	EtOH (178 K)	MOD/SD	409ª, 76	00ª	Shoulders at 393° and 280° nm; another maximum $<$ 250 nm; $\tau_T=(1.9\pm0.3)\times10^4~\mu s$	71624
236.	N-Butyl-5-nitro-2-furamide					
	2-PrOH (298 K)	LP	505 ± 5	5.	$\tau_{\rm T} = 0.037 \; \mu \rm s$	84A2
	Acetonitrile (298 K)	LP	498 ± 5		‡Quenching by oxygen and azulene; $\tau_T = 0.26 \mu s$	84A2
	CCI ₄ (298 K)	LP	500 ± 3		$\tau_{\rm T}=0.052~\mu{\rm s}$	84A20
	MeOH (298 K)	LP	515 ± 3		$\tau_{\rm T}=0.022~\mu{\rm s}$	84A20
	Water (298 K)	LP	515 ± 3	5	$\tau_{\rm T}=0.019~\mu{\rm s}$	84A20
.~	1 Th. 4 II.					
251.	1-Butynylbenzene	ne	255		+ECD. along won 7/2 incomments to 2	60 DAG
	Isopentane/2-PrOH (77 K)	PS	255*		‡ESR; glass was 7:3 isopentane to 2-propanol by vol- ume; "1-ethyl-2-phenylacetylene"; by assuming that radical formation occurs only from T and that it is wavelength-independent, the author devise an ESR method that determines the shape of TTA even in the	68B00

 ${\it Table 6.} \quad {\it Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases-Continued}$

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol $^{-1}$ cm	Comment	Ref.
238.	Butyraldehyde				
	Pentane	LP	355	‡Triplet ET to 2,5-dimethyl-2,4-hexadiene; both peaks	81E442
			320	have the same decay and quenching behavior and are	
				attributed to a single species; $\tau_{\rm T} = 0.210 \mu{\rm s}$; $k_{\rm et} = (1.5 \pm 0.2) \times 10^{10} {\rm L \ mol^{-1} \ s^{-1}}$	
239.	9-Butyrylanthracene				
	EPA (77 K)	FP	430	$\tau_{\mathrm{T}} = 3.42 \times 10^4 \mu \mathrm{s}$	82E338
240.	Cadmium(II) tetrabenzor	oorphyrin			
	Pyridine	FP	500		73E345
	•		415		
241.	Cadmium(II) tetraphenyl	porphyrin			
	MCH	FP/TD	490, 57000	tOxygen quenching; $\tau_T = 265 \mu s$	81E271
	11011	11,12	415, 22000	tonybon quenoming, 11 = 200 ps	012271
242	Coffeine				
242.	Caffeine Water	LP-ET	351	‡Triplet ET from acetone; $\tau_T = 4.5 \mu s$; pH 7.1; $k_{et} =$	82B045
	•			$5.6 \times 10^9 \mathrm{L \ mol^{-1} \ s^{-1}}$	
243.	Camphoroquinone	•			
	2-PrOH	FP	1060	†Triplet ET from benzophenone, triplet ET to anthra-	697092
			908	cene, and oxygen quenching; another maximum <200	
			790	nm; delay 0 μs	
			702		
			630		
			~500		
			320		
	D	FP	276 1070	+Total + PT from house 1	607000
	Benzene	rr	916	‡Triplet ET from benzophenone, triplet ET to anthra- cene, and oxygen quenching	09/092
			796	cene, and oxygen quenching	
			706		
			638		
			404		
			314		
	CCl ₄	FP	1068	†Triplet ET from benzophenone, triplet ET to anthra-	697092
			916	cene, and oxygen quenching; another maximum <220	
			796	nm	
			705		
			638		
			590		
			500		
	÷		316 280		
			200		
244.	Canthaxanthin	FP-ET	541ª	†Triplet ET from anthracene; it was not reported	733001
	•	11-61		whether the solvent was hexane or benzene; lifetime was measured in hexane; $\tau_T = 7.1 \mu s$	733001
	Benzene	PR-ET	555	†Triplet ET from naphthalene; $\tau_T = 3.8 \mu s$	80A143
245.	Carbazole				
	2-MTHF (77 K)	PS/ESR	433, 12200	‡ESR; only most intense visible peak reported; oscil-	696115
	• •			lator strength encompasses two electronic transitions;	
	_			oscillator strength $= 0.18$	
	Benzene	FP	418ª		84F248
	Cyclohexane	FP/?	435°, 14000°	ϵ determination unspecified; $\tau_{\rm T}=167~\mu{\rm s}$	77A178
	Cyclohexane	ED/ET	400°, 12500° 420, 14500	c relative to nanhtholene in avalcharance (70 A 260
	Cyclonexame	FP/ET	420, 14500	ϵ relative to naphthalene in cyclohexane ($\epsilon_{415} = 24500$ L mol ⁻¹ cm ⁻¹); carbazyl radicals ($\epsilon_{600} = 7000$ L mol ⁻¹ cm ⁻¹) also observed; $\tau_{\rm T} = 170~\mu{\rm s}$	78A368

Tabil i 6 Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Cyclohexane	LP	~620 ^a 420	‡Rises with fluorescence decay; relative intensities (1:8); shoulder at 400 nm; $S_n \leftarrow S_1$ absorption also	80E023
	EPA (77 K)	PS ·	428	recorded ($\lambda_{620} = 20000 \text{ L mol}^{-1} \text{ cm}^{-1}$) ‡Phosphorescence decay; $\tau_{\text{T}} = (8.0 \pm 0.2) \times 10^6 \text{ µs}$	67E106
	EPA (77 K)	PS/KM	406 431°, 14300	Shoulders at 506a and 375a nm; two electronic bands	747347
	, ,		407°, 11200°	were assigned: the 1st was the shoulder at 506 nm with $f=0.06$, and the 2nd started at 431 nm; ϵ -method assumed on basis of earlier work by authors; oscillator strength = 0.24	
	EtOH (77 K)	MOD/KM	425, 19000 ± 4700 406, 14000 ± 3500 318, 7000 ± 1700 305, 5700 ± 1400		737055
	EtOH	FP	639	Most intense peak at 425 nm	766421
			~480 425° 405°		
	EtOH/Et ₂ O (77 K)	MOD/KM	425, 10100 ± 4000	Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	719059
	Hexane	FP	420	tOxygen and piperylene quenching	757573
	PMMA (77 K)	CWL	510ª 430ª	Most intense peak 430 nm	837.042
			415° 378°		
246.	3-Carbethoxypsoralen				
	Benzene	PR/ET	450°, 7500 400°	†Triplet ET from biphenyl, oxygen quenching (1.9 \times 10° L mol ⁻¹ , s ⁻¹); ϵ relative to biphenyl in benzene (ϵ_{367} = 27100 L mol ⁻¹ cm ⁻¹); $\tau_{\rm T}$ = 20 μ s	82E133
	Benzene	LP	407*	tOxygen quenching and triplet ET from biphenyl	84B025
	EtOH	LP/ET	590 ^a 500 ^a 450 ^b , 6800 370 ^a	†Triplet ET to retinol, oxygen quenching $(2.7 \times 10^9 \text{ L})$ mol ⁻¹ s ⁻¹); ϵ relative to retinol in hexane ($\epsilon_{405} = 80000$ L mol ⁻¹ cm ⁻¹) assuming ϵ independent of solvent; $\tau_T = 5.5 \mu \text{s}$; $k_{\text{et}} = 9.6 \times 10^8 \text{ L mol}^{-1} \text{ s}^{-1}$	82E133
	EtOH	LP/ET	450°, 5457	ϵ relative to retinol, but actual reference ϵ used was not specified; $\tau_T = 5.6 \ \mu s$	83E324
	Water	LP/ELT	605° 590° 450b 3700 + 900	tOxygen quenching $(3.0 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; ϵ relative to radical anion ($\epsilon_{600} = 2500 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming electron transfer from tyrosine 100% efficient; $\tau_T = 17$	82E133
	•		450° , 3700 ± 900 400°	electron transfer from tyrosine 100% efficient; $\tau_T = 17$ μ s	
	Water	PR/ELT	605° 590° 450° 3150	†Oxygen quenching (3.0 × 10 ⁹ L mol ⁻¹ s ⁻¹); ϵ relative to radical anion ($\epsilon_{600} = 2500 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 17$	82E133
			450 ^b , 3150 400 ^a	μ s	
	Water	LP/ELT	605° 590°	†Oxygen quenching (3.0 \times 10° L mol ⁻¹ s ⁻¹); ϵ relative to radical anion ($\epsilon_{400} = 2000 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming	82E133
			450°, 3700 ± 900 400°	electron transfer from tryptophan 100% efficient; $\tau_{\rm T}=17~\mu{\rm s}$	
	Water	LP/TD	450 ⁶ , 2000	$\tau_{\rm T} = 5 \ \mu \rm s$	83E324
	Water	LP	612 ^a 578 ^a 397 ^a	tOxygen quenching	84B025
247.	Carbostyril				
	EPA (77 K)	PS	427ª	Phosphorescence decay; shoulder at 465° nm; $\tau_{\rm T}=9.6$ $\times~10^5~\mu{\rm s}$	717171
	EtOH/Water	FP	451 ^a 430 ^a	Solvent was 7:3 EtOH to water; peaks were of almost equal intensity	737046
	Glycerol	FP	444 ^a	Shoulder at 488 ^a nm	717171

J. Phys. Chem. Ref. Data, Vol. 15, No. 1, 1986

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\begin{array}{ccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-i} \end{array}$	Comment	Ref.
	Water	FP	451° 431 ^a	Shoulder at 476° mm; 451 mm was the more intense peak; $\tau_{\rm T}=17~\mu {\rm s}$	737046
248.	Carbostyril, negative ion Water	FP	460°	Shoulders at 478° and 440° nm; $\tau_{\rm T}=30~\mu{\rm s};~{\rm pH}~14$	737046
249.	4-Carboxybenzophenone				
249.	Water	LP/RA	535, 6600 525 ^b , 6150	†Phosphorescence decay; carboxylate anion form; ϵ relative to benzophenone in benzene ($\epsilon_{525}=7630$ L mol ⁻¹ cm ⁻¹) assuming triplet yields of unity for both species; corresponding ketyl radical ($\epsilon_{570}=5500$ L mol ⁻¹ cm ⁻¹) and radical anion ($\epsilon_{660}=8000$ L mol ⁻¹ cm ⁻¹) also measured; lifetime limited by ground state quenching; $\tau_{\rm T}=5.0\text{-}6.7~\mu s$; pH 7	81A314
250.	11-cis-β-apo-14'-Carotena	ıl			
	Hexane (298 K) MeOH	LP/SD LP-ET	$470 \pm 5,90000 \pm 10000$	"11-cis-C ₂₂ aldehyde" ‡Triplet ET from anthracene	84B026 84B026
251.	β-apo-14'-Carotenal				
	Acetonitrile	PR/RF	490, 112000	"all-trans- C_{22} aldehyde"; ϵ relative to compound in cyclohexane ($\epsilon_{470} = 121000 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming oscillator strength independent of solvent; $\tau_T = 11.9 \mu\text{s}$	79E546
	Benzene	PR/RF	490, 119000	ϵ relative to compound in cyclohexane ($\epsilon_{470}=121000$ L mol $^{-1}$ cm $^{-1}$) assuming oscillator strength independent of solvent; $\tau_T=8.3~\mu s$	79E546
	Benzene	LP	485	America company	82F477
	CF ₃ CH ₂ OH Cyclohexane	LP-ET PR/ET	510 470, 121000	†Triplet ET from anthracene; $\tau_T = \sim 17 \mu\text{s}$ ϵ relative to biphenyl in cyclohexane ($\epsilon_{361.3} = 42800 \text{L}$ mol ⁻¹ cm ⁻¹); $\tau_T = 7.1 \mu\text{s}$	83E026 79E546
	Cyclohexane	LP	473	,, .	82F477
	Cyclohexane	LP-ET	475	†Triplet ET from anthracene; solution 0.08 mol L ⁻¹ in (CF ₃) ₂ CHOH; H-bonded species shows as a shoulder around 510 nm; $\tau_T=8~\mu s$	83E026
	DFMeOH	LP-ET	560	tTriplet ET from anthracene; $\tau_{\rm T} = >40 \ \mu s$	83E026
	Hexane	LP/SD	470, 127000 ± 19100	ϵ assumes triplet does not absorb where singlet depletion is followed; $\tau_{\rm T}=5~\mu {\rm s}; E_{\rm T}=\sim 148~{\rm kJ~mol^{-1}}$	78E721
	McOII	PR/RF	475, 149000°	e relative to compound in cyclohexane ($\epsilon_{470}=121000$ L mol $^{-1}$ cm $^{-1}$) assuming oscillator strength independent of solvent; $\tau_{\rm T}=10.3~\mu{\rm s}$	79E546
252.	β-apo-8'-Carotenal				
	?	FP-ET	517°	†Triplet ET from anthracene; it was not reported whether the solvent was hexane or benzene; lifetime was measured in hexane; $\tau_T = 10 \ \mu s$	733001
	Hexane	LP-ET/SD	520, 223000 ± 33500	†Triplet ET from biphenyl; ϵ assumes triplet does not absorb where singlet depletion is followed; $\tau_{\rm T}=2.5$ µs; $E_{\rm T}=\sim122$ kJ mol ⁻¹	78E721
253.	15,15'-cis-β-Carotene				
	7	FP-ET	507°	‡Triplet ET from anthracene; it was not reported whether the solvent was hexane or benzene; lifetime was measured in hexane; shoulder at 499^a nm; $\tau_T = 7.1$ μs	733001
	Hexane	PR/ET	515, 250000 ± 37500	†Triplet ET from biphenyl, ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming authors used standard for cyclohexane; $\tau_T = 5.9 \pm 0.6$ μ s; $k_{\rm et} = (2.0 \pm 0.20) \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$	776412
254.	β-Carotene		510	Amilia mm a di sa	
	Acetic acid	LP-ET	512 526	†Triplet ET from hematoporphyrin; $\tau_T = 9 \mu s$	81B115
	Benzene (296 K)	LP-ET	526	Triplet ET from chlorophyll a; oxygen quenching (3.6 \times 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 5.9~\mu{\rm s};~k_{\rm et} = 1.2 \times 10^9~{\rm L}$ mol ⁻¹ s ⁻¹	73E347

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Benzene	LP-ET	520	†Triplet ET from anthracene; $\tau_{\rm T}=8.0\pm0.5~\mu{\rm s}$	767094
	Benzene	PR	540		761024
	CTAB/Triton X-100	LP	525	Surfactant ratio 1:2 CTAB to Triton X-100; mixed	80N033
	Carbon disulfide (293 K)	LP	475 550	aqueous micelle; $\tau_T = 4 \mu s$ †Triplet ET from chlorophyll a ; $\tau_T = 15 \mu s$; $k_{et} = 4 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	69N001
	Hexane (188 K)	FP-ET	522	Triplet ET from benz[a]anthracene; $\tau_T = 300 \mu s$	66E089
	Hexane (298 K)	FP-ET	514	†Triplet ET from chlorophyll a , tetracene, benz[a] anthracene, and anthracene; the data presented is for anthracene; $\tau_T = 70 \ \mu s$; $k_{\rm et} = 1.1 \times 10^{10} \ {\rm L \ mol^{-1}}$ s ⁻¹	66E089
	Hexane (293 K)	LP	515	Triplet ET from chlorophyll a	69N001
	Hexane	PR/ET	515, 170000 ± 40000	ϵ relative to naphthalene in cyclohexane ($\epsilon_{412.5} = 22600$ L mol ⁻¹ cm ⁻¹), exact ref. used by author not stated but surmised; $\tau_{\rm T} = 9~\mu \rm s$	703001
	Hexane	PR/SD	515, 230000	$\tau_{\rm T}=9~\mu{\rm s}$	703001
	Hexane	PR/ET	515, 130000 ± 10000 482 ³	‡Triplet ET from naphthalene and oxygen quenching; shoulder at 453° nm; ϵ relative to naphthalene in cyclohexane ($\epsilon_{415} = 24500 \text{ L mol}^{-1} \text{ cm}^{-1}$), except authors used 412.5 nm as reference λ ; $\tau_T = 9 \mu \text{s}$; $k_{\text{et}} = 1.5 \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$	713035
	Hexane	PR/ET	515, 242000 ± 36300	†Triplet ET from biphenyl; ϵ relative to biphenyl in cyclohexane ($\epsilon_{561} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming authors used standard for cyclohexane; $\tau_T = 5.9 \pm 0.6$ μ s; $k_{et} = (1.8 \pm 0.18) \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$	776412
255.	ζ-Carotene				
255.	Cyclohexane	PR/ET	445, 81000	†Triplet energy transfer from biphenyl; ϵ relative to biphenyl in cyclohexane ($\epsilon_{361}=42800~L~mol^{-1}~cm^{-1}$); $\tau_T=23~\mu s;~E_T=<123~kJ~mol^{-1};~k_{et}=1.4\times10^{10}~L~mol^{-1}~s^{-1}$	761035
256	β-apo-8'-Carotenoic acid,	methyl ester			
250.	?	FP-ET	507ª	†Triplet ET from anthracene; it was not reported whether the solvent was hexane or benzene; lifetime was measured in hexane; shoulder at 497 ^a nm; $\tau_T = 8.3$ μs	733001
257	A (0 51 C		. 113-		
257.	4-(β-apo-7'-Carotenyl)ben Toluene	zyi pyropneopn LP	orbide ∼540	$\tau_{T} = 4.63~\mu \mathrm{s}$	82B094
258.	Chalcone				
259.	Heptane Chloranil	LP	430 ± 15	"1,3-Diphenyl-2-propen-1-one"; $\tau_{\rm T}=0.013~\mu{\rm s}$	83E347
239.	1,2-Dichloroethane	LP/RA	$510,7200 \pm 1300$ $370,4700^{a}$	‡Oxygen quenching; lifetime measured for the 510 nm band; ϵ relative to benzophenone in benzene ($\epsilon_{32.5} = 7630 \text{ L mol}^{-1} \text{ cm}^{-1}$) and assuming Φ_T for chloranil is unity; $\tau_T = 5.6 \ \mu\text{s}$	776335
	1,4-Dioxane	LP/RA	515, 5800 ± 100	which is the state of the stat	79A178
	Acetone	FP	520 503		727069
	Acetonitrile	FP	471 510 487 479 372		727069
	Acetonitrile	LP/RA	510, 7700 ± 300	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 7630 \text{ L}$ mol $^{-1}$ cm $^{-1}$) assuming $\Phi_T = 1$ for chloranil in acetonitrile; ϵ_{ref} assumed from earlier work	78A195
	Benzene	FP	516		727069

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Butyronitrile	LP/RA	510, 7570	‡Oxygen quenching; ε relative to the chloranil radical	79B061
	Butyromerne	Liftai	480	anion in acetonitrile ($\epsilon_{\text{max}} = 9700 \text{ L mol}^{-1} \text{ cm}^{-1}$); other	
			380	peaks of roughly equal intensity at 480 and 380 nm; τ_T	
			360		
	Carlabana.	T.D.	500	$= 6.3 \mu s$	607272
	Cyclohexane	LP	500	$\tau_{\rm T}=2.0\pm0.3~\mu{\rm s}$	697272
	Cyclohexane	FP	539		727069
			507		
			495		
			474		1.2.122
	Dioxane	LP/RA	$515, 5800 \pm 300$	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 7630 \text{ L}$	78A195
				$\text{mol}^{-1} \text{ cm}^{-1}$) assuming $\Phi_{\text{T}} = 1$ for chloranil in dioxane;	
		5 - 2 - 2 - 2 - 2 - 2		ϵ_{ref} assumed from earlier work	
	EtOH	I.P	: 500	tOxygen and anthracene quenching; $\tau_T = 1.2 \mu s$	697272
	MeOH	FP	~500		727069
	THF	FP	~500		727069
	Trichlorotrifluoroethane	FP	522	Oxygen quenching; $\tau_T = 30 \mu s$	727069
			507		
			497		
			473		
			410		
			379		
60.	Chloranil/Triphenylamine	ra Petra	Carlotte Control		
. :	Benzene/MeOH (293 K)	LP	650	650 nm band was the more intense; solvent was 19:1	81E715
			550	benzene to MeOH; $\tau_{\rm T}=0.04~\mu{\rm s}$	
	Benzene (293 K)	LP	650	650 nm band was the more intense; $\tau_{\rm T} = 0.067 \ \mu {\rm s}$	81E715
			550	ord min data was the more meeting, /1 — 0.007 pm	0113,13
				Application of the second of t	
261.	Chloroaluminum phthaloc	vanine			
	Dimethylacetamide-	LP/SD	490 ^b , 26600	Solvent was 7:3 dimethylacetamide to water	83E088
	/Water	LI, OD	450,20000	Solvent was 7.5 dimetrylacetainide to water	0312000
	Dimethylsulfoxide/Water	LP/SD	490 ⁶ , 26600	Solvent was 8:2 dimethylsulfoxide to water	83E088
262	1 Chloroopthrosono				14. 1 To
202.	1-Chloroanthracene	DD /CT	427.5 60000	10200	C00007
	Benzene	PR/ET	437.5, 60900	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 10300$	690087
	D	nn ær	427.5 ((500	L mol ⁻¹ cm ⁻¹)	· .
	Benzene	PR/ET	437.5, 66500		690087
-		T'D		mol ⁻¹ cm ⁻¹)	
	Cyclohexane	FP	425	$\tau_{\rm T} = 670 \; \mu \rm s$	62E009
	Cyclohexane	PR	430	the state of the s	690087
	Dioxane	PR	432.5	+i ,	690087
*.	Hexane	FP	430.7		54E001
			407.5	the second secon	, '.
	Hexane	FP	431	Relative intensities (100:25)	58E001
	the state of the s		407.5	The second of th	50.00
	Liquid paraffin	· FP	419	Viscosity of solvent was 0.167 N·s/m ² ; $\tau_T = 4200 \mu s$	62E009
	estallin ne ricue la color				
263.	1-Chloroanthraquinone	e agradio mos			100
	EPA (77 K)	LP	480°	†Phosphorescence decay; delay 500 ns; 375 nm was the	83E016
			375°	more intense peak; $\tau_T = 170 \pm 10 \mu s$	
1.1	EtOH	LP	380°	Delay 50 ns	84A253
	Toluene	LP	495°	Phosphorescence decay in EPA at 77 K; delay 300 ns;	
		 	385°	385 nm was more intense peak	00000
	and the second				
264.	2-Chloroanthraquinone				
_, .	EPA (77 K)	FP	376ª	Phosphorescence decay; $τ_T = 3400 \mu s$	83E016
	Toluene	LP	381°		
	z Oluciic		201	†Phosphorescence decay in EPA at 77 K; delay 300 ns	02E010
165	Chlorobenzene				
265.		T D	2051	Amenda moral administra	2022
	Cyclohexane	LP	295°	†Triplet ET to piperylene, oxygen quenching (4.5 ×	707561
	01-1	1 D C 1	200 (252) 222	$10^9 \text{ L mol}^{-1} \text{ s}^{-1}$); 400 ns delay; $\tau_T = 0.48 \mu\text{s}$	0.45-55-5
	Cyclohexane	LP/RA	$300,6250 \pm 300$	ϵ relative to naphthalene in cyclohexane ($\epsilon_{414} = 24500$	84E529
	*			L mol ⁻¹ cm ⁻¹), taking 0.64 for Φ_T of chlorobenzene	
			and the second s	and 0.75 for naphthalene; $\tau_{\rm T}=1.6\pm0.1~\mu{\rm s}$	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻²	Comment	Ref.
266.	4-Chlorobenzophenone				
	Acetonitrile/Water	LP/ET	535, 7000 320, 12800	Solvent was 9:1 acetonitrile to water; ϵ relative to 1-methylnaphthalene in acetonitrile/water ($\epsilon_{415} = 11200 \text{ L mol}^{-1} \text{ cm}^{-1}$)	84B033
267.	(2'-Chlorobenzoyl)amino-2	2-A ² -thiszoline			
	Cyclohexane (293 K)	FP/RA	557, 11600	†Triplet ET to biacetyl, oxygen quenching; ϵ relative to naphthalene in cyclohexane ($\epsilon_{414}=24500~L~mol^{-1}~cm^{-1}$); $\tau_T=2000~\mu s$	82E37
268.	(4'-Chlorobenzoyl)amino-2	$2-\Delta^2$ -thiazoline			
	Cyclohexane (293 K)	FP/RA	563, 16900	†Triplet ET to biacetyl, oxygen quenching; ϵ relative to naphthalene in cyclohexane ($\epsilon_{414} = 24500 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{\rm T} = 2000 \ \mu \text{s}$	82E37
269.					
	EPA (77 K) PMMA (293 K)	PS PS	485 490	†Phosphorescence decay; $\tau_{\rm T}=4.2\times10^6~\mu{\rm s}$	83E42 83E42
270.	N-[2-[(2-Chloro-4.6-dinitro	nhenvi)azol-5-l	(2-cvanoethyl)(2-hydroxyet	hyl)amino]-4-methoxyphenyl]acetamide	
	2-MTHF (108 K)	LP	690 410	Shoulder at 780 nm; lifetime measured at 189 K; triplet not observable above 189 K; below 100 K lifetime ($1000 \mu s$) constant; $\tau_T = 0.091 \mu s$	80B10
	Dibutyl terephthalate	LP	690 400	Shoulder at 770 nm; $\tau_{\rm T}=0.028~\mu{\rm s}$	80B10
	Glycerol triacetate (203 K)	LP	690	Shoulder at 780 nm; below 216 K lifetime constant; τ_T = 500 μ s	80B10
	Glycerol triacetate	LP	695 400	Shoulder at 780 nm; $\tau_T = 0.020 \mu s$	80B10
271.	3-Chloro-2,6-diphenyl-1,4-	henzoguinone/	LMethovy-N N-dimethylar	illine	
	Benzene (293 K)	LP	560	560 nm peak was the more intense; $\tau_{\rm T}=0.083~\mu{\rm s}$	81E71
	Benzene/MeOH (293 K)	LP	460 460	Solvent was 19:1 benzene to MeOH; $\tau_T = 0.056 \mu s$	81E71
272.		benzoquinone/I LP	Naphthalene 600	0.11 wa	81E71
	Benzene (293 K) Benzene/MeOH (293 K)		600	$\tau_{\rm T} = 0.11 \ \mu {\rm s}$ Solvent was 19:1 benzene to MeOH; $\tau_{\rm T} = 0.091 \ \mu {\rm s}$	81E71
273.	3-Chloro-2,6-diphenyl-1,4-	-			81E71
	Benzene (293 K)	LP	620 550	550 nm peak was the more intense	0112/1
	Benzene/MeOH (293 K)	LP	620	570 nm peak was the more intense; solvent was 19:1	81E71
			570	benzene to MeOH	
274	3-Chloro-2,6-diphenyl-1,4-	henzoguinone/1	2 3.Trimethovyhenzene		
	Benzene/MeOH (293 K)	LP	460	Solvent was 19:1 benzene to MeOH; $\tau_T = 0.37 \mu s$	81E71
	Benzene (293 K)	LP	560	560 nm peak was the more intense; $\tau_{\rm T} = 0.63 \ \mu s$	81E71
			460		
275.	3-Chloro-2,6-diphenyl-1,4-	benzoquinone/	Criphenylamine		
	Benzene (293 K)	LP	650	550 nm band was the more intense; $\tau_{\rm T}=0.16~\mu{\rm s}$	81E71
	Benzene/MeOH (293 K)	LP	550 650	650 nm band was the more intense; solvent was 19:1	81 E 71
			550	benzene to MeOH; $\tau_{\rm T}=0.077~\mu{\rm s}$	
276.	Chloroindium(III) phthalo	cyanine			
	Dimethylacetamide-/Water	LP/SD	490, 23000	Solvent was 7:3 dimethylacetamide to water	84A12
277.	Chloro(methanol)(phthalog	waninata)=kad:	um(III)		

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

ο.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
78.	1-(Chloromethyl)naphthal	ene			
	Cyclohexane	LP	422	1Oxygen quenching	84A22
	МеОН	LP	422	Triplet ET from benzophenone and thioxanthane	84A22
70 -	1-Chloronaphthalene				
17.	1-Chloronaphthalene	FP-ET	427	Triplet ET from benzophenone; 30 µs delay; evi-	767159
	1-Cinoronaphanaiche		403	dence for triplet excimer at long wavelengths presented; relative intensities (3:2); $\tau_T = 20 \mu s$,,0,15,
	Cyclohexane	FP	420	$\tau_{\rm T}=280~\mu{\rm s}$	62E00
	Cyclohexane (77 K)	PS	413.5	Relative intensities (10:6)	69E21
			319		
	Cyclohexane	LP/ET	$420, 20700 \pm 3000$	†Triplet ET from TMPD; ε relative to TMPD in cyclohexanc (ε ₅₇₀ – 11900 L mol ⁻¹ cm ⁻¹)	
	Durene (77 K)	PS	424.5	Single crystal	67B00
	<u> </u>	11	400		
	Et ₂ O/Pentane (77 K)	PS	419	Relative intensities (10:6:1)	69E21
			395.5 374.5		
	Hexane	. ED ET	424	Triplet ET from benzophenone; 30 µs delay; relative	76716
	пехане	FP-ET	397	intensities (6:3:1)	76715
		•	380	intensities (0:5:1)	
	Hexane (293 K)	LP	423a	Delay 500 ps	82E30
	PMMA (294 K)	FP	524°	Shoulder at 552 nm ^a ; $\tau_T = (1.4 \pm 0.1) \times 10^5 \mu s$	69B00
				5110 at 252 min, 71 — (111 ± 011) × 10 µ3	0,100
30.	2-Chloronaphthalene				
	Cyclohexane	FP	420	$\tau_{\rm T} = 180 \ \mu \rm s$	62E00
	Cyclohexane (77 K)	PS	414 :	Relative intensities (10:-:6:-:2)	69E21
			411		
			392.5		
			390		
			370		
	EPA (77 K)	PS	420.7	‡Phosphorescence decay	51E00
			397		1.1
	PMMA (294 K)	FP	578ª	Shoulder at 637° nm; $\tau_T = (2.5 \pm 0.2) \times 10^5 \mu s$	69B00
	•		532ª		
á.	3-Chloro-1-(2-naphthyl)-1	-propanone			
	Benzene	FP	425	$ au_{\mathrm{T}} = 220~\mu\mathrm{s}$	83P21
	CCL	FP	400	$ au_{\rm T} = 250~\mu{\rm s}$ $ au_{\rm T} = 251~\mu{\rm s}$	83P21
			7	11-201	031 21
2.	1-(2-Chlorophenyl)naphth	alene	4 1		
	3-MP (77 K)	PS/ESR	495, 9500	tESR; oscillator strength = 0.12	69B00
			465°, 7100°		
			433°, 3900°		
		_			
83.	1-(4-Chlorophenyl)naphti		202 20200	ATTOR MANAGEMENT	
	3-MP (77 K)	PS/ESR	505, 32500	‡ESR; oscillator strength = 0.29	69 B 00
			472°, 15800°		
	4 4		435°, 7400°		
4.	Chlorophyll a		100		
	Acetone	LP/SD	460, 56000		84R05
	Benzene	FP FP	460	Half-life = $150 \pm 40 \mu s$	55E00
	Cyclohexanol	FP	465	Half-life = $600 \pm 180 \mu\text{s}$	55E00
	_ ,		360		الاندد
	Cyclohexanol (294 K)	LP	1150	Half-life = $500 \mu s$	81B11
			750		
	Digitonin (293 K)	LP	670°	Oxygen quenching $(2.4 \times 10^8 \text{ L mol}^{-1} \text{ s}^{-1})$; aqueous	69N00
			510 ^a	micellar suspension; $\tau_T = 830 \ \mu s$	
	Et ₂ O	FP/SD	430b, 40000		67E02
	Heptane	FP/TD	$480^{\rm b}$, 17700 ± 3000	Solution contains pyridine; ϵ method assumed	77C00
			$470^{\rm b}$, 23000 \pm 3000		2.
	and the second s				
		The second of the second	460° , 24000 ± 4000		

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\begin{array}{ccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-1} \end{array}$	Comment	Ref.
	МеОН	FP	462 425(?)	Half-life = $200 \pm 50 \mu s$	55E003
	МеОН	FP	390(?) 550	550 nm maximum was judged to be of "doubtful sig-	58R002
	Polyvinylbutyral (77 K)	LP	450 472°	nificance" by the experimenters	80E867
	Polyvinylbutyral (77 K)	FP	460° 425°	Polymer film; $\tau_{\rm T}=2\times10^3~\mu{\rm s}$	82E129
	Pyridine (298 K)	FP/SD	530, 17800 462, 32000	$ au_{\mathrm{T}} = 1500~\mu\mathrm{s}$	58R001
	Pyridine	LP/COM	540, 35000 460, 48000	Triplet concentration calculated by kinetic simulation; $S_n \leftarrow S_1$ spectrum also resolved ($\epsilon_{440} = 68000 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ_{460} corrected from text	79B037
	Pyridine	LP	450°	$\tau_{\rm T} = 70~\mu \rm s$	81F121
	SHS	LP	740° 465	Aqueous microemulsion, droplet radius ~ 100 Å; difference spectrum only; $\tau_T = 800~\mu s$	80N057
285.					
	3-MP Benzene	FP/SD FP	450°, 26000	Half life - 1200 ± 200	67E027
	Бепгепе	rr	482 440 420(?)	Half-life = $1300 \pm 300 \mu\text{s}$	55E003
	Benzene	FP	580 475 440	440 and 380 nm maxima were judged to be of "doubtful significance" by the experimenters	58R002
	Benzene	FP	480 430	430 nm maximum was judged to be of "doubtful sig- nificance" by the experimenters; benzene was wet	58R002
	Benzene	FP/SD	316a, 36500a	$ au_{\mathrm{T}} = 2500~\mu\mathrm{s}$	59B002
	Et ₂ O	FP/SD	450b, 21000	XX 16110 100 1 10	67E027
	МеОН	FP	496 454 420(?) 390	Half-life = $100 \pm 40 \mu s$	55E003
	MeOH/Water	FP	~700 ~525 ~405	Solvent was 19:1 MeOH to water	55R001
	Pyridine (298 K)	FP/SD	605, 12100 550, 21500 485, 34700 445, 26000 380, 19700	$ au_{T} = 3200 \; \mu s$	58R001
286.	Chlorophyll a dimer				
	Heptane Heptane	FP/TD FP/TD	480^{h} , 13500 ± 4000 480^{h} , 17700 ± 3000 470^{h} , 21500 ± 4000 460^{h} , 25000 ± 4000	Solution contains ether; ϵ method assumed Solution contains pyridine; ϵ method assumed	77C001 77C001
287.	Chlorophylline				
	Water	FP	520 470	Sodium salt	65R023
288.	cis-4-Chlorostilbene				
	EtOH (123 K)	LP	390 370 347	Triplet state absorption observed only after repetitive (~ 30) flashes	79E640
289.	trans-4-Chlorostilbene EPA (108 K)	LP	391 370	Triplet absorption not observable above 122 K; reported lifetime constant below 93 K; $\tau_T = 10^4 \ \mu s$	79E640
	EtOH (103 K)	LP	346 390 369 348	Triplet absorption not observable above 135 K; reported lifetime constant below 111 K; $\tau_{\rm T}=10^4~\mu{\rm s}$	79E640

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
W	Glycerol (197 K)	LP	395 376 355	Relative intensities (3:2:1); triplet absorption not observable above 275 K; reported lifetime constant below 202 K; $\tau_{\rm T}=5000~\mu {\rm s}$	79E640
290.	2-Chlorothioxanthen-9-0 Benzene	one FP	650-670	‡Oxygen quenching (5.5 \times 10° L mol ⁻¹ s ⁻¹); $\tau_T = 61$ μ s	81A294
291.	6 Chlara 1 2 2 tuimathul	6' mitmosmimo (2 :	2'-indolin[2 <i>H</i> -1]benzopyran)		
291.	Toluene (298 K)	FP	450	‡Oxygen quenching, activationless decay; assigned to $\pi \to \pi^*$ transition in uncolored form	67B003
292.	Chlorpromazine 2-PrOH	LP	460	†Triplet ET to β -carotene, oxygen quenching; peak at 510 nm assigned to dechlorinated radical; $\tau_T=3.2~\mu s$	767023
293.	4-Chromanone Benzene	LP	~450°	110 ps delay; $\tau_{\rm T}=0.3~\mu{\rm s}$; rise time of (50 \pm 10) \times 10 ⁻³	81E222
	EPA (77 K)	FP	4278	ns +Dhankarana dann	0012004
	EPA (77 K)	FP	427° 430°	‡Phosphorescence decay $t_T = 93 \times 10^3 \mu s$	80E884 81E222
	EtOH	LP	557ª	Oxygen quenching; shoulder at 511° nm; 442 nm peak	80E884
	T.077		442ª	more intense; delay 150 ns; $\tau_T = 0.406 \mu s$	
	EtOH	LP	560° 510° 450°	150 ns delay; relative intensities (1:2:3); $\tau_T = 0.4 \mu s$; rise time of (50 \pm 10) \times 10 ⁻³ ns	81E222
204	Ch				
294.	Chromone EPA (77 K)	FP	650ª	†Phosphorescence decay; lifetime lengthens in polar glasses; $\tau_{\rm T}=(35\pm10)\times10^3~\mu{\rm s}$	81E222
295.	Chrysene				
270.	1-BuOH/Isopentane (77 K)	PS	583.0 540.5 406.0	A distinction between a 1:7 and a 3:7 glass was not made	63B001
	2-MTHF (77 K)	PS/ESR	585, 48600 461°, 3900° 418°, 6600°	IESR; shoulders at 571a, 543a, and 495a nm; the band was assigned as ${}^3A_g \leftarrow {}^3B_u$; oscillator strength = 0.40	68D211
	2-MTHF (77 K)	PS	586 ^a 460 ^a 419 ^a	Shoulders at 574°, 545°, and 496° nm	69E210
	Benzene	PR	575		761024
	Cyclohexane	LP/ET	$565, 21600 \pm 2000$	†Triplet ET to anthracene; ϵ relative to anthracene in cyclohexane ($\epsilon_{422.5} = 64700 \text{ L mol}^{-1} \text{ cm}^{-1}$)	757282
	EPA (77 K)	PS	584.1	tPhosphorescence decay; 1st transition assigned as ³ L _a → ³ C _b	51E001
	EPA (77 K)	PS	629 583.1 406	†Phosphorescence decay; relative intensities (11:100:18:15); unresolved shoulders at 563 nm and 541 nm; $\tau_{\rm T}=(2.6\pm0.2)\times10^6~\mu{\rm s}$	54B001
	EPA (77 K)	PS	385 730 625	Weak bands in the red only studied	67B005
	EPA (77 K)	PS/SD	$585,48000 \pm 4800$		68E105
	EPA (77 K)	PS/IV	585, 36200	λ_{max} assumed from previous work; ε estimated by extrapolation to infinite excitation rate	69E212
	EPA (77 K)	PS	729.9 625.0 580.0 559.9 535.0 400.0 379.9	Relative intensities (6:3:100:60:30:12:10)	69E211
	EtOH (293 K)	FP	562.5		68E098
	EtOH	LP	560°	1.8 μs delay; solution contains Ag ions	78E554

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\begin{array}{ccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-1} \end{array}$	Comment	Ref.
	EtOH/Et ₂ O (77 K)	MOD/KM	580, 23100 ± 6900	Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	719059
	Hexane	FP	554.9		54E001
	Hexane	FP/SD	570, 8800 401, 1800	Bands were assigned to 2 electronic transitions; 570 nm band was assigned to the 1st electronic transition; os-	58E001
	Hexane (77 K)	PS	378, 1500 580.0 534.8 400.0	cillator strength = 0.15, 0.025 Relative intensities (100:30:12)	69E211
	Hexane (300 K)	MOD/SD	564 ⁴ , 23500 ^a 400 ^a , 1700 ^a 285, 26200 ^a 254, 25800 ^a	Shoulder at 517° nm; in their later compilation [73E284], the authors normalize to $\epsilon_{585} = 48000 \text{ L}$ mol ⁻¹ cm ⁻¹ which means all of their values reported here should be multiplied by a factor of about 2; $\tau_T = 710 \pm 25 \ \mu s$	69E208
	Polystyrene Water/tert-BuOH	PR FP	569° 560 °	$G\epsilon_{569} = 6500^{8} \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed})$ Solvent mixture contains "46%" <i>tert</i> -BuOH for solubility: pH \sim 6	701073 767189
296.	9-Cinnamoylanthracene EPA (77 K)	FP	430	"9-Anthryl styryl ketone"; $\tau_{\rm T}=3.43\times10^4~\mu{\rm s}$	82E338
297.	Copper(II) phthalocyanine 1-Chloronaphthalene	LP/TD	480 470 ^b , 3600	‡Triplet ET to β -carotene; $\tau_{\rm T}=0.035\pm0.005~\mu{\rm s}$; $E_{\rm T}=150\pm10~{\rm kJ~mol^{-1}}$	78A378
298.	Coproporphyrin III				
270.	MeOH/Water	LP/TD	401°, 144000°	Solvent 9:1 MeOH to 7.4 phosphate buffer; shoulders at 373° and 326° nm	83E667
	Water	LP/TD	401 ^a , 86100 ^a 372 ^a , 95800 ^a	Phosphate buffer; pH 7.4	83E667
299.	Common annihamin III Antonia				
299.	Coproporphyrin III, tetran	-	440 ^b , 26000	‡Oxygen quenching (1.6 × 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_T = 240$	80E200
	Benzene	LP/TD	401ª	μs	
	Венгене	PR/ET	440 ^h , 27000 401 ^a	†Oxygen quenching (1.6 \times 10° L mol ⁻¹ s ⁻¹); ϵ relative to biphenyl in benzene ($\epsilon_{360} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 240 \mu\text{s}$	80E200
200	Common and bounds I deduced	4114			
300.	Coproporphyrin I, tetrame Benzene	nyı ester PR/ET	440 ^b , 26500	†Oxygen quenching (1.8 \times 10 ⁹ L mol ⁻¹ s ⁻¹); ϵ relative	80E20
	Denzene	FR/ET	398° 330°	to biphenyl in benzene ($\epsilon_{360} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 250 \mu \text{s}$	00220
	Benzene	LP/TD	440 ^b , 32000 398 ^a	‡Oxygen quenching (1.8 × 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_T = 250$ µs	80E20
			330ª		
301	Coronene				
501.	2-MTHF (77 K)	PS/ESR	484, 15800	‡ESR; only most intense visible peak reported; assignment ${}^{3}A_{1} \leftarrow {}^{3}B_{2}$; oscillator strength = 0.23	696115
	?	FP/?	700 ⁶ , 900 460, 15000	Method and solvent unspecified	78A16
	Benzene	PR	480		761024
	Dioxane	LP	490	‡Rise time of transient was the same as the decay time of the singlet	68B00
	Dioxane	LP	525	· · · · · · · · · · · · · · · · · · ·	70E28
	E+OH (202 P)	ED	480		68E09
	EtOH (293 K)	FP	478	1.9 ve delay solution contains A a ions	78E55
	EtOH/Et ₂ O (77 K)	LP MOD/KM	480 ^a 460, 14300 ± 4300	1.8 μs delay; solution contains Ag ions Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	719059
	Hexane	FP	630.1 490.2 461.9	Band at 461.9 was later assigned as $S_n \leftarrow S_1$ by authors in [737463]	54E00

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Hexane	FP/SD	524.5, 330 ^d 480, 680 ^d	Band at 461 nm was assigned to a second electronic transition; band at 461 nm was later reassigned as $S_n \leftarrow$	58E00
	PMMA (296 K)	LP	461, 1000 ^d 480	S_1 by authors in [737463], oscillator strength =, 0.02 ‡Decay of singlet was roughly the same as the rise of	686058
24	.mww.	LP	390	the transient	7017300
	PMMA	LF	- 525 - 480		70E28
	Polystyrene	PR	459°	$G\epsilon_{459} = 7900^{a} \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed})$	701073
	Toluene	LP	595	Delay 880 ns	737463
			565		
			530		
		T-17-	495	G 1 (409/1) 0 1 G 1	
	Water/2-PrOH	FP	465ª	Solvent mixture contains "40%" 2-propanol for solubility; pH \sim 6	767189
302.	Coronene-d ₁₂		entre de la companya della companya		
	PMMA (77 K)	PS/SD	637a, 10300a	$ au_{\mathrm{T}} = 3.5 \times 10^{\mathrm{s}} \mu \mathrm{s}$	69E21
			588a, 5100a		
			549°, 5400°		
			483°, 17500°		
	PMMA (296 K)	PS/SD	398°, 13400° 633°, 8600°	$\tau_{\rm T}=2.0\times10^5\mu{\rm s}$	69E21
	11111111 (270 12)	10,00	588°, 5200°	11 – 2.0 χ 10 μ3	U)LZI
			549a, 5400a		
			483°, 16800°		
			398°, 14600°		
303.	Coumarin				
	Benzene	PR/ET	400, 11000	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene ($\epsilon_{367} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); 20 ns delay; $\tau_T = 3.8 \ \mu\text{s}$; $k_{\text{et}} = 3.4 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	79E28
	EPA (77. K)	PS	460.8 451 432.1 423 406.5	†Phosphorescence decay; shoulders at 441 ^a and 413 ^a nm; most intense peaks were at 460.8, 432.1, and 406.5 nm; $\tau_{\rm T}=(7\pm2)\times10^5~\mu{\rm s}$	71B00
	EPA	CWL	389ª 460ª	Shoulder at 449 ^a nm; glass, temperature unspecified	721724
		CWL	433a 417a	shoulder at ++7 min, glass, temperature unspecimen	73E34
		•	∂392 [®]		
	Water	LP	400	0.1 μ s delay; $\tau_T = 1.3 \ \mu$ s	79E28
304.	p-Cresus				
	Water	LP .	255ª	‡Triplet ET to tryptophan; lifetime was measured at	757161
				pH 7.5; there was a broad maximum between \sim 350 and \sim 420 nm; spectrum is the difference between spectra at 20 ns and 15 μ s; $\tau_T = 3.4 \pm 0.2 \mu$ s; pH 7.7	
12.1	active and a second			spectra at 20 hs and 13 μ s; $\tau_T = 3.4 \pm 0.2 \mu$ s; pri 7.7	
305.	α-Crocetin	en e		spectra at 20 hs and 13 μ s; $\tau_T = 5.4 \pm 0.2 \mu$ s; pri 7.7	
305.	α-Crocetin Water	LP/ET	470 ^b , 73000 445 ^a , 94800 ^a	Oxygen quenching; ϵ relative to psoralen in water $(\epsilon_{460} = 10000 \text{ L mol}^{-1} \text{ cm}^{-1})$; $\tau_T = 8 \text{ µs}$; pH 8	83B06
	The second secon	LP/ET		t Oxygen quenching; ϵ relative to psoralen in water	83B06
	Water	LP/ET		†Oxygen quenching; ϵ relative to psoralen in water ($\epsilon_{460} = 10000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 8 \mu\text{s}$; pH 8 †Triplet ET from 9,10-dibromoanthracene and oxygen quenching; $\tau_T = 69 \mu\text{s}$; $k_{\text{el}} = 4.5 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	
	Water Croconate Blue dianion		445°, 94800°	‡Oxygen quenching; ϵ relative to psoralen in water ($\epsilon_{460} = 10000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 8 \mu \text{s}$; pH 8	84 N 01
306.	Water Croconate Blue dianion EtOH Water	LP-ET/SD	445°, 94800° 590°, 25000	‡Oxygen quenching; ϵ relative to psoralen in water $(\epsilon_{460} = 10000 \text{ L mol}^{-1} \text{ cm}^{-1})$; $\tau_T = 8 \mu\text{s}$; pH 8 ‡Triplet ET from 9,10-dibromoanthracene and oxygen quenching; $\tau_T = 69 \mu\text{s}$; $k_{et} = 4.5 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$ ‡Triplet ET from 9,10-dibromoanthracene and oxygen	84 N 01
306.	Water Croconate Blue dianion EtOH Water	LP-ET/SD	445°, 94800° 590°, 25000	‡Oxygen quenching; ϵ relative to psoralen in water $(\epsilon_{460} = 10000 \text{ L mol}^{-1} \text{ cm}^{-1})$; $\tau_T = 8 \mu\text{s}$; pH 8 ‡Triplet ET from 9,10-dibromoanthracene and oxygen quenching; $\tau_T = 69 \mu\text{s}$; $k_{et} = 4.5 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$ ‡Triplet ET from 9,10-dibromoanthracene and oxygen	84N01 84N01
306.	Water Croconate Blue dianion EtOH Water Crystal Violet	LP-ET/SD LP-ET/SD	445°, 94800° 590°, 25000 585°, 20000	‡Oxygen quenching; ϵ relative to psoralen in water ($\epsilon_{460} = 10000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 8 \mu\text{s}$; pH 8 ‡Triplet ET from 9,10-dibromoanthracene and oxygen quenching; $\tau_T = 69 \mu\text{s}$; $k_{\text{et}} = 4.5 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$ ‡Triplet ET from 9,10-dibromoanthracene and oxygen quenching; $\tau_T = 32 \mu\text{s}$	84N01 84N01 59B00
306.	Water Croconate Blue dianion EtOH Water Crystal Violet PMMA (193 K)	LP-ET/SD LP-ET/SD PS	445°, 94800° 590°, 25000 585°, 20000 640 1280 1210	‡Oxygen quenching; ϵ relative to psoralen in water ($\epsilon_{460} = 10000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 8 \mu\text{s}$; pH 8 ‡Triplet ET from 9,10-dibromoanthracene and oxygen quenching; $\tau_T = 69 \mu\text{s}$; $k_{\text{et}} = 4.5 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$ ‡Triplet ET from 9,10-dibromoanthracene and oxygen quenching; $\tau_T = 32 \mu\text{s}$	84N01 84N01 59B00
305. 306.	Water Croconate Blue dianion EtOH Water Crystal Violet PMMA (193 K)	LP-ET/SD LP-ET/SD PS	445°, 94800° 590°, 25000 585°, 20000 640 1280 1210 1100	‡Oxygen quenching; ϵ relative to psoralen in water ($\epsilon_{460} = 10000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 8 \mu\text{s}$; pH 8 ‡Triplet ET from 9,10-dibromoanthracene and oxygen quenching; $\tau_T = 69 \mu\text{s}$; $k_{\text{et}} = 4.5 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$ ‡Triplet ET from 9,10-dibromoanthracene and oxygen quenching; $\tau_T = 32 \mu\text{s}$	
306.	Water Croconate Blue dianion EtOH Water Crystal Violet PMMA (193 K)	LP-ET/SD LP-ET/SD PS	445°, 94800° 590°, 25000 585°, 20000 640 1280 1210	‡Oxygen quenching; ϵ relative to psoralen in water ($\epsilon_{460} = 10000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 8 \mu\text{s}$; pH 8 ‡Triplet ET from 9,10-dibromoanthracene and oxygen quenching; $\tau_T = 69 \mu\text{s}$; $k_{\text{et}} = 4.5 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$ ‡Triplet ET from 9,10-dibromoanthracene and oxygen quenching; $\tau_T = 32 \mu\text{s}$	84N01 84N01 59B00

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻	Comment	Ref.			
	PMMA (77 K)	PS	1241 ^a 613 ^a	Relative intensities (3:20); shoulder at 532° nm; solvent contains 2-chloroethanol	69B003			
308.	•							
	Acetonitrile	FP	433	$\tau_{\rm T} = 560 \ \mu s$	737140			
	Acetonitrile	LP	425	tOxygen quenching; intersystem crossing promoted by thioanisole	83E02			
	Benzene	PR/ET	435, 10300	ϵ relative to naphthalene in benzene ($\epsilon_{max} = 17500 \text{ L}$ mol ⁻¹ cm ⁻¹)	690087			
	Benzene	FP	440	$\tau_{\rm T} = 530 \ \mu \rm s$	737140			
	Cyclohexane	PR	425		69008			
	Cyclohexane	FP	433	$\tau_{\rm T}=1700~\mu{\rm s}$	737140			
	Dioxane	PR	432.5		690087			
309.	4-Cyanobiphenyl	MOD		C	71005			
	Toluene/EtOH (77 K)	MOD	404ª	Glass was 19:1 toluene to EtOH	719059			
310.	4'-Cyanochalcone Heptane	LP	360 ± 15	"4-(1-Oxo-3-phenyl-2-propenyl)benzonitrile"; τ_T =	83E34			
	Tieptane	Li	300 113	0.020 μs	031334			
311.	trans-4-Cyano-4'-dimethy							
	2-MTHF (133 K)	LP	~700		80F29			
			460					
	Glycerol triacetate	LP	~700		80F29			
	(198 K)		460					
312.	N-[5-[(2-Cyanoethyl)(2-hy	N-[5-[(2-Cyanoethyl)(2-hydroxyethyl)amino]-2-[(2,4-dinitrophenyl)azo]-4-methoxyphenyl]acetamide						
	2-MTHF (77 K)	LP	700	‡Oxygen quenching; triplet not observable above 153	80B10			
			410	K; below 117 K lifetime constant; $\tau_T = 1000 \mu s$				
	Dibutyl terephthalate	LP	~700	$\tau_{\rm T} = \leqslant 0.012 \; \mu \rm s$	80B10			
	Glycerol triacetate	LP	~700		80B10			
	Glycerol triacetate	LP	680	Lifetime measured at 268 K; triplet virtually not ob-	80B10			
	(198 K)		420	servable above 268 K; below 213 K lifetime constant; $\tau_{\rm T} = 0.025~\mu{\rm s}$				
	PMMA	LP	660	1, 5,555 p.5	80 B 10			
313.	trans-4-Cyano-4'-methox	vstilhene						
	2-MTHF (143 K)	LP	490	Triplet absorption not observable above 143 K; below	80F29			
			410	106 K lifetime (1 \times 10 ⁴ μ s) constant; $\tau_T = 3.3 \ \mu$ s				
	EtOH (132 K)	LP	480	Triplet absorption not observable above 132 K; below	80F29			
	Elon (132 K)	D.	420	113 K lifetime (1.3 \times 10 ⁴ μ s) constant; lifetime measured at 132 K, $ au_T$ = 5.0 μ s				
	Glycerol triacetate	LP	450	No triplet observed at room temperature; $\tau_T = \sim 7000$	78B08			
	(198 K)			µs				
	Glycerol (198 K)	LP	490 420		80F29			
	Glycerol triacetate (223 K)	LP .	450	Triplet absorption not observable above 238 K; below 206 K lifetime (1 \times 10 ⁴ μ s) constant; lifetime measured at 238 K; $\tau_T = 2.0 \ \mu$ s	80F29			
	PMMA (298 K)	LP	430	at 236 K, τ _T = 2.0 μs	80F29			
314.	1-Cyanonaphthalene							
	Cyclohexane (77 K)	PS	413		69E21			
	4		390					
	Et ₂ O/Pentane (77 K)	PS	445		69E2			
			423.5					
			412					
			387					
	MeOH	FP	440°		73621			
315.	9-Cyano-10-nitroanthrace	ene						
315.	9-Cyano-10-nitroanthrace	ene LP	~460°	Delay 3.0 μs	80E8			

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
316.	trans-4-Cyanostilbene 2-MTHF (98 K)	LP	405	Triplet absorption not observable above 127 K; below	80F299
	EtOH (118 K)	LP	400	104 K lifetime constant; $\tau_{\rm T}=1\times10^4~\mu{\rm s}$ Triplet absorption not observable above 138 K; below	80F299
	Glycerol triacetate	LP	405	110 K lifetime ($1.7 \times 10^4 \mu s$) constant; lifetime measured at 138 K; $\tau_T = 1.7 \mu s$ Triplet absorption not observable above 239 K; below	80F299
	(198 K) PMMA (298 K)	LP	395	210 K lifetime constant; $\tau_{\rm T} = 1 \times 10^4 \mu \rm s$	80F299
317.	1,3-Cycloheptadiene Benzene	PR	310	$ au_{\mathrm{T}} = 0.39~\mu\mathrm{s}$	82B057
318.	2-Cyclohepten-1-one Cyclohexane	LP	270ª	‡Oxygen quenching; solvent uncertain; $\tau_T = 0.011 \ \mu s$	80B055
319.	1-(1-Cyclohepten-1-yl)naj Benzene	phthalene LP-ET	443° 381°	‡Triplet ET from xanthone and oxygen quenching; τ_T = 0.053 μs	84B007
320.	2-(1-Cyclohepten-1-yl)nar Benzene	phthalene LP-ET	390ª	†Triplet ET from xanthone and oxygen quenching (7.0 \times 10° L mol ⁻¹ s ⁻¹); $\tau_T=0.04~\mu s$	8 4B 090
321.	1,3-Cyclohexadiene Benzene	LP-ET/TD	302.5, 2300 ± 300	†Triplet ET from 2-fluorenyl phenyl ketone and other triplet sensitizers; ϵ assumes ET proceeds with unit	80B021
	Benzene	PR	310	efficiency; $\tau_{\rm T}=30~\mu{\rm s}$; $E_{\rm T}=\sim220~{\rm kJ~mol^{-1}}$ $\tau_{\rm T}=5.2~\mu{\rm s}$	82B057
322.	2-Cyclohexen-1-one Cyclohexane	LP/RA	270 ^b , ≽2100 265 ^a	‡Oxygen quenching (5 \times 10 ⁹ L mol ⁻¹ s ⁻¹); solvent uncertain; ϵ relative to benzophenone in benzene (ϵ_{535} = 7600 L mol ⁻¹ cm ⁻¹ , Φ_T = 1); ϵ is lower limit since $\Phi_T \leq 1$; τ_T = 0.023 μ s	80B055
323.	1-(1-Cyclohexen-1-yl)nap	hthalene			
	Benzene	LP-ET	442ª	‡Triplet ET from xanthone and oxygen quenching; $\tau_{\rm T}$ = 2 $\mu {\rm s}$	84B007
324.	1,3-Cyclooctadiene Benzene	PR	315	$ au_{\mathrm{T}} = 0.14~\mu\mathrm{s}$	82B057
325.	1-(1-Cycloocten-1-yl)napl Benzene	nthalene LP-ET	446° 381°	†Triplet ET from xanthone and oxygen quenching; τ_T = 0.12 μs	84B007
326.	Cyclopentadiene Benzene	PR	300	$ au_{\mathrm{T}} = 1.6 \; \mu \mathrm{s}$	82 B 057
327.	2-Cyclopentenone Cyclohexane	LP/RA	270 ^b , ≥1900 260 ^a	‡Oxygen quenching (5 \times 10° L mol ⁻¹ s ⁻¹); solvent uncertain; ϵ relative to benzophenone in benzene (ϵ_{535} = 7600 L mol ⁻¹ cm ⁻¹ , Φ_T = 1); ϵ is lower limit since $\Phi_T \leq 1$; τ_T = 0.030 μ s	80B055
328.	1-(1-Cyclopenten-1-yl)nap Benzene	ohthalene LP-ET	441°	†Triplet ET from xanthone and oxygen quenching; τ_T = 3.6 μs	84B007
329.	2-(1-Cyclopenten-1-yl)nap Benzene	ohthalene LP-ET	581° 394°	†Triplet ET from xanthone and oxygen quenching (3.3 \times 10 9 L mol $^{-1}$ s $^{-1}$); 394 nm peak was the more intense	84B090

1 Ann 1 6 Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
330	1,2,3,4,5,6,7,8,9,10-Decahyd	ro-1 1 5 5 6 6 1	10-actamethylevelahuta[1	2-3 Aldicyclohentene	
550.	Benzene	LP-ET	< 300	\$\tag{\tau_{\text{T}}}\$ Triplet ET from 2,3-dimethyl-1,4-naphthoquinone; $\tau_{\text{T}} = 0.24 \ \mu\text{s}; E_{\text{T}} = > 120 \ \text{kJ mol}^{-1}; k_{\text{et}} = 7 \times 10^9 \ \text{L}$ \\\ \text{mol}^{-1} \ \text{s}^{-1}$	81E09
331.	Decapreno-β-carotene			•	
	Benzene (296 K)	LP-ET	595	Triplet ET from chlorophyll a; oxygen quenching (7.0 \times 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 3.2~\mu{\rm s}; k_{\rm et} = 1.8 \times 10^9~{\rm L}$ mol ⁻¹ s ⁻¹	73E34
	Benzene	PR-ET	590	†Triplet ET from naphthalene; $\tau_T = 6.5 \mu s$	80A1
332.	Deoxybenzoin				
	Benzene	LP	500	‡Oxygen quenching ($\sim 2 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$); $\tau_T =$	79A2
			< 390°	>0.24 µs	
	Benzene	LP	450	‡Oxygen quenching (> 109 L mol ⁻¹ s ⁻¹); relative	79A0
			315	intensities (1:4); $\tau_T = 0.77 \ \mu s$	
	МеОН	LP	495°	Oxygen quenching (2.4 \times 10° L mol ⁻¹ s ⁻¹); $\tau_T = 0.14$ µs	77E7
333.	Deuteroporphyrin, dimethyl	ester			
333.	Benzene	LP/TD	440 ^b , 22000 410 ^a	‡Oxygen quenching (2.3 \times 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 220$	80E2
	Benzene	PR/ET	440 ^b , 28000 410 ^a	μ s tOxygen quenching (2.3 \times 10° L mol ⁻¹ s ⁻¹); ϵ relative to biphenyl in benzene ($\epsilon_{360} = 27100$ L mol ⁻¹ cm ⁻¹); $\tau_T = 210 \ \mu$ s	80E2
334.	trans -N,N' -Diacetylindigo				
	EPA (83 K)	LP	575 ^a 365 ^a	Relative intensities (2:1); data corrected from paper (H. Goerner, private communication, 1985); $\tau_T = 80$ μs	79E5
	EPA (283 K)	LP	580° 375°	•	79E5
	Glycerol triacetate (203 K)	T.P	580° 390°	Data corrected from paper (H. Goerner, private communication, 1985)	79E
335.	1,4-Diaminoanthraquinone				,
	Benzene	PR-ET/ET	575. 22000	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene assuming ground state dimerization; $\tau_{\rm T}=4.5$ $\mu_{\rm S}$; $E_{\rm T}=123$ - 151 kJ mol ⁻¹ ; $k_{\rm et}=2.2\times10^9$ L mol ⁻¹ s ⁻¹	7611
336	3,6-Diaminophthalimide		·		
550.	EtOH	FP	545	Lifetime limited by aeration; $\tau_T = 0.560 \ \mu s$	7575
227	5,5'-Di-tert-amylthioindigo				
331.	2-MTHF (93 K)	LP	595	$\tau_{\rm T} = 120 \ \mu \rm s$	79E
337.			390	• • • • • • • • • • • • • • • • • • • •	
337.				$\tau_{\rm T}=0.25~\mu{\rm s}$	79E
337.	2-MTHF	LP	590	11 = 0.25 µs	
337.	2-MTHF		385	. ,	
337.	EPA (77 K)	FP	385 590	$\tau_{\rm T}=154~\mu{\rm s}$	7675
337.			385 590 580	. ,	7675
337.	EPA (77 K) EPA (93 K)	FP LP	385 590 580 370	$\tau_{\rm T} = 154 \ \mu s$ $\tau_{\rm T} = 53 \ \mu s$	7675 79E
337.	EPA (77 K)	FP	385 590 580 370 590	$ au_{\rm T} = 154~\mu{\rm s}$ $ au_{\rm T} = 53~\mu{\rm s}$ $ au_{\rm T}$ strongly temperature dependent in this solvent; $ au_{\rm T}$	7675 79E
337.	EPA (77 K) EPA (93 K) EPA (283 K) Glycerol triacetate	FP LP	385 590 580 370 590 370 605	$\tau_{\rm T} = 154 \ \mu s$ $\tau_{\rm T} = 53 \ \mu s$	7675 79E:
337.	EPA (77 K) EPA (93 K) EPA (283 K)	FP LP	385 590 580 370 590 370	$ au_{\rm T} = 154~\mu{\rm s}$ $ au_{\rm T} = 53~\mu{\rm s}$ $ extstyle \Phi_{\rm T}$ strongly temperature dependent in this solvent; $ au_{\rm T}$ $ extstyle = 0.40~\mu{\rm s}$	7675 79E: 79E:
337.	EPA (77 K) EPA (93 K) EPA (283 K) Glycerol triacetate (203 K)	FP LP LP	385 590 580 370 590 370 605 390	$τ_T = 154 \mu s$ $τ_T = 53 \mu s$ $Φ_T$ strongly temperature dependent in this solvent; $τ_T = 0.40 \mu s$ Relative intensities (5:4); $τ_T = 33 \mu s$	7675 79E: 79E:
337.	EPA (77 K) EPA (93 K) EPA (283 K) Glycerol triacetate (203 K)	FP LP LP	385 590 580 370 590 370 605 390 600 385 595	$τ_T = 154 \mu s$ $τ_T = 53 \mu s$ $Φ_T$ strongly temperature dependent in this solvent; $τ_T = 0.40 \mu s$ Relative intensities (5:4); $τ_T = 33 \mu s$	7675 79E: 79E: 79E:
337.	EPA (77 K) EPA (93 K) EPA (283 K) Glycerol triacetate (203 K) Glycerol triacetate	FP LP LP LP	385 590 580 370 590 370 605 390 600 385	$ au_{\rm T} = 154~\mu{\rm s}$ $ au_{\rm T} = 53~\mu{\rm s}$ $ \Phi_{\rm T}$ strongly temperature dependent in this solvent; $ au_{\rm T}$ = 0.40 μs Relative intensities (5:4); $ au_{\rm T} = 33~\mu{\rm s}$ Relative intensities (5:4); $ au_{\rm T} = 0.36~\mu{\rm s}$	7675 79E5 79E5 79E5 79E5

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
338.	Dibenz[a,j]acridine/PrOH 3-MP/PrOH (77 K)	PS	550	Glass was 99:1 3-MP to PrOH; which isomer of PrOH	706135
		•		was not specified; no T-T absorption in 3-MP; "1,2,7,8-dibenzacridine"	
339.	Dibenz[a,h]acridine				
	3-MP (77 K)	PS	585	"1,2,5,6-Dibenzacridine"	706135
			545 520		
340	Dibenz[a,h]anthracene/Ch	loranil			
340.	PMMA	PS	668°	Most intense peak at 580 nm	766652
			626ª	F	
			580°		
			540 ^a		
			508ª		
			495*		
			470°		
			455° 440°		
			424°		
341	Dibenz[a,h]anthracene				
	2-MTHF (77 K)	PS/ESR	587, 25000	‡ESR; only most intense visible peak reported; assign-	696115
		·		ment ${}^{3}A_{g} \leftarrow {}^{3}B_{u}$; oscillator strength encompasses two electronic transitions; "1,2,5,6-dibenzanthracene"; oscillator strength = 0.25	
	Benzonitrile	LP/RF	583^a , 10500 ± 700	ϵ relative to compound in toluene ($\epsilon_{584} = 13000 \text{ L}$	83F075
			548 ^a , 9400 ^a 509 ^a , 7900 ^a	mol ⁻¹ cm ⁻¹)	001 010
			476°, 6000° 445°, 5000°		
	EPA (77 K)	PS	585	†Phosphorescence decay	51E001
			546	•	
			506		
			495		
	EPA (77 K)	PS	584.8	†Phosphorescence decay; relative intensities	54B001
			547.1	$(100:67:39:40:30:24); \tau_T = (1.4 \pm 0.1) \times 10^6 \mu s$	
			508 500		
			472		
			428		
	EPA (77 K)	PS/SD	$585,35000 \pm 3500$		68E105
	EPA (77 K)	PS/IV	585, 28700	λ_{max} assumed from previous work; ϵ estimated by extrapolation to infinite excitation rate	69E212
	EtOH/Et ₂ O (77 K)	MOD/KM	$560, 17600 \pm 5300$	Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	719059
	Hexane	FP	535.1		54E001
			498.0		
			452.9		
	••		421.1		
	Hexane	FP/SD	532.5, 67000 499, 57600 469.5, 46900	The bands between 532.5 and 469.5 nm were assigned to the 1st electronic transition, the next three bands to the 2nd electronic transition, and the last band to the	58E00
			424, 33400	3rd electronic transition; oscillator strength $= 2.2$,	
			398, 18100	0.4,	
			376.5, 9400	, 	
			327		
	Liquid paraffin	FP/TD	535^{6} , 22000 ± 3000		67E031
	Liquid paraffin	MOD	573	Mull; relative intensities (100:91:59); $\tau_T = 90.3 \ \mu s$	71E361
			538		

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , /nm	$\epsilon_{\rm max}$ /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	РММА	LP	532			70E288
	Toluene	LP/ET	480 584 ^a , 13 544 ^a , 12 509 ^a , 83 478 ^a , 70 444 ^a , 33	300° 000°	ε relative to anthracene in toluene ($\varepsilon_{428.5}=42000~L~\text{mol}^{-1}~\text{cm}^{-1})$	83F075
342.	7 <i>H</i> -Dibenzo[c , g]carbazole Cyclohexane	LP	~600			82E497
343.	Dibenzo[b,def]chrysene					
	Hexane	MOD	511ª 480°		"3,4,8,9-Dibenzpyrene"; 511 nm was the more intense	70E295
	Hexane	MOD	510		peak; $\tau_T = 130 \mu s$ Relative intensities (100:28); $\tau_T = 130 \mu s$	71E361
	Liquid paraffin	MOD	470 520 490		Mull; relative intensities (100:37); $\tau_T = 110 \ \mu s$	71E361
344.	Dibenzo[def,mno]chrysene					
	Heptane	LP	662 633 581 535 524		"Anthanthrene"; delay 370 ns	737463
	Liquid paraffin	MOD	585 420 395		Mull; relative intensities ($_$:100:19); shoulder at 560 nm with relative intensity 34; $\tau_{\rm T}=103~\mu{\rm s}$	71E361
345.	Dibenzo[def,p]chrysene				·	
	Hexane	MOD	573 477		Relative intensities (23:100); "1,2,3,4-dibenzpyrene"; $\tau_{\rm T}=120~\mu{\rm s}$	71E361
346.	Dibenzo[def,mno]chrysene	-6,12-dione	.,,			
	Benzene	FP	688° 520°		"Anthanthrone"; 688 nm peak was the more intense	84F379
347	Dibenzo[g,p]chrysene					
2	Heptane Heptane	LP	633 613 575 532 503 483 442		"1,2,3,4,5,6,7,8-Tetrabenznaphthalene": delay 380 ns	737463
348.	5H-Dibenzo[a,d]cyclohep	tene				
	Cyclohexane	FP	425		Decay followed in acetonitrile and mixed hydro- carbons as a function of temperature	80E375
	Isopentane/3-MP (77 K)	FP/IV	426, 20 402 ^a	0000	Glass was 6:1 isopentane to 3-MP; shoulder at 373° nm; $\tau_T = 7100 \ \mu s$	687111
349.	Dibenzophenazine Toluene (293 K)	FP	530 ^a 510 ^a 480 ^a		†Phosphorescence decay in EPA at 77 K, oxygen quenching; isomer unspecified	80E778
350.	6H-Dibenzo[b,d]pyran-6-0	one				
	EtOH (300 K)	FP	500 390			81E650
351.	Dibenzo $[f,h]$ quinoxaline					
	PMMA (77 K)	PS	460 429 387		†Phosphorescence decay (?); "5,6,7,8-dibenzoquinox-aline"; $\tau_{\rm T}=9.4\times10^{\rm 5}~\mu{\rm s}$	70E291

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

lo.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
352.	Dibenzo[c,g]triphenylene				
	МСН	LP	605 420	‡Oxygen quenching; relative intensities (2:1); $\tau_T = 120$ μs	79A23
353.	2,3-Dibenzoylbicyclo[2.2.1	hepta-2,5-diene	;		
	MeOH	LP	445ª	Assignment uncertain; shoulder around 400 nm; $\tau_T = 0.054 \ \mu s$	80F37
54.	2,3-Dibenzoylbicyclo[2.2.2	octa-2,5-diene			
	MeOH	LP	450°	Assignment uncertain; shoulder around 520 nm; $\tau_T = 0.040 \mu s$	80F37
55.	Dibenzoylmethane				
	EtOH/MeOH (118 K)	FP	630	Solvent was 3:1 EtOH to MeOH	68B00
56.	N-[(Dibenzylamino)methyl	phthalimide		•	
	EtOH	FP	590	tOxygen quenching, diene quenching; maxima as-	79A14
			350 >	sumed from text; $\tau_{\rm T} = 12 \ \mu \rm s$	
57.	2,5-Di(4-biphenylyl)oxazol	le			
	2-MTHF (77 K)	CWL	590	"BBO"	74B00
	Benzene	LP/SD	560, 110000	‡Oxygen quenching (1.7 \times 10° L mol ⁻¹ s ⁻¹); 100 ns delay; $\tau_{\rm T}=0.285~\mu{\rm s}$	77,726
58.	9,10-Dibromoanthracene				
	Acetonitrile	LP	421ª	tOxygen quenching; $\tau_T = 19.5 \mu s$	84B1
	Cyclohexane EPA (77 K)	FP LP	419 427	$\tau_{\rm T} = 36 \mu \rm s$ $\tau_{\rm T} = 32 \mu \rm s$	62E0
	EtOH	LP/ET	420, 82000	$τ_T = 22 \mu s$ ε relative to Methylene Blue cation ($ε_{660} = 27000 \text{ L}$ mol ⁻¹ cm ⁻¹); solvent and temperature assumed; $τ_T = 11 \text{ μc}$	84B1 78E3
	Liquid paraffin	FP	424	11 μ s Viscosity of solvent was 0.167 N·s/m ² ; $\tau_T = 44 \mu$ s	62E0
	Toluene	LP/ET	$427.5, 48000 \pm 4000$	ϵ relative to rubrene in toluene ($\epsilon_{500} = 26000 \text{ L mol}^{-1} \text{ cm}^{-1}$)	84E3
		•		· .	
59.	4,4'-Dibromobiphenyl	7 D	400	7.1. 400	
	Hexane (293 K) Toluene	LP PR	~400 390	Delay 500 ps t Oxygen quenching; $\tau_T = -3 \mu s$	82E3 80A2
60	Dibromofluorescein dianio	,			
ω.	Water	FP/SD	506^{b} , 18000 ± 6000	pH 9	67E0
61.	1,4-Dibromonaphthalene				
	Cyclohexane	FP	425	$\tau_{\rm T} = 150 \ \mu \rm s$	62E0
	Liquid paraffin	FP	423	Viscosity of solvent was 0.167 N·s/m ² ; $\tau_T = 2000 \mu s$	62E0
62.	(E)-N,N-Dibutyl-2,3-dihye Chloroform			-ylidene)naphtho[1,8-bc]thiopyran-6-sulfonamide	024/
	Chiorolorin	LP	730	A substituted "trans-perinaphthioindigo"	83A:
63.	(Z)-N,N-Dibutyl-2,3-dihyo Chloroform	dro-3-oxo-2-(3-c LP	xonaphtho[1,2-b]thien-2(3H) 670	-ylidene)naphtho[1,8-bc]thiopyran-6-sulfonamide A substituted "cis-perinaphthioindigo"	83A
64.	5,5'-Dibutylthioindigo				
	EPA (77 K)	FP	585	$\tau_{\rm T} = 152 \ \mu \rm s$	7675
	5,5'-Di-tert-butylthioindig	go			
65.	EPA (77 K)	FP	595	$ au_{\mathrm{T}} = 133~\mu\mathrm{s}$	7675
65.					
	trans-1.2-Di(N-carhazoly))cyclobutene			
365. 366.	trans-1,2-Di(N-carbazolyl)cyclobutane LP	420	10xygen quenching; 500 ns delav	81P2
		. •	420 424ª	†Oxygen quenching; 500 ns delay Delay 800 ns; shoulders at 504° and 404° nm	81P2 83E6
	DMF	LP LP			

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
368.	rac(DD,LL)-2,4-Di(N-carb	pazolyl)pentane			
	THF	LP	425 ^a	Delay 1 μs; shoulders at 498° and 402° nm	83E662
369.	1,5-Dichloroanthracene				
	Benzene	PR/ET	445, 63400	ϵ relative to naphthalene in benzene ($\epsilon_{max}=17500~L~mol^{-1}~cm^{-1}$)	690087
	Benzene	PR/ET	445, 64300	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 10300$ L mol ⁻¹ cm ⁻¹)	690087
	Cyclohexane	FP	425	$\tau_{\rm T} = 60~\mu{\rm s}$	62E00
	Cyclohexane	PR	440		69008
	Cyclohexane	FP/RA	955, 1000 850 760 442.5	‡Oxygen quenching; ϵ relative to 1,5-dichloroanthracene in benzene ($\epsilon_{445} = 64300 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$)	71B00
			420		
	Dioxane	PR	442.5		69008
	Liquid paraffin PFMCH	FP FP	419 951 ^a 840 ^a 755 ^a 430 ^a	Viscosity of solvent was 0.167 N·s/m ² ; $\tau_T = 2000 \mu s$ ‡Oxygen quenching	62E00 71B00
	PMMA	FP	410° 855		66E08
370.	9,10-Dichloroanthracen				207746
	Acetonitrile	FP	418 ^a	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	82F49
	Benzene	PR/ET	422.5, 41700	ϵ relative to naphthalene in benzene ($\epsilon_{max} = 17500 \text{ L}$ mol ⁻¹ cm ⁻¹)	69008
	Benzene	PR/ET	422.5, 51100	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 10300$ L mol ⁻¹ cm ⁻¹)	69008
	Cyclohexane	FP	419	$\tau_{\rm T} = 100 \; \mu \rm s$	62E0
	Cyclohexane	PR	417.5		69008
	Dioxane	PR	420	÷	69008
	EtOH (298 K)	FP	419 ^a		66E0
	EtOH (201 K)	FP FR	421 ^a	Triplet ET from again, a relative to again in EtOH (c	66E0 78E0
	EtOH	FP/ET	694 ^b , 64	Triplet ET from eosin; ϵ relative to eosin in EtOH (ϵ_{580} = 9400 L mol ⁻¹ cm ⁻¹)	76EU
	Liquid manaffin	ED	417, 46000	Solvent viscosity was 0.03 N·s/m ²	58E0
	Liquid paraffin Liquid paraffin	FP FP	423 419	Viscosity of solvent was 0.167 N·s/m ² ; $\tau_T = 500 \mu s$	62E0
	Toluene	LP/ET	426, 46000 ± 4000	ϵ relative to rubrene in toluene ($\epsilon_{500} = 26000 \text{ L mol}^{-1}$ cm ⁻¹)	84E3
371.	1,8-Dichloroanthraquin				0150
	EPA (77 K)	LP	500°	†Phosphorescence decay; delay 100 ns; 370 nm was the	ODEC
	EPA (77 K)	LP	370ª 375ª	more intense peak; $\tau_T = 40 \pm 10 \mu s$ Delay 100 ns	84A2
	EtOH	LP LP	380°	Delay 50 ns	84A2
	Toluene	LP	500°	†Phosphorescence decay in EPA at 77 K; delay 300 ns;	83E0
			379ª	379 nm was more intense peak	
372.	4,4'-Dichlorobenzopher	none			
	Acetonitrile/Water	LP/ET	545, 9600	Solvent was 9:1 acetonitrile to water; ϵ relative to	84 B 0
			320, 12900	1-methylnaphthalene in acetonitrile/water ($\epsilon_{415} = 11200 \text{ L mol}^{-1} \text{ cm}^{-1}$)	
373.	Dichlorobis(4,7-dimethy	yl-1,10-phenanthro	oline)iridium(III) ion		
	DMF/Water	LP	608ª	Shoulders at 530° and 511° nm; solvent was 9:11 di-	79B0
			573ª	methylformamide to water	
			543ª		
			489ª		
			464ª		
			447°		
			425°		

J. Phys. Chem. Ref. Data, Vol. 15, No. 1, 1986

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

o.	Solvent	Method	λ_{max} , /nm	ϵ_{\max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	DMF/Water	LP	626a		Shoulders at 588a, 458a, and 439a nm; solvent was 19:1	79B09
			566ª		dimethylformamide to water	
			547ª			
			535a			
			516ª			
			497ª			
			468ª	*		
	Water	LP	588ª		Shoulders at 509° and 469° nm	79 B 09
			552ª			
			531ª			
			490ª			
			461ª			
			111a			
			424ª			
74.	Dichlorobis(5,6-dimethyl-1, DMF/Water	•	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n(III) ion	0.1	0155
	DMF/ Water	LP	650ª 566ª		Solvent was 19:1 dimethylformamide to water	81E7
			512ª			
			440ª			
	DMF/Water	LP	572ª		Solvent was 9:11 dimethylformamide to water; shoul-	21E7
	- Estata / III anga		510°		der at 479° nm	. 01127
	than which		438ª			
	EtOH/MeOH	LP	435ª		Solvent was 4:1 EtOH to MeOH; shoulders at 559 ^a , 487 ^a , and 410 ^a nm	81 E 7
	Water	LP	606ª		,	81E7
	**		568ª			0125.
	•		530ª			
15	Dt.1111.74.40 1					
13.	Dichlorobis(1,10-phenanthr				6-1	70700
	DMF/Water	LP	566°		Solvent was 9:11 dimethylformamide to water; shoul-	79 B 0
			502° 174°	•	ders at 590°, 538°, 460°, 445° and 423° nm	
	DMF/Water	LP.	516ª		Solvent was 19:1 dimethylformamide to water; shoul-	79B0
	Divir / Water	L	570ª		ders at 473 ^a and 450 ^a nm	1300
			531		dets at 475 and 450 mm	
			499ª			
	DMF/Water	LP	613ª		Solvent was 19:1 dimethylformamide to water; shoul-	.81E7
			477ª		ders at 559° and 507° nm	0111
	DMF/Water	LP	483ª		Solvent was 9:11 dimethylformamide to water; shoul-	81E7
			434ª	:	der at 537° nm	
	EtOH/MeOH	LP	451ª		Solvent was 4:1 EtOH/MeOH; shoulders at 522° and 482° nm	81E7
	EtOH/MeOH (77 K)	LP	508ª		Glass was 4:1 EtOH to MeOH	81E7
			481ª			
			450ª			
	Water	LP	598ª			79B0
			561ª			
			.530ª			
			509ª			
			476ª			
			451ª			
			418a			
	Water	LP	532ª	•		81E7
			440ª			
76.	3,5-Dichloro-2,6-diphenyl-1	.4-benzoquino	ne/Triphei	ıylamine		
	Benzene (293 K)	LP	650		550 nm band was the more intense; $\tau_T = 0.1 \ \mu s$	81E7
		#. P.	550			
	Benzene/MeOH (293 K)	LP	650		650 nm band was the more intense; solvent was 19:1	81E7
		•	550		benzene to MeOH; $\tau_T = 0.048 \mu s$	
77	1.4 December 1.11.1		* 4			
77.	1,4-Dichloronaphthalene	FP	422.5		$\tau_{\rm T}=360~\mu{\rm s}$	62E0
	Cyclohexane					

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\lambda_{ m max}$, $\epsilon_{ m max}$ /nm /L mol $^{-1}$ cm $^{-1}$	Comment	Ref.
378.	4,4'-Dichlorostilbene				
	Isopentane/3-MP (77 K)	FP/IV	380° 359, 28000	Glass was 6:1 isopentane to 3-MP; the ϵ at 359 was listed as 280000 in the paper, but we assume that this was a misprint; shoulder at 344° nm and some unresolved feature centered at 394° nm; $\tau_T = 4800 \mu s$	687111
379.	4-(4,6-Dichloro-1,3,5-triazi	in-2-vi)-N.N-d	iethylaniline		
	EPA (77 K) PMMA (293 K)	PS/KM PS/KM	490, 31000 ± 5000 490, 31000 ± 5000	†Phosphorescence decay; $\tau_{\rm T}=$ (4.3 \pm 0.4) \times 106 μ s $\tau_{\rm T}=$ (1.7 \pm 0.1) \times 106 μ s	83E427 83E427
380.	Dicumarol				
	EPA (77 K)	PS	499.5 465 437 413 ^a 380 ^a	†Phosphorescence decay; most intense peaks were at 499.5. 465. and 437 nm; $\tau_{\rm T}=$ (1.3 \pm 0.2) \times 106 μ s	71B001
381.	9,10-Dicyanoanthracene				
301,	Acetonitrile	LP	440	tOxygen quenching; intersystem crossing promoted by dimethyliodobenzene; shoulder at 425 nm	83E025
	Heptane	FP	426	tOxygen quenching and enhanced triplet yield in presence of dibromoethane; $\tau_T = \sim 100 \ \mu s$	78E414
	Toluene	LP/ET	440, 9000 \pm 2000	ϵ relative to rubrene in toluene ($\epsilon_{500} = 26000 \text{ L mol}^{-1} \text{ cm}^{-1}$)	84E393
382.	1,2-Dicyanobenzene				
	EPA (77 K)	FP	510 459	†Phosphorescence decay, molecular orbital calculations; ϵ roughly 200 L mol ⁻¹ cm ⁻¹ (method unspecified); $\tau_{\rm T}=2.5~\mu{\rm s}$	776213
383.	1,3-Dicyanobenzene				
	EPA (77 K)	FP	530 440	‡Phosphorescence decay, molecular orbital calculations; ε roughly 200 L mol ⁻¹ cm ⁻¹ (method un-	776213
	Et ₂ O/Isopentane (77 K)	PS	290° 300	specified); $\tau_T = 5.0 \ \mu s$ Glass was 1:1 Et ₂ O to isopentane	75B004
384.	1,4-Dicyanobenzene				
	EPA (77 K)	FP	500	‡Phosphorescence decay, molecular orbital calculations; ε roughly 200 L mol ⁻¹ cm ⁻¹ (method un-	776213
	Et ₂ O/Isopentane (77 K)	PS	297	specified); shoulder at 450 nm; $\tau_T = 1.9 \mu s$ Glass was 1:1 Et ₂ O to isopentane	75B004
385.	1,4-Dicyanonaphthalene				
	Acetonitrile	LP	455 275		84B017
	Acetonitrile	LP/ET	455, 7000 ± 1000 275	‡Oxygen quenching (2.1 \times 10 ⁹ L mol ⁻¹ s ⁻¹); ϵ relative to benzophenone in acetonitrile ($\epsilon_{520} = 6500$ L mol ⁻¹	84B066
	Heptane	LP	455 275	cm ⁻¹); $\tau_{\rm T} = 40 \ \mu s$	84E236
386.	trans-4,4'-Dicyanostilben 2-MTHF (133 K)	e LP	415	Triplet absorption not observable above 134 K; below 99 K lifetime (1.3 \times 10 ⁴ μ s) constant; lifetime mea-	80F299
	EtOH (135 K)	LP	410	sured at 134 K; $\tau_T = 1.0 \mu s$ Triplet absorption not observable above 138 K; below 110 K lifetime (1.3 × 10 ⁴ μs) constant; lifetime mea-	80F299
	Glycerol triacetate (198 K)	LP	410	sured at 138 K; $\tau_T = 2.5 \mu s$ Triplet absorption not observable above 243 K; below 214 K lifetime constant; $\tau_T = 6700 \mu s$	80F299
	PMMA (298 K)	LP	405		80F299

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent Me		λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
387.	all-trans-3',4'-Didehydro-β,ψ	-16'-carotenal	· · · · · · · · · · · · · · · · · · ·		
		P-ET/SD	580, 363000 ± 54500	†Triplet ET from biphenyl; ϵ assumes triplet does not absorb where singlet depletion is followed; "torularhodinaldehyde"; $\tau_{\rm T}=2.5~\mu{\rm s}; E_{\rm T}=\sim94~{\rm kJ~mol^{-1}}$	78E721
388.	6,6'-Diethoxythioindigo				
	Benzene L	.P	560° 420°	‡Oxygen quenching (2.9 \times 10 ⁹ L mol ⁻¹ s ⁻¹); spectrum independent of amount of <i>cis</i> or <i>trans</i> isomers used; $\tau_{\rm T}$ = 0.143 μ s	78F030
	Dichloromethane L	P	560° 420°		78F030
389	N-[2-(Diethylamino)ethyl]phth	alimide			
307.		P	590	tOxygen quenching, diene quenching; maxima as-	79A147
	.*		350	sumed from text; $\tau_T = 42 \mu s$	
390.	7-Diethylamino-4-methylcoum	arin			
	EPA C	CWL	596ª	Glass, temperature unspecified	73E344
	EtOH F	P/ET	620, 21600 ± 2200	ϵ relative to anthracene in EtOH ($\epsilon_{420} = 75000 \text{ L}$ mol ⁻¹ cm ⁻¹); there was another maximum at wavelength shorter than 400 nm; $\tau_{\rm T} = 3000 \pm 1000 \ \mu{\rm s}$; $k_{\rm m} = (6.9 \pm 1.0) \times 10^9 \ {\rm L} \ {\rm mol}^{-1} \ {\rm s}^{-1}$	747049
391.	1,1'-Diethyl-6-bromo-2,2'-cya	nine iodide			
	PVA F	P/SD	651a, 33800a		67 F 505
392.	1,1'-Diethyl-2,2'-carbocyanin	e chloride			
	Ethylene glycol F	P	635	"Pinacyanol chloride"; $\tau_{\rm T}=256\pm20~\mu{\rm s}$	79E243
		P	635	$\tau_{\rm T} = 417 \pm 50 \; \mu \rm s$	79E243
	MeOH F	P-ET/SD	635, 58000 ± 3000 625 ^b , 52000	‡Triplet ET from naphthalene, oxygen quenching; $\tau_{\rm T}$ = 190 ± 18 μ s; $k_{\rm et}$ = (1.0 ± 0.1) \times 10 ¹⁰ L mol ⁻¹ s ⁻¹	79E243
	PVA F	P	741° 673°	$ au_{\mathrm{T}} = 2.0 imes 10^4 \mu \mathrm{s}$	69B005
393.	1,1'-Diethyl-4,4'-carbocyanin	e iodide			
	· · · · · · · · · · · · · · · · · · ·	P-ET/	778 ^a , 59000 ^a	ϵ relative to naphthalene in EtOH ($\epsilon_{415} = 40000 \text{ L}$	736051
		ET&SD	728 ^b , 32000	mol ⁻¹ cm ⁻¹); in ET measurement, compensation was	
			593 ⁶ , 6000	made for the simultaneous decay and buildup of triplet;	
			504°, 25100° 425°, 36400°	shoulder at 580° nm; $\tau_{\rm T} = 1100 \ \mu \text{s}$; $k_{\rm el} = 1.0 \times 10^{10} \ \text{L}$ mol ⁻¹ s ⁻¹	
394	1,1'-Diethyl-2,2'-cyanine iodi	de			
		.P	600	‡Triplet ET from naphthalene; "pseudoisocyanine"; $\tau_{\rm T} = 49 \pm 1 \ \mu \text{s}; \ k_{\rm el} = (1.2 \pm 0.1) \times 10^{10} \ \text{L mol}^{-1} \ \text{s}^{-1}$	79E828
		FP/SD	635a, 31000a	, , , , , , , , , , , , , , , , , , , ,	67F505
	PVA F	P	642ª	$\tau_{\rm T}=1.2\times10^4~\mu{\rm s}$	69B005
395.	1,1'-Diethyl-2,2'-dicarbocyan	ine iodide			
		P-ET/	791 ^a , 111000 ^a	ϵ relative to naphthalene in EtOH ($\epsilon_{415} = 40000 \text{ L}$	736051
	F	ET&SD	780^{b} , 115000 ± 11000	mol ⁻¹ cm ⁻¹); in ET measurement, compensation was	
			760°, 96800 ± 9700 740°, 40000	made for the simultaneous decay and buildup of triplet; shoulder at 504° nm; $\tau_T = 480 \mu s$; $k_{et} = 8.9 \times 10^9 L$	
			627.5 ^b , 40000 611 ^a , 48000 ^a	shoulder at 504 mm, $7_T = 400 \mu s$, $k_{et} = 6.9 \times 10^{-1} \text{ g}^{-1}$ mol ⁻¹ s ⁻¹	
396.	1,1'-Diethyl-6-iodo-2,2'-cyani	ine iodide			
		FP/SD	660a, 28500a	Shoulder at 501° nm	67F505
397.	3,3'-Diethyl-9-methoxy-2,2'-t	thiacarboevanin	e iodide		
		p	640 ^a		777036
		P P	650		777036
	PrOH F	FP P	648ª	Isomer of PrOH unspecified	757441

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol $^{-1}$ cm $^{-1}$	Comment	Ref.
398.	3,3'-Diethyl-2,2'-oxacarbo BuOH	cyanine iodide FP-ET	605	‡Triplet ET from naphthalene	777036
399.	3,3'-Diethyl-2,2'-oxadicarl EtOH	ocyanine iodide FP-ET/ET	670 ^b , 95500 ± 9500 660 ^b , 110000 ± 10000 650, 135000 ^a	†Triplet ET from naphthalene; ϵ relative to naphthalene in EtOH ($\epsilon_{415} = 40000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{\text{T}} = -5000 \text{ µs}$; $k_{\text{et}} = 6.7 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	726156
400.	N,N'-Diethylrhodamine 1-PrOH	FP/SD	920 615, 12000	†Triplet ET to anthracene sulfonic acid and from naphthalene, oxygen quenching; 250 µs delay	78A304
	Water	FP/SD	410 920 625 590 ^b , 8000	250 μ s delay; blue band decays with same lifetime as others	777041
	Water	FP	410 920 615 410	‡Triplet ET to anthracene sulfonic acid and from naphthalene, oxygen quenching; 250 μs delay; pH 7.0	78A304
401.	5,5'-Diethylselenoindigo		•		
	EPA (77 K)	FP	630	$\tau_{\rm T}=303~\mu{\rm s}$	767582
402.	9,9-Diethyl-9H-9-stannaflu	orene			
	MCH/Isopentane (77 K)	FP	382ª	‡Phosphorescene lifetime; glass was 3:1 MCH to isopentane; shoulder at 366° nm; $ au_{\rm T}=4.3\times10^4~\mu{\rm s}$	81E648
403.	3,3'-Diethyl-2,2'-thiacarbo	cyanine iodide			
	BuOH PVA	FP-ET FP	605° 930° 911°	†Triplet ET from naphthalene Shoulder at 869° nm; $\tau_T = 6500 \mu s$	777036 69 B 005
404.	3,3'-Diethyl-2,2'-thiacyan	ine iodide			
	2-PrOH	FP-ET	660	†Triplet ET from naphthalene	777036
	PVA	FP	711° 629°	Shoulder at 566° nm; $\tau_T = 1.6 \times 10^4 \mu s$	69B005
405	3,3'-Diethyl-2,2'-thiadicar	hocvanina iodida			
102.	2-PrOH EtOH	FP-ET/ET	705 770 ^b , 130000 ± 9000 760 ^b , 156000 ± 10000 ~690 ^a , 267000 ^a	†Triplet ET from naphthalene; ϵ relative to naphthalene in EtOH ($\epsilon_{415} = 40000 \text{ L mol}^{-1} \text{ cm}^{-1}$); shoulder at $\sim 780^{\circ}$ nm; $\tau_{\rm T} = 1100 \ \mu \text{s}$; $k_{\rm et} = (5.6 \pm 0.4) \times 10^{9} \ \text{L mol}^{-1} \ \text{s}^{-1}$	777036 726156
	PVA	FP	1020 ^a	Shoulder at 982^a nm; $\tau_T = 4000 \mu s$	69B005
406	3,3'-Diethyl-2,2'-thiatrica	rhoevanine iodide			
	Propane	FP/ET	900, 145000	†Triplet ET from anthracene, oxygen quenching; ϵ relative to anthracene in propane (e _{422.5} = 52000 L mol ⁻¹ cm ⁻¹) assuming unit transfer probability; radical cations and anions also observed (λ_{max} = 520 nm); τ_{T} = 67 μ s	79A346
407.	6,6'-Dihexyloxythioindigo EPA (77 K)	FP	560	$ au_{\mathrm{T}} = 323 \; \mu \mathrm{s}$	767582
400	12a,12b-Dihydrobenzo[gh	ilmonylone		•	
700.	MCH/Isohexane	LP	428 360	‡First order production from well characterized triplet state, oxygen quenching (1.1 \times 10 ⁹ L mol ⁻¹ s ⁻¹); relative intensities (1:1); solvent was 2:1 MCH to isohexane; $\tau_{\rm T}=0.81\pm0.03~\mu{\rm s}$	79A231
409.	3,4-Dihydro-1,1'-binaphth	yl			
	Benzene	LP-ET	567ª 401°	†Triplet ET from xanthone and oxygen quenching; τ_T = 1.8 μs	84B007

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\begin{array}{ccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-1} \end{array}$	Comment	Ref.
410.	4a,5a-Dihydrocarbazole				
	МСН	LP-ET	430		72B002
	мсн	LP	435	ing; $\tau_T = 0.5 \ \mu s$ ‡Kinetic precurser of ground state ($\lambda_{max} = 610 \ nm$); $\tau_T = 0.67 \ \mu s$	78B072
411.	•		5153	10 To	00E122
	EtOH	LP.	535ª	tOxygen quenching (1.8 \times 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_T = 26$ μ s	82E133
	Water	LP/ELT	550° , 10000 ± 1500	tOxygen quenching $(3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; ϵ relative to radical anion ($\epsilon_{600} = 1500 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming electron transfer from tyrosine 100% efficient; $\tau_T = 25$ µs	82E133
	4 <u>44.5</u> 3 1 5 3 5				
412.	7,7'-Dihydro-β-carotene	FP-ET	478°	†Triplet ET from anthracene; it was not reported	722001
		rr-Ei	445ª	whether the solvent was hexane or benzene; lifetime was measured in hexane; 478 nm peak was the more	733001
	Hexane	PR/ET	447.5, 420000 ± 63000	intense; $\tau_{\rm T}=14~\mu{\rm s}$ †Triplet ET from biphenyl; ϵ relative to biphenyl in cyclohexane ($\epsilon_{\rm 361}=42800~{\rm L~mol^{-1}~cm^{-1}}$), assuming authors used standard for cyclohexane; $\tau_{\rm T}=14\pm1.4~\mu{\rm s}$; $k_{\rm ef}=(2.1\pm0.21)\times10^{10}~{\rm L~mol^{-1}~s^{-1}}$	776412
413.	8b,9a-Dihydro-9H-cyclop	ropal <i>e</i> byrene			
	Hexane	LP	521 ^a	$z \tau_{\mathbf{T}} = 4 \pm 11 \mu s$	84F068
414.	10.11-Dihydro-5.7:14.16-d	ietheno-8 <i>H</i> 13 <i>H</i> -	diindeno[2,1-h:1',2'- i][1,4]d	liovacyclotridecin	
	2-MTHF (77 K)	PS/KM	385a, 21200a	Compound "XI" in paper	83E383
<i>A</i> 15	12a,12b-Dihydro-5,8-dime	ethvil(indolino[2 2	alaambamala)	e de la companya de La companya de la co	
713.	MCH (278 K)	LP	500	Delay 0.5 μs	83A225
116	5,10-Dihydro-5,10-dimeth	vlnhengzine			
	3-MP	LP/RA	$450,62000 \pm 20000$	ϵ relative to anthracene in cyclohexane ($\epsilon_{422} = 61000 \text{ L}$	777088
		•	337 ^b , 16000	$mol^{-1} cm^{-1}$); $\tau_T = 8 \mu s$	
417	(D) 4 F DH - 1 - 11 - 14 -	Fo.4: 4/0/ 7F4	47.34		- 4
417.	(R)-4,5-Dihydrodinaphtho 2-MTHF (96 K)	[2,1-e:1 ,2 -g][1, PS	4jdioxocin 417 ^a	Compound "VI" in paper; shoulder at 407 nm	83E383
				Compound 11 in paper, shoulder at 407 init	032505
418.	(R)-5,6-Dihydro-4H-dinar		, , , , , , , , , , , , , , , , , , ,		100
	2-MTHF (96 K)	PS	427* 408*	Compound "VII" in paper	83E383
		ty na			
419.	5,10-Dihydro-5,10-diphen	ylphenazine			
V s	3-MP	LP/RA	444, 98000 ± 30000 400°, 88000° 337°, 10000 280°, 91000°	ϵ relative to anthracene in cyclohexane ($\epsilon_{422}=61000\mathrm{L}$ mol $^{-1}$ cm $^{-1}$); $\tau_{\mathrm{T}}=1~\mu\mathrm{s}$	777088
420.	5,10-Dihydroindeno[2,1-a	lindene			
	Benzene (298 K)	LP-ET	392 ∼375	†Triplet ET from benzophenone, oxygen quenching (3.4 \times 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = > 3 \ \mu \rm s$; $k_{\rm et} = 5 \times 10^9 \ \rm L \ mol^{-1} \ s^{-1}$	81E214
	Benzene (298 K)	LP-ET	392	†Triplet ET from xanthone, oxygen quenching; $\tau_{\rm T}=$	81E214
	EPA (77 K)	FP	~375 395 375	> 5 μs Most intense peak at 395 nm; $\tau_{\rm T}=88$ μs	737069
	EDA (000 E)		355		
٠,	EPA (298 K)	LP	384 365		81E214

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max}	Comment	Ref.
			/nm /L mol ⁻¹ c	m ^{−1}	
421.	3,4-Dihydro-2'-methyl-1,1'	-binaphthyl			
	Benzene	LP-ET	481ª	†Triplet ET from xanthone	84B007
422.	,				
	3-MP	LP/RA	444, 94000 ± 3000 337 ^b , 12000	60 ϵ relative to anthracene in cyclohexane ($\epsilon_{422} = 61000 \text{ L}$ mol ⁻¹ cm ⁻¹); $\tau_T = 6 \mu \text{s}$	777088
423.	5,12-Dihydro-5-methylquin	o[2,3- <i>b</i>]acridine-7	,14-dione		
	EtOH (300 K)	FP	710	†Triplet ET to anthracene and oxygen quenching; τ_T	79E965
	EtOH (300 K)	FP/SD	350 710, 15300 \pm 1500	= 70 μs 'N-Methylquinacridinone'	81E649
424.	9,10-Dihydro-9-oxo-2-acrid	!:!£4-			
424.	EtOH	FP	580	‡Oxygen quenching; $\tau_{\rm T}=140~\mu{\rm s}$	81A390
405	0.40 7511 1 0 0 0				
425.	9,10-Dihydro-9-oxo-2-acric	linesulfonic acid FP	585	Lifetime quoted from [79E964]; $\tau_{\mathrm{T}}=2\times10^{5}~\mu\mathrm{s}$	81A390
		• •		Exermit quoted from [752504], 74 = 2 × 10 µs	0111070
426.	2,3-Dihydrophenalene EPA	FP	430	‡Oxygen quenching (2 \times 10 ⁹ L mol ⁻¹ s ⁻¹) at 260 K; $\tau_{\rm T}$	81 F 390
	211	••	400 .	$= 2 \mu s$	011 370
427	3,4-Dihydrophenanthrene				
	Benzene	LP-ET	580	Oxygen and azulene quenching and triplet ET from	83E278
			430	benzophenone; $\tau_{\rm T} = 1.2 \ \mu \rm s$	
428.	9,10-Dihydrophenanthrene				
	Hexane (300 K)	MOD/SD	480, 7800 365, 26000	$\tau_{\mathrm{T}} = 120 \pm 9 \; \mu \mathrm{s}$	69E208
429.	1,2-Dihydro-3-phenylnapht	thalene			
	Isopentane/3-MP (77 K)	FP/IV	384, 40000 364ª	Glass was 6:1 isopentane : 3-MP; $\tau_T = 3400 \mu s$	687111
430.	4',5'-Dihydropsoralen				
	Benzene	PR/ET	500, 15700	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene ($\epsilon_{367} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); 5 μ s delay; $k_{\text{et}} = 5.6 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	79E282
	Water	LP	510	4 μs delay	79E282
431	5,12-Dihydroquino[2,3-b]a	oridino 7 14 dione			
451.	EtOH (300 K)	FP	710	"Linear quinacridinone"; [79E965] quotes a $\lambda_{max} = 690$	81E649
			350	nm for the same system	
432.	1,2-Dihydro-2,2,4,6-tetram	ethylquinoline			
	Benzene	FP	647ª		84F248
433.	1,4-Dihydro-5,6,11,12-tetra	aphenyl-1,4-epidio	xytetracene		
	Cyclohexane	LP	432a	A rubreneperoxide, called "II" in paper	84E056
434.	5,12-Dihydro-5,6,11,12-tet	raphenyl-5.12-epi	lioxytetracone		
	Cyclohexane	LP	455ª	A rubreneperoxide, called "I" in paper	84E056
435	(F)-5[(3 4-Dibydro[1 4]thic	rino[3 4_h]honzot	hiazal-1-vi)mathylan	e}-3-ethyl-2-thioxo-4-thiazolidinone	
400.	Toluene	FP-FT	650 ²	†Triplet ET from fluorenone; "merocyanine dye photoisomer"	767764
436.	10H,10'H-10,10'-Dihydro	oxybianthrylidene			
	1-PrOH/2-PrOH (83 K)	FP	465ª 405ª	Solvent was 2:3 1-PrOH to 2-PrOH	777238
127	4.4' Dibodu-ontint				
4 3/.	4,4'-Dihydroxybiphenyl PVA (77 K)	FP	550	Stretched polymer film; most intense peak at 400 nm	78B129
	• •		400	polarization also measured	
			390		

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\begin{array}{ccc} \lambda_{max} \; , & \varepsilon_{max} \\ /nm & /L \; mol^{-1} \; cm^{-1} \end{array}$	Comment	Ref.
	Foluene/EtOH (77 K)	MOD	411a	Glass was 19:1 toluene to EtOH	719059
138.	Dihydroxylycopene Benzene	PR-ET	540	†Triplet ET from naphthalene; $\tau_{\rm T} = 7.9 \ \mu s$	80A143
139.	1,5-Dihydroxynaphthalene				
	3-MP/Et ₂ O (77 K)	PS	447	†Phosphorescence decay; glass 19:1 3-MP to Et ₂ O; 447	74B004
			420 394.5	nm peak was the most intense; $\tau_{\rm T} = 1.03 \times 10^6 \ \mu {\rm s}$	
			394.3		
440.	1,8-Dihydroxynaphthalene	da esta	San Arabi Hari		titi.
	3-MP/Et ₂ O (77 K)	PS	448	‡Phosphorescence decay; glass 19:1 3-MP to Et ₂ O; 448	74B004
			423	nm peak was the more intense; $\tau_{\rm T} = 1.11 \times 10^{\circ} \mu {\rm s}$	
441	2,3-Dihydroxynaphthalene				
	3-MP/Et ₂ O (77 K)	PS	443	tPhosphorescence decay; glass 19:1 3-MP to Et₂O; 443	74B004
		+ TT+ :	418	nm peak was the most intense; $\tau_T = 1.95 \times 10^6 \mu s$	
			394	ા જોવા કે લાલ લાકો માટે કરા છે. જો જો જો છે	este e
	Toluene/EtOH (77 K)	MOD	445	Glass was 19:1 toluene to EtOH	719059
	Water	FP	430	Oxygen quenching; $pk_a = 10.0 \pm 0.2$; 5 μ s delay; pH	77A19
				1.8	a de la Colonia.
442.	2,7-Dihydroxynaphthalene	and the second			
	3-MP/Et ₂ O (77 K)	PS	444	‡Phosphorescence decay; glass 19:1 3-MP to Et ₂ O; 444	74B004
	Park Silver Silver Silver		419	nm peak was the more intense; $\tau_{\rm T}=1.01\times10^6~\mu{\rm s}$	
112	2,3-Dihydroxynaphthalene	والمتأولة المتعادلات		The state of the s	
₩.	Water	, conjugate base FP	545°	tOxygen quenching; 5 μs delay; pH 13.5	77 A 10
	water		500*	toxygen quenching; 5 µs delay; pri 15.5	77A19
		:	480°		
			455°		
			440°		
444.	3,6-Dihydroxyphthalimide				
	Dioxane	FP/TD	440, 2900	Lifetime limited by aeration; $\tau_T = 0.250 \mu s$	7575
		and the second			
445.	4,4'-Dimethoxybenzophen		A Maria de Caración de Car La companion de Caración de		
	Acetonitrile/Water	LP/ET	675, 3600	Solvent was 9:1 acetonitrile to water; ϵ relative to	04Dv.
			545, 5200 440, 7100	1-methylnaphthalene in acetonitrile/water ($\epsilon_{415} = 11200 \text{ L mol}^{-1} \text{ cm}^{-1}$)	
			350, 7800	11200 L mot cm j	
	and the state of			•	
446.			4.5		
	Benzene Cyclohexane	PR	4348	$ au_{\rm T} = 0.37 \pm 0.05 \ \mu {\rm s}$	743062
	Cyclonexalle	PR/ET	$430 \pm 5,5300 \pm 1200$	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹)	743062
	Cyclohexane	LP/ET	$430 \pm 5,5700 \pm 1200$	Triplet E1 to β -carotene; ϵ relative to biphenyl in	743062
		स्करिताते. स		cyclohexane ($\epsilon_{361} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{\text{T}} = 0.59 \pm 0.10 \ \mu\text{s}$	7 13002
447	og a na industración	sav. armilla		e same il propieta di la companya d	
447.	2,5-Dimethoxy-1,4-benzoq Benzene	uinone PR	452°	Shoulder at 4x to not a 50 ± 0.7	742065
	Cyclohexane	PR/ET	489ª	Shoulder at 48 t nm; $\tau_T = 5.0 \pm 0.7 \mu s$ ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 L$	743062 743062
			$440 \pm 5,5400 \pm 1100$	mol ⁻¹ cm ⁻¹)	7-3002
	Cyclohexane	LP/ET	489ª	†Triplet ET to β -carotene; ϵ relative to biphenyl in	743062
		**************************************	$440 \pm 5,5300 \pm 1100$	cyclohexane ($\epsilon_{361} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{\text{T}} = 5.9 \pm 1.0 \ \mu\text{s}$	
448	4,4'-Dimethoxybiphenyl				
. 70.	Boric acid	PS	415	Glass	777388
					111300
449.	5,7-Dimethoxycoumarin				
	Benzene	PR/ET	450, 11400	†Triplet ET from biphenyl; ϵ relative to biphenyl in	79E282
				benzene ($\epsilon_{367} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); 20 ns delay; τ_T	
				= 10 μ s; $k_{et} = 5.6 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , /nm	ϵ_{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
450.	2,3-Dimethoxy-5-methyl-1,	-				
	Benzene Cyclohexane	PR PR/ET	423ª 430 ±	5, 6300 ± 1400	$\tau_{\rm T} = 0.59 \pm 0.10 \mu s$ ε relative to biphenyl in cyclohexane (ε ₃₆₁ = 42800 L mol ⁻¹ cm ⁻¹)	743062 743062
	Cyclohexane	LP/ET	430 ±	5, 6800 ± 1400	Triplet ET to β -carotene; ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 0.55 \pm 0.09 \text{ µs}$	743062
	Trichlorotrifluoroethane	LP	413ª		$\tau_{\rm T} = 0.43 \pm 0.08 \; \mu \rm s$	743062
451.	1,4-Dimethoxynaphthalene					
	3-MP (77 K)	PS	469 445		†Phosphorescence decay; 469 nm peak was the more intense; $\tau_{\rm T}=1.08\times 10^6~\mu{\rm s}$	74B004
452.	1,2-Dimethoxy-4-nitrobenz					
	Acetonitrile	LP	490ª			82B014
453.	trans-2,5-Dimethoxy-4'-ni		700		Mark Language 467	7013000
	Glycerol triacetate (198 K)	LP	~780 540 467		Most intense peak at 467 nm	78B088
	Glycerol triacetate	LP	~830 554		Most intense peak at 465 nm	78B088
			465			
454.	,					04400
	Benzene	LP/RA	400 ±	5, 3500 ± 700 5, 5500 ± 1100 5, 19900 ± 4000	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 7630 \text{ L}$ mol ⁻¹ cm ⁻¹), taking $\Phi_T = 0.5$ at 337 nm excitation and taking $\Phi_T = 1$ for benzophenone; SD method gave similar ϵ ; $\tau_T = 1.4 \pm 0.1 \ \mu s$	84A221
455.	4-(Dimethylamino)chalcon	ie				
	Heptane	LP	550 ±	: 15	"3-[4-(Dimethylamino)phenyl]-1-phenyl-2-propen-1-one"; $\tau_{\rm T}=0.5~\mu{\rm s}$	83E347
456.	10-(Dimethylamino)-3,5,7,	9-decatetraen-2-	one			
	Toluene	FP-ET	520		‡Triplet ET from anthracene	83E737
457.	2-(Dimethylamino)ethyl b	enzoate				
	Cyclohexane (290 K)	FP	352ª 321ª		10 μs delay	767556
458.	2-[7-(Dimethylamino)-2,4,	6-heptatrienylide	ne]-6-[5-(d	limethylamino)-2,4-	pentadienylidene]cyclohexanone	
	Toluene	FP	680		tOxygen quenching and triplet ET from anthracene and benzo[rst]pentaphene and to azulene, perylene, and tetracene	83E737
459.	N-[(Dimethylamino)methy					
	EtOH	FP	590 350		‡Oxygen quenching, diene quenching; maxima assumed from text; $\tau_{\rm T}=10~\mu{\rm s}$	79A147
460.	1-Dimethylamino-4-nitron	-				
	2-PrOH	LP	505		Lifetime extrapolated from low temperature; $\tau_T = 0.002 \ \mu s$	77A210
	Acetone	LP	505		tOxygen quenching (0.7 \times 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T}=1.0$ $\mu{\rm s}$	
	Acetonitrile	LP	510		$\tau_{\rm T}=0.2~\mu{\rm s}$	77A210
	Benzene Cyclohexane	LP LP	510 500		tOxygen quenching (1.6 \times 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 4.5$ $\mu \rm s$ tPhosphorescence decay in PMMA at 77 K; $\tau_{\rm T} = 9.1$	77A216
	Cyclonexane	LI	300		μs	
	Hexane	LP	500		$\tau_{\rm T}=8.4~\mu{\rm s}$	77A21

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

) .	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
51.	trans-4-Dimethylamino-4	•nitrostilbene			
	2,2-Dimethylbutane-	FP	845ª	Glass 3:8 pentane to 2,2-dimethylbutane; shoulder at	74702
	/Pentane (77 K)	1.1	0.0	750° nm	7.4702
		TD	680	750 mm	78B08
	2-PrOH	LP		10	
	Benzene	LP	800	tOxygen quenching and triplet ET from triphenylene;	74702
				shoulder at 745 nm; $\tau_T = 2.1 \mu\text{s}$	
	Benzene	LP	790		78B08
	Cyclohexane	LP	735	Shoulder at 650 nm; $\tau_T = 0.43 \mu s$	74702
	DMF	LP-ET	910	†Triplet ET from triphenylene; $\tau_{\rm T} = 21 \ \mu \text{s}$; $k_{\rm et} = 8 \ \times$	74702
			820	10° L mol ⁻¹ s ⁻¹	
	DMF	LP	805		78B08
	EtOH	LP	630		78B08
			and the second s		78B08
	Olycerol triacetate	LP	830		70.000
	(198 K)				
	Glycerol triacetate	LP	835		78B08
	MeOH	LP	600		78B0
	Toluene	LP	800	$ au_{\mathrm{T}} = 1.8 \ \mu s$	82F49
	tert-BuOH	LP	760		78B08
-					
2.	8-(Dimethylamino)-3,5,7-0	octatrien-2-one	•		
	Toluene	FP-ET	480	†Triplet ET from anthracene	83E7
3.	9-[4-(Dimethylamino)pher	vllanthracene			. É
	Acetonitrile	LP	442ª	‡Oxygen quenching	77646
	Acetone	LP	440°	Oxygen quenching	77646
	The state of the s				77646
	Et ₂ O	LP	444*	‡Oxygen quenching	//040
4.	4-[2-[4-(Dimethylamino)p	henvilethvilbenz	zonhenone		
*	Acetonitrile	LP	:	Possible triplet exciplex, structure unspecified; "benzophenone (CH ₂) ₂ (N,N dimethylaniline)"	78B1
5.	trans-1-(4-Dimethylamino	nhanvi)-2-nitro	othylene		
•	Benzene/Acetonitrile	LP	660ª	Solvent was 8:2 benzene to acetonitrile by volume	78E0
	Benzene Acctonitine	LP	650 ^a		78E0
				$\tau_{\rm T} = 0.56 \ \mu s$	
	Cyclohexane	LP	570°	$\tau_{\rm T}=0.379~\mu{\rm s}$	78E0
	EPA (77 K)	PS/SD	$600, 19100 \pm 3820$ $440, 35000 \pm 7000$	Phosphorescence decay; $τ_T = (7.9 \pm 1.5) \times 10^4 \mu s$	/8E0
			710, 55000 12 7000		
6.	2-(Dimethylamino)purine				
	Acetonitrile (300 K)	FP	485	Oxygen quenching and quenching by 2,4-hexadienol;	75627
				$\tau_{\rm T} = 59 \pm 4 \ \mu s$	
7.	2-(Dimethylamino)pyridin	ie			
	2-PrOH (179 K)	FP	~470	tPhosphorescence decay in EPA; $\tau_{\rm T} = (1.4 \pm 0.3) \times$	7675
•				10 ³ μs	
•	er .	FP	~465°		7678
••	3-MP (179 K)		~ 702	†Phosphorescence decay in EPA	7675
••	3-MP (179 K)		470		
•	3-MP (179 K) EPA (100 K)	FP	~470	†Phosphorescence decay in EPA; $\tau_T = (4.73 \pm 0.46)$	7675
	EPA (100 K)	FP		× 10 ³ μs	**
•	• •	FP	~470 470*		**
	EPA (100 K) EPA (103 K)	FP FP		× 10 ³ μs	**
	EPA (100 K) EPA (103 K)	FP FP		× 10 ³ μs	**
	EPA (100 K) EPA (103 K)	FP FP		$ imes 10^3 \ \mu s$ Lifetime measured at 93 K; $ au_T = 0.4 imes 10^6 \ \mu s$	80E3
	EPA (100 K) EPA (103 K) 4-(Dimethylamino)pyridir 2-PrOH (188 K)	FP FP	470 ^a	$ imes 10^3$ μs Lifetime measured at 93 K; $ au_T = 0.4 imes 10^6$ μs $ au_T = 200 \pm 12$ μs	80E3
	EPA (100 K) EPA (103 K) 4-(Dimethylamino)pyridir 2-PrOH (188 K) EPA (93 K)	FP FP FP	470° 500 500	\times 10 ³ μ s Lifetime measured at 93 K; $\tau_{\rm T}=0.4\times10^6~\mu$ s $\tau_{\rm T}=200\pm12~\mu$ s †Phosphorescence decay	80E3 7371: 72B0
	EPA (100 K) EPA (103 K) 4-(Dimethylamino)pyridin 2-PrOH (188 K) EPA (93 K) EPA (77 K)	FP FP te FP FP FP	470° 500 500 500	$ imes 10^3$ μs Lifetime measured at 93 K; $ au_T = 0.4 imes 10^6$ μs $ au_T = 200 \pm 12$ μs	73712 72B0 73712
	EPA (100 K) EPA (103 K) 4-(Dimethylamino)pyridir 2-PrOH (188 K) EPA (93 K)	FP FP FP	470° 500 500	\times 10 ³ μ s Lifetime measured at 93 K; $\tau_{\rm T}=0.4\times10^6~\mu$ s $\tau_{\rm T}=200\pm12~\mu$ s †Phosphorescence decay	7371: 72B0 7371:
8.	EPA (100 K) EPA (103 K) 4-(Dimethylamino)nyridin 2-PrOH (188 K) EPA (93 K) EPA (77 K) Et ₂ O (183 K)	FP FP FP FP FP	470* 500 500 500 500 500	\times 10 ³ μ s Lifetime measured at 93 K; $\tau_{\rm T}=0.4\times10^6~\mu$ s $\tau_{\rm T}=200\pm12~\mu$ s †Phosphorescence decay	7371: 72B0 7371:
8.	EPA (100 K) EPA (103 K) 4-(Dimethylamino)nyridin 2-PrOH (188 K) EPA (93 K) EPA (77 K) Et ₂ O (183 K) 2-(Dimethylamino)pyridin	FP FP FP FP FP FP FP FP	470° 500 500 500 500 500	\times 10 ³ μ s Lifetime measured at 93 K; $\tau_{\rm T}=0.4\times10^6~\mu$ s $\tau_{\rm T}=200\pm12~\mu{\rm s}$ †Phosphorescence decay †Phosphorescence decay	7371: 72B0 7371: 7371:
i8.	EPA (100 K) EPA (103 K) 4-(Dimethylamino)nyridin 2-PrOH (188 K) EPA (93 K) EPA (77 K) Et ₂ O (183 K)	FP FP FP FP FP	470° 500 500 500 500 500 500	\times 10 ³ μ s Lifetime measured at 93 K; $\tau_{\rm T}=0.4\times10^6~\mu$ s $\tau_{\rm T}=200\pm12~\mu{\rm s}$ †Phosphorescence decay †Phosphorescence decay At 93 K lifetimes are 4.5 ms (590 nm) and 0.4 s (460	7371: 72B0 7371: 7371:
8.	EPA (100 K) EPA (103 K) 4-(Dimethylamino)nyridin 2-PrOH (188 K) EPA (93 K) EPA (77 K) Et ₂ O (183 K) 2-(Dimethylamino)pyridin	FP FP FP FP FP FP FP FP	470° 500 500 500 500 500	\times 10 ³ μ s Lifetime measured at 93 K; $\tau_{\rm T}=0.4\times10^6~\mu$ s $\tau_{\rm T}=200\pm12~\mu{\rm s}$ †Phosphorescence decay †Phosphorescence decay	76752 80E3 73712 72B0 73712 73712 80E3
8.	EPA (100 K) EPA (103 K) 4-(Dimethylamino)nyridin 2-PrOH (188 K) EPA (93 K) EPA (77 K) Et ₂ O (183 K) 2-(Dimethylamino)pyridin EPA (100 K)	FP FP FP FP FP FP FP FP	470° 500 500 500 500 500 500	\times 10 ³ μ s Lifetime measured at 93 K; $\tau_{\rm T}=0.4\times10^6~\mu$ s $\tau_{\rm T}=200\pm12~\mu{\rm s}$ †Phosphorescence decay †Phosphorescence decay At 93 K lifetimes are 4.5 ms (590 nm) and 0.4 s (460	7371: 72B0 7371: 7371:
i8.	EPA (100 K) EPA (103 K) 4-(Dimethylamino)nyridin 2-PrOH (188 K) EPA (93 K) EPA (77 K) Et ₂ O (183 K) 2-(Dimethylamino)pyridin	FP FP FP FP FP FP FP FP	470° 500 500 500 500 500 500	\times 10 ³ μ s Lifetime measured at 93 K; $\tau_{\rm T}=0.4\times10^6~\mu$ s $\tau_{\rm T}=200\pm12~\mu{\rm s}$ †Phosphorescence decay †Phosphorescence decay At 93 K lifetimes are 4.5 ms (590 nm) and 0.4 s (460	7371: 72B0 7371: 7371:
58. 59.	EPA (100 K) EPA (103 K) 4-(Dimethylamino)nyridin 2-PrOH (188 K) EPA (93 K) EPA (77 K) Et ₂ O (183 K) 2-(Dimethylamino)pyridin EPA (100 K)	FP FP FP FP FP FP FP FP	470° 500 500 500 500 500 500	\times 10 ³ μ s Lifetime measured at 93 K; $\tau_{\rm T}=0.4\times10^6~\mu$ s $\tau_{\rm T}=200\pm12~\mu{\rm s}$ †Phosphorescence decay †Phosphorescence decay At 93 K lifetimes are 4.5 ms (590 nm) and 0.4 s (460	80E3 73712 72B0 73712 73712
58. 59.	EPA (100 K) EPA (103 K) 4-(Dimethylamino)pyridir 2-PrOH (188 K) EPA (93 K) EPA (77 K) Et ₂ O (183 K) 2-(Dimethylamino)pyridir EPA (100 K) N,N-Dimethylamiline	FP FP FP FP TP FP FP FP FP	470* 500 500 500 500 500 460	\times 10 ³ μ s Lifetime measured at 93 K; $\tau_T = 0.4 \times 10^6 \mu$ s $\tau_T = 200 \pm 12 \mu$ s †Phosphorescence decay †Phosphorescence decay At 93 K lifetimes are 4.5 ms (590 nm) and 0.4 s (460 nm); relative intensities (2:1)	80E3 73712 72B0 73712 73712
8.	EPA (100 K) EPA (103 K) 4-(Dimethylamino)pyridir 2-PrOH (188 K) EPA (93 K) EPA (77 K) Et ₂ O (183 K) 2-(Dimethylamino)pyridir EPA (100 K) N,N-Dimethylamiline	FP FP FP FP TP FP FP FP FP	470* 500 500 500 500 500 460	\times 10 ³ μ s Lifetime measured at 93 K; $\tau_{\rm T}=0.4\times10^6~\mu$ s $\tau_{\rm T}=200\pm12~\mu{\rm s}$ †Phosphorescence decay †Phosphorescence decay decay through K lifetimes are 4.5 ms (590 nm) and 0.4 s (460 nm); relative intensities (2:1)	80E3 7371: 72B0 7371: 7371: 80E3

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\begin{array}{ccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-1} \end{array}$	Comment	Ref.
	Cyclohexane	PR	460 ± 10	†Oxygen quenching (10^{10} L mol ⁻¹ s ⁻¹); further peak at 370 nm attributed to the cyclohexadienyl radical; half-life = 0.95 μ s	761069
	Liquid paraffin	FP	480	†Phosphorescence decay in low temperature glass; de-	68B002
	N,N-Dimethylaniline	LP/ET	340 465, 5000	lay 5 μ s; half-life = 100 μ s †Triplet ET to anthracene and to naphthalene; ϵ relative to naphthalene in dimethylaniline ($\epsilon_{427.5} = 14400 \text{ L}$ mol ⁻¹ cm ⁻¹); half-life = 0.25 μ s; $k_{et} = 4.8 \times 10^9 \text{ L}$ mol ⁻¹ s ⁻¹	720440
471.	N,N'-Dimethyl-3-anilinoc				
	MCH (278 K)	LP	610	‡Oxygen quenching and rise time same as fluorescence decay; delay 30 ns; rise time of 13 ns	83A225
472.	1,3-Dimethylanthracene				
	EtOH (93 K)	PS	442 417		66B001
473.	9,10-Dimethylanthracene				
	Benzene	PR/ET	435, 47000	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 10300$ L mol ⁻¹ cm ⁻¹)	690087
	Benzene	PR/ET	435, 42200	e relative to naphthalene in benzene ($\epsilon_{max} = 17500 \text{ L}$ mol ⁻¹ cm ⁻¹)	690087
	Cyclohexane	PR	427.5	,	690087
	Dioxane	PR	430		690087
474.	2,5-Dimethyl-1,4-benzoqui	inone			
	SDS	LP	470	Aqueous micelles; $\tau_T = 0.035 \ \mu s$	83N133
	Water	LP	480 440	$ au_{\mathrm{T}} = 0.83~\mu\mathrm{s}$	80B112
475	2,6-Dimethyl-1,4-benzoqui	inone			
1,5.	SDS	LP	455	Aqueous micelles; $\tau_T = 0.020 \mu s$	83N13
	Water	LP	445	$\tau_{\rm T}=0.060~\mu{\rm s}$	83N133
476.	3,3'-Dimethylbiphenyl				
	3-MH (77 K)	PR	390	1 μs delay; radical ions also contribute to observed peak at 390 nm; $ au_{\rm T}=3\times10^6~\mu s$	771059
477.	(all-E)-3,8-Dimethyl-1,10- Benzene (296 K)	bis(2,6,6-trimethy LP-ET	vl-1-cyclohexen-1-yl)-1,3,5,7 457	79-decapentaene Triplet ET from chlorophyll a ; oxygen quenching (2.8 $ imes 10^9$ L mol ⁻¹ s ⁻¹); $ au_{\rm T} = 20$ μ s; $k_{\rm et} = 0.9 \times 10^9$ L mol ⁻¹ s ⁻¹	73E347
478.	1-(3,3-Dimethyl-1-buten-2	-vl)naphthalene			
	Benzene	LP-ET	426ª	†Triplet ET from xanthone and oxygen quenching; τ_T = 0.44 μs	84B007
479.	N,N'-Dimethyl-5,11-dihy	droindolo[3,2- <i>b</i>]ca	arbazole	·	
	SDS	LP	658 ^a 395 ^a	Aqueous micelle	79N00:
480.	cis-2,3-Dimethyl-2,3-di-(2	-naphthyl)oxirane	:		
	Benzene	LP/ET	425, 10000 ± 2000	‡Oxygen and azulene quenching; ϵ relative to benzophenone in benzene ($\epsilon_{533.5}=7630\mathrm{L~mol^{-1}cm^{-1}}$); $\tau_\mathrm{T}=1.2\pm0.2~\mu\mathrm{s}$	84A34
481.	trans-2,3-Dimethyl-2,3-di- Benzene	-(2-naphthyl)oxira LP/ET	ane 425, 12000 ± 2400	‡Oxygen and azulene quenching; ϵ relative to benzophenone in benzene ($\epsilon_{533.5} = 7630 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 1.4 \pm 0.2 \mu \text{s}$	84A34

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
482.	2,4-Dimethyl-1,5-diphenyl	-1,5-pentanedion	9		
		LP	455*	Solvent benzene (?); conformation such that carbonyl groups are in the plane formed by the three central carbons of the pentane chain; more intense maximum below 350 nm; $\tau_{\rm T}=0.060~\mu{\rm s}$	81A404
483.	N,N'-Dimethyl-N,N'-dip MCH (278 K)	henyl-1,4-phenyl LP	enediamine 635	‡Oxygen quenching and risetime same as fluorescence decay; delay 50 ns; $\tau_T = 3 \mu s$; rise time of 5 ns	83A225
				decay, delay 30 hs, $v_T = 3 \mu s$, rise time of 3 hs	
184.	3,9-Dimethyl-trans-fluore 3-MP (77 K)	nacene MOD/ SD&KM	$481,93500 \pm 4300$ $457,55600 \pm 3500$		757141
185.	2,5-Dimethyl-2,4-hexadier	1e : '		and the second of the second o	
	Benzene	PR	310	$ au_{\mathrm{T}} = 0.08~\mu\mathrm{s}$	82B057
186	1,3-Dimethylindazole				
100.	EtOH (178 K)	MOD/SD	420°, 8100°	Shoulders at 439° and 286° nm; another maximum $<$ 250 nm; $\tau_{\rm T} = (1.5 \pm 0.2) \times 10^4 \mu s$	716244
	EtOH (103 K)	MOD/SD	420 ^a , 8600 ^a 287 ^a , 4700 ^a	Shoulder at 448° nm; another maximum $<$ 250 nm; $\tau_{\rm T}$ = (3.6 \pm 0.4) \times 10° μ s	716244
187.	N,N'-Dimethylindigo				
	EPA (98 K)	LP	740 470	No triplet spectrum observed at RT, data corrected from paper (H. Goerner, private communication,	79E54
				1985)	
188.	1,4-Dimethyl-7-isopropyls Benzene	zulene LP-ET	380-420	†Triplet ET from benzophenone, oxygen quenching; $\tau_{\rm T}=3~\mu{\rm s};~k_{\rm et}=7\times10^9~{\rm L~mol^{-1}~s^{-1}}$	81F27
400	120-0-10-1				
1 07.	1,2-Dimethylnaphthalene Cyclohexane (77 K)	PS	420 400		67 B 00
	a salah s	•			
490.	2,3-Dimethylnaphthalene Cyclohexane (77 K)	PS	426.5		67D00
	Cyclonexane (77 K)	13	420.5		67B00
			404		
			398 392.5		
	EtOH (77 K)	MOD	422	Halfwidth 540 cm ⁻¹	777538
	Toluene (77 K)	MOI	433	Halfwidth 920 cm ⁻¹	777538
491	2,7-Dimethylnaphthalene				
.,	EtOH (77 K)	MOD	419	Halfwidth 460 cm ⁻¹	777538
	Toluene (77 K)	MOD	431	Halfwidth 880 cm ⁻¹	777538
192	N,N-Dimethyl-2-naphthyl	lamina			
	Cyclohexane	FP	476ª	Delay 30 μs	68604
193.	N.N-Dimethyl-2-naphthyl	lamine, conjugate	e acid		
		FP	409 388	$pK_a = 2.7$; pH Acidic	61E00
404	cis-3,3-Dimethyl-1-(2-nap	hthyl)_1_hutana			
T.7.		ntnyi)-1-dutene LP-ET	430	tOxygen and azulene quenching and triplet ET from	83Ez/
		177°	400	benzophenone and xanthone; $\tau_T = 0.14 \mu s$	
195.	trans -3,3-Dimethyl-1-(2-n	aphthyl)-1-buten	e ·		
		LP-ET	430	tOxygen and azulene quenching and triplet ET from	83E27
	port of the second second	* * * * * *	400	benzophenone and xanthone; $\tau_T = 0.13 \mu s$	

