Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution

Cite as: Journal of Physical and Chemical Reference Data 18, 1637 (1989); https://doi.org/10.1063/1.555843

Submitted: 18 July 1988 . Published Online: 15 October 2009

Peter Wardman

ARTICLES YOU MAY BE INTERESTED IN

Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals $(\cdot OH/\cdot O^-$ in Aqueous Solution

Journal of Physical and Chemical Reference Data 17, 513 (1988); https://doi.org/10.1063/1.555805

Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution Journal of Physical and Chemical Reference Data 17, 1027 (1988); https://doi.org/10.1063/1.555808

Reactivity of HO₂/O ₂ Radicals in Aqueous Solution

Journal of Physical and Chemical Reference Data 14, 1041 (1985); https://doi.org/10.1063/1.555739

Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution

Peter Wardman

Gray Laboratory of the Cancer Research Campaign, Mount Vernon Hospital, Northwood Middlesex HA62JR, United Kingdom

Received July 18, 1988; revised manuscript received April 4, 1989

Reduction of an electron acceptor (oxidant), A, or oxidation of an electron donor (reductant), A^{2-} , is often achieved stepwise via one-electron processes involving the couples $A/A - or A - A^{2-}$ (or corresponding prototropic conjugates such as $A/AH \cdot or AH \cdot AH_2$). The intermediate $A \cdot (AH \cdot)$ is a free radical. The reduction potentials of such one-electron couples are of value in predicting the direction or feasibility, and in some instances the rate constants, of many free-radical reactions. Electrochemical methods have limited applicability in measuring these properties of frequently unstable species, but fast, kinetic spectrophotometry (especially pulse radiolysis) has widespread application in this area. Tables of ca. 1200 values of reduction potentials of ca. 700 one-electron couples in aqueous solution are presented. The majority of organic oxidants listed are quinones, nitroaryl and bipyridinium compounds. Reductants include phenols, aromatic amines, indoles and pyrimidines, thiols and phenothiazines. Inorganic couples largely involve compounds of oxygen, sulfur, nitrogen and the halogens. Proteins, enzymes and metals and their complexes are excluded.

Key words: aqueous solution; data compilation; electron transfer; equilibria; equilibrium constants; free radical; oxidation potential; radical; radiolysis; reduction potential; redox potential; review.

Contents

1.	Intro	oduction	1639		3.9. Relative and Absolute Uncertainties Asso-	
2.	Redu	uction Potential of Couples Involving Un-			ciated with Measurements	1643
	stabl	e Species	1639	4.	Effects of Prototropic Equilibria Upon Reduc-	
	2.1.	Stepwise Addition of Electrons	1639	,	tion Potentials	1643
		Standard State, Reference Potentials and			4.1. Introduction	1643
		Sign Conventions	1640		4.2. Coupling of Electrons and Protons in the	
	2.3.	Ease of Reduction and Ease of Oxidation.	1640		Reaction	1644
3.	Obse	ervation of One-Electron Transfer Equili-			4.3. General Approach to Describing the pH-	
	bria	•••••	1640		Dependence of Reduction Potentials	1644
	3.1.	Generating the Couple A/A. by Reduc-			4.4. Practical Application to One-Electron Re-	
		ing Radicals from Water Radiolysis	1640		duction Potentials	1645
	3.2.	Generating the Couple $A \cdot -/A^{2-}$ by Oxi-			4.5. Examples of the pH-Dependence of One-	
		dizing Radicals from Water Radiolysis	1641		Electron Reduction Potentials and Sugges-	
	3.3.	Generating Radicals by Flash Photolysis.	1642		tions for Symbols	1648
	3.4.	Electrochemical Measurements of Reduc-			4.6. The Use of Mid-Point Potentials in Calcu-	
		tion Potentials in Aqueous Solutions	1642		lating Equilibrium Constants	1649
	3.5.	Establishing a Redox Equilibrium: Kinetic		5.	Calculation of One-Electron Reduction Poten-	
		Constraints	1642		tials Using Radical Formation Constants	1650
	3.6.	Calculation of Reduction Potentials From			5.1. Introduction	1650
		Concentrations at Equilibrium	1642		5.2. Derivation of Expressions	1650
	3.7.	Calculation of Reduction Potentials From			5.3. Examples of Calculations	1651
		the Kinetics of the Approach to Equilibri-			5.4. Uncertainties in the Calculations	1651
		um	1642	6.	Recommended Redox Indicators and Their Po-	
	3.8.	Effects of Ionic Strength, Temperature and			tentials	1652
		Solvent	1642		6.1. Oxygen	1652
<u> </u>	1000 1	4 U 6 6	Timberd		6.2. Quinones	1652
		y the U. S. Secretary of Commerce on behalf of the his copyright is assigned to the American Institute of			6.3. Bipyridinium Compounds (Viologens)	1652
		American Chemical Society.	11,000		6.4. Hydroquinones and Phenols	1653
		available from ACS; see Reprints List at back of issu	ıe.		6.5. Inorganic Indicators Other Than Oxygen	1653

7.	Predi	ction of Reduction Potentials for Un-		3	3.8.	Symmetrical 1,1'-disubstituted 4,4'-bipyri-	
		n Couples	1653			dinium compounds (viologens, $R_1 = R'_1$)	
	7.1.	Use of Polarographic and Cyclic Voltam-				without additional ring substituents	1680
		metric Data Obtained Using Non-		3	3.9.	Symmetrical 1,1'-disubstituted 4,4'-bipyri-	
		Aqueous Solvents	1653			dinium compounds (viologens, $R_1 = R'_1$)	
		Correlations Between Reduction Potential				•	1685
		and Rate Constants	1653	1	3.10.	Asymmetrical 1,1'-disubstituted 4,4'-bi-	
	7.3.	Correlations Between Reduction Potential				pyridinium compounds (viologens,	
		and other Physico-Chemical Parameters	1654			$R_1 = CH_3$, $R_1' = variable$)	1687
8.		ngement of the Data Tables and Indexes	1654		3.11	Asymmetrical 1,1'-disubstituted 4,4'-bi-	
٠.		Content of the Tables	1654		J. 1 1	pyridinium compounds (viologens,	
		Alterations to Published Values	1654			F	1688
		Inorganic Couples: Standard States	1655		2 12	$R_1 \neq R'_1 \neq CH_3$)	1000
Q		Other Compilations of Reduction Poten-	1000		3.12	•	
٦.		Other Compliations of Reduction Fotens	1655			lines, diazapyrenes and diazapentaphenes	1600
10			1655			(see also 3.6)	1689
		of Abbreviations and Symbols				action potentials of miscellaneous organic	1.601
		nowledgments	1656		•	pounds	1691
		rences to Text	1656		4.1.	Aldehydes and ketones	1691
		rences to Tables	1717		4.2.	Disulfides (RSSR)	1691
		pound Name Index	1724		4.3.	Amides	1691
15.	Mole	cular Formula Index	1745		4.4	Pyridinium and related compounds	1691
					4.5	Phenothiazinium derivatives	1692
					4.6.	Flavins (isoalloxazines) and lumichrome	
		List of Tables				derivatives (alloxazines)	1692
		List of Tables			4.7.	Dioxathiadiazaheteropentalenes	1693
1.	Reduc	ction potentials of quinones	1658		4.8.	Miscellaneous organic compounds	1694
	1.1.	Benzoquinones	1658	5.	Redi	uction potentials of phenoxyl radicals	1695
	1.2.	Naphthoquinones	1659		5.1.	Phenols	1695
	1.3.	Anthraquinones	1660		5.2.	1,2-Dihydroxybenzenes	1696
	1.4.	Isoindole-4,7-iones	1660		5.3.	1,3-Dihydroxybenzenes	1696
	1.5.	Miscellaneous quinones	1661		5.4.	1,4-Dihydroxybenzenes (1,4-hydroquin-	
2.	Reduc	ction potentials of nitroaryl compounds	1663			ones)	1697
	2.1.	Nitrobenzenes	1663		5.5	Trihydroxybenzenes	1697
	2.2.	Nitrofurans	1664	6.	Red	uction potentials of amine, indole, pyrimidine	
	2.3.	2-Nitroimidazoles	1664			purine radicals	1699
	2.4.	4-Nitroimidazoles	1668		6.1.	Aminobenzenes and phenylene diamines	1699
	2.5.	5-Nitroimidazoles	1670		6.2.	Indoles	1699
	2.6.	Nitroazaindoles	1672		6.3.	Pyrimidines	1701
	2.7.	Nitroacridines	1672		6.4.	Purines	1702
	2.8.	Miscellaneous nitroaryl compounds	1673	7		uction potentials of phenothiazine radicals	1703
3		ction potentials of bipyridinium and related	10/2	٠.	7.1.	10 <i>H</i> -Phenothiazine	1703
٠.		ounds	1675		7.2.	10 <i>H</i> -Phenothiazines with one ring carbon	1,00
		Unbridged 2,2'-bipyridinium compounds.	1675		1.2.	substituent	1703
	3.2.	Bridged 2,2'-bipyridinium compounds: de-	10/2		7.3.	10 <i>H</i> -Phenothiazines with two ring carbon	1703
	5.2.	rivatives of dipyrido [1,2-a:2',1'-c]pyra-			1.5.		1703
		zinediium	1675		71	substituents	1703
	2.2		1075		7.4.		1704
	3.3.	Bridged 2,2'-bipyridinium compounds: de-			- -	carbon substitution	1704
		rivatives of 6,7-dihydrodipyrido[1,2-	1675		7.5.	•	1705
		a:2',1'-c]pyrazinediium ('diquat')	1675			ring carbon substituent	1705
	3.4	Bridged 2,2'-bipyridinium compounds: de-			7.6.		1706
		rivatives of 7,8-dihydro-6 <i>H</i> -dipyrido[1,2-	1/77	_	7.7.		1707
	• -	a:2',1'-c][1,4]diazepinediium ('triquat').	1677	8.		luction potentials of radicals from miscellan-	4500
	3.5.	Bridged 2,2'-bipyridinium compounds: de-				s organic compounds	1708
		rivatives of 6,7,8,9-tetrahydrodipyr-			8.1.		1708
		ido[1,2-a:2',1'-c][1,4]diazocinediium			8.2.		1709
		('tetraquat')	1678		8.3.		1709
	3.6.	Miscellaneous 2,2'-bipyridinium com-			8.4.		1710
		pounds	1679		8.5.		1710
	3.7.	2,4'-Bipyridinium compounds	1680	9.	Red	luction potentials of inorganic couples	1711

1648

1648

1649

1649

List of Figures

- Variation of the mid-point potential, E_m with pH of the one-electron couple: quinone/semiquinone for 1,4-benzoquinone......
- 2. Variation of the mid-point potential, $E_{\rm m}$ with pH of the one-electron couple: semiquinone/hydro-quinone for 1,4-benzoquinone.....
- 3. Variation of the mid-point potential, $E_{\rm m}$ with pH of the one-electron reduction potential of 1-(2-pi-peridinylethyl)-2-nitroimidazole ($ArNO_2$)
- 4. Variation of the mid-point potential, $E_{\rm m}$ with pH of the one-electron couples of two hypothetical oxidants A and B (see text) and the logarithm of the *effective* equilibrium constant K_i for the one-electron transfer equilibrium between these oxidants and their electron-adducts......

1. Introduction

Many reactions of free radicals involve one-electron transfer. If an electron acceptor, A is reduced to a radical, $A \cdot^-$ then the possibility of further or competing reactions involving other electron acceptors, B, C etc.:

1
$$A \cdot \overline{} + B \rightleftharpoons A + B \cdot \overline{}$$
2 $A \cdot \overline{} + C \rightleftharpoons A + C \cdot \overline{}$
3 $B \cdot \overline{} + C \rightleftharpoons B + C \cdot \overline{}$

can be calculated if the one-electron reduction potentials $E^{\circ}(A/A^{-})$, $E^{\circ}(B/B^{-})$ etc. are known. Thus the equilibrium constant, K_I for reaction I is related to the difference ΔE_1 between the couples:

$$\Delta E_1^{\circ} = E^{\circ}(B/B^{-}) - E^{\circ}(A/A^{-}) \tag{1}$$

by the expression

$$\Delta G_1^{\circ} = -nF\Delta E_1^{\circ} = -RT\ln K_1 \tag{2}$$

where K_1 is the ratio of activities

$$K_1 = \frac{(a_A a_{B^-})}{(a_B a_{A^-})}.$$
 (3)

Except at high ionic strengths (see below, Sec. 3.8) we can replace activities by concentration so that

$$K_1 \approx \left(\frac{[\mathbf{A}][\mathbf{B}\cdot^{-}]}{[\mathbf{B}][\mathbf{A}\cdot^{-}]}\right).$$
 (4)

At 298 K from Eq. (2) we have

$$\Delta E_1^{\circ}/\text{mV} \approx 59.1 \log K_I \tag{5}$$

and differences of ca. 60 mV in reduction potential correspond to an order of magnitude change in equilibrium constant.

Even when reactions are irreversible and equilibria are not achieved, there are many instances where the rate constants for the reaction are reflected in the reduction potentials of electron donor or acceptor (see below, Sec. 7.2). Current interest in reactions of excited states with electron donors or acceptors, often involving electron transfer, is aided by the relative ease by which reduction potentials of many substances can be measured electrochemically in the aprotic solvents often used in such experiments. In water, however, free radicals are often too short-lived for conventional electrochemical methods to be used. The ability to observe directly the lifetimes and reactions of unstable intermediates using kinetic spectrophotometry offers obvious advantages. Detailed descriptions of electrochemical techniques can be readily found in the literature, and this introduction therefore concentrates on the more recent application of fast, kinetic methods to derive electrochemical potentials. As outlined below, pulse radiolysis and flash photolysis techniques can be used to measure equilibrium constants of redox reactions before transient species can decay. Neta1 has summarized some early studies of redox properties of free radicals using the pulse radiolysis technique.

Dorfman and colleagues² used pulse radiolysis to observe electron-transfer equilibria of arene radicals in ethanol, and Patel and Willson³ measured equilibrium constants for electron transfer between semiquinones and oxygen in water. The latter data and approach enabled Wood,4 Ilan et al.5 and Meisel and Czapski6 to obtain the definitive value of the important couple $E^{\circ}(O_2/O_2^{-})$. Meisel and Neta⁷ extended the method to include reversible electron transfer between quinones and nitroaromatic compounds, and Steenken and Neta8 measured equilibria between phenoxyl radicals and hydroquinones or phenoxides at high pH. As a result of these pioneering studies, there are now many reliable values of thermodynamically-reversible one-electron reduction potentials of couples involving unstable free radicals in aqueous solution.

2. Reduction Potentials of Couples Involving Unstable Species

2.1. Stepwise Addition of Electrons

Many reactions formally involving two-electron couples A/A^{2-} are known to proceed in two one-electron steps, A/A^{-} and A^{-}/A^{2-} . (For simplicity we presently ignore protonation here, but recognize that e.g. A^{-} or A^{2-} may exist as conjugate acids at the pH of interest.)

The intermediate A^{-} , generally a free radical in most of the cases tabulated here, may be produced *either* by reduction of A or by oxidation of A^{2-} (see below, Sec. 3.1, 3.2). The two-electron potential, $E^{\circ}(A/A^{2-})$ is related to the one-electron couples by

$$2E^{\circ}(A/A^{2-}) = E^{\circ}(A/A^{-}) + E^{\circ}(A^{-}/A^{2-}). \quad (6)$$

Various alternative symbols are used for reduction potential, e.g. we can recognise the first- and second- one-electron potentials by denoting $E(A/A^{-})$ as E^{1} and $E(A^{-}/A^{2-})$ as E^{2} with subscripts for pH, e.g. E_{7}^{1} , $E_{13.5}^{2}$. The standard reduction potential is usually denoted by E° . The distinction between standard potentials and measured quantities is not always clear, and is a particular problem where either ground state or radical species are protonated or dissociate in prototropic equilibria. A discussion of this point and recommendations for symbolism and description of reduction potentials is postponed to Sec. 4 when prototropic equilibria will have been considered in more detail.

2.2. Standard States, Reference Potentials and Sign Conventions⁹⁻¹¹

The standard states of unit activity (approximately 1 mol dm⁻³ concentration) for solids and liquids and unit fugacity (approximately 1 atmosphere partial pressure) for gases are used. The latter convention frequently leads to errors in calculation, particularly in reactions involving the important O_2/O_2 couple. Thus the standard potential is $E^{\circ}(O_2/O_2^{-}) \approx -325 \text{ mV}$ whereas the potential of the couple $E(O_2(1 \text{ mol dm}^{-3})/O_2\cdot^{-1}) \approx -155 \text{ mV}.^{4-6}$ The difference can be appreciated by application of the Nernst equation (see Sec. 4.2, eq. (14), below) with the oxygen concentration of ~ 1.3 mmol dm⁻³. The standard state pressure was defined as 101.325 kPa; changing to a new standard state of 100 kPa = 1 bar alters potentials by only 0.17 mV, negligible in the present context. The convention of the standard state of pure elements being the normal physical state existing at 1 atmosphere and 298 K introduces another complication; thus the standard potential $E^{\circ}(I_2/I_2)$ refers to solid elemental iodine and not ~ 1 mol dm⁻³ in aqueous solution.

The reference potential throughout these tables is the normal or standard hydrogen electrode (s.h.e.). Many electrochemical measurements are originally referred to the saturated calomel electrode (s.c.e.); these have been converted to s.h.e. by adding 244 mV if the measurements were at ~ 298 K (241 mV at 303 K). A few measurements originally referred to the calomel electrode at 1 mol dm⁻³ KCl (normal), n.c.e.; the correction in this case is 280 mV. The Ag/AgCl electrode is 222 mV lower than s.h.e. at 298 K.

The IUPAC convention of writing couples as reduc-

tion potentials is followed exclusively. Thus for the reduction of A to A^- the couple is $E(A/A^-)$; an obsolete convention of describing couples as oxidation potentials is to be discouraged. Even though the conversion of A^2 to A^- involves oxidation, it is preferable to write all couples as reduction potentials: the ease of oxidation of A^2 to A^- is characterized as the reduction potential of the radical A^- , i.e. $E(A^-/A^2^-)$. The standard use of the term 'reduction potential', exclusion of the obsolete 'oxidation potential' and avoidance of the ambiguous 'redox potential' serves not only to clarify the definition of the couples but also aids information retrieval in computer systems. Further discussion of the definitions, and use of symbols for reduction potentials is postponed until Sec. 4 (below), when their application should be more apparent.

2.3. Ease of Reduction and Ease of Oxidation

With these conventions, substances A with more positive reduction potentials for the couple A/A. are more powerful oxidants (A easier to reduce). Substances A²with more negative reduction potentials for the couple A. -/A²- are more powerful reductants (oxidation of A²⁻ more favorable). Thus 1,4-benzoquinone (Q) with $E^{\circ}(Q/Q^{-}) = 78 \text{ mV}$ is a more powerful oxidant than its 2,3,5,6-tetramethyl derivative, duroquinone (DQ) with $E^{\circ}(DQ/DQ^{-}) = -244 \text{ mV}$. The semiquinone DQ^{-} of duroquinone will tend to be oxidized by benzoquinone, forming benzosemiquinone, depending on the relative concentrations of the reactants as described by equilibrium 1. These differences can be readily understood because of the electron-donating influence of the methyl groups. Phenols, such as 1,4-dihydroxybenzene (hydroquinone) are fully dissociated to phenoxide ions, PhO⁻ at high pH (highest p K_a in this case \sim 11.4). Reduction potentials at pH ~ 13.5 for the phenoxyl radical/phenoxide couple, $E(PhO-PhO^{-})$ of ~ 23 and 700 mV have been calculated or measured for hydroquinone and phenol, respectively. Hence hydroquinone is much more easily oxidized than phenol. The phenoxyl radical obtained upon one-electron oxidation of phenol is thermodynamically capable of oxidizing hydroquinone unless there is a hugely unrealistic excess of phenol to hydroquinone to modify the position of the electrontransfer equilibrium. The phenoxyl radical derived from phenol is a more powerful oxidant than that derived from hydroquinone; the reduction potential of the former radical is more positive than that from the latter.

3. Observation of One-Electron Transfer Equilibria

3.1. Generating the Couple A/A. by Reducing Radicals From Water Radiolysis 12-15

The radiolysis of water produces e_{aq}^- , H. and OH radicals. The hydrated electron, e_{aq}^- , will generally reduce A

to A^{-} , often in a diffusion-controlled reaction. The hydroxyl radical, $\cdot OH$, is oxidizing and can be prevented from reacting with A:

4
$$OH + A \rightarrow products$$

by several methods:

a. tert-Butyl alcohol is added, which reacts with OH to yield a radical which is of only moderate reactivity and may not react with A or other solutes on the timescale of interest:

5
$$\cdot$$
OH + (CH₃)₃COH \rightarrow H₂O + (CH₂)C(CH₃)₂OH.

Not infrequently, however, A^- does react with the alcohol radical from reaction 5. Loss of A^- via this unwanted route can be avoided by alternatives b and c (below) or by using minimal dose (radical concentration).

b. 2-Propanol is added which reacts with OH to yield *predominantly* an α -hydroxyalkyl radical which will *usually* produce the desired species A. by electron-transfer:

6
$$\cdot$$
OH + (CH₃)₂CHOH \rightarrow H₂O + (CH₃)₂COH

7
$$(CH_3)_2COH + A \rightarrow (CH_3)_2CO + H^+ + A^-$$
.

The fraction of OH attack on -CH₃ to yield a β -hydrox-yalkyl radical, with similar properties to that produced in reaction 5 is $\sim 15\%$. Hence a fraction of A· may be lost via this unwanted reaction, albeit on a timescale often too slow to interfere with electron-transfer equilibration (see below, Sec. 3.5).

c. The OH scavenger of choice when the longest 'natural' lifetime of A^- is sought is formate (usually the sodium salt). The CO_2^- radical formed upon scavenging OH with HCO_2^- :

8 OH +
$$HCO_2^- \rightarrow H_2O + CO_2^-$$

will generally produce the same species A. produced by reduction with e_{aa} :

9
$$CO_{2}$$
 \rightarrow $+ A \rightarrow CO_{2} + A_{2}$

$$e_{aq}^- + A \rightarrow A^{-}$$

although a high ionic strength usually results (see below, Sec. 3.8).

One aims to have the rate of reactions 5, 6 or 8 much greater than the rate of reaction 4. Rate constants for reaction of OH with many substances are known¹⁷ or can be estimated with sufficient accuracy for this inequality to be satisfied. Usually the OH scavenger will

be used at concentrations of 0.1-0.2 mol dm⁻³. Hydrogen atoms comprise ca. 10% of the total radicals and a fraction may react with e.g. $(CH_3)_2CHOH$ or HCO_2^- (tertbutyl alcohol is less reactive) depending on the solute reactivity. It cannot be assumed that H· will react with A to yield A·-. Especially with oxidants A of very low electron affinity it may not be safe to assume that reactions 7 and even 9 will yield A·- and alternative (a) may be preferred in spite of the disadvantages noted.

3.2. Generating the Couple A⋅⁻/A²⁻ by Oxidizing Radicals From Water Radiolysis¹²-¹⁵

Removing the reducing radical e_{aq}^- is simple:

11
$$e_{aa}^- + N_2O + H^+ \rightarrow N_2 + \cdot OH$$

and saturation with N_2O ($[N_2O] \approx 25$ mmol dm⁻³) will prevent effectively the now unwanted reaction 10 if $k_{II}[N_2O] \gg k_{I0}[A]$. Numerous values for k_{I0} are tabulated.¹⁷ The H· atoms are usually ignored but could be a source of error if the product(s) of H· + A^{2-} absorb significantly compared to A^{-} .

With A^{2-} = phenoxide ion, reaction 13 rapidly follows reaction 12 to yield the desired phenoxyl radical A^{-} in basic solution:

12
$$OH + C_6H_5O^- \rightarrow HOC_6H_5O^-$$

13
$$HOC_6H_5O^- \rightarrow C_6H_5O^- + OH^-$$
.

However, the lack of selectivity in reactions of OH has led to the practice of converting it to a more selective oxidizing radical, e.g. CH₂CHO:¹⁸

14 OH + HOCH₂CH₂OH
$$\rightarrow$$
 HOCH₂CHOH + H₂O

15
$$HOCH_2CHOH \rightarrow CH_2CHO + H_2O$$

16 CH₂CHO +
$$A^{2-}$$
 + H^{+} $\rightarrow A^{--}$ + CH₂CHO.

Alternative oxidizing systems more selective than $\cdot OH$ are the halogen or pseudohalogen radicals $X_2 \cdot \bar{\ } (X = \text{halogen or thiocyanate etc.})$ and $N_3 \cdot \bar{\ }$:

17
$$OH + 2 X^{-} \rightarrow OH^{-} + X_{2}^{-}$$

18
$$OH + N_3^- \rightarrow OH^- + N_3$$
.

Rate constants of many one-electron oxidation reactions of these species have been tabulated:¹⁹

19
$$X_{2}^{-} + A^{2-} \rightarrow 2 X^{-} + A^{-}$$

20
$$N_{3} \cdot + A^{2-} \rightarrow N_{3}^{-} + A^{-}$$

Another useful system involves SO_4 (via $e_{aq} + S_2O_8^{2-}$)¹⁹

21
$$SO_4$$
 - + $A^{2-} \rightarrow SO_4^{2-} + A^{--}$.

Since $k_4 \approx k_{14} \approx k_{17} \approx k_{18}$ we use [glycol], [X⁻], [N₃⁻] etc. \gg [A], e.g. 1 mol dm⁻³ glycol or 0.1 mol dm⁻³ Br⁻.

3.3. Generating Radicals by Flash Photolysis

The triplet state A* (e.g. of nitroaromatic compounds)^{20,21} may be quenched by electron donors, D to yield radical-anions:

$$22 A + h\nu \rightarrow A^*$$

23
$$A^* + D \rightarrow A^- + D^+$$

although little application of this method to measuring reduction potentials has been reported.²⁰

3.4. Electrochemical Measurements of Reduction Potentials in Aqueous Solution

Clark's classical text²² includes methods by which oneelectron potentials may be derived from electrochemical measurements, and Bard²³ has described general electrochemical methods. Some electrochemical methods require the intermediate A. to be relatively stable; this condition is easily met for A = bipyridinium dications²² (viologens), some quinones at high pH24, etc., and for A^{2-} = some phenylenediamines, and phenothiazines in acidic solution. Polarography with a time resolution compatible with pulse radiolysis25 offers obvious advantages over conventional methods, but protonation of radicals is frequently accompanied by irreversibility of the reduction process. More recently, cyclic voltammetry has had some success²⁶⁻²⁹ in determining reduction potentials involving both inorganic and organic radicals in aqueous solution; in this case, the theoretical treatment requires rapid loss of the radical^{26,30,31}.

3.5. Establishing a Redox Equilibrium: Kinetic Constraints

Many of the radiolytic reactions useful for generating radicals $A \cdot (7,9,10,16,19\cdot21)$ are so rapid that at practical concentrations of A of the order 10 μ mol dm⁻³ - 10 mmol dm⁻³, the production of radicals $A \cdot and/or B \cdot for$ the desired equilibrium I is complete a few microseconds after a radiation pulse. The rate of approach to equilibrium I is then controlled by k_I and k_{-I} :

$$k_{1.\text{obs}} \approx k_1[B] + k_{-1}[A].$$
 (7)

This approximation is usually valid if pulse radiolysis or flash photolysis involves generation of ca. 1 - 10 μ mol

dm⁻³ A.⁻ and/or B.⁻ and [A.⁻], [B.⁻] \leq [A], [B]. Here $k_{I,\text{obs}}$ is the first-order rate constant (units s⁻¹) obtained by plotting the appropriate function of absorbance vs. time. As equilibrium I is approached, significant loss of A.⁻, B.⁻ (e.g. by disproportionation):

$$2 A^{-} \rightarrow A + A^{2-}$$

must be negligible if K_I is to be estimated reliably. While k_I and/or k_{-I} may be of the order of 10^8 dm³ mol $^{-1}$ s $^{-1}$ for many electron-transfer reactions, it is frequently observed that protonation of A, A. $^-$, or A $^{2-}$ slows down electron-transfer rate constants by orders of magnitude, and then equilibrium I may not be achieved in competition with reaction 24 etc. Thus deprotonation of hydroquinones, phenols, ascorbate etc. is often necessary to observe reversible electron-transfer reactions of these substrates. 8

3.6. Calculation of Reduction Potentials From Concentrations at Equilibrium

By making the assumption that as [A], [B] is varied the radiolytic yield ($[A \cdot -] + [B \cdot -]$) remains constant, then⁷

$$K_1 \approx \frac{(A_{\text{obs}} - A_{\text{A}} \cdot \overline{)}}{(A_{\text{B}} \cdot \overline{-} - A_{\text{obs}})} \cdot \frac{[A]}{[B]}. \tag{8}$$

 A_{obs} is the absorbance at a constant dose (constant total radical concentration) in the solution containing A and B, and A_A , A_B , are the absorbances at the selected wavelength of A, and B, alone. Alternative algebraic routes to K_I have been used. 3.6 Under some circumstances a significant fraction of A, B may be converted to A, B, and calculation by an iterative procedure for the concentrations of A, B at equilibrium may be necessary.

3.7. Calculation of Reduction Potential From the Kinetics of the Approach to Equilibrium

From Eq. (7) we have:

$$\frac{k_{I,\text{obs}}}{[\mathbf{B}]} \approx k_I + k_{-I} \frac{[\mathbf{A}]}{[\mathbf{B}]}. \tag{9}$$

A plot of $k_{I,\text{obs}}/[B]$ vs. [A]/[B] yields an estimate of K_I from the ratio (intercept/slope). Again, the kinetics must reflect only the approach to equilibrium I and there must be insignificant loss of $A \cdot \bar{\ }$, $B \cdot \bar{\ }$ by other routes.

3.8. Effects of Ionic Strength, Temperature and Solvent

If either both reactants or both products of reaction I are charged then K_I defined by Eq. (4) will vary with ionic strength, I. We can either plot several measured values of ΔE_I against (say) I^I to extrapolate to zero ionic strength or use the Debye-Hückel equation to calculate

activity coefficient ratios.³² The limitations of such treatments to ionic strengths much lower than those used in many radiolysis experiments are well known. An alternative approach uses the Debye-Hückel-Brønsted-Davies expression for the primary kinetic salt effect.³³

$$\log k = \log k^{0} + 2z_{\Lambda} z_{P} A (I^{\frac{1}{2}} (1 + I^{\frac{1}{2}})^{-1} - BI)$$
 (10)

where the constants A, B vary with solvent and ions but are close to 0.5 and 0.2 respectively for water and typical ions. If for simplicity we abbreviate z_A , z_B to a,b (the charges on A,B) then reaction I may be written:

$$1' A^{(a-1)} + B^b \rightleftharpoons A^a + B^{(b-1)}.$$

It is readily shown that

$$\Delta E_0 = \Delta E_I + \Delta E_{\rm corr} \tag{11}$$

where the correction term to be added to the value ΔE_I measured at an ionic strength I is:

$$\Delta E_{corr}/\text{mV} \approx 59.1(b-a)f(I).$$
 (12)

The function f(I) appropriate for many reactions in water at 298 K can be approximated to:

$$f(I) \approx 1.02(I^{\frac{1}{2}}(1+I^{\frac{1}{2}})^{-1}-0.2I).$$
 (13)

If e.g. A = a bipyridinium dication and B = a quinone sulfonate monoanion then (b - a) = -3 and $\Delta E_{corr} \approx -16$ and -49 mV at I = 0.01 and 0.2 respectively. At a given pH we may see A^{-} protonated but A not and the salt effect then requires more careful consideration; with complex molecules the effective charge may differ from the nominal net charge,³⁴ and experiments at several ionic strengths are desirable. Some other effects of ionic strength are considered in Sec. 5.

Little work has been done on the effects of temperature and solvent. The author has used data³⁵ for the temperature-variation of the reduction potential of 1,1'-dimethyl-4,4'-bipyridinium dication and its benzyl analogue to show that $E(A/A^{-})$ for A = the 2-nitroimidazole, misonidazole varies with temperature at pH 7 in aqueous solution with $dE/dT \approx -1.1$ to -1.8 mV K⁻¹ depending on the viologen data used (unpublished work). Solvent effects (mixed aqueous: organic solutions) will vary widely, depending especially upon the net charges involved; illustrations of these effects have been presented. 36,37 Entropy changes can, of course, be estimated from dE/dT. Typical values of dE/dT for viologen reference compounds are -0.4 to -0.9 mV $K^{-1,35}$ and for simple nitroaryl compounds arc -1 to -2mV K⁻¹. Thus the common practice of ignoring variations in experimental temperatures may introduce systematic errors in estimates of E° of several mV, aside from other uncertainties noted below.

3.9. Relative and Absolute Uncertainties Associated With Measurements

From Eq. (5) an uncertainty of \pm 10% in K_1 corresponds to ca. \pm 2.6 mV in ΔE_1° . The lack of, or uncertainties in ionic strength corrections (where needed) may be at least of this order and in general values of ΔE_1° are unlikely to be more accurate than \pm 5 mV. The potentials of most redox indicators (see below, Sec. 5,6) are certainly not known to better than \pm 5-10 mV and a realistic uncertainty in $E^\circ(A/A^{-})$ of \pm 10 mV is probably the minimum associated with the data given in Tables 1-4. For couples of the form A^{-}/A^{2-} (Tables 5-8) ΔE_1° may often be measurable to \pm 10 mV or so⁸ but ionic strength effects, where present (either $a \neq 0$, $b \neq 0$ or $a \neq b$) in e.g. 0.5 mol dm⁻³ KOH may lead to treble this uncertainty in values of reduction potentials.

The potentials in the Tables are presented in integer millivolts mainly to minimize rounding errors where several values may be coupled together to facilitate calculations, or to facilitate calculation of equilibrium constants from which the potentials were derived. The absolute values of the potentials are seldom reliable to better than \pm 10 mV, and many may be uncertain by \pm 20 mV.

Couples involving protons (see below) introduce further uncertainties since thermodynamic pK_a 's are frequently unavailable. The effects of these possible systematic errors are discussed further below.

4. Effects of Prototropic Equilibria Upon Reduction Potentials

4.1. Introduction

Reduction potentials refer to reactions of the form:

25 oxidant
$$+ ne^- \rightarrow \text{reductant}$$
.

The couples A/A^{2-} , $A/A\cdot^-$ and $A\cdot^-/A^{2-}$ may represent the reactions involved in the two-electron reduction of A to A^{2-} , or the two individual one-electron steps, as described above. In the latter case, the radical species $A\cdot^-$ is involved as reductant in the couple $A/A\cdot^-$, and as oxidant in the couple $A\cdot^-/A^{2-}$. If protons are involved in the reaction:

26 oxidant +
$$nH^+ + ne^- \rightarrow reductant$$

then the reduction potential of the 'half-cell' describing the reaction varies with pH. However, the standard potential does not vary with pH, since it is defined as the potential referred to the hydrogen standard when each species in the reaction, including \mathbf{H}^+ if present, is at unit activity. This obviously includes the condition $\mathbf{pH} = 0$ if \mathbf{H}^+ is a reactant, and leads to considerable confusion. Symbols for standard potentials include E^{α} and E° ; the latter is often typeset as E^0 and frequently also expressed as E_0 even though the subscripted symbol does not refer

to a standard potential. Obviously, in verbal discussion the opportunities for confusion of E° and E_0 are even greater.

The symbol E_0 is best restricted to denote a *formal* rather than *standard* potential; this distinction should become clear later. Unfortunately, such formal potentials can have rather variable definitions, and care needs to be taken to ascertain just which constants are included in E_0 . This point is not always clear even in well-known texts, e.g. Clark's book, ²² and is discussed further below.

4.2. Coupling of Electrons and Protons in the Reaction

Suppose the reductant, formally represented by A^{2-} previously, can be involved in prototropic equilibria, e.g.:

$$AH_2 \rightleftharpoons AH^- + H^+$$

$$AH^- \rightleftharpoons A^{2-} + H^+$$

as can the radical intermediate, A. or the oxidant, A:

29
$$AH \rightarrow A^{-} + H^{+}$$

$$AH^+ \rightleftharpoons A + H^+$$
.

(It is important to recognise that free radicals may have dissociation constants for such equilibria which differ by several orders of magnitude from the corresponding dissociation in the ground state; thus for simple benzoquinones, $pK_{29} \gg pK_{30}$.^{3,38}) The two-electron reduction of A to A^{2-} can be represented *either* as 31a, excluding protons in the equation, or as 31b, which includes protons:

$$31a \qquad \qquad A + 2e^- \rightarrow A^{2-}$$

31b
$$A + 2H^+ + 2e^- \rightarrow AH_2$$

The standard potentials, $E^{\circ}(A/A^{2-})$ and $E^{\circ}(A, 2H^{+}/AH_2)$ have quite distinct definitions and values, and when discussing the reduction of A to A^{2-} or its protonated conjugates AH^{-} , AH_2 we should take care always to qualify E° as shown above with the oxidant/reductant couple in parentheses.

The electrode potential (reduction potential) of a system or couple is the e.m.f. of a cell in which the couple forms the right-hand electrode and the standard hydrogen electrode (s.h.e.) forms the left. If A^{2-} is involved in prototropic equilibria (reactions 27,28) of any significance over the pH range of practical interest — say 0 to 14 — then the potential of the half-cell in which A is reduced can be assigned the symbol $E_{\rm h}$. This is defined in the Nernst relationship:

$$E_{\rm h} = E^{\circ} + \frac{RT}{nF} \ln \left\{ \frac{\text{(product of activities of oxidant)}}{\text{(product of activities of reductant)}} \right\}$$
(14)

where E° is the standard potential of the oxidant/reductant couple as defined in the half-cell equation. The relationship can be expressed either using the half-cell reaction 31a:

$$E_{\rm h} = E^{\circ}(A/A^{2-}) + \frac{RT}{nF} \ln \frac{(A)}{(A^{2-})}$$
 (15)

or in terms of the half-cell reaction 31b, including protons:

$$E_{\rm h} = E^{\circ}(A, 2H^{+}/AH_{2}) + \frac{RT}{nF} \ln \frac{(A)(H^{+})^{2}}{(AH_{2})}$$
 (16)

whichever is most convenient (see below). (We generally follow the symbols used by Clark, 22 except in the more restrictive use of E_0 as shown below; activities are denoted by parentheses, (A) etc., while concentrations are represented by square brackets, [A] etc.) For simplicity we ignore, for the present, protonation of oxidant (reaction 30), i.e. $pK_{30} \leq 0$. E_h is not a standard potential, but merely the potential of a half-cell in which A is being reduced (in this case by two electrons, ignoring the individual one-electron couples). We could use the symbol $E_h(A, 2H^+/AH_2)$ to remind ourselves that the reduction is coupled to protons at some pH values of interest, but the reductant is really a mixture of all three prototropic conjugates.

4.3. General Approach to Describing the pH-Dependence of Reduction Potentials

As noted above, the standard potential $E^{\circ}(A, 2H^{+}/$ AH_2) is pH-invariant since the condition $(H^+) = 1$ applies. However, E_h will vary with pH since in Eq. (15) the activity of A2- will depend on equilibrium 28 conjugating A²⁻ with H⁺. In Eq. (16) not only will (AH₂) be controlled by equilibrium 27, but (H+) is also incorporated in the Nernst relationship. The general approach to deriving an expression relating E_h to (H^+) may be summarized: (i) Write down the reaction as a reduction of an oxidant to a reductant, reading left to right, in any form in which protons and electrons balance (e.g. reactions 25 or 26; 31a or 31b). (ii) Write down the Nernst expression for the reaction as written, with E° clearly defined in parentheses after the symbol (e.g. Eqs. (15) or (16)). (iii) Derive expressions for the fraction of total oxidant and/ or total reductant which are in the prototropic forms shown in the reaction as written, i.e. in the definition of E° . (iv) Substitute these terms in the Nernst expression, and separate out the term for the ratio of total activities (or concentrations, see below) of oxidants and reductants to define a mid-point potential, $E_{\rm m}$ when this ratio is unity. (v) A formal (not standard) potential, E_0 can then be defined to separate out the constants and present a relationship between $E_{\rm m}$ and pH which includes the dissociation constants for the prototropic equilibria involved. The standard potential E° is included in the constant E_0 but the latter may, or may not, approximate to E° , as discussed below.

Restricting ourselves for the present to defining E_h for the two-electron reduction of the oxidant A, and ignoring prototropic equilibria such as 30 involving the oxidant, we have already accomplished steps (i) and (ii) above to arrive at Eqs. (15) and (16). Using Eq. (16), for step (iii) we have to derive the proportion of total reductant in the form AH₂. Following Clark,²² we define the symbol S_r to denote the sum of reductants:

$$S_{r} = AH_{2} + AH^{-} + A^{2-}$$
 (17)

and define equilibrium constants for the dissociation of the reductant in decreasing numerical value:

$$K_{r1} = \frac{(AH^{-})(H^{+})}{(AH_{2})}$$
 (= K_{27}) (18)

$$K_{r2} = \frac{(A^{2-})(H^+)}{(AH^-)}$$
 (= K_{28}) (19)

We can then express (AH_2) in terms of (S_r) , K_{r1} and K_{r2} :

$$(S_r) = (AH_2) + (AH^-) + (A^{2-})$$
 (20)

$$(S_{\rm r}) = (AH_2) \left(1 + \frac{K_{\rm r1}}{(H^+)} + \frac{K_{\rm r2}}{(H^+)^2} \right)$$
 (21)

$$(AH_2) = (S_r) \left(\frac{(H^+)^2}{K_{r1}K_{r2} + K_{r1}(H^+)^2 + (H^+)^2} \right).$$
 (22)

To progress to step (iv) we define, for consistency, S_0 as the sum of the oxidants (only A if we ignore AH⁺ formation, reaction 30). Eq. (16) then becomes:

$$E_{\rm h} = E^{\circ}(A, 2H^{+}/AH_{2}) + \frac{RT}{2F} \ln \frac{(S_{0})}{(S_{r})} + \frac{RT}{2F} \ln \frac{(K_{r1}K_{r2} + K_{r1}(H^{+}) + (H^{+})^{2})(H^{+})^{2}}{(H^{+})^{2}}$$
(23)

if we separate out the term with $(S_o)/(S_r)$ since $(S_o) = (A)$. When $(S_o) = (S_r)$, E_h can be described as a 'midpoint' potential with symbol E_m :

$$E_{\rm m} = E^{\circ}(A, 2H^{+}/AH_{2}) + \frac{RT}{2F} \ln (K_{\rm rl}K_{\rm r2} + K_{\rm rl}(H^{+}) + (H^{+})^{2}).$$
 (24)

Beginning with the alternative 'orienteering reaction' 31a and its corresponding Nernst relationship Eq. (15), we have to derive an expression for (A^{2-}) analogous to Eq. (22), in a similar fashion:

$$(A^{2-}) = (S_{r}) \left(\frac{K_{r1}K_{r2}}{K_{r1}K_{r2} + K_{r1}(H^{+}) + (H^{+})^{2}} \right).$$
 (25)

We then obtain the alternative expression for E_m :

$$E_{\rm m} = E^{\circ}(A/A^{2-}) + \frac{RT}{2F} \ln \frac{(K_{\rm rl}K_{\rm r2} + K_{\rm rl}(H^{+}) + (H^{+})^{2})}{K_{\rm rl}K_{\rm r2}}.$$
(26)

Equations (24) and (26) describe the same parameter, $E_{\rm m}$, the potential of the half-cell in which A is reduced by 2 electrons when the sum of the activities of the oxidant equals the sum of the activities of the reductant. Equating these expressions, the relationship between the two standard potentials is:

$$E^{\circ}(A, 2H^{+}/AH_{2}) = E^{\circ}(A/A^{2-}) - \frac{RT}{2F} \ln (K_{r1}K_{r2}) . (27)$$

If potentials are in mV and $T \approx 298$ K:

$$E^{\circ}(A, 2H^{+}/AH_{2}) \approx E^{\circ}(\Lambda/\Lambda^{2-}) + 29.6(pK_{r1} + pK_{r2}).$$
 (28)

To obtain a more convenient expression for fitting data of $E_{\rm m}$ vs. pH to the appropriate function, Eq. (26) could be modified by incorporating the pH-independent term, $K_{\rm rl}K_{\rm r2}$ in the denominator, with the standard potential to yield a new constant, E_0 :

$$E_0 = E^{\circ}(A/A^{2-}) - \frac{RT}{2F} \ln (K_{r1}K_{r2})$$
 (29)

$$E_{\rm m} = E_0 + \frac{RT}{2F} \ln (K_{\rm rl} K_{\rm r2} + K_{\rm rl} ({\rm H}^+) + ({\rm H}^+)^2)$$
. (30)

Clark²² uses this procedure extensively. However, the definition of E_0 is often not immediately apparent in some more complex situations, and the symbol is very frequently used for a formal potential with a specific definition; this introduces an ambiguity which is discussed below.

4.4. Practical Application to One-Electron Reduction Potentials

Both equilibrium constants and mid-point potentials are usually measurable only in terms of *concentrations* rather than activities, and the expressions for the pH-dependence of $E_{\rm m}$ for one-electron couples will be derived in terms of these measurable quantities. Consider first the one-electron reduction of A, which can be represented by the two alternative equations:

$$32a$$
 $A + e^- \rightarrow A^{--}$

32b
$$A + H^+ + e^- \rightarrow AH \cdot .$$

These are linked by the prototropic equilibrium 29. The practical ionization constant for dissociation of AH· will mix concentrations and activities:

$$K'_{\rm r} = \frac{[A \cdot \bar{}](H^+)}{[AH \cdot]} \quad (=K'_{29}) \ . \tag{31}$$

The use of K' rather than K denotes the use of concentrations for all species except H^+ (activities of H^+ are measured with the glass electrode or calculated using standard buffers). The subscript r with K' is used since A is the oxidant and $AH \cdot /A \cdot ^-$ the reductant. Since there is only one ionization of the reductant considered, K'_r rather than K'_{r1} can be used.

The Nernst expression corresponding to the simpler alternative reaction 32a is:

$$E_{\rm h} = E^{\circ}(A/A^{-}) + \frac{RT}{F} \ln \frac{(A)}{(A^{-})}. \tag{32}$$

When modified to include activity coefficients, f defined by:

$$(\mathbf{A}) = f_{\mathbf{A}}[\mathbf{A}] \tag{33}$$

etc., this yields:

$$E_{\rm h} = E^{\circ}(A/A^{-}) + \frac{RT}{F} \ln \frac{f_{\rm A}}{f_{A^{-}}} + \frac{RT}{F} \ln \frac{[A]}{[A^{-}]}.$$
 (34)

Representing A by S_o and the sum of A^- and AH by S_r as before, and following the general approach described above:

$$[\mathbf{A}^{-}] = [S_r] \left(\frac{K_r'}{K_r' + (\mathbf{H}^+)} \right) \tag{35}$$

$$E_{h} = E^{\circ}(A/A^{-}) + \frac{RT}{F} \ln \frac{f_{A}}{f_{A^{-}}} + \frac{RT}{F} \ln \frac{[S_{o}]}{[S_{I}]} + \frac{RT}{F} \ln \left(\frac{K'_{r} + (H^{+})}{K'_{r}}\right).$$
(36)

If a formal potential, E_0 is now defined as the midpoint potential when the ratio of the total concentrations of oxidized and reduced species is unity, and H^+ is at unit activity (pH = 0), then from Eq. (36):

$$E_0 = E^{\circ}(A/A^{-}) + \frac{RT}{F} \ln \frac{f_A}{f_{A^{-}}} + \frac{RT}{F} \ln \left(\frac{K'_{r} + 1}{K'_{r}}\right).$$
(37)

$$E_{\rm m} = E_0 + \frac{RT}{F} \ln \left(\frac{K_{\rm r}' + ({\rm H}^+)}{K_{\rm r}' + 1} \right).$$
 (38)

For many species of interest, such as semiquinones, $K'_r \ll 1$ so that:

$$E_0 \approx E^{\circ}(A/A^{-}) + \frac{RT}{F} \ln \frac{f_A}{f_{A^{-}}} - \frac{RT}{F} \ln K'_{r} \qquad (39)$$

$$E_{\rm m} \approx E_0 + \frac{RT}{F} \ln (K_{\rm r}' + ({\rm H}^+))$$
 (40)

The latter two equations also result if E_0 has no specific definition but merely represents taking out the pH-independent terms in the expressions for E_h or E_m . The values of E_0 calculated from Eq. (39) rather than Eq. (37) may differ by negligibly small amounts, e.g. by 0.3 mV if $pK_r' > 2$; however, it is recommended that E_0 is defined clearly as the formal potential described above even though it introduces extra terms such as $(K_r' + 1)$ in the equations. We can then use consistently subscripts with E_m to denote pH and by definition, $E_{m0} = E_0$.

Equation (38) may also be derived starting from the alternative Nernst relationship corresponding to reaction 32b:

$$E_{\rm h} = E^{\circ}(A, H^{+}/AH) + \frac{RT}{F} \ln \frac{(A)(H^{+})}{(AH)}$$
 (41)

An expression is derived for [AH-] in terms of $[S_r]$, etc., except that E_0 in Eq. (38) now becomes (using the defined formal potential as before):

$$E_0 = E^{\circ}(A, H^{+}/AH) + \frac{RT}{F} \ln \frac{f_A}{F_{AH}} + \frac{RT}{F} \ln (K'_r + 1).$$
 (42)

At constant ionic strength, Eqs. (37) and (42) equate, so that

$$E^{\circ}(A/A^{-}) = E^{\circ}(A,H^{+}/AH^{-}) + \frac{RT}{F} \ln \frac{f_{A} RT}{f_{AH} F} \ln k'_{r}.$$
(43)

Since

$$K_{\rm r}' = K_{\rm r}^{\underline{f_{\rm A}}-}_{f_{\rm AH}} \tag{44}$$

$$E^{\circ}(A/A^{-}) = E^{\circ}(A, H^{+}/AII) + \frac{RT}{F} \ln K_{r}. \quad (45)$$

This relationship may be re-arranged in the same form as Eq. (28):

$$E^{\circ}(A, H^{+}/AH) \approx E^{\circ}(A/A^{-}) + 59.2 \text{ pK}_{r}.$$
 (46)

Obviously, Eq. (45) may also be derived more directly in the same way as was Eq. (27), using activities rather than concentrations, or by simply considering the free-energy changes in the reactions concerned.

Note that E_0 as defined by Eq. (42) does not equate to $E^{\circ}(A,H^+/AH\cdot)$, but if $K'_r \ll 1$ it approximates to it at low ionic strength. These formal potentials may be defined to include not only activity coefficients, but also e.g. complexation with counter-ions in the supporting electrolyte. Thus for the Fe(III)/Fe(II) couple, E_0 is dependent upon the nature of the acid as well as ionic strength. An exten-

sion of this approach is to define the formal potential to have some other 'standard' condition (really, non-standard!). For example, in biochemical systems (H^+) may be redefined with pH = 7 as the 'standard' state; a symbol such as E_0 may then be used.

Regardless of the definition of E_0 , at any two pH values, i and j, Eq. (38) yields:

$$E_{\rm mi} = E_{\rm mj} + \frac{RT}{F} \ln \left(\frac{K_{\rm r}' + 10^{-i}}{K_{\rm r}' + 10^{-j}} \right). \tag{47}$$

For the radical/reductant one-electron couple, the half-cell may be written in several forms:

33a
$$A \cdot \overline{} + e^{-} \rightarrow A^{2-}$$

33b $A \cdot \overline{} + H^{+} + e^{-} \rightarrow AH^{-}$
33c $A \cdot \overline{} + 2H^{+} + e^{-} \rightarrow AH_{2}$
33d $AH \cdot + H^{+} + e^{-} \rightarrow AH_{2}$.

The Nernst expression for reaction 33a is:

$$E_{\rm h} = E^{\circ}(A^{-}/A^{2-}) + \frac{RT}{F} \ln \frac{(A^{-})}{(A^{2-})}$$
 (48)

The radical species AH./A. is now the oxidant, rather than the reductant as in the example immediately preceding. Thus we denote:

$$K'_{0} = \frac{[A \cdot \bar{}](H^{+})}{[AH \cdot]} \quad (= K'_{29})$$
 (49)

(cf. (Eq. 31)), and

$$[A^{-}] = [S_o] \left(\frac{K'_o}{K'_o + (H^+)} \right)$$
 (50)

(cf. (Eq. 35)). The reductant concentration, $[A^{2-}]$ is defined by Eq. (22) except that concentrations replace activities and practical ionization constants K'_{rl} , K'_{r2} are used. We then obtain:

$$E_{0} = E^{\circ}(A^{-}/A^{2-}) + \frac{RT}{F} \ln \frac{f_{A^{-}}}{f_{A^{2-}}} + \frac{RT}{F} \ln \left(\frac{K'_{0}}{K'_{0}+1}\right) + \frac{RT}{F} \ln \left(\frac{K'_{1}K'_{12} + K'_{11}(\mathbf{H}^{+}) + (\mathbf{H}^{+})^{2}}{K'_{1}K'_{12}}\right).$$
(51)

If the formal potential, E_0 is defined strictly as before, with unit ratio of total concentrations of oxidant to reductant, and $(H^+) = 1$, then:

$$E_{0} = E^{\circ}(A^{-}/A^{2-}) + \frac{RT}{F} \ln \frac{f_{A^{-}}}{f_{A^{2-}}} + \frac{RT}{F} \ln \left(\frac{K'_{o}}{K'_{o} + 1}\right) + \frac{RT}{F} \ln \left(\frac{K'_{r1}K'_{r2} + K'_{r1} + 1}{K'_{r1}K'_{r2}}\right).$$
(52)

$$E_{m} = E_{0} + \frac{RT}{F} \ln \left(\frac{K'_{rl}K'_{r2} + K'_{rl}(H^{+}) + (H^{+})^{2}}{K'_{o} + (H^{+})} \right) + \frac{RT}{F} \ln \left(\frac{K'_{rl}K'_{r2} + K'_{rl} + 1}{K'_{rl}K'_{r2} + K'_{rl} + 1} \right).$$
 (53)

The last term in Eq. (53) will be negligible if K'_0 , K'_{r1} , $K'_{r2} \ll 1$. Indeed, as noted above, it would be omitted if E_0 was simply defined by combining the pH-independent terms in Eq. (51).

Corresponding pairs of expressions for E_0 and E_m are derived setting out from the alternative orienteering reactions 33b-d. The standard potentials are related by:

$$E^{\circ}(A^{-}/A^{2-}) = E^{\circ}(A^{-}, H^{+}/AH^{-}) + \frac{RT}{F} \ln K_{r2}$$
(54a)
$$= E^{\circ}(A^{-}, 2H^{+}/AH_{2}) + \frac{RT}{F} \ln K_{r1}K_{r2}$$
(54b)

=
$$E^{\circ}(AH\cdot, H^{+}/AH_{2}) + \frac{RT}{E} \ln \frac{K_{r}K_{z}}{K}$$
. (54c)

These relationships, and also Eqs. (27) and (45) can be most simply obtained by writing down the appropriate equations and summing the free energy changes involved

Again, for any two pH values, i and j, Eq. (51) or Eq. (53) yields:

$$E_{mi} = E_{mj} + \frac{RT}{F} \ln \left(\frac{K'_{t1}K'_{t2} + K'_{t1}(10^{-i}) + 10^{-2i}}{K'_{t1}K'_{t2} + K'_{t1}(10^{-j}) + 10^{-2j}} \right) + \frac{RT}{F} \ln \left(\frac{K'_{0} + 10^{-i}}{K'_{0} + 10^{-i}} \right).$$
 (55)

We neglected earlier the possibility of protonation of the oxidant, A as in equilibrium 30. Returning to the one-electron reduction of A, to incorporate this equilibrium we define:

$$K'_{0} = \frac{[A](H^{+})}{[AH^{+}]} \quad (= K'_{30}).$$
 (56)

Following the usual approach we obtain, for example:

$$E_i = E_j + \frac{RT}{F} \ln \left(\frac{K_t' + 10^{-i}}{K_t' + 10^{-j}} \right) \left(\frac{K_o' + 10^{-j}}{K_o' + 10^{-j}} \right).$$
 (57)

This describes the variation with pH of the mid-point potential of the oxidant/radical one-electron couple, in place of Eq. (47).

4.5. Examples of the pH-Dependence of One-Electron Reduction Potentials and Suggestions for Symbols

The quinone/semiquinone and semiquinone/hydroquinone one-electron couples are illustrated in Figs. 1 and 2 respectively. The mid-point potentials, $E_{\rm m}$ are plotted vs. pH for 1,4-benzoquinone. (The numerical values used are those calculated in Sec. 5.5, below). The pH range 0-14 is separated into regions with pK values defining the 'break points'. In each region, the prototropic forms of the species predominating are shown in a box: oxidant, upper species; reductant, lower. The positions of the various standard potentials, E° are also given. It should be stressed that the apparent coincidence of some standard potentials with intercepts (pH 0) or asymptotes (pH \approx 14) in the curves of $E_{\rm m}$ vs. pH arises because of the identity: $0 \ll (pK_s, pK_{r1}, pK_{r2}) \ll |4 \text{ in this example,}$ and not by definition $(pK_s = pK_a)$ for dissociation of the semiquinone species, QH.).

It has been stressed already that E^{\bullet} should always be qualified with the half-cell reaction in parenthesis, as shown in Figs. 1 and 2, and that E_0 is to be preferred as a defined, formal potential rather than a collection of constants. However, convenient abbreviations to qualify E_m are not so simply defined; perhaps it is reasonable to use the prototropic forms predominating over the pH range of most interest. Thus the abscissae in Figs. 1 and 2 might be labeled: $E_m(A/A.^-)$ and $E_m(Q.^-, 2H^+/QH_2)$ respectively. We stress again that E^* loes not vary with pH.

It has been common practice to use superscripts to qualify symbols for first and second one-electron reduction potentials, with subscripts for pH e.g. $E_{13.5}^+(A/A^{-})$ or $E_{13.5}^2(A^{-}/A^{2-})$. This now seems superfluous and possibly confusing. On the other hand, if results are described as

mid-point potentials throughout (except where standard potentials are clearly denoted), it seems reasonable to use E_i for simplicity rather than E_{mi} , where the subscript i is the pH.

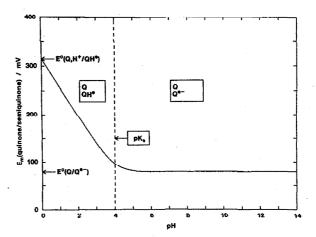


Fig. 1. Variation of the mid-point potential, \mathbf{E}_m with pH of the one-electron couple: quinone/semiquinone for 1,4-benzoquinone.

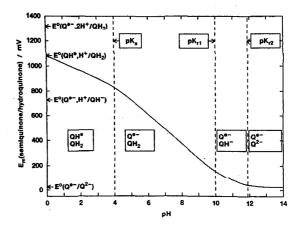


Fig. 2. Variation of the mid-point potential, E_m with pH of the one-electron couple: semiquinone/hydroquinone for 1,4-benzo-quinone

The variation of E_m with pH may be influenced by prototropic functions not closely associated with the redox center, if the pK₃ of the function differs in oxidant and reductant. Figure 3 shows an example of the effect of a basic function in the substituent in a nitroaryl compound. The unsubstituted imidazolyl nitrogen has $pK_a \leq$ 0 in the ground state and may be ignored. However, this site is protonated in the electron adduct (radical), with $pK'_{r1} \approx 5.0$. The piperidino nitrogen in the substituent protonates with $pK'_0 \approx 7.6$ in the ground state, but the inductive effect of the nitroaryl group is reduced in the electron-adduct: $pK'_{r2} \approx 8.5$ fits the experimental data. This shift in p K_a of ~ 0.9 is observed in spite of an 'insulating' saturated carbon chain separating the basic site and the redox center. (In this example, the nitro group will be protonated in the radical, but this occurs at pH values lower than those shown.)

Similarly, other unpublished work by the author indicates the carboxylate function in 4-nitrobenzoic acid dissociates with a pK_a about 0.9 higher in the radical-ion than the ground state. Such effects, if ignored, result in significant errors in extrapolating to lower pH values. They may be present to some extent, although as yet undetected, in biologically-important redox couples involving tryptophan and tyrosine, for example.

4.6. The Use of Mid-Point Potentials in Calculating Equilibrium Constants

The Introduction (Sec. 1) showed how reduction potentials were related to electron-transfer equilibria such as 1:

$$1 A^{-} + B \rightleftharpoons A + B^{-}.$$

If A, B and/or the radicals, A, B, are involved in prototropic equilibria, then the measured mid-point potentials E_{mi} will yield, via Eq. (5), an apparent or effective equilibrium constant, K_i where:

$$K_i \approx \left(\frac{[S_{\rm A}][S_{\rm B}]}{[S_{\rm B}][S_{\rm A}]}\right). \tag{4'}$$

This is a modification of Eq. (4) where, following previous use, we replace [A], $[A \cdot -]$, etc. by the sums of the concentrations of related prototropic conjugates: $[S_{A} -] = ([A \cdot -] + [AH \cdot])$, etc. Such an effective equilibrium constant is most useful in predicting the overall equilibrium, or direction of electron flow, as illustrated in Fig. 4.

This figure represents an equilibrium I in which, like semiquinones for example, the reductant species A^- , B^- participate in prototropic equilibria, with $E^{\circ}(A/A^-)$ and $E^{\circ}(B/B^-) = -400$ and -300 mV respectively but with pK_a for the dissociation of the protonated conju-

gates, AH· and BH· = 8 and 5 respectively. At pH \geqslant 9, K_i can be calculated from Eqs. (1) and (5) to be \approx 49. However, because E_{mi} increases more rapidly with decreasing pH for the oxidant A compared to B, the *effective* position of the equilibrium reverses at pH \leqslant 6. At pH \leqslant 4, K_i is approximately constant at \approx 0.05.

It is preferable to treat such pH-dependent equilibria in this way rather than add protons to equilibrium *I* and work with complex equilibrium expressions. There is, however, an important *kinetic* consequence of these prototropic equilibria in many instances. It is commonly observed that protonation (or absence of ionization) of

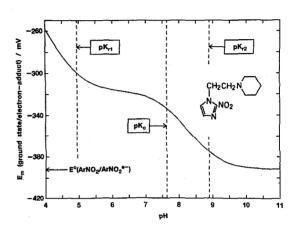


Fig. 3. Variation of the mid-point potential, E_m with pH of the oneelectron reduction potential of 1-(2-piperidinylethyl)-2-nitroimidazole (ArNO₂)

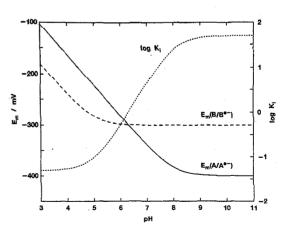


Fig. 4. Variation of the mid-point potentials, E_m with pH of the one-electron couples of two hypothetical oxidants A and B (see text) and the logarithm of the effective equilibrium constant K_i for the one-electron transfer equilibrium between these oxidants and their electron-adducts

basic (or acidic) functions slows down the rates of electron transfer reactions, often dramatically, as noted in Sec. 3.5. The rate of approach to equilibrium 1 may depend, for example, on the fraction of radicals from A present in the form A. rather than the much less reactive AH. Thus the electron-transfer equilibrium 1 may not be kinetically achievable under practicable conditions even though calculation readily establishes the thermodynamic feasibility. In general, prototropic equilibria are established so rapidly that the kinetics of proton transfer are seldom rate-determining.

Other, some more complex, illustrations of the effects of prototropic equilibria on reduction potentials have been discussed, e.g. for quinones, ^{6,39-42} nitroaromatic compounds, ⁷ flavins, ⁴³ phenoxyl radicals, ⁸ etc. The principles of the calculations are simply as outlined above in Sec. 4.3. In some instances, however, the formulae given represent approximations to those derived herein. In almost every case the practical implications of such differences are negligible.

5. Calculation of One-Electron Reduction Potentials Using Radical Formation Constants

5.1. Introduction

Radicals, e.g. A. $\overline{}$ may be present in equilibrium with oxidant, A and reductant, A^{2-} or their protonated conjugates:

$$A + A^{2-} \rightleftharpoons 2 A^{-1}$$

and a radical formation constant can be defined:

$$K_{\rm f} = \frac{(\mathbf{A}^{-})^2}{(\mathbf{A})(\mathbf{A}^{2-})}$$
 (58)

The value of $K_{\rm f}$ is obviously a measure of the steadystate concentrations of radicals, A.- obtained on mixing oxidant A with reductant, A²⁻. When experimental conditions result in sufficiently high concentrations of radicals to be measured, estimates of $K_{\rm f}$ can be used in conjuction with the two-electron potentials, $E^{\circ}(A/A^{2-})$ or $E^{\circ}(A, 2H^{+}/AH_{2})$ to obtain estimates of the one-electron couples, $E^{\circ}(A/A^{-})$, etc.

5.2. Derivation of Expressions

Reaction 34 (above) can be obtained by subtracting 33a from 32a:

32a
$$A + e^- \rightarrow A^{-}$$

$$33a \qquad A^{-} + e^{-} \rightarrow A^{2} .$$

Eq. (59) is obtained by subtracting the corresponding free-energy changes:

$$E^{\circ}(A/A^{-}) - E^{\circ}(A^{-}/A^{2-}) = \frac{RT}{F} \ln K_{f}.$$
 (59)

If we add reaction 32a to reaction 33a we obtain reaction 31a. Noting that n = 2 in the conversion of free energy to potential, Eq. (2), in the latter reaction:

$$E^{\circ}(A/A^{-}) + E^{\circ}(A^{-}/A^{2-}) = 2 E^{\circ}(A/A^{2-})$$
 (60)

(cf. Eq. (6)). Adding Eqs. (59) and (60) yields:

$$E^{\circ}(A/A^{-}) = E^{\circ}(A/A^{2-}) + \frac{RT}{2F} \ln K_f$$
 (61)

while subtraction gives:

$$E^{\circ}(A^{-}/A^{2-}) = E^{\circ}(A/A^{2-}) - \frac{RT}{2F} \ln K_{\rm f}.$$
 (62)

Using Eq. (28) with potentials in mV and $T \approx 298 \text{ K}$:

$$E^{\circ}(A/A \cdot \bar{}) \approx E^{\circ}(A, 2H^{+}/AH_{2}) -29.6(pK_{r1} + pK_{r2} + pK_{f})$$
 (63)

$$E^{\circ}(A \cdot ^{-}/A^{2-}) \approx E^{\circ}(A, 2H^{+}/AH_{2}) -29.6(pK_{t1} + pK_{t2} - pK_{i})$$
 (64)

where K_{r1} , K_{r2} are the dissociation constants for AH₂ and AH⁻ respectively as defined in Eqs. (18) and (19).

It may be difficult to measure K_f directly, e.g. because very high pH values may be required to ionize completely the reductant to A^{2-} . It is much more convenient to define an apparent formation constant, K_{fi} at an experimentally accessible pH, i:

$$K_{fi} = \frac{(S_s)^2}{(S_o)(S_f)}$$
 (65)

We follow previous symbolism and define S_o and S_r as the sums of the oxidant (only A) and reductant (AH₂ + AH⁻ + A²⁻) respectively, as before, and use S_s to represent the sum of the radical intermediate species. The subscript s is convenient because the radical will be a semiquinone in many examples. It is easily shown, using the approach already used in Sec. 4.3, that:

$$K_{\rm f} = K_{\rm f} \left(\frac{K_{\rm S}}{K_{\rm S} + ({\rm H}^+)} \right) \left(\frac{K_{\rm rl} K_{\rm r2} + K_{\rm rl} ({\rm H}^+) + ({\rm H}^+)^2}{K_{\rm rl} K_{\rm r2}} \right) (66)$$

where K_{r1} , K_{r2} are defined in Eqs. (18) and (19) as before and $K_s - K_{29}$.

