Estimation of the Thermodynamic Properties of C-H-N-O-S-Halogen Compounds at 298.15 K Cite as: Journal of Physical and Chemical Reference Data 22, 805 (1993); https://doi.org/10.1063/1.555927 Submitted: 13 March 1992. Published Online: 15 October 2009 Eugene S. Domalski, and Elizabeth D. Hearing #### ARTICLES YOU MAY BE INTERESTED IN Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https://doi.org/10.1063/1.555814 Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III Journal of Physical and Chemical Reference Data 25, 1 (1996); https://doi.org/10.1063/1.555985 Prediction of Enthalpy of Formation in the Solid State (at 298.15K) Using Second-Order Group Contributions—Part 2: Carbon-Hydrogen, Carbon-Hydrogen-Oxygen, and Carbon-Hydrogen-Nitrogen-Oxygen Compounds Journal of Physical and Chemical Reference Data **36**, 19 (2007); https://doi.org/10.1063/1.2435401 # Estimation of the Thermodynamic Properties of C-H-N-O-S-Halogen Compounds at 298.15 K #### Eugene S. Domalski and Elizabeth D. Hearing^a Chemical Kinetics and Thermodynamics Division, National Institute of Standards and Technology, Gaithersburg, MD 2089-0001 Received March 13, 1992; revised manuscript received March 1, 1993 An estimation method, which was developed by S.W. Benson and coworkers for calculating the thermodynamic properties of organic compounds in the gas phase, has been extended to the liquid and solid phases for organic compounds at 298.15 K and 101,325 Pa. As with a previous paper dealing with hydrocarbon compounds, comparisons of estimated enthalpies of formation, heat capacities, and entropies with literature values show that extension of the Benson's group additivity approach to the condensed phase is easy to apply and gives satisfactory agreement. Corresponding values for the entropy of formation, Gibbs energy of formation and natural logarithm of the equilibrium constant for the formation reaction are also calculated provided necessary auxiliary data are available. This work covers 1512 compounds containing the elements: carbon, hydrogen, oxygen, nitrogen, sulfur, and halogens in the gas, liquid, and solid phases. About 1000 references are provided for the literature values which are cited. Keywords: enthalpy of formation; entropy; estimation; heat capacity; organic compounds; thermodynamic properties. #### Contents | 1.
2. | 2.1. Hydrocarbon Compounds8092.2. Organic Oxygen Compounds809 | 3. | Comparison between second-order group additivity approach (Benson) and the extended second-order group additivity approach (Pedley) | | |------------------|--|-----|---|-----| | | 2.3. Organic Nitrogen Compounds | | List of Tables | | | | 2.5. Organic Halogen Compounds 812 | | | | | | 2.6. Comparison with an extended second- | 1. | C-H-N-O-S-Halogen Families | 814 | | | order group-additivity scheme 813 | 2. | Listing of Groups and Group Values | - | | | 2.7. Summary and Conclusions 813 | 3. | General Definitions and Examples of Nota- | | | 3 | Tables of C-H-N-O-S-Halogen Compounds. 814 | | tions for Organic Compounds | | | 4. | Acknowledgements | 4. | Normal alkanes | 830 | | 5. | References | 5, | Tertiary branched alkanes | | | | | 6. | Quaternary branched alkanes | 842 | | | Appendices | 7. | Linear alkenes | 846 | | | •• | 8. | Branched alkenes | 852 | | 1. | Comparison of literature data for enthalpies | 9. | Alkyne hydrocarbons | | | | and entropies of fusion and enthalpies of | 10. | Aromatic hydrocarbons CH-01 | 863 | | | vaporization with estimated differences | 11. | Aromatic hydrocarbons CH-02 | 871 | | | $[\Delta_t H^{\circ}(\text{solid}) - \Delta_t H^{\circ}(\text{liq})], [S^{\circ}(\text{solid}) - S^{\circ}(\text{liq})]$ | 12. | Cyclic hydrocarbons CH-01 | 887 | | | $[\Delta_t H^{\circ}(\text{liq}) - \Delta_t H^{\circ}(g)], \text{ at } 298.15 \text{ K} \dots 1152$ | 13. | Cyclic hydrocarbons CH-02 | 893 | | 2. | - · · · · · · · · · · · · · · · · · · · | 14. | Cyclic hydrocarbons CH-03 | 902 | | | single compound as its source 1153 | 15. | Alcohols, diols, triols, phenols | 909 | | | • | 16. | Linear, branched, and cyclic ethers | 926 | | | | 17. | Aldehydes | 935 | | | | 18. | Ketones | 938 | | ^a Pre | esent address: 2247 Regina Drive, Clarksburg, MD 20871. | 19. | Linear, branched, cyclic, and aromatic acids. | 945 | | .0.10 | 2002 by the VIO Commence of Commence on babelle of the Viele of | 20. | Anhydrides | 964 | | | 993 by the U.S. Secretary of Commerce on behalf of the United tes. This copyright is assigned to the American Institute of Physics | 21. | Esters and lactones | 966 | | | the American Chemical Society. | 22. | Peroxides | 978 | | | prints available from ACS: see Reprints List at back of issue | 23 | Hydroperoxides | 970 | | 24. | Peroxyacids | 980 | |-----------|--|------| | | Carbonates | 982 | | 25.
26 | Linear, branched, cyclic, aromatic amines | 982 | | | | 992 | | | Imines | | | | Linear, branched, cyclic, aromatic nitriles | 992 | | | Hydrazines | 997 | | | Diazenes | 998 | | | Azides | 1000 | | 32. | Heterocyclic nitrogen compounds CHN | 1001 | | | Linear, branched, cyclic, aromatic amides | 1006 | | | Ureas | 1011 | | | Amino acids and peptides | 1014 | | | Nitroso and cyanato compounds | 1021 | | | Linear, branched, cyclic, and aromatic nitro | 1021 | | 57. | compounds | 1022 | | 20 | | 1022 | | | Nitrites | | | | Nitrates | 1032 | | | Nitramines | 1033 | | | Cyclic CHNO | 1035 | | 42. | Linear, branched, cyclic, and aromatic thiols. | 1035 | | 43. | Linear, branched, and aromatic sulfides | 1041 | | 44. | Disulfides | 1048 | | | Sulfoxides | 1049 | | | Linear, branched, and aromatic sulfones | 1050 | | | Sulfites | 1055 | | | Sulfates | 1055 | | | Heterocyclic sulfur CHS compounds | 1055 | | | | 1058 | | | Fluorides, CHF and CHFO compounds | | | | Chlorides, CHCl and CHClO compounds | 1066 | | 52. | | 1086 | | | Iodides, CHI and CHIO compounds | 1092 | | | CHCIF, CHCIBr, CHBrF, CHFI compounds. | 1099 | | 55. | Summary of Residuals for C-H-N-O-S- | | | | Halogen Families | 1102 | | 56. | Name-Formula-CASRN-Family-Page Index | 1106 | | | | | | | List of Tables in the Appendices | | | | | | | 1-1 | . Groups derived from data on a single com- | | | | pound | 1152 | | 2-1 | . Comparison of literature data for $[\Delta_t H^{\circ}(\text{liq}) -$ | | | | $\Delta_t H^{\circ}(g)$] at 298.15 K and enthalpies of vapor- | | | | ization corrected to 298.15 K with estimated | | | | | 1151 | | | $[\Delta_t H^{\circ}(\text{liq}) - \Delta_t H^{\circ}(g)]$ for <i>n</i> -alkanes | 1154 | | 2-2 | 2. Comparison of literature data for $[\Delta_i H^{\circ}(liq) -$ | | | | $\Delta_t H^{\circ}(g)$] at 298.15 K and enthalpies of vapor- | | | | ization corrected to 298.15 K with estimated | | | | $[\Delta_i H^{\circ}(\text{liq}) - \Delta_i H^{\circ}(g)]$ for <i>n</i> -alkane thiols | 1154 | | 2-3 | 3. Comparison of literature data for $[\Delta_t H^{\circ}(liq) -$ | | | | $\Delta_t H^{\circ}(g)$] at 298.15 K and enthalpies of vapor- | | | | ization corrected to 298.15 K with estimated | | | | $[\Delta_t H^{\circ}(\text{liq}) - \Delta_t H^{\circ}(g)]$ for alkyl sulfides | 1154 | | 2-1 | . Comparison of literature data for enthalpies | 1157 | | | of fusion with estimated $[\Delta H^{\circ}(solid)]$ | | | | | 1155 | | ء
م | $\Delta_t H^{\circ}(\text{liq})$] at 298.15 K | 1133 | | 4-3 | 5. Comparison of literature data for entropies of | | | | fusion with estimated $[S^{\circ}(solid) - S^{\circ}(liq)]$ at | 44 | | | 298.15 K | 1155 | | | | | | 2–6. | Comparison of literature data for enthalpies | | |------|---|------| | | of vaporization with estimated $[\Delta_i H^{\circ}(liq) -$ | | | | $\Delta_{f}H(g)$] at 298.15 K | 1156 | | 3–1. | Group and group codes for aliphatic hydro- | | | | carbons and aliphatic oxygen compounds | | | | (86PED/NAY) | 1158 | | 3–2. | Group comparisons for aliphatic hydrocar- | | | | bons and aliphatic oxygen compounds | | | | (86PED/NAY) | 1158 | | 3–3. | Group specificity and values for bonding of | | | | -CH ₂ - to two carbon atoms in aliphatic hydro- | | | | carbons (86PED/NAY) | 1158 | | 3–4. | Comparison of enthalpies of formation in the | | | | gas phase at 298.15 K (kJ/mol) (alkanes, alke- | | | | nes, alkynes) | 1159 | | 3–5. | Comparison of enthalpies of formation in the | | | | gas phase at 298.15 K (kJ/mol) (alcohols, | | | | ethers, ketones, acids) | 1159 | #### 1. Introduction The purpose of this paper is to demonstrate that the estimation of thermodynamic properties of organic compounds in the condensed phase at 298.15 K and 101,325 Pa can be carried out in a satisfactory manner using established second-order group-additivity methods. The second-order group-additivity method, originally introduced by S.W. Benson and coworkers (58BEN/BUS, 68BEN, 69BEN/CRU, 69SHA, 71SHA, 73EIG/GOL, 76BEN, 77LUR/BEN, 77SHA/GOL, 77STE/GOL) for estimating the thermodynamic properties of organic compounds, was developed and used primarily for the gas phase. This work includes a re-examination of the capabilities for estimation of the thermodynamic properties of the gas phase to maintain continuity with the condensed phase and also to introduce changes in group values necessitated by more recent thermodynamic data available in the literature. The coverage of organic compounds includes those substances containing the elements: carbon, C; hydrogen, H; oxygen, O; nitrogen, N; sulfur, S; fluorine, F; chlorine Cl; bromine, Br; and iodine, I. The particular thermodynamic properties for which
groups and group values have been determined are: enthalpy of formation, $\Delta_t H^\circ$; heat capacity, C_p° ; and entropy, S° . The entropy of formation $(\Delta_t S^\circ)$, Gibbs energy of formation $(\Delta_t G^\circ)$, and the natural logarithm of the equilibrium constant (ln K_t) for the formation reaction, are calculated as auxiliary properties. The second-order group-additivity approach has been generally accepted by physical chemists and chemical engineers because of the simple basis of additivity, clarity of notation, second-order character, i.e., inclusion of nearest-neighbor interactions, ease of application, and satisfactory agreement between the thermodynamic value reported in the literature and its estimated value. The ASTM Chemical Thermodynamic and Energy Release Program, CHETAH, (74SEA/FRE)) uses these methods for the estimation of the thermodynamic properties of organic compounds in the gas phase and for the classifi- cation of chemicals or compositions depending upon whether they are likely to be impact sensitive. The AIChE Design Institute for Physical Property Data (DIPPR) Manual for Predicting Chemical Process Design Data (83DAN/DAU) recommends the second-order group-additivity method (76BEN) for the estimation of enthalpy of formation, heat capacity, and entropy of organic compounds at 298.15 K in the gas phase. DIPPR Project 871 is an experimental project begun to determine accurate enthalpies of formation and vaporization of key organic compounds so that reliable gas phase enthalpies of formation can be calculated at 298.15 K. The latter data would then permit either the calculation of new second-order group-additivity values or the replacement of group values which are based on poor quality data. The improved or new group values would be used to upgrade both the DIPPR Data Prediction Manual and the ASTM CHETAH Program. With such broad needs for thermodynamic property estimation in ASTM and AIChE, we felt that the successful application of this approach for the gas phase merited an intensive examination of its application into the condensed phase. The approach taken for the evaluation of thermodynamic data and the path of development of groups and group values for hydrocarbon compounds came from our previous paper (88DOM/HEA) in which a systematic procedure was followed for the selection of group values which gave minimum residuals between the literature and calculated values. The n-alkanes from C₂ to C₁₈ make up one of the most studied families of compounds and have some of the most pristine values for $\Delta_t H^{\circ}$, C_p° , and S° of all the families of organic compounds. They form the basis for the development of the $C-(H)_3(C)$ and $C-(H)_2(C)_2$ group values. From this point, the group and group value development proceeds to branched alkanes, alkenes, alkynes, aromatic and alicyclic compounds, CHO compounds (alcohols, ethers, etc.), CHN compounds (amines, nitriles, etc.), and on to CHNO, CHS, CHSO, and organic halogen compounds. Care is needed in the development of group values because experimental or recommended data have different degrees of quality and are not homogeneous. Reduction of data to as common a basis as possible is required. For combustion data, some previously established guidelines were used (71DOM). A global least squares, least sums, or regression-type fit of all the group values was not performed because of the differences in the quality of the data, and because of the limited amount of data available for the generation of certain groups and group values. The generation of groups and the calculation of group values was in part manual and in part computerassisted. Some computations for average values, average deviations, or standard deviation were performed using a desk-top calculator. Others were made using computer spread-sheet analysis. The group values generated for the hydrocarbons were held fixed for the generation of non-hydrocarbon values. Most of the group values for non-hydrocarbon compounds were generated using the THERM/EST Program (NIST Standard Reference Database 18) (90DOM/ HEA2) by having the group value being sought initially become part of the residual value. In this procedure, an unknown group value is calculated, then a value is assigned to the unknown group, and a final or true residual value is calculated which excludes the new group value, but minimizes the final residual value. When a large number of experimental values were available to calculate a group value, as with n-alkanes, n-alkanols or n-alkanethiols, final adjustments were examined with computer spread-sheet software. Care was taken to accommodate the adjusted group values when the same groups were needed for different families of compounds. For example, the $C-(H)_2(C)(O)$ group and its group values are required for alcohols, ethers, esters, and peroxides. Group values for some families or compounds were generated simply by calculating simple arithmetic averages because the experimental data were limited to 2 or 3 values. The group C-(H)₃(C) is used freely in the molecular structure representation of compounds because the value of the methyl group does not change except for the physical phase no matter to what it is attached. Hence, $C-(H)_3(C) = C-(H)_3(O) = C-(H)_3(N)$ = $C-(H)_3(S)$, etc., and consequently, methanol can be represented by: $C-(H)_3(C) + O-(H)(C)$ rather than: $C-(H)_3(O) + O-(H)(C)$. Appendix 1 lists unique groups derived from data on individual compounds as their The compounds for which estimated properties have been calculated are divided into various organic families as shown in Table 1. The number of compounds within each family is indicated. A total of 1512 compounds have had thermodynamic properties estimated and compared with a literature value. This total is not exhaustive, but does represent a sufficiently broad array of organic structures to demonstrate the applicability of the group additivity method to the condensed phase. Compounds are listed according to the increasing number of carbon atoms within each family, but sometimes the carbon number reverts back to lower values because of the inclusion of certain compounds with secondary or tertiary substitution, unsaturation, multiple functional groups, aromatic substitution, or cyclic structures. Table 2 provides a listing of over 600 groups and energy corrections. and their corresponding values for $\Delta_t H^{\circ}$, C_n° , and S° for the gas, liquid, and solid phases. Table 3 offers some guidance to the definition and interpretation of organic groups for persons not accustomed to the notation in Table 2. Thermodynamic properties for 1512 compounds are shown in Tables 4 through 54 and contain the following information: the title of the organic family, the number of compounds included in that family, individual compound name(s), formula of the compound, the organic groups which comprise the structure of the compound, symmetry number, σ , and optical isomers, η . Thereafter, each phase is treated separately, gas, liquid, and solid. Property symbols $\Delta_t H^{\circ}$ (in kJ/mol), C_p° (in J/mol·K), and S° (in J/mol·K) appear in the extreme left column. Next, the ex- perimental or recommended values are also given, when available, and entered under the column, "Literature". The property value derived from summing the group values is given under the column, "Calculated", so that a difference or residual value may be calculated and shown under the column, "Residual". The residual offers an indication of how close the estimated value comes to the one determined experimentally or to the one derived from an evaluation of a collection of literature data. If the appropriate group values are available so that the enthalpy of formation and entropy can be estimated, we also provide the entropy of formation, $\Delta_f S^{\circ}$ (in J/mol·K), Gibbs energy of formation, $\Delta_f G^{\circ}$ (in kJ·mol⁻¹), and the logarithm of the equilibrium constant for the formation process, lnK_f. In order to calculate the entropies of formation at 298.15 K and 101,325 Pa, the entropies of the elements in their standard states are needed as well as the entropies of the respective compounds. The entropies of the elements at 298.15 K and at 101,325 Pa have been obtained from (89COX/WAG) and are as follows in J/ mol·K: carbon (cr,graphite), 5.740; H₂ (gas), 130.571; O₂ (gas), 205.043; N₂ (gas), 191.500; S (cr, rhombic), 32.054; F₂ (gas), 202.682; Cl₂ (gas), 222.972; Br₂ (liquid), 152.21; I_2 (cr), 116.14. Estimation of the entropy in the gas phase requires a $-R \ln \sigma$ term where σ is the total symmetry number of the molecule and R is the universal gas constant (R = 8.31451 J/mol·K). The total symmetry number of the molecule is divided into two parts: the internal symmetry number and the external symmetry number. The definitions of the latter symmetry numbers and several example calculations of symmetry numbers can be found in (88DOM/HEA). Estimation of the gas phase entropy also requires accounting for optical isomers as the molecular structure dictates with a Rln η term, where η indicates the number of such isomers. Since this work deals with data at only one temperature, 298.15 K, no distinction is made between the heat capacity at constant pressure, C_p° , and the saturation heat capacity, C_{sat} . Reference squibs appear in the extreme right column of the tables under the heading "References"; The squibs are of the type XXAAA/BBBN for each property in each of the phases and correspond to entries under the column "Literature". In this squib notation, XX denotes the last two digits of the year of publication of the paper, AAA, the first three letters of the last name of the first author, and BBB, those of the last name of the second author (if present). Authors after the first
two are not noted. The numeral, N, at the end of the squib is present only when the authors have more than one paper published in a given year. Table 55 provides a summary of the residuals for each family which offers some global insight into the agreement realized between literature and calculated values. The residuals have been divided into those for $\Delta_t H^{\circ}$ which were $\langle \pm 4, \rangle \pm 4$ but $\langle \pm 8, \text{ and } \rangle \pm 8 \text{ kJ·mol}^{-1}$. Similarly, for C_p° and S° , the residuals have been divided into those which were $< \pm 4$, $> \pm 4$ but $< \pm 8$, and $> \pm 8$ J/mol·K. Table 56 shows an alphabetical compound name-formula index which provides the CAS registry number, family in which the compounds may be found, its listing or rank within the given family, and the page on which data for the compound appears. A bibliography given in Table 57 with about 1000 references links reference squibs in Tables 4 through 54 to literature citations. We have examined the original reference sources for data on the enthalpies of formation, heat capacities, and entropies for almost all of the compounds. The thermodynamic tables compiled by Stull, Westrum, and Sinke (69STU/WES, 69STU/WES2) have been used for many of the literature gas phase heat capacities and entropies. We have also used some general thermodynamic reference sources to find original sources in certain cases (70COX/PIL, 71ZWO/WIL, 72DOM, 77PED/RYL, 84DOM/EVA, 85MAJ/SVO, 86TRC, 86TRC2, 86PED/NAY, 90DOM/HEA). Over 3700 comparisons between literature and calculated values are shown for $\Delta_t H^\circ$, C_p° , and S° in the gas, liquid, and solid phases. Approximately half of the comparisons are for the condensed phase. Interpretation is occasionally required when a reference squib is designated for a specific property. For example, a reference squib denoted for $\Delta_t H^{\circ}$ in the gas phase may not actually provide that specific property, but will report an enthalpy of vaporization at 298.15 K which when added to $\Delta_i H^\circ$ in the liquid phase, will then be equal to the designated experimental or recommended $\Delta_f H^{\circ}$ (gas) value. Similarly, a reference squib denoted for $\Delta_i H^{\circ}$ (solid) may not contain the actual $\Delta_i H^{\circ}$ property for the solid phase, but does report the ΔH° for the fusion or melting of the compound. When the latter is corrected from the melting temperature to 298.15 K and combined with $\Delta_i H^{\circ}(\text{liq})$ at 298.15 K, one obtains the $\Delta_i H^{\circ}(\text{solid})$ value. Despite concerns related to the estimation of thermodynamic properties for solid substances, we typically find good agreement between literature and calculated values. Common doubts about the ability to develop a predictive scheme for solid substances arise because some organic compounds have many crystalline forms in the proximity of the melting point. The second-order group-additivity approach does have its limits. We expect that the predicted solid phase at 298.15 K is the same as the stable form encountered experimentally at 298.15 K. For organic compounds with multiple crystalline phases and solid-solid transitions, as found with the C_{13} , C_{14} , and C₁₅ 1-alkanols, the group additivity approach provides only a limited value for the thermodynamic property. We do not feel that this limitation diminishes the overall usefulness of prediction of this method for solid organic substances. Appendix 2 shows that internal consistency does exist when comparisons are made between literature values for enthalpies and entropies of fusion and enthalpies of vaporization and the estimated differences for $[\Delta_i H^{\circ}(\text{solid}) - \Delta_i H^{\circ}(\text{liq})], [S^{\circ}(\text{solid}) - S^{\circ}(\text{liq})], \text{ and}$ $[\Delta_i H^{\circ}(\text{liq}) - \Delta_i H^{\circ}(g)]$, at 298.15 K. Differences between literature values for enthalpies and entropies of fusion corrected from the melting temperature to 298.15 K and $[\Delta_i H^{\circ}(\text{solid}) - \Delta_i H^{\circ}(\text{liq})]$ and $[S^{\circ}(\text{solid}) - S^{\circ}(\text{liq})]$ yield average deviations of $\pm 2.7 \text{ kJ.mol}^{-1}$ and $\pm 4.7 \text{ J/mol} \cdot \text{K}$, respectively. A similar comparison between literature values for the enthalpy of vaporization corrected to 298.15 K and $[\Delta_i H^{\circ}(\text{liq}) - \Delta_i H^{\circ}(g)]$ gives an average deviation of $\pm 1.6 \text{ kJ·mol}^{-1}$. The quality of the groups and group values can be evaluated by examining the magnitude of the difference (or residual) which is observed between the literature and calculated values for a specific property in a given physical phase. For $\Delta_i H^\circ$, differences within ± 4 kJ/mol constitutes very good or satisfactory agreement, those which are between ±4 and ±8 kJ/mol are at the limits of acceptability, and differences which are greater than ±8 kJ/mol are symptomatic of a problem. The occurrence of differences larger than ±8 kJ/mol are usually due to poor quality literature data or to a neglected molecular interaction, both of which can lead to the incorrect assignment for a group value. A similar situation applies to heat capacity and entropy differences. When differences within ±4 J/mol·K occur, the agreement is considered very good, when they are between ± 4 and ± 8 J/mol·K, the agreement is acceptable, and when the differences are greater than ±8 J/mol·K, they reflect a problem, which similarly can be related to poor quality data or to a neglected molecular interaction, and can lead to the selection of an incorrect group value. Certain molecules such as methane, methanal, acetonitrile, nitromethane, and the methyl halides are precluded from the rules of group additivity because they are structurally comprised of only one group and, hence, their group value is equivalent to the corresponding property value in each of the phases. We have included a number of such substances at the beginning of some of the organic families for comparison purposes. When needed for various calculations, the 1989 table of atomic weights was used (91DEL/HEU). #### 2. Discussion of Results #### 2.1. Hydrocarbon Compounds The hydrocarbon compounds and thermodynamic properties appearing in 88DOM/HEA are also presented here as well as the calculation of the entropy of formation, Gibbs energy of formation, and equilibrium constant for the formation reaction. A total of 48 hydrocarbon compounds has been added which have created more groups and group values. A small number of groups and group values appearing in 88DOM/HEA have also been modified. Hydrocarbons comprise the most studied single famly of organic compounds from a thermodynamic standpoint and form the foundation for the development of groups and group values not only within hydrocarbons themselves but also for non-hydrocarbon compounds. Thermodynamic property comparisons between hydrocarbons and non-hydrocarbons permit one to test whether additivity is being preserved, whether molecular forces are interacting, or whether the literature values may be suspect. The hydrocarbon compounds examined have been divided into eleven families: *n*-alkanes, *t*-alkanes, *q*-alkanes, *n*-alkenes, *s*-alkenes, alkynes, aromatic CH-01, aromatic CH-02, cyclic CH-01, cyclic CH-02, and cyclic CH-03. These families contain thermodynamic property estimates for a total of 427 hydrocarbon compounds and are found in Tables 4 through 14. An examination of the 532 comparisons between literature and calculated values for $\Delta_i H^\circ$ shows that 70 percent of the residuals are $<\pm 4$ kJ/mol, 17 percent are $>\pm 8$ kJ/mol. For C_p° with 361 comparisons, we find 85 percent of the residuals $<\pm 4$ J/mol·K, 8 percent $>\pm 4$ but $<\pm 8$ J/mol·K, and 7 percent $>\pm 8$ J/mol·K. Similarly, for S° with 338 comparisons, we find 76 percent of the residuals $<\pm 4$ J/mol·K, 16 percent $>\pm 4$ but $<\pm 8$ J/mol·K, and 8 percent $>\pm 8$ J/mol·K, 16 percent $>\pm 4$ but $<\pm 8$ J/mol·K, and 8 percent $>\pm 8$ J/mol·K. A novel approach for dealing with branched alkanes has been described in (88DOM/HEA) for tertiary and quaternary carbon atoms in hydrocarbon compounds. It corrects for the repulsive interactions of hydrogen atoms on methyl groups attached to tertiary or quaternary carbon atoms and improves the agreement between literature and estimated values. The corrections for methyl repulsion in branched hydrocarbons have been developed only for $\Delta_t H^\circ$ at 298.15 K. It accommodates the observation that as branching increases for an isomeric hydrocarbon, the $\Delta_t H^\circ$ value becomes more negative (e.g., $\Delta_t H^\circ$ s for isomeric pentanes). A summary of this approach can be found in (88DOM/HEA). Except for n-hexacosane, residuals calculated from literature and calculated values for C_p° and S° for n-alkanes with carbon atoms C_{20} and higher are large, but do not come from recent calorimetric investigations. We suggest that some re-determination and confirmation is needed for the C_p° and S° values for these hydrocarbon compounds. #### 2.2. Organic Oxygen Compounds After hydrocarbon compounds, organic oxygen compounds are the next most abundant category of organic substances for which thermodynamic data are available. The CHO compounds have been divided into 11 families: alcohols, ethers, aldehydes, ketones, acids, anhydrides, esters, peroxides, hydroperoxides, peroxyacids, and carbonates, and are found in Tables 15 through 25. These tables contain thermodynamic property estimates for 381 CHO compounds. An examination of 570 comparisons of literature and calculated values for $\Delta_i H^{\circ}$ shows that 62 percent have residuals which are $< \pm 4$ kJ/mol, 18 percent are $> \pm 4$ but $< \pm 8$ kJ/mol,
and 20 percent are $> \pm 8$ kJ/mol. Residuals for C_p° show that 72 percent are $< \pm 4$ J/mol·K, 15 percent are between $> \pm 4$ and $< \pm 8$ J/mol·K, and 13 percent are $> \pm 8$ J/mol·K. For S°, 72 percent of the residuals are $< \pm 4$ J/mol·K, 16 percent are $> \pm 4$ but $< \pm 8$ J/mol·K, 12 percent are $> \pm 8$ J/mol·K. Comparison of literature and calculated values for ΔH° , C_{p}° , and S° shows that for primary alcohols the agreement is reasonably good. However, initial agreement between literature and estimated values for secondary and tertiary alcohols was not as good as with primary alcohols. We found that significantly smaller residuals resulted for secondary and tertiary alcohols if a methyl repulsion correction was applied for tertiary or quaternary carbon atom attached to an oxygen atom. Agreement between literature and calculated values for secondary aliphatic alcohols, diols, triols, and tetrols for $\Delta_t H^\circ$, C_p° , and S° are somewhat inconsistent. Large residuals occasionally appear but do not seem to show a consistent trend. The residuals for some phenolic compounds can be improved with the application of an *ortho* correction for OH-OH interactions. Some of the literature data are not recent and may be suspect. We found that better agreement between literature and calculated values was obtained if separate C-(H)(C)2(O) and C-(C)3(O) groups were assigned to alcohols and peroxides, and another for ethers and esters, rather than having global groups for all of the organic oxygen families. Hence, this separation is indicated in the list of groups and group values in Table 2 and under each compound in Tables 4 through 54 in the structural group notation. Literature and calculated values for $\Delta_t H^\circ$, C_p° , and S° for ethers and ketones show generally good agreement. This is possible because of a significant quantity of good quality data in the gas and condensed phases. For aldehydes, agreement between literature and calculated values for $\Delta_t H^{\circ}, C_p^{\circ}$, and S° in the gas phase are generally satisfactory. Although satisfactory agreement is found for $\Delta_t H^{\circ}(\text{liq})$, agreement for C_p° and S° in the liquid phase is poor. The C_p° and S° data of 56PAR/KEN at 298.15 K for butanal and heptanal in the liquid phase reflect the expected linear relationship when n-alkanals increase by a CH2 group. The recent data reported for ethanal by 88LEB/VAS, propanal by 77KOR/VAS, butanal by 89VAS/LEB, hexanal by 91VAS/BYK, and heptanal by 83DYA, 84VAS/PET indicate that the relationship for 1-alkanals in the liquid phase is neither linear nor smooth. These authors describe anomalies in the liquid phase which they have found to be due to association in 1-alkanals through hydrogen bonds. The group values we have chosen are based on linearity, hence, significant deviation are reflected in the large residuals which occur. We have found some large differences between the literature and calculated values for $\Delta_t H^\circ$ and C_p° for dibasic acids in the gas and solid phases. It is not clear whether these residuals are due to hydrogen bonding in dibasic acids, odd-even carbon atom effects, the need for a group correction factor, poor experimental data, or most of the above. A significant amount of these data were reported in the 1920's. It may be possible that the odd-even relationship which is observed for the melting temperatures of dicarboxylic acids is similarly reflected in their thermodynamic properties. A large fraction of the residuals in $\Delta_t H^\circ$'s for the dibasic acids are $> \pm 8$ kJ/mol. The experimental $\Delta_t H^\circ$ values for 1-naphthoic and 2-naphthoic acid differ from each other by 9.4 kJ/mol in the gas phase and 12.4 kJ/mol in the solid phase. Examination of the structures of these acids by 74COL/ROU indicates that 2-naphthoic acid is planar, but 1-naphthoic acid is twisted 11° out of the naphthalene plane due to overcrowding, hence, these structural differences account for the observed energy differences. Corrections have been developed for *ortho* and *meta* interactions between two or more carboxylic acid groups in aromatic acids. Similar corrections were developed for interactions between methoxy and carboxylic acid groups. In some instances, a clear interaction correction was not developed because the nature of the interaction between adjacent or near-adjacent groups could not be interpreted clearly, and/or the quality of the experimental data did not allow an interpretation. In these cases, we applied the *ortho* and *meta* corrections developed for hydrocarbon compounds. Difficulty in resolving the agreement between literature and calculated $\Delta_t H^\circ$ values for benzoic anhydride with aliphatic anhydrides led to the development of separate groups for O-(CO)2 and corresponding attachments to aliphatic and aromatic substituents. They are listed in Table 2 as: O-(CO)2, aliphatic and O-(CO)2, aromatic. Thermodynamic property data on peroxides, hydroperoxides, and peroxyacids are limited to enthalpies of formation. From time to time, agreement between $\Delta_t H^\circ$ experimental and calculated values is poor. This situation is due to a lack of high quality data on these substances and is understandable because of their explosive and thermally sensitive character. The preparation of sufficient amounts of high purity samples of thermally sensitive substances places a very high demand upon any research effort. The unusually large difference between the literature and calculated $\Delta_i H^o$ for diacetyl peroxide (DAP) in the liquid phase (see Table 21, 38.66 kJ/mol) may be due to the instability of the compound. Because of its instability, bomb calorimetric experiments on diacetyl peroxide were performed on a toluene solution (37.53 wt% DAP, 62.47wt% toluene; 57JAF/PRO). Bomb calorimetric experiments were made at only one concentration of DAP in toluene, hence, dilution errors or analytical errors cannot be easily detected. Examination of the experimental and calculated values for dipropionyl and dibutyryl peroxides shows their residuals to be satisfactory. The differences found between the literature and estimated values for peroxy acids are large. The groups developed for the family appears to be the best that can be assembled. If some re-determinations of the thermodynamic properties for peroxy acids can be made, smaller residuals may result. #### 2.3. Organic Nitrogen Compounds Literature and estimated thermodynamic properties on organic nitrogen compounds have been divided in seven CHN families and nine CHNO familes. The families which comprise the CHN compounds are: amine, imines, nitriles, hydrazines, diazenes, azides, and cyclic CHN compounds and are found in Tables 26 through 32. A total of 137 CHN compounds are shown. Agreement between experimental and calculated values shows 84 percent of the residuals for $\Delta_t H^\circ$ to be $<\pm 4$ kJ/mol, 10 percent of the residuals for $\Delta_t H^\circ$ to be $<\pm 4$ kJ/mol, 10 percent are $>\pm 4$ but $<\pm 8$ kJ/mol, and 6 percent are $>\pm 8$ kJ/mol. For C_p° , 85 percent of the residuals are $<\pm 4$ J/mol·K, 7 percent are $>\pm 4$ but $<\pm 8$ J/mol·K, and 8 percent are $>\pm 8$ J/mol·K. With respect to S° , 77 percent of the residuals are $<\pm 4$ J/mol·K, 15 percent are $>\pm 4$ and $<\pm 8$ J/mol·K, and 4 percent are $>\pm 8$ J/mol·K. The families which comprise the CHNO compounds are: amides, ureas, amino acids, nitroso, nitro, nitrites, nitrates, nitrates, nitramines, and cyclic CHNO compounds. A total of 171 CHNO compounds are shown in Tables 33 through 41. Comparison of literature and calculated values show that for $\Delta_t H^\circ$ residuals, 68 percent are $< \pm 4$ kJ/mol, 11 percent are $> \pm 4$ but $< \pm 8$ kJ/mol, and 21 percent are $> \pm 8$ percent. For C_p° , 80 percent of the residuals are $< \pm 4$ J/mol·K, 6 percent are $< \pm 4$ but $> \pm 8$ J/mol·K, and 14 percent are $> \pm 8$ J/mol·K. For S° , 69 percent are $< \pm 4$ J/mol·K, 10 percent are $< \pm 4$ but $> \pm 8$ J/mol·K, and 21 percent are $> \pm 8$ J/mol·K. From an initial examination of the differences between the literature and calculated values, the CHN family appears to be amenable to prediction. We have applied the -CH₃ quaternary correction for alkane branching to nitrogen atoms in tertiary amines, N,N-dimethylsubstituted amides, and N,N-dimethylsubstituted ureas because better agreement resulted between experimental and estimated values. A corresponding application of the -CH₃ tertiary correction to nitrogen atoms in secondary amines, N-methylsubstituted amides, or N-methyl substituted ureas was not used because it did not lead to significantly smaller differences between experimental and estimated values. Comparison of the experimental $\Delta_t H^\circ$ for the solid phase of acetamide with the estimated value shows a difference of -10.41 kJ/mol. This difference is larger than one would like. However, anomalous behavior has been reported for crystalline acetamide due to its tendency to supercool (86EMO/NAU). Acetamide forms an unstable solid phase along with a stable form. The stable and unstable forms have melting temperatures of 353.5 K and 342.15 K, and enthalpies of melting of 15.6 and 12.5-12.9 kJ/mol, respectively. The estimation of the thermodynamic properties of amino acids and peptides in the solid phase is a particularly challenging task. Some amino acids have been the subject of a significant amount of calorimetric study; glycine and hippuric acid are examples. Other amino acids as well as peptides have received only limited calorimetric attention. There is a mixture of high quality, medium quality, and limited quality data on these compounds. Other challenges included accounting for the
