Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide

Cite as: Journal of Physical and Chemical Reference Data 20, 713 (1991); https://doi.org/10.1063/1.555893

Submitted: 23 May 1990 . Published Online: 15 October 2009

K. D. Bartle, A. A. Clifford, S. A. Jafar, and G. F. Shilstone

A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa Journal of Physical and Chemical Reference Data **25**, 1509 (1996); https:// doi.org/10.1063/1.555991

The Solubility of Carbon Dioxide in Water at Low Pressure Journal of Physical and Chemical Reference Data **20**, 1201 (1991); https:// doi.org/10.1063/1.555900

Thermodynamics of High Polymer Solutions The Journal of Chemical Physics **10**, 51 (1942); https://doi.org/10.1063/1.1723621

Where in the world is AIP Publishing? Find out where we are exhibiting next

Journal of Physical and Chemical Reference Data **20**, 713 (1991); https://doi.org/10.1063/1.555893 © 1991 American Institute of Physics for the National Institute of Standards and Technology.

Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide

K.D. Bartle, A.A. Clifford, S.A. Jafar, and G.F. Shilstone

School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom

Received May 23, 1990; revised manuscript received December 19, 1990

A table is given of the compounds of low volatility, whose experimental solubilities in supercritical carbon dioxide have been published up to the end of 1989, with the temperature and pressure ranges of the experimental measurements, the experimental method, and references to the source of data. The data for pure compounds, which were presented in tabular form in the original publications, are shown in a series of figures along with correlation lines for each isotherm. The method of correlation was to fit the experimental data for each isotherm, in the form of the natural logarithm of the product of mole fraction and pressure, to a linear function of density above a pressure of 100 bars. The constants obtained from the fitting procedures are given in a table. Procedures for estimating, from these constants, the solubilities of the compounds at temperatures and pressures different from those of the experimental data are suggested.

Key words: solubilities; supercritical fluid; carbon dioxide; extraction; high pressure; phase equilibria; mixtures.

Contents

	Introduction	714
1.	1.1 Background	714
	I.I. Dackground	714
	1.2. Scope	714
	1.3. Phase Benavior for Correlation of Solubilities	717
	1.4. Method Osci for Correla-	
	1.5. Estimation of Soldonity Comp in Comp	720
	tions	721
2.	Experimental Methods	721
	2.1. Gravimetric Methods	725
	2.2. Chromatographic Methods	725
	2.3. Spectroscopic Methods	725
	2.4. Miscellaneous Methods	125
3.	Review and Correlation of Published Experimen-	726
	tal Results	755
4.	Acknowledgments	755
5.	References	155

List of Tables

1.	Constants a , b , and a'' for naphthalene and phen- anthrene for isotherms published by various au-	718
	thors	/10
	thors in a colubility data in carbon dioxide	722
2.	Alphabetical index to the compounds in Fig. 7.	727
2.	Leib-	

© 1991 by the U.S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society.

Reprints available from ACS; see Reprints List at back of issue.

4.	Correlation constants A and B in Eq. (4) ob- tained by fitting literature solubility data	751
5	Densities of pure carbon dioxide in moles dm^{-3}	
	from the Ely equation of state ¹⁶	754
	List of Figures	
1.	p- T projections of schematic phase diagrams for mixtures of carbon dioxide and a solute of low	ha fa
	volatility	715
2.	<i>x-T</i> cross sections through schematic phase dia- grams for mixtures of carbon dioxide and a solute	
	of low volatility	716
3.	Features which can occur in solubility isotherms	717
4.	Plots of the constants A and A vs 1/1 for hapi-	710
5.	Comparison of the experimental results for naph- thalene and the predictions, shown as curves, of an approximate estimation method described in	/10
	the text	719
6.	Schematic diagram of an apparatus for the gravi-	721
7	Dublished tabulated data for solubilities in solution	121
1.	Published tabulated data for solubilities in carbon	
	dioxide, shown as points, and curves obtained by	
	for the second time to Eq. (4). The constants used	
	tor the correlation curve shown are given in Table	
	4. An alphabetical index to the compounds in the	700
	ligure is given in Table 3	128

1. Introduction 1.1. Background

A supercritical fluid is a relatively modern term for a gas under pressure above its critical temperature. Under these conditions it does not condense to a liquid, but at high pressures can achieve liquidlike densities. It has been known for more than 100 years that a supercritical fluid can dissolve a substance of low volatility and that the solubility is dependent on pressure.¹ The ability to control solubility by means of pressure as well as temperature has brought about the use of supercritical fluids in extraction processes, for example.

Industrial supercritical extraction processes are now well established and textbooks²⁻⁴ and published symposia^{4a,4b} are available on their chemical and chemical engineering aspects. The technique is used on a large scale, for example, for coffee decaffeination and hop extraction, and on a smaller scale, for the extraction of high-value natural products, such as perfumes.⁵ More than 200 U.S. patents for supercritical extraction processes have been registered,² as well as a large number outside the U.S., mainly in Germany. Research is being carried out on the feasibility of carrying out chemical reactions on an industrial scale, mainly with the idea of combining manufacture with separation of the products.6 Supercritical extraction is also being carried out on a laboratory scale as a preliminary to chemical analysis by various techniques, such as chromatography.⁷ Many processes, such as polyethylene synthesis and high-pressure petroleum fractionation, which have been carried out industrially for decades, are in principle "supercritical."

For all these processes, knowledge of the solubility of substances in supercritical fluids is important and a large number of experimental measurements have been made in recent years. The solubility is the concentration, or mole fraction, of a substance in the supercritical phase at a particular temperature and pressure when it is in equilibrium with the pure substance. Real processes, however, usually involve mixtures and the solute phase may be different in character from that of the pure substance, i.e., liquid rather than solid or adsorbed on a substrate. In these circumstances, the solubility gives only an indication of the relative extractability of substances as a function of temperature and pressure, but is still important in designing operating conditions to obtain an extract of the desired composition. In a separation stage, where the pressure is dropped to precipitate particular components preferentially, solubility data may be more quantitatively applicable. However, the presence of other solutes in the supercritical fluid has been found to affect the solubility.8

1.2. Scope

This review is restricted to solubilities of substances of low volatility in pure carbon dioxide. For these solutes, the saturated solutions are dilute with the solute mole fraction typically below 0.1 and often much less. As explained in detail in Sec. 1.3, the solubility data covered in this paper correspond only to particular solvent-rich boundaries on the phase diagram of the two-component system.

The restriction to CO_2 is for reasons of size and because it is the principal supercritical fluid in use today. Its industrial and analytical importance lies in its convenient critical temperature of 31 °C (= 304 K), its low cost, and its nontoxicity. The majority of the experimental solubility data published to date are in this fluid. Because the carbon dioxide molecule has no dipole, and the relative permittivity of the liquid is 1.6,⁹ it is usually regarded as a nonpolar solvent. It has, however, some affinity with polar solutes because of its high quadrupole moment.^{9a} To enhance this affinity, it is often used with added polar modifiers or entrainers, such as methanol. Relatively few experimental data are available in modified CO₂, however, and the data for modified solvents are not included in the present compilation.

The restriction to solutes of low volatility is first that most of the data and most of the processes of industrial importance involve this type of solute. Second, the situation in terms of the phase diagrams is relatively simple. Industrial supercritical extraction processes can involve volatile solutes, such as the proposed extraction of ethanol from water mixtures with CO_2 , but in these cases more complete knowledge of a complex phase diagram is necessary. The relevant phase diagrams for involatile solutes are described in the next section.

The published data used in this review were obtained from a search of Chemical Abstracts up to December 1989. Only the data published in tabulated form are included in the correlations and the figures. The minority of papers in which the data were presented in graphical form are, however, included in the table of references.

1.3. Phase Behavior for Involatile Solutes

Solubility data, reviewed in this article, comprise a limited, though important, subset of the information necessary to construct the complete phase diagram of the solute-fluid system. It is desirable therefore at the outset to describe the appropriate phase diagrams and set the solubility data in context. The solubilities reviewed here are described as solubilities in supercritical carbon dioxide, in the sense that the pure solvent is under supercritical fluid conditions. However, the binary solute-fluid mixture may or may not be supercritical, and many would wish to describe some of the data reviewed as gas solubilities. At the same time, some solubilities, which can be legitimately described as supercritical fluid solubilities, are not included in this review. This is because they are a relatively small part of the body of data for involatile solutes and would require a separate discussion and correlation. An important part of this section, therefore, is to describe the restriction of the scope of this review to certain surfaces, or parts of surfaces, in the phase diagrams. It will be seen, however, that for a system containing a solid solute, which does not form a liquid phase under the conditions of interest, the situation is a relatively simple one.

Detailed and quantitative knowledge of phase diagrams is only available for a few of the systems covered by this review and so this description will be largely qualitative, but this is nevertheless sufficient. The phase diagrams of two component systems are classified into a number of types or classes.¹⁰ The subject is a complex one and the purpose here is to give only the information necessary for the present purpose. For mixtures of CO_2 and solutes which have low vola-

FIG. 1. *p*-*T* projections of schematic phase diagrams for mixtures of carbon dioxide and a solute of low volatility.

tility at ambient temperature, the critical temperatures of the two components are widely separated, the vapor pressures of the solutes are low compared with pressures of interest, the two components exhibit immiscibility as liquids (subcritically), and often only fairly dilute solutions are formed under a wide range of conditions. For example, naphthalene, which is the solute for which there are many experimental solubility data, has a critical temperature of 477 °C compared with 31 °C for CO₂. Most of the substances in this review have critical temperature differences greater than that for naphthalene. Vapor pressures of the pure solutes at the temperatures of interest are typically of the order of 0.01 bar or less and solubilities are below 0.1 mole fraction under the experimental conditions that have been used.

The two-component systems described in this review are mostly classified as type III systems. This is true for water- CO_2 , ¹⁰ naphthalene- CO_2 , and is probably true for the majority of the systems, especially those with less volatile solutes than naphthalene. Decane- CO_2 is known to be of type II¹⁰ and it is possible that there are other systems in this class as well as in types IV or V. Figure 1 shows *p*-*T* projections of the *p*-*T*-*x* phase diagrams for some of these types of system (*x* here being mole fraction of the solute).

Figure 1(a) is for a type III system where the solute is a solid above the solvent critical temperature and is the most typical of the systems described here. AB is the vapor pressure (L-G) curve for the pure solvent ending in the critical point B. In the presence of excess solute, the vapor pressure curve for pure CO_2 is shifted (slightly for a solute of low volatility) and ends in the critical end point C. Here OD and DE are the vapor pressure curves for the solid and liquid solute, respectively, ending in the solute critical point E. For temperatures where the vapor pressures of the pure solvents are very small these are shown coincident with the p = 0axis. The point D is the triple point for the pure solute, and the line emanating almost vertically from it is the pressuremelting (S-L) curve for the solute. In the presence of excess CO₂, however, melting to a solute-rich liquid phase will occur at pressures and temperatures to the right of the curve DF; DF is the projection of a three-phase region in which solid, liquid, and supercritical phases can coexist. Curve DF is shown with a negative slope, but in some systems it has a positive slope and leans back toward the S-L line. The curve EF is a critical line above which the liquid phase and the supercritical phase become identical and this ends in the critical end point F.

The p-T projections of Fig. 1 give a simple view of the three-dimensional p-T-x situation, but one should bear in mind that there are surfaces emanating from and connecting the lines in Fig. 1 which do not appear in the two-dimensional picture. These surfaces are described to a limited extent in the discussion below, associated with Fig. 2. However, surfaces associated with the lines at the lower temperature end of the diagrams, i.e., which connect with the curves AB will not be covered, except for a comment made later about retrograde condensation. Although an understanding of the surfaces at higher temperatures, which represent phase boundaries of importance to the present discussion, may be obtained later from Fig. 2, a fuller description is given in the next paragraph for the case of Fig. 1(a).

In Fig. 1(a) there is a three-phase (solid-liquid-gas) surface perpendicular the line DF. There is also a surface, which above the temperature of C connects the solvent-rich end of (close to) the diagram base, represented by OD moving upwards in pressure and away from the solvent-rich boundary. This is a supercritical fluid solubility surface (surface 1). It connects with the three-phase surface, represented by DF (and in particular with the critical end point F), where it splits into two surfaces. One of these, at pressures below F, folds over the critical line EF and connects with the liquid-gas line of the solute, DE. This surface represents liquid-gas equilibrium for the binary system (surface 2). The other connects with the solute solid-liquid line, emanating from D (surface 3). This is a solid-gas or a solid-fluid surface, depending on whether the pressure and temperature are below or above the critical line EF, respectively.