As noted earlier, in practice, concentrations rather than activities are generally measured. We will usually obtain an estimate of K_t or K_{ti} at some ionic strength, I. Using K_b K_{ti} as before to denote the apparent formation constants thus defined in *concentration* terms except for (H^+) , together with the mid-point potentials E_{mi} measured at the same ionic strength, it can be shown that:

$$E_{mi}(A/A^{-}) = E_{mi}(A/A^{2-}) + \frac{RT}{2F} \ln K'_{fi}$$
 (67)

$$E_{mi}(A^{-}/A^{2-}) = E_{mi}(A/A^{2-}) - \frac{RT}{2F} \ln K'_{fi}.$$
 (68)

The mid-point condition now refers to the sum of the concentrations of oxidant being equal to the sum of the concentrations of reductant. (The activity coefficient terms in Eqs. (36) and (51) cancel out the terms in Eq. (69)).

$$K_{\rm f}' = K_{\rm f} \frac{f_{\rm A}^2 - f_{\rm A}}{f_{\rm A} f_{\rm A}^2 - f_{\rm A}}$$
 (69)

5.3. Examples of Calculations

The one-electron reduction potential of the oxidant, duroquinone (DQ) can be estimated using electrochemical data for the reduction potential of the two-electron couple: duroquinone/durohydroquinone, and spectrophotometric measurement of the semiguinone concentration present in mixtures of the quinone and hydroquinone at high pH. Interpolating Baxendale and Hardy's data^{44,45} to yield values at 298 K give: pK'_{1} = 11.24, $pK_{r2}' = 12.83$ and $pK_{f}' = 0.11$ at I = 0.65. Conant and Fieser⁴⁷ indicate $E^{\circ}(DQ,2H^{+}/DQH_{2}) = 480 \text{ mV}$ (but used 50% ethanol). Equation (63) then yields an estimate of $E^{\circ}(DQ/DQ^{-}) = -236 \text{ mV}$, ignoring the use of practical rather then thermodynamic equilibrium constants. Alternatively, Michaelis et al.48 estimated E_{mi} (duroquinone/durohydroquinone) using 20% pyridine in water at 303 K, for pH (i) = 7.4 to 13.5; a value of $E_{\rm m7}$ = 41 mV is interpolated. Baxendale and Hardy's data, 44,45 and p $K'_s = 5.1$ from pulse radiolysis, yields K'_{17} = 1.1 \times 10⁻¹⁰. Using Eq. (67), $E_7(DQ/DQ^{-1}) = -254$ mV is estimated. These values are similar to those obtained quite independently by Wardman and Clarke³² using pulse radiolysis.

(A number of authors have used $pK'_{12} = 13.2$ for duroquinone, as tabulated from Bishop and Tong⁴⁶ from Baxendale and Hardy's measurements. The original data⁴⁴ clearly show pK'_{12} varying between 13.17 at 14.9 °C to 12.70 at 29.8 °C, from which the present author interpolates a value of 12.83 at 298 K).

Electron spin resonance measurements⁴⁹ of the steady-state concentrations of ascorbyl radicals produced on mixing the reductant, ascorbic acid with the corresponding oxidant, dehydroascorbic acid gave estimates of $K_{\rm fi}$ between pH 4.0 and 6.4. An estimate of $K_{\rm f}=1.2\times10^{-3}$ is obtained using Eq. (66) and p $K_{\rm rl}'=4.21$, p $K_{\rm rl}'=11.52$ (representative literature values) and p $K_{\rm s}=-0.45.^{50}$ A value of $E_{\rm m0}=400$ mV for the two-electron reduction (see Clark, ²² p.470), will be close to $E^{\circ}(A, 2H^+/AH_2)$, from Eq. (24). Eq. (64) yields $E^{\circ}(A^-/A^2^-)\approx19$ mV for A^2- ascorbic acid. Steenken and Neta, ⁸ using the pulse radiolysis redox equilibrium method, estimated $E_{13.5}(A^-/A^2^-)=15$ mV. This is well within the uncer-

tainty of the independent calculation. (Because p $K'_{r2} \approx 11.5$, $E_{13.5}(A^{-}/A^{2-}) \approx E^{\circ}(A^{-}/A^{2-})$).

5.4. Uncertainties In the Calculations

As an example, consider the calculation for $E^{\circ}(A/A^{-})$ for A = simple quinones. Clark's tables²² of values of E_0 for the two-electron reduction of many quinones indicate random uncertainties of 5-15 mV, the higher values including measurements in partly non-aqueous solvents. In these cases E_0 approximates to $E^{\circ}(A, 2H^+/AH_2)$. To calculate the uncertainty in the estimate of $E^{\circ}(A/A^{-})$, for example, we also need to consider the uncertainty in the sum: $pK_{r1} + pK_{r2} + pK_{f}$, as indicated in Eq. (63). Estimates⁴⁴⁻⁴⁶ of pK'_{r1} , pK'_{r2} and pK'_{r1} refer to ionic strengths of 0.65 or 0.375, and the substitution of these practical constants for the thermodynamic constants required in Eq. (63) introduces systematic errors.

Perrin et al. ⁵¹ derived a formula to correct practical ionization constants. For dissociation of the weak acid $HA^{(n-1)-}$:

$$HA^{(n-1)-} \rightleftharpoons A^{n-} + H^+$$

$$pK \approx pK' + [(2n - 1)/2]f(I).$$
 (70)

We have adapted his formula to use the ionic strength function, f(I) previously defined:

$$f(I) \approx 1.02(I^{1}(1+I^{1})^{-1}-0.2I).$$
 (13)

At high ionic strengths, $I \approx 0.4$ -0.6, reliable use of Eq. (70) is doubtful. However, we see that for uncharged quinones (e.g. duroquinone), pK'_{r1} and pK'_{r2} may underestimate the thermodynamic values by ca. 0.1-0.2 and 0.5 respectively. It can be shown that

$$pK_f \approx pK_f' - f(I) \tag{71}$$

for uncharged oxidants A, i.e. for uncharged quinones. The semiquinone formation constant decreases with increasing I so that pK_f over estimates pK_f by ca. 0.3 at $I \approx 0.4$ -0.6. There is thus partial canceling-out of these systematic errors in the application of Eq. (63). The systematic error introduced into the calculation of $E^{\circ}(A/A^{-})$ will still amount to the estimate being ca. 10 mV more positive than the true value.

Even for these simple quinones, generally only one estimate⁴⁴⁻⁴⁶ of the ionization and formation constants required is available. *Even discounting random errors* in their determination, the calculations of one-electron reduction potential as described in this section must involve uncertainties of *at least* 10-20 mV is general. Similar consideration may be given to other applications of the formulae derived.

These illustrations may be used, in turn, to refine calculations of standard potentials using experimental measurements of ionization and formation constants. Thus the bisestime data $^{4.48}$ for 1,4-benzoutinone may be considered to yield estimates of the thermodynamic constants $pK_{11}, pK_{22}, pK_{33}$ and pK_{4} of 10.0, 11.9, 4.0 and =0.97 respectively. Using the well-established 22 $E^*(0.2)1^4/Q11_2) = 699$ mV yields estimates of $E^*(Q,Q^{-1}) = 78$ mV and $E^*(Q,Q^{-1}) = 24$ mV, the former some 20 mV lower than previous estimates. 42 In fact, such corrections are not so straight-forward, since Baxendale and Hardy 44 included some activity coefficients (of the buffers used) in defining K'_{11}, K'_{12} . The simple application of Eqs. (70) or (71) may be inappropriate in some instances.

6. Recommended Redox Indicators and Their Potentials

The choice of redox indicators B with which to establish and measure the position of the desired equilibrium I with the unknown A is influenced by several factors. Ideally, determinations of K_I with two indicators — one higher than the unknown by (say) 50-100 mV, one lower — will lead to the most reliable value. In practice, the choice depends on solubilities, absorption spectra of reactants and products, pK_a 's, kinetic constraints, (especially the need for fast electron transfer, see above, Sec. 3.5) and ready availability with adequate purity.

6.1. Oxygen

Oxygen is an important reactant with many radicals, although electron-transfer rather than radical-addition is a pre-requisite and it is somewhat inconvenient to vary the concentration of oxygen over a wide range. It is useful to draw attention again to the standard definition: $E^{\circ}(O_2(1 \text{ atm.})/O_2^{-}) = -325 \text{ mV}$ whereas $E(O_2(1 \text{ mol dm}^{-3})/O_2^{-}) = -155 \text{ mV}$.

6.2. Quinones

Reduction potentials for the couples A/A- and A--/ A^{2-} for A = quinones may be calculated^{4,5,6,42} from the ionization constants of AH2 and the semiquinone formation constants, as described above (Sec. 5). Completely independent estimates of $E^{\circ}(A/A^{-})$ for A =duroquinone are provided by the measurements of ΔE_1 corrected to I = 0 for A = duroquinone and B = 1,1'dibenzyl-4,4'-bipyridinium dication. 32 Values of ΔE_1 of 110 ± 4^{32} , 113 ± 4^{52} , and 107 ± 3^{53} mV together with $E^{\circ}(B/B^{-}) = -354 \text{ mV}$ (but see below, Sec. 6.3) yield $E^{\circ}(A/A^{-}) = -244$ mV for duroquinone, in good agreement with the values calculated^{4,5,6,42} from dissociation constants (see also Sec. 5.3). A value of $E^{\circ}(A/A^{-1})$ = -375 mV for 9,10-anthraquinone-2-sulfonate is a reasonable mean of estimates based on equilibria involving duroquinone^{7,32,52}, and two bipyridinium indicators ^{32,52,53} and is quite close to the value -360 mV obtained polarographically at high pH.24 The more negative potential now recommended for benzyl viologen (see below) will result in corresponding alterations to the values for the quinone couples, e.g. to -260 mV for duroquinone and -390 mV for 9,10-anthraquinone-2-sulfonate.

Reduction potentials for other quinone couples have been calculated^{4,5,6,42} from literature data and experimentally derived⁴³ from equilibrium measurements. They can be relicd upon when confirmed by independent routes, e.g. when the values are consistent with measurements of the A^-/O_2 equilibrium. ^{5,6,43} 1,4-Benzoquinone (Q) is a recommended standard, with $E^{\circ}(Q/Q^{-}) = 78$ mV and $E^{\circ}(Q^{-}/Q^{2^{-}}) = 24$ mV, as calculated in Sec. 5.4.

6.3. Bipyridinium Compounds (Viologens)

While these viologens are, in principle, excellent redox indicators because the radicals A. are essentially stable in aqueous solution and have a high extinction coefficient at wavelengths where interfering absorptions are seldom a problem, a note of caution is appropriate. Not only is variable water of hydration a problem (relatively minor in this context) with the dimethyl derivative (paraquat), but variable purity of commercial samples of both viologens has been noted. Note, however, that the spectra of the viologen radical cations are concentration-, temperature- and time-dependent32,54-59 and that electrochemical measurements may involve higher concentrations of these cations than are utilized in pulse radiolysis measurements. The spectral changes arise because the radical cations V.+ obtained on one-electron reduction of viologens, V2+ dimerize:

36
$$(V^{+})_{2} \rightleftharpoons V^{+} + V^{+}$$

Estimates of the apparent dimer dissociation constant, K'_D have been made. These vary from $\sim 1.5 \times 10^{-3}$ mol dm⁻³ for methyl viologen⁵⁵⁻⁵⁷ to $\sim 2.7 \times 10^{-3}$ (ethyl viologen)⁵⁸ and 2×10^{-5} mol dm⁻³ (benzyl viologen),⁵⁹ under the experimental conditions used (K'_D is ionic strength dependent). If x is the fraction of radicals in the monomeric form and S_r is the total concentration of reductant ([V·⁺] + 2[(V·⁺)₂]), then:

$$K_{\rm D}' = \frac{2S_{\rm r}x^2}{(1-x)}. (72)$$

The ~ 100 -fold lower value of K_D for benzyl viologen compared to its methyl analogue has serious implications in using the former as a redox indicator, since it is seen that if e.g. $S_r = 10^{-5}$ mol dm⁻³, $x \approx 0.6$ with benzyl viologen. By application of the Nernst relationship in a similar manner to that used in Sec. 4, it can be shown that:

$$E_{m} = E^{\circ}(V^{2+}/V^{+})$$

$$-\frac{RT}{F} \ln \left\{ \frac{K_{D}}{4S_{r}} ([1 + (8S_{r}/K_{D})]^{\frac{1}{2}} - 1) \right\}. \quad (73)$$

If, e.g. $K_D = 5 \times 10^{-5}$ mol dm⁻³ and $S_r = 2.5 \times 10^{-4}$ mol dm⁻³, E_m is ca. 30 mV more positive than $E^{\circ}(V^{2+}/V^{-1})$.

Concentration-dependent mid-point potentials for benzyl viologen (BV²⁺) have been reported⁶⁰⁻⁶¹ and it seems likely that the value of this reference potential is more negative than the electrochemical data suggest.⁶¹ A provisional value of -370 mV would be reasonable, pending further investigation; such a value is also consistent with unpublished work by the author with Mr. E.D. Clarke. Experiments determining ΔE for nitroaryl compounds vs. both benzyl and methyl viologen indicated either $E^{\circ}(V^{2+}/V^{\cdot+})$ for the benzyl analogue was lower than -354 mV (previously assumed) or the value for methyl viologen was higher than the well-established value of -448 mV. The apparent correction necessary was usually ~ 16 mV, in agreement with the new recommendation for $E^{\circ}(BV^{2+}/BV^{\cdot+}) = -370$ mV.

This problem of dimerization of viologen radicalcations has serious implications in estimating the value of $E^{\circ}(BV^{2+}/BV^{+})$ from electrochemical measurements. It is much less of a problem when electron-transfer equilibria with BV.+ as reactant are studied by pulse radiolysis, since $[BV^{+}]$ is typically $\leq 1 \mu \text{mol dm}^{-3}$ at equilibrium, and the equilibrium point may well be established before significant dimerization (reverse of reaction 36) can occur. Dimerization is also much less of a problem with methyl viologen (MV2+), and there are so many values published (see Table 3, compound 3.8.2) that outliers can be clearly identified. A value of $E^{(MV^{2+}/MV^{+})} = -448 \text{ mV}$ is recommended. The usefulness of low potential viologens in particular, outweigh these uncertainties. The reported⁶² protonation of the methyl viologen radical cation with $pK_a = 1$ seems more likely ascribable to other reactions⁶³, and the pHindependence of these couples is a further advantage.

6.4. Hydroquinones and Phenols

The studies of Steenken and Neta^{8,64} of equilibria of the form:

$$\mathbf{A} \cdot^{-} + \mathbf{B}^{2-} \rightleftharpoons \mathbf{A}^{2-} + \mathbf{B} \cdot^{-}$$

with A^2 , B^2 = hydroxy- and amino-phenois, phenylenediamines, etc. have provided values of $E_{13.5}(A^{-}/A^{2-}) = 23$, 43 and 174 mV for $A^{2-} = hy$ droquinone, 1,2-dihydroxybenzene (catechol) and 4-(N,N-dimethylamino)phenol respectively. These are supported by internal consistency of measured values of K_{37} . Their value of $E_{13.5}(A \cdot ^-/A^{2-}) = 266 \text{ mV for } A^{2-} =$ N,N,N',N'-tetramethyl-p-phenylenediamine is similarly supported by other redox equilibria,64 and by earlier electrochemical measurements⁶⁵ so that an estimate⁸ of 88 mV may be discounted. All the equilibria were measured at $I \approx 0.5$. It is worth stressing again that values of reduction potentials enable the thermodynamic feasibility of reactions to be calculated, not the likelihood; deprotonation of reactants may be necessary before the rates of reaction become sufficiently fast for the reaction to proceed. The lack of reversibility of the NAD-/NADH couple for nicotinamide adenine dinucleotide has been discussed.⁶⁶

6.5. Inorganic Indicators Other Than Oxygen

Reference to Table 9 indicates the high reliability of $E^{\circ}(\text{ClO}_2\cdot/\text{ClO}_2^-) = 934 \text{ mV}$. More powerful oxidants include halogen- and pseudohalogen radical-anions, e.g. $(\text{SCN})_2\cdot^-$ or $\text{Br}_2\cdot^-$; the reduction potentials of these radicals are established to $ca. \pm 30 \text{ mV}$; values of $E^{\circ}((\text{SCN})_2\cdot^-/2\text{SCN}^-) = 1330 \text{ mV}$ and $E^{\circ}(\text{Br}_2\cdot^-/2\text{Br}^-) = 1660 \text{ mV}$ are presently recommended.

A useful, very low potential inorganic oxidant is Tl^+ , the reduced form of which is in equilibrium with Tl_2^+ :

$$Tl^0 + Tl^+ \rightleftharpoons Tl_2^+$$
.

The equilibrium constant $K_{50} = 140 \text{ dm}^3 \text{ mol}^{-1}$ and under certain conditions equilibrium 38 may be attained faster than electron transfer between Tl^+ and reductants.⁶⁷ Hence providing account is taken of the equilibrium 38, the reduction potential of very low potential oxidants may be derived using Tl^+ as indicator and $E^{\circ}(\text{Tl}^+/\text{Tl}_{20}^{\circ}) = -1.94 \text{ V}.^{67}$

7. Prediction of Reduction Potentials for Unknown Couples

7.1. Use of Polarographic and Cyclic Voltammetric Data Obtained Using Non-Aqueous Solvents

The literature of electrochemical measurements of $E(A/A^{-})$, $E(A^{-}/A^{2-})$ in aprotic solvents is voluminous. Such measurements will generally differ considerably in absolute terms (when corrected to s.h.e., see above, Sec. 2.2) from corresponding values for water. However, relative effects in aprotic solvents, e.g. the influence of substituents⁶⁸ in a molecule of known potential in aqueous solution, may be useful. Measurements in water using cyclic voltammetry correlate⁶⁹ but do not necessarily equate with the reversible potentials $E(A/A^{-})$ (but see Sec. 3.4, above). The greatest discrepancies will be where molecules have substituents with prototropic functions.

7.2. Correlations Between Reduction Potentials and Rate Constants

There are several correlations of k_1 , k_{-1} with ΔE_1 of the form based upon the Marcus theory (e.g. with radiation-produced radicals^{64,70,71}). Values of $E(A/A\cdot^-)$, for example, may sometimes be estimated from other rate constants providing they are well below the diffusion-controlled limits. Values of k_7 were correlated with the e.s.r. characteristics (see below) of $A\cdot^-$ for A= nitrobenzenes, 72 and are therefore linked to reduction potentials.

7.3. Correlations Between Reduction Potential and Other Physico-Chemical Parameters

The correlations well established for polarographic potentials. Provide a guide to other useful parameters which may be used to predict values for unknown couples. Hammett substituent constants (σ values) are the most useful, e.g. for 5-substitution of 1-methyl-2-nitroimidazole we have:

$$E(A/A^{-})/mV = -(406 \pm 5) + (146 \pm 8)\sigma_p^{-}$$
 . (74)

Hammett constants are well known to correlate with hyperfine splittings (h.f.s.) in the electron spin resonance spectra of radical-anions of series of derivatives and a useful correlation between the N (NO₂) h.f.s. and $E(A/A^-)$ has been made. Variations between mono- and dinitrosubstituted series were noted. Of course, relationships such as Eq. (74) will only be reliable predictors either when prototropic functions which could modulate E_m are absent, or when the pH is sufficiently high that E_m is unaffected by further increases in pH (all groups ionized or deprotonated). Since σ values are a measure of pK_a shifts, it would be theoretically possible to modify relationships between E_m and pH to incorporate σ as a predictor, but the relationships would be complex.

8. Arrangement of the Data Tables and Indexes

8.1. Content of the Tables

The Tables fall into 3 distinct groups. Tables 1 to 4 present reduction potentials of organic oxidants, in the form $E(A/A^{-})$ where A is a stable ground state and A^{-} the radical produced on one-electron reduction. Tables 5 to 8 present reduction potentials of the radicals obtained upon one-electron oxidation of organic reductants, in the form $E(A^{-}/A^{2-})$ where A^{2-} represents a stable reductant and A^{-} the radical (disregarding prototropic state, of course). Table 9 presents reduction potentials of inorganic species, but without separation into groups where the radical is either reductant or oxidant.

The systematic names for many of the compounds are complex, and (except for inorganic couples) rather than arrange alphabetically, compounds in Tables 1 to 8 are subdivided into related groups. Within each group, compounds are generally listed in related sub-groups with increasing element count (C,H,N etc.) in substituents defining order where appropriate. With the structures at the foot of appropriate pages, the various groupings should be reasonably clear. Multiple entries for any one couple appear in order of publication year.

Each table contains 10 main columns: (1) A compound reference number. (2) The reduction potential of ground state or radical, as appropriate, all referring to one-electron reduction and all vs. the standard hydrogen electrode. These potentials are all mid-point potentials,

 $E_{\rm m}$ and in many, although not all cases, may be used as estimates for standard potentials, E° . Whether a measured or calculated value for E as tabulated equates or approximates to a standard potential depends largely upon the possible or known occurrence of prototropic equilibria involving either reductant, or oxidant, as discussed in Sec. 4. Column (3) gives the pH of measurement (or to which the calculation refers, where appropriate). Except where electrochemical methods were used most of the values were obtained by measurement of the concentrations of radicals and ground states at equilibrium, as outlined in Secs. 1 and 3. These have the symbol C (for concentrations) in column (9). A minority were determined from the kinetics of approach to equilibrium (Sec. 3.7). In this case K (for kinetics) appears in column (9). Either C or K may appear in parentheses where the data were secondary to, i.e. merely supported, the calculation of ΔE . Column (4) gives the reference compound used in the electron-transfer equilibrium, and (5) the reference potential assumed in the calculation of E (see below).

Since many values were derived from radiation-chemical experiments in which either one-electron oxidation or reduction was selected by using scavengers as described in Secs. 3.1, 3.2, in column (6) the co-solute (scavenger) is given, to help describe the experiment. As described in Sec. 3.8, ionic strength frequently influences measured equilibrium constants or kinetics, and column (7) gives an approximate ionic strength to which the experiments relate. The expression: $\rightarrow 0$ appears in column (7) if the experimental values were extrapolated to zero ionic strength. Column (8) notes the experimental method used: if only C and/or K appears, as described above, then the method involved monitoring fast electron-transfer equilibria following generation of radicals by pulse radiolysis, before the radical species disappear by other routes. The final column, (10) gives the reference number of the study, using the number assigned by the Radiation Chemistry Data Center of the University of Notre Dame and is common to the many publications of the Center and its online databases.

8.2. Alterations to Published Values

In general, only correction to s.h.e. (where appropriate) has been made to the original data. Where a value seems questionable, this is indicated by a dagger alongside the value, usually with an explanatory note in the Comments/method column. A recommended value is indicated by an asterisk. Many of the values may be immediately corrected by the reader using new recommendations or new values for reference potentials as they become available, since the Table indicates the reference couple and value assumed in the original work. Such corrections will be relatively minor and presentation of original data seemed preferable to making minor changes which will themselves by subject to revision as refinements to reference potentials are published.

8.3. Inorganic Couples: Standard States

The user is reminded that the standard state for a substance is that existing in its normal state at standard temperature and pressure (Sec. 2.2.), i.e. for gases such as oxygen it is 1 atmosphere partial pressure. For calculations of equilibrium constants where concentrations are appropriate, the Nernst equation should be used to calculate a reduction potential corresponding to unit concentration. More detailed discussion of numerous inorganic couples is given in Stanbury's recent compilation, ⁷⁵ but the reader is warned that the latter author presents data uniformly using a standard state of 1 mol dm⁻³, including couples involving gases.

9. Some Other Compilations of Reduction Potentials

Clark's classical text²² includes compilations of many reduction potentials of organic substances. The volume by Bard et al.¹¹ supersedes an earlier compilation¹⁰ of reduction potentials of inorganic substances in aqueous solution. Stanbury's review⁷⁵ discusses inorganic couples involving free radicals in more detail (note the comment about standard states in Sec. 8.3). Steenken⁷⁶ presents comprehensive information concerning electron transfer equilibria involving radicals and radical ions in aqueous solution. This includes values of reduction potentials as well as data characterizing the kinetics of electron-transfer equilibria involving radicals. Koppenol and Butler have discussed the energetics of interconversion of oxyradicals.⁷⁷

10. List of Abbreviations and Symbols

Α	General symbol for oxidant or elec-							
	tron acceptor							
A*	Triplet excited state of species A							
\mathbf{A}^{2-}	General symbol for fully dissociated							
	form of reductant AH ₂							
A_i	Absorbance of species i							
a_{A}	Activity of species A							
AcOH	Acetic acid							
AH ⁻	General symbol for partially disso-							
	ciated form of reductant AH ₂							
AH_2	General symbol for reductant or							
	electron donor							
Approx.	Approximate							
AQS-	9,10-Anthraquinone-2-sulfonate							
	(Tables, 1.3.1)							
Au.	This author (PW)							
bpy	2,2'-Bipyridine							
t-BuOH	tert-Butyl alcohol (2-Methyl-							
	propan-2-ol)							
BV^{2+}	Benzyl viologen (1,1'-Dibenzyl-4,4'-							
	bipyridinium) (Tables, 3.8.39)							

F ONE-ELECTRON	COUPLES
C (in Methods	Concentrations used to estimate
column)	equilibrium constant (Introduction, Sec. 8.1)
CAT	Catechol (1,2-Dihydroxybenzene)
0	(Tables, 5.2.1)
Calc.	Calculated
Calc. data	Calculated by the present author
•	from data in reference shown
Calc. lit.	Calculated by the authors in the ref-
,	erence shown from literature data
Calcn.	Calculation
Consts.	Constants
Cyc. v.	Cyclic voltammetry
Diff. pulse volt.	Differential pulse voltammetry
DMAP	4-(Dimethylamino)phenol (Tables,
	5.1.8)
DQ	Duroquinone (2,3,5,6-Tetramethyl-
_	1,4-benzoquinone) (Tables 1.1.7)
\boldsymbol{E}	General symbol for reduction po-
E.	tential
E°	Standard reduction potential (Intro-
E	duction, Sec. 4.2)
E_0	Formal reduction potential (Intro-
$E_{ m h}$	duction, Secs. 4.3, 4.4) Reduction potential of half-cell rela-
12h	tive to s.h.e. (Introduction, Sec. 4.2)
$E_{ m m}$	Mid-point potential of half-cell (In-
∠m	troduction, Sec. 4.3)
$E_{ m mi}$	Mid-point potential of half-cell at
— iii	pH = i (Introduction, Sec. 4.4)
Eq.	Equation
Extrap.	Extrapolated
F	The Faraday constant = $9.649 \times$
	10 ⁴ C mol ⁻¹
f_A	Activity coefficient of species A
f(I)	Ionic strength function (Introduc-
	tion, Sec. 3.8)
Fp	Flash photolysis
Glycol	Ethylene glycol (1,2-Ethanediol)
GlyTyr	Glycyl-1-tyrosine
h	Planck's constant = $6.626 \times 10^{-34} \text{J}$
***	<u>\$</u>
HQ	Hydroquinone (1,4-Dihydroxyben-
7	zene) (Tables, 5.4.1)
<i>I</i>	Ionic strength
k v	Rate constant
K	Equilibrium constant (expressed in
V'	terms of activities)
K'	Equilibrium constant (expressed in
K_{a}	terms of concentrations)
Λa	Dissociation constant of an acid or
K_{D}	the conjugate acid of a base
\mathbf{n}_{D}	Equilibrium constant for dissocia-

tion of dimer (Introduction, Sec.

semiquinone formation equilibrium

(Introduction, Sec. 5.1)

constant

of

6.3) Equilibrium

 $K_{\rm f}$

*.	Approximation to a second termination
	constant at pH - / (Introduction,
	New 5.2)
K im Mothods	Kinetics used to estimate equilib-
· ·	rium constant (Introduction, Sec.
(solumn)	
	8.1)
Kin.	Kinetics
MV^{2+}	Methyl viologen (1,1'-Dimethyl-
	4,4'-bipyridinium) (Tables, 3.8.2)
n	Number of electrons transferred in
	the oxidant/reductant couple
NIATS+	
NAD ⁺	Nicotinamide-adenine dinucleotide
	(Tables, 4.4.6)
NADH	Nicotinamide-adenine dinucleotide,
	reduced form (Tables, 8.2.1)
n.c.e.	Normal calomel electrode (1 mol
	dm ⁻³ KCl)
Pol.	Polarography
Pot.	Potentiometry
Potl.	Potential
2-PrOH	iso Propyl alcohol (Propan-2-ol)
Q	General symbol for quinones
QH_2	General symbol for hydroquinones
R	The gas constant = 8.314 J K^{-1}
	mol^{-1}
Rad.	Radiolysis
Rec.	Recommended
Reduct.	Reduction
Ref.	Reference
S_o	Sum of all oxidant species (Intro-
	duction, Sec. 4.3)
S_r	Sum of all reductant species (Intro-
	duction, Sec. 4.3)
s.c.e.	Saturated calomel electrode
Sec.	Section
s.h.e.	Standard (normal) hydrogen elec-
	trode
Spect.	Spectrophotometry
T	Absolute temperature
TMP	3,4,7,8-Tetramethylphenanthroline
TMPD	N,N,N',N'-Tetramethyl- p -
11/11 12	phenylenediamine (Tables, 6.1.5)
TO2+	phenylenediamine (1 ables, 0.1.5)
TQ ²⁺	Triquat (7,8-Dihydro-6H-
	dipyrido[1,2-a:2',1'-c]
*	diazapinediium) (Tables, 3.4.1)
v/v	Parts by volume
z_{A}	Net charge (valency) on ion A
ν	Frequency
	Hammett sigma substituent constant
σ_p^-	
	(from para substituted phenols)
ΔE	Difference in reduction potentials
	(Introduction, Sec. 1)
ΔG	Free energy change accompanying

11. Acknowledgments

The Radiation Laboratory at the University of Notre Dame is operated under contract DE-AC02-76ER0038 with the Department of Energy. The Radiation Chemistry Data Center is supported jointly by the Office of Basic Energy Sciences of the Department of Energy and the National Bureau of Standards, Office of Standard Reference Data. This is Radiation Laboratory Document No. NDRL-3098. Peter Wardman is supported by the Cancer Research Campaign. The author would like to acknowledge the continual assistance and encouragement of Dr. Alberta B. Ross during this project, Dr. W. Phillip Helman and Ms. Christa Wardlow for help with the text processing, and all their colleagues in the Data Center for invaluable assistance: their help is gratefully acknowledged.

12. References to Text

¹Neta, P., J. Chem. Educ. 58, 110-3 (1981).

²Arai, S., Dorfman, L.M., Adv. Chem. Ser. 82, 378-86 (1968).

³Patel, K.B., Willson, R.L., J. Chem. Soc., Faraday Trans. 1 69, 814-25 (1973).

⁴Wood, P.M., FEBS Lett. 44, 22-4 (1974).

⁵Ilan, Y.A., Meisel, D.; Czapski, G., Isr. J. Chem. 12, 891-5 (1974).

Meisel, D., Czapski, G., J. Phys. Chem. 79, 1503-9 (1975).
 Meisel, D., Neta, P., J. Am. Chem. Soc. 97, 5198-203 (1975).

⁸Steenken, S., Neta, P., J. Phys. Chem. 83, 1134-7 (1979).

9Atkins, P.W., Physical Chemistry, 2nd ed., (Oxford Univ. Press, 1982), p. 346-58.

¹⁰Charlot, G., Collumeau, A., Marchon, J.C., Selected Constants: Oxidation-Reduction Potentials of Inorganic Substances in Aqueous Solution, (Butterworths, London, 1971).

¹¹Bard, A.J., Parsons, R., Jordan, J. (eds.), Standard Potentials in Aqueous Solution, (Marcel Dekker, New York, 1985).

¹²Swallow, A.J., Radiation Chemistry (John Wiley and Sons, New York, 1973).

¹³Farhataziz, Rodgers, M.A.J. (eds.), Radiation Chemistry: Principles and Applications, (Verlag Chemie, 1987).

¹⁴Buxton, G.V., In The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis, J.H. Baxendale and F. Busi (eds.), (D. Reidel, Dordrecht, Holland, 1982), p.241-66.

¹⁵Swallow, A.J., In *The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis*, J.H. Baxendale and F. Busi (eds.), (D. Reidel, Dordrecht, Holland, 1982), p.289-315.

¹⁶Asmus, K.-D., Moeckel, H., Henglein, A., J. Phys. Chem. 77, 1218-21 (1973).

(1973). ¹⁷Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., J. Phys.

Chem. Ref. Data 17, 513-886 (1988).

¹⁸Steenken, S., J. Phys. Chem. 83, 595-9 (1979).

¹⁹Neta, P., Huie, R.E., Ross, A.B., J. Phys. Chem. Ref. Data 17, 1027-284 (1988).

²⁰Khudyakov, I.V., Kuzhkov, V.B., Kuz'min, V.A., Dokl. Phys. Chem. 246, 424-6 (1979) Translated from: Dokl. Akad. Nauk SSSR 246, 397-400 (1979).

Martins, L.J.A., J. Chem. Soc., Faraday Trans. 1 78, 533-43 (1982).
 Clark, W.M., Oxidation-Reduction Potentials of Organic Systems,

(Williams and Wilkins, Baltimore, 1960).

reaction

- ²³Bard, A.J., Electrochemical Methods: Fundamentals and Applications, (Wiley, New York, 1980).
- ²⁴Gill, R., Stonehill, H.I., J. Chem. Soc. 1845 (1952).
- ²⁵Henglein, A., Electroanal. Chem. 9, 163-244 (1976).
- ²⁶Samec, Z., Bresnahan, W.T., Elving, P.J., J. Electroanal. Chem. 133, 1-23 (1982).
- ²⁷Alfassi, Z.B., Harriman, A., Huie, R.E., Mosseri, S., Neta, P., J. Phys. Chem. **91**, 2120-2 (1987).
- ²⁸Neta, P., Huie, R.E., Harriman, A., J. Phys. Chem. **91**, 1606-11 (1987).
- ²⁹Harriman, A., J. Phys. Chem. 91, 6102-4 (1987).
- ³⁰Nicholson, R.S., Shain, I., Anal. Chem. 36, 706-23 (1964).
- ³¹Andrieux, C.P., Nadjo, L., Saveant, J.M., J. Electroanal. Chem. 26, 147-86 (1970).
- ³²Wardman, P., Clarke, E.D., J. Chem. Soc., Faraday Trans. 1 72, 1377-90 (1976).
- ³³Perlmutter-Hayman, B., Prog. Reaction Kinetics 6, 239-67 (1971).
- ³⁴Anderson, R.F., Biochim. Biophys. Acta 723, 78-82 (1983).
- ³⁵Watt, G.D., Burns, A., Biochem. J. 152, 33-7 (1975).
- ³⁶Ledwith, A., In Biochemical Mechanisms of Paraquat Toxicity, A.P. Autor (ed.), (Academic Press, New York, 1977), p.21-37.
- ³⁷Wardman, P., Clarke, E.D., Br. J. Cancer 55, Suppl. VIII, 172-7 (1987).
- 38 Hayon, E., Simic, M., Acc. Chem. Res. 7, 114-21 (1974).
- ³⁹Land, E.J., Mukherjee, T., Swallow, A.J., Bruce, J.M., J. Chem. Soc., Faraday Trans. 1 79, 391-404 (1983).
- ⁴⁰Land, E.J., Mukherjee, T., Swallow, A.J., Bruce, J.M., Arch. Biochem. Biophys. 255, 116-121 (1983).
- ⁴¹Mukherjee, T., Radiat. Phys. Chem. 29, 455-62 (1987).
- ⁴²Ilan, Y.A., Czapski, G., Meisel, D., Biochim. Biophys. Acta 430, 209-24 (1976).
- ⁴³Meisel, D., Neta, P., J. Phys. Chem. 79, 2459-61 (1975).
- 44Baxendale, J.H., Hardy, H.R., Trans. Faraday Soc. 49, 1140-4 (1953).
- ⁴⁵Baxendale, J.H., Hardy, H.R., Trans. Faraday Soc. **49**, 1433-7 (1953).
- ⁴⁶Bishop, C.A., Tong, L.K.J., J. Am. Chem. Soc. 87, 501-5 (1965).
- Conant, J.B., Fieser, L.F., J. Am. Chem. Soc. 45, 2194-218 (1923).
 Michaelis, L., Schubert, M.P., Reber, R.K., Kuck, J.A., Granick, S., J. Am. Chem. Soc. 60, 1678-83 (1938).
- ⁴⁹von Foerster, G., Weis, W., Staudinger, H., Ann. Chem. **690**, 166-9 (1965).
- ⁵⁰Laroff, G.P., Fessenden, R.W., Schuler, R.H., J. Am. Chem. Soc. 94, 9062-73 (1972).
- ⁵¹Perrin, D.D., Dempsey, B., Serjeant, E.P., pK_a Prediction for Organic Acids and Bases, (Chapman and Hall, London, 1981), p.5-7.

- ⁵²Wold, E., Kaalhus, O., Johansen, E.S., Ekse, A.T., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 38, 599-611 (1980).
- ⁵³Anderson, R.F., Biochim. Biophys. Acta 722, 158-62 (1982).
- ⁵⁴Michaelis, L., Hill, E.S., J. Gen. Physiol. 16, 859-73 (1933).
- ⁵⁵Thorneley, R.N.F., Biochim. Biophys. Acta 333, 487-96 (1974).
- 56Stargardt, J.F., Hawkridge, F.M., Anal. Chim. Acta 146, 1-8 (1983).
 57Van Dijk, C., Mayhew, S.G., Grande, H.J., Veeger, C., Eur. J.
- Biochem. 102, 317-30 (1979).
- ⁵⁸Schwarz, W.M.,Jr., Investigation of Stable Free Radicals Formed by Electroreduction of N-Alkylpyridinium Salts, (Ph.D. Thesis, Univ. Wisconsin, 1961).
- ⁵⁹Mayhew, S.G., Mueller, F., Biochem. Soc. Trans. 176-7 (1982).
- ⁶⁰Stombaugh, N.A., Sundquist, J.E., Burris, R.H., Orme-Johnson, W.H., Biochemistry 15, 2663-41 (1976).
- ⁶¹Van Leeuwen, J.W., Van Dijk, C., Veeger, C., Eur. J. Biochem., 135, 601-7 (1983).
- ⁶²Solar, S., Solar, W., Getoff, N., Holcman, J., Sehested, K., J. Chem. Soc., Faraday Trans. 1 78, 2467-77 (1982).
- ⁶³Venturi, M., Mulazzani, Q.G., Hoffman, M.Z., Radiat. Phys. Chem. 23, 229-36 (1984).
- 64Steenken, S., Neta, P., J. Phys. Chem. 86, 3661-7 (1982).
- ⁶⁵Friend, J.A., Roberts, N.K., Aust. J. Chem. 11, 104-19 (1958).
- ⁶⁶Grodkowski, J., Neta, P., Carlson, B.W., Miller, L., J. Phys. Chem. 87, 3135-8 (1983).
- ⁶⁷Schwartz, H.A., Dodson, R.W., J. Phys. Chem. 93, 409-14 (1989).
- ⁶⁸Zuman, P., Substituent Effects in Organic Polarography, (Plenum Press, New York, 1967).
- ⁶⁹Breccia, A., Berrilli, G., Roffia, S., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 36, 85-9 (1979).
- ⁷⁰Meisel, D., Chem. Phys. Lett. 34, 263-6 (1975).
- ⁷¹Wardman, P., Clarke, E.D., Biochem. Biophys. Res. Commun. 69, 942-9 (1976).
- ⁷²Neta, P., Meisel, D., J. Phys. Chem. 80, 519-24 (1976).
- ⁷³Wardman, P., In Advanced Topics on Radiosensitizers of Hypoxic Cells, A. Breccia, C. Rimondi and G.E. Adams (eds.), (Plenum Press, New York, 1982), p.49-75.
- ⁷⁴Neta, P., Simic, M.G., Hoffman, M.Z., J. Phys. Chem. **80**, 2018-23 (1976).
- ⁷⁵Stanbury, D. M., Adv. Inorg. Chem. 33, 69–138 (1989).
- ⁷⁶Steenken, S., Landolt-Boernstein 13e, 147-293 (1985).
- ⁷⁷Koppenol, W.H., Butler, J., Adv. Free Radical Biol. Med. 1, 91-131 (1985).

TABLE 1. Reduction potentials of quinones (Q/Q.

Mar.	Compaund or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
.1.	Bensoquinones (1a)								
1.1.1	1,4-Benzoquinone	78 *	7					Rec. value; calc.; see Introduction (Sec. 5.4)	
		104	~7					Calc. from semiquinone formation consts. measured pH 6-7.	66C003
		99 399	7 0					Calen.	761063
.1.2	Methyl-1,4- benzoquinone	23	7					Calc. lit.	761063
.1.3	2,3-Dimethyl-1,4- benzoquinone	-74	7					Calc. lit.	761063
.1.4	2,5-Dimethyl-1,4- benzoquinone	-67 210	7 0					Calc. lit.	761063
1.1.5	2,6-Dimethyl-1,4- benzoquinone	-80	7					No details	765319
1.1.6	2,3,5-Trimethyl-1,4- benzoquinone	-165	7					Calc. lit.	761063
.1.7	2,3,5,6-Tetramethyl- benzoquinone	-260 *	7					Rec. value; see Introduction (Sec. 6.2)	
		-250	7					Calc. lit.	740001
		65	0					Calc. lit.	741141
		23 5	7					Calc. lit.	751090
		-240 65	7 0					Calc. lit.	761063
		-244	7	BV ²⁺	-354	2-PrOH	→0	C (K)	761070
		-242	7	BV ²⁺	-355		→ 0	C; calc. data	80A349
		-247	7	BV2+	-354	2-PrOH	→ 0	C	83C002
1.1.8	2,5-Diaziridinyl-3,6-bis(2-hydroxyethylamino)-1,4-benzoquinone (BZQ) (1b, R ² = R ⁵ = NHCH ₂ CH ₂ OH)	383	7	MV ²⁺	-450	HCO ₂	0.12	c	87A269
		-370	7	3.8.31	-290	$\mathrm{HCO_2}^-$	0.12	C	87A269
1.1.9	2,5-Diaziridinyl-3,6- bis(carbethoxyamino)- 1,4-benzoquinone (AZQ) (1b, $R^2 = R^5$ = NHCO ₂ Et)	-168 †	7	DQ	-244	t-BuOH	~0.010	к	81C031
		65	7	1.2.5	-110	$\mathrm{HCO_{2}^{-}}$	0.12	C	87A269
		70	7	1.1.4	-66	$\mathrm{HCO_2}^-$	0.12	С	87A269
		-73	7	O ₂ (1 mol dm ⁻⁵	-155)	${\tt HCO_2}^-$	0.12	K	87A269
		o							
		$ \begin{array}{c c} 6 & \downarrow & 2 \\ 5 & \downarrow & 2 \end{array} $		Δ _N .	F ²				
				ਜ ੈ	ZhZi				

(1b)

(1a)

Table 1. Reduction potentials of quinones (Q/Q·-)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. <i>E</i> /mV	Co-solute	I	Method/ comments	Ref.
.2. N	laphthoquinones								
.2.1	1,2-Naphthoquinone	-89	7.8			HCO2-	0.11	. C	86R230
.2.2	1,4-Naphthoquinone (1c)	-140	7.8			HCO ₂	0.11	G.	86R.230
.2.3	5-Hydroxy-1,4- naphthoquinone (juglone)	-93	7	O ₂ (1 mol dm ⁻³)	-155	HCO ₂	~0.1	C; data at other pH values, also with 1.1.5	87A234
.2.4	5,8-Dihydroxy-1,4- naphthoquinone	-110	7	1.1.5	-80	HCO ₂ -		C	83A039
		-103	5.5			HCO ₂		C; other values pH 5.5-11	83A039
.2.5	1,4-Naphthoquinone-2- sulfonate ion (1d, R ² = SO ₃)	-60	7	O ₂ (1 atm.)	-330	HCO ₂	0.1	C	761063
.2.6	2-Methyl-1,4- naphthoquinone (1d, $R^2 = CH_3$)	-203	7	O ₂ (1 atm.)	-325	HCO ₂ -	~0.02	C	751090
		206	7	DQ	-235	2-PrOH	~0.01	C; calc. data	751090
		-203	7.67	O ₂ (1 mol dm ⁻³)	-155	2-PrOH	< 0.01	C A	86B09
		-199	7.67	BV2+	-354	2-PrOH	→0	С	86B09
.2.7	$(1d, R^2 = CH_2OH)$	-152	7.67	O ₂ (1 mol dm ⁻³)	155	2-PrOH	< 0.01	С	86B09
2.8	$(1d, R^2 = CH_2OCH_3)$	-129	7.67	O_2 (1 mol dm ⁻³)	-155	2-PrOH	< 0.01	C	86B09 76106
.2.9	$(1d, R^2 = CH_2OCOCH_3)$	-100	7.67	$\binom{O_2}{(1 \text{ mol dm}^{-3})}$	-155	2-PrOH	< 0.01	C	80B09
1.2.10	$\begin{array}{l} (1d, R^2 = \\ CH_2OCONHCH_2CH_2Cl) \end{array}$	-122	7.67	O ₂ (1 mol dm ⁻³)	-155	2-PrOH	< 0.01	C	86B09
1.2.11	$(1e, R^6 = CH_2Br)$	-92	7.67	O ₂ (1 mol dm ⁻³)	-155	2-PrOH	< 0.01	C	86B09
1.2.12	$(1e, R^6 = CH_2CI)$	-94	7.67	O ₂ (1 mol dm ⁻³)	-155	2-PrOH	< 0.01	C	86B09
1.2.13	$(1e, R^6 = CH_2OCOCH_3)$	-94	7.67	O ₂ (1 mol dm ⁻³)	-155	2-PrOH	< 0.01	С	86B09
1.2.14	$(1e, R^6 = CH_2OCONHCH_3)$	-99	7.67	O ₂ (1 mol dm ⁻³)	155	2-PrOH	< 0.01		86B09
.2.10	2,3-Dimethyl-1,4- naphthoquinone (1f, $R^3 = CH_3$)	-240	7	O ₂ (1 atm.)	-330	HCO ₂ -	0.1	Calc. lit.	761063
	7	8 O 2			2.				
		5 1				, (0		
		(1c)		(1d)		(1e)			
			o		c				

Table 1. Reduction potentials of quinones (Q/Q^{-}) -Continued

No.	Compound or couple	E/mV	рĦ	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
1.2. N	aphthoquinones—Continue	d '							
1.2.16	$(1f, R^3 = S-glutathionyl)$	-192	7.67	O ₂ (1 mol dm ⁻³)	-155	2-PrOH	< 0.01	C	86B096
1.2.17	2-Methyl-3-phytyl-1,4- naphthoquinone (1g)	-170	7					Calc. lit.	761063
1.3. A	nthraquinones								
1.3.1	9,10-Anthraquinone-2- sulfonate ion (1h, R ² = SO ₃ ⁻ , R ¹ = R ⁴ = R ⁶ = H)	-390 *	: 1.					Rec. value; see Introduction (Sec. 6.2)	
		-380	7	DQ	-235	2-PrOH	~0.010	C	751117
		-375	7	BV ²⁺	-354	2-PrOH	→0	C	761070
		-377	. 7	DQ	-244	2-PrOH	→0	C; calc. data	761070
		-375	. 7	DQ	-244	2-PrOH	→ 0	C; calc. data	80A349
		-373	7	BV ²⁺	-355	2-PrOH	→0	C; calc. data	80A349
		-366	7	BV ²⁺	-354	2-PrOH	→0	C	83C002
		-381	7	TQ ²⁺	-548	2-PrOH	→0	C	83C002
1.3.2	1,4-Dihydroxy-9,10- anthraquinone-2- sulfonate ion (1h, R ¹ = R ⁴ = OH, R ² = 90_3 , R ⁶ — II)	-270	7	3.3.1	-350	HCO ₂ -	0.1	C; other data pH 6-11	88A901
1.3.3	1,4-Dihydroxy-9,10- anthraquinone-6- sulfonate ion (1h, R ¹ = R ⁴ = OH, R ² = H, R ⁶ = SO_3^-)	-249	7	3.3.1	-350	HCO ₂	0.1	C; other data pH 7-11	88A901
1.3.4	1,4-Dihydroxy-5,8- bis[(2-	-527	7					C; no details	87R257
	hydroxyethylamino) ethyl]amino-9,10- anthraquinone (11, R^1 = R^4 = OH, R^5 = R^8								
	= NHCH ₂ CH ₂ NHCH ₂ CH ₂ OH)							
1.3.5	1,4-Bis[(2- hydroxyethyl-	-348	7	BV ²⁺	-354			K .	81C03
	amino)ethyl]amino- 9,10-anthraquinone diacetate (11, $R^1 = R^4$. * *							
	$ \begin{array}{l} $	с,							
1.4. I	soindole-4,7-diones								
1.4.1	(11, $R^1 = R^2 = CH_3$, $R^3 = C_6H_5$)	-440	7	AQS-	-380	2-PrOH	~0.002	С	84R02
1.4.2	$(1j, R^1R^2 = -CH_2CH_2CH_2-, R^5(R^5) = CH_3)$	-420	7.	AQS-	-380	2-PrOH	~0.002	C; mixture of isomers.	84R02
			Ů	R ²	R. O		5 5	N-R ²	
		R ⁶	(1h)	R ⁴	R ⁵ O (1i)	Ř4) 0 (1	R ³	

Table 1. Reduction potentials of quinones $(Q/Q^{\bullet-})$ —Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
1.4. la	oindole-4,7-diones—Cont	inued							
1.4.3	(1], $R^1 = CH_3$, $R^2 = CH_3$, $R^3 = C_0H_5$, $R^6(R^6) = CH_3$)	-423	7	AQS_	-380			C	82A329
1.4.4	$\begin{array}{l} (1\mathbf{j}, \mathbf{R}^1 = \mathbf{C}_6\mathbf{H}_5, \mathbf{R}^2\mathbf{R}^3 \\ = -\mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{H}_2 -) \end{array}$	-427	7	AQS-	-380				
1.4.5	$(1J, R^2 = CH_3, R^3 = C_6H_5)$	-419	7	AQS-	380				
1.4.6	$\begin{array}{l} (1\mathbf{j}, \mathbf{R}^{1} = \mathbf{C}\mathbf{H}_{3}, \mathbf{R}^{2}\mathbf{R}^{3} \\ = -\mathbf{C}\mathbf{H}_{2}\mathbf{C}\mathbf{H}_{2}\mathbf{C}\mathbf{H}_{2} -) \end{array}$	-438	7	AQS-	-380				
1.4.7	$\begin{array}{l} (1), R^{1}R^{2} = \\ -CH_{2}CH_{2}CH_{2}-, R^{3} = \\ C_{0}H_{5}, R^{5} = R^{6} = \\ CH_{3}) \end{array}$	-43 5	7	AQS ⁻	-380	2-PrOH	~0.002	c	84R027
1.4.8	$(11, R^1 = R^2 = R^5 = R^6 = CH_3, R^3 = C_0H_5)$	-452	7	AQS~	-380	2-PrOH	~0.002	С	84R027
1.4.9	$ \begin{array}{l} (11, R^1 = CO_2C_2H_5, \\ R^2R^3 = \\ -CH_2CH_2CH_2-, \\ R^5(R^5) = CH_3) \end{array} $	-368	7	AQS	-380	2-PrOH	~0.002	C; mixture of isomers.	84R027
1.4.10	$(1J, R^{\dagger} = CO_2C_2H_5, R^2 = R^5(R^6) = CH_5, R^3 = C_6H_5)$	366	7	2.1.9	-437	2-PrOH	~0.002	C; mixture of isomers.	84R027
1.4.11	$ \begin{array}{ll} (\mathbf{1J}, \mathbf{R}^1 = \mathrm{CO}_2\mathrm{C}_2\mathrm{H}_5, \\ \mathbf{R}^2\mathbf{R}^3 = \\ -\mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_9 -, \\ \mathbf{R}^5(\mathbf{R}^0) = \mathrm{CH}_3, \mathbf{R}^0(\mathbf{R}^6) \\ = \mathrm{OCH}_3) \end{array} $	-383	7	2.1.9	437	2-PrOH	~0.002	C; mixture of isomers.	84R027
	•	-378	7	2.1.10	-352	2-PrOH	~0.002	C	84R027
1.5. N	Miscellaneous quinones								
1.5.1	Adrenochrome (1k)	-253	7	BV ²⁺	-354			К	81C031
1.5.2	5-Aminophthalazine- 1,4-dione (11)	240	~10.6	O ₂ (1 mol dm ⁻³)	-155	HCO3_		Chemiluminescence; ± 20 mV.	84C026
1.5.3	9,10-Phenanthrene- quinone (1m)	-124	7.8			HCO ₂	0.11	C .	86R230
1.5.4	Adriamycin (1n, R = COCH ₂ OH)	292	7	DQ	244			K. Eq. vs. O ₂ mis-calc., inconsistent (see 83C018)	81C031
		-328	7	DQ	-240	HCO2-	0.1	C; other values, pH 6-12.	83C018
		-341 *	7	several		HCO2-	0.1	Rec.; C	88A901

TABLE 1. Reduction potentials of quinones (Q/Q·*)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
1.5. l	Miscellaneous quinones—Co	ntinued				•		,	
1.5.5	Daunomycin (1n, R = $COCH_3$)	-305	7	DQ	-244			K	81C031
		430 †	7	Q/QH ₂	-410			Semiquinone formation const. $+$ $E(Q/QH_2)$.	85A001
1.5.6	Indigodisulfonate ion (10)	-247	7						59C002
1.5.7	Mitomycin C (1p)	-271	7	DQ	-244			K	81C031
		-238	7	BV ²⁺	-354			К	
		-310 *	.7			$\mathrm{HCO_2}^-$		Rec.; C	85R016
1.5.8	3,3',5,5'- Tetrabromodiphenoquinone (1q, X = Br)	260	7	BQ	99	CH ₃ CN (50% v/v)	~0.02	C (K), (fp)	81A405 82B068
1.5.9	3,3',5,5'- Tetrachlorodiphenoquinone (1q, X = Cl)	260	7	BQ	99	CH ₃ CN (50% v/v)	~0.02	C (K), (fp)	81A405 82B068
1.5.10	Methoxatine (1r)	-114	7.3	O ₂ (1 mol dm ⁻³)	-155	$\mathrm{HCO_2}^-$	0.11	C + K	86A520
1.5.11	CI941 (1s)	538	7.0	MV^{2+}		HCO2	0.12	C	87R243
1.5.12	$(1t, R = OCH_3)$	(+)85	7.4	BQ	99	2-PrOH		C	88A125
		85	7.4	1.1.4	66	N_3^-		C	88A125
1.5.13	$(1t, R = N(CH_3)_2)$	-10	7.4	\mathbf{BQ}	99	2-PrOH		C	88A125
		-40	7.4	1.1.4	66	2-PrOH		C	88A125
	SO ₂	so ₃		3C N	.сн₂осоиі ,осн₃ н.н	1 ₂	× ×	- ₹ °	
	(10)			(1p)			· (10	1)	

^{*} Recomended value.

[†] Questionable or superseded value.

Table 2. Reduction potentials of nitroaryl compounds (RNO₂/RNO₂⁻)

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
2.1. N	litrobensenes								
2.1.1	1,2-Dinitrobenzene	-287	7	DQ	-235	2-PrOH		C(K)	761111
2.1.2	1,3-Dinitrobenzene	-345	7	DQ	-235	2-PrOH		C(K)	761111
2.1,3	1,4-Dinitrobenzene	-257	7	ъб	235	2-PrOH		C(K)	761111
2.1.4	2,4-Dinitrobenzoic acid	-345	7	DQ	-235	2-PrOH		C(K)	761111
2.1.5	2,5-Dinitrobenzoic acid	-272	7	DQ	-235	2-PrOH		c	761111
2.1.0	3,4-Dinitrobenzoic acid	-271	7	рб	-235	2-PrOH		C	761111
2.1.7	3,5-Dinitrobenzoic acid	-344	7	DQ	-235	2-PrOH		C(K)	761111
2.1.8	2,4-Dinitrophenol	-500	7			2-PrOH	-→ 0	C	82R118
2.1.9	3-Nitroacetophenone	-437	7	AQS-	- 380	2-PrOH	~ 0.010	C	751117
2.1.10	4-Nitroscetophenone	-358	7	DQ	-235	2-PrOH	~0.010	C	751117
		-353	7	AQS-	-380	2-PrOH	~0.010	С	751117
2.1.11	Nitrobenzene	-486	7	AQS-	-380	2-PrOH	~0.010	c	751117
		-486	7	AQS-	-375	t-BuOH	→0	C	80C024
2.1.12	2-Nitrobenzaldehyde	-355	7	DQ	-244	t-BuOH	→0	C	80C024
2.1.13	4-Nitrobenzaldehyde	-322	7	DQ	-244	t-BuOH	→0	C	80C024
2.1.14	2-Nitrobenzoic acid	-412	7	DQ	-235	2-PrOH		C(K)	761111
2.1.15	3-Nitrobenzoic acid	-433	7	DQ	-235	2-PrOH		C(K)	761111
2.1.16	4-Nitrobenzoic acid	-396	7	DQ	-235	2-PrOH		C(K)	761111
		-425	7	AQS-	-375	2-PrOH	→0	C	80R182
2.1.17	2-Nitrobenzonitrile	308	7	DQ	244	t-BuOH	→ 0	C	80C024
2.1.18	4-Nitrobenzyl alcohol	-477	7						79R017
		-469	7	AQS-	-375	2-PrOH	→0	C	79R017
		-487	7	MV^{2+}	-447	2-PrOH	→ 0	C	79R017
2.1.19	4-Nitro-(3'- dimethylamino)- propiophenone (2a, R ⁴ = $CO(CH_2)_2N(CH_3)_2$)	-315	7	AQS ⁻	-375	2-PrOH	→0	C	761037
2.1.20	$(2b, R^6 = CONH_2)$	-385	7						87R083
2.1.21	$(2b, R^6 = CONHCH_3)$	-387	7						87R083
2.1.22	$(2b, R^6 = CON(CH_3)_2)$	-377	7						87R083
2.1.23	$(2b, R^0 = CONHCH_2CH(OCH_3)_2)$	-384	7						87R08
2.1.24	$(2c, R^4 = NH_2)$	-460	7						87R083
2.1.25	$(2e, R^4 = N(CH_3)_2)$	-464	7						87R083
2.1.26	$(2d, R^4 = CONH_2, R^6 = -N-aziridinyl)$	-515	. 7						87R08
2.1.27	$(2d, R^4 = -N-$ aziridinyl, $R^6 = -N - \frac{N}{2}$	431	7						87R083

Table 2. Reduction potentials of nitroaryl compounds $(RNO_2/R\dot{N}O_2^-)$ —Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
2.2. N	ltrofurans								
2.2.1	5-Nitro-2-furoic acid (2e, $R^2 = CO_2H$)	-317	7	DQ	-235	2-PrOH	~0.010	C	751117
2.2.2	Nifuroxime (2e, $R^2 = CH = NOH (anti)$)	-253	7	DQ	235	2-PrOH	~0.010	C	751117
2.2.3	2-Methoxy methyl-5- nitrofuran (2e, $R^2 = CH_2OCH_3$)	-338	7	BV ²⁺	-354	2-PrOH	→0	C	79R017
2.2.4	Nitrofurazone (2e, \mathbb{R}^2 = CH=NNHCONH ₂)	-257	7	BV ²⁺	-354	2-PrOH	→0	C -	761037
2.2.5	Nitrofurantoin (2e, R ² = 2f)	-264	7	BV^{2+}	-354	2-PrOH	→ 0	C	80R185
2.2.6	Nifurpipone (2e, $R^2 = 2g$)	-214	7	BV ²⁺	-354	2-PrOH	→0	C	761037
2.2.7	$(2e, R^2 = -CH = CH - (2-quinolyl))$	-276 -263	7 7	DQ 1.2.6	$-245 \\ -203$	2-PrOH (50% v/v)	~0.10	K (fp)	79C021
2.2.8	$(2e, R^2 = -CH = CH - CH = CH - (2-quinoly!))$	$-265 \\ -256$	7 7	DQ 1.2.6	-245 -203	2-PrOH (50% v/v)	~0.10	K (fp)	79C021
2.2.9	$(2e, R^2 = -CH=C(CONH_2)(2-furyl) = cis-AF-2)$	-242	7	BV ²⁺	-354	2-PrOH	→0	C	84A208
2.2.10	$(2e, R^2 =$ $-CH=C(CONH_2)(2 furyl) = trans-AF-2)$	-276	7	BV ₂₊	-354	2-PrOH	→ 0	С	84A208
2.2.11	N-Butyl-5-nitro-2- furamide (2e, $R^2 = CONHnC_4H_0$)	-230	7	BV ²⁺	-354	2-PrOH	→0	c	84A263
2.3. 2	-Nitroimidazoles								
2.3.1	2-Nitroimidazole (2h, R ⁴ = H)	-418 -508	7 9.2	AQS-	-375	2-PrOH	→0	C	761070
2.3.2	2,4-Dinitroimidazole (2h, $R^4 = NO_2$ (4/5-nitro))	-445 -305 -265	6.93 4.1 3.26	BV ²⁺ BV ²⁺ BV ²⁺	354 354 354	2-PrOH 2-PrOH 2-PrOH	→0 ~0.005 ~0.002	С	79R037
2.3.3	5-Cyano-1-methyl-2- nitroimidazole (21, R ⁵ = CN)	-267	7	DQ	-244	2-PrOH	→0	C	80R187
2.3,4	1-Methyl-2- nitroimidazole-5- carboxaldehyde (21, R ⁵ = CHO)	-243	7	DQ	-244	2-PrOH	→0	С	761070
2.3.5	1-Methyl-2- nitroimidazole-5- carboxylate ion (21, R^5 = CO_2^-)	-385	7	AQS-	-375	2-PrOH	→0	C	773087
2.3.6	1-Methyl-2- nitroimidazole-5- carboxamide (21, $R^5 = CONH_2$)	-321	7	AQS-	-375	2-PrOH	→0	С	80R187
2.3.7	$(2i, R^5 = CH_2OH)$	-400	7	AQS-	-37 5	2-PrOH	→0	C	79R017
	O ₂ N O R ²	-CH=N-N	NH I	o -CH=N-N-C-(CH₂N N-C	R ⁵ >H₃	1	NO ₂ R ⁵	CH ₃ NO ₂
	(2e)	(2f)		(2g)	R*	(2h)		(2i)

Table 2. Reduction potentials of nitroaryl compounds $(RNO_2/R\dot{N}O_2^-)$ —Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
2.8. 2	-Nitroimidasoles—Contin	ued		÷					
2.3.8	5-Ethenyl-1-methyl-2- nitroimidazole (21, R ⁵ — CH=CH ₂)	-392	7 7	AQS-	-375	2-PrOH	→0	, ° C	79R017
		-398	7	BV^{2+}	-354	2-PrOH	→ 0	C	85R035
2.3.9	$(2i, R^5 = CO_2CH_3)$	-300	7	DQ	-244	2-PrOH	→0	C .	79R017
2.3.10	(21, $R^5 = CH = N^+(-C^-)CH_3$)	-282	7	BV2+	354	2-PrOH	→0	C	79R017
2.3.11	(21, R5 = CH(OH)CH2OH)	-396	7	AQS-	-375	2-PrOH	, →0	C	79R017
2.3.12	$(21, R^5 = CH(CH_3)_2)$	-439	7	AQ5-	-375	2-PrOH	→0	c	79R017
2.3.13	$(21, R^5 = C(CH_3)_2(OH))$	-412	7	AQS-	-375	2-PrOH	→0	C .	79R017
2.3.14	$(21, R^5 = CH = N - N(CH_3)_2)$	∸386	7	BV ²⁺	-354	2-PrOH	→0	C	80R184
2.3.15	$(21, R^5 = CH = C(CN)_2)$	-240	7	BV ²⁺	-354	2-PrOH	→0	C	80R 184
2.3.16	$\begin{array}{c} (21, \ \mathbf{R}^5 \leftarrow \\ \mathbf{CH}(\mathbf{OCOCH_3})_2) \end{array}$	350	7	AQ8-	375	2-PrOH	→0	c	79R017
2.3.17	(21, $R^5 = CH = N - (N - morpholino)$)	-366	. 7	AQS~	-375	2-PrOH	→0	C	80R184
2.3.18	$(21, R^n = CH = N - (N - piperazino))$	-354	7	AQS-	-375	2-Proh	→u	C	80R184
2.3.19	(21, $R^5 = CH = N - (N - piperidino)$	-376	7	AQS-	-375	2-PrOH	→0	· C	80R184
2.3.20	2-Nitroimidazole-1- acetic acid (23, $R^{\dagger} = CH_2CO_2H$)	-447	7	AQS-	-375	2-PrOH	→0	C	80R185
2.3.21	1-(2-Hydroxyethyl)-2- nitroimidazole (2J, R ¹ = CH ₂ CH ₂ OH)	-398	7	AQS-	-375	2-PrOH	→0	C	761070
2.3.22	(2), $R^1 = CH_2CH_2OH$, $R^4 = NO_2$)	-238	7	BV2+	-354	2-PrOH	→0	С	79R037
2.3.23	1-(2-Hydroxyethyl)-5- methyl-2-nitroimidazole (2j, $R^1 = CH_2CH_2OH$, $R^5 = CH_3$)	-423	7	AQS-	-375	2-PrOH	→0	c	761070
2.3.24	2-Nitro-1-(2-oxopropyl)imidazole (2J, $R^1 = CH_2COCH_3$)	-358	7	AQS ⁻	-375	2-PrOH	→ 0	c .	79R017
2.3.25	$\begin{array}{l} (\mathbf{p}\mathbf{j}, \ \mathbf{R}^1 = \\ \mathbf{CH}_2\mathbf{CO}_2\mathbf{CH}_3) \end{array}$	355	7	AQS-	-375	2-PrOH	→0	ø ´	79R017
2.3.26	$\begin{array}{l} \textbf{(2j, R}^1 = \\ \text{CH}_2\text{CH(OH)CH}_2\text{CI)} \end{array}$	-384	7	AQS~	-375	2-PrOH	→0	C	79R017
2.3.27	$(2\mathbf{j}, \mathbf{R}^{1} = \mathbf{CH}_{2}\mathbf{CH}(\mathbf{OH})\mathbf{CH}_{2}\mathbf{F})$	-383	7	AQS-	-37 5	2-PrOH	→0	C	79R017

$$R^{5} \xrightarrow{\stackrel{\stackrel{}{\underset{N}{\bigvee}}}} N^{1} NO_{2}$$

$$R^{4} \qquad (2j)$$

Same is a management group matches of inflamment compounds (RNO2/RNO2")-Continued

est de sa Est	- January Language State Communication (American State Communication State Communica	k/m×	рĦ	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
B.h, B	Nitroimidavoles-Continu	red							
2,3,28	1-(2-Methoxyethyl)-2- nitroimidazole (2J, R ¹ = CH ₂ CH ₂ OCH ₃)	-393	7	AQS-	-375	2-PrOH	→0	C	79R017
2.3.29	$\begin{array}{l} (2\mathbf{j},\mathbf{R}^1 = \\ \mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{H}(\mathbf{O}\mathbf{H})\mathbf{C}\mathbf{H}_2\mathbf{O}\mathbf{H}) \end{array}$	-389	7	AQS"	-375	2-PrOH	→0	C	761070
2.3.30	(2j, R1 = CH2CH2SO2CH3)	-368	7	AQS-	-375	2-PrOH	→0	C	79R017
2.3.31	$(2j, R^1 = CH_2CH_2OCOCH_3)$	-420	7	AQS-	-375	2-PrOH	→0	С	761070
2.3.32	(2), $R^1 = CH_2CONHCH_2CH_2OH$)	-388						C	80R193
2.3.33	$(2j, R^1 = CH_2CO_2C_2H_5, R^5 = C_2H_5)$	-388	7	AQS ⁻	-375	2-PrOH	→0	C	761070
2.3.34	1-(2-Ethoxyethyl)-2- nitroimidazole (2j, R^1 = $CH_2CH_2OC_2H_5$)	-400	7	AQS ⁻	375	2-PrOII	~0	С	79R017
2.3.35	Misonidazole (21, R1	-388 ;	•					Rec.	
	$CH_2CH(OH)CH_2OCH_3)$								
		-363	7	DQ	-235	2-PrOH	~0.010	С	751117
		-398	7	AQS-	-380	2-PrOH	~0.010	C	751117
		-389	7	AQS-	-375	2-PrOH	→0	C	761070
		-389	7	AQS-	-375	t-BuOH	→ 0	C (K)	761070
		-389	7	AQS ⁻	375	HCO ₂	→0	C, calc. data	761070
		-388	7	BV ²⁺	354	2-PrOH	→0	C (K)	761070
2.3.36	1- $[(2-Ethylsulfonyl)ethyl]-2-$ nitroimidazole (2j, R' = $CH_2CH_2SO_2C_2H_5$)	368	7	AQS ⁻	-375	2-PrOH	→0	C	79R017
2.3.37	$\begin{array}{l} (2\mathbf{J}, \mathbf{R}^{ \mathrm{I}} = \mathbf{CH}_{2}\mathbf{CONH} \\ \mathbf{CH}_{2}\mathbf{CHOHCH}_{2}\mathbf{OH}) \end{array}$	-392						U	80R193
2.3.38	$(2J, R^{\dagger} = CH_2CH(OH)-CH_2OCH_2CH=CH_2)$	-391	7	AQS-	-375	2-PrOH	→0	C	79R017
2.3.39	(2), $R^1 = CH_2CON(CH_2CH_2OH)_2$)	-398						c	80R193
2.3.40	(2J, RT = CH2CH2OC6H5)	-391	7	AQS-	-375	2-PrOH	→0	C	79R017
2.3.41	$\begin{array}{l} (2J, R^1 = \\ CH_2CH_2SO_2C_6H_5) \end{array}$	367	7	AQS-	-375	2-PrOH	→0	С	79R017
2.3.42	Benznidazole (23, R ¹	~-380	7	AQS-	-375	2-PrOH	→0	C	761070
	CH ₂ CONHCH ₂ C ₆ H ₅)								
2.3.43	$(2j, R^{\dagger} = (CH_2)_3 OC_6 H_5)$	-409	7	AQS-	-375	2-PrOH	→0	С	79R017
2.3.44	$(2J, R^{\dagger} = CH_2CHOHCH_2O-CH(CH_2CI)CH_2OCHMe_2)$	-395	7	AQS-	-375	2-PrOH	→0	C	82R117
2.3.45	(2k, n = 2, NR'R'' = N-morpholino)	-390	7	AQS ⁻	-375	2-PrOH	→0	C	79R017
2.3.46	(2k, n = 2, NR'R'' = N-morpholino methiodide)	-318	7	AQS ⁻	-37 5	2-PrOH	→0	C	80R184
2.3.47	(2k, n = 3, NR'R'' = N-morpholino)	-386	7	AQS ⁻	-375	2-PrOH	→0	C	80R184