dipolar nature of amino acids, and identifying differences when possible between (DL) racemic and optically active (R or D, and S or L) isomers. Because the enthalpy of combustion and formation of glycine has been so frequently determined, we have used the experimental values for this amino acid and the corresponding data on glycylglycine as the basis for deriving the C-(H)2(CO)(N) group and group value and the energy correction for the dipolar nature or zwitterion character of aliphatic amino acids. Since the zwitterion nature of amino acids and peptides is a unique property and not prominent in the other organic nitrogen compounds treated in this paper, a separate identification and energy correction was warranted. The establishment of the zwitterion energy correction also allows the C-(H)2(CO)(N) group to have property values not seriously divergent from those groups such as C-(H)2(C)2, C-(H)2(C)(CO), and C-(H)2(C)(N). The zwitterion energy correction for solid aliphatic amino acids and peptides for $\Delta_t H^\circ$, C_p° , and S° are -55.10kJ/mol, -44.50 J/mol·K, and -13.40 J/mol·K, respectively. Using similar reasoning, a zwitterion energy correction was developed for amino acids and peptides containing an aromatic ring, but required differentiation between situations in which a -CH₂- group breaks the conjugative nature of the aromatic ring from its linkage to the α -carbon of an amino acid or peptide. For these cases, the zwitterion energy is designated as "aromatic I" and was derived from $\Delta_i H^\circ$ (solid) data for phenylalanine and phenylalanine peptides; the zwitterion energy correction (for aromatic I) for $\Delta_i H^\circ$, C_p° , and S° are -32.00kJ/mol, -20.50 J/mol·K, and -13.00 J/mol·K, respectively. For situations in which the aromatic ring of an amino acid or peptide is bonded directly to amino groups or to carboxylic acid groups where the influence to ring conjugation should be stronger than it is for phenylalanine derivatives, a second aromatic zwitterion energy correction was derived to accommodate the estimation of the aminobenzoic acids, hippuric acid, and hippurylglycine, and designated as "aromatic II"; the zwitterion energy correction (for aromatic II) for $\Delta_t H^{\circ}$, C_p° , S° are -11.00 kJ/mol, 5.00 J/mol·K, and -9.00 J/mol·K, respectively. These group values are also found in Table 2. Agreement between literature and estimated values is variable. Future reconciliation of the large residuals may result from more precise calorimetric determinations of certain amino acids and peptides as well as some re-adjustment of group values. Better agreement was obtained between literature and estimated values when N-(H)2(CO) and N-(H)(C)(CO) groups were developed separately for amides and ureas in comparison to amino acids and peptides. At this time, it is not clear whether the better agreement is a function of differences in the molecular structure of these organic families or whether more accurate experimental data will offer new changes to their estimation. The residual value for $\Delta_t H^\circ$ (solid) for nitrosobenzene is large, -85.65 kJ/mol. The group, CB-(NO), and corresponding $\Delta_t H^\circ$ group values, were derived from experimental data on 4-nitroso-1-naphthol. The $\Delta_t H^\circ$ experimental data for 4-nitroso-1-naphthol (68HAM/FAG) are more reliable than those for nitrosobenzene (30DRU/FLA). The large residual for nitrosobenzene is probably due to either sample purity or to difficulties with experimental bomb calorimetric procedures, or both. As the development of the second-order group additivity approach to the estimation of thermodynamic properties (57BEN/BUS, 69BEN/CRU) began, the enthalpy of formation of the benzene (C_6H_6) molecule was divided by six to derive the group value for $\Delta_t H^{\circ} C_B - (H)(C_B)_2$ group in the gas phase. In this division, the resonance or conjugation energy of benzene (~150 kJ·mol⁻¹) had also undergone a corresponding division. We have attempted to extend this concept to pyridine and have introduced the N_{Γ} (C_B) group which not only includes the energy content for a property, but also the corresponding component of the conjugation energy which resides in the pyridine molecule. Reasonable success was achieved for pyridine and substituted pyridines in Table 32. The further extension of this concept to five-membered ring systems becomes a more difficult task when they possess an intrinsic and sizeable conjugation energy, but in addition, contain a significant amount of strain energy. This situation is true for five-membered systems such as furan, pyrrole, and thiophene. We have treated the carbon atoms in these five-membered ring systems as benzene carbon atoms, using the C_B-(H)(C_B)₂ group, because their conjugation energies are in the range from 65 to 120 kJ·mol⁻¹. As a result of this treatment, the $\Delta_i H^{\circ}$ ring strain corrections (rsc) for furan, pyrrole, and thiophene appear as negative values. In contrast, the conjugation energy in 1,3-cyclopentadiene is small when compared with its ring strain energy and its structural description has been assembled using C_d -(H)(C_d) and C_d -(H)(C) groups rather the $C_B-(H)(C_B)_2$ group. #### 2.4. Organic Sulfur Compounds The families which comprise the CHS and CHSO compounds are: thiols, sulfides, disulfides, sulfoxides, sulfones, sulfites, sulfates, and cyclic CHS compounds. A total of 138 CHS and CHSO compounds are shown in Tables 42 through 49. Agreement between literature and calculated values shows 80 percent of the residuals for $\Delta_t H^\circ$ to be $<\pm 4$ kJ·mol⁻¹, 14 percent of the residuals to be $>\pm 4$ but $<\pm 8$ kJ·mol⁻¹, and 6 percent to be $>\pm 8$ kJ·mol⁻¹. For C_p° , 92 percent of the residuals are $<\pm 4$ J·mol⁻¹·K⁻¹, 7 percent are $>\pm 4$ but $<\pm 8$ J·mol⁻¹·K⁻¹, and 1 percent are $>\pm 8$ J·mol⁻¹·K⁻¹. For S° , 87 percent of the residuals are $<\pm 4$ J·mol⁻¹·K⁻¹, 7 percent are $>\pm 4$ but $<\pm 8$ J·mol⁻¹·K⁻¹, and 6 percent are $>\pm 8$ J·mol⁻¹·K⁻¹, Excluding hydrocarbon compounds, organic sulfur compounds containing the elements C, H, and S stand out as offering an extremely high quality array of experimental thermodynamic values for $\Delta_t H^\circ$, C_p° , and S° . The establishment of this high quality array of data on CHS compounds is due to the need of the petroleum industry to understand the thermochemistry of organic sulfur compounds because of their presence in petroleum and because of the need to understand their energetics and equilibrium properties in petroleum refining. Much of the effort to establish high quality thermodynamic data for this class of organic compounds resulted from an ex- perimental effort which took place at the U.S. Bureau of Mines Thermodynamics Laboratory in Bartlesville, OK (now called the National Institute for Petroleum and Energy Research (NIPER)) and at the Thermochemical Laboratory at Lund University, Lund, Sweden. The development of a high precision rotating bomb calorimeter was a key accomplishment which has led to the determination and publication of externely precise and accurate thermodynamic properties for CHS compounds. A rotating-bomb calorimeter is needed because the final state of sulfur as an aqueous sulfuric acid solution is not homogeneous in its dispersal throughout the interior of the static combustion bomb and is energetically uncertain. An important phase of the research effort focused on the establishment of the enthalpies of formation of aqueous sulfuric acid in various states of dilution. These $\Delta_t H^{\circ}$'s were then applied toward the identification of the final state of sulfur in the bomb combustion process for organic sulfur compounds. This feature is important because the energetics of the final thermodynamic state of the combustion process must be clearly and precisely defined. Without a knowledge of the final state of sulfur in the form of an aqueous sulfuric acid solution for the combustion reaction, highly precise and accurate data would not be available. For additional information, the reader should examine 56ROS, 62SKI, and 79SUN/ MAN. The research effort in the two laboratories at Bartlesville and Lund was responsible for publication of high quality data available on organic sulfur compounds in the chemical literature and the subsequent good agreement found here between experimental and estimated values as presented in Tables 42 through 49. Collectively, the residuals shown for thiols and sulfides are very small. Of the organic sulfur families, sulfones appear to be less well-behaved, but agreement here between experimental and estimated values is still reasonably good. # 2.5. Organic Halogen Compounds The families which comprise the CHX and CHXO compounds are: fluorides, chlorides, bromides, iodides, and mixed halogen compounds. A total of 258 halogen compounds are shown in Tables 50 through 54. Agreement between experimental and calculated values shows 54 percent of the residuals for $\Delta_t H^\circ$ to be $<\pm 4$ kJ·mol⁻¹, 17 percent to be $>\pm 4$ and $<\pm 8$ kJ·mol⁻¹, and 29 percent to be $>\pm 8$ kJ·mol⁻¹. For C_p° , 76 percent of the residuals are $<\pm 4$ J·mol⁻¹·K⁻¹, 11 percent are $>\pm 4$ but $<\pm 8$ kJ·mol⁻¹·K⁻¹, 17 percent are $>\pm 4$ but $<\pm 8$ J·mol⁻¹·K⁻¹, and 13 percent are $>\pm 4$ but $<\pm 8$ J·mol⁻¹·K⁻¹, and 13 percent are $>\pm 8$ J·mol⁻¹·K⁻¹. In contrast to hydrocarbons and organic sulfur compounds, the thermodynamic properties of organic halogen compounds are collectively not known as precisely. In addition, halogen-halogen interactions operate which require interpetation. When these interactions are overlooked, they tend to make the differences between literature and estimated values larger than they should be. The use of a rotating bomb calorimeter for the determination of enthalpies of
combustion and for the derivation of enthalpies of formation is needed for organic halogen compounds. The enthalpy of formation of the final state of the hydrohalogen acid in aqueous solution must be determined in order to have a defined thermodynamic final state for the combustion process. Additional problems prevail with organic chlorine compounds in that they form about 15-20% elemental gaseous chlorine, Cl₂, and about 80-85% HCl in aqueous solution during the bomb combustion. A reducing agent such as a solution of arsenious oxide must be added to the combustion bomb prior to its closure with the sample so that the Cl₂ is converted to Cl⁻ and enters the aqueous solution. Similarly, without a reducing agent, organic bromine compounds form about 80-85% bromine, Br2, and 15-20% HBr in aqueous solution. Aqueous arsenious oxide reduces the Br₂ to aqueous HBr during the oxidation reaction when the reducing agent is added to the bomb prior to closure. The combustion process for organic fluorine compounds give aqueous HF as the only fluorine combustion product while organic iodine compounds yield crystalline elemental iodine as the singular iodine-containing product. For additional information, the reader should examine 56ROS, 62SKI, and 79SUN/MAN. The large differences between the experimental and estimated values for $\Delta_t H^{\circ}(gas)$ and $\Delta_t H^{\circ}(solid)$ for decafluorobiphenyl (322.8 and 337.84 kJ·mol⁻¹, respectively) are not easily explained. The study reported by 79PRI/SAP2 for the combustion of $C_{12}F_{10}$ indicates that CO_2 , CF_4 , and F_2 are the only products of combustion in excess oxygen. Several reasons may explain the large differences. Possible explanations include: the energy corrections for the interactions between fluorine atoms in $C_{12}F_{10}$ may be different than those which are currently viewed; or, the quantitative determinations of the CF_4 and F_2 as combustion products may be in error. We have attempted to correct for the interactions between halogen atoms in the various halogen families using cis-, ortho, or meta corrections, but success here is limited. # 2.6. Comparison with an Extended Second-order Group Additivity Scheme An extended multi-parameterized second-order group-additivity estimation scheme has been developed by J.B. Pedley and co-workers (86PED/NAY). The Pedley scheme is limited to the estimation of enthalpies of formation of organic compounds at 298.15 K in the gas phase. The additional parameterization accounts more comprehensively for nearest- and next-to-nearest neighbor interactions than the estimation scheme developed by S.W. Benson and co-workers and used in this work. The details of the Pedley scheme are discussed in a cursory manner in Appendix 3 and more fully in 86PED/NAY. A comparison of estimated values from the Pedley scheme and that used in this work has been made for 20 hydrocarbons and 20 organic oxygen compounds. The results indicate that differences between literature and estimated values are about the same for the two groups of compounds tested. #### 2.7. Summary and Conclusions We have demonstrated the successful extension of the second-order group-additivity method for the estimation of $\Delta_t H^{\circ}$, C_p° , and S° at 298.15 K to liquid and solid organic compounds. A re-examination of group values for the gas phase was performed in order to maintain internal consistency with the condensed phase. This work has been carried out for 1512 organic compounds containing the elements carbon, hydrogen, oxygen, nitrogen, sulfur, and halogens. A total of over 3700 comparisons between literature and estimated values have been made for $\Delta_t H^\circ$, C_p° , and S° in the gas, liquid, and solid phases. Overall, for the compounds covered, the estimation of $\Delta_t H^{\circ}$ showed that 67 percent of the residuals were $< \pm 4 \text{ kJ} \cdot \text{mol}^{-1}$, 16 percent were $> \pm 4$ but $< \pm 8$ kJ·mol⁻¹, and 17 percent were $> \pm 8 \text{ kJ} \cdot \text{mol}^{-1}$. Values for C_p° showed that 80 percent of the residuals are < ±4 J·mol⁻¹·K⁻¹, 10 percent are $> \pm 4$ but $< \pm 8$ J·mol⁻¹·K⁻¹, and 10 percent are $> \pm 8 \text{ J·mol}^{-1} \cdot \text{K}^{-1}$. Values for S° show that 76 percent of the residuals are $< \pm 4$ J·mol⁻¹·K⁻¹, 14 percent are $> \pm 4$ but $<\pm 8$ J·mol⁻¹·K⁻¹, and 10 percent are $>\pm 8$ $J \cdot mol^{-1} \cdot K^{-1}$. The groups and group values developed in this work should be helpful to thermochemists and chemical engineers for the estimation of enthalpies of formation, heat capacities, and entropies at 298.15 K and 101,325 Pa when their needs for predicted values of these thermodynamic properties arise. This estimation technique can also be used to establish whether a new experimentally determined value for $\Delta_t H^\circ$, C_p° , or S° comes within the range of expectations of group additivity as dictated by the experience already shown with this method. Comparisons in Appendix 2 between literature values for the enthalpy and entropy of fusion and the enthalpy of vaporization, corrected from either T_m or T_b to 298.15 K, with corresponding differences $[\Delta_t H^{\circ}(\text{solid}) - \Delta_t H^{\circ}(\text{liq})]$, $[S^{\circ}(\text{solid}) - S^{\circ}(\text{liq})]$, and $[\Delta_t H^{\circ}(\text{liq}) - \Delta_t H^{\circ}(\text{g})]$, respectively, show that internal consistency does exist for the compounds tested. The limited comparison of hydrocarbon and oxygencontaining compounds in Appendix 3 suggest that the extra effort taken in the Pedley scheme to account for nearest- and next-to-nearest neighbor interactions may have either a very small or even negligible effect upon reducing the degree of differences between literature and estimated values for enthalpies of formation at 298.15 K in the gas phase. # 3. Tables of C-H-N-O-S-Halogen Compounds TABLE 1. Summary of tables of C-H-N-O-S Halogen Families | Table 1. | C-H-N-O-S-Halogen Families | | |----------|---|--| | Table 2. | Listing of Groups and Group Values | | | Table 3. | General Definitions and Examples of Notations | | | | for Molecular Groups | | # Hydrocarbon Compounds | Table | Table Name Description | | No. of Compounds | |-----------|------------------------|-----------------------------|------------------| | Table 4. | n- Alkanes | normal alkanes | 25 | | Table 5. | t- alkanes | tertiary branched alkanes | 35 | | Table 6. | q- Alkanes | quaternary branched alkanes | 16 | | Table 7. | n-Alkenes | linear alkenes | 32 | | Table 8. | s-Alkenes | branched alkenes | 34 | | Table 9. | Alkynes | alkyne hydrocarbons | 28 | | Table 10. | Aromatic CH-01 | aromatic hydrocarbons | 42 | | Table 11. | Aromatic CH-02 | aromatic hydrocarbons | 80 | | Table 12. | Cyclic CH-01 | cyclic hydrocarbons | 40 | | Table 13. | Cyclic CH-02 | cyclic hydrocarbons | 48 | | Table 14. | Cyclic CH-03 | cyclic hydrocarbons | 47 | | Total Hyd | rocarbon compounds | | 427 | # **CHO Compounds** | Table | Name | Description | No. of Compounds | |-----------|----------------|-------------------------------------|------------------| | Table 15. | Alcohols | alcohols, diols, triols, phenols | 69 | | Table 16. | Ethers | linear, branched, and cyclic ethers | 52 | | Table 17. | Aldehydes | aldehydes | 16 | | Table 18. | Ketones | ketones | 42 | | Table 19. | Acids | linear, branched, cyclic, and | | | | | aromatic acids | 89 | | Table 20. | Anhydrides | anhydrides | 11 | | Table 21. | Esters | esters and lactones | 74 | | Table 22. | Peroxides | peroxides | 7 | | Table 23. | Hydroperoxides | hydroperoxides | 9 | | Table 24. | Peroxyacids | peroxyacids | 8 | | Table 25. | Carbonates | carbonates | 3 | | Total CH | O compounds | | 381 | ## **CHN** Compounds | Table | able Name Description | | No. of Compounds | |-----------|-----------------------|------------------------------------|------------------| | Table 26. | Amines | Linear, branched, cyclic, aromatic | 50 | | Table 27. | Imines | imines | 2 | | Table 28. | Nitriles | linear, branched, cyclic, aromatic | 27 | | Table 29. | Hydrazines | hydrazines | 6 | | Table 30. | Diazenes | diazenes | 14 | | Table 31. | Azides | azides | 6 | | Table 32. | Cyclic CHN | heterocyclic nitrogen compounds | 32 | | Total CH | N compounds | | 137 | J. Phys. Chem. Ref. Data, Vol. 22, No. 4, 1993 # **ESTIMATION OF THERMODYNAMIC PROPERTIES OF ORGANIC COMPOUNDS** TABLE 1. C-H-N-O-S-Halogen families (Continued) ## CHNO Compounds | Table | Name | Description | No. of compound | |-----------|-------------------|------------------------------------|-----------------| | Table 33. | Amides | Linear, Branched, Cyclic, Aromatic | 28 | | Table 34. | Ureas | Ureas | 24 | | Table 35. | Amino acids | Amino acids and peptides | 38 | | Table 36. | Nitroso compounds | Nitroso and cyanato compounds | 9 | | Table 37. | Nitro compounds | Linear, branched, cyclic, aromatic | 50 | | Table 38. | Nitrites | Nitrites | 3 | | Table 39. | Nitrates | Nitrates | 6 | | Table 40. | Nitramines | Nitramines | 10 | | Table 41. | Cyclic CHNO | Cyclic amides | 3 | | Total CHI | NO compounds | | 171 | ## CHS and CHSO Compounds | Table Name D | | Description | No. of compounds | |--------------|--------------------|------------------------------------|------------------| | Table 42. | Thiols | Linear, branched, cyclic, aromatic | 31 | | Table 43. | Sulfides | Linear, branched, aromatic | 33 | | Table 44. | Disulfides | Disulfides | 8 | | Table 45. | Sulfoxides | Sulfoxides | 6 | | Table 46. | Sulfones | Linear, branched, aromatic | 38 | | Table 47. | Sulfites | Sulfites | 5 | | Table 48. | Sulfates | Sulfates | 4 | | Table 49. | Cyclic CHS | Heterocyclic sulfur compounds | 13 | | Total CHS a | and CHSO compounds | | 138 | #### Halogen Compounds | Table | Name | Description | No. of compounds | |------------
-------------------------|-------------------------------------|------------------| | Table 50. | Fluorides | CHF and CHFO compounds | 46 | | Table 51. | Chlorides | CHCl and CHClO compounds | 116 | | Table 52. | Bromides | CHBr and CHBrO compounds | 39 | | Table 53. | Iodides | CHI and CHIO compounds | 39 | | Table 54. | Mixed Halogen compounds | CHCIF, CHCIBr, CHBrF, CHFI compound | ls 18 | | Total Hale | ogen compounds | | 258 | | Total of a | ll compounds | | 1512 | TABLE 2. Listing of groups and group values | Group | $\Delta_t H^\circ$ (gas) | C_p° (gas) | S°
(gas) | $\Delta_{\mathrm{f}}H^{\circ}$ (liq) | C_p° (liq) | S°
(liq) | $\Delta_t H^{\circ}$ (solid) | C_p° (solid) | S° (solid) | |---|--|---|--|---|--|---|--|---|--| | | (505) | | CH Groups | (4) | (4) | (4) | (50114) | (30114) | (JOHU | | C-(H) (C) | - 42.26 | 25.73 | 127.32 | -47.61 | 36.48 | 83.30 | - 46.74 | 67.45 | 56.69 | | C-(H) ₃ (C)
C-(H) ₂ (C) ₂ | - 42.20
- 20.63 | 22.89 | 39.16 | -47.01
-25.73 | 30.48 | 32.38 | - 40.74
- 29.41 | 21.92 | 23.01 | | C-(H)(C) ₃ | -1.17 | 20.08 | -53.60 | -4.77 | 21.38 | - 23.89 | -5.98 | -48.81 | | | -CH ₃ corr (tertiary) | -2.26 | 0.00 | 0.00 | -2.18 | 0.00 | 0.00 | -2.34 | 0.00 | 0.00 | | C-(C) ₄ | 19.20 | 16.53 | - 149.49 | 17.99 | 10.24 | -98.65 | 12.47 | -83.63 | | | -CH ₃ corr (quaternary) | -4.56 | 0.00 | 0.00 | - 4.39 | 0.00 | 0.00 | -4.35 | 0.00 | 0.00 | | -CH ₃ corr (tert/quat) | -1.80 | 0.00 | 0.00 | - 1.77 | 0.00 | 0.00 | -2.70 | 0.00 | 0.00 | | -CH ₃ corr (quat/quat) | -0.64 | 0.00 | 0.00 | -0.64 | 0.00 | 0.00 | -2.24 | 0.00 | 0.00 | | C_{d} – $(H)_{2}$ | 26.32 | 21.38 | 115.52 | 21.75 | 28.37 | 86.19 | 22.43 | | | | C _d -(H)(C) | 36.32 | 18.74 | 33.05 | 31.05 | 24.60 | 28.58 | 25.48 | | | | C _d -(C) ₂ | 44.14 | 15.10 | -50.84 | 39.16 | 23.22 | - 29.83 | 32.97 | | | | C_{d} $(H)(C_{d})$ | 28.28 | 18.54 | 27.74 | 22.18 | 31.67 | 13.30 | 17.53 | 35.65 | 21.75 | | C_d – $(C)(C_d)$ | 36.78 | 17.57 | -61.33 | 30.42 | 26.19 | -41.92 | 27.91 | | | | C_d - $(C_d)(C_B)$ | | | | | | | 56.07 | | | | C_{d} -(H)(C_{B}) | 28.28 | 18.54 | 27.74 | 22.18 | 31.67 | 13.30 | 17.53 | 35.65 | 21.75 | | C_d -(C)(C_B) | 37.95 | 15.90 | - 51.97
27.74 | 38.58 | 21.67 | 12.20 | 17 52 | 25.65 | 21.75 | | C _d -(H)(C ₁)
C-(H) ₄ , Methane | 28.28
74.48 | 18.54
35.73 | 206.92 | 22.18 | 31.67 | 13.30 | 17.53 | 35.65 | 21.75 | | C_d – $(C_B)_2$ | 32.88 | 33.73 | 200.92 | 30.83 | 25.10 | | 49.91 | 32.50 | | | $C-(H)_2(C)(C_d)$ | -20.88 | 20.63 | 38.20 | -25.73 | 29.29 | 31.67 | -24.35 | 32.30 | | | $C-(H)(C)_2(C_d)$ | -1.63 | 27.49 | -50.38 | -5.02 | 30.12 | - 28.07 | -6.49 | | | | -CH ₃ corr (tertiary) | -2.26 | 0.00 | 0.00 | -2.18 | 0.00 | 0.00 | -2.34 | 0.00 | 0.00 | | C-(C) ₃ (C _d) | 22.13 | 9.16 | -150.23 | 20.79 | 28.74 | -108.20 | 12.51 | 0.00 | 0.00 | | -CH ₃ corr (quaternary) | -4.56 | 0.00 | 0.00 | - 4.39 | 0.00 | 0.00 | -4.35 | 0.00 | 0.00 | | $C-(H)(C)(C_d)_2$ | -1.17 | 20.08 | - 53.60 | -4.77 | 21.38 | -23.89 | -5.98 | -48.81 | - 16.89 | | $C-(H)_2(C_d)_2$ | - 18.92 | 24.77 | 42.08 | -24.43 | 40.88 | 19.32 | -21.60 | | | | $C-(H)_2(C_d)(C_B)$ | | | | -24.73 | | | | | | | $C-(H)(C)(C_d)(C_B)$ | 4.05 | 0.00 | | -6.90 | 0.00 | 0.00 | | | | | cis (unsat) corr | 4.85 | -8.03 | 5.06 | 5.27 | 0.00 | 0.00 | 5.73 | 0.00 | 0.00 | | tert-Butyl cis corr | 17.24 | 0.00 | 0.00 | 17.48 | 0.00 | 0.00 | 17.57 | 0.00 | 0.00 | | C,-(H) | 113.50 | 22.55 | 101.96 | 104.47 | 39.96 | 67.57 | 110.34 | | | | C,-(C) | 115.10 | 13.22 | 26.32 | 107.15 | 25.59 | 14.25 | 101.66 | | | | C_t – (C_d) | 121.42 | 10.71 | 39.92 | 114.77 | | | | | | | C_t - (C_B) | 120.76 | 10.17 | 17.77 | 119.00 | | | 103.28 | 32.30 | | | G-(G) | | | | | | | 103.28 | | | | | 120.76 | 14.27 | 25.94 | 104.80 | | | | | | | $C-(H)_2(C)(C_i)$ | - 19.70 | 20.97 | 42.80 | 104.80
22.13 | 30.39 | 32.36 | -29.41 | | | | C-(H) ₂ (C)(C ₁)
C-(H)(C) ₂ (C ₁) | - 19.70
- 3.16 | 20.97
17.45 | 42.80
45.69 | - 22.13 | | | | 0.00 | 0.00 | | C-(H) ₂ (C)(C ₁)
C-(H)(C) ₂ (C ₁)
-CH ₃ corr (tertiary) | - 19.70 | 20.97 | 42.80 | -22.13
-2.18 | 30.39
0.00 | 32.36
0.00 | -2.34 | 0.00 | 0.00 | | C-(H) ₂ (C)(C ₁)
C-(H)(C) ₂ (C ₁)
-CH ₃ corr (tertiary)
C-(C) ₃ (C ₁) | -19.70
-3.16
-2.26 | 20.97
17.45
0.00 | 42.80
-45.69
0.00 | -22.13
-2.18
22.83 | 0.00 | 0.00 | -2.34
26.38 | | | | $C-(H)_2(C)(C_1)$
$C-(H)(C)_2(C_1)$
$-CH_3$ corr (tertiary)
$C-(C)_3(C_1)$
$-CH_3$ corr (quaternary) | - 19.70
- 3.16
- 2.26
- 4.56 | 20.97
17.45 | 42.80
45.69 | -22.13
-2.18
22.83
-4.39 | | | -2.34 | 0.00 | 0.00 | | C-(H) ₂ (C)(C ₁)
C-(H)(C) ₂ (C ₁)
-CH ₃ corr (tertiary)
C-(C) ₃ (C ₁) | -19.70
-3.16
-2.26 | 20.97
17.45
0.00 | 42.80
-45.69
0.00 | -22.13
-2.18
22.83 | 0.00 | 0.00 | -2.34
26.38 | | | | C-(H) ₂ (C)(C ₁)
C-(H)(C) ₂ (C ₁)
-CH ₃ corr (tertiary)
C-(C) ₃ (C ₁)
-CH ₃ corr (quaternary)
C-(H) ₂ (C ₁) ₂
C-(C) ₂ (C ₁) ₂ | - 19.70
- 3.16
- 2.26
- 4.56 | 20.97
17.45
0.00 | 42.80
-45.69
0.00 | -22.13
-2.18
22.83
-4.39
-39.08
20.67 | 0.00 | 0.00 | -2.34
26.38
-4.35 | | | | C-(H) ₂ (C)(C ₁)
C-(H)(C) ₂ (C ₁)
-CH ₃ corr (tertiary)
C-(C) ₃ (C ₁)
-CH ₃ corr (quaternary)
C-(H) ₂ (C ₁) ₂
C-(C) ₂ (C ₁) ₂ | - 19.70
- 3.16
- 2.26
- 4.56
- 41.14 | 20.97
17.45
0.00
0.00 | 42.80
- 45.69
0.00
0.00 | -22.13
-2.18
22.83
-4.39
-39.08 | 0.00 | 0.00 | -2.34
26.38 | | | | C-(H) ₂ (C)(C ₁)
C-(H)(C) ₂ (C ₁)
-CH ₃ corr (tertiary)
C-(C) ₃ (C ₁)
-CH ₃ corr (quaternary)
C-(H) ₂ (C ₁) ₂
C-(C) ₂ (C ₁) ₂ | - 19.70
- 3.16
- 2.26
- 4.56
- 41.14 | 20.97
17.45
0.00
0.00 | 42.80
- 45.69
0.00
0.00 | - 22.13
- 2.18
22.83
- 4.39
- 39.08
20.67
134.68 | 0.00 | 0.00
0.00
14.39 | -2.34
26.38
-4.35 | 0.00
20.13 | 0.00 | | C-(H) ₂ (C)(C ₁) C-(H)(C) ₂ (C ₁) -CH ₃ corr (tertiary) C-(C) ₃ (C ₁) -CH ₃ corr (quaternary) C-(H) ₂ (C ₁) ₂ C-(C) ₂ (C ₁) C _n C _B -(H)(C _B) ₂ | - 19.70
- 3.16
- 2.26
- 4.56
- 41.14
142.67
13.81 | 20.97
17.45
0.00
0.00 | 42.80
- 45.69
0.00
0.00
26.28
48.31 | - 22.13
- 2.18
22.83
- 4.39
- 39.08
20.67
134.68
8.16 | 0.00
0.00
30.04
22.68 | 0.00
0.00
14.39
28.87 | -2.34
26.38
-4.35 | 0.00
20.13 | 0.00
22.75
-5.50 | | C-(H ₂ (C)(C ₁) C-(H)(C) ₂ (C ₁) -CH ₃ corr (tertiary) C-(C) ₃ (C ₁) -CH ₃ corr (quaternary) C-(H) ₂ (C ₁) ₂ C-(C) ₂ (C ₁) ₂ C C C C C C C C C C C C C C C C C C C | - 19.70
- 3.16
- 2.26
- 4.56
- 41.14
142.67
13.81
23.64
24.17
24.17 | 20.97
17.45
0.00
0.00
15.86
13.61
9.75
14.12 | 42.80
- 45.69
0.00
0.00
26.28
48.31
- 35.61
- 33.85
- 33.85 | - 22.13
- 2.18
22.83
- 4.39
- 39.08
20.67
134.68
8.16
19.16
19.12
19.12 | 0.00
0.00
30.04
22.68
10.10
9.44
9.44 | 0.00
0.00
14.39
28.87
- 19.50 | -2.34
26.38
-4.35
131.08
6.53
13.90
20.27
20.07 | 20.13
- 23.26
- 20.00
- 20.00 | 22.75
-5.50
-10.00 | | C-(H) ₂ (C)(C ₁) C-(H)(C) ₂ (C ₁) -CH ₃ corr (tertiary) C-(C) ₃ (C ₁) -CH ₅ corr (quaternary) C-(H) ₂ (C ₁) ₂ C-(C) ₂ (C ₁) ₂ C _a C _b -(H)(C _b) ₂ C _b -(C)(C _b) ₂ C _b -(C ₁ (C _b) ₃ | - 19.70
- 3.16
- 2.26
- 4.56
- 41.14
142.67
13.81
23.64
24.17 | 20.97
17.45
0.00
0.00
15.86
13.61
9.75
14.12 | 42.80
- 45.69
0.00
0.00
26.28
48.31
- 35.61
- 33.85 | - 22.13
- 2.18
22.83
- 4.39
- 39.08
20.67
134.68
8.16
19.16
19.12 |
0.00
0.00
30.04
22.68
10.10
9.44 | 0.00
0.00
14.39
28.87
- 19.50
- 9.04 | -2.34
26.38
-4.35
131.08
6.53
13.90
20.27
20.07
17.03 | 20.13
-23.26
-20.00 | 22.75
-5.50
-10.00 | | C-(H) ₂ (C)(C ₁) C-(H)(C) ₂ (C ₁) -CH ₃ corr (tertiary) C-(C) ₃ (C ₁) -CH ₃ corr (quaternary) C-(H) ₂ (C ₁) ₂ C-(C) ₂ (C ₁) ₂ C _n C _B -(H)(C _B) ₂ C _B -(C)(C _B) ₂ C _B -(C ₁ (C ₀) ₂ C _C -(C ₁ (C ₀) ₂ C ₁ (C ₁ (C ₀) ₂ C ₁ (C ₁ (C ₀) ₂ C ₁ (C ₁ (C ₀) ₂ C ₂ (C ₁ (C ₀) ₂ C(C ₁ (C ₀) ₂ C(C ₁ (C ₀) ₂ | - 19.70
- 3.16
- 2.26
- 4.56
- 41.14
142.67
13.81
23.64
24.17
24.17
21.66 | 20.97
17.45
0.00
0.00
15.86
13.61
9.75
14.12
13.12 | 42.80
- 45.69
0.00
0.00
26.28
48.31
- 35.61
- 33.85
- 36.57 | - 22.13
- 2.18
22.83
- 4.39
- 39.08
20.67
134.68
8.16
19.16
19.12
19.12
17.21 | 0.00
0.00
30.04
22.68
10.10
9.44
9.44
17.07 | 0.00
0.00
14.39
28.87
-19.50
-9.04
-9.04 | -2.34
26.38
-4.35
131.08
6.53
13.90
20.27
20.07
17.03
52.81 | 20.13
-23.26
-20.00
-20.00
-1.72 | 22.75
- 5.50
- 10.00
- 10.00
- 6.00 | | C-(H ₂ (C)(C ₁) C-(H)(C) ₂ (C ₁) -CH ₃ corr (tertiary) C-(C) ₃ (C ₁) -CH ₃ corr (quaternary) C-(H) ₂ (C ₁) ₂ C-(C) ₂ (C ₁) ₂ C _n C _B -(H)(C _B) ₂ C _B -(C)(C _B) ₂ C _B -(C ₁ (C ₀) ₂ C _C -(C) ₂ (C ₀) ₂ C _C -(C) ₂ (C ₀) ₂ C _C -(C) ₂ (C ₀) ₂ C-(C) ₂ (C ₀) ₂ C-(H) ₂ (C)(C ₀) | - 19.70
- 3.16
- 2.26
- 4.56
- 41.14
142.67
13.81
23.64
24.17
24.17
21.66
- 21.34 | 20.97
17.45
0.00
0.00
15.86
13.61
9.75
14.12
13.12
25.61 | 42.80
-45.69
0.00
0.00
26.28
48.31
-35.61
-33.85
-36.57
42.59 | - 22.13
- 2.18
22.83
- 4.39
- 39.08
20.67
134.68
8.16
19.16
19.12
19.12
17.21
- 24.81 | 0.00
0.00
30.04
22.68
10.10
9.44
17.07 | 0.00
0.00
14.39
28.87
-19.50
-9.04
-9.04 | -2.34
26.38
-4.35
131.08
6.53
13.90
20.27
20.07
17.03
52.81
-22.10 | 20.13
- 23.26
- 20.00
- 20.00 | 22.75
-5.50
-10.00 | | C-(H) ₂ (C)(C ₁) C-(H)(C) ₂ (C ₁) -CH ₃ corr (tertiary) C-(C) ₃ (C ₁) -CH ₃ corr (quaternary) C-(H) ₂ (C ₁) ₂ C-(C) ₂ (C ₁) ₂ C _n C _B -(H)(C _B) ₂ C _B -(C)(C _B) ₂ C _B -(C ₁ (C ₀) ₂ C _C -(C) ₂ (C _B) ₃ C-(C) ₂ (C _B) ₂ | - 19.70
- 3.16
- 2.26
- 4.56
- 41.14
142.67
13.81
23.64
24.17
24.17
21.66 | 20.97
17.45
0.00
0.00
15.86
13.61
9.75
14.12
13.12 | 42.80
- 45.69
0.00
0.00
26.28
48.31
- 35.61
- 33.85
- 36.57 | - 22.13
- 2.18
22.83
- 4.39
- 39.08
20.67
134.68
8.16
19.16
19.12
19.12
17.21 | 0.00
0.00
30.04
22.68
10.10
9.44
9.44
17.07 | 0.00
0.00
14.39
28.87
-19.50
-9.04
-9.04 | -2.34
26.38
-4.35
131.08
6.53
13.90
20.27
20.07
17.03
52.81 | 20.13
-23.26
-20.00
-20.00
-1.72 | 22.75
- 5.50
- 10.00
- 10.00
- 6.00 | | C-(H) ₂ (C)(C ₁) C-(H)(C) ₂ (C ₁) -CH ₃ corr (tertiary) C-(C) ₃ (C ₁) -CH ₃ corr (quaternary) C-(H) ₂ (C ₁) ₂ C-(C) ₂ (C ₁) ₂ C ₈ -(C) ₂ (C ₁) ₂ C ₈ -(C)(C ₈) ₂ C ₈ -(C)(C ₈) ₂ C ₈ -(C ₁ (C ₁) ₂ C ₈ -(C ₁ (C ₁) ₂ C ₈ -(C ₁ (C ₁) ₂ C ₁ -(C ₁ (C ₁) ₂ C ₁ -(C ₁ (C ₁) ₂ C ₂ -(C ₁ (C ₁) ₂ C ₃ -(C ₁ (C ₁) ₂ C ₄ -(C ₁ (C ₁) ₂ C ₆ -(C ₁ (C ₁) ₂ C ₇ -(H) ₂ (C)(C ₈) C-(H) ₂ (C)(C ₈) C-(H)(C) ₂ (C ₈) C-(C ₈ (C) ₃ | - 19.70
- 3.16
- 2.26
- 4.56
- 41.14
142.67
13.81
23.64
24.17
21.66
- 21.34
- 4.52
18.28 | 20.97
17.45
0.00
0.00
15.86
13.61
9.75
14.12
14.12
13.12
25.61
22.45 | 42.80
-45.69
0.00
0.00
26.28
48.31
-35.61
-33.85
-36.57
42.59
-48.00 | - 22.13 - 2.18 22.83 - 4.39 - 39.08 20.67 134.68 8.16 19.16 19.12 19.12 17.21 - 24.81 - 5.82 18.70 | 0.00
0.00
30.04
22.68
10.10
9.44
9.44
17.07
22.90
17.50
5.17 | 0.00
0.00
14.39
28.87
-19.50
-9.04
-9.04
47.40
-13.90
-96.10 | -2.34
26.38
-4.35
131.08
6.53
13.90
20.27
20.07
17.03
52.81
-22.10
-3.50
21.57 | 20.13
-23.26
-20.00
-20.00
-1.72
49.38 | 22.75
-5.50
-10.00
-10.00
-6.00
26.90 | | C-(H) ₂ (C)(C ₁) C-(H)(C) ₂ (C ₁) -CH ₃ corr (tertiary) C-(C) ₃ (C ₁) -CH ₃ corr (quaternary) C-(H) ₂ (C ₁) ₂ C-(C) ₂ (C ₁) ₂ C ₈ -(C) ₂ (C ₁) ₂ C ₈ -(C)(C ₈) ₂ C ₈ -(C)(C ₈) ₂ C ₈ -(C ₁ (C ₈) ₂ C ₈ -(C ₁ (C ₈) ₂ C ₈ -(C ₁ (C ₈) ₂ C ₁ (C ₁ (C ₈) ₂ C ₁ (C ₁ (C ₈) ₂ C ₁ (C ₁ (C ₈) ₂ C-(C) ₂ (C ₈) ₂ C-(H) ₂ (C(C ₈) ₂ C-(H) ₂ (C)(C ₈) C-(H)(C) ₂ (C ₈) C-(C ₁ ₁ (C ₈) | - 19.70
- 3.16
- 2.26
- 4.56
- 41.14
142.67
13.81
23.64
24.17
21.66
- 21.34
- 4.52 | 20.97
17.45
0.00
0.00
15.86
13.61
9.75
14.12
14.12
13.12
25.61
22.45 | 42.80
-45.69
0.00
0.00
26.28
48.31
-35.61
-33.85
-36.57
42.59
-48.00 | - 22.13 - 2.18 22.83 - 4.39 - 39.08 20.67 134.68 8.16 19.16 19.12 19.12 17.21 - 24.81 - 5.82 18.70 - 26.50 | 0.00
0.00
30.04
22.68
10.10
9.44
9.44
17.07
22.90
17.50
5.17 | 0.00
0.00
14.39
28.87
-19.50
-9.04
47.40
-13.90
-96.10 | -2.34
26.38
-4.35
131.08
6.53
13.90
20.27
20.07
17.03
52.81
-22.10
-3.50
21.57 | 20.13
- 23.26
- 20.00
- 20.00
- 1.72
49.38 | 22.75
- 5.50
- 10.00
- 10.00
- 6.00 | | C-(H) ₂ (C)(C ₁) C-(H)(C) ₂ (C ₁) -CH ₃ corr (tertiary) C-(C) ₃ (C ₁) -CH ₃ corr (quaternary) C-(H) ₂ (C ₁) ₂ C-(C) ₂ (C ₁) ₂ C _n C _n -(H)(C _n) ₂ C _n -(C)(C _n) ₂ C _n -(C) ₂ (C _n) ₂ C _n -(C) ₂ (C _n) ₂ C-(H) ₂ (C)(C _n) ₂ C-(H) ₂ (C)(C _n) ₂ C-(H)(C) ₂ (C _n) C-(H)(C) ₂ (C _n) | - 19.70
- 3.16
- 2.26
- 4.56
- 41.14
142.67
13.81
23.64
24.17
21.66
- 21.34
- 4.52
18.28 | 20.97
17.45
0.00
0.00
15.86
13.61
9.75
14.12
14.12
13.12
25.61
22.45 | 42.80
-45.69
0.00
0.00
26.28
48.31
-35.61
-33.85
-36.57
42.59
-48.00 | - 22.13 - 2.18 22.83 - 4.39 - 39.08 20.67 134.68 8.16 19.16 19.12 19.12 17.21 - 24.81 - 5.82 18.70 | 0.00
0.00
30.04
22.68
10.10
9.44
9.44
17.07
22.90
17.50
5.17 | 0.00
0.00
14.39
28.87
-19.50
-9.04
-9.04
47.40
-13.90
-96.10 | -2.34
26.38
-4.35
131.08
6.53
13.90
20.27
20.07
17.03
52.81
-22.10
-3.50
21.57 | 20.13
-23.26
-20.00
-20.00
-1.72
49.38 | 22.75
- 5.50
- 10.00
- 10.00
- 6.00
26.90 | TABLE 2. Listing of groups and group values | | | S°
(gas) | Δ _t H°
(lia) | Cp
(lia) | S°
(lia) | $\Delta_t H^\circ$ (solid) | C_p° (solid) | S° (solid) | |-------------------------|---|--|---|---|-------------
--|--|------------------------| | (8-0) | (8) | | | | | | (30114) | (5010 | | | | | | | | | | | | | 0.00 | 0.00 | 15.02 | 0.50 | 5.54 | | | | | | 0.00 | 0.00 | | 9.52 | -5.54 | | | -6.00 | | | | | | | | | | 2.00 | | 3.39 | | | - 0.90 | | | | 8.00 | 7.00 | | 20.46 | | | | | | | | | | 22.46 | | | | | | 47.93 | | | | 1.26 | 6.40 | -2.50 | 3.26 | 3.50 | 0.00 | 5.00 | 0.00 | 0.00 | | -0.63 | 0.71 | 0.00 | 0.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | | 115 15 | ~ 12 73 | 134 86 | 111 58 | - 28 53 | | | | | | | | | | | 51 /19 | 114.42 | 10.94 | | | | | | | | | | | | | | | 43.17 | 70.78 | | -27.00 | 2.90 | 41.33 | | | 46.27 | | | | | | | | | | .0.2, | | | | | | | 24.83 | | | | | | | | | | | | | 37.48 | | | | | | | | | | 65.09 | | | | | | | | | | 67.14 | | | | | | | | | | 69.56 | | | | | | | | | | | | | | 125.81 | -11.67 | 126.77 | | | | | | | | 24.18 | - 26.53 | 113.76 | 21.45 | -15.82 | 48.37 | | | | | 5.61 | ~ 19.50 | 95.69 | 2.04 | -20.26 | 29.34 | | | | | 21.81 | | | | | | | | | | 24.65 | | | 18.26 | -26.56 | 50.18 | | | | | | | | | | | | | | | | | | 3.04 | 34.22 | 50.41 | | | | | | | | 36.42 | -745 | 23 35 | | | | | | 18.63 | 102.26 | | | | | | | | | | | | | | | | | | 248.50 | - 19.97 | 286.59 | 242.58 | 2.60 | 162.81 | | | | | 105.05 | | | | | | | | | | | 07.07 | 110.00 | | 00.00 | 10.30 | 0.00 | | | | | | | | | | 0.00 | | 0.00 | 16.48 | -23.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 127.00 | - 183.44 | | -4.02 | -54.12 | 53.75 | | | | | 123.81 | -183.24 | | -15.22 | -57.63 | 53.67 | | | | | 19.51 | | | 16.39 | . 3.00 | | 55.06 | - 24 02 | | | 99.35 | | | | | | 109.46 | - 24.92
- 4.02 | | | | | | | | | | | | | 125.09 | | | | | | 177 26 | _ 12 19 | _ 1 02 | | 125.09
50.95 | | | | | | 127.26
65.53 | | -1.92 | | 125.09
50.95
6.14 | | | | | | 127.26
65.53
3.18 | - 13.18
14.90 | -1.92 | | | -0.63 115.15 110.89 26.75 0.68 26.34 40.65 52.91 51.99 47.56 17.31 21.84 49.37 8.03 8.41 -13.59 223.26 125.81 24.18 5.61 21.81 24.65 24.07 17.14 -2.69 27.54 39.34 16.84 71.37 248.50 105.95 19.55 -0.39 24.31 0.00 0.00 0.00 127.00 123.81 19.51 15.16 52.08 | 27.04 20.10 16.00 3.59 22.46 1.26 -0.63 0.71 115.15 -12.73 110.89 -19.34 26.75 -31.44 0.68 -31.07 26.34 -37.14 40.65 -43.17 52.91 51.99 47.56 17.31 21.84 49.37 8.03 8.41 -13.59 223.26 125.81 -11.67 24.18 -26.53 5.61 -19.50 21.81 24.65 24.07 17.14 -2.69 27.54 39.34 16.84 -18.63 71.37 -26.31 248.50 -19.97 105.95 19.55 -27.87 -0.39 -22.82 24.31 -24.50 0.00 11.83 0.00 14.39 0.00 16.48 127.00 -183.44 123.81 -183.24 19.51 15.16 52.08 | (gas) (gas) (gas) CH Groups 27.04 20.10 0.00 0.00 16.00 3.59 22.46 1.26 6.40 -2.50 -0.63 0.71 0.00 115.15 -12.73 134.86 110.89 -19.34 126.04 26.75 -31.44 116.22 0.68 -31.07 78.18 26.34 -37.14 73.97 40.65 -43.17 70.78 52.91 51.99 47.56 17.31 21.84 49.37 8.03 8.41 -13.59 223.26 125.81 -11.67 126.77 24.18 -26.53 113.76 5.61 -19.50 95.69 21.81 24.65 24.07 17.14 -2.69 27.54 39.34 16.84 -18.63 102.26 71.37 -26.31 116.38 248.50 -19.97 286.59 105.95 19.55 -27.87 118.39 -0.39 -22.82 83.97 24.31 -24.50 117.11 0.00 11.83 -19.66 0.00 14.39 -21.50 0.00 16.48 -23.00 127.00 -183.44 123.81 -183.24 19.51 15.16 52.08 | CH Groups CH Groups 27.04 20.10 0.00 15.83 16.00 3.59 -0.90 22.46 1.26 6.40 -2.50 3.26 -0.63 0.71 0.00 0.00 115.15 -12.73 134.86 111.58 110.89 -19.34 126.04 106.64 26.75 -31.44 116.22 22.84 0.68 -31.07 78.18 -1.77 26.34 -37.14 73.97 23.50 40.65 -43.17 70.78 38.10 52.91 50.61 47.55 17.31 21.84 24.83 49.37 8.03 8.41 -13.59 223.26 125.81 -11.67 126.77 24.18 -26.53 113.76 21.45 5.61 -19.50 95.69 2.04 21.81 24.65 18.26 24.07 23.95 17.14 | CH Groups | CH Groups CH Groups 27.04 20.10 0.00 0.00 15.83 9.52 -5.54 16.00 11.50 3.59 -0.90 -0.90 22.46 1.26 6.40 -2.50 3.26 3.50 0.00 -0.63 0.71 0.00 0.00 0.00 0.00 0.00 115.15 -12.73 134.86 111.58 -28.53 1110.89 -19.34 126.04 106.64 -10.68 51.48 26.75 -31.44 116.22 22.84 -23.32 42.24 0.68 -31.07 78.18 -1.77 -26.21 10.07 26.34 -37.14 73.97 23.50 -32.19 15.89 40.65 -43.17 70.78 38.10 -27.88 2.96 52.91 50.61 47.55 17.731 21.84 24.83 49.37 8.38 1.93 49.37 8.38 1.93 48.37 5.61 -15.82 48.37 5.61 -15.82< | CH Groups CH Groups 27.04 20.10 0.00 15.83 9.52 -5.54 44.89 20.10 0.00 0.00 11.583 9.52 -5.54 14.10 16.00 3.59 -0.90 1.20 -8.77 -8.77 -8.77 22.46 -2.50 3.26 3.50 0.00 5.00 -8.77 1.26 6.40 -2.50 3.26 3.50 0.00 5.00 -0.63 0.71 0.00 0.00 0.00 0.00 2.00 115.15 -12.73 134.86 111.58 -28.53 114.41 14.43 26.75 -31.44 116.02 22.84 -23.32 42.24 34.00 0.68 -31.07 78.18 -1.77 -26.21 10.07 10.94 26.34 -37.14 73.97 23.50 -32.19 15.89 40.65 -43.17 70.78 <td>CH Groups CH Groups</td> | CH Groups CH Groups | TABLE 2. Listing of groups and group values - Continued | Group | $\Delta_t H^{\circ}$ (gas) | C_p° (gas) | S°
(gas) | $\Delta_t H^\circ$ (liq) | C_p° (liq) | S°
(lig) | $\Delta_t H^{\circ}$ (solid) | C_p° (solid) | S°
(solid) | |--|----------------------------|---------------------|-------------|--------------------------|---------------------|-------------|--|-----------------------|----------------| | | - | | CH Groups | | | | · | | | | Bicyclo[2,2,2]octane rsc | 27.12 | | | | -67.59 | -63.45 | 41.52 | | | | Bicyclo[3.3.3]undecane rsc | 99.06 | | | | | | 124.10 | | | | cis-Bicyclo[6.1.0]nonane rsc | 115.55 | | | 109.35 | | | | | | | Bicyclo[1.1.0]butane rsc | 260.70 | | | 254.70 | | | | | | | Bicyclo[3.1.0]hexane rsc | 123.16 | | | 117.56 | | | | | | | Bicyclo[2.2.1]hepta-2,5-diene rsc | 125.29 | | | 124.87 | | | | | | | Tetracyclo-[3.2.02,7.04,6]heptane rsc | 366.75 | | | 356.45 | | | | | | | Tricyclo[2.2.1.02,6]heptane rsc | 148.67 | | | 139.67 | | | | | | | Bicyclo[2.2.1]hept-2-ene rsc | 82.79 | | | 73.58 | | | 102.73 | | | | Bicyclo[2.2.1]heptane rsc | 43.49 | | | 45.39 | | | 57.01 | | | | Bicyclo[4.1.0]heptane rsc | 106.99 | | | 101.39 | | | | | | | Pentacyclo-[4.2.0.02,5.03,8.04,7]-octane rsc | 674.60 | | | | | | 632.84 | | | | Bicyclo[2.2.2]oct-2-ene rsc | 33.64 | | | | | | 56.36 | | | | Bicyclo[4.2.0]octane rsc | 100.72 | | | 95.72 | | | | | | | Bicyclo[5.1.0]octane rsc | 109.42 | | | 103.62 | | | | | | | trans-Bicyclo[6.1.0]nonane rsc | 107.05 | | | 107.25 | | | | | | | Bicyclo[3.3.1]nonane rsc | 19.25 | | | 27.02 | | | 39.63 | | | | cis-Bicyclo[3.3.0]octane rsc | 33.22
59.52 | | | 27.92
54.72 | | | | | | | trans-Bicyclo[3.3.0]octane rsc | J9.J2 | | | | | | | | | | | | c | HO Group | s | | | | | | | CO-(H) ₂ , Formaldehyde | - 108.60 | 35.40 | 224.54 | | <u></u> | | ······································ | | ************ | | CO-(C)(CO) | - 121.29 | | | - 135.04 | | | - 140.75 | | | | CO-(H)(CO) | - 105.98 | | | | | | | | | | $CO-(CO)(C_B)$ | -112.30 | | | | | | - 117.75 | | | | CO-(O)(CO) | -123.75 | | | -123.30 | 40.63 | | -120.81 | | | | $CO-(C^q)(O)$ | - 136.73 | 24.56 | 62.59 | - 155.56 | 48.16 | | - 134.10 | 43.75 | 32.90 | | CO-(C)(O) | -137.24 | 24.56 | 62.59 | - 149.37 | 44.98 | 32.72 | - 153.60 | 44.98 | 32.13 | | CO-(H)(O) | - 124.39 | 29.00 | 147.03 | -142.42 | 65.10 | 94.68 | 400.00 | | | | CO-(O) ₂ | -111.88 | | | -122.00 | 31.46 | | - 123.00 | 4.25 | - 42.92 | | CO – $(H)(C_d)$
CO – $(C_B)_2$ | 126.96
110.00 | | | 153.05
119.00 | | | - 116.00 | 109.33 | | | | | | | | | | | | | | CO-(C)(C _B) | - 148.82 | | | -145.22 | 73.35 | | - 143.70 | 71.38 | 23.72 | | CO-(H)(C _B) | - 121.35 | | | -138.12 | 54.22 | | - 160.18 | 40.55 | | | $CO-(O)(C_B)$ | - 125.00 | | | - 140.00 | 48.16 | | -
145.00 | 43.75 | 32.13 | | CO-(C) ₂ | -132.67 | 23.43 | 64.31 | -152.76 | 52.97 | 33.81 | - 157.95 | | | | CO-(H)(C) | -124.39 | 29.00 | 147.03 | -142.42 | 65.10 | 93.55 | | | | | CO-(C)(C _d) | | | | | 27.07 | | | | | | O-(CO) ₂ , aliphatic | -214.50 | -1.08 | 34.16 | -230.50 | 5.28 | | -235.00 | | | | O-(CO) ₂ , aromatic | -238.30 | | | -220.90 | | | -207.00 | | | | O-(C _d)(CO) | - 198.03 | | | -201.42 | 19.58 | | | | | | 0-(C)(C0) | - 188.87 | 11.80 | 36.03 | -196.02 | 19.58 | 38.28 | -210.60 | -6.00 | 12.09 | | O-(H)(CO)
O-(C _B)(CO) | - 254.30
- 167.00 | 16.23 | 101.71 | -285.64 -165.50 | 37.82 | 38.28 | - 282.15
- 170.00 | 44.60
29.08 | 21.78
45.32 | | 0-(C)(O) | - 107.00
- 20.75 | | | - 103.50
- 23.50 | | | - 170.00
- 30.20 | 29.00 | 43.32 | | O-(H)(O) | - 72.26 | | | - 101.75 | | | - 105.30 | | | | $O-(C_d)_2$ | - 139.29 | | | -137.32 | | | 102.20 | | | | O-(H)(C _d) | | | | | 37.78 | | | | | | O-(C)(C _d) | - 129.33 | | | -133.72 | 51.21 | | | | | | O-(C _B) ₂ | -77.66 | | | -85.27 | | 23.31 | - 96.20 | 15.90 | 3.14 | | $O-(C)(C_B)$ | -92.55 | | | -104.85 | 8.10 | | -122.87 | | | | $O-(H)(C_B)$ | -160.30 | 18.16 | 121.50 | - 191.75 | 44.64 | 43.89 | - 199.25 | 29.25 | 28.62 | | O-(C) ₂ | -101.42 | 18.54 | 29.33 | -110.83 | 24.27 | 26.78 | -119.00 | | | | O-(H)(C) | - 159.33 | 18.16 | 121.50 | -191.50 | 44.64 | 43.89 | - 199.66 | 29.25 | 28.62 | | C _d -(H)(CO)
C _d -(C)(CO) | 32.30 | 15.61 | 35.19 | 26.61 | 28.12
18.62 | | 7.82 | - 18.66 | 27.53 | | | | | | | | | | | | TABLE 2. Listing of groups and group values - Continued | Group | Δ _t H°
(gas) | C_p° (gas) | S°
(gas) | $\Delta_t H^\circ$ (liq) | C_p° (liq) | S°
(liq) | $\Delta_t H^{\circ}$ (solid) | C_{ρ}° (solid) | S°
(solid) | |--|----------------------------|---------------------|-------------|--------------------------|---------------------|------------------|------------------------------|----------------------------|---------------| | | | | CHO Group | | | | | | - | | C (0)(C) | 36.78 | 17.57 | -61.34 | 30.42 | 26.19 | -41.92 | 27.91 | | | | C_d – $(O)(C_d)$
C_d – $(O)(C)$ | 30.76
44.14 | 17.37 | - 50.84 | 39.08 | 23.22 | -41.92
-29.83 | 32.97 | | | | C ₄ -(O)(H) | 36.32 | 18.74 | 33.05 | 31.05 | 24.60 | 28.58 | 25.48 | | | | G (GO) | | | | | | | 144.50 | | | | C_1 -(CO)
C_B -(CO)(C_B) ₂ | 15.50 | | | 10.50 | 4.39 | | 144.52
8.15 | - 42.89 | 0.08 | | C_B (CO)(C_B) ₂ | -4.75 | 15.86 | -43.72 | -5.61 | 39.71 | - 10.59 | 1.00 | -0.29 | 1.59 | | C (II) (CO) | 20.74 | | | 22.06 | 15 56 | | 10.10 | | | | C-(H) ₂ (CO) ₂
C-(CO)(C) ₃ | -30.74
23.93 | | | -23.06
26.15 | 15.56
7.99 | 85.98 | - 19.10
24.02 | - 114.10 | | | C-(H)(CO)(C) ₂ | -0.25 | | | - 3.89 | 17.41 | - 24.52 | - 9.83 | - 80.51 | | | C-(H) ₂ (CO)(C) | -21.84 | 24.69 | 39.58 | - 24.14 | 29.29 | 39.87 | - 27.90 | 21.92 | 24.73 | | C-(H) ₃ (CO) | - 42.26 | 25.73 | 127.32 | - 47.61 | 36.48 | 83.30 | - 46.74 | 67.45 | 56.69 | | C-(H) ₂ (CO)(C _d) | - 16.95 | 23.13 | 127.52 | - 19.62 | 30.40 | 05.50 | 40.74 | 07.43 | 30.03 | | C-(H) ₂ (CO)(C ₁) | -25.48 | | | -26.61 | | | | | | | C-(H) ₂ (CO)(C _B) | -16.20 | | | - 11.67 | | | | | | | $C-(H)(CO)(C)(C_B)$ | 10.20 | | | 11.07 | | | 14.81 | | | | C-(H)(O)(CO)(C) | 126.63 | | | 123.43 | 7.44 | -46.71 | - 14.39 | - 58.45 | 8.08 | | C-(O)4 | - 152.46 | | | -133.34 | | 10.72 | 14.05 | 30.43 | 0.00 | | C-(H)(O) ₃ | - 113.97 | | | -107.74 | 21.71 | | | | | | C-(O) ₃ (C) | - 114.39 | | | 99.54 | | | | | | | $C-(O)_2(C)_2$ | -53.56 | | | -41.30 | | | | | | | $C-(H)(O)_2(C)$ | -57.78 | | | -51.42 | 12.38 | | | | | | $C-(H)_2(O)_2$ | -62.22 | | | -62.89 | 39.92 | 23.85 | | | | | $C-(H)_2(O)(C_B)$ | -33.76 | | | -29.17 | 46.48 | | | | | | $C-(H)_2(O)(C_d)$ | -27.49 | 17.74 | 37.49 | -28.62 | 41.30 | | | | | | $C-(H)(CO)(C)(C_B)$ | | | | | | | -14.39 | | | | $C-(H)(CO)(C_B)_2$ | | | | | | | 3.72 | | | | $C-(O)(C_B)_3$ | | | | | | | 60.46 | 57.49 | | | C-(O)(C) ₃ (ethers, esters) | 9.50 | 14.60 | - 141.92 | 0.79 | 20.46 | - 94.68 | -0.50 | | | | C-(H)(O)(C) ₂ (ethers, esters) | - 19.46 | 17.78 | -52.80 | -21.00 | 25.56 | -25.31 | -20.08 | | | | C-(O)(C) ₃ (alcohols, peroxides) | - 13.50 | 15.73 | - 144.60 | -11.13 | 65.58 | -122.48 | -12.25 | -85.48 | - 14.77 | | C-(H)(O)(C) ₂ (alcohols, peroxides) | -26.10 | 19.96 | -43.05 | -27.60 | 49.83 | - 29.83 | -29.08 | 4.77 | 6.95 | | C-(H) ₂ (O)(C) | -32.90 | 20.33 | 43.43 | -35.80 | 33.64 | 32.59 | -33.00 | 21.92 | 24.73 | | C-(H) ₃ (O) | -42.26 | 25.73 | 127.32 | - 47.61 | 36.48 | 83.30 | - 46.74 | 67.45 | 56.69 | | O-(CO)(O) | -88.00 | | | -90.00 | | | -80.50 | | | | $C-(C)_2(O)(C_B)$ | 15.30 | | | 25.80 | | | 29.30 | | | | $C-(H)(C)(O)_2$ | | | | | | | -52.50 | | | | Glutaric anhydride rsc | 20.89 | | | | | | 8.91 | | | | Succinic anhydride rsc | 4.76 | | | -11.08 | | | -10.60 | | | | Phthalic anhydride rsc | 30.66 | | | | | | -5.52 | | | | Cyclopentanone rsc | 22.85 | | | 15.10 | | | | | | | Cyclohexanone rsc | 10.50 | -31.82 | 66.98 | 5.60 | -25.61 | 11.29 | | | | | Cycloheptanone rsc | 10.76 | | | 6.31 | | | | | | | Cyclooctanone rsc | 7.33 | | | 9.01 | | | 37.38 | | | | Cyclononanone rsc | 20.43 | | | 22.57 | | | 55.28 | | | | Cyclodecanone rsc | 15.70 | | | 17.73 | | | | | | | Cycloundecanone rsc | 19.39 | | | 20.53 | | | | | | | Cyclododecanone rsc | 12.91 | | | 18.02 | | | 47.11 | | | | Cyclopentadecanone rsc Cycloheptadecanone rsc | 9.41
4.87 | | | | | | 74.77
89.49 | | | | Cyclobutane-1,3-dione rsc | | | | | | | | | | | Ethylene oxide rsc | 140.48
114.62 | ~ 10.02 | 122 00 | 104 92 | _ 22 00 | 00 E0 | 94.10 | | | | Trimethylene oxide rsc | 114.62
107.35 | - 10.92 | 132.00 | 104.82 | -23.90 | 80.50 | | | | | Furan rsc | - 12.18 | | | - 9.97 | -22.38 | | | | | | Tetrahydrofuran rsc | 24.28 | -28.73 | 113.66 | - 9.97
17.70 | - 28.49 | 47.18 | 14.60 | | | | Tetrahydropyran rsc | 5.71 | 20.13 | 113.00 | | | 77.10 | | | | | 1 cuanyuropyran rsc | 5./1 | | | 1.32 | -42.22 | | 0.80 | | | TABLE 2. Listing of groups and group values - Continued | Group | $\Delta_t H^\circ$ (gas) | C_p° (gas) | S°
(gas) | $\Delta_t H^\circ$ (liq) | <i>C</i> °
(liq) | S°
(liq) | $\Delta_t H^\circ$ (solid) | C_{ρ}° (solid) | S°
(solid | |---|---|--|--|--|---|---|---|---|------------------------| | | | C | CHO Groups | <u></u> | | | | | | | 1,3-Dioxolane rsc | 29.06 | | | 18.75 | -37.74 | | | | | | 1,3-Dioxane rsc | 10.90 | | | 4.40 | -42.26 | | | | | | 1,4-Dioxane rsc | 19.15 | - 24.34 | 73.16 | 9.76 | -29.50 | 86.28 | - 12.00 | | | | 1,3-Dioxepane rsc | 25.52 | | | 20.01 | - 49.20 | | | | | | Trioxane rsc | 25.02 | | | | | | | | | | Tetraoxane rsc | 34.23 | | | | | | | | | | β-Propiolactone rsc | 97.95 | | | 75.43 | -5.40 | 31.85 | | | | | τ-Butyrolactone rsc | 34.98 | | | 10.16 | - 16.61 | 21.56 | | | | | τ-Valerolactone rsc
δ-Valerolactone rsc | 26.06