Figure 1(b) is also for a type III system, but in this case the solute is liquid over the whole temperature range shown. In this case the critical line which starts at E moves to higher pressures. It can behave much as shown in the figure but can also behave differently. In some cases the line has a minimum in pressure as it proceeds to lower temperatures. In others it moves to higher temperatures and pressures. Figures 1(c), 1(d), and 1(e) are the p-T projections for systems of types II, IV, and V, respectively. They differ in form because of the onset of immiscibility in either or both directions of temperature change in the subcritical region. The general effect is that there is a critical line at higher pressures extending from the critical point of the pure solute to or toward the critical point of the solvent.

The region of interest, in this review, for solubilities of involatile solutes in a supercritical fluid is limited in temperature, pressure, and composition. The shaded areas in Figs. 1(a)-1(e) show the p-T projections of this region schematically for the various types of system. The lower temperature limit is somewhat above the critical temperature of the saturated solution; enough to avoid a two-phase region of retrograde condensation which may be present at slightly higher temperatures than this critical temperature. For the solutes of low volatility the lower temperature limit is of the order of 1 K above the critical temperature and few solubility data are presented here at temperatures less than 308 K. The upper temperature limit is a vague and pragmatic one and is determined by factors such as the thermal stability of the solute and the solvating effect that can be achieved at reasonable pressures for industrial processes. This temperature will be well below the critical temperature of the solute and where vapor pressure is low. For CO₂ this temperature will usually be below 450 K. The lower pressure limit will not usually be far below the critical pressure for the solvent (74 bars for CO_2) and so the vapor pressure curves lying along the base of Figs. 1(a)-1(e) will not be of concern. At a temperature within the limits described, there may or may not be a point on a critical line at higher pressures. If there is, then the supercritical and fluid phases become identical, and solubilities in a supercritical fluid, for the purposes of this review, are no longer relevant. (See below for a further discussion of this statement.) The upper pressure is therefore either a practical one or else the critical line in the temperature range, if it is present. Often data published are well inside these schematic regions of interest. The composition limits of the region of interest are that it is the phase boundary nearest to the pure solvent side of the p-T-x diagrams that is of concern.

Solubilities in a supercritical fluid are normally presented as isotherms and functions of pressure. As such they form part of the p-x cross sections of the p-T-x diagrams and are perpendicular to the projections of Fig. 1. A number of such cross sections, within the temperature range of interest, are shown in Fig. 2. Figure 2(a) is a cross section at temperature T_1 on Fig. 1(a) and represents a common situation among the data presented here, where the solute is always a solid. In principle solids absorb the solvent, but this effect is normally small in extent and the composition of the solid is shown coincident with the x = 1 axis. Similarly there is in principle a curve at very low pressures, representing the vapor of the solute in the presence of small amounts of the solvent, which is shown coincident with the p = 0 axis. [Figures 2(b)-2(e) are also drawn in this way.] The only nontrivial feature of this diagram is the curve ST, which represents the supercritical solubility of the solute in the region of interest. It is a cross section through what was described as surface 1 in the discussion of Fig. 1(a).

Various less common situations among the data in this

FIG. 2. x-T cross sections through schematic phase diagrams for mixtures of carbon dioxide and a solute of low volatility.

review are shown in Figs. 2(b)-2(e). Figure 2(b) is a cross section through a phase diagram of the type of Fig. 1(a), at a temperature above D, but where the three-phase line DF has a positive slope. The solute is liquid at low pressures, below L, but becomes solid as the pressure increases. At pressures below L, the lines are cross sections of the liquid–gas surface (surface 2). At higher pressures, the line is a cross section of the solid-supercritical fluid surface (surface 1), and the solubility curve is similar to that in Fig. 2(a). For the purposes of this review, the whole phase line near the solvent-rich axis, which is similar in form to that of Fig. 2(a), is described as a solubility in a supercritical fluid but the liquid-phase boundary near the solute-rich axis is excluded.

Figure 2(c) is the simplest example of a cross section where there is a point on the critical line at higher pressures. It is a section at T_4 on Fig. 1(b), which is of type III with a liquid solute. The curve YZ is described here as solubility in a supercritical fluid, and this turns up toward the point on the critical line, Z. At the higher pressures shown the solute and solvent are miscible in all proportions. The curve continuing on from Z gives the composition of the liquid-phase boundary, formed by solution of CO₂ in the higher boiling liquid and is excluded from the review. At very high pressures, the liquid solute is likely to be solidified, and this would result in a line, not shown, emanating from the soluterich axis, which would be a solid-supercritical fluid-phase boundary. This type of supercritical fluid solubility is also excluded from this review. Figure 2(c) is also the form of cross sections of the phase diagrams represented in Figs.

1(c)-1(e), taken at any point in the temperature range of interest.

Other examples of cross sections intersecting with a critical line are given in Figs. 2(d) and 2(e). These correspond to temperatures T_2 and T_3 , respectively, on Fig. 1(a) and involve solid phases. In Fig. 2(d), the solute is a solid at low pressures and then melts to a liquid phase at pressures corresponding to PQR of composition given by the line RV. The line UP is a cross section of the solid-supercritical fluid surface (surface 1). The line PV is the gas-phase boundary of cross section of the liquid-gas surface (surface 2). The full curve of solubility in a supercritical fluid covered by this review is the line UPV. The liquid-phase boundary QV and the line emanating from Q, which is a cross section of what was described earlier as surface 3, are not included in this discussion.

Figure 2(e) is a cross section at temperature T_3 on Fig. 1(a), which shows a situation similar to that for a liquid solute given in Fig. 2(c), except that the components are not miscible in all proportions above the critical line. Solid solute can be present above that of point M and will precipitate from liquids with solute compositions greater than those given by the line MN. Hence the supercritical phase composition will move with increasing pressure from W to the critical point X, when it will shift onto the curve MN as shown by the arrow. The curve MN is a cross section of what was described in the discussion of Fig. 1(a) as surface 3, which is not covered by this review, and so the curve of interest here is WX.

To summarize, the discussion above serves to define the boundaries of interest in this review. In particular some solid-supercritical fluid boundaries, such as MN in Fig. 2(e) and the line emanating from Q in Fig. 2(d), and also the liquid boundaries, such as QV in Fig. 2(d), are not included here. Some experimental measurements in the literature are concerned with these boundaries, however. One example is the body of measurements of the solubility of CO₂ in some hydrocarbons,¹¹ which corresponds to the solute-rich boundary curving upwards from point Z in Fig. 2(c). Another involves the part of the study of the critical end point [point F in Fig. 1(a)] in the CO₂-naphthalene system.¹² At 64.9 °C and above the pressure where a liquid phase is formed, the results obtained refer to the liquid phase, and are shown in brackets in the table of solubilities.

Finally, Fig. 3 shows the general features that may be exhibited by a curve of solubility in a supercritical fluid, given in terms of mole fraction, versus pressure at constant temperature. There is an initial fall at low pressures, AB, which starts at x = 1 and the solute vapor pressure, when no solvent is present. As the solvent is added and the solute is diluted without being much solvated, x falls toward B. This initial fall is at rather low pressures for solutes of low volatility, is shown coincident with the p = 0 axis in Fig. 2, and is not exhibited by the data covered in this review at the pressures at which they were obtained. The second feature is a rise in solubility BC, which is a feature of all the data presented. The rise is due to solvation arising from attractive forces between the solvent and solute molecules. It has a steep portion near the critical pressure of the solvent, where its den-

sity is rising most rapidly. Thereafter the solubility may exhibit a fall, represented by CD. If this occurs, it is because at higher pressures, where the solvent is becoming compressed and repulsive solute-solvent interactions are becoming important, and the solute chemical potential is raised to a greater extent than is occurring in the liquid or solid phase. Finally a rise DE may occur if there is a critical line present at high pressures at the temperature of the isotherm and the solubility will rise toward it as shown in Figs. 2(c)-2(e). Most solutes reviewed do not show this rise, but some do. The most extreme example given here is decane, which is known to have a type II phase diagram with CO2.10 The squalene-CO₂ system has a type III phase diagram [Fig. 2(b)], with a minimum in the critical line emanating from E at 370 K and 370 bars.¹⁰ Its higher temperature isotherms rise dramatically from around 300 bars, whereas at 323 and 328 K the isotherms do not show this rise and, in fact, fall as pressure rises above 500 bars. It should also be noted that when the solute or solute-rich phase undergoes a phase change, as in Figs. 2(b), 2(d), and 2(e), there is no discontinuity in the solubility-versus-pressure curve, as can be supported by thermodynamic arguments.

1.4. Method Used for Correlation of Solubilities

Correlation of data exhibiting the features described in the last paragraph is not straightforward. All the features and those of the rest of the relevant phase diagrams can be reproduced qualitatively by an equation of state, and indeed the forms of the phase diagrams were first studied using the van der Waals equation.¹³ For quantitative fitting more refined equations of state are more useful in certain regions, and of these the Peng-Robinson equation has been the most widely used. However, even this equation is not successful in fitting all the data presented here at all pressures and temperatures and, moreover, the necessary parameters are not always available. This problem has been discussed in a recent paper by Johnston et al.14 They come to the conclusion that a correlation of the so-called enhancement factor with density is the best available route. The enhancement factor, E, is the ratio of the partial vapor pressure of the solute in the supercritical phase to the vapor pressure of the pure solute at the same temperature, p_v ,

$$E = xp/p_v, \tag{1}$$

where x is the mole fraction of solute at saturation and p is

the pressure. It is thus a measure of the solvating effect and at low pressures can be related to second virial coefficients.⁴

A correlation much used previously, an early example being in the analysis of experimental data by Tsekhanskaya,¹⁵ is a linear relationship between the logarithm of the solubility in concentration terms and density, ρ , i.e.,

$$\ln(x\rho) = a' + b'\rho, \tag{2}$$

where a' and b' are constants at constant temperature. Equation (2) was found not to fit the wide range of data presented here well. The enhancement factor can be fitted to a similar function of density, i.e.,

$$\ln(E) = a + b\rho, \tag{3}$$

where a and b are also constants at constant temperature. However, vapor pressures, needed to calculate E, are not known or well known for many of the solutes, particularly the solids. Substituting Eq. (1) into Eq. (3) gives

$$\ln(xp/p_{\rm ref}) = A + B\rho; \tag{4}$$

and

$$A = a + \ln(p_v/p_{\text{ref}}), \quad B = b, \tag{5}$$

are again constants at constant temperature and p_{ref} is a reference pressure, for which 1 bar is used in all the calculations below.

The published solubility data were fitted to both Eqs. (2) and (4) at each temperature, i.e., allowing the constants to be functions of temperature. The isotherms for each publi-

TABLE	1.	Constants	а,	<i>b</i> ,	and	<i>a</i> ″	for	naphthalene	and	phenanthrene	for
isotherm	15	published	by	vai	rious	au	thor	rs.			

induced and a	Т (К)	a (bars)	$b \times 10^{3}$ (m ³ kg ⁻¹)	a" (bars)	Refer- ence
Naphthalene	308.0	2.392	8.00	7.992	15
		2.545	7.82	8.019	39
		2.030	8.50	7.980	12
		1.663	8.86	7.865	68
		2.046	8.45	7.961	84
	318.0	3.559	6.50	8.109	15
		3.873	6.07	8.122	57
	323.0	3.373	6.70	8.063	20
	328.0	2.903	7.50	8.153	12
		2.624	7.84	8.112	57
		2.762	7.59	8.075	20
		2.609	7.91	8.146	68
	at any	2.957	7.41	8.144	15
	331.5	2.350	8.02	7.964	20
	333.4	2.391	8.50	8.341	12
	337.9	2.036	8.77	8.175	12
Phenanthrene	308.0	4 237	9.95	11,202	39
r menantinene	313.0	2 236	12 36	10.888	65
	313.1	6.933	6.39	11.406	27
	318.0	5 253	8 50	11.203	23
	323.0	4 651	8.89	10.874	56
	328.0	4 977	8.48	10.913	23
	338.0	4 835	8.18	10.561	23
	343.0	3.066	9.84	9.954	56

cation were treated separately. The density was assumed to be that of pure carbon dioxide, as the solubilities are low, and was obtained from the Ely equation of state. ¹⁶ Equation (4) was found to fit all the data reasonably well, except at lower pressures and gave a better fit, in general, than Eq. (2). It was therefore used to correlate the data presented in this review. However, to achieve the best fit possible, the minority of data for pressures below 100 bars were not included in the correlations. The values of A and B obtained from the fits

FIG. 4. Plots of the constants A and A' vs 1/T for naphthalene.

