The viscosity and thermal conductivity of pure monatomic gases from their normal boiling point up to 5000 K in the limit of zero density and at 0.101325 MPa

Cite as: Journal of Physical and Chemical Reference Data **19**, 1289 (1990); https:// doi.org/10.1063/1.555846 Submitted: 18 October 1989 . Published Online: 15 October 2009

E. Bich, J. Millat, and E. Vogel

ARTICLES YOU MAY BE INTERESTED IN

Approximate Formula for the Thermal Conductivity of Gas Mixtures The Physics of Fluids 1, 361 (1958); https://doi.org/10.1063/1.1724352

Viscosity of the Noble Gases in the Temperature Range 25-700°C The Journal of Chemical Physics 56, 4119 (1972); https://doi.org/10.1063/1.1677824

The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Argon, Krypton, Xenon, Nitrogen, and Oxygen Journal of Physical and Chemical Reference Data **3**, 979 (1974); https:// doi.org/10.1063/1.3253152

Where in the world is AIP Publishing? Find out where we are exhibiting next

Journal of Physical and Chemical Reference Data **19**, 1289 (1990); https://doi.org/10.1063/1.555846 © 1990 American Institute of Physics for the National Institute of Standards and Technology.

The viscosity and thermal conductivity of pure monatomic gases from their normal boiling point up to 5000 K in the limit of zero density and at 0.101325 MPa

E. Bich, J. Millat, and E. Vogel

Universität Rostock, Fachbereich Chemie, Buchbinderstrasse 9, D-O-2500 Rostock 1, Federal Republic of Germany.

Received October 18, 1989; revised manuscript received March 23, 1990

The kinetic theory of gases in the limit of zero density and that of moderately dense gases is used to generate accurate tables of the viscosity and thermal conductivity of the pure monatomic gases for zero density and for a pressure of 0.101325 MPa. The theoretically-based tables cover the temperature range from the normal boiling point of the relevant gas up to 5000 K. The associated uncertainties of the proposed data are detailed in the paper. A comparison of the correlated data with experimental results and some other recent correlations is given.

Key words: argon; helium; krypton; monatomic gases; neon; thermal conductivity of gases; transport properties; viscosity of gases; xenon.

	Co	ntents
1.	Introduction	4.
2.	Kinetic theory	
	2.1. General	5.
	2.2. The classical zero-density contribution 1290	
	2.3. The initial density dependence 1291	6.
	2.4. Quantum corrections 1291	
	2.4.1. Quantum corrections to the zero-	7.
	density transport coefficients 1291	
	2.4.2. Quantum corrections to the initial	8.
	density dependence	
3.	Experimental data 1292	9.
4.	Results 1293	
	4.1. Comparison of recommended values with	
	experimental data 1293	
	4.2. Comparison with earlier correlations 1293	
	4.3. Corresponding states analysis 1293	1.
5.	Tabulations 1304	
6.	Conclusions 1304	2.
7.	Acknowledgements 1304	
8.	References 1304	
		3

List of Tables

1.	Sources for primary experimental data for the	
	viscosity of monatomic gases.	1294
2.	Sources for primary experimental data for the	
	thermal conductivity of monatomic gases	1295
3.	Coefficients and scaling parameters for the	
		1000

©1990 by the U.S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society.

Reprints available from ACS; see Reprints List at back of issue.

4.	Relative uncertainties of recommended	1206
5.	The viscosity and thermal conductivity of	1290
	helium	1298
6.	The viscosity and thermal conductivity of neon	1200
7.	The viscosity and thermal conductivity of argon	1299
8.	The viscosity and thermal conductivity of kryp-	1301
0.	ton	1302
9.	The viscosity and thermal conductivity of	
	xenon	1303

List of Figures

1.	Relative contribution of quantum effects to the	1202
2	Relative contribution of the initial density de	1292
2.	pendence to the viscosity and thermal conduc-	
	tivity of monatomic gases.	1292
3.	Comparison of recommended viscosity values	
	of helium to experimental results and earlier	
	correlations.	1296
4.	Comparison of recommended viscosity values	
	of neon to experimental results and earlier cor-	
~	relations.	1296
5.	Comparison of recommended viscosity values	
	or argon to experimental results and earner	1206
6	Comparison of recommended viscosity values	1290
.	of krypton to experimental results and earlier	
	correlations.	1297
7.	Comparison of recommended viscosity values	
	of xenon to experimental results and earlier	
	correlations	1297

- 8. Comparison of recommended thermal conductivity values of helium to selected experimental data and earlier correlations - temperature range 5–250 K. 1297 9. Comparison of recommended thermal conductivity values of helium to experimental data and earlier correlations - up to 2100 K. 1297 10. Comparison of recommended thermal conductivity values of neon to experimental data and 11. Comparison of recommended thermal conductivity values of argon to experimental data and 12. Comparison of recommended thermal conductivity values of krypton to experimental data and earlier correlations..... 1298 13. Comparison of recommended thermal conductivity values of xenon to experimental data and

- viscosity data with values calculated using the corresponding states analysis by Kestin *et al.* . 1298

1. Introduction

The existence of a sophisticated kinetic theory for zero-density gases, in conjunction with the progress that has been made with respect to high-precision measurements of the transport properties of gases, has provided the basis for the development of extensive and accurate correlations and predictions for the viscosity and thermal conductivity of many simple gases and gas mixtures. In general, one can differentiate between so-called universal correlations using the extended principle of corresponding states ¹⁻⁶ on one hand and so-called individual correlations ⁷⁻¹¹. These correlations for transport properties in the limit of zero density naturally include monatomic gases ^{1-3,6}. Most of these recent studies follow the guidelines worked out by the Subcommittee on Transport Properties of IUPAC Commission I.2, as does this work.

The justification for an up-to-date evaluation of the transport properties of the monatomic gases derives from recent theoretical as well as experimental results. For instance, during the last three years an almost conformal set of HFD-B type interatomic potentials has been developed¹²⁻¹⁵. This forms the essential basis for our zero-density data.

The development of an improved kinetic theory of moderately dense gases^{16 17} and its experimental verification¹⁸⁻²¹ enables the initial density dependence of the transport coefficients to be evaluated. As shown later, this effect amounts to several per cent especially at low temperatures. Finally, there are numerous new highprecision data for the thermal conductivity measured using transient hot-wire techniques. At the same time, new shock tube measurements have become available²² which extend the temperature range considerably. In connection with these results it is shown that shock tube data for helium and neon in agreement with general theoretical results²³⁻²⁵ are burdened with systematic errors due to thermal accomodation (temperature jump effect) at very high temperatures. Analogously, high-temperature viscosity data of the light noble gases should be influenced by the slip effect. The mentioned theoretical and experimental progress has formed the basis for the proposed tables from the normal boiling point of the relevant gas up to 5000 K. The tables include data at zero-density and for a standard pressure of 0.101325 MPa. The reliability of the correlation scheme used is confirmed by comparison of correlated data with experimental results at experimental pressures (densities).

2. Kinetic Theory

2.1. General

In the case of transport properties it is conventional to express the properties in the form

$$X(\rho,T) = X_0(T) + \Delta X(\rho,T) + \Delta X_c(\rho,T)$$
(1)

The term $X_0(T)$ represents the viscosity $(X = \eta)$ or thermal conductivity $(X = \lambda)$ in the limit of zero-density, while the term $\Delta X(\rho, T)$ represents the excess property and $\Delta X_c(\rho, T)$ is its critical enhancement. Here, we are only concerned with the viscosity and thermal conductivity outside the critical region, i.e. $\Delta X_c(\rho, T) = 0$. On the other hand, we have to take into account the possibility of significant quantum effects for the light monatomic gases. Since such effects are to be expected with respect to $X_0(T)$ as well as $\Delta X(\rho, T)$, we define for practical purposes $X_0(T)$ and $\Delta X(\rho, T)$ as the classical contributions to the transport coefficients and add quantum correction terms. Thus, we get

$$X(\rho,T) = X_0(T) + \Delta X(\rho,T) + X_{0,QM}(T) + \Delta X_{QM}(\rho,T).$$
(2)

The treatment of the individual contributions is detailed in the following chapters.

2.2. The Classical Zero-density Contribution

The classical zero-density contribution always forms the basic contribution to the transport properties in the density region we are dealt with in this study. We have decided to base our tables on data that have been calculated from the interatomic potentials. Starting from our older results^{26,27} we have used the recently proposed almost conformal HFD-B type potentials¹²⁻¹⁵. These potentials are generated on a sound theoretical basis and have been optimized using a large number of microscopic as well as macroscopic properties including data for viscosity and thermal conductivity.

It is this multiproperty fit that makes sure that the proposed potentials are useful throughout the entire temperature range. Following this philosophy, we have calculated $\eta_0(T)$ and $\lambda_0(T)$ according to the Chapman-Enskog theory²⁸, i.e.

$$\eta_0 = 0.026696 \ (\text{TM})^{1/2} f_{\eta}^{(k)} / \left(\sigma^2 \ \Omega^{(2,2)^*}(T^*)\right) \tag{3}$$

and

$$\lambda_0 = 0.83236 \ (T/M)^{1/2} f_{\lambda}^{(k)} \ (\sigma^2 \ \Omega^{(2,2)^*}(T^*)). \tag{4}$$

Here, $T^* = kT/\epsilon$, ϵ/k represents the potential well depth, σ the collision diameter, M the molar mass, k Boltzmann's constant and $\Omega^{(2,2)^*}(T^*)$ the reduced collision integral.

 $f_{\eta}^{(k)}$ and $f_{\lambda}^{(k)}$ are the higher order correction factors. We have applied the second order Kihara approximation²⁸

$$f_{\eta}^{(2)} = 1 + \frac{3}{196} \left(8E^* - 7\right)^2 \tag{5}$$

and

$$f_{\lambda}^{(2)} = 1 + \frac{1}{42} (8E^* - 7)^2,$$
 (6)

with the dimensionless collision integral ratio E^* . The needed potential parameters have been taken from Ref. 14 (He), Ref. 15 (Ne), Ref. 12 (Ar, Kr) and Ref. 13 (Xe).

