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In order to represent the thermodynamic properties of water (H20) over an extremely 
large range of temperature and pressure that is not covered by existing equations of state, a 
new fundamental equation has been developed. The Helmholtz function was fitted to the 
following kinds of experimental data: (a) ppT data, (b) thermal properties of the satura­
tion curve (Ps,p',p"), (c) speed of sound W, (d) isobaric heat capacity c

P
' (e) isochoric 

heat capacity c," (f) differences of the internal energy u, (g) differences of the enthalpy h, 
(h) Joule-Thomson coefficientf..l, and (i) the isothelmal throttling coefficient 0T' A new 
statistical selection method was used to determine the final form of the equation from a 
"bank" of 630 terms which also contained functional forms that have not been previously 
used. This 58-coefficient equation covers the entire fluid region from the melting line to 
1273 K at pressures up to 25 000 MPa, and represents the data within their experimental 
accuracy also in the "difficult" regions below O°C, on the entire saturation curve, in the 
critical rcgion and at vcry high pressures. The equation was constrained at the critical 

point as defined by the parameters internationally recommended by the International 
Association for the Properties of Steam (lAPS). Besides the 58-coefficient equation for 
the entire pressure range, a 38-coefficient equation is presented for providing a "fast" 
equation for practical and scientific calculations in the pressure range below 1000 MPa. 
This equation has, with the exception of the critical region, nearly the same accuracy as the 
58-coefficient equation. The quality of the new equations will be illustrated by comparing 
the values calculated from them with selected experimental data and with the IAPS-84 
formulation and the Scaling-Law equation. 
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Nomenclature 
Adjustable coefficients 
Second virial coefficient 
Specific isobaric heat capacity 
Specific isochoric heat capacity 
Specific heat capacity along the satu­
ration line 
Third virial coefficient 
Exponent, differential 
Specific Helmholtz energy 
Specific Gibbs energy 
Specific enthalpy 
Indices, exponents 
Upper limits of the corresponding in­
dices 
Index for data 
Number of data, molar mass 
Pressure 
Gas constant 
Specific entropy 
Exponent 
Thermodynamic temperatllre (no r1i~­

tinction is made between the thermo­
dynamic temperature and the tem­
perature scale defined by IPTS-68) 
Specific internal energy 
Specific volume 
Speed of sound 
General variables 
Specific caloric property 
Isentropic temperature-pressure coef­
ficient 
Ratio of heat capacities (r = cplcu ), 

1. Introduction 

Knowledge about the thermodynamic properties ofwa­
ter substance is of essential importance for technical as well 
as for scientific applications. The increasing need for an im­
provement of our knowledge of the thermodynamic proper­
ties of water substance led to the international coordination 
of steam research early in this century. This steam research 
is coordinated by lAPS (International Association for the 
Properties of Steam). lAPS consists of scientists from sever­
al countries and it gives recommendations on the most reli­
able property values of water substance and on calculations 
involving these data in the form of Releases. 

7 

Superscripts 
gen 
opt 
p 
r 

Subscripts 
b 

C 

calc 
exp 
o 

Reduced density (8 = pipe) 
Isothermal throttling coefficient 
Partial differential 
Difference in a quantity 
Difference in the heat capacities 
(E= cp - cu ) 

Dimensionless Helmholtz energy 
[<I>=jl(RT)] 
J oule-Thomson coefficient 
Density 
Variance 
Inverse reduced temperature 
(7= TjD 
Weighted least-squares sum accord­
ing to the maximum-likelihood meth­
od 

General; full bank of terms 
Optimized 
Precalculated 
Real 
Ideal gas state 
Saturated vapor "tate 
Saturated liquid state 
An overbar denotes a vector 

At the normal boiling point 
(Ph = 0.101 325 MPa) 
At the critical point 
Calculated 
Experimental 
Reference state 
Triple point 

S Saturation 
Physical constants for water (H20) 

Molar mass M = 18.01534 glmol 
Gas constant R == 0.461 51S 05 J/(g K) 
Critical temperature Tc = 647.14 K } 
Critical density Pe = 322 kg/m3 
Critical pressure Pc = 22.064 MPa 
Reference internal 
energy 

Reference entropy 

uo=O} 
So =0 

cf. Ref. 16 

in the 
liquid state at 

the triple point 

The last lAPS Release concerning equations of state for 
water substance was the lAPS Formulation 1984, I referred 
to as IAPS-84 in the following sections. This equation was 
already presented by Haar, Gallagher, and Kell2 in 1979. It 
contains 48 coefficients and has a rather complicated struc­
ture that slows down computer execution time. lAPS ap­
proves a range of validity for temperatures from 273 to 1273 
K at pressures up to 1000 MPa. Since IAPS-S4 has some 
difficulties in describing the thermOdynamic surface very 
close to the critical point, especially when considering the 
saturated liquid density, this region was excluded by lAPS. 

Since IAPS-84 shows some further deficiencies in rep­
resenting the thermodynamic surface of water (e.g., at tem-
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peratures below 273 K or at pressures above 300 MPa over 
the whole temperature range; also, a strange behavior is ob­
served when the equation is extrapolated to pressures above 
1000 MPa), we started in 1983 to develop a new equation of 
state for water. At about the same time, Hill also started a 
research project on a new equation for water substance. In 
January 1987 he presented a provisional version of his equa­
tion.3 Hill showed that he had been successful in switching 
from a classical analytical equation of state to the singular 
behavior of an extended Scaling-Law (Levelt Sengers et al. 4) 
without producing oscillations in the derivatives in the 
crossover region. This equation of state is a significant step 
towards a representation of all experimental data within its 
esthnated uncertainty, but the large number of 81 coeffi­
cients and the Scaling-Law part results in a rather cumber­
some form which slows down computer calculations. Be­
cause of the provisional character of Hill's equation, only the 
Scaling-Law part4 is used for comparisons in the enlarged 
critical region. 

In order to avoid the problems of the existing equations 
of state, the following goals were formulated for the develop­
ment of a new equation of state: 

(a) Simultaneous fit of the new equation of state to all 
kinds of measured thermodynamic data in order to represent 
all properties within the experimental accuracy. 

(b) The new equation of state should cover the whole 
fluid region where data exist, that is a pressure range up to 
25 000 MPa (or melting pressure) at temperatures between 
252 and 1273 K. 

( c) Being of a simple functional form, the equation of 
state should be easy to handle. 

( d) In order to minimize the number of coefficients, the 
structure of the new equation of state should be developed 
using an optimization method. 
The steps towards the realization of these goals will be de- . 
scribed in the following sections. A more detailed descrip­
tion of the work is given by Saul..5 He gives a summary of the 
different sets of experimental data to which the new equation 
was fitted. Saul also includes statements on the uncertainty 
of the experimental data; cf. also Sec. 5. 

2'1 The Helmholtz Function 
The Helmholtz function is a fundamental equation with 

the two independent variables density p and temperature T. 
It is convenient to separate the Helmholtz function/into two 
parts; the ideal gas contributionFep,n and the part due to 
the real behavior of the fluidf r (p,T) as follows: 

l(p,T) =F(p,T) + fr(p,T). (2.1) 

The ideal gas partF(p,T) is obtained from an integra­
tion of a formula for the isochoric heat capacity of the ideal 
gas c~. We have used the function of Cooper. 6 It is helpful to 
introduce the dimensionless quantities l' = Tc I Tand a = pi 
pc (the index c denotes the corresponding value at the criti­
cal point) and to normalize the Helmholtz function with the 
product of the gas constant Rand tt:IIlperature T so that; 

1(0,1') = F(o,'r) + fr(o,'r) 
RT RT RT' 

(2.2) 

or the equivalent 

" ...... v •. Chem, .... , 0.1a. Vol, ta. No .•• 1 ... 

(2.3) 

The relations of the Helmholtz function to other thermody­
namic properties are given in Appendix A I, 

3. Fitting and Optimizing the Correlation 
Equation for the Helmholtz Function 
The goal of this work is to present a correlation equa­

tion for the real part of the Helmholtz function <l>r(8,r,0), 
where a represents the vector of coefficients to be fitted. This 
correlation equation must be a function linear in the coeffi­
cients a j if the methods we used to fit the coefficients and to 
optimize the s~ructure of the equation are' to be applied; the 
reasons for thIS statement will be given later in this section. 
For the structure of the equation of state, we will consider 
characteristics such as the functional type (pure polynomi­
als, polynomials coupled with exponential functions with re­
gard to density etc.), the exponents of the density and tem­
perature terms in the equation, ways of combining different 
functional types, and last but not least the number of coeffi­
cients. 

