Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(³P) with Sulfur Containing Compounds

Cite as: Journal of Physical and Chemical Reference Data **17**, 1377 (1988); https://doi.org/10.1063/1.555811 Submitted: 30 June 1987 . Published Online: 15 October 2009

D. L. Singleton, and R. J. Cvetanović

ARTICLES YOU MAY BE INTERESTED IN

Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds

Journal of Physical and Chemical Reference Data **15**, 1087 (1986); https://doi.org/10.1063/1.555759

Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(⁵P) with Saturated Organic Compounds in the Gas Phase

Journal of Physical and Chemical Reference Data 17, 967 (1988); https://doi.org/10.1063/1.555810

Evaluated Kinetic Data for Combustion Modelling

Journal of Physical and Chemical Reference Data **21**, 411 (1992); https://doi.org/10.1063/1.555908

Where in the world is AIP Publishing? Find out where we are exhibiting next

Journal of Physical and Chemical Reference Data **17**, 1377 (1988); https://doi.org/10.1063/1.555811 © 1988 American Institute of Physics for the National Institute of Standards and Technology.

Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(³P) with Sulfur Containing Compounds

D. L. Singleton

Division of Chemistry, National Research Council of Canada, Ottawa, Canada, K1A 0R9

and

R.J. Cvetanović

Chemical Kinetics Division, Center for Chemical Physics, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Received June 30, 1987; revised manuscript January 19, 1988

Chemical kinetic data for reactions of O(³P) atoms with sulfur containing compounds are compiled and critically evaluated. Specifically, the reactions considered include the interactions of the ground electronic state of oxygen atoms, O(³P), with S₂, SF₂, SF₅, SOF, S₂O, SO, SO₂, SO₃, SH, H₂S, D₂S, H₂SO₄, CS, CS₂, COS, CH₃SH, C₂H₅SH, C₃H₇SH, C₄H₉SH, C₅H₁₁SH, CH₃SCH₃, cy-CH₂SCH₂, cy-CHCHSCHCH, CH₃SSCH₃, SCF₂, SCCl₂, and cy-CF₂SCF₂S. With one exception, the liquid phase reaction O(³P)+H₂SO₄ \rightarrow products, all the data considered were for gas phase reactions. Where possible, "Recommended" values of the rate parameters have been assessed and conservative uncertainty limits assigned to them.

Key words: Arrhenius parameters; atomic oxygen; chemical kinetics; evaluated kinetic data; $O({}^{3}P)$; rate of reaction; recommended kinetic parameters; sulfur.

Contents

Intro	duction	1377
1.1.	Overview	1377
1.2.	Reaction Mechanism	1377
1.3.	Selection of Recommended Rate	
	Parameters and Their Uncertainty	
	Factors	1378
1.4.	Organization	1379
1.5.	Guide to Summary of Recommended	
	Rate Parameters	1379
	1.1. 1.2. 1.3. 1.4.	 1.2. Reaction Mechanism. 1.3. Selection of Recommended Rate Parameters and Their Uncertainty Factors 1.4. Organization. 1.5. Guide to Summary of Recommended

1. Introduction

1.1. Overview

The present evaluation of chemical kinetic data for the elementary reactions of $O({}^{3}P)$ atoms with sulfur containing compounds follows a recent evaluation of kinetic data for the $O({}^{3}P)$ reactions with unsaturated hydrocarbons¹. As pointed out there, these evaluations represent a part of a larger effort directed towards the development of a comprehensive general evaluated chemical kinetic data base. More specifically, they are a part of the broader data base for all $O({}^{3}P)$ reactions with organic and inorganic reactants. They are thus also a part of an extensive data base, currently developed by the Chemical Kinetics Data Center of the National Bureau of Standards, dealing with chemical oxidation processes, in

	1.6. Guide to the Reaction Data Sheets	1379
	1.7. Acknowledgments	1379
	1.8. References to the Introduction	1379
2.	Summary of Symbols and Units	1379
3.	Index of Reactions and Summary of	
	Recommended Rate Parameters	1381
4.	Reaction Data Sheets	1384

particular those involved in thermal combustion and in atmospheric chemistry.

The main object of the present evaluation has been to compile as many as possible of the published values of reaction rates of the elementary steps involved in the reactions of $O({}^{3}P)$ atoms with organic and inorganic sulfur containing compounds and to use them to arrive at an estimate of the "recommended" (or "preferred") values of the kinetic parameters and their uncertainties.

1.2. Reaction Mechanisms

There are some far-reaching similarities between the $O(^{3}P)$ reactions with some of the sulfur containing compounds, especially when sulfur is in a low oxidation state, and those with unsaturated hydrocarbons. As discussed in the earlier evaluation¹, interaction of a ground state oxygen atom, $O(^{3}P)$, with an organic or inorganic compound may in principle lead to any of the following three types of chemical change: 1) "Abstraction" by the

^{©1988} by the U. S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society.

Reprints available from ACS; see Reprints List at back of issue.

O atom of an atom from the compound, 2) "Addition" of the O atom to the compound, and 3) "Replacement" (or "displacement") by the O atom of an atom or atomic group (radical) from the compound. "Replacement" itself is of necessity initially an addition, combined with subsequent or simultaneous fragmentation of the initial adduct. "Insertion" is a particular type of addition in which the atom inserts into a bond of a compound; for $O(^{3}P)$ atoms this may be sometimes spin forbidden and not likely to occur (although it is not spin forbidden for $O(^{1}D_{2})$ atoms reacting with hydrocarbons and occurs readily²).

Rapid addition of $O({}^{3}P)$ atoms to the CC double bond is the main and perhaps frequently the exclusive initial process in their reactions with alkenes^{3-5,6}. Similarly, in the $O({}^{3}P)$ reactions with a number of sulfur containing compounds rapid addition of $O({}^{3}P)$ to an S atom in the compound is the main and perhaps sometimes the exclusive initial process. At least at not too elevated temperature and with $O({}^{3}P)$ atoms not kinetically excited ("hot"), abstraction cannot compete effectively with the very rapid $O({}^{3}P)$ addition to the double bond. However, at sufficiently high temperature, or with sufficiently "hot" $O({}^{3}P)$ atoms, abstraction of H atoms may be expected to become more important⁵.

Kinetic behavior of methyl sulfide^{7,8} and dimethyl disulfide⁸ and of alkenes in their reactions with $O({}^{3}P)$ atoms is very similar: oxygen atoms add very rapidly to S atoms and to CC double bonds, respectively, and, moreover, the activation energies tend to be negative in both cases, especially so in the more rapid of these reactions. In both cases the exothermicities are relatively high and initial adducts tend to undergo rapid fragmentation. In view of these similarities and the type of products formed, it can be assumed that the primary process in the reaction of $O({}^{3}P)$ with methyl sulfide and dimethyl disulfide is $O({}^{3}P)$ attachment to S to form an energy-rich adduct which readily fragments.

The addition mechanism appears to apply also, at least in part, to alkane thiols and probably to some other sulfur organics, as well as to H_2S . However, since the initial adduct rapidly fragments, it is difficult to differentiate, for example, between a primary abstraction and a primary addition. A good example⁹ of such mechanistic ambiguity is the reaction $O + H_2S \rightarrow$ products, in which the observed products are OH and SH, i.e. the expected "abstraction" products. In view of such ambiguities, and the considerable analytical difficulties frequently associated with S containing compounds, there remain serious uncertainties in the literature regarding the reaction channels, the branching ratios and finer details of the reaction mechanisms. As a consequence, the primary emphasis in the present evaluation is on the overall rate constants, as it has been also in the earlier evaluation of the related series of O(³P) reactions with unsaturated hydrocarbons¹. At the same time, when information is available, alternative reaction channels are indicated in the present evaluation and their rates are listed and the pertinent references given.

1.3. Selection of Recommended Rate Parameters and Their Uncertainty Factors

Reliability of the kinetic data used in the present evaluation has been assessed in particular by scrutinizing the experimental techniques employed, the thoroughness of investigation, the number and precision of measurements, and the consistency with other reported values in the literature when these are available. Although single experimental values have been reported for a number of the reactions considered, some of them are believed to be sufficiently reliable to justify their inclusion into the list of recommended values and assignment of conservatively estimated uncertainty limits. In such cases, as well as when no recommendation is considered possible, or when the derived recommended values are based on more than one reported value but the estimated uncertainty limits are large, further experimental measurements of the rate constants will evidently be needed.

As discussed earlier¹, as a result of potential presence of unknown ("hidden") systematic errors in the measured values of rate constants of a reaction, there are no standard statistical methods for a quantitative evaluation from the data reported in the literature of the expected "best" value and its confidence limits. When two or preferably more values obtained by different techniques have been reported, and there is close agreement between them (within the combined imprecisions), it is reasonable to assume that systematic errors are probably less important than the random errors. In such cases use of standard weighted least squares techniques may be justified and is equivalent to treating any residual systematic errors as random errors.¹⁰ As was done previously¹, in the present evaluation the "recommended values" were generally obtained as the mean weighted least squares values. Depending on the estimated reliability of the data, smaller (and, in rare cases, zero) statistical weights were assigned to some literature values of rate parameters. Thus, for example, for the O atom reaction with dimethyl sulfide at 300 K, the k value of 74 CAD/ WIC is two orders of magnitude smaller than the other values for the same reaction and is therefore assigned zero weight.

Since the procedure used is of necessity subjective, conservatively estimated probable overall uncertainties were assigned to the selected "recommended" values of k and the Arrhenius A factor. It was found convenient to express these uncertainties in k and A in the form of uncertainty factors (which must not be taken to imply that the errors in the rate constants are necessarily lognormally distributed). The uncertainties assigned to the Arrhenius B, expressed as additive (\pm) deviations, are also approximate estimates.

The evaluation covers the investigated (and documented in the literature) $O({}^{3}P)$ reactions with organic and inorganic sulfur containing compounds. With one exception, only gas phase reactions have been considered. For previous evaluations of kinetic data for some of these reaction systems see, for example, Reference 11.

1.4. Organization

The material presented in this article is divided into four sections. Section 1 is the Introduction. Section 2 gives a brief summary of the adopted symbols and units. Section 3 contains a table of all recommended kinetic parameters and the page numbers indicating the locations of the detailed tabulations of the kinetic data for the listed reactions. Section 4 contains the data sheets for $O(^{3}P)$ reactions with organic and inorganic sulfur containing compounds with the lists of references.

1.5. Guide to Summary of Recommended Rate Parameters

The Table in Section 3 summarizes the recommended values of the kinetic parameters for the listed gas phase second and third order reactions. The information is displayed in 7 columns. Column 1 ("Reaction") contains the reaction formula and the chemical name of the species reacting with O(³P) atoms. If Column 2 ("T/K") contains a single temperature, e.g. 298, the value in Column 3 ("k, A") is k at that temperature; if it contains a temperature range, e.g. 200–500, the value in Column 3 is the Arrhenius A. The units of k and A for the second and third order reactions are cm³ mol⁻¹ s⁻¹ and cm⁶ mol⁻² s⁻¹, respectively. The values are given in exponential form, written as $(1.00\pm0.10)(11)$, which signifies $(1.00\pm0.10)\times10^{11}$.

Columns 4 ("n") and 5 ("B") contain, if applicable, the *n* and *B* parameters in the extended Arrhenius Eq. $k = A(T/298)^n \exp(-B/T)$. Column 6 ("k err. factor") contains the assigned uncertainty factors of k and A, and Column 7 ("Page") lists the page number showing the location of the detailed tabulation of kinetic data for the reaction.

1.6. Guide to the Reaction Data Sheets

With one exception, all kinetic data listed are for gas phase reactions. The data in the Data Sheets are divided into eight columns. Column 1 ("Reference Code, Notes") contains Reference Code and Notes relevant to the data entered and the techniques employed. When, for brevity, the reference code is omitted from Column 1 of a data line, it is the same as the closest reference code in Column 1 in one of the preceding data lines. The Reference Code consists of the last two digits of the year of publication, followed by the first three letters of the names of the first and second author (if present) separated by a slash. An integer index is attached at the end when it is necessary to differentiate between otherwise identical Codes. This is illustrated by the Code 80 LEE/ TAN2. Column 2 ("Data type") contains the two-character Data Type Codes listed in Section 2. If Column 3 ("T/K") contains a single temperature, e.g. 298, the value in Column 4 ("k, k/k(ref), A, A/A(ref)") is k (or k/k (ref)) at that temperature; if it contains a temperature range, e.g. 200-500, the value in Column 4 is the Arrhenius A parameter (or A/A (ref)). Column 5 ("n") and Column 6 ("B, B-B(ref)"), respectively, contain, when applicable, the n and B (or B-B(ref)) parameters in the extended Arrhenius Eq. $k = A(T/298)^n \exp(-B/T)$. k(ref), A (ref) and B (ref) are the kinetic parameters of the reference reaction in relative rate determinations. Column 7 ("k, A units") specifies the reaction order and thus defines the units of k and A, as listed in Section 2. Column 8 ("k err. factor") lists the overall uncertainty factors assigned to k and A.

1.7. Acknowledgments

This work was supported by the Department of Energy, Division of Basic Energy Sciences and the Office of Standard Reference Data, National Bureau of Standards.

1.8. References to the Introduction

¹Cvetanović, R. J., "Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(³P) with Unsaturated Hydrocarbons," J. Phys. Chem. Ref. Data **16**, 261 (1987).

²Yamazaki, H., and Cvetanović, R. J., "Collisional Deactivation of the Excited Singlet Oxygen Atoms and Their Insertion into the CH Bonds of Propane," J. Chem. Phys. **41**, 3703 (1964).

- ³Cvetanović, R. I., "Electrophilic Character of Oxygen Atoms," Can. J. Chem. 38, 1678 (1960).
- ⁴Cvetanović, R. J., "Addition of Atoms to Olefins in the Gas Phase," Adv. Photochem. 1, 115 (1963).
- ⁵Cvetanović, R. J., and Singleton, D. L., "Reaction of Oxygen Atoms with Olefins," Rev. Chem. Inter. 5, 183 (1984).
- ⁶Huie, R. E., and Herron, J. T., "Reactions of Atomic Oxygen (O³P) with Organic Compounds," Prog. React. Kinet. 8, 1 (1975).
- ⁷Slagle, I. R., Graham, D. E., and Gutman, D., "Direct Identification of Reactive Routes and Measurement of Rate Constants in the Reactions of Oxygen Atoms with Methanethiol, Ethanethiol, and Methylsulfide," Int. J. Chem. Kinet. 8, 451 (1978).
- ⁸Cvetanović, R. J., Singleton, D. L., and Irwin, R. S., "Gas-Phase Reactions of O(³P) Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 2. Reaction Products and Mechanisms," J. Am. Chem. Soc. **103**, 3530 (1981).
- ⁹Singleton, D. L., Paraskevopoulos, G., and Irwin, R. S., "Mechanism of the $O(^{3}P) + H_{2}S$ Reaction. Abstraction or Addition?," J. Phys. Chem. **86**, 2605 (1982).
- ¹⁰Cvetanović, R. J., Singleton, D. L., and Paraskevopoulos, G., "Evaluations of the Mean Values and Standard Errors of Rate Constants and Their Temperature Coefficients," J. Phys. Chem. 83, 50 (1979).
- ¹¹Herron, J. T., and Huie, R. E., "Rate Constants for the Reactions of Atomic Oxygen (O³P) with Organic Compounds in the Gas Phase," J. Phys. Chem. Ref. Data 2, 467 (1973).

2. Summary of Symbols and Units

Reaction Phase Codes:

G=gas, L=liquid, S=solid, M=mixed phases (gasliquid, gas-solid, liquid-solid, gas-liquid-solid)

Data Type Codes:

- EX (experimentally measured absolute value),
- RL (experimentally measured relative value),
- RN (RL normalized to absolute value),
- TH (theoretical value),

- DE (derived indirectly, e.g. using reverse rate and equilibrium constant, or computer simulation of a complex mechanism)
- CO (computed numerically),
- ES (estimated, by analogy etc.),
- SE (selected in the literature as probable "best" value),
- RE (currently recommended value).

Type of excitation:

- (EXV) (vibrationally excited)
- (EXT) (translationally excited)
- (EXE) (electronically excited)
- (EXEV) (electronically and vibrationally excited), etc.

Decadic exponent notation: 1.2(11) (stands for 1.2×10^{11})

Temperature (T): in kelvins (K).

Arrhenius parameters are defined by $k = A(T/298)^n \exp(-B/T)$

Unit Codes for k, k/k(ref), A, A/A(ref): 1 (s⁻¹) 2 (cm³ mol⁻¹ s⁻¹) 3 (cm⁶ mol⁻² s⁻¹) 1/1, 2/2 etc. (dimensionless)

2/1 (cm³ mol⁻¹), etc.

- (T/298) and n (the exponent of T) are dimensionless.
- Units for B, B-B(ref): kelvins (K). (Arrhenius parameter $E=R \times B$).
- k(ref), A(ref) and B(ref) are the values for the "reference reaction" in relative rate determinations.
- k err. factor: Estimated overall Uncertainty Factor. It multiplies and divides k or A to indicate approximate error limits. It does not imply that errors in k are necessarily lognormally distributed.