2.3. The Initial Density Dependence

The contribution of the initial density dependence $X_1(\rho,T)$ to the excess property $\Delta X(\rho,T)$ is usually combined with the zero-density contribution $X_0(T)$ according to

$$\eta(\rho,T) = \eta_0(T) + \eta_1(\rho,T) + \dots = \eta_0(1 + B_\eta \rho + \dots)$$
(7)
and

$$\lambda(\rho,T) = \lambda_0(T) + \lambda_1(\rho,T) + ... = \lambda_0(1 + B_{\lambda} \rho + ...).$$
(8)

The so-called 2nd viscosity and thermal conductivity virial coefficients B_{η} and B_{λ} consist of three contributions:

$$B_{\eta,\lambda} = B_{\eta,\lambda}^{(2)} + B_{\eta,\lambda}^{(3)} + B_{\eta,\lambda}^{(M-D)}.$$
 (9)

 $B_{\eta,\lambda}^{(2)}$ represents a two-monomer contribution, $B_{\eta,\lambda}^{(3)}$ a three-monomer contribution and $B_{\eta,\lambda}^{(M-D)}$ a monomerdimer contribution. According to the theory of Rainwater and Friend¹⁶ ¹⁷ $B_{\eta}^{(3)} = B_{\lambda}^{(3)}$, whereas the other contributions are different for viscosity and thermal conductivity. The monomer-dimer terms are based on the assumption that the effective monomer-dimer potential is of a Lennard-Jones 12-6 type as it is assumed for the monomer-monomer interaction. Additionally, the ratio of energy scales

$$\theta = \epsilon_{\rm M-D} / \epsilon_{\rm M} \tag{10a}$$

and that of length scales

$$\delta = \sigma_{\rm M-D} / \sigma_{\rm M} \tag{10b}$$

have been introduced. Rainwater and Friend^{16,17} have exactly calculated $B_{\eta,\lambda}^{(2)}$. $B_{\eta,\lambda}^{(3)}$ is given in a first approximation. Finally, Rainwater and Friend¹⁶ have adjusted $B_{\eta,\lambda}^{(M-D)}$ to experimental data summarized by Hanley *et al.*²⁹ by means of

$$\theta = 1.15$$
; $\delta = 1.02$. (11)

Using the recent data of Refs. 18-21 as well as other experimental material Bich and Vogel³⁰ have improved the potential parameter ratios 0 and δ and therefore the related monomer-dimer contributions. The $B_{\eta}^{(M-D)}$ and $B_{\lambda}^{(M-D)}$ and the total second transport virial coefficients (B_{η}, B_{λ}) of this work are based on

$$= 1.25 \text{ and } \delta = 1.04$$
 (12)

and have been used throughout this paper.

θ

2.4. Quantum Corrections 2.4.1. Quantum Corrections to the Zero-density Transport Coefficients

In the case of helium and neon it is necessary to include quantum corrections to the zero-density transport coefficients. In fact, these contributions have been calculated using complicated phase shift routines as detailed in Refs. 14, 15, 31. By comparison with the classically calculated collision integrals it has turned out that quantum effects play a significant role up to 400 K for helium as well as for neon. Since the calculation of the quantum mechanical collision integrals is rather cumbersome, we have used a basis set of these data as a function of temperature to evaluate correlation equations for $X_{0,OM}(T)$. Those have enabled the correction term to be calculated for any temperature. The effect of quantum corrections to the zero-density transport properties is demonstrated in Fig. 1.

2.4.2. Quantum Corrections to the Initial Density Dependence

Again, quantum corrections for helium and neon should be taken into account. There is only little theoretical work concerning this problem. In this study we have assumed that the contributions of quantum effects to the density dependence of the transport coefficients of neon are negligible within the stated uncertainty of the proposed data. The situation is different for helium: One

FIG. 1. Relative contribution of quantum effects to the zero-density viscosity of helium and neon.

can assume that the quantum-mechanically calculated monomer-dimer term for helium at low temperatures is small (c.f. Ref. 14). There are no detailed results for $B_{n,\lambda}^{(2)}$ and $B_{n,\lambda}^{(3)}$ in the open literature. But, it is known from Refs. 32 and 33 that one has to include an additional term to Eq.(9) that accounts for the needed change from Boltzmann's to Bose-Einstein statistics in the case of ⁴He. The classically computed values for $B_{\lambda}^{(2)}$ and $B_{\lambda}^{(3)}$ below $T^* = 1.0$ add to negative values. The last mentioned additional term is also negative and $B_{\lambda}^{(M-D)}$ is small. Thus, the overall effect of the classical contribution to the initial density dependence of λ should be negative. The experimental results of Acton and Kellner³⁴ as well as those of Roder³⁵ on the other hand show positive values for B_{λ} . This clearly indicates a strong effect of quantum corrections at very low temperatures. As a consequence of this fact we have correlated the initial density dependence of the thermal conductivity of helium below 100 K using the experimental results of Refs. 34 and 35. Above 100 K the quantum corrections to $X_1(\rho,T)$ become negligible. This effect is shown in Fig. 2. Since there are no comparable measurements for viscosity, we have used the classically calculated initial density dependence above 20 K. This corresponds to larger uncertainties in η in the temperature range 20–100 K. Between 5 and 20 K only zero-density values including the quantum correction to $\eta_0(T)$ are given.

3. Experimental Data

From a direct comparison of the entire data set of published transport property data for the monatomic gases, it is obvious that there are substantial discrepancies between various author's results (c.f. Refs. 1-3, 6, 26). Apparently, it is extremely difficult to decide on the accuracy of reported data solely on the basis of the available literature. Therefore, we have employed two complementary methods of assessing, in particular, the older experimental data. First, we have used a comparison with new experimental data measured with improved modern equipment of proven accuracy (viscosity: oscillating-disc viscometers or capillary viscometers, if a complete working theory has been applied; thermal conductivity: transient hot-wire cells). Secondly, we have attempted to establish confidence in experimental data by recourse to the available kinetic theory^{1-3,6,26,28}. That means, we have used a consistency test using a comparison of experimental data with results calculated from interatomic potentials and an extended law of corresponding states analysis. Thus, we have commenced

FIG. 2. Relative contribution of the initial density dependence to the viscosity and thermal conductivity of monatomic gases.

our study by dividing the experimental data into the categories of primary and secondary data^{7-9,36}.

Under primary data we consider experimental data measured with apparatus of high precision for which a complete working equation and a detailed knowledge of all corrections are available. In most cases this would unduly reduce the temperature range studied. Therefore, we have also included such data in our basis set which prove consistent with the high-precision data and theoretical results as outlined before.

Secondary data are the results of measurements which are of inferior accuracy to primary data. This inferior accuracy may arise from incomplete characterization of the apparatus or from operation at extreme conditions. From Sec. 2 it becomes apparent that one always needs the characterization of transport property data as a function of temperature *and* density (or pressure). Therefore, under secondary data we also consider experimental results without any information about the applied density or pressure.

For the five monatomic gases, we have carried out a survey of the available data and assigned them to one of the categories mentioned above. Only primary data were used in the formulation of the tables and for the purpose of comparison. The finally selected basis sets for viscosity and thermal conductivity are detailed in Table 1 and Table 2, respectively. The tables include information about our estimate of the uncertainty of each datum. It is necessary to mention that in general only one set of a group has been included if there are several publications of data measured with the same instrument in the same temperature range and showing very similar general trends.

In the interest of brevity, we have not been comprehensive in collating the information about secondary data and have used for our comparisons instead some earlier representations in which these data were included.

4. Results

4.1. Comparison of Recommended Values with Experimental Data

The recommended data of this study (Tables 5–9) are compared to the primary data sets in Figs. 3–7 (viscosity) and Figs. 8–14 (thermal conductivity). The maximum deviations are also included in Tables 1 and 2. All deviations are calculated at experimental pressures (densities) or for zero density if the usual statistical analysis of data as a function of density has been applied in order to obtain values appropriate to the zero-density limit. The agreement of almost the entire data set with the recommended values is well within the claimed accuracy of the tables (c.f. Table 4).

It is worth noting that there are significant deviations for the thermal conductivity of helium and neon determined using shock tube measurements. This result can be explained qualitatively by means of the theory of thermal accomodation (temperature jump effects)²³⁻²⁵. The experimental results have not been corrected for this effect. Since there are neither the needed complete information about the measurements nor exact working equations for these corrections, we have used the originally published data for the purpose of comparison. A rough estimate shows that the calculated deviations are significantly reduced if such corrections are applied. (The systematic deviation of the results of Collins *et al.*⁶⁶ for krypton is obviously due to badly chosen calibration data.) The same as for the influence of temperature jump effects on thermal conductivity measurements seems to be true to a smaller extent for results of high temperature viscosity measurements carried out with capillary viscometers.

4.2 Comparison with Earlier Correlations

We have included comparisons with some earlier correlations in Figs. 3–15. The agreement with the corresponding states analysis of Kestin *et al.*³ (zero-density (z.d.) values only) is good for all gases. From Fig. 15 it becomes obvious that the agreement with our correlation is within $\pm 1\%$ in the temperature range 300 K < T < 2000 K and rises to maximum $\pm 2\%$ at either temperature extreme. This is shown for the viscosity only, but, since thermal conductivity was calculated using the same collision integral, it is also true for this quantity.

We also have compared our results to correlations of Refs. 69–74. With the exception of helium and neon the agreement with earlier work is satisfactory; generally, the larger differences have appeared below $T^* = 1$. Furthermore, the results for helium (Fig. 4, Ref. 69) indicate that a Lennard-Jones 12–6 potential is not suitable to deduce reliable transport coefficients covering a large temperature range including quantum effects. Finally, it has become evident that particularly for the light gases at very low temperatures there is a great need for further experimental work.

Hoshino *et al.*⁷⁵ recently published a correlation for the thermal conductivity of argon in the temperature range 300–4500 K that has been based on new shock tube measurements and data from the literature. The agreement of their result with recent shock tube measurements, with our correlation as well as with that of Kestin *et al.*³ is rather poor above 1000 K. Using Eq. (16) and the related coefficients given in Ref. 75 we have found increasing differences with increasing temperature. These amount to about 11 per cent at 4500 K. This positive difference cannot be explained by temperature jump effects. We do not have a detailed explanation of this fact but it could also be caused by a badly chosen selection of calibration data at 1000 K for the author's experiments.

4.3. Corresponding States Analysis

As shown in Ref. 6, a two parameter theorem of corresponding states is useful with respect to the zero-density transport coefficients in the range $1.0 < T^* < 35$. Naturally, the primary data set selected in this study is applicable to reanalyse this result and to check the consistency of our zero-density results. Moreover, this formalism provides a simple way to express the correlated data analytically within the given temperature range.

From Eqs. (3)-(6) a universal functional $\Omega_{\eta,\lambda}$ follows with scaling factors ϵ/k and σ which are not identical with the potential parameters ϵ/k and σ given in Eqs. (3)-(6):

$$\Omega_{\eta,\lambda} = \frac{0.026696 \ (TM)^{1/2} f_{\eta}^{(k)}}{\eta_0 \sigma^2} = \frac{0.83236 \ (T/M)^{1/2} f_{\lambda}^{(k)}}{\lambda_0 \sigma^2}$$
(13)