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent		λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
496.	2,2-Dimethyl-1-(1-naphthy	l)-1-phenylethylene			
	Benzene	LP-ET	410 ^a	†Triplet ET from xanthone and oxygen quenching; τ_T = 0.10 μs	84B007
497.	N,N-Dimethyl-4-nitroanili			· · · · · · · · · · · · · · · · · · ·	
	EPA (77 K)	PS/KM	900, 3370 ± 170 760, 2780 ± 140 550, 2700 ± 135	†Phosphorescence decay; $\tau_{\rm T} = (4.37 \pm 0.10) \times 10^5 \mu{\rm s}$	78E057
	EPA (77 K)	PS	390, 20600 ± 1030 · 550 450	†Phosphorescence decay; $\tau_{\rm T} = 8.3 \times 10^5 \mu \rm s$	83E427
498.	N,N-Dimethyl-4-[(4-nitrop 2-MTHF (103 K)	ohenyl)azo]benzena LP	700	Triplet not observable above 125 K; below 103 K life-	80 B 101
	Glycerol triacetate (203 K)	LP	390 690	time constant; $\tau_T = 500 \ \mu s$ Lifetime measured at 233 K; triplet not observable above 233 K; $\tau_T = 0.050 \ \mu s$	80B101
499.	3,8-Dimethyl-4,7-phenanth	ıroline			
	EtOH/Et ₂ O (77 K)	PS	495 465 435	Solvent was 3:2 EtOH to Et ₂ O; relative intensities (100:60:25); $E_T = 264 \text{ kJ mol}^{-1}$	80B130
500.	N,N-Dimethyl-p-phenylen EtOH (77 K)	ediamine MOD/KM	530, 23000 ± 5700		737055
501.	(E,E,E,E,E,E)-7,11-Dime	ethyl-7-(2,6,6-trimet	thyl-1-cyclohexen-1-yl)-2,	4,6,8,10,12-tridecahexaenal	
	Cyclohexane	COM	500, 201000	"all-trans- C_{24} aldehyde"; ϵ average of that obtained by PR/ET, LP/ET and LP/SD; ϵ relative to C_{17} aldehyde in cyclohexane ($\epsilon_{410} = 63000 \text{ L mol}^{-1} \text{ cm}^{-1}$) in LP/ET; ϵ relative to biphenyl in cyclohexane ($\epsilon_{361.3} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$) in PR/ET; $\tau_T = 7.1 \mu \text{s}$	79E546
	MeOH	LP/SD	510, 136000	ϵ is upper limit; $\tau_T = 8.3 \ \mu s$	79E546
502.	1,3-Dimethyluracil Acetonitrile	LP/?	380 ^a , 8000 ^a	ϵ method unspecified	81E042
503.	(S)-Dinaphtho[2,1-d:1',2'	-f][1,3]dioxepin			
	2-MTHF (96 K)	PS	420ª 400ª	Compound "V" in paper	83E383
504.	Di-2-naphthylamine				
	Toluene/EtOH (77 K)	MOD	508 ^a 439 ^a	Glass was 19:1 toluene to EtOH; 508 nm peak was the more intense	719059
505.					
	Isooctane	FP	430° 400° 380°	Isomer assumed; additional absorption in the red assigned to intramolecular triplet eximer	78B089
	Isooctane	LP	362° 405° 390°	Shoulder at 370 nm; rise time of ~ 100 ns	81E015
506.	t-3,t-4-Di-(1-naphthyl)-r-	1 c-2-dimethovyoor	honvlevelohutana		
500.	Acetonitrile	LP-ET	430	‡Triplet ET from benzophenone, oxygen quenching $(1.5 \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1})$; 100 ns delay; $\tau_T = 0.13 \mu\text{s}$; $k_{\text{et}} = (7 \pm 1) \times 10^9 \text{L mol}^{-1} \text{s}^{-1}$	80B010
	Acetonitrile	LP-ET	470	†Triplet ET from benzophenone; 400 ns delay; intra- molecular triplet exciplex; $\tau_{\rm T}=4.0~\mu{\rm s};~k_{\rm et}=(7~\pm~1)$ $\times~10^9~{\rm L~mol^{-1}~s^{-1}}$	80B010
507.	1,2-Di-1-naphthylethane				
	Isooctane	FP	430 ^a 396 ^a	Isomer assumed; shoulder ~380 nm; additional absorption in the red assigned to intramolecular triplet	78B089

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , /nm	ϵ_{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Isooctane	LP	410° 390°		Shoulder at 370 nm; additional absorption around 470 nm (rise time < 17 ns) ascribed to triplet excimer; rise time of ~ 100 ns	81E015
508.	Di-1-naphthylmethane					
	Isooctane	FP	430°		Shoulder ~370 nm; additional absorption in the red	78B089
			396ª		assigned to intramolecular triplet eximer; $\tau_T = -50 \ \mu s$	
	Isooctane	LP	350 ^a 410 ^a		Shoulder at 370 nm; rise time of ~100 ns	81E015
	isoociane	L1	390a		Shoulder at 370 mil, fise time of ~100 ms	0112013
	and the second		e e e			
509.	2,5-Di(1-naphthyl)-1,3,4-02					
	Cyclohexane	FP/TD	602, 7		Only peaks reported by authors given - extensive vi-	78B081
	. • •		569, 5 454, 5		bronic structure observed; oscillator strength = 0.04, 0.04, 0.06	
	Cyclohexane	FP/TD	600ª,		0.04, 0.00 0-0 bands only reported here though vibrational struc-	79F297
	Сустопелине	11/11	4.1	5200ª	ture seen; oscillator strength = 0.04, 0.04, 0.06	171271
			460a,			
.10	cis-2,3-Di-(2-naphthyl)oxis		420 1		tOwnson and agulana group thing a maleting to be-	94 A 244
	Benzene	LP/ET	430, 1	10000 ± 2000	†Oxygen and azulene quenching; ϵ relative to benzophenone in benzene ($\epsilon_{533.5} = 7630 \mathrm{L mol^{-1} cm^{-1}}$); $\tau_{\mathrm{T}} =$	04/344
				4 a 1	0.36 \pm 0.05 μ s	
	eri verskumen i B	18.11				
511.	trans-2,3-Di-(2-naphthyl)o					
78 T (Benzene	LP/ET	430,	> 8000	tOxygen and azulene quenching; ϵ relative to benzophenone in benzene ($\epsilon_{533.5} = 7630 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{T} = 0.16 \pm 0.02 \mu\text{s}$	84A344
11.		;				
512.	1,3-Di-1-naphthylpropane					
	Isooctane	FP	430		Isomer assumed; additional absorption in the red as-	78B089
			400ª		signed to intramolecular triplet eximer	
	T	* D	375*			047704#
	Isooctane	LP	415ª 390ª	. "	Shoulder at 370 nm; rise time of ~100 ns	81E015
	A. A.		370			
513.	1,3-Di-2-naphthylpropane					
	Methylene chloride	LP	430ª		Shoulder at 405°	84P257
614	E E / TM					i de
514.	5,5'-Dineopentylthioindig EPA (77 K)		502	. 1	- 120 ···	767500
	EPA (77 K) EPA (93 K)	FP LP	592 580		$\tau_{\mathrm{T}} = 130 \ \mu \mathrm{s}$ $\tau_{\mathrm{T}} = 53 \ \mu \mathrm{s}$	767582 79E543
	DIA (55 K)	1.1	375		$\tau_{\rm T} = 33~\mu{\rm s}$	19E343
	EPA (283 K)	LP	590		$\Phi_{\rm T}$ strongly temperature dependent in this solvent; $\tau_{\rm T}$	79E543
		** ** * * * * * *	370		$= 0.46 \ \mu s$	
	Glycerol triacetate	LP	600		$\tau_{\rm T} = 50 \ \mu \rm s$	79E543
	(203 K)	T.D.	390		0.40	
	Glycerol triacetate	LP 31 31 3	595 385	6 3 1 8 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\tau_{\rm T}=0.40~\mu{\rm s}$	79E543
			363			
515.	3,5-Dinitroanisole					
	Acetonitrile/Water	LP	475		Solvent 1:1 acetonitrile to water; $\tau_T = 0.055 \mu s$	737466
	Water	LP	~435	5		82F150
£16	2 5 Distance to 1 077.4	31	4.4	e y		
310.	3,5-Dinitroanisole/Water Water	LP	435		tQxygen quenching and triplet ET to	777345
	Water	LF	433	•	3,3',4,4'-tetramethyldiazetine dioxide; transient was assigned to an H-bonding exciplex with water; $\tau_T = 1.4$	111343
					μs	
517	1,2-Dinitronaphthalene	. 42				
	EtOH	LP	550	e e	tPhosphorescence decay in EPA glass at 77 K, triplet	776194
2 1					ET to tetracene, oxygen quenching $(3.3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; $\tau_T = 4.3 \text{ µs}$	

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , /nm	ϵ_{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Hexane	LP	490		†Phosphorescence decay in EPA glass at 77 K, triplet ET to tetracene, oxygen quenching $(1.9 \times 10^9 \text{L mol}^{-1} \text{s}^{-1})$; $\tau_{\rm T} = 1.0 \mu \text{s}$	776194
518.	1,4-Dinitronaphthalene EtOH	LP .	550		Lifetime measured in neutral EtOH; spectrum shifts to the red (30 nm) with increasing sulfuric acid concen-	767270
					tration ({10 mol L ⁻¹ }); $\tau_T = 4.76 \ \mu s$	
	Formamide	LP	570			767270
	Hexane	LP	545		†Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\rm T} = 4.55 \ \mu {\rm s}$; $k_{\rm et} = 1.0 \times 10^{10} \ {\rm L \ mol^{-1} \ s^{-1}}$	767270
510	1 0 Dinisananhahalaa					
319.	1,8-Dinitronaphthalene EtOH	T D	500		+Dbb	776104
	LION	LP	590		†Phosphorescence decay in EPA glass at 77 K, triplet ET to tetracene, oxygen quenching $(2.1 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; $\tau_T = 5.3 \mu \text{s}$	776194
	Hexane	LP	550		†Phosphorescence decay in EPA glass at 77 K, triplet ET to tetracene, oxygen quenching $(8.1 \times 10^8 L mol^{-1}$	776194
			*		s^{-1}); $\tau_T = 2.5 \ \mu s$	
520	A Fra A Dividence I Dec	. 7 . 2 . 2				
520.	4-[(2,4-Dinitrophenyl)aze 2-MTHF (103 K)				Triplet not observable above 126 V. helow 102 V life	80B101
	2-MINF (103 K)	LP	700 420		Triplet not observable above 126 K; below 103 K life- time constant; $\tau_T = 1300 \mu s$	101000
	Glycerol triacetate (198 K)	LP	690		Lifetime measured at 233 K; triplet not observable above 233 K; $\tau_{\rm T} = 0.033 \ \mu s$	80B101
521.	3-[[4-[(2,4-Dinitrophenyl			amino]-4-propanen		222121
	2-MTHF (103 K)	LP	700		Triplet not observable above 123 K; below 103 K life-	80B101
	Glycerol triacetate (203 K)	LP	400 680		time constant; $\tau_T = 670 \ \mu s$ Lifetime measured at 248 K; triplet not observable above 248 K; $\tau_1 = 0.025 \ \mu s$	80B101
	(200 R)				2007C 240 12, 71 = 0.025 ps	
522.	trans-2,4-Dinitrostilbene	e				
	Glycerol triacetate	LP	542 428		542 nm peak was the more intense	78B088
	Glycerol triacetate	LP	560		560 nm peak was the more intense	78B088
	(198 K)	-	434		500 mil peak was the more mense	702000
523.	cis-4,4'-Dinitrostilbene					
	Cyclohexane	LP	500		$\tau_{\rm T}=0.083~\mu{\rm s}$	747022
	MeOH	LP	500	**		747022
524	trans-4,4'-Dinitrostilber	no				
	Cyclohexane	LP	500		tOxygen quenching in benzene; $\tau_{\rm T}=0.080~\mu{\rm s}$	747022
	EPA (77 K)	FP	550ª		, , , , , , , , , , , , , , , , , , , ,	747022
	EPA	LP	472			78B088
	EPA (88 K)	LP	486			78B088
	Glycerol triacetate	LP	~735		496 nm peak was the more intense	78B088
	(198 K)		496			
	Glycerol triacetate	LP	500			78B088
	MeOH	LP	500		Oxygen quenching in benzene	747022
525.	N,N'-Dipentylpyromell	itic diimide				
	Acetonitrile	LP	555		Triplet detected in the presence of N-benzyl-1,4-	83B041
			510 420		dihydronicotinamide	
	1,3-Di(9-phenanthryl)pr	anana				
526	Decane (293 K)	opane LP	481ª		Shoulder at 402a nm; The shortest wavelength band	82E28
526.						
526.	Decane (293 K)				and shoulder are mainly due to intramolecular triplet	
526.	Decane (293 K)		447ª		and shoulder are mainly due to intramolecular triplet	
526.	THF	LP			and shoulder are mainly due to intramolecular triplet excimers Delay 1 µs; shoulder at 423 ^a nm	83E554

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
527.	Diphenylacetylene				
	Glycerol	FP	418 380	418 nm was the stronger band; $\tau_T = 267 \mu s$	747417
528.	Diphenylamine	ne.	646	(0.0 × 0.1) × 106	(7E10)
	3-MP (77 K)	PS	545	$\tau_{\rm T} = (2.0 \times 0.1) \times 10^6 \mu \rm s$	67E106
	Cyclohexane	PR/ET	530, 10400	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); reference ϵ obtained by starting from $\epsilon_{max} = 3220 \text{ L mol}^{-1} \text{ cm}^{-1}$ for this ketyl radical in water and assuming the f of the ketyl radical is independent of solvent; final ϵ obtained from a simultaneous least squares fit to data from several compounds	71E360
	EPA (~90 K)	PS	558ª		42B002
	EPA (77 K)	PS	549	†Phosphorescence decay; $\tau_{\rm T} = (1.9 \pm 0.2) \times 10^6 \mu{\rm s}$	67E106
	EtOH (77 K)	MOD/KM	$550, 31000 \pm 7700$		737055
	EtOH/Et ₂ O (77 K)	MOD/KM	$550, 28600 \pm 11000$	Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the con-	719059
	Hexane	. LP	520	text	84E043
529.	Toluene/EtOH (77 K) 9,10-Diphenylanthracene	MOD	555°	Glass was 19:1 toluene to EtOH	719059
	Benzene	PR/ET	445, 17700	ϵ relative to naphthalene in benzene ($\epsilon_{max} = 17500 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$)	690087
	Benzene (200 K)	PR/ET	445, 13800	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 10300$ L mol ⁻¹ cm ⁻¹)	690087
	Benzene (298 K) Benzene	FP PR/ET	\sim 450 450, 20000 \pm 1000	$\tau_{\rm T} = 5000 \pm 2500 \mu {\rm s}$ ϵ relative to biphenyl in benzene ($\epsilon_{359} = 27100 {\rm L mol^{-1}}$ cm ⁻¹)	746270 83E28
	Bromobenzene	LP	452		83E28
	Cyclohexane	PR	445		690087
	Cyclohexane	PR/ET	440, 16000 ± 1000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361}=42800\ L\ mol^{-1}\ cm^{-1}$)	83E28
	Dioxane	PR	425		690087
	EtOH (298 K)	FP _	~440	$\tau_{\rm T}=3000\pm1500~\mu{\rm s}$	746270
	EtOH	FP/ET	421, 26000°	Triplet ET from eosin; ϵ relative to eosin in EtOH (ϵ_{580} = 9400 L mol ⁻¹ cm ⁻¹)	78E01
	Heptane (298 K)	FP	~450	$\tau_{\rm T}=2500\pm1300~\mu{\rm s}$	746270
	Liquid paraffin MeOH	FP LP	440 440		65F03
	Toluene	LP/ET	452, 15500 ^a	Triplet ET from anthracene; ϵ relative to anthracene in benzene ($\Phi_T = 0.72$, $\epsilon_{428.5} = 42000 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming $\Phi_T = 0.72$ for anthracene in toluene; oxygen quenching (3.4 \times 10 ⁹ L mol $^{-1}$ s $^{-1}$); paper shows a spectrum with a peak at 428 nm with an ϵ of 18500 L mol $^{-1}$ cm $^{-1}$ which we take to be the spectrum of the	83E28 82E45
	Toluene	PR/ET	448, 16000 ± 1000	sensitizer anthracene; $\tau_{\rm T}=10^3~\mu{\rm s}$ ϵ relative to biphenyl in benzene ($\epsilon_{359}=27100~{\rm L~mol^{-1}}$ cm ⁻¹), assuming no solvent effect	83E28
530.	4,4'-Diphenylbenzopheno Alcohol/Ether (77 K)	ne MOD	415	Glass was 2:1 alcohol to ether	76E68
531.	2,6-Diphenyl-1,4-benzoqui Dibutyl phthalate	inone LP	600ª	$ au_{\rm T} = 0.56 \ \mu {\rm s}; E_{\rm T} = 218 - 238 \ {\rm kJ \ mol^{-1}}$	79 B 04
532.	2,6-Diphenyl-1,4-benzoqui				
	Toluene (261 K)	LP	700ª	Claimed triplet exciplex; $\tau_{\rm T} = 0.083 \pm 0.012 \ \mu {\rm s}$	79B04
533.	2,6-Diphenyl-1,4-benzoqui	inone/TMPD			
	Dibutyl phthalate	LP	610 ^a	Claimed triplet exciplex; $\tau_T = 0.039 \pm 0.003 \mu s$; $E_T =$	79B04

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
534.	2,6-Diphenyl-1,4-benzoquin	one/Triphenyl	amine		
	Benzene (293 K)	LP	650 550	550 nm band was the more intense; $\tau_{\rm T}=0.2~\mu{\rm s}$	81E715
	Benzene/MeOH (293 K)	LP	650 550	650 nm band was the more intense; solvent was 19:1 benzene to MeOH; $\tau_T = 0.083 \ \mu s$	81E715
	Dibutyl phthalate	LP	670° 550°	Claimed triplet exciplex; $\tau_{\rm T}=0.14\pm0.01~\mu s; E_{\rm T}=<175~{\rm kJ~moi}^{-1}$	79B044
535.	1,4-Diphenyl-1,3-butadiene				
	2-MTHF (123 K)	LP	~395		82E429
	Acetonitrile (298 K)	LP-ET	384	Triplet ET from benzophenone	82E429
	Benzene (295 K)	LP/SD	$395 \pm 2,45000 \pm 6800$	Triplet yields enhanced by presence of O_2 ; $\tau_T = 2.6 \pm 0.3 \mu s$	82E365
	Benzene (298 K)	LP-ET	394 372	‡Triplet ET from biacetyl	82E429
	Benzene	LP	405	Oxygen and azulene quenching; $\tau_T = 2.6 \pm 0.2 \mu s$	84E319
	Bromobenzene (295 K)	LP/SD	$416 \pm 2,45000 \pm 6800$	$\tau_{\rm T}=1.5\pm0.2~\mu{\rm s}$	82E36
	Cyclohexane (295 K)	LP/SD	$390 \pm 2,60000 \pm 9000$	Triplet yields enhanced by presence of O_2 ; shoulder at 372 nm; $\tau_T = 1.6 \pm 0.2 \mu s$	82E36
	EPA (77 K)	FP	435	Main peak at 398 nm; $\tau_T = 2450 \ \mu s$	707199
		••	413 398	Main peak at 570 min, 71 — 2450 ps	701177
			357		
	Ethyl bromide (205 K)	I D/SD		$\sigma_{\rm c} = 2.5 \pm 0.3 \mu s$	82E36
	Ethyl bromide (295 K) Ethylene glycol	LP/SD LP	$392 \pm 2,55000 \pm 8300$ 393	$\tau_{\rm T} = 2.5 \pm 0.3 \ \mu s$ tOxygen and azulene quenching; shoulders at 375 and	
	Glycerol triacetate (298 K)	LP	~390	365 nm; $\tau_T = 5.0 \ \mu s$ $\tau_T = 4 \ \mu s$	82E42
	Glycerol triacetate (198 K)	LP	396	$\tau_{\rm T} = 1500 \ \mu s$	82E42
	MeOH (295 K)	LP/SD	$385 \pm 2,58000 \pm 8700$	Triplet yields enhanced by presence of O2	82E36
536.	1,4-Diphenylbutadiyne				
	PMMA	PS	450	Polarization also measured; phase sensitive detection;	78E15
				$\tau_{\rm T}=8.0\times10^3~\mu{\rm s}$	
537.	1,2-Diphenylcyclobutene				
	Benzene (298 K)	FP	~390	$\tau_{\rm T} = \geqslant 200 \; \mu \rm s$	81E21
	Benzene (298 K)	LP-ET	~385	tTriplet ET from benzophenone, oxygen quenching (4 \times 10° L mol ⁻¹ s ⁻¹); bandwidth ~3000 cm ⁻¹ ; $\tau_T = >$ 3 μ s; $k_{et} = 6.5 \times 10^9$ L mol ⁻¹ s ⁻¹	81E21
	Benzene (298 K)	LP-ET	~385	3 $\mu_{\rm S}$, $k_{\rm et} = 0.5 \times 10^5$ Linor STriplet ET from xanthone, oxygen quenching (3.4 × 10° L mol ⁻¹ s ⁻¹); bandwidth ~3000 cm ⁻¹ ; $\tau_{\rm T} = > 3$ $\mu_{\rm S}$; $k_{\rm et} = 6 \times 10^9$ L mol ⁻¹ s ⁻¹	81E21
	EPA (77 K)	LP	392 373	p,u	81E21
	EPA (298 K)	LP	~370		81E21
538	1,4-Diphenyl-2,3-dibenzoyl	-1 4-enovy-1	l-dihydronanhthalene		
	Benzene	LP/RA	$490 \pm 5,5270 \pm 1300$	‡Oxygen and azulene quenching; ϵ relative to benzophenone in benzene ($\epsilon_{532}=7600 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming $\Phi_T=1$ for benzophenone and taking $\Phi_T=0.66$ for the compound in benzene; $\tau_T=1.7\pm0.3~\mu \text{s}$	84A3
	MeOH	LP	480 ± 5	†Oxygen quenching; $\tau_{\rm T}=1.6\pm0.2~\mu{\rm s}$	84A3
539.	1,1-Diphenylethylene				02524
	tert-BuOH	LP-ET	~330	‡Triplet ET from acetone	82E20
540.	9,9-Diphenyl-9H-9-germaf	luorene			
	MCH/Isopentane (77 K)		380ª	tPhosphorescene lifetime; glass was 3:1 MCH to iso-	81 E 6

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
541.	1,6-Diphenyl-1,3,5-hexatric	ene		and the second of the second of the second	
	1,2-Dichloroethane	LP	425 3400	Radical cation ($\lambda_{max} \sim 615$ nm) also formed by a biphotonic process	80N033
	1,2-Dichloroethane	PR	425 400	Radical cation ($\lambda_{max} \sim 615$ nm) also formed	80N033
	2-MTHF (123 K)	LP	428	$\tau_{\rm T} = 400 \ \mu \rm s$	82E429
	2-MTHF (298 K)	LP	420 396		82E429
	Acetonitrile (298 K)	FP	413 390	$ au_{\mathrm{T}} = 70 \ \mu \mathrm{s}$	82E429
	Benzene	PR/ET	422.5, 113000 397°, 70500°	ϵ relative to biphenyl in benzene ($\epsilon_{359}=27100 \text{ L mol}^{-1}$ cm ⁻¹); ϵ_{ref} unstated, but assumed from authors' earlier work	761088
	Benzene (298 K)	LP-ET	425 400	†Triplet ET from benzophenone and biacetyl	82E429
	Benzene (295 K)	LP/SD	426 ± 2, 104000 ± 16000	Triplet yields enhanced by presence of O_2 ; $\tau_T = 10 \pm 1 \mu s$	82E365
	Bromobenzene (295 K)	LP/SD	430 ± 2, 105000 ± 16000	$ au_{\mathrm{T}} = 13 \pm 1 \; \mu \mathrm{s}$	82E365
	CTAB/Triton X-100	LP	415	Surfactant ratio 1:2 CTAB to Triton X-100; mixed aqueous micelle; $\tau_{\rm T} = \sim 30~\mu {\rm s}$	80N033
	Cyclohexane	PR	425 400	Radical anion ($\lambda_{max} \sim 660$ nm) and cation ($\lambda_{max} \sim 630$ nm) also formed; half-life = 20 μ s	80N033
**	Cyclohexane (295 K)	LP/SD	416 ± 2, 114000 ±	Triplet yields enhanced by presence of O_2 ; $\tau_T = 20 \pm$	82E365
	EPA (77 K)	FP	429	2 μs Main peak at 429 nm; $\tau_T = 400 \mu s$	707199
	EtOH	PR/RF	405 415, 113000 388 ^a , 70300 ^a	ϵ relative to 1,6-diphenyl-1,3,5-hexatriene in benzene ($\epsilon_{422.5}=113000~{\rm L~mol^{-1}~cm^{-1}}$) assuming oscillator strength independent of solvent; $E_{\rm T}=\sim150~{\rm kJ~mol^{-1}}$	761088
	EtOH	LP	420 390	Radical cation ($\lambda_{\text{max}} \sim 600 \text{ nm}$) also formed by a biphotonic process	80N033
	Ethyl bromide (295 K)	LP/SD	420 ± 2, 114000 ± 17000	$ au_{\mathrm{T}} = 12 \pm 1 \mu \mathrm{s}$	82E365
	Glycerol triacetate (198 K)	LP	422	$\tau_{\rm T} = 300~\mu{\rm s}$	82E429
	Glycerol triacetate (298 K)	LP	418	$ au_{\mathrm{T}} = 40~\mu\mathrm{s}$	82E429
	MeOH (295 K)	LP/SD	410 ± 2, 121000 ± 18000	Triplet yields enhanced by presence of O_2 ; $\tau_T = 30 \pm 3 \mu s$	82E365
	SDS/Triton X-100	LP	425	Surfactant ratio 2:3 SDS to Triton X-100; mixed aqueous micelle; $\tau_{\rm T} = \sim 30~\mu {\rm s}$	80N033
542.	1,4-Diphenylnaphthalene				
,- ,-	3-MP (77 K)	PS/ESR	505, ~10000 444, 32500	tESR; oscillator strength = \sim 0.02, 0.52	69B002
543.	1,5-Diphenylnaphthalene 3-MP (77 K)	PS/ESR	538, 22800	tESR; oscillator strength = 0.25	69B002
544.	1,8-Dipnenyl-1,3,5,7-octat 2-MTHF (298 K)	etraene LP	435		82E429
	2-MTHF (123 K)	LP	440		82E429
	Acetonitrile (298 K)	FP	432 408	$ au_{\mathrm{T}} = 70~\mu\mathrm{s}$	82E429
	Benzene	PR/ET	440, 162000	ϵ relative to biphenyl in benzene ($\epsilon_{359} = 27100 \text{ L mol}^{-1}$); ϵ_{ref} unstated, but assumed from authors' earlier	761088
	Benzene (298 K)	FP	444	work †Triplet ET from benzophenone and biphenyl; $\tau_{\rm T} =$	82E429
	Benzene (295 K)	LP/SD	419 445 ± 2, 188000 ±	100 μs Triplet yields enhanced by presence of O_2 ; $\tau_T = 21 \pm$	82E365
	Bromobenzene (295 K)	LP/SD	28000 450 ± 2, 179000 ±	$2 \mu s \tau_T = 14 \pm 1 \mu s$	82E365

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol^{-1} c	m ⁻¹	Comment	Ref.
	Cyclohexane (295 K)	LP/SD	437 ± 2, 21000 32000	υ±	Triplet yields enhanced by presence of O_2 ; $ au_T = 40 \pm 4 \mu s$	82E365
	EtOH	PR/RF	427, 162000		ϵ relative to 1,8-diphenyl-1,3,5,7-octatetraene in benzene ($\epsilon_{440} = 162000 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming oscillator strength independent of solvent; $E_{\rm T} = \sim 120 \text{ kJ mol}^{-1}$	761088
	Ethyl bromide (295 K)	LP/SD	440 ± 2, 23000 35000	00 ±	$\tau_{\rm T} = 11 \pm 1 \mu{\rm s}$	82E365
	Glycerol triacetate (298 K)	LP	440		$\tau_{\rm T}=60~\mu{\rm s}$	82E429
	Glycerol triacetate (198 K)	LP	444		$ au_{\mathrm{T}} = 100 \; \mu \mathrm{s}$	82E429
	MeOH (295 K)	LP/SD	430 ± 2, 19100 29000	00 ±	Triplet yields enhanced by presence of $O_2; \tau_T=34\pm 3~\mu s$	82E365
545.	2,5-Diphenyl-1,3,4-oxadiaz	zole				
	Benzene	LP	550		‡Oxygen quenching $(1.6 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; 100 ns delay; "PPD"; $\tau_T = 0.300 \ \mu\text{s}$	777265
	Cyclohexane	FP/TD	449, 670° 440, 880°		Authors claim that the spectrum reported in [777265] is erroneous; oscillator strength = 0.01	83E216
			432, 900° 425, 980°			
546.	2,5-Diphenyloxazole					
540.	Benzene	PR	500		†Triplet ET from naphthalene and triplet ET to anthracene; "PPO"	720206
	Benzene	LP	570		‡Oxygen quenching (2.5 \times 10 ⁹ L mol ⁻¹ s ⁻¹); 100 ns delay; $\tau_{\rm T} = 0.200~\mu{\rm s}$	777265
	Cyclohexane	PR	500			720206
	Cyclohexane	FP/ET	500, 13000		†Triplet ET to anthracene; ϵ relative to anthracene in cyclohexane ($\epsilon_{425} = 64700 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 1.7 \times 10^3 \mu\text{s}$	80E439
	EPA (77 K)	CWL	515			74B003
	EtOH	FP/ET	$500,28400 \pm 1500$)	ϵ relative to naphthalene in EtOH ($\epsilon_{415} = 40000 \text{ L}$ mol ⁻¹ cm ⁻¹); $\tau_T = 2500 \pm 1300 \mu\text{s}$; $k_{\text{et}} = (9.2 \pm 1.0) \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	747049
					X 10 L mor s	
547.	N,N'-Diphenyl-p-phenyle	nediamine				
	Benzene	PR/ET	615, 26800		ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained	71E360
					from a simultaneous least squares fit of data from several compounds making use of cyclohexane to benzene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for	
					anthracene	
548.	N,N'-Diphenyl-p-phenyle	nediamine, conji	igate acid			
	EPA/Acetic acid (137.4 K)	FP/ELT	610 600 ^b , 67000 ± 150	000	†Phosphorescence decay; ϵ relative to the radical cation of compound ($\epsilon_{990} = 22000 \text{ L mol}^{-1} \text{ cm}^{-1}$); solvent was 97:3 EPA to acetic acid; EPA was 8:3:5 Et ₂ O to isopentane to EtOH in this work	67A001
349.	9,9-Diphenyl-9 <i>H</i> -9-silaflu MCH/Isopentane (77 K)		373ª		†Phosphorescene lifetime; glass was 3:1 MCH to isopentane; $\tau_{\rm T}=3.0\times10^6~\mu{\rm s}$	81E648
550.	N-[(Dipropylamino)methy	l]phthalimide				
	EtOH	FP	590 350		tOxygen quenching, diene quenching; maxima assumed from text; $\tau_{\rm T}=10~\mu{\rm s}$	79A147
551	Durene/Tetracyanobenze	no				
.1 د د	Et ₂ O/Isopentane (77 K)	MOD	541		Glass was 1:1 Et ₂ O to isopentane; another maximum > 1430 nm	72E276

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

•	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol $^{-1}$ cm $^{-1}$	Comment	Ref.
			7 mm 7 L mor cm		
2.	Duroquinone	$(\mathbf{x}_{i}-\mathbf{x}_{i})\mathbf{x}_{i}=(\mathbf{x}_{i}-\mathbf{x}_{i})\mathbf{x}_{i}=0$			111.
÷	2-PrOH	LP	457ª	†Triplet ET to anthracene; shoulder at 484a	71752
	Acetonitrile	LP	485°	50 ns delay; quenched by amines	77760
	Acetonitrile (293 K)	FP	480		82E61
	Benzene	PR/El	490, 9450	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361.3} = 35400 \text{ L}$	
				mol ⁻¹ cm ⁻¹); author reports a mean of 9800 L mol ⁻¹ cm ⁻¹ from 3 separate standards	
	Benzene	PR/ET	490, 8600	ϵ relative to anthracene in cyclohexane ($\epsilon_{420} = 57200 \mathrm{L}$	69052
		110,21	170, 0000	mol ⁻¹ cm ⁻¹); author reports a mean of 9800 L mol ⁻¹ cm ⁻¹ from 3 separate standards	,
	Benzene	PR/ET	490, 11400°		69052
	Denzene	FK/E1	450, 11400	ϵ relative to naphthalene in cyclohexane ($\epsilon_{412.5} = 22600$ L mol ⁻¹ cm ⁻¹); author reports a mean of 9800 L mol ⁻¹	
	Dannana	* 7	400	cm ⁻¹ from 3 separate standards	7052
	Benzene	LP	490	$ au_{\rm T} = 3.1 \mu{\rm s}$	70E2
	Benzene	LP	477ª	†Triplet ET to anthracene and dibenz[a,h] anthracene; $\tau_{\rm T} = 10 \ \mu {\rm s}$	7175
	Benzene	PR/ET	490, 6950	e relative to benzophenone ketyl radical in cy-	71E3
				clohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained from a simultaneous least squares fit of data from	. :
				several compounds making use of cyclohexane to benzene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for	
	Benzene (293 K)	FP	400	anthracene	82E6
			490	and the second second	
	Cyclohexane	PR/ET	490 ^b , 4250	e relative to biphenyl in cyclohexane ($\epsilon_{361.3} = 35400 \text{ L}$ mol ⁻¹ cm ⁻¹); author reports a mean of 4700 L mol ⁻¹	6905
	Gualakanana	DD /ET	400h 4050	cm ⁻¹ from 3 separate standards	
	Cyclohexane	PR/ET	490 ⁶ , 4950	ϵ relative to anthracene in cyclohexane ($\epsilon_{420} = 57200 \text{ L}$	0905
	6		160h 1000	mol ⁻¹ cm ⁻¹); author reports a mean of 4700 L mol ⁻¹ cm ⁻¹ from 3 separate standards	
	Cyclonexane	PR/ET	490°, 4900	ϵ relative to naphthalene in cyclohexane ($\epsilon_{412.5} = 22600$	6905
				L mol ⁻¹ cm ⁻¹), author reports a mean of 4700 L mol ⁻¹	
				cm ⁻¹ from 3 separate standards	
	Cyclohexane	PR/ET	490, 5330	ε relative to benzophenone ketyl radical in cy-	71E3
			* * * * * * * * * * * * * * * * * * *	clohexane ($\epsilon_{\text{max}} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); reference ϵ obtained by starting from $\epsilon_{\text{max}} = 3220 \text{ L mol}^{-1} \text{ cm}^{-1}$	4.77 ₁ *
				for this ketyl radical in water and assuming the f of the	
				ketyl radical is independent of solvent; final ϵ obtained	
	***			from a simultaneous least squares fit to data from several compounds	\$ -0.1
	Cyclohexane	LP	490	Relative intensities (5:4:11); $\tau_T = 21 \mu s$; oscillator	7671
	•		450°	strength = 0.121 ± 0.005	
		7.	310 ^a	5.121 2 5.555	
	Dioxane	FP	485	Half-life = $\sim 30 \mu s$	5870
	Et ₂ O	FP	~485	Half-life = $\sim 30 \mu s$	5870
	EtOH	FP	~485	Half-life = $\sim 30 \mu s$	5870
	EtOH	LP/RF	490, 5580 \pm 550		7671
	· 	DI / RI	455° 310°	ϵ relative to duroquinone in cyclohexane ($\epsilon_{400} = 5330$ L mol ⁻¹ cm ⁻¹) assuming oscillator strength independent of solvent; relative intensities (1:1:2); $\tau_T = 15 \ \mu s$	7071
	EtOH/Sulfuric acid	FP	~490	Solvent was 50% 0.1 mol L ⁻¹ H ₂ SO ₄ and 50% alcohol; half-life = 30 μ s	5870
	EtOH/Water	FP	~485	Solvent was 1:1 EtOH to water; half-life = $\sim 30 \mu s$	5870
•	Liquid paraffin	FP	490	Half-life = 100 µs	5870
	Titulità	T. 70	460	Company of the compan	
"	Liquid paraffin	LP	458 *	‡Quenching by anthracene; shoulder at 493° nm; $\tau_T = 29 \mu\text{s}$	7175
	MeOH (293 K)	FP	460		82E6
	PMMA	FP	470	$\tau_{\rm T}=180\pm10~\mu{\rm s}$	7073
-	SDS	LP	~450	Aqueous micelle	83N
	Toluene	LP/ET	490, 7600 ± 500	ϵ relative to anthracene in toluene ($\epsilon_{428.5} = 42000 \text{ L} \mod^{-1} \text{ cm}^{-1}$)	83F(
	Water	LP/RF	$500,4200 \pm 450$	ϵ relative to duroquinone in cyclohexane ($\epsilon_{490} = 5330$	7671
			440	L mol ⁻¹ cm ⁻¹) assuming oscillator strength indepen-	*
			420	dent of solvent; relative intensities (4:5:4:12); $\tau_T = 5.9$	
			395ª	μs	

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
<i>y</i>	Water/EtOH	LP/ELT	490° 450° 420°, 6600 ± 800	ϵ relative to durosemiquinone ($\epsilon_{420} = 4700 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming complete conversion in the presence of Fe ²⁺ ions; solvent was 2:1 water to EtOH by volume; $\tau_T = 6.3 \pm 0.8 \ \mu \text{s}$	777045
	Water/MeOH	FP	510 ^a 440 ^a	Solvent was 4:1 water to MeOH by volume; lifetime measured at pH = 0.7; τ_T = 1.3 μ s; pH >1	80C005
553.	Duroquinone/Triphenylam	ine			
	Benzene (293 K)	LP	490	$\tau_{\rm T}=2~\mu{\rm s}$	81E715
	Benzene/MeOH (293 K)	LP	650 550	650 nm band was the more intense; solvent was 19:1 benzene to MeOH; $\tau_T = 0.27 \mu s$	81E715
554.	Duroquinone, conjugate m	onoacid			
	Water/MeOH	FP	470° ~380°	pK _a = -0.1 ; solvent was 4:1 water to MeOH by volume; lifetime measured at pH = -0.8 ; $\tau_{\rm T} = \sim 0.3~\mu{\rm s}$; pH < 1	80C005
555.	Echinenone Benzene	PR-ET	550	‡Triplet ET from naphthalene; $\tau_T = 5.2 \mu s$	80A143
556.	Eosin				
	Acetonitrile/Water	LP	580	Solvent was 3.5:1.5 acetonitrile to water; $\tau_T = 30 \mu s$	84E216
	EtOH Water	FP/SD FP	580, 9400 550	Maximum was near the SD region; pH 9.1	716235 746168
					
557.	Eosin/Aniline Water	FP	555	Maximum was near SD region; pH 5.5	746168
558.	Eosin/4-Bromophenol Water	FP	660	pH 9.2	746168
559.	Eosin/2-Naphthol				
	Water	FP	584	pH 9.0	746168
560.	Eosin/Resorcinol				
J	Water	FP	580	pH 7.3	746168
561.	Eosin/Sulfanilic acid	ED	507	- TI A O	746168
	Water	FP	597	pH 4.0	740106
562.	Eosin dianion				
	Water	FP/SD	540, 26000°	Decay time was measured at pH 9; solution was oxygen free; p $K_b > 10$; paper reported a band at 459 nm that was later suggested to be due to semi-oxidized eosin [65A002]; $\tau_T = 2400 \mu s$; pH 5.4	63A001
	Water	FP	565° 325	565 nm maximum was near the SD region in an apparent difference spectrum and may not be the true maximum; paper reported 580 nm (instead of 565) as a maximum, but displayed spectrum and other reports were inconsistent with this; solution was a 0.1 mol L ⁻¹ phosphate buffer solution; pH 7.2	66A002
	Water	FP/SD	518^{b} , 28000 ± 4000	pH 9	67E031
	Water	FP/TD	630, 4800	pH Basic	727073
E ()	E (1 4 T-14'	11 12 4-1-1			
563.	5-(1,4-Epidioxyphenyl)-6,1 Cyclohexane	LP	390°	A rubreneperoxide, called "III" in paper	84E056
561	Franctorol				
J04.	Ergosterol Benzene	LP-ET/TD	$305, 2800 \pm 500$	†Triplet ET from 2-fluorenyl phenyl ketone and other	80B021
	2 CALCINO	21-21/10	505, 2000 ± 500	triplet sensitizers; ϵ assumes ET proceeds with unit efficiency; $\tau_T = > 150 \ \mu\text{s}$; $E_T = \sim 220 \ \text{kJ mol}^{-1}$	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

Acetonitrile/Water LP 780 Solvent was 3.5:1.5 acetonitrile to water 84E2	No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
PP	565.	Erythrosin				
Accountrile/Water LP 780 Solvent was 3.5:1.5 acctonitrile to water	- 50.	•	FP			747229
Gelatin FP/SD 529, 12000° Estinction coefficient was calculated on the assumption that 44% of the ground state was converted to triplets in a 10 J flash; τ = 630 μs (riplets in a 10 J flash; τ = 640 μs (riplets in a 10 J flash; τ = 630 μs (riplets in a 10 J fla		Acetonitrile/Water	LP		•	84E216
Gelatin FP/SD 529, 12000° Estinction coefficient was calculated on the assumption that 44% of the ground state was converted to triplets in a 10 J flash; τ = 630 μs (riplets in a 10 J flash; τ = 640 μs (riplets in a 10 J flash; τ = 630 μs (riplets in a 10 J fla	566.	Erythrosin dianion				
Sethoxymaphthalene Cyclohexane FP 440 440 mp peak was the more intense; delay 30 μs 411 436		•	FP/SD	525 ^a , 12000 ^a	tion that 44% of the ground state was converted to	64E016
Cyclohexane FP 440° 440 m peak was the more intense; delay 30 μs 6860 411° 141		Water	FP/SD	526^{b} , 26000 ± 7000	· · · · · · · · · · · · · · · · · · ·	67E031
Cyclohexane FP 440° 440 m peak was the more intense; delay 30 μs 6860 411° 411° 416° 501° 5820 582	567	2-Ethoxynanhthalene				
Liquid paraffin FP	507.		FP	440°	440 nm peak was the more intense; delay 30 μs	686045
13 394 394 394						
568. Ethyl Violet		Liquid paraffin	FP			58E001
See Ethyl Violet PMMA (77 K) PS 1232° Relative intensities (3:20); shoulder at 535° nm; solvent contains 2-chloroethanol				i i	(10:8:5)	
PMMA (77 K) PS 12322 Relative intensities (3:20); shoulder at 5354 nm; solvent contains 2-chlorocthanol 569. 10-Ethyl-9(10H)-acridimone EtOH (300 K) FP/SD 580, 14600 ± 1500 "N-Ethylacridinone"; 310 nm quoted from [79E964]. 81E6 570. N-Ethylacrabazole 2-MTHF LP 420 Shoulder at 500 nm; $\tau_T = 5 \mu s$ 81E6 Acetonitrile LP/ET 420, 27000 ε relative to phenanthrene ($\epsilon_{400} = 27000 \text{ L mol}^{-1} \text{ cm}^{-1}$) 7780 Cyclohexane FP 50P (Tripler ET to anphthalene; $\tau_T = 700 \mu s$ 78A. EtOH LP/ET 420, 13500 ε relative to naphthalene in cyclohexane ($\epsilon_{415} = 24500$) 84F0 L mol - cm - 1) EtOH LP/ET 420, 25000 ε relative to phenanthrene ($\epsilon_{400} = 27000 \text{ L mol}^{-1} \text{ cm}^{-1}$) 78E6 Hexane FP 420 (Toxygen and piperylene quenching; "ethylcarbazole" 7575 MeOH LP 420 THF LP 420 (Toxygen and piperylene quenching; "ethylcarbazole" 7575 MeOH LP 423* Delay 1 μs; shoulders at 4984 and 3984 nm 83E6 571. (E,Z)-3-Ethyl-5(3-ethyl-2/3H)-benzothiazolylidene)-thylidine}-2-thioxo-4-thiazolidinone Toluene FP-ET 600* (Triplet ET from fluorenone; "merocyanine dye" 7677 572. 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-3-fluoro-1-3-pentadienyl]-3,3-dimethyl-3H-indolium 1-PrOH LP-ET 710 (Triplet ET from anthracene, oxygen quenching; τ_T 78A. = 109 μs 573. 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-1,3-pentadienyl]-3,3-dimethyl-3H-indolium 1-PrOH LP-ET 600 (Triplet ET from anthracene, oxygen quenching; τ_T 78A. = 455 μs 574. 1-Ethylnaphthalene 1-EOCOLARIO (EAS)				394		
569. 10-Ethyl-9(10H)-acridinone EtOH (300 K) FP/SD 580, 14600 ± 1500 7 "N-Ethylacridinone"; 310 nm quoted from [79E964]. 81E6 FP/SD 580, 14600 ± 1500 7 T = ~43 μs 570. N-Ethylacridinone"; 310 nm quoted from [79E964]. 81E6 Acetonitrile LP/ET 420 20000 Cyclohexane FP 50P 50P Cyclohexane FP 50P 50P EtOH LP/ET 420, 13500 ϵ relative to phenanthrene (ϵ_{400} = 27000 L mol ⁻¹ cm ⁻¹) FEOH EtOH LP/ET 420, 25000 ϵ relative to ophenanthrene (ϵ_{400} = 27000 L mol ⁻¹ cm ⁻¹) FEOH EtOH LP/ET 420, 25000 ϵ relative to ophenanthrene (ϵ_{400} = 27000 L mol ⁻¹ 78E3 cm ⁻¹); solvent and temperature assumed Hexane FP 420 FP 420 FP 420 FOxygen and piperylene quenching: "ethylcarbazole" FP 420 FOxygen and piperylene quenching: "ethylcarbazole" FP 420 FIFF LP 423° Toluene LP 423° Toluene LP 423° Toluene FP-ET 600' Triplet ET from fluorenone; "merocyanine dye" Toluene FP-ET 600' Triplet ET from anthracene, oxygen quenching: τ_{T} 78A: = 109 μs 571. (E,Z)-3-Ethyl-5((3-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-1,3-pentadienyl]-3,3-dimethyl-3H-indolium 1-PrOH LP-ET 710 Triplet ET from anthracene, oxygen quenching: τ_{T} 78A: = 109 μs 573. 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-1,3-pentadienyl]-3,3-dimethyl-3H-indolium 1-PrOH LP-ET 690 Triplet ET from anthracene, oxygen quenching: τ_{T} 78A: = 109 μs 575. 2-Ethylnaphthalene Isooctane LP 415° 390° 576. 9-Ethylphenanthrene Liquid paraffin (293 K) LP 482° THF LP 580 Shoulder at 428° nm SEC Triplet ET to naphthalene; delay 500 ns; shoulder at 88E64 SEC	568.	Ethyl Violet				
EtOH (300 K) FP/SD 580, 14600 ± 1500 "N-Ethylacridinone"; 310 nm quoted from [79E964]; 81E6 $\tau_{\rm T} = -43 \mu{\rm s}$ 570. N-Ethylacrbazole 2-MTHF LP 420 Shoulder at 500 nm; $\tau_{\rm T} = 5 \mu{\rm s}$ 81E6 Acetonitrile LP/ET 420, 27000 ε relative to phenanthrene ($\epsilon_{400} = 27000 {\rm L} {\rm mol}^{-1} {\rm cm}^{-1}$) 77BC Cyclohexane FP 500° [Triplet ET in ambracene; $\tau_{\rm T} = 200 {\rm \mu s}$ 78A.3 (25° Cyclohexane FP/ET 420, 13500 ε relative to naphthalene in cyclohexane ($\epsilon_{415} = 24500$) 84FC L mol ⁻¹ cm ⁻¹) EtOH LP/ET 420, 25000 ε relative to naphthalene in cyclohexane ($\epsilon_{415} = 24500$) 84FC cm ⁻¹); solvent and temperature assumed hexane FP 420 [Toxygen and piperylene quenching; "ethylcarbazole" 77BC cm ⁻¹); solvent and temperature assumed 10xygen and piperylene quenching; "ethylcarbazole" 77BC cm ⁻¹); solvent and temperature assumed 10xygen and piperylene quenching; "ethylcarbazole" 77BC cm ⁻¹); solvent and temperature assumed 10xygen and piperylene quenching; "ethylcarbazole" 77BC cm ⁻¹); solvent and temperature assumed 10xygen and piperylene quenching; "ethylcarbazole" 77BC cm ⁻¹); solvent and temperature assumed 77BC cm ⁻¹ ; solvent and tem		PMMA (77 K)	PS			69B003
570. N-Ethylcarbazole 2-MTHF LP 420 Shoulder at 500 nm; $\tau_{T} = 5 \mu_{S}$ 81EC Acetonitrile LP/ET 420, 27000 ϵ relative to phenanthrene ($\epsilon_{100} = 27000 \text{ L mol}^{-1} \text{ cm}^{-1}$) 77BC Cyclohexane FP 500° Tripler FT to anthracene; $\tau_{T} = 2000 \mu_{S}$ 78A: Cyclohexane FP/ET 420, 13500 ϵ relative to naphthalene in cyclohexane ($\epsilon_{410} = 24000 \text{ L mol}^{-1} \text{ cm}^{-1}$) EtOH LP/ET 420, 25000 ϵ relative to naphthalene in cyclohexane ($\epsilon_{410} = 24000 \text{ L mol}^{-1} \text{ cm}^{-1}$) Hexane FP 420 Toxygen and piperylene quenching; "ethylcarbazole" 77BC MeOH LP 420 Toxygen and piperylene quenching; "ethylcarbazole" 77BC ThF LP 423 Delay 1 μs; shoulders at 498° and 398° nm 83EC Toluene LP 425 Rises with flourescence decay; 100 ns delay 80EC 571. (ϵ_{L} Z)-3-Ethyl-5((3-ethyl-2/3H)-benzothiazolylidene)ethylidine]-2-thioxo-4-thiazolidinone Toluene FP-ET 600° Triplet ET from fluorenone; "merocyanine dye" 7677 572. 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-3-fluoro-1,3-pentadienyl]-3,3-dimethyl-3H-indolium 1-POH LP-ET 710 Triplet ET from anthracene, oxygen quenching; τ_{T} 78A: = 109 μs 573. 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-1,3-pentadienyl]-3,3-dimethyl-3H-indolium 1-POH LP-ET 690 Triplet ET from anthracene, oxygen quenching; τ_{T} 78A: = 455 μs 574. 1-Ethyl-1-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-1,3-pentadienyl]-3,3-dimethyl-3H-indolium 1-POH LP-ET 690 Triplet ET from anthracene, oxygen quenching; τ_{T} 78A: = 455 μs 575. 2-Ethylnaphthalene Isooctane LP 415° Shoulder at 428° nm 81EC 576. 9-Ethylphenanthrene Liquid paraffin (293 K) LP 482° Shoulder at 428° nm 82EC THF LP 480° Triplet ET to naphthalene; delay 500 ns; shoulder at 83E2 THF LP 480° Triplet ET to naphthalene; delay 500 ns; shoulder at 83E2	569.	10-Ethyl-9(10H)-acridino	ne			
2-MTHF LP 420 Shoulder at 500 nm; $\tau_{\rm T} = 5$ μs 81EC Acetonitrile LP/ET 420, 27000 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{cm}^{-1}$) 7780 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{cm}^{-1}$) 7780 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{cm}^{-1}$) 84F0 ϵ relative to maphthalene in cyclohexane ($\epsilon_{4415} = 24500 \text{m}^{-1} \text{cm}^{-1}$) 84F0 ϵ relative to maphthalene in cyclohexane ($\epsilon_{4415} = 24500 \text{m}^{-1} \text{cm}^{-1}$) 85F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 87F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 87F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 87F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to maphthalene 100 ϵ relative to phenanthrene 100 ϵ relative to maphthalene 100 ϵ relative to maphthalene 100 ϵ relative to phenanthrene 100 ϵ relative to maphthalene 100 ϵ relative to maphthalene; 100 ϵ		EtOH (300 K)	FP/SD			81E649
2-MTHF LP 420 Shoulder at 500 nm; $\tau_{\rm T} = 5$ μs 81EC Acetonitrile LP/ET 420, 27000 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{cm}^{-1}$) 7780 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{cm}^{-1}$) 7780 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{cm}^{-1}$) 84F0 ϵ relative to maphthalene in cyclohexane ($\epsilon_{4415} = 24500 \text{m}^{-1} \text{cm}^{-1}$) 84F0 ϵ relative to maphthalene in cyclohexane ($\epsilon_{4415} = 24500 \text{m}^{-1} \text{cm}^{-1}$) 85F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 87F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 87F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 87F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to phenanthrene ($\epsilon_{4400} = 27000 \text{L mol}^{-1} \text{m}^{-1}$) 88F0 ϵ relative to maphthalene 100 ϵ relative to phenanthrene 100 ϵ relative to maphthalene 100 ϵ relative to maphthalene 100 ϵ relative to phenanthrene 100 ϵ relative to maphthalene 100 ϵ relative to maphthalene; 100 ϵ	570.	N-Ethylcarbazole	*			
Acetonitrile LP/ET 420, 27000 ε relative to phenanthrene (ε400 = 27000 L mol - 1 cm - 1) 77.86 (Cyclohexane FP 500 + 42.5		•	LP	420	Shoulder at 500 nm; $\tau_T = 5 \mu s$	81E016
Cyclohexane FP 500° 425° 7Triplet ET to anthracene; τ _T = 200 μs 78.4.2		Acetonitrile	LP/ET	420, 27000		77B012
L mol - cm - c relative to phenanthrene (ε480 = 27000 L mol - 78E3 cm - solvent and temperature assumed Hexane		Cyclohexane	FP			78A368
Hexane		Cyclohexane	FP/ET	420, 13500		84F039
Hexane FP 420 1Oxygen and piperylene quenching; "ethylcarbazole" 7575 MeOH LP 420 1µs; shoulders at 498° and 398° nm 83E6 Toluene LP 425° 1Rises with flourescence decay; 100 ns delay 80E4 1Rises with flourescence decay; 100 ns delay 180E4 1Rises with flourescence decay; 100 ns delay 180E4		EtOH	LP/ET	420, 25000		78E394
THF Toluene LP 423° Delay 1 μs; shoulders at 498° and 398° nm 183EG 1Rises with flourescence decay; 100 ns delay 80EA 80EA 1Rises with flourescence decay; 100 ns delay 80EA 80EA 1Rises with flourescence decay; 100 ns delay 80EA 1Rises with flourescence decay; 100 ns delay 80EA 80EA 1Rises with flourescence decay; 100 ns delay 80EA 80EA 1Rises with flourescence decay; 100 ns delay 80EA 1Rises with flourescence decay; 100 ns delay 80EA 1Rises with flourescence decay; 100 ns delay 80EA 80EA 1Rises with flourescence decay; 100 ns delay 80EA 80EA 1Rises with flourescence decay; 100 ns delay 80EA 80EA 1Rises with flourescence decay; 100 ns delay 80EA 80EA 1Rises with flourescence decay; 100 ns delay 80EA 80EA 1Rises with flourescence decay; 100 ns delay 80EA 80EA 1Rises with flourescence decay; 100 ns delay 80EA 1Rises with flourescence decay; 100 ns delay 80EA 1Rises with flourescence decay; 100 ns delay 80EA 1Rises with flourescence floor 1Rises wit		Hexane	FP	420	•	757573
Toluene LP 425 Rises with flourescence decay; 100 ns delay 80E4 571. (E,Z)-3-Ethyl-5[(3-ethyl-2(3H))-benzothiazolylidene)ethylidine]-2-thioxo-4-thiazolidinone Toluene FP-ET 600a †Triplet ET from fluorenone; "merocyanine dye" 7677 572. 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-3-fluoro-1,3-pentadienyl]-3,3-dimethyl-3H-indolium 1-PrOH LP-ET 710 †Triplet ET from anthracene, oxygen quenching; τ _T 78A: = 109 μs 573. 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-1,3-pentadienyl]-3,3-dimethyl-3H-indolium 1-PrOH LP-ET 690 †Triplet ET from anthracene, oxygen quenching; τ _T 78A: = 455 μs 574. 1-Ethylnaphthalene Isooctane LP 415 ⁵ 390 ⁿ 575. 2-Ethylnaphthalene Benzene PR 430 ^a †Triplet ET to piperylene; τ _T = 7.1 μs; k _{et} = 1.29 × 81E: 10 ^a L mol ⁻¹ s ⁻¹ 576. 9-Ethylphenanthrene Liquid paraffin (293 K) LP 482 ^a Shoulder at 428 ^a nm 82E 452 ^a THF LP 480 ^a †Triplet ET to naphthalene; delay 500 ns; shoulder at 83E:		MeOH	ĹP	420		77B012
 571. (E,Z)-3-Ethyl-5[(3-ethyl-2(3H)-benzothiazolylidene)ethylidine]-2-thioxo-4-thiazolidinone		THF	LP	423ª	Delay 1 μs; shoulders at 498° and 398° nm	83E662
Toluene FP-ET 600° ‡Triplet ET from fluorenone; "merocyanine dye" 7677 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2 <i>H</i> -indol-2-ylidene)-3-fluoro-1,3-pentadienyl]-3,3-dimethyl-3 <i>H</i> -indolium 1-PrOH LP-ET 710 ‡Triplet ET from anthracene, oxygen quenching; τ _T 78A: = 109 μs 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2 <i>H</i> -indol-2-ylidene)-1,3-pentadienyl]-3,3-dimethyl-3 <i>H</i> -indolium 1-PrOH LP-ET 690 ‡Triplet ET from anthracene, oxygen quenching; τ _T 78A: = 455 μs 1-Ethylnaphthalene Isooctane LP 415° 81EG 390° 575. 2-Ethylnaphthalene Benzene PR 430° ‡Triplet ET to piperylene; τ _T = 7.1 μs; k _{et} = 1.29 × 81EG 10° L mol ⁻¹ s ⁻¹ 576. 9-Ethylphenanthrene Liquid paraffin (293 K) LP 482° Shoulder at 428° nm 82EG 452° THF LP 480° ‡Triplet ET to naphthalene; delay 500 ns; shoulder at 83EG		Toluene	LP	425	tRises with flourescence decay; 100 ns delay	80E441
Toluene FP-ET 600° ‡Triplet ET from fluorenone; "merocyanine dye" 7677 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2 <i>H</i> -indol-2-ylidene)-3-fluoro-1,3-pentadienyl]-3,3-dimethyl-3 <i>H</i> -indolium 1-PrOH LP-ET 710 ‡Triplet ET from anthracene, oxygen quenching; τ _T 78A: = 109 μs 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2 <i>H</i> -indol-2-ylidene)-1,3-pentadienyl]-3,3-dimethyl-3 <i>H</i> -indolium 1-PrOH LP-ET 690 ‡Triplet ET from anthracene, oxygen quenching; τ _T 78A: = 455 μs 1-Ethylnaphthalene Isooctane LP 415° 81EG 390° 575. 2-Ethylnaphthalene Benzene PR 430° ‡Triplet ET to piperylene; τ _T = 7.1 μs; k _{et} = 1.29 × 81EG 10° L mol ⁻¹ s ⁻¹ 576. 9-Ethylphenanthrene Liquid paraffin (293 K) LP 482° Shoulder at 428° nm 82EG 452° THF LP 480° ‡Triplet ET to naphthalene; delay 500 ns; shoulder at 83EG	571.	(E,Z)-3-Ethyl-5[(3-ethyl-2	2(3 <i>H</i>)-benzothia	azolvlidene)ethvlidine]-2-thioxo	-4-thiazolidinone	
1-PrOH LP-ET 710 †Triplet ET from anthracene, oxygen quenching; $\tau_{\rm T}$ 78A: $= 109 \ \mu \text{s}$ 573. 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2 <i>H</i> -indol-2-ylidene)-1,3-pentadienyl]-3,3-dimethyl-3 <i>H</i> -indolium 1-PrOH LP-ET 690 †Triplet ET from anthracene, oxygen quenching; $\tau_{\rm T}$ 78A: $= 455 \ \mu \text{s}$ 574. 1-Ethylnaphthalene Isooctane LP 415° 390° 575. 2-Ethylnaphthalene Benzene PR 430° †Triplet ET to piperylene; $\tau_{\rm T} = 7.1 \ \mu \text{s}$; $k_{\rm et} = 1.29 \times 81\text{E}$: $10° \ \text{L mol}^{-1} \ \text{s}^{-1}$ 576. 9-Ethylphenanthrene Liquid paraffin (293 K) LP 482° THF LP 480° †Triplet ET to naphthalene; delay 500 ns; shoulder at 83E:						767764
1-PrOH LP-ET 710 †Triplet ET from anthracene, oxygen quenching; $\tau_{\rm T}$ 78A: $= 109 \ \mu \text{s}$ 573. 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2 <i>H</i> -indol-2-ylidene)-1,3-pentadienyl]-3,3-dimethyl-3 <i>H</i> -indolium 1-PrOH LP-ET 690 †Triplet ET from anthracene, oxygen quenching; $\tau_{\rm T}$ 78A: $= 455 \ \mu \text{s}$ 574. 1-Ethylnaphthalene Isooctane LP 415° 390° 575. 2-Ethylnaphthalene Benzene PR 430° †Triplet ET to piperylene; $\tau_{\rm T} = 7.1 \ \mu \text{s}$; $k_{\rm et} = 1.29 \times 81\text{E}$: $10° \ \text{L mol}^{-1} \ \text{s}^{-1}$ 576. 9-Ethylphenanthrene Liquid paraffin (293 K) LP 482° THF LP 480° †Triplet ET to naphthalene; delay 500 ns; shoulder at 83E:	570	1 174-1 2 [7 (1 .1 .1 .1 . 2		4 1077 - 110 44		
1-PrOH LP-ET 690 †Triplet ET from anthracene, oxygen quenching; $\tau_{\rm T}$ 78A.1 = 455 μ s 574. 1-Ethylnaphthalene Isooctane LP 415° 390° 81E0 575. 2-Ethylnaphthalene Benzene PR 430° †Triplet ET to piperylene; $\tau_{\rm T} = 7.1~\mu$ s; $k_{\rm et} = 1.29 \times 81E$. 81E0 576. 9-Ethylphenanthrene Liquid paraffin (293 K) LP 482° Shoulder at 428° nm 82E2° THF LP 480° †Triplet ET to naphthalene; delay 500 ns; shoulder at 83E3°	312.				‡Triplet ET from anthracene, oxygen quenching; $\tau_{\rm T}$	78A386
Isooctane LP 415° 390° 81EC 390° 81	573.				†Triplet ET from anthracene, oxygen quenching; $ au_{\mathrm{T}}$	78A386
Isooctane LP 415° 390° 81EC 390° 81					·	
390° 575. 2-Ethylnaphthalene Benzene PR 430° t Triplet ET to piperylene; $\tau_T = 7.1 \ \mu s$; $k_{et} = 1.29 \times 81E$; t 10° L mol ⁻¹ s ⁻¹ 576. 9-Ethylphenanthrene Liquid paraffin (293 K) LP 482° 452° THF LP 480° t Triplet ET to naphthalene; delay 500 ns; shoulder at 83E; t Triplet ET to naphthalene; delay 500 ns; shoulder at 83E; t	574.					
Benzene PR 430° triplet ET to piperylene; $\tau_T = 7.1 \ \mu s$; $k_{et} = 1.29 \times 81E$ $10^9 \ L \ mol^{-1} \ s^{-1}$ 576. 9-Ethylphenanthrene Liquid paraffin (293 K) LP 482° Shoulder at 428° nm 82EZ THF LP 480° tTriplet ET to naphthalene; delay 500 ns; shoulder at 83ES		Isooctane	LP ·			81E015
Benzene PR 430° triplet ET to piperylene; $\tau_T = 7.1 \ \mu s$; $k_{et} = 1.29 \times 81E$ $10^9 \ L \ mol^{-1} \ s^{-1}$ 576. 9-Ethylphenanthrene Liquid paraffin (293 K) LP 482° Shoulder at 428° nm 82EZ THF LP 480° tTriplet ET to naphthalene; delay 500 ns; shoulder at 83ES	575	2-Ethylnanhthalene				
Liquid paraffin (293 K) LP 482° Shoulder at 428° nm 82E2 452° THF LP 480° ‡Triplet ET to naphthalene; delay 500 ns; shoulder at 83E3			PR	430°		81E508
Liquid paraffin (293 K) LP 482° Shoulder at 428° nm 82E2 452° THF LP 480° ‡Triplet ET to naphthalene; delay 500 ns; shoulder at 83E3	576.	9-Ethylphenanthrene				
THF LP 480° †Triplet ET to naphthalene; delay 500 ns; shoulder at 83E:			LP	482°	Shoulder at 428° nm	82E287
T				452ª		
453 ^a 427 ^a nm		THF	LP			83E554
				453°	427ª nm	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\begin{array}{cccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-1} \end{array}$	Comment	Ref.
577.	N-Ethylphthalimide				
	Acetonitrile	LP	335	tOxygen quenching; $\tau_T = 31 \mu s$	80B066
578.	β-Ethylstyrene				
	Cyclohexane	LP/RA-ET	325 ^b , 3500	ϵ relative to naphthalene in cyclohexane ($\epsilon_{413} = 24000$ L mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{415} = 24500$ L mol ⁻¹ cm ⁻¹); triplet ET from thioxanthone; $\tau_T = \sim 0.030~\mu s$	82E18
579.	Etiochlorin II		44.60	01 11 177	5 4 D 00
	Dimethyl phthalate	FP/SD	416 ^a	Shoulders at 466 nm and 424 nm	74B00
580.	Euchrysine, conjugate mon	oacid			
	Glycerol (293 K)	FP	620ª	Solvent has added glucose	77617
			560 ^a		
581.	Flavine mononucleotide				
	Water	LP	680	$\tau_{\rm T} = 11 \ \mu {\rm s}; \ {\rm pH} \ 7.0$	81A02
582	Flavine mononucleotide, co	minasta managai			
702.	Water	LP	680	$pK_a = 5.2$; $\tau_T = 10 \mu s$; pH 4.1	81A02
	Water	LI	000	$pK_a = 3.2$; $7_T = 10 \mu s$; $pH = 4.1$	oiAu.
• • • •					
583.	Flavone				
	Benzene	LP	661ª	Oxygen quenching; 661 nm peak was the more in-	80E88
	TD		366ª	tense; delay 140 ns	
	EPA (77 K)	FP	640ª 370ª	Lifetime measured at 370 nm; 370 nm peak was the more intense; $\tau_T = 4.1 \times 10^5 \mu s$	80E88
584.	Fluoranthene				
	PMMA (293 K)	FP	~450	$\tau_{\rm T}=4\times10^5~\mu{\rm s}$	70E29
	Water/tert-BuOH	FP	405°	Solvent mixture contains "1-5%" tert-BuOH for solu-	76718
				bility; shoulder at 380 nm; pH ~6	
585.	Fluorene				
	2-MTHF (77 K)	PS/ESR	384, 20700	tESR; only most intense visible peak reported; oscil-	69611
				lator strength = ~ 0.25	
	2-MTHF (77 K)	PS/KM	386°, 18000°		83E3
	EtOH (293 K)	FP	376		68E0
	EtOH/Et ₂ O (77 K)	MOD/KM	$382, 12000 \pm 3600$	Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	71905
	Heptane (77 K)	PS	421		67B00
		- -	386		
			366		
	Heptane	FP	380° 365°	380 nm peak was the more intense	76642
	Hexane	FP	376		54E00
	Hexane (300 K)	MOD/SD	499a, 3200a	$\tau_{\rm T} = 150 \pm 2 \mu{\rm s}$	69E20
			376, 40000		
	Isopentane/MCH (77 K)	PS	421.1	Relative intensities (23:100); unresolved shoulder at	.54B0
	•		388	395 nm; $\tau_{\rm T} = (5.7 \pm 0.3) \times 10^6 \mu{\rm s}$	
	Liquid paraffin	FP	503	Solvent viscosity was 0.03 N-s/m ² ; relative intensities	58E0
			382.5	(22:100); bands were assigned to 2 different electronic transitions	
	PVA	FP	385	Stretched polymer film; polarized light indicates un- derlying band at 400 nm	77627
	PVA Polystyrene	FP PR	385 394 ^a	Stretched polymer film; polarized light indicates underlying band at 400 nm $G\epsilon_{394} = 9900^{a} \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed})$	77627 70107

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

0.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
86.	Fluoren-9-one				
	Acetonitrile	LP/?	420, 6000	ϵ method unspecified; $\tau_{\rm T}=23~\mu{\rm s}$	76720
	Acetonitrile	LP	630	Intensity of delayed fluorescence proportional to	78E49
	rectoment	Li			, 010
			600	square of transient absorbance, decay kinetics; most	
			425	intense peak at 285 nm; $\tau_T = 100 \mu s$	
			387		
			317.5		
			285		
	Benzene	FP	600	tOrugen guanahing 60 us	69E21
	Delizelle	rr		t Oxygen quenching; $\tau_T = 60 \mu s$	03152
			430		
	Benzene	LP/ET	$430,5900 \pm 500$	†Triplet ET from benzophenone; ϵ relative to benzo-	75728
				phenone in benzene ($\epsilon_{532.5} = 7630 \text{ L mol}^{-1} \text{ cm}^{-1}$)	
	Benzene	LP	610	$\tau_{\rm T} = 100~\mu{\rm s}$	76720
		~-			
	_		425		
	Benzene	LP	650	‡Intensity of delayed fluorescence proportional to	78E49
			610	square of transient absorbance, decay kinetics; most	
			435	intense peak at 288 nm with approximate $\epsilon = 30000 \text{ L}$	
			387	$\text{mol}^{-1} \text{ cm}^{-1}$; $\tau_{\text{T}} = 1000 \mu \text{s}$	
				mor om , 71 = 1000 µs	
			322.5		
			288		
	Cyclohexane	LP	590°	†Triplet ET, oxygen quenching; decay times limited in	76646
			425	oxygen saturated solution; shoulder around 445 nm;	
			123	,	
				relative intensities (1:10); $\tau_T = 0.220 \mu s$; rise time of	
				$0.140 \pm 0.030 \text{ ns}$	
	Cyclohexane	LP	620	tOxygen quenching; $\tau_T = 2.5 \ \mu s$; rise time of <50 ns	76720
			460		
			420		
			360		
	Hexane	LP	600	325 ps delay; relative intensities (1:3)	79B0
			430		
	MCH	LP.	650	Intensity of delayed fluorescence proportional to	78E4
			600	square of transient absorbance, decay kinetics; most	
				•	
			425	intense peak at 285 nm; $\tau_T = 500 \mu s$	
		•	387		
	•		325		
			285		
	Water/tert-BuOH	FP	440°	Solvent mixture contains "1-5%" tert-BuOH for solu-	7671
		• •	405°		70710
				bility; pH ~6	
			370 ^a		
-	1 73				
	1-Fluorenyl diisopropyl bor		100		
	Triisopropyl borate	FP	380		7172
0	2 Fluoress ditament la co	4-	•		
,0.	2-Fluorenyl diisopropyl bor				
	Triisopropyl borate	FP	380		7172
39.	Fluoren-9-ylidene				
	Acetonitrile	LP	500ª	Relative intensities (8:1): 200 ns delay	00.42
	Accionance	LF		Relative intensities (8:1); 200 hs delay	80A2
			400°		
_					
90.	2-Fluorenyl phenyl ketone				
	Benzene	LP/TD	$525, 18600 \pm 900$	$\tau_{\rm T} = 360 \ \mu s$	80B0
				•	
91.	Fluorescein				
٠.		DC (CD	(50 21000°	contrating to the contrating of the contrating o	
	Boric acid (178 K)	PS/SD	650, 21000°	ϵ relative to ground state $\epsilon_{436} = 67000^{a} \text{ L mol}^{-1} \text{ cm}^{-1}$.	41E0
			505, 17000°		
	Boric acid (77 K)	PS/SD	1060, 17000		65B0
	· · · · · · · · · · · · · · · · · · ·		920		
			650		
	EtOH/Et ₂ O (90 K)	PS/SD	1140, 13500°	Solvent was 2:1 EtOH to Et ₂ O	57B0
	` ′	-	640, 7000°		
			·		
			470, 9500°		
			370, 8500°		

 $TABLE \ 6. \quad Spectral \ parameters \ for \ triplet-triplet \ absorption \ of \ organic \ molecules \ in \ condensed \ phases -- Continued$

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻	Comment	Ref.
	PMMA (193 K)	PS	500	Shoulders at 640 and 550 nm	59B001
	PMMA (77 K)	PS	465 1100 960 660		65B004
	PMMA (77 K)	PS	1660 1080 940 790 740 635 550		65B004
	PMMA (77 K)	PS	1056* 641* 552* 498*	Relative intensities (5:2:2:2); shoulders at 926° and 461° nm; solvent contains 2-chloroethanol; pH 4.0	69B007
592.	Fluorescein, conjugate m Sulfuric acid	oonoacid FP/SD	640, 7700³	Cation of fluorescein; $pK_a = -2.1$; solution was 9 mol L ⁻¹ H ₂ SO ₄ ; a spectrum was given also for the neutral triplet, at pH 0.7, which showed absorption between 450 and 850 nm, no distinct maximum was evident, but the extinction coefficient of the neutral triplet ranged between 1000 and 10,000 L mol ⁻¹ cm ⁻¹ in this region; $\tau_T = 4500 \mu s$; pH Acidic	63F019
593.	Fluorescein dianion				
	EtOH Water	FP/TD FP/SD	570, 6800 535 ^a , 8700 ^a	pH Basic Another maximum > 950 nm; p K_b 7.0; 535 nm peak was very broad, with 8700 L mol ⁻¹ cm ⁻¹ reading extend- ing from ~532 to ~540 nm; $\tau_T = 2.0 \times 10^4 \mu\text{s}$; pH 12	727073 60A001
	Water Water	FP/SD FP/TD	489 ^b , 15000 ± 4000 570, 8400	pH 9 pH Basic	67E031 727073
594.	Fluorobenzene Cyclohexane	LP	290ª	400 ns delay; $\tau_{\rm T}=0.67~\mu{\rm s}$	707561
595.	4-Fluorobenzophenone Acetonitrile/Water	LP/ET	520, 5900 315, 12100	Solvent was 9:1 acetonitrile to water; ϵ relative to 1-methylnaphthalene in acetonitrile/water ($\epsilon_{415}=11200~L~mol^{-1}~cm^{-1}$)	84B033
596.	trans-4-Fluorostilbene EPA (98 K)	LP	383 365	Triplet absorption not observable above 110 K; reported lifetime constant below 98 K; $\tau_T = 10^4 \ \mu s$	79E640
	Glycerol (223 K)	LP	349 385 365 345	Relative intensities (3:2:1); triplet absorption not observable above 244 K; reported lifetime constant below 198 K; $\tau_T=10^4~\mu s$	79E640
597.	γ-[2-(Formylamino)phen EtOH	yl]-γ-οxο-α-amir LP	nobutyryl-1-lysine 460	$ au_{\mathrm{T}} = 0.3~\mu\mathrm{s}$	78E308
	Water	LP	450	‡Oxygen quenching (1.3 \times 10° L mol ⁻¹ s ⁻¹); ionic strength 0.01 mol L ⁻¹ ; $\tau_T = 0.85 \mu s$; pH 7.5	78E308
598.	3-Formylfurochromene EtOH	LP/ET	440, 28000	†Triplet ET to retinol; ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming ϵ independent of solvent; $\tau_T = 50 \mu\text{s}; \ k_{et} = 4.2 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	79E678

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
599.	N-Formylkynurenine	1.		***************************************	
	EtOH	LP	(450 kg	tOxygen quenching (4.5 $ imes$ 10 ⁸ L mol ⁻¹ s ⁻¹); $ au_{\rm T}=10$ $ imes$ us	78E308
	Water Water	FP LP	435 440	tOxygen and KI quenching; $\tau_T = 2 \mu s$; pH 7.6	757361 78E308
500.	2-Formyl-5'-methyldifuro	benzene	Harris and the second		
	EtOH	LP/ET	540, 14000	†Triplet ET to retinol; ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming ϵ independent of solvent; $\tau_T = 13 \mu\text{s}; \ k_{et} = 4.7 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	79E678
iot.	3-Formyl-2-methylfurochi	omene			144
	EtOH	LP/ET	450, 49500	†Triplet ET to retinol; ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming ϵ independent of solvent; $\tau_T = 29 \mu\text{s}; \ k_{et} = 3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	79E678
502.	3-Formyl-8-methylfurochi	romene			
	EtOH	LP/ET	450, 22000	†Triplet ET to retinol; ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming ϵ independent of solvent; $\tau_i - 18 \ \mu\text{s}$; $k_{et} - 6 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	79 E67 8
603.	D-Glucose phenylosazone		and the second		
	EtOH	LP/ET	460 ⁶ , 61200	N-chelate; no ref. cmpd. given for ϵ -measurement; $\tau_{\rm T}$ = 0.46 \pm 0.01 μs	83E018
-	EtOH	LP/ET	530 460, 61000 ± 18000	N-chelate; ϵ relative to biacetyl in EtOH ($\epsilon_{740} = 1760$ L mol ⁻¹ cm ⁻¹); $k_{et} = 2 \times 10^9$ L mol ⁻¹ s ⁻¹	84E162
KN4	Hematoporphyrin IX		•	· · · · · · · · · · · · · · · · · · ·	
UU	Acetic acid	FP	er = 450 °,	tOxygen quenching	776190
	Acetic acid	LP	440	Triplet ET to β -carotene; $\tau_T = 42 \mu s$	81B115
	СТАВ	LP	888 435	Aqueous micelles	82N21
	A Comment of the Comm		320		
	EtOH	FP	43 7 :	tOxygen quenching; $\tau_T = 910 \mu s$	82B11
	MeOH/Water	LP/TD	399 ^a , 117000 ^a	Solvent 9:1 MeOH to pH 7.4 phosphate buffer; shoulders at 370° and 320° nm	83E66
	SDS	LP	896	Aqueous micelles	82N21
	• •		438		
	Triton X-100	LP	323 895	A quaque migallas	92NT21
	11110H 74-100	LI:	439 320	Aqueous micelles	82N21
	Water	FP	440	Oxygen quenching; $\tau_T = 710 \mu s$; pH 10.3	82B118
	Water	LP	890 440	pH Neutral	82N21
	•	44	320		
	Water	FP	440	tOxygen quenching; phosphate buffer; $\tau_T = 770 \mu s$; pH 7.1	82B118
	Water	LP/TD	390°, 79400° 371°, 85800°	Phosphate buffer: pH 7.4	83E66
CO.F	-U				
υυ ວ .	all-trans-1,3,5-Heptatrier Toluene	PR	315	†Oxygen quenching; $G\Delta\epsilon_{\text{max}} = (1.8 \pm 0.2) \times 10^4 \text{ L}$	84B139
				mol ⁻¹ cm ⁻¹ / (100 eV absorbed); $\tau_{\rm T} = 0.29 \pm 0.03 \ \mu {\rm s}$	
606.	Hexacene				•
	1,2,4-Trichlorobenzene	FP	550	‡Triplet ET from pentacene; shoulder at 481a; 550 nm	82E28
		4,4	513ª	peak was the more intense; $\tau_{\rm T}=10~\mu{\rm s}$	
607.	1,1,1,5,5,5-Hexafluoroace	tvlacetone	The second second second		
	EtOH/MeOH (118 K)	FP/SD	390, 1000 ± 200	Solvent was 3:1 EtOH to MeOH	68B00

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , /nm	ϵ_{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
608.	Hexahelicene					
	Et ₂ O/Isopentane (77 K)	PS	670		‡Phosphorescence decay; glass 1:1 Et ₂ O to isopentane; $\tau_T=1.9\times 10^6~\mu s$	62E008
609.	10,11,13,14,16,17-Hexahy	dro-5,7:20,22-die	theno-8 <i>H</i> ,1	9H-diindeno[2,1-n	:1',2'-o][1,4,7,10]tetraoxacyclononadecin	
	2-MTIIF (77 K)	PS/KM	383°, 1	7100°	Compound "XII" in paper	83E383
610.	9,10,11,12,13,14-Hexahyd	ro-5,7:15,17-die	heno-2,20-l	eptano-H-cyclotet	radeca[1,2-a:1,14-a']diindene	
	2-MTHF (77 K)	PS/KM	465 ^a , 3	5000 ^a	Compound "IX" in paper	83E383
611.	Hexamethylbenzene/Tetr	acvanobenzene				
	Et ₂ O/Isopentane (77 K)	MOD	1400 532		Glass was 1:1 Et ₂ O to isopentane	72E276
512.	6-Hydroxy-7H-benz[de]ar	nthracen-7-one				
	2-PrOH	LP	530ª		Half-life = $2.4 \pm 0.4 \mu s$	757427
	Benzene	LP	535ª		‡Oxygen quenching (1.2 \times 10° L mol ⁻¹ s ⁻¹); half-life = 1.0 \pm 0.2 μ s	757427
613.	2-Hydroxybenzophenone					
	EtOH	LP	450		Possible tautomeric triplet state; 480 ps delay; $S_n \leftarrow S_1$ absorption ($\lambda_{max} = 435$ nm) also observed at 7 ps delay	80B001
	MeOH (175 K)	LP	~500		$\tau_{\rm T}=0.024~\mu{\rm s}$	82E47
614.	4-Hydroxybenzophenone					
	Isopentane (77 K)	FP	512ª		Phosphorescence decay	0/E10
			360ª			
615.						
	PVA (77 K)	FP	520 390		Stretched polymer film; most intense peak at 390 nm; polarization also measured	78B12
			348		polarization also incasured	
616	2 Hadramahanna					
010.	3-Hydroxychromone Benzene	LP	397ª		Delay 200 ns; maximum uncertain due to absorption by	83B11
					a tautomer in the same spectral region	
617.	4-Hydroxycoumarin					
	EPA (77 K)	PS	497.5		1Phosphorescence decay; the 2 smallest wavelength	71B00
			465.1		maxima were somewhat in doubt because of photo-	
			435 413°		chem. in this region of the spectrum; most intense peaks were at 497.5, 465.1, and 435 nm; $\tau_T = (1.4 \pm$	
			382°		$0.2) \times 10^6 \mu\text{s}$	
618.	1-(2-Hydroxyethyl)-3,3-d	imethyl-6′-nitro	spiro-(2,2'-	indolin[2 <i>H-</i> 1]benzo	opyran)	
	Benzene	PR	<430		tOxygen quenching; cis-cisoid isomer	78A4
619.	3-Hydroxyflavone					
	3-MP	LP	400		‡Oxygen quenching	83B03
620.	7-Hydroxyflavone					
J20.	McOH	LP	370		‡Oxygen quenching; r _T = 5 μs	84/12
621	1-Hydroxyfluorene					
U41.	Isooctane	FP	385			71726
	PMMA	FP	385			71726
622	2 11-4					
622.	2-Hydroxyfluorene Isooctane	FP	385			71726
	PMMA	FP	385 385			71726
	Toluene/EtOH (77 K)	MOD	422ª		Glass was 19:1 toluene to EtOH; shoulders at 530° and	
					387 ^a nm	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

0.	Solvent	Method	$\begin{array}{cccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-1} \end{array}$	Comment	Ref.
23.	4-Hydroxy-6-methylcoumar	in .			
	EPA	CWL	501ª	Glass, temperature unspecified	73E34
	* -7		464ª		
			434ª		
			383ª		
14.	7-Hydroxy-4-methylcoumar	rin			
	EPA	CWL/SD	505^a , $14500^a \pm 3600$	Glass, temperature unspecified	73E34
25	2-Hydroxy-2-methyl-1-pher	whrenen-1-one			
	Benzene	LP	310	†Triplet ET to naphthalene; $\tau_{\rm T} = 0.030 \mu{\rm s}$; $k_{\rm et} = 5 \times$	80B030
	Donzono	D.	, 510	10° L mol ⁻¹ s ⁻¹	. 00200
26.	2. Huduovy 2 mothyl 1 [4 ()) neanvillahanville	wonen 1 one		
:U.		LP		tTriplet ET to neghthelene, a 0.050 us	80B03
	Benzene	LP	310°	Triplet ET to naphthalene; $\tau_{\rm T} = 0.050 \ \mu s$.80B03
	Cyclohexane	LF	340		CODOS
27.		I D	AE 53	*Dhambaraana Jamain Marker - Barr 100	70 4 15
** .	1,2-Dichloroethane	LP	455*		79A17
				lay	
8.	4'-IIydroxypropiophenone				1.3
	Acetonitrile/Water	LP	387ª	Solvent isotope insensitive quenching; solvent was 9:1	81A17
				acetonitrile to water; lifetime limited by self-quenching;	
				$\tau_{\mathrm{T}} = 0.230 \; \mu \mathrm{s}$	
9.	4-Hydroxypyrene				
	1,2-Dichloroethane	LP	410	tOxygen quenching	79A1
n.	1-(1H-Inden-3-yl)naphthale	ne			
	Benzene	LP-ET	559ª	†Triplet ET from xanthone and oxygen quenching; $\tau_{\rm T}$	84B00
			397ª	$= 4.5 \mu s$	
	T. 3.1.				
11.	Indole Benzene (297 K)	PR	430	Triplet ET to naphthalene and anthracene, oxygen	77102
	Demone (D). It)		430	quenching	77102
	Cyclohexane	LP/RA	430, 4000		77703
			<i>i</i> *	naphthalene in cyclohexane ($\epsilon_{414} = 24000 \text{ L mol}^{-1}$	
				cm ⁻¹) and assuming $\Phi_T = 0.77$ for naphthalene and Φ_T	
	Overlate and a	r n æ	420h 4800 / 500	= 0.51 for indole; shoulder at 350 nm; τ_T = 16 μ s	04=0
	Cyclohexane	LP/ET	430° , 4700 ± 500	Triplet ET to anthracene; ε relative to anthracene in	81E08
				cyclohexane ($\epsilon_{422.5} = 64700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ corrected for 4% radical absorption at maximum; and for	
				energy transfer via excited singlet states; $\tau_T = 16 \mu s$;	
				$k_{\text{et}} = 9 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	
	Water (298 K)	LP	~440	Spectrum is the difference between spectra at 50 ns and	75716
	Water	T D/D.A	120 2640	4 μ s; $\tau_{\rm T} = 11.6 \pm 0.5 \mu$ s; pH 7.5	0170
	Water	LP/RA	430, 3640	ϵ relative to indole in cyclohexane ($\epsilon_{430} = 4700 \text{ L}$	81E08
				mol ⁻¹ cm ⁻¹) scaled by halfwidths; assumes oscillator strength is independent of solvent	
				strength is independent of solvent	
2.				•	
	Cyclohexane	LP	432	122 ps delay; rise time of $\sim 30 \times 10^{-3}$ ns	81E30
	Hexane (293 K)	LP	435	Delay 100 ps	82E30
	•		~413		
	9-Iodoanthracene				
33.	and the second s	LP	432	122 ps delay; rise time of $\sim 50 \times 10^{-3}$ ns	81E30
33.	Cyclohexane				
		*	* * *		
4 1	4-Iodobiphenyi	DD	400	tOvugen guenghica	ĝn i n
4 1		PR	400	‡Oxygen quenching	80A2
4 1	4-Iodobiphenyl Toluene	a Waleston		‡Oxygen quenching Solvent was 2.6 mol L^{-1} 2-PrOH	80A2

 ${\sf TABLE~6.} \quad {\sf Spectral~parameters~for~triplet~absorption~of~organic~molecules~in~condensed~phases-Continued}$

lo.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
536.	1-Iodonaphthalene				
	Toluene	PR	430	‡Triplet ET to benz[a] anthracene, oxygen quenching; $\tau_{\rm T} = \sim 0.010~\mu{\rm s}$	80A235
537.	2-Iodonaphthalene				
	EPA (77 K)	FP	424 400		55E002
	Toluene	PR	430	1Oxygen quenching	80A23
				¥,8 4	
538.	β-Ionone	I D (CD	220 95200 12000		78E72
	Hexane	LP/SD	330, 85300 ± 12800	ϵ assumes triplet does not absorb where singlet depletion is followed; $\tau_{\rm T}=0.16~\mu{\rm s}; E_{\rm T}=207~\pm~12~{\rm kJ}~{\rm mol}^{-1}$	76E72
	47 141 4 0				
539.	2-Isopropylthioxanthen-9 Benzene	-one FP	650-670	$\tau_{\rm T} = 95 \ \mu \rm s$	81A29
		**	030-070	7τ — 22 μα	017427
40.	Isopsoralen Benzene	PR/ET	450 ^b , 4700	†Triplet ET to β -carotene; ϵ relative to biphenyl in	78F15
	Donzenc	117.51	430,4700	benzene ($\epsilon_{367} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); "angelicin"; $k_{et} = 5.2 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	/01:13
	Benzene	LP	405°		78E1
	Water	LP	440 ^a	$ au_{\mathrm{T}} = 5.9 \; \mu\mathrm{s}$	78E15
41.	Isoquinoline				
	1-BuOH/Isopentane (77 K)	FP/SD	$419.0, 14900 \pm 1000$ $395^a, 7400^a$	Glass was 3:7 1-BuOH to isopentane; oscillator strength = 0.11	70724
	3-MP (77 K)	MOD/SD	417, 8800 395 ^a	Shoulder at 250 nm	73B00
			375 ^a		
			362° 346°		
			233, 14000		
	EPA (77 K)	PS	488 459	Relative intensities (3:9:100:66)	54B0
			421.6 400		
	Isopentane/MCH (77 K) PS	414.1	Relative intensities (2:1)	54B00
	*		392		
42.	Isoquinoline-N-oxide		446		72710
	Cyclohexane EtOH	FP FP	418 396	$ au_{\mathrm{T}} = 3.6 \; \mu \mathrm{s}$ $ au_{\mathrm{T}} = 7.7 \; \mu \mathrm{s}$	72710 72710
	Water	FP	389	$\tau_{\rm T} = 2.0 \ \mu \rm s$	72710
					•
43.	Kynurenic acid EtOH	LP/ET	570, 29000	‡Triplet ET to naphthalene, oxygen quenching (2 $ imes$	79B08
				10 ⁸ L mol ⁻¹ s ⁻¹); ϵ relative to naphthalene in cyclohexane ($\epsilon_{415} = 24500 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming unit	
				transfer efficiency and assuming ϵ independent of solvent (authors see naphthalene peak at 417.5 nm in	
				EtOH); $k_{\rm et} = 4 \times 10^8 {\rm L \ mol}^{-1} {\rm s}^{-1}$	
	Water	LP	590	†Triplet ET to naphthalene, oxygen quenching; $\tau_T = 10 \ \mu s$; pH 7; $E_T = 278 \ kJ \ mol^{-1}$	79B0
				* / * * * * * * * * * * * * * * * * * * *	
44.	Lumichrome EtOH	I D /D 4	5603 53003	c relative to enthrocens in avalahouses (\$ = 0.71	7776
	EIUH	LP/RA	560°, 5200° 450°, 4000°	ϵ relative to anthracene in cyclohexane ($\Phi_T = 0.71$, $\epsilon_{423} = 64700 \text{ L mol}^{-1} \text{ cm}^{-1}$) and using $\Phi_T = 0.61$ for	1110
			370°, 22600°	lumichrome in ethanol; shoulder around 650 nm	
	Water	LP/RA	640, 5600°	Lifetime measured at 640 nm; ϵ relative to anthracene in	77761
			570, 4800°	cyclohexane ($\Phi_T = 0.71$. $\epsilon_{423} = 64700 \text{ L mol}^{-1} \text{ cm}^{-1}$)	
			400 ^a , 10300 ^a 350 ^a , 9000 ^a	and using $\Phi_T = 0.44$ for lumichrome in water; $\tau_T = 12$ μ s; pH 2.2	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
645	Lumiflavine				
J 1.J.	Chloroform	FP/SD	396°, 8130°	$\tau_{\rm T} = 30~\mu{\rm s}$	68E100
	EtOH	LP/RA	640 ^a , 10100 ^a	ϵ relative to anthracene in cyclohexane ($\Phi_T = 0.71$, ϵ_{423}	777617
	Lion	LIZKA	510 ^a , 5100 ^a	= 64700 L mol ⁻¹ cm ⁻¹) and using $\Phi_T = 0.30$ for	777017
			380°, 12900°	lumiflavine in ethanol; shoulder around 300 nm	
	Water	FP/TD	650, 5000	†Transient sensitive to oxygen and iodide ions; TD	66E087
				assumed, value for ϵ is a lower limit, upper limit is double this value; pH 6.5	
	Water	FP/SD	640, 5300°	Triplet ET to acridine; $\tau_T = 90 \mu s$	68E100
	Water	11/31	376°, 13100°	triplet Er to acronic, 17 = 30 µs	.0012100
	Water	MOD	542 ^a	Another transition with a maximum at shorter wave-	70E295
	vv acci	MOD	542	lengths than 500 nm was also present; $\tau_T = 320 \mu s$	1011273
	Water	FP/TD	690, 4400	Shoulder at $\sim 440^{\circ}$ nm; p K_a 9.8; delay 8 μ s; $\tau_T = 67 \mu$ s;	757078
	,		370, 10700	pH 7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
646	Lumiflavine, conjugate mo	mogeid			
010.	Water	FP/TD	670, 4800	pK_a 4.4; delay 8 μ s; $\tau_T = 29 \mu$ s; pH 2	757078
		11/10	430, 7000	pring 11.1, dental 0 pro, 1.1 — 25 pro, pri 2	751070
			366a, 6400a		
	Water	LP/RA	650, 6900	lifetime measured at 670 nm; ϵ relative to anthracene in	777617
			420°, 7000°	cyclohexane ($\Phi_T = 0.71$, $\epsilon_{423} = 64700 \text{ L mol}^{-1} \text{ cm}^{-1}$)	
			350°, 6500°	and using $\Phi_T = 0.42$ for lumiflavine in water; shoulder around 300 nm; $\tau_T = 20 \mu s$; pH 2.2	
			•	around 500 mm, γ _T = 20 μs, pr 2.2	
o47.	Lumiflavine, negative ion				
	Water	FP/TD	650, ~2000	Shoulder at $\sim 440^{\circ}$ nm; delay 8 μ s; $\tau_T = 63 \mu$ s; pH 13	757078
	•		350, ~11000		
648.	all-trans-Lutein	S			
	Digitonin (293 K)	LP/TD	518, 40000	†Triplet ET from chlorophyll a, oxygen quenching (7	69N00
				× 10 ⁸ L mol ⁻¹ s ⁻¹), temperature independent half-life; aqueous micellar suspension; half-life = 8 0 ms	
649	all-trans-Lycopene			and the second s	
	Hexane	FP-ET	534ª	†Triplet ET from anthracene; 520 nm was the most	69E20
	Tionuic	1,1-131	527	intense peak; $\tau_T = 43 \mu s$; $k_{et} = 1.7 \times 10^{10} L \text{ mol}^{-1} \text{ s}^{-1}$	07120
			520ª	intense peak, $r_T = 45 \mu\text{s}$, $\kappa_{\text{el}} = 1.7 \times 10^{-6} \text{E mor}$	
	Hexane	PR/ET	$525,390000 \pm 20000$	‡Triplet ET from naphthalene; є relative to naph-	713035
		110,21	488ª	thalene in cyclohexane ($\epsilon_{415} = 24500 \text{ L mol}^{-1} \text{ cm}^{-1}$),	713035
			~460	except authors used 412.5 nm as reference λ ; $\tau_T = 8 \mu s$;	
				$k_{\rm et} = 1.4 \times 10^{10} \rm L mol^{-1} s^{-1}$	
	Hexane	PR/ET	$525,495000 \pm 74300$	†Triplet ET from biphenyl; ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming	776412
			•	authors used standard for cyclohexane; $\tau_T = 5.9 \pm 0.6$	
				μ s; $k_{\text{et}} = (2.0 \pm 0.20) \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$:"
650	Lysyltryptophanyllysine				
	Water (293 K)	LP	450	Buffered; $\tau_T = 20 \mu s$; pH 7.0	81A23
			. 4.2.0	Dunicical, 71 = 20 μs, p11 7.0	017122
651.	Magnesium(II) mesoporph	vrin			
	EtOH (77 K)	FP	550ª	Relative intensities (1:7)	82E129
			440°	relative intensities (1.7)	OZEIZ.
	Francisco Company		110		
652.	Magnesium(II) octaethylp	orphyrin			
	MeOH	LP/ELT	440 ^b , 100000	Oxygen and ethyl iodide quenching; ϵ relative to	83A10
		,	430ª	methyl viologen radical cation in MeOH ($\epsilon_{440} = 580 \text{ L}$	001110
		· , · · · · ·	· · · · · · · · · · · · · · · · · · ·	mol ⁻¹ cm ⁻¹)	
652	Magnasina (II) -141-1				
UJJ.	Magnesium(II) phthalocya		400 21000	Colorest man 7.2 dimensional and a second	04410
	Dimethylacetamide- /Water	LP/SD	490, 31000	Solvent was 7:3 dimethylacetamide to water	84A12
	/ Water		* / *		
	Dioxane	FP	500		63B00
		FP	500 400		63B00

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Polyvinylbutyral (293 K)	LP	470		80E867
			400		
	Polyvinylbutyral (293 K)	LP	676	Relative intensities (5:1); polymer film; $\tau_T = 10 \mu s$	82E129
			610		
	PrOH	FP/SD	470, 33600		73E345
	Pyridine	FP	470		58R002
			400		
	Pyridine	FP	500		63B003
			400		
654.	G				
	CTAC	LP	840	Oxygen quenching; aqueous micelles	83N07
	MCII	ED (TD	460	10	01507
	MCH	FP/TD	485, 72000	Oxygen quenching; $\tau_T = 1400 \mu s$	81E27
	SHS/2-Pentanol	7 D	415, 27000	A	023107
	SHS/2-Fentanoi	LP	840 460	Aqueous microemulsion, hexadecane in water; shoul- der at 720 nm	83N07
			1 00	der at 720 mm	
655.	Malachite Green				
	PMMA (77 K)	PS	780		65B004
	· · · · · · · · · · · · · · · · · · ·				
656.	Mercury(II) tetraphenylpo	rphyrin			
	MCH	FP/TD	495, 86000	tOxygen quenching; biexponential decay, reported	81E27
			420, 24000	value is shorter component; $\tau_T = 10 \mu s$	
657.					
	Pyridine	FP	450	Isomer of mesoporphyrin unspecified	58R002
658	Mesoporphyrin, dimethyl e	estar			
050.	Benzene	PR/ET	440b, 32000	Oxygen quenching (1.4 \times 10 ⁹ L mol ⁻¹ s ⁻¹); ϵ relative	80E200
			398ª	to biphenyl in benzene ($\epsilon_{360} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 220 \mu\text{s}$	
	Benzene	LP/TD	440 ^b , 32000	10xygen quenching (1.4 × 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_T = 220$	80E20
		21,12	398ª	μs	
659.	1-(β-Methacryloxyethyl)-3	,3-dimethyl-6'-n	itrospiro(indoline-2,2'-[2 <i>H</i>]	benzopyran)	
	Acetonitrile	LP	430ª		83B11
	Dioxane	LP	440	tOxygen quenching; $\tau_T = 1.0 \mu s$; rise time of <10 ns	
	Toluene	LP	440		83B11
	0447.34.1				
	8,11b-Methanocyclodeca[c	<i>ae</i> Jnaphthalene		tOxygen quenching; $\tau_{\rm T} = 0.20 \pm 0.05 \mu{\rm s}$	
660.	TT	T TO			
660.	Hexane	LP	490	toxygen quenching, τ _T = 0.20 ± 0.05 μs	84F06
660.	Hexane	LP	490 390	toxygen quenching, $T_{\rm T}=0.20\pm0.03~\mu{\rm s}$	84F06
		LP		toxygen quenching, 77 = 0.20 ± 0.00 μ s	84F06
	3-Methoxyacetophenone		390		
		LP LP		Solvent was 4:1 water to acetonitrile; 200 ns delay; $ au_{ m T}$	
	3-Methoxyacetophenone		390		
	3-Methoxyacetophenone Water/Acetonitrile		390	Solvent was 4:1 water to acetonitrile; 200 ns delay; $ au_{ m T}$	
661.	3-Methoxyacetophenone Water/Acetonitrile		390	Solvent was 4:1 water to acetonitrile; 200 ns delay; τ_T = 3.2 μ s; E_T = 303 kJ mol ⁻¹ ϵ relative to benzophenone in cyclohexane (ϵ_{533} =	82A08
661.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone	LP	390 390 ^a	Solvent was 4:1 water to acetonitrile; 200 ns delay; τ_T = 3.2 μ s; E_T = 303 kJ mol ⁻¹ ϵ relative to benzophenone in cyclohexane (ϵ_{533} = 7630 L mol ⁻¹ cm ⁻¹ , assuming no solvent effect from	82A08
661.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone Cyclohexane	LP/RA	390° 390° 360°, 10800°	Solvent was 4:1 water to acetonitrile; 200 ns delay; τ_T = 3.2 μ s; E_T = 303 kJ mol ⁻¹ ϵ relative to benzophenone in cyclohexane (ϵ_{533} =	82A08
661.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone	LP	390 390 ^a	Solvent was 4:1 water to acetonitrile; 200 ns delay; τ_T = 3.2 μ s; E_T = 303 kJ mol ⁻¹ ϵ relative to benzophenone in cyclohexane (ϵ_{533} = 7630 L mol ⁻¹ cm ⁻¹ , assuming no solvent effect from	82A08
661. 662.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone Cyclohexane Toluene	LP/RA	390° 390° 360°, 10800°	Solvent was 4:1 water to acetonitrile; 200 ns delay; τ_T = 3.2 μ s; E_T = 303 kJ mol ⁻¹ ϵ relative to benzophenone in cyclohexane (ϵ_{533} = 7630 L mol ⁻¹ cm ⁻¹ , assuming no solvent effect from	82A08
661.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone Cyclohexane Toluene 3-Methoxy-7H-benz[de]an	LP/RA LP attracen-7-one	390° 390° 360°, 10800° 390	Solvent was 4:1 water to acetonitrile; 200 ns delay; $\tau_T = 3.2 \ \mu s$; $E_T = 303 \ kJ \ mol^{-1}$ ϵ relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630 \ L \ mol^{-1} \ cm^{-1}$, assuming no solvent effect from benzene), and taking all the triplet yields to be unity	82A08 737198 84E14
661. 662.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone Cyclohexane Toluene	LP/RA	390° 390° 360°, 10800°	Solvent was 4:1 water to acetonitrile; 200 ns delay; $\tau_T = 3.2 \ \mu s$; $E_T = 303 \ kJ \ mol^{-1}$ ϵ relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630 \ L \ mol^{-1} \ cm^{-1}$, assuming no solvent effect from benzene), and taking all the triplet yields to be unity †Oxygen quenching (1.3 \times 10° L mol ⁻¹ s ⁻¹); half-life	82A08 737190 84E14
661. 662.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone Cyclohexane Toluene 3-Methoxy-7H-benz[de]an	LP/RA LP attracen-7-one	390° 390° 360°, 10800° 390	Solvent was 4:1 water to acetonitrile; 200 ns delay; $\tau_T = 3.2 \ \mu s$; $E_T = 303 \ kJ \ mol^{-1}$ ϵ relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630 \ L \ mol^{-1} \ cm^{-1}$, assuming no solvent effect from benzene), and taking all the triplet yields to be unity	82A08 737198 84E14
661. 662.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone Cyclohexane Toluene 3-Methoxy-7H-benz[de]an Benzene	LP/RA LP attracen-7-one	390° 390° 360°, 10800° 390	Solvent was 4:1 water to acetonitrile; 200 ns delay; $\tau_T = 3.2 \ \mu s$; $E_T = 303 \ kJ \ mol^{-1}$ ϵ relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630 \ L \ mol^{-1} \ cm^{-1}$, assuming no solvent effect from benzene), and taking all the triplet yields to be unity †Oxygen quenching (1.3 \times 10° L mol ⁻¹ s ⁻¹); half-life	82A08 73719 84E14 75742
661. 662.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone Cyclohexane Toluene 3-Methoxy-7H-benz[de]an Benzene	LP/RA LP attracen-7-one	390° 390° 360°, 10800° 390	Solvent was 4:1 water to acetonitrile; 200 ns delay; $\tau_T = 3.2 \ \mu s$; $E_T = 303 \ kJ \ mol^{-1}$ ϵ relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630 \ L \ mol^{-1} \ cm^{-1}$, assuming no solvent effect from benzene), and taking all the triplet yields to be unity †Oxygen quenching (1.3 \times 10° L mol ⁻¹ s ⁻¹); half-life	82A08 73719 84E14 75742
661. 662.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone Cyclohexane Toluene 3-Methoxy-7H-benz[de]an Benzene 4-Methoxybenzophenone	LP LP/RA LP attracen-7-one LP	390° 390° 360°, 10800° 390° ~505°	Solvent was 4:1 water to acetonitrile; 200 ns delay; $\tau_T = 3.2 \ \mu s$; $E_T = 303 \ kJ \ mol^{-1}$ ϵ relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630 \ L \ mol^{-1} \ cm^{-1}$, assuming no solvent effect from benzene), and taking all the triplet yields to be unity †Oxygen quenching (1.3 × 10° L mol^{-1} s^{-1}); half-life = 2.4 ± 0.2 μs Solvent was 9:1 acetonitrile to water; ϵ relative to 1-methylnaphthalene in acetonitrile/water ($\epsilon_{415} = 10.2 \ \mu s$	82A08 73719 84E14 75742
661. 662.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone Cyclohexane Toluene 3-Methoxy-7H-benz[de]an Benzene 4-Methoxybenzophenone	LP LP/RA LP attracen-7-one LP	390 390 360°, 10800° 390 ~505° 680, 3400	Solvent was 4:1 water to acetonitrile; 200 ns delay; $\tau_T = 3.2 \ \mu \text{s}$; $E_T = 303 \ \text{kJ mol}^{-1}$ ϵ relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630 \ \text{L mol}^{-1} \ \text{cm}^{-1}$, assuming no solvent effect from benzene), and taking all the triplet yields to be unity †Oxygen quenching (1.3 × 10° L mol} s -1); half-life = 2.4 ± 0.2 μs Solvent was 9:1 acetonitrile to water; ϵ relative to	82A08 73719 84E14 75742
661. 662.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone Cyclohexane Toluene 3-Methoxy-7H-benz[de]an Benzene 4-Methoxybenzophenone	LP LP/RA LP attracen-7-one LP	390 390 390 360°, 10800° 390 ~505° 680, 3400 520, 5400	Solvent was 4:1 water to acetonitrile; 200 ns delay; $\tau_T = 3.2 \ \mu s$; $E_T = 303 \ kJ \ mol^{-1}$ ϵ relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630 \ L \ mol^{-1} \ cm^{-1}$, assuming no solvent effect from benzene), and taking all the triplet yields to be unity †Oxygen quenching (1.3 \times 10° L mol ⁻¹ s ⁻¹); half-life = 2.4 \pm 0.2 μs Solvent was 9:1 acetonitrile to water; ϵ relative to 1-methylnaphthalene in acetonitrile/water ($\epsilon_{415} = 11200 \ L \ mol^{-1} \ cm^{-1}$)	737198 84E14 75742 84B03
661. 662.	3-Methoxyacetophenone Water/Acetonitrile 4-Methoxyacetophenone Cyclohexane Toluene 3-Methoxy-7H-benz[de]an Benzene 4-Methoxybenzophenone	LP LP/RA LP attracen-7-one LP	390 390 360°, 10800° 390 ~505° 680, 3400 520, 5400 450, 4700	Solvent was 4:1 water to acetonitrile; 200 ns delay; $\tau_T = 3.2 \ \mu s$; $E_T = 303 \ kJ \ mol^{-1}$ ϵ relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630 \ L \ mol^{-1} \ cm^{-1}$, assuming no solvent effect from benzene), and taking all the triplet yields to be unity †Oxygen quenching (1.3 × 10° L mol^{-1} s^{-1}); half-life = 2.4 ± 0.2 μs Solvent was 9:1 acetonitrile to water; ϵ relative to 1-methylnaphthalene in acetonitrile/water ($\epsilon_{415} = 10.2 \ \mu s$	82A08 737198 84E14 75742' 84B03

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
665.	9-[2-(4-Methoxycarbonylbe	enzoxy)ethyl]ca	rbazole		
	2-MTHF	LP	500 ^a 420	Relative intensities (1:2); $\tau_T = 5 \mu s$; rise time of 10 ns	81E016
666.	9-[3-(4-Methoxycarbonylb	enzoxy)propyl]c	arbazole		
•	2-MTHF	LP:	490ª 420	Relative intensities (1:2); $\tau_T = 5 \mu s$	81E016
667.	4-Methoxychalcone				
	Heptane	LP	480 ± 15	"3-(4-Methoxyphenyl)-1-phenyl-2-propen-1-one"; τ_T = 0.023 μs	83E347
	MeOH	LP	525 ± 15	$\tau_{\rm T}=0.029~\mu{\rm s}$	83E347
668.	(R)-4-Methoxydinaphtho[2 2-MTHF (96 K)	2,1-d:1',2'-f][1, PS/KM	3,2]dioxaphosphepin 4-oxide 420 ^a , 11100 ^a 400 ^a , 9100 ^a	Compound "IV" in paper	83E383
669	4-Methoxydinaphtho[2,1-a	!:1'.2'-f][1.3.2]	dioxanhosphenin 4-oxide		
	MTHF (102 K)	PS	418 ^a 400 ^a	Relative intensities (5:4); solvent and temperature assumed; $\tau_T=10^6~\mu s$	80E361
670.	8'-Methoxy-5-methyl-6'-	nitrospiro (5.6-d	ihydrophenanthridine-6,2)-(2 <i>H</i>	/)chromenel	
	Toluene	FP	640° 510°	†Triplet ET from fluorene; $E_{\rm T} = 217-288 \text{ kJ mol}^{-1}$	767647
671	2-Methoxy-2-methyl-1-pho	mul 1 mronanon			
071.		LP	475 430 400	†Phosphorescence decay, oxygen quenching (1.1 \times 10 ⁹ L mol ⁻¹ s ⁻¹); relative intensities (2:3:6); lifetime limited by reaction with solvent; $\tau_T=0.12~\mu s$	80E642
672.	1-Methoxynaphthalene		•		
	3-MP (77 K)	PS	49. - 462 - 441.	441 nm peak was the most intense	74B004
	Cyclohexane	LP/ET	417 440, 7000 \pm 500	Triplet ET from TMPD; ε relative to TMPD in cy-	757282
			The second second	clohexane ($\epsilon_{570} = 11900 \text{ L mol}^{-1} \text{ cm}^{-1}$)	
	EPA (77 K)	; FP	490 465 440 420 395 370	440 nm was the most intense peak; $\tau_{\rm T} = 2.3 \times 10^6 \mu {\rm s}$	677485
	EtOH (293 K)	FP	436		68E098
	Isopentane/MCH/Et ₂ O (77 K)	PS	488° 459° 435°	Glass was 6:1:0.7 isopentane to MCH to Et ₂ O; shoulder at 397* nm; 435 nm was the most intense peak	71B003
	MeOH	FP	417ª -445ª		736218
672	2 Mathausmanhthalana				
673.	2-Methoxynaphthalene 3-MP (77 K)	PS	432 408 388 368 351.5	432 nm peak was the most intense	74B004
	Cyclohexane	LP/ET	$435, 15000 \pm 800$	†Triplet ET from TMPD; ϵ relative to TMPD in cyclohexane ($\epsilon_{570} = 11900 \text{ L mol}^{-1} \text{ cm}^{-1}$)	757282
	Heptane	FP	440*	Lifetimes suggest solution not fully deaerated; $\tau_T = 50$ $\pm 5 \mu s$	77E663
	Isopentane/MCH/Et ₂ O (77 K)	** : PS	435° 412°	± 3 μs dess was 6:1:0.7 isopentane to MCH to Et ₂ O; shoulders at 391 ^a and 375 ^a nm; 435 nm was the more intense peak	71B003

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

74. 4-Methoxy-1-naphthonitrile EPA (77 K) FP 522.5 495 469 450 425 75. cis,cis,-1-(3'-Methoxy-5'-nitro-2'-oxo-3',5'-cyclohexadienyl)-3,4-dimethyl-1,3-pentadiene Toluene LP/SD 520, ~9000 330, ~12000 tral overlaps with another triplet and a phot 176. trans-3-Methoxy-4'-nitrostilbene Glycerol triacetate LP 755 Relative intensities (1:2:2) Glycerol triacetate LP 755 Relative intensities (1:2:2) 77. cis,-4-Methoxy-4'-nitrostilbene Benzene LP 600a Relative intensities (3:2); identical spectrum from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum from trans isomer Relative intensities (2:1); identical spectrum from trans isomer	e of spec- 83F oproduct 78F 78F
495 469 450 425 75. cis,cis-1-(3'-Methoxy-5'-nitro-2'-oxo-3',5'-cyclohexadienyl)-3,4-dimethyl-1,3-pentadiene Toluene LP/SD 520, ~9000 330, ~12000 tral overlaps with another triplet and a phote 176. trans-3-Methoxy-4'-nitrostilbene Glycerol triacetate LP 755 Relative intensities (1:2:2) (198 K) 552 420 Glycerol triacetate LP 755 Relative intensities (1:2:2) 554 412 177. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600a Relative intensities (3:2); identical spectrum from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum from trans isomer	e of spec- 83F oproduct 78F 78F
469 450 425 75. cis,cis-1-(3'-Methoxy-5'-nitro-2'-oxo-3',5'-cyclohexadienyl)-3,4-dimethyl-1,3-pentadiene Toluene LP/SD 520, ~9000 ‡Oxygen quenching; \(\epsilon\) s are uncertain because 330, ~12000 tral overlaps with another triplet and a phote (76. trans-3-Methoxy-4'-nitrostilbene Glycerol triacetate LP 755 Relative intensities (1:2:2) (198 K) 552 Glycerol triacetate LP 755 Relative intensities (1:2:2) (77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600° Relative intensities (3:2); identical spectrum from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum from trans isomer	78I 78I
450 425 75. cis,cis-1-(3'-Methoxy-5'-nitro-2'-oxo-3',5'-cyclohexadienyl)-3,4-dimethyl-1,3-pentadiene Toluene LP/SD 520, ~9000 †Oxygen quenching; e's are uncertain because 330, ~12000 tral overlaps with another triplet and a phot (76. trans-3-Methoxy-4'-nitrostilbene Glycerol triacetate LP 755 Relative intensities (1:2:2) (198 K) 552 Glycerol triacetate LP 755 Relative intensities (1:2:2) (198 K) 554 420 Glycerol triacetate LP 755 Relative intensities (1:2:2) (77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600a Relative intensities (3:2); identical spectrum 420a from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	78I 78I
75. cis,cis-1-(3'-Methoxy-5'-nitro-2'-oxo-3',5'-cyclohexadienyl)-3,4-dimethyl-1,3-pentadiene Toluene LP/SD 520, ~9000 †Oxygen quenching; \epsilon's are uncertain because 330, ~12000 tral overlaps with another triplet and a phote series of trans-3-Methoxy-4'-nitrostilbene Glycerol triacetate LP 755 Relative intensities (1:2:2) (198 K) 552 (198 K) 420 Glycerol triacetate LP 755 Relative intensities (1:2:2)	78I 78I
75. cis,cis-1-(3'-Methoxy-5'-nitro-2'-oxo-3',5'-cyclohexadienyl)-3,4-dimethyl-1,3-pentadiene Toluene LP/SD 520, ~9000 †Oxygen quenching; \epsilon's are uncertain because 330, ~12000 tral overlaps with another triplet and a phote series of trans-3-Methoxy-4'-nitrostilbene Glycerol triacetate LP 755 Relative intensities (1:2:2) (198 K) 552 (198 K) 420 Glycerol triacetate LP 755 Relative intensities (1:2:2)	78I 78I
Toluene LP/SD 520, ~9000 †Oxygen quenching; e's are uncertain because 330, ~12000 tral overlaps with another triplet and a phote trans-3-Methoxy-4'-nitrostilbene Glycerol triacetate LP 755 Relative intensities (1:2:2) Glycerol triacetate LP 755 Relative intensities (1:2:2) Glycerol triacetate LP 755 Relative intensities (1:2:2) 554 412 77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600a Relative intensities (3:2); identical spectrum 420a from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum from trans isomer	78I 78I
Toluene LP/SD 520, ~9000 †Oxygen quenching; e's are uncertain because 330, ~12000 tral overlaps with another triplet and a phote trans-3-Methoxy-4'-nitrostilbene Glycerol triacetate LP 755 Relative intensities (1:2:2) Glycerol triacetate LP 755 Relative intensities (1:2:2) Glycerol triacetate LP 755 Relative intensities (1:2:2) 554 412 77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600a Relative intensities (3:2); identical spectrum 420a from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum from trans isomer	78I 78I
330, ~12000 tral overlaps with another triplet and a photograph of trans-3-Methoxy-4'-nitrostilbene Glycerol triacetate LP 755 Relative intensities (1:2:2) Glycerol triacetate LP 755 Relative intensities (1:2:2) Glycerol triacetate LP 755 Relative intensities (1:2:2) 77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600a Relative intensities (3:2); identical spectrum 420a from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	78I 78I
Glycerol triacetate LP 755 Relative intensities (1:2:2) (198 K) 552 420 Glycerol triacetate LP 755 Relative intensities (1:2:2) (77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600° Relative intensities (3:2); identical spectrum 420° from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	781
Glycerol triacetate LP 755 Relative intensities (1:2:2) 77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600° Relative intensities (3:2); identical spectrum 420° from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	781
Glycerol triacetate LP 755 Relative intensities (1:2:2) 77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600° Relative intensities (3:2); identical spectrum 420° from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	
Glycerol triacetate LP 755 Relative intensities (1:2:2) 777. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600° 420° From trans isomer Cyclohexane LP 545 Relative intensities (3:2); identical spectrum from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum from trans isomer Relative intensities (9:10); identical spectrum from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum from trans isomer	
Glycerol triacetate LP 755 Relative intensities (1:2:2) 554 412 77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600 ^a Relative intensities (3:2); identical spectrum 420 ^a from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	
554 412 77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600° Relative intensities (3:2); identical spectrum 420° from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	
412 77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600° Relative intensities (3:2); identical spectrum 420° from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	derived 701
77. cis-4-Methoxy-4'-nitrostilbene Benzene LP 600° Relative intensities (3:2); identical spectrum 420° from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	derived 701
Benzene LP 600° Relative intensities (3:2); identical spectrum 420° from trans isomer Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	derived 701
Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	derived 701
Cyclohexane LP 545 Relative intensities (9:10); identical spectrum 416 from trans isomer DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	. ucriveu /81
DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer 652 Relative intensities (2:1); identical spectrum	
DMF LP 652 Relative intensities (2:1); identical spectrum 466 from trans isomer	derived 781
466 from <i>trans</i> isomer	
466 from trans isomer	derived 781
MoOH ID COOR District formation (0.1) the city	
MeOH LP 680 ^a Relative intensities (2:1); identical spectrum	derived 781
440 ^a from <i>trans</i> isomer	
70	
78. trans-4-Methoxy-4'-nitrostilbene	
2,2-Dimethylbutane- FP 650 ^a Glass 3:8 pentane to 2,2-dimethylbutane	747
/Pentane (77 K) 600°	
Benzene LP 600° Relative intensities (3:2); identical spectrum	n derived 781
420° from cis isomer	
Cyclohexane LP 600 ‡Oxygen quenching in benzene; $\tau_T = 0.090$	μs 747
Cyclohexane LP 580 Identical spectrum obtained from cis-isomer	
quenching $(5.3 \times 10^9 \text{L mol}^{-1} \text{s}^{-1})$; $\tau_{\rm T} = 0.0$	
Cyclohexane LP 545 Relative intensities (9:10); identical spectrum	
416 from ets isomer	
DMF LP 652 Relative intensities (2:1); identical spectrum	derived 781
466 from cis isomer	actived /01
	Alex
EPA (77 K) FP 645 Shoulders at 540 and 490 nm; 645 nm was	the most 677
intense peak; $\tau_T = 1.5 \times 10^4 \mu s$	
450	
EPA (88 K) LP 610 610 nm peak was the more intense	78]
526	
EPA LP 600 600 nm peak was the more intense	781
526	`
Glycerol triacetate LP ~780 Most intense peak at 624 nm	783
624	
444	
Glycerol triacetate LP ~780 Most intense peak at 625 nm	781
(198 K) 625	
460	
	us 74°
	10 /4
600	
MeOH LP 680° Relative intensities (2:1); identical spectrum	n derived 78
440 ^a from <i>cis</i> isomer	
679. 4-Methoxyphenol	
EtOH (77 K) MOD 444° †Phosphorescence decay; $\tau_T = (2.9 \pm 0.2)$	\times 10 ⁶ μ s 70 ⁶
392"	•

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} $/nm$ /L mol^{-1}		Ref.
		<u> </u>		A Section of the sect	
80.	2-[1-(4-Methoxyphenyl)-hydexane	drazinyl-2-yliden LP	e]- 1-(4-nitrophenyl)-1 510	,3-diketobutane †Triplet ET to β -carotene and from biphenyl, oxygen	80A0
	FIEAAIIC	LF	510	quenching; half-life = 0.045 μ s; $E_T = 190 \pm 10 \text{ kJ}$ mol ⁻¹	OUAU
81.	trans-1-(4-Methoxyphenyl)				
	Benzene	LP	520°	$\tau_{\rm T}=0.015~\mu{\rm s}$	78E0
	Benzene/Acetonitrile	LP	525*	Solvent was 8:2 benzene to acetonitrile by volume; τ_T = 0.019 μ s	78E0
٠.	Cyclohexane	LP	450°	$\tau_{\rm T}=0.0098~\mu{\rm s}$	78E0
	EPA (77 K)	PS/KM	740		78E0
			530		
82.	4'-Methoxypropiophenone	e e e e e e e e e e e e e e e e e e e			
	Benzene	LP/ET	390, 12000	†Triplet ET to naphthalene; ϵ relative to naphthalene in benzene ($\epsilon_{425} = 13000 \text{ L mol}^{-1} \text{ cm}^{-1}$)	81A1
	Benzene	LP	382ª	in ochzene (425 – 13000 E mor om)	84E0
	And the second		•	and the second s	
83.	5-Methoxypsoralen	. in	4.550	the state of the s	.
	Benzene Benzene	LP PR/ET	455 ^a 450 ^b , 10200	"Bergapten"	78E1
	Беплене	PRZEI	430-, 10200	†Triplet ET to β -carotene; ϵ relative to hiphenyl in benzene ($\epsilon_{367} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); $k_{\text{et}} = 4.6 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	ANESI
	EtOH	LP/ET	461a, 11100a	ϵ relative to retinol, but actual reference ϵ used was not	83E3
			450 ^b , 9500	specified; $\tau_{\rm T} = 4.2 \mu \rm s$	
84.	8-Methoxypsoralen				
•	Benzene	LP	470°	"Xanthotoxin"; $\tau_{\rm T} = 1.1 \ \mu {\rm s}$	78E1
			390ª		
	Benzene	FP-ET	600	†Triplet ET from acetophenone; relative intensities	79R0
	EtOH	LP/ET	480 370, 24000	(1:2) †Triplet ET to retinol; ε relative to retinol in hexane	70126
	Lion	LIVEI	570, 24000	($\epsilon_{105} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming ϵ independent of solvent; $\tau_T = 10 \ \mu\text{s}$; $k_{\text{et}} = 5.3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	79120
	EtOH	LP/ET	370°, 21000	ϵ relative to retinol, but actual reference ϵ used was not specified; $\tau_T = 2.3 \ \mu s$	83E3
	Glycerol	FP.	600	Oxygen quenching; there was a long-lived species	7574
			480	that was attributed to a secondary product; there was	
	Glycerol/Water	FP-ET	630	another maximum <340 nm Solvent contains 57% (wt) glycerol; relative intensities	7000
	Gryceron, water	11-151	480	(5:4:10)	/310
	- NATIONAL STREET		360		
	МеОН	LP	600 370		79B0
	Water	LP	> 580°		78E1
			350 ^a		
	Water	LP	360	Oxygen quenching $(3.3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; radical contributions subtracted and no infrared peak ob-	79A 1
	Water	LP/SD	370b, 16500	served; $\tau_{\rm T} = 1.6 \ \mu s$ $\tau_{\rm T} = 2.4 \ \mu s$	83E3
	and the second				JJ 101
585.	trans-4-Methoxystilbene				٠٠
	EPA (77 K)	FP	400 382.5	Shoulder at 365 nm; 400 nm was the more intense peak; $\tau_T = 2.35 \times 10^4 \mu s$	6774
86.	8-Methoxy-2,2,3-trimethyl	6-nitro 2U ak-a	mono		
	Toluene	LP/SD	520, ∼8000	Oxygen quenching; e's are uncertain because of spec-	83F0
		,	330, ~10000	tral overlaps with another triplet and a photoproduct	551
07	6 Mathama 1 2 2 4-1 43 1	61 -taux t 42	0/		
87.	6-Methoxy-1,3,3-trimethyl Toluene (298 K)	-6'-nitrospiro-(2, FP	2 -indolin[2 <i>H</i> -1]benz 470	toxygen quenching, activationless decay; assigned to	67B(
	·/				

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

lo.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
588.	7'-Methoxy-1,3,3-trimet	hyl-6′-nitrospiro-(2	2,2'-indolin[2 <i>H-</i> 1]benzopyrai	1)	
	Toluene (298 K)	FP	445	tOxygen quenching, activationless decay; assigned to $\pi \to \pi^*$ transition in uncolored form	67B003
589.	Methyl Violet				
	PMMA (193 K)	PS	630		59B001
	PMMA (77 K)	PS	1290 1200 1100 770		65B004
			665 640		
	PMMA (77 K)	PS	620 1112 ^a 613 ^a	Relative intensities (1:5); shoulder at 524" nm; solvent contains 2-chloroethanol	69 B 00.
90.	2-Methylaceanthren-1-or	ne			
	EPA (77 K)	FP	455	†Phosphorescence decay; $\tau_{\rm T} = 5900 \ \mu {\rm s}$	82E338
591.	3-Methylacetophenone				
	2-PrOH Cyclohexane	LP LP	339° 332°	†Quenching with oxygen, piperylene, and naphthalene †Quenching with oxygen, piperylene, and naphthalene	737473 737473
	Сустопелине	Li	332	t Quenching with Oxygen, piper yiene, and naphthalene	131413
692.	4-Methylacetophenone Cyclohexane	LP/RA	331°, 11400°	ϵ relative to benzophenone in cyclohexane ($\epsilon_{533} = 7630 \text{ L mol}^{-1} \text{ cm}^{-1}$, assuming no solvent effect from benzene), and taking all the triplet yields to be unity	737198
				benzene,, and taking an the triplet yields to be unity	
593.	9-Methylacridine EtOH (298 K)	FP/?	521 ^a , 3000 ^a 452 ^a , 30000 ^a		69722
			408 ^a , 10000 ^a 330 ^a , 10000 ^a		
504	10 Mother 0(10H) could	im adhiama			
194.	10-Methyl-9(10H)-acrid Acetonitrile (296 K)	LP/SD	$520 \pm 3,9000 \pm 900$	$tOxygen (4.5 \times 10^9 L mol^{-1} s^{-1})$ and nitroxide radical	84E34
	,			quenching and triplet ET to anthracene; $\tau_{\rm T}=1.6\pm0.3~\mu{\rm s}$	
	Benzene (296 K)	LP/ET&SD	$520 \pm 3,9300 \pm 900$	‡Oxygen (5.2 × 10 ⁹ L mol ⁻¹ s ⁻¹) and nitroxide radical quenching and triplet ET to anthracene; ϵ relative to 1,6-diphenyl-1,3,5-hexatriene in benzene ($\epsilon_{426} = 104000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{\rm T} = 2.5 \pm 0.5 \ \mu \text{s}$	84E34
	Cyclohexane (296 K)	LP/ET&SD	$520 \pm 3,8800 \pm 900$	†Oxygen (4.8 × 10° L mol ⁻¹ s ⁻¹) and nitroxide radical quenching and triplet ET to anthracene; ϵ relative to 1,6-diphenyl-1,3,5-hexatriene in cyclohexane ($\epsilon_{416} = 114000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{\rm T} = 2.6 \pm 0.5 \ \mu \text{s}$	84E34
	MeOH (296 K)	LP/ET&SD	520 ± 3, 8500 ± 900	†Oxygen (4.5 × 10° L mol ⁻¹ s ⁻¹) and nitroxide radical quenching and triplet ET to anthracene; ϵ relative to 1,6-diphenyl-1,3,5-hexatriene in MeOH ($\epsilon_{410} = 121000$ L mol ⁻¹ cm ⁻¹); $\tau_T = 2.3 \pm 0.5 \mu s$	84E34
695.	4-(Methylamino)benzoic EtOH (93 K)	e acid PS	435° 405° 363°		66 B 00
			302		
696.	N-Methyl-1-anilinonaph MCH (296 K)	ithalene LP	602ª	$\tau_{\rm T}=2000~\mu{\rm s}$	82E52
	14CII (270 K)	LI	420ª	/Τ – 2000 μ3	السلطان
697.	N-Methyl-2-anilinonaph	ıthalene			
	MCH (153 K)	FP	500	‡Phosphorescence decay; lifetime = 120 μs at 294 K	82E5