SOLUBILITIES OF COMPOUNDS IN SUPERCRITICAL CARBON DIOXIDE

FIG. 5. Comparison of the experimental results for naphthalene and the predictions, shown as curves, of an approximate estimation method described in the text.

are given in Table 4 below and calculated curves obtained from these values are shown on Fig. 7, the main plots of the data reviewed.

The separation of volatility and solvation effects implicit in the definition of the enhancement factor, gives rise to the hope that the constants a and b will not be very dependent on temperature. The variations obtained for b = B can be observed for all the compounds reviewed by reference to Table 4. For naphthalene and phenanthrene, for which good vapor pressure data are available, 17,18 values of a and b, calculated from Eq. (5) for sets of data at different temperatures and published by different authors, are shown in Table 1. This table shows values of b going through a shallow minimum for both compounds and a variation of about \pm 18% for both compounds, although most values are well inside this range. The values of b = B given in Table 4 show similar variation. Values of a, given in Table 1, show even wider variation. The reason for these variations is that the data above 100 bars cover a small density range above 700 kg m⁻³ at the lowest temperature and above 500 kg m⁻³ at the highest. In particular, a, which is the intercept at zero density, is vulnerable to error. It can be seen from Table 1 that high values of a correspond to low values of b and vice versa. Hence, rather than use an intercept at zero density, it is preferable to use a value at a reference density ρ_{ref} . In the calculations below a value of $\rho_{\rm ref} = 700 \text{ kg m}^{-3}$ is used as this density is usually within the experimental data at all temperatures. In terms of the reference density,

$$\ln(E) = a'' + b(\rho - \rho_{\rm ref}),$$
(6)

where

$$a'' = a + b\rho_{\rm ref}.\tag{7}$$

Values of a'' are given in Table 1 and are seen to show a much smaller variation than the values of a and a small trend with temperature, upwards with temperature in the case of naphthalene and downwards for phenanthrene.

For most solutes good vapor pressure data are not available and a method of using the constants A and B is required for solubility estimations. From Eq. (5) and the presence of the term $\ln(p_v/p_{ref})$ in A, a plot of A vs 1/T might be expected to be a straight line. Figure 4(a) shows such a plot for naphthalene, for which there is the largest amount of experimental solubility data. It can be seen that the variation in the intercepts, as discussed for the constant a above, causes the plot to be unusably scattered. A quantity

$$A' = A + B\rho_{\rm ref} \tag{8}$$

is therefore defined so that

$$\ln(xp/p_{\rm ref}) = A' + B(\rho - \rho_{\rm ref}).$$
(9)

A plot of A' vs 1/T is shown in Fig. 4(b) and is seen to be a satisfactory straight line for correlation purposes. The slope of this line corresponds to an enthalpy change of 77 kJ mol⁻¹, compared with a value for the enthalpy of vaporization of solid naphthalene, ΔH_v^{ϕ} , of 70 kJ mol⁻¹.¹⁹ The difference in the two values arises from the small temperature dependence of a, as described earlier.

A number of methods of predicting approximate values of solubilities from the constants A and B are suggested in the

next section. One of the cruder methods is now tested for naphthalene, again because of the amount of published data. although the particular method would not be the most suitable for naphthalene in practice. The same average value for B of 7.78 is used for all temperatures and values for A' are taken from the straight line on Fig. 4(b). The predicted curves are shown in Fig. 5 and compared with published data. The large majority of the data are within 10% of the predicted values, but differences of up to 30% are observed in some cases. The latter is true of the data of Lamb et al.,20 especially at pressures above 300 bars, and also the data of McHugh and Paulaitis¹² at 333.4 K, which gave an a" value in Table 1 out of the range of the other values and seems to follow the experimental data and predictions for 337.9 K. rather than the prediction for 333.4 K. The crude method shown therefore appears capable of giving estimates of solubility of sufficient quality for some industrial design purposes.

1.5. Estimation of Solubility Using the Correlations

For a solute for which a large amount of solubility data has been published, and for which critical parameters, vapor pressure data, and hence an acentric factor is available, the best method for prediction of solubility at any pressure and temperature would be to correlate the data using an equation of state with adjustable parameter(s) in the temperaturepressure region of interest. Failing the necessary information, or the will to carry out the correlation, less accurate estimates of the solubility of the compounds covered in this review may be made using the A and B values given in Table 4. The pressure and temperature ranges in which this would generally be appropriate are 100–350 bars and 308–373 K.

The procedures suggested for calculating the solubility in carbon dioxide of one of the solutes listed in Table 4 at a particular temperature and pressure are as follows.

(1) The density of carbon dioxide is calculated from one of the established equations of state, preferably that of Ely,¹⁶ although outside the critical region, predictions from different good equations are close.

(2) If the temperature of interest is within 2 K of that of a pair of values of A and B given in Table 4, then those A and B values are used, with the density at the required temperature and pressure, in Eq. (4) to obtain the solubility. If not, procedures (3)-(5) are followed.

(3) A value of B appropriate for the temperature of interest is obtained from the data in Table 4. In some cases, if there are a number of values, this is done by plotting B against temperature followed by interpolation or limited extrapolation to obtain B at the desired temperature. In other cases, it is assumed that B is constant with temperature and a single or average value used.

(4) A value of A' is obtained from the data in Table 4 by one of two methods.

(a) If reliable vapor pressures are available, calculation of the constants a from Eq. (5) is carried out. Then, using Eq. (7) and the fact that b = B, values of a'' are calculated. Again, if there are a number of values, plotting against temperature and interpolation or limited extrapolation is carried out to obtain a'' at the desired temperature. In other cases a single or average value of a'' would be used. An A' value would then be obtained from $A' = a'' + \ln (p_v/p_{ref})$.

(b) If vapor pressure data are not available, the available (one or more) A values are converted to A' values using Eq. (8). These are then plotted against 1/T. If there are sufficient points of good quality a straight line is fitted to them and a value of A' read off at the desired temperature. If not, a straight line of slope $-\Delta H_v^{\phi}/R$ is drawn through the point or points, and a value of A' read off at the desired temperature temperature.

(5) Finally, Eq. (9) would be used to obtain the solubility.

Since the errors in A and B are correlated, it is essential that both values of a pair should be used in the procedure chosen.

The reliability of the procedures outlined above obviously depends on how much information on A and B is available for the solute, how close the temperature and pressure of interest is to the experimental solubilities used to obtain the A and B values, and which procedure it is necessary to use. If very close, predictions will be similar in quality to the correlation curves given in Fig. 7. If not, the reliability of the predicted values will depend on the temperature difference and the procedure that has to be used, and in the worst cases will only be a guide to the true solubility. An estimate of the probable error would need to be made and based on the procedure and data in each case. It may need to be repeated that predictions would not be very reliable below 100 bars and in the critical region.

2. Experimental Methods

The various experimental methods used to obtain supercritical fluid solubilities can be classified in two different ways. The first relates to the way in which the saturated solution is obtained, which can be static or dynamic, i.e., in a closed cell or in a flow system. The second classification describes how this solution is analyzed and the methods used can be grouped into four categories: gravimetric, spectrometric, chromatographic, and miscellaneous. There is some correspondence between these two classifications. To produce enough material for accurate gravimetric analysis, a flow system is normally used. The two other techniques can use either, but a static system is typically used with spectroscopic analysis. The classification used in the description of experimental methods below is primarily in terms of the analytical method. A review of experimental methods for supercritical solubilities has appeared in a recent textbook.²

Of the techniques described, the gravimetric method is most widely used, with a few research groups, having established a particular procedure and given data in one publication, following this up with subsequent publications using essentially the same apparatus. Chromatographic analysis is the second most popular technique. Other methods tend to be limited to a single paper, describing the development of the experimental procedure and giving a body of data so obtained. A fair assessment of the present situation is therefore as follows. The gravimetric method with its variants and to a lesser extent chromatographic analysis are the present established and reliable procedures. The other methods are attempts to find alternatives, but none of these have yet been generally accepted as being superior. Spectroscopic techniques offer more convenience, with *in situ* analysis, but here the effect of the supercritical fluid on the absorption properties complicates the procedures.

2.1. Gravimetric Methods

Most of the gravimetric methods used have the same basic structure. The main motivation has been the need for solubility data for extraction processes and the philosophy of the methods reflect this interest. Briefly, these methods involve the production of a saturated solution by passing the supercritical fluid over the solute in an extraction cell, dropping the pressure to precipitate the solute, and weighing it. The experimental procedures were developed by Eckert, Paulaitis, Reid, and their co-workers in the late 1970s.^{21–23}

A schematic diagram of the basic system is shown in Fig. 6. The CO_2 is pumped, as a gas by a compressor or as a liquid by a pump with a cooled head into a thermostat, where it first passes through a preheating coil. It then passes into an extraction or equilibrium cell where a saturated solution is formed. The solute is usually dispersed in the cells, e.g., by coating it onto sand particles, and filters are positioned at the ends of the cells to prevent the entrainment of undissolved solute. The solution is then dropped to atmospheric pressure via a restrictor or valve, such as a back-regulator, which is heated to prevent the solute being lost in the valve and clogging it. The gas containing finely divided solute precipitate, passes to a trapping system, which can vary in type (e.g., Utubes are often used), or complexity (e.g., switching circuits between traps are sometimes described). More than one trap in series is often used and methods for ensuring complete trapping, such as cooling and/or packing with absorbent, are typically employed. Finally The CO2 passes through some kind of flow meter. The pressure in the system, i.e., that of the experiment and the flow rate are controlled by the pump and the valve. In the most straightforward system, a back-pressure regulator would control the pressure and the pump the flow rate. Various systems are used, however, and are described in the many original papers, which are referred to in Table 2.

A typical experiment is to set the flow and allow the system to reach a steady state and then switch in a weighed

FIG. 6. Schematic diagram of an apparatus for the gravimetric method.

TABLE 2. Published solubility data in carbon dioxide.