J. Phys. Chem. Ref. Data, Vol. 18, No. 4, 1989

TABLE 2. Reduction potentials of nitroaryl compounds (RNO₂/RNO₂)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
.8. 2-	-Nitroimidazoles—Contin	ued							
2.3.48	(2k, n = 4, NR'R'' = N-morpholino)	-396	7	MV ²⁺	-447	2-PrOH	→0	C	80R184
2.3.49	(2k, n = 4, NR'R'' = N-morpholino methiodide)	-379	7	MV ²	-44 7	2-PrOH	→ 0	C	80R184
2.3.50	(2k, n = 5, NR'R'' = N-morpholino)	-399	7	MV^{2+}	-447	2-PrOH	→0	C	80R184
2.3.51	(2k, n = 6, NR'R'' = N-morpholino)	379	7	MV ²⁺	-447	2-PrOH	→0	C	80R184
2.3.52	(2k, n = 8, NR'R'' = N-morpholino)	-388	7	MV^{2+}	-447	2-PrOH	→0	C	80R184
2.3.53	(2k, n = 11, NR'R'' = N-morpholino)	-403	7	MV ²⁺	447	2-PrOH	→0	C	80R184
2.3.54	(2k, n = 2, NR'R'' = N-pyrrolidino)	-334	7	AQS-	-376	2-PrOH	→0	C	80R184
2.3.55	(2k, n = 4, NR'R'' = N-pyrrolidino)	-389	7	MV ²⁺	-447	2-PrOH	→0	C	80R184
2.3.56	(2k, n = 2, NR'R'' = N-piperidino)	-325	7	AQS^-	-375	2-PrOH	→0	C	80K184
	,	-316 -345	6 8						82Z198
2.3.57	(2k, n = 3, NR'R'' = N-piperidino)	-353	7	AQS-	-375	2-PrOH	→0	C	80R184
2.3.58	(2k, n = 4, NR'R'' = N-piperidino)	-386	7	MV^{2+}	-447	2-PrOH	→0	c	80R184
2.3.59	(2k, n = 6, NR'R'' = N-piperidino)	-399	7	MV ²⁺	-447	2-PrOH	→0	C	80R184
2.3.60	(2k, n = 2, NR'R'' = 2-pyridyl)	-395	7	AQS-	-375	2-PrOH	→0	C	80R184
2.3.61	(2k, n = 2, NR'R'' = N-anilino)	-398	7	AQS-	-375	2-PrOH	→ 0	C .	80R184
2.3.62	$(2k, n = 2, NR'R'' = N(CH(CH_3)_2)_2)$	-272	7	AQS-	-375	2-PrOH	→0	С	80R184
2.3.63	(21, NR'R'' = N- aziridino)	-398	7					C	84R149
2.3.64	(21, NR'R'' = N(CH ₃) ₂)	-351	7	AQS-	-375	2-PrOH	→ 0	C	80R186
2.3.65	$ (21, NR'R'' = N(C_2H_5)_2) $	-349	7	AQS-	-375	2-PrOH	→0	c	80R186
2.3.66	$(21, NR'R'' = N(CH_2CH_2OH)_2)$	-369	7	AQS-	-375	2-PrOH	→0	C	80R186
2,3.67	$(21, NR'R'' = NHC(CH_3)_3)$	-348	7	AQS-	-375	2-PrOH	→0	C	80R186
2.3.68	(21, NR'R'' = NHCH2C6H5)	-353	7	AQS-	-375	2-PrOH	→0	C	80R186
2.3.69	(21, NR'R'' =	-391	7	AQS-	-375	2-PrOH	→0	C	80R186

$$(CH_2)_nNR'R''$$

$$\downarrow \qquad \qquad CH_2CH(OH)CH_2NR'R''$$

$$\downarrow N \qquad \qquad N \qquad NO_2$$

$$\downarrow N \qquad \qquad N \qquad NO_2$$

$$(2k) \qquad (2l)$$

Table 2. Reduction potentials of nitroaryl compounds (RNO₂/RNO₂-)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
2.8. 2	-NitroimidazolesContin	ued							
2.3.70	(21, $NR'R'' = NHCH_2C_0H_4OCH_3(p)$)	-350	7	AQS-	-375	2-PrOH	→0	C .	80R186
2.3.71	(21, NR'R'' = 2m)	-355	7	AQS-	-375	2-PrOH	→0	C	80R186
2.3.72	(21, NR'R'' = 2n)	-361	7	AQS^-	-375	2-PrOH	→0	\mathbf{c}	80R186
2.3.73	1-(3-N-Pyrrolidinyl-2- hydroxypropyl)-2- nitroimidazole (20, X = absent)	-352	7	AQS	375	2-PrOH	→0	C	80R186
2.3.74	$(2o, X = CH_2)$	-346	7	AQS-	-375	2-PrOH	→ 0	\mathbf{c}	80R186
2.3.75	(20, $X = CH_2$, $R'' = OH$)	-357	7	AQS-	-375	2-PrOH	→0	C	80R186
2.3.76	1-[3-(4-Morpholino)-2- hydroxypropyl]-2- nitroimidazole (20, X	-380	7	AQS-	-375	2-PrOH	→0	С	80R186
2.3.77	$(2o, X = NCH_3)$	-370	7	AQS-	-375	2-PrOH	→0	C	80R186
2.4. 4	-Nitroimidazoles								
2.4.1	4-Nitroimidazole (2p, R ² = R ⁵ = H)	≤-527	7	AQS-	-375	t-BuOH	→0	C	761070
2.4.2	5-Iodo-4-nitroimidazole (2p, $R^2 = H$, $R^2 = I$)	-503	7	AQS-	-380	2-PrOH	~0.010	C (K)	85A303
2.4.3	2-Methyl-4- nitroimidazole (2q, R ² = CH ₃)	-542	7	AQS-	-380	2-PrOH	~0.010	C .	751117
		-492	7	AQS-	-375	t-BuOH	→ 0	C	771044
2.4.4	5-Bromo-1-methy!-4- nitroimidazole (2q, R ⁵ = Br)	-523	7	MV ²⁺	-447	2-PrOH	→0	C	82A033
2.4.5	5-Chloro-1-methyl-4- nitroimidazole (2q, R ⁵ = Cl)	~-517	7	AQS-	-375	t-BuOH	→ 0	C	761070
		-534	7	MV^{2+}	-447	t-BuOH	→ 0	C	80A136
2.4.6	5-Iodo-1-methyl-4- nitroimidazole (2q, R ⁵ = I)	-529	7	MV ²⁺	-447	2-PrOH	→0	C	82A033
		-505	7	AQS-	-380			C	85A303
2.4.7	5-Mercapto-1-methyl- 4-nitroimidazole (2q , R ⁵ = SH)	-538	7		486	2-PrOH	→0	C	80R183
2.4.8	1-Methyl-4- nitroimidazole-5- sulfonamide (2q , R ⁵ =	-395	7	MV ²⁺	-447	2-PrOH	→0	C	80R183
	SO ₂ NH ₂)			•					
2.4.9	$(2q, R^5 = SO_2CH_3)$	-355	7	3 4379 ±	=		,	~	81R072
2.4.10 2.4.11	$(2q, R^5 = SCH_2CO_2H)$ $(2q, R^5 = SO_2N(CH_3)_2)$	-545 -409	7	MV ²⁺ MV ²⁺	447 447	2-PrOH 2-PrOH	→0	C .	80R183 80R183
	NH	—nн-√	-KµH	CH₂¢	CH(OH)CH₂N R	X 	,5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	– _R ²	CH ₃
	4		人	5 N	-C ₂	o	n ∠ N₂N	. 0	N _L'N
	(2m)	. /2	n)		(20)		(2p)		(2q)

Table 2. Reduction potentials of nitroaryl compounds $(RNO_2/R\dot{N}O_2^-)$ —Continued

No.	Compound or E	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
2.4. 4	-Nitrolmidazoles—Continued	l							
2.4.12	$\begin{array}{l} (\mathbf{2q}, \mathbf{R}^5 = \\ \mathbf{SO}_2\mathbf{NHCOCH}_3) \end{array}$	-523	- 7					C	81R072
2.4.13	$\begin{array}{l} (\mathbf{2q}, \ \mathbf{R}^5 = \\ \mathbf{SO_2NHCH_2N(CH_3)_2}) \end{array}$	-402	7					C	81R072
2.4.14	$(2q, R^5 = SO_2-(N-morpholino))$	-406	7					С	81R072
2.4.15	$(2q, R^n = SO_2NHCH_2-(N-morpholino))$	394	7	MV ²⁺	-447	2-Proh	→U	C	80K183
2.4.16	$(2q, R^5 = OC_6H_5)$	-560	7					C	84R150
2.4.17	$(2q, R^5 = O - (p - hydroxyphenyl))$	-565	7					C	84R150
2.4.18	1-Methyl-5- phenylsulfonyl-4- nitroimidazole (2q, R^6 = $SO_2C_6H_5$)	-376	7					C	81R072
2.4.19	1-Methyl-5- phenoxysulfonyl-4- nitroimidazole (2q, R ⁵ = SO ₂ OC ₆ H ₅)	-342	7	MV ²⁺	-447	2-PrOH	→0	C ,	80R183
2.4.20	1-Methyl-5-(4-chlorophenoxy)sulfonyl-4-nitroimidazole (2q, ${\rm R}^5={\rm SO}_2{\rm O}$ -(4-chlorophenyl))	-345	7	MV ²⁺	447	2-PrOH	→0	C .	80R183
2.4.21	1-Methyl-5-(4- nitrophenoxy)sulfonyl- 4-nitroimidazole (2q, R ⁵ = SO ₂ O-(4- nitrophenyl))	-302	7					C	81R072
2.4.22	1-Methyl-5- phenylaminosulfonyl- 4-nitroimidazole ($2q$, $R^6 = SO_2NHC_0H_5$)	-398	7	, MV ²⁺	-447	2-PrOH	→ 0	C	80R183
2.4.23	1-Methyl-5-(2-chlorophenyl)aminosulfonyl-4-nitroimidazole (2q, R ⁵ = SO ₂ NH-(2-chlorophenyl))	-444	7		•			C -	81R072
2.4.24	1-Methyl-5-(2-methylphenyl)aminosulfonyl 4-nitroimidazole (2q, R ⁵ = SO ₂ NH-(2-tolyl))	-426	7					C	81R072
2.4.25	$(2q, R^5 = SO_2O-(2-methoxyphenyl))$	-365	7		,			C	81R072
2.4.26	$(2q, R^5 = SO_0O-(4-methoxyphenyl))$	-335	7					. c	81R 07 2
2.4.27	$(2q, R^5 = SO_2NH-(2-methoxyphenyl))$	-408	7					С	81R072
2.4.28	$\begin{array}{l} (\mathbf{2q}, \mathbf{R}^5 = \mathbf{3-1^{\text{-}}(3-} \\ \mathbf{2minopurine})) \end{array}$	-490	• 7	MV ²⁺	-447	2-PrOH	→0	C	80R183
2.4.29	$(2q, R^5 = S-1)^2$ amino-6- $(2-methylpropyl)$ purine))	-503	7	TQ ²⁺	-548	2-PrOH	→ 0	C	80R183
2.4.30	(2q, R5 = SO2O-(1-naphthyl))	-340	7					c	81R072
2.4.31	(2q, R5 = SO2NH-(1-naphthyl))	-453	7					C	81R072

Table ? Reduction potentials of nitroaryl compounds (RNO2/RNO2-)-Continued

hi.	Country of the countr	E/mV	Нq	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	· Ref.
2.4. 4	-Nitroimidaxoles-Contin	ued						*	
2.4.32	$(2r, R^1 = CH_3, R^2 = Br)$	-515	7					C	84R150
2.4.33	2-Iodo-1-methyl-4- nitroimidazole ($2\mathbf{r}$, \mathbf{R}^1 = \mathbf{CH}_3 , $\mathbf{R}^2 = \mathbf{I}$)	-521	7	MV ²⁺	447	2-PrOH	→0	С	82A033
2.4.34	$(2r, R^1 = CH_3, R^2 = NO_2)$	-243	7					C	84R150
2.4.35	$(2r, R^1 = CH_3, R^2 = SO_2CH_3)$	-446	7					C	84R150
2.4.36	$(2r, R^1 = CH_2CH(OH)CH_2OH, R^6 = I)$	-512	7						84R150
2.4.37	$(2r, R^1 = CH_2CO_2C_2H_5, R^5 = I)$	-436	7	AQS-	-480			C (K)	85A303
2.4.38	$(2r, R^{1} - CH_{2}CH(OH)CH_{2}OCH_{3}, R^{5} = I)$	_497	7	AQS-	-480			c	82 V 303
2.4.39	$(2r, R^1 = CH_2CH(OH)CH_2OCH_3, R^2 = CH_3)$	-564	7	MV ²⁺	-447		→0	C	79R017
		-583	7	TQ^{2+}	-548		→0	C	80C008
2.4.40	$(2r, R^1 = CH_2CH_2-(N-morpholino))$	554	7	MV ²⁺	-554		→0	C	79R017
2.4.41	$(2r, R^1 = CH_2CONHCH_2-(3-pyridyl-N-oxide), R^5 = 1)$	-465	7	AQS ⁻	380			C	85A303
2.4.42	(2s)	-439	7	AQS-	-375		→ 0	C	771044
2.4.43	(2t)	-335	7					C	84R150
2.4.44	$(2q, R^5 = SC_6H_5)$	-501	7						84R150
2.5. 5	i-Nitroimidazoles								
2.5.1	4-Bromo-1-methyl-5- nitroimidazole (2u, R ⁴ = Br)	-460	7	MV ²⁺	-447	2-PrOH	→0	. C	82A033
2.5.2	4-Iodo-1-methyl-5- nitroimidazole (2u. R ⁴ = I)	-461	7	MV ²⁺	-447	2-PrOH	→0	C(K)	82A033
		-464	7	AQS-	-380			C	85A303
2.5.3	$(2u, R^4 = SO_2 - (N-morpholino))$	-334	7					C	83R015
2.5.4	$(2u, R^4 = SO_2NH_2)$	-336	7					C	83R015
2.5.5	$(2u, R^4 = SO_2C_0H_5)$	-324	7					C	83R018
2.5.6	$(2u, R^4 = SO_2OC_6H_5)$	-259	7					C	83R015

REDUCTION POTENTIALS OF ONE-ELECTRON COUPLES

Table 2. Reduction potentials of nitroaryl compounds $(RNO_2/R\dot{N}O_2^-)$ -Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
2.5. 5-	Nitroimidazoles—Contin	ued							
2.5.7	2-Iodo-1-methyl-5- nitroimidazole (2u, R ² = I)	-454	7	MV ²⁺	-447	2-PrOH	→0	С	82A033
2.5.8	$(2u, R^2 = NO_2)$	-178	7					C	84R150
2.5.9	1-Methyl-5- nitroimidazole-2- carboxaldehyde (zu , $R^2 = CHO$)	360	7	AQS-	-37 5	2-PrOH	→0	C	82R117
		-360	7	BV2+	-354	2-PrOH	→0	С	82R117
2.5.10	1,2-Dimethyl-5- nitroimidazole (2u, R ² = CH ₃)	-475	7	AQS ⁻	-375	2-PrOH	→0	C	761070
		480	7	AQS-	-375	HCO ₂	→0	C, calc. data	761070
2.5.11	$(2\mathbf{u}, \mathbf{R}^2 = SOCH_3)$	-361	7					C	84R150
2.5.12	$(2\mathbf{u}, \mathbf{R}^2 = \mathrm{SO}_2\mathrm{CH}_3)$	-351	7					С	84R150
2.5.13	$(2u, R^2 = S(CH_2)_2O-(4-carboxyphenyl))$	-481	7	MV ²⁺	447	2-PrOH	→0	С	85R035
2.5.14	$(2v, R^1 = CH_2CH_2OPO_3^{2-}, R^2 = CH_3, Na_2sait (?))$	509	7	AQS ⁻	-375	t-BuOH	→0	C	771044
2.5.15	$(2\mathbf{v}, \mathbf{R}^{T} = \mathbf{C}\mathbf{H}_{Z}\mathbf{C}\mathbf{H}_{Z}\mathbf{O}\mathbf{H}, \\ \mathbf{R}^{Z} = \mathbf{C}\mathbf{H}_{3})$	-486 *	. 7					Rec	
		-485	7	AQS~	-375	2-PrOH	→ 0	C, calc. data	761070
		-488	7	AQS-	-375	t-BuOH	→0	C (K), calc. data	761070
		486	7	AQS-	-375	t-BuOH	→0	C	771044
		-451	7	3.8.10	-410	t-BuOH		C	85 A 090
		-476	7	AQS-	-380	t-BuOH		C	85 A 090
2.5.16	$(2v, R^1 = CH_2CH(OH)CH_2CI, R^2 = CH_3)$	-467 *	7	AQS-	-375	2-PrOH	→0	Rec.; C	761070
		-474	7	AQS-	-375	$\mathrm{HCO_2}^-$	→0	C, calc. data	761070
2.5.17	$(2v, R^1 = CH_2CO_2C_2H_5, R^4 = 1)$	-475	7	AQS-	-375			C	85A303
2.5.18	$(2v, R^{1} = CH_{2}CH(OH)CH_{2}OCH_{3}, R^{4} = I)$	-441	7	AQS	-375		•	C	85A303
2.5.19	$(2v, R^{1} = CH_{2}CH_{2}NHC(= S)OCH_{3}, R^{2} = CH_{3})$	-498	7	MV ²⁺	447		→0	C	79R017
2.5.20	$(2v, R^1 = CH_2CH(OH)CH_2OCH_3, R^2 = CH_3)$	-479 *	7	AQS ⁻	-375	2-PrOH	→0	Rec.; C	761070
		-475	7	AQS^-	-375	$\mathrm{HCO_2}^-$	→0	C	761070
2.5.21	1-(2-Ethylsulfonyl)- ethyl-2-methyl-5- nitroimidazole (2v, R ¹ = $CH_2CH_2SO_2C_2H_5$, $R^2 = CH_3$)	-464	7	AQS ⁻	-37 5	t-BuOH	→ 0	С	761070

Table 2. Reduction potentials of nitroaryl compounds $(RNO_2/R\dot{N}O_2^-)$ —Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
2.5. 5	-Nitroimidazoles—Contin	ued							5 -
		-464	7	AQS-	-375	t-BuOH	→0	C v	771044
2.5.22	1-(2-N- Morpholinoethyl)-5- nitroinidazole (2v, R' = CH ₂ CH ₂ -(N- morpholino))	-457	7	AQS ⁻	-375	t-BuOH	~ →0	C	761070
2.5.23	$(2v, R^{1} = CII_{2}CONII_{2}CII_{2}^{-}(s-pyridyl), R^{1} = I)$	-448	7	AQS ⁻	-380			C(K)	85A303
2.5.24	(2w, X = S)	-467	7					C	84R150
2.5.25	$(2\mathbf{w},\mathbf{X}=\mathrm{SO}_2)$	-342	7					C	84R150
2.6. N	Vitroazaindoles				٠				
2.6.1	1-Methyl-3-nitro-7- azalndole (2x, R = CH ₃)	-566	7	3.5.1	-700	HCO ₂	→ 0		86C027
2.6.2	1-(2-Bromoethyl)-3- nitro-7-azaindole ($2x$, $R' = CH_2CH_2Br$))	-605	7			HCO ₂ -	→0		86C027
2.6.3	$(2x, R' = CH_2CH(OH)CH_2OH)$	-607	7			HCO_2^-	→ 0		86C027
2.6.4	$(2x, R^1 = CH_2CONHCH_2CH_2OH)$	-546	7			HCO2-	→0		86C027
2.6.5	$(2x, R^1 = CH_2CONH(CH_2)_3 -N-morpholino)$	-532	7			HCO ₂	→0		86C027
2.6.6	$ \begin{array}{l} (\mathbf{2y}, \mathbf{R}^7 = \\ \mathbf{CH}_2\mathbf{CO}_2\mathbf{C}_2\mathbf{H}_5) \end{array} $	-616	7 .			HCO2-	→ 0		86C027
2.6.7	$(2y, R^7 = CH_2CONH(CH_2)_3 N$ morpholino)	-632	7		•	HCO2	→0		86C027
2.6.8	(2z)	-626	7			$\mathrm{HCO_2}^-$	→0		86C027
2.7.	Nitroacridines .								
2.7.1	Nitroakridin 3582 (2aa)	-260	7	BV ²⁺	-354	2-PrOH	→0	C	84R148
2.7.2	Nitracrine (2bb, R ⁴ = H)	-275	7	BV ²⁺	-354	2-PrOH	→0	c	87R070
		-303	7	BV ²⁺	-380	2-PrOH	→0	C; further values, pH 3-11	89R018
	$\begin{array}{c c} CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-$	12		NO ₂ N NO ₂ R 1 (2x)		N 7 R 7) NO	¹ 2	
	NO ₂ NO ₂ NO ₂ CH ₂ CO ₂ C ₂ H ₅	н₃со Д	NI N	HCH2CH(OH)CH	H₂N(C₂H₅)₂		NH(CH ₂) ₃ N(CH ₃) ₂ NO ₂	
								Ř ⁴	

J. Phys. Chem. Ref. Data, Vol. 18, No. 4, 1989

TABLE 2. Reduction potentials of nitroaryl compounds (RNO₂/RNO₂⁻)-Continued

No.	Compound or couple	E/mV	рΗ	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
2.7. N	litroacridines—Continued								
2.7.3	$(2bb, R^4 = Cl)$	-325	7	BV ²⁺	-380	2-PrOH	- →0	C	89R018
2.7.4	$(2bb, R^4 = F)$	-354	7	BV ²⁺	-380	2-PrOH	→ 0	C	89R018
.7.5	(2bb, $R^4 = CH_3$)	- 321	7	\mathbf{BV}^{2+}	380	2-PrOH	→ 0	C	80R018
2.7.6	$(2bb, R^4 = OCH_3)$	-361	7	\mathbf{BV}^{2+}	-380	2-PrOH	→ 0	C	89R018
2.7.7	$(\mathbf{2bb}, \mathbf{R}^4 = \mathbf{CO}_2\mathbf{CH}_3)$	-244	7	BV^{2+}	-380	2-PrOH	→0	C	89R018
2.7.8	$(2bb, R^4 - N(CH_3)_2)$	-334	7	\mathbf{EV}^{2+}	380	2-PrOH	→ 0	C	89R018
2.7.9	$\begin{array}{l} (\mathbf{2bb}, \mathbf{R}^4 = \\ \mathbf{N}(\mathbf{CH_2CH_2OCOCH_3})_2) \end{array}$	-314	7	BV ²⁺	-380	2-PrOH	→0	C	89R018
2.8. N	Miscellaneous nitroaryl c	ompounds							•
2.8.1	2-Nitrobenzimidazole (2cc)	-300	7	AQS-	-375	2-PrOH	→0	c .	80R187
2.8.2	8-Nitrotheophylline (2dd)	494	7	MV ²⁺	-447		→n	С	80R.187
2.8.3	8-Nitrocaffeine (2ee)	-205	7	DQ	-244	2-PrOH	→0	C	80R187
2.8.4	2-Nitrobenzofuran (2ff)	-292	7	DQ	244	2-PrOH	~ 0.020	C	82R087
2.8.5	7-Hydroxy-2- nitrobenzofuran (2ff, R ⁷ = OH)	-288 -305	7 7	DQ AQS	-244 -375	2-PrOH	~0.020	C	82R087
2.8.6	7-Methoxy-2- nitrobenzofuran (2ff, R ⁷ = OCH ₃)	-296	7	DQ	-244	2-PrOH	~0.020	C	82R087
2.8.7	5-Hydroxy-2- nitrobenzofuran (2ff, R ⁵ = OH)	-285 -309	7 7	DQ AQS	-244 -375	2-PrOH	~0.020	С	82R087
2.8.8	5-Methoxy-2- nitrobenzofuran (2ff, R ⁵ = OCH ₃)	-292	7	DQ	-244	2-PrOH	~0.020	С	82R087
2.8.9	4-Nitropyridine (2gg)	-191	7	DQ	-235	2-PrOH	~0.010	C (K)	751117
2.8.10	2-Nitrothiophene (2hh)	-395	7	AQS	-380	2-PrOH	~0.010	, ,	751117
	,,	-390	7	DQ	-235	2-PrOH	~0.010		751117
2.8.11	5-Nitrouracil (211)	-527	7	AQS-	-380	2-PrOH	~0.010		751117
2.8.12	6-Hydroxy-5- nitrothymine (2jj)	-405	7	AQS-	-375			-	80A210
2.8.13	1-Ethyl-2,3-dihydro-6- nitroimidazo[1,2- a]pyridinium (2kk, R = C_2H_5)	-356	7	BV ²⁺	-354	2-PrOH	→0	C	78R212
	N I NO ₂		CH₃			O 11	*	გ5	
	N N	°×	, N	- N	H ₃ C _1	√—,°	H ₃	R ⁵	
	W ↓ NO.	n ~ , Ņ	~ ↓~	⊥ _{NO} .		人,人,人,	^	للملما	`NO ₂
	i H	пзС	0 1	2	0,	I N N	O ₂	Į,	.,02
	(2cc)		(2dd)			(2ee)		(2ff)	
	NO₂	S NO ₂		H N N N N N N N N N N N N N N N N N N N	,NO₂	H N N H		02N	N → N - R

J. Phys. Chem. Ref. Data, Vol. 18, No. 4, 1989

TABLE 2. Reduction potentials of nitroaryl compounds (RNO2/RNO2-)-Continued

george de ser News	Compound or couple	E/mV	рH	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
2.8. N	Miscellaneous nitroaryl	•	-Conti		· · · · · · · · · · · · · · · · · · ·				
.8.14	1-Phenyl-2,3-dihydro- 6-nitroimidazo 1,2-	-335	7	BV ²⁺	-354	2-PrOH	→0	C	78R21

^{*} Recomended value.

TABLE 3. Reduction potentials of bipyridinium and related compounds (BP²⁺/BP·⁺)

No.	Compound or couple	E/mV	рĦ	Ref. compound	Ref. E /mV	Co-solute I	Method/ comments	Ref.
8.1.	Unbridged 2.2'-bipyridin	lum compo	unds	·				
3.1.1	2,2'-Bipyridinium (8a, $R^1 = R^{1'} = H$)	-500	(<0)	Co(bpy)3 ³⁺	-890	HCO ₂	Kin.; E°.	83C017
3.1.2	1,1'-Dimethyl-2,2'- bipyridinium (8a, \mathbb{R}^1 = $\mathbb{R}^{1'}$ = $\mathbb{C}\mathbb{H}_3$)	776	5.9- 8.0				Pol., I salt.	67C004
		-658					Pol.	68C004, 73C001
		-720	7				Cyc. v.	80A247
3.1.3	$(8a, R^1 = R^{1'} = (CH_2)_3SO_3^-)$	-680					No details.	85F007
		-620	9.2				Cyc. v.	85N094
3.1.4	4,4'-Dimethyl-2,2'- bipyridinium (8a, \mathbb{R}^4 = $\mathbb{R}^{4'}$ = \mathbb{CH}_3)	-540	(<0)	Co(bpy) ₃ ³⁺	-890	HCO ₂	Kin.; <i>E</i> °.	83C017
8.2.	Bridged 2,2'-bipyridiniur	n compoun	ds: der	ivatives of d	ipyrido[1,	2-c:2',1'-c]pyrasin	edilum	
3.2.1	Dipyrido[1,2-a:2',1'-c]pyrazinediium (5b)	-270	3.4- 8.6				Pol., Br salt.	68C002, 69C004
		-290					Pol.	68C004
3.2.2	6-Methyldipyrido[1,2- $a:2'.1'-c$]pyrazinediium (8b, R ⁶ = CH ₃)	-300					Pol., Br salt.	71C001
3.2.3	6-Phenyldipyrido[1,2- $a:2',1'-c$]pyrazinedilum (3b, R ⁶ = C ₆ H ₅)	-270					Pol., Br salt.	71C001
8.8.	Bridged 2,2'-bipyridinium	n compoun	ds: der	ivatives of 8	,7-dihydro	dipyrido[1,2-æ2',	1'-c]pyrasinedilum ('d	liquat')
3.3.1	6,7-Dihydrodipyrido- [1,2-a:2',1'- c]pyrazinediium (8c)	-358 *					Rec.	
	ciblianuedum (ec)	-349	10				D-4 D-7 - 14	400001
		-354	7.8	NAD ⁺ /NAD	Н -345		Pot., Br salt. Enzyme-catalysed equilibrium.	60C001 65F032
		-396	2.2- 11.0				Pol.	66C002
		-342					Pol.	66C001
		-360					Pol., Br - salt.	67C003
		-349					Pol., Br salt.	68C004, 73C001
		-366	8.3				Pol., I salt.	68C001
		-366	1.6- 9.2				Pol., I salt.	69C001
		-351					Cyc. v., Br = and Cl = salts.	749052
		-366					Pol., Br salt.	77Z190
		-370	7				Cyc. v.	80A247
	\	_	1	11 12 1	2 }3	11	12 1 2	
	+ 1 1 R1 R	11		9 + \ + - 7 6	4	9.	N N 4 7 6	
	(3a)			(3b)			(3c)	

Table 3. Reduction potentials of bipyridinium and related compounds (BP^{2+}/BP^{*+}) —Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
8.8. I	Bridged 2,2'-bipyridinium ued	compour	ıds: dei	ivatives of	8,7-dihydro	dipyrido[1,2	3-a:2',1'	-c]pyrasinediium ('diquat')—
3.3.2	4-Bromo-6,7- dihydrodipyrido[1,2- a:2',1'-c]pyrazinediium (8c, R ⁴ = Br)	10	1.9- 4.5					Pol., Br salt, unstable pH 7.	74C003
3.3.3	6,7-Dihydro-6- hydroxydipyrido[1,2- a:2',1'-c]pyrazinediium (8c, R ⁶ = OH)	-290	1.8- 4.0					Pol., Br salt.	69C004
3.3.4	3-Cyano-6,7- dihydrodipyrido[1,2- a:2',1'-c]pyrazinediium (8c, R ³ = CN)	0	2-6					Pol., Br salt.	76C002
3.3.5	6,7-Dihydro-4- methyldipyrido[1,2- a:2',1'-c]pyrazinediium (ac, R ⁴ = CH ₃)	-410	4.0- 9.0					Pol., Br salt.	77C006
3.3.6	6,7-Dihydro-6- methyldipyrido[1,2- a:2',1'-c]pyrazinediium (8c, $\mathbb{R}^6 = \mathbb{C}\mathbb{H}_3$)	-350						Pol., Br salt.	71C001
3.3.7	6,7-Dihydro-3- methoxydipyrido[1,2- a:2',1'-c]pyrazinediium (8c, R ³ — OCII ₃)	-450	4.5- 10.4					Pol.	76C002
3.3.8	3-Methoxycarbonyl- 6,7-dihydrodipyrido- [1,2- a :2',1'- c]pyrazinediium (8c, $R^3 = CO_2CH_3$)	-140	3-7					Pol.	76C002
3.3.9	4-Ethyl-6,7- dihydrodipyrido[1,2- $\alpha:2',1'-c$]pyrazinedium (3c, $R^4 = C_2H_6$)	-420	4.0- 9.0					Pol., Br = salt.	77C006
3.3,10	3-Ethoxy-6,7- dihydrodipyrido[1,2- a:2',1'-c]pyrazinediium (8c, $\mathbb{R}^3 = OC_2H_5$)	-440	4.5- 10.4					Pol.	76C002
3.3.11	6,7-Dihydro-1,12-dimethyldipyrido[1,2- $a:2',1'-c$]pyrazinediium (8c, R ¹ = R ¹² = CH ₃)	-580						Pot.	60C001
		-590	7					Cyc. v.	80A247
3.3.12	6,7-Dihydro-2,11-dimethyldipyrido[1,2- a :2',-1'- c]pyrazinediium (8 c , $R^2 = R^{11} = CH_3$)	487				:		Pot.	60C001
		-490	7					Cyc. v.	80A247
		-491		2.4.39	-583	2-PrOH	→0	C; Br = salt.	84A292
3.3.13	6,7-Dihydro-3,10-dimethyldipyrido[1,2-a:2',-1'-c]pyrazinediium (8c, $\mathbb{R}^3 = \mathbb{R}^{10} = \mathbb{CH}_3$)	-479						Pot.	60C001
		-480	7					Cyc. v.	80A247
3.3.14	6,7-Dihydro-4,9-dimethyldipyrido [1,2- α :2',1'-c]pyrazinediium (3c, R ⁴ = R ⁹ = CH ₃)	-480							82C019

Table 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP.+)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	1	Method/ comments	Ref.
8.8. E	Bridged 2,2'-bipyridinium ued	compound	ds: der	ivatives of 6	,7-dihydro	dipyrido[1,2	- a:2',1'·	-c]pyrasinediium ('d	iguat')—
3.3.15	6,7-Dihydro-6,6- dimethyldipyrido[1,2- α :2',1'-c]pyrazinedium (8c, R ⁶ = R ⁶ = CH ₃)	-350						Pol., Br salt.	71C001
3.3.16	6,7-Dihydro-3- propoxydipyrido[1,2- a:2',1'-c]pyrazinedlium (8c, $\mathbb{R}^3 = OC_3H_7$)	-440	4.5- 10.4				٠	Pol.	76C002
3.3.17	8,7-Dihydro-2,3,10,11- tetramethyldipyrido[1,2- $a:2',1'-c$]pyrasinedlium (8c, $R^2 = R^3 = R^{10}$ $= R^{11} = CH_3$)	-613	7	3.4.1	-548	2-PrOH	→0		84A292
3.3.18	6,7-Dihydro-4(2-pyridyl)dipyrido[1,2-a:2',1'-c]pyrazinediium (3c, R ⁴ = 2-pyridyl)	-320	1.5- 8.2					Pol., Br salt	69C002
3.3.19	6,7-Dihydro-6-phenyldipyrido[1,2-a:2',1'-c]pyrazinediium (3c, $R^6 = C_6H_5$)	-290						Pol., Br - salt.	71C001
8.4. E ('triqu	ridged 2,2'-bipyridinium at')	compound	ds: der	ivatives of 7	,8-dihydro	-6 <i>H</i> -dlpyrld	o[1, 2-a:	2',1'-c][1,4]diazepin	edilum
3.4.1	7,8-Dihydrodipyrido- [1,2-a:2',1'-c][1,4]diaze- pinediium (3d)	-549 *						Rec.	
		-548	10					Pot., Br salt.	60C001
		-521	7.8					Pol.	66C001
		-550	8.3					Pol., I salt.	68C001
		-539	4.9- 9.2						69C001
		-608						Pol.	73C001
		-556	7					Cyc. v., Br salt.	749062
		-550	7					Cyc. v.	80A247
		-549	7					Diff. pulse volt.; Br = salt.	80C045
		-547	7					Pol.; Br salt.	80C045
		-490						Pol.; Br salt.	81S024
3.4.2	7,8-Dihydro-4-methyl- dipyrido $[1,2-a:2',1'-c]$ - diazepinediium (8d, \mathbb{R}^4	-590	7.0- 9.0					Pol., Br = salt.	77C006
	$= CH_3$								
3.4.3	7,8-Dihydro-3-methoxy-dipyrido[1,2-a:2',1'-c diazepinedilum (3d, R ³ = OCH ₃)	-630	4.5- 10.4					Pol., Br salt.	76C002

Table 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP++)—Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
	Bridged 2,2'-bipyridinium at')—Continued	compour	ıds: de	rivatives of 7	,8-dihydro	-6 <i>H</i> -dipyrid	o[1,2- <i>a</i> :	2',1'-c][1,4]diasepine	dilum
3.4.4	7,8-Dihydro-2,12- dimethyldipyrido[1,2- $a:2',1'-c$][1,4]diaze- pinediium (3d, R ² = R ¹² = CH ₃)	691 *	•					Rec.	
		-739						Pol., Br ⁻ salt, meas. by T.E. Tomlinson	65C002
		-560 f	7.8					Pol., Br salt.	66 C001
		-690						Pol.	66C001
		-690	7					Diff. pulse volt.; Br = salt.	80C045
		-686	7					Pol.; Br salt.	80C045
		-630						Pol; Rr- salt.	815024
		700							82C019
		695	7	2.4.39	-583	2-PrOH	→0	C; Br salt.	84A292
		-686	7	3.3.17	-613	2-PrOH	-> 0	C; Br salt.	84A292
1.4.5	7,8-Dihydro-3,11-dimethyldipyrido[1,2- α :2',1'-c diazepinediium (3d, R ³ = R ¹¹ = CH ₃)	671						Pol., Br ⁻ salt.	65C002
		-636			•				66C001
		-671						Pol.	66C001
		664	7					Diff. pulse volt.; Br = salt.	80C045
		-662	7					Pol.; Br = salt.	80C045
.4.6	7,8-Dihydro-2,3,11,12- tetramethyldipyrido[1,2- a :2',1'- c [1,4 diaze- pinediium (3d, R ² = R ³ = R ¹¹ = R ¹² = CH ₃)	770						Approx. (Value from cyc. v. in CH ₃ CN taken, less 30 mV.) ClO ₄ -salt.	82S257
		-775	7	2.4.39	-583		→0	C; Br salt.	84A292
		-778	7	3.3.17	-613	•	→0	C; Br salt.	84A292
.5. E tetra	Fridged 2,2'-bipyridinium quat')	compoun	ds: der	ivatives of 6	,7,8,9-tetra	hydrodipyi	ido[1,2-	-	
.5.1	6,7,8,9-Tetrahydro- dipyrido $[1,2-\alpha:2',1'-c][1,4]$ diazocinediium (3e)	~-700	10					Pot., Br salt, cryst. with 1/2 mol HBr.	60C001
		-636	8.8					Pol., I salt.	68C001
		-641	6.7- 9.1					Pol., I salt.	69C001
		-650	7					Cyc. v.	80A247
	V 4			13 14	1_2				
				12 N	N ₂ 4				

⁽³e)

J. Phys. Chem. Ref. Data, Vol. 18, No. 4, 1989

TABLE 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP.+)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
	Bridged 2,2'-bipyridiniun quat')—Continued	n compour	nds: de	rivatives of (8,7,8,9-tetr	ahydrodipyr	ido[1,2-	a: 2',1'-e][1,4]diaxoe	inediium
3.5.2	6,7,8,9-Tetrahydro- 2,13-dimethyl- dipyrido[1,2- a :2',1'- c][1,4]diazocinediium (3e, R ² = R ¹³ = CH ₃)	-780	-						80A247
		-735	7	2.4.39	-583	2-PrOH	→0	C; Br salt.	84A292
		-745	7	3.3.17	-613	2-PrOH	→0	C; Br salt.	84A292
3.5.3	6,7,8,9-Tetrahydro- 2,3,12,13-tetramethyl- dipyrido[1,2-a:2',1'-	-832	7		-613	t-BuOH	·→0	C; Br salt.	84A292
	c][1,4]diazocinediium (8e, R ² = R ³ = R ¹² = R ¹³ = CH ₃)								,
8.6. 1	Miscellaneous 2,2'-bipyri	iinium coi	mpoun	ds					
3.6.1	1,10-Phenanthrolinium (3f, R - R' - H)	-540						Approx., from kin. of quenching react. and comp. with bipyridyls (E°) .	83C017
3.6.2	1,10-Dimethyl-1,10- phenanthrolinium (8f, $R = R' = CH_3$)	-510						Cyc. v.	83N211
3.6.3	Phenanthrolino[4,5- a:6,7-c]pyrazinediium (8g)	-280	7					Pol., Br salt.	68C003
		-234						Pol., Br salt.	68C004
		-250						Cyc. v.	83N211
3.6.4	Phenanthrolino[4,5- $a:6,7-c$]diazepinediium (8h, R = R ¹ = H)	-270	7					Pol., Br salt.	68C003
		-114						Pol., Br salt.	68C004
	•	130						Cyc. v.	83N211
		-180						Pol.; Br salt.	815024
3.6.5	1-Chlorophen- anthrolino-[4,5-a:6,7-c]- diazepinediium (3h, R = H, R' = Cl)	-110						Pol.; Br salt.	81S024
3.6.6	1-Methylphen- anthrolino-[4,5- α :6,7- α]- diazepinediium (3h, R = H, R' = CH ₃)	-220						Pol.; Br salt.	815024
3.6.7	1,11-Dimethylphen- anthrolino-[4,5-a:6,7-c]- diazepinediium (3h, R = R' = CH_3)	400						Pol.; Br salt.	81S024

Table 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP.++)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	<i>I</i>	Method/ comments	Ref.
3.6. N	discellaneous 2,2'-bipyric	dinium com	pound	-Continued					
3.6.8	1,11-Diphenylphen- anthrolino- $\{4,5-\alpha:6,7-c\}$ - diazepinediium $\{3h, R\}$ $= R' = C_0H_6\}$	-310						Pol.; Br sait.	81S024
3.6.9	Phenanthrolino[4,5- a:6,7-c]diazocinediium (81)	-450	•					Cyc. v.	83N211
3.6.10	1,1'-Dimethyl-2,2'- biquinolinium (81)	-250	2.2- 9.9					Pol., CH ₃ SO ₄ -salt.	69C002
.7. 2	,4'-Bipyridinium compo	unds							
3.7.1	1,1'-Dimethyl-2,4'- bipyridinium (3k)	-640						Pot., I salt.	60C002
	ymmetrical 1,1'-disubsti tuents	tuted 4,4'-l	bipyrid	inium comp	ounds (vic	ologens, R ¹	= R ¹ ′)	without additional	ring
3.8.1	4,4'-Bipyridine (31, R = H)	-485	1.5					Pol., Cl salt.	81Z316
3.8.2	Methyl viologen (1,1'-Dimethyl-4,4'-bipyridinium) (31, R = CH ₃)	448 *						Rec.	
	G7	-446	y-13					Pot., Ci salt.	33C001
		-434	1.2- 13					Pol., Cl salt.	57C001
		-446						Pot., I salt.	60C002
		-426	7.8					Pol., Cl salt.	66C001
		-445						Pol., I salt.	67C00
		-418						Pol., I salt.	68C004
			8.3					Pol.	68C001
		-444	9, 11					Pot.	69C003
		-454						Cyc. v.	69C005
		-443	6.8				0.11	Pol., Cl salt.	70C001 81Z316
		-449						Cyc. v., Cl salt.	749062
		-441						Pol. or Pot., Cl salt.	75C001
		-464	7.45		-242			Cyc. v., At 0.1 mmol dm ⁻³ viologen; value increased to -447 mV at 2 mmol dm ⁻³ viologen.	76C001
		-445	11.0					Pot.	76C001
		-460	7.45	N.				Reduct. by $H_2/hydrogenase$, extinction values assumed.	76C001
		₩,	N CH ₃		N+ CH ₃	~ • • • • • • • • • • • • • • • • • • •		R - N	— R
	(3i)		CH₃ 3j)		CH ₃	(3k)		(31)	

TABLE 3. Reduction potentials of bipyridinium and related compounds (BP^{2+}/BP^{*+}) —Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
	ymmetrical 1,1'-disubsti uents—Continued	tuted 4,4'	bipyri	dinium com	pounds (vic	ologens, R ¹	= R ¹ ')	without additional	ring
		-450	7 .					Pol.	77Z190
		-462						Pol., bis(0,0-dimethyl phosphate) salt.	78C017
		446						Reduct. by H_2/hy drogenase, extinction values assumed.	78C016
		-440	7					Cyc. v.	80A247
		-465	7	AQS-	-373		→ 0	C; via BV ²⁺	80A349
		-456	1,7					Cyc. v.; 0.05 mol dm ⁻³ H_2SO_4 or 0.5 mol dm ⁻³ Na_2SO_4 .	80C004
		-456						Cyc. v.	80C044
		-453						Pot.; no details.	80R192
		-430	3-12		-247			Pol.; 25 mV lower using glassy carbon electrode.	81C038
		-448	7.4					Pot.	83R178
		-436						Cyc. v.	84N047
		-479						Cyc. v.	85A301
		-450						Cyc. v.	85E687
		-458	7.0					Cyc. v.	85M420
		-446						Cyc. v.	85N197
		-441						Pot. (also data on MV ²⁺ covalently linked to polymers)	86A072
3.8.3	1,1'-Dimethoxy-4,4'- bipyridinium (31, $R = OCH_3$)	-651	6.8					Pol., I salt.	81Z316
3.8.4	1,1'-Bis(cyanomethyl)- 4,4'-bipyridinium (31, R = CH ₂ CN)	-150	6.8					Pol., I salt.	70C001 81Z316
3.8.5	1,1'-Bis(carboxy-methyl)-4,4'-bipyridinium (31, R = $\mathrm{CH_2CO_2H})$	-444						Pot.	33C001
		-410	5.0					Pol., Cl salt.	81Z316
3.8.6	1,1'-Bis(2-sulfonato- ethyl)-4,4'-bipyridinium (31, R = $CH_2CH_2SO_3^-$)	-360						No details	86N260
3.8.7	1,1'-Bis(2-chloroethyl)-4,4'-bipyridinium (31, $R = CH_2CH_2CI$)	-335	76.8					Pol. 30° C, Cl ⁻ salt.	70C001 81Z316
3.8.8	1,1'-Bis(carbamyl-methyl)-4,4'-bipyridinium (31, R = CH_2CONH_2)	-296	6.8					Pol. 30° C, Ci salt.	70C001 81Z316

Table 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP.+)—Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	1	Method/ comments	Rof.
	ymmetrical 1,1'-disubsti uents—Continued	tuted 4,4'-l	oipyric	linium comp	oounds (vi	ologens, R ¹	= R ¹ ′)	without additional	ring
3.8.9	1,1'-Bis(2-hydroxy- iminoethyl)-4,4'- bipyridinium (31, R = CH ₂ CH=NOH)	-32 5	6.8					Pol., Cl ⁻ salt.	70C001, 81Z316
3.8.10	1,1'-Diethyl-4,4'- bipyridinium (81, R = C_2H_5)	-455 *						Rec.	
		-449	11.0					Pot., Cl salt.	33C001
		-480						Pol., See 76C001	61C001
		-466						Pol.	61M014
		-451	7					Pol.	81Z316
		-480						Pot.; no details.	80R192
3.8.11	1.1'-Bis(2-	-403 *						Rec.	
	hydroxyethyl)-4,4'- bipyridinium (31, R = CH_2CH_2OH)								
		-408						Pot., Br salt.	60C002
		-401	1.5-					Pol., Br salt.	69C001
		399	9.2 6.8					Pol., Ci salt.	70C001
									81Z316
		-408						Cyc. v.	77C007
		-400	7					Cyc. v.	80A247
3.8.12	1,1'-Bis(2-aminoethyl)- 4,4'-bipyridinium (31, $R = CH_2CH_2NH_2$)	-280						Pol.	817316
3.8.13	1,1'-Bis(2-propynyl)- 4,4'-bipyridinium (31, $R = CH_2C = CH$)	-435						Pol.	81Z316
3.8.14	1,1'-Bis(1,2-dichloroethyl)-4,4'-bipyridinium (31, R = $CH_2(Cl)$ =CHCl)	-266	6.8					Pol., Cl salt.	81Z316
3.8.15	1,1'-Diallyl-4,4'- bipyridinium (31, R = $CH_2CH = CH_2$)	-408						Pol.	81Z316
3.8.16	1,1'-Bis(2-oxopropyl)-4,4'-bipyridinium (31, $R = CH_2COCH_3$)	-305	1.5					Pol., Br salt.	81Z316
3.8.17	1,1'-Bis(2-carboxyethyl)-4,4'-bipyridinium (31, R = $CH_2CH_2CO_2H$)	-431						Pot., Cl salt.	60C002
3.8.18	1,1'-Bis(3-sulfonatopropyl)-4,4'-bipyridinium (31, R = $(CH_2)_3SO_3$)	-380 *						Rec	
		-345						Pulse rad. and cyc. v.; 85F007 gives -370 mV	84A392
		555						(no details).	
		~386	_					Cyc. v.	84N047
		-390	9.2					Cyc. v.	85N094

J. Phys. Chem. Ref. Data, Vol. 18, No. 4, 1989

TABLE 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP.+)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
	ymmetrical 1,1'-disubstit uents-Continued	uted 4,4'-	bipyri	dinium com	pounds (vie	ologens, R ¹	= R ¹ ')	without additions	d ring
3.8.19	1,1'-Dipropyl-4,4'-bipyridinium (31, R = n -C ₃ H ₇)	-438						Pot., I salt.	60C002
		-446	3.3					Pol., Br salt.	75C002
3.8.20	1,1'-Bis(1- methylethyl)-4,4'- bipyridinium (31, R = CH(CH ₃) ₂)	-450							82C019
3.8.21	1,1'- Bis(ethylthiomethyl)- 4,4'-bipyridinium (31, R = CH ₂ SEt)	-308	6.8					Pol., Cl salt.	81Z316
3.8.22	1,1'-Bis(3- cyanopropy1)-4,4'- bipyridinium (31, R = (CH ₂) ₃ CN)	-362	6.8					Pol., Cl ⁻ salt.	81Z316
3.8.23	1,1'- Bis(ethoxycarbonyl- methyl)-4,4'- bipyridinium (31, R = CH ₂ CO ₂ Et)	-422						Pot., Cl salt.	60C002
		-207	8.0					Rec., Pol., Dr salt.	700001 81Z316
3.8.24	1,1'-Bis(dimethylamino- carbonylmethyl)-4,4'- bipyridinium (31, $R = CH_2CON(CH_3)_2$)	-301	1.5- 9.2		•			Pol.	69C001
	2 (1/2)	-302	6.8					Pol., Cl salt.	81Z316
3.8.25	1,1'-Bis(2- ethoxyethyl)-4,4'- bipyridinium (31, R = CH ₂ CH ₂ OEt)	-386						Pot., [salt.	60C002
	- ,	-386	6.8					Pol., I salt.	81Z316
3.8.26	1,1'-Bis[2- (ethoxycarbonyl)ethyl]- 4,4'-bipyridinium (31,	-376	6.8					Pol., Br salt.	81Z316
3.8.27	R = (CH2)2CO2Et) 1,1'-Bis[2-(dimethyl-aminocarbonyl)ethyl]- 4,4'-bipyridinium (81, $R =$	-385	6.8					Pol., Cl salt.	81Z316
	$(CH_2)_2CON(CH_3)_2$								
3.8.28	1,1'-Bis[3- (ethoxycarbonyl)propyl]- 4,4'-bipyridinium (31, R = (CH ₂) ₃ CO ₂ Et)	-433	6.8					Pol., Br = salt.	81Z316
3.8.29	R = (CH2)3CO2Et) 1,1'-Bis[2- (trimethylammonio)ethyl]- 4,4'-bipyridinium (3l, $R = (CH2)2N+(CH3)3)$	-280	6.8					Pol., Br salt.	81Z316
3.8.30	1,1'-Bis(4- nitrophenyl)-4,4'- bipyridinium (31, R = p -NO ₂ C ₆ H ₄)	-150	6.8					Pol., I salt.	81Z316
3.8.31	1,1'-Diphenyl-4,4'- bipyridinium (31, R = C ₀ H ₅)	-288	6.8			-		Pol., Cl salt.	81Z316

The second of th

ane ak N	Campiani a	E/mV	рH	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
h.s. 8:	ymmetrical 1,1'-disubsti	tuted 4,4'-	bipyri	dinium com	oounds (vi	ologens, R ¹	= R ¹ ')	without additional	ring
	uents-Continued								
3.8.32	1,1'-Bis(2- pyridylmethyl)-4,4'- bipyridinium (31, R = $CH_2(2-pyridyl)$)	-325	6.8					Pol., Cl salt.	70C001 81Z316
3.8.33	1,1'-Bis(diethyl- aminocarbonylmethyl)- 4,4'-bipyridinium (31, R = CH ₂ CON(C ₂ H ₅) ₂)	-318							65C002
3.8.34	1,1'-Bis[3-(dimethyl- aminocarbonyl)propyl]- 4,4'-bipyridinium (31, R = (CH ₂) ₃ CON(CH ₃) ₂)	399	6.8					Pol., Cl salt.	70C001 81Z316
3.8.35	1,1'-Dihexyl-4,4'- bipyridinium (31, R = n-C ₀ H ₁₃)	-439						Pot., Br salt.	60C002
		-466	3.3					Pol., Br salt.	75C002
3.8.36	1,1'-Bis(2,2- diethoxyethyl)-4,4'- bipyridinium (31, R = $CH_2CH(OEt)_2$)	-373	6.8					Pol., Cl salt.	81Z316
3.8.37	1,1'-Bis[3-(trimethyl-ammonio)propyl]-4,4'-bipyridinium (31, R = $(CH_2)_3N^+(CH_3)_3$)	-331	6.8					Pol., Br salt.	81Z316
		-330						No details	86N260
3.8.38	1,1'-Bis(α - cyanobenzyl)-4,4'- bipyridinium (31, R = CH(C_0H_5)CN)	73	1.5, 7.0					Pol., Br salt.	81Z316
3.8.39	1,1'-Dibenzyl-4,4'- bipyridinium (31, R = $CH_2C_6H_5$)	-370 °						See introduction (Sec. 6.3)	
	•	-359	8.0					Pot., Cl salt.	33C001
		-348	1.2- 13					Pol., Cl salt.	57C001
		-350						Pot., Cl salt.	60C002
		~-341	8.8					Pol.	68C001
		-335						Pol.	73C001
		-358	7.0					Cyc. v.	749062
		-329	3.3	• .				Pol., Cl salt.	75C002
		-326	3.3					Pol., Br salt.	75C002
		-324 320	3.3 7					Pol., I salt.	75C002
		-330 -350	,	*				Cyc. v.	80A247
		-350 -350	7					Pot.; no details. Pol.	80R192 81C038
		-340	6.8					Pol., Br salt.	81Z316
		-351	7.4					Pot.; extrap. to zero radical concn. (more positive at higher radical concn.).	83R178
3.8.40	1,1'-Diheptyl-4,4'- bipyridinium (31, R =	-356		•				Pol., Br salt.	75C002

TABLE 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP.+)-Continued

3.8.41 1, (tr 4,4 R) 3.8.42 1, (cy bir C) 3.8.43 1, (di m)	metrical 1,1'-disubstite nts-Continued 1'-Bis[4	410 367	8.0- 10.0 1.5, 7.0 1.6- 9.2	dinium	сотро	ounds (vic	ologens, R ¹	= R ¹ ')	Pot., Br salt. Pol., Br salt. Pol., Cl salt. Pol., Pol., Br salt.	82C019 81Z316 70C001 81Z316 69C001
(tr 4,4,4,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	rimethylammonio)butyl]- A' -bipyridinium (31, A' -bipyridinium (31	-367 -73 -291 -305 -461 -470 -280	1.5, 7.0 1.6- 9.2 7 3.3						Pol., Br salt. Pol., Cl salt. Pol., Pol., Br salt.	81Z316 70C001 81Z316 69C001
(tr 4,4,4,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	rimethylammonio)butyl]- A' -bipyridinium (31, A' -bipyridinium (31	-73 -291 -305 -461 -470 -280	1.5, 7.0 1.6- 9.2 7 3.3						Pol., Br salt. Pol., Cl salt. Pol., Pol., Br salt.	70C001 81Z316 69C001 81Z316
cy bir cy bir cl state of the control of the contro	yanobenzyl)-4,4'- ipyridinium (31, R = $H(C_0H_5)CN)$,1'-Bis[2-(3,5- imethyl-4- iorpholinyl)-2- xoethyl]-4,4'- ipyridinium (31, R = m) ,1'-Dioctyl-4,4'- ipyridinium (31, R = -C_8H_{17}) ,1'-Dioctadecyl-4,4'- ipyridinium (31, R = -C_{18}H_{37}) ,1'- iis[ethoxycarbonyl-	-291 -305 -461 -470 -280	7.0 1.6- 9.2 7 3.3						Pol., Cl ⁻ salt. Pol. Pol., Br ⁻ salt.	81Z316 69C001 81Z316
di. me ox bi 3r 3.8.44 1, bi n- 3.8.45 1, bi n- 3.8.46 1, Bi (p bi 3.8.47 (3 3.8.49 (3 3.8.49 (3 3.8.50 (8 3.9. Sym substituer 3.9.1 1, bi	imethyl-4- norpholinyl)-2- xoethyl]-4,4'- ipyridinium (31, R = m) ,1'-Dioctyl-4,4'- ipyridinium (31, R = -C ₈ H ₁₇) ,1'-Dioctadecyl-4,4'- ipyridinium (31, R = -C ₁₈ H ₃₇) ,1'- iis[ethoxycarbonyl-	-305 -461 -470 -280	7 3.3						Pol. Pol., Br ⁻ salt.	817316
3.8.44 1, bi n- 3.8.45 1, bi n- 3.8.46 1, Bi (p bi) 3.8.47 (3 3.8.48 (3 3.8.49 (3 3.8.49 (3 3.8.50 (8 3.9. Symmubatltuer 3.9.1 1, bi	$_{1}^{1'}$ -Dioctyl-4,4'- ipyridinium (31, R = $_{1}^{1'}$ -Dioctadecyl-4,4'- ipyridinium (31, R = $_{1}^{1'}$ -C ₁₈ H ₃₇) $_{1}^{1'}$ - iis[ethoxycarbonyl-	-461 -470 -280	3.3						Pol., Br salt.	
bi n- 3.8.45 1, bi n- 3.8.46 1, Bi (p bi 3.8.47 (3 3.8.47 (3 3.8.49 (3 3.8.50 (3 3.9. Sym substituer 3.9.1 1, bi	ipyridinium (31, R = -C _R H ₁₇) ,1'-Dioctadecyl-4,4'- ipyridinium (31, R = -C ₁₈ H ₃₇) ,1'- iis[ethoxycarbonyl-	-461 -470 -280	3.3						Pol., Br salt.	
3.8.45 1, bi n- 3.8.46 1, Bi (p bi C) 3.8.47 (3 3.8.48 (3 3.8.49 (3 3.8.50 (3 3.9. Sym substituer 3.9.1 1, bi	$_{,1}$ '-Dioctadecyl-4,4'- ipyridinium (31, R = $_{,1}$ - $_{,1}$ - is[ethoxycarbonyl-	-280	6.8							
bi n- 3.8.46 1, Bi (p bi) C! 3.8.47 (3 3.8.48 (3 3.8.49 (3 3.8.50 (3 3.9. Sym substituer 3.9.1 1, bi	ipyridinium (31, R = -C ₁₈ H ₃₇) ,1'- is[ethoxycarbonyl-	-280	6.8						Cyc. v.	83N190
3.8.46 1, Bi (p bi C) 3.8.47 (3 3.8.48 (3 3.8.49 (3 3.8.50 (8 3.9. Sym	,1'- lis[ethoxycarbonyl-	-188	6.8						No details	86N260
3.8.48 (3 3.8.49 (3 3.8.50 (3 3.9. Symeubethtuer 3.9.1 1, bi	phenyl)methyl]-4,4'- ipyridinium (31 , R = CH(C ₆ H ₅)CO ₂ Et)		,						Pol., Br = salt.	81Z316
3.8.49 (3 3.8.50 (3 3.9. Sym substituer 3.9.1 1,	3n)	0	7						Cyc. v.	83N149
3.8.49 (3 3.8.50 (3 3.9. Sym substituer 3.9.1 1,		-139							Cyc. v.	85A301
3.8.50 (8 3.9. Sym substituer 3.9.1 1, bi	30, n = 2)	-280	7.3	3.3.1		-350	$\mathrm{HCO_2}^-$	0.1	C	86A266
3.9. Sym substituer 3.9.1 1,	Bo , n = 3)	-330				•			Calcn.	86A266
substituer 3.9.1 1, bi	80, n = 4)	-390							Calcn.	86A266
ьi	nmetrical 1,1'-disubsti nts	tuted 4,4	-bipyri	dinium	comp	ounds (vie	ologens, R	= R ^{1;})	with additional r	ing
C	$^{1'}$,2-Trimethyl-4,4'- ipyridinium (3p, R' = R'' = CH ₃ , R ² = CH ₃)	-500	3.0- 9.0						Pol., Br salt.	770006
	—cH₂co N O			, CH₂	- N					
	H₃C (3m)			•	• 🖳	(3n)	•			
	н₃с~і		N-(C	H ₂) _n -N	<u></u>	- N-c	H ₃	R1'-	6' 5' 5 6 N-R ¹	
			=/			\ <u>_</u> /			2' 3' 3 2	
	2		10	10)					(3p)	

TABLE 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP.+)—Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	<i>I</i>	Method/ comments	Ref.
	lymmetrical 1,1'-disubstituents—Continued	tuted 4,4	-bipyri	dinium comp	ounds (vi	ologeņs, R ¹	= R ¹ ')	with additional ring	3
3.9.2	1,1'-Diethyl-2-methyl-4,4'-bipyridinium (3p, $R^{\dagger} = R^{\dagger} - C_2H_5, R^2$ - CH_3)	-510	3.0- 9.0					Pol., Br salt. 77C006	
3.9.3	2-Methyl-1,1'- dipropyl-4,4'- bipyridinium (3p, R' = R'' = C_3H_7 , R^2 = CH_3)	500	3.0- 9.0					Pol., Br salt.	77C006
3.9.4	2,2'-Dicy ano-1,1'- dimethyl-4,4'- bipyridinium (3p, R' = R'' = CH ₃ , R ² = $R^{2'}$ = CN)	90	1.9- 7.0					Pol., CH ₃ SO ₄ -salt.	74C002
3.9.5	1,1',2,2'-Tetramethyl-4,4'-bipyridinium (3p, $R^{1} = R^{1'} = CH_{3}, R^{2}$ $= R^{2'} = CH_{3}$)	662	7					Pol.	700001
		510						Approx. (Value from cyc. v. in CH ₃ CN taken, less 30 mV.) Cl ⁻ salt.	825257
3.0.6	1,1',3,3'-Tetramethyl- 4,4'-bipyridinium (3p, $R^{1} = R^{1} = CH_{3}, R^{3}$ $= R^{3} = CH_{3}$)	830						Approx. (Value from cyc. v. in CH ₃ CN taken, less 30 mV.) ClO ₄ -salt.	82S257
3.9.7	1,1',2,2',6,6'- Hexamethyl-4,4'- bipyridinium (3p, R' = R'' = CH ₃ , R ² = R ^{2'} = CH ₃ , R ⁶ = R ^{6'} = CH ₃)	-640						Approx. (Value from cyc. v. in CH ₃ CN taken, less 30 mV.) Cl ⁻ salt.	82S257
3.9.8	1,1'-Dimethyl-2,2'- diphenyl-4,4'- bipyridinium (3p, R ¹ = R ¹ ' = CH ₃ , R ² = R ² ' = C ₀ H ₅)	-390	n.					Pol.	67C002
3.9.9	1,1'-Dimethyl-2,2'- bis(4-methylphenyl)- 4,4'-bipyridinium (3p, $R^1 = R^{1'} = CH_3$, R^2 $= R^{2'} = C_0H_4CH_3$)	439		•				Pol.	67C002
3.9.10	1,1'-Bis(cyanomethyl)- 2,2'-dimethyl-4,4'- bipyridinium ($\mathbf{3p}$, \mathbf{R}^1 = \mathbf{R}^1 ' = $\mathbf{CH}_2\mathbf{CN}$, \mathbf{R}^2 = \mathbf{R}^2 = \mathbf{CH}_3)	140	7					Pol.	70C001
3.9.11	1,1'-Bis(2-chloroethyl)- 2,2'-dimethyl-4,4'- bipyridinium ($\mathbf{3p}$, \mathbf{R}^1 = \mathbf{R}^1 ' = $\mathbf{CH_2CH_2Cl}$, \mathbf{R}^2 = \mathbf{R}^2 ' = $\mathbf{CH_3}$)	-422	7					Pol.	70C001
3.9.12	1,1'-Bis(2- hydroxyethyl)-2,2'- dimethyl-4,4'- bipyridinium (3p, R ¹ = R ¹ ' = CH ₂ CH ₂ OH, R ² = R ² ' = CH ₃)	481	7					Pol.	70C001

TABLE 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP.+)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
	ymmetrical 1,1'-disubstitu uents—Continued	uted 4,4'-	bipyric	Julum comp	oounds (vi	ologens, R¹ =	= R.1')	with additional r	hig
3.9.13	1,1'-Bis(2-oxopropyl)- 2,2'-dimethyl-4,4'- bipyridinium (3p, R ¹	-356	7					Pol.	70C001
	$= R^{1'} = CH_2COCH_3,$ $R^2 = R^{2'} = CH_3)$								
3.9.14	1.1'- Bis(ethoxycarbonylmethyl)- 2,2'-dimethyl-4,4'- bipyridinium ($\mathbf{3p}$, \mathbf{R}^1 = $\mathbf{R}^{1\prime}$ = $\mathbf{CH}_2\mathbf{CO}_2\mathbf{Et}$, \mathbf{R}^2 = $\mathbf{R}^{2\prime}$ = \mathbf{CH}_3)	323	7					Pol.	70C001
3.9.15	$(3p, R^1 = R^{1\prime} = (CH_2)_3SO_3^-, R^3 = R^{3\prime} = CH_3)$	-790	9.2					Cyc. v.	85N094
3.9.16	$(3p, R^1 = R^{1'} = (CH_2)_3SO_3^-, R^2 = R^{2'} = CH_3)$	-460	9.2					Сус. v.	85N094
3.9.17	$(3p, R^1 = R^{1'} = (CH_2)_3SO_3^-, R^2 = R^{2'} = R^6 = R^6' = CH_3)$	-540	9.2					Cyc. v.	85N094
3.10.	Asymmetrical 1,1'-disubs	tituted 4	,4'-bip;	ridinium co	mpounds	(viologens, R	- C	H ₈ , R ¹ ' = variab	le)
3.10.1	1-Methyl-4,4'- bipyridinium-1'-oxide ($3q$, $R' = -O^-$)	-490	6.8					Pol., CH ₃ SO ₄ -salt.	81Z316
3.10.2	1-Methyl-1'- cyanomethyl-4,4'- bipyridinium (3q, R' = CH ₂ CN)	-287	6.8					$Pol., Cl^-$ salt.	70C003 81Z316
3.10.3	1-Methyl-1'- carbamylmethyl-4,4'- bipyridinium (3q, R' = CH ₂ CONH ₂)	-371	6.8					Pol., I salt.	70C001 81Z316
3.10.4	1-Methyl-1'-(2- hydroxyethyl)-4,4'- bipyridinium ($3q$, R' = CH_2CH_2OH)	-422	6.8					Pol., Cl salt.	70C001 81Z316
3.10.5	1-Methyl-1'-allyl-4,4'- bipyridinium (8q, R' = $CH_2CH=CH_2$)	-426	6.8					Pol., I salt.	81Z316
3.10.6	1-Methyl-1'-(2- oxopropyl)-4,4'- bipyridinium (8q, R'	-380	6.8					Pol., I salt.	70C001 81Z316
3.10.7	= CH ₂ COCH ₃) 1-Methyl-1'-(3-cyano- 2-propenyl)-4,4' bipyridinium (3q, R' = CH ₂ CH=CHCN)	-369	6.8					Pol., I salt.	81Z31
3.10.8	• ,	-330	6.8					Pol., I salt.	81Z316

TABLE 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP++)—Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
3.10. Continu	Asymmetrical 1,1'-disub	stituted 4,	4'-bip	ridinium co	mpounds	(viologens, R	1 = CH	s, R ¹ = variabl	e)
3.10.9	1-Methyl-1'- ethoxycarbonylmethyl- 4,4'-bipyridinium (3q, R' = CH ₂ CO ₂ Et)	-362	6.8					Pol., I salt.	70C001 81Z316
3.10.10	1-Methyl-1'- [cyano(ethoxycarbonyl)- methyl]-4,4'- bipyridinium (3q, R' = $CH(CN)CO_2C_2H_5$)	-287	1.5					Pol., I salt.	81Z316
3.10.11	1-Methyl-1'-[3- (methoxycarbonyl)-2- propenyl]-4,4'- bipyridinium (3q, R' = CH ₂ CH=CHCO ₂ CH _D)	381	6.8					Pol., I salt.	81Z316
3.10.12	i-Methyl-1'-[(1- pyrazolyl)thiocarbonyl- methyl -4,4'- bipyridinium (3q, R' = CH ₂ CSNO)	-371	6.8					Pol., I salt.	81Z316
3.10.13	1-Methyl-1'-benzyl- 4,4'-bipyridinium	-408	6.8					Pol., Br salt.	81Z316
3.10.14	1-Methyl-1'- [anilino(thiocarbonyl- methyl)]-4,4'- bipyridinium (3q, R' = CH_CSNHC_6H_5)	-357	8.0					Pol., I salt.	812316
3.10.15	I-Methyl-1'-[2-(3,5-dimethyl-4-morpholinyl)-2-oxoethyl]-4.4'-bipyridiniu	374 ım	6.8					Pol., Cl salt.	81Z316
3.11.	Asymmetrical 1,1'-disub	ostituted 4	,4'-bip	yridinlum eo	mpounds	(viologens, R	1 # R1	≠ CH ₈)	
3.11.1	1-Ethyl-1'-(2- ethylthioethyl)-4,4'- bipyridinium (3r, R = C_2H_5 , R' = $(CH_2)_2SEt$)	-428						Pol.	81Z316
3.11.2	1-(2- Methoxycarbonylethyl)- 1'-propyl-4,4'- bipyridinium (3r, R = C ₃ H ₇ , R' = (CH ₂) ₂ CO ₂ CH ₃)	-408						Pol.	81Z316
3.11.3	1-(2-Hydroxyethyl)-1'- pentyl-4,4'- bipyridinium (3r, R — C ₅ H ₁₁ , R' = CH ₂ CH ₂ OH)	-438						Pol.	81Z316
3.11.4	1-Allyl-1'- carboxymethyl-4,4'- bipyridinium (3r, R = $\mathrm{CH_2CH} = \mathrm{CH_2}$, R' = $\mathrm{CH_2CO_2H}$)	-390						Pol.	81Z316
				F	· - N()				

TABLE 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP.+)-Continued

No.	Compound or couple	E/mV	pH .	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
8.11.	Asymmetrical 1,1'-disub	stituted 4	4'-bip	yridinium eo	mpounds	(viologens, R	1 ≠ R¹	' ≠ CH _s)-Continu	ıed
3.11.5	1-Allyl-1'-ethyl-4,4'- bipyridinium (3r, R = $CH_2CH=CH_2$, R' = C_2H_5)	-428						Pol.	81Z316
3.11.6	1-Allyl-1'-(3- cyanopropyl)-4,4'- bipyridinium (3r, R = $CH_2CH=CH_2$, R' = $(CH_2)_3CN$)	383						Pol.	81Z316
3.11.7	1-Allyl-1'-[2-(diethyl-aminocarbonyl)ethyl]-4,4'-bipyridinium (3r, $R = CH_2CH=CH_2$, $R' = (CH_2)_2CONEt_2$)	-383						Pol.	81Z316
3.11.8	1-(3-Butenyl)-1'-(3- cyanopropyl)-4,4'- bipyridinium (3r, R = $(CH_2)_2CH=CH_2$, R' = $(CH_2)_3CN$)	-394						Pol.	81Z316
3.11.9	1-{2-Butenyl}-1'-(3-fluoropropyl)-4,4'-bipyridinium (3r, R = $CH_2CH=CH(CH_3)$, R' = $(CH_2)_3F$)	-418						Pol.	817316
3.11.10	1-(Carbamylmethyl)- 1'-(2-methyl-2- propenyl)-4,4'- bipyridinium (3r, R = CH ₂ C(CH ₃)=CH ₂ ; R' = CH ₂ CONH ₂)	-336					,	Pol.	81Z316
3.11.11	1 -(2-Ethyl-2-propenyl)- 1'-(2-methoxyethyl)- 4,4'-bipyridinium (3r, R = CH ₂ CH ₂ OCH ₃ , R' = CH ₂ C(Et)=CH ₂)	-396						Pol.	81Z316
3.11.12	2 1-(3-Chloro-2-butenyl)- 1'-(2-methoxyethyl)- 4,4'-bipyridinium (3r, R = CH ₂ CH ₂ OCH ₃ , R' = CH ₂ CH=C(Cl)CH ₃)	-393					•	Pol.	81Z316
3.12.	Quaternary derivatives	of phenan	throlin	nes, diazapyr	enes and	diasapentaph	enes (s	see also 3.6.)	
3.12.1	1,10-Phenanthroline (see 3.6.1)	-470						Calen.	83C017
3.12.2	1,9-Dimethyl-1,9- phenanthrolinium (3s)	-426				*		Pol.; BF ₄ salt	. 73C002
3.12.3	2,8-Dimethyl-2,8- phenanthrolinium (3t)	-440						Pol.; BF ₄ salt	. 73C002

TABLE 3. Reduction potentials of bipyridinium and related compounds (BP2+/BP.+)—Continued

No.	Compound or couple	E/mV	рН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
8.12.	Quaternary derivatives	of phenant	hrolin	es, diazapyre	enes and d	liazapentaph	enes (s	ee also 8.6.)—Contin	ued
3.12.4	2,7-Dimethyl-2,7- phenanthrolinium (3u)	-302						Pol.; BF ₄ salt.	73C002
3.12.5	3,8-Dimethyl-3,8- phenanthrolinium (3v)	-374						Pol.; BF ₄ salt.	73C002
3.12.6	3,7-Dimethyl-3,7-phenanthrolinium (3w)	-406		-				Pol.; BF ₄ salt.	73C002
3.12.7	4,7-Dimethyl-4,7- phenanthrolinium (3x)	-268						Pol.; BF ₄ salt.	73C002
3.12.8	(3y)	-272						Pol.; BF ₄ salt.	73C002
3.12.9	(3z)	-300						Pol.; BF ₄ sait.	73C002
3.12.10	(3aa)	-228						Pol.; BF ₄ salt.	73C002
+	CH ₃ N+ CH ₃ (3u)	н₃c ∸ м	3v)	N+ CH ₃	H₃C —	_	CH ₃	+ N (3x)	CH₃ -
	(02)	`	,00,			(011)		(02)	
	ĊN C		«		in)	(_)		= N	
	(3y)			(3z)			(3aa)		

^{*} Recomended value.