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

699. I	N-Methyl-2-anilino-6-naph EtOH (293 K) 2-Methylanthracene EtOH EtOH/MeOH (113 K)	thalenesulfonate FP LP FP/TD	427° 405° 901°, 195° 854°, 150° 814°, 100° 799°, 90° 790°, 60° 775°, 110° 762°, 90° 736°, 80° 724°, 90°	$τ_T$ = 200 μs †Phosphorescence decay; shoulders at 687², 672³, 648³, 634³, 532³, 328³, and 272³ nm	82E527 706157 72B001
699. I	EtOH (293 K) 2-Methylanthracene EtOH	FP LP	427° 405° 901°, 195° 854°, 150° 814°, 100° 799°, 90° 790°, 60° 775°, 110° 762°, 90° 736°, 80° 724°, 90°	†Phosphorescence decay; shoulders at 687 ^a , 672 ^a , 648 ^a ,	706157
I	EtOH		405° 901°, 195° 854°, 150° 814°, 100° 799°, 90° 790°, 60° 775°, 110° 762°, 90° 736°, 80° 724°, 90°		*
			405° 901°, 195° 854°, 150° 814°, 100° 799°, 90° 790°, 60° 775°, 110° 762°, 90° 736°, 80° 724°, 90°		*
ÿ 1	EtOH/MeOH (113 K)	FP/TD	901a, 195a 854a, 150a 814a, 100a 799a, 90a 790a, 60a 775a, 110a 762a, 90a 736a, 80a 724a, 90a		72B001
			854a, 150a 814a, 100a 799a, 90a 790a, 60a 775a, 110a 762a, 90a 736a, 80a 724a, 90a		
			799 ^a , 90 ^a 790 ^a , 60 ^a 775 ^a , 110 ^a 762 ^a , 90 ^a 736 ^a , 80 ^a 724 ^a , 90 ^a		
			790 ^a , 60 ^a 775 ^a , 110 ^a 762 ^a , 90 ^a 736 ^a , 80 ^a 724 ^a , 90 ^a		
			775 ^a , 110 ^a 762 ^a , 90 ^a 736 ^a , 80 ^a 724 ^a , 90 ^a		
			762 ^a , 90 ^a 736 ^a , 80 ^a 724 ^a , 90 ^a		
			736 ^a , 80 ^a 724 ^a , 90 ^a		
			724ª, 90ª		
			the second control of		
			714°, 90°		
			702 ^a , 100 ^a		
			693 ^a , 80 ^a		
			658°, 70°		
			569*, 150* 522* 1200*		
			522 ^a , 1200 ^a 481 ^a , 1600 ^a		
			431°, 73000°		
			407°, 22300°	•	
			384°, 3900°		
			366°, 1700°		
			317 ^a , 2300 ^a		
			305°, 2200°		
	РММА	FP	263°, 68300° 901°	Lifetime same as 430 nm triplet band; if $\epsilon_{430} \sim 50000$	66E08
			855ª	L mol ⁻¹ cm ⁻¹ , then $\epsilon \sim 700$ L mol ⁻¹ cm ⁻¹ for near	OOLOG
			803ª	infrared band; $\tau_{\rm T} = (2.1 \pm 1) \times 10^4 \mu \rm s$	
			770°		
			430		
700.	9-Methylanthracene				
	Benzene	PR/ET	430, 64200	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 10300$	69008
	and the second second			L mol ⁻¹ cm ⁻¹)	0,000
1	Benzene	PR/ET	430, 51300	ϵ relative to naphthalene in benzene ($\epsilon_{max} = 17500 \text{ L}$	69008
	2 (b) 1 (c)			$moi^{-1} cm^{-1}$)	
	Cyclohexane	PR	425		69008
	Dioxane EtOH	PR LP	425 425°		69008
	DIOII	Lr	405 ^a		70615
	EtOH	FP/ET	440 ^b , 2800	Triplet ET from eosin and proflavine; ϵ relative to	71623
	,		426 ^b , 37400	eosin in EtOH ($\epsilon_{580} = 9400 \text{ L mol}^{-1} \text{ cm}^{-1}$) and pro-	, , , , ,
			424, 43000	flavine in EtOH ($\epsilon_{550} = 11000 \text{ L mol}^{-1} \text{ cm}^{-1}$)	· . '
			420b, 24000		
	EtOH	FP-ET/RA	694 ^b , 47	ϵ relative to 9-methylanthracene in EtOII ($\epsilon_{424} =$	78E01
	Liquid paraffin	FP	428	43000 L mol ⁻¹ cm ⁻¹)	451702
: '	Elquid parairiii	1.1	720		65F03
701.	9-Methylanthracene-d ₁₂				
	EtOH	LP	424ª		70615
v.		•			
	Methyl benzoate				
	Cyclohexane (290 K)	FP	333ª	10 μs delay	76755
			A Company		
4.0	2-Methylbenzoic acid			Clare a Art	
- 1	Isopentane/MCH (77 K)	FP	325ª	Phosphorescence decay; solvent was 5:1 isopentane	77622
			310 ^a	to MCH by volume; dimeric species; shoulder at 350° nm; $\tau_T = 1.16 \times 10^6 \ \mu s$	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
704.	3-Methylbenzoic acid Isopentane/MCH (77 K)	FP	325° 310°	†Phosphorescence decay; solvent was 5:1 isopentane to MCH by volume; dimeric species; $\tau_{\rm T}=3.95\times10^6$ µs	776222
705	4-Methylbenzoic acid				
, 05.	Isopentane/MCH (77 K)	FP	330 ^a 315 ^a	†Phosphorescence decay; solvent was 5:1 isopentane to MCH by volume; dimeric species; $\tau_{\rm T}=3.45\times10^6$ $\mu{\rm s}$	776222
706.	2-Methylbenzophenone EtOH	LP	520	$ au_{\mathrm{T}} = 0.0028 \ \mu \mathrm{s}$	84B003
707.	4-Methylbenzophenone Acetonitrile/Water	LP/ET	525, 6600 315, 11700	Solvent was 9:1 acetonitrile to water; ϵ relative to 1-methylnaphthalene in acetonitrile/water ($\epsilon_{415} = 11200 \text{ L mol}^{-1} \text{ cm}^{-1}$)	84B033
708.	Methyl-1,4-benzoquinone				
	Water	LP	460 410	$\tau_{\rm T}=0.37~\mu{\rm s}$	80B112
709.	(2'-Methylbenzoyl)amino- Cyclohexane (293 K)	·2-Δ²-thiazoline FP/RA	550, 7400	†Triplet ET to biacetyl, oxygen quenching; ϵ relative to naphthalene in cyclohexane ($\epsilon_{414}=24500~L~mol^{-1}~cm^{-1}$); $\tau_T=450~\mu s$	82E37
710	(4'-Methylbenzoyl)amino-	.2.A ² .thiazoline			
710.	Cyclohexane (293 K)	FP/RA	550, 9600	‡Triplet energy transfer to biacetyl, oxygen quenching; ϵ relative to naphthalene in cyclohexane ($\epsilon_{414} = 24500 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 2000 \mu\text{s}$	82E37
711.	Methyl benzoylformate Benzene (298 K)	LP	446ª	Shoulders at 431° and 400° nm; $\tau_T = 1 \mu s$	84A03
	Delizene (250 K)	Li		Shoulders at 431° and 400° min, 17° = 1° µs	042102
712.	Methylchlorophyllide a				
	Acetone	FP	520 470		65R02
	Benzene	FP	520 470		65R02
	EtOH	FP	520 470		65R02
712	1 N/-4b-1 4 [4	11			
/13.	1-Methyl-4-[4-cyanostyryl EtOH (103 K)	LP	415	Lifetime constant below 113 K; $\tau_T = \sim 500 \ \mu s$	83E50
714.	10-Methyl-5-deazaisoallox Water	kazine-3-propan LP	nesulfonate ion 660ª 516ª	Delay 200 ns; half-life = $7.5 \mu s$	82B04
715.	3-Methyl-5-deazalumiflav	ine			
	Water	FP/TD	700^{b} , 3600 ± 200 684^{a} , 3700^{a} 501^{a} , 8100^{a}	рН 9.2	81A43
716.	1-Methyldeoxybenzoin Benzene	LP	325	‡Oxygen quenching (> $10^9 L \text{ mol}^{-1} \text{ s}^{-1}$); $\tau_T = 0.09 \mu \text{s}$	79 A 02
717	Beal and American				
717.	Methyl 4-dimethylaminob EtOH (93 K)	enzoate PS	435° 412°	357 nm was the most intense peak	66 B 00
			391 ^a 357 ^a		

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

lo.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
718.	N-Methyldiphenylamine				
7.34	EPA (118 K)	FP/COM	540, 26000 ± 3000	†Phosphorescence decay; ϵ based on quantitative decay of triplet to N -methyl-4a,4b-dihydrocarbazole whose room temperature $\epsilon_{610}=21000\pm2000$ L mol $^{-1}$ cm $^{-1}$ in MCH	737125
719.	Methylene Blue cation				
	Acetonitrile	FP	870° 750° 520° 422°	$\tau_{\rm T}=150~\mu{\rm s}$	77A.20
	Acetonitrile	LP	870 420	1 μ s delay; semioxidized cation radical ($\lambda_{max} = 520$ nm) also observed; half-life = 12.5 μ s	81A34
	Acetonitrile	LP	860 ^a 780 ^a	†Oxygen quenching $(1.7 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; relative	84E21
	Acetonitrile/Water	LP	840° 750°	intensities (7.4); 1 μ s delay; $\tau_T = 14 \mu$ s †Oxygen quenching; relative intensities (13.6); 1 μ s delay; solvent was 1.1 acetonitrile to water by volume	84E21
	CTAB	LP	420	Aqueous micelles	83N06
	EtOH	LP	847ª	847 nm was the most intense peak; $\tau_T = 450 \ \mu s$	756162
			775° 418°		
	EtOH	LP/SD	860 780		767803
			420 410 ⁶ , 20000		
	EtOH	LP/SD	860, 27000 420, 14000	ϵ assumes triplet does not absorb at 658 nm where SD was followed; solvent and temperature assumed	78E39
	EtOH/Water	LP/TD	840, 20000 420, 9000		79B10
	МеОН	LP/SD	420, 11000	to to triplet absorption at 650 nm; $\tau_T = 5.9 \mu s$	76757
	МеОН	LP/SD	410, 22000		79A23
	Water	FP	420 280	$pK_b = 7.2$; pH Neutral; half-life = 130 μ s	64B00
	Water	FP	800	p $K_b = 7.3$; delay 20 μ s; $\tau_T = \sim 30 \ \mu$ s; pH Neutral	64E01
	Water	LP/SD	. 415 820	tOxygen quenching; extinction coefficient was a	67E10
	W.		420, 9000	lower limit; half-life = $30 \mu s$	1.1
	Water Water	FP/SD LP	825, 18000	$pK_a = 7.5 \pm 0.1$	67C00
	Water	LP	830 420	1 μs delay; semioxidized cation radical ($\lambda_{max}=520$ nm) also observed; pH 8.2; half-life = 25 μs	81A34
720.	Methylene Blue cation, c	oniugate monoa	eid		
	Acetonitrile/Water	LP/TD	470°, 4500° 428°, 6200°	Solvent was 1:1 acetonitrile to water by volume; $\tau_T = 4.0~\mu s;~pH$ Acidic	777062
	Acetonitrile/Water	LP/TD	372°, 14000° 710-670, >16200	Solvent was 1:1 acetonitrile to water by volume; 0.01N	79B10
	EtOH/Sulfuric acid	LP/RA	370, 15300 700°, 55000	HCl added; pH Acidic ϵ relative to unprotonated form ($\epsilon_{410} = 20000 \text{ L mol}^{-1}$	76780
	EtOH/Water	LP/TD	703, 18700 680, 19000 370, 13200	cm ⁻¹); 500 ns delay; pH Acidic Solvent was "30% EtOH"; 0.01N H ₂ SO ₄ added; p $K_a =$ 7.2; $\tau_T =$ 4.5 μ s; pH 2.0	79B10
	Hydrochloric acid	FP	375	$pK_a = 6.7$; delay 20 µs; pH 2	64E0
	Sulfuric acid	FP	375	$pK_a = 6.8; pH 1$	64B00
	Water	LP/TD	490°, 3300° 430°, 3300°	$\tau_{\rm T} = 4.5 \ \mu \rm s$; pH Acidic	77706
	117-4	T. F. ****	372°, 7000°		-
	Water	LP/TD	690, 14500	0.01N H ₂ SO ₄ added; pH Acidic	79B1

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ _{max} , /nm	$\epsilon_{\rm max}$ /L mol ⁻¹ cm ⁻¹	Comment	Ref.
721.	Methylene Blue, dimer					
	Water	LP	~550		†Oxygen quenching; half-life = $\sim 2 \mu s$	67E107
722.	Methylene Green cation Water	FP	794° 761° 518° 412°		SD region between 540 and 720 nm was not measured; pH 9 $$	707364
			412"			
723.	4,4'-Methylenebis(1,1'-bip Alcohol/Ether (77 K)	ohenyl) MOD	380		Glass was 2:1 alcohol to ether	76E682
724.	α-Methyl-β-ethylstyrene Cyclohexane	LP/RA-ET	325°,	4000	ϵ relative to naphthalene in cyclohexane ($\epsilon_{413} = 24000$ L mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{415} = 24500$ L mol ⁻¹ cm ⁻¹); triplet ET from thioxanthone; $\tau_T = \sim 0.038~\mu s$	82E181
725.	5-Methyl-endo-cis-fluoren	acene				
	MCH/Isopentane (77 K)	PS	458ª		Glass was 4:1 MCH to isopentane; shoulder at 430 nm	74B006
726.	7-Methylguanine Water	LP-ET	385		†Triplet ET from acetone; pH 7.1; $k_{\rm ct}$ = 7.5 \times 10 9 L mol ⁻¹ s ⁻¹	82B045
727.	1-Methylindazole MeOH	FP	420		tOxygen quenching, piperylene quenching, and ESR; $\tau_{\rm T}=53~\mu{\rm s}$	757167
728.	2-Methylindazole MeOH	FP	405		tOxygen quenching, piperylene quenching, and ESR; $\tau_T=26~\mu s$	757167
729.	1-Methylindole Benzene (293 K)	LP-ET/ET	460, :	5000 ± 1500	†Triplet ET from xanthone, from acetophenone and to naphthalene, oxygen quenching; ϵ relative to naphthalene in benzene ($\epsilon_{425} = 13200 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T =$	771021
	Benzene (297 K)	PR	460		2 μs ‡Triplet ET to naphthalene and anthracene, oxygen	771021
	Water	FP	460		quenching; $\tau_T = 1.8 \mu s$ ‡Oxygen quenching; $\tau_T = 29 \mu s$; pH basic	83A213
730.	2-Methylindole					027045
	Water	LP-ET	435		†Triplet ET from acetone; pH 7.1	82B045
731.	3-Methylindole Benzene (297 K)	PR	450		‡Triplet ET to naphthalene and anthracene, oxygen quenching	771021
732.	1-Methylisoquinoline-N-o	xide				
	Cyclohexane EtOH	FP FP	422 418		$τ_T = 5.9 \mu s$ †Oxygen quenching and triplet ET to anthracene; $τ_T$	727105 727105
	Water	FP	395 388		to sygen quenering and triplet ET to annuacents, $\tau_T = 7.7 \mu s$ $\tau_T = 7.7 \mu s$	727105
	W atci	11	366		$r_{\rm T} = r_{\rm e} r_{\rm p} \mu s$,2,100
733.	1-Methylnaphthalene 1-Methylnaphthalene	PR/RF	420,	6350	Liquid; ϵ relative to 1-methylnaphthalene in cyclohexane ($\epsilon_{420} = 14200 \text{ L mol}^{-1} \text{ cm}^{-1}$)	720243
	1-Methylnaphthalene	FP-ET	422ª 397ª		to the triplet ET from benzophenone; 30 μ s delay; evidence for triplet excimer at long wavelengths presented; relative intensities (3:2); 30 μ s delay; $\tau_T = 25 \mu$ s	
	Acetonitrile/Water	LP/ET	415,	11200	Solvent was 9:1 acetonitrile to water; ϵ relative to benzophenone in acetonitrile ($\epsilon_{520} = 6500 \text{ L mol}^{-1} \text{ cm}^{-1}$)	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

lo.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
,	Benzene	LP-ET	425	‡Triplet ET from benzophenone; $k_{\rm et} = 9.4 \times 10^8 \text{ L}$ mol ⁻¹ s ⁻¹	84E092
	Cyclohexane (77 K)	PS	415.5	Relative intensities (10:6:1)	69E21
			393		
			370		
	Cyclohexane	PR/ET	420, 14200	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{542.5} = 3220 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming ϵ is the same as $\epsilon_{537.5}$ for ketyl radical in water	720243
	Cyclohexane	LP/ET	420, 22400 ± 3000	‡Triplet ET from TMPD; ϵ relative to TMPD in cyclohexane ($\epsilon_{570} = 11900 \text{ L mol}^{-1} \text{ cm}^{-1}$)	757282
	EtOH/MeOH (113 K)	FP/TD	581 ^a , 100 ^a	Glass was 3:1 EtOH to MeOH; shoulders at 629 ^a and	717460
			562a, 70a	469° nm	
			538°, 150°		
			503°, 125°		
			485°, 230°		
			457°, 480°		
	EtOH/McOH (113 K)	FP/TD	628 ^a , 10 ^a	‡Phosphorescence decay; shoulders at 561a, 469a, 408a,	72B00
			578°, 100°	367 ^a , 349 ^a , 285 ^a , and 236 ^a nm	
	•		535°, 160°		
		*	500°, 120°		
			484°, 240° 457°, 480°		
			419 ^a , 21900 ^a		
			396 ^a , 11300 ^a		
			375°, 2500°		
			356 ^a , 730 ^a		
			239 ^a , 49200 ^a		
	Hexane	FP-ET	418ª	‡Triplet ET from benzophenone; 30 µs delay; relative	76715
			395°	intensities (3:2:1)	
			383ª		
	Isooctane	FP	425ª	Shoulder at 360 nm	78B08
			397*		
	7	-	375 ^a		
	Liquid paraffin	FP	422	Solvent viscosity was 0.03 N·s/m²; relative intensities	58E00
			399	(100:60:31)	
	DMMA (204 K)	ED	380	Charleton at \$608 and a (1.10 to 0.05) at 10 ⁶	COROC
	PMMA (294 K)	FP	625°	Shoulder at 568 ^a nm; $\tau_{\rm T} = (1.10 \pm 0.05) \times 10^6 \mu{\rm s}$	69 B 00
34.	2-Methylnaphthalene				
	Cyclohexane	LP/ET	$420,25100 \pm 3000$	‡Triplet ET from TMPD; ε relative to TMPD in cy-	75728
	•	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	clohexane ($\epsilon_{570} = 11900 \text{ L mol}^{-1} \text{ cm}^{-1}$)	, , , , ,
	EtOH/McOH	FP/TD	575°, 100°	Glass was 3:1 EtOH to MeOH; shoulder at 633° nm	71746
	(113 K)		529°, 170°	·	
			490°, 200°		
			461°, 280°		
	EtOH/MeOH (113 K)	FP/TD	631 ^a , 20 ^a	†Phosphorescence decay; shoulders at 402a, 263a, 234a,	72B00
			578 ^a , 100 ^a	and 231 ^a nm	
			532°, 160°		
			492°, 200°		
			462°. 290°		
			415 ^a , 25400 ^a		
			393°, 12800° 381° 1800°		
	e .		381°, 1800° 372°, 3400°		
			360°, 600°		
			353°, 700°		
			344°, 350°		
			238°, 25500°		
	PMMA (294 K)	FP		Shoulder at 575° nm; $\tau_T = (1.30 \pm 0.05) \times 10^6 \mu s$	69 B 00
	, ,				
35.	1-Methylnaphthalene/Pyr	omellitic dianh	ydride		
	Et ₂ O/Isopentane (77 K)	FP	600°	†Phosphorescence decay; glass was 1:1 Et ₂ O to iso-	74758

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ _{max} , /nm	ϵ_{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
736.	Methyl 2-naphthoate					
	Cyclohexane (290 K)	FP	412ª 401ª		35 μ s delay; $\tau_T = 66 \mu$ s	767556
737.	2-Methyl-1,4-naphthoquin	one				
	Water	LP/ELT	400 ^b ,	6600	tOxygen quenching and triplet ET to β -carotene; ϵ relative to 2-methylnaphthosemiquinone ion in water ($\epsilon_{390} = 11000 \text{ L mol}^{-1} \text{ cm}^{-1}$); pH 7.0	83E311
738.	1-Methyl-1-(1-naphthyl)et	hylene				
	Benzene	LP-ET	439ª		†Triplet ET from xanthone and oxygen quenching; $\tau_{\rm T}$ = 0.55 $\mu{\rm s}$	84B007
739.	1-Methyl-1-(2-naphthyl)et	hylene				
	Benzene	LP-ET	599ª		‡Triplet ET from xanthone and oxygen quenching (5	84B090
			415° 388°		\times 10 ⁹ L mol ⁻¹ s ⁻¹); 415 nm peak was the most intense; $\tau_{\rm T}=0.13~\mu{\rm s}$	
740.	Methyl-1-naphthylphenyl	germane				
	Cyclohexane	LP	430° 410°		430 nm peak was the more intense; delay $0.8~\mu s$	83A218
741.	5-Methyl-6'-nitrospiro[(5	.6-dihvdrophena	nthridine-	6.2)-(2 <i>H</i>)chromene]		
	Toluene	FP	670° 470°	,,_, (<u>===</u> ,,eee.,	‡Triplet ET from fluorene; $\tau_{\rm T}=300~\mu{\rm s}$; $E_{\rm T}=217\text{-}288~{\rm kJ~mol^{-1}}$	767647
742	1-Methyl-4-[4-nitrostyryl	hyridinium				
742.	EtOH (298 K)	LP	450		‡Oxygen quenching and triplet ET from acetone and biacetyl; $\tau_T = 0.055~\mu s$	83E509
	EtOH (103 K)	LP	450		Lifetime constant below 108 K; $\tau_{\rm T} = 3000 \ \mu {\rm s}$	83E509
743.	5-Methylphenazinium me Water	thyl sulfate FP	525		†Oxygen quenching; $\tau_T = 50 \pm 5 \mu s$; pH 3	80A196
	Water	1.1	323		toxygen quenching, $r_1 = 30 \pm 3 \mu s$, pri 3	00A170
744.	N-Methylphenothiazine Hexane	LP/ET	465,	23000 ± 300	ϵ relative to naphthalene in cyclohexane ($\epsilon_{413} = 24500$	79N005
	SDC .	T.D.(D.)	468	******	L mol ⁻¹ cm ⁻¹) assuming unit transfer efficiency and assuming ϵ independent of solvent	7031005
	SDS	LP/RA	·	23000	Aqueous micelle; ϵ relative to N-methylphenothiazine in hexane ($\epsilon_{465} = 23000 \text{ L mol}^{-1} \text{ cm}^{-1}$)	79N005
	Water/EtOH	LP	465		Solvent was 2:1 water to EtOH	82A297
745.	$N ext{-}Methylphthalimide}$					
	EtOH	FP	590		tOxygen quenching, diene quenching; maxima as-	79A.147
			350		sumed from text; $\tau_T = 43 \mu s$	
746.	4-(2-Methylpropionyloxy	_				
	Benzene	LP	530		†Triplet ET to naphthalene	84P005
747.	Methyl pyropheophorbid	e a LP	~46	0	·	82B094
748.	all-trans-Methyl retinoat	e				
	Benzene	PR/ET	435,	89000	ϵ relative to biphenyl in benzene ($\epsilon_{367.5} = 27100 \text{ L}$ $\text{mol}^{-1} \text{ cm}^{-1}$); $\tau_{\text{T}} = 17 \ \mu\text{s}$; $k_{\text{et}} = 8.4 \times 10^9 \ \text{L} \ \text{mol}^{-1} \ \text{s}^{-1}$	80E137
749.	2-Methylthioxanthen-9-o	ne				
, 121	1,2-Dichloroethane	FP	650-	670	$ au_{\mathrm{T}} = 20~\mu\mathrm{s}$	81A294
	Acetonitrile	FP	630		tOxygen quenching (5.5 \times 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 40$ us	81A294
	Benzene	FP	655ª		†Oxygen quenching (5.5 \times 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 95$ μ s	
	Cyclohexane	FP	650-	670	$\tau_{\rm T} = 10 \ \mu \rm s$	81A294
	EtOH	FP	605		$\tau_{\rm T}=60~\mu{\rm s}$	81A294 81A294
	MeOH	FP	605		$\tau_{\rm T}=68~\mu{\rm s}$	81A294

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

Acetonitrile LP/RF 440, 61000 Frelative to compound in cyclohexane (ε ₁₀₁ = 63000 L mol ⁻¹ cm ⁻¹), assuming socializer strength independent of solvent; τ ₇ = 10.6 μs (ε relative to bipheny) in benzene (ε ₁₀₂ = 27100 L 79E34 mol ⁻¹ cm ⁻¹), ετ = 9.1 μs (ε relative to bipheny) in benzene (ε ₁₀₂ = 27100 L 79E34 mol ⁻¹ cm ⁻¹), ετ = 9.1 μs (ε relative to bipheny) in cyclohexane (ε ₁₀₁ = 42800 L 79E34 mol ⁻¹ cm ⁻¹), ετ = 9.1 μs (ε relative to bipheny) in cyclohexane (ε ₁₀₁ = 63000 L 79E34 mol ⁻¹ cm ⁻¹) savining socializar strength independent of solvent; τ ₇ = 9.1 μs (ε relative to bipheny) in cyclohexane (ε ₁₀₁ = 63000 L 79E34 mol ⁻¹ cm ⁻¹), ετ = 10.9 μs (ε relative to compound in cyclohexane (ε ₁₀₁ = 63000 L 79E34 mol ⁻¹ cm ⁻¹), ετ = 10.9 μs (ε relative to bipheny) in cyclohexane (ε ₁₀₁ = 63000 L 79E34 mol ⁻¹ cm ⁻¹), ετ = 10.9 μs (ε relative to compound in cyclohexane (ε ₁₀₁ = 63000 L 79E34 mol ⁻¹ cm ⁻¹), ετ = 10.9 μs (ε relative to compound in cyclohexane (ε ₁₀₁ = 63000 L 79E34 mol ⁻¹ cm ⁻¹), ετ = 10.9 μs (ε relative to compound in cyclohexane (ε ₁₀₁ = 63000 L 79E34 mol ⁻¹ cm ⁻¹), ετ = 10.9 μs (ε relative to compound in cyclohexane (ε ₁₀₁ = 63000 L 79E34 mol ⁻¹ cm ⁻¹), ετ = 10.9 μs (ε relative to compound in cyclohexane (ε ₁₀₁ = 63000 L 79E34 mol ⁻¹ cm ⁻¹), ετ = 10.9 μs (ε relative to compound in cyclohexane (ε ₁₀₁ = 63000 L 79E34 mol ⁻¹ cm ⁻¹), assuming oscillator strength independent of solvent; τ ₇ = 10.9 μs (ε relative to bipheny) in cyclohexane (ε ₁₀₁ = 43000 L 79E34 mol ⁻¹ cm ⁻¹), assuming oscillator strength independent of solvent; τ ₇ = 10.9 μs (ε relative to bipheny) in cyclohexane (ε ₁₀₁ = 43000 L 79E34 mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane (ε ₁₀₁ = 43000 L 79E34 mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane (ε ₁₀₁ = 43000 L 79E34 mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane (ε ₁₀₁ = 43000 L 79E34 mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane (ε ₁₀₁ = 43000 L 79E3	No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol $^{-1}$ cm $^{-1}$	Comment	Ref.
Acetonitrile LP/RF 440, 51000 "all-trans-C ₁ aldchydre"; ε is upper limit; τ = 10.6 μs 79524 Acetonitrile LP/RF 440, 61000 "all-trans-C ₁ aldchydre"; ε is upper limit; τ = 10.6 μs 79524 (79524 mol ⁻¹ cm ⁻¹) assuming oscillator strength independent of solvent; τ = 10.6 μs 40, 51000 ε relative to biphenyl in benzenc (ε ₈₁₅ = 27100 L 79524 mol ⁻¹ cm ⁻¹); τ = 9.1 μs ε relative to compound in cyclohexane (ε ₈₁₅ = 63000 L 79524 mol ⁻¹ cm ⁻¹); τ = 9.1 μs ε relative to compound in cyclohexane (ε ₈₁₆ = 63000 L 79524 mol ⁻¹ cm ⁻¹); τ = 9.1 μs ε relative to biphenyl in cyclohexane (ε ₈₁₆ = 63000 L 79524 mol ⁻¹ cm ⁻¹); τ = 9.1 μs ε relative to biphenyl in cyclohexane (ε ₈₁₆ = 63000 L 79524 mol ⁻¹ cm ⁻¹); τ = 6.2 μs ε is upper limit; τ = 10.9 μs ε relative to compound in cyclohexane (ε ₈₁₆ = 63000 L 79524 mol ⁻¹ cm ⁻¹); τ = 6.2 μs ε is upper limit; τ = 10.9 μs ε relative to compound in cyclohexane (ε ₈₁₆ = 63000 L 79524 mol ⁻¹ cm ⁻¹); τ = 6.2 μs ε is upper limit; τ = 10.9 μs ε relative to compound in cyclohexane (ε ₈₁₆ = 63000 L 79524 mol ⁻¹ cm ⁻¹); τ = 6.2 μs ε is upper limit; τ = 10.9 μs ε relative to compound in cyclohexane (ε ₈₁₆ = 63000 L mol ⁻¹ cm ⁻¹); τ = 6.2 μs ε is upper limit; τ = 10.9 μs ε relative to compound in cyclohexane (ε ₈₁₆ = 63000 L mol ⁻¹ cm ⁻¹); assuming outloates are summed to the at λ _{max} ; "all-trans-C ₁₀ ketone" ε assumed to be at λ _{max} all-trans-C ₁₀ ketone" ε relative to compound in cyclohexane (ε ₈₁₆ = 42800 L mol ⁻¹ cm ⁻¹); assuming authors used standard for cyclohexane ε assumed to be at λ _{max} ("all-trans-C ₁₀ ketone" ε relative to biphenyl in cyclohexane (ε ₈₁₆ = 42800 L mol ⁻¹ cm ⁻¹); assuming authors used standard for cyclohexane ε assumed to be at λ _{max} ε assumed	750.	(E,E,E)-5-Methyl-7-0	2.6.6-trimethyl-1-cy	clohexen-1-vl)-2.4.6-heptatrien	al	
Acetonitrile LP/RF 440, 61000 crelative to compound in cyclohexane (ε ₁₀ = 63000 L 79E54 mol -				- · · · · -		79E546
Benzene PR/ET 430, 63000 erelative to biphenyl in benzene (e _{31.5} = 27100 L 79E54 Benzene PR/RF 430, 71000 erelative to compound in cyclobexane (e _{41.0} = 63000 L 79E54 mol ⁻¹ cm ⁻¹), sample of solvent; τ _T = 9.1 μs erelative to biphenyl in cyclobexane (e _{41.0} = 63000 L 79E54 mol ⁻¹ cm ⁻¹), sample of solvent; τ _T = 9.1 μs erelative to biphenyl in cyclobexane (e _{41.0} = 63000 L 79E54 mol ⁻¹ cm ⁻¹), sample of solvent; τ _T = 9.1 μs erelative to biphenyl in cyclobexane (e _{41.0} = 63000 L 79E54 mol ⁻¹ cm ⁻¹), sample of solvent; τ _T = 6.2 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L 79E54 mol ⁻¹ cm ⁻¹), sample of solvent; τ _T = 10.9 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹) sample of solvent; τ _T = 10.9 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹) sample of solvent; τ _T = 10.9 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹) sample of solvent; τ _T = 10.9 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹) sample of solvent; τ _T = 10.9 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹) sample of solvent; τ _T = 10.9 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹), sample of solvent; τ _T = 6.2 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹), sample of solvent; τ _T = 6.2 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹), sample of solvent; τ _T = 6.2 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹), sample of solvent; τ _T = 6.2 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹), sample of solvent; τ _T = 6.2 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹), sample of solvent; τ _T = 6.2 μs erelative to compound in cyclobexane (e _{41.0} = 63000 L mol ⁻¹ cm ⁻¹), sassuning authors used standard for cyclobe		Acetonitrile	LP/RF	440, 61000	mol ⁻¹ cm ⁻¹) assuming oscillator strength independent	79E546
Penzene PR/RF 430, 71000 erelative to compound in cyclohexane (ε ₁₀₁ = 63000 L 79E54 79E		Benzene	PR/ET	430, 63000	ϵ relative to biphenyl in benzene ($\epsilon_{367.5} = 27100 \text{ L}$	79E546
Cyclohexane PR/ET 410, 63000 crelative to biphenyl in cyclohexane (ε _{361.3} = 42800 L 79E54 MeOH LP/SD 440, 51000 crelative to compound in cyclohexane (ε _{101.0} = 63000 L 79E54		Benzene	PR/RF	430, 71000	ϵ relative to compound in cyclohexane ($\epsilon_{410} = 63000 \text{ L}$ mol ⁻¹ cm ⁻¹) assuming oscillator strength independent	79E546
MeOH		Cyclohexane	PR/ET	410, 63000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361.3} = 42800 \text{ L}$	79E54
MeOH		MeOH	LP/SD	440. 51000		79E54
Hexane LP/SD 405-410, 52000 ε assumed to be at λ _{max} ; "alt-trans-C ₁₈ ketone" 84E03					ϵ relative to compound in cyclohexane ($\epsilon_{410}=63000~L$ mol ⁻¹ cm ⁻¹) assuming oscillator strength independent	79E54
Section Sec	51.	(E,E,E)-6-Methyl-8-(2,6,6-trimethyl-1-cy	clohexen-1-yl)-3,5,7-octatrien-	2-one	
Hexane LP/SD 405-410, 66000 e assumed to be at λ _{max} ; "'7-cis-C ₁₁ ketone" 84E03 c relative to biphenyl in cyclohexane (ε ₈₀ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max} ; "9-cis-C ₁₁ ketone" 84E03 d same LP/SD 405-410, 34000 e relative to biphenyl in cyclohexane (ε ₈₀ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane LP/SD 405-410, 23000 e relative to biphenyl in cyclohexane (ε ₈₀ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane LP/SD 405-410, 23000 e assumed to be at λ _{max} ; "'7,9-dicts-C ₁₁ ketone" 84E03 d same LP/SD 405-410, 23000 e assumed to be at λ _{max} "'7,9-dicts-C ₁₁ ketone" e relative to biphenyl in cyclohexane (ε ₈₀ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane LP/SD 385, 38500 ± 5800 e assumed to be at λ _{max} "'7,9-dicts-C ₁₁ ketone" e relative to biphenyl in cyclohexane (ε ₈₀ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane LP/SD 385, 38500 ± 5800 e assumed to be at λ _{max} "'7,9-dicts-C ₁₁ ketone" e relative to biphenyl in cyclohexane (ε ₈₀ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; e assumed to be at λ _{max} e relative to biphenyl in cyclohexane e assumed to be at λ _{max} e relative to compound in hexane (ε ₃₀ = 42800 L mol ⁻¹ cm ⁻¹) assuming oscillator strength independent of solvent; r ₇ = 0.19 μs e relative to biphenyl in cyclohexane e assumed to be at λ _{max} e relative to biphenyl in cyclohexane e assumed to be at λ _{max} e relative to biphenyl in cyclohexane e assumed to be at λ _{max} e relative to biphenyl in cyclohexane e assumed to be at λ _{max} e relative to biphenyl in cyclohexane e assumed to be at λ _{max} e relative to biphenyl in cyclohexane e assumed to be at λ _{max} e relative		Hexane	LP/SD	405-410, 52000	ϵ assumed to be at λ_{\max} ; "all-trans- C_{18} ketone"	84E036
Hexane PR/ET 405-410, 37000 ε relative to biphenyl in cyclohexane (ε ₁₀₁ = 42800 L s4E03 clohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ sasuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ 3800 saming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ 3800 saming authors used standard for cyclohexane; ε assumed to be at λ _{max} 42800 L mol ⁻¹ cm ⁻¹ 3800 saming autho	152.	(E,E,Z)-6-Methyl-8-(2,6,6-trimethyl-1-cy	clohexen-1-yl)-3,5,7-octatrien-	2-one	
mol - 1 cm - 1), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max} "9-cis-C ₁₈ ketone" 84E03 mol - 1 cm - 1), assuming authors used standard for cyclohexane E.P./SD 405-410, 23000 ε relative to biphenyl in cyclohexane (ε ₁₆₁ = 42800 L mol - 1 cm - 1), assuming authors used standard for cyclohexane E.P./SD 405-410, 23000 ε assumed to be at λ _{max} "7,9-dicis-C ₁₈ ketone" 84E03 ε assumed to be at λ _{max} "7,9-dicis-C ₁₈ ketone" 84E03 ε assumed to be at λ _{max} "7,9-dicis-C ₁₈ ketone" 84E03 ε assumed to be at λ _{max} "7,9-dicis-C ₁₈ ketone" 84E03 ε assumed to be at λ _{max} "7,9-dicis-C ₁₈ ketone" 84E03 ε assumed to be at λ _{max} ε assumed to be at		Hexane	LP/SD	405-410, 66000	ϵ assumed to be at λ_{max} ; "7-cis-C ₁₈ ketone"	84E03
Hexane LP/SD 405-410, 54000 ε assumed to be at λ _{max} ; "9-cis-C ₁₈ ketone" 84E03		Hexane	PR/ET	405-410, 37000	mol-1 cm-1), assuming authors used standard for cy-	84E03
Hexane LP/SD 405-410, 54000 ε assumed to be at λ _{max} ; "9-cis-C ₁₈ ketone" 84E03	53	(F. Z. F.)-6-Methyl-8-0	2 6 6-trimethyl-1-cs	veloheven-1-vl)-3 5 7-actatrien-	2-one	
Hexane PR/ET 405-410, 23000 ε relative to biphenyl in cyclohexane (ε ₈₆₁ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max} (ε ₈₇ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane (ε ₈₆₁ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane (ε ₈₆₁ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max} (ε ₈₆₁ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max} ε assumes triplet does not absorb where singlet depletion is followed, "all-rans-C ₁₅ aldehyde"; τ _T = 0.1 μs; ε _T = 188 ± 12 kJ mol ⁻¹ ε relative to biphenyl in cyclohexane (ε ₈₆₁ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max} ε as	<i>.</i>					84E03
Hexane LP/SD 405-410, 23000 ε assumed to be at λ _{max} ; "7,9-dicts · C ₁₈ ketone" 84E03 mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane ε assumed to be at λ _{max} ε a					ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹), assuming authors used standard for cy-	
Hexane LP/SD 405-410, 23000 ε assumed to be at λ _{max} ; "7,9-dicts · C ₁₈ ketone" 84E03 mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane ε assumed to be at λ _{max} ε a	754.	(E.Z.Z)-6-Methyl-8-(2.6.6-trimethyl-1-cy	vclohexen-1-vl)-3.5.7-octatrien-	2-one	
Hexane PR/ET 405-410, 42000 Frelative to biphenyl in cyclohexane (€361 = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max} 78E72						84E03
Fig. (E,E)-3-Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4-pentadienal Hexane LP/SD 385, 38500 \pm 5800 \pm 6 assumes triplet does not absorb where singlet depletion is followed, "all-trans-C ₁₅ aldehyde"; $\tau_T = 0.1$ μ s; $E_T = 188 \pm 12$ kJ mol ⁻¹ Hexane PR/ET 380-390, 20000 \pm relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800$ L \pm MeOH LP/RF 400, 34000 \pm assumed to be at λ_{max} 84E03 \pm MeOH LP/RF 400, 34000 \pm relative to compound in hexane ($\epsilon_{385} = 38500$ L \pm Mol ⁻¹ cm ⁻¹) assuming oscillator strength independent of solvent; $\tau_T = 0.19$ μ s Fig. (E,Z)-3-Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4-pentadienal Hexane PR/ET 380-390, 17000 \pm relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800$ L \pm MeColohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm MeColohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm MeColohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L \pm Mecolohexane; ϵ assumed to be at $\epsilon_{361} = 42800$ L		Hexane	PR/ET	405-410, 42000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹), assuming authors used standard for cy-	84E03
Hexane LP/SD 385, 38500 \pm 5800 ϵ assumes triplet does not absorb where singlet depletion is followed; "all-trans-C ₁₅ aldehyde"; $\tau_T = 0.1$ μ s; $E_T = 188 \pm 12 \text{ kJ mol}^{-1}$ Hexane PR/ET 380-390, 20000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ 84E03 ϵ mol $^{-1}$ cm $^{-1}$), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max} 84E03 MeOH LP/RF 400, 34000 ϵ relative to compound in hexane ($\epsilon_{385} = 38500 \text{ L}$ mol $^{-1}$ cm $^{-1}$) assuming oscillator strength independent of solvent; $\tau_T = 0.19 \mu$ s 756. (E,Z)-3-Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4-pentadienal Hexane LP/SD 380-390, 14000 ϵ assumed to be at λ_{max} ; "7-cis-C ₁₅ aldehyde" 84E03 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol $^{-1}$ cm $^{-1}$), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max} ("7-cis-C ₁₅ aldehyde" 84E03 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol $^{-1}$ cm $^{-1}$), assuming authors used standard for cyclohexane; ϵ assumed to be at ϵ assuming authors used standard for cyclohexane; ϵ assumed to be at	755	(F. F.)-3-Mathyl-5-(2)	6 6-trimothyl-1-aval	ahayan 1-yl)-2 4-nantadianal		
Hexane PR/ET 380-390, 20000 Frelative to biphenyl in cyclohexane (ε ₃₆₁ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max} Frelative to compound in hexane (ε ₃₈₅ = 38500 L mol ⁻¹ cm ⁻¹) assuming oscillator strength independent of solvent; τ _T = 0.19 μs Frelative to biphenyl in cyclohexane (ε ₃₈₅ = 38500 L mol ⁻¹ cm ⁻¹) assuming oscillator strength independent of solvent; τ _T = 0.19 μs Frelative to biphenyl in cyclohexane (ε ₃₈₅ = 38500 L mol ⁻¹ cm ⁻¹) assuming oscillator strength independent of solvent; τ _T = 0.19 μs Frelative to biphenyl in cyclohexane (ε ₃₆₁ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max} Frelative to biphenyl in cyclohexane (ε ₃₆₁ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max} Frelative to biphenyl in cyclohexane (ε ₃₆₁ = 42800 L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ε assumed to be at λ _{max}					pletion is followed, "all-trans- C_{15} aldehyde"; $\tau_T = 0.1$	78E72
Hexane LP/SD 380-390, 41000 ϵ assumed to be at λ_{max} 84E03 79E54 MeOH LP/RF 400, 34000 ϵ relative to compound in hexane ($\epsilon_{385} = 38500$ L mol ⁻¹ cm ⁻¹) assuming oscillator strength independent of solvent; $\tau_T = 0.19 \ \mu s$ 84E03 79E54 Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4-pentadienal Hexane LP/SD 380-390, 17000 ϵ assumed to be at λ_{max} ; "7-cis-C ₁₅ aldehyde" 84E03 Hexane PR/ET 380-390, 14000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800$ L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max} 84E03 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800$ L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800$ L mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ assumed to be at ϵ relative to biphenyl in cyclohexane (ϵ		Hexane	PR/ET	380-390, 20000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361}=42800~L$ mol ⁻¹ cm ⁻¹), assuming authors used standard for cy-	84E03
MeOH LP/RF 400, 34000 ϵ relative to compound in hexane ($\epsilon_{385} = 38500 \text{ L}$ mol ⁻¹ cm ⁻¹) assuming oscillator strength independent of solvent; $\tau_T = 0.19 \mu s$ 756. (E,Z)-3-Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4-pentadienal Hexane LP/SD 380-390, 17000 ϵ assumed to be at λ_{max} ; "7-cis-C ₁₅ aldehyde" 84E03 Hexane PR/ET 380-390, 14000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max} 757. (Z,E)-3-Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4-pentadienal Hexane PR/ET 380-390, 28000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max}		Hexane	LP/SD	380-390, 41000		84F03
Hexane LP/SD 380-390, 17000 ϵ assumed to be at λ_{max} , "7-cis-C ₁₅ aldehyde" 84E03 Hexane PR/ET 380-390, 14000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max} (Z,E)-3-Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4-pentadienal Hexane PR/ET 380-390, 28000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max}		•			ϵ relative to compound in hexane ($\epsilon_{385} = 38500 \text{ L}$ mol ⁻¹ cm ⁻¹) assuming oscillator strength independent	79E54
Hexane LP/SD 380-390, 17000 ϵ assumed to be at λ_{max} , "7-cis-C ₁₅ aldehyde" 84E03 Hexane PR/ET 380-390, 14000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max} (Z,E)-3-Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4-pentadienal Hexane PR/ET 380-390, 28000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max}	756.	(E,Z)-3-Methvl-5-(2.6	5,6-trimethyl-1-cycl	ohexen-1-yl)-2.4-pentadienal		
Hexane PR/ET 380-390, 14000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ 84E03 mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max} 84E03 Hexane PR/ET 380-390, 28000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ 84E03 mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max}				• • •	ϵ assumed to be at λ_{max} : "7-cis-C ₁₅ aldehyde"	84E03
Hexane PR/ET 380-390, 28000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ 84E03 mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max}					ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹), assuming authors used standard for cy-	
Hexane PR/ET 380-390, 28000 ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ 84E03 mol ⁻¹ cm ⁻¹), assuming authors used standard for cyclohexane; ϵ assumed to be at λ_{max}	57.	(Z,E)-3-Methyl-5-(2,0	6,6-trimethyl-1-cycl	ohexen-1-yl)-2,4-pentadienal		
				- · · · · ·	mol-1 cm-1), assuming authors used standard for cy-	84E03
		Hexane	LP/SD	380-390, 14000		84E0

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.		
758.	(Z,Z)-3-Methyl-5-(2,6,6-t)	rimethyl-1-cycle	ohexen-1-yl)-2,4-pentadienal				
	Hexane	PR/ET	380-390, 21000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$), assuming authors used standard for cy-	84E036		
	Hexanc	LP/SD	380-390, 17000	clohexane; ϵ assumed to be at λ_{max} c assumed to be at λ_{max} , "7,9-dicis-C ₁₅ aldehyde"	84E036		
759.	3-Methyl-3,4,5-triphenyl-	2(3 <i>H</i>)-furanone					
	Benzene	LP/ET	370 ± 5 , 11000 ± 2200	‡Oxygen quenching; ϵ relative to benzophenone in benzene ($\epsilon_{532}=7600~\rm L~mol^{-1}~cm^{-1}$); $\tau_{\rm T}=12\pm2~\mu s$; $k_{\rm et}=2.9\times10^9~\rm L~mol^{-1}~s^{-1}$	84E520		
760.	1-Methyl-L-tryptophan						
	EtOH	FP	460	†Triplet ET from acetophenone	727041		
	Water	FP	460	‡Air quenching; $\tau_T = <5 \mu s$; pH 5.4	727041		
761.	Methyl vinyl ketone						
	Cyclohexane	LP	260ª	‡Oxygen quenching; solvent uncertain; $\tau_{\rm T}=0.008~\mu{\rm s}$	80B055		
762	1-Methyl-2-vinylnaphtha	lono					
702.	Benzene	LP-ET	416ª	†Triplet ET from xanthone and oxygen quenching (7.5	84B090		
			401°	\times 10° L mol 1 s $^{-1}$); 401 nm peak was the more intense; $\tau_{\rm T}=0.06~\mu{\rm s}$			
763.	2-Methyl-3-vinylnaphthalene						
	Benzene	LP-ET	571ª	†Triplet ET from xanthone and oxygen quenching (4.9	84B090		
			412 ^a 391 ^a	\times 10 ⁹ L mol ⁻¹ s ⁻¹); 412 nm peak was the most intense; $\tau_{\rm T}=0.255~\mu{\rm s}$			
764.	1-Naphthaldehyde			•			
	Benzene	FP	495	$\tau_{\rm T}=140~\mu{\rm s}$	63E007		
	Cyclohexane (77 K)	PS	412.5		69E211		
			405 387				
	Cyclohexane	LP	494	Shoulders at 427 and 405 nm; delay 660 ps; rise time of	84B028		
	C) Clotte Autre		475	0.026 ± 0.003 ns	0.2020		
			450				
	Et ₂ O/Pentane (77 K)	PS	440		69 E 211		
			425	•			
			412 405				
			387				
	MeOH	LP	478ª	Shoulders at 497a, 437a, and 425a nm; delay 660 ps; 478	84B028		
			456ª	nm was the most intense peak; rise time of 0.020 \pm			
			410 ^a	0.002 ns			
	Toluene/MCH (50 K)	LP	47 9ª	Glass was 1:1 toluene to MCH; delay 42 ps; spectrum showed evidence of structure between 410 and 460 nm	84B028		
	Water/tert-BuOH	FP	520ª	Solvent mixture contains "1-5%" tert-BuOH for solubility; shoulders at 540 and 470 nm; pH \sim 6	767189		
765.	2-Naphthaldehyde						
	Cyclohexane	LP	434	Delay 600 ps; rise time of 0.055 \pm 0.005 ns	84B028		
	MeOH	T D	408 442°	Delay 600 ps; rise time of 0.025 ± 0.003 ns	84B028		
	Toluene/MCH (69 K)	LP LP	44 <i>2</i> 446 ^a	Glass was 1:1 toluene to MCH; delay 42 ps; shoulders at 431 ^a and 405 ^a nm			
766.	2-Naphthalenamine						
	Liquid paraffin	FP	457		61E008		
			377				

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

√o.	Solvent	Method	$\begin{array}{ccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-1} \end{array}$	Comment	Ref.
767.	2-Naphthalenamine, conju	ıgate acid			
	MeOH/Water (290 K)	LP/ET	410, 7800 391 ^a , 4300 ^a	‡Oxygen quenching; ϵ relative to benzophenone ketyl radical in water ($\epsilon_{545} = 3220 \text{ L mol}^{-1} \text{ cm}^{-1}$); solvent	83A24
	Water	FP	377°, 2150° 414 387	was 19:1 MeOH to water; $\tau_T = 1.8 \mu s$; pH 1.8 "2-Naphthylamine cation"; p $K_s = 3.3$; pH Acidic	61E00
768.	•	•			
	1,2-Dichloroethane	FP	414	$\tau_{\rm T}=125~\mu{\rm s}$	80E72
	2-PrOH	FP	414 ^a	Relative intensities (5:3:1); 30 μ s delay; $\tau_T = 58 \mu$ s	73715
			388ª		
	1 MD	22	372ª	G	<00.F
	3-MP	PR	411°	$G\epsilon$ values were 9870 and 27300 L mol ⁻¹ cm ⁻¹ / (100 eV shoothed)	6805
	3-MP (77 K)	PR	388 ^a 413 ^a	eV absorbed) $G\epsilon$ values were 17300 and 17900 L mol ⁻¹ cm ⁻¹ / (100	6805
	3-1411 (77 K)	1 K	390°	eV absorbed)	0005
	3-MP (77 K)	PS/ESR	415, 31900	tESR; oscillator strength = 0.12	69B0
	3-MP (77 K)	PS PS	412.4	All 8 bands were assigned to the electronic transition	70B0
	(, , , , , , , , , , , , , , , , , , ,		399.3	${}^{3}B_{3g}^{-} \leftarrow {}^{3}B_{2u}^{+}$	
			390.0	- 78	
			377.7		
			369.8		
			358.2		
			351.5		
			341.2		
	3-MP (77 K)	MOD	415		73E
	•		400		
			391.5		
			380		
			371		
	3-MP (85 K)	LP	360 415 ^a	416 mm mode man the mast interne	7470
	3-WIF (63 K.)	LF	413° 400°	415 nm peak was the most intense	7470
			391ª		
			379ª		
			372ª		
	3-MP (293 K)	LP	412	412 nm peak was the most intense; $\tau_T = 6 \mu s$	7470
	` ,		390	· · · · · · · · · · · · · · · · · · ·	
			370		
	Acetonitrile	FP	410 ^a	Relative intensities (5:3:1); 30 μ s delay; $\tau_T = 38 \mu$ s	7371
			385°		
	_		375°		
	Benzene	FP	415	Relative intensities (100:60:15)	61E
			392		
	Dongono	DD	372	G 15100 t 1=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Benzene	PR	420	$G\epsilon_{420} = 15100 \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed});$ half-life = 1.59 μ s	64B(
	Benzene	PR/ET	415, 17500	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 10300$ L mol ⁻¹ cm ⁻¹); λ_{max} unspecified, assumed 415 nm	6900
	Benzene	PR/ET	425, 13200	ϵ relative to benzophenone ketyl radical in cy-	71E
			402 ^a , 7300 ^a	clohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained	
			382ª, 4200ª	from a simultaneous least squares fit of data from	
				several compounds making use of cyclohexane to ben-	
				zene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for	
	_			anthracene	
	Benzene	PR	420		7202
	D	•	400		
	Benzene	LP/ET	425, 11300	†Triplet ET from benzophenone; ϵ relative to benzophenone in benzene ($\epsilon_{533} = 7200 \text{ L mol}^{-1} \text{ cm}^{-1}$); $k_{\text{et}} = 100 \text{ L mol}^{-1}$	80B
	Donnant (77 TC)	no ee	42.5a	$0.74 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	
	Benzophenone (77 K)	PS-ET	425°	Relative intensities (100:58 ^a); sample was a single crys-	64B
			403ª	tal	

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

).	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Benzophenone (77 K)	PS/COM	427°, 3500° 413°, 1400°° 403°, 1800°°	Mixed crystals; shoulder at 418 $^{\circ}$; ϵ was measured using a technique involving reabsorption of phosphorescence	68E10
			400a, 1800a,e	F	
	Butane/Isopentane (77 K)	PS/IV	414, 14000 ± 3000 393 ^a , ~7800	Glass was 3:7 butane to isopentane; ϵ_T was computed from OD = $\epsilon_T \tau_{\rm p} i_0 (1 - \Phi_f)$ after the optical density, OD, was extrapolated to zero intensity of the monitoring beam (namely $i_0 \rightarrow 0$), here τ was lifetime of triplet, and Φ_f was fluorescence quantum yield; oscillator strength = 0.05	65E03
	Cyclohexane	FP	414	$\tau_{\rm T} = 175 \ \mu s$	62E00
	Cyclohexane (77 K)	PS PS	415ª	Other shoulders were present in the spectrum; the	63B0
			412° 410°	shoulders appeared in different places depending on whether the samples were frozen rapidly or slowly	
	Cyclohexane	PR	415	$G\epsilon_{415} = 10200 \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed});$	64B0
	Ovelah anana	DD	390	half-life = $5.85 \mu s$	(7601
	Cyclohexane	PR	415 391	Relative intensities (100:55:22)	67601
	Cualchanana (77 II)	DC	375		67B0
	Cyclohexane (77 K)	PS	417.5 415		0/190
			410.5		
			393.5		
			391		
			386		
			370		
			366 361		
			347.5		
	Cyclohexane	PR/ET	412.5, 22600 ± 5650	ϵ relative to benzophenone ketyl radical in water ($\epsilon_{537.5}$ = 3220 L mol ⁻¹ cm ⁻¹), assuming this value for $\epsilon_{542.5}$ in cyclohexane	68072
	Cyclohexane	LP	414		68E1
	Cyclohexane (77 K)	PS	415.0	Shoulder at 422 nm; peak positions depend on cooling	69E2
			411.5	rate	
			409.0		
			393.0 389.5		
			387.5		
			373.0		
	Cyclohexane (77 K)	PS	412.0	Shoulder at 418.5 nm; peak positions depend on cool-	69E2
			409.0	ing rate	
			406.8		
			390.0		
			386.5 385.5		
			370.0		
	Cyclohexane	PR/ET	415, 24500 393°, 12000° 373°, 4600°	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{\rm max}=3700~{\rm L~mol^{-1}~cm^{-1}}$); reference ϵ obtained by starting from $\epsilon_{\rm max}=3220~{\rm L~mol^{-1}~cm^{-1}}$ for this ketyl radical in water and assuming the f of the ketyl radical is independent of solvent; final ϵ obtained	71E3
				from a simultaneous least squares fit to data from several compounds	
	Cyclohexane	PR	412.5		7202
	•		390		
			370		m 1m^
	Cyclohexane	LP	414	$\tau_{\rm T} = 10~\mu{\rm s}$	7470
			391 370	•	
	Cyclohexane	FP/SD	$414,24000 \pm 3000$		7562
	Dipropyl ether (118 K)	FP	417a		6960
			405°		
			394ª		

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref
Durene (77 K)	PS	419 395	Polarization of the bands was found to be along the long molecular axis; transition was assigned as ${}^{3}B_{1g} \leftarrow {}^{3}B_{1g}$, sample was a mixed crystal	64E
Durene (4.2 K)	PS ·	417.4	Single crystal; relative intensities (100:46:2:10)	67B0
		394.4	Single organi, readire intensions (100110.2110)	0,2
		383		
		374		
Durene (1.5 K)	PS	417.4	Mixed crystal; maxima were taken from a fit to the	75B(
. ,		403	spectrum	
•		394	• #	
		382		
		373		
EPA (77 K)	PS/IV	$417, 480^{d} \pm 50$	†Phosphorescence decay; \(\epsilon \) are too low; 1st transition	51E
		$392.8, 215^d \pm 40$	assigned as ${}^{3}L_{a} \rightarrow {}^{3}C_{b}$	
EPA (77 K)	PS/SD	416.7, 10000	ϵ 's are lower limits	54B
		392.7, 4300		
		371, 1000		
EPA (77 K)	FP	416	416 nm was the most intense peak; $\tau_{\rm T}=2.6\times10^6~\mu{\rm s}$	6774
•		393		
		373		
EPA (77 K)	PS/KM	530°, 900°	_lvent, temperature and extinction method assumed	69E
		499°, 800°	from earlier work; polarization also measured	
		420°, 20600°		
TOTAL: (MM 97)		396°, 11200°		
EPA (77 K)	PS/IV	417, 23600	λ_{max} assumed from previous work; ϵ estimated by ex-	69E
EDA (77 V)	DC CCM	417 22200	trapolation to infinite excitation rate	(O.T.)
EPA (77 K)	PS/KM	417, 23300	λ_{max} assumed from previous work; $\tau_{\text{T}} = 2.3 \times 10^6 \ \mu\text{s}$	
EPA (77 K)	FP/SD	$414.0, 40000 \pm 6000$	$\tau_{\rm T} = 2.3 \times 10^6 \mu{\rm s}$; oscillator strength = 0.14	69F
		393°, 17000°		
EtOH (77 K)	PS	374*, 4000* 414		67D
BiOH (// K)	rs .	390		67B
		371		
EtOH (293 K)	FP	414		68E
EtOH	FP/ET	$415,40000 \pm 2000$	ϵ relative to anthracene in EtOH ($\epsilon_{420} = 75000 \text{ L}$	7470
		391"	mol ⁻¹ cm ⁻¹); $\tau_{\rm T} = 1800 \pm 700 \mu{\rm s}; k_{\rm et} = (1.26 \pm 0.1)$	131
		Fig. 1	$\times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$	
EtOH (77 K)	MOD	411	Relative intensities (6:3:1); halfwidth of principal max-	777
		388ª	imum 480 cm ⁻¹	
		368ª		
EtOH/MeOH (113 K)	FP/TD	575°, 140°	Glass was 3:1 EtOH to MeOH; shoulders at 625 ^a , 588 ^a ,	717
		559°, 75°	541°, 500°, and 467° nm	
		529 ^a , 250 ^a		
		515 ^a , 150 ^a		
		490°, 330°		
		476°, 150°		
		360°, 459°		
EtOH/MeOH (113 K)	FP/TD	629.0, 10 ^a	†Phosphorescence decay; shoulders at 589 ^a , 556 ^a , 536 ^a ,	72B
		574°, 120°	511a, 498a, 467a, and 266a nm; 6 electronic transitions	
		526 ^a , 250	were assigned with 0-0's at 629, 488.6, 414, 400.2, 275,	
		488.6, 320°	and 236 nm; oscillator strength = 0.002, 0.002, 0.12,	
		456 ^a , 350 ^a	~0.01, 0.13, 0.5	
		414.0, 33000		
		400.2, 3200°		
		390°, 16700° 376° 2100°		
		376°, 2100° 369°, 3500°		
		359°, 3300° 359°, 1000°		
		351°, 1000°		
		341°, 700°		
		335°, 700°		
•		323°, 730°		

 ${\sf TABLE~6.} \quad {\sf Spectral~parameters~for~triplet-triplet~absorption~of~organic~molecules~in~condensed~phases--Continued}$

o.	Solvent	Method		ϵ_{\max} 1^{-1} cm ⁻¹	Comment	Ref.
	Ethylene glycol	FP	415 392		Relative intensities (100:55:10); $\tau_{\rm T}=1000\pm100~\mu{\rm s}$	61E005
	Hexamethylbenzene (77 K)	PS	378 418 395		Single crystal; relative intensities (2:1)	67B008
	Hexane	FP	413.1 390.0			54E001
	Hexane	FP	410 389 369	4	Relative intensities (107:55:15); $\tau_T = 91 \pm 8 \mu s$	61E005
	Hexane (77 K)	PS	416 391			67B007
	Isopentane/MCH (77 K)	PS	413.5 389.5 368		Relative intensities (100:41:9)	54B001
	Isopentane/MCH/Et ₂ O (77 K)	PS	414.5 392.0 372.5		†Phosphorescence decay; glass was 6:1:0.7 isopentane to MCH to Et ₂ O; 414.5 nm was the most intense peak	71B003
	Liquid paraffin	FP/SD	415, 10000 391.5, 6800 372, 2700		Solvent had viscosity of 0.03 N·s/m ² ; all bands were assigned to same electronic transition; oscillator strength = 0.06	58E001
	Liquid paraffin MCH (77 K)	FP MOD	415 414 ^a 390 ^a 370 ^a		Viscosity of solvent was 0.167 N·s/m², $r_T = 2850 \mu s$ Relative intensities (6:3:1)	62E009 777538
	MCH (77 K)	MOD/KM	405 ^b , 1600 366 ^b , 740			82E648
	MCH/Isopentane (90 K)	MOD	417° 400° 391° 382° 372° 360° 351°		Glass was 4:1 MCH to isopentane	72B003
	Naphthalene (373 K)	PR/RF	420, 7100°		Liquid; ϵ was found by assuming that the oscillator strength remained 0.12 in all solvents; $\tau_T=1.2~\mu s$	
	Naphthalene-d ₈ (4.2 K)	MOD	415 402.5 392.5 380 372.5 360		Mixed crystals; the bands were embedded in a broad absorption band that was explained as due to mixing of guest triplet states with host conduction band or host charge-transfer states	73E342
	Naphthalene-d ₈ (1.5 K)	PS	414.8 392 370	•	Mixed crystal; maxima were taken from a fit to the spectrum	75B003
	Naphthalene (78 K)	PR	600 565 535 416 392		Triplet exiton; most intense peak at 416 nm	761030
	Naphthalene	PR	415ª 390ª	•	Microcrystals; spectrum obtained by diffuse reflec- tance spectroscopy; 415 nm peak was the more intense; half-life = 20 μs	84B120
	PMMA (293 K)	PS	415.5 393.5		Relative intensities (100:45)	67 B 00
	PMMA (294 K)	FP/RF	571, ~220 526, ~310 415 ^a 391 ^a 373 ^a		†Phosphorescence decay; ϵ relative to naphthalene in cyclohexane ($\epsilon_{412.5} = 22600 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming $\epsilon_{417} = 22000 \text{ L mol}^{-1} \text{ cm}^{-1}$ in PMMA; $\tau_T = (1.5 \pm 0.05) \times 10^6 \mu \text{s}$; oscillator strength = ~ 0.002	69B00
	PMMA	PR	415 385		Relative intensity (10:6)	692001
	PMMA (86 K)	PR	415 390			710278

J. Phys. Chem. Ref. Data, Vol. 15, No. 1, 1986

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

lo.	Solvent	Method	λ_{max} , /nm	ϵ_{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Pentane (77 K)	PS	413.6 401.6 390.6 370.1		Relative intensities (10:1:6:1)	69E211
	Polystyrene	PR	428 400 380		Relative intensities (100:53:33)	672086
	Polystyrene (77 K)	PR	425			692001
	Polystyrene (// II)	PR	424ª		$G\epsilon_{424} = 12000^{a} \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed})$	701073
	Toluene (77 K)	MOD	422 402°		Relative intensities (2:1); halfwidth of principal maximum 1180 cm ⁻¹	777538
69.	Naphthalene-d ₈ 1-BuOH/Isopentane	PS	413.2		A distinction between a 1:7 and a 3:7 glass was not	63B00
	(77 K)		389.7 371.0		made; the 3 bands were assigned to a single electronic transition ${}^{3}B_{3g} \leftarrow {}^{3}B_{1u}^{\dagger}$	
	3-MP (77 K)	PS/ESR	417, 3 403°, 5 391°, 1	5200°	<code>tESR</code> ; band was assigned as $^3B_{3g} \leftarrow ^3B_{2u}$; oscillator strength = 0.12	68D21
	3-MP (77 K)	PS	575.0 547.0 531.2 509° 491.6 473° 456.0 412.2		Bands starting at 412.2 nm were assigned to the ${}^3B_{3g}^ \leftarrow^3B_{2u}^+$ transition; other bands may be a mixture of electronic transitions, but one of these was assigned as ${}^3A_{1g}^ \leftarrow^{3}B_{2u}^+$; the bands at <412 nm are about 20 times stronger than the bands >412 nm	70B00
	? (77 K)	PS	400.5 390.0 379.3 369.3 359.4 351.3 342.2 419 ^a		†Phosphorescence decay and ESR lifetime; glass used	67E10
		,	406 ^a 393 ^a		was either 2-MTHF or 3-MP; $\tau_{\rm T} = 2.30 \times 10^7 \mu{\rm s}$	0/1210
	Butane/Isopentane (77 K)	PS/IV		4000 ± 3000 ∼7800	Glass was 3:7 butane to isopentane; ϵ_T was computed from OD = $\epsilon_T \tau_{\rm plo}(1 - \Phi_t)$ after the optical density, OD, was extrapolated to zero intensity of the monitoring beam (namely $i_0 \rightarrow 0$), here τ was lifetime of triplet, and Φ_t was fluorescence quantum yield; oscillator strength = 0.05	65E03
	Cyclohexane (77 K)	PS	413.5 409.4 407.2 402.0 389.8 386.0 383.2 379.5 369.2 367.2		Shoulders at 418.2 nm and 397.4 nm; relative intensities (100:80:60:20:60:50:20:15:20:15)	69E21
	Dipropyl ether (100 K)	FP	415° 394°		Shoulders at 405° and 373° nm; $\tau_T = 1.9 \times 10^7 \; \mu s$	696073
	Dipropyl ether (110 K)	PS	417 ^a 395 ^a		Relative intensities (2:1); polarization also measured	70B00
	Durene (77 K)	PS	417 ^a 395 ^a 372 ^a		Single crystal; the points were taken from the spectum of the b -axis polarized absorption	67B00
	Durene (4.2 K)	PS	415.9 392.9		Single crystal; relative intensities (100:47:2:14:2)	67 B 00

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	EPA (82 K)	PS/KM	413, 23300 ± 650		68B003
	EPA (77 K)	PS/IV	417, 22000	λ_{max} assumed from previous work; ϵ estimated by extrapolation to infinite excitation rate; $\tau_T=19\times 10^6~\mu s$	69E212
	EPA (77 K)	PS	417	Transition assigned as ${}^{3}B_{1g} \leftarrow {}^{3}B_{2u}^{+}$	69B001
	EPA (77 K)	FP/SD	414.0, 40000 ± 6000	$\tau_{\rm T} = 1.35 \times 10^7 \mu{\rm s}$	69F389
	EtOH/Et ₂ O (77 K)	MOD/KM	$417, 10000 \pm 3000$	Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	719059
	EtOH/MeOH (113 K)	FP/TD	575a, 110a	Glass was 3:1 EtOH to MeOH; shoulders at 595a, 562a,	717460
			549 ^a , 70 ^a	515 ^a , 485 ^a , and 431 ^a nm	
			529°, 220°		
			508 ^a , 130 ^a		
			493°, 240°		
			472°, 140° 457°, 280°		
			457 ^a , 280 ^a 448 ^a , 170 ^a		
			439 ^a , 320 ^a		
	EtOH/MeOH (101 K)	PS	413 ^a	Glass was 3:1 EtOH to MeOH	75B00
	, , , , , , , , , , , , , , , , , , , ,		400°		
			395ª		
			380°		
			370 ^a		
	Hexamethylbenzene	PS	415.3	Single crystal; relative intensities (100:48)	67B00
	(77 K)		393.2	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(0000
	PMMA (293 K)	PS	414.5	Relative intensities (100:44:4)	67B00
			392.1 372		
770	Naphthalene/Chloranil				
, ,	Liquid paraffin	MOD	405	Mull	71E36
771.	Naphthalene/Pyromellitic	dianhydride			
	1,2-Dichloroethane	LP	420	Charge-transfer complex only was excited;	75741
	(293 K)			naphthalene-PMDA charge-transfer complex	
	Dipropyl ether (100 K)	FP	426ª	Shoulder at 403° nm; $\tau_{\rm T}=1.8\times10^6~\mu{\rm s}$	69607
772.	Naphthalene/Tetrachlorop	•			
	Dipropyl ether (98 K)	FP	424ª	Shoulder at 407° nm	69607
773.	Naphthalene-d ₈ /Tetrachlor				(#D00
	EPA (77 K)	PS	414.8		67B00
			390.5		
774.	1-Naphthalenecarbothioic			American management and a second	75757
	Benzene	FP	490	†Triplet ET to triplet acceptors; the solvent was not specified explicitly	13133
775.	2-Naphthalenesulfonate io	n			
	Water	FP	413	‡Rises with fluorescence decay; 50 µs delay; pH 6; rise	76718
	•		390	time of 23 ns	
776.	1-Naphthalenesulfonic acid				4
	Liquid paraffin	FP	421	Solvent viscosity was 0.19 N·s/m²; relative intensities	58E00
			405 373.5	(100:88:54)	
777	anti -[2,2](1,4)-Naphthalen	onhane			
,,,,	2-MTHF (77 K)	LP	447.5		79 B 0
778.	syn -[2,2](1,4)-Naphthaleno	phane			
	2-MTHF (77 K)	LP	612.5		79B0

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

₹o.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
779.	2-(1-Naphthalenyl)-1,3-dio	xane			
	1,2-Dichloroethane	FP	420	$ au_{\mathrm{T}} = 108 \; \mu \mathrm{s}$	80E72
	Hexane	FP	415	$ au_{\rm T}=63~\mu{\rm s}$	80E72
780.	2-(2-Naphthalenyl)-1,3-dio	xane			
	1,2-Dichloroethane	FP	417	$\tau_{\rm T} = 142 \ \mu \rm s$	80E72
	Hexane	FP	412	$\tau_{\rm T} = 104 \ \mu \rm s$	80E72
101	1 Nauhthanta tau				
781.	1-Naphthoate ion Water	FP	439	II 12	41E00
	water	гг	439	pH 13	61E00
82.	2-Naphthoate ion				
	Water	FP	414	pH 13	61E0
83.	Naphtho[1,2,3,4-def]chryse	ene			
	Benzene	MOD	610	Relative intensities (100:64:41);	71E3
			522	"1,2,4,5-dibenzpyrene"; $\tau_T = 140 \mu s$	
			442	A STATE OF THE STA	
84.	1-Naphthoic acid				
U -7.	Water	FP	446	$pK_a = 3.8 \pm 0.5$; pH 1	61E0
		• •	110	Para - 5.0 at 6.0, par 1	01 L 0
85.	2-Naphthoic acid				
	Liquid paraffin	FP	430		61E0
			412		
	Water	FP	428	$pK_a = 4.0; pH 1$	61E0
36.	1-Naphthol				
	EPA (77 K)	PS	483	†Phosphorescence decay	51E0
	, ,		463	,	
			455		
	Hexane	FP	520	All bands except 520 nm were assigned to the second	58E0
			389.5	electronic transition; relative intensities	
			374.5	(16:100:67:49:24)	
			347.5	•	
	•		335		
	Isooctane	FP	435	‡Similarity to 1-naphthyl diisopropyl borate spectrum	7172
	Isonentone (MCII /Et O	ne	400	4791 1	#4 D.O
	Isopentane/MCH/Et ₂ O (77 K)	PS	481.0 455.0	tPhosphorescence decay; glass was 6:1:0.7 isopentane	7180
	(// K)		431.5	to MCH to Et ₂ O; 455.0 and 431.5 nm were the most	
			412.0	intense peaks	
	PMMA	FP	485	Similarity of spectrum to that of 1-naphthyl di-	7172
		•	460	isopropyl borate; there was a weak band extending	
			430	from 540 - 510 nm	
			400		
87	2-Naphthol				
٠.,	Cyclohexane	LP	433°		7372
	y 		413ª		, , , , 2
			385°		
	Cyclohexane	FP	467ª	Oxygen quenching and triplet ET to perylene; most	7371
			429°	intense peak at 429 nm; $\tau_T = 67 \mu s$	
			408ª		
			3848		
	Cyclohexane	LP/ET	355 ^a 435, 6500	Triplet ET from perylene; ε relative to perylene in	7773
	-, -, -, -, -, -, -, -, -, -, -, -, -, -	L1/L1	1 33, 0 300	cyclohexane ($\epsilon_{480} = 13000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 67 \mu \text{s}$	1113
	Gelatin	FP	443	†Phosphorescence decay; $\tau_{\rm T} = 4.7 \times 10^5 \mu \rm s$	64E0
	Heptane	FP	430ª	Lifetimes suggest solution not fully deaerated; $\tau_T = 36$	77E6
	Hexane	FP	429.0	\pm 3 μ s Another band at 467 nm was identified as the	71 BC
		* *			, 100
			404.0	2-naphthoxyl radical; 429.0 nm was the most intense	

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ _{max} , /nm	ϵ_{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Isooctane	FP	433 405		†Similarity to 2-naphthyl diisopropyl horate spectrum	717266
	Isopentane/MCH/Et ₂ O (77 K)	PS	443.0 419.0 395.5		$\protect\ Phosphorescence\ decay;\ glass\ was\ 6:1:0.7$ isopentane to MCH to Et ₂ O; 443.0 nm was the most intense peak	71B003
	Liquid paraffin	FP	433 411 381.5			61E008
	PMMA	FP	525 438 405		‡Similarity to 2-naphthyl diisopropyl borate spectrum; 438 nm was the most intense peak	717266
	Water	FP	432		Another maximum near 350 nm and a shoulder near 390 nm; pK _a = 8.1; pH 4.6	61E008
	Water	LP	431ª		Solution saturated with N_2O ; [HClO ₄] = 0.2 mol L ⁻¹ ; shoulder at ~410° nm; delay 30 ns; pH Acidic	737287
788.	1-Naphthol/Triethylamine					
	Isopentane/MCH/Et ₂ O (77 K)	PS	488° 461°		H-bonded complex; glass was 6:1:0.7 isopentane to	71B003
	(// IL)		435°		MCH to Et ₂ O; shoulder at 395 ^a nm; 461 nm was the most intense peak	
			417ª			
789.	2-Naphthol/Triethylamine	.				
	Isopentane/MCH/Et ₂ O	PS	446ª		H-bonded complex; glass was 6:1:0.7 isopentane to	71B003
	(77 K)		424ª		MCH to Et ₂ O; 446 nm was the most intense peak;	
			388ª		shoulder at 405° nm	
79 0.	9-Naphthoylanthracene EPA (77 K)	FP	427		†Phosphorescence decay; $\tau_T = 3.07 \times 10^4 \mu s$	82E338
791.	1-Naphthyl acetate MCH (77 K)	MOD/KM	436 ^b , 405 ^b , 366 ^b ,	1400		82E648
792.	2-(1-Naphthyl)benzoxazol	e				
	Pentane	LP/TD	530, : 489ª 422ª	24200 ± 250	Shoulder at 454° nm; $\tau_{\rm T} = 0.52 \pm 0.05 \ \mu s$	82E632
793.	8-(1-Naphthyl)-6,7-dihydro	o-5 <i>H</i> -benzocycloh	eptene			
	Benzene	LP-ET	507° 390°		†Triplet ET from xanthone	84B007
794.	1-Naphthyl diisopropyl bo	orate				
	Triisopropyl borate	FP	900			717266
			535 502.5	•		
			476			
			450			
			420 397			
			377			
795.	2-Naphthyl diisopropyl bo	rate				
.,,,,	Triisopropyl borate	FP	525		425 nm was the most intense peak	717266
			425			
			401 380			
704	fuenc 1 /4 Naul 41 - N # /4	mamb4b=-N=-2 1				
796.	trans-1-(1-Naphthyl)-2-(2- Benzene	naphthyl)ethylene- LP/ET		± 3, 19000 ± 2900	tQuenching by oxygen, a nitroxide free radical, and	84E237
			- 34 .	2, 2222 22 2700	azulene; ϵ relative to fluorenone in benzene (ϵ_{435} = 6000 L mol ⁻¹ cm ⁻¹); $\tau_{\rm T}$ = 0.56 \pm 0.08 μ s; $k_{\rm el}$ = (6.9 \pm 1.0) \times 10 ⁹ L mol ⁻¹ s ⁻¹	

TRIPLET-TRIPLET ABSORPTION SPECTRA OF ORGANIC MOLECULES

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol $^{-1}$ cm $^{-1}$	Comment	Ref.
	Bromobenzene	LP	505 ±3	$\tau_{\rm T}=0.43\pm0.06~\mu{\rm s}$	84E237
797.	1-Naphthyloxide ion EtOH/MeOH (77 K)	PS	-505ª	Glass was 5:1 EtOH to MeOH; there was a shoulder at	71B003
			476 ^a 452 ^a	422^a nm; the solution was 0.11 mol L ⁻¹ KOH; 505 nm was the most intense peak	
98.		ED.	: 450 °	Another marinum in the same 250, 400 and 211 10 6	61E000
	Water Water	FP LP	460 455 ^a	Another maximum in the range 350 - 400 nm; pH 10.6 Solution saturated with N ₂ O; delay 30 ns; pH 13	61E008 737287
99.	2-(2-Naphthyloxy)-3,5,5-t	rimethyl-2-cycloh	exen-1-one		
	MCII	CALTY OF THE STATE OF	430*	tOxygen quenching (1.7 \times 10° L mol ⁻¹ s ⁻¹), decay measured at 410 nm and spectrum obtained by extrapolation to zero time; $\tau_T=0.53~\mu s$	81F111
00.	1-(1-Naphthyl)-1-phenylet	hylene			
	Benzene	LP-ET	500 ^a 403 ^a	†Triplet ET from xanthone; $\tau_T = 0.040 \mu s$	84B007
01.	trans-1-(1-Naphthyl)-2-ph	envlethvlene	1 × 1		
	Benzene	LP/ET	490 ± 3, 17000 ± 2600	tQuenching by oxygen, a nitroxide free radical, and azulene; ϵ relative to fluorenone in benzene ($\epsilon_{435} = 6000 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{\rm T} = 0.39 \pm 0.06 \ \mu\text{s}$; $k_{\rm et} = (6.7 \pm 1.0) \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	84E23
	Bromobenzene	LP	495 ± 3	$\tau_{\rm T} = 0.25 \pm 0.04 \ \mu \rm s$	84E23
02.	trans-1-(2-Naphthyl)-2-ph	enylethylene			
	Benzene	LP-ET	530° 410°	1Triplet ET from xanthone and benzophenone, oxygen and azulene quenching; 50 ns delay; lifetimes are 0.08 μ s (530 nm band) and 0.15 μ s (410 nm band); possible triplet conformers; $E_T = 206 \text{ kJ mol}^{-1}$	81E49
	Benzene	LP/ET	$395 \pm 3,8000 \pm 1200$	ϵ relative to fluorenone in benzene ($\epsilon_{435} = 6000 \text{ L}$ mol ⁻¹ cm ⁻¹); $\tau_{\rm T} = 0.14 \pm 0.02 \ \mu \text{s}; k_{\rm et} = (9.0 \pm 1.3) \times 10^9 \ \text{L} \ \text{mol}^{-1} \ \text{s}^{-1}$	84E23
	Bromobenzene	LP	400 ± 3	$\tau_{\rm T}=0.09\pm0.01~\mu{\rm s}$	84E23
	EPA (77 K)	L.P	510 497 492		747376
			470		
03.	2-(1-Naphthyl)-5-phenyl-1	i,3,4-oxadiazole		n de la companya de l La companya de la co	
	Benzene	LP/SD	580, 67000	†Oxygen quenching (1.6 \times 10 ⁹ L mol ⁻¹ s ⁻¹); 100 ns delay; " α -NPD"; $\tau_{\rm T}=0.300~\mu{\rm s}$	
	Cyclohexane	FP/TD	696, 6200° 496, 5900° 454, 4800°	Only peaks reported by authors given - extensive vibronic structure observed; oscillator strength = 0.13,	78B08
	Cyclohexane	FP/TD	550°, 11000° 495, 5000° 455, 5000°	0.02, 0.04 Only principal maximum of the band(s) around 500 nm reported, extensive vibrational structure observed; ε method assumed from earlier work; oscillator strength = 0.13, 0.02, 0.04	79B11
04.	2-(2-Naphthyl)-5-phenyl-	1,3,4-oxadiazole	4.		
	Cyclohexane	FP/TD	611, 6200° 508, 4000° 413, 14000°	Only peaks reported by authors given; oscillator strength = 0.04, 0.02, 0.09	78B08
	Cyclohexane	FP/TD	413, 14000° 611, 6200° 508, 4000° 488, 3800° 441, 4200° 423, 14100°	ϵ method assumed from earlier work; oscillator strength = 0.03, <0.01, <0.01, 0.01, 0.09	79 B 11

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
805.	2-(1-Naphthyl)-5-phenyl	oxazole			
	3-MP (77 K)	CWL	580	"α-NPO"	74B003
	Benzene	LP/SD	550, 100000	tOxygen quenching (2.3 \times 10 ⁹ L mol ⁻¹ s ⁻¹); 100 ns delay; $\tau_{\rm T}=0.215~\mu{\rm s}$	777265
806.	Neo-alloocimene				
	Toluene	PR/ET	340 ^a , 930 ^a 315, 1840 ^a	†Triplet ET to perylene; ϵ relative to perylene in benzene ($\epsilon_{490} = 14300 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_{\text{T}} = 0.33 \mu\text{s}$; $k_{\text{et}} = 9.1 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	83E258
807.	Neomethylene Blue cati	ion			
	Water	FP/SD	840 ^b , 4000	†Triplet ET from naphthalene, oxygen and I ⁻ quenching; $pK_b = 6.5$; structure of the spectrum could not be discerned because it was not corrected for SD; pH 9	70E293
808.	all-trans-Neurosporene				
	Cyclohexane	PR/ET	489, 274000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{360} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹); $\tau_{\text{T}} = 6.6 \mu\text{s}$; $k_{\text{et}} = 1.22 \times 10^9 \text{L mol}^{-1} \text{s}^{-1}$	83B121
209	Neutral Red cation			•	
007.	Water	FP/SD	580, 7300 380, 5800	‡Oxygen quenching; p K_b 4.5; $\tau_T = 63 \pm 12 \mu s$; pH 9.8	84B027
810.	Neutral Red cation, con	niugate diacid			
	Water	FP/SD	680, 12000 390, 8000	‡Oxygen quenching; p K_a 4.8; $\tau_T = 63 \pm 12 \mu s$; pH 2.8	84B027
811.	5-Nitroacenaphthene EPA (77 K)	PS/KM	$850, 250 \pm 30$ $600, 500 \pm 60$ $370, 7100 \pm 850$	†Phosphorescence decay; $\tau_{\rm T} = (2.6 \pm 0.3) \times 10^5 \mu \rm s$	78 E 057
012	4-Nitroaniline				
012.	EPA (113 K)	FP	595	tPhosphorescence decay; $τ_T = 250 \mu s$	776104
	EPA (100 K)	FP	600°	Lifetime measured at 93 K; $\tau_T = 4.5 \times 10^4 \mu s$	80E318
813.	3-Nitroanisole CF ₃ CH ₂ OH	LP	400°	$ au_{\mathrm{T}}=3.5~\mu\mathrm{s}$	84E033
814.	4-Nitroanisole Glycerol triacetate	LP	560	418 nm peak was the more intense	78B088
	(198 K)	LI	418	410 mm peak was the more medice	,02000
	Glycerol triacetate	LP	550 414	550 nm peak was the more intense	78B088
815.	9-Nitroanthracene				
	Benzene (293 K)	LP	435°	170 ps delay; growth followed at 452 nm; authors later [84F385] quote $\lambda_{max}=433$ nm, with a shoulder at 410 nm; rise time of $(76\pm6)\times10^{-3}$ ns	80B084
	EPA (77 K)	FP	440°	$\tau_{\rm T}=1.77\times10^4~\mu{\rm s}$	80B084
	EtOH	LP	430°	Rise time measured at 452 nm; 100 ps delay; rise time of 0.086 ± 0.006 ns	80E234
	EtOH (77 K)	FP	435a	$\tau_{\rm T} = 1.77 \times 10^4 \mu \rm s$	80E234
014	4. Nituohint				
010.	4-Nitrobiphenyl Benzene	LP	540		747022
	EPA (77 K)	FP	550	†Phosphorescence decay	747022
	(///		520	4 / F	
	Glycerol triacetate	LP	530	530 nm peak was the more intense	78 B 088
	(198 K)	I D	~375 526	526 nm peak was the more intense	78 B 088
	Glycerol triacetate	LP	526 ∼370	320 mm peak was the more intense	, 0,000

 ${\it Table 6.} \quad {\it Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases-Continued}$

	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
817.	2-[2-(5-Nitro-2-furanyl)]e	thenylquinoline			
	2-PrOH/Water	FP	590	†Triplet energy transfer to	79A403
		*		3,3'-diethylthiacarbocyanine iodide (in BuOH); sol-	
				vent was 1:1 2-PrOH to water; 50 μ s delay; $\tau_T = 670$	
	•			± 90 μs	
818.	5-Nitro-2-furoic acid				
	Acetone (295 K)	LP/HAT	490, 19000	Hydrogen atom transfer from	81A140
				2,4,6-tri-tert-butylphenol (1.71 \times 10 ⁹ L mol ⁻¹ s ⁻¹); ϵ	
				relative to 2,4,6-tri-tert-butylphenoxyl radical (ϵ_{620} =	
				400 L mol ⁻¹ cm ⁻¹); $\tau_T = 0.2036 \mu s$	
	Acetone (295 K)	LP/ELT	490, 20900	†Triplet ET to 1,4-benzoquinone, azulene and ferro-	81A140
				cene, oxygen quenching $(1.68 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$;	
				electron transfer from triphenylamine (3.3 × 10 ⁹ L	
				$\text{mol}^{-1} \text{ s}^{-1}$); ϵ relative to triphenylamine radical cation	
				$(\epsilon_{660} = 28750 \text{ L mol}^{-1} \text{ cm}^{-1}); \tau_{\text{T}} = 0.2036 \mu\text{s}; E_{\text{T}} =$	
				240 ± 4 kJ mol ⁻¹	
	Acetone (295 K)	LP/ELT	490, 20500	Electron transfer from tris(4-bromophenyl)amine	81A140
		, x	,	(8.94 \times 10 ⁹ L mol ⁻¹ s ⁻¹); ϵ relative to	34141-10
				tris(4-bromophenyl)amine radical cation ($\epsilon_{725} = 20800$	
				L mol ⁻¹ cm ⁻¹); $\tau_T = 0.290 \mu s$	
	Agerone (295 K)	LP/ELT	490, 20700	Electron transfer from TMPD (5.98 \times 10° L mol ⁻¹	81A140
	Acetone (295 K)	LF/ELI	490, 20700		81A14U
				s ⁻¹); ϵ relative to TMPD radical cation ($\epsilon_{565} = 12470$	
	A	I D /CI T	100 22500	L mol ⁻¹ cm ⁻¹); $\tau_{\rm T} = 0.290 \ \mu s$	01.1.10
	Acetonitrile (295 K)	LP/ELT	490, 22500	Electron transfer from iodide ion $(6.65 \times 10^9 \text{ L mol}^{-1})$	81A140
				s ⁻¹); ϵ relative to iodine molecular anion ($\epsilon_{400} = 12900$	
	D) (E) (00.5 H)		100	L mol ⁻¹ cm ⁻¹); $\tau_{\rm T} = 0.290 \ \mu s$	
	DMF (295 K)	LP	490	$\tau_{\rm T} = 0.0766 \; \mu {\rm s}$	81A140
	Ethyl acetate (295 K)	LP	490	$\tau_{\rm T} = 0.070 \; \mu \rm s$	81A140
	Methylene chloride	LP	495	$\tau_{\rm T}=0.070~\mu{\rm s}$	81A140
	(295 K) Water (295 K)	LP	486	Lifetime increases to 34.2 ns in deuterated water; $\tau_T =$	81A140
				0.0272 μs	
819	1-Nitronaphthalene				
017.	EPA (77 K)	PS	580		78E057
	LIA (// K)	10	420		78E057
	EtOH	LP	580	+Dbb	747226
	Lion	LF	380	•	747236
	Evolu	T.D.	500	ET to perylene and tetracene	047064
	EtOH	LP	580	‡Oxygen quenching (3.3 × 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 4.9$	81B064
				μs	
	**				
	Hexane	LP	525	†Phosphorescence decay at 77 K in PMMA and triplet	747236
				ET to perylene and tetracene	
	Hexane Hexane	LP LP	525 525	•	
	Hexane	LP .	525	ET to perylene and tetracene ‡Oxygen quenching $(1.3 \times 10^9 \mathrm{L mol^{-1} s^{-1}}); \tau_{\mathrm{T}} = 0.93$ µs	81B064
				ET to perylene and tetracene ‡Oxygen quenching $(1.3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}); \tau_T = 0.93$	81B064
	Hexane	LP .	525	ET to perylene and tetracene ‡Oxygen quenching $(1.3 \times 10^9 \mathrm{L mol^{-1} s^{-1}}); \tau_{\mathrm{T}} = 0.93$ µs	81B064
222	Hexane N-Methylformamide	LP .	525	ET to perylene and tetracene ‡Oxygen quenching $(1.3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; $\tau_T = 0.93 \mu\text{s}$ ‡Phosphorescence decay at 77 K in PMMA and triplet	81B064
820.	Hexane N-Methylformamide 2-Nitronaphthalene	LP LP	525 615	ET to perylene and tetracene ‡Oxygen quenching $(1.3 \times 10^9 \text{L mol}^{-1} \text{s}^{-1})$; $\tau_{\rm T} = 0.93 \mu \text{s}$ ‡Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene	81B064
820.	Hexane N-Methylformamide	LP .	525	ET to perylene and tetracene † Oxygen quenching $(1.3 \times 10^9 \text{L mol}^{-1} \text{s}^{-1}); r_{\text{T}} = 0.93 \mu\text{s}$ † Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene † Phosphorescence decay in EPA at 77K, triplet ET to	81B064
820.	Hexane N-Methylformamide 2-Nitronaphthalene Acetonitrile	LP LP	525 615 480	ET to perylene and tetracene ‡Oxygen quenching (1.3 × 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 0.93$ µs ‡Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene ‡Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\rm T} = 2.90$ µs; $k_{\rm ct} = 7.1 \times 10^9$ L mol ⁻¹ s ⁻¹	81B064 747236
820.	Hexane N-Methylformamide 2-Nitronaphthalene	LP LP	525 615	ET to perylene and tetracene † Oxygen quenching $(1.3 \times 10^9 \text{L mol}^{-1} \text{s}^{-1}); r_{\text{T}} = 0.93 \mu\text{s}$ † Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene † Phosphorescence decay in EPA at 77K, triplet ET to	81B064 747236
820.	Hexane N-Methylformamide 2-Nitronaphthalene Acetonitrile	LP LP LP	525 615 480	ET to perylene and tetracene ‡Oxygen quenching (1.3 × 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 0.93$ µs ‡Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene ‡Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\rm T} = 2.90$ µs; $k_{\rm ct} = 7.1 \times 10^9$ L mol ⁻¹ s ⁻¹	81B064 747236 767269
820.	Hexane N-Methylformamide 2-Nitronaphthalene Acetonitrile	LP LP	525 615 480	ET to perylene and tetracene ‡Oxygen quenching ($1.3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$); $\tau_{\text{T}} = 0.93 \mu\text{s}$ ‡Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene ‡Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\text{T}} = 2.90 \mu\text{s}$; $k_{\text{ct}} = 7.1 \times 10^9 \text{L mol}^{-1} \text{s}^{-1}$ Radical or radical anion seen at $\lambda_{\text{max}} = 400 \text{nm}$ on	81B064 747236 767269
820.	N-Methylformamide 2-Nitronaphthalene Acetonitrile EPA	LP LP LP	525 615 480 470	ET to perylene and tetracene †Oxygen quenching (1.3 \times 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 0.93$ µs †Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene †Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\rm T} = 2.90$ µs; $k_{\rm el} = 7.1 \times 10^9$ L mol ⁻¹ s ⁻¹ Radical or radical anion seen at $\lambda_{\rm max} = 400$ nm on exposure to a long (5 µs) flash	81B064 747236 767269 767269
820.	N-Methylformamide 2-Nitronaphthalene Acetonitrile EPA	LP LP LP	525 615 480 470 760, 510 ± 25	ET to perylene and tetracene †Oxygen quenching (1.3 \times 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 0.93$ µs †Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene †Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\rm T} = 2.90$ µs; $k_{\rm el} = 7.1 \times 10^9$ L mol ⁻¹ s ⁻¹ Radical or radical anion seen at $\lambda_{\rm max} = 400$ nm on exposure to a long (5 µs) flash	81B064 747236 767269 767269
820.	Hexane N-Methylformamide 2-Nitronaphthalene Acetonitrile EPA EPA (77 K)	LP LP LP PS/KM	525 615 480 470 760, 510 \pm 25 475, 750 \pm 40	ET to perylene and tetracene ‡Oxygen quenching $(1.3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; $\tau_T = 0.93 \mu\text{s}$ ‡Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene ‡Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_T = 2.90 \mu\text{s}$; $k_{\text{ct}} = 7.1 \times 10^9 \text{L mol}^{-1} \text{s}^{-1}$ Radical or radical anion seen at $\lambda_{\text{max}} = 400 \text{nm}$ on exposure to a long (5 μ s) flash ‡Phosphorescence decay; $\tau_T = (2.47 \pm 0.02) \times 10^5 \mu\text{s}$	81B064 747236 767269 767269 78E057
820.	N-Methylformamide 2-Nitronaphthalene Acetonitrile EPA	LP LP LP	525 615 480 470 760, 510 ± 25 475, 750 ± 40 360, 3600 ± 180	ET to perylene and tetracene ‡Oxygen quenching $(1.3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; $\tau_T = 0.93 \mu\text{s}$ ‡Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene ‡Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_T = 2.90 \mu\text{s}$; $k_{\text{ct}} = 7.1 \times 10^9 \text{L mol}^{-1} \text{s}^{-1}$ Radical or radical anion seen at $\lambda_{\text{max}} = 400 \text{nm}$ on exposure to a long (5 μ s) flash ‡Phosphorescence decay; $\tau_T = (2.47 \pm 0.02) \times 10^5 \mu\text{s}$ ‡Phosphorescence decay in EPA at 77K, triplet ET to	81B064 747236 767269 767269 78E057
820.	Hexane N-Methylformamide 2-Nitronaphthalene Acetonitrile EPA EPA (77 K) EtOH	LP LP LP PS/KM	525 615 480 470 760, 510 ± 25 475, 750 ± 40 360, 3600 ± 180	ET to perylene and tetracene ‡Oxygen quenching ($1.3 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$); $\tau_{\text{T}} = 0.93 \mu\text{s}$ ‡Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene ‡Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\text{T}} = 2.90 \mu\text{s}$; $k_{\text{et}} = 7.1 \times 10^9 \text{L mol}^{-1} \text{s}^{-1}$ Radical or radical anion seen at $\lambda_{\text{max}} = 400 \text{nm}$ on exposure to a long (5 μ s) flash ‡Phosphorescence decay; $\tau_{\text{T}} = (2.47 \pm 0.02) \times 10^5 \mu\text{s}$ ‡Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\text{T}} = 1.70 \mu\text{s}$	81B064 747236 767269 767269 78E057
820.	Hexane N-Methylformamide 2-Nitronaphthalene Acetonitrile EPA EPA (77 K)	LP LP LP PS/KM	525 615 480 470 760, 510 ± 25 475, 750 ± 40 360, 3600 ± 180	ET to perylene and tetracene †Oxygen quenching (1.3 × 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 0.93$ µs †Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene †Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\rm T} = 2.90$ µs; $k_{\rm ct} = 7.1 \times 10^9$ L mol ⁻¹ s ⁻¹ Radical or radical anion seen at $\lambda_{\rm max} = 400$ nm on exposure to a long (5 µs) flash †Phosphorescence decay; $\tau_{\rm T} = (2.47 \pm 0.02) \times 10^5$ µs †Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\rm T} = 1.70$ µs †Oxygen quenching (1.6 × 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 1.7$	81B064 747236 767269 767269 78E057
820.	Hexane N-Methylformamide 2-Nitronaphthalene Acetonitrile EPA EPA (77 K) EtOH EtOH	LP LP LP PS/KM LP LP	525 615 480 470 760, 510 ± 25 475, 750 ± 40 360, 3600 ± 180 470	ET to perylene and tetracene †Oxygen quenching (1.3 × 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 0.93$ µs †Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene †Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\rm T} = 2.90$ µs; $k_{\rm ct} = 7.1 \times 10^9$ L mol ⁻¹ s ⁻¹ Radical or radical anion seen at $\lambda_{\rm max} = 400$ nm on exposure to a long (5 µs) flash †Phosphorescence decay; $\tau_{\rm T} = (2.47 \pm 0.02) \times 10^5$ µs †Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\rm T} = 1.70$ µs †Oxygen quenching (1.6 × 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 1.7$ µs	81B064 747236 767269 767269 78E057 767269 81B064
820.	Hexane N-Methylformamide 2-Nitronaphthalene Acetonitrile EPA EPA (77 K) EtOH	LP LP LP PS/KM	525 615 480 470 760, 510 ± 25 475, 750 ± 40 360, 3600 ± 180	ET to perylene and tetracene †Oxygen quenching (1.3 × 10^9 L mol ⁻¹ s ⁻¹); $\tau_T = 0.93$ µs †Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene †Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_T = 2.90$ µs; $k_{ct} = 7.1 \times 10^9$ L mol ⁻¹ s ⁻¹ Radical or radical anion seen at $\lambda_{max} = 400$ nm on exposure to a long (5 µs) flash †Phosphorescence decay; $\tau_T = (2.47 \pm 0.02) \times 10^5$ µs †Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_T = 1.70$ µs †Oxygen quenching (1.6 × 10^9 L mol ⁻¹ s ⁻¹); $\tau_T = 1.7$ µs †Phosphorescence decay in EPA at 77K, triplet ET to	81B064 747236 767269 767269 78E057 767269 81B064
820.	Hexane N-Methylformamide 2-Nitronaphthalene Acetonitrile EPA EPA (77 K) EtOH EtOH	LP LP LP PS/KM LP LP	525 615 480 470 760, 510 ± 25 475, 750 ± 40 360, 3600 ± 180 470	ET to perylene and tetracene †Oxygen quenching (1.3 × 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 0.93$ µs †Phosphorescence decay at 77 K in PMMA and triplet ET to perylene and tetracene †Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\rm T} = 2.90$ µs; $k_{\rm ct} = 7.1 \times 10^9$ L mol ⁻¹ s ⁻¹ Radical or radical anion seen at $\lambda_{\rm max} = 400$ nm on exposure to a long (5 µs) flash †Phosphorescence decay; $\tau_{\rm T} = (2.47 \pm 0.02) \times 10^5$ µs †Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_{\rm T} = 1.70$ µs †Oxygen quenching (1.6 × 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 1.7$ µs	81B064 747236 767269 767269 78E057 767269 81B064 767269

Table 6 Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , /nm	$\epsilon_{ m max}$ /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Hexane	LP	425		‡Oxygen quenching (1.7 × 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_T = 0.53$ µs	81B06
	Water	LP	485		†Phosphorescence decay in EPA at 77K, triplet ET to tetracene; $\tau_T = 7.60 \mu s$	767269
821.	4-Nitropyridine-N-oxide					
	Water	FP	550		‡Oxygen quenching; $\tau_T = 30 \mu s$	737469
			380		townsen degree with the second	707.10
822.	4-Nitroquinoline-N-oxide					
	Benzene	LP	530		†Triplet ET to tetracene; $k_{\rm et} = 8 \times 10^9 \rm L mol^{-1} s^{-1}$	84B12
	Water	LP	590 410		Phosphate buffer; $\tau_T = 50 \mu s$; pH 7	84B12
823.	trans-3-Nitrostilbene					
-	Glycerol triacetate	LP	365			78B08
	Glycerol triacetate (198 K)	LP	382			78B08
824.	trans-4-Nitrostilbene					
	Cyclohexane	LP	540		‡Oxygen quenching in benzene; $\tau_T = 0.063 \mu s$	74702
	EPA (77 K)	FP	585ª		Shoulder at 555 ^a	74702
	EtOH/MeOH (103 K)	LP	590 450		Solvent was 4:1 EtOH to MeOH; 450 nm peak was the more intense	78B0
	EtOH/MeOH	LP	585		Solvent was 4:1 EtOH to MeOH; 440 nm peak was the	78B0
	Glycerol triacetate	LP	440 540		more intense 540 nm peak was the more intense	7880
	Gryceror triacetate	Li	425		540 mm peak was the more mense	7000
	Glycerol triacetate (191 K)	LP	550 426		550 nm peak was the more intense	78B0
825.	4-Nitro-p-terphenyl					
	EPA (77 K)	PS/KM	600, 2	14500 ± 725 125500 ± 1275 138500 ± 1925	†Phosphorescence decay; $\tau_{\mathrm{T}} = (3.14 \pm 0.16) \times 10^5 \mu\mathrm{s}$	78E0
224				•		
826.	2-Nitrothiophene	T D MT M	e seb	0000	1 d d day of the bar is a control to the second	00 4 1
	1-PrOH (273 K)	LP/ELT	545°, 544	8800	ϵ relative to $(C_6H_5)_2N$ in MTHF glass at 77 K ($\epsilon_{max} = 3900 \text{ L mol}^{-1} \text{ cm}^{-1}$); protonation was thought to take place after ELT; $\tau_T = 0.118 \mu \text{s}$	82A1
	Acetone (273 K)	T D	549		$\tau_{\rm T} = 0.227 \; \mu {\rm s}$	82A1
	Acetone (273 K) Acetonitrile (273 K)	LP LP/ELT	548			82A1
	Accionistic (273 K)	DI/DD1		10900	3,3',3''-tribromotriphenylamine radical cation in methylene chloride ($\epsilon_{max} = 20800 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming no solvent effect; ϵ was to be an upper bound since assumptions included complete ELT, no backreaction, and no reaction with solvent; $\tau_T = 0.30 \mu \text{s}$	J2.11
	Acetonitrile (273 K)	LP/ELT	548 545 ^b ,	8800		82A1
	Acetonitrile (273 K)	LP/ELT	548 545 ^b ,	11200	tOxygen quenching; ϵ relative to triphenylamine radical cation in EtOH ($\epsilon_{max} = 28750 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming no solvent effect; ϵ was to be an upper bound since assumptions included complete ELT, no backreaction, and no reaction with solvent; $\tau_T = 0.30 \mu s$	82A1
	CCl ₄ (273 K)	LP	549		$\tau_{\rm T}=0.022~\mu{\rm s}$	82A1
	EtOH (273 K)	LP	545		$\tau_{\rm T}=0.129~\mu{\rm s}$	82A1
	MeOH (273 K)	LP	545		$\tau_{\rm T}=0.282~\mu{\rm s}$	82A1
	Methylene chloride (273 K)	LP	545		$\tau_{\rm T} = 0.173 \ \mu s$	82A1
	Water (273 K)	LP	545			82A1
	Water (273 IL)	1.1	545			02111

TRIPI ET-TRIPLET ABSORPTION SPECTRA OF ORGANIC MOLECULES

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
827.	Octaethylporphinatopallac	dium(II)			
	Methyl methacrylate	LP	497° 417°	417 nm peak was the more intense	747346
328.	Octaethylporphinatotin(IV	V) dichloride			
	1,2-Dichloroethane	LP/SD	584 ^b , 2400 566 ^b , 3500 551 ^b , 5300 433 ^a 418 ^b , 18000		747346
829.	8,9,10,11,12,13,14,15-Octa 2-MTHF (77 K)	ahydro-5,7:16,18- PS/KM	dietheno-2,21-octanocyclopen 397 ^a , 35900 ^a	ntadeca[1,2-a:1,15-a']diindene Compound "X" in paper	83E383
830.	(all-E)-3,7,11,15,20,24,28, tritriacontaheptadecaene	,32-Octamethyl-1	,34-bis(2,6,6-trimethyl-1-cycl	ohexen-1-yl)-1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33-	
	Benzene (296 K)	LP-ET	620	Triplet ET from chlorophyll a; oxygen quenching (5.6 \times 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T}=2.5~\mu{\rm s};~k_{\rm et}=1.8\times10^{9}~{\rm L}$ mol ⁻¹ s ⁻¹	73E347
831.	Orotate ion Water	FP/SD	315, 22000	‡Oxygen quenching; p K_a 9.4; $\tau_T = 137 \pm 10 \mu\text{s}$; pH 7.0	71E36
832.	Orotic acid				
	Water	FP/SD	310, 11000 280, 14000	‡Oxygen quenching; p K_a 4.6; $\tau_T = 137 \pm 10 \mu\text{s}$; pH 3.0	71E36
333.	7-Oxa-2,3-dibenzoylbicyc	lo[2,2,1]hepta-2,5	i-diene	enteres de la companya del companya della companya	
	Benzene	LP/RA	$410 \pm 5,5640 \pm 1400$	†Oxygen and azulene quenching; ϵ relative to benzophenone in benzene ($\epsilon_{532} = 7600 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming $\Phi_T = 1$ for benzophenone and taking $\Phi_T = 0.70$ for the compound in benzene; $\tau_T = 0.45 \pm 0.07 \mu\text{s}$	84A35
	MeOH	LP	405 ± 5	tOxygen quenching; $\tau_{\rm T}=0.41\pm0.06~\mu{\rm s}$	84A35
834.	7-Oxa-2,3-dibenzoyibicyc		· · · · · · · · · · · · · · · · · · ·		
	Benzene	LP/RA	450 ± 5 ^b ; 2700 ± 700	Oxygen and azulene quenching; ϵ relative to benzophenone in benzene ($\epsilon_{532}=7600 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming $\Phi_{\rm T}=1$ for benzophenone and taking $\Phi_{\rm T}=0.74$ for the compound in benzene; $\tau_{\rm T}=1.4\pm0.2~\mu{\rm s}$	84A35
835.	Oxonine cation				
	MeOH	FP-ET/SD	750 ^a , 15000 ^a 675 ^a , 5000 ^a	tTriplet ET from 9,10-dibromoanthracene, oxygen quenching; € assumes triplet does not absorb where	767240
			075 , 5000	singlet depletion is followed; $\tau_T = 140 \mu s$; pH Basic	
	* *	•			
836.	Oxonine cation, conjugat				
		FP-ET/SD	650°, 16000° 380°, 13000°	†Triplet ET from 9,10-dibromoanthracene; ϵ assumes triplet does not absorb where singlet depletion is fol-	76724
	The second section of the sect		the second secon	lowed; $\tau_{\rm T} = 55 \ \mu {\rm s}$; pH Acidic	
837.	Oxotitanium(IV) tetraphe	enylporphyrin			
	EtOH	LP	465	‡Oxygen quenching; delay 200 ns; triplet species likely to be in equilibrium with EtOH-coordinated triplet; τ_T = 35 \pm 1 μs	84B00
838.		rin I FP/SD	410, 70000 365, 51000	‡Phosphorescence decay; $\tau_T = 300 \ \mu s$	73E34
020	Delladium/ID 4-4-1				
859.	Palladium(II) tetrabenzoj Pyridine	porphyrin FP	480	tPhosphorescence decay; $\tau_{\rm T}=190~\mu {\rm s}$	73E34
	- 4		385		. 5257

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ _{max} , /nm	ϵ_{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
840.	Palladium(II) tetrakis(carb	oxyphenyl)porph	yrin			
	Water	LP	850			82E622
			720			
841.	Palladium(II) tetrakis(4-N	-methylpyridyl)p	orphyrin			
	Water	LP/TD	940, 6	5400 ± 600	Shoulder at 820 nm	82E622
			470 ⁶ ,	33400 ± 3300		
			450b,	52000 ± 5200		
842.	Palladium(II) tetrakis(p-su	dfonatophenyl)po	rphyrin			
	Water	LP/TD		7600 ± 800	Shoulder at 700 nm	82E62
			460⁵,	28000 ± 2800		
843.	Palladium(II) tetraphenylp	orphyrin				
	MCH	FP/TD	450,	47000	$tOxygen quenching; \tau_T = 380 \mu s$	81E27
			385,	30000		
	Pyridine	FP/SD	450,	47800		73E34
			385,	35000		
844.	[2,2]Paracyclophane					
	2-MTHF (77 K)	LP	550		Most intense peak at 380 nm; polarization also mea-	79B050
			380		sured	
			340			
	2-MTHF (77 K)	PS	380		Solvent uncertain; polarization also measured; $\tau_{\rm T} = > 10^6~\mu {\rm s}$	81F20
845.	Pentacene					
·	1-Chloronaphthalene	FP/TD	505,	9900		727073
	Benzene (323 K)	FP/TD	•	120000	Peak at 305 nm was the values measured in cy-	72734
				48000	clohexane; shoulders at 440, 418, 355, and 292 nm, with	
			392,		the 292 nm figure for cyclohexane; 5 electronic transi-	
			374,		tions were assigned with 0-0 bands at 505 nm (${}^{3}B_{1g}^{-}$),	
			340,		392 nm (${}^{3}A_{1g}^{-}$), 374 nm (${}^{3}B_{1g}^{-}$), 340 nm (${}^{3}B_{1g}^{+}$), and 305 nm	
				560000	$({}^{3}B_{1g}^{-}); T_{1} \text{ was } {}^{3}B_{2u}^{+}; \tau_{T} = 69.9 \pm 3.4 \mu s; \text{ oscillator}$	
					strength = 0.7 , < 0.005 , 0.03 , < 0.005 , 2.1	
	Hexane	FP/SD	525,	30000	Bands were assigned to 4 separate electronic transi-	58E00
				205000	tions; bands at 490 and 457 nm were assigned to the 2nd	
			457,	107000	electronic transition; oscillator strength = 0.2 , 2.4 , 1.4 ,	
				60000	2.0	
			305,	630000		
	Hexane	FP	492		Relative intensities (3:2:1:10); $\tau_T = 110 \pm 12 \mu s$	61E00
			460			
			385			
			300			
846.	Pentacyclo[18.2.2,29,12.04,15	.0 ^{6,17}]hexacosa-4,	6(17),9,1	1,15,20,22,23,25-nor		
	Acetonitrile	LP	775°		†Triplet ET to piperylene, rises with fluorescence de-	776187
			505°		cay, oxygen quenching; 200 ns delay; "layered cy- clophane"	
	Talvana	LP	760°		Triplet ET to piperylene, rises with fluorescence de-	77618
	Toluene	Lr	525°		cay, oxygen quenching; 200 ns delay	7,010
847.	Pentahelicene MCH/Isohexane	FP	630		tRise time identical to fluorescence decay, oxygen	79A27
	MANAGEMENT	I.I	420a		quenching $(5.7 \times 10^8 \text{ L mol}^{-1} \text{ s}^{-1})$; relative intensities	
			720		(3:1); solvent was 2:1 MCH to isohexane; $\tau_{\rm T} = 0.31 \pm$	
	MOTE // 1 // // ***	FD	(20		0.02 μs	70 4 22
	MCH/Isohexane (93 K)	FP	630 420°		‡Phosphorescence decay, ODMR signal; relative intensities (3:1); solvent was 2:1 MCH to isohexane; $\tau_T = 2 \times 10^6 \mu s$	79A23
848.	Pentaphene					
	p					
040.	Cyclohexane	LP/SD	493.	45900ª	Delay 100 ns	84E39

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
849.	cis-Perinaphthothioindigo				
	MCH/Toluene (93 K)	LP	661 ^a 590 ^a	Glass was 1:1 MCH to toluene; shoulder at 715°; 661 nm peak was the more intense	82F295
	MCH/Toluene (93 K)	LP	641 ^a 591 ^a	Shoulder at 716° nm; glass was 1:1 MCH to toluene; $\tau_{\rm T} = \sim 10 \mu{\rm s}$	82A190
850	trans-Perinaphthothioindi				
o.J.U.	MCH/Toluene (93 K)	LP	733ª	Glass was 1:1 MCH to toluene	82F295
	MCH/Toluene (93 K)	LP	733ª	tOxygen quenching at 295 K; glass was 1:1 MCH to toluene; $\tau_{\rm T} = \sim 10~\mu \rm s$	
0.61	4.4 70.4	A Section 1	8 (1887)		
851.	1,4-Perinaphthyldiyl	DC	5128	tESR, T ⁻¹ ESR signal intensity; triplet 0-0 bands only;	79E175
	EPA (77, K)	PS	512ª 345°	apparent triplet ground state; spectrum probably con-	196113
		•	250ª	tains singlet transitions	
	- 1945 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 194				
852.	Perylene				
	Benzene	PR/ET	490, 14300	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained from a simultaneous least squares fit of data from	71E360
				several compounds making use of cyclohexane to benzene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for	
	- 1 1921년 - 1			anthracene	Balance
	Benzene Cyclohexane	LP-ET	500 460 480 13000	Triplet ET from 1-nitronaphthalene; $k_{\text{et}} = 4.2 \times 10^9 \text{L}$ mol ⁻¹ s ⁻¹	
	Hexane	LP/ET FP	480, 13000 485.9	Triplet ET from anthracene; ϵ relative to anthracene in cyclohexane ($\epsilon_{425} = 64700 \text{ L mol}^{-1} \text{ cm}^{-1}$)	777391
	Hexane	FP	488	The two bands were estimed to different electronic	54E001 58E001
: '	пехапе	rr.	280	The two bands were assigned to different electronic transitions	2015001
	Polystyrene	PR	495	$G\epsilon = 6500 \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed}); \text{ half-life}$ = 6000 μ s	672086
853.	Perylene/Chloranil	MOD	Sec. 15	n de la companya del companya del companya de la co	
	Liquid paraffin PMMA	MOD PS	475 595	Mull	71E361
	FWIMA	73	580	Charge transfer complex; most intense peak at 480 nm	/00032
	•		563		
			544		
			505		
			480		
			463		
95A:	Phenanthrene				
0.74.	1-BuOH/Isopentane	PS	493.1	A distinction between a 1:7 and a 3:7 glass was not	63P001
	(77 K)	15	460.2	made; all 3 vibronic bands were assigned to the ³ B ₂ ←	030001
			131.0	³ A ₁ transition	
	3-MP (77 K)	PS/ESR	1 90, 41500	IESR; only most intense visible peak reported	696115
	Benzene	PR/ET	492.5, 15700	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{\text{max}} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained from a simultaneous least squares fit of data from several compounds making use of cyclohexane to benzene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for	71E360
	and the second			anthracene	
	Benzophenone (77 K)	PS/COM	500^{a} , $2100^{c} \pm 1000$ 474^{a} , $1200^{a,c}$	Mixed crystals; shoulders at 495°, 488°, 478°, 469°, and 455° nm; ϵ measured by a technique involving re-	68E106
			467°, 1300°, 441°, 500°	absorption of phosphorescence	
	Rutane/Isonantana	DS/IV	435°, 500° 492 5 27000 ± 5000	Glass was 3.7 butane to iscreations a was a	65E021
	Butane/Isopentane (77 K)	PS/IV	$492.5, 27000 \pm 5000$ $459^a, \sim 11000$	Glass was 3:7 butane to isopentane; ϵ_T was computed from OD = $\epsilon_T \tau_p i_0(1 - \Phi_t)$ after the optical density, OD, was extrapolated to zero intensity of the monitoring	65E031
				beam (namely $i_0 \rightarrow 0$), here τ was lifetime of triplet, and	
	•			Φ_f was fluorescence quantum yield; oscillator strength	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Cyclohexane	FP .	480	$ au_{\mathrm{T}} = 145 \; \mu \mathrm{s}$	62E009
	Cyclohexane	PR/ET	$482.5, 21000 \pm 5250$	ϵ relative to benzophenone ketyl radical in water ($\epsilon_{537.5}$ = 3220 L mol ⁻¹ cm ⁻¹), assuming this value for $\epsilon_{542.5}$ in cyclohexane	680727
	Cyclohexane	LP	485 460	‡Rise time of transient was the same as the decay time of the singlet	68B006
			425	of the singlet	
	Cyclohexane	PR/ET	482.5, 25200	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); reference ϵ	71E360
				obtained by starting from $\epsilon_{max} = 3220 \text{ L mol}^{-1} \text{ cm}^{-1}$ for this ketyl radical in water and assuming the f of the	
				ketyl radical is independent of solvent; final ϵ obtained from a simultaneous least squares fit to data from	
	Dipropyl ether (100 K)	FP	493ª	several compounds Shoulder at 474° nm; $\tau_T = 3.8 \times 10^6 \mu s$	696073
			463° 437°		
	Dipropyl ether (110 K)	PS	498° 465° 439°	Relative intensities (4:2:1); polarization also measured	70B002
	EPA (77 K)	PS/IV	493.1, 1560° ± 190 459.6, 880° ± 80	†Phosphorescence decay; e's are too low; 1st transition	51E001
	EPA (77 K)	PS	493.1 460.2	assigned as ${}^{3}L_{a} \rightarrow {}^{3}C_{b}$ ‡Phosphorescence decay; relative intensities (100:45:14); $\tau_{T} = (3.3 \pm 0.2) \times 10^{6} \mu s$	54B001
			431.0	$(100.43.14); 77 = (3.3 \pm 0.2) \times 10^{\circ} \mu s$	
	EPA (77 K)	PS	828 735	†Phosphorescence decay; $ au_{\mathrm{T}} = (3.9 \pm 0.8) \times 10^6 \ \mu\mathrm{s}$	67E106
			656 599		
	EPA (77 K)	PS/KM	493 499°, 18500° 466°, 9200° 431°, 2800°	Solvent, temperature and extinction method assumed from earlier work; polarization also measured	69E213
	EPA (77 K)	FP/SD	492.5, 38000 ± 6000 461 ^a , 17000 ^a 431 ^a , 5700 ^a	$\tau_{\rm T} = 3.4 \times 10^6$ μs; oscillator strength = 0.15	69F389
	EPA (77 K)	PS/KM	493, 20400	λ_{max} assumed from previous work	69E212
	EtOH (293 K) EtOH (77 K)	FP MOD/KM	482 489, 38000 ± 9500 457.5, 16000 ± 4000		68E098 737055
			428, 5400 ± 1300 293, 13000 ± 3300		
	EtOH (77 K)	MOD	490	Halfwidth 550 cm ⁻¹	777538
	EtOH	LP	480° 450°	Relative intensities (3:2); solution contains Ag ions; 1.8 us delay	78E55
	EtOH	LP	482° 452°	Solvent absolute EtOH	82B05
	EtOH/MeOH (104 K)	PS	427° 489	Solvent was 3:1 EtOH to MeOH; polarization also	68E10
	EtOH/MeOH (101 K)	PS	459 490°	measured Glass was 3:1 EtOH to MeOH	75B002
	Ethylene glycol	FP	459 ^a 485 453	Relative intensities (100:60:25:10); $\tau_T = 910 \pm 83 \mu s$	61E00
			428 400		

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\lambda_{ ext{max}}$, $\epsilon_{ ext{max}}$ /nm /L $ ext{mol}^{-1}$ cm $ ext{cm}^{-1}$	Comment	Ref.
	Heptane (77 K)	PS	829		69E211
			723		
			650		
			496		
			492		
			485		
			474		
			465 455		
			443		
			435		
			428		
			405		
	Hexamethylbenzene	PS	496	Single crystal; relative intensities (100:61)	67B008
	(130 K)		465		
	Hexane	FP	481.0		54E001
			452.9		
			425.0		
	Hexane	FP	480	Relative intensities (100:60:25:10); $\tau_T = 93 \pm 7 \mu s$	61E005
			450		
			428 399		
	Hexane (77 K)	PS	497.5	Relative intensities (10::::4:::2:_)	69E211
	110/10/10 (77 11)		485.9		OZEZII
			471.9		
			460.0		
			435.9		
			430.1	•	
			410.0		
	Liquid paratfin	FP	480	Viscosity of solvent was 0.167 N·s/m ² ; $\tau_T = 2400 \mu s$	62E009
	Liquid paraffin	FP/TD	480° , 24000 ± 2000	D. I. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	67E031
	PMMA (293 K)	PS	488.8	Relative intensities (100:55:10)	67B008
			456 426		
	PMMA	LP	520		70E288
		-	510		70L200
			481		
			454		
	PMMA (15 K)	PS	816		81B094
			720°		
			489		
	Polystyrene	PR	495ª	$G\epsilon_{495} = 11000^{a} \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed});$	701073
			458ª	$G\epsilon_{458} = 9200^{a} \text{ L mol}^{-1} \text{ cm}^{-1} / (100 \text{ eV absorbed})$	
	Polyvinylbutyral (77 K)	LP	493		80E867
			460		
	Delevisedhusses (27 V)	ED	430ª	D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	025100
	Polyvinylbutyral (77 K)	FP	493	Relative intensities (5:2:1); polymer film; $\tau_T = 4.4 \times 10^6$	82E129
	•		460 425°	10 ⁶ μs	
	SDS	LP	490a	Most intense peak at 490 nm; aqueous micelle	81N016
	020	21	460ª	Most intense peak at 470 mm, aqueous infectie	8114010
			420a		
			400°		
	Toluene (77 K)	MOD	500	Halfwidth 670 cm ⁻¹	777538
855.	Phenanthrene-d ₁₀				
	3-MP (77 K)	PS	825		67E106
	` '		727		
			650		
			594		
	3-MP (77 K)	PS/ESR	489, 42900	‡ESR; band was assigned as ³ A _g ← ³ B ₂ ; oscillator	68D211
			457°, 19100°	strength = 0.23	
			429°, 7900°		

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

).	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	3-MP (77 K)	PS	490° 456"		69E21
			429 ^z	·	
	3-MP (77 K)	PS	827° 728° 648°	Band at 495 nm assigned as the 0-0 of the ${}^{3}A_{1}^{-} \leftarrow {}^{3}B_{2}^{+}$ and was the most intense band, ~ 4 times as strong as the bands to the red, 495 nm was the strongest vibronic	74B00
			5868 495 454a	band; shoulder at 426° nm	
	? (77 K)	PS	488 459	†Phosphorescence decay and ESR lifetime; glass used was either 2-MTHF or 3-MP; $ au_{\rm T}=1.36\times10^7~\mu{\rm s}$	67E10
	Biphenyl (4 K)	PS	432 ^a 498 ^a	Maximum is taken from the c'-axis absorption spectrum	67 B 00
	Cyclohexane	LP	520	V5 14.524	70E28
	•		510 481		
			454	·	
	EPA (77 K)	PS/RA	830, 675 734	to that at 830 nm was 40; ϵ relative to phenanthrene- h_{10}	67E10
			658 598	in 3.7 butane/isopentane glass at 77 K ($\epsilon_{492.5} = 27000 L$ mol ⁻¹ cm ⁻¹); the 830 nm transition was assigned as ${}^{3}L_{b}$	
			493 459	$\leftarrow {}^{3}L_{a}; \tau_{T} = (1.63 \pm 0.15) \times 10^{7} \mu s$	
	EPA (82 K)	PS/KM	487, 20400 ± 1100		68B00
	EPA (77 K)	PS PS	493	Transition assigned as ${}^{3}A_{1}^{-} \leftarrow {}^{3}B_{2}^{+}$	69B00
	EPA (77 K)	FP/SD	492.5, 31000 ± 5000	$\tau_{\rm T} = 1.22 \times 10^7 \mu \rm s$	69F38
	EPA (77 K)	PS/KM	823 ^a , 1000 ^a 723 ^a , 1400 ^a	Two electronic transitions were assigned, the 2nd starting at 495 nm; shoulder at 926° nm; ϵ -method as-	74734
			651°, 1100° 597°, 960°	sumed on basis of earlier work by authors, oscillator strength = 0.02, 0.15	
			495, 20400 460°, 9500°		
	TT . (777 T/)	DC.	426a, 2800a	"B 1 2 1 2 2 2	COTO
	Heptane (77 K)	PS	830 770 725	Relative intensities (14:13:19:12:100:88:59:35:43:30:19:24:20:11:10)	69E2
			650		
			497	•	
			494		
			487		
			475		
			467.5		
			457		
			443		
			435 426		
			409		
			400		
	Hexamethylbenzene	PS	495	Single crystal; relative intensities (100:65)	67B0
	(130 K)		465	, ,	
	Hexane	PS	830	Weak bands in the red only studied	67B0
			770		
			725		
			650		
	PMMA (293 K)	PS	486.6 454	Relative intensities (100:65:10)	67B0
			424		
6	Phenanthrene/Pyromellitic	dianhydrida			
U.	Dipropyl ether (100 K)	FP FP	493ª 437ª		69607

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , /nm	ε _{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
857.	Phenanthrene/Tetrachlo	rophthalic anhydric	de			
	Dipropyl ether (100 K)	FP	498ª 469ª		Shoulder at 435° nm; $\tau_{\rm T} = 1.1 \times 10^6 \mu s$	696073
858.	Phenanthrene-d ₁₀ /Tetrac	chlorophthalic anhy	dride			
	EPA (77 K)	PS	492			67B009
			458 431			
3 5 9.	Phenanthridine					
	EtOH/Et ₂ O (77 K)	PS	735		Solvent was 3:2 EtOH to Et ₂ O; relative intensities	80B130
			660		$(17:25:70:82:84:100:65); E_T = 265 \text{ kJ mol}^{-1}$	
			568			
			529			
			493			
			463			
	DMMA (202 IC)	EP	439		2.5 × 104 us	705700
	PMMA (293 K)	FP	440 560		$\tau_{\rm T}=2.5\times10^4~\mu{\rm s}$	70E29
	PMMA (77 K)	PS	560			70E29
			520 465			
360.	6(5H)-Phenanthridinone					
	EtOH (300 K)	FP	425			81E649
61.	1,10-Phenanthroline					
	2-PrOH	FP	445	•	‡Oxygen quenching, pentadiene quenching; $\tau_T = 33$	777201
			422		± 2 μs	
	Benzene	PR	440		$\tau_{\rm T}=3.3\pm0.6~\mu{\rm s}$	82A25
			420	•		
	Cyclohexane	FP	442		Oxygen quenching, pentadiene quenching; $\tau_T = 26$	777201
			422		± 3 μs	
	EtOH	FP	445		Oxygen quenching, pentadiene quenching; $\tau_T = 35$	777201
	EtOH/Et ₂ O (77 K)	PS	425 450		± 4 µs	POD 12
	EIOH/Ei ₂ O (// K)	го.	427		Solvent was 3:2 EtOH to Et ₂ O; relative intensities (100:93); $E_T = 264 \text{ kJ mol}^{-1}$	8UD 13
	EtOH/MeOH	LP	434ª		Solvent was 4:1 EtOH to MeOH; shoulders at 456a and	81E78
	******	ED	440		410° nm	
	Heptane	FP	440		Oxygen quenching, pentadiene quenching; $\tau_T = 19$	777201
	Isopentane	FP	420 440		± 2 μs	777201
	isopeniane	rr	420		†Oxygen quenching, pentadiene quenching; $\tau_T = 17$ ± 2 μ s	777201
	PMMA (77 K)	PS	450		$\frac{1}{\tau_{\rm T}} = 8.7 \times 10^5 \mu{\rm s}$	70E29
			421		11 511 × 10 μο	1022
	PMMA (293 K)	FP	~440)	Decay was nonexponential, and lifetime was calculated from a terminal 1st-order rate constant; $\tau_{\rm T}=4.3$ \times 10 ³ $\mu \rm s$	70E29
	Water	FP	450		†Oxygen quenching, pentadiene quenching; $\tau_T = 42$	777201
		••	425		$\pm 4 \mu s$	777201
3 6 2.	1,7-Phenanthroline					
	EtOH/Et ₂ O (77 K)	PS	476		Solvent was 3:2 EtOH to Et ₂ O; relative intensities	80B13
	- ` '		441		(92:100); $E_{\rm T} = 267 \text{ kJ mol}^{-1}$	
363.	1,8-Phenanthroline					
	EtOH/Et ₂ O (77 K)	PS	481		Solvent was 3:2 EtOH to Et ₂ O; relative intensities	80B13
	, = \/		457		(87:100:52); $E_{\rm T} = 262 \text{ kJ mol}^{-1}$	
			426		·	
364.	1,9-Phenanthroline					
	EtOH/Et ₂ O (77 K)	PS	482		Solvent was 3:2 EtOH to Et ₂ O; relative intensities	80B13
	• •		454		$(100:65:43); E_{\rm T} = 262 \text{ kJ mol}^{-1}$	
			426			

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
865.	4,7-Phenanthroline				
	EtOH/Et ₂ O (77 K)	PS	488	Solvent was 3:2 EtOH to Et ₂ O; relative intensities	80B130
			458	$(100:66:32); E_T = 267 \text{ kJ mol}^{-1}$	
			435		
866.	Phenazine				
	Benzene	FP	440	$\tau_{\rm T} = \sim 130 \; \mu \rm s$	717154
	CF ₃ CH ₂ OH	FP/SD	456°, 14100°	tOxygen quenching; no absorption could be seen in	716169
			355°, 36900°	the 360 - 400 nm region, possibly due to SD masking it; lifetime was concentration dependent, and the value quoted was the longest measured and was measured at	
	0.11	r.n	F4.10	the lowest concentration; $\tau_T = 170 \ \mu s$	505335
	Cyclohexane	FP .	51111	Shoulder at 434 ^a nm; 445 nm was the more intense	707337
		* D	445°	peak; delay 30 μs	=((1(
	Isooctane	LP	500°	Relative intensities (1:2); 50 ps delay; shoulders at 465,	766469
	Mary		440	455 and 425 nm; rise time of 140 ns	
	MCH	FP/SD	440°, 15100°	Oxygen quenching; ϵ 's at wavelengths shorter than	716169
			378 ^a , 36700 ^a	420 nm were more uncertain than the 440 nm band	
			356 ^a , 38400 ^a	because of the SD region; $\tau_T = 42 \pm 3 \mu s$	
	MeOH	FP	508°	Shoulder at 441 ^a nm; 447 nm was the most intense	707337
			447ª	peak; delay 65 μs	
	N/ 077		391*	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20040
	MeOH	LP	500°	Relative intensities (1:2); rise time of 200 ns	766469
	73.73.7.4.79.2.77		440		=0=00
	PMMA (293 K)	FP	460	$\tau_{\rm T}=9000~\mu{\rm s}$	70E29
	'		440		
			426		
	Toluene (293 K)	FP	515ª	†Phosphorescence decay in EPA at 77 K, oxygen	80E77
			430 ^a	quenching	
	Water	FP	506° 445°	Shoulder at 416° nm; 445 nm was the more intense peak; pH ~6	70733
267	Phenazine, conjugate m	onogoid			
	MeOH	FP	460	Solution was 0.1 mol L ⁻¹ acetic acid and 0.1 mol L ⁻¹	68721
		• •		sodium acetate; delay 60 μ s; p K_a 3.8; $\tau_T = 340 \pm 40 \ \mu$ s	
868	Phenol				
,00.	Water (298 K)	LP	~250	Lifetime was measured at pH 7.5; spectrum is the dif-	75716
	(2)0 12)	22		ference between spectra at 20 ns and 15 μ s; $\tau_T = 3.3$ μ s; pH 7.7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
869	Phenosafranin				
	Water	FP	664ª	Any maxima in the range of 400 - 600 nm were masked	69706
		••		by SD; pH 3-5	•
870.	Phenothiazine				
	3-MP (77 K)	PS	465		67E10
	EPA (77 K)	PS	467		67E10
	MeOH	LP/ELT	460, 27000	ϵ relative to phenothiazine radical cations in MeOH ($\epsilon_{520}=9300~L~mol^{-1}~cm^{-1}$); ELT measurement used Eu+3 ions as electron acceptors; 2nd-order rate constant in ELT = 4.7 \times 109 L mol-1 s-1	75735
871	Phenoxazine				
J, 1.	3-MP (77 K)	PS	460	$ au_{\rm T} = (2.7 \pm 0.3) \times 10^6 \mu{\rm s}$	67E10
	Benzene	FP	465	†Phosphorescence decay in PMMA at 90 K; $\tau_T = 26$	70718
				μs	
	EPA (77 K)	PS	458	tPhosphorescence decay; $\tau_{\rm T} = (2.7 \pm 0.2) \times 10^6 \mu{\rm s}$	67E10
	EtOH	FP	465	†Phosphorescence decay in PMMA at 90 K; $\tau_T = 44$ μs	70718
	Hexane	FP	465	†Phosphorescence decay in PMMA at 90 K; $\tau_T = 26$	70718
				μs	
	MCH	FP	465	μ s †Phosphorescence decay in PMMA at 90 K; $\tau_T = 32$	70718