42.51 | | | 4.75
19.19 | - 16.74 | 10.77 | | | | | o-valerolactone isc | 42.31 | | | 19.19 | - 10.74 | 10.77 | | | | | Caprolactone rsc | | | | | -21.92 | -4.92 | | | | | Undecanolactone rsc Ethylene carbonate rsc | | | | | -28.12 | -33.05 | 23.90 | | | | Cyclobutane methyl carboxylate rsc | 75.21 | | | 79.08 | | | 23.90 | | | | Bicyclobutane methyl carboxylate rsc | 73.21
222.27 | | | 219.98 | | | | | | | Dicyclobutane methyr carooxylate 150 | <i>666.61</i> | | | 217.70 | | | | | | | 1,4-Dimethylcubane dicarboxylate rsc | 595.80 | | | | | | 590.73 | | | | 2-Deoxy-D-ribose rsc | | | | | | | 0.25 | | | | β-D-Ribose rsc | | | | | | | 12.65 | | | | α-D-Glucose rsc | | | | | | | 6.30 | | | | COOH-COOH (ortho corr) | | | | | | | 34.14 | 15.00 | 8.96 | | COOH-COOH (meta corr) | -23.94 | | | | | | 13.14 | 30.00 | 0.00 | | CH ₃ O-COOH (ortho corr) | 15.00 | | | | | | 23.00 | | | | CH ₃ O-COOH (meta corr) OH-OH (ortho corr) | 5.00
7.00 | | | | | | 5.00
16.00 | | | | OH-OH (meta corr) | 0.00 | | | | | | 2.00 | | | | OH-COOH (ortho corr) | -20.00 | | | | | | 0.00 | | | | | | | | | | | | | | | | | CHN a | nd CHNO | jroups | | | | | | | C-(H) ₃ (N) | - 42.26 | 25.73 | 127.32 | -47.61 | 36.48 | 83.30 | -46.74 | 67.45 | 56.69 | | C-(H) ₂ (C)(N) | -28.30 | 22.68 | 42.26 | - 30.80 | 30.42 | 32.38 | -34.00 | 21.92 | 23.01 | | C-(H)(C) ₂ (N) | - 16.70 | 18.62
0.00 | - 63.55 | - 14.65 | 28.28
0.00 | - 20.00
0.00 | - 13.90
- 2.34 | 0.00 | 0.00 | | -CH ₃ corr (tertiary)
C-(C) ₃ (N) | -2.26 | 0.00 | | | LILES | U.UU | | | 11(0) | | | | | 0.00
152 59 | -2.18
5.10 | | | | 0.00 | 0.00 | | -U.H. corr (quaternary) | 0.29
4.56 | 18.41 | - 152.59 | 5.10 | 19.66 | -87.99 | 1.00 | -84.14 | | | -CH ₃ corr (quaternary)
C-(H) ₂ (N) ₂ | -4.56 |
 | | | | 1.00
4.35 | | 0.00 | | -CH ₃ corr (quaternary)
C-(H) ₂ (N) ₂
C-(H) ₂ (C _B)(N) | | 18.41 | - 152.59 | 5.10 | 19.66 | -87.99 | 1.00 | -84.14 | | | C-(H) ₂ (N) ₂
C-(H) ₂ (C _B)(N) | -4.56
-30.00
-24.14 | 18.41
0.00 | - 152.59
0.00 | 5.10
-4.39
-26.09 | 19.66
0.00
19.79 | - 87,99
0.00 | 1.00
-4.35
-26.00
-33.31 | - 84.14
0.00 | 0.00 | | C-(H) ₂ (N) ₂
C-(H) ₂ (C _B)(N)
N-(H) ₂ (C) (first, amino acids) | -4.56
-30.00
-24.14 | 18.41
0.00
24.35 | - 152.59
0.00 | 5.10
-4.39
-26.09 | 19.66
0.00
19.79
62.59 | -87.99
0.00
71.71 | 1.00
-4.35
-26.00
-33.31 | -84.14
0.00 | 0.00
39.00 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) | -4.56
-30.00
-24.14
19.25
19.25 | 18.41
0.00 | - 152.59
0.00 | 5.10
-4.39
-26.09 | 19.66
0.00
19.79 | - 87,99
0.00 | 1.00
-4.35
-26.00
-33.31 | - 84.14
0.00 | 0.00 | | C-(H) ₂ (N) ₂
C-(H) ₂ (C _B)(N)
N-(H) ₂ (C) (first, amino acids) | -4.56
-30.00
-24.14 | 18.41
0.00
24.35
24.35 | - 152.59
0.00
124.40
126.90 | 5.10
-4.39
-26.09
0.33
0.33 | 19.66
0.00
19.79
62.59
62.59 | -87.99
0.00
71.71
71.71 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00 | -84.14
0.00
32.00
71.27 | 0.00
39.00 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ | -4.56
-30.00
-24.14
19.25
19.25
67.55
116.50 | 18.41
0.00
24.35
24.35
12.28
15.10 | - 152.59
0.00
124.40
126.90
33.96
- 61.71 | 5.10
-4.39
-26.09
0.33
0.33
51.50
112.00 | 19.66
0.00
19.79
62.59
62.59
59.37
26.11 | -87.99
0.00
71.71
71.71
32.09
-38.62 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80
101.00 | -84.14
0.00
32.00
71.27
-8.00 | 0.00
39.00 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ N-(H) ₂ (N) | -4.56
-30.00
-24.14
19.25
19.25
67.55
116.50 | 18.41
0.00
24.35
24.35
12.28 | - 152.59
0.00
124.40
126.90
33.96 | 5.10
-4.39
-26.09
0.33
0.33
51.50 | 19.66
0.00
19.79
62.59
62.59
59.37 | -87.99
0.00
71.71
71.71
32.09 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80 | -84.14
0.00
32.00
71.27
-8.00 | 0.00
39.00 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ N-(H) ₂ (N) N-(H)(C)(N) | -4.56
-30.00
-24.14
19.25
19.25
67.55
116.50 | 18.41
0.00
24.35
24.35
12.28
15.10 | - 152.59
0.00
124.40
126.90
33.96
- 61.71 | 5.10
-4.39
-26.09
0.33
0.33
51.50
112.00
25.30 | 19.66
0.00
19.79
62.59
62.59
59.37
26.11 | -87.99
0.00
71.71
71.71
32.09
-38.62
60.58 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80
101.00 | -84.14
0.00
32.00
71.27
-8.00 | 0.00
39.00 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ N-(H) ₂ (N) | -4.56
-30.00
-24.14
19.25
19.25
67.55
116.50
47.70
89.16 | 18.41
0.00
24.35
24.35
12.28
15.10 | - 152.59
0.00
124.40
126.90
33.96
- 61.71 | 5.10
-4.39
-26.09
0.33
0.33
51.50
112.00
25.30
75.00 | 19.66
0.00
19.79
62.59
62.59
59.37
26.11
49.41
49.04 | 71.71
71.71
32.09
-38.62
60.58
22.05 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80
101.00 | -84.14
0.00
32.00
71.27
-8.00 | 0.00
39.00 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ N-(H) ₂ (N) N-(H)(C)(N) N-(C) ₂ (N) N-(C _B) ₂ (N) N-(C _B) ₂ (N) N-(H)(C _B)(N) | -4.56
-30.00
-24.14
19.25
19.25
67.55
116.50
47.70
89.16 | 18.41
0.00
24.35
24.35
12.28
15.10 | - 152.59
0.00
124.40
126.90
33.96
- 61.71 | 5.10
-4.39
-26.09
0.33
0.33
51.50
112.00
25.30
75.00 | 19.66
0.00
19.79
62.59
62.59
59.37
26.11
49.41
49.04 | 71.71
71.71
32.09
-38.62
60.58
22.05 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80
101.00
18.97 | -84.14
0.00
32.00
71.27
-8.00 | 0.00
39.00 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ N-(H) ₂ (N) N-(H)(C)(N) N-(C) ₂ (N) N-(C) ₃ (N) | -4.56 -30.00 -24.14 19.25 19.25 67.55 116.50 47.70 89.16 120.71 | 18.41
0.00
24.35
24.35
12.28
15.10 | - 152.59
0.00
124.40
126.90
33.96
- 61.71 | 5.10
-4.39
-26.09
0.33
0.33
51.50
112.00
25.30
75.00
119.00 | 19.66
0.00
19.79
62.59
62.59
59.37
26.11
49.41
49.04 | 71.71
71.71
32.09
-38.62
60.58
22.05 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80
101.00
18.97 | -84.14
0.00
32.00
71.27
-8.00 | 0.00
39.00 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ N-(H) ₂ (N) N-(H)(C)(N) N-(C) ₂ (N) N-(C _B) ₂ (N) N-(H)(C _B)(N) N-(H)(C _B)(N) N-(H)(C _B)(N) | -4.56 -30.00 -24.14 19.25 19.25 67.55 116.50 47.70 89.16 120.71 | 18.41
0.00
24.35
24.35
12.28
15.10 | - 152.59
0.00
124.40
126.90
33.96
- 61.71 | 5.10
-4.39
-26.09
0.33
0.33
51.50
112.00
25.30
75.00
119.00 | 19.66
0.00
19.79
62.59
62.59
59.37
26.11
49.41
49.04 | 71.71
71.71
32.09
-38.62
60.58
22.05 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80
101.00
18.97 | -84.14
0.00
32.00
71.27
-8.00 | 0.00
39.00 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ N-(H) ₂ (N) N-(H)(C)(N) N-(C) ₂ (N) N-(C _B) ₂ (N) N-(C _B) ₂ (N) N-(H)(C _B)(N) | -4.56 -30.00 -24.14 19.25 19.25 67.55 116.50 47.70 89.16 120.71 87.50 | 18.41
0.00
24.35
24.35
12.28
15.10 | - 152.59
0.00
124.40
126.90
33.96
- 61.71 | 5.10
-4.39
-26.09
0.33
0.33
51.50
112.00
25.30
75.00
119.00
73.40 | 19.66
0.00
19.79
62.59
62.59
59.37
26.11
49.41
49.04 | 71.71
71.71
32.09
-38.62
60.58
22.05 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80
101.00
18.97 | -84.14
0.00
32.00
71.27
-8.00 | 0.00
39.00 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ N-(H) ₂ (N) N-(H)(C)(N) N-(C) ₂ (N) N-(C _B) ₂ (N) N-(H)(C _B)(N) N-(CO) ₂ (N) N-(H)(C _d) ₂ N-(C)(C _d) ₂ | -4.56 -30.00 -24.14 19.25 19.25 67.55 116.50 47.70 89.16 120.71 87.50 83.55 120.64 | 18.41
0.00
24.35
24.35
12.28
15.10
26.36 | - 152.59
0.00
124.40
126.90
33.96
- 61.71
122.18 | 5.10
-4.39
-26.09
0.33
0.33
51.50
112.00
25.30
75.00
119.00
73.40 | 19.66
0.00
19.79
62.59
62.59
59.37
26.11
49.41
49.04
41.67 | -87.99
0.00
71.71
71.71
32.09
-38.62
60.58
22.05
-26.94 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80
101.00
18.97
137.35
66.90
73.62
45.40
88.92 | -84.14
0.00
32.00
71.27
-8.00
-39.00 | 0.00
39.00
48.75 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ N-(H) ₂ (N) N-(H)(C)(N) N-(C) ₂ (N) N-(C _B) ₂ (N) N-(C _B) ₂ (N) N-(CO) ₂ (N) N-(H)(C _d) ₂ N-(C)(C _d) ₂ N-(H) ₂ (C _B) | -4.56 -30.00 -24.14 19.25 19.25 67.55 116.50 47.70 89.16 120.71 87.50 83.55 120.64 | 18.41
0.00
24.35
24.35
12.28
15.10 | - 152.59
0.00
124.40
126.90
33.96
- 61.71 | 5.10
-4.39
-26.09
0.33
0.33
51.50
112.00
25.30
75.00
119.00
73.40
50.50
97.38
-11.00 | 19.66
0.00
19.79
62.59
62.59
59.37
26.11
49.41
49.04
41.67 | 71.71
71.71
32.09
-38.62
60.58
22.05 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80
101.00
18.97
137.35
66.90
73.62
45.40
88.92
-21.60 | -84.14
0.00
32.00
71.27
-8.00
-39.00 | 0.00
39.00 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ N-(H) ₂ (N) N-(H)(C)(N) N-(C) ₂ (N) N-(C _B) ₂ (N) N-(C _B) ₂ (N) N-(CO) ₂ (N) N-(H)(C _d) ₂ N-(C)(C _d) ₂ N-(H) ₂ (C _B) N-(H)(C(C _B) | -4.56 -30.00 -24.14 19.25 19.25 67.55 116.50 47.70 89.16 120.71 87.50 83.55 120.64 19.25 59.00 | 18.41
0.00
24.35
24.35
12.28
15.10
26.36 | - 152.59
0.00
124.40
126.90
33.96
- 61.71
122.18 | 5.10
-4.39
-26.09
0.33
0.33
51.50
112.00
25.30
75.00
119.00
73.40
50.50
97.38
-11.00
26.25 | 19.66
0.00
19.79
62.59
62.59
59.37
26.11
49.41
49.04
41.67 | -87.99
0.00
71.71
71.71
32.09
-38.62
60.58
22.05
-26.94 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80
101.00
18.97
137.35
66.90
73.62
45.40
88.92
-21.60
36.55 | -84.14
0.00
32.00
71.27
-8.00
-39.00 | 0.00
39.00
48.75 | | C-(H) ₂ (N) ₂ C-(H) ₂ (C _B)(N) N-(H) ₂ (C) (first, amino acids) N-(H) ₂ (C) (second, amino acids) N-(H)(C) ₂ N-(C) ₃ N-(H) ₂ (N) N-(H)(C)(N) N-(C) ₂ (N) N-(C _B) ₂ (N) N-(C _B) ₂ (N) N-(CO) ₂ (N) N-(H)(C _d)
₂ N-(C)(C _d) ₂ N-(H) ₂ (C _B) | -4.56 -30.00 -24.14 19.25 19.25 67.55 116.50 47.70 89.16 120.71 87.50 83.55 120.64 | 18.41
0.00
24.35
24.35
12.28
15.10
26.36 | - 152.59
0.00
124.40
126.90
33.96
- 61.71
122.18 | 5.10
-4.39
-26.09
0.33
0.33
51.50
112.00
25.30
75.00
119.00
73.40
50.50
97.38
-11.00 | 19.66
0.00
19.79
62.59
62.59
59.37
26.11
49.41
49.04
41.67 | -87.99
0.00
71.71
71.71
32.09
-38.62
60.58
22.05
-26.94 | 1.00
-4.35
-26.00
-33.31
-6.30
-46.00
47.80
101.00
18.97
137.35
66.90
73.62
45.40
88.92
-21.60 | -84.14
0.00
32.00
71.27
-8.00
-39.00 | 0.00
39.00
48.75 | TABLE 2. Listing of groups and group values - Continued | Group | Δ _f H° | C _p ° | S° | Δ _t H° | C _p ° | S° | Δ _t H° | C _p ° | S° | |---|--------------------|------------------|----------|-------------------|------------------|--------|---------------------------------------|------------------|---------| | • | (gas) | (gas) | (gas) | (liq) | (liq) | (liq) | (solid) | (solid) | (solid) | | | | CHN a | and CHNO | Groups | | | · · · · · · · · · · · · · · · · · · · | | | | N-(C _B) ₃ | 123.15 | | | 121.80 | | | 107.50 | - 39.00 | | | N _r -(C) | 81.46 | | | 73.68 | | | | | | | $N_{\Gamma}(C_B)$ | 69.00 | 10.07 | 47.01 | 54.50 | 19.75 | 36.40 | 57.00 | | | | N _A -(C) | 109.50 | | | 104.85 | | | 103.00 | | | | N _A -(C _B) | 109.50 | | | 104.85 | | | 103.00 | | | | N _A -(oxide)(C) | 40.80 | | | 22.65 | | | | | | | $C-(H)_2(C)(N_A)$ | -20.70 | | | -25.70 | | | -29.41 | | | | $C-(H)(C)_2(N_A)$ | -2.66 | | | -5.42 | | | | | | | $C-(C)_3(N_A)$ | 11.50 | | | 15.50 | | | 10.50 | | | | C _d -(H)(N) | - 16.00 | | | - 15.50 | | | - 13.00 | | | | C_{d} –(C)(N) | -5.74 | | | -5.62 | | | -3.95 | | | | $C_B-(N)(C_B)_2$ | -1.30 | 16.07 | -43.53 | 1.50 | 15.02 | -24.43 | 9.75 | 13.00 | - 37.57 | | C_B -(NO)(C_B) ₂ | 21.50 | | | | | | 23.00 | | | | C_B -(NO_2)(C_B) ₂ | -1.45 | | | - 28.30 | 73.30 | 79.95 | -32.50 | 50.96 | 110.46 | | C_B -(CNO)(C_B) ₂ | - 177.63 | | | | | | 155.69 | | | | $C_B-(CN)(C_B)_2$ | 151.00 | 41.09 | 85.25 | 122.38 | 51.80 | 64.75 | 121.20 | | 50.45 | | C_B - $(N_A)(C_B)_2$ | 22.55 | | | 20.08 | | | 18.65 | | | | $C_B-(H)(N_I)_2$ | 6.30 | | | | | | 0.25 | | | | CO-(H)(N) | - 124.39 | 29.00 | 147.03 | -188.00 | 65.10 | 93.55 | | | | | CO-(C)(N) | - 133.26 | 22.50 | 56.70 | -185.00 | 49.16 | | 194.60 | 39.00 | 40.00 | | CO-(C _B)(N) (amides) | | | | | | | - 177.75 | 111.50 | | | CO-(C _B)(N) (amino acids) | - 171.80 | | | | | | - 177.75 | 37.00 | | | $CO-(C_d)(N)$
$CO-(N)_2$ | -171.80
-111.00 | 32.40 | 96.00 | - 190.50 | | | -203.10 | 124.00 | 69.00 | | (11)2 | 111.00 | 32.40 | 70.00 | 170.50 | | | - 205.10 | 124.00 | 05.00 | | N-(H) ₂ (CO) (amides, ureas) | -63.00 | 17.00 | 88.25 | -63.90 | 43.01 | | -65.25 | - 15.50 | 18.00 | | N-(H) ₂ (CO) (amino acids) | -63.00 | | | -63.90 | 43.01 | | 59.75 | 45.88 | 33.03 | | N-(H)(C)(CO) (amides, ureas) | - 16.28 | | | -17.10 | 23.51 | | -9.80 | -36.00 | | | N-(H)(C)(CO) (amino acids) | - 16.28
45.00 | | | - 17.10
62.00 | 23.51
13.93 | | 5.50 | 3.30 | | | N-(C) ₂ (CO)
N-(H)(C _B)(CO) | - 20.84 | | | 62.00 | 13.93 | | 55.00
-3.50 | -41.00 | | | | 20.04 | | | | | | -3.30 | -41.00 | | | N-(H)(CO) ₂ | -91.00 | | | *** | | | - 30.80 | - 157.02 | | | N-(C)(CO) ₂ | -11.64 | | | 56.20 | | | 64.00 | | | | N-(C _B)(CO) ₂ | 9.12 | | | | | | (0.05 | | | | $N-(C_B)_2(CO)$
$N-(C)(C_B)(CO)$ | | | | | | | 60.85 | | | | C-(H) ₃ (CN), Acetonitrile | 74.04 | 52.22 | 252.60 | 40.56 | 91.46 | 149.62 | 72.00 | | | | C-(H) ₂ (C)(CN) | 94.52 | 47.86 | 167.25 | 66.07 | 83.01 | 106.02 | 69.85 | 72.80 | 96.15 | | C-(H)(C) ₂ (CN) | 113.50 | 44.94 | 67.86 | 81.50 | 83.09 | 200.02 | 69.00 | 72.00 | 70.15 | | C-(C) ₃ (CN) | 137.96 | | | 116.20 | 69.91 | -17.91 | 102.07 | | | | $C-(C)_2(CN)_2$ | | | | | | | | 44.60 | 74.57 | | $C-(H)_2(C_d)(CN)$ | 95.31 | | | 66.40 | | | | | | | C_d -(H)(CN) | 146.65 | 42.38 | 158.41 | 117.28 | 80.42 | 92.72 | | | | | C,-(CN) | 264.60 | | | 250.20 | | | | | | | C-(H) ₃ (NO ₂), Nitromethane | - 74.86 | 57.32 | 284.14 | -112.60 | 105.98 | 171.75 | | | | | C-(H) ₂ (NO ₂) ₂ , Dinitromethane | -58.90 | | | -104.90 | | | | | | | C-(H)(NO ₂) ₃ , Trinitromethane | -0.30 | | | -32.80 | | | 48.00 | | | | C-(NO ₂) ₄ , Tetranitromethane | 82.30 | | | 38.30 | | | | | | | $C-(H)_2(C)(NO_2)$ | - 60.50 | 53.14 | 203.60 | -93.50 | 97.74 | | - 99.00 | | | | $C-(H)(C)_2(NO_2)$ | - 53.00 | 49.58 | 115.32 | -82.50 | | | -89.00 | | | | C-(C) ₃ (NO ₂) | - 36.65 | | | -61.20 | | | - 76.55 | | | | $C-(H)_2(C_B)(NO_2)$ | - 62.00 | | | -82.76 | | | -81.00 | | | | C-(H)(C)(NO ₂) ₂ | - 36.80 | | | - 88.80 | | | -91.50 | | | | C-(C) ₂ (NO ₂) ₂ | - 28.50 | | | -77.20 | | | - 90.30 | 71.38 | , | | C-(H)(C)(CO)(N) | - 18.70
- 3.10 | | | | | | -11.65 | -22.85 | -4.00 | | C-(H) ₂ (CO)(N) | -3.10 | | | | | | - 30.95 | 21.92 | 24.00 | | $C-(H)(C_B)(CO)(N)$ | | | | | | | | 61.21 | | TABLE 2. Listing of groups and group values - Continued | Group | $\Delta_t H^\circ$ (gas) | C_p° (gas) | S°
(gas) | $\Delta_{\mathrm{f}}H^{\circ}$ (liq) | C_p° (liq) | S°
(liq) | $\Delta_{f}H^{\circ}$ (solid) | C_p° (solid) | S°
(solid | |---|--------------------------|---------------------|------------------|--------------------------------------|---------------------|-------------|-------------------------------|-----------------------|--------------| | | (gas) | | | | (114) | (nq) | (sonu) | (Soliu) | (801) | | | | CHN a | nd CHNO | Groups | | | | | | | O-(C)(NO) | - 24.23 | 37.49 | 166.11 | -46.50 | 06.40 | 107.50 | 124.00 | | | | O-(C)(NO ₂) | <i> 79.7</i> 1 | 51.46 | 191.92 | - 108.96 | 96.40 | 127.50 | - 124.00 | | | | N-(H)(C)(NO ₂)
N-(H)(C _B)(NO ₂) | | | | | | | -16.50 | 65.73
-47.53 | | | N-(H)(CO)(NO ₂) | | | | | | | - 14.00 | | | | $N-(C)(NO_2)_2$ | 100.30 | | | 53.50 | | | 4 = 0 = 0 | | | | $N-(C)(C_B)(NO_2)$ $N-(C)_2(NO)$ | 183.00
90.00 | | | 167.00
59.00 | | | 150.50
55.00 | | | | N-(C) ₂ (NO ₂) | 88.00 | | | 50.00 | | | 40.00 | | | | C-(H) ₂ (C)(N ₃) | | | | 321.70 | | | | | | | $C-(H)(C)_2(N_3)$ | 274.00 | | | 255.00 | | | | | | | $C-(H)_2(C_B)(N_3)$ | 347.00 | | | 327.40 | | | | | | | $C-(C_B)_3(N_3)$ | 328.60 | | | | | | 346.50 | | | | C_{B} - $(N_3)(C_B)_2$ | 320.00 | | | 303.50 | | | | | | | Zwitterion energy, aliphatic | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -55.10 | - 44.50 | | | Zwitterion energy, aromatic I | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - 32.00 | -20.50 | | | Zwitterion energy, aromatic II
Ethyleneimine rsc | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -11.00 | 5.00 | -9.00 | | Pyrrolidine rsc | 115.53
26.71 | -5.13
-22.29 | 137.90
118.45 | 101.98
20.36 | -24.48 | 42.40 | | | | | Piperidine rsc | 3.14 | - 22.23 | 110.43 | - 1.09 | - 24.46
- 29.79 | 15.98 | | | | | Hexamethyleneimine rsc | 3.14 | | | 1.07 | -36.86 | 13.70 | | | | | Octahydroazocine rsc | | | | | -42.31 | | | | | | Pyrrolizidine rsc | 35.42 | | | 18.87 | | | | | | | 3,5-Dimethylpyrrolizidine rsc | 38.46 | | | 20.05 | | | | | | | Trimethyl cyanurate rsc | - 95.00 | | | | | | - 120.40 | | | | Succinimide rsc | 25.70 | | | | | | 16.70 | | | | Glutarimide rsc | 28.23 | | | | | | 17.57 | | | | Azetidine rsc | 116.00 | | | 102.00 | | | | | | | Pyrrole rsc | - 30.48 | | | -20.03 | | | -17.84 | | | | Cyclotetramethylenediazene rsc
Cyclotrimethylenediazene rsc | 12.86
- 10.47 | | | -4.34 | | | - 23.97 | | | | • | | | | | | | 23.77 | | | | Cyclopropanenitrile rsc | 110.56 | | | 110.76 | -28.53 | | | | | | Cyclobutanenitrile rsc | 91.39 | | | 98.69 | -28.35 | | | | | | Cyclopentanenitrile rsc Cyclohexanenitrile rsc | 10.82
-5.55 | | | 22.12
-0.05 | - 37.27
- 57.29 | | | | | | Cyclonexamemitine 1sc | -3.33 | | | -0.03 | -31.29 | | | | | | N-Nitrosopiperidine rsc | 45.20 | | | 48.70 | | | | | | | N-Nitropiperidine rsc | - 13.91 | | | -4.11 | | | 8.48 | | | | R-salt rsc
RDX rsc | 32.00 | | | | | | 195.30
30.00 | | | | HMX rsc | 32.00
17.00 | | | | | | 32.00 | | | | DINO-PMTA rsc | 17.00 | | | | | | 46.70 | | | | cis-Azobenzene corr | 48.40 | | | | | | 49.10 | | | | Azidocyclopentane rsc | 29.42 | | | 27.02 | | | | | | | Azidocyclohexane rsc | -16.45 | | | -17.95 | | | | | | | NO ₂ -NO ₂ (ortho corr) | 44.00 | | | 45.25 | | | 40.60 | 3.76 | | | NO ₂ -NO ₂ (meta corr) | 11.00 | | | 13.50 | | | 13.50 | 5.84 | | | NO ₂ -CH ₃ (ortho corr) | 2.00 | | | 2.00 | | | 4.00 | | | | NO ₂ -CH ₃ (meta corr) | | | | -4.00 | | | | | | | NO ₂ -OH (ortho corr) | 10.00 | | | 16.00 | | | 13.00 | | | | NO ₂ -OH (<i>meta</i> corr)
NO ₂ -NO ₂ (aliphatic-adjacent corr) | 6.00 | | | 20.00 | | | 0.00
20.00 | | | | | 20.00
25.00 | | | 20.00
30.00 | | | 25.00 | 0.00 | | | NO ₂ -COOH (ortho corr) | | | | | | | | | | TABLE 2. Listing of groups and group values - Continued | Group | $\Delta_{\rm f}H^{\circ}$ (gas) | C_p° (gas) | S° (gas) | Δ _t H°
(lig) | C_{ρ}° (liq) | S°
(liq) | $\Delta_{i}H^{\circ}$ (solid) | C_p° (solid) | S°
(solid | |--|---------------------------------|---------------------|------------------|----------------------------|--------------------------|--------------|-------------------------------|-----------------------|--------------| | | (600) | | and CHNO | | (4) | () | (sona) | (30114) | (SONG | | NO OW days | 10.00 | | | · | | | 12.00 | | | | NO ₂ -OH(ortho corr) | 10.00
6.00 | | | 16.00
0.00 | | | 13.00 | | | | NO ₂ -OH(meta corr)
NH ₂ -NO ₂ (ortho corr) | -4.00 | | | -4.00 | | | 0.00
4.00
| 0.00 | | | NH ₂ -NO ₂ (orno corr)
NH ₂ -NO ₂ (meta corr) | -10.00 | | | -10.00 | | | - 4.00
- 10.00 | 0.00 | | | | | | | | | | | | | | (ONO ₂)-(ONO ₂)(aliphatic-adjacent corr) | 15.10 | | | 15.90 | | | 16.00 | | | | N _I -(CH ₃) (ortho corr) | -6.30 | | | -4.00 | | | | | | | N _I -N _I (ortho corr) | 85.06 | | | 83.16 | | | | | | | CH₃-CN (cis, unsat corr) | -6.00 | | | ~6.00 | | | | | | | NH ₂ -NH ₂ (ortho corr) | | | | | | | -3.00 | | | | NH ₂ -NH ₂ (meta corr) | | | | 10.00 | | | - 10.00 | | | | NH ₂ -COOH (ortho corr) | | | | 12.00 | | | 14.00 | -4.71 | | | NH ₂ -COOH (meta corr) | | | | 2.00 | | | 4.00 | -7.22 | | | | | CHS a | nd CHSO | Groups | | | | | | | C-(H) ₃ (S) | -42.26 | 25.73 | 127.32 | -47.61 | 36.48 | 83.30 | -46.74 | 67.45 | 56.69 | | C-(H) ₂ (C)(S) | -23.17 | 20.90 | 41.87 | - 26.77 | 24.18 | 41.09 | | | | | C-(H)(C) ₂ (S) | -5.88 | 20.29 | -47.36 | -6.07 | 17.78 | -16.61 | | | | | -CH ₃ corr (tertiary) | -2.26 | 0.00 | 0.00 | -2.18 | 0.00 | 0.00 | -2.34 | 0.00 | 0.00 | | C-(C) ₃ (S) | 13.52
- 4.56 | 17.02
0.00 | - 145.38
0.00 | 16.69
4.39 | 8.88 | -86.86 | 4.25 | 0.00 | 0.00 | | -CH ₃ corr (quaternary)
-CH ₃ corr (tert/quat) | - 4.30
- 1.80 | 0.00 | 0.00 | -4.39
-1.77 | 0.00
0.00 | 0.00
0.00 | -4.35
-2.70 | 0.00 | 0.00 | | -CH ₃ corr (quat/quat) | - 1.60
- 0.64 | 0.00 | 0.00 | -0.64 | 0.00 | 0.00 | - 2.70
- 2.24 | 0.00
0.00 | 0.00 | | C-(H) ₂ (C _B)(S) | - 18.53 | 0.00 | 0.00 | -23.82 | 0.00 | 0.00 | - 2.24 | 0.00 | 0.00 | | C-(H) ₂ (C _d)(S) | - 25.93 | | | - 32.44 | | | | | | | C-(H) ₂ (S) ₂ | -25.10 | | | | | | | | | | C_B – $(S)(C_B)_2$ | -4.75 | 15.86 | 43.72 | -5.61 | 39.71 | - 10.59 | 1.00 | -0.29 | 1.59 | | C_{d} -(H)(S) | 36.32 | 18.74 | 33.05 | 31.05 | 24.60 | 28.58 | 25.48 | | 2.07 | | C _d -(C)(S) | 45.73 | 14.64 | -51.92 | | | | | | | | S-(C)(H) | 18.64 | 25.76 | 137.67 | 0.06 | 51.34 | 85.95 | | | | | S-(C _B)(H) | 48.10 | 20.98 | 57.34 | 28.51 | 20.11 | 89.04 | | | | | S-(C) ₂ | 46.99 | 22.64 | 55.19 | 29.82 | 45.15 | 29.80 | | | | | $S-(H)(C_d)$ | 25.52 | | | | | | | | | | $S-(C)(C_d)$ | 54.39 | | | | | | | | | | S-(C _d) ₂ | 102.60 | 20.04 | 68.59 | | | | | | | | S-(C _B)(C) | 76.21 | 02.05 | 50.50 | 58.20 | 16.43 | 35.44 | 42.00 | | | | S-(C)(S) | 27.62 | 23.25 | 50.50 | 14.36 | 40.71 | 30.84 | | | | | $S-(C_B)(S)$ | 57.45 | | | | | | 40.60 | | | | S-(S) ₂ | 12.59 | 19.66 | 56.07 | | | | | | | | $S-(C_B)_2$ | 102.60 | 20.04 | 68.59 | 93.02 | -35.10 | | | | | | S-(H)(S)
S-(H)(CO) | 7.95
5.90 | 31.92 | 130.54 | | | | | | | | | | | | 150.76 | 50.00 | 22.01 | | | | | CO-(C)(S) | - 132.67 | 23.43 | 64.31 | -152.76 | 52.97 | 33.81 | | 33.89 | | | C−(H)₃(SO)
C−(H)₂(C)(SO) | - 42.26
- 29.16 | 25.73 | 127.32 | - 47.61
- 36.88 | 36.48 | 83.30 | -46.74 | 67.45 | 56.69 | | C-(H)(C) ₂ (SO) | .10 | | | 20.00 | | | | | | | -CH ₃ corr (tertiary) | -2.26 | 0.00 | 0.00 | -2.18 | 0.00 | 0.00 | -2.34 | 0.00 | 0.00 | | C-(C) ₃ (SO) | 4.56 | 5.00 | 3.00 | 0.97 | 5.00 | 3.00 | ≥. ∓ | 0.00 | 0.00 | | -CH ₃ corr (quaternary) | -4.56 | 0.00 | 0.00 | -4.39 | 0.00 | 0.00 | -4.35 | 0.00 | 0.00 | | $C-(H)_2(C_d)(SO)$ | -27.56 | | | - 32.63 | | | | | | | cis correction | 4.11 | -8.03 | 5.06 | 5.27 | 0.00 | 0.00 | 5.73 | 0.00 | 0.00 | | C_B –(SO)(C_B) ₂ | 15.48 | | | 25.44 | 4.39 | | 7.55 | - 42.89 | 0.08 | | O-(SO)(H) | - 158.60 | TABLE 2. Listing of groups and group values - Continued | Group | Δ _f H° | C _p | S° | $\Delta_t H^\circ$ | C _p ° | S° | Δ _f H° | C _p ° | S° | |--|----------------------|----------------|------------------|--------------------|------------------|--------|-------------------|------------------|--------| | | (gas) | (gas) | (gas) | (liq) | (liq) | (liq) | (solid) | (solid) | (solid | | | | CHS a | nd CHSO | Groups | | | | | | | SO-(C) ₂ | - 66.78 | 37.15 | 75.73 | -108.98 | 80.22 | 22.18 | | | | | SO-(C _B) ₂ | - 62.26 | | | | | | | | | | SO-(O) ₂ | -213.00 | | | | | | | | | | SO-(C)(C _B) | - 72.00 | | | | | | | | | | C-(H) ₃ (SO ₂) | -42.26 | 25.73 | 127.32 | - 47.61 | 36.48 | 83.30 | - 46.74 | 67.45 | 56.69 | | $C-(H)_2(C)(SO_2)$ | -27.03 | | | -33.76 | | , | - 35.96 | | | | $C-(H)(C)_2(SO_2)$ | - 14.00 | | | | | | | | | | -CH ₃ corr (tertiary) | -2.26 | 0.00 | 0.00 | - 2.18 | 0.00 | 0.00 | -2.34 | 0.00 | 0.00 | | C-(C) ₃ (SO ₂) | 1.52 | | | 2.00 | | | 3.78 | | | | -CH ₃ corr (quaternary) | -4.56 | 0.00 | 0.00 | -4.39 | 0.00 | 0.00 | -4.35 | 0.00 | 0.00 | | -CH ₃ corr (quat/quat) | -0.64 | | | - 0.64 | | | -2.24 | | | | $C-(H)_2(C_d)(SO_2)$ | - 29.49 | | | -49.05 | | | | | | | $C-(H)(C)(C_d)(SO_2)$ | -71.99 | | | | | | | | | | $C-(H)_2(C_B)(SO_2)$ | -29.80 | | | | | | | | | | C-(H) ₂ (C ₁)(SO ₂) | 16.36 | | | 25.44 | 4.20 | | 255 | 40.00 | 0.00 | | C_B -(SO ₂)(C_B) ₂
C_d -(H)(SO ₂) | 15.48
51.58 | | | 25.44 | 4.39 | | 7.55 | -42.89 | 0.08 | | C_d -(H)(SO ₂)
C_d -(C)(SO ₂) | 64.01 | | | | | | | | | | C ₁ -(SO ₂) | 177.10 | | | | | | | | | | SO_2 -(C_d)(C_B) | -291.55 | | | | | | | | | | SO ₂ -(C _d)(C _B) | -306.70 | | | | | | | | | | SO ₂ -(C _d) ₂
SO ₂ -(C) ₂ | -288.58 | 48.54 | 87.37 | -341.14 | | | - 356.62 | - 9.55 | 32.10 | | SO ₂ -(C)(C _B) | - 289.10 | 10.5 1 | 0,157 | 01111 | | | 330.02 | 7.55 | 32.10 | | SO ₂ -(C _B) ₂ | -287.76 | | | | | | - 305.40 | | | | SO_2 - $(SO_2)(C_B)$ | -325.18 | | | | | | - 361.75 | | | | SO ₂ -(O) ₂ | -417.30 | | | | | | | | | | SO_2 -(C)(C _d) | -316.80 | | | | | | | | | | SO_2 -(C_t)(C_B) | - 296.30 | | | | | | | | | | O-(SO ₂)(H) | -158.60 | | | | | | | | | | O-(C)(SO ₂) | - 91.40 | | | | | | | | | | Thiacyclopropane rsc | 81.57 | - 10.76 | 122.10 | 75.32 | | | | | | | Thiacyclobutane rsc | 80.98 | - 18.00 | 112.89 | 74.55 | -10.54 | 40.57 | | | | | Thiacyclopentane rsc | 6.41 | - 19.34 | 97.87 | 2.08 | -14.19 | 31.08 | | | | | Thiacyclohexane rsc | -2.02 | -24.91 | 66.85 | ~ 5.09 | -21.47 | 9.12 | | | | | Thiacycloheptane rsc | 20.53 | -31.40 | 66.35 | 13.84 | | | | | | | 2,5-Dihydrothiophene rsc Thiophene rsc | 19.13
43.54 | -1.59 | 22.79 | 19.96 | | | | | | | 2,3-Dihydrothiophene rsc | 7.72 | -1.59 | . 24.13 | | | | | | | | | | CHX a | nd CHXO | Groups | | | | | | | C_(H) (F) Mathyl flygrids | - 247.00 | | 231.93 | | | | | | | | C-(H) ₃ (F), Methyl fluoride
C-(H) ₃ (Cl), Methyl chloride | - 247.00
- 81.90 | 37.49
40.75 | 231.93 | | | | | | | | C-(H) ₃ (CI), Methyl chloride
C-(H) ₃ (Br), Methyl bromide | - 81.90
- 37.66 | 40.75
42.43 | 243.60
254.94 | -61.10 | | | | | | | C-(H) ₃ (I), Methyl iodide | 14.30 | 44.14 | 263.14 | -11.70 | 82.76 | | | | | | C-(C)(F) ₃ | - 673.81 | 52.99 | 178.22 | - 709.07 | 73.18 | 135.56 | | | | | C-(H) ₂ (C)(F) | - 221.12 | 33.66 | 146.80 | | | | | | | | $C-(H)_2(C)(F)$
$C-(H)(C)_2(F)$ | - 221.12
- 204.46 | 30.55 | 55.76 | | | | | | | | C-(C) ₃ (F) | - 202.92 | 50.55 | 33.70 | | | | | | | | C-(H)(C)(F) ₂ | - 454.74 | 42.22 | 164.32 | -487.23 | 68.04 | | | | | | C-(C) ₂ (F) ₂ | - 411.39 | 41.42 | 74.48 | -400.37 | 00.07 | | - 428.77 | | | | C-(C)(Cl)(F) ₂ | - 462.70 | 57.32 | 169.45 | -466.00 | 83.64 | 138.31 | | | | | C-(H)(C)(Cl)(F) | -271.14 | | | | | | | | | | C-(C)(Cl) ₃ | -81.98 | 68.18 | 202.14 | -112.93 | 102.20 | 145.91 | | | | | C-(H)(C)(Cl) ₂ | -79.10 | 50.69 | 183.28 | -102.60 | 85.02 | 128.45 | | | | | | | | | | | | | | | TABLE 2. Listing of groups and group values - Continued | Group | $\Delta_t H^\circ$ (gas) | C°
(gas) | S°
(gas) | $\Delta_{\mathfrak{t}}H^{\circ}$ (liq) | C°
(liq) | S°
(liq) | $\Delta_t H^\circ$ (solid) | Cp°
(solid) | S° (solid) | |---|--------------------------|----------------|-----------------|--|----------------|-------------|----------------------------|----------------|------------| | | (6) | | and CHXO | | (4) | . (4) | (33.12) | (00.12) | (50110) | | G (T) (O)(O) | CO.15 | | | · · · · · · · · · · · · · · · · · · · | | 404.05 | 0.5.4.5 | | | | $C-(H)_2(C)(Cl)$
$C-(C)_2(Cl)_2$ | - 69.45
- 79.56 | 37.53
54.40 | 159.24
95.41 | - 86.90
- 101.80 | 63.76
74.24 | 104.27 | -85.65 | | | | $C-(C)_2(CI)_2$
$C-(H)(C)_2(CI)$ | - 55.61 | 35.00 | 71.34 | - 71.17 | 66.02 | | | | | | C-(C) ₃ (Cl) | - 43.70 | 29.63 | -24.26 | - 56.78 | 00.02 | | | | | | C-(C)(Br) ₃ | | 69.87 | 233.05 | | | | | | | | $C-(H)(C)(Br)_2$ | | | | | | | | | | | $C-(H)_2(C)(Br)$ | -21.78 | 37.82 | 173.31 | -42.65 | 66.00 | 113.00 | | | | | $C-(C)_2(Br)_2$ | | | | | | | | | | | $C-(H)(C)_2(Br)$ | - 10.75 | 36.77 | 84.69 | - 27.31 | 59.24 | | | | | | C-(C) ₃ (Br) | 7.26 | 39.33 | - 13.46 | -7.40 | | | | | | | C-(C)(I) ₃ | 400 00 | 54.04 | 222.45 | | | | | | | | $C-(H)(C)(I)_2$ | 108.78 | 51.04 | 228.45 | | (5.0) | | | | | | $C-(H)_2(C)(I)$ | 33.54 | 40.94 | 177.78 | 4.14 | 65.36 | | 3.65 | | | | $C-(C)_2(I)_2$
$C-(H)(C)_2(I)$ | 48.74 | 38.62 | 88.10 | 24.78 | | | | | | | $C-(II)(C)_2(I)$
$C-(C)_3(I)$ | 68.46 | 41.09 | - 3.21 | 48.60 | | | | | | | C (C)3(1) | 00.40 | 11.07 | 5.21 | 10.00 | | | | | | | -C-(H)(C)(Br)(Cl) | - 18.45
- 32.64 | 51.88 | 191.21 | | | | | | | | $N-(C)(F)_2$
C-(H)(C)(CI)(O) | - 32.04
- 90.37 | 37.66 | 66.53 | | | | | | | | C-(H) ₂ (I)(O) | 15.90 | 37.00 | 170.29 | | | | | | | | C-(C)(Cl) ₂ (F) | - 322.54 | | 2,0.25 | -343.87 | 89.29 | 141.71 | | | | | C-(C)(P-)(E) | - 394.55 | | | | 85.40 | 140.70 | | | | | $C-(C)(Br)(F)_2$
$C-(C)(Br)_2(F)$ | - 394.33 | | | | 85.40 | 149.70 | | | | | C-(Br)(Cl)(F) | | | | | | | | | | | C_{d} -(H)(F) | - 165.12 | 28.45 | 137.24 | | | | | | | | C _d -(H)(Cl) | 4.37 | 32.75 | 147.85 | - 12.67 | 56.62 | | | | | | C_{d} -(H)(Br) | 50.94 | 34.10 | 159.91 | | 79.13 | | | | | | C_{d} -(H)(I) | 102.36 | 36.82 | 169.45 | | | | | | | | C_d
–(C)(Cl) | -5.06 | | 62.76 | - 2.23 | | | | | | | C_d - $(F)_2$ | - 329.90 | 39.43 | 155.63 | | | | | | | | C _d -(Cl) ₂ | - 11.51 | 46.86 | 175.41 | -32.08 | 76.47 | 115.35 | | | | | C_d – $(Br)_2$
C_d – $(I)_2$ | | 51.46 | 199.16 | | | | | | | | C_d -(Cl)(F) | - 235.10 | 44.50 | 175.61 | | | | | | | | C (P-)(P) | | 45.40 | 155.00 | | | | | | | | C_d -(Br)(F) | | 45.19 | 177.82 | | | | | | | | C _d -(Cl)(Br)
C _t -(F) | • | 50.63 | 188.70 | | | | | | | | C ₁ -(Cl) | | 33.01 | 140.00 | | | | | | | | C_t -(Br) | | 34.69 | 151.30 | | | | | | | | C ₁ -(I) | 35.53 | 158.41 | | | | | | | | | C_B - $(F)(C_B)_2$ | - 181.26 | 26.10 | 67.52 | - 191.20 | 37.09 | 54.19 | - 194.00 | 32.05 | 39.79 | | C_B -(Cl)(C_B) ₂ | - 17.03 | 29.33 | 77.08 | -32.20 | 35.27 | 55.47 | -32.00 | 33.55 | 43.37 | | C_B -(Br)(C_B) ₂ | 36.35 | 29.65 | 88.60 | 19.90 | 40.91 | 74.85 | 13.50 | | 54.45 | | $C_B-(I)(C_B)_2$ | 94.50 | 32.70 | 98.26 | 73.70 | 45.17 | 61.08 | 70.40 | 40.08 | | | cis corr-(I)(I) | 3.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C-(H) ₂ (CO)(CI) | -44.26 | | | - 58.41 | | | - 74.75 | | | | C-(H)(CO)(Cl) ₂ | - 40.40 | | | -55.11 | | | | | | | CO-(C)(F) | - 379.84 | 50.00 | 150.00 | -419.59 | | | | | | | $C-(C_B)(F)_3$
$C-(H)_2(C_B)(Br)$ | 691.79
29.49 | 52.30 | 179.08 | 696.66
44.06 | | | | | | | $C-(H)_2(C_B)(I)$
$C-(H)_2(C_B)(I)$ | 7.31 | | | - 44.06
- 7.24 | | | | | | | $C-(H)_2(C_B)(C_I)$ | -73.79 | | | - 92.56 | | | | | | | CO-(C)(Cl) | - 200.54 | 42.09 | 176.66 | - 225.29 | 80.67 | | | | | | $CO-(C_B)(Cl)$ | 20001 | | 5.55 | -216.67 | 69.21 | | -212.99 | | | | CO_(C)(P+) | 140 54 | | | 176 40 | | | | | | | CO-(C)(Br) | 148.54
83.94 | | | -175.49 | | | | | | | CO-(C)(I) | - 83.94 | | | - 117.09 | | | | | | TABLE 2. Listing of groups and group values - Continued | Group | $\Delta_{\mathrm{f}}H^{\circ}$ | C _p ° | S° | $\Delta_t H^\circ$ | C_p° | S° | $\Delta_t H^\circ$ | C _p ° | S° | |---|--------------------------------|------------------|--------|--------------------|---------------|-------|--------------------|------------------|--------| | •
• | (gas) | (gas) | (gas) | (liq) | (liq) | (liq) | (solid) | (solid) | (solid | | | | CHX ar | d CHXO | Groups | | | | | | | C-(H)(C)(CO)(Cl) | -39.88 | | | -35.46 | 49.45 | | | | | | $C-(C)(CO)(CI)_2$ | | | | | 74.22 | | | | | | ortho corr-(I)(I) | 7.56 | 0.00 | 0.00 | 6.96 | 0.00 | 0.00 | 5.50 | 0.00 | 0.00 | | ortho corr-(F)(F) | 20.90 | 0.00 | 0.00 | 25.00 | 0.00 | 0.00 | 25.50 | 0.00 | 0.00 | | ortho corr-(Cl)(Cl) | 9.50 | 0.00 | 0.00 | 14.00 | 0.00 | 0.00 | 8.50 | 0.00 | 0.00 | | ortho corr-(alkyl)(X) | 2.51 | 0.00 | 0.00 | 6.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | cis corr-(Cl)(Cl) | -4.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | cis corr-(CH ₃)(Br) | -4.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | ortho corr-(F)(Cl) | 13.50 | 0.00 | 0.00 | 18.50 | 0.00 | 0.00 | 19.50 | 0.00 | 0.00 | | ortho corr-(F)(Br) | 37.25 | 0.00 | 0.00 | 40.60 | 0.00 | 0.00 | 42.50 | 0.00 | 0.00 | | ortho corr-(F)(I) | 85.40 | 0.00 | 0.00 | 83.55 | 0.00 | 0.00 | 85.20 | 0.00 | 0.00 | | meta corr-(I)(I) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.08 | 0.00 | 0.00 | | meta corr-(COCl)(COCl) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16.06 | 0.00 | 0.00 | | ortho corr-(COCl)(COCl) | 0.00 | 0.00 | 0.00 | 0.00 | 10.58 | 0.00 | | 0.00 | 0.00 | | ortho corr-(F)(CF ₃) | 111.00 | 0.00 | 0.00 | 112.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | meta corr-(F)(CF ₃) | 2.00 | 0.00 | 0.00 | 6.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | ortho corr-(F)(CH ₃) | -3.30 | 0.00 | 0.00 | -6.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | ortho corr-(F)(F') | 8.00 | 0.00 | 0.00 | 8.00 | 0.00 | 0.00 | 8.00 | 0.00 | 0.00 | | ortho corr-(Cl)(Cl') | 8.00 | 0.00 | 0.00 | 8.00 | 0.00 | 0.00 | 8.00 | 0.00 | 0.00 | | meta corr-(F)(F) | 0.00 | 0.00 | 0.00 | 6.00 | 0.00 | 0.00 | 8.50 | 0.00 | 0.00 | | meta corr-(Cl)(Cl) | -5.00 | 0.00 | 0.00 | 10.00 | 0.00 | 0.00 | 4.00 | 0.00 | 0.00 | | ortho corr-(Cl)(CHO) | -6.75 | 0.00 | 0.00 | 8.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | ortho corr-(F)(COOH) | 20.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.00 | 0.00 | 0.00 | | ortho corr-(Cl)(COCl) | 0.00 | 0.00 | 0.00 | 34.43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | ortho corr-(F)(OH) | 25.50 | 0.00 | 0.00 | 23.00 | 0.00 | 0.00 | 20.00 | 0.00 | 0.00 | | ortho corr-(Cl)(COOH) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.00 | 0.00 | 0.00 | | ortho corr-(Br)(COOH) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.00 | 0.00 | 0.00 | | ortho corr-(I)(COOH) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.00 | 0.00 | 0.00 | | ortho corr-(NH ₂)(NH ₂) | - 10.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | meta corr-(NH ₂)(NH ₂) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 14.00 | 0.00 | 0.00 | | ortho corr-(OH)(Cl) | 7.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.00 | 0.00 | 0.00 | | cis corr-(CH ₃)(I) | -4.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | #### Group identities ``` C-(H)_3(C) C-(H)(C_3) = C-(H)(C)(C_d)_2 = C_{d^{-}}(H)(O) = C_{d^{-}}(H)(S) = C_{d^{-}}(H)(C_{t}) = C_{d^{-}}(H)(C_{B}) = C_{d^{-}}(O)(C_{d}) C_{\sigma}-(H) C_d-(H)(C_d) C_B-(H)(C_B)_2 = C_{B^{-}}(C)(S)(C_{B}) C_B-(C_d)(C_B)₂ = C_{B} - (C_t)(C_B)_2 C_B-(SO)(C_B)₂ = C_B - (SO_2)(C_B)_2 S-(C_d)_2 = S-(C_B)_2 ``` TABLE 3. General definitions and examples of notations for organic groups | C-(H) ₃ (C) | A carbon atom with three bonds to hydrogen atoms and the fourth bond to a carbon atom. Example: Ethane. | |------------------------------------|---| | $C-(H)_2(C)_2$ | A carbon atom with two bonds to hydrogen atoms and two bonds to carbon atoms. Example: n-Hexane. | | C-(H)(C) ₃ | A carbon atom with one bond to a hydrogen atom and three bonds to carbon atoms. Example: 2-Methylpropane. | | C-(C) ₄ | A carbon atom with four bonds to carbon atoms. Example: 2,2-Dimethylpropane. | | C _d -(H) ₂ | A doubly-bonded carbon atom attached to two hydrogen atoms. Example: Ethylene. | | C _d -(C) ₂ | A doubly-bonded carbon atom attached to two carbon atoms. Example: Propene. | | C _i -(H) | A triply-bonded carbon atom attached to a hydrogen atom. Example: Ethyne. | | C ₁ -(C) | A triply-bonded carbon atom attached to a carbon atom. Example: Propyne. | | C_B -(H)(C_B) ₂ | An aromatic ring (benzene) carbon atom bonded to a hydrogen atom and two other aromatic ring carbon atoms. Example: Benzene. | | C_B – $(C_B)_3$ | An aromatic ring (benzene) carbon atom bonded to three aromatic ring carbon atoms. Example: Biphenyl. | | C_{BF} $(C_{BF})(C_B)_2$ | A fused aromatic ring carbon atom (such as the two fused ring carbon atoms in naphthalene) bonded to one other fused aromatic ring carbon atom and aromatic ring carbon atoms. Example: Naphthalene. | | C_{BF} – $(C_{BF})_3$ | A fused aromatic ring carbon atom bonded to three other fused aromatic ring carbon atoms. Example: Pyrene. | | C_a | An allenic carbon atom. When allene is unsubstituted, the group values are equal to allene itself. Example: Allene. | | -CH ₃ corr (tertiary) | A correction for the attachment of each methyl group to a tertiary carbon atom. Example: 2-Methylpropane. | | -CH ₃ corr (quaternary) | A correction for the attachment of each methyl group to a quaternary carbon atom. Example: 2,2-Dimethylpropane. | | -CH ₃ corr (tert/quat) | A correction for the attachment of each methyl group when there is both a tertiary and a quaternary carbon atom present in the longest chain of a hydrocarbon. Example: 2,2,3-Trimethylpentane. | | -CH ₃ corr (quat/quat) | A correction for the attachment of each methyl group when there are two quaternary carbon atoms present in the longest chain of a hydrocarbon. Example: 2,2,4,4-Tetramethylpentane. | | ortho corr, hydrocarbons | An aromatic ring correction for <i>ortho</i> substitution in hydrocarbon compounds. Example: o-Xylene. | | meta corr, hydrocarbons | An aromatic ring correction for <i>meta</i> substitution in hydrocarbon compounds. Example: <i>m</i> -Xylene. | | rsc | Ring strain correction, rsc, for a cyclic non-aromatic compound. Example: Cyclopropane. | | rsc (unsub) | Ring strain correction, rsc, for a cyclic non-aromatic unsubstituted compound. Example: Cyclopentane. | | rsc (sub) | Ring strain correction, rsc, for a cyclic non-aromatic substituted compound. Example: Methylcyclopentane. | TABLE 3. General definitions and examples of notations for organic groups - Continued | C (TT) (C)(C) | | |--|--| | C-(H) ₂ (C)(O) | A carbon atom bonded to two hydrogen atoms, a carbon atom, and an oxygen atom. Example: Methanol. | | O-(C) ₂ | An oxygen atom bonded to two carbon atoms. Example: Dimethyl ether. | | C-(H)(O)(C) ₂ (alcohols, peroxides) | Tertiary carbon atom group in alcohols and peroxides. Example: 2-Propanol, n-Heptyl-2-hydroperoxide. | | C-(H)(O)(C) ₂
(ethers, esters) | Tertiary carbon atom group in ethers and esters. Example: Methylisopropyl ether, Isopropyl acetate. | | C-(O)(C) ₃ (alcohols, peroxides) | Quaternary carbon atom group in alcohols and peroxides. Example: tert-Butyl alcohol, Di-tert-butyl peroxide. | | C-(O)(C) ₃ (ethers, esters) | Quaternary carbon atom group in ethers and esters. Example: Di-tert-butyl ether, tert-Butyl acctate. | | C-(H) ₂ (C)(CN) | A carbon atom bonded to two hydrogen atoms, a carbon atom, and a nitrile (cyano) group. Example: Propanenitrile. | | CB-(NO ₂)(CB) ₂ | An
aromatic ring carbon atom bonded to a nitro group and two other aromatic ring carbon atoms. Example: Nitrobenzene. | | NO ₂ -NO ₂ (ortho corr) | A correction for adjacent (ortho) substitution of NO ₂ groups on an aromatic ring. Example: o-Dintrobenzene. | | NO ₂ -COOH (ortho corr) | A correction for substitution of an NO ₂ group adjacent to a COOH group on an aromatic ring. Example: o-Nitrobenzoic acid. | | N-(H) ₂ (C)
(first, amino acids) | The first (and only) NH ₂ group bonded to a carbon atom in an amino acid. Example: Glycine | | N-(H) ₂ (C) (second, amino acids) | The second NH_2 group bonded to a carbon atom in an amino acid. Example: Lysine | | N-(H) ₂ (CO)
(amides, ureas) | A NH ₂ group bonded to a carbonyl group, CO, in amides and ureas. Example: Acetamide, Urea. | | N-(H) ₂ (CO)
(amino acids) | A NH ₂ group bonded to a carbonyl group, CO, in amino acids. Example: Asparagine | | N-(H)(C)(CO)
(amides, ureas) | A NH group bonded to a hydrogen atom, carbon atom, and a carbonyl group in amides and ureas. Example: N-Methylformamide, Methylurea. | | N-(H)(C)(CO)
(amino acids) | A NH group bonded to a hydrogen atom, carbon atom, and a carbonyl group in amino acids. Example: Glycylglycine. | | Zwitterion energy, aliphatic | A correction for the conversion of an amino acid or to a zwitterion in amino acids and peptides with aliphatic moieties. Example: Glycine, Glycylalanine. | | Zwitterion energy, aromatic I | A correction for the conversion of an aromatic amino acid or peptide to a zwitterion containing an aromatic ring attached directly to a conjugation detering group (such as a -CH ₂ - group). Example: Phenylalanine, Glycylphenylalanine. | | Zwitterion energy, aromatic II | A correction for the conversion of an aromatic amino acid or peptide to a zwitterion containing an aromatic ring attached directly to a conjugation enhancing group (such as a >C=O group). Example: Hippuric acid, Hippurylglycine. | TABLE 3. General definitions and examples of notations for organic groups - Continued | N _A -(C) | A doubly-bonded (azo) nitrogen atom bonded to a carbon atom. Example: Azomethane. | |---|---| | N_A - (C_B) | A doubly-bonded (azo) nitrogen atom bonded to an aromatic ring carbon atom. Example: trans-Azobenzene. | | N _A -(oxide)(C) | A doubly-bonded (azoxy) nitrogen atom bonded to a carbon atom. Example: Di-tert-butyldiazene N-oxide | | N _r -(C) | A doubly-bonded (imino) nitrogen atom bonded to a carbon atom. Example: N-Butylisobutyleneimine. | | N_I – (C_B) | A doubly-bonded (pyridine-type) nitrogen atom bonded to an aromatic ring carbon atom. Example: Pyridine. | | N _I -(CH ₃) (ortho corr) | A doubly-bonded (pyridine-type) nitrogen atom in an aromatic ring adjacent to a substituted methyl group. Example: 2-Picoline | | N _I -N _I (ortho corr) | A doubly-bonded (pyridine-type) nitrogen atom adjacent to an identical (pyridine-type) nitrogen atom in an aromatic ring. Example: Pyridazine | | C-(H) ₂ (C)(S) | A carbon atom bonded to two hydrogen atoms, a carbon atom, and a sulfur atom. Example: Methanethiol. | | S-(C)(S) | A sulfur atom bonded to a carbon atom and another sulfur atom. Example: Dimethyl disulfide. | | C-(H) ₂ (C)(F) | A carbon atom bonded to two hydrogen atoms, a carbon atom, and a fluorine atom. Example: Fluoroethane. | | ortho corr, (F)(F) | A correction for the adjacent (ortho) substitution of two fluorine atoms on an aromatic ring. Example: o-Difluorobenzene. | | ortho corr, (I)(COOH) | A correction for the substitution of a iodine atom adjacent (ortho) to a COOH group on an aromatic ring. Example: 2-iodobenzoic acid. | | ortho corr (Cl)(Cl') | A correction for the substitution of a chlorine atom in an aromatic ring in the near proximity of another chlorine atom in a different aromatic ring which is bonded to the first ring. Example: 2,2'-Dichlorobiphenyl | TABLE 4. n-Alkanes (25) TABLE 4. n-Alkanes (25) - Continued | Methane
(1 × C(H | l) ₄), σ = 12 | 2 | | СН4 | Pentane
(2×C-(F | H) ₃ (C))+(3 | ×C-(H) ₂ (C) ₂), | , σ = 18 | C ₅ H ₁₂ | |---|----------------------------|--|------------------------|-------------------------------------|---|------------------------------------|--|--------------------------|-------------------------------------| | | Literatur | e – Calculated = | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $ \Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = $ | -74.48
35.71
186.27 | -74.48
35.73
186.26
-80.62
-50.44
20.35 | 0.00
-0.02
0.01 | 72PIT/PIL
89FRI/ELY
89FRI/ELY | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 146.82
120.21
348.95 | - 146.41
120.13
348.09
- 464.04
- 8.06
3.25 | - 0.41
0.08
0.86 | 70GOO
69STU/WES
69STU/WES | | Ethane
(1×2×C | C−(H)₃(C)),
Literatur | σ = 18
re – Calculated = | = Residual | C₂H ₆ Reference | Liquid phase $ \Delta_{\ell}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{\ell}S^{\circ} = \Delta_{\ell}G^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} $ | se
- 173.51
167.19
263.47 | - 172.41
164.22
263.74
- 548.39
- 8.91 | -1.10
2.97
-0.27 | 70GOO
67MES/GUT
67MES/GUT | | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | - 83.85
52.47
229.12 | -83.85
52.63
229.49
-173.71
-32.06
12.93 | 0.00
-0.16
-0.37 | 72PIT/PIL
73CHA/WIL
73CHA/WIL | $\frac{\ln K_{\rm f}}{\rm Hexane}$ $(2 \times C - (F_{\rm f}))$ | | 3.59 \times C-(H) ₂ (C) ₂), re – Calculated | | C₅H₃.