1380

Reaction		T/K	k, An cm ³ mol ⁻¹ s ⁻¹	В	k err. factor	Page
0 + S ₂ → products		409	7(12)	······································	1.2	1384
O + Sulfur dimer		298	1(13)		4	
(Tentative suggestion	for 298K)					
0 + SF ₂ → products		298	6.5(13)		1.3	1385
) + Sulfur fluoride (SF ₂	⁵)					
0 + SF ₅ → products		298	1.2(13)		1.3	1385
O + Sulfur fluoride (SF	³)					
0 + SOF → products		298	4.8(13)		2	1386
0 + Sulfur fluoride oxid	le					
0 + S ₂ 0 → products		298	9.3(11)		1.3	1386
0 + Sulfur oxide (S ₂ O)						
0 + s0 + M → s0 ₂ + M	(k∞)	298	3.2(13)		1.5	1387
O + Sulfur monoxide	(M=Ar)	298	1.85(17)cm ⁶ mol ⁻² s ⁻¹		1.2	
k relative to k(M=Ar) a	at 298K:					
Ar=1.0, Ne=0.88, Kr=1.1	18, He=1.25	,				
Xe=1.28, N ₂ =1.51, CF ₄ =7	7.84,					
CO2=8.22, CH4=8.65, SF	₅ =9.62,					
C ₃ F ₈ =12.2, H ₂ =13.7, D ₂ =	=13.7.					
$0 + S0 \rightarrow S0_2 + hv$		298	2(8)		3	1389
0 + Sulfur monoxide						
0 + so ₂ + M → so ₃ + M	(M=Ar)	299	3.7(14)cm ⁶ mol ⁻² s ⁻¹		1.3	1390
0 + Sulfur dioxide	(M=Ar)	299-440	1.1(16)cm ⁶ mol ⁻² s ⁻¹	1010±200	1.5	
	(M=Ar)	1700-2500	1.06(13)cm ⁶ mol ⁻² s ⁻¹	-7870	2	
	(M≕He)	298	$3.5(14) \text{ cm}^{6} \text{mol}^{-2} \text{s}^{-1}$		1.3	
	(M=He)	248-415	4.0(16)cm ⁶ mol ⁻² s ⁻¹	1400±200	1.5	
k relative to k(M=Ar) a	at 298K:					
Ar=1.0, He=0.9, N ₂ =1.3,	0 ₂ =1.3.					
$N_2O=3$, $SO_2=10$, within a	about 30%,					
for SO ₂ up to a factor	of 3.					
0 + so ₂ → so + o ₂		440-3000	5(12)	9800	3	1396
D + Sulfur dioxide						
) + SO ₃ → products						1397
						100/

3. Index of Reactions and Summary of Recommended Rate Parameters

0 + Sulfur trioxide

.

,

Reaction	T/K	k,A cm ³ mol ⁻¹ s ⁻¹	n	В	k err. factor	Page
0 + so ₃ + M → so ₂ + o ₂ + M						1399
0 + Sulfur trioxide						
0 + SH → H + SO	298	1.4(14)			з	1400
O + Mercapto						
0 + SH → OH + S						1401
0 + Mercapto						
0 + H ₂ S → products	298	1.5(10)			1.3	1401
0 + Hydrogen sulfide	263-502	6.0(12)		1789±200	1.8	
ο + D ₂ ε → ορ + ερ	298	4.7(9)			1.4	1405
0 + Deuterium sulfide	298-450	6.3(12)		2144±200	2	
0 + H ₂ S → SO + H ₂						1405
0 + Hydrogen sulfide						
0 + H ₂ S → HSO + H	298	<0.2 *)			1.1	1406
O + Hydrogen sulfide						
*) Branching ratio (nondimension	al)					
0 + H ₂ SO ₄ → products	298	#)				1407
O + Sulfuric acid						
#) Rn. probability per collison						
< 1.0(-6) (nondimensional).						
0 + CS → products	298	1.2(13)			1.2	1408
0 + Carbon monosulfide	156-305	1.5(14)		751±100	1.5	
0 + CS ₂ → products	298	2.3(12)			1.2	1411
0 + Carbon disulfide	218-920	3.55(13)		821±100	1.5	
$0 + CS_2 \rightarrow COS + S$	298	2.1(11)			1.3	1415
0 + Carbon disulfide	249-500	2.2(12)		701±100	2	
$0 + CS_2 \rightarrow CO + S_2$	298	1.4(-2) *)			1.2	1416
O + Carbon disulfide k(298K)	298	3.5(10)			1.3	
*) Branching ratio (nondimension	al)					
0 + COS → products	298	8.0(9)		×	1.2	1417
0 + Carbon oxide sulfide	239-523	1.6(13)		2257±200	1.3	
	239-1900	4.7(13)		2621±200	1.5	
0 + cos → co ₂ + s	1200	5(11)			3	1422
C + Carbon oxide sulfide	1200-1900	5(13)		5530±1000	3	

Index of Reactions and Summary of Recommended Rate Parameters -- Continued

1383

Reaction	T/K	k,A cm ³ mol ⁻¹ s ⁻¹	n	В	k err. factor	Page
0 + CH ₃ SH → products	298	1.2(12)			1.2	1422
0 + Methanethiol	252-661	*)	*)	*)	1.3	
*) Strongly curved Arrhenius plot:						
k=A1+A2exp(-B/T) with A1=9.0(11),						
A2=1.8(13), B=1261.						
0 + C ₂ H ₅ SH → products	298	1.7(12)			1.2	1424
0 + Ethanethiol	256-574	*)	*)	*)	1.4	
*) Strongly curved Arrhenius plot:						
k=A1+A2exp(-B/T) with A1=1.6(12),						
A2=1.0(14), B=2198.						
0 + C ₃ H ₇ SH → products	298	1.6(12)			1.3	1427
0 + 1-Propanethiol	303-421	8.3(12)		494±50	1.5	
0 + C ₄ H ₉ SH → products	298	2.0(12)			1.3	1427
0 + 1-Butanethiol	306-419	5.8(12)		321±50	1.5	
0 + C ₅ H ₁₁ SH → products	298	2.1(12)			1.3	1428
0 + 1-Pentanethiol	302-409	6.2(12)		328±50	1.5	
0 + CH ₃ SCH ₃ → products	298	3.1(13)			1.2	1429
0 + Methane, thiobis-	252-557	8.2(12)		-397±100	1.3	
0 + cy-CH ₂ SCH ₂ - products	298	7.6(12)			1.3	1431
0 + Ethylene episulfide	268-424	8.1(12)		18±50	1.5	
0 + cy-CHCHSCHCH → products						1432
0 + CH ₃ SSCH ₃ → products	298	6.0(13)			1.2	1433
O + Disulfide, dimethyl-	298-570	2.6(13)		-250±100	1.5	
0 + SCF ₂ → products	298	2.1(12)			1.5	1435
0 + Carbonothioic difluoride	259-493	7.4(12)		376±100	1.5	
0 + SCC1 ₂ → products	298	2.3(13)			1.3	1436
0 + Carbonothioic dichloride	251-493	1.9(13)		-60±100	1.5	1400
0 + cy-CF ₂ SCF ₂ S → products	298	8.1(11)			1.9	
0 + 1,3-dithietane,	253-493	1.4(13)		855±100	1.3	1437
2,2,4,4-tetrafluoro-	,00			0002100	1.5	

Index of Reactions and Summary of Recommended Rate Parameters -- Continued

4. Reaction Data Sheets

$0 + S_2 \rightarrow \text{products}$

<u>O + Sulfur dimer</u>

The assumed reaction product is SO+S (68 HOM/KRO, 87 HIL/CIC).

Reference Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k err. facto:
88 HOM/KRO	EX :	1050	4(12)			2	
Discharge flow. O formed by microwave discharge							
in N_2/Ar , followed by N+NO+O+N ₂ . SO formation							
monitored by mass spec. Excess [S ₂] over [O].							
P=2 Torr. Uncertainty is an order of magnitude.							
73 SCH	SE	1050	4(12)			2	
Only one reported value (68 HOM/KRO).							
37 HIL/CIC	EX	409	(6.62±0.78)(12)			2	
	RN	409	(7.17±1.02)(12)			2	
Discharge flow. Decay of S_2 in excess 0 moni-							
tored by mass spec. O formed by microwave dis-							
charge in O_2 . For absolute k measurement, [O]							
was determined by titration with excess NO_2 .							
For relative rate measurement, $O + NO_2$ was used							
as the reference rn. (taking k_{ref} =5.6(12) from							
85 DEM/MAR). Decay of NO ₂ was measured in ex-							
cess O. P = 0.89-1.60 Torr.							
Recommended value of k	RE	409	7(12)			2	1.2
Suggested tentative value of k at 298 K	RE	298	1(13)			2	4
Based on the data of 87 HIL/CIC and potential e	xtrem	e val	as of 68 HOM/KRO. Mo.	re dete	rminations		

References for reaction $0 + S_2 \rightarrow$ products

68 HOM/KRO	Homann, K.H., Krome, G., and Wagner, H.Gg., "Schwefelkohlenstoff-oxydation, geschwin-
	digkeit von elementarreaktionen. Teil 1," Ber. Bunsenges. Fhys. Chem. 72, 998 (1968).
73 SCH	Schofield, K., "Evaluated chemical kinetic rate constants for various gas phase reac-
	tions," J. Phys. Chem. Ref. Data 2, 25 (1973).
85 DEM/MAR	NASA Panel for Data Evaluation: DeMore, W.B., Margitan, J.J., Molina, M.J., Watson,
	R.T., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., and Ravishankara, A.R.,
	"Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evalu-
	ation number 7, "J.P.L. Publ. 85-37 (1985).
87 HIL/CIC	Hills, A.J., Cicerone, R.J., Calvert, J.G., and Birks J.W., "Kinetics of the reac-

tions of S₂ with O, O₂, O₃, N₂O, NO, and NO₂," J. Phys. Chem., **91**, 1199 (1987).

$0 + SF_2 \rightarrow \text{products}$

<u>0 + Sulfur fluoride (SF₂)</u>

Reference Code, Notes	Data type		K k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	•	k err. factor
86 FLU/RYA Discharge flow-mass spec. Decay rate of SF ₂ in excess 0. 0 and SF ₂ formed by microwave dis- charge in O_2 /He and in SF ₆ /He. SOF, SO, and SO ₂ were detected as products.	EX	295	(6.5±1.2)(13)			2	
Recommended value of k Based on the only data available (86 PLU/RYA).		298 tion	6.5(13) Al determinations would	i be usef	ul.	2	1.3

Reference for reaction $0 + SF_2 \rightarrow$ products

86 PLU/RYA Plumb I.C., and Ryan K.R., "Gas-phase reactions of SF₅, SF₂, and SOF with O(³P): their significance in plasma processing," Plasma Chem. Plasma Processing, 6, 247-258 (1986).

$0 + SF_5 \rightarrow \text{products}$

<u>0 + Sulfur fluoride (SF₅)</u>

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k err. factor
86 PLU/RYA Discharge flow-mass spec. Decay rate of SF_5 in excess 0. 0 and SF_5 formed by microwave dis- charge in O_2/He and in SF_6/He . Products are as-	EX 2	95	(1.2±0.3)(13)			2	
sumed to be SOF ₄ +F. Recommended value of k Based on the only data available (86 FLU/RYA).	RE 2 Additi		1.2(13) determinations would b	e usef	ul.	2	1.3

Reference for reaction $0 + SF_5 \rightarrow$ products

85 FLU/RYA Plumb I.C., and Ryan K.R., "Gas-phase reactions of SF₅, SF₂, and SOF with O(³P): their significance in plasma processing," Plasma Chem. Plasma Processing, 6, 247-258 (1986).

1386

0 + SOF → products

0 + Sulfur fluoride oxide

Reference Code, Notes	Data type		k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k err. factor
86 PLU/RYA	EX	295	(4.8±1.2)(13)			2	
Discharge flow-mass spec. Analysis of the for-							
mation and decay of SOF in the rn. $O+SF_2$. O							
and SF_2 formed by microwave discharge in O_2/He							
and in SF ₆ /He.							
Recommended value of k	RE	298	4.8(13)			2	2
Based on the only data available (86 PLU/RYA).	Addi	tional	determinations would be	use	ful.		

Reference for reaction $0 + SOF \rightarrow products$

86 PLU/RYA Plumb I.C., and Ryan K.R., "Gas-phase reactions of SF₅, SF₂, and SOF with O(³P): their significance in plasma processing," Plasma Chem. Plasma Processing, 6, 247-258 (1986).

0 + S₂0 → products

<u>0 + Sulfur oxide (S₂0)</u>

Reference Code, Notes	Data type	-	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. factor
74 STE/ALV	RL	298	0.17±0.02			2/2	
	RN	298	(9.3±1.2)(11)			2	
Reference rn. is O+NO ₂ →NO+O ₂ . Discharge flow.							
O formed by microwave discharge of O_2/Ar or by							
N+NO rn. The RL value obtained by comparing the							
O+SO and O+NO chemiluminescences for different							
flow rates of S_2O and NO_2 . [RN value has been							
updated using kref~5.6(12) (65 DEM/MAR)]. SO							
observed as a product.							
Recommended value of k	RE	298	9.3(11)			2	1.3
Based on the only data available (74 STE/ALV).	Addi	tional	determinations would b	e usef	ul.		

References for reaction $0 + S_2^0 \rightarrow \text{products}$

74 STE/ALV Stedman, D.H., Alvord, H., and Baker-Blocker, A., "Chemiluminescent reactions of disulfur monoxide," J. Phys. Chem. 78, 1248 (1974).

CHEMICAL KINETIC DATA FOR REACTIONS OF OXYGEN WITH SULFUR COMPOUNDS 1387

References for reaction 0 + S_2 0 \rightarrow products --Continued

85 DEM/MAR NASA Panel for Data Evaluation: DeMore, W.B., Margitan, J.J., Molina, M.J., Watson, R.T., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., and Ravishankara, A.R., "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation number 7," J.P.L. Publ. 85-37 (1985).

$0 + SO + M \rightarrow SO_2 + M$

0 + Sulfur monoxide

Reference Code, Notes	Data type		k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err. units factor
66 HAL/THR Discharge flow. O and SO formed by microwave discharge in SO ₂ /Ar. [O] and [SO] monitored by O+NO and O+SO chemiluminescences.	EX	300	(3.2±0.4)(17)			3
67 SHA/PAD *) Room T. M=Ar. P=0.8 Torr. Obtained SO in the rn. O+COS. Rate of light emission measured re- lative to the reaction $O+NO+NO_2+hv$. The second order rate constant was derived using $k(O+NO+NO_2+hv)$, $k(O+COS+CO+SO)$, and relative emission intensities of the $O+NO+NO_2+hv$ and $O+SO+SO_2+hv$ rns. The listed termolecular k was obtained by dividing the second order constant by P. (See also 67 SHA/PAD in the next data sheet).	RN	*)	8.0(16)			3
70 TAK M=Ar. P(Ar)=4.2 Torr. Discharge flow. O formed by microwave discharge of N ₂ O/Ar. [O] monitored by chemiluminescence from 0+NO ₂ and 0+NO Rns. SO formed by reaction of excess O with H ₂ S, and its decay monitored by chemiluminescence from 0+SO reaction.	EX	293	5.8(16)			3
71 MIY/TAK *) Room temperature. M=Ar. P=3.8 Torr. Dis- charge flow. O formed by microwave discharge of N ₂ O/Ar. SO formed by reaction of O with CS ₂ . Formation of SO ₂ monitored by its chemilumines- cence. k calculated from the integrated rate equation for initially equal [O] and [SO].	EX	*)	7.3(16)			3
73 SCH Based on only one measurement (66 HAL/THR).	SE	300	3.2(17)			3

0 + SO + M → SO₂ + M -- Continued

Reference Cod	le, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k ern facto
76 BAU/DRY	·	SE	298	(6.7±2.0)(16)			3	
M=Ar.								
78 HAM/GAR		SE	298	6.7(16)			3	1.3
M=Ar. Accepted recom	mendation of 76 BAU/DRY.							
85 COB/HIP	(M=Ar P=0.2-200 bar)	EX	300	1.85(17)			3	
	(M=N ₂ P=0.2-200 bar)	EX	300	2.79(17)			3	
	(M=C ₃ F ₈ P=0.2-3 bar)	EX	300	2.25(18)			3	
	(M=He P=0.2-25 bar)	EX	300	2.32(17)			3	
	(M=Ne P=0.5-5 bar)	EX	300	1.63(17)			3	
	(M=Kr P=1-5 bar)	EX	300	2.18(17)	,		3	
	(M=Xe P=0.2-5 bar)	EX	300	2.36(17)			3	
	(M=H ₂ P=0.5-5 bar)	EX	300	2.54(18)			3	
	(M=D ₂ P=0.5-5 bar)	EX	300	2.54(18)			3	
	(M-CO ₂ P-0.2-5 bar)	EX	300	1.52(18)			3	
	(M=CH ₄ P=0.5-5 bar)	EX	300	1.60(18)			3	
	(M=CF ₄ P=0.2-5 bar)	EX	300	1.45(18)			3	
	(M=SF ₆ P=0.2-5 bar)	EX	300	1.78(18)			3	
	(k ^o , high P limit)	EX	300	3.2(13)			2	
0 and SO formed by	laser photolysis of SO ₂ at							
193nm. k values obta	ained from 2nd order plots							
of uv absorption, us	sed to monitor SO ₂ reforma-							
tion. Pressure of thi	rd body ranged from 0.2 to							
200 bar. ko (high p	pressure limit) is based on							
data for M-Ar, N ₂ , a	nd C ₃ F ₈ . Used broadening							
factors (Fc) of 0.55,	0.58 and 0.76 to fit the							
data for N ₂ , Ar and C	C_3F_8 , respectively.							
Recommended value of k	∞ (high P limit)	RE	298	3.2(13)			2	1.5
Recommended value of k	:(M=Ar)	RE	298	1.85(17)			3	1.2
Recommended third body	efficiencies at 298 K (i.e	. k va	lues rela	ative to k(M=Ar)):	Ar=1.0	0, Ne=0.88,		
	Ke=1.28, N ₂ =1.51, CF ₄ =7.84,							
	ues are based on the extens							
	cluding the value of 67 SHA						l	
	on, is only 16% smaller that							

References for reaction $0 + SO + M \rightarrow SO_2 + M$

66 HAL/THR	Halstead, C.J. and Thrush, B.A., "The kinetics of elementary reactions involving the
	oxides of sulphur. II. Chemical reactions in the sulphur dioxide afterglow," Proc.
	Roy. Soc. A 295, 363 (1966).
67 SHA/PAD	Sharma, A., Padur, J.P., and Warneck, P., "The chemiluminescent reactions of atomic
	oxygen with carbonyl sulfide and hydrogen sulfide," J. Phys. Chem. 71, 1602 (1967).

CHEMICAL KINETIC DATA FOR REACTIONS OF OXYGEN WITH SULFUR COMPOUNDS 1389

.