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
872.	3-Phenylacetylacetone				60700
	EtOH/MeOH (118 K)	FP	490	Solvent was 3:1 EtOH to MeOH	68B00:
373.	Phenylacetylene Isopentane/2-PrOH (77 K)	PS	255ª	‡ESR; glass was 7:3 isopentane to 2-propanol by volume; by assuming that radical formation occurs only from T* and that it is wavelength-independent, the author devise an ESR method that determines the shape of TTA even in the SD region	68B00
874.	9-Phenylacridan EtOH (97 K)	FP/?	520, 10000°	Shoulder at 625 nm	697225
875.	N-Phenylacridan EtOH (93 K)	PS	525ª		69E21
07/	TN 1.1				
876.	Phenylalanine Water (298 K)	LP	316 ^a 244 ^a	Spectrum is the difference between spectra at 10 μ s and 20 ns; $\tau_T = 2.4 \pm 0.2 \ \mu$ s; pH 0.3	757162
	Water (298 K)	LP	~310 ~240	tOxygen quenching; spectrum is the difference between spectra at 10 μs and 20 ns; $\tau_T=3.1\pm0.3~\mu s$; pH 7.5	757162
877.	4-(Phenylamino)-7H-benz[e	de]anthracen-7-o	one		
	Benzene	LP	638 ^a 590 ^a	‡Oxygen quenching (1.7 \times 10 9 L mol $^{-1}$ s $^{-1}$); half-life = \sim 0.28 μ s	757427
878.	9-Phenylanthracene				
	2-PrOH	FP	428 ^a		65F03
	EtOH EtOH	FP FP/ET	430 440 ^b , 9100 428, 13500 424 ^b , 12500	‡Quenching by heavy atom containing molecules Triplet ET from eosin and proflavine; ϵ relative to eosin in EtOH ($\epsilon_{580} = 9400 \text{ L mol}^{-1} \text{ cm}^{-1}$) and pro- flavine in EtOH ($\epsilon_{550} = 11000 \text{ L mol}^{-1} \text{ cm}^{-1}$)	67E10 71623
	EtOH	FP-ET/RA	694 ^b , 28	ϵ relative to 9-phenylanthracene in EtOH ($\epsilon_{430} = 14000 \text{ L mol}^{-1} \text{ cm}^{-1}$)	78 E 01
	Ethylene glycol Liquid paraffin	FP FP	432 434	‡Quenching by heavy atom containing molecules	67E10
879.	4-Phenyibenzophenone Alcohol/Ether (77 K)	MOD	540	Glass was 2:1 alcohol to ether	76E68
	, ,				, 02500
880.	9-Phenyl-9 <i>H</i> -9-bismafluore MCH/Isopentane (77 K)		387ª	‡Phosphorescene lifetime; glass was 3:1 MCH to isopentane; shoulder at 369^a nm; $\tau_T = 1000 \mu s$	81E64
881.	1-Phenylcyclohexene				
	Cyclohexane	LP-ET/RA	325 ^b , 4400	ϵ relative to naphthalene in cyclohexane ($\epsilon_{413}=24000$ L mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{415}=24500$ L mol ⁻¹ cm ⁻¹); triplet ET from thioxanthone; $\tau_T=\sim 0.065~\mu s$	82E18
882.	1-Phenyldeoxybenzoin				
	Benzene	LP	425 338	‡Oxygen quenching (> 10^9 L mol ⁻¹ s ⁻¹), piperylene quenching; relative intensities (1:3); $\tau_T = 0.27 \mu s$	79A02
883.	,,				
	Toluene	LP/TD	480, 18600 ± 250 420	Shoulders at 562°, 528°, 451°, and 405° nm; $\tau_T=0.48\pm0.05~\mu s$	82E63
884.	2,2'-(1,4-Phenylene)bis[5-(2-MTHF (77 K)	4-butoxyphenyl) CWL	oxazole] 590	"DibutoxyPOPOP"	74B00
885.	2,2'-(1,4-Phenylene)bis[5-p 2-MTHF (77 K)	henyloxazole] CWL	~500	"POPOP"	74B00
	Dioxane	LP	550°	Weak very broad bands	80E43
			360ª	•	

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻²	Comment	Ref.
886.	O-(2-Phenylethyl) 4-(dimet	hylamino)benzene LP/SD	ecarbothioate 450, 20000 ± 10000	‡Oxygen quenching and triplet ET to tetracene; $ au_{\mathrm{T}} =$	737318
				0.5 μs	
887.	O-(2-Phenylethyl) 4-methor	•	ioate		
	Cyclohexane	LP	430	Oxygen quenching; $\tau_{\rm T}=0.3~\mu{\rm s}$	737318
888.	O-(2-Phenylethyl) 1-naphth	alenecarbothioat	e		
	Cyclohexane	LP	480	tOxygen quenching and triplet ET to tetracene; $\tau_T = 1 \mu s$	737318
889.	O-(2-Phenylethyl) 2-naphth	alenecarbothioat	e		
	Cyclohexane	LP	440	Oxygen quenching	737318
890.	2-Phenylindene				
	Benzene (298 K)	LP-ET	~390	†Triplet ET from benzophenone, oxygen quenching (4 \times 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = > 3 \mu {\rm s}$; $k_{\rm et} = 6 \times 10^9 {\rm L mol^{-1} s^{-1}}$	81E214
	Benzene (298 K)	FP	392	$\tau_{\rm T} = \geqslant 100~\mu{\rm s}$	81E214
	Benzene (298 K)	LP-ET	392	†Triplet ET from xanthone, oxygen quenching (3.8 \times 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = > 5 \mu{\rm s}$; $k_{\rm et} = 6 \times 10^{9} {\rm L mol^{-1}}$ s ⁻¹	81E214
	EPA (77 K)	FP	390 368	Most intense peak at 390 nm; $\tau_T = 40 \mu s$	737069
	EPA (298 K)	LP	352 380 360		81E214
891.	β-Phenyl-4'-methoxypropi	onhenone			
	Benzene	LP	381ª		84E018
892.	1-[[(Phenylmethyl)sulfonyl]	methyl]naphthale	ne		
	Acetonitrile	LP	430 ^a		84B022
893.	1-Phenylnaphthalene				
	3-MP (77 K)	PS/ESR	495, 18400 462 ^a , 10300 ^a 441 ^a , 5700 ^a	‡ESR; shoulder at 418° nm; oscillator strength = 0.16	69 B 002
	Cyclohexane	LP/ET	480, 17600 ± 1000	†Triplet ET from TMPD; ϵ relative to TMPD in cyclohexane ($\epsilon_{570} = 11900 \text{ L mol}^{-1} \text{ cm}^{-1}$)	757282
894.					
	3-MP (77 K)	PS/ESR	476, 2400° 433, 34600 410°, 19300°	tESR; oscillator strength = 0.31	69B002
	Contahaman	I D ÆT	382ª, 12400ª	trialet for from the continuous and still to the	757282
	Cyclohexane	LP/ET	$425, 48300 \pm 5000$	†Triplet ET from phenanthrene; ϵ relative to phenanthrene in cyclohexane ($\epsilon_{482.5} = 25200 \text{ L mol}^{-1} \text{ cm}^{-1}$)	131202
895.	N-Phenyl-2-naphthylamine				
	EtOH (77 K)	MOD/KM	$520, 9000 \pm 2300$ $331, 7000 \pm 1700$ $292, 21500 \pm 5400$		737055
896.	2-Phenyl-2-norbornene				
	Cyclohexane	LP-ET/RA	325 ^b , 17900	ϵ relative to naphthalene in cyclohexane ($\epsilon_{413} = 24000$ L mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{415} = 24500$ L mol ⁻¹ cm ⁻¹); triplet ET from thioxanthone; $\tau_T = > 2.0$ μs	82E18
897.	9-Phenyl-9H-9-phosphafluo	orene	•		
	MCH/Isopentane (77 K)	FP	387ª	†Phosphorescene lifetime; glass was 3:1 MCH to isopentane; shoulder at 378° nm; $ au_T = 1.2 \times 10^6$ µs	81E64

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

699, 8000 5975, 15000 395, 12000 395, 12000 280, 47500 28	Vo. Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
EiOH/Ei ₂ O (90 K) PS/SD 1190, 41000° 50100° 5	398 9-Phenylproflavine, conju	gate monoacid			
99. 9-Phenyl-9H-9-stibafluorene MCH/Isopentane (77 K) FP 378° 1Phosphorescene lifetime; glass was 3:1 MCH to iso- 81 pentane; τ _T = 1.2 × 10° μs 75 750° 1Oxygen quenching; τ _T = 0.46 μs 75 750° 1Oxygen quenching; τ _T = 0.46 μs 75 750° 10xygen quenching; τ _T = 0.46 μs 75 750° 10xygen quenching; τ _T = 0.46 μs 75 75 75 75 75 75 75 7	• • • •		690, 8000° 575, 15000° 395, 12000° 280, 47500°	Solvent was 2:1 EtOH to Et ₂ O	57B00
MCH/Isopentane (77 K) FP 378° Phosphorescene lifetime; glass was 3:1 MCH to iso-8t pentane; τ _T = 1.2 × 10° μs			= ···, •		
MCH FP 550° 10xygen quenching; τ _T = 0.46 μs 78 430° MCH (110 K) FP 560° 10xygen quenching; τ _T = 0.46 μs 78			378ª		81E64
MCH (110 K) FP 560° 1Oxygen quenching; τ _T = 2.0 × 10° μs 78	000. 1-Phenylthio-3,4-dihydroi	naphthalene			
MCH (110 K) FP 560° 10xygen quenching; τ _T = 2.0 × 10¹ μs 78 Phosphytin α Benzene FP 480 430 nm band was judged to be of "doubtful significance" 50 528°, 18100° 47°, 4700 ± 500 528°, 18100° 47°, 62800° 77 = 750 ± 100 μs 78 78 78 78 78 78 78 7	МСН	FP		‡Oxygen quenching; $\tau_{\rm T}=0.46~\mu{\rm s}$	78A23
Benzene FP 480 30 mm band was judged to be of "doubtful significance" by the experimenters; benzene was wet 7τ = 750 ± 100 μs 7τ = 75	MCH (110 K)	FP		‡Oxygen quenching; $ au_{\mathrm{T}} = 2.0 \times 10^3 \ \mu \mathrm{s}$	78 A 23
Benzene FP 500	901. Pheophytin a				
A30 cance" by the experimenters; benzene was wet 7t = 750 ± 100 μs 7t = 750 ± 100 μs 7t 750 ±					55E00
EiOH (298 K) FP/SD 687°, 4700 ± 500 528°, 18100° 407°, 62800° 332°, 47100° Pyridine FP 430 Maximum was judged to be of "doubtful significance" 51	Benzene	FP			58R00
Pyridine FP 430 Maximum was judged to be of "doubtful significance" 50 by the experimenters 50 by the experimenters 50 by the experimenters 50 by the experimenters 50 nificance" by the experimenters; 460 nm was the most intense peak; benzene was wet 50 shoulders at 508 nm and 662 nm; τ _T = 1050 ± 100 μs 70 doubtful significance" by the experimenters; 460 nm was the most intense peak; benzene was wet 50 shoulders at 508 nm and 662 nm; τ _T = 1050 ± 100 μs 70 doubtful significance was wet 50 shoulders at 508 nm and 662 nm; τ _T = 1050 ± 100 μs 70 doubtful significance was wet 50 shoulders at 508 nm and 662 nm; τ _T = 1050 ± 100 μs 70 doubtful significance was wet 50 doubtful significance was wet 50 shoulders at 508 nm and 662 nm; τ _T = 1050 ± 100 μs 70 doubtful significance was wet 50 doubtful significan	EtOH (298 K)	FP/SD	667^{b} , 4700 ± 500 528^{a} , 18100^{a}		70E29
Benzene FP 510 430 nm maximum was judged to be of "doubtful significance" by the experimenters, 460 nm was the most inficance" by the experimenters, 460 nm was the most inficance was wet	Pyridine	FP	· · · · · · · · · · · · · · · · · · ·		58R00
Head	002. Pheophytin b				
EtOH (298 K) FP/SD 667°, 4700 ± 500 481°, 31400° 423°, 71200° Pyridine FP 520 460 410 Maxima at 410 and 520 nm were judged to be of 50 doubtful significance" by the experimenters Maxima at 410 and 520 nm were judged to be of 50 doubtful significance by the experimenters Photoprotoporphyrin isomer "A", dimethyl ester Benzene LP/TD 475°, 35500 471° 420° 349 Benzene PR/ET 475°, 39200 471° 420° 349 Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477° 420° 349 Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477° 477° 477° 477° 475°, 37000 411° 50xygen quenching (2.3 × 10° L mol⁻¹ s⁻¹); ε relative 80 to biphenyl in benzene (ε₁∞ = 27100 L mol⁻¹ cm⁻¹); relative intensities (8.4:5); τ _T = 83 μs 471° 420° 70xygen quenching (2.1 × 10° L mol⁻¹ s⁻¹); ε relative 80 to biphenyl in benzene (ε₁∞ = 27100 L mol⁻¹ cm⁻¹); peaks roughly of equal intensity; τ _T = 89 μs 705. Phthalazine 1-BuOH/Isopentane 1-BuOH/Isopentane FP/SD 420.5, 4450 ± 200 Glass was 3:7 1-BuOH to isopentane; oscillator 7: strength = 0.11 Benzene FP 396° EPA (77 K) FP 387° Shoulder at 423° nm 705. Shoulder at 423° nm 706. Shoulder at 425° nm	Benzene	FP	460	nificance" by the experimenters; 460 nm was the most	58R00
Pyridine FP 520 Maxima at 410 and 520 nm were judged to be of 50 "doubtful significance" by the experimenters Photoprotoporphyrin isomer "A", dimethyl ester Benzene LP/TD 475 ^b , 35500 Daysgen quenching (2.3 × 10 ⁹ L mol ⁻¹ s ⁻¹); relative intensities (8:4:5); τ _T = 83 μs PR/ET 475 ^b , 39200 Daysgen quenching (2.6 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative to biphenyl in benzene (ε ₁₀₀ = 27100 L mol ⁻¹ cm ⁻¹); γ relative intensities (8:4:5); τ _T = 83 μs Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477 ^a Daysgen quenching (2.1 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative intensities (8:4:5); τ _T = 83 μs Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477 ^a Daysgen quenching (2.1 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative intensities (8:4:5); τ _T = 89 μs Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477 ^a Daysgen quenching (2.1 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative intensities (8:4:5); τ _T = 89 μs Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477 ^a Daysgen quenching (2.1 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative intensities (8:4:5); τ _T = 83 μs Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477 ^a Daysgen quenching (2.1 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative intensities (8:4:5); τ _T = 83 μs Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477 ^a Daysgen quenching (2.1 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative intensities (8:4:5); τ _T = 83 μs Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477 ^a Daysgen quenching (2.6 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative intensities (8:4:5); τ _T = 83 μs Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477 ^a Daysgen quenching (2.6 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative intensities (8:4:5); τ _T = 83 μs Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477 ^a Daysgen quenching (2.6 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative intensities (8:4:5); τ _T = 83 μs Photoprotoporphyrin isomer "B", dimethyl ester Benzene PR/ET 477 ^a Daysgen quenching (2.6 × 10 ⁹ L mol	EtOH (298 K)	FP/SD	481a, 31400a	Shoulders at 508 nm and 662 nm; $\tau_{\rm T} = 1050 \pm 100 \ \mu {\rm s}$	70E29
Benzene LP/TD 475 ^b , 35500 †Oxygen quenching (2.3 × 10 ⁹ L mol ⁻¹ s ⁻¹); relative 80 471 ^a intensities (8:4:5); τ _T = 83 μs Benzene PR/ET 475 ^b , 39200 †Oxygen quenching (2.6 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative 80 471 ^a to biphenyl in benzene (ε ₁₀₀ = 27100 L mol ⁻¹ cm ⁻¹); 420 ^a relative intensities (8:4:5); τ _T = 83 μs 904. Photoprotoporphyrin isomer "B". dimethyl ester Benzene PR/ET 477 ^a †Oxygen quenching (2.1 × 10 ⁹ L mol ⁻¹ s ⁻¹); ε relative 80 475 ^b , 37000 to biphenyl in benzene (ε ₁₀₀ = 27100 L mol ⁻¹ cm ⁻¹); peaks roughly of equal intensity; τ _T = 89 μs 905. Phthalazine 1-BuOH/Isopentane PP/SD 420.5, 4450 ± 200 Glass was 3:7 1-BuOH to isopentane; oscillator 70 411 ^a strength = 0.11 Benzene PP 396 ^a thosphorescence decay 70 403 ^a thosphorescence decay 70 50 50 FP 387 ^a Shoulder at 423 ^a nm 70 50 50 50 50 50 50 50 50 50 50 50 50 50	Pyridine	FP	520 460		58R00
Benzene PR/ET 475, 39200 †Oxygen quenching $(2.6 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; ϵ relative 80 dimethyl ester Benzene PR/ET 475, 37000 to biphenyl in benzene $(\epsilon_{100} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1})$; ϵ relative 80 dimethyl ester Benzene PR/ET 475, 37000 to biphenyl in benzene $(\epsilon_{100} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1})$; ϵ relative ϵ to biphenyl in benzene ϵ for ϵ dimethyl ester ϵ do biphenyl in benzene ϵ for ϵ dimethyl ester ϵ for ϵ	903. Photoprotoporphyrin ison	ner "A", dimethy	yl ester		
Benzene PR/ET 475, 39200 to biphenyl in benzene ($\epsilon_{300} = 27100 \text{ L mol}^{-1} \text{ s}^{-1}$); ε relative to biphenyl in benzene ($\epsilon_{300} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); ε relative intensities (8:4:5); $\tau_T = 83 \text{ μs}$ 904. Photoprotoporphyrin isomer "B". dimethyl ester Benzene PR/ET 477² tOxygen quenching ($2.1 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$); ε relative intensities (8:4:5); $\tau_T = 83 \text{ μs}$ 905. Phthalazine 1-BuOH/Isopentane FP/SD 420.5, 4450 ± 200 Glass was 3:7 1-BuOH to isopentane; oscillator 7. Strength = 0.11 Benzene FP 396° EPA (77 K) FP 403° EPA (77 K) FP 403° EtOH FP 385° Shoulder at 423° nm 7. Shoulder at 423° nm 7. Shoulder at 423° nm 7. Shoulder at 425° nm	Benzene	LP/TD	471° 420°		80E20
Benzene PR/ET 477° ‡Oxygen quenching $(2.1 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; ε relative 8 475°, 37000 to biphenyl in benzene $(\epsilon_{360} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1})$; ϵ_{349}^{-1} peaks roughly of equal intensity; $\tau_{\rm T} = 89 \text{ μs}$ 349° peaks roughly of equal intensity; $\tau_{\rm T} = 89 \text{ μs}$ 349° ϵ_{349}^{-1} Phthalazine 1-BuOH/Isopentane FP/SD 420.5, 4450 ± 200 Glass was 3:7 1-BuOH to isopentane; oscillator 7. (77 K) strength = 0.11 Benzene FP 396° $\epsilon_{\rm CPA}$ Phosphorescence decay 7. EPA (77 K) FP 403° ‡Phosphorescence decay 7. Et ₂ O FP 387° Shoulder at 423° nm 7. EtOH FP 385° Shoulder at 425° nm	Benzene	PR/ET	475 ^b , 39200 471 ^a 420 ^a	to biphenyl in benzene ($\epsilon_{300} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$);	80E20
475 ^b , 37000 to biphenyl in benzene ($\epsilon_{360} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); 411 ^a peaks roughly of equal intensity; $\tau_T = 89 \text{ μs}$ 905. Phthalazine 1-BuOH/Isopentane FP/SD 420.5, 4450 ± 200 Glass was 3:7 1-BuOH to isopentane; oscillator 7. (77 K) strength = 0.11 Benzene FP 396° EPA (77 K) FP 403° EPA (77 K) FP 403° Et ₂ O FP 387° Shoulder at 423° nm 7. EtOH FP 385° Shoulder at 425° nm 7.					
905. Phthalazine 1-BuOH/Isopentane	Benzene	PR/ET	475 ^b , 37000 411 ^a 349 ^a	to biphenyl in benzene ($\epsilon_{360} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$);	80E20
1-BuOH/Isopentane FP/SD 420.5 , 4450 ± 200 Glass was 3.7 1-BuOH to isopentane; oscillator 7.0 isopentane;	905. Phthalazine		*.	•	
Benzene FP 396° 70° EPA (77 K) FP 403° †Phosphorescence decay 70° Et ₂ O FP 387° Shoulder at 423° nm 70° EtOH FP 385° Shoulder at 425° nm 70°	1-BuOH/Isopentane	FP/SD	$420.5, 4450 \pm 200$	• ′	72617
EPA (77 K) FP 403° ‡Phosphorescence decay 76 Et ₂ O FP 387° Shoulder at 423° nm 76 EtOH FP 385° Shoulder at 425° nm 76	• ,	FP	396°		74709
EtOH FP 385° Shoulder at 425° nm 7		FP	403ª	†Phosphorescence decay	74709
					74709
				Shoulder at 425° nm	74709
	EtOII/Acetic acid	FP	3872	C1 11 40E2	74709 74709

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ret.
906.	Phthalocyaninatobis(pyridi	ne)ruthenium(II)			
	Methylene chloride	LP	~500		82C01
007	Dhthalasuarina				
907.	Phthalocyanine 1-Chloronaphthalene	LP/TD	480, 28500 \pm 2000	†Triplet ET to β -carotene; authors prefer this value to those obtained by either SD or E1 methods; $\tau_{\rm T}=130$ $\pm~10~\mu{\rm s}; E_{\rm T}=120~\pm~10~{\rm kJ~mol^{-1}}; k_{\rm et}=1.25~\times~10^9$	78A37
	1.011	DD CC	400 04000	$L \text{ mol}^{-1} \text{ s}^{-1}$	5 0 4 25
	1-Chloronaphthalene 1-Chloronaphthalene	PR/ET LP/SD	480, 36000 480, 38300	Authors reject this e value since residual triplet and	78A37
	1-Chloronaphthalene	LP/TD	$480,37000 \pm 4000$	excited singlet absorptions are neglected e method inferred from text	81E45
	1-Chloronaphthalene	LP/SM	480, 18000 ± 2000	†Triplet ET to β -carotene; $\tau_T = 125 \mu s$	81E45
				,,	
908.	15-cis-Phytoene Cyclohexane	LP-ET/ET	320, ~20000	‡Triplet ET from fluorenone; ε relative to fluorenone	76103
				($\epsilon_{415} = 5500 \text{ L mol}^{-1} \text{ cm}^{-1}$), no solvent specified for this unpublished relative reference; $\tau_{\text{T}} = \sim 1 \mu\text{s}; E_{\text{T}} = 176-201 \text{ kJ mol}^{-1}; k_{\text{et}} = \sim 1 \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$	
				1,7,10 = 110.	
909.	all-trans-Phytoene Cyclohexane	LP-ET/ET	320, ~20000	†Triplet ET from naphthalene; ϵ relative to naphthalene in cyclohexane ($\epsilon_{415} = 24500 \text{ L mol}^{-1} \text{ cm}^{-1}$);	76103
				$ au_{\rm T} = \sim 1 \ \mu {\rm s}; E_{\rm T} = 176\text{-}201 \ {\rm kJ \ mol^{-1}}; k_{\rm et} = \sim 1 \times 10^{10} \ {\rm L \ mol^{-1} \ s^{-1}}$	
910.	Picene				
<i>,</i> 10.	2-MTHF (77 K)	PS/ESR	636, 75500 575 ^a , 20100 ^a	†ESR; the band was assigned as ${}^{3}A_{1} \leftarrow {}^{3}B_{2}$; oscillator strength = 0.40	68D2
			535°, 11000°	51.75	
			467 ^a , 5300 ^a		
	Benzene	MOD	560	$\tau_{\rm T} = 160~\mu \rm s$	71E3
	Benzene	LP	685 667	Delay 370 ns	73746
			654		
			629 571		
			552		
			535		
			515		
			493		
			452		
	EPA (77 K)	PS/SD	$630, 62000 \pm 6200$		68 E 1
	EPA (77 K)	PS/KM	623°, 21300° 575°, 7200°	Solvent, temperature and extinction method assumed from earlier work; polarization also measured	69E2
	EPA (77 K)	PS/IV	533°, 3700° 620, 23000	λ_{max} assumed from previous work; ϵ estimated by extrapolation to infinite excitation rate	69E2
	EtOH (77 K)	MOD	622	Halfwidth 570 cm ⁻¹	77753
	Toluene (77 K)	MOD	631	Halfwidth 570 cm ⁻¹	77753
911.	2-Piperidinoanthraquinone				
	Benzene	PR/ET	581°, 14400°	†Triplet ET from triplet donors and triplet ET to triplet acceptors; ϵ relative to naphthalene in benzene (ϵ_{425} = 13200 L mol ⁻¹ cm ⁻¹); $\tau_T = \sim 20 \ \mu s$	72039
			:		
912.	Pivalophenone	I D	£003	ATTALLA TOTAL AND CONTRACTOR OF THE CONTRACTOR	7000
	2-PrOH	LP	500° 450°	†Triplet ET to naphthalene; relative intensities (1:2:3:5); maxima inferred from text; $\tau_T = 0.5 \mu s$	/9P0
			400° 360		
	Benzene	LP	500° 500° 450°	†Triplet ET to naphthalene; relative intensities (1:2:3:5); $\tau_T = 0.37 \pm 0.03 \ \mu s$; $k_{et} = (2.0 \pm 0.4) \times 10^9$	79 P 0
			400a	L mol ⁻¹ s ⁻¹	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ _{max} ,	ε _{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
913.	Poly[oxy[2-(1-pyrenylmet DMF	hyl)-1,3-propane LP	diyl]oxy(1,4-0 425°	lioxo-1,4-butanedi	iyl)] †Rises with fluorescence decay, oxygen quenching	80B076
914.	Poly[oxy[2-(1-pyrenylmet DMF	hyl)-1,3-propane LP	diyl]oxy(1,4-6 425°	dioxo-1,4-butanedi	iyl)]/1,4-Dicyanobenzene ‡Rises with fluorescence decay, oxygen quenching	80B076
915.	Poly[oxy[2-(1-pyrenylmet DMF	hyl)-1,3-propane LP	diyl]oxy(1,4-0 430°	dioxo-1,6-hexaned	iyl)] ‡Rises with fluorescence decay, oxygen quenching	80B076
916.	Poly[oxy[2-(1-pyrenylmet	hyl)-1,3-propane	diyl]oxy(1,4-	dioxo-1,6-hexaned	iyl)]/1,4-Dicyanobenzene	
	DMF	LP	435ª		‡Rises with fluorescence decay, oxygen quenching	80B076
917.	Poly(phenylisopropenyl k	etone)				
	Benzene	LP	450		†Triplet ET to naphthalene, oxygen quenching (6 \times 108 L mol $^{-1}$ s $^{-1}$); $ au_{\rm T}=0.1~\mu{\rm s};~k_{\rm et}=(1.5\pm1)\times10^9~{\rm L}$ mol $^{-1}$ s $^{-1}$	79P066
918	Poly(4-vinylbenzophenone	ň				
710.	Benzene	LP	535		$\tau_{\rm T}=2.27~\mu{\rm s}$	79A171
010	D-1-(2-1				•	
919.	Poly(2-vinylnaphthalene) Benzene	PR/ET	426ª, 12	000	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene ($\epsilon_{367} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); degree of polymerization = 318 (monomer units); $\tau_T = 13.2 \mu\text{s}; k_{et} = 1.8 \times 10^3 \text{ L mol}^{-1} \text{ s}^{-1}$	79E666
	Benzene	PR/ET	426ª, 14	000	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene ($\epsilon_{367} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); degree of polymerization = 2690 (monomer units); $\tau_{\text{T}} = 10.6 \mu\text{s}$; $k_{\text{et}} = 0.8 \times 10^8 \text{ L mol}^{-1} \text{ s}^{-1}$	79E666
	Benzene	PR/ET	426 ^a , 11 ^a		†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene ($\epsilon_{367} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); degree of polymerization = 688 (monomer units); $\tau_{\rm T} = 12.2 \mu{\rm s}$; $k_{\rm et} = 1.4 \times 10^8 \text{L mol}^{-1} \text{s}^{-1}$	79E666
	Benzene	PR/ET	426 ^a , 11	000	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene ($\epsilon_{367}=27100~\rm L~mol^{-1}$ cm ⁻¹); degree of polymerization = 109 (monomer units); $\tau_{\rm T}=9.7~\mu {\rm s};~k_{\rm et}=3.4~\times~10^8~\rm L~mol^{-1}~s^{-1}$	79E666
920.	21H,23H-Porphine					
, <u>20.</u>	Dimethyl phthalate	FP/SD	752 ^a , 48 419 ^a , 98 384 ^a , 35	600ª	Shoulders at 795 nm and 440 nm	74B007
921.	Proflavine					
	EtOH	FP/SD	550, 110	000		716235
	Water (296 K)	FP/TD	549, 800	00 ± 800	pH Basic	81E147
922.	Proflavine, conjugate dia	eid				
	SDS	LP	1160 560		‡Oxygen quenching; 1 μ s delay; aqueous micelle; p K_a = 4.0; cation radical (λ_{max} 820 nm) also formed; τ_T = 7 μ s; pH 3	80N112
923.	Proflavine, conjugate mor	noacid				
	EtOH	FP/TD	455, 600		pH Acidic	727073
	EtOH/Et ₂ O (90 K)	PS/SD	1100, 63 917 ^a , 12 675, 100 550, 125 400, 400 350, 650 280, 470 235, 110	500° 100° 500° 10° 10° 100°	Solvent was 2:1 EtOH to Et ₂ O	57B001
			210, 100			

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\begin{array}{ccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-1} \end{array}$	Comment	Ref.
	Glycerol (293 K)	FP	650ª	Solvent has added glucose	776171
			600°		
			540°		
	SDS	LP	1080	1 μ s delay; aqueous micelle; $\tau_T = \sim 35 \mu$ s; pH 8.1	80N11
	Water	FP/SD	560 445 ^b , <10000	‡Oxygen quenching; decay was second order with 2k ~ 10° L mol ⁻¹ s ⁻¹ ; pH 4	677029
	Water (296 K)	FP/TD	350 549, 5700	Light saturation; pH 4.1	80B057
	Water (250 K)	LP	1160	Oxygen quenching; radical dication ($\lambda_{max} = 810 \text{ nm}$)	
	Water	L	930	also observed; $\tau_T = 20 \mu s$; pH 3.0	501-57
			670	and describes, 11 — 20 pm, pri 310	
			550		
024	n				
924.	Promazine 2-PrOH	LP	465	tTriplet ET to 8 corotone overgen quenching.	76702
	2-11011	Lr		‡Triplet ET to β -carotene, oxygen quenching; $\tau_T = 22.8 \mu s$	101023
				·	
925.	9-Propionylanthracene EPA (77 K)	FP	430	$ au_{\mathrm{T}} = 3.21 imes 10^4 \mathrm{\mu s}$	82E33
	EIA (// K)	rr	430	$77 = 5.21 \times 10 \mu s$	02E33
926.	Propiophenone				
	2-PrOH	LP	325		84E01
	Acetonitrile/Water	LP	325	Solvent was 9:1 acetonitrile to water	84E01
	Benzene	LP	418ª	Much more intense peak below 300 nm; shoulder at 457 ^a nm	84E01
927.	N-Propylphthalimide				
	EtOH	FP	590ª	‡Oxygen quenching (3.5 × 10 ⁹ L mol ⁻¹ s ⁻¹), diene	79A14
			350 ^a	quenching; 100 ns delay; relative intensities (1:5); $\tau_T = 40 \ \mu s$	
928	1-Propynylbenzene				
,	Isopentane/2-PrOH	PS	255ª	IESR; glass was 7:3 isopentane to 2-propanol by vol-	68B00
	(77 K)			ume; by assuming that radical formation occurs only	
				from T' and that it is wavelength-independent, the	
				author devises an ESR method that determines the shape of TTA even in the SD region	
				shape of 11A even in the dD legion	
929.	Protoporphyrin				
	MeOH	FP	530	Maximum at 530 nm was judged to be of "doubtful	58ROC
	T		440	significance" by the experimenters	comoc
	Pyridine	FP	420		58 R 00
			350		
930.	Protoporphyrin IX				
	Dioxane	LP	742ª	†Triplet quenching by cis-piperylene; oxygen quenching (1.6 \times 10° L mol ⁻¹ s ⁻¹); TTA of globin complexes	747630
	***	* *	5003	also studied	70501
	Water	LP	500° 450°	†Oxygen quenching (1.6 \times 10° L mol ⁻¹ s ⁻¹); difference spectrum only reported; $\tau_T = \sim 150 \ \mu s$; pH 0	/8E01
931.	Protoporphyrin IX, dimetl Benzene	hyl ester PR/ET	710°, 9000°	†Triplet ET from biphenyl and to β -carotene, oxygen	77107
	Denzene	INE	710, 9000	quenching $(2.7 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; ϵ relative to biphenyl in benzene $(\epsilon_{160} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1})$; more	,,,10,
	D.	T T) (****	450h 25000 : 4500	intense peak below 450 nm; $E_T = 150 \text{ kJ mol}^{-1}$	enne
	Benzene	LP/TD	450° , 35000 ± 1500	‡First order decay, oxygen quenching (1.5 × 10° L	90R03
			425 320	$\text{mol}^{-1} \text{s}^{-1}$); $\tau_{\text{T}} = 550 \mu \text{s}$	
022	Ductonoushu! IV 31 41	hul aata '			
732.	Protoporphyrin IX, dimetl Benzene/Trifluoroacetic	nyl ester, conji LP/TD	igate diacid 560	‡Triplet ET to β -carotene, oxygen quenching (4 $ imes$ 10 9	80B0
	acid	,	$470^{\rm b}$, 32000 ± 1500	L mol ⁻¹ s ⁻¹); $\tau_T = 71 \mu s$; $k_{et} = 1.3 \times 10^{10} L \text{ mol}^{-1} \text{ s}^{-1}$	
			415	,, , , , , , , , , , , , , , , , , , , ,	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

lo.	Solvent		λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
33.	Protoporphyrin IX, dimethy	vl ester, conjugate	monoacid		
	MeOH/Acetic acid	FP/TD	450°, 27500 ± 1500	†First order decay, oxygen quenching; solvent was 1:1 MeOH to acetic acid by volume; $\tau_T=110~\mu s$	80 B 017
34.	Psoralen		and area		
	Benzene	PR/ET	450°, 8100	†Triplet ET to β -carotene; ϵ relative to biphenyl in benzene ($\epsilon_{367} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); $k_{\text{et}} = 5.0 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	78E157
	Benzene	LP	450a	2	78E157
	EtOH	LP/ET	440, 30100	†Triplet ET to retinol; ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming ϵ independent of solvent; $\tau_T = 5 \mu\text{s}; \ k_{et} = 1.1 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	79E678
	Water	LP	450 ^a	$\tau_{\rm T} = 7.1~\mu \rm s$	78E157
	Water	LP/TD	460, 10000	Oxygen quenching; $\tau_T = 12 \mu s$; pH 8	83B068
35.	4',5'-Psoralen-thymine pho	oto adduct			
	МеОН	LP/ET	500, 8500	†Triplet ET to all-trans-retinol; ϵ relative to all-trans-retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$), assumed unchanged in MeOH; 100 ns delay; $\tau_{\rm T} = 10.6$ μs ; $k_{\rm et} = 2.2 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	80A03
	Water	LP	500°	100 ns delay; $\tau_T = 2.5 \mu s$	80A03
936.	Purine Acetonitrile	FP	410 ^a 380 ^a	‡Oxygen quenching; 20 μs delay	80B077
	Water	FP	390 360	‡Oxygen quenching; 20 μs delay; pH 5.9	80B07
	Water (77 K)	PS/KM	300 . 455 ^a 412 ^a 390, 4100 380 ^a	†Phosphorescence decay; $\tau_{\rm T} = (3.6 \pm 0.3) \times 10^6~\mu{\rm s};$ pH Basic	80B07
37	Pyranthrene		,		
	Benzonitrile	LP/RF	591^{a} 502^{a} , 8000 ± 500	ϵ relative to pyranthrene in toluene ($\epsilon_{500} = 14000 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$)	83F07
	Toluene	LP/ET	584 ^a 500 ^a , 14000 ± 1500	ϵ relative to anthracene in toluene ($\epsilon_{428.5} = 42000 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$)	83F07
18	Pyrazine				
J0.	MeOH/EtOH (~ 100 K)	FP/?	820°, 5000° 260, 1000°	†Phosphorescence decay; glass was 1:1 MeOH to EtOH; shoulder at 300 nm assignment ${}^{3}B_{3u} \rightarrow {}^{3}B_{2g}$; $\tau_{T} = (11 \pm 1) \times 10^{3} \mu s$	80B01
	Water	LP/HAT	$810, 1000 \pm 200$ $700, 1100 \pm 200$ $\sim 260, 4900 \pm 1500$ $230, 3500 \pm 1100$	Shoulders at \sim 640 and \sim 295 nm; ϵ relative to the neutral pyrazyl radical in water ($\epsilon_{310} = 6700 \text{ L mol}^{-1}$), assuming that the quenching of the triplet by 2-PrOH produced stoichiometric equivalents of the neutral pyrazyl radical and the dihydro radical cation of pyrazine; $\tau_{\rm T} = 3.4 \ \mu \rm s$; pH 5.4	74723
	Water (298 K)	LP/HAT	810, 1000 700, 1100 ~260, 4900 230, 3500	†Oxygen quenching; shoulders at \sim 640 and \sim 295 nm; ϵ relative to dihydropyrazyl radical cation in water ($\epsilon_{315}=6900 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming H-abstraction from 2-PrOH was complete; N ₂ O was used to scavenge hydrated electrons; lifetime was measured at pH 7.1 and was for infinite dilution; $\tau_{\rm T}=4.5~\mu \text{s}$; pH 5.4	75730
39.	Pyrene 3-MP (77 K)	PS	518 487 ^a 455 ^a 411 ^a 387 ^a	The first band was assigned to one electronic transition, the 2nd two bands to a forbidden transition, and last 2 bands were assigned to a 3rd transition; this assignment was questioned in [70E294] where 518, 487, & 455 nm were all assigned to a single electronic transition.	70B00
				sition; assumed 77 K	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

. Solven	t Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
Benzene	PR/ET	420, 20900	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained from a simultaneous least squares fit of data from several compounds making use of cyclohexane to benzene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for anthracene	71E3
Cyclohexane	LP	510 490 415	†Rise time of transient was the same as the decay time of the singlet	68 B 00
Cyclohexane	LP	520 483 416		70E2
Cyclohexane	LP	525 480 415	Delay 1 µs; 415 nm was the most intense peak	7073
Cyclohexane	MOD	517 508 412 409	Relative intensities (26:18:100:75); $\tau_T = 180 \ \mu s$	71E3
Cyclohexane	PR/ET	412.5, 30400	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); reference ϵ obtained by starting from $\epsilon_{max} = 3220 \text{ L mol}^{-1} \text{ cm}^{-1}$ for this ketyl radical in water and assuming the f of the ketyl radical is independent of solvent; final ϵ obtained from a simultaneous least squares fit to data from several compounds	71E3
Cyclohexane	PR	515 490 440 410 385 365		7202
EPA (77 K)	PS	525 489 415.5 372	Relative intensities (20:15:100:10); unresolved shoulder at 515 nm; $\tau_{\rm T} = (7 \pm 2) \times 10^5 \mu{\rm s}$	54 B 0
EPA (77 K)	PS/IV	415, 48200	λ_{max} assumed from previous work; ε estimated by extrapolation to infinite excitation rate	69E
EPA (117 K) ГР	520° 479° 412° 389°	‡Oxygen quenching, 412 nm was the most intense peak	7162
EtOH (293 I EtOH	K) FP LP	408 500° 450° 400°	Relative intensities (1:1:5); 1.8 μ s delay; solution contains Ag ions	68E
Hexane	FP	520.0 411.0 387.0 369.0		54E
Hexane (300	K) MOD/SD	522°, 6300° 490°, 2100° 410°, 34400° 389°, 14500° 360°, 2170° 333°, 3200° 318°, 3900° 290, 12000 260, 14500		69E
Hexane	MOD	516° 508° 412° 409°	Shoulder at 484° nm; 412 nm was the most intense peak; $\tau_{\rm T}=180~\mu{\rm s}$	70E

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻	Comment	Ref.
	Liquid paraffin	FP	519.5 483	Solvent viscosity was 0.19 N·s/m²; the bands at 519.5 and 483 nm belong to the 1st electronic transition, and	58E001
			416 396.5	the other 3 bands belong to the 2nd electronic transition; relative intensities (24:19:100:48:26)	
	N 077		371.5	D. 1	505346
	MeOH	LP	500° 414°	Delay 1 μs	707346
	*		371°		
	PMMA	CWL/RF	971, ~100	ϵ relative to pyrene in EPA ($\epsilon_{max} = 48200 \text{ L mol}^{-1}$	70E294
			901	cm ⁻¹); four electronic transitions were assigned, and	
			870	the 0-0 bands of these transitions are identified by their	
			781	ϵ ; T ₁ is ${}^3B_{2u}^+$, and the other states are ${}^3B_{3g}^+$, ${}^3A_g^+$, ${}^3B_{3g}^-$, and	
			741	${}^{3}A_{8}^{-}$ in increasing energy; $\tau_{T} = 5 \times 10^{5} \mu s$; oscillator	
			613, 900	strength = $\sim 10^{-3}$, ~ 0.01 , 0.14, 0.31	
			562		
			521, 12500 485		
			465 455		
			413, 48200		
	4		392		
			370		
	PMMA	T.P	520		70E288
			483		
	,		416		
	PMMA	PS	520ª	Relative intensities (7:5:21:10); polarization also mea-	78E152
			485°	sured; phase sensitive detection	
			410°		
	D (426 V)	T D	390ª	T the 14 400 TZ 1 1 250 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#2#101
	Pyrene (425 K)	LP	935 909	Liquid at 425 K; delay 350 ns; another maximum in 740	73/101
			870	- 755 nm range	
			800		
			709		
			690		
			671		
			645		
			613		
			571		
			559		
			524		
	SDS	LP	461 414	A magaza minutto	0027001
	Toluene	LP	529 ^a	Aqueous micelle Shoulder at 488 ^a nm; 421 nm was the more intense peak	82N081 717126
			421a	Shoulder at 400 mil, 421 mil was the more intense peak	717120
	Toluene	LP	520	50 ns delay	766528
	•		410		
	Water	LP	530a	Solubilized by 1.5×10^{-5} mol L $^{-1}$ bovine serum albu-	773047
			480ª	min; oxygen quenching $(1.3 \times 10^8 \text{ L mol}^{-1} \text{ s}^{-1})$; 1 μ s	
			415 ^a	delay	
	Water	LP	414	Solubilized by caffeine; 2 µs delay	81E149
	Water/tert-BuOH	FP	410 ^a	Solvent mixture contains "1-5%" tert-BuOH for solubility; pH ~6	767189
940.	Pyrene-d ₁₀				
	2-MTHF (77 K)	PS/ESR	416, 43600 394*, 18100*	‡ESR; shoulder at 408° nm; the band was assigned as ${}^{3}B_{3g} \leftarrow {}^{3}B_{2u}$; oscillator strength = 0.21	68 D 211
	PMMA (77 K)	PS/SD	415°, 38600° 391°, 20000°	$\tau_{\rm T} = 3.7 \times 10^6 \ \mu {\rm s}$	696019
	PMMA (296 K)	PS/SD	415a, 39800a	$ au_{\mathrm{T}} = 2.4 \times 10^6 \ \mu\mathrm{s}$	696019
	/	· - -	391ª, 18700ª	^	2,3017
941.	Pyrene/Chloranil				

1 And 1-6 Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent		λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
942.	Pyrene/Diethylaniline Toluene	· LP	500	50 ns delay; possible triplet exciplex; $\tau_T = 0.107 \ \mu s$	766528
042	Pyrene/Tetracyanobenzene	1.1			
9 4 3.	EPA (95 K)	, 1:1 FP	513 ^a 480 ^a 427 ^a 404 ^a 394 ^a 383 ^a	†Oxygen quenching and an accompaning phosphorescence; 404 nm was the most intense peak	716243
944.	Pyrene/Tetracyanobenzene EPA (117 K)	, 2:1 FP	435° 415° 400°	‡Oxygen quenching and an accompanying phosphorescence; 415 nm was the most intense peak	716243
945.	1-Pyrenecarboxaldehyde 2-PrOH (295 K) Acetonitrile (295 K) Acetone (295 K) Benzene (295 K)	LP/SD LP/SD LP/SD LP/SD&PR/ ET	440 ± 3 , 18100 ± 1800 438 ± 3 , 18700 ± 1900 440 ± 3 , $20100^{\circ} \pm 2000$ 443 ± 3 , $21000^{\circ} \pm 2100$	$\tau_{\rm T}=37~\mu {\rm s}$ $\tau_{\rm T}=30~\mu {\rm s}$ $\tau_{\rm T}=20~\mu {\rm s}$ In ET method ϵ relative to biphenyl in benzene ($\epsilon_{361}=42800~{\rm L~mol^{-1}cm^{-1}}$); $\tau_{\rm T}=35~\mu {\rm s}$	83E387 83E387 83E387 83E387
	CCl ₄ (295 K) CF ₃ CH ₂ OH (295 K) Cyclohexane (295 K) Cyclohexene (295 K) EtOH (295 K) Ethylene glycol (295 K) Hexane-d ₁₄ (295 K) MeOH (295 K) MeOH/Water (295 K) THF (295 K)	LP/SD LP/SD LP/SD&TD LP/SD LP/SD LP/SD LP/SD LP LP/SD LP/SD LP/SD LP/SD LP/SD	$\begin{array}{c} 443 \pm 3, 18800 \pm 1900 \\ 438 \pm 3, 16900^{\circ} \pm 1700 \\ 440 \pm 3, 18900 \pm 1800 \\ 440 \pm 3, 17700 \pm 1800 \\ 440 \pm 3, 18200 \pm 1800 \\ 440 \pm 3, 18100 \pm 1800 \\ 428 \pm 3 \\ 437 \pm 3, 18300 \pm 1800 \\ 443 \pm 3, 18500 \pm 1900 \\ 440 \pm 3, 19100 \pm 1900 \\ \end{array}$	τ_T = 49 με τ_T = 58 μs τ_T = 50 μs τ_T = 70 μs τ_T = 38 μs τ_T = 300 μs τ_T = 34 μs τ_T = 26 μs Solvent was 1:1 MeOH to water; τ_T = 107 μs τ_T = 59 μs	83E387 83E387 83E387 83E387 83E387 83E387 83E387 83E387 83E387
946.	Pyrene-1-sulfonate Water	LP	520 420	Delay 1 µs	84E533
947.	Pyrene-3-sulfonate Benzene/DDDAB	MOD	525 491 429	Inverse micelle; relative intensities (3:2:5); $\tau_{\rm T}=3000$ $\mu {\rm s}$	79N036
	Water	MOD	422	Principal maximum only reported	79N036
948.	[2.2](2,7)-Pyrenophane 2-MTHF (77 K)	LP	625 480 380		79B050
949.	2-(1-Pyrenylmethyl)-1,3-pro	opandiol diacetate LP	415a	‡Rises with fluorescence decay, oxygen quenching	80B076
950.	2-(1-Pyrenylmethyl)-1,3-pro DMF	opandiol diacetate. LP	/1,4-Dicyanobenzene 420	†Rises with fluorescence decay, oxygen quenching; pyrene radical cation also observed (460 nm)	80B076
951.	Pyrido $[2,1,6$ - de]quinolizine Hexane	FP	380	†Ground state recovery, molecular orbital calculations; solvent uncertain; "cycl[3.3.3]azine"; $\tau_{\rm T}=\sim0.1~\mu{\rm s};E_{\rm T}=\sim90~{\rm kJ~mol^{-1}}$	80E405
952.	Pyrimidine Water (298 K)	LP/НАТ	600, 530 260 ^b , ~3000	‡Oxygen quenching; ϵ relative to dihydropyrazyl radical cation in water ($\epsilon_{315} = 6900 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming H-abstraction from 2-PrOH was complete; N ₂ O and <i>tert</i> -BuOH were present as scavengers; lifetime was for infinite dilution; $\tau_T = 1.4 \mu \text{s}$; pH 7.1	757309

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
953.	Pyromellitic dianhydride				
	CCl₄	FP	560°	tOxygen and piperylene quenching; 335 nm peak more	737098
	Et ₂ O/Isopentane (77 K)	FP	335° 496°	intense; shoulder at 530° nm; delay 10 μ s; "PMDA" †Phosphorescence decay; glass was 1:1 Et ₂ O to isopentane, shoulder or maximum at \sim 350 nm; $r_1 = 6.7 \times 10^5 \mu$ s	747587
54.	Pyromellitic dianhydride/	Et₂O			
	Et ₂ O	FP	561 ^a 529 ^a	‡Oxygen and piperylene quenching; there was a maximum or shoulder near 340 nm; delay 10 μ s; "PMDA"-Et ₂ O complex	737098
955.	Pyronine				
	Water	FP ·	482ª	pH 7	747229
956.	4-Pyrrolidinopyridine EPA (77 K)	FP	510	†Phosphorescence decay; $\tau_{\rm T}=1.1\times10^6~\mu{\rm s}$	83B112
) 57.	Pyruvic acid				
	Acetonitrile	FP	695°	†Triplet ET to naphthalene, oxygen quenching; $\tau_T = 0.5~\mu s$	81F070
958.	Quantacure SKS anion				
	Water	LP	631 ^a 477 ^a	‡Oxygen quenching; 447 nm peak was the more intense; anion of sodium (4-sulfomethylphenyl)-phenylethanedione salt; $\tau_T=0.50\pm0.02~\mu s$; pH 6	82P06
59.	[1,1':4',1'':4'',1'''-Qua	terphenyl]-4,4′′	'-diamine		
	2-MTHF (77 K)	CWL	650		74B00
60.	p-Quaterphenyl				
	2-MTHF (77 K)	CWL	530	Shoulder at 498° nm	74B00
	BuOH (~80 K)	FP	525 ^a 495 ^a	Relative intensities (5:2)	67B01
	Toluene/EtOH (77 K)	MOD	563° 395°	Glass was 19:1 toluene to EtOH; 563 nm peak was the more intense	719059
961.	Quinoline				
	1-BuOH/Isopentane (77 K)	FP/SD	458°, 2700° 425°, 7000°	Glass was 3:7 1-BuOH to isopentane; shoulder at 384 ^a nm; oscillator strength = 0.13	70724
			$400.0,7100 \pm 700$	•	
	3-MP (77 K)	MOD/SD	485° 455°	Shoulder at 382 ^a nm	73B00
			422ª		
			398, 6000 238, 25000		
	EPA (77 K)	PS	487	Relative intensities (40:59:98:100); unresolved shoul-	54B00
	, ,		458 427	ders at 475 nm and 380 nm; $\tau_T = (5 \pm 2) \times 10^5 \mu s$	0.200
			402		
	EtOH (77 K) Isopentane/MCH (77 K)	MOD/KM PS	$425, 6500 \pm 1600$ 526	Relative intensities (4:22:42:97:100); unresolved shoul-	73705 54B00
			485 450 420	der at 373 nm	
			395		
	Water	FP	418	pH Basic	61E00
62.	Quinoline, conjugate acid Water	FP	465	$pK_a = 6.0$; pH Acidic	61E00
63.	Quinoxaline				
·.	1-BuOH/Isopentane (77 K)	FP/SD	425.0, 8100 \pm 800	Glass was 3:7 1-BuOH to isopentane; oscillator strength = 0.15	70724

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	3-MP (77 K)	PS	414		67E10
	EPA (77 K)	PS	417		67E10
	EtOH/MeOH (113 K)	FP/TD	410, >2500	Solvent was 3:1 EtOH to MeOH; lower limit assumes total ground state depletion	67B00
	Hexane	LP	430	100 ps delay; rise time of 0.04 ns	79 B 00
	Isooctane	LP	425		
				130 ps delay, at earlier times overlapping $S_n \leftarrow S_1$ absorption	79B07
	PMMA (293 K)	FP	~415	Decay was nonexponential, and lifetime was calculated from a terminal 1st-order rate constant; $\tau_T = -5 \times 10^4 \mu s$	70E29
	Water (298 K)	LP	432	‡Oxygen quenching; shoulder at ~660 nm; a limit was	75730
	, ,		413	set on ϵ_{413} as \leq 7400 L mol ⁻¹ cm ⁻¹ , based on radical	
			~270	formation; $\tau_T = 29.4 \mu s$; pH 7.1	
	Water	FP	426°		76620
	·		410°	$pK_b = 9.0 \pm 0.7$; pH 12.6	70020
64.	Quinoxaline-1,4-dioxide				
	Water	FP	498ª	‡Triplet ET from 1,5-naphthalene disulfonate and to	83F09
			469ª	Methylene Blue; shoulder at 429° nm; $\tau_T = 77 \mu s$; pH	
				Neutral	
965.	Retinal				
	Toluene (299 K)	FP	450	Whether isomer was all-trans or 11-cis was not specified; $\tau_T=13~\mu s$	62E00
66.	11-cis-Retinal				
	Benzene	LP-ET	455	Triplet ET from anthracene; $k_{\rm et} = 2.0 \times 10^{10} {\rm L \ mol^{-1}}$ s ⁻¹	77743
	Benzene	LP	455	$\tau_{\rm T} = 8.70 \; \mu {\rm s}$	77743
	DMSO	LP/RF	480, 27000	†Triplet ET to β -carotene; ϵ determined assuming oscillator strength independent of solvent, bands are symmetrical (in energy) and relative to measured value (unstated) in hexane	78E4
	EPA (77 K)	LP	445	$\tau_{\rm T}=41.3\pm1.7~\mu{\rm s}$	79 B 0
	Hexane	PR/ET	450, 75000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{365} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹ , note literature value at 361.3 nm); $\tau_T = 8.3 \pm 0.7 \ \mu s$	74101
	Hexane	LP/ET	445, 57000 ± 14000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹); original reference quoted (440 ± 5) nm as λ_{max} , stated λ_{max} from [78Z194]; $\tau_T = 8.3 \pm 0.7 \mu s$	74763
	Hexane	PR/ET	445, 62000 ± 6000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361}=42800~{\rm L}$ mol ⁻¹ cm ⁻¹); original reference quoted ($440~\pm~5$) nm as λ_{max} , stated λ_{max} from [78Z194]; $\tau_{\rm T}=8.3~\pm~0.7~{\rm \mu s}$	74763
	Hexane	LP/SD	445, 50000°	ϵ relative to anthracene in cyclohexane ($\epsilon_{423} = 64700 \text{ L}$ mol ⁻¹ cm ⁻¹)	78E2
	МеОН	LP/RF	450, 27000	†Triplet ET to β -carotene; ϵ determined assuming oscillator strength independent of solvent, bands are symmetrical (in energy) and relative to measured value (unstated) in hexane	78E4
967.	13-cis-Retinal				
	EPA (77 K)	LP	465	$\tau_{\rm T}=48.3\pm2.8~\mu{\rm s}$	79B0
	Hexane	PR/ET	$445 \pm 5,56000 \pm 6000$	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹); $\tau_T = 8.3 \pm 0.7 \mu \text{s}$	74763
	Hexane	LP/ET	$445 \pm 5,44000 \pm 11000$		74763
	Hexane	PR/ET	445, 68000 ± 10200	Triplet ET from biphenyl; ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming authors used standard for cyclohexane; $\tau_T = 9.1 \pm 0.9$ μ s; $k_{et} = (2.0 \pm 0.20) \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$	7764
	МеОН	LP/RF	450, 24300	†Triplet ET to β -carotene; ϵ determined assuming oscillator strength independent of solvent, bands are symmetrical (in energy) and relative to measured value (unstated) in hexane	78E4

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

ło.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
968.	7,9-cis-Retinal				
, 00.	Benzene	LP-ET	455	Triplet ET from anthracene; $k_{\rm ct} = 2.8 \times 10^{10} {\rm L \ mol^{-1}}$ s ⁻¹	777434
	Benzene	LP	455	$\tau_{\rm T}=8.47~\mu{\rm s}$	777434
69	7-cis-Retinal				
٠,٠	Benzene	LP-ET	455	Triplet ET from anthracene; $k_{\rm et} = 2.0 \times 10^{10} {\rm L \ mol^{-1}}$ s ⁻¹	777434
	Benzene	LP	455	$\tau_{\rm T}=8.70~\mu{\rm s}$	777434
	EPA (77 K)	LP	455	Decay wavelength dependent; lifetime measured at	79B07
			425	455 nm; $\tau_{\rm T} = 44.2 \pm 0.6 \mu{\rm s}$	
70.	9-cis-Retinal				
	EPA (77 K)	LP	465	Concentration unspecified; $\tau_{\rm T} = 58.8 \pm 2.4 \ \mu s$	79B07
	Hexane	LP/ET	$445 \pm 5,63000 \pm 15000$	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹); $\tau_T = 8.3 \pm 0.7 \mu \text{s}$	74763
	Hexane	PR/ET	$445 \pm 5,56000 \pm 6000$	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361}=42800~L$ mol ⁻¹ cm ⁻¹); $\tau_{\rm T}=8.3~\pm~0.7~\mu{\rm s}$	74763
	МеОН	LP/RF	460, 24300	†Triplet ET to β -carotene; ϵ determined assuming oscillator strength independent of solvent, bands are symmetrical (in energy) and relative to measured value (unstated) in hexane; $\tau_{\rm T}=\sim 0.17~\mu {\rm s}$	78E46
71.	all-trans-Retinal/(CF		•		
	Cyclohexane	LP	475	$\tau_{\rm T} = 11.1~\mu \rm s$	82A28
72.	all-trans-Retinal				
	Acetonitrile	LP/RF	470, 67000	ϵ relative to retinal in hexane ($\epsilon_{445} = 78000 \text{ L mol}^{-1}$) assuming oscillator strength independent of solvent; $\tau_T = 12.0 \mu s$	79E54
	Acetonitrile	LP/SD	470, 59000	ϵ is upper limit; $\tau_{\rm T} = 12.0 \ \mu s$	79E54
	Benzene	LP	455	$\tau_{\rm T} = 9.09 \; \mu \rm s$	77743
	Benzene	LP-ET	455	Triplet ET from anthracene; $k_{\rm et} = 3.0 \times 10^{10} \rm L mol^{-1} s^{-1}$	77743
	Benzene	PR/RF	460, 62000	ϵ relative to retinal in hexane ($\epsilon_{445} = 78000 \text{ L mol}^{-1}$ cm ⁻¹) assuming oscillator strength independent of solvent; $\tau_{\rm T} = 9.1 \ \mu \rm s$	79E54
	Benzene	PR/ET	460, 67000	ϵ relative to biphenyl in benzene ($\epsilon_{367.5} = 27100 \text{ L}$ mol ⁻¹ cm ⁻¹); $\tau_T = 9.1 \mu \text{s}$	79E5
	Benzene	PR	460	†Triplet ET from naphthalene; $\tau_T = 8.62 \mu s$; $k_{et} = 5.5 \times 10^9 L \text{ mol}^{-1} \text{ s}^{-1}$	81 B 0
	Cyclohexane	LP	445	$\tau_{\rm T} = 9.3 \; \mu \rm s$	82A2
	DFMeOH	LP-ET	550	†Triplet ET from anthracene; $\tau_T = 24.2 \mu s$	82A2
	EPA (77 K)	LP	465	$\tau_{\rm T} = 41.0 \pm 3.2 \ \mu {\rm s}$	79B0
	Hexane	PR/ET	450, 74000	†Triplet ET to β -carotene; ϵ relative to biphenyl in cyclohexane ($\epsilon_{361.3} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming	73300
	Нехапе	PR/ET	$445 \pm 5,78000 \pm 8000$	no solvent effect on biphenyl ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹); $\tau_T = 8.3 \pm 0.7 \mu \text{s}$	74763
	Hexane	PR-ET/ET	450, 75000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{365} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹ , note literature value at 361.3 nm); $\tau_T = 8.3 \pm 0.7 \ \mu \text{s}$; $k_{\text{et}} - (3 \pm 1) \times 10^{10} \text{ L} \ \text{mol}^{-1} \text{ s}^{-1}$	74101
	Hexane	LP/ET	445 \pm 5, 69000 \pm 17000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹); $\tau_T = 8.3 \pm 0.7 \mu \text{s}$	74763
	Нехапе	PR/ET	445, 114000° ± 17100	†Triplet ET from biphenyl; ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming authors used standard for cyclohexane; $\tau_T = 9.1 \pm 0.9$ μ s; $k_{ct} = (2.0 \pm 0.20) \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$	77641
	Hexane	LP/SD	445, 70000 ± 7000	$\epsilon_{\rm relative to anthracene in cyclohexane}$ ($\epsilon_{423} = 64700 {\rm L}$ mol ⁻¹ cm ⁻¹)	78E2
	MCH	FP	440	tOxygen quenching; half-life = 9.9 μs	59E0
	МСН	FP/?	450, 75800	Lifetime measurement was made at 293 K with retinal concentration 2.18 \times 10 ⁻⁵ mol L ⁻¹ ; $\tau_T = 11 \mu s$	
	MCH (296 K)	LP/SD	448, 76000	‡Oxygen quenching and triplet ET to β -carotene; τ_T = 11 μ s	74733

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , /nm	$\epsilon_{\rm max}$ /L mol ⁻¹ cm ⁻¹	Comment	Ref.
.,	МеОН	FP/?	465, 6° 450, 68		I ifetime measurement was made at 293 K with retinal concentration 2.30×10^{-5} mol L ⁻¹ ; $\tau_T = 17$ μs	62E007
	MeOH (296 K)	LP/SD	480, 64 460, 74		†Oxygen quenching and triplet ET to β -carotene; τ_T = 16 μ s	747334
	МеОН	LP/RF	460, 3	8000°	tTriplet ET to β -carotene; ϵ determined assuming oscillator strength independent of solvent, bands are symmetrical (in energy) and relative to measured value (unstated) in hexane	78E467
	THF	FP/?	448, 7	8600	Lifetime measurement was made at 293 K with retinal concentration 2.28×10^{-5} mol L ⁻¹ ; $\tau_T = 14 \mu s$	62E007
973.	all-trans-Retinoic acid					
,,,,,,	Hexane	PR/ET	440, 7	3000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$)	82A205
	МеОН	LP	440		tOxygen quenching; $\tau_T = 1.6 \ \mu s$	82A205
974.	all-trans-Retinol					
	Cyclohexane	LP	405		†Triplet ET from biphenyl and oxygen enhancement of triplet yields	737185
	Hexane (298 K)	FP-ET	400° 383°		†Triplet ET from benz[a]anthracene; delay 50 μ s; τ_T = 17 μ s; k_{e1} = 5 × 10 ⁹ L mol ⁻¹ s ⁻¹	69E217
	Hexane	PR/ET	405, 5	7500 ± 500	†Triplet ET from biphenyl; ϵ relative to biphenyl (ϵ_{ref} unstated); $k_{et} = 3 \times 10^9$ L mol ⁻¹ s ⁻¹	746499
	Hexane	LP/ET	405, 5	7500 ± 500		746499
	Hexane	PR/ET	405, 8	0000 ± 12000	†Triplet ET from biphenyl; ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming	776412
					authors used standard for cyclohexane; $\tau_{\rm T}=15\pm1.5$ μ s; $k_{\rm et}=(2.3\pm0.23)\times10^{10}~{\rm L~mol^{-1}~s^{-1}}$	
975.	Retinyl acetate					
	Hexane	LP/ET	405, 6	4000 ± 1000	†Triplet ET from TMPD-biphenyl; ϵ relative to biphenyl (ϵ_{ref} unstated)	746499
	Hexane	PR/ET	405, 6	4000 ± 1000	†Triplet ET from biphenyl; ϵ relative to biphenyl (ϵ_{ref} unstated)	746499
	Hexane	PR/ET	395, 7	9000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹)	82A205
	МеОН	LP	395		‡Oxygen quenching (1.0 × 10 ⁹ L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 8.3$ µs	82A205
976.	N-11-cis-Retinylidene-n-b	utylamine				
	Hexane	LP-ET/ET	~435	, 50000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361.3}=42800\ L\ mol^{-1}\ cm^{-1}$); ET was from an exciplex of TMPD and biphenyl which decayed to triplet biphenyl	747189
977.	N-13-cis-Retinylidene-n-b					
	Hexane	LP-ET	~440		ET was from an exciplex of TMPD and biphenyl which decayed to triplet biphenyl; the maximum was determined by smoothing the literature data	747189
978.	N-9-cis-Retinylidene-n-bu Hexane	tylamine LP-ET	~435		ET was from an exciplex of TMPD and biphenyl which decayed to triplet biphenyl	747189
979.	N-all-trans-Retinylidene-r Hexane	s-butylamine LP-ET/ET	~435	, 50000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{361.3} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹); ET was from an exciplex of TMPD and	747189
	Hexane	PR/ET	430, 1	58000 ± 23700	biphenyl which decayed to triplet biphenyl \ddagger Triplet ET from biphenyl; ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming authors used standard for cyclohexane; $\tau_T = 20 \pm 2$	776412
	MCH (296 K)	LP/SD	435, 4	****	μ s; $k_{\rm et} = (1.5 \pm 0.15) \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$ ‡Oxygen quenching and triplet ET from triplet donor,	747334

 ${\it Table 6.} \quad {\it Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases -- Continued}$

No.	Solvent	Method	λ_{max} , ε_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
980.	N-11-cis-Retinylidene-n-l	butylamine, conjug	gate acid		
	EtOH	LP-ET	~550	‡Triplet ET from phenanthrene; 550 nm was apparent maximum in difference spectrum; $\tau_{\rm T}=50\mu{\rm s}$; pH Acidic	757090
981.	N-all-trans-Retinylidene-	n-butylamine, con	njugate acid		
	MCH/Trichloroacetic acid (296 K)	LP-ET/SD	570, 150000	†Triplet ET from anthracene; $\tau_{\rm T}=20~\mu{\rm s};~k_{\rm el}=1.2\times10^{10}~{\rm L~mol^{-1}~s^{-1}}$	747334
982.	Rhodamine 110				
	ЕюН	FP/SD	606 ^a , 11000 ^a 510, 15800 391 ^a , 8460 ^a	‡Triplet ET from naphthalene; shoulder at 460a nm; long-lived photoproduct also observed; ϵ units uncertain	777316
983.	Rhodamine B				
,	1-PrOH	FP/SD	1000 640, 13000	‡Triplet ET to anthracene sulfonic acid and from naphthalene, oxygen quenching; 250 µs delay	78A304
	EtOH	FP/SD	450 560, 23000 419 ^a , 12100 ^a	‡Triplet ET from naphthalene; shoulder at 640 ^a nm; long-lived photoproduct also observed; ε units uncer-	777316
	Water	FP	464°	tain pH 7	747229
	Water	FP/SD	1000 640 625 ^b , 10000 450	250 μ s delay; blue band decays with same lifetime as others	777041
	Water	FP	1000 640 450	‡Triplet ET to anthracene sulfonic acid and from naphthalene, oxygen quenching; 250 μs delay; pH 7.0	78A304
984.	Rhodamine 6G				
	1-PrOH	FP/SD	950 630, 13000 415	‡Triplet ET to anthracene sulfonic acid and from naphthalene, oxygen quenching; 250 μs delay	78A304
	Bromoform	FP	651ª	$\tau_{\rm T} = 190 \ \mu \rm s$	72E277
	DMSO	FP-ET	624ª	†Triplet ET from anthracene; shoulder at ~705° nm	72E277
	Deuterium oxide	FP/SD	1120, 42000 637, 20000 410, 28000	Shoulders at 578 and 308 nm	82B106
	EtOH	FP/ET	308, 28000 600, 18000 ± 3000 411 ^a , 18000 ^a	ϵ relative to naphthalene in EtOH ($\epsilon_{415} = 40000$ L mol ⁻¹ cm ⁻¹); strong SD masked spectrum between 490 and 550 nm; spectrum corrected for a photoproduct absorbing in 350 - 490 nm region; $\tau_T = 3400 \pm 1000$	747050
	Glycerol (293 K)	FP	1120 610	120 μs	82B106
	PMMA (200 K)	FP	415 1100 633	‡Phosphorescence decay	82 B 106
	Water	FP-ET	415 633 ^a	†Triplet ET from naphthalene; shoulder at ~740° nm;	72E277
	Water	FP/SD	950 630 596 ^b , 8500	$\tau_{\rm T} = 770~\mu s$ 250 μs delay; blue band decays with same lifetime as others	777041
	Water	FP-ET	415 950	Triplet ET from naphthalene; no bands observed in the visible; pH 8.8	78A304
	Water	FP	950 635 410	Maximum at 635 nm has apparent contribution from triplet of conjugate acid (authors)	79F576

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
***************************************	Water	FP/SD	637, 20000 410, 24000 308, 28000 256, 42000 227, 44000	Shoulders at 578 and 308 nm; pH 7	82B106
985.	Rhodamine 6G cation, o	conjugate monoacid	l		
	Water	FP	950 630 415	†Triplet ET to anthracene sulfonic acid and from naphthalene, oxygen quenching; 250 μ s delay, p $K_a = 7.3$; pH 7.0	78A304
	Water	FP	1000 420 355 313 260	pH 1.5	82B106
986.	Rhodamine 6G dimer				
	BuOH/CCl ₄	LP/ET	620°, 16500°	†Triplet ET to anthracene; dimer species; solvent was 2:3 BuOH to carbon tetrachloride; ϵ relative to anthracene (ϵ_{ref} unstated) assuming unit transfer efficiency	75E530
	CCl ₄	LP/ET	650°, 10000°	†Triplet ET to anthracene; aggregate species; solvent contains 0.2% BuOH; ϵ relative to anthracene (ϵ_{ref} unstated) assuming unit transfer efficiency	75E530
987.	Riboflavine, conjugate	monoacid			
	Water	LP/RA	670 ^a , 5000 ^a 415 ^a , 7900 ^a 350 ^a , 7000 ^a	lifetime measured at 660 nm; ϵ relative to anthracene in cyclohexane ($\Phi_T = 0.71$, $\epsilon_{423} = 64700 \text{ L mol}^{-1} \text{ cm}^{-1}$) and using $\Phi_T = 0.40$ for riboflavine in water; shoulder around 300 nm; $\tau_T = 19 \mu\text{s}$; pH 2.2	
988.	Rose Bengal				
	Acetonitrile/Water PrOH	LP FP	820 610 ^a 450 ^a	Solvent was 3.5:1.5 acetonitrile to water; $\tau_T = 30 \ \mu s$ Relative intensities (1:1); $\tau_T = 500 \ \mu s$	84E216 79E848
989.	Rubrene				
	Acetonitrile	FP-ET	498ª 473ª 450ª	†Triplet ET from biacetyl; delay 50 μ s; $\tau_T = \sim 80 \ \mu$ s	68E103
	Benzene	FP-ET	505 472	†Triplet ET from benzophenone; $\tau_T = 100 \pm 20 \ \mu s$; $E_T = 100 - 124 \ kJ \ mol^{-1}$	
	Benzene	FP/ET	450 ^b , 3000	†Triplet ET from benzophenone; ϵ_{ref} unstated; $\tau_T = 115 \pm 3 \mu s$; $E_T = 110 \pm 2 \text{ kJ mol}^{-1}$	81E346
	Benzene Benzene	PR-ET FP	~475 496a 467a 438a	†Triplet ET from biphenyl; $\tau_T = 109 \mu s$ 496 nm was the most intense peak	83E223 84F248
	Hexane	FP	413ª 487.6		54E001
	Hexane	FP	536 519	Relative intensities (58:100:25)	58E001
	Toluene (295 K)	LP-ET/ET	418.5 495, 26000 ± 2000 468°, 19000° 440°. 15000° 414°, 10000°	‡Oxygen quenching, triplet ET from anthracene; ϵ relative to anthracene in benzene ($\epsilon_{431} = 42000 \text{ L mol}^{-1} \text{ cm}^{-1}$. assuming ϵ_{max} in toluene at 429 nm was the same); $\tau_{\text{T}} = 140 \ \mu\text{s}$; $k_{\text{el}} = (2.45 \pm 0.3) \times 10^9 \ \text{L mol}^{-1} \text{ s}^{-1}$	
990.					017000
	Water	FP/SD	420, 10000	† Oxygen quenching; unprotonated species; spectrum between 500-600 nm uncharacterized; $\tau_T = 59 \mu s$; pH 10.4	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
991.	Safranine cation, conjugat	te diacid			
	Water	FP	698° 657° 384°	‡Oxygen quenching; pH 3-5	677322
	Water	FP/SD	660, 21500 390, 17500	‡ Oxygen quenching; p $K_a = 7.5$; spectrum between 500-600 nm uncharacterized; $\tau_T = 280 \ \mu s$; pH 3.0	81B03
992.	Safranine cation, conjugat				
	Water	FP	377ª	‡Oxygen quenching and KI quenching; another maximum > 800 nm with a shoulder at 743° nm; $\tau_T = 67$ \pm 13 μ s; pH 7-9	677322
	Water	FP/SD	>800 800 ^b , 15500		81B03
993.	Selenine cation				
	Water	FP/SD	770°, 17000° 690°, 10500° 425°, 12000°	ϵ assumes triplet does not absorb where singlet depletion is followed; lifetimes measured in MeOH; $\tau_{\rm T}=$ 21 $\mu s;~{\rm pH}~8.5$	767246
994.	Selenine cation, conjugate	monoacid			
	Water	FP/SD	650°, 15500° 385°, 13500°	ϵ assumes triplet does not absorb where singlet depletion is followed; lifetimes measured in MeOH; p K_a = 6.4 \pm 0.2; τ_T = 0.39 μ s; pH 4.6	767246
995.	Selenopyronine				
	Water	FP	690 480 400	†Triplet ET to benzophenone; $\tau_T = 167 \mu s$; pH 7.2	82E68
996.	all-trans-Spheroidene				
<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Cyclohexane	PR/ET	510, 309000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{360}=42800~\mathrm{L}$ mol ⁻¹ cm ⁻¹); $\tau_{\mathrm{T}}=5.5~\mathrm{\mu s}; k_{\mathrm{et}}=8.96\times10^9~\mathrm{L}$ mol ⁻¹ s ⁻¹	83B12
997.	all-trans-Spheroidenone Cyclohexane	PR/ET	550, 60600	ϵ relative to biphenyl in cyclohexane ($\epsilon_{360} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹); $\tau_T = 3.8 \ \mu s$; $k_{\rm el} = 3.22 \times 10^{10} \ \rm L \ mol^{-1} \ s^{-1}$	83B12
998.	all-trans-Spirilloxanthin				
776.	Cyclohexane	PR/ET	550, 92000	ϵ relative to biphenyl in cyclohexane ($\epsilon_{360} = 42800 \text{ L}$ mol ⁻¹ cm ⁻¹); $\tau_{\rm T} = 3.7 \mu \text{s}$; $k_{\rm et} = 2.74 \times 10^{10} \text{ L} \text{ mol}^{-1} \text{ s}^{-1}$	83B12
999.	Spiro[9,10-dihydro-9-oxos	enthracene-10.2	'-5'-6'-benzindan		
	Hexane	LP	423		84E07
1000.	Stilbene Stilbene	PR	450°	Triplet exciton; shoulders at 500 nm and 630 nm	80E23
1001.	trans-Stilbene-2,2'-d2				
	EPA (77 K)	FP	380 360 342	Most intense peak at 380 nm; $ au_{ m T} - 2.2 imes 10^4 \ \mu { m s}$	70719
1002	turne Callbarra 22 4 5 4 5				
1002.	trans-Stilbene-2,3,4,5,6-de EPA (77 K)	FP	380 360	Most intense peak at 380 nm; $\tau_{\rm T} = 2.4 \times 10^4 \mu s$	70719
			342		
	trans-Stilbene-4,4'-d2				

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

	Solvent	Method	λ_{max} , /nm /L m	ϵ_{max} Comment R	Ref.
1004.	trans-Stilbene-7,7'-d2				
	EPA (77 K)	FP	380	Most intense peak at 380 nm; $\tau_T = 5.3 \times 10^4 \mu s$	07199
	,		360		
			344		
1005	cis-Stilbene				
.005.	Benzene	PR	360	‡Oxygen quenching 68	80379
	Cyclohexane	PR	360	<i>ie</i> 1	80379
	EtOH (108 K)	LP	380		9E64
	21011 (100 12)		360	(~30) flashes) <u>L</u> 041
			342	(*-50) Hasiles	
	MCH/Isohexane (93 K)	I.P	380	Triplet state absorption observed only after repetitive 79	9F64
	(50 12)	2,	360	(~30) flashes) L O 11
			341	(50) 1145.155	
1006.	trans-Stilbene				
	Benzene	PR	360	‡Oxygen quenching 68	80379
	Benzene	PR	360		80 <i>313</i> 20447
	Benzene	110	300	sorbed); $\tau_T = 0.11 \mu s$	20447
	Cyclohexane	FP	325	· · · · · · · · · · · · · · · · · · ·	00062
	Cyclohexane	PR	360		80379
	EPA (77 K)	FP	379		77485
	EIA (// K)	I.I.	360	379 lim was the most intense peak; $\tau_T = 2.2 \times 10^{\circ} \mu s$	//40.
			343		
	EPA (103 K)	LP	381	Triplet absorption not observable above 107 K; life-	9E64
	E1A (103 K)	LI	362	time constant below 88 K; $\tau_T = 1.1 \times 10^4 \mu s$	71507
			344	time constant below 86 K, $v_T = 1.1 \times 10^{\circ} \mu s$	
	EtOH (98 K)	LP	381	Polative intensities (2.2.1), triplet absorption not oh 70	9E64
	Lion (98 K)	Lif	361	Relative intensities (3:2:1); triplet absorption not observable above 128 K; lifetime constant below 105 K;	75,04
			343		
	Glycerol (235 K)	LP	385	$\tau_{\rm T} = 1.2 \times 10^4 \mu \rm s$ Triplet exception not observable shows 244 K; life. 75	9E64
	Glycerol (233 K)	LF			7.04
			366 350	time constant below 200 K; $\tau_T = 10^4 \mu s$	
	Chronal tripostata	LP		Triplet charaction not charactely chara 225 V. life 70	9E64
	Glycerol triacetate (213 K)	LP	380 360		9E04
	(213 K.)		340	time constant below 201 K; $ au_{ exttt{T}} = 10^4 \mu \text{s}$	
	Isopentane/3-MP	FP/IV	378, 34000	Glass was 6:1 isopentane : 3-MP; $\tau_T = 5300 \mu s$	87111
	(77 K)	11/14	358	Glass was 0.1 isopentance. 5-1411, $r_{\rm T} = 5500 \mu s$	0/11/
	(17 K)		341		
	MCH/Isohexane (98 K)	LP	380	Relative intensities (3:2:1); triplet absorption not ob- 79	9E64
	112011, 100110111111 (70 11)	. ~-	360	servable above 109 K; reported lifetime constant be-	
			342	low 95 K; $\tau_T = 1.4 \times 10^4 \mu s$	
1007	trans-Stilbene-d ₁₂				
-007.	EPA (77 K)	FP	379	Main peak at 379 nm; $\tau_T = 9.2 \times 10^4 \mu s$	07199
			360	ramin pour at 012 min, r1 = 216 / 10 pm	
			341		
	Isopentane/3-MP	FP/IV	378, 28000	Glass was 6:1 isopentane to 3-MP; $\tau_T = 1.1 \times 10^4 \mu s$ 68	87111
	•	/	358	Outside that the hope many to a first, if a first firs	
			330		
	(77 K)		341		
1008	,		341		
1008.	Styrene	IP/RA-FT		ϵ relative to nanhthalene in cycloberane $(\epsilon_{ij}) = 24000$ 8	2E18
1008.	,	LP/RA-ET	341 325 ^b , 2200	ϵ relative to naphthalene in cyclohexane ($\epsilon_{413} = 24000$ 8. I. mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{11} = 24500$ L. mol ⁻¹	2E18
1008.	Styrene	LP/RA-ET		ϵ relative to naphthalene in cyclohexane ($\epsilon_{413} = 24000$ 82 L mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{415} = 24500$ L mol ⁻¹ cm ⁻¹); triplet ET from thioxanthone; $\tau_{\rm T} = \sim 0.025~\mu {\rm s}$	2E18
	Styrene Cyclohexane	LP/RA-ET		L mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{415} = 24500 \text{ L mol}^{-1}$	2E18
1008. 1009.	Styrene Cyclohexane		325 ^b , 2200	L mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{415} = 24500 \text{ L mol}^{-1}$ cm ⁻¹); triplet ET from thioxanthone; $\tau_T = \sim 0.025 \ \mu s$	
	Styrene Cyclohexane Sulfacetamide	LP/RA-ET		L mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{415} = 24500 \text{ L mol}^{-1}$ cm ⁻¹); triplet ET from thioxanthone; $\tau_{\rm T} = \sim 0.025 \ \mu \text{s}$ to β -carotene in 82	
	Styrene Cyclohexane Sulfacetamide		325 ^b , 2200	L mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{415} = 24500 \text{ L mol}^{-1}$ cm ⁻¹); triplet ET from thioxanthone; $\tau_T = \sim 0.025 \ \mu s$	
009.	Styrene Cyclohexane Sulfacetamide Water	LP	325 ^b , 2200	L mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{415} = 24500 \text{ L mol}^{-1}$ cm ⁻¹); triplet ET from thioxanthone; $\tau_T = \sim 0.025 \ \mu \text{s}$ ‡Oxygen quenching and triplet ET to β -carotene in EtOH; spectrum obtained from composite spectra; τ_T	
	Styrene Cyclohexane Sulfacetamide Water	LP	325 ^b , 2200	L mol ⁻¹ cm ⁻¹), but in ref. cited ($\epsilon_{415} = 24500 \text{ L mol}^{-1}$ cm ⁻¹); triplet ET from thioxanthone; $\tau_T = \sim 0.025 \ \mu \text{s}$ †Oxygen quenching and triplet ET to β -carotene in EtOH; spectrum obtained from composite spectra; $\tau_T = 0.5 \pm 0.05 \ \mu \text{s}$; pH 7.0	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\begin{array}{ccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-1} \end{array}$	Comment	Ref.		
1011.	[1,1':4',1''-Terphenyi]-4 2-MTHF (77 K)	,4′′-diamine CWL	560		74B003		
1012.	m-Terphenyl 2-PrOH/Isooctane/-	FP	404ª	‡Phosphorescence decay; glass was 1:3:3 2-PrOH to	81B119		
	Et ₂ O (81 K) BuOH (~80 K)	FP/COM	401, 72 ^d	isooctane to Et_2O ϵ estimated from numerical simulation of triplet state	67B010		
	BuOH (~80 K) EtOH/Et ₂ O (77 K)	FP/IV MOD/KM	401, 63 ^d 436, 3900 ± 1200	kinetics; $\tau_T = (4.65 \pm 0.2) \times 10^6 \mu\text{s}$ ϵ estimated by extrapolation to infinite excitation rate Glass was 2:1 EtOH to Et ₂ O; temp.temperature was not explicitly stated, but 77 K was inferred from the context	67B010 719059		
	PVA (81 K)	FP	412° 341°	†Phosphorescence decay	81B119		
	Toluene/EtOH (77 K)	MOD	441 ^a 400 ^a 364 ^a	Glass was 19:1 toluene to EtOH; most intense peak was at 441 nm	719059		
1013.	o-Terphenyl BuOH (~80 K)	FP/COM	488, 80 ^d	ϵ estimated from numerical simulation of triplet state	67B010		
	, ,		•	kinetics; $\tau_{\rm T} = (3.45 \pm 0.1) \times 10^6 \mu {\rm s}$			
	BuOH (~80 K) EtOH/Et ₂ O (77 K)	FP/IV MOD/KM	488, 100 ^d 390, <1000	ϵ estimated by extrapolation to infinite excitation rate Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	67B010 719059		
	Toluene/EtOH (77 K)	MOD	600° 398° 353°	Glass was 19:1 toluene to EtOH; most intense peak was at 398 nm	719059		
1014.	<i>p</i> -Terphenyl						
101	2-MTHF (77 K) 2-PrOH/Isooctane/- Et ₂ O (81 K)	CWL FP	460 459	Shoulder at 413° nm †Phosphorescence decay; glass was 1:3:3 2-PrOH to isooctane to Et ₂ O; $\tau_T = 2.7 \times 10^6 \mu s$	74B003 81B119		
	Alcohol/Ether (77 K) Benzene	MOD PR/E1	459 460, 90000	Glass was 2:1 alcohol to ether ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained from a simultaneous least squares fit of data from several compounds making use of cyclohexane to benzene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for anthracene	76E682 71E360		
	BuOH (~80 K)	FP/COM	449, 4880 ^d	ϵ estimated from numerical simulation of triplet state kinetics; $\tau_{\rm T} = (1.93 \pm 0.06) \times 10^6 \ \mu {\rm s}$	67B010		
	BuOH (~80 K) EtOH/Et ₂ O (77 K)	FP/IV MOD/KM	449, 9920 ^d 460, 88000 ± 35000	ε estimated by extrapolation to infinite excitation rate Glass was 2:1 EtOH to Et ₂ O; temperature was not explicitly stated, but 77 K was inferred from the context	67 B 010 719059		
	Hexane (300 K) MCH/Isopentane (77 K)	MOD/SD PS	444, 40000 455°	$ au_{\rm T} = 450 \pm 40 \ \mu s$ Glass was 4:1 MCH to isopentane; shoulder at 425 nm	69E208 74B006		
	Polystyrene	PR	470	$G\epsilon$ values increased with concentration; half-life = 2 $ imes$ 10 ⁴ μ s	672086		
	Toluene/EtOH (77 K)	MOD	467ª	Glass was 19:1 toluene to EtOH; shoulder at 394° nm	719059		
1015.	<i>p</i> -Terphenyl- <i>d</i> ₁₄ 3-MP (77 K)	PS/ESR	461, 12900	‡ESR; oscillator strength = 0.88	69B002		
1016.	4-(4-p-Terphenylylmethy 2-MTHF (77 K)	l)benzophenone PS/ESR	480°, 110000 ± 20000		707036		
1017.	2-([1,1':4',1''-Terpheny 2-MTHF (77 K)	l]- 4- ylmethyl)trij PS/ESR	phenylene 471ª, 100000 ± 20000		707036		
1018.	Testosterone EtOH	LP	305ª	†Triplet ET to piperylene, oxygen quenching (2.2 \times 10 ⁹ L mol ⁻¹ s ⁻¹); solvent uncertain; $\tau_T=0.044~\mu s$	80B055		

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
1019.	Tetrabenzophenazine Toluene (293 K)	FP	495°	†Phosphorescence decay in EPA at 77 K, oxygen quenching; isomer unspecified	80E77
1020.	Tetrabenzoporphine Pyridine	FP	440 400		73E34
1021.	Tetracene 2-MTHF (77 K)	CWL	485 468 440 412 385	The first 3 bands were assigned to ${}^3B_{\bar{3}g} \leftarrow {}^3B_{2u}^+$ and the last 4 were assigned to ${}^3A_{\bar{1}g} \leftarrow {}^3B_{2u}^+$	727000
	Acetonitrile	LP-ET	360 320 470°	†Triplet ET from 2-nitronaphthalene; $k_{\rm et} = 7.1 \times 10^9$ L mol ⁻¹ s ⁻¹	767269
	Acetonitrile Benzene	FP PR/ET	460 465, 31200	ϵ relative to benzophenone ketyl radical in cyclohexane ($\epsilon_{\rm max}=3700~{\rm L~mol^{-1}~cm^{-1}}$); ϵ obtained from a simultaneous least squares fit of data from several compounds making use of cyclohexane to benzene $\epsilon_{\rm max}$ ratios of 1.83 for naphthalene and 1.45 for anthracene	78A16 71E36
	Benzene	LP-ET	470°	†Triplet ET from 2-nitronaphthalene; shoulder at 450 mm; $k_{\rm et} = 7.4 \times 10^{9} \ \rm L \ mol^{-1} \ s^{-1}$	76726
	EtOH/MeOH/2-MTHF (113 K)	FP/SD	962, 1000 ± 300 935*, 70* 909*, 80* 893*, 80* 846.5, 790* 806*, 60* 794*, 70* 769*, 60* 757, 300* 694*, 70* 683, 90* 671*, 70*	‡Lifetime same as TTA bands in the blue; glass was 3:1:4 EtOH to MeOH to 2-MTHF; shoulders at 862*, 752*, and 741* nm; $\tau_{\rm T}=1000\pm50~\mu s$	69B00
	EtOH/MeOH (113 K)	FP/TD	962.0, 1000 931*, 80* 911*, 90* 888*, 100* 848*, 750* 807*, 70* 793*, 80* 774*, 70* 758*, 290* 699*, 80* 685*, 100* 497*, 5600* 481.5, 60000 433*, 32900* 413*, 9150* 339.1, 2000 318.0, 17000 305*, 15600* 285.8, 350000 244.0, 23000 235*, 15800*	†Phosphorescence decay; shoulders at 864*, 752*, 745*, 669*, 534*, 488*, 458*, 451*, 330*, 294*, and 291* nm; 7 electronic transitions were assigned with 0-0's at 962.0, 481.5, 463.3, 339.1, 318.0, 285.8, and 244.0 nm; oscillator strength = 0.002, 0.2, 0.45, 0.004, 0.15, 0.85, ~0.2	72800

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent		λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹		Ref.
	Liquid paraffin	FP/SD	476, 30000 460, 52600 430.5, 27300 400, 8000 312, 8000	Solvent had viscosity of 0.03 N·s/m ² ; 4 separate electronic transitions were assigned; bands between 460 and 400 nm were assigned to the second transition; oscillator strength = 0.1, 0.4, 0.05, 0.9	58E001
	мсн	LP	285.5, 195000 476 ^a 459 ^a	459 nm was the most intense peak	82 F 367
	ТНБ	FP .	431 ^a 480 ^a 460 ^a 435 ^a	460 nm was the most intense peak	757004
1022.	1,5,9,10-Tetrachloroanthra	icene			
	Liquid paraffin	FP	440	Viscosity of solvent was 0.167 N·s/m ² ; $\tau_T = 310 \mu s$	62E009
1023.	1,2,4,5-Tetracyanobenzene Benzene	PR	1000	‡Triplet ET to anthracene; charge transfer complex with solvent	776146
	EPA (77 K)	FP	516 477	tPhosphorescence decay, molecular orbital calculations; ϵ roughly 200 L mol ⁻¹ cm ⁻¹ (method unspecified); possible charge transfer complex with ether of solvent since radical anion detected on repeated flashing; $\tau_T = 3.1 \ \mu s$	776213
1024.	N,N,N',N'-Tetraethyloxo				
	EtOH	LP-ET/SD	820, 24000 500°, 8600°	†Triplet ET from 9,10-dibromoanthracene and oxygen quenching; solution 10^{-3} mol L ⁻¹ NH ₃ ; $\tau_{\rm T}=285~\mu{\rm s}$	82E456
1025.	<i>N,N,N',N'</i> -Tetraethyloxo EtOH	onine cation, conju LP-ET/SD	rgate monoacid 700, 28000 500 ^a , 9700 ^a	†Triplet ET from 9, 10-dibromoanthracene and oxygen quenching; solution 0.2 mol L ⁻¹ H ₃ PO ₄ ; $\tau_{\rm T}=47~\mu{\rm s};~k_{\rm ct}=1.9\times10^9~{\rm L~mol^{-1}~s^{-1}}$	82E456
1026.	Tetraethylporphine Pyridine	FP	779 ^a 434 ^a	Shoulder at 451 nm	74B007
1027.	N,N,N',N'-Tetraethyl-[1, 2-MTHF (77 K)	1':4',1'':4'',1'' CWL	'-quaterphenyl]-4,4 710		74B0 03
1028.	N,N,N',N'-Tetraethyl-[1, 2-M1HF (77 K)	1':4',1''-terphen CWL	yl]-4,4′′-diamine 610		74B003
1029.	(R)-4,5,6,7-Tetrahydrodin: 2-MTHF (96 K)	aphtho[2,1-b:1',2' PS	-d][1,6]dioxecin 429 ^a 413 ^a	Compound "VIII" in paper	83E383
1030.	6,7,8,9-Tetrahydro-4-hydr Water	oxythiazolo[4,5- <i>h</i> LP/ET	isoquinoline-7-carb 370, 8000	toxylate ion toxygen quenching and triplet ET to crocetin; ϵ relative to crocetin in water ($\epsilon_{470} = 75000 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ considered an upper limit; $\tau_{\rm T} = 54 \ \mu \text{s}$; pH 13; $k_{\rm et} = 1.8 \ \times \ 10^{10} \ \text{L mol}^{-1} \ \text{s}^{-1}$	84A02
1031.	7.8.9.10-Tetrahydrotetrah Water	ydroxybenzo[<i>a</i>]py FP	rene 415	Solution buffered; delay 50μs	82R15
1032.	Tetrakis(2,6-dimethyl-4-su Water	ilfonatophenyl)por LP/TD	phine 780, 3200	$\tau_{\rm T}=1800~\mu{\rm s}$	84E20
1033.	Tetrakis(2-N-methylpyrid	yl)porphine			
	Water	LP/TD	790, 2600 ± 300	$\tau_{\rm T} = 1160 \pm 120 \; \mu \rm s; pH \; 6.0$	84E34

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , /nm	ϵ_{max} /L mol ⁻¹ cm ⁻¹	Comment	Ref.
1034.	Tetrakis(3-N-methylpyridy	l)porphine				
	Water	LP/TD	840, 32 710	800 ± 300	$\tau_{\rm T} = 390 \pm 39 \ \mu {\rm s}; \ {\rm pH} \ 6.0$	84E346
		•	,,,,			
1035.						
	Water	LP/TD	450 ^b , 2	8600	†Oxygen quenching; tetra- p -toluenesulfonate salt; pH 7.4; half-life = 120 μ s	82A152
	Water	LP/TD	920, 76	600 ± 800	Shoulder at 820 nm	82E62
				8000 ± 2800		
			-	7600 ± 5800		
	Water	LP/TD	920, 76 820	600 ± 800	$ au_{\rm T} = 170 \pm 17 \; \mu {\rm s}; \; {\rm pH} \; 6.0$	84E34
1036.	Tetrakis(2-pyridyl)porphin	e				
	Methylene chloride	LP/TD	790, 26 695	500 ± 300	$\tau_{\rm T} = 150 \pm 15 \; \mu \rm s$	84E34
			0,0			
1037.			500		170 1 17	0.455.5
	Methylene chloride	LP/TD	790, 36 700	600 ± 400	$ au_{\mathrm{T}} = 170 \pm 17 \; \mu \mathrm{s}$	84E34
1038.	Totrakis(4-pyridyl)porphin	_				
1038.	Methylene chloride	LP/TD	790, 38	300 ± 400	$ au_{\mathrm{T}} = 170 \pm 17 \; \mu \mathrm{s}$	84E34
			695		1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	
1039.	Tetrakis(2-pyridyl)porphin	e, conjugate dis	acid			
	Water	LP	930		1 mol L ⁻¹ HCl; pH Acidic	84E34
			720			
1040.	Tetrakis(3-pyridyl)porphin	e, conjugate dis	acid			
	Water	LP	890		1 mol L ⁻¹ HCl; pH Acidic	84E34
			720			
1041.	Tetrakis(4-pyridyl)porphin	e, conjugate dia	acid			
	Water	LP	950 720		1 mol L ⁻¹ HCl; pH Acidic	84E34
1042.	Tetrakis(p-sulfonatopheny	l)porphinatorho	date(III) i	on		
	Water	LP/TD	830			84E04
1043.	Tetrakis(p-sulfonatopheny	l)porphine				
	Water	LP/TD	460 ^b , 6	55000	‡Oxygen quenching (1.9 × 10° L mol ⁻¹ s ⁻¹); $\tau_T = 400$ µs; pH 7	81E08
	Water	LP/TD	790, 3	100 ± 300	Lot bee	82E62
			680			
				30000 ± 13000		
	Water	LP/TD	440 ^b , 4	14250	‡Oxygen quenching; spectrum corrected for cation radical by monitoring e_{aq}^- absorption; pH 7.4	82A1
	Water	LP/TD	790, 3	400	$\tau_{\rm T}=420~\mu{\rm s}$	84E20
1044.						
	Water	LP/TD	800, 3: 690	200	$\tau_{\rm T} = 540~\mu \rm s$	83E46
1045	N,N,N',N'-Tetramethylb	enzidine				
	Acetonitrile	LP/SD	475, 3	6000 ± 4000	‡Oxygen quenching (2.2 × 10^{10} L mol ⁻¹ s ⁻¹); $\tau_{\rm T} = 10$	84B06
	Acetonitrile	LP	475ª		μs ‡Quenching by 2,5-dimethyl-2,4-hexadiene; spectrum	84F07
					obtained by subtracting radical cation spectrum from a composite spectrum; $\tau_T = 5 \mu s$	
	Cyclohexane	LP	475		†Triplet ET to naphthalene, oxygen quenching, in-	76717

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	EtOH/Water	LP	475	‡Oxygen quenching; solvent was 1:1 EtOH to water; delay 250 ns	84E40
	МеОН	LP/ELT	475° , 40000 ± 3000	†Triplet ET to naphthalene, oxygen quenching, intensity dependent lifetime; ϵ relative to cation radical	767177
				in MeOH ($\epsilon_{475} = 41000 \text{ L mol}^{-1} \text{ cm}^{-1}$) obtained by	
				electron transfer to Eu ³⁺ ions and noting no change in absorbance at 475 nm; $\tau_T = \sim 10 \ \mu s$; $E_T = 260 \pm 5 \ kJ$	
	SDS	LP/ELT	475 ^b , 40000 ± 2000	mol ⁻¹ †Triplet ET to naphthalene, oxygen quenching, in-	767177
				tensity dependent lifetime; ϵ relative to cation radical in MeOH ($\epsilon_{475} = 41000 \text{ L mol}^{-1} \text{ cm}^{-1}$) obtained by	
				electron transfer to Eu ³⁺ ions and noting no change in	
				absorbance at 475 nm; aqueous micelle; $E_{\rm T} = 260 \pm 5$ kJ mol ⁻¹	
1046.	1,1',3,3'-Tetramethyldia	athrono			
1040.	MCH/Isohexane (93 K)		490	‡ESR; shoulders at 450 nm and 530 nm; lifetime mea-	70B00
				sured at 103 K; $\tau_T = 1200 \mu\text{s}$	
	PMMA (140 K)	FP/SD	485, ≤26000	†Dh.co., h	677223
	PMMA (140 K)	FP/SD	485, 26000	‡Phosphorescence decay; $\tau_T = 88000 \mu s$	677223
1047.	3,4,7,8-Tetramethyl-1,5-d				
	Acetonitrile	LP	420	†Variation of decay with viscosity; $\epsilon > 10000 \text{ L mol}^{-1}$ cm ⁻¹ ; $\tau_{\text{T}} = 2.2 \mu\text{s}$	79E44
1048.	1,3,3,6-Tetramethyl-6'-ni	trospiro-(2,2'-inde	olin[2H-1]benzopyran)		
	Toluene (298 K)	FP	460	Oxygen quenching, activationless decay; assigned to	67B00
				$\pi \to \pi^*$ transition in uncolored form	
1049.	N,N,N',N'-Tetramethyl-	<i>n</i> -nhenylenediami	ne		
	3-MP (77 K)	FP/SD	613°, 15300°	†Phosphorescence decay and oxygen quenching;	69E21
			610 ^b , 15000	"TMPD"; shoulder at 532° nm; spectrum was esti-	
			570°, 13600°	mated in SD region, 340-360 nm; ϵ outside SD region	
			330°, 5500° 299°, 17500°	of TMPD cation, and this was used in a modified SD	
	Acetonitrile	LP	560°	method Spectra extracted from composite spectra; $\tau_T = 0.5 \mu s$	84B06
	Benzene	PR/ET	605, 12200	e relative to benzophenone ketyl radical in cy-	71E36
				clohexane ($\epsilon_{max} = 3700 \text{ L mol}^{-1} \text{ cm}^{-1}$); ϵ obtained	
				from a simultaneous least squares fit of data from several compounds making use of cyclohexane to ben-	
				zene ϵ_{max} ratios of 1.83 for naphthalene and 1.45 for anthracene	
	Cyclohexane	LP/ET	597°	Oxygen quenching and delayed fluorescence; ϵ rela-	70706
			570 ^b , 11900 526 ^a	tive to naphthalene in cyclohexane ($\epsilon_{415} = 22400 \text{ L}$ mol ⁻¹ cm ⁻¹)	, 0, 00
	Dipropyl ether (77 K)	MOD/KM	$615, 24000 \pm 6000$		73705
			570, 24000 ± 6000 297, 28000 ± 7000		
	EtOH	FP	620°		70706
	Heptane	LP	568 ^a 596 ^a	Delay 150 no. 562 nm pack was the man inter-	
	Treptant	Li	562°	Delay 150 ns; 562 nm peak was the more intense; $\tau_T = 1.4 \mu s$	82E47
	Hexane	LP	608 ^a 551°	Delay 40 ns	84B06
	Liquid paraffin	FP	598ª	Negative comparisons with TMPD+ spectra and ki-	66B00
			554ª	netics; shoulder at 524a nm; another maximum 300 nm, and this maximum was the more intense than the	
				2 listed maxima; $\tau_1 = 82 \mu s$	
	MCH/Isopentane	PS	615ª	‡Phosphorescence decay; glass was 1:1 MCH to iso-	66B00
	(77 K)		600ª	pentane; the 6 peaks occurred in pairs, with the bands	
			578° 565°	formed by each pair showing indications of additional structure	
			200	aci neture	
			536a		

1 337 3 Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	PMMA	PR/ET	620, 10000 580, 11000	ϵ relative to naphthalene in cyclohexane ($\epsilon_{415} = 22000$ L mol ⁻¹ cm ⁻¹), assuming no solvent effects; reference ϵ was from a citation that actually reported $\epsilon_{412.5} = 22600$ L mol ⁻¹ cm ⁻¹	710278
	Polystyrene	PR/ET	630, 15000 580, 15000	ϵ relative to naphthalene in polystyrene ($\epsilon_{425} = 11000$ L mol ⁻¹ cm ⁻¹)	710278
	Water	LP	630 570	Water	707061
1050.	Tetramethylthiuram dis Hexane	ulfide FP	~400	‡Oxygen quenching; $\tau_T = 90 \ \mu s$	78B108
1051	Totromothylthiuram mo	nosulfido			
1031.	Tetramethylthiuram mo Hexane	FP	~400	‡Oxygen quenching; $\tau_T = 90 \mu s$	78B108
1052.	1,1,4,4-Tetraphenyl-1,3-	butadiene	ť		
	Toluene	PR	395ª	†Triplet ET to β -carotene and oxygen quenching; $\tau_{\rm T}$ = 0.665 $\mu {\rm s}$	84E144
1053.	Tetraphenylchlorin Benzene	FP	520 470	Maximum at 520 nm was judged to be of "doubtful significance" by the experimenters; benzene was wet	58R002
	Dimethyl phthalate	FP/SD	441°	Shoulder at 458 nm	74B007
1054	Tetraphenyl-p-dioxin				
1054.	Benzene	LP	550° 350°	‡Oxygen quenching (1.7 × 10 ⁹ L mol ⁻¹ s ⁻¹), triplet ET to Di- <i>tert</i> -hutylselenoketone; maxima assumed solvent independent (text); $\tau_{\rm T} = 0.630~\mu s$; $k_{\rm et} = 1.8 \times 10^8$ L mol ⁻¹ s ⁻¹	79A241
	МеОН	LP	550° 350°	tOxygen quenching, triplet quenching; relative intensities (1:3); $\tau_T=0.535~\mu s$	79A241
1055.	3,3,4,5-Tetraphenyl-2(3)	H)-furanone			
	Benzene	LP/ET	365 ± 5 , 13000 ± 2600	‡Oxygen quenching; ϵ relative to benzophenone in benzene ($\epsilon_{532}=7600~\rm L~mol^{-1}~cm^{-1}$); $\tau_{\rm T}=12\pm2~\mu s$; $k_{\rm et}=2.5\times10^{9}~\rm L~mol^{-1}~s^{-1}$	84E520
1056.	Tetraphenylporphinator MeOH	hodium(III) chlorid LP/TD	e 830		84E045
		_			
1057.		ine LP/TD	700 6000	σ₂ − 1500 μg	84E203
	Benzene Toluene	FP/SD	790, 6000 780, 6000 690, 3500 430, 83000 390, 42000	$τ_T = 1500 mu$ s $τ_T = 1350 mu$ s	60E006
	Toluene	LP	780		80 B 101
1058.	Tetraphenylporphyrin d	lianion			
	THF	FP ·	460	Electron photoejection ruled out by scavenging study; half-life = $1000 \mu s$	79B114
1059.	1,3,6,8-Tetraphenylpyre	ene			
	Cyclohexane	FP/TD	525.5, 14400 510, 19700 499, 18900 488.5, 18100 478.5, 16800 460, 13900 434, 16900 429.5, 16700 426, 16500	The 1st triplet level was assigned to ${}^3B_{2\alpha}^+$; four electron transitions were assigned, with the 1st (band 1), 3rd (origin, band 6), and the 4th (origin, band 7) being ${}^3B_{2g}^-$, while the 2nd electronic transition (origin, band 2) being ${}^3A_g^-$	757439

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ε_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
1060.	Thiobenzophenone				
	Benzene	LP/RA	515 ± 5, 4100 ± 800 400 ± 5, 4800 ± 1000	ϵ relative to benzophenone in benzene ($\epsilon_{532.5}=7630$ L mol ⁻¹ cm ⁻¹), taking $\Phi_T=0.6$ at 337 nm excitation and taking $\Phi_T=1$ for benzophenone; $\tau_T=1.7\pm0.2$ μs	84A221
1061.	Thioflavine				
	PMMA (77 K)	PS	1650 1300 1200 1100 950 750		65B004
1062	Thisinding				
1062.	Thioindigo 2-MTHF	LP	588ª	†Oxygen quenching	79E325
	Benzene	LP	590°a 530°a 380°a	†Oxygen quenching (3.2 \times 10° L mol ⁻¹ s ⁻¹); presumably twisted triplet since spectrum independent of amount of <i>cis</i> or <i>trans</i> isomers used; $\tau_{\rm T}=0.279~\mu{\rm s}$	78F030
	Butyronitrile	LP	580	Oxygen quenching	79E325 81E639
	Chloroform Dichloromethane	LP LP	603 590° 530° 380°	†Oxygen quenching; presumably twisted triplet since spectrum independent of amount of cis or trans isomers used; $\tau_T = 0.158 \ \mu s$	78F030
	Glycerol triacetate	LP	580	$ascu; \tau_T = 0.136 \ \mu s$ $\tau_T = 37 \ \mu s$	79E54
	(203 K)		375	·	
	Glycerol triacetate	LP	575 370	$\tau_{\rm T}=0.20~\mu{\rm s}$	79E54
	MCH/Toluene (77 K)	LP	587ª	Solvent was 1:1 MCH to toluene	79E32
	MCH/Toluene	LP	590	Oxygen quenching; solvent was 1:1 MCH to toluene	79E32
	Methylene chloride	LP	590 370	$\tau_{\rm T}=0.15~\mu{\rm s}$	79E54
	PMMA .	LP	580 375		79E54
1063.	Thionine cation				
	Acetonitrile	FP	810 ^a 740 ^a		78A44
			430°		
	МеОН	FP	780 420	•	747038
	MeOH	FP/SD	780 ^a , 13200 700 ^a , 7000 ^a 430 ^a , 12000 ^a	Upper bound on ϵ ; basic form of triplet; $\tau_{\rm T}=12~\mu{\rm s}$	777242
	Water	FP/SD	760°, 12000° 760°, 9400° 690°, 6000° 415°, 12000°	$\tau_{\rm T}=1.7~\mu{\rm s};~{\rm pH}~8.$	64E01
	Water	FP/SD	775, 10000	$pK_a = 6.3 \pm 0.1$	67C00
	Water	FP	770	pK ₈ 8.95; pH 7.5-9.5	75714
	Water	FP	770°	Shoulder at 730 nm	77731
1064.	Thionine cation, conjuga	te monoacid			
	Sulfuric acid (295 K)	FP/SD	495°, 5WU°	Absorption spectra extends to 700 nm and has at least one additional maximum which was more intense than at 495 nm, but is masked by bleaching of ground state; temperature \pm 1 K; pH \sim 0.7	61A00
	Water	FP/SD	655°, 15400° 375°, 14000°	рН 1.	64E01
	Water	FP	650		67C00
	Water	FP	645ª	$\tau_{\rm T} = 16 \pm 2 \; \mu \rm s; \; pH \; 2.5$	77731
	Water	LP/SD	650, 16000 380, 14000	SD assuming no triplet absorption at 630 nm; solution 0.01 mol L ⁻¹ acid; pH 2	82E23
	Water/Acetonitrile	LP/SD	380, 14000 650, 20000	SD assuming no triplet absorption at 630 nm; solution	82E23
		21,00	380, 15500	0.01 mol L ⁻¹ acid; solvent was 1:1 water to acetonitrile	U-120
	Water/EtOH	LP/SD	650, 20500 380, 16500	SD assuming no triplet absorption at 630 nm; solution 0.01 mol L ⁻¹ acid; solvent was 1:1 water to EtOH	82E23

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol^{-1} cm^{-1}	Comment	Ref.
1065.	Thiopyronine				
	Water	FP	690	Solution was phosphate buffered; $\tau_T = 420 \mu s$; pH 7.4	687142
			470-480		
			440		
			400		
			370		
			340		
1066.	Thiopyronine cation				
	Acetonitrile	FP/?	660 ^b , 4560	ϵ method unspecified; $\tau_{\rm T} = -80 \ \mu s$	80A369
	MeOH	FP/?	720 ^a	Radical ($\lambda_{max} = 425 \text{ nm}$) and radical ion ($\lambda_{max} = 470$	80A36
			660 ^ь , 4200	nm) contributions in the blue unsubtracted; ϵ method	
			470°	unspecified; $\tau_T = \sim 80 \ \mu s$	
			420 ^a		
	Water	FP	704°	$\tau_{\rm T} = 420 \ \mu \rm s; \ pH \ 7.4$	697009
			344ª		
	Water	FP/?	660 ^b , 4350	ϵ method unspecified; $\tau_{\rm T} = \sim 80 \ \mu s$	80A369
1067.	4-Thiouridine				
	Acetonitrile	LP/ET	520, 50000	ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1}$ cm ⁻¹)	83E625
	Water	LP/ET	520, 50000	ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1}$	83E625
			•	cm ⁻¹)	
1068.	9H-Thioxanthene-9-1	thione			
	Benzene	LP/RA	$505 \pm 5,2500 \pm 500$	ϵ relative to benzophenone in benzene ($\epsilon_{532.5} = 7630 \text{ L}$	84A22
			350 ± 5, 10600 ± 2100	mol^{-1} cm ⁻¹), taking $\Phi_T = 0.8$ at 337 nm excitation and	
				taking $\Phi_T = 1$ for benzophenone; SD method gave	
				similar ϵ ; $\tau_{\rm T} = 0.83 \pm 0.08 \ \mu s$	
1069.	Thioxanthen-9-one				
	Acetonitrile	FP	625 ± 5	†Triplet ET to triplet acceptors; $\tau_T = 73 \mu s$	737190
	Acetonitrile	LP	620		84B116
	Benzene	LP/RA	650, 30000 \pm 5000	ϵ relative to anthracene in liquid paraffin ($\epsilon_{424} = 71000$	79E099
				L mol ⁻¹ cm ⁻¹), assuming $\Phi_T = 0.7$ for anthracene in	
				benzene and $\Phi_T = 1.0$ for thioxanthen-9-one and as-	
				suming ϵ independent of solvent; wavelength assumed	
				to be a maximum	
	Benzene	LP/ET	$650,30000 \pm 5000$	ϵ relative to anthracene in liquid paraffin ($\epsilon_{424} = 71000$	79E099
				L mol ⁻¹ cm ⁻¹) assuming ϵ independent of solvent;	
				wavelength assumed to be a maximum	
	Benzene	FP	650-670	$\tau_{\rm T} = 95 \ \mu \rm s$	81A29
	tert-BuOH	FP	620 ± 5	‡Triplet ET to triplet acceptors	737190
1070.	Thymidine				
	Acetonitrile	LP/ET	370°, 3600	7	79B08
				retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$), as-	
				suming no change in extinction coefficient of standard	
				in acetonitrile, and making kinetic corrections; $k_{et} = 6$	
				$\times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	
	Water	LP/RF	370b, 3600	‡Oxygen quenching; ϵ relative to thymidine in ace-	79B08
				tonitrile ($\epsilon_{370} = 3600 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming oscil-	
				lator strength independent of solvent; $\tau_T = 25 \mu s$	
1071.	Thymidine 5'-monop	hosphate			
	EtOH	LP/ET	370 ^b . 4000	†Triplet ET to retinol. oxygen quenching: ϵ relative to	79B08
				retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$), as-	
				suming no change in extinction coefficient of standard	
				in EtOH, and making kinetic corrections; $\tau_T = 25 \mu s$;	
				$k_{\rm et} = 2 \times 10^9 \rm L mol^{-1} s^{-1}$	
	Water	LP/RF	370 ^b , 4000	tOxygen quenching; ε relative to thymidine	79B08
	· · utci		,		
	W dici	,	,	5'-monophosphate in EtOH ($\epsilon_{370} = 4000 \text{ L mol}^{-1}$	
	***************************************	,	,	5'-monophosphate in EtOH ($\epsilon_{370} = 4000 \text{ L mol}^{-1}$), assuming oscillator strength independent of sol-	

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm	Comment \mathbf{n}^{-1}	Ref.
1072.	Thymine Acetonitrile	LP/ET	340 ^b , 4000	†Triplet ET to β -carotene and retinol; ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming no solvent effect on reference f ; no maximum was present, but 300 nm appeared to be a shoulder; τ_T	757510
	Water Water	FP LP/ET	340 340 ⁶ , 4000	= 2.5 μs; $k_{\rm et} = \sim 6 \times 10^9 {\rm L \ mol^{-1} \ s^{-1}}$ †Triplet ET to β-carotene and retinol; ε relative to retinol in hexane ($\epsilon_{405} = 80000 {\rm L \ mol^{-1} \ cm^{-1}}$), assuming no solvent effects on reference f on going to acetonitrile and on thymine on going from acetonitrile to water; shoulder at $\sim 340 {\rm nm}$; $\tau_{\rm T} = 0.6 {\rm \mu s}$	717071 757510
1073.	Thymine, negative ion Water	FP	421°	‡Oxygen quenching; shoulder at 490° nm; another maximum $<$ 330 nm; p $K_b \sim$ 3; pH 12	727036
1074.	Toluene/Et ₂ O (77 K)	MOD	1250 559	Glass was 1:1 toluene to Et ₂ O	72E276
1075.	s-Triazine Acetonitrile	LP/HAT	303 245, ~6000	Shoulders at ~450 and ~345 nm; ϵ relative to H adduct of s-triazine in acetonitrile ($\epsilon_{315}=1900 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T=0.91 \ \mu \text{s}$	757066
1076.	Tribenzo[a,c,h]phenazine PMMA (77 K) PMMA (293 K)	PS FP	525 525	†Phosphorescence decay (?); $\tau_{\rm T}=7.4\times10^5~\mu{\rm s}$ Decay was nonexponential, and lifetime was calculated from a terminal 1st-order rate constant; $\tau_{\rm T}=3.2\times10^5~\mu{\rm s}$	70E291 70E291
1077.	2,9,10-Trichloroanthracen Liquid paraffin	e FP	419	Viscosity of solvent was 0.167 N·s/m ² ; $\tau_T = 400 \mu s$	62 E 009
1078.	1,3,5-Tricyanobenzene Et ₂ O/Isopentane (77 K)	PS	320	Glass was 1:1 Et ₂ O to isopentane	75B004
1079.	Tricyclo[8.2.2.2 ^{4.7}]hexadeo Acetonitrile Toluene	ca-4,6,10,12,13, LP LP	15-hexaene-5,15-dicarbo i 520 ^a 520 ^a	nitrile 100 ns delay 100 ns delay	776187 776187
1080.	1,1,1-Trifluoroacetylaceto EtOH/MeOH (118 K)	one FP	380	Solvent was 3:1 EtOH to MeOH	68B005
1081.	4-(Trifluoromethyl)acetop Benzene	henone LP/RA	455°, 2800° 426°, 2700°	ϵ relative to benzophenone in cyclohexane (ϵ_{533} = 7630 L mol ⁻¹ cm ⁻¹ , assuming no solvent effect from benzene), and taking all the triplet yields to be unity	737198
1082.	4-(Trifluoromethyl)benzop Acetonitrile/Water	phenone LP/ET	530, 5800 320, 12400	Solvent was 9:1 acetonitrile to water; ϵ relative to 1-methylnaphthalene in acetonitrile/water ($\epsilon_{415} = 11200 \text{ L mol}^{-1} \text{ cm}^{-1}$)	84B033
1083.	4,4,4- Trifluoro-1-phenyl-1 EPA EPA	.,3-butanediona LP/SD LP/ET	tosodium 620 ^b , 11000 620 ^b , 12000	$τ_T = 0.04 \ \mu s$ ε relative to naphthalene in cyclohexane ($ε_{414} = 24500$	84E232 84E232
1084.	2,4,6-Triisopropylbenzoph Acetonitrile	nenone LP	750 305	‡Triplet ET to cis-1,3-pentadiene; relative intensities (1:2); decays into biradical; $\tau_T = 0.255 \pm 0.013 \ \mu s$	80B088

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued-

No.	Solvent	Method	λ _{max} , /nm	ϵ _{max} /L moi ⁻¹ cm ⁻¹	Comment	Ref.
1085.	2,3,5-Trimethyl-1,4-benzoo Water	uinone LP	480 440		$\tau_{\mathrm{T}} = 5.9 \; \mu \mathrm{s}$	80B112
1086.	(all-E)-3,7,12-Trimethyl-1, Benzene (296 K)	14-bis(2,6,6-trin LP-ET	495	cyclohexen-1-yl)-1,3,	5,7,9,11,13-tetradecaheptaene Triplet ET from chlorophyll a ; oxygen quenching (3.2 \times 10° L mol ⁻¹ s ⁻¹); $\tau_{\rm T}=10~\mu{\rm s};~k_{\rm et}=0.8\times10^9~{\rm L}$ mol ⁻¹ s ⁻¹	73E347
1087.	1,1,2-Trimethyl-2-(2-napht Benzene	hyl)ethylene LP-ET	390ª		†Triplet ET from xanthone and oxygen quenching (4.7 \times 10 9 L mol $^{-1}$ s $^{-1}$); $\tau_{\tau}=0.07~\mu s$	84B090
1088.	1,3,3-Trimethyl-6'-nitrosp MCH	LP	430	enzopyran)	tOxygen quenching; ground state dimers form readily; $\tau_{\rm T} = \sim 20~\mu {\rm s}$	80N064
	Toluene (298 K)	FP	443		‡Oxygen quenching, activationless decay; ϵ estimated > 10000 L mol ⁻¹ cm ⁻¹ ; assigned to $\pi \to \pi^*$ transition in uncolored form	67B003
1089.	3,5,5-Trimethyl-2-phenoxy MCH	-2-cyclohexene- LP	1-one 380°		‡Oxygen quenching; spectrum obtained by extrapolation to zero time	81F111
1090.	4-[Tri(4-methylphenyl)por Benzene	ohinyl]-3-phenox LP	x ypropyl ~ 54(~ 44()	The 80 ns lifetime associated with 440 nm triplet, assigned to porphyrin chromophore; 2.4 μs lifetime and 540 nm band assigned to carotenoid chromophore; 440 nm species is precursor of 540 nm species; $\tau_T=2.4$; 0.080 μs	82E174
1091.	4,5',8-Trimethylpsoralen EtOH (180 K)	FP	481° 461° 376°		†Triplet ET from naphthalene; shoulder at 498° nm	83B122
	МеОН	LP/ET	470,	33000 ± 3000 27000 ^a	†Triplet ET to β -carotene; ϵ relative to β -carotene in hexane ($\epsilon_{515} = 240000 \text{ L mol}^{-1} \text{ cm}^{-1}$) assuming ϵ independent of solvent; $\tau_T = 7.1 \mu\text{s}$	79B042
1092.	Triphenylamine 3-MP (77 K) EPA (77 K) MCH Toluene/EtOH (77 K)	PS PS LP MOD	525 531 520 583 ^a 410 ^a		$ au_{\rm T} = (9 \pm 3) \times 10^5 \ \mu {\rm s}$ †Phosphorescence decay; $ au_{\rm T} = (9 \pm 2) \times 10^5 \ \mu {\rm s}$ Glass was 19:1 toluene to EtOH; 583 nm peak was the more intense	67E106 67E106 72B002 719059
1093.	Triphenylamine, conjugate Acetic acid/MeOH/- Et ₂ O (77 K)	e acid MOD/KM	579 ^b , 546 ^b , 436 ^b ,	9900	Glass was 14:3:3 acetic acid to MeOH to Et ₂ O	82E648
1094.	1,3,5-Triphenylbenzene 2-PrOH/Isooctane/- Et ₂ O (81 K) Alcohol/Ether (77 K)	FP MOD	500 346 494		‡Phosphorescence decay; glass was 1:3:3 2-PrOH to isooctane to Et ₂ O; $\tau_{\rm T}=3.9\times10^6~\mu{\rm s}$ Glass was 2:1 alcohol to ether	81B119 76E682

 $T_{ABLE\ 6.} \quad Spectral\ parameters\ for\ triplet-triplet\ absorption\ of\ organic\ molecules\ in\ condensed\ phases\ --\ Continued$

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
1095.	Triphenylene				-
	2-MTHF (77 K)	PS/ESR	431, 16500 408 ^a , 9900 ^a	‡ESR; oscillator strength = 0.085	68D21
	3-MP (77 K)	PS	721 657		67E10
	? (77 K)	PS	434 ^a 410 ^a	†Phosphorescence decay and ESR lifetime; glass used was either 2-MTHF or 3-MP; $\tau_T = 1.37 \times 10^7 \mu s$	67E10
	Benzene	FP	428 407	Relative intensities (10:9)	61E00
	Benzene	LP	428		70E28
	Benzene	LP/ET	435, 6000 ± 500	‡Triplet ET from benzophenone; ε relative to benzophenone in benzene (ε _{532.5} = 7630 L mol ⁻¹ cm ⁻¹)	75728
	Butane/Isopentane (77 K)	PS/IV	430, 7000 ± 2000 408 ^a , ~3800	Glass was 3:7 butane to isopentane; ϵ_T was computed from OD = $\epsilon_T \tau_p i_0 (1 - \Phi_f)$ after the optical density, OD, was extrapolated to zero intensity of the monitoring beam (namely $i_0 \rightarrow 0$), here τ was lifetime of triplet, and Φ_f was fluorescence quantum yield; oscillator strength	65E03
	Cyclohexane	LP	430	= 0.05 Rise time of transient was the same as the decay time of the singlet	68 B 00
	EPA (77 K)	PS	431	of the singlet †Phosphorescence decay	51E0
	EPA (77 K)	PS	727 661	†Phosphorescence decay; $\tau_{\rm T} = (1.34 \pm 0.3) \times 10^7 \mu \rm s$	67E1
	EPA (82 K)	PS/KM	$430, 16800 \pm 300$		68B0
	EPA (77 K)	FP/SD	$430, 15600 \pm 2300$ $409^a, 8200^a$	$ au_{\mathrm{T}} = 1.38 \times 10^7 \ \mu \mathrm{s}; \ \mathrm{oscillator \ strength} = 0.11$	69F3
	EPA (77 K)	PS/KM	429 ^a , 17100 ^a 407 ^a , 11200 ^a 392 ^a , 7700 ^a	Solvent, temperature and extinction method assumed from earlier work; polarization also measured	69E2
	EPA (77 K) EtOH (77 K)	PS/KM MOD/KM	430, 16800 340 ^b , 8500 310 ^b , 2500 295 ^b , 3200 274.3 ^b , 17500 270, 36500 262.5 ^b , 27500 250 ^b , 45000	λ _{max} assumed from previous work	69E2 75759
	EtOH (77 K)	MOD	727 650° 431 408°	Relative intensities (2:1:4:1); halfwidth of principal maximum 680 cm ⁻¹	7775
	EtOH/MeOH (113 K)	FP/TD	350, >13000	Solvent was 3:1 EtOH to MeOH; lower limit assumes total ground state depletion	67 B 0
	Ethylene glycol	FP	428 407	Relative intensities (10:9); $\tau_{\rm T} = 1000 \pm 100 \ \mu s$	61E0
	Hexane	FP	428.1		54E0
	Hexane	FP/SD	428, 4100 404, 3500	Band at 346 nm was assigned to the second electronic transition; oscillator strength $= 0.025, 0.06$	58E0
	Hexane	FP	346, 7000 428	Relative intensities (10:9); $\tau_T = 55 \pm 9 \mu s$	61E0
	Hexane (77 K)	PS	405 431 407 385 360 350	First 3 bands were of medium intensity and were assigned to one electronic transition; other 2 bands were of strong intensity and were assigned to another electronic transition	63B0
	Hexane (77 K)	PS	432.6 409.0 381.2 361.8	Sample was a Shpolskii matrix; first two bands were assigned to one electronic transition, and the last two were assigned to another one	65B0
	Hexane	PS	722 655	Weak bands in the red only studied	67 B C

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
	Пехапе (77 K)	PS	722.0 654.9 432.0 416.7 408.5 396.0 381.0 369.90 362.1	Relative intensities (15:10:100.42:62:33:_:40:_:35)	69E211
	MCH (77 K)	PS/KM	354.6 432, 14400 ± 1000	Photoreaction with solvent measured; $\tau_T = 14 \times 10^6$	81F315
	мсн	LP	424ª	μs 424 nm peak was the more intense	82F367
	D2 62 6 4	7 D	405°		#0 T
	PMMA Toluene (77 K)	LP MOD	428 737 660° 443	Relative intensities (4:2:3); halfwidth of principal maximum 2000 $\mathrm{cm^{-1}}$	70E288 777538
1096.	Triphenylene-d ₁₂		:		
	EPA (77 K)	FP/SD	431, 12000 ± 1800	$\tau_{\rm T}=1.73\times10^7~\mu{\rm s}$	69F389
1097.	Triphenylene/Chloranil Liquid paraffin	MOD	415	Mull	71E361
1098.	Triphenylethylene Toluene	PR	366ª	†Triplet ET to β -carotene; maximum uncertain because of low intensity of monitoring light (private communication, P.K. Das, 1984); $\tau_T = 0.130~\mu s$	84E144
1099.	3,3,5-Triphenyl-2(3 <i>H</i>)-fu Benzene	ranone LP/ET	330 ± 5 , 13000 ± 2600	‡Oxygen quenching; ϵ relative to benzophenone in benzene ($\epsilon_{532}=7600~L~mol^{-1}~cm^{-1}$); $\tau_T=1.2\pm0.1~\mu s;~k_{et}=2.1~\times~10^9~L~mol^{-1}~s^{-1}$	84E520
1100.	•				
	MCH (77 K)	PS	427ª		727440
1101.	Triphenylmethyl cation Sulfuric acid/Acetic	PS	340ª	tOxygen quenching; solvent was 1:1 sulfuric acid to	78 A 180
	acid (77 K)	r.n	5009	acetic acid; pH Acidic	70 A 100
	Sulfuric acid/Acetic acid	FP	580° 340	Oxygen quenching; solvent was 1:1 sulfuric acid to acetic acid; pH Acidic	76A160
1102	1 2 2 T-inh 2	. 4		·	
1102.	1,3,3-Triphenylprop-2-ei MeOH	LP	440	‡Oxygen quenching; $τ_T = 0.325 \mu s$	84E520
1103.					
	MeOH/Water	LP	567° 519" 500° 463° 451° 438° 424° 404° 379°		79 B 098
1104.	Tris(2,2'-bipyridine)osn	nium(II) ion			
	Water	LP/SM	467°, 5000° 365°, 17700°	$ au_{\mathrm{T}} = 0.019~\mu\mathrm{s}$	80E040

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.		
1105.	Tris(2,2'-bipyridine)ruthen	ium(II) ion					
	Acetonitrile Water	LP/SD LP/SD	360^{b} , 27300 ± 1500 360^{b} , 27300 ± 1500	†Triplet ET to retinol; $\tau_T = 1.1 \pm 0.1 \mu s$ †Oxygen quenching (3.3 × 10° L mol ⁻¹ s ⁻¹); $\tau_T = 0.67$	767180 767180		
	Water	LP/TD	453°, 7700° 445°, 8000°,c	\pm 0.02 μ s in estimation of ϵ , 1D assumed from saturation of OD at intensities above 0.3×10^{18} photons/cm ² ; shoulder	7 9B 161		
	Water	LP/SM	370°, 13500°.c 452°, 2100 370°, 28900° 315°, 36600° 252°, 41600°	at 350 nm	79B032		
	Water	LP/SM	430°, 6500° 364°, 25400°		80E040		
	Water	LP	368 310 255	pH 12.7	82A365		
	Water	LP/TD	541, 3000 444, 5000 376, 29000 320, 37000 250 ⁵ , 40000		83B098		
1106.	Tris(1,10-phenanthroline)r Water (298 K)	hodium(III) ion LP/RA	490, 4300°	ϵ relative to benzophenone in benzene ($\epsilon_{532}=7630$ L mol ⁻¹ cm ⁻¹ , $\Phi_{\rm T}=1$), $\Phi_{\rm T}$ for compound measured as 1; units for ϵ are assumed since they were not specified	84B055		
	Water/Ethylene glycol (77 K)	LP	490	in the paper; $\tau_T = 0.25 \pm 0.02 \ \mu s$ †Phosphorescence decay; glass was 1:1 water to ethylene glycol; $\tau_T = (4.8 \pm 2) \times 10^4 \ \mu s$	84B055		
1107.	Tris(4,4,4-trifluoro-1-phen	Tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionato)lanthanum(III)					
	EPA EPA	LP/SD LP/ET	620, 20000 620, 27000	$τ_T = 2.6 \mu s$ $ε$ relative to naphthalene in cyclohexane ($ε_{414} = 24500$ L mol ⁻¹ cm ⁻¹); $τ_T = 2.7 \mu s$; $k_{et} = 1.0 \times 10^9$ L mol ⁻¹ s ⁻¹	84E232 84E232		
1108.	Tris(4,4,4-trifluoro-1-phen	yl-1,3-butanedic	onato)lutetium(III)				
	EPA EPA	LP/SD LP/ET	620 ^b , 28000 620 ^b , 28000	$τ_{\rm T}=1.4~\mu{\rm s}$ $ε$ relative to naphthalene in cyclohexane ($ε_{414}=24500$ L mol ⁻¹ cm ⁻¹); $τ_{\rm T}=1.5~\mu{\rm s}; k_{\rm et}=1.0\times10^9$ L mol ⁻¹ s ⁻¹	84E232 84E232		
1109.	Tryptophan PVA (293 K)	FP	480°	†Phosphorescence decay	757469		
	Water (77 K)	PS	464ª	†Phosphorescence decay; 4 mol L ⁻¹ CaCl ₂ aqueous glass	700011		
	Water (298 K)	LP	450	†Triplet ET to anthracene in EtOH; lifetime was measured at pH 7.5; spectrum is the difference between spectra at 100 ns in O ₂ -free solution and 1 μ s in O ₂ -containing solution; $\tau_T = 14.3 \pm 1.4 \ \mu$ s; pH 5.4	757163		
	Water	LP/COM	460, 5000	ϵ corrected for radical and hydrated electron absorption at 460 nm ϵ from quadratic fit to absorption decay curve assuming triplet-triplet annihilation with rate constant 10^{10} L mol ⁻¹ s ⁻¹ ; pH 7	777432		
1110.	DL- Tryptophan PVA	FP/COM	485°, 3700 ± 400	‡Phosphorescence decay; ϵ estimated based on $\Phi_f=0.55$ and the assumption of no internal conversion	753103		
1111.	L-Tryptophan Ethylene glycol/Water (77 K)	PS/KM	450, 8000	†Phosphorescence decay; glass was 1:1 ethylene glycol to water by volume; $\tau_T = 6.6 \times 10^6 \ \mu s$	716330		
	Water	FP	460	pH 5.4	727041		

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{\max} , ϵ_{\max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.
1112.	Tyrosine Water	LP	~575 295 250	Zwitterion; lifetime was measured at pH 6.0 and extrapolated to zero tyrosine concentration; p K_a 's of triplet are 2.5 and 9.7; spectrum is the difference between spectra at 20 ns and 15 μ s; $\tau_T = 5.5 \pm 1.5 \mu$ s; pH 7.5	757161
1113.	1Tyrosylglycine Water	LP	~385°	Another maxima below 250 nm that was at least 3 times as high as the maximum at 385^a nm; spectrum is the difference between spectra at 20 ns and 15 μ s; $\tau_T = 3.4 \pm 0.2 \mu$ s; pH 6.0	757161
1114.	Ubiquinone 30 Benzene	PR/ET	430 ^b , 13000	†Triplet ET from anthracene; ϵ relative to biphenyl in benzene ($\epsilon_{367} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); this ϵ may be too high, see comment under ubiquinone [743062]; half-life = 0.45 μ s; $k_{el} = 5.1 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	723043
	Cyclohexane	LP/ET	$440 \pm 5,8000 \pm 1600$	ε relative to biphenyl in cyclohexane (ε ₃₆₁ = 42800 L mol ⁻¹ cm ⁻¹); listed value updates authors' earlier value, ε = 19000 L mol ⁻¹ cm ⁻¹ , from [723043] which was in error because of spectral overlap with the donor	743062
	Cyclohexane	PR/ET	$440 \pm 5,7200 \pm 1600$	was in error because of spectral overlap with the bonor ϵ relative to biphenyl in cyclohexane ($\epsilon_{361} = 42800 \text{ L} \text{mol}^{-1} \text{ cm}^{-1}$)	743062
1115.	Uracil Acetonitrile	LP/ET	340, 2750	†Triplet ET to β -carotene and retinol; ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming no solvent effect on reference f ; $\tau_{\rm T} = 0.6 \text{ µs}$; $k_{\rm et} = -8 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	757510
	Water Water	FP LP/ET	380 360, 2600°	tOxygen quenching; $\tau_T = 6.1 \pm 0.5 \mu s$ tTriplet ET to β -carotene and retinol; ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{L mol}^{-1} \text{cm}^{-1}$), assuming no solvent effects on reference f on going to acetonitrile and on uracil on going from acetonitrile to water; $\tau_T = 0.35 \mu s$	697253 757510
1116.	Uridine Acetonitrile	LP/ET	370 ^b , 6400	†Triplet ET to retinol, oxygen quenching; ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming no change in extinction coefficient of standard in acetonitrile, and making kinetic corrections; $k_{el} = 6$	79B08
	Water	LP/RF	370 ^b , 6400	\times 10 ⁹ L mol ⁻¹ s ⁻¹ ‡Oxygen quenching; ϵ relative to uridine in acetonitrile ($\epsilon_{370} = 6400 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming oscillator strength independent of solvent; $\tau_{\rm T} = 20 \ \mu \text{s}$	79B08
1117.	Uridine monophosphate EtOH	LP/ET	390, 9000	†Triplet ET to retinol, oxygen quenching; ϵ relative to retinol in hexane ($\epsilon_{405} = 80000 \text{ L mol}^{-1} \text{ cm}^{-1}$), assuming no change in extinction coefficient of standard in EtOH, and making kinetic corrections; $k_{\text{et}} = 5 \times$	79B08
	Water	LP/RF	390° , 900 0	10° L mol ⁻¹ s ⁻¹ tOxygen quenching (3 × 10° L mol ⁻¹ s ⁻¹); ϵ relative to uridine monophosphate in EtOH ($\epsilon_{390} = 9000$ L mol ⁻¹ cm ⁻¹), assuming oscillator strength independent of solvent; $\tau_{\rm T} = 33~\mu{\rm s}$	79808
1118.	Uroporphyrin I, octameti Benzene	hyl ester PR/ET	440 ^b , 32000 405 ^a	‡Oxygen quenching (1.5 \times 10 ⁹ L mol ⁻¹ s ⁻¹); ϵ relative to biphenyl in benzene ($\epsilon_{160} = 27100$ L mol ⁻¹ cm ⁻¹); $\tau_{\rm T} = 270~\mu \rm s$	80E20
	Benzene	LP/TD	440 ^b , 26000 405 ^a	tOxygen quenching $(1.5 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1})$; $\tau_T = 270 \mu\text{s}$	80E20

J. Phys. Chem. Ref. Data, Vol. 15, No. 1, 1986

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	$\begin{array}{ccc} \lambda_{max} \ , & \varepsilon_{max} \\ /nm & /L \ mol^{-1} \ cm^{-1} \end{array}$	Comment	Ref.
1119.	2-Vinylnaphthalene				
	Benzene	PR/ET	426 ^a , 13200	†Triplet ET from biphenyl; ϵ relative to biphenyl in benzene ($\epsilon_{367} = 27100 \text{ L mol}^{-1} \text{ cm}^{-1}$); $\tau_T = 60 \text{ µs}$; $k_{\text{et}} = 7.1 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}$	79E666
	Benzene	LP-ET	417 ^a 396 ^a	†Triplet ET from xanthone and oxygen quenching (3.9 \times 10° L mol ⁻¹ s ⁻¹); there was a weak, broad maximum in the region of 600 nm; $\tau_{\rm T}=0.25~\mu{\rm s}$	84B090
1120.	9H-Xanthene-9-thione Benzene	LP/RA	$460 \pm 5,5500 \pm 1100$ $345 \pm 5,15400 \pm 3100$	ϵ relative to benzophenone in benzene ($\epsilon_{532.5}=7630~L$ mol ⁻¹ cm ⁻¹), taking $\Phi_T=0.8$ at 337 nm excitation and taking $\Phi_T=1$ for benzophenone; SD method gave similar ϵ ; $\tau_T=1.8\pm0.2~\mu s$	84A221
1121.	Xanthone 1,1,2-Trichloro-	LP	610	$ au_{\mathrm{T}} = 0.42~\mu\mathrm{s}$	767171
	trifluoroethane				
	2-PrOH (295 K) Benzene	LP LP/RA	610 ^a 610, 5300 ± 700	$\tau_{\rm T}=0.370~\mu{\rm s}$ tTriplet ET to naphthalene, oxygen quenching (5.6 × 10° L mol ⁻¹ s ⁻¹); ε relative to benzophenone in benzene (ε ₅₂₅ = 7630 L mol ⁻¹ cm ⁻¹) assuming $\Phi_{\rm T}=1$ for both molecules; $\tau_{\rm T}=0.092~\mu{\rm s}$; $k_{\rm et}=(9.5~\pm~1.0)\times10^{\circ}$ L mol ⁻¹ s ⁻¹	80A338 767171
	Benzene	LP/RA	600, 8600 ± 2000	ϵ relative to anthracene in liquid paraffin ($\epsilon_{424}=71000$ L mol $^{-1}$ cm $^{-1}$), assuming $\Phi_T=0.7$ for anthracene in benzene and $\Phi_T=1.0$ for xanthone and assuming ϵ independent of solvent; wavelength assumed to be a maximum	79E099
	Benzene	LP	650	100 ps delay; rise time of 0.013 ns	79B007
	CCl ₄ (295 K)	LP	655	$\tau_{\rm T}=0.70~\mu{\rm s}$	80A338
	Cyclohexane	LP	~610	$\tau_{\rm T} = \sim 0.02 \ \mu \rm s$	767171
	EtOH/Water	LP	590	Oxygen quenching (2.4 \times 10° L mol ⁻¹ s ⁻¹); solvent was "10 wt% aqueous ethanol"; $\tau_T = 17.9 \mu s$	
	EtOH/Water	LP	605	†Triplet ET to naphthalene, oxygen quenching (2.8 \times 10° L mol ⁻¹ s ⁻¹); solvent was "95%" ethanol; $\tau_T = 1.41$ μ s; $k_{et} = (5.6 \pm 0.6) \times 10^{9}$ L mol ⁻¹ s ⁻¹	767171
	Poly(styrenesulfonate) /DTB/Water	LP	600ª	Xanthone associated with aggregates in aqueous me- dium; spectrum averaged during first 40 ns; spectrum blue-shifts at longer times indicating a shift in position	84N163
	SDS	LP	607ª	in the aggregate Aqueous micelles	83N127
	SDS	LP	610	Aqueous micelles	84N197
1122.	o-Xylene Cyclohexane (289.5 K)	LP	~340ª	Delay 200 ns	83E483
1123.	Zeaxanthin				
	?	FP-ET	505ª	†Triplet ET from anthracene; it was not reported whether the solvent was hexane or benzene	733001
	Benzene	PR-ET	520	†Triplet ET from naphthalene; $\tau_T = 9.4 \mu s$	80A143
1124.	Zinc(II) chlorophyll a Benzene	FP	450	Benzene was wet	58R002
1125.	Zinc(II) cytochrome c				
	Water (288.7 K)	LP	462	†Phosphorescence decay, oxygen quenching; cyto- chrome c is from horse heart, type III; $\tau_T = 7000 \mu s$	81E091
	Water/Glycerol (288.7 K)	LP	462	tPhosphorescence decay, oxygen quenching; cyto- chrome c is from horse heart, type III; solvent contains 33% glycerol; $\tau_T = 14100 \ \mu s$	81E091
1126.					
	Benzene	FP	510 ^a 430 ^a	Shoulder at 462 ^s nm; 430 nm was the more intense peak	747293
	DMF	FP/SD	440, 99000 411 ^b , 45300		73E345

Table 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

No.	Solvent	Method	λ_{max} , ϵ_{max} /nm /L mol ⁻¹ cm ⁻¹	Comment	Ref.		
1127.	Zinc(II) etioporphyrin I	/Hexachloroethane					
,	Benzene	FP	434°	Shoulder at 458 ^a nm	747293		
1128.	Zinc(II) etioporphyrin I.		ene				
	Benzene FP 450			Triplet exciplex; assigned as a 1:2 complex of the porphyrin to the stilbene	717463		
1129.	Zinc(II) etioporphyrin I,	/4-Nitrotoluene					
	Benzene	FP	440	Triplet exciplex; assigned as a 1:2 complex of the por-	717463		
	Benzene	FP	532ª	phyrin to 4-nitrotoluene Shoulder at 462 ^a nm; 439 nm was the more intense peak	747293		
	Bonzono	••	439ª	onodiaci at voz mii, io, mii was me more mense peak	7-17200		
1130.	Zinc(II) phthalocyanine						
	1-Chloronaphthalene	LP/TD	480, 34000 ± 4000	λ_{max} and ϵ method inferred from text	81 E 45		
	1-Chloronaphthalene	LP/SM	$480, 16000 \pm 3000$	‡Triplet ET to β -carotene; λ_{max} inferred from text	81E45		
	Benzene	FP/?	545, 44000 450, 51000	Method to be published	81E34		
	Dimethylacetamide-	LP/SD	490, 32500	Solvent was 7:3 dimethylacetamide to water	82A29		
	/Water	ED (OD	470 22000		53534		
	PrOH	FP/SD	470, 33000		73E34		
1131.							
	CTAC	LP/SM	840, 7000 ^a	50 ns delay; aqueous micelle; ϵ method uncertain; $\tau_T =$	80N08		
			740°, 5000° 460, 10000	200 μs			
	DODAC	LP/SM	840, 7200°	Cationic vesicle; ϵ method uncertain; $\tau_T = \sim 500 \ \mu s$	80N03		
			740°, 5000°	,			
			660°, 3200°				
	Dimethyl phthalate	FP/SD	811 ^a , 11100 ^a 427 ^a , 167000 ^a 389 ^a , 46300 ^a	Shoulder at 487 nm	74B00		
1132.	Zinc(II) protoporphyrin						
	MeOH	FP	455		58R00		
1133.	Zinc(II) tetrabenzoporphyrin						
1100.	Pyridine	FP/SD	490, 74000 410, 37000	†Phosphorescence decay; $\tau_T = 525 \mu s$	73E34		
1134	Zinc(II) tetraethylporph	vrin					
1157.	Pyridine	FP/SD	845ª		74B00		
	-,		790°				
1135.	Zinc(II) tetrakis(carbox)	yphenyl)porphyrin					
	Water	LP	820 ^a	Most intense peaks at 710 nm and 680 nm; decay fol-	80A0'		
			710°	lowed at 840 nm; pH 7			
	Water	T D	680 ^a		82E62		
	Water	LP	830 730		02E02		
1126	Zinc(II) tetrakis(2,6-dim	athyl-4-sulfanator	henvl)nornhvrin				
1136.	Water	LP/TD	830, 6000	$\tau_{\rm T} = 1300~\mu \rm s$	84E20		
			,	•			
1137.	Zinc(II) tetrakis(2-N-methylpyridyl)porphyrin Water LP 850			Shoulder at 750 nm; $\tau_T = 1400 \pm 140 \mu s$; pH 6.0	84E34		
1138.	Zinc(II) tetrakis(3-N-methylpyridyl)porphyrin Water LP 830			Shoulder at 750 nm; $\tau_T = 2000 \pm 200 \mu s$; pH 6.0	84E34		
	Water	LP/SD	575 ^b , 3900	†Oxygen quenching; $\tau_T = 1800 \mu s$	84A26		
			545 ^b , 8300	The second of th			
			460				
			440 ^b , 57000				
			390 ⁶ , 18000				

TABLE 6. Spectral parameters for triplet-triplet absorption of organic molecules in condensed phases — Continued

₹o.	Solvent	Method	λ_{max} , ϵ_{max}	Comment	Ref.	
			/nm /L mol ⁻¹ cm ⁻¹			
1139.	Zinc(II) tetrakis(4-N-methylpyridyl)porphyrin					
	Water	LP	1040°	Most intense peaks at 1040 nm and 840 nm; decay	80A.07	
			1000 ^a	followed at 840 nm; $\tau_T = 1.3 \times 10^3 \mu s$; pH 7		
			950*			
			890°			
			830°			
			790° 730°			
	Water	LP/TD	1020, 7200 \pm 700	Shoulders at 949 and 860 nm	82E6	
	water	LP/ ID	470 ^b , 60800 ± 6100	Shoulders at 949 and 860 hin	02E0	
			$465^{\text{b}}, 38400 \pm 3800$			
	Water	LP/TD	$1020, 7200 \pm 700$	Shoulder at 950 nm; $\tau_T = 2000 \pm 200 \ \mu s$; pH 6.0	84E3	
	Water	LI/ID	1020, 7200 ± 700	Shoulder at 950 him, $r_T = 2000 \pm 200 \mu\text{s}$, pri 0.0	04123	
140.			•			
	MeOH	LP	840	$\tau_{\rm T} = \sim 80 \ \mu \rm s$	82N0	
	Water	LP	840	Most intense peak at 840 nm; decay followed at 840	80A0	
			780° 750°	nm; $\tau_{\rm T} = 1.5 \times 10^3 \mu \text{s}$; pH 7		
			660³			
	Water	LP/TD	$840,6000 \pm 600$		82E6	
			730			
			460° , 55200 \pm 5500			
	Water (293 K)	LP/TD	470 ^b , 45000 ^a	pH 7.0 \pm 0.1	82A3	
	Water	LP/TD	840, 6000	$\tau_1 - 1400 \ \mu s$	84E2	
141.	Zinc(II) tetrakis(trimethylaminophenyl)porphyrin					
	Water	LP/TD	840, 5000	$\tau_{\rm T}=1200~\mu{\rm s}$	83E4	
			730			
1142.	Zinc(II) tetraphenylchlorin					
	Dimethyl phthalate	FP/SD	447ª		74B0	
143.	Zinc(II) tetraphenylpoi	Zinc(II) tetraphenylporphyrin				
	Benzene	LP/TD	845, 8200		84E2	
	CTAC	LP	840	$\tau_{\rm T} = > 2500 \ \mu \rm s$	80N0	
			720° 460			
	МСН	FP/TD	470, 71000	Oxygen quenching; $\tau_T = 1200 \ \mu s$	81E2	
			400, 38000	,		
	SIIS	LP	840	Aqueous microemulsion, droplet radius 17 nm; τ_T =	8014	
	T-1	EB (25	640	1700 μs		
	Toluene	FP/SD	845, 8200	$\tau_{\rm T}=1250~\mu{\rm s}$	60E0	
	,		745, 5300			
			470, 74000			
	Talaana		400, 42000			
	Toluene Triton X-100	LP LP	400, 42000 750 840	Relative intensities (1:10); aqueous micelle; $\tau_T = 2500$	80B1	

^a Data have been obtained by computer-assisted digitization from spectrum in cited reference ^b (Wavelength, extinction coefficient) pair is not necessarily related to a spectral peak

^c Measurement violates Chauvenet's criterion, see Section 4.2.2

^d Measurement not included in averages because of systematic error

^e Measurement not included in averages since performed in mixed crystals, neat liquids, or micelles

[‡] Evidence supporting the assignment of the transient as a triplet state

9. References to Table 6

- 41E001 Reversible photochemical processes in rigid media. A study of the phosphorescent state. Lewis, G.N.; Lipkin, D.; Magel, T.T. J. Am. Chem. Soc. 63: 3005-18 (1941).
- 42B002 Reversible photochemical processes in rigid media: The dissociation of organic molecules into radicals and ions. Lewis, G.N.; Lipkin, D. J. Am. Chem. Soc. 64: 2801-8 (1942).
- 51E001 Excited triplet states of some polyatomic molecules. I. McClure, D.S. J. Chem. Phys. 19: 670-5 (1951).
- 53E001 Triplet states in solution. Porter, G.; Windsor, M.W. J. Chem. Phys. 21: 2088 (1953).
- 54B001 The triplet-triplet absorption spectra of some aromatic hydrocarbons and related substances. Craig, D.P.; Ross, I.G. J. Chem. Soc. : 1589-1606 (1954).
- 54E001 Studies of the triplet state in fluid solvents. Porter, G.; Windsor, M.W. Discuss. Faraday Soc. 17: 178-86 (1954).
- 55E002 Excited triplet states of polyatomic molecules. II. Flash-lamp studies on aromatic ketones. McClure, D.S.; Hanst, P.L. J. Chem. Phys. 23: 1772-7 (1955).
- 55E003 Preliminary study of a metastable form of chlorophyll in fluid solutions. Livingston, R. J. Am. Chem. Soc. 77: 2179-82 (1955).
- 55R001 Reversible flash bleaching of chlorophyll. Abrahamson, E.W.; Linschitz, H. J. Chem. Phys. 23: 2198-9 (1955).
- 57B001 Die spektroskopisch nachweisbaren Elektronenzustaende der stabilen und metastabilen Molekelform einiger Acridinfarbstoffe und des Fluoresceinkations. Zanker, V.; Miethke, E. Z. Naturforsch., Teil A 12A: 385-95 (1957).
- 587005 Primary photoprocesses in quinones and dyes. I. Spectroscopic detection of intermediates. Bridge, N.K.; Porter, G. Proc. Roy. Soc. London, Ser. A 244: 259-75 (1958).
- 58E001 The triplet state in fluid media. Porter, G.; Windsor, M.W. Proc. R. Soc. London, Ser. A 245: 238-58 (1958).
- 58E002 The triplet state of anthracene in liquid solutions. Livingston, R.; Tanner, D.W. Trans. Faraday Soc. 54: 765-71 (1958).
- 58R001 The absorption spectra and decay kinetics of the metastable states of chlorophyll A and B. Linschitz, H.; Sarkanen, K. J. Am. Chem. Soc. 80: 4826-32 (1958).
- 58R002 Some properties of the ground triplet state of chlorophyll and related compounds. Livingston, R.; Fujimori, E. J. Am. Chem. Soc. 80: 5610-3 (1958).
- 59B001 Contribution a l'etude de l'etat metastable des molecules de colorants: Bandes d'absorption dans le domaine visible. Laffitte, E.; Nouchi, G. C.R. Seances Acad. Sci. 248: 2746-8 (1959).
- 59B002 Absorption spectrum and decay kinetics of the metastable state of chlorophyll b. Claesson, S.; Lindqvist, L.; Holmstroem, B. Nature 183: 661-2 (1959).
- 59E006 Reversible spectral changes in retinene solutions following flash illumination. Abrahamson, E.W.; Adams, R.G.; Wulff, V.J. J. Phys. Chem. 63: 441-3 (1959).
- 600062 Transient benzyl radical reactions produced by high-energy radiation. McCarthy, R.L.; MacLachlan, A. Trans. Faraday Soc. 56: 1187-1200 (1960).
- 60A001 A flash photolysis study of fluorescein. Lindqvist, L. Ark. Kemi 16: 79-138 (1960).
- 60E005 Experimental study of the triplet state of anthracene in fluid solutions. Jackson, G.; Livingston, R.; Pugh, A.C. Trans. Faraday Soc. 54: 1635-9 (1960).
- 60E006 Studies on metastable states of porphyrins. II. Spectra and decay kinetics of tetraphenylporphine, zinc tetraphenylporphine and bacteriochlorophyll. Pekkarinen, L.; Linschitz, H. J. Am. Chem. Soc. 82: 2407-11 (1960).
- 61A001 The photoreduction of thionine by ferrous sulphate. Hatchard, C.G.; Parker, C.A. Trans. Faraday Soc. 57: 1093-106 (1961).
- 61E005 Energy transfer from the triplet state. Porter, G.; Wilkinson, F. Proc. R. Soc. London, Ser. A 264: 1-18 (1961).
- 61E008 Acidity constants in the triplet state. Jackson, G.; Porter, G. Proc. R. Soc. London, Ser. A 260: 13-30 (1961).