Some examples of the thermodynamic relations of the 
Helmholtz function to the various properties Zj ( <I> ,0,1',0) are 
given in Table 1, namely the pressure p, the enthalpy h, the 
isobaric heat capacity c p' and difference of the internal ener­
gyu. 

Besides some theoretical assumptions which must be 
considered when developing an equation of state, experi­
mental data zexp eXexp,Yexp) are the only intormation avail­
able about the thermodynamic surface, where x,y, and Z de­
note general thermodynamic variables. One tries to fit <l>r to 
the experimental data in such a way that the weighted sum of 
squares: 

~ = ~ ( [zexp -Z(<I>,Xexp ,Yexp,0]2) = ~ azJ.m . 
XI.I...tI a: k .-2 ' 

m= 1 exp j,m m= 1 Uj,m 

(3.1) 

is minimized. In Eq. (3.1) if corresponds to the total uncer­
tainty of the experimental data according to the Gaussian 
error propagation formula. The indexj in Eq. (3.1) denotes 
one particular property j that is being considered. When an 
equation of state is fitted to more than one property, it is 
called a simultaneous or multi property fit and the reSUlting 
sum of squares: 

J 

2 _" 2 X-£.. Xj' 
j=l 

(3.2) 

is to be minimized. The problem of minimizing the sum of 
squares becomes a problem of solving simultaneously a sys­
tem of normal equations. Depending on the property to 
which the equation is fitted, the system of equations becomes 
linear or nonlinear. If the relation between the property Zj 

and the Helmholtz function is a linear combination of <I> and 
its derivatives, then the basic requirement for a system of 
linear equations for the coefficient vector 0 is satisfied. Such 
linear relations in <I> and its derivatives are those for the 
pressure p, the enthalpy h, and for the difference of the inter­
nal energy u as listed in Table 1. Unfortunately, most experi­
mentalists actually measure the thermodynamic properties 
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TABLE 1. Examples of relations of thermodynamic properties to the Helmholtz function and its derivatives. 

Property 

Pressure Zj = p(p,T) 

p(8,r) = 1 + 8<1>// 
pRT 

Enthalpy Zj = h (p, T ) 

h(8,7) =7-10 +8<1>r) +<1>0 +<I>r 
RTc 0 r T 

Isobaric heat capacity Zj = C p (p, T ) 
(1 + 8<1>:5 - 87<1>:5.,.) 2 

Cp~'7) = _ r(<I>~T + <1>;.,.) + 1 + 28<1>:5 + 82<1>:50 

~ 

Difference of the internal energy Zj = U (p, T ) 

Relation 

explicit 

linear 

implicit 

linear 

implicit 

non-linear 

explicit 

Precorrelation of 

. d' . (a<I» "1 1 "" (a<I» "" a
2

<l> <l> a
2

<1> '" a 2<1> a<l>o denotes the partIal envattve a8 T' SImI ar y: 'I'T = aT [/ '1'08 = a82' TT = ar' '1'0.,. = J8JT . 

as a function of pressure p and temperature T (e.g., the en­

thalpy h) and not as a function of density p and temperature 
T, which are the independent variables of the Helmholtz 
function! This yields an implicit relation between th~ mea­
sured state variables p and T and the independent variables p 
and T of the Helmholtz function and leads to a system of 
nonlinear equations for the coefficients of the equation of 
state. 

Moreover, there exist thermodynamic properties whose 
relations to the Helmholtz function are not linear combina­
tions of <I> and its derivatives; an example is the isobaric heat 
capacity cp (cf. Table 1). A fit to these properties will also 
result in a system of nonlinear equations for a. Those proper­
ties which lean to a system of1inear equations when calculat­
ing the coefficient vector a will now be called "linear", and 
the others will be called "nonlinear" properties. Solving a 
system of nonlinear equations can involve extensive comput­
er time, but this problem can be solved. 

At this point we should recall that the correlation equa­
tion for the Helmholtz function must be a linear function of 
the coefficients ai • This is caused by the fact that nonlinear 
least -squares methods malfunction if the coefficients and the 
exponents of the density and temperature functions are to be 
determined simultaneously. The determination of optimized 

exponents means an optimization of the structure of the 
function and this can, at present, only be managed if <I> is a 
linear combination of all the adjustable coefficients ai • The 
structures of most of the existing equations of state have been 
determined subjectively based on the experience of the re­
searcher or by trial and error. In o~der to overcome this 
unsatisfactory situation of tnal and error, Wagner? devel­
oped optimization strategies which have been proven for 
many thermodynamic functions, i.e., vapor pressure equa­
tions. For complex structures like an equation of state, the 
very computer-time-intensive Evolutionary Optimization 
Method (EOM) of Ewers and Wagner8 is superior to the 
very fast regression analysis of Wagner. 7 The optimization 

method used in this work was recently developed by Setz­

mann and Wagner, 10 and combines both the reliability of the 
EOM and the high speed of convergence of the regression 
analysis of Wagner. 

All of the optimization strategies require a general com­
prehensive functional formulation called a "bank of terms". 
On the basis of a mathematical and statistical analysis, the 
optimization procedure selects out of this bank of terms the 
most effective correlation equation for the problem formu­
lated by the data. The main disadvantage of all of these opti­
mization methods is the fact that they can only find the best 
structure when the optimization problem consists of linear 
data. It was one of the major objectives of this work to make 
the non linear-data information availahle for our optimiz­
ation method. In order to linearize an implicit relation, e.g., 
for the enthalpy h (p, T) (cf. Table 1), it is sufficient to pre­
calculate the density pP for the measured pressure p and the 
temperature T from a known equation of state (the best one 
that is available). For an implicit rionlinear relation (e.g., 
the isobaric heat capacity cp ' cf. Table 1) one must precalcu­
late the density pP as well as a characteristic variable that 
linearizes the relation between the property to be fitted and 
<I> and its derivatives (e.g., for cp the term EP ). For some 
properties in selected regions (e.g., vapor-liquid equilibri­

um, dilute-gas region), a data synthesis, i.e., the calculation 
of state values from a known equation but not necessarily an 
equation of state, was performed. A summary of the individ­
ual sums ofleast squares used for the nonlinear simultaneous 
fit as well as for the optimization procedure is given in Table 
2. 

4. The Method of Simultaneous 
Improvement of the Equation of State and 

the Data Set 
Figure 1 shows the steps within one cycle of the devel­

opment of our equation of state. Proceeding from the equa-

J. Phys. Chern. Ref. Data, Vol. 18, No.4, 1989 
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TABLE 2. Contributions of the properties to the sum of least squares [Eq. (3.2)] for fitting and optimizing the new correlation equation for the Helmholtz function. 

j 

1 
2 

4 

6 

7 

88 

10" 

11 

Data 

x,y,z 

p,p,T 
p.,p',T 

p.,p",T 

Maxwell 

criterion 

c.,p,T 

u"p"T, 

U2,P2,T2 

h"pf,T, 

h2,~,T2 

hl,p.,T. 
hz,P2,Tz 

w,p,T 

""p,T 

M j 

Sum of weighted least squares xf = L Azim qj-:;" 2 according to Eq. (3.1) 
m=1 

M, [fb{ ~" ) ( /j' ) ]2 ~ • 1-- -In - _~I +~,. q4- 2 

m~1 RTp" /)' /)" m .m 

f [...!!:L_...!!L_ (1"-1(1 + ~r) +~o +~r) + (1"-1(1 +~r) +~o + ~r) ]2 q.-2 
m= I RTc RTc 6 T 7' 2 6.. Tim 7.m 

~ .J:..+-r(cb0 +mr) P' fT.- 2 M. [c ]2 
m"':t R II I~ m '9~(ff 

. M" [ur ]2 L - - r P( 1 + 2~~ + c52~~) O'il.~ 
m=1 RT m 

Where oim' according to the gaussian error propagation formula, is given by: 

07= - 0-:+- ti.+- 0-: [( aAz)2 (aAz)2 (aAz)2] 
"m ax y.z x ay x.. y aZ x.y Z j.m 

The: fUDc;tioRAl.stcuc;tucc: h4ll 'bc:c:n optimize:d (opt) According 

to the folloy.'ing least square sum: 

raPI = l7 +.rl + xi +,rl + rl +.:rl +.rl +;rl +,it. 

