Cross Sections for *K*-shell X-ray Production by Hydrogen and Helium Ions in Elements from Beryllium to Uranium

Cite as: Journal of Physical and Chemical Reference Data **18**, 111 (1989); https://doi.org/10.1063/1.555838 Submitted: 19 November 1986 . Published Online: 15 October 2009

G. Lapicki

ARTICLES YOU MAY BE INTERESTED IN

Present status of L-shell X-ray production cross sections by protons with energies below 1 MeV AIP Conference Proceedings **576**, 100 (2001); https://doi.org/10.1063/1.1395259

A Review, Bibliography, and Tabulation of K, L, and Higher Atomic Shell X-Ray Fluorescence Yields

Journal of Physical and Chemical Reference Data 23, 339 (1994); https://doi.org/10.1063/1.555955

Calculation of Intermolecular Force Constants from Polarizabilities The Journal of Chemical Physics 24, 501 (1956); https://doi.org/10.1063/1.1742536

Where in the world is AIP Publishing? Find out where we are exhibiting next

Journal of Physical and Chemical Reference Data **18**, 111 (1989); https://doi.org/10.1063/1.555838 © 1989 American Institute of Physics for the National Institute of Standards and Technology.

Cross Sections for K-shell X-ray Production by Hydrogen and Helium Ions in Elements from Beryllium to Uranium

G. Lapicki

Department of Physics, East Carolina University, Greenville, North Carolina 27858

Received November 19, 1986; revised manuscript received August 8, 1988

Experimental cross sections for K-shell x-ray production by hydrogen and helium ions $(Z_1 = 1,2)$ in target atoms from beryllium to uranium $(Z_2 = 4-92)$ are tabulated as compiled (7418 cross sections) from the literature (161 references were found) with the search for the data terminated in January 1988. These cross sections are compared with predictions of the first Born approximation and ECPSSR theory for inner-shell ionization. The ECPSSR accounts for the energy loss (E) and Coulomb deflection (C) of the projectile ion as well as for the perturbed stationary state (PSS) and relativistic (R) nature of the target's inner-shell electron. While the first Born approximation generally overestimates the data by orders of magnitude, the ECPSSR theory is confirmed to be, on the average, in agreement with the experiment to within 10%-20%. For light and heavy target atoms, however, systematic and opposite deviations are found in the low projectile-velocity regime. These deviations are associated with the influence of multiple outer-shell ionizations on the fluorescence yields of light elements, particularly in ionization by helium ions, and with the inaccuracy of the ECPSSR theory in the reproduction of relativistic calculations for ionization of heavy elements. The remaining discrepancies at moderate projectile velocities are prima facie attributed to inadequacies of a screened hydrogenic description for the K-shell electron.

Key words: K-shell x-ray production cross sections; K-shell ionization; Born approximation; ECPSSR theory; H ions; He ions.

CONTENTS

1.	Introduction	112
2.	Experimental data base	113
	2.1. Search procedures	113
	2.2. Summary of data base	113
	2.2. a. Compiled K-shell x-ray production cross	
	sections	113
	2.2. b. Units	113
	2.3. Growth and decline in annual publication of	
	data	114
3.	Data analysis	114
	3.1. Ionization cross sections	114
	3.1. a. Conversion of ionization cross section to	
	x-ray production cross section	114
	3.1. b. Ionization, as the sum of direct ionization	
	and electron capture, in the first Born and	
	ECPSSR theories	115
	3.2. Choice of the ECPSSR for theoretical analy-	
	sis of the data	115
	3.2. a. Review and general scaling of the	
	ECPSSR	116
	3.2. b. Current status, alternatives, advantages	
	and shortcomings of the ECPSSR	116
	Ŭ	

© 1989 by the U. S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society. Reprints available from ACS; see Reprints List at back of issue.

	3.3. Comparison of the experimental and
	ECPSSR cross sections
4.	Conclusions
5,	Acknowledgments
6.	References
	6.1. Text references
	6.2. References to cross-section data compiled in
	Tables 2–5
	6.3. Author index for the data base references in

List of Tables

1. Distribution by target element of K-shell x-ray production cross sections compiled from the liter-	r -
ature	. 12
 K-shell x-ray production by protons in target ele- ments from beryllium to uranium 	. 12
3. K-shell x-ray production by deuterons in target elements from beryllium to gold	:
 K-shell x-ray production by ³He in target ele- ments from aluminum to silver 	. 1'
5. K-shell x-ray production by ⁴ He in target ele-	-
ments from beryllium to uranium	. 1
6. Number of K-shell x-ray production cross sec- tions compiled for each projectile and tabulated	I
for each target element	. 2

Contribution of electron capture to ionization	1 ac-
cording to the ECPSSR theory	210

List of Figures

Histogram of data for K-shell x-ray production	
by H and He ions	114
K-shell x-ray production in nickel by protons as	
a function of the projectile's velocity scaled by	
the electron velocity in K-shell orbit of the target	114
Ratios of experimental cross sections to the first	
Born approximation for protons incident on	
nickel	116
Ratios of experimental cross sections to the	
	Histogram of data for K-shell x-ray production by H and He ions K-shell x-ray production in nickel by protons as a function of the projectile's velocity scaled by the electron velocity in K-shell orbit of the target Ratios of experimental cross sections to the first Born approximation for protons incident on nickel Ratios of experimental cross sections to the

ECPSSR for protons incident on nickel 116

5.	Averaged ratios of experimental cross sections to the first Born calculations for protons	118
6.	A veraged ratios of experimental cross sections to	110
	the ECPSSR predictions for protons	118
7.	Averaged ratios of experimental cross sections to	
	the ECPSSR predictions for deuterons	119
8.	Averaged ratios of experimental cross sections to	
	the ECPSSR predictions for ³ He ions	119
9.	Averaged ratios of experimental cross sections to	
	the ECPSSR predictions for ⁴ He ions	119
10.	Same as Fig. 6 but versus the variable ξ_K^R / ζ_K	
	according to which the ECPSSR ionization cross	
	sections scale in the slow collision regime	120
11	Some on Fig. 0 but versus the version E^{R}/F	

1. Introduction

Fifteen years ago, Rutledge and Watson¹ originated extensive tabulations of inner-shell cross sections by ionic projectiles in target atoms which cover most of the periodic table. Their compilation was restricted to K-shell ionization by H and He ions and reported some 600 x-ray production cross sections in 1973. In a 1978 sequel to it, Gardner and Gray² extended this compilation to ~ 1200 x-ray production cross sections by H and He ions. This extension covered K-shell ionization cross sections by heavier ions than helium as well; compilations of L-shell ionization data also exist.³

One could hence speculate that the number of K-shell xray production cross sections by H and He as reported in the literature doubled in a five-year period. To an extent that a constant fraction of all publications on inner-shell ionization phenomena contains such data, we could confirm this speculation. A histogram of publications cited in a 1975 thesis⁴ on inner-shell ionization showed an exponential increase in these articles per annum since 1960; the growth rate was constant and indeed such that the number of publications per year has doubled every half of a decade.

Continued updates of these data, as carried almost single-handedly by Paul and co-workers⁵⁻¹⁴ since 1978, appear also to be characterized by a rapid increase in their amount. In his 1984 analysis,⁸ Paul uses some 3200 cross sections from the literature for protons alone. In an attempt to unravel systematic trends in such a mass of experimantal data, Paul *et al.*⁵⁻¹⁴ normalize the data to theoretical predictions of the ECPSSR theory for direct *K*-shell ionization.¹⁵ The ECPSSR theory for both direct ionizaton¹⁵ and electron capture¹⁶ accounts for the energy loss (E) and Coulomb deflection (C) of the projectile, and for the perturbed stationary state (PSS) and relativistic (R) changes in the description of the inner-shell electron that undergoes ionization. In our original analysis,¹⁵ we scaled ~2600 *K*-shell x-ray production cross sections to the results of this theory. The devia-

tions of experiment from the ECPSSR theory¹⁵ were found to be within 10% once all the data were considered equally and averaged in the preselected equal intervals of the effective projectile energy-loss variable. Such discrepancies, being comparable to experimental uncertainties, appeared to be acceptable. Analyses⁵⁻¹⁴ analogous to the analysis of Ref. 15 subsequently revealed, however, that the ECPSSR theory systematically overestimates the data in the slow collision regime after the proton measurements from 21 out of 77 references were rejected. Similar deviations were observed for deuteron and helium data⁸ after the data from 22 out of 55 references were discarded according to the adopted rejection criterion.^{6,7} This finding was confirmed with an updated 1986 compilation¹² that contains almost 4000 proton cross sections from 101 references and nearly 1800 alpha particle cross sections from 47 references.

Previous authors either reported compiled cross sections in a tabular form without theoretical scrutiny¹⁻³ or analyzed them, without listing of the data, through graphical comparisons with the predictions of theories.⁵⁻¹⁴ In this work, both a compilation (Sec. 2 and Tables) and an analysis (Sec. 3 and Figs.) are given. Two motivating goals for the present article are: (i) the need for an update of the last tabular report of the data² because the number of available cross sections has multiplied sixfold since then, (ii) the desire for an evaluation of the ECPSSR theory vis-à-vis an expanded data base; this evaluation, being independent and methodologically slightly different than critical analyses by Paul et al.,⁵⁻¹⁵ might be of interest to those who choose to compare the ECPSSR theory with experiment. Also, brief comments that go beyond raw data presentation and their conventional evaluation in the framework of chosen theories are made; the data growth is a good indicator of the dynamic evolution in the field of inner-shell ionization. Such a discussion could offer a useful glimpse at the changing status of this field to those readers who may not be directly involved in it and might be even of vital interest to the researchers who are immersed in this field.

2. Experimental data base

2.1. Search procedures

All compiled cross sections were taken from the tables from referenced articles or privately communicated by authors of the article. When the tables and authors were not available, the data were read off graphs with the accuracy of two significant figures. All cross sections are reported in this work in a three-digit format even though occasionally original sources published them in larger formats. Uncertainties of the order of 10% in the modern day measurements of these cross sections restrict their significance to, at most, a three-digit accuracy. Errors, found in the original literature by Paul and Muhr,¹² were corrected prior to the accumulation of present data base. All compiled data were stored on disk files in the chronological order for easy updates. These files were spot checked against source papers for possible misprints in transfer to computer files; a few coauthors of source references have kindly provided this author with a check of his printout of their data. The last update of the data was made during the summer of 1988 with January 1988 terminating the data search.

2.2. Summary of data base

2.2.a. Complied K-shell x-ray production cross sections

Table 1 gives a summary of the distribution of 7418 compiled cross sections with respect to the target atomic number Z_2 for each of the the projectiles (protons, deuterons, ³He, ⁴He) separately as well as, cumulatively, for all projectiles $(Z_1 = 1,2)$. It allows a global assessment of the availability of the data for a specific projectile-target combination as well as for a given target and all projectiles. In particular, this table identifies (by contrast with the bold print used for the Z_2 targets that appear in the compilation) the 15 elements for which no data were found in the $4 \leq \mathbb{Z}_2 \leq 92$ range and it singles out copper as the most often (9% of all data) used target for K-shell x-ray measurements by H and He ions. K-shell x-ray production cross sections induced by protons, deuterons, ³He, and ⁴He ions are compiled in Tables 2-5, respectively. They are listed with the increasing atomic number Z_2 of the target atom which is also identified by name. For each element, the data appear according to the chronological order of the reference of their origin and, for each reference, they are listed with the increasing energy¹⁷ of the projectile.

Tables 2–5 contain 7418 cross sections of which 63% are by protons, 26% by ⁴He, 7% by deuterons, and 4% by ³He. The data are from 161 references that are listed chrono-

logically in a separate reference section which lists these source references (see Sec. 6.2). A contact between the references and Table 1, which provides only a summary of the data base content, is made in Table 6. Table 1 shows a distribution of all compiled cross sections with respect to the projectile and target atoms. Table 6 presents this information by identifying the reference from which the data were obtained; the correlation of the number of reported cross sections for a given projectile-target system with the reference number serves a twofold purpose: (1) to exhibit the rate of growth in accumulation of the data with time since references are arranged chronologically and (2) to find all references pertaining to the given projectile-target combination. This overview of data distribution gives a quick perspective on the dynamics with which the data appear in the literature for a selected projectile-target combination. It offers a detailed look at the regions of the periodic table that remain almost uncharted to experimental studies of K x-ray production by light ions; references identify the researchers who pioneered investigations in these nearly *tabula rasa* regions.

This article ends with an author index (see Sec. 6.3), which is keyed to the reference numbers appearing in Tables 2-6 so that an easy reference exists to the names of all of those who reported the compiled data. The reference numbers which follow given names of particular authors place their research activity in a historical context since the references are ordered chronologically. Anyone interested in contributions of a particular author to the compiled data can trace them easily with the aid of Table 6.

2.2.b. Units

In Tables 2-5, each data set from a given reference consists of pairs: the energy of the projectile in MeV $(1.6 \times 10^{-13} \text{ J})$ and the experimental x-ray production cross section in barn (10^{-28} m^2) . The conventional units of the accelerator-based physics are used to report the data in these Tables because such units are employed in the source literature (SI equivalents of these units are stated in the parentheses). Velocities of the projectile and of the target K-shell electron are calculated in terms of $v_0 = e^2/\hbar$, the Bohr velocity $(2.2 \times 10^6 \text{ m/s})$ of the electron in the ground state of the H atom. In this atomic unit of velocity, the target K-shell electrons orbit at $v_{2K} = Z_{2K}$ where $Z_{2K} = Z_2 - 0.3$ is the electric charge, in units of 1 because one is the magnitude of the electron charge in atomic units, of the target nucleus diminished by Slater's screening constant. In Figs. 3-11, the choice of units is immaterial because dimensionless ratios are plotted along each axis. The parameters that define ξ_{K}^{R}/ζ_{K} , the scaling variable of the ECPSSR theory, are dimensionless (See Sec. 3.2.a. and Figs. 10 and 11).

2.3. Growth and decline in annual publication of data

Figure 1 shows a histogram of the data compiled in this article: the annual number of cross sections published in a given year is shown. It appears that the rapid rate of growth of the 1960s and early 1970s rose to a maximum in the late 1970's. The annual rate at which the cross sections were reported in the current decade is on the decline. If this trend continues, the total cumulative number of cross sections is destined to reach a saturated value of some 10 000.

This forecast does not mean that the research on innershell ionization processes slides down toward its nadir; the annual number of publications in this field continues to double every five years. Rather it is the specialized area of innershell ionization research, as measured by the amount of new K-shell x-ray production cross sections by light ions, that shrinks. Experimental and theoretical interests shift now toward problems of inner-shell ionization in which Z_1/Z_2 , the ratio of projectile-to-target atomic numbers, approaches 1. Also, as investigations of the K shell in very asymmetric $(Z_1/Z_2 \leqslant 1)$ collisions become less fashionable, the current research on such collisions gives more prominence to studies of L- and M-shell ionizations.

3. Data analysis

No attempt is made here to report the experimental errors as stated in the original papers. Often estimates of such errors are not consistent, ranging from 5% to 35% amongst various experimental groups even though the experiments were performed apparently under similar conditions. Less often, but most shockingly, the data for the iden-

FIG. 1. Histogram of data for K-shell x-ray production by H and He ions (see Sec. 2.3). The vertical lines indicate the annual number of published cross sections as compiled in this work; the solid circles correspond to the cumulative number of these cross sections as they appeared up to a given year.

FIG. 2. K-shell x-ray production in nickel by protons as a function of the projectile's velocity scaled by the electron velocity in K-shell orbit of the target. Data are from Refs. 5, 20, 36, 47, 52, 55, 57, 69, 73, 76, 77, 84, 89, 94, 97, 108, 113, 114, 115, 120, 122, 132, 137, and 151 from the list of source references (see Sec. 6.2). The curves are based on the first Born (Refs. 20 and 21: dashed curve) and the ECPSSR (Refs. 15 and 16 :solid curve) theories.

tical collision systems are found to differ by a significantly larger margin of error than the claimed experimental uncertainties would imply¹⁸; in rare instances such data disagree by even more than a factor of 2. Hence, although, justifiably due to constant improvements in data gathering techniques, 25% uncertainties are quoted in older references and 10% uncertainties are claimed in recent articles, we assign equal weights to all data at the outset of our analysis.

Figure 2 shows the cross sections for protons on nickel, one of the most often used materials in the K-shell x-ray production measurements. These cross sections increase by as much as nine orders of magnitude with the projectile encrgy, labeled at the top of the figure in MeV. They exhibit a general trend of all data in that the cross sections peak where the velocity of the projectile v_1 , matches approximately the orbital velocity of the K-shell electron in the target atom $v_{2K} = Z_{2K} = Z_2 - 0.3$.

3.1. Ionization cross sections

3.1.a. Conversion of ionization cross section to x-ray production cross section

Experimental x-ray production cross sections $\sigma_{KX}^{\text{Experimental}}$ can be compared with theoretical x-ray production cross sections σ_{KX} , after the ionization cross section σ_K is multiplied by the fluorescence yield ω_K , i.e., $\sigma_{KX} = \sigma_K \omega_K$. Throughout this work we use the single-vacancy fluorescence yields and employ for them the values as recommend-

ed by Krause¹⁹ and listed in Tables 2-5. Multiple ionizations increase ω_{κ} with the increasing Z_1/v_1 . They do this, however, insignificantly (less than a percent) in K-shell ionization of heavier elements by light (hydrogen, helium) ions, in which $Z_1/v_1 \simeq (Z_1/Z_2)/(v_1/v_{2K})$ is small even at low projectile velocities. Only small fluorescence yields ($\omega_K < 0.02$ for $Z_2 < 10$) are appreciably altered due to multiple ionization, more so in ionization by helium $(Z_1 = 2)$ ions for which the condition of, say, $Z_1/Z_2 \ge 0.15$ covers twice as large a range of light elements. For such collision systems, theoretical x-ray production cross sections will be somewhat underestimated because the use of single-hole ω_{κ} values. It should be noted that even single-hole fluorescence yields are in 10%-40% error for these relatively light target atoms.¹⁹ The deviations become dramatic with increasing Z_1/Z_2 so that comparison of the theoretical predictions with the 2 He on 4 Be data $(Z_1/Z_2 = 1/2)$ is the most problematic.

3.1.b. Ionization, as the sum of direct ionization and electron capture, in the first Born and ECPSSR theories

Ionization cross sections are obtained according to the first Born approximation^{20,21} [σ_K^{FBOKN} , as shown by dashed curve in Fig. 2, consists of direct ionization and electron capture calculated in the plane wave Born approximation (PWBA)²⁰ and the Oppenheimer-Brinkman-Kramers treatment,²¹ respectively], and the ECPSSR theory^{15,16} $(\sigma_{K}^{\text{ECPSSR}}, \text{ solid curve in Fig. 2})$. In both calculations, ionization cross sections σ_{κ} are taken as a sum of the cross sections for direct ionization to the target atom continuum plus electron capture to all bound states on the projectile. Although electron capture gives an additional contribution to ionization, the confusion in the literature exists because many authors still refer to ionization cross sections when only direct ionization cross sections are calculated. This unfortunate error of terminology can be found in particular in the most recent references to ECPSSR calculations.^{12,13,22,23} We define and, as a matter of principle, calculate the ECPSSR ionization cross sections always as a sum of the direct ionization¹⁵ and electron capture¹⁶ cross sections, i.e.,

$\sigma_{K}^{\text{ECPSSR}} = \sigma_{K}^{\text{ECPSSR}} (\text{DIRECT IONIZATION})$

+ $\sigma_{K}^{\text{ECPSSR}}$ (ELECTRON CAPTURE). (1)

Although electron capture has negligible contribution to ionization when Z_1/Z_2 is small, we evaluate the ECPSSR ionization cross sections using Eq. (1) for all Z_1/Z_2 projectile-target combinations. Table 7 states the percentage contributions of electron capture to ionization as calculated in the ECPSSR theory.^{15,16} Electron capture can contribute more than 1% when $Z_1/Z_2 \ge 1/15$ and the projectile energy per its mass is below 10 MeV/u. Table 7 lists these percentages only for protons and alpha particles because the electron capture contributions are essentially independent of the isotope nature of the projectile at a given velocity. The projectile is assumed to be fully stripped in these calculations (all its states are unoccupied and there are no electrons to screen it); this represents the condition under which most of the data were gathered. Some data were specifically reported for He +; in many articles, however, the charge was unspecified. Contribution of electron capture to total ionization cross sections is calculated in the ECPSSR theory to be at most 5% when $Z_1/Z_2 \leq 0.15$ and for fully stripped projectiles, and it would be approximately one-half of that if the projectile were assumed to carry an electron into the collision. Hence, calculations which always presume a fully stripped projectile overestimate the ionization process by no more than a few percents if $Z_1/Z_2 \leq 0.15$. For protons on nickel ($Z_1/Z_2 = 0.036$) data of Fig. 2 electron capture contributes less than 0.1% to ionization. For $Z_1/Z_2 > 0.15$ collision systems, theoretical x-ray production cross sections used in this work are underestimated because single-hole $\omega_{\mathbf{k}}$ values were employed and, sometimes, these cross sections are overestimated because a fully stripped projectile was always assumed. These deviations become dramatic with the increasing Z_1/Z_2 so that the comparison of the theoretical predictions with the ₂He on ₄Be data $(Z_1/Z_2 = \frac{1}{2})$ is the most problematic. We assume, however, that the ignored effect of multiple ionization and an overestimated^{16,24} contribution of electron capture at $Z_1/Z_2 \rightarrow \frac{1}{2}$ tend to cancel each other to a great extent.

3.2. Choice of the ECPSSR for theoretical analysis of the data

Figure 2 demonstrates that, while the first Born approximation $\sigma_{\kappa\chi}^{\text{FBORN}}$ overestimates the proton on nickel data by as much as three orders of magnitude at lowest proton velocities, $\sigma_{KX}^{\text{ECPSSR}}$ appears to be in good agreement with the measured cross sections. To exhibit these findings in a more refined way, unobscured by the artifact of a log-log graphical comparison, we plot the same data as the ratios of experimental cross sections $\sigma_{KX}^{\text{Exper.}}$ to theoretical predictions in Fig. 3 for the first Born approximation and in Fig. 4 for the ECPSSR theory. To make a complete and compact comparison with all compiled data, the data are grouped in equal (0.1 in length) intervals on the $\log(v_1/v_{2K})$ scale. An arithmetic average of all cross sections in each group so defined is calculated, all data within the group that differ from this average by more than a factor of 2 are rejected, a new average for the group is found, and the rejection is made again from all the data in the group (including previously eliminated data) on the basis of the same criterion. Typically in two but no more than three iterations of this procedure the averages converge to constant values which are plotted in Figs. 3 and 4 for our example of K-shell x-ray production by protons in just one target element.

The success and relative ease in the implementation²³ of the ECPSSR theory, lead to its adoption as a theoretical benchmark for further analysis of the compiled data. A selfcontained and critical²⁵ review of this theory is in order; development, scaling properties, and current status of the ECPSSR theory with alternative treatments is presented to justify a selection of this particular approach to inner-shell ionizations. The ECPSSR theory is reviewed vis à vis the first Born approximation and more *ab initio* theoretical approaches to inner-shell ionization.

FIG. 3. Ratios of experimental cross sections to the first Born approximation for protons incident on nickel. Each step in the staircase curve represents the arithmetic average of all ratios found in the corresponding interval of v_1/v_{2K} .

3.2.a. Review and general scaling of the ECPSSR

A reduction of the discrepancies between the first Born approximation and the experiment occurs because the ECPSSR theory accounts for the binding effect that, being important at low projectile velocities and for large Z_1/Z_2 , inhibits ionization and results in lower cross sections than the first Born approximation. Also, the ECPSSR approach corrects for the Coulomb-deflection of the projectile from a straight-line trajectory and considers the projectile energy loss exactly in the minimum momentum transfer; both corrections lead to smaller cross sections. The underestimation of the data in the first Born approximation for ionization of heavy target elements (large Z_2 's mean small Z_1/Z_2) stems from its nonrelativistic treatment of the K-shell electron. The ECPSSR theory attempts to remedy this shortcoming by accounting for the relativistic effect and indeed by bringing the calculations in closer agreement with the data.

The ECPSSR theory originates with the work of Brandt, Laubert, and Sellin²⁶ who accounted for the increased binding and Coulomb-deflection effects in K-shell ionization. An extension of this work to the L shell was made²⁷ and subsequently, after a theoretical basis for the perturbed stationary-state (PSS) approach was established,²⁸ polarization^{29,30} and relativistic³⁰ effects were included in the CPSSR theory³⁰ as a precursor of the ECPSSR approach¹⁵ which also accounts for the projectile-energy loss. This theory was developed for electron capture in Ref. 16 in a similar manner as for direct ionization in Ref. 15. The ECPSSR theory for K- and L-shell ionization has been also extended to the M shell.³¹

FIG. 4. Ratios of experimental cross sections to the ECPSSR for protons incident on nickel. Each step in the solid curve represents the arithmetic average of all ratios found in the corresponding interval of v_1/v_{2K} ; the mean value for all proton on nickel ratios is 0.96.

In the slow collision limit, the calculations of the first Born approximation-for direct ionization which generally dominates electron capture-scales over with $\xi_K = 2v_1/v_{2K}\theta_K$ where θ_K is defined as the observed binding energy in terms of screened hydrogenic value $\frac{1}{2}Z_{2K}^{2}$. In the ECPSSR theory, ¹⁵ ξ_K is replaced by ξ_K^R / ζ_K to correct³⁰ the first Born approximation for the relativistic and perturbed stationary-state effects; ξ_K is replaced with ξ_K^R = $[m_K^R(\xi_K/\zeta_K)]^{\frac{1}{2}}\xi_K$ to simulate the relativistic effect³² and ζ_K accounts for the PSS effect according to Eq. (20) of Ref. 30. After the analytically known¹⁵ functions that correct for the projectile's energy loss and Coulomb deflection are factored out, all cross sections are reduced^{27,33} in the slow collision limit to F_{κ} , a universal function of $\xi_{\kappa}^R/\zeta_{\kappa}$. For $\xi_{\kappa}^R/\zeta_{\kappa}$ > 1, F_K diverges from this form depending on $\zeta_K \theta_K$. However, to the extent that $\zeta_K \theta_K$ does not (except for very light targets) vary significantly, the ionization cross section remains to a good approximation a universal function of ξ_{K}^{R}/ζ_{K} in all collisional regimes. This enables us to group Kshell x-ray production cross sections according to the ξ_K^R/ζ_K parameter for a comprehensive analysis of the compiled data against the predictions of the ECPSSR theory.

3.2.b. Current status, alternatives, advantages and shortcomings of the ECPSSR

The strength of the ECPSSR calculations lies in the relative ease with which this approach allows to incorporate analytically relevant physical effects into formulas of the first Born approximation for the ionization cross section; the role that these effects play can be recognized without being entangled in intricacies of the second or distorted Born approximation which requires a considerable numerical effort. Nevertheless, as an approximate description of an inelastic collision process, the ECPSSR theory is yet to be fully tested by more involved numerical procedures. It is hoped that with the phenomenal progress in computerized techniques such procedures will emerge as an penultimate check of the ECPSSR theory as well as its sophisticated replacements. The ultimate test for any theory will be in comparison of its predictions with experimental results.

Coulomb-deflection and PSS factors derived in the ECPSSR treatment have been utilized to modify first-order perturbation theories such as the binary encounter approximation (BEA).³⁴ We have stated previously^{4,35} that the incorporation of the essentially quantum-mechanically derived correction factors into the BEA cross section, which equals the PWBA cross section under very restrictive conditions,³⁶ is not proper. Even in semiclassical and quantum approximations a selective use of just one of the ECPSSR factors might be questioned, especially when corrections for other effects are made on the basis of older^{26,27,29,30} or different^{14,37-39} accountings for the C, PSS, and R effects. An obvious example of misapplication⁴⁰ of the ECPSSR theory has been discussed elsewhere.⁴¹ The Coulomb-deflection factor of the ECPSSR approach has been extensively used by Chen and Crasemann^{22,43-45} in calculations that employ the united atom binding energy to simulate the PSS effect but take the energy loss and relativistic effects into account ab initio. These numerical calculations allow for exact limits for the momentum transfers and use relativistic wavefunctions based on the screened hydrogenic⁴² or Hartree-Slater^{22,43-45} potential. The K- and L-shell direct ionization calculations^{22,43} were extended to the M shell⁴⁴ and even to the Nshell.⁴⁵ The ECPSSR theory has been utilized in numerous comparisons with experimental inner-shell ionization cross sections. Predictions of the ECPSSR approach and its predecessors^{26,27,29,30} were also used in (i) generation of protoninduced x-ray emission (PIXE) spectra,46 (ii) calculation of relative L-shell x-ray intensities,47 (iii) absolute calibration of the efficiency for semiconductor detectors,48 (iv) alignment studies,49 (v) semiempirical extraction of L-shell fluorescence yields,⁵⁰ and (vi) discussion of the feasibility of an antiproton detector.⁵¹ The ECPSSR theory was employed in the determination of semiempirical formulas for K-shell ionization.14,52

In this work we calculate the ECPSSR ionization cross sections as stated in Refs. 15 and 16, although some improvements have been suggested since these references were published. Rigorous, numerical *ab initio* calculations and comprehensive comparisons with all inner-shell ionization data will decide whether nonadiabatic extentions⁵³ of the PSS approach are warranted. Coupled-state calculations are still in development. Their reliance always hinges on a clever choice of a set of basis states. Optimal selections have to be large enough to account for the physics of a collision and yet sufficiently small to be computationally manageable. A coupledstate calculation by Reading *et al.*⁵⁴ that utilizes the so-called forced impulse approximation and claims to conquer the slow collision regime has been carried out only at the first Born approximation level.

Unfortunately, the suggestion¹⁰ that one should "investigate various effects theoretically since it is much easier to turn an effect on or off in a computer experiment than in nature" cannot be as yet carried out in practice. A "highly sophisticated computer program"¹⁰ that could control all ECPSSR effects ab initio in any collision regime does not exist. While some calculations from the outset incorporate the E and R effects^{22,42-45} and also account semiclassically for the Coulomb deflection,^{55,56} they treat the PSS effect using sometimes⁵⁵ the old prescription of Ref. 26 or making⁵⁶ the united atom approximation which applies only in the strict limit of low projectile velocities. While other schemes⁵⁷ perform admirably to test the E, C and PSS effects, they were implemented only with nonrelativistic wave functions. Perhaps the closest to rigorous numerical test of all E. C. PSS. and R factors are the codes of Trautmann and co-workers⁵⁸; they still, however, make ad hoc modifications to simulate the PSS effect. This effect is clearly seen in the ab initio coupled-state calculation Mehler et al.59 that uses relativistic wave functions and offers promise; however, it is difficult to judge the outcome of this scheme because only one graph for K-shell ionization of silver by 0.9-MeV protons was present ed^{59} and in the subsequent paper only the probability for Kshell ionization is reported.⁶⁰ In accounting for PSS effects. this calculation gives a 20% reduction of the direct-ionization cross section as opposed to the ECPSSR approach that predicts only a few percent decrease of σ_{K} for the analyzed collision. This would be in agreement with Kocbach, who has concluded⁶¹ that the ECPSSR treatment underestimates the role of the binding effect.²⁶ Mukoyama and Lin,⁶² with an expansion of the relativistic wave function into Slatertype orbitals, have evaluated cross sections for K-shell ionization of copper by 0.5-2 MeV protons. These calculations, just as those of Refs. 59 and 60, lie $\sim 15\%$ below the ECPSSR results. Anholt et al.63 have recommended that the cutoff impact parameter below which binding occurs be doubled; this would lower the ECPSSR cross sections, especially around their maxima, and thus would bring them in agreement with Refs. 59-62.

Sarkadi,⁶⁴ accounting for the nonadiabaticity of PSS states, finds contrary to Anholt's recipe⁶³ that the binding effect should have been deemphasized outside the slow collision regime; when v_1 approches v_{2K} , the K-shell does not adjust adiabatically and hence the binding effect should not be as large as the ECPSSR has it. This would increase the ECPSSR cross section around its peak, and thus widen the existing disagreement with Refs. 59-62. The coupled-state calculations of Mehler et al. 59,60 explain an enhancement of ionization, which counters the effect of the increased binding, as an effect of interaction among the continuum states, while the approach of Brandt et al.^{29,30} traces the increase in ionization cross sections to the polarization of the bound state. A variational PSS description⁶⁵ of the polarization effect^{29,30} determines that the ECPSSR underestimates as well this antibinding effect. Modifications suggested in Refs. 61

and 65 appear to cancel each other and thus they mask possible overall inadequacies in the ECPSSR treatment of the PSS (combined account for binding and polarization) effect. We now turn to the ultimate test of any theory, i.e., a broad comparison of its predictions with experimental observations.

3.3. Comparison of experimental and ECPSSR cross sections

In the pursuit of systematic discrepancies between the data and the predictions of the ECPSSR theory as Z_2 -dependent deviations, we classify somewhat arbitrarily all elements as: light $(4 \leq \mathbb{Z}_2 \leq 13)$, medium $(14 \leq \mathbb{Z}_2 \leq 66)$, and heavy (67 \leq Z₂ \leq 92). Note that this classification assigns $Z_1/Z_2 > 0.15$ for the light atoms and $Z_1/Z_2 < 0.03$ for the heavy atoms bombarded by helium ions. The ratios of $\sigma_{KX}^{\text{Exper.}}$ to σ_{K}^{BORN} or $\sigma_{KX}^{\text{ECPSSR}}$ exhibit a substantial and erratic dependence on Z_2 for the lightest target atoms (4 $\leq Z_2 \leq 9$) which lack a fully filled L shell. Fluorescence yields for these elements could be uncertain by more than 40%.¹⁹ These small K-shell x-ray fluorescence yields are indeed greatly affected by multiple ionizations. They are also changed by chemical and morphological changes in the incomplete L shell depending on the molecular composition and physical phase of the target. Finally, even in monatomic gas targets, the ionization cross section in itself is affected by relatively strong correlation effects in the very structure of the lightest atoms; the screened hydrogenic wave functions, on which our calculations are based, or even Hartree–Slater schemes become inappropriate because the independent electron model of an atom breaks down. For the lightest atoms, the experimentto-theory ratios are not shown at all in Fig. 5 since their erratic behavior detracts from the main impression that this figure conveys, e.g., predictions of first Born approximation can be as much as three orders of magnitude above the data. The erratic behavior among the lightest atoms can be easily observed in Figs. 6, 7, and 9, where ratios for the $4 < Z_2 < 9$ elements are displayed separately with every element identified by its atomic number. We exclude these lightest target atoms from further statistical analysis: the rejection criterion will be applied to some 7000 data only in the $10 < Z_2 < 92$ range of elements.

Figures 5–9 show the experimental-to-theoretical cross section ratios as horizontal bars for all data with $10 \le Z_2 \le 92$ and as circles for three groups of data in the preselected Z_2 ranges. For moderately light ($10 \le Z_2 \le 13$) elements, which are predominantly (81%) based on aluminum cross sections, these ratios are drawn as the open circles. The half-open circles represent similar ratios for medium elements of which titanium, chromium, iron, cobalt, nickel, copper, silver, and tin amount to nearly a one-half of all data in the $14 \le Z_2 \le 66$ range. The solid circles are drawn for heavy elements ($67 \le Z_2 \le 92$) of which tantalum, gold, and lead are most typical, accounting for almost a one-half of all data in the $67 \le Z_2 \le 92$ range. Aluminum and gold were chosen, in fact, as representative of light and heavy elements by Chadwick,⁶⁶ after the 1912 discovery of x rays from iron bombard-

FIG. 5. Averaged [within the 0.1 intervals of $\log(v_1/v_{2K})$] ratios of experimental cross sections to the first Born calculations for the relatively light ($10 < Z_2 < 13$: open circles), medium ($14 < Z_2 < 66$: half-open circles), and heavy ($67 < Z_2 < 92$: closed circles) target elements bombarded by protons. The solid curve is based on the averaged ratios for the $10 < Z_2 < 92$ targets.

FIG. 6. Averaged [within the 0.1 intervals of $\log(v_1/v_{2K})$] ratios of experimental cross sections to the ECPSSR predictions for relatively light (open circles), medium (half-open circles), and heavy (closed circles) target elements bombarded by protons. The solid curve is based on the averaged ratios for the $10 < Z_2 < 92$ targets; ratios for the $4 < Z_2 < 9$ elements are identified by the atomic numbers of these targets. The mean value of the solid curve is 0.96.

ed by alpha particles. The trends of Fig. 2, the failure of the first Born approximation (illustrated in Fig. 5 for protons only since these trends are similar for other projectiles) and the relative success of the ECPSSR theory, are confirmed and well documented by Figs. 6–9.

The rejected data, i.e., the measurements which differ by more than a factor of 2 from other experimental cross sections in comparable collision regimes, are listed in Tables 2-5 in the bold print for easy recognition. Their identification may serve as a guide for experimentalists into trouble areas in which more measurements would be needed and worthwhile. Our criterion rejects 227 cross sections out of 7007 data. Such a large rejection would be anticipated if the standard deviation σ in the normal distribution of these data was such that 2.14 σ were comparable to the measured cross sections. Experimental uncertainties, however, rarely exceed 25%. The ratios, which are more than a factor of 2 different from the mean values, typically lie no less than 4σ from these averages: at most five such ratios would be statistically expected in a sample of 7000 data, while 98% of all rejected ratios is most probably due to truly bad experiments

In addition, new information emerges from this comprehensive and detailed experiment-to-theory comparison. The first Born approximation overestimates the data by orders of magnitude for the elements in the middle of the periodic table when projectiles are slow. It does it even more dramatically for light elements where Z_1/Z_2 is relatively large. On the other hand, when Z_1/Z_2 is small the first Born

FIG. 7. Averaged [within the 0.1 intervals of $\log(v_1/v_{2\kappa})$] ratios of experimental cross sections to the ECPSSR predictions for relatively light (open circles), medium (half-open circles), and heavy (closed circles) target elements bombarded by deuterons. The solid curve is based on the averaged ratios for the $11 \le Z_2 \le 79$ targets; ratios for beryllium are identified by its atomic number. The mean value of the solid curve is 0.92.

FIG. 8. Averaged [within the 0.1 intervals of $\log(n_i/n_{2\kappa})$] ratios of experimental cross sections to the ECPSSR predictions for aluminum (open circles) and medium (half-open circles) target elements bombarded by ³He ions. The solid curve is based on the averaged ratios for the 13 \leq Z₂ \leq 47 targets. The mean value of the solid curve is 1.01.

FIG. 9. Averaged [within the 0.1 intervals of $\log(v_1/v_{2K})$] ratios of experimental cross sections to the ECPSSR predictions for light (open circles), medium (half-open circles), and heavy (closed circles) target elements bombarded by ⁴He ions. The solid curve is based on the averaged ratios for the $10 < Z_2 < 92$ targets; ratios for the $4 < Z_2 < 9$ elements identified by the atomic numbers of these targets. The mean value of the solid curve is 1.00.

J. Phys. Chem. Ref. Data, Vol. 18, No. 1, 1989

approximation on the average underestimates the data by nearly a factor of 3 when $v_1/v_{2\kappa} \simeq 0.1$. The ECPSSR removes these discrepancies so that the average ratios of experiment to theory are within 20% of the ideal ratio of 1 for protons. A similar conclusion was made in Ref. 15 for identical (protons and targets with $10 \leqslant Z_2 \leqslant 92$) collision systems but merely a one-half of the current data base for protoninduced x-ray production cross sections. For deuterons the agreement is within 25%, except at the lowest projectile velocities where ECPSSR overestimates the measured cross sections by a factor of 2.

For ³He ions, the discrepancies are much more pronounced. They are, however, less significant due to the relatively small (4% of all compiled cross sections) and limited (to $13 < Z_2 < 47$ targets) amount of data that is available. As opposed to general trends at small v_1/v_{2K} for any other target-projectile combination, the experimental K x-ray production cross section from aluminum bombarded by ³He is up to 70% larger then the ECPSSR predictions; these data, however, are from only a few references. The agreement of ECPSSR with the compiled ⁴He data is comparable to its concord with the proton data on the average. Yet the divergence in agreement with the light versus heavy target data is more evident in helium-induced cross sections because Z_1/Z_2 is twice as large.

Experiment-to-theory comparisons, such as presented in this work and most recently by Paul and his collaborators,⁵⁻¹⁴ are interpreted as tests of theories to be gauged by massive empirical collections of data. It is amusing to recall Cork⁶⁷ who, in a reversal of this procedure, argued that his experiment was acceptable because its deviation from the theory was comparable to theoretical uncertainties. Cork concluded that the measured cross section for K-shell x-ray production in iron by deuterons was "10 to 100 times greater than the theoretical value, but the difference could not be regarded as outside the limit of error in the calculation." Ironically, this particular calculation agrees (well within a factor of 2) with the predictions of current theories for σ_{KX} in iron by 10-MeV deuterons.

We continue to use our latest formulation of the ECPSSR theory.^{15,16} Residual deviations of this theory from the data are present and are indeed statistically significant. While the data for moderately heavy and light target elements are in basic agreement with the averages for all data, the cross sections for the lightest and heaviest target atoms oscillate in opposite directions around these averages. In the slow collision limit, the measured cross sections are overpredicted when Z_1/Z_2 is small but they appear to be underpredicted when Z_1/Z_2 is large. Similar trends are noticed in recent work of Paul et al.8-14 The overprediction of the experimental cross sections in heaviest targets is connected with a crude way in which the ECPSSR theory accounts for the relativistic effect; this theory indeed overestimates the importance of the relativistic treatment of the K-shell electron as proven⁴² by numerical calculations that use the Dirac wave functions. The underprediction of the data for $Z_1/Z_2 > 0.15$ has been discussed above in terms of the influence of multiple ionizations on σ_{κ} . This underprediction seems to contradict the pronouncements⁵⁹⁻⁶¹ that the

FIG. 10. Same as Fig. 6 but vs the variable $\xi_{\kappa}^{R}/\zeta_{\kappa}$ according to which the ECPSSR ionization cross sections scale in the slow collision regime. Correspondingly, the averages are within the 0.1 intervals of $\log(\xi_{\kappa}^{R}/\zeta_{\kappa})$.

FIG. 11. Same as Fig. 9 but vs the variable $\xi_{\kappa}^{R}/\zeta_{\kappa}$ according to which the ECPSSR ionization cross sections scale in the slow collision regime. Correspondingly, the averages are within the 0.1 intervals of $\log(\xi_{\kappa}^{R}/\zeta_{\kappa})$.

ECPSSR theory underestimates the PSS effect, smaller ionization cross sections that Refs. 59 and 61 suggest would accentuate the discrepancy with experiments. On the other hand, revised accounts for the binding⁶⁴ or for the polarization⁶⁵ effects could perhaps remove some of this discrepancy. As discussed in Sec. 3.2.a, the ECPSSR theory exhibits a nearly universal scaling with respect to ξ_K^R/ζ_K . Hence the ratios of Figs. 6 (for protons) and 9 (for ⁴He) are, respectively, replotted as Figs. 10 and 11 in terms of this variable; the deuteron and ³He ratios remain essentially the same because their relative scarcity prevents a statistically meaningful differentiation. Since ξ_K^R / ζ_K is more natural than v_1 / v_{2K} in the scaling of the ECPSSR calculations, the replotted ratios are somewhat smoother and, especially at low velocities, the dichotomy between the light and heavy targets is more evident. Also, for large Z_1/Z_2 , the discrepancy between the theory and the data is larger in Figs. 10 and 11. The deviations detected in Figs. 6 and 9 are now seen in the sharpest focus; they still persist and a fortiori reflect on real discrepancies between experiment and the ECPSSR theory.

4. Conclusions

This analysis supports the main conclusions of Ref. 15: for the $10 \leqslant \mathbb{Z}_2 \leqslant 92$ targets, theory and experiment agree, on the average, to within $\pm 10\%$ to 20%. With one standard deviation of ± 0.20 , the mean ratio of $\sigma_{KX}^{\text{Exper}} / \sigma_{KX}^{\text{ECPSSR}}$ for these targets and all projectiles equals 0.97. For ¹H, ²H, ³He, and ⁴He, this ratio is, respectively, 0.96 ± 0.19 , 0.92 ± 0.19 , 1.01 ± 0.24 , and 1.00 ± 0.23 . The residual deviations are nevertheless genuine and systematic. Only a comprehensive survey of all the data allows to isolate these deviations as a fine structure superimposed on the billionfold change of cross sections with the projectile velocity.

Perhaps the Coulomb deflection factor of the ECPSSR theory should be reconsidered.⁶⁸ A quantum mechanical derivation⁶⁹ of this factor might be fundamentally more correct.⁷⁰ The ECPSSR could be faulty in its treatment of PSS effects. The discrepancy between it and multistate calculations^{59,60,62}, however, might reflect differences in the description of the K shell rather than inadequacies in the PSS formulation. The calculations of Refs. 59, 60, and 62 span a short interval of v_1/v_{2K} from 0.12 to 0.31; an extension of this interval with calculations that employ and do not employ a screened Coulomb potential for the K-shell electron would be of interest.

For now, the deviations found in our analysis are attributed primarily to inadequacies of a screened hydrogenic description of the target electron on which the ionization calculations^{15,16,20,21} rest; this explanation of the observed deviations seems to be particularly valid when K shells of relatively light targets are considered. The ratios of the cross section based on Hartree–Slater wave functions^{22,29,71} to the cross section evaluated with the screened hydrogenic wave functions show (see Fig. 3 of Ref. 15) remarkable resemblance to the ratios displayed in Figs. 10 and 11. Hence, we speculate that, provided the relativistic effect will be better accounted for in the theory and the multiple-ionization effect considered, almost perfect agreement with the data would result if the ECPSSR cross sections were calculated with better wavefunctions for atomic K shells.

Known disagreements between the ECPSSR predictions and L-subshell data appear to make this conclusion very speculative indeed. Attempts have been made to explain some of these discrepancies in terms of a two-step mechanism in which a vacancy decay in an ionized subshell is followed by intrashell transitions during the same collision.⁷² These corrections have been made, however, in terms of the second order transition probabilities (instead of amplitudes) that were evaluated using the straight-line approximation and without account for PSS effects. An inclusion of PSS effects in the second Born approximation has been advocated by Sarkadi.73 Strong inter-subshell couplings influence L-subshell ionization probabilities⁷⁴ and affect ionization cross sections.⁷⁵ It is hoped that rigorous numerical calculations-which extend beyond the first Born approximation. treat the E, C, PSS, and R effects concomitantly, and are ab initio in all collisional regimes-will become available in a near future. Ultimately, comprehensive compilations and analyses of the L- and M-shell data are needed to convert our tentative deductions, on the shortcomings of the ECPSSR treatment of K-shell ionization in particular, to more firm conclusions on inadequacies of this theory in general.

Aside from open questions of theoretical interpretation of the compiled data, the present compilation appears to have its own merits as an assessment of worthwhile experiments and, perhaps, as a stimulant for further measurements. It identifies the target elements for which K-shell xrav productions cross sections have never or seldom been measured with light ion bombardment. It points to the projectiles for which more measurements would be desirable. The compiled data exhibit particularly large scatter among the deuteron and ³He induced cross sections; possible bad measurements cannot be reliably recognized because of the relatively small (11% of all compiled cross sections) amount of these data. All helium-induced x-ray production cross sections should be reported with the He charge state; especially, for light target elements and at low-projectile velocities where electron capture contributes significantly to K-shell ionization (see Table 7). An extension of proton measurements at relatively high velocities, $v_1 > v_{2\kappa}$, to other fast projectiles would be beneficial in understanding of relatively large discrepancies between lighter and heavier elements that appear (see Figs. 6 and 10) in the proton data at high velocities. It remains to be seen whether experimentalists will be prompted to a revival of K-shell x-ray measurements in asymmetric collisions. Such a resurgence could slow down the current rapid decline in the rate with which new data are reported (see Fig. 1) and it might force a quantitative revision of our present forecast about the total number of compiled cross sections saturating at 10 000.

5. Acknowledgments

This work was supported by the National Institute of Standards and Technology Grant No. NB82NADA3033, as a part of an interagency program supported by the National Science Foundation and the Office of Basic Energy Sciences, Department of Energy.

TABLE 1. Distribution of compiled K-shell x-ray production cross sections, for each target of atomic number Z2=4-92, with respect to the type of projectile (Z1=1,2: ions of H-1, H-2, He-3, He-4). Z2 of the elements, for which data are listed in Tables 2-5, is high-lighted in the bold print. A summary of the compiled data for all target elements appears at the bottom of this table

Z2	Protons	+ Deuterons	+ He-3	+ He-4	=	All Ions
4	43	7	0	22		72
5	0	0	0	0		0
6	164	0	0	52		216
7	21	0	0	18		39
8	54	0	0	0		54
9	18	0	0	12		30
10	22	0	0	12		34
11	8	3	0	0		11
12	41	0	0	12		53
13	200	45	70	104		419
14	16	2	7	6		31
15	29	13	10	0		52
16	34	13	0	4		51
17	31	13	Ō	19		63
18	37	0	10	5		52
19	32	13	0	4		49
20	87	6	Ő	37		130
21	86	14	Ő	9		109
22	286	42	33	169		530
23	110	10	0	63		183
26	162	6	30	61		261
25	98	6	52	35		130
26	267	38	Ő	110		415
27	126	10	23	56		215
28	20	45	14	80		370
20	420	38	14	178		655
20	420		19	20		10/
21	34	13	0	JZ 11		58
72	J4 73	15	23	51		151
32 77	16	4	23	0		101
33	10	0	13	54		123
75	16	0	15	J4 //		123
76	14	0	0	- 4		10
30	23	10	0	26		23
37	31 91	10	0	28		32
30	52	11	0	30		52
37	33	10	0	10		63
40	30	10	9	12		75
71	JZ 110	0	0	2/ E1		120
46	110	U	0	21		707
4J 66	U 1	U	0	0		0
44	10	U	0	10		1
45	10	U	0	10		26
40	44	U	11	13		68
4/	268	18	8	82		3/6
48	54	10	0	24		88

TABLE 1. Distribution of compiled K-shell x-ray production cross sections, for each target of atomic number Z2=4-92, with respect to the type of projectile (Z1=1,2: ions of H-1, H-2, He-3, He-4). Z2 of the elements, for which data are listed in Tables 2-5, is high-lighted in the bold print. A summary of the compiled data for all target elements appears at the bottom of this table - Continued

Z 2	Protons +	Deuterons	+ He-3	+ He-4	= All Ions
49	70	8	0	7	85
50	120	8	0	83	211
51	31	16	0	16	63
52	17	0	0	10	27
53	39	0	0	10	49
54	2	0	0	0	2
55	15	0	0	4	19
56	40	0	0	8	48
57	12	0	0	0	12
58	44	5	0	7	56
59	17	0	0	7	24
60	59	0	0	9	68
61	1	0	0	0	1
62	58	0	0	12	70
63	12	0	0	0	12
64	28	11	0	26	65
65	25	0	0	0	25
66	0	0	0	0	0
67	57	0	0	21	78
68	0	0	0	0	0
69	26	0	0	22	48
70	10	0	0	0	10
71	0	0	0	5	5
72	6	0	0	7	13
73	66	11	0	18	95
74	32	15	0	23	70
75	6	0	0	6	12
76	0	0	0	0	0
77	0	0	0	0	0
78	8	0	0	12	20
79	90	14	0	39	143
80	0	0	0	0	0
81	0	0	0	0	0
82	56	0	0	31	87
83	7	0	0	16	23
84	0	0	0	0	0
85	0	0	0	0	0
86	0	0	0	0	0
87	0	0	0	0	0
88	0	0	0	0	0
89	0	0	0	0	0
90	26	0	0	21	47
91	0	0	0	0	0
92	45	0	0	6	51
Z2=4-92 Targets	Protons 4687(63%)	Deuterons 496(7%)	s He-3 290(4%	B He-4 %) 1945(20	All Data 6%) 7418

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}

E ₁	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	$\sigma^{E_{xper}}$	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
4	Berylliu	m	Fluoresc	cence yi	eld = 0.0	0033			
1.50	-2 8.70+0	4.76-1	2.00-	-2 3.00+	1 4.71-1	2.50	-2 7.50+	1 5.02-1	35
3.00	-2 1.60+2	5.83-1	4.00-	·2 4.00+	-2 6.60-1	5.00	-2 6.50+	2 6.64-1	
6.00	-2 1.00+3	7.50-1	7.00	2 1.30+	3 7.91-1	8.00	-2 1.60+	3 8.42-1	
9.00	-2 1.80+3	8.54-1	1.00	·1 2.00+	3 8.82-1	1.20	-1 2.30+	3 9.24-1	
1.40	-1 2.70+3	1.03+0	1.60	·1 3.00+	-3 1.13+0	1.80	-1 3.20+	-3 1.20+0	
2.00	-1 3.40+3	1.28+0							
5.00	-1 1.51+3	7.72-1	7.50	-1 1.43+	-3 9.08-1	1.00	+0 1.32+	-3 9.96-1	71
1.20	+0 1.23+3	1.12+0	1.40-	+0 1.14+	-3 1.15+0	1.60	+0 1.07+	-3 1.17+0	
1.80	+0 1.01+3	1.20+0	2.00	+0 9.78+	-2 1.24+0				
3.00	-1 2,53+3	1.04+0	5.00	-1 2.264	3 1,16+0	7 00	-1 2 00+	-3 1.22+0	92
1.00	+0 1.68 $+3$	1.27+0	1,20-	0 1.614	3 1.47+0	1 50	+0 1 52+	-3 1 60+0	72
1.80	+01.42+3	1.68+0	1.20			1.50	1,521	5 1.00.0	
1.00	-2 3.17-1	1.25-1	1.20	-2 8.69-	•1 1.37-1	1.50	-2 2.78+	-0 1.52-1	119
2.00	-2 1.16+1	1.82-1	2.50	-2 3.33 1	-1 2.23-1	3.00	-2 7.49+	-1 2.73 - 1	
4.00	-2 2.23+2	3.68-1	5.00	-2 4.47+	-2 4.56-1	6.00	-2 7.33+	-2 5.50-1	
8.00	-2 1.28+3	6.74-1	1.00	-1 1.84+	-3 8.12-1	1.20	-1 2.17+	-3 8.72 - 1	
6	Carbon		Fluores	cence yi	eld = 0.0	028			
1.50	+0 3.00+3	1.37+0							10
1.50	-2 5.76-2	1.03-1	2.00	-2 2.00-	1 9 24-2	2 50	-2 5 58-	1 9 55-2	11
3.00	-2 1.83+0	1.45-1	4.00	-2 6.33+	-0 1.60-1	5.00	-2 1.53	-1 1.74-1	**
6.00	-2 3.40+1	2.13-1	7.00	-2 5.94+	-1 2.36-1	8.00	-2 1.17+	-2 3.25-1	
9.00	-2 1.66+2	3.46-1	1.00	-1 2.074	2 3.41-1	1.10	-1 2.74+	2 3.71-1	
4.99	-1 2.17+3	7.65-1	5.95	-1 2.24+	3 7.87-1	6.98	-1 2.28+	3 8.11-1	
7.75	-1 2.28+3	8.26-1	9.10	-1 2.29+	-3 8.61-1	1.02	+0 2.24+	3 8.73-1	
1.10	+0 2.18+3	8.70-1	1.20-	HO 2.174	3 8.95-1	1.27	+0 2.10+	3 8.88-1	
1.36	+0 2.09+3	9.10-1	1.51-	FO 2.02+	3 9.21-1	1.66	+0 1.94+	3 9.28-1	
1.91	+0 1.89+3	9.73-1							
2.00	-2 9.50-1	4.39-1	3.00	-2 4.30+	0 3.40-1	4.00	-2.2.00+	-1 5.07-1	16
5.00	-2 4.40+1	5.00-1	6.00	-2 8.20+	-1 5.15 - 1	7.00	-2 1.204	-2 4.77-1	14
8.00	-2 2.20+2	6.11-1	0.00			,			
1 50	- 7 / 00 1	0 50 4	0.00	0 1 00	0 0 01 1	0 50	0 5 401	0 0 25 1	0.2
1.30	-2 4.00-1	. 0.30-1 . 0.70 1	2.00	-2 2 1.001		2.50	-2 3.401	-U 9.23-1	23
5.00	-2 1.10+1	0.70-1	3.50	-2 2.104	-1 0.90-1	4.00	-2 3.004	-1 9.12-1	
5.00	-7 0.10+1	. 9.20-1							

TABLE 2. K-shell x-ray production by protons in tar	et elements from be	rvllium to uranium"	^b —Continued
---	---------------------	---------------------	-------------------------

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
2.00	-2 1.70	+0 7.85-1	2.50	-2 5.00	+0 8.56-1	3.00)-2 1.20+3	1 9.49-1	26
4.00	-2 3.60	+1 9.12-1	5.00)-2 7.60	+1 8.64-1	6.00	0-2 1.30+3	28.16-1	
7.00	-2 2.00	+2 7.95-1	8.00)-2 2.80	+2 7.78-1	9.0	0-2 3.70+2	2 7.72-1	
1.00	-1 4.70	+2 7.75-1	1.20)-1 6.60	+2 7.59-1	1.40	0-1 9.10+2	2 8.07-1	
1.60	-1 1.20	+3 8.76-1	1.80)-1 1.30	+3 8.18-1	2.0	0-1 1.50+:	3 8.40-1	
2.00	+0 7.60	+2 4.01-1	3.00)+0 8.60	+2 5.79-1	4.0	0+0 8.40+2	2 6.85-1	37
6.00	+0 7.20	+2 7.84-1	1.00)+1 4.60	+2 7.35-1	1.20	0+1 2.80+2	2 5.15-1	
1.40	+1 3.30	+2 6.85-1							
2.80	-2 7.56	+0 7.97-1	3.70)-2 2.02	+1 6.89-1	4.8	0-2 5.54+	1 7.24-1	46
5.80	-2 9.94	+1 6.94-1	6.8)-2 1.55	+2 6.69-1	7.7	0-2 2.44+	2 7.49-1	
8.70	-2 3.32	+2 7.51-1	9.70)-2 4.40	+2 7.75-1	1.0	6-1 5.42+2	2 7.90-1	
1.16	-1 6.67	+2 8.15-1	1.20	5-1 7.82	+2 8.24-1	1.3	5-1 8.99+2	2 8.44-1	
1.45	-1 1.03	+3 8.66-1							
1.00	-1 3.50	+2 5.77-1	1.1	0-1 5.00	+2 6.78-1	1.2	0-1 6.00+	2 6.90-1	50
1.30	-1 7.00	+2 7.00-1	1.40)-1 7.50	+2 6.65-1	1.5	0-1 8.00+2	2 6.39-1	
1.60	-1 1.00	+3 7.30-1	1.70)-1 1.10	+3 7.43-1	2.0	0-1 1.20+	3 6.72-1	
2.50	-1 1.50	+3 6.89-1	3.0)-1 1.60	+3 6.55-1	4.0	0-1 2.00+	3 7.31-1	
5.00	-1 2.10	+3 7.40-1	6.0)-1 2.10	+3 7.38-1	7.0	0-1 2.00+	3 7.11-1	
8.00	-1 2.00	+3 7.28-1	9.0	0-1 1.90	+3 7.12-1	1.0	0+0 1.80+	3 6.97-1	
1.00	-2 7.00	-2 1.01+0	1.2	5-2 1.80	-1 7.97-1	1.5	0-2 4.00-	1 7.15-1	51
1.75	-2 7.80	-1 6.67-1	2.0)-2 1.30	+0 6.00-1	2.5	0-2 3.30+	0 5.65-1	
3.00	-2 6.90	+0 5.46-1	3.5)-2 1.30	+1 5.51-1	4.0	0-2 2.20+	1 5.57-1	
4.50	-2 3.20	+1 5.26-1	5.0	0-2 5.10	+1 5.80-1				
1.00	+0 2.97	+3 1.15+0	2.0	0+0 2.04	+3 1.08+0	3.0	0+0 1.65+	3 1.11+0	70
4.00	+0 1.34	+3 1.09+0	6.0	0+0 1.04	+3 1.13+0	8.0	0+0 8.40+	2 1.13+0	
1.00	+1 7.00	+2 1.12+0	1.2	0+1 6.20	+2 1.14+0	1.4	0+1 5.60+	2 1.16+0	
1.60	+1 4.50	+2 1.04+0	1.8	0+1 4.20	+2 1.07+0				
2.90	-1 2.21	+3 9.21-1	5.2	0-1 2.80	+3 9.83-1	7.2	0-1 2.77+	3 9.90-1	81
1.02	2+0 2.45	+3 9.54-1	2.0	0+0 2.01	+3 1.06+0	3.0	0+0 1.46+	3 9.83-1	
4.00	+0 1.23	+3 1.00+0	5.0	0+0 1.08	+3 1.03+0	6.0	0+0 9.30+	2 1.01+0	
7.00	+0 8.30	+2 1.01+0	8.0	0+0 8.10	+2 1.09+0	9.0	0+0 7.20+	2 1.06+0	
1.00	+1 6.70	+2 1.07+0	1.1	0+1 6.50	+2 1.12+0	1.2	0+1 6.30+	2 1.16+0	
1.30	+1 5.50	+2 1.08+0	1.4	0+1 5.30	+2 1.10+0	1.5	0+1 5.30+	2 1.16+0	
1.60	+1 5.80	+2 1.34+0							
1.00	-1 4.15	+2 6.84-1	1.2	5-1 6.50	+2 6.94-1	1.5	0-1 9.10+	2 7.27 - 1	82
1.75	-1 1.15	+3 7.48-1	2.0	0-1 1.36	+3 7.62-1	2.5	0-1 1.77+	3 8.14-1	
3.00	-1 2.04	+3 8.35-1	4.0	0-1 2.22	+3 8.11-1	5.0	0-1 2.33+	3 8.21-1	
6.00	-1 2.35	+3 8.26-1	7.0	0-1 2.28	+3 8.11-1	8.0	0-1 2.09+	3 7.61-1	
1.00	+0 2.10	+3 8.13-1							
1.80)+1 4.28	+2 1.09+0	1.9	0+1 3.79	+2 1.00+0	2.0	0+1 3.69+	2 1.02+0	85
2.10	+1 3.59	+2 1.03+0	2.2	0+1 3.39	+2 1.01+0	2.3	0+1 3.30+	2 1.02+0	
2 40	+1 3.10	+2 9.92-1	2.5	0+1 3.10	+2 1.03+0	2.6	0+1 3.10+	2 1.06+0	

J. Phys. Chem. Ref. Data, Vol. 18, No. 1, 1989

 TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

	σ^{Exper}	σ^{Exper}	E ₁ 0	Exper	σ^{Exper}		E ₁	σ^{Exp}	er	σ^{Exper}	
(MeV)	(barn)	$\sigma^{\rm ECPSSR}$	(MeV) (arn)	oECPSS	R	(MeV)	(bar	n) ——	σ^{ECPSSR}	- Ref.
		- · · · · · · · · · · · · · · · · · · ·									
						F. 1			0 0710	0 70 1	457
6.0	0-1 2.4	5+3 8.61-1	8.00-	1 2.3	54+3 8.	52-1	1.	00+0	2.2/+3	8.78-1	157
1.2	0+0 2.1	9+3 9.05-1	1.40+	0 2.1	12+3 9.	35-1	1.	60+0	2.02+3	9.49-1	
1.8	0+0 1.9	7+3 9.83-1	2.00+	0 1.9	1+3 1.	01+0					
7	Nitro	gen	Fluoresc	ence	yield	= 0.0	0052				
2.8	0-2 2.6	9+0 1.06+0	3.70-	27.1	L8+0 8.	78-1	4.	80-2	1.81+1	7.97-1	46
5.8	0-2 3.3	8+1 7.47-1	6.80-	2 5.9	91+1 7.	59-1	7.	70-2	9.19+1	7.95-1	
8.7	0-2 1.2	6+2 7.56-1	9.70-	2 1.6	58+2 7.	43-1	1.	06-1	2.20+2	7.71-1	
1.1	6-1 2.7	3+2 7.66-1	1.26-	1 3.2	26+2 7.	58-1	1.	35-1	3.84+2	7.67-1	
1.4	5-1 4.2	8+2 7.38-1									
12	5-1 3 1	7+2 7 51-1	1 50-	1 4 7	70+2 7	56-1	1	75-1	6 42+2	7 82-1	82
2 0	0 - 1 8 2	1+2 8 08-1	2 50-	1 1 0	19+3 7	97-1	 	00-1	1 96+9	8 20-1	02
4.0	0-1 1.8	1+3 8.74-1	5.00-	1 2.0)5+3 8.	86-1	5.		1.5015	0.20 1	
8	Oxyge	n	Fluoresc	ence	yield	= 0.0	0083				
2.0	0-2 1.8	6-1 1.08+0	2.50-	24.6	50-1 9.	14-1	3	00-2	9.40-1	8.14-1	18
35	0 - 2 + 1 = 7	2+0 7 62-1	4 00-	2 2 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34-1	4	50-2	4 70+0	7 36-1	10
5.0	0 - 2 - 1.7	0+0 7 23-1	5 50-	2 1 0)) 11 11 1	24 I 24 - 1	6	00-2	1 40+1	7 25-1	
J.U 4 5	$(0^{-2} 1.0)$	0+0 7.23-1	7 00-	2 1.0	5171 7. 6611 7	24-1	0. 7	50-2	2 1011	7.23-1	
0.5	0^{-2} 1.0	0 ± 1 7.20 1	7.00-	22.4	+4⊤1 /. 7511 7	20-1	/.	. 50-2	5.1071	7.27-1	
8.0	0-2 3.8	0+1 7.29-1	8.50-	2 4.1	/3+1 /.	30-1	9.	.00-2	5.70+1	1.3/-1	
9.5	0-2 0.7	0+1 7.34-1	1.00-	1 /.5	90+1 7.	39-1					
1.5	0-1 2.4	0+2 7.64-1									29
2.0	0-2 5.7	0-1 3.32+0	2.50-	2 1. 1	10+0 2.	19+0	3.	.00-2	2.10+0	1.82+0	33
3.5	0-2 2.9	0+0 1.28+0	4.00-	2 4.5	50+0 1.	14+0	4.	.50-2	6.70+0	1.05+0	
5.0	0-2 1.0	0+1 1.03+0	5.50-	2 1.5	50+1 1.	07+0	6	.00-2	2.00+1	1.04+0	
6.5	0-2 2 4	0+1 9 29-1	7.00-	2 3 0	00+1 8	93-1	7	50-2	4.20+1	9.85-1	
8.0	0-2 5.5	0+1 1.04+0	,,,,,,								
F 0		010 7 00 1	6 00	01	6011 7	05 1	-	00.0	2 6011	7 14 1	24
	0 - 2 - 7 = 0	0+0 7.23-1	8.00-	2 1.4	4UTI 7. 0011 7	23-1	1	.00-2	2.40T1 0 0011	7 49-1	54
8.0	10-2 4.0	0+1 7.55-1	9.00-	2 0.0		/0-1	1	.00-1	3.00+1	7.40-1	
1.5	0-1 2.3	0+2 7.32-1	2.00-	1 4.3	50+2 /.	86-1	2.	.50-1	7.00+2	8.39-1	
3.0	0-1 9.3	0+2 8.64-1	3.50-	1 1.2	20+3 9.	30-1	4	.00-1	1.30+3	8.82-1	
2.0	0-2 1.8	0-1 1.05+0	2.50-	2 4.6	60-1 9.	14-1	3.	.00-2	9.50-1	8.23-1	51
3.5	0-2 1.6	5+0 7.31-1	4.00-	2 3.0	00+0 7.	59-1	4.	.50-2	4.70+0	7.36-1	
5.0	0-2 7.0	0+0 7.23-1	5.50-	2 1.0	00+1 7.	17-1	6.	.00-2	1.40+1	7.25-1	
6.5	50-2 1.9	0+1 7.36-1	7.00-	2 2.5	50+1 7.	44-1					
9	Fluor	ine	Fluoresc	ence	yield	= 0.	013				
5.0	00-1 1.1	0+3 8.29-1	8.45-	1 1.4	45+3 7.	72-1	1	. 00+0	1.50+3	7.53-1	110
3 0)0-1 3 1	4+2 4 48-1	3 50-	14	15+2 4	72-1	4	.00-1	5,14+2	4,92-1	116
5 0	0-1 7 5	4+2 5 68-1	6 00-	1 1 0	02+3 6	60-1	7	.00-1	1.27+3	7.41-1	*
2.0	0 I 7.3	012 8 17_1	0.00-	1 1 4	6873 6. 2513 6.	79-1	1	0010	1 8749	Q 30_1	
0.0	0-1 1.4	/T3 0.14"1 /13 0 21.1	1 201	U J 4	00-2 0. 00-2 0.	76-1	1	700F0	2 0/T3	Q Q Q - 1	
1.1	10TU 1.9	473 9.3171 919 0 // 1	1.204	0 2.0	0273 9. 0919 9	07 1	1	.4070	1 0010	0 00 1	
1.6	DUTU 2.0	2+3 9.66-1	1.804	ο τ.	7243 9.	2/-1	2	.00+0	1.03+3	0.30-1	

.