	References for reaction 0 + SO + M - SO ₂ + M Continued
70 TAK	Takahashi, S., "The study of the reaction of hydrogen sulphide with atomic oxygen
	using emission spectrum," Mem. Nat. Def. Acad. Japan 10, 369 (1970).
71 MIY/TAK	Miyazaki, S., and Takahashi, S., "On the reaction of oxygen atom with carbon disul-
	fide (Part 2)," Mem. Nat. Def. Acad. Japan 11, 307 (1971), C.A. 78, 62771w (1973).
73 SCH	Schofield, K., "Evaluated chemical kinetic rate constants for various gas phase reac-
	tions," J. Phys. Chem. Ref. Data 2, 25 (1973).
76 BAU/DRY	Baulch, D.L., Drysdale, D.D., Duxbury, J., and Grant, S.J., "Homogeneous gas phase
	reactions of the O_2-O_3 system, the $CO-O_2-H_2$ system, and of sulphur-containing spe-
	cies," in 'Evaluated Kinetic Data for High Temperature Reactions', Vol. 3, Butter-
	worths, London (1976).
78 HAM/GAR	Hampson, R.F., Jr., and Garvin, D., editors, "Reaction rate and photochemical data
	for atmospheric chemistry - 1977," Nat. Bur. Stand. Spec. Publ. 513 (1978).
85 COB/HIP	Cobos, C.J., Hippler, H., and Troe J., "Falloff curves of the recombination reaction
	0 + S0 + M → SO ₂ + M in a variety of bath gases, "J. Phys. Chem. 89, 1778 (1985).

$0 + SO \rightarrow SO_2 + h\nu$

<u>0 + Sulfur monoxide</u>

Reference Code, Notes	Data type		T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A 1 units :	
65 ROL/REE *) Room temperature. $P < 0.02$ Torr. Rate constant for light emission. Discharge flow. Excess O, formed by discharge in O_2 . SO obtained from O+COS rn. Rate constant deter- mined relative to light emission from O+NO.	RN	*)	4.2(8)			2	
55 HAL/THR Rate constant for light emission. Discharge flow. Excess O, formed by discharge in O ₂ /Ar. SO obtained from O+COS rn. k determined rela- tive to light emission from O+NO. Intensity was independent of Ar pressure, at P=0.2-1.6 Torr.	RN	2	98	1.5(8)			2	
67 SHA/PAD *) Room T. Discharge flow in O_2 or O_2/Ar . O+COS gives SO. Measured light emission at 0.8 Torr relative to O+NO+NO ₂ +hv. Listed k derived using $k(O+NO+NO_2+hv)$, $k(O+COS+CO+SO)$, and relative e- mission intensities of O+NO+NO ₂ +hv and O+SO+SO ₂ +hv rns. Measured light emission is assumed to be sum of contributions from a small second or- der and a larger third order process. (See also 67 SHA/PAD in the preceding data sheet).	RN	*;)	3.4(9)			2	

 $0 + SO \rightarrow SO_2 + hv$ -- Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. factor
69 FLE/LEV	EX 35	500	(1.4±0.4)(7)			2	
Shock tube study of SO_2/Ar mixtures. Calibrated the optical system with tungsten and hydrogen							
lamps. [0] and [SO] calculated assuming equi-							
librium for the species SO_2 , Ar, SO, O, O_2 , and							
SO3. Adopting k=1.5(8) at 298 K (66 HAL/THR),							
the authors calculate A=1.5(8), n=-1.0, B=0.							
Total P ~ 0.5 atm.							
Recommended value of k	RE 2	298	2(8)			2	3
Additional experimental work is desirable.							

References for reaction $0 + SO \rightarrow SO_2 + hv$

65 ROL/REE	Rolfes, T.R., Reeves, R.R., Jr., and Harteck, P., "The chemiluminescent reaction of
	oxygen atoms with sulfur monoxide at low pressures," J. Phys. Chem. 69, 849 (1965).
66 HAL/THR	Halstead, C.J. and Thrush, B.A., "The kinetics of elementary reactions involving the
	oxides of sulphur. II. Chemical reactions in the sulphur dioxide afterglow," Proc.
	Roy. Soc. A 295, 363 (1966).
67 SHA/PAD	Sharma, A., Padur, J.P., and Warneck, P., "The chemiluminescent reactions of atomic
	oxygen with carbonyl sulfide and hydrogen sulfide," J. Phys. Chem. 71, 1602 (1967).
69 FLE/LEV	Fletcher, S.R., and Levitt, B.P., "O + SO recombination emission at 3500K," Trans.
	Faraday Soc. 65 , 1544 (1969).

$0 + SO_2 + M \rightarrow SO_3 + M$ <u>0 + Sulfur dioxide</u>

Reference Code, Notes	Data T/K type	k,k/k(ref), A,A/A(ref)	n	B, k,A k er B-B(ref) units fact
58 KAU	EX *)	3(16)		3
*) Room temperature. M=02.				
Discharge flow. O formed by microwave discharge				
in O2. Decay of O in excess SO2 determined from				

intensity of the O+NO chemiluminescence. Detailed experimental conditions not reported.

 $0 + SO_2 + M \rightarrow SO_3 + M$ -- Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err. units factor
65 LEV/MER Microprobe study of $H_2S/O_2/N_2$ or of $H_2S/O_2/Ar$ flames. Mass spec. analyses for O_2 , H_2S , H_2O , H_2 , and SO_2 ; wet analyses for SO + SO ₂ and SO ₃ . Calculated equilibrium concentrations of atoms and radicals. k's derived from observed [SO ₂] and [SO ₃] profiles. The value for B is assumed.	DE	300-1300	(2.2-22)(15)		3019	3
65 WEB/WAL $M=H_2+O_2$. $P=27.9$ Torr. Reference rn. $O+H_2\toOH+H$ (used k=2.0(10)). Determined second explosion limits for H_2/O_2 mixtures with and without SO_2 .	RN	784	1.1(16)			3
66 CAD/FOW $M=N_2$. Discharge flow. O from microwave dis- charge in O ₂ or in N ₂ followed by N+NO+O+N ₂ . k determined from initial decrease in [O] (mea- sured by O+NO luminescence) and [SO ₂] decrease (measured by gas chromatography). Activation energy reported as near 0. N ₂ and O ₂ are equal- ly efficient as third bodies.	EX	300	4.7(15)			3
66 HAL/THR M=Ar. Discharge flow. O formed by microwave discharge in O_2/Ar mixture. Monitored O in ex- cess SO ₂ by O+NO chemiluminescence. The effi- ciency of Ar relative to O_2 is 1.0 ± 0.2 . Pres- sure range is not reported.	EX	293	(4.7±0.8)(15)			3
66 JAF/KLE $M = SO_2$. Photolysis of NO_2 in presence of SO_2 . k derived from quantum yield of NO_2 consump- tion, ¹⁸ O isotope exchange, and rate constant for the O+NO ₂ rn. The k value is for P=2 Torr.	DE	297	1.4(16)			3
67 MUL/STE (M=SO ₂ P=0.7-3 Torr) (M=Ar P=0.7-3 Torr) (M=O ₂ P=0.7-3 Torr) Stirred flow - ESR detection of O. Excess SO ₂ . Allowance not made for influence of SO ₃ on the	EX EX EX	299	(1.0±0.4)(16) (2.4±0.15)(15) (2.7±0.5)(15)			3 3 3

$0 + SO_2 + M \rightarrow SO_3 + M --$ Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err. units factor
69 MUL/STE Supercedes 67 MUL/STE for M=Ar. P(Ar)=2-6 Torr. Stirred flow. O formed by microwave discharge in O ₂ in excess Ar and monitored by O+NO chemi- luminescence and ESR. Allowance made for in- fluence of SO ₃ on the wall recombination of O.	EX 30	0	(1.1±0.3)(15)			3
69 NET/STI M=N ₂ . Sampled with an alumina tube the flames composed of either CH ₄ or CO with O ₂ , SO ₂ , and N ₂ . Determined CO, CO ₂ , O ₂ , SO ₃ , and SO ₂ . Rate constant is based on the SO ₃ production, the calculated equilibrium concentrations of O, and the value k=1(12) for O+SO ₃ \rightarrow SO ₂ +O ₂ rn. The authors suggest that the value of k is a lower limit.	DE 215	0	≥2(15)			3
71 HEI/WOO *) Room temperature. $M=N_2O$. O formed by Hg-photosensitized decompo- sition of N_2O in the presence of COS. SO_2 pro- duced in secondary reactions. Rate constant de- termined relative to O+COS, based on yields of N_2 and CO. The authors indicate a large experi- mental uncertainty.	RL *)		5(6)			3/2
71 TIM/LEF (M=SO ₂) (M=Ar) (M=He) Discharge flow-EER detection of O. Excess SO ₂ . Allowance is made for the third body effect of SO ₂ . An Arrhenius plot is given for M=SO ₂ at 205K-T<206K (values of A and B are not quoted).	EX 29 EX 29 EX 29	8	4.10(16) 1.0(15) 8(14)			3 3 3
73 SCH M=Ar. Estimated a factor of 2 error at 300 K, greater at other temperatures. Third body effi- ciencies taken to be about the same for Ar, O_2 , N_2 , He, and from 6 to 40 times greater for SO_2 , NO_2 , N_2O .	SE 25	0-1000	3.6(14)		-503	3

$0 + 80_2 + M \rightarrow SO_3 + M --$ Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err. units factor
74 ATK/PIT $M=N_2O$. $P(N_2O)=54-135$ Torr. Phase shift technique. O atoms generated by the Hg-photosensitized decomposition of N_2O . O mon- itored by the O+NO chemiluminescence. An upper limit of $k(SO_2)/k(N_2O) = 5$ assessed for SO_2 and N_2O as third bodies (see also 78 ATK/PIT).	EX	299-392	3.32(16)		1006±200	3
74 DAV $M=N_2$. Flash photolysis-resonance fluorescence. Relative third body efficiencies N_2 :He:Ar:SO ₂ = 1.0:0.45:0.87:60. Few details. Reference to un- published data of D.D. Davis, R. Schiff, and S. Fischer.	EX	220-353	1.2(16)		1120	3
75 WES/DEH2 (M=He P=0.7-6.7 Torr) (M=N ₂ P=0.7-6.7 Torr) (M=SO ₂ k _{rel} =k/k(M=He)) Discharge flow-ESR detection of 0. Excess SO ₂ . Allowance is made for the third body effect of SO ₂ .	EX EX RL	248-415 297 297	(3.9±0.9)(15) (7.2±0.3)(14) 9.5±2.7		1400±50	3 3 3/3
76 BAU/DRY *) No new recommendation. Suggest using Davis's data (see entry for 74 DAV).	SE		*)			3
78 ATK/PIT M=Ar. P(Ar)=25-50 Torr. Flash photolysis - NO ₂ chemiluminescence. O formed by photolysing SO ₂ and NO. [O] was followed by the O+NO chemilu- minescence. The effect of SO ₂ as third body was taken into account. Relative k values for dif- ferent M at 300 K are $Ar:N_2:N_2O:SO_2 = 1.0:1.3:$ 3.0:0.0.	EX	299-440	1.12(16)		1009±151	3
78 HAM/GAR M=N ₂ . Relative k values for different M are: N ₂ :He:Ar:SO ₂ =1.0:0.45:0.87:56.	SE	220-353	1.2(16)		1130	3
78 TRO M=Ar. Derived by fitting a modified Arrhenius expression to the experimental data of 75 WES/ DEH and 79 AST/GLA.	DE	250-2500	4.9(18)	-4	2646	3

Refe	erence Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err facto:
79 AST/GLA		EX	1700-2500	1.06(13)		-7870	3	<u> </u>
M=Ar. Shock	wave decomposition of SO3. Moni-							
tored SO ₂ fo	ormed by uv absorption. Calculated k							
for the reve	erse rn. (O+SO ₂ +M→SO ₃ +M) using the							
equilibrium	constant.							
80 BAU/COX		SE	200-2500	2.8(19)	-3.75	2650	3	*)
*) M=Ar. Es	stimated error factor: 3 for 200-500K,							
2 for 300K.								
84 ATK/LLO	M-N ₂ and M-O ₂	SE	298	4.9(14)			з	1.3
	M=N ₂ and M=O ₂	SE	300-440	(1.5±0.4)(16)		1009	3	
The third bo	ody efficiencies of N_2 and O_2 are							
assumed equa	al.							
84 BAU/COX	M-N ₂ and M=O ₂	SE	298	5.1(14)			з	2
	M=N ₂ and M=O ₂	SE	200-400	1.5(16)		1000	3	
Recommended	value of k for M=Ar	RE	299	3.7(14)			3	1.3
Recommended v	values of Arrhenius A and B for M=Ar	RE	299-440	1.1(16)		1010±200	3	1.5
Recommended	values of Arrhenius A and B for M=Ar	RE	1700-2500	1.05(13)		-7870	3	2
Recommended	value of k for M-He	RE	298	3.5(14)			3	1.3
Recommended	values of Arrhenius A and B for M=He	RE	248-415	4.0(16)		1400±200	3	1.5
Based rec	ommendations on the data of 78 ATK/PII	2, 75	WES/DEH2 a	nd (for 1700-250	OK) of 3	79 AST/GLA	•	
Tentative	ly recommended relative third body eff	icien	cies at 29	8K are Ar:He:N ₂ :C	2:N20:SO	2=		
1.0:0.9:1	.3:1.3:3:10, within about 30% and, for	: so ₂ ,	up to a f	actor of 3.				

 $0 + SO_2 + M \rightarrow SO_3 + M$ -- Continued

Arrhenius plots for O+SO₂+M-products are shown in Fig. 1 (1a for M=He and 1b for M=Ar (at 299-440K)).

References for reaction $0 + SO_2 + M \rightarrow SO_3 + M$

58 KAU	Kaufman, F., "The air afterglow and its use in the study of some reactions of atomic
	ожуgen," Proc. Roy. Soc. A 247, 123 (1958).
65 LEV/MER	Levy, A., and Merryman, E. L., "The microstructure of hydrogen sulphide flames,"
	Combustion and Flame 9, 229 (1965).
65 WEB/WAL	Webster, P., and Walsh, A.D., "The effect of sulfur dioxide on the second pressure
	limit of explosion of hydrogen-oxygen mixtures," Tenth Symposium (International) on
	Combustion, p. 463, The Combustion Institute (1965).
66 CAD/POW	Cadle, R.D., and Powers, J.W., "Some aspects of atmospheric chemical reactions of
	atomic oxygen," Tellus 18, 176 (1966)
66 HAL/THR	Halstead, C.J. and Thrush, B.A., "The kinetics of elementary reactions involving the
	oxides of sulphur. II. Chemical reactions in the sulphur dioxide afterglow," Proc.
	Roy. Soc. A 295 , 363 (1966).
66 JAF/KLE	Jaffe, S., and Klein, F.S., "Photolysis of NO ₂ in presence of SO ₂ at 3660A," Trans.

CHEMICAL KINETIC DATA FOR REACTIONS OF OXYGEN WITH SULFUR COMPOUNDS 1395

References for reaction 0 + SO₂ + M \rightarrow SO₃ + M -- Continued

- 67 MUL/STE Mulcahy, M.F.R., Steven, J.R., and Ward, J.C., "The kinetics of reaction between oxygen atoms and sulfur dioxide: an investigation by electron spin resonance spectrometry," J. Fhys. Chem. 71, 2124 (1967).
- 69 MUL/STE Mulcahy, M.F.R., Steven, J.R., Ward, J.C., and Williams, D.J., "Kinetics of interaction of oxygen atoms with sulfur oxides," Twelfth Symposium (International) on Combustion, p. 323, The Combustion Institute, 1969.
- 69 NET/STI Nettleton, M.A., and Stirling, R., "Formation and decomposition of sulfur trioxide in flames and burned gases," Twelfth Symposium (International) on Combustion, p. 635, The Combustion Institute (1969).
- 71 HEI/WOO Heicklen, J., Wood, W.P., Olszyna, K.J., and Cehelnik, E., "The reactions of unstable intermediates in the oxidation of CS₂," in 'Chemical Reactions in Urban Atmospheres' (C.S. Tuesday, editor), p. 191 (1971).
- 71 TIM/LEF Timmons, R.B., LeFevre, H.F., and Hollinden, G.A., "Reactions of sulfur dioxide of possible atmospheric significance," in 'Chemical Reactions in Urban Atmospheres' (C.S. Tuesday, editor), p. 159 (1971).
- 73 SCH Schofield, K., "Evaluated chemical kinetic rate constants for various gas phase reactions," J. Phys. Chem. Ref. Data 2, 25 (1973).
- 74 ATK/PIT Atkinson, R., and Pitts, J.N., Jr., "Rate constants for the reaction of O(³P) atoms with SO₂ (M=N₂O) over the temperature range 299-392K," Chem. Phys. Lett. **29**, 28 (1974).
- 74 DAV Davis, D.D., "A kinetics review of atmospheric reactions involving HxOy compounds," Can. J. Chem. 52, 1405 (1974).
- 75 WES/DEH2 Westenberg, A.A., and deHaas, N., "Rate of the reaction $O + SO_2 + M \rightarrow SO_3 + M$," J. Chem. Phys. 63, 5411 (1975).
- 76 BAU/DRY Baulch, D.L., Drysdale, D.D., Duxbury, J., and Grant, S.J., "Homogeneous gas phase reactions of the O₂-O₃ system, the CO-O₂-H₂ system, and of sulphur-containing species," in 'Evaluated Kinetic Data for High Temperature Reactions', Vol. 3, Butterworths, London (1976).
- 78 ATK/PIT Atkinson, R., and Pitts, J.N., Jr., "Kinetics of the reaction O(³P) + SO₂ + M → SO₃ + M over the temperature range of 299-440K," Int. J. Chem. Kinet. 10, 1081 (1978).
- 78 HAM/GAR Hampson, R.F., Jr., and Garvin, D., editors, "Reaction rate and photochemical data for atmospheric chemistry - 1977," Nat. Bur. Stand. Spec. Publ. 513 (1978).
- 78 TRO Troe, J., "Atom and radical recombination reactions," Ann. Rev. Phys. Chem. 29, 223 (1978).
- 79 AST/GLA Astholz, D.C., Glanzer, K., and Troe, J., "The spin-forbidden dissociation-recombination reaction SO₃ = SO₂ + O," J. Chem. Phys. 70, 2409 (1979).
- 80 BAU/COX Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., and Watson, R.T., "Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry," J. Phys. Chem. Ref. Data 9, 295 (1980).
- 84 ATK/LLO Atkinson, R., and Lloyd, A.C., "Evaluation of kinetic and mechanistic data for modeling of photochemical smog," J. Phys. Chem. Ref. Data 13, 315 (1984).
- 84 BAU/COX Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., and Watson, R.T., "Evaluated kinetic and photochemical data for atmospheric chemistry: supplement II," J. Phys. Chem. Ref. Data 13, 1259 (1984).