Method	Compound	<i>T</i> (K)	P(Atm)	Reference
Gravimetric	acridine	308	118-345	63
Gravimetric	acridine	308-343	101-359	59
Spectrometric	adamantane	340-400	99–987	50
Gravimetric	alachlor	323-393	88-272	81
Gravimetric	2-aminobenzoic acid	308	118-345	63
Gravimetric	2-aminofluorene	318-343	114-359	59
Gravimetric	5-aminoindole	308	82-185	41
Gravimetric	anthracene	313	99_197	27
Gravimetric	anthracene	303_343	91_414	56
Gravimetric	anthracene	203 368	68_1141	40
Gravimetric	anthracene	308 318	103 273	31
Chromatographic	anthracene	308-318	119 245	62
Spectrometric	anthracene	204 473	51 000	02
Chromotographic	artabsin	294-475	51-000	05
Chromatographic	habania agid	313	09-100	30
Spectrometric	behenul behenete	313-333	80-230	43
Spectrometric	benery benerate	313-333	100-250	43
Chromatographic	benzo(e) pyrene	318-398	83-124	40
Chromatographic	benzoic acid	313	79-395	35
Gravimetric	benzoic acid	318-338	118-276	23
Gravimetric	benzoic acid	318-343	100-359	59
Gravimetric	benzoic acid	308	118–276	63
Gravimetric	biphenyl	309–330	104-484	12
Gravimetric	biphenyl	328	503-531	71
Gravimetric	brassylic acid	328-343	148–359	67
Spectrometric	cafestol	313-353	80-250	43
Spectrometric	caffeine	328-433	50-250	60
Gravimetric	canola oil	298-363	100-360	70
Gravimetric	carbazole	313	99–197	27
Chromatographic	carbowax 1000	313	270-1900	53
Chromatographic	carbowax 4000	313	270–1900	53
Gravimetric	p-chlorophenol	309	80-237	22
Spectrometric	cholesterol	313-353	80-200	43
Gravimetric	codeine	291-313	59-197	64
Gravimetric	corn germ oil	353	265	77
Gravimetric	cottonseed oil	313-353	476-1020	77
Spectrometric	decane	340-400	99–197	50
Gravimetric	1,10-decanediol	318-328	131-303	58
Chromatographic	dexynivalenol	365-398	165–194	46
Chromatographic	diacetoxyscirpenol	335-365	121-123	46
Gravimetric	dibenzothiophene	309-338	76-273	68
Gravimetric	3,4-dichloroaniline	313	197	40
Gravimetric	2,4-dichlorophenol	309	79-203	22
Gravimetric	(2,4-dichlorophenoxy	313	197	40
	acetic acid)			
Gravimetric	2- (4- (2,4-dichlorophenoxy)	313	197	40
	-phenoxy) propanoic acid		bas buryleasterinoit	and a line this solu
Gravimetric	2- (4- (2.4-dichlorophenoxy)	313	197	40
	-nhenoxy) propanoic acid		Di gi solugi con cos	10
	methyl ether			
Gravimatria	di-n-dodecylamine	310-320	108 202	67
Gravimetric	didodecylphosphine	320	125 140	67
Gravimetric	didodecylphiosphilic	310-320	108 108	67
Gravimetric	m dihudroxybanzana	328	306	72
Gravimetric	<i>m</i> -dihydroxybenzene	228	306	72
Gravimetric	o-dinydroxybenzene	320	306	72
Gravimetric	<i>p</i> -dinydroxybenzene	320	300	12
Gravimetric	2,3-dimethylnaphthalene	308-328	98-276	23
Gravimetric	2,3-dimethylnaphthalene	308 228	98-276	20
Gravimetric	2,6-dimethylnaphthalene	308-328	95-276	23
Gravimetric	dioctyl ether	320	100-131	0/
Gravimetric	diphenylamine	305-310	40-206	55
Gravimetric	docosane	310-320	11/-180	0/
Gravimetric	n-dotriacontane	308	91-159	82
Gravimetric	eicosane	310-320	110-276	67
Chromatographic	ergosterol	313	79–198	14
Chromatographic	estradiol	313	79–198	74
Chromatographic	ethinylestradiol	313	79–198	74
Chromatographic	eugenol	280-333	20–79	36
Gravimetric	fluorene	313	99–197	27
Gravimetric	glycerol trioleate	298-333	69–197	83
Gravimetric	hexachloroethane	308-328	96–276	23

SOLUBILITIES OF COMPOUNDS IN SUPERCRITICAL CARBON DIOXIDE

TABLE 2. Published solubility data in carbon dioxide-Continued

Method	Compound	<i>T</i> (K)	P(Atm)	Reference	Mgthod vo
Gravimetric	1-hexadecanol	318-338	142-416	69	S Is calibre
Gravimetric	hexamethylbenzene	303-343	70-483	56	
Chromatographic	hexamethylbenzene	308	148-345	39	
Gravimetric	<i>m</i> -hydroxybenzoic acid	373	204-409	72	
Gravimetric	o-hydroxybenzoic acid	373	204-409	72	
Gravimetric	<i>p</i> -hydroxybenzoic acid	373	204-409	72	
Gravimetric	5-hydroxyindole	308	88-185	41	
Gravimetric	indole-3-aldehyde	308	79-159	41	
Gravimetric	ioioba oil	293_353	99-2568	75	
Chromatographic	indole-3-carboxylic acid	308	91-194	41	
Gravimetric	lauria agid	212	77 249	24	
Gravimetric	laune acid	280 222	77-240	34	
Chromatographic	limonene	280-323	25-60	30	
Gravimetric	linuron	313	197	40	
Gravimetric	methoxychlor	313	197	40	
Gravimetric	5-methoxyindole	308	79–184	42	
Gravimetric	methoxy-1-tetralone	308	82-273	57	
Chromatographic	1-methylnaphthalene	308	30-80	47	
Gravimetric	methyl nitrobenzoate	308	82-274	57	
Gravimetric	monocrotaline	308-328	89-274	33	
Gravimetric	mono-olein	308-333	102-187	82	
Gravimetric	morphine	291-313	59-197	64	
Gravimetric	myristic acid	313	82-249	34	
Gravimetric	myristic acid	313_323	200	73	
Gravimetric	naphthalana	207 219	40 206	55	
Gravimetric	naphthalene	307-318	40-200	15	
Gravimetric	naphthalene	308-328	00-330	13	
Gravimetric	naphthalene	308-338	81-288	12	
Gravimetric	naphthalene	328	123–250	23	
Gravimetric	naphthalene	308	99–173	27	
Gravimetric	naphthalene	318-328	82-272	57	
Gravimetric	naphthalene	309-328	74–273	68	
Gravimetric	naphthalene	308	80–124	82	
Gravimetric	naphthalene	308	120-201	84	
Gravimetric	naphthalene	297-346	1-130	61	
Spectrometric	naphthalene	323-328	118-493	20	
Spectrometric	naphthalene	308	30-80	47	
Chromatographic	naphthalene	313	69-395	35	
Chromatographic	naphthalene	308	120-240	39	
Chromatographic	a paphthal	308_328	91_170	32	
Gravimetric	a-naphthol	200 220	01 170	32	
Gravimetric	p-naphthol	308-328	91-170	50	
Gravimetric	B-naphthol	308-343	102-359	59	
Gravimetric	β -naphthol	308	118-345	0.3	
Chromatographic	β -naphthol	313	89–395	35	
Cravimetric	naphthoquinone	318-343	100-359	59	
Gravimetric	nonadecane	310-320	109–201	67	
Gravimetric	nonadecanenitrile	320	109-200	67	
Gravimetric	2-nonadecanone	320	109–141	67	
Gravimetric	noscapine	291-313	59-197	64	
Gravimetric	octacosane	320-360	99-987	50	
Spectrometric	octacosane	308-325	81-322	30	
Gravimetric	octadecane	310-320	118-198	67	
Gravimetric	1 estadesanal	310 320	109_275	67	
Gravimetric	1-octadecanor	310-320	270 1000	53	
Chromatographic	1-octadecanol	313	270-1900	55	
Gravimetric	octadecyImercaptan	310-320	109-201	07	
Gravimetric	oleic acid	313-333	200-300	13	
Gravimetric	oleic acid	308-333	84-189	82	
Gravinietric	oleic acid	313-333	100-250	43	
spectrometric	oxindole	308	85-189	41	
Gravimetric	palmitic acid	318-338	142-575	69	
Gravimetric	palmitic acid	313	80-248	34	
Gravimetric	palmitic acid	298-313	80-187	24	
Gravimetric	palmitic acid	308-323	200-300	73	
Gravimetric	palmitte della	313_333	100-250	13	
Spectrometric	panalyrine	201_313	50 107	43	
Gravimetric	papavernie	210 220	110 070	64	
Gravimetric	pnenantnrene	310-338	118-276	23	
Gravimetric	phenanthrene	313	99–197	27	
Gravimetric	phenanthrene	303-343	81-414	56	
Gravimetric	phenanthrene	313	136–544	65	
Gravinetraphic	phenanthrene	308	99-345	39	
Chromatographic	phenanthrene	313	79-395	35	
Chromatographic	phenol	313	69-395	35	
Chromatographic	THE STREET OF THE STREET WILLIAM STREET		0, 0,0	33	

TABLE 2. Published solubility data in carbon dioxide-Continued

Method	NSN .	Compound	<i>T</i> (K)	P(Atm)	Reference	Goilp
Gravimetric		phenol	309-333	78-246	22	
Chromatographic		phenol blue	308	101-300	66	
Gravimetric		phthalic anhydride	308	118-345	63	
Gravimetric		polychlorinated biphenyl	373	117-265	81	
Gravimetric		pyrene	308-343	84_483	56	
Chromatographic		pyrene	318_398	8 70	16	
Chromatographic		pyrene	313	80 305	40	
Gravimetric		rapeseed oil	313 353	100 850	55	
Gravimetric		silicone oil	313-333	100-830	19	
Chromotographia		sitesterel	373	70, 109	81	
Chromatographic		sitesterel	313	79-198	74	
Chromatographic		sitosteroi	293-353	99-988	15	
Gravimetric		skatole	308	75–190	42	
Chromatographic		solasodin	313	79–198	74	
Chromatographic		soybean oil	298-353	99–2568	36	
Chromatographic		soybean oil	293-313	148–346	76	
Gravimetric		soybean oil	313-343	207-689	77	
Gravimetric		soybean oil	323-333	136-681	78	
Gravimetric		stearic acid	310-320	112-359	67	
Gravimetric		stearic acid	313-333	200-300	73	
Spectrometric		stearic acid	313-333	100-250	43	
Chromatographic		stearic acid	313	270-1900	53	
Spectrometric		squalane	320-385	99_987	50	
Gravimetric		squalane	310-320	109_229	67	
Chromatographic		sunflower seed oil	313	178 601	76	
Gravimetric		tetracosane	315	1/0-091	/0	
Gravimetric		thebaine	310-320	108-237	0/	
Chromatographic		thuisne	291-313	59-197	04	
Gravimetric		titujone	313	49-89	36	
Gravimetric		titanium tetrachioride	298-388	0-136	25	
Snaotneutric		α -tocopherol	298-313	100–183	24	
Spectrometric		α -tocopherol	313-353	100-250	43	
Chromatographic		t-2 toxin	335-365	118-155	46	
Spectrometric		tributyrin	313-333	100-250	43	
Gravimetric		trihexylamine	310-320	110-153	67	
Gravimetric		trilaurin	313	91-253	34	
Spectrometric		trilinolein	313-333	80-250	43	
Gravimetric		trimyristin	313	95-304	34	
Gravimetric		trioctylamine	320	109-232	67	
Gravimetric		trioctylphosphine	320	109-251	67	
Gravimetric		trioctylphosphine oxide	310-320	109-200	67	
Gravimetric		triolein	313-333	200-300	73	
Spectrometric		triolein	313_353	80,250	13	
Spectrometric		tripalmitin	313_353	80-250	43	
Gravimetric		tripalmitin	212	122 207	43	
Gravimetric		tripalmitin	209 212	26 192	34	
Gravimetric		triphanulamina	296-313	86-182	24	
Gravimetric		tripnenylamine	310-320	108-201	67	
Gravimetric		triphenylmethane	303-323	70-414	56	
Gravimetric		triphenylphosphate	310-320	112-281	67	
Gravimetric		triphenylphosphine	310-320	109–277	67	
Gravimetric		tristearin	313-333	200-300	73	
Spectrometric		tristearin	313-333	80-250	43	
Gravimetric		vegetable oil	293-328	160-480	81	
Spectrometric		water	313-353	100-250	43	
Chromatographic		water	323-348	50-500	45	
Gravimetric		water	298-348	1-700	80	
			10,000,000,000		00	

trap or traps for a measured period, during which the rate of flow of CO_2 is monitored. After reweighing the trap(s) and calculating the total mass of CO_2 passing in the period, the solubility is obtained directly in terms of mole fraction. Usually the errors in the experiment are quoted as 3%-5%for all the solubilities. It is likely, however, that the lower solubilities for any isotherm will be less accurate than the higher ones, because of less efficient trapping and perhaps the smaller solute weights. Sometimes errors are quoted as being an absolute mole fraction.

An important consideration in the use of this method is that equilibrium has been reached in the extraction cell and different ways are used to ensure and check this, including the following: varying the flow rate;^{22,23} using more than one extraction cell;²² varying the distribution of the solute in the extraction cell;²³ recycling;²⁴ and saturating at a lower temperature, where the solubility is higher, before equilibrating at the required temperature.²⁵ The other important test is that all the precipitated solute has been collected after depressurizing. This can be done by using two or more successive traps and weighing both to show that the great majority of solute is collected in the first trap.²³ Problems can arise with precipitation inside the pressure-reducing valve, which can be overcome by washing out the valve after an experiment.²⁶

The amount of solute can also be determined in a flow system by observing its loss of weight in the extraction cell.27 To ensure equilibrium, the extraction cell is in sections, and the experiment is conducted so that the latter sections do not lose weight. Although flow systems are most often used with the gravimetric method, there are some cases of static systems being used. Tsekhanskaya15 in one of the earliest studies of supercritical solubility, measured the loss in weight of a pellet of naphthalene after it had been equilibrated with a supercritical fluid in a static cell. It is also possible to use a traditional phase-equilibrium view cell to measure supercritical solubilities. A weighed amount of solute is put into the cell, the solvent added in known amounts and the pressure varied at constant temperature to find the point at which solution and precipitation occurs.²⁸⁻³⁰ Some solubility data have been obtained by this method, but it is mainly used for a more comprehensive study of the solute-solvent phase diagram.