$\overline{E_1}$	$\sigma^{E_{xper}}$	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	E	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	. o ECPSSR	(MeV)	(barn)	σ^{ECPSSR}	Ref.
	NT		F 1						
10	Neon		Fluores	cence yı	$e_{1a} = 0.0$	10			
4.80	0-2 1.41+0	1.13+0	5.80	-2 2.67+	0 9.73-1	6.80	-2 4.68+0	9.11-1	46
7.70	0-2 7.83+0	9.50-1	9.70	-2 1.79+	-1 9.45-1	1.16	-1 3.29+1	9.51-1	
1.35	5-1 5.40+1	9.66-1							
5.00	0+0 1.40+3	1.00+0							58
1.25	5-1 3.20+1	7.27-1	1.50	-1 5.70+	-1 7.47-1	2.00	-1 1.25+2	7.50-1	82
2.50	0-1 2.09+2	7.47-1	3.00	-1 3.18+	-2 7.86-1	4.00	-1 5.63+2	8.56-1	
5.00	0-1 7.04+2	7.94-1	6.00	-1 8.37+	2 7.74-1	7.00	-1 9.60+2	7.72-1	
8.00	0-1 1.05+3	7.64-1	9.00	-1 1.20+	-3 8.10-1	1.00	+0 1.30+3	8.31-1	
1.10	0+0 1.42+3	8.73-1	1.20	+0 1.50+	3 8.92-1				
11	Sodium		Fluores	cence yi	leld = 0.0	23			
2.00	0-2 8.00-3	1.72+0	2.50	-2 2.50-	2 1.38+0	3.00	-2 6.00-2	2 1.21+0	101
4.00	0-2 1.20-1	5.79-1	5.00	-2 2.50-	1 4.39-1	5.50	-2 6.00-1	6.97-1	
6.00	0-2 8.50-1	6.86-1	6.50	-2 1.30+	0 7.54-1				
12	Magnesiu	m	Fluores	cence yi	leld = 0.0)3			
6.00	0-2 3.50-1	6.64-1	1.00	-1 2.80+	-0 6.78-1	1 50	-1 1 20+1	6 95-1	q
2.00	0-1 2.80+1	6.58-1	3.00	-1 9.404	1 7.44-1	4.00	-1 1.80+2	7.57-1	.
5.00	0-1 2.30+2	6.38-1							
2 50	0_2 / 31_3	7 40-1	3 00	-9 1 53-	2 8 80-1	6 00	-0734-9	0 12-1	11
5.00	0-2 4.31-3 0-2 2 27-1	9 7.40-1	5.00	-2 1.33-	-2 0.00-1	4.00	-2 /.34-2 _9 8 59_1	9.12 - 1	11
8.00	0-2 2.27-1 N-2 1 85+0	1 06+0	9 00	-2 7.43	-1 0.44 - 1	1 00	-2 0.32-1 -1 3 64+0	0.41-1	
6.0	2 - 1 + 25 + 2	8.81-1	6.86	-1 4.494	-27.77-1	8.00	-1 5.06+2	2 7.29-1	
9.00	0-1 5.77+2	7.35-1	1.00	+0 6.421	2 7.42-1	1.10	+0 7.27+2	7.77-1	
1.20	0+0 7.73+2	7.75-1	1.31	+0 8.79+	2 8.33-1	1.40	+0.9.46+2	8.64-1	
1.50	0+0 1.03+3	9.08-1	1.60	+0 1.07+	-3 9.16-1	1.70	+0 1.14+3	9.55-1	
1 01	E.1 0 2010	0 05 1	1 50	-1 1 501	1 0 60 1	1 75	1 2 6011	0 17 1	10
2.0	0-1 4:00+1	9.40-1	1.50	-1 1.504	-1 0.09-1	1.75	-1 2.00+1	9.1/-1	12
3.00	0+0 1.10+3	8.39-1							94
2.00	0-2 6.00-4	4.70-1	2.50	-2 4.00-	3 6.87-1	3.00	-2 1.20-2	. 6.90-1	101
3.50	0-2 3.00-2	7.40-1	4.00	-2 6.00-	2 7.46-1	4.50	-2 1.00-1	7.00-1	
5.00	0-2 2.00-1	8.56-1	6.00	-2 5.00-	-1 9.48-1				
13	Aluminum	1	Fluores	cence yi	ield = 0.0)39			
6.00	0-2 1.70-1	7.05-1	1.00	-1 1.504	+0 7.31-1	1.32	-1 3.90+0	6.74-1	9
1.50	0-1 5.60+0	6.17-1	2.00	-1 1.504	1 6.42-1	3.00	-1 5.50+1	7.34-1	
4.00	0-1 1.20+2	7.97-1	5.00	-1 2.304	2 9.64-1				
1.50	0+0 1.00+3	1.07+0							10
0 F4	0_0 1 / 0 0	7 / 3 1	2 00	-9 5 01	2 7 07 1	1. 00	n n n n n n	0 00 1	11
5 0	0-2 1.43-3 N-2 9 19-9	0 /.43~1 0 8 93_1	5,00 6 00	-2 5.01	-1 8 75-1	4.00	-2 2,90-2 -9 2 Aq-1	. 0.90-1 8 58-1	11
5.00	~ ~		0.00	e e.T.	T 0.10-T	/.00	£ 7.07"	r 0.00-T	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

J. Phys. Chem. Ref. Data, Vol. 18, No. 1, 1989

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

$E_1 \sigma^{\text{Exper}} \sigma^{\text{Exper}}$	$E_1 \sigma^{\mathrm{Exper}}$	σ ^{Exper}	E ₁	0 ^{Exper}	o ^{Exper}	
(MeV) (barn) σ^{ECPSSR}	(MeV) (barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	- Ref.
8.00-2 6.97-1 8.31-1	9.00-2 1.06	5+0 7.83-1	1.00	-1 1.54+0	7.50-1	
4.84-1 1.92+2 8.58-1	5.98-1 2.72	2+2 8.24-1	7.00	-1 3.44+2	8.14-1	
8.00-1 4.17+2 8.19-1	9.00-1 4.86	5+2 8.24-1	1.00-	+0 5.46+2	8.23-1	
1.10+0 6.17+2 8.45-1	1.20+0 6.66	5+2 8.43-1	1.30-	+0 7.19+2	8.53-1	
1.40+0 7.66+2 8.60-1	1.50+0 8.28	3+2 8.87-1	1.60-	+0 8.80+2	9.07-1	
1.70+0 9.24+2 9.21-1						
3.00-2 1.30-2 2.04+0	5.00-2 1.20)-1 1.17+0	8.00	-2 7.40-1	8.83-1	12
1.00-1 1.50+0 7.31-1	1.25-1 4.80	0+0 1.01+0	1.50	-1 /.80+0	8.60-1	
1.75-1 1.60+1 1.05+0	2.00-1 2.90	0+1 1.24+0				
4.80-2 8.00-2 9.49-1	5.00-2 8.60)-2 8.36-1	6.00	-2 2.00-1	8.29-1	13
6.00-2 2.20-1 9.12-1	7.00-2 4.00)-1 8.39-1	7.20	-2 4.20-1	7.81-1	
8.00-2 6.50-1 7.75-1	8.40-2 7.70)-1 7.52-1	9.00	-2 1.00+0	7.38-1	
9.60-2 1.11+0 6.35-1	1.00-1 1.54	++0 7.50-1				
			_			
2.50-2 2.00-3 1.04+0	3.00-2 6.10	0-3 9.58-1	4.00	-2 3.10-2	9.34-1	17
5.00-2 1.20-1 1.1/+0	6.00-2 2.20)-1 9.12-1	7.00	-2 4.40-1	9.23-1	
8.00-2 7.60-1 9.06-1	9.00-2 1.20	0+0 8.86-1	1.20	-1 3.60+0	8.80-1	
1.40-1 6.20+0 8.69-1	1.80-1 1.00)+1 5.98-1	1.90	-1 1.40+1	7.04-1	
2.00-1 1.90+1 8.13-1						
8.00-2 5.60-1 6.68-1	9.00-2 8.40	0-1 6.20-1	1.00	-1 1.40+0	6.82-1	22
1.10-1 2.00+0 6.76-1	1.20-1 2.80	0+0 6.84-1	1.30	-1 4.00+0	7.31-1	
1.40-1 4.60+0 6.45-1	1.50-1 6.00	0+0 6.61-1	1.60	-1 7.20+0	6.37-1	
1.70-1 8.00+0 5.77-1	1.80-1 1.00	0+1 5.98-1	1.90	-1 1.20+1	6.03-1	
2.00-1 1.40+1 5.99-1						
	1 00 1 1 //		1 / 0	1 / / 710	/ FF 4	
9.00-2 1.05+0 7.75-1	1.00-1 1.49	9+0 7.26-1	1.40	-1 4.6/+0	6.55-1	25
1.80-1 1.00+1 0.34-1						
1.75-2 1.55-4 1.45+0	2.00-2 4.60	0-4 1.32+0	2.50	-2 2.02-3	1.05+0	45
3.00-2 6.54-3 1.03+0	3.50-2 1.63	1-2 1.01+0	4.00	-2 3.26-2	9.82-1	
5.00-2 1.07-1 1.04+0	6.00-2 2.23	7-1 9.41-1	7.00	-2 4.33-1	9.08-1	
8.00-2 7.33-1 8.74-1	9.00-2 1.14	4+0 8.42-1	1.00	-1 1.68+0	8.19-1	
1.10-1 2.35+0 7.95-1	1.20-1 3.40	5+0 8.46-1	1.40	-1 6.44+0	9.03-1	
1.53-1 7.42+0 7.64-1	1.60-1 9.14	++0 8.08-1	1.79	-1 1.22+1	7.43-1	
2.00-1 1.79+1 7.66-1	2.04-1 1.84	4+1 7.40-1	2.50	-1 3.11+1	6.82-1	
2.55-1 3.28+1 6.81-1	3.06-1 5.34	4+1 6.77-1	3.57	-1 7.81+1	6.74-1	
4.08-1 9.81+1 6.23-1	4.59-1 1.38	3+2 6.84-1	5.10	-1 1.70+2	6.86-1	
6.12-1 2.34+2 6.82-1	7.14-1 2.9	5+2 6.78-1	8.16	-1 3.50+2	6.69-1	
9.18-1 4.01+2 6.64-1	1.02+0 4.40	5+2 6.59-1	1.12	+0 4.84+2	6.52-1	
1.22+0 5.21+2 6.51-1	1.33+0 5.48	8+2 6.39-1	1.43	+0 5.76+2	6.37-1	
1.53+0 6.04+2 6.39-1	1.63+0 6.23	7+2 6.39-1	1.73	+0 6.50+2	6.42-1	
1.84+0 6.70+2 6.42-1	1.94+0 6.89	9+2 6.45-1	2.04	+0 7.05+2	6.49-1	
2.14+0 7.23+2 6.54-1	2.24+0 7.39	9+2 6.59-1	2.35	+0 7.54+2	6.62-1	
2.45+0 7.68+2 6.69-1	2.55+0 7.8	1+2 6.74-1	2.65	+0 7.96+2	6.82-1	
2.75+0 8.09+2 6.89-1	2.85+0 8.23	3+2 6.98-1	2.96	+0 8.37+2	7.07-1	
2.00-2 4.60-4 1.32+0	2,25-2 1 20	0-3 1.35+0	2.50	-2 2.30-3	1.20+0	51
2.75-2 4.60-3 1.25+0	3.00-2 7.50	0-3 1.18+0	3.25	-2 1.20-2	1.16+0	
3.50-2 1.50-2 9.42-1	4.00-2 3.80	0-2 1.14+0	4.50	-2 7.00-2	1.14+0	
5.00-2 1.20-1 1.17+0	5.50-2 1.70	0-1 1.05+0				

E_1	o ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
				<u></u>					
7.50	-1 2.96+	2 6.34-1	1.00	+0 4.78	+2 7.21-1	1.25	+0 6.16+	2 7.54-1	75
1.50	+0 6.98+	2 7.48-1	2.00	+0 8.10	+2 7.50-1	2.50	+0 9.47+	2 8.21-1	
3.00	+0 9.93+	2 8.38-1	3.50	+0 9.98	+2 8.37-1	4.00	+0 9.73+	2 8.24-1	
2.00	-1 2.28+	1 9.75-1							88
3.00	+0 1.09+	3 9.18-1							94
2.50	+0 9.55+	2 8.28-1	3.00	+0 9.88	+2 8.33-1	5.00	+0 9.16+	2 8.05-1	97
7.50	+0 7.80+	2 7.81-1	9.00	+0 7.19	+2 7.81-1	9.75	6.83+	2 7.72-1	
1 50	-2 8 00-	6 3 58-1	1 60	-2 2 00	-5 4 51-1	1 70	-2 5 00-	5 6 16-1	101
1.80	-2 9.00-	5 6.47-1	1.90	-2 1.60	-4 7.10-1	2.00)-2 3.50-	4 1.00+0	101
2.20	-2 9.00-	4 1.20+0	2.60	-2 1.80	-3 7.13-1	2.80	-2 3.70-	3 8.94-1	
3.00	-2 6.00-	3 9.42-1	3.50	-2 1.20	-2 7.54-1	4.00	-2 2.40-	2 7.23-1	
4.50	-2 3.70-	2 6.05-1	5.00	-2 6.50	-2 6.32-1	5.50)-2 1.20-	1 7.41-1	
6.00	-2 2.00-	1 8.29-1							
3.26	-1 9.43+	-1 1.02+0	3.60	-1 1.20	+2 1.02+0	3.85	5-1 1.40+	2 1.01+0	110
5.00	-1 2.44+	2 1.02+0	1.00	+0 6.67	+2 1.01+0				
7 50	-1 2 964	-2 6 34-1	1 00	+0 / 78	±9 7 91 - 1	1 75	LO 6 161	2 7 54-1	117
1.50	+0 6.98+	-2 7.48-1	2.00	+0 4.70	+27.50-1	2.50	$+0 \ 0.10+$	2 7.34-1	11/
2.99	+0 9.69+	2 8.18-1	3.00	+0 9,93	+2 8.38-1	3.94	+0 9.92+	2 8.39-1	
6.07	+0 8.79+	2 8.14-1	9.13	+0 7.33	+2 8.02-1	1.22	2+1 6.13+	2 7.83-1	
1.83	+1 4.69+	2 7.69-1	2.40	+1 3.94	+2 7.81-1	3.03	L+1 3.42+	2 8.00-1	
3.56	+1 2.97+	-2 7.86-1	3.96	+1 2.77	+2 7.94-1				
3.00	-1 6.85+	-1 9.14-1	6.00	-1 3.00	+2 9.04-1	1.00)+0 6.05+	2 9.12-1	149
14	Silcon		Fluores	cence y	ield = 0.0)5			
7 50		0 7 97 7	1 00	-	10 7 70 1			~ ~ / ~ /	
1.50	-1 2.4/7	-2 $7.31-1$	2.00	+U 3.95 10 7 60	+2 $7.79-1$	1.2	0+0 4.85+	2 / .4/-1	75
3 00	TU 0 3V1	-2 8.31-1	2.00	TO 7.00	+2 0.31-1 ± 2 8 75-1	2.50	1+0 0.01+	2 0,40 - 1	
5.00	10 9.54	2 0.75 1	5.50		12 0.75-1	4.00	JTU 9.00T	2 0.74-1	
3.00	+0 1.00+	-3 9.37-1							94
2.50	-2 3.00-	4 4.91-1	3.00	-2 1.30	-3 5.60-1	3.50)-2 5.00-	3 7.97-1	101
4.00	-2 1.40-	2 1.01+0	5.00	-2 6.00	-2 1.29+0	6.00)-2 1.40-	1 1.23+0	
15	Phospho	orus	Fluores	cence y	ield = 0.0)63			
1.40	+0 5.27+	-2 9.12-1	1.50	+0 5.51	+2 8.91-1	1.60)+0 6.12+	2 9.32-1	122
1.70	+0 6.33+	2 9.15-1	1.80	+0 6.70	+2 9.25-1	1.90)+0 6.95+	2 9.22-1	
2.00	+0 7.25+	-2 9.28-1							
6.00	-1 1.59+	-2 1.01+0	8.00	-1 3.49	+2 1.29+0	1.00)+0 4.56+	2 1.19+0	123
1.20	+0 5.59+	2 1.15+0	1.40	+0 6.72	+2 1.16+0	1.60)+0 7.92+	2 1.21+0	
1.80	+0 9.12+	-2 1.26+0	2.00	+0 9.24	+2 1.18+0	2.20)+0 9.72+	2 1.17+0	
2.40	+0 9.664	-2 1.11+0	2.60	+0 9.28	+2 1.03+0				

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}-Continued

130

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

<i>E</i> ₁	σ^{Exper}	σ ^{Exper}	E	σ ^{Exper}	σ^{Exper}	E ₁	0 ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	– (MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ m ECPSSR}$	Ref.
	N				<u></u>				
1.004	-0 4.81+2	1.25+0	1.30-	-0 6.50-	+2 1.22+0	1.90-	+0 8.46+2	1.12+0	156
2.254	0 8.54+2	1.02+0	2.55-	+0 9.73-	+2 1.09+0	2.80-	+0 1.01+3	1.09+0	
3.004	-0 1.00+3	1.05+0	3.50-	+0 9.69	+2 9.80-1	4.00-	+0 1.09+3	1.08+0	
4.504	0 1.13+3	1.11+0	5.00-	0 1.13	+3 1.11+0				
16	Sulfur		Fluores	cence v	ield = 0.0	78			
8.30-	$\cdot 1 \ 1.80+2$	8.50-1	1.58-	H0 5.40	+2 1.02+0	2.56	+0 7.50+2	9.64-1	66
3.28	1.08+3	1.24+0							
3.004	+0 8.46+2	1.00+0							94
1.40	+0 4.62+2	1.00+0	1.50-	HO 4.56	+2 9.12-1	1.60	+0 4.91+2	2 9.17-1	122
1.704	0 5.26+2	9.24-1	1.80-	HO 5.58-	+2 9.29-1	1.90	+0 5.65+2	2 8.97-1	
2.00-	+0 5.97+2	9.08-1							
6.00-	-1 1 55+2	1 41+0	8 00-	-1 2 95	+2 1 49+0	1 00-	+0 4 04+2	1 39+0	123
1.20-	F0 5.30+2	1.39+0	1.40-	F0 6.43	+2 1.39+0	1.60	+0 7 45+2	2 1 39+0	125
1.80-	HO 8 09+2	1 35+0	2 00-	FU 8 77	+2 1 33+0	2 20-	+0 9 68+2	2 1 37+0	
2.40-	HO 9.84+2	1.31+0	2.60-	HO 1.03	+3 1.31+0	2120		. 1.07.0	
21.10	0 9101.2	1101.0	2.00						
1.00-	+0 3.14+2	1.08+0	1.30	+0 4.57	+2 1.08+0	1.90	+0 6.76+2	2 1.07+0	156
2.25-	⊦0 7.28+2	1.01+0	2.55	+0 8.23	+2 1.06+0	2.80	+0 8.17+2	2 1.00+0	
3.00-	⊦0 8.98+ 2	1.07+0	3.50	+0 9.17	+2 1.03+0	4.00	+0 1.02+3	3 1.11+0	
4.50	+0 1.12+3	1.19+0	5.00	+0 1.13	+3 1.19+0				
17	Chlorino		Fluorog		iold - 0 0	7 00			
.,	CHIOTING		riuores	cence y	ieiu – 0.0	171			
9.50	-1 2.60+2	1.27+0							76
3.00-	+0 6.95+2	9.21-1							94
1 40-	LO 3 6313	0 60-1	1 50	10 3 74	1 2 0 16-1	1 60	TU % UST	0 00-1	199
1 70	FO J.0J+2	9.09-1 9.09-1	1 80.	LO 5 25	+2 9.14-1 +2 1 0/±0	1 00	+0 4.02+2 +0 5 15+3	0 66-1	122
2 00-	FO 4.2372	0.92-1	1.00	FU J.2J	72 1.0410	1.90	TU 3.13T2	2 9.00-1	
2.00	FU J.J472	. 9.94-1							
8.00	-1 1.63+2	1.11+0	1.00	+0 2.64	+2 1.18+0	1.20	+0 2.80+2	2 9.31-1	123
1.40-	+0 3.31+2	8.84-1	1.60	+0 4.18	+2 9.45-1	1.80	+0 4.80+2	2 9.52-1	
2.00-	+0 5.32+2	9.51-1	2.20	+0 5.46	+2 8.97-1	2.40	+0 5.33+2	2 8.17-1	
2.60-	+0 5.71+2	8.26-1	2.80	+0 5.53	+2 7.63-1				
1.00-	+0 2.69+2	1.20+0	1.30	+0 4.00	+2 1.18+0	1.90	+0 6.09+2	2 1.14+0	156
2.25-	+0 6.63+2	1.07+0	2.55	+0 7.22	+2 1.06+0	2.80	+0 7.62+2	2 1.05+0	
3.00-	+0 8.08+2	1.07+0	3.50	+0 8.42	+2 1.04+0	4.00	+0 9.35+2	2 1.10+0	
4.50-	+U 9.86+2	1.12+0	5.00	+0 1.02	+3 1.14+0				
18	Argon		Fluores	cence y	ield = 0.1	18			
1 50	10 2 00.22	9 23-1	2 00	10 / 20	17 0 00_1	2 E0	10 5 2010	0 00-1	40
3 UU- 1.20.	い 2.00+2 FU 6 10エク	. 0.33-1) Q 22_1	2.00	TU 4.20 40 6 90	τ2 0.70-1 17 0 3Ω-1	2.30	TO 2.2074	2 9.00-1 7 8 05-1	40
4 50-	LO 7 KOLO	0 //7_1	5.50	10 0.00	12 9.30-1	4.00	10 0.90T	C 0.30-T	
JU	··· /.00+2	. 2.4/-1							

$\overline{E_1}$	σ ^{Exper}	σ^{Exper}	$\overline{E_1}$	o ^{Exper}	σ^{Exper}	<i>E</i> ₁	$\sigma^{E_{xper}}$	σ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	— (MeV)	(barn)	σ^{ECPSSR}	- (MeV)	(barn)	σ^{ECPSSR}	Ref.
6.80-	2 1.85-2	1.37+0	7.70-	2 3.01-2	1.14+0	8 70-	2 5 54-2	1 12+0	46
9 70-	2 1 04-1	1 25+0	1 06-	1 1 48-1	1 17+0	1 16-	1 2 3.34 2	1 20+0	40
1 26-	1 3 05 - 1	1 1340	1 35-	1 4 01-1	1 10+0	1.10-	1 2.2/-1	1.20+0	
1.20-	1 3.03-1	1.15+0	1.55-	1 4.01-1	1.10+0				
1.50+	0 3.19+2	9.72-1	2.00+	0 4.57+2	9.77-1	2.50+	0 5.53+2	9.58-1	48
3.00+	0 6.38+2	9.64-1	3.50+	0 7.25+2	1.00+0	4.00+	0 7.61+2	9.87-1	
4.50+	0 7.99+2	9.96-1	5.00+	0 8.68+2	1.05+0				
3.00+	0 7.03+2	1.06+0							65
2.00+	0 5.23+2	1.12+0							74
1.25-	1 3.12-1	1.19+0	1.50-	1 5.92-1	1.05+0	2.00-	1 1.59+0	9.20-1	82
2.50-	1 3.57+0	9.21-1	3.00-	1 6.51+0	9.03-1	4.00-	1 1.58+1	8.83-1	
5.00-	1 3.00+1	8.83-1	6.00-	1 4.79+1	8.72-1	7.00-	1 6.85 + 1	8.58-1	
8.00-	1 9.35+1	8.68-1	9.00-	1 1.18+2	8.56-1	1.00+	0 1.40+2	8.29-1	
19	Potassiu	m	Fluoresc	ence yie	1d = 0.1	.4			
9.50-	1 1.21+2	1.06+0							76
3.00+	0 5.35+2	9.38-1							94
1 40+	0 2 20+2	9 46-1	1 50+	0 2 2712	8 75-1	1 601	.0 7 / 013	0 60 1	100
1 70+	0 2 70+2	8 68-1	1 80+	0 2.2712	1 02+0	1 001	0 2.40+2	0.09-1	122
2.00+	0 3.72+2	9.70-1	1.001	0 3.4312	1.0210	1.904	0 3.3372	9.00-1	
6.00-	1 4.04+1	1.06+0	8.00-	1 8.65+1	1.11+0	1.00+	0 1.23+2	9.73-1	123
1.20+	0 1.79+2	1.00+0	1.40+	0 2.46+2	1.06+0	1.60+	02.98+2	1.04+0	
1.80+	0 3.41+2	1.02+0	2.00+	0 4.31+2	1.12+0	2.20+	05.22+2	1 22+0	
2.40+	0 5.56+2	1.19+0	2.60+	0 5.73+2	1.13+0	2.80+	0 6.04+2	1.12+0	
1.00+	0 1.57+2	1.24+0	1.30+	0 2.45+2	1.19+0	1.90+	0 3.93+2	1.09+0	156
2.25+	0 4.62+2	1.05+0	2.55+	0 5.26+2	1.06+0	2.80+	0 5.66+2	1.05+0	
3.00+	0 6.30+2	1.11+0	3.50+	0 6.75+2	1.06+0	4.00+	0 7.24+2	1.06+0	
4.50+	0 7.90+2	1.09+0	5.00+	0 8.34+2	1.11+0				
20	Calcium		Fluoresc	ence yie	1d = 0.1	63			
0 001					• •				
2.00+	0 2.34+2	7.54-1	3.00+	0 3.95+2	8.17-1	4.00+	0 4.94+2	8.25-1	20
5.00+	0 5.76+2	8.58-1	6.00+	0 5.93+2	8.34-1	7.00+	0 6.32+2	8.60-1	
8.00+	0 6.29+2	8.44-1	9.00+	0 6.35+2	8.51-1	1.00+	1 6.12+2	8.25-1	
1.10+	1 6.17+2	8.42-1	1.20+	1 6.18+2	8.58-1	1.30+	1 6.17+2	8.71-1	
1.65+	1 5.39+2	8.19-1	2.00+	1 5.46+2	8.96-1	2.50+	1 4.49+2	8.21-1	
3.00+	0 4.85+2	1.00+0	5.00+	0 7.47+2	1.11+0	7.00+	0 8.12+2	1.10+0	94
9.00+	0 7.95+2	1.07+0	1.10+	1 7.76+2	1.06+0				~ 1
5.00-	1 1.09+1	6.91-1	5.50-	1 1.58+1	7.59-1	6 00-	1 1 05+1	7 33-1	0.8
6.50-	1 2.55+1	7.72-1	7 00-	1 3 16+1	7 80-1	7 50-	1 3 7711	7.33 ⁻¹	20
8 00-	1 4 3641	7 78-1	8 50-	1 5 0711	7 89-1	0.00-	1 5 0711	7.07-1	
Q 50-	1 6 6111	7 01_1	1 00-1	- J.V/TI N 7 EAL1	2 02-1	9.00-	1 J.0771	/.93-1 0 11 1	
1 100	1 0.0171	1.71-1	1 151	0 1 0110	0.02~1	1.05+	0 0.41+1	0.11-1	
1.10+	0 9.4/+1	0.29-1	1.15+	0 1.01+2	0.09-1	1.20+	0 1.10+2	8.10-1	
1.25+	U 1.17+2	/.99-1	1.30+	U 1.29+2	8.20-1	1.35+	0 1.38+2	8.19-1	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}-Continued

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ ^{Exper}	E ₁	σ^{Exper}	o ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
1.40	HO 1.44+2	8.00-1	1.45+0	1.55+2	8.11-1	1.50-	+0 1.67+	2 8.26-1	
1.554	FU 1.75+2	8.21-1	1.60+0) 1.89+2		1.65	+0 1.9/+	2 8.35-1	
1.701	FU 2.00+2	0.11-1	1.75+0	2.10+2	0.39-1	1.80-	+0 2.23+	2 8.31 - 1	
2.004	+0 2.23+2 +0 2.66+2	8.58-1	1.90+0	, 2.40+2	. 0.30-1	1.95	FU 2.517	2 0.3/-1	
2.00-	-1 6.30-1	9.51-1	2.25-	8.10-1	7.73-1	2.50	-1 1.32+	0 8.47-1	106
2.75	-1 1.71+0	7.75-1	3.00-	2.38+0	7.91-1	3.25	-1 3.16+	0 7.96-1	100
3.50	-1 3.72+0	7.29-1	3.75-	1 5.00+0	7.80-1	4.00	-1 5.88+	0 7.43-1	
4.25	-1 7.62+0	7.95-1	4.50-	1 8.86+0	7.73-1	4.75	-1 1.10+	1 8.14-1	
5.00	-1 1.28+1	8.12-1							
6.00	-1 2.64+1	9.92-1	8.00-	1 5.66+1	1.01+0	1.00-	+0 9.16+	1 9.79-1	123
1.20-	+0 1.40+2	2 1.03+0	1.40+0) 1.81+2	2 1.01+0	1.60	+0 2.23+	2 9.93-1	
1.80-	+0 2.61+2	9.73-1	2.00+0) 2.93+2	2 9.45-1	2.20	+0 3.73+	2 1.07+0	
2.40-	+0 4.24+2	2 1.10+0	2.60+0) 4.24+2	2 1.00+0	2.80-	+0 4.56+	2 1.00+0	
1.00-	+0 1.16+2	2 1.24+0	1.30+0	0 2.18+2	2 1.39+0	1.90-	+0 3.19+	2 1.10+0	156
2.25-	+0 3.85+2	2 1.07+0	2.55+0) 4.43+2	2 1.07+0	2.80	+0 4.81+	2 1.06+0	
3.00-	+0 5.09+2	2 1.05+0	3.50+0	5.69+2	2 1.04+0	4.00-	+0 6.47+	2 1.08+0	
4.50-	+0 7.01+2	2 1.10+0	5.00+0	0 7.47+2	2 1.11+0				
21	Scandium	1	Fluoresco	ence yie	= 1d = 0.1	188			
6.67	-1 2.37+1	9.44-1	1.00+0	6.83+ 1	9.84-1	1.33	+0 1.29+	2 1.01+0	64
1.67-	+0 2.14+2	2 1.13+0	2.00+	2.68+2	2 1.07+0	2.33	+0 3.17+	2 1.03+0	
2.67-	+0 3.79+2	2 1.05+0	3.00+0) 4.44+2	2 1.09+0	3.33	+0 4.85+	2 1.08+0	
3.67-	+0 5.97+2	2 1.22+0	4.00+0	5.76+2	2 1.10+0	4.33	+0 6.05+	2 1.10+0	
4.67-	+0 6.37+2	2 1.11+0	5.00+0	0 6.69+2	2 1.12+0	5.33	+0 6.81+	2 1.11+0	
5.6/-	+0 6.99+2	2 1.11+0							
8.30	-1 4.20+1	9.43-1	1.58+0	0 1.79+2	2 1.04+0	2.56	+0 3.21+	2 9.30-1	66
3.28-	+0 4.71+2	2 1.06+0							
5.00	-1 9.88+0	9.11-1	5.50-	1 1.32+1	9.13-1	6.00	-1 1.72+	1 9.23-1	98
6.50	-1 2.14+1	9.16-1	7.00-	1 2.62+1	l 9.15-1	7.50	-1 3.13+	1 9.13-1	
8.00	-1 3.72+1	9.19-1	8.50-	1 4.33+1	9.17-1	9.00	-1 4.97+	1 9.17-1	
9.50	-1 5.70+1	9.24-1	1.00+	0 6.56+	9.46-1	1.05	+0 7.33+	1 9.47-1	
1.10-	+0 8.27+3	9.64-1	1.15+	0 8.98+	9.53-1	1.20	+0 9.71+	1 9.43-1	
1.25-	+0 1.06+2	2 9.48-1	1.30+	0 1.15+2	2 9.52-1	1.35	+0 1.22+	2 9.38-1	
1.40	+0 1.32+2	2 9.50-1	1.45+	0 1.40+2	2 9.45-1	1.50	+0 1.48+	2 9.40-1	
1.55	+0 1.5/+2	2 9.40-1	1.60+	0 1.65+2	2 9.34-1	1.05	+U 1.69+	2 9.10-1	
1./0-	TU 1.00+2	2 7.23°1	1 00-1	U I.0942 N 9 1519	2 9.23-1 9 9 94-1	1.00	ŦU 1.99+ ±0 2 26±	2 7.3U-1 2 0 37-1	
2.00-	+0 2.30+2	2 9.22-1	1.904	J 2.1344	2 7.20-1	1.32.	TU 2.20T	2 J.J/=1	
2 00	_1 2 60.1	8 60-1	0 0E	1 5 70.	8 52-1	9 EA	-1 0 70	1 0 44-1	106
2.00	-1 1 2010-1	0.02-1	2.23-	1 3./V 1 1 07.1/	0,55~1	2.30	-1 2./U= _1 2.1E1	L 2.00"1	100
2.75	-1 3 2010 -1 3 2010) 0 /2-1	3.00-	1 4 17.40) 0 71_1	J. 43 / 00	-1 6.13T	0 0.20-1	
4.25	-1 5, 13+0	7.90-1	4.50-	1 6.24+0	8.00-1	4.00	-1 7.33+	0, 7, 92-1	
5.00	-1 9.82+0	9.06-1			I	4.75			

E	σ^{Exper}	σ^{Exper}		σ^{Exper}	σ ^{Exper}	E_	$\sigma^{E_{xper}}$	σ^{Exper}	
		ECPSSR		(ham)	ECPSSR	(M-V)		ECPSSR	 D - 6
(MeV)	(barn)	<i>o²²¹</i> 001	(Mev)	(barn)	σ	(Mev)	(barn)	σ	Ref.
2.00-1	3.76-1	9.00-1	3.00-1	1.82+0	9.22-1	4.00-1	4.98+0	9.35-1	121
5.00-1	9.96+0	9.19-1	6.00-1	1.74+1	9.34-1	7.00-1	2.62+1	9.15-1	
8.00-1	3.53+1	8.72-1	9.00-1	4.81+1	8.88-1				
5.00-1	9.65+0	8.90-1	6.00-1	1.71+1	9.18-1	7.00-1	2.70+1	9.43-1	137
8.00-1	3.91+1	9.66-1	1.00+0	6.73+1	9.70-1	1.20+0	1.01+2	9.81-1	
1.40+0	1.39+2	1.00+0	1.60+0	1.72+2	9.73-1	1.80+0	2.07+2	9.68-1	
2.00+0	2./8+2	1.11+0	2.20+0	2.85+2	9.98-1	2.30+0	3.06+2	1.01+0	
2,40+0	3.14+2	9.83-1	2.50+0	3.2/+2	9./4-1				
22 T	itanium		Fluoresce	nce yie	1d = 0.2	214			
1 60+0	1 70+2	1 23+0	1 8040	2 20+2	1 20+0	2 10±0	2 6012	1 20+0	5
2.30+0	3 30+2	1 33+0	2 70+0	3 0012	1 2810	2.10+0	2.00+2 / / 012	1 2010	J
3,20+0	5.10+2	1.38+0	3.50+0	5.80+2	1 44+0	3 70+0	6 40+2	1 51+0	
3.90+0	6.80+2	1.54+0	5150.0	510012	1.44.0	5.7010	0.4012	1.51/0	
2 30-1	1 10-1	2 72-1	3 25-1	6 70-1	9 67-1	6 20-1	1 2010	2 90 1	7
4.54-1	1.63+0	2.92-1	5.10-1	2.10+0	2.62-1	4.20-1	1.20+0	2.00-1	/
			5120 2						
1.50+0	1.10+2	8.93-1							10
2.00+0	2.21+2	1.10+0	3.00+0	3.69+2	1.07+0	4.00+0	4.90+2	1.08+0	20
5.00+0	5.53+2	1.05+0	6.00+0	6.26+2	1.08+0	7,00+0	6.63+2	1.08+0	
8.00+0	6.95+2	1.10+0	9.00+0	6.97+2	1.08+0	1.00+1	7.17+2	1.10+0	
1.10+1	6.92+2	1.06+0	1.20+1	6.75+2	1.04+0	1.30+1	6.44+2	1.00+0	
1.65+1	6.94+2	1.14+0	2.00+1	6.12+2	1.06+0	2.50+1	5.76+2	1.10+0	
9.00-2	5 65-3	1.07+0	1 10-1	1 88-2	1 15+0	1 30-1	4 54-2	1 10+0	25
1.50-1	9.01-2	1.19+0	1.70-1	1.65-1	1.24+0	1.50 1	4.54~2	1.19+0	23
					1.01.0				
1.00-1	9.00-3	9.27-1	1.25-1	2.60-2	8.25-1	1.50-1	6.40-2	8.46-1	36
1 50+0	1 50±2	1 22+0	2 00+0	2 3012	1 1/10	2 5040	2 2510	1 1710	20
3 00+0	4 40+2	1 28+0	3 50+0	5.00+2	1 24+0	2.30+0	5 8010	1.17 ± 0 1.20 \pm 0	38
4 50+0	6 40+2	1 30+0	5 00+0	$6 10\pm2$	1 1640	4.00+0	5.00TZ	1.2070	
4.5010	0.4012	1.3010	5.0010	0.1072	1.10+0	3.30-0	0.70+2	1.21-0	
7.00-1	6.31+0	3.07-1	9.00-1	1.13+1	2.83-1	1.10+0	2.03+1	3.15-1	44
1.30+0	2.48+1	2.68-1	1.50+0	3.11+1	2.53-1	1.70+0	3.55+1	2.30-1	
1.90+0	4.28+1	2.30-1	2.10+0	4.68+1	2.15-1				
1.00+0	3.70+1	7.16-1	2.25+0	1.85+2	7.70-1	3 00+0	2 92+2	8 49-1	47
1100.0	517011	/ 10 1	2.23.0	1.03.2	,.,o r	5.0010	2.72.2	0.49-1	47
1.50+0	1.30+2	1.06+0	2.00+0	2.15+2	1.07+0	2.50+0	3.12+2	1.13+0	55
3.00+0	3.83+2	1.11+0	4.96+0	5.82+2	1.11+0	5.96+0	6.55+2	1.13+0	
6.96+0	7.08+2	1.16+0	8.94+0	7.48+2	1.16+0	1.09+1	7.62+2	1.17+0	
1.30-1	2.68-2	7.00-1	1.50-1	5.31-2	7.02-1	1.95-1	1.75-1	7.28-1	57
2.50-1	4.74-1	7.21-1	2.95-1	8.15-1	6.60-1	3.30-1	1.26+0	6.78-1	
3.60-1	1.70+0	6.72-1	3.80-1	1.90+0	6.23-1	4.15-1	2.26+0	5.49-1	
			_	-					
4.00-1	4.60+0	1.27+0	5.00-1	9.40+0	1.25+0	6.00-1	1.60+1	1.21+0	69
7.00-1	2.50+1	1.22+0	8.00-1	3.70+1	1.25+0	9.00-1	4.80+1	1.20+0	
1.00+0	6.40+1	1.24+0	1.10+0	8.00+1	1.24+0	1.20+0	9.70+1	1.24+0	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

	oExper	σ ^{Exper}	E ₁	σ^{Exper}	0 ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	oECPSSR	(MeV)	(barn)	$\sigma^{\rm ECPSSR}$	- (MeV)	(barn)	σ ^{ECPSSR}	Ref.
<u> </u>									
1 30+0) 1 13+2	1 22+0	1 40+6	ר 1 33∔2	1 24+0	1 50+0) 1 57+2	1 27+0	
1.60+0	1.1372	1.32+0	1.70+0	1.94+2	1.26+0	1.80+0	2.22+2	1.30+0	
1.90+0	2.38+2	1.28+0	2.00+	0 2.59+2	1.28+0	2.10+0	2.74+2	1.26+0	
2.20+0	3.03+2	1.30+0	2.30+0	0 3.20+2	1.29+0				
6.00-1	1.30+1	9.86-1	7.00-3	1 2.10+1	1.02+0	8.00-3	L 3.20+1	1.08+0	72
9.00-1	l 4.50+1	1.13+0	1.00+0	0 6.10+1	1.18+0	1.50+0) 1.40+2	1.14+0	
2.00+0) 2.10+2	1.04+0	2.50+0	0 3.10+2	1.12+0	3.00+0	0 4.00+2	1.16+0	
1.50-1	L 8.30-2	1.10+0	2.00-	1 2.98-1	1.11+0	2.50-	1 6.20-1	9.43-1	73
3.00-1	L 1.24+0	9.44-1	3.50-	1 2.00+0	8.74-1	4.00-	1 2.80+0	7.70-1	
4.50-1	L 3.80+0	7.06-1	5.50-	1 6.60+0	6.51-1	6.50-	1 1.09+1	6.54-1	
1.05+0	1.83+1 4.14+1	7.36-1 7.14-1	8.50-	1 2.63+1	7.62-1	9.50-	1 3.68+1	8.05-1	
1 00+() 5 /5-1	1 06±0	1 104	0 6 8311	1 06+0	1 2010	ר <u>פ</u> 2711	1 07+0	77
1.30+0	1.02+2	1.00+0 1.10+0	1.40+	$0 \ 0.0511$ 0 1.18+2	1.10+0	1.50+0	1.36+2	1.07+0 1.10+0	11
1.60+0	0 1.55+2	1.12+0	1.70+	0 1.74+2	1.13+0	1.80+	0 1.93+2	1.13+0	
1.90+0	2.08+2	1.12+0	2.00+	0 2.30+2	1.14+0	2.10+	0 2.50+2	1.15+0	
2.20+0	0 2.67+2	1.15+0	2.30+	0 2.85+2	1.15+0	2.40+0	3.00+2	1.14+0	
2.50+0	3.18+2	1.15+0	2.60+	0 3.31+2	1.14+0	2.70+0	3.46+2	1.13+0	
2.80+0	3.59+2	1.13+0	2.90+	0 3.72+2	1.12+0	3.00+0	3.85+2	1.12+0	
1.00-3	1 7.45-3	7.67-1	1.10-	1 1.45-2	8.89-1	1.20-	1 2.64-2	1.03+0	79
1.30-1	1 4.58-2	1.20+0	1.40-	1 7.63-2	1.39+0	1.50-	1 1.23-1	1.63+0	
1.00+0	3.70+1	7.16-1	2.00+	0 1.54+2	7.63-1	5.00+	5.20+2	9.86-1	84
3.00+0	3.70+2	1.08+0							94
5 00-	1 6 65+0	8 82-1	5 50-	1 9 80+0	9 66-1	6 00-	1 1 32+1	1 00+0	98
6.50-3	1 1.63+1	9.79-1	7.00-	1 1.99+1	9.68-1	7.50-	1 2.32+1	9.33-1	20
8.00-	1 2.82+1	9.55-1	8.50-	1 3.30+1	9.57-1	9.00-	1 3.78+1	9.46-1	
9.50-3	1 4.41+1	9.65-1	1.00+	0 4.89+1	9.47-1	1.05+	0 5.43+1	9.36-1	
1.10+0	0 6.11+1	9.47-1	1.15+	0 6.77+1	9.50-1	1.20+	0 7.34+1	9.37-1	
1.25+0	0 8.06+1	9.44-1	1.30+	0 8.97+1	9.68-1	1.35+	0 9.61+1	9.59-1	
1.40+0	0 1.05+2	9.75-1	1.45+	0 1.12+2	9.71-1	1.50+	0 1.18+2	9.58-1	
1.55+0	0 1.27+2	9.72-1	1.60+	0 1.34+2	9.69-1	1.65+	0 1.41+2	9.65-1	
1.70+0	0 1.49+2	9.66-1	1.75+	0 1.55+2	9.54-1	1.80+	0 1.61+2	9.45-1	
1.85+0	0 1.72+2	9.66-1	1.90+	0 1.78+2	9.58-1	1.95+	0 1.90+2	9.81-1	
2.00+0	0 1.96+2	9.71-1							
3.80-2	2 4.00-6	1.11+0	4.00-	2 1.00-5	1.49+0	4.50-	2 2.50-5	1.02+0	101
5.00-2	2 6.00-5	8.64-1	5.50-	2 1.40-4	8.60-1	6.00-	2 3.00-4	9.00-1	
7.00-2	2 1.00-3	9.50-1							
4.00+	0 4.80+2	1.06+0	6.00+	0 6.81+2	1.18+0	8.00+	0 7.16+2	1.13+0	105
1.00+	1 7.56+2	1.16+0	1.20+	1 7.40+2	1.14+0	1.40+	1 7.16+2	1.13+0	
1.60+ 2.20+	1 6.70+2 1 5.65+2	1.09+0 1.02+0	1.80+	1 6.13+2	1.03+0	2.00+	1 5.93+2	1.03+0	
2.00-	1 2.70-1	1.01+0	2.25-	1 3.90-1	9.00-1	2.50-	1 6.20-1	9.43-1	106
2.75-	1 8.20-1	8.65-1	3.00-	1 1.32+0	1.01+0	3.25-	1 1.43+0	8.13-1	

.

<i>E</i> ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	0 ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	a ^{ECPSSR}		(barn)	a ^{ECPSSR}	(MeV)	(barn)	o ECPSSR	 Ref
	(bain)		(1110)	(00111)			(ourn)		
3.50-1	2.01+0	8.78-1	3.75-1	2.48+0	8.51-1	4.00-1	3.17+0	8.72-1	
4.25-1	3.63+0	8.15-1	4.50-1	4.56+0	8.48-1	4./5-1	5.57+0	8.69-1	
5.00-1	6.64+0	8.80-1							
6.00-2	2.09-4	6.27-1	7.00-2	6.16-4	5.85-1	8.00-2	1.57-3	6.08-1	108
9.00-2	3.57-3	6.75-1	1.00-1	7.45-3	7.67-1	1.10-1	1.45-2	8.89-1	
1.20-1	2.64-2	1.03+0	1.30-1	4.58-2	1.20+0	1.40-1	7.63-2	1.39+0	
1.50-1	1.23-1	1.63+0							
1.00+0	5.28+1	1.02+0	1.25+0	8.53+1	9.99~1	1.50+0	1.30+2	1.06+0	112
1.75+0	1.00+2	1.03+0	2.00+0	2.11+2	1.03+0	2.25+0	2.48+2	1.03+0	
2.50+0	2.88+2	1.04+0	2.75+0	3.33+2	1.0/+0	3.00+0	3./1+2	1.08+0	
2.00-1	2.74-1	1.02+0	3.00-1	1.48+0	1.13+0	4.00-1	3.99+0	1.10+0	113
5.00-1	8.00+0	1.06+0	6.00-1	1.32+1	1.00+0	8.00-1	3.00+1	1.02+0	
1.00+0	5.15+1	9.97-1	1.20+0	8.12+1	1.04+0	1.60+0	1.43+2	1.03+0	
2.00+0	2.15+2	1.07+0	2.40+0	2.72+2	1.04+0				
1.00-1	3.//-3	3.88-1	1.25-1	1.56-2	4.95-1	1.50-1	4.34-2	5.73-1	118
1.75-1	9.50-2	6.29-1	2.00-1	1.7/-1	6.61-1	3.00-1	9.57-1	7.29-1	
4.00-1	2.89+0	7.95-1	5.00-1	6.08+0	8.06-1	6.00-1	1.08+1	8.19-1	
7.00-1	1.70+1	8.27-1	8.00-1	2.50+1	8.47-1				
3.00-1	1.20+0	9.14-1	4.00-1	3.37+0	9.27-1	5.00-1	7.10+0	9.41-1	132
6.00-1	1.26+1	9.55-1	7.00-1	1.90+1	9.24-1	8.00-1	2.87+1	9.72-1	10
1.00+0	4.88+1	9.45-1	1.20+0	7.67+1	9.79-1	1.40+0	1.08+2	1.00+0	
1.60+0	1.38+2	9.98-1	1.80+0) 1.73+2	1.02+0	2.00+0	2.08+2	1.03+0	
2.20+0	2.36+2	1.02+0	2.40+0	2.69+2	1.02+0				
5.00-1	6.88+0	9.12-1	6.00-1	1.24+1	9.40-1	7.00-1	1.94+1	9.44-1	137
8.00-1	2.80+1	9.49-1	1.00+0) 4.88+1	9.45-1	1.20+0	7.29+1	9.31-1	
1.40+0	1.02+2	9.47-1	1.60+0	1.32+2	9.54-1	1.80+0	1.65+2	9.69-1	
2.00+0	1.97+2	9.76-1	2.20+0	2.26+2	9.72-1	2.30+0	2.50+2	1.01+0	
2.40+0	2.61+2	9.95-1	2.50+0	2.76+2	9.97-1				
1 50+0	8 95+1	7 27-1	2 10+0) 2 13+2	9 80-1	2 60+0	2 8542	9 78-1	1/8
3.10+0	3.64+2	1.02+0	3.60+0) 4.40+2	1.07+0	2.0010	2.0372	9.70-1	140
1.00+0	4.94+1	9.57-1							149
23 V	anadium		Fluoresce	ence yie	1d = 0.24	+3			
1.00-1	5,50-3	9,90-1	1.25-1	1.70-2	8.93-1	1.50-1	4.30-2	9,10-1	36
						1.00 1		<i>y</i> .10 1	50
2.25+0	1.43+2	7.27-1							47
4.00-1	3.00+0	1.19+0	5.00-1	6.30+0	1.19+0	6.00-1	1,60+1	1.70+0	69
7.00-1	1.73+1	1.16+0	8.00-1	2.60+1	1.20+0	9.00-1	3.50+1	1.18+0	
1.00+0	4.50+1	1.16+0	1.10+0	5.80+1	1.19+0	1.20+0	7,00+1	1.17+0	
1.30+0	8.70+1	1.22+0	1.40+0) 1.00+2	1.19+0	1.50+0	1.18+2	1.22+0	
1.60+0	1.34+2	1.22+0	1.70+0	1.47+2	1.20+0	1.80+0	1.69+2	1.25+0	
1.90+0	1.81+2	1.21+0	2.00+0) 1.97+2	1.21+0	2.10+0	2.13+2	1.21+0	
2.20+0	2.19+2	1.15+0	2.30+0) 2.44+2	1.20+0				

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}-Continued

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}--Continued

$\overline{E_1}$	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	E	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	 (MeV)	(barn)	o ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
1.50-	1 5.80-2	1.23+0	2.00-1	1.65-1	9.51-1	2.50-1	4.30-1	9.84-1	73
3.00-	1 8.80-1	9.93-1	3.50-1	1.20+0	7.66-1	4.00-1	2.30+0	9.14-1	
4.50-3	1 3.00+0	7.98-1	5.50-1	5.00+0	6.94-1	6.50-1	L 8.80+0	7.33-1	
7.50-	1 1.60+1	8.81-1	8.50-1	1.78+1	6.96-1	9.50-1	2.55+1	7.49-1	
9.50-3	1 2.27+1	6.66-1							76
1.00+0	0 3.52+1	9.07-1	1.10+0	4.38+1	8.96-1	1.30+0	6.63+1	9.27-1	86
1.50+0	0 8.60+1	8.92-1	1.70+0) 1.11+2	9.06-1	1.90+0) 1.37+2	9.17-1	
2.00+	0 1.51+2	9.26-1	2.10+0	1.64+2	9.30-1	2.30+0) 1.90+2	9.35-1	
2.50+	0 2.14+2	9.34-1	2.70+0	2.35+2	9.24-1	2.80+0	2.45+2	9.19-1	
2.90+	0 2.53+2	9.08-1	3.00+0	2.63+2	9.06-1				
5.00-	1 4.80+0	9.03-1	5.50-1	6.92+0	9.60-1	6.00-1	L 8.75+0	9.28-1	98
6.50-	1 1.13+1	9.41-1	7.00-1	1.40+1	9.39-1	7.50-3	l 1.66+1	9.15-1	
8.00-	1 2.06+1	9.49-1	8.50-1	2.52+1	9.85-1	9.00-2	1 2.92+1	9.85-1	
9.50-	1 3.39+1	9.95-1	1.00+0	3.84+1	9.89-1	1.05+0	4.29+1	9.80-1	
1.10+	0 4.72+1	9.66-1	1,15+0	5.43+1	1.00+0	1.20+0	5.91+1	9.87-1	
1 25+	0 6 57+1	1 00+0	1 30+0	7 17+1	1 00+0	1 35+0	7 79+1	1 00+0	
1 40+	$0 \ 0.371$	9 98-1	1 45+0) 9 05+1	1 01+0	1 50+0	9 48+1	9 83-1	
1 554	$0 \ 0.0511$	1 0210	1 60+0	$1 10 \pm 2$	1 01+0	1.501	$1 1 16 \pm 2$	9.05 1	
1 701	0 1.0372	1 0010	1 75+0	1 1 2012	0 02-1	1 2010) 1.10 ¹ 2	9.99-1	
1.70	0 1.2372		1.75+0) 1.2072) 1 /510	9.92-1	1.00+0	1.3472	9.00-1	
1.00+	0 1.40+2	9.02-1	1.90+0	1.43+2	9.70-1	1.95+0	J 1.30+2	9.9/-1	
2.00+	0 1.50+2	9.57-1							
2.00-	1 1.45-1	8.36-1	2.25-1	2.42-1	8.49-1	2.50-	1 3.61-1	8.26-1	106
2.75-	1 4.71-1	7.41-1	3.00-1	7.80-1	8.80-1	3.25-	1 1.09+0	9.11-1	
3.50-	1 1.42+0	9.06-1	3.75-1	1.90+0	9.48-1	4.00-	1 2.23+0	8.86-1	
4 25-	1 2 82+0	9 11-1	4.50-1	3 31+0	8.81-1	4.75-	1 4 30+0	9.57-1	
5.00-	1 5.17+0	9.73-1							
5.00-	1 5.63+0	1.06+0	6.00-	1.10+1	1.17+0	8.00-	1 2.04+1	9.40-1	113
1 00+	0 4 00+1	1 03+0	1 20+() 5 75+1	9 60-1	1 60+0	1,10+2	1 01+0	110
2 00+	0 4.0011	9 45-1	2 40+0) 2 21+2	1 02+0	1.001		1.01.0	
2.00	0 1.54.2	J.4J I	2.40.0		1.02.0				
1.00+	0 4.13+1	1.06+0	1.20+0	0 6.20+1	1.04+0	1.40+0	0 8.40+1	1.00+0	137
1.60+	0 1.09+2	9.96-1	1.80+0) 1.35+2	9.95-1	2.00+0	0 1.71+2	1.05+0	
2.20+	0 1.89+2	9.95-1							
24	Chromium		Fluoresco	ence yie	1d = 0.27	75			
1.00-	1 2.80-3	8.78-1	1.25-3	1 1.00-2	8.65-1	1.50-	1 2.70-2	9.08-1	36
5.00-	1 4.90+0	1.29+0	6.00-3	l 8.70+0	1.28+0	7.00-	1 1.37+1	1.26+0	69
8.00-	1 2.09+1	1.30+0	9.00-3	l 2.70+1	1.21+0	1.00+	0 3.60+1	1.23+0	
1.10+	0 4.70+1	1.26+0	1.20+0	5.50+1	1.20+0	1.30+	0 6.80+1	1.23+0	
1.40+	0 8.20+1	1.26+0	1.50+0	9.40+1	1.24+0	1.60+	0 1.08+2	1.25+0	
1.70+	0 1.24+2	1.27+0	1.80+0) 1.35+2	1.24+0	1.90+	0 1.49+2	1.24+0	
2.00+	0 1.67+2	1.27+0	2.10+0	0 1.77+2	1.23+0	2.20+	0 1.98+2	1.28+0	
2.00-	1 6.80-2	5.97-1	2.50-	1 2.10-1	7.15-1	3.00-	1 4.10-1	6.77-1	73
3.50-	1 7.80-1	7.19-1	4.00-	1 1.13+0	6.42-1	4.50-	1 1.62+0	6.10-1	
5.50-	1 2.80+0	5.41-1	6.50-	1 4.90+0	5.61-1	7.50-	1 8.20+0	6.14-1	
8.50-	1 1.16+1	6.09-1	9.50-	1 1.80+1	7.00-1	1.05+	0 2.15+1	6.48-1	

J. Phys. Chem. Ref. Data, Vol. 18, No. 1, 1989

<i>E</i> ₁	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	E	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	0 ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
9.50-	·1 1.73+	1 6.73-1							76
1 00-	1 2 60-	3 1 1310	1 10.	-1 6 20-	3 1 10+0	1 20	-1 1 07-1	0 1 16 ∔ 0	79
1.30	-1 1.80-2	2 1.26+0	1.40	-1 2.80-	2 1.33+0	1.50	-1 4.00-2	2 1.35+0	15
9.00	-1 1.55+	1 6.96-1	9.50	-1 1.73+	-1 6.73 - 1	1.00	+0 2.50+:	1 8.54-1	80
1.10-	+0 2.73+	1 7.31-1	1.20-	H0 3.60H	1 7.83-1	1.30	+0 4.17+	1 7.52-1	
1.40-	+0 5.13+	1 7.85-1	1.60	+0 6.064	1 7.00-1	1.70	+0 7.19+3	1 7.36-1	
1.80-	⊦0 8.46+	1 7.75-1	1.90	+0 8.184	-1 6.80-1	2.00	+0 8.60+	1 6.53-1	
2.10-	+0 1.20+	2 8.35-1	2.20	+0 1.134	2 7.28-1	2.30	+0 1.28+	2 7.68-1	
2.40-	+0 1.37+	2 7.68-1	2.50	+0 1.714	2 9.00-1	2.60	+0 1.54+2	2 7.66-1	
2.70-	+0 1.68+	2 7.91-1	2.80	+0 1.694	2 7.56-1	3.00	+0 2.07+	2 8.46-1	
3.40-	+0 2.50+	2 8.76-1	3.60	+0 2.654	2 8.71-1	3.80	+0 2.79+	2 8.65-1	
4.00-	+0 3.53+	2 1.04+0							
3 00-	FU 2 81+	2 1 15+0	5.00	+0 4 864	-2 1.18+0	7.00	+0 6 19+	2 1 22+0	94
9.00	+0 6.63+	2 1.20+0	1.10	+1 6.78-	2 1.19+0				21
5.00	-1 3.52+	0 9.30-1	5.50	-1 4.844	+0 9.36-1	6.00	-1 6.57+	0 9.64-1	98
6.50	-1 8.19+	0 9.38-1	7.00	-1 1.02-	1 9.35-1	7.50	-1 1.24+	1 9.28-1	
8.00	-1 1.49+	1 9.27-1	8.50	-1 1.79	1 9.40-1	9.00	-1 2.07+	1 9.30-1	
9.50	-1 2.38+	1 9.26-1	1.00	+0 2.80	1 9.56-1	1.05	+0 3.13+	1 9.44-1	
1 10	+0 3 60+	1 9 65-1	1 15	+0 3 87-	+1 9.31-1	1 20	+0 4 40+	1 9 57-1	
1 25.	+0 4 92+	1 9.72-1	1.30	+0 5.29+	+1 9.53-1	1.35	+0 5.77+	1 9.57-1	
1 40-	+0 6 31+	1 9 66-1	1 45	+0 6 74-	1 9 55-1	1 50	+0 7 26+	1 9 58-1	
1 55.	+0 7 82+	1 9 64-1	1 60	+0 8 49-	1 9 81-1	1 65	+0 8 93+	1 9 69-1	
1.55	10 7.021	1 0 60-1	1 75	+0 1 00-	12 0.01 1	1 80	± 0 1 06 \pm	2 0 71 - 1	
1 95	$10 \ 3.401$	$1 9.09^{-1}$	1 00	10 1.00	$12 9.00^{-1}$	1.00	+0 1.001	$2 9.71^{-1}$	
1.00	TU 1.13T	$2 9.00^{-1}$	1.90	1.1/7	FZ 9.75-1	1.95	TU 1.22T	2 9.09-1	
2.00	TU 1.20T	2 9.72-1							
2.00	-1 1.07-	1 9.39-1	2.25	-1 1.69	-1 8.93-1	2.50	-1 2.77-	1 9.44-1	106
2.75	-1 4.05-	1 9.39-1	3.00	-1 5.80	-1 9.57-1	3.25	-1 7.80-	1 9.48-1	
3.50	-1 1.02+	0 9.40-1	3.75	-1 1.31	FO 9.38-1	4.00	-1 1.68+	0 9.55-1	
4.25	-1 2.02+	0 9.28-1	4.50	-1 2.47-	₩0 9.31-1	4.75	-1 2.98+	0 9.34-1	
5.00	-1 3.66+	0 9.66-1							
7.00 [.]	+0 3.80+	2 7.51-1							114
7.00 [.]	+0 3.95+	2 7.81-1							125
a	-1 6 97-	1 1 05+0	4 00	_1 1 71_	LO 0 70-1	5 00	-1 2 044	0 1 00+0 -	190
2.00	-1 6 077 -1 6 071	1 1.03TO	7 00	_1 1 0F	L1 0 67-1	5.00 2.00	-1 1 COT	1 0 20-1	132
1 00	-1 0.9/ 1 10 2 051	1 0 72 1	1 20	-T T'AD.	FI 7.02"1	0.00	-T T'2A4	1 0 75 1	
1.00	TU 2.03+ 10 0 //1	1 0 77 1	1.20	TU 4.40 10 1 00	T1 3./4-1	1.40	TU 0.3/+	2 0 4/ 1	
1.60	TU 0.40†	2 0 70 1	1.00	TU 1.09	FZ 9.99-1	2.00	TU 1.2/+	2 9.04-1	
2.20	TU 1.52+	2 9./9-1	2.40	TU 1./8	rz y.yð-1				
8.00	-1 1.50+	1 9.33-1	1.00	+0 2.76-	+1 9.42-1	1.20	+0 4.31+	1 9.37-1	137
1.40	+0 6.18+	1 9.46-1	1.60	+0 8.29	+1 9.57-1	1.80	+0 1.08+	2 9.90-1	
2.00	+0 1.29+	2 9.79-1	2.20	+0 1.48-	+2 9.53-1	2.30	+0 1.61+	2 9.66-1	
2.40	+0 1.72+	2 9.64-1	2.50	+0 1.79-	+2 9.42-1				

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}-Continued

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E ₁	σ^{Exper}	0 ^{Exper}	E ₁	σ ^{Exper}	σ^{Exper}	E ₁	$\sigma^{E_{xper}}$	σ^{Exper}	
(MeV)	(barn)	oECPSSR	(MeV)	(barn)	σ^{ECPSSR}	– (MeV)	(barn)	σ^{ECPSSR}	Ref.
							<u> </u>		
1.00+0	2.83+1	9.66-1	1.10+0	3.79+1	1.02+0	1.2	0+0 4.90+1	1.07+0	152
1.30+0	5.74+1	1.03+0	1.40+0) 7 27+1	1.11+0	1 5	0+0 8 83+1	1 16+0	102
1.60+0	9 93+1	1.15+0	1 70+0	1 18+2	1 21+0	1 8	0+0 1 $0+2$	1 28+0	
1 90+0	1 64+2	1 36+0	2 00+0	1.10.2	1 38+0	2 1	0+0 1.4012	1.2010	
2 20+0	2 17+2	1 40+0	2.0010) 2 6112	1 4510	2.1	0+0 2.09+2 0+0 2 70+2	1 5110	
2.2010	3 0317	1 5010	2.5010) 2.4172	1 44	2.4	0+0 2.70+2	1.51+0	
2.30+0	2 0010	1.3970	2.60+0)) 3.34+2	1.00+0	2.7	0+0 3.5/+2	1.68+0	
2.0070	J.0272	1./1+0	2.90+0	J 4.30+2	1.84+0	3.0	0+0 4.53+2	1.85+0	
25 M	anganese	e	Fluoresce	ence yie	1d = 0.3	808			
1.00-1	1.10-3	6.02-1	1.25-1	L 4.30-3	6.13-1	1.5	0-1 1.30-2	6.94-1	36
2.50+0	1.56+2	9.99-1	3.00+0	2.26+2	1.10+0	4.5	0+0 3.56+2	1.08+0	52
6.00+0	4.46+2	1.07+0	6.50+0) 4.37+2	9.98-1	7.0	0+0 5.19+2	1.14+0	52
8.00+0	5.28+2	1.09+0	8.50+0) 5.97+2	1.20+0	9.0	0+0 5.68+2	1.12+0	
1.00+1	5.47+2	1.05+0	1.05+1	5.64+2	1.07+0	1 1	0+1 6 10+2	1 16+0	
1.20+1	6.56+2	1.22+0	1.00.1		1.07.0	7.1	0.1 0.19.2	1.10.0	
1,20,1	0.50.2	1.22.0							
1.30-1	8.20-3	9.39-1	1.50-1	1.23-2	6.57-1	1.9	5-1 5.39-2	8.07-1	57
2.50-1	1.65-1	8.33-1	3.00-1	2.70-1	6.49-1	33	0-1 3 64-1	6 04-1	57
3.60-1	5.13-1	6.12-1	3.85-1	7.02-1	6.53-1	4 1	5-1 8 15-1	5 77-1	
			0,000		0,00 1	4.1	5 1 0.15 1	<i>J.II</i>	
4.00-1	1.55+0	1.25+0	5.00-1	L 3.20+0	1.18+0	6.0	0-1 5.70+0	1.15+0	69
7.00-1	9.30+0	1.16+0	8.00-1	1.45+1	1.22+0	9.0	0-1 1.98+1	1.19+0	
1.00+0	2.60+1	1.17+0	1.10+0	3.40+1	1.20+0	1.2	0+0 4.10+1	1.16+0	
1.30+0	5.10+1	1.19+0	1.40+0	6.00+1	1.18+0	1.5	0+0 6.90+1	1.16+0	
1.60+0	8.20+1	1.20+0	1.70+0	9,30+1	1.20+0	1 8	0+0 1 06+2	1 22+0	
1.90+0	1.19+2	1.23+0	2.00+0) 1.33+2	1.25+0	2 1	0+0 1 40+2	1 21+0	
2.20+0	1.59+2	1.26+0	2.30+0	1.71+2	1.25+0	2.1		1.21.0	
3.00+0	2.18+2	1.06+0							94
5 00-1	.2 6/1+0	9 76-1	5 50-1	3 6440	0 78-1	6 0	0-1 6 7240	0 56-1	0.8
6 50-1	6 1210	0 42-1	7 00-1		9.70-1 0.20-1	7 5	$0 - 1 \ 4.72 + 0$	9.30-1	90
8 00-1	1 1111	9.02^{-1}	7.00-1 8 50-1	L 7.44TU L 1 2911	9.30-1	7.5	$0 = 1 \ 9 \ 14 = 0$	9.20-1	
0.00-1	1.1171	9.52-1	0.50-1	1.32+1	9.31-1	9.0		9.31-1	
9.50-1	1.01+1	9.3/-1	1.00+0	2.10+1	9.4/-1	1.0	5+0 2.38+1	9.45-1	
1.10+0	2.68+1	9.45-1	1.15+0	3.00+1	9.45-1	1.2	0+0 3.35+1	9.48-1	
1.25+0	3./3+1	9.01-1	1.30+0	9 4.03+1	9.42-1	1.3	5+0 4.43+1	9.47-1	
1.40+0	4.83+1	9.48-1	1.45+0	5.3/+1	9.75-1	1.5	0+0 5.62+1	9.47-1	
1.55+0	6.12+1	9.60-1	1.60+0	0 6.58+1	9.62-1	1.6	5+0 7.04+1	9.67-1	
1.70+0	7.29+1	9.41-1	1.75+0) 7.93+1	9.65-1	1.8	0+0 8.29+1	9.53-1	
1.85+0	8.69+1	9.47-1	1.90+0) 9.13+1	9.45-1	1.9	5+0 9.92+1	9.77-1	
2.00+0	1.03+2	9.68-1							
2.00-1	4.80-2	6.40-1	2.25-1	8.90-2	7.05-1	2.5	0-1 1.55-1	7.82-1	106
2.75-1	2.21-1	7.53-1	3.00-1	3.45-1	8.29-1	3.2	5-1 4 60-1	8.09-1	100
3 50-1	6 60-1	8 75-1	3 75-1	8 50-1	8 71-1	<u>۲</u>	0 = 1 + 1 + 1 + 1 + 0	8 08-1	
6 25-1	1 / 3TU	0.7J-1	6 50-1	L 0.JU-I	0.71-1	4.0	5 I I.IITU	0.70"1 0 /7_1	
5 00.1	2 4010	9.30-1 0 41 1	4.50-1	1.1340	9.20-1	4./	2-1 2.13 1 0	9.4/=1	
5.00-1	2.00+0	9.01-1							
5 00-1	2 37∔0	8 76-1	6 00-1	6 2440	8 59-1	<u>م</u>	0-1 1 08+1	9 07-1	113
1.00+0	2.37.0	9 83-1	1 2010	L →.2470] 3 5941	9 94-1	1 4	0+0 6 63+1	9 70-1	113
2 0010	1 0210	J.UJ-1	2.2040) 1 EUTJ	1 00TU	1.0	0.0371	9.70-I	
2.0070	1.0372	2.00-1	2.40+(, T.23477	1.0340				

E,	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	$\sigma^{E_{xper}}$	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	- (MeV)	(barn)	σ^{ECPSSR}	Ref.
26	Iron	a soli and a	Fluoresc	ence vi	e1d = 0.36	4			
20	11011		11001050	chec yi	010	•			
1.55+	0 4.40+1	8.82-1	3.90+	0 2.70+	2 1.12+0				2
1.40-	1 7.40-3	9.16-1	1.50-	1 1.10-	2 9.37-1	1.60-	1 1.40-2	8.49-1	6
1.80-	1 2.50-2	8.39-1	2.00-	1 4.00-	2 8.12-1	2.20-	1 5.80-2	7.60-1	
2.40-	1 8.30-2	7.41-1	2.60-	1 1.10-	-1 6.97 - 1	2.80-	1 1.50-1	6.96-1	
3.00-	1 2.00 - 1	7.01-1 4 EQ 1	5.20-	1 2.30-	$1 6.70^{-1}$	5.40-	1 0.00-1	6.40-1	
7 60-	1 2 60-1	5.30^{-1}	4.00-	1 6 901	-1 0.30 - 1	4.40-	1 0.00 - 1	5.30-1	
1.20+	0 1.40+1	5.20-1	1.30+	10.804	-1 5.16-1	1.04+0	0 1.10+1	5.92-1	
4.54-	1 5.53-1	4.02-1							7
1 501									,
1.50+	∙U 3.80+1	ð.21 - 1							10
7.00-	1 2.96+0	5.05-1	9.00-	1 6.214	-0 5.00-1	1.10+	0 1.13+1	5.24-1	27
1.30+	0 1.59+1	4.82-1	1.50+	0 2.224	-1 4.80-1	1.70+	0 2.61+1	4.28-1	
1.90+	0 3.31+1	4.30-1	2.10+	0 4.194	-1 4.48-1	2.30+	0 4.92+1	4.47-1	
2.50+	0 6.42+1	5.03-1							
1.60+	2 2.29+2	1.51+0							30
1.00-	1 1.20-3	1.17+0	1.25-	1 4.90-	3 1.16+0	1.50-	1 1.20-2	1.02+0	36
1.00+	0 1.40+1	8.39-1	1.50 +	0 4.404	-1 9.51 - 1	2.00+	0 8.10+1	9.52-1	38
2.50+	0 1.20+2	9.40-1	3.00+	0 1.854	2 1.09+0	3.50+	0 2.20+2	1.04+0	
4.00+	0 2.50+2	1.00+0	4.50+	0 2.804	2 9.88-1	5.00+	0 3.10+2	9.86-1	
5.50+	0 3.30+2	9.65-1							
1.00+	0 1.10+1	6.59-1	2.25+	0 7.404	-1 6.98-1	3.00+	0 1.25+2	7.33 - 1	47
2.50+	0 1.19+2	9.32-1	3.00+	0 1.774	2 1.04+0	4.00+	0 2.68+2	1.08+0	52
4.50+	0 2.75+2	9.70-1	5.00+	0 3.124	2 9.93-1	6.00+	0 4.05+2	1.11+0	
6.50+	0 3.86+2	9.95-1	7.00+	0 4.29+	+2 1.05+0	8.00+	0 4.49+2	1.03+0	
8.50+	0 4.91+2	1.09+0	9.00+	0 5.00+	2 1.09+0	1.00+	1 4.90+2	1.03+0	
1.05+	1 4.86+2	1.01+0	1.10+	1 4.994	2 1.02+0	1.20+	1 4.94+2	9.92-1	
5.00-	1 1.40+0	7.25-1	6.00-	1 4.404	-0 1.23+0	7.00-	1 7.20+0	1.23+0	53
8.00-	1 9.50+0	1.08+0	9.00-	1 1.424	1.14+0	1.00+	0 1.69+1	1.01+0	
1.10+	0 2.40+1	1.11+0	1.20+	0 2.964	-1 1.10+0	1.30+	0 3.44+1	1.04+0	
1.40+	0 3.92+1	9.96-1	1.50+	0 5.024	-1 1.08+0	1.60+	0 5.69+1	1.06+0	
1.70+	0 6.57+1	1.08+0	1.80+	0 6.924	-1 1.01+0	1.90+	0 7.27+1	9.45-1	
2.00+	0 7.65+1	8.99-1							
1.50+	-0 4.66+1	1.01+0	2.00+	0 8.684	+1 1.02+0	2.50+	0 1.32+2	1.03+0	55
3.00+	0 1.75+2	1.03+0	4.97+	0 3.24	2 1.04+0	5.96+	0 3.88+2	1.06+0	
6.94+	0 4.39+2	1.09+0	6.96+	0 4.32-	+2 1.07+0	8.94+	0 4.95+2	1.08+0	
1.09+	1 5.29+2	1.08+0							
1.30-	1 8.00-3	1.51+0	1.50-	1 1.56-	2 1.33+0	1.95-	1 4.45-2	1.02+0	57
2.55-	1 2 44 1	7.70-1	3.00-	1 1.86-	·1 6.51-1	3.30-	1 2.76-1	0.01-1 5 00 1	
3.60-	1 3.46-1	5.92-1	3.90-	1 4.22	1 3.34-1	4.15-	1 2.20-1	5.28-1	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