Reference | | | | ×C-(H) ₂ (C) ₂),
re – Calculated | | C₃H ₈
Reference | Gas phase $\Delta_{l}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{l}S^{\circ} = \Delta_{l}G^{\circ} = \ln K_{l} = 0$ | - 167.28
143.09
388.40 | - 167.04
143.02
387.25
- 561.19
0.28
- 0.11 | - 0.24
0.07
1.15 | 47OSB/GIN
69STU/WES
69STU/WES | | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | -104.68
73.60
270.20 | - 105.15
74.35
269.77
- 269.74
- 24.73
9.98 | 0.47
- 0.75
0.43 | 72PIT/PIL
73CHA/WIL
73CHA/WIL | Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
198.66
194.97
296.06 | - 198.14
194.64
296.12
- 652.32
- 3.65
1.47 | - 0.52
0.33
- 0.06 | 69GOO/SMI
46DOU/HUF
46DOU/HUF | | Butane
(2×C-(l | , , ,, , | 2×C-(H) ₂ (C) ₂), | | C ₄ H ₁₀ | Heptane | I) (CI) ((5 | | 10 | C ₇ H ₁₆ | | | Literatu | re – Calculated | = Kesiduai | Reference | (2×C-(F | | \times C-(H) ₂ (C) ₂),
re – Calculated | | Reference | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{1}{2}$ | -125.65
98.49
309.91 | -125.78
97.24
308.93
-366.89
-16.39
6.61 | 0.13
1.25
0.98 | 72PIT/PIL
75CHE/WIL
75CHE/WIL | Gas phase
$\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | 187.48
165.98
427.90 | 187.67
165.91
426.41
658.34
8.61
3.47 | 0.19
0.07
1.49 | 47OSB/GIN
69STU/WES
69STU/WES | TABLE 4. n-Alkanes (25) - Continued TABLE 4. n-Alkanes (25) - Continued | Heptane (C
(2×C-(1 | | × C-(H) ₂ (C) ₂), | , σ = 18 | C7H16 | Decane
(2×C- | (H)₃(C))+(8 | 8×C-(H) ₂ (C) ₂) | $\sigma = 18$ | C ₁₆ H ₂ |
--|-------------------|--|------------------|--------------------------------|--|-------------------------------------|---|-----------------------|--| | • | Literatur | e – Calculated | = Residual Re | ference | | Literatu | re – Calculated | = Residual | Reference | | Liquid pha
Δ _i H° = | use
- 224.05 | - 223.87 | -0.18 | 44PRO/ROS | Gas phase $\Delta_t H^\circ =$ | - 249.66 | - 249.56 | -0.10 | 47OSB/GIN | | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = 0$ | 224.93
328.57 | 225.06
328.50
-756.25
1.61 | -0.13
-0.07 | 61HUF/GRO
61HUF/GRO | $C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = S^{\circ}$ | 234.60
544.63 | 234.58
543.89
- 949.79
33.62 | 0.02
0.74 | 69STU/WES
69STU/WES | | $lnK_f =$ | | - 0.65 | | | $lnK_f =$ | | -13.56 | | | | Octane
(2×C-(1 | H)3(C))+(6 | × C-(H)2(C)2) | , σ = 18 | C ₈ H ₁₈ | Liquid ph $ \Delta_t H^\circ = \\ C_p^\circ = \\ S^\theta = \\ $ | ase
- 300.62
314.47
425.89 | -301.06
316.32
425.64 | 0.44
-1.85
0.25 | 44PRO/ROS
54FIN/GRO2
54FIN/GRO2 | | | Literatur | e – Calculated | = Residual | Reference | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -1068.04
17.38
-7.01 | | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -208.27
188.87 | -208.30
188.80 | 0.03
0.07 | 47OSB/GIN
69STU/WES | | | - 7.01 | | | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} G^{\circ$ | 466.73 | 465.57
- 755.49
16.95 | 1.16 | 69STU/WES | Undecane
(2×C-(| | $9 \times C - (H)_2(C)_2$ | , σ = 18 | C11H2 | | $ \Delta_f G^{\circ} = \\ \ln K_f = \\ $ | | - 6.84 | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid pha | | 040.60 | 0.10 | 44DD 0/D 00 | Gas phase | | 270.10 | 0.50 | 4577 0 77 0 00 | | $\Delta_i H^\circ =$ | - 249.78 | -249.60 | -0.18 | 44PRO/ROS | $\Delta_{\rm f}H^{\circ} =$ | -270.91 | -270.19 | -0.72 | 45PRO/ROS2 | | $C_p^{\circ} = S^{\circ} =$ | 254.14
361.20 | 255.48
360.88 | - 1.34
0.32 | 54FIN/GRO2 | $C_p^{\circ} = S^{\circ} =$ | 257.44
583.58 | 257.47 | -0.03 | 69STU/WES | | _ | 301.20 | | 0.32 | 54FIN/GRO2 | $\Delta_{t}S^{\circ} =$ | 383.38 | 583.05 | 0.53 | 69STU/WES | | $\Delta_{\rm f} S^{\circ} =$ | | -860.18 | | | | | - 1046.94 | | | | $\Delta_t G^\circ = \ln K_t =$ | | 6.86
-2.77 | | | $\Delta_f G^\circ = \ln K_f =$ | | 41.96
16.92 | | | | | | | | | Liquid ph | | | | | | Nonane
(2×C-(| H)3(C))+(7 | × C-(H) ₂ (C) ₂) | $\sigma = 18$ | C ₉ H ₂₀ | $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | - 326.60
345.05
458.15 | - 326.79
346.74
458.02 | 0.19
1.69
0.13 | 45PRO/ROS2
54FIN/GRO2
54FIN/GRO2 | | | Literatur | e – Calculated | = Residual | Reference | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} =$ | | - 1171.97
22.63 | 3113 | <i>3.</i> | | Gas phase | | 228.02 | 0.60 | 47OCDICINI | $lnK_f =$ | ····· | - 9.13 | | | | $\Delta_{\rm f}H^{\circ} =$ | -228.24 | -228.93 | 0.69 | 47OSB/GIN | | | | | | | $C_p^{\circ} =$ | 211.71 | 211.69 | 0.02 | 69STU/WES | n. J | | | | ~ | | S° =
Δ ₀ S° = | 505.68 | 504.73
852.64 | 0.95 | 69STU/WES | Dodecane | TI) (C)) + (4 | 0.40 (11) (0) | 10 | $C_{12}H_{26}$ | | $\Delta_{t}G^{\circ} =$ | | -832.64
25.29 | | | (2×0-(| 11/3(U)) + (I | 0×C-(H) ₂ (C) ₂ |), cr = 18 | | | $\ln K_{\rm f} =$ | | - 10.20 | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid pha | ase | | - marility Vanis | | Gas phase $\Delta_t H^\circ =$ | - 290.87 | - 290.82 | -0.05 | 45PRO/ROS2 | | $\Delta_t H^\circ =$ | - 274.68 | -275.33 | 0.65 | 69GOO | $C_p^{\circ} =$ | 280.33 | 280.36 | -0.03 | 69STU/WES | | $C_p^{\circ} =$ | 284.39 | 285.90 | -1.51 | 54FIN/GRO2 | $S^{\circ} =$ | 622.50 | 622.21 | 0.29 | 69STU/WES | | S° = | 393.67 | 393.26 | 0.41 | 54FIN/GRO2 | $\Delta_{i}S^{\circ} =$ | 024.50 | - 1144.10 | V-4,3 | 03310/WE3 | | $\Delta_f S^\circ =$ | | -964.11 | | | $\Delta_f G^\circ =$ | | 50.29 | | | | | | 12.12 | | | $\ln K_{\rm f} =$ | | -20.29 | | | | $\Delta_t G^{\circ} =$ | | | | | | | | | | TABLE 4. n-Alkanes (25) - Continued TABLE 4. n-Alkanes (25) - Continued | | Continued)
1) ₃ (C)) + (10 | 0×C-(H) ₂ (C) ₂) | , σ = 18 | $C_{12}H_{26}$ | Pentadecar
(2×C-(J | | 3×C-(H) ₂ (C) ₂ |), σ = 18 | C ₁₅ H ₃ | |-------------------------------------|--|---|---------------|----------------|-------------------------------------|------------|---------------------------------------|------------------|--------------------------------| | | Literatur | e – Calculated : | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid pha | Se. | | | | Gas phase | | | | | | $\Delta_{i}H^{\circ} =$ | -352.13 | -352.52 | 0.39 | 45PRO/ROS2 | $\Delta_t H^\circ =$ | -352.75 | -352.71 | ~ 0.04 | 45PRO/ROS2 | | $C_p^{\circ} =$ | 375.97 | 377.16 | -1.19 | 54FIN/GRO2 | $C_p^{\circ} =$ | 348.95 | 349.03 | -0.08 | 69STU/WES | | $S^{\circ} =$ | 490.66 | 490.40 | 0.26 | 54FIN/GRO2 | S° = | 739.35 | 739.69 | -0.34 | 69STU/WES | | $\Delta_f S^\circ =$ | 470.00 | - 1275.90 | 0.20 | Janyonoz | $\Delta_{t}S^{\circ} =$ | 103.00 | - 1435.55 | 0.54 | 0,010,1120 | | $\Delta_{\rm f}G^{\circ} =$ | | 27.89 | | | $\Delta_{\rm f}G^{\circ} =$ | | 75.30 | | | | $\ln K_{\rm f} =$ | | -11.25 | | | $\ln K_{\rm f} =$ | | -30.37 | Liquid pha | .ca | | | | | Tridecane | | | | СЧ | $\Delta_i H^\circ =$ | - 428.82 | - 429.71 | 0.89 | ASDD O/D OS3 | | | U\ (C\\) (1 | 1 v C (II) (C) ' | 10 | $C_{13}H_{28}$ | • | 469.95 | 468.42 | 1.53 | 45PRO/ROS2 | | (2 × C-() | n)3(C))+(1 | $1 \times C - (H)_2(C)_2$ |), G = 18 | | $C_p^{\circ} = S^{\circ} =$ | | | | 54FIN/GRO2 | | | T :44 | ro Colout-4- 1 | - Dockder-1 | Doforces | $S^{\circ} = \Delta_{f}S^{\circ} =$ | 587.52 | 587.54
1597.70 | -0.02 | 54FIN/GRO2 | | | Literatu | re – Calculated | – Residuai | Reference | - | | 1587.70 | | | | | | | | | $\Delta_f G^\circ = \ln K_f =$ | | 43.66
17.61 | | | | Gas phase | 044.70 | 946 15 | 0.05 | 45DD C 77 C 22 | <u> </u> | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -311.50 | -311.45 | -0.05 |
45PRO/ROS2 | | | | | | | $C_p^{\circ} =$ | 303.21 | 303.25 | -0.04 | 69STU/WES | | | | | | | S° = | 661.45 | 661.37 | 0.08 | 69STU/WES | Hexadecan | | | | C ₁₆ H | | $\Delta_f S^\circ =$ | | - 1241.25 | | | (2×C-(1 | H)₃(C))+(1 | $14 \times C - (H)_2(C)_2$ |), $\sigma = 18$ | | | $\Delta_{\rm f}G^{\circ} =$ | | 58.63 | | | | | | | | | $lnK_f =$ | | - 23.65 | | | | Literatu | re – Calculated | = Residual | Reference | | | | | | | Gas phase | | | | | | Liquid pha | ise | | | | $\Delta_f H^\circ =$ | - 374.76 | -373.34 | -1.42 | 72MOR | | $\Delta_i H^\circ =$ | - 377.69 | - 378.25 | 0.56 | 45PRO/ROS2 | $C_{\rho}^{\circ} =$ | 371.79 | 371.92 | - 0.13 | 69STU/WES | | $C_p^{\circ} =$ | 406.89 | 407.58 | -0.69 | 54FIN/GRO2 | S° = | 778.31 | 778.85 | - 0.54 | 69STU/WES | | S° = | 522.87 | 522.78 | 0.09 | 54FIN/GRO2 | $\Delta_{\mathbf{f}}S^{\circ} =$ | | 1532.70 | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 1379.83 | | | $\Delta_{\rm f}G^{\circ} =$ | | - 83.63 | | | | $\Delta_f G^\circ =$ | | 33.15 | | | $lnK_f =$ | | -33.74 | | | | $lnK_f =$ | | - 13.37 | | | | | | | | | | | ************************************** | | | Liquid pha | ise | | | | | | | | | | $\Delta_{\ell}H^{\circ} =$ | -456.14 | - 455.44 | -0.70 | 55FRA/PRO | | Tetradecar | ne | | | C14H30 | $C_{\rho}^{\circ} =$ | 501.45 | 498.84 | 2.61 | 54FIN/GRO2 | | (2×C-(| $H)_{3}(C)) + (1$ | $2 \times C - (H)_2(C)_2$ | $\sigma = 18$ | | s° = | 619.65 | 619.92 | -0.27 | 54FIN/GRO2 | | · - · | | - (/2(-/2 | ,, | | $\Delta_f S^\circ =$ | | - 1691.63 | | | | | Literatu | re - Calculated | = Residual | Reference | $\Delta_l G^{\circ} =$ | | 48.92 | | | | | | ···· | | | $lnK_f =$ | | -19.73 | | | | Gas phase | | | | | - | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -332.13 | -332.08 | -0.05 | 45PRO/ROS2 | Solid phase | 2 | | | | | $C_p^{\circ} =$ | 326.06 | 326.14 | -0.08 | 69STU/WES | $\Delta_t H^\circ =$ | - 507.50 | -505.22 | -2.28 | 69STU/WES | | S° = | 700.40 | 700.53 | -0.13 | 69STU/WES | $C_p^{\circ} =$ | 441.79 | 441.78 | 0.01 | | | $\Delta_{t}S^{\circ} =$ | . 00.70 | - 1338.40 | 0.15 | 0.020,1100 | $S^{\circ} =$ | 434.84 | 435.52 | -0.68 | | | $\Delta_{\rm f}G^{\circ} =$ | | 66.96 | | | $\Delta_{f}S^{\circ} =$ | 101101 | - 1876.03 | 0.00 | | | $\ln K_{\rm f} =$ | | - 27.01 | | | $\Delta_{\rm f}G^{\circ} =$ | | 54.12 | | | | | | ۵/.UI | | | $\ln K_f =$ | | -21.83 | | | | Liquid -L | are. | | | | | | | | | | Liquid phate $\Delta_i H^\circ =$ | – 403.25 | -403.98 | 0.73 | 45PRO/ROS2 | | | | | | | $C_p^{\circ} =$ | 438.44 | 438.00 | 0.44 | 54FIN/GRO2 | | | | | | | | 555.43 | 555.16 | 0.27 | 54FIN/GRO2 | | | | | | | | JJJ.7J | | 0.21 | J41 114/ONO2 | | | | | | | S° = | | ~ 1481./h | | | | | | | | | $S^{\circ} = \Delta_{t}S^{\circ} =$ | | 1483.76
38 40 | | | | | | | | | S° = | | - 1483.76
38.40
- 15.49 | | | | | | | | TABLE 4. n-Alkanes (25) - Continued TABLE 4. n-Alkanes (25) - Continued | Heptadecan
(2×C-(H | | 5×C-(H)2(C)2) |), σ = 18 | C ₁₇ H ₃₆ | Nonadecar
(2×C-(| | 17×C-(H) ₂ (C) | $_2$), $\sigma = 18$ | C19H4 | |--|--|---|---------------------------------|---
---|------------------------------|---|--------------------------|---| | | Literatur | re – Calculated | = Residual | Reference | | Literatu | re – Calculated | l = Residual | Reference | | Gas phase | | | | | Gas phase | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -393.92 | - 393.97 | 0.05 | 45PRO/ROS2 | $\Delta_{\rm f}H^{\circ} =$ | -435.14 | - 435.23 | 0.09 | 45PRO/ROS2 | | $C_p^{\circ} =$ | 394.68 | 394.81 | -0.13 | 69STU/WES | $C_p^* =$ | 440.41 | 440.59 | -0.18 | 69STU/WES | | S° = | 817.26 | 818.01 | -0.75 | 69STU/WES | $S^{\circ} = \Delta_{f}S^{\circ} =$ | 895.17 | 896.33 | -1.16 | 69STU/WES | | $\Delta_{\rm f} S^{\circ} =$ | | - 1629.85 | | | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} =$ | | - 1824.15
108.64 | | | | $\Delta_f G^\circ = \ln K_f =$ | | 91.97
- 37.10 | | | $\ln K_{\rm f} =$ | | - 43.83 | | | | | | - 37.10 | | | | | 45.05 | | | | Liquid phas | | | | | Liquid pha | | | | | | _ | -479.86 | - 481.17 | 1.31 | 45PRO/ROS2 | $\Delta_l H^{\circ} =$ | - 530.95 | -532.63 | 1.68 | 45PRO/ROS2 | | $C_p^{\circ} =$ | 534.34 | 529.26 | 5.08 | 67MES/GUT | $C_p^{\circ} =$ | | 590.10 | | | | S° = | 652.24 | 652.30 | -0.06 | 67MES/GUT | S° =
Δ _t S° = | | 717.06 | | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | - 1795.56
54.18 | | | $\Delta_{\mathbf{f}} S^{\circ} = \Delta_{\mathbf{f}} G^{\circ} = 0$ | | - 2003,42
64,69 | | | | $lnK_f =$ | | -21.85 | | | $\ln K_{\rm f} =$ | | -26.10 | | | | | | | | | | - | | | | | Solid phase | | | | | Solid phas | e | | | | | • | - 530.97 | - 534.63 | 3.66 | 67MES/GUT | $\Delta_t H^\circ =$ | | -593.45 | | | | $C_p^{\circ} =$ | | 463.70 | | | $C_p^{\circ} =$ | | 507.54 | | | | S° = | | 458.53 | | | S° = | | 504.55 | | | | $\Delta_f S^\circ =$ | | - 1989.33 | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | - 2215.93
67.23 | | | | | | 58.49 | | | | | | | | | $\Delta_f G^\circ = In K_\circ =$ | | _ 23 59 | | | $\ln K_c =$ | | 27 12 | | | | $\ln K_{\rm f} =$ | · · · · · · · · · · · · · · · · · · · | -23.59 | · | | $lnK_f =$ | | -27.12 | | | | InK _f = | | |) $\alpha = 18$ | C ₁₈ H ₃₈ | Eicosane | H) ₂ (C)) + (1 | | a) a = 18 | C ₂₀ H ₄₂ | | InK _f = | · I)₃(C))+(1 | 16×C-(H)2(C)2 | | | Eicosane | , , ,, , | 18×C-(H) ₂ (C); | • | | | InK _f = | · I)₃(C))+(1 | | | C ₁₈ H ₃₈ | Eicosane | , , ,, , | | • | C ₂₀ H ₄₂
Reference | | Octadecane (2×C-(H | H)₃(C)) + (1
Literatu | 16×C-(H)2(C)2
re – Calculated | = Residual | Reference | Eicosane
(2×C-(| Literatu | 18×C-(H) ₂ (C);
re – Calculated | = Residual | Reference | | $lnK_t =$ Octadecane $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ =$ | H)₃(C)) + (1 Literatu -414.55 | 16 × C-(H) ₂ (C) ₂ re - Calculated - 414.60 | = Residual | Reference 45PRO/ROS2 | Eicosane $(2 \times C - (1))$ Gas phase $\Delta_t H^\circ =$ | Literatu -455.76 | 18×C-(H) ₂ (C);
re – Calculated
– 455.86 | = Residual | Reference 45PRO/ROS2 | | $\begin{array}{c} \ln K_t = \\ \hline \\ \text{Octadecane} \\ (2 \times \text{C-(I)} \\ \hline \\ \text{Gas phase} \\ \Delta_t H^\circ = \\ C_p^\circ = \\ \end{array}$ | H) ₃ (C)) + (1
Literatu
-414.55
417.56 | 16 × C-(H) ₂ (C) ₂
re Calculated
414.60
417.70 | = Residual
0.05
- 0.14 | Reference 45PRO/ROS2 69STU/WES | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = 0$ | Literatu - 455.76 463.29 | 18 × C-(H) ₂ (C);
ore - Calculated
- 455.86
463.48 | 0.10
-0.19 | Reference 45PRO/ROS2 69STU/WES | | Octadecane $(2 \times C - (F))$ Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = C_p^{\circ} C_p^{\circ}$ | H)₃(C)) + (1 Literatu -414.55 | 16 × C-(H) ₂ (C) ₂
re - Calculated
-414.60
417.70
857.17 | = Residual | Reference 45PRO/ROS2 | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ $ | Literatu -455.76 | 18 × C-(H) ₂ (C);
are - Calculated
- 455.86
463.48
935.49 | = Residual | Reference 45PRO/ROS2 | | Octadecane $(2 \times C - (F + G + G))$ Gas phase $\Delta_{L}H^{\circ} = C_{P}^{\circ} = S^{\circ} = \Delta_{L}S^{\circ} = C_{L}G^{\circ}$ | H) ₃ (C)) + (1
Literatu
-414.55
417.56 | 16 × C-(H) ₂ (C) ₂ re - Calculated - 414.60 417.70 857.17 - 1727.00 | = Residual
0.05
- 0.14 | Reference 45PRO/ROS2 69STU/WES | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = 0$ | Literatu - 455.76 463.29 | 18 × C-(H) ₂ (C) ₂
re - Calculated
- 455.86
463.48
935.49
- 1921.30 | 0.10
-0.19 | Reference 45PRO/ROS2 69STU/WES | | Octadecane $(2 \times C - (F))$ Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = C_p^{\circ} C_p^{\circ}$ | H) ₃ (C)) + (1
Literatu
-414.55
417.56 | 16 × C-(H) ₂ (C) ₂
re - Calculated
-414.60
417.70
857.17 | = Residual
0.05
- 0.14 | Reference 45PRO/ROS2 69STU/WES | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ $ | Literatu - 455.76 463.29 | 18 × C-(H) ₂ (C);
are - Calculated
- 455.86
463.48
935.49 | 0.10
-0.19 | Reference 45PRO/ROS2 69STU/WES | | In K_f = Octadecane (2 × C-(F) Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_f = InK_f$ | -414.55
417.56
856.21 | -414.60
417.70
857.17
-1727.00
100.31 | = Residual
0.05
- 0.14 | Reference 45PRO/ROS2 69STU/WES | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t = InK_t$ | - 455.76
463.29
934.12 | 18 × C-(H) ₂ (C) ₂
re - Calculated
- 455.86
463.48
935.49
- 1921.30
116.98 | 0.10
-0.19 | Reference 45PRO/ROS2 69STU/WES | | In K_f = Octadecane (2 × C-(H Gas phase $\Delta_t H^\circ =$
$C_t^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ In $K_f =$ Liquid phase | -414.55
417.56
856.21 | -414.60
417.70
857.17
-1727.00
100.31
-40.46 | 0.05
-0.14
-0.96 | 45PRO/ROS2
69STU/WES
69STU/WES | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t = InK_t$ Liquid pha | - 455.76
463.29
934.12 | -455.86
463.48
935.49
-1921.30
116.98
-47.19 | 0.10
- 0.19
- 1.37 | Reference 45PRO/ROS2 69STU/WES 69STU/WES | | In K_t = Octadecane (2 × C-(H Gas phase $\Delta_t H^\circ =$ $C_t^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ In $K_t =$ Liquid phase $\Delta_t H^\circ =$ | -414.55
417.56
856.21 | -414.60
417.70
857.17
-1727.00
100.31
-40.46 | = Residual
0.05
- 0.14 | Reference 45PRO/ROS2 69STU/WES | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{2}$ Liquid pha $\Delta_t H^\circ = \frac{1}{2}$ | - 455.76
463.29
934.12 | -455.86
463.48
935.49
-1921.30
116.98
-47.19 | 0.10
-0.19 | Reference 45PRO/ROS2 69STU/WES | | Octadecane $(2 \times C - (H \cup Gas))$ Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t G^\circ = InK_t = InK_t = InK_t = C_t^\circ = C_t^\circ = C_t^\circ = InK_t^\circ = C_t^\circ = InK_t^\circ = C_t^\circ = InK_t^\circ = InK_t^\circ = InK_t^\circ = C_t^\circ = InK_t^\circ InK_t$ | -414.55
417.56
856.21 | -414.60
417.70
857.17
-1727.00
100.31
-40.46 | 0.05
-0.14
-0.96 | 45PRO/ROS2
69STU/WES
69STU/WES | Eicosane $(2 \times C - f)$ Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{2}$ Liquid pha $\Delta_t H^\circ = C_t^\circ = \frac{1}{2}$ | - 455.76
463.29
934.12 | -455.86
463.48
935.49
-1921.30
116.98
-47.19 | 0.10
- 0.19
- 1.37 | Reference 45PRO/ROS2 69STU/WES 69STU/WES | | Octadecane $(2 \times C - (I \times C)^{\circ})$ Gas phase $\Delta_{t}H^{\circ} = C_{t}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = InK_{t} = InK_{t}$ Liquid phase $\Delta_{t}H^{\circ} = C_{t}^{\circ} = S^{\circ} = S^{\circ} = S^{\circ} = S^{\circ} = S^{\circ} = S^{\circ} = S^{\circ}$ | -414.55
417.56
856.21 | -414.60
417.70
857.17
-1727.00
100.31
-40.46 | 0.05
-0.14
-0.96 | 45PRO/ROS2
69STU/WES
69STU/WES | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{2}$ Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \frac{1}{2}$ | - 455.76
463.29
934.12 | -455.86
463.48
935.49
-1921.30
116.98
-47.19 | 0.10
- 0.19
- 1.37 | Reference 45PRO/ROS2 69STU/WES 69STU/WES | | In K_f = Octadecane (2 × C-(F) Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_f = \frac{\Delta_t H^\circ}{\Delta_t H^\circ} = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ}{\Delta_t S^\circ} S^\circ}$ | -414.55
417.56
856.21 | -414.60
417.70
857.17
-1727.00
100.31
-40.46
-506.90
559.68
684.68
-1899.49 | 0.05
-0.14
-0.96 | 45PRO/ROS2
69STU/WES
69STU/WES | Eicosane $(2 \times C - f)$ Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ}{\Delta_t H^\circ} = \frac{C_\rho^\circ}{S^\circ} = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ}{\Delta_t S^\circ} \Delta_t S^\circ$ | - 455.76
463.29
934.12 | -455.86
463.48
935.49
-1921.30
116.98
-47.19
-558.36
620.52
749.44
-2107.35 | 0.10
- 0.19
- 1.37 | Reference 45PRO/ROS2 69STU/WES 69STU/WES | | Octadecane $(2 \times C - (I \times C)^{\circ})$ Gas phase $\Delta_{t}H^{\circ} = C_{t}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = InK_{t} = InK_{t}$ Liquid phase $\Delta_{t}H^{\circ} = C_{t}^{\circ} = S^{\circ} = S^{\circ} = S^{\circ} = S^{\circ} = S^{\circ} = S^{\circ} = S^{\circ}$ | -414.55
417.56
856.21 | -414.60
417.70
857.17
-1727.00
100.31
-40.46 | 0.05
-0.14
-0.96 | 45PRO/ROS2
69STU/WES
69STU/WES | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{2}$ Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \frac{1}{2}$ | - 455.76
463.29
934.12 | -455.86
463.48
935.49
-1921.30
116.98
-47.19 | 0.10
- 0.19
- 1.37 | Reference 45PRO/ROS2 69STU/WES 69STU/WES | | In K_f = Octadecane (2 × C – (F Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = InK_f InK_f$ | -414.55
417.56
856.21 | -414.60
417.70
857.17
-1727.00
100.31
-40.46
-506.90
559.68
684.68
-1899.49
59.43 | 0.05
-0.14
-0.96 | 45PRO/ROS2
69STU/WES
69STU/WES | Eicosane $(2 \times C - (1)^{-1})$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = InK_t In$ | - 455.76
463.29
934.12 | -455.86
463.48
935.49
-1921.30
116.98
-47.19
-558.36
620.52
749.44
-2107.35
69.95 | 0.10
- 0.19
- 1.37 | Reference 45PRO/ROS2 69STU/WES 69STU/WES | | In $K_t =$ Octadecane $(2 \times C - (H \times G)^{\circ})$ Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t G^{\circ} = InK_t =$ Liquid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t G^{\circ} = InK_t =$ Solid phase | -414.55
417.56
856.21 | -414.60
417.70
857.17
-1727.00
100.31
-40.46
-596.80
559.68
684.68
-1899.49
59.43
-23.97 | 0.05
- 0.14
- 0.96 | Reference 45PRO/ROS2 69STU/WES 69STU/WES 45PRO/ROS2 | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = InK_t In$ | - 455.76
463.29
934.12 | - 455.86
463.48
935.49
- 1921.30
116.98
- 47.19
- 558.36
620.52
749.44
- 2107.35
69.95
- 28.22 | 0.10
- 0.19
- 1.37 | Reference 45PRO/ROS2 69STU/WES 69STU/WES | | In K_t = Octadecane (2×C-(H Gas phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ In $K_t =$ Liquid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t G^\circ | -414.55
417.56
856.21 | -414.60
417.70
857.17
-1727.00
100.31
-40.46
-506.90
559.68
684.68
-1899.49
59.43
-23.97 | -3.10 | Reference 45PRO/ROS2 69STU/WES 69STU/WES 45PRO/ROS2 | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t}{2}$ Liquid phase $\Delta_t H^\circ = \frac{C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t}{2}$ Solid phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t G^\circ = S^\circ = \Delta_t G^\circ = S^\circ = \Delta_t G^\circ = S^\circ S$ | - 455.76
463.29
934.12 | -455.86
463.48
935.49
-1921.30
116.98
-47.19
-558.36
620.52
749.44
-2107.35
69.95
-28.22 | 0.10
-0.19
-1.37 | Reference 45PRO/ROS2 69STU/WES 69STU/WES 45PRO/ROS2 | | In $K_t =$ Octadecane $(2 \times C - (H \times G)^{\circ})$ Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t G^{\circ} = InK_t =$ Liquid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t G^{\circ} = InK_t =$ Solid phase | -414.55
417.56
856.21
se
-505.43 | -414.60
417.70
857.17
-1727.00
100.31
-40.46
-506.90
559.68
684.68
-1899.49
59.43
-23.97 | -3.10
0.05
-0.14
-0.96 | 45PRO/ROS2 69STU/WES 69STU/WES 45PRO/ROS2 67MES/GUT 67MES/GUT | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = InK_t In$ | - 455.76
463.29
934.12 | -455.86
463.48
935.49
-1921.30
116.98
-47.19
-558.36
620.52
749.44
-2107.35
69.95
-28.22 | 0.10
-0.19
-1.37 | Reference 45PRO/ROS2 69STU/WES 69STU/WES 45PRO/ROS2 | | In K_f = Octadecane (2 × C-(H Gas phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t G^\circ =$ In $K_f =$ Liquid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ In $K_f =$ Solid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ | -414.55
417.56
856.21 | -414.60
417.70
857.17
-1727.00
100.31
-40.46
-506.90
559.68
684.68
-1899.49
59.43
-23.97 | -3.10 | Reference 45PRO/ROS2 69STU/WES 69STU/WES 45PRO/ROS2 | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{C_p^\circ = S^\circ $ | - 455.76
463.29
934.12 | -455.86
463.48
935.49
-1921.30
116.98
-47.19
-558.36
620.52
749.44
-2107.35
69.95
-28.22 | 0.10
-0.19
-1.37 | Reference 45PRO/ROS2 69STU/WES 69STU/WES 45PRO/ROS2 | | In K_t = Octadecane (2×C-(H Gas phase $\Delta_t H^\circ =$ $C_r^\circ =$ $S^\circ =$ $\Delta_t G^\circ =$ In $K_t =$ Liquid phase $\Delta_t H^\circ =$ $C_r^\circ =$ $S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Solid phase $\Delta_t H^\circ =$ $C_r^\circ =$ | -414.55
417.56
856.21
se
-505.43 | -414.60
417.70
857.17
-1727.00
100.31
-40.46
-506.90
559.68
684.68
-1899.49
59.43
-23.97 | -3.10
0.05
-0.14
-0.96 | 45PRO/ROS2 69STU/WES 69STU/WES 45PRO/ROS2 67MES/GUT 67MES/GUT | Eicosane $(2 \times C - (1))^{-1}$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = InK_t In$ | - 455.76
463.29
934.12 | -455.86
463.48
935.49
-1921.30
116.98
-47.19
-558.36
620.52
749.44
-2107.35
69.95
-28.22 | 0.10
-0.19
-1.37 | Reference 45PRO/ROS2 69STU/WES 69STU/WES
45PRO/ROS2 | TABLE 4. n-Alkanes (25) - Continued TABLE 4. n-Alkanes (25) - Continued | Tetracosane
(2×C-(H | | \times C-(H) ₂ (C) ₂ |) | C24H50 | Hexacosan
(2×C-(1 | | $24 \times C - (H)_2(C)_2$ |) | C ₂₆ H ₅ | |---|---|--|------------|---------------------------------|---|--|--|---------------|---| | | Literature | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | ···· | | | | | Gas phase | | | | | | Gas phase | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | | - 579.64 | | | | $\Delta_t H^{\circ} =$ | | -538.38 | | | $C_p^{\circ} =$ | | 600.82 | | | | $C_p^{\circ} =$ | | 555.04 | | | | · · · · · · · · | | | | | | | | | | Liquid pha | se | | | | | Liquid phas | е | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | | -712.74 | | | | $\Delta_t H^\circ =$ | | -661.28 | | | $C_p^{\circ} =$ | | 803.04 | | | | $C_p^{\circ} =$ | | 742.20 | | | <i>s</i> ° = | | 943.72 | | | | S° = | | 878.96 | | | $\Delta_f S^\circ =$ | | -2730.94 | | | | Δ _i S° = | | -2523.07 | | | $\Delta_{\rm f}G^{\circ} =$ | | 101.49 | | | | $\Delta_{f}G^{\circ} =$ | | 90.97 | | | $\ln K_{\rm f} =$ | | 40.94 | | | | $\ln K_{\rm f} =$ | | - 36.70 | | | | | | | | | | | | | | Solid phase | . | | | | | Solid phase | | | | | $\Delta_t H^{\circ} =$ | • | - 799.32 | | | | $\Delta_{\rm f}H^{\circ} =$ | | - 740.50 | | | $C_p^{\circ} =$ | 661.20 | 660.98 | 0.22 | 76AND/MAR | | $C_p^{\circ} =$ | 730.94 | 617.14 | 113.80 | 49PAR/MOO | $S^{\circ} =$ | 667.01 | 665.62 | 1.39 | - | | $S^{\circ} =$ | 651.03 | 619.60 | | | | 007.01 | | 1.39 | 76AND/MAR | | $\Delta_{f}S^{\circ} =$ | 031.03 | | 31.43 | 49PAR/MOO | $\Delta_{f}S^{\circ} =$ | | - 3009.04 | | | | $\Delta_{\mathbf{f}} S^{\circ} =$ | | -2782.44 | | | $\Delta_t G^{\circ} =$ | | 97.82 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 89.08 | | | $lnK_f =$ | | - 39.46 | | | | | | | | | | | | | | | $lnK_f =$ | | - 35.94 | | | | | | | | | | | -35.94 | | <u> </u> | Dotrigeont | ane. | | | СЧ | | lnK _f = | | | | C ₂₅ H ₅₂ | Dotriacont:
(2×C-(I | | 30×C-(H)2(C)2 | | C ₃₂ H ₆ | | lnK _f = | | -35.94
3×C-(H) ₂ (C) ₂ |) | C ₂₅ H ₅₂ | | I)₃(C))+(3 | | | | | lnK _f = | I) ₃ (C)) + (23 | | | C ₂₅ H ₅₂ | | I)₃(C))+(3 | 30 × C-(H)2(C)2
re – Calculated | | C ₃₂ H ₄
Reference | | lnK _f = | I) ₃ (C)) + (23 | 3×C-(H) ₂ (C) ₂ | | | (2×C-(I | I)₃(C))+(3 | | | | | InK _f = Pentacosan (2×C-(H | I) ₃ (C)) + (23 | 3×C-(H) ₂ (C) ₂ | | | (2×C-(I | I)₃(C))+(3 | re – Calculated | | | | Pentacosan
(2×C-(H | I) ₃ (C)) + (23 | 3×C−(H)₂(C)₂
e − Calculated | | | $(2 \times C - (I))$ Gas phase $\Delta_t H^\circ =$ | I)₃(C))+(3 | re – Calculated – 703.42 | | | | InK _f = Pentacosan (2 × C-(H | I) ₃ (C)) + (23 | 3×C-(H) ₂ (C) ₂ | | | (2×C-(I | I)₃(C))+(3 | re – Calculated | | | | $\begin{aligned} & \ln K_{\rm f} = \\ & \text{Pentacosam} \\ & (2 \times \text{C-(H)} \\ & \text{Gas phase} \\ & \Delta_{\rm f} H^{\circ} = \end{aligned}$ | I) ₃ (C)) + (23 | $3 \times C - (H)_2(C)_2$
e – Calculated
– 559.01 | | | Gas phase $\Delta_t H^{\circ} = C_p^{\circ} =$ | H)₃(C))+(3
Literatu | re – Calculated – 703.42 | | |
 In K_f = Pentacosam (2 × C-(H Gas phase $\Delta_t H^\circ = C_p^\circ =$ | () ₃ (C)) + (23 | $3 \times C - (H)_2(C)_2$
e – Calculated
– 559.01 | | | $(2 \times C - (I - I))$ Gas phase $\Delta_t H^\circ = C_p^\circ = $ | H)₃(C))+(3
Literatu | - 703.42
738.16 | | | | In K_f = Pentacosan (2×C-(H Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase | () ₃ (C)) + (23 | 3 × C-(H) ₂ (C) ₂
e – Calculated
– 559.01
577.93 | | | $(2 \times C - (I - I))$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid pha $\Delta_t H^\circ =$ | H)₃(C))+(3
Literatu | - 703.42
738.16 | | | | In K_f = Pentacosand (2 × C-(H Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ =$ | () ₃ (C)) + (23 | 3 × C-(H) ₂ (C) ₂ e - Calculated - 559.01 577.93 | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid pha $\Delta_t H^\circ = C_p^\circ =$ | H)₃(C))+(3
Literatu | - 703.42
738.16
- 867.12
985.56 | | | | In K_f = Pentacosane (2 × C-(H Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ Liquid phas $\Delta_t H^\circ = C_\rho^\circ =$ | () ₃ (C)) + (23 | 3 × C-(H) ₂ (C) ₂ e - Calculated - 559.01 577.93 - 687.01 772.62 | | | Gas phase $\Delta_t H^\circ = C_p^\circ = {}$ Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ = {}$ | H)₃(C))+(3
Literatu | - 703.42
738.16
- 867.12
985.56
1138.00 | | | | Pentacosam
$(2 \times C - (H + G))^2$ Gas phase $\Delta_t H^\circ = C_p^\circ C_p^\circ$ | () ₃ (C)) + (23 | 3×C-(H) ₂ (C) ₂ e - Calculated - 559.01 577.93 - 687.01 772.62 911.34 | | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ $S_{p}^{\circ} = $ $\Delta_{t}S^{\circ} = $ | H)₃(C))+(3
Literatu | - 703.42
738.16
- 867.12
985.56
1138.00
- 3354.52 | | | | Pentacosam
$(2 \times C - (H + G + G))$ Gas phase $\Delta_t H^\circ = C_p^\circ C_p$ | () ₃ (C)) + (23 | 3×C-(H) ₂ (C) ₂ e - Calculated - 559.01 577.93 - 687.01 772.62 911.34 - 2627.01 | | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} =$ | H)₃(C))+(3
Literatu | -703.42
738.16
-867.12
985.56
1138.00
-3354.52
133.03 | | | | Pentacosam $(2 \times C - (H))$ Gas phase $\Delta_{l}H^{\circ} = C_{p}^{\circ} =$ Liquid phas $\Delta_{l}H^{\circ} = C_{p}^{\circ} =$ $S^{\circ} =$ | () ₃ (C)) + (23 | 3×C-(H) ₂ (C) ₂ e - Calculated - 559.01 577.93 - 687.01 772.62 911.34 | | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ $S_{p}^{\circ} = $ $\Delta_{t}S^{\circ} = $ | H)₃(C))+(3
Literatu | - 703.42
738.16
- 867.12
985.56
1138.00
- 3354.52 | | | | Pentacosam
$(2 \times C - (H + G + G))$ Gas phase $\Delta_t H^\circ = C_p^\circ C_p$ | () ₃ (C)) + (23 | - 559.01
577.93
- 687.01
772.62
911.34
- 2627.01
96.23 | | | Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1}{2}$ Liquid pha $\Delta_t H^\circ = C_p^\circ = \frac{1}{2}$ $\Delta_t S^\circ = \Delta_t S^\circ = \frac{1}{2}$ $\Delta_t G^\circ = \frac{1}{2}$ | H)₃(C))+(3
Literatu | -703.42
738.16
-867.12
985.56
1138.00
-3354.52
133.03 | | | | In K_f = Pentacosam (2 × C-(H) Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = S_p^\circ =$ $\Delta_t S_p^\circ = \Delta_t S_p^\circ =$ In $K_f =$ | () ₃ (C)) + (23
Literatur | - 559.01
577.93
- 687.01
772.62
911.34
- 2627.01
96.23 | | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = InK_{t} =$ Solid phase | H)₃(C))+(3
Literatu | - 703.42
738.16
- 867.12
985.56
1138.00
- 3354.52
133.03
- 53.66 | = Residual | Reference | | In K_f = Pentacosam (2 × C-(H) Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = \Delta_t G^\circ = \ln K_f =$ Solid phase | () ₃ (C)) + (23
Literatur | -559.01
577.93
-687.01
772.62
911.34
-2627.01
96.23
-38.82 | | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $S^{\circ} = \Delta_{t}S^{\circ} =$ $\ln K_{t} =$ Solid phase $\Delta_{t}H^{\circ} =$ | H)₃(C))+(3
Literatu | - 703.42
738.16
- 867.12
985.56
1138.00
- 3354.52
133.03
- 53.66 | = Residual | Reference 31BEC | | In K_f = Pentacosam (2 × C-(H Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = S_p^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ In $K_f =$ Solid phase $\Delta_t H^\circ =$ | I) ₃ (C)) + (23
Literatur | -559.01
577.93
-687.01
772.62
911.34
-2627.01
96.23
-38.82 | = Residual | Reference | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ = C_p^\circ =$ $C_p^\circ = C_p^\circ =$ | H ₃ (C))+(3
Literatu
Literatu
- 968.34
877.38 | - 703.42
738.16
- 867.12
985.56
1138.00
- 3354.52
133.03
- 53.66 | 7.44
84.88 | Reference 31BEC 49PAR/MOO | | In K_f = Pentacosam (2 × C-(H Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ In $K_f =$ Solid phase $\Delta_t H^\circ =$ $C_p^\circ =$ | () ₃ (C)) + (23
Literatur
ee | -559.01
577.93
-687.01
772.62
911.34
-2627.01
96.23
-38.82
-769.91
639.06 | = Residual | Reference 30PAR/HUF | Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1}{2}$ Liquid pha $\Delta_t H^\circ = C_p^\circ = \frac{1}{2}$ $\Delta_t S^\circ = \frac{1}{2}$ Arso = $\frac{1}{2}$ Solid phase $\Delta_t H^\circ = \frac{1}{2}$ $\Delta_t H^\circ = \frac{1}{2}$ Solid phase $\Delta_t H^\circ = \frac{1}{2}$ $\Delta_t H^\circ = \frac{1}{2}$ Solid phase | H)₃(C))+(3
Literatu | - 703.42
738.16
- 867.12
985.56
1138.00
- 3354.52
133.03
- 53.66
- 975.78
792.50
803.68 | = Residual | Reference 31BEC | | In K_f = Pentacosam (2 × C-(H) Gas phase $\Delta_t H^\circ = C_p^\circ = C_p^\circ = Liquid phase$ $\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = L_t S^$ | I) ₃ (C)) + (23
Literatur | -559.01
577.93
-687.01
772.62
911.34
-2627.01
96.23
-38.82
-769.91
639.06
642.61 | = Residual | Reference | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{S^{\circ}}{S^{\circ}} = \frac{S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{S^{\circ}}{S^{\circ}} S$ | H ₃ (C))+(3
Literatu
Literatu
- 968.34
877.38 | - 703.42
738.16
- 867.12
985.56
1138.00
- 3354.52
133.03
- 53.66
- 975.78
792.50
803.68
- 3688.84 | 7.44
84.88 | Reference 31BEC 49PAR/MOO | | In K_f = Pentacosam (2 × C-(H) Gas phase $\Delta_t H^\circ = C_p^\circ = C_p^\circ = Liquid phase$ $\Delta_t H^\circ = C_p^\circ = Liquid phase$ $\Delta_t G^\circ | () ₃ (C)) + (23
Literatur
ee | - 559.01
577.93
- 687.01
772.62
911.34
- 2627.01
96.23
- 38.82
- 769.91
639.06
642.61
- 2895.74 | = Residual | Reference 30PAR/HUF | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \frac{C_{p}^{\circ}}{C_{p}^{\circ}} \frac{C_{p}$ | H ₃ (C))+(3
Literatu
Literatu
- 968.34
877.38 | - 703.42
738.16
- 867.12
985.56
1138.00
- 3354.52
133.03
- 53.66
- 975.78
792.50
803.68
- 3688.84
124.05 | 7.44
84.88 | Reference 31BEC 49PAR/MOO | | In K_f = Pentacosam (2 × C-(H) Gas phase $\Delta_t H^\circ = C_p^\circ = C_p^\circ = Liquid phase$ $\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = L_t S^$ | () ₃ (C)) + (23
Literatur
ee | -559.01
577.93
-687.01
772.62
911.34
-2627.01
96.23
-38.82
-769.91
639.06
642.61 | = Residual | Reference 30PAR/HUF | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}H^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{S^{\circ}}{S^{\circ}} \frac{S^{\circ}}{S^$ | H ₃ (C))+(3
Literatu
Literatu
- 968.34
877.38 | - 703.42
738.16
- 867.12
985.56
1138.00
- 3354.52
133.03
- 53.66
- 975.78
792.50
803.68
- 3688.84 | 7.44
84.88 | Reference 31BEC 49PAR/MOO | TABLE 4. n-Alkanes (25) - Continued | TABLE 5. t-Alkanes | (35) | ١ | |--------------------|------|---| |--------------------|------|---| | | TABLE 4 | n-Alkanes (2 | 25) — Conti | nued | *************************************** | | TABLE 5. t-Al | kanes (35) | | |---|----------|---|-------------|---------------------------------|---|-----------------|---|--------------------|--------------------------------| | Tritriaconta
(2×C-(H | | 1×C-(H) ₂ (C) ₂) |) | C ₃₃ H ₆₈ | | $H_{3}(C) + (1$ | $1 \times C - (H)(C)_3$
(Liary)), $\sigma = 81$ | + | C ₄ H ₁₀ | | *************************************** | Literatu | re – Calculated : | = Residual | Reference | (5 ^ C1 | · | re – Calculated | = Residual | Reference | | Gas
phase | | | | | • | | ··· | | <u></u> | | $\Delta_t H^\circ =$ | | -724.05 | | | Gas Phase | | | | | | $C_p^{\circ} =$ | | 761.05 | | | $\Delta_f H^\circ =$ | -134.18 | -134.73 | 0.55 | 72PIT/PIL | | • | | | | | $C_{\rho}^{\circ} =$ | 96.65 | 97.27 | -0.62 | 75CHE/WIL | | | | | | | <i>S</i> ° = | 295.39 | 291.82 | 3.57 | 75CHE/WIL | | Liquid phas | e | | | | $\Delta_{\epsilon}S^{\circ} =$ | | -383.99 | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | | -892.85 | | | $\Delta_{\rm f}G^{\circ} =$ | | -20.24 | | | | $C_p^{\circ} =$ | | 1015.98 | | | $lnK_{\ell} =$ | | 8.17 | | | | s° = | | 1170.38 | | | | | | | ····· | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -3458.45 | | | | | | | | | $\Delta_f G^\circ =$ | | 138.29 | | | | | | | | | $lnK_f =$ | | - 55.78 | | | 2-Methylbu | utane | | | C5H12 | | | | | | | (3×C-(1 | $H)_3(C)) + (1$ | \times C-(H) ₂ (C) ₂) | $+(1\times C-(H)($ | $(C)_3) +$ | | | | | | | (2×-CF | I₃ corr (tert | iary)), $\sigma = 27$ | | | | Solid phase | | | | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | | -1005.19 | | *** | | Literatu | re – Calculated | = Residual | Reference | | $C_p^{\circ} =$ | 900.82 | 814.42 | 86.40 | 30PAR/HUF | | | | | | | S° = | 877.80 | 826.69 | 51,11 | 30PAR/HUF | G 51 | | | | | | $\Delta_{\rm f}S^{\circ} =$ | | -3802.14 | | | Gas Phase | | 150.10 | 0.45 | | | $\Delta_l G^{\circ} =$ | | 128.42 | | | $\Delta_{\rm f}H^{\circ} =$ | -152.93 | -153.10 | 0.17 | 70GOO | | $lnK_{\ell} =$ | | -51.80 | | | $C_p^{\circ} = S^{\circ} =$ | 118.78 | 120.16 | -1.38 | 69STU/WES | | | | | | | $\Delta_t S^\circ =$ | 343.59 | 340.12 | 3.47 | 69STU/WES | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | -472.01 | | | | | | | | | | | - 12.37 | | | | | | | | | $\ln K_{\rm f} =$ | | 4.99 | | | | | | | | | Liquid Pha | | | | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | - 178.91 | -177.69 | -1.22 | 70GOO | | | | | | | $C_p^{\circ} =$ | 164.85 | 161.24 | 3.61 | 43GUT/HUF | | | | | | | S° = | 260.41 | 258.39 | 2.02 | 43GUT/HUF | | | | | | | $\Delta_f S^\circ =$ | | - 553.74 | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | - 12.59 | | | | | | | | | $lnK_f =$ | ······ | 5.08 | | | | | | | | | 2-Methylpe
(3×C-(1
(2×-CH | $H)_3(C)) + (2$ | \times C-(H) ₂ (C) ₂)
iary)), $\sigma = 27$ | + (1 × C-(H)(| C ₆ H ₁₄ | | | | | | | | Literatu | re – Calculated | = Residual | Reference | | | | | | | Gas Phase | 487 | | | | | | | | | | $\Delta_{f}H^{\circ} =$ | -174.77 | - 173.73 | -1.04 | 49WAD/SMI | | | | | | | $C_p^{\circ} =$ | 144.18 | 143.05 | 1.13 | 69STU/WES | | | | | | | S° = | 380.53 | 379.28 | 1.25 | 69STU/WES | | | | | | | $\Delta_t S^\circ =$ | | -569.16 | | | | | | | | | $\Delta_i G^\circ =$ | | -4.03 | | | | | | | | | $lnK_f =$ | | 1.63 | | | | | | | | | Liquid Pha | | 005 :: | | | | | | | | | $\Delta_i H^\circ =$ | - 204.64 | -203.42 | -1.22 | 41PRO/ROS | | | | | | | $C_p^{\circ} =$ | 193.72 | 191.66 | 2.06 | 46DOU/HUF | | | | | | | S° = | 290.58 | 290.77 | -0.19 | 46DOU/HUF | | | | | | | $\Delta_f S^\circ =$ | | - 657.67 | | | | | | | | | $\Delta_t G^\circ =$ | | -7.34
2.06 | | | | | | | | | $lnK_f =$ | | 2.96 | | | | | | | | | | | | | | TABLE 5. t-Alkanes (35) - Continued # TABLE 5. t-Alkanes (35) - Continued | | Literatur | e – Calculated : | = Residual | Reference | | Literatu | ire – Calculated | = Residual | Reference | |--------------------------------|-----------|--|---------------|--------------------------------|------------------------------------|--------------------------|----------------------------|---------------|---------------------| | Gas phase | , , | | | | Liquid pha | se | | | | | Δ ₁ H° = | - 194.64 | - 194.36 | -0.28 | 86TRC | $\Delta_{\mathbf{f}}H^{\circ} =$ | | -280.61 | | | | $C_p^{\circ} =$ | 165.98 | 165.94 | 0.04 | 69STU/WES | $C_p^{\circ} =$ | | 282.92 | | | | S° = | 419.99 | 418.44 | 1.55 | 69STU/WES | S° = | | 387.91 | | | | $\Delta_f S^\circ =$ | | -666.31 | | | $\Delta_{f}S^{\circ} =$ | | - 969.46 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 4.30 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 8.43 | | | | $lnK_f =$ | | -1.73 | | • | $\ln K_{\rm f} =$ | | -3.40 | | | | Liquid phas | se | | | • | 2-Methylno | nane | | | C ₁₀ H | | $\Delta_t H^\circ =$ | - 229.49 | -229.15 | -0.34 | 41PRO/PRS2 | (3×C-(1 | $H)_3(C)) + (0)$ | $6 \times C - (H)_2(C)_2)$ | + (1 × C-(H)(| C) ₃) + | | $C_p^{\circ} =$ | 222.92 | 222.08 | 0.84 | 61HUF/GRO | (2×-CH | l ₃ corr (ter | tiary)), $\sigma = 27$ | | | | S° = | 323.34 | 323.15 | 0.19 | 61HUF/GRO | | | | | | | $\Delta_f S^\circ =$ | | - 761.60 | | | | Literatu | ire – Calculated | = Residual | Reference | | $\Delta_i G^{\circ} =$ | | -2.08 | | | | | | | | | $lnK_f =$ | | 0.84 | | | a 1 | | | | | | | | | | | Gas phase $\Delta_t H^\circ =$ | | -256.25 | | | | | | | | | $C_p^{\circ} =$ | 242.09 | 234.61 | 7.48 | 69STU/WES | | 2-Methylhe | ntone | | | C ₈ H ₁₈ | S° = | 534.46 | 535.92 | - 1.46 | 69STU/WES | | | | \times C-(H) ₂ (C) ₂) | + (1 × C-(H)(| | $\Delta_{f}S^{\circ} =$ | | -957.76 | 20 | 0,010,1120 | | | | iary)), $\sigma = 27$ | (= ()(| -707 | $\Delta_t G^{\circ} =$ | | 29.31 | | | | ` | ` ` | **** | | | $lnK_f =$ | | -11.82 | | | | | Literatu | re – Calculated | = Residual | Reference | | | | | | | Can abase | | | | | Liquid pha $\Delta_t H^\circ =$ | se | -306.34 | | | | Gas phase $\Delta_t H^\circ =$ | -215.35 | - 214.99 | -0.36 | 47OSB/GIN | $C_p^{\circ} =$ | 313.30 | - 306.34
313.34 | - 0.04 | 41PAR/WES | | $C_p^{\circ} =$ | 188.87 | 188.83 | 0.04 | 69STU/WES | S° = | 420.07 | 420.29 | -0.22 | 41PAR/WES | | S° = | 455.26 | 457.60 | -2.34 | 69STU/WES | $\Delta_f S^\circ =$ | | - 1073.39 | 0.22 | | | $\Delta_f S^\circ =$ | | -763.46 | | ., | $\Delta_{\mathfrak{l}}G^{\circ} =$ | | 13.69 | | | | $\Delta_f G^{\circ} =$ | | 12.64 | | | $lnK_f =$ | | -5.52 | | | | $lnK_f =$ | | -5.10 | | | | | | | | | Liquid pha | se | | | | 2-Methylde | cane | | | C ₁₁ H | | $\Delta_t H^\circ =$ | -255.01 | -254.88 | -0.13 | 45PRO/ROS | (3×C-(I | H) ₃ (C))+(' | $7 \times C - (H)_2(C)_2$ | + (1 × C-(H)(| | | $C_p^{\circ} =$ | 252.00 | 252.50 | -0.50 | 71MES/FIN | (2×-CH | l ₃ corr (ter | tiary)) | | | | S° = | 356.39 | 355.53 | 0.86 | 71MES/FIN | | | | | | | $\Delta_f S^\circ =$ | | -865.53 | | | | Literatu | ire – Calculated | = Residual | Reference | | $\Delta_f G^\circ =$ | | 3.18 | | | | | | 144 | | | $lnK_f =$ | | -1.28 | | | Gos mboso | | | | | | | | | | | Gas phase $\Delta_f H^\circ =$ | | -276.88 | | | | | | | | | $C_p^{\circ} =$ | | 257.50 | | | | 2-Methyloc | tane | | | C ₉ H ₂₀ | | | 231.30 | | | | | | $5 \times C - (H)_2(C)_2$ | + (1×C-(H)(| | | | | | | | | | iary)), $\sigma = 27$ | ` ` ` ` ` ` | , ,-, | Liquid pha | se | | | | | | • | | | | $\Delta_f H^{\circ} =$ | | -332.07 | | | | | Literatu | re – Calculated | = Residual | Reference | $C_p^{\circ} =$ | 341.21 | 343.76 | -2.55 | 71MES/FIN | | | | | | | S° = | 453.80 | 452.67 | 1.13 | 71MES/FIN | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 1177.32 | | | | Gas phase | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 18.95 | | | | $\Delta_t H^\circ =$ | 045.05 | -235.62 | | (00mm: ===== | $lnK_f =$ | | −7.64 | | | | $C_p^{\circ} =$ | 217.07 | 211.72 | 5.35 | 69STU/WES | | | | | | | S° = | 495.89 | 496.76 | -0.87 | 69STU/WES | | | | | | | $\Delta_f S^\circ =$ | | -860.61 | | | | | | | | | | | 20.97 | | | | | | | | | $\Delta_f G^\circ = \ln K_f =$ | | - 8.46 | | | | | | | | TABLE 5. t-Alkanes (35) - Continued | | $H)_3(C)) + (2$ | \times C-(H) ₂ (C) ₂)
iary)), $\sigma = 54$ | + (1 × C-(H)(| C ₆ H ₁₄ | (3×C-(| | ntinued)
$4 \times C - (H)_2(C)_2$
tiary)), $\sigma = 27$ | | C ₈ H ₁₆ (C) ₃)+ |
---|--|--|-------------------------|--|--|----------------------------|--|-----------------------|---| | | Literatu | re – Calculated | = Residual | Reference | | Literatu | ire – Calculated | l = Residual | Reference | | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | -172.09
143.09
379.78 | -171.47
143.05
373.51
-574.92
-0.06 | -0.62
0.04
6.27 | 49WAD/SMI
69STU/WES
69STU/WES | Liquid pha
$\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | 252.34
250.20
362.63 | - 252.70
252.50
355.53
- 865.53
5.36 | 0.36
-2.30
7.10 | 45PRO/ROS
73FIN/MES
73FIN/MES | | $\ln K_f =$ | | 0.02 | | | $lnK_f =$ | | -2.16 | | | | Liquid pha
$\Delta_t H^\circ = C_p^\circ = S^\circ = A_s $ | -202.38
190.66
292.55 | -201.24
191.66
290.77
-657.67 | -1.14
-1.00
1.78 | 41PRO/ROS
73MES/FIN
73MES/FIN | | H) ₃ (C)) + (5 | $5 \times C - (H)_2(C)_2$
tiary)), $\sigma = 27$, | | C ₉ H ₂₀ (C) ₃) + | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -5.16
2.08 | | | | Literatu | re – Calculated | = Residual | Reference | | | H)3(C))+(3
I3 corr (tert | \times C-(H) ₂ (C) ₂)
iary)), $\sigma = 27$,
re – Calculated | $\eta = 2$ | C ₇ H ₁₆
C) ₃) +
Reference | Gas phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$S^\circ =$
$\Delta_t S^\circ =$
$\Delta_t G^\circ =$
$\ln K_t =$ | 212.59
501.66 | -233.36
211.72
502.52
-854.85
21.51
-8.68 | 0.87
- 0.86 | 69STU/WES
69STU/WES | | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | -191.33
165.98
424.13 | - 192.10
165.94
424.20
- 660.55
4.84
- 1.95 | 0.77
0.04
- 0.07 | 86TRC
69STU/WES
69STU/WES | Liquid pha $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se | -278.43
282.92
387.91
-969.46
10.61
-4.28 | | | | Liquid pha
$\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | - 226.44
218.00
309.60 | - 226.97
222.08
323.15
- 761.60
0.10
- 0.04 | 0.53
-4.08
-13.55 | 41PRO/ROS2
30HUF/PAR2
30HUF/PAR2 | | H)3(C))+(6
3 corr (tert | $\sigma \times C - (H)_2(C)_2$
iary)), $\sigma = 27$,
re – Calculated | $\eta = 2$ | C ₁₆ H ₂₂
C) ₃) +
Reference | | | H) ₃ (C)) + (4
I ₃ corr (tert | ×C-(H) ₂ (C) ₂)
iary)), σ = 27,
re – Calculated | $\eta = 2$ | C ₈ H ₁₈
C) ₃)+
Reference | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_f = 0$ | 237.61
540.24 | - 253,99
234.61
541.68
- 952.00
29.85
- 12.04 | 3.00
- 1.44 | 69STU/WES
69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -212.51
188.87
461.58 | - 212.73
188.83
463.36
- 757.70
13.18
- 5.32 | 0.22
0.04
- 1.78 | 47OSB/GIN
69STU/WES
69STU/WES | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | 308.99
427.19 | -304.16
313.34
420.29
-1073.39
15.87
-6.40 | -4.35
6.90 | 41PAR/WES
41PAR/WES | TABLE 5. t-Alkanes (35) - Continued ## TABLE 5. t-Alkanes (35) - Continued | | I)₃(C))+(4: | \times C-(H) ₂ (C) ₂) -
ary)), $\sigma = 54$ | - (1×C-(H)(| C ₈ H ₁₈ | | $H)_3(C)) + (6$ | finued)
$6 \times C - (H)_2(C)_2$
iary)), $\sigma = 27$, | | C ₁₀ H ₂ (C) ₃) + | |--|---------------------------|---|---------------|--|---|------------------------------|---|---------------------------------------|---| | | Literatur | e – Calculated = | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -211.96
188.87 | -212.73
188.83 | 0.77
0.04 | 47OSB/GIN
69STU/WES | Liquid pha $ \Delta_t H^\circ = C_p^\circ = $ | se
317.36 | -304.16
313.34 | 4.02 | 41PAR/WES | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | 453.34 | 451.83
- 769.23
16.61
- 6.70 | 1.51 | 69STU/WES | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | 425.51 | 420.29
- 1073.39
15.87
- 6.40 | 5.22 | 41PAR/WES | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = 0$ | se
- 251.63
251.09 | -252.70
252.50
355.53
-865.53 | 1.07
-1.41 | 45PRO/ROS
47OSB/GIN | | H) ₃ (C))+(6 | $5 \times C - (H)_2(C)_2$
iary)), $\sigma = 54$ | + (1×C-(H)(| C ₁₀ H
(C) ₃)+ | | $\Delta_f G^\circ = \\ \ln K_f =$ | | 5.36
-2.16 | | | | Literatu | re – Calculated | = Residual | Reference | | | ···· | | | Attention | Gas phase $\Delta_t H^\circ =$ | | -253.99 | | | | | $H_{3}(C)) + (5$ | \times C-(H) ₂ (C) ₂)
iary)), $\sigma = 27$, | | C ₉ H ₂₀
C) ₃)+ | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = 0$ | 237.61
534.46 | 234.61
530.15
- 963.53
33.29 | 3.00
4.31 | 69STU/WES
69STU/WES | | - | Literatu | re – Calculated | = Residual | Reference | $lnK_f =$ | | -13.43 | | | | Gas phase $\Delta_t H^\circ =$ | | -233.36 | | | Liquid pha $\Delta_t H^\circ =$ | | -304.16 | | | | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f = 0$ | 212.59