- 62E006 Some flash-photolytic and photochemical studies of retinene and related compounds. Grellmann, K.-H.; Memming, R.; Livingston, R. J. Am. Chem. Soc. 84: 546-8 (1962).
- 62E007 Population and decay of the lowest triplet state in polyenes with conjugated heteroatoms: Retinene. Dawson, W.; Abrahamson, E.W. J. Phys. Chem. 66: 2542-7 (1962).
- 62E008 Observed electronic transitions of hexahelicene. Rhodes, W.; El-Sayed, M.F.A. J. Mol. Spectrosc. 9: 42-9 (1962).
- 62E009 Radiationless conversion from the triplet state. Hoffman, M.Z.; Porter, G. Proc. R. Soc. London, Ser. A 268: 46-56 (1962).
- 62E010 Lifetime of the triplet state of anthracene in lucite. Melhuish, W.H.; Hardwick, R. Trans. Faraday Soc. 58: 1908-11 (1962).
- 63A001 Transient measurements of photochemical processes in dyes. II. The mechanism of the photosensitized oxidation of aqueous phenol by eosin. Zwicker, E.F.; Grossweiner, L.I. J. Phys. Chem. 67: 549-55 (1963).
- 63B001 Polarization of the triplet-triplet absorption spectrum of some polyacenes by the method of photoselection. El-Sayed, M.A.; Pavlopoulos, T. J. Chem. Phys. 39: 834-8 (1963).
- 63B002 Absorption et luminescence du triphenylene en solution etendue dans l'hexane a 77°K: Mise en evidence d'une fluorescence par echelon (transition T^{*} → T). Dupuy, F.; Nouchi, G.; Rousset, A. C. R. Seances Acad. Sci. 256: 2976-9 (1963).
- 63B003 Intermolecular electron transfer in tetrapyrrol pigments under pulsed illumination. Shakhverdov, P.A.; Terenin, A.N. Dokl. Phys. Chem. 150: 557-60 (1963) Translated from: Dokl. Akad. Nauk SSSR 150: 1311-4 (1963).
- 63B004 Dispositif experimental pour la mesure des absorptions T^{*} — T. Lochet, R.; Nouchi, G. J. Phys. (Paris) 24: 765-7 (1963).
- 63E007 Decay kinetics of the 1-naphthaldehyde and benzophenone triplet states in benzene. Bell, J.A.; Linschitz, H. J. Am. Chem. Soc. 85: 528-32 (1963).
- 63F019 The triplet state of fluorescein in sulfuric acid. Lindqvist, L. J. Phys. Chem. 67: 1701-4 (1963).
- 63F021 One-electron photo-ionization of acridine dyes in rigid media: Evidence for the formation of transient radical ion. Lim, E.C.; Swenson, G.W. J. Chem. Phys. 39: 2768-9 (1963).
- 64B003 Flash photolysis of methylene blue. I. Reversible photolysis in the absence of a reducing agent and in the presence of certain kinds of reducing agents. Matsumoto, S. Bull. Chem. Soc. Jpn. 37: 491-8 (1964).
- 64B005 Polarized emission and triplet-triplet absorption spectra of aromatic hydrocarbons in benzophenone crystals. Hochstrasser, R.M.; Lower, S.K. J. Chem. Phys. 40: 1041-6 (1964).
- 64B006 Formation of triplet states of solutes in the radiolysis of organic liquids. Dainton, F.S.; Kemp, T.J.; Salmon, G.A.; Keene, J.P. Nature 203: 1050-2 (1964).
- 64E013 Studies of the transient intermediates in the photoreduction of methylene blue. Kato, S.; Morita, M.; Koizumi, M. Bull. Chem. Soc. Jpn. 37: 117-24 (1964).
- 64E014 Triplet-triplet polarisation measurements in mixed crystals. Craig, D.P.; Fischer, G. Proc. Chem. Soc. 176 (1964).
- 64E015 Eine experimentelle Methode zur Ermittlung der Singulett-Triplett-Konversionswahrscheinlichkeit und der Triplett-Spektren von geloesten organischen Molekeln Messungen an 1,2-Benzanthracen. Labhart, H. Helv. Chim. Acta 47: 2279-88 (1964).
- 64E016 Flash photolysis in thin films of gelatin and other polymers. Buettner, A.V. J. Phys. Chem. 68: 3253-9 (1964).
- 64E017 Blitzlichtuntersuchungen ueber die Ausbleichreaktion von Thionin mit Allylthioharnstoff. Fischer, H. Z. Phys. Chem. (Frankfurt) 43: 177-90 (1964).
- 650006 Pulse radiolysis of dioxane solutions. Baxendale, J.H.; Fielden, E.M.; Keene, J.P. Science 148: 637-8 (1965).
- 65A001 Deactivation of the fluorescent and phosphorescent states of tetrapyrrole pigments in liquid solutions. Shakhverdov, P.A.; Terenin, A.N. Dokl. Phys. Chem. 160: 163-5 (1965) Translated from: Dokl. Akad. Nauk SSSR 160: 1141-3 (1965).
- 65A002 Transient species in the photochemistry of eosin. Kasche, V.; Lindqvist, L. Photochem. Photobiol. 4: 923-33 (1965).

- 65B003 Quasilinear structure of luminescence spectra of triphenylene in frozen crystalline solutions. Ruziewicz, Z. Acta Phys. Pol. 28: 389-406 (1965).
- 65B004 Contribution a l'étude de l'état triplet des colorants: Spectres d'absorption dans le domaine des grandes longueurs d'onde, rouge et proche infrarouge. Lochet, R.; Nouchi, G. C.R. Seances Acad. Sci. 260: 1897-1900 (1965).
- 65E031 Extinction coefficients of triplet-triplet transitions in aromatic compounds. Keller, R.A.; Hadley, S.G. J. Chem. Phys. 42: 2382-7 (1965).
- 65E032 Untersuchung reversibler Photoprozesse durch Blitzlichtphotolyse. II. Triplett-Triplett-Annihilation von Anthracen. Wild, U.; Guenthard, Hs.H. Helv. Chim. Acta 48: 1843-57 (1965).
- 65F031 Mechanism of fluorescence quenching in solution. Part 1. Quenching by bromobenzene. Medinger, T.; Wilkinson, F. Trans. Faraday Soc. 61: 620-30 (1965).
- 65R023 Triplet-triplet absorption spectra of some tetrapyrrole pigments in liquid solution. Shakhverdov, P.A. Opt. Spectrosc. (USSR) 19: 519-20 (1965) Translated from: Opt. Spektrosk.
- 66A002 Intermediates in the photoreduction of eosine as revealed by a flash-photolysis study. Ohno, T.; Kato, S.; Koizumi, M. Bull. Chem. Soc. Jpn. 39: 232-9 (1966).
- 66A003 Studies of the photoreduction of acridine in ethanol by the flash technique. Kira, A.; Kato, S.; Koizumi, M. Bull. Chem. Soc. Jpn. 39: 1221-7 (1966).
- 66B001 Triplet-triplet absorption spectra of solid solutions of certain organic compounds. Zhmyreva, I.A.; Kolobkov, V.P.; Volkov, S.V. Opt. Spectrosc. (USSR) 20: 162-4 (1966) Translated from: Opt. Spektrosk.
- 66B003 The photo-ionization of molecules in solutions. III. Photo-ionization and recombination processes of N,N,N',N'-tetra-methyl-p-phenylenediamine in various organic solvent. Yamamoto, N.; Nakato, Y.; Tsubomura, H. Bull. Chem. Soc. Jpn. 39: 2603-8 (1966).
- 66E085 Second triplet state of anthracene. Kellogg, R.E. J. Chem. Phys. 44: 411-2 (1966).
- 66E086 Radiationless deactivation of the fluorescent state of substituted anthracenes. Bennett, R.G.; McCartin, P.J. J. Chem. Phys. 44: 1969-72 (1966).
- 66E087 A fast reacting intermediate in flash excited flavin solution.

 Tegner, L., Holmstroem, D. Photochem. Photobiol. 5: 223-6
 (1966).
- 66E089 Direct evidence for the sensitized formation of a metastable state of β-carotene. Chessin, M.; Livingston, R.; Truscott, T.G. Trans. Faraday Soc. 62: 1519-24 (1966).
- 66E090 Stabilization of reactive species in polymethyl methacrylate. Melhuish, W.H. Trans. Faraday Soc. 62: 3384-92 (1966).
- 672086 Pulse radiolysis of polystyrene. Ho, S.K.; Siegel, S.; Schwarz, H.A. J. Phys. Chem. 71: 4527-33 (1967).
- 676011 Pulse-radiolysis studies of the formation of triplet excited states in cyclohexane solutions of naphthalene and anthracene. Hunt, J.W.; Thomas, J.K. J. Chem. Phys. 46: 2954-8 (1967).
- 677029 Photoreduction of proflavine in the aqueous solution. I. A flash photolysis study. Kikuchi, K.; Koizumi, M. Bull. Chem. Soc. Jpn. 40: 736-43 (1967).
- 677223 Untersuchung reversibler Photoprozesse durch Blitzlichtphotolyse. IV. Triplettzustaende des 1,3,6',8'-Tetramethyldehydrodianthrons. Huber, J.R.; Wild, U.; Guenthard, Hs.H. Helv. Chim. Acta 50: 841-8 (1967).
- 677259 Photochemical reaction between acridine and acridan in the presence and in the absence of oxygen. II. Studies by the flash technique. Kira, A.; Koizumi, M. Bull. Chem. Soc. Jpn. 40: 2486-92 (1967).
- 677322 Transient measurements of photochemical processes in dyes. I. Primary processes in the flash-photolysis of safranine T. Chibisov, A.K.; Skvortsov, B.V.; Karyakin, A.V.; Shvindt, N.N. Khim. Vys. Energ. 1: 529-35 (1967).
- 677485 Flashphotolysis of stilbenes at 77°K; in rigid EPA. Heinrich, G.; Blume, H.; Schulte-Frohlinde, D. Tetrahedron Lett. 47: 4693-94 (1967).

- 677498 Flash-photolytic detection of triplet acridine formed by energy transfer from biacetyl. Kellmann, A.; Lindqvist, L. Proc. of Internat. Symposium on Triplet State, Beirut, Lebanon, 1967, p.439-45.
- 67A001 The one-electron oxidation of triplet diphenyl-pphenylenediamine by the diimine. Linschitz, H.; Ottolenghi, M.; Bensasson, R. J. Am. Chem. Soc. 89: 4592-9 (1967).
- 67B003 Spectrographie a resolution dans le temps appliquee a l'etude d'especes a tres courte duree de vie dans les spiropyrannes photochromiques. Mosse, M.; Metras, J.-C. J. Chim. Phys. Phys.-Chim. Biol. 64: 691-4 (1967).
- 67B004 Existence de bandes d'absorption transitoire entre 5000 et 8800 Å dans les molecules aromatiques et heterocycliques. Astier, R.; Meyer, Y. J. Chim. Phys. Phys.-Chim. Biol. 64: 919-21 (1967).
- 67B005 Absorption triplet-triplet de quelques hydrocarbures aromatiques: Mise en evidence de bandes de faible intensite dans le rouge. Nouchi, G. C.R. Seances Acad. Sci., Ser. B 264: 152-5 (1967).
- 67B006 Transient absorption spectra of benzophenone studied by the flash excitation. Tsubomura, H.; Yamamoto, N.; Tanaka, S. Chem. Phys. Lett. 1: 309-10 (1967).
- 67B007 Concentration dependence of the intensity of triplet-triplet absorption in some aromatic hydrocarbons. Bolotnikova, T.N.; Naumova, T.M. Opt. Spectrosc. (USSR) 23: 206-8 (1967) Translated from: Opt. Spektrosk.
- 67B008 Triplet-triplet spectra of aromatic molecules in mixed crystals. Craig, D.P.; Fischer, G. Trans. Faraday Soc. 63: 530-9 (1967).
- 67B009 Polarized triplet-triplet absorption in charge-transfer complexes. Eisenthal, K.B. J. Chem. Phys. 46: 3268-9 (1967).
- 67B010 Triplet state studies of some polyphenyls in rigid glasses. Ramsay, I.A.; Munro, I.H. *The Triplet State*, Cambridge Univ. Press, Cambridge, England, 1967, p.415-23.
- 67C001 Etude en spectroscopie par eclair des colorants thiaziniques en solution aqueuse. Faure, J.; Bonneau, R.; Joussot-Dubien, J. Photochem. Photobiol. 6: 331-9 (1967).
- 67E027 Quantum yields of triplet formation in solutions of chlorophyll. Bowers, P.G.; Porter, G. Proc. R. Soc. London, Ser. A 296: 435-44 (1967).
- 67E031 Triplet state quantum yields for some aromatic hydrocarbons and xanthene dyes in dilute solution. Dowers, P.O.; Porter, G. Proc. R. Soc. London, Ser. A 299: 348-53 (1967).
- 67E105 Triplet-triplet absorption spectra of benzophenone and its derivatives. Godfrey, T.S.; Hilpern, J.W.; Porter, G. Chem. Phys. Lett. 1: 490-2 (1967).
- 67E106 Triplet-triplet absorption studies on aromatic and heterocyclic molecules at 77° K. Henry, B.R.; Kasha, M. J. Chem. Phys. 47: 3319-27 (1967).
- 67E107 The laser photolysis of methylene blue. Danziger, R.M.; Bar-Eli, K.H.; Weiss, K. J. Phys. Chem. 71: 2633-40 (1967).
- 67E108 Application of electron spin resonance in the study of triplet states. II. Effect of triplet-triplet reabsorption on quantitative phosphorescence measurements. Brinen, J.S.; Hodgson, W.G. J. Chem. Phys. 47: 2946-50 (1967).
- 67E109 Solvent dependence of the quantum yield of triplet state production of 9-phenylanthracene. Horrocks, A.R.; Medinger, T.;
 Wilkinson, F. Photochem. Photobiol. 6: 21-8 (1967).
- 67F505 Radiationless transitions in cyanine dyes. Buettner, A.V. J. Chem. Phys. 46: 1398-401 (1967).
- 680379 Transient species in the radiolysis of solutions of stilbene. Dainton, F.S.; Peng, C.T.; Salmon, G.A. J. Phys. Chem. 72: 3801-7 (1968).
- 680386 The pulse radiolysis of benzene-biacetyl solutions. Cundall, R.B.; Evans, G.B.; Griffiths, P.A.; Keene, J.P. J. Phys. Chem. 72: 3871-7 (1968).
- 680553 Yield of triplet states in the pulse radiolysis of an aliphatic hydrocarbon glass containing naphthalene. Land, E.J.; Swallow, A.J. J. Chem. Phys. 49: 5552-3 (1968).
- 680727 Extinction coefficients of triplet-triplet transitions. Land, E.J. Proc. Roy. Soc. (London) Ser. A 305: 457-71 (1968).

- 686045 Fluorescence quenching and the charge transfer in the excited state. III. Flash photolytic studies. Yamashita, H.; Kokubun, H.; Koizumi, M. Bull. Chem. Soc. Jpn. 41: 2312-19 (1968).
- 686058 Laser photolysis and spectroscopy: a new technique for the study of rapid reactions in the nanosecond time range. Novak, J.R.; Windsor, M.W. Proc. Roy. Soc. (London) Ser. A 308: 95-110 (1968).
- 687111 The lowest triplet state of stilbene. Herkstroeter, W.G.; McClure, D.S. J. Am. Chem. Soc. 90: 4522-7 (1968).
- 687142 Flash photolysis of thiopyronine. Morita, M.; Kato, S. Z. Naturforsch. Teil B 23: 931-3 (1968).
- 687213 The photoreduction of phenazine in acidic methanol. Bailey, D.N.; Roe, D.K.; Hercules, D.M. J. Am. Chem. Soc. 90: 6291-7 (1968).
- 68B002 Triplet-triplet absorption spectrum of N,N-dimethylaniline (DMA) measured by the flash photolysis technique. Kimura, K.; Arimitsu, S.; Yamamoto, N.; Tsubomura, H. Bull. Chem. Soc. Jpn. 41: 1274 (1968).
- 68B003 Une methode cinetique pour mesurer les coefficients d'extinction moleculaire des transitions triplet-triplet.

 Lavalette, D. C.R. Seances Acad. Sci., Ser. B 266: 279-82 (1968).
- 68B004 The polarization of the allowed triplet-triplet absorption in anthracene. Hochstrasser, R.M.; Marchetti, A.P. Chem. Phys. Lett. 1: 597-8 (1968).
- 68B005 Absorption des β-dicetones sous forte excitation optique. Astier, R.; Meyer, Y.H. J. Chim. Phys. Phys.-Chim. Biol. 65: 1407-9 (1968).
- 68B006 Nanosecond flash photolysis and the absorption spectra of excited singlet states. Porter, G.; Topp, M.R. Nature 220: 1228-9 (1968).
- 68B007 Determination of T-1" absorption spectra by means of twoquantum photosensitized reactions. Zhuravlyeva, T.S. Opt. Spectrosc. (USSR) 25: 389-91 (1968) Translated from: Opt. Spektrosk.
- 68B008 Acidity constants of anthracene derivatives in singlet and triplet excited states. Vander Donckt, E.; Porter, G. Trans. Faraday Soc. 64: 3218-23 (1968).
- 68D211 Application of electron spin resonance in the study of triplet states. III. Extinction coefficients of triplet-triplet transitions. Brinen, J.S. J. Chem. Phys. 49: 586-90 (1968).
- 68E098 Triplet state formation efficiencies of aromatic hydrocarbons in solution. Horrocks, A.R.; Wilkinson, F. Proc. R. Soc. London, Ser. A 306: 257-73 (1968).
- 68E100 A flash-photolysis investigation of flavin photosensitization of purine nucleotides. Knowles, A.; Roe, E.M.F. Photochem. Photobiol. 7: 421-36 (1968).
- 68E102 Dichroisme de l'anthracene triplet. Meyer, Y.II.; Astier, R. J. Phys. (Paris) 29: 1075-80 (1968).
- 68E103 Triplet→triplet fluorescence of rubrene in solution. Yildiz, A.; Kissinger, P.T.; Reilley, C.N. J. Chem. Phys. 49: 1403-6 (1968).
- 68E104 Measurement of extinction coefficients of triplet absorption and quantum yields of triplet formation. Dawson, W.R. J. Opt. Soc. Am. 58: 222-7 (1968).
- 68E105 Quantum efficiencies of triplet formation in aromatic molecules. Windsor, M.W.; Dawson, W.R. Mol. Cryst: 4: 253-8 (1968).
- 68E106 Triplet-triplet absorption of naphthalene and phenanthrene impurities in benzophenone crystals. Gaevskii, A.S.; Nelipovich, K.I.; Faidysh, A.N. Opt. Spectrosc. (USSR) 24: 554-5 (1968) Translated from: Opt. Spektrosk.
- 68E107 Singlet-singlet absorption and intersystem crossing from the ¹B_{3u} state of naphthalene. Bonneau, R.; Faure, J.; Joussot-Dubien, J. Chem. Phys. Lett. 2: 65-7 (1968).
- 690087 Yields of excited states in the pulse radiolysis of solutions of substituted anthracenes. Kemp, T.J.; Roberts, J.P. Trans. Faraday Soc. 65: 725-31 (1969).
- 690520 Absorption spectrum of the triplet state of duroquinone. Land, E.J. Trans. Faraday Soc. 65: 2815-22 (1969).

- 692001 Nanosecond pulse radiolysis of polystyrene and poly(methylmethacrylate) Ho, S.K.; Siegel, S. J. Chem. Phys. 50: 1142-52 (1969).
- 696019 Radiative and radiationless processes in aromatic molecules. Pyrene. Kropp, J.L.; Dawson, W.R.; Windsor, M.W. J. Phys. Chem. 73: 1747-52 (1969).
- 696020 Radiationless deactivation and anomalous fluorescence of singlet 1,12-benzperylene. Dawson, W.R.; Kropp, J.L. J. Phys. Chem. 73: 1752-58 (1969).
- 696073 Triplet excimers favoured by charge transfer in electron-donor-acceptor-complexes. Briegleb, G.; Schuster, H.; Herre, W. Chem. Phys. Lett. 4: 53-8 (1969).
- 696115 Quantitative ESR studies of organic triplet states. Extinction coefficients of T → T' transitions. Brinen, J.S. Molecular Luminescence, Lim, E.C. (ed.), W.A. Benjamin, Inc., New York, 1969, p.333-49.
- 697009 Studies of the transient intermediates of a thiopyronine aqueous solution under flash excitation. Morita, M.; Kato, S. Bull. Chem. Soc. Jpn. 42: 25-35 (1969).
- 697061 Investigation of transient states in the photochemical reactions of dyes. III. Flash-photolysis of phenosafranine and neutral red in aqueous solutions. Chibisov, A.K.; Skvortsov, B.V.; Karyakin, A.V.; Rygalov, L.N. High Energy Chem. 3: 190-4 (1969) Translated from: Khim. Vys. Energ. 3: 210-6 (1969).
- 697092 Flash photolysis of camphorquinone and biacetyl. Singh, A.; Scott, A.R.; Sopchyshyn, F. J. Phys. Chem. 73: 2633-43 (1969).
- 697225 Blitzlichtphotolyse an Acridin und Acridan im Temperaturbereich von +25 °C bis -180 °C. Zanker, V.; Prell, G. Ber. Bunsenges. Phys. Chem. 73: 791-5 (1969).
- 697226 Die Untersuchung angeregter Zustaende aromatischen Kohlenwasserstoffe mit Hilfe der Laser-Blitzspektroskopie. Mueller, A.; Sommer, U. Ber. Bunsenges. Phys. Chem. 73: 819-26 (1969).
- 697253 Optical detection of the triplet state of uracil. Whillans, D.W.; Herbert, M.A.; Hunt, J.W.; Johns, H.E. Biochem. Biophys. Res. Commun. 36: 912-8 (1969).
- 697272 The triplet state of chloranil. Kemp, D.R.; Porter, G. Chem. Commun.: 1029-30 (1969).
- 69B001 Polarized excitation spectrum of the triplet-triplet absorption of aromatic hydrocarbons. Lavalette, D. Chem. Phys. Lett. 3: 67-70 (1969).
- 69B002 Experimental and theoretical study of triplet-triplet absorption in the phenylnaphthalenes. Brinen, J.S.; Orloff, M.K. J. Chem. Phys. 51: 527-31 (1969).
- 69B003 Spectres d'absorption triplet-triplet de colorants derives du triphenylmethane. Nouchi, G.; Silvie, C. C.R. Seances Acad. Sci., Ser. B 268: 546-8 (1969).
- 69B004 Low-energy triplet-triplet transitions in naphthalene and some monosubstituted derivatives. Melhuish, W.H. J. Chem. Phys. 50: 2779 (1969).
- 69B005 Triplet absorption spectra of cyanine dyes. Pierce, R.A.; Berg, R.A. J. Chem. Phys. 51: 1267 (1969).
- 69B006 Low-energy triplet state of tetracene. Astier, R.; Bokobza, A.; Meyer, Y.H. J. Chem. Phys. 51: 5174-5 (1969).
- 69B007 Etude et interpretation des spectres d'absorption triplet-triplet. Classification des etats triplets superieurs. I. Les matieres colorantes. Nouchi, G. J. Chim. Phys. Phys.-Chim. Biol. 66: 548-53 (1969).
- 69E207 First allowed triplet-triplet transition in benzene. Astier, R.; Meyer, Y.H. Chem. Phys. Lett. 3: 399-401 (1969).
- 69E208 Triplet-triplet spectra and triplet quantum yields of some aromatic hydrocarbons in liquid solution. Heinzelmann, W.; Labhart, H. Chem. Phys. Lett. 4: 20-4 (1969).
- 69E209 The triplet state of lycopene. Sykes, A.; Truscott, T.G. Chem. Commun.: 274-6 (1969).
- 69E210 Polarization of electronic transitions of aromatic hydrocarbons. Gallivan, J.B.; Brinen, J.S. J. Chem. Phys. 50: 1590-5 (1969).

- 69E211 Etude et interpretation des spectres d'absorption triplet-triplet. Classification des etats triplets superieurs. II. Les hydrocarbures aromatiques. Nouchi, G. J. Chim. Phys. Phys.-Chim. Biol. 66: 554-65 (1969).
- 69E212 L'absorption triplet-triplet des hydrocarbures aromatiques alternants. II. Coefficients d'extinction moleculaire et forces d'oscillateur. Lavalette, D. J. Chim. Phys. Phys.-Chim. Biol. 66: 1853-9 (1969).
- 69E213 L'absorption triplet-triplet des hydrocarbures aromatiques alternants. III. Polarisation des transitions. Lavalette, D. J. Chim. Phys. Phys.-Chim. Biol. 66: 1860-4 (1969).
- 69E214 Absorptions-, Emissions- und Polarisationsgradmessungen an 9-C-und 10-N-substituierten Acridanen. Zanker, V.; Schneider, B. Z. Phys. Chem. (Frankfurt) 68: 19-29 (1969).
- 69E215 Polarized triplet-triplet absorption spectra in three benzene derivatives. Cadogan, K.D.; Albrecht, A.C. J. Phys. Chem. 73: 1868-77 (1969).
- 69E216 Radiative and radiationless processes in aromatic molecules. Coronene and benzcoronene. Dawson, W.R.; Kropp, J.L. J. Phys. Chem. 73: 693-9 (1969).
- 69E217 A metastable state of retinol (vitamin A). Sykes, A.; Truscott, T.G. Chem. Commun. 929-30 (1969).
- 69E218 The photoreduction of fluorenone. Davis, G.A.; Carapellucci, P.A.; Szoc, K.; Gresser, J.D. J. Am. Chem. Soc. 91: 2264-72 (1969).
- 69F389 Direct determination of the extinction coefficients for triplet ← triplet transitions in naphthalene, phenanthrene, and triphenylene. Hadley, S.O.; Keller, R.A. J. Phys. Chem. 73: 4351-5 (1969).
- 69N001 Etude par spectroscopie d'eclairs du transfert d'energie chlorophylle-carotenoide. Mathis, P. Photochem. Photobiol. 9: 55-63 (1969).
- 700011 Reactions of electrons photoejected from aromatic amino acids in frozen aqueous solutions of divalent metal salts. Santus, R.; Helene, A.; Helene, C.; Ptak, M. J. Phys. Chem. 74: 550-61 (1970).
- 700114 Excitation transfer in the pulse radiolysis of naphthalene and benzophenone solutions. Holroyd, R.A.; Theard, L.M.; Peterson, F.C. J. Phys. Chem. 74: 1895-900 (1970).
- 700277 Radiolysis transients in viscous liquids. Biphenyl in liquid paraffin. Fuller, J.; Peteleski, N.; Ruppel, D.; Tomlinson, M. J. Phys. Chem. 74: 3066-73 (1970).
- 701073 Investigation of aromatic triplet molecules in polystyrene by the method of pulsed radiolysis. Shekk, Yu.B.; Alfimov, M.V.; Nikoforov, V.I. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.): 2309-14 (1970) Translated from: Izv. Akad. Nauk SSSR, Ser. Khim.: 2454-60 (1970).
- 703001 The metastable state of β -carotene excited by pulse radiolysis. Land, E.J.; Sykes, A.; Truscott, T.G. Chem. Commun. : 332 (1970).
- 706135 The fluorescence and phosphorescence of 1,2,5,6-dibenzacridine and 1,2,7,8-dibenzacridine in glassy and liquid solution. Kropp, J.L.; Lou, J.J. J. Phys. Chem. 74: 3953-9 (1970).
- 706157 Polarized spectroscopy of excited states of substituted anthracenes on a nanosecond time scale. Kliger, D.S.; Albrecht, A.C. J. Chem. Phys. 53: 4059-65 (1970).
- 707036 Triplet-triplet absorption via intramolecular energy transfer. Brinen, J.S.; Gerhardt, G.E.; Kazan, J. Chem. Phys. Lett. 5: 150-2 (1970).
- 707061 Effect of solvent on the flash photolysis and laser photolysis of N,N,N',N'-tetramethyl-paraphenylene diamine in solution. Richards, J.T.; Thomas, J.K. Trans. Faraday Soc. 66: 621-32 (1970).
- 707152 Mechanism of photodissociation of hydroquinone derivatives. Yamada, II.; Nakashima, N.; Tsubomura, II. J. Phys. Chem. 74: 2897-903 (1970).
- 707186 Photochemistry of phenoxazine. A flash-photolytic study. Gegiou, D.; Huber, J.R.; Weiss, K. J. Am. Chem. Soc. 92: 5058-62 (1970).

- 707199 Triplett-Lebensdauern von Diphenylpolyenen und deuterierten Stilbenen in eingefrorener Loesung bei 77 °K. Heinrich, G.; Holzer, G.; Blume, H.; Schulte-Frohlinde, D. Z. Naturforsch. Teil B 25: 496-9 (1970).
- 707230 Polarization measurements on low-lying T-T absorptions with CW argon-ion laser photoselection. Langelaar, J.; Wegdam-Van Beek, J.; Van Voorst, J.D.W.; Lavalette, D. Chem. Phys. Lett. 6: 460-4 (1970).
- 707240 Direct determination of triplet ← triplet absorption extinction coefficients. II. Quinoline, isoquinoline, quinoxaline. Hadley, S.G. J. Phys. Chem. 74: 3551-2 (1970).
- 707305 Photochemical reactions of duroquinone. Part 2. Flash photolytic investigations. Nafisi-Movaghar, J.; Wilkinson, F. Trans. Faraday Soc. 66: 2268-78 (1970).
- 707337 Photoreduction of phenazine in alcohols and by EDTA in the aqueous solution. Iwaoka, T.; Niizuma, S.; Koizumi, M. Bull. Chem. Soc. Jpn. 43: 2786-95 (1970).
- 707346 Formation of ions and excited states in the laser photolysis of solutions of pyrene. Richards, J.T.; West, G.; Thomas, J.K. J. Phys. Chem. 74: 4137-41 (1970).
- 707364 A study of the intermediate compositions in the photochemical reactions of dyes. IV. Oxidation-reduction transformations of methylene blue and methylene green in pulsed photoexcitation. Chibisov, A.K.; Roitman, G.P.; Karyakin, A.V. High Energy Chem. 4: 235-6 (1970) Translated from: Khim. Vys. Energ. 4: 273-4 (1970).
- 707561 Transient species in the laser photolysis at 265 mµ of the halogenobenzenes in solution. Loeff, I.; Lutz, H.; Lindqvist, L. Isr. J. Chem. 8: 141-6 (1970).
- 70B002 Die Uebergangsmomentrichtung von Triplett-Triplett-Absorptionsbanden. Eine neue Methode zur Bestimmung der Anisotropie der Absorption bei der Photoselektion. Kuball, H.-G.; Euing, W.; Karstens, T. Ber. Bunsenges. Phys. Chem. 74: 316-23 (1970).
- 70B003 Polarization of the triplet-triplet absorption spectrum of 1,2-benzopyrene. Pavlopoulos, T.G. Ber. Bunsenges. Phys. Chem. 74: 989-92 (1970).
- 70B004 Polarization of the triplet-triplet absorption spectrum of pyrene. Pavlopoulos, T.G. J. Chem. Phys. 52: 3307-8 (1970).
- 70B005 Search for the first ${}^3A_{1g}^-\leftarrow {}^3B_{2u}^+$ transition in naphthalene. Pavlopoulos, T.G. J. Chem. Phys. 53: 4230-3 (1970).
- 70B006 Dianthrone photochromism 1950-1970. Bercovici, T.; Korenstein, R.; Muszkat, K.A.; Fischer, E. Pure Appl. Chem. 24: 531-65 (1970).
- 70E288 Nanosecond flash photolysis. Porter, G.; Topp, M.R. Proc. R. Soc. London, Ser. A 315: 163-84 (1970).
- 70E290 Triplet-triplet absorption of biphenyl. Meyer, Y.H.; Astier, R.; Leclercq, J.M. Chem. Phys. Lett. 4: 587-90 (1970).
- 70E291 Absorption and emission spectra and triplet decay of some aromatic and N-heterocyclic compounds in polymethylmethacrylate. West, M.A.; McCallum, K.J.; Woods, R.J.; Formosinho, S.J. Trans. Faraday Soc. 66: 2135-47 (1970).
- 70E293 Spectral characteristics of the triplet states of cyanin and thiazine dyes. Chibisov, A.K.; Kuz'min, V.A.; Roitman, G.P.; Levkoev, I.I.; Karyakin, A.V. Bull. Acad. Sci. USSR, Phys. Ser. 34: 1144-7 (1970) Translated from: Izv. Akad. Nauk SSR, Ser. Fiz.
- 70E294 The location, polarization and assignment of low lying excited triplet states in pyrene. Langelaar, J.; Wegdam-van Beek, J.; ten Brink, H.T.; van Voorst, J.D.W. Chem. Phys. Lett. 7: 368-70 (1970).
- 70E295 A simple apparatus for measuring the absorption spectrum and lifetimes of photo-produced short lived species using commercial subunits. Slifkin, M.A.; Walmsley, R.H. J. Phys. E 3: 160-2 (1970)
- 70E296 Pheophytin-a and pheophytin-b: Quantitative absorption spectra of the singulet-and triplet-state. Zanker, V.; Rudolph, E.; Prell, G. Z. Naturforsch., Teil B 25B: 1137-43 (1970).
- 710186 Pulse radiolysis studies of acetone solutions of biphenyl and anthracene: Formation of ions and excited singlet state. Arai, S.; Kira, A.; Imamura, M. J. Chem. Phys. 54: 5073-81 (1971).

- 710278 Aromatic solute molecular ion and triplet state formation in polystyrene and polymethylmethacrylate. Siegel, S.; Stewart, T. J. Chem. Phys. 55: 1775-86 (1971).
- 710617 Yields of excited singlet and triplet states of some aromatics in the pulse radiolysis of cyclohexane solutions. Baxendale, J.H.; Wardman, P. Trans. Faraday Soc. 67: 2997-3007 (1971).
- 713035 The in vitro photochemistry of biological molecules. II. The triplet states of β-carotene and lycopene excited by pulse radiolysis. Land, E.J.; Sykes, A.; Truscott, T.G. Photochem. Photobiol. 13: 311-20 (1971).
- 716169 Flash spectroscopy and photoreduction of phenazine. Japar, S.M.; Abrahamson, E.W. J. Am. Chem. Soc. 93: 4140-4 (1971).
- 716235 Studies on triplet energy transfer by means of an emission-absorption flash technique. II. Mixed triplet-triplet annihilation in ethanol. Kikuchi, K.; Kokubun, H.; Koizumi, M. Bull. Chem. Soc. Jpn. 44: 1527-34 (1971).
- 716243 Triplet states in the pyrene-tetracyanobenzene charge-transer system. Teitelbaum, Z.; Potashnik, R.; Ottolenghi, M. Mol. Photochem. 3: 107-22 (1971).
- 716244 Temperature dependence of the deactivation of electronically excited indazoles in solution. Bircher, P.; Pantke, E.R.; Labhart, H. Chem. Phys. Lett. 11: 347-9 (1971).
- 716330 Ionization processes in polar solution of tryptophan at 77 ° K. Moan, J. Isr. J. Chem. 9: 637-43 (1971).
- 717009 Photoreduction of benzophenone in benzene. II. Flash photolysis study of primary photochemical reactions. Buettner, A.V.; Dedinas, J. J. Phys. Chem. 75: 187-91 (1971).
- 717071 Properties of the triplet states of thymine and uracil in aqueous solution, Whillans, D.W.; Johns, H.F. J. Am. Chem. Soc. 93: 1358-2 (1971).
- 717126 Intersystem crossing in the charge-transfer quenching of molecular fluorescence. Goldschmidt, C.R.; Potashnik, R.; Ottolenghi, M. J. Phys. Chem. 75: 1025-31 (1971).
- 717154 Photoreduction of nitrogen heterocycles. I. The photo-reduction of phenazine: Evidence for singlet-state reactivity. Davis, G.A.; Gresser, J.D.; Carapellucci, P.A. J. Am. Chem. Soc. 93: 2179-82 (1971).
- 717171 The primary process of the photochemical dimerization of carbostyril. Yamamuro, T.; Tanaka, I.; Hata, N. Bull. Chem. Soc. Jpn. 44: 667-71 (1971).
- 717179 Nanosecond laser photolysis of acetophenone in organic solvents. Lutz, H.; Lindqvist, L. Chem. Commun.: 493-4 (1971).
- 717266 Triplet and radical formation as observed on flashing aromatic hydroxyl derivatives in liquid and solid solution. de Groot, R.L. Mol. Photochem. 3: 1-22 (1971).
- 717460 Weak triplet-triplet absorption bands of naphthalene. Astier, R.; Meyer, Y.H. Chem. Phys. Lett. 11: 523-5 (1971).
- 717463 Direct observation of triplet exciplexes by flash photoconductivity and flash spectroscopy. Formation of threecomponent exciplexes between porphyrins and nitro aromatics. Roy, J.K.; Whitten, D.G. J. Am. Chem. Soc. 93: 7093-4 (1971).
- 717489 Detection and lifetime of the triplet state of acetone in solution. Porter, G.; Yip, R.W.; Dunston, J.M.; Cessna, A.J.; Sugamori, S.E. Trans. Faraday Soc. 67: 3149-54 (1971).
- 717520 Photochemistry of methylated p-benzoquinones. Kemp, D.R.; Porter, G. Proc. Roy. Soc. (London) Ser. A 326: 117-30 (1971).
- 719059 Triplet-triplet absorption and energy transfer from high triplet states. Alfimov, M.V.; Batekha, I.G.; Sheck, Yu.B.; Gerko, V.I. Spectrochim. Acta 27: 329-41 (1971).
- 71B001 Triplet-triplet absorption studies on coumarin and related molecules. Henry, B.R.; Hunt, R.V. J. Mol. Spectrosc. 39: 466-70 (1971).
- 71B002 A flash photolysis study of the triplet state of acridine orange in basic solvents. Kellmann, A. Photochem. Photobiol. 14: 85-93 (1971).
- 71B003 Observation and interpretation of triplet-triplet absorption spectra of substituted naphthalenes. Takemura, T.; Hara, K.; Baba, H. Bull. Chem. Soc. Jpn. 44: 977-84 (1971).
- 71B005 The second triplet level of 1,5-dichloroanthracene in fluid solutions. Roberts, J.P.; Dixon, R.S. J. Phys. Chem. 75: 845-8 (1971).

- 71B006 Use of a silicon photodiode for detection of weak transient absorption in flash photolysis experiments. Melhuish, W.H. J. Phys. E 4: 60-1 (1971).
- 71E360 Triplet-triplet extinction coefficients via energy transfer. Bensasson, R.; Land, E.J. Trans. Faraday Soc. 67: 1904-15 (1971).
- 71E361 Triplet states of polycyclic aromatic hydrocarbons in fluid solution and in the solid state. Slifkin, M.A.; Walmsley, R.H. Photochem. Photobiol. 13: 57-65 (1971).
- 71E367 Flash photolysis studies of orotic acid. Herbert, M.A.; Johns, H.E. Photochem. Photobiol. 14: 693-704 (1971).
- 720206 The radiation-induced formation of excited states of aromatic hydrocarbons in benzene and cyclohexane. II. Yields of excited singlet and triplet state solute molecules. Dainton, F.S.; Morrow, T.; Salmon, G.A.; Thompson, G.F. Proc. Roy. Soc. (London) Ser. A 328: 457-79 (1972).
- 720243 Yields and reactions of lowest excited singlet and triplet states in the radiolysis of naphthalene and 1-methylnaphthalene. Holroyd, R.A.; Capellos, C. J. Phys. Chem. 76: 2485-91 (1972).
- 720392 Pulse radiolysis of 9,10-anthraquinones. Part 2. Triplet excited states. Hulme, B.E.; Land, E.J.; Phillips, G.O. J. Chem. Soc., Faraday Trans. 1 68: 2003-12 (1972).
- 720440 Excited states in the nanosecond pulse radiolysis and laser flash photolysis of N,N-dimethylaniline. Land, E.J.; Richards, J.T.; Thomas, J.K. J. Phys. Chem. 76: 3805-12 (1972).
- 720447 Pulse radiolysis of solutions of stilbene. I. Evidence for triplet and singlet excited state formation. Dainton, F.S.; Robinson, E.A.; Salmon, G.A. J. Phys. Chem. 76: 3897-904 (1972).
- 720464 Sensitized triplet-triplet absorption of biphenylene. Tetreau, C.; Lavalette, D.; Land, E.J.; Peradejordi, F. Chem. Phys. Lett. 17: 245-7 (1972).
- 723043 Nanosecond irradiation studies of biological molecules. I. Coenzyme Q 6 (ubiquinone-30). Bensasson, R.; Chachaty, C.;
 Land, E.J.; Salet, C. Photochem. Photobiol. 16: 27-37 (1972).
- 726156 Photochemical characteristics of cyanine dyes. Part 1. 3,3'-Diethyloxadicarbocyanine iodide and 3,3'-diethylthia-dicarbocyanine iodide. Dempster, D.N.; Morrow, T.; Rankin, R.; Thompson, G.F. J. Chem. Soc., Faraday Trans. 2 68: 1479-96 (1972).
- 726177 Triplet ← triplet absorption and intersystem crossing in phthalazine. Alvarez, V.L.; Hadley, S.G. J. Phys. Chem. 76: 3937-40 (1972)
- 727000 Measurement of the triplet-triplet absorption spectrum of tetracene using cw argon laser excitation. Pavlopoulos, T.G. J. Chem. Phys. 56: 227-32 (1972).
- 727036 Photoreactions in aqueous solutions of thymine, pH 12. Whillans, D.W.; Johns, H.E. J. Phys. Chem. 76: 489-93 (1972).
- 727041 Primary products in the flash photolysis of tryptophan. Santus,
 R.; Grossweiner, L.I. Photochem. Photobiol. 15: 101-5 (1972).
- 727069 Transient species obtained by the flash photolysis of chloranil in various solutions. Kawai, K.; Shirota, Y.; Tsubomura, H.; Mikawa, H. Bull. Chem. Soc. Jpn. 45: 77-81 (1972).
- 727073 Study of triplet quantum yields using a tunable dye laser. Soep,
 B.; Kellmann, A.; Martin, M.; Lindqvist, L. Chem. Phys. Lett.
 13: 241-4 (1972).
- 727098 Primary photochemical processes in aromatic molecules. Part 15. The photochemistry of aromatic carbonyl compounds in aqueous solution. Ledger, M.B.; Porter, G. J. Chem. Soc., Faraday Trans. 1 68: 539-53 (1972).
- 727105 Primary photoprocesses in isoquinoline N-oxides. Lohse, C. J. Chem. Soc., Perkin Trans. 2:229-33 (1972).
- 727348 Absorption spectrum and decay kinetics of triplet pentacene in solution, studied by flash photolysis. Hellner, C.; Lindqvist, L.; Roberge, P.C. J. Chem. Soc., Faraday Trans. 2 68: 1928-37 (1972)
- 727374 Quenching of triplet states by Schiff base nickel(II) complexes.
 Adamczyk, A.; Wilkinson, F. J. Chem. Soc., Faraday Trans. 2
 68: 2031-41 (1972).
- 727440 Predissociation mechanism for the decomposition of electronically excited hydrocarbon molecules. Smirnov, V.A.; Plotnikov, V.G.; Zavyalov, Yu.A.; Alfimov, M.V. Opt. Spectrosc. (Engl. Transl.) 33: 124-7 (1972) Translated from: Opt. Spektrosk. 33: 230-6 (1972).

- 72A022 Photochemical reactions of aromatic ketones with nucleic acids and their components. I. Purine and pyrimidine bases and nucleosides. Charlier, M.; Helene, C. Photochem. Photobiol. 15: 71-87 (1972).
- 72B001 Triplet-triplet spectroscopy of polyacenes. Meyer, Y.H.; Astier, R.; Leclercq, J.M. J. Chem. Phys. 56: 801-15 (1972).
- 72B002 The light-induced conversion of triphenylamine to the excited triplet state of 11,12-dihydrocarbazole. Foerster, E.W.; Grellmann, K.H. Chem. Phys. Lett. 14: 536-8 (1972).
- 72B003 Triplet-triplet absorption spectra of aromatic hydrocarbons. I. Naphthalene. Wild, U.P.; Kaenzig, H.; Ranalder, U.B. Helv. Chim. Acta 55: 2724 30 (1972).
- 72B004 Triplet-triplet absorption in 4-N-dimethylaminopyridine. Testa, A.C. J. Chem. Phys. 57: 3019-20 (1972).
- 72E276 The triplet-triplet absorption observed for some tetracyanobenzene complexes. Matsumoto, S.; Nagakura, S.; Iwata, S.; Nakamura, J. Chem. Phys. Lett. 13: 463-5 (1972).
- 72E277 Triplet state of rhodamine 6G molecules. Ketsle, G.A.; Levshin, L.V.; Slavnova, T.D.; Chibisov, A.K. Sov. Phys. Doklady 16: 986-8 (1972) Translated from: Dokl. Akad. Nauk SSSR 201: 60-3 (1971).
- 733001 The in vitro photochemistry of biological molecules. III. Absorption spectra, lifetimes and rates of oxygen quenching of the triplet states of β-carotene, retinal and related polyenes. Truscott, T.G.; Land, E.J.; Sykes, A. Photochem Photobiol. 17: 43-51 (1973).
- 733002 The triplet state of retinal: Is it involved in vision' Bensasson, R.; Land, E.J.; Truscott, T.G. Photochem. Photobiol. 17: 53-5 (1973).
- 733184 Laser flash photolysis studies of chlorin and porphyrin systems.

 Energetics of the triplet state of bacteriochlorophyll.
 Connolly, J.S.; Gorman, D.S.; Seely, G.R. Ann. N.Y. Acad.
 Sci. 206: 649-69 (1973).
- 736051 Photochemical characteristics of the mode-locking dyes 1,1'-diethyl-4,4'carbocyanine iodide (cryptocyanine, DCI) and 1,1'-diethyl-2,2'dicarbocyanine iodide (DDI). Dempster, D.N.; Morrow. T.; Rankin, R.; Thompson, G.F. Chem. Phys. Lett. 18: 488-92 (1973).
- 736218 Blitzspektroskopische Untersuchung der Triplettbildung von Naphthalin, 1-Methoxynaphthalin und 1-Cyanonaphthalin in Loesung in Gegenwart der Fluoreszenzloescher Tetrachlorokohlenstoff oder Diaethylamin. Hermann, H.; Koltzenburg, G.; Schulte-Frohlinde, D. Ber. Bunsenges. Phys. Chem. 77: 677-81 (1973).
- 737046 The primary process of the photochemical dimerization of carbostyril (2-quinolone) in an aqueous solution. Yamamuro, T.; Hata, N.; Tanaka, I. Bull. Chem. Soc. Jpn. 46: 29-34 (1973).
- 737055 Quantitative studies of biphotonic reactions. Bagdasaryan, Kh.S.; Kiryukhin, Yu.I.; Sinitsina, Z.A. J. Photochem. 1: 225-40 (1973).
- 737069 Lebensdauer der Triplett-Zustaende von partiell deuterierten trans-Stilbenen und strukturverwandten Verbindungen. Heinrich, G.; Guesten, H.; Mark, F.; Olbrich, G.; Schulte-Frohlinde, D. Ber. Bunsenges. Phys. Chem. 77: 103-8 (1973).
- 737098 Mechanism of photoinduced anion formation of pyromellitic dianhydride in n-donor solvents. Achiba, Y.; Kimura, K. Chem. Phys. Lett. 19: 45-8 (1973).
- 737101 Laser induced transient absorption in liquid pyrene. Hodgkinson, K.A.; Munro, I.H. Chem. Phys. Lett. 19: 260-2 (1973).
- 737113 Interaction between excited β-naphthol and pyridine. Hydrogen-bond formation in S* and H-transfer reaction in T. Kikuchi, K.; Watarai, H.; Koizumi, M. Bull. Chem. Soc. Jpn. 46: 749-54 (1973).
- 737125 Reaction patterns and kinetics of the photoconversion of N-methyldiphenylamine to N-methylcarbazole. Foerster, E.W.; Grellmann, K.H.; Linschitz, H. J. Am. Chem. Soc. 95: 3108-15 (1973).
- 737127 Flash photolysis study of 4-N-dimethylaminopyridine. Testa, A.C. J. Am. Chem. Soc. 95: 3128-31 (1973).

- 737140 Quantum yield of triplet state formation of 9-cyanoanthracene in three solvents. Vander Donckt, E.; Barthels, M.R.; Delestinne, A. J. Photochem. 1: 429-32 (1973).
- 737158 Flash photolysis studies of solute triplets: an anomalous heavy atom effect of xenon. Head, D.A.; Singh, A.; Cook, M.G.; Quinn, M.J. Can. J. Chem. 51: 1624-33 (1973).
- 737185 Primary photoprocesses in retinol. Rosenfeld, T.; Alchalal, A.; Ottolenghi, M. Chem. Phys. Lett. 20: 291-7 (1973).
- 737190 Triplet state of ketones in solutions. Quenching rate studies of thioxanthenone triplets by flash absorption. Yip, R.W.; Szabo, A.G.; Tolg, P.K. J. Am. Chem. Soc. 95: 4471-2 (1973).
- 737198 Effects of solvent and substituents on the absorption spectra of triplet acetophenone and the acetophenone ketyl radical studied by nanosecond laser photolysis. Lutz, H.; Breheret, E.; Lindqvist, L. J. Phys. Chem. 77: 1758-62 (1973).
- 737287 Primary processes in excited β-naphthol systems: A pulsed laser photolysis study. Klaening, U.K.; Goldschmidt, Ch.R.; Ottolenghi, M.; Stein, G. J. Chem. Phys. 59: 1753-9 (1973).
- 737318 Photolysis of aromatic thioacid O-esters: the nature of the reactive excited state. Wirz, J. J. Chem. Soc., Perkin Trans. 2: 1307-12 (1973).
- 737439 Photochemistry of flavins. I. Conventional and laser flash photolysis study of alloxazine. Dekker, R.H.; Srinivasan, B.N.; Huber, J.R.; Weiss, K. Photochem. Photobiol. 18: 457-66 (1973).
- 737463 Excited singlet and triplet states of aromatic hydrocarbons determined by a laser photolysis technique. Hodgkinson, K.A.; Munro, I.H. J. Mol. Spectry. 48: 57-71 (1973).
- 737466 Photoreactions of aromatic compounds. XXIX. Pathway and intermediates of the photoreactions of 3,5-dinitroanisole with nucleophiles. de Gunst, G.P.; Havinga, E. Tetrahedron 29: 2167-71 (1973).
- 737469 The primary photochemical processes of 4-nitropyridine Noxide. III. Its photochemical behavior in an aqueous solution. Hata, N.; Ono, I.; Osaka, K. Bull. Chem. Soc. Jpn. 46: 3363-6 (1973).
- 737473 Photoenolization of ortho-methyl-substituted acetophenones: Solvent effects on the triplet state reactivity. Lutz, H.; Breheret, E.; Lindqvist, L. J. Chem. Soc., Faraday Trans. 1 69: 2096-102 (1973).
- 73B001 Triplet-triplet absorption spectra of quinoline and isoquinoline. Kreibich, U.T.; Wild, U.P. J. Mol. Spectrosc. 47: 189-93 (1973).
- 73E284 Triplet-triplet absorption spectra; of organic molecules. Labhart, H.; Heinzelmann, W. Organic Molecular Photophysics, J.B. Birks (ed.), John Wiley and Sons, New York, N.Y., 1973, Vol. 1, p.297-355.
- 73E342 On the apparent absence of triplet-triplet absorption in pure organic molecular crystals. Priestley, E.B.; Robinson, G.W. Mol. Phys. 26: 159-67 (1973).
- 73E344 Prediction of laser action properties of organic dyes from their structure and the polarization characteristics of their electronic transitions. Pavlopoulos, T.G. IEEE J. Quantum Electron. QE-9: 510-6 (1973).
- 73E345 Triplet-triplet absorption and phosphorescence of metal-porphyrin complexes in liquid solutions. Tsvirko, M.P.; Sapunov, V.V.; Solovev, K.N. Opt. Spectrosc. 34: 635-8 (1973) Translated from: Opt. Spektrosk. 34: 1094-100 (1973).
- 73E346 Measurement of molar triplet extinction coefficients of organic molecules by means of cw laser excitation. Pavlopoulos, T.G. J. Opt. Soc. Am. 63: 180-4 (1973).
- 73E347 The triplet state of β-carotene and of analog polyenes of different length. Mathis, P.; Kleo, J. Photochem. Photobiol. 18: 343-6 (1973).
- 741006 Equilibria between triplet states of aromatic hydrocarbons. Kira, A.; Thomas, J.K. J. Phys. Chem. 78: 196-9 (1974).
- 741013 On the role of the triplet state in the photoisomerization of retinal isomers. Rosenfeld, T.; Alchalel, A.; Ottolenghi, M. J. Phys. Chem. 78: 336-41 (1974).
- 743062 Triplet states of ubiquinone analogs studied by ultraviolet and electron nanosecond irradiation. Amouyal, E.; Bensasson, R.; Land, E.J. Photochem. Photobiol. 20: 415-22 (1974).

- 746168 Interactions of triplet eosin with aromatics and intermolecular complexes of the ground state of eosin with aniline and pyridine in aqueous solutions and in ethanol. Chrysochoos, J. Mol. Photochem. 6: 23-42 (1974).
- 746270 9,10-Diphenylanthracene as a fluorescence quantum yield standard. Heinrich, G.; Schoof, S.; Gusten, H. J. Photochem. 3: 315-20 (1974).
- 746499 Intersystem crossing, ionic dissociation and cis-trans isomerization mechanisms in the photolysis of retinol and related molecules. Rosenfeld, T.; Alchalel, A.; Ottolenghi, M. Excited States of Biological Molecules (Proc. of the Int. Conf. at the Calouste Gulbenkian Foundation Centre, Lisbon, Portugal, April 18-24, 1974) J.B. Birks (ed.), Wiley, London, 1976, p.540-54.
- 747022 Laser flash photolysis of substituted stilbenes in solution. Bent, D.V.; Schulte-Frohlinde, D. J. Phys. Chem. 78: 446-50 (1974).
- 747038 Increased quantum yield of photoreduction of dyes (a catalytic effect). Steiner, U.; Hafner, M.; Schreiner, S.; Kramer, H.E.A. Photochem. Photobiol. 19: 119-28 (1974).
- 747049 Extinction coefficients for triplet-triplet absorption in ethanol solutions of anthracene, naphthalene, 2,5-diphenyloxazole, 7-diethylamino-4-methyl coumarin and 4-methyl-7-amino-carbostyril. Dempster, D.N.; Morrow, T.; Quinn, M.F. J. Photochem. 2: 329-41 (1974).
- 747050 The photochemical characteristics of rhodamine 6G-ethanol solutions. Dempster, D.N.; Morrow, T.; Quinn, M.F. J. Photochem. 2: 343-59 (1974).
- 747056 Time resolved molecular spectroscopy using high power solid state lasers in pulse transmission mode. A re-examination of the $S_n \leftarrow S_1$ spectra of naphthalene and anthracene. Bebelaar, D. Chem. Phys. 3: 205-16 (1974).
- 747093 Flash-spectroscopic study of phthalazine. Kanamaru, N.; Nagakura, S.; Kimura, K. Bull. Chem. Soc. Jpn. 47: 745-6 (1974).
- 747187 Primary photochemical processes of cationic acridine orange in aqueous solution studied by flash photolysis. Kellmann, A. Photochem. Photobiol. 20: 103-8 (1974).
- 747189 Triplet states and cis-trans photoisomerization processes in the Schiff bases of retinal isomers. Rosenfeld, T.; Alchalel, A.; Ottolenghi, M. Photochem. Photobiol. 20: 121-5 (1974).
- 747229 Formation and reactions of long lived xanthene dye radicals. II. Photochemical reduction of rhodamine-B and fluorescein derivatives. Krueger, U.; Memming, R. Ber. Bunsenges. Phys. Chem. 78: 679-85 (1974).
- 747233 Quenching of triplet states of diazines by H-atom donors. Formation of azyl radicals. Bent, D.V.; Hayon, E.; Moorthy, P.N. Chem. Phys. Lett. 27: 544-7 (1974).
- 747236 Triplet state of α-nitronaphthalene. Capellos, C.; Porter, G. J. Chem. Soc., Faraday Trans. 2 70: 1159-64 (1974).
- 747293 Spectroscopic studies of formation and decay of triplet exciplexes. Evidence for a limited role of charge-transfer interactions in a nonpolar solvent. Roy, J.K.; Carroll, F.A.; Whitten, D.G. J. Am. Chem. Soc. 96: 6349-55 (1974).
- 747334 Laser photolysis of retinal and its protonated and unprotonated n-butylamine Schiff base. Fisher, M.M.; Weiss, K. Photochem. Photobiol. 20: 423-32 (1974).
- 747346 Picosecond flash photolysis: transient absorption in Sn(IV), Pd(II). and Cu(II) porphyrins. Magde, D.; Windsor, M.W.; Holten, D.; Gouterman, M. Chem. Phys. Lett. 29: 183-8 (1974).
- 747347 Triplet-triplet absorption of biphenyl and related compounds. Lavalette, D.; Tetreau, C. Chem. Phys. Lett. 29: 204-9 (1974).
- 747376 Laser photolysis study of trans → cis photoisomerization of trans-1-phenyl-2-(2-naphthyl)ethylene. Sumitani, M.; Nagakura, S.; Yoshihara, K. Chem. Phys. Lett. 29: 410-3 (1974).
- 747389 Kinetics and mechanism of photochemical solvolysis of arylmethylacetates. Ivanov, V.B.; Ivanov, V.L.; Kuzmin, M.G. Mol. Photochem. 6: 125-32 (1974).
- 747390 The triplet state of phenylpyridyl ketones in perfluorocarbon solvent. Blanchi, J.-P.; Watkins, A.R. Mol. Photochem. 6: 133-42 (1974).

- 747417 The primary photochemical process of diphenylacetylene. Ota, K.; Murofushi, K.; Hoshi, T.; Inoue, H. Tetrahedron Lett.: 1431-4 (1974).
- 747587 Ionic photodissociation in excited singlet and triplet states of the 1-methylnaphthalene-pyromellitic dianhydride charge-transfer complex. Achiba, Y.; Kimura, K. Oyo Denki Kenkyusho Hokoku 26: 114–23 (1974, Publ. 1975).
- 747630 Laser study of triplet porphyrin quenching by oxygen in porphyrin-globins. Alpert, B., Lindqvist, L. Excited States of Biological Molecules (Proc. of the Int. Conf. at the Calouste Gulbenkian Foundation Centre, Lisbon, Portugal, April 18-24, 1974) J.B. Birks (ed.), Wiley, London, 1976, p.425-33.
- 747633 Singlet-triplet quantum efficiencies of retinal isomers. Azerad, R.; Bensasson, R.; Cooper, M.B.; Dawe, E.A.; Land, E.J. Excited States of Biological Molecules (Proc. of the Int. Conf. at the Calouste Gulbenkian Foundation Centre, Lisbon, Portugal, April 18-24, 1974) J.B. Birks (ed.), Wiley, London, 1976, p.531-9.
- 74B002 Location of the first ${}^{3}B_{2}^{-}$ ← ${}^{3}B_{2}^{+}$ transition in phenanthrene. Pavlopoulos, T.G. Chem. Phys. Lett. 27: 245-8 (1974).
- 74B003 Spectroscopic studies of some laser dyes. Pavlopoulos, T.G.; Hammond, P.R. J. Am. Chem. Soc. 96: 6568-79 (1974).
- 74B004 Polarization measurement and configuration analysis of the triplet-triplet absorption spectra of substituted naphthalenes. Hara, K.; Takemura, T.; Baba, H. J. Mol. Spectrosc. 50: 90-105 (1974).
- 74B006 Chemische Gesellschaft Fribourg. Wild, U.P. Chimia 28: 125-7 (1974).
- 74B007 Triplet-triplet absorption of porphyrins and their derivatives. Sapunov, V.V.; Solov'ev, K.N.; Tsvirko, M.P. Zh. Prikl. Spektrosk. 21: 667-71 (1974).
- 751124 Nanosekunden-Pulsradiolyse und Laserphotolyse von Benzophenon in Benzol und Cyclohexan. Brede, O.; Helmstreit, W.; Mehnert, R. Z. Phys. Chem. (Leipzig) 256: 505-12 (1975).
- 753103 Kinetic studies of the tryptophan triplet state in solid film and in wool keratin. Ghiggino, K.P.; Nicholls, C.H.; Pailthorpe, M.T. Photochem. Photobiol. 22: 169-73 (1975).
- 756077 Flash photolysis and phosphorescence of benzoic acid at 77-K. Acuna, A.U.; Ceballos, A.; Garcia Dominguez, J.A.; Molera, M.J. An. Quim. 71: 22-7 (1975).
- 756162 Electron transfer reaction in the triplet state. Role of ferrocene as an electron donor. Kikuchi, K.; Kokubun, H.; Kikuchi, M. Bull. Chem. Soc. Jpn. 48: 1378-81 (1975).
- 756270 Triplet-triplet absorption studies of the intersystem crossing mechanism of 2-aminopurines. Wierzchowski, K.L.; Berens, K.; Szabo, A.G. J. Lumin. 10: 331-43 (1975).
- 756293 Excited singlet yield in T-T annihilation. A comparative study of naphthalene and anthracene in solution. Tfibel, F.; Lindqvist, L. Chem. Phys. 10: 471-8 (1975).
- 757004 Flash photolytic kinetic studies of the quenching of tetracene triplets by tetracene radical anions. Levin, G.; Szwarc, M. Chem. Phys. Lett. 30: 116-9 (1975).
- 757066 Formation and reactions of the triplet state of sym-triazine in solution studied by laser spectroscopy. Bent, D.V.; Hayon, E. Chem. Phys. Lett. 31: 325-7 (1975).
- 757078 Determination of the pK values of the lumiflavin triplet state by flash photolysis. Schreiner, S.; Steiner, U.; Kramer, H.E.A. Photochem. Photobiol. 21: 81-4 (1975).
- 757090 Triplet-sensitized cis-trans isomerization of the protonated Schiff base of retinal isomers. Alchalel, A.; Honig, B.; Ottolenghi, M.; Rosenfeld, T. J. Am. Chem. Soc. 97: 2161-6 (1975).
- 757112 Activation-controlled hydrogen abstraction by benzophenone triplet. Topp, M.R. Chem. Phys. Lett. 32: 144-9 (1975).
- 757141 The determination of molar absorption coefficients of metastable states. Ranalder, U.B.; Kaenzig, H.; Wild, U.P. J. Photochem. 4: 97-107 (1975).
- 757148 Mechanism of photoreduction of thiazine dyes by EDTA studied by flash photolysis. III. Consequences of a newly found pK_T of thionine on the mechanism in basic solutions. Bonneau, R.; Pereyre, J. Photochem. Photobiol. 21: 173-7 (1975).

- 757161 Excited state chemistry of aromatic amino acids and related peptides. I. Tyrosine. Bent, D.V.; Hayon, E. J. Am. Chem. Soc. 97: 2599-606 (1975).
- 757162 Excited state chemistry of aromatic amino acids and related peptides. II. Phenylalanine. Bent, D.V.; Hayon, E. J. Am. Chem. Soc. 97: 2606-12 (1975).
- 757163 Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan. Bent, D.V.; Hayon, E. J. Am. Chem. Soc. 97: 2612-9 (1975).
- 757167 Photochemical rearrangements of indazoles. Investigation of the triplet excited states of 1- and 2-methylindazole. Ferris, J.P.; Prabhu, K.V.; Strong, R.L. J. Am. Chem. Soc. 97: 2835-9 (1975).
- 757282 Determination of triplet quantum yields by laser flash absorption spectroscopy. Amand, B.; Bensasson, R. Chem. Phys. Lett. 34: 44-8 (1975).
- 757309 Chemistry of the triplet state of diazines in solution studied by laser spectroscopy. Bent, D.V.; Hayon, E.; Moorthy, P.N. J. Am. Chem. Soc. 97: 5065-71 (1975).
- 757353 Laser photoionization of phenothiazine in alcoholic and aqueous micellar solution. Electron transfer from triplet states to metal ion acceptors. Alkaitis, S.A.; Beck, G.; Graetzel, M. J. Am. Chem. Soc. 97: 5723-9 (1975)
- 757361 Photosensitizing properties of N-formylkynurenine. Walrant,
 P.; Santus, R.; Grossweiner, L.I. Photochem. Photobiol. 22:
 63-5 (1975).
- 757413 Rate constants of triplet state ionic photodissociation of weak charge-transfer complexes formed between pyromellitic dianhydride (PMDA) and naphthalenes. Achiba, Y.; Kimura, K. J. Phys. Chem. 79: 2626-8 (1975).
- 757427 The photochemistry of benz(de)anthracen-7-ones. Part II. Flash photolysis. Bentley, P.; McKellar, J.F.; Phillips, G.O. J. Chem. Soc., Perkin Trans. 2: 1259-62 (1975).
- 757439 Phenyl substitution effects on triplet-triplet absorption spectra.
 I. Study of 1,3,6,8-tetraphenylpyrene. Rulliere, C.; Colson,
 E.C.; Roberge, P.C. Can. J. Chem. 53: 3269-75 (1975).
- 757441 Study of the intermediate states in photochemical reactions of dyes. VII. Electron transfer in redox reactions of thiacarbocyanines. Lifanov, Yu.I.; Korobov, V.E.; Karyakin, A.V.; Chibisov, A.K. High Energy Chem. 9: 232-6 (1975) Translated from: Khim. Vys. Energ. 9: 265-70 (1975).
- 757469 An electro-optic shutter to assist flash photolysis studies of solid films. Ghiggino, K.P.; Nicholls, C.H.; Pailthorpe, M.T. J. Phys. E 8: 900-2 (1975).
- 757485 Photodynamic sensitization by 8-methoxypsoralen via the singlet oxygen mechanism. Poppe, W.; Grossweiner, L.I. Photochem. Photobiol. 22: 217-9 (1975).
- 757510 Studies on thymine and uracil triplet excited state in acetonitrile and water. Salet, C.; Bensasson, R. Photochem. Photobiol. 22: 231-5 (1975).
- 757522 Triplet absorption of phthalimide solutions. Borisevich, N.A.; Bolot'ko, L.M.; Staneva, T.G. Zh. Prikl. Spektrosk. 23: 633-7 (1975).
- 757534 An efficient photosensitizer: O-ethyl-1-thionaphthoate. Gisin, M.; Wirz, J. Helv. Chim. Acta 58: 1768-71 (1975).
- 757573 Microsecond and nanosecond impulse photolysis of carbazoles.
 Two-quantum reaction in a liquid medium. Borovkova, V.A.;
 Bagdasar'yan, Kh.S.; Pikel'ni, V.F.; Kolosov, V.A.; Kiryukhin,
 Yu.I. Dokl. Phys. Chem. (Engl. Transl.) 224: 973-6 (1975).
 Translated from: Dokl. Akad. Nauk SSSR 224: 616-9 (1975).
- 757594 Absolute efficiency of the two-quanta sensitized decomposition of benzylamine. Sinitsyna, Z.A.; Kiryukhin, Yu.I.; Bagdasar'yan, Kh.S. Dokl. Phys. Chem. (Engl. Transl.) 225: 1212-4 (1975) Translated from: Dokl. Akad. Nauk SSSR 225: 361-3 (1975).
- 75B002 Anisotropy of the T-T absorption spectra of naphthalene and phenanthrene. Kuball, H.-G.; Euing, W. Chem. Phys. Lett. 30: 457-62 (1975).

- 75B003 Matrix effect on the linewidth of the ³B²₁₀-³B²₁₆ absorption spectrum of naphthalene. Haertel, H.; Khelladi, F.Z.; Ostertag, R. Chem. Phys. Lett. 30: 472-6 (1975).
- 75B004 The triplet-triplet absorption spectra and electronic structures of some cyano-substituted benzenes. Morita, H.; Matsumoto, S.; Nagakura, S. Bull. Chem. Soc. Jpn. 48: 420-3 (1975).
- 75E530 Degradation of the energy of electronic excitation of associated molecules. The triplet states of associates of rhodamine 6G. Chibisov, A.K.; Ketsle, G.A.; Levshin, L.V.; Slavnova, T.D. Opt. Spectrosc. 38: 45-8 (1975) Translated from: Opt. Spektrosk. 38: 83-8 (1975).
- 761024 Energy transfer from an alkene triplet state during pulse radiolysis. Barwise, A.J.G.; Gorman, A.A.; Rodgers, M.A.J. Chem. Phys. Lett. 38: 313-6 (1976).
- 761030 Studies of higher triplet exciton bands through T-T absorption in naphthalene single crystal. Higuchi, M.; Nakayama, T.; Itoh, N. J. Phys. Soc. Jpn. 40: 250-7 (1976).
- 761035 Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irrad iation. Bensasson, R.; Land, E.J.; Maudinas, B. Photochem. Photobiol. 23: 189-93 (1976).
- 761069 Intermediates in the nanosecond pulse radiolysis of dimethylaniline solutions in cyclohexane. Zador, E.; Warman, J.M.; Hummel, A. J. Chem. Soc., Faraday Trans. 1 72: 1368-76 (1976).
- 761080 Pulse radiolysis of ethyl acetate and its solutions. Ramanan, G. J. Phys. Chem. 80: 1553-8 (1976).
- 761088 The triplet state of 1,6-diphenyl-1,3,5-hexatriene and 1,8-diphenyl-1,3,5,7-octatetraene. Bensasson, R.; Land, E.J.; Lafferty, J.; Sinclair, R.S.; Truscott, T.G. Chem. Phys. Lett. 41: 333-5 (1976).
- 761122 Triplet excited states of 1,4-disubstituted anthraquinones: Possible evidence for association of quinones in solution. Land, E.J.; McAlpine, E.; Sinclair, R.S.; Truscott, T.G. J. Chem. Soc., Faraday Trans. 1 72: 2091-100 (1976).
- 761168 The triplet excited state of bilirubin. Land, E.J. Photochem. Photobiol. 24: 475-7 (1976).
- 766206 Excited states of six-membered aza-aromatic rings. X. Acid-base equilibria of electronically excited quinoxaline as an example of anomalous diazines. Grabowska, A.; Herbich, J.; Kirkor-Kaminska, E.; Pakula, B. J. Lumin. 11: 403-12 (1976).
- 766377 The hydrogen bonding effect of pyridine on the deactivation of the excited states of acridone. Fushimi, K.; Kikuchi, K.; Kokubun, H. J. Photochem. 5: 457-68 (1976).
- 766403 Properties of benzopyrene-DNA complexes investigated by fluorescence and triplet flash photolysis techniques. Geacintov, N.E.; Prusik, T.; Khosrofian, J.M. J. Am. Chem. Soc. 98: 6444-52 (1976).
- 766421 Photochemical behaviour and spectroscopical properties of anilino naphthalenes. Fratev, F.; Polansky, O.E.; Zander, M. Z. Naturforsch. Teil A 31A: 987-9 (1976).
- 766464 Picosecond time-resolved spectroscopy and the intersystem crossing rates of anthrone and fluorenone. Kobayashi, T.; Nagakura, S. Chem. Phys. Lett. 43: 429-34 (1976).
- 766469 Intersystem crossing to the lowest triplet state of phenazine following singlet excitation with a picosecond pulse. Hirata, Y.; Tanaka, I. Chem. Phys. Lett. 43: 568-70 (1976).
- 766528 Evidence for a triplet exciplex state from pulsed laser photolysis. Bell, I.P.; Rodgers, M.A.J. Chem. Phys. Lett. 44: 249-52 (1976).
- 766652 The use of charge transfer complexing to elucidate some triplet-triplet spectra. Slifkin, M.A.; Al-Chalabi, A.O. Spectrochim. Acta, Part A 32A: 661-2 (1976).
- 767023 Photochemistry of chlorpromazine (2-chloro-N-(3-dimethyl-aminopropyl)phenothiazine) in propan-2-ol solution. Davies, A.K.; Navaratnam, S.; Phillips, G.O. J. Chem. Soc., Perkin Trans. 2: 25-9 (1976).
- 767071 Direct and sensitized photooxidation of cyanine dyes. Byers, G.W.; Gross, S.; Henrichs, P.M. Photochem. Photobiol. 23: 37-43 (1976).

- 767094 Mechanism of quenching of the triplet states of organic compounds by tris-(β-diketonato) complexes of iron(III), ruthenium(III) and aluminium(III). Wilkinson, F.; Farmilo, A. J. Chem. Soc., Faraday Trans. 2 72: 604-18 (1976).
- 767144 Duroquinone triplet reduction, in cyclohexane, ethanol and water, and by durohydroquinone. Amouyal, E.; Bensasson, R. J. Chem. Soc., Faraday Trans. 1 72: 1274-87 (1976).
- 767147 Triplet triplet extinction coefficients of anthracene and 9-bromoanthracene determined by a ground state depletion method. Ledger, M.B.; Salmon, G.A. J. Chem. Soc., Faraday Trans. 2 72: 883-6 (1976).
- 767159 Behaviors of the triplet molecule in neat liquid of naphthalene derivatives at room temperature. Ohno, T.; Kato, S. Chem. Lett. (Tokyo): 263-6 (1976).
- 767171 Laser photolysis studies of the triplet state of xanthone and its ketyl radical in fluid solution. Garner, A.; Wilkinson, F. J. Chem. Soc., Faraday Trans. 2 72: 1010-20 (1976).
- 767177 Laser photoionization and light-initiated redox reactions of tetramethylbenzidine in organic solvents and aqueous micellar solution. Alkaitis, S.A.; Graetzel, M. J. Am. Chem. Soc. 98: 3549-54 (1976).
- 767180 Laser flash spectroscopy of tris(2,2'-bipyridine)ruthenium(II) in solution. Bensasson, R.; Salet, C.; Balzani, V. J. Am. Chem. Soc. 98: 3722-4 (1976).
- 767189 Quenching of triplet states by inorganic ions. Energy transfer and charge transfer mechanisms. Treinin, A.; Hayon, E. J. Am. Chem. Soc. 98: 3884-91 (1976).
- 767201 A laser-photolytic study of 9-fluorenone. Preliminary observations of transient absorption spectra. Nakajima, A. Mol. Photochem. 7: 251-62 (1976).
- 767246 Photochemical investigations of oxazine, thiazine and selenazine dyes. The reactivity of protolytic triplet forms in electron transfer reactions. Vogelmann, E.; Kramer, H.E.A. Photochem. Photobiol. 23: 383-90 (1976).
- 767261 Build-up of T-T absorption of acridine following singlet excitation with a picosecond pulse. Hirata, Y.; Tanaka, I. Chem. Phys. Lett. 41: 336-8 (1976).
- 767269 Triplet excited states of nitronaphthalenes. II. b-Nitronaphthalene. Capellos, C.; Suryanarayanan, K. Int. J. Chem. Kinet. 8: 529-39 (1976).
- 767270 Triplet excited states of nitronaphthalenes. III. 1,4-Dinitronaphthalene. Capellos, C.; Suryanarayanan, K. Int. J. Chem. Kinet. 8: 541-8 (1976).
- 767488 Photochemical reactions of bifluorenylidene. Part 2. Flash photolytic investigations. Van Sinoy, A.; Vander Donckt, E. J. Chem. Soc., Faraday Trans. 1 72: 2312-23 (1976).
- 767526 Low temperature flash photolysis of 2-N-dimethylaminopyridine. Wolleben, J.; Testa, A.C. Mol. Photochem. 7: 277-85 (1976).
- 767556 Electron transfer in the photochemistry of substituted benzoate and naphthoate esters. Coyle, J.D.; Kingston, D.H. J. Chem. Soc., Perkin Trans. 2: 1475-9 (1976).
- 767574 The photoreduction of methylene blue by amines. I. A flash photolysis study of the reaction between triplet methylene blue and amines. Kayser, R.H.; Young, R.H. Photochem. Photobiol. 24: 395-401 (1976).
- 767582 Excited state chemistry of indigoid dyes. IV. Triplet state spectra and lifetimes from flash photolysis at low temperatures. Schulte-Frohlinde, D.; Herrmann, H.; Wyman, G.M. Z. Phys. Chem. (Frankfurt Am Main) 101: 115-21 (1976).
- 767626 Deactivation of triplet 2-naphtol and 1-anthrol by aromatic N-heterocycles. Yamamoto, S.; Kikuchi, K.; Kokubun, H. Bull. Chem. Soc. Jpn. 49: 2950-1 (1976).
- 767647 Participation of triplet states in the photocoloration of photochromic spiropyrans of the phenanthridine series. Kuz'min,
 V.A.; Malkin, Ya.N.; Martynova, V.P.; Zakhs, E.R.; Efros,
 L.S. Dokl. Phys. Chem. (Engl. Transl.) 228: 422-5 (1976)
 Translated from: Dokl. Akad. Nauk SSSR 228: 127-30 (1976).

- 767764 Configuration of photoisomers of merocyanine dyes. Kuz'min, V.A.; Vinogradov, A.M.; Romanov, N.N.; Al'perovich, M.A.; Levkoev, I.I.; Babichev, F.S. Bull. Acad. Sci. USSR, Div. Chem. Sci. 25(8): 1755-7 (1976) Translation from: Izv. Akad. Nauk SSSR, Ser. Khim. (8): 1864-6 (1976).
- 767803 Photoreduction of methylene blue by aromatic amines. Nanosecond pulse photolysis. Romashov, L.V.; Kiryukhin, Yu.I.; Bagdasar'yan, Kh.S. Dokl. Phys. Chem. 230: 961-4 (1976). Translated from: Dokl. Akad. Nauk SSSR 230: 1145-8 (1976).
- 76B012 Phosphorescence and triplet-triplet absorption spectra of anthracene-d₁₀ in polymethylmethacrylate under high pressures. Shaw, R.W.; Nicol, M. Chem. Phys. Lett. 39: 108-12 (1976).
- 76E682 Features of the triplet-triplet absorption spectra of composite molecules. Gerko, V.I.; Alfimov, M.V.; Popov, L.S.; Kovalenko, N.P. Dokl. Phys. Chem. 230: 811-3 (1976) Translated from: Dokl. Akad. Nauk SSSR 230: 125-7 (1976).
- 771021 Triplet state quenching involving charge transfer interactions between N-methyl indole and aromatic carbonyl compounds in benzene solution. Wilkinson, F.; Garner, A. J. Chem. Soc., Faraday Trans. 2 73: 222-33 (1977).
- 771048 Radiation induced racemization of 1,1'-binaphthyl in tetrahydrofuran and toluene. Irie, M.; Yorozu, T.; Yoshida, K.; Hayashi, K. J. Phys. Chem. 81: 973-6 (1977).
- 771059 Ion recombination processes in rigid solutions. Miller, J.R. Can. J. Chem. 55: 1867-75 (1977).
- 771078 Excited states of protoporphyrin IX dimethyl ester: Reaction of the triplet with carotenoids. Chantrell, S.I.; McAuliffe, C.A.; Munn, R.W.; Pratt, A.C.; Land, E.J. J. Chem. Soc., Faraday Trans. 1: 858-65 (1977).
- 773047 A pulsed laser study of excited states of aromatic molecules absorbed in globular proteins. Cooper, M.; Thomas, J.K. Radiat. Res. 70: 312-24 (1977).
- 776081 Intersystem crossing in ahthracene-N,N-diethylaniline exciplex. Nishimura, T.; Nakashima, N.; Mataga, N. Chem. Phys. Lett. 46: 334-8 (1977).
- 776104 Charge transfer triplet state of p-nitroaniline. Wolleben, J.; Testa, A.C. J. Phys. Chem. 81: 429-31 (1977).
- 776146 Photophysical processes in the molecular complexes of 1,2,4,5-tetracyanobenzene with aromatic donors. Craig, B.B.; Rodgers, M.A.J.; Wood, B. J. Chem. Soc., Faraday Trans. 2 73: 349-55 (1977).
- 776171 Probabilities of intramolecular radiative and radiationless transitions of some amino derivatives of acridine. Morozov, Yu.V.; Savenko, A.K. Mol. Photochem. 8: 1-43 (1977).
- 776187 The fluorescent state of cyano-substituted layered cyclophanes. Masuhara, H.; Mataga, N.; Yoshida, M.; Tatemitsu, H.; Sakata, Y.; Misumi, S. J. Phys. Chem. 81: 879-83 (1977).
- 776190 The effect of chemical structure on the photosensitizing efficiencies of porphyrins. Cauzzo, G.; Gennari, G.; Jori, G.; Spikes, J.D. Photochem. Photobiol. 25: 389-95 (1977).
- 776194 Triplet excited states of nitronaphthalenes. IV. 1,2- and 1,8-dinitronaphthalenes. Capellos, C.; Suryanarayanan, K. Int. J. Chem. Kinet. 9: 399-407 (1977).
- 776195 The triplet state of 4-nitronaphthylamine. Capellos, C.; Lang, F. Int. J. Chem. Kinet. 9: 409-15 (1977).
- 776213 Weak triplet-triplet absorption spectra of cyanobenzenes. Achiba, Y.; Kimura, K. Chem. Phys. Lett. 48: 107-10 (1977).
- 776222 Luminescence and triplet absorption of o-, m-, and p-methylbenzoic acids. Acuna, A.U.; Ceballos, A.; Molera, M.J. J. Phys. Chem. 81: 1090-3 (1977).
- 776227 Intersystem crossing processes of acridine. Kikuchi, K.; Uji-ie, K.; Miyashita, Y.; Kokubun, H. Bull. Chem. Soc. Jpn. 50(4): 879-82 (1977).
- 776258 Intersystem crossing and internal conversion quantum yields of acridine in polar and nonpolar solvents. Kellmann, A. J. Phys. Chem. 81: 1195-8 (1977).
- 776262 P-type delayed fluorescence from rubrene. Liu, D.K.K.; Faulkner, L.R. J. Am. Chem. Soc. 99: 4594-9 (1977).

- 776279 Polarized triplet-triplet absorption spectra using stretched polymer films: Biphenyl and fluorene. Ota, K.; Murofushi, K.; Hoshi, T.; Shibuya, E.; Yoshino, J. Z. Phys. Chem. (Frankfurt am Main) 104: 181-8 (1977).
- 776335 Studies of the interaction of excited chloranil with acrylonitrile, methyl methacrylate, and styrene by means of laser photolysis. Kobashi, H.; Gyoda, H.; Morita, T. Bull. Chem. Soc. Jpn. 50: 1731-8 (1977).
- 776412 Singlet → triplet intersystem crossing quantum yields of photosynthetic and related polyenes. Bensasson, R.; Dawe, E.A.; Long, D.A.; Land, E.J. J. Chem. Soc., Faraday Trans. 1 73: 1319-25 (1977).
- 776431 Proton-induced radiationless processes in excited 9,9'-bianthryl. Shizuka, H.; Ishii, Y.; Morita, T. Chem. Phys. Lett. 51: 40-4 (1977).
- 776464 Two emitting states of excited p-(9-anthryl)-N,N-dimethylaniline derivatives in polar solvents. Siemiarczuk, A.; Grabowski, Z.R.; Krowczynski, A.; Asher, M.; Ottolenghi, M. Chem. Phys. Lett. 51: 315-20 (1977).
- 777036 Triplet states of cyanine dyes and reactions of electron transfer with their participation. Chibisov, A.K. J. Photochem. 6: 199-214 (1976/77).
- 777037 Laser photolysis of indole in cyclohexane. Pernot, C.; Lindqvist, L. J. Photochem. 6: 215-20 (1976/77).
- 777041 Triplet state of rhodamine dyes and its role in production of intermediates. Korobov, V.E.; Shubin, V.V.; Chibisov, A.K. Chem. Phys. Lett. 45: 498-501 (1977).
- 777045 Laser photolysis studies of duroquinone triplet state electron transfer reactions. Scheerer, R.; Graetzel, M. J. Am. Chem. Soc. 99: 865-71 (1977).
- 777062 Anion and solvent effects on the rate of reduction of triplet excited thiazine dyes by ferrous ions. Wildes, P.D.; Lichtin, N.N.; Hoffman, M.Z.; Andrews, L.; Linschitz, H. Photochem. Photobiol. 25: 21-5 (1977).
- Photoionization and recombination luminescence of N,N'-disubstituted dihydrophenazines in 3-methylpentane at 77
 K. Bruehlmann, U.; Huber, J.R. J. Phys. Chem. 81: 386-91 (1977).
- 777201 Photoreduction of 1,10-phenanthroline. Bandyopadhyay, B.N.; Harriman, A. J. Chem. Soc., Faraday Trans. 1 73: 663-74 (1977).
- 777238 Reversible photochemistry and photocyclization of 10H,10'H-bianthrylidene. Korenstein, R.; Muszkat, K.A.; Fischer, E. J. Chem. Soc., Perkin Trans. 2: 564-9 (1977).
- 777241 Laser photolysis study of the photoracemization of 1,1'-binaphthyl. Irie, M.; Yoshida, K.; Hayashi, K. J. Phys. Chem. 81: 969-72 (1977).
- 777242 Investigation of physical triplet quenching by electron donors. Steiner, U.; Winter, G.; Kramer, H.E.A. J. Phys. Chem. 81: 1104-10 (1977).
- 777265 Laser investigation of some oxazole and oxadiazole derivatives. Fouassier, J.-P.; Lougnot, D.-J.; Wieder, F.; Faure, J. J. Photochem. 7(1): 17-28 (1977).
- 777315 Photoredox reactions of thionine. Ferreira, M.I.C.; Harriman,A. J. Chem. Soc., Faraday Trans. 1 73: 1085-92 (1977).
- 777316 Triplet-triplet absorption spectra and the spectra of the photo-reduced states of rhodamine B and rhodamine 110. Dunne, A.; Quinn, M.F. J. Chem. Soc., Faraday Trans. 1 73: 1104-10 (1977).
- 777345 Lifetime enhancement of the first electronic triplet state of 3,5-dinitroanisole by hydrogen bonding to clusters in mixed aqueous solvent systems. Varma, C.A.G.O.; Plantenga, F.L.; van den Ende, C.A.M.; van Zeyl, P.H.M.; Tamminga, J.J.; le Cornelisse, J. Chem. Phys. 22: 475-83 (1977).
- 777388 Photoionization of aromatic compounds in boric acid glass. Andreev, O.M.; Smirnov, V.A.; Alfimov, M.V. J. Photochem. 7: 149-56 (1977).
- 777391 Mechanisms of deactivation of triplet 1-anthrol and 2-naphthol by aromatic N-heterocycles. Yamamoto, S.-A.; Kikuchi, K.; Kokubun, H. J. Photochem. 7: 177-84 (1977).

- 777432 Flash photolysis of tryptophan and N-acetyl-L-tryptophanamide. The effect of bromide on transient yields. Volkert, W.A.; Kuntz, R.R.; Ghiron, C.A.; Evans, R.F.; Santus, R.; Bazin, M. Photochem. Photobiol. 26: 3-9 (1977).
- 777434 Photochemistry of polyenes. XI. Flash photolytic studies of hindered isomers of retinal. Harriman, A.; Liu, R.S.H. Photochem. Photobiol. 26: 29-32 (1977).
- 777455 Laser flash photolysis and quantum yields of the direct photochemical cis-trans isomerization of 4-nitro-4'-methoxystilbene in cyclohexane solutions in presence of quenchers. Model for the photoisomerization of nitrostilbenes. Goerner, H.; Schulte-Frohlinde, D. Ber. Bunsenges. Phys. Chem. 81: 713-20 (1977).
- 777538 Abnormal broadening in triplet-to-triplet absorption spectra caused by aromatic solvents. Alfimov, M.V.; Gerko, V.I.; Popov, L.S.; Razumov, V.F. Chem. Phys. Lett. 50: 398-401 (1977).
- 777602 Interaction of duroquinone lowest triplet with amines. Amouyal, E.; Bensasson, R. J. Chem. Soc., Faraday Trans. 1 73: 1561-8 (1977).
- 777603 Photochemistry of Michler's ketone in cyclohexane and alcohol solvents. Brown, R.G.; Porter, G. J. Chem. Soc., Faraday Trans. 1 73: 1569-73 (1977).
- 777617 Photochemistry of flavins. II. Photophysical properties of alloxazines and isoalloxazines. Grodowski, M.S.; Veyret, B.;
 Weiss, K. Photochem. Photobiol. 26: 341-52 (1977).
- 777635 Picosecond-laser study of triplet state population of carbonyl derivatives of anthracene. Hirayama, S.; Kobayashi, T. Chem. Phys. Lett. 52: 55-8 (1977).
- 77A178 Direct evidence of photodissociation of carbazole via the higher excited triplet state by a double excitation method. Yamamoto, S.; Kikuchi, K.; Kokubun, H. Chem. Lett.: 1173-6 (1977).
- 77A196 Intermediates from the photolysis of 2,3-dihydroxynaph-thalene. Khudyakov, I.V.; Tatikolov, A.S.; Kuz'min, V.A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 26: 1197-9 (1977) Translated from: Izv. Akad. Nauk SSSR, Ser. Khim.: 1300-3 (1977).
- 77A203 The electron transfer reaction between triplet methylene blue and aromatic compounds. Kikuchi, K.; Tamura, S.-I.; Iwanaga, C.; Kokubun, H.; Usui, Y. Z. Phys. Chem. (Frankfurt am Main) 106: 17-24 (1977).
- 77A216 The triplet state of 4-nitro-N,N-dimethylnaphthylamine. Capellos, C.; Lang, F. Int. J. Chem. Kinet. 9: 943-52 (1977).
- 77B012 Two-quantum photoionization in liquid solutions. Quantitative investigation by means of nanosecond photolysis. Borovkova,
 V.A.; Bagdasar'yan, Kh.S. Dokl. Phys. Chem. 235: 649-52 (1977) Translated from: Dokl. Akad. Nauk SSSR 235: 132-5 (1977).
- 77B022 Triplet-triplet absorption of some carbonyl-containing compounds. Alfimov, M.V.; Buben, N.Ya.; Glagolev, V.L.; Kuyumdzhi, E.S.; Pomazan, Yu.V.; Shamshev, V.N. Opt. Spectrosc. 42: 267-70 (1977) Translated from: Opt. Spektrosk. 42: 476-82 (1977).
- 77C001 Dimerisation de la chlorophylle dans les solvants apolaires. Etude de l'equilibre et de l'etat triplet. Journeaux, R.; Chene, G.; Viovy, R. J. Chim. Phys. Phys.-Chim. Biol. 74: 1203-10 (1977).
- 77E543 Excited singlet state decay pathways in the fluorescence probe molecule 1,8-anilinonaphthalene sulphonate (ANS). Fleming, G.R.; Porter, G.; Robbins, R.J.; Synowiec, J.A. Chem. Phys. Lett. 52: 228-32 (1977).
- 77E663 Mechanism of the degradation of electronic excitation energy in hydrogen-bonded ion pairs. Ivanov, V.L.; Martynov, I.Yu.;
 Uzhinov, B.M.; Kuz'min, M.G. High Energy Chem. 11: 361-4 (1977) Translated from: Khim. Vys. Energ. 11: 327-31 (1977).
- 77E797 Etude par spectroscopie laser de derives de benzoine. Fouassier, J.-P.; Lougnot, D.-J.; Faure, J. C.R. Seances Acad. Sci., Ser. C 284: 643-6 (1977).
- 78A163 Photooxidation of aromatic hydrocarbons by europium(III) salts. Levin, G. J. Phys. Chem. 82: 1584-8 (1978).

- 78A180 Deactivation of the electronic excitation of triarylcarbonium ions in acid media. Ivanov, V.L.; Al'-Ainen, S.A.; Kuz'min, M.G. High Energy Chem. 12: 39-42 (1978) Translated from: Khim. Vys. Energ. 12: 48-52 (1978).
- 78A195 Hydrogen atom abstraction by p-chloranil triplet from tetrachlorohydroquinone and the presence of a competitive deactivation process. Kobashi, H.; Nagumo, T.; Morita, T. Chem. Phys. Lett. 57. 369-72 (1978).
- 78A237 Flash photolytic studies on the photochemical formation of five-membered sulfur heterocycles. Wolff, T. J. Am. Chem. Soc. 100: 6157-9 (1978).
- 78A268 Transient absorption in the sensitized photoisomerization of stilbene. Sumitani, M.; Yoshihara, K.; Nagakura, S. Bull. Chem. Soc. Jpn. 51: 2503-7 (1978).
- 78A304 Primary processes in the photochemistry of rhodamine dyes. Korobov, V.E.; Chibisov, A.K. J. Photochem. 9: 411-24
- 78A324 Electron transfer from aromatic molecules to dimethylmercury via a triplet exciplex. Vander Donckt, E.; Van Vooren, C. J. Chem. Soc., Faraday Trans. 1 74: 827-36 (1978).
- 78A345 Blitzlichtspektroskopische Untersuchungen des Triplettzustandes und der photolytisch gebildeten Radikalkationen des 3,4-Benzpyrens in waessrigen Natriumdodecylsulfat- und Coffeinloesungen. Bauer, H.; Reske, G. J. Photochem. 9: 43-54 (1978).
- 78A368 Quantitative study of the photodissociation of carbazoles in the higher excited triplet state by a double excitation method. Yamamoto, S.-A.; Kikuchi, K.; Kokubun, H. Z. Phys. Chem. (Frankfurt am Main) 109: 47-58 (1978).
- 78A378 Triplet states of copper and metal-free phthalocyanines. McVie, J.; Sinclair, R.S.; Truscott, T.G. J. Chem. Soc., Faraday Trans. 2 74: 1870-9 (1978).
- 78A386 Laser photolysis of dicarbocyanine dyes. Darmanyan, A.P.; Kuz'min, V.A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 27: 506-10 (1978) Translated from: Izv. Akad. Nauk SSSR, Ser. Khim.: 587-92 (1978).
- 78A411 Pulse radiolysis of benzene solutions of indolinospiropyrans. Vannikov, A.V.; Kryukov, A.Yu. High Energy Chem. 12: 280-4 (1978) Translated from: Khim. Vys. Energ. 12: 334-8 (1978).
- 78A447 The electron transfer reactions between triplet dyes and aromatic compounds in acetonitrile. Tamura, S.-I.; Kikuchi, K.; Kokubun, H.; Usui, Y. Z. Phys. Chem. (Wiesbaden) 111: 7-18 (1978).
- 78B071 Radiationless deactivation of benzophenone triplets in aromatic solvents. Characterization of transient intermediates in the presence of diphenyl ether. Small, R.D.; Scaiano, J.C. J. Phys. Chem. 82: 2064-6 (1978).
- 78B072 Mechanism of the photochemical reaction of diphenylamines with carbon tetrachloride. Wyrzykowska, K.; Grodowski, M.; Weiss, K.; Latowski, T. Photochem. Photobiol. 28: 311-8 (1978).
- 78B081 Triplet-triplet absorption of some aryl-substituted 1,3,4-oxadiazoles. Rulliere, C.; Rayez, J.-C.; Roberge, P.C. Can J. Chem. 56: 2781-5 (1978).
- 78B088 Tripletspectra of 4-nitrostilbenes in polar and non-polar solvents at different temperatures and the configuration of the triplet state. Goerner, H.; Schulte-Frohlinde, D. Ber. Bunsenges. Phys. Chem. 82: 1102-7 (1978).
- 78B089 Formation and decay of triplet excimers as revealed by their absorption spectra: Intramolecular excimers of α,α-dinaphthylalkanes. Subudhi, P.C.; Lim, E.C. Chem. Phys. Lett. 56: 59-61 (1978).
- 78B108 Mechanisms of antioxidant action. A photochemical study of transition metal dibutyl dithiocarbamates (and their photostabilizing role in a polyolefin matrix). Scott, G.; Sheena, H.H.; Harriman, A.M. Eur. Polym. J. 14: 1071-7 (1978).
- 78B112 Dynamic behaviour of excited charge transfer systems in polar solvents. Masuhara, H.; Saito, T.; Maeda, Y.; Mataga, N. J. Mol. Struct. 47: 243-59 (1978).

- 78B129 Polarized triplet-triplet absorption spectra using stretched polymer film technique: 4-Hydroxy- and 4,4'-dihydroxy-biphenyl. Hoshi, T.; Oka, M.; Komuro, M.; Yoshino, J.; Ota, K.; Murofushi, K. Z. Phys. Chem. (Wiesbaden) 112: 129-37 (1978).
- 78E011 Triplet state of protoporphyrin IX. Lafferty, J.; Truscott, T.G. J. Chem. Soc., Chem. Commun.: 51-2 (1978).
- 78E019 Nonradiative relaxation processes of the higher excited triplet states of anthracenes studied by a double excitation method. Kobayashi, S.; Kikuchi, K.; Kokubun, H. Chem. Phys. 27: 399-407 (1978)
- 78E057 Triplet-triplet absorption spectroscopy of some highly dipolar unsaturated nitro compounds. Cowley, D.J. Helv. Chim. Acta 61: 184-97 (1978).
- 78E062 Flash photolysis study of aminopyridines. Wolleben, J.; Testa, A.C. J. Photochem. 8: 125-30 (1978).
- 78E152 Polarized photochromism in solid solutions. Pasternak, C.; Slifkin, M.A.; Shinitzky, M. J. Chem. Phys. 68: 2669-73 (1978).
- 78E157 Triplet excited state of furocoumarins: Reactions with nucleic acid bases and amino acids. Bensasson, R.V.; Land, E.J.; Salet, C. Photochem. Photobiol. 27: 273-80 (1978).
- 78E208 Laser photolysis study of the photoisomerization of retinals. Veyret, B.; Davis, S.G.; Yoshida, M.; Weiss, K. J. Am. Chem. Soc. 100: 3283-90 (1978).
- 78E308 265 nm Laser flash photolysis of some ortho-substituted anilides and related N-formylkynurenine derivatives. Pileni, M.P.; Santus, R.; Land, E.J. Photochem. Photobiol. 27: 671-81 (1978).
- 78E394 Determination of the extinction coefficient for triplet-triplet absorption from the kinetics of triplet-triplet energy transfer. Romashov, L.V.; Borovkova, V.A.; Kiryukhin, Yu.I.; Bagdasar'yan, Kh.S. High Energy Chem. 12: 132-4 (1978) Translated from: Khim. Vys. Energ. 12: 156-9 (1978).
- 78E414 Effect of the nature of the donor on the intersystem crossing in 9,10-dicyanoanthracene exciplexes in heptane. Soboleva, I.V.; Sadovskii, N.A.; Kuz'min, M.G. Dokl. Phys. Chem. 238: 70-3 (1978) Translated from: Dokl. Akad. Nauk SSSR 238: 400-3 (1978).
- 78E467 Intersystem crossing efficiencies of retinal isomers in different solvents measured by laser flash absorption spectrophotometry. Bensasson, R.; Land, E.J. Nouv. J. Chim. 2: 503-7 (1978).
- 78E495 Photophysical processes in fluorenone. Andrews, L.J.;
 Deroulede, A.; Linschitz, H. J. Phys. Chem. 82: 2304-9 (1978).
- 78E534 A luminescence and flash photolysis study of the photo-sensitizer N-methyl-2-benzoyl-β-naphthiazoline. Raemme, G. J. Photochem. 9: 439-47 (1978).
- 78E538 Interband transitions in molecular crystals. Triplet-triplet absorptions in ketone crystals. Morris, J.M.; Yoshihara, K. Mol. Phys. 36: 993-1003 (1978).
- 78E554 Kinetic spectroscopy of triplet states of benzenoid hydrocarbons using modulated Hg resonance radiation. Sime, M.E.; Phillips, D. Chem. Phys. Lett. 56: 138-42 (1978).
- 78E721 Triplet excited states of carbonyl-containing polyenes. Becker, R.S.; Bensasson, R.V.; Lafferty, J.; Truscott, T.G.; Land, E.J. J. Chem. Soc., Faraday Trans. 2: 2246-55 (1978).
- 78F030 Mechanism of the photochemical cis = trans isomerization of thioindigo and 6,6'-diethoxy-thioindigo in solution. Grellmann, K.H.; Hentzschel, P. Chem. Phys. Lett. 53: 545-51 (1978).
- 78Z194 Physical properties of excited states: A general method for measuring triplet-triplet extinction coefficients, singlet-triplet intersystem crossing efficiencies, and related parameters. Bensasson, R.; Land, E.J. Photochemical and Photobiological Reviews, K.C. Smith (ed.), Plenum Press, New York, N.Y., 1978, Vol. 3, p.163-91.
- 79A028 Blitzphotolyse von Desoxybenzoinen in Loesung. Amirzadeh, G.; Kuhlmann, R.; Schnabel, W. J. Photochem. 10: 133-44 (1979).
- 79A114 The triplet state of 8-methoxypsoralen. Sloper, R.W.; Truscott, T.G.; Land, E.J. Photochem. Photobiol. 29: 1025-9 (1979).

- 79A147 Reversible photorearrangement of N-substituted phthalimides: a flash photolysis study. Coyle, J.D.; Harriman, A.; Newport, G.L. J. Chem. Soc., Perkin Trans. 2: 799-802 (1979).
- 79A171 Polymer effect on the photochemical reaction of benzophenone with tetrahydrofuran and with diphenylamine in benzene. Kamachi, M.; Kikuta, Y.; Nozakura, S. Polym. J. 11: 273-7 (1979).
- 79A177 Steady-state and nanosecond spectroscopic studies of triplet sensitized reaction of K-region arene oxides. Itoh, M.; Murata, K.; Tokumura, K.; Shudo, K.; Miyata, N.; Okamoto, T. Tetrahedron 35: 1059-63 (1979).
- 79A178 Hydrogen atom abstraction of p-chloranil triplet in 1,4-dioxane in the presence and absence of tetrachlorohydroquinone. Kobashi, H.; Tomioka, Y.; Morita, T. Bul!. Chem. Soc. Jpn. 52: 1568-72 (1979).
- 79A230 Laser flash-photolysis of methylene blue solutions. Rehak, V.; Poskocil, J. Collect. Czech. Chem. Commun. 44: 2015-23 (1979).
- 79A237 The photophysics and photochemistry of pentahelicene. Grellmann, K.-H.; Hentzschel, P.; Wismontski-Knittel, T.; Fischer, E. J. Photochem. 11: 197-213 (1979).
- 79A241 Photochemistry and photooxidation of tetraphenyl-p-dioxin. George, M.V.; Kumar, Ch.V.; Scaiano, J.C. J. Phys. Chem. 83: 2452-5 (1979).
- 79A289 Photochemical α-cleavage and hydrogen abstraction in deoxybenzoin: a laser spectroscopy investigation. Fouassier, J.-P.; Merlin, A. Can. J. Chem. 57: 2812-7 (1979).
- 79A346 Flash photolysis of tricarbocyanine dyes. Shvedova, L.A.; Tatikolov, A.S.; Makin, S.M.; Romanov, N.N.; Kuz'min, V.A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 28: 696-701 (1979) Translated from: Izv. Akad. Nauk SSSR, Ser. Khim.: 749-56 (1979).
- 79A403 Mechanism for photoreduction of 2-[2'-5"-nitrofuryl-2")-vinyl]quinoline. Luzhkov, V.B.; Khudyakov, I.V. Bull. Acad. Sci. USSR, Div. Chem. Sci. 28: 608-11 (1979) Translated from: Izv. Akad. Nauk SSSR, Ser. Khim.: 653-6 (1979).
- 79B007 Picosecond transient spectroscopy of molecules in solution. Greene, B.I.; Hochstrasser, R.M.; Weisman, R.B. J. Chem. Phys. 70: 1247-59 (1979).
- 79B032 Optical absorption spectrum of excited ruthenium trisbipyridyl (Ru(bpy)₂³⁺). Lachish, U.; Infelta, P.P.; Graetzel, M. Chem. Phys. Lett. **62**: 317-9 (1979).
- 79B037 Determination of the triplet and excited singlet absorption spectra of chlorophyll a with a tunable dye laser. Baugher, J.; Hindman, J.C.; Katz, J.J. Chem. Phys. Lett. 63: 159-62 (1979).
- 79B042 A laser flash photolysis study of the reactivities of the triplet states of 8-methoxypsoralen and 4,5',8-trimethylpsoralen with nucleic acid bases in solution. Beaumont, P.C.; Parsons, B.J.; Phillips, G.O.; Allen, J.C. Biochim. Biophys. Acta 562: 214-21 (1979).
- 79B043 The infrared and visible absorption spectra of the lowest triplet state of acridine isolated in an argon matrix. Mitchell, M.B.; Smith, G.R.; Jansen, K.; Guillory, W.A. Chem. Phys. Lett. 63: 475-8 (1979).
- 79B044 Laser photolysis study of the spectral-kinetic characteristics of short-lived triplet exciplexes and the mechanism of atomic hydrogen transfer in the course of 2,6-diphenyl-1,4-benzoquinone triplet quenching with aromatic amines. Kuzmin, V.A.; Darmanyan, A.P.; Levin, P.P. Chem. Phys. Lett. 63: 509-14 (1979).
- 79B050 Transannular interaction in the excited triplet states of [2.2]paracyclophane and related compounds. Ishikawa, S.; Nakamura, J.; Iwata, S.; Sumitani, M.; Nagakura, S.; Sakata, Y.; Misumi, S. Bull. Chem. Soc. Jpn. 52: 1346-50 (1979).
- 79B061 Laserflash-photolysis of the p-chloranil/naphthalene system: Characterization of the naphthalene radical cation in a fluid medium. Gschwind, R.; Haselbach, E. Helv. Chim. Acta 62: 941-55 (1979).
- 79B076 Picosecond relaxation processes in excited state quinoxaline. Anderson, R.W.,Jr.; Damschen, D.E.; Scott, G.W.; Talley, L.D. J. Chem. Phys. 71: 1134-40 (1979).

- 79B077 A study of isomeric retinal triplets by low temperature spectroscopic and kinetic flash photolysis. Grodowski, M.; Liu, R.S.H.; Herkstroeter, W.G. Chem. Phys. Lett. 65: 42-5 (1979).
- 79B086 Kynurenic acid. I. Spectroscopic properties. Pileni, M.P.; Giraud, M.; Santus, R. Photochem. Photobiol. 30: 251-6 (1979).
- 79B087 Triplet excited states of pyrimidine nucleosides and nucleotides. Salet, C.; Bensasson, R.; Becker, R.S. Photochem. Photobiol. 30: 325-9 (1979).
- 79B098 A study on electronic excited states of iridium(III) complexes containing bipyridine and phenanthroline ligands. Solvent effect on triplet-triplet absorption spectra. Ohashi, Y.; Kobayashi, T. Bull. Chem. Soc. Jpn. 52: 2214-7 (1979).
- 79B104 A previously unreported intense absorption band and the pK_a of protonated triplet methylene blue. Ohno, T.; Osif, T.L.; Lichtin, N.N. Photochem. Photobiol. 30: 541-6 (1979).
- 79B114 Chemistry and photochemistry of the disodium salts of free-base porphyrin. Lee, C.Y.; Levin, G. J. Phys. Chem. 83: 3165-8 (1979).
- 79B119 Photophysics of aryl substituted 1,3,4-oxadiazoles. II. SCF CI calculations in different molecular configurations and assignment of the $T_1 \rightarrow T_n$ spectra of α NPD and β NPD. Rulliere, C.; Rayez, J.-C.; Roberge, P.C. Chem. Phys. 44: 337-47 (1979).
- 79B141 Determination of the photophysical constants of benzophenone by a nanosecond excitation method. Kiryukhin, Yu.I.;
 Sinitsyna, Z.A.; Bagdasar yan, Kh.S. High Energy Chem. 13: 432-7 (1979) Translated from: Khim. Vys. Energ. 13: 515-21 (1979).
- 79B161 Absorption spectrum and quantum yield of formation of the lowest triplet excited state of tris(2,2'-bipyridine)ruthenium(II) in aqueous solution. Bensasson, R.V.; Salet, C.; Balzani, V. C. R. Hebd. Seances Acad. Sci., Ser. B 289: 41-3 (1979).
- 79E099 Triplet deactivation in benzotriazole-type ultraviolet stabilizers. Werner, T. J. Phys. Chem. 83: 320-5 (1979).
- 79E136 The triplet excited states of biliverdin and biliverdin dimethyl ester. Land, E.J. Photochem. Photobiol. 29(3) 483-7 (1979).
- 79E175 Biradicaloid intermediates in photochemistry: Spectroscopic and kinetic study of 1,4-perinaphthadiyl and related 1,8-naphthoquinodimethanes. Gisin, M.; Rommel, E.; Wirz, J.; Burnett, M.N.; Pagni, R.M. J. Am. Chem. Soc. 101: 2216-8 (1979).
- 79E219 Reactivity of acridine dye triplet states in electron transfer reactions. Vogelmann, E.; Rauscher, W.; Kramer, H.E.A. Photochem. Photobiol. 29: 771-6 (1979).
- 79E243 Flash photolysis of cyanine dyes. Pinacyanol chloride (1,1'-diethyl-2,2'-carbocyanine chloride). Arvis, M.; Mialocq, J.-C. J. Chem. Soc., Faraday Trans. 2 75: 415-21 (1979).
- 79E282 Triplet excited state of coumarin and 4',5'-dihydropsoralen: Reaction with nucleic acid bases and amino acids. Land, E.J.; Truscott, T.G. Photochem, Photobiol. 29: 861-6 (1979).
- 79E297 Photophysics of aryl substituted 1,3,4-oxadiazoles. I. SCF CI calculations in different molecular configurations and assignment of the $T_1 \rightarrow T_n$ spectrum of 2,5-di-(1-naphthyl)-1,3,4-oxadiazole. Rulliere, C.; Rayez, J.-C.; Roberge, P.C. Chem. Phys. 39: 1-12 (1979).
- 79E304 Studies on the photo-oxidation mechanism of polymers-IX. The photo-sensitized oxidation of cis-1,4-polybutadiene by N-methyl-2-benzoyl-β-naphthiazoline. Rabek, J.F.; Raemme, G.; Canbaeck, G.; Ranby, B.; Kagiya, V.T. Eur. Polym. J. 15: 339-48 (1979).
- 79E325 The triplet state in trans → cis-photoisomerization of thioindigo. Karstens, T.; Kobs, K.; Memming, R. Ber. Bunsenges. Phys. Chem. 83: 504-10 (1979).
- 79E378 Upper excited triplet state mechanism in the trans → cis photo-isomerization of 4-bromostilbene. Goerner, H.; Schulte-Frohlinde, D. J. Am. Chem. Soc. 101: 4388-90 (1979).
- 79E443 Picosecond spectroscopic measurement of very fast intersystem crossing for 9,10-dioxa-anti-bimanes. Huppert, D.; Dodiuk, H.; Kanety, H.; Kosower, E.M. Chem. Phys. Lett. 65: 164-8 (1979).
- 79E543 Laser flash studies of thioindigo and indigo dyes. Evidence for a trans configuration of the triplet state. Goerner, H.; Schulte-Frohlinde, D. Chem. Phys. Lett. 66: 363-9 (1979).

- 79E546 Triplet state photophysical properties and intersystem crossing quantum efficiencies of homologues of retinals in various solvents. Das, P.K.; Becker, R.S. J. Am. Chem. Soc. 101: 6348-53 (1979).
- 79E640 Trans → cis photoisomerization of stilbene and 4-halogenated stilbenes. Evidence for an upper excited triplet pathway. Goerner, H.; Schulte-Frohlinde, D. J. Phys. Chem. 83: 3107-18 (1979).
- 79E666 Lowest triplet properties of poly(2-vinylnaphthalene) in solution. Bensasson, R.V.; Ronfard-Haret, J.C.; Land, E.J.; Webber, S.E. Chem. Phys. Lett. 68: 438-42 (1979).
- 79E678 Some furocoumarins and analogs: Comparison of triplet properties in solution with photobiological activities in yeast. Sa E Melo, M.T.; Averbeck, D.; Bensasson, R.V.; Land, E.J.; Salet, C. Photochem. Phobotiol. 30: 645-51 (1979).
- 79E690 Laser photolysis study of the exciplex between triplet benzil and triethylamine. Encinas, M.V.; Scaiano, J.C. J. Am. Chem. Soc. 101: 7740-1 (1979).
- 79E799 Excited states of six-membered azaaromatic rings. Part XII. Acid-base equilibria of "double" azines. Bulska, H.; Kotlicka, J. Pol. J. Chem. 53: 2103-15 (1979).
- 79E828 Etude par spectroscopy picoseconde et par photolyse eclair conventionnelle de polymethine-cyanines. Mialocq, J.C.; Goujon, P.; Arvis, M. J. Chim. Phys. Phys.-Chim. Biol. 76: 1067-75 (1979).
- 79E848 Mixed annihilation delayed fluorescence of Bengal Pink and anthracene. Ketsle, G.A.; Levshin, L.V.; Sokolova, L.K. Opt. Spectrosc. (USSR) 47: 494-7 (1979) Translated from: Opt. Spektrosk. 47: 893-9 (1979).
- 79E964 Systematic classification of molecules in terms of their luminescence spectroscopic properties. IV. Acridinone and its derivatives. Shcherbo, S.N.; Val'kova, G.A.; Shigorin, D.N.; Sorokina, R.S.; Rybakova, L.F. Russ. J. Phys. Chem. 53: 318-320 (1979) Translated from: Zh. Fiz. Khim. 53: 562-5 (1979).
- 79E965 Systematic classification of molecules in terms of luminescence spectroscopic properties. V. Linear quinacridinone and its derivatives. Shcherbo, S.N.; Val'kova, G.A.; Shigorin, D.N.; Moiseeva, Z.Z.; Bir, E.Sh. Russ. J. Phys. Chem. 53: 320-2 (1979) Translated from: Zh. Fiz. Khim. 53: 566-9 (1979).
- 79F576 Protonation of the ground and triplet states of rhodamine 6G in aqueous solutions. Kuznetsov, V.A.; Shamraev, V.N.;
 Nurmukhametov, R.N. Opt. Spectrosc. (USSR) 47: 157-60 (1979) Translated from: Opt. Spektrosk. 47: 279-83 (1979).
- 79N005 Light-initiated electron transfer in functional surfactant assemblies. 1. Micelles with transition metal counterions. Moroi, Y.; Braun, A.M.; Graetzel, M. J. Am. Chem. Soc. 101: 567-72 (1979).
- 79N036 Absorption and emission studies of solubilization in micelles. Part 5. Pyrene-3-sodium sulphonate solubilised in didodecyldimethylammonium bromide inverted micelles in benzene. Hunter, T.F.; Younis, A.I. J. Chem. Soc., Faraday Trans. 1 75: 550-60 (1979).
- 79P066 Laser flash photolysis studies on homo- and copolymers of phenylisopropenyl ketone and of pivalophenone in solution. Naito, I.; Kuhlmann, R.; Schnabel, W. Polymer 20: 165-70 (1979).
- 79R026 The effect of DNA binding on initial 8-methoxypsoralen photochemistry. Goyal, G.C.; Grossweiner, L.I. Photochem. Photobiol. 29: 847-50 (1979).
- 80A030 Photodimerization of benzyl 9-anthroate in the presence of triethylamine. Role of exciplex and triplet formation. Costa, S.M. de B.; Melo, E.C.C. J. Chem. Soc., Faraday Trans. 2 76: 1-13.
- 80A032 Triplet excited state of the 4'5' photoadduct of psoralen and thymine. Bensasson, R.V.; Salet, C.; Land, E.J.; Rushton, F.A.P. Photochem. Photobiol. 31: 129-33 (1980).
- 80A051 Laser flash photolysis of aromatic azo-hydrazone systems. McVie, J.; Mitchell, A.D.; Sinclair, R.S.; Truscott, T.G. J. Chem. Soc., Perkin Trans. 2: 286-90 (1980).