$E_1 \sigma^{\text{Exper}}$	σ ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ ^{Exper}	σ^{Exper}	<u></u>
(MeV) (barn)	$\sigma^{ m ECPSSR}$	(MeV)	(barn)	σ^{ECPSSR}	- (MeV)	(barn)	σ^{ECPSSR}	 Ref.
· · · · · · · · · · · · · · · · · · ·								
8 30-1 8 10+	0 8 25-1	1 584	-0 5 90+1	1 13+0	2 56+	0 1 34+2	1 01+0	66
3.28+0 2.27+	·2 1.17+0	1.501	0 5.5011	. 1.15.0	2.501	0 1.5412	1.01.0	00
4.00-1 1.24+	0 1.43+0	5.00 -	1 2.30+0	1.19+0	6.00-	1 4.20+0	1.17+0	69
7.00-1 6.70+	0 1.14+0	8.00-	1 1.05+1	1.19+0	9.00-	1 1.39+1	1.12+0	
1.00+0 1.87+	1 1.12+0	1.10+	0 2.50+1	1.16+0	1.20+	0 3.10+1	1.15+0	
1.30+0 3.90+	-1 1.18+0	1.40+	-0 4.70+1		1.50+	0 5.40+1	1.17+0	
1 00+0 0.10+	-1 1.14+0	2 004	-0 7.00+1 .0 0 00+1	1.13+0	2 104	$0 \ 0.20 \pm 1$ 0 1 11 \pm 2	1.19+0	
2.20+0 1.20+	-2 1.18+0	2.004	-0 9.90+1	2 1.16+0	2.104	0 1.11+2	1.1940	
2.00-1 2.80-	2 5.68-1	2.50-	1 9.40-2	2 7.04-1	3.00-	1 1.90-1	6.65-1	73 [.]
3.50-1 3.50-	1 6.67-1	4.00-	1 5.40-1	6.22-1	4.50-	1 8.90-1	6.67-1	
5.50-1 1.884	-0 7.02-1	6.50-	1 3.26+0) 7.04-1	7.50-	1 5.50+0	7.59-1	
8.50-1 8.804	-0 8.35-1	9.50-	$\cdot 1 \ 1.35 + 1$	9.32-1	1.05+	0 1.40+1	7.34-1	
9 50-1 9 304	-0 6 42-1							76
9.30°T 9.30	0 0.42 1							70
1.00-1 4.73-	4 4.61-1	1.10-	-1 9.95-4	5.14-1	1.20-	1 1.96-3	5.93-1	79
1.30-1 3.66-	-3 6.89-1	1.40-	-1 6.50-3	8.05-1	1.50-	1 1.11-2	9.45-1	
1.00+0 1.264	+1 7.55-1	2.001	6.37 +1	l 7.48-1	5.00+	0 2.37+2	7.54-1	84
1 0010 1 401	1 0 02-1	1 204	0 0 221.	1 0 61-1	1 504	0 2 0011	0 / 2 1	94
1.00+0 $1.49+1 80+0 5 92+$	F1 8.93-1	2 004	FU Z.32+. FN 7 39+'	1 8 68-1	2 30+	0 3.90 1 1	0.43-1 8 81-1	00
2.50+0 1.12	2 8.78-1	2.804	+0 1.29+2	2 8.42-1	2.90+	0 1.34+2	8.27-1	
3.00+0 1.76	⊦2 1.03+0							94
5.00-1 2.04	H0 1.06+0	5.50	-1 2.82+0	1.05+0	6.00-	1 3.48+0	9.74-1	98
	+0 9.67 - 1	/.00		J 1.13+0	7.50-	1 1 2111	9.43-1	
9 50-1 1 /0-	109.02-1	1 00-	-1 1.13T. FO 1 574	1 9 40-1	9.00-	1 1.21+1 0 1 81+1	9.74-1	
1.10+0 2.19	+1 1.01+0	1.15	HO 2.49+	1 1.03+0	1.20+	0 2.71+1	1.01+0	
1.25+0 3.02-	F1 1.01+0	1.30-	+0 3.23+	1 9.80-1	1.35+	0 3.67+1	1.02+0	
1.40+0 4.10-	+1 1.04+0	1.45-	+0 4.36+	1 1.02+0	1.50+	0 4.51+1	9.75-1	
1.55+0 4.77-	⊦1 9.56-1	1.60-	+0 5.22+3	1 9.76-1	1.65+	0 5.53+1	9.67-1	
1.70+0 6.02-	+1 9.86-1	1.75-	+0 6.26+	1 9.63-1	1.80+	0 6.60+1	9.59-1	
1.85+0 6.94-	+1 9.53-1	1.90-	+0 7.53+	1 9.79-1	1.95+	0 7.79+1	9.61-1	
2.00+0 8.31-	+1 9.76-1							
4.00+0 2 67-	+2 1 07+0	6.00-	H0 4 00+	2 1,09+0	8.00+	0 5.00+2	1,14+0	105
1.00+1 5.48	+2 1.15+0	1.20-	+1 6.04+	2 1.21+0	1.40+	-1 5.69+2	1.12+0	100
1.60+1 5.86	+2 1.16+0	1.80-	+1 6.18+	2 1.23+0	2.00+	1 5.83+2	1.18+0	
2.20+1 5.34-	+2 1.11+0	-						
					-		/	
2.50-1 1.02	-1 7.63-1	2.75	-1 1.93-	1 9.65-1	3.00-	1 2.44-1	8.55-1	106
3.25-1 3.47	-1 8.82-1	3.50	-1 4.70-	1 8.96-1	3.75-	1 6.60-1	9.67-1	
4.00-1 /.90	-1 A'TO-1	4.25°	-1 1.03+0 -1 1.03+0	U 9.49-1 N Q 47-1	4.50-	1.20+0	9.43-1	
4.75-1 1.40	10 9.04-1	5.00	T T'001	J.+/-1				
7.00-2 2.85	-5 4.76-1	8.00	-2 8.16-	5 4.24-1	9.00-	2 2.06-4	4.27-1	108
1.00-1 4.73	-4 4.61-1	1.10	-1 9.95-	4 5.14-1	1.20-	1 1.96-3	5.93-1	

TABLE 2. K-shell	x-ray production	by protons in targe	t elements from	beryllium to u	ranium ^{a,b} Continued
------------------	------------------	---------------------	-----------------	----------------	---------------------------------

<i>E</i> ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	o ^{Exper}	oExper	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	— (MeV)	(barn)	σ^{ECPSSR}	Ref.
1.30-1	3.66-3	6.89-1	1.40-1	6.50-3	8.05-1	1.50	-1 1.11-2	9.45-1	
5 00-1	1.94+0	1.00+0	6.00-1	3.82+0	1.07+0	8.00	-1 9.23+0	1.05+0	113
1 00+0	1 68+1	1 01+0	1 20+0	2 74+1	1 02+0	1 60	+0.5.00+1	9 35-1	110
2.00+0	8.57+1	1.01+0	2.40+0	1.13+2	9.51-1	1.00		<i>).</i> 55 I	
1.00-1	3.09-4	3.01-1	1,25-1	1.67-3	3.96-1	1.50	-1 5.71-3	4.86-1	118
1.75-1	1.44-2	5.55-1	2.00-1	2.98-2	6.05-1	2.50	-1 9,15-2	6.85-1	110
3.00-1	2.13-1	7.46-1	4.00-1	7.21-1	8.30-1	5.00	-1 1.56+0	8.07-1	
7.00-1	4.86+0	8.30-1	8.00-1	7.31+0	8.30-1		1 100.0	5707 1	
2.00-1	5.78-2	1.17+0	2.50-1	1.46-1	1.09+0	3.00	-1 3.09-1	1.08+0	121
4.00-1	8.96-1	1.03+0	5.00-1	2.05+0	1.06+0	6.00	-1 3.73+0	1.04+0	
7.00-1	5.99+0	1.02+0	8.00-1	9.10+0	1.03+0	9.00	-1 1.27+1	1.02+0	
1.00+0	1.76+1	1.05+0	1.10+0	2.05+1	9.50-1	1.20	+0 2.76+1	1.02+0	152
1.30+0	3.11+1	9.43-1	1.40+0	3.81+1	9.68-1	1.50	+0 4.25+1	9.18-1	
1.60+0	5.19+1	9.71-1	1.70+0	5.86+1	9.60-1	1.80	+0 6.50+1	9.44-1	
1.90+0	6.77+1	8.80-1	2.00+0	6.86+1	8.06-1	2.10	+0 7.41+1	7.93-1	
2.20+0	7.76+1	7.62-1	2.30+0	9.02+1	8.19-1	2.40	+0 9.76+1	8.22-1	
2.50+0	1.03+2	8.07-1	2.60+0	1.05+2	7.70-1	2.70	+0 1.10+2	7.60-1	
2.80+0	1.18+2	7.70-1	2.90+0	1.23+2	7.59-1	3.00	+0 1.29+2	7.57-1	
27 C	obalt		Fluoresce	nce yie	1d = 0.3	373			
1.00-1	5.00-4	8.70-1	1.25-1	2.30-3	9.03-1	1.50	-1 6.80-3	9.19-1	36
1.00+0	7.60+0	6.03-1	1.50+0	4.20+1	1.16+0	2.00	+0 7.80+1	1.15+0	38
2.50+0	1.10+2	1.06+0	3.00+0	1.50+2	1.06+0	3.50	+0 1.90+2	1.07+0	
4.00+0	2.10+2	9.92-1	4.50+0	2.40+2	9.86-1	5.00)+0 2.70+2	9.91-1	
5.50+0	3.10+2	1.04+0	6.00+0	3.20+2	9.94-1				
5.00-1	1.60+0	1.15+0	6.00-1	2.70+0	1.04+0	7.00	-1 4.20+0	9.74-1	53
8.00-1	6.40+0	9.78-1	9.00-1	9.50+0	1.02+0	1.00	+0 1.27+1	1.01+0	
1.10+0	1.65+1	1.00+0	1.20+0	1.99+1	9.60-1	1.30	+0 2.47+1	9.73-1	
1.40+0	2.79+1	9.12-1	1.50+0	3.34+1	9.25-1	1.60)+0 3.91+1	9.32-1	
1.70+0	4.42+1	9.18-1	1.80+0	4.60+1	8.43-1	1.90)+0 5.35+1	8.73-1	
2.00+0	5.93+1	8.71-1							
1.50+0	3.72+1	1.03+0	2.00+0	7.02+1	1.03+0	2.50	+0 1.09+2	1.05+0	55
3.00+0	1.46+2	1.04+0	4.96+0	2.67+2	9.89-1	5.96	5+0 3.20+2	1.00+0	
6.94+0	3.66+2	1.02+0	6.96+0	3.64+2	1.01+0	8.94	+0 4.25+2	1.02+0	
1.09+1	4.61+2	1.03+0							
5.00-1	1.90+0	1.37+0	6.00-1	3.50+0	1.34+0	7.00)-1 5.70+0	1.32+0	69
8.00-1	9.20+0	1.41+0	9.00-1	1.21+1	1.30+0	1.00)+0 1.66+1	1.32+0	
1.10+0	2.10+1	1.28+0	1.20+0	2.60+1	1.25+0	1.30	0+0 3.20+1	1.26+0	
1.40+0	3.90+1	1.28+0	1.50+0	4.50+1	1.25+0	1.60	+0 5.20+1	1.24+0	
1.70+0	5.90+1	1.22+0	1.80+0	6.70+1	1.23+0	1.90	+0 8.00+1	1.30+0	
2.00+0	8.60+1	1.26+0	2.10+0	9.60+1	1.28+0	2.20)+0 1.03+2	1.25+0	
2.30+0	1.10+2	1.23+0							
2.00-1	3.10-2	9.50-1	2.50-1	8.70-2	9.56-1	3.00)-1 1.60-1	8.08-1	73
3.50-1	3.10-1	8.42-1	4.00-1	5.70-1	9.25-1	4.50)-1 7.20-1	7.55-1	

1	42
	- 6

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

<i>E</i> ₁	σ ^{Exper}	σ^{Exper}	<i>E</i> ,	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	- (MeV)	(barn)	o ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
2.00+0) 5.13+1	7.54-1	5.00+0) 1.99+2	7.31-1				84
3.00+0) 1.35+2	9.57-1							94
2.00-1	l 3.57-2	1.09+0	2.50-3	L 9.94-2	1.09+0	3.00-	1 2.06-1	1.04+0	115
3.50-1	L 3.75-1	1.02+0	4.00-1	L 6.29-1	1.02+0	4.50-	1 9.94-1	1.04+0	
5.00-1	L 1.35+0	9.70-1	6.00-1	L 2.57+0	9.87-1	7.00-	1 4.04+0	9.37-1	
8.00-1	L 6.02+0	9.20-1	9.00-2	L 8.57+0	9.20-1	1.00+	0 1.13+1	8.96-1	
1.10+0) 1.48+1	9.01-1	1.20+0) 1.88+1	9.07-1	1.30+	0 2.34+1	9.22-1	
1.40+0	2.78+1	9.09-1	1.50+0) 3.22+1	8.92-1	1.60+	0 3.68+1	8.77-1	
1.70+0) 4.27+1	8.86-1	1.80+0) 4.84+1	8.87-1	1.90+	0 5.52+1	9.00-1	
2.00+0	0 6.25+1	9.18-1							
3.00-1	1 2.03-1	1.03+0	4.00-3	l 6.21-1	1.01+0	5.00-	1 1.41+0	1.01+0	132
6.00-1	1 2.64+0	1.01+0	7.00-3	L 4.34+0	1.01+0	8.00-	1 6.48+0	9.90-1	
1.00+0	0 1.25+1	9.91-1	1.20+0	2.08+1	1.00+0	1.40+	0 3.05+1	9.97-1	
1.60+0	0 4.31+1	1.03+0	1.80+0	5.67+1	1.04+0	2.00+	0 6.82+1	1.00+0	
2.20+0	0 8.38+1	1.02+0	2.30+0	8.99+1	1.00+0	2.40+	0 9.79+1	1.01+0	
6.00-	1 2.48+0	9.52-1	7.00-	1 4 11+0	9.53-1	8.00-	1 6 25+0	9 55-1	137
1.00+0	1 2.40 + 0	9 75-1	1 20+	2 2 00+1	9 65-1	1 40+	n 2 93+1	9 58-1	10,
1.60+0	1 4 08+1	9.72-1	1 80+) 5 30+1	9 72-1	2 00+	0 6 59+1	9 68-1	
2.20+0	0 8.00+1	9.73-1	1.001	5.5011	<i>J.72</i> 1	2.001	0 0.371		
1.00+0	0 1.21+1	9.60-1	1.20+0	0 1.63+1	7.87-1	1.40+	0 2.69+1	8.80-1	152
1.60+0	0 3.32+1	7.91-1	1.80+0	0 4.28+1	7.85-1	2.00+	0 5.86+1	8.61-1	
2.20+0	0 6.51+1	7.92-1	2.40+0	0 8.06+1	8.33-1	2.60+	0 8.49+1	7.63-1	
2.80+0	0 1.04+2	8.22-1	3.00+0	0 1.16+2	8.23-1				
28 1	Nickel		Fluoresc	ence yie	1d = 0.4	06			
1 5010	0 2 00±1	7 11-1	1 701	ר מי ג הער היי ג היי ג	6 3/-1	1 201	0 2 7011	6 25-1	5
1.00+0	0 2.00TI	/.11~1 6 E0_1	2 204	0 2.40+1 0 6 6011	6 00-1	2.00+	0 5 0011	2 2 2 2 - 1	5
2 50-1	0 5.20TI	6 96-1	2.30+	0 4.40+1 N 7 6011	7 34-1	2.40+	0 0 2.00+1	7 /9-1	
2.50+	0 1 1010	7 41-1	2.00+	0 1 2012	7.54-1	5.101	0 9.2011	. /.49~1	
3,30-0	0 1.10+2	/.41-1	3.70	0 1.20+2	/.4/-1				
5.00+0	0 2.94+2	1.26+0	8.00+	0 4.09+2	1.17+0	1.00+	1 4.77+2	2 1.21+0	20
1.40+	1 5.24+2	1.21+0	1.70+	1 5.17+2	1.17+0	2.00+	1 5.46+2	2 1.24+0	
2.40+	1 5.10+2	1.19+0	2.80+	1 5.06+2	1.23+0				
1.00-	1 2.50 - 4	7.90-1	1.25-	1 1.40-3	9.15-1	1.50-	1 4.50-3	9.71-1	36
1.00+	0 7.20+0	7.56-1	2.25+	0 5.40+1	7.81-1	3.00+	0 9.20+1	7.88-1	47
2 50+4	0 7 80-1	0 31-1	3 00+	0 1 23+2	1 05+0	4 00 1	0 1 82+2	2 1 02+0	52
2.JUT	0 /.07Tl N 9 1919	1 0070	5 001	0 1.2JT2 N 9 /011	1 06TU	4.004 6 001	0 2 6749	0 50-1	J 4
6 5014	0 2.1272 N 9 5619	8 50-1	7 00-	0 2.4772 N 3 5319	1 11110	8 00-1	0 2.0/72	0 00-1	
8 501	0 2.JUTZ 0 / 1019	1 1510	0 00±	0 J.JJ72 N 3 K717	9 67_1	1 00-	1 6 0642) 1 N3TU	
1 AEL	0 4.1072 1 / 5519	1 1210	9.00T	0 J.0272 1 / 5/14	1 11 <u>1</u>	1 201	1 6 0210	1 1710	
1.034	1 4.0072	1.1340	1.104	1 7.J4TZ	. 1.1140	1.204	1 7.9372	. 1.1/40	
1.50+	0 2.75+1	9.78-1	2.00+	0 5.52+1	1.02+0	2.50+	0 8.64+1	1.02+0	55
2.98+	0 1.14+2	9.88-1	3.00+	0 1.20+2	1.03+0	4.97+	0 2.33+2	2 1.00+0	
5.96+	0 2.82+2	1.01+0	6.94+	0 3.21+2	1.01+0	6.95+	0 3.23+2	2 1.02+0	
8.94+	0 3.84+2	1.03+0	1.09+	1 4.17+2	1.02+0				

J. Phys. Chem. Ref. Data, Vol. 18, No. 1, 1989

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E1	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	<u> </u>
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	- (barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
9.00-	-2 1.22-4	9.00-1	1.00-	1 2.27-	4 7 17-1	1.10-	1 4 19-4	6 54-1	57
1.20-	-1 7.75-4	6.63-1	1.30	1 1.47-	3 7.47-1	1.40-	1 2.73-3	8.85-1	37
1.50-	-1 5.07-3	1.09+0	2.00-	-1 2.01-	2 9.33-1	2.50-	1 5.12-2	8.27-1	
2.95-	-1 9.36-2	7.34-1	3.30-	1 1.43-	1 7.02-1	3.60-	1 1.92-1	6.64-1	
3.90-	-1 2.55-1	6.44-1	4.15-	-1 2.68-	1 5.33-1				
5.00-	-1 1.50+0	1.50+0	6.00-	1 2.60+	0 1.37+0	7.00-	1 4.30+0	1.35+0	69
0.00- 1 10-	·1 0.20+0	1.27+0	9.00	*1 8.30+	-0 1.19+0	1.00+	0 1.16+1	1.22+0	
1 404	FO 1.33+1	1.22+0	1.201	FU 1.027 FO 3 504	-1 1.15 $+0$	1.30+	·0 2.40+1	1.22+0	
1 704	FO & 70+1	1 24+0	1 804	-0 5.301	1 1.2410	1 001	0 4.10+1	1 1010	
2.00+	+0 6.80+1	1.25+0	2.10	+0 5.301	11.23+0	1.904	0 3.00+1	1.1940	
2.00-	-1 2.10-2	9.75-1	2.50-	-1 5.40-	2 8.73-1	3.00-	1 1.08-1	7.89-1	73
3.50-	-1 2.20-1	8.52-1	4.00-	1 3.90-	1 8.93-1	4.50-	1 5.20-1	7.63-1	
5.50-	-1 1.20+0	8.53-1	6.50-	•1 2.14+	0 8.59-1	7.50-	1 3.16+0	7.96-1	
8.50-	-1 4.20+0	7.15-1							
9.50-	·1 5.30+0	6.46-1							76
1.00+	HO 1.00+1	1.05+0	1.10	0 1.28+	1 1.02+0	1 20+	0 1 60+1	1 01+0	77
1.30+	+0 1.97+1	1.00+0	1.404	0 2.38+	11.01+0	1 504	0 2 84+1	1 01+0	77
1.60+	+0 3.35+1	1.02+0	1.70	0 3.90+	-1 1.03+0	1.80+	0 4.47+1	1 03+0	
1.90+	+0 5.09+1	1.05+0	2.00	0 5.71+	1 1.05+0	2.10+	0.6.33+1	1.05+0	
2.20+	+0 7.02+1	1.06+0	2.304	0 7.61+	1 1.05+0	2.40+	0 8.23+1	1.05+0	
2.50+	⊦0 8.82 + 1	1.04+0	2.60	+0 9.36+	1 1.03+0	2.70+	0 9.81+1	1.01+0	
2.80+	+0 1.03+2	9.95-1	2.904	+0 1.06+	2 9.63-1	3.00+	0 1.09+2	9.34-1	
1.00+	+0 7.38+0	7.74-1	2.004	+0 4.06+	1 7.47-1	5.00+	0 1.98+2	8.46-1	84
1.25+	+0 9.50+0	5.37-1							89
3.00+	+0 1.19+2	1.02+0							94
2.50+	0 7.55+1	8.91-1	3.004	0 1.02+	2 8 74-1	5 00+	0 2 12+2	9 05-1	07
7.50+	0 3.07+2	9.15-1	9.004	-0 3.43+	2 9.16-1	9.75+	0 3.48+2	8.94-1	57
8.00-	2 2.67-5	5.61-1	9.00-	2 7 59-	5 5 60-1	1 00-	1 1 93-4	6 10-1	109
1.10-	-1 4.48-4	6.99-1	1.20-	1 9.63-	4 8 24-1	1 30-	1 1 95-3	9 90-1	100
1.40-	1 3.72-3	1.21+0	1.50-	1 6.81-	3 1.47+0	1.50	1 1.75 5	J.J0-1	
5.00-	1 9.85-1	9.82-1	6.00-	·1 1.81+	0 9.51-1	8.00-	1 4.35+0	8.93-1	113
1.00+	0 9.03+0	9.48-1	1.20+	-0 1.51+	1 9.52-1	1.40+	0 2.18+1	9.22-1	
1.60+	-0 3.05+1	9.28-1	1.804	-0 4.05+	1 9.37-1	2.00+	0 5.01+1	9.22-1	
2.20 1	-0 6.17+1	9.34-1	2.404	-0 7.33+	1 9.35-1				
7.00+	-0 3.10+2	9.71-1							114
2.00-	1 2.13-2	9.89-1	2.50-	1 6.09-	2 9.84-1	3.00-	1 1.30-1	9.49-1	115
3.50-	1 2.50-1	9.68-1	4.00-	1 3.82-	1 8.75-1	4.50-	1 6.29-1	9.22-1	
5.00-	1 8.90-1	8.87-1	6.00-	1 1.69+	0 8.88-1	7.00-	1 2.85+0	8.96-1	
8.00-	1 4.30+0	8.83-1	9.00-	1 6.17+	0 8.84-1	1.00+	0 8.40+0	8.81-1	
1.10+	0 1.11+1	8.89-1	1.204	0 1.42+	1 8.95-1	1.30+	0 1.78+1	9.07-1	

J. Phys. Chem. Ref. Data, Vol. 18, No. 1, 1989

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

<i>E</i> ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ ^{Exper}	σ ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	- (MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	 Ref.
				<u></u>			·		
1.40+0	2.10+1	8.88-1	1.50+0	2.48+1	8.82-1	1.60+	0 2.98+1	9.07-1	
1.70+0	3.37+1	8.90-1	1.80+0) 3.81+1	8.82-1	1.90+	04.43+1	9,11-1	
2.00+0	4.97+1	9.15-1	2000			1170			
5 50-2	7 10-7	1 13+0	6 00-4	2 2 30-6	1 13+0	6 50-	2 6 70-6	1 2640	120
7 00-2	1 60-5	1 13+0	7 50-1	2 2.30-0	9 43-1	8 00-	2 6.70-0	1.24+0 0 25-1	120
9 00-2	1.40-5	1 0310	1 00-	2 2.40-3	9.4J-1 1 07±0	1 10-	(2 4.40-3)	9.23-1	
1 20-1	1 20-3	1 0310	1 30-1	1 1 00_2	0.65-1	1.10-	1 0.00-4	1.00+0	
1.20-1	4 30-3	0 28-1	1 60-	L I.90-3 1 5 70-3	9.03-1	1 20-	1 3.20-3	2 73-1	
2 00-1	1 70-2	7 89-1	2 20-	1 2 90-2	8 47-1	2 60-	1 4 30-2	8 36-1	
2.60-1	6.10-2	8.27-1	2.80-	1 8.80-2	8.63-1	3.00-	1 4.30-2	9,49-1	
1.40+0	2.54+1	1.07+0	1.50+0	3.00+1	1.07+0	1.604	-0 3.30+1	1.00+0	122
1.70+0	3.99+1	1.05+0	1.80+0) 4.33+1	1.00+0	1.904	-0 4.88+1	1.00+0	
2.00+0	5.40+1	9.94-1							
3.00-1	1.44-1	1.05+0	4.00-	1 4.43-1	1.01+0	5.00-	1 1.01+0	1.01+0	132
6.00-1	1.97+0	1.04+0	7.00-3	1 3.28+0	1.03+0	8.00-	1 5.13+0	1.05+0	
1.00+0	9.69+0	1.02+0	1.20+0	0 1.64+1	1.03+0	1.404	-0 2.41+1	1.02+0	
1.60+0	3.35+1	1.02+0	1.80+0	0 4.39+1	1.02+0	2.00+	-0 5.55+1	1.02+0	
2.20+0	6.75+1	1.02+0	2.30+	0 7.37+1	1.02+0	2.401	-0 7.95+1	1.01+0	
1.00+0	9.00+0	9.44-1	1.20+	0 1.49+1	9.39-1	1.404	0 2.27+1	9.60-1	137
1.60+0	3.13+1	9.52-1	1.80+	0 4.22+1	9.76-1	2.001	-0 5.22+1	9.61-1	
2.20+0	6.29+1	9.52-1							
1.60+0	3 53+1	1.07+0	1.80+	0 4 21+1	9.74-1	2,004	-0 5 48+1	1.01+0	151
2.20+0	7.23+1	1.09+0	2.40+	0 8.09+1	1.03+0	2.00	0 3.4011	1.01/0	191
20 0			Florences		11 - 0.6	<i>ı</i> .			
29 6	opper		Fluoresc	ence yie	1a = 0.44	4			
2.00-1	4.50-3	3.13-1	2.50-	1 1.00-2	2.35-1	3.00-	1 2.10-2	2.19-1	3
3.50-1	4.00-2	2.18-1	4.00-	1 8.50-2	2.71-1	4.60-	-1 2.00-1	3.73-1	
7.00-1	2.00+0	8.46-1	1.00+	0 8.60+0	1.19+0	1.22-	0 1.60+1	1.27+0	
4.00-1	1.59-1	5.07-1	5.00-	1 3.28-1	4,49-1	6.00-	-1 6.84-1	4.89-1	4
7.00-1	1.07+0	4.53-1	8.00-	1 1.71+0	4.68-1	9.00-	-1 3.01+0	5.71-1	
1.00+0	4.36+0	6.02-1				2100			
1 40-1	1 00-2	0 97-1	1 50	1 2 00.2	0 50-1	1 40	.1 / 502	1 0510	6
1 20-1	8 30-3 1.30-3	9.0/-1	2.30-	1 1 60-9	0 75_1	J JU-	-1 9 90-9	Q 51_1	U
2 60-1	2 20-2	9.94 ⁻¹	2.00-	1 1.40-2 1 / 20-2	9.75^{-1}	2.20	-1 2.20-2	9.31-1	
2.40-1	0 00-2	9.11-1	2.00-	1 4.00-2 1 1 20_1	9.04-1	2.00	-1 0.00-2	9.30-1	
3 20-1	2 00-1	7.57~1 0 72-1	J.20- 2 00	1 3 00 1	1 17.10	J.40*	-1 2 10-1 -1 2 10-1	9.03"L	
5.00-1	3 200-1	7./2-1 8 /0-1	5.00-	1 1 2010-1	Q 57_1	7 60-	-1 3.10"1 .1 3 3010	7.09"1 7.75_1	
4.40-1	7.00-I	0.40^{-1} 7 50_1	0.00- 1 0/1	U 8 3070 I I'RAAAA	7 75-1	1 1/-	LA 7 2010	7 46-1	
1 20+0	9.4040	7.69-1	1.047	0.3040	1.13-1	1.141	10 7.00 1 0	/.40-1	
1.2070	2.4070	7.09-1							
2.30-1	2.10-2	7.32-1	3.25 -	1 7.10-2	5.27-1	4.20	-1 1.90-1	5.02-1	7
4.54-1	2.88-1	5.65-1	5.10-	1 4.70-1	5.99-1				
1.50-1	3.00-3	1.03+0	2.00-	1 1.30-2	9.05-1	3.00-	-1 8.80-2	9.18-1	9
4.00-1	3.10-1	9.89-1	5.00-	1 6.30-1	8.63-1				

 σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} E_1 E_{\perp} $E_{\rm F}$ σ^{ECPSSR} σ^{ECPSSR} σ^{ECPSSR} (MeV) (barn) (MeV) (barn) (MeV) (barn) Ref. 10 1.50+0 2.00+1 9.10-1 6.40+0 2.75+2 1.06+0 6.70+0 2.85+2 1.05+0 7.00+0 3.00+2 1.07+0 21 7.50+0 3.10+2 1.04+0 7.80+0 3.25+2 1.06+0 8.20+0 3.35+2 1.06+0 8.40+0 3.40+2 1.06+0 8.50+0 3.50+2 1.08+0 8.80+0 3.60+2 1.09+0 9.00+0 3.65+2 1.09+0 9.20+0 3.70+2 1.09+0 9.40+0 3.75+2 1.09+0 9.60+0 3.75+2 1.08+0 9.90+0 3.70+2 1.05+0 7.00-1 1.77+0 7.49-1 9.00-1 4.09+0 7.76-1 1.10+0 7.11+0 7.44-1 27 1.30+0 1.09+1 7.18-1 1.50+0 1.47+1 6.69-1 1.70+0 1.80+1 6.01-1 2.10+0 3.09+1 6.40-1 1.90+0 2.29+1 5.91-1 2.30+0 3.64+1 6.23-1 2.50+0 4.79+1 6.94-1 1.60+2 2.20+2 1.50+0 30 1.25-1 9.50-4 1.04+0 1.50-1 3.10-3 1.06+0 36 1.00+0 8.80+0 1.21+0 2.00+0 5.10+1 1.17+0 39 1.00+0 5.40+0 7.45-12.25+0 4.20+1 7.52-1 3.00+0 7.50+1 7.81-1 47 2.50+0 6.64+1 9.63-13.00+0 9.81+1 1.02+0 4.00+0 1.56+2 1.03+0 52 4.50+0 1.80+2 1.02+0 5.00+0 1.86+2 9.24-1 6.00+0 2.53+2 1.03+0 6.50+0 2.46+2 9.31-1 7.00+0 2.99+2 1.06+0 8.00+0 2.90+2 9.31-1 8.50+0 3.46+2 1.07+0 9.00+0 3.25+2 9.67-1 1.00+1 3.79+2 1.07+0 1.05+1 3.62+2 9.95-11.10+1 4.05+2 1.09+0 1.20+1 4.25+2 1.11+05.00-1 5.00-1 6.85-1 6.00-1 1.00+0 7.14-1 7.00-1 1.80+0 7.61-1 53 8.00-1 2.80+0 7.67-1 9.00-1 4.10+0 7.77-1 1.00+0 6.00+0 8.28-1 1.10+0 8.00+0 8.37-1 1.20+0 1.07+1 8.76-1 1.30+0 1.34+1 8.82-1 1.40+0 1.63+1 8.82-1 1.50+0 1.98+1 9.01-1 1.60+0 2.34+1 9.06-1 1.70+0 2.68+1 8.95-1 1.80+0 3.22+1 9.42-1 1.90+0 3.59+1 9.26-1 2.00+0 3.92+1 9.03-1 1.50+0 2.14+1 9.74-1 2.00+0 4.27+1 9.83-1 2.50+0 6.87+1 9.96-1 55 3.00+0 9.51+1 9.90-1 4.96+0 2.06+2 1.03+0 5.96+0 2.52+2 1.04+0 6.96+0 2.97+2 1.06+0 8.94+0 3.55+2 1.06+0 1.09+1 3.98+2 1.07+0 1.30-1 1.14-3 9.56-1 1.50-1 2.35-3 8.05-1 2.00-1 1.28-2 8.91-1 57 2.50-1 4.54-2 1.07+0 2.95-1 7.21-2 8.08-1 3.30-1 9.81-2 6.83-1 3.85-1 1.46-1 5.42-1 3.60-1 1.26-1 6.13-1 4.15-1 1.72-1 4.76-1 3.00+0 8.70+1 9.06-1 5.00+0 1.80+2 8.94-1 59 6.67-1 2.00+0 9.94-1 1.00+0 7.30+0 1.01+0 1.33+0 1.54+1 9.48-1 64 1.67+0 2.79+1 9.75-1 2.00+0 4.26+1 9.81-1 2.33+0 5.45+1 9.07-1 2.67+0 7.46+1 9.56-13.00+0 9.05+1 9.42-1 3.33+0 1.16+2 1.01+0 3.67+0 1.34+2 1.00+0 4.00+0 1.44+2 9.55-1 4.33+0 1.85+2 1.10+0 4.67+0 1.99+2 1.07+0 5.00+0 2.13+2 1.06+0 5.33+0 2.31+2 1.06+0 5.67+0 2.47+2 1.07+0

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}-Continued
TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
8.30-	1 4.30+0	1.05+0	1.58+0	2.90+1	1.16+0	2.56+0	6.80+1	9.42-1	66
3.28+	0 1.23+2	1.10+0							
5.00-	1 9.00-1	1.23+0	6.00-1	1.80+0	1.29+0	7.00-1	2.90+0	1.23+0	69
8.00-	1 4.70+0	1.29+0	9.00-1	6.40+0	1.21+0	1.00+0	8.70+0	1.20+0	
1.10+	0 1.16+1	1.21+0	1.20+0	1.44+1	1.18+0	1.30+0	1.82+1	1.20+0	
1.40+	0 2.20+1	1.19+0	1.50+0	2.60+1	1.18+0	1.60+0	3.20+1	1.24+0	
1.70+	0 3.60+1	1.20+0	1.80+0	4.10+1	1.20+0	1.90+0	4.80+1	1.24+0	
2.00+	0 5.30+1	1.22+0	2.10+0	5.70+1	1.18+0	2.20+0	6.00+1	1.12+0	
2.30+	0 6.60+1	1.13+0							
2.00+	0 2.30+1	5.30-1							74
9.50-	1 4.20+0	6.76-1							76
1.00+	0 7.17+0	9.89-1	1.20+0	1.21+1	9.90-1	1.40+0	1.88+1	1.02+0	77
1.50+	0 2.27+1	1.03+0	1.60+0	2.69+1	1.04+0	1.80+0	3.62+1	1.06+0	
2.00+	0 4.63+1	1.07+0	2.20+0	5.61+1	1.05+0	2.40+0	6.50+1	1.02+0	
2.50+	0 6.94+1	1.01+0	2.60+0	7.30+1	9.82-1	2.80+0	7.97+1	9.36-1	
3.00+	0 8.41+1	8.75-1							
9.00-	1 5.05+0	9.58-1	1.00+0	7.89+0	1.09+0	1.10+0	1.27+1	1.33+0	80
1.20+	0 1.75+1	1.43+0	1.30+0	1.85+1	1.22+0	1.40+0	2.08+1	1.13+0	
1.50+	0 2.24+1	1.02+0	1.60+0	2.80+1	1.08+0	1.70+0	3.30+1	1.10+0	
1.80+	0 3.54+1	1.04+0	1.90+0	4.44+1	1.15+0	2.00+0	4.63+1	1.07+0	
2.10+	0 4.62+1	9.57-1	2.20+0	5.38+1	1.01+0	2.30+0	6.10+1	1.04+0	
2.40+	0 7.42+1	1.17+0	2.50+0	6.95+1	1.01+0	2.60+0	6.04+1	8.13-1	
2.70 1	0 8.95+1	1.12+0	2.80+0	8.90+1	1.04+0	2.90+0	7.49+1	8.27-1	
3.004	0 8.15+1	8.48-1	3.10+0	1.17+2	1.15+0	3.20+0	1.24+2	1.15+0	
3.30+	-0 1.25+2	1.11+0	3.40+0	1.15+2	9.71-1	3.50+0	1.16+2	9.36-1	
3.60+	0 1.29+2	9.97-1	3.70+0	1.22+2	9.03-1	3.80+0	2.22+2	1.58+0	
3.90+	-0 2.14+2	1.47+0	4.00+0	2.20+2	1.46+0				
3.00+	0 9.72+1	1.01+0	5.00+0	2.12+2	1.05+0	7.00+0	2.98+2	1.06+0	94
9.00+	-0 3.57+2	1.06+0	1.10+1	3.92+2	1.06+0				
2.49-	1 4.68-2	1.12+0	3.00-1	1.08-1	1.13+0	3.53-1	2.11-1	1.11+0	99
4.03-	1 3.51-1	1.09+0	4.84-1	6.77-1	1.05+0	5.52-1	1.06+0	1.02+0	
6.35-	1 1.66+0	9.75-1	7.20-1	2.44+0	9.40-1	8.10-1	3.47+0	9.14-1	
9.00-	1 4.70+0	8.91-1	1.10+0	8.18+0	8.56-1	1.31+0	1.30+1	8.38-1	
1.524	-0 1.91+1	8.41-1	1.72+0	2.61+1	8.48-1	1.91+0	3.40+1	8.67-1	
1.50-	1 1.46-3	5.00-1	2.00-1	9.46-3	6.59-1	3.00-1	7.58-2	7.90-1	103
4.00-	1 2.77-1	8.84-1	5.00-1	6.60-1	9.04-1	6.00-1	1.26+0	9.00-1	
7.00-	1 2.20+0	9.31-1	8.00-1	3.48+0	9.53-1				
2.201	-1 4.47+2	2 1.09+0	3.10+1	3.91+2	1.02+0	4.40+1	3.28+2	9.84-1	104
4.004	0 1.56+2	1.03+0	6.00+0) 2.80+2	1.14+0	8.00+0	3,69+2	1.18+0	105
1.004	1 4.09+2	1.15+0	1.20+1	4.49+2	1.17+0	1.40+1	4.81+2	1.20+0	
1.604	-1 4 72+2	1.15+0	1.80+1	4.94+2	1.20+0	2.00+1	4.85+2	1.18+0	
2.201	1 4.76+2	1.16+0							

<i>E</i> ₁	o ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	- (MeV)	(barn)	oECPSSR	Ref.
			14-14-14-14-14-14-14-14-14-14-14-14-14-1	of at a sec filencies contrained					
1 00+	0 7 25+0	1 00+0	1 25+	0 1 38+1	1 1 01+0	1 50+	0 2 40+1	1 09+0	112
1 75+	0 3 41+1	1.06+0	2.00+	0 4 49+1	1 1 03+0	2.25+	5,83+1	1 04+0	116.
2.50+	0 7.03+1	1.02+0	2.75+	0 8.68+1	1 1.05+0	3.00+	0 1.03+2	1.07+0	
2.30		1.02.0	2173	0.000.	1,000,0	0.00		1.07.0	
5.00-	1 7.65-1	1.05+0	6.00-	1 1.46+0	0 1.04+0	8.00-	1 3.80+0	1.04+0	113
1.00+	0 7.12+0	9.83-1	1.20+	0 1.16+1	1 9.49-1	1.40+	0 1.79+1	9.68-1	
1.60+	0 2.51+1	9.72-1	1.80+	0 3.31+1	1 9.68-1	2.00+	0 4.28+1	9.85-1	
2.20+	0 5.03+1	9.43-1	2.40+	0 6.19+1	1 9.73-1				
7.00+	0 3.10+2	1.10+0							114
2.00-	1 1.65-2	1.15+0	2.50-	1 4.45-2	2 1.05+0	3.00-	1 9.52-2	9.93-1	115
3.50-	1 1.78-1	9.70-1	4.00-	1 3.03-1	1 9.67-1	4.50-	1 4.81-1	9.76-1	
5.00-	1 6.81-1	9.33-1	6.00-	1 1.38+0	9.86-1	7.00-	1 2.30+0	9.73-1	
8.00-	1 3.59+0	9.84-1	9.00-	1 5.12+0	9.71-1	1.00 +	0 7.48+0	1.03+0	
1.10+	0 9.79+0	1.02+0	1.20+	0 1.21+3	1 9.90-1	1.30+	0 1.48+1	9.74-1	
1.40+	0 1.78+1	9.63-1	1.50+	0 2.15+1	1 9.78-1	1.60+	0 2.51+1	9.72-1	
1.70+	0 2.92+1	9.75-1	1.80+	0 3.35+3	1 9.80-1	1.90+	0 3.78+1	9.75-1	
2.00+	0 4.24+1	9.76-1							
5.00-	1 6.99-1	9.58-1	6.25-	1 1.35+0	8.38-1	7.50-	1 2.47+0	8.33-1	117
8.75-	1 3.95+0	8.17-1	1.00+	0 6.01+0	0 8.29-1	1.25+	0 1.19+1	8.71-1	
1.50+	0 1.93+1	8.78-1	1.75+	0 2.92+1	1 9.12-1	2.00+	0 3.95+1	9.09-1	
2.25+	0 5.47+1	9.79-1	2.50+	0 6.85+1	1 9.93-1	2.75+	0 8.41+1	1.02+0	
3.00+	0 9.70+1	1.01+0	2.99+	0 9.22+:	1 9.68-1	3.94+	0 1.45+2	9.81-1	
6.0/+	0 2.46+2	9.93-1	9.13+	0 3.50+2	2 1.03+0	1.22+	1 4.06+2	1.05+0	
1.83+	1 4.23+2	1.02+0	2.40+	1 4.12+2	2 1.02+0	3.01+	1 3.96+2	1.03+0	
3.30-	1 3.74+2	1.03+0	3.90+	1 3.30+2	2 1.02+0				
1.25-	1 3.34-4	3.65-1	1.50-	1 1.33-3	3 4.56-1	1.75-	1 4.02-3	5.68-1	118
2.00-	1 8.89-3	6.19-1	2.50-	1 2.98-2	2 7.01-1	3.00-	1 7.30-2	7.61-1	
4.00-	1 2.68-1	8.55-1	5.00-	1 6.42-1	1 8.80-1	6.00-	1 1.24+0	8.86-1	
7.00-	1 2.09+0	8.84-1	8.00-	1 3.24+(8.88-1				
1.40+	0 1.98+1	1.07+0	1.50+	0 2.16+3	1 9.83-1	1.60+	0 2.51+1	9.72-1	122
1.70+	0 2.94+1	9.82-1	1.80+	0 3.40+3	1 9.94-1	1.90+	0 3.58+1	9.24-1	
2.00+	0 4.15+1	9.55-1							
7.00+	0 3.29+2	1.17+0							125
1.00-	1 1.37-4	7.87-1	1.20-	1 5.92-4	4 8.57-1	1.40-	1 1.69-3	8.78-1	126
1.60-	1 3.82-3	8.95-1	1.80-	1 7.60-3	3 9.22-1	2.00-	1 1.33-2	9.26-1	
2.50-	1 3.91-2	9.20-1	3.00-	1 8.48-2	2 8.84-1				
5.00-	1 7.65-1	1.05+0	7.07-	1 2.54+0	0 1.04+0	1.00+	0 7.16+0	9.88-1	130
1.41+	0 1.84+1	9.71-1	2.00+	0 4.23+1	1 9.74-1	2.50+	0 6.55+1	9.50-1	
3.00-	1 9.40-2	9,80-1	4,00-	1 3 16-1	1 1.01+0	5 00-	1 7 57-1	1 በ4±0	132
6.00-	1 1.44+0	1.03+0	7 00-	1 2 30-10-1	9 73-1	8 00-	1 3 6740	1 0110	1.74
1.00+	0 7.25+0	1.00+0	1.20+	1.22+1	1 9.99-1	1.40+	1.86 ± 1	1.01+0	
1.60+	0 2.64+1	1.02+0	1.80+	0 3.50+1	1 1.02+0	2.00+	0 4.26+1	9.81-1	
2.20+	0 5.34+1	1.00+0	2.30+	0 5.74+	1 9.83-1	2.40+	0 6.32+1	9.93-1	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

<i>E</i> ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	$\sigma^{\rm Exper}$	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	- (MeV)	(barn)	$\sigma^{\rm ECPSSR}$	(MeV)	(barn)	σ^{ECPSSR}	Ref.
			<u></u>						
2.80-1	9.20-2	1.30+0	3.30-1	l 1.70-1	1.18+0	3.70-1	2.50-1	1.09+0	135
4.20-1	3.70-1	9.77-1	5.00-3	6.60-1	9.04-1	5.60-1	8.80-1	8.01-1	
6.10-1	1.10+0	7.42-1	6.50-2	L 1.30+0	7.05-1	6.90-1	1.60+0	7.10-1	
7.40-1	1.90+0	6.69-1	7.90-3	L 2.40+0	6.84-1	8.30-1	2.80+0	6.83-1	
8.70-1	3.30+0	6.94-1	9.10-3	L 4.40+0	8.06-1	1.01+0	5.70+0	7.64-1	
1.11+0	7.90+0	8.05-1	1.21+0	9.70+0	7.76-1	1.31+0) 1.30+1	8.38-1	
1.41+0) 1.60+1	8.50-1	1.51+0) 1.90+1	8.50-1	1.61+0) 2.20+1	8.39-1	
1.71+0	0 2.40+1	7.90-1	1.81+0	3.00+1	8.66-1				
5.00-1	6.76-1	9.26-1	6.00-3	1 1.32+0	9.43-1	7.00-3	L 2.31+0	9.77-1	137
8.00-1	1 3.54+0	9.70-1	1.00+0	0 6.90+0	9.52-1	1.20+0) 1.15+1	9.41-1	
1.40+0) 1.74+1	9.41-1	1.60+0	2.44+1	9.45-1	1.80+0) 3.25+1	9.50-1	
2.00+0) 4.15+1	9.55-1	2.20+0	5.07+1	9.50-1				
1.50+0	2.06+1	9.37-1	2.00+0	0 4.61+1	1.06+0	2.25+0	5.57+1	9.97-1	143
2.50+0	6.88+1	9.98-1	2.75+0	7.99+1	9.68-1	3.00+0	9.68+1	1.01+0	
1.00+0	6.96+0	9.60-1	2.00+0	0 4.26+1	9.81-1				149
1.60+0) 2.61+1	1.01+0	1.80+0	3.46+1	1.01+0	2.00+0) 4.55+1	1.05+0	151
2.20+0	5.58+1	1.05+0	2.40+	0 6.57+1	1.03+0			2000.0	20 2
30 2	linc		Fluoresc	ence vie	1d = 0.4	7			
-									
7.00-1	L 1.49+0	8.49-1	9.00-	1 3.54+0	8.91-1	1.10+0) 5.33+0	7.31-1	27
1.30+0	3 8.31+0	/.09-1	2 101	J 1.41+1	8.20-1	1.70+0) 1./3+1	7.36-1	
2.50+0	3.45+1	6.18-1	2.10+0	J 2.75TI	/.12-1	2.30+0	5.01+1	6.40-1	
2.00.0		0110 1							
2.50+0) 5.34+1	9.56-1	3.00+0	7.80+1	9.86-1	4.00+0) 1.34+2	1.05+0	52
4.50+0) 1.52+2	1.01+0	5.00+0	0 1.71+2	9.93-1	6.00+0) 2.12+2	1.00+0	
6.50+0) 2.17+2	9.43-1	7.00+	0 2.51+2	1.02+0	8.00+0) 2.81+2	1.02+0	
8.50+0) 3.23+2	1.12+0	9.00+	0 3.03+2	1.01+0	1.00+	1 3.37+2	1.06+0	
1.05+1	1 3.39+2	1.03+0	1.10+	1 3.58+2	1.07+0	1.20+3	1 3.82+2	1.10+0	
4.50-1	l 3.00-1	8.44-1	5.60-	1 5.00-1	6.22-1	6.60-3	l 1.60+0	1.12+0	53
7.70-1	L 2.60+0	1.08+0	8.70-	1 3.60+0	1.01+0	9.70- 3	1 5.30+0	1.06+0	
1.08+0) 7.00+0	1.01+0	1.20+0	0 9.10+0	9.71-1	1.30+0) 1.14+1	9.72-1	
1.40+0) 1.40+1	9.77-1	1.50+0	0 1.66+1	9.66-1	1.60+0) 1.94+1	9.60-1	
1.70+0) 2.22+1	9.44-1	1.80+0	0 2.52+1	9.30-1	1.90+0) 2.87+1	9.35-1	
2.00+0) 3.19+1	9.23-1							
7.00-1	L 2.63+0	1.50+0	1.00+	0 6.42+0	1.17+0	1.40+0	0 1.57+1	1.10+0	56
1.60+0	2.00+1	9.89-1	1.80+	0 2.67+1	9.85-1	2.00+0	3.31+1	9.58-1	
2.20+0) 4.25+1	9.95-1	2.40+	0 5.32+1	1.03+0	2.60+0	0 6.47+1	1.07+0	
2.80+0	7.62+1	1.09+0	3.00+	0 8.72+1	1.10+0	3.20+0	0 1.01+2	1.14+0	
3.40+0	1.11+2	1.13+0	3.60+	U 1.23+2	1.14+0	3.80+0	1.36+2	1.16+0	
4.00+0	J 1.54+2	1.21+0	4.20+	J 1.66+2	1.22+0	4.40+0	J 1.78+2	1.22+0	
1.50-1	l 1.72-3	9.39-1	1.95-	1 7.35-3	8.86-1	2.55-	1 2.90-2	9.09-1	57
3.00-1	L 5.39-2	8.05-1	3.35-	1 7.63-2	7.08-1	3.60-	1 9.87-2	6.77-1	
3.90-1	l 1.15-1	5.69-1	4.15-	1 1.53-1	5.90-1				

E_1 o	J ^{Exper}	σ ^{Exper}	<i>E</i> ₁	0 ^{Exper}	σ^{Exper}	E ₁	0 ^{Exper}	0 ^{Exper}	
(MeV) (ECPSSR	- (MeV)	(barn)	ECPSSR	(MeV)	(barn)	ECPSSR	- Dof
(INIE V) ((IVIE V)			(WIEV)	(0a111)		Kei.
	1 / 0 0	1 / 7 / 0		1 0 00		• • • •			
2.00-1	1.40-2	1.4/+0	2.50-	1 3.80-2	2 1.31+0	3.00-	-1 7.80-2	1.17+0	73
3.50-1	1.50-1	1.10+0	4.00-	-1 2.80-	1 1.25+0	4.50-	-1 3.90-1	1.10+0	
1.00+0	5.60+0	1.02+0	1.104	0 7.50+0	0 1.03+0	1.20	+0 9.70 + 0	1.03+0	86
1.40+0	1.50+1	1.05+0	1.604	0 2.16+	1 1.07+0	1.804	+0 2.92+1	1.08+0	•••
2.00+0	3.78+1	1.09+0	2.201	0 4.68+	1 1.10+0	2.40-	0 5.56+1	1.08+0	
2.60+0	6.42+1	1.06+0	2.80-	-0 7.14+	1 1.02+0	3.004	+0 7.76+1	9.80-1	
1 00-1	6.08-5	6 51-1	1 10-	1 1 34-	4 6 51-1	1 20-	-1 2 74-4	6 84-1	108
1.30-1	5.30-4	7.45-1	1.40-	1 9.73 - 6	4 8.28-1	1.50	-1 1.72-3	9.39-1	100
								2102 2	
7.00+0	2.30+2	9.33-1							114
0 00 1	1 00 0	1 07.5		1 0 1 4					
2.00-1	1.30-2	1.37+0	2.50	1 3.41-	2 1.17+0 1 1 05±0	3.00	-1 7.71-2	1.15+0	115
5.00-1	5 70-1	1 07+0	6 00-	1 0 63-	$1 \ 1.05 \pm 0$ 1 9 36 - 1	4.50	-1 1 6110	1.00+0	
8.00-1	2,49+0	9.12-1	9.00-	13.61+0	0 9.08-1	1.00-	+0 5 13+0	9.10-1	
1.10+0	7.38+0	1.01+0	1.20	0 9.25+	0 9.87-1	1.30-	+0 1.20+1	1.02+0	
1.40+0	1.38+1	9.63-1	1.50	0 1.60+	1 9.31-1	1.60-	+0 1.84+1	9.10-1	
1.70+0	2.21+1	9.40-1	1.804	+0 2.61+	1 9.63-1	1.90-	+0 2.95+1	9.61-1	
2.00+0	3.33+1	9.63-1							
7.00+0	2.06+2	8.35-1							125
/.0010	2.00.2	0.55 1							125
3.00-1	6.37-2	9.52-1	4.00-	1 2.23-	1 9.97-1	5.00	-1 5.22-1	9.84-1	132
6.00-1	1.01+0	9.82-1	7.00	-1 1.69+	0 9.63-1	8.00	-1 2.68+0	9.82-1	
1.00+0	5.46+0	9.93-1	1.204	0 9.24+	0 9.86-1	1.40-	+0 1.43+1	9.98-1	
1.60+0	2.03+1	1.00+0	1.804	+0 2.78+	1 1.03+0	2.00-	+0 3.47+1	1.00+0	
2.20+0	4.28+1	1.00+0	2.30	+0 4.93+	1 1.05+0	2.40-	+0 5.17+1	1.01+0	
5.00-1	4.84-1	9.13-1	6.00-	-1 9 48-	1 9 21-1	7 00.	-1 1 62+0	9 23-1	137
8.00-1	2.52+0	9.23-1	1.004	+0 5.27+	0 9.59-1	1.20-	+ 1.02+0	9.35-1	137
1.40+0	1.35+1	9.42-1	1.604	+0 1.96+	1 9.70-1	1.80-	+0 2.55+1	9.41-1	
2.00+0	3.27+1	9.46-1	2.20	0 4.06+	1 9.50-1				
1 0010									
1.00+0	5.31+0	9.66-1	1.10	107.31+0	0 1.00+0	1.20-	0 8.34+0	8.90-1	152
1.30+0	1.02+1	8./0-1 0 01 1	1.401	HU 1.25+	1 8.72-1	1.50-	HO 1.53+1	8.90-1	
1.00+0	1.70+1 2 66+1	0.01-1 8 66-1	2 004	FU 1.9/+	1 8 01-1	2 10-	FU 2.35+1 FU 3 9/11	8.6/-1 9.39_1	
2.20+0	3.64+1	8.52-1	2.30	0 4.01+	1 8.53-1	2.10	+0 4.13+1	8 03-1	
2.50+0	4.31+1	7.72-1	2.604	0 4.68+	1 7.75-1	2.70-	+0 4.95+1	7.61-1	
2.80+0	5.44+1	7.80-1	2.904	+0 5.98+	1 8.03-1	3.00-	+0 6.20+1	7.83-1	
31 Ga	allium		Fluoresc	cence yi	eld = 0.50	07			
F 00 4	0 00 -								
5.00-1 8 00-1	3.00-1 1 8010	/./9~1 8 81-1	6.00-	1 0.00-	I /.93-1	7.00	·1 1.10+0	8.46-1	53
0.00-1 1 10+0	1.00 1 0	0.01-1	9.00- 1 20-	•1 2./U+U	0 1 06-0	1.00	FU 4.10+0	9.04-1 0.05-1	
1.40+0	1.11+1	1.00+0	1 504	0 1 364	1 1 02+0	1 604	FO 0.90∓0	9.03-1 1 09+0	
1.70+0	1.88+1	1.02+0	1.804	0 2.19+	1 1.03+0	1.904	+0 2.48+1	1.02+0	
2.00+0	2.83+1	1.03+0							

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{*,b}---Continued

E ₁	σ^{Exper}	σ^{Exper}	E ₁	o ^{Exper}	σ^{Exper}	<i>E</i> ₁	o ^{Exper}	0 ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	OECPSSR	Ref.
1.00+0	4.00+0	9.60-1	1.20+0) 6.40+0	8.90-1	1.4	0+0 9.20	+0 8.29-1	86
1.60+0	1.28+1	8.08-1	1.80+0) 1.74+1	8.18-1	2.0	0+0 2.29	+1 8.34-1	
2.20+0	2.89+1	8.45-1	2.40+0	3.47+1	8.40-1	2.6	0+0 3.94	+1 8.05-1	
2.80+0	4.21+1	7.41-1	3.00+0) 4.21+1	6.50-1				
1.40+0	1.03+1	9.28-1	1.50+0) 1.22+1	9.12-1	1.6	0+0 1.50	+1 9.46-1	122
1.70+0	1.74+1	9.43-1	1.80+0	2.01+1	9.45-1	1.9	0+0 2.25	+1 9.25-1	
2.00+0	2.48+1	9.03-1							
32 G	ermaniur	n	Fluoresce	ence yie	1d = 0.5	35			
1.00+0	2.80+0	8.92-1	1.50+0	1.00+1	9.68-1	2.0	0+0 2.10)+1 9.72-1	38
2.50+0	3.50+1	9.71-1	3.00+0	5.40+1	1.03+0	3.5	0+0 7.00)+1 1.00+0	
+.00+0	9.70+1	1.10+0	4.50+0) 1.05+2	9.92-1	. 5.0	0+0 1.20)+2 9.74-1	
50+0،	1.50+2	1.07+0	6.00+0) 1.60+2	1.03+0				
1.00+0	2.30+0	7.33-1	2.25+0	2.20+1	7.72-1	3.0	0+0 4.00)+1 7.61-1	47
5.00-1	3.00-1	1.08+0	6.00-1	L 5.00-1	9.04-1	7.0	0-1 9.00)-1 9.36-1	53
1.00-1	1.40+0	9.21-1	9.00-1	L 2.00+0	8.92-1	1.0	0+0 2.80	+0 8.92-1	
. 10+0	3.70+0	8.78-1	1.20+0) 4.80+0	8.77-1	1.3	0+0 6.00	0+0 8.68-1	
.40+0	7.20+0	8.43-1	1.50+0	8.70+0	8.42-1	1.6	0+0 1.10)+1 8.95-1	
1.70+0	1.22+1	8.46-1	1.80+0) 1.41+1	8.47-1	1.9	0+0 1.60	0+1 8.41-1	
2.00+0	1.85+1	8.56-1							
3.00+0	5.44+1	1.04+0							94
2.00-1	3.66-3	8.93-1	3.00-3	L 3.07-2	9.48-1	3.5	0-1 5.5e	5-2 8.59-1	115
+.00-1	1.08-1	9.47-1	4.50-	L 1.71-1	9.28-1	5.0	0-1 2.67	7-1 9.57-1	
5.00-1	5.45-1	9.85-1	7.00-1	L 9.07-1	9.43-1	8.0	0-1 1.43	3+0 9.41-1	
00-1	2.10+0	9.36-1	1.00+0) 2.94+0	9.37-1	1.1	$0+0 \ 3.97$	7+0 9.42-1	
1.20+0	5.1/+0 1 0211	9.45-1	1.30+0	J 0.3/+U	9.21-1	1.4	0+0 8.10	1+0 9.49-1 2 ± 1 0 58-1	
1.30+0 1.80+0	1.59+1	9.55-1	1.90+0	1.13+1 1.83+1	9.61-1	2.0	0+0 1.30	5+1 9.58-1 5+1 9.53-1	
8.30-1	8.30-2	1.66+0	3.70-	1 1.20-1	1.46+0	4.2	0-1 1.70)-1 1.22+0	135
. 60-1	2.10-1	1.04+0	5.20-3	1 3.40-1	1.05+0	5.6	0-1 4.30	0-1 1.00+0	
5.00-1	5.30-1	9.58-1	6.50-3	1 6.40-1	8.66-1	7.1	0-1 9.10)-1 9.01-1	
1.50-1	1.10+0	9.02-1	7.90-3	l 1.30+0	8.92-1	9.1	0-1 1.80)+0 7.75-1	
1.01+0	2.30+0	7.10-1	1.11+0	3.40+0	7.85-1	1.2	1+0 4.60	0+0 8.20-1	
1.31+0	5.40+0	7.64-1	1.41+0	0 7.50+0	8.61-1	1.5	1+0 8.60	0+0 8.18-1	
1.61+0	1.10+1	8.80-1	1.71+0	0 1.20+1	8.20-1	1.8	1+0 1.40)+1 8.29-1	
53 A	rsenic		Fluoresco	ence yie	1d = 0.5	62			
4.70-1	1.00-1	6.32-1	5.70-3	1 3.00-1	8.95-1	6.8	0-1 5.00)-1 7.79-1	53
7.80-1	9.00-1	8.66-1	8.90-1	1 1.40+0	8.63-1	9.9	0-1 2.10	0+0 9.15-1	
1.10+0	2.80+0	8.74-1	1.20+0	3.80+0	9.09-1	1.3	0+0 4.80	0+0 9.05-1	
1.40+0	6.00+0	9.12-1	1.50+0	7.40+0	9.26-1	1.6	0+0 8.80	0+0 9.22-1	
1./0+0	1.04+1	9.26-1	1.80+0) 1.22+1	9.35-1	1.9	0+0 1.41	1+1 9.42-1	
£.00+0	1.59+1	9.36-1							
34 S	elenium		Fluoresce	ence vie	1d = 0.5	589			

E_1	σ ^{Exper}	oExper	E	σ ^{Exper}	OExper	E,	o ^{Exper}	o ^{Exper}	
(MeV)	(barn)	0 ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
1.00+0	2.00+0	1.11+0	2.00+0	1.50+1	1.11+0				39
4.00-1	7.16-2	1.22+0	6.00-1	2.91-1	9.70-1	8.0	0-1 8.49	-1 9.97-1	61
1.00+0	1.86+0	1.03+0	1.20+0	2.81+0	8.77-1	1.4	0+0 4.41	+0 8.68-1	
1.60+0	6.54+0	8.80-1	1.80+0	8.57+0	8.37-1	2.0	0+0 1.15	+1 8.54-1	
3.00+0	3.42+1	9.92-1							94
1.00+1	2.26+2	1.17+0	1.20+1	2.74+2	1.24+0	1.4	0+1 2.80	+2 1.16+0	
1.60+1	2.98+2	1.17+0	1.80+1	3.22+2	1.22+0	2.0	0+1 3.28	+2 1.21+0	
2.20+1	3.10+2	1.12+0							
6.00-1	3.19-1	1.06+0	8.00-1	8.28-1	9.72-1	1.0	0+0 1.79·	+0 9.93-1	113
1.20+0	3.18+0	9.92-1	1.40+0	4.89+0	9.62-1	1.6	0+0 7.21	+0 9.70-1	
1.80+0	1.04+1	1.02+0	2.00+0) 1.34+1	9.95-1	2.2	0+0 1.62	+1 9.52-1	
2.40+0	1.90+1	9.04-1							
7.00+0	1.50+2	1.10+0							114
2.00-1	2.08-3	1.19+0	2.50-1	6.20-3	9.97-1	3.0	0-1 1.44	-2 9.16-1	115
3.50-1	3.59-2	1.11+0	4.00-1	5.86-2	1.00+0	4.5	0-1 9.12	-2 9.48-1	
5.00-1	1.52-1	1.03+0	6.00-1	3.06-1	1.02+0	7.0	0-1 5.46	-1 1.03+0	
3.00-1	8.70-1	1.02+0	9.00-1	1.28+0	1.01+0	1.0	0+0 1.79 [.]	+0 9.93-1	
1.10+0	2.39+0	9.78-1	1.20+0	3.15+0	9.83-1	1.3	0+0 4.02	+0 9.84-1	
.40+0	5.05+0	9.94-1	1.50+0	5.88+0	9.48-1	1.6	0+0 7.39	+0 9.94-1	
1.70+0	8.46+0	9.63-1	1.80+0	9.83+0	9.60-1	1.9	0+0 1.13	+1 9.57-1	
2.00+0	1.28+1	9.51-1							
7.00+0	1.54+2	1.13+0							125
5 B:	romine		Fluoresce	ence yie	1d = 0.6	515			
5.00-1	3.34-1	1.50+0	8.00-1	7.93-1	1.24+0	1.0	0+0 1.56 [.]	+0 1.14+0	61
1.20+0	2.71+0	1.10+0	1.40+0) 4.47 + 0	1.13+0	1.6	0+0 6.03	+0 1.04+0	-
1.80+0	8.31+0	1.03+0	2.00+0	1.04+1	9.75-1				
1.50+0	4.00+0	8.29-1	2.00+0	9,95+0	9.33-1	2.2	5+0 1.29	+1 9,00-1	143
2.50+0	1.74+1	9.37-1	2.75+0	2.18+1	9.45-1	3.0	0+0 2.95	+1 1.05+0	142
36 K :	rypton		Fluoresce	ence yie	1d = 0.6	643			
1.50+0	5.90+0	1.56+0	2.00+0	1.30+1	1.54+0	2.5	0+0 2.10	+1 1.41+0	40
3.00+0	4.30+1	1.89+0	3.50+0	4.70+1	1.48+0	4.0	0+0 6.20	+1 1.50+0	
4.50+0	7.70+1	1.50+0							
1.50+0	6.23+0	1.65+0	2.00+0) 1.32+1	1.56+0	2.5	0+0 2.25	+1 1.51+0	48
3.00+0	3.66+1	1.61+0	3.50+0	4.74+1	1.49+0	4.0	0+0 6.38	+1 1.55+0	
4.50+0	7.92+1	1.55+0	5.00+0) 1.02+2	1.67+0				
3.00+0	3.15+1	1.38+0							65
5.00-1	7.10-2	8.88-1	8.16-1	5.20-1	9.97-1	9.1	5-1 7.00	-1 8.99-1	68
1.00+0	1.00+0	9.50-1	1.29+0	2.20+0	9.20-1	1.6	3+0 4.30	+0 8.95-1	00
2.00+0	6.80+0	8.03-1			, I	1.0	2.0 4100	0,75 I	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

151

152

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E ₁	σ^{Exper}	0 ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	o ^{ecpssr}	(MeV)	(barn)	0 ^{ECPSSR}	(MeV)	(barn)	0 ^{ECPSSR}	Ref.
37	Rubidium		Fluoresc	ence yie	1d = 0.6	67			
1.00+	-0 5.80-1	7.19-1	2.254	-0 7.50+0	8.17-1	3.004	+0 1.50+1	l 8.12-1	47
4.00-	1 2.77-2	1.25+0	6.00-	•1 1.24-1	9.99-1	8.00-	-1 4.08-1	L 1.11+0	61
1.00+ 1.60+	-0 9.27-1 -0 3.62+0	1.15+0 1.01+0	1.204 1.804	+0 1.32+0 +0 4.47+0) 8.95-1) 8.91-1	1.404 2.004	+0 2.37+0 +0 5.43+0) 9.90-1) 8.08-1	
1.00+ 2.50+	+0 8.00-1 +0 1.10+1	9.92-1 9.20-1	1.50- 3.00-	HO 2.90+0	9.83-1 1.08+0	2.00+	+0 6.90+(0 1.03+0	72
2.20+	+1 2.21+2	1.05+0	3.10	+1 2.08+2	2 9.49-1	4.40-	+1 2.09+2	2 9.90-1	104
3.50- 5.00-	-1 5.75-3 •1 3.51 - 2	4.86-1 5.94 - 1	4.00- 6.00-	-1 1.15-2 -1 8.00-2	2 5.18-1 2 6.44-1	4.50 7.00	-1 2.32-2 -1 1.70-2	2 6.16-1 1 7.55-1	111
1.504 3.104	+0 2.67+0 +0 1.89+1	9.05-1 9.50-1	2.10- 3.60-	+0 7.41+0 +0 2.45+1) 9.68-1 L 8.90-1	2.60-	+0 1.23+	1 9.35-1	148
38	Strontiu	m	Fluores	cence yie	$e^{1d} = 0.6$	59			
6.00- 1.204 1.804	-1 7.97-2 H0 1.18+0 H0 3.94+0	8.56-1 1.03+0 9.94-1	8.00 1.40 2.00	-1 3.64-1 HO 1.81+(HO 5.28+(l 1.30+0) 9.68-1) 9.90-1	1.00- 1.60-	+0 7.02-: +0 2.69+0	1 1.13+0 0 9.58-1	61
3.004	+0 1.23+1	8.18-1							94
4.00- 6.00- 9.00- 1.20+	-1 9.88-3 -1 7.39-2 -1 3.32-1 +0 1.03+0	6.11-1 7.93-1 7.73-1 9.01-1	4.50 7.00 1.00 1.40	-1 2.21-2 -1 1.44-2 HO 5.19-2 HO 1.52+0	2 7.99-1 1 8.45-1 1 8.36-1 0 8.13-1	5.00 8.00 1.10 1.50	-1 3.42- -1 2.06- +0 7.26- +0 1.81+	2 7.81-1 1 7.33-1 1 8.47-1 0 7.83-1	111
39	Yttrium		Fluores	cence yie	eld = 0.3	71			
2.50 4.50 6.50 8.50 1.05	H0 7.44+0 H0 3.20+1 H0 6.09+1 H0 9.60+1 H1 1.02+2	9.62-1 1.09+0 1.09+0 1.18+0 9.84-1	3.00- 5.00- 7.00- 9.00- 1.10-	+0 1.25+: +0 3.56+: +0 5.84+: +0 9.50+: +1 1.11+:	1 1.03+0 1 9.92-1 1 9.36-1 1 1.09+0 2 1.02+0	4.00 6.00 8.00 1.00 1.20	+0 2.54+ +0 5.22+ +0 7.27+ +1 1.10+ +1 1.03+	1 1.10+0 1 1.06+0 1 9.67-1 2 1.12+0 2 8.73-1	52
3.00+	+0 9.30+0	7.66-1	5.00	+0 2.80+:	1 7.81-1				59
6.00 1.20 1.80	-1 7.20-2 +0 8.81-1 +0 3.09+0	1.03+0 9.93-1 9.87-1	8.00 1.40 2.00	-1 2.20-: +0 1.43+(+0 3.94+(1 1.03+0 0 9.80-1 0 9.30-1	1.00 1.60	+0 4.80- +0 2.11+	1 1.01+0 0 9.56-1	61
1.00- 1.60- 2.20- 2.80-	+0 4.10-1 +0 1.90+0 +0 4.70+0 +0 8.10+0	8.59-1 8.61-1 8.53-1 7.89-1	1.20 1.80 2.40 3.00	+0 7.70-: +0 2.80+(+0 5.80+(+0 9.20+(1 8.68-1 0 8.95-1 0 8.34-1 0 7.58-1	1.40 2.00 2.60	+0 1.30+ +0 3.70+ +0 7.00+	0 8.91-1 0 8.74-1 0 8.18-1	8 6

 σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} E_1 E_1 E_1 σ^{ECPSSR} σ^{ECPSSR} σ^{ECPSSR} (MeV) (MeV) (MeV) (barn) (barn) (barn) Ref. 5.00-1 3.60-2 1.11+0 7.50-1 1.80-1 1.07+0 1.00+0 5.50-1 1.15+0 95 1.25+0 1.20+0 1.18+0 1.50+0 2.20+0 1.22+0 2.00+0 5.20+0 1.23+0 2.50+0 9.20+0 1.19+0 4.00+0 2.13+1 9.20-1 6.00+0 5.69+1 1.16+0 8.00+0 8.53+1 1.13+0 105 1.00+1 1.14+2 1.16+01.20+1 1.49+2 1.26+0 1.40+1 1.56+2 1.16+0 1.60+1 1.85+2 1.26+0 1.80+1 1.92+2 1.22+0 2.00+1 2.13+2 1.29+0 2.20+1 2.06+2 1.20+0 40 Zirconium Fluorescence yield = 0.732.30-1 1.20-4 3.33-1 3.25-1 1.00-3 3.39-1 4.20-1 4.00-3 3.68-1 7 4.54-1 8.75-3 5.59-1 5.10-1 1.20-2 4.55-1 1.60+2 1.35+2 1.39+0 30 1.00+0 3.10-1 8.38-1 2.25+0 3.60+0 7.66-1 3.00+0 7.50+0 7.59-1 47 4.00-1 3.51-3 4.09-1 4.50-1 5.69-3 3.79-1 5.00-1 1.75-2 7.23-1 111 7.00-1 6.28-2 6.40-1 9.00-1 2.10-1 8.28-1 1.00+0 3.24-1 8.76-1 1.10+0 4.56-1 8.85-1 1.20+0 5.88-1 8.50-1 1.30+0 7.74-1 8.59-1 1.40+0 9.49-1 8.28-1 1.50+0 1.28+0 8.98-1 1.00+0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 113 7.00+0 6.00+1 1.13+0 114 2.75-1 5.69-4 5.03-1 3.00-1 1.15-3 6.09-1 3.50-1 2.91-3 6.65-1 118 3.80-1 4.38-3 6.57-1 4.00-1 6.34-3 7.38-1 5.00-1 1.88-2 7.77-1 6.00-1 4.26-2 8.09-1 7.00-1 8.03-2 8.19-1 8.00-1 1.35-1 8.24-1 7.00+0 6.35+1 1.19+0 125 1.50+0 1.15+0 8.07-1 2.10+0 3.20+0 8.25-1 2.60+0 5.39+0 7.80-1 148 3.10+0 8.67+0 8.11-1 3.60+0 1.14+1 7.52-1 41 Niobium Fluorescence yield = 0.749.00-1 8.60-1 4.40+0 1.10+0 1.60+0 3.99+0 1.30+0 3.10+0 4.39+0 44 1.50+0 5.20+0 4.63+0 1.70+0 1.10+1 6.63+0 1.90+0 1.30+1 5.61+0 2.10+0 1.50+1 4.84+0 2.30+0 1.70+1 4.25+0 2.50+0 2.50+1 4.98+0 1.13+0 3.60-1 8.18-1 1.34+0 6.50-1 8.32-1 1.55+0 1.00+0 8.03-1 87 1.76+0 1.60+0 8.67-1 1.97+0 2.10+0 8.15-1 2.18+0 3.00+0 8.71-1 2.39+0 3.60+0 8.10-1 2.60+0 4.50+0 8.07-1 2.70+0 4.80+0 7.80-1 3.00+0 6.80+0 8.45-1 94 2.00-1 7.07-5 8.49-1 2.40-1 3.15-4 9.75-1 2.80-1 9.61-4 1.10+0 126 3.20-1 2.14-3 1.11+0 3.60-1 4.28-3 1.17+0 4.00-1 7.65-3 1.22+0 4.50-1 1.39-2 1.25+0 5.00-1 2.32-2 1.28+0

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}-Continued

 σ^{Exper}

 σ^{ECPSSR}

 $\sigma^{\rm Exper}$

(barn)

1.61+0 1.10+0 9.85-1

 E_1

(MeV)

 σ^{Exper}

 $\sigma^{\rm ecpssr}$

Ref.