Analogously to Refs. 1–3, 6 and 28 we have used the following form in order to represent the temperature dependence of the universal functional

$$\Omega_{\eta,\lambda} = \exp \sum_{i=0}^{4} a_i \, (\ln T^*)^i \,. \tag{14}$$

Paper	Temp. range (K)	Press. range (kPa)	No. of points	Acc. (%)	Max. dev. (%)	Method [*]
Helium			<u></u>	· · · · · · · · · · · · · · · · · · ·		
Coremans ^{37 b}	2080	13	7	2.0	1.1	OD
Kestin ³⁸	298-973	100	8	0.3-0.7	0.6	OD
Vogel ³⁹	298-623	100	б	0.3-0.5	0.2	OD
Becker ^{40 b}	14-20	0.3	5	3.0	1.9	OC
Dawe ⁴¹	293-1600	100	15	1.0-2.0	- 1.9	С
Gough ⁴²	120-320	15-65	11	1.7-1.0	1.8	С
Guevara ⁴³	1100-2150	80	22	1.0-3.0	-3.0	C
Neon						
Coremans ^{37 b}	20-80	4	7	2.0	1.9	OD
Kestin ³⁸	298–973	100	8	0.30.7	0.6	OD
Vogel ³⁹	298-623	100	6	0.3-0.5	-0.04	OD
Dawe ⁴¹	293-1600	100	15	1.0-1.5	-2.7	С
Clarke ⁴⁴	77–374	20-60	10	1.5-1.0	1.3	С
Guevara ⁴⁵	1100-2100	80	21	1.0–1.5	-2.6	C
Argon						
Kestin ³⁸	298–973	100	8	0.3–0.7	0.7	OD
Vogel ³⁹	298-623	100	6	0.3-0.5	-0.1	OD
Dawe ⁴¹	293-1600	100	15	1.0-1.5	-1.2	С
Gough ⁴²	120-320	1565	11	1.7-1.0	0.7	С
Guevara43	1100-2100	80	21	1.0-1.5	1.0	С
Lyusternik ⁴⁶	403-1950	100	17	1.5	-1.5	P
Krypton						
Kestin ³⁸	298-973	100	8	0.3-0.7	0.6	OD
Vogel ³⁹	298-623	100	6	0.3-0.5	-0.2	OD
Dawe ⁴¹	293-1600	100	15	1.0-1.5	- 1.8	С
Gough ⁴²	120-320	15-65	11	1.7-1.0	0.7	С
Goldblatt ⁴⁷	1100-2000	80	10	1.0-1.5	-0.8	С
Xenon						
Kestin ³⁸	298-973	100	8	0.3–1.0	1.2	OD
Vogel ³⁹	298-623	100	6	0.3-0.5	0.1	OD
Dawe ⁴¹	293-1600	100	15	1.0-1.5	1.1	С
Clarke ⁴⁸	176-375	4060	9	1.5-1.0	0.3	С
Goldblatt49	1100-2000	80	10	1.0-1.5	0.8	С

TABLE 1. Sources of experimental data for the viscosity of monatomic gases

^aC - capillary, OD - oscillating disc, OC - oscillating cup, P - porous medium.

^bData of Refs. 37 and 40 have been recalculated using a calibration value deduced from the thermal conductivity given in Ref. 34 at 20 K and zero-density.

THE VISCOSITY AND THERMAL CONDUCTIVITY OF MONATOMIC GASES

TABLE 2. Sources of experimental data for the thermal conductivity of monatomic gases