Fig. 1. Arrhenius plots for O+SO₂+M+products with M=He (1a) and M=Ar at 299-440K (1b). The lines are calculated using the recommended A and B values.

$0 + SO_2 \rightarrow SO + O_2$ <u>0 + Sulfur dioxide</u>

Reference Code, Notes	Data type		k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. factor
73 WAG Derived from the rate parameters (A=1.3(12), B= 3986) for the reverse reaction and the equili- brium constant.	DE		5(12)		9813	2	
76 BAU/DRY Based on the recommended rate constant expres- sion for the reverse reaction (76 BAU/DRY) and the equilibrium constant expression of 73 SCH.	SE	440-2100	6.80(12)	-0.511	9980	2	
78 HAM/GAR Accepted recommendation of 76 BAU/DRY.	SE	440-2100	7.3(12)	-0.5	9980	2	1.8

 $() + SO_2 \rightarrow SO + O_2 -- Continued$

Reference Code, Notes	Data T/ type	ΥK	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k err. factor
80 SLA/GRI	EX 3320-	-3760	(3.8±0.5)(11)			2	
Reflected shock waves in mixture of SO ₂ /N ₂ O/Ar.							
P=2-5 atm. Monitored decay of SO ₂ by IR emis-							
sion at 7.347 microns. [O], used to calculate							
k values, computed from a model of 8 reactions.							
Recommended values of Arrhenius A and B	RE 440-	-3000	5(12)		9800	2	3
Based on the indirectly derived parameters of	73 WAG and	76 BAU	/DRY. Additional	experi	mental work	:	
is needed.							

References for reaction $0 + SO_2 \rightarrow SO + O_2$

73 WAG	Wagner, H.Gg., "Elementary reactions in the combustion of small inorganic molecules,"
	Fourteenth Symposium (International) on Combustion, p. 27, The Combustion Institute
	(1973).
76 BAU/DRY	Baulch, D.L., Drysdale, D.D., Duxbury, J., and Grant, S.J., "Homogeneous gas phase
	reactions of the 0_2 - 0_3 system, the CO- 0_2 - H_2 system, and of sulphur-containing spe-
	cies," in 'Evaluated Kinetic Data for High Temperature Reactions', Vol. 3, Butter-
	worths, London (1976).
78 HAM/GAR	Hampson, R.F., Jr., and Garvin, D., editors, "Reaction rate and photochemical data
	for atmospheric chemistry - 1977," Nat. Bur. Stand. Spec. Publ. 513 (1978).
80 SLA/GRI	Slack, M., and Grillo, A., "Rate coefficient measurements for $SO_2 + O = SO + O_2$,"
	J. Chem. Phys. 73, 987 (1980).

$0 + SO_3 \rightarrow \text{products}$

<u>0 + Sulfur trioxide</u>

The product is always assumed to be SO_2+O_2 . (See 75 WES/DEH1 for suggestion that rn. is third order, i.e. $O+SO_3+M+SO_2+O_2+M$).

Reference Code, Notes	Data type		k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err units facto
58 KAU	EX	300			≥3500	
Discharge flow. O formed by microwave discharge						
in O ₂ and monitored by O+NO chemiluminescence.						
No reaction was detectable between O and SO3 in						
the gas phase, and the estimate of B is a lower						
limit. SO3 was observed to change the rate of						
recombination of O on the reactor walls.						

1397

0 + SO₃ → products -- Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err. units factor
S2 REU/LIN Reference rn. $O+SO_2 \rightarrow SO_3$ (assumed to be bimole- cular). Thermal decomposition of N ₂ O mixed with SO_2 and either Ar, He, or CO_2 . [SO ₂] deter- mined by uv absorption. Monitored total pres- sure (up to about 500 Torr).	RL 96	1	0.16			2/2
55 FEN/JON Microprobe sampling of $H_2S/H_2/O_2$ flame. Mass spec. analyses. Reference rn. $0+SO_2+M+SO_3+M$. k_{ref} taken as $3(16) \text{ cm}^6 \text{mol}^{-2} \text{s}^{-1}$. The k values are undefined "averages" for $0+SO_3$ and $H+SO_3$ rns. P=60-200 Torr.	RL 160 RN 160		5(-5) 1(12)			2/2 2
²¹ MER/LEV Microprobe sampling of $COS/O_2/N_2$ flames. Moni- tored [SO ₃] by wet analyses; other stable spe- cies by mass spec. Reference rn. is O+SO ₂ +M → SO ₃ +M (A=2.4(17)cm ⁶ mole ⁻² s ⁻¹ , B=1258 K).	RN 148	0-1550	2.8(14)		6039	2
²¹ MER/LEV Microprobe sampling of $H_2S/O_2/N_2$ flames, using the same procedure as in preceding data entry. Slightly larger k values are obtained than from the COS flame, possibly due to additional loss of SO ₃ by reaction with H.	RN 124	0-1340	6.5(14)		5435	2
2 JAC/WIN Discharge flow. O formed by microwave discharge in N ₂ followed by N+NO+O+N ₂ . Reaction is "cold" quenched". k is based on SO ₂ yield and measured [O] and [SO ₃]. F=2 Torr. (A is recalculated).	EX 30	0-500	1.3(8)		500	2
3 SCH Evaluation was based on only one set of data,	SE 148	0-1550	2.8(14)		6039	2

Recommendation is not warranted. Reaction order is not certain: 75 WES/DEH1 found more recently that reaction may be third order (see data sheet for rn. 0+SO₃+M). Also, their second order k(298) at 2 Torr is several thousand times larger than that of 72 JAC/WIN. Furthermore, 75 WES/DEH1 find that B=-785, while 72 JAC/WIN find that B=500. 76 BAU/DRY found also that no recommendation was possible. Further study is needed.

1398

References for reaction $0 + SO_3 \rightarrow$ products

58 KAU	Kaufman, F., "The air afterglow and its use in the study of some reactions of atomic
	oxygen," Proc. Roy. Soc. A 247, 123 (1958).
62 REU/LIN	Reuben, B.G., Linnett, J.W., and Barber, M., "A new method of examining the reac-
	tions of oxygen atoms," Eighth Symposium (International) on Combustion, p. 97, The
	Combustion Institute (1952).
65 FEN/JON	Fenimore, C.P., and Jones, G.W., "Sulfur in the burnt gas of hydrogen-oxygen flames,"
	J. Phys. Chem. 69, 3593 (1965).
71 MER/LEV	Merryman, E.L, and Levy, A., "Sulfur trioxide flame chemistry - H_2S and COS flames,"
	Thirteenth Symposium (International) on Combustion, p. 427, The Combustion Institute
	(1971).
72 JAC/WIN	Jacob, A., and Winkler, C.A., "Kinetics of the reactions of oxygen atoms and nitro-
	gen atoms with sulphur trioxide," J. Chem. Soc. Faraday 1 68, 2077 (1972).
73 SCH	Schofield, K., "Evaluated chemical kinetic rate constants for various gas phase reac-
	tions," J. Fhys. Chem. Ref. Data 2, 25 (1973).
75 WES/DEH1	Westenberg, A.A., and deHaas, N., "Rate of the O + SO ₃ reaction," J. Chem. Phys. 52.
	725 (1975).

$0 + SO_3 + M \rightarrow SO_2 + O_2 + M$ <u>0 + Sulfur trioxide</u>

Referenc	e Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err. units factor
75 WES/DEH1	(M=He P=0.75-5.8 Torr)	EX	X 298~507	5.0(16)		-785	3
	(M=N ₂)	EX	298	1.0(18)			3
	(M=SO ₃ k _{rel} =k/k(M=He)	RL.	298	<10			3/3
Discharge flow r	eactor with ESR detection of O.						

Recommendation: For reasons given for the previous rn. (0+S03 products) no recommendation is warranted. Additional experimental data are required.

Reference for reaction $0 + SO_3 + M \rightarrow SO_2 + O_2 + M$

75 WES/DEH1 Westenberg, A.A., and deHaas, N., "Rate of the O + SO₃ reaction," J. Chem. Phys. 62, 725 (1975).

1400

0 + SH → H + SO

<u>O + Mercapto</u>

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. factor
69 FAI/THR	RL.	298	12			2/2	
	RN	298	1.8(14)			2	
Reference rn. H + SH \rightarrow H ₂ + S. P = 0.9 Torr.							
Discharge flow. H + H_2S rn. in presence of O_2 .							
O formed by the secondary reaction $S+O_2 \rightarrow SO+O$.							
Rate constant is based on the [O] and [SO], de-							
termined from O+NO and O+SO chemiluminescences.							
To calculate RN used $k_{ref} = 1.5(13)$ (76 BAU/DRY).							
73 SCH	SE	295	1.2(14)			2	
Only one reported value (private communication,							
published subsequently in 75 CUP/GLA).							
75 CUP/GLA	RL	295	6.5±0.7			2/2	
	RN	295	(9.6±3)(13)			2	
Reference rn. H + SH \rightarrow products.							
Discharge flow. ESR detection of H, O and OH.							
Based on an assumed rn. mechanism, the ratio							
[H]/[O] was identified with k(O+SH)/k(H+SH). In							
separate experiments found $k_{ref} = (1.5 \pm 0.5)(13)$.							
85 DEM/MAR	SE	298	9.6(13)			2	5.0
Accepted RN (the Normalized k) of 75 CUP/GLA.							
Recommended value of k	RE	298	1.4(14)			2	3
Obtained as the average of the RN (the Normali	zed k)	values	of FAI/THR and 75 CU	GLA.			

References for reaction $O + SH \rightarrow H + SO$

69 FAI/THR	Fair, R.W., and Thrush, B.A., "Reaction of hydrogen atoms with hydrogen sulphide in
	the presence of molecular oxygen," Trans. Faraday Soc. 65, 1557 (1969).
73 SCH	Schofield, K., "Evaluated chemical kinetic rate constants for various gas phase reac-
	tions," J. Phys. Chem. Ref. Data 2, 25 (1973).
75 CUP/GLA	Cupitt, L.T., and Glass, G.P., "Reactions of SH with atomic oxygen and hydrogen,"
	Int. J. Chem. Kinet. Symp. 1, 39 (1975).
76 BAU/DRY	Baulch, D.L., Drysdale, D.D., Duxbury, J., and Grant, S.J., "Homogeneous gas phase
	reactions of the O_2 - O_3 system, the CO- O_2 - H_2 system, and of sulphur-containing spe-
	cies," in 'Evaluated Kinetic Data for High Temperature Reactions', Vol. 3, Butter-
	worths, London (1976).
85 DEM/MAR	NASA Panel for Data Evaluation: DeMore, W.B., Margitan, J.J., Molina, M.J., Watson,
	R.T., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., and Ravishankara, A.R.,
	"Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evalu-
	ation number 7, "J.P.L. Publ. 85-37 (1985).

0 + SH → OH + S

<u>0 + Mercapto</u>

Reference Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err. units factor
58 MAY/SCH Used Bond Energy-Bond Order (BEBO) technique.	TH	298-2500	1.0(13)	0.67	956	2
73 SCH Resed on the theoretical estimate of Maver and	SE	298-2500	1.0(13)	0.67	956	2
Based on the theoretical estimate of Mayer and Schieler (see 68 MAY/SCH, the preceding entry).						

Recommendation: No k values are recommended because the only available rate data have been obtained by a BEBO calculation. Until experimental values are obtained, the theoretical BEBO values of 68 MAY /SCH may be provisionally used, possibly with an uncertainty of an order of magnitude.

References for reaction $O + SH \rightarrow OH + S$

58 MAY/SCH	Mayer, S.W., and Schieler, L., "Computed activation energies and rate constants for
	forward and reverse transfers of hydrogen atoms," J. Phys. Chem. 72, 236 (1968).
73 SCH	Schofield, K., "Evaluated chemical kinetic rate constants for various gas phase reac-
	tions," J. Phys. Chem. Ref. Data 2, 25 (1973).

$0 + H_2S \rightarrow \text{products}$

<u>O + Hydrogen sulfide</u>

The rn. product usually assumed is OH+SH. Two alternative products (SO+H₂ and HSO+E) are discussed further below (see the data sheets for rns. $O+H_2S+SO+H_2$ and $O+H_2S+HSO+H$).

Reference Code, Notes	Data 1 type		k(ref), A(ref)	n	B, B-B(ref)	k,A k er units fact
65 LEV/MER	EX 1260	2.3(14)			2
	EX 1350	0 1.3(15)			2
Microprobe study of $H_2S/O_2/N_2$ or of $H_2S/O_2/Ar$ flames. Used mass spec. to analyze for O_2 , H_2S , H_2O , H_2 , and SO_2 , and wet analysis for SO + SO ₂ and SO ₃ . Rate constants calculated from rates						
of H ₂ S consumption.						
66 LIU/DON	EX *)	(2.4±	1.2)(10)			2
*) Room temperature. $P=0.38-0.53$ Torr. Discharge flow. Mass spec. detection of O, H_2S , and products. k calculated from the loss of H_2S and the chain length of 5±1.5 for loss of H_2S .						

O + H₂S → products -- Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k err. factor
67 MER/LEV Microprobe sampling of $H_2S/O_2/N_2$ flames using mass spec. Rate constant calculated from rates of formation of H_2S , H_2O and H_2 , and the calcu- lated equilibrium O concentration. $P=76$ Torr.	EX	1055	2.8(13)			2	
70 CUP/GLA Discharge flow. ESR detection of O, SO, and H. Rate constant derived by adjusting it and three other k values to obtain the best fit of a 7 rn. mechanism to the experimental data. Revised k to 9.09(9) in 75 CUP/GLA.	DE	295	8.25(9)			2	
70 HOL/KUR Discharge flow. Monitored O atoms by ESR. Al- lowance was made for the assumed stoichiometry d[0]/d[H ₂ S]=3.5±0.5. P=1.38-2.25 Torr at 300 K.	EX	205-300	(1.74±0.40)(11)		755±50	2	
70 TAK Discharge flow. Monitored the afterglow of SO, SO ₂ , and O ₂ . Evaluated k from consumption of H ₂ S, correcting for stoichiometry (d[O]/d[H ₂ S] = 1.2) and the chain decomposition of H ₂ S.	EX	293	2.12(10)			2	
73 SCH	SE	200-350	3.8(11)		921±126	2	<2
75 CUP/GLA Revised k of 70 CUP/GLA.	DE	295	9.09(9)			2	
76 WHY/TIM Flash photolysis of Ar/H ₂ S/O ₂ mixtures. O moni- tored by resonance fluorescence. P=10-400 Torr.	EX	263-495	(4.36±0.64)(12)		1661±50	2	
78 HAM/GAR	SE	263-495	4.36(12)		1660	2	1.25
78 SLA/BAI P=0.7-2.1 Torr at 496 K. Discharge flow. Pho- toionization mass spec. Decay of H_2S monitored in excess O atoms. A and B (not reported by the authors) were calculated (87 SIN/CVE) from the 19 k values listed in the supplementary materi-	EX	280-497	(1.96±0.20)(13)		2019±39	2	

al of 78 SLA/BAI.

$0 + H_2S \rightarrow products -- Continued$

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	•	k err. facto:
79 SIN/IRW	EX	297-502	(1.56±0.83)(13)		2171±202	2	
Phase shift technique, with modulated [O] mea-							
sured by O+NO chemiluminescence. O generated by Hg-photosensitized decomposition of N ₂ O.							
84 BAU/COX	SE	298	1.3(10)			2	2
For discussion see 82 BAU/COX.	SE	290-500	8.4(12)		1920±750	2	
85 DEM/MAR	SE	298	1.3(10)			2	1.7
Selection based on 79 SIN/IRW and 76 WHY/TIM.	SE		6.0(12)		1810±550	2	
Recommended value of k	RE	298	1.5(10)			2	1.3
Recommended values of Arrhenius A and B 82 BAU/COX and 85 DEM/MAR reviews give the leas		263-502	6.0(12) f the proferred da	ta of 7	1789±200	2	1.8
and 79 SIN/IRW, which give the same values with 79 SIN/IRW are lower at lower T. Higher T data	in ex	perimental	error for 330 <t<50< td=""><td>OK, but</td><td>those of</td><td></td><td></td></t<50<>	OK, but	those of		
able, are scattered and lie significantly above have been derived by fitting the Arrhenius equations of the statement of the	ve the	fitted lim	ne. The present re	commend	ed values		

Arrhenius plots for the reaction $O+H_2S$ -products are shown in Fig. 2.

References for reaction $0 + H_2S \rightarrow$ products

65 I	LEV/MER	Levy, A., and Merryman, E. L., "The microstructure of hydrogen sulphide flames,"
		Combustion and Flame 9, 229 (1965).
66 I	LIU/DON	Liuti, G., Dondes, S., and Harteck, P., "The reaction of hydrogen sulfide and atomic
		oxygen," J. Am. Chem. Soc. 88, 3212 (1966).
67 M	TER/LEV	Merryman, E.L., and Levy, A., "Kinetics of sulfur-oxide formation in flames: II. Low
		pressure H_2S flames," J. Air Pollution Control Association 17, 800 (1967).
70 C	CUP/GLA	Cupitt, L.T., and Glass, G.P., "Reaction of atomic oxygen with hydrogen sulfide,"
		Trans. Faraday Soc. 66, 3007 (1970).
70 B	IOL/KUR	Hollinden, G.A., Kurylo, M.J., and Timmons, R.B., "Electron spin resonance study of
		the reaction of $O(^{3}P)$ atoms with $H_{2}S$," J. Phys. Chem. 74, 988 (1970).
70 T	TAK	Takahashi, S., "The study of the reaction of hydrogen sulphide with atomic oxygen
		using emission spectrum," Mem. Nat. Def. Acad. Japan 10, 369 (1970).
73 S	SCH	Schofield, K., "Evaluated chemical kinetic rate constants for various gas phase reac-
		tions," J. Phys. Chem. Ref. Data 2, 25 (1973).
75 C	CUP/GLA	Cupitt, L.T., and Glass, G.P., "Reactions of SH with atomic oxygen and hydrogen,"
		Int. J. Chem. Kinet. Symp. 1, 39 (1975).
76 W	HY/TIM	Whytock, D.A., Timmons, R.B., Lee, J.H., Michael, J.V., Payne, W.A., and Stief, L.J.,
		"Absolute rate of the reaction of $O({}^{3}P)$ with hydrogen sulfide over the temperature
		range 263 to 495K," J. Chem. Phys. 65, 2052 (1976).