tbe tlnal coetticlents were obtame<i trom mlmmlZmg tne toUowmg least 
square sum by a nonlinear fit (nI): 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

.:tnl = l7 + ,rl + .rl + ,rl + .is + .rl + ,rl + l70 + l72 + l73 + l74 (3.17) 

8 A fit to these properties will lead to systems of nonlinear equations where the following coupling condition has to be taken into account:p = pRT( 1 + ~ ~) (3.18) 

; tion of state resulting from the previous cycle, an examina­
tion of both the equation of state and the data set is 
\Performed. This examination is commonly based on devi­
ation or absolute plots, keeping in mind the often very opti­
mistic estimates of the experimentalists with regard to the 
accuracy of their experimental data. A well-founded knowl­
edge of the experimental data is required. Factors to be con­
sidered include the reliability and reputation of the experi­
mental group, the fluid regions covered, and the comments 
of other. independent evaluators. This. together with consid­
erable experience, will help us decide whether to: (a) change 
weighting, (b) add data, (c) reject data, (d) "thin out" in 
re~ons where data are abundant, (e) "correct" data, or (f) 
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"synthesize" data. With the aid of the equation of state re­
sulting from the previous cycle, a new linear data set for the 
optimization and a nonlinear one for the nonlinear simulta­
neous fitting procedure results. This means that a new syn­
thesis, precalculation, and weighting is performed for every 
new cycle. 

On the other hand, one should always consider ~hether 
the functional structures forming the bank of terms are actu­
ally able to describe the problem defined by the data. We 
performed a systematic study on this problem and will re­
turn to it in Sec. 6. 

Based on the linear data set, the optimization procedure 
selects the most effective equation of state; a minimizing of 
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E x ami nat ion of the Res u 1 t s 

* wi th experi ence and a founded knowl edge about the data: 

- change weighting 
- reject data 
- add data 
- "thin out" in regions where data are abundant 
- "correct" data 
- "synthes i ze" data 

* better functional structure 

* stop the procedure 

equation H 

Fitting 

- simultaneous 
- nonl inear 

II 
know how 

A 

U 
D a t a processing 

V 
nonlln.data 

X
2 

a; <======= - synthesis 
=========~ - precalculation 

equation _ weighting 

,.", . t " ,d, ,t, ~ 
i=1 "linear" data 

V 
best 0 p tim i z i n g 

==;J 

structure for U 
th' ,q"[ X' \~) d, ~ ________ --1 

t; bank of terms 
1--

~gen = L aj od; Tt; 

i=1 

FIG. l.The steps within one cycle during the development of the new equa­
tion of state. 

the sum of squares with regard to the exponents d i and ti (cf. 
Fig. 1) takes place. Based on the nonlinear (original) data 
set, the subsequent nonlinear fitting procedure minimizes 
the sum of squares with regard to the coefficient vector a of 
the new equation of state; now the cycle is complete. 

Every cycle of this procedure improves the equation of 
state as well as the linear data set. At the end of this iterative 
procedure the data set becomes very stable and no further 
improvement of the equation of state is possible; the final 
equation is obtained. 

At this stage we would emphasize that the precalcula­
tion and data synthesis were only used to make the nouliu­

ear-data information available for the linear optimization 
procedure. Comparisons were always made with respect to 
the original linear and nonlinear data. 

5. The Data Set for Water Substance 
One task of lAPS has been the review of experimental 

data on the thermophysical properties of steam and water 
substance. Based on this extensive work carried out over 
several decades (cf. the latest review by Sato et al. 9

) and on 
our own data evaluation including a judgment of the experi­
mental uncertainties, we have selected the data set used to fit 
the new equations. 

In addition to an overview of the selected data set (de­
tails can be found in Ref. 5), we will show in this section how 
we constrained the equation of state in regions where only 

nonlinear data or no data were available. The following sta­
tements should be considered when reading this section: 

I.It was the goal of our work to represent the reliable 
data on all properties within the experimental uncer­
tainty. 

2.The new equation of state was constrained to yield a 
physically meaningful behavior in regions where data 
exist as well as in regions where no data are available. 

3.The coefficient vector of the final equation of state 
was determined by a direct simultaneous nonlinear fit 
to the original data. 

Consistent with point 1 we considered it acceptable to 
create artificial linear data, i.e., to perform a data synthesis in 
order to improve the quality of the optimized equation of 
state with respect to the nonlinear data. 

This was done at 218 temperatures where we calculated 
values for the vapor pressure Ps' the saturated liquid density 
p' amI the ~aturated vapor density p" from our equations for 
the saturation line. I I The values resulting from these equa­
tions, recently recommended by lAPS, were used to define 
th~ M:lXwell criterion for our new equation of state. In order 
to yield a better representation of the caloric properties along 
the saturation line, we also calculated: (a) 74 differences of 
the internal energy of the saturated liquid 
[u ' (p', T) 2 - u' (p', T) I] and (b) 75 internal energies of va­
porization [u" (p 11 ,T) - u' (p', T) ] from the equations given 
in Ref. 11. 

As a first step towards a representation of all available 
data in the low-density region, we established a virial equa­
tion for the region below 55 kg/m3 (=0.17 Pc) at tempera­
tures from 273 to 1123 K (cf. Sauls). When establishing this 
equation we adopted the procedure of successive improve­
ment of the data set and the equation of state as we described 
in Secs. 3 and 4. The virial equation was then generally used 
for the precalculation and for the data synthesis within the 
range of its validity, i.e., after establishing this equation, the 
data set for this region remained unchanged. 

We calculated 75 state values from this equation for the 
linear data set. The calculation was performed for the fol­
lowing properties: (a) pp T, (b) velocity of sound w, and (c) 
isochoric hcat capacity C p • This was found to yidJ a well 
behaved surface from the equation of state in this region. For 
the final nonlinear fitting of the coefficients ai' 25 of the 75 
artificial data were not used because that r~gion was covered 
by experimental Joule-Thomson- and isothermal throttling­
coefficient data. 

The complete data set for water substance is shown 
schematically in Fig. 2 on the pT plane, whereas Table 3 
gives an overview of the experimental and artificial data that 
we used for our 58-coefficient equation of state. The data set 
used for the development of our 38-coefficient equation of 
state is a subset (273.16 K<T<1273K; 0 MPa<p<400 
MPa) of these seleCted data. Where needed, the units of the 
original data were converted into SI units. The temperatures 
of those measurements which did not correspond to the 
IPTS-68 (International Practical Temperature Scale of 
1968) were converted according to IPTS-68. 
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FIG. 2.The distribution of the experimental data of the different properties used for fitting the new equation of 
state in a pT diagram. 

TABLE 3. Pooling of the data set used for the nonlinear simultaneous fit and 
forthe optimization procedure. 

6. Examination of Functional Structures for 
the Correlation Equation of the Helmholtz 

Function 
Data 

p,p,T 
Ps,p',T 

p"p",T 
p,p,T 

Maxwell-crit. 

cv,p,T 
cv,p,T 

w,p,T 
w,p", yP, T 
w',p .. ,T 
w' ,p", yP, T 
w",p .. ,T 
w" ,p"yP, T 
w,p,T 
w,p", y", T 

cp,p,T 

cp,/J",e',T 

hl,PI,TI 
h2,Pz,T2 

hl,p",TI 
h2,p",Tz 

/l,p,T 
8T ,p,T 
(u',p',1) I 

(u',p', 1)2 
urI - u',p",p',T 

Sum 

Remarks 

original data 
calc. Ref. 11 
calc. Ref. 11 
calc. Ref. 5 

calc. Ref. 11 

original data 
calc. Ref. 5 

original data 
precalculated data 
original data 

precalculated data 
original data 

precalculated data 
calc. Ref. 5 
calc. Ref. 5 

original data 

precalculated data 

original data 

precalculated data 

original data 
original data 

calc. Ref. 11 

calc. Ref. 11 

Number of data when: 
optimizing 

2538 
218 
218 

75 

218 

116 
75 

418 

47 

50 

75 

765 

235 

74 

75 

5197 

fitting nonlinearly 

2538 
218 
218 

55 below 480 K 

218 

116 
55 below 480 K 

418 

47 

50 

55 below 480 K 

765 

235 

234 
180 

74 

75 

5551 
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We will now give a brief summary of the results of our 
analysis on the functional structures considered when deve­
loping the new equation of state. Based on our experience 
with the development of an equation of state for oxygen, 12-14 

we evaluated four families of functional structures when es­
tablishing the new equation of state, namely: 

E terms: (6.1 ) 

(E-l) terms: ( 6.2) 

I 

(E6-E6) terms: (e- O
.
466 e- 2,s") L a3.J/;/; (6.3) 

i=l 

I 

Gaussian terms: e - 30«'5 - 1)2 - lOO( r - I):! I a
4
,J/;/;. (6.4 ) 

i=1 

The amount of computer time and the amount of mem­
ory required for optimizing an equation of state increases 
quadratically with the number of terms considered. This led 
us to restrict the number of terms to about 650. Consequent­
ly, we could not evaluate all possible structures at the same 
time and we had to split the entire set into a partial bank of 
terms. 