[†] Questionable or superseded value.

Table 4. Reduction potentials of miscellaneous organic compounds (A/A^{*-})

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
4.1.	Aldehydes and ketones						ş- <u>(</u>		
4.1.1	$\mathrm{CH_2O}/\mathrm{\cdot CH_2O}^-$	~-2500	≥12					Pol.	761170
		~-1600						Calcn.	80A123
		-1810		Tl+	-1940		→0	C (+ K)	89C001
4.1.2	CH ₂ O, H ⁺ /·CH ₂ OH	-920						Calcn.	75Z006
		~-970						Pol.	761170
		~-900						Calen.	80A123
		-1180		Tl ⁺	-1940		→ 0	C (+ K)	89C001
4.1.3	СН ₃ СНО/СН ₃ СНО-	~-2500	≥12.5					Pol.	761170
		~-1800						Calen.	80A123
		-1930		Tl+	-1940		→0	C (+ K)	89C001
4.1.4	СН ₃ СНО, Н ⁺ / СН ₃ СНОН	~-1100						Pol.	761170
		~-1100						Calcn.	80A123
	•	-1250		Tl+	-1940		→0	C (+ K)	89C001
4.1.5	$(\mathrm{CH_3})_2\mathrm{CO}/(\mathrm{CH_3})_2\dot{\mathrm{CO}}^-$	~-2500	≥13					Pol.	761170
		~-2100						Calcn.	80A123
		-2100		Ti ⁺	-1940		→0	C (+ K)	89C001
4.1.6	$(CH_3)_2$ CO, $H^+/$ $(CH_3)_2$ COH	~-1800						Pol.	761170
		~-1500						Calcn.	80A123
		-1390		Ti ⁺	-1940		→0	C (+ K)	89C001
4.2.	Disulfides (RSSR)								
4.2.1	Cystine and similar $[-SCH_2CH(NH_2)CO_2H]_2$	~-1700						Calen.	84A044
4.2.2	β-Mercaptoethanol (oxidized) [-SCH ₂ CH ₂ OH] ₂	-1570						Calcn.	87C020
4.2.3	Lipoamide (oxidized)	-1600						Calcn.	07/7000
		1000						Calcii.	87C020
4.3.	Amldes								
4.3.1	Hydroxyurea (HONHCONH ₂)	-552 †	7	MV ²⁺	-465	2-PrOH f-BuOH	→0	C (high value, query).	80A349
4.3.2	4(5)-Aminoimidazole- 5(4)-carboxamide (4a)	-584 †	7	MV ²⁺	-465	2-PrOH t-BuOH	→0	C (high value, query).	80A349
4.3.3	5-(3,3-Dimethyl-1- triazeno)imidazole-4- carboxamide (4b)	-571 †	7	MV ²⁺	-465	2-PrOH t-BuOH	→0	C (high value, query).	80A349
4.4.	Pyridinium and related of	compounds							
4.4.1	1-Methylnicotinamide (4c, R ¹ = CH ₃ , R ³ = CONH ₂ , R ⁴ = H)	-936	7					Cyc. v.	74C004
	•••	<-845	7					Pol.	76C003
								R ¹	
	H				H			i N	
	H₂N⟨¯⟩			H ₂ N	୦୯("୬				
	H²NO C _{//} N			Mo ₂ N—N	= N ~ N			R ⁴	
	(42)			. 6	\$b)			(4c)	

Manual & Restriction potentials of miscellaneous organic compounds (A/A.)-Continued

Nie	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	1	Method/ comments	Ref.
4.4.	Pyridinium and related c	ompounds-	-Contir	ıued					
		-918	7	3.5.2	-735	2-PrOH	→0	C	80C008
		-1010	7	3.5.3	-832	t-BuOH	→0	C	84A292
4.4.2	1-Methylisonicotinamide (4c, R^1 = CH_3 , R^3 = H , R^4 = $CONH_2$)	-770	7	3.5.1	-640	HCO ₂ -	→0	С	80C007
4.4.3	4-Acetyl-1- methylpyridinium (4c, $R^1 = CH_3$, $R^3 = H$, $R^4 = COCH_3$)	-510	5					Cyc. v.	85E687
4.4.4	4-(Methoxycarbonyl)- 1-methylpyridinium (4c, $R^1 = CH_3$, $R^3 = H$, $R^4 = CO_2CH_3$)	-720	5					Cyc. v.	85E687
4.4.5	4-Cyano-1- ethylpyridinium (4e, $R^1 = C_2H_5$, $R^3 = H$, $R^4 = CN$)	-626						Pol.	61M014
4.4.6	Nicotinamide adenine dinucleotide	-930 *						Rec.	
		<-730	7					Pol.	76C003
		-660 to -880	7					Pol.	761206
		-940	7	4.4.2	-770	$\mathrm{HCO_2}^-$	→0	C	80C007
		-922	7	3.5.2	-735	2-PrOH	→0	C	80C008
		-879						Cale.	82M376
		-911	9.1					Cyc. v.	84C009
4.4.7	2,2'-Bipyridine (bpyH ⁺ /bpyH•)	-970		Co(bpy) ₃ ²⁺	-890			К	83C017
4.4.8	4,4'-Dimethyl-2,2'- bipyridine (Me ₂ bpyH ⁺ /Me ₂ bpyH•)	-1050		Co(bpy)32+	-890			К	83C017
4.4.9	1,10-Phenanthroline (phenH ⁺ /phenH•)	-850						Calcn.	83C017
4.5.	Phenothiazinium derivat	ives							
4.5.1	Thionine (4d, R = H)	192-200	~1.7					Kinetics + $E(Q/QH_2)$; not E^0 ; $E(QH \cdot /QH_2) = 566 \cdot 575$ mV at pH ~ 1.7 .	
4.5.2	Methylene Blue (4d, R = CH ₃)	187-197	~1.7					Kinetics + $E(Q/QH_2)$; not E^0 ; $E(QH'/QH_2) =$ 507 516 mV at pH -1.7.	81A127

4.6. Flavins (isoalloxazines) and lumichrome derivatives (alloxazines)

TABLE 4. Reduction potentials of miscellaneous organic compounds (A/A.-)—Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
4.6. I	lavins (isoalloxasines) a	nd lumich	ome d	erivatives (a	lloxazines)-	-Continued			
4.6.1	Riboflavine (4e, $R^{10} = CH_2[CH(OH)]_3CH_2OH$)	-292	7	DQ	-235	HCO2-	0.1	C + K; other values, pH 6-12.	751150
		-318	7	DQ	-247	2-PrOH	→0	C	83C002
		-317	7	AQS-	-374	2-PrOH	→0	C ,	83C002
4.6.2	Flavine mononucleotide (riboflavin phosphate)	-313	7	DQ	-247	2-PrOH	→0	C; other values, pH 5-12.	83C002
	` ' '	-308	7	AQS-	-374	2-PrOH	→ 0	•	83C002
4.6.3	Flavine adenine dinucleotide (4e, R ¹⁰ = 5'-adenosine diphosphate)	-241	7	BV ²⁺	-354	HCO ₂ -	→0	C + K; incorrect ionic strength correction, value revised to -296 mV in 83C002.	761169
		-231	7	3.3.1	-356	HCO2-	→0	C + K; see above.	761169
		-308	7	DQ	-247	2-PrOH	→ 0	C	83C002
		-317	7	AQS-	-374	2-PrOH	→0	C	83C002
4.6.4	8 α -N- lmidazolylriboflavin (4f, R ¹⁰ = CH ₂ [CH(OH)] ₃ CH ₂ OH, R' = H)	-173	7.01					Pot.; other values pH 2.8-11.5	85C018
4.6.5	8 α -(N-Methyl-N-imidazolium)tetra-O-acetylriboflavin (4f, R ¹⁰ = CH ₂ [CHOAc] ₃ CH ₂ OAc, R' = CH ₃)	-118	7.29					Pot.; other values pH 2.8-10.0	85C018
4.6.6	Lumichrome (4g, R ¹ = R ³ = H)	-502	7	AQS ⁻ 4.4.2	~380 ~770	HCO ₂ - 2-PrOH	→0	C; interpolated from data at pH 2.7-4.0 (10.2-10.8).	85C005
4.6.7	1-Methyllumichrome $(4g, R^1 = CH_3, R^3 = H)$	-509	7	AQS ⁻ 4.4.2	-380 -770	HCO ₂ - 2-PrOH	→0	C; interpolated from data at pH 2.0-3.1 (8.6-10.9).	85C005
4.6.8	3-Methyllumichrome (4g, $R^1 = H$, $R^3 = CH_3$)	-535	7	AQS ⁻ 4.4.2	-380 -770		→0	C; interpolated from data at pli 2.5-3.7 (9.5-10.9).	85 C 0 0 5
4.6.9	1,3-Dimethyllumichrome (4g, $R^1 = R^3 = CH_3$)	-530	7	AQS- 4.4.2	-380 -770		→0	C; interpolated from data at pH 2.8-3.5 (9.8-10.5).	85C005
4.7.	Dioxathiadiazaheteropen	talenes							
4.7.1	$(\mathbf{4h},\mathbf{X}=\mathbf{S})$	-375						C	84A449
4.7.2	(4h, X = SO)	-277						C	84A449
4.7.3	$(\mathbf{4h}, \mathbf{X} = \mathbf{SO}_2)$	-227						C	84A449

J. Phys. Chem. Ref. Data, Vol. 18, No. 4, 1989

TABLE 4. Reduction potentials of miscellaneous organic compounds (A/A.-)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
4.7.	Dioxathiadiazaheteropen	talenes-Co	ntinued						
4.7.4	$(\mathbf{4h},\mathbf{X}=\mathbf{CH}_2)$	-416						C	84A449
4.8.	Miscellaneous organic co	mpounds							
4.8.1	9-(2-Methoxy-4- methylsulfonylaminoanili acridinium (41)	-803 no)-	7	3.4.6	-77 5	2-PrOH	→0	C + K.	84C001
4.8.2	2,1,3-Benzothiadiazole- 4,7-dicarbonitrile (4j)	-490	7	MV ²⁺	447	2-PrOH			86A098
		-506	7					Cyc. v.	86A098
4.8.3	5,6-Di(2-furyl)- [1,2,5]thiadiazolo[3,4- b]pyrazine (4 k , $R^5 = R^6 = 2$ -furyl)	-374	7	BV ²⁺	-354	2-PrOH		С	87C023
4.8.4	5,6-Di(2-pyridinyl)- $\{1,2,5\}$ thiadiazolo $\{3,4-b\}$ pyrazine $\{4k, R^5 = R^6 = 2$ -pyridinyl)	-286	7	BV ²⁺	-354	2-PrOH		c	87 C 023
4.8.5	5,6-Di(2-pyridinyl)- [1,2,5]thiadiazolo[3,4- b]pyrazine N-oxide (4k, $R^5 = 2$ -pyridinyl, $R^6 = 2$ -pyridinyl-N-oxide)	-253	7	BV ²⁺	-354	2-PrOH		c	87C023
	H ₃ C ON N	HSO₂CH₃			CN N, S			R ⁵ N S	
	+ H				CN				
	(4i)				(4j)			(4k)	

^{*} Recomended value.

[†] Questionable or superseded value.

TABLE 5. Reduction potentials of phenoxyl radicals (ArO*/ArO")

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
5.1. F	Phenols								
5.1.1	Phenol (PhOH) (5a)	>500 †	13.5	5.3.1	300	glycol	0.5	C, ref. pot. later revised	79A100
		>600 >800	13.5 7	5.3.1	385	glycol	0.5	C calc.	82A253
		700	11.1	so₃•⁻	630			C + K 900 mV calc. for pH 7.	84A327
		860	7					Cyc. v., not E°.	87C019
		800	13	ClO ₂	936				88A024
	$E^{\circ}(PhO^{\bullet}, H^{+}/PhOH)$	1352	(6.0)	7.5.1	830		→0	C	87C020
		1340						Calcn.	87C020
		1340						Calcn. from data in 84A327	87C020
5.1.2	4-Aminophenol (5a, R ⁴ = NH ₂)	217 410	13.5 7	DMAP	174	glycol	0.5	C + K calc.	82A253
5.1.3	4-Hydroxybenzoic acid (5a, $R^4 = CO_2H$)	>500	13.5	5.3.1	300	glycol	0.5	c	79A100
5.1.4	p-Cresol (5a , R ⁴ = CH ₃)	770	7					Cyc. v.	87C019
5.1.5	4-Methoxyphenol (5a, $R^{-1} = OCH_3$)	320 †	13.5			glycol	0.5	From 2 indicators as below	79A100
		~312 †		TMPD	82			C + K, calc. data, ref. pot. later revised to +266	79A100
		~335 †		6.1.4	183			C + K, calc. data, ref. pot. later revised to ~+330	79A100
		402 * 000	13.5 7	6.2.10	208	glycol	0.5	Rec., C + K calc.	82A253
		945	2				0.2	Cyc. v.	87C019
		655	7				0.2	Cyc. v.	87C019
		440	13				0.2	Cyc. v.	87C019
5.1.6	4-(Methylamino)phenol (5a, $R^4 = NHCH_3$)	146 156 146	13.5	CAT HQ TMPD	43 23 266	glycol	0.5	C + K	82A253
5.1.7	4-Acetamidophenol (5a, $R^4 = NHCOCH_3$)	460							88A464
5.1.8	4-(Dimethylamino)- phenol (5a, $R^4 = N(CH_3)_2$)	174 174	13.5	HQ CAT	23 43	glycol	0.5	C + K	82A253 (81C030
5.1.9	Tyrosine (5a, $R^4 = CH_2CH(NH_2)CO_2H$)	640	13.0	6.2.9	560			Few details C + K	86A110
		1220	2					Cyc. v.	87C019
		930	7					Cyc. v.	87C019
		720	13					Cyc. v.	87C019

TABLE 5. Reduction potentials of phenoxyl radicals (ArO·/ArO-)—Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	<i>I</i>	Method/ comments	Ref.
5.1. P	henols—Continued				-				
5.1.10	DL-Tyrosine, methyl ester (5a, R ⁴ = CH ₂ CH(NH ₂)CO ₂ CH ₃)	870	7.0	6.4.4	910			Few details C + K	86A110
		660	13.0	6.2.9	560			Few details C + K	86A110
5.1.11	N-Acetyl-1 tyrosinamide (5a, R ⁴	650	12.0	6.2.9	560			Few details C + K	86A110
	= CH ₂ CH(NHCOCH ₃)CO ₂ H)								
5.1.12	IAlanyl-Ityrosine (5a, R ⁴ — CH ₂ CH(CO ₂ H)-	850	7.0	6.4.4	910			Few details C + K	86A110
	$NHCOCH(NH_2)CH_3)$								
5.2. 1	,2-Dihydroxybenzenes								
5.2.1	1,2-Dihydroxybenzene (6b)	43 139 98 530	13.5 11.0 11.0 7	н Q нQ	23 57	glycol	0.5	C + K Calcn. Calcn.	79A100
5.2.2	2,3-Dihydroxybenzoic acid (5b, $R^3 = CO_2H$)	118 * 126 †	13.5	HQ 5.3.1	23 300	glycol	0.5	Rec., C + K K, ref. pot. later revised	79A100
5.2.3	3,4-Dihydroxybenzoic acid (5b, $R^4 = CO_2H$)	119	13.5	HQ	23	glycol	0.5	C + K	79A100
5.2.4	3,4- Dihydroxyphenylacetic acid (5b, R ⁴ = CH ₂ CO ₂ H)	21	13.5	DMAP	174	glycol	0.5	С	82A253 (81C030)
5.2.5	3-Hydroxytyramine (5b, R ⁴ = CH ₂ CH ₂ NH ₂)	18	13.5	DMAP	176	glycol	0.5	C + K	82A253 (81C030)
5.2.6	Norepinephrine (5b, R^4 = $CH(OH)CH_2NH_2$)	44	13.5	DMAP	174	glycol	0.5	C + K	82A253 (81C030)
5.2.7	trans-3,4- Dihy droxy cinnamic acid (5b, R ⁴ = CH=CHCO ₂ H)	84	13.5	DMAP	174	glycol	0.5	C + K	82A253
5.2.8	Adrenalone (5b, R ⁴ = COCH ₂ NHCH ₃)	~180	13.5	DMAP	175	glycol	0.5	C	81C030
5.2.9	$\begin{array}{l} (\mathbf{5b}, \mathbf{R}^4 = \\ \mathbf{CH_2CH(NH_2)CO_2H)} \end{array}$	14 * 22	13.5	DMAP HQ	174 23	glycol	0.5	Rec., C	81C030
5.8. 1	,8-Dihydroxybenzenes								
5.3.1	1,3-Dihydroxybenzene (5c)	385 *	13.5					Rec.	
		392 379 810	13.5 13.5 7	DMAP 6.2.10	174 208	glycol	0.5	C + K C + K Calcn.	82A253
						OH.			

(5b)

(5c)

TABLE 5. Reduction potentials of phenoxyl radicals (ArO-/ArO-)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
5.8.	,3-Dihydroxybenzenes—C	ontinued							
		292 † 303 † 299 †	13.5	5.2.2 5.2.3	118 119 82	glycol	0.5	K K K, ref. potl. later revised	79A100
5.3.2	2,5-Dihydroxybenzoic acid (5c, $R^4 = CO_2H$)	33	13.5	CAT	43	glycol	0.5	C + K	79A100
5.3.3	3,5-Dihydroxybenzoic acid (5c, $R^4 = CO_2H$)	280	13.5	5.2.3	119	glycol	0.5	C + K	79A100
5.4.]	,4-Dihydroxybenzenes (1	4-Hydroqu	inones	a)					
5.4.1	1,4-Dihydroxy benzene (5d)	1041 459	0 7					Calcn.	761063
		57 23	11′ 13.5					Calcn., see 751090	79A100
5.4.2	1,4-Dihydroxybenzene- 2,5-disulfonate	116	12.9	HQ	23			C	85A255
5.4.3	Methylhydroquinone (5d, $R^2 = CH_3$)	460	7					Calcn.	761063
5.4.4	Methoxyhydroquinone (5d, $R^2 = OCH_3$)	-85	13.5	CAT	43	glycol	0.5	C + K	79A100
5.4.5	2',5'-Dihydroxyaceto- phenone (5d, $R^2 = COCH_3$)	118	13.5	CAT	43	glycol	0.5	C + K	79A100
5.4.6	Homogentisic acid (5d, $R^2 = CH_2CO_2H$)	-50	13.5	CAT	33	glycol	0.5	C + K	82A253
5.4.7	$(5d, R^2 = R^3 = CH_3)$	430	7					Calcn.	761063
5.4.8	$(5d, R^2 = R^5 = CH_3)$	980 420	0 7					Calcn.	761063
5.4.9	Trimethylhydroquinone (5d, $R^2 = R^3 = R^5$ = CH_3)	385	7					Calcn.	761063
5.4.10	Tetramethylhydroquinone (\mathfrak{bd} , $R^2 = R^3 = R^5$ $= R^6 = CH_3$)	350	7					Calcn.	74C001
		895 360	. 0 7				•	Calen.	761063
		-54	13.5					Calcn., see 751090	79A100
		-54	13.5	5.2.3	119	glycol	0.5	C + K	82A253
5.5.	Frihydroxybensenes								
5.5.1	1,2,3-Trihydroxy- benzene (5b , R ³ = OH)	-9	13.5	НQ	23	glycol	0.5	C	79A100
5.5.2	5-Hydroxydopamine (5b, $R^3 = OH$, $R^5 = CH_2CH_2NH_2$)	42	13.5	DMAP	174	glycol	0.5	C + K	82A253

is any a distinguishing pursualists of observed indicate (ArO-/ArO) -- Continued

Fe :	(c) And Antonia	E/mV	pH	fiel. compound	Ref. E /mV	Co-solute	1	Method/ comments	Ref.
# . p	Frihydroxybennenes-Cor	ntinued							
b.d.3	Ethyl gallate (5b, R^3 $=$ OH, R^5 $=$ $CO_2C_2H_5$)	-54	13.5	НQ	23	glycol	0.5	C + K	82A253
5.5.4	1,2,4-Trihydroxybenzene (5b, $R^4 = OH$)	-110	13.5	CAT	43	glycol	0.5	C	79A100

^{*} Recomended value.

[†] Questionable or superseded value.

TABLE 6. Reduction potentials of amine, indole, pyrimidine and purine radicals (A·/A-)

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
6.1.	Aminobensenes and pher	nylenediami	nes						
6.1.1	Aniline	1030	6.9	ClO ₂ ·	936	ClO ₂ -		C	86A059
6.1.2	N, N-Dimethylaniline	~770	10	so ₃	630	SO ₃ 2-		C	85A103
		800	9.0	C102-	936	C102-		К	86A059
6.1.3	o-Phenylenediamine (6a)	>270	11.5	НQ	57	glycol		К	79A100
		346 362	13.5	TMPD 6.1.4	266 309	glycol	0.5	C + K C	82A253
6.1.4	p-Phenylenediamine (6b)	183 ~200	13.5 11.0	HQ HQ	23 57	glycol	0.5	C + K	79A100
		309 * 368 340 730	13.5 13.5 13.5 7	DMAP TMPD	174 266	glycol	0.5	Rec., C + K Au. rec. Au. calc.	82A253
		< 600 *	5.2	so ₃	740	HSO ₃ -		Rec., C	85A103
6.1.5	N,N,N',N'- Tetramethyl-p- phenylenediamine (6c)	~265	8-9					Pol. other values pH 4-8	58C002
		82 †	13.5	5.1.4	183	glycol	0.5	C + K, ref. potl. later revised	79A100
		240	7-12					Pol.	81C038
		266 * 265	13.5	DMAP 6.2.10	174 208	glycol	0.5	Rec., $C + K$ C + K, E same at pH 7	82A253
6.2.	Indoles (IndH)								
6.2.1	Indole (6d, $R^1 = R^2$ = $R^3 = R^5 = H$)								
	$E^{\circ}(\operatorname{IndH}^{+}/\operatorname{IndH})$	1240		ClO_2	936	Br -	→0	К	87A247
	$E^{\epsilon}(\operatorname{Ind}^{\bullet}/\operatorname{Ind}^{-})$	530						Calc. from IndH•+/IndH and pK _n 's	87A247
		970	7				0.2	Cyc. v.	87C019
6.2.2	5-Hydroxyindole ($\mathbf{6d}$, $\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{H}$, $\mathbf{R}^5 = \mathbf{OH}$)	216 197	13.5	DMAP TMPD	174 266	glycol	0.5	C + K C + K	82A253 (81C030
6.2.3	·								
	$E^{\circ}(\operatorname{IndH} \cdot^{+}/\operatorname{IndH})$	1230		ClO ₂	936	Br-	→0	K	88A024
6.2.4	2-Methylindole (6d, R^1 = $R^3 = R^5 = H$, R^2 = CH_3)	•							
	$E^{\epsilon}(\operatorname{IndH}^{\bullet+}/\operatorname{IndH})$	1100		ClO ₂	936	Br ⁻		К	88A024
	NH ₂ NH ₂		NH ₂		ŕ	N(CH ₃) ₂		H ³ R ³	

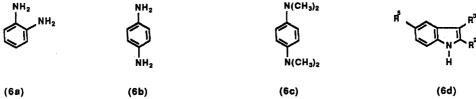


Table 6. Reduction potentials of amine, indole, pyrimidine and purine radicals (A·/A~)—Continued

No.	Compound or couple	E/mV	рĦ	Ref. compound	Ref. E /mV	Co-solute	Ī	Method/ comments	Ref.
5.2. I	ndoles (IndH)—Continued								
6.2.5	3-Methylindole (6d, R^1 = $R^2 = R^5 = H$, R^3 = CH_3)								
		1010						Calcn. (rate data + Marcus theory)	87 A 247
	$E^{\circ}(\operatorname{IndH}^{+}/\operatorname{IndH})$	1070		ClO2	936	Br ⁻		К	88A024
6.2.6	Indole-3-acetic acid (6d, $R^1 = R^2 = R^5$ = H, $R^3 = CH_2CO_2H$)	840	7					Cyc. v.	87C019
6.2.7	2,3-Dimethylindole (6d, $R^1 = H, R^2 = R^3 = CH_3, R^5 = H$)	780						Calcn. (rate data + Marcus theory)	87 A 247
	$E^{c}(\operatorname{IndH}^{+}/\operatorname{IndH})$	930		ClO2	936	Br-		K	88A02
6.2.8	Tryptamine (6d, $R^1 = R^2 = R^5 = H$, $R^3 = CH_2CH_2NH_2$)								
		970	3.0	HSO ₃	840			Few details K	86A11
	A STATE OF THE STA	640	7.5	5.1.5	600			Few details C + K	86A11
		560	13.0	5.1.5	400			Few details C + K	86A11
6.2.9	Tryptophan (TrpH) (6e, $R^1 = R^2 = R^5 = H$, $R^3 = R^5 =$								
	$CH_2CH(NH_2)CO_2H)$								
	E°(TrpH·+/TrpH)	1140		9.56	1250	SCN-	~1	Calcn. from data in 761151, \pm 200 mV	82A18
		940 †	3	HSO₃ [−]	840			Few details K	86A11
								see 86A215, 87C007	
		640 †	7.5	5.1.5	600			Few details C + K see 86A215,	86A11
								87C007	
		560 †	13.0	5.1.5	400			Few details C + K see 86A215, 87C007	86A11
		1150	2				0.2	Cyc. v.	87C01
		1015	7				0.2	Cyc. v.	87C01
		650	13				0.2	Cyc. v.	87C01
		1080	7					Calc. from $oldsymbol{E}^n$ and $oldsymbol{p} K_n$	88A02
		830	7	(Fe(III))	660	N ₃	0.15	C + K Fe(III) = ferrocinium-1,1'-	88A12
				5 🔨	R ³			dicarboxylic acid	

(6e)

TABLE 6. Reduction potentials of amine, indole, pyrimidine and purine radicals (A·/A-)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	1	Method/ comments	Ref.
6.2. 1	ndoles (IndH)—Continued								
	Ec(TrpH·+/TrpH)	1240		ClO2	936	Br-		K	88A024
6.2.10	5-Hydroxytryptophan (6e, R ³ = CH ₂ CH(NH ₂)CO ₂ H, R ⁵ = OH)								
		208	13.5	DMAP	174	glycol	0.5	C + K	82A253 (81C030)
6.2.11	DL-Tryptophanamide ($\mathbf{6e}, \mathbb{R}^3 = \mathbb{CH}_2\mathbf{CH}(\mathbf{NH}_2)\mathbf{CONH}_2$)								
		940	3.0	HSO ₃ -	840			Few details K	86A110
		680	7.5	5.1.5	600			Few details C + K	86A110
		620	12.0	5.1.11	650			Few details $C + K$	86A110
6.2.12	N-Acetyl-1,-tryptophan (6e, R ³ = CH ₂ CH(NHCOCH ₃)CO ₂ H	n							÷
	0112011(1111000113)00211	<8 7 0	3.0	HSO ₃ -	840			Few details	86A110
		690	6.5	5.1.5	600			Few details C + K	86A110
6.2.13	ITryptophyl-1alanine ($\mathbf{6e}$, $\mathbf{R}^3 =$ $\mathbf{CH}_2\mathbf{CH}(\mathbf{NH}_2)$ - $\mathbf{CONHCH}(\mathbf{CH}_3)\mathbf{CO}_2\mathbf{H}$)							- ,	
		670	7.5	5.1.5	600			Few details C + K	86A110
6.3. J	yrimidines*							·	
6.3.1	Uracil (6f, R ¹ = R ⁵ = H)	870	13.0	6.4.5	740	Br-	0.2	К	86C005
		850	13.0	6.4.1	750	Br-	0.2	K	86C005
		880	13.0	6.3.4	780	Br ⁻	0.2	C + K	86C005
6.3.2	1-Methyluracil (6f, R^1 = CH_3 , R^5 = H)	~1600	13.0	9.9	1700	Br ⁻	0.2	C	86C005
6.3.3	Thymine (6f, $R^1 = H$, $R^5 = CH_3$)	780	13.0	6.4.5	740	Br ¯	0.2	C + K	86C005
	,	800	13.0	6.4.3	630	Br -	0.2	C + K	86C005
6.3.4	Barbituric acid (6g)	790	13.0	6.4.3	630	Br -	0.2	C + K	86C005
		780	13.0	6.4.5	740	Br ~	0.2	C + K	86C005
6.3.5	Isobarbituric acid (6h)	132	13.5	TMPD	266	glycol	0.5	С	82A253
6.3.6	Cytosine ($\mathbf{6i}$, $\mathbf{R}^1 = \mathbf{H}$)	830	13.0	6.4.5	740	Br -	0.2	C + K	86C005
		790	13.0	6.4.1	750	Br -	0.2	C + K	86C005
6.3.7	1-Methylcytosine (61, $R^1 = CH_3$)	~1630	13.0	9.9	1700	Br ~	0.2	С	86C005
	R ¹ O V V V V		°۲	N N H		H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N		R-N	0
	ö		ا د م	o 		ő "		ŃH;	:
	(6f)		(€	ig)		(6h)		(6i)	

TABLE & Reduction potentials of amine, indole, pyrimidine and purine radicals (A./A-)-Continued

No.	Compound or couple	E/mV	pH	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
6.4. I	Purines*								
6.4.1	Adenine (6), R ⁹ = H)	750	13.0	6.4.3	630	Br-	0.2	C + K	86C005
6.4.2	Adenosine (6j, $R^9 = \beta$ -p-ribofuranosyl, 6k)	810	13.0	6.3.1	880	Br ⁻	0.2	C + K	86C005
6.4.3	Guanine (61, $R^9 = H$)	620	13.0	6.4.6	590	Br ⁻	0.2	K	86C005
		650	13.0	6.2.9	570	Br ⁻	0.2	C + K	86C005
6.4.4	Guanosine (81, $R^9 = \beta_{-D}$ -ribofuranosyl, 8k)	710	13.0	6.2.9	570	Br-	0.2	C + K	86C005
6.4.5	Hypoxanthine (6m)	740	13.0	6.2.9	570	Br-	0.2	C + K	86C005
		780	13.0	6.4.3	630	Br-	0.2	K	86C005
6.4.6	Xanthine (6n)	590	13.0	5.1.5	400	Br ⁻	0.2	K	86C005
6.4.7	Uric acid (60)	260	13.0	8.4.1	190	Br-	0.2	C + K	86C005
			(ej)	N N I R	НОН	OH OH			
	HN Y N Y	N J	ام H` ا	N N N N N N N N N N N N N N N N N N N	o 	N N N N	ı		
		*							

^{*} Recomended value.

[†] Questionable or superseded value.

a Some of these data need corroboration, in view of the direct or indirect coupling to tryptophan (6.2.9) as a reference, and the comments expressed in 86A215, 87C007.

Table 7. Reduction potentials of phenothiazine radicals (Pz^{*+}/Pz)

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
7.1.	10 <i>H</i> -Phenothiasine								
7.1.1	Phenothiazine (7a)	701	~ 2					Pot. (Br ₂); 90% v/v AcOH.	419001
		696	~2					Pot. (Br ₂); 80% v/v AcOH.	609013
7.2.	10 <i>H</i> -Phenothiasines with	one ring o	arbon	substituent					
7.2.1	3-Bromophenothiazine (7a, $R^3 = Br$)	766	~2					Pot. (Br ₂); 80% v/v AcOH.	609013
7.2.2	3-Chlorophenothiazine (7a, $R^3 = Cl$)	763	~2					Pot. (Br ₂); 80% v/v AcOH.	609013
		776	~2					Pot. (Br_2); 80% $\mathrm{v/v}$ AcOH.	609014
7.2.3	3-Fluorophenothiazine (7a, $R^3 = F$)	722	~2					Pot. (Br ₂); 80% v/v AcOH.	609013
7.2.4	3-Iodophenothizzine (7a, $R^3 = I$)	758	~2					Pot. (Br ₂); 80% v/v AcOH.	609013
7.2.5	3-Nitrophenothiazine (7a, R ³ = NO ₂)	~900	~2					Pot. (Br ₂); 80% v/v AcOH.	609013
7.2.6	3-Methylphenothiazine (7a, $R^3 = CH_3$)	651	~2					Pot. (Br ₂); 80% v/v AcOH.	609013
7.2.7	1-Methoxyphenothiazine (7a, $R^1 = OCH_3$)	698	~2					Pot. (Br ₂); 80% v/v AcOH.	609014
7.2.8	3- Methoxyphenothiazine (7a, $R^3 = OCH_3$)	590	~2					Pot. (Br ₂); 80% v/v AcOH; 2nd oxidn. at 736 mV.	609013 609014
7.2.9	1-Ethoxyphenothiazine (7a, $R^1 = OC_2H_5$)	692	~2					Pot. (Br ₂); 80% v/v AcOH.	609014
7.2.10	3-Ethoxyphenothiazine (7a, $R^3 = OC_2H_5$)	580	~2					Pot. (Br ₂); 80% v/v AcOH; 2nd oxidn. at 729 mV.	609014
7.2.11	3-Phenylphenothiazine (7a, $R^3 = C_6H_5$)	679	~2					Pot. (Br ₂); 80% v/v AcOH.	609013
7.3.]	0 <i>H</i> -Phenothiasines with	two ring o	arbon	substituents					
7.3.1	2-Chloro-7-methoxy- phenothiazine (7a, R ² = Cl, R ⁷ = OCH ₃)	662	~2					Pot. (Br ₂); 80% v/v AcOH	609014
7.3.2	4-Chloro-7-methoxy- phenothiazine (7a, \mathbb{R}^4 = Cl, \mathbb{R}^7 = OCH ₃)	668	~2					Pot. (Br ₂); 80% v/v AcOH	609014
7.3.3	3,7-Dimethylphenothiazine (7a, $R^3 = R^7 = CH_3$)	626	~2				÷	Pot. (Br ₂); 90% v/v AcOH	419001
		590	~2					Pot. (Br ₂); 80% v/v AcOH	609013 609014

$$\begin{smallmatrix}8\\ \checkmark\\ 7\\ \checkmark\\ 6\end{smallmatrix} \begin{smallmatrix}H\\ 1\\ N\\ 1\\ 1\\ 2\\ 3\end{smallmatrix}$$

TABLE 7. Reduction potentials of phenothiazine radicals (Pz·+/Pz)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute I	Method/ comments	Ref.
7.8.	10 <i>H</i> -Phenothiasines with	two ring	carbon	substituents	-Continued			
7.3.4	3,7-Dimethoxyphenothiazine (7a, $R^3 = R^7$ = OCH ₃)	475	~2				Pot. (Br ₂); 80% v/v AcOH.	609013
		474	~2				Pot. (Br ₂); 80% v/v AcOH	609014
7.4.	N-Substituted phenothia	sines witho	out ring	g carbon sub	stitution			
7.4.1	10-Phenothiazine- carboxaldehyde (7b, $R^{10} = CHO$)	~980	~2				Pot. (Br ₂); 80% v/v AcOH.	609013
7.4.2	10-Methylphenothiazine (7b, $R^{10} = CH_3$)	829	~2				Pot.; 80% v/v AcOH.	419001
		882	~2				Pot.; 90% v/v AcOH.	419001
		846	~2				Pot. (Br ₂); 80% v/v AcOH.	609013
		~716	~1-2	Fe(III)	738	~0.02- 0.2	K; stopped-flow spect. (calc. au.)	83N008
		884				CH_3CN/H_2O 80/20% v/v	Cyc. v.	86A139
7.4.3	10-Acetylphenothiazine (7b, $R^{10} = COCH_3$)	~960	~2				Pot. (Br ₂); 80% v/v AcOH.	609013
7.4.4	$(7b, R^{10} = (CH_2)_3 SO_3^-)$	834				CH_3CN/H_2O 80/20% v/v	Cyc. v.	86A139
7.4.5	Promazine (7b, $R^{10} = (CH_2)_3N(CH_3)_2$)	715					Recommended value.	
		753	~1	(NCE)			Pol.	599011
		844	<0				Pol.; 6 mol dm ⁻³ H ₂ SO ₄ .	649028
		715	0	Fe(III)	738	1.0	C(+K); stopped- flow spect.	79A456
7.4.6	Promethazine (7b, CH ₂ CH(CH ₃)N(CH ₃) ₂)	865					Recommended value.	
		899	~1	(NCE)			Pol.	500011
		944	<0				Pol.; 7 mol dm $^{-3}$ H ₂ SO ₄ .	649028
		837	<0	(Ag/AgCl, KCl(s)			Chronopot.; 3 mol dm ⁸ H ₂ SO ₄ .	70M264
		865	0	Fe(III)	738	1.0	C(+K); stopped- flow spect.	79A456

TABLE 7. Reduction potentials of phenothiazine radicals (Pz.+/Pz)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute I	Method/ comments	Ref.
7.4. N	-Substituted phenothiaz	ines witho	ut ring	g carbon sub	stitution—	Continued		· · · · · · · · · · · · · · · · · · ·
7.4.7	10-(1-Methyl-2-dimethyl-aminoethyl)phenothiazine (7b, $R^{10} = CH(CH_3)CH_2N(CH_3)_2$)	890	0	Fe(III)	738	1.0	C(+K); stopped- flow spect.	79A456
7.4.8	10-(2- Pyrrolidinylethyl)- phenothiazine (7b, R ¹⁰ = 7c)	847	~1	(NCE)			Pol.	599011
7.4.9	$(7b, R^{10} = (CH_2)_0 SO_3^-)$	834				CH ₃ CN/H ₂ O 80/20% v/v	Cyc. v.	86A139
7.4.10	Diethazine (7b, $R^{10} = (CH_2)_2N(C_2H_5)_2$)	807	<0	(Ag/AgCl, KCl(s)).			Chronopot.; 3 mol $dm^{-3} H_2SO_4$.	70M264
		820	0	Fe(III)	738	1.0	C(+K); stopped- flow spect.	79A456
7.4.11	Multergan (7b, $R^{10} = CH_2CH(CH_3)^+N(CH_3)_3$)	861	<0	(Ag/AgCl, KCl(s))			Chronopot.; 3 mol $dm^{-3} H_2SO_4$; CH_3SO_4 salt.	70M264
7.4.12	10- Benzoylphenothiazine (7b, $R^{10} = COC_6H_5$)	≥920					Pot. (Br ₂); 80% v/v AcOH.	609013
7.4.13	10-(N-Methyl-3- piperidinyl)- methylphenothiazine (7b, R ¹⁰ = 7d)	783	~1	(NCE)	. "		Pol.	599011
7.4.14	10-(2-Methyl-2-diethylaminoethyl)-phenothiazine (7b, R ¹⁰	900	~1	(NCE)			Pol.	599011
7.4.15	CH ₂ CH(CH ₃)N(C ₂ H ₅) ₂) (7b, R ¹⁰ = (CH ₂) ₃ N(C ₂ H ₅) ₃)	954		·		CH ₃ CN/H ₂ O 80/20% v/v	Cyc. v.	86A139
7.4.16	$(7b, R^{10} = (CH_2)_6 N(C_2 H_5)_3)$	864				CH ₃ CN/H ₂ O 80/20% v/v	Cyc. v.	86A139
7.4.17	10-{3-(4-Methyl-1-piperazinyl)-propyl phenothiazine (7b, R ¹⁰ = 7e)	720	0	Fe(III)	738	1.0	C(+K); stopped-flow spect.	79A456
7.4.18	10-[3-(4-(2-Hydroxy-ethy!)-1-piperaziny!)propy!]-phenothiazine (7b, R ¹⁰ = 7f)	762	~1	(NCE)			Pol.	500011
7.5. N	-Substituted phenothia:	ines with	one ri	ng carbon su	ıbstituent			
7.5.1	Chlorpromazine (7b, $R^{10} = (CH_2)_3N(CH_3)_2$, $R^2 = Cl$)	780					Recommended value.	
		821	~1	(NCE)			Pol.	59,9011
	—(CH ₂) ₂ -N	-	–CH₂–	-{\right\}_CH ³	(0	:H ₂)₃-N NCH₃ -	—(CH ₂)₃-N N(CH ₂)₂C	он
	(7c)			(7d)				

TABLE 7. Reduction potentials of phenothiazine radicals (Pz.+/Pz)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
7.5. N	-Substituted phenothiazi	nes with	one rir	ng carbon su	bstituent-	Continued			
		844						Pol.; 6 mol dm $^{-3}$ H ₂ SO ₄ .	649028
		766	< 0	(Ag/AgCl, KCl(s))				Chronopot.; 3 mol $dm^{-3} H_2SO_4$.	70M26
		780	0	Fe(III)	738		1.0	C(+K); stoppedflow spect.	79A456
.5.2	Triflupromazine (7b, $R^{10} = (CH_2)_3N(CH_3)_2$, $R^2 = CF_3$)	894	<0					Pol.; 6 mol dm $^{-3}$ H ₂ SO ₄ .	649028
7.5.3	2-Hydroxy-10-(3-dimethyl-aminopropyl)phenothiazine (7b, $R^{10} = (CH_2)_3N(CH_3)_2$, $R^2 = OH$)	625	0	Fe(III)	738		1.0	C(+K); stopped- flow spect.	79A456
7.5.4	2-Methoxy-10-(3-dimethyl-aminopropyl)phenothiazine (7b, R^{10} = $(CH_2)_3N(CH_3)_2$, R^2 = OCH_3)	710	0		738		1.0	C(+K); stopped- flow spect.	79A456
7,5.5	2-Acetyl-10-(3-dimethyl-aminopropyl)phenothiazine (7b, $R^{10} = (CH_2)_3N(CH_3)_2$, $R^2 = COCH_3$)	863		(NCE)				Pol.	599011
7.5.6	Thioridazine (7b, R ¹⁰ = 7g)	794	< 0					Pol.; 6 mol dm ⁻³ $H_2SO_4 = 30\%$ v/v EtOH.	649028
7.5.7	Prochlorperazine (7b, R ¹⁰ = 7e)	827	~1	(NCE)				Pol.	599011
		844	<0					Pol.; 6 mol dm $^{-3}$ H ₂ SO ₄ .	649028
7.5.8	Trifluoperazine (7b, R ¹⁰ = 7e)	944	< 0					Pol.; 8 mol dm $^{-3}$ $\mathrm{H}_2\mathrm{SO}_4$.	649028
7.5.9	Thioproperazine (7b, R ¹⁰ = 7e)	877	<0	(Ag/AgCl, KCl(s))				Chronopot.; 3 mol $dm^{-3} H_2SO_4$.	70M26
7.5.10	2-Chloro-10-[3-(4-(2-hydroxyethyl)-1-piperazinyl)propyl]-phenothiazine (7b, R ¹⁰ = 7f)	830	~ 1	(NCE)				Pol.	599011
7.6. E	Senzophenothiazines								
7.6.1	12 <i>H</i> -Benzo[<i>a</i>]pheno- thiazine (7h)	633	~ 2					Pot. (Br ₂); 80% v/v AcOH.	609013
7.6.2	7H-Benzo[c]phenothiazine (71)	628	~ 2					Pot. (Br ₂); 80% v/v AcOH.	609013
	— (OH ₂) ₂ —	CH₃			J's J				
		(7g)			(7h)			(71)	

Table 7. Reduction potentials of phenothiazine radicals (Pz.+ /Pz)-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	1	Method/ comments	Ref.
7.6. 1	Benzophenothiazines—Con	tinued							
7.6.3	13 <i>H</i> -Dibenzo $[a,j]$ phenothiazine (7 j)	544	- 2					Pot. (Br ₂); 80% v/v AcOH.	609013
7.6.4	7H-Dibenzo $[c,h]$ phenothiazine $(7k)$	548						Pot. (Br ₂); 80% v/v AcOH.	609013
7.7.	Phenothiazines with oxid	ized sulfui							
7.7.1	10 <i>H</i> -Phenothiazine sulfoxide (71)	800	~2				٠	Pot. (Br ₂); 80% v/v AcOH.	609013
7.7.2	10 <i>H</i> -Phenothiazine sulfone (7m, $R^{10} = H$)	≥900	~ 2					Pot. (Br ₂); 80% v/v AcOH.	609013
7.7.3	10- Carbethoxyphenothiazine sulfone (7m, $R^{10} = CO_2C_2H_5$)	≥900	~ 2					Pot. (Br ₂); 80% v/v AcOH.	609013
				T s		St. St.		$\bigotimes_{O_2}^{R^{10}}$	
	(7	j)		(7k)		(71)		(7m)	

[†] Questionable or superseded value.

TABLE 8. Reduction potentials of radicals from miscellaneous organic compounds (A·/A-)

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
8.1.	Hydroxy compounds								
8.1.1	Ascorbic acid (8a)	~15 85	13.5 11.1	CAT CAT	43 139	glycol	0.5	C C + K	79A100
		300	7					Calcn.	82A253
		282	7					Calen. not E° .	82A232
		19						Calcn.	82A232
		720						Calen.	82A232
		330	7					Calcn. see Introduction (Sec. 5.3)	85R025
8.1.2	7-Hydroxycoumarin (8b)	315	13.5	DMAP	174	glycol	0.5	C + K	82A253
8.1.3	1,4-Dihydroxy-2- methylnaphthalene (8c)	190						Calen.	761063
8.1.4	Vitamin K, (8d)	22	7					Calcn.	761063
8.1.5	1,2,5,8-Tetrahy droxy- 9,10-anthraquinone (8e)	73	13.5	НQ	23	glycol	0.5	C + K	82A253
8.1.6	3,4-Dihydro-8- hydroxy-2,5,7,8- tetramethylbenzopyran- 2-carboxylic acid (8f)	192 ° 185 480	* 13.5 13.5 7	DMAP CAT	174 43	glycol	0.5	Rec., C C + K calc.	82A253 (81C030)
8.1.7	Catechin (8g)	79	13.5	DMAP	174	glycol	0.5	C + K	82A253
8.1.8	l-Epicatechin (8h)	48	13.5	DMAP	174	glycol	0.5	C + K	82A253
8.1.9	Quercetin (81)	-37	13.5	НQ	23	glycol	0.5	C + K	82A253
	CH ₂ OH CHOH OH OH		но	(8b)			он сн он 	ls ·	
	OH CH₂CH≡C OH	l₃ CH₂CH₂CH₂	сн₃ фн-сн₃ 3			_ОН	H₃C _ HO _	CH ₃ O CH ₃ CO ₂ H	
	(8d)				(8e)			(8f)	
нс	ОНОНОН	но	Ľ°X	он он	но	OH OH	_он	но	У -он Он
								•	

 $T_{\text{AHLE 8. Reduction potentials of radicals from miscellaneous organic compounds (A \cdot / A^-) - Continued}$

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	Ī	Method/ comments	Ref.
8.1. I	Iydroxy compounds—Conti	nued							
8.1.10	Ellagic acid (83)	187	13.5	HQ	23	glycol	0.5	C + K	82A253
8.2. I	Dihydronicotinamides								
8.2.1	Nicotinamide adenine dinucleotide, reduced NAD•, H ⁺ /NADH	282	7					Caicn. not <i>E</i> °.	80C 00 8
		930						Kinetics + assumptions.	83M234 84A319
8.3. 7	Thiols (RSH)								
8.3.1	RS·/RS								
8.3.1.1	Cysteine (HSCH ₂ CH(NH ₂)CO ₂ H)	1100						Cálen.	84A044
		920						Calen.	86C016
		730	9.15	GlyTyr	600			C + calc. (ref. pot. at pH 13.5, corr. for pH)	86C031
8.3.1.2	eta -Mercaptoethanol $(\mathrm{HSCH_2CH_2OH})$	750						Calen.	87C020
8.3.2	RS·, H ⁺ /RSH								
8.3.2.1	β-Mercaptoethanol (HSCH ₂ CH ₂ OH)	1328	6.0	7.5.1	830		→0	C	87C 0 20
		1342						Calcn.	87C020
8.3.2.2	Mercaptoacetic acid $(\mathrm{HSCH}_2\mathrm{CO}_2\mathrm{H})$	1347		8.3.4.4	1727		→0	C(+K)	87C020
8.3.2.3	Penicillamine (HSC(CH ₃) ₂ CH(NH ₂)CO ₂ H)	1345		8.3.4.4	1727		→0	С	87C020
8.3.2.4	3-Mercaptopropionic acid (HSCH ₂ CH ₂ CO ₂ H)	1359		8.3.4.4	1727		→0	C(+K)	87C020
8.3.3	$\mathbf{RSSR} \boldsymbol{\cdot}^- / \mathbf{2RS}^-$								
8.3.3.1	Cysteine	650						Calen.	86C016
8.3.4	RSSR-, 2H ⁺ /2RSH								
8.3.4.1	β-Mercaptoethanol	1726	9	5.1.1	1352		→0	C	87C020
		1718	10	5.1.1	1352		→0	С	87C020
8.3.4.2	$\begin{array}{l} {\rm Dithiothreitol} \\ {\rm (HSCH_2[CH(OH)]_2CH_2SH)} \end{array}$	1752	7-10	5.1.1	1352		→0	C(+K)	87C020
		1702	7	8.3.2 (several) .		→0	C(+K)	87C020
8.3.4.3	Dihydrolipoamide HS(CH ₂) ₂ CH(SH)(CH ₂) ₄ - CONH ₂	1700	0	5.1.1	1352		~0	C'	87 C 02 0
		1709	7	8.3.2.1	1335		→0	C	87C020
8.3.4.4	Dithioerythritol	1724		8.3.2.1	1359		→0	C(+K)	87C020
8.3.5	RSSR·+/RSSR								
8.3.5.1	Dimethyl disulfide $(RSSR = CH_3SSCH_3)$	1391	~ ¥	9.56	1331		→ 0	C + K	86A403

Table 8. Reduction potentials of radicals from miscellaneous organic compounds (A·/A⁻)—Continued

No.	Compound or couple	E/mV	рН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
8.3.5	RSSR· ⁺ /RSSR—Continue	d							
8.3.5.2	Lipoic acid (RSSR = 8k)	1130	3.6	9.29	1030			K	86A403
		1100	9	9.29	1030			K	86A403
		1140	3.6	9.56	1331			K	86A403
8.4. F	'yrazolinones								
8.4.1	3-Methyl-2-pyrazolin- 5-one (81, $R^3 = CH_3$, $R^4 = H$)	390	12.2	TMPD	270	Br ⁻	0.1	C + K	85A390
8.4.2	4-Methyl-2-pyrazolin- 5-one (81, $\mathbb{R}^3 = \mathbb{H}$, $\mathbb{R}^4 = \mathbb{CH}_3$)	320	12.2	5.1.4	400	Br ⁻	0.1		85A390
8.4.3	3,4-Dimethyl-2- pyrazolin-5-one (81, \mathbb{R}^3 = \mathbb{R}^4 = $\mathbb{C}\mathbb{H}_3$)	330	12.2	5.1.4	400	Br ⁻	0.1	C + K	. 85A390
8.4.4	2,3-Dimethyl-1-phenyl- 3-pyrazolin-5-one (antipyrine) (8m)	1200- 1500	7					K, not-equilibrium	85A390
8.5. I	Peroxy radicals								
8.5.1	CH ₃ O ₂ ⋅	600-700	7-13	,				Prediction from rate data	86A291
8.5.2	Cl ₃ CO ₂ ·	>1000	7-13					Prediction from rate data	86A291
					H H			C ₆ H ₅	
	\$-\$	- (CH₂)₄CO₂ŀ	4	o R ⁴	N R3	·	°\(\)	.N — CH₃ ——(CH₃	
	(8)	k)			(81)		(8m)	

^{*} Recomended value.

TABLE 9. Reduction potentials of inorganic couples

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
9.1.	aq/e _{aq} -	-2700						Calcn.	649025
		-2900						Calcn.	730274
		-2870 *						Rec., Calcn.	81Z010
9.2.	Br•/Br ⁻	2000						Calcn.; ± 100 mV.	70C002
		2200						Calcn.	727506
		1970						Calcn.	72M258
		2080						Calcn.; \pm 50 mV.	737316
		2060						Calcn.	73M369
		1760						Calcn.	761181
		\sim 2000						Calcn.	79C029
		1904						Calcn.	82A154
		1930		9.39	1890			Calcn.; \pm 30-40 mV.	84C015
		2070						Calcn.	86C016
9.3.	HBrO , $\mathrm{H^+/H_2O}$, Br	-180						Calcn.	85 C 0 1 2
9.4.	HBrO/Br ⁻ , OH•	-360						Calcn.	85C012
9.5.	BrOH·/Br⁻, OH⁻	1740		9.39	1890			Calcn.; \pm 30-40 mV.	84C015
9.6.	BrO ₂ ·/BrO ₂	1330							72M258
9.7.	BrO ₂ ·, H ⁺ /HBrO ₂	1330						Calcn.	85M419
9.8.	BrO ₃ ⁻ , 2H ⁺ /BrO ₂ •, H ₂ O	1150						Calen.	85M419
9.9.	Br ₂ ·-/2 Br-	1660 *						Rec.	
		1900						Calcn.	727506
		1620	~1	Mn ³⁺	1550		4	Kinetics + assumptions.	737317
		1770						Calcn.; \pm 50 mV.	737316
		1670						Calcn.	73M369
		1450						Calcn.	761181
		1660						Calcn.; another value: ≤1590 mV.	79C029
		1700						Calcn.	80C019
		1630		9.39	1890			Calcn.; ± 30-40 mV.	84C015
		1690						Calcn.	86C016
9.10.	Br ₂ /Br ₂ ·-	300						Calcn.	727506
		410						Calcn.; \pm 50 mV.	737316
	•	510						Calcn.	73M369
		680						Calcn.	761181
		430						Calcn.	80C019
		520						Calcn.	86C016
9.11.	CN·/CN-	1900						Calcn.; ± 300 mV.	
0.10	a	~ 2800						Calcn.	75Z006
9.12.	Cyanate radical ("O ₂ CNHNCO")·/2NC	` ,						Prediction from rate data	87A220
9.13.	CO_2/CO_2 .	~-2000						Pol.	761170
	•	~-2000							80A123
		-1900 *						Rec., Calcn.	85A034
		-1930						Calcn. ± ≥220 mV	87C013
		-1900		Tl ⁺	-1940		→0	C (+ K)	89C001

TABLE 9. Reduction potentials of inorganic couples—Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
9.14.	со ₂ , н+/нсо ₂ -	1070	7					Calcn. ± ≥220	87C013
9.15.	Cl·/Cl ⁻	2550						mV Calen.; ± 100 mV.	70C002
8.10.	01 / 01	2600						Calcn.	727506
		2600						outen.	.2.000
		2590						Calcn.; \pm 50 mV.	737316
		2200						Calcn.	82A154
		2410		9.39	1890			Calcn.; ± 30-40 mV.	84C015
		2600						Calcn.	85C012
9.16.	$\mathrm{HClO},\ \mathrm{H^+/H_2O},\ \mathrm{Cl}$	-460						Calen.	85C012
9.17.	HClO/Cl ⁻ , ·OH	-40						Calen.	85C012
9.18.	ClOH·/Cl-, OH-	1900		9.39	1890			Calcn.; ± 30-40 mV.	84C015
9.19.	ClO ₂ ·/ClO ₂ -	934	4-6					Pot.	58C001
		936	4-6					Pot.	59C001
		954						Pot.	62C001
		919							65C003
		954							78Z277
		934 3	*					Rec., Pot.; other values 11-29°C; ± 2 mV.	85A039
9.20.	ClO2., H+/HClO2	1277	0						78Z277
		1275						Calen.	85M419
9.21.	$^{\mathrm{ClO_3}^-}$, $^{\mathrm{2H}^+}/^{\mathrm{ClO_2}}$, $^{\mathrm{H}_2\mathrm{O}}$	1150						Calcn.	85M419
9.22.	Cl_2 · $^-/2$ Cl^-	2300						Calcn.	727506
		2290						Calcn.; \pm 50 mV.	737316
		2200	~1	Co ³⁺	1850		~0.2	Kinetics + assumptions; ± 60 mV.	737316
		2300						Calcn.	80C019
		2090		9.39	1890			Calcn.; ± 30-40 mV.	84C015
9.23.	Cl ₂ /Cl ₂ ·	600						Calen.	727506
		430						Calcn.; ± 50 mV.	737316
		420						Calcn.	80C019
9.24.	F•/F	3600						Calcn.; ± 100 mV.	70C002
9.25.	I·/I ⁻	1270						Calcn.; no details.	63F022
		1400						Calen.; \pm 50 mV.	70C002
		1400						Calcn.	727506
		1310						Calcn.; \pm 50 mV.	737316
		1420						Calen.	73M369
		1380	- 1.3	$Os(bpy)_3^{3+}$	840		1	Kinetics.	78A485
		1330						Kinetics + assumptions.	80A447
		1280	~3.5	7.4.6	865		~0.1	C + K	83A273
		1410						Calcn.	86C016
		1330		9.41	-330			$HO_2 \cdot / I_2$ reaction; $C + K + calcn$.	86A070

J. Phys. Chem. Ref. Data, Vol. 18, No. 4, 1989

Table 9. Reduction potentials of inorganic couples-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
9.26.	ICl ₂ /l ₂ , 2 Cl-	1056							78Z277
9.27.	HIO, $\mathrm{H^+/H_2O}$, I·	-160						Calcn.	85C012
9.28.	HIO/I [−] , •OH	-1040						Calen.	85C012
9.29.	I ₂ ·-/2 I-	1040						Calcn.; no details.	63F022
		1100						Calen.	727506
		1000						Calcn.; \pm 50 mV.	737316
		1130						Calen.	73M369
		1080	~1.3	$Os(bpy)_3^{3+}$	840		·1	Kinetics + calcn.	78A485
	•	1000						Calen.	80C019
		1040		9.25	1330			Calcn.	80A447
		1063	~3	$Os(bpy)_3^{3+}$	857		0.1	Kinetics; \pm 11 mV.	82A115
		981	~3.5	7.4.6	865		~0.1	C + K	83A273
		1130						Calcn.	86C016
		1030		9.41	-330			$HO_2 \cdot / I_2$ reaction; C + K + calcn.	86A070
9.30.	I_2/I_2 .	300						Calcn.	727506
		60						Calcn.; \pm 50 mV.	737316
		110						Calen.	73M369
		160						Calcn.	78A485
		200						Calcn.	83C019
		110						Calcn.	86C016
		210		9.41	-330			$HO_2 \cdot /I_2$ reaction; C + K	86A070
9.31.	10_2 , H ⁺ /HIO ₂	1000						Calcn.	76M471
9.32.	10_3^- , $2H^+/10_2$, H_2O	800						Calcn.	76M471
9.33.	$N_3 \cdot / N_3^-$	1330 3	*					Rec.	
		~1900						Calcn.	75Z006
		1370						Calcn.; ± 220 mV.	83C030
		1330	6.5	IrCl _e ²⁻	930		1.0	K	85C023 (86A223
		1350		9.9	1630	Br-	2-3		87C002
		1320						Cyc. $v.$; \pm 30 mV	87C002
	·	≤1365		9.10	510			Calcn.	87M124
9.34.	$N_6 \cdot - /2N_3 -$	1930		9.33	1900			C	84A013
9.35.	$N_2H_4\cdot^+/N_2H_4$	≤730		Fe(CN)63-				Kinetics + assumptions.	84A237
9.36.	·NO ₂ /NO ₂ ⁻	1000 870						Calcn.; ± 100 mV.	70C002
		910						Calcn.	82C006
		1030						Calcn.; \pm 40 mV.	83C030
		1040		Fe(TMP) ₃ ²⁺			0.3	TMP = 3,4,7,8- tetramethyl- phenanthroline	85A480
		870						Calcn.	85C012
9.37.	NO ₃ •/NO ₃ -	2300					,	Calcn.; ± 100 mV.	70C002
		~1900						Calcn.	75Z006
		2300-						Prediction based	86A278
		2600						on rate data	
9.38.	•OH, H ⁺ /H ₂ O	2730	*					Rec.	

