Equilibrium and Transport Properties of Gas Mixtures at Low Density: Eleven Polyatomic Gases and Five Noble Gases

Cite as: Journal of Physical and Chemical Reference Data **19**, 1179 (1990); https://doi.org/10.1063/1.555867 Submitted: 12 September 1989 . Published Online: 15 October 2009

J. Bzowski, J. Kestin, E. A. Mason, and F. J. Uribe

View Online Export Citation

ARTICLES YOU MAY BE INTERESTED IN

Equilibrium and Transport Properties of the Noble Gases and Their Mixtures at Low Density Journal of Physical and Chemical Reference Data 13, 229 (1984); https:// doi.org/10.1063/1.555703

Equilibrium and Transport Properties of Eleven Polyatomic Gases At Low Density Journal of Physical and Chemical Reference Data **16**, 445 (1987); https:// doi.org/10.1063/1.555800

Gaseous Diffusion Coefficients

Journal of Physical and Chemical Reference Data 1, 3 (1972); https://doi.org/10.1063/1.3253094

Where in the world is AIP Publishing? Find out where we are exhibiting next

Equilibrium and Transport Properties of Gas Mixtures at Low Density: Eleven Polyatomic Gases and Five Noble Gases

J. Bzowski,^{a)} J. Kestin, E. A. Mason, and F. J. Uribe^{b)}

Division of Engineering, Brown University, Providence, Rhode Island 02912

Manuscript received September 12, 1989; revised manuscript received March 12, 1990

This paper uses results from statistical-mechanical theory, applied through a combination of an extended principle of corresponding states with some knowledge of intermolecular potentials, to the calculation of the transport and equilibrium properties of gas mixtures at low density. The gases involved are: N_2 , O_2 , NO, CO_2 , N_2O , CH_4 , CF_4 , SF_6 , C_2H_4 , C_2H_6 , and He, Ar, Ne, Kr, Xe. The properties included are: second virial coefficient, viscosity, diffusion, and thermal diffusion, but not thermal conductivity.

The calculations are internally, thermodynamically consistent and the resulting algorithms, which are fully programmable, operate in an entirely predictive mode by means of validated combination rules.

This paper is a sequel to one on the five noble gases and all their possible mixtures and a second on the above eleven polyatomic gases.

The paper contains ten tables (mainly intended for the checking of computer codes) and 201 graphs of deviation and comparison plots. An additional 98 tables have been deposited with the Physics Auxiliary Publication Service (PAPS) of the AIP.

The algorithms presented in this paper, together with those mentioned above, make it possible to program calculations for a wide range of low-density equilibrium and transport properties of 16 gases and of all possible multicomponent mixtures formed with them, for a total of 65,535 systems. For each system, the program would cover the full range of compositions.

Key words: Polyatomic gases, Noble gases, Mixtures of gases, Combination rules for mixtures of gases, Equilibrium properties of gases, Transport properties of gases

Contents

1. Introduction	1182
2. Principle of Corresponding States for Mixtures	1182
3. Combination Rules for Mixtures	1183
4. Parameters and Functionals	1184
5. Experimental Data	1184
6. Validation, Deviation Plots, and Accuracy	1185
7. Description of the Tables	1186
8. Tables	1187
9. Acknowledgments	1190
10. References to Introductory Text	1190
List of Tables	1179
List of Figures	1180
List of Symbols	1181

^{a)} Permanent address: Institute of Heat Engineering, Warsaw Technical University, Warsaw, Poland.

^{b)} Permanent address: Department of Physics, Universidad Autonoma Metropolitana, Iztapalapa, Mexico, D.F.

Reprints available from ACS; see Reprints List at back of issue.

Appendix B. Correlation Equations for Functionals	1193
Appendix C. General Formulas	1194
Appendix D. Deviation Plots	1196
Appendix E. References for Deviation Plots	1230

List of Tables for Properties of an Equimolar Mixture

- 1. Nitrogen and oxygen (N_2-O_2) 1187
- 2. Nitrogen and nitric oxide (N₂-NO)..... 1187
- 3. Nitrogen and carbon monoxide (N₂-CO). 1188
- 4. Nitrogen and carbon dioxide (N_2-CO_2) 1188
- 5. Nitrogen and nitrous oxide (N_2-N_2O) 1188
- 6. Nitrogen and methane (N_2-CH_4) 1188
- 7. Nitrogen and carbon tetrafluoride (N_2-CF_4) ... 1189
- 8. Nitrogen and sulfur hexafluoride (N_2-SF_6) 1189
- 9. Nitrogen and ethylene $(N_2-C_2H_4)$. 1189
- 10. Nitrogen and ethane $(N_2-C_2H_6)$ 1189

^{©1990} by the U.S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society.

List of Figures

1.	Devi	ation plo	ots	1197
	1.1.	Viscosi	ty	1197
		D1.	$N_2 - O_2$ mixtures.	1197
		D2.	N ₂ -CO mixtures.	1197
		D3.	N_2 -CO ₂ mixtures.	1197
		D4.	$N_2 - N_2 O$ mixtures.	1197
		D5.	N_2 -CH ₄ mixtures.	1197
		D6.	N_2 -CF ₄ mixtures.	1197
		D7.	N_2 -SF ₆ mixtures	1198
		D8.	$N_2-C_2H_4$ mixtures	1198
		D9.	$N_2 - C_2 H_6$ mixtures.	1198
		D10.	N ₂ –He mixtures	1198
		D11.	N ₂ –Ne mixtures	1198
		D12.	N ₂ –Ar mixtures	1198
		D13.	N ₂ -Kr mixtures	1199
		D14.	O ₂ -CO mixtures.	1199
		D15.	O_2 -CO ₂ mixtures.	1199
		D16.	O_2 -CF ₄ mixtures	1199
		D17.	O_2 -SF ₆ mixtures	1199
		D18.	$O_2 - C_2 H_4$ mixtures.	1199
		D19.	O ₂ -He mixtures	1200
		D20.	O ₂ –Ne mixtures	1200
		D21.	O ₂ -Ar mixtures.	1200
		D22.	O ₂ –Kr mixtures.	1200
		D23.	CO–CO ₂ mixtures.	1200
		D24.	CO-N ₂ O mixtures.	1200
		D25.	CO–CH ₄ mixtures.	1201
		D26.	CO–CF ₄ mixtures	1201
		D27.	$CO-C_2H_4$ mixtures	1201
		D28.	CO-He mixtures.	1201
		D29.	CO-Ne mixtures.	1201
		D30.	CO–Ar mixtures.	1201
		D31.	CO-Kr mixtures.	1202
		D32.	$CO_2 - N_2O$ mixtures	1202
		D33.	CO_2 -CH ₄ mixtures	1202
		D34.	CO_2 - CF_4 mixtures	1202
		D35.	CO_2 -SF ₆ mixtures.	1202
		D36.	$CO_2 - C_2 H_6$ mixtures	1202
		D37.	CO ₂ -He mixtures.	1203
		D38.	CO_2 -Ne mixtures	1203
		D39.	CO_2 -Ar mixtures.	1203
		D40.	CO ₂ -Kr mixtures.	1203
		D41.	N_2O -He mixtures	1203
		D42.	N_2O -Ne mixtures.	1203
		D43.	N_2 O-Ar mixtures.	1204
		D44.	CH_4 - CF_4 mixtures	1204
		D45.	CH_4 -SF ₆ mixtures.	1204
		D40.	$CH_4-C_2H_6$ mixtures.	1204
		D4/.	CH No mixtures.	1204
		D48.	CH A ministures.	1204
		D49.	CH V_{π} mixtures.	1203
		D30.	CP SE mixtures.	1203
		ונע. געו	$CF_4 - SF_6$ inixitizes.	1203
		D52.	CF_{-He} mixtures.	1205
	·	D53.	CF_{-Ne} mixtures	1205
		D34. D55	$CF = \Delta r$ mixtures	1205
			Ci 4-711 mintures.	1200

	D56.	CF₄-Kr mixtures	1206
	D57.	$SF_6-C_2H_6$ mixtures.	1206
	D58.	SF _c -He mixtures.	1206
	D59	SE_{-Ne} mixtures	1206
	D60	SF = Ar mixtures	1200
	D61	SF - Kr mixtures	1200
	D01.	C H A r mixtures	1207
1 2	D02.	$C_2\Pi_4$ -Ar inixtures.	1207
1.2.	Diffusio		1207
	D63.	N ₂ -O ₂	1207
	D64.	N_2 -CO	1207
	D65.	N_2 -CO ₂ ; first of two figures	1207
	D66.	N_2 -CO ₂ ; second of two figures	1207
	D67.	N ₂ -CH ₄	1208
	D68.	N ₂ –SF ₆	1208
	D69.	N ₂ -C ₂ H ₄	1208
	D70.	$N_2 - C_2 H_6$	1208
	D71.	N ₂ -He; first of two figures	1208
	D72.	N ₂ -He; second of two figures	1208
	D73.	N ₂ -Ne	1209
	D74.	$\tilde{N_2}$ -Ar.	1209
	D75.	$N_{2} - Kr$	1209
	D76.	N ₂ -Xe	1209
	D77	0	1209
	D78	$O_2 = CO_1$	1209
	D70.	$O_2 - CH$	1207
	D80	O_2 -CII ₄ .	1210
	D00.	O_2 -51 ₆ .	1210
	D01.	O_2 -file	1210
	D02.	O_2 -Af.	1210
	D83.	O_2 -KI.	1210
	D84.	U ₂ -Ae	1210
	D85.	NO-He.	1211
	D80.	NUNe.	1211
	D87.	NO-Ar.	1211
	D88.	NO-Kr	1211
	D89.	CO–CO ₂	1211
	D90.	CO-CH ₄ .	1211
	D91.	CO–SF ₆	1212
	D92.	СО-Не.	1212
	D93.	CO-Ne.	1212
	D94.	CO-Ar.	1212
	D95.	CO-Kr.	1212
	D96.	CO-Xe	1212
	D97.	CO ₂ -N ₂ O	1213
	D98.	CO ₂ CH ₄	1213
	D99.	CO ₂ -SF ₆	1213
	D100.	CO ₂ -He; first of two figures	1213
	D101.	CO ₂ -He; second of two figures	1213
	D102.	CO ₂ -Ne.	1213
	D103.	CO ₂ -Ar	1214
	D104.	CO ₂ -Kr	1214
	D105.	CO ₂ -Xe	1214
	D106	N ₂ O-He	1214
	D107	CH ₄ -CF ₄	1214
	D108	CH ₄ -C ₂ H ₄	1214
	D100.	СННе	1215
	D110	CH_{-Ne}	1215
	D110.	$CH_{-\Delta r}$	1215
	D112	CH_{-Kr}	1215
	D112.	CH_4 -KI.	1213
	D113.	Сп ₄ -ле	1213

EQUILIBRIUM AND TRANSPORT PROPERTIES OF GAS MIXTURES

D114.	CF ₄ -He.	1215
D115.	SF ₆ –He	1216
D116.	SF ₆ -Ne	1216
D117.	SF_6 -Ar.	1216
D118.	$SF_{c}-Kr$.	1216
D119	SFXe	1216
D120	C H - C H	1216
D120.	$C H K_r$	1210
D121.	$C_{2}\Pi_{4}$ -KI.	1217
1.2 Interes	$C_2 n_6 - AI$	1217
1.5. Interac	ction second virial coefficient	1217
D123.	N ₂ -O ₂	1217
D124.	N ₂ –CO ₂	1217
D125.	N ₂ –CH ₄	1217
D126.	N ₂ -CF ₄	1217
D127.	N ₂ -SF ₆	1218
D128.	$N_2 - C_2 H_4$	1218
D129.	$N_2 - C_2 H_2$	1218
D130.	$N_2 - He$.	1218
D131.	N _o -Ne	1218
D132	N_Ar	1218
D132.	Ω_2 - Ω_1	1210
D133.	0 ₂ -CU ₂	1219
D134.	O_2 -CH ₄ .	1219
D135.	$O_2 - CF_4$.	1219
D136.	O_2 -SF ₆ .	1219
D137.	O ₂ -He	1219
D138.	O ₂ -Ar	. 1219
D139.	CO–CO ₂ .	1220
D140.	CO–CH ₄	1220
D141.	CO–CF ₄	1220
D142.	CO–C ₂ H ₄ .	1220
D143.	CO–Ar.	1220
D144.	CO₂–CH₄.	1220
D145.	CO ₂ -CF	1221
D146.	CO ₂ -SE	1221
D147	$CO_2 = C_1 H$	1221
D148	$CO_2 - C_2 H_4$	1221
D140.	$CO_2 - C_2 II_6$	1221
D149.	CO_2 -He.	1221
D150.	CO_2 -Ar.	1221
D154.	$N_2 U$ -He.	1222
D152.	CH ₄ CF ₄	1222
D153.	CH ₄ –SF ₆	1222
D154.	$CH_4 - C_2H_4$.	1222
D155.	CH ₄ -C ₂ H ₆	1222
D156.	• CH ₄ -He	1222
D157.	CH₄–Ne	1223
D158.	СН ₄ -Аг.	1223
D159.	CHKr.	1223
D160	CE-SE	1223
D161	CF -C H	1223
D161	CF_{-He}	1223
D102.	CE No	1223
D103.	CE A a	1224
D104.	$C\Gamma_4$ -AI.	1224
D165.	CF ₄ -Kr	1224
D166.	CF ₄ -Xe	1224
D167.	SF ₆ He	1224
D168.	SF ₆ –Ne	1224
D169.	SF ₆ –Ar	1225
D170.	SF ₆ –Kr.	1225
D171.	SF ₆ -Xe	1225

	D172.	$C_2H_4-C_2H_6$.	1225
	D173.	C_2H_6 -Ar	1225
2.	Reduced the	rmal diffusion factor	1225
	D174.	N ₂ -O ₂	1225
	D175.	N ₂ -CO ₂	1226
	D176.	N ₂ -CH ₄	1226
	D177.	N ₂ -He	1226
	D178.	N ₂ -Ne	1226
	D179.	N ₂ –Ar	1226
	D180.	N ₂ -Kr	1226
	D181.	N ₂ -Xe	1227
	D182.	O ₂ -CO ₂ .	1227
	• D183.	O ₂ –He	1227
	D184.	O ₂ –Ar.	1227
	D185.	СО-Не	1227
	D186.	CO-Ne	1227
	D187.	CO–Ar	1228
	D188.	CO ₂ -CH ₄	1228
	D189.	CO ₂ -He	1228
	D 190.	CO ₂ –Ne	1228
	D191.	CO ₂ -Kr	1228
	D192.	CO ₂ –Xe	1228
	D193.	N ₂ O-Ne	1229
	D194.	N ₂ O-Kr	1229
	D195.	CH ₄ -He	1229
	D196.	CH ₄ -Ar	1229
	D197.	CH ₄ –Kr.	1229
	D198.	CH ₄ –Xe	1229
	D199.	SF ₆ -He	1230
	D200.	SF ₆ -Ne	1230
	D201.	C_2H_4 -Ar.	1230

List of Symbols

A *	ratio of collision integrals, Eq. (B3b)
а	rigid-core diameter, Eq. (1)
` B	second virial coefficient
B *	reduced second virial coefficient, Eqs. (B4) and
	(C7a); ratio of collision integrals, Eq. (B3c)
B _{no} *	reduced nonspherical contribution to B^* , Eq. (B4)
B_{0}^{*}	reduced spherical contribution to B^* , Eq. (B4)
C*	ratio of collision integrals, Eq. (B3d)
$C^{(6)}$	long-range dispersion coefficient
C_6^*	reduced dispersion coefficient, Table A6
D_{ij}	binary diffusion coefficient, Eq. (C4)
E^*	ratio of collision integrals, Eq. (B3e)
F^*	ratio of collision integrals, Eq. (B3f)
f_η	higher-order correction factor for viscosity, Eq.
	(Cla)
H^*	ratio of collision integrals, Eq. (B3g)
k	Boltzmann constant
M	molecular weight
m	mass of a molecule
N_A	Avogadro constant
Р	pressure
R	universal gas constant
r	molecule separation in pair-potential

Т	temperature	к
T^*	reduced temperature, kT/ϵ	κ _T
V	intermolecular force potential	-
V_0	short-range energy parameter, Eq. (8)	μ_0
$V_{0}^{"}*$	high-temperature scaling parameter, Eq. (11)	μ^*
x	mole fraction	ρ
α^*	reduced dipole polarizability, Table A6	ρ^*
α_T	thermal diffusion factor, Eq. (C6)	θ
Δ_{ii}	higher-order correction term for binary diffusion	$\theta *$
5	coefficient, Eq. (C5)	σ
e	energy scaling parameter	$\Omega^{(l, \cdot)}$
η	viscosity	

1. Introduction

There exists a voracious need in industry for reliable data on the thermophysical properties of a very large set of pure substances and an even larger set of mixtures of all kinds. The number of systems is so large that direct experimental measurements on all of them is out of the question, and a maximum input from theory is required. Considerable success has been achieved by use of statistical-mechanical theory, applied through a combination of an extended principle of corresponding states with some knowledge of intermolecular potentials.