The most effective contribution of the E terms to the 
final equation of state was obtained from the terms where 
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j = 0,1,2,3. In contrast to our equation of state for oxygen 
( cf. Ref. 13) we did not need the E terms for j = 4. The use of 
(E-1) terms as well as the use of the Gaussian terms was 
found to yield no essential improvement in the representa­
tion of the data. Therefore, these families of functions were 
not considered when establishing the final bank of terms. 
The (E6-E6) terms, however, were found to improve clearly 
the representation of the thermal as well as the caloric prop­
erties within the critical region. Thus, the final bank of terms 
for the real part of the Helmholtz function consisted of the 
follwing terms: 

13 13 II 13 

cpr,gen = L L al,ijoi'T j + e - 8' L L a2,ijoi-! 
i=Ij=O i=Ij=O 

II 13 S 26 

+ e - 8' L L a3,ijoi'T j + e - 8-' L L a4,ijolT' 
i=lj=O i=Ij=13 

S 2S 

+ (e 0.48' - e 28') L L as,ijtYjlj. (6.5) 
i= Ij= 12 

The bank of terms defined by Eq. (6.5) contains 630 

terms and was used to establish our 58-coefficient equation 
of state. For the 38-coefficient equation of state the e 8' 

terms (second functional form in Eq. (6.5» and the (E6-
E6) terms were not considered. This bank of terms only 

I 

contained 396 terms. The range of the density and tempera­
ture exponents for each bank of terms was chosen based on 
the results from several runs of our optimization procedure. 

7. The Correlation Equations for the 
Helmholtz Function 

The complete Helmholtz function can be written as 

_/{_o_, 'T_) = jO (0, 'T) + ::.-.Ir....:...( 0....:....., 'T....:.....) 

RT RT RT' 
(7.1) 

where 'T = TeIT, 0 = pipe' 

The ideal part of the Helmholtz functionj"{o,'T)/(RT) 

was obtained from Cooper's6 c; equation and is based on the 
c; data of Woolley. IS The Cooper equation is valid for the 
temperature region 130 K~ T~4000 K and has, expressed in 
cpo, the following form: 

<pO L 
RT 

8 

+ L a;ln(1 - e Y;1'), (7.2) 
i=4 

where 'T = TeIT, 0 = piPe and 

a~ y; 

5 0.973 150 3.537 101 709 
6 1.279500 7.740210774 
7 0.969560 9.243 749 421 

2 
3 
4 

cf. Sec. 7.1 or 7.2 
cf. Sec. 7.1 or 7.2 

3.006320 
0.012436 1.287202 151 8 0.248730 27.505 640200 

Te = 647.14 K,Pe = 322 kg/m3, 
and R = 0.461 51805 J/{g K) 

The constants y~ of the original Cooper paper were re­
vised (divided by Te ) in order to use the same dimensionless 
temperature for the independent variable as for the real part 
of the Helmholtz function. The constants a~ and a~ were 
adjusted so that Eq. (7.1) yields zero values for the entropy 
and the internal energy in the saturated liquid state at the 
triple point. This leads to different numerical values of a7 
and a; for the two equations given in the following subsec­
tions. In Appendix A2 we will explicitly give all required 
derivations of the ideal part as well as for the real part of the 
Helmholtz function with respect to 0 and T. 

7.1. The 58-Coefficient Equation of State 

The complete Helmholtz function is given by Eq. (7.1). 
The constants a~ and a~ for the ideal part of the Helmholtz 
function 10(8,'T)/(RT), cf. Eq. (7.2), have the following 
numerical values: a~ = - 8.318 441, a~ = 6.681 816. 

Based on the bank of terms defined by Eq. (6.5) and the 
available data sources (cf. Table 3), the following real part 

I 
of the Helmholtz function cpr = Ir(8,'T)/(RT) was deter­
mined using the procedure as described in Sec. 4: 

58 

+ (e - 0.4b'" - e - 28') L (aiodi/ i ) , (7.3) 
i= 5S 

where 'T = TeIT, 0 = pipe' and II = 9, 12 = 54. 
The final coefficients of this new equation of state were 

obtained by a nonlinear least-squares fit to the selected data. 
Table 4 gives the coefficients and parameters of this 58-coef­
ficient equation of state, Eq. (7.3). 

The equation of state was developed on the basis of data 
which cover the region 252 K<T<1273 K, 0 MPa<p 
<25000 MPa (or melting pressure). 

The equation of state was constrained to the interna­
tionally recommended values for the critical parameters (see 
the paragraph "Physical constants" in the Nomenclature). 
The data of all measured properties (thermal and caloric 
properties) are represented within their estimated uncer­
tainty; the only exception is a single experimental Cv value 
closest to the critical point. 

J. Phys. Chern. Ref. Data, VoJ.18, No.4, 1989 
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TABLE 4. Parameters and ooeffioients of the new 58-coefficient equation of Based on the bank of terms given in Scc. 6 and the avail-
state, Eq. (7.3). able data sources (cf. Sec. 5), the following real part of the 

di 
Helmholtz function cpr was determined: 

Yi Ii ai 

cpr = jr(8,r) = ± (a;8dii i ) + I e- t/
i(a;8d

;ii), 1 1 0 0.821 6377478 
2 1 2 - 0.254 389 437 9 R T ; = 1 ; = I, + 1 

3 2 0 - 0.883 086 864 8 X 10- I 
(7.4) 

4 5 9 - 0.890 309 724 8 X 10-6 
where 'T = TcIT, 8 = pi PC' and II = 12,12 = 38. 

5 8 0 - 0.124 133 335 7 X 10-5 

The final coefficients of this equation of state were ob-6 11 0 0.289 559 028 6 X 10-8 

7 11 12 0.140 361030 9x 10- 10 tained by a nonlinear least-squares fit to the selected data. 
8 13 7 0.8183943371 X 10- 12 Table 5 gives the coefficients and parameters of this 38-coef-
9 13 13 - 0.239 790 528 7 X 10- 12 ficient equation of state, Eq. (7.4). 

10 1 0 - 0.7519743341 
The equation of state was developed using data in the 11 1 1 - 0.415 1278588 

12 1 3 - 0.103 051374 ox 101 region 273.16 K<T<1273 K, 0 MPa<p<400 MPa. 
13 2 1 - 0.164 803 688 8x 101 The equation of state was constrained to the intema-
~4 2 5 - 0.468 635 025 1 tionally recommended values for the critical parameters (Tc 
15 3 5 0.3560258142 

= 647.14 K, Pc = 322 kg/m3
, Pc = 22.064 MPa, cf. Ref. 16 4 2 - 0.636 465 829 4 

17 4 3 0.222 748 236 3 16). In the range where .Eq. (7.4) was fitted to the data, it 
18 4 5 0.895484993 9 X 10- 1 represents all measured properties (thermal and caloric 
19 5 6 0.155768678 8x 10-2 

properties) within the experimental uncertainty of the data, 20 6 4 0.134771 908 8 X 10-2 
21 7 1 - U.13U 135 338 5X W- z except for ccrtain data in a part of thc critical rcgion bound-
22 8 8 0.998 736 867 3 x 10-6 ed by 0.6 Pc <p < 1.4 Pc and 645 K < T < 665 K. In this re-
23 9 0 0.226362947 6x 10-3 

24 11 1 0.289330495 Ox 10-5 

25 2 0 0.1995437169 TABLE 5. Parameters and coeffiCIents orthe new 3l:S-coefficIent equatIon of 
26 2 9 - 0.270 776 766 2 x 10.,...1 state, Eq. (7.4). 
27 2 10 0.1849068216XlO- 1 