References for reaction 0 + H2S - products -- Continued

- 78 HAM/GAR Hampson, R.F., Jr., and Garvin, D., editors, "Reaction rate and photochemical data for atmospheric chemistry - 1977," Nat. Bur. Stand. Spec. Publ. 513 (1978).
- 78 SLA/BAI Slagle, I.R., Baiocchi, F., and Gutman, D., "Study of the reactions of oxygen atoms with hydrogen sulfide, methanethiol, ethanethiol, and methyl sulfide," J. Phys. Chem. 82, 1333 (1978).
- 79 SIN/IRW Singleton, D.L., Irwin, R.S., Nip, W.S., and Cvetanovic, R.J., "Kinetics and mechanism of the reaction of oxygen atoms with hydrogen sulfide," J. Phys. Chem. 83, 2195 (1979).
- 82 BAU/COX Baulch, D.L., Cox, R.A., Crutzen, P.J., Hampson, R.F., Jr., Kerr, J.A., Troe, J., and Watson, R.T., "Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement 1," J. Fhys. Chem. Ref. Data 11, 327 (1982).
- 84 BAU/COX Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., and Watson, R.T., "Evaluated kinetic and photochemical data for atmospheric chemistry: supplement II," J. Fhys. Chem. Ref. Data 13, 1259 (1984).
- 85 DEM/MAR NASA Panel for Data Evaluation: DeMore, W.B., Margitan, J.J., Molina, M.J., Watson, R.T., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., and Ravishankara, A.R., "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation number 7," J.P.L. Publ. 85-37 (1985).

Fig. 2. Arrhenius plots for the reaction $O+H_2S$ -products. The line is calculated using the recommended A and B values.

⁸⁷ SIN/CVE Singleton, D.L., and Cvetanovic, R.J., The present evaluation.

$0 + D_2 S \rightarrow OD + SD$

0 + Deuterium sulfide

Reference Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. factor
76 WHY/TIM Flash photolysis of Ar, D ₂ S, O ₂ mixtures with time-resolved resonance fluorescence detection of O atoms. P=10-200 Torr.	EX	298-450	(6.32±3.4)(12)		2144±156	2	
Recommended value of k Recommended values of Arrhenius A and B		298 298-450	4.7(9) 6.3(12)		2144±200	2 2	1.4 2

Reference for reaction $O + D_2S \rightarrow OD + SD$

76 WHY/TIM Whytock, D.A., Timmons, R.B., Lee, J.H., Michael, J.V., Payne, W.A., and Stief, L.J., "Absolute rate of the reaction of O(³P) with hydrogen sulfide over the temperature range 263 to 495K," J. Chem. Fhys. 65, 2052 (1976).

$0 + H_2 S \rightarrow SO + H_2$

<u>0 + Hydrogen sulfide</u>

A higher temperature channel in the rn. $0+H_2S$ -products. See also the rn. $0+H_2S$ -HSO+H.

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k err. factor
67 BRA/DOB	RL 1	350-2450	*)		4026	2/2	
*) Reference rn. O+H ₂ S \rightarrow products. Arrh. A not							
given. Shock tube-Absorption spec. $H_2S/O_2/Ar$							
mixtures. This channel is proposed to account							
for increased SO ₂ at high T. Based on the dif-							
ference in the induction times of OH and SO_2 at							
low and high T, a value of E-E _{ref} = 8 kcal/mole							
(B≈4026 K) is proposed.							
81 FRE/LEE	DE	1050-2000	1.0(13)		5032	2	
Reflected shock waves, measurement of induction							
time modeling of 57 reactions. Identical k va-							
lues are derived for another rn. channel (see							
81 FRE/LEE in the following rn.).							

Recommendation: This is evidently an insignificant pathway at room temp. There are no direct determinations on which to base a recommended value. The two reported values are indirectly derived in studies of complex systems at high temperatures (1050-2450K). More data are needed.

References for reaction $0 + H_2 S \rightarrow SO + H_2$

- 67 BRA/DOB Bradley, J.N., and Dobson, D.C., "Oxidation of hydrogen sulfide in shock waves. I. Absorption studies of OH and SO₂ in H₂S-O₂-Ar mixtures," J. Chem. Phys. 46, 2865 (1967).
- 81 FRE/LEE Frenklach, M., Lee, J.H., White, J.N., and Gardiner, W.C., Jr., "Oxidation of hydrogen sulfide," Combustion and Flame 41, 1 (1981).

$0 + H_2S \rightarrow HSO + H$

0 + Hydrogen sulfide

A potental minor channel in the rn. O+H₂S→products. See also the rn. O+H₂S→SO+H₂.

A channel in the rn. $0+H_2B$ -products due to attack on S rather than on H. Quantitative determination of the "branching ratio" for O addition to S as opposed to H abstraction is difficult (79 SIN/IRW; 82 SIN/PAR) because rates of some potentially involved elementary reactions are not known.

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err. units factor
 79 SIN/IRW *) Room temperature. O generated by Hg-photosensitized decomposition of N₂O. Reference rn. O+H₂S-products. Relative k based on collection of noncondensable gases formed (H₂ and N₂) and their GC analysis. The upper limit may be as high as 0.2 (82 SIN/FAR). 	RL	*)	<0.11			2/2
81 FRE/LEE Reflected shock waves, measurement of induction time modeling of 57 reactions. Identical k va- lues are derived for another rn. channel (see 81 FRE/LEE in the preceding rn.).	DE	1050-2000	1.0(13)		5032	2
81 CLE/DAV Crossed molecular beam method, with angular re- solved mass spec. Reaction cross section for HSO formation as function of translational en- ergy of the reactants. Value given for B is the threshold translational energy, not the Arrhe- nius activation energy. (See 82 DAV/CLE).	EX				1683±240	2
82 DAV/CLE Crossed molecular beam method, with angular re- solved mass spec. Reaction cross section for HSO formation as function of translational en- ergy of the reactants. Value given for B is the threshold translational energy, not the Arrhe- nius activation energy. (See 81 CLE/DAV).	EX				1683±240	2

+ H₂S → HSO + H -- Continued

Reference Code, Notes	Data type		k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	•	k err. factor
82 SIN/PAR An upper-limit value for the branching ratio k/k(O+H ₂ S+products).	RL	298	<0.2			2/2	1.1
Recommended branching ratio k/k(O+H ₂ S→products) Based on the upper-limit value of 82 SIN/PAR.	RE	298	<0.2			2/2	1.1

References for reaction $0 + H_2S \rightarrow HSO + H$

79 SIN/IRW	Singleton, D.L., Irwin, R.S., Nip, W.S., and Cvetanovic, R.J., "Kinetics and mecha-
	nism of the reaction of oxygen atoms with hydrogen sulfide," J. Fhys. Chem. 83, 2195
	(1979).
81 CLE/DAV	Clemo, A.R., Davidson, F.E., Duncan, G.L., and Grice, R., "Translational energy thre-
	shold functions for oxygen atom reactions," Chem. Phys. Lett. 84, 509 (1981).
81 FRE/LEE	Frenklach, M., Lee, J.H., White, J.N., and Gardiner, W.C., Jr., "Oxidation of hydro-
	gen sulfide," Combustion and Flame 41, 1 (1981).
82 DAV/CLE	Davidson, F.E., Clemo, A.R., Duncan, G.L., Browett, R.J., Hobson, J.H., and Grice,
	R., "Reactive scattering of a supersonic oxygen atom beam: O + H ₂ S," Molec. Phys. 46,
	33 (1982).
82 SIN/PAR	Singleton, D.L., Paraskevopoulos, G., and Irwin, R.S., "Mechanism of the O(3 P) + ${ m H_2S}$
	Reaction. Abstraction or Addition?," J. Phys. Chem. 86, 2605 (1986).

+ H2SO4 - products

<u>+ Sulfuric acid</u>

Reference Code, Notes	Data type		k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err. units factor
80 BAL/GOL	EX	*)	#)			2/2
*) Room temperature; H ₂ SO ₄ liquid.						
#) Reaction probability per collison < 1.0(-6).						
Discharge flow with Knudsen cell reactor. Mass						
spec. detection of O. No measureable reaction,						
no detectable products.						
Recommended value of k	RE	298	#)			2/2
#) Reaction probability per collison < $1.0(-6)$.						-,-
Based on the only data available (80 BAL/GOL).	Addi	tional	experimental work is	desirab	le.	

Reference for reaction $0 + H_2SO_4 \rightarrow \text{products}$

80 BAL/GOL Baldwin, A.C., and Golden, D.M., "Heterogeneous atmospheric reactions. 2. Atom and radical reactions with sulfuric acid," J. Geophys. Res. 85, 2888 (1980).

$0 + CS \rightarrow \text{products}$

0 + Carbon monosulfide

The main and probably exclusive rn. channel is $0 + CS \rightarrow CO + S$.

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, _. B-B(ref)	k,A k err. units factor
58 HOM/KRO An order of magnitude estimate of k quoted in the Abstract of the paper.	ES	1100	~1(14)			2
71 HAN/SMI	rl RN	298 298	2.3 1.3(13)			2/2 2
Reference rn. $0+NO_2 \rightarrow NO+O_2$. Measured the effect of NO_2 on the vibrational emission intensities of CO. [RN value has been updated using $k_{ref} =$ 5.6(12) (85 DEM/MAR)].						
73 SCH Based on the data (without a recommendation) of 71 HAN/SMI.	SE	298	8.4(12)			2
75 SLA/GRA Discharge flow. CS formed by a dc discharge in CS_2 , and 0 by microwave discharge in O_2 (or in N_2 followed by N+NO rn.). Decay of CS in excess O followed by photoionization mass spec.	EX	305	(1.24±0.08)(13)			2
<pre>76 BAU/DRY *) No new recommedation. Suggest using Hancock and Smith's data (see 71 HAN/SMI).</pre>	SE		*)			2
76 BID/BRE Flow tube technique. CS, produced by microwave discharge in a dilute CS_2/Ar stream, monitored by multipath uv absorption. Small [O] (<< [CS]) is maintained by rapid regeneration in the rn. $S + O_2 \rightarrow O + SO$. (See also 78 KOL).	EX	300	(1.35±0.22)(13)			2

1408

0 + CS -> products -- Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k err. factor
77 LIL/RIC	EX	150-300	(1.6±0.2)(14)		758±144	2	
Discharge flow. Mass spec. measurement of CO formation in excess CS and of CS disappearance in excess O. Also monitored S and O by ESR. CS made by a dc discharge (CS_2) , and O by a microwave discharge (NO or O_2). [k(298K) calculated from the Arrhenius eqn.].	EX	298	1.26(13)			2	
78 HAM/GAR Accepted recommendation of 76 BAU/DRY.	SE	300	1.3(13)			Z	1.6
75 KOL Flow tube technique. CS, produced by microwave discharge in a dilute CS_2/Ar stream, monitored by multipath uv absorption. Small [O] (\sim [CS]) is maintained by rapid regeneration in the rn. S + O ₂ \rightarrow O + SO. (See also 76 BID/BRE).	EX	300	(1.35±0.22)(13)			2	
78 TAL/BUT Diffusion cloud ("diffusion flame") technique. O atoms formed by N+NO rn. CS consumption mon- itored by mass spec. P(He)=20 Torr.	EX	298	(1.3±0.13)(13)			2	
84 BAU/COX	SE	298	1.3(13)			2	1.25
For discussion see 80 BAU/COX.	SE	150-300	1.6(14)		760±250	2	
Recommended value of k	RE	298	1.2(13)			2	1.2
Recommended values of Arrhenius A and B		156-305	1.5(14)		751±100	2	1.5

Arrhenius plot for O+CS-products is shown in Fig. 3.

-

References for reaction $0 + CS \rightarrow$ products

68 HOM/KRO	Homann, K.H., Krome, G., and Wagner, H.Gg., "Schwefelkohlenstoff-oxydation, geschwin-
	digkeit von elementarreaktionen. Teil 1," Ber. Bunsenges. Phys. Chem. 72, 998 (1968).
71 HAN/SMI	Hancock, G., and Smith, I.W.M., "Infra-red chemiluminescence from vibrationally ex-
	cited CO. Part 1. The reaction of atomic oxygen with carbon disulphide," Trans.
	Faraday Soc. 67, 2586 (1971).
73 SCH	Schofield, K., "Evaluated chemical kinetic rate constants for various gas phase reac-
	tions," J. Phys. Chem. Ref. Data 2, 25 (1973).
75 SLA/GRA	Slagle, I.R., Graham, R.E., Gilbert, J.R., and Gutman, D., "Direct determination of
	the rate constant for the reaction of oxygen atoms with carbon monosulphide," Chem.
	Phys. Lett. 32, 184 (1975).

References for reaction 0 + CS - products -- Continued

- 76 BAU/DRY Baulch, D.L., Drysdale, D.D., Duxbury, J., and Grant, S.J., "Homogeneous gas phase reactions of the O₂-O₃ system, the CO-O₂-H₂ system, and of sulphur-containing species," in 'Evaluated Kinetic Data for High Temperature Reactions', Vol. 3, Butterworths, London (1976).
- 76 BID/BRE Bida, G.T., Breckenridge, W.H., and Kolln, W.S., "A kinetic study of the very fast reaction: O(³P)+CS+CO*+S(³P)." J. Chem. Phys. 64, 3296 (1976).
- 77 LIL/RIC Lilenfeld, H.V., and Richardson, R.J., "Temperature dependence of the rate constant for the reaction between carbon monosulfide and atomic oxygen," J. Chem. Phys. 67, 3991 (1977).
- 78 HAM/GAR Hampson, R.F., Jr., and Garvin, D., editors, "Reaction rate and photochemical data for atmospheric chemistry - 1977," Nat. Bur. Stand. Spec. Publ. 513 (1978).
- 78 KOL Kolln, W.S., "Gas Fhase Reactions of Carbon Monosulfide Studied by the Fast Flow Technique," Diss. Abst. Int. B 39, 771 (1978).
- 78 TAL/BUT V.L. Tal'roze, Butkovskaya, N.I., Larichev, M.N., Leipunskii, I.O., Morozov, I.I., Dodonov, A.F., Kudrov, B.V., Zelenov, V.V., and Raznikov, V.V., (Daly, N.R., editor) "Advances in the mass spectrometry of free radicals," Advances in Mass Spectrometry 7A, 693 (1978).
- 80 BAU/COX Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., and Watson, R.T., "Evaluated kinetic and Photochemical Data for Atmospheric Chemistry," J. Phys. Chem. Ref. Data 9, 295 (1980).
- 84 BAU/COX Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., and Watson, R.T., "Evaluated kinetic and photochemical data for atmospheric chemistry: supplement II," J. Fhys. Chem. Ref. Data 13, 1259 (1984).
- 85 DEM/MAR NASA Fanel for Data Evaluation: DeMore, W.B., Margitan, J.J., Molina, M.J., Watson, R.T., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., and Ravishankara, A.R., "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation number 7," J.P.L. Publ. 85-37 (1985).

Fig. 3. Arrhenius plots for the reaction O+CS+products. The line is calculated using the recommended A and B values.

$0 + CS_2 \rightarrow \text{products}$

<u>O + Carbon disulfide</u>

1-butene 2.50(12) (87 CVE), NO2 5.6(12) (85

DEM/MAR)].

The main rn. product is CS+SO. For minor channels see rns. 0+CS₂→COS+S and 0+CS₂→CO+S₂.

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err units facto
67 CAL/SMI Flash photolysis-kinetic spectroscopy. O formed by photolysis of NO ₂ . The product CS monitored by uv spec. [The same values and some relative determinations reported also in 68 SMI].	EX	305-410	(6.3±1.3)(12)		302±151	2
67 SMI Flash photolysis-kinetic spectroscopy. O formed by photolysis of NO ₂ . The reaction product CS monitored and SO detected by uv spec. 87 and 187 of rn. exothermicity goes into vibrational excitation of CS and SO, respectively. [See al- so 67 CAL/SMI and 68 SMI].	EX	305-410	(6.3±1.3)(12)		302±151	2
68 HOM/KRO Discharge flow. Excess O formed by a microwave discharge in O_2 or in N_2 (followed by N+NO rn.). Decay of CS ₂ and formation of SO followed by mass spec. P=3-6 Torr.	EX	300-920	5(13)		956	2
68 SMI	EX	305-410	(6.3±1.3)(12)		302±151	2
(Ref. rn. O + isobutene)	RL	298	0.32±0.03			2/2
(Ref. rn. 0 + isobutene)	RL	410	0.40±0.05			2/2
(Ref. rn. 0 + 1-butene)	RL	298	1.3±0.1			2/2
(Ref. rn. 0 + 1-butene)	RL	410	1.2±0.1			2/2
(Ref. rn. $0 + NO_2$)	RL	298	0.71±0.2			2/2
(Ref. rn. $O + NO_2$)	RL	410	0.65±0.2			2/2
(Ref. rn. 0 + isobutene)	RN	298	3.26(12)			2,2
(Ref. rn. $0 + 1$ -butene)	RN	298	3.25(12)			2
(Ref. rn. $O + NO_2$)	RN	298	4.0(12)			2
Flash photolysis-kinetic spectroscopy. O formed by photolysis of NO_2 . The product CS monitored by uv spec. [See also 67 SMI and 67 CAL/SMI]. [The normalized (RN) values have been calcula- ted (87 SIN/CVE) using the following k_{ref} va-						
0 + CS₂ - products -- Continued

Reference Code, Notes	Data type	-	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k err. facto:
69 WES/DEH Discharge flow. O formed by microwave discharge in O_2 or in N_2 (followed by N+NO rn.). Decay of O followed by ESR. Results were divided by a stoichiometric factor of 2. The reported A and B values were calculated by including the results of 68 SMI. P=1.93-2.10 Torr at 297 K. SO detected as a product by ESR.	EX	227-538	(1.2±0.2)(13)		528±50	2	
70 CAL/HED Flash Hg-photosensitized decomposition of N_2O in the presence of CS_2 to form O. Time depen- dence of CS determined by uv absorption. F-678 Torr.	EX	298	(2.2±0.2)(12)			2	
73 SCH Suggested error limits of ± 20% for 200-1000K.	SE	200-1000	1.2(13)		518±40	2	
74 SLA/GIL Discharge flow. O formed by microwave discharge in O_2 or in N_2 followed by N+NO rn. Decay of CS ₂ in the presence of excess O followed by photo- ionization mass spec. P=1.4 Torr.	EX	302	(2.4±0.2)(12)	-		2	
75 WEI/TIM Discharge flow. O formed by microwave discharge of O_2 or of N_2 (followed by N+NO rn.). Decay of O in excess CS_2 followed by ESR. Results divided by the stoichiometric factor of 2.	EX	218-293	(1.66±0.23)(13)		644±35	2	
76 BAU/DRY Estimated uncertainty is 307 below 350 K, in- creasing to 1007 at 1000 K.	SE	200-1000	2.2(13)		700	2	
77 GRA/GUT Discharge flow. O formed by microwave discharge in N_2 followed by N+NO rn. The decay of CS_2 in excess O followed by photoionization mass spec. The authors suggest that their data do not fol- low Arhhenius behavior. The values of A and B given above were calculated (87 SIN/CVE) assum- ing linear Arrhenius plots.	EX	249-500	(2.23±0.33)(13)		659±48	2	
78 HAM/GAR *) Accepted recommendation of 76 BAU/DRY. Sug- gested error factor of 1.4 for T<360K.	SE	200-1000	2.2(13)		700	2	*)

0 + CS₂ → products -- Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. facto
76 TAL/BUT	EX	298	(1.4±0.14)(12)			2	
Diffusion cloud ("diffusion flame") technique.							
O atoms formed by N+NO rn. CS ₂ consumption mon-							
itored by mass spec. P(He)=20 Torr.							
34 BAU/COX	SE	298	2.2(12)			2	1.6
	SE	200-500	1.9(13)		650±100	2	
Accepted the NASA evaluation (83 DEM/MOL).							
<pre>For k(0+CS2+S0+CS)/k(0+CS2+products), i.e. for</pre>							
branching ratio, recommend a value ≥0.90.							
85 DEM/MAR	SE	298	2.2(12)			2	1.2
	SE		1.9(13)		650±150	2	
Averaged the room temp. data of 75 WEI/TIM, 69							
WES/DEH, 74 SLA/GIL, 67 CAL/SMI, 70 CAL/HED, 68							
HOM/KRO, and 77 GRA/GUT; averaged the B values							
of 75 WEI/TIM and 77 GRA/GUT; set the error in							
B to encompass the value of B of 69 WES/DEH.							
Recommended value of k	RE	298	2.3(12)			2	1.2
Recommended values of Arrhenius A and B	RE	218-920	3.55(13)		821±100	2	1.5

Based on the least squares fit of all data in the data sheet assuming linear Arrhenius plot.