Previous work was concerned with the five noble gases and all their possible mixtures,^{1,2} and with eleven polyatomic gases.3 We now consider mixtures involving these polyatomic gases, both with themselves and with the noble gases. It is necessary to follow a different route than was the case for the noble gases, for which the parameters for the unlike interactions in the mixtures could be determined directly from a large body of accurate experimental data. A comparable body of data does not exist for all the mixtures now under consideration, and recourse is necessary to combination rules that predict the parameters for unlike interactions from the known parameters for the corresponding like interactions. Since no combination rules yet devised are completely accurate in all cases, there will naturally be some loss of accuracy in the prediction of mixture properties. This loss of accuracy turns out to be fairly small for most of the systems considered here. In compensation, we now operate in an entirely predictive mode, and do not depend on the existence of any accurate measurements on mixtures.

As in the previous work on single polyatomic gases,³ we do not include the explicit effects of the internal degrees of freedom on the properties, and thus do not treat the thermal conductivity. We do include thermal diffusion, however, even though it depends on the contributions of individual species to the thermal conductivity of the mixture.⁴ The reason is that the thermal diffusion factor is usually dominated by the effects of molecular mass and size, and the effects of inelastic collisions and nonspherical interactions become apparent only for a few systems in which the mass and size effects happen to be very small (e.g., $Ar + CO_2$, Ar + HCl, $Ne + CH_4$, and $D_2 + HT$ mixtures^{5,6}).

Although we do not consider quantum effects explicitly, there is no difficulty here in treating mixtures containing helium. The largest quantum effects appear in those quanti-

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

к	polarizability anisotropy, Table A6
κ_T	higher-order correction for thermal diffusion fac-
	tor, Eq. (C6)
μ_0	dipole moment
μ^*	reduced dipole moment, Table A6
ρ	short-range length parameter, Eq. (8)
ρ^*	high-temperature scaling parameter, Eq. (11)
θ	quadrupole moment
$\theta *$	reduced quadrupole moment, Table A6

 σ length scaling parameter

 $\Omega^{(l,s)*}$ reduced collision integral

ties concerned with He–He interactions, and these have been taken into account in the published noble-gas calculations,² which can be used directly in those parts of the mixture formulas where they occur. The remaining quantum effects of interest appear in the quantities concerned with the interaction of a He atom with one of the eleven molecules, and these effects are small for two reasons. First, we are concerned only with temperatures for which $T^* > 1$, where quantum effects are less important than at lower temperatures. Second, the much larger mass and size of the molecular collision partner make the quantum effects much smaller than for He–He collisions. Thus all the present mixture calculations can safely ignore quantum effects, except possibly for a few interaction second virial coefficients involving He, where a small perturbation correction can be directly supplied.^{1,2}

The algorithms presented in this paper make it possible to program calculations for a wide range of low-density equilibrium and transport properties of 16 gases and of all possible multicomponent mixtures formed with them, for a total of 65,535 systems. For each system, the program would cover the full range of compositions.

2. Principle of Corresponding States for Mixtures

At the low densities considered here, only pairwise interactions between molecules in a mixture are significant. The properties of even multicomponent mixtures can therefore be expressed in terms of the properties of its single pure components, plus functionals corresponding only to the possible binary interactions in the mixture. No functionals corresponding to three-body or higher interactions occur. The principle of corresponding states for single gases expresses their equilibrium and transport properties in terms of functionals that are (nearly) universal when written in terms of scale factors representing pairwise molecular energy and size. These scale factors are conveniently chosen to be the depth of the potential-energy well ϵ and the separation σ at which the potential energy is zero. (Secondary parameters describe deviations from complete universality of the functionals at very low and very high temperatures.) Earlier work⁷ on the viscosities of binary gas mixtures strongly indicated that a similar principle could be applied in terms of the mixed-interaction parameters ϵ_{12} and σ_{12} , and this was later confirmed in detail for mixtures of noble gases.^{1,2} The pres-

1182

ent paper is essentially the confirmation of this result for molecular gases.

More specifically, we list in Table *a* the various functionals needed for single gases and for binary mixtures. Similar results hold for the various pairs in multicomponent mixtures. The functionals listed as "secondary" occur in small correction terms. It can be seen that no new functionals are required for mixtures, only new scale factors ϵ_{12} and σ_{12} (plus corresponding secondary parameters).

Some minor complications arise, however, because the principle of corresponding states applies in a more limited form to molecular gases than to noble gases. First, as already mentioned, the temperature range is more restricted $(T^* = kT/\epsilon > 1)$. Second, the diffusion functional $\Omega^{(1,1)^*}$ is somewhat different for molecular gases than for noble gases, raising the question of the proper functional to use for the mixed interaction $\Omega_{12}^{(1,1)*}$ involving a noble gas and a molecular gas. Since the differences are small, we have simply used the arithmetic mean of the two functionals in such cases. Third, the functional B_{0}^{*} , representing the effective spherical-interaction contribution to the second virial coefficient, is also not quite universal. Although the same B_0^* functional can be used for all the noble gases,^{1,2} somewhat different functionals must be used for the various molecular gases.³ For the mixed-interaction functional $(B_0^*)_{12}$ we have therefore used the arithmetic mean of the functionals for gases 1 and 2. The differences are sufficiently small that almost any sensible averaging procedure will be satisfactory. It should be mentioned that no similar problem arises with the functionals B_{ns}^* , corresponding to the contribution of the nonspherical part of the intermolecular potential to the second virial coefficient. The B_{ns}^* are calculated explicitly for each specific pair according to theoretical formulas for the various orientation-dependent interactions (e.g., dipole-dipole, dipole-quadrupole, etc.).

The main problem for mixtures is thus only to predict the new scale factors and secondary parameters for the interaction terms; this is done via the combination rules discussed next.

TABLE a. List of functionals required for single gases and for mixtures.

	Functionals	Functionals				
Property	Primary	Secondary				
Single gas						
B	B_0^{*}, B_{ns}^{*}					
η	$\Omega^{(2,2)*}$	E *				
Ď	$\Omega^{(l,1)*}$	A*,C*				
α_0	A*, B*, C*	Ko				
Mixtures		Ū				
B	$(B_0^*)_{121} (B_{ns}^*)_{12}$					
η	$\Omega_{12}^{(2,2)^+}, A_{12}^*$					
D_{12}	$\Omega_{12}^{(1,1)*}$	$\Omega_{77}^{(2,2)*}, C_1$				
a	$\Omega_{11}^{(2,2)*}, \ \Omega_{22}^{(2,2)*}, \ \Omega_{12}^{(1,1)*}$	<u>к</u> ,				
	A* B* C*	1				

3. Combination Rules for Mixtures

Very accurate combination rules for the noble-gas potentials have been devised by Tang and Toennies,⁸ and extended to molecular systems by Bzowski, Mason, and Kestin.⁹ The molecular rules do not attempt to predict the entire anisotropic potential-energy function, but only the effective spherical parameters ϵ_{12} and σ_{12} corresponding to the potential-well region, which is all that is needed for use with the principle of corresponding states. Four pieces of input information are needed for each of the single gases involved, namely the parameters ϵ and σ , the dipole polarizabilities α , and the $C^{(6)}$ dispersion coefficients that describe the longrange attraction. Accurate values of α and $C^{(6)}$ are known from independent experiments and calculations.

The combination rules for ϵ_{12} and σ_{12} are applied as follows. First, effective rigid-core diameters a_1 and a_2 are calculated for each of the single systems,

$$a_1 = \sigma_1 \left[1 - \left(C_1^* / 2.2 \right)^{1/6} \right], \tag{1}$$

where

$$C_{1}^{*} \equiv C_{1}^{(6)} / \epsilon_{1} \sigma_{1}^{6}.$$
 (2)

If C_1^* happens to be greater than 2.2, then a_1 is taken to be zero. A similar expression holds for a_2 . The interaction core diameter a_{12} is then calculated by the simple arithmetic-mean combination rule

$$a_{12} = \frac{1}{2} (a_1 + a_2). \tag{3}$$

It is this rigid-core diameter that is the characteristic parameter for molecular systems. The noble-gas combination rules are recovered by setting a_1 and a_2 equal to zero.

Next, the value of σ_{12} is calculated from the expression

$$\sigma_{12} - a_{12} = \frac{1}{2} \left[(\sigma_1 - a_1) + (\sigma_2 - a_2) \right] \\ \times \left\{ 1 + \frac{1}{2} \left[\ln(\sigma_{12} - a_{12}) - \frac{1}{7} \ln E \right] \right\}, \quad (4)$$

where

$$\ln E = \frac{1}{2} \ln(\epsilon_{1}\epsilon_{2}) + 3 \ln(\sigma_{1} - a_{1}) (\sigma_{2} - a_{2}) - \frac{\sigma_{1} - a_{1}}{(\sigma_{1} - a_{1}) + (\sigma_{2} - a_{2})} \ln\left(\frac{\epsilon_{1}}{\sigma_{1} - a_{1}}\right)$$
(5)
$$- \frac{\sigma_{2} - a_{2}}{(\sigma_{1} - a_{1}) + (\sigma_{2} - a_{2})} \ln\left(\frac{\epsilon_{2}}{\sigma_{2} - a_{2}}\right).$$

Although Eq. (4) appears complicated, it is actually quite simple to use because the factor in braces is very close to unity. Thus the iteration of Eq. (4) to find σ_{12} converges rapidly. To a first approximation, in which the factor in braces is taken as unity, we recover the conventional arithmetic-mean rule, $\sigma_{12} = \frac{1}{2}(\sigma_1 + \sigma_2)$. The introduction of the rigid-core parameters changes the value of σ_{12} by less than 1% for all the systems considered here. It should be mentioned that Eq. (4) is based on a representation of the potential in the immediate vicinity of the well by an (exp, 6) model in which the dimensionless repulsion parameter is given the value 14.

Finally, the combination rule for ϵ_{12} requires knowledge of $C_{12}^{(6)}$, the interaction dispersion coefficient. Although experimental values of $C_{12}^{(6)}$ are often known directly, it is easier to use the following well-tested combination rule; this rule is accurate on the 1% level:

$$\frac{\alpha_1 \alpha_2}{C_{12}^{(6)}} = \frac{1}{2} \left[\frac{\alpha_1^2}{C_1^{(6)}} + \frac{\alpha_2^2}{C_2^{(6)}} \right],\tag{6}$$

in which α_1 and α_2 are the dipole polarizabilities. Once $C_{12}^{(6)}$ is known, the value of ϵ_{12} is readily calculated from the expression

$$\epsilon_{12} = (\epsilon_1 \epsilon_2)^{1/2} \left[\frac{(\sigma_1 - a_1)^3 (\sigma_2 - a_2)^3}{(\sigma_{12} - a_{12})^6} \right] \\ \times \frac{C_{12}^{(6)}}{(C_1^{(6)} C_2^{(6)})^{1/2}}.$$
 (7)

The first factor on the right represents the conventional geometric-mean rule, $\epsilon_{12} = (\epsilon_1 \epsilon_2)^{1/2}$, and the other factors give corrections. The introduction of the rigid-core parameters has a greater effect on ϵ_{12} than on σ_{12} ; changes up to 10% occur in ϵ_{12} for the systems considered here.

Notice that only mean-spherical values of the α 's and $C^{(6)}$'s are to be used in Eqs. (2) and (6), since we are seeking merely the effective spherical values of ϵ_{12} and σ_{12} .

At high temperatures the role of the potential well diminishes in importance, and the properties are dominated by an effective spherical repulsive potential, which can be represented by the form,

$$V(r) = V_0 \exp(-r/\rho),$$
 (8)

where V_0 and ρ are parameters deduced from high-energy beam scattering experiments. In other words, the scale factors ϵ and σ are replaced at high temperatures by V_0 and ρ , and the functionals for the two temperature ranges are joined smoothly through their second derivatives. We therefore need combination rules to predict the mixed-interaction parameters $(V_0)_{12}$ and ρ_{12} for use at high temperatures $(T^* > 10)$. The best combination rules available at present are based on an atomic-distortion model proposed by Gilbert^{10,11} and elaborated somewhat by Smith;¹² they are as follows:

$$\rho_{12} = \frac{1}{2} (\rho_1 + \rho_2), \tag{9}$$

$$[(V_0)_{12}/\rho_{12}]^{2\rho_{12}} = [(V_0)_1/\rho_1]^{\rho_1} [(V_0)_2/\rho_2]^{\rho_2}.$$
 (10)

The foregoing combination rules enable us to operate in a completely predictive mode for the properties of mixtures.

4. Parameters and Functionals

Parameters and physical constants are given in Appendix A, the functionals for the collision integrals and second virial coefficients in Appendix B, and the general formulas for their use in Appendix C.

Table A1 contains values of the universal physical constants that are needed, ¹³ and Table A2 lists the values of the atomic and molecular weights of the gases. ¹⁴ Table A3 lists the values of the scaling parameters σ and ϵ/k for all the interactions involved, and Table A4 lists the core parameters

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

a for the single gases involved in the combination rules. The latter are not directly needed in using the present results because we tabulate all the mixed interaction parameters σ_{12} and ϵ_{12}/k as calculated from the combination rules. We do not list the mixed core parameters a_{12} because they are easily obtained from Eq. (3). The values of σ and ϵ/k for single gases are the same as those used previously.^{2,3} All values have been normalized with respect to argon, for which we assume

 $\sigma = 0.3350$ nm, $\epsilon/k = 141.5$ K.

Table A5 lists the values of the high-temperature scaling parameters ρ and V_0 ; the values for the single gases are the same as used previously,^{2,3} and those for the mixed interactions have been calculated from the combination rules of Eqs. (9) and (10). They are given in dimensionless form,

$$p^* = \rho/\sigma, \quad V_0^* = V_0/\epsilon. \tag{11}$$

No values involving C_2H_4 and C_2H_6 are given, owing to the lack of suitable molecular-beam measurements.³

Table A6 lists the material parameters needed for the calculation of the nonspherical contributions to the second virial coefficients. The quantities α and $C^{(6)}$ also appear in the combination rules for σ_{12} and ϵ_{12} , but are not directly needed in this connection because we list σ_{12} and ϵ_{12}/k in Table A3. We have not included the mixed dispersion coefficients $C_{12}^{(6)}$ because they are easily calculated from Eq. (6).

The equations for the functionals in Appendix B are given only for $T^* > 1$ for the molecular gases, because a suitable correlation for them does not yet exist at lower temperatures. However, the noble gases functionals are given for $T^* < 1$, because they are needed for mixture calculations in some cases. For instance, consider the mixture N₂ + Xe at 200 K. For N₂, $T^* = 200/98.4 = 2.033$, which is well above the lower limit of the correlation, but at the same temperature ture the value of T^* for Xe is 200/274.0 = 0.730, for which the low-temperature functionals are needed. Moreover, for the N₂-Xe interaction the reduced temperature is $T_{12}^* = 200/159.3 = 1.255$, which is close to the lower limit. For this mixture, the lowest temperature for accurate application of the correlation would correspond to $T_{12}^* = 1$, or 159.3 K.

These constraints on the range of T^* , plus the fact that no beam data are available for C_2H_4 and C_2H_6 , produce a uselessly small temperature range for C_2H_4 -He and C_2H_6 -He mixtures.