- 80A074 Light induced redox reactions of water soluble porphyrins, sensitization of hydrogen generation from water by zinc-porphyrin derivatives. Kalyanasundaram, K.; Graetzel, M. Helv. Chim. Acta 63: 478-85 (1980).
- 80A143 Kinetic and spectroscopic features of some carotenoid triplet states: Sensitization by singlet oxygen. Rodgers, M.A.J.; Bates, A.L. Photochem. Photobiol. 31: 533-7 (1980).
- 80A196 Photochemistry of 5-methylphenazinium salts in aqueous solution. 2. Optical flash photolysis and fluorescence results and a proposed mechanism. Chew, V.S.F.; Bolton, J.R.; Brown, R.G.; Porter, G. J. Phys. Chem. 84: 1909-16 (1980).
- 80A206 Dynamics of electron transfer in amine photooxidation. Peters, K.S.; Freilich, S.C.; Schaeffer, C.G. J. Am. Chem. Soc. 102: 5701-2 (1980).
- 80A222 Chemistry of fluorenylidene. Direct observation of, and kinetic measurements on, a singlet and a triplet carbene at room temperature. Zupancic, J.J.; Schuster, G.B. J. Am. Chem. Soc. 102: 5958-60 (1980).
- 80A235 The temperature dependence of the triplet lifetimes of some aryl iodides and bromides. Grieser, F.; Thomas, J.K. J. Chem. Phys. 73: 2115-9 (1980).
- 80A338 Solvent effects in the photochemistry of xanthone. Scaiano, J.C. J. Am. Chem. Soc. 102: 7747-53 (1980).
- 80A369 Heavy atom substituents as molecular probes for solvent effects on the dynamics of short-lived triplet exciplexes. Winter, G.; Steiner, U. Ber. Bunsenges. Phys. Chem. 84: 1203-14 (1980).
- 80B001 Transient absorption spectra of 2-hydroxybenzophenone photostabilizers. Merritt, C.; Scott, G.W.; Gupta, A.; Yavrouian, A. Chem. Phys. Lett. 69: 169-73 (1980).
- 80B010 Triplet sensitized cycloreversion of dinaphthyl dimethoxycarbonyl cyclobutane as studied by laser flash photolysis. Takamuku, S.; Schnabel, W. Chem. Phys. Lett. **69**: 399-402 (1980).
- 80B011 Triplet-triplet absorption of pyrazine related to the n\(\pi^*(B_{3u})\)-n\(\pi^*(B_{2g})\) splitting. Inoue, A.; Webster, D.; Lim, E.C. J. Chem. Phys. 72: 1419-20 (1980).
- 80B017 Triplet states of protoporphyrin IX and protoporphyrin IX dimethyl ester. Sinclair, R.S.; Tait, D.; Truscott, T.G. J. Chem. Soc., Faraday Trans. 1 76: 417-25 (1980).
- 80B021 The triplet-triplet absorption of cyclohexadiene-1,3 and ergosterol. Sensitized total ground state depletion of dienes by triplet energy transfer from the ruby laser excited 2-fluorenylphenylketone. Toth, M. Chem. Phys. 46: 437-43 (1980).
- 80B023 Nanosecond laser photolysis of the benzene monomer and eximer. Nakashima, N.; Sumitani, M.; Ohmine, I.; Yoshihara, K. J. Chem. Phys. 72: 2226-30 (1980).
- 80B030 Laser flash photolysis investigation of primary processes in the sensitized polymerization of vinyl monomers. IV. Experiments with hydroxy alkylphenones. Eichler, J.; Herz, C.P.; Naito, I.; Schnabel, W. J. Photochem. 12: 225-34 (1980).
- 80B055 Transient species in photochemistry of enones. The orthogonal triplet state revealed by laser photolysis. Bonneau, R. J. Am. Chem. Soc. 102: 3816-22 (1980).
- 80B057 Protolytic reactions of acridine in the triplet state. Nishida, Y.; Kikuchi, K.; Kokubun, H. J. Photochem. 13: 75-81 (1980).
- 80B066 Mechanistic studies of photochemical reactions of Nethylphthalimide with olefins. Hayashi, H.; Nagakura, S.; Kubo, Y.; Maruyama, K. Chem. Phys. Lett. 72: 291-4 (1980).
- 80B076 Photophysics and ionic photodissociation of polyesters with pendant 1-pyrenyl groups in solution. Masuhara, H.; Ohwada, S.; Seki, Y.; Mataga, N.; Sato, K.; Tazuke, S. Photochem. Photobiol. 32: 9-15 (1980).
- 80B077 Intermediates in the room temperature flash photolysis and low temperature photolysis of purine solutions. Arce, R.; Jimenez, L.A.; Rivera, V.; Torres, C. Photochem. Photobiol. 32: 91-5 (1980).
- 80B084 Nonradiative relaxation process of the higher excited states of meso-substituted anthracenes. Hamanoue, K.; Hirayama, S.; Nakayama, T.; Teranishi, H. J. Phys. Chem. 84: 2074-8 (1980).

- 80B087 Direct observation of the 1,4-biradical of benzophenone with cis-3-methyl-2-pentene excited by the fourth harmonic of a Nd:YAG laser. Hayashi, H. Bull. Chem. Soc. Jpn. 53: 2201-4 (1980).
- 80B088 Laser-photolysis study of biradical formation from the triplet state of 2,4,6-triisopropylbenzophenone. Hayashi, H.; Nagakura, S.; Ito, Y.; Umehara, Y.; Matsuura, T. Chem. Lett.: 939-42 (1980).
- 80B090 Extinction coefficients and quantum yields for triplet-triplet absorption using laser flash photolysis. Compton, R.H.; Grattan, K.T.V.; Morrow, T. J. Photochem. 14: 61-6 (1980).
- 80B101 Laser flash photolysis study of substituted azobenzenes. Evidence for a triplet state in viscous media. Goerner, H.; Gruen, H.; Schulte-Frohlinde, D. J. Phys. Chem. 84: 3031-9 (1980).
- 80B112 Assignment of transient species observed on laser flash photolysis of p-benzoquinone and methylated p-benzoquinones in aqueous solution. Ronfard-Haret, J.-C.; Bensasson, R.V.; Amouyal, E. J. Chem. Soc., Faraday Trans. 1 76: 2432-6 (1980).
- 80B130 Triplet-triplet absorption of aza- and diazaphenanthrenes. Petrov, S.N.; Bocherkov, A.I.; Shatrov, V.D.; Kuznetsov, V.S.; Batekha, I.G.; El'tsov, A.V. Zh. Prikl. Spektrosk. 33: 675-9 (1980).
- 80C005 Effect of pH on the behavior of duroquinone triplets. Scaiano, J.C.; Neta, P. J. Am. Chem. Soc. 102: 1608-11 (1980).
- 80E023 Two-photon stepwise dissociation of carbazole in solution. Martin, M.; Breheret, E.; Tfibel, F.; Lacourbas, B. J. Phys. Chem. 84: 70-2 (1980).
- 80E040 Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II). Creutz, C.; Chou, M.; Netzel, T.L.; Okumura, M.; Sutin, N. J. Am. Chem. Soc. 102: 1309-19 (1980).
- 80E137 Visual pigments. 11. Spectroscopy and photophysics of retinoic acids and all-trans-methyl retinoate. Takemura, T.; Chihara, K.; Becker, R.S.; Das, P.K.; Hug, G.L. J. Am. Chem. Soc. 102: 2604-9 (1980).
- 80E156 Photophysical properties of aminomethylpsoralen in presence and absence of DNA. Salet, C.; De Sa E Melo, T.M.; Bensasson, R.; Land, E.J. Biochim. Biophys. Acta 607: 379-83 (1980).
- 80E200 Triplet states of porphyrin esters. Bonnett, R.; Charalambides, A.A.; Land, E.J.; Sinclair, R.S.; Tait, D.; Truscott, T.G. J. Chem. Soc., Faraday Trans. 1 76: 852-9 (1980).
- 80E230 Spectral and electrical investigations of triplet excitons on pulsed electron excitation of molecular crystals. Kostin, A.K.; Vannikov, A.V. Radiat. Phys. Chem. 15: 613-6 (1980).
- 80E234 Intersystem crossing of nitroanthracene derivatives studied by picosecond spectroscopy. Hamanoue, K.; Hirayama, S.; Nakayama, T.; Teranishi, H. Chem. Lett.: 407-10 (1980).
- 80E318 Excited state interaction between 2-N,N-dimethylaminopyridine and p-nitroaniline. Wolleben, J.; Testa, A.C. J. Photochem. 13: 215-21 (1980).
- 80E361 Circular dichroism of chiral molecules in the lowest excited triplet state. Tetreau, C.; Lavalette, D. Nouv. J. Chim. 4: 423-5 (1980).
- 80E375 Excited state properties of 5H-dibenzo(a,d)cycloheptene. Watkins, A.R.; Bayrakceken, F. J. Lumin. 21: 239-46 (1980).
- 80E405 Low-lying electronically excited states of cycl[3.3.3]azine, a bridged 12π-perimeter. Leupin, W.; Wirz, J. J. Am. Chem. Soc. 102: 6068-75 (1980).
- 80E416 Benzophenone triplet properties in acetonitrile and water. Reduction by lactams. Bensasson, R.V.; Gramain, J.-C. J. Chem. Soc., Faraday Trans. 1 76: 1801-10 (1980).
- 80E438 Studies of excited state absorption of the dye p-phenylene-bis-(5-phenyl-2-oxazole) in liquid solution and in the vapour phase. Marowsky, G.; Schomburg, H. J. Photochem. 14: 1-10 (1980).
- 80E439 Quenching of excited 2,5-diphenyloxazole by CCl₄. Takahashi, T.; Kikuchi, K.; Kokubun, H. J. Photochem. 14: 67-76 (1980).

- 80E441 Laser photochemistry of poly(N-vinylcarbazole) in solution. Masuhara, H.; Ohwada, S.; Mataga, N.; Itaya, A.; Okamoto, K.; Kusabayashi, S. J. Phys. Chem. 84: 2363-8 (1980).
- 80E593 The photophysics of bonellin: A chlorin found in marine animals. Matthews, J.I.; Braslavsky, S.E.; Camilleri, P. Photochem. Photobiol. 32: 733-8 (1980).
- 80E642 On the photolysis of hydroxy alkylphenones and O-substituted derivatives. Laser flash photolysis and photocuring studies. Eichler, J.; Herz, C.P.; Schnabel, W. Angew. Makromol. Chem. 91: 39-54 (1980).
- 80E720 Polymeric charge-transfer complexes based on poly(vinyl alcohol acetal)s. 2. Geissler, U.; Schulz, R.C. Makromol. Chem. 181: 1483-94 (1980).
- 80E778 Kinetic investigation of triplet exciplexes of phenazine and its mono-, di-, and tetrabenzo derivatives with an electron donor.
 Osipov, V.V.; Usacheva, M.N.; Dilung, I.I. Dokl. Phys. Chem.
 254: 765-8 (1980) Translated from: Dokl. Akad. Nauk SSSR
 254: 407-10 (1980).
- 80E867 Migration of electron excitation energy with involvement of excited acceptor molecules. Gurinovich, G.P., Zen'kevich, E.I., Sagun, E.I. Bull. Acad. Sci. USSR, Phys. Ser. 44: 7-13 (1980) Translated from: Izv. Akad. Nauk SSSR, Ser. Fiz. 44: 693-701 (1980).
- 80E884 Nanoscoond laser photolysis and the time resolved absorption spectra of organic molecules. Nakayama, T.; Miyake, T.; Okamoto, M.; Hamanoue, K.; Teranishi, H. Mem. Fac. Ind. Arts, Kyoto Tech. Univ. Sci. Technol. 29: 35-45 (1980).
- 80F001 Laser-induced two-photon ionization of acridine in aqueous solution. Kellmann, A.; Tfibel, F. Chem. Phys. Lett. 69: 61-5 (1980).
- 80F299 Singlet and triplet states in the cis-trans photoisomerization of 4-cyanostilbenes in solution. Goerner, H. J. Photochem. 13: 269-94 (1980).
- 80F372 Photochemical transformations of cis-1,2-dibenzoylalkenes. Lahiri, S.; Dabral, V.; Chauhan, S.M.S.; Chakachery, E.; Kumar, C.V.; Scaiano, J.C.; George, M.V. J. Org. Chem. 45: 3782-90 (1980).
- 80F373 Role of proflavin as a photosensitizer for the light-induced hydrogen evolution from water. Kalyanasundaram, K.; Dung, D. J. Phys. Chem. 84: 2251-6 (1980).
- 80N033 Interfacial electron transfer involving radical ions of carotene and diphenylhexatriene in micelles and vesicles. Almgren, M.; Thomas, J.K. Photochem. Photobiol. 31: 329-35 (1980).
- 80N035 Zinc-porphyrin sensitized reduction of simple and functional quinones in vesicle systems. Pileni, M.-P. Chem. Phys. Lett. 71: 317-21 (1980).
- 80N044 Light-driven redox processes in functional micellar units. III.

 Zn-tetraphenylporphyrin sensitized reactions in methyl viologene surfactant assemblics. Pilcni, M.-P.; Braun, A.M.;

 Graetzel, M. Photochem. Photobiol. 31: 423-7 (1980).
- 80N057 Chlorophyll a sensitized redox processes in microemulsion systems. Kiwi, J.; Graetzel, M. J. Phys. Chem. 84: 1503-7 (1980).
- 80N064 Laser photolysis studies of the light-induced formation of spiropyran-merocyanine complexes in solution. Krongauz, V.; Kiwi, J.; Graetzel, M. J. Photochem. 13: 89-97 (1980).
- 80N087 Zinc porphyrin sensitized reduction of simple and functional quinones in micellar systems. Pileni, M.-P.; Graetzel, M. J. Phys. Chem. 84: 1822-5 (1980).
- 80N112 Light-induced redox reactions of proflavin in aqueous and micellar solution. Pileni, M.-P.; Graetzel, M. J. Phys. Chem. 84: 2402-6 (1980).
- 80N143 Zinc porphyrin sensitized redox processes in microemulsions. Pileni, M.-P. Chem. Phys. Lett. 75: 540-4 (1980).
- 81A024 The flavin sensitised photooxidation of ascorbic acid: A continuous and flash photolysis study. Heelis, P.F.; Parsons, B.J.; Phillips, G.O.; McKellar, J.F. Photochem. Photobiol. 33: 7-13 (1981).
- 81A140 Triplet state of 5-nitro-2-furoic acid by laser flash photolysis. Spectrum, lifetime and reactivity. Kemp, T.J.; Martins, L.J.A. J. Chem. Soc., Faraday Trans. 1 77: 1425-35 (1981).

- 81A174 Laser flash photolysis study of the reactions of carbonyl triplets with phenols and photochemistry of p-hydroxypropiophenone. Das, P.K.; Encinas, M.V.; Scaiano, J.C. J. Am. Chem. Soc. 103: 4154-62 (1981).
- 81A232 The photophysical and photochemical processes of tryptophan in interaction with polynucleotides: Laser flash photolysis study. Doan, T.L.; Toulme, J.J.; Santus, R.; Helene, C. Photochem. Photobiol. 34: 309-13 (1981).
- 81A294 On the photoinitiation of free radical polymerization. Laser flash photolysis investigations on thioxanthone derivatives. Amirzadeh, G.; Schnabel, W. Makromol. Chem. 182: 2821-35 (1981).
- 81A314 Quenching, radical formation, and disproportionation in the photoreduction of 4-carboxybenzophenone by 4-carboxybenzhydrol, hydrazine, and hydrazinium ion. Inbar, S.; Linschitz, H.; Cohen, S.G. J. Am. Chem. Soc. 103: 7323-8 (1981).
- 81A345 Mechanism of photoreduction of 1- and 4-azoniaphenanthrene by dimethylformamide and phenol. Ivanov, V.L.; Al'-Ainen, S.A.; Kuz'min, M.G. J. Org. Chem. USSR 17: 720-5 (1981) Translated from: Zh. Org. Khim. 17: 822-7 (1981).
- 81A347 Photoinduced electron ejection from methylene blue in water and acetonitrile. Kamat, P.V.; Lichtin, N.N. J. Phys. Chem. 85: 3864-8 (1981).
- 81A390 Investigation of photochemical processes involving acridone and its derivatives in ethanol solutions by flash photolysis. Shcherbo, S.N.; Val'kova, G.A.; Shigorin, D.N. Russ. J. Phys. Chem. 55: 286-7 (1981) Translated from: Zh. Fiz. Khim. 55: 509-10 (1981).
- 81A404 Time-resolved spectroscopy of carbonyl compounds. Lougnot, D.J.; Merlin, A.; Salvin, R.; Fouassier, J.P.; Faure, J. Nuovo Cimento Soc. Ital. Fis. B 63B: 284-94 (1981).
- 81A434 Structure and properties of 5-deazaflavin radicals as compared to natural flavosemiquinones. Goldberg, M.; Pecht, I.; Kramer, H.E.A.; Traber, R.; Hemmerich, P. Biochim. Biophys. Acta 673: 570-93 (1981).
- 81B008 Time-resolved resonance Raman spectroscopy: The triplet state of all-trans-retinal. Wilbrandt, R.; Jensen, N.-H. J. Am. Chem. Soc. 103: 1036-41 (1981).
- 81B032 Transient photochemistry of Safranin-O. Baumgartner, C.E.; Richtol, H.H.; Aikens, D.A. Photochem. Photobiol. 34: 17-22 (1981).
- 81B064 Time-resolved spectroscopy and chemical reactivity of energetic transient species of nitroaromatics. Capellos, C. J. Photochem. 17: 213-25 (1981).
- 81B094 Triplet-triplet electronic absorption spectroscopy using a Fourier transform infrared spectrometer. Baiardo, J.; Mukherjee, R.; Vala, M. Appl. Spectrosc. 35: 510-1 (1981).
- 81B097 Vibrational spectroscopy of the electronically excited state. 4.

 Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states. Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J. J. Am. Chem. Soc. 103: 7433-40 (1981).
- 81B111 Near infra-red absorption spectra of the chlorophyll a cations and triplet state in vitro and in vivo. Mathis, P.; Setif, P. Isr. J. Chem. 21: 316-20 (1981).
- 81D115 Laser flash photolysis of the hematoporphyrin-β-carotene system. Poletti, A.; Murgia, S.M.; Cannistraro, S. Photobiochem. Photobiophys. 2: 167-72 (1981).
- 81B119 Nature of the triplet-triplet transitions in various many fragment molecules. Glagolev, V.L.; Pomazan, Yu.V.; Shamshev, V.N. Opt. Spectrosc. (USSR) 50: 86-9 (1981) Translated from: Opt. Spektrosk. 50: 165-70 (1981).
- 81E015 "Fast" triplet excimer formation in fluid solutions of dinaphthylalkanes. Webster, D.; Baugher, J.F.; Lim, B.T.; Lim, E.C. Chem. Phys. Lett. 77: 294-8 (1981).
- 81E016 Enhanced phosphorescence in intramolecular exciplex systems. Hatano, Y.; Yamamoto, M.; Nishijima, Y. Chem. Phys. Lett. 77: 299-303 (1981).

- 81E042 Photophysical properties of nucleic acid components. II. Effect of N,N' dimethyl substitution on intersystem crossing in pyrimidine bases. Becker, R.S.; Bensasson, R.V.; Salet, C. Photochem. Photobiol. 33: 115-6 (1981).
- 81E082 Photophysics of indole. Comparative study of quenching, solvent, and temperature effects by laser flash photolysis and fluorescence. Klein, R.; Tatischeff, I.; Bazin, M.; Santus, R. J. Phys. Chem. 85: 670-7 (1981).
- 81E084 Properties of excited tetrakis(sulfonatophenyl)porphyrin in aqueous solutions. Photoredox reactions with quenchers. Nahor, G.S.; Rabani, J.; Grieser, F. J. Phys. Chem. 85: 697-702 (1981).
- 81E091 Triplet absorption and phosphorescence emission in zinc cytochrome c. Dixit, S.N.; Waring, A.J.; Vanderkooi, J.M. FEBS Lett. 125: 86-8 (1981).
- 81E098 The electronic triplet state of a peralkylated cyclobutadiene. Wirz, J.; Krebs, A.; Schmalstieg, H.; Angliker, H. Angew. Chem., Int. Ed. Engl. 20: 192-3 (1981).
- 81E147 Relaxation mechanism of excited acridine in nonreactive solvents. Kasama, K.; Kikuchi, K.; Yamamoto, S.; Uji-ie, K.; Nishida, Y.; Kokubun, H. J. Phys. Chem. 85: 1291-6 (1981).
- 81E149 Reactions of the excited singlet state of pyrene with metal ions. Intermolecular electron transfer in caffeine-solubilized aqueous solution. Nosaka, Y.; Kira, A.; Imamura, M. J. Phys. Chem. 85: 1353-8 (1981).
- 81E151 Photophysical and photosensitizing properties of 2-amino-4 pteridinone: A natural pigment. Chahidi, C.; Aubailly, M.; Monzikoff, A.; Bazin, M.; Santus, R. Photochem. Photobiol. 33: 641-9 (1981).
- 81E214 Observation of the triplet state of stilbene in fluid solution. Determination of the equilibrium constant (³t* = ³p*) and of the rate constant for intersystem crossing (³p* → ¹p). Goerner, H.; Schulte-Frohlinde, D. J. Phys. Chem. 85: 1835-41 (1981).
- 81E222 Intersystem crossing and lowest triplet sates of 4-chromanone, chromone, and flavone. Hamanoue, K.; Nakayama, T.; Miyake, T.; Teranishi, H. Chem. Lett.: 39-42 (1981).
- 81E271 Luminescence of porphyrins and metalloporphyrins. Part 3. Heavy-atom effects. Harriman, A. J. Chem. Soc., Faraday Trans. 2 77: 1281-91 (1981).
- 81E309 Picosecond triplet state dynamics and photodissociation in 2and 9-iodoanthracene. Pineault, R.L.; Morgante, C.G.; Struve, W.S. J. Photochem. 17: 435-49 (1981).
- 81E346 The triplet state energies of rubrene and diphenylisobenzofuran. Herkstroeter, W.G.; Merkel, P.B. J. Photochem. 16: 331-41 (1981).
- 81E442 Photochemistry in solution. XX. Triplet reactivity of aliphatic aldehydes. Kossanyi, J.; Sabbah, S.; Chaquin, P.; Ronfart-Haret, J.C. Tetrahedron 37: 3307-15 (1981).
- 81E457 Laser flash photolysis of phthalocyanines in solution and microemulsion. Jacques, P.; Braun, A.M. Helv. Chim. Acta 64: 1800-6 (1981).
- 81E490 Analysis of the decay of 1-phenyl-2-(2-naphthyl)ethene triplets. A nanosecond laser pulse study. Goerner, H.; Eaker, D.W.; Saltiel, J. J. Am. Chem. Soc. 103: 7164-9 (1981).
- 81E508 Quenching of the triplet state of poly(2-vinylnaphthalene) in solution: Effect of molecular weight. Pratte, J.F.; Noyes, W.A., Jr.; Webber, S.E. Polym. Photochem. 1: 3-13 (1981).
- 81E552 Deactivation mechanism of excited acridine and 9-substituted acridines in water. Kasama, K.; Kikuchi, K.; Nishida, Y.; Kokubun, H. J. Phys. Chem. 85: 4148-53 (1981).
- 81E639 Investigation of the mechanism of photoisomerization by the trans-thioindigo method of picosecond flash photolysis. Krysanov, S.A.; Alfimov, M.V. Dokl. Phys. Chem. 258: 460-2 (1981) Translated from Dokl. Akad. Nauk SSSR 258: 665-8 (1981).
- 81E648 Spectroscopic study of the triplet states of organoelemental derivatives of fluorene. Davydov, S.N.; Rodionov, A.N.; Shigorin, D.N.; Syutkina, O.P.; Krasnova, T.L. Russ. J. Phys. Chem. 55: 444-5 (1981) Translated from: Zh. Fiz. Khim. 55: 784-7 (1981).

- 81E649 Determination of the energies of the highly excited triplet states of derivatives of acridinone, linear quinacridinone, and phenanthridinone. Shcherbo, S.N.; Val'kova, G.A.; Shigorin, D.N. Russ. J. Phys. Chem. 55: 452-3 (1981) Translated from: Zh. Fiz. Khim. 55: 795-7 (1981).
- 81E650 The influence of the relative positions of the chromophoric groups on the luminescence-spectroscopic and photochemical properties of compounds with heteroatoms. Val'kova, G.A.; Sakhno, T.V.; Shigorin, D.N.; Andrievskii, A.M.; Poplavskii, A.N. Russ. J. Phys. Chem. 55: 459-60 (1981) Translated from: Zh. Fiz. Khim. 55: 803-5 (1981).
- 81E715 Effect of structure of donor and acceptor on kinetic spectral characteristics of triplet exciplexes. Levin, P.P. Bull. Acad. Sci. USSR, Div. Chem. Sci. 30: 1970-2 (1981) Translated from: Izv. Akad. Nauk SSSR, Ser. Khim.: 2390-2 (1981).
- 81E716 Laser photolysis of rubrene. Darmanyan, A.P.; Kuz'min, V.A. Dokl. Phys. Chem. 260: 938-41 (1981) Translated from: Dokl. Akad. Nauk SSSR 260: 1167-70 (1981).
- 81E786 A study of the electronic states of iridium(III) complexes containing 1,10-phenanthroline ligands. The contribution of a dd excited state to the lowest triplet state. Ohashi, Y. Bull. Chem. Soc. Jpn. 54: 3673-6 (1981).
- 81F070 The mechanism of the photo-induced decarboxylation of pyruvic acid in solution. Davidson, R.S.; Goodwin, D.; Fornier de Violet, Ph. Chem. Phys. Lett. 78: 471-4 (1981).
- 81F111 Flash photolytic studies on the photoconversion of aryl vinyl ethers to dihydrofurans. Wolff, T. J. Org. Chem. 46: 978-83 (1981)
- 81F121 Probing of chlorophyll a with a pulsed tunable laser: Monomer and dimer excited state lifetimes and their time resolved fluorescence spectra. Asano, M.; Koningstein, J.A. Chem. Phys. 57: 1-10 (1981).
- 81F130 Photochemistry of anthraquinone-2,6-disodium sulphonate in aqueous solution. Harriman, A.; Mills, A. Photochem. Photobiol. 33: 619-25 (1981).
- 81F201 Photodissociation reaction from higher excited triplet states of [2.2]paracyclophane. Ishikawa, S.; Nakamura, J.; Nagakura, S. Bull. Chem. Soc. Jpn. 54: 685-6 (1981).
- 81F275 Observation of a triplet state of azulene generated by energy transfer in solution. Goerner, H.; Schulte-Frohlinde, D. J. Photochem. 16: 169-77 (1981).
- 81F315 Mechanism and efficiency of photochemical attachment of aliphatic hydrocarbons to triphenylene in rigid solutions at 77 K. Lamotte, M. J. Phys. Chem. 85: 2632-6 (1981).
- 81F390 Photochemical and thermal rearrangements of a benzoylnaphthobarrelene-like system. Demuth, M.; Amrein, W.; Bender, C.O.; Braslavsky, S.E.; Burger, U.; George, M.V.; Lemmer, D.; Schaffner, K. Tetrahedron 37: 3245-61 (1981).
- 81N016 Static and dynamic phenomena in the quenching of phenanthrene triplets by conjugated dienes in anionic micelles. Selwyn, J.C.: Scaiano, J.C. Can, J. Chem. 59: 663-8 (1981).
- 81N034 Reaction photoredox de la tetraphenyl porphyrine de zinc en solution dans le triton. Pradevan, G.-O.; Pileni, M.-P. J. Chim. Phys. Phys.-Chim. Biol. 78: 203-5 (1981).
- 81N070 Dynamics and statistics of triplet-triplet annihilation in micellar assemblies. Rothenberger, G., Infelta, P.P., Graetzel, M. J. Phys. Chem. 85: 1850-6 (1981).
- 81N156 Photochemical processes of benzophenone in microheterogeneous systems. Braun, A.M.; Krieg, M.; Turro, N.J.; Aikawa, M.; Gould, I.R.; Graf, G.A.; Lee, P.C.-C. J. Am. Chem. Soc. 103: 7312-6 (1981).
- 81P245 Laser photochemistry of polymers having 1,2-transdicarbazolylcyclobutane groups in solution. Masuhara, H.; Shioyama, H.; Mataga, N.; Inoue, T.; Kitamura, N.; Tanabe, T.; Tazuke, S. Macromolecules 14: 1738-42 (1981).
- 82A006 The triplet state of anthracene photodimers and the wavelength dependence of the photodissociation process. Yamamoto, S.; Grellmann, K.-H. Chem. Phys. Lett. 85: 73-80 (1982).
- 82A082 Anion-induced triplet quenching of aromatic ketones by nanosecond laser photolysis. Shizuka, H.; Obuchi, H. J. Phys. Chem. 86: 1297-302 (1982).

- 82A138 Primary processes in the photochemistry of aqueous sulphacetamide: A laser flash photolysis and pulse radiolysis study. Land, E.J.; Navaratnam, S.; Parsons, B.J.; Phillips, G.O. Photochem. Photobiol. 35: 637-42 (1982).
- 82A152 Pulsed irradiation of water-soluble porphyrins. Bonnet, R.; Ridge, R.J.; Land, E.J.; Sinclair, R.S.; Tait, D.; Truscott, T.G. J. Chem. Soc., Faraday Trans. 1 78: 127-36 (1982).
- 82A153 Triplet state of 2-nitrothiophen. A laser flash-photolysis study. Martins, L.J.A.; Kemp, T.J. J. Chem. Soc., Faraday Trans. 1 78: 519-31 (1982).
- 82A154 Electron-transfer reactions of the 2-nitrothiophen triplet state studied by laser flash photolysis. Martins, L.J.A. J. Chem. Soc., Faraday Trans. 1 78: 533-43 (1982).
- 82A190 Cis

 trans photoisomerization of thioindigoid dyes. Klages, C.P.; Kobs, K.; Memming, R. Chem. Phys. Lett. 90: 46-50 (1982).
- 82A205 Primary intermediates in the pulsed irradiation of retinoids. Lo, K.K.N.; Land, E.J.; Truscott, T.G. Photochem. Photobiol. 36: 139-45 (1982).
- 82A259 Triplet state of 1,10-phenanthroline and benzophenone in benzene studied by pulse radiolysis. Teply, J.; Mehnert, R.; Brede, O.; Fojtik, A. Radiochem. Radioanal. Lett. 53: 141-51 (1982).
- 82A288 Photokinetic aspects of specific hydrogen bonding in all-trans retinal at room temperature. Das, P.K.; Hug, G.L. Photochem. Photobiol. 36: 455-61 (1982).
- 82A290 Electron transfer in the quenching of triplet states of zinc phthalocyanine and methylene blue by the use of Fe(III), Co(III), and organic oxidants. Ohno, T.; Kato, S.; Lichtin, N.N. Bull. Chem. Soc. Jpn. 55: 2753-9 (1982).
- 82A292 Effect of conformation on ring opening of cis and trans dimers of acenaphthylene in the triplet state. Direct detection of hydrocarbon biradical, 1,1'-biacenaphthene-2,2'-diyl. Kobashi, H.; Ikawa, H.; Kondo, R.; Morita, T. Bull. Chem. Soc. Jpn. 55: 3013-8 (1982).
- 82A297 Sensitized photoreduction of nitrate in homogeneous and micellar solutions. Frank, A.J.; Graetzel, M. Inorg. Chem. 21: 3834-7 (1982).
- 82A306 Kinetics and mechanism of porphyrin-photosensitized reduction of methylviologen. Rougee, M.; Ebbesen, T.; Ghetti, F.; Bensasson, R.V. J. Phys. Chem. 86: 4404-12 (1982).
- 82A365 Tris(2,2'-bipyridine)ruthenium(II)-sensitized photooxidation of phenols. Environmental effects on electron transfer yields and kinetics. Miedlar, K.; Das, P.K. J. Am. Chem. Soc. 104: 7462-9 (1982).
- 82B014 Substituent effect on a photo-Smiles rearrangement by laser photolysis. Yokoyama, K.; Nakamura, J.; Mutai, K.; Nagakura, S. Bull. Chem. Soc. Jpn. 55: 317-8 (1982).
- 82B043 Deazaflavin photocatalyzed methyl viologen reduction in water. A laser flash-photolysis study. Visser, A.J.W.G.; Fendler, J.H. J. Phys. Chem. 86: 2406-9 (1982).
- 82B045 Photochemical reactions of triplet acetone with indole, purine, and pyrimidine derivatives. Kasama, K.; Takematsu, A.; Arai, S. J. Phys. Chem. 86: 2420-7 (1982).
- 82B052 Comment on the publication of transient spectra obtained using flash techniques. Scaiano, J.C. J. Photochem. 18: 395-6 (1982).
- 82B057 Detection of the triplet-triplet absorption of 1,3-dienes by pulse radiolysis. Gorman, A.A.; Gould, I.R.; Hamblett, I. J. Photochem. 19: 89-94 (1982).
- 82B094 Mimicry of carotenoid function in photosynthesis: Synthesis and photophysical properties of a carotenopyropheophorbide. Liddell, P.A.; Nemeth, G.A.; Lehman, W.R.; Joy, A.M.; Moore, A.L.; Bensasson, R.V.; Moore, T.A.; Gust, D. Photochem. Photobiol. 36: 641-5 (1982).
- 82B102 Laser flash studies of the photochemistry of anthrone. Scaiano, J.C.; Lee, C.W.B.; Chow, Y.L.; Buono-Core, G.E. J. Photochem. 20: 327-34 (1982).
- 82B106 Triplet-triplet transitions of the rhodamine 6G molecule. Kuznetsov, V.A.; Shamraev, V.N.; Nurmukhametov, R.N. Opt. Spectrosc. (USSR) 52: 501-3 (1982) Translated from: Opt. Spektrosk. 52: 838-41 (1982).

- 82B118 A flash photolysis study of hematoporphyrin IX in neutral, aqueous and ethanolic solutions. Murgia, S.M.; Pasqua, A.; Poletti, A. Photobiochem. Photobiophys. 4: 329-36 (1982).
- 82B121 Laser system and data analysis techniques for adsorbing and non-adsorbing excited transients. O'Dowd, R.F.; O'Hare, A.; Cooke, J.; Taaffe, J.K. J. Phys. E 15: 736-40 (1982).
- 82C018 Excited-state redox properties of ruthenium(II) phthalocyanine from electron-transfer quenching. Prasad, D.R.; Ferraudi, G. J. Phys. Chem. 86: 4037–40 (1982).
- 82E041 Laser photolysis studies of spiropyran-merocyanine aggregate formation in solution. Kalisky, Y.; Williams, D.J. Chem. Phys. Lett. 86: 100-4 (1982).
- 82E129 Radiationless intermolecular energy transfer with participation of acceptor excited triplet states. Gurinovich, G.P.; Zenkevich, E.I.; Sagun, E.I. J. Lumin. 26: 297-317 (1982).
- 82E133 Some properties of the triplet excited state of the photosensitizing furocoumarin: 3-carbethoxypsoralen. Ronfard-Haret, J.C.; Averbeck, D.; Bensasson, R.V.; Bisagni, E.; Land, E.J. Photochem. Photobiol. 35: 479-89 (1982).
- 82E174 Photoprotection by carotenoids during photosynthesis: Motional dependence of intramolecular energy transfer. Moore, A.L.; Joy, A.; Tom, R.; Gust, D.; Moore, T.A.; Bensasson, R.V.; Land, E.J. Science 216: 982-4 (1982).
- 82E181 Intersystem crossing in styrene and styrene derivatives. Bonneau, R. J. Am. Chem. Soc. 104. 2921-3 (1982).
- 82E204 Triplet states of phenylethylenes in solution. Energies, lifetimes, and absorption spectra of 1,1-diphenyl-, triphenyl-, and tetraphenylethylene triplets. Goerner, H. J. Phys. Chem. 86: 2028-35 (1982).
- 82E232 Electron transfer in the quenching of protonated triplet thionine and methylene blue by ground state thionine. Kamat, P.V.; Lichtin, N.N. J. Photochem. 18: 197-209 (1982).
- 82E280 Electronic spectra of hexacene in solution (ground state, triplet state, dication and dianion). Angliker, H.; Rommel, E.; Wirz, J. Chem. Phys. Lett. 87: 208-12 (1982).
- 82E287 Intramolecular singlet and triplet excimers with diphenanthrylpropanes. Zachariasse, K.A.; Busse, R.; Schrader, U.; Kuehnle, W. Chem. Phys. Lett. 89: 303-8 (1982).
- 82E303 Intersystem crossing and predissociation of haloaromatics. Huppert, D.; Rand, S.D.; Reynolds, A.H.; Rentzepis, P.M. J. Chem. Phys. 77: 1214-24 (1982).
- 82E338 Effect of substituent on the behaviour of the excited singlet and triplet states in carbonyl derivatives of anthracene of the type 9-X·CO·A. Hirayama, S. J. Chem. Soc., Faraday Trans. 1 78: 2411-21 (1982).
- 82E359 Nanosecond laser flash photolysis of 1-anilinonaphthalene. Nakamura, H.; Tanaka, J.; Nakashima, N.; Yoshihara, K. Bull. Chem. Soc. Jpn. 55: 1795-7 (1982).
- 82E365 Photoprocesses in diphenylpolyenes. Oxygen and heavy-atom enhancement of triplet yields. Chattopadhyay, S.K.; Das, P.K.; Hug, G.L. J. Am. Chem. Soc. 104: 4507-14 (1982).
- 82E373 Absorption triplet-triplet et cinetique de la desactivation du premier etat triplet de derives de l'amino-2-Δ²-thiazoline. Corval, A.; Jardon, P.; Gautron, R. J. Chim. Phys. Phys.-Chim. Biol. 79: 335-41 (1982).
- 82E429 Singlet mechanism for trans → cis photoisomerization of α,ω-diphenylpolyenes in solution: Laser flash study of the triplet states od diphenylbutadiene, diphenylhexatriene and diphenyloctatetraene. Goerner, H. J. Photochem. 19: 343-56 (1982).
- 82E451 Generation of ¹O₂ and the mechanism of internal conversion in 9,10-diphenylanthracene. Darmanyan, A.P. Chem. Phys. Lett. 91: 396-400 (1982).
- 82E456 Properties of the triplet state of N,N,N',N'-tetraethyloxonine. Kamat, P.V.; Lichtin, N.N. Isr. J. Chem. 22: 113-6 (1982).
- 82E474 Time-resolved resonance Raman spectra of the lowest triplet state of N,N,N',N'-tetramethyl-p-phenylenediamine in solution. Yokoyama, K. Chem. Phys. Lett. 92: 93-6 (1982).
- 82E475 Solution photochemistry of o-hydroxybenzophenone at low temperatures. Scaiano, J.C.-Chem. Phys. Lett. 92: 97-9 (1982).

- 82E497 Picosecond laser photolysis studies of deactivation processes of excited hydrogen-bonding complexes. 2. Dibenzocarbazolepyridine systems. Martin, M.M.; Ikeda, N.; Okada, T.; Mataga, N. J. Phys. Chem. 86(21); 4148-56 (1982).
- 82E509 Studies on triplet-singlet energy transfer with 1,3-dibromo-9, 10-bis-[phenylethynyl]-anthracene. Fang, T.-S.; Lin, J.; Schneider, R.; Yamada, T.; Singer, L.A. Chem. Phys. Lett. 92: 283-7 (1982).
- 82E527 Reactivity and decay pathways of photoexcited anilinonaphthalenes. Grellmann, K.H.; Schmitt, U. J. Am. Chem. Soc. 104: 6267-72 (1982).
- 82E561 Relaxation mechanism of excited acridine in methyl methacrylate and poly(methyl methacrylate). Kasama, K.; Kikuchi, K.; Uji-ie, K.; Yamamoto, S.-A.; Kokubun, H. J. Phys. Chem. 86: 4733-7 (1982).
- 82E614 Quenching of duroquinone by aromatic donors of electron and hydrogen atom. Levin, P.P.; Tatikolov, A.S.; Kuz'min, V.A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 31: 890-4 (1982) Translated from: Izv. Akad. Nauk SSSR, Ser. Khim.: 1005-10 (1982).
- 82E622 Photophysical and redox properties of water-soluble porphyrins in aqueous media. Kalyanasundaram, K.; Neumann-Spallart, M. J. Phys. Chem. 86: 5163-9 (1982).
- 82E632 Triplet-triplet absorption of organic compounds lasing efficiently in the ultraviolet. Bolotko, L.M.; Gruzinskii, V.V.; Danilova, V.I.; Kopylova, T.N. Opt. Spectrosc. (USSR) 52: 379-81 (1982) Translated from: Opt. Spektrosk. 52: 635-8 (1982).
- 82E648 Quenching of phosphorescence of aromatic molecules through highly excited triplet states in solutions at 77°K by electron acceptors. Skvortsov, V.I.; Alfimov, M.V. Dokl. Phys. Chem. 263(1-3) 221-4 (1982) Translated from: Dokl. Akad. Nauk SSSR 263(3) 652-5 (1982).
- 82E680 Photochemical primary processes of xanthene dyes. I. Investigations of the primary processes of selenopyronine by flash excitation. Ortmann, W.; Kassem, A.; Hinzmann, S.; Fanghaenel, E. J. Prakt Chem. 324: 1017-25 (1982).
- 82F150 Mechanistic and kinetic aspects of the photoinduced OCH₃ substitution in 3,5-dinitroanisole. A probe for solvent effects in thermal reactions. Varma, C.A.G.O.; Tamminga, J.J.; Cornelisse, J. J. Chem. Soc., Faraday Trans. 2 78: 265-84 (1982).
- 82F295 Photocatalytic cis-trans-isomerization of thioindigoid dyes. Klages, C.P.; Kobs, K.; Memming, R. Ber. Bunsenges. Phys. Chem. 86: 716-20 (1982).
- 82F367 The adiabatic photodissociation of the anthracene-tetracene photodimer. Yamamoto, S.; Grellmann, K.-H. Chem. Phys. Lett. 92: 533-40 (1982).
- 82F477 Fluorescence and triplet yield quenching of β-apo-14'-carotenal (C₂₂ aldehyde) by aromatic molecules. Selvarajan, N.; Das, P.K.; Hug, G.L. J. Photochem. 20: 355-66 (1982).
- 82F494 Effect of solvent polarity on the photoelimination of halogen in 9,10-dichloroanthracene by the action of amines. Soloveichik, O.M.; Klimakova, A.; Ivanov, V.L. J. Org. Chem. USSR 18: 894-8 (1982) Translated from: Zh. Org. Khim. 18: 1033-8 (1982).
- 82F498 Study of the trans—cis photoisomerization of 4-nitro-4'-dimethylaminostilbene in toluene solutions. Goerner, H.; Schulte-Frohlinde, D. J. Mol. Struct. 84: 227-36 (1982).
- 82N068 Light-driven electron transfer from tetrathiafulvalene to porphyrins and Ru(bpy)²₃+. Charge separation by organized assemblies. Graetzel, C.K.; Graetzel, M. J. Phys. Chem. 86: 2710-4 (1982).
- 82N081 Enhancement of the intersystem crossing of pyrene by metal ions in sodium dodecyl sulfate micelle solutions. Nakamura, T.; Kira, A.; Imamura, M. J. Phys. Chem. 86: 3359-63 (1982).
- 82N210 Laser flash photolysis studies on hematoporphyrin IX in aqueous and micellar systems. Murgia, S.M.; Poletti, A.; Pasqua, A. Med., Biol., Environ. 10: 279-84 (1982).

- 82P060 Novel and efficient water-soluble photoinitiator for polymerization. Bonamy, A.; Fouassier, J.P.; Lougnot, D.J.; Green, P.N. J. Polym. Sci., Polym. Lett. Ed. 20: 315-20 (1982).
- 82R150 Probing the microenvironment of benzo[a]pyrene diol epoxide-DNA adducts by triplet excited state quenching methods. Poulos, A.T.; Kuzmin, V.; Geacintov, N.E. J. Biochem. Biophys. Methods 6: 269-81 (1982).
- 83A102 Mechanism of porphyrin ion production from the triplet state of magnesium octaethylporphyrin. Smalley, J.F.; Feldberg, S.W.; Brunschwig, B.S. J. Phys. Chem. 87: 1757-65 (1983).
- 83A213 A flash photolysis study of 1-methylindole. Pepmiller, C.; Bedwell, E.; Kuntz, R.R.; Ghiron, C.A. Photochem. Photobiol. 38: 273-80 (1983).
- 83A218 Laser-photolysis study of the photochemical primary processes of hydrogermanes in solution. Hayashi, H.; Mochida, K. Chem. Phys. Lett. 101: 307-11 (1983).
- 83A225 On the photochemical synthesis of N,N'-dimethylindolo-[2,3-c]carbazole and the mechanism of its formation from N,N'-dimethyl-N,N'-diphenyl-1,4-phenylenediamine. Weller, H.; Grellmann, K.-H. J. Am. Chem. Soc. 105: 6268-73 (1983).
- 83A249 Hydrogen-atom transfer reaction from triplet 2-naphthylammonium ion to ground-state aromatic ketones. Shizuka, H.; Fukushima, M. Chem. Phys. Lett. 101: 598-602 (1983).
- 83A355 Mechanism of photoisomerization of thioindigoid dyes. Krysanov, S.A.; Alfimov, M.V. Dokl. Phys. Chem. 272: 696-9 (1983) Translated from: Dokl. Akad. Nauk SSSR 272: 637-40 (1983).
- 83B030 Transient absorption study of the intramolecular excited-state and ground-state proton transfer in 3-hydroxyflavone and 3-hydroxychromone. Itoh, M.; Tanimoto, Y.; Tokumura, K. J. Am. Chem. Soc. 105: 3339-40 (1983).
- 83B041 Photo-oxidation of 1,4-dihydropyridines by various electron acceptors: A laser flash photolysis study. Martens, F.M.; Verhoeven, J.W.; Varma, C.A.G.O.; Bergwerf, P. J. Photochem. 22: 99-113 (1983).
- 83B054 Photochemistry of 9,10-anthraquinone-2-sulfonate in solution.
 1. Intermediates and mechanism. Loeff, I.; Treinin, A.;
 Linschitz, H. J. Phys. Chem. 87: 2536-44 (1983).
- 83B067 Actinometry in monochromatic flash photolysis: The extinction coefficient of triplet benzophenone and quantum yield of triplet zinc tetraphenyl porphyrin. Hurley, J.K.; Sinai, N.; Linschitz, H. Photochem. Photobiol. 38: 9-14 (1983).
- 83B068 The characterisation of the triplet state of crocetin, a water soluble carotenoid, by nanosecond laser flash photolyses. Craw, M.; Lambert, C. Photochem. Photobiol. 38: 241-3 (1983).
- 83B098 The electronic absorption spectrum and structure of the emitting state of the tris(2,2'-bipyridyl)ruthenium(II) complex ion.

 Braterman, P.S.; Harriman, A.; Heath, G.A.; Yellowlees, L.J. J.

 Chem. Soc., Dalton Trans.: 1801-3 (1983).
- 83B112 Photoionization and triplet-triplet absorption of
 4-pyrrolidinopyridine. Santos, O.; Testa, A.C.; O'Sullivan, M.
 J. Photochem. 23: 369-77 (1983).
- 83B113 Two-step laser excitation fluorescence study of the groundand excited-state proton transfer in 3-hydroxyflavone and 3-hydroxychromone. Itoh, M.; Fujiwara, Y. J. Phys. Chem. 87: 4558-60 (1983).
- 83B117 Dynamics of the spiropyran-merocyanine conversion in solution. Kalisky, Y., Orlowski, T.E., Williams, D.J. J. Phys. Chem. 87: 5333-8 (1983).
- 83B121 The triplet extinction coefficients of some bacterial carotenoids. Cogdell, R.J.; Land, E.J.; Truscott, T.G. Photochem. Photobiol. 38: 723 5 (1983).
- 83B122 The role of a photochemical reaction on the deactivation of excited 4,5',8-trimethylpsoralen in ethanol. Ishikawa, M.; Kikuchi, K.; Kokubun, H. Photochem. Photobiol. 38: 727-9

- 83B137 Absorption spectra and dynamics of the triplet state of bis[1-(1-pyrenyl)ethyl]ethers. Masuhara, H.; Tanaka, J.A.; Mataga, N.; De Schryver, F.C.; Collart, P. Polym. J. 15: 915-7 (1983).
- 83E016 Phosphorescence spectra and triplet lifetimes of halogenoanthraquinones. Hamanoue, K.; Kajiwara, Y.; Miyake, T.; Nakayama, T.; Hirase, S.; Teranishi, H. Chem. Phys. Lett. 94: 276-80 (1983).
- 83E018 Excited-states decay dynamics of phenylosazone D-glucose in the liquid phase. Maciejewski, A. Chem. Phys. Lett. 94: 344-9 (1983).
- 83E025 Chemistry of singlet oxygen. 40. Enhanced ¹O₂ formation in cyanoaromatic-sensitized photooxidations by substrate-enhanced intersystem crossing. Manring, L.E.; Gu, C.; Foote, C.S. J. Phys. Chem. 87: 40-4 (1983).
- 83E026 Specific hydrogen-bonding effects in the photophysics of β-apo-14'-carotenal. Static and dynamic aspects of fluorescence and triplet yield quenching. Das, P.K.; Hug, G.L. J. Phys. Chem. 87: 49-54 (1983).
- 83E088 Electron transfer reactions of the photoexcited triplet state of chloroaluminum phthalocyanine with aromatic amines, benzo-quinones, and coordination compounds of iron(II) and iron(III). Ohno, T.; Kato, S.; Yamada, A.; Tanno, T. J. Phys. Chem. 87: 775-81 (1983).
- 83E216 Photophysics of aryl substituted 1,3,4-oxadiazoles: The triplet state of 2,5-diphenyl-1,3,4-oxadiazole. Rulliere, C.; Roberge, P.C. Chem. Phys. Lett. 97: 247-52 (1983).
- 83E223 Sensitization and quenching processes of alkylcobalt(III) compounds. Al-Saigh, H.Y.; Kemp, T.J. J. Chem. Soc., Perkin Trans. 2: 615-9 (1983).
- 83E258 Lifetime, triplet-triplet absorption spectrum and relaxation energy of an acyclic conjugated triene triplet: A pulse radiolysis study. Gorman, A.A.; Hamblett, I. Chem. Phys. Lett 97: 422-6 (1983).
- 83E262 Electron-transfer quenching vs. exciplex-mediated quenching of the low-lying excited states in phthalocyanines. Prasad, D.R.; Ferraudi, G. Inorg. Chem. 22: 1672-4 (1983).
- 83E278 Conformations of the triplet state of aromatic olefins. Observation of the transoid triplet states of 3,3-dimethyl-1-(2-naphthyl)-1-butene and 3,4-dihydrophenanthrene as a rigid planar triplet model. Arai, T.; Sakuragi, H.; Tokumaru, K.; Sakaguchi, Y.; Nakamura, J.; Hayashi, H. Chem. Phys. Lett. 98: 40-4 (1983).
- 83E281 Triplet-related photophysics of 9,10-diphenylanthracene. A kinetic study of reversible energy transfer from anthracene triplet by nanosecond laser flash photolysis. Chattopadhyay, S.K.; Kumar, Ch.V.; Das, P.K. Chem. Phys. Lett. 98: 250-4 (1983).
- 83E311 Photosensitization of pyrimidines by 2-methylnaphthoquinone in water: A laser flash photolysis study. Fisher, G.J.; Land, E.J. Photochem. Photobiol. 37: 27-32 (1983).
- 83E324 Some photophysical properties of 3-carbethoxypsoralen, 8-methoxypsoralen and 5-methoxypsoralen triplet states. Craw, M.; Bensasson, R.V.; Ronfard-Haret, J.C.; Sa E Melo, M.T.; Truscott, T.G. Photochem Photobiol. 37: 611-5 (1983)
- 83E347 Effect of a polar substituent on olefin triplet lifetime. Caldwell, R.A.; Singh, M. J. Am. Chem. Soc. 105: 5139-40 (1983).
- 83E383 Circular dichroism in excited triplet states. 2. Chiral dimerlike molecules in the binaphthyl and spirobifluorene series. Tetreau, C.; Lavalette, D.; Cabaret, D.; Geraghty, N.; Welvart, Z. J. Phys. Chem. 87: 3234-9 (1983).
- 83E387 A laser flash photolysis study of pyrene-1-aldehyde. Intersystem crossing efficiency, photoreactivity and triplet state properties in various solvents. Kumar, C.V.; Chattopadhyay, S.K.; Das, P.K. Photochem. Photobiol. 38: 141-52 (1983).
- 83E392 The $T_3(\pi,\pi^*)$ state of acridine. Periasamy, N. Chem. Phys. Lett. **99**: 322-5 (1983).
- 83E427 The fluorescence of some dipolar N,N-dialkyl-4-(dichloro-1,3,5-triazinyl)anilines. Part 3. Intersystem crossing yields from intramolecular charge-transfer excited states and triplet state properties. Cowley, D.J.; Pasha, I. J. Chem. Soc., Perkin Trans. 2: 1139-45 (1983).

- 83E462 Photochemistry and sensitized evolution of hydrogen from water using water-soluble cationic porphyrins. Tetrakis-(trimethylaminophenyl)porphyrinatozinc and its free base. Kalyanasundaram, K. J. Chem. Soc., Faraday Trans. 2 79: 1365-74 (1983).
- 83E483 Transient absorption spectra of the excited states of triptycene and 3-acetyltriptycene. Sugawara, T.; Iwamura, H.; Nakashima, N.; Yoshihara, K.; Hayashi, H. Chem. Phys. Lett. 101: 303-6 (1983).
- 83E509 Trans—cis photoisomerization of the quaternary iodides of 4-cyano- and 4-nitro-4'-azastilbene in ethanol solution: Singlet versus triplet mechanism. Goerner, H.; Schulte-Frohlinde, D. Chem. Phys. Lett. 101: 79-85 (1983).
- 83E554 Excited and ionic states of polymers with pendant phenanthryl groups in solution. Model systems for photophysics in phenanthrene aggregates. Tamai, N.; Masuhara, H.; Mataga, N. J. Phys. Chem. 87: 4461-7 (1983).
- 83E625 Studies on the triplet excited state of 4-thiouridine. Salet, C.; Bensasson, R.V.; Favre, A. Photochem. Photobiol. 38: 521-5 (1983).
- 83E662 Absorption spectra and dynamics of some excited and ionic dicarbazolyl compounds with specific geometrical structures. Masuhara, H.; Tamai, N.; Mataga, N.; De Schryver, F.C.; Vandendriessche, J. J. Am. Chem. Soc. 105: 7256-62 (1983).
- 83E667 Flash photolysis studies of hemato- and copro-porphyrins in homogeneous and microheterogeneous aqueous dispersions. Reddi, E.; Jori, G.; Rodgers, M.A.J.; Spikes, J.D. Photochem. Photobiol. 38: 639-45 (1983).
- 83E737 Study of triplet states of some ketocyanine dyes, the polyenic bis-ω,ω'-dimethylamino ketones. Shvedova, L.A.; Borisevich, Yu.E.; Tatikolov, A.S.; Kuz'min, V.A.; Krasnaya, Zh.A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 32: 1290-3 (1983) Translated from: Izv. Akad. Nauk SSSR, Ser. Khim.: 1421-5 (1983).
- 83F075 Solvent effect on ¹O₂ yield and the mechanism of polycyclic hydrocarbon triplet-state quenching by oxygen. Darmanyan, A.P. Chem. Phys. Lett. 96: 383-9 (1983).
- 83F081 Primary processes in the photoisomerization of a nitrochromene studied by nanosecond laser photolysis. Kellmann, A.; Lindqvist, L.; Monti, S.; Tfibel, F.; Guglielmetti, R. J. Photochem. 21: 223-35 (1983).
- 83F096 Studies of the photoreactions of heterocyclic N-dioxides: Identification of the oxaziridine intermediate of quinoxaline-1,4-dioxide. Kawata, H.; Kikuchi, K.; Kokubun, H. J. Photochem. 21: 343-50 (1983).
- 83F334 Kinetics of photochemical H-abstraction by $^3\pi\pi^*$ -acridine in fluorene single crystals as studied by triplet-triplet absorption. Prass, B.; Fujara, F.; Stehlik, D. Chem. Phys. 81: 175-84 (1983).
- 83F405 Sequential biphotonic processes in rhodium(III) phthalocyanines. Muralidharan, S.; Ferraudi, G. J. Phys. Chem. 87: 4877-81 (1983).
- 83N056 Magnetic field effect on the photoinduced electron transfer reaction between duroquinone and aromatic amines in SDS micellar solution. Tanimoto, Y.; Shimizu, K.; Udagawa, H.; Itoh, M. Chem. Lett.: 353-6 (1983).
- 83N062 Laser photolysis of methylene blue in aqueous micellar systems. Murgia, S.M.; Poletti, A. Photobiochem. Photobiophys. 5: 53-60 (1983).
- 83N073 Comparison of the photochemical processes of magnesium tetraphenylporphyrin in micellar and in microemulsion solution. Pileni, M.P.; Chevalier, S. J. Colloid Interface Sci. 92: 326-31 (1983).
- 83N082 Thermo- and photochemical aspects of the valence isomerization of 9-tert-butylanthracene. Kraljic, I.; Mintas, M.; Klasinc, L.; Ranogajec, F.; Guesten, H. Nouv. J. Chim. 7: 239-43 (1983).
- 83N127 Magnetic field effect on the hydrogen abstraction of xanthone from xanthene is SDS micelles. Tanimoto, Y.; Takashima, M.; Itoh, M. Chem. Phys. Lett. 100: 442-4 (1983).

- 83N133 Magnetic field effects on the photolysis of p-benzoquinone derivatives in sodium dodecyl sulfate micelles. Tanimoto, Y.; Udagawa, H.; Katsuda, Y.; Itoh, M. J. Phys. Chem. 87: 3976-82 (1983).
- 83P212 Triplet state of 4-biphenylcarbonyl and 2-naphthylcarbonyl chromophores in homopolymers, copolymers and model compounds. Hrdlovic, P.; Guyot, G.; Lemaire, J.; Lukac, I. Polym. Photochem. 3: 119-29 (1983).
- 83Z042 Applications of holography in the investigation of photochemical reactions. Burland, D.M. Acc. Chem. Res. 16: 218-24 (1983).
- 84A024 Photochemistry of benzothiazole models of pheomelanin. Lambert, C.; Sinclair, R.S.; Truscott, T.G.; Land, E.J.; Chedekel, M.R.; Liu, C.-T. Photochem. Photobiol. 39: 5-10 (1984).
- 84A030 Photochemistry of alkyl esters of benzoylformic acid. Encinas, M.V.; Lissi, E.A.; Zanocco, A.; Stewart, L.C.; Scaiano, J.C. Can. J. Chem. 62: 386-91 (1984).
- 84A122 Electron-transfer reactions of excited phthalocyanines: Spin restriction on reaction rate of electron transfer and energy transfer to cobalt compounds. Ohno, T.; Kato, S. J. Phys. Chem. 88: 1670-4 (1984).
- 84A218 Transient absorption and two-step laser excitation fluorescence studies of the excited-state proton transfer and relaxation in the methanol solution of 7-hydroxyflavone. Itoh, M.; Adachi, T. J. Am. Chem. Soc. 106: 4320-4 (1984).
- 84A221 Aromatic thioketone triplets and their quenching behaviour towards oxygen and di-t-butylnitroxy radical. A laser-flash-photolysis study. Kumar, C.V.; Qin, L.; Das, P.K. J. Chem. Soc., Faraday Trans. 2 80: 783-93 (1984).
- 84A222 Photochemistry of naphthylmethyl halides. Direct and sensitized paths to homolytic and heterolytic carbon-halogen bond cleavage. Slocum, G.H.; Schuster, G.B. J. Org. Chem. 49: 2177-85 (1984).
- 84A227 A laser flash photolysis and pulse radiolysis study of amiloride in aqueous and alcoholic solution. Hamoudi, H.I.; Heelis, P.F.; Jones, R.A.; Navaratnam, S.; Parsons, B.J.; Phillips, G.O.; Vandenburg, M.J.; Curric, W.J.C. Photochem. Photobiol. 40: 35-9 (1984).
- 84A253 Primary processes in the photoreduction of 1-chloro- and 1,8-dichloro-anthraquinones in ethanol studied by laser spectroscopy. Hamanoue, K.; Yokoyama, K.; Kajiwara, Y.; Nakajima, K.; Nakayama, T.; Teranishi, H. Chem. Phys. Lett. 110: 25-8 (1984).
- 84A263 The triplet state of N-(n-butyl)-5-nitro-2-furamide by laser flash photolysis. Spectrum, lifetime, energy and electron-transfer reactions. Martins, L.J.A.; Kemp, T.J. J. Chem. Soc., Faraday Trans. 1 80: 2509-24 (1984).
- 84A264 Electron-transfer reactions of a photosensitized water-soluble zinc porphyrin. Le Roux, D.; Mialocq, J.-C.; Anitoff, O.; Folcher, G. J. Chem. Soc., Faraday Trans. 2 80: 909-20 (1984).
- 84A344 Laser flash photolysis study of photochemical ring opening of 2,3-di-2-naphthyloxiranes and resultant ylide behaviors. Das, P.K.; Griffin, G.W. J. Org. Chem. 49: 3452-7 (1984).
- 84A355 Photochemical transformations and laser flash photolysis studies of 1,4- and 1,2-epoxy compounds containing 1,2-dibenzoylalkene moieties. Murty, B.A.R.C.; Kumar, C.V.; Dabral, V.; Das, P.K.; George, M.V. J. Org. Chem. 49: 4165-71 (1984).
- 84B003 Photoenolization of 2-methylbenzophenone studied by picosecond and nanosecond laser spectroscopy. Nakayama, T.; Hamanoue, K.; Hidaka, T.; Okamoto, M.; Teranishi, H. J. Photochem. 24: 71-8 (1984).
- 84B007 Triplet state of α-naphthylethylene derivatives. Structural effects on the equilibrium between planar and perpendicular triplet conformations. Lazare, S.; Bonneau, R.; Lapouyade, R. J. Phys. Chem. 88: 18-23 (1984).
- 84B008 Photoexcited triplet state of oxotitanium(IV) tetraphenylporphyrin studied by ESR and laser photolysis. Protoninduced quenching of the triplet state. Hoshino, M.; Imamura, M.; Watanabe, S.; Hama, Y. J. Phys. Chem. 88: 45-9 (1984).

- 84B017 Photoinduced electron transfer C-C bond cleavage reactions: oxidations and isomerizations. Reichel, L.W.; Griffin, G.W.; Muller, A.J.; Das, P.K.; Ege, S.N. Can. J. Chem. 62: 424-36 (1984).
- 84B019 Laser photolysis studies of the anthracene dimer produced by photolytic dissociation of dianthracene in 2-methyltetra-hydrofuran solution at 77 K. Hoshino, M.; Seki, H.; Imamura, M.; Yamamoto, S. Chem. Phys. Lett. 104: 369-72 (1984).
- 84B022 Mechanistic studies of the photodecomposition of arylmethyl sulfones in homogeneous and micellar solutions. Gould, I.R.; Tung, C.; Turro, N.J.; Givens, R.S.; Matuszewski, B. J. Am. Chem. Soc. 106: 1789-93 (1984).
- 84B025 Triplet, radical anion and radical cation spectra of furocoumarins. Bensasson, R.V.; Chalvet, O.; Land, E.J.; Ronfard-Haret, J.C. Photochem. Photobiol. 39: 287-91 (1984).
- 84B026 Twenty-two carbon homologue of 11-cis retinal. Photophysical and photochemical properties. Das, P.K.; Becker, R.S. Photochem. Photobiol. 39: 313-8 (1984).
- 84B027 Transient photochemistry of neutral red. Marks, G.T.; Lee, E.D.; Aikens, D.A.; Richtol, H.H. Photochem. Photobiol. 39: 323-8 (1984).
- 84B028 Excitated state absorption spectra and intersystem crossing kinetics in the naphthaldehydes. Boldridge, D.W.; Justus, B.L.; Scott, G.W. J. Chem. Phys. 80: 3179-84 (1984).
- 84B033 A laser flash photolysis study of paraquat reduction by photogenerated aromatic ketyl radicals and carbonyl triplets. Baral-Tosh, S.; Chattopadhyay, S.K.; Das, P.K. J. Phys. Chem. 88: 1404-8 (1984).
- 84B051 The laser-flash photolysis of propanone, butanone, and 2-pentanone. Study of triplet decay processes in aliphatic carbonyl compounds. Naito, I.; Schnabel, W. Bull. Chem. Soc. Jpn. 57: 771-5 (1984).
- 84B055 Excited-state absorption of tris(phenanthroline)rhodium(III). A handle on the excited-state behavior of a powerful photochemical oxidant. Indelli, M.T.; Carioli, A.; Scandola, F. J. Phys. Chem. 88: 2685-6 (1984).
- 84B061 The photoionization mechanism of N,N,N',N'-tetramethyl-p-phenylenediamine in acetonitrile. Nakamura, S.; Kanamaru, N.; Nohara, S.; Nakamura, H.; Saito, Y.; Tanaka, J.; Sumitani, M.; Nakashima. N.: Yoshihara. K. Bull. Chem. Soc. Jpn. 57: 145-50 (1984).
- 84B066 Photoinduced electron-transfer processes involving substituted stilbene oxides. Das, P.K.; Muller, A.J.; Griffin, G.W. J. Org. Chem. 49: 1977-85 (1984).
- 84B090 β-Naphthylethylene: A conformational study of the triplet state by laser flash photolysis. Lazare, S.; Lapouyade, R.; Robert, M.-P. Nouv. J. Chim. 8: 407-9 (1984).
- 84B110 Photochemical debromination of meso-substituted bromoanthracenes studied by steady-state photolysis and laser photolysis. Hamanoue, K.; Tai, S.; Hidaka, T.; Nakayama, T.; Kimoto, M.; Teranishi, H. J. Phys. Chem. 88: 4380-4 (1984).
- 84B116 Photoreduction of triplet thioxanthone by amines: Charge transfer generates radicals that initiate polymerization of olefins. Yates, S.F.; Schuster, G.B. J. Org. Chem. 49: 3349-56 (1984).
- 84B120 Diffuse reflectance pulse radiolysis of opaque samples. Wilkinson, F.; Willsher, C.J.; Warwick, P.; Land, E.J.; Rushton, F.A.P. Nature 311: 40-1 (1984).
- 84B128 Photochemical reactions of 4-nitroquinoline 1-oxide with DNA and related compounds. Kasama, K.; Takematsu, A.; Yamamoto, S., Arai, S. J. Phys. Chem. 86. 4918-21 (1984).
- 84B139 Time-resolved absorption and resonance Raman spectra of the lowest excited triplet state of all-trans-1,3,5-heptatriene. Langkilde, F.W.; Wilbrandt, R.; Jensen, N.-H. Chem. Phys. Lett. 111: 372-8 (1984).
- 84B154 Time-dependent picosecond transient absorption spectra of 9-acetylanthracene, benzophenone and acridine in solution. Hamanoue, K.; Nakajima, K.; Hidaka, T.; Nakayama, T.; Teranishi, H. Laser Chem. 4: 287-95 (1984).

- 84E018 Intramolecular quenching of carbonyl triplets by β-phenyl rings. Wismontski-Knittel, T.; Kilp, T. J. Phys. Chem. 88: 110-5 (1984).
- 84E033 Picosecond and nanosecond kinetic spectroscopic investigations of the relaxation and the solute-solvent reaction of electronically excited 3,5-dinitroanisole. Varma, C.A.G.O.; Plantenga, F.L.; Huizer, A.H.; Zwart, J.P.; Bergwerf, Ph.; van der Ploeg, P.M. J. Photochem. 24: 133-99 (1984).
- 84E036 Triplet states of isomers of the C₁₅-aldehyde and the C₁₅-ketone: Lower homologues of retinal. Bensasson, R.V.; Land, E.J.; Liu, R.S.H.; Lo, K.K.N.; Truscott, T.G. Photochem. Photobiol. 39: 263-5 (1984).
- 84E043 Nanosecond time-resolved $T_n \rightarrow T_1$ fluorescence, $T_n \leftarrow T_1$ absorption, and resonance Raman scattering spectra in diphenylamine. Kobayashi, T.; Koshihara, S. Chem. Phys. Lett. 104: 174–8 (1984).
- 84E044 Detection of triplet-triplet absorption in microcrystalline benzophenone by diffuse-reflectance laser flash photolysis. Wilkinson, F.; Willsher, C.J. Chem. Phys. Lett. 104: 272-6 (1984).
- 84E045 Luminescence and triplet-triplet absorption spectra of rhodium(III) porphyrins. Kalyanasundaram, K. Chem. Phys. Lett. 104: 357-62 (1984).
- 84E056 Laser induced excited state properties of rubreneperoxide in solution. Bayrakceken, F. J. Lumin. 29: 111-8 (1984).
- 84E077 Time-resolved spectroscopy of intramolecular energy transfer in a rigid spiran. Maki, A.H.; Weers, J.G.; Hilinski, E.F.; Milton, S.V.; Rentzepis, P.M. J. Chem. Phys. 80: 2288-97 (1984).
- 84E092 Polymeric photosensitizers: Effects of intramolecular energy migration on sensitization efficiencies. Urruti, E.H.; Kilp, T. Macromolecules 17: 50-4 (1984).
- 84E111 Laser flash photolysis study of (2-anthryl)ethylenes. Triplet-related photophysical behaviors. Wismontski-Knittel, T.; Das, P.K. J. Phys. Chem. 88: 1168-73 (1984).
- 84E144 Short-lived olefin triplets and energy transfer from them to β-carotene. Kumar, C.V.; Chattopadhyay, S.K.; Das, P.K. Chem. Phys. Lett. 106: 431-6 (1984).
- 84E162 Photochemistry and photophysics of osazones. Part 3. Properties of D-arabino-hexulose phenylosazone in excited finglet and triplet states. Maciejewski, A.; Wojtczak, J.; Szymanski, M. J. Chem. Soc., Faraday Trans. 2 80: 411-23 (1984).
- 84E203 Anomalous ortho effects in sterically hindered porphyrins: Tetrakis(2,6-dimethylphenyl)porphyrin and its sulfonato derivative. Lee, W.A.; Graetzel, M.; Kalyanasundaram, K. Chem. Phys. Lett. 107: 308 13 (1984).
- 84E216 Photosensitization of phenylhydrazone derivatives by methylene blue and xanthene dyes. Grajcar, L.; Ivanoff, N.; Delouis, J.F.; Faure, J. J. Chim. Phys. Phys.-Chim. Biol. 81: 33-8 (1984).
- 84E232 Electronic relaxation processes of rare-earth chelates of henzoyltrifluoroacetone. Tobita, S.; Arakawa, M.; Tanaka, I. J. Phys. Chem. 88: 2697-702 (1984).
- 84E236 Photophysical behavior of exciplexes of 1,4-dicyanonaphthalene with methyl- and methoxy-substituted benzenes. Davis, H.F.; Chattopadhyay, S.K.; Das, P.K. J. Phys. Chem. 88: 2798-803 (1984).
- 84E237 A laser flash photolysis study of triplets of transnaphthylethylenes. Relative importance of planar and perpendicular forms. Wismontski-Knittel, T.; Das, P.K. J. Phys. Chem. 88: 2803-8 (1984).
- 84E319 Role of geometric distortion in the quenching behaviors of all-trans 1,4-diphenyl-1,3-butadiene triplet. Chattopadhyay, S.K.; Kumar, C.V.; Das, P.K. J. Photochem. 26: 39-47 (1984).
- 84E342 Photophysical behaviors of N-methylthioacridone triplet and efficiency of singlet oxygen generation from its quenching by oxygen. Kumar, C.V.; Davis, H.F.; Das, P.K. Chem. Phys. Lett. 109: 184-9 (1984).
- 84E346 Photochemistry of water-soluble porphyrins: Comparative study of isomeric tetrapyridyl- and tetrakis(N-methylpyridiniumyl)porphyrins. Kalyanasundaram, K. Inorg. Chem. 23: 2453-9 (1984).

- 84E390 Excited singlet- and triplet-absorptions of pentaphene. Menzel, R.; Rapp, W. Chem. Phys. 89: 445-55 (1984).
- 84E393 Experimental study of singlet-triplet energy transfer in liquid solutions. Darmanyan, A.P. Chem. Phys. Lett. 110: 89-94 (1984)
- 84E405 Effect of environment on decay pathways of the singlet excited state of N,N,N',N'-tetramethylbenzidine. Hashimoto, S.; Thomas, J.K. J. Phys. Chem. 88: 4044-9 (1984).
- 84E456 Acid-base properties in the triplet state of aromatic ketones studied by nanosecond laser flash photolysis. Shizuka, H.; Kimura, E. Can. J. Chem. 62: 2041-6 (1984).
- 84E491 A pulse radiolysis study of the azulene triplet state. Gorman, A.A.; Hamblett, I.; Harrison, R.J. J. Am. Chem. Soc. 106: 6952-5 (1984).
- 84E520 Photochemical and thermal transformations of 2(3H)-furanones and bis(benzofuranones). A laser flash photolysis study. Lohray, B.B.; Kumar, C.V.; Das, P.K.; George, M.V. J. Am. Chem. Soc. 106: 7352-9 (1984).
- 84E529 Photophysics of chlorobenzene in cyclohexane. Previtali, C.M.; Ebbesen, T.W. J. Photochem. 27: 9-15 (1984).
- 84E533 Fluorescence quenching mechanism of aromatic hydrocarbons by closed-shell heavy metal ions in aqueous and organic solutions. Masuhara, H.; Shioyama, H.; Saito, T.; Hamada, K.; Yasoshima, S.; Mataga, N. J. Phys. Chem. 88: 5868-73 (1984).
- 84F039 Hydrogen atom transfer reaction from excited carbazole to pyridine. Kikuchi, K.; Yamamoto, S.; Kokubun, H. J. Photochem. 24: 271-83 (1984).
- 84F068 Photoisomerization pathways of 8,16-methano[2.2]metacyclophane-1,9-diene. A model case for adiabatic electrocyclic ring closure in the excited singlet state. Wirz, J.; Persy, G.; Rommel, E.; Murata, I.; Nakasuji, K. Helv. Chim. Acta 67: 305-17 (1984).
- 84F074 Photosensitization via charge transfer or reversible electron transfer. Oxirane isomerization and sulfur dioxide extrusion. Das, P.K.; Muller, A.J.; Griffin, G.W.; Gould, I.R.; Tung, C.-H.; Turro, N.J. Photochem. Photobiol. 39: 281-5 (1984).

- 84F248 Primary photochemical and photophysical processes in 2,2,4-trimethyl-1,2-dihydroquinolines. Malkin, Ya.N.; Pirogov, N.O.; Kuzmin, V.A. J. Photochem. 26: 193-202 (1984).
- 84F379 Quenching of triplet states of quinones by phenols. Kokrashvili, T.A.; Levin, P.P.; Kuz'min, V.A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 33: 702-8 (1984) Translated from: Iav. Akad. Nauk SSSR, Ser. Khim.: 765-71 (1984).
- 84F385 Photochemical reactions of nitroanthracene derivatives in fluid solutions. Hamanoue, K.; Amano, M.; Kimoto, M.; Kajiwara, Y.; Nakayama, T.; Teranishi, H. J. Am. Chem. Soc. 106: 5993-7 (1984).
- 84N017 Triplet state properties of croconate dyes in homogeneous and polymer-containing solutions. Kamat, P.V.; Fox, M.A. J. Photochem. 24: 285-92 (1984).
- 84N125 A water-soluble benzophenone in reverse micelles: Kinetics and spectroscopy. Lougnot, D.-J.; Scaiano, J.C. J. Photochem. 26: 119-30 (1984).
- 84N163 Exploratory study of the effect of polyelectrolyte-surfactant aggregates on photochemical behavior. Abuin, E.B.; Scaiano, J.C. J. Am. Chem. Soc. 106: 6274-83 (1984).
- 84N197 Magnetic field effect on the hydrogen abstraction reaction of xanthone in sodium dodecyl sulfate micellar solution. Tanimoto, Y.; Takashima, M.; Itoh, M. J. Phys. Chem. 88: 6053-6 (1984).
- 84P005 Photophysical study on a new class of benzophenone containing photoinitiators of polymerization. Properties of poly(4-acryloxybenzophenone) and a model compound. Flamigni, L.; Barigelletti, F.; Bortolus, P.; Carlini, C. Eur. Polym. J. 20: 171-5 (1984).
- 84P257 Excited-state annihilation processes in poly(vinylaromatics) in solution: Poly(2-vinylnaphthalene) and poly(4-vinylbiphenyl). Pratte, J.F.; Webber, S.E. Macromolecules 17: 2116-23 (1984).
- 84R057 The triplet exciton of chlorophyll a and carotenoid in solution and in photosynthetic antenna proteins. Shepanski, J.F.; Williams, D.J.; Kalisky, Y. Biochim. Biophys. Acta. 766: 116-25 (1984).

10. Indexes to Table 6

10.1.Compound Name Index

1(2H)-Aceanthrylenone, 2-methyl- 690.

Acenaphthene 1.

Acenaphthene, 5-nitro- 811.

Acenaphthene, (1-phenylvinyl)- 4.

Acenaphthylene, cis-photodimer 2.

Acenaphthylene, trans-photodimer 3.

1-Acenaphthyl-1-phenylethylene 4.

Acetamide, N-[2-[(2-bromo-6-cyano-4-nitrophenyl)azo]-

5-[(2-cyanoethyl)(2-hydroxyethyl)amino]-

4-methoxyphenyl]- 218.

Acetamide, N-[2-[(2-bromo-4,6-dinitrophenyl)azo]-

5-[(2-cyanoethyl)(2-hydroxyethyl)amino]-

4-methoxyphenyl]- 219.

Acetamide, N-[2-[(2-chloro-4,6-dinitrophenyl)azo]-

5-[(2-cyanoethyl)(2-hydroxyethyl)amino]-

4-methoxyphenyl]- 270.

Acetamide, N-[5-[(2-cyanoethyl)(2-

hydroxyethyl)amino]-

2-[(2,4-dinitrophenyl)azo]-

4-methoxyphenyl]- 312.

Acetic acid, 1-naphthyl ester 791.

1'-Acetonaphthone 5.

2'-Acetonaphthone 6.

Acetone 7.

Acetone, 1-benzoyl- 146.

Acetone, 1-benzoyl-3,3,3-trifluoro- 158.

Acetophenone 8.

Acetophenone, 2-(N-acetylamino)- 16.

Acetophenone, 2-(N-acetyl-N-methylamino)- 18.

Acetophenone, conjugate acid 9.

Acetophenone, 2-(N-formylamino)- 17.

Acetophenone, 2-(N-formyl-N-methylamino)- 19.

Acetophenone, α-hydroxy-α-phenyl- 124.

Acetophenone, 3-methoxy- 661.

Acetophenone, 4-methoxy- 662.

Acetophenone, 3-methyl- 691.

Acetophenone, 4-methyl- 692.

Acetophenone, α -phenyl- 332.

Acetophenone, 4-(trifluoromethyl)- 1081.

2-Acetoxy-2-methyl-1-phenyl-1-propanone 10.

Acetylacetone 11.

Acetylacetone, 1,1,1,5,5,5-hexafluoro- 607.

(E)-1-Acetyl-2(1-acetyl-1,3-dihydro-3-oxo-2*H*-indol-2-ylidene)-1,2-dihydro-3*H*-indol-3-one **334**.

2-(N-Acetylamino)acetophenone 16.

1-Acetylanthracene 12.

9-Acetylanthracene 13.

4-Acetylbiphenyl 14.

Acetylene, diphenyl- 527.

Acetylene, 1-ethyl-2-phenyl- 237.

Acetylene, 1-methyl-2-phenyl- 928.

Acetylene, phenyl- 873.

3-Acetyl-9,10-epoxy-9,10-dihydrophenanthrene 15.

2-(N-Acetyl-N-methylamino)acetophenone 18.

N-(2-Acetylphenyl)acetamide 16.

N-(2-Acetylphenyl)formamide 17.

N-(2-Acetylphenyl)-N-methylacetamide 18.

N-(2-Acetylphenyl)-N-methylformamide 19.

N'-Acetylsulfanilamide 1009.

3-Acetyltriptycene 20.

N-Acetyl-L-tryptophanamide 21.

Acid Red 94 988.

Acridan 22.

Acridine 23.

Acridine, 9-amino- 33.

Acridine, 3,6-bis(dimethylamino)-, conjugate monoacid 25.

Acridine, 3,6-bis(dimethylamino)- 26.

Acridine, 3,6-bis(methylamino)-, conjugate monoacid 94.

Acridine, conjugate acid 28.

Acridine, 3,6-diamino-, conjugate diacid 922.

Acridine, 3,6-diamino-, conjugate monoacid 923.

Acridine, 3,6-diamino-, hydrochloride 921.

Acridine, 3,6-diamino-2,7-dimethyl-, conjugate monoacid 27.

Acridine, 3,6-diamino-2,7-dimethyl-9-phenyl-,

monohydrochloride 119.

Acridine, 3,6-diamino-9-phenyl-, conjugate monoacid

Acridine, 3,6-diamino-2,7,9-trimethyl-, conjugate monoacid **580.**

Acridine, 9,10-dihydro-9-phenyl- 874.

Acridine, 9,10-dihydro-N-phenyl- 875.

Acridine, 9-methyl- 693.

Acridine- d_9 24.

Acridine Orange, conjugate monoacid 25.

Acridine Orange, free base 26.

Acridine Yellow, conjugate monoacid 27.

2-Acridinesulfonate ion, 9,10-dihydro-9-oxo- 424.

2-Acridinesulfonic acid, 9,10-dihydro-9-oxo- 425.

9(10*H*)-Acridinethione, 10-methyl- **694.** Acridinium, 3,6-diamino-10-methyl- **30.**

Acridinium ion 28.

9(10H)-Acridinone, 10-ethyl- 569.

9(10H)-Acridinone 29.

9(10H)-Acridone 29.

Acriflavine cation 30.

Alloxazine 31.

Amiloride 32.

Aminacrine 33.

9-Aminoacridine 33.

1-Amino-4-anilinoanthraquinone 34.

2-Aminoanthracene, conjugate acid 35.

1-Aminoanthraquinone 36.

2-Aminoanthraquinone 37.

6-Amino-7H-benz[de]anthracen-7-one 38.

6-Aminobenzanthrone 38.

2-Aminobenzoic acid 39.

4-Aminobenzoic acid 40.

3-Aminobenzophenone 41.

4-Aminobenzophenone 42. 4-Aminobiphenyl 43.

2-Aminofluorene 44.

2-Aminofluorene 44. Anthracene, 9,10-dimethyl- 473. α-Amino-2-(formylamino)-γ-oxobenzenebutanoic acid Anthracene, 9-[4-(dimethylamino)phenyl]- 463. Anthracene, 9.10-diphenyl- 529. Anthracene, 1-hydroxy- 80. 1-Amino-4-hydroxyanthraquinone 45. 4-Amino-4'-hydroxybiphenyl 46. Anthracene, 2-hydroxy- 81. 2-[6-Amino-3-imino-3H-xanthen-9-yl]benzoic acid, Anthracene, 9-hydroxy- 82. Anthracene, 2-iodo- 632. monohydrochloride 982. 2-Amino-3-(4-methoxy-6-benzothiazolyl) propionate ion Anthracene, 9-iodo- 633. Anthracene, 2-methyl- 699. 47. Anthracene, 9-methyl- 700. 1-Amino-4-(N-methylamino)anthraquinone 48. 7-Amino-4-methylcarbostyril 49. Anthracene- d_{12} , 9-methyl- 701. Anthracene, 9-naphthoyl- 790. 4-Amino-2-methyl-1*H*-isoindole-1,3(2*H*)-dione 50. 3-Amino-N-methylphthalimide 50. Anthracene, 9-nitro-815. 4'-Aminomethyl-4,5',8-trimethylpsoralen 51. Anthracene, 9-phenyl- 878. 2-Aminonaphthalene 766. Anthracene, 9-propionyl- 925. 1-Amino-7-nitrofluorene 52. Anthracene, 1,5,9,10-tetrachloro- 1022. Anthracene, 2,9,10-trichloro- 1077. 1-Amino-4-nitronaphthalene 53. trans-4-Amino-4'-nitrostilbene 54. Anthracene- d_{10} 65. N-[2-(3-Amino-1-oxopropyl)phenyl]formamide 55. Anthracene/Chloranil 66. 9-Aminophenanthrene 56. 9-Anthraceneacetic acid, methyl ester 67. 2-Amino-4-[3H]pteridinone 57. 9-Anthracenecarbonitrile 308. 2-Aminopurine 58. Anthracene-9-carboxaldehyde 68. 2-Aminopyridine 59. Anthracene-9-carboxamide 69. 4-Aminopyridine 60. Anthracene-2-carboxylate ion 79. Angeliein 640. Anthracene-9-carboxylic acid, phenylmethyl ester 159. Anthracene-9-carboxylic acid 70. Aniline 61. Aniline, 4-(4,6-dichloro-1,3,5-triazin-2-yl)-N,N-diethyl-9,10-Anthracenedione, 1-amino-4-(methylamino)- 48. 379. 9,10-Anthracenedione, 1,4-bis(methylamino)- 207. Aniline, N,N-dimethyl- 470. Anthracene photodimer 71. Aniline/Eosin 557. Anthracene-tetracene photodimer 72. 9-Anthracenol, 9,10-dihydro-10-(10-hydroxy-4-Anilinobenzanthrone 877. 9(10H)anthracenylidene)- 436. 1-Anilinonaphthalene 62. Anisole 63. 9-Anthracenone, 10-(1,3-dimethyl-10-oxo-9-anthracenylidene)-Anisole, 4-tert-butyl-3,5-dinitro-233. Anisole, 3,5-dinitro- 515. 2,4-dimethyl-, (E)- 1046. [2.2](1,4)(9,10)-Anthracenophane 73. Anisole, 3-nitro-813. Anisole, 4-nitro- 814. anti-[2.2](1,4)-Anthracenophane 74. syn-[2.2](1,4)-Anthracenophane 75. Anthanthrene 344. 9-Anthraldchyde 68. Anthanthrone 346. Anthranilic acid 39. Anthracene 64. Anthracene, 1-acetyl- 12. Anthranol 82. Anthraquinone 76. Anthracene, 9-acetyl- 13. Anthracene, 2-amino-, conjugate acid 35. Anthraquinone, 1-amino- 36. Anthracene, 9-benzoyl- 148. Anthraquinone, 2-amino- 37. Anthraquinone, 1-amino-4-anilino- 34. Anthracene, 9-benzoyl-10-bromo- 149. Anthraquinone, 1-amino-4-hydroxy- 45. Anthracene, 9-benzoyl-10-chloro- 150. Anthracene, 10-benzoyl-9-cyano- 151. Anthraquinone, 1-chloro- 263. Anthracene, 9-benzoyl-10-nitro- 154. Anthraguinone, 2-chloro- 264. Anthracene, 9,10-bis(phenylethynyl)- 211. Anthraquinone, 1,4-diamino- 335. Anthraquinone, 1,8-dichloro- 371. Anthracene, 9-bromo- 215. Anthraquinone, 2-piperidino- 911. Anthracene, 9-butyryl- 239. Anthraquinone-2,6-disulfonate ion 77. Anthracene, 9-cinnamoyl- 296. 9,10-Anthraquinone-2-sulfonate ion 78. Anthracene, 9-cyano- 308. Anthraquinone-2-sulfonate ion 78. Anthracene, 9-cyano-10-nitro- 315. Anthracene, 9,10-dibromo- 358. 2-Anthroate ion 79. Anthracene, 1,5-dichloro- 369. 1-Anthrol 80. 2-Anthrol 81. Anthracene, 9,10-dichloro- 370.

9-Anthrol 82.

Anthrone 83.

Anthracene, 9,10-dicyano- 381.

Anthracene, 1,3-dimethyl- 472,

9-Anthronitrile, 10-nitro- 315. 1-Anthryl diisopropyl borate 84. 2-Anthryl diisopropyl borate 85. 9-Anthryl diisopropyl borate 86. 9-Anthryl ethenyl ketone 87. 9-Anthryl ethyl ketone 925. 1-Anthryl methyl ketone 12. 1-(2-Anthryl)-2-(2-naphthyl)ethylene 88. 9-Anthryl 1-naphthyl ketone 790. 1-(2-Anthryl)-2-phenylethylene 89. 9-Anthryl phenyl ketone 148. 9-Anthryl propyl ketone 239. 9-Anthryl styryl ketone 296. 1-(2-Anthryl)-2-(2-thienyl)ethylene 90. Astacene 91. Astacin 91. Astaxanthin 92. Auramine O 93. Aurophosphine, conjugate monoacid 94. 1-Azaphenanthrene 139. 4-Azaphenanthrene 140. 9-Azaphenanthrene 859. 1-Azoniaphenanthrene 141. 4-Azoniaphenanthrene 142. Azulene 95. Azulene, 1,4-dimethyl-7-isopropyl- 488. Azure A 96. Azure A cation 97. Azure B 98. Azure C 99. BBO 357. BBOT 189. Bacteriochlorophyll 100. Basic Red 1 984. Basic Violet 10 983. Basic Violet 3 307. Basic Yellow 2 93. 1,2-Benzacridine 101. 3,4-Benzacridine 102. Benz[a]acridine 101. Benz[c] acridine 102. Benz[b]acridin-12(5H)-one 103. Benzaldehyde 104. Benzaldehyde, 4-phenyl- 175. Benzamide 105. 1.2-Benzanthracene 106. 2,3-Benzanthracene 1021. Benz[a]anthracene 106. Benz[b]anthracene 1021. 7H-Benz[de]anthracen-7-one, 6-amino-38. 7H-Benz[de]anthracen-7-one 107. Benzanthrone 107. Benzanthrone, 6-amino- 38. Benzanthrone, 4-anilino-877, Benzanthrone, 6-hydroxy- 612. Benzanthrone, 3-methoxy-663. Benz[a] azulene 108.

Benzenamine, 4-[(2-bromo-4,6-dinitrophenyl)azo]-

N,N-dimethyl- 220.

Benzenamine, 4-[(2-bromo-4-nitrophenyl)azo]-N,N-dimethyl- 226. Benzenamine, N,N-dimethyl-4-(2-nitroethenyl)- 465. Benzenamine, N,N-dimethyl-4-nitro- 497. Benzenamine, N,N-dimethyl-4-[(4-nitrophenyl)azo]- 498. Benzenamine, 4-[(2,4-dinitrophenyl)azo]-N,N-dimethyl-Benzenamine, N,N-diphenyl-, conjugate acid 1093. Benzenamine, 4-nitro- 812. Benzene 109. Benzene, 1-butenvl- 578. Benzene, 1-butvnvl- 237. Benzene, chloro- 265. Benzene, cyano- 128. Benzene, 1,2-dicyano- 382. Benzene, 1,3-dicyano- 383. Benzene, 1,4-dicyano- 384. Benzene, 1,2-dimethoxy-4-nitro- 452. Benzene, ethynyl- 873. Benzene, fluoro- 594. Benzene, methoxy- 63. Benzene, 1-methoxy-4-nitro-814. Benzene, (1-methyl-1-butenyl)- 724. Benzene, 1-propynyl- 928. Benzene, 1,2,4,5-tetracyano- 1023. Benzene, 1,3,5-tricyano- 1078. Benzene, 1,3,5-triphenyl- 1094. Benzene- d_6 110. Benzeneacetic acid, α -oxo-, butyl ester 232. Benzenebutanoic acid, α-amino-2-(formylamino)-y-oxo-Benzenecarbothioic acid, 4-(dimethylamino)-, O-(2phenylethyl) ester 886. Benzenecarbothioic acid, 4-methoxy-, O-(2phenylethyl) ester 887. 1,4-Benzenedicarboxylic acid, 2-(9H-carbazoyl)ethyl methyl ester 665. 1,4-Benzenedicarboxylic acid, 3-(9H-carbazoyl)propyl methyl ester 666. Benzenemethanesulfonate ion, 4-(oxophenylacetyl)- 958. 1,2,4,5-Benzenetetracarbonitrile 1023. 1,2,4,5-Benzenetetracarboxylic anhydride 953. Benzidine 111. Benzidine, N, N, N', N'-tetramethyl- 1045. Benzil 112. Benzil/Triethylamine 113. Benzo[a]carbazole 114. Benzo[b]carbazole 115. Benzo[c]carbazole 116. Benzo[b]chrysene 117. Benzo[a]coronene 118. 5H-Benzocycloheptene, 8-(1-naphthyl)-6,7-dihydro-Benzo[1,2-c:4,5-c']dipyrrole-1,3,5,7(2H,6H)-tetrone, 2,6-dipentyl- 525. Benzoflavine 119. 1,2-Benzofluorene 120. 2,3-Benzofluorene 121. 3,4-Benzofluorene 122.

```
4,5-Benzopyrene 138.
Benzo[a]fluorene 120.
Benzo[b]fluorene 121.
                                                           Benzo[a]pyrene/DNA 135.
Benzo[c]fluorene 122.
                                                           Benzo[e]pyrene/DNA 136.
Benzoic acid 123.
                                                           Benzo[a]pyrene 137.
Benzoic acid, 4-(Dimethylamino)-, methyl ester 717.
                                                           Benzo[e]pyrene 138.
Benzoic acid, 2-amino- 39.
                                                           Benzo[a]pyrene-7,8,9,10-tetrol, 7,8,9,10-tetrahydro-
Benzoic acid, 4-amino- 40.
                                                              1031.
Benzoic acid, 2-(dimethylamino)ethyl ester 457.
                                                           1,2-Benzopyrone 303.
Benzoic acid, 2-[6-(ethylamino)-3-(ethylimino)-
                                                           5,6-Benzoquinoline 139.
   3H-xanthen-9-yl]-, monohydrochloride 400.
                                                           7,8-Benzoquinoline 140.
Benzoic acid, 2-methyl- 703.
                                                           Benzo[f]quinoline 139.
Benzoic acid, 3-methyl- 704.
                                                           Benzo[h] quinoline 140.
Benzoic acid, 4-methyl- 705.
                                                           Benzo[f]quinolizinium 141.
Benzoic acid, 4-(methylamino)- 695.
                                                           Benzo[h]quinolizinium 142.
Benzoic acid, methyl ester 702.
                                                           1,4-Benzoquinone, 2,3-dimethoxy- 446.
Benzoin 124.
                                                           1,4-Benzoquinone, 2,5-dimethoxy- 447.
                                                           1,4-Benzoquinone, 2,3-dimethoxy-5-methyl- 450.
Benzo[c][1,5]naphthyridine 125.
Benzo[c][1,6]naphthyridine 126.
                                                           1,4-Benzoquinone, 2,5-dimethyl- 474.
Benzo[c][1,7]naphthyridine 127.
                                                           1,4-Benzoquinone, 2,6-dimethyl- 475.
Benzonitrile 128.
                                                           1,4-Benzoquinone, 2,6-diphenyl- 531.
Benzonitrile, 4-(1-oxo-3-phenyl-2-propenyl)- 310.
                                                           1,4-Benzoquinone, methyl- 708.
Benzo[rst]pentaphene 129.
                                                           1,4-Benzoquinone, tetramethyl- 552.
Benzo[ghi]perylene, 12a,12b-dihydro-408.
                                                           1,4-Benzoquinone, 2,3,5-trimethyl- 1085.
                                                           1,4-Benzoquinone 143.
1,12-Benzoperylene 130.
Benzo[ghi] perylene 130.
                                                           p-Benzoquinone 143.
Benzo[c]phenanthrene 131.
                                                           Benzothiazolium, 2-[4-(dimethylamino)phenyl]-
Benzophenazine 132.
                                                              3,6-dimethyl-, chloride 1061.
                                                           Benzo[b]thiophene-3(2H)-one,
Benzophenone 133.
                                                              5-(1,1-dimethylpropyl)-2-[5-(1,1-dimethylpropyl)]-
Benzophenone, 3-amino- 41.
Benzophenone, 4-amino- 42.
                                                              3-oxobenzo[b]thien-2(3H)-ylidene)- 337.
Benzophenone, 4,4'-bis(dimethylamino)- 190.
                                                           Benzo[b]thiophene-3(2H)-one,
Benzophenone, 4-carboxy- 249.
                                                              5-(2,2-dimethylpropyl)-2-[5-(2,2-dimethylpropyl)]-
Benzophenone, 4-chloro- 266.
                                                              3-oxobenzo[b]thien-2(3H)-ylidene)- 514.
Benzophenone, conjugate acid 134.
                                                           Benzo[b]thiophene-3(2H)-one,
Benzophenone, 4,4'-dichloro- 372.
                                                              6-ethoxy-3-oxobenzo[b]thien-2(3H)-ylidene)- 388.
Benzophenone, 4,4'-dimethoxy- 445.
                                                            Benzo[b]thiophen-3(2H)-one,
Benzophenone, 4[2-[4-dimethylamino)phenyl]ethyl]- 464.
                                                              2-(3-\text{oxobenzo}[b] \text{thien-}2(3H)-\text{ylidene})-1062.
Benzophenone, 4,4'-diphenyl- 530.
                                                            Benzo[b]triphenylene/Chloranil 144.
Benzophenone, 4-fluoro- 595.
                                                            Benzo[b]triphenylene 145.
Benzophenone, 2-hydroxy- 613.
                                                            Benzoxazole, 2-biphenylphenyl- 177.
Benzophenone, 4-hydroxy- 614.
                                                            Benzoxazole, 2-(4-biphenylyl)- 178.
Benzophenone, 4-methoxy- 664.
                                                            Benzoxazole, 2-(1-naphthyl)- 792.
                                                            Benzoxazole, 2,2'-(1,4-phenylene)bis-883.
Benzophenone, 2-methyl-706.
Benzophenone, 4-methyl- 707.
                                                            1-Benzoylacetone 146.
Benzophenone, 4-phenyl- 879.
                                                            Benzoylamino-2-\Delta^2-thiazoline 147.
Benzophenone, 4-sulfomethyl-, anion 1010.
                                                            9-Benzoylanthracene 148.
Benzophenone, 4-(trifluoromethyl)- 1082.
                                                            4-Benzoylbenzoic acid 249.
Benzophenone, 2,4,6-triisopropyl- 1084.
                                                            4-Benzovlbiphenyl 879.
Benzophenone-(CH_2)_2-(N,N-dimethylaniline) 464.
                                                            9-Benzoyl-10-bromoanthracene 149.
Benzo[g]pteridine-2,4(1H,3H)-dione, 7,8-dimethyl- 644.
                                                            9-Benzoyl-10-chloroanthracene 150.
                                                            9-Benzovl-10-cyanoanthracene 151.
Benzo[g] pteridine-2,4-(3H,10H)-dione, 7,8,10-trimethyl-
                                                            2-Benzoyl-N-methyl-\beta-naphthiazoline 152.
   645.
Benzo[g]pteridine-2,4(1H,3H)-dione 31.
                                                            8-Benzoylnaphtho[de-2.3.4]bicyclo[3.2.2]nona-2,6,8-triene
4H-1-Benzopyran-4-one, 3-hydroxy- 616.
                                                            9-Benzoyl-10-nitroanthracene 154.
2H-1-Benzopyran-2-one, 4-hydroxy-6-methyl- 623.
1-Benzopyran-4(4H)-one 294.
                                                            2-Benzoylpyridine 155.
                                                            3-Benzoylpyridine 156.
1,2-Benzopyrene 137.
                                                            4-Benzoylpyridine 157.
3,4-Benzopyrene 137.
```

1-Benzoyl-3,3,3-trifluoroacetone 158. 3,4-Benzphenanthrene 131. Benzyl 9-anthroate 159. Benzylideneacetophenone 258. 1-Benzylisoquinoline-N-oxide 160. Benzyl phenyl ketone, conjugate acid 161. 3-Benzyl-3-phenylphenanthro[9,10-b]furan-2(3H)-one 3-Benzyl-3,4,5-triphenyl-2(3*H*)-furanone **163**. Bergapten 683. Biacetyl 164. 9,9'-Bianthracene 165. 9,9'-Bianthryl 165. 9,9'-Bicarbazole 166. Bicyclo[2.2.1]hepta-2,5-diene, 7-oxa-2,3-dibenzoyl-833. Bicyclo[2.2.1]hepta-2,5-diene-2,3-diylbis[phenylmethanone] Bicyclo[2.2.1]hept-2-ene, 7-oxa-2,3-dibenzoyl- 834. Bicyclo[2.2.1]hept-2-ene, 2-phenyl-896. Bicyclo[2.2.2]octa-2,5-diene, 2,3-dibenzoyl- 354. Bicyclo[2.2.2]octa-2,5-diene-2,3diylbis[phenylmethanone] 354. Bifluorenylidene 167. 21H-Biline-8,12-dipropanoic acid, 2,17-diethenyl-1,10,19,22,23,24-hexahydro-3,7,13,17-tetramethyl-1,19-dioxo- 168. 21H-Biline-8,12-dipropanoic acid, 3,18-diethenyl-1,19,22,24-tetrahydro-2,7,13,17-tetramethyl-1,19-dioxo- 169. (15E)-21H-Biline-8,12-propanoic acid, 3,18-diethenyl-1,19,22,24-tetrahydro-2,7,13,17-tetramethyl-1,19-dioxo-, dimethyl ester 170. Bilirubin 168. Bilirubin IX 168. Biliverdin 169. Biliverdin, dimethyl ester 170. Biliverdin IX 169. 1,1'-Binaphthyl, 3,4-dihydro- 409, 1,1'-Binaphthyl, 3,4-dihydro-2'-methyl- 421, 1.1'-Binaphthyl 171. 2,2'-Binaphthyl 172. p,p'-Biphenol 437. Biphenyl 173. Biphenyl, 4-acetyl- 14. Biphenyl, 4-amino- 43. Biphenyl, 4-amino-4'-hydroxy- 46. Biphenyl, 4-benzoyl- 879. Biphenyl, 4-bromo- 216. Biphenyl, 4-cyano- 309. Biphenyl, 4,4'-diamino- 111. Biphenyl, 4,4'-dibromo- 359. Biphenyl, 4,4'-dihydroxy- 437. Biphenyl, 4,4'-dimethoxy- 448. Biphenyl, 3,3'-dimethyl- 476. Biphenyl, 4-hydroxy- 615. Biphenyl, 4-iodo- 634. Biphenyl, 4-nitro- 816. Biphenyl, 2-(1-phenylethenyl)- 180. Biphenyl- d_{10} 174.

4-Biphenylamine 43. 4-Biphenylcarbonitrile 309. 4-Biphenylcarboxaldehyde 175. Biphenylene 176. 2-Biphenylphenylbenzoxazole 177. 2-(4-Biphenylyl)benzoxazole 178. 1-(4-Biphenylyl)-3-chloro-1-propanone 179. 2-[1,1'-Biphenvll-4-vlphenvlbenzoxazole 177. 1-(2-Biphenylyl)-1-phenylethylene 180. 2-(4-Biphenylyl)-5-phenyl-1,3,4-oxadiazole 181. 2-(4-Biphenylyl)-5-phenyloxazole 182. 5"-[1,1'-Biphenyl]-4-yl-1,1':4',1":3",1"":4"",1""-quinquephenyl 183. 6,6'-Biquinoline, conjugate diacid 185. 2,2'-Biquinoline, conjugate monoacid 186. 6,6'-Biquinoline, conjugate monoacid 187. 2,2'-Biquinoline 184. 2,5-Bis([1,1'-biphenyl]-4-yl)oxazole 357. Bis(2,2'-bipyridine)dichloroiridium(III) ion 188. 2,5-Bis(5-tert-butyl-2-benzoxazolyl)thiophene 189. 3,6-Bis(dimethylamino)acridine, conjugate monoacid 25. 3,6-Bis(dimethylamino)acridine 26. 4,4'-Bis(dimethylamino)benzophenone 190. 6,6'-Bis(dimethylamino)-3,3'-diethyl-2,2'-thiacarbocyanine iodide 191. 1,7-Bis(dimethylamino)-1,4,6-heptatrien-3-one 192. 2.5-Bis[7-(dimethylamino)-2.4.6-heptatrienylidene]cyclopentanone 193. 3,7-Bis(dimethylamino)-4-nitrophenothiazin-5-ium 722. 1,9-Bis(dimethylamino)-1,3,6,8-nonatetraen-5-one 194. 1,9-Bis(dimethylamino)-1,4,6,8-nonatetraen-3-one 195. all-trans-1,15-Bis(dimethylamino)-1,3,6,8,10,12,14-pentadecaheptaen-5-one 196. 2,6-Bis[5-(dimethylamino)-2,4-pentadienylidene]cyclohexanone 197. 2,5-Bis[5-(dimethylamino)-2,4-pentadienylidene]cyclopentanone 198. 3.7-Bis(dimethylamino)phenothiazin-5-ium 719. 2,6-Bis[3-(dimethylamino)-2-propenylidene]cyclohexanone 4,4'-Bis(dimethylamino)thiobenzophenone 200. all-trans-1,13-Bis(dimethylamino)-1,3,5,8,10,12-tridecahexaen-7-one 201. all-trans-1,13-Bis(dimethylamino)-1,3,6,8,10,12-tridecahexaen-5-one 202. all-trans-1,11-Bis(dimethylamino)-1,3,6,8,10-undecapentaen-5-one 203. Bis(dimethylformamide)phthalocyaninatoruthenium(II) 204. Bis(dimethylsulfoxide)phthalocyaninatoruthenium(II) Bis(dimethylsulfoxide)phthalocyaninatoruthenium(II)/1,4-Dinitrobenzene 206. Bis(dimethylthiocarbamyl) disulfide 1050. 9H-9-Bismafluorene, 9-phenyl- 880. 3,6-Bis(methylamino)acridine, conjugate monoacid 94. 1,4-Bis(methylamino)anthraquinone 207. 1,1-Bis(1-naphthyl)ethylene 208. trans-1,2-Bis(1-naphthyl)ethylene 209.

```
trans-1,2-Bis(2-naphthyl)ethylene 210.
                                                               11-cis-C<sub>22</sub> aldehyde 250.
9,10-Bis(phenylethynyl)anthracene 211.
                                                               7,9-dicis-C<sub>15</sub> aldehyde 758.
1,4-Bis[2-(5-phenyloxazolyl)]benzene 885.
                                                               7-cis-C<sub>15</sub> aldehyde 756.
rac-Bis[1-(1-pyrenyl)ethyl]ether 212.
                                                               9-cis-C<sub>15</sub> aldehyde 757.
m.m'-Bitoluene 476.
                                                               all-trans-C22 aldehyde 251.
Bonellin 213.
                                                               all-trans-C24 aldehyde 501.
2.3-Bornanedione 243.
                                                               all-trans-C<sub>17</sub> aldehyde 750.
Brilliant Sulfaflavine anion 214.
                                                               all-trans-C<sub>15</sub> aldehyde 755.
                                                               Camphoroquinone 243.
9-Bromoanthracene 215.
10-Bromo-9-anthryl phenyl ketone 149.
                                                               Canthaxanthin 244.
                                                               Carbazole 245.
4-Bromobiphenyl 216.
4-Bromo-1-cyanoisoquinoline-N-oxide 217.
                                                               Carbazole, 4a,5a-dihydro-410.
N-[2-[(2-Bromo-6-cyano-4-nitrophenyl)azo]-
                                                               Carbazole, N,N'-dimethyl-3-anilino- 471.
   5-[(2-cyanoethyl)(2-hydroxyethyl)amino]-
                                                               Carbazole, N-ethyl- 570.
   4-methoxyphenyl acetamide 218.
                                                               Carbazole, 9-[2-(4-methoxycarbonylbenzoxy)ethyl]- 665.
N-[2-[(2-Bromo-4,6-dinitrophenyl)azo]-
                                                               Carbazole, 9-[3-(4-methoxycarbonylbenzoxy)propyl]-
   5-[(2-cyanoethyl)(2-hydroxyethyl)amino]-
   4-methoxyphenyl]acetamide 219.
                                                               Carbazole-(CH<sub>2</sub>)<sub>2</sub>-(terephthalic acid methyl ester) 665.
4-[(2-Bromo-4,6-dinitrophenyl)azo]-
                                                               Carbazole-(CH<sub>2</sub>)<sub>3</sub>-(terephthalic acid methyl ester) 666.
   N,N-dimethylbenzenamine 220.
                                                               3-Carbethoxypsoralen 246.
4-Bromoisoquinoline-N-oxide 221.
                                                               2,2'-Carbocyanine, 1,1'-diethyl-, chloride, 392.
Bromo(methanol)(phthalocyaninato)rhodium(III) 222.
                                                               4,4'-Carbocyanine, 1,1'-diethyl-, iodide 393.
1-(Bromomethyl)naphthalene 223.
                                                               Carbostyril 247.
1-Bromonaphthalene 224.
                                                               Carbostyril, 7-amino-4-methyl- 49.
2-Bromonaphthalene 225.
                                                               Carbostyril, negative ion 248.
4-[(2-Bromo-4-nitrophenyl)azo]-N,N-dimethylbenzenamine
                                                               4-Carboxybenzophenone 249.
   226.
                                                               N-[9-(2-Carboxyphenyl)-6-(diethylamino)-3H-xanthen-
9-Bromophenanthrene 227.
                                                                  3-ylidene]-N-ethylethanaminium chloride 983.
                                                               11-cis-β-apo-14'-Carotenal 250.
4-Bromophenol/Eosin 558.
(E)-1-Bromo-4-(2-phenylethenyl)benzene 229.
                                                               B-apo-14'-Carotenal 251.
1-Bromopyrene 228.
                                                               β-apo-8'-Carotenal 252.
trans-4-Bromostilbene 229.
                                                               ψ,ψ-Carotene, all-trans-3,4-didehydro-
2-Bromotriphenylene 230.
                                                                  1,2,7',8'-tetrahydro-1-methoxy- 996.
1,3-Butadiene, 1,4-diphenyl- 535.
                                                               ψ,ψ-Carotene, all-trans-3,4-didehydro-
1,3-Butadiene, 1,1,4,4-tetraphenyl- 1052.
                                                                  1,2,7',8'-tetrahydro-1-methoxy-2-oxo-997.
                                                               β-Carotene, 7,7'-dihydro- 412.
Butadiyne, 1,4-diphenyl- 536.
                                                               ψ,ψ-Carotene, all-trans-7,8-dihydro-808.
1,3-Butanedione, 1-phenyl- 146.
1,3-Butanedione, 4,4,4-trifluoro-1-phenyl- 158.
                                                               \beta, \epsilon-Carotene, 3,3'-dihydroxy-, (3R,3'R,6'R)- 648.
2,3-Butanedione 164.
                                                               \beta,\beta-Carotene, 3,3'-dihydroxy-, (3R,3'R)- 1123.
                                                               ψ-Carotene, 15-cis-7,7',8,8',11,11',12,12'-octahydro-908.
1,2,3-Butanetrione, 1-(4-nitrophenyl)-
   2-[(4-methoxyphenyl)hydrazone]- 680.
                                                               \psi, \psi-Carotene, 7,7',8,8',11,11',12,12'-octahydro- 909.
2-Butanone 231.
                                                               ψ,ψ-Carotene, all-trans-3,3',4,4'-tetradehydro-1,1',2,2'-
1-Butene-3-one 761.
                                                                  tetrahydro-1,1'-dimethoxy-998.
3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
                                                               ψ-Carotene, 7,8,11,12-tetrahydro- 255.
                                                               15,15'-cis-B-Carotene 253.
Butyl benzoylformate 232.
                                                               B-Carotene 254.
5-Butyl-2-[5-butyl-3-oxobenzo[b]thien-2(3H)-ylidene]-
                                                               all-trans-ψ-Carotene 649.
   benzo[b]thiophen-3(2H)-one 364.
                                                               (3R, 3'R)-\beta, \beta-Carotene-3,3'-diol 1123.
4-tert-Butyl-3,5-dinitroanisole 233.
                                                               (3R,3'R,6'R)-\beta,\epsilon-Carotene-3,3'-diol 648.
                                                               β-Carotene-4,4'-dione, 3,3'-dihydroxy- 92.
2-[1-(Butylimino)ethyl]-5-methylphenol 234.
2-tert-Butyl-4-methylindazole 235.
                                                               \beta,\beta-Carotene-4,4'-dione 244.
N-Butyl-5-nitro-2-furamide 236.
                                                               all-trans-\(\beta\),\(\beta\)-Carotene-3,3',4,4'-tetrone 91.
1-Butynylbenzene 237.
                                                               ζ-Carotene 255.
Butyraldehyde 238.
                                                               β-apo-8'-Carotenoic acid, methyl ester 256.
                                                               β-apo-6'-Carotenoic acid,
9-Butyrylanthracene 239.
                                                                  \hbox{$4-[tri(4-methylphenyl)porphinyl]-3-phenoxypropyl}
Cadmium(II) tetrabenzoporphyrin 240.
Cadmium(II) tetraphenylporphyrin 241.
                                                                  ester 1090.
                                                               4-(\beta-apo-7'-Carotenyl)benzyl pyropheophorbide 257.
Caffeine 242,
```

Chalcone 258.

Chalcone, 4'-cyano- 310.

Chalcone, 4-(dimethylamino)- 455.

Chalcone, 4-methoxy- 667.

Chloranil 259.

Chloranil/Benzo[b]triphenylene 144.

Chloranil/Triphenylamine 260.

Chloroaluminum phthalocyanine 261.

1-Chloroanthracene 262.

1-Chloroanthraquinone 263.

2-Chloroanthraquinone 264.

10-Chloro-9-anthryl phenyl ketone 150.

Chlorobenzene 265.

4-Chlorobenzophenone 266.

(2'-Chlorobenzoyl)amino-2- Δ^2 -thiazoline 267.

(4'-Chlorobenzoyl)amino-2- Δ^2 -thiazoline 268.

4-Chloro-6-[4-(diethylamino)phenyl]-N,N-dimethyl-1,3,5-triazin-2-amine **269**.

2-Chloro-10-dimethylaminopropylphenothiazine 292.

2-Chloro-*N*,*N*-dimethyl-10*H*-phenothiazine-10-propanamine **292.**

N-[2-[(2-Chloro-4,6-dinitrophenyl)azo]-

5-[(2-cyanoethyl)(2-hydroxyethyl)amino]-

4-methoxyphenyl]acetamide 270.

3-Chloro-2,6-diphenyl-1,4-benzoquinone/4-Methoxy-N,N-dimethylaniline 271.

3-Chloro-2,6-diphenyl-1,4-benzoquinone/Naphthalene 272.

3-Chloro-2,6-diphenyl-1,4-benzoquinone/N,N,N',N'-Tetramethyl-p-phenylenediamine **273**.

3-Chloro-2,6-diphenyl-1,4-benzoquinone/1,2,3-Trimethoxybenzene 274.

3-Chloro-2,6-diphenyl-1,4-benzoquinone/Triphenylamine

Chloroindium(III) phthalocyanine 276.

Chloro(methanol)(phthalocyaninato)rhodium(III) 277.

1-(Chloromethyl)naphthalene 278.

1-Chloronaphthalene 279.

2-Chloronaphthalene 280.

3-Chloro-1-(2-naphthyl)-1-propanone 281.

(Z)-1-Chloro-4-(2-phenylethenyl)benzene 288,

(E)-1-Chloro-4-(2-phenylethenyl)benzene 289.

1-(2-Chlorophenyl)naphthalene 282.

1-(4-Chlorophenyl)naphthalene 283.

Chlorophthalocyanatoindium(III) 276.

Chlorophyll a 284.

Chlorophyll b 285.

Chlorophyll a dimer 286.

Chlorophylline 287.

cis-4-Chlorostilbene 288.

trans-4-Chlorostilbene 289.

2-Chlorothioxanthen-9-one 290.

6-Chloro-1,3,3-trimethyl-6'-nitro-

spiro-(2,2'-indolin[2H-1]benzopyran) 291.

Chlorpromazine 292.

4-Chromanone 293.

2H-Chromene, 8-methoxy-2,2,3-trimethyl-6-nitro-686.

Chromone 294.

Chromone, 3-hydroxy- 616.

Chrysene 295.

9-Cinnamoylanthracene 296.

Citropten 449.

7,9-dicis-C₁₈ ketone 754.

7-cis-C₁₈ ketone 752.

9-cis-C₁₈ ketone 753.

all-trans-C₁₈ ketone 751.

Copper(II) phthalocyanine 297.

Coproporphyrin I, tetramethyl ester 300.

Coproporphyrin III 298.

Coproporphyrin III, tetramethyl ester 299.

Coronene 301.

Coronene- d_{12} 302.

Coumarin 303.

Coumarin, 7-diethylamino-4-methyl- 390.

Coumarin, 5,7-dimethoxy- 449.

Coumarin, 4-hydroxy- 617.

Coumarin, 4-hydroxy-6-methyl- 623.

Coumarin, 7-hydroxy-4-methyl- 624.

p-Cresol 304.

Crocetin 305,

a-Crocetin 305.

Croconate Blue dianion 306.

Cryptocyanine 393.

Crystal Violet 307.

2,2'-Cyanine, 1,1'-diethyl-, iodide 394.

2,2'-Cyanine, 1,1'-diethyl-6-bromo-, iodide 391.

2,2'-Cyanine, 1,1'-diethyl-6-iodo-, iodide 396.

9-Cyanoanthracene 308.

4-Cyanobiphenyl 309.

4'-Cyanochalcone 310.

trans-4-Cyano-4'-dimethylaminostilbene 311.

N-[5-[(2-Cyanoethyl)(2-hydroxyethyl)amino]-2-[(2,4-dinitrophenyl)azo]-4-methoxyphenyl]-acetamide 312.

1-Cyano-4-methoxynaphthalene 674.

trans-4-Cyano-4'-methoxystilbene 313.

1-Cyanonaphthalene 314.

9-Cyano-10-nitroanthracene 315.

trans-4-Cyanostilbene 316.

Cycl[3.3.3]azine 951.

Cyclobuta[1,2:3,4]dicycloheptene, 1,2,3,4,5,6,7,8,9,10-decahydro-1,1,5,5,6,6,10,10-octamethyl-330.

1,2-Cyclobutanedicarboxylic acid, 3,4-di-1-naphthyl-, dimethyl ester, $(1\alpha,2\alpha,3\beta,4\beta)$ - 506.

trans-9,9'-(1,2-Cyclobutanediyl)bis-9H-carbazole 366.

Cyclobutene, 1,2-diphenyl- 537.

1,3-Cycloheptadiene 317.

2-Cyclohepten-1-one 318.

1-(1-Cyclohepten-1-yl)naphthalene 319.

2-(1-Cyclohepten-1-yl)naphthalene 320.

1,3-Cyclohexadiene 321.

2,5-Cyclohexadiene-1,4-dione, 2,3,5,6-tetramethyl-, conjugate monoacid **554.**

Cyclohexanone.

2,6-bis[5-(dimethylamino)-2,4-pentadienylidene]- 197.

Cyclohexanone,

 $2,6-bis[3-(dimethylamino)-2-propenylidene] \textbf{-} \ \textbf{199.}$

Cyclohexanone,

2-[7-(dimethylamino)-2,4,6-heptatrienylidene]-

6-[5-(dimethylamino)-2,4-pentadienylidene]- 458.

Cyclohexene, 1-phenyl- 881.

Cyclohexene-1-one, 3,5,5-trimethyl-2-phenoxy-2- 1089.

2-Cyclohexen-1-one, 2-(2-naphthyloxy)-3,5,5-trimethyl-799.

2-Cyclohexen-1-one 322.

1-(1-Cyclohexen-1-yl)naphthalene 323.

1,3-Cyclooctadiene 324.

1-(1-Cycloocten-1-yl)naphthalene 325.

Cyclopentadiene 326.

Cyclopentanone, 2,5-bis[7-(dimethylamino)-

2,4,6-heptatrienylidene]- 193.

Cyclopentanone, 2,5-bis[5-(dimethylamino)-

2,4-pentadienylidene]- 198.

2-Cyclopentenone 327.

1-(1-Cyclopenten-1-yl)naphthalene 328.

2-(1-Cyclopenten-1-yl)naphthalene 329.

9H-Cyclopropa[e]pyrene, 8b,9a-dihydro-413.

DNA/Benzo[a]pyrene 135.

DNA/Benzo[e]pyrene 136.

1,2,3,4,5,6,7,8,9,10-Decahydro-1,1,5,5,6,6,10,10octamethylcyclobuta[1,2:3,4]dicycloheptene **330.**

(all-E)-1,3,5,7,9-Decapentaene, 3,8-dimethyl-

1,10-bis(2,6,6-trimethyl-1-cyclohexen-1-yl)- 477.

Decapreno- β -carotene 331.

3,5,7,9-Decatetraen-2-one, 10-(dimethylamino)- 456.

Deoxybenzoin 332.

Deuteroporphyrin, dimethyl ester 333.

Diacetyl 164.

trans-N,N'-Diacetylindigo 334.

3,6-Diaminoacridine, conjugate diacid 922.

3,6-Diaminoacridine, conjugate monoacid 923.

3,6-Diaminoacridine, hydrochloride 921.

1,4-Diaminoanthraquinone 335.

4,4'-Diaminobiphenyl 111.

3,6-Diamino-2,7-dimethylacridine, conjugate monoacid 27.

3,6-Diamino-2,7-dimethyl-9-phenylacridine, monohydrochloride 119.

3,7-Diamino-2,8-dimethyl-5-phenylphenazinium 990.

3,7-Diamino-2,8-dimethyl-5-phenylphenazinium, conjugate diacid **991**.

3,7-Diamino-2,8-dimethyl-5-phenylphenazinium, conjugate monoacid **992**.

4,7-Diamino-1*H*-isoindole-1,3(2*H*)-dione 336.

3,6-Diamino-10-methylacridinium 30.

3,7-Diamino-5-phenoselenazinium, conjugate monoacid

3,7-Diamino-5-phenoselenazinium 993.

3,7-Diamino-5-phenothiazinium, conjugate monoacid 1064.

3,7-Diamino-5-phenothiazinium 1063.

3,7-Diamino-5-phenoxazinium, conjugate monoacid 836.

3,7-Diamino-5-phenoxazinium 835.

3,6-Diamino-9-phenylacridine, conjugate monoacid 898.

3,6-Diaminophthalimide 336.

p,p'-Diaminoquaterphenyl 959.

p,p'-Diaminoterphenyl 1011.

3,6-Diamino-2,7,9-trimethylacridine, conjugate monoacid 580.

5,5'-Di-tert-amylthioindigo 337.

8,8'-Diapocarotenedioic acid 305.

1,5-Diazabicyclo[3,3,0]octa-3,7-diene-2,6-dione,

3,4,7,8-tetramethyl- 1047.

1,5-Diazaphenanthrene 862.

1,8-Diazaphenanthrene 865.

2,10-Diazaphenanthrene 127.

2,5-Diazaphenanthrene 863.

3,10-Diazaphenanthrene 126.

3,5-Diazaphenanthrene **864.**

4,10-Diazaphenanthrene 125.

4,5-Diazaphenanthrene 861.

1,2,5,6-Dibenzacridine 339,

Dibenz[a,j]acridine/PrOH 338.

Dibenz[a,h]acridine 339.

1,2,7,8-Dibenzanthanthrene 937,

1,2,3,4-Dibenzanthracene 145.

1,2,5,6-Dibenzanthracene 341.

Dibenz[a,h]anthracene/Chloranil 340.

Dibenz[a,h]anthracene 341.

5H-Dibenzobismole, 5-phenyl-880.

3,4,5,6-Dibenzocarbazole 342.

7H-Dibenzo[c,g]carbazole 342.

Dibenzo[b,def]chrysene 343.

Dibenzo[def,mno]chrysene 344.

Dibenzo[def,p]chrysene 345.

Dibenzo[def,mno]chrysene-6,12-dione 346.

Dibenzo[g,p]chrysene 347.

5H-Dibenzo[a,d]cycloheptene 348.

5H-Dibenzogermole, 5,5-diphenyl- 540.

Dibenzo[c,g]phenanthrene 847.

Dibenzophenazine 349.

5H-Dibenzophosphole, 5-phenyl-897.

6H-Dibenzo[b,d]pyran-6-one 350.

1,2:3,4-Dibenzopyrene 345.

1,2:4,5-Dibenzopyrene 783.

3,4:8,9-Dibenzopyrene 343.

3,4:9,10-Dibenzopyrene 129.

Dibenzo[a,e]pyrene 783.

Dibenzo[a,h]pyrene 343.

Dibenzo[a,i]pyrene 129.

Dibenzo[a,l]pyrene 345.

5,6,7,8-Dibenzoquinoxaline 351.

Dibenzo[f,h]quinoxaline 351.

5H-Dibenzosilole, 5,5-diphenyl- 549.

5H-Dibenzostannole, 5,5-diethyl- 402.

5H-Dibenzostibole, 5-phenyl- 899.

Dibenzo[c,g]triphenylene 352.

2,3-Dibenzoylbicyclo[2.2.1]hepta-2,5-diene 353.

2,3-Dibenzoylbicyclo[2.2.2]octa-2,5-diene 354.

Dibenzoylmethane 355.

2,3-Dibenzoyl-2,5-norbornadiene 353.

```
2,4-Dibenzoylpentane 482.
```

2.3:6.7-Dibenzphenanthrene 848.

N-[(Dibenzylamino)methyl]phthalimide 356.

2,5-Di(4-biphenylyl)oxazole 357.

9,10-Dibromoanthracene 358.

4.4'-Dibromobiphenvl 359.

Dibromofluorescein dianion 360.

1,4-Dibromonaphthalene 361.

(Z)-N,N-Dibutyl-2,3-dihydro-3-oxo-2-

(3-oxonaphtho[1,2-b]thien-2(3H)-ylidene)-naphtho

[1,8-bc]thiopyran-6-sulfonamide 362.

(E)-N,N-Dibutyl-2,3-dihydro-3-oxo-2-

(3-oxonaphtho[1,2-b]thien-2(3H)-ylidene)-naphtho

[1,8-bc]thiopyran-6-sulfonamide 363.

5,5'-Dibutylthioindigo 364.

5,5'-Di-tert-butylthioindigo 365.

trans-1,2-Di(N-carbazolyl)cyclobutane 366.

meso(DL)-2,4-Di(N-carbazolyl)pentane 367.

rac(DD,LL)-2,4-Di(N-carbazolyl)pentane 368.

2,2'-Dicarbocyanine iodide, 1,1'-diethyl- 395.

1,5-Dichloroanthracene 369.

9,10-Dichloroanthracene 370.

1,8-Dichloroanthraquinone 371.

4,4'-Dichlorobenzophenone 372.

Dichlorobis(4,7-dimethyl-1,10-phenanthroline) iridium(III) ion 373.

Dichlorobis(5,6-dimethyl-1,10-phenanthroline) iridium(III) ion 374.

Dichlorobis(1,10-phenanthroline)iridium(III) ion 375.

3,5-Dichloro-2,6-diphenyl-1,4-benzoquinone/ Triphenylamine 376.

1,4-Dichloronaphthalene 377.

4,4'-Dichlorostilbene 378.

4-(4,6-Dichloro-1,3,5-triazin-2-yl)-*N*,*N*-diethylaniline **379**. Dicumarol **380**.

9,10-Dicyanoanthracene 381.

1,2-Dicyanobenzene 382.

1.3-Dicvanobenzene 383.

1,4-Dicyanobenzene 384.

1,4-Dicyanonaphthalene 385.

trans-4,4'-Dicyanostilbene 386.

all-trans-3',4'-Didehydro-β,ψ-16'-carotenal 387.

5,7:14,16-Dietheno-8H,13H-diindeno[2,1-h:1',2'i]-

[1,4]dioxacyclotridecin, 10,11-dihydro- 414.

5,7:20,22-Dietheno-8H,19H-diindeno[2,1-n:1',2'-o]-

[1,4,7,10]tetraoxacyclononadecin,

10,11,13,14,16,17-hexahydro- 609.

5,7:15,17-Dietheno-2,20-heptano-

H-cyclotetradeca[1,2-a:1,14-a']diindene,

9,10,11,12,13,14-hexahydro- 610.

5,7:16,18-Dietheno-2,21-octanocyclopentadeca[1,2-a:1,15-a']-diindene, 8,9,10,11,12,13,14,15-octahydro- **829**.

2,17-Diethenyl-1,10,19,22,23,24-hexahydro-

3,7,13,17-tetramethyl-1,19-dioxo-

21H-biline-8,12-dipropanoic acid 168.

3,18-Diethenyl-1,19,22,24-tetrahydro-

2,7,13,17-tetramethyl-1,19-dioxo-

21H-biline-8,12-dipropanoic acid 169.

6,6'-Diethoxythioindigo 388.

N-[2-(Diethylamino)ethyl]phthalimide 389.

7-Diethylamino-4-methylcoumarin 390.

Diethylaniline/Pyrene 942.

1,1'-Diethyl-6-bromo-2,2'-cyanine iodide 391.

1,1'-Diethyl-2,2'-carbocyanine chloride 392.

1,1'-Diethyl-4,4'-carbocyanine iodide 393.

1,1'-Diethyl-2,2'-cyanine iodide 394.

5,5-Diethyl-5*H*-dibenzostannole **402**.

1,1'-Diethyl-2,2'-dicarbocyanine iodide 395.

Diethyl ether/Pyromellitic dianhydride 954.

1,1'-Diethyl-6-iodo-2,2'-cyanine iodide 396.

3,3'-Diethyl-9-methoxy-2,2'-thiacarbocyanine iodide 397.

3,3'-Diethyl-2,2'-oxacarbocyanine iodide 398.

3,3'-Diethyl-2,2'-oxadicarbocyanine iodide 399.

N,N'-Diethylrhodamine 400.

5,5'-Diethylselenoindigo 401.

9,9-Diethyl-9H-9-stannafluorene 402.

3,3'-Diethyl-2,2'-thiacarbocyanine iodide 403.

3,3'-Diethyl-2,2'-thiacyanine iodide 404.

3.3'-Diethyl-2,2'-thiadicarbocyanine iodide 405.

3,3'-Diethyl-2,2'-thiatricarbocyanine iodide 406.

Difurobenzene, 2-formyl-5'-methyl- 600.

6.6'-Dihexyloxythioindigo 407.

12a,12b-Dihydrobenzo[ghi]perylene 408.

3,4-Dihydro-1,1'-binaphthyl 409.

4a,5a-Dihydrocarbazole 410.

4',5'-Dihydro-3-carbethoxypsoralen 411.