Helium Johns ⁹ 315-378 0 2 0.5-1.0 0.2 Assael ¹¹ 308 0 1 0.5 -0.1 Kestin ²² 301 0 1 0.5 -0.03 Mustafa ³⁵ 308-428 0 4 0.7-1.5 1.5 Haarman ⁴⁴ 328-468 100 8 1.0 -0.4 Vargatik ³⁵ 310-1238 100 12 2.0 -2.5 Marchenkov ⁴⁶ 407-1413 100 15 2.0 -2.5 Ubbink ⁸⁴ 15-89 50 7 3.0 -2.3 Actom ⁴⁴ 5-20 0 10 1.0 1.2 Roder ³⁴ 20-282 100 15 2.0 1.3 Le Neindre ⁴⁹ 297-775 100 7 2.0 1.5 Fauberf ⁴⁶ 800-2100 100 14 4.0-3.0 -3.9 CAlline ⁴¹ 1060-4700 6.2-20.0 -10.5 Col	Wethou
Johns ⁹ 315-378 0 2 0.5-1.0 0.2 Assaf ¹¹ 308 0 1 0.5 -0.03 Mustafa ⁵¹ 308+28 0 4 0.7-1.5 1.5 Haarman ⁴⁴ 328+468 100 8 1.0 -0.4 Vargatik ²⁵ 310-1238 100 12 2.0 -2.5 Marchenkov ⁶⁵ 407-1413 100 5 2.0 -2.5 Marchenkov ⁶⁵ 407-1413 100 15 2.0 -2.5 Ublink ⁶⁸ 15-89 50 7 3.0 -2.3 Actom ⁴⁴ 5-20 100 10 1.0 -1.6 Roder ²³ 20-282 100 15 2.0 1.3 Le Neindre ⁶⁹ 297-775 100 7 2.0 1.5 Fauberf ⁶⁰ 800-2100 100 14 4.0-15.0 -15.9 Semlyanikh ⁶² 1000-4000 100 6 2.0 -0.6	
Assach 0 1 0.5 -0.1 Kestin ²⁵ 301 0 1 0.5 -0.1 Kestin ²⁵ 306-428 0 4 $0.7-1.5$ 1.5 Harman ⁴⁴ 328-468 100 8 1.0 -0.4 Vargaftik ²⁵ 310-1238 100 12 2.0 -2.5 Marchenkov ⁶⁴ 407-1413 100 15 2.0 -2.3 Actom ⁴⁴ 5-20 0 10 1.0 -1.2 Nobick ⁸⁵ 15-89 50 7 3.0 -2.3 Actom ⁴⁴ 5-20 0 10 1.0 -0.6 Roder ⁸³ 20-282 0 15 2.0 1.3 Dolthofte ⁹⁹ 297-775 100 7 2.0 1.5 Fauberf ⁴⁰ 800-2100 60-20.0 -10.5 0.0 Callinc ⁴¹ 1600-6700 60-20.0 -10.5 0.0 Kestin ²³ 301	THW
Kestin ² 301 0 1 0.5 -0.03 Mustafa ⁵⁰ 308-428 0 4 0.7-1.5 1.5 Haarman ⁴⁴ 328-468 100 8 1.0 -0.4 Vargafik ⁵⁵ 310-1228 100 12 2.0 -2.5 Shashco ⁵⁷ 92-274 100 15 2.0 -2.3 Shashco ⁵⁷ 92-274 100 15 2.0 -2.3 Actom ^{4*} 5-20 0 10 1.0 -1.2 Macter Actom ^{4*} 5-20 0 15 2.0 1.3 Le Neindre ⁵⁹ 297-775 100 7 2.0 1.5 Faubert ⁶⁰ 800-2100 100 14 4.0-3.0 -3.9 Colline ⁴¹ 1000-4000 100 5 -0.0 1.5 Faubert ⁶⁰ 800-2100 100 1 0.5 -0.3 Mistaf 308 0 1 0.5 -0.3	THW
Mustafa ³⁰ 308-428 0 4 0.7-1.5 1.5 Haarman ⁴⁴ 328-468 100 8 1.0 -0.4 Vargafik ⁵⁵ 310-123 100 12 2.0 -2.3 Marchenkov ⁶⁶ 407-1413 100 5 2.0 -3.3 Shashtov ⁷⁷ 92-274 100 10 1.0 1.2 Marchenkov ⁶⁶ 15-89 50 7 3.0 -2.3 Actor ⁴⁷ 5-20 0 10 1.0 1.2 Scale 20-282 100 15 2.0 1.3 Le Neindre ⁵⁹ 297-775 100 7 2.0 1.5 Faubert ⁴⁰ 800-2100 100 14 4.0-15.0 -15.9 Semlyanikh ⁶² 1000-4000 100 5 6.0-20.0 -10.5 Nea 100 1 0.5 -0.3 Harman ⁴⁴ Marchen ⁴⁴ 100-10 10 1.5 -0.0 Starel	THW
Harman ⁴⁴ 328-488 100 8 1.0 -0.4 Vargafik ⁵⁵ 310-1238 100 12 2.0 -2.5 Marchenkov ⁵⁶ 407-1413 100 15 2.0 -2.5 Shashkov ⁷⁷ 92-274 100 15 2.0 -2.5 John 6 ⁸⁴ 15-89 50 7 3.0 -2.2 Acton ⁴⁴ 5-20 0 10 1.0 -0.6 Roder ³⁵ 20-282 0 15 2.0 1.3 Le Neindre ⁹⁹ 297-775 100 7 2.0 1.5 Fauberf ⁴⁰ 800-2100 100 14 4.0-3.0 3.9 Colline ⁴¹ 1600-4700 60-20.0 -10.5 Neo Assael ⁴¹ 308 0 1 0.5 -0.3 Haarman ⁴⁴ 328-468 100 8 1.0 -0.6 Millat ⁶² 308-422 0 4 0.5-1.0 -0.5	THW
Vargafik ⁵⁵ 310-1238 100 12 2.0 -2.5 Marchenkov ⁵⁶ 407-1413 100 5 2.0 -2.3 Shshko ⁷⁷ 92-274 100 15 2.0 -2.5 Ubbink ⁶⁸ 15-89 50 7 3.0 -2.3 Acton ³⁴ 5-20 0 10 1.0 -0.6 Roder ³⁵ 20-282 0 15 2.0 1.3 D-2382 100 7 2.0 1.5 Paubert ⁶⁰ 800-2100 100 7 2.0 1.5 Paubert ⁶⁰ 800-2100 100 7 2.0 1.5 Semiyanikh ⁶² 1000-4000 100 5 6.0-20.0 -10.5 Neon Assael ⁵¹ 301 0 1 0.5 0.0 Kestin ⁷⁴ 328-468 100 8 1.0 -0.6 Millat ⁶³ 308-428 0 4 0.5-1.0 -0.5	THW
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HW
Shashkov ³⁷ 92-274 100 15 2.0 -2.5 Ubbink ⁸⁴ 15-89 50 7 3.0 -2.3 Acton ³⁴ 5-20 0 10 1.0 -0.6 Roder ³⁵ 20-282 0 15 2.0 1.3 Le Neindre ⁵⁹ 207-775 100 7 2.0 1.5 Faubert ⁶⁰ 800-2100 100 14 40-3.0 -3.9 Calins ⁶¹ 1600-6700 60-200 11 40-15.0 -15.9 Semlyanikh ⁶² 1000-4000 100 5 6.0-20.0 -10.5 Neon Assael ⁵¹ 308 0 1 0.5 -0.0 Kestin ⁵² 301 0 1 0.5 -0.6 Milat ⁴⁰ 308-428 0 4 0.5-1.0 -0.8 Nesterox ⁴⁴ 90-273 100 20 1.5 -0.9 Springer ⁴⁵ 1500-5000 30-270 8 4.0-15.0 -11.5 Argon 1 0.5 -0.2 Haarman ⁵⁴ 328-4	HW
Ubbink ³⁶ 15-89 50 7 30 -23 Acton ³⁴ 5-20 0 10 1.0 1.2 S-20 100 10 1.0 1.2 Roder ³⁵ 20-282 0 15 2.0 1.3 Le Neindre ⁵⁹ 297-775 100 7 2.0 1.5 Faubert ⁴⁰ 800-2100 100 14 4.0-3.0 -3.9 Collins ⁴¹ 1600-4700 60-200 11 4.0-15.0 -15.9 Semlyanikh ⁶² 1000-4000 100 5 6.0-20.0 -10.5 Neon Assael ⁵¹ 308 0 1 0.5 -0.3 Haarman ⁴⁴ 328-468 100 8 1.0 -0.6 Nesterov ⁴⁴ 90-273 100 20 1.5 -0.9 Springer ⁴⁵ 1000-1500 100 6 2.0 -0.6 Mastovsky ²² 1500-5000 30-270 8 4.0-15.0 -11.5	HW
Acton ⁴⁴ 5-20 0 10 1.0 1.2 Roder ³⁵ 20-282 0 15 2.0 1.3 20-282 100 15 2.0 1.3 Le Neindre ⁵⁹ 297-775 100 7 2.0 1.5 Faubert ⁶⁹ 800-2100 100 14 4.0-3.0 -3.9 Colline ⁴¹ 1600-4700 60-200 11 4.0-15.0 -15.9 Semlyanikh ⁶² 1000-4000 100 5 6.0-20.0 -10.5 Neon Assael ⁵¹ 308 0 1 0.5 -0.3 Haarman ⁴⁴ 328-468 100 8 1.0 -0.6 Millat ⁴³ 308-428 0 4 0.5-1.0 -0.8 Nesterov ⁴⁴ 90-273 100 20 1.5 -0.9 Springer ⁴⁵ 1000-1500 100 6 2.0 -0.6 Mastovsky ⁷² 1500-6000 30-270 8 4.0-15.0 -11.5 Argon 1 0.5 -0.2 Kestin ⁵² 301 <t< td=""><td>PP</td></t<>	PP
5-20 100 10 1.0 -0.6 Roder ³⁵ 20-282 0 15 2.0 1.3 20-282 100 15 2.0 1.3 Le Neindre ⁵⁹ 297-775 100 7 2.0 1.5 Faubert ⁶⁰ 800-2100 100 14 4.0-3.0 -3.9 Colline ⁶¹ 1600-6700 60-200 11 4.0-15.0 -15.9 Semlyanikh ⁶² 1000-4000 100 5 6.0-20.0 -10.5 Neon Assael ⁵¹ 308 0 1 0.5 -0.3 Haarman ⁴⁴ 328-468 100 8 1.0 -0.6 Millat ⁴³ 308-422 0 4 0.5-1.0 -0.8 Nesterov ⁴⁴ 90-273 100 20 1.5 -0.9 Springer ⁴⁵ 1000-1500 100 6 2.0 -0.6 Collins ⁶⁶ 1500-5000 30-270 8 4.0-15.0 -11.5	PP
Roder ³⁵ $20-282$ 10 15 2.0 1.3 Le Neindre ⁵⁹ $297-775$ 100 15 2.0 1.5 Faubert ⁶⁰ $800-2100$ 100 14 $4.0-3.0$ -3.9 Cultine ⁴¹ $1600-6700$ $60-200$ 11 $4.0-15.0$ -15.9 Semlyanikh ⁶² $1000-4000$ 100 5 $6.0-20.0$ -10.5 Neon Assael ⁵¹ 308 0 1 0.5 0.0 Kestin ⁵² 301 0 1 0.5 -0.3 Haarman ⁵⁴ $328-468$ 100 8 1.0 -0.6 Millaf ³ $308-428$ 0 4 $0.5-1.0$ 0.8 Nettrov/4 $90-273$ 100 20 1.5 -0.9 Springer ⁴⁵ $1000-1500$ 100 6 2.0 -0.6 Mastovsky ²² $1500-5000$ $30-270$ 8 $4.0-15.0$ -11.5 Argon 1 0.5 0.2 -2.3 306	PP
20-282 100 15 2.0 1.3 Le Neindre ⁵⁹ 297-775 100 7 2.0 1.5 Faubert ⁶⁰ 800-2100 100 14 4.0-3.0 -3.9 Colline ⁶¹ 1600-6700 60-200 11 4.0-15.0 -15.9 Semlyanikh ⁶² 1000-4000 100 5 6.0-20.0 -10.5 Neon Assael ⁵¹ 308 0 1 0.5 -0.3 Haarman ⁵⁴ 328-468 100 8 1.0 -0.6 Millat ⁴⁵ 308-428 0 4 0.5-1.0 -0.8 Nesterov ⁶⁴ 90-273 100 20 1.5 -0.9 Springer ⁴⁵ 1000-1500 100 6 2.0 -0.6 Mastovsky ²² 1500-5000 30-270 8 4.0-15.0 -11.5 Argon 1 0.5 0.2 Kestin ⁵² 0.2 1.4 Mastovsky ²² 301 0 1 0.5	PP
Le Neindre ²⁹ 297-775 100 7 2.0 1.5 Faubert ²⁰ 800-2100 100 14 4.0-3.0 -3.9 Colline ⁴¹ 1600-6700 60-200 11 4.0-15.0 -15.9 Semlyanikh ⁶² 1000-4000 100 5 60-20.0 -10.5 Neon Assael ⁵¹ 308 0 1 0.5 -0.3 Haarman ⁵⁴ 328-468 100 8 1.0 -0.6 Millat ⁵³ 308-428 0 4 $0.5-1.0$ -0.8 Nesterov ⁴⁴ 90-273 1000 20 1.5 -0.9 Springer ⁴⁵ 1000-1500 100 6 2.0 -0.6 Mastovsky ²² 1500-6000 100 8.0 -6.8 Collins ⁶⁶ 313-470 0 5 $0.5-1.0$ 0.5 Assael ⁵¹ 308 0 1 0.5 -0.2 Haarman ⁴⁴ 328-468 100 8 1.0 -0.6 Shashko ⁷⁷ 94-271 100 13	PP
Faubert ⁴⁰ 800-2100 100 14 4.0-3.0 -3.9 Collins ⁴¹ 1600-6700 60-200 11 4.0-15.0 -15.9 Semlyanikh ⁶² 1000-4000 100 5 6.0-20.0 -10.5 Neon Assael ⁵¹ 308 0 1 0.5 -0.0 Assael ⁵¹ 308 0 1 0.5 -0.3 Haarman ⁴⁴ 328-468 100 8 1.0 -0.6 Millat ⁴³ 308-428 0 4 0.5-1.0 -0.8 Springer ⁴⁵ 1000-1500 100 6 2.0 -0.6 Mastorsky ²² 1500-6000 100 10 8.0 -6.8 Collins ⁴⁶ 1500-5000 30-270 8 4.0-15.0 -11.5 Argon Johns ⁵⁰ 313-470 0 5 0.5-1.0 0.5 Assael ⁵¹ 308 0 1 0.5 -0.2 Haarman ⁴⁴ 328-468 100 8 1.0 -0.6 Shashko ⁵⁷ 94-271 100 13 <td>CC</td>	CC
100 - 470 $100 - 4700$ $100 - 11$ $4.0 - 15.0$ -15.9 Semlyanikh ⁶² $1000 - 4000$ 100 5 $6.0 - 20.0$ -10.5 NeonAssael ⁵¹ 308 0 1 0.5 -0.3 Haarman ⁵⁴ $328 - 468$ 100 8 1.0 -0.6 Millat ⁷³ $308 - 428$ 0 4 $0.5 - 1.0$ -0.8 Nesterov ⁶⁴ $90 - 273$ 100 20 1.5 -0.9 Springer ⁴⁵ $1000 - 1500$ 100 6 2.0 -0.6 Mastovsky ²² $1500 - 6000$ 100 10 8.0 -6.8 Collins ⁶⁶ $313 - 470$ 0 5 $0.5 - 1.0$ 0.5 ArgonJohns ⁶⁰ $313 - 470$ 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -2.3 Springer ⁴⁵ 100 8 1.0 -0.6 Shashkov ⁵⁷ $94 - 271$ 100 13 $2.5 - 2.0$ 3.4 Vargafik ⁶⁷ $311 - 1201$ 100 18 2.0 -2.3 Collins ⁶⁴ $1500 - 5000$ $30 - 270$ 8 $4.0 - 15.0$ -3.8 Krypton 4 0 1 0.5 -0.2 Asael ⁵¹ 308 0 1 0.5 -0.2	Č
Semiyanikh ⁶² 1000-4000 100 5 $6.0-20.0$ -10.5 Neon Assael ⁵¹ 308 0 1 0.5 -0.0 Kestin ⁵² 301 0 1 0.5 -0.3 Haarman ⁵⁴ 328-468 100 8 1.0 -0.6 Millat ⁶³ 308-428 0 4 $0.5-1.0$ -0.8 Nesterov ⁶⁴ 90-273 100 20 1.5 -0.9 Springer ⁴⁵ 1000-1500 100 6 2.0 -0.6 Mastovsky ²² 1500-6000 100 10 8.0 -6.8 Collins ⁶⁰ 313-470 0 5 $0.5-1.0$ 0.5 Argon Johns ⁵⁰ 313-470 0 1 0.5 -0.2 Haarman ⁵⁴ 328-468 100 8 1.0 -0.6 Shashkov ⁵⁷ 94-271 100 13 $2.5-2.0$ 3.4 Vargafik ⁴⁷ 311-1201 100 18 2.0 -2.3 Springer ⁴⁵ 1000-2500<	ST
Neon Assael ⁵¹ 308 0 1 0.5 0.0 Kestin ⁵² 301 0 1 0.5 -0.3 Haarman ⁵⁴ 328-468 100 8 1.0 -0.6 Millat ⁶³ 308-428 0 4 0.5-1.0 -0.8 Nesterov ⁶⁴ 90-273 100 20 1.5 -0.9 Springer ⁴⁵ 1000-1500 100 6 2.0 -0.6 Mastovsky ²² 1500-6000 100 10 8.0 -6.8 Collins ⁶⁶ 1500-5000 30-270 8 4.0-15.0 -11.5 Argon Johns ⁵⁰ 313-470 0 5 0.5-1.0 0.5 Johns ⁵⁰ 313-470 0 1 0.5 -0.2 Haarman ⁵⁴ 328-468 100 8 1.0 -0.6 Shashkov ⁵⁷ 94-271 100 13 2.5-2.0 3.4 Vargafik ⁶⁷ 311-1201 100 18 2.0 -2.3 Springer ⁴⁵ 1000-2500 100 16	ST
Assael State308010.50.0Kestin S2301010.5 -0.3 Haarman Millat S3328-46810081.0 -0.6 Millat S3308-428040.5-1.0 -0.8 Nesterov Mesterov Springer S490-273100201.5 -0.9 Springer S41000-150010062.0 -0.6 Mastovsky221500-6000100108.0 -6.8 Collins S41500-500030-2708 $4.0-15.0$ -11.5 ArgonJohns S50313-470050.5-1.00.5Assael S11308010.5 -0.2 Haarman S4328-46810081.0 -0.6 Shashkov5794-271100132.5-2.03.4Vargaftik S7311-1201100182.0 -2.3 Springer S61500-500030-2708 $4.0-15.0$ -3.8 Krypton100128.0 -2.3 Collins S6 -3.8	
Autors 301 0 1 0.5 -0.3 Haarman ⁵⁴ $328-468$ 100 8 1.0 -0.6 Millat ⁶³ $308-428$ 0 4 $0.5-1.0$ -0.8 Nesterov ⁶⁴ $90-273$ 100 20 1.5 -0.9 Springer ⁶⁵ $1000-1500$ 100 6 2.0 -0.6 Mastovsky ²² $1500-6000$ 100 10 8.0 -6.8 Collins ⁶⁶ $1500-5000$ $30-270$ 8 $4.0-15.0$ -11.5 ArgonJohns ⁵⁰ $313-470$ 0 5 $0.5-1.0$ 0.5 Assael ⁵¹ 308 0 1 0.5 -0.2 Haarman ⁵⁴ $328-468$ 100 8 1.0 -0.6 Shashkov ⁵⁷ $94-271$ 100 13 $2.5-2.0$ 3.4 Vargaftik ⁶⁷ $311-1201$ 100 18 2.0 -2.3 Springer ⁴⁵ $1000-2500$ 100 16 $2.0-1.5$ -1.0 Mastovsky[22] $1500-7000$ 100 12 8.0 -2.3 Collins ⁶⁶ $1500-5000$ $30-270$ 8 $4.0-15.0$ -3.8 KryptonAssael ⁵¹ 308 0 1 0.5 -0.2	THW
Harman ⁵⁴ 328-468 10 0.5 0.5 Millat ⁶³ 308-428 0 4 $0.5-1.0$ -0.6 Nesterov ⁶⁴ 90-273 100 20 1.5 -0.9 Springer ⁶⁵ 1000-1500 100 6 2.0 -0.6 Mastovsky ²² 1500-6000 100 10 8.0 -6.8 Collins ⁶⁶ 1500-5000 $30-270$ 8 $4.0-15.0$ -11.5 Argon Johns ⁵⁰ $313-470$ 0 5 $0.5-1.0$ 0.5 Johns ⁵⁰ $313-470$ 0 5 $0.5-1.0$ 0.5 Assael ⁵¹ 308 0 1 0.5 -0.2 Haarman ⁵⁴ 328-468 100 8 1.0 -0.6 Shashkov ⁵⁷ $94-271$ 100 13 $2.5-2.0$ 3.4 Vargafitk ⁶⁷ $311-1201$ 100 18 2.0 -2.3 Springer ⁴⁵ $1000-2500$ 100 12 8.0 -2.3 Collins ⁶⁶	THW
Hammin $308-428$ 0 4 $0.5-1.0$ -0.8 Nesterov ⁶⁴ $90-273$ 100 20 1.5 -0.9 Springer ⁴⁵ $1000-1500$ 100 6 2.0 -0.6 Mastovsky ²² $1500-6000$ 100 10 8.0 -6.8 Collins ⁶⁶ $1500-5000$ $30-270$ 8 $4.0-15.0$ -11.5 Argon Johns ⁵⁰ $313-470$ 0 5 $0.5-1.0$ 0.5 Johns ⁵⁰ $313-470$ 0 5 $0.5-1.0$ 0.5 Argon Johns ⁵² 301 0 1 0.5 0.2 Kestin ⁵² 301 0 1 0.5 -0.2 Haarman ⁵⁴ $328-468$ 100 8 1.0 -0.6 Shashkov ⁵⁷ $94-271$ 100 13 $2.5-2.0$ 3.4 Vargaftik ⁶⁷ $311-1201$ 100 16 $2.0-1.5$ -1.0 Mastovsky[22] $1500-7000$ $30-270$ 8 $4.0-15.0$	THW
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	THW
Note to the set of the	HW
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	с С
Matrix1500-0001001001000.00.000.00Collins1500-5000 $30-270$ 8 $4.0-15.0$ -11.5 ArgonJohns0313-47005 $0.5-1.0$ 0.5 Assael30801 0.5 0.2 Kestin5230101 0.5 -0.2 Haarman328-4681008 1.0 -0.6 Shashkov ⁵⁷ 94-27110013 $2.5-2.0$ 3.4 Vargaftik311-120110018 2.0 -2.3 Springer51000-250010016 $2.0-1.5$ -1.0 Mastovsky[221500-700010012 8.0 -2.3 Collins61500-5000 $30-270$ 8 $4.0-15.0$ -3.8 KryptonAssael01 0.5 -0.2 Kestin30801 0.5 -0.2	ст
ArgonJohns ⁵⁰ $313-470$ 05 $0.5-1.0$ 0.5 Assael ⁵¹ 308 01 0.5 0.2 Kestin ⁵² 301 01 0.5 -0.2 Haarman ⁵⁴ $328-468$ 100 8 1.0 -0.6 Shashkov ⁵⁷ $94-271$ 100 13 $2.5-2.0$ 3.4 Vargaftik ⁶⁷ $311-1201$ 100 18 2.0 -2.3 Springer ⁶⁵ $1000-2500$ 100 16 $2.0-1.5$ -1.0 Mastovsky[22 $1500-7000$ 100 12 8.0 -2.3 Collins ⁶⁶ $1500-5000$ $30-270$ 8 $4.0-15.0$ -3.8 KryptonAssael ⁵¹ 308 0 1 0.5 -0.2	ST
Johns ⁵⁰ $313-470$ 0 5 $0.5-1.0$ 0.5 Assael ⁵¹ 308 0 1 0.5 0.2 Kestin ⁵² 301 0 1 0.5 -0.2 Haarman ⁵⁴ $328-468$ 100 8 1.0 -0.6 Shashkov ⁵⁷ $94-271$ 100 13 $2.5-2.0$ 3.4 Vargaftik ⁶⁷ $311-1201$ 100 18 2.0 -2.3 Springer ⁶⁵ $1000-2500$ 100 16 $2.0-1.5$ -1.0 Mastovsky[22 $1500-7000$ 100 12 8.0 -2.3 Collins ⁶⁶ $1500-5000$ $30-270$ 8 $4.0-15.0$ -3.8 Krypton Assael ⁵¹ 308 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.2	
Johns $315-470$ 0 3 $0.5-1.0$ 0.5 Assael ⁵¹ 308 0 1 0.5 0.2 Kestin ⁵² 301 0 1 0.5 -0.2 Haarman ⁵⁴ $328-468$ 100 8 1.0 -0.6 Shashkov ⁵⁷ $94-271$ 100 13 $2.5-2.0$ 3.4 Vargaftik ⁶⁷ $311-1201$ 100 18 2.0 -2.3 Springer ⁶⁵ $1000-2500$ 100 16 $2.0-1.5$ -1.0 Mastovsky[22 $1500-7000$ 100 12 8.0 -2.3 Collins ⁶⁶ $1500-5000$ $30-270$ 8 $4.0-15.0$ -3.8 Krypton Assael ⁵¹ 308 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.2	71.137
Assact 500 0 1 0.5 0.2 Kestin ⁵² 301 0 1 0.5 -0.2 Haarman ⁵⁴ 328-468 100 8 1.0 -0.6 Shashkov ⁵⁷ 94-271 100 13 2.5-2.0 3.4 Vargaftik ⁶⁷ 311-1201 100 18 2.0 -2.3 Springer ⁶⁵ 1000-2500 100 16 2.0-1.5 -1.0 Mastovsky[22 1500-7000 100 12 8.0 -2.3 Collins ⁶⁶ 1500-5000 30-270 8 4.0-15.0 -3.8 Krypton Assael ⁵¹ 308 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.2	TUW
Restin 301 0 1 0.5 -0.2 Haarman ⁵⁴ $328-468$ 100 8 1.0 -0.6 Shashkov ⁵⁷ $94-271$ 100 13 $2.5-2.0$ 3.4 Vargaftik ⁶⁷ $311-1201$ 100 18 2.0 -2.3 Springer ⁶⁵ $1000-2500$ 100 16 $2.0-1.5$ -1.0 Mastovsky[22 $1500-7000$ 100 12 8.0 -2.3 Collins ⁶⁶ $1500-5000$ $30-270$ 8 $4.0-15.0$ -3.8 Krypton Assael ⁵¹ 308 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.2	TUW
Haiman $326-405$ 100 3 1.0 -0.0 Shashkov ⁵⁷ $94-271$ 100 13 $2.5-2.0$ 3.4 Vargaftik ⁶⁷ $311-1201$ 100 18 2.0 -2.3 Springer ⁶⁵ $1000-2500$ 100 16 $2.0-1.5$ -1.0 Mastovsky[22 $1500-7000$ 100 12 8.0 -2.3 Collins ⁶⁶ $1500-5000$ $30-270$ 8 $4.0-15.0$ -3.8 Krypton Assael ⁵¹ 308 0 1 0.5 -0.2	TUN
Sinishov $31-211$ 100 15 2.0 -2.3 Vargaftik ⁶⁷ $311-1201$ 100 18 2.0 -2.3 Springer ⁶⁵ $1000-2500$ 100 16 $2.0-1.5$ -1.0 Mastovsky[22 $1500-7000$ 100 12 8.0 -2.3 Collins ⁶⁶ $1500-5000$ $30-270$ 8 $4.0-15.0$ -3.8 Krypton Assael ⁵¹ 308 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.2	
Vargatik 511-1201 100 10 10 2.0 -2.3 Springer ⁶⁵ 1000-2500 100 16 $2.0 - 1.5$ -1.0 Mastovsky[22 1500-7000 100 12 8.0 -2.3 Collins ⁶⁶ 1500-5000 30-270 8 $4.0-15.0$ -3.8 Krypton Assael ⁵¹ 308 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.2	
Springer 100-2500 100 10 2.0-1.5 -1.0 Mastovsky[22 1500-7000 100 12 8.0 -2.3 Collins ⁶⁶ 1500-5000 30-270 8 $4.0-15.0$ -3.8 Krypton Assael ⁵¹ 308 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.2	пw С
Mastersky 22 1500-7000 100 12 6.0 -2.5 Collins ⁶⁶ 1500-5000 30-270 8 $4.0-15.0$ -3.8 Krypton Assael ⁵¹ 308 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.2	C CT
Krypton Assael ⁵¹ 308 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.3	ST
Assael ⁵¹ 308 0 1 0.5 -0.2 Kestin ⁵² 301 0 1 0.5 -0.2	
Kestin ⁵² 301 0 1 0.5 _0.2	THW
	THW
Haarman ⁵⁴ 328–468 100 8 1.0 -0.5	THW
Nesterov ⁵⁴ 120–273 100 17 2.5–2.0 3.3	HW
Faubert ⁶⁸ 800–2000 100 13 2.0 2.5	C
Mastovsky ²² 1500–7000 100 12 8.0 – 2.4	ŠT
Collins ⁶⁶ 1500–5000 30–270 8 4.0–15.0 – 12.2	ST
Xenon	
Assael ⁵¹ 308 0 1 0.5 -0.1	THW
Kestin ⁵² 301 0 1 0.5 -0.3	THW
Shashkov ⁵⁷ 195–272 100 7 2.5–2.0 4.5	HW
Springer ⁶⁵ 1000–1500 100 6 2.0 – 1.3	С
Mastovsky ²² 1500-7000 100 12 8.0 -1.6	ST