 E_1

(MeV)

 σ^{Exper}

(barn)

 σ^{Exper}

 σ^{ECPSSR}

1.50+0 9.38-1 8.35-1 3.10+0 7.18+0 8.25-1	2.10+0 2.59+0 8.36-1 2.60+0 4.50+0 8.07-1 3.60+0 1.04+1 8.35-1	148
42 Molybdenum	Fluorescence yield = 0.765	
2.40+0 8.00+0 2.20+0		1
2.50-1 1.90-4 6.55-1 4.00-1 3.30-3 7.14-1 1.22+0 4.40-1 9.92-1	3.00-15.50-45.86-13.50-11.60-37.01-17.00-16.50-21.13+01.00+02.30-11.03+01.61+01.20+01.08+01.00+01.00+01.00+0	3
2.40-1 5.50-4 2.53+0 3.00-1 1.80-3 1.92+0 3.60-1 4.70-3 1.77+0 4.40-1 1.30-2 1.75+0 9.35-1 2.10-1 1.20+0	2.60-18.20-4 2.16+0 2.80-11.20-3 1.95+0 3.20-12.50-31.82+03.40-13.60-31.85+03.80-16.30-31.78+04.00-18.10-31.75+06.00-13.40-21.12+07.40-18.50-21.18+01.03+02.90-11.17+01.20+05.30-11.25+0	6
4.54-1 5.62-3 6.50-1		7
1.60+2 1.18+2 1.34+0		30
2.50+0 3.13+0 7.70-1 4.50+0 1.31+1 7.76-1 6.50+0 2.17+1 6.38-1 8.50+0 4.12+1 7.94-1 1.05+1 4.67+1 6.84-1	3.00+05.38+08.18-14.00+01.00+17.66-15.00+01.71+18.15-16.00+02.36+17.96-17.00+02.21+15.74-18.00+03.80+18.01-19.00+03.73+16.65-11.00+15.34+18.29-11.10+16.35+18.79-11.20+17.11+18.95-1	52
4.00-1 4.72-3 1.02+0 1.00+0 2.18-1 9.74-1 1.60+0 1.13+0 1.03+0	6.00-12.94-29.68-18.00-19.68-29.95-11.20+04.02-19.46-11.40+06.79-19.52-11.80+01.48+09.39-12.00+02.05+09.49-1	61
1.00+0 2.35-1 1.05+0 1.50+0 8.71-1 9.77-1 2.00+0 2.20+0 1.02+0 2.50+0 4.06+0 9.98-1 3.00+0 5.52+0 8.40-1	1.20+04.21-19.90-11.40+06.95-19.75-11.60+01.10+01.00+01.80+01.58+01.00+02.20+02.92+01.03+02.40+03.68+01.01+02.60+04.42+09.78-12.80+05.07+09.21-1	77
5.00-1 1.40-2 1.03+0 1.25+0 5.20-1 1.06+0 2.50+0 4.50+0 1.11+0	7.50-17.50-29.91-11.00+02.30-11.03+01.50+09.90-11.11+02.00+02.40+01.11+0	95
7.00+0 3.64+1 9.45-1		125
3.90-1 4.10-3 1.01+0 5.50-1 1.90-2 9.12-1 7.10-1 5.00-2 8.21-1 8.50-1 1.10-1 8.95-1 1.11+0 3.10-1 9.55-1	4.30-16.80-31.02+04.80-11.10-29.78-16.00-12.90-29.55-16.60-13.70-28.19-17.70-16.90-28.23-18.00-19.90-21.02+09.00-11.40-19.20-11.01+02.20-19.48-11.21+04.30-19.83-11.31+05.40-19.45-1	135

1.51+0 7.70-1 8.46-1

1.81+0 1.50+0 9.36-1

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

 E_1

(MeV)

 σ^{Exper}

(barn)

1.41+0 6.80-1 9.32-1

1.71+0 1.20+0 8.90-1

E ₁	σ^{Exper}	σ ^{Exper}	E,	o ^{Exper}	σ^{Exper}	E	0 ^{Exper}	oExper	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
5.00-1	1.31-2	9.65-1	6.00-3	l 3.17-2	1.04+0	7.00)-1 6.01-	2 1.05+0	144
8.00-1	1.04-1	1.07+0	9.00-	1.56-1	1.03+0	1.00)+0 2.39-	1 1.07+0	
1.20+0	4.54-1	1.07+0	1.40+0	7.52-1	1.05+0	1.60	0+0 1.164	+0 1.06 + 0	
1.80+0 2 60+0	1.64+0 2 73+0	1.04+0	2.00+0) 2.24+0	1.04+0	2.20)+0 2.984	-0 1.05+0	
2.40 + 0 3.00+0	6.66+0	1.03+0	2.00+0) 4.03+0) 7 80+0	1.02+0 1.01+0	2.80)+0 5.624)+0 9 6/J	-1.02+0	
4.00+0	1.32+1	1.01+0	4.50+0) 1.68+1	9.95-1	5.00)+0 2.164	1.01+0	
5.50+0	2.52+1	9.98-1	6.00+0	3.01+1	1.02+0			1 1.00.0	
1.50+0	7.09-1	7.95-1	2.10+0) 1.97+0	7.91-1	2.60)+0 3.404	0 7.52-1	148
3.10+0	5.55+0	7.77-1							
i4 R	utheniu	n	Fluoresce	ence yie	1d = 0.7	94			
7.00+0	2.63+1	9.43-1							125
45 Ri	hodium		Fluoresce	ence yie	1d = 0.8	08			
1.60+2	1.16+2	1.54+0							30
1.03+0	1.00-1	8.29-1	1.24+0	2.10-1	8.92-1	1.45	5+0 3.40-	1 8.46-1	87
1.00+0 2 2010	5.20-1 1 50±0	8 20-1	1.87+() /.70-1	8.42-1	2.07	7+0 1.104	-0 8.81-1	
	1.30+0	0.09-1	2.30+0	1.90+0	0./5-1	2.70	J+U 2.204	-0 8.16-1	
6 Pa	alladiur	n	Fluoresce	ence yie	1d = 0.8	2			
5.00-1	8.12-3	7.76-1	8.00-1	3.28-2	9.17-1	1.00)+0 7.14-	2 8.35-1	61
1.20+0	1.52-1	9.11-1	1.40+0	2.49-1	8.71-1	1.60)+0 3.86-	1 8.64-1	
1.00+0	5.41-1	0.2/-1	2.00+0	7.55-1	8.29-1				
2.15-1	8.50-6	5.19-1	2.30-1	1.90-5	6.33-1	2.45	-1 4.20-	5 8.22-1	120
2.60-1	6.50-5	7.93-1	2.75-1	9.70-5	7.74-1	3.00)-1 1.70-	4 7.30-1	
5.00-1	4.12-3	9.32-1	6.00-1	1.07-2	1.02+0	7.00	-1 2.12-	2 1.03+0	144
3.00-1	3.85-2	1.08+0	9.00-1	6.10-2	1.07+0	1.00	+0 9.27-	2 1.08+0	
1.20+0	1.84-1	1.10+0	1.40+0	3.14-1	1.10+0	1.60	+0 4.86-	1 1.09+0	
1.0U+U	1 6010	1.08+0	2.00+0	9.76-1	1.07+0	2.20	+0 1.31+	0 1.08+0	
3.00+0	3.09+0	1.05+0	2.00+0	3.55+0	1.00+0 1.01+0	2.80	140 2.534	·U 1.04+0	
4.00+0	6.37+0	1.04+0	4.50+0	8.36+0	1.03+0	5.00	+0 4.554	-1 1 03+0	
5.50+0	1.30+1	1.03+0	6.00+0	1.53+1	1.01+0	5.00		1.0010	
L.50+0	2.99-1	8.28-1	2.10+0	8.58-1	8.12-1	2.60	+0 1.70+	0 8.58-1	148
3.10+0	2.43+0	7.55-1	3.60+0	4.11+0	8.65-1	3.70	+0 4.46+	0 8.77-1	
3.80+0	4.51+0	8.30-1							
67 S:	ilver		Fluoresce	ence yie	1d = 0.8	31			
L.70+0	5.30-1	1.21+0	1.92+0	1.00+0	1.54+0	2.17	+0 1.60+	0 1.69+0	1
2.40+0	2.30+0	1.79+0	2.64+0	3.30+0	1.95+0	2.88	+0 6.30+	0 2.91+0	Ŧ
5.00-1	3.20-3	3.97-1	7.00-1	7.83-3	4.89-1	8.00	-1 1.35-	2 4.81-1	4
.00-1	2.58-2	5.72-1	1.00+0	3.58-2	5.29-1				•

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} E_{i} Ε. E_1 σ^{ECPSSR} σ^{ECPSSR} σ^{ECPSSR} (MeV) (MeV) (MeV) (barn) (barn) (barn) Ref. 1.80+0 4.40-1 8.32-1 2.00+0 4.90-1 6.64-1 2.10+0 5.70-1 6.64-1 5 2.10+0 7.50-1 8.74-1 2.30+0 8.50-1 7.52-1 2.40+0 9.20-1 7.17-1 2.40+0 1.00+0 7.79-1 2.60+0 1.20+0 7.41-1 2.70+0 1.40+0 7.76-1 3.20+0 2.70+0 9.36-1 2.80+0 1.60+0 8.00-1 2.90+0 2.10+0 9.52-1 3.40+0 3.00+0 8.86-1 3.60+0 3.40+0 8.65-1 2.60-1 1.30-4 2.34+0 2.80-1 2.00-4 2.03+0 3.00-1 3.30-4 2.02+0 6 3.20-1 4.90-4 1.92+0 3.40-1 7.40-4 1.96+0 3.60-1 1.10-3 2.03+0 3.80-1 1.50-3 2.00+0 4.00-1 2.10-3 2.07+0 6.00-1 1.10-2 1.36+0 7.40-1 2.40-2 1.18+0 9.35-1 6.60-2 1.26+0 1.04+0 9.90-2 1.26+0 1.20+0 1.70-1 1.28+0 1.60+2 1.09+2 1.61+0 30 2.00+0 8.10-1 1.10+0 3.00+0 2.60+0 1.07+0 4.00+0 6.10+0 1.19+0 32 5.00+0 1.00+1 1.16+0 6.00+0 1.40+1 1.10+0 7.00+0 1.90+1 1.10+0 9.00+0 2.90+1 1.09+0 8.00+0 2.40+1 1.10+0 1.00+1 3.60+1 1.15+0 1.10+1 3.90+1 1.08+0 1.20+1 4.40+1 1.09+0 1.30+1 5.00+1 1.12+0 1.40+1 5.70+1 1.17+0 1.50+1 5.90+1 1.12+0 1.70+1 7.40+1 1.24+0 1.80+1 8.20+1 1.30+0 1.90+1 7.90+1 1.20+0 2.00+1 7.90+1 1.15+0 2.10+1 8.60+1 1.21+0 2.20+1 9.80+1 1.33+0 2.30+1 9.80+1 1.29+0 2.60+1 9.50+1 1.16+0 2.40+1 8.40+1 1.08+0 2.50+1 8.50+1 1.06+0 2.70+1 9.60+1 1.15+0 2.80+1 9.50+1 1.12+0 3.00+1 9.20+1 1.05+0 1.50+0 3.50-1 1.21+0 2.00+0 1.10+0 1.49+0 2.50+0 1.70+0 1.18+0 38 3.00+0 3.10+0 1.28+0 3.50+0 4.30+0 1.18+0 4.00+0 5.50+0 1.08+0 4.50+0 7.80+0 1.15+0 5.00+0 9.50+0 1.10+0 5.50+0 1.10+1 1.03+0 1.00+0 8.00-2 1.18+0 2.00+0 8.10-1 1.10+0 39 1.00+0 6.50-2 9.60-1 2.25+0 1.00+0 9.45-1 3.00+0 2.30+0 9.50-1 47 2.50+0 1.07+0 7.40-1 3.00+0 1.88+0 7.76-1 4.00+0 4.18+0 8.17-1 52 4.50+0 5.49+0 8.10-1 5.00+0 6.81+0 7.90-1 6.00+0 8.88+0 6.97-1 6.50+0 1.25+1 8.36-1 7.00+0 1.41+1 8.18-1 8.00+0 1.88+1 8.58-1 8.50+0 2.05+1 8.46-1 9.00+0 2.14+1 8.04-1 1.00+1 2.60+1 8.30-1 1.05+1 2.45+1 7.28-1 1.10+1 3.09+1 8.57-1 1.20+1 3.69+1 9.13-1 1.50+0 2.85-1 9.83-1 2.00+0 7.52-1 1.02+0 2.50+0 1.44+0 9.96-1 55 2.98+0 2.19+0 9.21-1 3.00+0 2.42+0 9.99-1 4.97+0 7.68+0 9.03-1 5.96+0 1.12+1 8.92-1 6.94+0 1.54+1 9.08-1 6.96+0 1.48+1 8.68-1 8.94+0 2.36+1 8.97-1 1.09+1 3.22+1 9.02-1 63 6.00-1 6.70-3 8.31-1 8.00-1 2.70-2 9.63-1 1.00+0 6.40-2 9.45-1 1.20+0 1.30-1 9.77-1 1.40+0 2.20-1 9.60-1 1.60+0 3.40-1 9.45-1 1.80+0 4.70-1 8.89-1 2.00+0 6.70-1 9.08-1 1.00+0 7.06-2 1.04+0 1.10+0 9.88-2 1.02+0 1.20+0 1.34-1 1.01+0 77 1.50+0 2.96-1 1.02+0 1.30+0 1.78-1 1.01+0 1.40+0 2.32-1 1.01+0 1.60+0 3.70-1 1.03+0 1.70+0 4.57-1 1.04+0 1.80+0 5.54-1 1.05+0 1.90+0 6.63-1 1.06+0 2.00+0 7.82-1 1.06+0 2.10+0 9.13-1 1.06+0 2.20+0 1.05+0 1.06+0 2.40+0 1.34+0 1.04+0 2.30+0 1.20+0 1.06+0 2.50+0 1.49+0 1.03+0 2.70+0 1.77+0 9.81-1 2.60+0 1.63+0 1.01+0 2.80+0 1.89+0 9.45-1 2.90+0 2.00+0 9.07-1 3.00+0 2.10+0 8.67-1

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to u	ranium ^{a,b} —Continued
---	----------------------------------

	Exper	Faner		Faner	Exper		Farer	Fanar	
E_1	σ ^{exper} .	or spec	E_	σ ^{ε.,μ.,}	σ ^{εχιχι}	E_1	σ ^{ε.,,κ,}	σ ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
4.00-1	9.00-4	8.88-1	6.00-1	9.40-3	1.17+0	8.00	-1 3.30-2	1.18+0	87
1.00+0	7.90-2	1.17+0	1.20+0	1.40-1	1.05+0	1.40	+0 2.30-1	1.00+0	
1.60+0	3.60-1	1.00+0	1.80+0	5.20-1	9.84-1	2.00	+0 7.50-1	1.02+0	
2.20+0	9.90-1	1.00+0	2.40+0	1.30+0	1.01+0				
3.00+0	1.93+0	7.97-1							94
5.00-1	2.80-3	8.34-1	7.50-1	1.80-2	8.38-1	1.00	+0 6.30-2	9.30-1	95
1.25+0	1.50-1	9.74-1	1.50+0	3.00-1	1.03+0	2.00	+0 7.90-1	1.07+0	
2.50+0	1.70+0	1.18+0					•		
2.49-1	1.76-5	4.53-1	3.00-1	9.84-5	6.02-1	3.53	-1 4.09-4	8.53-1	99
4.03-1	9.34-4	8.83-1	4.84-1	2.37-3	8.33-1	5.52	-1 4.51-3	8.27-1	
6.35-1	8.93-3	8.56-1	7.20-1	1.54-2	8.52-1	8.10	-1 2.58-2	8.74-1	
9.00-1	4.02-2	8.92-1	1.10+0	8.60-2	8.88-1	1.52	+0 2.64-1	8.70-1	
1.72+0	4.15-1	9.09-1	1.91+0	5.80-1	9.08-1				
4.00+0	5.00+0	9.77-1	7.50+0	1.69+1	8.64-1	8.00	+0 1.83+1	8.35-1	100
9.00+0	2.24+1	8.42-1	1.00+1	2.62+1	8.36-1	1.10	+1 3.24 $+1$	8.99-1	100
1.20+1	3.58+1	8.86-1	1.30+1	3.93+1	8.79-1	1.40	+1 4.29+1	8.79-1	
1.50+1	4.87+1	9.26-1							
4.00-1	3.22-4	3.18-1	5.00-1	1.62-3	4.82-1	6.00	-1 4.64-3	5.75-1	103
7.00-1	9.58-3	5.98-1	8.00-1	1.93-2	6.88-1				
2.20+1	7.22+1	9.80-1	3.10+1	8.20+1	9.25-1	4.40	+1 8.34+1	8.64-1	104
3.50-1	3.30-4	7.26-1	4.00-1	8.17-4	8.06-1	5.00	-1 3.00-3	8.93-1	113
6.00-1	7.50-3	9.30-1	8.00-1	2.77-2	9.88-1	1.00	+0 7.08-2	1.05+0	
1.20+0	1.38-1	1.04+0	1.40+0	2.40-1	1.05+0	1.60	+0 3.70-1	1.03+0	
1.80+0	5.23-1	9.89-1	2.00+0	7.52-1	1.02+0	2.20	+0 1.00+0	1.01+0	
3.50-1	1.45-4	3.19-1	3.75-1	2.53-4	3.65-1	4.00	-1 4.42-4	4.36-1	118
4.50-1	9.89-4	5.09-1	5.00-1	1.87-3	5.57-1	6.00	-1 5.10-3	6.32-1	
7.00-1	1.06-2	6.62-1	8.00-1	1.93-2	6.88-1				
2.00-1	2.80-6	5.60-1	2.15-1	5.50-6	5.31-1	2.30	-1 1.00-5	5.13-1	120
2.45-1	1.90-5	5.60-1	2.60-1	3.50-5	6.31-1	2.75	-1 5.90-5	6.86-1	
3.00-1	1.40-4	8.57-1							
2.50-1	1.89 - 5	4.70-1	3.00-1	1.05-4	6.43-1	3.50	-1 3.26-4	7.17-1	121
4.00-1	7.01-4	6.92-1	5.00-1	2.46-3	7.33-1	6.00	-1 6.62-3	8.21-1	
7.00-1	1.36-2	8.49-1	8.00-1	2.40-2	8.56-1	9.00	-1 4.05-2	8.98-1	
1.00+0	6.18-2	9.13-1							
7.00+0	1.70+1	9.86-1							125
2.50-1	1.96-5	4.87-1	3.00-1	1.16-4	7.10-1	3.50	-1 3.75-4	8.25-1	126
4.00-1	1.00-3	9.87-1	4.50-1	2.10-3	1.08+0	5.00	-1 3.64-3	1.08+0	
5.50-1	6.08-3	1.13+0	6.00-1	9.57-3	1.19+0				
7.07-1	1.70-2	1.02+0	1.00+0	7.30-2	1.08+0	1.41	+0 2.40-1	1.01+0	130
2.00+0	7.50-1	1.02+0	2.50+0	1.50+0	1.04+0				

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}--Continued

F	Exper	Exper	F	Exper	Exper	F	Exper	r	Exper	
E,			<i>L</i> 1			<i>D</i> 1	0		0	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
										······
4.20-1	1.60-3	1.20+0	4.60-1	2.80-3	1.28+0	5.1	10-1 4	. 30-3	1.16+0	135
5.50-1	6.50-3	1.21+0	6.00-1	9.10-3	1.13+0	6.4	40-1 1	. 20-2	1.11+0	
6.90-1	1.70-2	1.13+0	7.40-1	2.20-2	1.08+0	8.2	20-1 3	. 20-2	1.03+0	
8.80-1	4.40-2	1.07+0	1.01+0	7.60-2	1.08+0	1.1	1+0 1	.20-1	1.20+0	
1.21+0	1.50-1	1.09+0	1.31+0	1.90-1	1.05+0	1.4	41+0 2	.60-1	1.11+0	
1.51+0	3.20-1	1.08+0	1.61+0	4.00-1	1.09+0	1.1	71+0 4	60-1	1.03+0	
1.81+0	5.90-1	1.10+0	1101.0		1.05.0				1100.0	
1.01.0	5.50 1	1.10.0								
1.50+0	2.62-1	9.04-1	2,10+0	6.68-1	7.78-1	2.0	60+0 1	. 21+0	7.47-1	148
3 10+0	1 95+0	7 36-1	3 30+0	2 44+0	7 79-1	3 (50+0 3	06+0	7 79-1	1.0
3 80+0	3 57+0	7 02-1	5.50.0	2.44.0		5.0			,,,,, 1	
5.0010	3.5710	/./2 1								
1.60+0	3.66-1	1.02+0	1.80+0	5.72-1	1.08+0	2.(00+0 7	15-1	9.69-1	151
2 20+0	1 07+0	1 08+0	2 40+0	1 32+0	1 03+0					202
2.20.0	1.07.0	1.00.0	2.40.0	1.52.0	110310					
68 C	admium		Fluoresce	nco vio	1d = 0.8	843				
-0			r 100 eat.e	ince yre	iu – 0.i					
2 50+0	9 07-1	7.65-1	3,00+0	1.65+0	8.26-1	4.1	00+0 3	3.86+0	9.05-1	52
4.50+0	4 31+0	7.61-1	5.00+0	5.44+0	7.49-1	6.1	00+0 8	3.70+0	8.06-1	52
6 50+0	8 53+0	6 71-1	7 00+0	1 17+1	7.96-1	8 1	00+0 1	49+1	7.92-1	
8 50+0	1 82+1	8 71-1	9 00+0	1 77+1	7 71-1	1	00+0	20+1	8 08-1	
1 05+1	$2 12 \pm 1$	7 25-1	1 10+1	270+1	8 62-1	1	20+1 2	00+1	8 46-1	
1.0511	2.12.1	7.2.5	1.1011	2.7011	0.02 1	1.	2011 2		0.40 1	
6 00-1	4 80-3	7 68-1	8 00-1	1 80-2	8 13-1	1	00+0 4	90-2	9.09-1	63
1 20+0	1 00-1	9 38-1	1.40+0	1.70-1	9.21-1	1	60+0 2	2.70-1	9.27-1	
1 80+0	3 90-1	9 09-1	2 00+0	5 40-1	8 99-1	÷.			<i></i>	
1.00.0	J.70 I	J.0J I	2.00.0	J.+0 I	0.77 1					
1 00+0	4 60-2	8 53-1	1 20+0	9 00-2	8 44-1	1.	40+0 1	60-1	8 67-1	86
1 60+0	2 50-1	8 58-1	1 80+0	3 80-1	8 85-1	2	00+0 5	5.30-1	8.82-1	
2 2010	7 10-1	8 70-1	2 40+0	9 00-1	8 57-1	2.	60+0 1	1 10+0	8 27-1	
2.2010	1 2010	7 00-1	3 00+0	1 6010	8 01-1	2.1	0010 3		0.27 1	
2.0010	1.3010	7.90*1	5.00.0	1.00.0	0.01 1					
3 00+0	1 47+0	7 36-1								94
5.0010	1.47.0	7.50 1								24
6 00-1	2 27-3	7 67-1	7 00-1	6 14-3	4 90-1	8	00-1 1	1 57-2	7 10-1	111
0.00 1	2.2, 3	7 06-1	1 00+0	3 46-2	6 42-1	1	10+0 5	5 46-2	7 05-1	
1 2010	7 00-2	7 61-1	1 30+0	1 08-1	7 60-1	1	40+0 1	1 40-1	7 59-1	
1 50+0	1 70-1	7 97-1	1.50+0	2 75-1	7 73-1	1.1	70+0 3	, 73-1 7 73-1	7.67-1	
1 80+0	3 18-1	7 41-1	1 90+0	3 97-1	7 78-1	2	00+0 2	4 74-1	7 89-1	
2 1010	5.10-1	7 50-1	2 20+0	5.37^{-1}	7 8/-1	2.	30TU 4	+./+-1 6 67_1	7.16-1	
2.10+0	5.25-1	7.50-1	2.20+0	0.33-1	7.04-1	2.	50+0 0	5.02~1	7.10-1	
7 00+0	1 3711	8 08-1								125
7.00+0	1.52+1	0.90-1								125
60 T	ndium		Fluoresce	nco vio	1d = 0.4	253				
47 1			riuoresce	sice yre	iu – 0.0	555				
3 00+0	1 51+0	9 16-1	5 00+0	5 20+0	8.53-1					59
5.0010	1.51.0	2.10 I	5.0010	5.2010	5155 I					
9.00-1	3.74-2	1.32+0	1.00+0	6,12-2	1,42+0	1	10+0 9	9.35-2	1.51+0	80
1 2010	1 28-1	1 5010	1 3010	1 70-1	1 40+0	1	40+0 9	2 30-1	1.55+0	•••
1 5010	2,20-1	1 3510	1 6040	3 40-1	1 44+0	1	70+0 3	3 91-1	1.35+0	
1 80+0	2.55°1 4 AR-1	1 17+0	1 00+0	5 10-1	1 23+0	1. 2	00+0 /	4 34-1	8 87-1	
2 10+0	6 80-1	1 21+0	2 2010	7 06-1	1.07+0	2.	30+0 0	9.86-1	1.30+0	
2.10.0	1 3110	1 5210	2.2010	1 / 00-1	1 53+0	2.	5010 3		1.0010	
2 +UTU	T. 2140	T. 77.40	2. JUTL	, T'+21.0	1.2210					

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E,	$\sigma^{E_{\lambda per}}$	σ ^{Exper}	<i>E</i> ₁	$\sigma^{E_{xper}}$	σ ^{Exper}	<i>E</i> ₁	σ ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	$\sigma^{\rm ECPSSR}$	 (MeV)	(barn)	oECPSSR	(MeV)	(barn)	<i>σ</i> ^{ECPSSR}	Ref.
<u></u>									
1.00+0	3.60-2	8.37-1	1.20+0	7.30-2	8.53-1	1.4	0+0 1.3	30-1 8.74-1	86
1.60+0	2.00-1	8.49-1	1.80+0	3.10-1	8.89-1	2.0	0+0 4.3	30-1 8.78-1	
2.20+0	5.90-1	8.12-1	2.40+0	1.30+0	8.83-1 7.89-1	2.0	0+0 9.0	0-1 8.24-1	
2.0010	1.10.0	0.12 1	5100.0	1.30.0	/.0 <i>/</i> 1				
6.00-1	5.50-3	1.13+0	8.00-1	1.90-2	1.09+0	1.0	0+0 5.0	00-2 1.16+0	87
1.20+0	8.50-2	9.93-1	1.40+0		1.01+0	1.6	0+0 2.3	30-1 9.76-1	
2.40+0	3.50-1	9.87-1	2.00+0	5.00-1	1.02+0	2.2	0+0 0.6	50-1 1.00+0	
2.4010	0.50 1	J.U/ I							
3.00+0	1.12+0	6.80-1	5.00+0	3.62+0	5.94-1	7.0	0+0 9.2	20+0 7.34-1	94
9.00+0	1.62+1	8.18-1	1.10+1	2.30+1	8.45-1				
6.00-1	1.73-3	3.57-1	7.00-1	4.25-3	4.32-1	8.0	0-1 8.5	50-3 4.86-1	111
9.00-1	1.88-2	6.63-1	1.00+0	2.64-2	6.14-1	1.1	0+0 3.9	90-2 6.30-1	
1.20+0	5.70-2	6.66-1	1.30+0	7.23-2	6.32-1	1.4	0+0 9.2	27-2 6.23-1	
1.50+0	1.22-1	6.45-1	1.60+0		6.32-1	1.7	0+0 1.9	98-1 6.85-1	
1.80+0 2.10+0	2.39-1	6.49-1	1.90+0	2.55-1	0.00-1	2.0	0+0 3.0	J3-1 6.19-1	
2.10.0	5171 1								
3.00-1	3.36-5	4.19-1	3.50-1	1.32-4	5.49-1	4.0	0-1 3.4	47-4 6.23-1	129
5.00-1	1.46-3	7.48-1	6.00-1	3.77-3	7.78-1	7.0	0-1 8.2	26-3 8.40-1	
8.00-1	1.50-2	8.58-1	9.00-1	2.48-2	8.75-1	1.0	0+0 3.7	77-2 8.76-1	
50 T	in		Fluoresce	ence yie	1d = 0.8	62			
2.60-1	5.70-5	3.39+0	2.80-1	9.70-5	3.03+0	3.2	0-1 2.1	10-4 2,29+0	6
3.60-1	5.20-4	2.47+0	3.80-1	7.70-4	2.58+0	4.0	0-1 1.1	10-3 2.66+0	Ū
4.40-1	2.00-3	2.73+0	4.50-1	2.30-3	2.76+0	6.0	0-1 5.6	60-3 1.49+0	
7.40-1	1.40-2	1.42+0	9.35-1	3.80-2	1.44+0	1.0	4+0 5.9	90-2 1.47+0	
1.60+2	9.41+1	1.63+0							30
									50
1.00+0	3.20-2	9.29-1	2.25+0	5.50-1	9.48-1	3.0	0+0 1.3	30+0 9.54-1	47
1.80+0	3, 13-1	1.10+0	2.20+0	5 82-1	1 08+0	26	0 + 0 g 1	19-1 1 02+0	60
3.00+0	1.32+0	9.69-1	3.20+0) 1.71+0	1.05+0	3.6	0+0 2.2	25+0 9.99-1	00
4.00+0	3.31+0	1.11+0	4.40+0) 4.03 1 0	1.07+0				
6 00-1	2 20-3	8 50-1	8 00-1	0 20-2	5 02-1	1 0	010 2 4	0.0.0.0.1	()
1,20+0	5 80-2	8 41-1	1 40+0	0.20-3	5.92-1 8 30-1	1.0	0+0 3.2 0+0 1 A	20-2 9.29-1	63
1.80+0	2.40-1	8.45-1	2.00+0	3.20-1	7.99-1	1.0		0°1 0.30-1	
2.33+0	6.10-1	9.41-1	2.67+0	9.41-1	9.70-1	3.0	0+0 1.3	38+0 1.01+0	64
7.22+0 7.22+0	3 60+0	9.04-1 1 01±0	3.0/+(/ 47±0) 2.39+0) 6 6010	1.01+0	4.0	0+0 2.9	90+0 9.96-1	
5.33+0	6.05+0	1.01+0	5.67+0	, 4.4070) 7.03+0	1.03+0	5.0	UTU 3.2	2370 1.0270	
2.20.0	21.22.0		2.07.10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.00.0				
1.00+0	2.60-2	7.55-1	1.20+0	5.60-2	8.12-1	1.4	0+0 1.0	00-1 8.30-1	86
1.60+0	1.60-1	8.36-1	1.80+0	2.40-1	8.45-1	2.0	0+0 3.4	40-1 8.49-1	
2.20+0	4.50-1	8.31-1	2.40+0	5.80-1	8.20-1	2.6	0+0 7.3	30-1 8.12-1	
2.00+0	9.00-1	0.05-1	2.90+0	1.00+0	0.00-1	3.0	0+0 1.2	20+0 8.81-1	

3.00+0 9.40-1 6.90-1

94

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}---Continued

<i>E</i> ₁	σ^{Exper}	0 ^{Exper}	$\overline{E_1}$	o ^{Exper}	σ^{Exper}	E,	o ^{Exper}	OExper	
(MeV)	- (barn)	0 ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
5.00-1	1.00-3	6.71-1	7,50-1	8.00-3	7.63-1	1.00-	-0 2 90-	2 8 42-1	95
1.25+0	7.30-2	9.12-1	1.50+0	1.50-1	9.78-1	2.004	-0 4 00-	$1 \ 9 \ 99 = 1$	
2.50+0	7.60-1	9.50-1	2100.0	1.00 1		2000			
8.00-1	4.50-3	3.25-1	9.00-1	1.00-2	4.43-1	1.00-	0 1.67-	2 4.85-1	111
1.10+0	2.31-2	4.65-1	1.20+0	3.55-2	5.15-1	1.30-	0 5.11-	2 5.53-1	
1.40+0	6.45-2	5.36-1	1.50+0	8.00-2	5.22-1	1.60	0 9.80-	-2 5.12-1	
2.00+0	1.21-1 2.18-1	5.15-1 5.45-1	1.80+0	1.60-1 2.68-1	5.63-1 5.74-1	1.90-	-0 1.91-	1 5.63-1	
7.00+0	1.07+1	1.00+0					•		125
/	1.07.1	1100.0							14.7
4.20-1	8.60-4	1.55+0	5.10-1	1.80-3	1.09+0	6.00	-1 3.00-	-3 7.97-1	135
7.00-1	5.70-3	7.38-1	7.50-1	7.80-3	7.44-1	7.90	-1 1.00-	·2 7.62-1	
8.30-1	1.50-2	9.27-1	8.80-1	2.10-2	1.02+0	1.01-	0 3.40-	2 9.49-1	
1.11+0	4.80-2	9.33-1	1.21+0	6.80-2	9.56-1	1.31-	-0 9.50-	2 1.00+0	
1.41+0	1.30-1	1.05+0	1.51+0	1.60-1	1.02+0	1.61-	-0 1.90-	-1 9.72-1	
1.71+0	2.10-1	8.76-1	1.81+0	2.70-1	9.33-1				
5.00-1	1.36-3	9.12-1	6.00-1	3.59-3	9.53-1	7.00	-1 7.63-	3 9.87-1	144
8.00-1	1.46-2	1.05+0	9.00-1	2.43-2	1.08+0	1.00-	HO 3.70-	•2 1.07+0	
1.10+0	5.44-2	1.09+0	1.20+0	7.50-2	1.09+0	1.30-	HO 1.00-	-1 1.08+0	
1.40+0	1.32-1	1.10+0	1.60+0	2.12-1	1.11+0	1.80-	HO 3.14.	·1 1.11+0	
2.00+0	4.37-1	1.09+0	2.20+0	5.92-1	1.09+0	2.40-	+0 7.62-	-1 1.08+0	
2.60+0	9.74-1	1.08+0	2.80+0	1.19+0	1.06+0	3.00-	0 1.46	H0 1.07+0	
3.20+0	1.72+0	1.05+0	3.50+0	2.22+0	1.06+0	4.00-	H0 3.114	0 1.05+0	
4.50+0	4.1/+0	1.04+0	5.00+0	5.26+0	1.03+0	5.50-	0 6.64	0 1.04+0	
6.00+0	7.93+0	1.02+0							
51 A:	ntimony		Fluoresce	nce yie	1d = 0.87	7			
1.00+0	2.60-2	9.41-1	2.25+0	5.40-1	1.13+0	3.00-	⊦0 1.20+	+0 1.06+0	47
6.00-1	1.40-3	4.77-1	8.00-1	1.00-2	9.09-1	1.00	+0 2.60	-2 9.41-1	63
1.20+0	5.50-2	9.88-1	1.40+0	1.00-1	1.02+0	1.60	⊦0 1.60∙	-1 1.03+0	
1.80+0	2.30-1	9.90-1	2.00+0	3.40-1	1.04+0				
3.00-1	1.86-5	4.77-1	3.50-1	7.25-5	5.77-1	4.00	-1 2.03	-4 6.62-1	126
4.50-1	5.49-4	8.73-1	5.00-1	1.12-3	9.82-1	5.50	-1 1.82	-3 9.62-1	
6.00-1	3.00-3	1.02+0	6.50-1	4.77-3	1.10+0				
3.50-1	7.50-5	5.96-1	4.00-1	1.92-4	6.26-1	5.00	-1 8.93	-4 7.83-1	129
6.00-1	2.28-3	7.77-1	7.00-1	5.12-3	8.41-1	8.00	-1 8.93	-3 8.12-1	
9.00-1	1.48-2	8.20-1	1.00+0	2.57-2	9.31-1				
2.10+0	3.15-1	8.21-1	2.60+0	6.06-1	8.17-1	3.10	+0 9.55	-1 7.70-1	148
3.30+0	1.32+0	8.93-1							
52 T	elluriu	m	Fluoresce	nce yie	1d = 0.8	77			
6.00-1	2.20-3	9.60-1	8.00-1	9.00-3	1.03+0	1.00	+0 1.90	-2 8.55-1	63
1.20+0	3.30-2	7.32-1	1.40+0	5.90-2	7.42-1	1.60	+0 9.20	-2 7.22-1	
1.80+0	1.20-1	6.31-1	2.00+0	1.80-1	6.68-1				

E ₁	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	— (MeV)	(barn)	0 ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
7.004	+0 7.06+0	9.05-1							125
1.604	+0 6.14-2	4.82-1	1.804	-0 8.26-2	2 4.34-1	2.004	H0 1.25-	1 4.64-1	138
2.20	0 1.79-1	4.89-1	2.40	0 2.42-1	5.03-1	2.604	0 2.82-	1 4.59-1	
2.804	+0 4.17-1	5.44-1	3.004	-0 5.19-1	5.54-1				
53	Iodine		Fluores	cence yie	= 1d = 0.8	84			
6.00-	-1 1.50-3	8.36-1	8.00	1 6.20-3	8 8.85-1	1.00-	+0 1.40-	2 7.80-1	87
1.204	+0 3.20-2	8.73-1	1.40-	-0 5.90-2	2 9.08-1	1.60-	HO 9.20-	2 8.81-1	
1.80	+0 1.50-1	9.59-1	2.00-	-0 2.10-1	l 9.45-1	2.20-	HO 3.00-	1 9.92-1	
2.401	+0 3.60-1	9.05-1							
3.004	+0 5.50 - 1	7.04-1	5.00-	-0 2.36+0) 7.64-1	7.00-	H0 5.14+	0 7.71-1	94
9.004	+0 8.70+0	7.91-1	1.104	-1 1.18+1	l 7.57-1				
6.11		1.02+0	8.11	1 6.01-3	3 8.07-1	1.02-	+0 1.62-	2 8.37-1	127
1.201	FU 3.32-2	9.05-1	1.40	0 5.79-2	2 8.91-1	1.60-	FO 9.60-	2 9.19-1	
2 404	FU 1.34-1 FN 3 58-1	9 00-1	2.004	-0 1.90-1	1 9 39-1	2.20-	FU 2.70-	1 8.92-1	
3.001	+0 6.23-1	7.97-1	3.20-	-0.7.52-1	7.99-1	3.40-	+0 9.45-	1 8 46-1	
3.604	+0 1.11+0	8.47-1	3.80	0 1.32+0	8.68-1	3.85-	+0 1.36+	0 8.64-1	
1 504	FU 8 07-2	9 69-1	2 00-	-0 2 02-1	9 09-1	2 25-	LO 2 95-	1 0 08-1	1/2
2.50	+0 0.07 2 +0 4.56-1	1.01+0	2.00	+0 2.02-1	1 7.98-1	3.00-	+0 2.93-	1 1.01+0	145
54	Xenon		Fluores	cence yie	e1d = 0.8	91			
4.50	+0 4.73+0	2.36+0	5.00-	+0 6.64+(2.54+0				48
55	Cesium		Fluores	cence yie	a1d = 0.8	97			
1.134	+0 1.60-2	8.26-1	1.34	-0 2.80-2	2 7.52-1	1.55-	+0 5.00-	2 7.90-1	87
1.76	+0 7.80-2	7.89-1	1.97-	0 1.10-1	l 7.60-1	2.18-	+0 1.70-	1 8.41-1	
2.394	+0 2.10-1	7.73-1	2.60-	0 2.90-1	8.21-1	2.70-	+0 3.00-	1 7.56-1	
1 504	LO E 04-2	1 0640	2 00	0 1 66 1		0 05		1 1 0110	1/0
2.50	+0 3.30-2 +0 3.56-1	1.14+0	2.00	-0 1.00-1	1.09+0	2.25	FU 2.20-	1 1.01+0 1 1 11+0	143
			2170		1,00,0	5.00		1,11,0	
56	Barium		Fluores	cence yie	$e^{1d} = 0.9$	02			
1.604	+2 4.22+1	1.02+0							30
1.004	⊦0 8.40 - 3	8.70-1	1.20-	0 1.40-2	2 6.96-1	1.40-	+0 2.00-	2 5.54-1	63
1.604	+0 3.00-2	5.12-1	1.80-	0 4.40-2	2 4.97-1	2.00-	+0 4.90-	2 3.87-1	~ ~
		• • •							
7.004	+0 3.75+0	8.92-1							125
1.504	-0 4.65-2	1.00+0	2 በበ-	0 1 07-1	8.45-1	2 25-	FU 2 05-	1 1 10±0	143
2.50	+0 3.26-1	1.25+0	2.75	-0 4.04-1	l 1.15+0	3.00-	+0 5.71-	1 1.25+0	140

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}-Continued

162

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}--Continued

<i>E</i> ₁	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	$\sigma^{E_{xper}}$	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	0 ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
		·							
6.00-1	7.64-4	8.78-1	7.00-	1 1.72	-3 8.93-1	8.00	0-1 3.50	-3 9.62-1	144
9.00-1	6.29-3	1.02+0	1.00+	0 1.03	-2 1.07+0	1.10	0+0 1.52	-2 1.07+0	
1.20+0	2.18-2	1.08+0	1.30+	0 2.94	-2 1.08+0	1.40	0+0 3.93	-2 1.09+0	
1.50+0	5.06-2	1.09+0	1.60+	0 6.67	-2 1.14+0	1.70	0+0 8.22	-2 1.13+0	
1.80+0	9.65-2	1.09+0	2.00+	0 1.42	-1 1.12+0	2.20	0+0 1.90	-1 1.10+0	
2.40+0	2.57-1	1.12+0	2.60+	0 3.27	-1 1.11+0	2.80	0+0 4.10	-1 1.10+0	
3.00+0	4.98-1	1.09+0	3.20+	0 6.09	-1 1.10+0	3.50	0+0 7.96	-1 1.11+0	
4.00+0	1.16+0	1.11+0	4.50+	0 1.53	+0 1.07+0	5.00	0+0 2.00	+0 1.06+0	
5.50+0	2.56+0	1.07+0	6.00+	0 3.07-	+0 1.04+0				
57 La	anthanu	m	Fluoresc	ence y	ield = 0.9	07			
8.00-1	2.70-3	9.17-1	1.00+	0 7.40	-3 9.37-1	1.2	0+0 1.40	-2 8.45-1	63
1.40+0	2.50-2	8.37-1	1.60+	0 3.10	-2 6.37-1	1.8	0+0 3.90	-2 5.29-1	
2.00+0	5.20-2	4.92-1							
2 00+0	1 21-1	1 1/4-0	2 254	0 1 96	-1 1 25+0	2 5	∩±∩ 2 //7	-1 1 1340	1/3
2.75+0	3.57-1	1.21+0	3.00+	0 4.93	-1 1.28+0	2.5	0/0 2.4/	1.1340	140
58 C	erium		Fluoresc	ence y	ield = 0.9	12			
6.00-1	3.20-4	5.89-1	8.00-	1 1.70	-3 7.12-1	1.0	0+0 5.10	-3 7.86-1	87
1.20+0	1.10-2	8.03-1	1.40+	0 2.10	-2 8.46-1	1.6	0+0 3.10	-2 7.63-1	
1.80+0	5.60-2	9.08-1	2.00+	0 7.40	-2 8.36-1	2.2	0+0 1.10	-1 9.04-1	
2.40+0	1.40-1	8.66-1							
7.00+0	2.64+0	8.50-1							125
5 00-1	9 57-5	5 26-1	6 00-	1 3 43	-4 6 31-1	7 0	0-1 8 82	-4 7 11-1	129
8 00-1	1 97-3	8 25-1	9.00-	1 3 87	-3 9.44-1	1 0	0+0 5 69	-3 8 77-1	127
0.00 1	1.97 5	0.25 1	5.00	1 5.07	5 7.44 1	1.0	0.0 5.05	5 0.77 1	
6.00-1	4.38-4	8.06-1	6.50-	1 6.89	-4 8.18-1	7.0	0-1 1.06	-3 8.55-1	144
8.00-1	2.23-3	9.34-1	9.00-	1 4.01	-3 9.78-1	1.0	0+0 6.51	-3 1.00+0	
1.10+0	1.00-2	1.04+0	1.20+	0 1.46	-2 1.07+0	1.3	0+0 2.02	2-2 1.08+0	
1.40+0	2.70-2	1.09+0	1.50+	0 3.48	-2 1.08+0	1.6	0+0 4.48	8-2 1.10+0	
1.70+0	5.62-2	1.11+0	1.80+	0 6.87	-2 1.11+0	2.0	0+0 9.94	-2 1.12+0	
2.20+0	1.34-1	1.10+0	2.40+	0 1.82	-1 1.13+0	2.6	0+0 2.34	-1 1.12+0	
2.80+0	2.93-1	1.11+0	3.004	0 3.62	-1 1.11+0	3.2	0+0 4.40)-1 1.12+0	
3.50+0	5.73-1	1.12+0	4.00+	0 8.30	-1 1.11+0	4.5	0+0 1.14	+0 1.10+0	
5.00+0	1.50+0	1.10+0	5.50 1	0 1.90	+0 1.09+0	6.0	0+0 2.34	+0 1.08+0	
59 P	raseodv	mium	Fluoresc	ence v	ield = 0.9	917			
1				y	01.				
6.00-1	2.90-4	6.72-1	8.00-	1 1.31	-3 6.74-1	1.0	0+0 3.70	-3 6.92-1	87
1.20+0	8.30-3	7.30-1	1.40+	0 1.60	-2 7.72-1	1.6	0+0 2.70)-2 7.94-1	
1.80+0	3.90-2	7.54-1	2.00+	0 5.70	-2 7.66-1	2.2	0+0 8.10)-2 7.90-1	
2.40+0	1.00-1	7.33-1							
5.00-1	3 80-5	2.70-1	7 50-	1 6 20	-4 4.37-1	1 0	0+0 3 30)-3 6,17-1	95
1.25+0	9,20-3	6.88-1	1.504	0 1.90	-2 7.08-1	2.0	0+0 6.40)-2 8,60-1	
2.50+0	1.50-1	9.65-1	1.50	- 1.70		2.0			
60 N	eodymiu	m	Fluoresc	ence y	ield = 0.9	921			
3.00+0	2.10-1	8.99-1	5.004	0 8.40	-1 8.35-1				59

<u> </u>	o ^{Exper}	σ^{Exper}	E	σ ^{Exper}	σ ^{Exper}	E_1	σ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	- (MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	- Ref.
6.00-1	2.10-4	6.13-1	8.00-1	1.10-3	6.94-1	1.00+0) 3.40-3	7.68-1	87
1.20+0	8.10-3	8.55-1	1.40+0	1.60-2	9.22-1	1.60+0	2.60-2	9.11-1	
1.80+0) 3.90-2	8.96-1	2.00+0	5.30-2	8.44-1	2.20+0	7.50-2	8.65-1	
2.40+0	9.70-2	8.41-1							
7.00-1	L 6.83-4	8.47-1	8.00-1	1.50-3	9.46-1	9.00-3	1 2.66-3	9.62-1	144
1.00+0) 4.43-3	1.00+0	1.10+0	6.86-3	1.03+0	1.20+0	0 1.02-2	1.08+0	
1.30+0) 1.41-2	1.08+0	1.40+0	1.91-2	1.10+0	1.50+0	2.49-2	1.11+0	
1.60+0	3.19-2	1.12+0	1.80+0	4.92-2	1.13+0	2.00+0	7.06-2	1.12+0	
2.20+0	9.95-2	1.15+0	2.40+0	1.30-1	1.13+0	2.60+0	0 1.69-1	1.13+0	
2.80+0	2.11-1	1.12+0	3.00+0	2.63-1	1.13+0	3.20+0	3.23-1	1.14+0	
3.50+0) 4.21-1	1.13+0	4.00+0	6.06-1	1.11+0	4.50+0	8.32-1	1.10+0	
5.00+0	0 1.09+0	1.08+0	5.50+0	1.41+0	1.09+0	6.00+0	0 1.73+0	1.08+0	
1.00+0) 1.86-3	4.20-1	1.20+0	5.61-3	5.92-1	1.40+0	0 1.27-2	7.32-1	154
1.60+0) 2.34-2	8.20-1	1.80+0	3.96-2	9.10-1	2.00+0	5.61-2	8.93-1	
2.20+0	8.19-2	9.45-1	2.40+0	1.10-1	9.53-1	2.60+0	0 1.42-1	9.51-1	
2.60+0) 1.55-1	1.04+0	2.80+0	1.79-1	9.48-1	3.00+0) 2.43-1	1.04+0	155
3.20+0	3.04-1	1.07+0	3.40+0	3.73-1	1.09+0	3.60+0	0 4.23-1	1.05+0	
2 70+0) 1 35-1	8 02-1	3 00+0	0 13-1	9 12-1	/ 00±(5 02-1	0 20-1	150
4 50+0	7 95-1	1 05+0	4 90+0	1 0510	1 10-0	5 6010	5 3.02 - 1	9.20-1	139
6.00+0) 1.84+0	1.15+0	6.50+0	2.14+0	1.10+0	5.40+0	5 1.20+0	1.03+0	
61 H	Promethi	ım	Fluoresce	nce yie	1d = 0.92	5			
7 00+0) 1 74+0	8 65-1							105
7.0010	, 1.,4,0	0.05 1							125
62 S	Samarium		Fluoresce	ence yie	1d = 0.929	9			
1.60+2	2 4.55+1	1.54+0							30
7 50-1	<i>k</i> 30- <i>k</i>	5 63-1	1 00+0	2 10-2	6 80 - 1	1 051/		0 0/ 1	
1 50+0	$1 4.00^{-4}$	8 77-1	2 00+0	× 2.10-5	0.09^{-1}	2 5010		8.04-1	95
1.5010	1.40-2	0.77-1	2.00+0	4.30-2	9.34-1	2.30-0	0.90-2	9.33-1	
7.00-1	3.97-4	7.52-1	8.00-1	9.25-4	8.70-1	9.00-1	L 1.74-3	9.23-1	144
1.00+0	2.96-3	9.71-1	1.10+0	4.69-3	1.02+0	1.20+0	7.06-3	1.06+0	-
1.30+0	9.85-3	1.08+0	1.40+0	1.36-2	1.11+0	1.50+0) 1.77-2	1.11+0	
1.60+0	2.30-2	1.13+0	1.70+0	2.99-2	1.18+0	1.80+0	3.57-2	1.15+0	
2,00+0	5.08-2	1.13+0	2.20+0	7.12-2	1.14+0	2.40+0	9.57-2	1 15+0	
2.60+0	1.24-1	1.15+0	2.80+0	1.57-1	1.15+0	3.00+0) 1.95-1	1.15+0	
3.20+0	2.34-1	1.13+0	3.50+0	3.11-1	1.15+0	4.00+0) 4.51-1	1.13+0	
4.50+0	6.27-1	1.12+0	5.00+0	8.22-1	1.10+0	5.50+0) 1.05+0	1,10+0	
6.00+0	1.32+0	1.10+0				51501	1.03.0	111010	
8.00-1	5.66-4	5.33-1	1.00+0	2.22-3	7.28-1	1 20+0) 5 24-3	7 89-1	154
1.40+0	1.05-2	8.57-1	1.60+0	1.75-2	8.62-1	1.80+0)) 88)	9 25-1	T74
2.00+0	4.36-2	9.67-1	2.20+0	6.12-2	9.82-1	2.40+0) 8.37-2	1 00+0	
2.60+0	1.10-1	1.02+0	2.20.0	fa	· · · · · ·	2.4010		1.0010	
2.60+0	1.24-1	1 15+0	2 ጸብቷብ	1 54-1	1 13∔∩	3 00-10	1 82-1	1 07±0	155
3 2040	2 2 2 - 1	1 15+0	3 /01-0	2.54-1	1 1340	3 6010) 3 /5_1	1 1740	100
3.80+0	3.87-1	1,12+0	5.4010	2.01-1	1.1310	5.0040	, 7.42-T	1.1/70	
2.0010	, I								

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}--Continued

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}---Continued

<i>E</i> ₁	σ^{Exper}	o ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	o ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
	1 1/ 1	0 25 1			1 0110				4.50
2.70+0	1.14-1	9.35-1	3.00+0	1./1-1	1.01+0	4.00+0	4.25-1	1.06+0	159
4.50+0	5.68-1	1.02+0	5.00+0	7.48-1	1.01+0	5.50+0	1.01+0	1.06+0	
6.00+0	1.2/+0	1.06+0	6.50+0	1.52+0	1.04+0	7.00+0	1.90+0	1.09+0	
63 E	uropium		Fluoresce	nce yie	1d = 0.932				
8.00-1	8.50-4	9.74-1	1.00+0	2.00-3	7.88-1	1.20+0	4.50-3	8.07-1	87
1.40+0	9.10-3	8.80-1	1.60+0	1.40-2	8.15-1	1.80+0	2.30-2	8.70-1	
2.00+0	3.30-2	8.61-1	2.20+0	4.40-2	8.29-1	2.40+0	5.90-2	8.30-1	
2.20+1	1.26+1	9.87-1	3.10+1	1.65+1	8.83-1	4.40+1	2.00+1	8.15-1	104
64 G	adolini	um	Fluoresce	nce yie	1d = 0.935				
8.00-1	7.10-4	9.89-1	1.00+0	2.20-3	1.04+0	1.20+0	4.90-3	1.04+0	87
1.40+0	8.60-3	9.83-1	1.60+0	1.50-2	1.03+0	1.80+0	2.10-2	9.33-1	
2.00+0	3.30-2	1.01+0	2.20+0	4.40-2	9.70-1	2.40+0	5.60-2	9.22-1	
7 00+0	9 90-1	7 50-1	8 00+0	1 / 810	8 10-1	0 00±0	1 8510	7 00-1	100
1 0010	3.30-1 3.90-1	0 27_1	1 1011	2 0610	0.19-1	9.00+0	1.0370	7.02-1	100
1 2011	2.40TU	0.3/-1	1.10+1	5.0010	0.4/-1	1.20+1	3./3+0	8.75-1	
1.30+1	4.10+0	0.22-1	1.40+1	4.94+0	8.05-1	1.50+1	5.68+0	8.83-1	
4.75+0	2.88-1	5.98-1							107
9.00-1	5.60-4	4.33-1	1.20+0	3.18-3	6.77-1	1.40+0	7.01-3	8.01-1	139
1.60+0	1.31-2	8.97-1	1.80+0	2.05-2	9.11-1	2.00+0	3.15-2	9.64-1	
2.20+0	4.56-2	1.00+0	2.40+0	6.24-2	1.03+0	2.60+0	8.00-2	1.01+0	
65 T	erbium		Fluoresce	nce yie	ld = 0.938				
1.60+2	2.94+1	1.18+0							30
8.00-1	1.85-4	3.13-1	1.00+0	9.94-4	5.60-1	1.20+0	3.01-3	7.60-1	155
1.40+0	6.47-3	8.71-1	1.60+0	1.17-2	9.40-1	1.80+0	1.74-2	9.06-1	
2.00+0	2.77-2	9.91-1	2.20+0	3.90-2	1.00+0	2.40+0	5.26-2	1.01+0	
2.60+0	7.30-2	1.08+0	2.80+0	9.57-2	1.11+0	3.00+0	1.13-1	1.05+0	
3.20+0	1.43-1	1.09+0	3.40+0	1.60-1	1.01+0	3.60+0	1.96-1	1.05+0	
2.70+0	9.10-2	1.19+0	3.00+0	1.00-1	9.33-1	4,00+0	2.76-1	1.08+0	159
4.50+0	3.51-1	9.79-1	5,00+0	4 77-1	9 93-1	5 50+0	6 67-1	1 07+0	100
6.00+0	1.04+0	1.33+0	6.50+0	1.06+0	1.11+0	7.00+0	1.56+0	1.36+0	
67 H	olmium		Fluoresce	nce yie	ld = 0.944				
8,00-1	3.62-4	8,99-1	9 00-1	7.27-4	9.72-1	1 05+0	1 70-3	1 08+0	91
1 20+0	3 14-2	1 10+0	1 35.10	5 42-2	1 16+0	1 5010	8 38-3	1 1810	71
1 6010	1 08-0	1 1010	1 2010	1 47-0	1 1010	2.0010	0.00-0	1 1710	
2.0070 2 1010	2 70-2	1 1/10	1.00TU	3 25-9	1 1410	2.0070	4. 20. 0	1 1010	
2.10TU 9 6010	5 54-0	1 1010	2.2070	J.JJ-2	1 1010	2.4070	4.32-2	1 1010	
2.0070	1 10 1	1 2110	2.00+0	1.21-2	1.1240	3.00+0	0.99-2	1.12+0	
3 2070	1.10-1	1 12170	5.40+0	2.04-1	1.1/+0	3.00+0	1.20-1	1.13+0	
3.0070	1.02-1	1.1240	4.00+0	2.00-1	1.0/40				
7.50-1	1.10-4	3.92-1	1.00+0	7.10-4	5.67-1	1.25+0	2.50-3	7.38-1	95
1.50+0	6.00-3	8.46-1	2.00+0	1.90-2	9.19-1	2.50+0	4.20-2	9.48-1	

E ₁	o ^{Exper}	oExper	E ₁	o ^{Exper}	σ^{Exper}	E,	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	o ^{ECPSSR}	Ref.
7.00+0	1.00+0	1.14+0							125
0 00-1	2 08-4	2 78-1	1 00+0	6 08-/	/ 85-1	1 20+0	1 74-3	6 11-1	145
1.20+0	1.89-3	6.63-1	1.40+0	3.90-3	7.22-1	1.60+0	7.45-3	8.18-1	143
1.60+0	7.92-3	8.70-1	1.80+0	1.30-2	9.20-1	2.00+0	1.97-2	9.53-1	
2.00+0	2.06-2	9.97-1	2.20+0	2.84-2	9.87-1	2.40+0	3.92-2	1.01+0	
2.40+0	3.95-2	1.02+0	2.60+0	5.32-2	1.05+0	2.60+0	4.95-2	9.81-1	
2 70+0	6 11-2	1.07+0	3.00+0	8.53-2	1.07+0	4.00+0	2.04-1	1.06+0	159
4.50+0	2.84-1	1.05+0	5.00+0	3.87-1	1.07+0	5.50+0	5.14-1	1.09+0	207
6.00+0	6.47-1	1.09+0	6.50+0	8.96-1	1.23+0	7.00+0	9.87-1	1.12+0	
7.50+0	1.22+0	1.17+0	8.00+0	1.31+0	1.08+0	8.50+0	1.65+0	1.18+0	
9.00+0	1.96+0	1.23+0	9.50+0	2.01+0	1.12+0	1.00+1	2.47+0	1.22+0	
69 T	"hulium		Fluoresce	nce vie	1d = 0.949	1			
U ²	1141144		114016500	nee yre	IU - 0.949				
3.00+0	5.30-2	8.80-1	5.00+0	2.40-1	8.68-1				59
7 0010	7 00 1	1 0010							105
7.00+0	7.32-1	1.0840							125
1.00+0	4.63-4	5.20-1	1.20+0	1.46-3	7.07-1	1.40+0	3.11-3	7.84-1	154
1.60+0	5.64-3	8.38-1	1.80+0	9.57-3	9.11-1	2.00+0	1.40-2	9.09-1	
2.20+0	2.27-2	1.05+0	2.40+0	2.85-2	9.82-1	2.60+0	4.58-2	1.21+0	
1.00+0	5.97-4	6.71-1	1.20+0) 1.90-3	9.20-1	1.40+0	4.02-3	1.01+0	155
1.60+0	7.21-3	1.07+0	1.80+0) 1.21-2	1.15+0	2.00+0	1.74-2	1.13+0	100
2.20+0	2.82-2	1.31+0	2.40+0	3.56-2	1.23+0	2.60+0	4.63-2	1.22+0	
2.80+0	5.89-2	1.22+0	3.00+0	8.19-2	1.36+0	3.20+0	1.04-1	1.41+0	
3.40+0	1.31-1	1.47+0	3.60+0) 1.43-1	1.35+0				
70 V	ttorhim	n	Fluoresce	nce vie	1d = 0.951				
			1 1001 0000			•			
4.00+0	1.19-1	9.37-1	7.50+0	5.64-1	7.99-1	8.00+0	7.10-1	8.58-1	100
9.00+0	9.06-1	8.27-1	1.00+1	1.10+0	7.92-1	1.10+1	1.39+0	8.08-1	
1.20+1	1./4+0	8.44-1	1.30+1	2.04+0	8.38-1	1.40+1	2.35+0	8.36-1	
1.30+1	2.74+0	0.35-1							
72 H	afnium		Fluoresce	ence yie	1d = 0.955	i			
7.50-1	5.10-5	4.86-1	1.00+0	3.70-4	6.88-1	1.25+0	1.30-3	8.37-1	95
1.50+0	3.00-3	8.92-1	2.00+0	9.30-3	9.21-1	2.50+0	2.10-2	9.54-1	
73 1	antalum		Fluoresce	ence yie	1d = 0.957	,			
1 0010	1 00 0	4 94.5	0 1717		1 0510	0 / 0 / 0		1 0710	
2 6640	1.30-2	2 50+0	2.1/+() 2.30-2	1.95+0	2.40+0	3.30-2	1.9/+0	1
2.04+0	0.00-2	£.37TV	2.00+(, ,.,0-2	2.3070	3.13+0	, 1.10 - 1	2. UOTV	
1.80+0	3.10-3	5.19-1	2.00+0	3.80-3	4.31-1	2.20+0	6.00-3	4.84-1	5
2.30+0	8.00-3	5.52-1	2.40+0	9.70-3	5.78-1	2.60+0	1.10-2	5.00-1	
3.00+0	2.00-2	5.69-1	3.40+0	2.50-2	4.79-1	3.50+0	2.80-2	4.90-1	
3 7010	3 50-9	5 17-1	3 00-10) / 50-9	5 67-1				
J./UTU	J.JU~4		J. 30TL	/ *** JU‴~	2.01-1				

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}---Continued

1	8 8

E ₁	o ^{Exper}	σ^{Exper}	<i>E</i> ₁	o ^{Exper}	σ^{Exper}	<i>E</i> 1	0 ^{Exper}	σ^{Exper}	<u> </u>
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	0 ^{ECPSSR}	- (MeV)	(barn)	OECPSSR	Ref.
1.00+	+0 8.70 - 4	1.91+0	1.12-	+0 1.40-3	3 1.74+0	1.25	+0 2.50-3	3 1.87+0	6
1.60+	+2 2.28+1	1.41+0							30
7.50-	-1 3.30-5	3.82-1	1.00-	HO 3.10-4	4 6.80-1	1.25	+0 1.60-3	3 1.20+0	95
1.504	⊦0 2.80-3	9.60-1	2.00-	+0 8.70-:	3 9.87-1	2.50 [,]	+0 2.00-2	2 1.04+0	
7.00+	+0 3.27-1	8.04-1	8.00-	+0 5.00-	1 8.77-1	9.00	+0 6.62-	1 8.72-1	100
1.004	+1 8.17-1	8.42-1	1.10-	H1 9.94-	1 8.29-1	1.20	+1 1.41+0	0 9.69-1	
1.304	+1 1.53+0	8.91-1	1.40	+1 1.63+	0 8.15-1	1.50	+1 1.8/+	0 8.1/-1	
7.004	+0 4.57-1	1.12+0							125
1.104	+0 4.40-4	5.98-1	1.30	+0 1.01-:	3 6.35-1	1.50	+0 2.24-	3 7.68-1	158
1.704	FO 4.28-3	8.93-1	1.90	+0 6.84-	3 9.35-1	2.10	+0 1.08-	2 1.03+0	
2.25	+0 1.40-2	1.04+0	2.45	+0 1.98-	2 1.10+0	2.65	+0 2.54-	2 1.08+0	
2.804	H0 3.47-2	1.23+0	3.00	+0 4.14-	2 1.18+0	3.20	+0 5.13-	2 1.19+0	
3.40	+0 6.52-2	1.25+0	3.60	+0 7.50-	2 1.20+0	3.80	+0 8.50-	2 1.16+0	
2.70	+0 2.80-2	1.12+0	3.00	+0 3.92-	2 1.11+0	3.30	+0 5.24-	2 1.10+0	159
3.604	+0 7.11-2	1.14+0	4.00	+0 9.76-	2 1.14+0	4.50	+0 1.38-	1 1.14+0	
5.00	+0 1.96-1	1.20+0	5.50	+0 2.72-	1 1.27+0	6.00	+0 3.18-	1 1.17+0	
6.504	+0 3.81-1	1.14+0	7.00	+0 4.93-	1 1.21+0	7.50	+0 5.98-	1 1.23+0	
8.004	+0 6.43-1	1.13+0	8.50	+0 8.13-	1 1.23+0				
74	Tungster	L	Fluores	cence yi	eld = 0.9	58			
4.75	+0 1.05 - 1	8.41-1							107
1.20-	+0 5.84-4	6.13-1	1.39	+0 1.64-	3 8.92-1	1.60	+0 2.68-	3 8.15-1	139
2.00-	+0 6.60-3	8.56-1	2.22	+0 1.10-	2 9.81-1	2.40	+0 1.59-	2 1.08+0	
2.60-	+0 1.91-2	2 9.90-1	2.80	+0 2.44-	2 9.88-1	3.20	+0 3.89-	2 1.02+0	
3.80-	+0 6.59-2	2 1.02+0	4.50	+0 1.08-	1 1.01+0	5.20	+0 1.62-	1 1.00+0	
6.00-	+0 2.14-1	8.95-1	6.90	+0 3.03-	1 8.75-1	8.00	+0 4.32-	1 8.56-1	
6.50	-1 9.01-6	5 3.54-1	7.20	-1 2.51-	5 4.68-1	8.00	-1 6.10-	5 5.68-1	142
9.00	-1 1.44-4	6.63-1	1.00	+0 2.79-	4 7.21-1	1.25	+0 8.99-	4 7.82-1	
1.50-	+0 2.01-3	3 7.94-1	1.75	+0 3.80-	3 8.13-1	2.00	+0 6.57-	3 8.52-1	
2.25-	+0 1.02-2	2 8.67-1	2.50	+0 1.56-	2 9.23-1	2.75	+0 2.25-	2 9.67-1	
3.00-	+0 3.18-2	2 1.03+0	3.25	+0 4.27-	2 1.07+0	3.50	+0 5.29-	2 1.05+0	
3.75-	+0 7.35-2	2 1.18+0			i				
75	Rhenium		Fluores	cence yi	eld = 0.9	959			
7.50	-1 2.20-5	5 3.80-1	1.00	+0 1.60-	4 4.88-1	1.25	+0 7.40-	4 7.46-1	95
1.50	+0 2.10-3	3 9.54-1	2.00	+0 7.10-	3 1.05+0	2.50	+0 9.60-	3 6.46-1	
78	Platinum	<u>n</u>	Fluores	cence yi	eld = 0.9	963			
1 40	±9 1 09±1	1 1 / 010							30
T.00.	1.02T.	L 1.40TU							30

