Benzene: A Further Liquid Thermal Conductivity Standard

Cite as: Journal of Physical and Chemical Reference Data 19, 113 (1990); https://doi.org/10.1063/1.555869
Submitted: 24 May 1989. Published Online: 15 October 2009

M. J. Assael, M. L. V. Ramires, C. A. Nieto de Castro, and W. A. Wakeham

ARTICLES YOU MAY BE INTERESTED IN

Reference Data for the Density and Viscosity of Liquid Copper and Liquid Tin
Journal of Physical and Chemical Reference Data 39, 033105 (2010); https://doi.org/10.1063/1.3467496

Reference Data for the Density and Viscosity of Liquid Aluminum and Liquid Iron

Reference Correlation of the Thermal Conductivity of Benzene from the Triple Point to 725 K and up to 500 MPa
Journal of Physical and Chemical Reference Data 41, 043102 (2012); https://doi.org/10.1063/1.4755781
Benzene: A Further Liquid Thermal Conductivity Standard

M. J. Assael

Department of Chemical Engineering, Aristotle University, Thessaloniki, GR54006, Greece

M. L. V. Ramires and C. A. Nieto de Castro

Departamento de Quimica, Faculdade de Ciências da Universidade de Lisboa, R. Ernesto de Vasconcelos, Bloco C1, 1700 Lisboa, Portugal

W. A. Wakeham

Department of Chemical Engineering, Imperial College, London SW7 2BY, United Kingdom

Received May 24, 1989

The available experimental liquid-phase thermal conductivity data for benzene have been examined with the intention of establishing a further liquid thermal conductivity standard along the saturation line. The quality of the available data is such that new standard reference values can be proposed with confidence limits better than ±1% for most of the normal liquid range.

Key words: benzene; reference material; standard reference data; thermal conductivity; transient hot wire.

Contents

1. Introduction ... 113
2. Experimental Techniques 114
3. Experimental Data .. 114
 3.1. Primary Data 114
4. Correlation Procedures and Results 114
 4.1. Equation Form 114
 4.2. Correlation .. 114
 4.3. Tabulations .. 115
 4.4. Comparison of Correlations with Secondary Data.. 115

1. Introduction

In a recent paper, we have proposed standard reference values for the thermal conductivity of liquid toluene, liquid water, and liquid n-heptane for most of the normal liquid range. The literature data, available up to 1985, was assessed by a careful analysis of the experimental methods and equipment used and was subsequently divided into primary and secondary data. The primary data were used to develop primary correlations of the thermal conductivity of toluene and water along the saturation line as a function of temperature and a secondary data correlation was prepared for n-heptane.

This effort was developed under the auspices of Subcommittee on Transport Properties of the Internation Union of Pure Applied Chemistry and later published part of a complete set of recommendations on the different physical properties of fluids by IUPAC.

Benzene was a chemical initially included in the set. However, no results were presented at that time because literature data available were too discordant to permit a definitive statement. Since then, several new sets of data on the thermal conductivity of liquid benzene became available and it is now possible to propose standard reference data for the thermal conductivity of benzene.

We report in this paper the results of such an analysis. The format of our previous report is maintained and reader is referred to this paper for a complete discussion of experimental techniques, the criteria for standard reference materials, and experimental data selection. We will only describe here briefly the procedure adopted for benzene.
2. Experimental Techniques

The experimental methods used to measure the thermal conductivity of fluids may be divided into two groups: adiabatic and transient methods. For an overall discussion of the techniques and the accuracy attainable with them, the reader is referred to monographs on the experimental methods for the measurement of transport properties of fluids. Here, we only need to say that the most accurate method for the measurement of the thermal conductivity of solids is the transient hot-wire technique which, when properly used, can obtain data with an accuracy of 0.5%. This is due to the existence of a working equation for this method, together with a consistent set of corrections and to the fact that it can avoid other modes of heat transport, namely convection and radiation.

When the full conditions of the method are met, the trunctums based on it can generate primary data with an accuracy of 0.5% or better. In this study the primary data subset benzene was chosen to have a maximum uncertainty of 1.5% at ambient temperatures.

3. Experimental Data

The recommendations previously made by Nieto de Castro et al. for the subdivision of experimental data into primary and secondary data were followed. The primary data were identified by the following criteria:

(i) Measurements must have been made with a primary experimental apparatus, i.e., a complete working equation must be available.

