A Unified Fundamental Equation for the Thermodynamic Properties of H₂O

Cite as: Journal of Physical and Chemical Reference Data 19, 1233 (1990); https://doi.org/10.1063/1.555868
Submitted: 22 August 1989. Published Online: 15 October 2009

Philip G. Hill

ARTICLES YOU MAY BE INTERESTED IN

The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
Journal of Physical and Chemical Reference Data 31, 387 (2002); https://doi.org/10.1063/1.1461829

A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa
Journal of Physical and Chemical Reference Data 18, 1537 (1989); https://doi.org/10.1063/1.555836

International Equations for the Saturation Properties of Ordinary Water Substance
A Unified Fundamental Equation for the Thermodynamic Properties of H₂O

Philip G. Hill

Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5

Received August 22, 1989; revised manuscript received June 27, 1990

A new unified equation of state for H₂O is presented, which includes the revised and extended scaling equation of Levelt Sengers, Kamgar-Parsi, Balfour and Sengers, is continuous over all single phase states of H₂O from triple point pressure and temperature to 1000 MPa (or the melting line) and 1000 °C and provides accurate representation of existing thermodynamic data in that range. In addition it provides a smooth transition from singular critical region functions to the nonsingular far-field functions. This is demonstrated by the variations of isochoric specific heat, isothermal compressibility, speed of sound, specific heat ratio and coexistence line properties in the critical region.

Key words: critical point; equation of state; thermodynamic properties; water.

Contents

1. Introduction .. 1235
2. The Revised and Extended Scaling Equation 1235
3. The Unified Helmholtz Function 1235
4. Fitting Procedure ... 1236
5. Comparisons with Experimental Data 1237
 5.1. Saturation Properties 1238
 5.2. Densities .. 1243
 5.3. Pressures ... 1253
 5.4. Speed of Sound ... 1257
 5.5. Isoestic Specific Heats 1260
 5.6. Isochoric Specific Heats 1263
 5.7. Throttling and Viral Coefficients 1263
 5.8. Virial Coefficients 1266
6. The Critical Region Transition 1266
7. Conclusions ... 1269
8. Acknowledgments .. 1269
9. References .. 1269

List of Tables

1. Correlation data ... 1237
2. Evaluation data ... 1238

List of Figures

1. Saturation pressure: 0–100 °C 1239
2. Saturation pressure: 100–350 °C 1239
3. Saturation pressure: 350–375 °C 1239
4. Liquid saturation density: 0–100 °C 1239
5. Liquid saturation density: 100–350 °C 1239
7. Liquid saturation density: 350–375 °C 1240
8. Vapor saturation density: 0–100 °C 1240
9. Vapor saturation density: 100–350 °C 1240
10. Vapor saturation density: 350–375 °C 1240
11. Liquid saturation enthalpy: 0–100 °C 1241
12. Liquid saturation enthalpy: 100–350 °C 1241
13. Liquid saturation enthalpy: 350–375 °C 1241
14. Liquid saturation enthalpy: 350–375 °C 1241
15. Vapor saturation enthalpy: 0–100 °C 1241
16. Vapor saturation enthalpy: 100–350 °C 1241
17. Vapor saturation enthalpy: 350–375 °C 1242
18. Saturation vapor enthalpy–difference–temperature–difference ratio: 0–150 °C 1242
19. Saturation function α 0–100 °C 1242
20. Saturation function α 100–350 °C 1243
21. Saturation function α 0–100 °C 1243
22. Saturation function α 0–250 °C 1243
23. Saturation function α 0–250 °C 1243
24. Liquid density maximum — 5 to + 5 °C 1244
25. Liquid density: 0 °C 1244
26. Liquid density: 10 °C 1244
27. Liquid density: 50 °C 1244
28. Liquid density: 100 °C 1244
29. Liquid density: 150 °C 1245
30. Liquid density: 200 °C 1245
31. Liquid density: 250 °C 1245
32. Liquid density: 300 °C 1245
33. Liquid density: 300 °C 1245
34. Liquid density: 350 °C 1246
35. Liquid density: 360 °C 1246
36. Liquid density: 370 °C 1246
37. Liquid density: 373.5 °C 1246
38. Liquid density: 374 °C 1246
39. Liquid density: 375 °C 1246

©1990 by the U.S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society. Reprints available from ACS; see Reprints List at back of issue.

40. Liquid density: 374–375 °C
41. Critical region density: 375–380 °C
42. Density: 400 °C
43. Density: 450 °C
44. Density: 500 °C
45. Density: 700 °C
46. Density: 850 °C
47. Vapor density: 150 °C
48. Vapor density: 175 °C
49. Vapor density: 200 °C
50. Vapor density: 225 °C
51. Vapor density: 250 °C
52. Vapor density: 275 °C
53. Vapor density: 300 °C
54. Vapor density: 325 °C
55. Vapor density: 340 °C
56. Vapor density: 350 °C
57. Vapor density: 360 °C
58. Vapor density: 370 °C
59. Vapor density: 373.5 °C
60. Vapor density: 374 °C
61. Vapor density: 375 °C
62. Liquid density: 50 °C
63. Liquid density: 100 °C
64. Liquid density: 150 °C
65. Liquid density: 200 °C
66. Density: 400 °C
67. Density at high pressures: 50–150 °C
68. Density at high pressures: 200–600 °C
69. Density at high pressures: 400 °C
70. Density at high pressures: 600 °C
71. Density at high pressures: 800 °C
72. Supercooled liquid density at 0.1 MPa and −30 to +20 °C
73. Liquid density at 0.1 MPa and 0–100 °C
74. Superheated vapor at 0.1 MPa and 100–250 °C
75. Supersaturated vapor density: 178.1 °C
76. Supersaturated vapor density: 200.2 °C
77. Supersaturated vapor density: 248.13 °C
78. Supersaturated vapor density: 298.16 °C
79. Pressure: 374 °C
80. Pressure: 375 °C
81. Pressure: 380 °C
82. Pressure: 400 °C
83. Ultra high pressure 25 °C
84. Ultra high pressure 75 °C
85. Ultra high pressure 125 °C
86. Ultra high pressure 175 °C (448–15 K)
87. Ultra high pressure 500 °C (773.15 K)
88. Ultra high pressure 1000 °C (1273.15 K)
89. Ultra high pressure: Hugoniot curve
90. Walsh and Rice (1958) estimate of \(\left(\frac{\partial V}{\partial T} \right)_p \), broken and full lines indicate their interpolations and extrapolations, respectively
91. Speed of sound, supercooled liquid states: 0.1 1257
92. Speed of sound, liquid: 0.1 MPa
93. Speed of sound, vapor: 0.1 MPa superheat
94. Speed of sound, supercooled liquid states: 0.1 MPa
95. Speed of sound, liquid: 0.1–100 MPa
96. Speed of sound, supercooled liquid states: −20 to +20 °C
97. Speed of sound, vapor: 100–400 °C
98. Speed of sound, liquid: 0.1–1000 (P/MPa)
99. Speed of sound, supercritical states: 375–500 °C
100. Speed of sound, vapor: 150–330 °C
101. Speed of sound, metastable liquid states: 150–300 °C
102. Isopiestic specific heat \(C_p \) supercooled liquid states: 0.1 MPa
103. Isopiestic specific heat \(C_p \), liquid: 0.1 MPa
104. Isopiestic specific heat \(C_p \), liquid: 30–100 MPa
105. Liquid Isopiestic specific heat \(C_p \), liquid: 20–50 MPa
106. Isopiestic specific heat \(C_p \), supercooled liquid: 0.1–400 MPa
107. Isopiestic specific heat \(C_p \), vapor: 12–22 MPa
108. Isopiestic specific heat \(C_p \), vapor: 2–20 MPa
109. Isopiestic specific heat \(C_p \), 30–100 MPa
110. Isopiestic specific heat \(C_p \): 22–27 MPa
111. Isopiestic specific heat \(C_p \): 23–24 MPa
112. Isochoric specific heat \(C_v \): 0.3238 Kg dm\(^{-3}\)
113. Isochoric specific heat \(C_v \): 0.3103 kg dm\(^{-3}\)
114. Isochoric specific heat \(C_v \): vapor isochores kg dm\(^{-3}\)
115. Isochoric specific heat \(C_v \), supercooled 0.1–400 MPa
118. Isothermal throttling coefficient, vapor: 70–140 °C
119. Isothermal throttling coefficient vapor: 350–400 °C
120. Isentropic temperature–pressure derivative: 0–80 °C
121. Isentropic temperature–pressure derivative: 295–495 K
122. Second virial coefficient: 50–100 °C
123. Second virial coefficient: 100–200 °C
124. Second virial coefficient: 200–300 °C
125. Third virial coefficient: 200–350 °C
126. Blending function \(F_c \), critical region
127. Isochoric specific heat \(C_v \), critical region
128. Isochoric specific heat \(C_v \), critical region
129. Inverse isothermal compressibility \(\rho \left(\frac{\partial \rho}{\partial P} \right) \), critical region
130. Inverse isothermal compressibility \(\rho \left(\frac{\partial \rho}{\partial P} \right) \), critical region
131. Speed of sound, critical region
132. Speed of sound, critical region