Arrhenius plot for $O+CS_2$ -products is shown in Fig. 4.

References for reaction $0 + CS_2 \rightarrow$ products

67 CAL/SMI	Callear, A.B., and Smith, I.W.M., "Measurement of the rate parameters for reaction
	of O(2 ³ P) with carbon disulphide and olefines, by flash spectroscopy," Nature 213,
	382 (1967).
67 SMI	Smith, I.W.M., "Experimental and computer studies of the kinetics and distribution
	of vibrational energy in both products of the reaction: $O(^{3}P)$ + $CS_{2} \rightarrow SO$ + CS ,"
	Disc. Faraday Soc. 44, 194 (1967).
68 HOM/KRO	Homann, K.H., Krome, G., and Wagner, H.Gg., "Schwefelkohlenstoff-oxydation, geschwin-
	digkeit von elementarreaktionen. Teil 1," Ber. Bunsenges. Phys. Chem. 72, 998 (1968).
68 SMI	Smith, I.W.M., "Rate parameters for reactions of $O(2^3P)$ with CS ₂ , NO ₂ , and olefins,"
	Trans. Faraday Soc. 64, 378 (1968).
69 WES/DEH	Westenberg, A.A., and deHaas, N., "Atom-molecule kinetics using ESR detection. V.
	Results for O + OCS, O + CS_2 , O + NO_2 , and H + C_2H_4 , J. Chem. Phys. 50, 707 (1969).
70 CAL/HED	Callear, A.B., and Hedges, R.E.M., "Flash spectroscopy with mercury resonance radi-
	ation. Part 1. An experimental method with microwave-pulse excitation," Trans. Fa-
	raday Soc. 56 , 605 (1970).
73 SCH	Schofield, K., "Evaluated chemical kinetic rate constants for various gas phase reac-
	tions," J. Phys. Chem. Ref. Data 2, 25 (1973).

References for reaction 0 + CS2 - products -- Continued

- 74 SLA/GIL Slagle, I.R., Gilbert, J.R., and Gutman, D., "Kinetics of the reaction between oxygen atoms and carbon disulfide," J. Chem. Phys. 61, 704 (1974).
- 75 WEI/TIM Wei, C.-N., and Timmons, R.B., "ESR study of the kinetics of the reactions of O(³P) atoms with CS₂ and OCS," J. Chem. Phys. 62, 3240 (1975).
- 76 BAU/DRY Baulch, D.L., Drysdale, D.D., Duxbury, J., and Grant, S.J., "Homogeneous gas phase reactions of the O₂-O₃ system, the CO-O₂-H₂ system, and of sulphur-containing species," in 'Evaluated Kinetic Data for High Temperature Reactions', Vol. 3, Butterworths, London (1976).
- 77 GRA/GUT Graham, R.E., and Gutman, D., "Temperature dependence of rate constants and branching ratios for the reaction of oxygen atoms with carbon disulfide," J. Phys. Chem. 81, 207 (1977).
- 78 HAM/GAR Hampson, R.F., Jr., and Garvin, D., editors, "Reaction rate and photochemical data for atmospheric chemistry - 1977," Nat. Bur. Stand. Spec. Publ. 513 (1978).
- 78 TAL/BUT V.L. Tal'roze, Butkovskaya, N.I., Larichev, M.N., Leipunskii, I.O., Morozov, I.I., Dodonov, A.F., Kudrov, B.V., Zelenov, V.V., and Raznikov, V.V., (Daly, N.R., editor) "Advances in the mass spectrometry of free radicals," Advances in Mass Spectrometry 7A, 593 (1978).
- 84 BAU/COX Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., and Watson, R.T., "Evaluated kinetic and photochemical data for atmospheric chemistry: supplement II," J. Phys. Chem. Ref. Data 13, 1259 (1984).
- 85 DEM/MAR NASA Panel for Data Evaluation: DeMore, W.B., Margitan, J.J., Molina, M.J., Watson, R.T., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., and Ravishankara, A.R., "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation number 7," J.P.L. Publ. 85-37 (1985).
- 87 CVE Cvetanovic, R.J., "Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(³P) with Unsaturated Hydrocarbons," J. Phys. Chem. Ref. Data 16, 261 (1987).
 87 SIN/CVE Singleton, D.L., and Cvetanovic, R.J., The present evaluation.

Fig. 4. Arrhenius plot for the reaction $O+CS_2$ -products. The line is calculated using the recommended A and B values.

$0 + cs_2 \rightarrow cos + s$

0 + Carbon disulfide

A channel in the rn. $O+CS_2$ -products.

Reference Code, Notes	Data type		T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k err facto:
68 HOM/KRO Discharge flow. Excess O formed by a microwave discharge in O_2 or in N_2 (followed by N+NO rn.). k value, based on rate of formation of COS, is approximate. The authors suggest that the bran- ching ratio of the channel giving COS is 0.05 at 1100 K. P=3-6 Torr.	EX	11	00	1(12)			2	
73 SCH Only one reported value (68 HOM/KRO). An esti- mated value at 298 K is given as 2.4(10).	SE	11	00	1(12)			2	
74 SLA/GIL Discharge flow. O formed by microwave discharge in N ₂ followed by N+NO rn. Decay of CS_2 and formation of COS followed by photoionization mass spec. P=1.4 Torr.	RL	3	02	0.093±0.008			2/2	
76 BAU/DRY The selected k value is based on the branching ratio reported by 74 SLA/GIL and the selected overall k value by 76 BAU/DRY.	SE	3	02	(2.2±1.1)(11)			2	
77 GRA/GUT *) $k/k(overall) = (0.098\pm0.004) - (0.081\pm0.007).$ Discharge flow. O formed by microwave discharge in N ₂ followed by N+NO rn. Decay of CS ₂ and formation of COS followed by photoionization mass spec.	RL.	2	49-500	*)			2/2	
Recommended value of k Recommended values of Arrhenius A and B Based on the data of 77 GRA/GUT for the branchi	RE RE ng ra	2	98 49-500 o and th	2.1(11) 2.2(12) e recommended Arrh	enius p	701±100 arameters	2 2	1.3 2

References for reaction $0 + CS_2 \rightarrow COS + S$

68 HOM/KRO Homann, K.H., Krome, G., and Wagner, H.Gg., "Schwefelkohlenstoff-oxydation, geschwindigkeit von elementarreaktionen. Teil 1," Ber. Bunsenges. Phys. Chem. 72, 998 (1968).
73 SCH Schofield, K., "Evaluated chemical kinetic rate constants for various gas phase reactions," J. Phys. Chem. Ref. Data 2, 25 (1973).

References for r	eaction O	$+ cs_2$	→ COS	+ S		Continued
------------------	-----------	----------	-------	-----	--	-----------

74 SLA/GIL	Slagle, I.R., Gilbert, J.R., and Gutman, D., "Kinetics of the reaction between oxygen
	atoms and carbon disulfide," J. Chem. Fhys. 61, 704 (1974).
76 BAU/DRY	Baulch, D.L., Drysdale, D.D., Duxbury, J., and Grant, S.J., "Homogeneous gas phase
	reactions of the O_2-O_3 system, the CO- O_2-H_2 system, and of sulphur-containing spe-
	cies," in 'Evaluated Kinetic Data for High Temperature Reactions', Vol. 3, Butter-
	worths, London (1976).
77 GRA/GUT	Graham, R.E., and Gutman, D., "Temperature dependence of rate constants and bran-
	ching ratios for the reaction of oxygen atoms with carbon disulfide," J. Fhys. Chem.

$0 + cs_2 \rightarrow c0 + s_2$

<u>O + Carbon disulfide</u>

A minor channel in the rn. O+CS2-products.

81, 207 (1977).

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k err. factor
79 BSU/SHA	RL	298	0.014±0.002			2/2	
	RN	298	(3.51±0.45)(10)			2	
Flash photolysis-CO laser absorption technique.							
The listed RL k is the branching ratio for the							
channel $0+CS_2-CO+S_2$. The normalized (RN) k is							
based on the ratio of 0.373 measured for the CO							
formed in the O+CS ₂ and O+C ₂ H ₂ rns. The RN va-							
lue was obtained using $k(O+C_2H_2+CO+CH_2)=9.4(10)$							
(73 HER/HUI) and the branching ratio (the RL							
value) and k(O+CS2-products)=2.53(12) (77 GRA/							
GUI).							
Recommended branching ratio k/k(O+CS ₂ -products)	RE	298	1.4(-2)			2/2	1.2
Recommended value of k	RE	298	3.5(10)			2	1.3
Based on the only data available (79 HSU/SHA).	Addi	tional	determinations would be	usef	ul.		

References for reaction $0 + CS_2 \rightarrow CO + S_2$

73 HER/HUI	Herron, J.T., and Huie, R.E., "Rate Constants for the Reactions of Atomic Oxygen
	$O(^{3}P)$ with Organic Compounds in the Gas Phase," J. Phys. Chem. Ref. Data 2, 467
	(1973).
77 GRA/GUT	Graham, R.E., and Gutman, D., "Temperature dependence of rate constants and bran-
	ching ratios for the reaction of oxygen atoms with carbon disulfide," J. Fhys. Chem.
	81, 207 <u>(</u> 1977).
79 HSU/SHA	Hsu, D.S.Y., Shaub, W.M., Burks, T.L, and Lin, M.C., "Dynamics of reactions of O(³ P)
	atoms with CS, CS ₂ , and CCS," Chem. Fhys. 44, 143 (1979).

$0 + COS \rightarrow$ products

0 + Carbon oxide sulfide

At lower T the only observed product is SO+CO. See rn. O+COS+CO₂+S for a higher T rn. channel.

Reference Code, Notes	Data type		k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err. units factor
65 ROL/REE O produced by discharge in O_2 . Measured O+SO chemiluminescence. k is approximate, with no details given. No CO_2 observed by mass spec. A reference is made to the channel forming CO_2 and S, as being less than 0.001 of the channel forming CO and SO.	EX	298	6(9)			2
65 SUL/WAR T not specified: presumably room temperature. Discharge flow. O formed by microwave discharge of O_2 . Consumption of COS determined by mass spec. Consumption of O matched the formation of CO. P=0.3-1.3 Torr.	EX	*)	(5.5±0.8)(9)			2
67 HOY/WAG Discharge flow. O formed by microwave discharge of N_2 (followed by the N+NO rn.). With excess COS, rate of decay of O measured by ESR and of formation of SO by molecular beam mass spec. Products CO, SO ₂ , S ₂ O, and S were detected by mass spec. P=0.5-5 Torr.	EX	290-465	1.2(14)		2919±50	2
68 HOM/KRO Discharge flow. O formed by microwave discharge of O_2 or N_2 (followed by N+NO rn.). Decay of COS and formation of SO followed by molecular beam mass spec. in excess O. Measurements at 880-1150 K were combined with the earlier data (67 HOY/WAG) to obtain the listed Arrhenius pa- rameters. Small amounts of CO_2 , but not of SO_2 , were observed as products.	EX	300-1150	6.5(13)		2768	2
69 WES/DEH Discharge flow. O formed by microwave discharge of O_2 in He or Ar, or of N_2 (followed by N+NO rn.) and detected by ESR in excess COS. P=0.7- 2.34 Torr at 297 K. SO detected as product; its yield, obtained using an adjusted value for fi- nal [SO], equalled consumption of O at 297 K. CO (but not CO ₂) was detected as a product by by mass spectrometry.	EX	273-808	(1.9±0.7)(13)		2280±126	2

0 + COS → products -- Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	k,A k err. units facto:
71 KRE/SIM Ref. rn. $0 + 2$ -trifluoromethylpropene (TMP). O formed by Hg-photosensitized decomposition of N ₂ O. Monitored CO yield as a function of the ratio of TMP to COS. The normalized (RN) values were obtained using A _{ref} =9.09(12), B _{ref} =1117. P(N ₂ O)=490-657 Torr at 298 K.	RN	298-523	9.76(12)		2264	2
72 BRE/MIL Discharge flow. O formed by microwave discharge of O_2 in He and monitored in excess COS by ESR. Details are not given. SO detected as product.	EX	297	(7.2±0.4)(9)			2
73 SCH Suggested error limits of ± 35%.	SE	270-1500	4.1(13)		2556±70	2
74 KLE/STI Flash photolysis - resonance fluorescence. O formed by flash photolysis of O_2 ; its decay was measured by resonance fluoresence in excess COS and 50 Torr He or 40-200 Torr Ar.	EX	263-503	(9.94±0.78)(12)		2166±28	2
75 WEI/TIM Discharge flow. O formed by microwave discharge in O_2 or N_2 (followed by N+NO rn.) diluted with He, was monitored in excess COS by ESR. P=0.69- 1.49 at 295 K.	EX	239-404	(1.2±0.2)(13)		2149±35	2
76 BAU/DRY Estimated uncertainty is 50% below 600 K and a factor of 3 above 600 K.	SE	190-1200	1.6(13)		2250	2
76 MAN/BRA Flash photolysis-resonance fluorescence. Photo- lysed mixtures of COS, O_2 , Ar, and either CH ₃ F or CH ₂ F ₂ . Resonance fluorescence detection of O decay in excess COS. Rate was not significantly increased by vibrational excitation of COS.	EX	296	(8.37±0.84)(9)			2

0 + COS → products -- Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. factor
78 YOS/SAI Discharge flow. O formed by microwave discharge in O ₂ . Excess COS. Formation of SO monitored by microwave absorption. Ratio of consumption of O to formation of SO was found to be unity. P=0.13 Torr.	EX	297	(7.1±0.7)(9)			2	
79 HSU/SHA *) Vibrational distribution of CO product measured by CO laser resonance absorption method. Vibrational distribution was independent of the O isotope (16 or 18), indicating direct stripping of S by O (i.e., O in CO arises from COS).	EX		*)				
80 ROB/SMI Laser photolysis-chemiluminescence. O formed by laser photolysis of O_3 at 275nm. k was obtained by least squares fit of a reaction mechanism to the measured time dependence of the SO+O ₃ che- miluminescence. $P(N_2)=100$ Torr.	EX	296	(1.0±0.1)(10)			2	
81 KRU/WAG	EX	1900	1.8(13)			2	
	DE	298-1900	7.5(13)	0	2754	2	
Shock tube. O generated by decomposition of N_2O in Ar and monitored by resonance absorption. The two alternative T-dependence expressions were derived by combining the data with other results in the literature (67 HOY/WAG and 68 HOM/KRO).	DE	298-1900	7.4(12)	1.0	2057	2	
84 BAU/COX	SE	298	8.4(9)			2	1.6
For discussion see 80 BAU/COX. Note that only data for T<600 K are considered and that the data above 600 K are significantly higher than the fitted line.	SE	220-600	1.6(13)		2250±150	2	
85 DEM/MAR	SE	298	7.8(9)			2	1.2
Averaged the room temp. data of 69 WES/DEH, 74 KLE/STI, 75 WEI/TIM, 76 MAN/BRA, 72 BRE/MIL; a- veraged the B values of 69 WES/DEH, 74 KLE/STI, 75 WEI/TIM.	SE		1.3(13)		2200±150	2	

0 + COS → products -- Continued

Reference Code, Notes	Data T/K type	k,k/k(ref), A,A/A(ref)	n B, B-B(ref)		k err. factor
Recommended value of k	RE 298	8.0(9)		2	1.2
Recommended values of Arrhenius A and B	RE 239-523	1.6(13)	2257±200	2	1.3
Recommended values of Arrhenius A and B	RE 239-1900	4.7(13)	2621±200	2	1.5
Based on least squares fitting of all data temp, ranges.	in the data sheet :	for (a) 239-523 ar	nd (b) 239-1900 K		

Arrhenius plot for O+COS+products is shown in Fig. 5. The insert in Fig. 5 shows an enlarged area (for greater clarity) with several additional k values (those reported at room temperature only).