501.66 | 211.72
502.52
-854.85
21.51
-8.68 | 0.87
-0.86 | 69STU/WES
69STU/WES | $C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | 314.43
423.84 | 313.34
420.29
- 1073.39
15.87
- 6.40 | 1.09
3.55 | 41PAR/WES
41PAR/WES | | Liquid pha | se | | , | | | | | · · · · · · · · · · · · · · · · · · · | | | $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} =$ | | -278.43
282.92
387.91 | | | 3-Ethylpen
(3×C-(1 | | ×C-(H) ₂ (C) ₂) | + (1×C-(H)(| C_7H_1
$(C)_3), \sigma = 54$ | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | - 969.46
10.61 | | | | Literatu | re – Calculated | = Residual | Reference | | $\ln K_{\rm f} =$ | | -4.28 | | | Gas phase $\Delta_{\mathbf{f}}H^{\circ}
= C_{p}^{\circ} =$ | -189.33
165.98 | 189.84
165.94 | 0.51
0.04 | 47OSB/GIN
69STU/WES | | | H) ₃ (C)) + (6 | $i \times C - (H)_2(C)_2$
iary)), $\sigma = 27$, | | C ₁₀ H ₂₂
C) ₃) + | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | 411.50 | 412.67
- 672.07
10.54
- 4.25 | -1.17 | 69STU/WES | | | Literatu | re – Calculated | = Residual | Reference | | | - | | | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | 237.61
540.24 | -253.99
234.61
541.68
-952.00
29.85 | 3.00
-1.44 | 69STU/WES
69STU/WES | Liquid pha $ \Delta_t H^\circ = \\ C_p^\circ = \\ S^\circ = \\ \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \ln K_f - \\ $ | - 224.56
219.58
314.55 | - 224.79
222.08
323.15
- 761.60
2.28
- 0.92 | 0.23
-2.50
-8.60 | 41PRO/ROS2
61HUF/GRO
61HUF/GRO | # **ESTIMATION OF THERMODYNAMIC PROPERTIES OF ORGANIC COMPOUNDS** | 3-Ethylhexa | ane | | | C ₈ H ₁₈ | 3-Ethylocta | ne (Contin | ued) | | C ₁₀ H | |------------------------------------|-----------------|--|-----------------|--------------------------------|---|-----------------|--|--------------------|---| | | | \times C-(H) ₂ (C) ₂) | + (1 × C-(H)(| | (3×C-(1 | $H)_3(C)) + (6$ | \times C-(H) ₂ (C) ₂) | $+(1\times C-(H)($ | | | | Literatui | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gos aboss | | | | | Liquid pha | S.P. | | | | | Gas phase $\Delta_t H^\circ =$ | -210.71 | -210.47 | -0.24 | 47OSB/GIN | $\Delta_t H^\circ =$ | .50 | -301.98 | | | | $C_p^{\circ} =$ | 188.87 | 188.83 | 0.04 | 69STU/WES | $C_{\rho}^{\circ} =$ | | 313.34 | | | | S° = | 458.19 | 457.60 | 0.59 | 69STU/WES | <i>s</i> ° = | | 420.29 | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -763.46 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 1073.39 | | | | $\Delta_i G^{\circ} =$ | | 17.16 | | | $\Delta_f G^{\circ} =$ | • | 18.05 | | | | $lnK_f =$ | | -6.92 | | | $lnK_f =$ | | -7.28 | | | | Liquid pha | se | | | | | | | | | | $\Delta_{f}H^{\circ} =$ | -250.41 | -250.52 | 0.11 | 45PRO/ROS | 4-Ethylhep | | | 4. | C ₉ H ₂ | | $C_p^{\circ} =$ | | 252.50 | | | $(3 \times C - (1 \times C - (1 \times C + C) + (1 \times C + (1 \times C) + (1 \times C + (1 \times C) $ | H)₃(C))+(5 | \times C-(H) ₂ (C) ₂) | $+(1\times C-(H)($ | $C)_3), \sigma = 54$ | | S° = | | 355.53 | | | | T | | | D | | $\Delta_f S^\circ =$ | | -865.53 | | | | Literatu | re – Calculated | = Residual | Reference | | $\Delta_{\rm f}G^{\circ} =$ | | 7.54 | | | | | | | | | $lnK_f =$ | | -3.04 | | | Gos mharr | | | | | | | | | | | Gas phase $\Delta_t H^\circ =$ | | -231.10 | | | | | | | | | $C_p^{\circ} =$ | 208.11 | - 231.10
211.72 | -3.61 | COSTI LAMES | | 2 Fabriles | 4 | | | C ₉ H ₂₀ | $S^{\circ} =$ | 495.89 | 490.99 | - 3.61
4.90 | 69STU/WES | | 3-Ethylhep | | ~C (II) (C)) | LANC (H) | | $\Delta_f S^\circ =$ | 493.09 | - 866.38 | 4.90 | 69STU/WES | | (3×C-() | 13(0))+(3 | \times C-(H) ₂ (C) ₂) | T(17C-(H)(| $C_{J3J}, U = 2I$ | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} =$ | | - 806.38
27.21 | | | | | I itaratu | re – Calculated | = Residual | Reference | $\ln K_{\rm f} =$ | | - 10.98 | | | | | Literatu | | = Kesiuuai | Reference | | | - 10.96 | | | | Gas phase | | | | | Liquid pha | se | | | | | $\Delta_t H^\circ =$ | | -231.10 | | | $\Delta_{f}H^{\circ} =$ | | - 276.25 | | | | $C_p^{\circ} =$ | 208.11 | 211.72 | -3.61 | 69STU/WES | $C_p^{\circ} =$ | | 282.92 | | | | S° = | 495.89 | 496.76 | -0.87 | 69STU/WES | S° = | | 387.91 | | | | $\Delta_f S^\circ =$ | | -860.61 | | | $\Delta_{f}S^{\circ} =$ | | -969.46 | | | | $\Delta_{\mathfrak{c}}G^{\circ} =$ | | 25.49 | | | $\Delta_t G^{\circ} =$ | | 12.79 | | | | $\ln K_{\rm f} =$ | | - 10.28 | | | $lnK_f =$ | | -5.16 | | | | Liquid pha | se | | | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | | -276.25 | | | 4-Ethylocta | | | | C10H2 | | $C_r^{\circ} =$ | | 282.92 | | | (3×C-(F | 1)₃(C))+(6: | \times C-(H) ₂ (C) ₂) | +(1×C-(H)(0 | $\Gamma(s)_3$), $\sigma = 27$, $\eta = 1$ | | S° = | | 387.91 | | | | T 1. | | | | | $\Delta_f S^\circ =$ | | -969.46 | | | | Literatui | re – Calculated | = Residual | Reference | | $\Delta_i G^{\circ} =$ | | 12.79 | | | | | | | | | $lnK_f =$ | | -5.16 | | | Gos nhas- | | | | | | | | | | | Gas phase $\Delta_t H^\circ =$ | | -251.73 | | | | | | | | | $C_p^{\circ} =$ | 233.13 | - 231.73
234.61 | -1.48 | 60CTI IAMES | | 3-Ethylocts | ne | | | C10H22 | $S^{\circ} =$ | 534.46 | 541.68 | - 1.48
- 7.22 | 69STU/WES
69STU/WES | | | | \times C-(H) ₂ (C) ₂) | +(1×C-(H)(| | $\Delta_{f}S^{\circ} =$ | J.74.4U | -952.00 |
- 1.22 | 0931U/WE3 | | (3 ^ 0-() | · • /3(~)/ T (U | ~~(11)2(C)2) |)(11)-0 - (11)(| C/3/, 0 - 21 | Δ _i G° = | | 32.11 | | | | | Literatu | re – Calculated | = Residual | Reference | $lnK_f =$ | | - 12.95 | | | | Goo where | | The second secon | | | Tionid at- | no. | | | | | Gas phase | | 251 72 | | | Liquid pha | SC | 201.00 | | | | $\Delta_i H^\circ =$ | 222.12 | - 251.73 | 4.40 | COCCUTATION | $\Delta_{\mathbf{f}}H^{\circ} =$ | | -301.98 | | | | $C_{\nu}^{\circ} = S^{\circ} =$ | 233.13 | 234.61 | 1.48
1.46 | 69STU/WES | $C_{\mu}^{\circ} = S^{\circ} =$ | | 313.34 | | | | 3° =
Δ _t S° = | 534.46 | 535.92
-957.76 | - 1.40 | 69STU/WES | $\Delta_{f}S^{\circ} =$ | | 420.29
1073.39 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 33.83 | | | $\Delta_{i}G^{\circ} =$ | | | | | | $d_1G^* = d_1K_1 = d_1K_2$ | | 33.83
13.65 | | | | | 18.05
7.28 | | | | | | | | | InK. = | | | | | - 13.65 $lnK_f =$ -7.28 $lnK_t =$ TABLE 5. t-Alkanes (35) - Continued ## TABLE 5. t-Alkanes (35) - Continued | | Y 14. | Called 1 | D - 22 - 1 | D - C | $(4 \times -CH_3 \text{ corr (tertiary)}), \sigma = 162$ | | | | | |---|---|---|------------------------------|--------------------------------|--|------------------------------|---|-----------------------|--| | | Literature | - Calculated = | - Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase | | | | | | | | | | | $\Delta_i H^\circ =$ | ы | -251.73 | | | Liquid pha | | | | | | $C_p^{\circ} =$ | 233.13 | 234.61 | - 1.48 | 69STU/WES | $\Delta_{\rm f}H^{\circ} =$ | -234.60 | - 234.43 | -0.17 | 41PRO/ROS | | s° = | 525.34 | 530.15 | -4.81 | 69STU/WES | $C_{\rho}^{\circ} =$ | 224.22 | 219.10 | 5.12 | 61HUF/GRO | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -963.53 | | | S° = | 303.17 | 317.80 | - 14.63 | 61HUF/GRO | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 35.55 | | | $\Delta_{f}S^{\circ} =$ | | <i>−</i> 766.95 | | | | $lnK_f =$ | | - 14.34 | | | $\Delta_{\mathbf{f}}G^{\circ} = \ln K_{\mathbf{f}} =$ | | -5.76
2.33 | | | | iquid phas | 20 | | | | | ····· | | | | | ndaio biis:
γ: | , , , , , , , , , , , , , , , , , , , | - 301.98 | | | | | | | | | $C_p^{\circ} =$ | | 313.34 | | | 2,4-Dimeth | vlhexane | | | Cal | | S° = | | 420.29 | | | | | \times C-(H) ₂ (C) ₂) | + (2 × C-(H)(| | | Δ ₆ S° = | | -1073.39 | | | | | iary)), $\sigma = 81$ | (2/(0 (11)(| C)3) 1 | | $\Delta_{\rm f}G^{\circ} =$ | | 18.05 | | | (37. 01) | ., (1016 | | | | | $\ln K_{\rm f} =$ | | -7.28 | | | | Literatu | re – Calculated | = Residual | Reference | | | | | | | | | | 1100 | | | -Isopropyl | heptane | | | $C_{10}H_{22}$ | Gas phase $\Delta_t H^\circ =$ | -219.24 | -219.42 | 0.18 | 47OSB/GIN | | | | \times C-(H) ₂ (C) ₂) | + (2×C-(H)(| | $C_p^{\circ} =$ | 188.87 | 188.86 | 0.01 | 69STU/WES | | (2×-CH | 3 corr (tertia | $ary)), \sigma = 54$ | | | <i>S</i> ° = | 445.64 | 449.63 | - 3.99 | 69STU/WES | | · | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | −771.43 | | | | | Literatur | e – Calculated: | = Residual | Reference | $\Delta_f G^{\circ} =$ | | 10.58 | | | | | | | | | $lnK_f =$ | | -4.27 | | | | Gas phase | | | | | | | | | | | $\Delta_t H^\circ =$ | | -258.42 | | | Liquid pha | | | | | | $C_p^{\circ} =$ | 231.00 | 234.64 | -3.64 | 69STU/WES | $\Delta_{\rm f}H^{\circ} =$ | - 257.02 | -257.98 | 0.96 | 45PRO/ROS | | S° = | 521.45 | 525.55 | -4.10 | 69STU/WES | $C_p^{\circ} =$ | | 249.52 | | | | Δ _t S° = | | -968.13 | | | S° = | | 350.18 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 30.23 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -870.88 | | | | $lnK_f =$ | | - 12.19 | | | $\Delta_t G^\circ = \ln K_t =$ | | 1.67
- 0.67 | | | | iquid pha | se | | | | | | | | | | $\Delta_t H^\circ =$ | | -307.26 | | | | | | | | | | | 310.36 | | | 2,5-Dimeth | ylhexane | | | C ₈ F | | $C_{p}^{\circ} =$ | | 414.94 | | | (4×C-(1 | $H)_3(C)) + (2$ | \times C-(H) ₂ (C) ₂) | $+(2\times C-(H)(0)$ | C) ₃) + | | $C_{P}^{\circ} = S^{\circ} =$ | | - 1078.74 | | | (4×-CH | [3 corr (terti | $iary)$), $\sigma = 162$ | 2 | | | | | 1427 | | | | | | | | | $S^{\circ} = \Delta_{f}S^{\circ} =$ | | 14.37 | | | | | | D 11 1 | Reference | | S° = | | 5.80 | | | | Literatu | re – Calculated | = Residual | | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} =$ | | | - Administra | | Gas phase | Literatur | re – Calculated | = Kesidual | | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | vlnentane | | | C-H. | Gas phase | | | | | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = -\frac{1}{2}$ | ylpentane
H) ₃ (C)) + (1 | - 5.80 | + (2 × C-(H)(| C ₂ H ₁₆ | $\Delta_t H^{\circ} =$ | -222.51 | - 221.68 | -0.83 | 47OSB/GIN | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f = \frac{1}{4}$.4-Dimeth | H) ₃ (C))+(1 | -5.80
× C-(H) ₂ (C) ₂) | | | $\Delta_t H^\circ = C_p^\circ =$ | -222.51
188.87 | -221.68
188.86 | -0.83
0.01 | 47OSB/GIN
69STU/WES | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f = -\frac{1}{4}$ (4 × C-(1) | H) ₃ (C))+(1 | - 5.80 | | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} =$ | -222.51 | - 221.68
188.86
438.10 | -0.83 | 47OSB/GIN | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f = -\frac{1}{4}$ (4 × C-(1) | H) ₃ (C))+(1
I ₃ corr (terti | -5.80
× C-(H) ₂ (C) ₂) | 2 | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} =$ | -222.51
188.87 | -221.68
188.86 | -0.83
0.01 | 47OSB/GIN
69STU/WES | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f = \frac{1}{4}$.4-Dimeth | H) ₃ (C))+(1
I ₃ corr (terti | -5.80 × C-(H) ₂ (C) ₂) ary)), $\sigma = 162$ | 2 | C) ₃) + | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} =$ | -222.51
188.87 | - 221.68
188.86
438.10
- 782.96 | -0.83
0.01 | 47OSB/GIN
69STU/WES | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \ln K_t = \frac{2.4 \cdot \text{Dimeth}}{4 \times \text{C-(1)}}$ Gas phase | H) ₃ (C))+(1
I ₃ corr (terti
Literatur | -5.80
× C-(H) ₂ (C) ₂)
ary)), σ = 162
re - Calculated | = Residual | C) ₃) + Reference | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{2}$ | -222.51
188.87
439.03 | - 221.68
188.86
438.10
- 782.96
11.76 | -0.83
0.01 | 47OSB/GIN
69STU/WES | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \ln K_t = \frac{2.4 \cdot \text{Dimeth}}{4 \times \text{C-(1)}}$ Gas phase | H) ₃ (C))+(1
I ₃ corr (terti | -5.80 × C-(H) ₂ (C) ₂) ary)), $\sigma = 162$ | 2 | C) ₃) + | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = $ Liquid pha | - 222.51
188.87
439.03 | - 221.68
188.86
438.10
- 782.96
11.76 |
-0.83
0.01
0.93 | 47OSB/GIN
69STU/WES
69STU/WES | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \ln K_t = \frac{4 \times C - (1 \times C - C)}{4 \times - C + C}$ Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = \frac{4 \times C}{2}$ | H) ₃ (C))+(1
I ₃ corr (terti
Literatur | -5.80
× C-(H) ₂ (C) ₂)
ary)), σ = 162
re - Calculated
-201.05
165.97 | = Residual | C) ₃) + Reference | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = $ Liquid pha $\Delta_t H^{\circ} = $ | -222.51
188.87
439.03 | - 221.68
188.86
438.10
- 782.96
11.76
- 4.74 | -0.83
0.01 | 47OSB/GIN
69STU/WES | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \ln K_t = -\frac{4}{4 \times C - (1)}$ Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = -\frac{4}{3}$ | H) ₃ (C)) + (1
I ₃ corr (terti
Literatur
-201.71 | -5.80
× C-(H) ₂ (C) ₂)
ary)), σ = 162
re - Calculated
-201.05 | = Residual
- 0.66 | Reference 47OSB/GIN | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = $ Liquid pha | - 222.51
188.87
439.03 | - 221.68
188.86
438.10
- 782.96
11.76
- 4.74
- 260.16
249.52 | -0.83
0.01
0.93 | 47OSB/GIN
69STU/WES
69STU/WES | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{4}{4}$ $A =$ | H) ₃ (C))+(1
I ₃ corr (terti
Literatur
-201.71
165.98 | -5.80
× C-(H) ₂ (C) ₂)
ary)), σ = 162
re - Calculated
-201.05
165.97 | = Residual
- 0.66
0.01 | Reference 47OSB/GIN 69STU/WES | $\Delta_t H^{\circ} =$ $C_p^{\circ} =$ $S^{\circ} =$ $\Delta_t S^{\circ} =$ $\Delta_t G^{\circ} =$ $\ln K_t =$ Liquid pha $\Delta_t H^{\circ} =$ $C_p^{\circ} =$ $S^{\circ} =$ | - 222.51
188.87
439.03 | - 221.68
188.86
438.10
- 782.96
11.76
- 4.74 | -0.83
0.01
0.93 | 47OSB/GIN
69STU/WES
69STU/WES
45PRO/ROS | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \ln K_t = \frac{2}{4}$. A.Dimeth $(4 \times C - (1 + 4 \times C + C))$. Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = \frac{2}{4}$. | H) ₃ (C))+(1
I ₃ corr (terti
Literatur
-201.71
165.98 | -5.80
× C-(H) ₂ (C) ₂)
ary)), σ = 162
re - Calculated
-201.05
165.97
398.94 | = Residual
- 0.66
0.01 | Reference 47OSB/GIN 69STU/WES | $\Delta_t H^{\circ} =$ $C_p^{\circ} =$ $S^{\circ} =$ $\Delta_t S^{\circ} =$ $\Delta_t G^{\circ} =$ $\ln K_t =$ Liquid pha $\Delta_t H^{\circ} =$ $C_p^{\circ} =$ | - 222.51
188.87
439.03 | - 221.68
188.86
438.10
- 782.96
11.76
- 4.74
- 260.16
249.52 | -0.83
0.01
0.93 | 47OSB/GIN
69STU/WES
69STU/WES
45PRO/ROS | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \ln K_{t} = 0$ A-Dimeth $(4 \times C - (1) + (4 \times - CH)$ Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = 0$ | H) ₃ (C))+(1
I ₃ corr (terti
Literatur
-201.71
165.98 | -5.80
× C-(H) ₂ (C) ₂)
ary)), σ = 162
re - Calculated
-201.05
165.97
398.94
-685.81 | = Residual
- 0.66
0.01 | Reference 47OSB/GIN 69STU/WES | $\Delta_t H^{\circ} =$ $C_p^{\circ} =$ $S^{\circ} =$ $\Delta_t S^{\circ} =$ $\Delta_t G^{\circ} =$ $\ln K_t =$ Liquid pha $\Delta_t H^{\circ} =$ $C_p^{\circ} =$ $S^{\circ} =$ | - 222.51
188.87
439.03 | - 221.68
188.86
438.10
- 782.96
11.76
- 4.74
- 260.16
249.52
350.18 | -0.83
0.01
0.93 | 47OSB/GIN
69STU/WES
69STU/WES | TABLE 5. t-Alkanes (35) - Continued TABLE 5. t-Alkanes (35) - Continued | | $H_{3}(C)) + (2$ | \times C-(H)(C) ₃) +
iary)), $\sigma = 162$ | | C ₆ H ₁₄ | | $H)_3(C)) + (2$ | Continued)
$\times C-(H)_2(C)_2$
iary)), $\sigma = 81$ | + (2×C-(H)(| C ₈ H ₁₁ | |--|--|--|-----------------------------|--|---|---|---|------------------------|---| | | Literatu | re – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t =$ | - 178.28
140.54
365.77 | -180.42
143.08
359.78
-588.66
-4.91
1.98 | 2.14
- 2.54
5.99 | 47OSB/GIN
69STU/WES
69STU/WES | Liquid pha
$\Delta_t H^\circ =$
$C_p^\circ =$
$S^\circ =$
$\Delta_t S^\circ =$
$\Delta_t G^\circ =$
$\ln K_t =$ | se
- 252.59 | - 257.98
249.52
350.18
- 870.88
1.67
- 0.67 | 5.39 | 45PRO/ROS | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = 0$ | se
207.40 | - 208.70
188.68
285.42
- 663.02 | 1.30 | 41PRO/ROS | | $H)_3(C)) + (2$ | \times C-(H) ₂ (C) ₂)
iary)), $\sigma = 81$ | + (2×C-(H)(| C ₈ H ₁₆
C) ₃) + | | $\Delta_f G^\circ = \ln K_f =$ | | - 11.02
4.45 | | | | Literatu | re – Calculated | = Residual | Reference | | | H) ₃ (C))+(1
I ₃ corr (tert | \times C-(H) ₂ (C) ₂)
iary)), $\sigma = 81$
re – Calculated | | C_7H_{16} $C)_3) +$ Reference | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t =$ | -212.84
188.87
448.32 | - 217.16
188.86
449.63
- 771.43
12.84
- 5.18 | 4.32
0.01
-1.31 | 47OSB/GIN
69STU/WES
69STU/WES | | Gas phase $\Delta_t H^\circ = C_{t'}^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 198.87
165.98
414.05 | - 198.79
165.97
410.47
- 674.28
2.25
- 0.91 | -0.08
0.01
3.58 | 47OSB/GIN
69STU/WES
69STU/WES | Liquid pha $ \Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
- 251.83 | - 255.80
249.52
350.18
- 870.88
3.85
- 1.55 | 3.97 | 45PRO/ROS | | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | - 233.09
218.30
297.10 | - 232.25
219.10
317.80
- 766.95
- 3.58
1.45 | - 0.84
- 0.80
- 20.70 | 41PRO/ROS2
76FIN/GRO
76FIN/GRO | | H ₃ (C)) + (2
I ₃ corr (tert | ne \times C-(H) ₂ (C) ₂) iary)), $\sigma = 81$ $\sigma = -C$ alculated | | C ₈ H ₁₈
C)3) +
Reference | | 2,3-Dimeth (4 × C-(1 | H) ₃ (C))+(2
I ₃ corr (tert | $2 \times C - (H)_2(C)_2$
iary)), $\sigma = 81$
re – Calculated | | C ₈ H ₁₈
C) ₃) +
Reference | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | -211.04
188.87
441.12 | - 217.16
188.86
443.86
- 777.20
14.56
- 5.87 | 6.12
0.01
- 2.74 | 47OSB/GIN
69STU/WES
69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 213.80
188.87
443.96 | -219.42
188.86
443.86
-777.20
12.30
-4.96 | 5.62
0.01
0.10 | 47OSB/GIN
69STU/WES
69STU/WES | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | se
249.58 | -255.80
249.52
350.18
-870.88
3.85
-1.55 | 6.22 | 45PRO/ROS | | | TABLE S | 5. t-Alkanes (| 35) – Contir | nued | | | Table 6. q-Al | kanes (16) | | | |---|-------------------------------------|--|---------------------------|-------------------------------------|--|------------------------------|--|-----------------------------|-------------------------------------|--| | (5×C-(| | e
×C-(H)(C) ₃)-
iary)), σ = 243 | | C ₈ H ₁₈ | 2,2-Dimethylpropane
$(4 \times C-(H)_3(C)) + (1 \times C-(C)_4) + (4 \times -CH_3 \text{ corr (quaternary))}, \sigma = 972$ | | | | C ₅ H ₁₂ | | | | Literatu | re – Calculated | = Residual | Reference | | Literatu | re – Calculated | l = Residual | Reference | | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -217.32
188.87
428.07 | - 226.11
188.89
430.13
- 790.93
9.71
- 3.92 | 8.79
- 0.02
- 2.06 | 47OSB/GIN
69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 167.94
121.63
306.39 | -168.08
119.45
302.59
-509.53
-16.16
6.52 | 0.14
2.18
3.80 | 70GOO
69STU/WES
69STU/WES | | | Liquid ph
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | ase
- 255.01
246.23
329.32 | - 263.26
246.54
344.83
- 876.23
- 2.01
0.81 | 8.25
- 0.31
- 15.51 | 45PRO/ROS
41PIT/SCO
41PIT/SCO | Liquid pha
$\Delta_{t}H^{\circ} =$ $C_{\rho}^{\circ} =$ $S^{\circ} =$ $\Delta_{t}S^{\circ} =$ $\Delta_{t}G^{\circ} =$ $\ln K_{t} =$ | - 190.33
153.09
216.81 | 190.01
156.16
234.55
577.58
17.81
7.18 | - 0.32
- 3.07
- 17.74 | 70GOO
69STU/WES
69STU/WES | | | | (H)₃(C))+(4 | $4 \times C - (H)_2(C)_2$
iary)), $\sigma = 16$ | | C ₁₀ H ₂₂ | | H)3(C))+(1
I3 corr
(qua | ternary)), σ = | | | | | | Literatu | re – Calculated | = Residual | Reference | | Literatu | re – Calculated | l = Residual | Reference | | | Gas phase $H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = 0$ | e
-264.01
235.56
515.68 | - 262.94
234.64
516.42
- 977.26 | -1.07
0.92
-0.74 | 69STU/WES
69STU/WES
69STU/WES | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | -186.10
141.88
358.23 | - 184.15
142.34
353.28
- 595.16
- 6.70 | - 1.95
- 0.46
4.95 | 47OSB/GIN
69STU/WES
69STU/WES | | | | Literatu | Calculated | - Residuai | Reference | |----------------------------------|----------|------------|------------|----------------| | Gas phase | ; | | | | | H° = | -264.01 | -262.94 | -1.07 | 69STU/WES | | $C_p^{\circ} =$ | 235.56 | 234.64 | 0.92 | 69STU/WES | | s° = | 515.68 | 516.42 | -0.74 | 69STU/WES | | $\Delta_f S^\circ =$ | | - 977.26 | | | | $\Delta_f G^\circ =$ | | 28.43 | | | | $lnK_f =$ | | - 11.47 | | | | Liquid ph | ase | 014 (0 | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | 204 (8 | -311.62 | 0.60 | 200 4 D 444 17 | | $C_p^{\circ} =$ | 301.67 | 310.36 | - 8.69 | 30PAR/HUF | | S° = | | 414.94 | | | | $\Delta_f S^\circ =$ | | - 1078.74 | | | | $\Delta_f G^\circ =$ | | 10.01 | | | | $lnK_f =$ | | -4.04 | | | | | Literatu | Reference | | | |----------------------------------|----------|-----------|-------|-----------| | Gas phase | • | | | | | $\Delta_{\rm f}H^{\circ} =$ | - 186.10 | - 184.15 | -1.95 | 47OSB/GIN | | $C_p^{\circ} =$ | 141.88 | 142.34 | -0.46 | 69STU/WES | | <i>S</i> ° = | 358.23 | 353.28 | 4.95 | 69STU/WES | | $\Delta_f S^\circ =$ | | - 595.16 | | | | $\Delta_f G^\circ =$ | | -6.70 | | | | $lnK_f =$ | | 2.70 | | | | Liquid ph | ase | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -213.80 | -211.35 | -2.45 | 41PRO/ROS | | $C_p^{\circ} =$ | 188.74 | 186.58 | 2.16 | 46DOU/HUF | | S° = | 272.00 | 266.93 | 5.07 | 46DOU/HUF | | $\Delta_f S^\circ =$ | | - 681.51 | | | | $\Delta_{f}G^{\circ} =$ | | -8.16 | | | | $\ln K_{\rm f} =$ | | 3.29 | | | | (4×C- | 2,2-Dimethylpentane $(4 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) + (1 \times C - (C)_4) + (3 \times -CH_3 \text{ corr (quaternary)}), \sigma = 243$ | | | | | | | | |------------------------------------|--|-----------------|------------|-----------|--|--|--|--| | | Literatu | re – Calculated | = Residual | Reference | | | | | | Gas phase | ; | | | | | | | | | $\Delta_{\mathfrak{l}}H^{\circ} =$ | -205.85 | - 204.78 | -1.07 | 47OSB/GIN | | | | | | $C_p^{\circ} =$ | 165.98 | 165.23 | 0.75 | 69STU/WES | | | | | | S° = | 392.88 | 392.44 | 0.44 | 69STU/WES | | | | | | $\Delta_f S^\circ =$ | | -692.31 | | | | | | | | $\Delta_f G^\circ =$ | | 1.63 | | | | | | | | $lnK_f =$ | | - 0.66 | | | | | | | TABLE 6. q-Alkanes (16) - Continued TABLE 6. q-Alkanes (16) - Continued | | (C) + (2 | \times C-(H) ₂ (C) ₂)
ternary)), $\sigma =$ | | C ₇ H ₁₆ | | $H_{3}(C) + (3)$ | $3 \times C$ -(H) ₂ (C) ₂)
ternary)), $\sigma =$ | 1+ (1 × C-(C) ₄) -
81 | C ₈ H ₁₈ | |--|---|--|------------------------|--|---|---|--|--------------------------------------|--| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | i = Residual | Reference | | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
- 238.28
221.12
300.29 | - 237.08
217.00
299.31
- 785.44
- 2.90
1.17 | -1.20
4.12
0.98 | 41PRO/ROS2
61HUF/GRO
61HUF/GRO | Gas phase $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | -219.99
188.87
438.06 | -220.85
188.12
440.73
-780.33
11.80
-4.76 | 0.86
0.75
- 2.67 | 47OSB/GIN
69STU/WES
69STU/WES | | | H) ₃ (C)) + (3
corr (quat | \times C-(H) ₂ (C) ₂)
ternary)), $\sigma =$
re – Calculated | 243 | C ₈ H ₁₈
+
Reference | Liquid pha
$ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | - 257.53
246.60 | -258.42
247.42
331.69
-889.37
6.75
-2.72 | 0.89
-0.82 | 45PRO/ROS
47OSB/GIN | | Gas phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$S^\circ =$
$\Delta_t S^\circ =$ | -224.60
188.87
431.20 | -225.41
188.12
431.60
-789.46 | 0.81
0.75
-0.40 | 47OSB/GIN
69STU/WES
69STU/WES | | $H)_3(C)) + (1$ | $\times C-(H)(C)_3)$ $(quat)), \sigma = 72$ | + (1 × C-(C) ₄) +
29 | C7H16 | | $\Delta_t G^\circ = \ln K_t =$ | | 9.97
-4.02 | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
- 261.88 | - 262.81
247.42
331.69
- 889.37
2.36
- 0.95 | 0.93 | 45PRO/ROS | Gas phase $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | -204.47
164.56
383.60 | - 202.27
165.26
378.70
- 706.04
8.24
- 3.32 | - 2.20
- 0.70
4.90 | 47OSB/GIN
69STU/WES
69STU/WES | | | H) ₃ (C)) + (2
₃ corr (qua | ×C-(H) ₂ (C) ₂)
ternary)), $\sigma =$
re – Calculated | 162 | C ₇ H ₁₆ + | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
- 236.52
213.51
292.25 | - 233.68
214.02
293.96
- 790.79
2.09
- 0.84 | -2.84
-0.51
-1.71 | 41PRO/ROS2
61HUF/GRO
61HUF/GRO | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -201.17
165.98
399.70 | -200.22
165.23
395.81
-688.94
5.19
-2.09 | -0.95
0.75
3.89 | 47OSB/GIN
69STU/WES
69STU/WES | 2,2,3-Trime
(5×C-(H) ₃
(4×-CH | (C)) + (1×0)
3 corr (tert/ 0 | | | C_8H_{18}
+ $(1 \times C - (C)_4)$ +
Reference | | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
-234.18
214.80
305.60 | -232.69
217.00
299.31
-785.44
1.49
-0.60 | -1.49
-2.20
6.29 | 45PRO/ROS
76FIN/GRO
76FIN/GRO | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 219.99
188.87
425.18 | -221.10
188.15
423.63
-797.43
16.65
-6.72 | 1.11
0.72
1.55 | 47OSB/GIN
69STU/WES
69STU/WES | TABLE 6. q-Alkanes (16) - Continued TABLE 6. q-Alkanes (16) - Continued | 2,2,3-Trimethylpentane (Continued) | C_8H_{18} | 2,3,3-Trime | thylpentane | e (Continued) | | C ₈ H ₁₈ | |---|--------------------------------|---|------------------
--|--------------|--------------------------------| | $(5 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_2) + (1 \times C - (H)(C)_2) + (1 \times C - (H)_3(C)_2) $ | $)+(1\times C-(C)_4)+$ | | | $C-(H)_2(C)_2)+(quat), \sigma = 24$ | | $(1 \times C - (C)_4) +$ | | Literature – Calculated = Residual | Reference | | Literatu | re – Calculated : | = Residual | Reference | | Liquid phase | | Liquid pha | se | | | | | $\Delta_t H^\circ = -256.90 -257.64 0.74$ | 45PRO/ROS | $\Delta_t H^\circ =$ | -253.51 | -257.64 | 4.13 | 45PRO/ROS | | $C_p^{\circ} = 244.44$ | | $C_p^{\circ} =$ | 245.56 | 244.44 | 1.12 | 47OSB/GIN | | $S^{\circ} = 326.34$ | | S° = | | 326.34 | | | | $\Delta_t S^{\circ} = -894.72$ | | $\Delta_f S^\circ =$ | | -894.72 | | | | $\Delta_{\rm f}G^{\circ} = 9.12$ | | $\Delta_{\rm f}G^{\circ} =$ | | 9.12 | | | | $\ln K_{\rm f} = -3.68$ | | $lnK_f =$ | | - 3.68 | | | | | | | | | | | | 2,2,4-Trimethylpentane | C ₈ H ₁₈ | | ramethylbut | | | C ₈ H ₁₈ | | (5 × C_(H)_(C)) ± (1 × C_(H)_(C)) ± (1 × C_(H)(C) |)+(1×C-(C))+ | | | $\times C - (C)_4) +$ | 3122 | | | $(5 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_2 + (1 \times C - (H)(C)_2)_2 (1$ | 3) + (1 × C-(C)4) + | (ox-CH | | $t/quat$)), $\sigma = 1$ | | | | Literature – Calculated = Residual | Reference | | Literatur | re – Calculated = | = Residual | Reference | | | | Gas phase | | | | | | Gas phase | | $\Delta_t H^{\circ} =$ | -225.22 | -219.00 | -6.22 | 47OSB/GIN | | $\Delta_t H^{\circ} = -224.01 -222.90 -1.11$ | 47OSB/GIN | $C_n^{\circ} =$ | 192.59 | 187.44 | 5.15 | 69STU/WES | | $C_p^{\circ} = 188.87 188.15 0.72$ | 69STU/WES | S° = | 389.36 | 386.10 | 3.26 | 69STU/WES | | $S^{\circ} = 423.21 417.86 5.35$ | 69STU/WES | Δ _ι S° = | | -834.96 | | | | $\Delta_t S^{\circ} = -803.20$ | | $\Delta_{\rm f}G^{\circ} =$ | | 29.94 | | | | $\Delta_{\rm f}G^{\circ} = 16.57$ | | $lnK_f =$ | | -12.08 | | | | $\ln K_{\rm f} = -6.69$ | | <u> </u> | | | | | | ** • • • | | Liquid pha | se | 252.52 | | | | Liquid phase | 45DD O/D O/I | $\Delta_{\mathbf{f}}H^{\circ} =$ | | -253.52 | | | | $\Delta_t H^\circ = -259.16 -259.41 0.25$ | 45PRO/ROS | $C_p^{\circ} = S^{\circ} =$ | | 239.36 | | | | $C_p^{\circ} = 238.57$ 244.44 -5.87
$S^{\circ} = 328.03$ 326.34 1.69 | 47OSB/GIN
40PIT | $\Delta_{\mathbf{f}}S^{\circ} =$ | | 302.50
- 918.56 | | | | $\Delta_{t}S^{\circ} = 528.03 520.34 1.09$ $\Delta_{t}S^{\circ} = -894.72$ | 40F11 | $\Delta_i G^\circ =$ | | 20.35 | | | | $\Delta_t G^{\circ} = 7.35$ | | $\ln K_{\ell} =$ | | -8.21 | | | | $\ln K_{\rm f} = -2.97$ | | | | | •, | | | | | Solid phase | | • | | | | 2.2.2.75-1 | O 11 | $\Delta_{i}H^{\circ} =$ | - 268.61 | - 268.94 | 0.33 | 45PRO/ROS | | 2,3,3-Trimethylpentane | C_8H_{18} | $C_p^{\circ} =$ | 237.44 | 237.44 | 0.00 | 52SCO/DOU | | (5 × C_(U)_(C)) ± (1 × C_(U)_(C) \ + (1 × C_(U)(C) |)+(1×C-(C))+ | $S^{\circ} = \Delta_{f}S^{\circ} =$ | 273.76 | 273.76
947.30 | 0.00 | 52SCO/DOU | | $(5 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_3(C)_3 + (1 \times C - (H)(C)_3(C)_3) + (1 \times C - (H)(C)_3(C)_3(C)_3 + (1 \times C - (H)(C)_3(C)_3) + (1 \times C - (H)(C)_3(C)_3(C)_3 + (1 \times C - (H)(C)_3(C)_3) + (1 \times C - (H)(C)_3(C)_3(C)_3 + (1 \times C - (H)(C)_3(C)_3) + (1 \times C - (H)(C)_3(C)_3(C)_3 + (1 \times C - (H)(C)_3(C)_3) + (1 \times C - (H)(C)_3(C)_3(C)_3 + (1 \times C - (H)(C)_3(C)_3) + (1 \times C - (H)(C)_3(C)_3(C)_3(C)_3(C)_3(C)_3(C)_3(C)_$ | 3)+(1×U-(U)4)+ | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} =$ | | - 947.30 | | | | $(4 \times -CH_3 \text{ corr } (tert/quat)), \sigma = 243$ | | $\Delta_t G^{\circ} = \ln K_t =$ | | 13.50
5.44 | | | | Literature – Calculated = Residual | Reference | | | | | | | | | | | | | | | Gas phase | | | amethylpen | | | C ₉ H ₂₀ | | $\Delta_i H^{\circ} = -216.27 -221.10$ 4.83 | 47OSB/GIN | | | \times C-(H) ₂ (C) ₂) + | | + | | $C_{\mu}^{\circ} - 188.87 188.15 0.72$ | 69STU/WES | (5 × -CH | 3 corr (quat | $(quat)$, $\sigma = 2$ | 10/ | | | $S^{\circ} = 431.54 427.00 4.54$ | 69STU/WES | | Litonot | e – Calculated = | - Desidual | Reference | | $\Delta_t S^{\circ} = -794.06$ | | | Literatur | e – Calculated = | - Vesignai | Reference | | $\Delta_t G^{\circ} = 15.65$ | | | ···· | | | | | $\ln K_{\rm f} = -6.31$ | | Gas phase | | | | | | | | $\Delta_f H^\circ =$ | -237.11 | -238.99 | 1.88 | 61LAB/GRE | | | | | | A | 1.00 | | | | | | | 210.33 | 1.76 | 69STU/WES | | | | $C_p^{\circ} = S^{\circ} =$ | 212.09
446.39 | 210.33
440.16 | 1.76
6.23 | 69STU/WES
69STU/WES | | | | $C_p^{\circ} =$ | 212.09 | 210.33
440.16
-917.21 | | 69STU/WES
69STU/WES | | | | $C_p^{\circ} = S^{\circ} =$ | 212.09 | 440.16 | | | TABLE 6. q-Alkanes (16) - Continued TABLE 6. q-Alkanes (16) - Continued | (6×C-(I | $H_{3}(C)) + (1$ | tane (Continue \times C-(H) ₂ (C) ₂)/quat)), $\sigma = 2$ | $+(2\times C-(C)_4)$ | C ₉ H ₂₀ | (4×C-(1 | | ne
$S \times C - (H)_2(C)_2$
ternary)), $\sigma =$ | | C ₈ H ₁ | | |--|---|--|-----------------------|-------------------------------------|---|-----------------------------------|---|------------------------|---|--| | | Literatur | e – Calculated | = Residual | Reference | Literature - Calculated = Residual | | | = Residual | Reference | | | Liquid pha | se | | | | Gas phase | | | | | | | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} =$ | -278.28 | -278.61
269.78
334.88
-1022.49
26.25
-10.59 | 0.33 | 47JOH/PRO | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | -214.85
188.87
432.96 | -216.29
188.12
431.60
-789.46
19.09
-7.70 | 1.44
0.75
1.36 | 47OSB/GIN
69STU/WES
69STU/WES | | | | | | | | Liquid pha | se | | | | | | (6×C-(1 | 2,2,4,4-Tetramethylpentane
$(6 \times C-(H)_3(C)) + (1 \times C-(H)_2(C)_2) + (2 \times C-(C)_4) + (6 \times -CH_3 \text{ corr } (quat/quat)), \sigma = 13122$
Literature – Calculated = Residual | | | C ₉ H ₂₀ | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = 0$ | - 252.84 | -254.03
247.42
331.69
-889.37
11.14 | 1.19 | 45PRO/ROS | | | | | | | | | | -4.49 | | | | | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | -241.84
211.63
431.50 | -239.63
210.33
425.26
-932.11
38.28 | -2.21
1.30
6.24 | 61LAB/GRE
69STU/WES
69STU/WES | 3,3-Diethyl
(4 × C-(I | H)3(C))+(4 | \times C-(H) ₂ (C) ₂)
re – Calculated | | C_9H_{24}), $\sigma = 972$ Reference | | | $lnK_f =$ | | - 15.44 | | <u></u> | | | | | | | | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | se
- 279.99 | - 279.25
269.78
334.88
- 1022.49
25.61
- 10.33 | - 0.74 | 47JOH/PRO | Gas phase $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | - 232.34
204.18
461.54 | - 232.36
211.01
459.23
- 898.14
35.42
- 14.29 | 0.02
- 6.83
2.31 | 61LAB/GRE
69STU/WES
69STU/WES | | | (7×C-(1 | l ₃ corr (quat | | | C ₁₀ H ₂₂ | Liquid phat $ \Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = $ | se
-275.39
278.80
333.40 | -275.37
277.84
364.07
-993.30
20.78
-8.38 | 0.02
0.96
30.67 | 47JOH/PRO
76FIN/MES
76FIN/MES | | | | | | | | | | | | ····· | | | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_f =$ | 234.43
462.83 | -263.07
233.25
456.45
-1037.23
46.18
-18.63 | 1.18
6.38 | 69STU/WES
69STU/WES | | | | | | | | Liquid pha $\Delta_i H^\circ = C_p^\circ =$ | se | -306.54
297.22 | | | | | | | | | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | | 361.91
-1131.77
30.90
-12.46 | | | | | | | | | TABLE 7. n-Alkenes (32) 89.30 -36.02 $lnK_f =$ | Ethylene
(2×C _d (F | $H)_2), \sigma = 4$ | | | C ₂ H ₄ | | $(1)_3(C) + (1)_3(C)$ | \times C-(H) ₂ (C) ₂)
\times C _d -(H) ₂), σ | | $(C)(C_d)$ + |
--|---|---|--|---|---|--|--|--|--| | | Literature | - Calculated | = Residual | Reference | , , | Literatur | re – Calculated | = Residual | Reference | | Gas phase | | | | | . , | | | | | | $\Delta_i H^{\circ} =$ | 52.50 | 52.64 | -0.14 | 37ROS/KNO | Liquid phas | se | | | | | $C_P^{\circ} =$ | 42.84 | 42.76 | 0.08 | 75CHA/ZWO | $\Delta_{\rm f}H^{\circ} =$ | - 46.97 | - 46.27 | -0.70 | 79GOO/SMI | | S° = | 219.20 | 219.51 | -0.31 | 75CHA/ZWO | $C_{\rho}^{\circ} =$ | 154.87 | 149.16 | 5.71 | 90MES/TOD | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -53.11 | | | S° = | 262.60 | 262.12 | 0.48 | 90MES/TOD | | $\Delta_{\rm f}G^{\circ} =$ | | 68.47
 | | $\Delta_f S^\circ =$ | | -419.43 | | | | $lnK_f =$ | | -27.62 | | | $\Delta_f G^\circ =$ | | 78.78 | | | | | | | | | $lnK_f =$ | | -31.78 | | | | Propylene | | | | C₃H ₆ | | | | | | | | I) ₃ (C))+(1 | $\times C_{d}$ - $(H)_2)+(1$ | $1 \times C_d$ – $(H)(C)$ | | 1-Hexene | | | | C₅H₁ | | | Literatur | e – Calculated | = Residual | Reference | | | \times C-(H) ₂ (C) ₂)
C _d -(H)(C)), σ | | (C)(C _d))+ | | Gas phase | | | | | | Literatur | re – Calculated | = Residual | Reference | | $\Delta_i H^\circ =$ | 19.76 | 20.38 | -0.62 | 37ROS/KNO | | · , , · · · · · · · · · · · · · · · · · | | | | | $C_p^{\circ} =$ | 64.31 | 65.85 | - 1.54 | 75CHA/ZWO | Gas phase | | | | | | S° = | 266.60 | 266.76 | -0.16 | 75CHA/ZWO | $\Delta_t H^\circ =$ | -41.51 | -41.76 | 0.25 | 56CAM/ROS | | $\Delta_t S^\circ =$ | 200.00 | -142.18 | -0.10 | BOILDENO | $C_p^{\circ} =$ | 132.34 | 132.26 | 0.23 | 69STU/WES | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 62.77 | | | $S^{\circ} =$ | 384.64 | 383.28 | 1.36 | 69STU/WES | | $lnK_f =$ | | -25.32 | | | $\Delta_{f}S^{\circ} =$ | 304.04 | - 434.59 | 1.50 | 0931 U/WE3 | | | | 20.02 | | | | | 87.81 | | | | - | | | | | A430 = | | | | | | | | · | ., | | $\Delta_f G^\circ = \ln K_f =$ | | -35.42 | | | | 1-Butene | | | | C ₄ H ₈ | | | | | | | 1-Butene | I)₃(C))+(1: | × C _d (H) ₂) + (| 1×C _d −(H)(C) | | | se | | | | | 1-Butene
(1×C-(H | I) ₃ (C))+(1:
I) ₂ (C)(C _d)), | | 1×C _d −(H)(C) | | $lnK_f =$ Liquid phas $\Delta_t H^\circ =$ | se
-72.22 | | -0.22 | 59SKE/SNE | | 1-Butene
(1×C-(H | | | 1×C _d −(H)(C) | | $lnK_f =$ Liquid phas | | -35.42 | -0.22
3.72 | 59SKE/SNE
57MCC/FIN2 | | 1-Butene
(1×C-(H | I) ₂ (C)(C _d)), | | | | $lnK_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ | -72.22 | -35.42
-72.00 | | | | 1-Butene
(1×C-(H | I) ₂ (C)(C _d)), | $\sigma = 3$ | |)+ | $\ln K_{\rm f} = \frac{1}{1}$ Liquid phas $\Delta_{\rm f} H^{\circ} = C_{\rm p}^{\circ} = \frac{1}{1}$ | -72.22
183.30 | -35.42
-72.00
179.58 | 3.72 | 57MCC/FIN2 | | 1-Butene
(1×C-(H | I) ₂ (C)(C _d)), | $\sigma = 3$ | |)+ | $lnK_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ | -72.22
183.30 | -72.00
179.58
294.50 | 3.72 | 57MCC/FIN2 | | 1-Butene
(1×C-(F
(1×C-(F | I) ₂ (C)(C _d)), | $\sigma = 3$ | = Residual |)+ | | -72.22
183.30 | -35.42
-72.00
179.58
294.50
-523.37 | 3.72 | 57MCC/FIN2 | | 1-Butene
$(1 \times C - (H + (1 \times C - (H + (1 \times C + (H + (1 \times C + (H $ | $I)_2(C)(C_d)$, Literatur -0.54 | $\sigma = 3$ | |)+ | $ \begin{array}{c} lnK_f = \\ \hline Liquid phas \\ \Delta_t H^\circ = \\ C_p^\circ = \\ S^\circ = \\ \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \end{array} $ | -72.22
183.30 | -72.00
179.58
294.50
-523.37
84.04 | 3.72 | 57MCC/FIN2 | | 1-Butene
(1×C-(H
(1×C-(H | I) ₂ (C)(C _d)),
Literatur | σ = 3
e – Calculated | = Residual | Reference | $ \begin{array}{c} lnK_f = \\ \hline Liquid phas \\ \Delta_t H^\circ = \\ C_p^\circ = \\ S^\circ = \\ \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \end{array} $ | -72.22
183.30 | -72.00
179.58
294.50
-523.37
84.04 | 3.72 | 57MCC/FIN2 | | 1-Butene
$(1 \times C - (F + (1 \times C $ | $I)_2(C)(C_d)$, Literatur -0.54 | σ = 3 e – Calculated -0.50 | = Residual
- 0.04 | Reference 51PRO/MAR | $ \begin{array}{c} lnK_f = \\ \hline Liquid phas \\ \Delta_t H^\circ = \\ C_p^\circ = \\ S^\circ = \\ \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \end{array} $ | -72.22
183.30 | -72.00
179.58
294.50
-523.37
84.04 | 3.72 | 57MCC/FIN2 | | 1-Butene
$(1 \times C - (F + (1 \times C + (1 \times C - (F C)))))))))))))))))$ Gas phase Δ_{i} C_{i} $C_$ | I) ₂ (C)(C _d)), Literatur - 0.54 85.65 | σ = 3
e - Calculated
-0.50
86.48 | = Residual
- 0.04
- 0.83 | Reference 51PRO/MAR 69STU/WES | $\ln K_f = \frac{1}{\text{Liquid phas}}$ $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \frac{1}{\text{ln} K_f} = \frac{1}{\text{-Heptene}}$ | -72.22
183.30
295.18 | -72.00
179.58
294.50
-523.37
84.04
-33.90 | 3.72
0.68 | 57MCC/FIN2
57MCC/FIN2
C ₂ H ₁₄ | | 1-Butene
$(1 \times C - (F + G))$
$(1 \times C - (F + G))$
Gas phase
$\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = S^{\circ} = S^{\circ}$ | I) ₂ (C)(C _d)), Literatur - 0.54 85.65 | σ = 3 e - Calculated -0.50 86.48 304.96 -240.29 71.14 | = Residual
- 0.04
- 0.83 | Reference 51PRO/MAR 69STU/WES | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_f^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\ln K_f =$ 1-Heptene $(1 \times C - (H^\circ)^{-1})^{-1}$ | -72.22
183.30
295.18 | -35.42
-72.00
179.58
294.50
-523.37
84.04
-33.90
× C-(H) ₂ (C) ₂) | 3.72
0.68
+ (1 × C-(H) ₂ (| 57MCC/FIN2
57MCC/FIN2
C ₂ H ₁₄ | | 1-Butene
$(1 \times C - (F + (1 \times C + (1 \times C - (F C)))))))))))))))))$ Gas phase Δ_{i} C_{i} $C_$ | I) ₂ (C)(C _d)), Literatur - 0.54 85.65 | σ = 3
e - Calculated
-0.50
86.48
304.96
-240.29 | = Residual
- 0.04
- 0.83 | Reference 51PRO/MAR 69STU/WES | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_f^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\ln K_f =$ 1-Heptene $(1 \times C - (H^\circ)^{-1})^{-1}$ | -72.22
183.30
295.18 | -72.00
179.58
294.50
-523.37
84.04
-33.90 | 3.72
0.68
+ (1 × C-(H) ₂ (| 57MCC/FIN2
57MCC/FIN2
C-H14 | | 1-Butene
$(1 \times C - (F + G))$
$(1 \times C - (F + G))$
Gas phase
$\Delta_{\mu}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{\rho}S^{\circ} = \Delta_{\rho}G^{\circ} = S^{\circ} = S^{\circ}$ | I) ₂ (C)(C _d)), Literatur - 0.54 85.65 | σ = 3 e - Calculated -0.50 86.48 304.96 -240.29 71.14 | = Residual
- 0.04
- 0.83 | Reference 51PRO/MAR 69STU/WES | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_f^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\ln K_f =$ 1-Heptene $(1 \times C - (H^\circ)^{-1})^{-1}$ | -72.22
183.30
295.18
I) ₃ (C))+(3
H) ₂)+(1×0 | -35.42
-72.00
179.58
294.50
-523.37
84.04
-33.90
× C-(H) ₂ (C) ₂) | $3.72 \\ 0.68$ $+ (1 \times C - (H)_{2}(H)$ | 57MCC/FIN2
57MCC/FIN2
C-H14 | | 1-Butene
$(1 \times C - (H + 1) \times$ | -0.54
85.65
305.60 | σ = 3
e - Calculated
-0.50
86.48
304.96
-240.29
71.14
-28.70 | = Residual
- 0.04
- 0.83
0.64 | Reference 51PRO/MAR 69STU/WES 69STU/WES | $lnK_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $lnK_t =$ 1-Heptene $(1 \times C_t - (1 \times C_t))$ | -72.22
183.30
295.18
I) ₃ (C))+(3
H) ₂)+(1×0 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) -C _d -(H)(C)), σ | $3.72 \\ 0.68$ $+ (1 \times C -
(H)_{2}(H)$ | 57MCC/FIN2
57MCC/FIN2
C ₇ H ₁₄
(C)(C _d)) + | | 1-Butene
$(1 \times C - (H + 1) \times$ | -0.54
85.65
305.60 | σ = 3 e – Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 × C-(H) ₂ (C) ₂) | = Residual
- 0.04
- 0.83
0.64
+ (1 × C-(H) ₂ | Reference 51PRO/MAR 69STU/WES 69STU/WES | $lnK_{f} = \frac{1}{Liquid phas}$ $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = lnK_{f} = \frac{1}{Light}$ $1-Heptene (1 \times C_{-}(Hight))$ $(1 \times C_{d}^{-}(Hight))$ $Gas phase$ | -72.22
183.30
295.18
I) ₃ (C))+(3
H) ₂)+(1×0
Literatur | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) C _d -(H)(C)), σ re - Calculated | 3.72
0.68
+ (1 × C-(H) ₂ (
= 3
= Residual | 57MCC/FIN2
57MCC/FIN2
C ₂ H ₁₋₄
(C)(C _d)) + | | 1-Butene
$(1 \times C - (H + 1) \times$ | -0.54
85.65
305.60 | σ = 3
e - Calculated
-0.50
86.48
304.96
-240.29
71.14
-28.70 | = Residual
- 0.04
- 0.83
0.64
+ (1 × C-(H) ₂ | Reference 51PRO/MAR 69STU/WES 69STU/WES | In $K_f =$ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ 1-Heptene $(1 \times C - (H \times C_d - (I \times C_d + H)))$ Gas phase $\Delta_t H^\circ = I = I = I = I = I$ | -72.22 183.30 295.18 I) ₃ (C)) + (3 H) ₂) + (1 × 0 Literatur -62.72 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) -C _d -(H)(C)), σ | $3.72 \\ 0.68$ $+ (1 \times C - (H)_{2}(H)$ | 57MCC/FIN2
57MCC/FIN2
C ₂ H ₁₋₄
(C)(C _d)) + | | 1-Butene
$(1 \times C - (H + 1) \times$ | -0.54
85.65
305.60 | σ = 3 e – Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 × C-(H) ₂ (C) ₂) × C _a -(H) ₂), σ | = Residual
-0.04
-0.83
0.64
+ (1 × C-(H) ₂
= 3 | Reference 51PRO/MAR 69STU/WES 69STU/WES C5H10 (C)(Cd))+ | In $K_f =$ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ 1-Heptene (1 × C-(H) (1 × C_d-(I) Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -72.22
183.30
295.18
I) ₃ (C))+(3
H) ₂)+(1×0
Literatur
-62.72
155.23 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) C _d -(H)(C)), σ re - Calculated | 3.72
0.68
+ (1 × C-(H) ₂ (
= 3
= Residual
-0.33
0.08 | 57MCC/FIN2
57MCC/FIN2
C ₇ H ₁₄
(C)(C _d)) + | | 1-Butene
$(1 \times C - (H + 1) \times$ | -0.54
85.65
305.60 | σ = 3 e – Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 × C-(H) ₂ (C) ₂) | = Residual
-0.04
-0.83
0.64
+ (1 × C-(H) ₂
= 3 | Reference 51PRO/MAR 69STU/WES 69STU/WES | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ In $K_t =$ 1-Heptene (1 × C-(H) (1 × C _d -(I) Gas phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ | -72.22 183.30 295.18 I) ₃ (C)) + (3 H) ₂) + (1 × 0 Literatur -62.72 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) C _d -(H)(C)), σ e - Calculated -62.39 155.15 422.44 | 3.72
0.68
$+ (1 \times C - (H)_{2})$
= Residual
- 0.33 | 57MCC/FIN2
57MCC/FIN2
C ₇ H ₁₄
(C)(C _d)) +
Reference | | 1-Butene
$(1 \times C - (H + 1) \times$ | -0.54
85.65
305.60 | σ = 3 e – Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 × C-(H) ₂ (C) ₂) × C _a -(H) ₂), $σ$ | = Residual
-0.04
-0.83
0.64
+ (1 × C-(H) ₂
= 3 | Reference 51PRO/MAR 69STU/WES 69STU/WES C5H10 (C)(Cd))+ | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ In $K_f =$ 1-Heptene (1 × C-(F) (1 × C _d -(I) Gas phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ | -72.22
183.30
295.18
I) ₃ (C))+(3
H) ₂)+(1×0
Literatur
-62.72
155.23 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) -C _d -(H)(C)), σ re - Calculated -62.39 155.15 | 3.72
0.68
+ (1 × C-(H) ₂ (
= 3
= Residual
-0.33
0.08 | 57MCC/FIN2
57MCC/FIN2
C ₇ H ₁₄
(C)(C _d)) +
Reference
50FOR/CAM
69STU/WES | | 1-Butene $(1 \times C - (H + G))$ $(1 \times C - (H + G))$ Gas phase $\Delta_t H^o = C_p^o = S^o = \Delta_t S^o = \Delta_t S^o = \Delta_t S^o = \Lambda_t \Lambda$ | -0.54
85.65
305.60 | σ = 3 e – Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 × C-(H) ₂ (C) ₂) × C _a -(H) ₂), $σ$ | = Residual
-0.04
-0.83
0.64
+ (1 × C-(H) ₂
= 3 | Reference 51PRO/MAR 69STU/WES 69STU/WES C5H10 (C)(Cd))+ | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ In $K_f =$ 1-Heptene $(1 \times C_d - (1 $ | -72.22
183.30
295.18
I) ₃ (C))+(3
H) ₂)+(1×0
Literatur
-62.72
155.23 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) C _d -(H)(C)), σ e - Calculated -62.39 155.15 422.44 | 3.72
0.68
+ (1 × C-(H) ₂ (
= 3
= Residual
-0.33
0.08 | 57MCC/FIN2
57MCC/FIN2
C ₇ H ₁₄
(C)(C _d)) +
Reference
50FOR/CAM
69STU/WES | | 1-Butene $(1 \times C - (H + 1) $ | -0.54
85.65
305.60
H) ₃ (C)) + (1
H)(C)) + (1
Literatur | σ = 3 e - Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 × C-(H) ₂ (C) ₂) × C _σ -(H) ₂), σ e - Calculated | = Residual
-0.04
-0.83
0.64
+ (1 × C-(H) ₂
= 3
= Residual | Reference 51PRO/MAR 69STU/WES 69STU/WES C ₅ H ₁₀ (C)(C _d))+ Reference | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ In $K_f =$ 1-Heptene (1 × C-(F) (1 × C _d -(I) Gas phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ | -72.22
183.30
295.18
I) ₃ (C))+(3
H) ₂)+(1×0
Literatur
-62.72
155.23 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) -C _d -(H)(C)), σ re - Calculated -62.39 155.15 422.44 -531.74 | 3.72
0.68
+ (1 × C-(H) ₂ (
= 3
= Residual
-0.33
0.08 | 57MCC/FIN2
57MCC/FIN2
C ₇ H
₁₄
(C)(C _d)) +
Reference
50FOR/CAM
69STU/WES | | 1-Butene $(1 \times C - (H + I) $ | -0.54
85.65
305.60
H) ₃ (C)) + (1
Literatur | σ = 3 e – Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 × C-(H) ₂ (C) ₂) × C _a -(H) ₂), $σ$ | = Residual
-0.04
-0.83
0.64
+ (1 × C-(H) ₂
= 3 | Reference 51PRO/MAR 69STU/WES 69STU/WES C5H10 (C)(Cd))+ | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ In $K_f =$ 1-Heptene $(1 \times C_d - (1 $ | -72.22
183.30
295.18
I) ₃ (C))+(3
H) ₂)+(1×0
Literatur
-62.72
155.23 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) -C _d -(H)(C)), σ re - Calculated -62.39 155.15 422.44 -531.74 96.15 | 3.72
0.68
+ (1 × C-(H) ₂ (
= 3
= Residual
-0.33
0.08 | 57MCC/FIN2
57MCC/FIN2
C ₂ H ₁ .
(C)(C _d)) +
Reference
50FOR/CAM
69STU/WES | | 1-Butene $(1 \times C - (H + C))))))))))))$ Gas phase $C_{\mu}^{\mu} = C_{\mu}^{\mu} = C_{\mu}^{\mu} = C_{\mu}^{\mu} = C_{\mu}^{\mu} = C_{\mu}^{\mu} = C_{\mu}^{\mu} = C_{\mu}^{\mu})$ | -0.54
85.65
305.60
H) ₃ (C)) + (1
H)(C)) + (1
Literatur | σ = 3 e - Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 × C-(H) ₂ (C) ₂) × C _σ -(H) ₂), σ e - Calculated | = Residual
-0.04
-0.83
0.64
+ (1 × C-(H) ₂
= 3
= Residual | Reference 51PRO/MAR 69STU/WES 69STU/WES C ₅ H ₁₀ (C)(C _d))+ Reference | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ In $K_f =$ 1-Heptene $(1 \times C_d - (1 $ | -72.22
183.30
295.18
I) ₃ (C))+(3
H) ₂)+(1×0
Literatur
-62.72
155.23 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) -C _d -(H)(C)), σ re - Calculated -62.39 155.15 422.44 -531.74 96.15 | 3.72
0.68
+ (1 × C-(H) ₂ (
= 3
= Residual
-0.33
0.08 | 57MCC/FIN2
57MCC/FIN2
C ₂ H ₁ .
(C)(C _d)) +
Reference
50FOR/CAM
69STU/WES | | 1-Butene $(1 \times C - (H + I) $ | -0.54
85.65
305.60
H) ₃ (C)) + (1
Literatur | σ = 3 e - Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 × C-(H) ₂ (C) ₂) × C _σ -(H) ₂), σ e - Calculated | = Residual
-0.04
-0.83
0.64
+ (1 × C-(H) ₂
= 3
= Residual | Reference 51PRO/MAR 69STU/WES 69STU/WES C ₅ H ₁₀ (C)(C _d))+ Reference | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ In $K_f =$ 1-Heptene $(1 \times C_d - (1 $ | -72.22
183.30
295.18
I) ₃ (C)) + (3
H) ₂) + (1 × 0
Literatur
-62.72
155.23
423.59 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) -C _d -(H)(C)), σ re - Calculated -62.39 155.15 422.44 -531.74 96.15 | 3.72
0.68
+ (1 × C-(H) ₂ (
= 3
= Residual
-0.33
0.08 | 57MCC/FIN2
57MCC/FIN2
C ₂ H ₁ .