1. Introduction

One of the first methods for unifying a scaled equation of state, valid only near the critical point, with a nonsingular equation representing states not in the critical region was devised by Chapela and Rowlinson (1974) for carbon dioxide [and used by Angus, Armstrong, and de Reuck (1976) in preparing their CO2 tables]. The method could be represented as a linear combination of the pressure \(P \), produced by the simple scaling equation of Schofield and the pressure \(P_c \), produced by a nonsingular equation valid for states of CO2 not near the critical point, i.e.,

\[
P = P_s + f(P_A - P_s).
\]

In this equation, the "switching function", is a function of "distance" from the critical point such that \(f \) and all its derivatives are zero at the critical point. Away from the critical point (but sufficiently close that the scaling equation is still approximately valid) \(f \) approaches one, and its derivatives approach zero. The equation not being in fundamental form, numerical integration is required to produce derived properties; as shown by Angus, Armstrong, and de Reuck, this entails elaborate procedures in the critical region and close to the saturation boundary.

After it is clear that simple scaling is valid only in a region very close to the critical point, e.g., within \((T - T_c)/T_c = 10^{-3} \); [see for example Levelt Sengers (1981)], Levelt Sengers, Kamgar-Parsi, Balfour and Sengers (1983) used "revised and extended" scaling theory to produce an equation of state for H2O showing excellent agreement with thermodynamic data in the region within \(\pm 25\% \) of the critical density and to about 50°C above the critical point.

Woolley (1983) studied the feasibility of combining a scaling equation for H2O [due to Murphy, Sengers and Levelt Sengers (1975)] with a nonsingular state equation [due to Pollak (1975)] to obtain a combined, continuously valid Helmholtz function. Woolley demonstrated that, whatever the switching function chosen, it is impossible for the combined Helmholtz free energy and its first two derivatives to be intermediate in value between those of the scaled and nonsingular functions. Only if, in the region of switching, the behavior of the two functions is essentially identical can a satisfactory transition be obtained.

The equation of state described herein is a unified Helmholtz function which is in exact agreement with the revised and extended scaling equation of Levelt Sengers, Kamgar-Parsi, Balfour and Sengers (1983) at the critical point and which includes a new "far-field" scaling equation providing a smooth transition through the critical region. The smoothness of that transition is demonstrated by the behavior of second derivative quantities in the critical region. The accuracy of the equation is shown by comparisons between the equation and thermodynamic data over a wide range of conditions.

2. The Revised and Extended Scaling Equation

Levelt Sengers, Kamgar-Parsi, Balfour and Sengers (1983) have formulated their fundamental equation in terms of a potential function

\[
\tilde{P} = \tilde{P}(\tilde{\mu}, \tilde{T}),
\]

in which

\[
\tilde{P} = \frac{P_T}{P_c T},
\]

\[
\tilde{\mu} = \frac{\mu_T}{P_c T},
\]

and

\[
\tilde{T} = -\frac{T_c}{T},
\]

and in which \(P \) is the pressure, \(\mu \) the chemical potential, \(T \) the temperature, \(\rho \) the density and the subscript \(c \) denotes the critical state.

This fundamental relationship can be expressed in the equivalent form of a dimensionless Helmholtz function,

\[
\tilde{\psi}_n = \tilde{\psi}_n(\tilde{\rho}, \tilde{T}),
\]

in which \(\tilde{\psi} = -\psi/RT \psi \) being the Helmholtz free energy and \(R \) the gas constant and \(\tilde{\rho} = \rho/\rho_c, \tilde{T} = T/T_c \) being the same as given above. The subscript \(n \) denotes "near" the critical point.

The function \(\tilde{\psi}_n \) appearing in the rest of this paper is exactly equivalent to the \(\tilde{P} \) function given by Sengers et al. except for small adjustments in \(\tilde{\mu}_c, \tilde{\mu}_{1}, \) (new value - 17.7876), \(\tilde{\mu}_{2}, \) (new value - 22.6407) and \(\tilde{\mu}_{3}, \) (new value - 11.2317), and for the addition of the arbitrary function.

\[\Delta \tilde{\psi}_n = C_{001} + C_{002} \Delta \tilde{T},\]

in which \(\Delta \tilde{T} = 1 + \tilde{T} \), \(C_{001} = -0.000 034 631 815 \) and \(C_{002} = -0.000 030 378 112 \). These constants are adjusted to guarantee zero values of energy and entropy for the triple point liquid state. The values of \(R, \rho_c, \) and \(T_c \) are the same as for the Sengers et al. formulation.

3. The Unified Helmholtz Function

The Helmholtz function is

\[
\tilde{\psi} = \tilde{\psi}_f + F(\tilde{\psi}_n - \tilde{\psi}_f),
\]

in which \(\tilde{\psi}_f = \tilde{\psi}_f(\tilde{\rho}, \tilde{T}) \) is the "far-field" function \(\tilde{\psi}_f = \psi_f/RT \) and the function \(F(\tilde{\rho}, \tilde{T}) \) is unity at the critical point, where all its derivatives are zero; it descends to zero inside the region of validity of \(\tilde{\psi}_n \) and is zero everywhere outside the critical region.

Its definition is

\[
F = 1 - \exp(-1/Z),
\]

in which

\[
Z = \exp[(\xi/\delta)^4] - 1
\]

and

\[
\xi = (\Delta \tilde{\rho}/\Delta \tilde{\rho}_0)^2 + (\Delta \tilde{T}/\Delta \tilde{T}_0)^2
\]

with

\[
\delta = 1.028 667, \ \Delta \tilde{\rho}_0 = 0.23, \ \Delta \tilde{T}_0 = 0.05.
\]

The derivatives of \(F \) are given in Appendix E.

The far-field equation is in the form

\[
\tilde{\psi}_f = \ln \tilde{\rho} + \tilde{\psi}_0 + \tilde{\psi}_1(\tilde{\rho}, \tilde{T}),
\]

in which the first two terms pertain to the ideal gas and $\bar{\psi}_0$ is defined in Appendix A.

The function $\bar{\psi} = \bar{\psi}(\bar{p}, \bar{T})$ may be written

$$\bar{\psi} = W_1 + EW_2 + GW_3 + JHW_4,$$

in which

$$W_1 = \sum_{i,j=1}^{N_{R1}} \sum_{j=1}^{N_{R2}} A_{ij}(i) R_{ij}(i) T_{ij}(j)$$
$$W_2 = \sum_{i=1}^{N_{R1}} \sum_{j=1}^{N_{R2}} A_{ij}(i) R_{ij}(i) T_{ij}(j)$$
$$W_3 = \sum_{i=1}^{N_{R1}} \sum_{j=1}^{N_{R2}} A_{ij}(i) R_{ij}(i) T_{ij}(j)$$
$$W_4 = \sum_{i=1}^{N_{R1}} \sum_{j=1}^{N_{R2}} A_{ij}(i) R_{ij}(i) T_{ij}(j),$$

and

$$R_{ij}(i) = (1 - E)(\bar{p})^{i-j}$$
except that $R_{ij}(2) = (1 - E)\ln \bar{p} - \bar{p}^2 \ln \bar{p} + \bar{p}^2/2.$

$$R_{ij}(i) = (\bar{p})^{i-j}$$
$$R_{ij}(i) = (\bar{T})^{i-j}$$
$$R_{ij}(i) = R_{ij}(i)$$

and

$$T_{ij}(j) = (\bar{T})^{j-i}$$
$$T_{ij}(j) = (\bar{T})^{j-i}.$$

The coefficients, E, G, and H are defined as follows:

$$E = \exp(-\bar{p}^2)$$
$$G = \exp(-\alpha \Delta T - \beta \Delta \bar{p} - \gamma \Delta \bar{T}^2 - \delta \Delta \bar{p}^2)$$
$$H = \exp(-\nu(\bar{T} + 3),$$
in which $\alpha = 8.0, \beta = 1, \gamma = 130, \delta = 12, \nu = 4.$

For computational precision the term $1 - E = 1 - \exp(-\bar{p}^2)$ should be replaced by \bar{p}^2 for $\bar{p} < 0.2 \times 10^{-14}$.