*THW - transient hot wire, HW - hot wire, ST - shock tube, C - column method, PP - parallel plates, CC - concentric cylinders

Our results for the coefficients a_i and the scaling factors ϵ/k and σ obtained by fitting Eq. (14) to experimental zero-density transport coefficients η_0 and λ_0 are given in Table 3.

Consistent data for η_0 and λ_0 lead via Eq.(13) to identical values of the universal functional. In our procedure the values of the correction factors $f_{\pi}^{(k)}$ and $f_{\lambda}^{(k)}$ have been chosen according to the corresponding HFD-B potentials given above although these corrections do not depend on the potential to a large extent. They represent a contribution of no more than 1% to the zero-density values in most cases. It is necessary to stress that this scheme is only applicable to *the classical part of zero-density transport properties*³⁰.

FIG. 3. Comparison of recommended viscosity values of helium to experimental results and earlier correlations.

TABLE 3. Coefficients and scaling parameters for the corresponding states analysis $(1.0 < T^* < 35)$

	Coefficients	
$a_0 = 0.4422110$		
$a_1 = -0.5169991$		
$a_2 = 0.1591556$		
$a_3 = -0.02888469$)	
$a_4 = 0.00157514$	17	
	Scaling parameters	
Gas	€/k (K)	σ (nm)
Не	11.606	0.26072
Ne	41.491	0.27714
Ar	143.224	0.33528
Kr	206.91	0.35560
Xe	284.90	0.38810

FIG. 4. Comparison of recommended viscosity values of neon to experimental results and earlier correlations.