(C)(C _d)) +
Reference
50FOR/CAM
69STU/WES | | 1-Butene $(1 \times C - (H + I) $ | -0.54 85.65 305.60 H) ₃ (C)) + (1 Literatur -21.50 109.58 | σ = 3 e - Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 × C-(H) ₂ (C) ₂) × C _a -(H) ₂ , σ e - Calculated -21.13 109.37 | = Residual -0.04 -0.83 0.64 + (1 × C-(H) ₂ = 3 = Residual -0.37 0.21 | Reference 51PRO/MAR 69STU/WES 69STU/WES C ₅ H ₁₀ (C)(C _d))+ Reference 86TRC 69STU/WES | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C^\circ_p =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ In $K_t =$ 1-Heptene $(1 \times C - (H + 1) \times C_{\sigma} +$ | -72.22
183.30
295.18
I) ₃ (C)) + (3
H) ₂) + (1 × 0
Literatur
-62.72
155.23
423.59 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) -C _d -(H)(C)), σ re - Calculated -62.39 155.15 422.44 -531.74 96.15 | 3.72
0.68
+ (1 × C-(H) ₂ (
= 3
= Residual
-0.33
0.08 | 57MCC/FIN2
57MCC/FIN2
C ₂ H ₄
(C)(C _d)) +
Reference
50FOR/CAM
69STU/WES | | 1-Butene $(1 \times C - (H + I) $ | -0.54 85.65 305.60 H) ₃ (C)) + (1 Literatur -21.50 109.58 | σ = 3 e – Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 $× C-(H)2(C)2) × Ca-(H)2, σ e – Calculated -21.13 109.37 344.12 -337.44$ | = Residual -0.04 -0.83 0.64 + (1 × C-(H) ₂ = 3 = Residual -0.37 0.21 | Reference 51PRO/MAR 69STU/WES 69STU/WES C ₅ H ₁₀ (C)(C _d))+ Reference 86TRC 69STU/WES | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ In $K_t =$ 1-Heptene (1 × C-(H) (1 × C _d -(I) Gas phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ In $K_t =$ Liquid phas $\Delta_t H^\circ =$ | -72.22
183.30
295.18
I) ₃ (C)) + (3
H) ₂) + (1 × 0
Literatur
-62.72
155.23
423.59 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) C _d -(H)(C)), σ re - Calculated = -62.39 155.15 422.44 -531.74 96.15 -38.79 | 3.72
0.68
+ (1×C-(H) ₂ (
= 3
= Residual
-0.33
0.08
1.15 | 57MCC/FIN2
57MCC/FIN2
C ₂ H ₄
(C)(C _d)) +
Reference
50FOR/CAM
69STU/WES
69STU/WES | | 1-Butene $(1 \times C - (H + I) $ | -0.54 85.65 305.60 H) ₃ (C)) + (1 Literatur -21.50 109.58 | σ = 3 e – Calculated -0.50 86.48 304.96 -240.29 71.14 -28.70 $× C-(H)2(C)2) × Ca-(H)2, σ e – Calculated -21.13 109.37 344.12$ | = Residual -0.04 -0.83 0.64 + (1 × C-(H) ₂ = 3 = Residual -0.37 0.21 | Reference 51PRO/MAR 69STU/WES 69STU/WES C ₅ H ₁₀ (C)(C _d))+ Reference 86TRC 69STU/WES | In $K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ In $K_t =$ 1-Heptene $(1 \times C - (H + 1) \times C_d - (H + 1) \times C_d - (H + 1)$ Gas phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ In $K_t =$ Liquid phas | -72.22
183.30
295.18
I) ₃ (C)) + (3
H) ₂) + (1 × 0
Literatur
-62.72
155.23
423.59 | -35.42 -72.00 179.58 294.50 -523.37 84.04 -33.90 × C-(H) ₂ (C) ₂) C _d -(H)(C)), σ re - Calculated = -62.39 155.15 422.44 -531.74 96.15 -38.79 | 3.72
0.68
+ (1 × C-(H) ₂ (
= 3
= Residual
-0.33
0.08
1.15 | 57MCC/FIN2
57MCC/FIN2
C ₂ H ₄
(C)(C _d)) +
Reference
50FOR/CAM
69STU/WES
69STU/WES | TABLE 7. q-Alkanes (16) - Continued TABLE 7. q-Alkanes (16) - Continued | | | × C-(H) ₂ (C) ₂)
C _d -(H)(C)), σ | | $(C)(C_d)) +$ | (1×C-(| (Continued)
H) ₃ (C)) + (6
(H)(C)) + (1 | $6 \times C$ - $(H)_2(C)_2$
$6 \times C_d$ - $(H)_2$), σ | $\begin{array}{l} + (1 \times C - (H)) \\ = 3 \end{array}$ | $C_{10}H_{20}$
$C(C)(C_d)) +$ |
---|------------------------------------|---|-----------------------|---------------------------------------|---|--|---|--|--| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | l = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 82.93
178.07
462.54 | -83.02
178.04
461.60
-628.89
104.48
-42.15 | 0.09
0.03
0.94 | 50FOR/CAM
69STU/WES
69STU/WES | Liquid pha
$\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f =$ | - 173.80
300.83
425.01 | -174.92
301.26
424.02
-939.09
105.07
-42.38 | 1.12
- 0.43
0.99 | 61ROC/ROS
57MCC/FIN2
57MCC/FIN2 | | Liquid phas $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S$ | se
- 123.80
241.21
360.45 | - 123.46
240.42
359.26
- 731.23
94.56 | -0.34
0.79
1.19 | 61ROC/ROS
57MCC/FIN2
57MCC/FIN2 | | H) ₃ (C))+(1
(H)(C))+(1 | $2 \times C - (H)_2(C)_2 \times C_d - (H)_2), \sigma$ re – Calculated | = 3 | $C_{16}H_{32}$ $C_{16}C_{10}C$ | | | H)(C))+(1 | -38.14 $\times C-(H)_2(C)_2$ $\times C_d-(H)_2), \sigma$ The - Calculated | = 3 | C_9H_{18} $(C)(C_d)) +$ Reference | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 249.16
361.04
774.12 | -248.06
361.16
774.88
-1406.10
171.17
-69.05 | - 1.10
- 0.12
- 0.76 | 70ZWO/WIL
69STU/WES
69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ
= \ln K_t = \ln K_t = \Delta_t S^\circ $ | -103.51
200.96
501.49 | 103.65
200.93
500.76
726.04
112.82
45.51 | 0.14
0.03
0.73 | 69STU/WES
69STU/WES
69STU/WES | Liquid pha
$\Delta_{\mathbf{f}}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{\mathbf{f}}S^{\circ} = \Delta_{\mathbf{f}}G^{\circ} = \ln K_{\mathbf{f}} = 0$ | se
- 329.24
483.34
613.88 | - 329.30
483.78
618.30
- 1562.68
136.61
- 55.11 | 0.06
0.44
4.42 | 55FRA/PRO
90MES/TOD
90MES/TOD | | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = 0$ | se
149.03
270.36
392.54 | 149.19
270.84
391.64
835.16
99.81 | 0.16
-0.48
0.90 | 86TRC
90MES/TOD
90MES/TOD | | H) ₃ (C)) + (2
insat) corr), | $ \times C_{d} - (H)(C)) - $ $ \sigma = 18 $ $ e - Calculated $ | | C ₄ H ₈ | | | H)(C))+(1 | -40.26 $\times \text{C(H)}_2(\text{C)}_2)$ $\times \text{C}_{\sigma}(\text{H)}_2), \sigma$ The - Calculated | = 3 | $C_{10}H_{20}$ $(C)(C_d))+$ Reference | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = $ | -7.57
78.91
300.83 | -7.03
80.91
301.77
-243.48
65.56
-26.45 | - 0.54
- 2.00
- 0.94 | 51PRO/MAR
69STU/WES
69STU/WES | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_f =$ | -123.34
223.80
540.45 | -124.28
223.82
539.92
-823.19
121.16
-48.87 | 0.94
-0.02
0.53 | 50FOR/CAM
69STU/WES
69STU/WES | | | | | | | TABLE 7. | n-Alkenes | (32) - | Continued | |----------|-----------|--------|-----------| | IADLE /. | W-WRCHC2 | 1321 - | Commuca | | TARIE | 7 | n-Alkenes | (32) | Continued | |-------|---|------------|--------|-----------| | IADLE | | " -VINCHES | 1321 - | Commucu | | | ene
{}) ₃ (C)) + (2) | < C _d −(H)(C)), | $\sigma = 18$ | C_4H_8 | cis-2-Hexen
(2×C-(H | | × C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ | C ₆ H
(C)(C ₄))+ | |--|--|--|-----------------------------|-----------------------------------|--|---------------------------------------|--|---------------------------|--| | | -/3(-// (- | -4 ()(-)// | | | | | × cis (unsat) co | | (-/(-6// | | | Literatur | e – Calculated : | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | $\Delta_{\mathbf{f}}H^{\circ} = 0$ | -10.97 | -11.88 | 0.91 | 51PRO/MAR | Gas phase | | | | | | $C_p^{\circ} =$ | 87.82 | 88.94 | -1.12 | 69STU/WES | $\Delta_t H^{\circ} =$ | -52.34 | -48.54 | -3.80 | 56CAM/ROS | | S° = | 296.48 | 296.71 | -0.23 | 69STU/WES | $C_p^{\circ} =$ | 125.69 | 124.43 | 1.26 | 69STU/WES | | $\Delta_f S^\circ =$ | | -248.54 | | | S° = | 386.48 | 384.89 | 1.59 | 69STU/WES | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 62.22 | | | $\Delta_{\rm f} S^{\circ} =$ | | - 432.97 | | | | $lnK_f =$ | | -25.10 | | | $\Delta_t G^{\circ} =$ | | 80.55 | | | | | | | | | $lnK_f =$ | | - 32.49
 | | | | cis -2-Penter | ne | | | C ₅ H ₁₀ | Liquid phas | se | | | | | (2×C-(F | $H_{3}(C) + (1)$ | × C-(H) ₂ (C)(C | (a)) + $(2 \times C_{a}$ | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -83.89 | -79.31 | -4.58 | 60BAR/ROS | | | insat) corr), | | | | $C_p^{\circ} =$ | 178.36 | 181.87 | -3.51 | 90MES/TOD | | • | | | | | S° = | 291.86 | 287.81 | 4.05 | 90MES/TOD | | | Literatur | e – Calculated | = Residual | Reference | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -530.06 | | | | | | <u> </u> | |
| $\Delta_{\mathbf{f}}G^{\circ} =$ | | 78.73 | | | | Gas phase | | | | | $lnK_f =$ | | -31.76 | | | | $\Delta_t H^\circ =$ | -26.67 | -27.91 | 1.24 | 86TRC | | - | | | | | $C_p^{\circ} =$ | 101.75 | 101.54 | 0.21 | 69STU/WES | | | | | | | S° = | 346.27 | 345.73 | 0.54 | 69STU/WES | trans -2-Hex | | | | C ₆ H | | $\Delta_f S^\circ =$ | | -335.82 | | | (2×C-(F | $I_{3}(C) + (1$ | \times C-(H) ₂ (C) ₂) | $+(1\times C-(H)_2)$ | $(C)(C_d)$ + | | $\Delta_f G^\circ =$ | | 72.22 | | | $(2 \times C_d - (1))$ | $H)(C)), \sigma =$ | = 9 | | | | $lnK_f =$ | | -29.13 | | | | Literatur | e – Calculated | - Desidual | Deference | | | · · | | | | | Literatur | | - Residuai | Reference | | Liquid phas $\Delta_t H^\circ =$ | | _ 52 50 | 0.00 | 70G00/8MI | Goo -bo | | | | | | • | 53.49 | -53.58 | 0.09 | 79GOO/SMI | Gas phase | £2 00 | 52.20 | 0.50 | ECCALADOS | | $C_p^{\circ} = S^{\circ} =$ | 151.71
258.61 | 151.45
255.43 | 0.26
3.18 | 47TOD/OLI
47TOD/OLI | $\Delta_{\rm f}H^{\circ} = C_{\rm p}^{\bullet} =$ | -53.89
132.38 | -53.39
132.46 | - 0.50
- 0.08 | 56CAM/ROS | | $\Delta_{r}S^{\circ} =$ | 20.01 | - 426.13 | 3.10 | TITODIOLI | $S^{\circ} =$ | 380.62 | 379.83 | ~ 0.08
0.79 | 69STU/WES
69STU/WES | | $\Delta_{\rm f}G^{\circ} =$ | | 73.47 | | | $\Delta_{f}S^{\circ} =$ | 200.02 | -438.03 | U. / 3 | OSTO, WES | | $\ln K_{\rm f} =$ | | -29.64 | | | $\Delta_t G^\circ =$ | | 77.21 | | | | | | | | | $lnK_f =$ | | -31.15 | | | | | | | | | | | | | <u></u> | | trans-2-Pen | | x C=(H)-(C)(C | .7)) + (2 × C = | C_5H_{10} (H)(C)), $\sigma = 9$ | Liquid phas $\Delta_t H^{\bullet} =$ | se
85.52 | - 84.58 | - 0.94 | SOR A D /D COS | | (2 ^ C-(1 | 1)3(C))+(1 | ~ C-(11)2(C)(C | /d// + (2 ^ Cd- | (11)(C)), 0 - 9 | $C_p^{\circ} =$ | - 65.52 | 181.87 | -0.94 | 60BAR/ROS | | | Literatur | e - Calculated | = Residual | Reference | $S^{\circ} =$ | | 287.81 | | | | | | Culculated | 110014041 | 11010101100 | $\Delta_{\rm f}S^{\circ} =$ | | -530.06 | | | | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 73.46 | | | | | | | | | $lnK_f =$ | | - 29.63 | | | | Gas phase | -31.29 | -32.76 | 1.47 | 86TRC | • | | | | · | | Gas phase $\Delta_t H^\circ =$ | | 109.57 | -1.12 | 69STU/WES | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | 108.45 | 340.67 | -0.26 | 69STU/WES | | | | | | | | | 270.07 | | • | cis-3-Hexen | e | | | C ₆ H | | $\Delta_f H^{\circ} = C_p^{\circ} =$ | 108.45 | -340.88 | | | | | × C-(H)₂(C)(C | (a))+(2×Ca-(| | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} =$ | 108.45 | | | | (2 × C-(II | | | | | | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} =$ | 108.45 | -340.88 | | | | nsat) corr), | $\sigma = 18$ | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t =$ | 108.45
340.41 | - 340.88
68.87 | | | | nsat) corr), | $\sigma = 18$ e – Calculated: | = Residual | Reference | | $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phas | 108.45
340.41 | -340.88
68.87
-27.78 | 0.07 | 70000001 | | nsat) corr), | | = Residual | Reference | | $\Delta_t H^\circ = C_p^\circ = S^\circ = S^\circ = \Delta_t S^\circ = InK_t Ink_$ | 108.45
340.41
se
- 57.98 | -340.88
68.87
-27.78 | 0.87 | 79GOO/SMI | (1×cis (u | nsat) corr), | | = Residual | Reference | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t = InK_t = Liquid phase \Delta_t H^\circ = C_p^\circ = InK_t $ | 108.45
340.41
se
-57.98
156.98 | -340.88
68.87
-27.78
-58.85
151.45 | 5.53 | 47TOD/OLI | (1×cis (u | nsat) corr),
Literatur | e – Calculated | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | 108.45
340.41
se
- 57.98 | -340.88
68.87
-27.78
-58.85
151.45
255.43 | | | $(1 \times cis)$ Gas phase $\Delta_t H^\circ =$ | Literatur | e – Calculated
– 48.79 | 1.18 | 56CAM/ROS | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = $ | 108.45
340.41
se
-57.98
156.98 | -340.88
68.87
-27.78
-58.85
151.45
255.43
-426.13 | 5.53 | 47TOD/OLI | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | Literatur - 47.61 123.64 | e – Calculated
– 48.79
122.17 | 1.18
1.47 | 56CAM/ROS
69STU/WES | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = In K_t = $ Liquid pha: $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ = S_t G^\circ = S^\circ = S_t G^\circ = S^\circ = S_t G^\circ = S^\circ = S^\circ = S_t G^\circ = S^\circ = S_t G^\circ = S^\circ = S^\circ = S^\circ = S_t G^\circ = S^\circ = S^\circ = S_t G^\circ = S^\circ = S^\circ = S_t G^\circ $ | 108.45
340.41
se
-57.98
156.98 | -340.88
68.87
-27.78
-58.85
151.45
255.43
-426.13
68.20 | 5.53 | 47TOD/OLI | $(1 \times cis)$ Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ $ | Literatur | e – Calculated
- 48.79
122.17
378.17 | 1.18 | 56CAM/ROS | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = $ | 108.45
340.41
se
-57.98
156.98 | -340.88
68.87
-27.78
-58.85
151.45
255.43
-426.13 | 5.53 | 47TOD/OLI | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | Literatur - 47.61 123.64 | e – Calculated
– 48.79
122.17 | 1.18
1.47 | 56CAM/ROS
69STU/WES | C_7H_{14} C8H16 Reference Reference | TABLE 7. n-Alkenes | (16) - | Continued | |--------------------|--------|-----------| |--------------------|--------|-----------| #### TABLE 7. n-Alkenes (32) - Continued | | | $\times C - (H)_2(C)(C)$ $\sigma = 18$ | (C_d)) + (2 × C_d -(| C ₆ H ₁₂ (H)(C))+ | trans - 2-Hep
(2 × C-(I
(2 × C _d -(| $H_{3}(C))+(2$ | \times C-(H) ₂ (C) ₂) + | - (1 × C(H) ₂ | (C)(C _d))+ | |-----------------------------|---------------|--|-----------------------------|---|--|------------------|--|--------------------------|------------------------| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated = | = Residual | Referen | | Liquid pha | se | | | | Gas phase | | | | | | $\Delta_i H^\circ =$ | −78.95 | - 79.31 | 0.36 | 60BAR/ROS | $\Delta_{\rm f}H^{\circ} =$ | −73.54 | −74.02 | 0.48 | 86TRC | | $C_p^{\circ} =$ | | 180.74 | | | $C_{\rho}^{\circ} =$ | | 155.35 | | | | S° = | | 287.10 | | | | | | | | | $\Delta_f S^\circ =$ | | - 530.77 | | | | | | | | | $\Delta_t G^{\circ} =$ | | 78.94 | | | Liquid pha | | | | | | $lnK_f =$ | | -31.84 | | | • | - 109.54 | -110.31 | 0.77 | 76GOO | | | | | | | $C_p^{\circ} =$ | | 212.29 | | | | | | | | | <i>S</i> ° = | | 320.19 | | | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 633.99 | | | | trans -3-He | | | | C ₆ H ₁₂ | $\Delta_f G^\circ =$ | | 78.71 | | | | (2×C-() | H)₃(C))+(2 | ×C-(H) ₂ (C)(C | (C_d) + $(2 \times C_d -$ | $(H)(C)), \sigma = 18$ | $lnK_f =$ | | -31.75 | | | | | Literatur | e – Calculated | = Residual | Reference | | | | | | | | | | | | cis -2-Octen | e | | | | | Gas phase | | | | | (2×C-(H | $H_{3}(C)) + (3$ | \times C-(H) ₂ (C) ₂) + | $-(1\times C-(H)_2)$ | $(C)(C_d)) +$ | | $\Delta_f H^\circ =$ | - 54.43 | -53.64 | -0.79 | 56CAM/ROS | (2×C _d -(| H)(C))+(1 | ×cis (unsat) cor | T) | | | $C_p^{\circ} =$ | 132.84 | 130.20 | 2.64 | 69STU/WES | | | | | | | S° = | 374.84 | 373.11 | 1.73 | 69STU/WES | | Literatu | re – Calculated = | = Residual | Referen | | $\Delta_f S^\circ =$ | | 444.76 | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 78.96 | | | | | | | | | $lnK_f =$ | | -31.85 | | | Gas phase | | | | | | | | | | | $\Delta_t H^{\circ} =$ | | -89.80 | | | | | | | | | $C_p^{\circ} =$ | | 170.21 | | | | Liquid pha | ise | | | | | | | | | 60BAR/ROS cis-2-Heptene C7H14 $(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)(C_d)) +$ $(2 \times C_d - (H)(C)) + (1 \times cis (unsat) corr)$ -84.58 180.74 287.10 -530.77 73.67 -29.72 -1.48 $\Delta_{\rm f}H^{\circ} =$ $C_p^{\circ} = S^{\circ} =$ $\Delta_f S^\circ =$ $\Delta_t G^\circ =$ $lnK_f =$ -86.06 | | Reference | | | | |---|-----------|----------------------------|-------|-------| | Gas phase | | | | | | $\Delta_t H^{\circ} =$ | 69.14 | -69.17 | 0.03 | 86TRC | | $C_p^{\circ} =$ | | 147.32 | | | | Liquid pha $\Delta_{\epsilon}H^{\circ} = C_{p}^{\circ} =$ | | 105.04
212.29 | -0.10 | 76GOO | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | | 320.19
-633.99
83.98 | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | | -89.80 | | | |----------------------------------|----------|----------|-------|-----------| | C _p = | | 170.21 | | | | Liquid phase | ÷ | | | | | $\Delta_t H^{\circ} = -$ | - 135.69 | - 130.77 | -4.92 | 86PED/NAY | | $C_p^{\circ} = S^{\circ} =$ | | 242.71 | | | | S° = | | 352.57 | | | | $\Delta_f S^\circ =$ | | -737.92 | | | | $\Delta_i G^\circ =$ | | 89.24 | | | | $lnK_t =$ | | - 36.00 | | | trans-2-Octene C8H16 $(2 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)(C_d)) +$ $(2 \times C_d - (H)(C))$ Literature - Calculated = Residual Reference Gas phase Δ_tH° = -94.65 $C_p^{\circ} =$ 178.24 Liquid phase $\Delta_i H^{\circ} = -135.69$ -136.04 0.35 86PED/NAY $C_p^{\circ} = S^{\circ} =$ 242.71 352.57 $\Delta_f S^\circ =$ -737.92 $\Delta_{\rm f}G^{\circ} =$ 83.97 $lnK_f =$ -33.87 TABLE 7. n-Alkenes (32) - Continued | cis -3-Heptene
$(2 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (2 C$ | C_7H_{14} | | | $\times C - (H)_2(C)(C)$ $(C)_2), \sigma = 3$ | (C_d)) + $(1
\times C_d -$ | C ₅ H
(H)(C))+ | |---|---|--|----------------------------|--|-------------------------------|--| | Literature – Calculated = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = -68.75 - 69.42$ 0.67 $C_\rho^\circ = 145.06$ | 86TRC | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 140.67
105.44
333.46 | 142.17
102.34
331.24 | -1.50
3.10
2.22 | 55FRA/PRO
69STU/WES
69STU/WES | | Liquid phase $\Delta_t H^\circ = -104.35 -105.04 0.69$ $C_p^\circ = 211.16$ | 76GOO | $\Delta_{f}S^{\circ} = \\ \Delta_{f}G^{\circ} = \\ \ln K_{f} = $ | | -219.75
207.69
-83.78 | | | | $S^{\circ} = 319.48$ $\Delta_t S^{\circ} = -634.70$ $\Delta_t G^{\circ} = 84.19$ $\ln K_t = -33.96$ | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ$ | e
150.83
244.97 | 114.14
148.78
244.13
- 306.85 | 2.05
0.84 | 70TOD/MES
70TOD/MES | | trans-3-Heptene
$(2 \times C-(H)_3(C)) + (1 \times C-(H)_2(C)_2) + (2 \times C-(H)_2(C)_2) + (2 \times C-(H)_2(C)_2)$
$(2 \times C_d-(H)(C))$ | C_7H_{14} $C_7(C_d)$ + | $\Delta_t G^\circ = \\ \ln K_t = \\ -$ | | 205.63
- 82.95 | | | | Literature – Calculated = Residual | Reference | 1,3-Butadien
(2×C _d -(F | | C _d -(H)(C _d)), σ | = 2 | C₄H | | Gas phase $\Delta_t H^\circ = -73.73 -74.27$ 0.54 $C_n^\circ = 153.09$ | 86TRC | | Literatur | e – Calculated | = Residual | Reference | | Liquid phase $ \Delta_t H^\circ = -109.33 -110.31 0.98 $ $ C_\rho^\circ = 211.16 $ $ S^\circ = 319.48 $ $ \Delta_t S^\circ = -634.70 $ $ \Delta_t G^\circ = 78.92 $ $ \ln K_f = -31.84 $ | 76GOO | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{1}{2}$ | 108.82
79.54
278.74 | 109.20
79.84
280.76
- 133.92
149.13
- 60.16 | - 0.38
- 0.30
- 2.02 | 49PRO/MAR
69STU/WES
69STU/WES | | 1,2-Butadiene
$(1 \times C_{-}(H)_{3}(C)) + (1 \times C_{d}-(H)(C)) + (1 \times C_{a}) + (1 \times C_{a})$ | C_4H_6 C_{α} - $(H)_2$), $\sigma = 3$ | | (C))+(1×0 | C _d -(H)(C)) + (2
(unsat) corr), c | | C_5H
(1 × C_{d} ~(H) ₂) | | Literature – Calculated = Residual | Reference | | | e – Calculated | | Reference | | Gas phase $ \Delta_t H^\circ = 162.26 163.05 -0.79 $ $ C_p^\circ = 80.12 81.71 -1.59 $ $ S^\circ = 293.01 293.04 -0.03 $ $ \Delta_t S^\circ = -121.64 $ $ \Delta_t G^\circ = 199.32 $ $ \ln K_t = -80.40 $ | 49PRO/MAR
69STU/WES
69STU/WES | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f = $ | 82.76
94.56
324.26 | 81.79
94.90
327.30
-223.69
148.48
-59.90 | 0.97
- 0.34
- 3.04 | 55FRA/PRO
69STU/WES
69STU/WES | | | | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ - \Delta_t G^\circ = \ln K_t =$ | e | 54.82
152.79
224.67
- 326.31
152.11
- 61.36 | | Allasta, respi | C₅H₈ C₅H₈ $\Delta_t G^\circ =$ $lnK_f =$ TABLE 7. n-Alkenes (16) - Continued | Table 7. n-A | lkenes (32) - | Continued | |--------------|---------------|-------------------------------| |--------------|---------------|-------------------------------| | | Literatur | Literature - Calculated = Residual | | | | | |-----------------------------|-----------|------------------------------------|--------|-----------|--|--| | Gas phase | | | | | | | | $\Delta_t H^\circ =$ | 75.81 | 76.94 | -1.13 | 55FRA/PRO | | | |
$C_p^{\circ} =$ | 103.34 | 102.93 | 0.41 | 69STU/WES | | | | S° = | 319.66 | 322.24 | - 2.58 | 69STU/WES | | | | $\Delta_f S^\circ =$ | | -228.75 | | | | | | $\Delta_f G^\circ =$ | | 145.14 | | | | | | $lnK_f =$ | | - 58.55 | | | | | | Liquid pha | se | | | | | | | $\Delta_t H^\circ =$ | | 49.55 | | | | | | $C_p^{\circ} =$ | | 152.79 | | | | | | S° = | | 224.67 | | | | | | $\Delta_f S^\circ =$ | | -326.31 | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 146.84 | | | | | | $lnK_f =$ | | - 59.23 | | | | | | | Literatur | e – Calculated = | Reference | | |------------------------|-----------|------------------|-----------|---| | Gas phase | | | · | | | $\Delta_t H^\circ =$ | 106.36 | 106.36 | 0.00 | 55FRA/PRO | | $C_p^{\circ} =$ | 105.02 | 105.01 | 0.01 | 69STU/WES | | S° = | 333.46 | 333.46 | 0.00 | 69STU/WES | | $\Delta_f S^\circ =$ | | -217.53 | | | | $\Delta_f G^{\circ} =$ | | 171.22 | | | | $lnK_f =$ | | - 69.07 | | *************************************** | | Liquid pha | se | | | | | $\Delta_t H^\circ =$ | 81.17 | 81.17 | 0.00 | 86TRC | | $C_p^{\circ} =$ | 146.82 | 146.82 | 0.00 | 70MES/TOD | | <i>S</i> ° = | 248.86 | 248.86 | 0.00 | 70MES/TOD | | $\Delta_f S^\circ =$ | | -302.12 | | | | $\Delta_f G^\circ =$ | | 171.25 | | | | $lnK_f =$ | | - 69.08 | | | 1,4-Pentadiene 2,3-Pentadiene | $(2 \times C_{-}(H)_{3}(C)) + (2 \times C_{d}(H)(C)) + (1 \times C_{a}), \sigma = 18$ | | | | | | | |---|-----------|-----------|-------|-----------|--|--| | | Literatur | Reference | | | | | | Gas phase | | | | | | | | $\Delta_i H^{\circ} =$ | 133.05 | 130.79 | 2.26 | 55FRA/PRO | | | | $C_p^{\circ} =$ | 101.25 | 104.80 | -3.55 | 69STU/WES | | | | <i>S</i> ° = | 324.68 | 322.99 | 1.69 | 69STU/WES | | | | $\Delta_f S^\circ =$ | | - 228.00 | | | | | | $\Delta_f G^\circ =$ | | 198.77 | | | | | | $lnK_f =$ | | -80.18 | | | | | | , | iene (Contin
H)3(C))+(2: | , | + (1×C _a), σ = | C ₅ H ₂
= 18 | | | |----------------------------------|-----------------------------|------------------------------------|----------------------------|---------------------------------------|--|--| | | Literatur | Literature – Calculated = Residual | | | | | | Liquid pha | ise | | | | | | | $\Delta_f H^\circ =$ | 103.55 | 101.56 | 1.99 | 70MES/TOD | | | | $C_p^{\circ} =$ | 152.34 | 152.20 | 0.14 | 70MES/TOD | | | | S° = | 237.32 | 238.15 | -0.83 | 70MES/TOD | | | | $\Delta_{\mathbf{r}}S^{\circ} =$ | | -312.83 | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 194.83 | | | | | | $lnK_f =$ | | - 78.59
 | | | | | | Allene | | | | С₃Н | | | | $(1 \times C_a)$ | $+(2\times C_d-(H))$ | $)_2), \sigma = 4$ | | | | | | | Literatur | e – Calculated | = Residual | Reference | | | | Gas phase | | | | | | | | $\Delta_{\rm f} H^{\circ} =$ | 191.25 | 195.31 | -4.06 | 36KIS/RUH2 | | | | $C_p^{\circ} =$ | 58.99 | 58.62 | 0.37 | 69STU/WES | | | | S° = | 243.93 | 245.79 | -1.86 | 69STU/WES | | | | $\Delta_f S^\circ =$ | | -32.57 | | | | | 205.02 -82.70 TABLE 8. s-Alkenes (34) | | [)₃(C))+(1> | $(C_{d}-(H)_2)+(1$
ary)), $\sigma = 18$ | $\times C_{d}$ - $(C)_{2}$ + | C₄H ₈ | | $H_{3}(C)) + (1$ | $\times C_d$ –(H)(C))- iary)), $\sigma = 9$ | + (1 × C _d -(C) ₂) | C ₅ H ₁₀)+ | |--|------------------------------------|--|---|--|--|-----------------------------|--|---|--| | | Literatur | e – Calculated = | = Kesidual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = C_p^\circ$ | -17.87
89.12 | - 18.58
87.94 | 0.71
1.18 | 51PRO/MAR
69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -41.00
105.02 | -50.84
111.03 | 9.84
6.01 | 49SCO/WAD
69STU/WES | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | 293.59 | 295.29
- 249.96
55.94
- 22.57 | -1.70 | 69STU/WES | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | 338.57 | 345.90
- 335.65
49.24
- 19.86 | -7.33 | 69STU/WES | | 2 Mathyl 1 | hutono | | | СЧ | Liquid pha
Δ _t H° = | | 76.00 | 0.01 | 70COO/EM | | | $H_{3}(C) + (1 + 1)_{2}(C)(C_{d})$ | $\times C_{d}$ -(H) ₂)+(1
+(1×-CH ₃ cor | rr (tertiary)), | | $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} =$ | - 68.07
152.80
251.04 | -76.98
157.26
248.65
-432.90 | 8.91
-4.46
2.39 | 79GOO/SMI
47TOD/OLI
47TOD/OLI | | | Literatur | e Calculated : | = Residual | Reference | $\Delta_f G^\circ = \ln K_f =$ | | 52.09
-21.01 | | | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | -35.10
111.63
339.53 | - 37.20
108.57
339.25
- 342.30 | 2.10
3.06
0.28 | 86TRC
69STU/WES
69STU/WES | | H)₃(C))+(1 | ×C-(H) ₂ (C)(0
-CH ₃ corr (tert | | C₄H ₁₂
(H)(C))+ | | $\Delta_f G^\circ = \ln K_f =$ | | 64.86
26.16 | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid phas | se | 77 p. 3 a siste a si 0 2 a si 1 | | | Gas phase | | | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{1}{2}$ | - 60.96
157.19
253.97 | - 62.22
153.84
254.63
- 426.92
65.07
- 26.25 | 1.26
3.35
-0.66 | 79GOO/SMI
47TOD/OLI
47TOD/OLI | $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | - 66.86
126.61
378.44 | -71.72
131.66
384.10
-433.76
57.61
-23.24 | 4.86
- 5.05
- 5.66 | 56CAM/ROS
69STU/WES
69STU/WES | | 2-Methyl-1-
(2×C-(I
(1×C _d -(
σ = 9 | $H_{3}(C)) + (1$ | × C-(H) ₂ (C) ₂)
C _d -(H) ₂) + (1× | +(1×C−(H) ₂
−CH ₃ corr (te | $C_{\epsilon}H_{12}$ (C)(C _d)) + rtiary)), | Liquid pha
$\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \Delta_t G^\circ = S^\circ $ | se
- 98.53 | - 102.71
186.55
280.32
- 537.55
57.56 | 4.18 | 60BAR/ROS | | | Literatur | re – Calculated | = Residual | Reference | $\ln K_{\rm f} =$ | | -23.22 | | | | Gas phase $ \Delta_t H^\circ = \\ C_p^\circ = \\ S^\circ = \\ \Delta_r S^\circ - $ | -
59.37
135.60
382.17 | - 57.83
131.46
378.41
439.45 | -1.54
4.14
3.76 | 56CAM/ROS
69STU/WES
69STU/WES | | | ×C−(H)₂(C)(C | C _d))+(1×C _d -(| C ₆ H ₁₂
(C) ₂) + | | $\Delta_f G^\circ = \ln K_f =$ | | 73.19
- 29.53 | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | se
89.96 | 87.95
184.26
287.01
530.86
70.32
28.37 | - 2.01 | 60BAR/ROS | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ - \Delta_t G^\circ = \ln K_t =$ | - 56.02
133.55
376.60 | -55.82
129.20
371.69
-446.18
77.21
-31.15 | -0.20
4.35
4.91 | 56CAM/ROS
69STU/WES
69STU/WES | | (2×C-(H | utene (Conti
$H_{3}(C)$) + (2:
H_{2}), $\sigma = 1$ | < C-(H)2(C)(C | (d) + $(1 \times C_d - (1 \times C_d))$ | (C_6H_{12}) | (1×C-(H | H) ₃ (C)) + (1
H) ₂ (C)(C _d)) | \times -CH ₃ corr (t
+ (1 \times C _d -(C) ₂ | | C ₆ H ₁₂
sat) corr)+ | |---|---|--|---|--------------------------------|----------------------------------|--|---|------------------------|---| | | Literatur | e – Calculated : | = Residual | Reference | (1×Ca-(| H)(C)), σ = | = 27
re – Calculated | = Residual | Reference | | Timuid abov | | | | | | *************************************** | | | | | Liquid phas $\Delta_t H^\circ =$ | se
-87.11 | - 85.77 | - 1.34 | 60BAR/ROS | Gas phase | | | | | | $C_p^{\circ} =$ | | 183.13 | | | $\Delta_f H^{\circ} =$ | -62.30 | - 64.61 | 2.31 | 56CAM/ROS | | <i>S</i> ° = | | 286.30 | | | $C_p^{\circ} =$ | 126.61 | 123.63 | 2.98 | 69STU/WES | | $\Delta_f S^\circ =$ | | -531.57 | | | S° = | 378.44 | 380.03 | - 1.59 | 69STU/WES | | $\Delta_f G^\circ =$ | | 72.72 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 437.84 | | | | $lnK_{f} =$ | | - 29.33 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 65.93 | | | | | | | | | $lnK_f =$ | | - 26.60 | | | | 3-Methyl-1- | -butene | | | C ₅ H ₁₀ | Liquid phas | se | | | | | • | | × C-(H)(C)₂(C | (_d))+ | | $\Delta_{\rm f}H^{\circ} =$ | - 94.47 | - 95.26 | 0.79 | 60BAR/ROS | | | | $(1 \times C_d$ | | • | $C_p^{\circ} =$ | | 186.55 | | | | (1×C _d −(| $H)_2$), $\sigma = 9$ |) | | | <i>s</i> ° = | | 280.32 | | | | | | | | | $\Delta_{i}S^{\circ} =$ | | -537.55 | | | | | Literatur | e – Calculated: | = Residual | Reference | $\Delta_{\mathbf{r}}G^{\circ} =$ | | 65.01 | | | | | | | | | $lnK_f =$ | | -26.22 | | | | Gas phase $\Delta_t H^\circ =$ | -27.75 | - 28.03 | 0.28 | 86TRC | | | | | | | $C_p^{\circ} =$ | 118.62 | 119.07 | -0.45 | 69STU/WES | trans -3-Met | hvl-2-pente | ne | | C ₆ H ₁₂ | | $S^{\circ} =$ | 333.46 | 334.56 | -1.10 | 69STU/WES | | |
× C-(H)₂(C)(0 | Ca))+ | CSIII | | $\Delta_{\mathbf{f}}S^{\circ} =$ | 555.10 | - 346.99 | | | | | $(1 \times C_{\rm dr})$ | , | | | $\Delta_{\rm f}G^{\circ} =$ | | 75.43 | | | | H)(C)), \sigma = | | (0)2) | | | $\ln K_{\rm f} =$ | | - 30.43 | | | (21150) | /(-//, - | | | | | | | | | | | Literatur | e – Calculated | = Residual | Reference | | Liquid pha | | £1 00 | 0.20 | 70GOO/SMI | Goa mhosa | | | | | | $\Delta_{f}H^{\circ} =$ | -51.60 | -51.80
156.05 | 0.20
0.01 | 79GOO/SMI
47TOD/OLI | Gas phase $\Delta_f H^\circ =$ | -63.14 | - 69.46 | 6.32 | 56CAN(DO0 | | $C_p^{\circ} = S^{\circ} =$ | 156.06
253.30 | 253.30 | 0.00 | 47TOD/OLI | $C_p^{\circ} =$ | 126.61 | 131.66 | - 5.05 | 56CAM/ROS
69STU/WES | | $\Delta_{f}S^{\circ} =$ | 233.30 | - 428.26 | 0.00 | 4/10D/OLI | S° = | 381.83 | 374.97 | 6.86 | 69STU/WES | | $\Delta_{\rm f}G^{\circ} =$ | | 75.88 | | | $\Delta_{\rm f} S^{\circ} =$ | 501.05 | - 442.90 | 0.00 | 0931 U/ WES | | $\ln K_{\rm f} =$ | | -30.61 | | | $\Delta_{r}G^{\circ} =$ | | 62.59 | | | | | | · · · · · · · · · · · · · · · · · · · | | | $lnK_f =$ | | -25.25 | | | | 2 Maded 1 | 4 | | | C ₆ H ₁₂ | Tiavid shar | | | | | | 3-Methyl-1- | - | × C-(H) ₂ (C) ₂) | + (1 × C-/H)(| | Liquid phas $\Delta_t H^\circ =$ | - 94.56 | - 100.53 | 5.97 | 60BAR/ROS | | | | $(11)_2(C)_2$
ary)) + $(1 \times C_{d}$ | | C)2(Ca)) 1 | $C_p^{\circ} =$ | 74.50 | 186.55 | 3.31 | ODAK/KOS | | | $(H)_2$), $\sigma = 9$ | | (11)(0)) | | S° = | | 280.32 | | | | (17,00) | (11)2), 0 | , | | | $\Delta_{f}S^{\circ} =$ | | -537.55 | | | | | Literatur | e - Calculated | = Residual | Reference | $\Delta_{r}G^{\circ} =$ | | 59.74 | | | | | | | | | $\ln K_f =$ | | -24.10 | | | | Gas phase | | | _ | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -49.50 | 46.40 | -3.10 | 56CAM/ROS | | | | | | | $C_{\rho}^{\circ} =$ | 142.42 | 141.96 | 0.46 | 69STU/WES | 3-Methyl-cis | | | | C7H14 | | S° = | 376.81 | 373.72 | 3.09 | 69STU/WES | | | ×-CH ₃ corr (t | | | | $\Delta_f S^\circ = \Delta_f $ | | 444.14
96.00 | | | | | $+(1\times C_{d}-(H)($ | $(1) + (1 \times cis)$ | insat) corr)+ | | $\Delta_f G^\circ =$ | | 86.02 | | | $(1 \times C_d - (0))$ | C) ₂) | | | | | $lnK_f =$ | | -34.70 | | | | Literatur | e – Calculated | = Residual | Reference | | Liquid pha | se | | | | | | | | | | $\Delta_t H^{\circ} =$ | -78.16 | -75.35 | -2.81 | 60BAR/ROS | Gas phase | | | | | | $C_p^{\circ} =$ | | 186.47 | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | −79.41 | -85.49 | 6.08 | 60CAM/ROS | | S° = | | 285.68 | | | $C_{\rho}^{\circ} =$ | | 144.26 | | | | $\Delta_f S^{\circ} =$ | | -532.19 | | | - | | · | | | | $\Delta_l G^{\circ}$ – | | 83.32 | | | | | | | | | $lnK_f =$ | | -33.61 | | | | | | | | TABLE 8. s-Alkenes (34) - Continued | 3-Methyl-cis-3-hexene (Continued)
$(3 \times C - (H)_3(C)) + (1 \times -CH_3 \text{ corr (tertiary)}) + (1 \times -CH_3 \text{ corr} (H)_3(C)) + (1 \times -CH_3 \text{ corr})$ | C ₇ H ₁₄ | cis-4-Methy
(3×C-(H
(2×-CH) | $H_{3}(C)) + (2)$ | × C _d ~(H)(C)) -
ary)) + (1 ×
cis | + (1 × C-(H)(0
(unsat) corr), | $C_{\epsilon}H_{12}$ $C_{2}(C_{d})) + \sigma = 27$ | |---|-------------------------------------|--|---|--|---------------------------------------|--| | $(2 \times C_{-}(H)_{2}(C)(C_{d})) + (1 \times C_{d}-(H)(C)) + (1 \times cis (unside (1 \times C_{d}-(C)_{2}))$ | it) corr) + | | Literature | e – Calculated | = Residual | Reference | | Literature – Calculated = Residual | Reference | Gas phase | | | · · · · · · · · · · · · · · · · · · · | | | Liquid phase $\Delta_{\ell}H^{\circ} = -115.94 -120.99$ 5.05 $C_{\rho}^{\circ} = 215.84$ $S^{\circ} = 311.99$ $\Delta_{\ell}S^{\circ} = -642.19$ $\Delta_{\ell}G^{\circ} = 70.48$ $\ln K_{\ell} = -28.43$ | 61ROC/ROS | $ \Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = $ | -57.49
133.55
373.34 | - 55.44
134.13
375.34
- 442.53
76.50
- 30.86 | - 2.05
- 0.58
- 2.00 | 56CAM/ROS
69STU/WES
69STU/WES | | 3-Methyl-trans-3-hexene $(3 \times C - (H)_3(C)) + (1 \times -CH_3 \text{ corr (tertiary)}) + (2 \times C - (H)_2(C)(C_d)) + (1 \times C_d - (H)(C)) + (1 \times C_d - (C))$ | • | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f =$ | se
-87.03 | -84.84
188.76
278.99
-538.88
75.83
-30.59 | -2.19 | 60BAR/ROS | | Literature — Calculated = Residual | Reference | | | | | | | Gas phase $\Delta_t H^{\circ} = -76.82 -90.34$ 13.52 $C_p^{\circ} = 152.29$ | 60CAM/ROS | | $H_{3}(C)) + (2)$ | ne
×-CH ₃ corr (t
+ (2×C _d -(H)(| | C ₆ H ₁₂ | | Liquid phase | | | Literature | e – Calculated | = Residual | Reference | | $\Delta_t H^\circ = -112.72$ | 61ROC/ROS | Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -61.50
141.42
368.28 | -60.29 142.16 370.28 -447.59 73.16 -29.51 | - 1.21
- 0.74
- 2.00 | 56CAM/ROS
69STU/WES
69STU/WES | | 4-Methyl-1-pentene
$(2 \times C - (H)_3(C)) + (1 \times C - (H)(C)_3) + (2 \times -CH_3 \text{ corr } (1 \times C - (H)_2(C)(C_d)) + (1 \times C_d - (H)_2) + (1 \times C_d - (H)(C)(C_d))$ |)), $\sigma = 9$ | Liquid phas $ \Delta_t H^{\circ} = C_p^{\circ} = $ | se
91.55 | - 90.11
188.76 | - 1.44 | 60BAR/ROS | | Literature - Calculated = Residual Gas phase | Reference | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | | 278.99
538.88
70.56
28.46 | | | | $\Delta_t H^\circ = -51.25 -48.45 -2.80$ $C_p^\circ = 126.48 132.29 -5.81$ $S^\circ = 367.73 369.54 -1.81$ $\Delta_t S^\circ = -448.32$ $\Delta_t G^\circ = 85.22$ $\ln K_f = -34.38$ | 56CAM/ROS
69STU/WES
69STU/WES | (3×-CH | I) ₃ (C)) + (1 > corr (quate | ne
× C-(C)3(Cd))
ernary)) + (1 ×
× t-butyl cis co | $C - (H)_2(C)(C_0)$ | C ₈ H ₁₆ | | Liquid phase $\Delta_t H^\circ = -80.04 -77.28 -2.76$ | 60BAR/ROS | · | Literature | e – Calculated | = Residual | Reference | | $C_p^o = -80.04 - 77.28 - 2.76$ $C_p^o = 176.60$ $S^o = 289.15$ $\Delta_t S^o = -528.72$ $\Delta_t G^o = 80.36$ $\ln K_t = -32.42$ | WILKINGS | Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ | -89.29 | - 91.59
170.19 | 2.30 | 60CAM/ROS | | TABLE 8. | s-Alkenes | (34) - | Continued | |----------|-----------|--------|-----------| | I ADLL U | 2 THEFIT | (-, | Commen | | $(1 \times C - (C)_3(C_d))$ | + | C ₈ H ₁₆ | (4×C-(H | $I_{3}(C) + (2$ | - ' '-' | | C ₆ H ₁₂ | |---|--|----------------------------------|---
--|--|---|---| | | | d <i>))</i> | | Literatu | re – Calculated | = Residual | Reference | | ture – Calculated | = Residual | Reference | | | | - | | | - 128.97
253.15
313.83
-776.66
102.59
-41.38 | 2.53 | 61ROC/ROS | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -69.79
123.60
364.64 | -89.80
133.12
365.30
-452.57
45.13
-18.21 | 20.01
- 9.52
- 0.66 | 56CAN/ROS
69STU/WES
69STU/WES | | | | | | | 120.84 | 18.42 | 60BAR/ROS | | $(1 \times C - (C)_3(C_d))$
uaternary)) + $(2 \times$ | | CgH ₁₆ | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f = 0$ | 174.68
270.20 | 192.36
273.54
- 544.33
41.45
- 16.72 | - 17.68
- 3.34 | 55SCO/FIN
55SCO/FIN | | nture – Calculated | = Residual | Reference | | | | | | | 5 - 108.83
170.19 | 1.18 | 60CAM/ROS | (3×C-(H | $I_{3}(C)+(1$ | \times C-(H)(C) ₃)+ | | | | | | | | Literatur | e – Calculated : | = Residual | Reference | | 253.15
313.83
-776.66 | 1.52 | 61ROC/ROS | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -83.81 | - 85.15
154.38 | 1.34 | 60CAM/ROS | | 85.11
-34.33 | | | $\Delta_t H^\circ =$ | | - 118.96
211.70 | 1.98 | 61ROC/ROS | | $+(1\times C-(H)(C)_2(C)$ | (C_d)) + $(1 \times C_{d}$ —
(tiary)), $\sigma = 2$ | C_6H_{12} (C) ₂) + | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | | 314.04
- 640.14
71.90
- 29.00 | | | | ature – Calculated | = Residual | Reference | | | | | | | 7 141.16 | -1.63
2.31 | 56CAM/ROS
69STU/WES | (4×C-(H | I) ₃ (C))+(1
corr (terti | \times C-(H)(C) ₂ (C _d
ary)) + (1 \times C _d - | (H)(C))+(1> | | | - 449.01 | -3.22 | 69STU/WES | | Literatur | e – Calculated = | = Residual | Reference | | - 27.89 | | | Gas phase $\Delta_t H^\circ =$ | 88.70 | -99.25 | 10.55 | 60CAM/ROS | | 191.15 | -2.12 | 60BAR/ROS | Liquid phas | | | 10.00 | (1000707 | | 278.19
539.68
67.42
27.20 | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 123.09 | -133.97
223.86
303.88
-650.30 | 10.88 | 61ROC/ROS | | | (1 × C-(C) ₃ (C _d)) - uaternary) + (1 × (1 × t-butyl cis conture - Calculated C | ture - Calculated = Residual 1 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | exene (Continued) $(1 \times C - (C)_3(C_3)) + (1 (1$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Capting Cap | C_4H_4 (1×C-(C)(C_4)) + (2×C_+(C)(C_4)) + (1×C-(C)(C_4)) (1×C-(C)(C_4 | TABLE 8. s-Alkenes (34) - Continued | (3×-CH₃ | () ₃ (C))+(1> | × C-(C) ₃ (C _d)) -
ernary)) + (1 × | | C_6H_{12} | (4×C-(I | $H_{3}(C) + (1$ | entene (Contin
× C-(C) ₃ (C _d))
ternary)) + (2× | + | C7H14 |
--|-----------------------------------|--|------------------------|-------------------------------------|--|---|--|---|--------------------| | (1×C _d -(1 | | e – Calculated | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -61.59
126.48
343.76 | -55.69
126.47
343.76
-474.10
85.66
-34.56 | - 5.90
0.01
0.00 | 56CAM/ROS
69STU/WES
69STU/WES | Liquid phant $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = 0$ | se
- 121.71 | - 120.72
223.86
282.16
- 672.02
79.64
- 32.13 | - 0.99 | 61ROC/ROS | | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
- 88.28
191.17
256.50 | -82.41
191.15
256.47
-561.40
84.97
-34.28 | -5.87
0.02
0.03 | 60BAR/ROS
38KEN/SHO
38KEN/SHO | (4×C-(I
(3×-CH | I ₃ corr (quat
I ₃ corr (terti | the \times C-(C) ₃ (C _d)) ternary))+(1×C _d -ary))+(1×C _d -ce-Calculated | C_{d} -(C) ₂) + -(H) ₂) | C₁H₁₄
Reference | | cis -4,4-Dime | I) ₃ (C))+(1 | iene
× C-(C)3(C _d)) | | C ₇ H ₁₄ | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -85.48 | - 92.39
148.56 | 6.91 | 60CAM/ROS | | | yl cis corr) | ernary)) + (2 × | | Reference | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \Delta_t G^\circ = S^\circ S^\circ$ | se
117.70 | -124.09
226.25
281.36
-672.82
76.51 | 6.39 | 61ROC/ROS | | $\Delta_{i}H^{\circ} = C_{p}^{\circ} =$ | -72.63 | - 70.71
149.56 | -1.92 | 60CAM/ROS | $lnK_f =$ | | -30.86 | | | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ G^\circ$ | se
- 105.31 | -103.24
223.86
282.16
-672.02
97.12 | - 2.07 | 61ROC/ROS | (4×C-(I
(4×-CH | 3 corr (terti
insat) corr) | ene
× C-(H)(C) ₂ (C
ary)) + (2 × C _d -
e – Calculated | -(H)(C))+ | C₂H₁₀
Reference | | | 1)₂(C))+(1 | -39.18 entene $\times C - (C)_3(C_4))$ ternary)) + (2 × | | C7H14 | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | - 103.85
187.35 | | | | | Literatur | re – Calculated | = Residual | Reference | Liquid phas $\Delta_t H^\circ = C_{t'}^\circ =$ | se
151.08 | -141.83
255.36 | -9.25 | 73YAT/MCD | | Gas phase $\Delta_t H^\circ = C_\rho^\circ =$
 -88.78 | - 87.95
149.56 | -0.83 | 60CAM/ROS | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}K_{t} - \Delta_{t}K_{t}$ | · | 334.22
-756.27
83.65
-33.74 | | | 69.00 -27.83 -783.44 $\Delta_f S^{\circ} =$ $\Delta_f G^\circ =$ $lnK_f =$ TABLE 8. s-Alkenes (34) - Continued | ······································ | | | | | | | |--|--------------------------------|---|---|---|--|--------------------------------| | trans-2,5-Dimethyl-3-hexene
$(4 \times C-(H)_3(C)) + (2 \times C-(H)(C)_2(C_d)) + (4 \times -CH_3 \text{ corr (tertiary)}) + (2 \times C_d-(H)(C))$ | C ₈ H ₁₆ | (3×C-(I | | tene
\times C-(H) ₂ (C) ₂) -
C_d -(H) ₂) + (1 \times - | | | | Literature - Calculated = Residual | Reference | Literature - Calculated = Residual Refere | | | | | | Gas phase | | Gas phase | | | | | | $\Delta_t H^\circ = -108.70$ | | $\Delta_t H^\circ =$ | -100.29 | - 101.47 | 1.18 | 60CAM/ROS | | $C_p^{\circ} = 195.38$ | ·/- | $C_p^{\circ} =$ | 2002 | 186.94 | 2.20 | 0001111/1100 | | Liquid phase | , | Liquid pha | Se Se | | | | | $\Delta_t H^\circ = -159.28 -147.10 -12.18$ | 73YAT/MCD | $\Delta_t H^\circ =$ | - 136.36 | - 140.58 | 4.22 | 61ROC/ROS | | $C_p^0 = 255.36$ | 15 17 17 MCD | $C_p^{\circ} =$ | 150.50 | 251.99 | 7.22 | UNCCROS | | $S^{\circ} = 334.22$ | 4 | $S^{\circ} =$ | | 342.95 | | | | $\Delta_{i}S^{\circ} = -756.27$ | | $\Delta_f S^\circ =$ | | - 747 . 54 | | | | $\Delta_{0} = -730.27$ | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 82.30 | | | | $\Delta_t G^{\circ} = 78.38$ $\ln K_f = -31.62$ | | $\ln K_{\rm f} =$ | | - 33.20 | | | | 2,4,4-Trimethyl-1-pentene | C ₈ H ₁₆ | | -ethyl-1-bute | | | C ₇ H ₁₄ | | $(4 \times C-(H)_3(C)) + (1 \times C-(C)_4) + (3 \times -CH_3 \text{ cor} (1 \times C-(H)_2(C)(C_d)) + (1 \times C_d-(C)_2) \times$ | | (3×C-(1
(2×-CH
(1×C _d -(| 3 corr (tertia | × C-(H)(C) ₂ (C _e
ary)) + (1 × C-(i | ₁)) +
H) ₂ (C)(C _d)) - | $+(1\times C_{d}-(C)_{2})+$ | | Literature Calculated = Residual | Reference | | Literatur | e – Calculated = | = Residual | Reference | | Gas phase | | Gas phase | | | | | | $\Delta_t H^{\circ} = -110.37 -116.20$ 5.83 | 60CAM/ROS | $\Delta_l H^\circ =$ | -79.54 | -83.35 | 3.81 | 60CAM/ROS | | $C_p^{\circ} = 176.56$ | | $C_p^{\circ} =$ | | 161.79 | | | | Liquid phase | | Liquid pha | Se. | | | | | $\Delta_t H^\circ = -146.15 - 152.62 6.47$ | 61ROC/ROS | $\Delta_{f}H^{\circ} =$ | – 114.06 | -117.03 | 2.97 | 61ROC/ROS | | $C_p^0 = 240.20$ 237.04 3.16 | 36PAR/TOD2 | $C_p^{\circ} =$ | -114.00 | 220.44 | 2.91 | OIKOC/KOS | | $S^{\circ} = 311.71 322.58 -10.87$ | 36PAR/TOD2 | $S^{\circ} =$ | | 309.86 | | | | $\Delta_{c}S^{\circ} = -767.91$ | 30FAR/10D2 | $\Delta_f S^\circ =$ | | -644.32 | | | | $\Delta_{\mathbf{f}}\mathbf{G}^{\circ} = 76.33$ | | $\Delta_f G^\circ =$ | | 75.07 | | | | $\ln K_{\rm f} = -30.79$ | | $\ln K_{\rm f} =$ | | -30.28 | | | | 2,4,4-Trimethyl-2-pentene $(5 \times C-(H)_3(C)) + (1 \times C-(C)_3(C_d)) +$ | C ₈ H ₁₆ | | 3-butadiene
1) ₃ (C)) + (2> | < C _d −(H) ₂) + (1 | × C4-(H)(C4 | C ₅ H ₈ | | $(3 \times -CH_3 \text{ corr (quaternary)}) + (1 \times C_d - (H)(C)$
$(2 \times -CH_3 \text{ corr (tertiary)})$ | $+(1\times C_{d}-(C)_{2})+$ | (1×C _d -(| $C)(C_d))+(1$ | ×-CH ₃ corr (to | ertiary)), $\sigma =$ | = 3 | | Literature – Calculated = Residual | Reference | | Literature | e – Calculated = | Residual | Reference | | Exertine Calculated - Residual | | Gas phase | | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | 75.73 | 73.18 | 2.55 | 55FRA/PRO | | Gas phase | | $C_p^{\circ} =$ | 104.60 | 104.60 | 0.00 | 69STU/WES | | $\Delta_i H^\circ = -104.89 - 126.91$ 22.02 | 60CAM/ROS | S° = | 315.64 | 315.64 | 0.00 | 69STU/WES | | $C_p^{\circ} = 171.65$ | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -235.35 | 2.00 | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 143.35 | | | | | | $\ln K_{\rm f} =$ | | -57.83 | | | | Liquid phase | | | | | | | | $\Delta_t H^\circ = -142.42 - 164.58$ 22.16 | 61ROC/ROS | Liquid phas | se. | | | | | $C_p^{\circ} = 258.96$ | | $\Delta_{\rm f}H^{\circ} =$ | 48.95 | 46.31 | 2.64 | 36BEK/WOO | | $S^{\circ} = 307.05$ | | $C_n^{\circ} =$ | 151.08 | 151.08 | 2.04
0.00 | 70MES/TOD | | 4.00 | | Un - | 1.71.00 | 1.21.00 | U.LEJ | (UNVICA/ILLI) | $C_p^{\circ} = S^{\circ} =$ $\Delta_f S^{\circ} =$ $\Delta_i G^{\circ} =$ $lnK_f =$ 151.08 228.28 151.08 227.06 -323.92 142.89 -57.64 0.00 1.22 70MES/TOD 70MES/TOD TABLE 8. s-Alkenes (34) - Continued ## TABLE 9. Alkynes (28) | | 1) ₂) + (1 × C | – Calculated = | - Desidual | Reference | | Literatur | e – Calculated | = Residual | Reference | |--|---|--|------------------------------------|---------------------
--|--|---|---|--| | | Literature | | - Residual | | | | | | | | Gas mbasa | | | | | Gas Phase $\Delta_t H^\circ =$ | 228.19 | 227.00 | 1 10 | 2000014716 | | $\Delta_t H^\circ =$ | 129.08 | 124.09 | 4.99 | 86TRC | $C_p^{\circ} =$ | 43.93 | 45.10 | 1.19 | 39CON/KIS | | $C_p^{\circ} =$ | 105.44 | 103.80 | 1.64 | 69STU/WES | $S^{\circ} =$ | 200.83 | 198.16 | -1.17
2.67 | 69STU/WES | | $S^{\circ} =$ | 319.66 | 321.57 | - 1.91 | 69STU/WES | $\Delta_f S^\circ =$ | 200.63 | | 2.07 | 69STU/WES | | $\Delta_{f}S^{\circ} =$ | 319.00 | | - 1.91 | 09310/WE3 | $\Delta_{f}G^{\circ} =$ | | 56.11 | | | | | | -229.42
192.49 | | | - | | 210.27
84.82 | | | | $\Delta_f G^\circ = \ln K_f =$ | | - 77.65 | | | $lnK_f =$ | | - 64.62 | | | | | | | | | | | | | | | Liquid phas | | | | | Propyne | | | | C ₃ I | | $\Delta_{\mathbf{f}}H^{\circ} =$ | 101.17 | 96.01 | 5.16 | 69GOO2 | (1×C-(F | I)₃(C))+(1 | \times C ₁ -(C)) + (1 | ×C₁−(H)), σ : | = 3 | | $C_p^{\circ} =$ | 152.42 | 154.59 | -2.17 | 70MES/TOD | | | | | | | S° = | 231.79 | 237.35 | -5.56 | 70MES/TOD | | Literatur | e – Calculated | = Residual | Reference | | $\Delta_f S^{\circ} =$ | | -313.63 | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 189.52 | | | | | | | | | $lnK_f =$ | | - 76.45 | | | Gas Phase | | | | | | | | | | | $\Delta_f H^\circ =$ | 184.93 | 186.34 | - 1.41 | 39CON/KIS | | | | | | | $C_p^{\circ} =$ | 60.67 | 61.50 | - 0.83 | 69STU/WES | | | | | | | <i>s</i> ° = | 248.11 | 246.47 | 1.64 | 69STU/WES | | | | | | | A .C° - | | -31.90 | | | | 2,3-Dimethy | | | | | $\Delta_f S^\circ =$ | | ~ 31.50 | | | | | | | | C_6H_{10} | $\Delta_{\rm f}G^{\circ} =$ | | 195.85 | | | | | (C) + (2) | $\times C_{d}-(H)_{2})+(2$ | $\times C_d$ -(C)(C _d) | | | | | | | | | | $\times C_{d}-(H)_{2})+(2$ | $\times C_d$ -(C)(C_d) | | $\Delta_f G^\circ =$ | | 195.85 | | | | | I) ₃ (C)) + (2:
corr (tertia | $\times C_{d}-(H)_{2})+(2$ | | | $\Delta_f G^\circ =$ | | 195.85 | | | | | I) ₃ (C)) + (2:
corr (tertia | × C _d (H) ₂) + (2
ary)) | |))+ | $\Delta_f G^\circ = \ln K_f = \frac{1-\text{Butyne}}{1}$ | H) ₃ (C))+(1: | 195.85
- 79.00 | | C ₄ F
C))+ | | (2×-CH | I) ₃ (C)) + (2:
corr (tertia | × C _d (H) ₂) + (2
ary)) | |))+ | $\Delta_f G^\circ = \ln K_f = \frac{1 - \text{Butyne}}{(1 \times \text{C-(F)})^{-1}}$ | $H_{3}(C)$) + (1:
H)), $\sigma = 3$ | 195.85 | C ₁))+(1×C ₁ -((| | | (2×-CH) Gas phase | I) ₃ (C)) + (2:
corr (tertia | × C _d (H) ₂) + (2
ary)) | |))+ | $\Delta_f G^\circ = \ln K_f = \frac{1 - \text{Butyne}}{(1 \times \text{C-(F)})^{-1}}$ | $H)), \sigma = 3$ | 195.85
- 79.00 | | | | (2×-CH) Gas phase | I) ₃ (C)) + (2:
s corr (tertian
Literature | × C _d -(H) ₂) + (2
ary))
e – Calculated = | = Residual | Reference | $\Delta_f G^\circ = \ln K_f = \frac{1 - \text{Butyne}}{(1 \times \text{C-(F)})^{-1}}$ | $H)), \sigma = 3$ | 195.85
- 79.00
× C-(H) ₂ (C)(C | | C))+ | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | (I) ₃ (C)) + (2:
3 corr (tertial
Literature
45.10 | \times C _d -(H) ₂) + (2
ary))
e - Calculated = | = Residual | Reference | $\Delta_t G^\circ = \frac{1 \cdot Butyne}{(1 \times C - (I \cdot 1 \times C_t ($ | H)), σ = 3 Literatur | 195.85
- 79.00
× C-(H) ₂ (C)(C | = Residual | C))+ Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase | I) ₃ (C)) + (2:
a corr (tertial
Literature
45.10 | × C _d -(H) ₂) + (2
ary))
e - Calculated =
37.16
129.36 | = Residual | Reference 37DOL/GRE | $\Delta_t G^\circ = \ln K_t = \frac{1 - \text{Butyne}}{1 \times C - (1 \times C_t - (1 \times C_t - (1 \times C_t + $ | H)), σ = 3 Literatur | 195.85
- 79.00
× C-(H) ₂ (C)(C
e - Calculated | = Residual
1.41 | C))+ Reference 51PRO/MAR | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | (I) ₃ (C)) + (2:
3 corr (tertial
Literature
45.10 | × C _d -(H) ₂) + (2
ary))
e - Calculated =
37.16
129.36 | = Residual | Reference | $\Delta_t G^\circ = \ln K_t = \frac{1 - \text{Butyne}}{1 \times C - (1 \times C_t - (1 \times C_t - (1 \times C_t + C_t)))}$ Gas Phase $\Delta_t H^\circ = C_p^\circ = \frac{1 \times C_t - (1 \times C_t - (1 \times C_t))}{1 \times C_t - (1 \times C_t - (1 \times C_t))}$ | H)), σ = 3 Literatur 165.23 81.42 | 195.85
- 79.00
× C-(H) ₂ (C)(C
e - Calculated
166.64
82.47 | = Residual
- 1.41
- 1.05 | C))+ Reference 51PRO/MAR 69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | I) ₃ (C)) + (2:
a corr (tertial
Literature
45.10 | × C _d -(H) ₂) + (2
ary))
e - Calculated =
37.16
129.36
4.76
182.08 | = Residual | Reference 37DOL/GRE | $\Delta_t G^\circ = \ln K_t = \frac{1 - \text{Butyne}}{1 \times C - (\text{I})}$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \frac{1 - \text{Butyne}}{1 \times C - (\text{I})}$ | H)), σ = 3 Literatur | 195.85
- 79.00
× C-(H) ₂ (C)(C
e - Calculated
166.64
82.47
289.27 | = Residual
1.41 | C))+ Reference 51PRO/MAR | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | I) ₃ (C)) + (2:
a corr (tertial
Literature
45.10 | × C _d -(H) ₂) + (2
ary))
e - Calculated =
37.16
129.36
4.76
182.08
255.14 | = Residual | Reference 37DOL/GRE | $\Delta_t G^\circ = \ln K_t = \frac{1 \cdot \text{Butyne}}{1 \cdot \text{C} \cdot \text{C} \cdot \text{C}}$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \frac{1 \cdot \text{C}}{1 \cdot \text{C}}$ | H)), σ = 3 Literatur 165.23 81.42 | 195.85
- 79.00
× C-(H) ₂ (C)(C
e - Calculated
166.64
82.47
289.27
- 125.41 | = Residual
- 1.41
- 1.05 | C))+ Reference 51PRO/MAR 69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S_p^\circ = \Delta_t S^\circ =$ | I) ₃ (C)) + (2:
a corr (tertial
Literature
45.10 | × C _d -(H) ₂) + (2
ary))
e - Calculated =
37.16
129.36
4.76
182.08
255.14
-432.15 | = Residual | Reference 37DOL/GRE | $\Delta_t G^\circ = \ln K_t = \frac{1 \cdot \text{Butyne}}{1 \cdot \text{C} \cdot \text{C} \cdot \text{C}}$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =
\frac{1 \cdot \text{C}}{1 \cdot \text{C}}$ | H)), σ = 3 Literatur 165.23 81.42 | 195.85
- 79.00
× C-(H) ₂ (C)(C
e - Calculated
166.64
82.47
289.27
- 125.41
204.03 | = Residual
- 1.41
- 1.05 | C))+ Reference 51PRO/MAR 69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | I) ₃ (C)) + (2:
a corr (tertial
Literature
45.10 | × C _d -(H) ₂) + (2
ary))
e - Calculated =
37.16
129.36
4.76
182.08
255.14
-432.15
133.61 | = Residual | Reference 37DOL/GRE | $\Delta_t G^\circ = \ln K_t = \frac{1 \cdot \text{Butyne}}{1 \cdot \text{C} \cdot \text{C} \cdot \text{C}}$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \frac{1 \cdot \text{C}}{1 \cdot \text{C}}$ | H)), σ = 3 Literatur 165.23 81.42 | 195.85
- 79.00
× C-(H) ₂ (C)(C
e - Calculated
166.64
82.47
289.27
- 125.41 | = Residual
- 1.41
- 1.05 | Reference 51PRO/MAR 69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | I) ₃ (C)) + (2:
a corr (tertial
Literature
45.10 | × C _d -(H) ₂) + (2
ary))
e - Calculated =
37.16
129.36
4.76
182.08
255.14
-432.15 | = Residual | Reference 37DOL/GRE | $\Delta_t G^\circ = \ln K_t = \frac{1 \cdot \text{Butyne}}{1 \cdot \text{C} \cdot \text{C} \cdot \text{C}}$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \frac{1 \cdot \text{C}}{1 \cdot \text{C}}$ | H)), σ = 3 Literatur 165.23 81.42 | 195.85
- 79.00
× C-(H) ₂ (C)(C
e - Calculated
166.64
82.47
289.27
- 125.41
204.03 | = Residual
- 1.41
- 1.05 | Reference 51PRO/MAR 69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | I) ₃ (C)) + (2:
a corr (tertial
Literature
45.10 | × C _d -(H) ₂) + (2
ary))
e - Calculated =
37.16
129.36
4.76
182.08
255.14
-432.15
133.61 | = Residual | Reference 37DOL/GRE | $\Delta_t G^\circ = \ln K_t = \frac{1 - \text{Butyne}}{1 \times \text{C} - (\text{F})}$ Gas Phase $\Delta_t H^\circ = C^\circ_t = S^\circ = \Delta_t S^\circ = 1 \ln K_t = \frac{1 \times \text{C}}{1 \times \text{C}}$ | H)), σ = 3 Literatur 165.23 81.42 | 195.85
- 79.00
× C-(H) ₂ (C)(C
e - Calculated
166.64
82.47
289.27
- 125.41
204.03 | = Residual
- 1.41
- 1.05 | Reference 51PRO/MAR 69STU/WES 69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | I) ₃ (C)) + (2:
a corr (tertial
Literature
45.10 | × C _d -(H) ₂) + (2
ary))
e - Calculated =
37.16
129.36
4.76
182.08
255.14
-432.15
133.61 | = Residual | Reference 37DOL/GRE | $\Delta_t G^\circ = \ln K_t = \frac{1 - \text{Butyne}}{1 \times \text{C} - (\text{H})}$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 - \text{Pentyne}}{1 \times \text{C} - (\text{H})}$ | 165.23
81.42
290.83 | 195.85
- 79.00
× C-(H) ₂ (C)(C)
e - Calculated
166.64
82.47
289.27
- 125.41
204.03
- 82.30
× C-(H) ₂ (C) ₂) | = Residual - 1.41 - 1.05 1.56 | C))+ Reference 51PRO/MAR 69STU/WES 69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | I) ₃ (C)) + (2:
a corr (tertial
Literature
45.10 | × C _d -(H) ₂) + (2
ary))
e - Calculated =
37.16
129.36
4.76
182.08
255.14
-432.15
133.61 | = Residual | Reference 37DOL/GRE | $\Delta_t G^\circ = \ln K_t = \frac{1 - \text{Butyne}}{1 \times \text{C} - (\text{H})}$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 - \text{Pentyne}}{1 \times \text{C} - (\text{H})}$ | 165.23
81.42
290.83
H) ₃ (C)) + (1:C)) + (1 × C ₁ | 195.85
- 79.00
× C-(H) ₂ (C)(C)
e - Calculated
166.64
82.47
289.27
- 125.41
204.03
- 82.30 | = Residual - 1.41 - 1.05 1.56 + (1 × C-(H) ₂ (| C))+ Reference 51PRO/MAR 69STU/WES 69STU/WES | TABLE 9. Alkynes (28) - Continued TABLE 9. Alkynes (28) - Continued | $ \begin{array}{c} C_{\rm g}^{\circ} = & 162.84 \\ S^{\circ} = & 229.86 \\ A_{\rm h}S^{\circ} = & -321.12 \\ A_{\rm h}G^{\circ} = & 211.89 \\ InK_{\rm f} = & -85.48 \\ \end{array} $ | | $()_3(C)) + (1)$ | \times C-(H) ₂ (C) ₂)
-(H)), $\sigma = 3$ | + (1 × C-(H) ₂ | C_5H_8 $(C)(C_1)) +$ | | | $\times C-(H)_2(C)_2$ $(\tau-(H)), \sigma = 3$ | + (1 × C-(H) ₂ | C ₈ H ₁₄
(C)(C ₁))+ | |--|----------------------------------|------------------|---|---------------------------|------------------------|-----------------------|---------------------------------------|--|---------------------------|--| | | | Literatur | e - Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | $ \begin{array}{c} C_c^* = & 162.84 \\ S^* = & 229.86 \\ S^* = & 229.86 \\ S^* = & -231.12 \\ A_G^* = & -211.189 \\ A_G^* = & -237.37 \\ A_G^* = & -237.30 A_G$ | Liquid Phas | e | | | | Gas Phase | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\Delta_{\mathbf{f}}H^{\circ} =$ | | 116.15 | | | | 80.71 | 84.12 | -3.41 | 79ROG/DAG | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $C_{p}^{\circ} =$ | | 162.84 | | | | 173.97 | | - 0.06 | 69STU/WES | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 229.86 | | | - | 446.64 | | 0.73 | 69STU/WES | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | Liquid Phase Liq | | | 211.89 | | | | | | | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $lnK_f =$ | , , | - 85.48
 | | | $lnK_f =$ | · · · · · · · · · · · · · · · · · · · | - 95.75 | | · · · · · · · · · · · · · · · · · · · | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | I iouid Pha | se. | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.Havuna | | | | C.H. | | | 38.96 | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | D-(C)) + (5 | x ር-(ዘ)ኅርን-ን | + (1 × C-(H)- | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | . (17.0 (11)2 | (-)(-)) | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | (1.7.4) | -,, . (1 ^) | ()), 0 = 3 | | | | | | | | | InK _f = -91.84 -91.91 InK _f = -91.84 InK _f = -91.91 InK _f = -91.84 InK _f = -91.91 InK
_f = -91.91 InK _f = -91.84 InK _f = -91.91 InK _f = -91.91 InK _f = -91.91 InK _f = -91.84 InK _f = -91.91 InK _f = -91.91 InK _f = -91.84 InK _f = -91.91 InK _f = -91.84 InK _f = -91.91 InK _f = -91.91 InK _f = -91.84 InK _f = -91.91 | | Literatur | e - Calculated | = Residual | Reference | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | - | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | · · | | C9H16 | | | s° = | 368.74 | | 1.15 | 69STU/WES | | | | $+ (1 \times C - (H)_2)$ | (C)(G))+ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | (1×C _t -(0 | $C))+(1\times C)$ | $(-(H)), \sigma = 3$ | | | | Liquid Phase $\Delta_t H^o = 90.42$ $\Delta_t H^o = 62.25$ 63.49 -1.24 $79ROG/DA$ $C_s^o = 193.26$ $C_s^o = 196.82$ 196.92 -0.10 $69STU/WES$ $S^o = 262.24$ $S^o = 485.60$ 485.07 0.53 $69STU/WES$ $\Delta_t G^o = 217.15$ $\Delta_t G^o = 245.71$ $\ln K_t = -87.60$ $\ln K_t = -99.12$ $\Delta_t H^o = 13.23$ $\Delta_t G^o = 245.71$ $\ln K_t = -99.12$ $\Delta_t H^o = 13.23$ $\Delta_t G^o = 39.36$ 3$ | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\ln K_{\rm f} =$ | | - 89.03 | | · | | Literatu | re – Calculated | = Residual | Reference | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Liquid Pho | | | | | Gas Phase | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | • | se | 00.42 | | | | 62.25 | 63.40 | _124 | 70P.OG/DAG | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | - | | | | | - | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | _ | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | 405.00 | | 0.55 | 09310/WL3 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | 1-Heptyne $(1 \times C_{-}(H)_{3}(C)) + (3 \times C_{-}(H)_{2}(C)_{2}) + (1 \times C_{-}(H)_{2}(C)(C_{1})) + C_{-}(H)_{2}(C)(C_{1}) $ | - | | | | | | | | | | | 1-Heptyne $(1 \times C_{-}(H)_{3}(C)) + (3 \times C_{-}(H)_{2}(C)_{2}) + (1 \times C_{-}(H)_{2}(C)(C_{1}) + C_{-}(C_{1}) C$ | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | se | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | T) (C)) . (2 | | 1 (1 × C (T) | | | | | | | | Literature - Calculated = Residual Reference | | | | + (1 × C-(H)2 | (C)(G))+ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | (1×C-(0 | J))+(1×C | $-(H)$, $\sigma = 3$ | | | | | | | | | Gas Phase $\Delta_{l}H^{\circ} = 103.76 104.75 -0.99 79\text{ROG/DAG}$ $C_{p}^{\circ} = 151.08 151.14 -0.06 69\text{STU/WES}$ $S^{\circ} = 407.69 406.75 0.94 69\text{STU/WES}$ $\Delta_{l}G^{\circ} = 229.04 101.16 -92.39$ Liquid Phase $\Delta_{l}H^{\circ} = 64.69 \Delta_{l}H^{\circ} = 41.88 42.86 -0.98 79\text{ROG/DAG}$ $C_{p}^{\circ} = 229.64 C_{p}^{\circ} = 223.68 C_{p}^{\circ} = 219.70 219.81 -0.11 69\text{STU/WES}$ $S^{\circ} = 294.62 S^{\circ} = 524.51 524.23 0.28 69\text{STU/WES}$ $\Delta_{l}G^{\circ} = 222.41 \Delta_{l}G^{\circ} = 254.04$ | | 7 14 | | Destained | D - f | | | | | | | Gas Phase $\Delta_t H^\circ = 103.76 104.75 -0.99 79 \text{ROG/DAG}$ $C_p^\circ = 151.08 151.14 -0.06 69 \text{STU/WES}$ $S^\circ = 407.69 406.75 0.94 69 \text{STU/WES}$ $\Delta_t S^\circ = -416.86$ $\Delta_t G^\circ = 229.04$ $\ln K_t = -92.39$ Liquid Phase $\Delta_t H^\circ = 64.69$ $C_p^\circ = 223.68$ $S^\circ = 294.62$ $\Delta_t S^\circ = -528.99$ $\Delta_t G^\circ = 222.41$ $\Delta_t S^\circ = -708.31$ $\Delta_t G^\circ = 222.41$ | | Literatur | e - Calculated | = Kesiduai | Reference | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | ., | | | | | | 75.70 | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | r) (~') | | | C10H18 | | $\Delta_t G^\circ = 229.04 \ lnK_t = -92.39$ Literature - Calculated = Residual Reference Liquid Phase $\Delta_t H^\circ = 64.69$ $C_p^\circ = 223.68$ $C_p^\circ = 223.68$ $C_p^\circ = 294.62$ $C_p^\circ = 524.51$ $C_p^\circ = 524.23$ $C_p^\circ = 524.51$ $C_p^\circ = 69.51$ C | - | 407.69 | | 0.94 | 69STU/WES | | | | $+(1\times C-(H)_2)$ | (C)(C _i))+ | | Liquid Phase Gas Phase $\Delta_t H^\circ =$ 64.69 $\Delta_t H^\circ =$ 41.88 42.86 -0.98 79ROG/DAG $C_p^\circ =$ 223.68 $C_p^\circ =$ 219.70 219.81 -0.11 69STU/WES $S^\circ =$ 294.62 $S^\circ =$ 524.51 524.23 0.28 69STU/WES $\Delta_t S^\circ =$ -528.99 $\Delta_t S^\circ =$ -708.31 $\Delta_t G^\circ =$ 222.41 $\Delta_t G^\circ =$ 254.04 | | | | | | (1×C₁-(0 | ر(ر))+(1×C | $\sigma(H)$, $\sigma=3$ | | | | Liquid Phase $ \Delta_t H^\circ = \qquad $ | | | | | | | T : | | D | D. C | | $\Delta_t H^\circ = 64.69$ $\Delta_t H^\circ = 41.88$ 42.86 -0.98 $79ROG/DAG$ $C_\rho^\circ = 223.68$ $C_\rho^\circ = 219.70$ 219.81 -0.11 $69STU/WES$ $S^\circ = 294.62$ $S^\circ = 524.51$ 524.23 0.28 $69STU/WES$ $\Delta_t S^\circ = -708.31$ $\Delta_t G^\circ = 222.41$ $\Delta_t G^\circ = 254.04$ | $lnK_f =$ | | - 92.39 | | | | Literatui | e – Calculated | = Residual | Reference | | $\Delta_t H^\circ = 64.69$ $\Delta_t H^\circ = 41.88$ 42.86 -0.98 $79ROG/DAG$ $C_p^\circ = 223.68$ $C_p^\circ = 219.70$ 219.81 -0.11 $69STU/WES$ $S^\circ = 294.62$ $S^\circ = 524.51$ 524.23 0.28 $69STU/WES$ $\Delta_t S^\circ = -708.31$ $\Delta_t G^\circ = 222.41$ $\Delta_t G^\circ = 254.04$ | Liquid Pho | se | | | | Gas Phase | | | | | | $C_p^{\circ} =$ 223.68 $C_p^{\circ} =$ 219.70 219.81 -0.11 69STU/WES $S^{\circ} =$ 294.62 $S^{\circ} =$ 524.51 524.23 0.28 69STU/WES $\Delta_t S^{\circ} =$ -528.99 $\Delta_t S^{\circ} =$ -708.31 $\Delta_t G^{\circ} =$ 222.41 $\Delta_t G^{\circ} =$ 254.04 | | | 64 69 | | | | 41.88 | 42.86 | _0.98 | 79ROG/DAG | | $S^{\circ} = 294.62$ $S^{\circ} = 524.51$ 524.23 0.28 69STU/WES $\Delta_{c}S^{\circ} = -528.99$ $\Delta_{c}S^{\circ} = -708.31$ $\Delta_{c}G^{\circ} = 222.41$ $\Delta_{c}G^{\circ} = 254.04$ | - | | | | | | | | | | | $\Delta_{r}S^{\circ} = -528.99$ $\Delta_{f}S^{\circ} = -708.31$ $\Delta_{f}G^{\circ} = 222.41$ $\Delta_{f}G^{\circ} = 254.04$ | • | | | | | | | | | | | $\Delta_t G^\circ = 222.41 \qquad \Delta_t G^\circ = 254.04$ | | | | | | Δ.S° = | J27,J1 | | 0.20 | 09910/WE9 | | | | | | | | | | | | | | The state of s | | | | | | - | | | | | | | | | | | | 1 | | | | | TABLE 9. Alkynes (28) - Continued | TABLE | 9. | Alkynes | (28) | _ | Continued | |-------|----|---------|------|---|-----------| |-------|----|---------|------|---|-----------| | (1×G-(C) | ₃ (C))+(6×
))+(1×C ₁ - | $C-(H)_2(C)_2$
(H)), $\sigma = 3$ | + (1 × C-(H) ₂ (| $C_{10}H_{18}$
$C(C_1) +$ | (2×0-(1. | I)₃(C))+(2 | × C ₁ -(C)), σ = | = 18 | C4 |
--|---|--|------------------------------|--|---|-------------|---------------------------------------|--------------------------|--| | | | - Calculated | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | | | | | | Liquid Phas | se | | | | | Gas Phase | | | | | $\Delta_t H^\circ =$ | 118.53 | 119.08 | -0.55 | 50AST/MAS | | | 44.00 | 40.06 | 0.00 | 70D O O D A C | | | | | | | $\Lambda_i H^{\circ} =$ | 41.88 | 42.86 | -0.98 | 79ROG/DAG | $C_{\rho}^{\circ} =$ | 124.14 | 124.14 | 0.00 | 50AST/MAS | | $C_{P}^{\circ} =$ | 219.70 | 219.81 | -0.11 | 69STU/WES | S° = | 195.10 | 195.10 | 0.00 | 50AST/MAS | | <i>S</i> ° = | 524.51 | 524.23 | 0.28 | 69STU/WES | $\Delta_f S^\circ =$ | | -219.57 | | | | $\Delta_f S^\circ =$ | | -708.31 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 184.55 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 254.04 | | W. | $lnK_f =$ | | - 74.44 | | | | $lnK_f =$ | | -102.48 | | | - | | | | | | iquid Phase | | | | | 2-Pentyne | | | | C _s | | | 5 | - 12.50 | | | | D (C)\ . (1 | v.C. (II) (C)(C | | | | $A_iH^\circ =$ | | | | | (2×C-(F | 1/3(U)/+(1 | \times C-(H) ₂ (C)(C | <i>111</i> + (4 × 4 − (1 | $\cup_{IJ}, \sigma = y$ | | $C_p^o =$ | | 314.94 | | | | T :4 | | D!! | D.C. | | <i>S</i> ° = | | 391.76 | | | | Literatur | e – Calculated | = Kesidual
 Reference | | Δ _ι ς° = | | - 840.78 | | | | | | | | | $_iG^{\circ} =$ | | 238.18 | | | | | | | | | $\ln K_{\rm f} =$ | | - 96.08 | | | Gas Phase | | | | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | 128.87 | 125.98 | 2.89 | 69STU/WES | | | | | | THE RESERVE TO SERVE THE PERSON OF PERSO | $C_p^{\circ} =$ | 98.70 | 98.87 | - 0.17 | 69STU/WES | | | | | | | | | | | | | | | | | | S° = | 331.79 | 331.81 | -0.02 | 69STU/WES | | -Hexadecyn | | | | C ₁₆ H ₃₀ | $\Delta_{\mathfrak{t}}S^{\circ} =$ | | -219.17 | | | | | | \times C-(H) ₂ (C) ₂ |)+(1×C-(H) | ₂(C)(C₁))+ | $\Delta_{\rm f}G^{\circ} =$ | | 191.33 | | | | (1 × C _i -(C | $(1 \times C_t$ | $-(H)), \sigma = 3$ | | | $lnK_f =$ | | <i>−77.</i> 18 | | | | • | Literature | - Calculated | = Residual | Reference | | | | | | | | | | | | Liquid Phas | se | 06.05 | | | | | | | | | $\Delta_t H^\circ =$ | | 96.95 | | | | as Phase | | | | | $C_p^{\circ} =$ | | 154.53 | | | | $\Delta_i H^\circ =$ | | -80.92 | | | <i>S</i> ° = | | 227.46 | | | | $C_p^{\circ} =$ | 356.94 | 357.15 | -0.21 | 69STU/WES | $\Delta_f S^\circ =$ | | -323.52 | | | | S° = | 758.22 | 759.19 | -0.97 | 69STU/WES | $\Delta_t G^{\circ} =$ | | 193.41 | | | | $\Delta_f S^\circ =$ | 100.22 | - 1291.22 | 5.77 | 0,010/1120 | $\ln K_{\rm f} =$ | | -78.02 | | | | | | | | | nnzt – | | 70.02 | | | | $\Delta_t G^\circ = \ln K_t =$ | | 304.06
122.65 | | | | | | | ······································ | | - | | | | | 3-Methyl-1- | butvne | | | Csl | | Liquid Phas | e | | | | • | • | × C-(H)(C) ₂ (C | Z))+ | | | $\Delta_t H^\circ =$ | - | 166.88 | | | | | (11)(2)(2)
ary)) + $(1 \times C_1$ | | $(H)), \sigma = 0$ | | $C_p^{\circ} =$ | | 497.46 | | | (011) | , (| | (-)) . (1) | ()), | | | | | | | | T :+ | o Colout-4-3 | m Docidu-1 | Dofores | | S° = | | 586.04 | | | | Literatur | e – Calculated | – Residuai | Reference | | 4 00 | | - 1464.36 | | | | | | | | | | | 269.72 | | | | | | | | | $\Delta_i G^\circ =$ | | | | | | | | | | | $\Delta_t G^{\circ} =$ | | 108.80 | | | Gas Phase | | | | | | $\Delta_t G^{\circ} =$ | | | | | | 136,40 | 136.40 | 0.00 | 69STU/WES | | | | | | | $\Delta_f H^\circ =$ | | | 0.00 | | | | | | | | $\Delta_{\rm f}H^{\circ} = C_{\rm P}^{\circ} =$ | 104.68 | 104.68 | 0.00 | 69STU/WES | | $\Delta_f G^\circ = \ln K_f =$ | | | | CH | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} =$ | | 104.68
318.96 | | | | $\Delta_f G^\circ = \ln K_f =$ -Butyne | 0 (0) 1 (2) | 108.80 | 10 | C ₄ H ₆ | $\Delta_{\mathbf{f}}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{\mathbf{f}}S^{\circ} =$ | 104.68 | 104.68
318.96
-232.02 | 0.00 | 69STU/WES | | $\Delta_f G^\circ = \ln K_f = \frac{1}{2}$ | () ₃ (C))+(2: | | = 18 | C ₄ H ₆ | $\Delta_t H^\circ = C_P^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 104.68 | 104.68
318.96
-232.02
205.58 | 0.00 | 69STU/WES | | $\Delta_f G^\circ = \ln K_f = \frac{1}{2}$ | | 108.80
< C ₁ -(C)), σ = | | | $\Delta_{\mathbf{f}}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{\mathbf{f}}S^{\circ} =$ | 104.68 | 104.68
318.96
-232.02 | 0.00 | 69STU/WES | | $\Delta_f G^\circ = \ln K_f =$ -Butyne | | 108.80 | | C₄H ₆ | $\Delta_t H^\circ = C_P^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 104.68 | 104.68
318.96
-232.02
205.58 | 0.00 | 69STU/WES | | $\Delta_f G^\circ = InK_f In$ | | 108.80
< C ₁ -(C)), σ = | | | $\Delta_t H^\circ = C_P^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 104.68 | 104.68
318.96
-232.02
205.58 | 0.00 | 69STU/WES | | $\Delta_t G^\circ = InK_t = InK_t = InK_t$ -Butyne (2 × C-(H | Literature | 108.80 < C _t (C)), σ = e Calculated | = Residual | Reference | $\Delta_t H^\circ = C_P^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 104.68 | 104.68
318.96
-232.02
205.58 | 0.00 | 69STU/WES | | $\Delta_t G^\circ = \ln K_t = $ -Butyne $(2 \times C - (H + Gas Phase \Delta_t H^\circ = Gas Phase D_t G$ | Literature | 108.80 < C ₁ (C)), σ = e Calculated 145.68 | = Residual
- 0.54 | Reference 51PRO/MAR | $\Delta_t H^\circ = C_P^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 104.68 | 104.68
318.96
-232.02
205.58 | 0.00 | 69STU/WES | | $\Delta_t G^\circ = \ln K_t = \frac{1}{2}$ Butyne $(2 \times C - (H + G^\circ))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = \frac{1}{2}$ | Literature
145.14
77.95 | 108.80
< C ₁ -(C)), σ =
e - Calculated
145.68
77.90 | = Residual
- 0.54
0.05 | Reference 51PRO/MAR 69STU/WES | $\Delta_t H^\circ = C_P^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 104.68 | 104.68
318.96
-232.02
205.58 | 0.00 | 69STU/WES | | $\Delta_t G^\circ = \ln K_t = $ 3-Butyne $(2 \times C - (H + G^\circ))$ Gas Phase $\Delta_t H^\circ = C_p^\circ $ | Literature | 108.80 < C ₁ (C)), σ = e Calculated 145.68 | = Residual
- 0.54 | Reference 51PRO/MAR | $\Delta_t H^\circ = C_P^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 104.68 | 104.68
318.96
-232.02
205.58 | 0.00 | 69STU/WES | | $\Delta_f G^\circ = InK_f In$ | Literature
145.14
77.95 | 108.80
< C ₁ -(C)), σ =
e - Calculated
145.68
77.90 | = Residual
- 0.54
0.05 | Reference 51PRO/MAR 69STU/WES | $\Delta_t H^\circ = C_P^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 104.68 | 104.68
318.96
-232.02
205.58 | 0.00 | 69STU/WES | | $\Delta_t G^\circ = InK_t In$ | Literature
145.14
77.95 | 108.80
< C ₁ -(C)), σ =
e - Calculated
145.68
77.90
283.25 | = Residual
- 0.54
0.05 | Reference 51PRO/MAR 69STU/WES | $\Delta_t H^\circ = C_P^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 104.68 | 104.68
318.96
-232.02
205.58 | 0.00 | 69STU/WES | | TABLE 9. | Alkynes | (28) $-$ | Continued | |----------|---------|----------|-----------| |----------|---------|----------|-----------| TABLE 9. Alkynes (28) - Continued | | $(H)_1 + (1 \times C_1)_2, \ \sigma = 2$ | $-(C_d)$) + (1 × C_d | <u>-</u> (H)(C₁))+ | | | | \times C-(H) ₂ (C) ₂)
\times C _d -(H)(C ₁)) | | $(C)(C_d)$) +
) + (1 × C_t –(H)) | |--|---|---|---|--|--|--------------------------------------|--|--|--| | | Literature | e – Calculated = | Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 73.18
279.37 | 289.52
73.18
279.38 | 0.00
-0.01 | 69STU/WES
69STU/WES | Gas Phase $\Delta_t H^\circ = C_p^\circ =$ | | 153.86
208.46 | | | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | | -4.73
290.93
-117.36 | | | Liquid Phas $\Delta_t H^\circ =$ | se
100.75 | 96,21 | 4.54 | 59SKI/SNE | | cis-3-Pente
(1 × C-(1 | H)₃(C))+(1×
+ (1×C₁− | $(H)) + (1 \times cis)$ | unsat) corr) | C_5H_6
$(C_1) + (1 \times C_1 - (C_d))$ | | $(C) + (2 \times C) + (2 \times C)$ | × C-(H) ₂ (C) ₂)
-(C _d))+(1 × C | C_{d} -(H)(C_{i})) + (| $1 \times C_{d}$ $-(H)_2)$ | | | Literatur | e – Calculated = | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas Phase $\Delta_t H^\circ = C_p^\circ =$ | | 262.11
88.24 | | | Gas Phase $\Delta_t H^\circ = C_p^\circ =$ | | 187.90
156.33 | | | | Liquid Pha
Δ _ε H° = | 226.35 | 230.13 | -3.78 | 59SKI/SNE | Liquid Phas $\Delta_t H^\circ =$ | se
140.71 | 144.65 | -3.94 | 57FLI/SKI | | trans -3-Per
(1 × C–(1 | H) ₃ (C))+(1 | | (1×C _d −(H)(| C_5H_6 $C_1) + (1 \times C_1 - (C_d))$ | Butadiyne
(2×C ₁ –(F | ·I))+(2×C ₁ | $(-(C_t)), \sigma = 2$ | | C ₄ F | | | + (1×C ₁ - | (H))
e – Calculated = | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | | | | | | Gas Phase $\Delta_t H^\circ =$ | 472.79
73.64 | 468.52
73.64 | 4.27
0.00 | 69STU/WES | | Gas Phase $\Delta_t H^\circ = C_p^\circ =$ Liquid Pha | | 257.26
96.27 | · | | $C_{\rho}^{\circ} = S^{\circ} = S_{f}S^{\circ} = \Delta_{f}S^{\circ} = \ln K_{f} = 0$ | 250.04 | 250.04
96.51
439.75
- 177.39 | 0.00 | 69STU/WES
69STU/WES | | $\Delta_t H^\circ = C_p^\circ =$ | | | 3.16 | 59SKI/SNE | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = 0$ | | 250.04
96.51
439.75 | | | | $\Delta_{\ell}H^{\circ} = C_{p}^{\circ} = $ Liquid Pha $\Delta_{\ell}H^{\circ} = $ cis-3-Decen | ase 228.02 | 96.27 | | C ₁₀ H ₁₆ | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = \frac{1,5\text{-Hexadiy}}{1}$ | 250.04
ne | 250.04
96.51
439.75 | 0.00 | | | $\Delta_t H^\circ = C_p^\circ =$ Liquid Pha $\Delta_t H^\circ =$ $(1 \times C_t - (1 \times C_t - 1))$ | ase
228.02
n-1-yne
H) ₃ (C)) + (4 | 96.27 224.86 × C-(H) ₂ (C) ₂)- × cis (unsat) cor | + (1 × C–(H) ₂ (| $C_{10}H_{16}$ (C)(C _d)) + | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = \frac{1,5\text{-Hexadiy}}{1}$ | 250.04 ne H)) + (2 × C _t | 250.04
96.51
439.75
-177.39 | 0.00
-(H) ₂ (C ₁) ₂) | 69STU/WES | | $\Delta_t H^\circ = C_p^\circ =$ Liquid Pha $\Delta_t H^\circ =$ $(1 \times C_t - (1 \times C_t - 1))$ | n-1-yne
H) ₃ (C)) + (4
(H)(C)) + (1
(C _d)) + (1 × C | 96.27 224.86 × C-(H) ₂ (C) ₂)- × cis (unsat) cor | + (1 × C–(H) ₂ /
rr) + (1 × C _d –(| $C_{10}H_{16}$ (C)(C _d)) + | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =
\frac{1,5\text{-Hexadiy}}{1}$ | 250.04 ne H)) + (2 × C _t | 250.04
96.51
439.75
-177.39 | 0.00
-(H) ₂ (C ₁) ₂) | 69STU/WES | | TARTE O | Allamos | (28) | Continued | |-----------|---------|--------|-----------| | I ABLE 9. | Aikvnes | (28) — | Continuea | # TABLE 9. Alkynes (28) - Continued | 1,7-Octadiy
(2×C₁-(1 | | -(C))+(2×C- | $(H)_2(C)(C_1))$ | $C_8H_{10} + (2 \times C - (H)_2(C)_2)$ | | 3(C))+(1) | | < C₁−(C)) + (1 | C_6H_{16}
× C-(C) ₃ (C ₁)) + | |--|--|---|-------------------------|--|---|--------------------------------------|--|---------------------------|---| | | Literature | - Calculated = | = Residual | Reference | (3×−CH ₃ | `. | ernary))
ture-Calculated | 1 — Dosidual | Reference | | | | | | | | Litera | ure-Calculated | i = Kesiduai | Reference | | Gas Phase $\Delta_t H^\circ = C_p^\circ =$ | | 376.54
159.26 | | | Liquid Phase
Δ _f H° = | 78.45 | 78.45 | 0.00 | 77KUP/SHI | | | | | | | | | | | | | Liquid Pha $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} =$ | se
334.72 | 327.52
252.72
293.12 | 7.20 | 57FLI/SKI | 3,3-Dimethyl
(2×C-(H) | | liyne
< C _t -(H)) + (2 > | < C _i -(C))+(1 | C_7H_1
× C-(C) ₂ (C ₁) ₂) | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | -405.65
448.47 | | | | Litera | ure-Calculated | l = Residual | Reference | | $lnK_f =$ | | - 180.91 | | | Liquid Phase $\Delta_t H^\circ =$ | 348.69 | 348.69 | 0.00 | 77KUP/SHI | | 3,9-Dodeca
(2 × C-(I
(2 × C-(I | H) ₃ (C))+(4>
H) ₂ (C) ₂) | < C-(H)₂(C)(C
e – Calculated = | | C ₁₂ H ₁₈ C)) + Reference | | 3(C))+(2>
3(C ₁))+(4> | | uaternary)) | $C_{12}H_{11}$
+ $(2 \times C_1 - (C))$ + | | Gas Phase | | | | | | | | | | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = -$ | | 255.82
234.00 | | | Liquid Phase $\Delta_t H^\circ =$ | 211.08 | 209.44 | 1.64 | 77KUP/SHI | | Liquid Pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | se
196.61 | 193.40
357.72
417.80
-826.22 | 3.21 | 57FLI/SKI | 2,2,7,7-Tetrar
(6×C-(H)
(6×-CH ₃ (| 3(C))+(2> | $(C-(C)_3(C_1))+$ | · (2×C,-(C)) + | C12H16
+(2×C1-(C1))+ | | $\Delta_l G^\circ = \ln K_l =$ | | 439.74
177.39 | | | | Literat | ure-Calculated | l = Residual | Reference | | | H)3(C))+(4) | < C-(H) ₂ (C) ₂) - | + (2×C-(H) ₂ | $C_{12}H_{18}$ $(C)(C_1)) +$ | Liquid Phase $\Delta_t H^\circ =$ | | 157.56 | | | | (2×G-(| C))+(2×C _t -
Literature | =(G))
= – Calculated = | = Residual | Reference | Solid Phase $\Delta_t H^\circ =$ | 156.10 | 156.10 | 0.00 | 77KUP/SHI | | Gas Phase | | | | | | | | | | | $\Delta_i H^\circ = C_p^\circ =$ | | 265.28
239.94 | | | | | | | | | | | | | | | | | | | TABLE 10. Aromatic CH-01 (42) | Benzene
(6×C _B -(| H)(C _B) ₂), σ | = 12 | | C ₆ H ₆ | 1,2-Dimethy
(2×C-(F | | $\times C_B - (H)(C_B)$ | 2)+(2×C _B -(C | C_8H_1 | |--|---------------------------------------|---|--|--
--|--|--|---|--| | (2 (| , , , , | | | | | corr), σ = | | | | | | Literatur | e – Calculated
————— | = Residual | Reference | | Literatur | re – Calculated | = Residual | Reference | | Gas phase | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | $\Delta_i H^{\circ} =$ | 82.80 | 82.86 | -0.06 | 47OSB/GIN | Gas phase | | | | | | $C_p^{\circ} =$ | 81.67 | 81.66 | 0.01 | 69STU/WES | $\Delta_{\mathbf{f}}H^{\circ} =$ | 19.08 | 19.26 | -0.18 | 47OSB/GIN | | S° = | 269.20 | 269.20 | 0.00 | 69STU/WES | $C_p^{\circ} =$ | 133.26 | 131.80 | 1.46 | 69STU/WES | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 156.95 | | | . S° = | 352.75 | 350.13 | 2.62 | 69STU/WES | | $\Delta_{\rm f}G^{\circ} =$ | | 129.66 | | | $\Delta_f S^\circ =$ | | -348.65 | | | | $\ln K_{\rm f} =$ | | -52.30 | | | $\Delta_{\rm r}G^{\circ} =$ | | 123.21 | | | | | | | | | $lnK_f =$ | | -49.70 | | | | Liquid phas | se | | | | | | | | | | $\Delta_t H^\circ =$ | 48.95 | 48.96 | -0.01 | 69GOO/SMI | Liquid phas | se | | | | | $C_p^{\circ} =$ | 136.06 | 136.08 | -0.02 | 48OLI/EAT | $\Delta_{\mathbf{f}}H^{\circ} =$ | -24.35 | ~21.00 | - 3.35 | 45PRO/GIL | | S° = | 173.26 | 173.22 | 0.04 | 48OLI/EAT | $C_p^{\circ} =$ | 187.82 | 187.38 | 0.44 | 43PIT/SCO | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -252.93 | | | S° = | 246.02 | 243.08 | 2.94 | 43PIT/SCO | | $\Delta_t G^{\circ} =$ | | 124.37 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 455.69 | | | | $\ln K_{\rm f} =$ | | -50.17 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 114.87 | | | | | | | | | $lnK_f =$ | | -46.34 | | | | Solid phase | ; | | | | | | | | · <u>·</u> | | $\Delta_{f}H^{\circ} =$ | 39.08 | 39.18 | -0.10 | 48OLI/EAT | | | | | | | $C_p^{\circ} =$ | | 120.78 | | | 1,3-Dimethy | | | | C ₈ H ₁ | | S° = | | 136.50 | | | (2×C-(H | I)₃(C))+(4 | $\times C_B - (H)(C_B)_2$ | $(2 \times C_B - (C$ | $C)(C_B)_2) +$ | | $\Delta_f S^\circ =$ | | -289.65 | | | (1×meta | corr), $\sigma =$ | 18 | | | | $\Delta_f G^\circ =$ | | 125.54 | | | | | | | | | | | | | | | T itamatum | e - Calculated | - Pacidual | Reference | | $lnK_f =$ | | - 50.64 | | | | Literatur | | | | | Toluene | , , ,, , | | | C_7H_8 $C_7(C_D)_2$, $\sigma = 6$ Reference | Gas phase $\Delta_t H^\circ = C_r^\circ = S^\circ = \Delta_t S^\circ =$ | 17.32
127.57
357.69 | 17.37
126.11
352.63
- 346.15 | - 0.05
1.46
5.06 | 47OSB/GIN
69STU/WES
69STU/WES | | Toluene | , , ,, , | × C _B (H)(C _B) ₂ | | $C)(C_{\rm B})_2), \sigma = 6$ | $\Delta_l H^{\circ} = C_p^{\circ} = S^{\circ} =$ | 17.32
127.57 | 17.37
126.11
352.63 | -0.05
1.46 | 47OSB/GIN
69STU/WES | | Toluene | , , ,, , | × C _B (H)(C _B) ₂ | | $C)(C_{\rm B})_2), \sigma = 6$ | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = S^{\circ} = S^{\circ}$ | 17.32
127.57 | 17.37
126.11
352.63
- 346.15
120.57 | -0.05
1.46 | 47OSB/GIN
69STU/WES | | Toluene
(1 × C-(F | , , ,, , | × C _B (H)(C _B) ₂ | | $C)(C_{\rm B})_2), \sigma = 6$ | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = S^{\circ} = S^{\circ}$ | 17.32
127.57 | 17.37
126.11
352.63
- 346.15
120.57 | -0.05
1.46 | 47OSB/GIN
69STU/WES | | Toluene $(1 \times C - (I))$ Gas phase $\Delta_t H^\circ =$ | Literatur | × C _n –(H)(C _n) ₂
e – Calculated | = Residual | $(C_D)_2$, $\sigma = 6$ Reference | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = S^{\circ} = S^{\circ}$ | 17.32
127.57
357.69 | 17.37
126.11
352.63
- 346.15
120.57 | -0.05
1.46 | 47OSB/GIN
69STU/WES | | Toluene (1×C-(I | Literatur | \times C _n -(H)(C _n) ₂
e - Calculated
50.43 | = Residual | $(C_D)_2$, $\sigma = 6$ Reference 47OSB/GIN | $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{\ell}S^{\circ} = \Delta_{\ell}G^{\circ} = \ln K_{\ell} = \frac{1}{2}$ | 17.32
127.57
357.69 | 17.37
126.11
352.63
- 346.15
120.57 | -0.05
1.46 | 47OSB/GIN
69STU/WES | | Toluene $(1 \times C - (I))$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 50.00
103.64 | × C _n -(H)(C _n) ₂ e - Calculated 50.43 103.53 | = Residual
- 0.43
0.11 | $(C_D)_2$, $\sigma = 6$ Reference 47OSB/GIN 69STU/WES | $\Delta_t H^\circ = C_r^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = S^\circ = \Delta_t H^\circ = S^\circ = \Delta_t H^\circ = S^\circ = S^\circ = \Delta_t H^\circ = S^\circ $ | 17.32
127.57
357.69 | 17.37
126.11
352.63
- 346.15
120.57
- 48.64 | -0.05
1.46
5.06 | 47OSB/GIN
69STU/WES
69STU/WES | | Toluene
$(1 \times C - (I \times C - (I \times C - (I \times C + ($ | 50.00
103.64 | × C _p -(H)(C _p) ₂ e - Calculated 50.43 103.53 318.36 | = Residual
- 0.43
0.11 | $(C_D)_2$, $\sigma = 6$ Reference 47OSB/GIN 69STU/WES | $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{\ell}S^{\circ} = \Delta_{\ell}G^{\circ} = \ln K_{\ell} = $ Liquid phas | 17.32
127.57
357.69 | 17.37
126.11
352.63
-346.15
120.57
-48.64 | - 0.05
1.46
5.06
- 1.10
- 0.70 | 47OSB/GIN
69STU/WES
69STU/WES
45PRO/GIL
43PIT/SCO | | Toluene
$(1 \times C - (I \times C - (I \times C - (I \times C + ($ | 50.00
103.64 | × C _p -(H)(C _p) ₂ e - Calculated 50.43 103.53 318.36 - 244.10 123.21 | = Residual
- 0.43
0.11 | $(C_D)_2$, $\sigma = 6$ Reference 47OSB/GIN 69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid phas $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \frac{1}{2}$ | 17.32
127.57
357.69 | 17.37
126.11
352.63
-346.15
120.57
-48.64
-24.26
183.88
243.08 | -0.05
1.46
5.06 | 47OSB/GIN
69STU/WES
69STU/WES | | Toluene
$(1 \times C - (I \times C - (I \times C - (I \times C + ($ | 50.00
103.64 | × C _n -(H)(C _n) ₂ e - Calculated 50.43 103.53 318.36 - 244.10 |
= Residual
- 0.43
0.11 | $(C_D)_2$, $\sigma = 6$ Reference 47OSB/GIN 69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid phas $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \frac{1}{2}$ | 17.32
127.57
357.69 | 17.37
126.11
352.63
-346.15
120.57
-48.64
-24.26
183.88
243.08
-455.69
111.61 | - 0.05
1.46
5.06
- 1.10
- 0.70 | 47OSB/GIN
69STU/WES
69STU/WES
45PRO/GIL
43PIT/SCO | | Toluene $(1 \times C - (I))$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 1$ Liquid pha | 50.00
103.64
320.66 | × C _n -(H)(C _n) ₂ e - Calculated 50.43 103.53 318.36 - 244.10 123.21 - 49.70 | = Residual - 0.43 0.11 2.30 | Reference 47OSB/GIN 69STU/WES 69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid phas $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \frac{1}{2}$ | 17.32
127.57
357.69 | 17.37
126.11
352.63
- 346.15
120.57
- 48.64
- 24.26
183.88
243.08
- 455.69 | - 0.05
1.46
5.06
- 1.10
- 0.70 | 47OSB/GIN
69STU/WES
69STU/WES
45PRO/GIL
43PIT/SCO | | Toluene
$(1 \times C - (I C))))))))))))))))))$ | 50.00
103.64
320.66 | × C _p -(H)(C _p) ₂ e - Calculated 50.43 103.53 318.36 - 244.10 123.21 | = Residual
- 0.43
0.11 | $(C_D)_2$, $\sigma = 6$ Reference 47OSB/GIN 69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid phas $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \frac{1}{2}$ | 17.32
127.57
357.69 | 17.37
126.11
352.63
-346.15
120.57
-48.64
-24.26
183.88
243.08
-455.69
111.61 | - 0.05
1.46
5.06
- 1.10
- 0.70 | 47OSB/GIN
69STU/WES
69STU/WES
45PRO/GIL
43PIT/SCO | | Toluene $(1 \times C - (I))$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 1$ Liquid pha | 50.00
103.64
320.66 | × C _n -(H)(C _n) ₂ e - Calculated 50.43 103.53 318.36 - 244.10 123.21 - 49.70 | = Residual - 0.43 0.11 2.30 | Reference 47OSB/GIN 69STU/WES 69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid phas $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \frac{1}{2}$ | 17.32
127.57
357.69 | 17.37
126.11
352.63
-346.15
120.57
-48.64
-24.26
183.88
243.08
-455.69
111.61 | - 0.05
1.46
5.06
- 1.10
- 0.70 | 47OSB/GIN
69STU/WES
69STU/WES
45PRO/GIL
43PIT/SCO
43PIT/SCO | | Toluene
$(1 \times C - (I C)))))))))))))))))))))$ | 50.00
103.64
320.66 | SO.43
103.53
318.36
- 244.10
123.21
- 49.70 | - 0.43
0.11
2.30 | P(C _D) ₂), σ = 6 Reference 47OSB/GIN 69STU/WES 69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid phas $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \frac{1}{2}$ | 17.32
127.57
357.69
se
-25.36
183.18
253.80 | 17.37
126.11
352.63
-346.15
120.57
-48.64
-24.26
183.88
243.08
-455.69
111.61 | - 0.05
1.46
5.06
- 1.10
- 0.70 | 47OSB/GIN
69STU/WES
69STU/WES
45PRO/GIL
43PIT/SCO
43PIT/SCO | | Toluene $(1 \times C - (I \times C - (I \times C - (I \times C + (I$ | 50.00
103.64
320.66 | S0.43
103.53
318.36
-244.10
123.21
-49.70 | - 0.43
0.11
2.30
- 0.34
- 2.75 | Reference 47OSB/GIN 69STU/WES 69STU/WES 69GOO/SMI 62SCO/GUT | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{1}{4}$ Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{1}{4}$ 1,4-Dimethy | 17.32
127.57
357.69
se - 25.36
183.18
253.80 | 17.37
126.11
352.63
- 346.15
120.57
- 48.64
- 24.26
183.88
243.08
- 455.69
111.61
- 45.02 | - 0.05
1.46
5.06
- 1.10
- 0.70
10.72 | 47OSB/GIN
69STU/WES
69STU/WES
45PRO/GIL
43PIT/SCO
43PIT/SCO | | Toluene
$(1 \times C - (I C))))))))))))))))))$ | 50.00
103.64
320.66 | 50.43
103.53
318.36
- 244.10
123.21
- 49.70
12.35
159.98
208.15 | - 0.43
0.11
2.30
- 0.34
- 2.75 | Reference 47OSB/GIN 69STU/WES 69STU/WES 69GOO/SMI 62SCO/GUT | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{1}{4}$ Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{1}{4}$ 1,4-Dimethy | 17.32
127.57
357.69
se - 25.36
183.18
253.80 | 17.37
126.11
352.63
- 346.15
120.57
- 48.64
- 24.26
183.88
243.08
- 455.69
111.61
- 45.02 | - 0.05
1.46
5.06
- 1.10
- 0.70
10.72 | 47OSB/GIN
69STU/WES
69STU/WES
45PRO/GIL
43PIT/SCO
43PIT/SCO | | Toluene
$(1 \times C - (I C)))))))))))))))))))))$ | 50.00
103.64
320.66 | 50.43
103.53
318.36
-244.10
123.21
-49.70
12.35
159.98
208.15
-354.31 | - 0.43
0.11
2.30
- 0.34
- 2.75 | Reference 47OSB/GIN 69STU/WES 69STU/WES 69GOO/SMI 62SCO/GUT | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{1}{4}$ Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{1}{4}$ 1,4-Dimethy | 17.32
127.57
357.69
se - 25.36
183.18
253.80 | 17.37
126.11
352.63
- 346.15
120.57
- 48.64
- 24.26
183.88
243.08
- 455.69
111.61
- 45.02 | -0.05
1.46
5.06
-1.10
-0.70
10.72 | 47OSB/GIN
69STU/WES
69STU/WES
45PRO/GIL
43PIT/SCO
43PIT/SCO | | Toluene
$(1 \times C - (I C)))))))))))))))))))))$ | 50.00
103.64
320.66 | 50.43
103.53
318.36
-244.10
123.21
-49.70
12.35
159.98
208.15
-354.31
117.99 | - 0.43
0.11
2.30
- 0.34
- 2.75 | Reference 47OSB/GIN 69STU/WES 69STU/WES 69GOO/SMI 62SCO/GUT | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{C_{p}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1,4\text{-Dimethy}}{(2 \times \text{C-(F)})^{\circ}}$ | 17.32
127.57
357.69
se - 25.36
183.18
253.80 | 17.37
126.11
352.63
- 346.15
120.57
- 48.64
- 24.26
183.88
243.08
- 455.69
111.61
- 45.02
× C _B -(H)(C _B) ₂ | -0.05
1.46
5.06
-1.10
-0.70
10.72 | 47OSB/GIN
69STU/WES
69STU/WES
4SPRO/GIL
43PIT/SCO
43PIT/SCO
43PIT/SCO | | Toluene
$(1 \times C - (I C)))))))))))))))))))))$ | 50.00
103.64
320.66 | 50.43
103.53
318.36
-244.10
123.21
-49.70
12.35
159.98
208.15
-354.31
117.99 | - 0.43
0.11
2.30
- 0.34
- 2.75 | Reference 47OSB/GIN 69STU/WES 69STU/WES 69GOO/SMI 62SCO/GUT | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ 1,4-Dimethy (2 × C-(F) | 17.32
127.57
357.69
se
- 25.36
183.18
253.80
vlbenzene
(I) ₃ (C)) + (4
Literatur | 17.37
126.11
352.63
-346.15
120.57
-48.64
-24.26
183.88
243.08
-455.69
111.61
-45.02
× C _B -(H)(C _B) ₂ | -0.05
1.46
5.06
-1.10
-0.70
10.72
)+(2×C _B -(C | 47OSB/GIN 69STU/WES 69STU/WES 4SPRO/GIL 43PIT/SCO 43PIT/SCO C ₈ H _H (C _B) ₂), σ = 18 Reference | | Toluene
$(1 \times C - (I C)))))))))))))))))))))$ | 50.00
103.64
320.66 | 50.43
103.53
318.36
-244.10
123.21
-49.70
12.35
159.98
208.15
-354.31
117.99 | - 0.43
0.11
2.30
- 0.34
- 2.75 | Reference 47OSB/GIN 69STU/WES 69STU/WES 69GOO/SMI 62SCO/GUT | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = $ 1,4-Dimethy $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ = (H)$ | 17.32
127.57
357.69
se
-25.36
183.18
253.80
dbenzene
(1) ₃ (C)) + (4
Literatur | 17.37 126.11 352.63 -346.15 120.57 -48.64 -24.26 183.88 243.08 -455.69 111.61 -45.02 × C _B -(H)(C _B) ₂ c Calculated | -0.05 1.46 5.06 -1.10 -0.70 10.72)+(2×C _B -(C) -Residual | 47OSB/GIN 69STU/WES 69STU/WES 69STU/WES 45PRO/GIL 43PIT/SCO 43PIT/SCO C ₈ H ₁₆ ((C _B) ₂), σ = 18 Reference | | Toluene
$(1 \times C - (I C)))))))))))))))))))))$ | 50.00
103.64
320.66 | 50.43
103.53
318.36
-244.10
123.21
-49.70
12.35
159.98
208.15
-354.31
117.99 | - 0.43
0.11
2.30
- 0.34
- 2.75 | Reference 47OSB/GIN 69STU/WES 69STU/WES 69GOO/SMI 62SCO/GUT | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = $ 1,4-Dimethy (2×C-(F)) Gas phase $\Delta_t H^\circ - C_\rho^\circ = S^\circ = C_\rho^\circ = S^\circ = C_\rho^\circ = S^\circ = C_\rho^\circ = S^\circ S$ | 17.32
127.57
357.69
se
-25.36
183.18
253.80
Albenzene
(1) ₃ (C)) + (4
Literatur
18.03
126.86 | 17.37 126.11 352.63 -346.15 120.57 -48.64 -24.26 183.88 243.08 -455.69 111.61 -45.02 × C _B -(H)(C _B) ₂ re Calculated 18.00 125.40 | -0.05 1.46 5.06 -1.10 -0.70 10.72)+(2×C _B -(C) - Residual | 47OSB/GIN 69STU/WES 69STU/WES 45PRO/GIL 43PIT/SCO 43PIT/SCO 43PIT/SCO 43PIT/SCO 47OSD/GIN 69STU/WES | |
Toluene
$(1 \times C - (I C))))))))))))))))))))$ $ = C_{i} C_{i$ | 50.00
103.64
320.66 | 50.43
103.53
318.36
-244.10
123.21
-49.70
12.35
159.98
208.15
-354.31
117.99 | - 0.43
0.11
2.30
- 0.34
- 2.75 | Reference 47OSB/GIN 69STU/WES 69STU/WES 69GOO/SMI 62SCO/GUT | $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 1,4-Dimethy (2 × C-(H))$ Gas phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} $ | 17.32
127.57
357.69
se
-25.36
183.18
253.80
dbenzene
(1) ₃ (C)) + (4
Literatur | 17.37 126.11 352.63 -346.15 120.57 -48.64 -24.26 183.88 243.08 -455.69 111.61 -45.02 × C _B -(H)(C _B) ₂ ve Calculated 18.00 125.40 352.63 | -0.05 1.46 5.06 -1.10 -0.70 10.72)+(2×C _B -(C) -Residual | 47OSB/GIN 69STU/WES 69STU/WES 69STU/WES 45PRO/GIL 43PIT/SCO 43PIT/SCO C ₈ H ₁₆ ((C _B) ₂), σ = 18 Reference | | Toluene
$(1 \times C - (I C))))))))))))))))))))$ $ = C_{i} C_{i$ | 50.00
103.64
320.66 | 50.43
103.53
318.36
-244.10
123.21
-49.70
12.35
159.98
208.15
-354.31
117.99 | - 0.43
0.11
2.30
- 0.34
- 2.75 | Reference 47OSB/GIN 69STU/WES 69STU/WES 69GOO/SMI 62SCO/GUT | $\Delta_{t}H^{\circ} = C_{r}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{r}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 1,4-Dimethy (2 × C-(H))$ Gas phase $\Delta_{t}H^{\circ} = C_{r}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = 1$ | 17.32
127.57
357.69
se
-25.36
183.18
253.80
Albenzene
(1) ₃ (C)) + (4
Literatur
18.03
126.86 | 17.37 126.11 352.63 - 346.15 120.57 - 48.64 - 24.26 183.88 243.08 - 455.69 111.61 - 45.02 × C _B -(H)(C _B) ₂ c Calculated 18.00 125.40 352.63 - 346.15 | -0.05 1.46 5.06 -1.10 -0.70 10.72)+(2×C _B -(C) - Residual | 47OSB/GIN 69STU/WES 69STU/WES 45PRO/GIL 43PIT/SCO 43PIT/SCO 43PIT/SCO 43PIT/SCO 47OSD/GIN 69STU/WES | | Toluene
$(1 \times C - (I C))))))))))))))))))))$ $ = C_{i} C_{i$ | 50.00
103.64
320.66 | 50.43
103.53
318.36
-244.10
123.21
-49.70
12.35
159.98
208.15
-354.31
117.99 | - 0.43
0.11
2.30
- 0.34
- 2.75 | Reference 47OSB/GIN 69STU/WES 69STU/WES 69GOO/SMI 62SCO/GUT | $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 1,4-Dimethy (2 × C-(H))$ Gas phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} $ | 17.32
127.57
357.69
se
-25.36
183.18
253.80
Albenzene
(1) ₃ (C)) + (4
Literatur
18.03
126.86 | 17.37 126.11 352.63 -346.15 120.57 -48.64 -24.26 183.88 243.08 -455.69 111.61 -45.02 × C _B -(H)(C _B) ₂ ve Calculated 18.00 125.40 352.63 | -0.05 1.46 5.06 -1.10 -0.70 10.72)+(2×C _B -(C) - Residual | 47OSB/GIN 69STU/WES 69STU/WES 45PRO/GIL 43PIT/SCO 43PIT/SCO 43PIT/SCO 43PIT/SCO 47OSD/GIN 69STU/WES | TABLE 10. Aromatic CH-01 (42) - Continued | 1,4-Dimethy
(2 × C-(H | | × C _B −(H)(C _B) ₂ |)+(2×C _B -(C | C_8H_{10}
C)(C _B) ₂), $\sigma = 18$ | | (C) + (3 | $\times C_B-(H)(C_B)_2$ | $(2) + (3 \times C_B - (C_B))$ | C_9H_1
$C)(C_B)_2) +$ | |--|-------------------|---|------------------------------|--|--|------------|--|--------------------------------|---------------------------------| | - | Literature | e – Calculated : | = Residual | Reference | (3×meta | corr), σ = | 162
re – Calculated | = Residual | Reference | | Liquid phas | ce ce | | | | | | | | | | $\Delta_t H^\circ = V$ $C_p^\circ = V$ | -24.35
183.76 | -24.26