7,7'-Dihydro- β -carotene 412.

8b,9a-Dihydro-9H-cyclopropa[e]pyrene 413.

10,11-Dihydro-5,7:14,16-dietheno-8H,13H-diindeno

[2,1-h:1',2'-i][1,4]dioxacyclotridecin 414.

6,12-Dihydro-3,9-dimethyl(indeno[1,2-b]fluorene) 484.

12*a*,12*b*-Dihydro-5,8-dimethyl(indolino[2,3-*c*] carbazole) **415.**

5,10-Dihydro-5,10-dimethylphenazine 416.

(R)-4,5-Dihydrodinaphtho[2,1-e:1',2'-g][1,4]dioxocin

(R)-5,6-Dihydro-4H-dinaphtho[2,1-f:1',2'-h][1,5]dioxonin 418.

5,10-Dihydro-5,10-diphenylphenazine 419.

7,10-Dihydro-7,10-ethenocyclohepta

[de]naphthalen-8-yl)phenyl]methanone 153.

2,3-Dihydro-7H-furobenzopyran-7-one 430.

5,10-Dihydroindeno[2,1-a]indene 420.

3,4-Dihydro-2'-methyl-1,1'-binaphthyl 421.

11,12-Dihydro-5-methylindeno[2,1-a]fluorene 725.

2(1,3-Dihydro-1-methyl-3-oxo-2*H*-indol-2-ylidene)-1,2-dihydro-1-methyl-3*H*-indol-3-one **487**.

5.10-Dihydro-5-methyl-10-phenylphenazine 422.

5,12-Dihydro-5-methylquino[2,3-b]acridine-7,14-dione

9,10-Dihydro-9-oxo-2-acridinesulfonate ion 424.

9,10-Dihydro-9-oxo-2-acridinesulfonic acid 425.

2,3-Dihydro-7-oxo-7*H*-furo[3,2-*g*][1]benzopyran-6-carboxylic acid, ethyl ester **411**.

2,3-Dihydrophenalene 426. 3,4-Dihydrophenanthrene 427. 9,10-Dihydrophenanthrene 428. 1-(1a,9b-Dihydrophenanthro[9,10-b]oxiren-4-yl)ethanone 15. 9,10-Dihydro-9-phenylacridine 874. 9,10-Dihydro-N-phenylacridine 875. 1,2-Dihydro-3-phenylnaphthalene 429. 4',5'-Dihydropsoralen 430. 5,12-Dihydroquino[2,3-b]acridine-7,14-dione 431. 1,2-Dihydro-2,2,4,6-tetramethylquinoline 432. 1,4-Dihydro-5,6,11,12-tetraphenyl-1,4-epidioxytetracene 5,12-Dihydro-5,6,11,12-tetraphenyl-5,12-epidioxytetracene (E)-5[(3,4-Dihydro[1,4]thiazino[3,4-b]benzothiazol-1-yl) methylene]-3-ethyl-2-thioxo-4-thiazolidinone 435. 10H,10'H-10,10'-Dihydroxybianthrylidene 436. 4,4'-Dihydroxybiphenyl 437. 3,3'-Dihydroxy- β -carotene-4,4'-dione 92. 4.7-Dihydroxy-1H-isoindole-1.3(2H)-dione 444. Dihydroxylycopene 438. 2,4-Dihydroxy-5-methylpyrimidine 1072. 2,3-Dihydroxynaphthalene, conjugate base 443. 1,5-Dihydroxynaphthalene 439. 1,8-Dihydroxynaphthalene 440. 2,3-Dihydroxynaphthalene 441. 2,7-Dihydroxynaphthalene 442. 3,6-Dihydroxyphthalimide 444. 4,4'-Dimethoxybenzophenone 445. 2,3-Dimethoxy-1,4-benzoquinone 446. 2,5-Dimethoxy-1,4-benzoquinone 447. 4,4'-Dimethoxybiphenyl 448. 5,7-Dimethoxycoumarin 449. 2,3-Dimethoxy-5-methyl-1,4-benzoquinone 450. 1,4-Dimethoxynaphthalene 451. 1,2-Dimethoxy-4-nitrobenzene 452. (E)-1,4-Dimethoxy-2-[2-(4-nitrophenyl)ethenyl]benzene 453. trans-2,5-Dimethoxy-4'-nitrostilbene 453. 4,4'-Dimethoxythiobenzophenone 454. 7,8-Dimethylalloxazine 644. 4-(Dimethylamino)benzoic acid, methyl ester 717. 4-(Dimethylamino)chalcone 455. 10-(Dimethylamino)-3,5,7,9-decatetraen-2-one 456. 2-(Dimethylamino)ethyl benzoate 457. 2-[7-(Dimethylamino)-2,4,6-heptatrienylidene]-6-[5-(dimethylamino)-2,4-pentadienylidene]cyclohexanone 458. N-[(Dimethylamino)methyl]phthalimide 459. 4-(Dimethylamino)nitrobenzene 497. 1-Dimethylamino-4-nitronaphthalene 460. trans-4-Dimethylamino-4'-nitrostilbene 461. trans-4-Dimethylamino- β -nitrostyrene 465. 8-(Dimethylamino)-3,5,7-octatrien-2-one 462. 9-[4-(Dimethylamino)phenyl]anthracene 463. (E)-4-[2-[4-(Dimethylamino)phenyl]ethenyl]benzonitrile 311. 4-[2-[4-(Dimethylamino)phenyl]ethyl]benzophenone 464. trans-1-(4-Dimethylaminophenyl)-2-nitroethylene 465.

```
2-(Dimethylamino)purine 466.
2-(Dimethylamino)pyridine 467.
4-(Dimethylamino)pyridine 468.
2-(Dimethylamino)pyridine/4-Nitroaniline 469.
N,N-Dimethylaniline 470.
N,N'-Dimethyl-3-anilinocarbazole 471.
1,3-Dimethylanthracene 472.
9,10-Dimethylanthracene 473,
2,5-Dimethyl-1,4-benzoquinone 474.
2,6-Dimethyl-1,4-benzoquinone 475.
3,3'-Dimethylbiphenyl 476.
(all-E)-3,8-Dimethyl-1,10-bis(2,6,6-trimethyl-1-
   cyclohexen-1-yl)-1,3,5,7,9-decapentaene 477.
1-(3,3-Dimethyl-1-buten-2-yl)naphthalene 478.
(Z)-2-(3,3-Dimethyl-1-butenyl)naphthalene 494.
(E)-2-(3,3-Dimethyl-1-butenyl)naphthalene 495.
2,7-Dimethyl-1,8-diazaphenanthrene 499.
N,N'-Dimethyl-5,11-dihydroindolo[3,2-b]carbazole 479.
cis-2,3-Dimethyl-2,3-di-(2-naphthyl)oxirane 480.
trans-2,3-Dimethyl-2,3-di-(2-naphthyl)oxirane 481.
2,4-Dimethyl-1,5-diphenyl-1,5-pentanedione 482.
N,N'-Dimethyl-N,N'-diphenyl-1,4-phenylenediamine 483.
2-(1,1-Dimethylethyl)-5-methoxy-1,3-dinitrobenzene 233.
3.9-Dimethyl-trans-fluorenacene 484.
2,5-Dimethyl-2,4-hexadiene 485.
1,3-Dimethylindazole 486.
N,N'-Dimethylindigo 487.
1,4-Dimethyl-7-isopropylazulene 488.
1-(2,2-Dimethyl-1-methylenepropyl)naphthalene 478.
1,2-Dimethylnaphthalene 489.
2,3-Dimethylnaphthalene 490.
2,7-Dimethylnaphthalene 491.
N,N-Dimethyl-2-naphthylamine, conjugate acid 493.
N,N-Dimethyl-2-naphthylamine 492.
cis-3,3-Dimethyl-1-(2-naphthyl)-1-butene 494.
trans-3,3-Dimethyl-1-(2-naphthyl)-1-butene 495.
2,2-Dimethyl-1-(1-naphthyl)-1-phenylethylene 496.
N,N-Dimethyl-4-nitroaniline 497.
N,N-Dimethyl-4-[(4-nitrophenyl)azo]benzenamine 498.
(E,Z)-2,6-Dimethyl-2,4,6-octatriene 806.
(E)-10-(1,3-Dimethyl-10-oxo-9-anthracenylidene)-
   2,4-dimethyl-9-anthracenone 1046.
3,8-Dimethyl-4,7-phenanthroline 499.
N,N-Dimethyl-10H-phenothiazine-10-propanamine 924.
N,N-Dimethyl-p-phenylenediamine 500.
1,3-Dimethyl-2,4-pyrimidinedione 502.
(E, E, E, E, E, E)-7,11-Dimethyl-
   7-(2.6.6-trimethyl-1-cyclohexen-1-yl)-
   2,4,6,8,10,12-tridecahexaenal 501.
1,3-Dimethyluracil 502.
Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin,
   4-methoxy-, 4-oxide, (R)- 668.
Dinaphtho [2,1-d:1',2'-f][1,3,2] dioxaphosphepin,
   4-methoxy-, 4-oxide 669.
Dinaphtho [2,1-b:1',2'-d][1,6] dioxecin, 4,5,6,7-tetrahydro,
   (R)- 1029.
(S)-Dinaphtho[2,1-d:1',2'-f][1,3]dioxepin 503.
Dinaphtho[2,1-e:1',2'-g][1,4]dioxocin, 4,5-dihydro-, (R)-
   417.
```

3-[4-(Dimethylamino)phenyl]-1-phenyl-2-propen-1-one 455.

4H-Dinaphtho[2,1-f:1',2'-h][1,5]dioxonin, 5,6-dihydro-, (R)- 418.

Di-2-naphthylamine 504.

1,4-Di-1-naphthylbutane 505.

t-3,t-4-Di-(1-naphthyl)-r-1,c-2-dimethoxycarbonyl-cyclobutane **506**.

1,2-Di-1-naphthylethane 507.

Di-1-naphthylmethane 508.

2,5-Di(1-naphthyl)-1,3,4-oxadiazole 509.

cis-2,3-Di-(2-naphthyl)oxirane 510.

trans-2,3-Di-(2-naphthyl)oxirane 511.

1,3-Di-1-naphthylpropane 512.

1,3-Di-2-naphthylpropane 513.

5,5'-Dineopentylthioindigo 514.

3,5-Dinitroanisole 515.

3,5-Dinitroanisole/Water 516.

1,4-Dinitrobenzene/Bis(dimethylsulfoxide) phthalocyaninatoruthenium(II) 206.

1,2-Dinitronaphthalene 517.

1,4-Dinitronaphthalene 518.

1,8-Dinitronaphthalene 519.

4-[(2,4-Dinitrophenyl)azo]-N,N-dimethylbenzenamine 520.

3-[[4-[(2,4-Dinitrophenyl)azo]phenyl](2-hydroxyethyl) amino]-4-propanenitrile **521**.

(E)-2,4-Dinitro-1-(2-phenylethenyl)benzene 522.

trans-2.4-Dinitrostilbene 522.

cis-4,4'-Dinitrostilbene 523.

trans-4,4'-Dinitrostilbene 524.

1-(2,6-Dioxacyclohexyl)naphthalene 779.

2-(2,6-Dioxacyclohexyl)naphthalene 780.

1,3-Dioxane, 2-(1-naphthalenyl)- 779.

1,3-Dioxane, 2-(2-naphthalenyl)- 780.

1,4-Dioxin, 2,3,5,6-tetraphenyl- 1054.

2,6-Dioxo-1,2,3,6-tetrahydro-4-pyrimidinecarboxylic acid 832.

2,6-Dipentylbenzo[1,2-c:4,5-c']dipyrrole-

1.3.5.7(2H.6H)-tetrone 525.

N,N'-Dipentylpyromellitic diimide 525.

1,3-Di(9-phenanthryl)propane 526.

Diphenylacetylene 527.

Diphenylamine 528.

Diphenylamine/2,6-Diphenyl-1,4-benzoquinone 532.

9,10-Diphenylanthracene 529.

4,4'-Diphenylbenzophenone 530.

2,6-Diphenyl-1,4-benzoquinone 531.

2,6-Diphenyl-1,4-benzoquinone/Diphenylamine 532.

2,6-Diphenyl-1,4-benzoquinone/TMPD 533.

2,6-Diphenyl-1,4-benzoquinone/N,N,N',N'-

Tetramethyl-p-phenylenediamine 533.

2,6-Diphenyl-1,4-benzoquinone/Triphenylamine 534.

1,4-Diphenyl-1,3-butadiene 535.

1,4-Diphenylbutadiyne 536.

1,2-Diphenylcyclobutene 537.

5,5-Diphenyl-5*H*-dibenzogermole **540**.

5,5-Diphenyl-5H-dibenzosilole **549.**

1,4-Diphenyl-2,3-dibenzoyl-

1,4-epoxy-1,4-dihydronaphthalene 538.

1,1-Diphenylethylene 539.

9,9-Diphenyl-9H-9-germafluorene 540.

1,6-Diphenyl-1,3,5-hexatriene 541.

1,4-Diphenylnaphthalene 542.

1,5-Diphenylnaphthalene 543.

1,8-Diphenyl-1,3,5,7-octatetraene 544.

2,5-Diphenyl-1,3,4-oxadiazole 545.

2,5-Diphenyloxazole 546.

N,N'-Diphenyl-p-phenylenediamine, conjugate acid 548.

N,N'-Diphenyl-p-phenylenediamine 547.

1,3-Diphenyl-1,3-propanedione 355.

1,3-Diphenyl-2-propen-1-one 258.

9,9-Diphenyl-9H-9-silafluorene 549.

N-[(Dipropylamino)methyl]phthalimide 550.

Disperse Blue 14 207.

Dithiazanine iodide 405.

Durene/Tetracyanobenzene 551.

Duroquinone 552.

Duroquinone, conjugate monoacid 554.

Duroquinone/Triphenylamine 553.

Echinenone 555.

Eosin 556.

Eosin/Aniline 557.

Eosin/4-Bromophenol 558.

Eosin/2-Naphthol 559.

Eosin/Resorcinol 560.

Eosin/Sulfanilic acid 561.

Eosin Y 556.

Eosin Yellowish 556.

Eosin dianion 562.

5-(1,4-Epidioxyphenyl)-6,11,12-triphenyltetracene 563.

1,4-Epidioxytetracene, 1,4-dihydro-

5,6,11,12-tetraphenyl- 433.

5,12-Epidioxytetracene, 5,12-dihydro-

5,6,11,12-tetraphenyl- 434.

Ergosterol 564.

Erythrosin 565.

Erythrosin dianion 566.

Ethanone, 1,2,2-triphenyl 882.

(E)-4,4'-(1,2-Ethenediyl)bisbenzonitrile 386.

2-Ethoxynaphthalene 567.

Ethyl Violet 568.

10-Ethyl-9(10H)-acridinone 569.

N-Ethylacridinone 569.

2-[6-(Ethylamino)-3-(ethylimino)-3*H*-xanthen-9-yl]benzoic acid, monohydrochloride **400**.

N-Ethylcarbazole 570.

Ethylene, 1-acenaphthyl-1-phenyl- 4.

Ethylene, 1-(2-anthryl)-2-(2-naphthyl)- 88.

Ethylene, 1-(2-anthryl)-2-phenyl- 89.

Ethylene, 1-(2-anthryl)-2-(2-thienyl)-90.

Ethylene, 1,1-bis(1-naphthyl)- 208.

Ethylene, trans-1,2-bis(1-naphthyl)- 209.

Ethylene, trans-1,2-bis(2-naphthyl)- 210.

Ethylene, 2,2-dimethyl-1-(1-naphthyl)-1-phenyl- 496.

Ethylene, 1,1-diphenyl- 539.

Ethylene, 1-methyl-1-(1-naphthyl)- 738.

Ethylene, 1-methyl-1-(2-naphthyl)- 739.

Ethylene, trans-1-(1-naphthyl)-2-(2-naphthyl)-796.

Ethylene, 1-(1-naphthyl)-1-phenyl- 800. Ethylene, trans-1-(1-naphthyl)-2-phenyl- 801. Ethylene, trans-1-(2-naphthyl)-2-phenyl- 802. Ethylene, 1,1,2-trimethyl-2-(2-naphthyl)- 1087. Ethylene, triphenyl- 1098. 3-Ethyl-2-[3-(3-ethyl-2(3H)-benzothiazolylidene)-2-methoxy-1-propenyl]benzothiazolium iodide 397. 3-Ethyl-2-[3-(3-ethyl-2(3H)-benzothiazolylidene)-1-propenyl benzothiazolium iodide 403. 3-Ethyl-2-[(3-ethyl-2(3H)-benzothiazolylidene)methyl]benzothiazolium iodide 404. 3-Ethyl-2-[5-(3-ethyl-2(3H)-benzothiazolylidene)-1,3-pentadienyl]benzothiazolium iodide 405. 3-Ethyl-2-[7-(3-ethyl-2(3H)-benzothiazolylidene)-1,3,5-heptatrienyl]benzothiazolium iodide 406. (E,Z)-3-Ethyl-5[(3-ethyl-2(3H)-benzothiazolylidene)-597. ethylidine]-2-thioxo-4-thiazolidinone 571. 3-Ethyl-2-[3-(3-ethyl-2(3H)-benzoxazolylidene)-1-propenyl]benzoxazolium iodide 398. 3-Ethyl-2-[5-(3-ethyl-2(3H)-benzoxazolylidene)-1,3-pentadienyl]benzoxazolium iodide 399. 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-3-fluoro-1,3-pentadienyl]-3,3-dimethyl-3H-indolium 572. 1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-1,3-pentadienyl]-3,3-dimethyl-3H-indolium 573. 3-Ethyl-2-[3-(3-ethyl-6-dimethylamino-2(3H)-benzothiazolylidene)-1-propenyl]-6-(dimethylamino)benzothiazolium iodide 191. 1-Ethylnaphthalene 574. 2-Ethylnaphthalene 575. 9-Ethylphenanthrene 576. 1-Ethyl-2-phenylacetylene 237. N-Ethylphthalimide 577. β -Ethylstyrene 578. O-Ethyl-1-thionaphthoate 774. Ethynylbenzene 873. Etiochlorin II 579. Euchrysine, conjugate monoacid 580. Flavine mononucleotide 581. Flavine mononucleotide, conjugate monoacid 582. Flavone 583. Flavone, 3-hydroxy- 619. Flavone, 7-hydroxy- 620. Hexacene 606. 9H-Flourene-1-amine, 7-nitro- 52. Fluoranthene 584. 2-Fluorenamine 44. Fluorene 585. Fluorene, 2-amino- 44. 9H-Fluorene, 9-(9H-fluoren-9-ylidene)- 167. Fluorene, 1-hydroxy- 621. Fluorene, 2-hydroxy- 622. Fluoren-1-ol 621. Fluoren-2-ol 622. Fluoren-9-one 586. 9-Fluorenone 586.

Fluoren-9-ylidene 589. 9-(9H-Fluoren-9-ylidene)-9H-fluorene 167. 2-Fluorenyl phenyl ketone 590. Fluorescein 591. Fluorescein, conjugate monoacid 592. Fluorescein, 2',4',5',7'-tetrabromo-, dianion 562. Fluorescein, tetraiodo-, dianion 566. Fluorescein dianion 593. Fluorobenzene 594. 4-Fluorobenzophenone 595. (E)-1-Fluoro-4-(2-phenylethenyl)benzene **596**. trans-4-Fluorostilbene 596. 2-(N-Formylamino)acetophenone 17. 2-(N-Formylamino)-3'-aminopropiophenone 55. γ -[2-(Formylamino)phenyl]- γ -oxo- α -aminobutyryl- ι -lysine 3-Formylfurochromene 598. N-Formylkynurenine 599. 2-(N-Formyl-N-methylamino)acetophenone 19. 2-Formyl-5'-methyldifurobenzene 600. 3-Formyl-2-methylfurochromene 601. 3-Formyl-8-methylfurochromene 602. 2-Furamide, N-butyl-5-nitro- 236. 2(3H)-Furanone, 3-benzyl-3,4,5-triphenyl- 163. 2(3H)-Furanone, 3,3,4,5-tetraphenyl- 1055. 2(3H)-Furanone, 3,3,5-triphenyl- 1099. 7H-Furo[3,2-g][1]benzopyran-6-carboxaldehyde 598. 2H-Furo[2,3-h]-1-benzopyran-2-one 640. 7H-Furo[3,2-g][1]benzopyran-7-one 934. Furochromene, 3-formyl- 598. Furochromene, 3-formyl-2-methyl- 601. Furochromene, 3-formyl-8-methyl- 602. 2-Furoic acid, 5-nitro- 818. Gentian Violet 307. 9H-9-Germafluorene, 9,9-diphenyl- 540. Germane, methyl-1-naphthylphenyl-740. p-Glucose phenylosazone 603, Guaiazulene 488. Guanine, 7-methyl- 726. Hematoporphyrin IX 604. 2,4,6-Heptatrienal, 5-methyl-7-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (E,E,E)- 750. all-trans-1,3,5-Heptatriene 605. 1,4,6-Heptatrien-3-one, 1,7-bis(dimethylamino)- 192. Hexachloroethane/Zinc(II) etioporphyrin I 1127. 1,3,5,7,9,11,13,15,17,19,21,23,25-Hexacosatridecaene, 3,7,11,16,20,24-hexamethyl-1,26-bis(2,6,6-trimethyl-1-cyclohex-1-yl)-,(all-E)- 331. 2,4-Hexadiene, 2,5-dimethyl- 485. 1,1,1,5,5,5-Hexafluoroacetylacetone 607. Hexahelicene 608. 10,11,13,14,16,17-Hexahydro-5,7:20,22-dietheno-8H,19H-diindeno[2,1-n:1',2'-o]-[1,4,7,10]tetraoxacyclononadecin 609. 9,10,11,12,13,14-Hexahydro-5,7:15,17-dietheno-2,20-heptano-H-cyclotetradeca[1,2-a:1,14-a']diindene

Hexamethylbenzene/Tetracyanobenzene 611.

1-Fluorenyl diisopropyl borate 587.

2-Fluorenyl diisopropyl borate 588.

1,3,5-Hexatriene, 1,6-diphenyl- 541. Iridium(III) D-arabino-Hexos-2-ulose bis(phenylhydrazone) 603. dichlorobis(5,6-dimethyl-1,10-phenanthroline) 374. D-arabino-Hexulose phenylosazone 603. Iridium(III) dichlorobis(1,10-phenanthroline) 375. 6-Hydroxy-7H-benz[de]anthracen-7-one 612. Iridium(III) tris(2,2'-bipyridine) 1103. 6-Hydroxybenzanthrone 612, 1H-Isoindole-1,3(2H)-dione, 2-[2-[bis(phenylmethyl)amino]ethyl]- 356. 2-Hydroxybenzophenone 613. 1H-Isoindole-1,3(2H)-dione, 2-[2-(diethylamino)ethyl]-4-Hydroxybenzophenone 614. 7-Hydroxy-4H-1-benzopyran 620. 4-Hydroxybiphenyl 615. 1H-Isoindole-1,3(2H)-dione, 4'-Hydroxy-4-biphenylamine 46. 2-[(dimethylamino)methyl]- 459. 3-Hydroxychromone 616. 1H-Isoindole-1,3(2H)-dione, 2-[(dipropylamino)methyl]-4-Hydroxycoumarin 617. 1H-Isoindole-1,3(2H)-dione, N-ethyl- 577. 1-(2-Hydroxyethyl)-3,3-dimethyl-6'-nitro-1H-Isoindole-1,3(2H)-dione, 2-methyl- 745. spiro-(2,2'-indolin[2H-1]benzopyran) 618. 1H-Isoindole-1,3(2H)-dione, 2-propyl- 927. 3-Hydroxyflavone 619. Isophthalonitrile 383. 7-Hydroxyflavone 620. 1-Hydroxyfluorene 621. 2-Isopropylthioxanthen-9-one 639. Isopsoralen 640. 2-Hydroxyfluorene 622. Isoquinoline 641. 4-Hydroxy-6-methylcoumarin 623. Isoquinoline, 1-benzyl-, N-oxide 160. 7-Hydroxy-4-methylcoumarin 624. Isoquinoline, 4-bromo-, N-oxide 221. 2-Hydroxy-2-methyl-1-phenylpropan-1-one 625. 2-Hydroxy-2-methyl-1-[4-(2-propyl)phenyl]propan-1-one Isoquinoline, 4-bromo-1-cyano-, N-oxide 217. Isoquinoline, 1-methyl-, N-oxide 732. 9-Hydroxyphenanthrene 627. Isoquinoline-N-oxide 642. Isostilbene 1005. α -Hydroxy- α -phenylacetophenone 124. 4'-Hydroxypropiophenone 628. Kryptocyanine 393. 4-Hydroxypyrene 629. Kynurenic acid 643. 4-Hydroxyquinoline-2-carboxylic acid 643. Lanthanum(III) 4,4-(Imidocarbonyl)bis(N,N-dimethylaniline) tris(4,4,4-trifluoro-1-phenyl-1,3-butanedione) 1107. monohydrochloride 93. Limettin 449. Indazole, 2-tert-butyl-4-methyl- 235. Lumichrome 644. Indazole, 1,3-dimethyl- 486. Lumiflavine 645. Indazole, 1-methyl-727. Lumiflavine, conjugate monoacid 646. Indazole, 2-methyl-728. Lumiflavine, negative ion 647. Indene, 2-phenyl-890. all-trans-Lutein 648. Indeno[2,1-a]fluorene, 11,12-Dihydro-5-methyl- 725. Lutetium(III) Indeno[1,2-b] fluorene, 6,12-dihydro-3,9-dimethyl-484. tris(4,4,4-trifluoro-1-phenyl-1,3-butanedione) 1108. Indeno[2,1-a]indene, 5,10-dihydro- 420. Lycopene, dihydroxy- 438, 1-(1H-Inden-3-yl)naphthalene 630. all-trans-Lycopene 649. Indigo, trans-N,N'-diacetyl- 334. Lysyltryptophanyllysine 650. Indigo, N,N'-dimethyl- 487. Magnesium(II) mesoporphyrin 651. Indium(III) (chloro)phthalocyanine 276. Magnesium(II) octaethylporphyrin 652. Indole 631. Magnesium(II) phthalocyanine 653. Indole, 1-methyl- 729. Magnesium(II) tetraphenylporphyrin 654. Indole, 2-methyl- 730, Malachite Green 655. Indole, 3-methyl-731. Menadione 737. Indolino[2,3-c]carbazole, 12a,12b-dihydro-5,8-dimethyl-415. Menaquinone 737. Indolo[3,2-b]carbazole], 5,11-dihydro-N,N'-dimethyl- 479. Mercury(II) tetraphenylporphyrin 656. 2-Iodoanthracene 632. Mesoporphyrin 657. 9-Iodoanthracene 633. Mesoporphyrin, dimethyl ester 658. 4-Iodobiphenvl 634. 1-(β-Methacryloxyethyl)-3,3-dimethyl-6'-nitro-Iodo(methanol)(phthalocyaninato)rhodium(III) 635. spiro(indoline-2,2'-[2H]benzopyran) 659. Methane, triphenyl- 1100. 1-Iodonaphthalene 636. 2-Iodonaphthalene 637. 8,11b-Methanocyclodeca[cde]naphthalene 660. β -Ionone 638. Methoxsalen 684. 3-Methoxyacetophenone 661. β -Ionylidene acetaldehyde 755. Iridium(III) dichlorobis(2,2'-bipyridine) 188. 4-Methoxyacetophenone 662. 3-Methoxy-7H-benz[de]anthracen-7-one 663. Iridium(III) 3-Methoxybenzanthrone 663. dichlorobis(4,7-dimethyl-1,10-phenanthroline) 373.

Methoxybenzene 63.

4-Methoxybenzophenone 664.

9-[2-(4-Methoxycarbonylbenzoxy)ethyl]carbazole 665.

9-[3-(4-Methoxycarbonylbenzoxy)propyl]carbazole 666.

4-Methoxychalcone 667.

4-Methoxy-N,N-dimethylaniline/3-Chloro-2,6-diphenyl-1,4-benzoquinone 271.

(R)-4-Methoxydinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin 4-oxide **668**.

4-Methoxydinaphtho[2,1-d:1',2'-f]-

[1,3,2]dioxaphosphepin 4-oxide 669.

1-Methoxy-3,5-dinitrobenzene 515.

9-Methoxy-7*H*-furo[3,2-*g*][1]benzopyran-7-one **684**.

8'-Methoxy-5-methyl-6'-nitrospiro[(5,6-dihydrophenanthridine-6,2)-(2*H*)chromene] **670.**

2-Methoxy-2-methyl-1-phenyl-1-propanone 671.

1-Methoxynaphthalene 672.

2-Methoxynaphthalene 673.

4-Methoxy-1-naphthonitrile 674.

1-Methoxy-3-nitrobenzene 813.

cis,cis-1-(3'-Methoxy-5'-nitro-2'-oxo-3',5'-cyclohexadieny 1)-3,4-dimethyl-1,3-pentadiene 675.

(E)-1-Methoxy-3-[2-(4-nitrophenyl)ethenyl]benzene 676.

trans-3-Methoxy-4'-nitrostilbene 676.

cis-4-Methoxy-4'-nitrostilbene 677.

trans-4-Methoxy-4'-nitrostilbene 678.

trans-1-Methoxy- β -nitrostyrene 681.

4-Methoxyphenol 679.

(E)-4-[2-(4-Methoxyphenyl)ethenyl]benzonitrile 313.

2-[1-(4-Methoxyphenyl)-hydrazinyl-2-ylidene]-

1-(4-nitrophenyl)-1,3-diketobutane 680.

trans-1-(4-Methoxyphenyl)-2-nitroethylene 681.

1-(4-Methoxyphenyl)-3-phenyl-1-propanone 891.

3-(4-Methoxyphenyl)-1-phenyl-2-propen-1-one 667.

4'-Methoxypropiophenone 682.

5-Methoxypsoralen 683.

8-Methoxypsoralen **684**.

trans-4-Methoxystilbene 685.

8-Methoxy-2,2,3-trimethyl-6-nitro-2*H*-1-benzopyran **686**.

8-Methoxy-2,2,3-trimethyl-6-nitro-2H-chromene 686.

6-Methoxy-1,3,3-trimethyl-6'-nitro-

spiro-(2,2'-indolin[2H-1]benzopyran) 687.

7'-Methoxy-1,3,3-trimethyl-6'-nitro-

spiro-(2,2'-indolin[2H-1]benzopyran) 688.

Methyl 9-anthrylacetate 67.

Methyl Violet 689.

Methyl Violet 2B 689.

2-Methylaceanthren-1-one 690.

3-Methylacetophenone 691.

4-Methylacetophenone 692.

9-Methylacridine 693.

10-Methyl-9(10H)-acridinethione 694.

4-(Methylamino)benzoic acid 695.

N-Methyl-1-anilinonaphthalene 696.

N-Methyl-2-anilinonaphthalene 697.

N-Methyl-2-anilino-6-naphthalenesulfonate ion 698.

2-Methylanthracene 699.

9-Methylanthracene 700.

9-Methylanthracene- d_{12} 701.

Methyl benzoate 702.

6-Methylbenzo[1,2-b:5,4-b']difuran-2-carboxaldehyde 600.

2-Methylbenzoic acid 703.

3-Methylbenzoic acid 704.

4-Methylbenzoic acid 705.

2-Methylbenzophenone 706.

4-Methylbenzophenone 707.

Methyl-1,4-benzoquinone 708.

(2'-Methylbenzoyl)amino-2- Δ^2 -thiazoline 709,

(4'-Methylbenzoyl)amino- $2-\Delta^2$ -thiazoline 710.

Methyl benzoylformate 711.

Methylchlorophyllide a 712.

1-Methyl-4-[4-cyanostyryl]pyridinium 713.

10-Methyl-5-deazaisoalloxazine-3-propanesulfonate ion 714.

3-Methyl-5-deazalumiflavine 715.

1-Methyldeoxybenzoin 716.

Methyl 4-dimethylaminobenzoate 717.

N-Methyldiphenylamine 718.

Methylene Blue, dimer 721.

Methylene Blue cation 719.

Methylene Blue cation, conjugate monoacid 720.

Methylene Green cation 722.

4,4'-Methylenebis(1,1'-biphenyl) 723.

3,3'-Methylenebis(4-hydroxycoumarin) 380.

2-(1-Methylethenyl)naphthalene 739.

Methyl ethyl ketone 231.

 α -Methyl- β -ethylstyrene 724.

5-Methyl-endo-cis-fluorenacene 725.

7-Methyl-7*H*-furo[3,2-*g*][1]benzopyran-6-carboxaldehyde

9-Methyl-7*H*-furo[3,2-*g*][1]benzopyran-6-carboxaldehyde **602**.

7-Methylguanine 726.

1-Methylindazole 727.

2-Methylindazole 728.

1-Methylindole 729.

2-Methylindole 730.

3-Methylindole **731**.

1-Methylisoquinoline-N-oxide 732.

Methylium, triphenyl- 1101.

1-Methylnaphthalene 733.

2-Methylnaphthalene 734.

1-Methylnaphthalene/Pyromellitic dianhydride 735.

Methyl 2-naphthoate 736.

2-Methyl-1,4-naphthoquinone 737.

1-Methyl-1-(1-naphthyl)ethylene 738.

1-Methyl-1-(2-naphthyl)ethylene 739.

Methyl 1-naphthyl ketone 5.

Methyl 2-naphthyl ketone 6.

Methyl-1-naphthylphenylgermane 740.

5-Methyl-6'-nitrospiro[(5,6-dihydrophenanthridine-6,2)-(2H)chromene] 741.

1-Methyl-4-[4-nitrostyryl]pyridinium 742.

5-Methylphenazinium methyl sulfate 743.

N-Methylphenazonium methosulfate 743.

4-Methylphenol 304.

10-Methylphenothiazine 744.

```
N-Methylphenothiazine 744.
                                                           Naphthalene, 1-(1-cyclopenten-1-yl)- 328.
1-Methyl-2-phenylacetylene 928.
                                                           Naphthalene, 2-(1-cyclopenten-1-yl)- 329.
Methyl phenylglyoxylate 711.
                                                           Naphthalene, 1,4-dibromo- 361.
N-Methylphthalimide 745.
                                                           Naphthalene, 1,4-dichloro- 377.
                                                           Naphthalene, 1,4-dicyano- 385.
4-(2-Methylpropionyloxy)benzophenone 746.
                                                           Naphthalene, 1,2-dihydro-3-phenyl- 429.
Methyl pyropheophorbide a 747.
all-trans-Methyl retinoate 748.
                                                           Naphthalene, 1,2-dihydro-4-(phenylthio)- 900.
2-Methylthioxanthen-9-one 749.
                                                           Naphthalene, 2,3-dihydroxy-, conjugate base 443.
(E,E,E)-5-Methyl-7-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
                                                           Naphthalene, 1,5-dihydroxy- 439.
                                                           Naphthalene, 1,8-dihydroxy- 440.
  2,4,6-heptatrienal 750.
                                                           Naphthalene, 2,3-dihydroxy- 441.
(E,E,E)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
                                                           Naphthalene, 2,7-dihydroxy- 442.
  3,5,7-octatrien-2-one 751.
(E,E,Z)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
                                                           Naphthalene, 1,4-dimethoxy- 451.
  3,5,7-octatrien-2-one 752.
                                                           Naphthalene, 1,2-dimethyl- 489.
(E,Z,E)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
                                                           Naphthalene, 2,3-dimethyl- 490,
                                                           Naphthalene, 2,7-dimethyl- 491.
  3.5.7-octatrien-2-one 753.
(E,Z,Z)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
                                                           Naphthalene, 1-dimethylamino-4-nitro- 460.
  3,5,7-octatrien-2-one 754.
                                                           Naphthalene, 1-(3,3-dimethyl-1-buten-2-yl)- 478.
                                                           Naphthalene, 2-(3.3-dimethyl-1-butenyl)-, (Z)- 494.
(E,E)-3-Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
                                                           Naphthalene, 2-(3.3-dimethyl-1-butenyl)-, (E)- 495.
  2.4-pentadienal 755.
(E,Z)-3-Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
                                                           Naphthalene, 1,2-dinitro-517.
  2,4-pentadienal 756.
                                                           Naphthalene, 1,4-dinitro- 518.
(Z,E)-3-Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
                                                           Naphthalene, 1,8-dinitro- 519.
                                                           Naphthalene, 2-(2,6-dioxacyclohexyl)- 780.
  2,4-pentadienal 757.
(Z,Z)-3-Methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
                                                           Naphthalene, 1,4-diphenyl- 542.
  2.4-pentadienal 758.
                                                           Naphthalene, 1,5-diphenyl- 543.
                                                           Naphthalene, 1,4-diphenyl-2,3-dibenzoyl-1,4-epoxy-
3-Methyl-3,4,5-triphenyl-2(3H)-furanone 759.
1-Methyl-L-tryptophan 760.
                                                              1,4-dihydro- 538.
\beta-Methylumbelliferone 624.
                                                           Naphthalene, 1,1'-(1,2-ethanediyl)bis- 507.
5-Methyluracil 1072.
                                                           Naphthalene, 2-ethoxy- 567.
Methyl vinyl ketone 761.
                                                           Naphthalene, 1-ethyl- 574.
1-Methyl-2-vinylnaphthalene 762.
                                                           Naphthalene, 2-ethyl- 575.
2-Methyl-3-vinylnaphthalene 763.
                                                           Naphthalene, 1-hvdroxy- 786.
Michler's ketone 190.
                                                           Naphthalene, 2-hydroxy- 787.
α-NPO 805.
                                                           Naphthalene, 1-(1H-inden-3-vl)- 630.
Naphthacene 1021.
                                                           Naphthalene, 1-iodo- 636.
1-Naphthaldehyde 764.
                                                           Naphthalene, 2-iodo- 637.
2-Naphthaldehyde 765.
                                                           Naphthalene, 1-methoxy- 672.
2-Naphthalenamine, conjugate acid 767.
                                                           Naphthalene, 2-methoxy- 673,
2-Naphthalenamine 766.
                                                           Naphthalene, 1-methyl-733.
Naphthalene 768.
                                                           Naphthalene, 2-methyl- 734.
Naphthalene, 2-amino-766.
                                                           Naphthalene, 1,1'-methylenebis- 508.
Naphthalene, 1-amino-4-nitro-53.
                                                            Naphthalene, 2-(1-methylethenyl)- 739.
Naphthalene, 1-anilino- 62.
                                                            Naphthalene, 1-methyl-2-vinyl- 762.
Naphthalene, 1-bromo- 224.
                                                            Naphthalene, 2-methyl-3-vinyl-763.
Naphthalene, 2-bromo- 225.
                                                           Naphthalene, 1-nitro- 819.
Naphthalene, 1-(bromomethyl)- 223.
                                                           Naphthalene, 2-nitro-820.
Naphthalene, 1,1'-(1,4-butanediyl)bis- 505.
                                                           Naphthalene, 1-phenyl- 893,
Naphthalene, 1-chloro- 279.
                                                           Naphthalene, 2-phenyl- 894.
Naphthalene, 2-chloro- 280.
                                                           Naphthalene, 1-(1-phenylethenyl)- 800.
Naphthalene, 1-(chloromethyl)- 278.
                                                            Naphthalene, 1-[[(phenylmethyl)sulfonyl]methyl]- 892.
Naphthalene, 1-(2-chlorophenyl)- 282.
                                                            Naphthalene, 1,1'-(1,3-propanediyl)bis- 512.
Naphthalene, 1-(4-chlorophenyl)- 283.
                                                            Naphthalene, 2,2'-(1,3-propanediyl)bis- 513.
Naphthalene, 1-cyano- 314.
                                                            Naphthalene, 2-vinyl- 1119.
Naphthalene, 1-cyano-4-methoxy- 674.
                                                            Naphthalene-d<sub>8</sub> 769.
Naphthalene, 1-(1-cyclohepten-1-yl)- 319.
                                                           Naphthalene/Chloranil 770.
Naphthalene, 2-(1-cyclohepten-1-yl)- 320.
                                                           Naphthalene/3-Chloro-2,6-diphenyl-1,4-benzoquinone
Naphthalene, 1-(1-cyclohexen-1-yl)- 323.
Naphthalene, 1-(1-cycloocten-1-yl)- 325.
                                                           Naphthalene/Pyromellitic dianhydride 771.
```

Naphthalene/Tetrachlorophthalic anhydride 772.

Naphthalene-d₈/Tetrachlorophthalic anhydride 773.

- 1-Naphthalenecarbothioic acid, O-ethyl ester 774.
- 1-Naphthalenecarbothioic acid, *O*-(2-phenylethyl) ester **888.**
- 2-Naphthalenecarbothioic acid, O-(2-phenylethyl) ester 889.
- 1-Naphthalenecarboxylate ion 781.
- 2-Naphthalenecarboxylate ion 782.
- 2-Naphthalenecarboxylic acid, methyl ester 736.
- 1-Naphthalenecarboxylic acid 784.
- 2-Naphthalenecarboxylic acid 785.
- 1,4-Naphthalenedicarbonitrile 385.
- 1,5-Naphthalenediol 439.
- 1,8-Naphthalenediol 440.
- 2,3-Naphthalenediol 441.
- 2,7-Naphthalenediol 442.
- 2-Naphthalenesulfonate ion, 6-(methylphenylamino)- 698.
- 2-Naphthalenesulfonic acid, sodium salt 775.
- 1-Naphthalenesulfonic acid 776.
- anti-[2.2](1,4)-Naphthalenophane 777.
- syn-[2.2](1,4)-Naphthalenophane 778.
- 2-(1-Naphthalenyl)-1,3-dioxane 779.
- 2-(2-Naphthalenyl)-1,3-dioxane 780.
- β -Naphthiazoline, 2-benzoyl-N-methyl- 152.
- 1-Naphthoate ion 781.
- 2-Naphthoate ion 782.
- Naplitho[de-2.3.4]bicyclo[3.2.2]nona-2,6,8-triene, 8-benzoyl- **153.**
- Naphtho[1,2,3,4-def]chrysene 783.
- Naphtho 1,2-g chrysene 352.
- 1-Naphthoic acid 784.
- 2-Naphthoic acid 785.
- 1-Naphthol 786.
- 2-Naphthol 787.
- 2-Naphthol/Eosin 559.
- 1-Naphthol/Triethylamine 788.
- 2-Naphthol/Triethylamine 789.
- 1-Naphtholate ion 797.
- 2-Naphtholate ion 798.
- 1-Naphthonitrile 314.
- 1,4-Naphthoquinone, 2-methyl- 737.
- Naphtho[1,8-bc]thiopyran-6-sulfonamide,
 - N,N-dibutyl-2,3-dihydro-3-oxo-2-
 - (3-oxonaphtho[1,2-b]thien-2(3H)-ylidene), (E)- 362.
- Naphtho[1,8-bc]thiopyran-6-sulfonamide,
 - N,N-dibutyl-2,3-dihydro-3-oxo-2-
- (3-oxonaphtho[1,2-b]thien-2(3H)-ylidene), (Z)- 363.
- 9-Naphthoylanthracene 790.
- 1-Naphthyl acetate 791.
- 2-Naphthylamine, conjugate acid 767.
- 2-Naphthylamine, N,N-dimethyl-, conjugate acid 493.
- 2-Naphthylamine, N,N-dimethyl- 492.
- 1-Naphthylamine, N-methyl-N-phenyl- 696.
- 2-Naphthylamine, N-methyl-N-phenyl- 697.
- 2-Naphthylamine, N-phenyl- 895.
- 2-Naphthylamine 766.
- N-1-Naphthylaniline 62.
- N-2-Naphthylaniline 895.

- 2-(1-Naphthyl)benzoxazole 792.
- 8-(1-Naphthyl)-6,7-dihydro-5H-benzocycloheptene 793.
- 1-Naphthyl diisopropyl borate 794.
- 2-Naphthyl diisopropyl borate 795.
- trans-1-(1-Naphthyl)-2-(2-naphthyl)ethylene 796.
- 1-Naphthyloxide ion 797.
- 2-Naphthyloxide ion 798.
- 2-(2-Naphthyloxy)-3,5,5-trimethyl-2-cyclohexen-1-one 799.
- 1-(1-Naphthyl)-1-phenylethylene 800.
- trans-1-(1-Naphthyl)-2-phenylethylene 801.
- trans-1-(2-Naphthyl)-2-phenylethylene 802.
- 2-(1-Naphthyl)-5-phenyl-1,3,4-oxadiazole 803.
- $\hbox{$2$-(2-Naphthyl)-5-phenyl-1,3,4-oxadiazole $804.}$
- 2-(1-Naphthyl)-5-phenyloxazole 805.
- Neo-alloocimene 806.
- Neomethylene Blue cation 807.
- all-trans-Neurosporene 808.
- Neutral Red cation 809.
- Neutral Red cation, conjugate diacid 810.
- 5-Nitroacenaphthene 811.
- 4-Nitroaniline 812.
- 4-Nitroaniline/2-(Dimethylamino)pyridine 469.
- 3-Nitroanisole 813.
- 4-Nitroanisole 814.
- 9-Nitroanthracene 815.
- 10-Nitro-9-anthryl phenyl ketone 154.
- 4-Nitrobiphenyl 816.
- 2-[2-(5-Nitro-2-furanyl)]ethenylquinoline 817.
- 5-Nitro-2-furoic acid 818.
- 1-Nitronaphthalene 819.
- 2-Nitronaphthalene 820.
- 4-Nitro-1-naphthylamine 53.
- (E)-4-[2-(4-Nitrophenyl)ethenyl]benzenamine 54.
- (E)-1-Nitro-3-(2-phenylethenyl)benzene 823.
- 1-(4-Nitrophenyl)-2-[(4-methoxyphenyl)hydrazone]-1,2,3-butanetrione **680**.
- 4-Nitropyridine-N-oxide 821.
- 4-Nitroquinoline-N-oxide 822.
- 5-Nitro-2-(2-quinolylethenyl)furan 817.
- trans-3-Nitrostilbene 823.
- trans-4-Nitrostilbene 824.
- trans-4-Nitrostilbene/Zinc(II) etioporphyrin I 1128.
- 4-Nitro-p-terphenyl 825.
- 2-Nitrothiophene 826.
- 4-Nitrotoluene/Zinc(II) ethioporphyrin I 1129.
- 4-Nitroveratrole 452.
- 1,3,6,8-Nonatetraen-5-one, 1,9-bis(dimethylamino)- 194.
- 1,4,6,8-Nonatetraen-3-one, 1,9-bis(dimethylamino)- 195.
- 2,5-Norbornadiene, 2,3-dibenzoyl- 353.
- 1,3,5,7,9,11,13,15,17-Octadecanonaene,
 - 3,7,12,16-tetramethyl-1,18-bis-
 - (2,6,6-trimethyl-1-cyclohexen-1-yl)-, (all-E)- 254.
- Octaethylporphinatopalladium(II) 827.
- Octaethylporphinatotin(IV) dichloride 828.
- 8,9,10,11,12,13,14,15-Octahydro-5,7:16,18-dietheno-2,21-octanocyclopentadeca[1,2-a:1,15-a']diindene 829.
- (all-E)-3.7.11.15.20.24.28.32-Octamethyl-1,34-bis-
 - (2,6,6-trimethyl-1-cyclohexen-1-yl)-
 - tritriacontaheptadecaene 830.

```
1.3.5.7-Octatetraene, 1.8-diphenyl- 544.
2.4.6-Octatriene, 2.6-dimethyl-, (E,Z)- 806.
3,5,7-Octatrien-2-one, 8-(dimethylamino)- 462.
3,5,7-Octatrien-2-one, 6-methyl-8-
  (2,6,6-\text{trimethyl-1-cyclohexen-1-yl})-, (E,E,E)- 751.
3,5,7-Octatrien-2-one, 6-methyl-8-
  (2,6,6-\text{trimethyl-1-cyclohexen-1-yl})-, (E,E,Z)-752.
3,5,7-Octatrien-2-one, 6-methyl-8-
  (2,6,6-\text{trimethyl-1-cyclohexen-1-yl})-, (E,Z,E)- 753.
3,5,7-Octatrien-2-one, 6-methyl-8-
  (2,6,6-trimethyl-1-cyclohexen-1-yl)-, (E,Z,Z)-754.
Orotate ion 831.
                                                             Pentahelicene 847.
Orotic acid 832.
Osmium(II) tris(2,2'-bipyridine) 1104.
2,2'-Oxacarbocyanine iodide, 3,3'-diethyl- 398.
1,3,4-Oxadiazole, 2-(4-biphenylyl)-5-phenyl- 181.
1,3,4-Oxadiazole, 2,5-di(1-naphthyl)- 509.
                                                             2,4-Pentanedione 11.
1,3,4-Oxadiazole, 2,5-diphenyl- 545.
                                                             Pentaphene 848.
1,3,4-Oxadiazole, 2-(1-naphthyl)-5-phenyl- 803.
1,3,4-Oxadiazole, 2-(2-naphthyl)-5-phenyl- 804.
7-Oxa-2,3-dibenzovlbicyclo[2,2,1]hepta-2,5-diene 833,
7-Oxa-2,3-dibenzoylbicyclo[2.2.1]hept-2-ene 834.
                                                             Perylene 852.
2,2'-Oxadicarbocyanine iodide, 3,3'-diethyl- 399.
Oxazole, 2-(4-biphenylyl)-5-phenyl- 182.
Oxazole, 2,5-di(4-biphenylyl)- 357.
                                                             Phenanthrazine 1019.
Oxazole, 2,5-diphenyl- 546.
                                                             Phenanthrene 854.
Oxazole, 2-(1-naphthyl)-5-phenyl- 805.
Oxazole, 2,2'-(1,4-phenylene)bis[5-(4-butoxyphenyl)- 884.
Oxazole, 2,2'-(1,4-phenylene)bis[5-phenyl-885.
Oxirane, cis-2,3-dimethyl-2,3-di-(2-naphthyl)- 480.
Oxirane, trans-2.3-dimethyl-2.3-di-(2-naphthyl)-481.
Oxirane, cis-2,3-di-(2-naphthyl)- 510.
Oxirane, trans-2,3-di-(2-naphthyl)- 511.
2-(3-Oxobenzo[b]selenophen-2(3H)-ylidene)
   benzo[b]selenophen-3(2H)-one 401.
                                                             Phenanthrene-d_{10} 855.
2-(3-Oxobenzo[b]thien-2(3H)-ylidene)
  benzo[b]thiophen-3(2H)-one 1062.
7-Oxo-7H-furo[3,2-g][1]benzopyran-6-carboxylic acid,
   ethyl ester 246.
                                                             Phenanthridine 859.
cis-2-(1-Oxonaphtho[2,1-b]thiophen-2(1H)-ylidine)
   naphtho[1,8-bc]thiopyran-3(2H)-one 849.
trans-2-(1-Oxonaphtho[2,1-b]thiophen-2(1H)-vlidine)
                                                                162.
   naphtho[1,8-bc]thiopyran-3(2H)-one 850.
                                                             9-Phenanthrol 627.
Oxonine cation 835.
Oxonine cation, conjugate monoacid 836.
4-(1-Oxo-3-phenyl-2-propenyl)benzonitrile 310.
Oxotitanium(IV) tetraphenylporphyrin 837.
PMDA 953.
POPOP 885.
PPO 546.
Palladium(II) etioporphyrin I 838.
                                                             Phenazine 866.
Palladium(II) octaethylporphyrin 827.
Palladium(II) tetrabenzoporphyrin 839.
Palladium(II) tetrakis(carboxyphenyl)porphyrin 840.
Palladium(II) tetrakis(4-N-methylpyridyl)porphyrin 841.
Palladium(II) tetrakis(p-sulfonatophenyl)porphyrin 842.
Palladium(II) tetraphenylporphyrin 843.
[2.2]Paracyclophane 844.
```

Pentacene 845.

Pentacyclo [18.2.2.2^{9,12}.0^{4,15}.0^{6,17}]hexacosa-4,6(17),9,11,15, 20,22,23,25-nonane-10,25-dicarbonitrile 846. 1,3,6,8,10,12,14-Pentadecaheptaen-5-one, 1,15-bis(dimethylamino)-, all-trans- 196. 2,4-Pentadienal, 3-methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (E,E)- 755. 2,4-Pentadienal, 3-methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (E,Z)-756.2,4-Pentadienal, 3-methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (Z,E)-757.2,4-Pentadienal, 3-methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (Z,Z)-758.1,5-Pentanedione, 2,4-dimethyl-1,5-diphenyl- 482. 2,4-Pentanedione, 3-phenyl-872. 2,4-Pentanedione, 1,1,1-trifluoro- 1080. cis-Perinaphthothioindigo 849. trans-Perinaphthothioindigo 850. 1.4-Perinaphthyldivl 851. Perylene/Chloranil 853. 1H-Phenalene, 2,3-dihydro- 426. 9-Phenanthrenamine 56. Phenanthrene, 3-acetyl-9,10-epoxy-9,10-dihydro- 15. Phenanthrene, 9-amino- 56. Phenanthrene, 9-bromo- 227, Phenanthrene, 3,4-dihydro- 427. Phenanthrene, 9,10-dihydro- 428. Phenanthrene, 9-ethyl- 576, Phenanthrene, 9-hydroxy- 627. Phenanthrene/Pyromellitic dianhydride 856. Phenanthrene/Tetrachlorophthalic anhydride 857. Phenanthrene-d₁₀/Tetrachlorophthalic anhydride 858. 6(5H)-Phenanthridinone 860. Phenanthro[9,10-b]furan-2(3H)-one, 3-benzyl-3-phenyl-4,7-Phenanthroline, 3,8-dimethyl- 499. 1,10-Phenanthroline 861. 1,7-Phenanthroline 862. 1.8-Phenanthroline 863. 1,9-Phenanthroline 864. 4,7-Phenanthroline 865. Phenanthro[3,4-c]phenanthrene 608. Phenazine, conjugate monoacid 867. Phenazine, 5,10-dihydro-5,10-dimethyl- 416. Phenazine, 5,10-dihydro-5,10-diphenyl- 419. Phenazine, 5,10-dihydro-5-methyl-10-phenyl- 422. Phenazine methosulfate 743. Phenazinium, 3,7-diamino-2,8-dimethyl-5-phenyl-990. Phenazinium, 3,7-diamino-2,8-dimethyl-5-phenyl-, conjugate diacid 991.

Phenazinium, 3,7-diamino-2,8-dimethyl-5-phenyl-, conjugate monoacid 992. Phenol 868. Phenol, 2-[1-(butylimino)ethyl]-5-methyl- 234. Phenol, 4-methoxy- 679. Phenol, 4-methyl- 304. Phenol. 4-phenyl- 615. Phenosafranin 869. 5-Phenoselenazinium, 3,7-diamino-993. 5-Phenoselenazinium, 3,7-diamino-, conjugate monoacid 994. Phenothiazine 870. Phenothiazine, 2-chloro-10-dimethylaminopropyl- 292. 10H-Phenothiazine, 10-methyl- 744. 10H-Phenothiazine-10-propanamine, 2-chloro-N, N-dimethyl- 292. 10H-Phenothiazine-10-propanamine, N,N-dimethyl- 924. Phenothiazin-5-ium, 3,7-bis(dimethylamino)- 719. Phenothiazin-5-ium, 3,7-bis(dimethylamino)-, conjugate monoacid 720. Phenothiazin-5-ium, 3,7-bis(dimethylamino)-4-nitro-722. Phenothiazin-5-ium, 3,7-diamino- 1063. Phenoxazine 871. Phenoxazin-5-ium, 3,7-bis(diethylamino)- 1024. Phenoxazin-5-ium, 3,7-diamino-, conjugate monoacid 836. Phenoxazin-5-ium, 3,7-diamino-835. α-Phenylacetophenone 332. 3-Phenylacetylacetone 872. Phenylacetylene 873. 9-Phenylacridan 874. N-Phenylacridan 875. Phenylalanine 876. 4-(Phenylamino)-7H-benz[de]anthracen-7-one 877. 9-Phenylanthracene 878. 4-Phenylbenzaldehyde 175. 4-Phenylbenzophenone 879. 9-Phenyl-9H-9-bismafluorene 880. 1-Phenyl-1,3-butanedione 146. 1-Phenyl-1-butene 578. 1-Phenylcyclohexene 881. 1-Phenyldeoxybenzoin 882. 5-Phenyl-5H-dibenzobismole 880. 5-Phenyl-5*H*-dibenzophosphole 897. 5-Phenyl-5H-dibenzostibole 899. 2,2'-(1,4-Phenylene)bisbenzoxazole 883. 2,2'-(1,4-Phenylene)bis[5-(4-butoxyphenyl)oxazole] 884. 2,2'-(1,4-Phenylene)bis[5-phenyloxazole] 885. 1,4-Phenylenediamine, N,N'-dimethyl-N,N'-diphenylp-Phenylenediamine, N,N-dimethyl- 500. p-Phenylenediamine, N,N'-diphenyl- 547. p-Phenylenediamine, N,N'-diphenyl-, conjugate acid p-Phenylenediamine, N, N, N', N'-tetramethyl- 1049. (E)-4-(2-Phenylethenyl)benzonitrile 316. 2-(1-Phenylethenyl)biphenyl 180. (E)-2-(2-Phenylethenyl)naphthalene 802.

O-(2-Phenylethyl) 4-methoxybenzenecarbothioate 887. O-(2-Phenylethyl) 1-naphthalenecarbothioate 888. O-(2-Phenylethyl) 2-naphthalenecarbothioate 889. 2-Phenylindene 890. β -Phenyl-4'-methoxypropiophenone 891. 1-[[(Phenylmethyl)sulfonyl]methyl]naphthalene 892. 1-Phenylnaphthalene 893. 2-Phenylnaphthalene 894. N-Phenyl-1-naphthylamine 62. N-Phenyl-2-naphthylamine 895. 2-Phenyl-2-norbornene 896. 2-Phenyl-2-pentene 724. 4-Phenylphenol 615. 9-Phenyl-9H-9-phosphafluorene 897. 9-Phenylproflavine, conjugate monoacid 898. 1-Phenyl-1-propyne 928. Phenyl-4-pyridyl ketone 157. 9-Phenyl-9H-9-stibafluorene 899. 1-Phenylthio-3,4-dihydronaphthalene 900. Phenyl[2,4,6-tris(1-methylethyl)phenyl]methanone 1084. (1-Phenylvinyl)acenaphthene 4. Pheophytin a 901. Pheophytin b 902. 3-Phorbinepropanoic acid, 9-ethenyl-14-ethyl-4,8,13,18tetramethyl-20-oxo-, methyl ester, (35S-trans)- 747. 3-Phorbinepropanoic acid, 9-ethenyl-14-ethyl-21-(methoxycarbonyl)- 901. 3-Phorbinepropanoic acid, 9-ethenyl-14-ethyl-13-formyl-21-(methoxycarbonyl)- 902. 9H-9-Phosphafluorene, 9-phenyl- 897. Photoprotoporphyrin isomer "A", dimethyl ester 903. Photoprotoporphyrin isomer "B", dimethyl ester 904. Phthalazine 905. Phthalimide, 3,6-Dihydroxy- 444. Phthalimide, 3-amino-N-methyl- 50. Phthalimide, 3,6-diamino- 336. Phthalimide, N-[(dipropylamino)methyl]- 550. Phthalimide, N-methyl- 745. Phthalimide, N-propyl- 927. Phthalocyanatocopper(II) 297. Phthalocyaninatobis(pyridine)ruthenium(II) 906. Phthalocyaninatomagnesium(II) 653. Phthalocyaninatozinc(II) 1130. Phthalocyanine 907. Phthalonitrile 382. 15-cis-Phytoene 908. all-trans-Phytoene 909. Picene 910. Pinacyanol chloride 392. 2-Piperidinoanthraquinone 911. Pivalophenone 912. Poly[oxy[2-(1-pyrenylmethyl)-1,3-propanediyl]oxy(1,4-dioxo-1,4-butanediyl)] 913. Poly[oxy[2-(1-pyrenylmethyl)-1,3-propanediyl]oxy-(1,4-dioxo-1,4-butanediyl)]/1,4-Dicyanobenzene 914. Poly[oxy[2-(1-pyrenylmethyl)-1,3-propanediyl]oxy(1,4-dioxo-1,6-hexanediyl)] 915. Poly[oxy[2-(1-pyrenylmethyl)-1,3-propanediyl]oxy-(1,4-dioxo-1,6-hexanediyl)]/1,4-Dicyanobenzene 916.

4-(dimethylamino)benzenecarbothioate 886.

O-(2-Phenylethyl)

```
2-Propen-1-one, 3-(4-methoxyphenyl)-1-phenyl-667.
Poly(phenylisopropenyl ketone) 917.
                                                           Propionate ion,
Poly(4-vinylbenzophenone) 918.
Poly(2-vinylnaphthalene) 919.
                                                              2-amino-3-(4-methoxy-6-benzothiazolyl)- 47.
                                                           9-Propionylanthracene 925.
Porphinatozinc(II) 1131.
21H,23H-Porphine, 2,3-dihyro-5,10,15,20-tetraphenyl-
                                                           Propiophenone 926.
                                                           Propiophenone, 2-(N-formylamino)-3'-amino-55.
                                                           Propiophenone, 4'-hydroxy- 628.
21H,23H-Porphine, 5,10,15,20-tetraethyl- 1026.
21H,23H-Porphine, 2,8,12,18-tetraethyl-
                                                           N-Propylphthalimide 927.
  2,3-dihydro-3,7,13,17-tetramethyl- 579.
                                                           1-Propynylbenzene 928.
Porphine, tetrakis(2,6-dimethyl-4-sulfonatophenyl)-
                                                           Protoporphyrin 929.
                                                           Protoporphyrin IX 930.
Porphine, tetrakis(2-N-methylpyridyl)- 1033.
                                                           Protoporphyrin IX, dimethyl ester 931.
                                                           Protoporphyrin IX, dimethyl ester, conjugate diacid 932.
Porphine, tetrakis(3-N-methylpyridyl)- 1034.
Porphine, tetrakis(4-N-methylpyridyl)- 1035.
                                                           Protoporphyrin IX, dimethyl ester, conjugate monoacid
Porphine, tetrakis(2-pyridyl)-, conjugate diacid 1039.
                                                              933.
                                                           Pseudoisocyanine 394.
Porphine, tetrakis(3-pyridyl)-, conjugate diacid 1040.
Porphine, tetrakis(4-pyridyl)-, conjugate diacid 1041.
                                                           Psoralen 934.
Porphine, tetrakis(2-pyridyl)- 1036.
                                                           Psoralen, 4'-aminomethyl-4,5',8-trimethyl-51.
                                                           Psoralen, 3-carbethoxy- 246.
Porphine, tetrakis(3-pyridyl)- 1037.
                                                           Psoralen, 4',5'-dihydro- 430.
Porphine, tetrakis(4-pyridyl)- 1038.
                                                           Psoralen, 4',5'-dihydro-3-carbethoxy- 411.
Porphine, tetrakis(p-sulfonatophenyl)- 1043.
Porphine, tetrakis(trimethylaminophenyl)- 1044.
                                                           Psoralen, 5-methoxy- 683.
Porphine, meso-tetraphenyl- 1057.
                                                           Psoralen, 8-methoxy- 684.
21H,23H-Porphine 920.
                                                           Psoralen, 4,5',8-trimethyl- 1091.
21H,23H-Porphine-2,18-dipropanoic acid,
                                                           4',5'-Psoralen-thymine photo adduct 935.
   2,3-dihydro-3,3,7,12,17-pentamethyl- 213.
                                                           4-[3H]Pteridinone, 2-amino- 57.
                                                           Pterin 57.
Porphine-6,7-dipropionic acid,
   1,3,5,8-tetramethyl-2,4-divinyl- 930.
                                                           1H-Purin-2-amine 58.
Porphyrin, tetraphenyl-, dianion 1058.
                                                           Purine 936.
                                                           Purine, 2-amino- 58.
PrOH/Dibenz[a,j]acridine 338.
Proflavine 921.
                                                           Purine, 2-(dimethylamino)- 466.
Proflavine, conjugate diacid 922.
                                                           Pyranthrene 937.
Proflavine, conjugate monoacid 923.
                                                           Pyrazine 938.
Promazine 924.
                                                           1H,5H-Pyrazolo[1,2-a]pyrazole-1,5-dione,
1,3-Propandiol diacetate, 2-(1-pyrenylmethyl)- 949.
                                                              2,3,6,7-tetramethyl- 1047.
Propane, 1,3-di(9-phenanthryl)- 526.
                                                           Pyrene 939.
Propanedinitrile,
                                                           Pyrene, 1-bromo- 228.
   2.2',2"-(4,5-dihydroxy-2-oxo-4-cyclopentene-
                                                           Pyrene, 4-hydroxy- 629.
   1,3-diylidene)bis-, dianion 306.
                                                           Pyrene, 1,3,6,8-tetraphenyl- 1059.
1,3-Propanedione, 1,3-diphenyl- 355.
                                                           Pyrene-d_{10} 940.
4-Propanenitrile, 3-[[4-[(2,4-dinitrophenyl)azo]phenyl]-
                                                           Pyrene/Chloranil 941.
   (2-hydroxyethyl)amino]- 521.
                                                           Pyrene/Diethylaniline 942.
Propanoic acid, 2-methyl-4-benzoylphenyl ester 746.
                                                           Pyrene/Tetracyanobenzene, 1:1 943.
1-Propanone, 2-acetoxy-2-methyl-1-phenyl- 10.
                                                           Pyrene/Tetracyanobenzene, 2:1 944.
1-Propanone, 1-(4-biphenylyl)-3-chloro- 179.
                                                           1-Pyrenecarboxaldehyde 945.
1-Propanone, 3-chloro-1-(2-naphthyl)- 281.
                                                           Pyrene-1-sulfonate 946.
1-Propanone, 2,2-dimethyl-1-phenyl- 912.
                                                           Pyrene-3-sulfonate 947.
1-Propanone, 1,2-diphenyl 716.
                                                           4-Pyrenol 629.
1-Propanone, 2-hydroxy-2-methyl-1-phenyl- 625.
                                                           [2.2](2,7)-Pyrenophane 948.
1-Propanone,
                                                           2-(1-Pyrenylmethyl)-1,3-propandiol diacetate 949.
   2-hydroxy-2-methyl-1-[4-(2-propyl)phenyl]- 626.
                                                           2-(1-Pyrenylmethyl)-1,3-propandiol diacetate/1,4-
1-Propanone, 1-(4-hydroxyphenyl)- 628.
                                                              Dicyanobenzene 950.
1-Propanone, 2-methoxy-2-methyl-1-phenyl- 671.
                                                           Pyridine, 2-amino- 59.
1-Propanone, 1-(4-methoxyphenyl)- 682.
                                                           Pyridine, 4-amino- 60.
1-Propanone, 1-(4-methoxyphenyl)-3-phenyl-891.
                                                           Pyridine, 2-benzovl- 155.
2-Propen-1-one, 1-(9-anthracenyl)-87.
                                                           Pyridine, 3-benzoyl- 156.
2-Propen-1-one, 3-[4-(dimethylamino)phenyl]-1-phenyl-
                                                           Pyridine, 4-benzoyl- 157.
                                                           Pyridine, 2-(dimethylamino)- 467.
                                                           Pyridine, 4-(dimethylamino)- 468.
2-Propen-1-one, 1,3-diphenyl- 258.
```

Pyridine, 4-nitro-, N-oxide 821. N-13-cis-Retinylidene-n-butylamine 977. Pyridine, 4-pyrrolidino- 956. N-9-cis-Retinylidene-n-butylamine 978. Pyridinium, 1-methyl-4-[4-cyanostyryl]- 713. N-all-trans-Retinylidene-n-butylamine 979. Pyridinium, 1-methyl-4-[4-nitrostyryl]- 742. Rhodamine, N,N'-diethyl- 400. Pyrido[2,1,6-de]quinolizine 951. Rhodamine, tetraethyl- 983. Pyrimidine 952. Rhodamine 110 982. Pyrimidine, 2,4-dihydroxy-5-methyl- 1072. Rhodamine 6 400. 4-Pyrimidinecarboxylic acid, Rhodamine B 983. 2,6-dioxo-1,2,3,6-tetrahydro-832. Rhodamine G 400. 2,4(1H,3H)-Pyrimidinedione 1115. Rhodamine 6G 984. Pyrimido[4,5-b]quinoline-2,4(3H,10H)-dione, Rhodamine 6G cation, conjugate monoacid 985. 3,7,8,10-tetramethyl- 715. Rhodamine 6G dimer 986. Pyromellitic dianhydride 953. Rhodamine X 400. Pyromellitic dianhydride/Diethyl ether 954. Rhodium(III) bromo(methanol)phthalocyanine 222. Pyromellitic dianhydride/1-Methylnaphthalene 735. Rhodium(III) chloro(methanol)phthalocyanine 277. Pyronine 955. Rhodium(III) iodo(methanol)phthalocyanine 635. Pyronine G 955. Rhodium(III) tetraphenylporphyrin chloride 1056. Pyronine Y 955. Rhodium(III) tris(1,10-phenanthroline) 1106. 4-Pyrrolidinopyridine 956. Rhodium(II) tetrakis(p-sulfonatophenyl)porphyrin 1042. Pyruvic acid 957. Riboflavin 5'-(dihydrogen phosphate) 581. Quantacurc SKS anion 958. Riboflavine, conjugate monoacid 987. Quaterphenyl, 4,4'-bis(diethylamino)- 1027. Rose Bengal 988. Quaterphenyl, p,p'-diamino- 959. Rubrene 989. [1,1':4',1":4",1"'-Quaterphenyl]-4,4"'-diamine 959. Ruthenium(II) bis(dimethylformamide)phthalocyanine p-Quaterphenyl 960. 204. Quinaldine Blue 392. Ruthenium(II) bis(dimethylsulfoxide)phthalocyanine 205. Quino[2,3-b]acridine-7,14-dione, 5,12-dihydro-5-methyl-Ruthenium(II) phthalocyaninatobis(pyridine) 906. Ruthenium(II) tris(2,2'-bipyridine) 1105. Quino[2,3-b]acridine-7,14-dione, 5,12-dihydro-431. Safranine cation 990. Quinoline 961. Safranine cation, conjugate diacid 991. Quinoline, conjugate acid 962. Safranine cation, conjugate monoacid 992. Quinoline, 1,2-dihydro-2,2,4,6-tetramethyl- 432. Selenine cation 993. Quinoline, 4-nitro-, N-oxide 822. Selenine cation, conjugate monoacid 994. Quinoline, 2-[2-(5-nitro-2-furanyl)]ethenyl- 817. Selenoindigo, 5,5'-diethyl- 401. 2(1H)-Quinolinone 247. Selenopyronine 995. Quinone 143. 9H-9-Silafluorene, 9,9-diphenyl- 549. Quinoxaline 963. Skatole 731. Quinoxaline-1,4-dioxide 964. Sodium 4,4,4-trifluoro-1-phenyl-1,3-butanedione 1083. 1,1':4',1":3",1"":4"",1""-Quinquephenyl, all-trans-Spheroidene 996. 5"-[1,1'-biphenyl]-4-yl- 183. all-trans-Spheroidenone 997. Resorcinol/Eosin 560. all-trans-Spirilloxanthin 998. Retinal 965. Spiro[2H-1-benzopyran-2,2'-[2H]indole]-1'(3H)-ethanol,11-cis-Retinal 966. 3',3'-dimethyl-6-nitro- 618. 13-cis-Retinal 967. Spiro[2H-1-benzopyran-2,6'(5'H)-phenanthridine], 7.9-cis-Retinal 968. 8-methoxy-5'-methyl-6-nitro- 670. 7-cis-Retinal 969. Spiro[2H-1-benzopyran-2,6'(5'H)-phenanthridine], 9-cis-Retinal 970. 5'-methyl-6-nitro- 741. Spiro[9,10-dihydro-9-oxoanthracene-10,2'-5',6'-benzindan] all-trans-Retinal/(CF₃)₂CHOH 971. all-trans-Retinal/1,1,1,3,3,3-Hexafluoro-2-PrOH 971. all-trans-Retinal 972. Spiro-(2,2'-indolin[2H-1]benzopyran), Retinoic acid, methyl ester 748. 6-chloro-1,3,3-trimethyl-6'-nitro-291. all-trans-Retinoic acid 973. Spiro-(2,2'-indolin[2H-1]benzopyran), Retinol acetate 975. 6-methoxy-1,3,3-trimethyl-6'-nitro-687. all-trans-Retinol 974. Spiro-(2,2'-indolin[2H-1]benzopyran), Retinyl acetate 975. 7'-methoxy-1,3,3-trimethyl-6'-nitro-688. N-11-cis-Retinylidene-n-butylamine, conjugate acid 980. Spiro-(2,2'-indolin[2H-1]benzopyran), N-all-trans-Retinylidene-n-butylamine, conjugate acid 1,3,3,6-tetramethyl-6'-nitro- 1048. Spiro-(2,2'-indolin[2H-1]benzopyran), N-11-cis-Retinylidene-n-butylamine 976. 1,3,3-trimethyl-6'-nitro- 1088.

Sulfacetamide 1009.

Spiro-(2,2'-indolin[2H-1]benzopyran), 1,3,3-trimethyl-6'-nitro- 1088. Spiro(indoline-2,2'-[2H]benzopyran), 1-(β-methacryloxyethyl)-3,3-dimethyl-6'-nitro-659. Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 2',4',5',7'-tetrabromo-3',6'-dihydroxy-, disodium salt 556. Spiroisobenzofuran-1(3H),9'[9H]xanthen-3-one, 2',4',5',7'-tetrabromo-3',6'-dihydroxy- 562. Spiroisobenzofuran-1(3H),9'[9H]xanthen-3-one, 3',6'-dihydroxy-2',4',5',7'-tetraiodo-, ion(2-) 566. Spiro[isobenzofuran-1(3H),9'-[9H]xanthen-3-one, 3',7'-dihydroxy-591. Spiro[isobenzofuran-1(3H),9'-[9H]xanthen-3-one, 3',7'-dihydroxy-, conjugate monoacid 592. Spiro[isobenzofuran-1(3H),9'-[9H]xanthen-3-one, 3',7'-dihydroxy-, ion(1-) 593. Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 4,7-dichloro-3',6'-dihydroxy-2',4',5',7'-tetraiodo, dipotassium salt 988. 9H-9-Stannafluorene, 9.9-diethyl- 402. 9H-9-Stibafluorene, 9-phenyl- 899. Stilbene 1000. Stilbene, trans-4-amino-4'-nitro- 54. Stilbene, trans-4-bromo- 229. Stilbene, cis-4-chloro- 288. Stilbene, trans-4-chloro- 289. Stilbene, trans-4-cyano- 316. Stilbene, trans-4-cyano-4'-dimethylamino- 311. Stilbene, trans-4-cyano-4'-methoxy- 313. Stilbene, 4.4'-dichloro- 378. Stilbene, trans-4.4'-dicvano- 386. Stilbene, trans-2.5-dimethoxy-4'-nitro-453. Stilbene, trans-4-dimethylamino-4'-nitro-461. Stilbene, trans-2,4-dinitro-522. Stilbene, cis-4,4'-dinitro-523. Stilbene, trans-4,4'-dinitro-524. Stilbene, trans-4-fluoro- 596. Stilbene, 4-methoxy-, trans- 685, Stilbene, trans-3-methoxy-4'-nitro-676. Stilbene, cis-4-methoxy-4'-nitro-677. Stilbene, trans-4-methoxy-4'-nitro- 678. Stilbene, trans-3-nitro-823. Stilbene, trans-4-nitro- 824. trans-Stilbene-2,2'-d2 1001. trans-Stilbene-2,3,4,5,6-d₅ 1002. trans-Stilbene-4,4'-d₂ 1003. trans-Stilbene-7,7'-d2 1004. cis-Stilbene 1005. trans-Stilbene 1006, trans-Stilbene-d₁₂ 1007. Styrene 1008. Styrene, trans-1-methoxy- β -nitro- 681. Styrene, β -(2-anthryl)- 89. Styrene, trans-4-dimethylamino- β -nitro- 465. Styrene, β , β -dimethyl- α -naphthyl- 496. Styrene, B-ethyl- 578. Styrene, a-methyl-B-ethyl- 724.

Styrene, a-naphthyl- 800.

Sulfanilamide, N'-acetyl- 1009. Sulfanilic acid/Eosin 561. 4-Sulfomethylbenzophenone anion 1010. (4-Sulfomethylphenyl)phenylethanedione 958. TMPD 1049. TMPD/2,6-Diphenyl-1,4-benzoquinone 533. Terephthalonitrile 384. Terphenyl, 4,4'-bis(diethylamino)- 1028. p-Terphenyl, 4-nitro- 825. [1,1':4',1"-Terphenyl]-4,4"-diamine 1011. m-Terphenyl 1012. o-Terphenyl 1013. p-Terphenyl 1014. p-Terphenyl- d_{14} 1015, 4-(4-p-Terphenylylmethyl)benzophenone 1016. 2-([1,1':4',1"-Terphenyl]-4-ylmethyl)triphenylene 1017. Testosterone 1018. 1,2,3,4,5,6,7,8-Tetrabenznaphthalene 347. Tetrabenzofulvalene 167. Tetrabenzophenazine 1019. Tetrabenzoporphinatocadmium(II) 240. Tetrabenzoporphinatozinc(II) 1133. Tetrabenzoporphine 1020. 2',4',5',7'-Tetrabromofluorescein dianion 562. Tetrabromofluorescein disodium salt 556. Tetracene 1021. Tetracene, 5-(1,4-epidioxyphenyl)-6,11,12-triphenyl- 563. Tetracene, 5,6,11,12-tetraphenyl-989. 1,5,9,10-Tetrachloroanthracene 1022. Tetrachlorophthalic anhydride/Naphthalene-d₈ 773. Tetrachlorophthalic anhydride/Phenanthrene- d_{10} 858. 1,2,4,5-Tetracyanobenzene 1023. 1,3,5,7,9,11,13-Tetradecaheptaene, 3,7,12-trimethyl-1,14-bis(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (all-E)- 1086. p,p'-Tetraethyldiaminoquaterphenyl 1027. p,p'-Tetraethyldiaminoterphenyl 1028. N,N,N',N'-Tetraethyloxonine cation, conjugate monoacid 1025. N,N,N',N'-Tetraethyloxonine cation 1024. Tetraethylporphinatozinc(II) 1134. Tetraethylporphine 1026. N,N,N',N'-Tetraethyl-[1,1':4',1":4",1"'-quaterphenyl]-4,4""-diamine 1027. N, N, N', N'-Tetraethyl-[1,1':4',1"-terphenyl]-4,4"diamine 1028. 7,8,9,10-Tetrahydrobenzo[a] pyrene-7,8,9,10-tetrol 1031. 6bα,6cα,12bα,12cα-Tetrahydrocyclobuta[1,2-a:3,4-a']diacenaphthylene 2. $6b\alpha$, $6c\beta$, $12b\alpha$, $12c\beta$ -Tetrahydrocyclobuta[1,2-a:3,4-a']diacenaphthylene 3. 7,8,11,12-Tetrahydro- ψ -carotene 255. 6,7,12,13-Tetrahydro-6,13:7,12-di-o-benzenobenzo[5,6]cycloocta[1,2-b]naphthalene 72. (R)-4,5,6,7-Tetrahydrodinaphtho[2,1-b:1',2'-d][1,6]dioxecin 1029. 6,7,8,9-Tetrahydro-4-hydroxythiazolo[4,5-h]isoquinoline-7-carboxylate ion 1030. 7,8,9,10-Tetrahydrotetrahydroxybenzo[a]pyrene 1031.

1,3,6,8-Tetraphenylpyrene 1059.

5,6,11,12-Tetraphenyltetracene 989.

226 Tetraiodofluorescein dianion 566. Tetrakis(carboxyphenyl)porphinatopalladate(II) ion 840. Tetrakis(carboxyphenyl)porphinatozincate(II) ion 1135. Tetrakis(2,6-dimethyl-4-sulfonatophenyl)porphine 1032. Tetrakis(2,6-dimethyl-4-sulfonatophenyl)porphinatozincate(II) ion 1136. Tetrakis(4-N-methylpyridyl)porphinatopalladium(II) Tetrakis(2-N-methylpyridyl)porphine 1033. Tetrakis(3-N-methylpyridyl)porphine 1034. Tetrakis(4-N-methylpyridyl)porphine 1035. Tetrakis(2-N-methylpyridyl)porphinatozinc(II) ion 1137. Tetrakis(3-N-methylpyridyl)porphinatozinc(II) ion 1138. Tetrakis(4-N-methylpyridyl)porphinatozinc(II) ion 1139. Tetrakis(2-pyridyl)porphine, conjugate diacid 1039. Tetrakis(3-pyridyl)porphine, conjugate diacid 1040. Tetrakis(4-pyridyl)porphine, conjugate diacid 1041. Tetrakis(2-pyridyl)porphine 1036. Tetrakis(3-pyridyl)porphine 1037. Tetrakis(4-pyridyl)porphine 1038. Tetrakis(p-sulfonatophenyl)porphinatopalladate(II) ion 842. Tetrakis(p-sulfonatophenyl)porphinatorhodate(III) ion 1042. Tetrakis(p-sulfonatophenyl)porphine 1043. Tetrakis(p-sulfonatophenyl)porphinatozincate(II) ion 1140. Tetrakis(trimethylaminophenyl)porphine 1044. Tetrakis-4-(N,N,Ntrimethylammonio)phenylporphinezinc(II) ion 1141. N,N,N',N'-Tetramethylbenzidine 1045. 2,3,5,6-Tetramethylbenzoquinone 552. Tetramethyl-p-benzoquinone 552. 1,1',3,3'-Tetramethyl- $[\Delta^{9,9'}$ -bianthracene]-10,10'-dione **1046.** 1,1',3,3'-Tetramethyldianthrone 1046. 3,4,7,8-Tetramethyl-1,5-diazabicyclo[3,3,0]octa-3,7-diene-2,6-dione 1047. 1,3,5,8-Tetramethyl-2,4-divinylporphine-6,7-dipropionic acid 930. 1,3,3,6-Tetramethyl-6'-nitrospiro-(2,2'-indolin[2H-1]benzopyran) 1048. N,N,N',N'-Tetramethyl-p-phenylenediamine/3-Chloro-2,6-diphenyl-1,4-benzoquinone 273. N,N,N',N'-Tetramethyl-p-phenylenediamine 1049. 2,3,6,7-Tetramethyl-1H,5H-pyrazolo[1,2-a]pyrazole-1,5-dione 1047. Tetramethylthiuram disulfide 1050. Tetramethylthiuram monosulfide 1051. Tetraphene 106. 1,1,4,4-Tetraphenyl-1,3-butadiene 1052. Tetraphenylchlorin 1053. Tetraphenyl-p-dioxin 1054. 3,3,4,5-Tetraphenyl-2(3H)-furanone 1055. 5,6,11,12-Tetraphenylnaphthacene 989. Tetraphenylporphinatocadmium(II) 241. Tetraphenylporphinatomangnesium(II) 654. Tetraphenylporphinatomercury(II) 656. Tetraphenylporphinatopalladium(II) 843. Tetraphenylporphinatorhodium(III) chloride 1056.

2.2'-Thiacarbocvanine. 6.6'-bis(dimethylamino)-3.3'-diethyl-, iodide 191. 2,2'-Thiacarbocyanine, 3,3'-diethyl-, iodide 403. 2,2'-Thiacarbocyanine, 3,3'-diethyl-9-methoxy-, iodide 397. 2,2'-Thiacyanine iodide, 3,3'-diethyl- 404. 2,2'-Thiadicarbocyanine iodide, 3,3'-diethyl- 405. 2,2'-Thiatricarbocyanine iodide, 3,3'-diethyl- 406. 4-Thiazolidinone, 5[(3,4-dihydro[1,4]thiazino[3,4-b]benzothiazol-1-yl)methylene]-3-ethyl-2-thioxo-, (E)- 435. 4-Thiazolidinone, 3-ethyl-5[(3-ethyl-2(3H)benzothiazolylidene)ethylidine]-2-thioxo-, (E,Z)- 571. $2-\Delta^2$ -Thiazoline, benzoylamino- 147. $2-\Delta^2$ -Thiazoline, (2'-chlorobenzoyl)amino- 267. $2-\Delta^2$ -Thiazoline, (4'-chlorobenzoyl)amino- 268. $2-\Delta^2$ -Thiazoline, (2'-methylbenzoyl)amino- 709. $2-\Delta^2$ -Thiazoline, (4'-methylbenzoyl)amino- 710. Thiazolo[4,5-h]isoquinoline-7-carboxylate, 6,7,8,9-tetrahydro-4-hydroxy-, ion 1030, Thiobenzophenone 1060. Thiobenzophenone, 4,4'-bis(dimethylamino)- 200. Thiobenzophenone, 4,4'-dimethoxy- 454. Thiodicarbonic diamide, tetramethyl- 1051. Thioflavine 1061. Thioflavine T 1061. Thioflavine TCN 1061. Thioindigo 1062. Thioindigo, 5,5'-di-tert-amyl- 337. Thioindigo, 5,5'-dibutyl- 364. Thioindigo, 6,6'-diethoxy-388. Thioindigo, 6,6'-dihexyloxy- 407. Thioindigo, 5,5'-dineopentyl- 514. Thionine cation 1063. Thionine cation, conjugate monoacid 1064. Thiophene, 2,5-bis(5-tert-butyl-2-benzoxazolyl)- 189. Thiophene, 2-nitro- 826. Thiopyronine 1065. Thiopyronine cation 1066. 4-Thiouridine 1067. 9H-Thioxanthene-9-thione 1068. Thioxanthen-9-one, 2-chloro- 290. Thioxanthen-9-one, 2-isopropyl- 639. Thioxanthen-9-one, 2-methyl- 749. Thioxanthen-9-one 1069. 9H-Thioxanthen-9-one 1069. Thioxanthone 1069. Thymidine 1070. Thymidine 5'-monophosphate 1071. 5'-Thymidylic acid 1071. Thymine 1072. Thymine, negative ion 1073. Tin(IV) octaethylporphyrin dichloride 828. Tolan 527. Toluene/Tetracyanobenzene 1074. m-Toluic acid 704. o-Toluic acid 703. p-Toluic acid 705. p-Toluquinone 708.

Tetraphenylporphinatozinc(II) 1143. meso-Tetraphenylporphine 1057.

Tetraphenylporphyrin dianion 1058.

Torularhodinaldehyde 387. 1,3,5-Triazin-2-amine, 4-chloro-6-[4-(diethylamino)phenyl]-N,N-dimethyl- 269. 1,3,5-Triazine, 4,6-dichloro-2-[4-(diethylamino)phenyl]- 379. s-Triazine 1075. 1,2,3,4,6,7-Tribenzophenazine 1076. Tribenzo[a,c,h]phenazine 1076. 1,3,5-Tri(biphenyl-4-yl)benzene 183. 2,9,10-Trichloroanthracene 1077. 1,3,5-Tricyanobenzene 1078. Tricyclo[8.2.2.2^{4,7}]hexadeca-4,6,10,12,13,15-hexaene **844.** Tricyclo[8.2.2.2^{4,7}]hexadeca-4,6,10,12,13,15-hexaene-5.15-dicarbonitrile 1079. 2,4,6,8,10,12-Tridecahexaenal, 7,11-dimethyl-7-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (E, E, E, E, E, E)- 501. 1,3,5,8,10,12-Tridecahexaen-7-one, 1,13-bis(dimethylamino)-, all-trans- 201. 1,3,6,8,10,12-Tridecahexaen-5-one, 1,13-bis(dimethylamino)-, all-trans- 202. Triethylamine/Benzil 113. 1,1,1-Trifluoroacetylacetone 1080. 4-(Trifluoromethyl)acetophenone 1081. 4-(Trifluoromethyl)benzophenone 1082. 1,1,1-Trifluoro-2,4-pentanedione 1080. 4,4,4-Trifluoro-1-phenyl-1,3-butanedione 158. 4.4.4-Trifluoro-1-phenyl-1.3-butanedionatosodium 1083. 2.4.6-Triisopropylbenzophenone 1084. 1,2,3-Trimethoxybenzene/3-Chloro-2,6-diphenyl-1,4-benzoquinone 274. 7,8,10-Trimethylbenzo[g] pteridine-2,4-(3H,10H)-dione 645. 2,3,5-Trimethyl-1,4-benzoquinone 1085. (all-E)-3,7,12-Trimethyl-1,14-bis(2,6,6-trimethyl-1-cyclohexen-1-yl)-1,3,5,7,9,11,13-tetradecaheptaene 1086. 4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-3-buten-2-one 638. 1,1,2-Trimethyl-2-(2-naphthyl)ethylene 1087. 1,3,3-Trimethyl-6'-nitrospiro-(2,2'-indolin[2H-1]benzopyran) 1088. 3.5.5-Trimethyl-2-phenoxy-2-cyclohexene-1-one 1089. 4-[Tri(4-methylphenyl)porphinyl]-3-phenoxypropyl β -apo-6'-carotenate 1090. 4,5',8-Trimethylpsoralen 1091. Trioxsalen 1091. Triphenylamine 1092. Triphenylamine, conjugate acid 1093. Triphenylamine/3-Chloro-2,6-diphenyl-1,4benzoquinone 275. Triphenylamine/3,5-Dichloro-2,6-diphenyl-1,4benzoquinone 376. 1,3,5-Triphenylbenzene 1094. Triphenylene 1095. Triphenylene, 2-bromo- 230. Triphenylene- d_{12} 1096. Triphenylene/Chloranil 1097. Triphenylethylene 1098. 3,3,5-Triphenyl-2(3H)-furanone 1099.

Triphenylmethane 1100.

Triphenylmethyl cation 1101.

Triphenylmethylium 1101. 1,3,3-Triphenylprop-2-en-1-one 1102. Triptycene, 3-acetyl- 20. Tris(2,2'-bipyridine)iridium(III) ion 1103. Tris(2,2'-bipyridine)osmium(II) ion 1104. Tris(2,2'-bipyridine)ruthenium(II) ion 1105. Tris(1,10-phenanthroline)rhodium(III) ion 1106. Tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionato)lanthanum(III) 1107. Tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionato)lutetium(III) 1108. 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33-Tritriacontaheptadecaene, 3,7,11,15,20,24,28,32octamethyl-1,34-bis(2,6,6-trimethyl-1cyclohexen-1-vl)-, (all-E)- 830. Trypaflavine cation 30. Tryptophan 1109. L-Tryptophan, 1-methyl- 760. DL-Tryptophan 1110. L-Tryptophan 1111. Tyrosine 1112. L-Tyrosylglycine 1113. Ubiquinone 30 1114. 1.3.6.8.10-Undecapentaen-5-one. 1,11-bis(dimethylamino)-, all-trans- 203. Uracil 1115. Uracil, 1,3-dimethyl- 502. Uridine 1116. Uridine monophosphate 1117. Uridine 5'-monophosphate 1117. Uridvlic acid 1117. Uroporphyrin I, octamethyl ester 1118. 2-Vinylnaphthalene 1119. Vitamin A 974. Vitamin A acid 973. Water/3,5-Dinitroanisole 516. 9H-Xanthene-9-thione 1120. 9-Xanthenone 1121. Xanthone 1121. Xanthotoxin 684. Xanthylium, 9-(2-carboxyphenyl)-3,6-bis(diethylamino)-, chloride 983. Xanthylium, 3,6-diamino-9-(2-carboxyphenyl)-, chloride Xanthylium, 9-[2-(ethoxycarbonyl)phenyl]-3,6-bis(ethylamino)-2,7-dimethyl-, chloride 984. o-Xylene 1122. Zeaxanthin 1123. Zinc(II) chlorophyll a 1124. Zinc(II) cytochrome c 1125. Zinc(II) etioporphyrin I 1126. Zinc(II) etioporphyrin I/Hexachloroethane 1127. Zinc(II) etioporphyrin I/trans-4-Nitrostilbene 1128. Zinc(II) etioporphyrin I/4-Nitrotoluene 1129. Zinc(II) phthalocyanine 1130. Zinc(II) porphyrin 1131. Zinc(II) protoporphyrin 1132. Zinc(II) tetrabenzoporphyrin 1133.

Zinc(II) tetraethylporphyrin 1134.

Zina(II) totroki	is(carboxyphenyl)porphyrin 1135.	$C_7H_6O_2$	Benzoic acid 123.
	is(2,6-dimethyl-4-sulfonatophenyl)	$C_7\Pi_6O_2$	Methyl-1,4-benzoquinone 708.
porphyrin 1		C ₇ H ₇ NO	Benzamide 105.
	is(2-N-methylpyridyl)porphyrin 1137.	$C_7H_7NO_2$	2-Aminobenzoic acid 39 .
	is(3-N-methylpyridyl)porphyrin 1138.	0/11/1102	4-Aminobenzoic acid 40.
	is(4-N-methylpyridyl)porphyrin 1139.	$C_7H_7NO_3$	3-Nitroanisole 813.
	is $(p-\text{sulfonatophenyl})$ porphyrin 1140.	C711711O3	4-Nitroanisole 814.
	is(trimethylaminophenyl)porphyrin 1141.	C_7H_8O	Anisole 63.
	henylchlorin 1142.	C/1180	p-Cresol 304.
	henylporphyrin 1143.	$C_7H_8O_2$	4-Methoxyphenol 679.
zino(11) tottap	• • •	$C_7H_9N_5$	2-(Dimethylamino)purine 466.
	10.2. Formula Index	C_7H_{10}	1,3-Cycloheptadiene 317.
$C_3H_3N_3$	s-Triazine 1075.	€ 710	all-trans -1,3,5-Heptatriene 605.
$C_3H_4O_3$	Pyruvic acid 957.	$C_7H_{10}N_2$	2-(Dimethylamino)pyridine 467.
C ₃ H ₆ O	Acetone 7.	-7-10-12	4-(Dimethylamino)pyridine 468.
C ₄ H ₃ NO ₂ S	2-Nitrothiophene 826.	$C_7H_{10}O$	2-Cyclohepten-1-one 318.
$C_4H_4N_2$	Pyrazine 938.	$C_8H_4N_2$	1,2-Dicyanobenzene 382.
- 442	Pyrimidine 952.	- 0	1,3-Dicyanobenzene 383.
$C_4H_4N_2O_2$	Uracil 1115.		1,4-Dicyanobenzene 384.
C_4H_6O	1-Butene-3-one 761 .	C ₈ H ₅ NO ₄	3,6-Dihydroxyphthalimide 444.
$C_4H_6O_2$	2,3-Butanedione 164.	C_8H_6	Phenylacetylene 873.
C ₄ H ₈ O	2-Butanone 231.	$C_8H_6N_2$	Phthalazine 905.
, ,	Butyraldehyde 238.	0 0 2	Quinoxaline 963.
$C_5H_2F_6O_2$	1,1,1,5,5,5-Hexafluoroacetylacetone	$C_8H_6N_2O_2$	Quinoxaline-1,4-dioxide 964.
V 2 V 2	607.	C_0H_7N	Indole 631.
C5H3NO5	5-Nitro-2-furoic acid 818.	$C_8H_7N_3O_2$	3,6-Diaminophthalimide 336.
$C_5H_3N_2O_4^-$	Orotate ion 831.	C_8H_8	Styrene 1008.
$C_5H_4N_2O_3$	4-Nitropyridine-N-oxide 821.	$C_8H_8N_2$	1-Methylindazole 727.
$C_5H_4N_2O_4$	Orotic acid 832.	-0 -0 -2	2-Methylindazole 728.
$C_5H_4N_4$	Purine 936.	C_8H_8O	Acetophenone 8.
$C_5H_5F_3O_2$	1,1,1-Trifluoro-2,4-pentanedione 1080.	$C_8H_8O_2$	2,5-Dimethyl-1,4-benzoquinone 474.
$C_5H_5N_2O_2^-$	Thymine, negative ion 1073.		2,6-Dimethyl-1,4-benzoquinone 475.
$C_5H_5N_5$	2-Aminopurine 58.		Methyl benzoate 702.
C_5H_6	Cyclopentadiene 326.		o-Toluic acid 703.
$C_5H_6N_2$	2-Aminopyridine 59.		m-Toluic acid 704.
	4-Aminopyridine 60.		p-Toluic acid 705.
$C_5H_6N_2O_2$	Thymine 1072.	$C_8H_8O_4$	2,3-Dimethoxy-1,4-benzoquinone 446.
C ₅ H ₆ O	2-Cyclopentenone 327.		2,5-Dimethoxy-1,4-benzoquinone 447.
$C_5H_8O_2$	2,4-Pentanedione 11.	C ₈ H ₉ NO ₂	4-(Methylamino)benzoic acid 695.
$C_6Cl_4O_2$	Chloranil 259.	C ₈ H ₉ NO ₄	1,2-Dimethoxy-4-nitrobenzene 452.
$\mathbf{C}_6\mathbf{D}_6$	Benzene- d_6 110.	$C_8H_9O^+$	Acetophenone, conjugate acid 9.
$C_6H_4O_2$	1,4-Benzoquinone 143.	C_8H_{10}	o-Xylene 1122.
C_6H_5C1	Chlorobenzene 265.	$C_8H_{10}N_2O_2$	N,N-Dimethyl-4-nitroaniline 497.
C_6H_5F	Fluorobenzene 594.	$C_8H_{10}N_2O_3S$	Sulfacetamide 1009.
$C_6H_5N_2O$	Pterin 57.	$C_8H_{10}N_4O_2$	Caffeine 242.
C_6H_6	Benzene 109.	$C_8H_{11}N$	N,N-Dimethylaniline 470.
$C_6H_6N_2O_2$	4-Nitroaniline 812.	C_8H_{12}	1,3-Cyclooctadiene 324.
C_6H_6O	Phenol 868.	$C_8H_{12}N_2$	N,N-Dimethyl- p -phenylenediamine
C_6H_7N	Aniline 61.		500.
$C_6H_7N_5O$	7-Methylguanine 726.	C_8H_{14}	2,5-Dimethyl-2,4-hexadiene 485.
C_6H_8	1,3-Cyclohexadiene 321 .	C ₉ F ₃ H ₇ O	4-(Trifluoromethyl)acetophenone 1081.
C ₆ H ₈ ClN ₇ O	Amiloride 32.	$C_9H_3N_3$	1,3,5-Tricyanobenzene 1078.
$C_6H_8N_2O_2$	1,3-Dimethyluracil 502.	C ₉ H ₆ BrNO	4-Bromoisoquinoline-N-oxide 221.
C ₆ H ₈ O	2-Cyclohexen-1-one 322.	C ₉ H ₆ NO	Carbostyril, negative ion 248.
$C_6H_{12}N_2S_3$	Tetramethylthiuram monosulfide 1051.	$C_9H_6N_2O_3$	4-Nitroquinoline-N-oxide 822.
$C_6H_{12}N_2S_4$	Tetramethylthiuram disulfide 1050.	$C_9H_6O_2$	Chromone 294.
C_7H_5N	Benzonitrile 128.		Coumarin 303.
$C_7H_6N_2O_5$	3,5-Dinitroanisole 515.	$C_9H_6O_3$	3-Hydroxychromone 616.
C ₇ H ₆ O	Benzaldehyde 104.		4-Hydroxycoumarin 617.

C ₉ H ₇ N	Isoquinoline 641.	$C_{10}H_7O^-$	1-Naphthyloxide ion 797.
C91171N	Quinoline 961.	C ₁₀ 1170	2-Naphthyloxide ion 798.
C_9H_7NO	Carbostyril 247.	$C_{10}H_7O_2^-$	2,3-Dihydroxynaphthalene, conjugate
	Isoquinoline-N-oxide 642.		base 443 .
$C_9H_7NO_2$	N-Methylphthalimide 745.	$C_{10}H_8$	Azulene 95.
C_9H_8	1-Propynylbenzene 928.		Naphthalene 768.
C ₉ H ₈ N ⁺	Quinoline, conjugate acid 962.	$C_{10}H_8N_2O_2$	1-Amino-4-nitronaphthalene 53.
$C_9H_8N_2O_2$	3-Amino- <i>N</i> -methylphthalimide 50 . 4-Chromanone 293 .	$C_{10}H_8N_2O_4$	1,4-Dinitronaphthalene 518.
$C_9H_8O_2$ $C_9H_8O_3$	Methyl benzoylformate 711.	$C_{10}H_8O$	1-Naphthol 786.
C ₉ H ₉ N	1-Methylindole 729.		2-Naphthol 787.
C91191 1	2-Methylindole 730 .	$C_{10}H_8O_2$	1,5-Dihydroxynaphthalene 439.
•	3-Methylindole 731 .		1,8-Dihydroxynaphthalene 440.
C ₉ H ₉ NO ₂	2-(N-Formylamino)acetophenone 17.		2,3-Dihydroxynaphthalene 441.
$C_9H_9NO_3$	trans-1-Methoxy- β -nitrostyrene 681.	0.11.0	2,7-Dihydroxynaphthalene 442.
$C_9H_{10}N_2$	1,3-Dimethylindazole 486.	$C_{10}H_8O_3$	4-Hydroxy-6-methylcoumarin 623. 7-Hydroxy-4-methylcoumarin 624.
$C_9H_{10}O$	3-Methylacetophenone 691.	$C_{10}H_8O_3S$	1-Naphthalenesulfonic acid 776.
	4-Methylacetophenone 692.	$C_{10}H_9ClN_2OS$	(2'-Chlorobenzoyl)amino-2-\Delta^2-thiazoline
~ ~	Propiophenone 926.	C ₁₀ 11 ₉ C11 4 ₂ O3	267.
$C_9H_{10}O_2$	4'-Hydroxypropiophenone 628.		(4'-Chlorobenzoyl)amino- $2-\Delta^2$ -thiazoline
	3-Methoxyacetophenone 661 . 4-Methoxyacetophenone 662 .		268.
•	2,3,5-Trimethyl-1,4-benzoquinone 1085.	$C_{10}H_9N$	2-Naphthylamine 766.
C ₉ H ₁₀ O ₄	2,3-Dimethoxy-5-methyl-1,4-benzoquinone	$C_{10}H_9NO$	1-Methylisoquinoline-N-oxide 732.
	450.	$C_{10}H_9NO_2$	N-Ethylphthalimide 577.
$C_9H_{11}NO_2$	Phenylalanine 876.	$C_{10}H_{10}$	1-Butynylbenzene 237.
$C_9H_{11}NO_3$	Tyrosine 1112.	$C_{10}H_{10}N^+$	2-Naphthylamine, conjugate acid 767.
$C_9H_{12}N_2$	4-Pyrrolidinopyridine 956.	$C_{10}H_{10}N_2O$	7-Amino-4-methylcarbostyril 49.
$C_9H_{12}N_2O_4$	N-Butyl-5-nitro-2-furamide 236.	$C_{10}H_{10}N_2OS$	Benzoylamino- $2-\Delta^2$ -thiazoline 147.
$C_9H_{12}N_2O_5S$	4-Thiouridine 1067.	$C_{10}H_{10}O_2$	1-Benzoylacetone 146.
$C_9H_{12}N_2O_6$	Uridine 1116.	$C_{10}H_{11}NO_2$	2-(N-Acetylamino)acetophenone 16.
$C_9H_{13}N_2O_9P$	Uridine monophosphate 1117.	٠	2-(N-Formyl-N-methylamino)-acetophenone 19.
$C_{10}D_8$	Naphthalene-d ₈ 769.	$C_{10}H_{12}$	1-Phenyl-1-butene 578.
${ m C_{10}H_2N_4} \ { m C_{10}H_2O_6}$	1,2,4,5-Tetracyanobenzene 1023 . 1,2,4,5-Benzenetetracarboxylic	$C_{10}H_{12}N_2O_2$	2-(N-Formylamino)-3'-
C ₁₀ 11 ₂ O ₆	anhydride 953.	010-12-12-2	aminopropiophenone 55.
$C_{10}H_5BrN_2O$	4-Bromo-1-cyanoisoquinoline-N-oxide		trans-4-Dimethylamino-β-nitrostyrene
- 105	217.		465.
$C_{10}H_6Br_2$	1,4-Dibromonaphthalene 361.		3,4,7,8-Tetramethyl-1,5-diazabicyclo-
$C_{10}H_6Cl_2$	1,4-Dichloronaphthalene 377.		[3,3,0]octa-3,7-diene-2,6-dione 1047.
$C_{10}H_6F_3NaO_2$	4,4,4-Trifluoro-1-phenyl-1,3-	$C_{10}H_{12}O_2$	Duroquinone 552.
	butanedionatosodium 1083.		2-Hydroxy-2-methyl-
$C_{10}H_6N_2O_4$	1,2-Dinitronaphthalene 517.		1-phenylpropan-1-one 625.
CHNO	1,8-Dinitronaphthalene 519.	$C_{10}H_{13}NO_2$	4'-Methoxypropiophenone 682. Methyl 4-dimethylaminobenzoate 717.
$C_{10}H_6N_4O_2$	Alloxazine 31.	$C_{10}H_{13}O_2^+$	Duroquinone, conjugate monoacid 554.
$C_{10}H_7Br$	1-Bromonaphthalene 224. 2-Bromonaphthalene 225.	$C_{10}H_{14}N_2O_5$	Thymidine 1070.
$C_{10}H_7Cl$	1-Chloronaphthalene 279.	$C_{10}H_{14}O_2$	Camphoroquinone 243.
C10117C1	2-Chloronaphthalene 280.	$C_{10}H_{15}NO$	8-(Dimethylamino)-3,5,7-octatrien-2-one
$C_{10}H_7F_3O_2$	4,4,4-Trifluoro-1-phenyl-1,3-butanedione		462.
- 10 7 3 - 2	158,	$C_{10}H_{15}N_2O_8P$	Thymidine 5'-monophosphate 1071.
$C_{10}H_7I$	1-Iodonaphthalene 636.	$C_{10}H_{16}$	Neo-alloocimene 806.
	2-Iodonaphthalene 637.	$C_{10}H_{16}N_2$	N,N,N',N'-Tetramethyl- p -phenylene-
$C_{10}H_7NO_2$	1-Nitronaphthalene 819.	a **	diamine 1049.
	2-Nitronaphthalene 820.	$C_{11}H_6O_3$	Angelicin 640.
$C_{10}H_7NO_3$	4-Hydroxyquinoline-2-carboxylic acid	O HN	Psoralen 934.
O II N-O C	643.	$C_{11}H_7N$	1-Naphthonitrile 314.
$C_{10}H_7NaO_3S$	2-Naphthalenesulfonic acid, sodium salt 775.	$C_{11}H_7O_2^-$	1-Naphthoate ion 781.
	110.		2-Naphthoate ion 782.

a		~ ** **	a
$C_{11}H_8O$	1-Naphthaldehyde 764.	$C_{12}H_9N$	Carbazole 245.
CHO	2-Naphthaldehyde 765.	C HINO	Pyrido[2,1,6-de]quinolizine 951.
$C_{11}H_8O_2$	2-Methyl-1,4-naphthoquinone 737.	$C_{12}H_9NO$	2-Benzoylpyridine 155.
	1-Naphthoic acid 784.	*	3-Benzoylpyridine 156.
CILO	2-Naphthoic acid 785.		4-Benzoylpyridine 157.
$C_{11}H_8O_3$	4',5'-Dihydropsoralen 430.		4-Methoxy-1-naphthonitrile 674. Phenoxazine 871.
C ₁₁ H ₉ Br	1-(Bromomethyl)naphthalene 223.	$C_{12}H_9NO_2$	
$C_{11}H_{9}Cl$ $C_{11}H_{10}$	1-(Chloromethyl)naphthalene 278. 1-Methylnaphthalene 733.	$C_{12} H_{9} I V C_{2}$	5-Nitroacenaphthene 811. 4-Nitrobiphenyl 816.
C111110	2-Methylnaphthalene 734.	$C_{12}H_9NS$	Phenothiazine 870.
$C_{11}H_{10}O$	1-Methoxynaphthalene 672.	$C_{12}H_9N_2^+$	Phenazine, conjugate monoacid 867.
Cililio	2-Methoxynaphthalene 673.	$C_{12}H_9N_2O_3S^-$	6,7,8,9-Tetrahydro-4-hydroxythiazolo-
$C_{11}H_{10}O_4$	5,7-Dimethoxycoumarin 449.	C12119112O35	[4,5-h]isoquinoline-7-carboxylate
$C_{11}H_{10}O_4$ $C_{11}H_{11}NO_2$	N-Propylphthalimide 927.		ion 1030.
$C_{11}H_{11}NO_3S^-$	2-Amino-3-(4-methoxy-6-benzothiazolyl)-	$C_{12}H_{10}$	Acenaphthene 1.
01111	propionate ion 47.	0121110	Biphenyl 173.
$C_{11}H_{12}N_2OS$	$(2'-Methylbenzoyl)$ amino- $2-\Delta^2$ -thiazoline		2-Vinylnaphthalene 1119.
- 11122	709.	$C_{12}H_{10}N_3O^+$	Oxonine cation 835.
	(4'-Methylbenzoyl)amino-2-Δ ² -thiazoline	$C_{12}H_{10}N_3S^+$	Thionine cation 1063.
	710.	$C_{12}H_{10}N_3Se^+$	Selenine cation 993.
$C_{11}H_{12}N_2O_2$	N-[(Dimethylamino)methyl]phthalimide	$C_{12}H_{10}N_4O_2$	Lumichrome 644.
	459.	$C_{12}H_{10}O$	1'-Acetonaphthone 5.
	Tryptophan 1109.		2'-Acetonaphthone 6.
	DL-Tryptophan 1110.		4-Phenylphenol 615.
	L-Tryptophan 1111.	$C_{12}H_{10}O_2$	<i>p</i> , <i>p</i> '-Biphenol 437.
$C_{11}H_{12}N_2O_4$	N-Formylkynurenine 599.		Methyl 2-naphthoate 736.
$C_{11}H_{12}O_2$	3-Phenylacetylacetone 872.		1-Naphthyl acetate 791.
$C_{11}H_{13}NO_2$	2-(N-Acetyl-N-methylamino)acetophenone	$C_{12}H_{11}N$	4-Aminobiphenyl 43.
	18.		4a,5a-Dihydrocarbazole 410.
$C_{11}H_{14}$	2-Phenyl-2-pentene 724.		Diphenylamine 528.
$C_{11}H_{14}N_2O_4$	L-Tyrosylglycine 1113.	$C_{12}H_{11}NO$	4-Amino-4'-hydroxybiphenyl 46.
$C_{11}H_{14}N_2O_5$	4-tert-Butyl-3,5-dinitroanisole 233.	$C_{12}H_{11}N_3O^{2+}$	Oxonine cation, conjugate monoacid
$C_{11}H_{14}O$	Pivalophenone 912.		836.
$C_{11}H_{14}O_2$	2-Methoxy-2-methyl-1-phenyl-1-	$C_{12}H_{11}N_3S^{2+}$	Thionine cation, conjugate monoacid
	propanone 671.		1064.
$C_{11}H_{15}NO_2$	2-(Dimethylamino)ethyl benzoate 457.	$C_{12}H_{11}N_3Se^{2+}$	Selenine cation, conjugate monoacid
$C_{11}H_{18}N_2O$	1,7-Bis(dimethylamino)-		994.
C N 02-	1,4,6-heptatrien-3-one 192.	$C_{12}H_{12}$	1,2-Dimethylnaphthalene 489.
$C_{11}N_4O_3^{2-}$	Croconate Blue dianion 306.		2,3-Dimethylnaphthalene 490.
$C_{12}D_{10}$	Biphenyl-d ₁₀ 174.		2,7-Dimethylnaphthalene 491.
$C_{12}H_6N_2$	1,4-Dicyanonaphthalene 385.		1-Ethylnaphthalene 574.
$\mathbf{C_{12}H_8}$ $\mathbf{C_{12}H_8Br_2}$	Biphenylene 176. 4,4'-Dibromobiphenyl 359.	$C_{12}H_{12}N_2$	2-Ethylnaphthalene 575. Benzidine 111.
$C_{12}H_8N_2$	Benzo[<i>c</i>][1,5]naphthyridine 125 .	$C_{12}H_{12}N_2$ $C_{12}H_{12}N_2O_2$	1-Dimethylamino-4-nitronaphthalene
C ₁₂ 1 181 42	Benzo[$c \parallel 1,6$]naphthyridine 126.	C ₁₂ 11 ₁₂ 1 V ₂ O ₂	460.
	Benzo[$c \parallel 1,7$]naphthyridine 127.	$C_{12}H_{12}O$	2-Ethoxynaphthalene 567 .
	1,10-Phenanthroline 861.	$C_{12}H_{12}O_2$	1,4-Dimethoxynaphthalene 451 .
	1,7-Phenanthroline 862 .	$C_{12}H_{13}O_2$ $C_{12}H_{13}N$	N,N-Dimethyl-2-naphthylamine 492 .
	1,8-Phenanthroline 863.	$C_{12}H_{14}$	1-Phenylcyclohexene 881.
	1,9-Phenanthroline 864.	$C_{12}H_{14}N^+$	N,N-Dimethyl-2-naphthylamine,
	4,7-Phenanthroline 865.	~1214× ·	conjugate acid 493.
	Phenazine 866.	$C_{12}H_{14}N_2O_2$	1-Methyl-L-tryptophan 760.
$C_{12}H_8O_3$	3-Formylfurochromene 598 .	$C_{12}H_{14}O_3$	2-Acetoxy-2-methyl-1-phenyl-1-
- J - G - J	2-Formyl-5'-methyldifurobenzene 600.	- 12 -17 - 3	propanone 10.
$C_{12}H_8O_4$	5-Methoxypsoralen 683.		Butyl benzoylformate 232.
14 0 - 4	8-Methoxypsoralen 684.	$C_{12}H_{16}N_2$	2-tert -Butyl-4-methylindazole 235.
$C_{12}H_9Br$	4-Bromobiphenyl 216.	$C_{12}H_{17}NO$	10-(Dimethylamino)-3,5,7,9-
$C_{12}H_9I$	4-Iodobiphenyl 634.	*/	decatetraen-2-one 456.
·- ·			

$C_{13}D_9N$	Acridine-d ₉ 24.	$C_{13}H_{13}N$	N-Methyldiphenylamine 718.
C ₁₃ H ₇ ClOS	2-Chlorothioxanthen-9-one 290.	$C_{13}H_{13}N_3^{2+}$	Proflavine, conjugate diacid 922.
$C_{13}H_8$	Fluoren-9-ylidene 589.	$C_{13}H_{13}N_4O_2^+$	Lumiflavine, conjugate monoacid 646.
$C_{13}H_8Cl_2O$	4,4'-Dichlorobenzophenone 372.	$C_{13}H_{14}$	2-Phenyl-2-norbornene 896 .
$C_{13}H_8NO_4S^-$	9,10-Dihydro-9-oxo-2-acridinesulfonate	$C_{13}H_{14}$ $C_{13}H_{14}Cl_2N_4$	4-(4,6-Dichloro-1,3,5-triazin-2-yl)-
C[311811045	ion 424.	0132214022-14	N,N-diethylaniline 379.
$C_{13}H_8O$	Fluoren-9-one 586.	C ₁₃ H ₁₅ NO ₄	8-Methoxy-2,2,3-trimethyl-6-nitro-
$C_{13}H_8OS$	Thioxanthen-9-one 1069.	01322132104	2 <i>H</i> -chromene 686 .
C13118OD	9H-Xanthene-9-thione 1120.	$C_{13}H_{15}N_3O_2$	N-Acetyl-L-tryptophanamide 21.
$C_{13}H_8O_2$	6H-Dibenzo[b,d]pyran-6-one 350.	$C_{13}H_{15}N_3O_2$ $C_{13}H_{17}N$	1,2-Dihydro-2,2,4,6-tetramethylquinoline
C13118O2	Xanthone 1121.	C 132 2 172 4	432.
$C_{13}H_8S_2$	9H-Thioxanthene-9-thione 1068.	$C_{13}H_{18}O_2$	2-Hydroxy-2-methyl-1-
C ₁₃ H ₉ ClO	4-Chlorobenzophenone 266 .	01311802	[4-(2-propyl)phenyl]propan-1-one 626 .
C ₁₃ H ₉ FO	4-Fluorobenzophenone 595 .	$C_{13}H_{19}NO$	2-[1-(Butylimino)ethyl]-5-methylphenol
$C_{13}H_9N$	Acridine 23.	0131119110	234.
C1311911	Benzo[f]quinoline 139.	$C_{13}H_{20}N_2O$	1,9-Bis(dimethylamino)-
	Benzo[h]quinoline 140.	01321201120	1,3,6,8-nonatetraen-5-one 194.
	4-Cyanobiphenyl 309.		1,9-Bis(dimethylamino)-
	Phenanthridine 859.		1,4,6,8-nonatetraen-3-one 195 .
C ₁₃ H ₉ NO	9(10 <i>H</i>)-Acridinone 29 .	$C_{13}H_{20}O$	β-Ionone 638 .
C13119110	6(5H)-Phenanthridinone 860.	$C_{14}D_{10}$	Anthracene- d_{10} 65.
C ₁₃ H ₉ NO ₄ S	9,10-Dihydro-9-oxo-2-acridinesulfonic	01420 10	Phenanthrene- d_{10} 855.
C[311914O40	acid 425.	$C_{14}D_{12}$	trans-Stilbene- d_{12} 1007.
C13H10	Fluorene 585.	$C_{14}B_{12}$ $C_{14}H_6Cl_2O_2$	1,8-Dichloroanthraquinone 371.
C131110	1,4-Perinaphthyldiyl 851.	$C_{14}H_6Cl_4$	1,5,9,10-Tetrachloroanthracene 1022.
$C_{13}H_{10}N^+$	Acridinium ion 28.	$C_{14}H_6O_8S_2^-$	Anthraquinone-2,6-disulfonate ion 77.
C13111011	Benzo[f]quinolizinium 141.	$C_{14}H_6C_8C_2$ $C_{14}H_7ClO_2$	1-Chloroanthraquinone 263.
	Benzo[h]quinolizinium 142.	C14117C1O2	2-Chloroanthraquinone 264.
$C_{13}H_{10}N_2$	9-Aminoacridine 33.	C ₁₄ H ₇ Cl ₃	2,9,10-Trichloroanthracene 1077.
	1-Amino-7-nitrofluorene 52.		
$C_{13}H_{10}N_2O_2$	Benzophenone 133.	$C_{14}H_7D_5$	trans-Stilbene-2,3,4,5,6-d ₅ 1002.
$C_{13}H_{10}O$	4-Biphenylcarboxaldehyde 175.	$C_{14}H_7O_5S^-$ $C_{14}H_8Br_2$	9,10-Anthraquinone-2-sulfonate ion 78. 9,10-Dibromoanthracene 358.
	1-Hydroxyfluorene 621 .	$C_{14}H_8Cl_2$	1,5-Dichloroanthracene 369.
	2-Hydroxyfluorene 622 .	C14118C12	9,10-Dichloroanthracene 370.
$C_{13}H_{10}O_2$	2-Hydroxyhaorene 622.	$C_{14}H_8O_2$	Anthraquinone 76.
C13111002	4-Hydroxybenzophenone 614.		•
$C_{13}H_{10}O_3$	3-Formyl-2-methylfurochromene 601 .	C ₁₄ H ₉ Br	9-Bromoanthracene 215.
C131110C3	3-Formyl-8-methylfurochromene 602.	C II O	9-Bromophenanthrene 227.
$C_{13}H_{10}S$	Thiobenzophenone 1060.	C ₁₄ H ₉ Cl	1-Chloroanthracene 262.
$C_{13}H_{11}ClO$	3-Chloro-1-(2-naphthyl)-1-propanone	$C_{14}H_9F_3O$	4-(Trifluoromethyl)benzophenone 1082.
0132111010	281.	$C_{14}H_9I$	2-Iodoanthracene 632.
$C_{13}H_{11}N$	Acridan 22.		9-Iodoanthracene 633.
013-21121	2-Aminofluorene 44.	$C_{14}H_9NO_2$	1-Aminoanthraquinone 36.
$C_{13}H_{11}NO$	3-Aminobenzophenone 41.		2-Aminoanthraquinone 37.
013-211-10	4-Aminobenzophenone 42.		9-Nitroanthracene 815.
$C_{13}H_{11}NS$	10-Methylphenothiazine 744.	$C_{14}H_9NO_3$	1-Amino-4-hydroxyanthraquinone 45.
$C_{13}H_{11}N_3$	Proflavine 921.	$C_{14}H_{10}$	Anthracene 64.
$C_{13}H_{11}N_4O_2^-$	Lumiflavine, negative ion 647.		Benz[a]azulene 108.
$C_{13}H_{11}O_{2}^{+}$	Benzophenone, conjugate acid 134.		Diphenylacetylene 527.
$C_{13}H_{12}$	2,3-Dihydrophenalene 426 .		Phenanthrene 854.
C132212	1-Methyl-1-(1-naphthyl)ethylene 738 .	$C_{14}H_{10}Cl_2$	4,4'-Dichlorostilbene 378.
	2-(1-Methylethenyl)naphthalene 739 .	$C_{14}H_{10}D_2$	trans-Stilbene-2,2'-d ₂ 1001.
	1-Methyl-2-vinylnaphthalene 762.	-: •• *	trans-Stilbene-4,4'-d ₂ 1003.
	2-Methyl-3-vinylnaphthalene 763 .		trans-Stilbene-7,7'-d ₂ 1004.
$C_{13}H_{12}ClN_3S$	Azure C 99.	$C_{14}H_{10}N_2O$	2,5-Diphenyl-1,3,4-oxadiazole 545 .
$C_{13}H_{12}C_{11}V_{3}S$ $C_{13}H_{12}N_{3}^{+}$	Proflavine, conjugate monoacid 923.	$C_{14}H_{10}N_2O_2$	1,4-Diaminoanthraquinone 335.
$C_{13}H_{12}N_3$ $C_{13}H_{12}N_4O_2$	Lumiflavine 645.	$C_{14}H_{10}N_2O_2$ $C_{14}H_{10}N_2O_4$	trans-2,4-Dinitrostilbene 522.
$C_{13}H_{12}IV_4O_2$ $C_{13}H_{12}OS$	1-Naphthalenecarbothioic acid, <i>O</i> -ethyl	C1411011204	cis-4,4'-Dinitrostilbene 523.
01311/200	ester 774.		trans-4,4'-Dinitrostilbene 524.
	Court //T.		wans -t, t -Dimiti Osmoche 324.

$C_{14}H_{10}O$	1-Anthrol 80.	$C_{14}H_{17}NO_2$	7-Diethylamino-4-methylcoumarin 390.
	2-Anthrol 81.	$C_{14}H_{17}NO_4$	cis,cis-1-(3'-Methoxy-5'-nitro-2'-oxo-
	9-Anthrol 82.		3',5'-cyclohexadienyl)-3,4-dimethyl-
	Anthrone 83.		1,3-pentadiene 675.
	9-Phenanthrol 627.	$C_{14}H_{18}N_2O_2$	N-[2-(Diethylamino)ethyl]phthalimide
$C_{14}H_{10}OS$	2-Methylthioxanthen-9-one 749.		389.
$C_{14}H_{10}O_2$	Benzil 112.	$C_{15}D_{12}$	9-Methylanthracene- d_{12} 701.
$C_{14}H_{10}O_3$	4-Carboxybenzophenone 249.	$C_{15}H_8N_2O_2$	9-Cyano-10-nitroanthracene 315.
$C_{14}H_{10}O_5$	3-Carbethoxypsoralen 246.	C ₁₅ H ₉ N	9-Cyanoanthracene 308.
$C_{14}H_{11}Br$	trans-4-Bromostilbene 229.	$C_{15}H_9O_2^-$	2-Anthroate ion 79.
$C_{14}H_{11}Cl$	cis-4-Chlorostilbene 288.	$C_{15}H_{10}N_2O_3$	5-Nitro-2-(2-quinolylethenyl)furan 817.
OHE	trans-4-Chlorostilbene 289.	$C_{15}H_{10}O$	Anthracene-9-carboxaldehyde 68.
$C_{14}H_{11}F$	trans-4-Fluorostilbene 596.	$C_{15}H_{10}O_2$	Anthracene-9-carboxylic acid 70.
$C_{14}H_{11}N$	9-Aminophenanthrene 56. 9-Methylacridine 693.	СИО	Flavone 583.
$C_{14}H_{11}NO_2$	trans-3-Nitrostilbene 823.	$C_{15}H_{10}O_3$	3-Hydroxyflavone 619. 7-Hydroxyflavone 620.
C1411111102	trans-4-Nitrostilbene 824.	$C_{15}H_{11}N$	trans-4-Cyanostilbene 316.
$C_{14}H_{11}NS$	10-Methyl-9(10 <i>H</i>)-acridinethione 694.	$C_{15}H_{11}NO$	Anthracene-9-carboxamide 69.
$C_{14}H_{11}O_4S^-$	4-Sulfomethylbenzophenone anion	Cistilito	2,5-Diphenyloxazole 546.
0142211040	1010.	$C_{15}H_{11}O_5S^-$	Quantacure SKS anion 958.
$C_{14}H_{12}$	3,4-Dihydrophenanthrene 427.	$C_{15}H_{12}$	5H-Dibenzo[a,d]cycloheptene 348.
- 1412	9,10-Dihydrophenanthrene 428.	-1312	2-Methylanthracene 699.
	1,1-Diphenylethylene 539 .		9-Methylanthracene 700.
	Stilbene 1000.		2-Phenylindene 890.
	cis-Stilbene 1005.	$C_{15}H_{12}NO_3$	4'-Aminomethyl-4,5',8-trimethylpsoralen
4	trans-Stilbene 1006.		51.
$C_{14}H_{12}N^+$	2-Aminoanthracene, conjugate acid 35.	$C_{15}H_{12}N_2O_2$	1-Amino-4-(N-methylamino)-
$C_{14}H_{12}N_2$	3,8-Dimethyl-4,7-phenanthroline 499.		anthraquinone 48.
$C_{14}H_{12}N_2O_2$	trans-4-Amino-4'-nitrostilbene 54.	$C_{15}H_{12}O$	Chalcone 258.
$C_{14}H_{12}N_5O_2Br$	4-[(2-Bromo-4,6-dinitrophenyl)azo]-	$C_{15}H_{12}O_2$	Dibenzoylmethane 355.
*	N,N-dimethylbenzenamine 220.	$C_{15}H_{13}ClO$	1-(4-Biphenylyl)-3-chloro-1-propanone
$C_{14}H_{12}O$	4-Acetylbiphenyl 14.		179.
	Deoxybenzoin 332.	$C_{15}H_{13}NO$	10-Ethyl-9(10 <i>H</i>)-acridinone 569.
•	2-Methylbenzophenone 706.	$C_{15}H_{13}NO_3$	trans-3-Methoxy-4'-nitrostilbene 676.
	4-Methylbenzophenone 707.		trans-4-Methoxy-4'-nitrostilbene 678.
$C_{14}H_{12}O_2$	Benzoin 124.	$C_{15}H_{13}N_2^+$	1-Methyl-4-[4-cyanostyryl]pyridinium
	4-Methoxybenzophenone 664.	~	713.
$C_{14}H_{12}O_3$	4,5',8-Trimethylpsoralen 1091.	$C_{15}H_{13}NO_3$	cis-4-Methoxy-4'-nitrostilbene 677.
$C_{14}H_{12}O_5$	4',5'-Dihydro-3-carbethoxypsoralen 411.	$C_{15}H_{14}$	1-(1-Cyclopenten-1-yl)naphthalene 328.
$C_{14}H_{13}N_2O_2^+$	1-Methyl-4-[4-nitrostyryl]pyridinium	a o	2-(1-Cyclopenten-1-yl)naphthalene 329.
C U NOP	742.	$C_{15}H_{14}O$	trans-4-Methoxystilbene 685.
$C_{14}H_{13}N_4O_2Br$	4-[(2-Bromo-4-nitrophenyl)azo]- N,N-dimethylbenzenamine 226.		1-Methyldeoxybenzoin 716.
$C_{14}H_{13}N_5O_4$	4-[(2,4-Dinitrophenyl)azo]-	$C_{15}H_{14}O_2S$	4,4'-Dimethoxythiobenzophenone 454.
C141113145O4	N,N-dimethylbenzenamine 520.	$C_{15}H_{14}O_3$	4,4'-Dimethoxybenzophenone 445.
$C_{14}H_{13}O^{+}$	Benzyl phenyl ketone, conjugate acid	$C_{15}H_{15}N_3O_2$	3-Methyl-5-deazalumiflavine 715.
C 411 30	161.	$C_{15}H_{16}$	1,1,2-Trimethyl-2-(2-naphthyl)ethylene
C ₁₄ H ₁₄	3,3'-Dimethylbiphenyl 476.		1087.
$C_{14}H_{14}CIN_3S$	Azure A 96.	$C_{15}H_{16}BrN_3S$	Azure B 98.
$C_{14}H_{14}N_2$	5,10-Dihydro-5,10-dimethylphenazine	$C_{15}H_{16}N_3^+$	Acridine Yellow, conjugate monoacid 27.
- 1414- 12	416.		Aurophosphine, conjugate monoacid 94.
$C_{14}H_{14}N_2O_4S$	Phenazine methosulfate 743.	$C_{15}H_{16}N_4^+$	Neutral Red cation 809.
$C_{14}H_{14}N_3^+$	Acriflavine cation 30.	$C_{15}H_{18}$	Guaiazulene 488.
$C_{14}H_{14}N_3S^+$	Azure A cation 97.	$C_{15}H_{18}N_4^{3+}$	Neutral Red cation, conjugate diacid
$C_{14}H_{14}N_4O_2$	N,N-Dimethyl-4-[(4-nitrophenyl)azo]-		810.
	benzenamine 498.	$C_{15}H_{18}O_2$	3,5,5-Trimethyl-2-phenoxy-
$C_{14}H_{14}O_2$	4,4'-Dimethoxybiphenyl 448.		2-cyclohexene-1-one 1089.
	2-(1-Naphthalenyl)-1,3-dioxane 779.	C ₁₅ H ₂₀ ClN ₅	4-Chloro-6-[4-(diethylamino)phenyl]-
	2-(2-Naphthalenyl)-1,3-dioxane 780.		N,N-dimethyl-1,3,5-triazin-2-amine 269.