FIG. 5. Comparison of recommended viscosity values of argon to experimental results and earlier correlations.

TABLE 4. Relative uncertainties of recommended values (%)

 $T(\mathbf{K})$

5

20

80

100

290

300

700

1000

1500

2000

5000

27.09

87.28

119.78

165.03

298.15

He

2.0

1.5

0.5

0.3

0.5

0.5

1.0

2.0

5.0

FIG. 6. Comparison of recommended viscosity values of krypton to experimental results and earlier correlations.

FIG. 7. Comparison of recommended viscosity values of xenon to experimental results and earlier correlations.

FIG. 8. Comparison of recommended thermal conductivity values of helium to selected experimental data and earlier correlations - temperature range 5-250 K.

FIG. 9. Comparison of recommended thermal conductivity values of helium to experimental data and earlier correlations – up to 2100 K.

FIG. 10. Comparison of recommended thermal conductivity values of neon to experimental data and earlier correlations.

FIG. 11. Comparison of recommended thermal conductivity values of argon to experimental data and earlier correlations.

FIG. 12. Comparison of recommended thermal conductivity values of krypton to experimental data and earlier correlations.

FIG. 13. Comparison of recommended thermal conductivity values of xenon to experimental data and earlier correlations.

FIG. 14. Comparison of recommended high temperature thermal conductivities of monatomic gases to results of shock tube measurements and earlier correlations.

FIG. 15. Comparison of recommended zero-density viscosity data with values calculated using the corresponding states analysis by Kestin *et al.*

TABLE 5. The viscosity and thermal conductivity of helium

	a) With cont	density depe	ndence		
	Zero-density values		Values at 0.101325 MPa		
Temp. (K)	Viscosity (µPa s)	Therm. cond. (mW/m K)	Viscosity (µPa s)	Therm.cond. (mW/m K)	
5	1.224	9.537		10.30	
6	1.433	11.17		11.85	
7	1.619	12.63		13.27	
8	1.788	13.97		14.58	
9	1.948	15.21		15.80	
10	2.097	16.38		16.94	
12	2.378	18.59		19.08	
14	2.640	20.65		21.09	
16	2.886	22.57		22.97	
18	3.120	24.40		24.76	
20	3.344	26.15	3.357	26.46	
25	3.872	30.28	3.885	30.55	
30	4.360	34.11	4.371	34.35	
35	4.818	37.69	4.827	37.90	
40	5.252	41.07	5.260	41.27	
45	5.666	44.32	5.673	44.50	
50	6.066	47.44	6.071	47.60	
60	6.832	53.43	6.836	53.57	
70	7.556	59.10	7.556	59.22	
80	8.240	64.45	8.240	64.55	
90	8.894	69.55	8.894	69.65	
100	9.529	74.53	9.529	74.61	
110	10.15	79.37	10.15	79.45	
120	10.76	84.09	10.76	84.16	
130	11.35	88.69	11.35	88.75	
140	11.92	93.17	11.92	93.23	
150	12.49	97.54	12.49	97.60	
160	13.04	101.8	13.04	101.9	

THE VISCOSITY AND THERMAL CONDUCTIVITY OF MONATOMIC GASES

15.53

16.58

17.61

TABLE 5. The viscosity and thermal conductivity of helium - Continued

2150

2200

2250

81.13

82.55

83.96

633.3

644.3

655.4

b) Negligible (contribution of initial de up to 0.101325 MPa	nsity dependence	b) Negli	igible contri u	bution of initial p to 0.101325 M	density der Pa	pendence
Temp. (K)	Viscosity (µPa s)	Therm. cond. (mW/m K)	Temp. (K)		Viscosity (µPa s)	Tł (1	nerm. cond. mW/m K)
170	13.58	106.0	2300		85.37		666.3
180	14.11	110.2	2350		86.77		677.2
190	14.63	114.2	2400		88.16		688.1
200	15.14	118.2	2450		89.56		699.0
210	15.64	122.2	2500		90.94		709.8
220	16.14	126.1	2600		93.70		731.3
230	16.63	130.0	2700		96.44		752.6
240	17.12	133.8	2800		99.16		773.9
250	17.60	137.5	2900		101.9		795.0
260	18.08	141.2	3000		104.6		816.0
270	18.54	144.9	3100		107.2		836.9
273.15	18.69	146.0	3200		109.9		857.6
280	19.01	148.5	3300		112.6		878 3
290	19.47	152.1	3400		115.2		898.9
298.15	19.84	155.0	3500		117.8		919.4
300	19.92	155.7	3600		120.4		030 7
320	20.82	162 7	3700		120.4		060.0
240	20.02	160.6	2900		125.0		200.0
340	21.70	176 /	2000		123.0	1	980.2
200	22.37	10.4	4000		120.2	1	000.
300	23.43	165.1	4000		130.8	1	.020.
400	24.27	189.6	4100		133.4	1	.040.
420	25.09	196.0	4200		135.9	1	.060.
440	25.91	202.5	4300		138.6	1	081.
460	26.72	208.8	4400		141.1	1	101.
480	27.52	215.1	4500		143.7	1	121.
500	28.32	221.3	4600		146.2	1	140.
550	30.27	236.5	4700		148.7	1	160.
600	32.17	251.3	4800		151.2	1	180.
650	34.03	265.9	4900		153.7	1	199.
700	35.86	280.1	5000		156.2	1	218.
750	37.65	294.2					
800	39.42	307.9					
850	41.16	321.5					
900	42.87	334.9					
950	44.56	348.1	TABLE 6	. The viscos	ity and thermal	conductivity	y of neon
1000	46.23	361.1	······································				
1050	47.89	374.0	a) Wi	ith contribu	tion of initial de	nsity denor	danca
1100	49.52	386 7	a) 11		tion of mitial de	many depen	lucile
1150	51 14	399.4	.	Zero-de	neity value	Values at	0 101225 MPa
1200	52 74	411 0		Zero-de	isity values	values at	0.101525 WIFa
1250	5/ 22	411.5	Tommoroture	Viceosity	Thomas and	X7:	7 51
1200	55.00	424.2	Temperature	VISCOSITY	Therm. cond.	VISCOSITY	I nerm. cond.
1300	53.90	430.3	(K)	(µPa s)	(mW/m K)	(µPa s)	(mW/m K)
1330	J7.40	448.7			<u> </u>		
1400	59.01	460.8	27.09	4.254	6.573	3.893	6.838
1450	60.55	472.8	28	4.402	6.802	4.092	7.071
1500	62.07	484.7	30	4.711	7.279	4.483	7.547
1550	63.59	496.5	32	5.024	7.763	4.848	8.020
1600	65.10	508.3	34	5.336	8.245	5.199	8.492
1650	66.59	519.9	36	5.646	8.724	5.539	8.961
1700	68.08	531.5	38	5.958	9.206	5.874	9.434
1750	69.56	543.1	40	6.271	9.690	6.205	9.908
1800	71.03	554.5	42	6.579	10.17	6.527	10.38
1850	72.50	566.0	44	6.885	10.64	6.844	10.84
1900	73.95	577.3	46	7,188	11.11	7,157	11.30
1950	75.40	588.6	48	7,490	11.57	7,466	11 76
2000	76.84	599.9	50	7,792	12.04	7 774	12 22
2050	78.28	611 1	55	8 532	13 10	2 577	12 25
2100	70 71	672.2	55 60	0.355	14 20	0.321	13.33
2100	13.11	044.4	00	7.423	14.30	9.233	14.40

65

70

75

9.955

10.64

11.31

15.39

16.45

17.49

TABLE 5.	The viscosity	and therma	l conductivity
	of helium	 Continue 	d

9.962

10.65

11.32

=

_

_

TABLE 6. The viscosity and thermal conductivity of neon - Continued

a) With contribution of initial density dependence				
	Values at	0.101325 MPa		
Temperature (K)	Viscosity (µPa s)	Therm. cond. (mW/m K)	Viscosity (µPa s)	Therm. cond. (mW/m K)
80	11.96	18.50	11.98	18.61
85	12.60	19.48	12.61	19.59
90	13.21	20.43	13.22	20.53
95	13.80	21.35	13.82	21.45
100	14.39	22.26	14.40	22.35
110	15.52	24.02	15.54	24.11
120	16.61	25.71	16.63	25.79
130	17.66	27.34	17.67	27.41
140	18.67	28.91	18.68	28.97
150	19.65	30.43	19.66	30.49
160	20.60	31.90	20.61	31.96
170	21.52	33.34	21.52	33.39
180	22.42	34.74	22.42	34.79
190	23.30	36.10	23.30	36.15
200	24.16	37.43	24.16	37.48
210	24.99	38.74	24.99	38.78
220	25.82	40.02	25.82	40.06
230	26.62	41.27	26.62	41.31
240	27.42	42.50	27.42	42.54
250	28.20	43.71	28.20	43.75
260	28.96	44.90	28.96	44.94
270	29.72	46.08	29.72	46.11
273.15	29.96	46.45	29.96	46.48
280	30.47	47.24	30.47	47.27
290	31.20	48.38	31.20	48.41
298.15	31.79	49.30	31.79	49.32
300	31.93	49.50	31.93	49.53
320	33.34	51.71	33.34	51.73

b) Negligible contribution of initial density dependence up to 0.101325 MPa

Temperature (K)	Viscosity (µPa s)	Therm. cond. (mW/m K)
340	34.73	53.86
360	36.09	55.96
380	37.41	58.02
400	38.70	60.02
420	39.98	62.01
440	41.24	63.97
460	42.48	65.89
480	43.71	67.79
500	44.91	69.66
550	47.85	74.22
600	50.71	78.64
650	53.48	82.95
700	56.19	87.14
750	58.83	91.24
800	61.42	95.25
850	63.95	99.18
900	66.44	103.0
950	68.89	106.8
1000	71.30	110.6

b) Negligible contribution of initial density dependence up to 0.101325 MPa				
Temperature (K)	Viscosity (µPa s)	Therm. cond. (mW/m K)		
1050	73.67	114.2		
1100	76.00	117.9		
1150	78.31	121.4		
1200	80.58	125.0		
1250	82.83	128.4		
1300	85.05	131.9		
1350	87.24	135.3		
1400	89.41	138.6		
1450	91.56	142.0		
1500	93.68	145.3		
1550	95.79	148.5		
1600	97.87	151.8		
1650	99.94	155.0		
1700	102.0	158.1		
1750	104.0	161.3		
1800	106.0	164.4		
1850	108.0	167.5		
1900	110.0	170.6		
1950	112.0	173.6		
2000	113.9	176.6		
2050	115.9	179.6		
2100	117.8	182.6		
2150	119.7	185.6		
2200	121.6	188.5		
2250	123.5	191.5		
2300	125.4	194.4		
2350	127.3	197.3		
2400	129.1	200.1		
2450	131.0	203.0		
2500	132.8	205.8		
2600	136.4	211.5		
2/00	140.0	217.1		
2800	145.0	222.0		
2900	14/.1	220.0		
2100	150.0	233.5		
3200	134.1	230.0		
3200	160.0	244.2		
3400	164 2	247.4 251 7		
3500	1677	234.1		
3600	171.0	209.9		
3700	171.0	205.0		
3800	177 6	270.1		
3000	180.9	213.2		
4000	184 1	200.5		
4100	187 3	202.2		
4200	190 4	250.5		
4300	103 7	300 1		
4400	196.8	305.0		
4500	200.0	300.0		
4600	203.1	314 7		
4700	206.2	310 5		
4800	209 3	324 3		
4900	212.4	329.1		
	A			