The indices of summation are

$N_{R1} = 7, N_{T1} = 7$
$N_{R2} = 7, N_{T2} = 12$
$N_{R3} = 5, N_{T3} = 5$
$N_{R4} = 5, N_{T4} = 10.$

The coefficients $A_{ij}(i), A_{ij}(i), A_{ij}(i), A_{ij}(i)$ are given in Appendix B. Unless otherwise stated each coefficient has zero value.

Dimensionless variables and their derivatives are given in Appendix C. Appendices D and E provide the derivatives of functions needed for computation.

4. Fitting Procedure

The fitting procedure consisted of a weighted linear least-squares minimization which incorporated the Wagner (1977) selective multiple regression procedure. The coefficients of the nonlinear terms were adjusted one at a time while finding optimum values.

Table 1 shows the data used directly or indirectly in the linear fitting procedure. These data have been discussed by Hill and MacMillan (1988). An extended discussion of the process of assessing the experimental uncertainties in density and enthalpy has been provided by Sato, Uematsu, Watanabe, Saul and Wagner (1985).

The saturation properties deduced from the data of Osborne, Stimson and Ginnings (1933, 1937, 1939) Stimson (1969), Guildner (1976), Kell, McLaurin and Whalley (1985) and Kell (1977) were used indirectly in the fitting procedure by using the Saul and Wagner (1987) equations to represent these data with thermodynamic consistency. Values of saturation liquid and vapor densities and enthalpies were fitted at 10 degree intervals between the triple point and 370 °C and at 1 °C intervals close to the critical point. The data were weighted according to the tolerances assigned by Saul and Wagner.

Pressure data with wide ranges of density and temperature were selected from the data of Kell, McLaurin and Whalley (1975, 1985), Kell and Whalley (1977, 1978), Rivkin and Akhundov (1963, 1966), Vukalovich, Zubarov and Aleksandrov (1961, 1962), Hilbert (1979), Maier and Frank (1966) and Koster and Frank (1969). With exceptions for particular data sets, weighting factors were assigned corresponding to tolerances on relative pressure of

$$\frac{\delta P}{P} = \left(\frac{\delta P}{P} \right)_{0,1,2,3}$$
in which $\delta P/P$ is the relative density tolerance identified in Table 1 for the PVT data, and the pressure-density derivative is an estimate obtained from a preliminary version of the Helmholtz function. The minimum relative density tolerance in the critical region (where the inverse isothermal compressibility is vanishingly small) was set at 0.0005.

For the low pressure vapor states, the Joule–Thomson data $(\partial T/\partial P)_s$ extrapolated to zero pressure were used to control the behavior of the second virial coefficient.

For the liquid states below the triple point temperature, a few values of the isochoric specific heat and a few values of the isothermal compressibility were used to control the property behavior in that region.

The two-phase equilibrium condition was introduced into the fitting procedure by requiring, at 10° intervals between the triple point and 370 °C (and 1 °C intervals close to the critical point), the equality of $(\gamma + P\beta)$ for liquid and vapor saturation states at the same temperature.

Special measures were needed to provide smoothness in the derivatives of the Helmholtz function in their variation from the singular critical region function near the critical point to the nonsingular far-field functions. It is apparent from the work of Woolley (1983) that the only way to obtain satisfactory smoothness in the transition from one function to another is that there be some finite range of states in which the two functions are essentially identical. With this in mind the far-field functions ψ, \bar{u}, \bar{p}, and $(\partial P/\partial \bar{p})_s$ were fitted to the corresponding values $\psi_s, \bar{u}_s, \bar{p}_s$ and $(\partial P_s/\partial \bar{p}_s)$ obtained from the revised and extended scaling functions. The region in which these “data” were fitted was within ±25% of the critical density and within 50 °C above and 2–3 °C below the critical temperature. The weighting factors used in the fit
were the sums of terms proportional to the derivatives of the blending function \(F \) which appear in Appendix C: \(\partial F / \partial \rho \), \(\partial^2 F / \partial \rho^2 \), \(\partial F / \partial T \), \(\partial^2 F / \partial T^2 \).

Taking the isochoric specific heat as an example, we have

\[
C_v = C_v^{(1)} + F(C_v^{(1)} - C_v^{(2)}) + 2T \frac{\partial \rho}{\partial T} (u_i - u_f)
- \frac{\partial^2 F}{\partial T^2} (\psi_i - \psi_f).
\]

The transition between \(C_v^{(1)} \) and \(C_v^{(2)} \) can only be acceptably smooth if the third and fourth terms on the right-hand side are negligibly small compared to the first two. For this reason the weighting factor for the fit \(\psi_i = \psi_f \) needs to have a term proportional to \(\partial^2 F / \partial \rho^2 \) which is very large in a very narrow band of states around the critical point. The weighting factor for this fit also needs a term proportional to \(\partial^2 F / \partial \rho^2 \).

The objective function for the fit can be written

\[
D = \sum_{i=1}^{N} \sum_{j=1}^{n_i} Q_i \left(P_{\text{obs}} - P_{\text{calc}} \right)^2,
\]

in which \(P_i \) denotes any property at state \(i \), \(N \) is the number of kinds of data used in the fit (pressure, enthalpy, free energy, isochoric specific heat, isothermal compressibility, internal energy) and \(n_i \) is the number of data used in each kind of fit. Numerous trials were required to obtain appropriate adjustments of weighting factors and data representation, as well as in adjustments of the nonlinear coefficients of the functions defined in Appendix E.

No constraints were imposed on the fit except for adjustments of arbitrary constants to make the entropy and internal energy values zero at the triple point liquid states.