(ii) The form of the working equation should be such that the sensitivity of thermal conductivity to the principal variables does not magnify the random errors of measurement.

(iii) All principal variables should be measurable to a high degree of precision.

(iv) The published work should include some description of purification methods and a guarantee of purity.

(v) The data reported must be unsmoothed data. While graphs and fitted equations are useful summaries for the reader, they are not sufficient for standardization purposes.

(vi) The lack of accepted values of the thermal conductivity of standard reference materials implies that only absolute and not relative measurement results can be considered.

(vii) Explicit quantitative estimates of the uncertainty reported values should be given, taking into account the precision of experimental measurements and possible systematic errors.

(viii) Owing to the desire to produce high-accuracy reference values, limits have been imposed on the accuracy, as determined by the present authors, of the primary data sets. If primary standard reference materials the accuracy of primary data is required to be better than ±1.5%.

3.1. Primary Data

A summary of the primary data for benzene, together with their estimated uncertainty is given in Table 1. The statistical treatment of the data is the same adopted in Ref. 1.

Table 1. Primary experimental data sources for thermal conductivity.

<table>
<thead>
<tr>
<th>Literature source</th>
<th>Technique</th>
<th>Temp. range</th>
<th>No. of data pts.</th>
<th>Assigned accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. L. V. Ramires et al.</td>
<td>THW*</td>
<td>298-350</td>
<td>25</td>
<td>±1.0</td>
</tr>
<tr>
<td>S. F. Y. Li et al.</td>
<td>THW</td>
<td>310-345</td>
<td>3</td>
<td>±1.0</td>
</tr>
<tr>
<td>E. Charitidou et al.</td>
<td>THW</td>
<td>298-336</td>
<td>11</td>
<td>±1.0</td>
</tr>
<tr>
<td>J. K. Horrocks et al.</td>
<td>THW</td>
<td>295-346</td>
<td>5</td>
<td>±1.5</td>
</tr>
</tbody>
</table>

*THW—transient hot wire technique.

The reasons for the assigned accuracies in Table 1 are as follows:

(i) Measurements presented by Ramires et al. and Charitidou et al. were obtained with the most recent versions of automatic computer controlled bridges, and using liquids well purified and degassed.

Although both works claim an accuracy of 0.5%, a systematic deviation of 0.7% was found between the two sets of data. Therefore, they were both assigned an accuracy of 1%

(ii) The data presented by Li et al. were obtained from extrapolation of high-density data along an isotherm to saturation density. Due to this fact the extrapolated data have been assigned with an accuracy of 1%.

(iii) The data reported by Horrocks et al., were obtained with an old version of the transient hot wire instrument, using a single wire with potential leads to monitor the temperature change in the hot wire. It is less precise than the more recent versions of the transient wire technique. Therefore, they were assigned the accuracy of 1.5%.

4. Correlations Procedures and Results

4.1. Equation Form

The temperature dependence of the thermal conductivity has been represented by a linear function

\[\lambda = b_0 + b_1 T \]

where \(\lambda \) is the thermal conductivity and \(T \) the absolute temperature.

The data have been fitted to this equation, using the method of least squares with weighting factors reflecting the accuracy of the data given in Table 1. The assumptions made in Ref. 1 to assign relative weights to the different data sets are adopted here.

4.2 Correlation

In order to establish recommended standard reference data we use a correlation to take account of differences between the various sets of primary data. This correlation relates the thermal conductivity as a function of temperature.

From this correlation we recommend for the thermal conductivity of benzene at 298.15 K and 0.1 MPa the value:

\[\lambda(298.15 \text{ K}) = 0.1411 \pm 0.0011 \text{ W m}^{-1} \text{K}^{-1}, \]

where the uncertainty is given at a 95% confidence level (2 standard deviations).
Using the convention of the IAPS formulation for the transport properties of water substance,5,9 we have expressed the correlation in terms of dimensionless variables \(\lambda^* \) and \(T^* \), defined as:

\[
T^* = T / 298.15
\]

and

\[
\lambda^*(T^*) = \lambda(T) / \lambda(298.15),
\]

where \(\lambda(298.15) \) is the adopted standard value for the thermal conductivity of benzene at 298.15 K and 0.1 MPa, given above.