TABLE 9. Reduction potentials of inorganic couples-Continued

No.	Compound or couple	E/mV	pН	Ref.	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
		1800	7					Calcn.; not E.	769245
		2850	0					Calen.	78Z277
		2180	7					Calen.; not E.	82C006
		2590	0	2±				Calcn.	84C002
		2720	0	Tl ²⁺	2220			Tl ⁺ /•OH reaction (kinetics); ± 20 mV.	84C015
		2740	0	9.19	934			ClO_2^-/O_3 reaction (kinetics), + calcn.	85A039
9.39.	·OH/OH-	1900	•					Rec.	
		1900						Calcn.; \pm 100 mV.	70C002
		2020							78Z277
		1770						Calcn.	84C002
		1890		Tl ²⁺	2220			Ti ⁺ /·OH reaction (kinetics) ± 20 mV.	84C015
		1910		9.19	934			ClO ₂ ⁻ /O ₃ reaction (kinetics), + calcn.; ± 10 mV.	85A039
9.40.	O^{-} , $\mathrm{H_2O/2~OH^-}$	1870						Calcn.	80C019
		1760		T! ²⁺	2220			$Tl^+/\cdot OH$ reaction (kinetics), + calcn.; \pm 20 mV.	84C015
		1780		9.19	934			ClO_2^-/O_3 reaction (kinetics), + calcn.	85A039
9.41.	Ω_z/Ω_z .	-330	*					Rec.	
		-330				,		Calcn.	72C001
		-288						Pol.; -532 mV vs SCE	72C002
		-330		DQ	-250			Calcn.	74C001
		-330	7.2	1.1.4	67	HCO ₂	0.1	C(+K).	741141
		-310	7	DQ	925	1100 -		Calc. from data in 730125.	
		-325 -330	7	DQ 1.1.1	-235 100	HCO ₂		C; -155 mV for 1 mol dm ⁻³ O ₂ . Kin. reaction QH ₂	
		000	•	1.1.1	100			$+ H_2O_2$ cat. peroxidase.	75C004
9.42.	O ₂ , H ⁺ /HO ₂ ·	-37	0					Calen.	761063
		-50 -50						Colon	95/2010
9.43.	$O_2(^1\Delta_g)/O_2$.	650	7					Calen.	85C012 769245
9.44	$O_2(\Delta_g)/O_2$ O_2 , H^+/HO_2^-	1000	•					Calca	
9.45.	O_2^{-1} , H^1/H_2O_2	1710 1760	0					Calen. Calen.	761063 761063
		1760						Calcn.	85C012
9.46.	O ₂ ·-, 2 H ⁺ /H ₂ O ₂	940	7					Calcn; + 20 mV, not E° .	74C001
		865	7					Calcn.; not E.	751090
		940	7					Calcn.; not E.	769245

J. Phys. Chem. Ref. Data, Vol. 18, No. 4, 1989

REDUCTION POTENTIALS OF ONE-ELECTRON COUPLES

TABLE 9. Reduction potentials of inorganic couples-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
9.47.	HO ₂ •, H ⁺ /H ₂ O ₂	1420	0	·				Calcn.; not E° .	761063
0.11.	1102; 11 /11202	1480	v					outen., nov 2 .	.01000
		1495	0					Calcn.	78Z277
		1480		•				Calcn.	85C012
9.48.	$\mathrm{HO_2} \cdot / \mathrm{HO_2}^-$	790						Calcn.	85C012
9.49.	H_2O_2 , H^+/H_2O , OH	800 870	7					Calcn.; not E° .	769245
		460	7					Calcn.; not E° .	82C006
		460-520 870	7					Calen.; not E° . Calen.	84C002 85C012
9.50.	O ₃ /O ₃ ·-	1600 1040	≥11					Calcn.; ± 100 mV.	82C006
	•	1190	≥11					Calcn.	84C002
		1010 *	11-12	9.19	934			Rec., ClO_2^-/O_3 reaction (kinetics).	85A039
		1040						Calcn.	85C012
9.51.	O_3 , H^+/HO_3 .	1800	7					Calcn.; not E° .	82C006
9.52.	S, H ⁺ /HS·	~-1300	0					Calcn.	87A082
9.53.	HS·/HS-	1150						Calcn.	86C016
9.54.	HSSH·/2HS-	900						Calen.	86C016
9.55.	scn·/scn-	1620	~1.3	Fe(bpy) ₃ ³⁺	1065		1	Kinetics (one rate const. assumed).	78A485
		1680	1.3	Os(bpy)3 ³⁺	837		1	Kinetics + calcn. (some assumptions).	78A485
		1650		9.25	1380			Calcn.	78A485
		1660		9.25	1330			Calen.	80A447
		1601						Calcn.	82A154
		1620						Calen.	86A070
		1660		6.2.9	1240			Calcn.	88AU24
9.56.	$(SCN)_2 \cdot ^-/2 SCN^-$	1330 *	:					Rec.	
		1310	~1.3	Fe(bpy) ₃ ³⁺	1065		1	Kinetics + calcn. (rate const. assumed).	78A485
		1370	~1.3	Os(bpy) ₃ ³⁺	837		1	Kinetics + calcn. (some assumptions).	78A485
		1290		9.55	1660			Calcn.	80A447
		1250		9.29	1000			Calcn.; ± 220 mV.	82A183
	•	1331	~3	$Os(bpy)_3^{3+}$	857		0.1	Kinetics; ± 8 mV.	82A115
		1310						Calcn.	86A070
		1350		6.2.9	1240			Calen.	88A024
9.57.	$(SCN)_2/(SCN)_2 \cdot ^-$	540				•		Calcn.	78A485
9.58.	SO ₂ /SO ₂ ·-	$-262 \\ -280$						Calcn.	84A454
		-280						Calcn.	85C012
		-288	1					Сус. v.	87A083
9.59.	SO_2 , H ₂ O/HSO ₃ , H ⁺	-660	7					$S_2O_4^{2-}/MV^{2+}$ reaction + calcn.; not E° .	78C016

TABLE 9. Reduction potentials of inorganic couples-Continued

No.	Compound or couple	E/mV	pН	Ref. compound	Ref. E /mV	Co-solute	I	Method/ comments	Ref.
9.60.	\$0 ₃ ⁻ /\$0 ₃ ² -	630	≥8					Calc. from value at pH 3.6	84A327
		760	11	9.19	936		→0	ac pii 3.0	88A024
9.61.	so ₃ -/нso ₃ -	840	3.6	7.5.1	780		~0.1	C	84A327
9.62.	SO_4^{2-} , $H_2O/\dot{S}O_3^-$, $2OH^-$	-2470						Calcn.	84A327
9.63.	SO ₄ ·-/SO ₄ ²⁻	~2430						Calcn. (see ref.)	89Z064
9.64.	SO ₅ ·⁻/HSO ₅ ⁻	~1100	6.7	9.29	1130			Equilibrium not attained.	84A327
9.65.	S_2O_3 $/S_2O_3^2$ -	1340						Calcn.	82A154
		1350 1600						Calcn.	83C030
		1600						Calcn.	85C012
9.66.	$\mathrm{SeO_3}^-/\mathrm{SeO_3}^{2-}$	1680						K + calen.	86A335
9.67.	SeO ₃ ⁻ , H ⁺ /HSeO ₃ ⁻	2180						K + calcn.; further calcns. of related couples	86A338
9.68.	$(SeCN)_2 \cdot ^-/2 SeCN^-$	900-1000						Calcn. + assumptions.	79A03

^{*} Recomended value.

13. References to Tables

- 33C001 The viologen indicators. Michaelis, L.; Hill, E.S., J. Gen. Physiol. 16: 859-73 (1933)
- 419001 Another type of free radical in the group of thiazines and some other related heterocyclic rings. Michaelis, L.; Granick, S.; Schubert, M.P., J. Am. Chem. Soc. 63: 351-5 (1941)
- 57C001 Polarographic behavior of the viologen indicators. Elofson, R.M.; Edsberg, R.L., Can. J. Chem. 35: 646-50 (1957)
- 58C001 The oxidation potentials of solutions of chlorite and chlorine dioxide. Flis, I.E., Zh. Fiz. Khim. 32: 573-9 (1958)
- 58C002 A polarographic study of some Wurster salts. Friend, J.A.; Roberts, N.K., Aust. J. Chem. 11: 104-19 (1958)
- 599011 Polarographic oxidation of phenothiazine tranquilizers. Kabasakalian, P.; McGlotten, J., Anal. Chem. 31: 431-3 (1959)
- 59C001 The equilibrium CIO₂ + e ≠ CIO₂ in aqueous solution at different temperatures. Troitskaya, N.V.; Mishchenko, K.P.; Flis, I.E., Russ. J. Phys. Chem. 33: 77-9 (1959) Translated from: Zh. Fiz. Khim. 33: 1614-7 (1959)
- 59C002 Oxidation-reduction potentials, ionization constants and semiquinone formation of indigo sulfonates and their reduction products. Preisler, P.W.; Hill, E.S.; Loeffel, R.G.; Shaffer, P.A., J. Am. Chem. Soc. 81: 1991-5 (1959)
- 600013 Chemical constitution and anthelmintic activity IV. Substituted phenothiazines. Craig, J.C.; Tate, M.E.; Warwick, G.P.; Rogers, W.P., J. Med. Pharm. Chem. 2: 659-68 (1960)
- 609014 Chemical constitution and anthelmintic activity. V. Alkoxy- and chlorophenothiazines. Craig, J.C.; Tate, M.E.; Donovan, F.W.; Rogers, W.P., J. Med. Pharm. Chem. 2: 669-80 (1960)
- 60C001 The stereochemistry of the bridged quaternary salts of 2,2'-bipyridyl. Homer, R.F.; Tomlinson, T.E., J.Chem. Soc. 2498-503 (1960)
- 60C002 Mode of action of dipyridyl quaternary salts as herbicides. Homer, R.F.; Mees, G.C.; Tomlinson, T.E., J. Sci. Food Agric. 11: 309-15 (1960)
- 61C001 Investigation of stable free radicals formed by electroreduction of N-alkylpyridinium salts. Schwarz, W.M., Jr., Ph.D., Thesis, Univ. Wisconsin, Madison, WI, 1961, 151p.
- 61M014 Formation of stable free radicals on electroreduction of N-alkylpyridinium salts. Schwarz, W.M.; Kosower, E.M.; Shain, I., J. Am. Chem. Soc. 83: 3164-5 (1961)
- 62C001 The oxidation by chlorine dioxide and sodium chlorite. I. Measurement of normal oxidation-reduction potential of chlorine dioxide. Naito, T., J. Chem. Soc. Jpn., Indust. Chem. Sect. (Kogyo Kagaku Zaisshi) 65: 749-52 (1962)
- 63F022 The reactions of iodopentamminecobalt(III) with various "one-electron" oxidation-reduction reagents. Haim, A.; Taube, H., J. Am. Chem. Soc. 85: 495-500 (1963)
- 649025 Addendum: Redox potential and hydration energy of the hydrated electron. Baxendale, J.H., Radiat. Res. Suppl. 4: 139-40 (1964)
- 649028 Controlled-potential coulometric analysis of N-substituted phenothiazine derivatives. Merkle, F.H.; Discher, C.A., Anal. Chem. 36: 1639-43 (1964)
- 65C002 The reducing power generated in photoact I of photosynthesis. Kok, B.; Rurainski, H.J.; Owens, O.V.H., Biochim. Biophys. Acta 109: 347-56 (1965)
- 65C003 The thermodynamic characteristics of certain equilibria in solutions of chlorine dioxide and chlorite at different temperatures. Zolotukhin, V.M.; Flis, I.E.; Mishchenko, K.P., J. Appl. Chem. USSR 38: 363-7 (1965) Translated from: Zh. Prikl. Khim. (Leningrad) 38: 369-74 (1965)

- 65F032 Diquat (1,1'-ethylene-2,2'-dipyridylium dibromide) in photoreactions of isolated chloroplasts. Zweig, G.; Shavit, N.; Avron, M., Biochim. Biophys. Acta 109: 332-46 (1965)
- 66C001 Chloroplast reactions with dipyridyl salts. Black, C.C., Jr., Biochim. Biophys. Acta 120: 332-40 (1966)
- 66C002 Bipyridylium herbicides. Polarography of 1,1'-ethylene-2,2'-bipyridylium dibromide. Engelhardt, J.; McKinley, W.P., J. Agric. Food Chem. 14: 377-80 (1966)
- 66C003 One-electron-transfer reactions in biochemical systems.

 I. Kinetic analysis of the oxidation-reduction equilibrium between quinol-quinone and ferro-ferricytochrome c. Yamazaki, 1.; Ohnishi, T., Biochim. Biophys. Acta 112. 169-81 (1966)
- 67C002 Aryl-substituted derivatives of 4,4'-bipyridylium salts: their spectroscopic properties and stereochemistry. Downes, J.E., J. Chem. Soc. C 1491-3 (1967)
- 67C003 Effect of introducing a sulphur bridge on the herbicidal activity of diquat. Summers, L.A., Nature 214: 381-2 (1967)
- 07C004 Radical cation from 2,2'-bipyridyl dimethiodide. Summers, L.A., Naturwissenschaften 54: 491-2 (1967)
- 68C001 The relationship between herbicidal activity and electrochemical properties of quaternary bipyridylium salts. Volke, J., Collect. Czech. Chem. Commun. 33: 3044-8 (1968)
- 68C002 Herbicidal activity of an aromatic analogue of diquat. Summers, L.A.: Black, A.L., Nature 218: 1067-8 (1968)
- 68C003 Chemical constitution and activity of bipyridylium herbicides. II. Diquaternary salts of 1,10-phenanthroline. Summers, L.A., Tetrahedron 24: 5433-7 (1968)
- 68C004 Reversible Redoxsysteme vom Weitz-Typ. Eine polarographische Studie. Huenig, S.; Gross, J., Tetrahedron Lett. 21: 2599-604 (1968)
- 69C001 Reduction of some recent bipyridylium herbicides at the dropping mercury electrode. Volke, J.; Volkova, V., Collect. Czech. Chem. Commun. 34: 2037-47 (1969)
- 69C002 Electron transfer properties and phytotoxicity of a diquaternary salt from 2,2':6',2"-terpyridine. Dickeson, J.E.; Summers, L.A., Experientia 25: 1247-8 (1969)
- 69C003 Conversion of light to chemical free energy. I. Porphyrin-sensitized photoreduction of ferredoxin by glutathione. Eisenstein, K.K.; Wang, J.H., J. Biol. Chem. 244: 1720-8 (1969)
- 69C004 One-electron transfer properties of dipyrido[1,2-a:2',1'-c]pyrazinium dibromide. Black, A.L.; Summers, L.A., J. Chem. Soc. C 610-1 (1909)
- 69C005 Non-aqueous electrochemistry using optically transparent electrodes. Osa, T.; Kuwana, T., J. Electroanal. Chem. Interfacial Electrochem. 22: 389-406 (1969)
- 70C001 Phytotoxicity control exerted by redox potential values of the bipyridylium quaternaries. White, B.G., Proc. 10th British Weed Control Conf., 1970, p.997-1007
- 70C002 Oxidation-reduction potentials of certain inorganic radicals in aqueous solutions. Berdnikov, V.M.; Bazhin, N.M., Russ. J. Phys. Chem. 44: 395-8 (1970) Translated from: Zh. Fiz. Khim. 44: 712 (1970)
- 70M264 Chronopotentiometry and coulometric titration of N-substituted phenothiazines. Patriarche, G.J.; Lingane, J.J., Anal. Chim. Acta 49: 25-34 (1970)
- 71C001 Chemical constitution and activity of bipyridylium herbicides. Part VII. 6-Substituted derivatives of 6,7-dihydrodipyrido[1,2-a:2',1'-c]pyrazinediium dibromide (diquat) and dipyrido[1,2-a:2',1'-c]pyrazinediium dibromide. Black, A.L.; Summers, L.A., J. Heterocycl. Chem. 8: 29-31 (1971)
- 727506 The photochemical behavior of cobalt complexes containing macrocyclic (N₄) ligands. Oxidation-reduction chemistry of dihalogen radical anions. Malone, S.D.; Endicott, J.F., J. Phys. Chem. 76: 2223-9 (1972)

- 72C001 Thermodynamic characteristics of the hydroperoxy radical in aqueous solution. Berdnikov, V.M.; Zhuravleva, O.S., Russ. J. Phys. Chem. 46: 1521-3 (1972) Translated from: Zh. Fiz. Khim. 46: 2658-60 (1972)
- 72C002 Electrogeneration and some properties of the superoxide ion in aqueous solutions. Chevalet, J.; Rouelle, F.; Gierst, L.; Lambert, J.P., J. Electroanal. Chem. Interfacial Electrochem. 39: 201-16 (1972)
- 72M258 Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. Field, R.J.; Koros, E.; Noyes, R.M., J. Am. Chem. Soc. 94: 8649-64 (1972)
- 730274 Radiation Chemistry. An Introduction. Swallow, A.J., John Wiley and Sons, New York, 1973, 275p.
- 737316 Kinetics of oxidation of transition-metal ions by halogen radical anions. Part II. The oxidation of cobalt(II) by dichloride ions generated by flash photolysis. Thornton, A.T.; Laurence, G.S., J. Chem. Soc., Dalton Trans.: 1632-6 (1973)
- 737317 Kinetics of oxidation of transition-metal ions by halogen radical anions. Part III. The oxidation of manganese(II) by dibromide and dichloride ions generated by flash photolysis. Laurence, G.S.; Thornton, A.T., J. Chem. Soc., Dalton Trans.: 1637-44 (1973)
- 73C001 Two-step redox systems. XI. Diquaternary salts of bipyridyls and dipyridylethylenes: Syntheses and polarography. Huenig, S.; Gross, J.; Schenk, W., Justus Liebigs Ann. Chem.: 324-38 (1973)
- 73C002 Two-step redox systems. XII. Synthesis and polarography of quaternary salts derived from phenanthrolines, 2,7-diazapyrene and from diazoniapentaphenes. Huenig, S.; Gross, J.; Lier, E.F.; Quast, H., Justus Liebigs. Ann. Chem. 339-58 (1973)
- 73M369 Thermochemical parameters of aqueous halogen radicals. Woodruff, W.H.; Margerum, D.W., Inorg. Chem. 12: 962-4 (1973)
- 741141 The redox potential of the O₂-O₂- system in aqueous media. Ilan, Y.A.; Meisel, D.; Czapski, G., Isr. J. Chem. 12: 891-5 (1974)
- 749062 Spectroelectrochemical study of mediators. I. Bipyridylium salts and their electron transfer rates to cytochrome c. Steckhan, E.; Kuwana, T., Ber. Bunsenges. Phys. Chem. 78: 253-9 (1974)
- 74C001 The redox potential of the system oxygen-superoxide. Wood, P.M., FEBS Lett. 44: 22-4 (1974)
- 74C002 The 2,2'-dicyano-1,1'-dimethyl-4,4'-bipyridylium dication: A viologen indicator with a high redox potential. Fielden, R.; Summers, L.A., Experientia 30: 843-4 (1974)
- 74C003 Chemical constitution and activity of bipyridylium herbicides. Part VIII. 4-Bromo-6,7-dihydrodipyrido[1,2a:2',1'-c]-pyrazinediium dibromide and related compounds. Pojer, P.M.; Summers, L.A., J. Heterocycl. Chem. 11: 303-5 (1974)
- 74C004 Electrochemical redox patterns for pyridinium species: 1-Methylnicotinamide and nicotinamide mononucleotide. Schmakel, C.O.; Santhanam, K.S.V.; Elving, P.J., J. Electrochem. Soc. 121: 1033-45 (1974)
- 751090 One-electron transfer equilibria and redox potentials of radicale studied by pulse radiolysis. Meisel, D.; Czapaki, G., J. Phys. Chem. 79: 1503-9 (1975)
- 751117 One-electron redox potentials of nitro compounds and radiosensitizers. Correlation with spin densities of their radical anions. Meisel, D.; Neta, P., J. Am. Chem. Soc. 97: 5198-203 (1975)
- 751150 One-electron reduction potential of riboflavine studied by pulse radiolysis. Meisel, D.; Neta, P., J. Phys. Chem. 79: 2459-61 (1975)

- 75C001 The thermochemical characterization of sodium dithionite, flavin mononucleotide, flavin-adenine dinucleotide and methyl and benzyl viologens as low-potential reductants for biological systems. Watt, G.D.; Burns, A., Biochem. J. 152: 33-7 (1975)
- 75C002 Characteristics of viologen derivatives for electrochromic display. Kawata, T.; Yamamoto, M.; Yamana, M.; Tajima, M.; Nakano, T., Jpn. J. Appl. Phys. 14: 725-6 (1975)
- 75C004 Relation between redox potentials and rate constants in reactions coupled with the system oxygen-superoxide. Sawada, Y.; Iyanagi, T.; Yamazaki, I., Biochemistry 14: 3761-4 (1975)
- 75Z006 Charge-transfer photochemistry. Endicott, J.F., Concepts of Inorganic Photochemistry, A.W. Adamson and P.D. Fleischauer (eds.), Wiley, New York, NY, 1975, p.81-142
- 761037 Oxygen inhibition of nitroreductase: Electron transfer from nitro radical-anions to oxygen. Wardman, P.; Clarke, E.D., Biochem. Biophys. Res. Commun. 69: 942-9 (1976)
- 761063 The one-electron transfer redox potentials of free radicals.
 I. The oxygen/superoxide system. Ilan, Y.A.; Czapski, G.; Meisel, D., Biochim. Biophys. Acta 430: 209-24 (1976)
- 761070 One-electron reduction potentials of substituted nitroimidazoles measured by pulse radiolysis. Wardman, P.; Clarke, E.D., J. Chem. Soc., Faraday Trans. 1 72: 1377-90 (1976)
- 761111 Pulse radiolysis and electron spin resonance studies of nitroaromatic radical anions. Optical absorption spectra, kinetics, and one-electron redox potentials. Neta, P.; Simic, M.G.; Hoffman, M.Z., J. Phys. Chem. 80: 2018-23 (1976)
- 761169 Electron transfer and equilibria between pyridinyl radicals and FAD. Anderson, R.F., Ber. Bunsenges. Phys. Chem. 80: 969-72 (1976)
- 761170 Mechanism of the reduction of lead ions in aqueous solution (a pulse radiolysis study). Breitenkamp, M.; Henglein, A.; Lilie, J., Ber. Bunsenges. Phys. Chem. 80: 973-9 (1976)
- 761181 Kinetics of the heterogeneous electron transfer reaction of triplet pyrene in micelles to Br₂ radicals in aqueous solution. Frank, A.J.; Graetzel, M.; Henglein, A.; Janata, E., Int. J. Chem. Kinet. 8: 817-24 (1976)
- 761206 Nicotinamide-NAD sequence: redox process and related behavior, behavior and properties of intermediate and final products. Elving, P.J.; Schmakel, C.O.; Santhanam, K.S.V., Crit. Rev. Anal. Chem. 6: 1-67 (1976)
- 765319 Electron exchange and electron transfer of semiquinones in aqueous solutions. Meisel, D.; Fessenden, R.W., J. Am. Chem. Soc. 98: 7505-10 (1976)
- 769245 Reactions involving singlet oxygen and the superoxide anion. Koppenol, W.H., Nature (London) 262: 420-1 (1976)
- 76C001 Oxidation-reduction properties of several low potential iron-sulfur proteins and of methylviologen. Stombaugh, N.A.; Sundquist, J.E.; Burris, R.H.; Orme-Johnson, W.H., Biochemistry 15: 2633-41 (1976)
- 76C002 Chemical constitution and activity of bipyridylium herbicides. X. 3-Substituted-6,7-dihydrodipyrido|1,2-a:2',1'-c|-pyrazinedilum dibromides and related compounds. Pirzada, N.H.; Pojer, P.M.; Summers, L.A., Z. Naturforsch., Teil B 31B: 116-21 (1076)
- 76C003 Nicotinamide-dependent one-electron and two-electron (flavin) oxidoreduction: Thermodynamics, kinetics, and mechanism. Blankenhorn, G., Eur. J. Biochem. 67: 67-80 (1976)
- 76M471 Oscillations in chemical systems. 13. A detailed molecular mechanism for the Bray-Liebhafsky reaction of iodate and hydrogen peroxide. Sharma, K.R.; Noyes, R.M., J. Am. Chem. Soc. 98: 4345-61 (1976)

- 771044 One electron reduction potentials of some substituted 4(5)-nitroimidazoles in aqueous solution studied by pulse radiolysis. Sjoeberg, L.; Eriksen, T.E.; Mustea, I.; Revesz, L., Radiochem. Radioanal. Lett. 29: 19-26 (1977)
- 773087 The use of nitroaromatic compounds as hypoxic cell radiosensitizers. Wardman, P., Curr. Top. Radiat. Res. Q. 11: 347-98 (1977)
- 77C006 Chemical constitution and activity of bipyridylium herbicides. XII. Diquaternary salts of 6-methyl-2,2'bipyridyl and 2-methyl-4,4'-bipyridyl. Schmalzl, K.J.; Summero, L.A., Aust. J. Chem. 30: 657-62 (1077)
- 77C007 Evaluation of mediator-titrants for the indirect coulometric titration of biocomponents. Szentrimay, R.; Yeh, P.; Kuwana, T., Electrochemical Studies of Biological Systems, D.T. Sawyer (ed.), ACS Smyposium 38, American Chem. Soc., Washington, D.C., 1977, p.143-69
- 77Z190 Electron transfer reactions of paraquat. Ledwith, A., Biochemical Mechanisms of Paraquat Toxicity, A.P. Autor (ed.), Academic Press, New York, NY, 1977, p.21-37
- 78A103 Indirect measurement of the thionine-leucothionine synproportionation rate constant by a photochemical perturbation technique. Wildes, P.D.; Lichtin, N.N., J. Phys. Chem. 82: 981-4 (1978)
- 78A485 Outer-sphere oxidation of iodide and thiocyanate by tris(2,2'-bipyridyl)- and tris(1,10-phenanthroline)osmium(III) in aqueous solutions. Nord, G.; Pedersen, B.; Farver, O., Inorg. Chem. 17: 2233-8 (1978)
- 78C016 The redox potential of dithionite and SO₂ from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase. Mayhew, S.G., Eur. J. Biochem. 85: 535-47 (1978)
- 78C017 Examination of the electrochemical properties of N,N dimethyl-4,4'-bipyridinium bis(0,0-dimethylphosphate) by classical and ac polarography. Grachev, V.N.; Zhdanov, S.I.; Supin, G.S., Sov. Electrochem. 14: 1180-6 (1978) Translated from: Elektrokhimiya 14: 1353-62 (1978)
- 78R212 Radiosensitization of Serratia marcescens by nitropyridinium compounds. Anderson, R.F.; Patel, K.B.; Smithen, C.E., Br. J. Cancer, Suppl. 37: 103-6 (1978)
- 78Z277 Tables of standard electrode potentials. Milazzo, G.; Caroli, S., Wiley, Chichester, 1978, 421p.
- 79A035 Pulse radiolysis of SeCN and reactions of (SeCN)₂ radicals with biochemical compounds. Badiello, R.; Tamba, M., Radiochem. Radioanal. Lett. 37: 165-71 (1979)
- 79A100 Electron transfer rates and equilibria between substituted phenoxide ions and phenoxyl radicals. Steenken, S.; Neta, P., J. Phys. Chem. 83: 1134-7 (1979)
- 79A456 Cation radicals of phenothiazines. Electron transfer with aquoiron(II) and -(III) and hexacyanoferrate(II) and -(III). Pelizzetti, E.; Mentasti, E., Inorg. Chem. 18: 583-8 (1979)
- 79C021 Redox potentials of radical anions of nitrofuran derivatives. Khudyakov, I.V.; Kuzhkov, V.B.; Kuz'min, V.A., Dokl. Phys. Chem. 246: 424-6 (1979) Translated from: Dokl. Akad. Nauk SSSR 246: 397-400 (1979)
- 79C029 Horseradish peroxidase. XXXIV. Oxidation of compound II to I by periodate and inorganic anion radicals. Nadezhdin, A.; Dunford, H.B., Can. J. Biochem. 57: 1080-3 (1979)
- 79R017 Structure-activity relationships in the development of hypoxic cell radiosensitizers. I. Sensitization efficiency. Adams, G.E.; Clarke, E.D.; Flockhart, I.R.; Jacobs, R.S.; Sehmi, D.S.; Stratford, I.J.; Wardman, P.; Watts, M.E.; Parrick, J.; Wallace, R.G.; Smithen, C.E., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 35(2): 133-50 (1979)
- 79R037 Radiosensitization of hypoxic mammalian cells by dinitroimidazoles. Agrawal, K.C.; Millar, B.C.; Neta, P., Radiat. Res. 78: 532-41 (1979)

- 80A123 Elementary reactions of the reduction of Tl⁺ in aqueous solution. Butler, J.; Henglein, A., Radiat. Phys. Chem. 15: 603-12 (1980)
- 80A136 Are ortho-substituted 4-nitroimidazoles a new generation of radiation-induced arylating agents? Clarke, E.D.; Wardman, P., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 37: 463-8 (1980)
- 80A210 A pulse-radiolysis study of the reduction of 6hydroxy-5-nitrothymine in acid aqueous solutions. Eriksen, T.E.; Sjoeberg, L.; Mustea, I.; Revesz, L., Radiat. Phys. Chem. 18: 213-7 (1980)
- 80A247 Excited-state electron-transfer quenching by a series of water photoreduction mediators. Amouyal, E.; Zidler, B.; Keller, P.; Moradpour, A., Chem. Phys. Lett. 74: 314-7 (1980)
- 80A349 The electron affinity of some radiotherapeutic agents used in cancer therapy. Wold, E.; Kaalhus, O.; Johansen, E.S.; Ekse, A.T., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 38: 599-611 (1980)
- 80A447 Oxidation of thiocyanate and iodide by iridium(IV). Stanbury, D.M.; Wilmarth, W.K.; Khalaf, S.; Po, H.N.; Byrd, J.E., Inorg. Chem. 19: 2715-22 (1980)
- 80C004 Applications of light-induced electron-transfer reactions: Generation and reaction of Ag⁰ in solution via visible light photolysis of Ru(bpy)₃²⁺. Foreman, T.K.; Giannotti, C.; Whitten, D.G., J. Am. Chem. Soc. 102: 1170-1 (1980)
- 80C007 The one-electron reduction potentials of NAD. Farrington, J.A.; Land, E.J.; Swallow, A.J., Biochim. Biophys. Acta 590: 273-6 (1980)
- 80C008 Energetics of the one-electron steps in the NAD+/NADH redox couple. Anderson, R.F., Biochim. Biophys. Acta 590: 277-81 (1980)
- 80C019 Energetics of reactions of O_{nq} and of O-transfer reactions between radicals. Henglein, A., Radiat Phys. Chem. 15: 151-8 (1980)
- 80C024 Nitrobenzenes: a comparison of pulse radiolytically determined one-electron reduction potentials and calculated electron affinities. Sjoeberg, L.; Eriksen, T.E., J. Chem. Soc., Faraday Trans. 1 76: 1402-8 (1980)
- 80C044 The half-wave potential and homogeneous electrontransfer rate constant in sodium dodecyl sulphate micellar solution. Ohsawa, Y.; Shimazaki, Y.; Aoyagui, S., J. Electroanal. Chem. Interfacial Electrochem. 114: 235-46 (1980)
- 80C045 The electrochemical properties of three dipyridinium salts as mediators. Salmon, R.T.; Hawkridge, F.M., J. Electroanal. Chem. Interfacial Electrochem. 112: 253-64 (1980)
- 80R182 Anaerobic reduction of nitroimidazoles by reduced flavin mononucleotide and by xanthine oxidase. Clarke, E.D.; Wardman, P.; Goulding, K.H., Biochem. Pharmacol. 29: 2684-7 (1980)
- 80R183 The development of some nitroimidazoles as hypoxic cell sensitizers. Adams, G.E.; Ahmed, I.; Fielden, E.M.; O'Neill, P.; Stratford, I.J., Cancer Clin. Trials 3: 37-42 (1980)
- 80R184 Structure-activity relationships in the development of hypoxic cell radiosensitizers. III. Effects of basic substituents in nitroimidazole sidechains. Adams, G.E.; Ahmed, I.; Clarke, E.D.; O'Neill, P.; Parrick, J.; Stratford, I.J.; Wallace, R.G.; Wardman, P.; Watts, M.E., Int. J. Radiat. Biol. 38: 613-26 (1980)
- 80R185 Toxicity of nitro compounds toward hypoxic mammalian cells in vitro: Dependence on reduction potential. Adams, G.E.; Stratford, I.J.; Wallace, R.G.; Wardman, P.; Watts, M.E., J. Nat. Cancer Inst. 64: 555-60 (1980)

- 80R186 Novel (nitro-1-imidazolyl)alkanolamines as potential radiosensitizers with improved therapeutic properties. Smithen, C.E.; Clarke, E.D.; Dale, J.A.; Jacobs, R.S.; Wardman, P.; Watts, M.E.; Woodcock, M., Radiation Sensitizers: Their Use in the Clinical Management of Cancer, L.W. Brady (ed.), Masson, New York, NY, 1980, p.22-32
- 80R187 Development of hypoxic cell radiosensitizers. The second and third generations. Wardman, P.; Clarke, E.D.; Jacobs, R.S.; Minchinton, A.; Stratford, M.R.L.; Watts, M.E.; Woodcock, M.; Moazzam, M.; Parrick, J.; Wallace, R.G.; Smithen, C.E., Radiation Sensitizers: Their Use in the Clinical Management of Cancer, L.W. Brady (ed.), Masson, New York, NY, 1980, p.83-90
- 80R192 Redox and spectroscopic properties of oxidized MoFe protein from Azotobacter vinelandii. Watt, G.D.; Burns, A.; Lough, S.; Tennent, D.L., Biochemistry 19: 4926-32 (1980)
- 80R193 Partition coefficient as a guide to the development of radiosensitizers which are less toxic than misonidazole. Brown, J.M.; Workman, P., Radiat. Res. 82: 171-90 (1980)
- 81A127 Disporportionation of semimethylene blue and oxidation of leucomethylene blue by methylene blue and by Fe(III). Kinetics, equilibria, and medium effects. Hay, D.W.; Martin, S.A.; Ray, S.; Lichtin, N.N., J. Phys. Chem. 85: 1474-9 (1981)
- 81A405 Intermediate products of the photoreduction of diphenoquinones. Lantratova, O.B.; Kuz'min, V.A.; Prokof'ev, A.I.; Khudyakov, I.V.; Pokrovskaya, I.E., Bull. Acad. Sci. USSR, Div. Chem. Sci. 30: 1459-65 (1981) Translated from: Izv. Akad. Nauk SSSR, Ser. Khim.: 1789-96 (1981)
- 81C030 Phenoxyl radicals: Formation, detection, and redox properties in aqueous solutions. Neta, P.; Steenken, S., Oxygen and Oxy-Radicals in Chemistry and Biology, M.A.J. Rodgers and E.L. Powers (eds.), Academic Press, New York, NY, 1981, p.83-8
- 81C031 Pulse radiolysis studies of antitumor quinones: Radical lifetimes, reactivity with oxygen, and one-electron reduction potentials. Svingen, B.A.; Powis, G., Arch. Biochem. Biophys. 209: 119-26 (1981)
- 81C038 The thermodynamic properties of some commonly used oxidation-reduction mediators, inhibitors and dyes, as determined by polarography. Prince, R.C.; Linkletter, S.J.G.; Dutton, P.L., Biochim. Biophys. Acta. 635: 132-48 (1081)
- 81R072 Radiosensitization of hypoxic mammalian cells in vitro by some 5-substituted-4-nitroimidazoles. Adams, G.E.; Fielden, E.M.; Hardy, C.; Millar, B.C.; Stratford, I.J.; Williamson, C., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 40: 153-61 (1981)
- 81S024 Model systems for photocatalytic water reduction: Role of pH and metal colloid catalysts. Miller, D.; McLendon, G., Inorg. Chem. 20: 950-3 (1981)
- 81Z010 Free radicals generated by radiolysis of aqueous solutions. Schwarz, H.A., J. Chem. Educ. 58: 101-5 (1981)
- 81Z316 Electrochemistry of the viologens. Bird, C.L.; Kuhn, A.T., Chem. Soc. Rev. 10: 49-82 (1981)
- 82A033 Formation of halide-ions on one-electron reduction of halogenated nitroimidazoles in aqueous solution. A radiolytic study. Ma, H.; Hardy, C.R.; O'Neill, P., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 41: 151-60 (1982)
- 82A115 Outer-sphere oxidation. 2. Pulse-radiolysis study of the rates of reaction of the I₂- and (SCN)₂- radical anions with the tris(2,2'-bipyridyl) complexes of Os(II) and Os(III). Nord, G.; Pedersen, B.; Floryan-Lovborg, E.; Pagsberg, P., Inorg. Chem. 21: 2327-30 (1982)
- 82A154 Electron-transfer reactions of the 2-nitrothiophen triplet state studied by laser flash photolysis. Martins, L.J.A., J. Chem. Soc., Faraday Trans. 178: 533-43 (1982)

- 82A183 Charge transfer between tryptophan and tyrosine in proteins. Butler, J.; Land, E.J.; Pruetz, W.A.; Swallow, A.J., Biochim. Biophys. Acta 705: 150-62 (1982)
- 82A232 Outer-sphere electron-transfer reactions of ascorbate anions. Williams, N.H.; Yandell, J.K., Aust. J. Chem. 35: 1133-44 (1982)
- 82A253 One-electron redox potentials of phenols. Hydroxyand aminophenols and related compounds of biological interest. Steenken, S.; Neta, P., J. Phys. Chem. 86: 3661-7 (1982)
- 82A329 Radiation sensitization and chemical studies on isoindole-4,7-diones. Infante, G.A.; Gonzalez, P.; Cruz, D.; Correa, J.; Myers, J.A.; Ahmad, M.F.; Whitter, W.L.; Santos, A.; Neta, P., Radiat. Res. 92: 296-306 (1982)
- 82C005 The reduction potential of the couple O₃/O₃. Consequences for mechanisms of ozone toxicity. Koppenol, W.H., FEBS Lett. 140: 169-72 (1982)
- 82C019 On the effect of electron relay redox potential on electron transfer reactions in a water photoreduction model system. Amouyal, E.; Zidler, B., Isr. J. Chem. 22: 117-24 (1982)
- 82M376 Theoretical analysis of electrochemical reactions involving two successive one-electron transfers with dimerization of intermediate-application to NAD+/NADH redox couple. Samec, Z.; Bresnahan, W.T.; Elving, P.J., J. Electroanal. Chem. Interfacial Electrochem. 133: 1-23 (1982)
- 82R087 Pulse radiolysis and cellular studies of a new class of radiosensitizers: 2-nitrobenzofurans. Averbeck, D.; Bensasson, R.V.; Buisson, J.P.; Land, E.J.; Rene, L.; Royer, R.; Santus, R., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 42: 457-68 (1982)
- 82R117 Nitroimidazoles as anaerobic electron acceptors for xanthine oxidase. Clarke, E.D.; Goulding, K.H.; Wardman, P., Biochem. Pharmacol. 31: 3237-42 (1982)
- 82R118 Radiosensitization by non-nitro compounds. Wardman, P.; Anderson, R.F.; Hodgkiss, R.J.; Parrick, J.; Smithen, C.E.; Wallace, R.G.; Watts, M.E., Int. J. Radiat. Oncol. Biol. Phys. 8: 399-401 (1982)
- 82S257 Solar reduction of water. III. Improved electrontransfer agents for the system water-tris(2,2'bipyridine)ruthenium dication-ethylenediaminetetraacetic acid-platinum. Launikonis, A.; Loder, J.W.; Mau, A.W.-H.; Sasse, W.H.F.; Summers, L.A.; Wells, D., Aust. J. Chem. 35: 1341-55 (1982)
- 82Z198 Molecular structure and biological activity of hypoxic cell radiosensitizers and hypoxic-specific cytotoxins. Wardman, P., Advanced Topics on Radiosensitizers of Hypoxic Cells, A. Breccia, C. Rimondi and G.E. Adams (eds.), Plenum Press, New York, NY, 1082, p.40-75
- 83A039 Reduction of the naphthazarin molecule as studied by pulse radiolysis. Part 1. Addition of a single electron. Land, E.J.; Mukherjee, T.; Swallow, A.J.; Bruce, J.M., J. Chem. Soc., Faraday Trans. 179: 391-404 (1983)
- 83A273 Phenothiazine radical-cations: Electron transfer equilibria with iodide ions and the determination of one-electron redox potentials by pulse radiolysis. Bahnemann, D.; Asmus, K.-D.; Willson, R.L., J. Chem. Soc., Perkin Trans. 2: 1669-73 (1983)
- 83C002 Energetics of the one-electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms. Anderson, R.F., Biochim. Biophys. Acta 722: 158-62 (1983)
- 83C017 Reduction potentials for 2,2'-bipyridine and 1,10-phenanthroline couples in aqueous solutions. Krishnan, C.V.; Creutz, C.; Schwarz, H.A.; Sutin, N., J. Am. Chem. Soc. 105: 5617-23 (1983)
- 83C018 One-electron reduction of adriamycin: Properties of the semiquinone. Land, E.J.; Mukherjee, T.; Swallow, A.J.; Bruce, J.M., Arch. Biochem. Biophys. 225: 116-21 (1983)

- 83C019 Review of the heat of formation of the hydroperoxyl radical. Shum, L.G.S.; Benson, S.W., J. Phys. Chem. 87: 3479-82 (1983)
- 83C030 Electron-transfer reactions involving simple free radicals. Wilmarth, W.K.; Stanbury, D.M.; Byrd, J.E.; Po, H.N.; Chua, C.-P., Coord. Chem. Rev. 51: 155-79 (1983)
- 83M234 Oxidation of NADH by ferrocenium salts. Ratelimiting one-electron transfer. Carlson, B.W.; Miller, L.L., J. Am. Chem. Soc. 105: 7453-4 (1983)
- 83N008 One-electron transfer equilibria and kinetics of N-methylphenothiazine in micellar systems. Minero, C.; Pramauro, E.; Pelizzetti, E.; Meisel, D., J. Phys. Chem. 87: 399-407 (1983)
- 83N149 Light-induced electron transfer in colloidal semiconductor dispersions: Single vs. dielectronic reduction of acceptors by conduction-band electrons. Moser, J.; Graetzel, M., J. Am. Chem. Soc. 105: 6547-55 (1983)
- 83N190 Photochemical and chemical reduction of vicinal dibromides via phase transfer of 4,4'-bipyridinium radical: The role of radical disproportionation. Goren, Z.; Willner, I., J. Am. Chem. Soc. 105: 7764-5 (1983)
- 83N211 Electron-transfer quenching and hydrogen generation from water by a series of 1,10-phenanthrolinium salt relays. Amouyal, E.; Zidler, B.; Keller, P., Nouv. J. Chim. 7: 725-8 (1983)
- 83R015 Abnormal radiosensitizing and cytotoxic properties of ortho-substituted nitroimidazoles. Stratford, I.J.; Hoe, S.; Adams, G.E.; Hardy, C.; Williamson, C., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 43: 31-43 (1983)
- 83R178 Reduction potential and thermodynamic parameters of adrenodoxin by the use of an anaerobic thin-layer electrode. Huang, Y.-Y.; Kimura, T., Anal. Biochem. 133: 385-93 (1983)
- 84A013 The azide radical and its reaction with tryptophan and tyrosine. Butler, J.; Land, E.J.; Swallow, A.J.; Pruetz, W.A., Radiat. Phys. Chem. 23: 265-70 (1984)
- 84A044 The effect of pH and complexation on redox reactions between RS radicals and flavins. Ahmad, R.; Armstrong, D.A., Can. J. Chem. 62: 171-7 (1984)
- 84A208 The mechanism of the free-radical-induced chain isomerisation of 2-(furyl)-3-(5-nitro-2-furyl)acrylamide. Clarke, E.D.; Wardman, P.; Wilson, I.; Tatsumi, K., J. Chem. Soc., Perkin Trans. 2: 1155-61 (1984)
- 84A237 Reactions involving the hydrazinium free radical: Oxidation of hydrazine by hexachloroiridate. Stanbury, D.M., Inorg. Chem. 23: 2870-82 (1984)
- 84A263 The triplet state of N-(n-butyl)-5-nitro-2-furamide by laser flash photolysis. Spectrum, lifetime, energy and electron-transfer reactions. Martins, L.J.A.; Kemp, T.J., J. Chem. Soc., Faraday Trans. 180: 2509-24 (1984)
- 84A292 Radical cations of some low-potential viologen compounds. Reduction potentials and electron-transfer reactions. Anderson, R.F.; Patel, K.B., J. Chem. Soc., Faraday Trans. 1 80: 2693-702 (1984)
- 84A327 Chemical behavior of SO₃ and SO₅ radicals in aqueous solutions. Huie, R.E.; Neta, P., J. Phys. Chem. 88: 5665-9 (1984)
- 84A392 Pulse radiolysis studies of electron transfer between polymer and zwitterionic viologen radicals. Sakamoto, T.; Ohsako, T.; Matsuo, T.; Mulac, W.A.; Meisel, D., Chem. Lett.: 1893-6 (1984)
- 84A449 Dioxathiadiaza-heteropentalenes. New photosystem-I electron acceptors. Camilleri, P.; Bowyer, J.R.; Clark, M.T.; O'Neill, P., Biochim. Biophys. Acta 765: 236-8 (1984)
- 84A454 Outer-sphere electron-transfer reactions involving the chlorite/chlorine dioxide couple. Activation barriers for bent triatomic species. Stanbury, D.M.; Lednicky, L.A., J. Am. Chem. Soc. 106: 2847-53 (1984)

- 84C001 One-electron reduction potential of m-AMSA⁺ [9-(2-methoxy-4-methylsulphonylaminoanilino)acridinium] as measured by pulse radiolysis. Anderson, R.F.; Packer, J.E.; Denny, W.A., J. Chem. Soc., Perkin Trans. 2: 49-52 (1984)
- 84C002 The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO²⁺). Koppenol, W.H.; Liebman, J.F., J. Phys. Chem. 88: 99-101 (1984)
- 84C009 Nicotinamide adenine dinucleotide (NAD+). Formal potential of the NAD+/NAD+ couple and NAD+ dimerization rate. Jensen, M.A.; Elving, P.J., Biochim. Biophys. Acta 764: 310-5 (1984)
- 84C015 Equilibrium between hydroxyl radicals and thallium(II) and the oxidation potential of OH(aq). Schwarz, H.A.; Dodson, R.W., J. Phys. Chem. 88: 3643-7 (1984)
- 84C026 The equilibrium reaction of the luminol radical with oxygen and the one-electron-reduction potential of 5-aminophthalazine-1,4-dione. Merenyi, G.; Lind, J.; Eriksen, T.E., J. Phys. Chem. 88: 2320-3 (1984)
- 84N047 Amphiphilic copolymers as media for light-induced electron transfer. I. Electrostatic effect on the forward reaction as studied by fluorescence quenching. Itoh, Y.; Morishima, Y.; Nozakura, S., Photochem. Photobiol. 39: 451-7 (1984)
- 84R027 Radiosensitization by derivatives of isoindole-4,7-dione. Infante, G.A.; Guzman, P.; Alvarez, R.; Figueroa, A.; Correa, J.N.; Myers, J.A.; Lanier, L.J.; Williams, T.M.; Burgos, S.; Vera, J.; Neta, P., Radiat. Res. 98: 234-41 (1984)
- 84R148 Nitroaryl compounds as potential fluorescent probes for hypoxia. I. Chemical criteria and constraints. Wardman, P.; Clarke, E.D.; Hodgkiss, R.J.; Middleton, R.W.; Parrick, J.; Stratford, M.R.L., Int. J. Radiat. Oncol. Biol. Phys. 10: 1347-51 (1984)
- 84R149 Radiation sensitization and chemopotentiation: RSU 1069, a compound more efficient than misonidazole in vitro and in vivo. Adams, G.E.; Ahmed, I.; Sheldon, P.W.; Stratford, I.J., Br. J. Cancer 49: 571-7 (1984)
- 84R150 Thiol reactive nitroimidazoles: radiosensitization studies in vitro and in vivo. Stratford, I.J.; Adams, G.E.; Hardy, C.; Hoe, S.; O'Neill, P.; Sheldon, P.W., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 46: 731-45 (1984)
- 85A001 Pulse-radiolysis study of daunorubicin redox cycles.

 Reduction by end and COO free radicals. House-Levin,
 C.; Gardes-Albert, M.; Ferradini, C.; Faraggi, M.; Klapper,
 M., FEBS Lett. 179: 46-50 (1985)
- 85A034 Cobalt(I) polypyridine complexes. Redox and substitutional kinetics and thermodynamics in the aqueous 2,2'-bipyridine and 4,4'-dimethyl-2,2'-bipyridine series studied by the pulse-radiolysis technique. Schwarz, H.A.; Creutz, C.; Sutin, N., Inorg. Chem. 24: 433-9 (1985)
- 85A039 Standard Gibbs energy of formation of the hydroxyl radical in aqueous solution. Rate constants for the reaction ClO₂⁻ + O₃ ≠ O₃⁻ + ClO₂. Klaning, U.K.; Sehested, K.; Holcman, J., J. Phys. Chem. 89: 760-3 (1985)
- 85A090 The radiation chemistry of some platinum-containing radiosensitizers and related compounds. Butler, J.; Hoey, B.M.; Swallow, A.J., Radiat. Res. 102: 1-13 (1985)
- 85A103 One-electron redox reactions involving sulfite ions and aromatic amines. Neta, P.; Huie, R.E., J. Phys. Chem. 89: 1783-7 (1985)
- 85A255 One-electron redox reactions in aqueous solutions of sulfite with hydroquinone and other hydroxyphenols. Huie, R.E.; Neta, P., J. Phys. Chem. 89: 3918-21 (1985)
- 85A301 Intramolecular association of covalently linked viologen radicals. Neta, P.; Richoux, M.-C.; Harriman, A., J. Chem. Soc., Faraday Trans. 281: 1427-43 (1985)
- 85A303 Potential radiosensitizing agents. 7. 4(5)-lodo-5(4)-nitroimidazole derivatives. Gupta, R.P.; Larroquette, C.A.; Agrawal, K.C.; Grodkowski, J.; Neta, P., J. Med. Chem. 28: 987-91 (1985)

- 85A390 One-electron redox reactions of pyrazolin-5-ones. A pulse radiolysis study of antipyrine and analogues. Jovanovic, S.V.; Neta, P.; Simic, M.G., Mol. Pharmacol. 28: 377-80 (1985)
- 85A480 Kinetics and equilibria for reactions of the hexachloroiridate redox couple in nitrous acid. Ram, M.S.; Stanbury, D.M., Inorg. Chem. 24: 2954-62 (1985)
- 85C005 Pulse-radiolysis study of the effect of pH on the oneelectron reduction potentials of lumichrome derivatives. Heelis, P.F.; Parsons, B.J.; Phillips, G.O.; Land, E.J.; Swallow, A.J., J. Chem. Soc., Faraday Trans. 1 81: 1225-35 (1985)
- 85C012 Energetics of interconversion reactions of oxyradicals. Koppenol, W.H.; Butler, J., Adv. Free Radical Biol. Med. 1: 91-131 (1985)
- 85C018 Effect of pH on oxidation-reduction potentials of 8α-N-imidazole-substituted flavins. Williamson, G.; Edmondson, D.E., Biochemistry 24: 7790-7 (1985)
- 85C023 Reduction potential of the trinitrogen radical as determined by chemical kinetics: Novel application of spin trapping. Ram, M.S.; Stanbury, D.M., Inorg. Chem. 24: 4233-4 (1985)
- 85E687 Pyridinium quenchers of Ru(bpy)₃^{2+*}. Charge effects of the yield of electron transfer. Jones, G.,II; Malba, V., J. Org. Chem. **50**: 5776-82 (1985)
- 85F007 Photochemical generation of long-living redox pairs by the use of polypyridineruthenium(II) complex, zwitterionic electron mediator, and viologen polymer as an electron pool. Ohsako, T.; Sakamoto, T.; Matsuo, T., J. Phys. Chem. 89: 222-5 (1985)
- 85M419 A mechanism for dynamical behavior in the oscillatory chlorite-iodide reaction. Epstein, I.R.; Kustin, K., J. Phys. Chem. 89: 2275-82 (1985)
- 85M420 Inclusion, solubilization, and stabilization of twoelectron reduced species of methyl viologen by cyclodextrins. Matsue, T.; Kato, T.; Akiba, U.; Osa, T., Chem. Lett. 1825-8 (1985)
- 85N094 Interfacial charge separation in the photoreduction of water: Effects of colloidal silica. Furlong, D.N.; Johansen, O.; Launikonis, A.; Loder, J.W.; Mau, A.W.-H.; Sasse, W.H.F., Aust. J. Chem. 38: 363-7 (1985)
- 85N197 Micellar effects on the reductive electrochemistry of methylviologen. Kaifer, A.E.; Bard, A.J., J. Phys. Chem. 89: 4876-80 (1985)
- 85R016 Reactions of the semiquinone free radicals of antitumour agents with oxygen and iron complexes. Butler, J.; Hoey, B.M.; Swallow, A.J., FEBS Lett. 182: 95-8 (1985)
- 85R025 One-electron oxidation-reduction properties of ascorbic acid. Iyanagi, T.; Yamazaki, I.; Anan, K.F., Biochim. Biophys. Acta 806: 255-61 (1985)
- 85R035 Reduction of nitroimidazole derivatives by hydrogenosomal extracts of Trichomonas vaginalis. Yarlett, N.; Gorrell, T.E.; Marczak, R.; Mueller, M., Mol. Biochem. Parasitol. 14: 29-40 (1985)
- 86A059 Kinetics of one-electron transfer reactions involving ClO₂ and NO₂. Huie, R.E.; Neta, P., J. Phys. Chem. 90: 1193-8 (1986)
- 86A070 Reactions of HO₂ and O₂ with iodine and bromine and the I₂ and I atom reduction potentials. Schwarz, H.A., Bielski, B.H.J., J. Phys. Chem. 90: 1445-8 (1986)
- 86A072 Effect of ionic polymer environment on the photoinduced electron transfer from zinc porphyrin to viologen. Nosaka, Y.; Kuwabara, A.; Miyama, H., J. Phys. Chem. 90: 1465-70 (1986)
- 86A098 One-electron reduction of 2,1,3-benzothiadiazole-4,7-dicarbonitrile in aqueous solutions. Camilleri, P.; Dearing, A.; Cole-Hamilton, D.J.; O'Neill, P., J. Chem. Soc., Perkin Trans. 2:569-72 (1986)

- 86A110 Electron-transfer reactions of tryptophan and tyrosine derivatives. Jovanovic, S.V.; Harriman, A.; Simic, M.G., J. Phys. Chem. 90: 1935-9 (1986)
- 86A139 Coulombic effect on photoinduced electron-transfer reactions between phenothiazines and viologens. Kawanishi, Y.; Kitamura, N.; Tazuke, S., J. Phys. Chem. 90: 2469-75 (1986)
- 86A266 Reactions of three bis(viologen) tetraquaternary salts and their reduced radicals. Atherton, S.J.; Tsukahara, K.; Wilkins, R.G., J. Am. Chem. Soc. 108: 3380-5 (1986)
- 86A278 Rate constants for reactions of NO₃ radicals in aqueous solutions. Neta, P.; Huie, R.E., J. Phys. Chem. **90**: 4644-8 (1986)
- 86A291 Rate constants for one-electron oxidation by methylperoxyl radicals in aqueous solutions. Huie, R.E.; Neta, P., Int. J. Chem. Kinet. 18: 1185-91 (1986)
- 86A335 Selenium(V). A pulse radiolysis study. Klaning, U.K.; Sehested, K., J. Phys. Chem. 90: 5460-4 (1986).
- 86A403 One-electron redox potentials of RSSR+-RSSR couples from dimethyl disulphide and lipoic acid. Bonifacic, M.; Asmus, K.-D., J. Chem. Soc., Perkin Trans. 2: 1805-9 (1986)
- 86A520 The methoxatin semiquinone: A pulse radiolysis study. Faraggi, M.; Chandrasekar, R.; McWhirter, R.B.; Klapper, M.H., Biochem. Biophys. Res. Commun. 139: 955-60 (1986)
- 86B096 One-electron reduction of 2- and 6-methyl-1,4-naphthoquinone bioreductive alkylating agents. Wilson, I.; Wardman, P.: Lin, T.S.; Sartorelli, A.C., J. Med. Chem. 29: 1381-4 (1986)
- 86C005 One-electron redox potentials of purines and pyrimidines. Jovanovic, S.V.; Simic, M.G., J. Phys. Chem. 90: 974-8 (1986)
- 86C016 Redox potentials of some sulfur-containing radicals. Surdhar, P.S.; Armstrong, D.A., J. Phys. Chem. 90: 5915-7 (1986)
- 86C027 Determination of one-electron reduction potential of 3-nitro-7-azaindole compounds. Jin, Y.; Handman, J., J. Radiat. Res. Radiat. Process. (Fushe Yanjiu Yu Fushe Gongyi Xuebao) 4: 43-7 (1986)
- 86C031 Unpaired electron migration between aromatic and sulfur peptide units. Pruetz, W.A.; Butler, J.; Land, E.J.; Swallow, A.J., Free Radical Res. Commun. 2: 69-75 (1986)
- 86N260 Electron transfer through a lipid-bilayer-membraneaqueous-solution interface and kinetics of the oxidation of viologen radicals in homogeneous and vesicular systems. Shafirovich, V.Ya.; Levin, P.P.; Khannanov, N.K.; Kuz'min, V.A., Bull. Acad. Sci. USSR, Div. Chem. Sci. 35: 728-33 (1986) Translated from: Izv. Akad. Nauk SSSR, Ser. Khim. : 801-6 (1986)
- 86R230 The apparent inhibition of superoxide dismutase activity by quinones. Butler, J.; Hoey, B.M., J. Free Radicals Biol. Med. 2: 77-81 (1986)
- 87A082 Thermal and photochemical reactions of sulfhydryl radicals. Implications for colloid photocorrosion. Mills, G.; Schmidt, K.H.; Matheson, M.S.; Meisel, D., J. Phys. Chem. 91: 1590-6 (1987)
- 87A083 One-electron-transfer reactions of the couple SO₂/SO₂ in aqueous solutions. Pulse radiolytic and cyclic voltammetric studies. Neta, P.; Huie, R.E.; Harriman, A., J. Phys. Chem. 91: 1606-11 (1987)
- 87A220 Kinetics of one-electron oxidation by the cyanate radical. Alfassi, Z.B.; Huie, R.E.; Mosseri, S.; Neta, P., J. Phys. Chem. 91: 3888-91 (1987)
- 87A234 One-electron reduction of juglone (5-hydroxy-1,4-naphthoquinone): A pulse radiolysis study. Mukherjee, T., Radiat. Phys. Chem. 29: 455-02 (1987)
- 87A247 One-electron oxidation of indoles and acid-base properties of the indolyl radicals. Shen, X.; Lind, J.; Merenyi, G., J. Phys. Chem. 91: 4403-6 (1987)

- 87A269 The reduction of anti-tumour diaziridinyl benzoquinones. Butler, J.; Hoey, B.M.; Lea, J.S., Biochim. Biophys. Acta 925: 144-9 (1987)
- 87C002 The redox potential of the azide/azidyl couple. Alfassi, Z.B.; Harriman, A.; Huie, R.E.; Mosseri, S.; Neta, P., J. Phys. Chem. 91: 2120-2 (1987)
- 87C013 Reduction potential of the CO₂/CO₂- couple. A comparison with other C₁ radicals. Koppenol, W.H.; Rush, J.D., J. Phys. Chem. 91: 4429-30 (1987)
- 87C019 Further comments on the redox potentials of tryptophan and tyrosine. Harriman, A., J. Phys. Chem. 91: 6102-4 (1987)
- 87C020 Reduction potentials and exchange reactions of thiyl radicals and disulfide anion radicals. Surdhar, P.S.; Armstrong, D.A., J. Phys. Chem. 91: 6532-7 (1987)
- 87C023 Electrochemical properties of pyrazinothiadiazoles. Camilleri, P.; Odell, B.; O'Neill, P., J. Chem. Soc., Perkin Trans. 2: 1671-4 (1987)
- 87M124 Comment: On the mechanism of the azide-bromine reaction in aqueous medium. Alfassi, Z.B., Int. J. Chem. Kinet. 19: 777-80 (1987)
- 87R070 Hypoxia-selective radiosensitization of mammalian cells by nitracrine, an electron-affinic DNA intercalator. Roberts, P.B.; Anderson, R.F.; Wilson, W.R., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 51: 641-54 (1987)
- 87R083 Radiosensitization by the 2,4-dinitro-5-aziridinyl benzamide CB 1954: a structure/activity study. Walling, J.M.; Stratford, I.J.; Adams, G.E., Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 52: 31-41 (1987)
- 87R243 The effect of the anthrapyrazole antitumour agent Cl941 on rat liver microsome and cytochrome P-450 reductase mediated free radical processes. Inhibition of doxorubicin activation in vitro. Graham, M.A.; Newell, D.R.; Butler, J.; Hoey, B.; Patterson, L.H., Biochem. Pharmacol. 36: 3345-51 (1987)

- 87R257 Are reduced quinones necessarily involved in the antitumour activity of quinone drugs? Butler, J.; Hoey, B.M., Br. J. Çancer, Suppl. 55: 53-9 (1987)
- 88A024 Electron transfer from indoles, phenol, and sulfite (SO₃²) to chlorine dioxide (ClO₂). Merenyi, G.; Lind, J.; Shen, X., J. Phys. Chem. 92: 134-7 (1988)
- 88A125 One-electron redox chemistry of amsacrine, mAMSA [9-(2-methoxy-4-methylsulphonylaminoanilino)acridinium], its quinone di-imine, and an analogue. A radiolytic study. Anderson, R.F.; Packer, J.E.; Denny, W.A., J. Chem. Soc., Perkin Trans. 2: 489-96 (1988)
- 88A126 One-electron oxidations of ferrocenes: A pulse radiolysis study. Faraggi, M.; Weinraub, D.; Broitman, F.; DeFelippis, M.R.; Klapper, M.H., Radiat. Phys. Chem. 32: 293-7 (1988)
- 88A464 Properties of the radicals formed by one-electron oxidation of acetaminophen. A pulse radiolysis study. Bisby, R.H.; Tabassum, N., Biochem. Pharmacol. 37: 2731-8 (1988)
- 88A901 Successive addition of electrons to sodium quinizarin 2- and 5-sulphonate in aqueous solution; a pulse and gamma-radiolysis study. Mukherjee, T.; Land, E.J.; Swallow, A.J.; Guyan, P.M.; Bruce, J.M., J. Chem. Soc., Faraday Trans. 184: 2855-73 (1988)
- 89C001 Reduction potentials of CO₂ and the alcohol radicals. Schwarz, H.A.; Dodson, R.W., J. Phys. Chem. 93: 409-14 (1989)
- 89R018 Hypoxia-selective antitumor agents. 1. Relationships between structure, redox properties and hypoxia-selective cytotoxicity for 4-substituted derivatives of nitracrine. Wilson, W.R.; Anderson, R.F.; Denny, W.A., J. Med. Chem. 32: 23-30 (1989)
- 89Z064 Reduction potentials involving inorganic free radicals in aqueous solution. Stanbury, D.M., Adv. Inorg. Chem. 33: 69-138 (1989)

14. Compound Name Index

0582 2.3.35 AF-2 (cis) 2.2.9 AF-2 (trans) 2.2.10 AM-1 2.4.39 Acetaldehyde 4.1.3, 4.1.4 4-Acetamidophenol 5.1.7 Acetaminophen 5.1.7 Acetic acid, 2,5-dihydroxyphenyl- 5.4.6 Acetic acid, 3,4-dihydroxyphenyl- 5.2.4 Acetone 4.1.5, 4.1.6 Acetone ketyl radical 4.1.5 Acetophenone, 3',4'-dihydroxy-2-(methylamino)- 5.2.8 Acctophenone, 2-(dimethylamino)methyl-1'-nitro-2.1.19 Acetophenone, 3-nitro- 2.1.9 Acetophenone, 4'-nitro- 2.1.10 5-Acetylaminosulfonyl-1-methyl-4-nitroimidazole 2-Acetyl-10-(3-dimethylaminopropyl)phenothiazine 7.5.5 4-Acetyl-1-methylpyridinium 4.4.3 2-|(Acetyloxy)methyl]-1,4-naphthoquinone 1.2.9 6-[(Acetyloxy)methyl]-1,4-naphthoquinone 1.2.13 10-Acetylphenothiazine 7.4.3 N-Acetyl-L-tryptophan 6.2.12 N-Acetyl-L-tyrosinamide 5.1.11 Acridine, 9-[3-(N,N-dimethylamino)propyl)]amino-1nitro- 2.7.2 Acridine, 9-[3-(N,N-dimethylamino)propyl]amino-4chloro-1-nitro- 2.7.3 Acridine, 9-[3-(N,N-dimethylamino)propyl]amino-4fluoro-1-nitro- 2.7.4 Acridine, 9-[3-(N,N-dimethylamino)propyl]amino-4methyl-1-nitro- 2.7.5 Acridine, 9-3-(N,N-dimethylamino)propylamino-4methoxy-1-nitro- 2.7.6 Acridine, 9-[3-(N, N-dimethylamino)propyl]amino-4methoxycarbonyl-1-nitro- 2.7.7 Acridine, 9-[3-(N,N-dimethylamino)propyl]amino-4dimethylamino-1-nitro- 2.7.8 Acridine, 9-[3-(N,N-dimethylamino)propyl]amino-4di(2-acetoxyethyl)amino-1-nitro- 2.7.9 N^{1} -(Acridinyl)- N^{4} -methylsulfonyl-2dimethylaminocyclohexa-2,5-diene-1',4'-diimine N^1 -(Acridinyl)- N^4 -methylsulfonyl-2-methoxycyclohexa-2,5-diene-1',4'-diimine 1.5.12 Acrylamide, 2-(2-furyl)-3-(5-nitro-2-furyl)- (E)- 2.2.10 Acrylamide, 2-(2-furyl)-3-(5-nitro-2-furyl)- (Z)- 2.2.9 Adenine 6.4.1 Adenosine 6.4.2