5. Comparisons with Experimental Data

In what follows, comparisons are made both with the “correlation” data of Table 1, which can be accommodated within a linear fit, and also with the “evaluation” data of Table 2. The latter include numerous data on speed of sound, isobaric specific heat and throttling coefficients as well as pressure and other data not used in the fitting process. Table 2 refers to a large body of data which provide an independent check of the accuracy, as well as the thermodynamic consistency, of the unified formulation. Unless otherwise indicated, the base for comparison is the unified equation described in Sec. 3.
Table 2. Evaluation data.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Property</th>
<th>Region</th>
<th>Range T/°C</th>
<th>P/MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilbath et al. (1972)</td>
<td>PVT</td>
<td>liq</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>Zubarev et al. (1977)</td>
<td>PVT</td>
<td>supercrit</td>
<td>400–600</td>
<td>0–200</td>
</tr>
<tr>
<td>Aleksandrov et al. (1974)</td>
<td>PVT</td>
<td>critical</td>
<td>340–380</td>
<td>3–100</td>
</tr>
<tr>
<td>Hanafusa et al. (1983)</td>
<td>PVT</td>
<td>critical</td>
<td>370–380</td>
<td>21–40</td>
</tr>
<tr>
<td></td>
<td>PVT</td>
<td>critical</td>
<td>370–373.5</td>
<td></td>
</tr>
<tr>
<td>Del Grosso et al. (1972)</td>
<td>a</td>
<td>liq</td>
<td>0–95</td>
<td>0.1</td>
</tr>
<tr>
<td>Aleksandrov et al. (1976)</td>
<td>a</td>
<td>liq</td>
<td>−3–374</td>
<td>0.1–70</td>
</tr>
<tr>
<td>Aleksandrov et al. (1979)</td>
<td>a</td>
<td>liq</td>
<td>−7–150</td>
<td>5–100</td>
</tr>
<tr>
<td>Aleksandrov et al. (1980)</td>
<td>a</td>
<td>supercrit</td>
<td>200–400</td>
<td>50–100</td>
</tr>
<tr>
<td>Erokhin et al. (1980)</td>
<td>a</td>
<td>supercrit</td>
<td>374–500</td>
<td>0–50</td>
</tr>
<tr>
<td>Novikov et al. (1968)</td>
<td>a</td>
<td>vap</td>
<td>150–330</td>
<td>0–P_vap</td>
</tr>
<tr>
<td>Holton et al. (1968)</td>
<td>a</td>
<td>liq</td>
<td>0–80</td>
<td>0.1–1000</td>
</tr>
<tr>
<td>Petitet et al. (1985)</td>
<td>a</td>
<td>supercrit</td>
<td>200–700</td>
<td>50–300</td>
</tr>
<tr>
<td>Petitet et al. (1983)</td>
<td>a</td>
<td>liq</td>
<td>−20–20</td>
<td>0.1–460</td>
</tr>
<tr>
<td>Eristeef et al. (1979)</td>
<td>a</td>
<td>liq (meta)</td>
<td>150–300</td>
<td>0.1–10</td>
</tr>
<tr>
<td>Sirota et al. (1962)</td>
<td>C_p</td>
<td>supercrit</td>
<td>375–500</td>
<td>22–27</td>
</tr>
<tr>
<td></td>
<td>C_p</td>
<td>vap</td>
<td>200–375</td>
<td>2–12</td>
</tr>
<tr>
<td></td>
<td>C_p</td>
<td>vap</td>
<td>350–375</td>
<td>6–20</td>
</tr>
<tr>
<td></td>
<td>C_p</td>
<td>supercrit</td>
<td>12–500</td>
<td>2.5–49</td>
</tr>
<tr>
<td></td>
<td>C_p</td>
<td>supercrit</td>
<td>450–600</td>
<td>30–50</td>
</tr>
<tr>
<td></td>
<td>C_p</td>
<td>supercrit</td>
<td>340–600</td>
<td>60–80</td>
</tr>
<tr>
<td></td>
<td>C_p</td>
<td>supercrit</td>
<td>220–700</td>
<td>40–100</td>
</tr>
<tr>
<td></td>
<td>C_p</td>
<td>supercrit</td>
<td>−2–15</td>
<td>29–98</td>
</tr>
<tr>
<td>Angell et al. (1982)</td>
<td>C_p</td>
<td>liq (meta)</td>
<td>−4–10</td>
<td>0.1</td>
</tr>
<tr>
<td>Baez et al. (1975)</td>
<td>C_p</td>
<td>liq, vap</td>
<td>280–T_vap</td>
<td></td>
</tr>
<tr>
<td></td>
<td>supercrit</td>
<td>t_vap</td>
<td>−420</td>
<td></td>
</tr>
<tr>
<td>Ertle et al. (1980)</td>
<td>(∂T/∂P)_a</td>
<td>vap</td>
<td>155–800</td>
<td>0.5</td>
</tr>
<tr>
<td>LeFevre et al. (1975)</td>
<td>virial</td>
<td>vap</td>
<td>0–1250</td>
<td></td>
</tr>
<tr>
<td>Wormald (1964)</td>
<td>(∂T/∂P)_v</td>
<td>vap</td>
<td>40–140</td>
<td></td>
</tr>
<tr>
<td>Osborne et al. (1939)</td>
<td>αβγρ</td>
<td>vap</td>
<td>0–100</td>
<td>P_vap</td>
</tr>
<tr>
<td>Osborne et al. (1937)</td>
<td>αβγρ</td>
<td>100–374</td>
<td>P_vap</td>
<td></td>
</tr>
<tr>
<td>Rogener et al. (1980)</td>
<td>(∂T/∂P)_v</td>
<td>liq</td>
<td>3–100</td>
<td>0–80</td>
</tr>
<tr>
<td>Aleksandrov et al. (1981)</td>
<td>ρ_max</td>
<td>liq</td>
<td>−3–4</td>
<td>−1–30</td>
</tr>
</tbody>
</table>

5.1. Saturation Properties

Figures 1–3 show comparisons of the saturation pressures determined from the present formulation with experimental data and with the saturation property formulations of Saul and Wagner (1978) for H₂O, as well as the tolerances on the vapor pressure established by the International Association for the Properties of Steam (IAPS) and given by Wagner and Sengers (1986). The unified formulation agrees with the Saul and Wagner formulation within about a part in 10 000 over the entire range and the discrepancies are within the IAPS tolerances. At 273.16 K the computed vapor pressure falls within 0.002 Pa of the determination of Guildner, Johnston, and Jones (1976) whose uncertainty estimate was 0.01 Pa. Figure 2 also shows close agreement between the unified equation and the Saul and Wagner formulation. Here the IAPS tolerance can be viewed with respect to the scatter in the Kell, McLaurin, and Whalley data, which were the principal source for the Saul and Wagner formulation in this temperature range. Figure 3 shows very close agreement between the saturation pressure obtained from the unified equation, and that derived from the revised and extended scaling equation very close to the critical point.

Figures 4–7 show the saturated liquid density differences between the Saul and Wagner values and those of the unified equation. Below 100 °C the two are in close agreement. In the range 250–350 °C the differences shown by Fig. 5, though well within the tolerances, are considerable. In Figs. 5–23, the caption Wagner, Sengers Tolerance (1986) refers to the tolerance published by those authors and accepted by the International Association for the Properties of Steam (IAP). Figure 6 shows the large discrepancy in this region between the Osborne measurements of the liquid density and the Kell measurements which are closely represented by the Saul and Wagner formulation. Figure 7 displays close agreement between the unified formulation and the revised and extended scaling equation of Levelt Sengers et al., whose validity range extends only a few degrees (though shown over an 80° range) below the critical. Again, the Osborne data show considerable scatter.
EQUATION OF STATE FOR H₂O

FIG. 1. Saturation pressure: 0–100 °C.

FIG. 2. Saturation pressure: 100–350 °C.

FIG. 3. Saturation pressure: 350–375 °C.

FIG. 4. Liquid saturation density: 0–100 °C.

FIG. 5. Liquid saturation density: 100–350 °C.

FIG. 6. Liquid saturation density: 100–350 °C.

The critical temperature value used in the unified equation 647.067 K is necessarily the same as the value used in the scaling equation of Levelt Sengers et al. (1983). It is not the same as the value established by Levelt Sengers, Straub, Watanabe and Hill (1985) viz. 647.14 ± 0.1 K though within the stated tolerance for the latter.

Figures 8–10 show comparisons of the saturation vapor density calculated from the unified equation with the Osborne experimental determinations and with the Saul and Wagner formulation. Relative to experimental uncertainty and to the IAPS tolerances provided by Wagner and Sengers, the agreement, well within one part in 1000 everywhere except very near the critical temperature, indicates that the unified equation represents the saturated vapor density well within experimental uncertainty.

Figures 11–14 show the differences between values of the saturated liquid enthalpy calculated from the unified equation and the Saul and Wagner formulation in relation to the IAPS tolerances. The differences appear to be well within experimental uncertainty. Figure 13 shows the scatter in the Osborne data relative to the Saul and Wagner formulation which will be discussed further subsequently. Figure 14 shows close agreement with the revised and extended scaling equation within the temperature range of validity.

A corresponding comparison of the saturation vapor enthalpies over the whole temperature range is displayed in Figs. 15–17. The scatter in the Osborne determination is in the range ±0.2 J/g up to about 350 °C, above which the uncertainty increases considerably. However, the unified equation appears to agree with the Saul and Wagner formulation very closely over the entire range. The equation of Hill and MacMillan (1988) is an extended virial-type equation valid up to about 300 °C.

Since the Saul and Wagner formulation has been used in this work as the best available thermodynamically consistent formulation of the saturation properties of H₂O, it is in order to consider its validity. Figure 18 shows the variation with temperature, in the first 50 °C above the triple point, of the zero pressure specific heat C_p (calculated from the unified equation) and estimates of the temperature derivative of the
FIG. 11. Liquid saturation enthalpy: 0–100 °C.

FIG. 12. Liquid saturation enthalpy: 100–350 °C.

FIG. 13. Liquid saturation enthalpy: 100–350 °C.

FIG. 14. Liquid saturation enthalpy: 350–375 °C.

FIG. 15. Vapor saturation enthalpy: 0–100 °C.