2.2. Chromatographic Methods

Most chromatographic methods used are modifications of the gravimetric method shown in Fig. 6. In one type of modification, the solute is precipitated as before in a trap, perhaps containing a solvent. The solute is then washed out of the trap, made up to volume, and analyzed by any suitable chromatographic method. In some cases the solute is precipitated directly onto a chromatographic plate. Gas chromatography (GC),³¹⁻³⁴ thin layer chromatography (TLC),^{35,36} and high performance liquid chromatography (HPLC),³⁷ including size exclusion chromatography (SEC sometimes called GPC)³⁸ are used. After calibration and analysis, followed by calculation of the mass of CO₂ passing during the sampling period as before, the method gives solubilities in terms of mole fraction directly. Accuracy comparable with the gravimetric method has been obtained, but some variants of the method, e.g., using direct precipitation onto a TLC plate, are intended only to give a rough indication of solubilities.

A second type of modification of the apparatus of Fig. 6 for chromatographic analysis, consists of removing the trap and flow meter and inserting a sampling valve between the extraction cell and the valve or back-pressure regulator. This is commonly a multiport chromatographic sampling valve, with a sample loop. Using this device a fixed volume of the saturated solution is sampled and injected directly into a chromatograph (or, alternatively, let down to atmospheric pressure, the solute dissolved in a solvent, and then injected into a chromatograph) and analysis carried out by GC,^{30,12,39} an HPLC,⁴⁰ or supercritical fluid chromatography (SFC).^{41,42} Because only small samples are needed, the extraction section of the apparatus can be small scale and the commercially available supercritical fluid extraction (SFE) systems designed for analytical applications,³⁹ or even a small static system,⁴³ can be used. The apparatus is calibrated by loading a liquid solution of the same solute of known concentration into the same sample loop. The solubility results are obtained directly in terms of concentration rather than mole fraction. Careful use of this method can also give results of accuracy comparable with the gravimetric method.

A third and very different type of chromatographic method arises from the fact that it can be shown experimentally that under some circumstances chromatographic retention in SFC is inversely proportional to solubility.⁴⁴ A number of methods are available for obtaining the proportionality coefficient and the method could be a rapid way of obtaining data of less, but still acceptable accuracy. Some data of a qualitative and untabulated type had been published by the end of 1989.^{45–47}

2.3. Spectrometric Methods

Spectroscopic analysis can also be used following a flow system and precipitation by dissolving the solute in a suitable solvent and making photometric measurements on the solution after calibration with standard solutions.⁴⁸ This method would seem to be a reliable one, although no tabulated data on pure compounds have been published.

A more convenient technique is to make absorption measurements in the UV or infrared directly in a high-pressure static equilibrium cell, but in this case a number of problems arise. These include (a) the variation in band shape with the supercritical fluid pressure, (b) variation of integrated absorption intensity of an absorption band with the nature and pressure of the solvent, and (c) adsorption of solute on the cell windows from the saturated solution.49 These problems can be addressed, respectively, by (a) measuring the integrated absorption intensity of a band,⁵⁰ (b) measuring the integrated intensities of nonsaturated solutions of known composition in the supercritical fluid, 50 and (c) varying the optical path length.⁴⁹ Not all these problems are properly treated in all publications, and in several cases extinction coefficients measured in liquids have been used incorrectly to obtain concentrations from absorption coefficients in a supercritical fluid. Pulsed NMR measurements have been made on naphthalene/CO₂ solutions as part of a wider study of the phase diagram, and solubility results consistent with previous measurements were obtained.²⁰

2.4. Miscellaneous Methods

The following four methods, which do not fit into the above categories, have been described. Naphthalene has been precipitated as the picrate from solution after trapping and the latter determined gravimetrically.⁵¹ The remaining three methods give solubilities reported graphically rather than numerically. A radioactive tracer technique has been used in a static system.⁵² Fatty acids have been analyzed by titration after extraction and trapping in a flow system,⁴⁸ and the effluent gas and precipitated solute from a flow system, produced after dropping the pressure, has been analyzed using a flame ionization detector.⁵³

3. Review and Correlation of Published Experimental Results

References to solubilities of single involatile substances in carbon dioxide published up to the end of 1989 are listed in Table 2. The temperature and pressure ranges and the category of the experimental method are given. Data given for pure substances in a tabulated form in the original publications are plotted in the many graphs of Fig. 7. An alphabetical index to the graphs is given in Table 3. Data are plotted in terms of the mole fraction at saturation. Most published data are in this form. Where data have been published as concentrations (per unit volume) the data have been converted to mole fractions using the Ely equation of state for pure carbon dioxide. ¹⁶ Table 5 contains some densities for CO₂ in moles dm⁻³, calculated from the Ely equation, for convenient approximate conversion of data from the graphs into concentration units.

The data have been correlated by fitting the data to Eq. (4) at each temperature, and from each publication, using unweighted least-squares, using the Ely equation of state for pure carbon dioxide to obtain the density. However, data below 100 bars were not included in the fitting procedure. The constants A and B thus obtained are listed in Table 4. In the minority of cases where there is more than one source of data, a decision was made that one A-B pair is superior and this is indicated by an asterisk on the A value. This decision was made on the basis of the experimental method or, failing that, on the goodness of fit of the correlation. These constants may be used to obtain solubilities for the compounds at other pressures and temperatures using the procedures outlined in Sec. 1.5. The curves calculated from these constants and Eq. (4) are shown on the graphs in Fig. 7, using the values marked by an asterisk where there is more than one A-B pair.

The majority of published tabulated data were obtained either by a gravimetric method or by using a flow system followed by gas chromatography. Estimates of errors made by the authors for these data are in the 3%-5% range. Agreement between different workers and study of the scatter of the data using Eqs. (2) and (4), the Peng-Robinson equation of state,⁵⁴ and the relationship to chromatographic retention,44 indicates that this claim is justified in general. These studies do, however, expose the fact that occasional data points lie outside this error band, and are up to 10%-15% in error, and this can be observed in Fig. 7 for particular cases. In addition, some of the lower (i.e., low-pressure) solubilities in a set of data are likely to be subject to larger errors in percentage terms than those quoted, because the trapping and analysis of smaller quantities in a gas stream is more difficult. This is sometimes, but not always, stated by the authors. The extent of this problem is difficult to assess from the original papers, when it is not discussed. It can only be said that the low values in a data set should be treated at first with more caution.

In general, data from other methods are less reliable and this is especially the case for spectroscopic methods using a high-pressure cell, where unreliable extinction coefficients are used to obtain concentrations. The effect of this can be seen in the plots of the reviewed data in Fig. 7, where some values obtained by spectroscopic techniques differ markedly from those obtained gravimetrically, for example. Before spectroscopic values are used therefore, the precise method should be studied in the original paper and a comparison of the data made with those obtained by other methods, if available, in Fig. 7. Also, in general, data obtained spectroscopically or by one of the miscellaneous methods. are presentated graphically and no estimates of error given. Exceptions, where the data are more reliable and have probable errors approaching those of the gravimetric methods. are the precipitation of naphthalene as a picrate,⁵¹ infrared studies on hydrocarbons,⁵⁰ pulsed NMR studies on naphthalene,²⁰ and some HPLC and SFC studies.⁴⁰⁻⁴²

Accuracy of mode fraction descript, Accuracy accurates a series and accuracy fraction of the method one ling direct presented fraction of the method one.
TLC parts are unumied table to give a rough fraction of the second table of table of the second table of the secon

TABLE 3. Alphabetical index to the compounds in Fig. 7.

Compound	Figure(s)	Compound	Figure(s)
1	7.15-7.18	Monocrotaline	7.107
Acriance	7.61	Mono-olein	7.125
Adamantance	7.95	Myristic acid	7.98
2-Aminobenzoic acid	7.31	Naphthalene	7.4-7.8
2-Aminonuorene	7.85	a-Naphthol	7.34
5-Aminoindole	7 9-7 14	<i>B</i> -Naphthol	7.35-7.38
Anthracene	7 127-7 130	prupinio	
	7.96	Naphthoquinone	7.33
Behenic acid	7 117-7 121	Nonadecane	7.75
Benzoic acid	7 116	Nonadecanenitrile	7.68
Biphenyl	7.79	2 Nonadecanone	7.77
Brassylic acid	7.10	Octococone	7.59.7.111
Carbazole	7.19	Octadosano	7.66
p-Chlorophenol	7.49	1 Octadecane	7.63
Cholesterol	7.108	1-Octadecanol	7.67
Decane	7.60	OctadecyImercaptan	7.07
1,10-Decanediol	1.52	Oleic acid	7.122
handlaust			7.125
Dibenzothiophene	7.20	Oxindole	7.80
2.4-Dichlorophenol	7.50	Palmitic acid	7.100-7.102
Di-N-Dodecylamine	7.53	Phenanthrene	7.23-7.27
Didodecylphosphine	7.71	Phenol	7.47
Didodecylthioether	7.70	Phenol blue	7.48
2 3-Dimethylnaphthalene	7.30,7.32	Phthalic anhydride	7.55
2.6. Dimethylnaphthalene	7.29	Pyrene	7.28
Dioctylether	7.73	Skatole	7.109
Diobenvlamine	7.51	Squalane	7.58,7.62
Dipicity interest	7.64	Stearic acid	7.103–7.104
Detriacontane	7.124	Tetracosane	7.65
n-Dotriacontante	7.76	Titanium tetrachloride	7.126
Elcosane	7.21-7.22	α -Tocopherol	7.105-7.106
Fluorene	7.112	Tributyrin	7.87
Hexachioroethane	7.54	Trihexylamine	7.57
1-Hexadecation	7.45-7.46	Trilaurin	7.88
Hexamethylochiche	7.81	Trimyristin	7.89
5-Hydroxymdoic	7.114	Trioctylamine	7.72
m-Hydroxybenzoic acid	7.113	Trioctylphosphine	7.74
o-Hydroxybenzoic acid	7.115	Trioctylphosphine oxide	7.110
p-Hydroxybenzoic acid	7.82	Triolein	7.94
Indole-3-aldenyde	7.83	Tripalmitin	7.90-7.92
Indole-3-carboxylic acid	7 97	Triphenylamine	7.79
Lauric acid	7.84	Triphenylmethane	7.56
5-Methoxyindole	7 44	TriphenyInhosphate	7.80
5-Methoxy-1-tetralone	7.43	Triphenylphosphine	7 69
6-Methoxy-1-tetralone	7.43	Tristearin	7.93
7-Methoxy-1-tetralone	7.40	Woter	71_73
Methyl-m-nitrobenzoate	7.40	water	1.1-1.5
Methyl-o-nitrobenzoate	7.39		
Methyl-p-nitrobenzoate	7.41		

FIG. 7. Published tabulated data for solubilities in carbon dioxide, shown as points, and curves obtained by fitting an isotherm to Eq. (4). The constants used for the correlation curves shown are given in Table 5. An alphabetical index to the compounds in the figure is given in Table 3.

FIG. 7. Continued

BARTLE ET AL. OSMO SA BARTLE ET AL. OSMO SO SEN LISULOS

FIG. 7. Continued

FIG. 7. Continued

BARTLE ET AL.

FIG. 7. Continued

FIG. 7. Continued

Doutimo Continued

FIG. 7. Continued

739

FIG. 7. Continued

FIG. 7. Continued

BARTLE ET AL.

FIG. 7. Continued

FIG. 7. Continued

FIG. 7. Continued

FIG. 7. Continued

BARTLE ET AL.