References for reaction $0 + COS \rightarrow$ products

65	ROL/REE	Rolfes, T.R., Reeves, R.R., Jr., and Harteck, P., "The chemiluminescent reaction of
		oxygen atoms with sulfur monoxide at low pressures," J. Fhys. Chem. 69, 849 (1965).
65	SUL/WAR	Sullivan, J.O., and Warneck, P., "Mass spectrometric investigation of the reaction
		between oxygen atoms and carbonyl sulfide," Ber. Bunsenges. Phys. Chem. 69, 7 (1965).
67	HOY/WAG	Hoyermann, K., Wagner, H.Gg., and Wolfrum, J., "Bestimmung der Geschwindigkeit der
		Reaktion 0 + COS → CO + SO," Ber. Bunsenges. Phys. Chem. 71, 603 (1967).
68	HOM/KRO	Homann, K.H., Krome, G., and Wagner, H.Gg., "Schwefelkohlenstoff-oxydation, geschwin-
		digkeit von elementarreaktionen. Teil 1," Ber. Bunsenges. Phys. Chem. 72, 998 (1968).
69	WES/DEH	Westenberg, A.A., and deHaas, N., "Atom-molecule kinetics using ESR detection. V.
		Results for 0 + OCS, 0 + CS_2 , 0 + NO_2 , and H + C_2H_4 , "J. Chem. Phys. 50, 707 (1969).
71	KRE/SIM	Krezenski, D.C., Simonaitis, R., and Heicklen, J., "The reactions of $O(^{3}P)$ with
		ozone and carbonyl sulfide," Int. J. Chem. Kinet. 3, 467 (1971).
72	BRE/MIL	Breckenridge, W.H., and Miller, T.A., "Kinetic study by EFR of the production and
		decay of SO(¹ Δ) in the reaction of O ₂ (¹ Δ_g) with SO(³ Σ ⁻)," J. Chem. Phys.
		56, 465 (1972).
73	SCH	Schofield, K., "Evaluated chemical kinetic rate constants for various gas phase reac-
		tions," J. Fhys. Chem. Ref. Data 2, 25 (1973).
74	KLE/STI	Klemm, R.B., and Stief, L.J., "Absolute rate parameters for the reaction of ground
		state atomic oxygen with carbonyl sulfide," J. Chem. Phys. 61 , 4900 (1974).
75	WEI/TIM	Wei, CN., and Timmons, R.B., "ESR study of the kinetics of the reactions of $O(^{3}P)$
		atoms with CS ₂ and OCS," J. Chem. Phys. 62 , 3240 (1975).
76	BAU/DRY	Baulch, D.L., Drysdale, D.D., Duxbury, J., and Grant, S.J., "Homogeneous gas phase
		reactions of the 0_2 - 0_3 system, the CO- 0_2 -H $_2$ system, and of sulphur-containing spe-
		cies," in 'Evaluated Kinetic Data for High Temperature Reactions', Vol. 3, Butter-
		worths, London (1976).
76	MAN/BRA	Manning, R.G., Braun, W., and Kurylo, M.J., "The effect of infrared laser excitation
		on reaction dynamics: $0 + C_2 H_4^*$ and $0 + OCS^*$, J. Chem. Phys. 55 , 2609 (1976).
78	YOS/SAI	Yoshida, N., and Saito, S., "Application of microwave spectroscopy to kinetic study
		of the reaction of carbonyl sulfide with atomic oxygen," Bull. Chem. Soc. Japan 51,
		1635 (1978).

1420

CHEMICAL KINETIC DATA FOR REACTIONS OF OXYGEN WITH SULFUR COMPOUNDS 1421

References for reaction 0 + COS - products -- Continued

- 79 HSU/SHA Hsu, D.S.Y., Shaub, W.M., Burks, T.L, and Lin, M.C., "Dynamics of reactions of O(³P) atoms with CS, CS₂, and OCS," Chem. Phys. 44, 143 (1979).
- 80 BAU/COX Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., and Watson, R.T., "Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry," J. Phys. Chem. Ref. Data 9, 295 (1980).
- 80 ROB/SMI Robertshaw, J. S., and Smith, I. W. M., "Rate data for $0 + OCS \rightarrow SO + CO$ and $SO + O_3 \rightarrow SO_2 + O_2$ by a new time-resolved technique," Int. J. Chem. Kinet. 12, 729 (1980).
- 81 KRU/WAG Kruger, B., and Wagner, H.Gg., "Shock tube study of the rate constant of the reaction of oxygen atoms with carbonyl sulfide," Z. Phys. Chem. Neue Folge 126, 1 (1981).
- 84 BAU/COX Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., and Watson, R.T., "Evaluated kinetic and photochemical data for atmospheric chemistry: supplement II," J. Phys. Chem. Ref. Data 13, 1259 (1984).
- 85 DEM/MAR NASA Panel for Data Evaluation: DeMore, W.B., Margitan, J.J., Molina, M.J., Watson, R.T., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., and Ravishankara, A.R., "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation number 7," J.P.L. Publ. 85-37 (1985).

1422

$0 + \cos \rightarrow \cos_2 + s$

<u>O + Carbon oxide sulfide</u>

A higher temperature path in the rn. O + COS \rightarrow products

Reference Code, Notes	Data T/K type	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err
82 TOP	EX 1200-1	.900 5.0(13)		5527±636	2	
Shock tube oxidation of COS. Monitored COS, 02,						
CO, CO_2 , SO_2 and total pressure. The relative						
rates of CO ₂ and CO production at the beginning						
of the COS conversion phase were interpreted to						
estimate k for the rn. path 0 + $COS \rightarrow CO_2$ + S.						
Recommended value of k	RE 1200	5(11)			2	3
Recommended values of Arrhenius A and B	RE 1200-1	1900 5(13)		5530±1000	2	3
Recommended values of Arrhenius A and B Based on the single determination (82 TOP). Add				5530±1000	I	2

Reference for reaction $0 + COS \rightarrow CO_2 + S$

82 TOP

Topaloglu, T., "A shock tube study of carbonyl sulfide oxidation," Diss. Abst. Int. B 42, 4134 (1982).

0 + CH₃SH → products

<u>0 + Methanethiol</u>

For potential rn. channels see 76 SLA/GRA, 78 KIR/VET, and 81 CVE/SIN.

Reference Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	•	k err. factor
76 SLA/GRA Discharge flow. Fhotoionization mass spec. Mon-	EX	300	1.1(12)			2	1.2
itored decay of CH ₃ SE in excess O atoms. P= 0.64-2.0 Torr.							
78 KIR/VET	EX	300-661	(8.5±1.0)(12)		625±36	2	
Discharge flow. High resolution mass spec. Mon-							
itored decay of thicl in excess O atoms. $P=\sim 1$							
Torr. Rate constant measurements at 302 K based							
on thicl decay agree with those based on O atom							
decay when thiol was in sufficient excess (100							

fold), but were otherwise larger.

0 + CH₃SH → products -- Continued

Reference Code, Notes	Data type	-	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. facto:
78 SLA/BAI	EX	252-496	(2.65±1.52)(10)	*)	-1135±169	2	
*) n=4.53±0.49							
Discharge flow. Photoionization mass spec. Mon-							
itored decay of CH_3SH in excess O atoms. P=							
0.745-2.25 Torr. [A, n, and B values were cal-							
culated (87 SIN/CVE) from the supplementary da-							
ta of 78 SLA BAI].							
81 NIP/SIN	EX	297-537	(6.58±5.05)(10)	*)	-829±234	2	
*) n=3.65±0.61. P=22-61 Torr.							
Phase shift technique with modulated [0] moni-							
tored by O+NO chemiluminescence. O atoms gener-							
ated by Hg-photosensitized decomposition of							
N ₂ O. 81 NIP/SIN report the rate expression							
$k = (9.15\pm1.02)(11) + (3.85\pm2.41)(13)x$ $exp(-(1673\pm322)/T).$							
[A, n, and B values listed here were calculated							
(87 SIN/CVE) from the data of 81 NIP/SIN].							
Recommended value of k	RE	298	1.2(12)			2	1.2
Recommended values of Arrhenius parameters	RE	252-661	*)	*)	*)	2	1.3
*) Strongly curved Arrhenius plot: fitted all	data t	o k=A1+A2	exp(-B/T) with A1=9	.0(11)	, A2=1.8(13),	
B=1261. Although the agreement between the r	eporte	d studies	is reasonable, th	ey dif:	fer in fine	r	
details. The Arrhenius plot is reported to be	curve	ed accordi	ng to 78 SLA/BAI an	d 81 N	IP/SIN, al	-	
though the data of 78 SLA/BAI are consistently	about	: 15% high	er than those of 81	NIP/S	IN. However	,	
there was no evidence in 78 KIR/VET of an Arrh	enius	plot curv	vature in the same t	emp. i	nterval.		
The present recommended Arrhenius parameters,	A1, A2	and B, h	ave been obtained b	y a le	ast squares		
fit of all data in the data sheet to the comp	osite	Arrhenius	expression. The d	ata of	81 NIP/SIN		
fall below the fitted line; for example the fi	tted k	(298) va	lue is 1.17(12), w	hich i	s about 10%		
greater than the value 1.06(12) of 81 NIP/SIN.							
	n Fig.	£					

76 SLA/GRA	Slagle, I.R., Graham, R.E., and Gutman, D., "Direct identification of reactive
	routes and measurement of rate constants in the reacions of oxygen atoms with me-
	thanethiol, ethanethiol, and methylsulfide," Int. J. Chem. Kinet. 8, 451 (1976).
78 KIR/VET	Kirchner, K., Vettermann, R., and Indruch, H., "Kinetics of the reactions of mercap-
	tans with $O(^{3}P)$ under consideration of the influence of molecular oxygen," Ber. Bun-
	senges. Fhys. Chem. 82, 1223 (1978).
78 SLA/BAI	Slagle, I.R., Baiocchi, F., and Gutman, D., "Study of the reactions of oxygen atoms
	with hydrogen sulfide, methanethiol, ethanethiol, and methyl sulfide," J. Phys. Chem.
	82, 1333 (1978).

J. Phys. Chem. Ref. Data, Vol. 17, No. 4, 1988

References for reaction 0 + CH₃SH → products -- Continued

81 CVE/SIN	Cvetanovic, R.J., Singleton, D.L., and Irwin, R.S, "Gas-Phase Reactions of $O(^{3}P)$ A-
	toms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 2. Re-
	action Products and Mechanisms," J. Am. Chem. Soc. 103, 3530 (1981).
81 NIP/SIN	Nip, W.S., Singleton, D.L., and Cvetanovic, R.J., "Gas-phase reactions of $O(^{3}P)$ a-
	toms with methanethiol, ethanethiol, methyl sulfide, and dimethyl disulfide. 1. Rate
	constants and Arrhenius parameters," J. Am. Chem. Soc. 103, 3526 (1981).

87 SIN/CVE Singleton, D.L., and Cvetanovic, R.J., The present evaluation.

Fig. 6. Arrhenius plot for the reaction O+CH₃SH-products. The line is calculated using the modified Arrhenius Eqn. k=A1+A2exp(-B/T) and the recommended values: $A1=0.0(11)cm^{3}mc1^{-1}s^{-1}$, $A2=1.8(13)cm^{3}mc1^{-1}s^{-1}$, B=1261K.

$0 + C_2 H_5 SH \rightarrow products$

<u>0 + Ethanethiol</u>

For potential rn. channels see 76 SLA/GRA, 78 KIR/VET, and 81 CVE/SIN.

Reference Code, Notes	Dat a type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B−B(ref)	•	k err. factor
76 SLA/GRA	EX	300	1.7(12)			2	1.2
Discharge flow. Photoionization mass spec. Mo-							
nitored decay of C_2H_5SH in excess O atoms. P=							
0.64-2.0 Torr.							

0 + C2H5SH → products -- Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	•	k err facto:
78 KIR/VET Discharge flow. High resolution mass spec. Mon- itored decay of thiol in excess O atoms. P=~1 Torr. Rate constant measurements at 302 K based on thiol decay agree with those based on O atom decay when thiol was in sufficient excess (100 fold), but were otherwise larger.	EX	304-421	(5.75±0.3)(12)		391±18	2	
78 SLA/BAI *) n=6.13 \pm 1.04 Discharge flow. Fhotoionization mass spec. Mon- itored decay of C ₂ H ₅ SH in excess O atoms. P= 0.719-2.16 Torr. [A, n, and B values were cal- culated (87 SIN/CVE) from the supplementary da- ta of 78 SLA BAI].	EX	256-496	(3.17±3.84)(9)	*)	-1882±356	2	
<pre>81 NIP/SIN *) n=4.66±0.31. F=21-50 Torr. Fhase shift technique with modulated [0] moni- tored by O+NO chemiluminescence. O atoms gener- ated by Hg-photosensitized decomposition of N₂O. 81 NIP/SIN report the rate expression k = (1.37±0.66)(12) + (8.73±4.46)(13)x</pre>	EX	300-574	(1.78±0.71)(10)	*)	-1313±122	2	
Recommended value of k Recommended values of Arrhenius parameters *) Strongly curved Arrhenius plot: fitted all of B=2198. As for O+CH ₃ SH, the reported data as finer details. A curved Arrhenius plot is reported value of 78 SLA/BAI is as much as 20% greater of was no evidence of an Arrhenius plot curvature	RE data t re in orted than t	reasonabl in 78 SL Chat of 81	e agreement, althou A/BAI and 81 NIP/: NIP/SIN at room ten	ugh th SIN,	ey differ in although th	n 8	1.2 1.4

lie below the fitted line; for example the fitted k(298) value is 1.70(12), which is about 157

Arrhenius plot for $O+C_2H_5SH$ -products is shown in Fig. 7.

greater than the value 1.47(12) of 81 NIP/SIN.

References for reaction $0 + C_2H_5SH \rightarrow$ products

- 76 SLA/GRA Slagle, I.R., Graham, R.E., and Gutman, D., "Direct identification of reactive routes and measurement of rate constants in the reacions of oxygen atoms with methanethiol, ethanethiol, and methylsulfide," Int. J. Chem. Kinet. 8, 451 (1976).
- 78 KIR/VET Kirchner, K., Vettermann, R., and Indruch, H., "Kinetics of the reactions of mercaptans with O(³P) under consideration of the influence of molecular oxygen," Ber. Bunsenges. Phys. Chem. 82, 1223 (1978).
- 78 SLA/BAI Slagle, I.R., Baiocchi, F., and Gutman, D., "Study of the reactions of oxygen atoms with hydrogen sulfide, methanethiol, ethanethiol, and methyl sulfide," J. Phys. Chem. 82, 1333 (1978).
- 81 CVE/SIN Cvetanovic, R.J., Singleton, D.L., and Irwin, R.S, "Gas-Phase Reactions of O(³P) Atoms with Methanethicl, Ethanethicl, Methyl Sulfide, and Dimethyl Disulfide. 2. Reaction Products and Mechanisms," J. Am. Chem. Soc. 103, 3530 (1981).
- 81 NIF/SIN Nip, W.S., Singleton, D.L., and Cvetanovic, R.J., "Gas-Fhase Reactions of O(³P) Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 1. Rate Constants and Arrhenius Parameters," J. Am. Chem. Soc. 103, 3526 (1981).

⁸⁷ SIN/CVE Singleton, D.L., and Cvetanovic, R.J., The present evaluation.

Fig. 7. Arrhenius plot for the reaction O+C₂H₅SH+products. The line is calculated using the modified Arrhenius Eqn. k=A1+A2exp(-B/T) and the recommended values: $A1=1.6(12)cm^{3}mol^{-1}s^{-1}$, $A2=1.0(14)cm^{3}mol^{-1}s^{-1}$, B=2198K.

0 + C₃H₇SH → products

<u>0 + 1-Propanethiol</u>

For potential rn. channels see 76 SLA/GRA, 78 KIR/VET, and 81 CVE/SIN.

Reference Code, Notes	Data type	·	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. factor
78 KIR/VET	EX	303-421	(8.33±0.54)(12)		494±22	2	
Discharge flow. High resolution mass spec. Mon-							
itored decay of thicl in excess O atoms. P=~1							
Torr.							
Recommended value of k	RE	298	1.6(12)			2	1.3
Recommended values of Arrhenius A and B	RE	303-421	8.3(12)		494±50	2	1.5
Based on the only data available (78 KIR/VET).	Addi	tional de	terminations would h	e use:	ful.		

References for reaction $O + C_3 H_7 SH \rightarrow$ products

76 SLA/GRA	Slagle, I.R., Graham, R.E., and Gutman, D., "Direct identification of reactive
	routes and measurement of rate constants in the reacions of oxygen atoms with me-
	thanethiol, ethanethiol, and methylsulfide," Int. J. Chem. Kinet. 8, 451 (1976).
78 KIR/VET	Kirchner, K., Vettermann, R., and Indruch, H., "Kinetics of the reactions of mercap-

- tans with O(³P) under consideration of the influence of molecular oxygen," Ber. Bunsenges. Fhys. Chem. **82**, 1223 (1978).
- 81 CVE/SIN Cvetanovic, R.J., Singleton, D.L., and Irwin, R.S, "Gas-Phase Reactions of O(³P)
 Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 2. Re action Products and Mechanisms," J. Am. Chem. Soc. 103, 3530 (1981).

$0 + C_4 H_9 SH \rightarrow \text{products}$

<u>0 + 1-Butanethiol</u>

For potential rn. channels see 76 SLA/GRA, 78 KIR/VET, and 81 CVE/SIN.

06-419	(5.78±0.33)(12)	321±19	2	<u></u>
98	2.0(12)		2	1.3
06-419	5.8(12)	321±50	2	1.5
C	06-419	06-419 5.8(12)		06-419 5.8(12) 321±50 2

References for reaction $O + C_4 H_9 SH \rightarrow$ products

76 SLA/GRA Slagle, I.R., Graham, R.E., and Gutman, D., "Direct identification of reactive routes and measurement of rate constants in the reacions of oxygen atoms with methanethicl, ethanethicl, and methylsulfide," Int. J. Chem. Kinet. 8, 451 (1976).
78 KIR/VET Kirchner, K., Vettermann, R., and Indruch, H., "Kinetics of the reactions of mercaptans with O(³P) under consideration of the influence of molecular oxygen," Ber. Bunsenges. Fhys. Chem. 82, 1223 (1978).
81 CVE/SIN Cvetanovic, R.J., Singleton, D.L., and Irwin, R.S, "Gas-Phase Reactions of O(³P) Atoms with Methanethicl, Ethanethicl, Methyl Sulfide, and Dimethyl Disulfide. 2. Reaction Products and Mechanisms," J. Am. Chem. Soc. 103, 3530 (1981).