FIG. 16. Vapor saturation enthalpy: 100–350 °C.
saturated vapor enthalpy \(h_s \). (The values of \(\Delta h_s / \Delta T \) were computed for 10° temperature increments). As shown, the unified equation and that of Haar, Gallagher and Kell provide values of \(\Delta h_s / \Delta T \) which asymptotically approach the low temperature values of \(C_p_0 \) (as they should since at low temperature the saturation vapor enthalpy becomes a function of temperature only). This is not true of the \(\Delta h_s / \Delta T \) values calculated from the Saul and Wagner functions. It appears that, at least for the first 20–25° above the triple point, these functions need adjustment.

The saturation enthalpy values were determined by Osborne, Stimson and Ginnings from their experimental observations of the temperature \(T \), saturation pressure \(P_{sat} \), and 3 quantities \(\alpha, \beta, \gamma \) for which the following conditions apply

\[
\gamma = \frac{T}{\rho_s} \frac{dP_{sat}}{dT} = h_s - \alpha \\
\beta = \frac{T}{\rho_f} \frac{dP_{sat}}{dT} = h_f - \alpha,
\]

so that the saturation vapor and liquid enthalpies are

\[
h_s = \alpha + \frac{T}{\rho_s} \frac{dP_{sat}}{dT}
\]

and

\[
h_f = \alpha + \frac{T}{\rho_f} \frac{dP_{sat}}{dT}.
\]

With the benefit of more recent data, Saul and Wagner were able to formulate an equation for \(P_{sat}(T) \) which is more accurate than that of Osborne and at the same time to improve upon the estimates of \(\rho_f \) (see e.g., Fig. 6). Thus the values of \(\gamma \) and \(\beta \) are considered to be better established today than as the result of Osborne's work. However, the Osborne measurements of \(\alpha \) (i.e., the ratio \(\Delta \alpha / \Delta T \) over variable temperature increments \(\Delta T \)) have not been superseded. Saul and Wagner have fitted a single function \(\alpha(T) \), continuous between the triple and critical points, which represents these measurements within their experimental scatter. For

Fig. 17. Vapor saturation enthalpy: 350–375 °C.

Fig. 18. Saturation vapor enthalpy–difference–temperature–difference ratio: 0–150 °C.

Fig. 19. Saturation function \(\alpha \) 0–100 °C.
represents the Osborne data within the experimental data. Figures 21–23 show the direct comparison with the corresponding values obtained from the unified equation, the Wagner and Saul formulation and the equation of Haar, Gallagher and Kell. In summary it appears that the unified equation represents all experimental determinations of the saturation properties of H$_2$O within their experimental uncertainty.

5.2. Densities

Figure 24 shows a comparison of the maximum density line obtained from the unified equation in relation to that obtained by Aleksandrov, Okhotin, and Orshova (1981). These authors determined the maximum density line by using an equation representing speed of sound data between 265 and 573 K and at pressures up to 100 MPa. The equation was used in an iterative numerical integration, along a series.
of isotherms starting from atmospheric pressure, to obtain densities from speed of sound.

Figures 25–28 show that over the temperature range 0–100 °C and in the pressure range up to 100 MPa, the densities obtained from the unified equation are within 20 or 30 ppm of the values measured by Kell and Whalley and quite closely confirmed by the determinations of Aleksandrov, Okhotin, and Ershova, using their speed of sound equation.

Figure 29 shows close agreement between 2 sets of Kell data which are within, say, 30 ppm of the values obtained from the unified equation. These data, which were measured to highest precision in the 0–150 °C range, are in disagree-
ment at the 150 °C isotherm with the 1985 150–500 °C measurements which might have been expected to be generally less precise than the lower temperature data. Figure 29 illustrates the need to select the best data for the correlation data base, rather than using whatever is available; the existence of data on other properties not used in the fit, e.g., speed of sound and specific heat, in the same region offers a warning if the wrong choice has been made.

Covering the range 200–300 °C and up to 100 MPa, Figs. 30–32 show close agreement of the unified equation with the Kell, McLaurin and Whalley 1978 data though not with the 1985 results.

The density difference between the unified equation and the Aleksandrov data shown in Figs. 33–36 needs to be viewed in relation to the differences between the Aleksandrov data and to what are believed to be the more accurate Kell data, as shown in Fig. 34.

Close to the critical temperature, the differences between measured liquid densities and values calculated from the unified equation are shown in Figs. 37–41. Very near the critical pressure (22.046 MPa) where (\(\partial P/\partial \rho\))
FIG. 34. Liquid density: 350 °C.

FIG. 35. Liquid density: 360 °C.

FIG. 36. Liquid density: 370 °C.

FIG. 37. Liquid density: 373.5 °C.

FIG. 38. Liquid density: 374 °C.

FIG. 39. Liquid density: 375 °C.
A large density uncertainty necessarily results from any small inaccuracy in establishing the experimental pressure. The results of this are readily apparent in Figs. 40 and 41 which show the differences on a relatively large scale. Plotting density difference against pressure at the critical pressure compresses the width of the critical region so that the revised and extended equation is not shown in Figs. 37-48. A different view of the critical region (pressure differences as a function of density) will be discussed in Sec. 5.3, along with a comparison with the scaling equation.

Figures 42-46 show the differences between experimental values of the density at supercritical temperatures and values obtained from the unified equation. In all cases the degree of agreement appears to be within the experimental uncertainty.

Figures 47-61 compare experimental data on vapor density with values calculated from the unified equation. At the lowest temperatures (150 and 175 °C), and to some ex-

Fig. 40. Liquid density: 374–375 °C.

Fig. 42. Density: 400 °C.

Fig. 41. Critical region density: 378–380 °C.

Fig. 43. Density: 450 °C.

Fig. 44. Density: 500 °C.

FIG. 45. Density: 700 °C.

FIG. 46. Density: 850 °C.

FIG. 47. Vapor density: 150 °C.

FIG. 48. Vapor density: 175 °C.

FIG. 49. Vapor density: 200 °C.

FIG. 50. Vapor density: 225 °C.
EQUATION OF STATE FOR H$_2$O

Fig. 51. Vapor density: 250 °C.

Fig. 52. Vapor density: 275 °C.

Fig. 53. Vapor density: 300 °C.

Fig. 54. Vapor density: 325 °C.

Fig. 55. Vapor density: 340 °C.

Fig. 56. Vapor density: 350 °C.

tent at higher temperatures, there are substantial discrepancies between data and equation values near the saturation line. The reason for this discrepancy at low temperature could be due to absorption or capillarity effects on the screw thread of the liquid injector so that, at a given pressure and temperature, the "observed" density tends to be higher than the density in the bulk of the vapor.

At the saturation line, even with the aid of the Osborne determinations, the uncertainty in the density of the vapor ranges between about 0.5 and 0.1% [see Wagner and Sengers (1986)]. With this in mind, and allowing for the experimental difficulty of deducing density from PVT measurements near the saturation line at low temperature, it may be said that the available data are well represented by the unified equation.
At 350 °C there are considerable discrepancies between the four experimental data sets displayed in Fig. 56. The unified equation is closely in accord with the mean of these data. Near the critical temperature also there are substantial experimental differences (see Figs. 60 and 61).

For the liquid states there are, in addition to the highly accurate measurements of Kell et al., and Aleksandrov et al. which extend to about 100 MPa and have been displayed in Figs. 26 to 44, the high pressure data of Hilbert (1979), Grindley and Lind (1971), Maier and Frank (1966), Koster and Frank (1969) and Zubarev, Prousakov and Barkovski (1977). These generally are of lower accuracy than the Kell and Aleksandrov data sets and their degree of consistency with the latter data sets is shown in Figs. 62-66. In the pressure range up to 100 MPa, the Grindley and Lind densities appear to be too high by at least 100 ppm in the temperature ranges 50–150 °C. The Hilbert data, though not...
overlapping, appear inconsistent with the Kell data in Fig. 65 at 200 °C, and only less so at 400 °C because of the factor of 10 change in the vertical scale. The Zubarov data exhibit considerable scatter. These comparisons in the regions of data overlap are helpful to keep in mind in viewing comparisons of the unified equation with the high pressure data shown in Figs. 67–71. In the high pressure region, principal reliance was placed upon the Hilbert (1979) data in formulating the unified equation.