Adrenalone 5.2.8 Adrenochrome 1.5.1 Adriamycin 1.5.4 L-Alanyl-L-tyrosine 5.1.12 1-Allyl-1'-carboxymethyl-4,4'-bipyridinium 3.11.4 1-Allyl-1'-(3-cyanopropyl)-4,4'-bipyridinium 3.11.6 1-Allyl-1'-[2-(diethylaminocarbonyl)ethyl]-4,4'bipyridinium 3.11.7 1-Allyl-1'-ethyl-4,4'-bipyridinium 3.11.5 1-Allyl-1'-methyl-4,4'-bipyridinium 3.10.5 α-(Allyloxymethyl)-2-nitroimidazole-1-ethanol 2.3.38 2-Amino-5-aziridinyl-4-nitrobenzamide 2.1.26 4-Amino-5-aziridinyl-2-nitrobenzamide 2.1.27 3-Aminocarbonyl-1-methylpyridinium ion 4.4.1 4-Aminocarbonyl-1-methylpyridinium 4.4.2 5-Amino-2,4-dinitrobenzamide 2.1.24 3-(2-Aminoethyl)indole 6.2.8 2-Amino-6-hydroxypurine 6.4.3 4(5)-Aminoimidazole-5(4)-carboxamide 4.3.2 α-(Aminomethyl)-3,4-dihydroxybenzyl alcohol 5.2.6 5-[3-Amino-6-(2-methylpropyl)purinyl]-1-methyl-4nitroimidazole 2.4.29 4-Amino-1-methyl-2-pyrimidinone 6.3.7 4-Aminophenol 5.1.2 5-Aminophthalazine-1,4-dione 1.5.2 6-Aminopurine 6.4.1 5-(3-Aminopurinyl)-1-methyl-4-nitroimidazole 2.4.28 4-Amino-2-pyrimidinone 6.3.6 4-Aminosulfonyl-1-methyl-5-nitroimidazole 2.5.4 5-Aminosulfonyl-1-methyl-4-nitroimidazole 2.4.8 Amsacrine, conjugate acid 4.8.1 Aniline 6.1.1 Aniline, N, N-dimethyl- 6.1.2 1-(2-Anilinoethyl)-2-nitroimidazole 2.3.61 1-[Anilino(thiocarbonylmethyl)]-1'-methyl-4,4'bipyridinium 3.10.14 Anthra[1,9-cd]pyrazol-6-one, 7-hydroxy-2-[2-(2hydroxyethyl)aminoethyl]-5-[[2-(2hydroxyethyl)aminoethyl|amino|- 1.5.11 9,10-Anthraquinone, 1,4-bis[(2hydroxyethylamino)ethyllamino-, diacetate 1.3.5 9,10-Anthraquinone, 1,4-dihydroxy-5,8-bis (2hydroxyethylamino)ethyllamino-, 1.3.4 9,10-Anthraquinone, 1,2,5,8-tetrahydroxy- 8.1.5 9,10-Anthraquinone-2-sulfonate ion 1.3.1 Antipyrine 8.4.4 Ascorbic acid 8.1.1 Azaquinone 1.5.2 Azide dimer radical anion 9.34. Azide ion 9.33., 9.34. Azide radical 9.33.

```
1-[2-(1-Aziridinoethyl)amino-2-hydroxypropyl]-2-
                                                           Benzofuran, 7-methoxy-2-nitro- 2.8.6
     nitroimidazole 2.3.63
                                                           Benzofuran, 2-nitro- 2.8.4
5-Aziridinyl-N-[(2,2-dimethoxy)ethyl]-2,4-
                                                          Benzoic acid, 2,3-dihydroxy- 5.2.2
     dinitrobenzamide 2.1.23
                                                           Benzoic acid, 2,5-dihydroxy- 5.3.2
5-Aziridinyl-N, N-dimethyl-2,4-dinitrobenzamide 2.1.22
                                                           Benzoic acid, 3,4-dihydroxy- 5.2.3
5-Aziridinyl-2,4-dinitrobenzamide 2.1.20
                                                          Benzoic acid, 3,5-dihydroxy- 5.3.3
5-Aziridinyl-N-methyl-2,4-dinitrobenzamide 2.1.21
                                                           Benzoic acid, 2,4-dinitro- 2.1.4
Azirino[2',3':3,4]pyrrolo[1,2-a]indole-4,7-dione, 6-
                                                           Benzoic acid, 2,5-dinitro- 2.1.5
     amino-8-[[(aminocarbonyl)oxy]methyl]-
                                                           Benzoic acid, 3,4-dinitro- 2.1.6
     1,1a,2,8,8a,8b-hexahydro-8a-methoxy-5 1.5.7
                                                           Benzoic acid, 3,5-dinitro- 2.1.7
Azomycin 2.3.1
                                                           Benzoic acid, 4-hydroxy- 5.1.3
Barbituric acid 6.3.4
                                                           Benzoic acid, 2-nitro- 2.1.14
Basic Blue 9 4.5.2
                                                           Benzoic acid, 3-nitro- 2.1.15
Benzaldehyde, 2-nitro- 2.1.12
                                                           Benzoic acid, 4-nitro- 2.1.16
Benzaldehyde, 4-nitro- 2.1.13
                                                           Benzoic acid, 3,4,5-trihydroxy-, ethyl ester 5.5.3
Benzamide, 2-amino-5-aziridinyl-4-nitro- 2.1.26
                                                           Benzonitrile, 2-nitro- 2.1.17
Benzamide, 4-amino-5-aziridinyl-2-nitro- 2.1.27
                                                           12H-Benzo[a]phenothiazine 7.6.1
Benzamide, 5-amino-2,4-dinitro- 2.1.24
                                                           7H-Benzo[c]phenothiazine 7.6.2
Benzamide, 5-aziridinyl-N,N-dimethyl-2,4-dinitro-
                                                           Benzo[g]pteridine-2,4-dione, 7,8-dimethyl- 4.6.6
     2.1.22
                                                           Benzo[g]pteridine-2,4-dione, 1,3,7,8-tetramethyl- 4.6.9
Benzamide, 5-aziridinyl-N-[(2,2-dimethoxy)ethyl]-2,4-
                                                           Benzo g pteridine-2,4-dione, 1,7,8-trimethyl- 4.6.7
     dinitro- 2.1.23
                                                           Benzo[g]pteridine-2,4-dione, 3,7,8-trimethyl- 4.6.8
Benzamide, 5-aziridinyl-2,4-dinitro- 2.1.20
                                                           2H-1-Benzopyran-2-carboxylic acid, 3,4-dihydro-6-
Benzamide, 5-aziridinyl-N-methyl-2,4-dinitro- 2.1.21
                                                                hydroxy-2,5,7,8-tetramethyl- 8.1.6
Benzamide, 5-(dimethylamino)-2,4-dinitro- 2.1.25
                                                           [5,4,3-cde][1]Benzopyran-5,7-dione, 2,3,7,8-
Benzenamine, N,N-dimethyl- 6.1.2
                                                                tetrahydroxy[1]benzopyrano- 8.1.10
Benzene, 1-cyano-2-nitro- 2.1.17
                                                           1-Benzopyran-4-one, 2,(3,4-dihyroxyphenyl)-3,5,7-
Benzene, 1,2-dihydroxy- 5.2.1
                                                                trihydroxy- 8.1.9
Benzene, 1,3-dihydroxy- 5.3.1
                                                           1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-
Benzene, 1,4-dihydroxy- 5.4.1
                                                                dihydro- (E)- 8.1.7
Benzene, 1,4-dihydroxy-2-methyl- 5.4.3
                                                           1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-
Benzene, 1,4-dihydroxytetramethyl- 5.4.10
                                                                dihydro- (Z)- 8.1.8
Benzene, 1,2-dinitro- 2.1.1
                                                           1,4-Benzoquinone, 2,5-bis(1-aziridinyl)-3,6-bis(2-
Benzene, 1,3-dinitro- 2.1.2
                                                                hydroxyethylamino)- 1.1.8
Benzene, 1,4-dinitro- 2.1.3
                                                           1,4-Benzoquinone, 2,5-diaziridinyl-3,6-
Benzene, nitro- 2.1.11
                                                                bis(carbethoxyamino)- 1.1.9
Benzene, 1,2,4-trihydroxy- 5.5.4
                                                           1,4-Benzoquinone, 2,3-dimethyl- 1.1.3
                                                           1,4-Benzoquinone, 2,5-dimethyl- 1.1.4
1,4-Benzenediamine, N,N,N',N'-tetramethyl- 6.1.5
                                                           1,4-Benzoquinone, 2,6-dimethyl- 1.1.5
1,2-Benzenediamine 6.1.3
                                                           1,4-Benzoquinone, methyl- 1.1.2
1.4-Benzenediamine 6.1.4
1.4-Benzenediol, 2.3-dimethyl- 5.4.7
                                                           1,4-Benzoquinone, tetramethyl- 1.1.7
1,4-Benzenediol, 2,5-dimethyl- 5.4.8
                                                           1,4-Benzoquinone, 2,3,5-trimethyl- 1.1.6
                                                           1.4-Benzoquinone 1.1.1
1,2,3-Benzenetriol 5.5.1
                                                           2,1,3-Benzothiadiazole-4,7-dicarbonitrile 4.8.2
1,2,4-Benzenetriol 5.5.4
Benzimidazole, 2-nitro- 2.8.1
                                                           10-Benzoylphenothiazine 7.4.12
                                                           Benzyl alcohol, α-(aminomethyl)-3,4-dihydroxy- 5.2.6
Benznidazole 2.3.42
Benzo[1,2-b:3,4-b']diquinolizium 3.12.8
                                                           Benzyl alcohol, 4-nitro- 2.1.18
Benzo[1,2-b:3,4-g']diquinolizium 3.12.10
                                                           1-[3-(Benzylamino)-2-hydroxypropyl]-2-nitroimidazole
                                                                2.3.68
Benzo[1,2-b:5,6-b'] diquinolizium 3.12.9
                                                           1-(Benzylcarbamylmethyl)-2-nitroimidazole 2.3.42
Benzofuran, 5-hydroxy-2-nitro- 2.8.7
                                                           1-Benzyl-1'-methyl-4,4'-bipyridinium 3.10.13
Benzofuran, 7-hydroxy-2-nitro- 2.8.5
                                                           N-Benzyl-2-nitroimidazole-1-acetamide 2.3.42
Benzofuran, 5-methoxy-2-nitro- 2.8.8
```

```
Benzyl viologen 3.8.39
                                                            4,4'-Bipyridinium, 1,1'-bis(1-methylethyl)- 3.8.20
2,2'-Bipyridine, conjugate diacid 3.1.1
                                                            4,4'-Bipyridinium, 1,1'-bis(4-nitrophenyl)- 3.8.30
2,2'-Bipyridine, 4,4'-dimethyl- 4.4.8
                                                            4,4'-Bipyridinium, 1,1'-bis(2-oxopropyl)- 3.8.16
2,2'-Bipyridine 4.4.7
                                                            4,4'-Bipyridinium, 1,1'-bis(2-oxopropyl)-2,2'-dimethyl-
4,4'-Bipyridine 3.8.1
                                                                  3.9.13
                                                            4,4'-Bipyridinium, 1,1'-bis(2-propynyl)- 3.8.13
4,4'-Bipyridinium, 1-allyl-1'-carboxymethyl- 3.11.4
4,4'-Bipyridinium, 1-allyl-1'-(3-cyanopropyl)- 3.11.6
                                                            4,4'-Bipyridinium, 1,1'-bis(2-pyridylmethyl)- 3.8.32
                                                            2.2'-Bipyridinium, 1,1'-bis(3-sulfonatopropyl)-, dihy-
4,4'-Bipyridinium, 1-allyl-1'-[2-
                                                                  droxide bis(inner salt) 3.1.3
     (diethylaminocarbonyl)ethyl]- 3.11.7
4,4'-Bipyridinium, 1-allyl-1'-ethyl- 3.11.5
                                                            4,4'-Bipyridinium, 1,1'-bis(2-sulfonatoethyl)- 3.8.6
                                                            4,4'-Bipyridinium, 1,1'-bis(3-sulfonatopropyl)-2,2'-
4,4'-Bipyridinium, 1-benzyl-1'-methyl- 3.10.13
                                                                  dimethyl- 3.9.16
4,4'-Bipyridinium, 1,1'-bis(2-aminoethyl)- 3.8.12
                                                            4,4'-Bipyridinium, 1,1'-bis(3-sulfonatopropyl)-2,2',6,6'-
4,4'-Bipyridinium, 1,1'-bis(carbamylmethyl)- 3.8.8
                                                                  tetramethyl- 3.9.17
4,4'-Bipyridinium, 1,1'-bis(2-carboxyethyl)- 3.8.17
                                                            4,4'-Bipyridinium, 1,1'-bis(3-sulfonatopropyl)-3,3'-
4,4'-Bipyridinium, 1,1'-bis(carboxymethyl)- 3.8.5
                                                                  dimethyl- 3.9.15
4,4'-Bipyridinium, 1,1'-bis(2-chloroethyl)- 3.8.7
                                                            4,4'-Bipyridinium, 1,1'-bis(4-sulfonatopropyl)-, dihy-
4,4'-Bipyridinium, 1,1'-bis(2-chloroethyl)-2,2'-
                                                                  droxide bis(inner salt) 3.8.18
     dimethyl- 3.9.11
                                                            4,4'-Bipyridinium, 1,1'-bis[2-
4,4'-Bipyridinium, 1,1'-bis(\alpha-cyanobenzyl)- 3.8.38,
                                                                  (trimethylammonio)ethyl|- 3.8.29
     3.8.42
                                                            4,4'-Bipyridinium, 1,1'-bis[3-
4,4'-Bipyridinium, 1,1'-bis(cyanomethyl)- 3.8.4
                                                                  (trimethylammonio)propyl|- 3.8.37
4,4'-Bipyridinium, 1,1'-bis(cyanomethyl)-2,2'-
                                                            4,4'-Bipyridinium, 1,1'-bis|4-
      dimethyl- 3.9.10
                                                                  (trimethylammonio)butyl|- 3.8.41
4,4'-Bipyridinium, 1,1'-bis(3-cyanopropyl)- 3.8.22
                                                            4,4'-Bipyridinium, 1,4-butanediylbis(1'-methyl)- 3.8.50
4,4'-Bipyridinium, 1,1'-bis(1,2-dichloroethyl)- 3.8.14
                                                            4,4'-Bipyridinium, 1-(3-butenyl)-1'-(3-cyanopropyl)-
4,4'-Bipyridinium, 1,1'-bis(2,2-diethoxyethyl)- 3.8.36
                                                                  3.11.8
4,4'-Bipyridinium, 1,1'-
                                                            4,4'-Bipyridinium, 1-(2-butenyl)-1'-(3-fluoropropyl)-
      bis(diethylaminocarbonylmethyl)- 3.8.33
                                                                  3.11.9
4,4'-Bipyridinium, 1,1'-
                                                            4,4'-Bipyridinium, 1-(carbamylmethyl)-1'-(2-methyl-2-
     bis(dimethylaminocarbonylmethyl)- 3.8.24
                                                                  propenyl)- 3.11.10
4,4'-Bipyridinium, 1,1'-bis[2-
                                                            4,4'-Bipyridinium, 1-(3-chloro-2-butenyl)-1'-(2-
     (dimethylaminocarbonyl)ethyl|- 3.8.27
                                                                  methoxyethyl)- 3.11.12
4,4'-Bipyridinium, 1,1'-bis[3-
                                                            4,4'-Bipyridinium, 1,1'-diallyl- 3.8.15
     (dimethylaminocarbonyl)propyl]- 3.8.34
                                                            4,4'-Bipyridinium, 1,1'-dibenzyl- 3.8.39
4,4'-Bipyridinium, 1,1'-bis[2-(3,5-dimethyl-4-
                                                            4,4'-Bipyridinium, 2,2'-dicyano-1,1'-dimethyl- 3.9.4
     morpholinyl)-2-oxoethyl]- 3.8.43
                                                            4,4'-Bipyridinium, 1,1'-diethyl- 3.8.10
4,4'-Bipyridinium, 1,1'-bis(ethoxycarbonylmethyl)-
                                                            4,4'-Bipyridinium, 1,1'-diethyl-2-methyl- 3.9.2
     3.8.23
                                                            4,4'-Bipyridinium, 1,1'-diheptyl- 3.8.40
4,4'-Bipyridinium, 1,1'-bis(ethoxycarbonylmethyl)-
                                                            4,4'-Bipyridinium, 1,1'-dihexyl- 3.8.35
     2,2'-dimethyl- 3.9.14
                                                            4,4'-Bipyridinium, 1,1'-dimethoxy- 3.8.3
4,4'-Bipyridinium, 1,1'-bis[2-(ethoxycarbonyl)ethyl]-
                                                            2,2'-Bipyridinium, 1,1'-dimethyl- 3.1.2
4,4'-Bipyridinium, 1,1'-bis[3-(ethoxycarbonyl)propyl]-
                                                            2,2'-Bipyridinium, 4,4'-dimethyl- 3.1.4
     3.8.28
                                                            2,4'-Bipyridinium, 1,1'-dimethyl- 3.7.1
4,4'-Bipyridinium, 1,1'-
                                                            4,4'-Bipyridinium, 1,1'-dimethyl- 3.8.2
     bis[ethoxycarbonyl(phenyl)methyl]- 3.8.46
                                                            4,4'-Bipyridinium, 1,1'-dimethyl-2,2'-bis(4-
4,4'-Bipyridinium, 1,1'-bis(2-ethoxyethyl)- 3.8.25
                                                                  methylphenyl)- 3.9.9
4,4'-Bipyridinium, 1,1'-bis(ethylthiomethyl)- 3.8.21
                                                            4,4'-Bipyridinium, 1,1'-dimethyl-2,2'-diphenyl- 3.9.8
4,4'-Bipyridinium, 1,1'-bis(2-hydroxyethyl)- 3.8.11
                                                            2,2'-Bipyridinium, 1,1'-(1,1-dimethylethylene)- 3.3.15
4,4'-Bipyridinium, 1,1'-bis(2-hydroxyethyl)-2,2'-
                                                            2,2'-Bipyridinium, 4,4'-dimethyl-1,1'-tetramethylene-
     dimethyl- 3.9.12
4,4'-Bipyridinium, 1,1'-bis(2-hydroxyiminoethyl)-
                                                            2,2'-Bipyridinium, 4,4'-dimethyl-1,1'-trimethylene-
     3.8.9
                                                                  3.4.4
```

- 4,4'-Bipyridinium, 1,1'-dioctadecyl- 3.8.45
- 4,4'-Bipyridinium, 1,1'-dioctyl- 3.8.44
- 4,4'-Bipyridinium, 1,1'-diphenyl- 3.8.31
- 4,4'-Bipyridinium, 1,1'-dipropyl- 3.8.19
- 4,4'-Bipyridinium, 1,2-ethanediylbis(1'-methyl)- 3.8.48
- 2,2'-Bipyridinium, 1,1'-ethylene- 3.3.1
- 2,2'-Bipyridinium, 1,1'-ethylene-4,4'-dimethyl- 3.3.12
- 4,4'-Bipyridinium, 1-ethyl-1'-(2-ethylthioethyl)- 3.11.1
- 4,4'-Bipyridinium, 1-(2-ethyl-2-propenyl)-1'-(2-methoxyethyl)- 3.11.11
- 4,4'-Bipyridinium, 1,1',2,2',6,6'-hexamethyl 3.9.7
- 2,2'-Bipyridinium, 1,1'-hydroxyethylene- 3.3.3
- 4,4'-Bipyridinium, 1-(2-hydroxyethyl)-1'-pentyl- 3.11.3
- 4,4'-Bipyridinium, 1-(2-methoxycarbonylethyl)-1'-propyl- 3.11.2
- 4,4'-Bipyridinium, 1-methyl-1'-allyl- 3.10.5
- 4,4'-Bipyridinium, 1-methyl-1'[anilino(thiocarbonylmethyl)]- 3.10.14
- 4,4'-Bipyridinium, 1-methyl-1'-[2-bis(methylthio)ethenyl]- 3.10.8
- 4,4'-Bipyridinium, 1-methyl-1'-carbamylmethyl-3.10.3
- 4,4'-Bipyridinium, 1'methyl-1'[cyano(ethoxycarbonyl)methyl]- 3.10.10
- 4,4'-Bipyridinium, 1-methyl-1'-cyanomethyl- 3.10.2
- 4,4'-Bipyridinium, 1-methyl-1'-(3-cyano-2-propenyl)-3.10.7
- 4,4'-Bipyridinium, 1-methyl-1'-[2-(3,5-dimethyl-4-morpholinyl)-2-oxoethyl]- 3.10.15
- 4,4'-Bipyridinium, 2-methyl-1,1'-dipropyl- 3.9.3
- 4,4'-Bipyridinium, 1-methyl-1'-ethoxycarbonylmethyl-3.10.9
- 4,4'-Bipyridinium, 1-methyl-1'-(2-hydroxyethyl)-3104
- 4,4'-Bipyridinium, 1-methyl-1'-[3-(methoxycarbonyl)-2-propenyl]- 3.10.11
- 4,4'-Bipyridinium, 1-methyl-1'-oxide 3.10.1
- 4,4'-Bipyridinium, 1-methyl-1'-(2-oxopropyl)- 3.10.6
- 4,4'-Bipyridinium, 1-methyl-1'-[(1-pyrazoloyl)thiocarbonylmethyl]- 3.10.12
- 2,2'-Bipyridinium, 1,1'-(1-phenylethylene)- 3.3.19
- 4,4'-Bipyridinium, 1,3-propanediylbis(1'-methyl)-3.8.49
- 2,2'-Bipyridinium, 1,1'-(1,2-propylene) 3.3.6
- 4,4'-Bipyridinium, 1,1',2,2'-tetramethyl- 3.9.5
- 4,4'-Bipyridinium, 1,1',3,3'-tetramethyl- 3.9.6
- 2,2'-Bipyridinium, 1,1'-tetramethylene- 3.5.1
- 4,4'-Bipyridinium, 1,1',2-trimethyl- 3.9.1
- 2,2'-Bipyridinium, 1,1'-trimethylene- 3.4.1
- 2,2'-Bipyridinium, 1,1'-trimethylene-5-methoxy- 3.4.3
- 4,4'-Bipyridinium, 1,1'-o-xylylenebis- 3.8.47
- 2,2'-Bipyridinium 3.1.1
- 2,2'-Biquinolinium, 1,1'-dimethyl- 3.6.10

- 1,1'-Bis(2-aminoethyl)-4,4'-bipyridinium 3.8.12
- 1,1'-Bis(carbamylmethyl)-4,4'-bipyridinium 3.8.8
- 1,1'-Bis(\alpha-carboxybenzyl)-4,4'-bipyridinium, diethyl ester 3.8.46
- 1,1'-Bis(2-carboxyethyl)-4,4'-bipyridinium 3.8.17
- 1,1'-Bis(2-carboxyethyl)-4,4'-bipyridinium, diethyl ester 3.8.26
- 1,1'-Bis(carboxymethyl)-4,4'-bipyridinium 3.8.5
- 1,1'-Bis(3-carboxypropyl)-4,4'-bipyridinium, diethyl ester 3.8.28
- 1,1'-Bis(2-chloroethyl)-4,4'-bipyridinium 3.8.7
- 1,1'-Bis(2-chloroethyl)-2,2'-dimethyl-4,4'-bipyridinium 3.9.11
- 1,1'-Bis(α -cyanobenzyl)-4,4'-bipyridinium 3.8.38, 3.8.42
- 1,1'-Bis(cyanomethyl)-4,4'-bipyridinium 3.8.4
- 1,1'-Bis(cyanomethyl)-2,2'-dimethyl-4,4'-bipyridinium
- 1,1'-Bis(3-cyanopropyl)-4,4'-bipyridinium 3.8.22
- 1,1'-Bis(1,2-dichloroethyl)-4,4'-bipyridinium 3.8.14
- 1,1'-Bis(2,2-diethoxyethyl)-4,4'-bipyridinium 3.8.36
- 1,1'-Bis(diethylaminocarbonylmethyl)-4,4'bipyridinium 3.8.33
- 1,4-Bis(N,N-dimethylamino)benzene 6.1.5
- 1,1'-Bis[2-(dimethylaminocarbonyl)ethyl]-4,4'-bipyridinium 3.8.27
- 1,1'-Bis(dimethylaminocarbonylmethyl)-4,4'bipyridinium 3.8.24
- 1,1'-Bis[3-(dimethylaminocarbonyl)propyl]-4,4'-bipyridinium 3.8.34
- 3,7-Bis(dimethylamino)phenothiazin-5-ium chloride
 4.5.2
- 1,1'-Bis[2-(3,5-dimethyl-4-morpholinyl)-2-oxoethyl]-4,4'-bipyridinium 3.8.43
- 1,1'-Bis[2-(ethoxycarbonyl)ethyl]-4,4'-bipyridinium 3.8.26
- 1,1'-Bis(ethoxycarbonylmethyl)-4,4'-bipyridinium 3.8.23
- 1,1'-Bis(ethoxycarbonylmethyl)-2,2'-dimethyl-4,4'-bipyridinium 3.9.14
- 1,1'-Bis[ethoxycarbonyl(phenyl)methyl]-4,4'-bipyridinium 3.8.46
- 1,1'-Bis[3-(ethoxycarbonyl)propyl]-4,4'-bipyridinium 3.8.28
- 1,1'-Bis(2-ethoxyethyl)-4,4'-bipyridinium 3.8.25
- 1,1'-Bis(ethylthiomethyl)-4,4'-bipyridinium 3.8.21
- 1-[Bis(2-hydroxyethyl)]aminocarbonylmethyl-2nitroimidazole 2.3.39
- 1,4-Bis[(2-hydroxyethylamino)ethyl]amino-9,10anthraquinone diacetate 1.3.5
- 1-[3-Bis(2-hydroxyethylamino)-2-hydroxypropyl]-2nitroimidazole 2.3.66
- 1,1'-Bis(2-hydroxyethyl)-4,4'-bipyridinium 3.8.11

```
1-(2-Butenvl)-1'-(3-fluoropropvl)-4,4'-bipyridinium
1.1'-Bis(2-hydroxyethyl)-2,2'-dimethyl-4,4'-
                                                                3.11.9
     bipyridinium 3.9.12
1,1'-Bis(2-hydroxyiminoethyl)-4,4'-bipyridinium 3.8.9
                                                           1-[3-(tert-Butylamino)-2-hydroxypropyl]-2-
                                                                nitroimidazole 2.3.67
1-[2,2-Bis(isopropyl)aminoethyl]-2-nitroimidazole
                                                           1,1'-Butylene-2,2'-bipyridinium 3.5.1
                                                           N-Butyl-5-nitro-2-furamide 2.2.11
5-[Bis(methylcarbonyloxy)methyl]-1-methyl-2-
     nitroimidazole 2.3.16
                                                           CB 10-020 2.1.21
1,1'-Bis(1-methylethyl)-4,4'-bipyridinium 3.8.20
                                                           CB 10-092 2.1.25
1-[2-Bis(methylthio)ethenyl]-1'-methyl-4,4'-
                                                           CB 10-107 2.1.22
     bipyridinium 3.10.8
                                                           CB 10-212 2.1.23
1,1'-Bis(4-nitrophenyl)-4,4'-bipyridinium 3.8.30
                                                           CB 10-236 2.1.27
1,1'-Bis(2-oxopropyl)-4,4'-bipyridinium 3.8.16
                                                           CB 10-441 2.1.24
1,1'-Bis(2-oxopropyl)-2,2'-dimethyl-4,4'-bipyridinium
                                                           CB 1954 2.1.20
                                                           CB 7060 2.1.26
1,1'-Bis(2-propynyl)-4,4'-bipyridinium 3.8.13
                                                           C.I. 52015 4.5.2
1,1'-Bis(2-pyridylmethyl)-4,4'-bipyridinium 3.8.32
                                                           CI941 1.5.11
1,1'-Bis(2-sulfonatoethyl)-4,4'-bipyridinium 3.8.6
                                                           Caffeic acid 5.2.7
1,1'-Bis(3-sulfonato-1-propyl)-2,2'-bipyridinium 3.1.3
                                                           Carbamothioic acid, [2-(2-methyl-5-nitroimidazol-1-
1,1'-Bis(3-sulfonatopropyl)-4,4'-bipyridinium 3.8.18
                                                                yl)ethyl -, O-methyl ester 2.5.19
1,1'-Bis(3-sulfonatopropyl)-2,2'-dimethyl-4,4'-
                                                           1-Carbamylmethyl-1'-methyl-4,4'-bipyridinium 3.10.3
     bipyridinium 3.9.16
                                                           1-(Carbamylmethyl)-1'-(2-methyl-2-propenyl)-4.4'-
1,1'-Bis(3-sulfonatopropyl)-3,3'-dimethyl-4,4'-
                                                                bipyridinium 3.11.10
     bipyridinium 3.9.15
                                                           10-Carbethoxyphenothiazine, 5,5'-dioxide 7.7.3
1,1'-Bis(3-sulfonatopropyl)-2,2',6,6'-tetramethyl-4,4'-
                                                           10-Carbethoxyphenothiazine sulfone 7.7.3
     bipyridinium 3.9.17
                                                           1-Carboethoxymethyl-5-iodo-4-nitroimidazole 2.4.37
1,1'-Bis 4-(trimethylammonio)butyl]-4,4'-bipyridinium
                                                           Carbon dioxide 9.13.
     3.8.41
                                                           Carbon dioxide radical anion 9.13., 9.14.
1,1'-Bis[2-(trimethylammonio)ethyl]-4,4'-bipyridinium
                                                           1-(2-Carboxyethyl)-1'-propyl-4,4'-bipyridinium, methyl
     3.8.29
                                                                ester 3.11.2
1,1'-Bis[3-(trimethylammonio)propyl]-4,4'-
                                                           Carboxyl radical anion 9.13., 9.14.
     bipyridinium 3.8.37
                                                           1-(2-Carboxymethyl)-2-nitroimidazole 2.3.20
Bisulfide ion 9.53., 9.54.
                                                           5-Carboxymethylthio-1-methyl-4-nitroimidazole 2.4.10
Bromate ion 9.8.
                                                           2-[(4-Carboxyphenoxy)ethyl]thio-1-methyl-5-
Bromide ion 9.2., 9.4., 9.5., 9.9.
                                                                nitroimidazole 2.5.13
Bromine 9.10.
                                                           Catechin 8.1.7
Bromine atom 9.2., 9.3.
                                                           Catechol 5.2.1
Bromine dioxide 9.6., 9.7., 9.8.
                                                           Chlorate ion 9.21.
Bromite ion 9.6.
                                                           Chloride ion 9.15., 9.17., 9.18., 9.22., 9.26.
4-Bromo-6,7-dihydrodipyrido[1,2-a:2',1'-
                                                           Chlorine 9.23.
     c pyrazinediium 3.3.2
                                                           Chlorine atom 9.15., 9.16.
6-Bromo-1,1'-ethylene-2,2'-bipyridinium 3.3.2
                                                           Chlorine dioxide 9.19., 9.20., 9.21.
1-(2-Bromoethyl)-3-nitro-7-azaindole 2.6.2
                                                           Chlorite ion 9.19.
6-(Bromomethyl)-1,4-naphthoquinone 1.2.11
                                                           1-(3-Chloro-2-butenyl)-1'-(2-methoxyethyl)-4,4'-
2-Bromo-1-methyl-4-nitroimidazole 2.4.32
                                                                bipyridinium 3.11.12
4-Bromo-1-methyl-5-nitroimidazole 2.5.1
                                                           2-Chloro-10-dimethylaminopropylphenothiazine 7.5.1
5-Bromo-1-methyl-4-nitroimidazole 2.4.4
                                                           2-Chloro-N, N-dimethyl-10H-phenothiazine-10-
3-Bromophenothiazine 7.2.1
                                                                propanamine 7.5.1
Bromosyl hydride 9.5.
                                                           2-[[[(2-Chloroethyl)amino]carbonyl]oxy]methyl-1,4-
Bromous acid 9.7.
                                                                naphthoquinone 1.2.10
2,3-Butanediol, 1,4-dimercapto- 8.3.4.4
                                                           2-Chloro-10-[3-(4-(2-hydroxyethyl)-1-
1,4-Butanediylbis(1'-methyl-4,4'-bipyridinium) 3.8.50
                                                                piperazinyl)propyl|phenothiazine 7.5.10
1-(3-Butenyl)-1'-(3-cyanopropyl)-4,4'-bipyridinium
                                                          1-(3-Chloro-2-hydroxypropyl)-2-nitroimidazole 2.3.26
     3.11.8
```

```
2-Chloro-7-methoxyphenothiazine 7.3.1
4-Chloro-7-methoxyphenothiazine 7.3.2
1-[3-[(1-Chloromethyl-2-isopropoxy)ethoxy]-2-
     hydroxypropyl]-2-nitroimidazole 2.3.44
α-(Chloromethyl)-2-methyl-5-nitroimidazole-1-ethanol
     2.5.16
6-(Chloromethyl)-1,4-naphthoquinone 1.2.12
5-Chloro-1-methyl-4-nitroimidazole 2.4.5
2-Chloro-10-[3-(4-methyl-1-
     piperazinyl)propyl|phenothiazine 7.5.7
1-Chlorophenanthrolino 4,5-a:6,7-c diazepinediium
     3.6.5
3-Chlorophenothiazine 7.2.2
Chlorosyl hydride 9.18.
Chlorous acid 9.20.
Chlorpromazine 7.5.1
6-Chromanol, 2-carboxy-2,5,7,8-tetramethyl- 8.1.6
(E)-Cinnamic acid, 3,4-dihydroxy- 5.2.7
Cleland's Reagent, 8.3.4.2
p-Cresol 5.1.4
Cyanate radical anion 9.12.
Cyanide ion 9.11.
Cyanide radical 9.11.
3-Cyano-6,7-dihydrodipyrido 1,2-a:2',1'-
     c pyrazinediium 3.3.4
1-[Cyano(ethoxycarbonyl)methyl]-1'-methyl-4,4'-
     bipyridinium 3.10.10
5-Cyano-1,1'-ethylene-2,2'-bipyridinium 3.3.4
4-Cyano-1-ethylpyridinium 4.4.5
1-Cyanomethyl-1'-methyl-4,4'-bipyridinium 3.10.2
5-Cyano-1-methyl-2-nitroimidazole 2.3.3
1-(3-Cyano-2-propenyl)-1'-methyl-4,4'-bipyridinium
     3.10.7
Cysteine 8.3.1.1, 8.3.3.1
Cystine 4.2.1
Cytosine 6.3.6
DL-DOPA 5.2.9
DTE 8.3.4.4
Daunomycin 1.5.5
Daunorubicin 1.5.5
1,1'-Diallyl-4,4'-bipyridinium 3.8.15
1,2-Diaminobenzene 6.1.3
1,4-Diaminobenzene 6.1.4
3,7-Diamino-5-phenothiazinium chloride 4.5.1
4,5-Diazaphenanthrene 3.12.1, 4.4.9
5H-[1,4]-Diazepino[1,2,3,4-
     lmn][1,10]phenanthrolinediium, 6,7-dihydro-
     3.6.4
[1,4]Diazepino[1,2,3,4-lmn][1,10]phenanthrolinediium,
     6,7-dihydro-1,11-dimethyl- 3.6.7
[1,4]Diazepino[1,2,3,4-lmn][1,10]phenanthrolinediium,
```

1-chloro-6,7-dihydro- 3.6.5

```
[1,4]Diazepino[1,2,3,4-lmn][1,10]phenanthrolinediium,
     6,7-dihydro-1-methyl- 3.6.6
[1,4]Diazepino[1,2,3,4-lmn][1,10]phenanthrolinediium,
     6,7-dihydro-1-phenyl- 3.6.8
2,5-Diaziridinyl-3,6-bis(carbethoxyamino)-1,4-
     benzoquinone 1.1.9
2,5-Diaziridinyl-3,6-bis(2-hydroxyethylamino)-1,4-
     benzoquinone 1.1.8
[1,4]Diazocino[1,2,3,4-lmn][1,10]phenanthrolinediium,
     5,6,7,8-tetrahydro- 3.6.9
13H-Dibenzo a, phenothiazine 7.6.3
7H-Dibenzo [c,h] phenothizzine 7.6.4
1,1'-Dibenzyl-4,4'-bipyridinium 3.8.39
Dibromine radical ion 9.9., 9.10.
Dichlorine radical ion 9.22., 9.23.
2,2'-Dicyano-1,1'-dimethyl-4,4'-bipyridinium 3.9.4
Dicyanodisulfide radical ion 9.56., 9.57.
5-(2,2-Dicyanoethenyl)-1-methyl-2-nitroimidazole
     2.3.15
Diethazine 7.4.10
10-[6-(Diethylamino)hexyl]phenothiazine 7.4.16
1-(3-Diethylamino-2-hydroxypropyl)-2-nitroimidazole
     2.3.65
9-(Diethylamino-2-hydroxypropyl)amino-2,3-
     dimethoxy-6-nitroacridine 2.7.1
10-[3-(Diethylamino)propyl]phenothiazine 7.4.15
1,1'-Diethyl-4,4'-bipyridinium 3.8.10
1,1'-Diethyl-2-methyl-4,4'-bipyridinium 3.9.2
5,6-Di(2-furyl)-[1,2,5]thiadiazolo[3,4-b]pyrazine 4.8.3
1,1'-Diheptyl-4,4'-bipyridinium 3.8.40
1,1'-Diliexyl-4,4'-bipyridinium 3.8.35
7,8-Dihydro-2,12-dimethyldipyrido[1,2-a:2',1'-
     c[1,4]diazepinediium 3.4.4
7,8-Dihydro-3,11-dimethyldipyrido[1,2-a:2',1'-a:2']
     c diazepinediium 3.4.5
6,7\text{-}Dihydro-1,12\text{-}dimethyldipyrido} [1,2\text{-}a:2',1'\text{-}a:2']
     c|pyrazinediium 3.3.11
6,7-Dihydro-2,11-dimethyldipyrido[1,2-a:2',1'-
     c pyrazinediium 3.3.12
6,7-Dihydro-3,10-dimethyldipyrido[1,2-a:2',1'-
     c|pyrazinediium 3.3.13
6,7-Dihydro-4,9-dimethyldipyrido[1,2-a:2',1'-
     clpyrazinediium 3.3.14
6,7-Dihydro-6,6-dimethyldipyrido[1,2-a:2',1'-
     c|pyrazinediium 3.3.15
3,7-Dihydro-1,3-dimethyl-8-nitropurine-2,6-dione 2.8.2
4,5-Dihydro-4,5-dioxopyrrolo[2,3-f|quinoline-2,7,9-
     tricarboxylic acid 1.5.10
7,8-Dihydrodipyrido[1,2-a:2',1'-c][1,4]diazepinediium
6,7-Dihydrodipyrido[1,2-a:2',1'-c]pyrazinediium 3.3.1
6,7-Dihydro-6-hydroxydipyrido[1,2-a:2',1'-
     c pyrazinediium 3.3.3
```

- 7.8-Dihydro-3-methoxydipyrido 1,2-a:2',1'eldiasepinediium 3.4.3 6,7-Dihydro-3-methoxydipyrido 1,2-a:2',1'c pyrazinediium 3.3.7 7,8-Dihydro-4-methyldipyrido[1,2-a:2',1'c diazepinediium 3.4.2 6.7-Dihydro-4-methyldipyrido[1,2-a:2',1'c pyrazinediium 3.3.5 6.7-Dihydro-6-methyldipyrido[1,2-a:2',1'c|pyrazinediium 3.3.6 Dihydronicotinamide adenine dinucleotide 8.2.1 7,8-Dihydro-6H[1,2,5] oxathiazolo [4,3,2hi][2,1,3]benzoxathiazole-3-SIV 4.7.4 6.7-Dihydro-6-phenyldipyrido 1,2-a:2',1'c|pyrazinediium 3.3.19 6,7-Dihydro-3-propoxydipyrido[1,2-a:2',1'c pyrazinediium 3.3.16 3,7-Dihydropurine-2,6-dione 6.4.6 6,7-Dihydro-2-pyridyldipyrido[1,2-a:2',1'c]pyrazinediium 3.3.18 6,7-Dihydro-2,3,10,11-tetramethyldipyrido[1,2-a:2',1'c)pyrazinediium 3.3.17 7,8-Dihydro-2,3,11,12-tetramethyldipyrido[1,2-a:2',1'c][1,4]diazepinediium 3.4.6 2,5-Dihydroxyacetophenone 5.4.5 1,4-Dihydroxy-9,10-anthraquinone-2-sulfonate ion 1.3.2 1,4-Dihydroxy-9,10-anthraquinone-6-sulfonate ion 1.3.3 1,2-Dihydroxybenzene 5.2.1 1,3-Dihydroxybenzene 5.3.1 1,4-Dihydroxybenzene 5.4.1 1,4-Dihydroxybenzene-2,5-disulfonate ion 5.4.2 2,3-Dihydroxybenzoic acid 5.2.2 2,5-Dihydroxybenzoic acid 5.3.2 3,4-Dihydroxybenzoic acid 5.2.3 3,5-Dihydroxybenzoic acid 5.3.3 1,4-Dihydroxy-5,8-bis[(2hydroxyethylamino)ethyllamino-9,10anthraquinone 1.3.4 2,3-Dihydroxy-1,4-butanedithiol $(R^*,R^*)(\pm)$ 8.3.4.2 (E)-3,4-Dihydroxycinnamic acid 5.2.7 1,4-Dihydroxy-2,3-dimethylbenzene 5.4.7 1,4-Dihydroxy-2,5-dimethylbenzene 5.4.8 2,3-Dihydroxy-1,4-dithiol (R^*,S^*) 8.3.4.4 5-(1,2-Dihydroxyethyl)-1-methyl-2-nitroimidazole 3,4-Dihydroxy-α-(methylamino)acetophenone 5.2.8 1,4-Dihydroxy(methyl)benzene 5.4.3 5-(Dihydroxymethyl)-1-methyl-2-nitroimidazole diacetate 2.3.16
- 5,8-Dihydroxy-1,4-naphthoquinone 1.2.4 3,4-Dihydroxyphenethylamine 5.2.5 2,5-Dihydroxyphenylacetic acid 5.4.6 3,4-Dihydroxyphenylacetic acid 5.2.4 3-(3,4-Dihydroxyphenyl)-DL-alanine 5.2.9 (E)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-1-benzopyran-3,5,7-triol 8.1.7 (Z)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-1-benzopyran-3,5,7-triol 8.1.8 1-(2,3-Dihydroxypropyl)aminocarbonylmethyl-2nitroimidazole 2.3.37 1-(2,3-Dihydroxypropyl)-5-iodo-4-nitroimidazole 2.4.36 1-(2,3-Dihydroxypropyl)-3-nitro-7-azaindole 2.6.3 1-(2,3-Dihydroxypropyl)-2-nitroimidazole 2.3.29 2,(3,4-Dihyroxyphenyl)-3,5,7-trihydroxy-1-benzopyran-4-one 8.1.9 Diiodine radical ion 9.29., 9.30. erythro-1,4-Dimercapto-2,3-butanediol 8.3.4.4 threo-1,4-Dimercapto-2,3-butanediol 8.3.4.2 1,1'-Dimethoxy-4,4'-bipyridinium 3.8.3 3,7-Dimethoxyphenothiazine 7.3.4 7,8-Dimethylalloxazine 4.6.6 5-(Dimethylamino)-2,4-dinitrobenzamide 2.1.25 1-(3-Dimethylamino-2-hydroxypropyl)-2-nitroimidazole 5-(Dimethylaminoiminomethyl)-1-methyl-2nitroimidazole 2.3.14 5-[(Dimethylaminomethyl)aminosulfonyl]-1-methyl-4nitroimidazole 2.4.13 3-Dimethylamino-1-(4-nitrophenyl)-1-propanone 2.1.19 4-(N,N-Dimethylamino)phenol 5.1.8 9-[3-(N,N-Dimethylamino)propyl]amino-4-chloro-1nitroacridine 2.7.3 9-[3-(N,N-Dimethylamino)propyl]amino-4dimethylamino-1-nitroacridine 2.7.8 9-[3-(N,N-Dimethylamino)propyl]amino-[4-[di(2acetoxyethyl)amino -1-nitroacridine 2.7.9 9-[3-(N,N-Dimethylamino)propyl]amino-4-fluoro-1nitroacridine 2.7.4 9-[3-(N,N-Dimethylamino)propyl]amino-4-methoxy-1nitroacridine 2.7.6 9-[3-(N,N-Dimethylamino)propyllamino-4methoxycarbonyl-1-nitroacridine 2.7.7 9-[3-(N,N-Dimethylamino)propyl]amino-4-methyl-1nitroacridine 2.7.5 10-(3-Dimethylaminopropyl)phenothiazine 7.4.5 10-(3-Dimethylaminopropyl)-2trifluoromethylphenothiazine 7.5.2 2-Dimethylaminosulfonamido-10-[3-(4-methyl-1piperazinyl)propyl|phenothiazine 7.5.9 5-(Dimethylaminosulfonyl)-1-methyl-4-nitroimidazole 2.4.11 N, N-Dimethylaniline 6.1.2

1,4-Dihydroxy-2-methylnaphthalene 8.1.3

2,4-Dihydroxy-5-methylpyrimidine 6.3.3

2,3-Dimethyl-1,4-benzoquinone 1.1.3	
2,5-Dimethyl-1,4-benzoquinone 1.1.4	
2,6-Dimethyl-1,4-benzoquinone 1.1.5	
4,4'-Dimethyl-2,2'-bipyridine, conjugate diacid 3	.1.4
4,4'-Dimethyl-2,2'-bipyridine 4.4.8	
1,1'-Dimethyl-2,2'-bipyridinium 3.1.2	
1,1'-Dimethyl-2,4'-bipyridinium 3.7.1	
1,1'-Dimethyl-4,4'-bipyridinium 3.8.2	
4,4'-Dimethyl-2,2'-bipyridinium 3.1.4	
1,1'-Dimethyl-2,2'-biquinolinium 3.6.10	
1,1'-Dimethyl-2,2'-bis(4-methylphenyl)-4,4'-	
bipyridinium 3.9.9	
4,5-Dimethyl-1,2-dihydro-3-pyrazolone 8.4.3	
1,1'-Dimethyl-2,2'-diphenyl-4,4'-bipyridinium 3.9	9.8
Dimethyl disulfide 8.3.5.1	
1,1'-(1,1-Dimethylethylene)-2,2'-bipyridinium 3.3	.15
4,4'-Dimethyl-1,1'-ethylene-2,2'-bipyridinium 3.3	.12
	.13
2,3-Dimethylindole 6.2.7	
1,3-Dimethyllumichrome 4.6.9	
2,3-Dimethyl-1,4-naphthoquinone 1.2.15	
1,2-Dimethyl-5-nitroimidazole 2.5.10	
1,10-Dimethyl-1,10-phenanthrolinium 3.6.2	
1,9-Dimethyl-1,9-phenanthrolinium 3.12.2	
2,7-Dimethyl-2,7-phenanthrolinium 3.12.4	
2,8-Dimethyl-2,8-phenanthrolinium 3.12.3	
N,N'-Dimethyl-2,7-phenanthrolinium 3.12.4	
3,7-Dimethyl-3,7-phenanthrolinium 3.12.6	
3,8-Dimethyl-3,8-phenanthrolinium 3.12.5	
4,7-Dimethyl-4,7-phenanthrolinium 3.12.7	
1,11-Dimethylphenanthrolino[4,5-a:6,7-	
c]diazepinediium 3.6.7	
3,7-Dimethylphenothiazine 7.3.3	
N,N-Dimethylphenothiazine-10-propanamine 7.4.	5
1,2-Dimethyl-3-phenylisoindole-4,7-dione 1.4.1	
2,3-Dimethyl-1-phenyl-3-pyrazolin-5-one 8.4.4	
5,6-Dimethyl-3-phenyl-1,2-trimethyleneisoindole-4, dione 1.4.7	7-
3,4-Dimethyl-2-pyrazolin-5-one 8.4.3	
4,4'-Dimethyl-1,1'-tetramethylene-2,2'-bipyridiniu 3.5.2	m
5-(3,3-Dimethyl-1-triazeno)imidazole-4-carboxamid 4.3.3	.e
4,4'-Dimethyl-1,1'-trimethylene-2,2'-bipyridinium 3.4.4	
5,5'-Dimethyl-1,1'-trimethylene-2,2'-bipyridinium 3.4.5	
1,2-Dinitrobenzene 2.1.1	
1,3-Dinitrobenzene 2.1.2	
1,4-Dinitrobenzene 2.1.3	
m-Dinitrobenzene 2.1.2	
o-Dinitrobenzene 2.7.2	

```
p-Dinitrobenzene 2.1.3
2,4-Dinitrobenzoic acid 2.1.4
2,5-Dinitrobenzoic acid 2.1.5
3,4-Dinitrobenzoic acid 2.1.6
3,5-Dinitrobenzoic acid 2.1.7
2,4-Dinitroimidazole 2.3.2
2,4-Dinitrophenol 2.1.8
1,1'-Dioctadecyl-4,4'-bipyridinium 3.8.45
1,1'-Dioctyl-4,4'-bipyridinium 3.8.44
5H,7H-2,3-Dioxa-2a,6-dithia(2a-S<sup>IV</sup>)-1,4-
      diazacyclopent c,d -indene 4.7.1
5H,7H-2,3-Dioxa-2a,6-dithia(2a-S<sup>IV</sup>)-1,4-
      diazacyclopent c,d -indene 8-oxide 4.7.2
5H,7H-2,3-Dioxa-2a,6-dithia(2a-S^{IV})-1,4-
      diazacyclopent[c,d -indene 6,6-dioxide 4.7.3
Dioxygen anion 9.41., 9.43., 9.44., 9.45., 9.46.
Diphenoquinone, 3,3',5,5'-tetrabromo- 1.5.8
Diphenoquinone, 3,3',5,5'-tetrachloro- 1.5.9
1,1'-Diphenyl-4,4'-bipyridinium 3.8.31
1.11-Diphenylphenanthrolino 4,5-a:8,7-
      c diazepinediium 3.6.8
1,1'-Dipropyl-4,4'-bipyridinium 3.8.19
5,6-Di(2-pyridinyl)-[1,2,5]thiadiazolo[3,4-b]pyrazine
5,6-Di(2-pyridinyl)-[1,2,5]thiadiazolo[3,4-b]pyrazine N-
     oxide 4.8.5
Dipyrido 1,2-a:2',1'-c 1,4 diazepinedium, 7,8-dihydro-
     2,12-dimethyl- 3.4.4
Dipyrido [1,2-a:2',1'-c] [1,4] diazepinediium, 7,8-dihydro-
Dipyrido [1,2-a:2',1'-c][1,4] diazepinediium, 7,8-dihydro-
      2,3,11,12-tetramethyl- 3.4.6
Dipyrido[1,2-a:2',1'-c]diazepinediium, 7,8-dihydro-4-
     methyl- 3.4.2
Dipyrido[1,2-a:2',1'-c]diazepinediium, 7,8-dihydro-
     3,11-dimethyl- 3.4.5
Dipyrido[1,2-a:2',1'-c]diazepinediium, 7,8-dihydro-3-
     methoxy- 3.4.3
Dipyrido[1,2-a:2',1'-c][1,4] diazocinediium, 6,7,8,9-
     tetrahydro-2,13-dimethyl- 3.5.2
Dipyrido[1,2-a:2',1'-c][1,4]diazocinediium, 6,7,8,9-
     tetrahydro- 3.5.1
Dipyrido [1,2-a:2',1'-c][1,4] diazocinediium, 6,7,8,9-
     tetrahydro-2,3,12,13-tetramethyl- 3.5.3
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 4-bromo-6,7-
     dihydro- 3.3.2
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 3-cyano-6,7-
     dihydro- 3.3.4
Dipyrido[1,2-a:2',1'-c][1,4]pyrazinediium, 6,7-dihydro-
     3.3.1
Dipyrido 1,2-a:2',1'-c|pyrazinediium, 6,7-dihydro-1,12-
     dimethyl- 3.3.11
Dipyrido 1,2-a:2',1'-c pyrazinediium, 6,7-dihydro-2,11-
     dimethyl- 3.3.12
```

```
Dipyrido [1,2-a:2',1'-c] pyrazinediium, 6,7-dihydro-4,9-
      dimethyl- 3.3.14
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 6,7-dihydro-
      2,3,10,11-tetramethyl- 3.3.17
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 6,7-dihydro-6-
     hydroxy- 3.3.3
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 6,7-dihydro-6-
     methyl- 3.3.6
Dipyrido 1,2-a:2',1'-c|pyrazinediium, 6,7-dihydro-3,10-
      dimethyl- 3.3.13
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 6,7-dihydro-6,6-
      dimethyl- 3.3.15
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 6,7-dihydro-3-
      propoxy- 3.3.16
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 6,7-dihydro-2-
     pyridyl- 3.3.18
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 6,7-dihydro-6-
     phenyl- 3.3.19
Dipyrido [1,2-a:2',1'-c]pyrazinediium, 4-ethoxy-6,7-
      dihydro- 3.3.10
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 4-ethyl-6,7-
      dihydro- 3.3.9
Dipyrido 1,2-a:2',1'-c|pyrazinediium, 3-
      methoxycarbonyl-6,7-dihydro- 3.3.8
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 6-methyl- 3.2.2
Dipyrido[1,2-a:2',1'-c]pyrazinediium, 6-phenyl- 3.2.3
Dipyrido [1,2-a:2',1'-c] pyrazinediium 3.2.1
2,2'-Dipyridyl 4.4.7
4,4'-Dipyridyl 3.8.1
Diquat 3.3.1
Di(thiocyanate) radical ion 9.56., 9.57.
2,2'-Dithiodiethanol 4.2.2
Dithioerythritol 8.3.4.4
1,2-Dithiolane-3-pentanamide 4.2.3, 8.3.4.3
1,2-Dithiolane-3-pentanoic acid 8.3.5.2
Dithiothreitol 8.3.4.2
Dopamine 5.2.5
Doxorubicin 1.5.4
Durohydroquinone 5.4.10
Duroquinone 1.1.7
Ellagic acid 8.7.70
l-Epicatechin 8.1.8
Etanidazole 2.3.32
1,2-Ethanediol, 1-(1-methyl-2-nitroimidazol-5-yl)-
1,2-Ethanediylbis(1'-methyl-4,4'-bipyridinium) 3.8.48
1,2-[Ethanediylsulfonyl]-5-nitroimidazole 2.5.25
3,4-[Ethanediylsulfonyl]-5-nitroimidazole 2.4.43
1,2-[Ethanediylthio]-5-nitroimidazole 2.5.24
Ethanone, 1-(3,4-dihydroxyphenyl)-2-(methylamino)-
     5.2.8
5-Ethenyl-1-methyl-2-nitroimidazole 2.3.8
```

```
dione 1.4.10
1-Ethoxycarbonyl-6-methoxy-5-methyl-2,3-
      trimethyleneisoindole-4,7-dione 1.4.11
1-(Ethoxycarbonylmethyl)-4-iodo-5-nitroimidazole
     2.5.17
1-Ethoxycarbonylmethyl-1'-methyl-4,4'-bipyridinium
     3.10.9
7-(Ethoxycarbonylmethyl)-3-nitro-7-azaindole 2.6.6
1-Ethoxycarbonyl-5-methyl-2,3-trimethyleneisoindole-
      4,7-dione 1.4.9
3-Ethoxy-6,7-dihydrodipyrido 1,2-a:2',1'-
      c pyrazinediium 3.3.10
5-Ethoxy-1,1'-ethylene-2,2'-bipyridinium 3.3.10
1-(2-Ethoxyethyl)-2-nitroimidazole 2.3.34
1-Ethoxyphenothiazine 7.2.9
3-Ethoxyphenothiazine 7.2.10
Ethylamine, 3,4-dihydroxyphenyl- 5.2.5
4-Ethyl-6,7-dihydrodipyrido|1,2-a:2',1'-
      c pyrazinediium 3.3.9
1-Ethyl-2,3-dihydro-6-nitroimidazo[1,2-a]pyridinium
     2.8.13
1,1'-Ethylene-2,2'-bipyridinium 3.3.1
1,1'-Ethylene-3,3'-dimethyl-2,2'-bipyridinium 3.3.11
1,1'-Ethylene-4,4'-dimethyl-2,2'-bipyridinium 3.3.12
1,1'-Ethylene-6,6'-dimethyl-2,2'-bipyridinium 3.3.14
1,10-Ethylene-1,10-phenanthrolinium 3.6.3
6-Ethyl-1,1'-ethylene-2,2'-bipyridinium 3.3.9
Ethyl 5-ethyl-2-nitroimidazole-1-acetate 2.3.33
1-Ethyl-1'-(2-ethylthioethyl)-4,4'-bipyridinium 3.11.1
Ethyl gallate 5.5.3
Ethyl 5-iodo-4-nitroimidazole-1-acetate 2.4.37
1-(2-Ethyl-2-propenyl)-1'-(2-methoxyethyl)-4,4'-
     bipyridinium 3.11.11
1\hbox{-}(2\hbox{-}Ethyl sulfonyl) ethyl-2\hbox{-}methyl-5\hbox{-}nitroimidazole
1-[(2-Ethylsulfonyl)ethyl]-2-nitroimidazole 2.3.36
Flagyl 2.5.15
Flavine adenine dinucleotide 4.6.3
Flavine mononucleotide 4.6.2
Fluoride ion 9.24.
Fluorine atom 9.24.
1-(3-Fluoro-2-hydroxypropyl)-2-nitroimidazole 2.3.27
3-Fluorophenothiazine 7.2.3
Formaldehyde 4.1.1, 4.1.2
Formate ion 9.14.
Furadantin 2.2.5
2-Furaldehyde, 5-nitro-, semicarbazone 2.2.4
2-Furamide, N-butyl-5-nitro- 2.2.11
Furan, 2-methoxymethyl-5-nitro- 2.2.3
2-Furanacetamide, α-[(5-nitro-2-furanyl)methylene]-
     (Z) 2.2.9
```

1-Ethoxycarbonyl-2,5-dimethyl-3-phenylisoindole-4,7-

Ethopropazine 7.4.14

```
2-Furanacetamide, α-[(5-nitro-2-furanvl)methylene]-
                                                          1-(2-Hydroxyethyl)-2-nitroimidazole 2.3.21
      (E) 2.2.10
                                                          1-(2-Hydroxyethyl)-2-nitroimidazole acetate 2.3.31
Furaspor 2.2.3
                                                          1-(2-Hydroxyethyl)-1'-pentyl-4,4'-bipyridinium 3.11.3
2-Furoic acid, 5-nitro- 2.2.1
                                                          10-[3-(4-(2-Hydroxyethyl)-1-
(E)-2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide 2.2.10
                                                                piperazinyl)propyl|phenothiazine 7.4.18
(Z)-2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide 2.2.9
                                                          Hydroxyhydroquinone 5.5.4
                                                          7-Hydroxy-2-[2-(2-hydroxyethyl)aminoethyl]-5-[[2-(2-
cis-2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide 2.2.9
                                                                hydroxyethyl)aminoethyl)amino|-anthra[1,9-cd]pyrazl
trans-2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide 2.2.10
                                                                1.5.11
Gentisic acid 5.3.2
                                                          5-Hydroxyindole 6.2.2
Glutamine, N-[1-[[(carboxymethyl)amino|carbonyl]-2-
      [(1,4-dihydro-2-methyl-1.4-
                                                          Hydroxyl 9.4., 9.17., 9.28., 9.38., 9.39., 9.49.
      dioxo-3-naphthyl)thio|ethyl|- 1.2.16
                                                          1-(2-Hydroxy-3-methoxypropyl)-5-iodo-4-
3-(S-Glutathionyl)-2-methyl-1,4-naphthoquinone 1.2.16
                                                                nitroimidazole 2.4.38, 2.5.18
                                                          1-(2-Hydroxy-3-methoxypropyl)-2-methyl-4-
Guanine 6.4.3
                                                                nitroimidazole 2.4.39
Guanosine 6.4.4
                                                          1-(2-Hydroxy-3-methoxypropyl)-2-methyl-5-
4,4',5,5',6,6'-Hexahydroxydiphenic acid, 1,6,1',6'-
                                                                nitroimidazole 2.5.20
      dilactone 8.1.10
                                                          1-(2-Hydroxy-3-methoxypropyl)-2-nitroimidazole
1,1',2,2',6,6'-Hexamethyl-4,4'-bipyridinium 39.7
                                                                2.3.35
Homogentisic acid 5.4.6
                                                          Hydroxymethyl 4.1.2
Hydrated electron 9.1.
                                                          Hydroxymethyl, conjugate base 4.1.1
Hydrazine 9.35.
                                                          1-Hydroxy-1-methylethyl, conjugate base 4.1.5
Hydrazine radical cation 9.35.
                                                          1-Hydroxy-1-methylethyl 4.1.6
Hydrodioxy 9.42., 9.47., 9.48.
                                                          5-(1-Hydroxy-1-methylethyl)-1-methyl-2-
Hydrogen 9.1.
                                                                nitroimidazole 2.3.13
Hydrogen hypoiodite 9.27., 9.28.
                                                          5-Hydroxymethyl-1-methyl-2-nitroimidazole 2.3.7
Hydrogen peroxide 9.45., 9.46., 9.47., 9.49.
                                                          2-Hydroxymethyl-1,4-naphthoquinone 1.2.7
Hydrogen peroxomonosulfate ion 9.64.
                                                          5-Hydroxy-1,4-naphthoquinone 1.2.3
Hydrogen selenite(IV) ion 9.67.
                                                          5-Hydroxy-2-nitrobenzofuran 2.8.7
Hydrogen sulfite ion 9.59., 9.61.
                                                          7-Hydroxy-2-nitrobenzofuran 2.8.5
Hydroperoxide ion 9.44., 9.48.
                                                          6-Hydroxy-5-nitrothymine 2.8.12
Hydroperoxyl 9.42., 9.47., 9.48.
                                                          1-[3-N-(3-Hydroxypiperidino)-2-hydroxypropyl]-2-
Hydroquinone 5.4.1
                                                                nitroimidazole 2.3.75
Hydroquinone-2,5-disulfonate ion 5.4.2
                                                          6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic
Hydroxide ion 9.39., 9.40.
                                                                acid 8.1.6
p-Hydroxyacetanilide 5.1.7
                                                          5-Hydroxytryptophan 6.2.10
4-Hydroxybenzoic acid 5.1.3
                                                          3-Hydroxytyramine 5.2.5
7-Hydroxycoumarin 8.1.2
                                                          Hydroxyurea 4.3.1
2-Hydroxy-10-(3-dimethylaminopropyl)phenothiazine
                                                          Hypobromous acid 9.3., 9.4.
     7.5.3
                                                          Hypochlorous acid 9.16., 9.17.
5-Hydroxydopamine 5.5.2
                                                          Hypoiodous acid 9.27., 9.28.
1-Hydroxyethyl 4.1.4
                                                          Hypoxanthine 6.4.5
1-(2-Hydroxyethyl)aminocarbonylmethyl-2-
                                                          Imidazole, 1-[2-(1-aziridinoethyl)amino-2-
     nitroimidazole 2.3.32
                                                               hydroxypropyl -2-nitro- 2.3.63
1-[(2-Hydroxyethyl)aminocarbonylmethyl]-3-nitro-7-
                                                          Imidazole, 1-[2,2-bis(isopropyl)aminoethyl]-2-nitro-
     azaindole 2.6.4
                                                               2.3.62
1-(2-Hydroxyethyl)-2,4-dinitroimidazole 2.3.22
                                                          Imidazole, 2-bromo-1-methyl-4-nitro- 2.4.32
2-Hydroxyethyl disulfide 4.2.2
                                                          Imidazole, 4-bromo-1-methyl-5-nitro- 2.5.1
1,1'-Hydroxyethylene-2,2'-bipyridinium 3.3.3
                                                          Imidazole, 5-bromo-1-methyl-4-nitro- 2.4.4
1-Hydroxyethyl(1-) ion 4.1.3
                                                          Imidazole, 2-[(4-carboxyphenoxy)ethyl]thio-1-methyl-5-
1-(2-Hydroxyethyl)-1'-methyl-4,4'-bipyridinium 3.10.4
                                                               nitro- 2.5.13
1-(2-Hydroxyethyl)-2-methyl-5-nitroimidazole 2.5.15
                                                          Imidazole, 5-chloro-1-methyl-4-nitro- 2.4.5
1-(2-Hydroxyethyl)-5-methyl-2-nitroimidazole 2.3.23
```

```
Imidazole, 5-(1,2-dihydroxyethyl)-1-methyl-2-nitro-
                                                            Imidazole, 1-(2-N-morpholinoethyl)-2-nitro- 2.3.45
     2.3.11
                                                            Imidazole, 1-(2-N-morpholinoethyl)-2-nitro-,
Imidazole, 5-(dihydroxymethyl)-1-methyl-2-nitro-,
                                                                 methiodide 2.3.46
     diacetate 2.3.16
                                                            Imidazole, 1-(2-N-morpholinoethyl)-4-nitro- 2.4.40
Imidazole, 1-(2,3-dihydroxypropyl)-2-nitro- 2.3.29
                                                            Imidazole, 1-(5-N-morpholinohexyl)-2-nitro- 2.3.51
Imidazole, 1-(2,3-dihydroxypropyl)-5-iodo-4-nitro-
                                                            lmidazole, 1-(8-N-morpholinooctyl)-2-nitro- 2.3.52
     2.4.36
                                                            Imidazole, 1-(5-N-morpholinopentyl)-2-nitro- 2.3.50
Imidazole, 1,2-dimethyl-5-nitro- 2.5.10
                                                            Imidazole, 1-(11-N-morpholinoundecyl)-2-nitro- 2.3.53
Imidazole, 2,4-dinitro- 2.3.2
                                                            Imidazole, 2-nitro- 2.3.1
Imidazole, 5-ethenyl-1-methyl-2-nitro- 2.3.8
                                                            Imidazole, 4-nitro- 2.4.1
Imidazole, 1-(2-ethoxyethyl)-2-nitro- 2.3.34
                                                            Imidazole, 2-nitro-1-(2-oxopropyl)- 2.3.24
Imidazole, 1-(2-ethylsulfonyl)ethyl)-2-methyl-5-nitro-
                                                            Imidazole, 2-nitro-1-(2-phenoxyethyl)- 2.3.40
     2.5.21
                                                            Imidazole, 2-nitro-1-(3-phenoxypropyl)- 2.3.43
Imidazole, 1-[(2-ethylsulfonyl)ethyl]-2-nitro- 2.3.36
                                                            Imidazole, 2-nitro-1-(2-phenylsulfonylethyl)- 2.3.41
Imidazole, 1-[3-N-(3-hydroxypiperidino)-2-
                                                            Imidazole, 2-nitro-1-[2-(2-pyridylethyl)]- 2.3.60
     hydroxypropyl]-2-nitro- 2.3.75
                                                            Imidazole, 2-nitro-1-[2-(1-pyrrolidinyl)ethyl]- 2.3.54
Imidazole, 2-iodo-1-methyl-4-nitro- 2.4.33
                                                            Imidazole, 2-nitro-1-[4-(1-pyrrolidinyl)butyl]- 2.3.55
Imidazole, 2-iodo-1-methyl-5-nitro- 2.5.7
                                                            Imidazole, 5-(N-piperazinoiminomethyl)-1-methyl-2-
Imidazole, 4-iodo-1-methyl-5-nitro- 2.5.2
                                                                 nitro- 2.3.18
Imidazole, 5-iodo-1-methyl-4-nitro- 2.4.6
                                                            Imidazole, 1-(3-N-piperidino-2-hydroxypropyl)-2-nitro-
Imidazole, 4-iodo-5-nitro- 2.4.2
                                                                 2.3.74
Imidazole, 1-(2-methoxyethyl)-2-nitro- 2.3.28
                                                            Imidazole, 5-(N-piperidinoiminomethyl)-1-methyl-2-
Imidazole, 1-[2-(methoxythiocarbonylamino)ethyl]-2-
                                                                 nitro- 2.3.19
     methyl-5-nitro- 2.5.19
                                                            Imidazole, 1-(4-N-piperidinylbutyl)-2-nitro- 2.3.58
Imidazole, 1-methyl-2,4-dinitro- 2.4.34
                                                            Imidazole, 1-(2-piperidinylethyl)-2-nitro- 2.3.56
Imidazole, 1-methyl-2,5-dinitro- 2.5.8
                                                            Imidazole, 1-(5-N-piperidinylhexyl)-2-nitro- 2.3.59
Imidazole, 1-methyl-5-(1-methylethyl)-2-nitro- 2.3.12
                                                            Imidazole, 1-(3-N-piperidinylpropyl)-2-nitro- 2.3.57
Imidazole, 1-methyl-5-|methyl(oxyamino)methylene|-2-
                                                            Imidazole, 1-[3-[4-(2,2,5,5-tetramethyl-1-
     nitro- 2.3.10
                                                                 oxypiperidinyl)amino]-2-hydroxypropyl]-2-nitro-
Imidazole, 1-methyl-2-(methylsulfonyl)-4-
                                                                 2.3.71
     nitroimidazole 2.4.35
                                                            Imidazole, 1-[3-[4-(2,2,5,5-
Imidazole, 1-methyl-2-(methylsulfonyl)-5-nitro- 2.5.12
                                                                 tetramethylpiperidinyl)amino]-2-hydroxypropyl]-
Imidazole, 1-methyl-2-(methylsulfonyl)-5-nitro- 2.5.11
                                                                 2-nitro- 2.3.72
Imidazole, 1 methyl-5 (methylsulfonyl)-4-nitro- 2.4.9
                                                            Imidazole-1-acctamide, N-benzyl-2-nitro- 2.3.42
Imidazole, 1-methyl-4-(N-morpholinosulfonyl)-5-nitro-
                                                            Imidazole-1-acetamide, N,N-bis(2-hydroxyethyl)-2-
     2.5.3
                                                                 nitro- 2.3.39
Imidazole, 1-methyl-5-(N-morpholinoiminomethyl)-2-
                                                            Imidazole-1-acetamide, N-(2,3-dihydroxypropyl)-2-
     nitro- 2.3.17
                                                                 nitro- 2.3.37
Imidazole, 1-methyl-5-(N-morpholinosulfonyl)-4-nitro-
                                                            Imidazole-1-acetamide, N-(2-hydroxyethyl)-2-nitro-
     2.4.14
                                                                 2.3.32
Imidazole, 2-methyl-4-nitro- 2.4.3
                                                            Imidazole-1-acetamide, 4-iodo-N'-(3-pyridylmethyl)-5-
                                                                 nitro- 2.5.23
Imidazole, 1-methyl-4-nitro-5-(p-hydroxyphenoxy)-
     2.4.17
                                                            Imidazole-1-acetic acid, 5-ethyl-2-nitro-, ethyl ester
Imidazole, 1-methyl-4-nitro-5-(phenylthio)- 2.4.44
                                                                 2.3.33
                                                            Imidazole-1-acetic acid, 4-iodo-5-nitro-, ethyl ester
Imidazole, 1-methyl-4-nitro-5-phenoxy- 2.4.16
Imidazole, 1-methyl-5-phenylsulfonyl-4-nitro- 2.4.18
                                                            Imidazole-1-acetic acid, 5-iodo-4-nitro-, ethyl ester
Imidazole, 1-[3-N-(4-methylpiperazino)-2-
     hydroxypropyl]-2-nitro- 2.3.77
                                                            Imidazole-1-acetic acid, 2-nitro- 2.3.20
Imidazole, 1-[2-(methylsulfonyl)ethyl]-2-nitro- 2.3.30
                                                            Imidazole-1-acetic acid, 2-nitro-, methyl ester 2.3.25
Imidazole, 1-(3-N-morphinolopropyl)-2-nitro- 2.3.47
                                                            Imidazole-5-carbonitrile, 1-methyl-2-nitro- 2.3.3
Imidazole, 1-(4-N-morpholinobutyl)-2-nitro- 2.3.48
                                                            Imidazole-2-carboxaldehyde, 1-methyl-5-nitro- 2.5.9
Imidazole, 1-(4-N-morpholinobutyl)-2-nitro-,
     methiodide 2.3.49
```

```
Imidazole-5-carboxaldehyde, 1-methyl-2-nitro,
      dimethylhydrazone 2.3.14
Imidazole-5-carboxaldehyde, 1-methyl-2-nitro- 2.3.4
Imidazole-5-carboxamide, 1-methyl-2-nitro- 2.3.6
Imidazole-5-carboxylate ion, 1-methyl-2-nitro- 2.3.5
Imidazole-5-carboxylic acid, 1-methyl-2-nitro-, methyl
      ester 2.3.9
Imidazole-1-ethanamine, N,N-bis(1-methylethyl)-2-
      nitro- 2.3.62
Imidazole-1-ethanamine, 2-nitro-N-phenyl- 2.3.61
Imidazole-1-ethanol, α-[(benzylamino)methyl]-2-nitro-
      2.3.68
Imidazole-1-ethanol, \alpha-[bis(2-
      hydroxyethyl)aminomethyl]-2-nitro- 2.3.66
Imidazole-1-ethanol, \alpha-(chloromethyl)-2-methyl-5-
      nitro- 2.5.16
Imidazole-1-ethanol, α-(chloromethyl)-2-nitro- 2.3.26
Imidazole-1-ethanol, \alpha-(diethylamino)methyl-2-nitro-
      2.3.65
Imidazole-1-ethanol, \alpha-[(1,1-
      dimethylethyl)amino|methyl|-2-nitro- 2.3.67
Imidazole-1-ethanol, \; \alpha\text{-}[(dimethylamino)methyl]-2\text{-}
      nitro- 2.3.64
Imidazole-1-ethanol, 2,4-dinitro- 2.3.22
Imidazole-1-ethanol, α-(fluoromethyl)-2-nitro- 2.3.27
Imidazole-1-ethanol, 5-iodo-α-(methoxymethyl)-4-
     nitro- 2.4.38, 2.5.18
Imidazole-1-ethanol, \alpha-[(4-
      methoxybenzylamino)methyl]-2-nitro- 2.3.70
Imidazole-1-ethanol, α-(methoxymethyl)-2-methyl-4-
     nitro- 2.4.39
Imidazole-1-ethanol, α-(methoxymethyl)-2-methyl-5-
     nitro- 2.5.20
Imidazole-1-ethanol, \alpha-(methoxymethyl)-2-nitro-
     2.3.35
Imidazole-1-ethanol, \alpha-[(4-
     methoxyphenylamino)methyl]-2-nitro- 2.3.69
Imidazole-1-ethanol, \alpha-[[2-(1-methylethyl)oxy-1-
     (chloromethyl)ethoxy|methyl|- 2.3.44
Imidazole-1-ethanol, 2-methyl-4-nitro-, dihydrogen
     phosphate ester 2.5.14
Imidazole-1-ethanol, 2-methyl-5-nitro- 2.5.15
Imidazole-1-ethanol, 5-methyl-2-nitro- 2.3.23
Imidazole-1-ethanol, α-(4-morpholinomethyl)-2-nitro-
     2.3.76
Imidazole-1-ethanol, 2-nitro, acetate 2.3.31
Imidazole-1-ethanol, 2-nitro- 2.3.21
Imidazole-1-ethanol, 2-nitro-α-[(3-
     propenyloxy)methyl|- 2.3.38
Imidazole-1-ethanol, 2-nitro-α-(pyrrolidinylmethyl)-
Imidazole-5-methanol, 1-methyl-2-nitro- 2.3.7
Imidazole-5-methanol, α,α,1-trimethyl-2-nitro- 2.3.13
```

```
Imidazole-5-sulfonamide, N'-acetyl-1-methyl-4-nitro-
      2.4.12
Imidazole-5-sulfonamide, N'-(2-chlorophenyl)-1-
      methyl-4-nitro- 2.4.23
Imidazole-4-sulfonamide, 1-methyl-5-nitro- 2.5.4
Imidazole-5-sulfonamide, 1-methyl-4-nitro 2.4.8
Imidazole-5-sulfonamide, 1-methyl-4-nitro-N'-phenyl-
      2.4.22
Imidazole-5-sulfonamide, 1-methyl-N'-(1-naphthyl)-4-
      nitro- 2.4.31
Imidazole-5-sulfonamide, 1-methyl-N'-(2-
      methylphenyl)-4-nitro- 2.4.24
Imidazole-5-sulfonamide, 1-methyl-N'-
      (dimethylamino)methyl-4-nitro- 2.4.13
Imidazole-5-sulfonamide, 1-methyl-N-(4-
      morpholinomethyl)-4-nitro- 2.4.15
Imidazole-5-sulfonamide, N'-(2-methoxyphenyl)-1-
      methyl-4-nitro- 2.4.27
Imidazole-5-sulfonamide, N', N', 1-trimethyl-4-nitro-
Imidazole-4-sulfonic acid, 1-methyl-5-nitro-, phenyl
      ester 2.5.6
Imidazole-4-sulfonic acid, 1-methyl-5-nitro-, phenyl
     ester 2.5.5
Imidazole-5-sulfonic acid, 1-methyl-4-nitro-, 1-naphthyl
     ester 2.4.30
Imidazole-5-sulfonic acid, 1-methyl-4-nitro-, 2-
     methoxyphenyl ester 2.4.25
Imidazole-5-sulfonic acid, 1-methyl-4-nitro-, 4-
     chlorophenyl ester 2.4.20
Imidazole-5-sulfonic acid, 1-methyl-4-nitro-, 4-
     methoxyphenyl ester 2.4.26
Imidazole-5-sulfonic acid, 1-methyl-4-nitro-, 4-
     nitrophenyl ester 2.4.21
Imidazole-5-sulfonic acid, 1-methyl-4-nitro-, phenyl
     ester 2.4.19
Imidazole-5-thioacetic acid, 1-methyl-4-nitro- 2.4.10
Imidazole-5-thiol, 1-methyl-4-nitro- 2.4.7
2,4-Imidazolidinedione, 1-[(5-nitro-2-
     furanyl)methylene|amino|- 2.2.5
Imidazol-5-one, 1-methyl-4-nitro- 2.4.42
8α-N-Imidazolylriboflavin 4.6.4
Imidazo[1,2-a]pyridinium, 1-ethyl-2,3-dihydro-6-nitro-
     2.8.13
Imidazo[1,2-a]pyridinium, 1-phenyl-2,3-dihydro-6-
     nitro- 2.8.14
Imidazo[2,1-b]thiazole, 2,3-dihydro-5-nitro-, 2.5.24
Imidazo[2,1-b]thiazole, 2,3-dihydro-5-nitro-, 1,1-
     dioxide 2.5.25
Imidazo[5,1-b]thiazole, 2,3-dihydro-7-nitro-, 1,1-
     dioxide 2.4.43
Indigodisulfonate ion 1.5.6
Indole 6.2.1
Indole, 1-methyl- 6.2.3
```