FIG. 7. Continued

SOLUBILITIES OF COMPOUNDS IN SUPERCRITICAL CARBON DIOXIDE

The state of the second		Т	Р			$B \times 10^3$	Refer-
Compound		(K)	(bars)	A hor		(m ³ kg ⁻¹)	ence
Acridine	13.77	308.0	100-360	- 13.4711*	0.015	13.39	59
Actions		308.0	120-350	- 10.2254*		9.82	63
		318.0	100-360	- 9.9604		10.34	59
		328.0	100-360	- 8.7478		9.66	59
		343.0	100-400	- 7.7046		9.57	59
Adamantane		343.0	130-660	- 3.2223		5.32	50
1		362.5	150-750	- 2.3603		5.23	50
		382.0	180-750	- 1.5552		5.07	50
		402.0	170-600	- 1.1149		5.52	50
2-Aminobenzoic acid		308.0	120-350	- 11.8151		9.29	63
2-Aminofluorene		318.0	110-370	- 15.2469		14.02	59
L-T Linning		328.0	110-370	- 11.9043		11.29	59
		343.0	110-370	- 9.9369		10.32	59
5-Aminoindole		308.2	100–190	- 10.0399		6.98	41
Anthracene		303.0	100-420	- 14.2435		10.95	56
		308.0	100-280	- 16.5693		14.36	31
		308.0	120-350	- 11.5029*		8.32	62
		308.0	140-480	- 11.8762		7.84	49
		313.0	100-200	- 10.0052*		6.43	27
		313.0	100-300	- 11.0643		7.39	49
		318.0	100-280	- 12.6634*		10.68	31
		318.0	100-280	- 12.7553		9.84	49
		323.0	100-420	- 12.1867*		10.41	56
		323.0	100-380	- 11.9161		9.25	49
		323.0	100-620	- 9.7933		7.00	85
		343.0	110-420	- 9.1781*		8.43	56
		343.0	110-1060	- 8.2466		6.36	49
		348.0	100-1100	- 7.9587*		6.32	49
		353.0	100-1200	- 7.5684*		6.16	49
		353.0	200-900	- 7.9508		6.75	85
		373.0	100-470	- 7.7461		8.00	85
		403.0	120-340	- 6.6287		8.75	85
		423.0	100-240	- 6.0238		10.07	85
D to sin acid		313.0	100-260	- 8.0300		5.16	43
Benenic acid		333.0	100-210	- 6.2551		3.55	43
bise signature		308.0	100-370	- 10.6194*		11.39	59
Benzoic acid		308.0	120-280	- 10.5378		11.34	63
		318.0	120-280	- 8.7151*		10.18	23
		318.0	100-370	- 9.0029		10.45	59
		328.0	120-280	- 8.2501*		10.61	23
		328.0	100-370	- 7.4450		9.45	59
		338.0	120-280	- 7.3430		10.41	23
		343.0	100-370	- 6.6632		9.93	59
		308.8	100-440	- 5.2613		7.32	12
Biphenyl		318.4	150-450	- 4.7963		7.68	12
		322.5	150-470	- 4.4365		7.73	12
		328.2	100-490	- 5.2316		9.55	12
		330.5	350-430	- 10.6870		15.73	12
at said		328.0	150-370	- 12.2633		10.32	67
Brassylic acid		343.0	150-370	- 10.5682		9.61	67
		313.1	100-200	- 10.4181		5.75	27
Carbazole		309.0	100-240	- 7.9162		11.14	22
p-Chlorophenol		313.0	100-210	- 18,7304		18.95	43
Cholesterol		333.0	120-210	- 18.2216		21.57	43
		353.0	150-210	- 16.8527		22.73	43
		343.0	110-130	- 5 3432		18 39	50
Decane		362.5	120-150	- 3 8180		15.77	50
		382.0	120-130	- 3 3014		16.27	50
		402.0	120-180	- 2 2291		14.82	50
		318.0	200-310	- 10 1280		8 05	50
1,10-Decanediol		323.0	130-310	- 9.9801		9.50	58
		328.0	130-310	- 8 5464		8 24	38
		309.2	100-280	- 11 4979		11.94	28
Dibenzothiophene		328.2	100-280	-70188		7.09	08
		338.2	100-280	- 7 1054		1.98	68
		309.0	100-210	_ 7 2220		9.05	68
2.4-Dichlorophenol		310.0	110-210	- 12 2529		11.84	22
Di-N-Dodecylamine		320.0	110_210	- 12.2529		10.64	67
		320.0	120 150	- 10.9314		9.91	67
Didodecylphosphine		520.0	120-150	- 0.3008		9.14	67

TABLE 4. Correlation constants A and B in Eq. (4) calculated from literature solubility data—Continued

Compound of	Ex 10	T	P (bars)	4	T	$B \times 10^3$ (m ³ kg ⁻¹)	Refer-
Compound		(K)	(bars)	A	(A)	(111 Kg)	chee
Didodecylthioether		310.0	110-200	- 12.4260		13.77	67
20		320.0	110-200	- 10.7812		12.52	67
2,3-Dimethylnaphthalene		308.0	100-280	- 7.8840*		9.20	23
		308.2	100-280	- 7.9335		9.25	26
		318.0	100-280	- 5.6941		7.27	23
		328.0	100-280	- 4.9307		7.02	23
2,6-Dimethylnaphthalene		308.0	100-280	- 8.5371		9.52	23
		318.0	100-280	- 6.6992		8.34	23
		328.0	100-280	- 5.1027		7.16	23
Dioctylether		320.0	100–140	- 7.6615		14.00	67
Diphenylamine		305.4	100-170	- 8.7591		9.77	55
		310.2	100-220	- 8.1720		9.64	55
n-Docosane		310.0	110-210	- 17.5744		22.11	67
		320.0	110–190	- 12.6631		16.86	67
n-Dotriacontane		308.0	100–160	- 11.3146		8.23	82
Eicosane		310.0	110-280	- 9.4365		11.77	67
		320.0	110-280	- 8.2179		11.11	67
Fluorene		303.0	100-350	- 9.7359		9.77	56
		308.0	100-420	- 8.6441		8.95	56
		313.1	100-200	- 6.6763		6.98	27
		323.0	100-420	- 6.5610		7.68	56
		343.0	100-420	- 6.0193		8.57	56
Hexachloroethane		308.0	100-280	- 3.8398		5.98	23
and the second		318.0	100-280	- 2.6556		5.32	23
		328.0	100-280	- 2.5590		5.98	23
1-Hexadecanol		318.0	150-420	- 9.0257	343.0	11.52	69
· · · · · · · · · · · · · · · · · · ·		328.0	140-420	- 8,5080		11.84	69
		338.0	140-380	- 7.5966		11.43	69
Hexamethylbenzene		303.0	100-350	- 8 7410		8.43	56
Trendine they to end one		308.0	150-350	- 7 1496		7.07	30
		323.0	100-350	- 6 3018		7.25	56
		343.0	100-490	- 5 2286		7 34	56
5-Hydroxyindole		343.0	100-190	- 11 6896		9.43	41
m-Hydroxybenzoic acid		373.0	200-420	9.0621		7 73	72
a Hudroxybenzoic acid		373.0	200-420	1 2468		6.59	72
-Hydroxybenzoic acid		373.0	200-420	- 4.2408		0.09	72
Indola 2 aldebude		373.0	100 160	11 6202		6.45	12
Indole-3-aldenyde		308.2	100-100	- 11.0202		6.82	41
Indole-3-carboxylic acid		308.2	100-200	- 12.0007	GRIE	17.64	41
Lauric acid		313.0	100-230	- 13.1401		7.04	34
5-Methoxyindole		308.2	100-190	- 1.9283		7.53	42
5-Methoxy-1-tetralone		308.0	100-280	- 0.4528		1.52	57
6-Methoxy-1-tetralone		308.0	100-280	- 10.3271		12.75	57
7-Methoxy-1-tetralone		308.0	100-280	- 10.2554		14.45	57
Methyl-m-nitrobenzoate		308.0	100-280	- 9.3090		12.07	57
Methyl-o-nitrobenzoate		308.0	100-280	- 8.8871		12.40	57
Methyl-p-nitrobenzoate		308.0	100-280	- 9.5920		11.98	57
Monocrotaline		308.2	100-280	- 16.4638		12.80	33
		318.2	100-280	- 11.7091		1.95	33
		328.2	100-280	- 9.1428		5.39	33
Mono-olein		308.0	100-180	- 14.7600		13.39	82
		333.0	130–190	- 11.9936		11.20	82
Myristic acid		313.0	100-250	- 11.5409	0.0206	14.23	34
Naphthalene		308.0	100-330	- 5.7394*		8.00	15
		308.0	120-240	- 5.5861		7.82	39
		308.0	100-250	- 6.1017		8.50	12
		308.0	100-280	- 6.4679		8.86	68
		308.0	120-200	- 6.0850		8.45	84
		308.0	100-130	- 7.5834		10.16	82
		318.0	100-310	- 3.6958*		6.50	15
		318.0	100-280	- 3.3817		6.07	57
		323.0	100-380	- 3.4633		6.70	20
		328.0	100-290	- 3.5284*		7.50	12
		328.0	110-280	- 3.8078		7.84	57
88		328.0	120-320	- 3.6695		7.59	20
		328.0	100-280	- 3.8227		7.91	68
		328.0	100-320	- 3.4745		7.41	15
		331.5	120-500	- 3.8054		8.02	20
		333.4	100-290	- 3.6167		8.50	12
		337.9	140-230	- 3.6285		8.77	ontide 12

SOLUBILITIES OF COMPOUNDS IN SUPERCRITICAL CARBON DIOXIDE

		T	Р		$B \times 10^3$	Refer-
Compound	() (((((((((((((((((((K)	(bars)	A	$(m^3 kg^{-1})$	ence
		208.0	100 160	9 1012	7.90	22
α-Naphthol		318.0	100-150	- 6.1015	1.89	32
		328.0	100-130	- 5 8110	6.57	32
are tabal		308.0	100-360	- 10 4090*	9.50	52
B-Naphthol		308.0	100-160	- 10,1571	9.30	32
		308.0	100-370	- 13 6898	13.07	50
		318.0	100-370	- 9 4624*	9.09	50
		318.0	100-150	- 7 7998	7 30	32
		328.0	100-370	- 7 8206*	8.00	50
		328.0	100-170	- 7 2368	7.66	32
		343.0	100-370	- 7.0293	8 14	50
		318.0	100-370	6 8600	8 20	50
Naphthoquinone		328.0	100-370	- 6 6700	8 75	50
		343.0	100-370	- 6 2421	9.50	50
		310.0	110-210	11 0223	15 34	67
Nonadecane		320.0	110-210	7 1305	9.64	67
		320.0	110-210	- 7.1303	12.69	67
Nonadecanenitrile		320.0	110_210	- 9.8321	11.50	67
2-Nonadecanone		307.0	120, 280	- 7.8880	6.07	30
Octacosane		210.6	120-200	- 9.0389	0.07	30
		222.4	120-290	- 9.2025	0.10	30
		323.4	120-330	- 8.9944	0.91	50
		323.7	120 200	- 5.3007	4.04	30
		325.2	120-290	- 9.01/2	9.30	50
		343.2	200-810	- 8.2050	10.00	50
		362.5	240-570	- 8.9345	12.32	50
Octadecane		310.0	120-210	- 15.2936	20.59	6/
		320.0	140-200	- 12.4901	18.23	6/
1-Octadecanol		310.0	110-280	- 8.7462	8.20	67
	11.114 E	320.0	110-280	- 8.2865	9.48	67
Octadecylmercaptan		310.0	110-210	- 12.6438	15.29	67
		320.0	110-210	- 8.5600	11.14	67
Oleic acid		308.0	100–180	- 11.1388	11.11	82
Oncie		313.0	100-260	- 12.4173*	13.02	43 manare 1
		333.0	130–180	- 9.0620	9.79	82
		333.0	100-260	- 10.2540	14.57	43
Orindole		308.2	100–190	- 10.7912	9.66	standard 41 standard
Palmitic acid		298.0	100–190	- 13.3962	10.77	24
Painitie delle		313.0	100-250	- 11.5194*	11.52	34
		313.0	100-170	- 7.2038	6.00	24
		318.0	140-360	- 11.7847	14.00	69
		328.0	140–580	- 10.7342	13.95	69
		338.0	140-580	- 10.0706	14.16	69
an threne		303.0	100-420	- 10.6591	10.23	56
Phenantinent		308.0	100-350	- 10.0056	9.95	39
		313.0	100-550	- 11.4694*	12.36	65
		313.1	100-200	- 6.7724	6.39	27
		318.0	120-280	- 7.9321	8.50	23
		323.0	100-420	- 8.0300	8.89	56
		328.0	120-280	- 7.2147	8.48	23
		338.0	120-280	- 6.4214	8.18	23
		343.0	100-420	- 7.7438	9.84	56
and the second sec		309.0	100-250	- 4.9257	7.16	22
Phenol		333.0	110-240	- 2.8248	6.55	22
		308.0	100-300	- 14.5107	10.91	66
Phenol blue		308.0	120-350	- 10.3563	11.05	63
Phthalic anhydride		308.0	100-350	- 12.5753	10.73	56
Pyrene		323.0	110-350	- 10.9059	10.09	56
		343.0	100-420	- 10.2415	11.05	56
		308.2	100-190	- 6.7598	7 30	10
Skatole		320.0	110-240	- 9 6692	11.42	42
Squalane		323.6	120-900	_ 0 3440	11.45	6/
1.1.2.1.		329.0	310_800	7 5007	11.34	50
		342.0	170_400	_ 10 4022	9.93	50
		262.9	200 270	10.4032	14.41	50
		302.8	200-370	- 10.1945	15.79	50
		382.3	200-370	- 10.2417	17.36	50
stearic acid		310.0	100 200	- 5.5392	3.07	67
Multi a state		313.0	100-260	- 6.9297	5.00	43
		320.0	110-370	- 8.8289	8.73	67