Comparisons of experimental and calculated densities of water at one atmosphere pressure are shown in Figs. 72–74. Figure 72 concerns subcooled water to –30 °C and indicates very close agreement with the extrapolation of Kell (1975). This degree of agreement, within 10 ppm, is also shown in Fig. 73, in the range 0–100 °C and in Fig. 74 (100–250 °C).

Fig. 66. Density at high pressures: 400 °C.

Fig. 67. Density at high pressures: 50–150 °C.

Fig. 68. Density at high pressures: 200–600 °C.

Fig. 69. Density at high pressures: 600 °C.

Fig. 70. Density at high pressures: 600 °C.

Fig. 71. Density at high pressures: 800 °C.

Figures 75–78 contain the results of comparison of density data for the metastable states, with values calculated from the unified equation. The data of Chukanov and Skripov (1971) and Estefeev, Chukanov and Skripov (1977) for both super- and undersaturated vapor states in the range of temperature 178–300 °C are compared with the Kell vapor data discussed earlier by means of a common comparison with density values produced by the unified equation, except for pressures above 10 000 MPa at 175 °C, where the equation differs considerably from the Bridgeman data.

5.3. Pressures

As mentioned earlier, it is appropriate in the vicinity of the critical point where the pressure-density isotherms tend to have very small slope \((\partial P/\partial \rho)_T\), to compare experimental and calculated pressures at a given density. Figures 79

and 80 refer to near-critical isotherms. Though Fig. 79 suggests a systematic difference between the experimental data and the unified equation, Fig. 80 shows considerable experimental uncertainty. At 380 °C the experimental data of Rivkin (1966) and Aleksandrov (1974), as well as the revised and extended scaling equation of Levelt Sengers et al., (1983) are compared with the unified equation in Fig. 81. At densities less than 0.25 or greater than 0.4 kg/dm³ the scaling equation is beginning to be out of range. At 400 °C (Fig. 82) the density range of validity of the scaling equation is considerably narrowed.

The high pressure data of Bridgeman (1947) have been compared with values calculated from the unified equation. Figures 83-88, for the temperature range 25–175 °C and pressures as high as 3500 MPa, show quite close agreement between the Bridgeman data, which were not used in the fit,

and the unified equation, except for pressures above 10,000 MPa at 175 °C, where the equation differs considerably from the Bridgeman data.

The determinations of Walsh and Rice (1957), shown for ultra high pressures in Figs. 87–89, are not PVT measurements since the temperature was not measured. The values were derived from shock tube measurements which provided sets of pressure, volume and enthalpy values with the use of the Hugoniot relations and the assumption of a plane shock wave. Walsh and Rice inferred the temperature by use of the identity

\[T = \frac{PV}{R} \]
FIG. 86. Ultra high pressure 175 °C (448-15 K).

FIG. 87. Ultra high pressure 500 °C (773.15 K).

FIG. 88. Ultra high pressure 1000 °C (1273.15 K).

FIG. 89. Ultra high pressure: Hugoniot curve.
$$dT = \frac{1}{C_p} \left[dh - \left(v - \left(\frac{\partial v}{\partial T} \right)_P \right) dP \right]$$

to calculate the temperature variation along a process line connecting the series of states for which the values of P, v, and h are known. To do this it is necessary to use estimated values of specific heat C_p and the derivative $(\partial v/\partial T)_P$.

Rice and Walsh performed calculations up to 45,000 MPa and 3147°C by assuming $(\partial v/\partial T)_P$ independent of temperature and having the same variation with pressure as on the Bridgeman 175°C isotherm extrapolated as shown in Fig. 90. Thus the determinations of temperature for the Walsh and Rice results shown in Figs. 87–89 are quite uncertain. For still higher pressures (50–80 GPa) Lyzenga, Ahrens, Nellis, and Mitchell (1982) reported direct temperature measurements which suggest that the Walsh and Rice temperatures were a few hundred degrees too high. The Lyzenga et al., temperature measurements (3280–5270 K) lie well outside the temperature range of the unified equation.

5.4. Speed of Sound

Figures 91–95 show the results of comparison of abundant speed of sound data available at atmospheric pressure with values obtained from the unified equation. Figure 91 indicates that at lowest temperature, the discrepancy with the data of Petitet, Tufeu, and LeNindre (1983) for 15 degrees of subcooling exceeds the claimed experimental uncertainty of 0.5%. Generally however, the Petitet et al. experimental data, which were not used in the formulation procedure, are in close accord with the unified equation. Figures 95 and 97 also indicate close agreement with the speed of sound data of Aleksandrov and Kochetov (1979) and Aleksandrov and Larkin (1976).

![Fig. 90. Walsh and Rice (1958) estimate of $(\partial v/\partial T)_P$. Broken and full lines indicate their interpolations and extrapolations, respectively.](image)

![Fig. 91. Speed of sound, supercooled liquid states: 0.1 MPa.](image)

![Fig. 92. Speed of sound, liquid: 0.1 MPa.](image)

![Fig. 93. Speed of sound, vapor: 0.1 MPa superheat.](image)
FIG. 94. Speed of sound, supercooled liquid states: 0.1 MPa.

FIG. 96. Speed of sound, supercooled liquid states: -20 to +20 °C.

FIG. 95. Speed of sound, liquid: 0.1–100 MPa.

FIG. 97. Speed of sound, liquid: 100–400 °C.

Figure 96 compares the speed of sound data of Petitet et al., at -20.1, -10.1, and $+19.4$ °C over a wide range of pressure. Figure 97 shows that the values calculated from the unified equation are in good agreement with the Alexandrov and Larkin (1976) and Aleksandrov and Kochetov (1979) (1980), data on the speed of sound for the pressure range 0–100 MPa and temperature range 100–400°C. Figure 98 extends the pressure range of comparison to 980 MPa (at low temperature) and 600 or 650 °C for pressures below 300 MPa. Figure 99 compares the critical region speed of sound data of Erokhin, and Kalynov (1980) with values calculated from the unified equation.

Data on speeds of sound in vapor states between 150, °C and 330 °C and from low pressures up to saturation were measured by Novikov and Avdonin (1960) and are compared with values obtained from the unified equation in Fig. 100. Despite close agreement for vapor states, the equation characteristically produces saturation values 0.5%–1% higher than those inferred by Novikov and Avdonin for vapor saturation. Figure 101 indicates however, that crossing the saturation line at 150, 240, and 300 °C, the speed of sound data of Estefeev, Skripov, and Chukanov (1979) are in very close agreement with the values obtained from the unified equation.

Comparisons of both isopiestic specific heat and speed of sound data with the equation are particularly important.
since none of these data were used in the formulation process.

5.5. Isopiestic Specific Heats

Figures 102 and 103 show the one-atmospheric specific heat data of Angell, Oguni and Sichina (1982) for subcooled emulsions and illustrate the rapid increases in C_p as the temperature declines below 20 or 30°C. The unified equation readily represents this behavior.

With an expanded vertical scale, Fig. 104 compares the C_p data of Sirota, Grishkov and Tomishko (1970) with values produced by the unified equation for temperatures between −3 °C and 45 °C and pressures up to 98 MPa. The degree of agreement, within 0.5%, is within what is believed to be the uncertainty of the data. Figures 105 and 106 show a similar degree of agreement between the data of Phillipi (1987) and the equation for pressures up to 30 MPa and for temperatures up to about 250 °C.

Over a range of pressure from 0.1 to 200 MPa and at low temperatures, Fig. 106 compares the determinations of Alexandrov, Okhotin, and Ershova (1981) with the unified equation. Also shown are the estimates of Terminassian, Pruzan, and Soulard (1981) who used measurements of heat liberation during isothermal compression to determine the isothermal compressibility and the isopiestic specific heat.

Typical comparisons with equation values of the exten-

EQUATION OF STATE FOR H₂O

Fig. 104. Isopiestic specific heat C_p, liquid: 30–100 MPa.

Fig. 105. Liquid Isopiestic specific heat C_p, liquid: 20–50 MPa.

Fig. 106. Isopiestic specific heat C_p, supercooled liquid: 0.1–400 MPa.

The specific heat data of Sirota and Timrot (1956), Sirota and Maltsev (1959), (1960), (1962), and (1966), Sirota, Maltsev and Grishov (1963), and Sirota and Grishkov (1966) are shown in Figs. 107–110. Figures 107 and 108 show liquid and vapor isobars, respectively, approaching the saturation boundary with maximum pressures approaching the critical pressure so that the values of C_p rise steeply to large values. The unified equation very closely represents the experimental data.