$C_{15}H_{20}N_2O_2$	N-[(Dipropylamino)methyl]phthalimide 550.	$C_{16}H_{16}$	1-(1-Cyclohexen-1-yl)naphthalene 323. [2.2]Paracyclophane 844.
$C_{15}H_{22}N_2O$	all-trans-1,11-Bis(dimethylamino)-1,3,6,8,10-undecapentaen-5-one 203.	$C_{16}H_{16}N_2OS_3$	(E,Z)-3-Ethyl-5[(3-ethyl-2(3H)-benzothiazolylidene)ethylidine]-
$C_{15}H_{22}O$	(E,E)-3-Methyl-5-(2,6,6-trimethyl-		2-thioxo-4-thiazolidinone 571 .
	1-cyclohexen-1-yl)-2,4-pentadienal 755.	$C_{16}H_{16}N_2O_2$	trans-4-Dimethylamino-4'-nitrostilbene
	(E,Z)-3-Methyl-5- $(2,6,6$ -trimethyl-1-cyclohexen-1-yl)-2,4-pentadienal 756 .	$C_{16}H_{16}O_2$	461. 1-(4-Methoxyphenyl)-3-phenyl-
	(Z,E)-3-Methyl-5-(2,6,6-trimethyl-		1-propanone 891.
	1-cyclohexen-1-yl)-2,4-pentadienal 757. (Z,Z) -3-Methyl-5- $(2,6,6)$ -trimethyl-	$C_{16}H_{16}O_2S$	O-(2-Phenylethyl) 4-methoxybenzenecarbothioate 887.
	1-cyclohexen-1-yl)-2,4-pentadienal 758.	$C_{16}H_{17}N_4O_2S^+$	Methylene Green cation 722.
$\mathbf{C}_{16}\mathbf{D}_{10}$	Pyrene- d_{10} 940.	$C_{16}H_{18}$	1-(3,3-Dimethyl-1-buten-2-yl)naphthalene
$C_{16}H_8N_2$	9,10-Dicyanoanthracene 381.		478.
$C_{16}H_8O_2S_2$ $C_{16}H_9Br$	Thioindigo 1062. 1-Bromopyrene 228.		cis-3,3-Dimethyl-1-(2-naphthyl)-1-butene
C ₁₆ H ₉ O ₃ S ⁻	Pyrene-1-sulfonate 946.		trans-3,3-Dimethyl-1-(2-naphthyl)-
010-29032	Pyrene-3-sulfonate 947.		1-butene 495.
$C_{16}H_{10}$	1,4-Diphenylbutadiyne 536.	$C_{16}H_{18}N_3^+$	Euchrysine, conjugate monoacid 580.
	Fluoranthene 584.	$C_{16}H_{18}N_3S^+$	Methylene Blue cation 719.
$C_{16}H_{10}N_2$	Pyrene 939. Benzophenazine 132.	$C_{16}H_{18}Sn$ $C_{16}H_{19}N_3S^{2+}$	9,9-Diethyl-9 <i>H</i> -9-stannafluorene 402 . Methylene Blue cation, conjugate
C ₁₆ 11 ₁₀ 1 V ₂	Dibenzo $[f,h]$ quinoxaline 351.	C ₁₆ 11 ₁₉ 1 \ 35	monoacid 720.
	trans-4,4'-Dicyanostilbene 386.	$C_{16}H_{20}N_2$	N,N,N',N'-Tetramethylbenzidine 1045.
$C_{16}H_{10}O$	4-Hydroxypyrene 629.	$C_{16}H_{21}BO_3$	1-Naphthyl diisopropyl borate 794.
$C_{16}H_{11}Cl$	1-(2-Chlorophenyl)naphthalene 282.		2-Naphthyl diisopropyl borate 795.
CHN	1-(4-Chlorophenyl)naphthalene 283.	$C_{16}H_{24}N_2O$	2,6-Bis[3-(dimethylamino)-
$C_{16}H_{11}N$	Benzo[a]carbazole 114. Benzo[b]carbazole 115.	$C_{17}H_{10}O$	2-propenylidene]cyclohexanone 199. Benzanthrone 107.
	Benzo[c] carbazole 116.	C1711100	1-Pyrenecarboxaldehyde 945.
$C_{16}H_{11}NO$	4'-Cyanochalcone 310.	$C_{17}H_{10}O_2$	6-Hydroxybenzanthrone 612.
$C_{16}H_{12}$	5,10-Dihydroindeno[2,1- <i>a</i>]indene 420 .	$C_{17}H_{11}N$	Benz[a]acridine 101.
	1-Phenylnaphthalene 893.	G 77 370	Benz[c]acridine 102.
$C_{16}H_{12}N_2O_5$	2-Phenylnaphthalene 894. 4',5'-Psoralen-thymine photo adduct 935.	$C_{17}H_{11}NO$	6-Aminobenzanthrone 38.
$C_{16}H_{12}C_{2}C_{3}$	1-Acetylanthracene 12.		Benz[b]acridin-12(5H)-one 103. 2-(1-Naphthyl)benzoxazole 792.
	9-Acetylanthracene 13.	$C_{17}H_{12}$	Benzo[a]fluorene 120.
$C_{16}H_{12}O_2$	3-Acetyl-9,10-epoxy-9,10-dihydro-	- 1/12	Benzo[b]fluorene 121.
$C_{16}H_{13}N$	phenanthrene 15. 1-Anilinonaphthalene 62.		Benzo[c]fluorene 122.
C ₁₆ H ₁₃ IN	N-Phenyl-2-naphthylamine 895.		8b,9a-Dihydro- $9H$ -cyclopropa[e]pyrene
$C_{16}H_{13}NO$	1-Benzylisoquinoline-N-oxide 160.		413. 8,11 <i>b</i> -Methanocyclodeca[<i>cde</i>]naphthalene
	trans-4-Cyano-4'-methoxystilbene 313.	*	660.
$C_{16}H_{14}$	1,2-Dihydro-3-phenylnaphthalene 429.	$C_{17}H_{12}O$	9-Anthryl ethenyl ketone 87.
	1,3-Dimethylanthracene 472.	.	2-Methylaceanthren-1-one 690.
	9,10-Dimethylanthracene 473 . 1,4-Diphenyl-1,3-butadiene 535 .	$C_{17}H_{13}N_2O_5S^-$	Brilliant Sulfaflavine anion 214.
	1,2-Diphenylcyclobutene 537.	$C_{17}H_{14}NO_3S^-$	N-Methyl-2-anilino-
	9-Ethylphenanthrene 576.	O II NOC-	6-naphthalenesulfonate ion 698.
$C_{16}H_{14}N_2OS_3$	(E)-5[(3,4-Dihydro[1,4]thiazino-	$C_{17}H_{14}N_3O_5S^-$	10-Methyl-5-deazaisoalloxazine- 3-propanesulfonate ion 714.
	[3,4-b]benzothiazol-1-yl)methylene]	$C_{17}H_{14}O$	9-Propionylanthracene 925.
C.H.NO	3-ethyl-2-thioxo-4-thiazolidinone 435.	$C_{17}H_{14}O_2$	9-Anthraceneacetic acid, methyl ester 67.
$C_{16}H_{14}N_2O_2$	1,4-Bis(methylamino)anthraquinone 207.	$C_{17}H_{15}N$	N-Methyl-1-anilinonaphthalene 696.
$C_{16}H_{14}OS$	2-Isopropylthioxanthen-9-one 639 .		N-Methyl-2-anilinonaphthalene 697.
$C_{16}H_{14}O_2$	4-Methoxychalcone 667.	$C_{17}H_{15}N_3O_5$	2-[1-(4-Methoxyphenyl)-hydrazinyl-
$C_{16}H_{14}S$	1-Phenylthio-3,4-dihydronaphthalene 900.		2-ylidene]-1-(4-nitrophenyl)-1,3-diketobutane
$C_{16}H_{15}NO_4$	trans-2,5-Dimethoxy-4'-nitrostilbene 453.	СИС	680.
	100.	$C_{17}H_{16}Ge$	Methyl-1-naphthylphenylgermane 740.

$C_{17}H_{16}N_6O_5$	3-[[4-[(2,4-Dinitrophenyl)azo]phenyl]-	$C_{18}H_{14}$	1-(1-Naphthyl)-1-phenylethylene 800.
	(2-hydroxyethyl)amino]-		trans-1-(1-Naphthyl)-2-phenylethylene 801.
	4-propanenitrile 521.		trans-1-(2-Naphthyl)-2-phenylethylene 802.
$C_{17}H_{16}O_3$	4-(2-Methylpropionyloxy)benzophenone		m-Terphenyl 1012.
	746.		o-Terphenyl 1013.
$C_{17}H_{17}NO$	4-(Dimethylamino)chalcone 455.		p-Terphenyl 1014.
$C_{17}H_{18}$	1-(1-Cyclohepten-1-yl)naphthalene 319.	$C_{18}H_{14}N_2$	Tricyclo[8.2.2.2 ^{4,7}]hexadeca-
7, 10	2-(1-Cyclohepten-1-yl)naphthalene 320.	10 14 2	4,6,10,12,13,15-hexaene-
$C_{17}H_{18}N_2$	trans-4-Cyano-4'-dimethylaminostilbene		5,15-dicarbonitrile 1079.
01/18- 12	311.	$C_{18}H_{14}N_2O_2$	N,N'-Dimethylindigo 487.
$C_{17}H_{19}ClN_2O$	Pyronine 955.	$C_{18}H_{15}CIN_4$	Phenosafranin 869.
$C_{17}H_{19}CIN_2S$	Chlorpromazine 292.	$C_{18}H_{15}N$	Triphenylamine 1092.
C171119C1142S	Thioflavine 1061.	$C_{18}H_{16}$	1,6-Diphenyl-1,3,5-hexatriene 541.
	Thiopyronine 1065.		
C II NOS		$C_{18}H_{16}N^+$	Triphenylamine, conjugate acid 1093.
$C_{17}H_{19}NOS$	O-(2-Phenylethyl) 4-(dimethylamino)-	$C_{18}H_{16}N_2$	<i>N,N'</i> -Diphenyl- <i>p</i> -phenylenediamine
C II NC+	benzenecarbothioate 886.		547.
$C_{17}H_{19}N_2S^+$	Thiopyronine cation 1066.		[1,1':4',1"-Terphenyl]-4,4"-diamine
$C_{17}H_{19}N_2Se^+$	Selenopyronine 995.		1011.
$C_{17}H_{19}N_3$	Acridine Orange, free base 26.	$C_{18}H_{16}O$	9-Butyrylanthracene 239.
$C_{17}H_{20}N_2O$	4,4'-Bis(dimethylamino)benzophenone	$C_{18}H_{16}O_2S$	1-[[(Phenylmethyl)sulfonyl]methyl]-
	190.		naphthalene 892.
$C_{17}H_{20}N_2S$	4,4'-Bis(dimethylamino)thiobenzophenone	$C_{18}H_{17}N_2^+$	N,N'-Diphenyl- p -phenylenediamine,
	200.		conjugate acid 548.
	Promazine 924.	$C_{18}H_{20}$	1-(1-Cycloocten-1-yl)naphthalene 325.
$C_{17}H_{20}N_3^+$	Acridine Orange, conjugate monoacid	$C_{18}H_{22}N_3^+$	6,6'-Biquinoline, conjugate monoacid
	25.	22	187.
$C_{17}H_{20}N_3S^+$	Neomethylene Blue cation 807.	$C_{18}H_{22}N_4O_4$	p-Glucose phenylosazone 603.
$C_{17}H_{21}N_3$	Auramine O 93.	$C_{18}H_{23}N_3^{2+}$	6,6'-Biquinoline, conjugate diacid 185.
$C_{17}H_{21}N_4O_6^+$	Riboflavine, conjugate monoacid 987.	$C_{18}H_{26}O$	(E,E,E)-6-Methyl-8-(2,6,6-trimethyl-
$C_{17}H_{24}N_2O$	all-trans-1,13-Bis(dimethylamino)-	01822200	1-cyclohexen-1-yl)-
01/11/2411/20	1,3,5,8,10,12-tridecahexaen-7-one 201 .		3,5,7-octatrien-2-one 751.
	all-trans-1,13-Bis(dimethylamino)-		(E,E,Z)-6-Methyl-8- $(2,6,6)$ -trimethyl-
CHNO	1,3,6,8,10,12-tridecahexaen-5-one 202.		1-cyclohexen-1-yl)-
$C_{17}H_{24}N_4O_5$	γ-[2-(Formylamino)phenyl]-γ-οxo-		3,5,7-octatrien-2-one 752 .
0 11 0	α-aminobutyryl-L-lysine 597.		(E,Z,E)-6-Methyl-8-(2,6,6-trimethyl-
$C_{17}H_{24}O$	(E,E,E)-5-Methyl-7-(2,6,6-trimethyl-		1-cyclohexen-1-yl)-
	1-cyclohexen-1-yl)-		3,5,7-octatrien-2-one 753.
	2,4,6-heptatrienal 750 .		(E,Z,Z)-6-Methyl-8-(2,6,6-trimethyl-
$\mathbf{C}_{18}\mathbf{D}_{12}$	Triphenylene- d_{12} 1096.		1-cyclohexen-1-yl)-
$\mathbf{C}_{18}\mathbf{D}_{14}$	p -Terphenyl- d_{14} 1015.		3,5,7-octatrien-2-one 754.
$\mathbf{C}_{18}\mathbf{H}_{11}\mathbf{Br}$	2-Bromotriphenylene 230.	$C_{19}H_{12}O_6$	Dicumarol 380.
$C_{18}H_{12}$	Benz[a]anthracene 106.	$C_{19}H_{13}NO$	2-(4-Biphenylyl)benzoxazole 178.
	Benzo[c]phenanthrene 131.		2-(1-Naphthyl)-5-phenyloxazole 805.
	Chrysene 295.	$C_{19}H_{14}$	1-(1H-Inden-3-yl)naphthalene 630.
	Benz[b]anthracene 1021.	$C_{19}H_{14}O$	4-Benzoylbiphenyl 879.
	Triphenylene 1095.	$C_{19}H_{15}^{+}$	Triphenylmethyl cation 1101.
$C_{18}H_{12}N_2$	2,2'-Biquinoline 184.	$C_{19}H_{15}N$	9-Phenylacridan 874.
$C_{18}H_{12}N_2O$	2-(1-Naphthyl)-5-phenyl-1,3,4-oxadiazole		N-Phenylacridan 875.
10-12-12	803.	$C_{19}H_{16}$	Triphenylmethane 1100.
	2-(2-Naphthyl)-5-phenyl-1,3,4-oxadiazole	$C_{19}H_{16}N_2$	5,10-Dihydro-5-methyl-10-phenyl-
	804.	- 1910 2	phenazine 422.
$C_{18}H_{12}O_{2}$	2,6-Diphenyl-1,4-benzoquinone 531.	$C_{19}H_{16}N_3^+$	9-Phenylproflavine, conjugate mono-
UIXXX1207	3-Methoxybenzanthrone 663.	Olderibt 43	acid 898.
$C_{18}H_{13}Bi$	9-Phenyl-9 <i>H</i> -9-bismafluorene 880 .	C ₁₉ H ₁₆ OS	O-(2-Phenylethyl)
	4-Nitro- <i>p</i> -terphenyl 825 .	C191116CG	1-naphthalenecarbothioate 888.
$C_{18}H_{13}NO_2$	2,2'-Biquinoline, conjugate monoacid		O-(2-Phenylethyl)
$C_{18}H_{13}N_2^+$	186.		2-naphthalenecarbothioate 889.
$C_{18}H_{13}P$	9-Phenyl-9 <i>H</i> -9-phosphafluorene 897 .	C ₁₉ H ₁₇ ClN ₂ O ₃	6-Chloro-1,3,3-trimethyl-6'-nitrospiro-
		C191117C1142U3	
$C_{18}H_{13}Sb$	9-Phenyl-9 <i>H</i> -9-stibafluorene 899.		(2,2'-indolin[2H-1]benzopyran) 291.

$C_{19}H_{17}NO_2$	2-Piperidinoanthraquinone 911.	$C_{20}H_{16}O$	1-Phenyldeoxybenzoin 882.
$C_{19}H_{18}N_2O_3$	1,3,3-Trimethyl-6'-nitrospiro-	$C_{20}H_{16}O_2Se_2$	5,5'-Diethylselenoindigo 401.
- 15 10 2 5	(2,2'-indolin[2H-1]benzopyran) 1088.	$C_{20}H_{16}O_3$	7-Oxa-2,3-dibenzoyl-
$C_{19}H_{19}IN_2S_2$	3,3'-Diethyl-2,2'-thiacyanine iodide 404.		bicyclo[2.2.1]hept-2-ene 834.
$C_{19}H_{20}O_2$	2,4-Dimethyl-1,5-diphenyl-	$C_{20}H_{16}O_4$	7,8,9,10-Tetrahydrotetrahydroxy-
	1,5-pentanedione 482.		benzo[a]pyrene 1031.
	2-(2-Naphthyloxy)-3,5,5-trimethyl-	$C_{20}H_{16}O_4S_2$	6,6'-Diethoxythioindigo 388.
a Do	2-cyclohexen-1-one 799 .	$C_{20}H_{18}$	2,2-Dimethyl-1-(1-naphthyl)-
$C_{19}H_{23}BO_3$	1-Fluorenyl diisopropyl borate 587.		1-phenylethylene 496.
CHNO	2-Fluorenyl diisopropyl borate 588. <i>all-trans</i> -1,15-Bis(dimethylamino)-	$C_{20}H_{18}N_2$	1,8-Diphenyl-1,3,5,7-octatetraene 544 . 12 <i>a</i> ,12 <i>b</i> -Dihydro-5,8-dimethyl-
$C_{19}H_{26}N_2O$	1,3,6,8,10,12,14-pentadecaheptaen-	C201118142	(indolino[2,3-c]carbazole) 415.
	5-one 196.		N,N'-Dimethyl-3-anilinocarbazole 471.
	2,5-Bis[5-(dimethylamino)-	$C_{20}H_{19}N_4^+$	Safranine cation 990.
	2,4-pentadienylidene]cyclopentanone	$C_{20}H_{20}N_2$	N,N'-Dimethyl- N,N' -diphenyl-
	198.		1,4-phenylenediamine 483.
$C_{19}H_{28}O_2$	Testosterone 1018.	$C_{20}H_{20}N_2O_3$	1,3,3,6-Tetramethyl-6'-nitrospiro-
$C_{20}H_4Cl_4I_4O_5$	Rose Bengal 988.		(2,2'-indolin[2H-1]benzopyran) 1048.
C ₂₀ H ₆ Br ₄ Na ₂ O ₅		$C_{20}H_{20}N_2O_4$	1-(2-Hydroxyethyl)-3,3-dimethyl-6'-
$C_{20}H_6Br_4O_5^{2-}$	Eosin dianion 562.		nitrospiro-(2,2'-indolin[2H-
$C_{20}H_6I_4O_5^{2-}$ $C_{20}H_8Br_2O_5^{2-}$	Erythrosin dianion 566. Dibromofluorescein dianion 360.		1]benzopyran) 618. 6-Methoxy-1,3,3-trimethyl-6'-nitrospiro-
$C_{20}H_8I_4O_5$	Erythrosin 565.		(2,2'-indolin[2H-1]benzopyran) 687.
$C_{20}H_{10}O_5^{2-}$	Fluorescein dianion 593.		7'-Methoxy-1,3,3-trimethyl-6'-nitrospiro-
$C_{20}H_{12}$	Benzo[a]pyrene 137.		(2,2'-indolin[2H-1]benzopyran) 688.
	Benzo[e]pyrene 138.	$C_{20}H_{20}N_4^{2+}$	Safranine cation, conjugate monoacid 992.
	Perylene 852.	$C_{20}H_{20}N_7O_7Br$	N-[2-[(2-Bromo-4,6-dinitrophenyl)azo]-
$C_{20}H_{12}N_2$	Dibenzophenazine 349.		5-[(2-cyanoethyl)(2-hydroxyethyl)-
$C_{20}H_{12}N_2O_2$	5,12-Dihydroquino[2,3-b]acridine-	a	amino]-4-methoxyphenyl]acetamide 219.
	7,14-dione 431.	$C_{20}H_{20}N_7O_7Cl$	N-[2-[(2-Chloro-4,6-dinitrophenyl)azo]-
$C_{20}H_{12}N_4Zn$	2,2'-(1,4-Phenylene)bisbenzoxazole 883. Zinc(II) porphyrin 1131.		5-[(2-cyanoethyl)(2-hydroxyethyl)- amino]-4-methoxyphenyl]acetamide
$C_{20}H_{12}O_5$	Fluorescein 591.		270.
$C_{20}H_{13}N$	7H-Dibenzo[c,g] carbazole 342.	$C_{20}H_{21}N_4^{3+}$	Safranine cation, conjugate diacid 991.
$C_{20}H_{13}O_5^+$	Fluorescein, conjugate monoacid 592.	$C_{20}H_{21}N_7O_7$	N-[5-[(2-Cyanoethyl)(2-hydroxyethyl)-
$C_{20}H_{14}$	1,1'-Binaphthyl 171.		amino]-2-[(2,4-dinitrophenyl)azo]-
	2,2'-Binaphthyl 172.		4-methoxyphenyl]acetamide 312.
	9-Phenylanthracene 878.	$C_{20}H_{23}BO_3$	1-Anthryl diisopropyl borate 84.
$C_{20}H_{14}N_2O$	2-(4-Biphenylyl)-5-phenyl-1,3,4-oxadiazole		2-Anthryl disopropyl borate 85.
$C_{20}H_{14}N_2O_2$	181. 1-Amino-4-anilinoanthraquinone 34.	$C_{20}H_{24}N_2O_4$	9-Anthryl diisopropyl borate 86 . <i>N</i> , <i>N'</i> -Dipentylpyromellitic diimide 525 .
$C_{20}H_{14}N_2O_4$	trans-N,N'-Diacetylindigo 334.	$C_{20}H_{24}O_4$	α-Crocetin 305.
$C_{20}H_{14}N_4$	21 <i>H</i> ,23 <i>H</i> -Porphine 920 .	$C_{20}H_{26}N_3O^+$	N,N',N', Tetraethyloxonine cation
$C_{20}H_{14}O$	2-Fluorenyl phenyl ketone 590.	- 20 20 3 -	1024.
$C_{20}H_{14}O_3$	7-Oxa-2,3-dibenzoylbicyclo[2.2.1]-	$C_{20}H_{27}N_3O^{2+}$	N,N,N',N'-Tetraethyloxonine cation,
	hepta-2,5-diene 833.		conjugate monoacid 1025.
$C_{20}H_{14}S$	1-(2-Anthryl)-2-(2-thienyl)ethylene 90.	$C_{20}H_{28}N_2O$	2,6-Bis[5-(dimethylamino)-2,4-
$C_{20}H_{15}ClN_2O_3$	Rhodamine 110 982.		pentadienylidene]cyclohexanone 197.
C ₂₀ H ₁₅ N	Di-2-naphthylamine 504.	$C_{20}H_{20}O$	Retinal 965.
$C_{20}H_{15}NOS$	2-Benzoyl- N -methyl- β -naphthiazoline 152.		11-cis-Retinal 966. 13-cis-Retinal 967.
$C_{20}H_{16}$	1-Acenaphthyl-1-phenylethylene 4.		7,9-cis-Retinal 968.
020-216	2-(1-Phenylethenyl)biphenyl 180.		7-cis-Retinal 969.
	3,4-Dihydro-1,1'-binaphthyl 409.		9-cis-Retinal 970.
	Triphenylethylene 1098.		all-trans-Retinal 972.
$C_{20}H_{16}Cl_{2}IrN_{4}^{+}$	Bis(2,2'-bipyridine)dichloroiridium(III)	$C_{20}H_{28}O_2$	all-trans-Retinoic acid 973.
	ion 188.	$C_{20}H_{30}O$	all-trans-Retinol 974.
$C_{20}H_{16}N_2$	N,N'-Dimethyl-5,11-dihydro-	C ₂₁ H ₁₃ BrO	9-Benzoyl-10-bromoanthracene 149.
	indolo[3,2-b]carbazole 479.	$C_{21}H_{13}ClO$	9-Benzoyl-10-chloroanthracene 150.

		•	•
CHHIN .	Dibenzļa, h jacridine 339.	$C_{22}H_{16}O_2$	Benzyl 9-anthroate 159.
$C_{21}\Pi_{13}NO_3$	9-Benzoyl-10-nitroanthracene 154.		(R)-4,5-Dihydrodinaphtho[2,1- e :1',2'- g]
$C_{21}H_{14}N_2O_2$	5,12-Dihydro-5-methyl-		[1,4]dioxocin 417.
	quino[2,3-b]acridine-7,14-dione 423.		3,3,5-Triphenyl-2(3 <i>H</i>)-furanone 1099 .
$C_{21}H_{14}O$	9-Benzoylanthracene 148.	$C_{22}H_{18}$	3,9-Dimethyl-trans-fluorenacene 484.
$C_{21}H_{14}O_2$	(S)-Dinaphtho[2,1- d :1',2'- f][1,3]dioxepin	G ** 0	1,2-Di-1-naphthylethane 507.
C II NO	503.	$C_{22}H_{18}O_2$	2,3-Dibenzoylbicyclo[2.2.2]octa-2,5-
$C_{21}H_{15}NO$	2-(4-Biphenylyl)-5-phenyloxazole 182.	O II N	diene 354.
$C_{21}H_{15}O_4P$	(R)-4-Methoxydinaphtho[2,1-d:1',2'-f]	$C_{22}H_{19}N$	9-[4-(Dimethylamino)phenyl]anthracene
	[1,3,2]dioxaphosphepin 4-oxide 668. 4-Methoxydinaphtho[2,1-d:1',2'-f]	C22H23IN2OS2	463. 3,3'-Diethyl-9-methoxy-
	dioxaphosphepin 4-oxide 669.	C ₂₂ 11 ₂₃ 11 4 ₂ CG ₂	2,2'-thiacarbocyanine iodide 397 .
$C_{21}H_{16}$	Di-1-naphthylmethane 508.	$C_{22}H_{28}O$	2,4,6-Triisopropylbenzophenone 1084.
-2110	5-Methyl-endo-cis-fluorenacene 725.	$C_{22}H_{30}N_2O$	2-[7-(Dimethylamino)-
$C_{21}H_{16}O$	1,3,3-Triphenylprop-2-en-1-one 1102 .	- 22302	2,4,6-heptatrienylidene]-
$C_{21}H_{16}O_2$	2,3-Dibenzoylbicyclo[2.2.1]hepta-2,5-diene		6-[5-(dimethylamino)-
	353.		2,4-pentadienylidene]cyclohexanone
$C_{21}H_{18}$	3,4-Dihydro-2'-methyl-1,1'-binaphthyl		458.
	421.	$C_{22}H_{30}O$	11-cis-β-apo-14'-Carotenal 250.
	8-(1-Naphthyl)-6,7-dihydro-		β-apo-14'-Carotenal 251.
	5H-benzocycloheptene 793.	$C_{22}H_{32}O_2$	Retinyl acetate 975.
$C_{21}H_{20}CIN_3$	Benzoflavine 119.	$C_{22}H_{36}$	1,2,3,4,5,6,7,8,9,10-Decahydro-
$C_{21}H_{20}N_7O_5Br$	N-[2-[(2-Bromo-6-cyano-4-nitrophenyl)		1,1,5,5,6,6,10,10-octamethyl-
	azo]-5-[(2-cyanoethyl)(2-hydroxyethyl)-	C II NO	cyclobuta[1,2:3,4]dicycloheptene 330.
$C_{21}H_{21}IN_2O_2$	amino]-4-methoxyphenyl]acetamide 218. 3,3'-Diethyl-2,2'-oxacarbocyanine	C ₂₃ H ₁₅ NO	4-Anilinobenzanthrone 877.
C2111211142O2	iodide 398.	$C_{23}H_{16}O$	8-Benzoylnaphtho[de-2.3.4]bicyclo[3.2.2]- nona-2,6,8-triene 153.
$C_{21}H_{21}IN_2S_2$	3,3'-Diethyl-2,2'-thiacarbocyanine		9-Cinnamoylanthracene 296.
0211121111202	iodide 403.	$C_{23}H_{18}N_2O_4$	8'-Methoxy-5-methyl-6'-nitro-
$C_{21}H_{28}N_2O$	2,5-Bis[7-(dimethylamino)-2,4,6-	- 2310124	spiro[(5,6-dihydrophenanthridine-6,2)-
	heptatrienylidene]cyclopentanone 193.		(2H)chromene] 670.
$C_{21}H_{30}O_{2}$	all-trans-Methyl retinoate 748.	$C_{23}H_{18}O_2$	(R)-5,6-Dihydro-4H-dinaphtho-
$C_{22}H_{10}O_2$	Dibenzo[def,mno]chrysene-6,12-dione 346.		[2,1-f:1',2'-h][1,5]dioxonin 418.
$C_{22}H_{12}$	Benzo[ghi]perylene 130.		3-Methyl-3,4,5-triphenyl-2(3H)-furanone
C II NO	Dibenzo[def,mno]chrysene 344.	G II NO	759.
$C_{22}H_{13}NO$	9-Benzoyl-10-cyanoanthracene 151 . Benzo[b]chrysene 117 .	$C_{23}H_{19}NO_4$	9-[2-(4-Methoxycarbonylbenzoxy)ethyl]-carbazole 665.
$C_{22}H_{14}$	Benzo[b]triphenylene 145.	$C_{23}H_{20}$	1,3-Di-1-naphthylpropane 512.
	Dibenz[a,h]anthracene 341.	C ₂₃ 11 ₂₀	1,3-Di-2-naphthylpropane 513.
	12a,12b-Dihydrobenzo[ghi] perylene 408.	$C_{23}H_{22}BrIN_2$	1,1'-Diethyl-6-bromo-2,2'-cyanine
	Pentacene 845.	-23222	iodide 391.
	Pentahelicene 847.	$C_{23}H_{22}I_2N_2$	1,1'-Diethyl-6-iodo-2,2'-cyanine iodide
	Pentaphene 848.		396.
	Picene 910.	$C_{23}H_{23}IN_2$	1,1'-Diethyl-2,2'-cyanine iodide 394.
$C_{22}H_{14}N_2O$	2,5-Di(1-naphthyl)-1,3,4-oxadiazole 509 .	$C_{23}H_{23}IN_2S_2$	3,3'-Diethyl-2,2'-thiadicarbocyanine
$C_{22}H_{16}$	1-(2-Anthryl)-2-phenylethylene 89.		iodide 405.
	1,1-Bis(1-naphthyl)ethylene 208.	$C_{23}H_{23}NO$	4-[2-[4-(Dimethylamino)phenyl]ethyl]-
	trans-1,2-Bis(1-naphthyl)ethylene 209.	CHNOL	benzophenone 464.
	trans-1,2-Bis(2-naphthyl)ethylene 210. 1,4-Diphenylnaphthalene 542.	$\mathbf{C}_{23}\mathbf{H}_{23}\mathbf{N}_2\mathbf{O}_2\mathbf{I}$	3,3'-Diethyl-2,2'-oxadicarbocyanine iodide 399.
	1,5-Diphenylnaphthalene 543 .	$C_{23}H_{36}N_6O_4^{2+}$	Lysyltryptophanyllysine 650.
	trans-1-(1-Naphthyl)-2-(2-naphthyl)-	$C_{23}C_{36}C_{4}$ $C_{24}D_{12}$	Coronene- d_{12} 302.
	ethylene 796.	$C_{24}H_{12}$	Coronene 301.
$C_{22}H_{16}N_2O_3$	5-Methyl-6'-nitrospiro[(5,6-dihydro-	$C_{24}H_{12}O_2S_2$	cis-Perinaphthothioindigo 849.
	phenanthridine-6,2)-(2H)chromene]		trans-Perinaphthothioindigo 850.
	741.	$C_{24}H_{14}$	Benzo[rst]pentaphene 129.
$C_{22}H_{16}O$	3-Acetyltriptycene 20.		Dibenzo[b,def]chrysene 343.
	cis-2,3-Di-(2-naphthyl)oxirane 510.		Dibenzo[def,p]chrysene 345.
	trans-2,3-Di-(2-naphthyl)oxirane 511.		Naphtho[1,2,3,4-def]chrysene 783.

C ₃ H ₃ (N), Tribenzo(a, c, b phenastine 1076. C ₃ H ₃ (N), Acenaphthylene, trans-photodimer 3, Acenaphthylene, trans-photodimer 4, Acenaphthylene, trans-photodimer 3, Dichlorobis(1, 0-phenanthroline)-iridium(III) ion 375. C ₃ H ₃ (N), Dichlorobis(1, (1)-phenanthroline)-iridium(III) ion 375. C ₃ H ₄ (N), Dichlorobis(1, 1-bi) phenylenezine 1094. C ₃ H ₄ (N)				
Acenaphthylene, trans-photodimer 3, C ₂₃ H ₃ IN _N 2, Dichlorobis(I, I)-phenanturoline-indium(III) ion 375. C ₂₃ H ₃₄ N ₁ O ₂ 9/-Bicarbasole 166. C ₂₃ H ₃₄ N ₁ O ₂ 2/2 - (1,4-Phenylene)bid[5-phenyloxazole] 885. C ₂₄ H ₃₄ N ₁ O ₂ 2/2 - (1,4-Phenylene)bid[5-phenyloxazole] C ₂₄ H ₃₄ N ₁ O ₂ - (2,4-Phenylene)bid[5-phenyloxazole] C ₂₄ H ₃₄ N ₁ O ₃ - (2,4-Phenylene)bid[5-phenyloxazole] C ₂₄ H ₃₄ N ₁ O ₃ - (2,4-Phenylene)bid[5-phenyloxazole] C ₂₄ H ₃₄ N ₁ O ₃ - (2,4-Phenylene)bid[5-phenyloxazole] C ₂₄ H ₃₄ N ₁ O ₃ - (2,4-Phenyloxene)bid[5-phenyloxazole] C ₂₄ H ₃₄ N ₁ O ₃ - (2,4-Phenyloxene)bid[5-phenyloxazole] C ₂₄ H ₃₄ N ₁ O ₃ - (2,4-Phenyloxene)bid[5-phenyloxene] O ₄ - (2,4-Phenyloxene)bid[5-phenyloxene] O ₅ - (2,4-Phenyloxene] O ₅ - (2,4-Pheny	$C_{24}H_{14}N_2$	Tribenzo $[a,c,h]$ phenazine 1076.	$C_{25}H_{25}ClN_2$	1,1'-Diethyl-2,2'-carbocyanine chloride
C ₁₁ H ₁₁ N, Dichirobis(1,10-phenathroline)-iridium(III) ion 375. C ₁₂ H ₁₃ IN,S 9,9-Bicarbazole 166. C ₁₃ H ₁₄ N, 9,9-Bicarbazole 166. C ₁₃ H ₁₄ N, 885. P-Quaterphenyl 960. 1,3,5-Triphenylbenzene 1094. C ₁₃ H ₁₄ G 9,9-Diphenyl-9ff-9-germafluorene 540. S ₁₄ H ₁₄ N; S ₁₀ D-Dipheryl-5ff-9-germafluorene 540. Dibenzo(g, g)-Iriphenylene 352. Hexaene 606. C ₁₃ H ₁₄ N; S ₁₀ D-Dipheryl-5ff-9-germafluorene 540. Dibenzo(g, g)-Iriphenylene 352. Hexaene 606. C ₁₃ H ₁₄ N; S ₁₀ D-Dipheryl-9ff-9-silafluorene 549. Dibenzo(g, g)-Iriphenylene 352. Hexaene 606. C ₁₄ H ₁₄ N; S ₁₀ D-Dipheryl-9ff-9-silafluorene 549. Dibenzo(g, g)-Iriphenylene 352. Hexaene 606. C ₁₄ H ₂₄ N ₁₄ N; S ₁₀ D-Dipheryl-9ff-9-silafluorene 549. Dibenzo(g, g)-Iriphenylene 352. Hexaene 606. C ₁₄ H ₂₄ N ₁₄ N; S ₁₀ D-Dipheryl-9ff-9-silafluorene 549. Dibenzo(g, g)-Iriphenylene 352. Hexaene 606. C ₁₄ H ₂₄ N ₁₄ N; S ₁₀ D-Dipheryl-9ff-9-silafluorene 549. Dibenzo(g, g)-Iriphenylene 352. Hexaene 606. C ₁₄ H ₂₄ N ₁₄ N ₁₄ N; S ₁₀ D-Dipheryl-9ff-9-silafluorene 549. Dibenzo(g, g)-Iriphenylene 352. Hexaene 606. C ₁₄ H ₂₄ N ₁₄ N ₁	$C_{24}H_{16}$			
C ₂₁ H ₁₈ N ₁ O ₂ 9/9-Bicarbacola 166. C ₂₁ H ₁₈ N ₁ O ₂ 9/9-Bicarbacola 166. C ₂₁ H ₁₈ N ₁ O ₂ 2/2·(1.4-Phenylene)bis[5-phenyloxazole] C ₂₂ H ₁₈ ClN ₃ C ₂₂ H ₁₈ ClN ₃ C ₂₃ H ₁₈ ClN ₃ C ₂₄ H ₂₄ ClN ₃ C ₂₄ H ₃₄ C			$C_{25}H_{25}IN_2$	
C ₂ H ₁ (N, N ₂) 9,9 Biscarbazole 166. c ₂ H ₁ (N, N ₂) c ₂ H ₂ (1,4 +Phenylene)bis[5-phenyloxazole] c ₂ H ₂ (N) C ₂ H ₃ (N) Crystal Violet 307. Biffuorenylidene 167. Dibenzo[g g plerysene 347. Dibenzo[g plerysene 347. Dibenzo[g plerysene 347. Dibenzo[g plerysene 347. Dibenzo[$C_{24}H_{16}Cl_2IrN_4^+$			
C ₃ H ₁₆ (N ₂) 2,2°(1,4*Phenylene)bis[5*phenyloxazole] C ₃ H ₁₆ CN ₁ C ₂ H ₁₆ CN ₁ C ₂ H ₁₆ CN ₁ C ₂ H ₁₆ CN ₁ Dibenzole g p] chrysene 347. Dibenzole 606. C ₂ H ₁₆ </td <td></td> <td></td> <td>$\mathbf{C}_{25}\mathbf{H}_{25}\mathbf{I}\mathbf{N}_{2}\mathbf{S}_{2}$</td> <td>- · · · · · · · · · · · · · · · · · · ·</td>			$\mathbf{C}_{25}\mathbf{H}_{25}\mathbf{I}\mathbf{N}_{2}\mathbf{S}_{2}$	- · · · · · · · · · · · · · · · · · · ·
Section Sect				
C ₂₄ H ₁₁ (Gc p-Quaterphenyl Penzen 1094. Dibenzo[g g] krlyrsen 347. C ₃₄ H ₁₁ Ge 9,9-Diphenyl-9H-9-germafluorene 540. Hexahelicene 698. C ₃₄ H ₁₁ Si 9,9-Diphenyl-9H-9-germafluorene 549. Hexahelicene 698. C ₃₄ H ₁₂ Si 9,9-Diphenyl-9H-9-silafluorene 549. Hexahelicene 698. C ₃₄ H ₂₈ Si 9,9-Diphenyl-phalhalenophane 777. Syn 2[-2](1,4)-Naphthalenophane 777. Syn 2[-2](1,4)-Naphthalenophane 778. C ₃₄ H ₁₁ Col. Spiro[9], 10-dihydro-9-coxoanthracene-to29. Spiro[1], 10-dihydro-9-coxoanthracene-to29. Spiro[9], 10-dihydro-9-coxoanthracene-to29. Spiro[9], 10-dihydro-9-coxoanthracene-to29. C ₂₄ H ₃₀ O ₃ S C ₂₄ H	$C_{24}H_{16}N_2O_2$			
1,3,5-Triphenylbenzene 1094. Dibenzo[c,g]triphenylene 352.			$C_{26}H_{16}$	
C ₂₄ H ₁₃ Co C ₃₄ H ₁₃ Si Sy-Diphenyl-9H-9-silafluorene 549. Anti-[22](1,4)-Naphthalenophane 777. Sym-[22](1,4)-Naphthalenophane 777. Sym-[22](1,4)-Naphthalenophane 777. Sym-[22](1,4)-Naphthalenophane 777. Sym-[22](1,4)-Naphthalenophane 777. Sym-[22](1,4)-Naphthalenophane 777. Sym-[22](1,4)-Naphthalenophane 778. [1,1'4',1''*1''-Quaterphenyl]- A'''-diamine 959. C ₃₄ H ₂₅ O Syb-Diphenyl-2,3-di-(2-naphthyl)- Oxirane 480. Izans-2,3-Dimethyl-2,3-di-(2-naphthyl)- Oxirane 481. C ₃₄ H ₂₅ O Syb-Diphenyl-1,3-di-(2-naphthyl)- Oxirane 481. C ₃₄ H ₂₅ O Syb-Giver-1-buryl-2-2-dilionidg 337. Syb-Diphenyl-1,3-di-(2-naphthyl)- Oxirane 481. Oxidation 491. Oxidation 492. Oxidation 491. Ox	$C_{24}H_{18}$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{c} C_{24}H_{13}S\\ C_{24}H_{3}S\\ C_{34}H_{3}S\\ C_{34}H_{34}S\\ C_{34}H_{35}S\\ C_{34}H_{35}C\\ C_{34}H_{35$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{24}H_{18}N_2$	_ · · · · · · · · · · · · · · · · · · ·	a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G 11 G'		$C_{26}H_{18}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0 11 0	
C ₂₄ H ₂₀ N ₂ [1,1'4',1''4'',-1''-Quaterphenyl]- 4,4'''-diamine 959.	$C_{24}H_{20}$		$C_{26}H_{18}O$	
C₂H₂₀O A,**"-diamine 959. 1,3-propanediy]loxy(1,4-dioxo-1,6-hexanedyl)] 915. C₂H₂₀O₂ (R)-4,5,6,7-Tetrahydro-dinaphthol2,1,b:1/2,*d]I.6]dioxecin 1029. C₂₀H₂₀O₂S. 2,5-Dinecthyl2-2,benzoxazolyl)-thiophene 189. C₂H₂₀O₂ (R)-4,5,6,7-Tetrahydro-dinaphthol2,1,b:1/2,*d]I.6]dioxecin 1029. C₂₀H₂₀O₂S. 5,5'-Dineopentylthioindigo 337. C₂₂H₃₀O₄)₁ Poly[oxy[2-(1-pyrenylmethyl)-1,2-propanediy]]oxy(1,4-dioxo-1,4-butanediyl)] 913. C₂₀H₃₀N. 7,5'-Dineopentylthioindigo 514. C₂₄H₃₁NO₄ 9[3]-(4-Methoxycarbonylbenzoxy)propyl]-carbazole 666. C₂₀H₃₃N,O₃P. 2,5-Di(4-biphenylyl)oxazole 357. C₂₄H₂₂N₂₀ N,4-Di-1-naphthylbutane 505. C₂₀H₃₃N,O₃P. Flavine monoucleotide, conjugate monoacid 582. C₂₂H₃₂N₂₀ N,N-Diethylrhodamine 400. C₂₀H₃₃N,O₃P. Flavine monoucleotide, conjugate monoacid 582. C₂₂H₃₂O₂₀ S₁-Dibutylthioindigo 364. C₂₀H₃₃N,a-Il-reb-nitro-spiro(indoline-2,2-[2H] penzopyran) 659. C₂₀H₃₀N C₂₀H₃₀N C₂₂H₃₃N S₁-S-Dibertylhidene-n-butylamine 979. C₃₀H₃₀N C₃H₃₀N C₃H₃₀N C₂₂H₃₃N N-11-cis-Retinylidene-n-butylamine 979. C₃H₃N C₃H₃A₂N₂ N-11-cis-Retinylidene-n-butylamine 979. C₂₂H₃₃N N-11-cis-Retinylidene-n-butylamine 979.	CHN		(C II O)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{24}H_{20}N_2$		$(C_{26}\Pi_{24}U_4)_{32}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C H O	·		
$ \begin{array}{c} \text{tliophene 189.} \\ \text{oxirane 481.} \\ \text{C}_{24}\text{H}_{29}\text{O}_{2} \\ \text{(R/4,$5,6,7$-Tetrahydro-dinaphtho[$2,1-b:1',2'-d]$[1,6]dioxecin} \\ 1029. \\ \text{($C_{24}\text{H}_{20}\text{O}_{1})_{3}$} \\ \text{($C_{24}\text{H}_{20}\text{O}_{1})_{3}$} \\ \text{Poly[oxy[$2-(1-pyrenylmethyl)-1, a-propanediy]loxy(1,4-dioxo-1, 4-butanediyl)] 913.} \\ \text{C}_{24}\text{H}_{21}\text{NO}_{4} \\ \text{O}_{24}\text{H}_{24}\text{NO}_{4} \\ \text{O}_{24}\text{H}_{24}\text$	$C_{24}\Pi_{20}O$		CHNOS	
$\begin{array}{c} \text{Oxirane 481.} \\ \text{C}_{24}\text{H}_{20}\text{O}_{2} \\ (R) + 3, 5, 6, 7. \text{Tetralydro-} \\ \text{dinaphthol}_{2}, 1-b:1',2'-d][1,6] \text{dioxocin} \\ 1029. \\ \text{C}_{24}\text{H}_{20}\text{O}_{3})_{13} \\ \text{Poly[oxy[2-(1-pyrenylmethyl)-} \\ 1,3-propanediyl[oxy(1,4-dioxo-} \\ 1,4-butanediyl]) \textbf{913.} \\ \text{C}_{24}\text{H}_{21}\text{NO}_{4} \\ \text{Poly[oxy[2-(1-pyrenylmethyl)-} \\ 1,3-propanediyl[oxy(1,4-dioxo-} \\ 1,4-butanediyl]) \textbf{913.} \\ \text{C}_{24}\text{H}_{21}\text{NO}_{4} \\ \text{C}_{24}\text{H}_{22}\text{NO}_{4} \\ \text{C}_{14}\text{-Di-1-naphthylbutane 505.} \\ \text{C}_{24}\text{H}_{22}\text{NO}_{4} \\ Poly[oxy[arbinolimolimolimolimolimolimolimolimolimolim$			$C_{26}\Pi_{26}\Pi_{2}C_{2}S$	
$\begin{array}{c} C_{24}H_{29}O_2\\ \text{diaphtho}(2,1-b:1',2'-d][1.6] \text{dioxecin}\\ 1029.\\ \text{C}_{24}H_{20}O_4)_{13}\\ \text{C}_{24}H_{20}O_4)_{13}\\ \text{C}_{24}H_{21}NO_4\\ \text{C}_{24}H_{21}NO_4\\ \text{C}_{24}H_{22}O_4\\ \text{C}_{24}H_{22}N_2O_2\\ \text{C}_{24}H_{22}N_2O_3\\ \text{C}_{24}H_{22}N_2O_5\\ \text{C}_{24}H_{23}ClN_2O_5\\ \text{C}_{24}H_{24}NO_5\\ \text{C}_{24}H_{23}ClN_2O_5\\ \text{C}_{24}H_{24}NO_5\\ \text{C}_{24}H_{24}NO_5\\ \text{C}_{24}H_{24}NO_5\\ \text{C}_{24}H_{24}NO_5\\ \text{C}_{24}H_{25}ClN_2O_5\\ \text{C}_{24}H_{24}NO_5\\ \text{C}_{24}H_{25}ClN_2O_5\\ \text{C}_{24}H_{24}NO_5\\ \text{C}_{24}H_{25}ClN_2O_5\\ \text{C}_{24}H_{24}NO_5\\ \text{C}_{24}H_{25}ClN_2O_5\\ \text{C}_{25}H_{25}ClN_2O_5\\ \text{C}_{25}H_{25}ClN_$			CHO.S.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C. H. O.		C ₂₆ 11 ₂₈ C ₂ G ₂	
1029	$C_{24} \Gamma \Gamma_{20} C_{2}$		C.H.N.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			C261132112	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(C ₂ ,H ₂ ,O ₄) ₁₂			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(024112004)13	· · · · · · · · · · · · · · · · · · ·	C27H19NO	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24H21NO4		-2121- 12-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24-21-1-4		C27H33N0O5P2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24H22			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			- 2734- 19 - 3- 2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21 22 2 2		C27H30IN4S2	
C24H33CIN2O3diacetate 949.C28H14Benzo[a] coronene 118.C24H34N2O3 N,N' -Diethylrhodamine 400.C28H16N2Tetrabenzophenazine 1019.C24H24N2O3 1 -(β -Methacryloxyethyl)-C28H189,9'-Bianthryl 165.Nathracene photodimer 71.Anthracene photodimer 71.C24H24O2S2 5 ,5'-Dibutylthioindigo 364.Anthracene photodimer 71. 5 ,5'-Di-tert-butylthioindigo 365. 436 .C24H32O1 (E,E,E,E,E,E) -7,11-Dimethyl-7-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8,10,12-tridecahexaenal 501.C28H22 $1,1,4,4$ -Tetraphenyl-2(3H)-furanone 1055.C24H37N N -11-cis-Retinylidene-n-butylamine 976. $C_{28}H_{22}N_2$ $trans$ -1,2-Di(N -carbazolyl)cyclobutane 366. N -13-cis-Retinylidene-n-butylamine 979. $C_{28}H_{24}Cl_2IrN_1^{2}$ $Dichlorobis(4,7$ -dimethyl-1,10-phenanthroline)iridium(III) ion 373. N -2ll-trans-Retinylidene-n-butylamine, conjugate acid 980. $C_{28}H_{24}N_2$ P -entacyclo[18.2.2.29\frac{12}{2}.0\frac{0}{4}\frac{15}{2}.0\frac{0}{4}\frac{15}{2}.0\frac{0}{2}.2\frac{1}{2}\frac{0}{4}\frac{15}{2}.0\frac{0}{2}.2\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\frac{1}{2}\frac{1}{2}\frac{0}{2}\fr	$C_{24}H_{22}O_4$	2-(1-Pyrenylmethyl)-1,3-propandiol	- 213742	
$\begin{array}{c} C_{24}H_{23}\text{CIN}_2O_3 \\ C_{24}H_{24}\text{N}_2O_5 \\ C_{24}H_{24}\text{N}_2O_5 \\ C_{24}H_{24}\text{O}_2S_2 \\ C_{24}H_{24}\text{O}_2S_2 \\ C_{24}H_{24}\text{O}_2S_2 \\ C_{24}H_{24}\text{O}_2S_2 \\ C_{24}H_{24}\text{O}_2S_2 \\ C_{24}H_{25}\text{CIN}_3 \\ C_{24}H_{32}\text{O} \\ C_{24}H_{32}\text{O} \\ C_{24}H_{32}\text{O} \\ C_{24}H_{37}\text{N} \\ C_{24}H_{37}\text{N} \\ C_{24}H_{37}\text{N} \\ C_{24}H_{38}\text{N}^+ \\ C_{24}H_{38}\text{N}^+ \\ C_{24}H_{38}\text{N}^+ \\ C_{24}H_{38}\text{N}^+ \\ C_{24}H_{38}\text{N}^+ \\ C_{25}H_{16}\text{O} \\ C_{25}H_{16}\text{O} \\ C_{25}H_{16}\text{O} \\ C_{25}H_{17}\text{NO} \\ C_{25}H_{18}\text{O} \\ C_{25}H_{18}\text{O} \\ C_{25}H_{18}\text{O} \\ C_{25}H_{18}\text{O} \\ C_{25}H_{18}\text{O} \\ C_{25}H_{18}\text{O} \\ C_{28}H_{20}\text{N}_2 \\ C_{28}H_{20}\text{O}_2 \\ C_{28}H_{22}\text{N}_2 \\ C_{28}H_{22}\text{N}_2 \\ C_{28}H_{22}\text{N}_2 \\ C_{28}H_{22}\text{N}_2 \\ C_{28}H_{24}\text{O}_2 \\ C_{28$	•		C ₂₈ H ₁₄	
C ₂₄ H ₂₄ N ₂ O ₅ 1-(<i>G</i> -Methacryloxyethyl)- 3,3-dimethyl-6'-nitro- spiro(indoline-2,2'[2 <i>H</i>]benzopyran) 659. C ₂₄ H ₂₄ O ₂ S ₂ 5,5'-Dibutylthioindigo 364. 5,5'-Di-tert-butylthioindigo 365. C ₂₄ H ₃₂ O (E,E,E,E,E)-7,11-Dimethyl- 7-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 2,4,6,8,10,12-tridecahexaenal 501. C ₂₄ H ₃₇ N (N-13-cis-Retinylidene-n-butylamine 976. N-13-cis-Retinylidene-n-butylamine 976. N-13-cis-Retinylidene-n-butylamine 979. C ₂₄ H ₃₈ N ⁺ (N-1-cis-Retinylidene-n-butylamine, conjugate acid 980. N-all-trans-Retinylidene-n-butylamine, conjugate acid 981. C ₂₅ H ₁₈ O (9,9'-Bianthryl 165. C ₂₈ H ₂₀ O ₂ 10H,10'H-10,10'-Dihydroxybianthrylidene 436. Tetraphenyl-p-dioxin 1054. 3,3,4,5-Tetraphenyl-2(3 <i>H</i>)-furanone 1055. C ₂₈ H ₂₂ N ₂ 1,1,4,4-Tetraphenyl-1,3-butadiene 1052. trans-1,2-Di(N-carbazolyl)cyclobutane 366. C ₂₈ H ₂₄ C ₂ IrN ₄ ⁺ Dichlorobis(4,7-dimethyl- 1,10-phenanthroline)iridium(III) ion 373. Dichlorobis(5,6-dimethyl- 1,10-phenanthroline)iridium(III) ion 374. Dichlorobis(5,6-dimethyl- 1,10-phenanthroline)iridium(III) ion 374. C ₂₈ H ₂₄ N ₂ Pentacyclo[18.2.2.2.9.12.04.15.06.17]- hexacosa-4,6(17),9,11,15,20,22,23,25- nonane-10,25-dicarbonitrile 846. C ₂₈ H ₂₄ O ₄ t-3,t-4-Di-(1-naphthyl)-r-1,c-2-dimethoxy- carbonylcyclobutane 506. C ₂₈ H ₁₈ O 4,4'-Diphenylbenzoxazole 177. C ₂₈ H ₂₈ N ₄ Zn Zinc(II) tetraethylporphyrin 1134.	$C_{24}H_{23}ClN_2O_3$	N,N'-Diethylrhodamine 400.		
$\begin{array}{c} 3,3\text{-dimethyl-}6'\text{-nitro-spiro(indoline-}2,2'-[2H]\text{benzopyran}) \textbf{659.} \\ C_{24}H_{24}O_{2}S_{2} \\ 5,5'-\text{Dibutylthioindigo} \textbf{364.} \\ 5,5'-Di-tert-butylthioindigo} \textbf{365.} \\ C_{24}H_{28}\text{CIN}_{3} \\ C_{24}H_{32}\text{O} \\ (E,E,E,E,E,E)-7,11\text{-Dimethyl-} \\ 7-(2,6,6\text{-trimethyl-1-cyclohexen-1-yl)-} \\ 2,4,6,8,10,12\text{-tride-cahexaenal} \textbf{501.} \\ C_{24}H_{37}\text{N} \\ N-11\text{-}cis\text{-Retinylidene-}n\text{-butylamine} \\ \textbf{976.} \\ N-13\text{-}cis\text{-Retinylidene-}n\text{-butylamine} \\ \textbf{977.} \\ N-9\text{-}cis\text{-Retinylidene-}n\text{-butylamine} \\ \textbf{979.} \\ C_{24}H_{38}\text{N}^{+} \\ N-11\text{-}cis\text{-Retinylidene-}n\text{-butylamine} \\ \textbf{979.} \\ C_{25}H_{16}\text{O} \\ O_{25}H_{16}\text{O} \\ O_{25}H_{18}\text{O} \\ O_{25}H_{18}\text{O}$	$C_{24}H_{24}N_2O_5$	1-(β-Methacryloxyethyl)-		
C ₂₄ H ₂₄ O ₂ S ₂ 5,5'-Dibutylthioindigo 364. 5,5'-Di-tert-butylthioindigo 365, Methyl Violet 689. C ₂₄ H ₃₂ O (E,E,E,E,E,E)-7,11-Dimethyl-7-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8,10,12-tridecahexaenal 501. C ₂₄ H ₃₇ N (N -11-cis-Retinylidene-n-butylamine 976. N -20is-Retinylidene-n-butylamine 977. N -9-cis-Retinylidene-n-butylamine 978. N -all-trans-Retinylidene-n-butylamine 979. N -11-cis-Retinylidene-n-butylamine 979. N -11-cis-Retinylidene-n-butylamine, conjugate acid 980. N -all-trans-Retinylidene-n-butylamine, conjugate acid 981. N -11-cis-Retinylidene-n-butylamine, conjugate acid 981. N -21-cis-Retinylidene-n-butylamine, conjugate acid 981. N -21-cis-Retinyl		3,3-dimethyl-6'-nitro-		•
C ₂₄ H ₂₈ ClN ₃ C ₂₄ H ₃₂ O (E,E,E,E,E)-7,11-Dimethyl-7-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8,10,12-tridecahexaenal 501. C ₂₄ H ₃₇ N (N-11-cis-Retinylidene-n-butylamine 976. N-13-cis-Retinylidene-n-butylamine 978. N-2-cis-Retinylidene-n-butylamine 979. C ₂₄ H ₃₈ N ⁺ N-11-cis-Retinylidene-n-butylamine, conjugate acid 980. N-all-trans-Retinylidene-n-butylamine, conjugate acid 981. C ₂₅ H ₁₆ O C ₂₅ H ₁₆ O C ₂₅ H ₁₆ O C ₂₅ H ₁₈ O C ₂₄ H ₃₆ O C ₂₄ H ₃₆ O C ₂₄ H ₃₆ O C ₂₄ H ₃₆ O C ₂₄ H ₃₆ O C ₂₄ H ₃₆ O C ₂₅ H ₁₆ O C ₂₆ H ₁₈ O C ₂₆ Dintylnthiolindjo 365. Tetraphenyl-p-dioxin 1054. 3,3,4,5-Tetraphenyl-1,3-butadiene 1052. C ₂₈ H ₂₂ C ₂₈ H ₂₂ C ₂₈ H ₂₂ Dichlorobis(4,7-dimethyl-1,10-phenanthroline)iridium(III) ion 373. Dichlorobis(5,6-dimethyl-1,10-phenanthroline)iridium(III) ion 374. C ₂₈ H ₂₄ N ₂ Pentacyclo[18.2.2.2 ^{9,12} ,0 ^{4,15} ,0 ^{6,17}]-hexacosa-4,6(17),9,11,15,20,22,23,25-nonane-10,25-dicarbonitrile 846. C ₂₈ H ₂₄ O ₄ t-3,t-4-Di-(1-naphthyl)-r-1,c-2-dimethoxy-carbonylcyclobutane 506. C ₂₈ H ₁₇ NO C ₂₈ H ₁₈ O C ₂₈ H ₃₀ N ₄ Tetraethylporphine 1026.				
$\begin{array}{c} \textbf{C}_{24}\textbf{H}_{28}\textbf{ClN}_3 & \textbf{Methyl Violet 689.} \\ \textbf{C}_{24}\textbf{H}_{32}\textbf{O} & (\textit{E},\textit{E},\textit{E},\textit{E},\textit{E},\textit{E})-7,11-\textbf{Dimethyl-} \\ -(2,6,6-\textbf{trimethyl-1-cyclohexen-1-yl)-} \\ 2,4,6,8,10,12-\textbf{tridecahexaenal 501.} \\ \textbf{N}-11-\textit{cis}-\textbf{Retinylidene-}\textit{n}-\textbf{butylamine} \\ \textbf{976.} & N-13-\textit{cis}-\textbf{Retinylidene-}\textit{n}-\textbf{butylamine} \\ \textbf{976.} & N-1-\textbf{cis}-\textbf{Retinylidene-}\textit{n}-\textbf{butylamine} \\ \textbf{979.} & N-1-\textbf{cis}-\textbf{Retinylidene-}\textit{n}-\textbf{butylamine} \\ \textbf{970.} & N-1-\textbf{cis}-\textbf{cis}-\textbf{cis}-\textbf{cis}-\textbf{cis} \\ \textbf{980.} & N-1-\textbf{cis}-\textbf{cis}-\textbf{cis}-cis$	$C_{24}H_{24}O_2S_2$	5,5'-Dibutylthioindigo 364.	$C_{28}\Pi_{20}G_2$	· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c} \textbf{C}_{24}\textbf{H}_{12}\textbf{O} & (E,E,E,E,E)-7,11-\text{Dimethyl-} \\ 7-(2,6,6-\text{trimethyl-1-cyclohexen-1-yl)-} \\ 2,4,6,8,10,12-\text{tridecahexaenal 501.} \\ \textbf{C}_{24}\textbf{H}_{37}\textbf{N} & N-11-cis-\text{Retinylidene-}n-\text{butylamine} \\ \textbf{976.} & N-13-cis-\text{Retinylidene-}n-\text{butylamine} \\ \textbf{977.} & N-9-cis-\text{Retinylidene-}n-\text{butylamine} \\ \textbf{979.} & N-all-trans-\text{Retinylidene-}n-\text{butylamine} \\ \textbf{979.} & N-11-cis-\text{Retinylidene-}n-\text{butylamine} \\ \textbf{979.} & N-11-cis-\text{Retinylidene-}n-\text{butylamine}, \\ \text{conjugate acid } \textbf{980.} & \text{pentacyclo}[18.2.2.2^{9,12}.0^{4,15}.0^{6,17}]-\text{hexacosa-}4,6(17),9,11,15,20,22,23,25-\text{nonane-}10,25-dicarbonitrile} \\ \textbf{9}-\text{Naphthoylanthracene } \textbf{790.} & \textbf{C}_{28}\textbf{H}_{12}\textbf{O} & t-3,t-4-\text{Di-}(1-\text{naphthyl})-r-1,c-2-\text{dimethoxy-carbonylcyclobutane} \\ \textbf{506.} & \textbf{C}_{28}\textbf{H}_{24}\textbf{N}_{2} & \text{pentacyclo}[18.2.2.2^{9,12}.0^{4,15}.0^{6,17}]-\text{hexacosa-}4,6(17),9,11,15,20,22,23,25-\text{nonane-}10,25-\text{dicarbonitrile}} \\ \textbf{1},10-\text{phenanthroline})\text{iridium}(\textbf{III}) \text{ ion} \\ \textbf{374.} & \textbf{N}-11-cis-\text{Retinylidene-}n-\text{butylamine}, \\ \textbf{1},10-\text{phenanthroline})\text{iridium}(\textbf{III}) \text{ ion} \\ \textbf{374.} & \textbf{1},10-\text{phenanthroline})\text{iridium}(\textbf{III}) \text{ ion} \\ \textbf{374.} & \textbf{1},10-\text{phenanthroline})\text{iridium}(\textbf{III}) \text{ ion} \\ \textbf{374.} & \textbf{1},10-\text{phenanthroline})\text{iridium}(\textbf{1II}) \text{ ion} \\ \textbf{374.} & \textbf{1},10-\text{phenanthroline})\text{iridium}(\textbf{1II}) \text{ ion} \\ \textbf{375.} & 3$				
$\begin{array}{c} (E_1E_2E_3E_3E_3E_3E_3E_3F_3F_3E_3E_3F_3F_3E_3E_3E_3F_3F_3E_3E_3E_3E_3E_3E_3E_3E_3E_3E_3E_3E_3E_$				
$\begin{array}{c} C_{24}H_{37}N\\ C_{24}H_{37}N\\ \\ C_{24}H_{37}N\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$C_{24}H_{32}O$		СН	• • • •
$\begin{array}{c} N-11\text{-}cis\text{-}Retinylidene-}n\text{-}butylamine \\ \textbf{976.} \\ N-13\text{-}cis\text{-}Retinylidene-}n\text{-}butylamine \\ \textbf{977.} \\ N-9\text{-}cis\text{-}Retinylidene-}n\text{-}butylamine \\ \textbf{978.} \\ N-all\text{-}trans\text{-}Retinylidene-}n\text{-}butylamine \\ \textbf{979.} \\ C_{24}H_{38}N^{+} \\ C_{24}H_{38}N^{+} \\ C_{25}H_{16}O \\ C_{25}H_{$	•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C ₂₈ I1 ₂₂ IN ₂	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{24}H_{37}N$	•	C H Cl I-N+	
$N-9-cis-\text{Retinylidene-}n-\text{butylamine }978. \\ N-all-trans-\text{Retinylidene-}n-\text{butylamine }979. \\ C_{24}H_{38}N^+ & N-11-cis-\text{Retinylidene-}n-\text{butylamine,} \\ \text{conjugate acid }980. \\ N-all-trans-\text{Retinylidene-}n-\text{butylamine,} \\ \text{conjugate acid }981. & C_{28}H_{24}O_4 & t-3,t-4-\text{Di-}(1-\text{naphthyl})-r-1,c-2-\text{dimethyl-}} \\ C_{25}H_{16}O & 9-\text{Naphthoylanthracene }790. & \text{carbonylcyclobutane }506. \\ C_{25}H_{18}O & 4,4'-\text{Diphenylbenzophenone }530. & C_{28}H_{30}N_4 & \text{Tetraethylporphine }1026. \\ \\ Dichlorobis(5,6-dimethyl-1,10-phenalthroline)iridium(III) ion 374. \\ C_{28}H_{24}N_2 & \text{Pentacyclo}[18.2.2.2^{9,12}.0^{4,15}.0^{6,17}]- \\ \text{hexacosa-}4,6(17),9,11,15,20,22,23,25- \\ \text{nonane-}10,25-\text{dicarbonitrile }846. \\ t-3,t-4-\text{Di-}(1-\text{naphthyl})-r-1,c-2-\text{dimethoxy-}} \\ \text{carbonylcyclobutane }506. & \text{Cas}H_{18}O & \text{Cas}H_{18}O & \text{Cas}H_{28}N_4Zn & \text{Zinc}(II) \text{ tetraethylporphyrin }1134. \\ C_{28}H_{18}O & \text{Cas}H_{18}O & \text{Cas}H_{28}N_4Zn & \text{Tetraethylporphine }1026. \\ \\ \text{Tetraethylporphine }1026. & \text{Tetraethylporphine }102$			C ₂₈ F1 ₂₄ C1 ₂ H1N ₄	
$N-all-trans-\text{Retinylidene-}n-\text{butylamine} \\ \textbf{979}. \\ \textbf{C}_{24}\textbf{H}_{38}\textbf{N}^{+} & N-11-cis-\text{Retinylidene-}n-\text{butylamine}, \\ \text{conjugate acid } \textbf{980}. \\ N-all-trans-\text{Retinylidene-}n-\text{butylamine}, \\ \text{conjugate acid } \textbf{981}. \\ \textbf{C}_{25}\textbf{H}_{16}\textbf{O} & 9-\text{Naphthoylanthracene } \textbf{790}. \\ \textbf{C}_{25}\textbf{H}_{18}\textbf{O} & 4,4'-\text{Diphenylbenzophenone } \textbf{530}. \\ \textbf{C}_{28}\textbf{H}_{30}\textbf{N}_{4} & \text{Tetraethylporphine } \textbf{1,10-phenanthroline}) iridium(III) ion \\ \textbf{374}. \\ \textbf{Pentacyclo}[18.2.2.2^{9,12}.0^{4,15}.0^{6,17}]- \\ \text{hexacosa-}4,6(17),9,11,15,20,22,23,25- \\ \text{nonane-}10,25-\text{dicarbonitrile } \textbf{846}. \\ \textbf{conjugate acid } \textbf{981}. & \textbf{C}_{28}\textbf{H}_{24}\textbf{O}_{4} & t-3,t-4-\text{Di-}(1-\text{naphthyl})-r-1,c-2-\text{dimethoxy-carbonylcyclobutane } \textbf{506}. \\ \textbf{C}_{25}\textbf{H}_{16}\textbf{O} & 2-\text{Biphenylphenylbenzoxazole } \textbf{177}. & \textbf{C}_{28}\textbf{H}_{28}\textbf{N}_{4}\textbf{Z}n & \text{Zinc}(II) \text{ tetraethylporphyrin } \textbf{1134}. \\ \textbf{C}_{28}\textbf{H}_{18}\textbf{O} & 4,4'-\text{Diphenylbenzophenone } \textbf{530}. & \textbf{C}_{28}\textbf{H}_{30}\textbf{N}_{4} & \text{Tetraethylporphine } \textbf{1026}. \\ \textbf{C}_{28}\textbf{C}_{28}\textbf{C}_{28}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} & \text{Tetraethylporphine } \textbf{1026}. \\ \textbf{C}_{28}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18} & \textbf$				•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
conjugate acid 980. N-all-trans-Retinylidene-n-butylamine, conjugate acid 981. C ₂₅ H ₁₆ O 9-Naphthoylanthracene 790. C ₂₅ H ₁₇ NO 2-Biphenylphenylbenzoxazole 177. C ₂₈ H ₂₈ O ₄ 1-3,t-4-Di-(1-naphthyl)-r-1,c-2-dimethoxy-carbonylcyclobutane 506. C ₂₈ H ₂₈ N ₄ Zn C ₂₈ H ₂₈ N ₄ Zn C ₂₈ H ₃₀ N ₄ Tetraethylporphine 1026.	C II NI+		CHN.	
N -all-trans-Retinylidene- n -butylamine, conjugate acid 981. $C_{28}H_{24}O_4$ t -3, t -4-Di-(1-naphthyl)- r -1, c -2-dimethoxy-carbonylcyclobutane 506. $C_{25}H_{16}O$ 9-Naphthoylanthracene 790. carbonylcyclobutane 506. $C_{25}H_{17}NO$ 2-Biphenylphenylbenzoxazole 177. $C_{28}H_{28}N_4Z_1$ Zinc(II) tetraethylporphyrin 1134. $C_{28}H_{18}O$ 4,4'-Diphenylbenzophenone 530. $C_{28}H_{30}N_4$ Tetraethylporphine 1026.	C ₂₄ II ₃₈ IN		C ₂₈ 11 ₂₄ 14 ₂	
conjugate acid 981. $C_{28}H_{24}O_4$ t -3, t -4-Di-(1-naphthyl)- r -1, c -2-dimethoxy- $C_{25}H_{16}O$ 9-Naphthoylanthracene 790. carbonylcyclobutane 506. $C_{25}H_{17}NO$ 2-Biphenylphenylbenzoxazole 177. $C_{28}H_{28}N_4Zn$ Zinc(II) tetraethylporphyrin 1134. $C_{28}H_{18}O$ 4,4'-Diphenylbenzophenone 530. $C_{28}H_{30}N_4$ Tetraethylporphine 1026.				
$C_{25}H_{16}O$ 9-Naphthoylanthracene 790. carbonylcyclobutane 506. $C_{25}H_{17}NO$ 2-Biphenylbenzoxazole 177. $C_{28}H_{28}N_4Zn$ Zinc(II) tetraethylporphyrin 1134. $C_{25}H_{18}O$ 4,4'-Diphenylbenzophenone 530. $C_{28}H_{30}N_4$ Tetraethylporphine 1026.			CHO	
$C_{25}H_{17}NO$ 2-Biphenylphenylbenzoxazole 177. $C_{28}H_{28}N_4Zn$ Zinc(II) tetraethylporphyrin 1134. $C_{25}H_{18}O$ 4,4'-Diphenylbenzophenone 530. $C_{28}H_{30}N_4$ Tetraethylporphine 1026.	CHO		C ₂₈ 11 ₂₄ C ₄	
C ₂₅ H ₁₈ O 4,4'-Diphenylbenzophenone 530 . C ₂₈ H ₃₀ N ₄ Tetraethylporphine 1026 .			С Ц М 7-	
-23.1.20 7,7 -14.0013/10.10016(1,1 -01)11.01131/1/20. C2811300402 0,0 -DIHEAYIOAYIIIOIIIGIEO 407.				
	→ 25 1 120	1,4 -Maconyteneous(1,1 -orphenyt) 123.	C ₂₈ 1130C4S ₂	0,0 -Dinoxytoxytinomargo 40/.

$C_{28}H_{31}ClN_2O_3$	Rhodamine B 983.	$C_{32}H_{29}NO_4S_3$	(Z)-N,N-Dibutyl-2,3-dihydro-3-oxo-
$C_{28}H_{32}N_2O_3^{2+}$	Rhodamine 6G 984. Rhodamine 6G cation, conjugate		2-(3-oxonaphtho[1,2- b]-thien-2(3 H)-ylidene)naphtho[1,8- bc]-
	monoacid 985.		thiopyran-6-sulfonamide 362.
$C_{28}H_{44}O$	Ergosterol 564.		(E)-N,N-Dibutyl-2,3-dihydro-3-oxo-
$C_{29}H_{16}$	Pyranthrene 937.		2-(3-oxonaphtho[1,2- <i>b</i>]-
$C_{29}H_{20}O$	3-Benzyl-3-phenylphenanthro-		thien-2(3H)-ylidene)naphtho[1,8-bc]-
CHO	[9,10-b] furan-2(3H)-one 162 .	CHNO	thiopyran-6-sulfonamide 363 . 2,2'-(1,4-Phenylene)bis[5-(4-butoxyphenyl)
$C_{29}H_{22}O_2$	3-Benzyl-3,4,5-triphenyl-2(3 <i>H</i>)-furanone 163.	$C_{32}H_{32}N_2O_4$	oxazole] 884.
	10,11-Dihydro-5,7:14,16-dietheno-	$C_{32}H_{34}N_4O_4$	Deuteroporphyrin, dimethyl ester 333.
	8 <i>H</i> ,13 <i>H</i> -diindeno[2,1- <i>h</i> :1',2' <i>i</i>]-	C ₃₂ H ₃₆ N ₂	N,N,N',N'-Tetraethyl-
	[1,4]dioxacyclotridecin 414.	032-130-12	[1,1':4',1'':4'',1'''-quaterphenyl]-
$C_{29}H_{26}N_2$	meso(DL)-2,4-Di(N-carbazolyl)pentane		4,4'''-diamine 1027.
	367.	$C_{32}H_{36}N_4Pd$	Palladium(II) etioporphyrin I 838.
	rac(DD,LL)-2,4-Di(N-carbazolyl)pentane	$C_{32}H_{36}N_4Zn$	Zinc(II) etioporphyrin I 1126.
	368.	$C_{32}H_{40}N_4$	Etiochlorin II 579.
$C_{29}H_{34}FN_2^+$	1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-3,3-dimethyl-2 <i>H</i> -indol-2-ylidene)-		h Bromo(methanol)(phthalocyaninato)-rhodium(III) 222.
	3-fluoro-1,3-pentadienyl]-3,3-dimethyl-3 <i>H</i> -indolium 572 .		n Chloro(methanol)(phthalocyaninato)-rhodium(III) 277.
$C_{29}H_{35}N_2^+$	1-Ethyl-2-[5-(1-ethyl-1,3-dihydro-	$C_{33}H_{20}IN_8ORh$	Iodo(methanol)(phthalocyaninato)-
	3,3-dimethyl-2 <i>H</i> -indol-2-ylidene)-	~ ** ^	rhodium(III) 635.
	1,3-pentadienyl]-3,3-dimethyl-	$C_{33}H_{30}O_4$	10,11,13,14,16,17-Hexahydro-
CU	3 <i>H</i> -indolium 573.		5,7:20,22-dietheno- 8 <i>H</i> ,19 <i>H</i> -diindeno[2,1- <i>n</i> :1',2'- <i>o</i>]-
$C_{30}H_{18}$ $C_{30}H_{18}F_{9}LaO_{6}$	9,10-Bis(phenylethynyl)anthracene 211 . Tris(4,4,4-trifluoro-1-phenyl-		[1,4,7,10]tetraoxacyclononadecin 609 .
C3011181 9LaO6	1,3-butanedionato)lanthanum(III) 1107.	$C_{33}H_{34}N_4O_6$	Biliverdin 169.
$C_{30}H_{18}F_9LuO_6$	Tris(4,4,4-trifluoro-1-phenyl-	$C_{33}H_{36}N_4O_6$	Bilirubin 168.
03022182 92000	1,3-butanedionato)lutetium(III) 1108.	$C_{34}H_{24}O_3$	1,4-Diphenyl-2,3-dibenzoyl-1,4-epoxy-
$C_{30}H_{24}IrN_6^{3+}$	Tris(2,2'-bipyridine)iridium(III) ion	- 3424 - 3	1,4-dihydronaphthalene 538.
55 2. 5	1103.	$C_{34}H_{32}N_4O_4Zn$	Zinc(II) protoporphyrin 1132.
$C_{30}H_{24}N_6Os^{2+}$	Tris(2,2'-bipyridine)osmium(II) ion 1104.	$C_{34}H_{34}N_4O_4$	Protoporphyrin IX 930.
$C_{30}H_{24}N_6Ru^{2+}$	Tris(2,2'-bipyridine)ruthenium(II) ion 1105.	$C_{34}H_{36}MgN_4O_4$	
$\mathbf{C}_{30}\mathbf{I}\mathbf{I}_{40}\mathbf{O}$	β -apo-8'-Carotenal 252.	$C_{34}H_{36}N_4O_3$	Methyl pyropheophorbide a 747.
$C_{30}H_{44}$	(all-E)-3,8-Dimethyl-	$C_{34}H_{38}N_4O_4$	Mesoporphyrin 657.
	1,10-bis(2,6,6-trimethyl-	$C_{34}H_{38}N_4O_6$	Hematoporphyrin IX 604.
	1-cyclohexen-1-yl)-	$C_{35}H_{38}N_4O_6$	Biliverdin, dimethyl ester 170.
Сп	1,3,5,7,9-decapentaene 477.	$C_{35}H_{50}$	(all-E)-3,7,12-Trimethyl- 1,14-bis(2,6,6-trimethyl-
$C_{31}H_{24}$	1,3-Di(9-phenanthryl)propane 526 . Bonellin 213 .		1-cyclohexen-1-yl)-
$C_{31}H_{34}N_4O_4$ $C_{31}II_{42}ClN_3$	Ethyl Violet 568.		1,3,5,7,9,11,13-tetradecaheptaene 1086.
$C_{31}H_{42}O_{1}$	β -apo-8'-Carotenoic acid, methyl ester	$C_{36}H_{20}CdN_4$	Cadmium(II) tetrabenzoporphyrin 240.
031224202	256.	$C_{36}H_{20}N_4Pd$	Palladium(II) tetrabenzoporphyrin 839.
C ₃₂ H ₁₆ AlClN ₈	Chloroaluminum phthalocyanine 261.	$C_{36}H_{20}N_4Zn$	Zinc(II) tetrabenzoporphyrin 1133.
$C_{32}H_{16}ClInN_8$	Chloroindium(III) phthalocyanine 276.	$C_{36}H_{22}N_4$	Tetrabenzoporphine 1020.
$C_{32}H_{16}CuN_8$	Copper(II) phthalocyanine 297.	$C_{36}H_{24}$	[2.2](2,7)-Pyrenophane 948.
$C_{32}H_{16}MgN_8$	Magnesium(II) phthalocyanine 653.	$C_{36}H_{24}N_6Rh^{3+}$	Tris(1,10-phenanthroline)rhodium(III)
$C_{32}H_{16}N_8Z_{11}$	Zinc(II) phthalocyanine 1130.		ion 1106.
$C_{32}H_{18}N_8$	Phthalocyanine 907.	$C_{36}H_{26}O$	rac-Bis[1-(1-pyrenyl)ethyl]ether 212.
$C_{32}H_{22}$	Anthracene-tetracene photodimer 72.	$C_{36}H_{28}N_8O_2Ru$	S ₂ Bis(dimethylsulfoxide)phthalo-
$C_{32}H_{24}$	[2.2](1,4)(9,10)-Anthracenophane 73.	C H M-NO	cyaninatoruthenium(II) 205.
	anti-[2.2](1,4)-Anthracenophane 74. syn-[2.2](1,4)-Anthracenophane 75.	C ₃₆ H ₃₆ MgN ₄ O ₅	Methylchlorophyllide a 712. Photoprotoporphyrin isomer "A", di-
$C_{32}H_{24}O$	4-(4-p-Terphenylylmethyl)benzophenone	$C_{36}H_{36}N_4O_6$	methyl ester 903.
C321124U	1016.		Photoprotoporphyrin isomer "B",
$C_{32}H_{24}O_2$	(E)-10-(1,3-Dimethyl-10-oxo-		dimethyl ester 904.
- 3224-2	9-anthracenylidene)-	$C_{36}H_{38}N_4O_4$	Protoporphyrin IX, dimethyl ester 931.
	2,4-dimethyl-9-anthracenone 1046.	$C_{36}H_{38}N_4O_8$	Coproporphyrin III 298.

$C_{36}H_{39}N_4O_4^+\\$	Protoporphyrin IX, dimethyl ester,	$C_{42}H_{28}$	Rubrene 989.
	conjugate monoacid 933.	$C_{42}H_{30}$	5"-[1,1'-Biphenyl]-4-yl-
$C_{36}H_{40}N_4O_4^{2+}$	Protoporphyrin IX, dimethyl ester,		1,1':4',1":3",1"":4"",1""-
	conjugate diacid 932.		quinquephenyl 183.
$C_{36}H_{42}N_4O_4$	Mesoporphyrin, dimethyl ester 658.	$C_{42}H_{60}O_2$	all-trans-Spirilloxanthin 998.
$C_{36}H_{44}Cl_2N_4Sn$	Octaethylporphinatotin(IV)	$C_{44}H_{24}N_4O_{12}PdS_4^{4-}$	Tetrakis(p-sulfonatophenyl)-
	dichloride 828.		porphinatopalladate(II) ion 842.
$C_{36}H_{44}MgN_4$	Magnesium(II) octaethylporphyrin	$C_{44}H_{24}N_4O_{12}RhS_4^{3}$	Tetrakis(p-sulfonatophenyl)-
	652.		porphinatorhodate(III) ion 1042.
$C_{36}H_{44}N_4Pd$	Octaethylporphinatopalladium(II)	$C_{44}H_{24}N_4O_{12}S_4Zn^4$	Tetrakis(p-sulfonatophenyl)-
	827.		porphinatozincate(II) ion 1140.
$C_{37}H_{26}$	2-([1,1':4',1"-Terphenyl]-4-ylmethyl)-	$C_{44}H_{26}N_4O_{12}S_4^{4-}$	Tetrakis(p-sulfonatophenyl)porphine
	triphenylene 1017.		1043.
$C_{38}H_{30}N_{10}O_2Ru$	Bis(dimethylformamide)-	$C_{44}H_{28}CdN_4$	Tetraphenylporphinatocadmium(II) 241.
	phthalocyaninatoruthenium(II) 204.	$C_{44}H_{28}ClN_4Rh$	Tetraphenylporphinatorhodium(III)
$C_{39}H_{40}$	9,10,11,12,13,14-Hexahydro-		chloride 1056.
	5,7:15,17-ietheno-2,20-heptano-	$C_{44}H_{28}HgN_4$	Tetraphenylporphinatomercury(II) 656.
	H-cyclotetradeca[1,2- a :1,14- a ']-	$C_{44}H_{28}MgN_4$	Tetraphenylporphinato-
	diindene 610.		mangnesium(II) 654.
$C_{39}H_{58}O_4$	Ubiquinone 30 1114.	$C_{44}H_{28}N_4^{2-}$	Tetraphenylporphyrin dianion 1058.
$C_{40}H_{26}$	1,3,6,8-Tetraphenylpyrene 1059 .	$C_{44}H_{28}N_4OTi$	Oxotitanium(IV) tetraphenyl-
$C_{40}H_{26}N_8$	Tetrakis(2-pyridyl)porphine 1036.		porphyrin 837.
	Tetrakis(3-pyridyl)porphine 1037.	$C_{44}H_{28}N_4Pd$	Tetraphenylporphinatopalladium(II)
	Tetrakis(4-pyridyl)porphine 1038.		843.
$C_{40}H_{28}N_8^{2+}$	Tetrakis(2-pyridyl)porphine, conju-	$C_{44}H_{28}N_4Zn$	Tetraphenylporphinatozinc(II) 1143.
	gate diacid 1039.		meso-Tetraphenylporphine 1057.
	Tetrakis(3-pyridyl)porphine, conju-	$C_{44}H_{30}N_4Zn$	Zinc(II) tetraphenylchlorin 1142.
	gate diacid 1040.	$C_{44}H_{32}N_4$	Tetraphenylchlorin 1053.
	Tetrakis(4-pyridyl)porphine, conju-	$C_{44}H_{36}N_8Pd^{4+}$	Palladium(II) tetrakis-
	gate diacid 1041.		(4-N-methylpyridyl)porphyrin 841.
$C_{40}H_{46}N_4O_8$	Coproporphyrin III, tetramethyl	$C_{44}H_{36}N_8Zn^{4+}$	Tetrakis(2-N-methylpyridyl)-
	ester 299.		porphinatozine(II) ion 1137.
	Coproporphyrin I, tetramethyl ester		Tetrakis(3-N-methylpyridyl)-
	300.		porphinatozinc(II) ion 1138.
$C_{40}H_{48}O_4$	Astacin 91.		Tetrakis(4-N-methylpyridyl)-
$C_{40}H_{52}O$	all-trans-3',4'-Didehydro-		porphinatozinc(II) ion 1139.
	β , ψ -16'-carotenal 387.	$C_{44}H_{38}N_8^{4+}$	Tetrakis(2-N-methylpyridyl)-
$C_{40}H_{52}O_2$	Canthaxanthin 244.		porphine 1033.
$C_{40}H_{52}O_4$	Astaxanthin 92.		Tetrakis(3-N-methylpyridyl)-
$C_{40}H_{54}O$	Echinenone 555.		porphine1034.
$C_{40}H_{56}$	15,15'-cis-β-Carotene 253.		Tetrakis(4-N-methylpyridyl)-
	β -Carotene 254.		porphine 1035.
	all-trans-Lycopene 649.	$C_{48}H_{24}N_4O_8Pd^{4-}$	Palladium(II) tetrakis-
$C_{40}H_{56}O_2$	Dihydroxylycopene 438.		(carboxyphenyl)porphyrin 840.
	all-trans-Lutein 648.	$C_{48}H_{24}N_4O_8Zn$	Tetrakis(carboxyphenyl)porphinato-
	Zeaxanthin 1123.		zincate(II) ion 1135.
$C_{40}H_{58}$	all-trans-Neurosporene 808.	$C_{48}H_{28}O_2$	1,4-Dihydro-5,6,11,12-tetraphenyl-
$C_{40}H_{60}$	ζ-Carotene 255.		1,4-epidioxytetracene 433.
	7,7'-Dihydro- β -carotene 412.		5,12-Dihydro-5,6,11,12-tetraphenyl-
$C_{40}H_{64}$	15-cis-Phytoene 908.		5,12-epidioxytetracene 434.
	all-trans-Phytoene 909.		5-(1,4-Epidioxyphenyl)-
$C_{41}H_{44}$	8,9,10,11,12,13,14,15-Octahydro-		6,11,12-triphenyltetracene 563.
	5,7:16,18-dietheno-	$C_{48}H_{54}N_4O_{16}$	Uroporphyrin I, octamethyl ester 1118.
	2,21-octanocyclopentadeca-	$C_{50}H_{68}$	Decapreno-β-carotene 331.
	[1,2-a:1,15-a']diindene 829.	$C_{52}H_{40}N_4O_{12}S_4Zn^4$	
$C_{41}H_{58}O_2$	all-trans-Spheroidenone 997.		4-sulfonatophenyl)porphinato-
$C_{41}H_{60}O$	all-trans-Spheroidene 996.		zincate(II) ion 1136.
$C_{42}H_{26}N_{10}Ru$	Phthalocyaninatobis(pyridine)-	$C_{52}H_{42}N_4O_{12}S_4^{4-}$	Tetrakis(2,6-dimethyl-
:= 27 ••	ruthenium(II) 906.		4-sulfonatophenyl)porphine 1032.
	• •		

Arvis, M.

Asano, M.

Asher, M.

392, 394

Astier, R. 11, 64, 109, 173, 733

284

463

 $C_{52}H_{54}N_4O_{12}$ Malachite Green 655. $C_{55}H_{70}MgN_4O_6$ Chlorophyll b 285. Chlorophyll a 284. $C_{55}H_{72}MgN_4O_5$ Zinc(II) chlorophyll a 1124. $C_{55}H_{72}N_4O_5Zn$ $C_{55}H_{72}N_4O_6$ Pheophytin b 902. Pheophytin a 901. $C_{55}H_{74}N_4O_5$ $C_{56}H_{60}N_8Zn^{4+}$ Tetrakis-4-(N,N,N-trimethylammonio)phenylporphinezinc(II) ion 1141. $C_{56}H_{62}N_8^{4+}$ Tetrakis(trimethylaminophenyl)porphine $C_{60}H_{80}$ (all-E)-3,7,11,15,20,24,28,32-Octamethyl-1,34-bis(2,6,6-trimethyl-1-cyclohexen-1-yl)-1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33tritriacontaheptadecaene 830. $C_{71}H_{80}N_4O_3$ 4-(β-apo-7'-Carotenyl)benzyl pyropheophorbide 257. 4-[Tri(4-methylphenyl)porphinyl]- $C_{82}H_{82}N_4O_3$ 3-phenoxypropyl β-apo-6'-carotenate 1090. 10.3. Author Index Abrahamson, E.W. 285, 866, 972 Abuin, E.B. 1121 Achiba, Y. 128, 735, 771, 953

Acuna, A.U. 123, 703 Adachi, T. 620 Adamczyk, A. 234 Adams, R.G. 972 Aikawa, M. 133 Aikens, D.A. 809, 990 Al'-Ainen, S.A. 141, 1101 Al'perovich, M.A. 435 Al-Chalabi, A.O. 144 Al-Saigh, H.Y. 989 Albrecht, A.C. 61, 699 Alchalel, A. 966, 974, 976, 980 Alfimov, M.V. 8, 43, 64, 173, 362, 768, 1062, 1100 Alkaitis, S.A. 870, 1045 Allen, J.C. 684 Almgren, M. Alpert, B. 930 Alvarez, V.L. 905 Amand, B. 279 Amano, M. 154 Amirzadeh, G. 290, 332 Amouyal, E. 143, 446, 552 Amrein, W. 153 Anderson, R.W.,Jr. Andreev, O.M. 173 Andrews, L.J. 586, 720 Andrievskii, A.M. 350 Angliker, H. 330, 606 Anitoff, O. 1138 Arai, S. 7, 173, 822 Arai, T. 427 Arakawa, M. 1083 Arce, R. 936

Aubailly, M. 57 Averbeck, D. 246, 598 Azerad, R. 966 Baba, H. 439, 672 Babichev, F.S. 435 Bagdasar'yan, Kh.S. 1, 23, 133, 166, 570, 719, 1095 Baiardo, J. 854 Bailey, D.N. 867 Balzani, V. 1105 Bandyopadhyay, B.N. 861 Bar-Eli, K.H. 719 Baral-Tosh, S. 133 Barigelletti, F. 746 Barthels, M.R. 308 Barwise, A.J.G. 173 Batekha, I.G. 43, 125 Bates, A.L. 91 Bauer, H. 137 Baugher, J.F. 284, 505 Baumgartner, C.E. Baxendale, J.II. Bayrakceken, F. 348, 433 Bazin, M. 57, 631, 1109 Beaumont, P.C. Bebelaar, D. 64 Beck, G. 870 Becker, R.S. 250, 251, 502, 748, 1070 Bedwell, E. 729 Bell, I.P. 939 Bell, J.A. 133 Bender, C.O. 153 Bennett, R.G. 6, 51, 133, 143, 246, 251, 253, 255, 257, Bensasson, R. 279, 446, 502, 541, 548, 552, 598, 640, 751, 919, 935, 966, 972, 1067, 1070, 1072, 1090, 1105, 1114, 1140 Bent, D.V. 63, 461, 631, 876, 938, 1075 Bentley, P. Bercovici, T. 1046 Berens, K. 58 Berg, R.A. 392 Bergwerf, Ph. 233, 525 Bir, E.Sh. 423 Bircher, P. 235 Bisagni, E. 246 Blanchi, J.-P. 133 Blume, H. 535, 672 Bocherkov, A.I. Bokobza, A. 64 Boldridge, D.W. 764 Bolot'ko, L.M. 50, 178 Bolotnikova, T.N. 64 Bolton, J.R. 743 Bonamy, A. Bonneau, R. 4, 96, 180, 318, 578, 768, 1063

Arimitsu, S. 470

```
Bonnet, R.
            1035
                                                      Chow, Y.L.
                                                      Chrysochoos, J.
Bonnett, R. 299
                                                                       556
Borisevich, N.A.
                  50
                                                      Claesson, S.
                                                                   285
Borisevich, Yu.E.
                  192
                                                      Cogdell, R.J.
                                                                   808
                                                                   249
Borovkova, V.A.
                  23, 166, 570
                                                      Cohen, S.G.
Bortolus, P. 746
                                                      Collart, P. 212
Bowers, P.G. 64, 284
                                                      Colson, E.C.
                                                                    1059
Braslavsky, S.E. 153, 213
                                                      Compton, R.H. 64
Braterman, P.S. 1105
                                                      Connolly, J.S. 100
Braun, A.M. 133, 479, 907, 1143
                                                      Cook, M.G. 768
Brede, O.
          133, 861
                                                      Cooke, J. 64
             8, 245, 691
                                                      Cooper, M.
                                                                   939
Breheret, E.
Bridge, N.K.
             552
                                                      Cooper, M.B.
                                                                    966
Briegleb, G.
                                                      Cornelisse, J. 515
            768
                                                      Corval, A. 147
Brinen, J.S.
             65, 106, 173, 295, 769, 1016
                                                      Costa, S.M. de B.
Brown, R.G. 190, 743
                                                                        159
Bruehlmann, U. 416
                                                      Cowley, D.J.
                                                                    52, 269
Brunschwig, B.S.
                                                      Coyle, J.D.
                                                                  356, 457
Buben, N.Ya.
                                                      Craig, B.B.
                                                                   1023
Buettner, A.V.
                                                      Craig, D.P.
                                                                   64, 279, 768
                64, 133, 391
Bulska, H. 184
                                                      Craw, M.
                                                                 246, 305
Buono-Core, G.E. 82
                                                      Creutz, C. 1104
Burger, U. 153
                                                      Cundall, R.B. 164
Burland, D.M. 245
                                                      Currie, W.J.C. 32
Burnett, M.N.
               851
                                                      Dabral, V. 353, 538
                                                      Dainton, F.S. 64, 133, 1005, 1006
Busse, R. 526
Byers, G.W. 939
                                                      Dallinger, R.F. 92
Cabaret, D. 414
                                                      Damschen, D.E. 963
Cadogan, K.D. 61
                                                      Danilova, V.I. 178
Caldwell, R.A. 258
                                                      Danziger, R.M. 719
Camilleri, P. 213
                                                      Darmanyan, A.P. 64, 358, 531, 572, 989
Canbaeck, G. 152
                                                      Das, P.K. 88, 133, 162, 200, 209, 250, 251, 385, 480, 529,
Cannistraro, S. 254
                                                           535, 538, 662, 694, 748, 945, 971, 1045, 1105
Capellos, C. 53, 460, 517, 518, 733, 819, 820
                                                      Davidson, R.S. 957
Carapellucci, P.A. 586, 866
                                                      Davies, A.K. 292
Carioli, A. 1106
                                                      Davis, G.A.
                                                                    586, 866
Carlini, C.
            746
                                                      Davis, H.F.
                                                                   385, 694
Carroll, F.A. 1126
                                                      Davis, S.G.
                                                                   966
                                                      Davydov, S.N.
Cauzzo, G. 604
Ceballos, A. 123, 703
                                                      Dawe, E.A. 253, 966
Cessna, A.J.
                                                      Dawson, W.R. 65, 106, 118, 130, 940, 972
Chachaty, C. 1114
                                                      Dedinas, J. 133
Chahidi, C. 57
                                                      de Groot, R.L.
                                                                      80
Chakachery, E.
                353
                                                      de Gunst, G.P.
                                                                     515
Chalvet, O. 246
                                                      Dekker, R.H. 31
Chantrell, S.J. 931
                                                      Delestinne, A. 308
Chaquin, P. 238
                                                      Delouis, J.F. 556
Charalambides, A.A.
                     299
                                                                       49, 393, 399, 984
                                                      Dempster, D.N.
Charlier, M. 133
                                                      Demuth, M. 153
Chattopadhyay, S.K.
                     133, 385, 529, 535, 662, 945
                                                      Deroulede, A. 586
Chauhan, S.M.S. 353
                                                      De Sa E Melo, T.M.
Chedekel, M.R.
                                                      De Schryver, F.C. 212, 366
Chene, G. 284
                                                      Dilung, I.I. 132
Chessin, M. 254
                                                      Dixit, S.N.
                                                                  1125
Chevalier, S.
             654
                                                      Dixon, R.S.
                                                                  369
Chew, V.S.F.
                                                      Doan, T.L.
               743
                                                                  21
Chibisov, A.K. 97, 191, 397, 400, 722, 869, 984, 986, 991
                                                      Dodiuk, H. 1047
Chihara, K. 748
                                                      Dung, D.
                                                                 923
Chou, M. 1104
                                                      Dunne, A. 982
```

Dunston, J.M. Geissler, U. 768 Dupuy, F. 1095 Gennari, G. 604 Eaker, D.W. 802 George, M.V. 153, 162, 353, 538, 1054 Ebbesen, T.W. 265, 1140 Geraghty, N. 414 Gerhardt, G.E. 1016 Efros, L.S. 670 Ege, S.N. 385 Gerko, V.I. 43, 64, 173 Ghetti, F. 1140 Eichler, J. 10, 625 Eisenthal, K.B. 773 Ghiggino, K.P. 1109, 1110 Ghiron, C.A. 729, 1109 El'tsov, A.V. 125 El-Sayed, M.A. 295, 608 Giraud, M. 643 Encinas, M.V. 112, 133, 232 Gisin, M. 774, 851 Euing, W. 769 Givens, R.S. 892 Evans, G.B. 164 Glagolev, V.L. 8, 173 Evans, R.F. 1109 Godfrey, T.S. 41 Faidysh, A.N. 768 Goerner, H. 54, 95, 107, 218, 229, 311, 334, 420, 46 Fang, T.-S. 211 535, 678, 713, 802 Fanghaenel, E. 995 Goldberg, M. 715 Farmilo, A. 254 Goldschmidt, Ch.R. 64, 787 Farquharson, S. 92 Goodwin, D. 957 Faulkner, L.R. 989 Gorman, A.A. 95, 173, 317, 806 Faure, J. 96, 177, 332, 482, 556, 768 Gorman, D.S. 100 Favre, A. 1067 Goujon, P. 394 Feldberg, S.W. 652 Gould, I.R. 133, 317, 892, 1045 Fendler, J.H. 714 Gouterman, M. 827 Ferraudi, G. 204, 222, 906 Goyal, G.C. 684 Ferreira, M.I.C. 1063 Grabowska, A. 963 Ferris, J.P. 727 Grabowski, Z.R. 463 Fielden, E.M. 64 Graetzel, C.K. 1140 Fischer, E. 352, 436, 1046 Graetzel, M. 224, 284, 479, 552, 744, 870, 922, 1032, Fischer, G. 279, 768 1045, 1088, 1105, 1131, 1135, 1140, 1143 Fischer, H. 1063 Graf, G.A. 133 Grajcar, L. 556 Fisher, G.J. 737 Fisher, M.M. 972 Gramain, J.-C. 133 Grattan, K.T.V. 64 Flamigni, L. 746 Fleming, G.R. 62 Green, P.N. 958 Foerster, E.W. 410, 718 Greene, B.I. 23 Fojtik, A. 861 Grellmann, K.-H. 64, 71, 352, 388, 410, 415, 696, 718, Folcher, G. 1138 Foote, C.S. 308 Gresser, J.D. 586, 866 Formosinho, S.J. 23 Grieser, F. 216, 1043 Griffin, G.W. 385, 480, 1045 Griffiths, P.A. 164 Grodowski, M. 410, 966 Fornier de Violet, Ph. 180, 957 Fouassier, J.-P. 177, 332, 482, 958 Fox, M.A. 306 Frank, A.J. 744 Grodowski, M.S. 31 Fratev, F. 114 Gross, S. 939 Freilich, S.C. 133 Grossweiner, L.I. 562, 599, 684, 760 Fujara, F. 24 Gruen, H. 218 Fujimori, E. 284 Gruzinskii, V.V. 178 Gschwind, R. 259 Fujiwara, Y. 616 Gu, C. 308 Fukushima, M. 767 Guenthard, Hs.H. 64, 1046 Fuller, J. 173 Guesten, H. 64, 420 Fushimi, K. 29 Guglielmetti, R. 675 Gaevskii, A.S. 768 Guillory, W.A. 23 Gallivan, J.B. 295 Gupta, A. 613 Garcia Dominguez, J.A. 123 Garner, A. 631, 1121 Gurinovich, G.P. 284 Gautron, R. 147 Gust, D. 257, 1090 Gusten, H. 529 Geacintov, N.E. 135, 1031 Gegiou, D. 871 Guyot, G. 179

```
Gyoda, H. 259
                                                     Holmstroem, B. 285, 645
Hadley, S.G. 64, 641, 768, 905
                                                     Holroyd, R.A. 64, 733
Haertel, H. 768
                                                     Holten, D. 827
                                                     Holzer, G. 535
Hafner, M. 1063
Hama, Y. 837
                                                     Honig, B. 980
Hamada, K. 946
                                                     Horrocks, A.R. 1, 878
Hamanoue, K. 13, 76, 148, 154, 263, 293, 706, 815
                                                     Hoshi, T. 173, 437, 527
Hamblett, I. 95, 317, 806
                                                     Hoshino, M. 71, 837
                                                     Hrdlovic, P. 179
Hammond, P.R. 357
Hamoudi, H.I. 32
                                                     Huber, J.R. 31, 416, 871, 1046
Hanst, P.L. 133
                                                     Hug, G.L. 251, 535, 748, 971
Hara, K. 439, 672
                                                     Huizer, A.H. 233
Hardwick, R. 64
                                                     Hulme, B.E. 36
Harriman, A. 76, 241, 356, 861, 966, 1050, 1063, 1105
                                                     Hummel, A. 470
                                                     Hunt, J.W. 768, 1115
Harrison, R.J. 95
Haselbach, E. 259
                                                     Hunt, R.V. 303
Hashimoto, S. 1045
                                                     Hunter, T.F. 947
Hata, N. 247, 821
                                                     Huppert, D. 224, 1047
                                                     Hurley, J.K. 133
Hatano, Y. 570
Hatchard, C.G. 1064
                                                     Ikawa, H. 1
Havinga, E. 515
                                                     Ikeda, N. 342
                                                     Imamura, M. 71, 173, 837, 939
Hayashi, H. 20, 133, 427, 577, 740, 1084
                                                     Inbar, S. 249
Havashi, K. 171
Hayon, E. 5, 63, 631, 876, 938, 1075
                                                     Indelli, M.T. 1106
Head, D.A. 768
                                                     Infelta, P.P. 224, 1105
                                                     Inoue, A. 938
Heath, G.A. 1105
Heelis, P.F. 32, 581
                                                     Inoue, H. 527
Heinrich, G. 420, 529, 535, 672
                                                     Inoue, T. 366
Heinzelmann, W. 106
                                                     Irie, M. 171
                                                     Ishii, Y. 165
Helene, A. 1109
Helene, C. 21, 133, 1109
                                                     Ishikawa, M.
                                                                  1091
                                                     Ishikawa, S. 73, 844
Hellner, C. 845
Helmstreit, W. 133
                                                     Itaya, A. 570
                                                     Ito, Y. 1084
Hemmerich, P. 715
Henrichs, P.M. 939
                                                     Itoh, M. 15, 474, 552, 616, 619, 620, 1121
Henry, B.R. 245, 303
                                                     Itoh, N. 768
Hentzschel, P. 352, 388
                                                     Ivanoff, N. 556
Herbert, M.A. 831, 1115
                                                     Ivanov, V.B. 67
Herbich, J. 963
                                                     Ivanov, V.L. 67, 141, 370, 673, 1101
Hercules, D.M. 867
                                                     Iwamura, H. 20
Herkstroeter, W.G. 348, 966, 989
                                                     Iwanaga, C. 719
                                                     Iwaoka, T. 866
Hermann, H. 314
                                                     Iwata, S. 73, 551
Herre, W. 768
                                                     Jackson, G. 23, 64
Herrmann, H. 337
Herz, C.P. 10, 625
                                                     Jacques, P. 907
Hidaka, T. 13, 148, 706
                                                     Jansen, K. 23
Higuchi, M. 768
                                                     Japar, S.M. 866
Hilinski, E.F. 83
                                                     Jardon, P. 147
Hilpern, J.W.
              41
                                                     Jensen, N.-H. 605, 972
Hindman, J.C.
              284
                                                     Jimenez, L.A. 936
Hinzmann, S.
              995
                                                     Johns, H.E. 831, 1072, 1073, 1115
Hirase, S. 76
                                                     Jones, R.A. 32
                                                     Jori, G. 298, 604
Hirata, Y. 23, 866
Hirayama, S. 13, 154, 815
                                                     Journeaux, R. 284
Ho, S.K. 64, 173
                                                     Joussot-Dubien, J. 96, 768
Hochstrasser, R.M. 23, 64
                                                     Joy, A. 1090
Hodgkinson, K.A. 106, 939
                                                     Joy, A.M. 257
Hodgson, W.G. 769
                                                     Justus, B.L. 764
Hoffman, M.Z. 64, 720
                                                     Kaenzig, H. 484, 768
```

Kagiya, V.T. 152 Kokrashvili, T.A. 346 Kokubun, H. 23, 29, 64, 80, 166, 245, 492, 546, 570, 719, Kajiwara, Y. 76, 154, 263 Kalisky, Y. 284, 659 964, 1063, 1091 Kalyanasundaram, K. 840, 923, 1032, 1033, 1042, 1044, Kolobkov, V.P. 12 1135 Kolosov, V.A. Kamachi, M. 133 Koltzenburg, G. 314 Kamat, P.V. 306, 719, 1024, 1064 Komuro, M. 437 Kanamaru, N. 905, 1049 Kondo, R. 1 Kanety, H. 1047 Koningstein, J.A. 284 Karstens, T. 769, 1062 Kopylova, T.N. 178 Karyakin, A.V. 97, 397, 722, 869, 991 Korenstein, R. 436, 1046 Kasama, K. 7, 23, 822 Korobov, V.E. 397, 400 Kasha, M. 245 Koshihara, S. 528 Kassem, A. 995 Kosower, E.M. 1047 Kato, S. 23, 261, 276, 279, 562, 719, 1065, 1066, 1130 Kossanyi, J. 238 Katsuda, Y. 474 Kostin, A.K. 64 Katz, J.J. 284 Kotlicka, J. 184 Kawai, K. 259 Koussini, R. 180 Kawata, H. 964 Kovalenko, N.P. 173 Kayser, R.H. 719 Kraljic, I. 64 Kramer, H.E.A. Kazan, J. 1016 25, 645, 715, 835, 1063 Keene, J.P. 64, 133, 164 Krasnaya, Zh.A. 192 Krasnova, T.L. Keller, R.A. 64, 768 402 Kellmann, A. 23, 25, 26, 675 Krebs, A. 330 Kellogg, R.E. 64 Kreibich, U.T. 641 Kemp, D.R. 259, 552 Krieg, M. 133 Kemp, T.J. 64, 133, 236, 818, 826, 989 Krongauz, V. 1088 Ketsle, G.A. 984, 986, 988 Kropp, J.L. 118, 130, 338, 940 Khelladi, F.Z. Krowczynski, A. 463 768 Khosrofian, J.M. Krueger, U. 565 135 Khudyakov, I.V. 441, 817 Krysanov, S.A. 362, 1062 Kikuchi, K. 23, 29, 64, 80, 166, 245, 546, 570, 719, 787, Kryukov, A.Yu. 618 923, 964, 1063, 1091 Kuball, H.-G. 769 Kikuchi, M. 719 Kubo, Y. 577 Kikuta, Y. 133 Kuehnle, W. 526 Kilp, T. 682, 733 Kuhlmann, R. 332, 912 Kimoto, M. 148, 154 Kumar, C.V. 162, 200, 353, 529, 535, 538, 662, 694, 945, Kimura, E. 9 1054 Kimura, K. 128, 470, 735, 771, 905, 953 Kuntz, R.R. 729, 1109 Kingston, D.H. 457 Kusabayashi, S. 570 Kira, A. 23, 171, 173, 939 Kuyumdzhi, E.S. Kirkor-Kaminska, E. 963 Kuz'min, M.G. 67, 141, 381, 673, 1101 Kiryukhin, Yu.I. 1, 23, 133, 166, 719, 1095 Kuz'min, V.A. 64, 97, 192, 245, 346, 435, 441, 531, 552, Kissinger, P.T. 989 572, 670, 989, 1031 Kitamura, N. 366 Kuznetsov, V.A. 984 Kiwi, J. 284, 1088 Kuznetsov, V.S. 125 Klaening, U.K. 787 Labhart, H. 106, 235 Klages, C.P. 849 Lachish, U. 1105 Klasinc, L. 64 Lacourbas, B. 245 Klein, R. 631 Lafferty, J. 251, 541, 930 Kleo, J. 254 Laffitte, E. 26 Kliger, D.S. 699 Lahiri, S. 353 Klimakova, A. 370 Lambert, C. 47, 305 Knowles, A. 645 Lamotte, M. 1095 Kobashi, H. 1, 259 Land, E.J. 6, 16, 23, 34, 36, 47, 51, 168, 169, 176, 244, 246, 251, 253, 254, 255, 299, 303, 446, 470, 541, 552, 598, Kobayashi, S. 64 Kobayashi, T. 640, 684, 737, 751, 768, 808, 919, 931, 935, 966, 972, 973, 13, 83, 188, 528 Kobs, K. 849, 1062 1009, 1035, 1090, 1114

Koizumi, M. 23, 492, 562, 719, 787, 866, 923

Makin, S.M. Lang, F. 53, 460 Langelaar, J. 118, 939 Malkin, Ya.N. 245, 670 Manring, L.E. 308 Langkilde, F.W. 605 Lapouyade, R. 4, 180, 320 Marchetti, A.P. 64 Mark, F. 420 Latowski, T. 410 Marks, G.T. 809 Lavalette, D. 64, 118, 173, 176, 414, 669, 769 885 Lazare, S. 4, 320 Marowsky, G. Martens, F.M. 525 Leclercq, J.M. 64, 173 Martin, M. 25, 245 le Cornelisse, J. 516 Martin, M.M. 342 Ledger, M.B. 8, 64 Martins, L.J.A. 236, 818, 826 Lee, C.W.B. 82 Lee, C.Y. 1058 Martynov, I.Yu. 673 Lee, E.D. 809 Martynova, V.P. 670 Lee, P.C.-C. 133 Maruyama, K. 577 Masuhara, H. 212, 366, 464, 526, 570, 846, 913, 946 Lee, W.A. 1032 Mataga, N. 64, 212, 342, 366, 464, 526, 570, 846, 913, Lehman, W.R. 257 Lemaire, J. 179 946 Mathis, P. 254, 284 Lemmer, D. 153 Le Roux, D. 1138 Matsumoto, S. 383, 551, 719 Matsuura, T. 1084 Leupin, W. 951 Matthews, J.I. 213 Levin, G. 301, 1021, 1058 Matuszewski, B. 892 Levin, P.P. 260, 346, 531, 552 Maudinas, B. 255 Levkoev, I.I. 97, 435 Levshin, L.V. 984, 986, 988 McAlpine, E. 34 McAuliffe, C.A. 931 Lewis, G.N. 528, 591 Lichtin, N.N. 719, 720, 1024, 1064, 1130 McCallum, K.J. 23 McCarthy, R.L. 1006 Liddell, P.A. 257 McCartin, P.J. 369 Lifanov, Yu.I. 397 Lim, B.T. 505 McClure, D.S. 64, 133, 348 Lim, E.C. 30, 505, 938 McKellar, J.F. 38, 581 Lin, J. 211 McVie, J. 297, 680 Lindqvist, L. 8, 23, 25, 64, 265, 285, 592, 593, 631, 675, Medinger, T. 529, 878 691, 845, 930 Mehnert, R. 133, 861 Melhuish, W.H. 64, 133, 279 Linschitz, H. 78, 100, 133, 249, 284, 285, 548, 586, 718, Melo, E.C.C. 159 720 Lipkin, D. 528, 591 Memming, R. 565, 849, 965, 1062 Lissi, E.A. 232 Menzel, R. 848 Liu, C.-T. Merkel, P.B. 989 47 Liu, D.K.K. 989 Merlin, A. 332, 482 Liu, R.S.H. 751, 966 Merritt, C. 613 Livingston, R. 64, 254, 284, 965 Metras, J.-C. 291 11, 64, 109, 173, 733 Lo, K.K.N. 751, 973 Meyer, Y.H. Lochet, R. 26, 768 Mialocq, J.-C. 392, 394, 1138 Loeff, I. 78, 265 Miedlar, K. 1105 Lohray, B.B. 162 Miethke, E. 25 Mikawa, H. 259 Lohse, C. 160 Long, D.A. Miller, J.R. 173 253 Mills, A. 76 Lou, J.J. 338 Lougnot, D.-J. 177, 332, 482, 958, 1010 Milton, S.V. 83 Lower, S.K. 64 Mintas, M. 64 Misumi, S. 73, 846 Lukac, I. 179 Lutz, H. 8, 265, 691 Mitchell, A.D. 680 Luzhkov, V.B. 817 Mitchell, M.B. 23 MacLachlan, A. 1006 Miyake, T. 76, 154, 293 Maciejewski, A. 164, 603 Miyashita, Y. Maeda, Y. 464 Miyata, N. 15 Magde, D. Moan, J. 1111 827 Magel, T.T. Mochida, K. 740 591 Maki, A.H. Moiseeva, Z.Z.

Molera, M.J. 123, 703	Nohara, S. 1049
Monti, S. 675	Nosaka, Y. 939
Monzikoff, A. 57	Nouchi, G. 25, 26, 64, 106, 307, 768, 1095
Moore, A.L. 257, 1090	Novak, J.R. 64
Moore, T.A. 257, 1090	Noyes, W.A.,Jr. 575
Moorthy, P.N. 938	Nozakura, S. 133
Morgante, C.G. 632	Nurmukhametov, R.N. 984
Morita, H. 383	O'Dowd, R.F. 64
Morita, M. 719, 1065, 1066	O'Hare, A. 64
Morita, T. 1, 165, 259	O'Sullivan, M. 956
	·
Moroi, Y. 479	•
Morozov, Yu.V. 25	Ohashi, Y. 188, 374
Morris, J.M. 112	Ohmine, I. 109
Morrow, T. 49, 64, 393, 399, 984	Ohno, T. 261, 276, 279, 562, 719, 1130
Mosse, M. 291	Ohwada, S. 570, 913
Mueller, A. 106	Oka, M. 437
Mukherjee, R. 854	Okada, T. 342
Muller, A.J. 385, 1045	Okamoto, K. 570
Munn, R.W. 931	Okamoto, M. 154, 706
Munro, I.H. 106, 173, 939	Okamoto, T. 15
Muralidharan, S. 222	Okumura, M. 1104
Murata, I. 413	Olbrich, G. 420
Murata, K. 15	Ono, I. 821
Murgia, S.M. 254, 604, 719	Orloff, M.K. 173
Murofushi, K. 173, 437, 527	Orlowski, T.E. 659
Murty, B.A.R.C. 538	Ortmann, W. 995
	Osaka, K. 821
	•
Mutai, K. 452	Osif, T.L. 719
Nafisi-Movaghar, J. 552	Osipov, V.V. 132
Nagakura, S. 6, 73, 83, 383, 452, 551, 577, 802, 844, 905,	Ostertag, R. 768
1084	Ota, K. 173, 437, 527
Nagumo, T. 259	Ottolenghi, M. 64, 463, 548, 787, 939, 966, 974, 976, 980
Nahor, G.S. 1043	Pagni, R.M. 851
Naito, I. 7, 625, 912	Pailthorpe, M.T. 1109, 1110
Nakajima, A. 586	Pakula, B. 963
Nakajima, K. 13, 263	Pantke, E.R. 235
Nakamura, H. 62, 1049	Parker, C.A. 1064
Nakamura, J. 73, 427, 452, 551, 844	Parsons, B.J. 32, 581, 684, 1009
Nakamura, S. 1049	Pasha, I. 269
Nakamura, T. 939	Pasqua, A. 604
Nakashima, N. 20, 62, 64, 109, 679, 1049	Pasternak, C. 536
Nakasuji, K. 413	Pavlopoulos, T.G. 138, 214, 295, 303, 357, 768, 855,
Nakato, Y. 1049	939, 1021
Nakayama, T. 13, 76, 148, 154, 263, 293, 706, 768, 815	Pecht, I. 715
Naumova, T.M. 64	Pekkarinen, L. 100
Navaratnam, S. 32, 292, 1009	Peng, C.T. 1005
Nelipovich, K.I. 768	Pepmiller, C. 729
Nemeth, G.A. 257	Peradejordi, F. 176
Neta, P. 552	· · · · · · · · · · · · · · · · · · ·
Netzel, T.L. 1104	Periasamy, N. 23
Neumann-Spallart, M. 840	Pernot, C. 631
Newport, G.L. 356	Persy, G. 413
Nicholls, C.H. 1109, 1110	Peteleski, N. 173
Nicol, M. 65	Peters, K.S. 133
Niizuma, S. 866	Peterson, F.C. 64
Nikoforov, V.I. 64	Petrov, S.N. 125
Nishida, Y. 23	Phillips, D. 106
Nishijima, Y. 570	Phillips, G.O. 32, 36, 38, 292, 581, 684, 1009
Nishimura, T. 64	Pierce, R.A. 392

```
Robbins, R.J.
Pikel'ni, V.F. 166
                                                      Roberge, P.C.
                                                                     509, 545, 803, 845, 1059
Pileni, M.-P. 16, 643, 654, 922, 1131, 1143
                                                      Robert, M.-P.
Pineault, R.L. 632
Pirogov, N.O. 245
                                                      Roberts, J.P. 64, 369
Plantenga, F.L. 233, 516
                                                      Robinson, E.A. 1006
Plotnikov, V.G. 1100
                                                      Robinson, G.W.
                                                                      768
Polansky, O.E. 114
                                                      Rodgers, M.A.J. 91, 92, 173, 298, 939, 1023
                                                      Rodionov, A.N.
                                                                       402
Poletti, A. 254, 604, 719
Pomazan, Yu.V. 8, 173
                                                      Roe, D.K. 867
Poplavskii, A.N. 350
                                                      Roe, E.M.F. 645
Popov, L.S. 64, 173
                                                      Roitman, G.P. 97, 722
                                                      Romanov, N.N. 64, 435
Poppe, W. 684
                                                      Romashov, L.V. 23, 719
Porter, G. 7, 8, 23, 35, 41, 62, 64, 106, 190, 259, 284, 552,
                                                      Rommel, E. 413, 606, 851
  743, 819
Poskocil, J. 719
                                                      Ronfard-Haret, J.-C. 143, 238, 246, 919
Potashnik, R. 64, 939
                                                      Rosenfeld, T. 966, 974, 976, 980
                                                      Ross, I.G. 64
Poulos, A.T. 1031
Prabhu, K.V. 727
                                                      Rothenberger, G. 224
Pradevan, G.-O. 1143
                                                      Rougee, M. 1140
Prasad, D.R. 204, 906
                                                      Rousset, A. 1095
Prass, B. 24
                                                      Roy, J.K. 1126, 1128
Pratt, A.C. 931
                                                      Rudolph, E. 901
Pratte, J.F. 513, 575
                                                      Rulliere, C. 509, 545, 803, 1059
Prell, G. 693, 901
                                                      Ruppel, D. 173
                                                      Rushton, F.A.P. 768, 935
Previtali, C.M. 265
Priestley, E.B.
               768
                                                      Ruziewicz, Z. 1095
Prusik, T. 135
                                                      Rygalov, L.N. 869
Ptak, M. 1109
                                                      Sa E Melo, M.T. 246, 598
Pugh, A.C.
                                                      Sabbah, S. 238
            64
Qin, L. 200
                                                      Sadovskii, N.A. 381
Quinn, M.F. 49, 982, 984
                                                      Sagun, E.I. 284
Quinn, M.J.
                                                      Saito, T. 464, 946
             768
                                                      Saito, Y. 1049
Rabani, J. 1043
                                                      Sakaguchi, Y. 427
Rabek, J.F. 152
                                                      Sakata, Y. 73, 846
Raemme, G. 152
Ramanan, G. 64
                                                      Sakhno, T.V. 350
Ramsay, I.A. 173
                                                      Sakuragi, H. 427
Ranalder, U.B.
                484, 768
                                                      Salet, C. 51, 502, 598, 640, 935, 1067, 1070, 1072, 1105,
Ranby, B. 152
                                                        1114
Rand, S.D. 224
                                                      Salmon, G.A. 64, 133, 1005, 1006
Rankin, R. 393, 399
                                                      Saltiel, J. 802
Ranogajec, F. 64
                                                      Salvin, R. 482
Rapp, W. 848
                                                      Santos, O. 956
Rauscher, W. 25
                                                      Santus, R. 16, 21, 57, 599, 631, 643, 760, 1109
Rayez, J.-C. 509, 803
                                                      Sapunov, V.V. 240, 579
Razumov, V.F. 64
                                                      Sarkanen, K. 284
Reddi, E. 298
                                                      Sato, K. 913
Rehak, V. 719
                                                      Savenko, A.K.
                                                                     25
Reichel, L.W. 385
                                                      Scaiano, J.C. 82, 112, 133, 232, 353, 552, 613, 854, 1010,
Reilley, C.N. 989
                                                        1054, 1121
Rentzepis, P.M.
                 83, 224
                                                      Scandola, F. 1106
                                                      Schaeffer, C.G. 133
Reske, G. 137
Reynolds, A.H.
                                                      Schaffner, K. 153
                224
Rhodes, W. 608
                                                      Scheerer, R. 552
Richards, J.T. 470, 939, 1049
                                                      Schmalstieg, H. 330
Richtol, H.H. 809, 990
                                                      Schmitt, U. 696
Ridge, R.J. 1035
                                                      Schnabel, W. 7, 10, 290, 332, 506, 625, 912
                                                      Schneider, B.
Rivera, V. 936
                                                                    22
                                                      Schneider, R.
                                                                    211
```

Schomburg, H. 885	Smith, G.R. 23
Schoof, S. 529	Soboleva, I.V. 381
Schrader, U. 526	Soep, B. 25
Schreiner, S. 645, 1063	Sokolova, L.K. 988
Schulte-Frohlinde, D. 54, 95, 218, 229, 314, 334, 337,	Solov'ev, K.N. 240, 579
420, 461, 535, 672, 678, 713	Soloveichik, O.M. 370
Schulz, R.C. 768	Sommer, U. 106
Schuster, G.B. 223, 589, 1069	Sopchyshyn, F. 164
Schuster, H. 768	Spikes, J.D. 298, 604
Schwarz, H.A. 64	Srinivasan, B.N. 31
Scott, A.R. 164	Staneva, T.G. 50
Scott, G. 1050	Stehlik, D. 24
Scott, G.W. 613, 764, 963	Stein, G. 787
Seely, G.R. 100	Steiner, U. 645, 1063, 1066
Seki, H. 71	
, , , , , , , , , , , , , , , , , , ,	•
Seki, Y. 913	Stewart, T. 768
Selvarajan, N. 251	Strong, R.L. 727
Selwyn, J.C. 854	Struve, W.S. 632
Setif, P. 284	Subudhi, P.C. 505
Shakhverdov, P.A. 287, 653	Sugamori, S.E. 7
	2
Shamraev, V.N. 984	Sugawara, T. 20
Shamshev, V.N. 8, 173	Sumitani, M. 6, 73, 109, 802, 1049
Shatrov, V.D. 125	Suryanarayanan, K. 517, 518, 820
Shaw, R.W. 65	Sutin, N. 1104
Shcherbo, S.N. 29, 423, 424	Swallow, A.J. 768
Sheck, Yu.B. 43	Swenson, G.W. 30
Sheena, H.H. 1050	Sykes, A. 244, 254, 649, 974
	• • •
Shekk, Yu.B. 64	Synowiec, J.A. 62
Shepanski, J.F. 284	Syutkina, O.P. 402
Shibuya, E. 173	Szabo, A.G. 58, 1069
Shigorin, D.N. 29, 350, 402, 423, 424	Szoc, K. 586
Shimizu, K. 552	Szwarc, M. 1021
Shinitzky, M. 536	Szymanski, M. 164
	•
Shioyama, H. 366, 946	Taaffe, J.K. 64
Shirota, Y. 259	Tai, S. 148
Shizuka, H. 9, 133, 165, 767	Tait, D. 299, 931, 1035
Shubin, V.V. 400	Takahashi, T. 546
Shudo, K. 15	Takamuku, S. 506
Shvedova, L.A. 64, 192	Takashima, M. 1121
Shvindt, N.N. 991	Takematsu, A. 7, 822
Siegel, S. 64, 173, 768	
Siemiarczuk, A. 463	Talley, L.D. 963
Silvie, C. 307	Tamai, N. 366, 526
Sime, M.E. 106	Tamminga, J.J. 515, 516
Sinai, N. 133	Tamura, SI. 719, 1063
Sinclair, R.S. 34, 47, 297, 299, 541, 680, 931, 1035	Tanabe, T. 366
Singer, L.A. 211	
Singer, L.A. 211	
	Tanaka, I. 23, 247, 866, 1083
Singh, A. 164, 768	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049
Singh, A. 164, 768 Singh, M. 258	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049 Tanaka, J.A. 212
Singh, A. 164, 768	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049
Singh, A. 164, 768 Singh, M. 258	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049 Tanaka, J.A. 212
Singh, A. 164, 768 Singh, M. 258 Sinitsyna, Z.A. 1, 133, 1095 Skvortsov, B.V. 869, 991	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049 Tanaka, J.A. 212 Tanaka, S. 133 Tanimoto, Y. 474, 552, 619, 1121
Singh, A. 164, 768 Singh, M. 258 Sinitsyna, Z.A. 1, 133, 1095 Skvortsov, B.V. 869, 991 Skvortsov, V.I. 768	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049 Tanaka, J.A. 212 Tanaka, S. 133 Tanimoto, Y. 474, 552, 619, 1121 Tanner, D.W. 64
Singh, A. 164, 768 Singh, M. 258 Sinitsyna, Z.A. 1, 133, 1095 Skvortsov, B.V. 869, 991 Skvortsov, V.1. 768 Slavnova, T.D. 984, 986	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049 Tanaka, J.A. 212 Tanaka, S. 133 Tanimoto, Y. 474, 552, 619, 1121 Tanner, D.W. 64 Tanno, T. 261
Singh, A. 164, 768 Singh, M. 258 Sinitsyna, Z.A. 1, 133, 1095 Skvortsov, B.V. 869, 991 Skvortsov, V.I. 768 Slavnova, T.D. 984, 986 Slifkin, M.A. 66, 144, 343, 536	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049 Tanaka, J.A. 212 Tanaka, S. 133 Tanimoto, Y. 474, 552, 619, 1121 Tanner, D.W. 64 Tanno, T. 261 Tatemitsu, H. 846
Singh, A. 164, 768 Singh, M. 258 Sinitsyna, Z.A. 1, 133, 1095 Skvortsov, B.V. 869, 991 Skvortsov, V.I. 768 Slavnova, T.D. 984, 986 Slifkin, M.A. 66, 144, 343, 536 Slocum, G.H. 223	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049 Tanaka, J.A. 212 Tanaka, S. 133 Tanimoto, Y. 474, 552, 619, 1121 Tanner, D.W. 64 Tanno, T. 261 Tatemitsu, H. 846 Tatikolov, A.S. 64, 192, 441, 552
Singh, A. 164, 768 Singh, M. 258 Sinitsyna, Z.A. 1, 133, 1095 Skvortsov, B.V. 869, 991 Skvortsov, V.1. 768 Slavnova, T.D. 984, 986 Slifkin, M.A. 66, 144, 343, 536 Slocum, G.H. 223 Sloper, R.W. 684	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049 Tanaka, J.A. 212 Tanaka, S. 133 Tanimoto, Y. 474, 552, 619, 1121 Tanner, D.W. 64 Tanno, T. 261 Tatemitsu, H. 846 Tatikolov, A.S. 64, 192, 441, 552 Tatischeff, I. 631
Singh, A. 164, 768 Singh, M. 258 Sinitsyna, Z.A. 1, 133, 1095 Skvortsov, B.V. 869, 991 Skvortsov, V.I. 768 Slavnova, T.D. 984, 986 Slifkin, M.A. 66, 144, 343, 536 Slocum, G.H. 223	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049 Tanaka, J.A. 212 Tanaka, S. 133 Tanimoto, Y. 474, 552, 619, 1121 Tanner, D.W. 64 Tanno, T. 261 Tatemitsu, H. 846 Tatikolov, A.S. 64, 192, 441, 552
Singh, A. 164, 768 Singh, M. 258 Sinitsyna, Z.A. 1, 133, 1095 Skvortsov, B.V. 869, 991 Skvortsov, V.1. 768 Slavnova, T.D. 984, 986 Slifkin, M.A. 66, 144, 343, 536 Slocum, G.H. 223 Sloper, R.W. 684 Small, R.D. 133	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049 Tanaka, J.A. 212 Tanaka, S. 133 Tanimoto, Y. 474, 552, 619, 1121 Tanner, D.W. 64 Tanno, T. 261 Tatemitsu, H. 846 Tatikolov, A.S. 64, 192, 441, 552 Tatischeff, I. 631
Singh, A. 164, 768 Singh, M. 258 Sinitsyna, Z.A. 1, 133, 1095 Skvortsov, B.V. 869, 991 Skvortsov, V.1. 768 Slavnova, T.D. 984, 986 Slifkin, M.A. 66, 144, 343, 536 Slocum, G.H. 223 Sloper, R.W. 684 Small, R.D. 133	Tanaka, I. 23, 247, 866, 1083 Tanaka, J. 62, 1049 Tanaka, J.A. 212 Tanaka, S. 133 Tanimoto, Y. 474, 552, 619, 1121 Tanner, D.W. 64 Tanno, T. 261 Tatemitsu, H. 846 Tatikolov, A.S. 64, 192, 441, 552 Tatischeff, I. 631 Tazuke, S. 366, 913

Volkov, S.V. 12 ten Brink, H.T. Walmslev, R.H. 66, 343 Teply, J. 861 Teranishi, H. 13, 76, 148, 154, 263, 293, 706, 815 Walrant, P. Terenin, A.N. 653 Wardman, P. 64 Testa, A.C. 59, 467, 468, 812, 956 Ware, W.R. 180 Tetreau, C. 173, 176, 414, 669 Waring, A.J. 1125 Tfibel, F. 23, 64, 245, 675 Warman, J.M. 470 Warwick, P. 768 Theard, L.M. 64 Watanabe, S. 837 171, 216, 254, 470, 768, 939, 1045, 1049 Thomas, J.K. Watarai, H. 787 Thompson, G.F. 64, 393, 399 Tobita, S. 1083 Watkins, A.R. 133, 348 Webber, S.E. 513, 575, 919 Tokumaru, K. 427 Webster, D. 505, 938 Tokumura, K. 15, 619 Weers, J.G. 83 Tolg, P.K. 1069 Tom, R. 1090 Wegdam-van Beek, J. 118, 939 Tomioka, Y. 259 Weisman, R.B. 23 Weiss, K. 31, 410, 719, 871, 966, 972 Tomlinson, M. 173 Weller, H. Topp, M.R. 106, 133 415 Torres, C. 936 Welvart, Z. 414 Werner, T. 1069 Toth. M. 133 West, G. 939 Toulme, J.J. 21 Traber, R. 715 West, M.A. 23 Treinin, A. 5, 78 Whillans, D.W. 1072, 1073, 1115 Whitten, D.G. 1126, 1128 Truscott, T.G. 34, 47, 244, 246, 251, 254, 297, 299, 303, Wieder, F. 177 541, 649, 680, 684, 751, 808, 930, 931, 972, 973, 974, 1035 Wierzchowski, K.L. Wilbrandt, R. 605, 972 Tsubomura, H. 133, 259, 470, 679, 1049 Tsvirko, M.P. 240, 579 Wild, U.P. 64, 484, 641, 725, 768, 1046 Tung, C. 892 Wildes, P.D. Tung, C.-H. 1045 Wilkinson, F. 1, 64, 133, 234, 254, 529, 552, 631, 768, Turro, N.J. 133, 892, 1045 878, 1121 Udagawa, H. 474, 552 Williams, D.J. 284, 659 Uii-ie, K. 23 Willsher, C.J. 133, 768 Umehara, Y. 1084 Windsor, M.W. 7, 64, 65, 827, 940 Urruti, E.H. Winter, G. 1063, 1066 733 Usacheva, M.N. 132 Wirz, J. 330, 413, 606, 774, 851, 886, 951 Usui, Y. 719, 1063 Wismontski-Knittel, T. 88, 209, 352, 682 Uzhinov, B.M. Wojtczak, J. 164 673 Val'kova, G.A. 29, 350, 423, 424 Wolff, T. 799, 900 Wolleben, J. 59, 467, 812 Vala, M. 854 Vandenburg, M.J. 32 Wood, B. 1023 Vandendriessche, J. 366 Woodruff, W.H. 92 van den Ende, C.A.M. 516 Woods, R.J. 23 Vander Donckt, E. 35, 64, 167, 308 Wulff, V.J. 972 Vanderkooi, J.M. 1125 Wyman, G.M. 337 van der Ploeg, P.M. 233 Wyrzykowska, K. 410 Vannikov, A.V. 64, 618 Yamada, A. 261 van Sinoy, A. 167 Yamada, H. 679 van Vooren, C. 64 Yamada, T. 211 van Voorst, J.D.W. 118, 939 Yamamoto, M. 570 van Zeyl, P.H.M. 516 Yamamoto, N. 133, 470, 1049 Varma, C.A.G.O. 233, 515, 516, 525 Yamamoto, S. 23, 64, 71, 80, 245, 570, 822 Verhoeven, J.W. 525 Yamamoto, S.-A. 23, 80, 166 Veyret, B. 31, 966 Yamamuro, T. 247 Vinogradov, A.M. 435 Yamashita, H. 492 Viovy, R. 284 Yasoshima, S. 946 Visser, A.J.W.G. 714 Yates, S.F. 1069 Vogelmann, E. 25, 835 Yavrouian, A. 613 Volkert, W.A. 1109 Yellowlees, L.J. 1105

Yildiz, A. 989 Yip, R.W. 7, 1069

Yokoyama, K. 263, 452, 1049

Yorozu, T. 171 Yoshida, K. 171 Yoshida, M. 846, 966

Yoshihara, K. 6, 20, 62, 109, 112, 802, 1049

Yoshino, J. 173, 437 Young, R.H. 719 Younis, A.I. 947 Zachariasse, K.A. 526 Zador, E. 470 Zakhs, E.R. 670 Zander, M. 114

Zanker, V. 22, 25, 693, 901

Zanocco, A. 232
Zavyalov, Yu.A. 1100
Zen'kevich, E.I. 284
Zhmyreva, I.A. 12
Zhuravlyeva, T.S. 237
Zupancic, J.J. 589
Zwart, J.P. 233

Zwicker, E.F. 562