Indole, 2-methyl- 6.2.4	L-8713 2.3.11
Indole, 3-methyl- 6.2.5	L-8938 2.3.7
Indole-3-acetic acid 6.2.6	L-8939 2.3.14
5,6-Indolinedione, 3-hydroxy-1-methyl 1.5.1	L-9451 2.3.10
5-Indolol 6.2.2	Lipoamide 4.2.3, 8.3.4.3
Iodate ion 9.32.	Lipoic acid 8.3.5.2
Iodide ion 9.25., 9.28., 9.29.	Lumichrome 4.6.6
Iodine 9.26., 9.30.	Me 108 2.5.19
Iodine atom 9.25., 9.27.	Menadiol 8.1.3
Iodine dichloride dianion 9.26.	Menadione 1.2.6
Iodine dioxide 9.31., 9.32.	Menaquinone 1.2.6
2-Iodo-1-methyl-4-nitroimidazole 2.4.33	Mepazine 7.4.13
2-lodo-1-methyl-5-nitroimidazole 2.5.7	Mercapto 9.52., 9.53.
4-Iodo-1-methyl-5-nitroimidazole 2.5.2	Mercaptoacetic acid 8.3.2.2
5-Iodo-1-methyl-4-nitroimidazole 2.4.6	2-Mercaptoethanol 8.3.1.2, 8.3.2.1, 8.3.4.1
4-Iodo-5-nitroimidazole 2.4.2	β-Mercaptoethanol (oxidized) 4.2.2
5-lodo-4-nitroimidazole 2.4.2	5-Mercapto-1-methyl-4-nitroimidazole 2.4.7
4-Iodo-5-nitro-1-(3-	3-Mercaptopropionic acid 8.3.2.4
pyridylmethylaminocarbonylmethyl)imidazole 2.5.23	Methanamine, N-[(1-methyl-2-nitroimidazol-5-yl)methylene], N-oxide 2.3.10
3-Iodophenothiazine 7.2.4 Iodous acid 9.31.	Methanediol, (1-methyl-2-nitroimidazoyl-5-yl)-, diacetate 2.3.16
Isobarbituric acid 6.3.5	Methanesulfonamide, N-[4-(9-acridinylamino)-3-
Isocyanate ion 9.12.	methoxyphenyl]-, conjugate acid 4.8.1
Isoindole-4,7-dione, 1,2-dimethyl-3-phenyl- 1.4.1	Methoxatine 1.5.10
Isoindole-4,7-dione, 5,6-dimethyl-3-phenyl-1,2- trimethylene- 1.4.7	1-[3-(4-Methoxybenzylamino)-2-hydroxypropyl]-2- nitroimidazole 2.3.70
Isoindole-4,7-dione, 1-ethoxycarbonyl-2,5-dimethyl-3-phenyl- 1.4.10	3-Methoxycarbonyl-6,7-dihydrodipyrido[1,2-a:2',1'-c]pyrazinediium 3.3.8
Isoindole-4,7-dione, 1-ethoxycarbonyl-5-methyl-2,3- trimethylene- 1.4.9	5-Methoxycarbonyl-1,1'-ethylene-2,2'-bipyridinium 3.3.8
Isoindole-4,7-dione, 1-ethoxycarbonyl-6-methoxy-5- methyl-2,3-trimethylene- 1.4.11	1-(2-Methoxycarbonylethyl)-1'-propyl-4,4'- bipyridinium 3.11.2
Isoindole-4,7-dione, 2-methyl-3-phenyl- 1.4.5	1-(Methoxycarbonylmethyl)-2-nitroimidazole 2.3.25
Isoindole-4,7-dione, 1-methyl-2,3-trimethylene- 1.4.6	4-(Methoxycarbonyl)-1-methylpyridinium 4.4.4
Isoindole-4,7-dione, 5-methyl-1,2-trimethylene- 1.4.2	1-[3-(Methoxycarbonyl)-2-propenyl]-1'-methyl-4,4'-
Isoindole-4,7-dione, 1-phenyl-2,3-trimethylene- 1.4.4	bipyridinium 3.10.11
Isoindole-4,7-dione, 1,2,5,6-tetramethyl-3-phenyl- 1.4.8 Isoindole-4,7-dione, 1,2,5-trimethyl-3-phenyl- 1.4.3	2-Methoxy-10-(3-dimethylaminopropyl)phenothiazine 7.5.4
Isopromethazine 7.4.7	1-(2-Methoxyethyl)-2-nitroimidazole 2.3.28
5-Isopropyl-1-methyl-2-nitroimidazole 2.3.12	Methoxyhydroquinone 5.4.4
Juglone 1.2.3	α-(Methoxymethyl)-2-methyl-4-nitroimidazole-1- ethanol 2.4.39
L-10333 2.3.9 L-10522 2.3.18	α-(Methoxymethyl)-2-methyl-5-nitroimidazole-1- ethanol 2.5.20
L-10926 2.3.16	2-(Methoxymethyl)-1,4-naphthoquinone 1.2.8
L-11174 2.3.19	2-Methoxymethyl-5-nitrofuran 2.2.3
L-11175 2.3.17	9-(2-Methoxy-4-
L-12134 2.3.13	methylsulfonylaminoanilino)acridinium 4.8.1
L-6347 2.3.12	5-Methoxy-2-nitrobenzofuran 2.8.8
L-6678 2.3.23	7-Methoxy-2-nitrobenzofuran 2.8.6
L-8580 2.3.8	4-Methoxyphenol 5.1.5
L-8711 2.3.4	1-Methoxyphenothiazine 7.2.7

J. Phys. Chem. Ref. Data, Vol. 18, No. 4, 1989

3-Methoxyphenothiazine 7.2.8 1-[3-(4-Methoxyphenylamino)-2-hydroxypropyl]-2nitroimidazole 2.3.69 Methoxypromazine 7.5.4 1-[2-(Methoxythiocarbonylamino)ethyl]-2-methyl-5nitroimidazole 2.5.19 1-Methyl-1'-(acetonyl)-4,4'-bipyridinium 3.10.6 N-Methyl-4-acetylpyridinium 4.4.3 1-Methyl-1'-allyl-4,4'-bipyridinium 3.10.5 6-[[(Methylamino)carbonyl]oxy]methyl-1,4naphthoquinone 1.2.14 4-(Methylamino)phenol 5.1.6 p-Methylaminophenol 5.1.6 1-Methyl-1'-[anilino(thiocarbonylmethyl)]-4,4'bipyridinium 3.10.14 Methyl-1,4-benzoquinone 1.1.2 1-Methyl-1'-benzyl-4,4'-bipyridinium 3.10.13 1-Methyl-4,4'-hipyridinium-1'-oxide 3.10.1 1-Methyl-1'-[2-bis(methylthio)ethenyl]-4,4'bipyridinium 3.10.8 1-Methyl-1'-carbamylmethyl-4,4'-bipyridinium 3.10.3 1-(2-Methylcarbonyloxyethyl)-2-nitroimidazole 2.3.31 1-Methyl-5-(4-chlorophenoxy)sulfonyl-4-nitroimidazole 2.4.20 1-Methyl-5-(2-chlorophenyl)aminosulfonyl-4nitroimidazole 2.4.23 1-Methyl-1'-[cyano(ethoxycarbonyl)methyl]-4,4'bipyridinium 3.10.10 1-Methyl-1'-cyanomethyl-4,4'-bipyridinium 3.10.2 1-Methyl-1'-(3-cyano-2-propenyl)-4,4'-bipyridinium 3.10.7 1-Methylcytosine 6.3.7 N_1 -Methylcytosine 6.3.7 10-(2-Methyl-2-diethylaminoethyl)phenothiazine 7.4.14 10-(1-Methyl-2-dimethylaminoethyl)phenothiazine 7.4.7 10-(2-Methyl-2-dimethylaminoethyl)phenothiazine 7.4.6 1-Methyl-1'-[2-(3,5-dimethyl-4-morpholinyl)-2oxoethyl]-4,4'-bipyridinium 3.10.15 1-Methyl-2,4-dinitroimidazole 2.4.34 1-Methyl-2,5-dinitroimidazole 2.5.8 Methyldioxy 8.5.1 2-Methyl-1,1'-dipropyl-4,4'-bipyridinium 3.9.3 6-Methyldipyrido[1,2-a:2',1'-c]pyrazinediium 3.2.2 Methyl disulfide 8.3.5.1 Methylene Blue 4.5.2 1-Methyl-1'-ethoxycarbonylmethyl-4,4'-bipyridinium 3.10.9 Methylhydroquinone 5.4.3 1-Methyl-1'-(2-hydroxyethyl)-4,4'-bipyridinium 3.10.4 8\alpha-(N-Methyl-N-imidazolium)tetra-O-acetylriboflavin

4.6.5

1-Methylindole 6.2.3 2-Methylindole 6.2.4 3-Methylindole 6.2.5 1-Methylisonicotinamide 4.4.2 1-Methyllumichrome 4.6.7 3-Methyllumichrome 4.6.8 1-Methyl-1'-[3-(methoxycarbonyl)-2-propenyl]-4,4'bipyridinium 3.10.11 N-Methyl-4-(methoxycarbonyl)pyridinium 4.4.4 1-Methyl-5-(2-methoxyphenoxy)sulfonyl-4nitroimidazole 2.4.25 1-Methyl-5-(4-methoxyphenoxy)sulfonyl-4nitroimidazole 2.4.26 1-Methyl-2-methoxyphenylaminosulfonyl-4nitroimidazole 2.4.27 1-Methyl-5-(1-methylethyl)-2-nitroimidazole 2.3.12 Methyl 1-methyl-2-nitroimidazole-5-carboxylate 2.3.9 1-Methyl-5-[methyl(oxyamino)methylene]-2nitroimidazole 2.3.10 1-Methyl-5-(2-methylphenyl)aminosulfonyl-4nitroimidazole 2.4.24 1-Methyl-2-(methylsulfinyl)-5-nitroimidazole 2.5.11 1-Methyl-2-(methylsulfonyl)-4-nitroimidazole 2.4.35 1-Methyl-2-(methylsulfonyl)-5-nitroimidazole 2.5.12 1-Methyl-5-(methylsulfonyl)-4-nitroimidazole 2.4.9 1-Methyl-5-(N-morpholinoiminomethyl)-2nitroimidazole 2.3.17 1-Methyl-5-[(N-morpholinomethylamino)sulfonyl]-4nitroimidazole 2.4.15 1-Methyl-4-(N-morpholinosulfonyl)-5-nitroimidazole 1-Methyl-5-(N-morpholinosulfonyl)-4-nitroimidazole 2.4.14 2-Methyl-1,4-naphthoquinol 8.1.3 2-Methyl-1,4-naphthoquinone 1.2.6 1-Methyl-5-(1-naphthylamino)sulfonyl-4-nitroimidazole 2.4.31 1-Methyl-5-(1-naphthyloxy)sulfonyl-4-nitroimidazole 2.4.30 1-Methylnicotinamide 4.4.1 1-Methyl-3-nitro-7-azaindole 2.6.1 1-Methyl-4-nitro-5-(p-hydroxyphenoxy)imidazole 2.4.17 2-Methyl-4-nitroimidazole 2.4.3 2-Methyl-5-nitroimidazole 2.4.3 Methyl 2-nitroimidazole-1-acetate 2.3.25 1-Methyl-2-nitroimidazole-5-carboxaldehyde 2.3.4 1-Methyl-2-nitroimidazole-5-carboxamide 2.3.6 1-Methyl-2-nitroimidazole-5-carboxylate ion 2.3.5 1-Methyl-5-nitroimidazole-2-carboxaldehyde 2.5.9 1-Methyl-4-nitroimidazole-5-sulfonamide 2.4.8 1-Methyl-4-nitroimidazol-5-one 2.4.42 1-(1-Methyl-2-nitroimidazol-5-yl)-1,2-ethanediol 2.3.11

```
Mitozantrone 1.3.4
[(1-Methyl-2-nitroimidazol-5-
     yl)methylene|propanedinitrile 2.3.15
                                                          Morfamquat 3.8.43
(1-Methyl-4-nitroimidazol-5-yl)thioacetic acid 2.4.10
                                                          1-(3-N-Morphinolopropyl)-2-nitroimidazole 2.3.47
1-Methyl-4-nitro-5-phenoxyimidazole 2.4.16
                                                          4-Morpholinamine, N-[(1-methyl-2-nitroimidazol-5-
                                                                yl)methylene]- 2.3.17
1-Methyl-5-(4-nitrophenoxy)sulfonyl-4-nitroimidazole
                                                          Morpholine, 4-[1-methyl-4-nitroimidazol-5-yl]sulfonyl-
     2.4.21
                                                                2.4.14
1-Methyl-5-nitro-4-phenylsulfonylimidazole 2.5.5
1-Methyl-5-nitro-4-phenylsulfonyloxyimidazole 2.5.6
                                                          Morpholine, 4-1-methyl-4-nitroimidazol-5-
                                                                yl|sulfonamidomethyl- 2.4.15
1-Methyl-4-nitro-5-(phenylthio)imidazole 2.4.44
                                                          Morpholine, N-[1-methyl-5-nitroimidazol-4-yl]sulfonyl-
1-Methyl-2-nitro-5-vinylimidazole 2.3.8
                                                                2.5.3
1-Methyl-5-oxo-4-nitroimidazole 2.4.42
                                                          Morpholine, 4-[11-(2-nitroimidazol-1-yl)undecyl]-
1-Methyl-1'-(2-oxopropyl)-4,4'-bipyridinium 3.10.6
Methylperoxyl 8.5.1
                                                          Morpholine, 4-[2-(2-nitroimidazol-1-yl)ethyl-,
1-Methylphenanthrolino 4,5-a:6,7-c diazepinediium
                                                                methiodide 2.3.46
     3.6.6
                                                          Morpholine, 4-[2-(2-nitroimidazol-1-yl)ethyl]- 2.3.45
4-Methylphenol 5.1.4
                                                          Morpholine, 4-[2-(4-nitroimidazol-1-yl)ethyl]- 2.4.40
10-Methylphenothiazine 7.4.2
                                                          Morpholine, 4-[2-(5-nitroimidazol-1-yl)ethyl]- 2.5.22
3-Methylphenothiazine 7.2.6
                                                          Morpholine, 4-[3-(2-nitroimidazol-1-yl)propyl]- 2.3.47
N-Methylphenothiazine 7.4.2
                                                          Morpholine, 4-[4-(2-nitroimidazol-1-yl)butyl]- 2.3.48
1-Methyl-5-phenoxysulfonyl-4-nitroimidazole 2.4.19
                                                          Morpholine, 4-[4-(2-nitroimidazol-1-yl)butyl]-,
1-Methyl-5-phenylaminosulfonyl-4-nitroimidazole
                                                                methiodide 2.3.49
     2.4.22
                                                          Morpholine, 4-[5-(2-nitroimidazol-1-yl)pentyl]- 2.3.50
2-Methyl-3-phenylisoindole-4,7-dione 1.4.5
                                                          Morpholine, 4-[6-(2-nitroimidazol-1-yl)hexyl]- 2.3.51
1-Methyl-5-phenylsulfonyl-4-nitroimidazole 2.4.18
                                                          Morpholine, 4-[8-(2-nitroimidazol-1-yl)octyl]- 2.3.52
2-Methyl-1-(2-phosphatoethyl)-4-nitroimidazole 2.5.14
                                                           4-Morpholineethanol, α-[(2-nitroimidazol-1-yl)methyl]-
2-Methyl-3-phytyl-1,4-naphthoquinone 1.2.17, 8.1.4
                                                                2.3.76
1-[3-N-(4-Methylpiperazino)-2-hydroxypropyl]-2-
                                                           1-(4-N-Morpholinobutyl)-2-nitroimidazole 2.3.48
     nitroimidazole 2.3.77
                                                           1-(4-N-Morpholinobutyl)-2-nitroimidazole methiodide
10-[3-(4-Methyl-1-piperazinyl)propyl]phenothiazine
                                                                2.3.49
     7.4.17
                                                           1-(2-N-Morpholinoethyl)-2-nitroimidazole 2.3.45
10-[3-(4-Methyl-1-piperazinyl)propyl]-2-
                                                           1-(2-N-Morpholinoethyl)-2-nitroimidazole methiodide
     trifluoromethylphenothiazine 7.5.8
10-(N-Methyl-3-piperidinyl)methylphenothiazine 7.4.13
                                                           1-(2-N-Morpholinoethyl)-4-nitroimidazole 2.4.40
3-Methyl-2-pyrazolin-5-one 8.4.1
                                                           1-(2-N-Morpholinoethyl)-5-nitroimidazole 2.5.22
4-Methyl-2-pyrazolin-5-one 8.4.2
                                                           1-(5-N-Morpholinohexyl)-2-nitroimidazole 2.3.51
1-Methyl-1'-[(1-pyrazolyl)thiocarbonylmethyl]-4,4'-
                                                           1-[3-(4-Morpholino)-2-hydroxypropyl]-2-nitroimidazole
     bipyridinium 3.10.12
                                                                2.3.76
1-[2-(Methylsulfonyl)ethyl]-2-nitroimidazole 2.3.30
                                                           1-(8-N-Morpholinooctyl)-2-nitroimidazole 2.3.52
2-Methylthio-10-[2-(N-methyl-2-
                                                           1-(5-N-Morpholinopentyl)-2-nitroimidazole 2.3.50
     piperidinyl)ethyl|phenothiazine 7.5.6
                                                           1-(11-N-Morpholinoundecyl)-2-nitroimidazole 2.3.53
10-(2-Methyl-2-trimethylammonioethyl)phenothiazine
                                                           1-[3-(4-Morpholinyl)propylaminocarbonylmethyl]-3-
     7.4.11
                                                                nitro-7-azaindole 2.6.5
6-Methyl-1,1'-trimethylene-2,2'-bipyridinium 3.4.2
                                                          1-[3-(4-Morpholinyl)propylaminocarbonylmethyl]-3-
1-Methyl-2,3-trimethyleneisoindole-4,7-dione 1.4.6
                                                                nitro-7-azaindole, protonated 2.6.8
5-Methyl-1,2-trimethyleneisoindole-4,7-dione 1.4.2
                                                           7-[3-(4-Morpholinyl)propylaminocarbonylmethyl]-3-
1-Methyluracil 6.3.2
                                                                nitro-7-azaindole 2.6.7
5-Methyluracil 6.3.3
                                                          Multergan 7.4.11
N_1-Methyluracil 6.3.2
                                                          NSC 302653 2.3.49
Methyl viologen 3.8.2
                                                          NSC 309929 2.3.51
Metronidazole 2.5.15
                                                           NSC 313391 2.3.48
Misonidazole 2.3.35
                                                          NSC 313392 2.3.58
Mitomycin C 1.5.7
                                                          NSC 313393 2.3.53
```

```
NSC 313394 2.3.52
                                                        1,4-Naphthoquinone, 6-
                                                              [[(methylamino)carbonyl]oxy]methyl- 1.2.14
NSC 313395 2.3.59
                                                         1,4-Naphthoquinone, 2-methyl-3-(3,7,11,15-
NSC 313396 2.3.50
                                                              tetramethyl-2-hexadecenyl)- 1.2.17, 8.1.4
NSC 313407 2.5.2
                                                         1,2-Naphthoguinone 1.2.1
NSC 314919 2.3.55
                                                         1,4-Naphthoguinone 1.2.2
NSC 321271 2.4.18
                                                         1,4-Naphthoquinone-2-sulfonate ion 1.2.5
NSC 326151 2.4.14
                                                         Nicotinamide adenine dinucleotide 4.4.6
NSC 326153 2.5.5
                                                         Nicotinamide adenine dinucleotide, reduced 8.2.1
NSC 326154 2.4.26
                                                         Nifuroxime 2.2.2
NSC 326155 2.4.25
                                                         Nifurpipone 2.2.6
NSC 326156 2.4.21
                                                        Nimorazole 2.4.40
NSC 326157 2.4.9
                                                         Nitracrine 2.7.2
NSC 329113 2.4.6
                                                         Nitrate ion 9.37.
NSC 329114 2.5.6
                                                         Nitrite ion 9.36.
NSC 329115 2.5.3
                                                         3-Nitroacetophenone 2.1.9
NSC 329116 2.4.4
                                                         4-Nitroacetophenone 2.1.10
NSC 329117 2.5.1
                                                         m-Nitroacetophenone 2.1.9
NSC 38075 2.4.8
                                                         Nitroakridin 3582 2.7.1
NSC 38083 2.4.11
                                                         2-Nitrobenzaldehyde 2.1.12
NSC 38086 2.4.20
                                                         4-Nitrobenzaldehyde 2.1.13
NSC 38087 2.4.19
                                                         o-Nitrobenzaldehyde 2.1.12
NSC 38088 2.4.22
                                                         p-Nitrobenzaldehyde 2.1.13
NSC 38090 2.4.30
                                                         Nitrobenzene 2.1.11
NSC 46506 2.4.15
                                                         2-Nitrobenzimidazole 2.8.1
NSC 46509 2.4.12
                                                         2-Nitrobenzofuran 2.8.4
NSC 46510 2.4.13
                                                         2-Nitrobenzoic acid 2.1.14
NSC 46511 2.4.24
                                                         3-Nitrobenzoic acid 2.1.15
NSC 46512 2.4.27
                                                         4-Nitrobenzoic acid 2.1.16
NSC 46513 2.4.23
                                                         m-Nitrobenzoic acid 2.1.15
NSC 46514 2.4.31
                                                         o-Nitrobenzoic acid 2.1.14
5,12-Naphthacenedione, 8-acetyl-10[(3-amino-2,3,6-
                                                         2-Nitrobenzonitrile 2.1.17
     trideoxy-hexopyranosyloxy]-tetrahydro-6,8,11-
                                                         o-Nitrobenzonitrile 2.1.17
     trihydroxy-1-methoxy- 1.5.5
5,12-Naphthacenedione, 10-[(3-amino-2,3,6-trideoxy-α-
                                                         4-Nitrobenzyl alcohol 2.1.18
     L-lyxo-hexopyranosyl)oxy|-
                                                         p-Nitrobenzyl alcohol 2.1.18
     7,8,9,10-tetrahydro-6,8,11-trihydroxy-8- 1.5.4
                                                         8-Nitrocaffeine 2.8.3
Naphthalene, 1,4-dihydroxy-2-methyl- 8.1.3
                                                         4-Nitro-(3'-dimethylamino)propiophenone 2.1.19
Naphthazarin 1.2.4
                                                         5-Nitro-2-furaldehyde semicarbazone 2.2.4
1,4-Naphthoquinone, 2-[(acetyloxy)methyl]- 1.2.9
                                                         anti-5-Nitro-2-furaldoxime 2.2.2
1,4-Naphthoquinone, 6-[(acetyloxy)methyl]- 1.2.13
                                                        Nitrofurantoin 2.2.5
1,4-Naphthoguinone, 6-(bromomethyl)- 1.2.11
                                                         2-[2-(5-Nitro-2-furanyl)]ethenylquinoline 2.2.7
1,4-Naphthoguinone, 1-[[[(1-
                                                         1-[(5-Nitro-2-furanyl)methylene]amino]-2,4-
     chloroethyl)amino|carbonyl|oxy|methyl- 1.2.10
                                                              imidazolidinedione 2.2.5
1,4-Naphthoquinone, 6-(chloromethyl)- 1.2.12
                                                        Nitrofurazone 2.2.4
1,4-Naphthoquinone, 5,8-dihydroxy- 1.2.4
                                                         N-(5-Nitro-2-furfurylidene)-1-aminohydantoin 2.2.5
1,4-Naphthoguinone, 2,3-dimethyl- 1.2.15
                                                         5-Nitro-2-furoic acid 2.2.1
1,4-Naphthoquinone, 1-(S-glutathionyl)-2-methyl-
                                                         Nitrogen dioxide 9.36.
                                                        Nitrogen trioxide 9.37.
1,4-Naphthoquinone, 2-hydroxymethyl- 1.2.7
                                                         2-Nitroimidazole 2.3.1
1.4-Naphthoguinone, 2-(methoxymethyl)- 1.2.8
                                                         4-Nitroimidazole 2.4.1
1,4-Naphthoquinone, 2-methyl- 1.2.6
                                                         2-Nitroimidazole-1-acetic acid 2.3.20
```

3-(2-Nitroimidazol-1-yl)-1,2-propanediol 2.3.29	Phenanthrolino[4,5-a:6,7-c]pyrazinediium 3.6.3
1-(2-Nitroimidazol-1-yl)-2-propanone 2.3.24	Phenazone 8.4.4
2-Nitro-1-(2-oxopropyl)imidazole 2.3.24	Phenethylamine, 3,4,5-trihydroxy- 5.5.2
3-Nitrophenothiazine 7.2.5	Phenol 5.1.1
2-Nitro-1-(2-phenoxyethyl)imidazole 2.3.40	Phenol, 4-amino- 5.1.2
2-Nitro-1-(3-phenoxypropyl)imidazole 2.3.43	Phenol, 4-(dimethylamino)- 5.1.8
2-Nitro-1-(2-phenylsulfonylethyl)imidazole 2.3.41	Phenol, 2,4-dinitro- 2.1.8
4-Nitropyridine 2.8.9	Phenol, 4-methoxy- 5.1.5
2-Nitro-1-[2-(2-pyridylethyl)]imidazole 2.3.60	Phenol, 4-methyl- 5.1.4
5-Nitro-2,4-pyrimidinedione 2.8.11	Phenol, 4-(methylamino)- 5.1.6
5-Nitro-2-(2-quinolylbutadienyl)furan 2.2.8	Phenothiazine 7.1.1
5-Nitro-2-(2-quinolylethenyl)furan 2.2.7	Phenothiazine, 10-acetyl- 7.4.3
8-Nitrotheophylline 2.8.2	Phenothiazine, 2-acetyl-10-(3-dimethylaminopropyl)-
2-Nitrothiophene 2.8.10	7.5.5
5-Nitrouracil 2.8.11	Phenothiazine, 10-benzoyl- 7.4.12
Norepinephrine 5.2.6	Phenothiazine, 3-bromo- 7.2.1
Octadecyl viologen 3.8.45	Phenothiazine, 3-chloro- 7.2.2
Ornidazole 2.5.16	Phenothiazine, 2-chloro-10-dimethylaminopropyl-
Oxide radical ion 9.40.	7.5.1
Oxygen 9.41., 9.42.	Phenothiazine, 2-chloro-10-[3-(4-(2-hydroxyethyl)-1- piperazinyl)propyl]- 7.5.10
Oxygen, lowest excited singlet state 9.43.	Phenothiazine, 2-chloro-7-methoxy- 7.3.1
1-[3-(1-Oxypyridylmethylamino)carbonylmethyl]-4-	Phenothiazine, 4-chloro-7-methoxy- 7.3.2
nitroimidazole 2.4.41	Phenothiazine, 2-chloro-10-[3-(4-methyl-1-
Ozone 9.50., 9.51.	piperazinyl)propyl - 7.5.7
Ozonide ion 9.50.	Phenothiazine, 3,7-dimethoxy- 7.3.4
Ozonide radical, protonated 9.51.	Phenothiazine, 3,7-dimethyl- 7.3.3
Paraquat 3.8.2 Penicillamine 8.3.2.3	Phenothiazine, 10-(3-dimethylaminopropyl)-2-
Perazine 7.4.17	trifluoromethyl- 7.5.2
Perhydroxyl 9.42., 9.47., 9.48.	Phenothiazine, 2-dimethylaminosulfonamido-10-[3-(4-
Peroxomonosulfate radical ion 9.64.	methyl-1-piperazinyl)propyl]- 7.5.9
9,10-Phenanthrenequinone 1.5.3	Phenothiazine, 5,5'-dioxide, 10-carbethoxy- 7.7.3
1,10-Phenanthroline, conjugate diacid 3.6.1	10H-Phenothiazine, 5,5'-dioxide 7.7.2
o-Phenanthroline, conjugate diacid 3.6.1	Phenothiazine, 1-ethoxy- 7.2.9
1,10-Phenanthroline 3.12.1, 4.4.9	Phenothiazine, 3-ethoxy- 7.2.10
o-Phenanthroline 3.12.1, 1.1.9	Phenothiazine, 3-fluoro- 7.2.3
1,10-Phenanthrolinium, 1,10-dimethyl- 3.6.2	Phenothiazine, 2-hydroxy-10-(3-dimethylaminopropyl)-7.5.3
1,9-Phenanthrolinium, 1,9-dimethyl- 3.12.2	Phenothiazine, 10-[3-(4-(2-hydroxyethyl)-1-
2,7-Phenanthrolinium, 2,7-dimethyl- 3.12.4	piperazinyl)propyl - 7.4.18
2,8-Phenanthrolinium, 2,8-dimethyl- 3.12.3	Phenothiazine, 3-iodo- 7.2.4
3,7-Phenanthrolinium, 3,7-dimethyl- 3.12.6	Phenothiazine, 1-methoxy- 7.2.7
3,8-Phenanthrolinium, 3,8-dimethyl- 3.12.5	Phenothiasine, 3-methoxy- 7.2.8
4,7-Phenanthrolinium, 4,7-dimethyl- 3.12.7	Phenothiazine, 2-methoxy-10-(3-dimethylaminopropyl)-
1,10-Phenanthrolinium, 1,10-ethylene- 3.6.3	7.5.4
1,10-Phenanthrolinium, 1,10-propylene 3.6.4	Phenothiazine, 10-methyl- 7.4.2
1,10-Phenanthrolinium, 1,10-tetramethylene- 3.6.9	Phenothiazine, 3-methyl- 7.2.6
1,10-Phenanthrolinium 3.6.1	Phenothiazine, 10-(2-methyl-2-diethylaminoethyl)-
Phenanthrolino 4,5-a:6,7-c diazepinediium 3.6.4	7.4.14
Phenanthrolino[4,5-a:6,7-c]diazepinediium, 1,11-dimethyl- 3.6.7	Phenothiazine, 10-(N-methyl-3-piperidinyl)methyl-7.4.13
Phenanthrolino[4,5-a:6,7-c]diazocinediium 3.6.9	Phenothiazine, 10-[3(4-methyl-1-piperazinyl)propyl]-7.4.17

Phenothiazine, 10-[3-(4-methyl-1-piperazinyl)propyl]-2trifluoromethyl- 7.5.8 Phenothiazine, 10-(2-methyl-2trimethylammonioethyl)- 7.4.11 Phenothiazine, 3-nitro- 7.2.5 Phenothiazine, 3-phenyl- 7.2.11 Phenothiazine, 10-(2-pyrrolidinylethyl)- 7.4.8 Phenothiazine, 10-(6-sulfonatohexyl)- 7.4.9 10-Phenothiazinecarboxaldehyde 7.4.1 Phenothiazine-10-ethanamine, N,N-diethyl- 7.4.10 Phenothiazine-10-ethaneamine, N,N,a-trimethyl- 7.4.6 Phenothiazine-10-ethaneamine, N,N,B-trimethyl- 7.4.7 Phenothiazine-10-hexanamine, N,N-diethyl- 7.4.16 10H-Phenothiazine 5-oxide 7.7.1 10H-Phenothiazine-10-propanamine, 2-chloro-N,Ndimethyl- 7.5.1 Phenothiazine-10-propanamine, 2-methoxy-N,Ndimethyl- 7.5.4 Phenothiazine-10-propanamine, N,N-diethyl- 7.4.15 Phenothiazine-10-propanamine, N,N-dimethyl- 7.4.5 10H-Phenothiazine sulfone 7.7.2 10H-Phenothiazine sulfoxide 7.7.1 5-Phenothiazinium, 3,7-bis(dimethylamino)- 4.5.2 1-Phenyl-2,3-dihydro-6-nitroimidazo[1,2-a]pyridinium 2.8.14 6-Phenyldipyrido[1,2-a:2',1'-c]pyrazinediium 3.2.3 p-Phenylenediamine, N,N,N',N'-tetramethyl- 6.1.5 o-Phenylenediamine 6.1.3 p-Phenylenediamine 6.1.4 1,1'-(1-Phenylethylene)-2,2'-bipyridinium 3.3.19 3-Phenylphenothiazine 7.2.11 Phenyl sulfone, (1-methyl-4-nitroimidazol-5-yl)- 2.4.18 1-Phenyl-2,3-trimethyleneisoindole-4,7-dione 1.4.4 Phthalazine-1,4-dione, 5-amino- 1.5.2 Pimonidazole 2.3.74 1-Piperazinamine, N-[(1-methyl-2-nitroimidazol-5yl)methylene]- 2.3.18 Piperazine, 1-[3-(2-chloro-10-phenothiazinyl)propyl]-4-(2-hydroxyethyl)- 7.5.10 1-Piperazineacetic acid, 4-methyl-, [(5-nitro-2furanyl)methylene|hydrazide 2.2.6 1-Piperazineethanol, 4-methyl-α-[2-nitroimidazol-1yl)methyl|- 2.3.77 5-(N-Piperazinoiminomethyl)-1-methyl-2nitroimidazole 2.3.18 1-Piperidinamine, N-[(1-methyl-2-nitroimidazol-5yl)methylene|- 2.3.19 Piperidine, 4-|2-hydroxy-3-(2-nitroimidazol-1yl)propylamino]-2,2,6,6-tetramethyl- 2.3.72 Piperidine, 1-[2-(2-nitroimidazol-1-yl)ethyl]- 2.3.56 Piperidine, 1-[3-(2-nitroimidazol-1-yl)propyl]- 2.3.57 Piperidine, 1-[4-(2-nitroimidazol-1-yl)butyl]- 2.3.58 Piperidine, 1-[6-(2-nitroimidazol-1-yl)hexyl]- 2.3.59

1-Piperidineethanol, 3-hydroxy-α-[2-nitroimidazol-1yl)methyl|- 2.3.75 1-Piperidineethanol, α-[(2-nitroimidazol-1-yl)methyl]-2.3.74 Piperidine-1-oxy, 4-2-hydroxy-3-(2-nitroimidazol-1yl)propylamino]-2,2,6,6-tetramethyl- 2.3.71 1-(3-N-Piperidino-2-hydroxypropyl)-2-nitroimidazole 2.3.74 5-(N-Piperidinoiminomethyl)-1-methyl-2nitroimidazole 2.3.19 1-(4-N-Piperidinylbutyl)-2-nitroimidazole 2.3.58 1-(2-Piperidinylethyl)-2-nitroimidazole 2.3.56 1-(5-N-Piperidinylhexyl)-2-nitroimidazole 2.3.59 1-(3-N-Piperidinylpropyl)-2-nitroimidazole 2.3.57 Prochlorperazine 7.5.7 Promazine 7.4.5 Promethazine 7.4.6 1.3-Propanediamine. N.N-dimethyl-N'-(4-chloro-1nitro-9-acridinyl)- 2.7.3 1,3-Propanediamine, N,N-dimethyl-N'-(4dimethylamino-1-nitro-9-acridinyl)- 2.7.8 1,3-Propanediamine, N,N-dimethyl-N'-[4-[di(2acetoxyethyl)amino|-1-nitro-9-acridinyl|- 2.7.9 1,3-Propanediamine, N,N-dimethyl-N'-(4-fluoro-1nitro-9-acridinyl)- 2.7.4 1,3-Propanediamine, N,N-dimethyl-N'-(4-methoxy-1nitro-9-acridinyl)- 2.7.6 1,3-Propanediamine, N,N-dimethyl-N'-(4methoxycarbonyl-1-nitro-9-acridinyl)- 2.7.7 1,3-Propanediamine, N,N-dimethyl-N'-(4-methyl-1nitro-9-acridinyl)- 2.7.5 1,3-Propanediamine, N,N-dimethyl-N'-(1-nitro-9acridinyl)- 2.7.2 Propanedinitrile, [(1-methyl-2-nitroimidazol-5yl)methylene|- 2.3.15 1,3-Propanediol, 3-(5-iodo-3-nitroimidazol-1-yl)- 2.4.36 1,2-Propanediol, 3-(2-nitroimidazol-1-yl)- 2.3.29 1,3-Propanediylbis(1'-methyl-4,4'-bipyridinium) 3.6.49 2-Propanol, 1-(diethylamino)-3-[(2,3-dimethoxy-6nitro-9-acridinyl)amino - 2.7.1 2-Propanol radical 4.1.6 1-Propanone, 3-dimethylamino-1-(4-nitrophenyl)-2.1.19 2-Propanone, 1-(2-nitroimidazol-1-yl)- 2.3.24 5-Propoxy-1,1'-ethylene-2,2'-bipyridinium 3.3.16 1,1'-(1,2-Propylene)-2,2'-bipyridinium 3.3.6 1,1'-Propylene-2,2'-bipyridinium 3.4.1 1,10-Propylene-1,10-phenanthrolinium 3.6.4 Protocatechuic acid 5.2.3 Purine, [(3-amino-6-(2-methylpropyl)]-1-(4-nitro-5imidazolyl)- 2.4.29 Purine, 3-amino-1-(4-nitro-5-imidazolyl) - 2.4.28 Purine, 2,6,8-trihydroxy- 6.4.7

```
Pyrrolo[2,3-b]pyridine, 1-[(2-
Purine-2,6-dione, 3,7-dihydro- 6.4.6
                                                               hydroxyethyl)aminocarbonylmethyl]-3-nitro-
Purine-2.6-dione, 3.7-dihvdro-1.3-dimethyl-8-nitro-
                                                               264
     2.8.2
                                                          Pyrrolo[2,3-b]pyridine, 1-methyl-3-nitro- 2.6.1
Purine-2.6-dione, 3.7-dihydro-1.3.7-trimethyl-8-nitro-
     2.8.3
                                                          Pyrrolo[2,3-b]pyridine, 1-[3-(4-
                                                               morpholinyl)propylaminocarbonylmethyl]-3-
Purin-6-one, 2-amino-1,7-dihydro- 6.4.3
                                                               nitro- 2.6.5
Purin-6(1H)-one 6.4.5
                                                          Pyrrolo[2,3-b]pyridine, 7-[3-(4-
2-Pyrazolin-5-one, 3,4-dimethyl- 8.4.3
                                                               morpholinyl)propylaminocarbonylmethyl]-3-
3-Pyrazolin-5-one, 2,3-dimethyl-1-phenyl- 8.4.4
                                                               nitro- 2.6.7
2-Pyrazolin-5-one, 3-methyl- 8.4.1
                                                          Pyrrolo[2,3-b]pyridine, 7-[3-(4-
2-Pyrazolin-5-one, 4-methyl- 8.4.2
                                                               morpholinyl)propylaminocarbonylmethyl -3-nitro-,
1-[(1-Pyrazolyl)thiocarbonylmethyl]-1'-methyl-4,4'-
                                                               protonated 2.6.8
     bipyridinium 3.10.12
                                                          Pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic acid, 4,5-
Pyridine, 4-nitro- 2.8.9
                                                               dihydro-4,5-dioxo- 1.5.10
Pyridine-1-oxide, 3-[(methylcarbamyl)methyl-4-
                                                          Quercetin 8.1.9
     nitroimidazol-1-yl]- 2.4.41
                                                          Quinalizarin 8.1.5
Pyridinium, 4-aminocarbonyl-1-methyl- 4.4.2
                                                          Quinizarin-2-sulfonate ion 1.3.2
Pyridinium, 4-cyano-1-ethyl- 4.4.5
                                                          Quinizarin-6-sulfonate ion 1.3.3
Pyridinium, 1-ethyl-2,3-dihydro-6-nitroimidazo[1,2-a]-
                                                          Quinoline, 2-[2-(5-nitro-2-furanyl)]butadienyl- 2.2.8
                                                          Quinoline, 2-[2-(5-nitro-2-furanyl)]ethenyl- 2.2.7
Pyridinium, 1-phenyl-2,3-dihydro-6-nitroimidazo[1,2-
                                                          Quinone 1.1.1
     a - 2.8.14
                                                          RGW-601 2.3.45
Pyridinium ion, 3-aminocarbonyl-1-methyl- 4.4.1
                                                         RGW-602 2.3.24
4-Pyridyl-1,1'-ethylene-2,2'-bipyridinium 3.3.18
                                                         RGW-603 2.3.56
Pyrimidine, 5,6-dihydro-2,4,6-trihydroxy-5-methyl-5-
                                                         RGW-604 2.3.56
     nitro- 2.8.12
                                                         RGW-605 2.3.62
Pyrimidine, 2,4-dihydroxy-5-methyl- 6.3.3
                                                         RGW-606 2.3.62
Pyrimidine, 2,4,5-trihydroxy- 6.3.5
                                                         RGW-607 2.3.28
2,4-Pyrimidinedione, 5-nitro- 2.8.11
                                                         RGW-608 2.3.34
2,4(1H,3H)-Pyrimidinedione 6.3.1
                                                         RGW-609 2.3.40
2-Pyrimidinone, 4-amino- 6.3.6
                                                         RGW-610 2.3.43
2-Pyrimidinone, 4-amino-1-methyl- 6.3.7
                                                         RGW-611 2.4.40
Pyrocatechol 5.2.1
                                                         RGW-612 2.3.54
Pyrogallic acid 5.5.1
                                                         RGW-613 2.3.25
Pyrogallol 5.5.1
                                                         RGW-616 2.3.20
Pyrrolidine, 1-[2-(2-nitroimidazol-1-yl)ethyl]- 2.3.54
                                                         RGW-617 2.3.46
Pyrrolidine, 1-[4-(2-nitroimidazol-1-yl)butyl]- 2.3.55
                                                         RGW-702 2.6.2
1-(4-N-Pyrrolidinylbutyl)-2-nitroimidazole 2.3.55
                                                         RGW-703 2.3.47
1-[2-(N-Pyrrolidinyl)ethyl]-2-nitroimidazole 2.3.54
                                                         RGW-704 2.3.57
10-(2-Pyrrolidinylethyl)phenothiazine 7.4.8
                                                         RGW-705 2.8.3
1-(3-N-Pyrrolidinyl-2-hydroxypropyl)-2-nitroimidazole
                                                         RGW-706 2.8.1
     2.3.73
                                                         RGW-801 2.3.3
1H-Pyrrolo[2,1,a]isoindole-6,9-dione, 2,3-dihydro-5-
     ethoxycarbonyl-7-methyl- 1.4.9
                                                         RGW-806 2.3.6
1H-Pyrrolo[2,1,a]isoindole-6,9-dione, 2,3-dihydro-5-
                                                         RGW-810 2.3.60
     ethoxycarbonyl-7-methyl-8-methoxy- 1.4.11
                                                         RGW-812 2.3.61
Pyrrolo[2,3-b]pyridine, 1-(2-bromoethyl)-3-nitro- 2.6.2
                                                         RSU 1005 2.3.46
Pyrrolo[2,3-b]pyridine, 1-(2,3-dihydroxypropyl)-3-
                                                         RSU 1006 2.3.58
     nitro0 2.6.3
                                                         RSU 1007 2.3.49
Pyrrolo[2,3-b]pyridine, 1-(ethoxycarbonylmethyl)-3-
                                                         RSU 1010 2.3.55
     nitro- 2.6.6
                                                         RSU 1017 2.3.51
                                                         RSU 1021 2.3.53
```

```
Ro 03-9482 2.3.64
RSU 1022 2.3.52
                                                         Ro 03-9846 2.3.72
RSU 1031 2.3.59
RSU 1032 2.3.50
                                                         Ro 03-9993 2.3.63
                                                         Ro 05-9129 2.3.1
RSU 1069 2.3.63
                                                         Ro 05-9963 2.3.29
RSU 2096 2.4.34
                                                         Ro 07-0289 2.3.26
RSU 2097 2.5.8
                                                         Ro 07-0582 2.3.35
RSU 3021 2.5.2
RSU 3025 2.4.6
                                                         Ro 07-0741 2.3.27
                                                         Ro 07-1902 2.3.38
RSU 3045 2.4.44
                                                         Ro 11-3696 2.5.20
RSU 3046 2.4.18
                                                         Ro 12-5272 2.3.30
RSU 3047 2.5.12
                                                         Ro 12-5273 2.3.36
RSU 3050 2.4.14
RSU 3052 2.4.35
                                                         Ro 12-5275 2.3.41
                                                         Ro 31-0052 2.3.75
RSU 3053 2.5.5
                                                         Ro 31-0054 2.3.70
RSU 3054 2.4.26
                                                         Rubidomycin 1.5.5
RSU 3056 2.4.25
                                                         SK 21981 2.5.4
RSU 3057 2.4.21
                                                         SR-2508 2.3.32
RSU 3059 2.4.9
                                                         SR-2514 2.3.45
RSU 3061 2.5.11
                                                         SR-2530 2.3.37
RSU 3062 2.5.6
                                                         SR-2555 2.3.39
RSU 3066 2.5.3
                                                         Selenite(IV) ion 9.66.
RSU 3067 2.5.7
                                                         Selenite(V) ion 9.66., 9.67.
RSU 3068 2.4.33
                                                         Selenite radical ion 9.66., 9.67.
RSU 3069 2.4.4
                                                         Selenocyanate 9.68.
RSU 3071 2.5.1
RSU 3084 2.4.32
                                                         Selenocyanide dimer, radical anion 9.68.
                                                         Singlet oxygen 9.43.
RSU 3100 2.4.16
                                                         Skatole 6.2.5
RSU 3113 2.5.25
                                                         Sulfate(1-), dioxo- 9.58., 9.59.
RSU 3121 2.4.43
RSU 3151 2.4.17
                                                         Sulfate(1-), pentaoxo- 9.64.
RSU 3162 2.4.36
                                                         Sulfate(1-), tetraoxo- 9.63.
                                                         Sulfate(1-), trioxo- 9.60., 9.61., 9.62.
Resorcinol 5.3.1
                                                         Sulfate ion 9.62., 9.63.
α-Resorcylic acid 5.3.3
Riboflavin, 8\alpha-N-imidazoyl- 4.6.4
                                                         Sulfate radical ion 9.63.
Riboflavin, 8\alpha-tetra-O-acetyl-(N-methyl-N-imidazolio)-
                                                         Sulfhydryl dimer radical 9.54.
       4.6.5
                                                         Sulfite ion 9.60.
Riboflavin 5'-(dihydrogen phosphate) 4.6.2
                                                         Sulfite radical ion 9.60., 9.61., 9.62.
Riboflavine 4.6.1
                                                         10-(6-Sulfonatohexyl)phenothiazine 7.4.9
Ro 03-0350 2.3.69
                                                         10-(3-Sulfonatopropyl)phenothiazine 7.4.4
Ro 03-5580 2.8.14
                                                         Sulfur 9.52.
Ro 03-5637 2.8.13
                                                         Sulfur dioxide 9.58.
Ro 03-8799 2.3.74
                                                         Sulfur dioxide radical anion 9.58., 9.59.
Ro 03-8800 2.3.76
                                                         Superoxide radical anion 9.41., 9.43., 9.44., 9.45., 9.46.
Ro 03-9041 2.3.44
                                                         3,3',5,5'-Tetrabromodiphenoquinone 1.5.8
Ro 03-9309 2.3.68
                                                         3,3',5,5'-Tetrachlorodiphenoquinone 1.5.9
Ro 03-9310 2.3.73
                                                         6,7,8,9-Tetrahydro-2,13-dimethyldipyrido 1,2-a:2',1'-
                                                              c][1,4]diazocinediium 3.5.2
Ro 03-9311 2.3.65
Ro 03-9339 2.3.77
                                                         6,7,8,9-Tetrahydrodipyrido[1,2-a:2',1'-
Ro 03-9340 2.3.67
                                                              c][1,4]diazocinediium 3.5.1
                                                         6.7.8.9-Tetrahydro-2.3.12.13-tetramethyldipyrido[1,2-
Ro 03-9349 2.3.66
                                                              a:2',1'-c [1,4] diazocinedium 3.5.3
Ro 03-9454 2.3.71
```

Trichloromethyldioxy 8.5.2

1.2.8. Weltahydroxy Pillbanthraquinoue 8.1.5 g,a,7,8 Tetrahydroxy [1] benzopyrano [5,4,3ede[[1]benzopyran-5,7-dione 8.1.10 1,3,7,8-Tetramethylbenzo|g|pteridine-2,4-dione 4.6.9 Tetramethyl-1,4-benzoquinone 1.1.7 2,3,5,6-Tetramethylbenzoquinone 1.1.7 1,1',2,2'-Tetramethyl-4,4'-bipyridinium 3.9.5 1,1',3,3'-Tetramethyl-4,4'-bipyridinium 3.9.6 1,1'-Tetramethylene-2,2'-bipyridinium 3.5.1 1,10-Tetramethylene-1,10-phenanthrolinium 3.6.9 4,5,4',5'-Tetramethyl-1,1'-ethylene-2,2'-bipyridinium 3.3.17 Tetramethylhydroquinone 5.4.10 1-[3-[4-(2,2,5,5-Tetramethyl-1-oxypiperidinyl)amino]-2hydroxypropyl]-2-nitroimidazole 2.3.71 N,N,N',N'-Tetramethyl-p-phenylenediamine 6.1.5 1,2,5,6-Tetramethyl-3-phenylisoindole-4,7-dione 1.4.8 1-[3-[4-(2,2,5,5-Tetramethylpiperidinyl)amino]-2hydroxypropyl -2-nitroimidazole 2.3.72 4,5,4',5'-Tetramethyl-1,1'-tetramethylene-2,2'bipyridinium 3.5.3 4,5,4',5'-Tetramethyl-1,1'-trimethylene-2,2'bipyridinium 3.4.6 2,3,11,12-Tetramethyltriquat 3.4.6 Tetraquat 3.5.1 [1,2,5]Thiadiazolo[3,4-b]pyrazine, 5,6-di(2-furyl)- 4.8.3 [1,2,5] Thiadiazolo [3,4-b] pyrazine, 5,6-di-2-pyridinyl-[1,2,5] Thiadiazolo [3,4-b] pyrazine, 5,6-di-2-pyridinyl-, N-oxide 4.8.5 Thiocyanate ion 9.55., 9.56. Thiocyanogen 9.55. Thiocyanogen 9.57. Thioglycolic acid 8.3.2.2 Thionine 4.5.1 Thiophene, 2-nitro- 2.8.10 Thioproperazine 7.5.9 Thioridazine 7.5.6 Thiosulfate ion 9.65. Thiosulfate radical ion 9.65. Thymine 6.3.3 Tinidazole 2.5.21 p-Toluquinone 1.1.2

Trichloromethylperoxyl 8.5.2 Trifluoperazine 7.5.8 Triflupromazine 7.5.2 1,2,3-Trihydroxybenzene 5.5.1 1,2,4-Trihydroxybenzene 5.5.4 3,4,5-Trihydroxyphenethylamine 5.5.2 2,6,8-Trihydroxypurine 6.4.7 2,4,5-Trihydroxypyrimidine 6.3.5 1,7,8-Trimethylbenzo[g]pteridine-2,4-dione 4.6.7 3,7,8-Trimethylbenzo[g]pteridine-2,4-dione 4.6.8 2,3,5-Trimethyl-1,4-benzoquinone 1.1.6 1,1',2-Trimethyl-4,4'-bipyridinium 3.9.1 1,1'-Trimethylene-2,2'-bipyridinium 3.4.1 1,1'-Trimethylene-4,7-dimethyl-1,10-phenanthrolinium 1,1'-Trimethylene-5-methoxy-2,2'-bipyridinium 3.4.3 Trimethylhydroquinone 5.4.9 1,2,5-Trimethyl-3-phenylisoindole-4,7-dione 1.4.3 Triquat 3.4.1 Trolox O 8.1.6 Tryptamine 6.2.8 Tryptophan 6.2.9 L-Tryptophan, N-acctyl- 6.2.12 Tryptophan, 5-hydroxy- 6.2.10 DL-Tryptophanamide 6.2.11 L-Tryptophyl-L-alanine 6.2.13 L-Tyrosinamide, N-acetyl- 5.1.11 Tyrosine 5.1.9 DL-Tyrosine, methyl ester 5.1.10 Umbelliferone 8.1.2 Uracil 6.3.1 Uracil, N₁-methyl- 6.3.2 Uric acid 6.4.7 Vitamin B₂ 4.6.1 Vitamin C 8.1.1 Vitamin K₁ 1.2.17, 8.1.4 Water 9.38. Xanthine 6.4.6 1,1'-o-Xylylenebis-4,4'-bipyridinium 3.8.47 ZK-28943 2.5.9

15.	Molecular Formula Index	$\mathrm{C_4H_4BrN_3O_2}$	2-Bromo-1-methyl-4-nitroimidazole 2.4.32
Br	Bromine atom 9.2., 9.3.		4-Bromo-1-methyl-5-nitroimidazole 2.5.1
Br ⁻	Bromide ion 9.2., 9.4., 9.5., 9.9.		5-Bromo-1-methyl-4-nitroimidazole 2.4.4
ВгНО	Bromosyl hydride 9.5.		5-Chloro-1-methyl-4-nitroimidazole 2.4.5
	Hypobromous acid 9.3., 9.4.	$C_4H_4IN_3O_2$	2-Iodo-1-methyl-4-nitroimidazole 2.4.33
BrHO ₂	Bromous acid 9.7.		2-Iodo-1-methyl-5-nitroimidazole 2.5.7 4-Iodo-1-methyl-5-nitroimidazole 2.5.2
BrO_2	Bromine dioxide 9.6., 9.7., 9.8.		5-lodo-1-methyl-4-nitroimidazole 2.4.6
$\mathrm{BrO_2}^-$	Bromite ion 9.6.	$C_4H_4N_2O_2$	Uracil 6.3.1
BrO ₃	Bromate ion 9.8.	$C_4H_4N_2O_3$	2,4,5-Trihydroxypyrimidine 6.3.5
Br_2	Bromine 9.10.		Barbituric acid 6.3.4
Br ₂	Dibromine radical ion 9.9., 9.10.	$C_4H_4N_4O_4$	1-Methyl-2,4-dinitroimidazole 2.4.34
CCl_3O_2	Trichloromethylperoxyl 8.5.2		1-Methyl-2,5-dinitroimidazole 2.5.8
CHO ₂	Formate ion 9.14.	C ₄ H ₅ N ₃ O	Cytosine 6.3.6
CH ₂ O	Formaldehyde 4.1.1, 4.1.2	$C_4H_5N_3O_2$	2-Methyl-4-nitroimidazole 2.4.3
CH ₂ O ⁻ CH ₃ O	Hydroxymethyl, conjugate base 4.1.1 Hydroxymethyl 4.1.2	$C_4H_5N_3O_2S$	5-Mercapto-1-methyl-4-nitroimidazole 2.4.7
CH_3O_2	Methylperoxyl 8.5.1	$C_4H_5N_3O_3$	1-Methyl-4-nitroimidazol-5-one 2.4.42
$CH_4N_2O_2$	Hydroxyurea 4.3.1	$C_4H_6N_2O$	3-Methyl-2-pyrazolin-5-one 8.4.1
CN	Cyanide radical 9.11.		4-Methyl-2-pyrazolin-5-one 8.4.2
CN^-	Cyanide ion 9.11.	$C_4H_6N_4O$	4(5)-Aminoimidazole-5(4)-carboxamide 4.3.2
CNO	Isocyanate ion 9.12.	C ₄ H ₆ N ₄ O ₄ S	1-Methyl-4-nitroimidazole-5-sulfonamide
CNS	Thiocyanogen 9.55.	-404-4-	2.4.8
CNS-	Thiocyanate ion 9.55., 9.56.		4-Aminosulfonyl-1-methyl-5-
CNSe ⁻ CO ₂	Selenocyanate 9.68.	~ ** ~ ^	nitroimidazole 2.5.4
CO_2	Carbon dioxide 9.13. Carbon dioxide radical anion 9.13., 9.14.	$C_4H_{10}O_2S_2$	2-Hydroxyethyl disulfide 4.2.2 Dithioerythritol 8.3.4.4
$C_2HN_2O_3^{2-}$	Cyanate radical anion 9.12.		Dithiothreitol 8.3.4.2
$C_2H_2S_2$	Thiocyanogen 9.57.	$C_5H_3NO_5$	5-Nitro-2-furoic acid 2.2.1
C_2H_4O	Acetaldehyde 4.1.3, 4.1.4	$C_5H_4N_2O_2$	4-Nitropyridine 2.8.9
$C_2H_4O^-$	1-Hydroxyethyl(1-) ion 4.1.3	$C_5H_4N_2O_2S_2$	5H,7H-2,3-Dioxa-2a,6-dithia(2a-S ^{IV})-1,4-
$C_2H_4O_2S$	Mercaptoacetic acid 8.3.2.2		diazacyclopent[c,d-indene 4.7.1
C_2H_5O	1-Hydroxyethyl 4.1.4	$C_5H_4N_2O_3S_2$	5H,7II-2,3-Dioxa-2a,6-dithia(2a-S ^{IV})-1,4-
C_2H_6OS	2-Mercaptoethanol 8.3.1.2, 8.3.2.1,		diazacyclopent[c,d-indene 6-oxide 4.7.2
	8.3.4.1	$C_5H_4N_2O_4$	Nifuroxime 2.2.2
$C_2H_6S_2$	Dimethyl disulfide 8.3.5.1		5H,7H-2,3-Dioxa-2a,6-dithia(2a-S ^{IV})-1,4-
$C_2N_2S_2^-$	Di(thiocyanate) radical ion 9.56., 9.57.	5-4-2-4-2	diazacyclopent c,d-indene 6,6-dioxide
$C_2N_2Se_2^-$	Selenocyanide dimer, radical anion 9.68.		4.7.3
$C_3H_2IN_3O_2$	4-Iodo-5-nitroimidazole 2.4.2	$C_5H_4N_3O_4^-$	1-Methyl-2-nitroimidazole-5-carboxylate
$C_3H_2N_4O_4$	2,4-Dinitroimidazole 2.3.2		ion 2.3.5
$C_3H_3N_3O_2$	2-Nitroimidazole 2.3.1 4-Nitroimidazole 2.4.1	$C_5H_4N_4O$	Hypoxanthine 6.4.5
C_3H_6O	Acetone 4.1.5, 4.1.6	$C_5H_4N_4O_2$	5-Cyano-1-methyl-2-nitroimidazole 2.3.3 Xanthine 6.4.6
$C_3H_6O^-$	Acetone ketyl radical 4.1.5	$C_5H_4N_4O_3$	Uric acid 6.4.7
$C_3H_6O_2S$	3-Mercaptopropionic acid 8.3.2.4		
$C_3H_7NO_2S$	Cysteine 8.3.1.1, 8.3.3.1		2.5.24
C_3H_7O	1-Hydroxy-1-methylethyl 4.1.6	$\mathrm{C_5H_5N_3O_3}$	1-Methyl-2-nitroimidazole-5-
C ₄ H ₃ NO ₂ S	2-Nitrothiophene 2.8.10		carboxaldehyde 234
$C_4H_3N_3O_4$	5-Nitrouracil 2.8.11		1-Methyl-5-nitroimidazole-2- carboxaldehyde 2.5.9
		$C_5H_5N_3O_4$	1-(2-Carboxymethyl)-2-nitroimidazole
			2.3.20