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	 	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	aECPSSR	- (MeV)	(barn)	σ ^{ECPSSR}	- (MeV)	(barn)	0 ECPSSR	Ref
(IME V)	(bain)								
7 50-	-1 1 20-5	3.79-1	1.00-	FO 1.30-	4 6.46-1	1.25-	FO 5.10-4	4 7 95-1	95
1.504	+0 1.30-3	8.88-1	2.00-	+0 4.00-	3 8.67-1	2.50	+0 9.20~	3 8.97-1	25
7.004	+0 2.72-1	1.22+0							125
79	Gold		Fluores	cence vi	eld = 0.9	964			
2.40	+0 1.60-2	2.03+0							1
1 60-	+2 1 68+1	1.44+0							30
1.00	.2 1.0011	1.44.0							50
3.004	+0 2.00-2	1.19+0	4.00	+0 4.20-	2 1.02+0	6.00-	+0 1.30-	1 9.86-1	41
7.00-	+0 2.40 - 1	1.20+0	8.00	+0 2.60-	1 9.24-1	9.00-	+0 4.50-	1 1.19+0	
1.004	+1 5.80-1	1.19+0	1.10	+1 6.50-	1 1.07+0	1.20-	+1 8.20-	1 1.11+0	
1.304	+1 1.06+0	1.20+0	1.40	+1 1.20+	0 1.16+0	1.50-	+1 1.40+	0 1.1/+0	
1.00-	+0 9.47-5	5.54-1	1.10	+0 1.88-	4 6.49-1	1.20-	+0 3.07-	4 6 75-1	91
1.30-	+0 4.96-4	7.40-1	1.40	+0 7.61-	4 8.06-1	1.50-	+0 1.03-	3 8.04-1	71
1.60-	+0 1.41-3	8.36-1	1.70	+0 1.96-	3 9.06-1	1.80-	+0 2.50-	3 9.21-1	
1.90-	+0 3.16-3	9.43-1	2.00	+0 4.04-	3 9.91-1	2.10-	+0 4.95-	3 1.01+0	
2.20-	+0 5.75-3	9.93-1	2.40	+0 8.33-	3 1.06+0	2.60-	+0 1.12-	2 1.08+0	
2.80-	+0 1.47-2	1.10+0	3.00	+0 1.89-	2 1.13+0	3.20-	+0 2.36-	2 1.15+0	
3.40-	+0 2.96-2	1.18+0	3.60	+0 3.70-	2 1.24+0	3.80-	+0 4.35-	2 1.23+0	
4.00-	+0 4.83-2	1.17+0							
1 00-	±0 0 60-5	5 61-1	1 30	LO 3 80-	4 5 67-1	1 50.	LO 0 00-	<i>k</i> 7 02-1	0.2
1.00-	+0 3.00-3	7 41-1	2 00	+0 3.80- +0 3.00-	-4 3.07-1	2.50	+0 9.00-	4 7.03-1 3 8 77_1	95
2.50-	+0 7.50-3	8.25-1	2.75	+0 1.00-	2 7.96-1	2.25	+0 1 30-	2 9 75-1	
3.00-	+0 1.90-2	1.13+0	3.50	+0 2.50-	2 9.13-1	4,00-	+0 4.00-	2 9.70-1	
5.00-	+0 7.00-2	8.83-1	6.00	+0 1.10-	1 8.34-1	7.00-	+0 1.80-	1 9.03-1	
8.00-	+0 2.60-1	9.24-1							
7 50	1 7 70 6	0 00 1	1 00		F F F0-1	1 05		4 7 00 1	0.5
1 50-	TU 0 20-4	7 /0_1	2 00	+0 9.40- 10 3 90_	-5 5.50-L	2 50	+0 3.90-	4 7.02-1	95
1.50	10 9.00-4	/.4/~1	2.00	10 3.20-	5 7.05-1	2.50	1.30-	5 8.25-1	
7.50-	+0 2.25-1	9.43-1	8.00	+0 2.46-	1 8.74-1	9.00-	+0 3.23-	1 8.55-1	100
1.00-	+1 4.12-1	8.46-1	1.10	+1 5.50-	1 9.04-1	1.20-	+1 6.75-	1 9.13-1	
1.30-	+1 8.03-1	9.12-1	1.40	+1 9.41-	1 9.09-1	1.50-	+1 1.16+	0 9.72-1	
2 20-		1 0910	2 10	וסס כ רו	0 0 21 1		1 5 021	0 0 01 1	10/
2.207	F1 2.00+0	1.00+0	5.10	-1 3.00+	-0 9.31-1	4.40-	+1 3,93+	0 9.31-1	104
7.00-	+0 2.12-1	1.06+0							125
									140
7.10	-1 4.32-6	2.57-1	7.60	-1 8.77-	6 3.08-1	8.20	-1 1.75-	5 3.57-1	142
9.00	-1 3.89-5	4.29-1	1.00	+0 8.94-	5 5.23-1	1.25	+0 3.86-	4 6.95-1	
1.50-	+0 1.05-3	8.20-1	1.75	+0 2.21-	3 9.10-1	2.00-	+0 3.95-	3 9.69-1	
2.25-	+0 6.30-3	1.00+0	2.50	+0 9.24-	3 1.02+0	3.00-	+0 1.60-	2 9.55-1	
3.50-	+0 2.70-2	9.86-1							
1 60-	+0 1 13-3	6 70-1	2 00-	+0 3 7/-	3 9 18-1	2 20-	+n 5 /a-	3 9 /0-1	145
2.40-	+0 7,13-3	9.04-1	2.60	+0 1.12-	2 1.08+0	2.20	+0 1 36-	2 1.31+0	747
						2.00			

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}---Continued

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}---Continued

	Exner	Evner		Exper	Exper		Fyper	Exper	
E_{i}	σ ^{ε.xper}	σεχρεί	$ E_1$	σ^{Exper}	σελικί	<i>E</i> 1	O ^{Exper}	$\sigma^{e_{\lambda_1e_1}}$	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
			·····				•		
82	Load		Fluoresc	onco vi	a1d = 0.96	67			
Ű.	nead		I IUOI COC	ence yr	eiu - 0.7				
1.92-	+0 3.60-3	1.49+0	2.17+	0 5.90-	3 1.53+0	2.40+	0 1.05-2	1.89+0	1
2.88-	+0 3.05-2	2.94+0							
1.60-	+0 1.10-3	9.58-1	1.70+	0 1.50-	3 1.01+0	1.80+	0 2.00-3	1.07+0	5
1.90-	+0 2.20-3	9.46-1	2.00+	0 2.70-	3 9.52-1	2.10+	0 3.60-3	1.05+0	
2.20-	+0 4.30-3	1.06+0	2.30+	0 4.50-	3 9.43-1	2.40+	0 5.10-3	9.18-1	
2.50	+0 /.90-3	1.23+0	2.60+	0 8.40- 0 1 10	31.14+0	2.70+	0 9.00-3		
2.70	TO 9.90-3	0.55-1	2.90+	0 1.10-	21.04+0	3 201	0 1.30-2	1.09+0	
3 40-	+0 1.40-2 +0 1 70-9	9.55-1 9.57-1	3 60+	0 1.30-	2 1.02+0	5.304	0 1.00-2	9.90-1	
5.40	.0 1.70 2	<i>J.J.</i> ¹	5.001	0 1.00-	2 0.47-1				
1.60	+2 1.84+1	1.87+0							30
3.00-	+0 1.28-2	1.08+0	5.00+	0 5.30-	2 9.37-1				59
7.50	-1 2.60-6	1.90-1	1.00+	0 6.10-	5 5.83-1	1.25+	0 2.40-4	6.62-1	95
1.50	+0 6.60-4	7.63-1	2.00+	0 2.30-	3 8.11-1	2.50+	0 5.10-3	3 7.95-1	
4 00	10 / 07 0	1 0010	7 501		1 0 10 1	• • • • •		0 00 1	100
4.00	+0 4.0/-2	0 07-1	1 00+	U 1.5/-	1 9.18-1	8.00+	1 2 00 1	9.22-1	100
1 20.	+0 2.41-1 +1 % 78 - 1	8 90-1	1.00+	1 5 68-	1 8 86-1	1.10+	·1 5.99-1	9.07-1 9.07-1	
1.50	+1 8.00-1	9.16-1	1.50	1 5.00	1 0.00 1	1.401	T 0.75~1	0.97-1	
2100									
1.00	+0 4.18-5	4.00-1	1.25+	0 2.44-	4 6.73-1	1.50+	0 6.38-4	7.38-1	113
1.75	+0 1.22-3	7.29-1	2.00+	0 2.45-	3 8.63-1	2.25+	0 3.69-3	8.37-1	
3.00	+0 9.87-3	8.31-1	4.00+	0 2.61-	2 8.89-1	5.00+	0 5.37-2	2 9.49-1	
6.00	+0 9.13-2	9.69-1	7.00+	0 1.35-	1 9.45-1	8.00+	-0 1.85-1	9.17-1	
7.00	+0 1./8-1	1.25+0							125
87	Rismuth		Fluoresc	anca vi	$a_1d = 0.9$	68			
00	DISMUCH		r iuoresc	ence y	leiu - 0.9	00			
7.50	-1 1.80-6	1.63-1	1.00+	0 5.40-	5 6.09-1	1.25+	-0 2.40-4	7.63-1	95
1.50	+0 6.00-4	7.89-1	2.00+	0 1.90-	3 7.53-1	2.50+	-0 4.90-3	8.55-1	
7.00	+0 1.50-1	1.17+0							125
90	Thorium		Fluoresc	ence yi	leld = 0.9	71			
7 00	10 7 00 0	1 1010	0 001	0 1 00	1 1 1010	0 001	0 1 00 1	1 0710	100
1 00	+U /.UZ-2 11 1 21_1	1 02+0	8.00+	U 1.00-	-1 1.19+0	9.001	-0 1.28-1		100
1 30	+1 1.01-1 +1 2 75-1	9 53-1	1.104	1 2.02-	-1 8 65-1	1 504	-1 2.30-3	9.91-1	
1.30			T . 407	. 2.75	T 0.03-T	1.004	x J./2-1		
4.75	+0 3.02-2	2 1.41+0	6.80+	0 5.75-	2 9.88-1	7.20+	-0 7.69-2	2 1.14+0	107
8.80	+0 1.07-1	9.43-1	1.01+	1 1.95-	1 1.22+0				
	-								
1.20	+0 2.00-5	2.21-1	1.60+	0 2.21-	4 5.17-1	1.834	-0 4.45-4	5.65-1	124
2.00	+0 8.18-4	7.14-1	2.30+	0 1.52-	3 7.63-1	2.40+	0 2.10-3	8.98-1	
2.80	+0 3.60-3	8.87-1	2.81+	0 3.64-	3 8.86-1	3.304	0 7.38-3	3 1.05+0	
3.79	+0 1.17-2	1.07+0	4.80+	0 2.72-	·7 1.23+0	6.004	-0 4.91-2	/ 1.18+0	

E	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	E ₁	$\sigma^{\rm Exper}$	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	0 ^{ECPSSR}	Ref.
92	Uranium		Fluoresco	ence yie	1d = 0.9	72			
2.25	+0 1.50-3	1.01+0	3.75+0	9.20-3	1.05+0				2
2.50	+0 5.80-4	2.61-1	2.70+0	8.40-4	2.86-1	2.90+	0 1.00-	-3 2.65-1	5
3.10-	+0 1.20-3	2.54-1	3.30+0	0 1.50-3	2.58-1	3.60+	0 2.00-	-3 2.60-1	
3.90	+0 2.70-3	2.74-1	4.20+0	0 3.50 - 3	2.83-1	4.40+	0 4.80-	·3 3.38-1	
4.60	+0 5.80-3	3.58-1	5.00+0	0 7.30-3	3.54-1	5.60+	0 9.50-	·3 3.34-1	
1.60	+2 1.00+1	1.75+0							30
1.40	+0 1.05-4	6.29-1	1.50+	0 1.53-4	6.34-1	1.60+	0 2.42-	-4 7.23-1	91
1.80	+0 4.92-4	8.43-1	2.00+0	0 9.05-4	9.81-1	2.20+	0 1.41-	·3 1.04+0	
2.40	+0 2.04-3	1.07+0	2.60+0	0 2.82-3	1.10+0	2.80+	0 4.28-	·3 1.28+0	
3.00	+0 5.29-3	1.25+0	3.20+0	0 6.70-3	1.28+0	3.40+	0 7.93-	·3 1.24+0	
3.60	+0 8.50-3	1.11+0	3.80+0	0 1.13-2	1.24+0	4.00+	0 1.41-	2 1.32+0	
1.25	+0 3.60-5	4.17-1	1.50+0	0 1.30-4	5.38-1	2.00+	0 5.90-	4 6.40-1	95
2.50	+0 2.10-3	9.46-1							
4.75	+0 1.46-2	8.21-1							107
1.10	+0 1.67-5	4.46-1	1.20+	0 3.12-5	4.67-1	1.30+	0 5.35-	-5 4.89-1	142
1.40	+0 8.59-5	5.15-1	1.60+	0 1.93-4	5.76-1	1.80+	0 3.80-	4 6.51-1	
2.00	+0 6.81-4	7.38-1	2.25+	0 1.29-3	8.68-1	2.50+	0 2.23.	-3 1.00+0	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}-Continued

a

Cross sections and their ratios are printed in a compressed power of 10 $^{-1}$ notation, e.g. 4.76-1 means 4.76*10 .

b

The ratios shown in **bold** print differ by more than a factor of 2 from the averaged ratios and were -- as described in the text -- rejected. This rejection criterion was applied only to the Z2 > 9 data.

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}

E ₁	$\sigma^{E_{xper}}$	σ^{Exper}	Ei	σ^{Exper}	$\sigma^{E_{xper}}$	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}		(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
					W				
4	Berylliu	m	Fluoresce	nce yie	1d = 0.00	033			
3.00-	·2 5.66+0	2.91-1	4.00-2	2.29+1	3.46-1	5.00-2	6.46+1	4.21-1	119
0.00-	·2 1.33+2 ·1 8 95+2	4.82-1	8.00-2	3.39+2	5.52-1	1.00-1	5.90+2	5.9/-1	
1.20	1 0.75.2	0.00 1							
11	Sodium		Fluoresce	nce yie	1d = 0.02	.3			
4.00-	-2 1.80-2	1.61+0	5.00-2	5.00-2	1.47+0	6.50-2	2.00-1	1.75+0	102
13	Aluminum		Fluoresce	nce vie	1d = 0.03	9			
				j		-			
1.80-	1.18+0	7.46-1	2.00-1	1.68+0	7.16-1	2.80-1	5.06+0	6.53-1	25
3.60-	·1 1.12+1	6.33-1							
4 00-	.2 1 68-3	1 11+0	4 50-2	3 25-3	1 07+0	5 00-2	5 71-3	1 05+0	45
6.00-	$\cdot 2 1.00 3$	1.03+0	7.00-2	3.00-2	1.01+0	8.00-2	5.46-2	9.85-1	45
9.00-	2 9.00-2	9.57-1	1.00-1	1.39-1	9.35-1	1.10-1	2.02-1	9.06-1	
1.20-	1 2.80-1	8.76-1	1.30-1	3.81-1	8.59-1	1.40-1	4.98-1	8.34-1	
1.60-	1 8.05-1	7.98-1	1.80-1	1.22+0	7.71-1	2.00-1	1.79+0	7.63-1	
2.20	1 2.54+0	7.64-1	2.40-1	3.50+0	7.72-1	2.60-1	4.79+0	7.98-1	
2.80-	-1 6.42+0	8.29-1							
0 00	0 5 0/10	7 5/ 4							
2.00	FU 5.04+2	/.56-1	3.00+0	/.59+2	8.11-1	4.00+0	8.89+2	8.22-1	97
5.001	FU 9.46+2	8.19-1	6.00+0	9./9+2	8.25-1	8.00+0	9.51+2	8.05-1	
1.001	1 9.0/+2	7 76 1	1.20+1	0.40+2	7.81-1	1.40+1	8.08+2	7.8/-1	
1.501	F1 7.75 7 2	/./0-1	1.00+1	7.00+2	/.0/-1	1.95+1	0.03+2	1.12-1	
2.40-	-2 7.00-6	1.84-1	2.80-2	2.50-5	1.87-1	3.00-2	7.00-5	3.12-1	102
3.20-	-2 1.30-4	3.65-1	3.40-2	3.00-4	5.57-1	3.80-2	7.00-4	6.33-1	
4.00-	2 1.40-3	9.23-1	5.00-2	3.50-3	6.42-1	5.50-2	7.00-3	7.73-1	
6.00-	-2 1.20-2	8.55-1							
							•		
14	Silcon		Fluoresce	ence yie	1d = 0.05	6			
5 00-	-2 1 20-3	5 29-1	6 00-2	4 60-3	7 35-1				102
5.00	2 2.20 3	3.19 1	0.00 2	4.00 3					102
15	Phosphor	us	Fluoresce	ence yie	1d = 0.06	53			
	-								
1.60	HU 2.32+2	8.46-1	1.80+0	2.83+2	8.54-1	2.00+0	3.22+2	8.33-1	122
2.20	FU 3.68+2	8.37-1	2.40+0	4.29+2	ð./6-1	2.60+0	4.77+2	8.8/-1	
2.801	ru 5.20+2	8.95-1	3.00+0) 5.46+2	0./0-1	3.20+0	0.13+2	9.29-1	
3.401 / 004	ru 0.31+2 LA 7 A419	9.U8-1 8 09-1	3.60+0	0./0+2	9.22-1	3.80+0	0.//+2	0.93-1	
-++ · · · · · ·	0 1.0472	0.70-1							

			977-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						
Εı	$\sigma^{^{\mathrm{Exper}}}$	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
(MeV)) (barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
			- 					<u></u>	
16	Sulfur		Fluoresco	ence yie	1d = 0.0	78			
1.60+	0 1.64+2	8.19-1	1.80+0	2.15+2	8.70-1	2.00)+0 2.68-	+2 9.12-1	122
2.20+	0 2.84+2	8.37-1	2.40+0	3.25+2	8.49-1	2.60)+0 3.59-	+2 8.45-1	
2.80+	0 4.04+2	8.69-1	3.00+0) 4.29+2	8.53-1	3.20)+0 4.62-	+2 8.58-1	
3.40+	0 5.10+2	8.92-1	3.60+0	5.34+2	8.85-1	3.80)+0 5.55	+2 8.78-1	
4.00+	0 5.59+2	8.47-1							
17	Chlorine		Fluoresco	ence yie	1d = 0.0	97			
1.60+	0 1.19+2	7.95-1	1.80+0	0 1.51+2	8.06-1	2.00)+0 1.81·	+2 7.99-1	122
2.20+	0 2.18+2	8.21-1	2.40+0	2.28+2	7.51-1	2.60)+0 2.72	+2 7.97-1	
2.80+	0 2.99+2	7.92-1	3.00+0	3.31+2	8.03-1	3.20)+0 3.41·	+2 7.66-1	
3.40+	0 3.96+2	8.30-1	3.60+0) 4.34+2	8.56-1	3.80)+0 4.39	+2 8.19-1	
4.00+	0 4.57+2	8.13-1							
19	Potassiu	m	Fluoresc	ence yie	1d = 0.1	4			
1.60+	0 6.13+1	7.69-1	1.80+0	0 8.05+1	7.79-1	2.00)+0 1.01·	+2 7.86-1	122
2.20+	0 1.23+2	7.96-1	2.40+	0 1.32+2	7.29-1	2.60	0+0 1.62	+2 7.78-1	
2.80+	0 1.80+2	7.66-1	3.00+	0 2.04+2	7.79-1	3.20	0+0 2.13	+2 7.40-1	
3.40+	0 2.47+2	7.88-1	3.60+0	0 2.74+2	8.10-1	3.80)+0 2.82·	+2 7.78-1	
4.00+	0 3.01+2	7.80-1							
20	Calcium		Fluoresc	ence yie	1d = 0.1	63			
4.00-	1 6.93-1	8.76-1	5.00-	1 1.52+0	8.58-1	6.00)-1 2.80	+0 8.43-1	133
7.00-	1 4.73+0	8.56-1	8.00-	1 8.15+0	9.65-1	9.00)-1 1.05	+1 8.67-1	200
21	Scandium		Fluoresco	ence yie	1d = 0.1	88			
4.00-	1 4.73-1	9.24-1	6.00-	1 1.98+0	8.95-1	8.00)-1 5.19	+0 9.03-1	121
1.00+	0 1.04+1	9.07-1	1.20+0	0 1.78+1	9.15-1	1.40	0+0 2.62	+1 8.84-1	
1.60+	0 3.74+1	8.97-1	1.80+	0 5.07+1	9.13-1				
<u> </u>	1 4 45-1	8 60-1	5 00-	1 1 01+0	8 68-1	6 00	-1 1 02	10 9 69 1	100
7 00-	1 3 25+0	8 74-1	8 00-	1 1.01+0 1 5 10+0	9 03-1	9.00)-1 7 33.	+0 0.00-1	155
7.00	1 5.25.0	0.74 1	0.00	1 3.19.0	J.05 I	5.00	, 1 7.55	10 0.01-1	
22	Titanium		Fluoresc	ence yie	1d = 0.2	14			
1.80-	1 1.26-2	1.12+0	2.20-	1 3.28-2	1.15+0	2.60)-1 7.05	-2 1.19+0	25
3.00-	1 1.29-1	1.19+0	3.40-	1 2.23-1	1.25+0				
6.00+	0 3.70+2	1.07+0	1.25+	1 6.80+2	1.15+0	1.50	0+1 7.80 [.]	+2 1.25+0	31
1 00+	0 7 68+0	9 55-1	2 00+4	0 5 10+1	9 81-1	2 50	110 8 85.	+1 1 02+0	131
3.00+	0 1.25+2	1.00+0	2.001		2.01-1	2.30	0.03.	· I I.UZTU	1.71
		2.00.0							
4.00-	1 2.98-1	8.81-1	5.00-	1 6.96-1	8.94-1	6.00)-1 1.35	+0 9.02-1	133
7.00-	1 2.19+0	8.61-1	8.00-	1 3.40+0	8.57-1	9.00)-1 5.02·	+0 8.67-1	
2.00-	1 2.42-2	1.31+0	2.50-	1 6.79-2	1.35+0	3.00)-1 1.40	-1 1.30+0	153
3.50-	1 2.52-1	1.26+0	4.00-	1 4.17-1	1.23+0	4.50	0-1 6.50	-1 1.23+0	

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}-Continued

171

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}---Continued

	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
F 00.	-1 0 62-1	1 2640	E E0-1	1 2610	1 2640	6 00-1	1 9610	1 2640	-
6 50	-1 9.03-1 -1 9 46+0	1.24+0	7 00-1	3 16+0	1 24+0	7 50-1	3 08+0	1.24+0	
8.00	-1 4.91+0	1.24+0	8.50-1	5.95+0	1.23+0	9.00-1	7.11+0	1,24,0 1,23+0	
1.00-	+09.80+0	1.22+0	1.10+0	1.30+1	1.21+0	1,20+0	1.67+1	1.21+0	
1.30-	$+0\ 2.09+1$	1.20+0	1.40+0	2.56+1	1.20+0	1.50+0	3.08+1	1.19+0	
1.60-	+0 3.65+1	1.20+0	1.80+0	4.94+1	1.20+0	2.00+0	6.42+1	1.21+0	
23	Vanadium		Fluoresce	nce yie	1d = 0.2	243			
1.00	+0 5.44+0	9.52-1 1.03+0	2.00+0	4.07+1	1.02+0	2.50+0	6.91+1	1.03+0	131
3.00	10 1.0112	1.0510							
4.00	-1 2.23-1	9.85-1	5.00-1	5.16-1	9.73-1	6.00-1	9.97-1	9.69-1	133
7.00	-1 1./4+0	9.85-1	8.00-1	2.73+0	9.83-1	9.00-1	3.77+0	9.22-1	
24	Chromium	l	Fluoresce	nce yie	1d = 0.2	275			
4.00	-1 1.53-1	9.92-1	5.00-1	3.54-1	9.69-1	6.00-1	6.79-1	9.47-1	133
7.00	-1 1.20+0	9.66-1	8.00-1	1.84+0	9.35-1	9.00-1	2.63+0	9.01-1	
25	Manganes	e	Fluoresce	nce yie	1d = 0.3	308			
4.00	-1 1.05-1	9.96-1	5.00-1	2.49-1	9.82-1	6.00-1	4.91-1	9.76-1	133
7.00	-1 8.61-1	9.80-1	8.00-1	1.34+0	9.56-1	9.00-1	2.00+0	9.56-1	
26	Iron		Fluoresce	nce yie	1d = 0.3	34			
4.00	-1 8.86-2	1.22+0	5.00-1	2.03-1	1.15+0	6.00-1	3.97-1	1.12+0	121
8.00	-1 1.14+0	1.14+0	1.00+0	2.38+0	1.11+0	1.20+0	4.14+0	1.07+0	
1.40	+0 6.67+0	1.07+0	1.60+0	9.85+0	1.06+0	1.80+0	1.33+1	1.02+0	
4.00	-1 7.49-2	1.04+0	5.00-1	1.87-1	1.06+0	6.00-1	3.80-1	1.08+0	133
7.00	-1 6.53-1	1.05+0	8.00-1	1.01+0	1.01+0	9.00-1	1.50+0	9.98-1	
2.50	-1 1.19-2	1.31+0	3.00-1	2.83-2	1.34+0	3.50-1	5.42-2	1.31+0	153
4.00	-1 9.27-2	1.28+0	4.50-1	1.47-1	1.26+0	5.00-1	2.21-1	1.25+0	
5.50	-1 3.14-1	1.23+0	6.00-1	4.39-1	1.24+0	6.50-1	5.88-1	1.24+0	
7.00	-1 7.66-1	1.23+0	7.50-1	9.77-1	1.23+0	8.00-1	1.22+0	1.22+0	
8.50	-1 1.50+0	1.21+0	9.00-1	1.81+0	1.20+0	1.00+0	2.55+0	1.19+0	
1.10	+0 3.46+0	1.18+0	1.20+0	4.52+0	1.17+0	1.30+0	5.77+0	1.16+0	
1.40	+0 /.19+0	1 15+0	1.50+0) 8.81+0) 2 00±1	1.15+0	1.60+0	1.06+1	1.14+0	
1.00	1.4971	. 1.13+0	2.00+0	2.0071	1.13+0				
27	Cobalt		Fluoresce	ence yie	1d = 0.3	373			
1.00	+0 1.52+0	9.74-1	2.00+0	1.34+1	1.02+0	2.50+0	2.34+1	9.85-1	131
3.00	+0 3.71+1	1.00+0							
4.00	-1 4.83-2	9.63-1	5.00-1	1.22-1	9.83-1	6.00-1	2.48-1	9.88-1	133
7.00	-1 4.43-1	9.94-1	8.00-1	7.03-1	9.75-1	9.00-1	1.01+0	9.27-1	

<i>E</i> ₁	σ^{Exper}	o ^{Exper}	E_1	σ^{Exper}	σ ^{Exper}	E	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
28 N	lickel		Fluoresce	nce yie	1d = 0.40	06			
2.00+0	8.37+0	8.37-1	3.00+0	2.55+1	8.82-1	4.00+0	4.91+1	8.87-1	97
5.00+0) 7.70+1	8.96-1	6.00+0	1.07+2	9.07-1	8.00+0	1.64+2	9.10-1	
1.00+1	2.16+2	9.17-1	1.20+1	2.58+2	9.14-1	1.40+1	2.96+2	9.24-1	
1.50+1	3.08+2	9.15-1	1.80+1	3.37+2	8.97-1	1.95+1	3.53+2	9.05-1	
1.00-1	4.20-6	4.77-1	1.10-1	8.70-6	4.23-1	1.20-1	1.90-5	4.52-1	120
1.30-1	4.30-5	5.55-1	1.40-1	7.50-5	5.67-1	1.50-1	1.30-4	6.13-1	
1.60-1	2.00-4	6.18-1	1.80-1	4.40-4	6.58-1	2.00-1	9.30-4	7.57-1	
2.20-1	1.60-3	/./3-1	2.40-1	2.60-3	/.96-1	2.60-1	4.00-3	8.18-1	
2.60-1	0.10-3	0./0-1	3.00-1	8.30-3	8.60-1				
1.60+0	5.13+0	9.86-1	1.80+0	6.77+0	9.17-1	2.00+0	9.65+0	9.65-1	122
2.20+0) 1.26+1	9.67-1	2.40+0	1.59+1	9.65-1	2.60+0	1.94+1	9.56-1	
2.80+0	2.38+1	9.76-1	3.00+0	2.78+1	9.62-1	3.20+0	3.19+1	9.46-1	
3.40+0) 3.64+1	9.39-1	3.60+0	4.19+1	9.48-1	3.80+0	4.80+1	9.68-1	
4.00+0) 5.26+1	9.50-1							
4.00-1	3.27-2	9.40-1	5.00-1	8.32-2	9.52-1	6.00-1	1.74-1	9.75-1	133
7.00-1	3.16-1	9.89-1	8.00-1	5.22-1	1.00+0	9.00-1	7.99-1	1.01+0	
					11 - 0 //				
29 (opper		Fluoresce	nce yie	1a = 0.44	ŀ			
6.00-1	l 8.59-2	6.68-1	7.00-1	1.70-1	7.33-1	8.00-1	3.46-1	9.09-1	4
9.00-1	4.73-1	8.14-1	1.00+0	7.06-1	8.40-1				
1.60+0	3.63+0	9.25-1	1.80+0	5.42+0	9.66-1	2.00+0	7.69+0	1.01+0	122
2.20+0	9.39+0	9.37-1	2.40+0	1.18+1	9.26-1	2.60+0	1.44+1	9.13-1	
2.80+0) 1.79+1	9.36-1	3.00+0	2.07+1	9.13-1	3.20+0	2.43+1	9.15-1	
3.40+0) 2.86+1	9.30-1	3.60+0	3.30+1	9.42-1	3.80+0	3.69+1	9.31-1	
4.00+0	3.98+1	8.97-1							
1.60-1	6.90-5	3.50-1	1.80-1	2.25-4	5.35-1	2.00-1	6.09-4	7.70-1	126
2.40-1	2.03-3	9.36-1	2.80-1	4.59-3	9.63-1	3.20-1	9.18-3	1.02+0	120
3.60-1	1.63-2	1.06+0	4.00-1	2.58-2	1.06+0	5.00-1	6.59-2	1.06+0	
6.00-1	1.45-1	1.13+0							
1 0010	7 72 1	0 20 1	2 0010	7 6010	1 0110	0 5010	1 4/11	1 0110	101
3 00+0) 7.73-1	9.20-1	2.00+0	7.09+0	1.01+0	Z.50+0	1.44+1	1.01+0	131
5.0010	2,33,1	1.05.0							
4.00-1	2.40-2	9.82-1	5.00-1	6.33-2	1.02+0	6.00-1	1.26-1	9.79-1	133
7.00-1	2.33-1	1.00+0	8.00-1	3.83-1	1.01+0	9.00-1	5.80-1	9.99-1	
31 (Gallium		Fluoresce	nce yie	1d = 0.50)7			
1 6010) 2 1/10	0 50-1	1 2010	3 1010	9 60-1	2 0010	h 1610	0 26 1	100
2.20+0	, 2.14+0) 2 64+0	9.59-1	2.00 7 0 2.40 1 0	7 1540	9.00-1	2.0070	d 00T0 4.10±0	9.30"1 Q 57_1	122
2.80+0) 1, 11+1	9.60-1	3,00+0	1,30+1	9.37-1	3 2040	1.5841	9.63-1	
3.40+0) 1.78+1	9.35-1	3.60+0	2.08+1	9.50-1	3.80+0	2.27+1	9.08-1	
4.00+0	2.66+1	9.45-1							

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}—Continued

E ₁	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	E	σ^{Exper}	σ^{Exper}	
(MeV)) (barn)	o ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
32	German	ium	Fluoresce	nce yie	1d = 0.53	5			
1.00)+0 3.16·	-1 9.38-1	2.00+0	3.45+0	1.02+0	2.50+0	6.78+0	1.04+0	131
3.00	0+0 1.08-	+1 1.00+0							
37	Rubidia	m	Fluoresce	nce yie	1d = 0.66	7			
8.00	0-1 1.89	-2 5.69-1	1.00+0	5.13-2	6.50-1	1.20+0	0 1.06-1	6.83-1	111
1.40)+0 1.92·	-1 7.13-1	1.60+0	3.27-1	7.65-1	1.80+0	0 4.61-1	7.25-1	
2.00	0+0 7.15	-1 7.96-1	2.20+0	8.88-1	7.28-1	2.40+0) 1.27+0	7.92-1	
2.60	0+0 1.62-	+0 7.90-1							
38	Stront	ium	Fluoresce	nce yie	a1d = 0.69				
7.00	0-1 1.04	-2 7.21-1	8.00-1	1.91-2	2 7.65-1	1.00+0	0 4.78-2	2 7.97-1	111
1.20	0+0 1.00	-1 8.43-1	1.40+0	1.93-1	9.33-1	1.60+0	0 3.00-1	9.10-1	
1.80	0+0 4.38	-1 8.90-1	2.00+0	6.23-1	8.93-1	2.20+0	0 7.95-1	8.37-1	
2.40	0+0 1.11-	+0 8.87-1	2.60+0	1.55+0	9.66-1				
40	Zircon	ium	Fluoresce	nce yie	e1d = 0.73	5			
7.00	0-1 4.96	-3 6.09-1	8.00-1	9.64-3	3 6.74-1	1.00+0	0 2.63-2	2 7.53-1	111
1.20	0+0 5.07	-2 7.26-1	1.40+0	1.01-1	l 8.22-1	1.60+	0 1.59-1	l 8.05-1	
1.80	0+0 2.34	-1 7.88-1	2.00+0	3.60-1	l 8.49-1	2.40+	0 5.91-1	l 7.69-1	
2.60	0+0 6.81	-1 6.88-1							
41	Niobiu	m	Fluoresce	nce yie	= 1d = 0.74	ŀ			
3.20	0-1 5.09	-5 4.92-1	4.00-1	4.63-4	4 1.17+0	4.80-	1 1.35-3	3 1.28+0	126
5.60	0-1 3.02	-3 1.35+0	6.40-1	5.60-3	3 1.35+0	7.20-	1 1.03-2	2 1.48+0	
8.00	0-1 1.52	-2 1.40+0	9.00-1	2.35-2	2 1.33+0				
47	Silver		Fluoresce	ence yie	eld = 0.83	81			
5.00	0-1 1.06	-4 4.74-1	6.00-1	4.23-4	4 7.09-1	7.00-	1 1.07-3	3 8.44-1	121
8.00	0-1 2.02	-3 8.62-1	1.00+0	5.83-3	3 9.52-1	1.20+	0 1.22-2	2 9.55-1	
1.40	0+0 2.18	-2 9.43-1	1.60+0	3.63-2	2 9.57-1	1.80+	0 5.54-2	2 9.52-1	
4.00	0-1 3.06	-5 5.35-1	5.00-1	1.82-4	4 8.13-1	6.00-	1 5.26-4	4 8.81-1	126
7.00	0-1 1.33	-3 1.05+0	8.00-1	2.59-3	3 1.11+0	9.00-	1 4.66-3	3 1.19+0	
1.00	0+0 6.64	-3 1.08+0	1.10+0	1.09-2	2 1.21+0	1.20+	0 1.64-2	2 1.28+0	
48	Cadmiu	m	Fluoresce	ence yie	e1d = 0.84	3			
9.0	0-1 1.01	-3 3.25-1	1.00+0	2.35-3	3 4.83-1	1.20+	0 6.89-3	3 6.75-1	111
1.4	0+0 1.05	-2 5.66-1	1.60+0	2.41-2	2 7.89-1	1.80+	0 3.09-2	2 6.59-1	
2.0	0+0 4.43	-2 6.51-1	2.20+0	5.48-2	2 5.77-1	2.40+	0 7.90-2	2 6.19-1	

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}-Continued

2.60+0 1.00-1 5.99-1

<u> </u>	σ ^{Exper}	σ^{Exper}	E_	0 ^{Exper}	0 ^{Exper}	<i>E</i> ₁	o ^{Exper}	σ^{Exper}	
(MeV)	(barn)	ECPSSR	 (MeV)	(barn)	ECPSSR	- (MeV)	(barn)	ECPSSR	 Ref
(Iviev)	(bain)	0		(baili)		(1416 ¥)		0	Kei.
			*11		11 - 0 0				
49	Indium		Fluoresc	ence yi	eld = 0.8	53			
6.00-	-1 2.02-4	5.72-1	7.00-	1 4.98-	4 6.43-1	8.00-	1 1.10-3	7.59-1	129
1.004	+0 3.46-3	8.95-1	1.204	-0 7.38-	3 9.03-1	1.40+	0 1.33-2	8.92-1	
1.60+	HO 2.30-2	9.33-1	1.804	-0 3.61-	2 9.54-1				
= 0	m !		Fluence		-14 - 0 0	<u> </u>			
50	Tin		Fluoresc	cence y1	$e_{1a} = 0.8$	02			
1.204	+0 1.94-3	2.95-1	1.404	-0 5.03-	3 4.18-1	1.60+	0 9.54-3	8 4.78-1	111
1.804	⊦0 1.38-2	4.50-1	2.00	HO 1.78-	2 3.97-1	2.20+	0 2.65-2	2 4.24-1	
2.40	+0 3.39-2	4.01-1	2.60	+0 4.00-	2 3.61-1				
F1	Antimony		Fluores	once vi	a = 0 = b a	7			
22	MICIMONY		11001000	Jenee Jr	010 010				
5.00	-1 4.54-5	6.29-1	6.00-	-1 1.71-	4 8.13-1	7.00-	1 4.27-4	8.99-1	126
8.00	-1 8.40-4	9.26-1	9.00	·1 1.63-	3 1.05+0	1.00+	0 2.82-3	3 1.14+0	
1.10-	+0 4.49-3	1.21+0	1.20-	+0 6.73-	3 1.27+0	1.30 1	-0 8.50-3	3 1.16+0	
7 00.	-1 2 12-4	6 57-1	8 00.	-1 6 74-	4 7 43-1	1 004	-0 1 83-4	2 7 20-1	120
1 20-	-1 3.12-4 +N 4 41-3	8 32-1	1 40-	-1 0.74- FN 8 27-	3 8 48-1	1 604	-0 1 47-9	9 07-1	14)
1.80-	+0 2 27-2	9.08-1	1.40	0 0.27	5 0140 1	1.007	0 1147 /	2 9.07 1	
1.00		2.00 1							
58	Cerium		Fluores	cence yi	eld = 0.9	12			
1 00-	LO 3 0/-/	6 75-1	1 20-	LO 1 02-	3 7 7/-1	1 / 04	-0 2 30-4	3 0 18-1	120
1 60-	+0 J.94-4 +0 & 19-3	9 86-1	1 80-	+0 1.02- +0 6 72-	3 1 01+0	1.401	0 2.30	9.10-1	12,9
1.00	10 4.17 3	9.001	1.00		5 1.01/0				
64	Gadolini	um	Fluores	cence yi	eld = 0.9	35			
	1 (01 5	<	1 10	0 0 10	/ / 00 1	1 001	0 0 00		150
9.00	-1 0.91-3	6.21-1 5 00 1	1.10	FU 2.12-	2 8 00 1	1,204	102.30-4	4 4.99-1	150
1.40-	+0 3.28-4	5.82-1	2.00-	FU 1.20-	3 0.00-1 3 9 77-1	1.001	-0 1.40~.	2 2.84-1	
2.00-	+0 9.43-3	9.86-1	2.20	FO 4.04-	2 8.75-1	2.407	ru 0.72	9.30-1	
2.00		2100 1	2.00		2 01/3 1				
73	Tantalum	I	Fluores	cence yi	eld = 0.9	57			
						1 (0)			150
1.20-	+0 3.82-5	3.43-1	1.40	+0 8.32-	5 3.51-1	1.604	-102.18	4 5.05-1	158
1.80-	+0 3.94-4	5.5/-1	2.00	+0 7.58-		2.201	FU 1.29-	3 8.33-1	
2.40-	+0 2.19-3 +0 4 08-3	8 74-1	3 20-	FO 2./2- FO 4 60-	3 7 94-1	2.001	ru 3.24-	5 8.80-1	
5.00	10 4.00 5		5.20	.0 4.00	J 7.74 I				
74	Tungster	L	Fluores	cence yi	eld = 0.9	58			
1 00	10 1 07 4			10 1 00	1 0 01 1	1 (0)	10 2 10	(0 00 1	1/7
1.30	+U 1.0/-4	/.44-1	1.44	+U 1.89-	4 8.04-1	1.604	FU 3.13-0	4 8.29-1	14/
1./0	TU 4.10-4	0.3/-1	. 1.80-	TU 3.22-	4 0.4U-1	2.904	FU 0.51-4	4 0.41-1 2 0 10 1	
2.00	TU /.93-4 LA 2 /8-2	0.30-1 8 00-1	2.25	TO 1.22-	3 8 05-1	2.501	LU V 3V=.	3 8 03-1 9 0'TA-T	
3.50-	+0 5.54-3	8.01-1	3.75	+0 6.96-	3 8.04-1	4,004	+0 8.72-	3 8.19-1	
1.30- 1.70-	+0 1.07-4	7.44-1	1.44	+0 1.89-	4 8.04-1 4 8.40-1	1.604	HO 3.13-	4 8.29-1 4 8.41-1	147
2.75-	+0 2.48-3	8.09-1	3.00	+0 3.33-	3 8.05-1	3.254	HO 4.34-	3 8.02-1	
3.50-	+0 5.54-3	8.01-1	3.75	+0 6.96-	3 8.04-1	4.004	HO 8.72-	3 8.19-1	

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}—Continued

σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} σ^{Exper} E_1 E_{i} E_1 σ^{ECPSSR} σ^{ECPSSR} σ^{ECPSSR} (MeV) (MeV) (MeV) Ref. (barn) (barn) (barn) 79 Gold Fluorescence yield = 0.9641.42+0 8.15-5 7.35-1 1.52+0 1.20-4 7.74-1 1.64+0 1.77-4 8.00-1 147 1.80+0 2.73-4 8.17-1 1.90+0 3.43-4 8.15-1 2.00+0 4.22-4 8.12-1 2.25+0 6.70-4 8.09-1 2.50+0 9.74-4 7.92-1 2.75+0 1.39-3 8.02-1 3.25+0 2.57-3 8.34-1 3.50+0 3.40-3 8.64-1 3.00+0 1.91-3 8.14-1 3.75+0 4.36-3 8.85-1 4.00+0 5.64-3 9.31-1 ------

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}—Continued

Cross sections and their ratios are printed in a compressed power of 10 $^{-1}$ notation, e.g. 9.31-1 means 9.31*10 .

b

a

The ratios shown in **bold** print differ by more than a factor of 2 from the averaged ratios and were -- as described in the text -- rejected. This rejection criterion was applied only to the Z2 > 9 data.

<i>E</i> ₁	$\sigma^{E_{xper}}$	σ^{Exper}	E ₁	σ^{Exper}	$\sigma^{E_{xper}}$	E_1	$\sigma^{E_{xper}}$	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	$\sigma_{2}^{\text{ECPSSR}}$	- (MeV)	(barn)	σ^{ECPSSR}	Ref.
13	Aluminum		Fluoresce	ence yie	1d = 0.0)39			
1.00-	-1 3.80-2	1.98+0	1.25-1	1.30-1	2.08+0	1.50-1	2.60-1	1.67+0	12
1.75-	-1 4.40-1	1.36+0	2.00-1	6.80-1	1.13+0				
4.50-	-2 1.20-4	1.69+0	5.00-2	2 3.00-4	1.68+0	6.00-2	1.20-3	1.60+0	17
7.50-	-2 3.70-3	1.07+0	8.00-2	2 9.20-3	1.77+0	9.00-2	2.00-2	1.90+0	
1.00-	-1 3.10-2	1.62+0	1.20-1	7.10-2	1.40+0	1.50-1	1.50-1	9.66-1	
1.70-	-1 2.50-1	8.85-1	1.90-1	3.80-1	8.02-1	2.00-1	6.50-1	1.08+0	
1.50-	-1 1.72-1	1.11+0	1.80-1	3.69-1	9.99-1	2.10-1	7.29-1	9.75-1	28
2.40-	-1 1.22+0	9.02-1	2.70-1	2.08+0	9.20-1	3.00-1	3.17+0	8.93-1	
4.50-	-2 1.24-4	1.75+0	5.00-2	2 3.26-4	1.82+0	6.00-2	1.28-3	1.71+0	45
7.00-	-2 3.97-3	1.80+0	8.00-2	2 9.58-3	1.85+0	9.00-2	1.75-2	1.66+0	
1.00.	-1 3.29-2	1.72+0	1.10-1	5.12-2	1.59+0	1.20-1	7.55-2	1.49+0	
1.40-	-1 1.45-1	1.31+0	1.60-1	2.43-1	1.15+0	1.80-1	3.88-1	1.05+0	
2.00-	-1 5.96-1	9.94-1	4.08-1	l 8.28+0	6.56-1	5.10-1	1.95+1	6.45-1	
6.12-	-1 3.70+1	6.20-1	7.14-1	l 6.49+1	6.31-1	8.16-1	1.01+2	6.28-1	
1.024	+0 2.11+2	6.60-1	1.12+0	2.80+2	6.70-1	1.22+0	3.62+2	6.88-1	
1.434	+0 5.54+2	7.10-1	1.63+0) 7.65+2	7.32-1	1.84+0	1.01+3	7.56-1	
2.04-	+0 1.27+3	7.86-1	2.24+0) 1.57+3	8.31-1	2.45+0	1.90+3	8.76-1	
2.654	+0 2.22+3	9.18-1	2.85+0	2.58+3	9.70-1	2.96+0	2.76+3	9.91-1	
2.25	+0 8.08+2	4.25-1	3.00+0) 1.45+3	5,12-1	3.75+0	2.08+3	5.85-1	75
4.50-	+0 2.66 $+3$	6.49-1	6.00+0	3.68+3	7.77-1	7.50+0	4.35+3	8 63-1	75
9.00	+0 4.65+3	9.06-1	0.00.0			7.50.0	+.5515	0.05 1	
6 00.	1 6 6641	0 02-1	7 50-1	0 5011	7 07-1	0 00 1	1 0/10	0 05 1	161
1 054	-1 4.40+1 LO 3 /319	0.03-1	1 2010	1 9.3071 1 6 3617	9 67-1	9.00-1	, 1.94 + 2 1 6 7719	0.05 - 1	101
1 501	FU J.4372	3.0/-1	1.20+0) 4.30TZ	1 04+0	2 1010	1 0.7772	9.90-1	
2.60	FU 9.00+2	1.0370	1.00+0	1.3343	1.00-0	2.10+0	1.01+3	1.00+0	
2.404	FU 2.3173	1.10+0							
14	Silcon		Fluoresce	ence yie	1d = 0.0)5			
2.25	+0 6.28+2	4.77-1	3.00+0	0 1.15+3	5.50-1	3.75+0	1.67+3	6.08-1	75
4.50	+0 2.27+3	6.92-1	6.00+0	3.20+3	8.00-1	7.50+0	3.68+3	8.38-1	
9.00	+0 3.91+3	8.51-1		•					

TABLE 4. K-shell x-ray production by helium-3 in target elements from aluminum to silver^{a,b}

TABLE 4. K-shell x-ray production by helium-3 in target elements from aluminum to silver^{a,b}---Continued

<i>E</i> ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	$\sigma^{E_{xper}}$	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{\rm ECPSSR}$	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
15	Phosphor	us	Fluoresc	ence yi	eld = 0.0	63			
6.00-	1 8.97+0	5.32-1	7.50-	1 2.82+	1 7.33-1	9.00-	1 6.16+1	l 8.47-1	161
1.05+	-0 1.00+2	8.27-1	1.20+	0 1.57+	2 8.59-1	1.354	0 2.35+2	2 9.08-1	
1.50+	-0 3.64+2	1.05+0	1.80+	0 5.94+	2 1.08+0	2.10	0 7.32+2	2 9.38-1	
2.40+	-0 1.07+3	1.04+0							
18	Argon		Fluoresc	ence yi	eld = 0.1	18			
6.00-	1 2.58+0	6.77-1	7.50-	1 7.39+	0 8.18-1	9.00-	1 1.27+3	1 7.17-1	161
1.054	0 2.73+1	8.90-1	1.20+	•0 4.12+	1 8.51-1	1.354	+0 6.90+:	1 9.68-1	
1.504	0 9.05+1	9.10-1	1.804	0 1.77+	2 1.04+0	2.10	+0 2.49+2	2 9.53-1	
2.404	-0 3.63+2	9.87-1							
22	Titanium		Fluoresc	ence yi	eld = 0.2	14			
5.25-	1 4.27-1	1.16+0	6.00-	1 6.75-	1 1.04+0	6.75-	-1 1.13+(0 1.07+0	160
7.50-	1 1.61+0	1.00+0	9.00-	1 3.13+	0 9.57-1	1.05-	+0 5.52+0	9.44-1	
1.204	0 8.96+0	9.42-1	1.504	0 1.90+	1 9.13-1	1.80-	HO 3.57+3	1 9.37-1	
2.104	0 5.89+1	9.50-1	2.401	-0 8.78+	1 9.50-1	2.70	0 1.25+2	2 9.70-1	
3.004	0 1.68+2	9.77-1	3.304	0 2.13+	2 9.71-1	3.60-	+0 2.80+2	2 1.03+0	
3.904	0 3.29+2	1.00+0	4.201	-0 4.07+	2 1.05+0	4.50	+0 4.62+2	2 1.03+0	
4.801	-0 5.28+2	1.03+0							
6.00-	•1 6.83-1	1.05+0	7.50-	1 1.80+	0 1.12+0	9.00	-1 3.06+0	9.36-1	161
1.054	+0 5.71 + 0	9.77-1	1.204	-0 9.67+	0 1.02+0	1.35-	HO 1.42+3	1 9.83-1	
1.504	+0 2.04+1	9.80-1	1.80	-0 3.79+	1 9.94-1	2.10-	HO 6.06+3	1 9.78-1	
2.401	0 8.56+1	9.26-1	2.704	-0 1.36+	2 1.06+0	3.00-	+0 1.91+2	2 1.11+0	
3.304	+0 2.48+2	1.13+0	3.604	-0 3.10+	2 1.14+0				
24	Chromium		Fluoresc	ence yi	eld = 0.2	75			
5.25-	-1 1.85-1	1.12+0	6.00-	1 3.30-	1 1.11+0	6.75	-1 5.50-3	1 1.13+0	160
7.50-	-1 7.84-1	1.04+0	9.00-	·1 1.60+	0 1.03+0	1.05-	+0 2.79+0	9.87-1	
1.204	+0 4.51+0	9.67-1	1.504	-0 9.93+	0 9.53-1	1.80-	HO 1.84+3	1 9.45-1	
2.10	+0 2.99+1	9.26-1	2.401	0 4.54+	1 9.25-1	2.70-	HO 6.68+3	1 9.55-1	
3.004	+0 9.39+1	9.91-1	3.304	0 1.15+	2 9.36-1	3.60-	+0 1.57+2	2 1.01+0	
3.901	+0 1.89+2	9.95-1	4.204	0 2.26+	2 9.90-1	4.50-	+0 2.68+2	2 9.99-1	
6.00-	-1 3.27-1	1.10+0	7.50-	1 7.18-	1 9.54-1	9.00	-1 1.40+0	0 8.98-1	161
1.054	+0 2.91+0	1.03+0	1.20	0 5.14+	0 1.10+0	1.35-	+0 7.12+0	0 9.94-1	
1.504	+0 1.02+1	9.79-1	1.804	+0 1.92+	1 9.86-1	2.10-	+0 3.12+	1 9.66-1	
2.40	⊦0 4.84+1	9.86-1	2.704	0 7.15+	1 1.02+0	3.00-	+0 1.00+	2 1.06+0	
3.304	+0 1.25+2	1.02+0	3.604	-0 1.49+	2 9.59-1				
27	Cobalt		Fluores	cence yi	eld = 0.3	73			
6.00-	-1 1.12-1	1.16+0	7.50-	·1 3.06-	1 1.19+0	9.00	-1 6.32-3	1 1.16+0	160
1.054	+0 1.17+0	1.16+0	1.20	-0 1.86+	0 1.10+0	1.50-	+0 3.96+0	0 1.02+0	
1.804	+0 7.16+0	9.61-1	2.10	0 1.23+	1 9.73-1	2.40-	+0 1.92+	1 9.77-1	
6.00-	-1 1.39-1	1.44+0	7.50-	1 2.98-	1 1.16+0	9.00	-1 7.75-	1 1.42+0	161
1.054	+0 1.41+0	1.40+0	1.20	+0 2.49+	0 1.47+0	1.35-	+0 3.74+	0 1.42+0	

<i>E</i> ₁	σ^{Exper}	σ ^{Exper}	E ₁	σ^{Exper}	σ ^{Exper}	<i>E</i> ₁	0 ^{Exper}	σ^{Exper}	<u></u>
(MeV)	(barn)	σ ^{ECPSSR}	– (MeV)	(barn)	σ^{ECPSSR}	- (MeV)	(barn)	σ^{ECPSSR}	Ref.
							- <u></u>	t	
1 5/	0+0 5 51+0	0 1 6040	1 80.	LO 1 001.	1 1 3/10	2 10	LO 1 5%L1	1 22±0	
1.50	1+0 3 3($+$, 2.21+(51.42+0	2 70.	FO 1.00+.	1 1.34+0	3 00	+0 1.34+1	1,22+0	
2.40	JTU 2.34T. DLO 6 02L	1 1.1970	2.70	FU 8 601.	1 1 9740	5.00	TU 3.20TI	. 1.51+0	
5.50	UTU 0.03T.	1 1.50+0	5.00	TU 0.00T.	1 1.2/+0				
28	Nickel		Fluores	cence yi	e1d = 0.4	06			
6.00	0-1 5.97-2	2 8.94-1	7.50	-1 1.56-3	1 8.63-1	9.00	-1 3.53-1	9.07-1	161
1.0	5+0 6.86-	1 9.46-1	1.20	+0 1.19+0	0 9.74-1	1.35	+0 1.85+0	9.66-1	
1.50	0+0 2.67+0	9.42-1	1.80	+0 5.32+0	0 9.72-1	2.10	+0 9.34+0) 1.00+0	
2.40	0+0 1.24+	1 8.49-1	2.70	+0 1.94+3	1 9.07-1	3.00	+0 2.56+1	8.60-1	
3.30	0+0 3.27+3	1 8.22-1	3.60	+0 5.44+	1 1.06+0				
29	Copper		Fluores	cence yi	eld = 0.4	4			
5 21	5-1 2 60-4	2 1 06+0	6 00	-1 5 00-1	2 1 07+0	6 75	-1 9 00-2) 1 12 + 0	160
7 51	0-1 1 05-	1 8 15-1	g nn	-1 3 12-	1 1 11+0	1 05	+0 5 74-1	1 09+0	100
1 2	0 1 1.05	$1 \ 1 \ 0.15^{-1}$	1 50	$\pm 0 2 12 \pm 0$	1 1.110	1 80	+0 % 03+0	0 03-1	
2.2	010 9.33	$1 \ 1.05 \ 0 \ 78 \ 1$	2 40	LO 1 081	1 9 85-1	2 70	+0 $+.05$	0 73-1	
2.1	0+0 0.01+0	1 0 57-1	2.40	+0 2.00+	$1 9.03^{-1}$	2.70	+0 1.37 $+1$	0 / 9 - 1	
5.0	0+0 2.10+	1 9.57 - 1	5.30	TU 2.93T.	$1 9.74^{-1}$	5.00	+0 3.73 $+1$	9.40-1	
3.9	0+0 4.81+	1 9.08-1	4.20	+0 3.83+	1 9.51-1	4.50	+0 0.72+1	9.06-1	
4.8	0+0 8.32+	1 9.47-1							
32	Germani	um	Fluores	cence yi	eld = 0.5	35			
6.0	0-1 1.81-	2 1.14+0	7.50	-1 5.46-2	2 1.18+0	9.00	-1 1.15-1	l 1.10+0	160
1.0	5+0 2.31-	1 1.14+0	1.20	+0 3.95-	1 1.13+0	1.50	+0 9.03-1	L 1.08+0	
1.8	0+0 1.71+	0 1.03+0	2.10	+0 2.95+	0 1.02+0	2.40	+0 4.59+0	9.95-1	
6.0	0-1 1 22-	2 7 68-1	7.50	-1 3 83-	2 8 26-1	9 00	-1 8 56-2	8 17-1	161
1 0	540 2 08-	1 1 0340	1 20	+0 3 68-	1 1 06+0	1 35	± 0.502		101
1 5	0+0 7 02	1 0 48 - 1	1 80	10 3.00	0 0 63-1	2 10	TU J 68T(1.0210	
1.5	0+0 $7.92-$	$1 9.40^{-1}$	1.00	10 1.30 + 10	$0 9.43^{-1}$	2.10	+0 2.00+(9.90-1	
2.4	0+0 4.14+	0 8.97 - 1	2.70	+0 0.53+	0 9.48~1	3.00	+08.40+0	0 8.60-1	
3.3	0+0 1.2/+	1 9.56-1	3.60	+0 1./2+	1 9.85-1				
34	Seleniu	m	Fluores	cence yi	eld = 0.5	89			
6.0	0-1 2.78-	3 3.57-1	7.50	-1 1.35-	2 5.71-1	1.05	+0 9.54-2	2 8.85-1	161
1.2	0+0 1.55-	1 8.22-1	1.35	+0 2.83-	1 9.32-1	1.50	+0 4.45-1	9.68-1	
1.8	0+0 7.89-	1 8.55-1	2.10	+0 1.55+	0 9.51-1	2.40	+0 2.34+0	0 8.92-1	
2.7	0+0 3.49+	0 8.84-1	3.00	+0 5.27+	0 9.34-1	3.30	+0 7.07+0	9.15-1	
3.6	0+0 1.02+	1 9.97-1							
40	Zirconi	um	Fluores	cence yi	eld = 0.7	13			
1 0	010 3 50	9 1 0/40	1 50	10 0 20	2 1 0640	1 0 0	10 2 01 ·	1 1 1110	160
1.2	0+0 3.30-	4 1.0440	1.30	TU 9.20-		1.00	± 0 2.01=1		100
2.1	0+0 3.58-	I I.09+0	2.40	TU 3.34-	T 7.00-1	3.00	+0 1.21+0	J 1.00+0	
3.3	0+0 2.37+	U 1.41+0	4.20	+0 3.77+	v 9.98-1	4.80	+0 5.76+(J 9.94-1	
41	Niobium		Fluores	cence yi	eld = 0.7	4			
1.0	5+0 1.10-	2 8.00-1	1.20	+0 2.65-	2 1.04+0	1.35	+0 4.26-2	2 9.99-1	161
1.5	0+0 6.33-	2 9.49-1	1.80	+0 1.39-	1 9.93-1	2.40	+0 4.06-	1 9.63-1	
3.0	0+0 8.89-	1 9.39-1	3.30	+0 1.31+	0 9.91-1				

TABLE 4. K-shell x-ray production by helium-3 in target elements from aluminum to silver^{a,b}-Continued

E ₁	σ^{Exper}	$\sigma^{E_{xper}}$	E ₁	o ^{Exper}	σ	Exper	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{\rm ECPSSR}$	(MeV)	(barn)	- σ ^E	CPSSR	(MeV)	(barn)	σ^{ECPSSR}	Ref.
46	Palla	lium	Fluore	SCADCA	vial	d = 0 :	R <i>7</i>			
-10	ruriu	1 un	1 14010	500100	y rer	u - 0.1	52			
1.0	5+0 1.8	5-3 5.22-1	1.2	0+0 3.8	34-3	5.62-1	1.3	5+0 8.6	9-3 7.31-1	161
1.5	0+0 1.5	1-2 7.91-1	1.8	0+0 3,5	51-2	8.44-1	2.1	0+0 7.6	4-2 9.85-1	
2.40	0+0 1.09	9-1 8.36-1	2.7	0+0 1.7	/9-1	8.79-1	3.0	0+0 2.6	5-1 8.84-1	
3.30	0+0 3.5	2-1 8.31-1	3.6	0+0 5.0)1-1	8.71-1				
47	Silve	r	Fluore	scence	yiel	d = 0.3	831			
1.5	0+0 1.4	1-2 9.40-1	1.8	0+0 2.9	99-2	9.08-1	2.1	0+0 6.1	4-2 9.93-1	160
2.4	0+0 1.0	0-1 9.58-1	3.0	0+0 2.2	26-1	9.37-1	3.3	0+0 4.4	8-1 1.32+0	
4.2	0+0 7.5	7-1 9.58-1	4.8	0+0 1.2	22+0	9.85-1				
я										
C:	ross se	ctions and	their	ratios	are	printe	d in a	compres	sed power of	E 10
n	otation	, e.g. 9.8	5-1 mea	ns 9.85	5*10	•				

TABLE 4. K-shell x-ray production by helium-3 in target elements from aluminum to silver^{a,b}---Continued

b

The ratios shown in **bold** print differ by more than a factor of 2 from the averaged ratios and were -- as described in the text -- rejected. This rejection criterion was applied only to the Z2 > 9 data.

<i>E</i> ₁	σ^{Exper}	σ ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	Ei	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	$\sigma^{\rm ECPSSR}$	(MeV)	(barn)	σ^{ECPSSR}	Ref.
						<u></u>		<u></u>	
4	Berylliu	m	Fluoresce	nce yie	1d = 0.0	0033			
5.00-	1 4.06+3	1.43-1	7.50-1	5.43+3	2.26-1	1.00+0	6.29+3	3.20-1	71
1.25+	0 6.88+3	4.22-1	1.50+0	7.15+3	5.17 - 1	1.75+0	7.11+3	5.91-1	
2.00+	0 6.82+3	6.40-1							
2.50-	1 6.09+3	2.58-1	3.00-1	7.28+3	2.73-1	5.00-1	1.10+4	3 87-1	92
8.00-	1 1.10+4	4.76-1	1.00+0	1.07+4	5.44-1	1,20+0	1.02+4	6.04-1	72
1.50+	0 9.62+3	6.95-1	1.80+0	8.91+3	7.60-1	2.00+0	8.22+3	7.72-1	
4.00-	2 1.90+1	2.64-1	5.00-2	3.75+1	1.59-1	6.00-2	6.54+1	1.14-1	119
8.00-	2 1.59+2	8.29-2	1.00-1	3.28+2	7.88-2	1.20-1	5.44+2	7.74-2	
6	Carbon		Fluoresce	nce yie	1d = 0.0	028			
						<i>.</i>			
4.00-	2 2.70-1	4.14+0	5.00-2	3.70-1	1.63+0	6.00-2	6.00-1	9.74-1	16
7.00-	2 0.40-1	5.92-1	8.00-2	1.30+0	4.49-1				
5.00-	2 9.00-1	3.97+0	6.00-2	1.60+0	2.60+0	7.00-2	2.30+0	1.62+0	23
8.00-	2 3.40+0	1.17+0	9.00-2	5.40+0	9.97-1	1.00-1	8.50+0	9.01-1	
1.10-	1 1.10+1	7.09-1	1.20-1	1.80+1	7.41-1	1.30-1	2.80+1	7.67-1	
1.40-	1 3.70+1	7.00-1	1.50-1	5.60+1	7.53-1	1.60-1	8.20+1	8.07-1	
1.70-	1 1.00+2	7.3/-1	1.80-1	1.20+2	6.77-1	1.90-1	1.70+2	7.49-1	
2.00-	1 1.90+2	6.65-1							
5.00-	2 5.60-1	2.47+0	6.00-2	9.50-1	1.54+0	7.00-2	1.60+0	1.13+0	26
8.00-	2 2.40+0	8.28-1	9.00-2	3.80+0	7.01-1	1.00-1	5.80+0	6.15-1	20
1.10-	1 8.90+0	5.74-1	1.20-1	1.20+1	4.94-1	1.30-1	1.70+1	4.66-1	
1.40-	1 2.40+1	4.54-1	1.50-1	3.50+1	4.71-1	1.60-1	4.30+1	4.23-1	
1.70-	1 6.00+1	4.42-1	1.80-1	7.00+1	3.95-1	1.90-1	8.40+1	3.70-1	
2.00-	1 1.10+2	3.85-1							
1.16-	1 5.31+0	2.60-1	1.35-1	1.01+1	2.29-1				46
1.50-	1 2.26+1	3.04-1	1.75-1	4.13+1	2.66-1	2,00-1	6.62+1	2.32-1	82
2.50-	1 1.89+2	2.60-1	3.00-1	3.44+2	2.40-1	4.00-1	1.03+3	2.95-1	<u>.</u>
6.00-	1 3.09+3	3.67-1	8.00-1	5.24+3	4.19-1	1.00+0	6.89+3	4.58-1	
1.20+	0 8.09+3	4.91-1	1.60+0	8.89+3	5.14-1	2.00+0	9.86+3	5.85-1	
2.40+	0 9.82+3	6.14-1					_	-	

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}
G. LAPICKI

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}---Continued

<i>E</i> ₁	σ ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	o ^{ECPSSR}	- (MeV)	(barn)	σ^{ECPSSR}	Ref.
		<u></u>			1			19. <u></u>	······
7	Nitrogen		Fluoresc	ence yi	eld = 0.0	052			
9.70	-2 2.11+0	1.40+0	1.16-	1 4.27+	0 1.15+0	1.35	-1 8.34+	0 1.06+0	46
1.25	-1 4.65+0	8.66-1	1.50-	1 1.06+	1 8.03-1	1.75	-1 1.90+	1 6.83-1	82
2.00	-1 3.14+1	6.00-1	2.50-	1 8.03+	1 5.59-1	3.00	-1 1.48+	2 4.77-1	
4.00	-1 4.86+2	5.31-1	5.00-	1 1.02+	3 5.48-1	6.00	-1 1.74+	3 5.74-1	
/.00	-1 2./1+3	6.29-1	8.00-	1 3.70+	3 6.62-1	1.00	+05.33+	3 6./2-1	
1.20-	+0 0.45+5	0.58-1	1.00+	0 8.15+	3 0.0/-1	2.00	+0 9.81+	5 /.38-1	
9	Fluorine		Fluoresc	ence yi	eld = 0.0	13			
1.00-	+0 1.67+3	7.79-1	1.70+	0 4.49+	3 8.19-1	1.80	+0 4.82+	3 8.19-1	110
4.00	-1 7.19+1	6.29-1	6.00-	1 2.00+	2 3.92-1	8.00	-1 4.01+	2 3.27-1	116
1.00-	+0 7.01+2	3.27-1	1.20+	0 1.07+	3 3.40-1	1.40	+0 1.62+	3 3.92-1	
1.60-	+0 1.98+3	3.92-1	1.80+	0 2.52+	3 4.28-1	2.00	+0 3.05+	3 4.61-1	
10	Neon		Fluoresc	ence yi	eld = 0.0	18			•
9 70	-2 1 36-1	2 06+0	1 16-	1 3 51-	1 2 17+0	1 35	-1 6 13-	1 1 82+0	46
5.70	2 1.50 1	2.00.0	1.10	1 5.51	1 2.17.0	1.55	1 0.15	1 1.02.0	
2.00	-1 1.38+0	6.57-1	2.50-	1 3.66+	0 6.39-1	3.00	-1 7.10+	0 5.58-1	82
4.00	-1 2.19+1	5.11-1	5.00-	1 5.40+	1 5.19-1	6.00	-1 1.12+	-2 5.46-1	
8.00	-1 3.09+2	5.77 - 1	1.00+	0 6.17+	2 6.05-1	1.20	+0 9.87+	-2 6.16-1	
12	Magnesiu	m	Fluoresc	ence yi	eld = 0.0)3			
1 25	-1 7 40-2	1 02+0	1 50-	1 1 80-	1 1 80+0	1 75	-1 3 /0-	1 1 71+0	12
2.00	-1 5.90-1	1.59+0	1.50-	1 1.00-	1 1.0910	1.17	-1 3.40-	1 1.71+0	12
1.00	+0 2.88+2	1.23+0	1.50+	0 5.00+	2 6.71-1	2.50	+0 1.73+	-3 8.13-1	19
3.00-	+0 2.39+3	8.58-1	3.504	0 3.15+	3 9.37-1	4.00	+0_3.55+	-3 9.21-1	
4.50	+0 4.05+3	9.49-1	5.00+	•0 4.60+	3 9.99-1				
13	Aluminum	l	Fluoresc	ence yi	eld = 0.0)39			
1.00	-1 6.10-3	1.20+0	1.25-	1 3.10-	2 1.76+0	1.50	-1 8,60-	·2 1.90+0	12
1.75	-1 1.70-1	1.77+0	2.00-	1 3.10-	1 1.72+0	2150	1 0100		
2.90	+0 2.40+2	1.32-1	3.55+	0 3.50+	2 1.43-1	3.90	+0 4.404	2 1.59-1	15
4.45	+0 5.70+2	1.78-1	4.801	0 6.60+	2 1.92-1	5.30	+0 8.30+	2 2.21-1	
6.00	-2 2.00-4	1.24+0	7.50-	2 7.00-	4 8.40-1	8.00	-2 1.80-	·3 1.40+0	17
9.00	-2 3.70-3	1.36+0	1.00-	1 7.00-	3 1.37+0	1.70	-1 8.70-	2 1.04+0	
1.90	-1 1.50-1	1.06+0	2.00-	1 2.20-	1 1.22+0				
								0 1 0010	10
1.00	+0 1.34+2	1.07+0	1.504	0 5.90+	2 1.37+0	2.00	+0 9.61	FZ 1.09+0	19
2.50 / 00	τυ 1.52+3 40 % 10±9	1.U8+0	5.001 / 501	ህ 1.99+ ብ / ደ11	3 1.04+0	5.00	170 2.931 170 5 081	-3 1.224U	
	10 4.1073	1.44TU	- +, <u>)</u> UT	V 4.01T	J 1.47TU	J. UL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J 1. 46TU	

	•	•	-	-					
E,	0 ^{Exper}	σ^{Exper}	E,	σ ^{Exper}	σ ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
1.80-1	1.20-1	1.09+0	2.00-1	2.00-1	1.11+0	2.20	-1 4.00-	1 1.43+0	22
2.40-1	7.00-1	1.69+0	2.60-1	8.00-1	1.35+0	2.80	-1 1.00+0	0 1.21+0	
3.00-1	1.60+0	1.44+0	3.20-1	2.00+0	1.36+0				
1 80-1	1 30-1	1 27+0	2 20-1	2 03-1	1 05+0	2 60	-1 5 47-	1 0 21-1	28
3 00-1	1 06+0	9 53-1	3 40-1	1 73+0	9 07-1	2.00	-1 3.4/-	1 9.21-1	20
5.00-1	1.0010	J.JJ-1	J.40-1	1.7510	5.07-1				
6.00-2	2.10-4	1.30+0	7.00-2	7.35-4	1.43+0	8.00	-2 1.75-3	3 1.36+0	45
9.00-2	4.06-3	1.50+0	1.00-1	7.65-3	1.50+0	1.20	-1 2.10-2	2 1.48+0	
1.40-1	4.77-2	1.50+0	1.60-1	8.42-2	1.36+0	1.80	-1 1.50-	1 1.37+0	
2.00-1	2.41-1	1.34+0	4.08-1	3.25+0	7.91-1	5.10	-1 6.60+	0 6.46-1	
6.12-1	1.25+1	5.96-1	7.14-1	2.30+1	6.10-1	8.16	-1 3.78+	1 6.14-1	
1.02+0	8.47+1	6.35-1	1.12+0	1.17+2	6.46-1	1.22	+0 1.54+	2 6.53-1	
1.43+0	2.48+2	6.58-1	1.63+0	3.62+2	6.73-1	1.84	+0 4.95+	2 6.80-1	
2.04+0	6.46+2	7.01-1	2.24+0	8.20+2	7.26-1	2.35	+0 9.15+	2 7.37-1	
2.45+0	1.02+3	7.56-1	2.55+0	1.14+3	7.84-1	2.65	+01.25+	3 8.02-1	
2.85+0	1,49+3	8.43-1	2.96+0	1.59+3	8.46-1	3.06	+0 1 68+	3 8.47-1	
3.16+0	1.76+3	8.45-1	3.26+0	1.85+3	8.48-1	3.67	+02.18+	3 8.49-1	
4.08+0	2.44+3	8.37-1	4.69+0	2.76+3	8.18-1	5.51	+0.3.10+	3 8.01-1	
5.92+0	3.17+3	7.78-1		2170.0	0110 1	5.51		0.01 1	
1.00+0	1.00+2	8.00-1	1.50+0	4.41+2	1.02+0	2.00	+0 9.42+	2 1.07+0	54
2.50+0	1.57+3	1.12+0	3.00+0	2.19+3	1.14+0	3.50	+0 2.89+	3 1.20+0	
4.00+0	3.52+3	1.23+0	4.50+0	4.18+3	1.29+0	5.00	+0 4.83+	3 1.35+0	
2.50+0	1.10+3	7.84-1	3.20+0	1.80+3	8.49-1	3.25	+0 2.00+	3 9.21-1	96
4.00+0	2.39+3	8.38-1	4.90+0	2.60+3	7.40-1				
	2105.0	0100 1	1190.0	2.00.0	///0 1				
4.00+0	2.17+3	7.61-1	6.00+0	3.30+3	8.03-1	8.00	+0 3.91+:	3 8.24-1	97
1.00+1	4.15+3	8.22-1	1.20+1	4.28+3	8.33-1	1.60	+1 4.12+	3 8.19-1	
2.00+1	3.93+3	8.20-1	2.40+1	3.58+3	7.92-1	2.80	+1 3.38+	3 7.95-1	
3.00+1	3.30+3	7.99-1							
1.00+0	1.13+2	9.04-1	1.80+0	6.64+2	9.61-1				110
16 9	ilcon		Fluorosco	noo vio	14 - 0.05				
	11COII		riuoresce	ince yre	10 - 0.05				
2.90+0	1.40+2	1.12-1	3.55+0	2.00+2	1.13-1	3.90	+0 2.50+	2 1.23-1	15
4.45+0	3.10+2	1.28-1	4.80+0	3.50+2	1.32-1	5.30	+0 4.10+	2 1.39-1	15
16 S	ulfur		Fluoresce	nce yie	1d = 0.078	8			
1 10+1	/ 20 ± 3	1 2210	1 60±1	/ 80T3	1 2640	2 10	11 / / 51	2 1 1010	100
2.70+1	4.18+3	1.08+0	1.0041	UZTJ	1.2470	2.10	·I 4.43T	5 1.1270	103
17 C	blorino		Fluorogoo		14 - 0 00	7			
. , U	u tot me		rinolesce	nce vie	ia - 0.09/	,			
1.20+1	3.45+3	1.08+0	2.50+1	4.60+3	1.22+0	3.00	+1 4.46+	3 1.21+0	31
4.00+1	3.69+3	1.07+0				2.00			~1
1 1014	0 1010	1 0010		1					
1,10+1	5.10+3	1 1010	1.60+1	4.20+3	1.1/+0	2.10	+1 3.70+	3 9.83-1	109
2./071	4.43+3	1.1940							

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}-Continued

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}---Continued

	~								
E	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	0 ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	<i>σ</i> ^{ECPSSR}	- (MeV)	(barn)	σ ^{ECPSSR}	Ref.
8.00-1	1.24+1	1.92+0	1.00+0	2.80+1	1.87+0	1.20+	0 4.72+1	1.63+0	123
1.40+0	7.50+1	1.53+0	1.60+0	1.04+2	1.36+0	1.80+	0 1.52+2	1.3/+0	
2.00+0	2.19 7 2	1.43+0	2.20+0	2.34+2 5 0/12	1.20+0	2.40+	0 2.9/+2	1.10+0	
2.0010	4.3312	1.4510	2.0010	5.0472	1. 32+0				
18 A:	rgon		Fluoresce	nce viel	1d = 0.1	18			
	0			,					
3.00-1	4.15-2	6.65-1	5.00-1	4.59-1	7.58-1	8.00-	1 3.11+0	7.69-1	82
1.00+0	6.60+0	6.97-1	1.20+0	1.20+1	6.51-1				
19 Pe	otassiur	n	Fluoresce	nce yie	1d = 0.1	4			
1 1011	0 5/10	1 1610	1 6011	2 2012	1 1210	0 101	1 2 6012	1 1710	100
270+1	3 78+3	1 14+0	1.00+1	3.2073	1.12+0	2.10+	1 3.09+3	1.1/+0	109
2.70.1	517015	1.14.0							
20 C	alcium		Fluoresce	nce vie	1d = 0.1	63			
				<u>j</u>					
1.50+0	2.00+1	1.16+0	2.00+0	5.00+1	1.10+0	3.00+	0 1.80+2	1.16+0	38
4.00+0	3.70+2	1.13+0	5.00+0	6.40+2	1.18+0	6.00+	0 8.60+2	1.11+0	
7.00+0	1.00+3	9.92-1	8.00+0	1.30+3	1.05+0	9.00+	0 1.40+3	9.66-1	
1.00+1	1.60+3	9.72-1	1.10+1	1.80+3	9.85-1	1.20+	1 1.90+3	9.55-1	
<	7 0/10	0 04 1		1 / 0 / 0	1 0010	1		1	
6.00+0	7.24+2	9.36-1	9.00+0	1.48+3	1.02+0	1.20+	1 2.14+3	1.08+0	94
1.30+1	2.0273	1.10+0	1.00+1	2.9/+3	1.12+0				
8 00-1	2 41+0	1 47+0	1 00+0	5 00+0	1 28+0	1 20+	0 1 00+1	1 30+0	123
1.40+0	1.76+1	1.30+0	1.60+0	2 90+1	1.34+0	1 80+	0 4 27+1	1.32+0	125
2.00+0	6.15+1	1.35+0	2.20+0	8.64+1	1.39+0	2.40+	0 1.05+2	1.29+0	
2.60+0	1.41+2	1.37+0	2.80+0	1.70+2	1.33+0				
8.00-1	1.51+0	9.23-1	1.00+0	3.34+0	8.57-1	1.20+	0 6.68+0	8.65-1	133
1.40+0	1.13+1	8.37-1	1.60+0	1.76+1	8.16-1	1.80+	0 2.45+1	7.60-1	
								4 4 - 1 - 0	107
2.00+1	3.18+3	1.14+0	2.40+1	3.36+3	1.14+0	2.80+	1 3.50+3	1.15+0	136
21 S	candium		Fluoresce	nce vie	1d = 0 1	88			
	canatam		110016506	lice yre	10 - 0.1	00			
8.00-1	1.07+0	1.00+0	1.00+0	2.53+0	9.85-1	1.20+	0 4.62+0	9.02-1	133
1.40+0	8.49+0	9.41-1	1.60+0	1.38+1	9.51-1	1.80+	0 2.03+1	9.30-1	
2.00+1	2.85+3	1.15+0	2.40+1	3.21+3	1.20+0	2.80+	1 3.32+3	1.19+0	136
22 T	itanium		Fluoresce	nce yie	1d = 0.2	14			
2 0010	2 6011	7 70 1	2 0010	F 2011	7 96-1	6 001	0 0 1011	7 20 1	14
5 30+0	1 16+2	3.39-1	3.90+0	5.50+1	3.24-1	4.00	0 9.10+1	3.29-1	14
5.50+0	1.1072	3.34-1							
1.20+1	1.41+3	1.01+0	2.50+1	2.89+3	1.19+0	3.00+	1 3.17+3	1.23+0	31
4.00+1	3.40+3	1.27+0							
1.50+0	8.80+0	1.11+0	2.00+0	2.50+1	1.16+0	3.00+	0 8.80+1	1.12+0	38
4.00+0	2.00+2	1.14+0	5.00+0	3.30+2	1.08+0	6.00+	0 5.70+2	1.25+0	
7.00+0	6.60+2	1.07+0	8.00+0	8.50+2	1.09+0	9.00+	0 8.80+2	9.31-1	
1.00+1	1.20+3	1.09+0	1.10+1	1.40+3	1.12+0	1.20+	1 1.70+3	1.22+0	

.