TABLE 4. Correlation constants A and B in Eq. (4) calculated from literature solubility data—Continued

	Т	Р		$B \times 10^3$	Refer-
Compound	(K)	(bars)	A	$(m^3 kg^{-1})$	ence
whether the second second		100.070			
	333.0	100-260	- 3.3157	3.30	43
<i>n</i> -Tetracosane	310.0	110-260	- 7.4810	6.68	67
	320.0	110-260	- 12.1224	15.20	67
Titanium tetrachloride	328.0	60-85	- 1.0296	15.07	25
	349.0	60–105	- 0.8803	13.36	25
	368.0	60–140	0.0524	8.18	25
a-Tocopherol	298.0	100–160	- 9.3689	7.57	24
	313.0	100–190	-19.8253	21.79	24
	313.0	100–260	- 14.5140*	13.66	43
	333.0	100–260	- 12.3815	16.00	43
	353.0	100–260	- 10.4634	18.61	43
Tributyrin	313.0	100-210	- 11.5596	14.61	43
	333.0	120-260	- 10.2935	16.27	43
Trihexylamine	310.0	110–140	- 15.5076	22.23	67
	320.0	110–160	- 7.8968	13.07	67
Trilaurin	313.0	100–260	- 16.1804	18.11	34
Trimyristin	313.0	100-310	- 14.7328	14.20	34
Trioctylamine	320.0	110–240	- 8.9313	11.43	67
Trioctylphosphine	320.0	110–260	- 8.5935	10.98	67
Trioctylphosphine oxide	310.0	110-210	- 13.9645	17.27	67
	320.0	110-210	- 11.2762	14.52	67
Triolein	313.0	100-260	- 11.1770	9.43	43
	323.0	100-260	- 8.6291	11.39	43
	343.0	100-260	- 9.8101	9.45	43
	353.0	100-260	- 7.8700	12.09	43
Tripalmitin	298.0	100–190	- 10.0929	3.61	24
	313.0	110–160	- 10.0195	3.70	24
	313.0	100-260	- 9.8100*	6.48	43
	313.0	120-300	- 20.2696	17.14	34
	333.0	100-260	- 9.2243	7.02	43
	353.0	100-260	- 7.9711	6.41	43
Triphenylamine	320.0	110-210	- 14.4011	15.57	67
Triphenylmethane	303.0	100-420	- 11.1948	10.89	56
	313.0	100-350	- 9.1482	9.50	56
	323.0	100-420	- 8.6541	9.50	56
Triphenylphosphate	310.0	110-280	- 10.7632	11.82	67
	320.0	110-280	- 10.1354	11.57	67
Triphenylphosphine	310.0	110-280	- 10.6076	10.86	67
Statestics Reitole	320.0	110-280	- 9.2576	10.16	67
Tristearin	313.0	100-210	- 19.1540	15.57	43
A show the second	333.0	120-260	- 17.8755	16.52	43
Water	304.0	100-560	- 6.6600	7.50	80
	323.0	100-720	- 2.6177*	4.16	80
	323.0	100-260	- 2.0226	2.98	43
	348.0	100-720	- 1.0174	3.41	80
	353.0	100-260	- 1.0428	3.30	43

TABLE 5. Densities of pure carbon dioxide in mol dm⁻³ from the Ely equation of state.16

P(bars)	100	150	200	250	300	350	400
<i>T</i> (K)	215	0.010-010	,	00	-001.00		0.582
308	16.253	18.555	19.706	20.511	21.141	21.665	22.115
313	14.379	17.764	19.117	20.018	22.525	21.270	21.750
318	11.441	16.897	18.500	19.510	20.263	20.869	21.381
323	8.809	15.939	17.853	18.988	19.811	20.464	21.009
328	7.414	14.888	17.177	18.452	19.351	20.054	20.634
333	6.604	13.769	16.472	17.902	18.884	19.639	20.256
338	6.052	12.633	15.744	17.341	18.411	19.221	19.877
343	5.639	11.547	15.002	16.770	17.932	18.800	19.496
348	5.312	10.572	14.257	16.194	17.450	18.377	19.113
353	5.042	9.738	13.524	15.616	16.966	17.952	18.731

755

4. Acknowledgments

The authors would like to thank Miss Anna Riehs for entering the published data onto the computer.

The authors gratefully acknowledge financial support from the U.K. Science and Engineering Research Council.

5. References

- Hannay, J. B., and Hogarth, J., Proc. R. Soc. London, 29, 324 (1879). ²McHugh, M. A., and Krukonis, V. J., Supercritical Fluid Extraction-Principles and Practice (Butterworth, Stoneham, 1986).
- ³Paulaitis, M. E., Penniger, J. M. L., Gray, R. D., Jr., and Davidson, P., Chemical Engineering at Supercritical Fluid Conditions (Ann Arbor Science, Ann Arbor, MI 1983).
- Prausnitz, J. M., Lichtenthaler, R. N., and de Azevedo, E. G., Molecular Thermodynamics of Fluid Phase Equilibria, 2nd ed. (Prentice-Hall, New York, 1986).
- 4ª Charpentier, B. A., and Sevenants, M. R., "Supercritical Fluid Extraction and Chromatography: Techniques and Applications," ACS Symposium Series 366, Washington, DC, 1988.
- Johnston, K. P., and Penninger, J. M. L., "Supercritical Fluid Science and Technology," ACS Symposium Series 406, Washington, DC, 1989.
- Moyler, D. A. in Distilled Beverage Flavour Recent Developments, edited by J. R. Piggott and A. Paterson (Ellis Horwood, Chichester, 1989), pp. 319-328.
- Subramaniam, B., and McHugh, M. A., Ind. Eng. Chem. Process Des. Dev., 25, 1 (1986).
- Hawthorne, S. B., Anal. Chem., 62, 633A (1990).
- Kurnik, R. T., and Reid, R. C., Fluid Phase Equil. 8, 93 (1982).
- "Weast, R. C., Handbook of Chemistry and Physics, 52nd ed. (CRC, Boca Raton, FL 1972), p. E43.
- 98 Hirschfelder, J. O., Curtiss, C. F., and Bird, B. R., Molecular Theory of Gases and Liquids, 3rd ed. (Wiley, New York, 1966), p. 1028.
- 10 Rowlinson, J. S., and Swinton, F. L., Liquids and Liquid Mixtures, 3rd ed. (Butterworths, London, 1982), Chap. 6.
- ¹¹Gasem, K. A. M., and Robinson, R. L., J. Chem. Eng. Data, 30, 53 (1985).
- ¹²McHugh, M., and Paulaitis, M. E., J. Chem. Eng. Data, 25, 326 (1980).
- ¹³Scott, R. L., and Van Konynenburg, P. H. Discuss. Faraday Soc., 49, 87 (1970).
- 14 Johnston, K. P., Peck, D. G., and Kim, S., Ind. Eng. Chem. Res., 28, 1115 (1989).
- ¹⁵Tsekhanskaya, Yu. V., Iomtev, M. B., and Mushkina, E. V., Sov. J. Phys. Chem., 38, 1173 (1964).
- 16 Ely, J. F., Proceedings of the 65th Annual Convention of the Gas Processors Association, San Antonio, TX, 1986, pp. 185-192.
- 17 Weast, R. C., in Ref. 9, p. D164.
- ¹⁸Bradley, R. S., and Cleasby, T. G., J. Chem. Soc., 1690 (1953).
- 19Weast, R. C., in Ref. 9, p. C716.
- ²⁰Lamb, D. M., Barbara, T. M., and Jonas, J., J. Phys. Chem., 90, 4210 (1986).
- ²¹Johnston, K. P., and Eckert, C. A., AIChE J., 27, 773 (1981).
- ²²Van Leer, R. A., and Paulaitis, M. E., J. Chem. Eng. Data, 25, 257 (1980).
- ²³Kurnik, R. T., Holla, S. J., and Reid, R. C., J. Chem. Eng. Data, 26, 47 (1981).
- 24 Ohgaki, K., Tsukahara, I., Semba, K., and Katayama, T., Kagaku Kogaku Ronbunshu, 13, 298 (1987).
- ²²Tolley, W. K., and Tester, L. S., "Supercritical CO₂ solubility of TiCl₄," U. S. Bureau of Mines Report of Investigations 9216, 1989.
- ²⁶Moradinia, I., and Teja, A. S. Fluid Phase Equil., 28, 199 (1986).
- ²⁷Kwiatkowski, J., Lisicki, Z., and Majewski, W., Ber. Bunsenges. Phys. Chem., 88, 865 (1984).
- ²⁸Alwani, Z., Rev. Sci. Instrum. 49, 944 (1978).
- ²⁹Alwani, Z., Angew. Chem. Int. Ed. Engl., 19, 623 (1980).
- ³⁰McHugh, M. A., Seckner, A. J., and Yogan, T. J., Ind. Eng. Chem. Fundam., 23, 493 (1984).
- ³¹Kosal, E., and Holder, G. D., J. Chem. Eng. Data, 32, 148 (1987).
- 32 Tan, C. S., and Weng, J. Y., Fluid Phase Equil., 34, 37 (1987).
- ³³Schaeffer, S. T., Zalkow, L. H., and Teja, A. S., Fluid Phase Equil., 43, 45
- ³⁴Bamberger, T., Erickson, J. C., Cooney, C. L., and Kumar, S. K., J. (1988).

Chem. Eng. Data, 33, 327 (1988).