5. Experimental Data

The experimental data considered in this work were contained in about 800 references. These were based on three computer outputs supplied to us by the Purdue University Center for Information and Numerical Data Analysis (CINDAS), and on a fourth computer output provided by Project MIDAS¹⁵ of the University of Stuttgart operated under the direction of Professor K. Stephan with the cooperation of Dr. A. Laesecke. These computer outputs were supplemented with citations from our own resources. All references were scrutinized and reduced to about 135 upon which our comparisons with experiment are ultimately

1184

based. The latter were read, critically evaluated, and divided into two classes called primary data (PD) and secondary data (SD).

The division into two classes was based on several objective and subjective criteria. These were: (a) an evaluation of the capability of the method used and of the theory of the instrument; (b) a subjective assessment of the reliability of the data, guided by an examination of internal consistency of error analysis and reproducibility; (c) the authors' statement of precision and accuracy; and (d) a direct intercomparison of results from different laboratories and of results obtained by different methods.

The primary data were used for the most part as guides to the original formulation of the combination rules for σ_{12} and ϵ_{12} .⁹ Secondary data served for validation. The references listed in the bibliography of Appendix E contain both primary and secondary data.

6. Validation, Deviation Plots, and Accuracy

Validation of our computational procedures is represented by 201 comparison plots in Appendix D. The class of the data (PD or SD) is indicated in the captions.

Figures 1-62 are deviation plots for the mixture viscosities. The viscosities of the pure components that were used in these calculations were also calculated from the correlation scheme rather than taken directly from experiment, so that the deviations shown are indicative of what can be expected from a calculation based entirely on a principle of corresponding states and combination rules. Comparison of these deviation plots with the corresponding ones for the single polyatomic gases in Ref. 3 shows that the agreement between calculated and experimental results is about as good for the mixtures as for the single gases. This good agreement can be at least partly attributed to the fact that mixture viscosities are not very sensitive to combination rules, for two reasons. The first reason is that the like interactions in a mixture contribute to the viscosity on an equal footing with the unlike interactions. The second reason is that there is usually a compensation effect in the values of σ_{12} and ϵ_{12} as obtained from the combination rules: the errors in σ_{12} and ϵ_{12} are usually in opposite directions, and tend to compensate each other in the calculation of the interaction term η_{12} in the mixture viscosity.9

Based on the above considerations, our estimate of the accuracy of calculated mixture viscosities is about 1%. The reader who wishes a more precise estimate in a particular case must examine in detail the relevant deviation plots and the reliability of the data.

Deviation plots for binary diffusion coefficients are shown in Figs. 63–122. Diffusion coefficients depend almost entirely on the unlike interactions in the mixture, and are influenced by the like interactions to the extent of a few percent at most. They therefore supply a more direct test of the combination rules than do mixture viscosities, but unfortunately the experimental accuracy of the measurements is distinctly lower than in the case of the viscosity. Scatter in the data as high as $\pm 10\%$ can be seen to be not uncommon. The measurements that we believe to be the most reliable are the comparatively recent ones by P. J. Dunlop and his collaborators reported in Appendix E, Refs. 8, 14, 32, 33, 90, 109, and 111–113. In the 34 mixtures for which comparisons with the measurements of Dunlop *et al.* are possible, only two points (for O_2 - CO_2 and SF_6 -Ar) deviate by more than 5%, and in most cases the agreement is much closer. For other systems for which measurements are available from more than one laboratory, the agreement is almost always within the experimental scatter.

We therefore feel justified in giving an estimated accuracy of about 5% for our calculated binary diffusion coefficients. This is consistent with the estimated accuracies of calculated self-diffusion coefficients for the eleven molecular gases reported in Ref. 3. For some systems the accuracy is probably greater, as validated by the agreement with the measurements of Dunlop *et al.*, and as can be determined by reference to the deviation plots.

Deviation plots for the second virial coefficients of mixtures are shown in Figs. 123-173. Here it seems best to show the interaction coefficient B_{12} rather than B_{mix} for the whole mixture. The coefficient B_{12} contributes to B_{mix} with a weight factor of at most 1/2, for an equimolar binary mixture. The interaction coefficients B_{12} depend entirely on the unlike interactions in the mixture, and thus supply a direct test of the combination rules, being similar to the diffusion coefficients in this respect. However, B_{12} and D_{12} have quite different sensitivities to the scaling parameters σ_{12} and ϵ_{12} , and in particular there is less of a compensation effect in B_{12} for errors in σ_{12} and ϵ_{12} than is the case for D_{12} (and η_{12}). It is consequently rather difficult to give a brief overall summary of the estimated accuracy of the present correlation scheme for B_{12} , and hence for B_{mix} . Examination of the deviation plots shows that for most of the pairs the deviations in B_{12} are comparable to, but somewhat greater than, the deviations in the corresponding B_{11} and B_{22} for the single components reported in Ref. 3. Thus the overall accuracy in B_{mix} would be about the same as that for the single components. However, in some cases the deviations in B_{12} appear to be shockingly large in comparison with B_{12} itself -- for example, in a number of the mixtures involving SF_6 . But in most such cases it happens that the large deviations can be explained by a strong temperature dependence of B_{12} that causes the results to be extremely sensitive to the value of ϵ_{12} . For example, the calculated value of B_{12} for N₂-SF₆ at 300 K is too small in magnitude by nearly a factor of 2, but this corresponds to an error in ϵ_{12} of only about 12%. In other words, it is not the value of B_{12} that should be considered to be in error, but rather the temperature at which that value occurs.

A rough general estimate of the reliability of calculated values of $B_{\rm mix}$ can thus be formulated as follows. The uncertainty in B_{12} is either about 5×10^{-3} m³/kmol, or else corresponds to an uncertainty of 10-15% in ϵ_{12} , whichever is worse. This uncertainty is reduced by about a factor of 2 in $B_{\rm mix}$. For a more precise estimate in any particular case, it is necessary to examine deviation plots.

Calculated and experimental thermal diffusion factors α_T are compared in Figures 174–201. Because of the complicated dependence of α_T on composition, as well as on molecular masses and collision integrals, it is convenient to make

the comparison in terms of reduced thermal diffusion factors, defined as

Reduced
$$\alpha_T \equiv \alpha_T \left(\frac{x_1^2 Q_1 + x_2^2 Q_2 + x_1 x_2 Q_{12}}{x_1 S_1 - x_2 S_2} \right)$$
, (12)

where the S's and Q's are defined in Eqs. (C6a)-(C6c) of Appendix C. Multiplication of α_T by the factor containing the S's and Q's removes the major dependence of α_T on composition, molecular masses, and those collision integrals that represent the interactions between pairs of like molecules in the mixture, leaving a temperature-dependent quantity that is dominated by only the unlike interactions. In particular, from Eq. (C6) we have

Reduced
$$\alpha_T \approx (6C_{12}^* - 5) (1 + \kappa_T),$$
 (13)

where C_{12}^* is the functional defined by Eq. (B3d) of Appendix B, which is independent of the parameter σ_{12} and depends only on $T_{12}^* = kT/\epsilon_{12}$ (plus any dimensionless parameters needed to specify the shape of the interaction potential for unlike pairs). The quantity κ_T is a small but complicated correction term that we have neglected in our calculations.

Although Eq. (13) is only approximate. because it derives from a theory that neglects inelastic collisions and nonspherical interactions, it demonstrates the extreme sensitivity of the reduced α_T to the unlike interactions. That is, from Eq. (B3d) we see that C_{12}^* depends on the temperature derivative of the functional $\Omega_{12}^{(1,1)*}$ that determines D_{12} , so that errors in $\Omega_{12}^{(1,1)*}$ are magnified. These errors are further magnified because the quantity ($6C_{12}^*-5$) involves the difference between two numbers of comparable magnitude. These features mean that calculated values of α_T may well involve uncertainties that are about one order of magnitude (about a factor of 10) larger than the corresponding uncertainties in η_{mix} and D_{12} . The saving grace is that measured values of α_T also involve uncertainties of similar magnitude.

The comparisons in Figs. 174–201 document the abovementioned uncertainties in the calculated and experimental values of α_T . These comparisons are fairly selective in that many early measurements, believed to be of lower accuracy, are omitted. Also omitted are the results for the systems CH₄-Ne and CO₂-Ar, for which α_T is very small because the molecular masses of the components are close to each other, and the calculations are unreliable. Even so, disagreements of as much as a factor of two occur for a few systems. But if we consider only those measurements that we believe to be the most reliable [Appendix E, Refs. 32, 53, 106, 109–114], an estimate of accuracy of roughly 25% appears to be justified. (The systems N_2 -Ne and CO-Ne seem to be exceptions.)

To summarize, our estimated accuracies are about 1% for η_{mix} , 5% for D_{12} , 25% for α_T , and either $5 \times 10^{-3} \text{ m}^3/\text{kmol}$ or 10–15% in ϵ_{12} for B_{12} , whichever is worse. These accuracies are comparable to, but somewhat poorer than, the corresponding estimated accuracies for the pure components reported in Ref. 3. They are poorer than the corresponding accuracies for noble–gas mixtures reported in Ref. 2, but enjoy the advantage of operation in an entirely predictive mode. For more precise estimates of accuracy for particular mixtures, it is necessary to examine Figs. 1–201 in detail.

7. Description of the Tables

The tables of numerical data are not meant to be exhaustive and have not been designed for linear interpolation. They are convenient extracts only, because the entire algorithm for each property of every mixture can be programmed on a computer without difficulty on the basis of the information supplied here. They can be used for numerical checks of such programs. A more extensive tabulation would be prohibitively large.

The tables are identical in their structure and give values of B, η , D_{12} , and α_T in SI units. Below 0°C, the temperatures are listed in kelvins, and above that in degrees Celsius in comformity with prevailing common practice. The number of significant figures given was partly determined by aesthetic considerations, and exceeds that which would be justified by the analysis of Sec. 6. There are 108 tables, one for each mixture, except C₂H₄-He and C₂H₆-He, which have uselessly small temperature ranges for the reasons discussed in Sec. 4. As noted in Sec. 6, the tables list B_{mix} for the mixture itself, whereas the deviation plots refer to the interaction coefficient B_{12} . The calculations for D_{12} refer to a pressure of $1 \text{ atm} = 101325 \text{ N/m}^2$. Because of space limitations, only the first 10 tables are presented here. The remaining 98 tables have been deposited with the Physics Auxilliary Publication Service (PAPS) of the American Institute of Physics.^a

The algorithms presented in this paper make it possible to program calculations for a wide range of low-density equilibrium and transport properties of 16 gases and of all possible multicomponent mixtures formed with them. For each system, the program would cover the full range of compositions.

8. Tables

_	· · · · · · · · · · · · · · · · · · ·								
	T K or °C	<i>B</i> 10 ⁻³ m ³ /kmol	η μPas	D(1.013 bar) $10^{-4} \text{ m}^2/\text{s}$	α _T .	T K or °C	<i>B</i> 10 ⁻³ m ³ /kmol	η μΓa s	D(1.013 bar) 10 ⁻⁴ m ² /s
	150 K	- 79.87	10.62	0.0611	0.0094	150 K	- 87.73	10.16	0.0605
	200	- 41.92	13.83	0.1046	0.0164	200	- 46.45	13.24	0.1036
	250	- 21.27	16.71	0.1565	0.0206	250	- 24.23	16.01	0.1551
	300	- 8.31	19.34	0.2161	0.0232	300	- 10.34	18.55	0.2143
	0°C	- 14.60	17.95	0.1832	0.0219	0°C	- 17.07	17.21	0.1816
	20	- 9.79	18.99	0.2075	0.0229	20	- 11.92	18.21	0.2058
	40	- 5.68	20.00	0.2329	0.0238	40	- 7.52	19.18	0.2310
	60	- 2.14	20.98	0.2595	0.0245	60	- 3.73	20.13	0.2574
	80	0.94	21.93	0.2871	0.0251	80	- 0.44	21.04	0.2849
	100	3.63	22.86	0.3158	0.0257	100	2.43	21.94	0.3134
	150	9.01	25.08	0.3920	0.0268	150	8.20	24.08	0.3890
	200	12.99	27.19	0.4744	0.0275	200	12.46	26.11	0.4708
	250	15.97	29.20	0.5626	0.0281	250	15.67	28.04	0.5585
	300	18.23	31.12	0.6565	0.0285	300	18.10	29.90	0.6518
	350	19.94	32.97	0.7560	0.0288	350	19.96	31.68	0.7506
	400	21.26	34.76	0.8609	0.0290	400	21.40	33.40	0.8548
	450	22.28	36.50	0.9711	0.0291	450	22.51	35.07	0.9642
	500	23.07	38.18	1.0864	0.0292	500	23.38	36.69	1.0787
	600	24.19	41.42	1.3321	0.0293	600	24.62	39.81	1.3228
	700	24.96	44.51	1.5975	0.0293	700	25.46	42.78	1.5862
	800	25.59	47.48	1.8818	0.0292	800	26.12	45.64	1.8686
	900	26.15	50.35	2.1846	0.0289	900	26.71	48.40	2.1692
	1000	26.67	53.14	2.5064	0.0281	1000	27.24	51.09	2.4886
	1500	28.19	66.29	4.4076	0.0251	1500	28.85	63.75	4.3820
	2000	28.48	78.54	6.7683	0.0242	2000	29.16	75.65	6.7474
	2500	28.26	90.18	9.5545	0.0240	2500	28.91	87.02	9.5519
	3000	27.83	101.37	12.7435	0.0241	3000	28.43	98.01	12.7738

TABLE 1. Properties of an equimolar mixture of nitrogen and oxygen $(N_2-O_2).$

TABLE 2. Properties of an equimolar mixture of nitrogen and nitric oxide (N_2-NO) .

α_T 0.0051

0.0089 0.0110 0.0123

0.0117 0.0122 0.0126 0.0129

0.0132 0.0134

0.0139

0.0142

0.0144 0.0146

0.0147 0.0148 0.0148

0.0148

0.0148 0.0148

0.0148 0.0147 0.0142

0.0124

0.0116 0.0116

т

K or °C

250 K

0°C

300

20

40

60

80

100

150

200

250

300

350

400

450

500

600

700

800

900

1000

1500

2000

2500

3000

B

10⁻³ m³/kmol

- 79.59

- 49.28

- 63.61

- 52.60

- 43.47

- 35.78

- 29.24

- 23.61

- 12.48

- 4.31

1.88

6.69

10.50

13.55

16.03

18.07

21.18

23.40

25.06

26.33

27.31

30.18

31.54

32.19

32.45

TABLE 3. Properties of an equimolar mixture of nitrogen and carbon monoxide (N_2-CO) .

TABLE 5. Properties of an equimolar mixture of nitrogen and nitrous oxide $(N_2 - N_2 O).$

T	В	η	D(1.013 bar)	
K or °C	10 ⁻³ m ³ /kmol	$\mu Pa s$	$10^{-4} \text{ m}^2/\text{s}$	α_T
100 K	<u> </u>	6.71	0.0279	0.000
150	- 76.90	10.02	0.0613	0.000
200	- 38.16	12.94	0.1041	0.000
250	- 17.09	15.55	0.1551	0.000
300	- 3.94	17.93	0.2135	0.000
0°0	C – 10.30	16.67	0.1812	0.000
20	- 5.44	17.61	0.2051	0.000
40	- 1.29	18.53	0.2300	0.000
60	2.26	19.41	0.2560	0.000
80	5.33	20.27	0.2831	0.000
100	8.00	21.11	0.3111	0.000
150	13.29	23.12	0.3857	0.000
200	17.13	25.03	0.4662	0.000
250	19.95	26.85	0.5526	0.000
300	22.04	28.59	0.6445	0.000
250	22.00	20.07	0.7410	
350	23.60	30.27	0.7419	0.000
400	24.77	31.89	0.8446	0.000
450	25.66	33.47	0.9524	0.000
- 500	26.34	35.00	1.0654	0.000
600	27.34	37.94	1.3062	0.000
700	28.12	40.76	1.5663	0.000
800	28.82	43.47	1.8451	0.000
900	29.49	46.10	2.1425	0.000
1000	30.04	48.67	2.4583	0.000
1500	31.39	60.91	4.3105	0.000
		00.71		0.000
2000	31.42	72.50	6.6074	0.000
2500	30.96	83.64	9.3333	0.000
3000	30.31	94.43	12.4747	0.000
			1 1 1 1	

T Kor°C	<i>B</i> 10 ⁻³ m ³ /kmol	η μPas	D(1.013 bar) $10^{-4} \text{ m}^2/\text{s}$	ar
300 K	- 53.95	16.58	0.1662	0.0717
.0 °C	- 67.90	15.23	0.1398	0.0630
20	- 57.19	16.24	0.1593	0.0696
40	- 48.25	17.23	0.1797	0.0753
60	- 40.68	18.19	0.2011	0.0803
80	- 34.18	19.12	0.2233	0.0847
	2			÷
100	- 28.54	20.04	0.2465	0.0886
150	- 17.27	22.24	0.3082	0.0966
200	- 8.86	24.32	0.3749	0.1026
250	- 2.39	26.31	0.4466	0.1074
300	2.71	28.21	0.5229	0.1111
350	6.81	30.04	0.6037	0.1140
400	10.14	31.81	0.6889	0.1164
450	12.88	33.52	0.7784	0.1183
500	15.16	35.17	0.8720	0.1198
600	18.69	38.35	1.0712	0.1220
			e de la composición de	- *
700	21.27	41.37	1.2861	0.1235
800	23.21	44.26	1.5160	0.1244
900	24.70	47.04	1.7605	0.1249
1000	25.86	49.73	2.0193	0.1252
1500	29.09	62 14	3.5170	0.1246
	20.54			
2000	30.54	73.43	5.3396	0.1204
2500	31.19	84.01	7.4753	0.1170
3000	31.48	94.08	9.9101	0.1147
		1 A A	1	

dioxide (N2-CO2).