J. Phys. Chem. Ref. Data, Vol. 18, No. 1, 1989

r	Exper	Exper	F	Exper	Exper	F	Exper	Exper	
E ₁	<i></i>	<i></i>	- <i>E</i> 1	<i>0</i>	0	- ^L 1	<i>o</i>		
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
2.00+	1 2.40+3	1.10+0							42
5.00-	1 1.21-1	1.25+0	6.00-	1 2.61-1	1.21+0	7.00-1	4.91-1	1.19+0	67
8.00-	1 8.48-1	1.19+0	9.00-	1 1.33+0	1.17+0	1.00+0	2.00+0	1.16+0	
1.10+	0 2.87+0	1.15+0	1.20+	0 3.83+0	1.10+0	1.30+0	5.15+0	1.10+0	
1.40+	0 6.57+0	1.07+0	1.50+	0 8.42+0	1.07+0	1.60+0) 1.03+1	1.04+0	
1.70+	0 1.29+1	1.05+0	1.80+	0 1.47+1	9.78-1	1.90+0) 1.82+1	1.01+0	
2.00+	0 2.17+1	1.01+0	2.10+	0 2.40+1	9.46-1	2.20+0	2.85+1	9.62-1	
2.30+	0 3.22+1	9.41-1	2.40+	0 3.70+1	9.42-1				
5 00	1 1 10-1	1 1/10	6 00	1 2 70 1	1 2610	7 00 1	E 00 1	1 0110	70
5.00-	1 1.10-1		0.00-	1 2.70-1	1.20+0	7.00-	1 2010-1	1.21+0	72
8.00-	1 /.00-1	9.83-1	9.00-	1 8.30-1	/.45-1	1.00+0) 1.30+0	/.53-1	
1.107	0 2.1070	0.42 - 1	1.207	0 3.0070	0.03-1 9.22-1	1.50+0) 3.00+0) 0 5010	0.13 - 1	
1.40	0 3.1070	0.30-1	1.50+	0 0.3070	0.23-1	1.60+0	0.50+0	8.55-1	
2.001	0 1.0071	0.12-1	2 10	0 1.20 + 1	7.99-1	1.90+0) 1.30+1	8.29-1	
2.00+	0 1.90+1	0.01-1	2.10+	0 2.20+1	8.6/-1	2.20+0) 2.60+1	8.78-1	
2.30+	0 2.90+1	8.4/-1	2.40+	0 3.10+1	7.89-1	2.50+0	3.90+1	8./2-1	
1.00+	0 2.63+0	1.52+0	1.10+	0 3.37+0	1.35+0	1.30+0	5.43+0	1.16+0	78
1.50+	0 7.80+0	9.88-1	1.70+	0 1.15+1	9.34-1	1.90+0) 1.83+1	1.01+0	
2.10+	0 2.28+1	8.98-1	2.20+	0 3.06+1	1.03+0	2.30+0	3.49+1	1.02+0	
2.40+	0 4.02+1	1.02+0	2.50+	0 4.51+1	1.01+0	2.60+0	4.67+1	9.23-1	
2.70+	0 5.67+1	9.96-1	2.80+	0 6.38+1	1.00+0	2.90+0	7.01+1	9.91-1	
3.00+	0 7.75+1	9.90-1	3.10+	0 8.45+1	9.79-1	3.20+0	9.08+1	9.60-1	
3.30+	0 1.00+2	9.67-1	3.40+	0 1.11+2	9.86-1	3.50+0) 1.19+2	9.76-1	
3.60+	0 1.23+2	9.34-1	3.70+	0 1.34+2	9.45-1	3.80+0) 1.46+2	9.58-1	
3.90+	0 1.58+2	9.66-1	4.00+	0 1.69+2	9.64-1	4.10+0) 1.75+2	9.37-1	
4.20+	0 1.90+2	9.57-1	4.30+	0 2.04+2	9.68-1	4.40+0	2.03+2	9.09-1	
2 501	0 5 7011	1 0710	2 201	0 1 0010	1 0(10	0.051			
2.50+	0 5.70+1	1.2/+0	3.20+	0 1.00+2	1.06+0	3.25+0) 1.10+2	1.11+0	96
4.00+	0 1.79+2	1.02+0	4.90+	0 2.50+2	8.62-1				
1.00+	1 1.03+3	9.34-1	1.20+	1 1.38+3	9.92-1	1.40+:	L 1.64+3	9.98-1	105
1.60+	1 1.86+3	1.00+0	1.80+	1 2.21+3	1.09+0	2.00+3	L 2.32+3	1.07+0	
2.20+	1 2.50+3	1.09+0	2.40+	1 2.65+3	1.11+0	2.60+	2.72+3	1.10+0	
2.80+	1 2.80+3	1.11+0	3.00+	1 2.96+3	1.15+0				
0 00	1 0 00 /	0 07 1	0 50	1 0 5/ /	0 07 4	0 00			
2.30-	1 3.92-4	2.23-1	2.50-	1 8.54-4	2.95-1	2.80-	L 1.89-3	3.42-1	118
3.00-	1 3.21-3	4.00-1	3.50-	1 8.62-3	4.82-1	4.00-	l 1.93-2	5.62-1	
5.00-	1 0.5/-2	0.81-1	6.00-	1 1.59-1	7.40-1	7.00-1	3.15-1	7.64-1	
8.00-	1 5.56-1	/.81-1							
8.00-	1 7.80-1	1.09+0	1.00+	0 1.81+0	1.05+0	1.20+0	3.34+0	9.63-1	133
1.40+	0 5.72+0	9.31-1	1.60+	0 9.15+0	9.20-1	1.80+0) 1.33+1	8.85 - 1	-
	1 0 0/10	1 0010				• • • •			
2.00+	1 2.36+3	1.08+0	2.40+	1 2.72+3	1.14+0	2.80+:	1 2.88+3	1.14+0	136
7.76-	1 6.02-1	9.56-1	9.16-	1 1.03+0	8.41-1	1.05+0) 1.45+0	6.90-1	146
1.60+	0 6.69+0	6.73-1							
		F G G G	• • • •		• · - ·				
1.50+	0 4.66+0	5.90-1	2.02+	0 1.88+1	8.43-1	2.50+0) 3.24+1	7.24-1	148
3.00+	υ 5.56+1	7.10-1	3.50+	V 9.01+1	7.39-1				

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}---Continued

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

	σ ^{Exper}	σ^{Exper}	E ₁	σ ^{Exper}	σ ^{Exper}	<i>E</i> ₁	σ ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	 (MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	<i>σ</i> ^{ECPSSR}	Ref.
4 50-1	8 07-2	1 35±0	5 00-	1 20-1	1 35+0	5 5	0_1 1 0	E-1 1 22+0	152
6.00-1	2.78-1	1.29+0	6 50-1	1 3 84-1	1 27+0	7.0	0-1 1.5	4 - 1 + 1 + 25 + 0	155
7.50-1	6 73-1	1 23+0	8 00-1	1 8 64-1	1 21+0	8 5	0-1 3.1	14^{-1} 1.23+0	
9 00-1	1 36+0	1 1010	1 00-0	1 0.04-1 1 2 0210	1 17+0	1 1	0-1 1.0	370 1.2070	
1 20+0	3 07+0	1 1/10	1 3040) 5 21±0	1 1/+0	1 4	0+0 2.0	30+0 1.13+0	
1 5010	9 0010	1 1210	1.30+0) J.JITU \ 1 1011	1.14+0	1.4	0+0 0.5		
1.5070	0.0070	1.12+0	1.00+0	1.12+1	1.13+0	1.8	0+0 1.6	59+1 1.12+0	
2.00+0	2.43+1	1.14+0	2.20+0) 3.42+1	1.15+0	2.4	0+0 4.6	5+1 1.18+0	
2.00+0	0.1/+1	1.22+0	2.80+0	8.03+1	1.26+0	3.0	0+0 1.0)3+2 1.32+0	
7.00-1	4.82-1	1.17+0	8.00-3	l 8.23-1	1.16+0	9.0	0-1 1.2	21+0 1.06+0	160
1.00+0	1.83+0	1.06+0	1.20+0	3.57+0	1.03+0	1.4	0+0 6.2	29+0 1.02+0	
1.60+0	1.03+1	1.04+0	2.00+0	2.09+1	9.70-1	2.4	0+0 3.7	72+1 9.47-1	
97 V.			F 1		11 - 0 0				
23 V	anadium		Fluoresco	ence yie	1a = 0.2	.43			
1.00+0	1.47+0	1.24+0	1.25+0	2.60+0	9.31-1	1.5	0+0 4.3	30+0 7.83-1	54
1.75+0	7.00+0	7.34-1	2.00+0	9.79+0	6.45-1	2.5	0+0 1.e	52+1 5.08-1	
3.00+0	2.73+1	4.83-1	3.50+0) 4.00+1	4.48-1	4.0	0+0 5.8	32+0 4.50-2	
4.50+0	7.59+0	4.29-2							
E 00 1	7 (0 0	1 1/10			1 0/10				4 -
5.00-1	7.40-2	1.10+0	6.00-	L 1.81-1	1.26+0	7.0	0-1 3.3	36-1 1.21+0	67
8.00-1	5.83-1	1.21+0	9.00-	L 9.4/-1	1.22+0	1.0	0+0 1.3	39+0 1.17+0	
1.10+0	2.0/+0	1.21+0	1.20+0) 2.69+0	1.12+0	1.3	0+0 3.6	6+0 1.13+0	
1.40+0	4.90+0	1.15+0	1.50+0	6.02+0	1.10+0	1.6	0+0 7.5	59+0 1.09+0	
1.70+0	9.34+0	1.08+0	1.80+0) 1.13+1	1.07+0	1.9	0+0 1.3	37+1 1.08+0	
2.00+0	1.62+1	1.07+0	2.10+0) 1.90+1	1.06+0	2.2	0+0 2.1	l3+1 1.02+0	
2.30+0	2.60+1	1.07+0	2.40+0	0 2.87+1	1.03+0				
1.00+0	1.21+0	1.02+0	2.20+0) 1.97+1	9.39-1	2.3	0+0 2.2	26+1 9.30-1	78
2.40+0	2.59+1	9.26-1	2.50+0	2.96+1	9.28-1	2.6	0+0 2.9	96+1 8,18-1	
2.70+0	3,70+1	9.07-1	2.80+0) 4.15+1	9.08-1	2.9	0+0 4.5	54+1 8 90-1	
3.00+0	5.00+1	8.84-1	3,10+0	5.51+1	8.82-1	3.2	0+0 5 9	93+1 8 63-1	
3.30+0	6.46+1	8.58-1	3 40+0	6 86+1	8 35-1	3 5	0+0 7 7	71+1 8 63-1	
3.60+0	8.37+1	8.64-1	3 70+0	9 01+1	8 61-1	3.8	0+0 9 7	70+1 8 61-1	
3,90+0	1.05+2	8.69-1	4.00+0	1.12+2	8.66-1	4.1	0+0 1 1	11+2 8 03-1	
4.20+0	1.25+2	8.47-1	4.30+0	1.36+2	8.65-1	4.4	0+0 1.3	38+2 8.25-1	
8.00-1	5.39-1	1.11+0	1.00+0) 1.28+0	1.08+0	1.2	0+0 2.4	42+0 1.01+0	133
1.40+0	4.20+0	9.86-1	1.60+0	7.06+0	1.02+0	1.8	0+0 1.0)3+1 9.77-1	
0 0011		1	0 (0)						
2.00+1	2.04+3	1.06+0	2.40+.	1 2.38+3	1.11+0	2.8	0+1 2.6	58+3 1.1/+0	1/36
24 C1	hromium		Fluoresco	ence yie	1d = 0.2	275			
2.90+0	1.50+1	4.04-1	3.55+(2.60+1	3.78-1	3.9	0+0 3.4	40+1 3.77-1	14
4.80+0	7.10+1	4.48-1	5.30+0	8.10+1	3.99-1				
E 00 1	E 00 0	1 0510	(1 0010	-			/ -
5.00-1	5.30-2	1.25+0	0.00-	L 1.25-1	1.29+0	/.0	0-1 2.3	58-1 1.25+0	6/
0.00-1	4.25-1	1.28+0	9.00-	L 0.61-1	1.22+0	1.0	U+U 1.(13+0 1.25+0	
1.10+0	1.45+0	1.21+0	1.20+0	1.96+0	1.17+0	1.3	0+0 2.6	b/+0 1.17+0	
1.40+0	3.51+0	1.17+0	1.50+0) 4.24+0	1.09+0	1.6	0+0 5.2	24+0 1.07+0	
1./0+0	0.97+0	1.14+0	1.80+0	J 8.28+0	1.10+0	1.9	0+0 9.9	2+0 1.09+0	
2.00+0	1.15+1	1.06+0	2.10+0	1.35+1	1.05+0	2.2	0+0 1.5	08+1 1.05+0	
2.30+0	1.83+1	1.05+0	2.40+0) 1.99+1	9.87-1				

<i>E</i> ₁	σ^{Exper}	σ ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	o ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	- (MeV)	(barn)	σ^{ECPSSR}	- (MeV)	(barn)	σ^{ECPSSR}	Ref.
9.00-	1 1.10+0	2.04+0	1.10-	0 2.09+0	0 1.74+0	1.30+	0 4.15+0	1.83+0	80
1.50+	-0 5.75+0	1.48+0	1.70-	0 9.93+0	0 1.62+0	1.90+	0 1.40+1	1.54+0	
2.10+	0 2.13+1	1.66+0	2.30-	0 2.56+	1 1.46+0	2.50+	0 3.32+1	1.44+0	
2.70+	0 4.70+1	1.59+0	2.90-	+0 5.40+	1 1.45+0	3.10+	0 7.46+1	1.63+0	
3.30+	0 8.86+1	1.60+0	3.50-	+0 1.13+	2 1.71+0	3.70+	0 1.22+2	1.57+0	
3.90+	0 1.56+2	1./3+0	4.10-	FO 1.91+	2 1.84+0				
6 004	LA 2 01+2	1 07+0	۹ nn-	LO 6 75+	2 1 09+0	1 20+	1 1 1749	1 20+0	9/
1.50+	1.51+3	1.17+0	1.80-	1 1 76+	3 1.14+0	1.201	1 1.1//2	1.20+0	24
2.50			2.00						
8.00-	-1 4.02-1	1.21+0	1.00-	HO 9.17-	1 1.12+0	1.20+	0 1.80+0	1.07+0	133
1.40+	+0 3.06+0	1.02+0	1.60-	+0 4.90+	0 9.98-1	1.80+	0 6.96+0	9.28-1	
2.00+	+1 1.86+3	1.10+0	2.40	+1 2.18+	3 1.14+0	2.80+	1 2.33+3	3 1.12+0	136
1.50+	+0 4.08+0	1.05+0	2.02-	1.06+	1 9.44-1	2.50+	0 2.28+1	9.89-1	148
3.004	FU 4.0/+1	9.85-1	3.50-	FU 0.80+	1 1.04+0				
25	Manganes	P	Fluores	cence vi	a1d = 03	08			
	manganob	U C	1 1001 00	Jence yr	0.0				
1.00+	HO 8.14-1	1.41+0	1.10-	+0 1.02+	0 1.21+0	1.30+	0 1.66+0) 1.03+0	78
1.50+	⊦0 2.50 + 0	9.07-1	1.70-	+0 3.54+	0 8.11-1	1.90+	0 6.27+0	9.63-1	
2.20+	+0 1.08+1	9.94-1	2.30	+0 1.23+	1 9.73-1	2.40+	0 1.35+1	9.24-1	
2.50+	+0 1. <mark>61+</mark> 1	9.62-1	2.60	+0 1.59+	1 8.33-1	2.70+	0 1.98+1	9.17-1	
2.80+	+0 2.22+1	9.13-1	2.90	+0 2.47+	1 9.08-1	3.00+	0 2.88+1	9.50-1	
3.104	+0 3.01+1	8.96-1	3.20	+0 3.19+	1 8.59-1	3.30+	0 3.53+1	8.65-1	
3.404	+0 3.84+1	8.58-1	3.50	+0 4.25+	1 8.70-1	3.60+	0 4.60+1	8.65-1	
3.704	+0 4.94+1	8.56-1	3.80	+0 5.43+	1 8.70-1	3.90+	0 5.57+1	8.27-1	
4.004	F0 6.20+1	8.56-1	4.10	+0 6.74+	1 8.67-1	4.20+	0 7.19+1	8.63-1	
4.301	+0 /./6+1	8./2-1	4.40	+0 8.36+	1 8.81-1				
8 00-	-1 2 70-1	1 17+0	1 00.	LO 6 73-	1 1 17±0	1 201	.0 1 21.1.0	1 1110	100
1 404	-1 2.70-1 HD 2.20+0	1.03+0	1.60	+0 0.73-	1 1.17+0 0 1 02+0	1 804	0 5 35+0	1.11+0	135
1.40,		1.00.0	1.00		0 1.02.0	1.001	0 3.3310	<i>J.J.</i> ¹	
26	Iron		Fluores	cence yi	eld = 0.3	34			
				–					
2.90+	+0 ⁻ 1.20+1	6.02-1	3.55	+0 2.00+	1 5.29-1	3.90+	0 2.50+1	4.98-1	14
4.801	+0 4.40+1	4.84-1	5.30	+0 5.80+	1 4.90-1				
3.00+	1 2.55+3	1.47+0	4.00	+1 2.59+	3 1.32+0	5.00+	1 2.66+3	3 1.30+0	24
6.004	ri 2.75+3	1.33+0	7.00-	+1 2.7/+	5 1.35+0	8.00+	1 2.58+3	0 1.29 + 0	
2 001	LO 7 0010	1 2/10	3 00.	LN 9 50±	1 1 1910	/ 001	.0 6 60.11	1 2010	20
5 004	FO 7.0070	1 08+0	6 00-	FO 2.304	1 1.12+0	7 001	0 0.00+1	1.22+0	20
8 004	HO 3.40+2	1.08+0	9 00	+0 4 20+	2 1.05+0	1 004	1 5 2014	1 07±0	
1.104	10.30+2	1.09+0	1.20	+1 6.90+	2 1.04+0	1.001	I J.2014	. 1.0/70	
				_ 0.201	,,,,,,,				
2.00+	+1 1.30+3	1.02+0							42
3.004	+1 2.18+3	1.26+0							49

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

E,	o ^{Exper}	σ ^{Exper}		σ ^{Exper}	σ^{Exper}	<i>E</i> ,	σ^{Exper}	σ ^{Exper}	
		ECPSSR			ECPSSR		(ham)	ECPSSR	Def
(Mev)	(barn)	<i>o</i>	(Mev)	(barn)	<i>σ</i>	(NIEV)	(barn)	<i>d</i>	Kei.
1 00+0	6 16-1	1 02+0	1 5040	1 76+0	8 03-1	2 00.	LO / 86-	LO 8 6/-1	54
2.50+0	1 02+1	8 37-1	3 00+0	1 94+1	8 71-1	3 50	+0 4.00- +0 3 03-	FU 8.04-1	54
2.50.0	1.02.1	0.57 1	5.0010	1.24.1	0.71 1	5.50	10 5.05	1 0.57 1	
4.00+0	4.31+1	7.96-1	4.50+0	5.68+1	7.47-1	5.00	+0 8.41-	+1 8.29-1	
1.00+0	4.53-1	1.12+0	2.20+0	7.48+0	9.51-1	2.30 [.]	+0 8.66-	+0 9.44-1	78
2.40+0	9.86+0	9.29-1	2.50+0	1.10+1	9.03-1	2.60	+0 1.17-	+1 8.41-1	
2.70+0	1.41+1	8.94-1	2.80+0	1.59+1	8.94-1	2.90	+0 1.79-	+1 8.98-1	
3.00+0	1.93+1	8.67-1	3.10+0	2.15+1	8.69-1	3.20	+0 2.34	+1 8.56-1	
3.30+0	2.65+1	8.79-1	3.40+0	2.99+1	9.04-1	3.50	+0 3.33	+1 9.20-1	
3.00+0	3.59+1	9.10-1	3.70+0	3.89+1	9.0/-1	3.80	+0 4.14	+1 8.91-1	
5.30 1 0	5 6611	9.30-1	4.00+0	4.9471	9.13-1	4.10	+0 6 12	+1 0.93 - 1	
4.2010	5.0011	J.07~1	4.5010	0.0071	0.90-1	4.40	10 0.12	-1 0.30-1	
3.20+0	3.20+1	1.17+0	3.25+0	3.50+1	1.22+0	4.00	+0 6.33	+1 1.17+0	96
4.90+0	8.40+1	8.74-1							
1.00+1	4.56+2	9.36-1	1.20+1	6.59+2	9.89-1	1.40	+1 8.74	+2 1.04+0	105
1.60+1	1.05+3	1.05+0	1.80+1	1.34+3	1.17+0	2.00	+1 1.35	+3 1.06+0	
2.20+1	1.56+3	1.12+0	2.40+1	1.70+3	1.14+0	2.60	+1 1.80	+3 1.14+0	
2.80+1	1.85+3	1.11+0	3.00+1	1.85+3	1.07+0				
2 80-1	1 39-4	1 78-1	3 00-1	2 8/-1	2 67-1	3 50	-1 0 70	-/ 7 76-1	110
4 00-1	2 96-3	4 87-1	5 00-1	1 31-2	6 86-1	5.00	-1 3 63	-4 3.39-1	110
7.00-1	7.96-2	8.83-1	8.00-1	1.49-1	9.28-1	0.00	1 5.05	-2 0.00-1	
8.00-1	2.06-1	1.28+0	1.00+0	4.86-1	1.20+0	1.20	+0 1.01	+0 1.21+0	133
1.40+0	1.38+0	9.10-1	1.60+0	2.69+0	1.07+0	1.80	+0 4.07	+0 1.06+0	
4.50-1	1.40-2	1.24+0	5.00-1	2.50-2	1.31+0	5.50	-1 4.03	-2 1.34+0	153
6.00-1	6.07-2	1.35+0	6.50-1	8.70-2	1.34+0	7.00	-1 1.20	-1 1.33+0	
/.30-1	1.01-1	1.32+0	8.00-1	2.11-1	1.31+0	8.50	-1 2.70	-1 1.30+0	
9.00-1	3.40-1 1 0/10	1.29+0	1 30+0)] %0±0	1 22+0	1.10	+U /.40 10 1 23	-1 1.20+0	
1 50+0	2 34+0	1 19+0	1 60+0) 2 9340	1.2210	1 80	+0 1.0J	+0 1.21+0	
2.00+0	6.22+0	1.11+0	2,20+0	8.47+0	1.08+0	2.40	+0 1.12	+1 1 06+0	
2.60+0	1.43+1	1.03+0	2.80+0) 1.80+1	1.01+0	3.00	+0 2.22	+1 9.97-1	
27 Co	obalt		Fluoresce	ence yie	1d = 0.3	73			
	/					o o-			
2.00+0	6.50+0	1.58+0	2.50+0	1.30+1	1.45+0	3.00	+0 2.30	+1 1.40+0	38
3.50+0	3.80+1	1.41+0	4.00+0	5.70+1	1.40+0	4.50	+0 /.60	+1 1.32+0	
5.00+0 8 00+0	1.05+2	1.35+0	6.00+l	1.60+2	1,2/+0 1 12+0	1.00	+0 2.00	+2 1.09+0	
1 10+1	5 00+2	1 06+0	1 20+1	6 10+2	1.12+0	1.00	TI 4.00	72 1.1770	
1.10.1	5.0012	1.0010	1.2011	. 0.1012	1.12.0				
2.00+1	1.10+3	1.00+0							42
1.00+0	3.99-1	1.38+0	1.10+0	6.19-1	1.46+0	1.30	+0 9.75	-1 1.19+0	78
1.50+0	1.47+0	1.04+0	1.70+0	2.12+0	9.35-1	1.90	+0 3.39	+0 9.95-1	
2.20+0	5.31+0	9.23-1	2.30+0	6.00+0	8.93-1	2.40	+0 6.80	+0 8.74-1	
2.50+0	7.83+0	8.74-1	2.60+0	9.69+0	9.47-1	2.70	+0 9.86	+0 8.49-1	
2.80+0	1.11+1	8.46-1	2.90+0	1.23+1	8.35-1	3.00	+0 1.36	+1 8.25-1	
3.10+0	1.48+1	8.07-1	3.20+0	1.62+1	7.98-1	3.30	+0 1.79	+1 7.98-1	
3.40+0	1.97+1	8.00-1	3.50+0	2.16+1	8.00-1	3.60	+0 2.31	+1 7.84-1	

<i>E</i> .	σ ^{Exper}	σ ^{Exper}	Ε.	σ ^{Exper}	σ ^{Exper}	E,	σ ^{Exper}	0 ^{Exper}	
-, (MeV)	(harn)	ECPSSR		(harn)	ECPSSR	- (MeV)	(harn)	ECPSSR	Paf
(Mev)	(barn)		(IVIE V)	(oarn)		(MC V)	(barn)	0	Kei.
						0.00			
3.70+0	2.52+1	7.86-1	3.80+0	2./2+1	7.81-1	3.90)+0 2.95	+1 7.83-1	
4.00+0	3.22+1	7.91-1	4.10+0	3.40+1	/./0-1	4.20	+0 3.69	+1 /.84-1	
4.30+0	3.92+1	/.//-1	4.40+0	4.35+1	8.0/-1				
8.00-1	1.36-1	1.20+0	1.00+0	3.30-1	1.14+0	1.20	+0 6.77	-1 1.13+0	133
1.40+0	1.22+0	1.12+0	1.60+0	1.91+0	1.05+0	1.80	0+0 2.81	+0 1.00+0	
1 50+0	1 15+0	8 10-1	2 02+0	3 26+0	7 67-1	2 50)+0 6 72	+0 7 50-1	148
3 00+0	1 23+1	7.46-1	3 20+0	1 55+1	7.63-1	3 50	1+0 1 98	+1 7 33-1	140
5.00.0	1,23,1	7.40 1	5.20.0	1.5511	,	5.50			
28 N	ickel		Fluoresce	nce yie	1d = 0.4	406			
2.90+0	8.40+0	7.69-1	3.55+0	1.30+1	6.15-1	3.90	+0 1.50	+1 5.29-1	14
4.80+0	2.50+1	4.75-1	5.30+0	3.50+1	5.02-1				
3 00+1	1 71+3	1 25+0	4 00+1	1 85+3	1 15+0	5.00	1+1 2 05	+3 1 10+0	2/.
6.00+1	2.30+3	1.29+0	7.00+1	2.34+3	1.30+0	8.00)+1 2.03	+3 1.31+0	24
								10101	
2.00+0	2.30+0	7.67-1	3.00+0	9.10+0	7.44-1	4.00)+0 2.30	+1 7.51-1	38
5.00+0	5.00+1	8.45-1	6.00+0	8.50+1	8.76-1	7.00)+0 1.10	+2 7.65-1	
8.00+0	1.70+2	8.62-1	9.00+0	2.00+2	7.82-1	1.00	0+1 2.60	+2 8.17-1	
1.10+1	2.90+2	7.59-1	1.20+1	3.30+2	7.37-1				
1.50+0	6.60-1	6.41-1	2.00+0	1.40+0	4.67-1	2.50)+0 3.70	+0 5.61-1	43
3.00+0	7.40+0	6.05-1	3.50+0	1.10+1	5.45-1	4.00	0+0 1.80	+1 5.88-1	10
5.00+1	2.07+3	1.20+0	6.00+1	2.30+3	1.29+0	7.00)+1 2.33	+3 1.30+0	49
8.00+1	2.21+3	1.24+0	9.00+1	2.23+3	1.27+0	1.00	0+2 2.12	2+3 1.24+0	
1.00+0	2.07-1	1.01+0	2.20+0	3.95+0	9.36-1	2.30)+0 4.52	+0 9.16-1	78
2.40+0	4.97+0	8.67-1	2.50+0	5.80+0	8.79-1	2.60)+0 6.66	+0 8.82-1	70
2.70+0	7.32+0	8.52-1	2.80+0	8.21+0	8.45-1	2.90	+0.9.08	+0 8.31-1	
3.00+0	1.02+1	8.34-1	3.10+0	1.10+1	8.07-1	3.20)+0 1.20	+1 7.93-1	
3.30+0	1.34 + 1	8.02-1	3.40+0	1.46+1	7.94-1	3.50)+0 1.61	+1 7.97-1	
3.60+0	1.76+1	7.97-1	3.70+0	1.92+1	7.98-1	3.80	0+0 2.09	+1 7.99-1	
3.90+0	2.17+1	7.66-1	4.00+0	2.43+1	7.93-1	4.10)+0 2.61	+1 7.90-1	
4.20+0	2.81+1	7.91-1	4.30+0	2.97+1	7.79-1	4.40	0+0 3.24	+1 7.94-1	
5.20+0	5.69+1	8.61-1	1.65+1	6.62+2	8.96-1	2.70)+1 1 18	+3 9 35-1	83
5.20.0	5105.1	0.01 1	1.05.1		0000 1	2.70			05
5.00+0	4.00+1	6.76-1							89
4.00+0	2,43+1	7.93-1	6.00+0	8.13+1	8.38-1	8.00)+0 1.78	+2 9.03-1	97
1.00+1	2.82+2	8.86-1	1.20+1	4.11+2	9.17-1	1.60	$)+1 \ 6.16$	+2 8.69-1	
2.00+1	8.77+2	9.32-1	2.40+1	1.08+3	9.48-1	2.80)+1 1.25	+3 9.62-1	
3.00+1	1.30+3	9.51-1							
1 10±1	6 6110	1 01+0	1 2011	7 2010	1 0910	0.14	11 1 04	10 1 0710	100
2 7011	+.0172 1 3012	1 0540	1.00+1	1.3242	1.0340	2.10	JTI 1.00		109
2.7071	1. 3273	1.0340							
2.00-1	6.90-6	4.12-1	2.10-1	1.10-5	4.19-1	2.20	0-1 1.90	-5 4.79-1	120
2.40-1	4.70-5	5.72-1	2.60-1	8.50-5	5.54-1	2.80	0-1 1.50	-4 5.66-1	
3.00-1	2.50-4	5.83-1							

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}--Continued

190

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

<i>E</i> ,	oExper	σ^{Exper}	E,	σ ^{Exper}	o ^{Exper}	E ₁	σ ^{Exper}	0 ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
			·····						
0 00 1	0 4 4 9	1 1010	1 0010	0 6 0 1	1 1010	1 00	10 5 22	1 1 2110	100
0.00-1 1 40+0	9.44-2	1 26+0	1.00+0	2.42 - 1 1 61+0	1.10±0 1 23±0	1.20	+0 2.22-	-0 1 1.21+0	155
1.4010	J.J4 I	1.2010	1.0010	1.01/0	1.25.0	1.00	2.50	0 1.1/10	
29 Ce	opper		Fluoresce	nce yie	1d = 0.4	4			
7 00 1	0 07-2	3 07 1	9 001	1 45 9	9 E4-1	0.00	1 2 70		4
1.00+0	4.05-2	2.87-1	0.00-1	1.43-2	2.50-1	9.00	-1 2.70-	2 2.93-1	4
2.90+0	3.60+0	4.39-1	3.55+0	6.40+0	4.01-1	3.90	+0 8.70+	-0 4.05-1	14
4.80+0	1.70+1	4.21-1	5.30+0	2.70+1	5.03-1				
3.00+1	1.39+3	1.15+0	4.00+1	1.72+3	1.19+0	5.00	+1 1.864	-3 1.17+0	24
6.00+1	2.17+3	1.31+0	7.00+1	2.17+3	1.29+0	8.00	+1 2.22+	-3 1.32+0	
2.00+0	2.30+0	1.04+0	3.00+0	8.60+0	9.37-1	4.00	+0 2.301	1 9.89-1	38
8 00+0	4.30+1	9.40-1	9 00+0	1 90+2	9 26-1	1 00	1.101 1.101	-2 9.72-1	
1.10+1	3.00+2	9.62-1	1.20+1	3.40+2	9.26-1	1.00	11 2.40	2 7.55 1	
3.00+1	1.42+3	1.18+0	4.00+1	1.76+3	1.21+0	5.00	+1 2.04	-3 1.29+0	49
6.00+1	2.16+3	1.31+0	7.00+1	2.11+3	1.26+0	8.00	+1 2.16	-3 1.29+0	
9.00+1	2.12+3	1.28+0	1.00+2	2.06+3	1.26+0				
1.00+0	1.40-1	9.43-1	1.50+0	6.56-1	8.69-1	2.00	+0 1.94	⊦0 8.74-1	54
2.50+0	4.21+0	8.56-1	3.00+0	8.15+0	8.88-1	3.50	+0 1.32+	1 8.66-1	
4.00+0	1.94+1	8.34-1	4.50+0	2.77+1	8.31-1	5.00	+0 3.68+	⊦1 8.09-1	
1 20+1	3 15+2	8 58-1	2 00+1	9 3042	1 16+0				59
1.20,1	5.15.2	0.50 1	2.00.1		1.10.0				
4.00+0	2.11+1	9.07-1							62
2 00+0	2 30+0	1 0/+0							68
2.0010	2.3010	1.0470							00
1.00+0	2.01-1	1.35+0	1.10+0	2.70-1	1.23+0	1.30)+0 4.64	-1 1.07+0	78
1.50+0	7.09-1	9.39-1	1.70+0	1.02+0	8.40-1	1.90	+0 1.85-	+0 1.01+0	
2.10+0	2.81+0	1.06+0	2.20+0	3.02+0	9.65-1	2.30	0+0 3.38-	0 9.21-1	
2.40+0	3./4+0	8.7/-1	2.50+0	4.22+0	8.58-1	2.60)+0 4.70-	+0 8.33-1	
2.70+0	7 6740	0.49-1	2.00+0) 8 37TO	0.42^{-1} 8 13_1	2.90)+0 0.04-)+0 8 00.	$-0 \ 0.35 - 1$	
2 2010		0.30-1	2.10+0	0.32TU	7 70 1	3.20	UTU 0.99	1 7 0/1	
3 60+0	9.00∓0 1 35±1	8 09-1	3 70+0) 1.00+1	8 02-1	3.30)+0 1.21 ⁻)+0 1 59-	F1 7.94-1	
3 90+0	1.55+1	7 77-1	4 00+C	1 8541	7 95-1	4 10)+0 1.3))+0 1 97-	1 7 85-1	
4.20+0	2.15+1	7.95-1	4.30+0) 2.27+1	7.81-1	4.40)+0 2.57-	+1 8.25-1	
9.00-1	1.60-1	1.69+0	1.00+0	1.60-1	1.08+0	1.20	+0 5.10	-1 1.62+0	80
1.40+0	9.17-1	1.59+0	1.60+0	1.48+0	1.53+0	1.80)+0 2.36	+0 1.57+0	
2.00+0	3.30+0	1.49+0	2.20+0	4.65+0	1.49+0	2.40)+0 6.25	+0 1.47+0	
2.60+0	8.68+0	1.54+0	2.80+0) 1.11+1	1.53+0	3.00	1.37	+1 1.49+0	
3.20+0	1.82+1	1.60+0	3.40+0) 2.11+1	1.52+0	3.60)+0 2./2	+1 1.63+0	
3.8040	3.22+1	1.02+0	4.00+0	, 2.07+T	1.39+0				
5.20+0	6.40+1	1.26±0	1.65+1	6.61+2	1.06+0	2.70)+1 1.08-	⊦3 9.80-1	83

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	0 ^{Exper}	E	σ^{Exper}	σ^{Exper}	
	-	FCPSSR		–	FCPSSR			FCPSSP	
(MeV)	(barn)	$\sigma^{\rm LCOSK}$	(MeV)	(barn)	oreraak	(MeV)	(barn)	orecrask	Ref.
6 00+0	7 62+1	9 79-1	9 00+0	1 02+2	9 36-1	1 20	1 1 3 67	42 1 0010	0/
1 2011	7.4211 E EEL9	1 0210	1 9041	7 2212	1 0210	1.20	TI 3.0/	+2 1.00+0	94
1.50+1	3.33 TZ	1.0.370	1.0011	1.2272	1.0540				
7 10 1	0 01 0	1 0010	0 10 1	0 07 0					
7.10-1	5.51-2	1.00+0	9.10-1	9.07-2	9.11-1	1.11	+0 1.93	-1 8.44-1	99
1.31+0	3./9-1	8.51-1	1.41+0	4.92-1	8.29-1	1.50	+0 6.35	5-1 8.41-1	
1.71+0	1.05+0	8.45-1							
3.00-1	4.83-5	1.84-1	4.00-1	6.19-4	3.65-1	5.00	-1 2.81	-3 4.76-1	103
6.00-1	9.10-3	6.09-1	7.00-1	2.17-2	7.02-1	8.00	-1 4.84	-2 8.54-1	
1.00+1	2.36+2	9.18-1	1.20+1	3.65+2	9.94-1	1.40	+1 4.90	+2 1.02+0	105
1.60+1	6.36+2	1.07+0	1.80+1	8.14+2	1.16+0	2.00	+1 8.37	+2 1.04+0	
2.20+1	9.75+2	1.08+0	2,40+1	1.09+3	1.10+0	2.60	+1 1 18	43 1 10+0	
2.80+1	1.34+3	1.17+0	3 00+1	1 42+3	1 18+0	2.00			
2100.1	1.01.0	1.17.0	5.00.1	1.42.5	1.1010				
1 1011	3 6813	1 1010	1 60+1	7 0010	1 2110	0 10	11 0 00		100
2 7 0 1 1	1 2013	1,1070	1.00+1	1.2272	1.21+0	2.10	+1 9.32	+2 1.09+0	109
2.7011	1.20+3	1.0970							
2 50 1	0	o / 1 1	/ 00 1	7 50 /					
3.50-1	2.54-4	3.41-1	4.00-1	1.52-4	4.43-1	4.50	-1 1.84	-3 5.52-1	118
5.00-1	3.69-3	6.25-1	6.00-1	1.12-2	7.50-1	7.00	-1 2.62	2-2 8.47-1	
8.00-1	4.84-2	8.54-1							
3.20-1	1.58-4	3.83-1	3.60-1	5.83-4	6.54-1	4.00	-1 1.12	2-3 6.60-1	126
4.80-1	3.92-3	8.26-1	5.60-1	9.99-3	9.43-1	6.40	-1 2.07	-2 1.01+0	
7.20-1	3.69-2	1.05+0	8.00-1	5.81-2	1.02+0	1.00	+0 1.42	-1 9.57-1	
1.20+0	2.73-1	8.70-1							
8.00-1	6.29-2	1.11+0	1.00+0	1.67-1	1.12+0	1 20	+0 3 50)-1 1 12±0	133
1 40+0	6 07-1	1 05+0	1 60+0	1 00+0	1 03+0	1 80	10 3.30 10 1 51	+0 1 00+0	155
114010	0.07 1	1.05.0	1.0010	1.0010	1.0510	1.00	TU 1.51		
8 00-1	7 06-2	1 6010	0 00-1	1 26-1	1 2210	1 00	10 0 10	1 1 / 510	10/
1 1010	2 1/-1	1 6910	9.00-1	4 40-1	1.33+0	1.00	+0 2.10	1 1 45+0	134
1 4010	7 00 1	1.4270	1.20+0	4.49-1	1.45+0	1.30	+0 0.34	-1 1.4/+0	
1.40+0	/.00-1	1.30+0	1.50+0	1.02+0	1.35+0	1.60	+0 1.19	+0 1.23+0	
1.70+0	1.42+0	1.1/+0	1.80+0	1.70+0	1.13+0				
1.50+0	9.60-1	1.27+0	2.02+0	3.15+0	1.37+0	2.50	+0 6.55	+0 1.33+0	148
3.00+0	1.23 + 1	1.34+0	3.50+0	2.03+1	1.33+0				
7.00-1	3.24-2	1.05+0	8.00-1	6.59-2	1.16+0	9.00	-1 1.01	-1 1.06+0	160
1.00+0	1.72-1	1.16+0	1.20+0	3.64-1	1.16+0	1.40	+0 6.59	-1 1.14+0	
1.60+0	1.03+0	1.07+0	2.00+0	2.27+0	1.02+0	2.40	+0 4.13	+0 9.69-1	
30 Zi	inc		Fluoresce	nce vie	1d = 0.42	7			
				J = U					
1.16+0	2.17-1	1.09+0	1.36+0	4.03-1	1.07+0	1 55	+0 6 60	-1 1 05+0	67
1.76+0	1.03+0	1.01+0	1 9640	1 5440	1 01+0	2.55	LO 0.00	LO 0 75-1	07
2 36+0	2 96+0	9 91-1	2 /410	3 2270	1 0210	2.10	.0 2.12	10 2.72-1	
2.5010	2.7070	7.71-1	2.4070	J. J. T	1.0270				
1 0010	1 0/ 1	0 70 1	0 0010	0 1110	0 07 1	0 00			
1.00+0	1.04-1	9.72-1	2.20+0	2.11+0	9.0/-1	2.30	+0 2.38	+0 8.73-1	78
2.40TU	2.00+0	0.43-1	2.50+0	3.05+0	0.32 - 1	2.60	+0 3.39	+0 8.06-1	
2.70+0	3.94+0	8.21-1	2.80+0	4.44+0	8.16-1	2.90	+0 5.01	+0 8.17-1	
3.00+0	5.58+0	8.11-1	3.10+0	6.24+0	8.12-1	3.20	+0 6.42	+0 7.51-1	
3.30+0	7.11+0	7.51-1	3.40+0	7.74+0	7.40-1	3.50 [.]	+0 8.44	+0 7.35-1	

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}---Continued

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

F	Exper	Exper	F	Æxper	Exper	F	Exper	д ^{Ехрег}	
21	· · -	ECDEED			ECHEER		-	ECHEEP	
(MeV)	(barn)	0 ^{ECF35K}	(MeV)	(barn)	0 ^{ECF33K}	(MeV)	(barn)	offeran	Ket.
2 6010	0 (010	7 / 0 1	2 7010		1 7 66 1	2 0	010 1 10	11 7 5/ 1	
3.00+0	9.42+0	7.48-1	3.70+0) 1.04+.) 1 23±'	1 6 97-1	3.8 4 1	0+0 1.13 0+0 1 /3	+1 /.54 - 1 +1 7 50 - 1	
4.20+0	1.54+1	7.49-1	4.30+0	1.65+	1 7.46-1	4.4	0+0 1.43 0+0 1.81	+1 7.63-1	
31 G	allium		Fluoresco	ence yi	eld = 0.5	07			
1 2010	2 03-1	0 08-1	1 / 01	3 44-	1 0 22-1	1 6	010 6 11	-1 0 /6-1	67
1 90+0	9 41-1	9.00-1	2 10+) 1 36+	1 9.22 - 1	23	940 0.11 040 1 91	+0 9 40-1	07
2.41+0	2.21+0	9.20-1	2.10.	1.001	0 7132 1	2.5	0.0 1.91		
1.10+1	2.45+2	1.20+0	1.60+	1 6.37+	2 1.54+0	2.1	0+1 8.29	+2 1.34+0	109
2.70+1	1.18+3	1.41+0							
32 G	ermaniu	m	Fluoresc	ence vi	eld = 0.5	35			
	~ ± 111411 ± UI		1 1001030	uce yr	010 - 0,3				
1.00+0	6.76-2	1.21+0	1.10+	9.08-	2 1.08+0	1.3	0+0 1.61	-1 9.57-1	78
1.50+0	2.62-1	8.77-1	1.70+	0 3.89-	1 8.00-1	1.9	0+0 6.30	-1 8.47-1	
2.10+0	1.05+0	9.72-1	2.20+	0 1.11+	0 8.65-1	2.3	0+0 1.30	+0 8.62-1	
2.40+0	1.48+0	8.41-1	2.50+		0 8.14-1	2.6	0+0 1.83	+0 7.81-1	
2.70+0	2.1/+0	8.10-1	2.80+	0 2.42+	0 7 56-1	2.9	0+0 2.73	(+0 7.93-1)	
3 30+0	4 08+0	7 61-1	3.10+	0 5.20+	0 7.50-1	3.2	0+0 5.00 0+0 5 17	+07.02-1	
3.60+0	5.56+0	7.75-1	3.70+	0 5.91+	0 7.53-1	3.8	0+0 6.49	+07.51-1	
3.90+0	6.92+0	7.42-1	4.00+	0 7.59+	0 7.50-1	4.1	0+0 8.04	+0 7.33-1	
4.20+0	8.72+0	7.36-1	4.30+	0 9.17+	0 7.18-1	4.4	0+0 1.00	+1 7.28-1	
5.20+0	3.4/+1	1.51+0	1.65+	1 4.4/+	2 1.24+0	2.7	0+1 /./5	+2 1.08+0	83
8.00-1	4.19-2	2.05+0	9.00-	1 5.99-	2 1.71+0	1.0	0+0 8.40	-2 1.51+0	134
1.10+0	1.11-1	1.32+0	1.20+	0 1.63-	1 1.35+0	1.3	0+0 2.21	-1 1.31+0	
1.40+0	2.88-1	1.27+0	1.50+	0 3.65-	1 1.22+0	1.6	0+0 4.36	5-1 1.13+0	
1.70+0	5.72-1	1.18+0	1.80+	0 7.06-	1 1.17+0				
0 00-1	2 60-2	1 2210	1 001	0 6 97	0 1 0010	1 0		1 1 2640	160
1 40+0	2.49-2	1.22+0	1.00+	0 0.0/-	1 1 18+0	2.0	0+0 1.50	3+0 1 1.24+0	100
2.40+0	1.87+0	1.06+0	1.001	0 4.33	1 1.1010	2.00	010 1.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
33 A	rsenic		Fluoresc	ence yi	eld = 0.5	62			
1 0/10	1 10 -		4	0 0 01	1 0 07 1		710 0 54	10/11	(7
1.36+0	1.13-1	/.01-1	1.5/+	0 2.21-	1 0.3/-1	1./	7+0 3.54	H-1 8.41-1	0/
1.0/ + 0 2 17+0	4.02-1	0.09-1	1.9/+	0 3./0- 0 1 101	1 9.09-1	2.0	7+0 0.70	-1 0.09 - 1	
2.1/+0	0.00-1	3.33-1	2.374	0 1.197	0 9.40-1	2.4		10 9.99-1	
3 4 S	elenium		Fluoresc	ence yi	eld = 0.5	589			
				-					<i>4</i> –
1.18+0	6.10-2	1.01+0	1.37+	0 1.13-	1 9.98-1	1.5	8+0 1.92	2-1 9.53-1	67
1./8+0	3.04-1	9.45-1	1.98+	0 4.95-	1 1.02+0				
1.00+0	3 03-2	1 03+0	1 104	0 4 82-	2 1.08+0	1 9	0+0 7 34	5-2 8.08-1	78
1.50+0	1.21-1	7.40-1	1.70+	0 1.86-	1 6.92-1	1.9	0+0 2.9	5-1 7.14-1	
2.10+0	3.86-1	6.39-1	2.20+	0 6.65-	1 9.25-1	2.3	0+0 8.01	L-1 9.46-1	
2.40+0	8.87-1	8.95-1	2.50+	0 9.43-	1 8.20-1	2.6	0+0 1.12	2+0 8.45-1	
2.70+0	1.30+0	8.57-1	2.80+	0 1.48+	0 8.56-1	2.9	0+0 1.62	2+0 8.28-1	
3.00+0	1./6+0	/.98-1	3.10+	υ 1.89 1	U /.64-1	3.2	2.11	1+0 /.64-1	

•

E	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	\overline{E}_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	- (MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
3.30-	+0 2.62+0	8.53-1	3.40	+0 3.15+	0 9.26-1	3.50-	+0 2.84+0	7.56-1	
3.60-	+0 3.41+0	8.25-1	3.70	+0 3.56+	0 7.86-1	3.80-	+0 3.87+0	7.81-1	
3.90-	+0 4.26+0	7.88-1	4.00	+0 4.92+	0 8.37-1	4.10-	+0 5.08+0	7.97-1	
4.20-	+0 5.90+0	8.56-1	4.30	+0 5.76+	0 7.74-1	4.40-	+0 5.81+0	7.24-1	
1.00-	+1 8.94+1	1.07+0	1.20	+1 1.25+	2 9.78-1	1.40-	+1 1.79+2	1.01+0	105
1.60	+1 2.44+2	1.06+0	1.80	+1 3.22+	2 1.13+0	2.00	+1 3.70+2	1.09+0	
2.20-	+1 4.41+2	1.12+0	2.40	+1 5.09+	2 1.14+0	2.60	+1 5.78+2	1.16+0	
2.80	+1 6.20+2	1.14+0	3.00	+1 6.79+	2 1.15+0				
1.50-	+0 1.32-1	8.07-1	2.02	+0 3.94-	1 7.55-1	2.50	+0 8.25-1	7.17-1	148
3.00-	+0 1.56+0	7.08-1	3.20	+0 1.99+	0 7.20-1	3.50	+0 2.67+0	7.10-1	
3.60-	+0 2.85+0	6.90-1	3.70	+0 3.04+	0 6.71-1				
35	Bromine		Fluores	cence yi	eld = 0.6	15			
1.10	+1 9.68+1	1.15+0	1.60	+1 2.42+	2 1.28+0	2.1 0 [.]	+1 3.76+2	2 1.22+0	109
2.70	+1 4.99+2	1.12+0							
37	Rubidium	ł	Fluores	cence yi	eld = 0.6	67			
1.17	+0 2.00-2	8.35-1	1.37	+0 3.80-	2 8.01-1				67
1.00-	+0 2.00-2	1.71+0	1.20	+0 3.80-	2 1.42+0	1.40	+0 5.50-2	2 1.06+0	72
1.60	+0 7.30-2	8.07-1	1.80	+0 1.10-	1 7.58-1	2.00	+0 1.90-1	8.67-1	
2.10	+0 2.20-1	8.32-1	2.20	+0 2.50-	1 7.92-1	2.40	+0 3.80-1	8.67-1	
3.00	+0 9.20-1	9.28-1	4.00	+0 2.80+	0 1.04+0	5.00	+0 6.00+0	1.06+0	
6.00	+0 1.20+1	1.20+0	7.00	+0 1.70+	1 1.07+0	8,00	+02.30+1	9.81-1	
9.00	+0 3.20+1	9.85-1	1.00	+1 4.40+	1 1.02+0	1 10	+1 5 50+1		
1.20	+1 7.00+1	1.03+0	1.00		1 1.02.0	1.10	11 3.300	1.0110	
1.50-	+0 5.49-2	7.91-1	2.02	+0 1.85-	1 8.12-1	2.50	+0 4,10-1	8.03-1	148
3.00	+0 8.20-1	8.27-1	3.50	+0 1.48+	0 8.67-1	2.50		0.05 1	140
39	Yttrium		Fluores	cence yi	eld = 0.7	'1			
1.00	+0 4.30-3	6.67-1	1.50	+0 3.18-	2 7.98-1	2.00	+0 1.13-1	8.79-1	54
2.50	+0 2.78-1	9.20-1	3.00	+0 5.68-	1 9.60-1	3.50	+0 1.00+0	9.74-1	
3.75	+0 1.40+0	1.07+0	4.00	+0 1.71+	0 1.05+0	4.25	+0 2.46+0	1.23+0	
4.50	+0 2.56+0	1.05+0			, _, , , , , , , , , , , , , , , , ,			2.2010	
1.20	+1 3.60+1	8.15-1	2.00	+1 1.09+	2 7.92-1				59
3.00	+0 7.80-1	1.32+0	4.00	+0 2.10+	0 1.29+0	5.00	+0 4.20+0) 1,22+0	95
6.00	+0.7.10+0	1.15+0	8.00	+0 1.60+	1 1.08+0	1.00	+1 3 10+1	1.12+0	
1.20	+1 5.30+1	1.20+0	0.00		1 1.00.0	1.00	.1 0.1013	. 1.12.0	
1.00	+1 2.63+1	9.53-1	1 20	+1 4.58+	1 1 04+0	1 40	+1 6 40+1	9 97-1	105
1 60-	+1 9 94+1	1.06+0	1 80	+1 1 211	2 1 08-0	2 00	41 1 /0±4) 1 NQLA	100
2.20	+1 1.92+2	1.17+0	2 40	+1 7 784	2 1.19+0	2.00	+1 7 6N4972	0 1 10±0	
2 80	+1 2 77+2	1.13+0	3 00	+1 3 DAL	2 1 12+0	2.00		. 1.1310	
<u> </u>	· * 4. · / / * 4	UTULIL I	5.00	. I J. UUT	6 L. LGTU				

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}---Continued

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}--Continued

	Froer	Fyper		Free	Faner		Faner	Free		-
E_{i}	σ ^{Exi}	σεκρεί	<i>E</i> ₁	σ ^{ε,ε.}	O ^{resper}	E_1	$\sigma^{c_{n_1n_2}}$	O ^{Exper}		
(MeV)	(barn)	$\sigma^{\rm ECPSSR}$	(MeV)	(barn)	0ECPSSk	(MeV)	(barn)	σ ^{ECPSSR}	Ref.	
40 7		-	F1		11 - 0 7	`				
40 2:	irconiu	n	Fluoresce	ence yie	1a = 0.7	3				
3 00+1	2 27+2	9 78-1	4 00+1	3 2/4	9 47-1	5 0	011 / 23	1-2 0 77-1	2/	
6.00+1	5.51+2	1.09+0	7.00+1	5 99+2	1 07+0	8.0	0+1 4.20	0+2 1 06+0	24	
0.00.1	5.51.2	1.05.0	7.001		1.07.0	0.0	011 0.42	.12 1.0010		
2.00+1	1.20+2	1.05+0							42	
1.50+0	2.20-2	7.22-1	2.02+0	8.20-2	7.94-1	2.5	0+0 1.90	-1 8.09-1	148	
3.00+0	3.67-1	7.95-1	3.50+0	6.40-1	7.97-1					
41 N:	iobium		Fluoresce	ence yie	1d = 0.7	4				
2 0011	1 7012	0 61 1	6 0011	0 0710	0 00 1	F 0.				
5.00TI	2 0412	0.01-1	4.00+1	1 2.3/42	0.02-1	5.0	0+1 3.23	3+2 8.52-1	24	
0.00+1	J. 9072	0.0/-1	7.00+1	4./372	9.30-1	0.0	0+1 5.20	7+2 9.01-1		
1.02+0	5.40-3	1.36+0	1.23+0) 1.10-2	1.14+0	1.4	4+0 2 30	-2 1 17+0	87	
1.66+0	4.30-2	1.20+0	1.87+0	8.50-2	1.45+0	2.0	8+0 1.00	-1 1.11+0	0,	
2.29+0	1.40-1	1.07+0	2.49+0	2.00-1	1.11+0	2.7	0+0 2.80	-1 1.15+0		
6.40-1	1.40-4	4.92-1	8.00-1	1.14-3	1.04+0	9.6	0-1 2.97	/-3 1.02+0	126	
1.12+0	7.37-3	1.18+0	1.28+0) 1.44-2	1.24+0	1.4	4+0 2.57	-2 1.31+0		
1.60+0	4.04-2	1.31+0	1.80+0	7.02-2	1.40+0					
2.02+0	6.20-2	7.75-1	2.50+0) 1.46-1	7.98-1	3.0	0+0 3.00)-1 8.31-1	148	
3.50+0	5.03-1	7.99-1								
62 M	olvbdeni	ım	Fluoresce	ance vie	1d = 0.7	65				
	Jybuch	un en	11010500	nee yre	iu - 0.7	05				
2.90+0	8.20-1	3.27+0	5.30+0	2.10+0	1.01+0				14	
2.90+0	7.90-1	3.15+0	3.55+0) 1.20+0	2.29+0	3.9	0+0 1.40	+0 1.92+0	15	
4.45+0	1.60+0	1.39+0	4.80+0) 1.80+0	1.21+0	5.3	0+0 2.00	0+0 9.65-1		
1.50+0	1.10-2	6.09-1	2.00+0) 3.40-2	5.66-1	2.5	$0+0 \ 6.90$)-2 4.80-1	43	
3.00+0	1.40-1	4.92-1	3.50+0	0 2.60-1	5.23-1	4.0	0+0 3.70)-1 4.64-1		
1.00+0	2.00-3	7 41-1	1 50+0) 1 83-2	1 01+0	2 0	0+0 5 81	-2 9 68-1	54	
2,50+0	1.43-1	9.95-1	3.00+0	2.93-1	1.03+0	3.7	5+0 6.40		54	
4.00+0	8.86-1	1.11+0	4.50+0	1.38+0	1.15+0	5.7	510 0140	, 1 1.01.0		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1110.0					
1.02+0	3.30-3	1.11+0	1.23+0	8.00-3	1.08+0	1.4	4+0 1.70)-2 1.13+0	87	
1.66+0	3.10-2	1.11+0	1.87+0) 4.90-2	1.07+0	2.0	8+0 7.80)-2 1.11+0		
2.29+0	1.10-1	1.07+0	2.49+0	0 1.60-1	1.13+0					
3.00+0	3.30-1	1.16+0	4.00+0	9.20-1	1.15+0	5.0	0+0 1.80	0+0 1.05+0	95	
6.00+0	3.40+0	1.10+0	8.00+0	7.60+0	1.00+0	1.0	0+1 1.50	0+1 1.04+0		
1.20+1	2.30+1	9.66-1								
1 00+0	2 54-2	0 / 0 1	1 1010		0 00 1	1 0	010 E 71	-2 0 62 1	10/	
1 3010	2.30-3	7.49-1 0.62-1	1.10+(1 //0±0	/ J.J2-3	0.09-1 8 02-1	1.2	U+U 3./] N±N 1 ∠1	-3 0.03-1	134	
1 60+0	2.10-3	1 1910	1 7010	, I'IA-7) J VY-7	1 1910	1.0	0 1 0 3 86 010 1001			
1.0010	2.01-2	1.12.0	1.7070	/ J. 4 032	1.12.0	T.0	010 0.03	2 2.0J-1		
2.02+0	4.90-2	7.84-1	2.50+0) 1.13-1	7.86-1	3.0	0+0 2.32	2-1 8.16-1	148	
3.50+0	4.00-1	8.04-1	3.80+0) 5.50-1	8.26-1					

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
MeV)	(barn)	o ^{ecpssr}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
5	Rhodium		Fluoresco	ence yie	a1d = 0.8	08			
5.204	⊦1 2.10 + 2	9.01-1		-					8
3 001	L1 0 /8±1	9 09-1	6 00±	1 1 6749	8 86-1	5 00+	1 2 0243	0 08-1	24
6.001	1 2.69+2	9.91-1	7.00+	1 3.29+2	2 1.05+0	8.00+	1 3.78+2	2 1.09+0	24
1.024	⊦0 1.20 - 3	9.30-1	1.23+	0 3.30-3	3 9.80-1	1.44+	0 6.60-3	3 9.36-1	87
1.664	1.30-2	9.78-1	1.87+	0 2.20-2	2 9.97-1	2.08+	0 3.70-2	2 1.08+0	
2.294	+0 4.50-2	8.93-1	2.49+0	0 7.40-2	2 1.06+0	2.70+	0 9.90- 2	2 1.04+0	
46	Palladiu	m	Fluoresc	ence yie	e1d = 0.8	2			
3.004	+1 6.26+1	7.03-1	4.00+	1 1.02+2	2 7.13-1	5.00+	1 1.53+2	2 7.87-1	24
6.004	+1 2.03+2	8.47-1	7.00+	1 2.56+2	2 9.21-1	8.00+	1 2.89+2	2 9.31-1	
1.504	HO 3.98-3	5.98-1	2.02+	0 1.99-2	2 8.25-1	2.50+	0 4.99-3	2 8.79-1	148
3.00-	+0 1.04-1	9.13-1	3.20+	0 1.35-1	9.33-1	3.50+	0 1.91-	1 9.50-1	2.0
3.604	+0 2.11-1	9.47-1	•						
47	Silver		Fluoresc	ence yie	eld = 0.8	31			
2.704	+1 5.60+1	9.05-1	3.40+	1 8.40+1	1 8.87-1	3.90+	1 1.01+2	2 8.49-1	8
4.40-	⊦1 1.11+2	7.78-1	5.20+	1 1.35+2	2 7.57-1				
3 00-	+1 6.52+1	8.60-1	4.00+	1 1.02+3	2 8.25-1	5.00+	1 1.41+	2 8 30-1	24
6.00-	+1 2.16+2	1.02+0	7.00+	1 2.50+2	2 1.01+0	8.00+	1 2.96+	2 1.07+0	24
2 00	10 1 00-1	1 0010	6 001	0 2 10-	1 1 1010	F 001	0 7 70-	1 1 2510	20
6.00-	+0 1.00-1	1.09+0 1.23+0	7.00+	0 2.20+0	1.10+0 1.27+0	8.00+	0 7.70-	1.25+0	20
9.00-	+0 4.60+0	1.21+0	1.00+	1 6.30+0	0 1.21+0	1.10+	1 7.80+	0 1.14+0	
1.20-	+1 9.90+0	1.13+0							
1.50-	+0 2.01-3	3.84-1	2.00+	0 9.17-2	3 4.98-1	2.50+	0 2.82-	2 6.20-1	54
3.00-	+0 6.46-2	7.06-1	3.50+	0 1.20-	1 7.41-1	4.00+	0 1.66-	1 6.33-1	
4.50-	+0 2.54-1	6.40-1	5.00+	0 4.03-:	1 7.06-1				
5.20-	+0 9.10-1	1.39+0	1.65+	1 2.14+:	1 1.05+0	2.70+	1 5.11+	1 8.26-1	83
8.00	-1 2.10-4	1.22+0	1.00+	0 5.40-4	4 8.08-1	1.20+	0 1.50-	3 8.42-1	87
1.40-	+0 3.60-3	9.45-1	1.60+	0 6.30-3	3 8.98-1	1.80+	0 1.20-	2 1.02+0	0,
2.00-	+0 2.00-2	1.09+0	2.20+	0 2.60-2	2 9.53-1	2.40+	0 4.30-	2 1.11+0	
3.00-	+0 1,00-1	1.09+0	4.00+	0 2.70-	1 1.03+0	5 00+	0 5,90-	1 1.03+0	95
6.00-	+0 1.10+0	1.04+0	8.00+	0 2.60+0	0 9.82-1	1.00+	1 5.10+	0 9.80-1	
1.20-	+1 8.30+0	9.45-1							
1 11	LO 6 12.4	5 17-1	1 211	0 1 55 4	2 5 61-1	1 / 1 /	0 2 21	2 5 41-1	00
1,50-	+0 3.14-3	6.00-1	1.51+	0 1.33-3	3 6.63-1	1.41+	U 2.21-	2 2.01-1	33
1.30	· • • • • • • •	0.00 I	*••*	U U LJ .	- 0100 I				
1.10-	+1 7.72+0	1.13+0	1.60+	1 1.89+3	1 9.99-1	2.10+	1 3.46+	1 9.54-1	109
2.70	+1 5.97+1	9.65-1							

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}-Continued

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}---Continued

E_	σ^{Exper}	σ ^{Exper}	E	oExper	σ^{Exper}	E ₁	0 ^{Exper}	oExper	
(MeV)	(barn)	σ ^{ECPSSR}	 (MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
6.00-1	4.56-6	2.21-1	8.00-1	1.10-4	6.39-1	. 1.00	+0 5.10-	4 7.63-1	126
1.20+0	1.55-3	8.70-1	1.40+0	3.68-3	9.66-1	1.60	+0 6.73-	-3 9.59-1	
1.80+0	1.27-2	1.08+0	2.00+0	2.00-2	1.09+0	2.20	+0 3.14.	-2 1.15+0	
2.40+0	4.63-2	1.20+0							
1.20+0	6.64-4	3.73-1	1.30+0	1.43-3	5.37-1	1.40	+0 2.28	-3 5.99-1	134
1.50+0	2.97-3	5.68-1	1.60+0	4.16-3	5.93-1	1.70	+0 5.04	-3 5.49-1	
1.80+0	6.50-3	5.51 - 1							
1.50+0	2.69-3	5.14-1	2.02+0	1.89-2	9.84-1	2.50	+0 3.89	-2 8 56-1	148
3.00+0	8.18-2	8.94-1	3.20+0	1.13-1	9.70-1	3.50	+0 1.43	-1 8.83-1	140
3.60+0	1.65-1	9.20-1	3.70+0	1.86-1	9.39-1				
48 C	a dan fuum		Fluorosco	nco vio	14 - 0 9	1.3			
48 0	Hamium		riuoresce	nce yie	1a = 0.a	43			
1.30+0	6.22-4	2.99-1	1.40+0	1.26-3	4.20-1	1.42	+0 1.26	-3 3.93-1	111
1.44+0	1.37-3	3.99-1	1.45+0	1.53-3	4.31-1	1.46	+0 1.66	-3 4.53-1	
1.48+0	1.69-3	4.33-1	1.50+0	1.68-3	4.04-1	1.53	+0 1.96	-3 4.32-1	
1.55+0	2.12-3	4.40-1	1.60+0	2.90-3	5.21-1	1.70	+0 4.09	-3 5.59-1	
1.80+0	4.98-3	5.30-1	1.90+0	6.75-3	5.68-1	2.00	+09.40	-3 6.37-1	
2.10+0	1.20-2	6.63-1	2.20+0	1.38-2	6.30-1	2.30	+0 1.59	-2 6.06-1	
2.40+0	1.98-2	6.36-1	2.60+0	2.74-2	6.41-1	2.80	+0 3.69	-2 6.49-1	
2.40+0	2.45-2	7.87-1	2.60+0	3.32-2	7.77-1	2.80	+0 3.70	-2 6.50-1	138
49 I:	ndium		Fluoresce	ence yie	1d = 0.8	53			
1 20+1	5 40+0	9 00-1	2 00+1	2 02+1	8 84-1				59
1120.1	5140.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	210012		0.01				
6.00+0	5.10-1	7.27-1	9.00+0	1.86+0	7.25-1	1.20	+1 4.20	+0 7.00-1	94
1.50+1	8.97+0	8.09-1	1.80+1	1.26+1	7.10-1				
50 T	in		Fluoresce	nce vie	1d = 0.8	62			
				,					
5.20+1	8.90+1	7.44-1							8
3.00+1	3,89+1	8.23-1	4.00+1	6.63+1	8.30-1	5.00)+1 9.65	+1 8.52-1	24
6.00+1	1.33+2	9.22-1	7.00+1	1.72+2	9.99-1	8.00	+1 1.93	+2 9.81-1	
2.00+1	2.00+1	1.04+0							42
3.00+1	4.08+1	8.63-1	4.00+1	7.05+1	8.83-1	5.00)+1 1.05	+2 9.27-1	49
6.00+1	1.32+2	9.15-1	7.00+1	1.70+2	9.88-1	8.00)+1 1.89	+2 9.61-1	
9.00+1	2.02+2	9.27-1	1.00+2	2.19+2	9.29-1				
1 5040	E 01/	1 00-1	2 0010	2 41-2	7 67-1	2 50	TU 0 66	-2 6 12-1	5%
3 0010	2.21-4	E 19_1	2.00+0) / 07_7	5 71-1	4 00	10 9.00	-3 4.12 -1	54
4.50+0	1.12-1	5.21-1	5.00+0) 1.62-1	5.22-1	4.00	.15	-2 5.00-1	
					_				
5.20+0	3.70-1	1.04+0	1.65+1	1.51+1	1.27+0	2.70)+1 3.81	+1 1.00+0	83
1 00+0	1 70-4	5 71-1	1 20-10	5 30-4	6 30-1	1 / 0)+ <u>0 1 50</u>	-3 8,04-1	87
1.60+0	2.80-3	7.89-1	1.80+0) 4.60-3	7.63-1	2.00)+0 8.50	-3 8,90-1	• • •
0.0010	1 30-2	9 13-1	2.40+0	1 90-2	9.34-1				

E ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}		(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
							(
3 00+	0 4 80-2	9 83-1	4 00+	0 1 50-1	1 06+0	5 004	0 3 20-1	1 03+0	95
6.00+	0 5.80-1	1.01+0	8,00+	0 1.50 1	1.03+0	1.004	-1 2.80+0	9.62-1	35
1.20+	1 4.60+0	9.25-1				20000	1 2100.0	, I	
1.40+	0 1.11-4	5.95-2	1.50+	0 3.81-4	1.46-1	1.584	0 6.94-4	2.07-1	111
1.60+	0 8.84-4	2.49-1	1.62+	0 9.36-4	+ 2.50 - 1	1.64+	09.9/-4	2.52-1	
1 904	0 1.37-3	3.10-1	2 004	0 1.39-3	2.70-1	1.007	-0 1.92-3	3.19~1	
2.20+	0 5.30-3	3.72-1	2.001	0 6.56-3	3.83-1	2.40+	0 4.52-5	3.73-1	
2.60+	0 1.16-2	4.14-1	2.80+	0 1.50-2	4.01-1		• • • • •		
9.00+	0 2.68+0	1.27+0	1.55+	1 1.16+1	1.15+0	1.654	-1 1.37+1	1.15+0	128
1.75+	1 1.59+1	1.15+0	1.80+	1 1.72+1	1.16+0	1.85+	1 1.80+1	1.13+0	
1.90+	1 1.98+1	1.16+0	1.95+	1 2.09+1	1.16+0	2.05+	1 2.45+1	1.20+0	
2.15+	1 2.65+1	1.16+0	2.25+	1 2.90+1	1.14+0	9.00+	1 2.35+2	1.08+0	
1.00+	2 2.5/+2	1.09+0	1.10+	2 2.69+2	2 1.07+0	1.204	2 2.62+2	9.93-1	
1.50+	2 3.01+2	1,10+0	1.40+	2 3.04+2	2 1.0/+0	1.554	-2 3.08+2	1.05+0	
2.40+	0 1.11-2	5.45-1	2.60+	0 1.59-2	2 5.68-1	2.80+	0 2.16-2	5.77-1	138
2.50+	0 1.90-2	7.93-1	3.00+	0 3.90-2	2 7.99-1	3.50+	-0 7.20-2	8.27-1	148
51	Antimony		Fluoresc	ence yie	= 1d = 0.87	7			
1.20+	0 4 70-4	7.15-1	1 40+	0 1 30-3	8 79-1	1 604	-0 2 50-3	8 80-1	87
1.80+	0 4.60-3	9.48-1	2.00+	0 7.30-3	3 9,46-1	2.20+	0 1.20-2	1 04+0	07
2.40+	0 1.70-2	1.03+0				2.20	0 1120 2	1.04.0	
8.00-	1 2.03-5	4.01-1	1.00+	0 1.38-4	6.07-1	1.20+	-0 4.46 - 4	6.78-1	126
1.40+	0 1.18-3	7.98-1	1.60+	0 2.50-3	8 8.80-1	1.804	-0 4.85-3	1.00+0	
2.00+	0 7.59-3	9.84-1	2.20+	0 1.17-2	2 1.01+0	2.40+	-0 1.70-2	1.03+0	
52	Telluriu	m	Fluoresc	ence vie	1d = 0.87	דו			
			1 1001 000						
3.00+	1 3.00+1	8.70-1	4.00+	1 5.43+1	9.04-1	5.00+	1 7.90+1	9.16-1	49
6.00+	1 1.02+2	9.14-1	7.00+	1 1.40+2	2 1.04+0	8.00+	1 1.56+2	1.00+0	
2 201		0 / 7 1	0 / 01	0 1 00 0		o (o)			
2.20+	0 1.9/-3	6 83-1	2.40+	0 1.02-2	2 7.55-1	2.604	-0 1.45-2	/.//-1	138
2.00+	0 1.71-2	0.03-1							
53	Iodine		Fluoresc	ence yie	a1d = 0.88	34			
1.00+	0 6.60-5	4.95-1	1.20+	0 2.50-4	6.18-1	1.40+	0 8.10-4	8.64-1	87
1.60+	0 1.70-3	9.27-1	1.80+	0 2.60-3	8 8.18-1	2.00+	0 4.30-3	8.44-1	••
2.20+	0 6.50-3	8.45-1	2.40+	0 1.00-2	9.04-1				
2 /01	0 1 11-9	1 0010	1 201	0 1 /0.0	0 65-1				120
2.407	v 1.11 ⁻ 2	1.00+0	2.004	U 1.40"2		-			001
55	Cesium		Fluoresc	ence yie	eid = 0.89	97			
1.10+	1 8.60-1	5.50-1	1.60+	1 3.03+0	6.58-1	2.104	1 7.84+0	8.32-1	109
2.70+	1 1.21+1	7.02-1					V		202

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}-Continued

J. Phys. Chem. Ref. Data, Vol. 18, No. 1, 1989

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

<i>E</i> ₁	σ ^{Exper}	σ^{Exper}	E ₁	σ ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	<i>σ</i> ^{ECPSSR}	- (MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
56	Barium		Fluores	cence y	ield = 0.9	02			
1.40	+0 2.50-	4 5.19-1	1.60	+0 5.00	-4 5.14-1	1.80	+0 1.00-	3 5.76-1	87
2.00	+0 1.80-	-3 6.40-1	2.20	+0 3.00	-3 6.99-1	2.40	+0 4.90-	3 7.86-1	
2.40	+0 4.23-	-3 6.79-1	2.60	+0 5.71	-3 6.57-1				138
58	Cerium		Fluores	cence y	ield = 0.9	12			
5.20)+1 5.004	+1 1.20+0							8
1.40)+0 1.10·	-4 3.52-1	1.60	+0 3.10	-4 4.79-1	1.80	+0 5.90-	4 5.02-1	87
2.00)+0 1.20-	-3 6.22-1	2.20	+0 2.00	-3 6.74-1	2.40	+0 3.00-	3 6.92-1	
59	Praseod	lymium	Fluores	cence y	ield = 0.9	17			
3.00	+0 5.60-	-3 6.12-1	4.00	+0 2.10	-2 7.65-1	5.00	+0 4.80-	2 7.87-1	95
6.00)+0 9.20·	-2 8.05-1	8.00	+0 2.30	-1 7.77-1	1.00	+1 4.90-	1 8.18-1	
60	Neodymi	ium	Fluores	cence y	ield = 0.9	21			
2.00)+1 2.60+	+0 6.84-1							42
3.00	0+1 6.50	+0 6.24-1	4.00	+1 1.58	+1 8.09-1	5.00	+1 2.89+	-1 9.61-1	49
6.00)+1 3.3/-	+1 8.23-1	7.00	+1 5.01	+1 9.65-1	8.00	+1 6.614	-1 1.06+0	
1.20	0+1 8.00	-1 8.97-1	2.00	+1 3.40	+0 8.95-1				59
62	Samari	um	Fluores	cence y	ield = 0.9	29			
2.00)+0 4.40·	-4 4.65-1	2.50	+0 1.30	-3 4.96-1	3.00	+0 2.10-	·3 3.73-1	43
3.50	0+0 3.60	-3 3.48-1	4.00	+0 5.30	-3 3.10-1				
3.00	0+0 4.30	-3 7.64-1	4.00	+0 1.50	-2 8.77-1	5.00	+0 3.40-	2 8.90-1	95
6.00 1.20	0+0 6.40	-2 8.93-1 -1 7.77-1	8.00	+0 1.60	-1 8.63-1	1.00	+1 3.20-	-1 8.51-1	
64	Gadolii	nium	Fluores	cence y	ield = 0.9	935			
3 00	1 6 80.	LO 8 03-1	4 00	- 1 8 90	±0 7 66-1	5 00	1 1 761	L1 0 70-1	<i>4</i> 0
6.00	$0+1 \ 2.72$	+1 1.07+0	7.00	+1 3.28	+1 1.00+0	8.00)+1 3.98+	+1 9.95 - 1	47
1.20	0+0 1.30	-5 4.23-1	1.40	+0 4.40	-5 4.94-1	1.60	+0 1.00	-4 4.96-1	87
1.80	0+0 1.90	-4 4.88-1	2.00	+0 3.10	-4 4.62-1	2.20	+0 4.70	-4 4.43-1	
1.33	3+1 7.47	-1 1.12+0	1.52	+1 1.12	+0 1.14+0	1.83	8+1 1.834	H0 1.10+0	140
2.03	3+1 2.41	+0 1.09+0	2.50	+1 4.55	+0 1.20+0				
3.49	9+0 6.54	-3 8.66-1	4.54	+0 2.02	-2 1.00+0	5.40)+0 4.93·	-2 1.33+0	141
6.50 1.10	0+0 7.35 0+1 3.81	-2 1.05+0 -1 1.01+0	8.00	+0 1.48 +1 6.68	-1 1.07+0	9.54 1.51	⊧+0 2.65· L+1 1.01+	-1 1.10+0 +0 1.06+0	

<i>E</i> ₁		σ^{Exper}	σ^{Exper}	E ₁	o ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)		(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	- (MeV)	(barn)	σ^{ECPSSR}	 Ref.
67	Н	olmium		Fluoresce	ence yie	1d = 0.94	44			
			4 4010			1 0/10				
4.00)+1)±1	8.58+0 2 0/+1	1.10+0 1 02+0	5.00+1 1 10+1	L 1.55+1	1.24+0	6.00+1	1.77+1	9.95-1	90
0.00	JTT	2.9471	1.02+0	1.10+2	4.2JTI	3.33-1				
3.00)+0	1.80-3	6.75-1	4.00+0	8.60-3	1.04+0	5.00+0	2.00-2	1.07+0	95
6.0	0+0	3.50-2	9.97-1	8.00+0	7.70-2	8.48-1	1.00+1	1.70-1	9.25-1	
1.2)+1	2.70-1	8.41-1							
a 0	ንተሀ	1 71-1	1 20+0	1 554	8 02-1	1 18+0	1 65±1	0 52-1	1 17±0	109
1 7	5+1	1.15+0	1.19+0	1.85+1		1.15+0	1 95+1	1 53+0	1 17+0	120
2.0	5+1	1.79+0	1.20+0	2,15+	1.98+0	1.16+0	2.25+1	2.24+0	1.17+0	
69	T	hulium		Fluoresce	ence yie	1d = 0.94	49			
3.0	111	1 00+0	6 14-1	% 00±.	1 % 2010	6 80-1	5 00+1	7 50+0	7 60-1	40
6.0)+1	1.18+1	8.35-1	7.00+1	1.72+1	9.22-1	8 00+1	2 00+1	8 62-1	43
0.0		1110.1	0.00 1	,		<i></i>	0.0011	2.0011	0.02 1	
1.2)+1	3.00-1	1.22+0	2.00+3	1.09+0	1.02+0				59
		< 1010	1 0110	F 001						
4.0)+1	6.18+0	1.01+0	5.00+2	L 9.94+0	1.01+0	6.00+1	1.43+1	1.01+0	90
0.00	1+1	2.3371	1.00+0	1,10+4	2 3.33+1	9.03-1				
9.0	0+0	1.31-1	1.29+0	1.55+3	1 5.83-1	1.12+0	1.65+1	6.89-1	1.10+0	128
1.7	5+1	7.75-1	1.05+0	1.85+3	l 9.41-1	1.09+0	1.95+1	1.12+0	1.12+0	
2.0	5+1	1.29+0	1.12+0	2.15+3	l 1.54+0	1.18+0	2.25+1	1.68+0	1.14+0	
71	La	utetium		Fluoresco	ence vie	1d = 0.9	53			
	10	acceram		114016306	suce yre	10 - 0.9.	55			
4.0)+1	5.04+0	1.05+0	5.00+2	l 8.71+0	1.12+0	6.00+1	1.24+1	1.10+0	90
8.0)+1	2.00+1	1.06+0	1.10+2	2 3.17+1	1.05+0				
72	н	a fin fum		Fluoresce	auro vio	1d = 0.9	55			
	110	a 1 11 1 040		1 1001 6906	suce yre	10 - 0.9.				
3.0	0+0	1.10-3	8.20-1	4.00+0	4.30-3	9.90-1	5.00+0	1.00-2	1.01+0	95
6.0	0+0	1.90-2	1.02+0	8.00+0	9 4.70-2	9.80-1	1.00+1	9.50-2	9.84-1	
1.20	0+1	1.60-1	9.52-1							
73	T	antalum		Fluoresce	onco vio	1d = 0.9	57			
/5	τı	iiicai um		FILOTESCE	suce yre	IU - 0.9.				
5.20)+1	5.60+0	8.34-1							8
		1 2010	0 / 0 /	/		7 0/ 1				
5.00)+1)+1	1.60+0	0.49-1 0 45-1	4.00+) 7 00±1	L 3.00+0	/.94-1 1 15±0	5.00+1 8 00+1	5,60+0 1 60±1	9.04-1 0 10-1	49
0.00		0.3070	J.#J~1	7.007.	1.3041	1.1370	0.00+1	1.4071	3.13.1	
4.0	0+1	3.87+0	1.02+0	6.00+3	l 8.76+0	9.74-1	8.00+1	1.51+1	9.92-1	90
1.10)+2	2.45+1	9.90-1							
3.00)+0	6.70-4	5.70-1	4.00+0	J 3.30-3	8.59-1	5.00+0	8.50-3	9.68-1	95
1 20)+1	1 40-1	9 40-1	0.00+0	4.00-2	7.JY"I	1.00+1	0.20-2	7.20-T	
	L	T. A.	2.40-T							

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}-Continued

G. LAPICKI

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

E,	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
74 Ti	ungsten		Fluoresce	nce yie	1d = 0.9	58			
5.20+1	5.40+0	9.00-1							8
4.00+1	3 82+0	1 14+0	5.00+1	7 42+0	1.34+0	6.00+	-1 9,10+	0 1 13+0	90
8.00+1	1.49+1	1.09+0	1.10+2	2.51+1	1.12+0		1 //10	0 11 10 0	
3.49+0	1.38-3	6.99-1	4,54+0	4.11-3	7,48-1	5.404	-0 9.00-	3 8.79-1	141
6.50+0	2.01-2	1.04+0	8.00+0	4.02-2	1.06+0	9.54-	0 7.13-	2 1.08+0	
1.10+1	1.13-1	1.11+0	1.30+1	1.82-1	1.08+0				
2.20+0	9.15-5	4.08-1	2.40+0	1.61-4	4.52-1	2.604	+0 2.54-	4 4.80-1	147
2.88+0	4.25-4	4.95-1	3.20+0	6.80-4	4.96-1	3.40-	0 8.78-	4 4.96-1	
3.60+0	1.07-3	4.77-1	3.80+0	1.36-3	4.88-1	4.004	+0 1.67-	3 4.90-1	
75 R	henium		Fluoresce	nce yie	1d = 0.9	959			
4 00±0	3 00-3	0 07-1	5 00+0	7 10-3	1 02+0	6 00-	LO 1 30-	.7 9 90-1	95
8.00+0	3.40-2	1.01+0	1.00+1	6.50-2	9.59-1	1.20-	+1 1.05-	1 8.93-1))
78 P	latinum		Fluoresce	nce yie	1d = 0.9	963			
				-					
5.20+1	3.10+0	8.06-1							8
4.00+1	1.97+0	9.25-1	6.00+1	5.45+0	1.05+0	8.00-	+1 9.24-	0 1.02+0	90
1.10+2	1.55+1	1.01+0	0.000		1100.0	0.00			
3.00+0	2.60-4	4.19-1	4.00+0	1.40-3	6.53-1	5.00-	+0 3.90-	-3 7.80-1	95
6.00+0	8.70-3	9.18-1	8.00+0	2.50-2	1.03+0	1.00	+1 4.70	-2 9.66-1	
1.20+1	8.20-2	9.75-1							
79 G	old		Fluoresce	ence yie	1d = 0.9	964			
5.20+1	2.80+0	8.11-1							8
F 0011	0 1010	0 77 1	6 0011	E 2010	1 1210	7 00	11 7 60	0 1 1010	40
5.00+1	3.10+0	9.//-1	6.00+1	5.3040	1.13+0	7.00	FI 7.00	FU 1.19+0	49
8.00+1	9.80+0	1.19+0							
4.00+1	2.04+0	1.07+0	5,00+1	3.58+0	1.13+0	6.00	+1 5.24-	H0 1.12+0	90
8.00+1	8.50+0	1.03+0	1.10+2	2 1.44+1	1.03+0	0.00			20
4.00+0	1.30-3	6.78-1	5.00+0	3.50-3	7.79-1	6.00	+0 7.30	-3 8.56-1	95
8.00+0	1.90-2	8.67-1	1.00+1	4.10-2	9.37-1	1.20	+1 6.70	-2 8.87-1	
9.00+0	3.73-2	1.18+0	1.65+1	2.35-1	1.24+0	1.75	+1 2.70	-1 1.21+0	128
1.80+1	2.92-1	1.21+0	1.85+	L 2.93-1	1.13+0	1.95	+1 3.74	-1 1.24+0	
2.05+1	4.04-1	1.17+0	2.15+	L 5.09-1	1.30+0	2.25	+1 5.40	-1 1.22+0	
9.00+1	1.05+1	1.04+0	1.00+2	2 1.19+1	9.87-1	1.10	+2 1.33	+1 9.54-1	
1.20+2	2 1.40+1	8.80-1	1.30+2	2 1.83+1	1.03+0	1.40	+2 1.93	+1 9.85-1	
1.55+2	2.06+1	9.29-1							
2 6010	7 11-5	2 66-1	2 . <u>8/</u> .±/	1 20-4	3 08-1	3 04	+0 1 96	-4 3 36-1	147
3,2940	3 08-4	3 67-1	3 60+1) 5.62-4	4.53-1	3 80	+0 7 63	-4 4,90-1	***
4.00+0) 1.10-3	5.74-1	5.001			0.00			

E ₁	σ^{Exper}	σ ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Re
L	ead	F	luorescen	nce yie	ld = 0.967	7			
20+1	1.90+0	7.52-1							8
. 20+1	5.70-2	1.03+0	2.00+1	2.25-1	9.59-1				59
.00+1	1.42+0	1.03+0	6.00+1	3.26+0	9.49-1	8.00+1	5.47+0	8.98-1	90
. 10+2	9.68+0	9.16-1							
.00+0	8.80-4	6.37-1	5.00+0	2.30-3	6.97-1	6.00+0	4.80-3	7.61-1	95
.00+0	1.40-2	8.63-1	1.00+1	3.00-2	9.28-1	1.20+1	5.00-2	9.00-1	
.00+0	2.50-2	1.06+0	1.75+1	1.87-1	1.15+0	1.85+1	2.06-1	1.09+0	128
.95+1	2.44-1	1.11+0	2.05+1	2.88-1	1.15+0	2.15+1	3.16-1	1.11+0	
. 25+1	3.49-1	1.08+0	5.00+1	2.36+0	1.02+0	6.00+1	3.26+0	9.49-1	
.00+1	4.56+0	9.69-1	8.00+1	5.91+0	9.70-1	9.00+1	7.24+0	9.59-1	
. 00+2	9.78+0	1.08+0	1.10+2	1.11+1	1.05+0	1.20+2	1.19+1	9.88-1	
. 30+2	1.46+1	1.07+0	1.40+2	1.60+1	1.07+0	1.55+2	1.88+1	1.09+0	
3 B	ismuth	F	luoresce	nce yie	1d = 0.96	B			
. 00+1	1.32+0	1.06+0	6.00+1	3.04+0	9.80-1	8.00+1	4.87+0	8.81-1	90
. 10+2	8.73+0	9.05-1	010012	510170	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	010011	110710	0.01 1	20
. 00+0	7.60-4	6.12-1	5.00+0	2.10-3	7.04-1	6.00+0	4.60-3	8.03-1	95
. 00+0	1.40-2	9.49-1	1.00+1	2.80-2	9.54-1	1.20+1	4.70-2	9.33-1	
. 75+1	1.30-1	8.84-1	1.85+1	1.74-1	1.02+0	1.95+1	2.59-1	1.31+0	128
.05+1	2.95-1	1.30+0	2.15+1	2.97-1	1.15+0	2.25+1	3.21-1	1.10+0	
0 Т	horium	H	luoresce	nce yie	ld = 0.97	1			
.00+0	3.20-4	5.39-1	5.00+0	8.90-4	5.85-1	6.00+0	2.10-3	6.97-1	95
.00+0	6.70-3	8.47-1	1.00+1	1.60-2	1.02+0	1.20+1	2.50-2	9.32-1	
.60+0	3.00-5	5.29-1							124
.45+0	4.85-4	5.12-1	5.45+0	1.46-3	6.89-1	6.19+0	2.29-3	6.81-1	141
. 32+0	2.97-3	8.21-1	7.49+0	5.47-3	8.53-1	7.81+0	6.04-3	8.24-1	
.69+0	1.08-2	1.05+0	9.15+0	1.12-2	9.31-1	9.78+0	1.82-2	1.24+0	
. 16+1	2.94-2	1.21+0	1.17+1	3.06-2	1.22+0	1.21+1	3.02-2	1.09+0	
. 37+1	4.51-2	1.16+0	1.54+1	5.92-2	1.11+0				
2 U	ranium	I	luoresce	nce yie	1d = 0.97	2			
.00+0	2.20-4	4.58-1	5.00+0	6.90-4	5.46-1	6.00+0	1.80-3	7.11-1	95
. 00+0	6.00-3	8.93-1	1.00+1	1.20-2	8.97-1	1.20+1	2.20-2	9.66-1	
1 Cros	e sooti	one and	their ret	ios are	nrinted	in a com	nressed	nower of	10
010	0 00001	und und		.100 are	-1		-r	Ponor OI	-•
nota	ation, e	e.g. 9.66	-1 means	9.66*10					
b The	ratios	shown in	n bold pr	int dif	fer by mo	re than a	a facto:	r of 2 fro	m
the	averag	ed ratios	and wer	e as	describe	d in the	text -	- rejected	ι.
Thi	s reiec	tion crit	erion wa	s appli	ed only to	o the Z2	> 9 da	ta.	

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}-Continued

G. LAPICKI

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions.

Z1 = ****	1 ***	k **	**	A: ***	1 **	= 1 ***		****	****	****	***	k-10-10-1	***	****	とっとっとう	*****	*****	***	***	***	k->k->k->k->k->k->k->k->k->k->k->k->k->k	***	P: ***	roto ****	ons ***
Ref.		Z	2	>	>	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
5	•••		•••	•••	• •	•••	•••				•••	••••	•••	• • • •			••••	••••	•••	•••			•••	10	
7	• • •	••	••	••	••	•••	••	• • • •		• • •	••	•••	•••	••••	••••	•••	•••	•••	•••	•••	• • •	•••	•••	5	•••
9 10	•••	•••	••	•••	••	•••	••		••••	••••	•••	•••	•••	,	0.	•••	•••	•••	•••	•••	•••	•••	•••		•••
11	•••	••	••	•••		•••	••	25		•••	•••	•••	•••	21	22		•••	•••	•••	•••	•••	•••	•••	••••	
12	••	••	••	••	••	•••	••	• • • •	• • • •	• • •	••	•••	•••	4	8	• • •	•••	•••	• • •	• • •	• • •	• • •	• • •	• • •	•••
13 16	••	••	••	•••	••	• • •	• •		• • • •			• • •	•		11.	• • •			• • •			• • •	•••		
17	•••	•••	•••	•••	••		•••	••••	••••	· • • •	•••	•••	· · ·	• • • •	13	••••	•••	•••	•••	•••	•••	• • • • • •	•••	••••	•••
18	••	••	• •	••	••		••		• • •	17.	••	• • •			• • •		• • •		• • •	• • •		• • •	• • •		
20	••	••	••	••	••	•••	••	• • •	• • • •	• • •	••	•••	• • •	• • •	••••	•••	•••	•••	•••	•••	•••	15	•••	15	•••
22	• •	••	••	••	••	•••	•••		• • • •	• • •	• •	•••	•••	• • •	13	• • •	•••	•••	• • •	•••	• • •	•••	•••	• • •	•••
25	•••	•••	••	•••	•••	• • •	•••	••••	••••	· • • •	•••	• • •	•••	•••	4	•••	•••	•••	•••	•••	•••	•••	•••	5	•••
26	••		••	••	••		••	15		• • • •	• •	• • •	• • •	• • • •	• • •		• • •			• • •			• • •	• • •	
29	•••	••	••	••	••	•••	••	• • •	•••	1.	•••	•••	• • •	• • •	•••	• • •	•••	• • •	•••	•••	• • •	•••	• • •	• • •	•••
33	••	••	••	••	••	•••	••	• • •	•••	13.	••	•••	•••	•••	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
35	••	••	•••	•••	••	16.	•••		• • • • • • •		••	•••	•••	• • •	•••	• • • • • •	•••	· · ·	•••	•••	•••	• • • • • •	•••	•••	•••
36	••	•••	••	••	••	• • •	••	• • • •	• • • •			•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	•••	• • •	•••	3	3
37	••	••	••	••	••	•••	•••	7.	• • •		••	•••	• • •	• • •	• • •		• • •	• • •	• • •	•••	•••	• • •	• • •	•••	• • •
38	••	•••	••	••	•••	•••	••	• • •	• • • •	• • • •	••	•••	•••	•••	•••	•••	•••	• • •	• • •	••••	•••	•••	•••	9	• • •
40	••	••	••	•••	•••	•••	•••	• • • •	••••		•••	•••	•••	•••	•••	•••	•••	•••	•••	,	•••	•••	•••	•••• 8	•••
45	•••	•••		•••											51							 			
46	••	••	••	••		• • •	••	13	13		••	7	• • •	• • •	• • •	•••	• • •	• • •	• • •	8	• • •	• • •	• • •	• • •	•••
47	••	••	••	••	••	•••	••	•••	• • •		••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	•••	•••	•••	3	1
40 50	•••	••	••	•••	••	•••	•••	· · · · 18	••••	••••	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • • •	•••	•••	•••	•••	•••
51		•••	•••	•••				11	•••	11.	•••	•••		•••	11		• • •	•••			•••	•••		•••	•••
55	••	••	••	••	••	•••	•••	•••	• • •		••	•••		• • •	•••	• • •	• • •	•••	•••	• • •	• • •		• • •	9	• • •
57	••	••	••	••	••	•••	•••	•••	• • •	••••	•••	•••	•••	• • •	•••	• • •	•••	•••	•••	•••	•••	•••	•••	9	•••
20 64	••	••	••	••	••	• • •	• • •	• • •	•••	• • • •	••	1	•••	•••	•••	•••	•••	• • •	• • •	• • •	• • •	•••		•••	• • •
65	•••	•••	•••	•••	•••			•••	••••	• • • • • • • •		•••	•••	•••	•••		•••	•••	•••	1	 	 		•••	•••
66	••	••	••	••		• • •	• • •	• • •	• • •		••	• • •	• • •	• • •	• • •	• • •	• • •	4	• • •	• • •			4	• • •	• • •
69 70	••	••	••	••	••	•••	• • •	•••	• • •	••••	• •	•••	• • •	•••	•••	•••	•••	• • •	•••	•••	•••	•••	•••	20	20
70	••	••	•••	••	••		•••	11	• • •	••••	••	•••	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • •
72	•••	•••	•••	••	•	•••		•••	•••	••••		•••	•••	•••	•••	•••	•••	• • • • • •	•••	•••	 	• • • • • •	•••	9	•••
73	••	••	••	••		•••		• • •		• • • •	• • •	• • •	• • •	• • •	•••				• • •				• • •	13	12
74	••	••	••	••	••	•••	•••	• • •	• • •	••••	•••	•••	• • •	• • •	•••	•••	• • •	• • •	•••	1	• • •	•••	• • •	•••	•••
75 74	••	••	••	••	••	•••	•••	•••	•••	••••	•••	•••	•••	• • •	9	9	•••	•••	•••	•••	•••	•••	• • •	•••	•••
70	••	••	•••	••	••	•••	•••	•••	•••	••••	•••	•••	•••	•••	•••	•••	•••	•••	1	•••	1 	•••	•••	21	۲ ۰۰۰
79	•••	•••	•••	•••	•••	•••		•••	•••	••••	•••	•••	•••	•••	•••	•••	•••	•••		•••	•••	•••		6	•••
81	••	••	••	••	• •	•••		19	• • •	• • • •	•••	•••	• • •	• • •	• • •			• • •	• • •	•••	•_••		• • •	•••	•••
82	• •	• •		••		• • •		13	8			14								12				• • •	• • •

Table 6. Number of K-shell x-ray production cross sections compiled for
each target element (identified in columns by Z2) with source references
of Sec. 6.2 (listed in the first column), and tabulated separately for
four projectiles: protons, deuterons, helium-3, and helium-4 ions.
Continued.Continued.Protons

		_							-			_		_							==	_						-				===
Ref.		Z	2		>	4	5	5	6	7	i	8	9	1	0	11	. 1	12	13	14	1	5	16	17	1	8	19	2	0 2	21	22	23
84	• •	••	••	••	••	••	•••	••	•••	•••	••	••	•••	•••	•••	••	•••	•••	• • •	•••	••	••	• •	•••	••	••	••	•••	•••	••	3	•••
85	•••	••	••	••	••	••	• • •		9.	•••	••	••	•••	•••	•••	••	•••	•••	•••	•••	••	•••	•••	•••	••	••	••	•••	•••	•••	•••	•••
86	••	•••	•••	•••	•••	••	•••	••	•••	••	••	•••	••	••	••	••	• •	•••	••••	•••	•••	•••	• •	•••	•••	•••	••	••	• • •	•••	••	14
88	••	••	•••	••	••	•••	•••	• •	•••	••	••	••	••	••	••	••	••	• •	1.	•••	••	•••	••	•••	•••	•••	••	••	•••	•••	••	•••
92	••	•••	•••	••	•	/	•••	• •	•••	•••	••	••	••	•••	•••	•••	•••	•••	••••	•••	••	•••	•••	•••	•••	•••	•••	••	•••	•••	•••	•••
94	••	•••	••	••	•••	••	•••	••	•••	••	••	••	••	•••	•••	••		T	1	T	••	•	T	1	••	•	T		5	••	1	•••
97	••	••	•••	••	••	••	•••	• •	•••	••	••	•••	•••	•••	•••	•••	•••	• •	6	•••	•••	•••	•••	•••	•••	•••	••	•••	•••	•••	•••	•••
98	••	••	••	••	••	••	•••	• •	•••	••	••	•••	••	••	•••	•••	••	••••		•••	•••	•••	•••	•••	•••	••	••	3	1 3	31	31	31
101	••	••	••	••	••	••	•••	• •	•••	••	••	••	••	••	•	8	5	8	16	6	••	••	•••	•••	••	••	••	•••	•••	••	7	•••
105	••	••	•••	••	•••	••	•••	• •	•••	••	••	•••	••	••	••	•••	•••	•••	• • •	•••	••	•••	• •	•••	•••	••	••	•••	•••	•••	10	•••
106	••	••	•••	••	••	••	•••	• •	•••	••	••	•••	••	•••	•••	•••	•••	•••	•••	•••	•••	•••	••	•••	•••	••	••	1	3.	13	13	13
108	••	••	•••	••	•••	•••	•••	• •	•••	••	••	••	•••	•••	•••	••	• •	•••	•••	•••	•••	••	••	•••	•••	••	••	••	••	••	10	•••
110	••	••	•••	••	••	••	•••	• •	•••	••	•••	•	3	•••	••	•••	• •	••	5	•••	••	••	••	•••	••	••	••	••	••	•••	•••	•••
112	••	••	•••	••	•••	••	•••	• •	•••	••	••	•••	•••	•••	•••	•••	• •	•••	• • •	•••	••	•••	••	•••	••	••	• •	••	••	••	9	•••
113	••	••	•••	•••	••	••	•••	• •	•••	••	••	•••	•••	•••	•••	•••	• •	•••	• • •	•••	••	•••	••	•••	••	• •	••	••	• • •	••	11	8
116	••	••	••	••	•••	••	•••	• •	•••	••	••	•	15	••	••	•••	• •	•••		•••	••	•••	••	•••	••	• •	••	•••	•••	••	•••	• • •
117	••	••	••	••	•••	••	•••	• •	•••	••	••	••	•••	•••	• •	•••	• •	••	17	•••	•••	•••	••	•••	•••	• •	••	••	••	•••	• • •	•••
118	••	••	••	••	••	••	•••	• •	•••	••	••	••	••	••	••	•••	• •	•••	•••	•••	••	••	••	•••	••	••	••	••	• •	••	11	• • •
119	••	••	••	••	•	12	•••	• •	•••	••	••	••	••	•••	••	•••	• •	•••	• • •	•••	••	••	••	•••	••	•••	••	•••	•••	•••	•••	•••
121	••	••	••	••	••	••	•••	• •	•••	••	•••	••	•••	••	••	••	• •	•••	•••	•••	••	· ·	••	•••	••	••	•••	••	•	8.	•••	•••
122	••	••	••	••	••	••	•••	•••	•••	••	••	••	••	••	•••	•••	• •	•••	• • •	•••		7	7	7	•••	•	7	••	•••	•••	•••	•••
123	••	••	••	••	••	••	•••	• •	• • •	••	••	••	••	•••	• •	•••	• •	•••	•••	•••	1	1	11	11	••	•	12	1	2.	••	•••	• • •
132	••	•••	••	••	••	•••	•••	•	• • •	••	•••	••	•••	•••	• •	••	• •	•••	• • •	• • •	•••	••	••	•••	•••	• •	••	•••	••		14	••••
137	••	•••	•••	••	•••	••	•••	• •	•••	••	•••	•••	••	•••	•••	•••	• •	•••	•••	•••	•••	••	••	•••	•••	• •	•••	•••	• •	14	14	7
148	••	••	••	••	••	•••	•••	•	•••	••	•••	•••	•••	•••	•••	•••	• •	•••	•••	•••	•••	•••	••	•••	•••	• •	•••	••	••	••	5	•••
149	••	••	•••	••	••	•••	•••	•	•••	••	•••	•••	•••	••	•••	•••	• •	••	3	•••	•••	•••	•••	•••	••	•••	•••	•••	•••	••	1	•••
156	••	•••	•••	• •	•••	•••	•••	•	•••	••	•••	••	•••	•••	• •	•••	• •	•••	•••	•••	1	1	11	11	••	•	11	1	1.	•••	•••	•••
15/	• :						••••		8.		• :		<u>.</u>	• •						••••	•••			•••	•••			•••	<u>··</u> ·	•••	•••	•••
Kef.	2	4	25	2	6	21	22	5 - 6	29	30	J	1	32	3	5	34		55	36	31	3	8	39	40	9 4) T	42	4	3 (44	45	46
1																											1					
2	•••	••	••	•••	· · · ?	•••	•••	• •	• • •	••	•••	•••	•••	•••	•••	•••	•	•••	• • •	•••	•••	•••	••	•••	•••	•	T	•••	•••	•••	•••	• • •
2	••	••	••		۷.	••	•••	•	•••	••	•••	•••	••	•••	•••	•••	• •	•••	• • •	•••	••	•••	••	•••	••	• •	•••	••	•••	••	•••	•••
ר יי	••	•••	••	••	••	•••	•••		י ד	••	••	••	••	•••	•••	•••	• •	•••	• • •	•••	•••	•••	••	•••	•••	•	0	•••	••	•••	•••	•••
	•••	•••	•••	••	•••	•••		, I	,.	••	•••	•••	•••	••	••	•••	•	•••	• • •	•••	••	•••	••	•••	•••	• •	•••	••	••	•••	•••	•••
2	••	••	•••	•••	•••	•••	T	L.,	••••	••	•••	••	•••	•••	••	•••	• •	•••	•••	•••	••	•••	••	•••	•••	• •	1 -	•••	••	• •	•••	•••
7	•••	•••	••	2	1	••	•••	•	۲۲. ۲	• •	••	••	••	•••	•••	•••	• •	•••	•••	•••	•••	•••	••	•••	•••	•	12	••	•••	•••	•••	•••
,	••	•••	•••		1.	••	•••		э. г	••	•••	••	•••	••	••	•••	• •	•••	• • •	• • •	•••	••	••	2	•••	•	T	•••	•••	••	•••	• • •
10	••	•••	•••	••	•••	•••	•••		э. 1	••	•••	••	••	•••	•••	•••	• •	•••	• • •	•••	•••	•••	••	•••	•••	• •	••	•••	•••	••	•••	•••
10	••	••	••		Τ.	•••	•••		1.	••	•••	•••	•••	•••	••	•••	• •	•••	•••	•••	••	•••	••	•••	•••	• •	••	•••	••	•••	•••	•••
20	••	•••	•••	• •	•••	••	2	s	•••	••	•••	••	••	•••	••	•••	• •	•••	• • •	•••	•••	•••	••	•••	••	• •	••	••	•••	•••	•••	• • •
21	••	••	•••	•••		••	•••		14.	•••	•••	•••	•••	•••	•••	•••	• •	•••	•••	•••	••	•••	••	•••	•••	• •	•••	•••	••	•••	• • •	•••
27	••	•••	•••	1	.0.	•••	•••	• •	10	10	•••	••	•••	•••	••	•••	• •	•••	•••	•••	••	•••	••	•••	••	• •	•••	• . •	••	••	•••	•••
30	••	•••	•••		1.	•••	•••		1.	••	•••	•••	••	•••	• •	•••	•	••	•••	•••	••	••	••]	L	•	1	••	••	••	1	• • •
36		3	3	۶ -	3	3		3	2.	••	••	••	•••	•••	•••	•••	•	•••	• • •	•••	••	••	••	•••	••	• •	•••	••	••	•••	•••	• • •
38	••	• •	•••	1	.0	11	•••	•	•••	••	••	•	11	•••	• •	•••		•••	•••	•••	••	••	••		•••	•••	•••	••	••	•••	•••	• • •
39	••	••	••	••	••	••	•••	•	2.	••	•••	••	••	•••	•	2		•••	•••	•••	••	••	••	•••	•••	• •	• • •	•••	••	• •	• • •	•••
40	••	••	•••	•••	• •	••	•••	•	•••	••	•••	••	••	• •	• •	•••	•	••	7	•••	••	••	••	•••	••		• • •	••	••	••		•••
44	••	••	••	••	•••	•••	•••		•••	••	••	•••	•••	•••	• •	•••	•	••	•••	•••	••	•••	••	•••		9.	•••	••	••	••	•••	•••
47	••	••	••		3.	••		3	3.	••	••	•	3	•••	••	•••	• •	•••	•••	3		••	••	3	3	•••	•••	••	••	•••		•••
48	••	••	•••	••	•••	••	•••	•	•••	••	••	••	••	•••	• •	•••	• •	••	8	•••	••	••	••	•••	••	•	•••	••	••	•••		•••
52			13	31	.5.		- 15	5	15	15													15				15					

G. LAPICKI

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions. Continued.

Ref.	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	,
53			16	16		16	16	16	16	16														
55			10	10	11	9.											• • •							
56							18						• • •											
57		9	9.		14	9	8																	
59						2.										2								
61											9	8		9	8	8	• • •		9				8	5
64						16																		
65													1											
66			4.			4.														• • •				
68													7											
69	18	20	20	19	17	19										• • •		• • •				• • •		
72										• • •		• • •		5										
73	12		12	6	10		6			• • •					• • •				• • •					
74	• • •	• • •	• • •	• • •	• • •	1	• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •		• • •	
76	1	• • •	1	• • •	1	1	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	•••	
77	•••	• • •	• • •		21	13		• • •	• • •	• • •		• • •	• • •		• • •	• • •		• • •	13	• • •	• • •	• • •		
79	6		6			• • •		• • •	•••	•••	• • •	• • •	• • •	• • •		• • •	•••	••••	•••	•••	• • •	•••		
80	25	• • •	• • •	• • •	• • •	32		•••	• • •	•••		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		
84	• • •	• • •	3	2	3	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
86	• • •	• • •	9	• • •	• • •		12	11	•••	•••	• • •	• • •	• • •	• • •	• • •	11		•••	• • •	•••	• • •	• • •	• • •	
87	• • •	• • •	• • •	•••	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	9	••••	• • •	• • •	9	••••	
89	• • •	• • •	• • •	• • •	1	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •		• • •	
94	5	1	1	1	1	5	• • •	•••	1	•••	1	• • •	• • •	• • •	1	• • •	• • •	1		• • •	• • •	• • •	• • •	
95	•••	• • •	•••		• • •		• • •	•••	•••	• • •		• • •	• • •	• • •	•••	7	•••	• • •	7	• • •	• • •	•••	•••	
97	• • •	• • •	• • •	• • •	6	•••	•••	•••	•••	•••	• • •	•••	•••	• • •	•••	•••	•••	• • •	• • •	•••	•••	• • •	• • •	
98	31	31	31	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	
99	• • •	•••	•••	• • •	• • •	15	•••	•••	•••	•••	• • •	• • •	• • •	• • •	•••	• • •	• • •	•••	•••	• • •	• • •	•••	• • •	
103	•••	• • •	•••	• • •	•••	8	• • •	•••	• • •	• • •	•••	• • •	• • •	•••	• • •	• • •	•••	•••	•••	•••	• • •	•••	• • •	
104	•••	•••	•••	• • •	• • •	3	•••	•••	•••	•••	•••	•••	•••	3	• • •	•••	• • •	•••	•••	• • •	•••	•••	•••	
105	•••	•••	10	•••	•••	10	• • •	•••	•••	• • •	10	• • •	• • •	•••	•••	10)	• • •	•••	• • •	•••	•••	•••	
106	13	13	11	•••	•••	•••	•••	•••	•••	•••	•••	• • •	•••	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•
108	•••	•••	9	• • •	8	•••	6	• • •	•••	• • •	•••	•••	• • •	•••	•••	•••	•••	•••	• • •	• • •	• • •	• • •	•••	,
111	• • •	•••	•••		•••	•••	•••	•••	• • •	• • •	• • •	• • •	•••	6	12	•••	11	•••	•••	•••	•••	•••	•••	,
112	• • •	•••	•••	• • •	•••	9	• • •	•••	• • •	• • •	• • •	• • •	•••	• • •	•••	•••	•••	•••	•••	•••	• • •	•••	•••	•
113	•••	8	8	• • •	11	11	•••	•••	•••	• • •	10	• • •	• • •	•••	•••	•••	2	•••	• • •	•••	• • •	•••	•••	,
114	1	• • •	• • •	•••	1	1	1	• • •	•••	•••	1	• • •	• • •	• • •	• • •	• • •	1	• • •	•••	• • •	• • •	•••	•••	,
115	•••	•••	•••	22	22	22	22	•••	21	• • •	22	• • •	• • •	•••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	•
117	• • •	•••	•••	• • •	•••	23	•••	• • •	• • •	•••	•••	•••	• • •	•••	•••	•••		•••	•••	• • •	•••	•••	•••	,
118	• • •	•••	11	•••	••••	11	• • •	•••	• • •	•••	• • •	•••	• • •	•••	•••	•••	9	•••	•••	•••	•••	•••	••••	
120	•••	• • •	•••	•••	21	• • •	•••	•••	• • •	•••	•••	•••	• • •	• • •	•••	•••	•••	•••	• • •	•••	•••	•••	e)
121	•••	•••	9	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	•••	•••	,
122	•••	•••	•••	•••	/		•••	/	• • •	•••	•••	•••	•••	•••	•••	•••	••••	•••	•••	•••	•••	•••	•••	
125	T	•••	•••	•••	•••	1 L	1	• • •	• • •	• • •	1	• • •	•••	•••	•••	•••	J		. 1	•••	L		•••	•
120	•••	•••	• • •	•••	• • •	8	• • •	•••	•••	•••	•••	•••	•••	• • •	•••	• • •	•••	8)	•••	• • •	•••	•••	,
120	•••	• • •	•••	•••	•••	1 -	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	,
132	14	•••	•••	12	12	22	12	•••	•••• •••	•••	•••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	•••	• • •	,
107	•••	•••	•••		•••	23	•••	•••	21	•••	•••	•••	• • •	•••	•••	•••	• • •	•••	20	••••	•••	•••	•••	
1/2/	11	•••	•••	10	/	11	11	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • •	• • •	•••	•••	•••	•••	•••	,
143	•••	• • •	• • •	•••	•••	0	•••	•••	•••	•••	• • •	0	• • •	• • •	•••	•••	• • •	•••	••••	•••	• • •	•••	· · · ·	2
144	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	••••		23	•••	•••	•••		ノ 7
140																	. 3	, 3	, 4				· 4	1

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions. Continued.

Ref.	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
149						2		••••								• • •	• • •						
151	• • • •	• • • •		• • •	5	5	• • •			•••	• • •		• • • •	•••		• • •	• • •		• • •		•••	• • •	
152	21	•••	21	11	•••	• • •	21	• • •	• • • •	•••	• •	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	
Ref.	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
4	5			•••	•••	••••	••••									•••	•••	•••	•••	•••	•••	•••	•••
5	14			•••	•••												•••						
6	13			12																			
30	1.			1						1.				• • •		1			1		• • •		
32	27			•••	• • •			• • •					•••	• • •		• • •	• • •						
38	9	• • •	• • •	• • •	• • •			• • •					• • •			• • •	• • •	• • •				• • •	
39	2	• • •	• • •	• • •	• • •	•••		• • •	• • •	• • •	•••		• • •	• • •		• • •	• • •	•••			•••	• • •	• • •
47	3.	• • •	• • •	3	3	• • •	•••	•••	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	•••	•••	• • •	• • •	•••	•••	•••
48	•••	••••	•••	•••	•••	•••	• • •	2	• • • •	• • •	• • •	• • • •	• • •	• • •	•••	• • •	• • •	•••	• • •	•••	•••	•••	• • •
52	15	15	•••	•••	• • •	• • •	• • •	•••	• • • •	• • •	• • •	• • • •	•••	•••	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •
55	11	• • •	•••	•••	•••	•••	•••	•••	• • •	• • •	•••	• • •	• • •		•••	•••	•••	•••	•••	•••	•••	•••	•••
59 40	•••	•••	2	•••	•••	•••	•••	•••	• • •	• • •	• • •	•••	•••	2	•••	•••	•••	•••	•••	•••	• '• •	•••	2
63	••••	••••	• • •	0	•••	•••	•••	•••	• • • •	· · · ·	· · · · · · · · · · · · · · · · · · ·	• • •	•••		•••	•••	•••	•••	• • •	•••	•••	•••	•••
64	0	0	•••	11	0	0	• • •	• • •	•••	0	1	•••	• • •	•••	•••	• • •	•••	•••	•••	•••	•••	•••	•••
77	21	•••	•••	тт	•••	• • •	•••	•••	• • •	• • •	• • •	•••	• • •	•••	• • •	•••	•••	•••	•••	•••	•••	•••	• • •
80	~ 1	• • •	17	•••	•••	•••	•••	• • •	• • •	•••	•••	•••	• • •	•••	•••	•••	•••	•••	•••	• • •	•••	•••	•••
86	••••	11	11	12	•••	• • •	•••	•••				••••			•••	•••	•••	•••	•••	•••	•••	•••	•••
87	11		10				10		9			10	10	10			9	· · · 9			•••	•••	•••
91					• • •								• • •								20		
94	1	1	5	1			5																
95	7	• • •		7									7			6					6		
99	14																						
100	10		• • •	• • •			• • •	• • •	• • •	• • •				• • •		• • •		9					
103	5		• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	•••	• • •	•••	• • •	•••	• • •	•••		• • •	• • •			
104	3	• • •	•••	• • •	•••	•••	•••	•••	• • •	• • •	•••	• • •	• • •	•••	• • •	• • •	3	• • •	• • •	• • •	•••	• • •	• • •
107	•••	•••	•••	•••	•••	• • •	•••	•••	• • •	• • •	•••	• • •	•••	• • •	•••	•••	•••	1	• • •	• • •	•••	• • •	• • •
111	•••	18	16	14	• • •	•••	•••	•••	• • •	• • •	•••	• • •	•••	•••	•••	• • •	•••	•••	•••	•••	•••	•••	•••
113	12		• • •	•••	•••	• • •	•••	•••	• • •	• • •	•••	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • •	• • •
110	- 0	• • •	•••	•••	•••	•••	•••	•••	• • •	• • •	•••	•••	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
120	10	• • •	•••	•••	•••	•••	•••	•••	• • • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • •	•••
121	10	••••	•••	•••	•••	•••	•••	•••	• • • •	••••	•••		•••	• • •	••••	•••	•••	•••	•••	•••	•••	•••	•••
125	8	1	• • •	Т	۰۰۰ م	T	•••	•••	• • •	T	•••	T	• • •	•••	T	•••	•••	•••	• • •	•••	1	•••	T
127		• • • •	•••	•••		•••	· · · 18	•••	• • •	••••	• • •	• • • •	• • •	•••	• • •	•••	•••	• • •	•••	•••	•••	•••	• • •
129			9		8							6			• • • • • •	•••	•••	•••	• • •	• • •	•••	• • •	• • •
130	5															•••		•••		••••	•••	•••	• • •
135	19			17																			
138						8																	
139	• • •															• • •		9					
143		• • •	• • •	• • •			6	•••	6	6	5				•••	• • •	• • •						
144				25	• • •		• • •	• • •	• • •	26		27		24		25	•••		• • •	•••	•••	• • •	•••
145	• • •			• • •	• • •		• • •	• • •		• • •						• • •	• • •				15		
148	7.	• • •	• • •	• • •	4	• • •		• • •		• • •						• • •	• • •			• • •	• • •		
151	5.			• • •																	• • •		

Table 6. Number of K-shell x-ray production cross sections compiled for
each target element (identified in columns by Z2) with source references
of Sec. 6.2 (listed in the first column), and tabulated separately for
four projectiles: protons, deuterons, helium-3, and helium-4 ions.
Continued.Continued.Protons

====						_	===												===				
Ref.	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
154														0		10					•••		ā
155	•••	•••	•••	• • •	• • •	•••	• • •	•••	•••	•••	•••	•••	•••		•••	10	•••	•••		•••	• • •	•••	11
122	• • •	•••	•••	• • •	•••	•••	•••	•••	•••	•••	• • •	•••	• • •	0	•••	/	•••	•••	12	•••	•••	•••	14
159	• • •	• • •	• • •	• • •	•••	• • •	• • •	•••	•••	• • •	• • •	• • •	• • •	8	• • •	9	• • •	• • •	9	• • •	15	•••	• • •
Ref.	70	71	72	73	-74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92
1				6						1			4										
2		•••	•••	v	•••	•••	•••	•••	•••	-	•••	•••	•	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
-	• • •	•••	•••	•••	• • •	•••	• • •	•••	•••	•••	•••	• • •	•••	• • •	•••	•••	• • •	•••	•••	•••	•••	•••	10
2	• • •	•••	•••	11	•••	•••	•••	•••	•••	•••	• • •	•••	20	•••	•••	•••	•••	•••	•••	• • •	•••	•••	12
6	•••	• • •	•••	3	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	•••
30	• • •	•••	• • •	1	• • •	• • •	• • •	• • •	1	1	• • •	• • •	1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	1
41		• • •	• • •							12			• • •										
59			• • •										2										
91										22													15
93	•••	•••	•••	•••	•••		•••	•••	•••	16	•••	•••	•••	•••	• • •	•••	•••	•••	•••	•••	• • •	•••	1.0
05	•••	• • •	•••	•••	•••		• • •	•••	•••	10	•••	• • •	· · · · 2	••••		•••	• • •	• • •	• • •	•••	• • •	•••	•••
95	•••	•••	0	0	• • •	0	•••	•••	O	0	•••	• • •	0	0	• • •	•••	•••	•••	•••	•••	•••	•••	4
100	10	• • •	• • •	9	• • •	• • •	•••	• • •	• • •	9	•••	• • •	10	• • •	•••	•••	• • •	•••	• • •	• • •	9	• • •	• • •
104	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	3		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •
107					1																5		1
113													12										
124																					12		
125				1			•••		1	1		••••	1	1	•••		•••		•••			•••	
120	•••	•••	•••	-	15	•••	•••	•••	-	-	•••	• • •	-	-	•••	•••	•••	•••	• • •	•••	• • •	•••	•••
1/0	•••	• • •	•••	•••	10	••••	• • •	•••	•••	• • •	•••	•••	•••	• • •	• • •	•••	• • •	• • •	• • •	•••	•••	•••	
142	•••	•••	•••	•••	TO)	•••	•••	•••	12	•••	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	10
145	•••	• • •	•••	•••	•••	• • •	• • •	•••	•••	6	•••	•••	•••	•••	•••	•••	• • •	•••	• • •	•••	• • •	• • •	•••
158	• • •	• • •	• • •	15	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •
159	• • •	• • •	• • •	14	• • • •		• • •	• • •								• • •				• • •			
Z1 =	= 1		A1	=	2																Deu	ter	ons
****	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***
Ref		7.2	>	4	5	; 6	7	8	0	10	11	12	13	14	15	16	17	18	10	20	21	22	23
25																						F	
25	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	4	•••	•••	••••	•••	•••	•••	•••	•••	2	• • •
31	• • •	•••	• • •	•••	• • •	•••	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • •	• • •	• • •	•••	•••	3	• • •
45	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	19	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •
97			• • •					• • •					12								• • •		
102			• • •								3	• • •	10	2									
119				7																			
121																					8		
122	•••	•••	•••	• • •	•••	• • •	•••	•••	•••	•••	•••	• • •	•••	•••	12	12	12	•••		•••	U	•••	•••
122	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • •	• • •	•••	12	12	10	• • •	13	•••	•••	•••;	•••;
131	• • •	• • •	•••	• • •	• • •	• • •	• • •	•••	• • •	•••	•••	•••	• • •	•••	•••	•••	•••	• • •	• • •	•••	•••	4	4
133	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	6	6	6	6
153												• • •	• • •	• • •	• • •	• • •					• • •	24	• • • •
Ref.	24	25	26	27	28	5 29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
4			• • •			5	.		• • •														
97					12	, 7																	
111	•••	•••	•••	•••	12		•••	•••	•••	•••	•••	• • •	•••			•••		• • •	•••	•••	•••	• • •	•••
111	•••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	• • •	•••	TO	11	•••	10	• • •	•••	•••	•••	•••	•••
120			• • •	• • •	14	+	• • •	•••	• • •	• • •	•••	•••	• • •	• • •	• • •	•••	•••	•••	•••	• • •	•••	•••	•••
121	• • •	• • •	9	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	•••	• • •	•••	•••	•••	• • •	• • •	• • •	•••	• • •
121 122	•••	 	9 • • •	 		· · · · · · · · · · · · · · · · · · ·	 3	· · · 13	•••	•••	 	••••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

each of S four Cont	i τa ec. pr inu	rge 6. oje ed.	τe 2 (cti	lem lis les	ent ste : p	d in rot	n ti ons	10 10 10	iea firs eute	in st o eror	co. colu 15,	umn he:),], liur	and n-3;	d ta , ai	abu: nd l	late nel:	ed s Lum-	sepa -4	re ara ion	tely 5. Deut	y fo	ons
Rof	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
131			20	4	20	4	•••		4	••	-			•••									
133	6	6		6	· · · 6	6	•••																
153			23																				
Ref.	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
111		10		8																			
121	9																						
126	9		• • •		9																		
129			8		7							5											
150							• • •											11					
Ref.	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92
147.	• • •				15			• • •		14	• • •		• • •				• • •	•••	• • •		• • •	• • •	
158	• • •		• • •	11	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •		•••	• • •	• • •	•••		• • •		• • •	•••
Z1 = ****	= 2	***	A1	=	3 ***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	He ***	1iu ***	m-3 ***
Ref.		Z2	>	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
12													5										
17													12										
28													6										
45	•••				• • •					• • •			30							• • •			• • •
75													7	7									
160																						19	• • •
161					• • •					• • •			10		10			10				14	
Ref.	. 24	25	5 26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
160	18	3	• • •	9	•••	19	• • •	• • •	9	•••	• • •	• • •	• • •	• • •	• • •	• • •	9	• • •	•••		• • •	• • •	• • •
161	14		• • •	14	14	• • •	• • •	•••	14	•••	13	• • •	• • •	•••	• • •	• • •	• • •	8	• • •	• • •	• • •		.11
Ref.	. 47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
160	 ع	3		·	 :	 	 		- <i>-</i> -	• • •	 	 	 	 	- 	 	 	- 	 				••••
Z1 =	= 2		A1	. =	4																He	liu	m-4
****	*****	*****	****	***	****	***	xxx	*****	XXX	****	xxx	***	XXX.	xxx	***	זרזרזר	767676	*****	****	***	****	****	767676
Ref.		Z2	>	- 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
10													 5								~		
14	•••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	•••	4	5	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
15	•••	• • •	• • •	•••	•••	• • •	• • •	•••	• • •	•••	• • •	• • •	• • •	• • •	•••	•••	• • •	•••	•••	•••	•••	-	•••
16	•••		•••	•••	•••	5	•••	•••	•••	•••	•••	•••	v	v	•••	•••	• • •	•••	•••	•••	•••	•••	•••
17	•••	• • • •	• • •	•••	•••	5	•••	•••	• • •	•••	•••	• • •	 8	•••	•••	• • •	•••	• • •	• • •	•••	•••	• • •	•••
19		•••											g										
22			•••			•••							8				•••				•••	•••	
23						16																	
26						16		•••						•••						• • •			
28								• • •		• • •			5										• • •
31										• • •		• • •	•••				4		• • •			4	
38			• • •											• • •	• • •					12		12	

Table 6. Number of K-shell x-ray production cross sections compiled for

G. LAPICKI

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions. Continued.

Ref. 22> 4 5 7 8 9 10 11 12 13 14 15 1 14 46 2 3 3 37 1 1 46 2 3 3 9 10 67 2 3 3 9 10 67 2 3 3 30 24 72 7 21 30 24 30 24 94 5 5 5 5 9 9 9 9 9 9 10 11 10 11 10 11 10 11 11 11 10 11 1								_									-					-							
42 37 1 45 2 3 37 10 54 2 3 9 10 54 2 3 9 10 57 20 20 21 72 21 21 21 78 30 24 30 24 92 9 5 30 24 92 9 5 5 5 94 5 5 5 5 94 5 5 5 5 94 5 5 5 5 97 10 11 11 11 109 6 6 6 6 6 118 0 111 111 111 111 133 6 6 6 6 6 6 146 102 1132 133 133 33 33	Ref.	Z	2 -	>	4	5	6	•	7	8	5	9	10	11	12	13	14	i 1	5	16	17	1	.8	19	2() 2	21	22	23
45 37 37 10 54 23 3 9 10 54 20 20 20 20 72 72 20 20 20 20 72 9 30 24 21 30 24 82 9 30 24 30 24 30 24 92 9 9 5 5 5 5 96 5 5 5 5 5 96 5 5 5 5 96 5 5 5 5 97 10 11 11 11 109 6 10 11 11 11 118 10 11 11 11 11 11 133 66 66 66 66 66 66 66 66 66 66 66 66 66 <td>42</td> <td>• • • •</td> <td>• • •</td> <td>• •</td> <td>• • •</td> <td>• • •</td> <td></td> <td>• •</td> <td></td> <td>••</td> <td>• •</td> <td>• •</td> <td>••</td> <td></td> <td>• • •</td> <td>• • •</td> <td>• • •</td> <td>•••</td> <td>••</td> <td>••</td> <td>• • •</td> <td>••</td> <td>••</td> <td>••</td> <td>•••</td> <td></td> <td>••</td> <td>1.</td> <td></td>	42	• • • •	• • •	• •	• • •	• • •		• •		••	• •	• •	••		• • •	• • •	• • •	•••	••	••	• • •	••	••	••	•••		••	1.	
466 2 3 3 9 10 54 72 20 20 20 72 21 30 24 82 13 15 9 30 24 92 9 5 30 24 92 9 5 5 5 96 5 5 5 5 96 5 5 5 5 96 5 5 5 5 97 10 11 11 11 105 10 11 11 11 119 6 10 11 11 133 10 10 11 11 133 10 10 11 11 133 10 11 11 11 133 10 11 11 11 134 112 133 34 35 36	45	• • • •	•••	•••	• • •			• •		•••	••	•••	••			37	• • •	••	••	••		••		••	•••	• • •		•••	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	• • • •	•••	• •		• • •	2		3.	•••	••	•	3	• • •		• • •	• • •	•••	• •	••	• • •	••	••	••	•••			• • •	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	• • • •	•••	••	• • •	• • •	• • •	• •	• • •	•••	• •	••	••	• • •	• • •	9	• • •	•••	• •	••	• • •	••	••	••	•••	•••		••	10
71 7 21 78 $30 24$ 82 $30 24$ 92 9 94 5 96 5 96 5 96 5 96 5 96 5 96 5 96 5 96 5 96 5 96 5 97 10 109 4 4 110 11 110 11 11 110 11 11 113 6 6 6 114 11 11 11 133 6 6 6 146 4 4 4 160 8 4 4 160 8 4 4 14 5 5 5 15 6 6 6	67	• • • •	•••	••	• • •		•••	••	•••	••	• •	• •	••	• • •	• • •		•••	•••	••	••	• • •	••	••	••	•••		•••	20	20
72 21 30 24 82 9 30 24 94 5 5 5 96 5 5 5 96 5 5 5 96 5 5 5 96 5 5 5 97 10 11 11 109 4 4 4 110 3 2 110 119 6 10 10 123 111 11 11 133 6 6 6 146 33 33 33 146 9 9 9 $8ef$ 24 10 9 16 6 6 6 4 4 4 44 44 145 5 5 2 1114 15 5 5 2 10 6	71	• • • •	• • •	••	7	• • •	• • •	• •	• • •	••	••	• •	•••	•••	• • •	• • •	• • •	•••	••	••	• • •	••	•••	••	•••			•••	
78	72	• • • •	•••	••	• • •	• • •	• • •	• •	• • •	••	••	• •	•••	• • •	•••	• • •	•••	•••	• •	••	• • •	••	••	••	•••	• • •	••	21	•••
82 9 9 5 94 5 5 94 10 5 97 10 11 105 10 11 105 10 11 105 10 11 110 3 2 116 9 10 113 6 10 113 11 11 113 6 6 113 11 11 113 11 11 113 6 6 123 11 11 133 6 11 133 6 11 144 5 5 153 24 25 154 24 25 155 5 5 145 5 5 145 5 5 145 6 6 145 6 6 145 9 9 <td>78</td> <td>• • • •</td> <td>•••</td> <td>••</td> <td>• • •</td> <td>• • •</td> <td>• • •</td> <td>• •</td> <td>• • •</td> <td>••</td> <td>••</td> <td>• •</td> <td>••</td> <td>• • •</td> <td>• • •</td> <td>• • •</td> <td>• • •</td> <td>•••</td> <td>•••</td> <td>••</td> <td>• • •</td> <td>•••</td> <td>••</td> <td>••</td> <td>•••</td> <td>• • •</td> <td>••</td> <td>30</td> <td>24</td>	78	• • • •	•••	••	• • •	• • •	• • •	• •	• • •	••	••	• •	••	• • •	• • •	• • •	• • •	•••	•••	••	• • •	•••	••	••	•••	• • •	••	30	24
92 9 5 94 5 5 96 5 5 97 10 11 105 11 11 109 4 4 110 3 2 116 9 11 118 10 10 123 11 11 133 6 6 6 134 11 11 11 133 6 4 4 148 4 4 4 160 9 9 9 161 9 9 9 162 24 24 10 163 1 12 1 164 4 4 4 4 166 4 4 4 4 167 24 25 26 27 28 29 30 31 32 33 34 44 45 46 4 4 4 4	82	• • • •	•••	••	• • •	• • •	13	1	15.	••	••	•	9	• • •	• • •	• • •	•••	•••	• •	••	• • •		5.	••	••	•••		• • •	
94 5 5 5 96 5 5 5 105 10 11 11 109 4 4 4 110 3 2 111 116 9 10 10 118 9 111 111 111 133 6 10 10 10 123 111 111 111 111 111 133 6 111 111 111 111 111 133 333 333 333 333 333 346 146 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 1111 111 1111 1111 1111 1111 1111 11111 11111 1111111 $111111111111111111111111111111111111$	92			•	9			• •					• •				• • •	• • •		• -								• • •	
96 5 5 5 105 10 11 109 4 4 110 3 2 116 9 111 119 6 10 119 6 10 123 111 111 133 6 6 136 111 111 133 6 6 136 111 111 133 6 6 136 9 111 111 133 6 6 6 148 9 9 9 Ref. 24 25 27 28 29 30 31 32 33 33 14 5 5 5 111 111 111 14 5 5 5 111 111 14 5 5 5 111 111	94	••••	•••	•••	•••	• • •	• • •	• •	•••	•••	••	• •	••	•••	• • •	•••	•••	•••	••	••	• • •	• •	•••	••		5.	•••	•••	•••
97 10 11 105 11 11 109 3 2 116 9 10 116 9 10 116 9 10 116 9 11 116 9 11 113 11 11 113 11 11 113 11 11 113 11 11 113 11 11 113 6 6 116 6 6 116 6 6 116 6 6 116 6 6 116 6 6 116 6 6 1114 11 11 116 1 14 116 1 1 1114 11 1 1114 11 1 1114 11 1 1114 11 1 <	96	• • • •	•••	•••	•••	• • •	•••	• •	• • •	•••	••	• •	••	• • •	• • •	5	•••	• • •	• •	••	•••	••	••	••	•••	••	••	5	•••
105 110 111 111 109 3 2 111 116 9 10 10 118 10 10 10 123 11 11 11 133 6 6 6 148 3 3 3 153 6 4 4 148 5 5 5 153 9 9 9 Ref. 24 5 2 160 9 9 9 Ref. 24 5 5 160 9 9 9 114 5 5 5 1 140 1 1 1 1 14 5 5 5 1 1 14 5 5 5 1 1 14 5 5 5 1 1 14 5 5 5 1 1 14 1 1	97	• • • •	•••	•••	•••	• • •	• • •	• •	•••	• • •	••	• •	••	•••	•••	10	•••	• • •	•••	••	•••	• •	•••	•••	•••	••	•••	• • •	• • •
109	105	• • • •	•••	•••	•••	•••	• • •	• •	•••	• • •	••	• •	••	•••	•••	•••	•••	• • •	•••	•••	•••	••	•••	••	•••	••	••	11	•••
110 3 2 116 9 10 118 11 11 123 11 11 133 6 6 6 123 11 11 11 133 6 6 6 6 146 3 3 3 3 148 5 5 5 24 153 24 9 9 9 Ref. 24 25 26 27 28 29 30 31 32 33 34 44 45 160 9 9 9 9 9 9 9 Ref. 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 4	109	• • • •	•••	•••	•••	•••	•••	• •	•••	•••	••	• •	••	•••	• • •	•••	• • •	•••	•	4	4	••••	•	4	••	••	•••		• • •
116 9 10 10 118 11 11 11 11 123 11 11 11 11 133 6 6 6 6 6 146 3 3 3 3 3 3 3 148 4 4 4 4 4 9 9 160 9 9 9 9 9 9 9 Ref. 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 4	110	• • • •	••	•••	• • •	•••	• • •	• •	• • •	• • •		3.	•••	• • •	•••	2	• • •	•••	••	••	•••	•••	•••	• •	•••	•••	•••	• • •	•••
118 110 10 119 6 11 11 133 11 11 11 133 6 6 6 136 3 3 3 3 146 3 3 3 3 3 148 5 5 5 5 9 9 Ref. 24 25 26 27 28 29 30 31 32 33 34 44 44 160 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 </td <td>116</td> <td>••••</td> <td>•••</td> <td>• • •</td> <td>• • •</td> <td>•••</td> <td></td> <td>• •</td> <td>•••</td> <td>•••</td> <td></td> <td>9.</td> <td>••</td> <td>•••</td> <td>•••</td> <td>• • •</td> <td>•••</td> <td>•••</td> <td>••</td> <td>••</td> <td>•••</td> <td>• •</td> <td>•••</td> <td>••</td> <td>• •</td> <td>••</td> <td>•••</td> <td>•••</td> <td>• • •</td>	116	••••	•••	• • •	• • •	•••		• •	•••	•••		9.	••	•••	•••	• • •	•••	•••	••	••	•••	• •	•••	••	• •	••	•••	•••	• • •
119	118	••••	•••	• • •	•••	•••	•••	• •	•••	•••	•••	• •	••	•••	•••	• • •	•••	•••	••	••	•••	• •	• •	••	••	••	••	10	•••
123	119	• • • •	• • •	•••	6	• • •	•••	• •	•••	•••	••	• •	•••	• • •	•••	•••	•••	•••	•••	••	•••	• •	••	••	•••	•••	•••	•••	•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123	••••	•••	•••	• • •	•••	•••	• •	•••	••	••	• •	•••	•••	•••	•••	•••	• • •	•••	••	11	•••	•••	••	1	1.	••••	•••	•••
136	133	• • • •	•••	•••	• • •	• • •	•••	• •	• • •	•••	••	• •	••	•••	• • •	•••	•••	•••	•••	••	•••	• •	••	••	(5	6	6	6
146 4. 148 5. 153 24 160 9. Ref. 24 9. Ref. 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 4	136	••••	•••	•••	•••	• • •	•••	• •	•••	•••	••	• •	••	•••	•••	•••	•••	•••	•••	••	•••	• •	•••	••		3	3	3	- 3
148	146	• • • •	•••	• • •	•••	•••	•••	• •	•••	•••	••	• •	•••	• • •	•••	••••	•••	•••	•••	••	•••	•••	•••	••	• •	•••	••	4	•••
153	148	• • • •	•••	•••	• • •	•••	•••	• •		•••	••	• •	•••	•••	•••	•••	•••	•••	•••	••	•••	•••	•••	••	•••	•••	••	5	• • •
160 9 Ref. 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 4 4 1	153		• • •		• • •	• • •	• • •	• •	•••	•••	••	• •	•••	•••	•••	• • •	•••	•••	•••	•••	•••	• •	•••	••	••	••	••	24	• • •
Ref. 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 4	4/0																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160	••••			•••		• • •	•		••••	• •			••••		•••	•••				• • •				•••	•••	•••	9	•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Ref.	24	25	26	 27	28	29) ;	 30	31		:2	33	34	35	36	3	73	38	39	40		1	 42	4	 3 (44	45	46
14 5 5 5 2 15 6 6 6 6 24 6 6 6 6 42 11 14 11 11 43 6 6 6 6 49 1 6 6 6 49 1 6 6 6 54 9 9 10 8 54 9 9 10 8 59 2 2 2 2 62 1 1 10 8 67 20 8 7 9 5 68 1 19 78 9 8 9 7 17 17 17 9 8 9 9 8 9 9 8 9 8 9 <	160 Ref.	24	25	26 	 27 	28	29)]	 30 	31			33	34	35	36	3	73	38	39	40) 4	i 1	42	 4:	3 (44 	45 	46
15 6 6 6 6 6 6 24 6 6 6 6 6 6 38 11 14 11 11 11 11 42 1 1 1 1 1 1 43 6 6 6 6 6 49 1 6 6 6 6 54 9 9 9 10 8 6 54 9 9 9 10 8 7 9 59 2 2 2 2 2 2 2 62 10 8 7 9 5 2 6 72 20 8 7 9 5 2 10 7 78 29 24 29 24 30 24 30 30 30 71 7 7 </td <td>160 Ref. </td> <td>24</td> <td>25</td> <td>26</td> <td>27 </td> <td>28 </td> <td>29 </td> <td>) 3 </td> <td>30 </td> <td>31</td> <td></td> <td></td> <td>33</td> <td>34 </td> <td>35</td> <td>36</td> <td>3</td> <td>73</td> <td>38</td> <td>39 </td> <td>40</td> <td>) 4</td> <td>•1 •</td> <td>42</td> <td> 4: </td> <td> 3 (</td> <td> 44 </td> <td>45 </td> <td>46 </td>	160 Ref. 	24	25	26	27 	28 	29) 3 	30 	31			33	34 	35	36	3	73	38	39 	40) 4	•1 •	42	 4: 	 3 (44 	45 	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Ref. 4 8	24	25	26	27 	28	29 4	• • • •	30 	31			33	34 	35	36	3	7 3	38	39	40	· · · ·	i1	42 			 44 	45	46
38 11 14 11 11 42 1 1 1 1 43 6 6 49 6 6 49 6 6 54 9 6 54 9 10 8 59 2 10 8 59 2 10 8 62 1 10 8 67 20 8 7 9 5 2 68 1 19 72 17 19 78 29 24 29 24 30 80 17	160 Ref. 4 8 14	24	25	26	27 	28	29		30 	31		32 	33	34 	35	36	3	7 3	38	39	40	· · ·	•1	42 2	 4: 	 3 (44 	45	46
42 1 1 1 43 6 6 49 1 6 54 9 1 54 9 9 54 9 10 54 9 2 62 10 8 67 20 8 7 67 20 8 7 9 68 1 1 1 72 1 1 1 78 29 24 29 24 30 30 80 17 17 19 1 1 83 3 3 3 3 1 87 9 8 9 9 8 9 89 1 1 1 1 1 1 89 1 1 1 1 1 1 89 1 1 1 1 1 1 89 1 1 1 <td< td=""><td>160 Ref. 4 8 14 15 24</td><td>24</td><td>25</td><td>26 5 </td><td>27 </td><td>28</td><td>29 4</td><td></td><td>30 </td><td>31</td><td></td><td></td><td>33</td><td>34 </td><td>35</td><td>36</td><td>3</td><td>7 3</td><td>38</td><td>39</td><td>40</td><td></td><td>•1 •</td><td>42 2 6</td><td>4: </td><td> 3 (</td><td>44 </td><td>45</td><td>46 </td></td<>	160 Ref. 4 8 14 15 24	24	25	26 5 	27 	28	29 4		30 	31			33	34 	35	36	3	7 3	38	39	40		•1 •	42 2 6	4: 	 3 (44 	45	46
43 6 6 49 1 6 6 54 9 9 10 8 59 2 2 2 62 1 2 2 67 20 8 7 9 5 68 1 1 10 8 72 10 8 7 9 5 78 29 24 29 24 30 24 30 30 80 17 17 17 17 83 9 8.9 9 89 11 10 10 10 10 10 10 10 10 83 17 17 17 10	160 Ref. 4 8 14 15 24 38	24	25	26 5 5	27 	28	29 4 5 5 6 6		30	31			33	34	35	36	3	7 3	38	39	40		6.	42 2 6		 3 (44 	45 1 6	46
49 1 6 8 54 9 9 10 8 59 2 2 2 62 1 2 2 67 20 8 7 9 5 2 68 1 1 10 8 1 72 1 8 7 9 5 2 78 29 24 29 24 30 24 30 30 30 80 17 17 17 18 9 8 9 8 87 9 8 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 9	160 Ref. 4 8 14 15 24 38 42	24	25	26 5 6 11	27 14	28 5 	29 4 5 5 6 6		30	31			33	34	35	36	3	7 3	38	39	40		6.	42 2 6 	4: 	· · · · · · · · · · · · · · · · · · ·	44 	45	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Ref. 4 8 14 15 24 38 42 43	24	25	26 5 6 11 1	27 14 1	28 5 6 11	29 4 5 6 11		30	31			33	34	35	36	3	7 3	38	39	40		6 .	42 2 6 6	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	44 	45 1	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Ref. 4 8 14 15 24 38 42 43 49	24	25	26 5 6 11 1	27 14 1	28 5 6 11 6	29 4 5 6 11		30	31		· · · · · · · · · · · · · · · · · · ·	33	34	35	36	3	7 3	38	39	40		6 .	42 2 6 6	• • • • • • • • • • • • • • • • • • •			45 1 6	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Ref. 4 8 14 15 24 38 42 43 49 54	24 5.	25	26 5 6 111 1 1 9	27 14 	28 5 6 11 6 6	29 4 5 5 6 11		30	31		· · · · · · · · · · · · · · · · · · ·	33	34	35	36		7 3	38	39	40		6.	42 2 6 6 8		· · · · · · · · · · · · · · · · · · ·		45 1	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Ref. 4 8 14 15 24 38 42 43 49 54 59	24	25	26 5 6 11 1 1 9	27 14 1 	28 	29 4 5 6 11		30	31			33	34	35	36		7 3	38	39	40		6.	42 2 6 6 8		· · · · · · · · · · · · · · · · · · ·		45 1 6 	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Ref. 4 8 14 15 24 38 42 43 49 54 59 62	24	25	26 5 11 1 19 9	27 14 1	28 	4 5 6 111 8 9 2 1		30	31			33	34	, 35			7 3	38	39	40		6.	42 2 6 6 8		· · · · · · · · · · · · · · · · · · ·		45 1 6 	46
72 19 78 29 24 29 24 30 30 80 17 17 17 18 17 17 83 33 33 33 33 10 10 87 98 9 8 9 9 8 9 89 1 1 1 1 1 1 1 94 5 5 5 7 7 7 96 4 4 1 1 1 1 1	160 Ref. 4 8 14 15 24 38 42 43 49 54 59 62 67	24	25	26 26 11 1 1 9	27 	28 	29 4 5 5 6 111 8 9 9 2 2 1		30	31			33	34					38	39			6.	42 ••• ••• ••• ••• ••• ••• ••• ••• ••• •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		45 1 6 	46
78 29 24 29 24 30 30 30 80 17 17 83 <td>160 Ref. 4 8 14 15 24 38 42 43 49 54 59 62 67 68</td> <td>24</td> <td>25</td> <td>26 26 11 11 1 9</td> <td>27 14 1 </td> <td>28 </td> <td>29 29 4 5 5 6 11 1 1 1 2 2 1</td> <td></td> <td>30</td> <td>31</td> <td></td> <td></td> <td>33</td> <td>34</td> <td></td> <td></td> <td></td> <td>7 3</td> <td>38</td> <td>39</td> <td></td> <td></td> <td>6.</td> <td>42 2 6 6 8</td> <td>4. 4. </td> <td></td> <td></td> <td>45 1 6 </td> <td>46</td>	160 Ref. 4 8 14 15 24 38 42 43 49 54 59 62 67 68	24	25	26 26 11 11 1 9	27 14 1 	28 	29 29 4 5 5 6 11 1 1 1 2 2 1		30	31			33	34				7 3	38	39			6.	42 2 6 6 8	4. 4. 			45 1 6 	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Ref. 4 8 14 15 24 38 42 43 49 54 59 62 67 68 72	24	25	26 26 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27 14 1 	28 	29 4 5 5 6 6 111 9 9 2 2 1 1 1		30	31			33	34				73	38 - - - 	39			6.	42 2 6 6 8 	· · · · · · · · · · · · · · · · · · ·			45 1 6 	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Ref. 4 8 14 15 24 38 42 43 49 54 59 62 67 68 72 78	24	25 	26 26 5 11 11 1 9 24	27 		29 29 4 5 5 6 11 8 9 22 11 11 30 30		30	31			33	34				7 3	38	39			6.	42 2 6 6 6 8 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		45 1 6 	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Ref. 4 8 14 15 24 38 42 43 49 54 59 62 67 68 72 78 80	24 5. 	25 29	26 5 6 11 1 9 24	27 	28 5 5 6 6 	· · · · · · · · · · · · · · · · · · ·		30				33	34 				7 3	38	39	40		6.	42 6 6 8 	· · · · · · · · · · · · · · · · · · ·			45 	46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Ref. 4 8 14 15 24 38 42 43 49 54 59 62 67 68 72 78 80 83	24 5. 	25 	26 26 11 1 1 9 24 	27 14 14 14 29	28 5 5 6 6 6 	22 4 5 6 11 8 9 2 1 3 3 1 3 3 1 3 3 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3		30 -	31			33	34 				73	38	39				42 6 6 8 	· · · · · · · · · · · · · · · · · · ·			45 	46
94 5 5 95 7 7 96 4	160 Ref. 4 8 14 15 24 38 42 43 49 59 62 67 68 72 80 83 87	24	25 29 	26 5 6 111 1 9 24	27 14 14 14 29	28 5 6 11 6 6 6 6 6 	29 4 5 5 6 6 11		30 -				33	34 				7 3 		39				42 	· · · · · · · · · · · · · · · · · · ·			45 1 6 6 6 6 7 7 7 7 7 7 7 7	46
95 7 7 96 4	160 Ref. 4 8 14 15 24 38 42 38 43 49 59 67 68 72 80 83 78 83 87 89	24	25 	26 	27 14 1 29 	28 	29 4 5 5 6 111 8 9 2 2 1 1 1 7 3 3 0 17 3 3		30 - - - - - - - - - -				33	34 				7 3		39			1	42 	· · · · · · · · · · · · · · · · · · ·			45 1 6 1 1 1 1 1 1 1 1	46
96 4	160 Ref. 4 8 14 15 24 38 42 38 43 49 54 59 67 68 78 83 87 89 94	24 5. 20. 17. 	25 	26 	27 	28 	229 4 5 5 6 111		30 - - - - - - - - - -			2 	33	34						39			6 .	42 	· · · · · · · · · · · · · · · · · · ·			45 6 9 	46
	160 Ref. 4 8 14 15 24 38 42 38 43 49 59 67 68 78 83 78 83 89 95	24 5. 20. 20. 17. 5.	25 	26 	27 	28 	229 4 5 5 6 111 8 9 9 2 2 1 1 1 3 0 17 7 3 5		30 			2 	33	34 						39				42 	· · · · · · · · · · · · · · · · · · ·			45 6 9 	46