$0 + C_5 H_{11} SH \rightarrow \text{products}$

0 + 1-Pentanethiol

For potential rn. channels see 76 SLA/GRA, 78 KIR/VET, and 81 CVE/SIN.

Reference Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. factor
78 KIR/VET	EX	302-409	(6.18±0.35)(12)		328±19	2	
Discharge flow. High resolution mass spec. Mon-							
itored decay of thicl in excess 0 atoms. $P=\sim1$							
Torr.							
Recommended value of k	RE	298	2.1(12)			2	1.3
Recommended values of Arrhenius A and B	RE	302-409	6.2(12)		328±50	2	1.5
Based on the only data available (78 KIR/VET).	Addi	tional de	terminations would b	e usef	ul .		

References for reaction $O + C_5 H_{11} SH \rightarrow$ products

76 SLA/GRA	Slagle, I.R., Graham, R.E., and Gutman, D., "Direct identification of reactive
	routes and measurement of rate constants in the reacions of oxygen atoms with me-
	thanethiol, ethanethiol, and methylsulfide," Int. J. Chem. Kinet. 8, 451 (1976).
78 KIR/VET	Kirchner, K., Vettermann, R., and Indruch, H., "Kinetics of the reactions of mercap-
	tans with $O(^{3}P)$ under consideration of the influence of molecular oxygen," Ber. Bun-
	senges. Phys. Chem. 82, 1223 (1978).
81 CVE/SIN	Cvetanovic, R.J., Singleton, D.L., and Irwin, R.S, "Gas-Phase Reactions of $O(^{3}P)$
	Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 2. Re-
	action Products and Mechanisms," J. Am. Chem. Soc. 103, 3530 (1981).

0 + CH₃SCH₃ → products

<u>O + Methane, thiobis-</u>

Presumably $O + CH_3SCH_3 \rightarrow CH_3SO + CH_3$. For potential rn. channels see 76 SLA/GRA, 78 KIR/ VET, and 81 CVE/SIN.

Reference Code, Notes	Data type	-	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)		k err facto:
74 CAD/WIC Discharge flow. Excess CH ₃ SCH ₃ . [O] monitored by O+NO chemiluminenscence.	EX	300	3.3(11)			2	<u></u>
76 LEE/TIM Flash photolysis. [O] monitored by resonance fluorescence in excess CH ₃ SCH ₃ . O ₂ used as source of O atoms. P=40-100 Torr (Ar).	EX	268-424	(8.56±0.42)(12)		-366±16	2	
76 SLA/GRA Discharge flow. Photoionization mass spec. Mon- itored decay of CH ₃ SCH ₃ in excess O atoms. P= 0.5-1.9 Torr.	EX	300	3.8(13)			2	1.2
78 SLA/BAI Discharge flow. Photoionization mass spec. Mon- itored decay of CH_3SCH_3 in excess 0 atoms. P= 0.7-1.2 Torr. [A and B values were calculated (87 SIN/CVE) from the supplementary data of 78 SLA/BAI].	EX	252-493	(1.16±0.08)(13)		-300±22	2	
80 LEE/TAN1 Discharge flow. [O] monitored by resonance flu- orescence in excess sulfide. P = 1.1-2.8 Torr.	EX	272-472	(7.71±0.72)(12)		-404±30	2	
81 NIP/SIN Phase shift technique with modulated [O] moni- tored by O+NO chemiluminescence. O atoms gener- ated by Hg-photosensitized decomposition of N ₂ O. P=22-56 Torr at 297 K.	EX	296-557	(6.69±0.72)(12)		-460±41	2	
81 NIP/SIN	rl RN	300 300	13.8±0.9 (3.32±0.25)(13)			2/2 2	
Reference rn. O + 1-Butene \rightarrow products O formed by Hg-photosensitized decomposition of N ₂ O. Monitored the rate of formation of butene oxide and n-butanal as a function of the ratio of reactants. The above RN k value was calcu- lated (81 NIP/SIN) using $k_{ref}=2.42(12)$ cm ³ mo- le ⁻¹ s ⁻¹ .						_	

 $0 + CH_3SCH_3 \rightarrow products -- Continued$

Reference Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. factor
84 BAU/COX	SE	298	3.0(13)			2	1.25
	SE	270-560	7.8(12)		-409±100	2	
Fitted by least squares the data of 76 LEE/TIM, 80							
LEE/TAN, 81 NIP/SIN, and excluded the data of 76							
SLA/GRA, 78 SLA/BAI.							
Recommended value of k	RE	298	3.1(13)			2	1.2
Recommended values of Arrhenius A and B	RE	252-557	8.2(12)		-397±100	2	1.3
Assigned zero weight to the very low k of 74 CA	AD/WIC	. (If the	treatment is rest	ricted	to the		
same data as used in 84 BAU/COX and 74 CAD/WIC	is ex	cluded, th	e values would be	only s	lightly		
altered: for T=268-557 K k(298)=3.0(13), A=7	.4(12)	, B=-416±1	.00, and k err. fac	tor=1.	3).		

Arrhenius plots for the reaction $O+CH_3SCH_3$ -products are shown in Fig. 8.

References for reaction $0 + CH_3SCH_3 \rightarrow \text{products}$

74 CAD/WIC	Cadle, R.D., Wickman, H.H., Hall, C.B., and Eberle, K.M., "The reaction of atomic
	oxygen with formaldehyde, crotonaldehyde, and dimethyl sulfide," Chemosphere 3, 115
	(1974).
76 LEE/TIM	Lee, J.H., Timmons, R.B., and Stief, L.J., "Absolute rate parameters for the reac-
	tion of ground state atomic oxygen with dimethyl sulfide and episulfide," J. Chem.
	Phys. 64, 300 (1976).
76 SLA/GRA	Slagle, I.R., Graham, R.E., and Gutman, D., "Direct identification of reactive
	routes and measurement of rate constants in the reacions of oxygen atoms with me-
	thanethiol, ethanethiol, and methylsulfide," Int. J. Chem. Kinet. 8, 451 (1976).
78 KIR/VET	Kirchner, K., Vettermann, R., and Indruch, H., "Kinetics of the reactions of mercap-
	tans with O(³ P) under consideration of the influence of molecular oxygen," Ber. Bun-
	senges. Phys. Chem. 82, 1223 (1978).
78 SLA/BAI	Slagle, I.R., Baiocchi, F., and Gutman, D., "Study of the reactions of oxygen atoms
	with hydrogen sulfide, methanethiol, ethanethiol, and methyl sulfide," J. Phys. Chem.
	82, 1333 (1978).
80 LEE/TAN1	Lee, J.H., Tang, I.N., and Klemm, R.B., "Absolute rate constant for the reaction of
	O(³ P) with CH ₃ SCH ₃ from 272 to 472K," J. Chem. Phys. 72 , 1793 (1980).
81 CVE/SIN	Cvetanovic, R.J., Singleton, D.L., and Irwin, R.S, "Gas-Phase Reactions of $O(^{3}P)$
	Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 2. Re-
	action Products and Mechanisms," J. Am. Chem. Soc. 103, 3530 (1981).
81 NIP/SIN	Nip, W.S., Singleton, D.L., and Cvetanovic, R.J., "Gas-Phase Reactions of O(³ P)
	Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 1. Rate
	Constants and Arrhenius Parameters," J. Am. Chem. Soc. 103, 3526 (1981).
84 BAU/COX	Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., and Watson, R.T.,
	"Evaluated kinetic and photochemical data for atmospheric chemistry: supplement II,"
	J. Phys. Chem. Ref. Data 13, 1259 (1984).
87 SIN/CVE	Singleton, D.L., and Cvetanovic, R.J., The present evaluation.

1430

Fig. 8. Arrhenius plots for the reaction $O+CH_3SCH_3$ -products. The line is calculated using the recommended A and B values.

0 + cy-CH₂SCH₂ → products

<u>O + Ethylene episulfide</u>

The exclusive primary products appear to be $CH_2=CH_2 + SO$ (76 LEE/TIM, 87 SIN).

Reference Code, Notes	Data type		k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	•	k err. factor
76 LEE/TIM	EX	268-424	(8.07±0.54)(12)	<u></u>	18±20	2	
Flash photolysis. [0] monitored by resonance							
fluorescence in excess $cy-CH_2SCH_2$. O ₂ used as							
source of O atoms. P=40-100 Torr (Ar).							
Recommended value of k	RE	298	7.6(12)			2	1.3
Recommended values of Arrhenius A and B	RE	268-424	8.1(12)		18±50	2	1.5
Based on the only data available (76 LEE/TIM).	Addi	tional de	terminations would h	oe usei	ful.		

References for reaction $0 + cy-CH_2SCH_2 \rightarrow products$

76 LEE/TIM	Lee, J.H., Timmons, R.B., and Stief, L.J., "Absolute rate parameters for the reac-
	tion of ground state atomic oxygen with dimethyl sulfide and episulfide," J. Chem.
	Phys. 64, 300 (1976).
87 STN	Singleton D.I. Unnuhlished data

87 SIN Singleton, D.L., Unpublished data.

0 + cy-CHCHSCHCH - products

<u>0 + Thiophene</u>

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n		k,A k err. units factor
81 LEE/TAN Discharge flow. O formed by microwave discharge of O ₂ in He, followed by resonance fluorescence in excess thiophene. Abrupt change in the sign of the slope of the Arrhenius plot at ~ 260 K suggested to be possibly due to O addition at two different sites in thiophene (C=C and S).	EX	262-448	(2.01±0.20)(13)		569±30	2
Discharge flow. O formed by microwave discharge in N ₂ O and Ar. The intensity of emission from excited $3O_2$ was determined at fixed reaction time for various initial excess thiophene con- centrations. P < 2 Torr.	EX	379-525	(1.6±0.2)(12)		121	2

Recommendation is not warranted: 81 LEE/TAN's data show a minimum at about 262 K and indicate a substantial positive activation energy at higher T (262-448 K). 85 TAB/URE, who only report data at higher temp. (379-525K), find essentially no temperature dependence, and their values are only 1/4 of the values at 425 K of 81 LEE/TAN. There appears a discrepancy in 85 TAB/URE between the reported Arrhenius expression and the data points plotted in their Figure 4 (the only place where rate constants at specific temperatures are presented). Additional determinations are needed.

Arrhenius plot for O+cy-CHCHSCHCH+products is shown in Fig. 9.

References for reaction 0 + cy-CHCHSCHCH -> products

81 LEE/TAN	Lee, J.H., and Tang, I.N., "Absolute rate constant for the
	reaction of $O(^{3}P)$ with thiophene from 238 to 448K," J. Chem.
	Phys. 75, 137 (1981).
85 TAB/URE	Tabares, F.L., and Urena, A.G., "Chemiluminescence and kinetic studies in O(³ F) + thiophene, pyrrole and furan mixtures,"
	J. Chem. Soc. Faraday Trans. 2 81, 1395 (1985).

Fig. 9. Arrhenius plots for the reaction $O+cy-CHCHSCHCH \rightarrow products$.

$0 + CH_3SSCH_3 \rightarrow \text{products}$

<u>O + Disulfide, dimethyl-</u>

For potential reaction channels see 81 CVE/SIN and 83 SIN/IRW.

Reference Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. factor
80 LEE/TAN2 Discharge flow. [O] monitored by resonance flu-	EX	270-329	(1.28±0.13)(14)		0	2	
orescence in excess sulfide. P=0.52-2.60 Torr.							
81 NIP/SIN	EX	298-571	(2.62±0.42)(13)		-251±61	2	
Phase shift technique with modulated [0] moni-							
tored by O+NO chemiluminescence. O atoms formed							
by Hg-photosensitized decomposition of N_2O .							

0 + CH₃SSCH₃ → products -- Continued

Reference Code, Notes	Data type	T/K	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err
31 NIF/SIN	RL	300	24.5±1.5		1	2/2	
	RN	300	(5.91±0.37)(13)			2	
Reference rn. O + 1-Butene → products							
O formed by Hg-photosensitized decomposition of							
N_2O . Monitored the rate of formation of butene							
oxide and n-butanal as a function of the ratio							
of reactants. The above RN k value was calcu-							
<pre>lated (81 NIP/SIN) using k_{ref}=2.42(12) cm³mo- le⁻¹s⁻¹.</pre>							
84 BAU/COX	SE	298	7.8(13)			2	2
	SE	290-570	3,3(13)		-250±100	2	
Averaged the room temp. data of 80 LEE/IAN and							
81 NIP/SIN, although they differ by a factor of							
2. Accepted the B value of 81 NIP/SIN and ad-							
justed A to give the k(298) value.							
Recommended value of k	RE	298	6.0(13)			2	1.2
Recommended values of Arrhenius A and B	RE	298-570	2.6(13)		-250±100	2	1.5

Arrhenius plot for O+CH3SSCH3→products is shown in Fig. 10.

References for reaction $0 + CH_3SSCH_3 \rightarrow \text{products}$

80 LEE/TAN2	Lee, J.H., and Tang, I.N., "Absolute rate constant for the reaction of $O(^{3}P)$ with
	CH ₃ SSCH ₃ from 270 to 329K," J. Chem. Phys. 72 , 5718 (1980).
81 CVE/SIN	Cvetanovic, R.J., Singleton, D.L., and Irwin, R.S, "Gas-Phase Reactions of $O(^{3}P)$
	Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 2. Re-
	action Products and Mechanisms," J. Am. Chem. Soc. 103, 3530 (1981).
81 NIP/SIN	Nip, W.S., Singleton, D.L., and Cvetanovic, R.J., "Gas-Fhase Reactions of O(³ P)
	Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 1. Rate
	Constants and Arrhonius Paramotors," J. Am. Chem. Soc. 103, 3526 (1981).
83 SIN/IRW	Singleton, D.L., Irwin, R.S., and Cvetanovic, R.J., "Mechanism of the reaction of
	oxygen atoms, O(³ P) with dimethyl disulfide," Can. J. Chem. 61 , 968 (1983).
84 BAU/COX	Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., and Watson, R.T.,
	"Evaluated kinetic and photochemical data for atmospheric chemistry: supplement II,"
	J. Fhys. Chem. Ref. Data 13, 1259 (1984).

Fig. 10. Arrhenius plot for the $O+CH_3SSCH_3$ -products reaction. The line is calculated using the recommended A and B values.

O + SCF₂ → products O + Carbonothioic difluoride

Reference Code. Notes	Data type		k.k/k(ref). A,A/A(ref)	n	B. B-B(ref)		k err. factor
79 SLA/GUT	EX	259-493	(7.35±1.1)(12)		376±48	2	
Discharge flow. O formed by microwave discharge							
of O_2 in He. Decay of SCF ₂ in excess O mea-							
sured by mass spec. $P = 0.7-2.1$ Torr at 298 K.							
Products identified in cross jet reactor indi-							
cated only the channel forming SO + CF_2 .							
Recommended value of k	RE	298	2.1(12)			2	1.5
Recommended values of Arrhenius A and B	RE	259-493	7.4(12)		376±100	2	15
Based on the only data available (79 SLA/GUT).	Addi	tional de	terminations would	be usef	ul.		

Reference for reaction $0 + SCF_2 \rightarrow products$

79 SLA/GUT Slagle, I.R., and Gutman, D., "Study of the reactions of oxygen atoms with carbonothioicdichloride, carbonothioicdifluoride, and tetrafluoro-1,3-dithietane," Int. J. Chem. Kinet. 11, 453 (1979).

0 + SCCl₂ → products

0 + Carbonothioic dichloride

Reference Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. facto:
79 SLA/GUT	EX	251-493	(1.86±0.33)(13)		-58±53	2	
Discharge flow. O formed by microwave discharge							
of O_2 in He. Decay of SCC1 ₂ in excess O mea-							
sured by mass spec. P = 0.7-2.1 Torr at 298 K.							
Products identified in cross jet reactor indi-							
cated two channels: SO+CC1 ₂ and SCC1+C10.							
Recommended value of k	RE	298	2.3(13)			2	1.3
Recommended values of Arrhenius A and B	RE	251-493	1.9(13)		~60±100	2	1.5
Based on the only data available (79 SLA/GUT).	Addi	tional de	terminations would b	e use:	ful.		

Reference for reaction $0 + SCCl_2 \rightarrow products$

79 SLA/GUT Slagle, I.R., and Gutman, D., "Study of the reactions of oxygen atoms with carbonothioicdichloride, carbonothioicdifluoride, and tetrafluoro-1,3-dithietane," Int. J. Chem. Kinet. 11, 453 (1979).

$0 + cy - CF_2 SCF_2 S \rightarrow products$

0 + 1.3-dithietane. 2.2.4.4-tetrafluoro-

Reference Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	-	k err. factor
79 SLA/GUT	EX	253-493	(1.42±0.31)(13)		855±64	2	
Discharge flow. O formed by microwave discharge							
of O ₂ in He. Monitored decay of cy-CF ₂ SCF ₂ S in							
excess O by mass spec. P=0.7-2.1 Torr at 298 K.							
Products identified in cross jet reactor indi-							
cated only the channel forming SO+CF ₂ +SCF ₂ .							

0 + cy-CF₂SCF₂S → products -- Continued

Reference Code, Notes	Data type	•	k,k/k(ref), A,A/A(ref)	n	B, B-B(ref)	•	k err. factor
Recommended value of k	RE	298	8.1(11)			2	1.3
Recommended values of Arrhenius A and B	RE	253-493	1.4(13)		855±100	2	1.5
Based on the only data available (79 SLA/GUT).	Addi	tional det	erminations would	be usef	ul.		

Reference for reaction 0 + cy-CF₂SCF₂S \rightarrow products

79 SLA/GUT Slagle, I.R., and Gutman, D., "Study of the reactions of oxygen atoms with carbonothioicdichloride, carbonothioicdifluoride, and tetrafluoro-1,3-dithietane," Int. J. Chem. Kinet. 11, 453 (1979).