28 2 11 - 0.440 239 435 7X 10-2 

Yi di t; ai 29 2 2 0 - 0.854 687 673 7 X 10- I 

30 2 2 8 0.122053 8576 
1 0 0.233 000 901 3 31 2 4 5 - 0.256 223 704 1 
2 1 2 - 0.140 209112 8X 101 

32 2 5 4 0.255 503 463 6 
3 2 0 0.117 224 804 1 33 2 6 2 - 0.632 320 390 7 X 10- I 
4 2 1 - 0.185 074 949 9 34 2 6 12 0.335 139 757 5 X 10-4 

5 2 2 0.177 0110422 35 2 7 3 - 0.615283498 5X 10- 1 
6 2 3 0.552515 1794 X 10- 1 

36 2 7 10 - 0.353304 820 8X 10-3 

7 3 5 - 0.341 325738 ox 10-3 

37 2 8 3 0.314630925 9X 10- 1 

8 5 0 0.855 7274367 X 10-3 

38 2 10 2 - 0.226179 598 3X 10-2 
9 5 1 0.371 690068 5 X 10-3 

39 2 10 8 0.186897 020 Ox 10-3 

10 6 3 - 0.130 887 1233 X 10-3 

40 2 11 0 - 0.138 461455 6X 10-2 
11 7 2 0.321689519 9X 10-4 

41 2 11 1 0.2713160073 X 10-2 
12 8 5 0.278 588 103 4 X 10-6 

42 2 11 3 - 0.486 611 853 9X 10-2 
13 2 1 5 - 0.352151113 0 43 2 11 4 0.375178912 9X 10"':2 
14 2 1 7 0.7881914536XIO- 1 

44 2 11 6 - 0.569 266937 3 X 10-3 

15 2 1 9 -0.1519666610XlO- 1 

45 3 2 13 - 0.587 6414555 
16 2 2 5 - 0_106 845 858 6 

46 3 2 14 0.568 783 834 6 
17 2 3 4 - 0.205 504 628 8 47 3 2 15 - 0.164 2158198 
18 2 3 6 0.914619801 2 48 3 3 14 0.587 863 588 5 
19 2 3 13 0.321334356 9X 10-3 

49 3 3 16 - 0.284 430 193 1 20 2 4 5 - 0.113 359 139 1 X 101 
50 3 4 13 - 0.204 919 833 7 21 2 5 2 - 0.3107520749 
51 3 4 26 - 0.403 923 371 6 X 10-2 

22 2 5 3 0.121 790 1527 X 101 

52 3 5 15 0.545 904 959 4 X 10- I 
23 2 6 2 - 0.448 171083 1 

53 3 5 23 - 0.891426 014 6X 10-2 

24 2 7 0 0.549421 877 2X 10- 1 
54 3 5 25 0.497441 125 4X 10-2 

25 2 7 11 - 0.866 522 209 6 X 10-4 

5,5 1 50 - 0.709318338 Ox 10-2 

26 2 8 1 0.384408 408 8 X 10- I 
56 2 40 0.1718796342XlO- 1 

27 2 8 4 0.985304 488 4X 10-2 
57 3 32 - 0.148 265 303 8X 10- 1 

28 2 9 0 - 0.176 759 847 2X 10- 1 

58 4 26 0.451 729288 4X 10-2 
29 2 11 0 0.148854922 2X 10-2 

Tc = 647.14 K, Pc = 322 kg/m3
, R = 0.461 51805 JI(g K) 

30 2 11 3 - 0.307 071906 9X 10-2 

31 2 11 5 0.388080328 Ox 10-2 

32 2 11 6 - 0.2627505215 X 10-2 

7.2. The 3S-Coefficient Equation of State 33 2 11 7 0.525837138 8x 10-3 

34 3 2 13 - 0.171 6396901 
Once again, the complete Helmholtz function is given 35 3 2 14 0.718882362 4x 10- 1 

by Eq. (7.1). The constants a~ and a; for the ideal part of the 36 3 3 15 0.588 126 835 7 X 10- 1 

37 3 3 24 - 0.145593888 Ox 10- 1 

Helmholtz functionjO(8,'T)/(Rn, cf. Eq. (7.2), have the 38 3 5 15 - 0.121613940 Ox 10- I 

following numerical values: a~ = - 8.317 709 5, a~ Tc = 647.14 K,pc = 322 kglm\ R = 0.461518 05 J/(g K) 

= 6.681 5049. 
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gion the 38-coefficient equation is, in contrast to IAPS-84, 
smooth and continuous and yields physically reasonable re­
sults. 

8. Discussion of the New Equations of State 
and Comparison with Experimental Data 

and Other Equations of State 
In the following subsections, the quality of the new 

equations is discusscd bas cd on comparisons with experi­
mental data. Most figures also show comparisons with the 
Scaling-Law equation4 in the enlarged critical region and 
with IAPS-84.1 In this context, however, the following 
points should be noted. The official validity range of IAPS-
84 does not include temperatures below 273.15 K, pressures 
above 1000 MPa, and a part of the critical region. When the 
Scaling-Law equation was originally developed,4 the para­
meters of the critical point had not yet been internationally 
agreed upon. 16 However, to give the reader an impression of 
values calculated from these two equations, IAPS-84 was 
also used for comparisons outside its validity range and the 
Scaling-Law equation was also used in the region very close 
to the critical point based on the latest values. 16 There were 
no comparisons with the Hill equation3 included because of 
its provisional character. 

Since this section only gives a compressed overview of 
the overall quality of the equations, we will only show a 

1 
c.. 
x 

d!. 

o 
o 
~ 

273 K 
O.003------------------------~~ 

298 K 
O.003----------------------~---* 

.-.-.-.-.- ..... 

.!. 

-O.003~~~~~~~~~~~~~ 

10 0 

Pressure p/MPa 

T Error bar hi~h 
.L Error bar low 
$ Tammann et al!9 

Saturation 
-.-.- 38-coe f f. eos, Eq. (7.4) 

representative sample from the data set that we used for es­
tablishing our equations. When discussing both of the new 
equations, we will only refer to the real part <l>r [Eq. (7.3) or 
Eq. (7.4)] which were developed in this work. It is obvious 
that these real parts must be used according to Eq. (7.1) 
together with the ideal part <1>0 [Eq. (7.2) ] when calculating 
caloric state values. 

With the exception of Fig. 3(a), the figures do not con­
tain any information on the uncertainty of the experimental 
data because such error bars would have made the figures 
too crowded. Roughly speaking, the experimental uncer­
tainty corresponds to the scatter of the data, details are given 
in Ref. 5. 

8.1.ppTData 

Figures 3(a) to 3(d) show the relative density devia­
tions of the experimental pp T data from those calculated 
from Eq. (7.3); the deviations are plotted versus pressure. 

We choose for Fig. 3 (a) the high resolution of 
~p/p '= 3 X 10-5 for the density deviation. In this way we 
may evaluate the equations of state in the temperature range 
between 273 and 403 K and at pressures below 100 MPa 
using a scale which corresponds roughly with the experi­
mental uncertainty. In spite of these extreme requirements 
in data representation we can see that both equations of state 

O.003 __ -----------3-3-3--K-------~~ 

Pressure p/MPa 

~ K e 11 & Wh a 11 e y 18 
rn Br idgman'7 * G r in dIe y & Lin d 20 

_0-0- IAPS-841 

FIG. 3 (a) . Percentage density deviation of the experimental pp T data from values calculated from the new 58-coefficient equation of state, Eq. (7.3), in a very 
high rcsolution with rcspcct to density. 
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[Eq. (7.3) and Eq. (7.4)] are able to represent theppTsur­
face within the experimental uncertainty. In contrast to this, 
IAPS-84 yields for temperatures below 403 K systematically 
too high or too low values for the density. The systematic 
deviations ofEq. (7.3) and Eq. (7.4) beyond 30 MPa can be 
explained by the small inconsistency of the pp T data and the 
velocity of sound measurements in this region, cf. Kell and 
Whalley. I X According to the statements of Kell and Whalley 
we gave more weight to the speeds of sound in this region. By 
fitting to the speed of sound data as closely as we did with our 
equations of state [Eq. (7.3) and Eq (7.4)], we found that 
the fit to the ppT data became worse; similar results were 
already observed by Kell and Whalley. IX 

Referring to Figs. 3 (b) to 3 ( d) we can see that the new 
58-coefficient equation [Eq. (7.3)] can represent the high­
pressure measurements of Grindley and Lind20 quite well, 

while IAPS-84 shows oscillating or systematic deviations 
from the data. The 38-coefficients equation [Eq. (7.4)] rep­
resents most of the data in this region better or in the worst 
case (above 400 MPa) as well as IAPS-84. 