_

TABLE 7. The viscosity and thermal conductivity of argon

 TABLE 7. The viscosity and thermal conductivity

 of argon - Continued

a) Wit	h contribution	n of initial der	sity depende	nce
	Zero-de	ensity values	Values at 0	.101325 MPa
Temp.	Viscosity	Therm.	Viscosity	Therm.
(K)	(µPa s)	(mW/m K)	(µPa s)	(mW/m K)
87.28	7.133	5.567	6.971	5.698
90	7.347	5.734	7.204	5.862
100	8.132	6.347	8.042	6.466
110	8.927	6.968	8.870	7.078
120	9.721	7.587	9.685	7.689
130	10.51	8.206	10.49	8.302
140	11.31	8.824	11.30	8.916
150	12.09	9.436	12.09	9.521
160	12.86	10.04	12.86	10.12
170	13.63	10.64	13.63	10.72
180	14.39	11.24	14.40	11.31
190	15.15	11.82	15.16	11.89
200	15.88	12.40	15.90	12.46
210	16.61	12.97	16.62	13.03
220	17.33	13.53	17.34	13.59
230	18.03	14.08	18.05	14.14
240	18.73	14.63	18.75	14.68
250	19.42	15.17	19.44	15.22
260	20.10	15.70	20.12	15.75
270	20.77	16.22	20.78	16.27
273.15	20.98	16.38	20.99	16.43
280	21.43	16.74	21.44	16.78
290	22.07	17.24	22.09	17.29
298.15	22.59	17.65	22.61	17.69
300	22.71	17.74	22.72	17.79
320	23.96	18.72	23.98	18.76
340	25.18	19.68	25.19	19.72
360	26.37	20.61	26.38	20.65
380	27.53	21.52	27.53	21.56
400	28.67	22.41	28.66	22.44
420	29.77	23.28	29.77	23.31
440	30.85	24.13	30.85	24.16
460	31.91	24.96	31.91	24.99
480	32.95	25.78	32.95	25.80
500	33.98	26.58	33.98	26.60
550	36.45	28.52	36.45	28.55
600	38.83	30 39	38.83	30 41
650	41.13	32.19	41.13	32.21
700	43.35	33.93	43.35	33.95

b) Negligible contribution of initial density dependence up to 0.101325 MPa						
Temperature (K)	Viscosity (µPa s)	Therm. cond. (mW/m K)				
750	45.50	35.62				
800	47.60	37.28				
850	49.64	38.88				
900	51.63	40.43				
950	53.58	41.97				
1000	55.50	43.47				
1050	57.37	44.93				
1100	59.21	40.39				
1200	62.81	49.20				
1250	64.56	50.58				
1300	66.29	51.93				
1350	68.00	53.28				
1400	69.69	54.60				
1450	71.35	55.90				
1500	72.99	57.19				
1550	74.62	58.46				
1650	70.23	59./1 60.97				
1700	79.39	62.20				
1750	80.95	63.41				
1800	82.50	64.62				
1850	84.02	65.82				
1900	85.54	67.01				
1950	87.04	68.20				
2000	88.54	69.37				
2050	90.02	/0.51				
2150	92.94	72.80				
2200	94.39	73.94				
2250	95.82	75.07				
2300	97.25	76.19				
2350	98.66	77.29				
2400	100.1	78.39				
2450	101.5	79.49				
2500	102.9	80.58 87 77				
2000	108.3	84.86				
2800	111.0	86.96				
2900	113.7	89.04				
3000	116.3	91.10				
3100	118.9	93.14				
3200	121.5	95.17				
3300	124.0	97.17				
3500	120.0	99.14				
3600	131.6	103.1				
3700	134.1	105.0				
3800	136.5	106.9				
3900	138.9	108.8				
4000	141.4	110.7				
4100	143.8	112.6				
4200	140.1	114.4				
4300	140.0	110.3 118 1				
4500	153.2	120.0				
4600	155.5	121.8				
4700	157.8	123.6				
4800	160.1	125.4				
4900	162.4	127.2				
5000	164.7	128.9				

2

BICH, MILLAT, AND VOGEL

TABLE 8. The viscosity and thermal conductivity of krypton

TABLE 8. The viscosity and thermal conductivity of krypton — Continued

	Zero-de	nsity values	Values at 0.101325 MPa	
Temp. (K)	Viscosity (µPa s)	Therm. cond. (mW/m K)	Viscosity (µPa s)	Therm. cond (mW/m K)
119.78	10.55	3.927	10.28	4.009
120	10.57	3.934	10.30	4.016
130	11.42	4.248	11.22	4.327
140	12.26	4.563	12.12	4.637
150	13.12	4.880	13.01	4.951
160	13.97	5.199	13.90	5.267
170	14.83	5.517	14.77	5.582
180	15.68	5.834	15.64	5.896
190	16.54	6.153	16.51	6.211
200	17.39	6.469	17.37	6.526
210	18.23	6.784	18.22	6.838
220	19.07	7.095	19.07	7.147
230	19.90	7.404	19.90	7.454
240	20.73	7.712	20.73	7.759
250	21.55	8.018	21.55	8.064
260	22.36	8.322	22.36	8.366
270	23.17	8.622	23.18	8.665
273.15	23.42	8.716	23.44	8.758
280	23.97	8.918	23,98	8,960
290	24.75	9.212	24.77	9.252
298.15	25.39	9,449	25.41	9.488
300	25.53	9.502	25.55	9.541
320	27.07	10.07	27.09	10.11
340	28.58	10.64	28.60	10.67
360	30.06	11.19	30.08	11.22
380	31.51	11.73	31.53	11.76
400	32.92	12.26	32.94	12.29
420	34.31	12.78	34.33	12.80
440	35.67	13.28	35.69	13.31
460	37.00	13.78	37.02	13.80
480	38.32	14.27	38.32	14.30
500	39.61	14.76	39.61	14.78
550	42.74	15.93	42.74	15.95
600	45.75	17.05	45.75	17.07
650	48.64	18.13	48.64	18.15
700	51.43	19.18	51.43	19.20
750	54.14	20.19	54.14	20.21
800	56.77	21.18	56.78	21.19
850	59.34	22.14	59.34	22.15
900	61.84	23.07	61.84	23.08
950	64.28	23.98	64.28	24.00

b) Negligible contribution of initial density dependence up to 0.101325 MPa					
Temperature (K)	Viscosity (µPa s)	Therm. cond. (mW/m K)			
1000	66.66	24.88			
1050	69.00	25.75			
1100	71.29	26.61			
1150	73.55	27.45			
1200	75.76	28.28			
1250	77.94	29.09			
1300	80.08	29.89			
1350	82.20	30.68			
1400	84.28	31.40			
1430	00.34 99.36	32.23			
1550	00.37	32.99			
1600	90.37	34.48			
1650	94.31	35.21			
1700	96.25	35.94			
1750	98.17	36.65			
1800	100.1	37.36			
1850	101.9	38.06			
1900	103.8	38.76			
1950	105.7	39.45			
2000	107.5	40.13			
2050	109.3	40.81			
2100	111.1	41.48			
2150	112.9	42.15			
2200	114.7	42.81			
2250	116.4	43.47			
2300	118.2	44.12			
2350	119.9	44.77			
2400	121.6	45.41			
2430	123.3	40.00			
2500	125.0	40.00			
2000	120.4	47.94			
2800	131.7	50.41			
2000	138.3	51 62			
3000	141.5	52.82			
3100	144.7	54.01			
3200	147.8	55.19			
3300	150.9	56.35			
3400	154.0	57.51			
3500	157.1	58.65			
3600	160.1	59.79			
3700	163.2	60.91			
3800	166.1	62.03			
3900	169.1	63.13			
4000	172.1	64.23			
4100	175.0	65.32			
4200	177.9	66.41			
4300	180.8	67.48			
4400	183.6	68.55			
4500	186.5	69.62			
4600	189.3	70.67			
4700	192.1	71.72			
4800	194.9	72.76			
4900	19/./	/3.80			
5000	200.5	/4.03			

THE VISCOSITY AND THERMAL CONDUCTIVITY OF MONATOMIC GASES

-

 Γ_{ABLE} 9. The viscosity and thermal conductivity of xenon

a) With contribution of initial density dependence

TABLE	9.	The	viscosity	and	thermal	cond	luctivity
		0	f xenon ·	- C	ontinued	l	

	7 1 1 1 1 1 1 1 1 1 1			b) Negligible c	Negligible contribution of initial density dependence		
	Zero-de	ensity values	Values a	<u>it 0.101325 MPa</u>		up to 0.101325 MPa	
1 стр. (К)	Viscosity (µPa s)	Therm. cond. (mW/m K)	Viscosity (µPa s)	Therm. cond. (mW/m K)	Temperature (K)	Viscosity (µPa s)	Therm. cond. (mW/m K)
165 03	13.03	3.094	12.72	3.155	1300	78.79	18.76
170	13.40	3.182	13.13	3.242	1350	80.94	19.28
180	14.15	3.361	13.94	3.419	1400	83.06	19.78
190	14.90	3,539	14.73	3.595	1450	85.15	20.28
200	15.65	3.717	15.51	3.771	1500	87.21	20.77
210	16.41	3.898	16.30	3.950	1550	89.24	21.26
220	17.18	4.080	17.09	4.130	1600	91.24	21.74
230	17.94	4.260	17.87	4.309	1650	93.22	22.21
240	18.69	4.439	18.64	4.485	1700	95.18	22.68
250	19.45	4.620	19.41	4.665	1750	97.12	23.14
260	20.21	4.801	20.18	4.844	1800	99.03	23.60
270	20.97	4.981	20.95	5.023	1850	100.9	24.05
273.15	21.21	5.037	21.19	5.079	1900	102.8	24.49
280	21.73	5.160	21.70	5.202	1950	104.7	24.94
290	22.48	5.339	22.48	5.379	2000	106.5	25.38
298.15	23.09	5.483	23.09	5.522	2050	108.3	25.81
300	23.23	5.516	23.23	5.555	2100	110.1	26.24
320	24.71	5.867	24.70	5.904	2150	111.9	26.67
340	26.17	6.216	26.17	6.250	2200	113.7	27.09
360	27.63	6.563	27.63	6.596	2250	115.5	27.51
380	29.06	6.904	29.08	6.935	2300	117.2	27.93
400	30.47	7.237	30.49	7.267	2350	118.9	28.34
420	31.86	7.567	31.88	7.596	2400	120.7	28.76
440	33.23	7.893	33.25	7.921	2450	122.4	29.16
460	34.58	8.215	34.60	8.242	2500	124.1	29.57
480	35.91	8.533	35.94	8.559	2600	127.4	30.37
500	37.23	8.846	37.25	8.871	2700	130.8	31.16
550	40.42	9.608	40.45	9.630	2800	134.0	31.94
600	43.51	10.34	43.53	10.36	2900	137.3	32.71
650	46.48	11.05	46.48	11.07	3000	140.5	33.48
700	49.37	11.74	49.37	11.76	3100	143.7	34.23
750	52.17	12.41	52.17	12.42	3200	146.8	34.98
800	54.89	13.06	54.89	13.07	3300	149.9	35.72
850	57.53	13.69	57.53	13.70	3400	153.0	36.45
900	60.10	14.30	60.10	14.32	3500	156.0	37.18
950	62.61	14.90	62.61	14.91	3600	159.0	37.90
1000	65.06	15.49	65.06	15.50	3700	162.0	38.61
1050	67.46	16.06	67.46	16.07	3800	165.0	39.32
1100	69.81	16.62	69.81	16.63	3900	167.9	40.02
1150	72.12	17.17	72.12	17.18	4000	170.9	40.72
1200	74.38	17.71	74.38	17.72	4100	173.8	41.41
1250	76.60	18.24	76.60	18.25	4200	176.6	42.09
				······································	4300	179.5	42.77
					4400	182.3	43.45
					4500	185.2	44.12
					4600	188.0	44.79
					4/00	190.8	45.45
					4000	193.3	46.11
					4900 5000	190.3	40.//
					JUUU	122.0	47.42

5. Tabulations

The scheme described in the first two sections has been employed to generate recommended values for the viscosity and the thermal conductivity of the monatomic gases from their normal boiling point up to 5000 K and for zero density as well as 0.101325 MPa. At a certain temperature the contribution of the initial density dependence vanishes. Therefore, the tables for higher temperatures contain only one column for viscosity and thermal conductivity, respectively.