TABLE 6. Properties of an equimolar mixture of nitrogen and methane (N₂-CH₄).

T Kor°C	B $10^{-3} \text{ m}^3/\text{kmol}$	η μPas	D(1.013 bar) $10^{-4} \text{ m}^2/\text{s}$	α _τ	
	<u>a di kachara</u>				
200 K	- 66.75	10.36	0.1105	0.0516	
250	- 38.45	12.60	0.1666	0.0728	
300	- 20.90	14.66	0.2312	0.0876	
	and the second		1919 - T	i pre	
0°C	- 29.40	13.57	0.1955	0.0803	
20	- 22.90	14.38	0.2219	0.0858	
40	- 17.34	15.17	0.2495	0.0907	
60	- 12.54	15.94	0.2784	0.0950	
80	- 8.35	16.68	0.3084	0.0988	
	11 (14) (14) (14) (14) (14) (14) (14) (1				
100	- 4.69	17.41	0.3396	0.1022	
150	2.73	19.14	0.4225	0.1092	
200	8.31	20.79	0.5122	0.1146	
250	12.59	22.36	0.6083	0.1187	
300	15.92	23.87	0.7106	0.1219	
350	18.54	25.31	0.8189	0.1244	
400	20.61	26.71	0.9331	0.1264	
450	22.27	28.06	1.0530	0.1279	
500	23.60	29.38	1.1785	0.1291	
600	25.56	31.90	1.4458	0.1307	
700	26.90	34.31	1.7341	0.1316	
800	27.87	36.62	2.0430	0.1319	
900	28.64	38.85	2.3717	0.1319	
1000	29.26	41.01	2.7199	0.1319	
1500	31.33	51.13	4.7533	0.1188	
2000	32.17	60.53	7.2727	0.1112	
2500	32.30	69.43	0.2435	0.1077	
3000	32.09	77.97	3.6386	0.1056	

TABLE 4. Properties of an equimolar mixture of nitrogen and carbon

η

µPa s

14.06

16.58

15.25

16.25

17.22

18.16

19.09

19.98

22.14

24.19

26.14

28.01

29.81

31:55

33.22

34.85

37.97

40.93

43.77

46.51

49.15

61:37

72.51

82.96

92.93

D(1.013 bar)

 $10^{-4} \text{ m}^2/\text{s}$

0.1180

0.1652

0.1391

0.1583

0.1785

0.1997

0.2217

0.2446

0.3055

0.3714

0.4422

0.5175

0.5973

0.6814

0.7697

0.8621

1.0588

1.2709

1.4979

1.7394

1.9950

3.4746

5.2816

7.4049

9.8285

 α_T

0.0583

0.0754

0.0670

0.0734

0.0790

0.0838

0.0881

0.0918

0.0995

0.1053

0.1099

0.1134

0.1162

0.1185

0.1203

0.1217

0.1238

0.1251

0.1259

0.1263

0.1265

0.1248

0.1188

0.1151

0.1130

=

TABLE 7. Properties of an equimolar mixture of nitrogen and carbon tetrafluoride $(N_2 - CF_4)$.

TABLE 9. Properties of an equimolar mixture of nitrogen and ethylene $(N_2 - C_2 H_4).$

Т	B	η	D(1.013 bar)	
K or °C	$10^{-3} \text{ m}^{3}/\text{kmol}$	µPa s	$10^{-4} \mathrm{m^2/s}$	α_{T}
200 K	- 105.91	12.72	0.0623	0.1293
250	- 61.71	15.51	0.0938	0.1712
300	- 34.48	18.08	0.1300	0.1992
,0 °C	- 47.65	16.72	0.1100	0.1855
20	- 37.58	17.74	0.1248	0.1959
40	28.99	18.72	0.1403	0.2050
60	- 21.59	19.67	0.1565	0.2128
80	- 15.16	20.60	0.1733	0.2197
100	- 9.52	21.51	0.1908	0.2258
150	1.84	23.68	0.2373	0.2381
200	10.35	25.73	0.2875	0.2472
250	16.85	27.69	0.3414	0.2542
300	21.89	29.57	0.3988	0.2595
350	25.84	31.37	0.4595	0.2635
400	28.96	33.12	0.5235	0.2666
450	31.44	34.80	0.5907	0.2689
500	33.43	36.44	0.6610	0.2707
600	36.33	39.58	0.8108	0.2729
700	38.30	42.58	0.9725	0.2739
800	39.72	45.46	1.1456	0.2741
900	40.83	48.23	1.3299	0.2738
1000	41.75	50.92	1.5244	0.2733
1500	44.72	63.42	2.6749	0.2290
2000	46.07	74.77	4.1132	0.2249
2500	46.49	85.25	5.7999	0.2330
3000	46.46	95.06	7.7096	0.2420

_					
	T K or °C	<i>B</i> 10 ⁻³ m ³ /kmol	η μPa s	D(1.013 bar) $10^{-4} \text{ m}^2/\text{s}$	α_T
	250 K	- 85.95	11.70	0.1212	0.0152
	300	- 54.42	13.77	0.1692	0.0180
	0°C	- 69.45	12.68	0.1426	0.0167
	20	- 57.92	13.50	0.1622	0.0177
	40	- 48.26	14.29	0.1828	0.0185
	60	- 40.05	15.06	0.2043	0.0191
	80	- 33.00	15.81	0.2267	0.0196
	100	26.88	16.54	0.2499	0.0200
	150	- 14.65	18.31	0.3118	0.0207
	200	- 5.53	19.97	0.3787	0.0211
	250	1.47	21.57	0.4505	0.0213
	300	6.97	23.09	0.5269	0.0214
	350	11.36	24.56	0.6079	0.0214
	400	14.91	25.97	0.6932	0.0214
	450	17.82	27.34	0.7828	0.0214
	500	20.22	28.66	0.8765	0.0213
	600	23.90	31.21	1.0761	0.0211
	700	26.54	33.63	1.2913	0.0210
	800	28.51	35.95	1.5217	0.0208
	900	30.02	38.18	1.7668	0.0206
	1000	31.18	40.35	2.0263	0.0205
_			· · · · · · · · · · · · · · · · · · ·		

TABLE 8. Properties of an equimolar mixture of nitrogen and sulfur hexafluoride (N2-SF6).

			- 67-			
Properties of an equimolar (N ₂ -C ₂ H	TABLE 10. P	α _τ	D(1.013 bar) $10^{-4} \text{ m}^2/\text{s}$	η μPa s	<i>B</i> 10 ⁻³ m ³ /kmol	T K or ℃
<		0.2109	0.0741	14.38	- 139.80	250 K
Вη	Т	0.2470	0.1028	16.90	- 86.37	300
$10^{-3} \text{ m}^3/\text{kmol}$ $\mu Pa s$	K or °C	0 2293	0.0869	15 57	- 111 84	0° C
·		0.2225	0.0007	16 56	- 92.29	20
- 106.44 11.03	250 K	0.2428	0.0987	17.53	- 75 94	40
- 68.71 12.97	300	0.2545	0.1239	18.47	- 62.08	60
		0.2040	0.1232	10.20	50.20	80.
- 86.71 11.95	0°C	0.2750	0.1375	19.39	- 50.20	00
- 72.90 12.71	20	0 2814	0 1512	20.28	- 39 93	100
- 61.32 13.46	40	0.2014	0.1912	22.23	- 19 52	150
- 51.47 14.19	60	0.2014	0.1381	24.45	A 46	200
- 43.00 14.89	80	0.3094	0.2201	24.40	- 4.40	250
- 35.64 15.58	100	0.3255	0.3166	28.26	15.81	300
- 20.90 17.24	150	0 2210	0.2650	20.05	22 77	350
- 9.88 18.81	200	0.3310	0.3030	30.03	22.77	400
- 1.40 20.31	250	0.3352	0.4159	31.77	20.33	400
5.28 21.75	300	0.3384	0.4694	33.44	32.80	450
		0.3409	0.5254	35.00	30.45	500
10.63 23.13	350	0.3443	0.6446	38.16	41.92	000
14.96 24.46	400	0 2460	0 7721	41.10	15 76	700
18.52 25.75	450	0.3400	0.7751	41.12	45.70	700
21.46 27.00	500	0.3466	0.9108	43.95	48.57	800
25.99 29.39	600	0.3466	1.0573	46.68	50.74	900
		0.3472	1.2124	49.32	52.49	1000
29.25 31.67	700	0.3285	2.1147	61.53	57.44	1500
31.67 33.86	800	0 3233	3 2216	72 62	59 50	2000
33.51 35.96	900	0.3235	1 5146	82.02	60.55	2500
34.93 37.99	1000	0.3240	5 0806	02.93	60.90	3000
		0.5257	3.9800	92.0J	00.90	5000

mixture of nitrogen and ethane).

D(1.013 bar) $10^{-4} \text{ m}^2/\text{s}$

0.1107

0.1544

0.1302

0.1481

0.1669

0.1865 0.2069

0.2281

0.2845

0.3455

0.4109 0.4806

0.5544 0.6322 0.7139

0.7993

0.9812

1.1774

1.3875 1.6110

1.8476

 α_T

0.0273

0.0332

0.0304

0.0326

0.0344 0.0366

0.0373

0.0385

0.0407

0.0423 0.0435 0.0443

0.0450 0.0454

0.0458

0.0460

0.0464

0.0465

0.0465 0.0464 0.0464

9. Acknowledgments

The work described in this paper was performed under grant 60NANB7D0703 awarded to Brown University by the Office of Standard Reference Data of the National Bureau of Standards (now National Institute for Standards and Technology). The authors thank Dr. C. Y. Ho, Director of CINDAS of Purdue University, as well as Professor K. Stephan of the University of Stuttgart and Dr. A. Laesecke of the University of Siegen, for the extensive bibliography sets put at their disposal. The correlation work was carried out under the auspices of the Subcommittee on Transport Properties of Commission I.2 of the International Union of Pure and Applied Chemistry. J. Bzowski thanks the Kosciuszko Foundation for the award of a fellowship to work and study in the U.S.A., and F. J. Uribe thanks CONACYT (Mexico) for partial support during his stay at Brown University.

10. References to Introductory Text

^a See AIP document no. PAPS JPCRD-19-1179-98 for 98 pages comprising Tables 11–108. Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, 335 East 45th Street, New York, NY 10017. The price is \$1.50 for each microfiche (98 pages) or \$5.00 for photocopies of up to 30 pages, and \$0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.

¹B. Najafi, E. A. Mason, and J. Kestin, Physica 119A, 387 (1983).

²J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, J. Phys. Chem. Ref. Data 13, 229 (1984).

³A. Boushehri, J. Bzowski, J. Kestin, and E. A. Mason, J. Phys. Chem. Ref. Data 16, 445 (1987).

⁴L. Monchick, S. I. Sandler, and E. A. Mason, J. Chem. Phys. **49**, 1178 (1968).

⁵E. A. Mason, R. J. Munn, and F. J. Smith, Adv. At. Mol. Phys. 2, 33 (1966).

⁶S. I. Sandler and J. S. Dahler, J. Chem. Phys. 47, 2621 (1967).

⁷J. Kestin, H. E. Khalifa, S. T. Ro, and W. A. Wakeham, Physica 88A, 242 (1977).

⁸K. T. Tang and J. P. Toennies, Z. Phys. D1, 91 (1986).

⁹J. Bzowski, E. A. Mason, and J. Kestin, Int. J. Thermophys. 9, 131 (1988).

¹⁰T. L. Gilbert, J. Chem. Phys. **49**, 2640 (1968).

¹¹T. L. Gilbert, O. C. Simpson, and M. A. Williamson, J. Chem. Phys. 63, 4061 (1975).

¹²F. T. Smith, Phys. Rev. A5, 1708 (1972).

- ¹³E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 17, 1795 (1988).
- ¹⁴J. R. DeLaeter, J. Phys. Chem. Ref. Data 17, 1791 (1988).

¹⁵A. Laesecke, K. Stephan, and R. Krauss, Int. J. Thermophys 7, 973 (1986).

Appendix A: Material and physical constants including scaling factors

TABLE A1. Universal constants.^a

Boltzmann constant	$k = 1.380658 \times 10^{-23}\mathrm{JK}^{-1}$
Avogadro constant	$N_{A} = 6.022 \ 1367 \times 10^{23} \ \mathrm{mol}^{-1}$
Universal gas constant	$R = 8.314510 \mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$

^a Ref. 13.

TABLE A2. Atomic and molecular weights ^a	(avcrage isotopic composition,
kg/kmol).	

N ₂	28.0135
O ₂	31.9988
NO	30.0061
CO	28.010
CO ₂	44.010
N ₂ Ô	44.0129
ĊĤ₄	16.043
CF	88.005
SF	146.056
C,H,	28.054
C ₂ H ₄	30.070
³ He	3.0160
⁴ He	4.0026
Ne	20,1797
Ar	39.948
Kr	83.80
Xe	131.29

^a Ref. 14.

TABLE A3. Effective spherical scaling parameters σ_{ij} and ϵ_{ij} .

								$\sigma(nm)$								
	N ₂	O ₂	NO	со	CO ₂	N ₂ O	CH₄	CF₄	SF ₆	C ₂ H ₄	C ₂ H ₆	He	Ne	Ar	Kr	Xe
N_2	0.3652	0.3529	0.3562	0.3652	0.3711	0.3676	0.3687	0.4132	0.4521	0.3878	0.4032	0.3243	0.3253	0.3499	0.3610	0.3778
	02	0.3407	0.3441	0.3529	0.3596	0.3561	0.3569	0.4016	0.4409	0.3765	0.3919	0.3096	0.3118	0.3378	0.3492	0.3665
		NO	0.3474	0.3562	0.3627	0.3592	0.3601	0.4045	0.4435	0.3794	0.3948	0.3139	0.3157	0.3412	0.3524	0.3695
			со	0.3652	0.3711	0.3676	0.3687	0.4132	0.4520	0.3878	0.4032	0.3244	0.3253	0.3499	0.3610	0.3778
				CO2	0.3769	0.3736	0.3745	0.4172	0.4536	0.3923	0.4074	0.3339	0.3343	0.3568	0.3671	0.3829
					N_2O	0.3703	0.3710	0.4138	0.4503	0.3890	0.4042	0.3297	0.3304	0.3534	0.3637	0.3796
						CH₄	0.3721	0.4156	0.4530	0.3904	0.4057	0.3302	0.3307	0.3540	0.3645	0.3808
							CF₄	0.4579	0.4932	0.4323	0.4474	0.3814	0.3790	0.3986	0.4079	0.4228
								SF ₆	0.5252	0.4672	0.4820	0.4298	0.4236	0.4377	0.4453	0.4580
									C_2H_4	0.4071	0.4221	0.3553	0.3537	0.3736	0.3830	0.3978
										C_2H_6	0.4371	0.3717	0.3697	0.3890	0.3982	0.4128
								€/k (K)								
	N ₂	O ₂	NO	со	CO ₂	N ₂ O	CH₄	CF₄	SF ₆	C ₂ H ₄	C ₂ H ₆	He	Ne	Ar	Kr	Xe
N_2	98.4	108.8	110.8	98.4	155.0	161.4	125.0	118.0	121.2	148.6	146.8	23.42	52.97	117.7	139.4	159.3
	O ₂	121.1	122.9	108.7	168.8	175.9	136.8	127.0	127.6	159.7	157.4	27.94	61.77	130.9	152.8	171.7
		NO	125.0	110.8	172.9	180.3	140.1	131.1	132.7	164.8	162.5	27.56	61.24	132.9	156.2	177.0
			co	98.4	155.2	161.9	125.4	118.5	121.5	149.2	147.3	23.23	52.41	117.6	139.7	160.0
				CO_2	245.3	255.2	198.5	193.0	204.1	241.0	238.9	34.14	70.70	182.2	219.6	256.3
					N_2O	266.8	207.9	201.4	210.4	251.4	248.7	35.82	80.37	190.2	229.5	268.0
						CH₄	161.4	155.4	161.6	194.8	192.5	27.78	62.64	148.1	178.6	208.2
							CF₄	156.5	172.6	195.9	194.8	22.31	52.69	137.4	171.0	207.2
								SF ₆	207.7	215.0	216.1	19.24	48.18	137.4	176.7	223.6
									C ₂ H₄	244.3	242.9	28.72	67.05	172.6	214.0	258.3
										C_2H_6	241.9	27.81	65.49	170.0	211.4	256.4

	a(nm)
N ₂	0.0006
02	0.0000
NÔ	0.0000
CO	0.0000
CO ₂	0.0094
N ₂ O	0.0102
CH₄	0.0029
CF₄	0.0358
SF ₆	0.0319
C ₂ H ₄	0.0022
C ₂ H ₆	0.0239
He	0
Ne	0
Ar	0
Кг	0
Xe	0

TABLE A4. Core parameters for combination rules.