From 3 (c) and 3 (d) we can see that both new equa­
tionsofstate [Eq. (7.3) andEq. (7.4)] can represent the 
data of Hilbert et al. 2:'1 more closely than does IAPS-84. 
IAPS-84 deviates considerably more from these measure­
ments in the higher pressure range than do our equations. 
However, IAPS-84 can represent the data of Maier and 

Q. 
X 
Q) 

0. 

" -U 
r-4 
co 
U 

Cl. 

0.1 

0 

-0.1 

646 K . 
f' 

.-., 
1·""'-' ...... + ....... ·, ....... • · 

... +_+./ 

Franck33 as well as of Koester and Frank26 more closely. 
Based on our experience it is quite difficult, if not even im­
possible, to represent all these three data sets within the scat­
ter of the measurements. In favor of the Hilbert et al. 25 data, 
which are consistent with the low-pressure high-quality data 
ofKell et aI., IX,24,27 we chose not to obtain a better represen­
tation of the Maier and Franck33 as well as of the Koester 
and Frank26 data, which exhibit an experimental scatter of 
± 1.5%. 

Figure 4 shows the relative pressure deviation versus 
density within the extended critical region, while Fig. 5 is a 
pp diagram of the critical region of water substance. Not 
only the Scaling-Law equation,4 but also our 58-coefficient 
equation [Eq. (7.3)] can represent the thermodynamic sur­
face smoothly and continuously within the experimental un­
certainty. In contrast to this, IAPS-84 shows obvious sys­

tematic deviations from the data in the homogeneous region, 
and a discontinuity along the saturated liquid line. Our 38-
coefficient equation [Eq. (7.4)] also shows systematic de­
viations along the supercritical isotherms which are greater 
than the experimental uncertainty, but it yields a smooth 
and continuous saturated liquid line. Both of our equations 
of state [Eq. (7.3) and Eq. (7.4)] can represent the phase 
boundary (dashed line), as defined by the equations interna­
tionally recommended by lAPS, II much closer than can 
IAPS-84; cf. also Fig. 14. 
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8.2. Isochoric Heat Capacity 

Figure 6 shows the relative deviations of the Cu data 
from our new 58-cofficient equation of state, while Fig. 7 
shows the behavior of Cu itself along a near-critical isochore 
(p = 310kg/m3 =0.96pc)' Those data which are located in 
both figures to the left of the saturation temperature are mea­
surements of the isochoric heat capacity within the two­
phase region. It can be seen in Fig. 6 that our 58-coefficient 
equation of state can represent all Cu data of both the single 
phase as well as of the two-phase region within the experi­
mental scatter. The only exception is the near-critical iso­
chore (p = 310 kg/m3 = 0.96 Pc) very close to the satura­
tion temperature in the homogeneous region. The 
38-coefficient equation shows a very similar behavior but the 
region where it undershoots the experimental data starts 
about 10K further away from saturation temperature. The 
same misrepresentation of the data is seen with IAPS-84, but 
there is an unnatural very steep slope near the saturation 
line. However, the best representation of the Cu surface of 
water substance within the critical region is given by the 
Scaling-Lawequation.4 

8.3. Speed of Sound 

Figure 8 shows the relative speed of sound deviations 
along several isotherms plotted against pressure. The high 
quality of data representation in the liquid region below 373 
K at pressures beyond 100 MPa characterizes our 58-coeffi­
cient equation Eq. (7.3). Within this region, IAPS-84 has 
obvious problems representing the behavior of the surface 
defined as by the data. When extrapolating IAPS-84 below 
the triple-point temperature the deviations are as much as 
20%. Besides this improvement of data representation in the 
liquid region, we can also see from Fig. 8 that Eq. (7.3) 
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FIG. 6. Percentage deviation of the experimental isochoric heat capacity data from the new 58-coefficient equation of state, Eq. (7.3). 
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yields a better representation of the speed of sound close to 
the saturation curve in the vapor state, cf. the 523-532 K 
isotherm. In the range above 273 K and below 400 MPa 
(fitted range) our 38-coefficient equation of state is just as 
able as our 58-coefficient equation to give a high quality of 
data representation, and it gives a much better fit for pres­
sures beyond 100 MPa than does IAPS-84. 

8.4. Isobaric Heat Capacity 

Figure 9 gives an impression ofthe relative deviations of 
the C p data from the equations of state. Both of our equations 
improve the representation of the C p data in the gaseous re­
gion close to saturation along the isobars below 12 MPa (cf. 
the 5.88 MPa isobar in Fig. 9), where IAPS-84 yields sys­
tematically too low cp values. However, there still remains a 
discrepancy of about 2% too low cp values close to satura­
tion. Several attempts were made to correct this systematic 
deviation. Based on this experience, we concluded that these 
data are slightly inconsistent with the data of the other prop­
erties in this region. In order to avoid a deterioration in the 
quality of data representation of other properties, we did not 

fit our equations of state [Eq. (7.3) andEq. (7.4)] closer to 
these cp data. 

The supercritical isobars (e.g., the 39.23 MPa isobar) 
show that, in contrast to the existing equations, for both of 
our equations of state [Eq. (7.3) and Eq. (7.4)] oscillations 
at much lower pressures resulting from the "stress" of the 
critical region have'been eliminated. 

8.5. Difference of Enthalpy 

The relative deviations of the data of Philippi53 from 
Eq. (7.3) are given in Fig. 10. The behavior of all equations 
of state with regard to the measurements looks quite similar. 
Each of the equations is capable of representing the data 
within their experimental uncertainty, which is about 2% in 
must n:giuns. Due to the effect uf the temperature uncertain­
ty, the uncertainty in differences of the enthalpy approaches 
20% near the critical point. 

8.6. Joule-Thomson and Isothermal Throttling 
Coefficient 

Since the tendencies of each of the equations of state to 
be discussed appear to be very similar with respect to the 
J oule-Thomson (ft) and the isothermal throttling coeffi­
cient (8T ), these data will be discussed collectively. The 
comparison with regard to the ft data can be seen in Fig. 11, 
while Fig. 12 shows the relative deviations of the 8T data 
from Eq. (7.3). We can see in both figures that our 58-coeffi­
cient equation of state represents the data over the whole 
temperature and pressure range without systematic devia­
tions within the scatter of the data. Only for temperatures 
below 550 K do the ft data deviate slightly systematically, 
but mostly within the scatter, from Eq. (7.3). When consid­
ering IAPS-84, we see that it yields systematically too high 
values with increasing temperature. Our 38-coefficient equa­
tion Eq. (7.4) shows the same tendency in a less marked 
way. 

Since the ft and 8T data are the primary data within this 
pressure region at temperatures between 431 and 1073 K, 
they fix the behavior of the second and third virial coefficient 
(B, C). Hence our 58-coefficient equatIOn IS supenor to the 
other equations of state in representing the ft and 8T data for 
temperatures above 700 K. Thus, for higher temperatures, 
we expect more reliable values for Band C from Eq. (7.3) 
than from the other equations of state. 

8.7. Isentropic Temperature-Pressure Coefficient 

The comparison of the equations of state with the data 
of the isentropic temperature-pressure coefficient f3s is 
shown in Fig. 13. Both of our equations of state [Eq. (7.3) 
and Eq. (7.4)] represent the data quite well, especially 
above 293 K. 

8.8. Saturation Line 

Referring to Fig. 14, the three equations of state behave 
quite similarly with repsect to the three thermal properties 
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vapor pressure p s' density of the saturated liquid pi, and den­
sity of the saturated vapor p". 

The main advantage of our new equations is evident 
when looking at the deviations of the velocity of sound of the 
saturated vapor and at deviations of the caloric property 
[ali, where 

[an = [h'- TdPsj' - [h,_:£dPsj. (8.1) 
p' dT 2 p'dT 1 

If one divides [a] i by (T2 - T}), then this quotient is 
nearly identical to the heat capacity of the saturated liquid C a 

for temperatures below 373 K. IAPS-84 shows large system­
atic deviations from the experimental data, while both of our 
equations represent all [a] i data within the experimental 
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uncertainty. The excellent agreement of our equations with 
these data was achieved by a fit to differences of the internal 
energy along the saturated liquid curve, as indicated in Sec. 
5. 