C ₆ H ₆ N ₉ O ₄ S	1,2-[Ethanediylsulfonyl]-5-nitroimidazole 2.5.25 3,4-[Ethanediylsulfonyl]-5-nitroimidazole 2.4.43	$C_6H_7N_3O_4$	1-(Methoxycarbonylmethyl)-2- nitroimidazole 2.3.25 Methyl 1-methyl-2-nitroimidazole-5- carboxylate 2.3.9
$C_5H_5N_5$ $C_5H_5N_5O$	Adenine 6.4.1 Guanine 6.4.3	C ₆ H ₇ N ₃ O ₄ S	5-Carboxymethylthio-1-methyl-4- nitroimidasole 2.4.10
$C_5H_6N_2O_2$	1-Methyluracil 6.3.2 Thymine 6.3.3	C ₆ H ₈ ClN ₃ O ₃	, 1-(3-Chloro-2-hydroxypropyl)-2- nitroimidazole 2.3.26
$\mathrm{C_5H_6N_4O_3}$	1-Methyl-2-nitroimidazole-5-carboxamide 2.3.6	$\mathrm{C_6H_8FN_3O_3}$	1-(3-Fluoro-2-hydroxypropyl)-2- nitroimidazole 2.3.27
$\mathrm{C_5H_6N_4O_5}$	1-(2-Hydroxyethyl)-2,4-dinitroimidazole 2.3.22	$C_6H_8IN_3O_4$	1-(2,3-Dihydroxypropyl)-5-iodo-4- nitroimidazole 2.4.36
$C_5H_7N_3O$	1-Methylcytosine 6.3.7	$\mathrm{C_6H_8N_2}$	o-Phenylenediamine 6.1.3
$C_5H_7N_3O_2$	1,2-Dimethyl-5-nitroimidazole 2.5.10	CHNOD	p-Phenylenediamine 6.1.4 2-2-Methyl-1-(2-phosphatoethyl)-4-
$C_5H_7N_3O_3$	1-(2-Hydroxyethyl)-2-nitroimidazole 2.3.21	O6118143O61	nitroimidazole 2.5.14
	5-Hydroxymethyl-1-methyl-2- nitroimidazole 2.3.7	$C_6H_8N_4O_3$	1-Methyl-5- [methyl(oxyamino)methylene]-2- nitroimidazole 2.3.10
$C_5H_7N_3O_3S$	1-Methyl-2-(methylsulfinyl)-5- nitroimidazole 2.5.11	$C_6H_8O_6$	Ascorbic acid 8.1.1
Callana O.S	1-Methyl-2-(methylsulfonyl)-4-	$C_6H_9N_3O_3$	1-(2-Hydroxyethyl)-2-methyl-5-
05117113040	nitroimidazole 2.4.35		nitroimidazole 2.5.15
	1-Methyl-2-(methylsulfonyl)-5-		1-(2-Hydroxyethyl)-5-methyl-2-
	nitroimidazole 2.5.12		nitroimidazole 2.3.23 1-(2-Methoxyethyl)-2-nitroimidazole
	1-Methyl-5-(methylsulfonyl)-4- nitroimidazole 2.4.9		2.3.28
$C_5H_7N_3O_5$	6-Hydroxy-5-nitrothymine 2.8.12	$C_6H_9N_3O_4$	1-(2,3-Dihydroxypropyl)-2-nitroimidazole
$C_5H_8N_2O$	3,4-Dimethyl-2-pyrazolin-5-one 8.4.3	0 3 0 4	2.3.29
$C_5H_{11}NO_2S$			5-(1,2-Dihydroxyethyl)-1-methyl-2-
$C_6H_4N_2O_4$	m-Dinitrobenzene 2.1.2	CHNOC	nitroimidazole 2.3.11
	o-Dinitrobenzene 2.1.1	C6H9N3O45	1-[2-(Methylsulfonyl)ethyl]-2- nitroimidazole 2.3.30
~ · · · · ·	p-Dinitrobenzene 2.1.3	CeHoN4OeS	5-Acetylaminosulfonyl-1-methyl-4-
$C_6H_4N_2O_5$	2,4-Dinitrophenol 2.1.8	00-19-14-05-	nitroimidazole 2.4.12
${{ m C_6H_4O_2}\atop { m C_6H_4O_8S_2}^{2-}}$		$C_6H_{10}N_4O_4S$	S 5-(Dimethylaminosulfonyl)-1-methyl-4- nitroimidazole 2.4.11
O II NO	5.4.2	$\mathrm{C_6H_{10}N_6O}$	5-(3,3-Dimethyl-1-triazeno)imidazole-4-
C ₆ H ₅ NO ₂	Nitrobenzene 2.1.11 7,8-Dihydro-6H[1,2,5]oxathiazolo[4,3,2-		carboxamide 4.3.3
O6116112O25	hi[2,1,3] benzoxathiazole-3-S ^{IV} 4.7.4		S ₂ Cystine 4.2.1
$C_6H_6N_4O_4$	5-Nitro-2-furaldehyde semicarbazone	$C_7H_4N_2O_2$	2-Nitrobenzonitrile 2.1.17
	2.2.4	$C_7H_4N_2O_6$	2,4-Dinitrobenzoic acid 2.1.4 2,5-Dinitrobenzoic acid 2.1.5
C_6H_6O	Phenol 5.1.1		3,4-Dinitrobenzoic acid 2.1.6
$C_6H_6O_2$	Catechol 5.2.1	# 1 m	3,5-Dinitrobenzoic acid 2.1.7
	Hydroquinone 5.4.1	$C_7H_5NO_3$	o-Nitrobenzaldehyde 2.1.12
$C_6H_6O_3$	Resorcinol 5.3.1 1,2,4-Benzenetriol 5.5.4		p-Nitrobenzaldehyde 2.1.13
611603	Pyrogallol 5.5.1	$C_7H_5NO_4$	4-Nitrobenzoic acid 2.1.16
C_6H_7N	Aniline 6.1.1		m-Nitrobenzoic acid 2.1.15 o-Nitrobenzoic acid 2.1.14
C ₆ H ₇ NO	4-Aminophenol 5.1.2	$C_7H_5N_3O_2$	2-Nitrobenzimidazole 2.8.1
$C_6H_7NO_4$	2-Methoxymethyl-5-nitrofuran 2.2.3	$C_7H_6O_2$	Methyl-1,4-benzoquinone 1.1.2
$C_6H_7N_3O_2$	5-Ethenyl-1-methyl-2-nitroimidazole 2.3.8	$C_7H_6O_3$	4-Hydroxybenzoic acid 5.1.3
$\mathrm{C_6H_7N_3O_3}$	2-Nitro-1-(2-oxopropyl)imidazole 2.3.24		

$C_7H_6O_4$	2,3-Dihydroxybenzoic acid 5.2.2	$C_8H_8O_2$	2,3-Dimethyl-1,4-benzoquinone 1.1.3
	2,5-Dihydroxybenzoic acid 5.3.2		2,5-Dimethyl-1,4-benzoquinone 1.1.4
	3,4-Dihydroxybenzoic acid 5.2.3		2,6-Dimethyl-1,4-benzoquinone 1.1.5
O II NO	3,5-Dihydroxybenzoic acid 5.3.3	$C_8H_8O_3$	2,5-Dihydroxyacetophenone 5.4.5
C ₇ H ₇ NO ₃	p-Nitrobenzyl alcohol 2.1.18	$C_8H_8O_4$	2,5-Dihydroxyphenylacetic acid 5.4.6
$C_7H_7N_5O_4$	8-Nitrotheophylline 2.8.2	,	3,4-Dihydroxyphenylacetic acid 5.2.4
$C_7H_8IN_3O_4$	1-(Ethoxycarbonylmethyl)-4-iodo-5-	$C_8H_9NO_2$	Acetaminophen 5.1.7
	nitroimidazole 2.5.17 Ethyl 5-iodo-4-nitroimidazole-1-acetate	$C_8H_9N_2^+$	4-Cyano-1-ethylpyridinium 4.4.5
	2.4.37	$C_8H_9N_5O_4$	8-Nitrocaffeine 2.8.3
C_7 H $_8$ N $_4$ O $_5$	5-Amino-2,4-dinitrobenzamide 2.1.24	$C_8H_{10}NO^+$	N-Methyl-4-acetylpyridinium 4.4.3
C_7H_8O	4-Methylphenol 5.1.4	$\mathrm{C_8H_{10}NO_2}^+$	N-Methyl-4-
$C_7H_8O_2$	4-Methoxyphenol 5.1.5		(methoxycarbonyl)pyridinium 4.4.4
0711802	Methylhydroquinone 5.4.3	$C_8H_{10}O_2$	1,4-Benzenediol, 2,5-dimethyl- 5.4.8
$C_7H_8O_3$	Methoxyhydroquinone 5.4.4	~ '	1,4-Dihydroxy-2,3-dimethylbenzene 5.4.7
C_7H_9NO	4-(Methylamino)phenol 5.1.6	$C_8H_{11}N$	N,N-Dimethylaniline 6.1.2
$C_7H_9N_2O^+$	1-Methylisonicotinamide 4.4.2	$C_8H_{11}NO$	4-(N,N-Dimethylamino)phenol 5.1.8
0711g1120	1-Methylnicotinamide 4.4.1	$C_8H_{11}NO_2$	3,4-Dihydroxyphenethylamine 5.2.5
$C_7H_9N_3O_5$	1-(2-Methylcarbonyloxyethyl)-2-	$C_8H_{11}NO_3$	5-Hydroxydopamine 5.5.2
07-191 3 0 5	nitroimidazole 2.3.31		Norepinephrine 5.2.6
C ₇ H ₁₀ ClN ₃ C) ₃ α-(Chloromethyl)-2-methyl-5-	$C_8H_{12}N_4O_3S$	1-[2-(Methoxythiocarbonylamino)ethyl]-2-
	nitroimidazole-1-ethanol 2.5.16	CILNO	methyl-5-nitroimidazole 2.5.19
$C_7H_{10}IN_3O_4$	1-(2-Hydroxy-3-methoxypropyl)-5-iodo-4-	$C_8H_{12}N_4O_5$	
	nitroimidazole 2.4.38, 2.5.18		Dihydroxypropyl)aminocarbonylmethyl- 2-nitroimidazole 2.3.37
$C_7II_{10}N_4O_4$	1-(2-Hydroxyethyl)aminocarbonylmethyl-	CoH10N4OcS	1-Methyl-4-(N-morpholinosulfonyl)-5-
	2-nitroimidazole 2.3.32	-6124-5~	nitroimidazole 2.5.3
$C_7H_{11}N_3O_2$	1-Methyl-5-(1-methylethyl)-2-		1-Methyl-5-(N-morpholinosulfonyl)-4-
~	nitroimidazole 2.3.12		nitroimidazole 2.4.14
$C_7H_{11}N_3O_3$	1-(2-Ethoxyethyl)-2-nitroimidazole 2.3.34	$\mathrm{C_8H_{13}N_3O_4}$	α-(Methoxymethyl)-2-methyl-5-
	5-(1-Hydroxy-1-methylethyl)-1-methyl-2- nitroimidazole 2.3.13		nitroimidazole-1-ethanol 2.5.20
C-H. N.O.	1-(2-Hydroxy-3-methoxypropyl)-2-		1-(2-Hydroxy-3-methoxypropyl)-2-
0711111304	nitroimidazole 2.3.35		methyl-4-nitroimidazole 2.4.39
CzH., NaO.S	3 1-[(2-Ethylsulfonyl)ethyl]-2-	U ₈ H ₁₃ N ₃ U ₄ S	1-(2-Ethylsulfonyl)ethyl-2-methyl-5-
57-11-3-4	nitroimidazole 2.3.36	C-H- N.O-	nitroimidazole 2.5.21
$C_7H_{11}N_5O_2$	5-(Dimethylaminoiminomethyl)-1-methyl-	081114114()3	1-(3-Dimethylamino-2-hydroxypropyl)-2- nitroimidazole 2.3.64
. 11 0 5	2-nitroimidazole 2.3.14	CoH. OoSo	Lipoic acid 8.3.5.2
$C_7H_{13}N_bO_4S$	3.5		Lipoamide 4.2.3, 8.3.4.3
	[(Dimethylaminomethyl)aminosulfonyl]-	$C_9H_6O_3$	7-Hydroxycoumarin 8.1.2
	1-methyl-4-nitroimidazole 2.4.13	$C_9H_7NO_4$	
$C_8H_2N_4S$	2,1,3-Benzothiadiazole-4,7-dicarbonitrile	091171104	5-Methoxy-2-nitrobenzofuran 2.8.8 7-Methoxy-2-nitrobenzofuran 2.8.6
	4.8.2	CoHoBrNaO	2.9.6 (2-Bromoethyl)-3-nitro-7-azaindole
$C_8H_5NO_3$	2-Nitrobenzofuran 2.8.4	- 903-2	2.6.2
$C_8H_5NO_4$	5-Hydroxy-2-nitrobenzofuran 2.8.7	$C_0H_8N_4O_5$	5-Aziridinyl-2,4-dinitrobenzamide 2.1.20
CHNO	7-Hydroxy-2-nitrobenzofuran 2.8.5	$C_9H_8O_4$	(E)-3,4-Dihydroxycinnamic acid 5.2.7
$C_8H_5N_3O_2$	5-Aminophthalazine-1,4-dione 1.5.2	C_9H_9N	1-Methylindole 6.2.3
$C_8H_5N_5O_2$	5-(2,2-Dicyanoethenyl)-1-methyl-2-	0 0	2-Methylindole 6.2.4
CHNO	nitroimidazole 2.3.15		3-Methylindole 6.2.5
$C_8H_6N_4O_5$	Furadantin 2.2.5	$C_9H_9NO_3$	Adrenochrome 1.5.1
C ₈ H ₇ N	Indole 6.2.1	$C_9H_9N_6O_2S$	
C ₈ H ₇ NO	5-Hydroxyindole 6.2.2		nitroimidazole 2.4.28
$C_8H_7NO_3$	4-Nitroacetophenone 2.1.10		
CHNO	m-Nitroacetophenone 2.1.9		
$C_8H_7N_3O_2$	1-Methyl-3-nitro-7-azaindole 2.6.1		

$C_9H_{10}N_4O_3$	2-Amino-5-aziridinyl-4-nitrobenzamide 2.1.26	$C_{10}H_9N_3O_2S$ 1-Methyl-4-nitro-5-(phenylthio)imidazole 2.4.44
	4-Amino-5-aziridinyl-2-nitrobenzamide 2.1.27	C ₁₀ H ₉ N ₃ O ₃ 1-Methyl-4-nitro-5-phenoxyimidazole 2.4.16
$C_9H_{10}O_2$ $C_9H_{10}O_5$	2,3,5-Trimethyl-1,4-benzoquinone 1.1.6 Ethyl gallate 5.5.3	C ₁₀ H ₉ N ₃ O ₄ 1-Methyl-4-nitro-5-(p- hydroxyphenoxy)imidazole 2.4.17
C ₉ H ₁₁ NO ₃	Adrenalone 5.2.8 Tyrosine 5.1.9	C ₁₀ H ₉ N ₃ O ₄ S 1-Methyl-5-nitro-4- phenylsulfonylimidazole 2.5.5 1-Methyl-5-phenylsulfonyl-4-
$C_9H_{11}NO_4$ $C_9H_{11}N_3O_6$	5-[Bis(methylcarbonyloxy)methyl]-1-	nitroimidazole 2.4.18
$C_9H_{12}N_2O_4$	methyl-2-nitroimidazole 2.3.16 N-Butyl-5-nitro-2-furamide 2.2.11	C ₁₀ H ₉ N ₃ O ₅ S 1-Methyl-5-nitro-4- phenylsulfonyloxyimidazole 2.5.6
$C_9H_{12}N_3O_2$	+ 1-Ethyl-2,3-dihydro-6-nitroimidazo[1,2- a]pyridinium 2.8.13	1-Methyl-5-phenoxysulfonyl-4- nitroimidazole 2.4.19
$C_9H_{12}N_4O_5$	5-(Dimethylamino)-2,4-dinitrobenzamide	$C_{10}H_{10}N_2^{2+}$ 2,2'-Bipyridinium 3.1.1 $C_{10}H_{10}N_4O_2$ 2-Nitro-1-[2-(2-pyridylethyl)]imidazole
$C_9H_{12}O_2$	2.1.25 Trimethylhydroquinone 5.4.9	2.3.60
$C_9II_{13}N_3O_4$	α-(Allyloxymethyl)-2-nitroimidazole-1- ethanol 2.3.38	$ m C_{10}H_{10}N_4O_4S1$ -Methyl-5-phenylaminosulfonyl-4-nitroimidazolo 2.1.22
	Ethyl 5-ethyl-2-nitroimidazole-1-acetate 2.3.33	C ₁₀ H ₁₀ N ₄ O ₅ 5-Aziridinyl-N-methyl-2,4- dinitrobenzamide 2.1.21
$C_9H_{13}N_5O_5$	3 1-Methyl-5-(N-morpholinoiminomethyl)- 2-nitroimidazole 2.3.17	$C_{10}H_{11}N$ 2,3-Dimethylindole 6.2.7 $C_{10}H_{11}N_3O_4$ 1-(2,3-Dihydroxypropyl)-3-nitro-7-
C ₉ H ₁₄ N ₄ O ₅	1-[2-(N-Pyrrolidinyl)ethyl]-2- nitroimidazole 2.3.54	azaindole 2.6.3 $\mathrm{C_{10}H_{12}N_2}$ Tryptamine 6.2.8
C9H14N4O3	1-(2-N-Morpholinoethyl)-2-	$C_{10}H_{12}O_2$ Duroquinone 1.1.7
	nitroimidazole 2.3.45	C ₁₀ H ₁₃ NO ₃ DL-Tyrosine, methyl ester 5.1.10
	1-(2-N-Morpholinoethyl)-4-	C ₁₀ H ₁₃ N ₅ O ₄ Adenosine 6.4.2
	nitroimidazole 2.4.40	C ₁₀ H ₁₃ N ₅ O ₅ Guanosine 6.4.4
	1-(2-N-Morpholinoethyl)-5- nitroimidazole 2.5.22	C ₁₀ H ₁₄ O ₂ Durohydroquinone 5.4.10
CHNO		C ₁₀ H ₁₅ N ₅ O ₂ 5-(N-Piperidinoiminomethyl)-1-methyl-2-
C ₉ H ₁₄ N ₄ O ₁	hydroxyethyl)]aminocarbonylmethyl-2- nitroimidazole 2.3.39	nitroimidazole 2.3.19 $\mathrm{C_{10}H_{16}N_2}$ N,N,N',N' -Tetramethyl- p -phenylene-
$C_9H_{14}N_6O_5$	5-(N-Piperazinoiminomethyl)-1-methyl-2- nitroimidazole 2.3.18	diamine 6.1.5 $ m C_{10}H_{16}N_4O_2$ 1-(2-Piperidinylethyl)-2-nitroimidazole 2.3.56
$C_9H_{15}N_5O_5$	5S 1-Methyl-5-{(<i>N-</i> morpholinomethylamino)sulfonyl}-4-	$\mathrm{C_{10}H_{16}N_4O_3}$ 1-(3-N-Morphinolopropyl)-2-
	nitroimidazole 2.4.15	nitroimidazole 2.3.47
$C_{10}H_5O_5S^-$	1,4-Naphthoquinone-2-sulfonate ion 1.2.5	1-(3-N-Pyrrolidinyl-2-hydroxypropyl)-2- nitroimidazole 2.3.73
$\mathrm{C_{10}H_6O_2}$	1,2-Naphthoquinone 1.2.1 1,4-Naphthoquinone 1.2.2	C ₁₀ H ₁₆ N ₄ O ₄ 1-[3-(4-Morpholino)-2-hydroxypropyl]-2- nitroimidazole 2.3.76
$C_{10}H_6O_3$	5-Hydroxy-1,4-naphthoquinone 1.2.3	C ₁₀ H ₁₇ IN ₄ O ₃ 1-(2-N-Morpholinoethyl)-2-nitroimidazole
$\mathrm{C_{10}H_6O_4}$	5,8-Dihydroxy-1,4-naphthoquinone 1.2.4	methiodide 2.3.46
C ₁₀ H ₈ ClN ₃	O ₅ S1-Methyl-5-(4-chlorophenoxy)sulfonyl-4- nitroimidazole 2.4.20	C ₁₀ H ₁₇ N ₅ O ₃ 1-[2-(1-Aziridinoethyl)amino-2- hydroxypropyl]-2-nitroimidazole
$\mathrm{C_{10}H_8N_2}$	2,2'-Bipyridine 4.4.7	2.3.63
C ₁₀ H ₈ N ₄ O	4,4'-Bipyridine 3.8.1 7S 1-Methyl-5-(4-nitrophenoxy)sulfonyl-4-	C ₁₀ H ₁₈ N ₄ O ₃ 1-(3-Diethylamino-2-hydroxypropyl)-2- nitroimidazole 2.3.65
0 11 011	nitroimidazole 2.4.21	1-[3-(tert-Butylamino)-2-hydroxypropyl]-
U ₁₀ H ₉ UIN ₄	O ₄ S1-Methyl-5-(2-	2-nitroimidazole 2.3.67
C II MO	chlorophenyl)aminosulfonyl-4- nitroimidazole 2.4.23	C ₁₀ H ₁₈ N ₄ O ₅ 1-[3-Bis(2-hydroxyethylamino)-2- hydroxypropyl]-2-nitroimidazole
$C_{10}H_9NO_2$	Indole-3-acetic acid 6.2.6	2.3.66

C ₁₁ H ₇ BrO ₂ 6-(Bromomethyl)-1,4-naphthoquinone	C ₁₁ H ₁₈ N ₄ O ₃ 1-(3-N-Piperidino-2-hydroxypropyl)-2-
1.2.11 C ₁₁ H ₇ ClO ₂ 6-(Chloromethyl)-1,4-naphthoquinone	nitroimidazole 2.3.74 1-(4- <i>N</i> -Morpholinobutyl)-2-
1.2.12	nitroimidazole 2.3.48
C ₁₁ H ₈ N ₂ O ₅ (E)-2-(2-Furyl)-3-(5-nitro-2-	C ₁₁ H ₁₈ N ₄ O ₄ 1-[3-N-(3-Hydroxypiperidino)-2-
furyl)acrylamide 2.2.10	hydroxypropyl]-2-nitroimidazole
(Z)-2-(2-Furyl)-3-(5-nitro-2-	2.3.75
furyl)acrylamide 2.2.9	C ₁₁ H ₁₉ N ₅ O ₃ 1-[3-N-(4-Methylpiperazino)-2-
C ₁₁ H ₈ O ₂ 2-Methyl-1,4-naphthoquinone 1.2.6	hydroxypropyl]-2-nitroimidazole 2.3.77
C ₁₁ H ₈ O ₃ 2-Hydroxymethyl-1,4-naphthoquinone 1.2.7	$C_{11}H_{20}N_4O_2$ 1-[2,2-Bis(isopropyl)aminoethyl]-2-
C ₁₁ H ₁₀ IN ₅ O ₃ 4-Iodo-5-nitro-1-(3-	nitroimidazole 2.3.62
pyridylmethylaminocarbonylmethyl)imida 2.5.23	1.5.8 12.6 H ₄ Br ₄ O ₂ 3,3',5,5'-Tetrabromodiphenoquinone
C ₁₁ H ₁₀ O ₂ 2-Methyl-1,4-naphthoquinol 8.1.3	C ₁₂ H ₄ Cl ₄ O ₂ 3,3',5,5'-Tetrachlorodiphenoquinone
C ₁₁ H ₁₁ N ₃ O ₃ 2-Nitro-1-(2-phenoxyethyl)imidazole	1.5.9
2.3.40 C ₁₁ H ₁₁ N ₃ O ₄ 7-(Ethoxycarbonylmethyl)-3-nitro-7-	C ₁₂ H ₆ N ₄ O ₂ S 5,8-Di(2-furyl)-[1,2,5]thiadiazolo[3,4- b]pyrazine 4.8.3
azaindole 2.6.6	C ₁₂ H ₈ BrNS 3-Bromophenothiazine 7.2.1
C ₁₁ H ₁₁ N ₃ O ₄ S2-Nitro-1-(2-	C ₁₂ H ₈ ClNS 3-Chlorophenothiazine 7.2.2
phenylsulfonylethyl)imidazole 2.3.41	C ₁₂ H ₈ FNS 3-Fluorophenothiazine 7.2.3
C ₁₁ H ₁₁ N ₃ O ₆ S1-Methyl-5-(2-methoxyphenoxy)sulfonyl-	C ₁₂ H ₈ INS 3-lodophenothiazinc 7.2.4
4-nitroimidazole 2.4.25	C ₁₂ H ₈ N ₂ 1,10-Phenanthroline 3.12.1, 4.4.9
1-Methyl-5-(4-methoxyphenoxy)sulfonyl-	C ₁₂ H ₈ N ₂ O ₂ S 3-Nitrophenothiazine 7.2.5
4-nitroimidazole 2.4.26	$C_{12}H_9N^{2+}$ 1,10-Phenanthrolinium 3.6.1
$C_{11}H_{11}N_5O_4$ 1-[3-(1-	C ₁₂ H ₉ NOS 10 <i>H</i> -Phenothiazine sulfoxide 7.7.1
Oxypyridylmethylamino)carbonylmethyl 4-nitroimidazole 2.4.41	C ₁₂ H ₉ NO ₂ S 10 <i>H</i> -Phenothiazine sulfone 7.7.2
C ₁₁ H ₁₂ N ₂ O 2,3-Dimethyl-1-phenyl-3-pyrazolin-5-one	C ₁₂ H ₉ NS Phenothiazine 7.1.1
8.4.4	C ₁₂ H ₁₀ ClN ₃ SThionine 4.5.1
C ₁₁ H ₁₂ N ₂ O ⁺ 1-Methyl-4,4'-bipyridinium-1'-oxide 3.10.1	$\mathrm{C_{12}H_{10}N_2}^{2+}$ Dipyrido $[1,2-a:2',1'-c]$ pyrazinediium 3.2.1
C ₁₁ H ₁₂ N ₂ O ₂ Tryptophan 6.2.9	C ₁₂ H ₁₀ N ₄ O ₂ Lumichrome 4.6.6
$C_{11}H_{12}N_2O_3$ 5-Hydroxytryptophan 6.2.10	C ₁₂ H ₁₀ O ₂ 2,3-Dimethyl-1,4-naphthoquinone 1.2.15
C ₁₁ H ₁₂ N ₄ O ₂ 1-(2-Anilinoethyl)-2-nitroimidazole	C ₁₂ H ₁₀ O ₃ 2-(Methoxymethyl)-1,4-naphthoquinone
2.3.61	1.2.8
$C_{11}H_{12}N_4O_4$ 1-[(2-	C ₁₂ H ₁₁ BrN ₂ ²⁺ 6-Bromo-1,1'-ethylene-2,2'-
Hydroxyethyl)aminocarbonylmethyl	bipyridinium 3.3.2
3-nitro-7-azaindole 2.6.4	$ m C_{12}H_{11}NO_2$ 1-Methyl-2,3-trimethyleneisoindole-4,7- dione 1.4.6
$C_{11}H_{12}N_4O_4S1$ -Methyl-5-(2- methylphenyl)aminosulfonyl-4-	5-Methyl-1,2-trimethyleneisoindole-4,7-
nitroimidazole 2.4.24	dione 1.4.2
C ₁₁ H ₁₂ N ₄ O ₅ 5-Aziridinyl- <i>N</i> , <i>N</i> -dimethyl-2,4-	C ₁₂ H ₁₂ N ₂ 4,4'-Dimethyl-2,2'-bipyridine 4.4.8
dinitrobenzamide 2.1.22	C ₁₂ H ₁₂ N ₂ ²⁺ 1,1'-Ethylene-2,2'-bipyridinium 3.3.1
C ₁₁ H ₁₂ N ₄ O ₅ S1-Methyl-2-	C ₁₂ H ₁₂ N ₂ O ²⁺ 1,1'-Hydroxyethylene-2,2'-hipyridinium
methoxyphenylaminosulfonyl-4-	3.3.3
nitroimidazole 2.4.27	$C_{12}H_{12}N_4O_3$ 1-(Benzylcarbamylmethyl)-2-
C ₁₁ H ₁₃ N ₃ O DL-Tryptophanamide 6.2.11	nitroimidazole 2.3.42
C ₁₁ H ₁₄ N ₂ O ₃ 4-Nitro-(3'-	C ₁₂ H ₁₃ N ₂ O ₃ S2-[(4-Carboxyphenoxy)ethyl]thio-1-
dimethylamino)propiophenone 2.1.19	methyl-5-nitroimidazole 2.5.13
N-Acetyl-L-tyrosinamide 5.1.11	C ₁₂ H ₁₃ N ₃ O ₃ 2-Nitro-1-(3-phenoxypropyl)imidazole
$\mathrm{C_{11}H_{18}N_4O_2}$ 1-(3-N-Piperidinylpropyl)-2- nitroimidazole 2.3.57	2.3.43
1-(4-N-Pyrrolidinylbutyl)-2-	
nitroimidazole 2.3.55	

nitroimidazole 2.3.55

$C_{12}H_{14}N_2^{2+}$	1,1'-Dimethyl-2,2'-bipyridinium 3.1.2
	1,1'-Dimethyl-2,4'-bipyridinium 3.7.1
	1,1'-Dimethyl-4,4'-bipyridinium 3.8.2
	4,4'-Dimethyl-2,2'-bipyridinium 3.1.4
	+1,1'-Dimethoxy-4,4'-bipyridinium 3.8.3
$C_{12}H_{16}N_2O_4$	L-Alanyl-L-tyrosine 5.1.12
$C_{12}H_{17}N_5O_4$	Nifurpipone 2.2.6
$C_{12}H_{20}ClN_3C$	51-[3-[(1-Chloromethyl-2-
	isopropoxy)ethoxy]-2-hydroxypropyl]-
	2-nitroimidazole 2.3.44
$C_{12}H_{20}N_4O_2$	1-(4-N-Piperidinylbutyl)-2-nitroimidazole 2.3.58
$C_{12}H_{20}N_4O_3$	1-(5-N-Morpholinopentyl)-2- nitroimidazole 2.3.50
CanHaaINaOa	1-(4-N-Morpholinobutyl)-2-nitroimidazole
	methiodide 2.3.49
$C_{13}H_9NOS$	10-Phenothiazinecarboxaldehyde 7.4.1
C ₁₃ H ₁₀ CINOS	S2-Chloro-7-methoxyphenothiazine 7.3.1 4-Chloro-7-methoxyphenothiazine 7.3.2
$C_{13}H_{10}O_4$	2-[(Acetyloxy)methyl]-1,4-
	naphthoquinone 1.2.9
	6-[(Acetyloxy)methyl]-1,4-
O II NOC	naphthoquinone 1.2.13
$C_{13}H_{11}NOS$	1-Methoxyphenothiazine 7.2.7 3-Methoxyphenothiazine 7.2.8
C ₁₃ H ₁₁ NO ₄	6-[[(Methylamino)carbonyl]oxy]methyl-
~13.711 ² ~4	1,4-naphthoquinone 1.2.14
$C_{13}H_{14}NS$	10-Methylphenothiazine 7.4.2
	3-Methylphenothiazine 7.2.6
$C_{13}H_{11}N_3^{2+}$	5-Cyano-1,1'-ethylene-2,2'-bipyridinium
	3.3.4
$C_{13}H_{12}N_2^{2+}$	6-Methyldipyrido[1,2-a:2',1'-
	c]pyrazinediium 3.2.2
$C_{13}II_{12}N_3O_2$	†1-Phenyl-2,3-dihydro-6-nitroimidazo[1,2- a]pyridinium 2.8.14
$C_{13}H_{12}N_4O_2$	1-Methyllumichrome 4.6.7
	3-Methyllumichrome 4.6.8
$C_{13}H_{14}N_2^{2+}$	1,1'-(1,2-Propylene)-2,2'-bipyridinium 3.3.6
	1,1'-Trimethylene-2,2'-bipyridinium 3.4.1
	6,7-Dihydro-4-methyldipyrido[1,2-a:2',1'-c]pyrazinediium 3.3.5
Cook, NaO2	+6,7-Dihydro-3-methoxydipyrido[1,2-
~1311141.20	a:2',1'-c pyrazinediium 3.3.7
CiaHiaNaOa	N-Acetyl-L-tryptophan 6.2.12
	1-Methyl-1'-cyanomethyl-4,4'-
~ 12.,12.,2	

```
C<sub>13</sub>H<sub>16</sub>N<sub>4</sub>O<sub>4</sub> 1-[3-(4-Methoxyphenylamino)-2-
                  hydroxypropyl -2-nitroimidazole
                  2.3.69
C_{13}H_{16}N_4O_7 5-Aziridinyl-N-[(2,2-dimethoxy)ethyl]-2,4-
                  dinitrobenzamide 2.1.23
C_{13}H_{17}N_3O^{2+}1-Methyl-1'-carbamylmethyl-4,4'-
                  bipyridinium 3.10.3
C_{13}H_{17}N_6O_2S5-[3-Amino-6-(2-methylpropyl)purinyl]-1-
                   methyl-4-nitroimidazole 2.4.29
C13H22N4O3 1-(5-N-Morpholinohexyl)-2-
                   nitroimidazole 2.3.51
C14H6N2O8 Methoxatine 1.5.10
C_{14}H_6O_8
               Ellagic acid 8.1.10
C14H7O5S 9,10-Anthraquinone-2-sulfonate ion 1.3.1
C14H7O7S 1,4-Dihydroxy-9,10-anthraquinone-2-
                   sulfonate ion 1.3.2
                1,4-Dihydroxy-9,10-anthraquinone-6-
                  sulfonate ion 1.3.3
C14H8N6OS 5,6-Di(2-pyridinyl)-[1,2,5]thiadiazolo[3,4-
                   b)pyrazine N-oxide 4.8.5
                5,6\text{-Di}(2\text{-pyridinyl})\text{-}[1,2,5] thiadiazolo[3,4\text{-}
C_{14}H_8N_6S
                   b pyrazine 4.8.4
C_{14}H_8O_2
                9,10-Phenanthrenequinone 1.5.3
C_{14}H_8O_6
                Quinalizarin 8.1.5
C14H11NOS 10-Acetylphenothiazine 7.4.3
C_{14}H_{11}N_3O_5S1\text{-Methyl-5-(1-naphthyloxy)} sulfonyl-4-
                   nitroimidazole 2.4.30
C_{14}H_{12}CINO_42-[[[(2-
                   Chloroethyl)amino|carbonyl|oxy|methyl-
                   1,4-naphthoquinone 1.2.10
C<sub>14</sub>H<sub>12</sub>N<sub>2</sub><sup>2+</sup> Phenanthrolino[4,5-a:6,7-c]pyrazinediium
                   3.6.3
C14H12N42+ 1,1'-Bis(cyanomethyl)-4,4'-bipyridinium
                   3.8.4
C<sub>14</sub>H<sub>12</sub>N<sub>4</sub>O<sub>4</sub>S1-Methyl-5-(1-naphthylamino)sulfonyl-4-
                   nitroimidazole 2.4.31
C<sub>14</sub>H<sub>13</sub>NOS 1-Ethoxyphenothiazine 7.2.9
                3-Ethoxyphenothiazine 7.2.10
C<sub>14</sub>H<sub>13</sub>NO<sub>2</sub>S 3,7-Dimethoxyphenothiazine 7.3.4
C<sub>14</sub>H<sub>13</sub>NS 3,7-Dimethylphenothiazine 7.3.3
C_{14}H_{14}Cl_4N_2^{2+}1,1'-Bis(1,2-dichloroethyl)-4,4'-
```

bipyridinium 3.8.14

 $\begin{array}{c} \text{bipyridinium} \quad 3.10.2 \\ \text{C_{13}H$}_{16}$N$}_2^{2+} \quad 1,1',2\text{-Trimethyl-4},4'\text{-bipyridinium} \quad 3.9.1 \\ \text{C_{13}H$}_{16}$N$}_2\text{$\text{O}^{2+}$}^2\text{-1-Methyl-1'-(2-hydroxyethyl)-4,4'-bipyridinium} \quad 3.10.4 \\ \text{C_{13}H$}_{16}$N$}_4\text{$\text{O}_3$} \quad 1\text{-[3-(Benzylamino)-2-hydroxypropyl]-2-nitroimidazole} \quad 2.3.68 \end{array}$

```
C<sub>14</sub>H<sub>18</sub>N<sub>2</sub><sup>2+</sup> 1,1',2,2'-Tetramethyl-4,4'-bipyridinium
C14H14N22+ 1,10-Dimethyl-1,10-phenanthrolinium
                    362
                                                                                            3.9.5
                                                                                         1,1',3,3'-Tetramethyl-4,4'-bipyridinium
                 1,9-Dimethyl-1,9-phenanthrolinium
                    3.12.2
                                                                                            3.9.6
                 2,7-Dimethyl-2,7-phenanthrolinium
                                                                                         1,1'-Diethyl-2-methyl-4,4'-bipyridinium
                    3.12.4
                                                                                            3.9.2
                 2,8 Dimethyl-2,8 phenanthrolinium
                                                                                         1,1'-Diethyl-4,4'-bipyridinium 3.8.10
                                                                         C14H18N2O22+1,1'-Bis(2-hydroxyethyl)-4,4'-
                    3.12.3
                 3,7-Dimethyl-3,7-phenanthrolinium
                                                                                            bipyridinium 3.8.11
                    3.12.6
                                                                         C_{14}H_{18}N_4O_4 1-[3-(4-Methoxybenzylamino)-2-
                 3,8-Dimethyl-3,8-phenanthrolinium
                                                                                            hydroxypropyl-2-nitroimidazole
                    3.12.5
                                                                                            2.3.70
                 4,7-Dimethyl-4,7-phenanthrolinium
                                                                                         6-Hydroxy-2,5,7,8-tetramethylchroman-2-
                                                                         C_{14}H_{18}O_4
                    3.12.7
                                                                                            carboxylic acid 8.1.6
C_{14}H_{14}N_2O^{2+}5-Methoxycarbonyl-1,1'-ethylene-2,2'-
                                                                         C<sub>14</sub>H<sub>20</sub>N<sub>4</sub><sup>2+</sup> 1,1'-Bis(2-aminoethyl)-4,4'-bipyridinium
                    bipyridinium 3.3.8
                                                                                            3.8.12
C<sub>14</sub>H<sub>14</sub>N<sub>2</sub>O<sub>4</sub><sup>2+</sup>1,1'-Bis(carboxymethyl)-4,4'-
                                                                         C14H20N4O4 2,5-Diaziridinyl-3,6-bis(2-
                    bipyridinium 3.8.5
                                                                                            hydroxyethylamino)-1,4-benzoquinone
C14H14N42+ 2,2'-Dicyano-1,1'-dimethyl-4,4'-
                    bipyridinium 3.9.4
                                                                         C_{14}H_{24}N_4O_2 1-(5-N-Piperidinylhexyl)-2-nitroimidazole
C<sub>14</sub>H<sub>14</sub>N<sub>4</sub>O<sub>2</sub> 1,3-Dimethyllumichrome 4.6.9
                                                                                            2.3.59
O14H16Ol2N22+1,1'-Bis(2-chloroethyl)-4,4'-
                                                                        C<sub>15</sub>H<sub>10</sub>N<sub>2</sub>O<sub>3</sub> 5-Nitro-2-(2-quinolylethenyl)furan 2.2.7
                    bipyridinium 3.8.7
                                                                         C_{15}H_{10}O_{7}
                                                                                         Quercetin 8.1.9
C14H18N22+ 1,1'-(1,1-Dimethylethylene)-2,2'-
                                                                         C<sub>15</sub>H<sub>12</sub>NO<sub>2</sub> 2-Methyl-3-phenylisoindole-4,7-dione
                    bipyridinium 3.3.15
                                                                                            1.4.5
                 1,1'-Ethylene-4,4'-dimethyl-2,2'-
                                                                         C<sub>15</sub>H<sub>13</sub>ClN<sub>2</sub><sup>2+</sup>1-Chlorophenanthrolino[4,5-a:6,7-
                    bipyridinium 3.3.12
                                                                                            c diazepinediium 3.6.5
                 1,1'-Tetramethylene-2,2'-bipyridinium
                                                                        C<sub>15</sub>H<sub>13</sub>NO<sub>4</sub>S 10-Carbethoxyphenothiazine sulfone
                    3.5.1
                 1-Methyl-1'-allyl-4,4'-bipyridinium
                                                                                            7.7.3
                                                                         C_{15}H_{14}NO_3S_2^{-10}-(3-Sulfonatopropyl)phenothiazine
                    3.10.5
                 5,5'-Dimethyl-1,1'-ethylene-2,2'-
                                                                                            7.4.4
                                                                        C<sub>15</sub>H<sub>14</sub>N<sub>2</sub><sup>2+</sup> Phenanthrolino 4,5-a:6,7-
                    bipyridinium 3.3.13
                 6,7-Dihydro-1,12-dimethyldipyrido[1,2-
                                                                                            c]diazepinediium 3.6.4
                    a:2',1'-c]pyrazinediium 3.3.11
                                                                                         Catechin 8.1.7
                                                                        C_{15}H_{14}O_6
                 6,7-Dihydro-4,9-dimethyldipyrido 1,2-
                                                                                         l-Epicatechin 8.1.8
                    a:2',1'-c|pyrazinediium 3.3.14
                                                                        C<sub>15</sub>H<sub>15</sub>NO<sub>4</sub> 1-Ethoxycarbonyl-5-methyl-2,3-
                 6-Ethyl-1,1'-ethylene-2,2'-bipyridinium
                                                                                            trimethyleneisoindole-4,7-dione 1.4.9
                                                                        C_{15}H_{15}N_3^{2+} 1-Methyl-1'-(3-cyano-2-propenyl)-4,4'-
                8-Methyl-1.1'-trimethylene-2.2'-
                                                                                            bipyridinium 3.10.7
                    bipyridinium 3.4.2
                                                                        C<sub>15</sub>H<sub>16</sub>N<sub>2</sub>O<sub>2</sub><sup>2+</sup>1-Allyl-1'-carboxymethyl-4,4'-
C<sub>14</sub>H<sub>16</sub>N<sub>2</sub>O<sup>2+</sup>1-Methyl-1'-(acetonyl)-4,4'-bipyridinium
                                                                                            bipyridinium 3.11.4
                                                                                         1-Methyl-1'-ethoxycarbonylmethyl-4,4'-
                5-Ethoxy-1,1'-ethylene-2,2'-bipyridinium
                                                                                            bipyridinium 3.10.9
                    3.3.10
                                                                        C<sub>15</sub>H<sub>18</sub>N<sub>2</sub><sup>2+</sup> 1-Allyl-1'-ethyl-4,4'-bipyridinium 3.11.5
                7.8-Dihydro-3-methoxydipyrido 1.2-
                                                                                         4,4'-Dimethyl-1,1'-trimethylene-2,2'-
                    a:2',1'-c|diazepinediium 3.4.3
                                                                                            bipyridinium 3.4.4
\mathrm{C_{14}H_{16}N_2O_6S_21,1'-Bis(2-sulfonatoethyl)-4,4'-}
                                                                                         5,5'-Dimethyl-1,1'-trimethylene-2,2'-
                    bipyridinium 3.8.6
                                                                                            bipyridinium 3.4.5
C14H16N4O22+1,1'-Bis(2-hydroxyiminoethyl)-4,4'-
                                                                        C<sub>15</sub>H<sub>18</sub>N<sub>2</sub>O<sup>2+</sup>5-Propoxy-1,1'-ethylene-2,2'-
                    bipyridinium 3.8.9
                                                                                            bipyridinium 3.3.16
                1,1'-Bis(carbamylmethyl)-4,4'-
                                                                        \mathrm{C_{15}H_{18}N_2S_2}^{2+}1\text{-Methyl-1'-[2-bis(methylthio)ethenyl]-}
                    bipyridinium 3.8.8
                                                                                            4,4'-bipyridinium 3.10.8
C14H17N3O3 L-Tryptophyl-L-alanine 6.2.13
                                                                        C<sub>15</sub>H<sub>18</sub>N<sub>4</sub>O<sub>5</sub> Mitomycin C 1.5.7
                                                                        C<sub>15</sub>H<sub>26</sub>N<sub>4</sub>O<sub>3</sub> 1-(8-N-Morpholinooctyl)-2-nitroimidazole
```

2.3.52

 $C_{15}H_{26}N_5O_4$ 1-[3-[4-(2,2,5,5-Tetramethyl-1oxypiperidinyl)amino]-2hydroxypropyl]-2-nitroimidazole 2.3.71 C₁₅H₂₇N₅O₃ 1-[3-[4-(2,2,5,5-Tetramethylpiperidinyl)aminol-2hydroxypropyl]-2-nitroimidazole 2.3.72 C₁₆H₈N₂O₈S₂²-Indigodisulfonate ion 1.5.6 12H-Benzo[a]phenothiazine 7.6.1 $C_{16}H_{11}NS$ 7H-Benzo[c]phenothiazine 7.6.2 C₁₆H₁₃NO₂ 1,2-Dimethyl-3-phenylisoindole-4,7-dione $C_{16}H_{14}N_2^{2+}$ 1,1'-Bis(2-propynyl)-4,4'-bipyridinium 3.8.13 C₁₆H₁₄N₂O₄ 1,1'-Bis(2-carboxyethyl)-4,4'bipyridinium 3.8.17 C₁₆H₁₆N₂²⁺ 1-Methylphenanthrolino 4,5-a:6,7cldiazepinediium 3.6.6 Phenanthrolino[4,5-a:6,7c diazocinedium 3.6.9 $C_{16}H_{16}N_2O_2^{2+1}$ -Methyl-1'-[3-(methoxycarbonyl)-2propenyl]-4,4'-bipyridinium 3.10.11 C₁₆H₁₆N₃O₂²⁺1-Methyl-1'cvano(ethoxycarbonyl)methyll-4.4'bipyridinium 3.10.10 C₁₆H₁₆N₄²⁺ 1,1'-Bis(cyanomethyl)-2,2'-dimethyl-4,4'bipyridinium 3.9.10 C₁₆H₁₈ClN₃SMethylene Blue 4.5.2 C₁₆H₁₈N₂²⁺ 1,1'-Diallyl-4,4'-bipyridinium 3.8.15 2-Methyl-1,1'-dipropyl-4,4'-bipyridinium 3.9.3 C₁₆H₁₈N₂O₂⁺1,1'-Bis(2-oxopropyl)-4,4'-bipyridinium 3.8.16 $C_{16}H_{19}N_3O^{2+}1-(Carbamylmethyl)-1'-(2-methyl-2-methyl)$ propenyl)-4,4'-bipyridinium 3.11.10 $C_{16}H_{20}Cl_2N_2^{2+1},1'$ -Bis(2-chloroethyl)-2,2'-dimethyl-4,4'-bipyridinium 3.9.11 C₁₆H₂₀N₂²⁺ 4,4'-Dimethyl-1,1'-tetramethylene-2,2'bipyridinium 3.5.2 4,5,4',5'-Tetramethyl-1,1'-ethylene-2,2'bipyridinium 3.3.17 C16H20N2O6S21,1'-Bis(3-sulfonato-1-propyl)-2,2'bipyridinium 3.1.3 1,1'-Bis(3-sulfonatopropyl)-4,4'bipyridinium 3.8.18 C16H21N5O4 1-3-(4-Morpholinyl)propylaminocarbonylmethyl|-3-nitro-7-azaindole 2.6.5 Morpholinyl)propylaminocarbonylmethyl]-3-nitro-7-azaindole 2.6.7

C₁₆H₂₂N₂²⁺ 1,1'-Bis(1-methylethyl)-4,4'-bipyridinium 3.8.20 1,1'-Dipropyl-4,4'-bipyridinium 3.8.19 C₁₆H₂₂N₂O₂²⁺1,1'-Bis(2-hydroxyethyl)-2,2'-dimethyl-4,4'-bipyridinium 3.9.12 $C_{16}H_{22}N_2S_2^{2+1},1'$ -Bis(ethylthiomethyl)-4,4'bipyridinium 3.8.21 $C_{16}H_{22}N_5O_4^{+}1-[3-(4-$ Morpholinyl)propylaminocarbonylmethyl]-3-nitro-7-azaindole, protonated 2.6.8 C₁₆H₂₄N₂S²⁺1-Ethyl-1'-(2-ethylthioethyl)-4,4'bipyridinium 3.11.1 C₁₆N₁₇NO₅ 1-Ethoxycarbonyl-8-methoxy-5-methyl-2,3-trimethyleneisoindole-4,7-dione 1.4.11 $C_{17}H_{12}N_2O_3$ 5-Nitro-2-(2-quinolylbutadienyl)furan 2.2.8 C₁₇H₁₃NO₂ 1-Phenyl-2,3-trimethyleneisoindole-4,7dione 1.4.4 C₁₇H₁₅NO₂ 1,2,5-Trimethyl-3-phenylisoindole-4,7dione 1.4.3 C₁₇H₁₆N₃²⁺ 6-Pyridyl-1,1'-ethylene-2,2'-bipyridinium 3.3.18 $C_{17}H_{18}N_2^{2+}$ 1,11-Dimethylphenanthrolino[4,5-a:6,7c diazepinediium 3.6.7 C₁₇H₁₈N₄S²⁺1-Methyl-1'-[(1pyrazolyl)thiocarbonylmethyl]-4,4'bipyridinium 3.10.12 C₁₇H₁₉ClN₂SChlorpromazine 7.5.1 C₁₇H₁₉N₃²⁺ 1-Allyl-1'-(3-cyanopropyl)-4,4'bipyridinium 3.11.6 C₁₇H₂₀N₂OS 2-Hydroxy-10-(3dimethylaminopropyl)phenothiasine 7.5.3 C₁₇H₂₀N₂S 10-(3-Dimethylaminopropyl)phenothiasine 7.4.5 Isopromethazine 7.4.7 Promethazine 7.4.6 C₁₇H₂₀N₄O₆ Riboflavine 4.6.1 C₁₇H₂₁ClN₂O²⁺1-(3-Chloro-2-butenyl)-1'-(2methoxyethyl)-4,4'-bipyridinium 3.11.12 $C_{17}H_{21}FN_2^{2+}1-(2-Butenyl)-1'-(3-fluoropropyl)-4,4'$ bipyridinium 3.11.9 C₁₇H₂₂N₂²⁺ 4,5,4',5'-Tetramethyl-1,1'-trimethylene-2,2'-bipyridinium 3.4.6 C₁₇H₂₂N₂O₂²⁺1-{2-Methoxycarbonylethyl}-1'-propyl-4,4'-bipyridinium 3.11.2 C₁₇H₂₄N₂O²⁺1-(2-Hydroxyethyi)-1'-pentyl-4,4'bipyridinium 3.11.3 C₁₇H₂₄N₂S 10-[3-(Diethylamino)propyl|phenothiasine 7.4.15 3-Phenylphenothiazine 7.2.11 $C_{18}H_{13}NS$

C₁₆H₂₂N₂+ 1,1',2,2',6,6'-Hexamethyl-4,4'-

bipyridinium 3.9.7

- C₁₈H₁₄N₂²⁺ 6-Phenyldipyrido[1,2-a:2',1'-c|pyrazinediium 3.2.3
- C₁₈H₁₆N₂²⁺ 1,1'-(1-Phenylethylene)-2,2'bipyridinium 3.3.19
- C₁₈H₁₇NO₂ 1,2,5,6-Tetramethyl-3-phenylisoindole-4,7-dione 1.4.8
- $C_{18}H_{18}N_2^{2+}$ 1-Methyl-1'-benzyl-4,4'-bipyridinium 3.10.13
- C₁₈H₁₉ClN₄O₂9-[3-(N,N-Dimethylamino)propyl]amino-4-chloro-1-nitroacridine 2.7.3
- C₁₈H₁₉FN₄O₂9-[3-(*N,N*-Dimethylamino)propyl]amino-4-fluoro-1-nitroacridine 2.7.4
- C₁₈H₁₉N₃S²⁺1-Methyl-1'[anilino(thiocarbonylmethyl)]-4,4'bipyridinium 3.10.14
- $\begin{array}{c} {\rm C_{18}H_{20}F_{3}N_{2}S10\text{-}(3\text{-}Dimethylaminopropyl})\text{-}2\text{-}}\\ {\rm trifluoromethylphenothiazine} \quad \textit{7.5.2} \end{array}$
- $C_{18}H_{20}NO_3S_2^{-1}0$ -(6-Sulfonatohexyl)phenothiazine 7.4.9
- $C_{18}H_{20}N_2S$ 10-(2-Pyrrolidinylethyl)phenothiazine
- C₁₈H₂₀N₄²⁺ 1,1'-Bis(3-cyanopropyl)-4,4'bipyridinium 3.8.22
- $C_{18}H_{20}N_4O_2$ Nitracrine 2.7.2
- C₁₈H₂₁N₃²⁺ 1-(3-Butenyl)-1'-(3-cyanopropyl)-4,4'bipyridinium 3.11.8
- C₁₈H₂₂N₂OS Methoxypromazine 7.5.4
- $C_{18}H_{22}N_2O_2^{2+1},1'$ -Bis(2-oxopropyl)-2,2'-dimethyl-4,4'-bipyridinium 3.9.13
- C₁₈H₂₂N₂O₄²⁺1,1'-Bis(ethoxycarbonylmethyl)-4,4'bipyridinium 3.8.23
- C₁₈H₂₂N₂S Diethazine 7.4.10
- C₁₈H₂₃N₂S⁺ 10-(2-Methyl-2-

trimethylammonioethyl)phenothiazine
7.4.11

- C₁₈H₂₄N₂²⁺ 4,5,4',5'-Tetramethyl-1,1'tetramethylene-2,2'-bipyridinium 353
- $C_{18}H_{24}N_2O^{2+}$ 1-(2-Ethyl-2-propenyl)-1'-(2-methoxyethyl)-4,4'-bipyridinium 3.11.11
- C₁₈H₂₄N₂O₆S₂1,1'-Bis(3-sulfonatopropyl)-3,3'dimethyl-4,4'-bipyridinium 3.9.15 1,1'-Bis(3-sulfonatopropyl)-2,2'-dimethyl-4,4'-bipyridinium 3.9.16
- $C_{18}H_{24}N_4O_2^{2+}1.1'$ -

Bis(dimethylaminocarbonylmethyl)-4,4'-bipyridinium 3.8.24

- C₁₈H₂₆N₂O₂²⁺1,1'-Bis(2-ethoxyethyl)-4,4'bipyridinium 3.8.25
- C₁₈H₃₂N₄O₃ 1-(11-N-Morpholinoundecyl)-2nitroimidazole 2.3.53
- C₁₉H₁₃NOS 10-Benzoylphenothiazine 7.4.12
- C₁₉H₁₇NO₂ 5,6-Dimethyl-3-phenyl-1,2trimethyleneisoindole-4,7-dione 1.4.7

- C₁₉H₁₇NO₄ 1-Ethoxycarbonyl-2,5-dimethyl-3phenylisoindole-4,7-dione 1.4.10
- C₁₉H₂₂N₂S Mepazine 7.4.13
- $C_{19}H_{22}N_4O_2$ 9-[3-(N,N-Dimethylamino)propyl]amino-4-methyl-1-nitroacridine 2.7.5
- ${
 m C_{19}H_{22}N_4O_3}$ 9-[3-(N,N-Dimethylamino)propyl]amino-4-methoxy-1-nitroacridine 2.7.6
- $C_{19}H_{23}N_2OS$ 2-Acetyl-10-(3-dimethylaminopropyl)phenothiazine
- C₁₉H₂₄N₂S 10-(2-Methyl-2diethylaminoethyl)phenothiazine 7.4.14
- $C_{19}H_{25}N_3O_2^{2+1}$ -Methyl-1'-[2-(3,5-dimethyl-4-morpholinyl)-2-oxoethyl]-4,4'-bipyridinium 3.10.15
- C₂₀H₁₃NS 13*H*-Dibenzo[a,j]phenothiazine 7.6.3 7*H*-Dibenzo[c,h]phenothiazine 7.6.4
- C₂₀H₁₈N₂²⁺ 1,1'-Dimethyl-2,2'-biquinolinium 3.6.10
- C₂₀H₂₂N₄O₄ 9-[3-(N,N-Dimethylamino)propyl]amino-4-methoxycarbonyl-1-nitroacridine
- C₂₀H₂₂N₄O₆ 8α-N-Imidazolylriboflavin 4.6.4
- $C_{20}H_{24}ClN_3S_2$ -Chloro-10-[3-(4-methyl-1-

piperazinyl)propyl|phenothiazine 7.5.7

- C20H25N3S Perazine 7.4.17
- $C_{20}H_{25}N_5O_2$ 9-[3-(N,N-Dimethylamino)propyl]amino-4-dimethylamino-1-nitroacridine 2.7.8
- $\begin{array}{c} \mathrm{C_{20}H_{26}N_2O_4}^{2+}1,1'\text{-Bis}(ethoxycarbonylmethyl)-2,2'-\\ & dimethyl-4,4'\text{-bipyridinium} \quad \textit{3.9.14}\\ 1,1'\text{-Bis}[2\text{-}(ethoxycarbonyl)ethyl]-4,4'-\\ \end{array}$
 - 1,1'-Bis[2-(ethoxycarbonyl)ethyl]-4,4'bipyridinium 3.8.26
- $\begin{array}{ccc} C_{20}H_{26}N_2S_2 & \text{2-Methylthio-10-[2-(N-methyl-2-piperidinyl)ethyl]phenothiazine} & \textbf{7.5.6} \end{array}$
- C₂₀H₂₇N₃O²⁺1-Allyl-1'-[2-(diethylaminocarbonyl)ethyl]-4,4'bipyridinium 3.11.7
- $C_{20}H_{28}N_2O_6S_21,1'$ -Bis(3-sulfonatopropyl)-2,2',6,6'-tetramethyl-4,4'-bipyridinium 3.9.17
- C₂₀H₂₈N₄O₂²⁺1,1'-Bis[2-(dimethylaminocarbonyl)ethyl]-4,4'bipyridinium 3.6.27
- C₂₀H₃₀N₂S 10-[6-(Diethylamino)hexyl]phenothiazine 7.4.16
- C₂₀H₃₄N₄⁴⁺ 1,1'-Bis[2-(trimethylammonio)ethyl]-4,4'bipyridinium 3.8.29
- ${
 m C_{21}H_{16}N_3O_3S}N^1$ -(Acridinyl)- N^4 -methylsulfonyl-2-methoxycyclohexa-2,5-diene-1',4 1.5.12
- ${
 m C_{21}H_{20}N_3O_3S^+9}$ -(2-Methoxy-4-methylsulfonylaminoanilino)acridinium 4.8.1
- C₂₁H₂₂ClN₃OS2-Chloro-10-[3-(4-(2-hydroxyethyl)-1piperazinyl)propyl]phenothiazine 7.5.10

C24H42N4+ 1,1'-Bis[4-(trimethylammonio)butyl]-4,4'-C21H23N3O8S3-(S-Glutathionyl)-2-methyl-1,4bipyridinium 3.8.41 naphthoguinone 1.2.16 C₂₅H₂₈N₄⁴⁺ 1,3-Propanediylbis(1'-methyl-4,4'- $C_{21}H_{24}F_3N_3S10-[3-(4-Methyl-1-piperazinyl)propyl]-2$ bipyridinium) 3.8.49 trifluoromethylphenothiazine 7.5.8 C21H26N7O13P2+Nicotinamide adenine dinucleotide C₂₆H₂₀N₂²⁺ 1,11-Diphenylphenanthrolino[4,5-a:6,7c diazepinediium 3.6.8 4.4.6 $C_{26}H_{20}N_4^{2+}$ 1,1'-Bis(α -cyanobenzyl)-4,4'- $C_{21}H_{27}N_3OS$ 10-[3-(4-(2-Hydroxyethyl)-1bipyridinium 3.8.38, 3.8.42 piperazinyl)propyl|phenothiazine $C_{26}H_{26}N_2^{2+}$ 1,1'-Dimethyl-2,2'-bis(4-methylphenyl)-C21H29N7O14PNicotinamide adenine dinucleotide. 4,4'-bipyridinium 3.9.9 C₂₆H₃₀N₄⁴⁺ 1,4-Butanediylbis(1'-methyl-4,4'reduced 8.2.1 $C_{22}H_{14}N_2^{2+}$ Benzo[1,2-b:3,4-b']diquinolizium 3.12.8 bipyridinium) 3.8.50 Benzo[1,2-b:3,4-g'] diquinolizium 3.12.10 C26H32N4O6 1,4-Bis|(2-Benzo[1,2-b:5,6-b']diquinolizium 3.12.9 hydroxyethylamino)ethyllamino-9,10-C22H16N4O42+1,1'-Bis(4-nitrophenyl)-4,4'anthraquinone diacetate 1.3.5 bipyridinium 3.8.30 $C_{26}H_{33}N_5O_6$ 9-[3-(N,N-Dimethylamino)propyl]amino-C₂₂H₁₈N₂²⁺ 1,1'-Diphenyl-4,4'-bipyridinium 3.8.31 [4-[di(2-acetoxyethyl)amino]-1- $C_{22}H_{18}N_4O_2SN^1$ -(Acridinyl)- N^4 -methylsulfonyl-2nitroacridine 2.7.9 $C_{26}H_{36}N_4O_4^{2+1},1'-Bis[2-(3,5-dimethyl-4-morpholinyl)$ dimethylaminocyclohexa-2,5-diene-1 2-oxoethyl -4,4'-bipyridinium 3.8.43 1.5.13 C22H20N42+ 1,1'-Bis(2-pyridylmethyl)-4,4'-C₂₆H₄₂N₂²⁺ 1,1'-Dioctyl-4,4'-bipyridinium 3.8.44 bipyridinium 3.8.32 C₂₇H₂₉NO₁₀ Daunomycin 1.5.5 $C_{22}H_{20}N_4O_2S_22\text{-Dimethylaminosulfonamido-}10\text{-}[3\text{-}(4\text{-}10\text{-}1$ $C_{27}H_{29}NO_{11}$ Adriamycin 1.5.4 methyl-1-C27H33N9O5P2Flavine mononucleotide 4.6.2 piperazinyl)propyl|phenothiazine 7.5.9 C27H33N9O15P2Flavine adenine dinucleotide 4.6.3 C22H27N5O4 7-Hydroxy-2-[2-(2- $C_{29}H_{33}N_4O_{10}8\alpha$ -(*N*-Methyl-*N*-imidazolium)tetra-*O*hydroxyethyl)aminoethyl]-5-[[2-(2acetylriboflavin 4.6.5 hydroxyethyl)aminoethyl|amino| $m C_{30}H_{30}N_2O_2{}^{2+}1,1'$ -Bis[ethoxycarbonyl(phenyl)methyl]anthra[1,9-cd]pyrazol-6-on 1.5.11 4,4'-bipyridinium 3.8.46 C22H28N4O6 1,4-Dihydroxy-5,8-bis[(2-Vitamin K₁ 1.2.17, 8.1.4 $C_{31}H_{46}O_{2}$ hydroxyethylamino)ethyllamino-9,10-C₃₆H₃₂N₄⁴⁺ 1,1'-o-Xylylenebis-4,4'-bipyridinium anthraquinone 1.3.4 3.8.47 $C_{22}H_{28}N_4O_{10}2,5$ -Diaziridinyl-3,6-C₄₆H₈₂N₂²⁺ 1,1'-Dioctadecyl-4,4'-bipyridinium 3.8.45 bis(carbethoxyamino)-1,4benzoquinone 1.1.9 Chlorine atom 9.15., 9.16. $C_{22}H_{30}N_2O_4^{2+1},1'-Bis[3-(ethoxycarbonyl)propyl]-4,4'-$ CI-Chloride ion 9.15., 9.17., 9.18., 9.22., bipyridinium 3.8.28 9.26. C₂₂H₃₂N₄O₂²⁺1,1'-Bis(diethylaminocarbonylmethyl)-CIHO Chlorosyl hydride 9.18. 4,4'-bipyridinium 3.8.33 Hypochlorous acid 9.16., 9.17. 1,1'-Bis[3-ClHO₂ Chlorous acid 9.20. (dimethylaminocarbonyl)propyl-4,4'- ClO_2 Chlorine dioxide 9.19., 9.20., 9.21. bipyridinium 3.8.34 ClO₂ Chlorite ion 9.19. C22H24N2²⁺ 1,1'-Dihexyl-4,4'-bipyridinium 3.8.35 ClO₃ Chlorate ion 9.21. C22H34N2O42+1,1'-Bis(2,2-diethoxyethyl)-4,4'- Cl_2 Chlorine 9.23. bipyridinium 3.8.36 Cl_2^- Dichlorine radical ion 9.22., 9.23. C22H38N44+ 1,1'-Bis[3-(trimethylammonio)propyl]- Cl_2I^- Iodine dichloride dianion 9.26. 4,4'-bipyridinium 3.8.37 F Fluorine atom 9.24. C23H28N4O5 Nitroakridin 3582 2.7.1 F^- Fluoride ion 9.24. C₂₄H₂₂N₂²⁺ 1,1'-Dibenzyl-4,4'-bipyridinium 3.8.39 HIO Hypoiodous acid 9.27., 9.28. 1,1'-Dimethyl-2,2'-diphenyl-4,4'-HIO₂ Iodous acid 9.31. bipyridinium 3.9.8 C24H26N4⁴⁺ 1,2-Ethanediylbis(1'-methyl-4,4'-НО Hydroxyl 9.4., 9.17., 9.28., 9.38., 9.39., bipyridinium) 3.8.48 9.49. C₂₄H₃₈N₂²⁺ 1,1'-Diheptyl-4,4'-bipyridinium 3.8.40 HO-Hydroxide ion 9.39., 9.40. HO_2 Perhydroxyl 9.42., 9.47., 9.48.

$\mathrm{HO_2}^-$	Hydroperoxide ion 9.44., 9.48.	NO_3^-	Nitrate ion 9.37.
HO ₃	Ozonide radical, protonated 9.51.	N_3	Azide radical 9.33.
HO ₃ S	Hydrogen sulfite ion 9.59., 9.61.	N ₃ -	Azide ion 9.33., 9.34.
HO ₃ Se ⁻	Hydrogen selenite(IV) ion 9.67.	N_6^-	Azide dimer radical anion 9.34.
HO ₅ S	Hydrogen peroxomonosulfate ion 9.64.	0_	Oxide radical ion 9.40.
HS	Mercapto 9.52., 9.53.	O_2	Oxygen 9.41., 9.42.
HS-	Bisulfide ion 9.53., 9.54.	O_2^-	Superoxide radical anion 9.41., 9.43.,
H_2	Hydrogen 9.1.	-	9.44., 9.45., 9.46.
H_2O	Water 9.38.	O_2S	Sulfur dioxide 9.58.
H_2O_2	Hydrogen peroxide 9.45., 9.46., 9.47.,	O_2S^-	Sulfur dioxide radical anion 9.58., 9.59.
2 - 2	9.49.	O_3	Ozone 9.50., 9.51.
H_2S_2	Sulfhydryl dimer radical 9.54.	O_3^-	Ozonide ion 9.50.
H_4N_2	Hydrazine 9.35.	O_3S^-	Sulfite radical ion 9.60., 9.61., 9.62.
$H_4N_2^+$	Hydrazine radical cation 9.35.	O_3S^{2-}	Sulfite ion 9.60.
I	Iodine atom 9.25., 9.27.	$O_3S_2^-$	Thiosulfate radical ion 9.65.
I_	Iodide ion 9.25., 9.28., 9.29.	$O_3S_2^{2-}$	Thiosulfate ion 9.65.
10_2	Iodine dioxide 9.31., 9.32.	O ₃ Se ⁻	Selenite(V) ion 9.66., 9.67.
IO ₃ -	Iodate ion 9.32.	O ₃ Se ²	Selenite(IV) ion 9.66.
I_2	Iodine 9.26., 9.30.	O_4S^-	Sulfate radical ion 9.63.
I ₂ -	Diiodine radical ion 9.29., 9.30.	O_4S^{2-}	Sulfate ion 9.62., 9.63.
NO_2	Nitrogen dioxide 9.36.	O_5S^-	Peroxomonosulfate radical ion 9.64.
NO_2	Nitrite ion 9.36.	S	Sulfur 9.52.
NO_3	Nitrogen trioxide 9.37.	•	