The correlation obtained is given, in reduced form, in Eq. (4) covering the range 295 K < \(T \) < 350 K.

\[
\lambda^* = 1.69572 - 0.695716 \ T^*, \quad 295 \text{ K} < T < 350 \text{ K}. \quad (4)
\]

The maximum deviation of the primary experimental data from Eq. (4) is 1.4% with a standard deviation of 0.00061 W/(m K).

This correlation reproduces all primary data sets within their assigned uncertainty.

The deviations of the primary data from the correlation represented by Eq. (4) are plotted in Fig. 1.

4.3. Tabulations

Table 2 gives recommended values for thermal conductivity of benzene, along the saturation line.

The recommended values are given to four significant figures but it should be emphasized that the uncertainties in the tabulated data must be based in the analysis presented in Sec. 4.2 and we estimate the accuracy of these recommended values to be 1%.

Table 2. Recommended thermal conductivity for benzene.

<table>
<thead>
<tr>
<th>(T) (K)</th>
<th>(\lambda) (W/(mK))</th>
</tr>
</thead>
<tbody>
<tr>
<td>290.00</td>
<td>0.1438</td>
</tr>
<tr>
<td>300.00</td>
<td>0.1405</td>
</tr>
<tr>
<td>310.00</td>
<td>0.1372</td>
</tr>
<tr>
<td>320.00</td>
<td>0.1339</td>
</tr>
<tr>
<td>330.00</td>
<td>0.1306</td>
</tr>
<tr>
<td>340.00</td>
<td>0.1273</td>
</tr>
<tr>
<td>350.00</td>
<td>0.1240</td>
</tr>
</tbody>
</table>

4.4. Comparison of Correlation with the Secondary Data

As already stated in a previous publication,1 the correlation outlined in preceding section should, ideally, reduce all the secondary data, if the latter are assigned realistic experimental uncertainty. This, however, would be a very difficult and tedious task and would not serve any important purpose. We therefore content ourselves with a plot of deviation of these secondary data from the correlation. The deviation plot is shown in Fig. 2 and includes only the data for which the deviations are less than ±5%, although some of the data excluded by this condition depart from the representation by as much as 15%.

A compilation of literature data sources for which we were able to obtain copies is given in the Appendix.
ASSAEL ET AL.

4.5. Cautions for Use of the Tabulated Recommended Thermal Conductivities

As mentioned earlier, recommended standard values are for two purposes: (i) they act as the test of the accuracy of absolute instruments, and (ii) they are means of calibrating instruments for which the full working equation is available. It is for the latter use that caution must be taken, as the use of benzene alone for the calibration of such instruments may lead to erroneous results for other systems, because the radiation contributions to the measured thermal conductivity will be different. Thus it is stressed that any absolute instrument should be calibrated with at least two liquids with very different thermal conductivities and radiation properties. It is emphasized that the tabulated values calculated from Eq. (4) are radiation-free, i.e., true thermal conductivities.

5. Conclusions

Standard reference data for thermal conductivity are posed for the system benzene, over the normal liquid phase along the saturation line. These recommendations are based on the most accurate available literature data up to including 1988, and as such are considered to be of high-accuracy than any correlations presently available in the literature.

However, in view of recent improvements in both the theory and experimental techniques, further experimental work should allow even more accurate correlation to be defined for the system studied here. Thus it is envisaged that the recommendations for Standard Reference Data will periodically updated as new experimental data become available.

6. Acknowledgments

The work described in this paper has been carried out under the auspices of the Sub-Committee on Transport Properties of Commission I.2 of the International Union of Pure and Applied Chemistry. The authors are grateful to the members of the subcommittee for their valuable advice. The authors are also indebted to Prof. A. Nagashima for enlightening discussions and comments in earlier stages of this work. Partial financial support for the work was provided by NATO Grant Research No. 85/0311.

7. References

Appendix. Results of the Literature Survey of the Thermal Conductivity of Benzene

This is a summary of all the thermal conductivity data sources, for benzene, of which it was possible to obtain copies. The temperature and pressure range covered together with the estimation of the experimental accuracy of the experimentalists is given whenever possible and if any information is missing it is because it was not reported.

A.23. Riedel, L., Chem. Ing. Techn. 23(13), 321 (1954). Parallel-plate, concentric cylinder and concentric sphere apparatus. Deviation between the three different instruments <0.5%. Benzene: 293–322 K; 1.0%.