BZOWSKI ET AL.

1192	2
------	---

TABLE A5. High-temperature dimensionless scaling parameters, $\rho^* = \rho/\sigma$ and $V_0^* = \rho/\sigma$	$= V_0/\epsilon$

	N ₂	O ₂	NO	со	CO ₂	N ₂ O	CH₄	CF4	SF ₆	He	Ne	Ar	Kr	Xe
N_2	0.1080	0.0918	0.0984	0.1080	0.0897	0.0904	0.0887	0.0588	0.0727	0.0929	0.0938	0.0964	0.0957	0.0961
	O_2	0.0745	0.0815	0.0918	0.0730	0.0736	0.0719	0.0430	0.0586	0.0746	0.0753	0.0790	0.0788	0.0799
		NO	0.0883	0.0984	0.0797	0.0803	0.0786	0.0492	0.0642	0.0820	0.0828	0.0860	0.0856	0.0864
			СО	0.1080	0.0897	0.0904	0.0887	0.0588	0.0727	0.0929	0.0938	0.0964	0.0957	0.0961
				CO,	0.0720	0.0725	0.0709	0.0435	0.0589	0.0718	0.0729	0.0773	0.0774	0.0788
					N_2O	0.0730	0.0714	0.0437	0.0592	0.0725	0.0736	0.0779	0.0780	0.0793
						CH₄	0.0698	0.0423	0.0576	0.0708	0.0719	0.0762	0.0763	0.0777
							CF_4	0.0200	0.0359	0.0393	0.0406	0.0466	0.0476	0.0501
								SF ₆	0.0500	0.0548	0.0565	0.0620	0.0628	0.0649
							V_0^{*a}							
	N ₂	O ₂	NO	СО	CO ₂	N ₂ O	CH₄	CF₄	SF_6	He	Ne	Ar	Kr	Xe
N_2	5.308(4)	1.790(5)	9.563(4)	5.311(4)	2.420(5)	2.322(5)	2.490(5)	2.060(7)	2.031(6)	2.547(5)	2.048(5)	1.303(5)	1.252(5)	1.297(5)
	O2	1.322(6)	4.877(5)	1.792(5)	2.011(6)	1.937(6)	2.070(6)	3.455(9)	3.039(7)	1.546(6)	1.464(6)	8.057(5)	7.602(5)	7.346(5)
		NO	2.145(5)	9.566(4)	7.094(5)	6.812(5)	7.256(5)	2.797(8)	8.273(6)	6 099(5)	5.418(5)	3.238(5)	3.092(5)	3 105(5)
			CO	5.308(4)	2.418(5)	2.314(5)	2.482(5)	2.052(7)	2.026(6)	2.568(5)	2.070(5)	1.304(5)	1.250(5)	1.291(5)
				CO ₂	2.800(6)	2.705(6)	2.946(6)	4.520(9)	3.586(7)	3.016(6)	2.929(6)	1.202(6)	1.074(6)	9.577(5)
					N_2O	2.600(6)	2.827(6)	4.460(9)	3.513(7)	2.880(6)	2.584(6)	1.155(6)	1.030(6)	9.182(5)
						CH_4	3.066(6)	5.669(9)	4.060(7)	2.954(6)	2.689(6)	1.231(6)	1.106(6)	9.978(5)
							CF.	1.460(19)	2.160(11)	9.329(9)	9.689(9)	9.765(8)	6.522(8)	3.322(8)
								SF ₆	4.067(8)	7.590(7)	5.904(7)	1.606(7)	1.255(7)	9.047(6)

^a Values in parentheses are the powers of 10 by which the entries are multiplied.

	μ^*	θ^*	α*	к	C_{6}^{*}		
N ₂	0	0.47	0.0357	0.131	2.18		
0 ₂	0	0.141	0.0397	0.229	2.27		
NO	0.180	0.61	0.0408	0.162	2.20		
CO	0.138	0.84	0.0404	0.090	2.63		
CO ₂	0	0.85	0.0547	0.268	1.86		
N_2O	0.122	0.59	0.0607	0.329	1.89		
CH_4	0	0	0.0503	0	2.10		
CF₄	0	0	0.0402	0	1.35		
SF ₆	0	0	0.0452	0	1.51		
C_2H_4	0	0.33	0.0631	0.143	2.13		
C_2H_6	0	0.11	0.0529	0.058	1.57		
He	0	0	0.0115	0	3.09		
Ne	0	0	0.0189	0	2.594		
Ar	0	0	0.0437	0	2.210		
Kr	0	0	0.0547	0	2.164		
Xe	0	0	0.0690	0	2.162		
Dipole moment	t	$\mu^* = \mu_0$	$\sqrt{(\epsilon\sigma^3)^{1/2}}$				
Quadrupole mo	ment	$\theta^* = \theta / (\epsilon \sigma^5)^{1/2}$					
Dipole polariza	bility	$\alpha^* = \overline{\alpha} / \sigma^s$					
	•	$\overline{\alpha} = (1/3)(\alpha^{\parallel} + 2\alpha^{\perp})$					
Polarizability a	nisotropy	$\kappa = (1/3)(\alpha^{\parallel} - \alpha^{\perp})/\overline{\alpha}$					
Dispersion coel	ficient	$C_6^* = \overline{C}$	$\overline{C}^{(6)}/\epsilon\sigma^6$				

 TABLE A6. Dimensionless material parameters for the calculation of the nonspherical contributions to second virial coefficients.

Data from Refs. 1-3 and the sources listed therein.

EQUILIBRIUM AND TRANSPORT PROPERTIES OF GAS MIXTURES

Appendix B. Correlation equations for functionals Collision Integrals $\Omega^{(2,2)^*}$, molecular gases $1 \leqslant T^* \leqslant 10$

 $\Omega^{(2,2)^{*''}} = \exp \left[0.46641 - 0.56991(\ln T^*) \right. \\ \left. + 0.19591 (\ln T^*)^2 - 0.03879 (\ln T^*)^3 \right. \\ \left. + 0.00259 (\ln T^*)^4 \right].$ (B1a)

$$\Omega^{(2,2)*} = (\rho^*)^2 \alpha^2 [1.04 + a_1 (\ln T^*)^{-1} + a_2 (\ln T^*)^{-2} + a_3 (\ln T^*)^{-3} + a_4 (\ln T^*)^{-4}], \qquad (B1b).$$

where

$$a_{1} = 0,$$

$$a_{2} = -33.0838 + (\alpha_{10}\rho^{*})^{-2} [20.0862 + (72.1059/\alpha_{10}) + (8.27648/\alpha_{10})^{2}],$$

$$a_{3} = 101.571 - (\alpha_{10}\rho^{*})^{-2} [56.4472 + (286.393/\alpha_{10}) + (17.7610/\alpha_{10})^{2}],$$

$$a_{4} = -87.7036 + (\alpha_{10}\rho^{*})^{-2} [46.3130 + (277.146/\alpha_{10}) + (19.0573/\alpha_{10})^{2}],$$
which $\alpha_{10} = \ln (K^{*}/10)$ is the value of

in which $\alpha_{10} = \ln (V_0^*/10)$ is the value of $\alpha = \ln V_0' - \ln T^*$ at the matching point of $T^* = 10$. $\Omega^{(2,2)^*}$, noble gases

$$T^* \leq 1.2$$

$$\Omega^{(2,2)^*} = 1.1943 (C_6^*/T^*)^{1/3} [1 + a_1(T^*)^{1/3} + a_2(T^*)^{2/3} + a_3(T^*) + a_4(T^*)^{4/3} + a_5(T^*)^{5/3} + a_6(T^*)^2], \qquad (B1c)$$

where

$$a_1 = 0.18,$$

 $a_2 = 0,$
 $a_3 = -1.20407 - 0.195866(C_6^*)^{-1/3},$
 $a_4 = -9.86374 + 20.2221(C_6^*)^{-1/3},$

TABLE B1. Coefficients of Eq. (B4a) for the computation of the functional B_0^* .

	c ₀	c ₁	<i>c</i> ₂	<i>c</i> ₃	C4
Noble gases	0.74685	- 1.03840	0.31634	0.02096	- 0.01498
N ₂ , CO, O ₂ , NO	0.96843	- 1.34424	0.46405	- 0.00689	- 0.01358
CO ₂	0.82601	- 1.39073	0.68581	- 0.12653	0.00543
N ₂ O	0.86875	- 1.28642	0.50153	- 0.03949	-0.00767
CH₄	0.89921	- 1.25084	0.42071	0.00059	- 0.01384
CF ₄	1.06288	- 1.49408	0.55240	- 0.02979	- 0.01138
SF ₆	1.21852	- 1.91794	0.92850	- 0.16763	0.00673
C ₂ H ₄	0.09434	- 1.39738	0.60582	0.07896	-0.00238
C ₂ H ₆	0.98755	- 1.47580	0.61382	- 0.06880	- 0.00484

 $a_5 = 16.6295 - 31.3613 (C_6^*)^{-1/3},$ $a_6 = -6.73805 + 12.6611 (C_6^*)^{-1/3}$. $1.2 \le T^* \le 10$ $\Omega^{(2,2)*} =$ same as Eq. (B1a). *T**≥10 $\Omega^{(2,2)^*} =$ same as Eq. (B1b). $\Omega^{(1,1)*}$, molecular gases $1 \le T^* \le 10$ $\Omega^{(1,1)*} = \exp[0.295402 - 0.510069 \ (\ln T^*)]$ $+ 0.189395 (\ln T^*)^2$ $-0.045427 (\ln T^*)^3$ $+ 0.0037928 (\ln T^*)^4$]. (B2a) *T**≥10 $\Omega^{(1,1)^*} = (\rho^*)^2 \alpha^2 [0.89 + b_2(T^*)^{-2}]$ $+ b_4(T^*)^{-4} + b_6(T^*)^{-6}],$ (B2b)

where

$$b_{2} = -267.00 + (\alpha_{10}\rho^{*})^{-2}[201.570 + (174.672/\alpha_{10}) + (7.36916/\alpha_{10})^{2}],$$

$$b_{4} = 26700 - (\alpha_{10}\rho^{*})^{-2}[19.2265 + (27.6938/\alpha_{10}) + (3.29559/\alpha_{10})^{2}] \times 10^{3},$$

$$b_{6} = -8.90 \times 10^{5} + (\alpha_{10}\rho^{*})^{-2}[6.31013 + (10.2266/\alpha_{10}) + (2.33033/\alpha_{10})^{2}] \times 10^{5},$$

in which $\alpha_{10} = \ln (V_0^*/10)$ is the value of α = $\ln V_0^* - \ln T^*$ at the matching point of $T^* = 10$.

$$\Omega^{(1,1)*}, \text{ noble gases}$$

$$T^* \leq 1.2$$

$$\Omega^{(1,1)*} = 1.1874(C_6^*/T^*)^{1/3}[1 + b_1(T^*)^{1/3} + b_2(T^*)^{2/3} + b_3(T^*) + b_4(T^*)^{4/3} + b_5(T^*)^{5/3} + b_6(T^*)^2)], \quad (B2c)$$

where

$$b_{1} = 0,$$

$$b_{2} = 0,$$

$$b_{3} = 10.0161 - 10.5395(C_{6}^{*})^{-1/3},$$

$$b_{4} = -40.0394 + 46.0048 (C_{6}^{*})^{-1/3},$$

$$b_{5} = 44.3202 - 53.0817 (C_{6}^{*})^{-1/3},$$

$$b_{6} = -15.2912 + 18.8125 (C_{6}^{*})^{-1/3}.$$

$$1.2 \leqslant T^{*} \leqslant 10$$

$$\Omega^{(1,1)^{*}} = \exp \left[0.357588 - 0.472513 (\ln T^{*}) + 0.0700902 (\ln T^{*})^{2} + 0.0165741 (\ln T^{*})^{3} - 0.00592022 (\ln T^{*})^{4} \right].$$
 (B2d)

$$T^{*} \geqslant 10$$

 $\Omega^{(1,1)^*}$ = same as Eq. (B2b).

Collision-integral ratios

$$\frac{\Omega^{(l,s+1)^*}}{\Omega^{(l,s)^*}} = 1 + \frac{T^*}{s+2} \frac{d \ln \Omega^{(l,s)^*}}{dT^*},$$
(B3a)

$$A^* = \Omega^{(2,2)^*} / \Omega^{(1,1)^*},$$
(B3b)

$$B^* = [5\Omega^{(1,2)^*} - 4\Omega^{(1,3)^*}] / \Omega^{(1,1)^*}$$

$$= 1 + 3C^* - 3(C^*)^2 - \frac{(T^*)^2}{3} \frac{d^2 \ln \Omega^{(1,1)^*}}{d(T^*)^2}$$
$$= 4C^* - 3(C^*)^2 - \frac{1}{3} \frac{d^2 \ln \Omega^{(1,1)^*}}{d(\ln T^*)^2}, \qquad (B3c)$$
$$T^* d \ln \Omega^{(1,1)^*}$$

$$C^* = \Omega^{(1,2)^*} / \Omega^{(1,1)^*} = 1 + \frac{T^*}{3} \frac{d \ln \Omega^{(1,2)^*}}{dT^*}, \quad (B3d)$$
$$E^* = \Omega^{(2,3)^*} / \Omega^{(2,2)^*} = 1 + \frac{T^*}{4} \frac{d \ln \Omega^{(2,2)^*}}{dT^*}, \quad (B3e)$$

$$F^* = \Omega^{(3,3)^*} / \Omega^{(1,1)^*} \approx 0.9543 + 0.00124T^*, \quad (B3f)$$

$$H^* = (3B^* + 6C^* - 35/4)(6C^* - 5)^{-1}. \quad (B3g)$$

The numerical expression for F^* is an approximate correlation from Ref. 1 (Sec. 10); the other expressions are definitions and exact recursion relations.

Second Virial Coefficients

 $B^* = B_0^* + B_{ns}^*$ $B_0^*, \text{ molecular gases}$ $1 \le T^* \le 10$ $B_0^* = -(T^*)^{1/2} \exp(1/T^*) [c_0 + c_1(\ln T^*) + c_2(\ln T^*)^2 + c_3(\ln T^*)^3 + c_4(\ln T^*)^4], \quad (B4a)$

where the coefficients c_i are given in Table B1.