When discussing the representation of the speed of 
sound in the homogeneous region (Sec. 8.3), we already 
pointed out that both of our equations are capable of repre­
senting the speeds of sound in the gaseous region close to 
saturation significantly better than IAPS-84. This improve­
ment can now be seen, as we would have expected, when 
looking at the speed of sound of the saturated vapor w" (cf. 
bottom diagram in Fig. 14). Both of our equations can repre­
sent the w" data to within about 0.5%, while IAPS-84 yields 
values for w" which are about 0.7%-1 % too large. 
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8.9. Vi rial Coefficients 

The behavior of the second and third virial coefficient 
(B and C) as calculated from several equations is shown in 
Figs. 15 and 16. Besides the older measurements62

-
65 and 

calculated values66 of B, these two figures also contain recent 
experimental results (Eubank et af. 68) and a new correlation 
(Hill and McMillan67

) for Band C. For temperatures below 
600 K, our 58-coefficient equations shows systematic devia­
tions in comparison to experimental data for Band C. Never­
theless, the entire equation or the equation when truncated 
after the terms for the third virial coefficient gives a correct 
representation of all kinds of experimental data in the dilute­
gas region. 

8.10. Extreme High Pressures 

In 1957, Walsh and Rice70 carried out shock wave mea­
surements in water. Based on the conservation relations for 
mass, momentum, and energy, they obtained data on the 
Hugoniot curve (pressure p, enthalpy h, specific volume v 
data) centered at p = 0.1 MPa and T = 298 K. Besides these 
Hugoniot curve data, they also measured (/).h / /).v) p by 
shock reflection measurements at pressures beyond 10000 
MPa. In a succeeding paper, using their own data in the 
high-pressure regime, Rice and Walsh71 evaluated several 
thermodynamic and hydrodynamic properties close to the 
Hugoniot curve. Their results are based on the assumption 
that at high pressures (/).h / /).v) p is only a function of pres-
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sure and that c" is independent of temperature and has a 
value of 3.6 kJ/(kg K). To extend their formulation for 
(Ah I Av) p to lower pressures they had to supplement their 
own measurements of (Ah I Au) p = (ah / au) p 
= cp/(au/aT)p with data in the lower pressure range 
(p < 10 000 MPa). They evaluated (aT I au) p at 2500 MPa 
from Bridgman's 72 pp T data at that pressure. Taking into 
account the relatively poor quality of their own (ah / au) p 

data, there is really an excellent agreement with the low­
pressure data of Bridgman, 72 although there is an abnormal 
kink in their (aulaT)p curve. This kink, however, is not the 
only way one can draw a curve and obtain positive values for 
(au/aT) p' Negative values of the thermal expansion 
(au/aT) p would be a neccessary condition for the anomaly 
of intersecting isotherms in the high-pressure range, as pre­
dicted by IAPS-84. As a confirmation of the Rice and 
Walsh68 data we can see the temperature measurements of 
Lyzenga and Ahrens73 along the Hugoniot curve up to 
80 000 MPa and the shock wave measurements of Mitchell 
and Nellis 74 in 1982 up to 83 000 MPa. Based on these tem­
perature measurements, it is obvious that the temperatures 
calculated by Rice and Walsh deviate systematically beyond 
700 K from the data of Lyzenga and Ahrens.73 At 45000 
MPa we find that the Rice and Walsh temperatures are 
about 300 K too high. In order to remove thIS InCOnSIstency, 
we corrected the temperatures of the pp T data of Rice and 
Walsh according to the measurements of Lyzenga and Ah­
rens taking into account the Hugoniot curve measurements 
of Mitchell and Nellis. 74 

When looking at Fig. 17, which shows the high-pres­
sure surface of water substance. we can see the intersecting 
isotherms of IAPS-84 as well as those calculated from our 
58-coefficient equation of state. The accuracy in represent­
ing the pp T data in this high-pressure regime is considered to 
be sufficient. The comparison of the three equations of state 
to the "original" Hugoniot data is shown in Fig. 18, and here 
we see the effect of fitting our 58-coefficient equation of state 
to the high-pressureppT data up to 25000 MFa. Eq. (7.3) is 
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FIG. 16.Experimental third virial coefficients C in comparison with the plot 
of values calculated from several equations. 

the only equation of state that predicts the true curvature of 
the Hugoniot curve, while the other equations of state more 
or less fail to represent the data. 

Figure 19 shows a percentage deviation diagram with 
regard to newer data of the isobaric heat capacity on the 300 
K isotherm at pressures up to 1000 MPa. These c p data, 
published by Czarnota69 in 1984, were not taken into ac­
count when developing the equation because we overlooked 
these data at that time. Therefore, this comparison shows 
how the three equations are able to predict c p in this difficult 
region at high pressures up to the melting line. One can see 
that the 58-coefficient equation, Eq. (7.3), is able to repre-
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sent these high-pressure cp data nearly within the experi­
mental uncertainty. (approximately ± 2%). The 38-coeffi­
cient equation, Eq. (7.4), also represents the data within its 
uncertainty for pressures up to 630 MPa, while IAPS-84 
yields deviations of about - 20% at a pressure of 630 MPa 
and about - 95% at 1000 MPa (melting pressure). 

8.11. M_etastable States and Spinodals 

The group of Skripov (e.g., Skripov 75) has been in­
volved with the thermodynamic properties of water in the 
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pressures up to 25 000 MPa. 
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superheated liquid states for several years. They published 
measurements ofppT data (Refs. 76, 77) as well as speed of 
sound data (Ref. 78). The measurements do not extend far 
enough into the metastable region to show significant differ­
ences in representation by each of the existing equations of 
state. All the equations of state can represent these data 
within the estimated experimental uncertainties. 

Besides measurements on the superheated liquid, there 
also exist c p measurements in the supercooled liquid along 
the 0.1 MPa isobar of Angell and Sichina.79 As shown in Fig. 
20, our 58-coefficient equation of state can represent these 
measurements over the entire range of temperature, while 
IAPS-84 fails below 270 K and our 38-coefficient equation 
of state below 255 K. 

During our investigations of the metastable states, we 
also tested the method of Kamiri and Lienhard80 to fix the 
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surface of an empirical equation of state within the meta- and 
unstable region. This method shall be described here very 
briefly. Based on the assumption that a cubic equation of 
state, here the Himpan equationS1 

p _ + b(T) (8.2) 
RT v-a(T) [v-c(T)][v-d(T)] 

can represent the natural behavior of the surface within the 
two-phase region; this equation is at first fitted to isothermal 
data of the homogeneous region and to data defining the 
Maxwell criterion. For each fitted isotherm a set of para­
meters a, b, c, and d is obtained. Then, the location of the 
spinodals on a specific isotherm can be found if one uses the 
condition (ap/ ap ) T = O. In addition to this, Kamiri and 
Lienhardso calculated for each isotherm, the slope (ap/ ap) T 

as well as the pressure p at the critical density Pc' In that way 
one obtains for each isotherm a set of three p, p, (ap / ap ) T' T 
data to which the empirical equation of state may be fitted. 

Upon evaluation of this procedure, we found that the 
parameters a, b, c, and d of the lIimpan equation obtained 

from a nonlinear fit were very sensitive to weighting and to 
the initial guesses for those parameters. While maintaining 
the same quality of data representation in the homogeneous 
region, we could find sets of parameters for a particular iso­
therm which were not only different by several orders of 
magnitUde but were also of opposite sign. Also, the location 
of the spinodals differed significantly (pressure and density 
deviations up to 30%) for these different sets of parameters. 
In spite of numerous attempts, we were not able to confirm 
the results ofKamiri and Lienhard. It is our opinion, that the 
parameters a, b, c, and d of the Himpan equations are not 
"physical" constants. Therefore, we chose not to constrain 
the equation of state in the two-phase region according to the 
method of Kamiri and Lienhard. 
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Figure 20 shows that the curvature of the spinodals, 
resulting from the different equations discussed here, in apT 
as well as in apT diagram, looks quite similar for all equa­
tions. Although the equations have very different functional 
structures, the behavior does not differ significantly for posi­
tive pressures. We would expect that this is in agreement 
with the natural curvature of the spinodals. 