Figures 109 and 110 show supercritical isobars of specific heat C_p over a wide range of density with several data sets. Close agreement may be observed though, as the critical point is closely approached with C_p values as high as 500 kJ/kg K, the data of Sirota and Maltsev (1962) appear to differ appreciably from the unified equation.

However, in this region the unified equation agrees very closely with the scaling equation of Levelt-Sengers et al. (1983) who closely examined the compatibility of C_p, FvT, and speed of sound data in the critical region. They concluded that differences of the magnitude shown in Fig. 110 would largely disappear if the experimental temperature had been about 0.05 degrees lower than indicated. In 1984, Sirota communicated to those authors his conclusion that the reported experimental temperatures had indeed been about 0.05 degrees too high.

Figure 111 shows the degree of agreement between the unified equation and the data of Phillipi (1987) in the critical region.

Fig. 107. Isopiestic specific heat C_p, vapor: 12–22 MPa.

Fig. 108. Isopiestic specific heat C_p, vapor: 2–20 MPa.

Fig. 109. Isopiestic specific heat C_p, 30–100 MPa.

Fig. 110. Isopiestic specific heat C_p, 22–27 MPa.

5.6. Isochoric Specific Heats

The variation of specific heat C_v with temperature along near-critical isochores is displayed by Figs. 112 and 113 using a log scale on temperature difference to reveal more clearly the behavior very close to the critical temperature. Shown are the data of Baehr and Schomacker (1975) in relation to the unified equation and the revised and extended scaling equation.

Figure 114 compares the isochoric specific heat data of Kerimov and Alieva (1975) with the unified equation for 3 vapor isochores over the temperature range from 250 to 500°C.

In Fig. 115 the estimates of C_v of Aleksandrov, Okhotin, and Ershova (1981) are compared with values obtained from the unified equation over a range of pressure up to 100 MPa.

5.7. Throttling and Viral Coefficients

For the low pressure vapor, particularly at low temperature the steady flow isenthalpic and isothermal throttling data, $(dT/dP)_v$ and $(d\delta /dP)_v$, provide valuable information which does not require density measurement and directly indicates the difference between ideal and real gas behavior.
Figures 116 and 117 show the behavior of the Joule–Thomson coefficient \((\partial T/\partial P)_n\) over a range of temperatures from 128 to 800 °C and from low pressures up to saturation values. The data of Ertle, Grigull, and Straub (1980) are in close agreement with the values obtained from the unified equation. At lower temperatures, down to 70 °C, Fig. 118 shows the data of Wormald (1964) on the variation of the isothermal throttling coefficient \((\partial h/\partial P)_T\) with pressure and temperature, in relation to the values obtained from the unified equation. Figure 119 shows a comparison between the \((\partial h/\partial P)_T\) data of Ertle et al., and values from the unified equation at 350 and 400 °C.

Figure 120 shows close agreement between the measurements of the isentropic derivative \((\partial T/\partial P)_s\), of Rogener and Soll (1980) and the equation values for liquid states varying in temperature from 2.75 to 80 °C and in pressure up to 100 MPa. Figure 121 compares the data of Stasenko, Philippov, and Blagenvyov (1984) on the same coefficient for temperatures between 295 and 495 °C and for pressures up to 20 MPa.
5.8. Virial Coefficients

Figures 122–124 show a comparison of the second virial coefficient obtained from the unified equation of state with those obtained from the LeFevre, Nightingale and Rose (1975) formulation, and with the data of Kell, McLaurin, and Whalley (1989), which are less accurate at low temperatures. Figure 125 draws a corresponding comparison of experimental and calculated results for the third virial coefficients.

6. The Critical Region Transition

Figure 126 shows contours of the blending function $F(\Delta p, \Delta T)$ defined in Eq. (3). The contour $F = 0.5$ may be taken as the mid-point of the transition between the analytic far field and the revised and extended scaling equations. Because of the structure of the F function, $F = 0$ means exact conformity with the scaling function, and F approaches 0 decisively within a short distance from the critical point e.g., and on the critical isochore at 50°C above the critical temperature the value of F is about 0.023; at 75°C above it is less than 10^{-8}, at 80°C less than 10^{-9}.

To show the smoothness of the transition from the far field to the scaling functions, Figs. 127 and 128 show contours of isochoric specific heat in the critical region. Figure 128 shows specific heat contours very close to the critical

Fig. 124. Second virial coefficient: 200–300 °C.

Fig. 125. Third virial coefficient: 200–350 °C.

Fig. 126. Blending function F, critical region.

Fig. 127. Isochoric specific heat C_v, critical region.

point. At the critical temperature (647.067 K) C_v tends to infinity.

Figures 129 and 130 show corresponding contours in the critical region of the inverse of the isothermal compressibility while Figs. 131 and 132 display speed of sound contours. In all cases these presentations of second derivative quantities show a smooth transition from analytical far-field to singular critical region behavior.
7. Conclusions

(i) A unified equation of state has been formulated which fully incorporates the singular revised and extended scaling solution of Levelt-Sengers, Kamgar-Parsi, Balfour, and Sengers (valid in a limited region around the critical point and shown to provide a highly accurate representation of all thermodynamic data in that region) with a fully analytic far-field function.

(ii) The transition between far-field and near critical functions is smooth, as shown by the behavior of second-order derivatives of the Helmholtz function in the transition region.

(iii) The unified equation is continuous over all single-phase stable equilibrium states and has been shown to extend to metastable equilibrium (supercooled and supersaturated) states as well.

(iv) Within the data range available (up to about 1000 °C and 1 GPa), the unified equation appears to represent all experimental data on densities or pressure, speeds of sound, specific heats, and throttling and virial coefficients within the experimental uncertainties.

(v) From the range of states within which the unified equation was formulated and tested with abundant experimental data, the unified equation permits regular extrapolation of property estimations to a maximum pressure of about 25 GPa and a maximum temperature of 2000 °C; it does not provide a description of properties of dissociated mixtures of H₂O.

8. Acknowledgments

The author is grateful to the National Science and Engineering Research Council for financial support, and to R.D.C. MacMillan for the graphical comparisons. He would also like to express his appreciation for critical help and encouragement extending over a long period to the late George Kell, and to Lester Haar, Jan and Anneke Sengers, Wolfgang Wagner, Haruki Sato and the members of Working Group A of the International Association for the Properties of Steam.

9. References

Appendix A: The Ideal Gas Function

The ideal gas function is

\[\bar{v}_0 = \sum_i C_i (\bar{T} - \bar{T}_1)^{-i} + (C_i \bar{T} + C_{ii}) \ln(1 - \bar{T}), \]

in which the coefficients \(C_i \) are:

\[C_i = \begin{cases} 7.0750127512 & C_{00} = 0.003033815 \\ -8.3424056993 & C_{01} = 0.000390109 \\ -3.64061380 & C_{02} = 0.113592870 \\ -0.036897043 & C_{03} = 2.413178300 \end{cases} \]

With the above values of \(C_i \), \(\bar{v}_0 \) has been shown to provide \(C_{ii} \), values within 0.04% of those of Woolley (1983) for 250 < \(T < 1500 \) K.

The values of \(C_i \) and \(C_{ii} \) have been adjusted to guarantee zero values of the energy and entropy at the triple point liquid state.

Appendix B: Coefficients \(A_{ijk} \)

<table>
<thead>
<tr>
<th>(I)</th>
<th>(J)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>0.338 424 912 5D + 00</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-0.715 339 340 6D - 03</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.549 368 081 4D - 03</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.493 321 850 1D - 01</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-0.232 849 121 2D - 01</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0.240 209 518 1D - 02</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.752 942 293 6D + 00</td>
</tr>
</tbody>
</table>

Appendix C: Dimensionless Variables and Derivatives

The principal variables are

Helmholtz Free Energy $\psi = \psi_{RT}$.

Density $\rho = \frac{\rho_{0}}{\rho_{RT}}$.

Temperature $T = -\frac{T_{RT}}{T_{RT}} \Delta T = 1 + \frac{T_{RT}}{T_{RT}}$.

Pressure $P = \frac{P_{RT}}{\rho_{RT} RT}$.

Entropy $S = \frac{S_{RT}}{RT} - \frac{\partial \psi}{\partial T}$.