*T**≥10

$$B_0^* = \beta \left[1 + d_2 (\ln T^*)^{-2} + d_4 (\ln T^*)^{-4} + d_6 (\ln T^*)^{-6} \right],$$
(B4b)

where

$$\beta = (\rho^*)^3 [(\alpha + \gamma)^3 + (\pi^2/2)(\alpha + \gamma) + 2.40411],$$

$$\alpha = \ln V_0^* - \ln T^*$$

 $\gamma = 0.577215...$ is Euler's constant,

and

$$d_{2} = -15.9057 + (9.85958/\beta_{10})$$

$$+ [(\rho^{*})^{3}/\beta_{10}{}^{2}][25.6607(\alpha_{10} + \gamma)^{2}$$

$$- 9.73766(\alpha_{10} + \gamma) + 42.2102]$$

$$+ 3.24589[(\rho^{*})^{2}/\beta_{10}]^{3}[3(\alpha_{10} + \gamma)^{2} + \pi^{2}/2]^{2},$$

$$d_{4} = 84.3304 - (61.9124/\beta_{10}) + [(\rho^{*})^{3}/\beta_{10}^{2}][-227.258(\alpha_{10} + \gamma)^{2} + 103.256(\alpha_{10} + \gamma) - 373.824] - 34.4187[(\rho^{*})^{2}/\beta_{10}]^{3}[3(\alpha_{10} + \gamma)^{2} + \pi^{2}/2]^{2}$$

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

$$d_{6} = -149.037 + (119.937/\beta_{10})$$

+ [(\rho^{*})^{3}/\beta_{10}^{2}][483.571(\alpha_{10} + \gampa^{2})
- 273.727(\alpha_{10} + \gampa) + 795.442]
+ 91.2423[(\rho^{*})^{2}/\beta_{10}]^{3}[3(\alpha_{10} + \gampa)^{2} + \pi^{2}/2]^{2},

in which β_{10} is the value of β and α_{10} is the value of α at the matching point of $T^* = 10$.

 B_0^* , noble gases

$$B_0^* = -(T^*)^{1/2} \exp(1/T^*) [1.18623 + 1.00824T^* + 4.25571(T^*)^2 - 18.6033(T^*)^3 + 20.4734(T^*)^4 - 8.71903(T^*)^5 + 1.14829(T^*)^6].$$
 (B4c)
1.1 $\leq T^* \leq 10$

 $B_0^* = \text{same as Eq. (B4a)}.$

*T**≥10

 $B_0^* = \text{same as Eq. (B4b)}.$

 $B_{\rm ns}$ *, molecular gases

These nonspherical contributions are zero for the interaction of two noble-gas atoms, but not for the interaction of a noble-gas atom with a molecule.

$$T^* \ge 1$$

$$B_{ns}^* = B_{ns}^*(\mu\mu) + B_{ns}^*(\mu\theta) + B_{ns}^*(\theta\theta) + \dots$$

$$+ B_{ns}^*(\mu, \operatorname{ind} \mu) + B_{ns}^*(\mu\theta, \operatorname{ind} \mu)$$

$$+ B_{ns}^*(\theta, \operatorname{ind} \mu) + \dots B_{ns}^*(C_6 \operatorname{anis})$$

$$+ \dots + \operatorname{cross terms.}$$
(B5)

Explicit formulas for the various contributions of B_{ns}^* are given in Appendix C as power series in $(T^*)^{-1}$.

Appendix C: General formulas

Single Substances

Only the viscosity and second virial coefficient are needed for use in mixture calculations.

Viscosity η

$$\eta = \frac{5}{16} \left(\frac{mkT}{\pi}\right)^{1/2} \frac{f_{\eta}}{\sigma^2 \Omega^{(2,2)^*}},$$
 (C1)

$$f_{\eta} = 1 + \frac{3}{196} (8E^* - 7)^2.$$
 (C1a)

Second Virial Coefficient B

$$B = \frac{2\pi}{3} N_A \sigma^3 B^*.$$
 (C2)

EQUILIBRIUM AND TRANSPORT PROPERTIES OF GAS MIXTURES

Mixtures

Viscosity

$$\eta_{\text{mix}} = -\frac{\begin{vmatrix} H_{11} & H_{12} & \cdots & H_{1\nu} & x_1 \\ H_{21} & H_{22} & \cdots & H_{2\nu} & x_2 \\ \vdots & & \vdots & \vdots \\ H_{\nu 1} & H_{\nu 2} & \cdots & H_{\nu\nu} & x_{\nu} \\ x_1 & x_2 & \cdots & x_{\nu} & 0 \end{vmatrix}}{\begin{vmatrix} H_{11} & H_{12} & \cdots & H_{1\nu} \\ H_{21} & H_{22} & \cdots & H_{2\nu} \\ \vdots & & \vdots \\ H_{\nu 1} & H_{\nu 2} & \cdots & H_{\nu\nu} \end{vmatrix}}$$
(C3)

where

$$H_{ii} = \frac{x_i^2}{\eta_i} + \sum_{\substack{k=1\\k\neq i}}^{\nu} \frac{2x_i x_k}{\eta_{ik}} \frac{m_i m_k}{(m_i + m_k)^2} \left(\frac{5}{3A_{ik}^*} + \frac{m_k}{m_i}\right),$$
(C3a)

$$H_{ij}(i \neq j) = -\frac{2x_i x_j}{\eta_{ij}} \frac{m_i m_j}{(m_i + m_j)^2} \left(\frac{5}{3A_{ij}^*} - 1\right),$$
(C3b)
$$5 \left[\left(2m_i m_i \right) kT \right]^{1/2} = 1$$

$$\eta_{ij} = \frac{5}{16} \left[\left(\frac{2m_i m_j}{m_i + m_j} \right)^{\frac{1}{\pi}} \right] - \frac{1}{\sigma_{ij}^2 \Omega_{ij}^{(2,2)^*}(T_{ij}^*)}$$
(C3c)

The expression (C3) is only a first approximation, but accurate results can be obtained if the single-component viscosities η_i are calculated according to Eqs. (C1) and (C1a).¹ The formula holds for binary as well as multicomponent mixtures.

Diffusion

Diffusion in multicomponent mixtures is described entirely in terms of binary diffusion coefficients, D_{ij} ,

$$D_{ij} = \frac{3}{8} \left[\left(\frac{m_i + m_j}{2m_i m_j} \right) \frac{kT}{\pi} \right]^{1/2} \frac{kT}{P} \frac{(1 + \Delta_{ij})}{\sigma_{ij}^2 \Omega_{ij}^{-1,1)*} (T_{ij}^*)}.$$
(C4)

The higher-order correction term Δ_{ij} is a complicated function of composition, but since it is small the following approximate formula should be adequate:^{1,2}

$$\Delta_{ij} \approx 1.3 (C_{ij}^* - 5)^2 \frac{a_{ij} x_{ij}}{1 + b_{ij} x_{ij}}, \qquad (C5)$$

where

$$a_{ij} = \frac{2^{1/2}}{8[1+1.8(m_j/m_i)]^2} \frac{\Omega_{ij}^{1,1^*}(T_{ij}^*)}{\Omega_{jj}^{(2,2)^*}(T_j^*)}, \quad (C5a)$$

$$b_{ij} = 10a_{ij} [1 + 1.8(m_j/m_i) + 3(m_j/m_i)^2] - 1,$$
(C5b)

$$x_{ij} = \frac{x_i}{x_i + x_j},\tag{C5c}$$

in which the subscript i denotes the heavier component and subscript j denotes the ligher component of the i-j pair.

Thermal Diffusion Factor

Thermal diffusion in multicomponent mixtures is complicated,⁵ and we give here only the expression for a binary mixture,

$$\alpha_T = (6C_{ij}^* - 5) \left(\frac{x_1 S_1 - x_2 S_2}{x_1^2 Q_1 + x_2^2 Q_2 + x_1 x_2 Q_{12}} \right) (1 + \kappa_T),$$
(C6)

where κ_T is a correction term arising from the higher approximations of kinetic theory, and is usually negligibly small in comparison with experimental uncertainties in α_T . We have ignored κ_T in the tabulations reported in this paper. The other quantities in Eq. (C6) are

$$S_{1} = \frac{m_{1}}{m_{2}} \left(\frac{2m_{2}}{m_{1} + m_{2}} \right)^{1/2} \frac{\sigma_{11}^{2} \Omega_{11}^{(2,2)*}(T_{1}^{*})}{\sigma_{12}^{2} \Omega_{12}^{(1,1)*}(T_{12}^{*})} - \frac{4m_{1}m_{2}A_{12}^{*}}{(m_{1} + m_{2})^{2}} + \frac{15m_{2}(m_{1} - m_{2})}{2(m_{1} + m_{2})^{2}}, \quad (C6a)$$

$$Q_{1} = \frac{2}{m_{2}(m_{1} + m_{2})} \left(\frac{2m_{2}}{m_{1} + m_{2}} \right)^{1/2} \frac{\sigma_{11}^{2} \Omega_{11}^{(2,2)*}(T_{1}^{*})}{\sigma_{12}^{2} \Omega_{12}^{(1,1)*}(T_{12}^{*})} \times \left[\left(\frac{5}{2} - \frac{6}{5} B_{12}^{*} \right) m_{1}^{2} + 3m_{2}^{2} + \frac{8}{5} m_{1}m_{2}A_{12}^{*} \right], \quad (C6b)$$

$$Q_{12} = 15 \left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2 \left(\frac{5}{2} - \frac{6}{5}B_{12}^*\right) + \frac{4m_1m_2A_{12}^*}{(m_1 + m_2)^2} \left(11 - \frac{12}{5}B_{12}^*\right) + \frac{8(m_1 + m_2)}{5(m_1m_2)^{1/2}} \frac{\sigma_{11}^{2}\Omega_{11}^{(2,2)*}(T_1^*)}{\sigma_{12}^{2}\Omega_{12}^{(1,1)*}(T_{12}^*)} \times \frac{\sigma_{22}^{2}\Omega_{22}^{(2,2)*}(T_2^*)}{\sigma_{12}^{2}\Omega_{12}^{(1,1)*}(T_{12}^*)},$$
(C6c)

and the expressions for S_2 and Q_2 are obtained from those for S_1 and Q_1 by interchange of the subscripts 1 and 2. The sign convention for α_T requires that subscript 1 denote the heavier component $(m_1 > m_2)$.

Second Virial Coefficient

$$B_{\rm mix} = \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} x_i x_j B_{ij}, \qquad (C7)$$

$$B_{ij} = \frac{2\pi}{3} N_A \sigma_{ij}{}^3 B_{ij} * (T_{ij} *), \qquad (C7a)$$

$$B_{ij}^* = (B_0^*)_{ij} + (B_{ns}^*)_{ij}.$$
 (C7b)

The equations for the spherical functionals $(B_0^*)_{ij}$ are those given in Appendix B. The equations for the nonspherical contributions $(B_{ns}^*)_{ij}$ are as follows:

$$B_{ns}^{*}(\mu\mu)_{ij} = -\frac{2}{3} \left(\frac{\mu_{i}^{*}\mu_{j}^{*}}{T_{ij}^{*}}\right)^{2} \\ \times \left[J_{6} + \frac{1}{25} \left(\frac{\mu_{i}^{*}\mu_{j}^{*}}{T_{ij}^{*}}\right)^{2} J_{12} + \cdots\right], \qquad (C8)$$
$$B_{ns}^{*}(\theta\theta)_{ij} = -\frac{6}{5} \left(\frac{\theta_{i}^{*}\theta_{j}^{*}}{T_{ij}^{*}}\right)^{2} \\ \times \left[J_{10} - \frac{6}{49} \left(\frac{\theta_{i}^{*}\theta_{j}^{*}}{T_{ij}^{*}}\right) J_{15} + \cdots\right], \qquad (C9)$$

 $B_{\rm ns}^{*}(\mu\theta)_{ij}$

$$= -\frac{3}{5} \left(\frac{\mu_{i}^{*} \theta_{j}^{*}}{T_{ij}^{*}}\right)^{2} \left\{ J_{8} + \frac{J_{16}}{1820} \left[141 \left(\frac{\mu_{i}^{*} \theta_{j}^{*}}{T_{ij}^{*}}\right)^{2} + \frac{1917}{7} \left(\frac{\mu_{j}^{*} \theta_{i}^{*}}{T_{ij}^{*}}\right)^{2} \right] + \cdots \right\} - \frac{3}{5} \left(\frac{\mu_{j}^{*} \theta_{i}^{*}}{T_{ij}^{*}}\right)^{2} \left\{ J_{8} + \frac{J_{16}}{1820} \times \left[141 \left(\frac{\mu_{j}^{*} \theta_{i}^{*}}{T_{ij}^{*}}\right)^{2} + \frac{1917}{7} \left(\frac{\mu_{i}^{*} \theta_{j}^{*}}{T_{ij}^{*}}\right)^{2} \right] + \cdots \right\}, (C10)$$

 $B_{ns}^{*}(\mu, \text{ind } \mu)_{ij}$

$$= -\frac{1}{15} \left(\frac{\mu_{i} * \alpha_{j} *}{T_{ij} *} \right)^{2} [(\mu_{i} *)^{2} J_{12} + 11(\mu_{j} * \alpha_{i} *)^{2} \\ \times J_{18} + \cdots] - \frac{1}{15} \left(\frac{\mu_{j} * \alpha_{i} *}{T_{ij} *} \right)^{2} \\ \times [(\mu_{j} *)^{2} J_{12} + 11(\mu_{i} * \alpha_{j} *)^{2} J_{18} + \cdots], \quad (C11)$$

$$B_{ns}^{*}(\theta, \text{ind } \mu)_{ij} = -\frac{81}{455} \left[\left(\frac{\theta_{i}^{*2} \alpha_{j}^{*}}{T_{ij}^{*}} \right)^{2} + \left(\frac{\theta_{j}^{*2} \alpha_{i}^{*}}{T_{ij}^{*}} \right)^{2} \right] J_{16} + \cdots, \quad (C12)$$

$$B_{ns}^* (\mu \theta, \text{ind}\mu)_{ij} = -\frac{432}{77} \left[\left(\frac{\mu_i^* \theta_i^* \alpha_j^*}{T_{ij}^*} \right)^2 + \left(\frac{\mu_j^* \theta_j^* \alpha_i^*}{T_{ij}^*} \right)^2 \right] J_{14} + \cdots, \quad (C13)$$

$$B_{\rm ns}^*(C_6{\rm anis})_{ij} = -\frac{1}{15} \left(\frac{(C_6^*)_{ij}}{T_{ij}^*}\right)^2$$

$$\times \left(\kappa_{i}^{2} + \kappa_{j}^{2} + \frac{19}{5}\kappa_{i}^{2}\kappa_{j}^{2}\right)J_{12} + \cdots, \qquad (C14)$$

$$B_{ns}^{*}(\mu \times \theta)_{ij} = \frac{3}{5} \left(\frac{\mu_{i}^{*} \mu_{j}^{*} \theta_{i}^{*} \theta_{j}^{*}}{T_{ij}^{*2}} \right) \\ \times \left[\left(\frac{\mu_{i}^{*} \mu_{j}^{*}}{T_{ij}^{*}} \right) J_{11} + \frac{24}{35} \left(\frac{\theta_{i}^{*} \theta_{j}^{*}}{T_{ij}^{*}} \right) J_{13} + \cdots \right], \quad (C15)$$
$$B_{ns}^{*}(\mu, \text{ind}\mu \times \theta, \text{ind}\mu)_{ij} = -\frac{72}{385} \left[\left(\frac{\mu_{i}^{*} \theta_{i}^{*} \alpha_{j}^{*}}{T_{ij}^{*}} \right)^{2} \right]$$

$$+\left(\frac{\mu_j^*\theta_j^*\alpha_i^*}{T_{ij}^*}\right)^2 J_{14} + \cdots, \qquad (C16)$$

$$B_{ns}^{*}(\mu\mu \times \mu, \text{ind}\mu)_{ij} = -\frac{4}{3} \left(\frac{\mu_{i}^{*}\mu_{j}^{*}}{T_{ij}^{*}}\right)^{2} \times \left[\alpha_{i}^{*}\alpha_{j}^{*} + \frac{1}{30} \left(\frac{\mu_{i}^{*2}\alpha_{j}^{*} + \mu_{j}^{*2}\alpha_{i}^{*}}{T_{ij}^{*}}\right) + \cdots\right] J_{12} + \cdots,$$
(C17)

$$B_{\rm ns}^{*}(\mu\mu \times \theta {\rm ind}\mu)_{ij} = -\frac{24}{385} \left(\frac{\mu_{i}^{*}\mu_{j}^{*}}{T_{ij}^{*}}\right)^{2} \times \left(\frac{\theta_{i}^{*2}\alpha_{j}^{*} + \theta_{j}^{*2}\alpha_{i}^{*}}{T_{ij}^{*}}\right) J_{14} + \cdots, \qquad (C18)$$

$$B_{\rm ns}^*(\theta\theta \times C_6 {\rm anis})_{ij} = \frac{27}{25} \frac{\sigma_i^* \sigma_j^* (C_6^*)_{ij}}{T_{ij}^{*2}} \kappa_i \kappa_J J_{11} + \cdots,$$
(C19)

$$B_{ns}^{*}(\mu, \operatorname{ind} \mu \times C_{6} \operatorname{anis})_{ij} = -\frac{2}{15} \left[\left(\frac{\mu_{i}^{*}}{T_{ij}^{*}} \right)^{2} \alpha_{j}^{*} \kappa_{i} + \left(\frac{\mu_{j}^{*}}{T_{ij}^{*}} \right)^{2} \alpha_{i}^{*} \kappa_{j} \right] (C_{6}^{*})_{ij} J_{12} + \cdots, \qquad (C20)$$
$$B_{ns}^{*}(\theta, \operatorname{ind} \mu \times C_{6} \operatorname{anis})_{ij} = -\frac{72}{385} \left[\left(\frac{\theta_{i}^{*}}{T_{ij}^{*}} \right)^{2} \alpha_{j}^{*} \kappa_{i} \right]$$

$$+\left(\frac{\theta_j^*}{T_{ij^*}}\right)^2 \alpha_i^* \kappa_j \left[(C_6^*)_{ij} J_{14} + \cdots \right]$$
(C21)