- 35 Stahl, E., Schilz, W., Schutz, E., and Willing, E., Angew. Chem. Int. Ed. Engl., 17, 731 (1978).
- ³⁶Stahl, E., and Quirin, K. W., Fluid Phase Equil., 10, 269 (1983).
- ³⁷Pritchard, A. M., Peakall, K. A., Smart, E. F., and Bignold, G. J., Water Chem. Nucl. React. Syst., 4, 233 (1986).
- ³⁸Kumar, S. K., Chhabria, S. P., Reid, R. C., and Suter, U. W., Macromolecules, 20, 2550 (1987).
- ³⁹Dobbs, J. M., Wong, J. M., and Johnston, K. P., J. Chem. Eng. Data, 31, 303 (1986).
- 40Schafer, K., and Baumann, W., Fresenius Z. Anal. Chem., 332, 122 (1988).
- ⁴¹Nakatani, T., Ohgaki, K., and Katayama, T., J. Supercrit. Fluids 2, 9 (1989).
- ⁴²Sako, S., Shibata, K., Ohgaki, K., and Katayama, T., J. Supercrit. Fluids, 2, 3 (1989).
- 43Chrastil, J., J. Phys. Chem. 86, 3016 (1982).
- 44Bartle, K. D., Clifford, A. A., and Jafar, S. A., J. Chem. Soc. Faraday Trans., 86, 855 (1990).
- ⁴⁵Smith, R. D., Udseth, H. R., and Wright, B. W., in Supercritical Fluid Technology, edited by J. M. L. Penninger, M. Radosz, M. A. McHugh, and V. J. Krukonis (Elsevier Science, Amsterdam, 1985), pp. 191-223.
- ⁴⁶Smith, R. D., Udseth, H. R., Wright, B. W., and Yonker, C. R., Sep. Sci. Tech., 22, 1065 (1987).
- ⁴⁷Barker, I. K., Bartle, K. D., and Clifford, A. A., Chem. Eng. Commun., 68, 177 (1988).
- ⁴⁸Gmuer, W., Bosset, J. O., and Plattner, E., Lebensm-Wiss. Technol., 19, 419 (1986).
- 49Zerda, T. W., Wiegand, B., and Jones, J., J. Chem. Eng. Data, 31, 274 (1986).
- ⁵⁰Swaid, I., Nickel, D., and Schneider, G. M., Fluid Phase Equil., 21, 95 (1985).
- ⁵¹Diepen, G. A. M., and Scheffer, F. E. C., J. Amer. Chem. Soc., 70, 4085 (1948).
- ⁵²Ewald, A. H., Trans. Faraday Soc., 49, 1401 (1953).
- ⁵³Czubryt, J. J., Myers, M. N., and Giddings, J. C., J. Phys. Chem., 74, 4260 (1970).
- ⁵⁴Peng, D. Y., and Robinson, D. B., Ind. Eng. Chem. Fundam., 15, 59 (1976).
- ⁵⁵Tsekhanskaya, Yu. V., and Mushkina, E. V., Sov. J. Phys. Chem., 36, 1177 (1962).
- ⁵⁶Johnston, K. P., Ziger, D. H., and Ekert. C. A., Ind. Eng. Chem. Fundam., 21, 191 (1982).
- ⁵⁷Chang, H., and Morrell, D. G., J. Chem. Eng. Data, 30, 74 (1985).
- ⁵⁸Pennisi, K. J., and Chimowitz, E. H., J. Chem. Eng. Data, **31**, 285 (1986).
- ⁵⁹Schmitt, W. J., and Reid, R. C., J. Chem. Eng. Data, **31**, 204 (1986).
- ⁶⁰Ebeling, H., and Franck, E. U., Ber. Bunsenges. Phys. Chem., 88, 862 (1984).
- ⁶¹Najour, G. C., and King, A. D., Jr., J. Chem. Phys., 45, 1915 (1966).
- 62 Dobbs, J. M., and Johnston, K. P., Ind. Eng. Chem. Res., 26, 1476 (1987).
- 63 Dobbs, J. M., Wong, J. M., Lahiere, R. J., and Johnston, K. P., Ind. Eng. Chem. Res., 26, 56 (1987).
- ⁶⁴Stahl, E., and Willing, E., Mikrochim. Acta, 2, 465 (1980).
- ⁶⁵Eisenbeiss, J., "A Basic Study of the Solubility of Solids in Gases at High Pressures," Final report, Contract No. DA18-108-AMC-244 (A), Southwest Research Institute, San Antonio, TX, 1964.
- ⁶⁶Kim, S., and Johnston, K. P., AIChE J., 33, 1603 (1987).
- ⁶⁷Schmitt, W. J., and Reid, R. C., Chem. Eng. Commun. 64, 155 (1988).
- ⁶⁸Mitra, S., Chen, J. W., and Viswanath, D. S., J. Chem. Eng. Data, 33, 35 (1988).
- ⁶⁹Kramer, A., and Thodos, G., J. Chem. Eng. Data, 33, 230 (1988).
- ⁷⁰Fattori, M., Bulley, N. R., and Meisen, A., J. Am. Oil Chem. Soc., 65, 968 (1988).
- ⁷¹Paulaitis, M. E., McHugh, M. A., and Chai, C. P., in Chemical Engineering at Supercritical Fluid Conditions, edited by M. E. Paulaitis et al. (Ann Arbor Science, Ann Arbor, MI, 1983), pp. 139-158.
- ⁷²Krukonis, V. J., and Kurnik, R. T., J. Chem. Eng. Data, **30**, 247 (1985).
- ⁷³Brunetti, L., Daghetta, A., Fedeli, E., Kikic, I., and Zanderighi, L., J. Am. Oil Chem. Soc., 66, 209 (1989).
- ⁷⁴Stahl, E., and Glatz, A., Fette. Seifen. Anstrichmittel, 86, 346 (1984).
- 75Stahl, E., Quirin, K. W., Glatz, A., Gerard, D., and Rau, G., Ber. Bunsenges. Phys. Chem., 88, 900 (1984).
- ⁷⁶Stahl, E., Schutz, E., and Mangold, H. K., J. Agric. Food Chem., 28, 1153 (1980).

(SSR) (String Change (String of)

"Barrie K. D., Chilara, A. & and Julie, S. A., J. Class. Soc. Providely Trans. 86,855 (1990).

⁷⁷Friedrich, J. P., U. S. Patent No. 4,466,923 (21 August 1984).

⁷⁹Klein, T., and Schulz, S., Ind. Eng. Chem. Res., 28, 1073 (1989).

⁸⁰Wiebe, R., and Gaddy, V. L., J. Am. Chem. Soc., 63, 475 (1941).

⁸¹de Filippi, R. P., Chem. Ind., 390 (1982).

⁷⁸Friedrich, J. P., and Pryde, E. H., J. Am. Oil Chem. Soc., 61, 223 (1984).

82King, M. B., Alderson, D. A., Fallaha, F. H., Kassim, D. M., Kassim, K.

- Senits S. D. Odsen, A. S. C. and Warph E. W. G. Sanorrishi, phase formed age, edited by 1 M. C. and anger. M. a sheet, M. A. Schladh, Formed age, edited by 1 M. C. and anger. M. a sheet, M. A. 2019.
- "Smith R. D., Udans H. J., Wilson B. W., and Yonkar, C. N. Sep. Sci. Tech. 23 (106) (1977).
- ¹ Back & J. Bude, E. G. and thera, A. C. Cren, M. S. Sannar, 88, 177 (1972).
- "Grauer, "V. Board, I. O., and S. Sterrer, P., Rosenari, P. S. (1996) 419(4986)
- "Zerda, GojW., Wiegand, in and Jones, J., J. Chem. Eng. 1960, 201 219
- Discardo A. M. and Scholor, S. E. C. & Americanno Soc. In such
 - Paula, A. M., Titter Facatar Soc. 49, 1901 (1993)
- The second se
- ¹⁰ Technologia, Yu. V., and MuShkola, E. V. 201, A Phys. Advances (127) (1983).
- ¹⁰ Johnston, K. P., Ziger, D. H., and Ekert, C. A., 198, 199, USum (1997). (1980) 21, 191 (1987).
- ⁵Cherne Hannell, P. So. J. Cons. Log. Data, 20, 74 (1982).⁶Cherne H. and Chirachine P. J. Cons. Eng. Cons. 31, 235 (1996).
- ¹⁹Schmith P. and K. ef, R. K., J. Chen, Con. Ont. 41, 204 (Quart, p. ¹⁹Ehring, R., and Francic F. U., Der Jamesuger, Phys. Chem. 38, 762
- "Najour G. C. and K. ng. add. in . I chose films. 45, 1913 (1966).
- (1987) Deve 1 M. Wood 1 M. Ashire N. J. and Johnston K. P. Ind. Bay
 - Chem. Ro. 28, 56 (1981)
 - M. C. and Willing, E. Mileracivity Acta A son (1990)
- ⁶ Exercises, F., "A Basic Study of the Solutility of Solution Gauss of Physics Pressures," Fruid report, Contract No. D., 18 (08-AMC-144 (A), Scottle water Research Institute, Son Automia, TX, 1964.
 - Find Strand Solitation, A. P. Allan L. S. Inst. (1997)
- ¹⁹ Milling, S., Ching, F. Wujand Yikowath, D. S. J. Chun, Eng. Data, 33, 35 (1988).
- A Langer, A., and Proto, Sp. J. Chart, and Data, and A. Marker, A. J. Am. Off Clem. Soc., 65, 968 "Frattern, M., Buller, N. K., and Mener, A. J. Am. Off Clem. Soc., 65, 968 (1999).
- Would Hayles, H. Mehlugh, M. A. and Grad, C. F. in Chemical Inspirators on a sportational Phase Conditions, edited by M. E. Paralatis et al. (Artic Articles and Conditions, edited by M. E. Paralatis et al. (Artic Articles and Articles and Articles and Articles and Articles and Articles (Articles and Articles and
- Antoniona V. Negard Karmik, R. T., I. Corm Eng. Data, 34, 147 (1985) Mananti, J., Daphata, A., Pedrik E., Kibig, I. and Landarishi I. J. A.e.
- (Mr. 2007) The A. Patra Science maintained M. 200 (1984) Scale E. and Glatz, A. Patra Science - maintained M. 200 (1984) Scale E. Colump K. W. Clatze, A. Gerard, D. and Ray, G. 200, Bun-
- Constant Disconteners, R. K., R. K. Stopping, Hosting, Reputer, 55, 115

M., Sheldon, J. R., and Mahmud, R. S., in Ref. 71, pp. 31-80.

- ⁸³King, M. B., Bott, T. R., Barr, M. J., Mahmud, R. S., and Sanders, N., Sep. Sci. Tech., 22, 1103 (1987).
- ⁸⁴Sako, S., Ohgaki, K., and Katayama, T., J. Supercrit. Fluids, 1, 1 (1988).
 ⁸⁵Rössling, G., and Franck, E. U., Ber. Bunsenges. Phys. Chem., 87, 882 (1983).
 - 5. References
- Trease, T.B. and Negath, J. Proc. R. Soc. London, CS. 124 (1979).
- School and Markey Detailer of the Arrow R. D., M. and Davidson F. Sanialitsi M. E. Ferniger, J. MPL, Gray, R. D., M., and Davidson F. Construct. Environmental on Supermitted Fluid Conditionary (Auta Arbor.
- 12. M. Lichtenbuth RI N., and de Azevedozh. Ou Malendar Jammer of Phrid Place Boul Sele 2nd ed. (Perusse-Hall, New
- Consolert S. A., ad Seven Mar, M. R., "Supervision:Finit automtica and Communicating Prantiques and Application 27 ACS Sympovel Westborgton DC, 1988.
- A. S. P., and Permisser, J. M. L., "Supercritical Field Science and Technology," ACS Symposium Series 406, Weshloctonic DC, 1989. Series T. A. In Datalined Bearway: Flanour R-contr. Decision and edited by J. R., Parti and A. Paters an (Edit Horwood, Ch. Inciser, 1989), pp. 51.
- September, R. and McHoght M. A., Ind. Sup. Class. Doc.
 - Presidentes & Anal. Cherry, 62, 633A (1990). 1936
- F. T. and Read, R. C., Fold Phase Equit. 6, 11922.
 F. Tasebook of Comusing and Popula, Sind ed., CRC, Boot.
- Latrice I E 1973), p. EV.
- T S. and Switton, R. L., Liouler and Electer Mitatares and an
- vision K. A. M., and Rommon, R. L. J. Chem. Eng. Prot. 35, 53
- Martingho M., and Paulani, M. E., J. Chem. Eng. Duta 23, 126 (1980).
 Martin R. L., and Yau Konyuthelarg, P. H. Discurs. Faulday Soc. 49, 87
- [1] Santow, K. P. Perk, D. O. and Kim, S., Jud. Prig. Contr. Soc. 28, 1115 (200).
- 1. Starting Yu, Yu, W., Iomiss, M. H., and Mushkina, C. W., Sow, J. Phys. 1114 (1994).
- Proceedings of the FC & Annual Convention of a Case Processing Streets and Convention of a Processing Street Stre Street Stre
- The set of the set of
 - MERLIET, TE LEADIN & A HOUSE BOARD TO
- Control N., and Predicts, M. E. J. Chern. Eng. Data, 25, 137 (1980).
- ersteine Contention 1, Semba K., and Catayama T., Kagalen K.S.
- W. K. and Tester, L. S., "Supern meal QD, solubility of T. G.,"
 - A. A. S. Fjuid Phase Separt. 28, 139 (1986)
- (1984) (1984) A. S. S. S. (1984) Rav S. Instrum, (9, 944 61971), 198 (1
- A MARKEN A. Sector III of the Volume T. Lord, Base Cheve Pute The State M. A., Sectorer, A.J., and Yojang T. L., and Base Cheve Pute T. 400 (1984).
- E. and Mider, G. D. J. Cont. Roy. Parts 32, 149 (1997); and Veng, J. Y., Floid Phase Lenif. 63, 7 (1997); S. T., Zeltrow, L. H., and Tota A.S., Phys. Rev. D 1991, 13, 45
- Eddam I C. Come C. L. and Kuman S. L.