Internal Energy $U_{RT} = -\frac{\partial \psi}{\partial T}$.

Enthalpy $h_{RT} = \frac{h}{RT} = \frac{h}{RT} - \frac{\partial \psi}{\partial T}$.

The principal derivative quantities are

$\bar{P} = \frac{\partial P}{\partial \bar{P}} + F(\bar{P}_{n} - \bar{P}_{f}) + \bar{\rho}^{2} \frac{\partial F}{\partial \bar{P}} (\bar{\psi}_{n} - \bar{\psi}_{f})$,

$\left(\frac{\partial \bar{P}}{\partial \bar{P}} \right)_{T} = \frac{\partial \bar{P}_{n}}{\partial \bar{P}_{n}} + F \left(\frac{\partial \bar{P}_{n}}{\partial \bar{P}_{n}} \right) + 2 \frac{\partial \bar{P}_{n}}{\partial \bar{P}} (\bar{P}_{n} - \bar{P}_{f}) + \frac{\partial \bar{\rho}}{\partial \bar{P}} (\bar{\psi}_{n} - \bar{\psi}_{f})$,

$\frac{\partial \bar{P}}{\partial \bar{T}} = \frac{\partial \bar{P}_{n}}{\partial \bar{T}} + F \left(\frac{\partial \bar{P}_{n}}{\partial \bar{T}} \right) + \frac{\partial \bar{\rho}}{\partial \bar{T}} (\bar{\psi}_{n} - \bar{\psi}_{f}) + \frac{\partial \bar{\rho}}{\partial \bar{T}} (\bar{\psi}_{n} - \bar{\psi}_{f})$.

$\bar{u} = \bar{u}_{f} + F(\bar{u}_{n} - \bar{u}_{f}) - \frac{\partial F}{\partial \bar{P}} (\bar{\psi}_{n} - \bar{\psi}_{f})$,

$\bar{c}_{v} = \bar{c}_{v} + F(\bar{c}_{n} - \bar{c}_{v}) + 2 \frac{\partial^{2} F}{\partial \bar{P}^{2}} (\bar{u}_{n} - \bar{u}_{f}) - \frac{\partial^{2} F}{\partial \bar{P}^{2}} (\bar{u}_{n} - \bar{u}_{f})$.

Also

$\bar{c}_{p} = \frac{\bar{c}_{p}}{\bar{T}} = \bar{c}_{v} + \bar{P} \left(\frac{\partial \bar{P}}{\partial \bar{T}} \right)_{\bar{P}} + \bar{P}^{2} \left(\frac{\partial \bar{P}}{\partial \bar{P}} \right)_{\bar{P}}$.

and the dimensionless speed of sound is

$\bar{a} = a/\sqrt{RT_{c}} = \sqrt{\bar{c}_{p} \left(\frac{\partial \bar{P}}{\partial \bar{T}} \right)_{\bar{P}}}$.

Appendix D: The Derivatives of $\bar{\psi}_{f}$

Using the notation

$\left(\frac{\partial \bar{\psi}_{f}}{\partial \bar{P}} \right)_{T} = \chi_{\bar{P}}\left(\frac{\partial \bar{\psi}_{f}}{\partial \bar{P}} \right)_{T} = \chi_{\bar{P}}$,

$\left(\frac{\partial \bar{\psi}_{f}}{\partial \bar{T}} \right)_{\bar{P}} = \chi_{\bar{T}}$, etc.,

and given

$\bar{\psi}_{f} = \bar{\psi}_{n} + \ln \bar{\rho}_{f} + W_{f}(\bar{p}, \bar{T}) + E(\bar{p}) W_{f}(\bar{p}, \bar{T})$,

$\bar{G}(\bar{p}, \bar{T}) W_{f}(\bar{p}, \bar{T}) + H(\bar{T}) W_{f}(\bar{p}, \bar{T})$,

we have

$\bar{P}_{f} - \bar{P} \left(\frac{\partial \bar{\psi}_{f}}{\partial \bar{P}} \right)_{T} = \bar{P} + \bar{P}^{2} \left[\bar{W}_{0f} \bar{E} \bar{W}_{0f} + E \bar{W}_{0f} + E \bar{W}_{0f} \right] + G \bar{W}_{f} + G \bar{W}_{f} + H \bar{W}_{f}$.

The above W_k functions ($k = 1$ to 4) and their derivatives are

$$W_1 = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij}(\phi) R_{\phi}(i) T_{\phi}(j),$$

$$W_{ip} = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij}(\phi) R_{\phi}(i) T_{\phi}(j),$$

$$W_{ip} = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij}(\phi) R_{\phi}(i) T_{\phi}(j),$$

$$W_{1TT} = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij}(\phi) R_{\phi}(i) T_{\phi}(j),$$

$$W_{ip} = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij}(\phi) R_{\phi}(i) T_{\phi}(j),$$

The function $\psi(\bar{T})$ given in Appendix A is given by

$$\psi(\bar{T}) = \sum_{i=1}^{N} A_{ij}(\bar{T}) + (C_{ij} + C_{i}\ln(-\bar{T})),$$

and its derivatives are

$$\psi_{ip} = -\sum_{i=1}^{N} A_{ij}(\bar{T}) - (C_{ij} + C_{i}\ln(-\bar{T})).$$

The functions E, G, and H and their derivatives are given in Appendix E.

Appendix E: The Functions E, F, G, H and Their Derivatives

(i) The Function $E(\bar{\rho})$

$E = e^{-\bar{\rho}}$

$E_{ip} = -2\bar{\rho}E$

(ii) The Function $F(\bar{\rho}, \bar{T})$

With

$F = 1 - \exp(-1/\bar{T})$
and

\[Z = \exp \left(\frac{\zeta}{\beta} \right) - 1, \]

in which

\[\zeta = \sqrt{\left(\frac{\Delta T}{\Delta T_0} \right)^2 + \left(\frac{\Delta P}{\Delta P_0} \right)^2} \]

we have (defining \(F = \frac{\partial P}{\partial \phi}; \phi = \frac{\partial F}{\partial \phi} \)),

\[F = -\frac{4}{8} \exp \left(-1/Z\left(1/Z^2 + 1/Z^2\right) \right) \ln(1 + Z)]^{1/4}, \]

UNIFIED EQUATION OF STATE FOR H2O

\[F_{\text{un}} = -\frac{12}{2} \exp \left(-1/Z\left(1/Z^2 + 1/Z^2\right) \right) \left(\ln(1 + Z) \right)^{1/2} \]

\[\times (1 + \left(1/Z^2 - 1/Z + 1\right) \ln(1 + Z)), \]

and (with \(\zeta = \partial \zeta / \partial \phi; \zeta_\phi = \partial^2 \zeta / \partial \phi^2 \) etc.)

\[\zeta = \Delta P / (\Delta P_0) \]

\[\zeta_T = \Delta T / (\Delta T_0) \]

\[\zeta_{\phi} = 11/12 - \left(\Delta \phi / \Delta \phi_0 \right)^2 \]

\[\zeta_{\phi T} = \left(\Delta \phi / \Delta \phi_0 \right)^2 \]

\[s = -\Delta P / (\xi^2 \phi \Delta \phi_0) \]

which may be used in evaluating

\[F_{\phi} = F_{\phi}, \]

\[F_{\phi T} = F_{\phi T}, \]

\[F_{\phi \phi} = F_{\phi \phi}, \]

\[F_{\alpha} = F_{\alpha}, \]

\[F_{\alpha T} = F_{\alpha T}, \]

\[F_{\alpha \phi} = F_{\alpha \phi}, \]

\[F_{\alpha \phi T} = F_{\alpha \phi T}, \]

The Function \(G(j, n) \)

\[G = \exp \left[-\frac{\alpha}{\beta} - \frac{\gamma}{\beta} - \frac{\delta}{\beta} \right] \]

\[G_j = G \left(-\beta - 2\Delta \phi \right) \]

\[G_{\phi} = G \left(-\alpha - 2\Delta T \right) \]

\[G_{\phi T} = G \left(-\alpha - 2\beta - 2\Delta T \right) \]

\[G_{\phi \phi} = G \left(-\beta - 2\Delta \phi \right) \]

The Function \(H(T) \)

\[H = \exp \left[-\gamma \left(T + 3 \right) \right] \]

\[H_T = -\beta T \]

\[H_{\phi T} = \beta T. \]