Equations (C17)-(C21) represent the leading cross terms that are indicated in Eq. (B5). The terms $(B_{ns}^*)_{ij}$ for like molecular interactions are obtained from the above formulas by equating *i* and *j*. The auxiliary functions $J_n(T_{ij}^*)$ are tabulated for

 $0.5 \le T^* \le 10$ and $6 \le n \le 30$,

by A. Boushehri, E. A. Mason, and J. Kestin [Int. J. Thermophys. 7, 1115 (1986)]. These functions are slowly varying, so that interpolation in the tables is easy. For $T^* > 10$ the nonspherical contribution B_{ns}^* is usually negligible compared to the corresponding spherical contribution B_0^* .

Appendix D: Deviation Plots

In the deviation plots, the ordinate refers to the difference between the measured and calculated quantity, i.e., the percentage quantity 100 $(X_{\text{meas}} - X_{\text{calc}})/X_{\text{calc}}$ or the difference $(X_{\text{meas}} - X_{\text{calc}})$.

As discussed in Sec. 6, the deviation plots for the second virial coefficient refer to the interaction coefficient B_{12} , whereas the tables list B_{mix} for the whole mixture.

The reduced thermal diffusion factor is defined as.

$$\alpha_T = \left(\frac{x_1^2 Q_1 + x_2^2 Q_2 + x_1 x_2 Q_{12}}{x_1 S_1 - x_2 S_2}\right)$$

The calculated curve for this quantity equals $(6C_{12}^* - 5)$. Several points at a given temperature refer to different mixture compositions.

.

D1. Deviation plot for the viscosity of N₂-O₂ mixtures.

D2. Deviation plot for the viscosity of N2-CO mixtures.

D4. Deviation plot for the viscosity of N₂-N₂O mixtures.

D5. Deviation plot for the viscosity of N₂-CH₄ mixtures.

D6. Deviation plot for the viscosity of N_2 -CF₄ mixtures.

BZOWSKI ET AL.

D7. Deviation plot for the viscosity of N_2 -SF₆ mixtures.

D8. Deviation plot for the viscosity of N_2 - C_2H_4 mixtures.

D9. Deviation plot for the viscosity of N_2 - C_2H_6 mixtures.

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

D13. Deviation plot for the viscosity of N2-Kr mixtures.

D14. Deviation plot for the viscosity of O₂-CO mixtures.

D16. Deviation plot for the viscosity of O₂-CF₄ mixtures.

D17. Deviation plot for the viscosity of O₂-SF₆ mixtures.

D18. Deviation plot for the viscosity of O_2 - C_2H_4 mixtures.

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

BZOWSKI ET AL.

к

D20. Deviation plot for the viscosity of O₂-Ne mixtures.

D21. Deviation plot for the viscosity of O_2 -Ar mixtures.

D24. Deviation plot for the viscosity of CO-N₂O mixtures.

D25. Deviation plot for the viscosity of CO-CH₄ mixtures.

D29. Deviation plot for the viscosity of CO-Ne mixtures.

D30. Deviation plot for the viscosity of CO-Ar mixtures.

D31. Deviation plot for the viscosity of CO-Kr mixtures.

D34. Deviation plot for the viscosity of CO_2 -CF₄ mixtures.

D32. Deviation plot for the viscosity of CO₂-N₂O mixtures.

D35. Deviation plot for the viscosity of CO_2 -SF₆ mixtures.

D33. Deviation plot for the viscosity of CO₂-CH₄ mixtures.

D36. Deviation plot for the viscosity of CO_2 - C_2H_6 mixtures.

D37. Deviation plot for the viscosity of CO₂-He mixtures.

D40. Deviation plot for the viscosity of CO₂-Kr mixtures.

D41. Deviation plot for the viscosity of N₂O-He mixtures.

D42. Deviation plot for the viscosity of N₂O-Ne mixtures.

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

D43. Deviation plot for the viscosity of N_2O -Ar mixtures. D46. Deviation plot for the viscosity of CH_4 - C_2H_6 mixtures.

D44. Deviation plot for the viscosity of CH₄-CF₄ mixtures.

D47. Deviation plot for the viscosity of CH₄-He mixtures.

D45. Deviation plot for the viscosity of CH₄-SF₆ mixtures.

D48. Deviation plot for the viscosity of CH_4 -Ne mixtures.

D49. Deviation plot for the viscosity of CH_4 -Ar mixtures.

D50. Deviation plot for the viscosity of CH₄-Kr mixtures.

D52. Deviation plot for the viscosity of CF_4 - C_2H_6 mixtures

D53. Deviation plot for the viscosity of CF_4 -He mixtures.

D54. Deviation plot for the viscosity of CF_4 -Ne mixtures.

D55. Deviation plot for the viscosity of CF₄-Ar mixtures.

D58. Deviation plot for the viscosity of SF_6 -He mixtures.

D56. Deviation plot for the viscosity of CF_4 -Kr mixtures.

D59. Deviation plot for the viscosity of SF_6 -Ne mixtures.

D57. Deviation plot for the viscosity of SF_6 - C_2H_6 mixtures.

D60. Deviation plot for the viscosity of SF_6 -Ar mixtures.

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

1206

D61. Deviation plot for the viscosity of SF₆-Kr mixtures.

D64. Deviation plot for the diffusion coefficient of N_2 -CO.

D66. Deviation plot for the diffusion coefficient of N_2 -CO₂; second of two figures.

figures.

D69. Deviation plot for the diffusion coefficient of N_2 - C_2H_4 .

D73. Deviation plot for the diffusion coefficient of N_2 -Ne.

D74. Deviation plot for the diffusion coefficient of N_2 -Ar.

D76. Deviation plot for the diffusion coefficient of N_2 -Xe.

D77. Deviation plot for the diffusion coefficient of O_2 -CO.

D78. Deviation plot for the diffusion coefficient of O₂-CO₂.

D81. Deviation plot for the diffusion coefficient of O_2 -He.

D85. Deviation plot for the diffusion coefficient of NO-He.

D86. Deviation plot for the diffusion coefficient of NO-Ne.

D90. Deviation plot for the diffusion coefficient of CO-CH₄.

D89. Deviation plot for the diffusion coefficient of CO-CO₂.

D91. Deviation plot for the diffusion coefficient of CO-SF_6 .

D94. Deviation plot for the diffusion coefficient of CO-Ar.

D92. Deviation plot for the diffusion coefficient of CO-He.

D95. Deviation plot for the diffusion coefficient of CO-Kr.

D93. Deviation plot for the diffusion coefficient of CO-Ne.

D96. Deviation plot for the diffusion coefficient of CO-Xe.

D97. Deviation plot for the diffusion coefficient of CO_2 -N₂O.

D98. Deviation plot for the diffusion coefficient of CO₂-CH₄.

D100. Deviation plot for the diffusion coefficient of CO_2 -He; first of two figures.

D101. Deviation plot for the diffusion coefficient of CO_2 -He; second of two figures.

D102. Deviation plot for the diffusion coefficient of CO₂-Ne.

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

D103. Deviation plot for the diffusion coefficient of CO_2 -Ar.

D109. Deviation plot for the diffusion coefficient of CH_4 -He.

D110. Deviation plot for the diffusion coefficient of CH₄-Ne.

D112. Deviation plot for the diffusion coefficient of CH_4 -Kr.

D114. Deviation plot for the diffusion coefficient of CF_4 -He.

D115. Deviation plot for the diffusion coefficient of SF_6 -He.

160

Temperature

0

320

к

240

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

D120. Deviation plot for the diffusion coefficient of C_2H_4 - C_2H_6 .

4

ж s

Deviation Å o

-4

0

80

O Ref. 114, PD

12

D121. Deviation plot for the diffusion coefficient of C_2H_4 -Kr.

D122. Deviation plot for the diffusion coefficient of C_2H_6 -Ar.

D124. Deviation plot for the interaction second virial coefficient of N2-CO2.

D125. Deviation plot for the interaction second virial coefficient of N_2 -CH₄.

D123. Deviation plot for the interaction second virial coefficient of N_2 - O_2 .

D126. Deviation plot for the interaction second virial coefficient of N_2 -CF₄.

D130. Deviation plot for the interaction second virial coefficient of N2-He.

🗆 Ref. 36, SD

D128. Deviation plot for the interaction second virial coefficient of $N_2\text{-}C_2H_4\text{-}$

D131. Deviation plot for the interaction second virial coefficient of N2-Ne.

D129. Deviation plot for the interaction second virial coefficient of $N_2\text{-}C_2H_6\text{-}$

D132. Deviation plot for the interaction second virial coefficient of N2-Ar.

D133. Deviation plot for the interaction second virial coefficient of O_2 -CO₂:

D134. Deviation plot for the interaction second virial coefficient of O_2 -CH₄.

D135. Deviation plot for the interaction second virial coefficient of O_2 -CF₄.

D136. Deviation plot for the interaction second virial coefficient of O_2 -SF₆.

D137. Deviation plot for the interaction second virial coefficient of O_2 -He.

D139. Deviation plot for the interaction second virial coefficient of CO-CO₂.

D140. Deviation plot for the interaction second virial coefficient of CO-CH4.

D143. Deviation plot for the interaction second virial coefficient of CO-Ar.

D141. Deviation plot for the interaction second virial coefficient of CO-CF4.

CO2-CH4.

O Ref. 33, PD

D145. Deviation plot for the interaction second virial coefficient of $CO_2 \cdot CF_4$.

D146. Deviation plot for the interaction second virial coefficient of $\mathrm{CO}_2\text{-}\mathrm{SF}_{6^*}$

D147. Deviation plot for the interaction second virial coefficient of $\rm CO_2\text{-}C_2H_4.$

D148. Deviation plot for the interaction second virial coefficient of CO_2 - C_2H_6 .

D149. Deviation plot for the interaction second virial coefficient of CO_2 -He.

D150. Deviation plot for the interaction second virial coefficient of CO_2 -Ar.

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

D151. Deviation plot for the interaction second virial coefficient of $N_2\text{O-He}.$

D154. Deviation plot for the interaction second virial coefficient of CH_4 - C_2H_4 .

D152. Deviation plot for the interaction second virial coefficient of CH_4 - CF_4 .

D155. Deviation plot for the interaction second virial coefficient of CH_4 - C_2H_6 .

D153. Deviation plot for the interaction second virial coefficient of \mathbf{CH}_4 $\mathbf{SF}_6.$

D156. Deviation plot for the interaction second virial coefficient of CII_4 -IIc.

D157. Deviation plot for the interaction second virial coefficient of CH_4 -Ne.

D158. Deviation plot for the interaction second virial coefficient of CH₄-Ar.

D159. Deviation plot for the interaction second virial coefficient of CH_4 -Kr.

D160. Deviation plot for the interaction second virial coefficient of $CF_4\text{-}SF_6\text{-}$

🗆 Ref. 33, PD

D161. Deviation plot for the interaction second virial coefficient of CF_4 - C_2H_6 .

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

D166. Deviation plot for the interaction second virial coefficient of CF_4 -Xe.

D164. Deviation plot for the interaction second virial coefficient of CF₄-Ar.

D165. Deviation plot for the interaction second virial coefficient of CF_4 -Kr.

D168. Deviation plot for the interaction second virial coefficient of SF_6 -Ne.

D169. Deviation plot for the interaction second virial coefficient of SF_6 -Ar.

O Ref. 93, SD

D170. Deviation plot for the interaction second virial coefficient of SF_6 -Kr.

D171. Deviation plot for the interaction second virial coefficient of SF_6 -Xe.

D172. Deviation plot for the interaction second virial coefficient of C_2H_4 - C_2H_6 .

O Ref. 47, SD

D173. Deviation plot for the interaction second virial coefficient of C_2H_e -Ar.

D174. Reduced thermal diffusion factor of N2-O2.

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

1226

D182. Reduced thermal diffusion factor of O2-CO2.

. 75

D186. Reduced thermal diffusion factor of CO-Ne.

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

Y

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

D194. Reduced thermal diffusion factor of N₂O-Kr.

D195. Reduced thermal diffusion factor of CH₄-He.

D196. Reduced thermal diffusion factor of CH_4 -Ar.

D197. Reduced thermal diffusion factor of CH₄-Kr.

D198. Reduced thermal diffusion factor of CH₄-Xe.

D201. Reduced thermal diffusion factor of C₂H₄-Ar.

J. Phys. Chem. Ref. Data, Vol. 19, No. 5, 1990

Appendix E: References For Deviation Plots

Some experimental data were considered redundant or superseded, and do not appear on the deviation and comparison plots or in the following list of references. Additional references for D_{12} can be found in the review by T. R. Marrero and E. A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972). Additional references for B_{12} can be found in the compilation by J. H. Dymond and E. B. Smith (Ref. 35). Additional references for α_T can be found in the review by E. A. Mason, R. J. Munn, and F. J. Smith, Adv. At. Mol. Phys. 2, 33 (1966).