Cont	inu	ed.																			He	liu	m-4
Ref.	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	4	2 43	5 44	45	46
97					10										• • •	• • •		• • •	••		• • •		
99						7									• • •	• • •					• • •		
103						6									• • •	• • •			•••		•••		
105			11			11				• • •	11					11					• • •		
109					4	4		4				4											
118			8			7															• • •		
120					7											• • •							
126						10												8	3		•••		
133	6	6	6	6	6	6																	
134						11			11											9			
136	3																						
148	5			6		5					8			5			5	2		5			7
153			24								Ŭ											•••	
160		•••				9	•••		7								•••	•••	•••		•••	•••	•••
Ref.	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	6	5 66	5 67	68	69
8	5	• • •	•••	1	• • •	•••	•••	• • •	• • •	•••	•••	1	•••		• • •	•••	•••	•••	•••	• • • •	•••	•••	•••
24	6	•••	•••	6	• • •	• • •	• • •	•••	•••	• • •	•••	• • •	•••	• • •	•••	•••	•••	•••	•••	• • • •	•••	•••	•••
38	10	•••	•••	•••	• • •	• • •	•••	• • •	•••	•••	•••	•••	• • •	• • •	• • •	•••	• • •	• • •	•••	• • • •	•••	• • •	•••
42	• • •	• • •	• • •	1	• • •	• • •	• • •	• • •	• • •	•••	• • •	•••		1	•••	•••	• • •	•••	•••	• • • •	•••	• • •	•••
43	•••	•••	• • •	•••	•••	• • •	•••	•••	•••	•••	• • •	•••	•••	• • •	•••	5	• • •	• • •	•••	• • • •	•••	•••	• • •
49	•••	• • •	• • •	8	• • •	6		• • •	• • •	• • •	• • •	• • •	• • •	6	• • •	• • •	• • •	•	5		• • • •	• • •	6
54	8	• • •	• • •	8	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •		• • • •		• • •	
59			2											2	• • •	• • •		•••			•••		2
83	3		• • •	3	• • •					• • •			• • •		• • •	• • •	• • •	•••					• • •
87	9			8	7		8			6		6			• • •			•	5				
90				• • •	• • •										• • •	• • •	• • •	• • •			. 5	• • •	5
94			5															•••					
95	7			7									7			7					. 7	• • •	
99	5																	• • •					
109	- 4								4							• • •		• •					
111		21		17											•••	• • •							
126	10				9																		
128				18																	. 9		g
134	7																						
138		3		3		4	2			2													
140																			5.			•••	•••
141																		Ċ	.			• • •	•••
148	8			3													•••	-		••••	••••	•••	•••
Ref.	70	71	72	73	74	75	 76	· · · 77	 78	 79	80	81	 82	83	 84	85	86	8	78	8 89	· · · ·	91	92
8	•••	•••	•••	1	1	•••	•••	• • •	1	1	•••	•••	1	•••	• • •	• • •	• • •	•••	•••	• • • •	•••	• • •	• • •
49	• • •	• • •	• • •	6	• • •	•••	• • •	• • •	•••	4	• • •	• • •	•••		• • •	• • •	• • •	• • •	•••	• • • •		• • •	• • •
59	• • •	•••	• • •	•••	•••	•••	• • •	• • •	• • •	•••	• • •	• • •	2	• • •	• • •	•••	• • •	•••	•••	• • • •	•••	• • •	• • •
90	• • •	5	•••	4	5	• • •			4	5		• • •	4	4	• • •	•••	• • •	••	•••		•••	• • •	• • •
95	• • •		7	7	• • •	6	•••		7	6			6	6		• • •	• • •	• •			. 6		6
124																		•••			. 1		
128										16			18	6				•••				•••	
141					8													• • •			. 14		

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references

Tab acc spe mas cap to	le 7. ording cified s and ture t the sy	Contr to th by th atomic o ioni stems	ibutio e ECPS e targ numbe zation for wh	n (in SR the et's a r Z1. is le ich da	perce ory (tomic Stars ss tha ta exi	ntage Refs. number appea n 0.5 st as) of e 15 and 22 pl x when %; the compil	lectro 16). us pro the c numbe ed in	n capt Coll jectil contrib rs in Tables	ure to ision e's en ution bold p 2-5.	ioniz system ergies of ele rint p	ation s are per ctron ertain
				-						_		
Z2	0 01	0 02	o 04	En	ergy/M	lass (j	in MeV/	u) of	Hydrog	en Ion	s (Z1	= 1)
	0.01	0.02	0.04	0.00	0.10	0.20	0.40	0.00	1.00	2.00	4.00	0.00
4	25	26	27	26	25	16	7	1	1	×	*	*
5	10	12	13	15	15	13	8	3	2	*	*	*
6	5	6	7	8	8	9	7	3	2	¥	¥	¥
7	3	. 3	4	4	5	6	5	3	2	1	*	*
8	2	2	2	3	3	4	4	3	2	1	*	*
9	2	1	1	2	2	2	3	2	2	1	*	*
10	1	1	1	1	1	2	2	2	2	1	×	×
11	1	1	1	1	1	1	1	1	1	1	ж Ж	π *
12	1	*	L X	×	L 	1 X	1	1	1	1	*	~
14	1	¥	¥	¥	*	¥	¥	1	1	1	×	*
15	1	*	×	×	×	×	×	×	1	1	×	*
									_	_		
Z2					Energy	/Mass	(in Me	eV/u) c	of Heli	um Ion	s (Z1	= 2)
	0.01	0.02	0.04	0.08	0.10	0.20	0.40	0.80	1.00	2.00	4.00	8.00
4	99	97	89	74	68	48	25	7	5	*	*	*
5	78	80	73	64	61	50	32	13	8	1	*	*
6	45	49	50	47	46	42	32	17	12	2	*	*
/	26	28	30	31	31	32	28	18	14	4	1	77
ð	11	11	19	20	21	23	22	10	14	2 2	1	*
9 10	8 11	7	12	13	14	11	17	12	11	6	2	*
11	6	5	6	6	7	8	-9	10	9	6	2	*
12	5	4	4	4	5	5	7	8	8	ő	2	*
13	4	3	3	3	3	4	5	6	6	5	2	1
14	4	3	2	2	3	3	4	5	5	4	2	1
15	3	2	2	2	2	2	3	4	4	4	2	1
16	3	2	2	2	2	2	2	3	3	3	2	1
17	3	2	1	1	1	1	2	2	2	3	2	1
18	3	1	1	1	1	1	1	2	2	2	2	1
19	3	1	1	1	1	1	1	1	1	2	2	1
20	4	1	1	1	1	1	1	1	1	2	2	1
21	5	1	1	1	1	1	1	1	1	1	1	1
44 22	0	1	1	*	¥	×	* T	1	1	1	1 1	1 1
23	9 1/	1	1	*	*	*	×	1	1	1	± 1	1
25	23	1	1	*	*	¥	¥	¥	¥	1	1	1
26	40	1	¥	¥	¥	¥	¥	¥	×	1	1	1
27	64	2	*	*	*	×	×	×	×	×	1	1

× × ×

¥ ¥ ××

¥

¥

×

¥

¥

¥

¥

¥

¥

1

-1 * 1

¥

*

G. LAPICKI

28

29

30

86

96

99

2

3

4

×

¥ * ¥

¥ *

6. References

6.1 Text references

- ¹C. H. Rutledge and R. L. Watson, At. Data Nucl. Data Tables 12, 195 (1973).
- ²R. K. Gardner and T. J. Gray, At. Data Nucl. Data Tables **21**, 515 (1978); [Erratum **24**, 281 (1979)].
- ³T. L. Hardt and R. L. Watson, At. Data Nucl. Data Tables 17, 107 (1976); R. S. Shokhi and D. Crumpton, *ibid.* 30, 49 (1984).
- ⁴G. Lapicki, Ph.D. thesis, New York University, New York, 1975, see Fig. 1 in this thesis.
- ⁵H. Paul, At. Data Nucl. Data Tables 24, 243 (1979); Nucl. Instrum. Methods 169, 249 (1980).
- ⁶H. Paul, Nucl. Instrum. Methods 192, 11 (1982).
- ⁷H. Paul and W. Obermann, Nucl. Instrum. Methods 214, 15 (1983).
- ⁸H. Paul, Nucl. Instrum. Methods B 3, 5 (1984) [Erratum: B 5, 554 (1984)].
- ⁹H. Paul, Nucl. Instrum. Methods B 4, 211 (1984).
- ¹⁰O. Benka and H. Paul, Comm. At. Mol. Phys. 15, 29 (1984).
- ¹¹H. Paul and J. Muhr, in *Proceedings of the 2nd Workshop on High-Energy Ion-Atom Collisions, Debrecen 1984*, edited by D. Berenyi and G. Hock (Akademiai Kiado, Budapest, 1985), p. 49.
- ¹²H. Paul and J. Muhr, Phys. Rep. 135, 47 (1986).
- ¹³H. Paul, Z. Phys. D 4, 249 (1987).
- ¹⁴O. Benka, M. Geretschlager, and H. Paul, in *Proceedings of the 3rd Workshop on High-Energy Ion-Atom Collisions, Debrecen, August 1987*, edited by D. Berenyi and G. Hock, *Lecture Notes in Physics 294* (Springer, Berlin, 1988), p. 94.
- ¹⁵W. Brandt and G. Lapicki, Phys. Rev. A 23, 1717 (1981) for direct ionization.
- ¹⁶G. Lapicki and F. D. McDaniel, Phys. Rev. A 22, 1896 (1980) (E) 23, 975 (1981) for electron capture. Also see G. Lapicki, Trans. Nucl. Sci. 28, 1066 (1981).
- ¹⁷O. Benka and M. Geretschlager (see the data base references 103 and 118 in Sec. 6.2) as well as Polish groups (see Refs. 107, 124, 139, 141, 145, 148, 150, 154, 155, 158, 159, and 161 in Sec. 6.2) report an effective energy that the projectile has after typically traversing through one-half of the target's thickness. These energies were reconverted to the incident projectile energies for the consistency with all other data compiled in Tables 2–5.
- gies for the consistency with all other data compiled in Tables 2-5. ¹⁸See, for example, Figs. B16–B22 and B38–B42 in the Appendix B of Ref. 12.
- ¹⁹M. O. Krause, J. Phys. Chem. Ref. Data 8, 307 (1979).
- ²⁰G. S. Khandelwal, B.-H. Choi, and E. Merzbacher, At. Data 1, 103 (1969) for direct ionization in the plane-wave Born approximation. These PWBA tables for direct ionization were extended by R. Rice, G. Basbas, and F. D. McDaniel, At. Data Nucl. Data Tables 20, 503 (1977).
- ²¹V. S. Nikolaev, Zh. Eksp. Teor. Fiz. **51**, 1263 (1966) [Sov. Phys. JETP **24**, 847 (1967)] for electron capture in the OBK approximation.
- ²²M. H. Chen and B. Crasemann, At. Data Nucl. Data Tables 33, 217 (1985).
- ²³D. D. Cohen and M. Harrigan, At. Data Nucl. Data Tables 33, 255 (1985).
- ²⁴J. A. Tanis, S. M. Shafroth, W. W. Jacobs, T. McAbee, and G. Lapicki, Phys. Rev. A 31, 750 (1985).
- ²⁵For other critical reviews of the ECPSSR theory see J. M. Hansteen, L. Kocbach, and A. Graue, Phys. Scripta **31**, 63 (1985); J. F. Reading, Nucl. Instrum. Methods A **262**, 160 (1987).
- ²⁴W. Brandt, R. Laubert, and I. Sellin, Phys. Lett. 21, 518 (1966); Phys. Rev. 151, 56 (1966).
- ²⁷W. Brandt and G. Lapicki, Phys. Rev. A 10, 474 (1974).
- ²⁸G. Basbas, W. Brandt, and R. H. Ritchie, Phys. Rev. A 7, 1971 (1973).
 ²⁹G. Basbas, W. Brandt, and R. Laubert, Phys. Rev. A 7, 983 (1973); 17,
- 1655 (1978).
- ³⁰W. Brandt and G. Lapicki, Phys. Rev. A 20, 465 (1979).
- ³¹G. Lapicki, Bull. Am. Phys. Soc. 26, 1310 (1981).
- ³²Equation (6) of Ref. 30 gives the effective mass for the relativistic electron m_K^R . Note that, contrary to suggestions of Ref. 23, this mass should not enter into the argument of the energy-loss function f_K from Eq. (7) of Ref. 15; see G. Lapicki, J. Phys. B 20, L633 (1987).
- ³³G. Lapicki and A. R. Zander, Phys. Rev. A 23, 2072 (1981).
- ³⁴R. Singhal and V. Singh, Physica **78**, 343 (1974); **83C**, 200 (1976); A. Langenberg and J. van Eck, J. Phys. B **11**, 1425 (1978); A. Kumar and B. N. Roy, *ibid.* **11**, 1435 (1978); F. F. Komarov and A. P. Novikov, Zh. Tekh. Fiz. **49**, 264 (1979) [Sov. Phys. Tech. Phys. **24**, 155 (1979)]; N.

- Chatterjee, A. Kumar, and B. N. Roy, Physica 122C, 275 (1983); C. V. Seth, Phys. Rev. A 29, 1151 (1984).
- ³⁵J. L. Duggan, P. M. Kocur, J. L. Price, F. D. McDaniel, R. Mehta, and G. Lapicki, Phys. Rev. A 32, 2088 (1985).
- ³⁶D. H. Madison and E. Merzbacher, in *Atomic Inner Shell Processes*, edited by B. Crasemann (Academic, New York, 1975), Vol. I, p.1.
- ³⁷L. Kocbach, Phys. Norvegica 8, 187 (1976).
- ³⁸E. Laegsgaard, J. U. Andersen, and M. Lund, in Proceedings of the 10th International Conference on the Physics of Electronic and Atomic Collisions, Paris, edited by G. Watel (North-Holland, Amsterdam, 1978), p. 353; F. Bell, Nucl. Instrum. Methods 192, 103 (1982).
- ³⁹E. C. Montenegro and A. G. de Pinho, J. Phys. B 15, 1521 (1982); E. C. Montenegro and G. B. Baptista, Nucl. Instrum. Methods B 3, 16 (1984);
 E. C. Montenegro and G. M. Sigaud, J. Phys. B 18, 299 (1985).
- ⁴⁰K. M. Barfoot, I. V. Mitchell, H. L. Esbach, and W. B. Gilboy, J. Phys. B 15, L845 (1982).
- ⁴¹D. D. Cohen, J. Phys. B 16, L415 (1983).
- ⁴²T. Mukoyama and L. Sarkadi, Phys. Rev. A 23, 375 (1981); Nucl. Instrum. Methods 179, 573 (1981); 205, 341 (1983); 211, 525 (1983); Phys. Rev. A 25, 1411 (1982); 28, 1303 (1983).
- ⁴³M. H. Chen, B. Crasemann, and H. Mark, Phys. Rev. A 26, 1243 (1982).
 ⁴⁴M. H. Chen, Phys. Rev. A 27, 2358 (1983); M. H. Chen, B. Crasemann, and H. Mark, *ibid.* 30, 2082 (1984).
- ⁴⁵M. H. Chen and B. Crasemann, Phys. Rev. A 34, 87 (1986).
- ⁴⁶A. Kropf, Nucl. Instrum. Methods 142, 79 (1977); O. Benka, M. Geretschlager, and H. Paul, *ibid.* 142, 83 (1977); K. G. Bauer, Q. Fazly, T. Mayer-Kuckuk, H. Mommsen, and P. Schurkes, *ibid.* 148, 407 (1978); O. Benka, M. Geretschlager, and A. Kropf, *ibid.* 149, 441 (1978); E. Clayton, *ibid.* 191, 567 (1981); E. Clayton, D. D. Cohen, and P. Duerden, *ibid.* 191, 573 (1981); J. L. Campbell, J. A. Cookson, and H. Paul, *ibid.* 212, 427 (1983); J. A. Cookson and J. L. Campbell, *ibid.* 216, 489 (1983) B 3, 185 (1984); G. Linder, *ibid.* B 3, 130 (1984); D. D. Cohen and E. Clayton, *ibid.* B 22, 59 (1987); J. L. Campbell, A. Perujo, W. J. Weesdale, and J. A. Cookson, *ibid.* B 30, 317 (1988). The ECPSSR theory was also recommended for deuteron induced x-ray analysis by K. M. Barfoot, Nucl. Instrum. Methods B 14, 76 (1986).
- ⁴⁷D. D. Cohen and M. Harrigan, Nucl. Instrum. Methods B 15, 576 (1986) and At. Data Nucl. Data Tables 34, 393 (1986); T. Hirokawa, F. Nishiyama, and Y. Kiso, Nucl. Instrum. Methods B 31, 525 (1988).
- ⁴⁸W. N. Lennard and D. Phillips, Nucl. Instrum. Methods 166, 151 (1979); R. Mehta, J. L. Duggan, J. L. Price, F. D. McDaniel, and G. Lapicki, Phys. Rev. A 26, 1883 (1982); W. Maenhaunt and H. Raemdonck, Nucl. Instrum. Methods B 1, 123 (1984).
- ⁴⁹W. Jitschin, H. Kleinpoppen, R. Hippler, and H. O. Lutz, J. Phys. B 12, 4077 (1979); J. Palinkas, L. Sarkadi, and B. Schlenk, *ibid.* 13, 3829 (1980); V. V. Sizov and N. M. Kabachnik *ibid.* 16, 1565 (1983); D. Berenyi, I. Cserny, I. Kadar, A. Kover, S. Ricz, L. Sarkadi, D. Varga, and J. Vegh, *ibid.* 17, 829 (1984); U. Werner, W. Jitschin, and H. O. Lutz, *ibid.* 18, 3111 (1984).
- ⁵⁰D. D. Cohen and M. Harrigan, At. Data Nucl. Data Tables **34**, 393 (1986); E. Rosato, Nucl. Instrum. Methods B **15**, 591 (1986); D. D. Cohen, *ibid.* **22**, 55 (1987); J. Q. Xu and E. Rosato, Phys. Rev. A **37**, 1946 (1988).
- ⁵¹W. Brandt and G. Basbas, Phys. Rev. A 27, 578 (1983); (E) 28, 3142 (1983).
- ⁵²A. Langerberg and J. van Eck, J. Phys. B 10, L419 (1977).
- ⁵³K. Unterseer and N. Kleber, Nucl. Instrum. Methods 192, 35 (1982); D.
 J. Land, D. G. Simons, and M. D. Brown, *ibid.* 214, 35 (1983); B 4, 239 (1984); L. Koubach, *ibid.* B 4, 248 (1984); L. Sarkadi, *ibid.* B 9, 127 (1985); D. H. Jakubasa-Amundesen, Z. Phys. A 320, 557 (1985); D. J.
 Land, Nucl. Instrum. Methods A 240, 470 (1985) and Bull. Am. Phys. Soc. 31, 981 (1986).
- ⁵⁴J. F. Reading, A. L. Ford, J. S. Smith, and R. L. Becker, in *Invited Talks, the XIIth International Conference on the Physics of Electronic and Atomic Collisions*, edited by J. Eichler, I. V. Hertel, and N. Stolterfoht (Elsevier, Amsterdam, 1984); J. F. Reading and A. L. Ford, Phys. Rev. Lett. **58**, 543 (1987); J. Phys. B **20**, 3747 (1987), applied this method most recently to calculate double, and single, direct ionization of helium by 0.3–40 MeV protons and antiprotons, i.e., in the $v_1/v_{2K} > 2$ range where the first Born approximation is well justified.
- ⁵⁵A. Graue, J. M. Hansteen, R. Gundersen, and L. Kocbach, J. Phys. B 15, L445 (1982).
- ⁵⁶R. Gundersen, J. M. Hansteen, and L. Kocbach, Nucl. Instrum. Methods **192**, 63 (1982); J. M. Hansteen, L. Kocbach, and A. Graue, Phys. Scripta **31**, 63 (1985). See J. M. Hansteen, Ref. 14, p. 39, for the latest status of

semiclassical calculations.

- ⁵⁷J. F. Reading, A. L. Ford, and R. L. Becker, J. Phys. B 14, 1995 (1981); J.
 F. Reading, A. L. Ford, M. Martir, and R. L. Becker, Nucl. Instrum. Methods 192, 1 (1982).
- ⁵⁸D. Trautmann, R. Rosel, and G. Baur, Nucl. Instrum. Methods **214**, 21 (1983); A. Jakob, D. Trautmann, R. Rosel, and G. Baur, *ibid.* B **4**, 218 (1984).
- ⁵⁹G. Mehler, T. de Reus, U. Muller, J. Reinhardt, B. Muller, W. Greiner, and G. Soff, Nucl. Instrum. Methods A240, 559 (1985).
- ⁶⁰G. Mehler, W. Greiner, and G. Soff, J. Phys. B 20, 2787 (1987).
- ⁶¹L. Kocbach, Nucl. Instrum. Methods B4, 248 (1984).
- ⁶²T. Mukoyama and C. D. Lin, Nucl. Instrum. Methods A262, 15 (1987) and in Ref. 14, p. 84. These authors compare their calculations with an early version of ECPSSR theory, which gives 2%-5% lower values for 0.5-2 MeV protons on copper. As can be seen from Fig. 3 of Ref. 7, the ECPSSR cross section is 10% above the Mukoyama and Lin calculation for 2-MeV protons on copper.
- ⁶³R. Anholt, W. E. Meyerhof, H. Gould, C. Munger, J. Alonso, P. Thieberger, and H. E. Wegner, Phys. Rev. A 32, 3302 (1985); R. Anholt and H. Gould, Adv. At. Mol. Phys. 22, 315 (1986).
- ⁶⁴See, L. Sarkadi, in Ref. 53.
- ⁶⁵G. Basbas and D. J. Land, Phys. Rev. A 35, 1003 (1987).
- ⁶⁶I. Chadwick, Philos. Mag. 25, 193 (1913); *ibid.* 24, 594 (1912).
- ⁶⁷J. M. Cork, Phys. Rev. 59, 957 (1941).
- ^{os}G. Lapicki, R. Laubert, and W. Brandt, Phys. Rev. A22, 1889 (1980); S. Raith, S. Divoux, and B. Gonsior, Nucl. Instrum. Methods B 10/11, 169 (1985); M. Harrison and D. D. Cohen, *ibid*. B 15, 581 (1986); T. Papp and B. Schlenk, J. Phys. B 20, 2255 (1987); R. A. Ilkhamov, S. H. Khusmurodov, A. P. Kobzev, J. H. Li, M. Pajek, and R. Sandrik, in Ref. 14, p. 103. See also Refs. 5, 6, 9,10, 12, and 13.
- ⁶⁹G. Lapicki and W. Losonsky, Phys. Rev. A 20, 481 (1979).
- ⁷⁰J. M. Hansteen, in Ref. 14, p. 39, argues that the velocity-symmetrized hyperbolic trajectory implies an exact treatment of the Coulomb-deflection effect. However, such symmetrization spoils the unitarity of the scattering matrix; see F. Wolf, R. J. Allen, and H. J. Korsch, Comm. At. Mol. Phys. 18, 107 (1986).
- ⁷¹G. Basbas and G. S. Khandelwal, Bull. Am. Phys. Soc. **11**, 307 (1966) and Fig. 3 from the 1973 article of Ref. 29; A. L. Ford, E. Fitchard, and J. F. Reading, Phys. Rev. A **16**, 133 (1977); D. J. Land, M. D. Brown, D. Simons, and J. G. Brennan, Nucl. Instrum. Methods **192**, 53 (1982); P. Rez, X-Ray Spectrometry **13**, 55 (1984).
- ⁷²L. Sarkadi and T. Mukoyama, J. Phys. B 14, L255 (1981) and Nucl. Instrum. Methods B4, 296 (1984); K. Finck, W. Jitschin, and H. O. Lutz, J. Phys. B 16, L403 (1983); L. Sarkadi and T. Papp, Acta Physica Hungarica 58, 75 (1985).
- ⁷³L. Sarkadi, J. Phys. B 18, 2519 and L755 (1986); Nucl. Instrum. Methods A 265, 45 (1987).
- ⁷⁴S. Zehendner, G. B. Baptista, R. Donner, E. Justiniano, J. Konrad, H. Schmidt-Bocking, and R. Schuch, Z. Phys. D 4, 243 (1987); L. Sarkadi and T. Mukoyama, J. Phys. B 20, L559 (1987); W. Schadt, H. Schmidt-Bocking, G. Nolte, Z. Roller, A. Skutlartz, M. Wassermann, and G. Zschornack, Z. Phys. D 8, 271 (1988).
- ⁷⁵L. Sarkadi and T. Mukoyama, Phys. Rev. A 37, 4540 (1988).

6.2. References to cross-section data compiled in Tables 2–5

'H. W. Lewis, B. E. Simmons, and E. Merzbacher, Phys. Rev. 91, 943 (1953).

²P. R. Bevington and E. M. Bernstein, Bull. Am. Phys. Soc. 1, 198 (1956).

³J. M. Hansteen and S. Messelt, Nucl. Phys. 2, 526 (1957).

- ⁴B. Singh, Phys. Rev. 107, 711 (1957).
- ⁵E. Merzbacher and H. W. Lewis, in *Handbuch der Physik*, edited by S. Flugge (Springer, Berlin, 1958), Vol. 34, p. 119.
- ⁶S. Messelt, Nucl. Phys. 5, 435 (1958).
- ⁷R. C. Jopson, H. Mark, and C. D. Swift, Phys. Rev. 127, 1612 (1962).
- Energies were recalibrated according to the footnote 9 of Ref. 9.
- ⁸N. L. Lark, Bull. Am. Phys. Soc. 7, 623 (1962).
- ⁹J. M. Khan and D. L. Potter, Phys. Rev. 133, A 890 (1964).
- ¹⁰W. T. Ogier, G. J. Lucas, J. S. Murray, and T. E. Holzer, Phys. Rev. A 134, 1070 (1964).
- ¹¹J. M. Khan, D. L. Potter, and R. D. Worley, Phys. Rev. **139**, A 1735 (1965).
- ¹²W. Brandt, R. Laubert, and I. Sellin, Phys. Rev. 151, 56 (1966).

- ¹³L. J. Christensen, J. M. Khan, and W. F. Brunner, Rev. Sci. Instrum. 38, 20 (1967).
 - ¹⁴P. Komarek, Acta Phys. Austriaca 26, 315 (1967).
 - ¹⁵P. Komarek, Acta Phys. Austriaca 27, 369 (1968).
 - ¹⁶R. C. Der, T. M. Kavanagh, J. M. Khan, B. P. Curry, and R. J. Fortner, Phys. Rev. Lett. 26, 1731 (1968).
 - ¹⁷W. Brandt and R. Laubert, Phys. Rev. 178, 225 (1969).
 - ¹⁸R. R. Hart, F. W. Reuter III, H. P. Smith, Jr., and J. M. Khan, Phys. Rev. 179, 4 (1969).
 - ¹⁹B. Sellers, F. A. Hanser, and H. H. Wilson, Phys. Rev. 182, 90 (1969).
 - ²⁰G. Bissinger, J. M. Joyce, E. J. Ludwig, W. S. McEver, and S. M. Shafroth, Phys. Rev. A 1, 841 (1970).
 - ²¹P. Richard, T. I. Bonner, T. Furuta, I. L. Morgan, and J. R. Rhodes, Phys. Rev. A **1**, 1044 (1970).
 - ²²P. B. Needham, Jr. and B. D. Sartwell, Phys. Rev. A 2, 27 (1970).
 - ²³M. Terasawa, T. Inouye, and H. Kamei, Jpn. J. Phys. 29, 1394 (1970).
 - ²⁴R. L. Watson, C. W. Lewis, and J. B. Natowitz, Nucl. Phys. A 154, 561 (1970).
 - ²⁵K. Shima, I. Makino, and M. Sakisaka, Jpn. J. Phys. 30, 611 (1971).
 - ²⁶M. Terasawa, Progress Report, Institute of Space and Aeronautical Science, edited by T. Takayanagi (University of Tokyo, March 1971).
 - ²⁷A. Fahlenius and P. Jauho, Ann. Acad. Sci. Fenn. Ser. A 6 367, 3 (1971).
 - ²⁸K. Shima, I. Makino, and M. Sakisaka, Jpn. J. Phys. 31, 971 (1971).
 - ²⁹P. B. Needham, Jr. and B. D. Sartwell, Adv. X-Ray Anal. 14, 184 (1971).
 - ³⁰O. N. Jarvis, C. Whitehead, and M. Shah, Phys. Rev. A 5, 1198 (1972).
 - ³¹C. W. Lewis, R. L. Watson, and J. B. Natowitz, Phys. Rev. A 5, 1773 (1972).
 - ³²G. Bissinger, S. M. Shafroth, and A. W. Waltner, Phys. Rev. A 5, 2046 (1972).
 - ³³F. W. Reuter III and H. P. Smith, Jr., J. Appl. Phys. 43, 4228 (1972).
 - ³⁴R. G. Musket and W. Bauer, J. Appl. Phys. 43, 4786 (1972).
 - ³⁵M. Terasawa, T. Tamura, and H. Kamada, Jpn. J. Phys. 33, 1420 (1972).
 - ³⁶J. L. Duggan, W. L. Beck, L. Albrecht, L. Munz, and J. D. Spaulding, Adv. X-Ray Anal. 15, 407 (1972).
 - ³⁷G. Bissinger and H. W. Kugel, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 993.
 - ³⁸J. Lin, J. L. Duggan, and R. F. Carlton, in *Proceedings of International Conference on Inner Shell Ionization Phenomena*, *Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 998.
 - ³⁹E. Lacgsgaard, J. U. Andersen, and L. C. Feldman, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 1019.
 - ⁴⁰L. M. Winters, L. D. Ellsworth, T. Chiao, and J. R. Macdonald, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 1069.
 - ⁴¹A. W. Waltner, D. M. Peterson, G. Bissinger, A. B. Baskin, C. E. Busch, P. H. Nettles, W. R. Scates, and S. M. Shafroth, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 1080.
 - ⁴²A. Van der Woude, M. J. Saltmarsh, C. A. Ludemann, R. L. Hahn, and E. Eichler, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 1388.
 - ⁴³R. H. McKnight, S. T. Thornton, and R. C. Ritter, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 1439.
 - ⁴⁴A. Fahlenius, in *Electrical and Nuclear Technology Publication 3* (Technical Research Centere of Finland, Helsinki, 1973).
 - ⁴⁵G. Basbas, W. Brandt, and R. Laubert, Phys. Rev. A 7, 983 (1973).
 - ⁴⁶K. G. Harrison, H. Tawara, and F. J. De Heer, Physica 66, 6 (1973).
 - ⁴⁷R. C. Bearse, D. A. Close, J. J. Malanify, and C. J. Umbarger, Phys. Rev. A 7, 1269 (1973).
 - ⁴⁸L. M. Winters, J. R. Macdonald, M. D. Brown, L. D. Ellsworth, and T. Chiao, Phys. Rev. A 7, 1276 (1973).
 - ⁴⁹T. L. Hardt and R. L. Watson, Phys. Rev. A 7, 1917 (1973).
 - ⁵⁰A. Langenberg and J. van Eck, Phys. Rev. Lett. 31, 71 (1973).
 - ⁵¹K. Brunner and W. Hink, Z. Phys. 262, 181 (1973).

- ⁵²R. B. Liebert, T. Zabel, D. Miljanic, H. Larson, V. Valkovic, and G. C. Phillips, Phys. Rev. A 8, 2336 (1973).
- ⁵³R. D. Lear and T. J. Gray, Phys. Rev. A 8, 2469 (1973). T. J. Gray, R. D. Lear, R. J. Dexter, F. N. Schwettmann, and K. Wiemer report these data also in Thin Solid Films 19, 103 (1973).
- ⁴R. H. McKnight, S. T. Thornton, and R. R. Karlowicz, Phys. Rev. A 9, 267 (1974).
- ⁵⁵R. Akselsson and T. B. Johansson, Z. Phys. 266, 245 (1974).
- ⁵⁶H. Tawara, K. Ishii, S. Morita, H. Kaji, C. N. Hsu, and T. Shiokawa, Phys. Rev. A 9, 1617 (1974).
- ⁵⁷R. M. Wheeler, R. P. Chaturvedi, and A. R. Zander, in *Proceedings of the* 3rd Conference on Applications of Small Accelerator, Denton 1974, edited by J. L. Duggan and I. L. Morgan (National Technical Information Service, Springfield, Virginia, 1974), Vol. I, p. 387.
- ⁵⁸D. Burch, N. Stolterfoht, D. Schneider, H. Wieman, and J. S. Risley, Phys. Rev. Lett. 32, 1151 (1974).
- ⁵⁹F. Folkmann, J. Borggreen, and A. Kjeldgaard, Nucl. Instrum. Methods 119, 117 (1974).
- ⁶⁰K. Ishii, S. Morita, H. Tawara, H. Kaji, and T. Shiokawa, Phys. Rev. A 10, 774 (1974).
- ⁶¹T. L. Criswell and T. J. Gray, Phys. Rev. A 10, 1145 (1974).
- ⁶²R. H. McKnight, S. T. Thornton, and R. R. Karlowicz, Nucl. Instrum. Methods **123**, 1 (1975).
- ⁶³N. A. Khelil and T. J. Gray, Phys. Rev. A 11, 893 (1975).
- ⁶⁴F. Hopkins, R. Brenn, A. R. Whittemore, J. Karp, and S. K. Bhattacherjee, Phys. Rev. A 11, 916 (1975).
- ⁶⁵S. J. Czuchlewski, J. R. Macdonald, and L. D. Ellsworth, Phys. Rev. A 11, 1108 (1975).
- ⁶⁶F. Hopkins, R. Brenn, A. R. Whittemore, N. Cue, and V. Dutkiewicz, Phys. Rev. A 11, 1482 (1975).
- ⁶⁷F. D. McDaniel, T. J. Gray, and R. K. Gardner, Phys. Rev. A 11, 1607 (1975).
- ⁶⁸W. N. Lennard and I. V. Mitchell, Phys. Rev. A 12, 1723 (1975).
- ⁶⁹F. Bodart, S. Wilk, and G. Deconninck, X Ray Spectrometry 4, 161 (1975).
- ⁷⁰D. Burch, Phys. Rev. A 12, 2225 (1975).
- ⁷¹K. Kawatsura, K. Ozawa, F. Fujimoto, and M. Terasawa, in *Ion Beam Surface Layer Analysis*, edited by O. Meyer, G. Linker, and F. Käppeler (Plenum, New York, 1976), Vol. 2, p. 719.
- ⁷²F. D. McDaniel and J. L. Duggan, in *Beam Foil Spectroscopy Collisional* and Radiative Processes, edited by I. A. Sellin and D. J. Pegg (Plenum, New York, 1976), Vol. 2, p. 519.
- ⁷³V. S. Nikolaev, V. P. Petukhov, E. R. Romanovsky, V. A. Sergeev, I. M. Kruglova, and V. V. Beloshitsky, 9th International Conference on the Physics of Electronic and Atomic Collisions, Seattle 1975, edited by J. S. Risley and R. Geballe (University of Washington, Washington, 1976), p. 419.
- ⁷⁴R. R. Randall, J. A. Bednar, B. Curnette, and C. L. Cocke, Phys. Rev. A 13, 204 (1976).
- ⁷⁵H. Tawara, Y. Hachiya, K. Ishii, and S. Morita, Phys. Rev. A 13, 572 (1976).
- ⁷⁶M. Milazzo and G. Riccobono, Phys. Rev. A 13, 578 (1976).
- ⁷⁷M. R. Khan, D. Crumpton, and P. E. Francois, J. Phys. B9, 455 (1976).
- ⁷⁸C. G. Soares, R. D. Lear, J. T. Sanders, and H. A. Van Rinsvelt, Phys. Rev. A 13, 953 (1976).
- ⁷⁹A. R. Zander, Y. Chee, J. Walls, and B. Crews, in *Abstracts of Contributed Papers, Second International Conference on Inner Shell Ionization Phenomena, Freiburg 1976*, edited by W. Melhorn (University of Freiburg, Freiburg, 1976), p. 253.
- ⁸⁰E. Kolatay, D. Berenyi, I. Kiss, S. Ricz, G. Hock, and J. Basco, Z. Phys. A **278**, 299 (1976).
- ⁸¹G. Bissinger, J. M. Joyce, and H. W. Kugel, Phys. Rev. A 14, 1375 (1976).
- ⁸²A. Langenberg and J. van Eck, J. Phys. B 9, 2421 (1976).
- ⁸³T. Badica, C. Ciortea, S. Dima, A. Petrovici, I. Popescu, and V. Neacsu, X-Ray Spectrometry 6, 90 (1977).
- ⁸⁴B. Knaf, G. Presser, and J. Stahler, Z. Phys. A 282, 25 (1977).
- ⁸⁵G. Bissinger, J. M. Joyce, B. L. Doyle, W. W. Jacobs, and S. M. Shafroth, Phys. Rev. A 16, 443 (1977).
- ⁸⁶M. R. Khan, A. G. Hopkins, D. Crumpton, and P. E. Francois, X-Ray Spectrometry 6, 140 (1977).
- ⁸⁷S. R. Wilson, F. D. McDaniel, J. R. Rowe, and J. L. Duggan, Phys. Rev. A 16, 903 (1977).
- ⁸⁸K. H. Weber and F. Bell, Phys. Rev. A 16, 1075 (1977).
- ⁸⁹H. Schmidt-Bocking, R. Schule, K. E. Steibing, K. Bethge, I. Tserruya,

- and H. Zekl, J. Phys. B 10, 2663 (1977).
- ⁹⁰G. Deconninck and M. Longree, Phys. Rev. A 16, 1390 (1977).
- ⁹¹M. Kamiya, K. Ishii, K. Sera, S. Morita, and H. Tawara, Phys. Rev. A 16, 2295 (1977).
- ⁹²K. Kawatsura, Ph.D. thesis (University of Kyoto, Kyoto, 1977).
- ⁹³E. Laegsgaard, J. U. Andersen, and M. Lund, 10th International Conference on the Physics of Electronic and Atomic Collisions, Paris 1977, edited by G. Watel (North-Holland, Amsterdam, 1978), p. 353.
- ⁹⁴G. Bonani, C. Stoller, M. Stockli, M. Suter, and W. Wolfli, Helv. Phys. Acta 51, 272 (1978).
- ⁹⁵R. Anholt, Phys. Rev. A 17, 983 (1978).
- ⁹⁶S. M. Brodskii, S. V. Mamikonyan, and V. I. Filatov, Atomnaya Energiya 44, 265 (1978) [Sov. Atomic Energy 44, 300 (1978)].
- ⁹⁷G. Basbas, W. Brandt, and R. Laubert, Phys. Rev. A 17, 1655 (1978).
- ⁹⁸J. S. Lopes, A. P. Jesus, G. P. Ferreira, and F. B. Gil, J. Phys. B 11, 2181 (1978).
- ⁹⁹C. Bauer, R. Mann, and W. Rudolph, Z. Phys. A 287, 27 (1978).
- ¹⁰⁰A. Berinde, C. Deberth, I. Neamu, C. Protop, N. Scintei, V. Zoran, M. Dost, and S. Rohl, J. Phys. B 11, 2875 (1978).
- ¹⁰¹K. Shima, Phys. Lett. A 67, 351 (1978).
- ¹⁰²K. Shima, Jpn. J. Appl. Phys. 17, Supplement 17-2, 350 (1978).
- ¹⁰³O. Benka and M. Geretschlager, Z. Phys. A 284, 29 (1978).
- ¹⁰⁴W. D. Ramsay, M. S. A. L. Al-Ghazi, J. Birchall, and J. S. C. McKay, Phys. Lett. A 69, 258 (1978).
- ¹⁰⁵ M. Poncet and C. Engelmann, Nucl. Instrum. Methods **159**, 455 (1979).
 ¹⁰⁶ J. S. Lopes, A. P. Jesus, S. C. Ramos, and G. P. Ferreira, J. Phys. B **12**, 605 (1979).
- ¹⁰⁷A. Celler, J. Kantele, M. Luontama, and J. Zylicz, Nucl. Instrum. Methods 163, 221 (1979).
- ¹⁰⁸A. R. Zander and M. C. Andrews III, Phys. Rev. A 20, 1484 (1979).
- ¹⁰⁹T. Badica, C. Ciortea, A. Petrovici, and I. Popescu, X-Ray Spectrometry 8, 186 (1979).
 - ¹¹⁰W. N. Lennard and D. Phillips, Nucl. Instrum. Methods 166, 521 (1979).
- ¹¹¹C. Magno, M. Milazzo, C. Pizzi, F. Porro, A. Rota, and G. Riccobono, Nuovo Cimento A 54, 277 (1979).
- ¹¹²K. M. Barfoot, I. V. Mitchell, H. L. Eschbach, and W. B. Gilboy, Nucl. Instrum. Methods 168, 131 (1980).
- ¹¹³E. Laegsgaard, J. U. Andersen, and F. Hogedal, Nucl. Instrum. Methods 169, 293 (1980).
- ¹¹⁴M. Dost, Nucl. Instrum. Methods 169, 305 (1980).
- ¹¹⁵J. S. Lopes, A. P. Jesus, and S. C. Ramos, Nucl. Instrum. Methods 169, 311 (1980).
- ¹¹⁶K. Kawatsura, A. Ootuka, K. Ozawa, F. Fujimoto, K. Komaki, and M. Terasawa, Nucl. Instrum. Methods 170, 265 (1980).
- ¹¹⁷K. Sera, K. Ishii, M. Kamiya, A. Kuwako, and S. Morita, Phys. Rev. A **21**, 1412 (1980).
- ¹¹⁸O. Benka and M. Geretschlager, J. Phys. B 13, 3223 (1980).
- ¹¹⁹T. Scharnagl and W. Hink, J. Phys. B 13, 4021 (1980).
- ¹²⁰G. Lapicki, R. Laubert, and W. Brandt, Phys. Rev. A 22, 1889 (1980).
 ¹²¹A. P. Jesus and J. S. Lopes, *Inner-Shell and X-Ray Physics of Atoms and Solids*, edited by D. J. Fabian, H. Kleinpoppen, and L. M. Watson (Plenum, New York, 1981), p. 21.
- ¹²²Z. Szokefalvi-Nagy and I. Demeter, Nucl. Instrum. Methods 181, 1 (1981).
- ¹²³L. Avaldi, M. Milazzo, A. Rota, and G. Riccobono, J. Phys. B 14, 2223 (1981).
- ¹²⁴P. Hornshoj, Z. Zelazny, M. Jaskola, L. Zemlo, A. Celler, and J. Szerypo, J. Phys. B 14, 2391 (1981).
- ¹²⁵M. Dost, S. Hoppenau, J. Kising, S. Rohl, and P. Schorn, Phys. Rev. A 24, 693 (1981).
- ¹²⁶R. K. Rice, F. D. McDaniel, G. Basbas, and J. L. Duggan, Phys. Rev. A 24, 758 (1981).
- ¹²⁷P. Cuzzocrea, E. Perillo, E. Rosato, G. Spadaccini, N. De Cesare, and M. Vigilante, Lett. Nuovo Cimento 32, 33 (1981).
- ¹²⁸M. Dost, S. Hoppenau, S. Rohl, and W. A. Schonfeldt, J. Phys. B 14, 3153 (1981).
- ¹²⁹A. P. Jesus and J. S. Lopes, Nucl. Instrum. Methods 192, 25 (1982).
- ¹³⁰J. U. Andersen, E. Laegsgaard, and M. Lund, Nucl. Instrum. Methods 192, 79 (1982).
- ¹³¹K. M. Barfoot, I. V. Mitchell, H. L. Eschbach, and W. B. Gilboy, J. Phys. B 15, L845 (1982).
- ¹³²M. D. Brown, D. G. Simons, D. J. Land, and J. G. Brennan, Phys. Rev. A 25, 2935 (1982).
- ¹³³J. S. Lopes, A. P. Jesus, and M. F. Da Silva, J. Phys. B 15, 1749 (1982).

- ¹³⁴D. Bhattacharya, A. Roy, S. K. Bhattacherjee, and S. K. Mitra, J. Phys. B 15, 3047 (1982).
- ¹³⁵D. Bhattacharya and S. K. Mitra, Pramana 19, 399 (1982).
- ¹³⁶K. Ishii, M. Sebata, M. Kamiya, A. Kuwako, S. Morita, Y. Awaya, and T. Tonuma, Jpn. J. Phys. 51, 4021 (1982).
- ¹³⁷M. D. Brown, D. G. Simons, D. J. Land, and J. G. Brennan, IEEE Trans. Nucl. Sci. **30**, 957 (1983).
- ¹⁸L. Avaldi, M. Milazzo, G. Trivia, and I. V. Mitchell, J. Phys. B **16**, 1957 (1983).
- ¹³⁹M. Goclowski, M. Jaskola, J. Szerypo, P. Hornshoj, and Z. Zelazny, J. Phys. B 16, 3571 (1983).
- ¹⁴⁰Z. Sujkowski, D. Chmielewska, and M. N. Harakeh, Nucl. Instrum. Methods 219, 111 (1984).
- ¹⁴¹Z. Zelazny and P. Hornshoj, J. Phys. B 17, 1867 (1984).
- ¹⁴²N. V. De Castro Faria, F. L. Freire, Jr., E. C. Montenegro, A. G. De Pinho, and E. F. Da Silviera, J. Phys. B 17, 2307 (1984).
- ¹⁴³L. Avaldi, I. V. Mitchell, and H. L. Eschbach, Nucl. Instrum. Methods B 3, 21 (1984).
- ¹⁴⁴S. Divoux, B. Raith, and B. Gonsior, Nucl. Instrum. Methods B 3, 27 (1984).
- ¹⁴⁵M. Pfuetzner, J. Szerypo, Z. Zelazny, J. Zylicz, M. Goclowski, M. Jaskola, L. Zemlo, and P. Hornshoj, Nucl. Instrum. Methods B 3, 33 (1984).
- ¹⁴⁶W. N. Lennard, J. S. Foster, H. Geissel, K. M. Barfoot, and D. Phillips, Nucl. Instrum. Methods B 4, 262 (1984).
- ¹⁴⁷F. L. Freire, Jr., E. C. Montenegro, A. G. De Pinho, and G. M. Sigaud, J. Phys. B 18, 313 (1985).
- ¹⁴⁸E. Braziewicz, J. Braziewicz, M. Pajek, G. N. Osetynski, and J. Ploskonka, J. Phys. B 19, 1471 (1986).
- ¹⁴⁹M. Geretschlager and O. Benka, Phys. Rev. A 34, 866 (1986).
- ¹⁵⁰F. M. El-Ashry, M. Goclowski, L. Glowacka, M. Jaskola, Z. Zelazny, and J. Szerypo, J. Phys. B 19, 2311 (1986).
- ¹⁵¹H. Xu, C. Ren, J. Tang, and F. Yang, in announcement of the 10th International CODATA Conference, Ottawa, 1986. Data obtained by

private communication from H. Xu of Fudan University (1986). J. Li, H. Xu, C. Ren, and F. Lu, Nucl. Instrum. Methods B 30, 16 (1988), report $\sigma_{KX}^{Expr} = 42.9b$ for 2-MeV protons on copper. This cross section agrees with (45.5 ± 3.2) b from Xu's 1986 communication; it is in excellent agreement with the empirical "reference" (42.2 ± 0.8) b from Ref.12 of Sec.6.2 and it lies 1% below $\sigma_{KX}^{EcpSR} = 43.4$ b.

- ¹⁵²S. O. Olabanji and J. M. Calvert, Nucl. Instrum. Methods A 251, 354 (1986).
- ¹⁵³E. C. Montenegro, A. G. De Pinho, and G. M. Sigaud, J. Phys. B **19**, 3287 (1986).
- ¹⁵⁴Z. Zelazny, M. Pfuetzner, J. Szerypo, M. Jaskola, and M. Goclowski, J. Phys. B 19, 4185 (1986).
- ¹⁵⁵F. M. El-Ashry, L. Glowacka, M. Jaskola, M. Pfuetzner, J. Szerypo, Z. Zelazny, G. M. Osetynski, and M. Pajek, Nucl. Instrum. Methods B 22, 82 (1987). Only the data that have not been tabulated in prior references are taken from this article.
- ¹⁵⁶S. O. Olabanji and B. G. Martinsson, Nucl. Instrum. Methods B 24/25, 81 (1987).
- ¹⁵⁷R. P. Bhalla, F. D. McDaniel, and G. Lapicki, Phys. Rev. A 35, 3655 (1987).
- ¹⁵⁸M. Pfuetzner, J. Szerypo, Z. Zelazny, F. M. El-Ashry, M. Goclowski, L. Glowacka, D. Trautmann, and M. Jaskola, J. Phys. B 20, 3453 (1987).
- ¹⁵⁹J. Szerypo, M. Pfuetzner, W. Kretschmer, R. Schmitt, W. Schuster, A. Bienkowski, L. Glowacka, D. Trautmann, and M. Jaskola, J. Phys. B 20, 5475 (1987).
- ¹⁶⁰D. G. Simons, J. L. Price, Jr., and D. J. Land, 15th International Conference on the Physics of Electronic and Atomic Collisions, Brighton 1987, edited by J. Geddes, H. B. Gilbody, A. E. Kingston, C. J. Latimer, and H. J. R. Walters (Queen's University, Belfast, 1987), p. 610.
- ¹⁶¹R. A. Ilkhamov, S. H. Khusmurodov, A. P. Kobzev, J. H. Li, M. Pajek, and R. Sandrik, in *Proceedings of the 3rd Workshop on High-Energy Ion-Atom Collisions, Debrecen 1987*, edited by D. Berenyi and G. Hock, *Lecture Notes in Physics 294* (Springer, Berlin, 1988), p. 103.

6.3. Author index for the data base references in Section 6.2

Akselsson, R. 55 Al-Ghazi, M.S.A.L. 104 Albrecht,L. 36 Andersen, J.U. 39, 93, 113, 130 Andrews, M.C., III 108 Anholt, R. 95 Avaldi, L. 123, 138, 143 Awaya, Y. 136 Badica, T. 83, 109 Barfoot, K.M. 112, 131, 146 Basbas, G. 45, 97, 126 Basco, J. 80 Baskin, A.B. 41 Bauer, C. 99 Bauer, W. 34 Bearse, R.C. 47 Beck, W.L. 36 Bednar, J.A. 74 Bell,F. 88 Beloshitsky,V.V. 73 Benka, O. 103, 118, 149 Berenyi, D. 80 Berinde, A. 100 Bernstein, E.M. 2 Bethge,K. 89 Bevington, P.R. 2 Bhalla, R. P. 157 Bhattacharya, D. 134, 135 Bhattacherjee, S.K. 64,134 Bienkowski, A. 159 Birchall, J. 104 Bissinger, G. 20, 32, 37, 41, 81, 85 Bodart, F. 69 Bonani, G. 94 Bonner, T.I. 21 Borggreen, J. 59 Brandt, W. 12, 17, 45, 97, 120 Braziewicz, E. 148 Braziewicz, J. 148 Brenn, R. 64, 66 Brennan, J.G. 132, 137 Brodskii, S.M. 96 Brown, M.D. 48, 132, 137 Brunner, K. 51 Brunner, W.F. 13 Burch, D. 58,70 Busch, C.E. 41 Calvert, J.M. 152 Carlton, R.F. 38 Celler, A. 107, 124 Chaturvedi, R.P. 57 Chee, Y. 79

Chiao, T. 40, 48 Chmielewska, D. 140 Christensen, L.J. 13 Ciortea, C. 83, 109 Close, D.A. 47 Cocke,C.L. 74 Crews, B. 79 Criswell, T.L. 61 Crumpton, D. 77,86 Cue, N. 66 Curnette, B. 74 Curry, B.P. 16 Cuzzocrea, P. 127 Czuchlewski, S.J. 65 Da Silva, M.F. 133 Da Silviera, E.F. 142 De Castro Faria, N.V. 142 De Cesare, N. 127 De Heer, F.J. 46 De Pinho, A.G. 142, 147, 153 Deberth, C. 100 Deconninck, G. 69,90 Demeter, I. 122 Der, R.C. 16 Dima,S. 83 Divoux, S. 144 Dost, M. 100, 114, 125, 128 Doyle, B.L. 85 Duggan, J.L. 36, 38, 72, 87, 126 Dutkiewicz, V. 66 Eichler, E. 42 El-Ashry, F.M. 150, 155, 158 Ellsworth, L.D. 40, 48, 65 Engelmann, C. 105 Eschbach, H.L. 112, 131, 143 Fahlenius, A. 27,44 Feldman, L.C. 39 Ferreira, G.P. 98, 106 Filatov, V.I. 96 Folkmann, F. 59 Fortner, R.J. 16 Foster, J.S. 146 Francois, P.E. 77,86 Freire, F.L., Jr. 142, 147 Fujimoto, F. 71, 116 Furuta, T. 21 Gardner, R.K. 67 Geissel, H. 146 Geretschlager, M. 103, 118, 149 Gil, F.B. 98

6.3. Author index for the data base references in Sec. 6.2 -- Continued Kobzev, A.P. 161 Gilboy, W.B. 112, 131 Glowacka, L. 150, 155, 158, 159 Kolatay, E. 80 Komaki, K. 116 Goclowski, M. 139, 145, 150, 154, 158 Gonsior, B. 144 Komarek, P. 14, 15 Gray, T.J. 53, 61, 63, 67 Kretschmer, W. 159 Kruglova, I.M. 73 Kugel, H.W. 37,81 Hachiya, Y. 75 Kuwako, A. 117, 136 Hahn, R.L. 42 Hanser, F.A. 19 Laegsgaard, E. 39, 93, 113, 130 Hansteen, J.M. 3 Harakeh, M.N. 140 Land, D.J. 132, 137, 160 Hardt, T.L. 49 Langenberg, A. 50,82 Lapicki, G. 120, 157 Harrison, K.G. 46 Hart, R.R. 18 Lark, N.L. 8 Hink, W. 51, 119 Larson, H. 52 Hock,G. 80 Laubert, R. 12, 17, 45, 97, 120 Lear, R.D. 53, 78 Hogedal, F. 113 Holzer, T.E. 10 Lennard, W.N. 68, 110, 146 Hopkins, A.G. 86 Lewis, C.W. 24,31 Hopkins, F. 64,66 Lewis, H.W. 1,5 Hoppenau, S. 125, 128 Li, J.H. 161 Hornshoj, P. 124, 139, 141, 145 Liebert, R.B. 52 Hsu, C.N. 56 Lin, J. 38 Longree, M. 90 Ilkhamov, R.A. 161 Lopes, J.S. 98, 106, 115, 121, 129, 133 Inouye, T. 23 Lucas, G.J. 10 Ishii,K. 56,60,75,91,117,136 Ludemann, C.A. 42 Ludwig, E.J. 20 Jacobs, W.W. 85 Lund, M. 93, 130 Luontama, M. 107 Jarvis, O.N. 30 Jaskola, M. 124, 139, 145, 150, 154, 155, 158, 159 Macdonald, J.R. 40, 48, 65 Jauho, P. 27 Jesus, A.P. 98, 106, 115, 121, 129, 133 Magno, C. 111 Johansson, T.B. 55 Makino, I. 25, 28 Jopson, R.C. 7 Malanify, J.J. 47 Joyce, J.M. 20,81,85 Mamikonyan, S.V. 96 Mann,R. 99 Kaji, H. 56,60 Mark, H. 7 Kamada, H. 35 Martinsson, B.G. 156 Kamei,H. 23 McDaniel, F.D. 67, 72, 87, 126, 157 Kamiya, M. 91, 117, 136 McEver, W.S. 20 Kantele, J. 107 McKay, J.S.C. 104 Karlowicz, R.R. 54,62 McKnight, R.H. 43, 54, 62 Karp, J. 64 Merzbacher, E. 1,5 Kavanagh, T.M. 16 Messelt, S. 3,6 Kawatsura, K. 71, 92, 116 Milazzo, M. 76, 111, 123, 138 Khan, J.M. 9, 11, 13, 16, 18 Miljanic, D. 52 Khan, M.R. 77,86 Mitchell, I.V. 68, 112, 131, 138, 143 Khelil, N.A. 63 Mitra, S.K. 134, 135 Khusmurodov, S.H. 161 Montenegro, E.C. 142, 147, 153 Morgan, I.L. 21 Kising, J. 125 Kiss, I. 80 Morita, S. 56, 60, 75, 91, 117, 136 Munz, L. 36 Kjeldgaard, A. 59 Knaf, B. 84 Murray, J.S. 10

216

6.3. Author index for the data base references in Sec. 6.2 Continued Musket, R.G. 34 Sakisaka, M. 25,28 Natowitz, J.B. 24, 31 Saltmarsh, M.J. 42 Neacsu, V. 83 Sanders, J.T. 78 Neamu, I. 100 Sandrik, R. 161 Needham, P.B., Jr. 22, 29 Sartwell, B.D. 22, 29 Nettles, P.H. 41 Scates, W.R. 41 Nikolaev, V.S. 73 Scharnagl, T. 119 Schmidt-Bocking, H. 89 Ogier,W.T. 10 Schmitt, R. 159 Olabanji, S.O. 152, 156 Schneider, D. 58 Ootuka, A. 116 Schonfeldt, W.A. 128 Osetynski, G.M. 148, 155 Schorn, P. 125 Ozawa, K. 71, 116 Schule, R. 89 Schuster, W. 159 Pajek, M. 148, 155, 161 Scintei,N. 100 Perillo, E. 127 Sebata, M. 136 Sellers, B. 19 Peterson, D.M. 41 Sellin, I. 12 Petrovici, A. 83,109 Petukhov, V.P. 73 Sera,K. 91,117 Pfuetzner, M. 145, 154, 155, 158, 159 Sergeev, V.A. 73 Phillips, D. 110, 146 Shafroth, S.M. 20, 32, 41, 85 Phillips, G.C. 52 Shah, M. 30 Pizzi, C. 111 Shima, K. 25, 28, 101, 102 Shiokawa, T. 56,60 Ploskonka, J. 148 Sigaud, G.M. 147, 153 Poncet, M. 105 Popescu, I. 83, 109 Simmons, B.E. 1 Porro, F. 111 Simons, D.G. 132, 137, 160 Singh, B. 4 Potter, D.L. 9,11 Presser, G. 84 Smith, H.P., Jr. 18, 33 Soares, C.G. 78 Price, J.L., Jr. 160 Protop, C. 100 Spadaccini, G. 127 Spaulding, J.D. 36 Raith, B. 144 Stahler, J. 84 Ramos, S.C. 106, 115 Steibing, K.E. 89 Ramsay, W.D. 104 Stockli, M. 94 Randal1, R.R. 74 Stoller, C. 94 Ren, C. 151 Stolterfoht, N. 58 Reuter, F.W., III 18, 33 Sujkowski, Z. 140 Rhodes, J.R. 21 Suter,M. 94 Riccobono, G. 76, 111, 123 Swift, C.D. 7 Rice, R.K. 126 Szerypo, J. 124, 139, 145, 150, 154, 155, 158, 159 Richard, P. 21 Szokefalvi-Nagy, Z. 122 Ricz, S. 80 Risley, J.S. 58 Tamura, T. 35 Ritter, R.C. 43

Rohl, S. 100, 125, 128

Romanovsky, E.R. 73 Rosato, E. 127

Rota, A. 111, 123 Rowe, J.R. 87

Roy, A. 134

Rudolph, W. 99

Tang, J. 151 Tawara, H. 46, 56, 60, 75, 91 Terasawa, M. 23, 26, 35, 71, 116 Thornton, S. T. 43, 54, 62 Tonuma, T. 136 Trautmann, D. 158, 159 Trivia, G. 138 Tserruya, I. 89 217
6.3. Author index for the data base references in Sec. 6.2 -- Continued

Umbarger,C.J. 47 Valkovic,V. 52 Van der Woude,A. 42 Van Eck,J. 50,82 Van Rinsvelt,H.A. 78 Vigilante,M. 127

Walls,J. 79 Waltner,A.W. 32,41 Watson,R.L. 24,31,49 Weber,K.H. 88 Wheeler,R.M. 57 Whitehead,C. 30 Whittemore,A.R. 64,66 Wieman,H. 58 Wilk,S. 69 Wilson,H.H. 19
Wilson,S.R. 87
Winters,L.M. 40,48
Wolfli,W. 94
Worley,R.D. 11
Xu,H. 151
Yang,F. 151
Zabel,T. 52
Zander,A.R. 57,79,108
Zekl,H. 89
Zelazny,Z. 124,139,141,145,150,154,155,158
Zemlo,L. 124,145
Zoran,V. 100
Zylicz,J. 107,145