Table 4 gives a survey of relative uncertainties for the five gases.

The recommended values are listed in Tables 5–9. The temperatures have been chosen in a way that enables the values at intermediate temperatures to be calculated by linear interpolation without any loss of accuracy.

6. Conclusions

Tables of accurate and reliable data for the viscosity and thermal conductivity of the five monatomic gases, hased upon a limited set of accurate experimental data and the kinetic theory, has been presented. For each gas the uncertainty of the recommended values is detailed. From a comparison of the proposed data at zero density and at 0.101325 MPa the importance of the initial density dependence especially at low temperatures becomes obvious.

7. Acknowledgements

The authors gratefully acknowledge the financial support by the Amt für Standardisierung, Messwesen und Warenprüfung (ASMW) of the German Democratic Republic.

We also thank the authors of GSSSD 17-81 (1982) of USSR for fruitful discussions during the course of this work.

The work described in this paper has been carried out under the auspices of the Subcommittee on Transport Properties of Commission I.2 of the International Union of Pure and Applied Chemistry.

8. References

- ¹J. Kestin, S. T. Ro, and W. A. Wakeham, Physica 58, 165 (1972).
- ²B. Najafi, E. A. Mason, and J. Kestin, Physica A 119, 387 (1983).
- ³J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M.
- Waldman, J. Phys. Chem. Ref. Data 13, 229 (1984).
 ⁴A. Boushehri, J. Bzowski, J. Kestin, and E. A. Mason, J. Phys. Chem.
- Ref. Data 16, 445 (1987). ⁵F. J. Uribe, E. A. Mason, and J. Kestin, Physica A 156, 467 (1989).
- ⁶E. Bich, J. Millat, and E. Vogel, Wiss. Zeitschr. WPU Rostock, 36, (N8), 5 (1987).
- ⁷W. A. Cole and W. A. Wakeham, J. Phys. Chem. Ref. Data 14, 209 (1985).
- ⁸R. D. Trengove and W. A. Wakeham, J. Phys. Chem. Ref. Data 16, 175 (1987).
- ⁹J. Millat and W. A. Wakeham, J. Phys. Chem. Ref. Data 18, 565 (1989).

- ¹⁰J. Millat and W. A. Wakeham, Int. J. Thermophys. 10, 983 (1989).
- ¹¹E. Vogel, T. Strehlow, J. Millat, and W. A. Wakeham, Z. phys. Chemie, Leipzig, 270, 1145 (1989).
- ¹²R. A. Aziz and M. J. Slaman, Molec. Phys. 58, 679 (1986).
- ¹³R. A. Aziz and M. J. Slaman, Molec. Phys. 57, 825 (1986).
- ¹⁴R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Molec. Phys. 61, 1487 (1987).
- ¹⁵R. A. Aziz and M. J. Slaman, Chem. Phys. 130, 187 (1989).
- ¹⁶D. G. Friend and J. C. Rainwater, Chem. Phys. Lett. 107, 590 (1984).
- ¹⁷J. C. Rainwater and D. G. Friend, Phys. Rev. A 36, 4062 (1987).
- ¹⁸E. Vogel, E. Bich, and R. Nimz, Physica A 139, 188 (1986).
- ¹⁹E. Vogel, B. Holdt, and T. Strehlow, Physica A 148, 46 (1988).
- ²⁰E. Vogel and T. Strehlow, Z. phys. Chemie, Leipzig 269, 897 (1988).
- ²¹T. Strehlow and E. Vogel, Physica A 161, 101 (1989).
- ²²J. Mastovsky, Report Z-1026/87 (CSAV, Ustav Termomechaniky, Prague, 1987).
- ²³J. F. Clarke, Proc. Roy. Soc. London A 229, 221 (1967).
- ²⁴O. A. Kolenchits, Teplovaya akkomodaziya sistem gaz-tverdoye telo, (Nauka i tekhnika, Minsk, 1977).
- ²⁵N. Kh. Zimina, Teplofiz. svoistva veshchestv i materialov 15, 5 (1980).
- ²⁶E. Vogel, E. Bich, and J. Millat, Z. phys. Chemie, Leipzig 267, 131 (1986).
- ²⁷E. Bich, J. Millat, and E. Vogel, Z. phys. Chemie, Leipzig 269, 917 (1988).
- ²⁸G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, *Inter*molecular Forces, (Clarendon Press, Oxford, 1987).
- ²⁹H. J. M. Hanley, R. D. Mc Carty, and J. V. Sengers, J. Chem. Phys. 50, 857 (1969).
- ³⁰E. Bich and E. Vogel, Int. J. Thermophys., in press.
- ³¹R. A. Aziz, private communication.
- ³²J. de Boer, Physica 10, 348 (1943).
- ³³J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, *Molecular Theory of Gases and Liquids*, (Wiley, New York, 1964), pp. 674.
- ³⁴A. Acton and K. Kellner, Physica B 90, 192 (1977).
- ³⁵H. M. Roder, NBS Laboratory Note, Jan. 29, 1971, Proj. No. 2750426, and private communication.
- ³⁶H. J. M. Hanley, M. Klein, P. E. Liley, S. C. Saxena, G. Thodos, and H. J. White, J. Heat Transfer **93**, 479 (1971).
- ³⁷J. M. J. Coremans, A. van Itterbeek, J. J. M. Beenakker, H. F. P. Knaap, and P. Zandbergen, Physica 24, 557 (1958).
- ³⁸J. Kestin, S. T. Ro, and W. A. Wakeham, J. Chem. Phys. 56, 4119 (1972).
- ³⁹E. Vogel, Ber. Bunsenges. Phys. Chem. 88, 997 (1984).
- ⁴⁰E. W. Becker and R. Misenta, Z. Physik 140, 535 (1955).
- ⁴¹R. A. Dawe and E. B. Smith, J. Chem. Phys. 52, 693 (1970).
- ⁴²D. W. Gough, G. P. Matthews, and E. B. Smith, J. Chem. Soc. Faraday Trans. I 72, 645 (1976).
- ⁴³F. A. Guevara, B. B. McInteer, and W. E. Wageman, Phys. Fluids 12, 2493 (1969).
- ⁴⁴A. G. Clarke and E. B. Smith, J. Chem. Phys. 51, 4156 (1969).
- ⁴⁵F. A. Guevara and G. Stensland, Phys. Fluids 14, 746 (1971).
- ⁴⁶V. E. Lyusternik and A. V. Lavushchev, Teplofiz. svoistva veshchestv i materialov 12, 27 (1978).
- ⁴⁷M. Goldblatt, F. A. Guevara, and B. B. McInteer, Phys. Fluids 13, 2873 (1970).
- ⁴⁸A. G. Clarke and E. B. Smith, J. Chem. Phys. 48, 3988 (1968).
- ⁴⁹M. Goldblatt and W. E. Wageman, Phys. Fluids 14, 1024 (1971).
- ⁵⁰A. I. Johns, A. C. Scott, J. T. R. Watson, D. Ferguson, and A. A. Clifford, Phil. Trans. Roy. Soc. London 325, 295 (1988).
- ⁵¹M. J. Assael, M. Dix, A. Lucas, and W. A. Wakeham, J. Chem. Soc. Faraday Trans. I 77, 439 (1981).
- ⁵²J. Kestin, R. Paul, A. A. Clifford, and W. A. Wakeham, Physica A 100, 349 (1980).
- ⁵³M. Mustafa, M. Ross, R. D. Trengove, W. A. Wakeham, and M. Zalaf, Physica A 141, 233 (1987).
- 54J. W. Haarman, AIP Conf. Proc. 11, 193 (1973).
- ⁵⁵N. B. Vargaftik and N. Kh. Zimina, Atomnaya energiya **19**, 300 (1965).
- ⁵⁶E. I. Marchenkov and A. G. Shashkov, Inzh. fiz. Zh. 26, 1089 (1974).

- ⁵⁷A. G. Shashkov, N. A. Nesterov, V. M. Sudnik, and V. I. Alejnikova Inzh. fiz. Zh. **30**, 671 (1976).
- ⁵⁸J. B. Ubbink and W. J. de Haas, Physica 10, 465 (1943).
- ⁵⁹B. Le Neindre, R. Tufeu, P. Bury, P. Johannin, and B. Vodar, Proc. 8th Conf. Therm. Cond. (1969), 75 (corrections given in Ref. 25).
- ⁶⁰F. M. Faubert and G. S. Springer, J. Chem. Phys. 58, 4080 (1973).
 ⁶¹D. J. Collins, R. Greif, and A. E. Bryson, Int. J. Heat Mass Transfer 8, 1209 (1965).
- ⁶²Yu. P. Semlyanikh, Autoref. Diss., Odessa, 1972 (russ).
- ⁶³J. Millat, M. Ross, W. A. Wakeham, and M. Zalaf, Physica A 148,
- 124 (1988).
- ⁶⁴N. A. Nesterov and V. M. Sudnik, Inzh. fiz. Zh. 30, 863 (1976).
- ⁶⁵G. S. Springer and E. W. Wingeier, J. Chem. Phys. 59, 2747 (1973).

- ⁶⁶D. J. Collins and W. A. Menard, Trans. ASME, J. Heat Transfer 88, 52 (1966).
- ⁶⁷N. B. Vargaftik and N. Kh. Zimina, Teplofiz. Vys. Temp. 2, 716 (1964).
- ⁶⁸F. M. Faubert and G. S. Springer, J. Chem. Phys. 57, 2333 (1972).
- ⁶⁹H. J. M. Hanley and G. E. Childs, Cryogenics 9, 106 (1969).
- ⁷⁰B. A. Hands and V. D. Arp, Cryogenics 21, 697 (1981).

.

- ⁷¹H. J. M. Hanley and G. E. Childs, NBS Tech. Note 352 (1967).
- ⁷²H. J. M. Hanley, J. Phys. Chem. Ref. Data 2, 619 (1973).
- ⁷³B. A. Younglove and H. J. M. Hanley, J. Phys. Chem. Ref. Data 15, 1323 (1986).
- ⁷⁴T. Hoshino, K. Mito, A. Nagashima, and M. Miyata, Int. J. Thermophys. 7, 647 (1986).