9. Conclusion 
Based on the comparisons given in Sec. 8, we have made 

the following observations. We have found some regions 
where IAPS-84 has some difficulties. It was shown that our 
38-coefficient equation is able to represent the thermody­
namic surface of water substance better for pressures below 

400 MPa and adequately for higher pressures when com­
pared to IAPS-84. We mainly- discussed those properties in 
selected regions where differences between the different 
equations of state are visible. Those regions for which our 58-
coefficient equation of state Eq. (7.3) can improve the quali­
ty of data representation substantially are noted as follows: 

1. The range of validity of the new 58-coemcie~t equa­
tion of state [Eq. (7.3)] covers the temperature range 
between 252 and 1273 K for pressure up to 25 000 MPa or 
the melting pressure (whichever is lower); this corresponds 
in pressure to the 25-fold range of validity of IAPS-84. 

2. The new equation of state is capable of representing 
the properties along the saturation line (Ps' pi, p", a, w", cp 

and w in the gaseous region close to the saturation line) 
much better than IAPS-84. 

3. In the homogeneous region, the new equation of state 
offers an improvement when compared with IAPS-84 in rep­
resenting the following properties: 

(a) speed of sound for T < 400 K and p > 100 MPa, 
(b) isobaric heat capacity in the gaseous region along 

isobars below the critical as well as along supercri­
tical isobars near the critical temperature, 

(c) isobaric heat capacity in the liquid region for tem­
peratures around 300 K at pressure up to the melt­
ing line (about 1000 MPa), 

(d ) Joule-Thomson and isothermal throttling coeffi­
cient for T> 800 K. 

4. The critical point of the new equation of state corre­
sponds, in contrast to the exisiting equations, to the values 
recommended by lAPS. In 

5. The relatively simple structure of the equation aids in 
programming and speeds up computer execution time. 
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Appendix A 1. The Relations of the Helmholtz Function to Other Properties 
TABLE AI. Relations of the Helmholtz function cp to other thermodynamic properties. 

Pressure p = (of I OV h 
p(8,7) = 1 + 8cl>6 
pRT 

Internal energy u = f - T( af / aT) v 

= cpo + cp' 
RTc T T 

Enthalpy h =f- noflon v v(oflovh 

h(8,r) = 7-1(1 + 8cl>') + <1>0 + <l>r 
RTc 8 T T 

Entropy s = - (of I aT) v 

S(8,7) = 7(<1>0 + cpr) _ (<1>0 + <1>') 
R T r 

Gibbs energy g=f- v(oflov)T 

1l(8,7) = 1 + 6<1>:5 + <1>0 + <l>r 
RT 

Isochoric heat capacity Cv = (oulon. 
C v (8.7) 

R 

Velocity of sound w - .J (dP/ dp) s 

ur(8,r) = 1 + 28<1>': + 82<1>' _ (1 + 8<1>:5 8rcl>:5r )2 
RT /j 80 "z(<I>~T + <I>~T) 

Joule-Thomson coefficient J.l = (oT lap) h 

{j (8<1>6 + 82<1>66 + 8rcl>6T) 
p( ,r)Rp= (1 +8cl>6 -8rcl>6T)2_"z(cl>~T +cl>~T)(1 +28<1>6 +82<1>68) 

Isothermal throttling coefficient 8T (oh lop) T 

~ 8,r) = 1 _ 1 + 8<1>:5 - 8rcl>6T 
T( p 1 + 28<1>6 + 82<1>~,.; 

Isentropic temperature-pressure coefficient f3 s = (aT lop) s 

" R 1 + 8<1>6 8rcl>6T . 
{3 (u 7) P - ------------------

" - (1+6<P8-6-r<P8T)Z-r(<p~+<p~T)(1+2b<P:5+b2.<P:58) 

Second virial coefficient B 

Third virial coefficient C 

C(7)P~ limtIJ:58 (ti,r) 
8-0 

Appendix A2. Explicit Derivatives of the 
Helmholtz Function with Respect to the 

Independent Variables 

The derivatives of the Helmholtz function: 

<I> = 11'= <1>°(8 • .,-) + <l>r(8.r). [cf. Eq. (7.1)] 

where 

and 

8 0 

+ L a;ln(1 - e - ri7"), 
;=4 

(Al) 

(A2) 

(A3) 

(A4) 

(A') 

!(6) 

(A7) 

(A8) 

(A9) 

(AlO) 

(All) 

(A12) 

(A13) 

[cf. Eq. (7.2)] 
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I, 
<1>r = L (a;odirti) 

;=1 

58 

+ (e- 0.4.5" - e- 2.5") L (a;odiii) , 
;=55 

[cf. Eq. (7.3)] 

with regard to its independent variables 0 and r are neces­
sary for the numerical evaluation of all the equations given in 
Tables 1,2, and AI. Since the structure of the Eqs. (7.3) and 
(7.4) only differs with regard to the (E6-E6) terms, the 
derivatives of <1>r are only given for Eq. (7.3). For obtaining 
the corresponding derivatives for Eq. (7.4) all sums com­
bined with the (E6-E6) terms have to be left out. For II and 
/2' respectively, the corresonding values given in Eq. (7.3) 
and (7.4), respectively, have to be inserted. The derivatives 
are given as follows: 

1st derivative of the dimensionless Helmholtz function 
with respect to 0: 

<1>~ =0- 1
• (AI4) 

I, 

<I>~ = L (a;d;odi- Iii) 
;=1 

I, 

+ 2:: e - t;l'i (aiodi - I [di - Yi OYi ] ii) 
;=1, + I 

58 

+ ( - 2.4e - 0.48' + 12e - 28,) I (a;odi + 5 rti) 
i= 55 

58 

+ (e- 0 .48' _ e- 28') I (a;d;odi-1ii). (AI5) 
i= 55 

1st derivative of the dimensionless Helmholtz function 
with respect to r: 

<1> 0 _ 0 + 0 - 1 + ~ 0 0 [ (I _ - Y» - 1 _ I] T - a2 a3 r £.- Yia; e , 
;=4 

I, 

<1>r _ "( £di ti - 1 ) 
T - £.- a;u t;r 

i=l 

+ ± e-t/i(a;od;t;rli-l) 
;=1, + 1 

58 
_'- (e-0.48' _ e 28') '" 8d;t t;- 1 .- ""- a j j1" • 

;=55 

(AI6) 

2nd derivative of the dimensionless Helmholtz function 
with respect to 0: 

(AI7) 

58 58 

+ (5. 76e - 0.4.5" - 144e - 2.5") I (a;od;+ lOrt;) + ( - 2.4e - 0.4.5" + 12e - 2.5") La; (2d; + 5)Od;+ 4rt; 
;= 55 55 

58 + (e- 0 .4.5" -e- 2.5")Ia;d;(d; _l)od;-2Tt;. 
55 

2nd derivtive of the dimensionless Helmholtz function 
with respect to T: . 

8 0 0 

.thO _ 0 -2 '" ( 0)2 ° - Y;T( 1 - Y;T)-2 
'Y TT --a3 T -L Yi a;e -e , 

;=4 

I, 
<I>~T = L (a;od;t; (t; - l)Tt

;- 2) 
;=1 

58 + (e- 0 .48' - e- 28') L (a;od;t;(t; - l)i;-Z). 
;= 55 

(A19) 

1st mixed derivative of the dimensionless Helmholtz 
function with respect to 0 and T: 

<1>~T = 0, 

I, 

+ 2:: e- 61';(a;od;-\[d; -YioY;]i;-I) 
;=1,+ 1 
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(A18) 

58 
+ ( _ 2.4e - 0.48' + 12e - 28,) I a;od; + 5t;i; - 1 

;= 55 

58 
+ (e- 0 .48' _ e- 28,) '" a.d.8d

;-lt.7
t;-I. (A20) 

~I" '1 

i= 55 

The coefficient of both real parts [Eq. (7.3) and (7.4)] 
are given with an accuracy often significant figures. Never­
theless, it is possible to perform calculations in reduced pre­
cision (SINGLE PRECISION or REAL *4). This accuracy is 
sufficient for the major part of the surface; the differences in 
using reduced precision as opposed to double precision 
. (DOUBLE PRECISION or REAL * 8) are within the accuracy of 
the experimental data. The only exception is with the critical 
region. Due to the very flat slope of the isotherms in this 
region, numeric instabilities will arise when evaluating the 
Maxwell criterion. 

When programming Eq. (7.3) in single or in double 
precision one has to be aware of rounding errors which can 
occur when the difference e - 0.48' - e - 28' is evaluated at 
very low densities. One way to avoid this problem is to ex­
pand the power of e - 0.48' - e - 2.5" = 1.606 (1 - 1.206

) for 
0<0.2. 