References

- ¹Y. Abe, J. Kestin, H. E. Khalifa, and W. A. Wakeham, Physica 93A, 155 (1978).
- ²Y. Abe, J. Kestin, H. E. Khalifa, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 83, 271 (1979).
- ³S. Acharyya and A. K. Barua, J. Phys. Soc. Japan 31, 250 (1971).
- ⁴I. Amdur, J. W. Irvine, Jr., E. A. Mason, and J. Ross, J. Chem. Phys. 20, 463 (1952).
- ⁵I. Amdur and L. M. Shuler, J. Chem. Phys. 38, 1988 (1963).
- ⁶B. K. Annis, A. E. Humphreys, and E. A. Mason, Phys. Fluids 12, 78 (1969).
- ⁷K. Arai, S. Saito, and S. Maeda, Kagaku Kogaku 31, 25 (1967).
- ⁸P. S. Arora, H. L. Robjohns, T. N. Bell, and P. J. Dunlop, Aust. J. Chem.
- 33, 1993 (1980). ⁹R. E. Bastick, H. R. Heath, and T. L. Ibbs, Proc. R. Soc. London, Ser. A.
- **173**, 543 (1939). ¹⁰A. K. Batabyal and A. K. Barua, J. Chem. Phys. **48**, 2557 (1968).
- ¹¹A. K. Batabyal, A. K. Ghosh, and A. K. Barua, J. Chem. Phys. 47, 448 (1967).
- ¹²T. N. Bell and P. J. Dunlop, Chem. Phys. Lett. 84, 99 (1981).
- ¹³T. N. Bell, I. R. Shankland, and P. J. Dunlop, Chem. Phys. Lett. 45, 445 (1977).
- ¹⁴J. Bellm, W. Reineke, K. Schäfer, and B. Schramm, Ber. Bunsenges. Phys. Chem. 78, 282 (1974).
- ¹⁵J. Bohemen and J. H. Purnell, J. Chem. Soc., 360 (1961).
- ¹⁶C. A. Boyd, N. Stein, V. Steingrimsson, and W. F. Rumpel, J. Chem. Phys. 19, 548 (1951).
- ¹⁷J. D. Breetveld, R. DiPippo, and J. Kestin, J. Chem. Phys. 45, 124 (1966).
- ¹⁸J. Brewer and G. W. Vaughn, J. Chem. Phys. 50, 2960 (1969).
- ¹⁹M. A. Byrne, M. R. Jones, and L. A. K. Staveley, Trans. Faraday Soc. 64, 1747 (1968).
- ²⁰D. W. Calvin and T. M. Reed III, J. Chem. Phys. 54, 3733 (1971).
- ²¹F. B. Canfield, T. W. Leland, and R. Kobayashi, Adv. Cryogen. Eng. 8, 146 (1963).
- ²⁷A. A. Clifford, E. Dickinson, G. P. Matthews, and E. B. Smith, J. Chem. Soc. Faraday Trans. I 72, 2917 (1976).
- ²³J. Coates and A. A. Mian, Industrie Chimique Belge 32, 285 (1967).
- ²⁴T. L. Cottrell, R. A. Hamilton, and R. P. Taubinger, Trans. Faraday Soc. 52, 1310 (1956).
- ²³E. M. Dantzler, C. M. Knobler, and M. L. Windsor, J. Phys. Chem. **72**, 676 (1968).
- ²⁶E. M. Dantzler Siebert and C. M. Knobler, J. Phys. Chem. 75, 3863 (1971).
- ²⁷K. K. Datta, P. Seal, and A. K. Barua, J. Phys. Soc. Japan 37, 1089 (1974).
- ²⁸S. K. Deb, Indian J. Phys. **41**, 719 (1967).
- ²⁹R. DiPippo, J. Kestin, and K. Oguchi, J. Chem. Phys. 46, 4758 (1967).
 - ³⁰D. R. Douslin, R. H. Harrison, and R. T. Moore, J. Phys. Chem. 71, 3477 (1967).
- ³¹P. J. Dunlop [private communication to E. A. Mason (1988)].
- ³²P. J. Dunlop and C. M. Bignell, Physica 145A, 584 (1987).
- ³³P. J. Dunlop, C. M. Bignell, and H. L. Robjohns, Ber. Bunsenges. Phys. Chem. **90**, 351 (1986).

EQUILIBRIUM AND TRANSPORT PROPERTIES OF GAS MIXTURES

- ³⁴L. Durbin and R. Kobayashi, J. Chem. Phys. 37, 1643 (1962).
- ³⁵J. H. Dymond and E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures. A Critical Compilation. (Clarendon, Oxford, 1980).
- ³⁶A. E. Edwards and W. E. Roseveare, J. Am. Chem. Soc. 64, 2816 (1942).
- ³⁷C. S. Ellis and J. N. Holsen, Ind. Eng. Chem., Fundam. 8, 787 (1969).
- ³⁸E. B. Fedorov, A. B. Ivakin, and P. E. Suetin, Zh. Tekh. Fiz. 36, 569 (1966) [Sov. Phys-Tech. Phys. 11, 424 (1966)].
- ³⁹P. Fejes and L. Czárán, Acta Chim. Hungar. 29, 171 (1961).
- ⁴⁰E. N. Fuller and J. C. Giddings, J. Gas Chromatog. 3, 222 (1965).
- ⁴¹E. N. Fuller, K. Ensley, and J. C. Giddings, J. Phys. Chem. 73, 3679 (1969)
- ⁴²J. C. Giddings and S. L. Seager, Ind. Eng. Chem., Fundam. 1, 277 (1962).
- ⁴³R. A. Gorski and J. G. Miller, J. Am. Chem. Soc. 75, 550 (1953).
- ⁴⁴D. W. Gough, G. P. Matthews, and E. B. Smith, J. Chem. Soc. Faraday Trans. I 72, 645 (1976).
- ⁴⁵K. E. Grew, F. A. Johnson, and W. E. J. Neal, Proc. R. Soc. London, Ser. A 224, 513 (1954).
- ⁴⁶R. D. Gunn (unpublished results); Ref. 35, pp. 369 (N₂-CO₂) and 318 $(CH_4 - C_2H_6).$
- ⁴⁷R. Hahn, K. Schäfer, and B. Schramm, Ber. Bunsenges. Phys. Chem. 78, 287 (1974).
- 48K. R. Hall and F. B. Canfield, Physica 47, 219 (1969).
- ⁴⁹S. D. Hamann, J. A. Lambert, and R. B. Thomas, Aust. J. Chem. 8, 149 (1955).
- ⁵⁰K. R. Harris, T. N. Bell, and P. J. Dunlop, Canad. J. Phys. 50, 1874 (1972).
- ⁵¹J. M. Hellemans, J. Kestin, and S. T. Ro, J. Chem. Phys. 57, 4038 (1972).
- ⁵²J. M. Hellemans, J. Kestin, and S. T. Ro, Physica 65, 362 (1973).
- ⁵³D. Heymann and J. Kistemaker, Physica 25, 556 (1959).
- ⁵⁴J. N. Holsen and M. R. Strunk, Ind. Eng. Chem., Fundam. 3, 143 (1964). ⁵⁵A. E. Hoover, I. Nagata, T. W. Leland, Jr., and R. Kobayashi, J. Chem. Phys. 48, 2633 (1968).
- ⁵⁶A. T.-C. Hu and R. Kobayashi, J. Chem. Eng. Data 15, 328 (1970).
- ⁵⁷A. E. Humphreys and P. Gray, Proc. R. Soc. London. Ser. A 322, 89 (1971).
- ⁵⁸B. A. Ivakin and P. E. Suetin, Zh. Tekh. Fiz. 33, 1007 (1962) [Sov. Phys.-Tech. Phys. 8, 748 (1964)].
- ⁵⁹B. A. Ivakin and P. E. Suetin, Zh. Tekh. Fiz. 34, 1115 (1964) [Sov. Phys.-Tech. Phys. 9, 866 (1964)].
- ⁶⁰B. A. Ivakin, P. E. Suetin, and V. P. Plesovskikh Zh. Tekh. Fiz. 37, 1913 (1967) [Sov. Phys.-Tech. Phys. 12, 1403 (1968)].
- ⁶¹W. M. Jackson, J. Phys. Chem. 60, 789 (1956).
- ⁶²T. Jacobs, L. Peeter, and J. Vermant, Bull. Soc. Chim. Belges 79, 337 (1970).
- 63N. K. Kalfoglou and J. G. Miller, J. Phys. Chem. 71, 1256 (1967).
- ⁶⁴J. Kestin, H. E. Khalifa, S. T. Ro, and W. A. Wakeham, Physica 88A, 242 (1977)
- ⁶⁵J. Kestin, H. E. Khalifa, and W. A. Wakeham, J. Chem. Phys. 67, 4254 (1977).
- ⁶⁶J. Kestin, Y. Kobayashi, and R. T. Wood, Physica 32, 1065 (1966).
- ⁶⁷J. Kestin and S. T. Ro, Ber. Bunsenges. Phys. Chem. 78, 20 (1974).
- 68J. Kestin and S. T. Ro, Ber. Bunsenges. Phys. Chem. 86, 948 (1982),
- ⁶⁹J. Kestin and S. T. Ro, Ber. Bunsenges. Phys. Chem. 87, 600 (1983)
- ⁷⁰J. Kestin, S. T. Ro, and W. A. Wakeham, J. Chem. Phys. 56, 4036 (1972).
- ⁷¹J. Kestin, S. T. Ro, and W. A. Wakeham, J. Chem. Phys. 56, 5837 (1972).
- ⁷²J. Kestin, S. T. Ro, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 86, 753 (1982).
- ⁷³J. Kestin and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 87, 309 (1983)
- ⁷⁴J. Kestin and J. Yata, J. Chem. Phys. 49, 4780 (1968).
- ⁷⁵J. W. Lee and G. Saville (1976), (unpublished results); Ref. 35, p. 317 $(CH_4 - C_2H_4).$
- ⁷⁶R. C. Lee and W. C. Edmister, AIChE J. 16, 1047 (1970).
- ⁷⁷R. N. Lichtenthaler and K. Schäfer, Ber. Bunsenges. Phys. Chem. 73, 42 (1969).
- ⁷⁸L. R. Linshits, I. B. Rodkina, and D. S. Tsiklis, Zh. Fiz. Khim. 49, 2141 (1975) [Russ. J. Phys. Chem. 49, 1258 (1975)].
- ⁷⁹H. K. Lonsdale and E. A. Mason, J. Phys. Chem. 61, 1544 (1957).
- ⁸⁰(a).M. L. Martin, R. D. Trengove, K. R. Harris, and P. J. Dunlop, Ber. Bunsenges. Phys. Chem. 86, 626 (1982). (b)M. L. Martin, R. D. Trengove, K. R. Harris, and P. J. Dunlop, Aust. J. Chem. 35, 1525 (1982).

- ⁸¹D. McA. Mason and B. E. Eakin, J. Chem. Eng. Data 6, 499 (1961).
- ⁸²H. G. McMath and W. C. Edmister, AIChE J. 15, 370 (1969).
- ⁸³C. R. Mueller and R. W. Cahill, J. Chem. Phys. 40, 651 (1964).
- ⁸⁴K. Ohgaki, T. Mizuhaya, and T. Katayama, J. Chem. Eng. Japan 14, 71 (1981).
- ⁸⁵T. A. Pakurar and J. R. Ferron, Ind. Eng. Chem., Fundam. 5, 553 (1966).
- ⁸⁶R. Paul and I. B. Srivastava, Indian J. Phys. 35, 465 (1961).
- ⁸⁷R. Paul and I. B. Srivastava, Indian J. Phys. 35, 523 (1961).
- ⁸⁸W. C. Pfefferle, Jr., J. A. Goff, and J. G. Miller, J. Chem. Phys. 23, 509 (1955).
- ⁸⁰A. B. Rakshit, C. R. Roy, and A. K. Barua, J. Chem. Phys. 59, 3633 (1973).
- ⁹⁰(a) H. L. Robjohns and P. J. Dunlop, Ber. Bunsenges. Phys. Chem. 85, 655 (1981). (b) H. L. Robjohns and P. J. Dunlop, Ber. Bunsenges. Phys. Chem. 88, 1239 (1984).
- ⁹¹D. R. Roe and G. Saville (1972), (unpublished results); Ref. 35, p. 336 (N₂-CH₄).
- ⁹²C. S. Roy, S. K. Bhattacharyya, and A. K. Pal, Indian J. Phys. 48, 651 (1974).
- 93J. Santafe, J. S. Urieta, and C. G. Losa, Chem. Phys. 18, 341 (1974).
- ⁹⁴A. Sass, B. F. Dodge, and R. H. Bretton, J. Chem. Eng. Data 12, 168 (1967).
- ⁹⁵S. C. Saxena and E. A Mason, Mol. Phys. 2, 379 (1959).
- ⁹⁶K. Schäfer, B. Schramm, and J. S. U. Navarro, Z. Phys. Chem. 93, 203 (1974).
- ⁹⁷M. Schneider and K. Schäfer, Ber. Bunsenges. Phys. Chem. 73 702 (1969).
- ⁹⁸B. Schramm and R. Gerhmann (1979), (unpublished results); Ref. 35, pp. 294–5 (N_2 -Ar). ⁹⁹B. Schramm and H. Schmiedel (1979), (unpublished results); Ref. 35, p.
- 295 (N2-Ar).
- 100S. L. Seager, L. R. Geertson, and J. C. Giddings, J. Chem. Eng. Data 8, 168 (1963).
- ¹⁰¹P. M. Sigmund, I. H. Silberberg, and J. J. McKetta, J. Chem. Eng. Data 17, 168 (1972).
- ¹⁰²Y. Singh, A. Saran, and B. N. Srivastava, J. Phys. Soc. Japan 23, 1110 (1967)
- ¹⁰³K. Strein, R. N. Lichtenthaler, B. Schramm, and K. Schäfer, Ber. Bunsenges, Phys. Chem. 75, 1308 (1971).
- ¹⁰⁴P. E. Suetin, in ORNL-TR-316 (1964), Vol. 1, Translated by A. L. Monks for Oak Ridge National Laboratory from Teplo i Massoperenos, Izdatel'stvo Akademii Nauk BSSR, Minsk, pp. 188-190 (1962).
- ¹⁰⁵H. Sutter and R. H. Cole, J. Chem. Phys. 52, 140 (1970).
- ¹⁰⁶W. L. Taylor and P. T. Pickett, Int. J. Thermophys. 7, 837 (1986).
- ¹⁰⁷G. Thomaes, R. Van Steenwinkel, and W. Stone, Mol. Phys. 5, 301 (1962).
- ¹⁰⁸M. Trautz and A. Melster, Ann. Phys. 7, 409 (1930).
- ¹⁰⁹R. D. Trengove and P. J. Dunlop, Physica 115A, 339 (1982).
- ¹¹⁰R. D. Trengove and P. J. Dunlop, Chem. Phys. Lett. 94, 118 (1983).
- 111R. D. Trengove, K. R. Harris, H. L. Robjohns, and P. J. Dunlop, Physica 131A, 506 (1985); erratum 144A, 254 (1987).
- ¹¹²R. D. Trengove, H. L. Robjohns, and P. J. Dunlop, Ber. Bunsenges. Phys. Chem. 86, 951 (1982).
- ¹¹³R. D. Trengove, H. L. Robjohns, and P. J. Dunlop, Ber. Bunsenges. Phys. Chem. 88, 450 (1984).
- ¹¹⁴R. D. Trengove, H. L. Robjohns, and P. J. Dunlop, Physica 128A, 486 (1984).
- ¹¹⁵D. S. Tsiklis, L. R. Linshits, and I. B. Rodkina, Zh. Fiz. Khim. 48, 1541
- 1544 (1974), [Russ. J. Phys. Chem. 48, 906, 908 (1974)].
- ¹¹⁶H. F. Vugts, A. J. H. Bocrboom, and J. Los, Physica 50, 593 (1970).
- ¹¹⁷V. F. Vyshenskaya and N. D. Kosov, in ORNL-TR-506 (1965), Translated by A. L. Monks for Oak Ridge National Laboratory from Teplo- i Massoperenos, Pervoe Vsesoyuznoe Soveschante, Minsk, pp. 181-7 (1961). ¹¹⁸A. S. M. Wahby, Physica **145C**, 78 (1987).
- ¹¹⁹A. S. M. Wahby, A. J. H. Boerboom, and J. Los, Physica 75, 573 (1974).
- ¹²⁰A. S. M. Wahby and J. Los, Physica 145C, 69 (1987).
 - ¹²¹W. A. Wakeham and D. H. Slater, J. Phys. B6, 886 (1973).
 - ¹²²L. Waldmann, Z. Physik 124, 2 (1947).
 - ¹²³L. Waldmann, Z. Naturforsch. 4a, 105 (1949).
 - ¹²⁴R. E. Walker and A. A. Westenberg, J. Chem. Phys. 29, 1139 (1958).
 - ¹²⁵R. E. Walker and A. A. Westenberg, J. Chem. Phys. 29, 1147 (1958).
 - ¹²⁶R. E. Walker and A. A. Westenberg, J. Chem. Phys. 32, 436 (1960).

¹²⁷S. P. Wasik and K. E. McCulloh, J. Res. Natl. Bur. Stand. (U.S.) 73A,

207 (1969).
 ¹²⁸S. Weissman, S. C. Saxena, and E. A. Mason, Phys. Fluids 4, 643 (1961).
 ¹²⁹A. A. Westenberg and R. E. Walker, J. Chem. Phys. 26, 1753 (1957).

 ¹³⁰R. J. Witonsky and J. G. Miller, J. Am. Chem. Soc. 85, 282 (1963).
 ¹³¹C. J. Wormald, E. J. Lewis, and D. J. Hutchings, J. Chem. Thermodyn. **11**, 1 (1979).

¹³²P. Zandbergen and J. J. M. Beenakker, Physica **33**, 343 (1967).