183.88 | -0.09 -0.12 | 45PRO/GIL
43PIT/SCO | Gas phase $\Delta_t H^\circ =$ | - 15.94 | -16.32 | 0.38 | 47OSB/GIN | | S° = | 243.51 | 243.08 | 0.43 | 43PIT/SCO | $C_p^{\circ} =$ | 150.25 | 149.40 | 0.85 | 69STU/WES | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | - 455.69
111.61 | | | $S^{\circ} = \Delta_{f}S^{\circ} =$ | 385.30 | 377.76
- 457.33 | 7.54 | 69STU/WES | | $\ln K_{\rm f} =$ | | - 45.02 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | - 457.33
120.03 | | | | | | | | | $\ln K_{\rm f} =$ | | -48.42 | | | | 1 2 3-Trime | ethylbenzene | | | C ₉ H ₁₂ | Liquid pha | | | | | | | | $\times C_{B}$ -(H)(C_{B}) ₂ |)+(3×C _B -(0 | | $\Delta_i H^\circ =$ | - 63.43 | -60.87 | -2.56 | 45JOH/PRO | | | | meta corr), o | | ·)(-b)2) | $C_p^{\circ} =$ | 209.53 | 207.78 | 1.75 | 55TAY/KIL | | , | | ŕ | | | <i>s</i> ° = | 273.55 | 278.01 | -4.46 | 55TAY/KIL | | | Literatur | e – Calculated: | = Residual | Reference | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -557.08 | | | | | | | | , | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 105.22 | | | | Gas phase | | | | | $lnK_f =$ | | - 42.45 | | | | $\Delta_i H^\circ =$ | - 9.46 | - 12.54 | 3.08 | 47OSB/GIN | | | | | | | $C_p^{\circ} =$ | 154.18 | 160.78 | -6.60 | 69STU/WES | | | | | | | S° = | 384.84 | 381.89 | 2.95 | 69STU/WES | 1,2,3,4-Tetr | amethylben | zene | | C ₁₀ H ₁₄ | | $\Delta_f S^\circ =$ | | -453.19 | | | (4 × C-(I | 1)3(C))+(2 | $\times C_B-(H)(C_B)_2$ | $+(4\times C_{B}-(C_{B})$ | | | $\Delta_{\rm f}G^{\circ} =$ | | 122.58 | | | (3×ortho | corr)+(2 | <meta corr),="" td="" σ<=""/> <td>= 162</td> <td></td> | = 162 | | | $\ln K_{\rm f} =$ | | - 49.45 | | | | T !*** | | D - 211 | D (| | | | *************************************** | | | | Literatur | e – Calculated | = Kesiduai | Reference | | Liquid phat $\Delta_t H^\circ =$ | se
- 58.53 | - 54.35 | -4.18 | 45JOH/PRO | Gas phase | | | | | | $C_p^{\circ} =$ | 216.44 | 214.78 | 1.66 | 55TAY/JOH | $\Delta_t H^{\circ} =$ | -41.92 | -44.34 | 2.42 | 69STU/WES | | S° = | 267.94 | 278.01 | - 10.07 | 55TAY/JOH | $C_p^{\circ} =$ | 189.58 | 189.76 | -0.18 | 69STU/WES | | $\Delta_f S^\circ =$ | | -557.08 | | | S° = | 416.52 | 413.66 | 2.86 | 69STU/WES | | $\Delta_{\rm f}G^{\circ} =$ | | 111.74 | | | $\Delta_f S^\circ =$ | | -557.74 | | | | $lnK_f =$ | | - 45.08 | | · - · · · | $\Delta_f G^\circ = \ln K_f =$ | | 121.95
49.19 | | | | 1 2 4-Trime | ethylbenzene | | | C ₉ H ₁₂ | Liquid phas | ge . | | | | | | | $\times C_B - (H)(C_B)_2$ | $(2) + (3 \times C_B - (0))$ | | $\Delta_{i}H^{\circ} =$ | - 90.21 | -87.70 | -2.51 | 75GOO | | | | «meta corr), σ | | | $C_p^{\circ} =$ | 235.98 | 242.18 | -6.20 | 31HUF/PAR | | | | | | | S° = | 290.79 | 312.94 | -22.15 | 31HUR/PAR | | | Literatur | e - Calculated | = Residual | Reference | $\Delta_f S^\circ =$ | | -658.46 | | | | | | | | | $\Delta_f G^\circ = \ln K_f =$ | | 108.62
43.82 | | | | Gas phase | | | | | 111Kf - | | -43.82 | | | | $\Delta_t H^\circ =$ | - 13.85 | - 13.80 | -0.05 | 47OSB/GIN | | | | | | | $C_p^{\circ} =$ | 154.01 | 154.38 | -0.37 | 69STU/WES | | | | | | | S° = | 395.76 | 390.16 | 5.60 | 69STU/WES | 1,2,3,5-Tetr | | | | C10H14 | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 444.93 | | | | | $\times C_B-(H)(C_B)_2$ | | $(C_B)_2) +$ | | $\Delta_{\rm f}G^{\circ} =$ | | 118.86 | | | (2×ortho | corr)+(2> | meta corr), o | = 162 | | | | | - 47.95 | | | | Literatur | e – Calculated | = Residual | Reference | | $\ln K_{\rm f} =$ | | | | | | | | | | | $lnK_f =$ | se | | -4.19 | 45JOH/PRO | Gas phase | | | | | | | nse
61.80 | -57.61 | | | $\Delta_{\ell}H^{\circ} =$ | -44.81 | -45.60 | 0.79 | COCTLIANTE | | $lnK_f =$ Liquid pha | | - 57.61
211.28 | 3.69 | 57PUT/KIL | $\Delta \mu_I -$ | 77.01 | | 0.77 | 69STU/WES | | $lnK_f =$ Liquid pha $\Delta_f H^\circ =$ | -61.80 | | | 57PUT/KIL
57PUT/KIL | | 185.73 | 183.36 | 2.37 | 69STU/WES | | In $K_f =$ Liquid pha $\Delta_f H^\circ =$ $C_f^\circ =$ $S^\circ =$ $\Delta_f S^\circ =$ | - 61.80
214.97 | 211.28 | 3.69 | | $C_p^{\circ} = S^{\circ} =$ | | | | | | Liquid pha
$\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | - 61.80
214.97 | 211.28
278.01
- 557.08
108.48 | 3.69 | | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} =$ | 185.73 | 183.36 | 2.37 | 69STU/WES | | In $K_f =$ Liquid pha $\Delta_f H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_f S^\circ =$ | - 61.80
214.97 | 211.28
278.01
- 557.08 | 3.69 | | $C_p^{\circ} = S^{\circ} =$ | 185.73 | 183.36
416.16 | 2.37 | 69STU/WES | | , | 0011) | meta corr), σ | | | (| | ×meta corr), o | | | |---|-------------------|---|--------------------------|----------------------|----------------------------------|----------------------|---------------------------|---------------|--------------| | · | Literature | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid phas | e | | | | Liquid pha | se | | | | | $\Delta_t H^\circ =$ | - 96.36 | 90.96 | -5.40 | 75GOO | $\Delta_{\rm f}H^{\rm o} =$ | - 122.97 | - 121.05 | -1.92 | 33FER/THO | | $C_p^{\circ} =$ | 240.16 | 238.68 | 1.48 | 31HUF/PAR | $C_p^{\circ} =$ | | 269.58 | | | | s° = | 310.03 | 312.94 | - 2.91 | 31HUF/PAR | s° = | | 347.87 | | | | $\Delta_f S^\circ =$ | | 658.46 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | <i>−</i> 759.84 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 105.36 | | | $\Delta_f G^\circ =$ | | 105.50 | | | | $lnK_f =$ | | - 42.50 | | | $lnK_f =$ | | - 42.56 | | | | | | | | | Solid phase | e | | | | | 1.2.4.5-Tetra | amethylbenz | zene | | $C_{10}H_{14}$ | $\Delta_t H^{\circ} =$ | -133.64 | - 129.67 | -3.97 | 64BON/COL | | | | $\times C_B - (H)(C_B)_2$ | $(4 \times C_{B} - (0))$ | | $C_p^{\circ} =$ | 270.29 | 241.08 | 29.21 | 44EIB | | | | meta corr), o | | | S° = | 294.14 | 278.70 | 15.44 | 31HUF/PAR | | • | , , | • | | |
$\Delta_{\mathbf{f}}S^{\circ} =$ | | -829.01 | | | | | Literatur | e – Calculated | = Residual | Reference | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 117.50 | | | | | | ·
———————————————————————————————————— | | | $lnK_t =$ | | -47.40 | | | | Gas phase | 45.27 | - 45.60 | 0.33 | 69STU/WES | | | | | | | $\Delta_{\mathfrak{l}}H^{\circ} =$ | - 45.27
186.52 | - 45.60
183.36 | 3.16 | 69STU/WES | Hexamethy | lhenzene | | | C12H1 | | $C_{\rho}^{\circ} = S^{\circ} =$ | | | 8.13 | 69STU/WES | | | × C =(C)(C) |) i (6 v owho | | | $\Delta_t S^\circ =$ | 418.53 | 410.40
-561.00 | 0.13 | 03310/WE3 | | $corr$), $\sigma =$ | $6 \times C_B - (C)(C_B)$ |)+(u×onno (| (OII) + | | $\Delta_f S^\circ = \Delta_f G^\circ = 0$ | | -301.00
121.66 | | | (3×meiu | (011), 0 - | 0/40 | | | | $\ln K_{\rm c} =$ | | - 49.08 | | | | T itamatu | re – Calculated | _ Dooldwal | Reference | | mx _t = | | - 49.08 | | | | Literatu | | - Kesiduai | Keterence | | Liquid phas | se | | | | Gas phase | | | | | | $\Delta_i H^\circ =$ | - 98.99 | - 90.96 | -8.03 | 75GOO | $\Delta_{\rm f}H^{\circ} =$ | - 86.82 | - 107.31 | 20.49 | 67FRA/AST | | $C_p^{\circ} =$ | | 238.68 | | | $C_p^{\circ} =$ | 248.61 | 254.83 | -6.22 | 69STU/WES | | S° = | | 312.94 | | | s° = | 452.37 | 459.79 | - 7.42 | 69STU/WES | | $\Delta_f S^\circ =$ | | - 658.46 | | | $\Delta_{\rm f} S^{\circ} =$ | | <i>−</i> 784.23 | | | | $\Delta_t G^{\circ} =$ | | 105.36 | | | $\Delta_{t}G^{\circ} =$ | | 126.51 | | | | $lnK_f =$ | | - 42.50 | | | $lnK_{\ell} =$ | | -51.03 | | | | Solid phase | | | | | Liquid phas | se | | | | | • | -119.87 | - 104.30 | ~ 15.57 | 75GOO | $\Delta_{\rm f}H^{\circ} =$ | - 139.14 | - 151.14 | 12.00 | 32SPA/THO | | $C_p^o =$ | 220.08 | 217.02 | 3.06 | 44EIB | $C_p^{\circ} =$ | | 300.48 | | 0-0-1-4-1-10 | | s° = | 245.60 | 250.26 | - 4.66 | 31HUF/PAR | S° = | | 382.80 | | | | $\Delta_f S^\circ =$ | | -721.14 | | | $\Delta_{f}S^{\circ} =$ | | -861.22 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 110.71 | | | $\Delta_t G^{\circ} =$ | | 105.63 | | | | $lnK_f =$ | | - 44.66 | | | $lnK_f =$ | | -42.61 | | | | | | | | | Solid phase | | | | | | Pentamethy | lhenzene | | | $C_{11}H_{16}$ | $\Delta_{\rm f}H^{\circ} =$ | - 161.54 | - 157.04 | -4.50 | 64BON/COL | | | | $\times C_B$ -(H)(C _B) ₂ | 1)+(5×C(C | | $C_p^{\circ} =$ | 245.64 | 265.14 | - 19.50 | 65FRA/AST | | | | meta corr), o | | ,,, - 2 ,2, , | S° = | 306.31 | 307.14 | -0.83 | 65FRA/AST | | (| (() | | 100 | | $\Delta_{f}S^{\circ} =$ | 500.51 | -936.88 | 0.05 | OSI KAYASI | | | Literatur | e – Calculated | = Residual | Reference | $\Delta_{\rm f}G^{\circ} =$ | | 122.29 | | | | | | | 10514441 | | $\ln K_{\rm f} =$ | | -49.33 | | | | Gas phase | | . | | | | | | | | | $\Delta_i H^\circ =$ | - 74.48 | - 76.77 | 2.29 | 69STU/WES | | | | | | | $C_p^{\circ} =$ | 216.48 | 219.45 | -2.97 | 69STU/WES | | | | | | | | 443.88 | 445.42 | - 1.54 | 69STU/WES | | | | | | | S° = | 443.00 | | 1.57 | 0751071125 | | | | | | | $\Delta_f S^\circ =$ | 443.00 | -662.28 | 1.54 | 0,510, W25 | | | | | | | - | 443.00 | | 1.54 | 0,510,4125 | | | | | | TABLE 10. Aromatic CH-01 (42) - Continued | | ne
[) ₃ (C))+(1>
H)(C _B) ₂), σ | $C-(H)_2(C)(C)$ = 6 | (B)) + $(1 \times C_B -$ | $(C)(C_B)_2) +$ | | $I_{3}(C) + (2$ | ed)
\times C(H) ₂ (C) ₂) -
$(5 \times C_B$ (H)(C _B) | | $(C)(C_B)) +$ | |---|---|--|-----------------------------|---------------------------------|--|---------------------------|--|----------------------|---------------------------------------| | | Literature | e – Calculated = | = Residual | Reference | | Literatur | e – Calculated = | = Residual | Reference | | Gas phase | | | | | Liquid phas | | | | | | $\Delta_i H^\circ =$ | 29.92 | 29.09 | 0.83 | 47OSB/GIN | $\Delta_f H^{\circ} =$ | -63.85 | -63.92 | 0.07 | 46PRO/JOH | | $C_p^{\circ} =$ | 128.41 | 129.14 | -0.73 | 69STU/WES | $C_p^{\circ} =$ | 243.34 | 243.72 | -0.38 | 65MES/TOD | | S° = | 360.45 | 360.95 | -0.50 | 69STU/WES | <i>S</i> ° = | 321.21 | 320.31 | 0.90 | 65MES/TOD | | $\Delta_f S^\circ =$ | | -337.82 | | | $\Delta_f S^\circ =$ | | -651.09 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 129.81 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 130.20 | | | | $lnK_f =$ | | - 52.37 | | | $lnK_f =$ | | -52.52 | | | | Liquid phas | se | | | | | | | | | | $\Delta_t H^\circ =$ | -12.34 | - 12.46 | 0.12 | 45PRO/GIL | Pentylbenze | ene | | | $C_{11}H_{16}$ | | $C_p^{\circ} =$ | 185.81 | 182.88 | 2.93 | 44GUT/SPI | • | | \times C-(H) ₂ (C) ₂) - | + (1 × C-(H)- | | | S° = | 255.01 | 255.55 | -0.54 | 44GUT/SPI | | | $(5 \times C_{R} - (H)(C_{R})$ | | · · · · · · · · · · · · · · · · · · · | | $\Delta_f S^\circ =$ | | -443.22 | | - | | | . , , , , , , , | | | | $\Delta_f G^\circ = \ln K_f =$ | | 119.69
48.28 | | | | Literatur | e – Calculated : | = Residual | Reference | | mel _ | | 70.20 | | | G- : | | | | | | | | | | | Gas phase | 24.42 | 20.00 | 1.62 | COOTTIATEO | | n 11 | | | | 0.11 | $\Delta_{\mathbf{f}}H^{\circ} =$ | -34.43 | -32.80 | -1.63 | 69STU/WES | | Propylbenz | | | . (1(2.(11) | C ₉ H ₁₂ | $C_p^{\circ} = .$ | 197.99 | 197.81 | 0.18 | 69STU/WES | | | | \times C-(H) ₂ (C) ₂) | | (C)(C _B))+ | .ς° =
Δ _t ς° = | 478.94 | 478.43
629.28 | 0.51 | 69STU/WES | | (1 × CB-(| $(C)(C_B)_2)+($ | $(5 \times C_B - (H)(C_B))$ | $_{3})_{2}), \sigma = 0$ | | $\Delta_{f}S = \Delta_{f}G^{\circ} =$ | | 154.82 | | | | | I itarat | e - Calculated | - Residual | Reference | $\Delta_f G^* = \ln K_f =$ | | - 62.45 | | | | | Literatur | - Calculated | - residuai | Reference | ink _f = | | - 02.43 | | | | Gas phase | | | | | Liquid phas | se | | | | | $\Delta_i H^{\circ} =$ | 7.91 | 8.46 | -0.55 | 47OSB/GIN | $\Delta_{\mathbf{f}}H^{\circ} =$ | | -89.65 | | | | $C_p^{\circ} =$ | 152.34 | 152.03 | 0.31 | 69STU/WES | $C_p^{\circ} =$ | | 274.14 | | | | S° = | 400.66 | 400.11 | 0.55 | 69STU/WES | <i>s</i> ° = | | 352.69 | | | | $\Delta_f S^\circ =$ | | - 434.97 | | | $\Delta_f S^\circ =$ | | -755.02 | | | | $\Delta_f G^\circ =$ | | 138.15 | | | $\Delta_{\rm f}G^{\circ} =$ | | 135.46 | | | | lnK₁ − | | - 55.73 | | | $lnK_r =$ | | - 54.64 | | | | T::d -L- | | | | | | | | | | | Liquid pha $\Delta_r H^\circ =$ | -38.33 | - 38.19 | -0.14 | 45PRO/GIL | Hexylbenze | | | 1 - 1 | C ₁₂ H ₁₆ | | $C_p^{\circ} =$ | 214.72 | 213.30 | 1.42 | 65MES/TOD | (1×C-(I | 1) ₃ (C)) + (4 | \times C-(H) ₂ (C) ₂) - | $+(1\times C-(H)_2)$ | $(C)(C_B)) +$ | | S° = | 287.78 | 287.93 | -0.15 | 65MES/TOD | $(1 \times C_B - ($ | $C)(C_B)_2)+($ | $(5 \times C_B - (H)(C_B))$ | $)_2), \sigma = 6$ | | | $\Delta_{\rm f} S^{\circ} =$ | | -547.16 | | | | T :++ | o Coloulata | - Dooldwal | Doforce | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = $ | | 124.94
50.40 | | | | Literatur | e – Calculated = | - residual | Reference | | | | | | | Gas phase | | | | | | | | | | | $\Delta_{i}II^{\circ}$ — | -55.02 | −53.43 | - 1.59 | 69STU/WES | | Butylbenze | ne | | | C ₁₀ H ₁₄ | $C_p^{\circ} =$ | 220.87 | 220.70 | 0.17 | 69STU/WES | | (1×C-(1 | $H)_3(C)) + (2$ | \times C-(H) ₂ (C) ₂) | $+(1\times C-(H)_2$ | | <i>S</i> ° = | 517.90 | 517.59 | 0.31 | 69STU/WES | | | | $(5 \times C_{B} - (H)(C_{E})$ | | • | $\Delta_f S^\circ =$ | | -726.43 | | | | | | | | | $\Delta_f G^\circ =$ | | 163.15 | | | | | Literatu | re – Calculated | = Residual | Reference | $lnK_f =$ | | - 65.82 | | | | | | | | | Tionid -t- | | | | | | Gos ak | | 10 17 | _ 0.00 | ACDROJICII | Liquid phas | 50 | _115 20 | | | | | -13.05 | 12.17
174.92 | - 0.88
0.18 | 46PRO/JOH
69STU/WES | $\Delta_{\mathbf{f}}H^{\circ} = C_{p}^{\circ} =$ | | -115.38
304.56 | | | | $\Delta_{\rm f}H^{\circ} =$ | 175 10 | 1/4.74 | | | | | | | | | $\Delta_{i}H^{\circ} = C_{p}^{\circ} =$ | 175.10
430 40 | 430.27 | በ 22 | 60CTH/W/EC | | | | | | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} =$ | 175.10
439.49 | 439.27
- 532.12 | 0.22 | 69STU/WES | S° = | | 385.07
-858.95 | | | | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} =$ | | -532.12 | 0.22 | 69STU/WES | $\Delta_t S^\circ =$ | | -858.95 | | | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} =$ | | | 0.22 | 69STU/WES | | | | | | | | (C) + (5 | × C-(H) ₂ (C) ₂) -
(5 × C _B -(H)(C _B | | $C_{13}H_{20}$ $(C)(C_B)) +$ | | $H_{3}(C)) + (7$ | ued)
'× C-(H) ₂ (C) ₂)
(5 × C _B -(H)(C ₁ | | $C_{15}H_{24}$ (C)(C _B))+ |
---|------------------------------------|--|-------------------------|--|--|------------------------------|---|--------------------------------|--| | | Literatur | e – Calculated : | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | - 75.65
243.72
556.85 | -74.06
243.59
556.75
-823.58
171.49
-69.18 | -1.59
0.13
0.10 | 69STU/WES
69STU/WES
69STU/WES | Liquid pha $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se | -192.57
395.82
482.21
-1170.74
156.49
-63.13 | | | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S$ | se | - 141.11
334.98
417.45
- 962.88
145.97 | | | | $(C)(C_B)_2$ | 5 × C-(H) ₂ (C) ₂)
(5 × C _B -(H)(C ₁
re – Calculated | $(\alpha_3)_2$), $\sigma = 6$ | $C_{16}H_{26}$ $(C)(C_B)) +$ Reference | | | $(C)(C_B)_2$ | -58.88 × C-(H) ₂ (C) ₂) (5 × C _B -(H)(C _B) re - Calculated | $(a)_2$), $\sigma = 6$ | $C_{14}H_{22}$ $(C)(C_B)) +$ Reference | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 137.49
312.34
673.71 | -135.95
312.26
674.23
-1115.03
196.50
-79.27 | -1.54
0.08
-0.52 | 69STU/WES
69STU/WES
69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t =$ | - 96.23
266.60
595.80 | - 94.69
266.48
595.91
- 920.73
179.83
- 72.54 | -1.54
0.12
-0.11 | 69STU/WES
69STU/WES
69STU/WES | Liquid pha
$\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se | -218.30
426.24
514.59
-1274.67
161.74
-65.25 | | | | Liquid pha
$\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | ise | 166.84
365.40
449.83
1066.81
151.23
61.01 | | | | $(C)(C_B)_2 + (S_B)_2$ | \times C-(H) ₂ (C) ₂)
(5 \times C _B -(H)(C _E)
re – Calculated | $(3)_2$), $\sigma = 6$ | $C_{17}H_{28}$ $(C)(C_B)) +$ Reference | | Nonyibenze
(1×C-(1 | $H)_3(C)) + (7$
$(C)(C_B)_2) +$ | $F \times C$ - $(H)_2(C)_2$)
$(5 \times C_B$ - $(H)(C_B$)
F = -C | $(3)_2$), $\sigma = 6$ | $C_{15}H_{24}$ $(C)(C_B)) +$ Reference | Gas phase $ \Delta_{\mathbf{f}}H^{\circ} = \\ C_{\rho}^{\circ} = \\ S^{\circ} = \\ \Delta_{\mathbf{f}}S^{\circ} = \\ \Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = \\ $ | - 158.07
335.22
712.62 | -156.58
335.15
713.39
-1212.18
204.83
-82.63 | - 1.49
0.07
- 0.77 | 69STU/WES
69STU/WES
69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -116.86
289.45
634.75 | -115.32
289.37
635.07
-1017.88
188.16
-75.90 | -1.54
0.08
-0.32 | 69STU/WES
69STU/WES
69STU/WES | Liquid pha $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se | -244.03
456.66
546.97
-1378.60
167.00
-67.37 | | | TABLE 10. Aromatic CH-01 (42) - Continued | | () ₃ (C))+(10) | \times C-(H) ₂ (C) ₂)
\times C _B -(H)(C _B) | | $C_{18}H_{30}$
$C(C)(C_B)) +$ | (2×C-(I | (C) + (1) | e (Continued)
× C-(H) ₂ (C)(C
(1×meta corr) | | C_9H_{12}
(C)(C _B) ₂)+ | |--|------------------------------|---|------------------------|---------------------------------------|---|--|--|----------------------|---| | | Literature | – Calculated = | Residual | Reference | · | Literatur | c – Calculated | - Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t =$ | - 178.70
358.07
751.57 | -177.21
358.04
752.55
-1309.33
213.17
-85.99 | -1.49
0.03
-0.98 | 69STU/WES
69STU/WES
69STU/WES | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = In K_f =$ | se
- 48.70 | - 49.07
206.78
290.48
- 544.61
113.30
- 45.71 | 0.37 | 45JOH/PRO | | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | | - 269.76
487.08
579.35
- 1482.54
172.26
- 69.49 | | | (2×C-(I | (H)(C _B) ₂), σ | × C-(H) ₂ (C)(C | | C_3H_{12} $(C)(C_B)_2) +$ Reference | | (2×C-(F | $(H)(C_B)_2)+(1$ | e
< C-(H) ₂ (C)(C ₁
1× <i>ortho</i> corr),
e – Calculated = | $\sigma = 9$ | C_9H_{12} $(C)(C_B)_2) +$ Reference | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = $ | - 3.26
151.54
398.90 | -3.34
151.01
395.22
-439.87
127.81
-51.56 | 0.08
0.53
3.68 | 69STU/WES
69STU/WES
69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 1.21
157.90
399.24 | -2.08
157.41
398.48
-436.60
128.09
-51.67 | 3.29
0.49
0.76 | 69STU/WES
69STU/WES
69STU/WES | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | se
49.79 | -49.07
206.78
290.48
-544.61
113.30
-45.71 | -0.72 | 45JOH/PRO | | Liquid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
46.40 | - 45.81
210.28
290.48
- 544.61
116.56
- 47.02 | - 0.59 | 45JOH/PRO | (2×C-(I | $C)(C_B)_2) + ($ | ene
× C-(H) ₂ (C) ₂)
4 × C _B -(H)(C _B
e – Calculated | $(1
\times ortho$ | | | (2×C-(I | $(H)(C_B)_2)+($ | e
×C-(H) ₂ (C)(C
1× <i>meta</i> corr),
e - Calculated = | $\sigma = 9$ | C_9H_{12} $(C)(C_B)_2) +$ Reference | Gas phase $ \Delta_t H^\circ = C_p^\circ = $ Liquid phas $ \Delta_t H^\circ = $ | se
72.47 | -22.71
180.30 | -0.93 | 73GOO | | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ - \Delta_t G^\circ = \ln K_t = $ | - 1.92
152.21
404.17 | - 3.97
151.72
400.98
- 434.10
125.46
- 50.61 | 2.05
0.49
3.19 | 69STU/WES
69STU/WES
69STU/WES | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = -\infty$ | | 240.70
322.86
648.54
121.82
49.14 | | | | (2×C-(H | propylbenzene
$(C)(C_B)_2 + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2) + (1 \times C_B (H)_2(C)_2)$ | | | $(1 \times C - (H)(C)_2(C_B)) +$
ertiary)) + $(2 \times C_B - (C)(C_B)_2) +$ | C ₁₀ H ₁₄ | |---|---|---|--|--|---| | | Literature - Calculated = Residual | Reference | Litera | Reference | | | Gas phase | | | | | | | $\Delta_t H^\circ =$ | -24.60 | | Gas phase | 44.00 | | | C _p = | 174.61 | | $\Delta_t H^\circ = C_p^\circ =$ | -33.93
174.29 | | | | | | | | | | Liquid phas $\Delta_t H^\circ =$ | e
-76.23 -74.80 -1.43 | 73GOO | Liquid phase | | | | | | /3G00 | $\Delta_t H^\circ = -78.62$ | -82.05 3.43 | 73GOO | | $C_p^{\circ} =$ | 237.20 | | $C_p^{\alpha} = -76.02$ | 237.86 | /3000 | | $S^{\circ} = \Delta_{f}S^{\circ} =$ | 322.86
648.54 | | $S^{\circ} =$ | 312.48 | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | 118.56 | | $\Delta_t S^\circ =$ | -658.92 | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | 114.41 | | | $lnK_f =$ | -47.83
 | | $lnK_f =$ | -46.15 | | | (2 × C-(I | propylbenzene
$1_{3}(C)$) + $(1 \times C - (H)_2(C)_2)$ + $(1 \times C - (H)_2(C)_2)$
$(1 \times C - (H)_2(C)_2)$ + $(1 \times C - (H)_2(C)_2)$ | $C_{10}H_{14}$ $C)(C_B)) +$ | 1-Methyl-4-isopropy
(3×C-(H) ₃ (C))+ | Thenzene $(1 \times C - (H)(C)_2(C_B)) +$ | C ₁₀ H ₁₄ | | , - , | , -,-, , , , , , , , , , , , , , , , , | | | ertiary)) + $(2 \times C_B - (C)(C_B)_2)$ + | | | | Literature – Calculated = Residual | Reference | $(4 \times C_B - (H)(C_B)_2)$
Litera |)
ture – Calculated = Residual | Reference | | | | | | | | | Gas phase | 22.07 | | Can abasa | | | | $\Delta_i H^\circ =$ | -23.97
173.00 | | Gas phase $\Delta_t II^\circ =$ | -33.30 | | | C _p = | 173.90 | | $C_p^{\circ} =$ | -33.30
173.58 | | | Liquid pha | se. | | *************************************** | | · · · · · · · · · · · · · · · · · · · | | $\Delta_t H^\circ =$ | -75.06 -74.80 -0.26 | 73GOO | Liquid phase | | | | $C_p^{\circ} =$ | 237.20 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | $\Delta_t H^\circ = -78.03$ | -82.05 4.02 | 73GOO | | S° = | 322.86 | | $C_p^{\circ} = 236.40$ | - | 31HUF/PAR | | $\Delta_f S^\circ =$ | -648.54 | | $S^{\circ} = 306.69$ | | 31HUF/PAR | | $\Delta_{\mathbf{f}}G^{\circ} =$ | 118.56 | | Δ _f S° | -658.92 | 311101/17IIX | | $lnK_f =$ | -47.83 | | $\Delta_{\rm f}G^{\circ} =$ | 114.41 | | | | | | $\ln K_{\rm f} =$ | -46.15 | | | (3×C-(I
(2×-CH | isopropylbenzene
$H_{3}(C)$ + $(1 \times C - (H)(C)_2(C_B))$ +
$(1 \times C - (H)(C)_2(C_B)$ +
$(1 \times C)_2(C)$ + $(1 \times C)_3(C)$ +
$(1 \times C)_3(C)$ + $(1 \times C)_3(C)$ + $(1 \times C)_3(C)$ +
$(1 \times C)_3(C)$ + $(1 | C ₁₀ H ₁₄ | 3-Ethyl-1,2-dimethyl
(3×C-(H) ₃ (C)) +
(3×C _B -(H)(C _B) ₂) | benzene $(1 \times C - (H)_2(C)(C_B)) + (3 \times C_{B^-}) + (2 \times ortho \text{ corr}) + (1 \times meta \text{ corr})$ | $C_{10}H_{14}$
(C)(C _B) ₂) + | | , -, | Literature - Calculated = Residual | Reference | | ture – Calculated = Residual | Reference | | | | | | | | | Gas phase | 22.04 | | Gas phase | 22.60 | | | $\Delta_{\rm f}H^{\circ} =$ | -32.04
170.00 | | $\Delta_t H^\circ =$ | -33.88 | | | ~~ | 179.98 | | $C_p^{\circ} =$ | 186.39 | | | $C_p^{\circ} =$ | | | | | | | | SC | | Liquid phase | | | | Liquid pha | | 73GOO | Liquid phase $\Delta_t H^\circ = -80.50$ | -79.16 -1.34 | 75GOO | | Liquid pha $\Delta_l H^\circ =$ | se
-73.30 -78.79 5.49
241.36 | 73GOO | Liquid phase $\Delta_t H^\circ = -80.50$
$C_p^\circ =$ | -79.16 -1.34
237.68 | 75GOO | | Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | −73.30 −78.79 5.49 | 73GOO | $\Delta_{\rm f}H^{\circ} = -80.50$ | | 75GOO | | Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | -73.30 -78.79 5.49
241.36 | 73GOO | $\Delta_{\rm f}H^{\circ} = -80.50$ $C_{\rm p}^{\circ} =$ | 237.68 | 75GOO | | Liquid pha $\Delta_t H^\circ = C_p^\circ =$ | -73.30 -78.79 5.49
241.36
312.48 | 73GOO | $\Delta_t H^\circ = -80.50$ $C_p^\circ = S^\circ =$ | 237.68
325.41 | 75GOO | | (3×C-(F | dimethylbenzene
$H_{3}(C)$) + $(1 \times C-(H)_{2}(C)(C_{B}))$ + $(3 \times C_{B}-(H)(C_{B})_{2})$ + $(1 \times ortho\ corr)$ + $(1 \times meta\ corr)$ | | 5-Ethyl-1,3-dimethylb
$(3 \times C - (H)_3(C)) + ($
$(3 \times C_B - (H)(C_B)_2) - $ | $1 \times C - (H)_2(C)(C_B)) + (3 \times C_B -$ | $(C)(C_B)_2) +$ | |---|--|-----------|--|--|---| | | Literature - Calculated = Residual | Reference | Literati | ure – Calculated = Residual | Reference | | Gas phase | | | Gas phase | | | | $\Delta_{f}H^{\circ} = $ | | | $\Delta_{\rm f}H^{\circ} =$ | -37.66 | | | $C_p^{\circ} =$ | 179.99 | | $C_p^{\circ} =$ | 175.01 | | | Liquid phas | se | | Liquid phase | | | | $\Delta_t H^\circ =$ | -86.02 -82.42 -3.60 | 75GOO " | $\Delta_{\rm f}H^{\circ} = -87.78$ | -85.68 -2.10 | 75GOO | | $C_p^{\circ} =$ | 234.18 | | $C_p^{\circ} =$ | 230.68 | | | S° = | 325.41 | | S° = | 325.41 | | | $\Delta_f S^\circ =$ | -645.99 | | $\Delta_{\mathbf{f}}S^{\circ} =$ | - 645.99 | | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = $ | 110.18
44.45 | | $\Delta_f G^\circ = \ln K_f =$ | 106.92
- 43.13 | | | (3×C-(I | -dimethylbenzene
$H_{13}(C)$) + $(1 \times C - (H)_2(C)(C_B))$ + $(3 \times C_B - (H)(C_B)_2)$ + $(2 \times ontho \ corr)$ + $(1 \times meta \ co$
Literature – Calculated = Residual | | $(3\times C_B-(H)(C_B)_2)$ | $1 \times C - (H)_2(C)(C_B)) + (3 \times C_{B^-} + (1 \times ortho \text{ corr}) + (1 \times meta \text{ corr})$ $- Calculated = Residual$ | | | | | | | | | | Gas phase | 22.00 | | Gas phase | 25.14 | | | $\Delta_t H^\circ = C_p^\circ =$ | - 33.88
186.39 | | $\Delta_{\ell}H^{\circ} = C_{p}^{\circ}
=$ | -35.14
179.99 | | | Liquid pha | se | | Liquid phase | | | | $\Delta_t H^\circ =$ | -80.12 -79.16 -0.96 | 75GOO | $\Delta_t H^\circ = -84.81$ | -82.42 -2.39 | 75GOO | | $C_p^{\circ} =$ | 237.68 | | $C_p^{\circ} =$ | 234.18 | | | S° = | 325.41 | | S° = | 325.41 | | | $\Delta_f S^\circ =$ | -645.99 | | $\Delta_{f}S^{\circ} =$ | 645.99 | | | $\Delta_f G^\circ =$ | 113.44 | | $\Delta_{\mathbf{f}}G^{\circ} =$ | 110.18 | | | $lnK_t =$ | -45.76 | | $lnK_f =$ | -44.45 | | | (3×C-(I | -dimethylbenzene
H) ₃ (C)) + (1 × C-(H) ₂ (C)(C _B)) + (3 × C _B -(| | | 2×C-(H) ₂ (C)(C _B))+(2×C _B -(| $C_{10}H_{14}$
(C)(C _B) ₂) + | | (3×C _B -(| $(H)(C_B)_2$ + $(1 \times ortho \ corr)$ + $(1 \times meta \ corr)$ | | $(4 \times C_B - (H)(C_B)_2) +$ | | | | | Literature - Calculated = Residual | Reference | Literatu | ere – Calculated = Residual | Reference | | Gas phase | | | Gas phase | | | | $\Delta_f H^\circ =$ | -35.14 | | $\Delta_t H^{\circ} =$ | -23.42 | | | $C_p^{\circ} =$ | 179.99 | | $C_p^{\circ} =$ | 183.02 | · | | Liquid pha | | | Liquid phase | | | | | -84.10 -82.42 -1.68 | 75GOO | $\Delta_t H^{\circ} = -68.49$ | -70.62 2.13 | 75GOO | | $\Delta_t H^\circ =$ | | | $C_p^{\circ} =$ | 233.18 | | | $\Delta_{\mathbf{f}}H^{\circ} = C_{p}^{\circ} =$ | 234.18 | | | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 325.41 | | S° = | 337.88 | | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} =$ | 325.41
645.99 | | $S^{\circ} = \Delta_{f}S^{\circ} =$ | 337.88
- 633.52 | | | $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 325.41 | | S° = | 337.88 | | TABLE 11. Aromatic CH-02 (80) | 1,3-Diethylbenzene | C10H14 | |--|--------| | $(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)(C_B)) + (2 \times C_B - (C)(C_B)_2) +$ | | | $(4 \times C_B - (H)(C_B)_2) + (1 \times meta \text{ corr})$ | | | | Literatu | re – Calculated = | Reference | | | |---|----------|----------------------------|-----------|-------|----| | Gas phase | | | | | | | $\Delta_t H^{\circ} =$ | | - 25.31 | | | | | $C_p^{\circ} =$ | | 177.33 | | | ., | | Liquid pha
$\Delta_t H^\circ = C_p^\circ = S^\circ $ | -73.51 | -73.88
229.68
337.88 | 0.37 | 73GOO | | | $\Delta_f S^\circ =$ | | -633.52 | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 115.00 | | | | | $lnK_f =$ | | - 46.39 | | | | #### 1,4-Diethylbenzene $C_{10}H_{14}$ $(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)(C_B)) + (2 \times C_B - (C)(C_B)_2) + (4 \times C_B - (H)(C_B)_2), \sigma = 18$ | | Literatur | e – Calculated | = Residual | Reference | | | |--|------------------|--|------------------|------------------------|--|--| | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | 176.15
434.01 | - 24.68
176.62
437.81
- 533.59
134.41
- 54.22 | - 0.47
- 3.80 | 69STU/WES
69STU/WES | | | | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | - 72.84 | -73.88
229.68
337.88
-633.52
115.00
-46.39 | 1.04 | 73GOO | | | | 1,2,3-Triethylbenzene | C12H18 | |---|--------| | $(3 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)(C_B)) + (3 \times C_B - (C)(C_B)_2) +$ | | | $(3 \times C_B - (H)(C_B)_2) + (2 \times ortho \ corr) + (1 \times meta \ corr), \sigma = 54$ | 1 | | | Literatur | Reference | | | |----------------------------------|---------------|-----------|-------|-----------| | Gas phase | | | | | | $\Delta_t H^\circ =$ | -67.99 | -76.56 | 8.57 | 69STU/WES | | $C_p^o =$ | 228.11 | 237.61 | -9.50 | 69STU/WES | | S° = | 507.23 | 509.66 | -2.43 | 69STU/WES | | $\Delta_f S^\circ =$ | | - 734.36 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 142.39 | | | | $lnK_f =$ | | -57.44 | | | | Liquid pha | nca | | | | | $\Delta_i H^\circ =$ | 130 | - 128.78 | | | | $C_p^{\circ} =$ | | 283.48 | | | | S° = | | 420.21 | | | | $\Delta_{i}S^{\circ} =$ | | - 823.81 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 116.84 | | | | $lnK_f =$ | | -47.13 | | | | | | | | | #### 1,2,4-Triethylbenzene $C_{12}H_{18}$ $(3 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)(C_B)) + (3 \times C_B - (C)(C_B)_2) +$ $(3 \times C_B - (H)(C_B)_2) + (1 \times ortho corr) + (1 \times meta corr), \sigma = 27$ | | Literatui | re – Calculated | = Residual | Reference | | | |--|----------------------------|---|------------------------|-------------------------------------|--|--| | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -71.09
227.94
518.15 | -77.82
231.21
517.93
-726.09
138.66
-55.94 | 6.73
- 3.27
0.22 | 69STU/WES
69STU/WES
69STU/WES | | | | Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = 1$ | se | - 132.04
279.98
420.21
- 823.81
113.58
- 45.82 | | | | | #### 1,3,5-Triethylbenzene $C_{12}H_{18}$ $(3 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)(C_B)) + (3 \times C_B - (C)(C_B)_2) +$ $(3 \times C_B - (H)(C_B)_2) + (3 \times meta \text{ corr}), \sigma = 162$ | | Literatur | Literature – Calculated = Residual | | | | | | |----------------------------------|-----------|------------------------------------|-------|-----------|--|--|--| | Gas phase | | | | | | | | | $\Delta_f H^\circ =$ | -74.73 | -80,34 | 5.61 | 69STU/WES | | | | | $C_p^{\circ} =$ | 224.18 | 226.23 | -2.05 | 69STU/WES | | | | | S° = | 507.69 | 505.53 | 2.16 | 69STU/WES | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 738.49 | | | | | | | $\Delta_f G^\circ =$ | | 139.84 | | | | | | | $lnK_f =$ | | -56.41 | | | | | | | | | | | | | | | TABLE 11. Aromatic CH-02 (80) - Continued | $(3 \times C - (H)_3)$ | benzene (Continued)
$s(C) + (3 \times C - (H)_2(C)(C_B)) + (3 \times C_B)(C_B)_2 + (3 \times meta \text{ corr}), \sigma = 162$ | | | $(1)_3(C)) + (6)$ | ×C-(H) ₂ (C)(C
meta corr), σ | | $C_{18}H_3$
(C)(C _B) ₂) + |
---|--|--|---|---|--|---------------------------------------|--| | | Literature - Calculated = Residu | al Reference | | Literatur | e – Calculated | = Residual | Reference | | Liquid phase | | | Solid phase | | | | | | $\Delta_t H^\circ =$ | - 135.30 | | $\Delta_t H^\circ =$ | | -289.64 | | | | $C_p^{\circ} =$ | 276.48 | | $C_p^{\circ} =$ | | 561.42 | | | | $S^{\circ} =$ | 420.21 | | S° = | | 468.54 | | | | $\Delta_f S^\circ =$ | -823.81 | | $\Delta_{\rm f}S^{\circ} =$ | | - 1593.34 | | | | $\Delta_{\rm f}G^{\circ} =$ | 110.32 | | $\Delta_t G^{\circ} =$ | | 185.42 | | | | $\ln K_{\rm f} =$ | - 44.50 | | $\ln K_{\rm f} =$ | | -74.80 | | | | D 4 4 1 | | O W | T | | | | | | Pentaethylber
(5×C-(H) | nzene
₃ (C)) + (5 × C-(H) ₂ (C)(C _B)) + (5 × | $C_{16}H_{26}$ C_{B} - $(C)(C_{B})_{2}) +$ | | $(1)_3(C) + (1)_3(C)$ | \times C-(H)(C) ₂ (C | | C ₂ H ₁ | | $(1 \times C_B - (H$ | $(C_B)_2$ + $(4 \times ortho \ corr)$ + $(4 \times max)$ | eta corr), $\sigma = 486$ | | corr (terti
H)(C _B) ₂), or | $ary)) + (1 \times C_{B} - 18)$ | $(C)(C_B)_2) +$ | | | | Literature – Calculated = Residu | al Reference | (* -2 (| , , , , | e – Calculated = | = Residual | Reference | | | | | | | | - Itosiaaai | | | Gas phase | 477 10 103 47 0.0 | 0 (007) (4) | | | | | | | | · 175.18 — 183.47 8.2 | | Gas phase | 4.00 | 0.07 | 4.00 | 4700D/GDI | | $C_p^{\circ} =$ | 339.70 347.50 -7.8 | • | $\Delta_{\mathbf{f}}H^{\circ} =$ | 4.02 | -0.87 | 4.89 | 47OSB/GIN | | S° = | 647.89 658.37 -10.4 | 8 69STU/WES | $C_p^{\circ} =$ | 151.71 | 151.71 | 0.00 | 69STU/WES | | $\Delta_f S^\circ =$ | - 1130.89 | | S° = | 388.57 | 388.55 | 0.02 | 69STU/WES | | $\Delta_f G^\circ =$ | 153.70 | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 446.54 | | | | $lnK_f =$ | -62.00 | | $\Delta_f G^\circ = InK_f =$ | | 132.27
- 53.35 | | | | Liquid phase | | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -245.10 | | Liquid phas | e | | | | | $C_p^{\circ} =$ | 384.08 | | $\Delta_t H^\circ =$ | -41.13 | - 45.44 | 4.31 | 45JOH/PRO | | S° = | 584.87 | | $C_p^{\circ} =$ | 215.40 | 213.96 | 1.44 | 73KIS/SUG | | $\Delta_f S^\circ =$ | - 1204.39 | | <i>S</i> ° = | 277.57 | 277.55 | 0.02 | 73KIS/SUG | | $\Delta_{\mathbf{f}}G^{\circ} =$ | 113.99 | | $\Delta_f S^\circ =$ | | -557.54 | | | | $lnK_f =$ | - 45.98 | | $\Delta_f G^{\circ} =$ | | 120.79 | | | | | | | $lnK_f =$ | | -48.73 | | | | | $_{3}(C)) + (6 \times C - (H)_{2}(C)(C_{B})) (H)_{2}(C)(C_{$ | $C_{18}H_{30}$ $C_{C_{B}}(C_{C_{B}}(C_{C_{B}}))$ | | | ne; sec-Butylbei | | C10H14 | | (6×ortho | corr) + $(5 \times meta \text{ corr})$, $\sigma = 8748$
Literature – Calculated = Residu | al Reference | | corr (terti | \times C-(H) ₂ (C) ₂) +
ary)) + (1 \times C _B - | | C) ₂ (C _B)) + | | | | | | Literatur | e – Calculated = | = Residual | Reference | | Gas phase | 224.26 225.25 11.0 | 0 (0071143770 | | | | | | | A 770 | -224.26 -235.35 11.0 | | C 1 | | | | | | - | | | Gas phase | 177.01 | 40.04 | 4.00 | ACDD OUTCOM | | $C_p^{\circ} =$ | 396.48 408.49 -12.0 | O COOPER TREESON | $\Delta_{\rm f}H^{\circ} =$ | - 17.36 | - 19.24
174.60 | 1.88 | 46PRO/JOH | | $C_p^{\circ} = S^{\circ} =$ | 697.14 715.33 -18.1 | 9 69STU/WES | ~~ | | 174.60 | | | | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} =$ | 697.14 715.33 -18.1
-1346.55 | 9 69STU/WES | $C_p^{\circ} =$ | | | | | | $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{f}G^{\circ} =$ | 697.14 715.33 -18.1
-1346.55
166.12 | 9 69STU/WES | $C_p^{\circ} =$ | <u> </u> | | | | | $C_{\rho}^{\circ} = S^{\circ} = \Delta_{i}S^{\circ} = 0$ | 697.14 715.33 -18.1
-1346.55 | 9 69STU/WES | Liquid phas | e | | · · · · · · · · · · · · · · · · · · · | | | $C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} =$ | 697.14 715.33 -18.1
-1346.55
166.12
-67.01 | 9 69STU/WES | Liquid phas $\Delta_t H^\circ =$ | e
-66.40 | -68.99 | 2.59 | 46PRO/JOH | | $C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = $ Liquid phase | 697.14 715.33 -18.1
-1346.55
166.12
-67.01 | 9 69STU/WES | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | | | 2.59 | 46PRO/JOH | | $C_p^{\circ} =
S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = $ Liquid phase $\Delta_t H^{\circ} = S^{\circ} $ | 697.14 715.33 -18.1
-1346.55
166.12
-67.01 | 9 69STU/WES | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | | -68.99 | 2.59 | 46PRO/JOH | | $C_{\rho}^{\circ} = S^{\circ} = S_{\rho}^{\circ} = \Delta_{\rho}S^{\circ} = \Delta_{\rho}G^{\circ} = \ln K_{\ell} = $ Liquid phase | 697.14 715.33 -18.1
-1346.55
166.12
-67.01 | 9 69STU/WES | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = $ | | - 68.99
244.38 | 2.59 | 46PRO/JOH | | $C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = InK_{t} = InK_{t} = InK_{t} = InK_{t}G^{\circ} InK_{t}G^{$ | 697.14 715.33 -18.1
-1346.55
166.12
-67.01
-300.00
437.88
667.20 | 9 69STU/WES | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | | - 68.99
244.38
309.93
- 661.47
128.23 | 2.59 | 46PRO/JOH | | $C_p^{\circ} = S^{\circ} = S_{\ell}S^{\circ} = \Delta_{\ell}S^{\circ} = \Delta_{\ell}G^{\circ} = \ln K_{\ell} = $ Liquid phase $\Delta_{\ell}H^{\circ} = C_p^{\circ} = $ | 697.14 715.33 -18.1
-1346.55
166.12
-67.01
-300.00
437.88 | 9 69STU/WES | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = $ | | - 68.99
244.38
309.93
- 661.47 | 2.59 | 46PRO/JOH | | $C_{\rho}^{\circ} = S^{\circ} = S_{r}^{\circ} = \Delta_{r}S^{\circ} = \Delta_{r}G^{\circ} = InK_{r} = InK_{r}^{\circ} = \Delta_{r}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = InK_{r}^{\circ} InK_{$ | 697.14 715.33 -18.1
-1346.55
166.12
-67.01
-300.00
437.88
667.20 | 9 69STU/WES | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = $ | | - 68.99
244.38
309.93
- 661.47
128.23 | 2.59 | 46PRO/JOH | | (1 × C -(11 | $()_{2}(C)(C_{B}))$ | < C-(H)(C) ₃) +
+ (1 × С _в -(C)((| $(2 \times -CH_3 \text{ co} C_B)_2) + (5 \times C_1$ | rr (tertiary)) + $_{3}$ $-(H)(C_B)_2)$ | | C_d)(C_B) ₂) +
H)(C_B) ₂), σ | $(1 \times C_B - (C)(C_I) = 3$ | | | |--|--------------------------|---|--|--|---|---|--|--|-------------------------------------| | | Literature | e – Calculated : | = Residual | Reference | (4 × CB (1 | , , -,-, | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ =$ | -21.51 | - 18.86 | -2.65 | 46PRO/JOH | Gas phase | 110.41 | 117.65 | 1.54 | <00TH 141170 | | C _p = | | 174.95 | | | $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 118.41
145.18
383.67 | 116.65
150.36
382.73 | 1.76
- 5.18
0.94 | 69STU/WES
69STU/WES
69STU/WES | | Liquid phas | e | | | | Δ ₆ S° = | | -321.79 | | | | $\Delta_{\rm f}H^{\circ} =$ | -69.79 | - 69.20 | -0.59 | 46PRO/JOH | $\Delta_{\rm f}G^{\circ} =$ | | 212.59 | | | | $C_{\rho}^{\circ} =$ | | 240.74 | | | $lnK_f =$ | | – 85.76 | | | | S° = | | 314.96 | | | | | | | | | $\Delta_f S^\circ =$ | | - 656.44 | | | Timela above | _ | | | | | $\Delta_f G^\circ =$ | | 126.52 | | | Liquid phase | 3 | 70.50 | | | | $lnK_f =$ | | -51.04 | | | $\Delta_{\rm f}H^{\circ} =$ | | 70.50
210.28 | | | | | | | <u> </u> | | $C_p^{\circ} = S^{\circ} =$ | | 269.73 | | | | | | | | | $\Delta_{f}S^{\circ} =$ | | - 434.78 | | | | tart Butulba | mana | | | C10H14 | $\Delta_f G^\circ =$ | | 200.13 | | | | tert -Butylbe
$(3 \times C - (H)_3)$
$(5 \times C_B - (1)_3)$ | (C))+(1×0 | $C-(C_B)(C)_3)+($ | $(1 \times C_B - (C))(C)$ | | $\ln K_{\rm f} =$ | | -80.73 | | | | (************************************** | | e – Calculated | = Residual | Reference | meta - Methyl | | × C = (B) \ 1 (1 | v.C. (H)(C | С,Н, | | Gas phase | 22.50 | - 15.81 | -6.78 | 46PRO/JOH | $(1 \times C_B - (C_B))$ | | $\times C_{d}-(H)_{2})+(1$ $(1\times C_{B}-(C)(C_{E})$ $= 3$ | | | | $\Delta_{\mathbf{f}}H^{\circ} = C_{p}^{\circ} =$ | -22.59 | 173.27 | -0.76 | 40FKO/JOH | | Literatur | e – Calculated : | = Residual | Reference | | Liquid phas | | | | | Gas phase | | | | | | $\Delta_{f}H^{\circ} =$ | -70.71 | - 64.17 | -6.54 | 46PRO/JOH | $\Delta_t H^\circ -$ | 115.48 | 114.76 | 0.72 | 69STU/WES | | $C_p^{\circ} =$ | 238.11 | 238.11 | 0.00 | 30HUF/PAR |
$C_p^{\circ} =$ | 145.18 | 144.67 | 0.51 | 69STU/WES | | S° = | 278.65 | 278.65 | 0.00 | 30HUF/PAR | S° = | 389.53 | 385.23 | 4.30 | 69STU/WES | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | - 692.75
142.37 | | | $\Delta_t S^\circ = \Delta_t G^\circ =$ | | -319.29
209.96 | | | | $lnK_f =$ | | -57.43 | | | $lnK_f =$ | | - 84.69 | | | | Styrene | | | | C ₈ H ₈ | Liquid phase | : | | | | | | | C_{d} - $(H)(C_{B}))+c$ | $(1 \times C_B - (C_d)(0)$ | $C_{\rm B})_2)$ + | $\Delta_t H^\circ =$ | | 67.24 | | | | $(5 \times C_B - ($ | $(H)(C_B)_2)$, o | = 2 | | | $C_p^{\circ} =$ | | 206.78 | | | | | • • • | | | 5 . | S° = | | 269.73 | | | | | Literatur | e – Calculated | = Residual | Reference | $\Delta_{f}S^{\circ} =$ | | -434.78 | | | | | | | | | $\Delta_f G^\circ = \ln K_f =$ | | 196.87
79.42 | | | | | | | | | mkf - | | - 79.42 | | | | Gas nhase | 147.82 | 147.82 | 0.00 | 46PIT/GUT | | ** | | *** | | | Gas phase | 1 | 122.09 | 0.00 | 69STU/WES | para-Methyl: | stvrene | | | C ₉ H ₁₀ | | $\Delta_i H^{\circ} =$ | 122.09 | | -0.10 | 69STU/WES | | | $\times C_{d}$ -(H) ₂)+(1 | × C ₄ -(H)(C ₂) |))+ | | | 122.09
345.10 | 345.20 | | . — | | | $(1 \times C_B - (C)(C_B)$ | | | | $\Delta_f H^\circ = C_p^\circ =$ | | 345.20
223.01 | | | (1 ^ CB-(C | ·d八しB/21キ | | | | | $\Delta_{i}H^{\circ} = C_{p}^{\circ} = S^{\circ} =$ | | | | | $(1 \times C_B - (C_B - (E_B (E_$ | | | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | | -223.01 | | | , , | I)(C _B) ₂), σ | | = Residual | Reference | | $\Delta_t H^\circ = C_p^o = S^o = S_t S^o = \Delta_t S^o = \ln K_t = $ Liquid phase | 345.10 | -223.01
214.31
-86.45 | | | (4 × C _B -(1 | I)(C _B) ₂), σ | = 6 | = Residual | Reference | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = S^\circ = \Delta_t H^\circ = S^\circ = S^\circ = \Delta_t H^\circ = S^\circ S^\circ$ | 345.10
se
103.47 | -223.01
214.31
-86.45 | -0.38 | 45PRO/GIL | (4×C _B -(F | I)(C _B) ₂), σ Literature | = 6
e – Calculated = | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | 345.10 se 103.47 182.88 | - 223.01
214.31
- 86.45
103.85
182.88 | 0.00 | 46PIT/GUT | $(4 \times C_B - (F_B))$ Gas phase $\Delta_t H^\circ =$ | Literature | = 6 e - Calculated = | -0.75 | 69STU/WES | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = $ Liquid phas $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} S$ | 345.10
se
103.47 | - 223.01
214.31
- 86.45
103.85
182.88
234.80 | | | $(4 \times C_B - (F_B))^{-1}$ Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = S^\circ = 0$ | 1)(C _B) ₂), σ Literature 114.64 145.18 | = 6
e - Calculated =
115.39
143.96 | - 0.75
1.22 | 69STU/WES
69STU/WES | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = $ Liquid phas $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t S^{\circ} = \Delta_t S^{\circ} = S^{\circ}$ | 345.10 se 103.47 182.88 | - 223.01
214.31
- 86.45
- 103.85
182.88
234.80
- 333.40 | 0.00 | 46PIT/GUT | $(4 \times C_B - (F_B))^{-1}$ Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = S^\circ = 0$ | Literature | = 6 e - Calculated = | -0.75 | 69STU/WES | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{2}$ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \frac{1}{2}$ | 345.10 se 103.47 182.88 | - 223.01
214.31
- 86.45
103.85
182.88
234.80 | 0.00 | 46PIT/GUT | $(4 \times C_B - (F_B))$ Gas phase $\Delta_t H^\circ = C_P^\circ =$ | 1)(C _B) ₂), σ Literature 114.64 145.18 | = 6
e - Calculated =
115.39
143.96
379.46 | - 0.75
1.22 | 69STU/WES
69STU/WES | TABLE 11. Aromatic CH-02 (80) - Continued | | $(C_B)_2$ + (1 | C_d - $(H)_2$) + $(1 \times C_B$ - $(C)(C_B)_2$) | | C ₉ H ₁₀)+ | trans-1-Propenylbenzene; trans-β-Methylstyrene $(1 \times C-(H)_3(C)) + (1 \times C_d-(H)(C)) + (1 \times C_d-(H)(C_B)) + (1 \times C_B-(C_d)(C_B)_2) + (5 \times C_B-(H)(C_B)_2), \sigma = 6$ | | | | | |--|--------------------|---|--------------|-----------------------------------
---|--|---|---|---| | | | - Calculated = R | esidual. | Reference | · | Literatur | e – Calculated = | = Residual | Reference | | | | | | | Gas phase | | | | | | Liquid phase | | | | | $\Delta_t H^\circ =$ | 117.15 | 115.56 | 1.59 | 69STU/WES | | $\Delta_t H^\circ =$ | | 67.24 | | | $C_p^{\circ} =$ | 146.02 | 145.18 | 0.84 | 69STU/WES | | $C_p^{\circ} =$ | | 206.78 | | | S° = | 380.33 | 380.91 | -0.58 | 69STU/WES | | S° = | | 269.73 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | 000.00 | - 323.60 | 0.00 | 0,010,1120 | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -434.78 | | | $\Delta_t G^{\circ} =$ | | 212.04 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 196.87 | | | $\ln K_{\rm f} =$ | | -85.54 | | | | $lnK_f =$ | | - 79.42 | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | Liquid phas | е | | | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | | 65.54 | | | | Isopropenylber | nzene; α-M | lethylstyrene | | C ₉ H ₁₀ | $C_p^{\circ} =$ | | 215.59 | | | | | | C_{a} -(C)(C_{B})) + (1 | |)+ .: | S° = | | 260.49 | | | | | | $S \times C_B - (H)(C_B)_2$ | + | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 444.02 | | | | (1×-CH ₃ c | orr (tertiar | y)), $\sigma = 6$ | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 197.93 | | | | | | | | | $lnK_f =$ | | <i>−</i> 79.84 | | | | | Literature | – Calculated = R | esidual | Reference | - | | | | | | | | | | | | | | | | | Gas phase | | | | | 2-Propenylb | enzene | | | C ₉ H ₁ | | | 112.97 | 112.97 | 0.00 | 69STU/WES | | | C_d -(H)(C))+(1 | | (C_B)) + | | $C_p^{\circ} = 1$ | 145.18 | 145.18 | 0.00 | 69STU/WES | $(1 \times C_B - (0))$ | $C)(C_B)_2) + (3$ | $5 \times C_B - (H)(C_B)$ | 2) | | | - | 383.67 | 383.67 | 0.00 | 69STU/WES | | | | | | | $\Delta_{\rm f}S^{\circ} =$ | | - 320.84 | | | Lite | erature-Calo | culated = Resid | ual Refere | nce | | $\Delta_{\rm f}G^{\circ} =$ | | 208.63 | | | | | | | | | $lnK_{f} =$ | | -84.16 | | | | | | | | | | | | | | Liquid phas | | | | | | T !! 4 ! | | | | | $\Delta_{\rm f}H^{\circ}=$ | 88.03 | 88.03 | 0.00 | 71ROC/MCL | | Liquid phase $\Delta_t H^\circ =$ | 70.46 | 70.46 | 0.00 | 51ROB/JES | - | | | | | | $\Delta_{\mathbf{i}}H =$ | 70.40 | 70.40 | 0.00 | JIKOB/JES | | | | | | | | | | | | 1-Methyl-2- | oronenvlhen | zene | | C10H1 | | | | | | | | | $\times C_{0}$ $-(H)_{2}$ $+ (1)_{2}$ | × C.–(H)(C)) | | | cis-1-Propeny | lbenzene: c | is -B-Methylstyre | ne | C ₉ H ₁₀ | | | $(1 \times -CH_3)$ | | | | (1×C-(H) ₃ | $(C)) + (1 \times$ | C_{d} -(H)(C))+(1 | ×cis (unsat) | | , , | / | $5 \times C_B - (H)(C_B)$ | ` . | ,, | | | | | | $H)(C_B)_2), \sigma = 6$ | , - , | | - 、 /、 -/ | | | | $(1 \times C_{d} - (H))$ | | ▼ ∪B=(∪d)(∪B)2) | | | | | | | | | | | | | | Lite | rature-Cale | culated - Resid | ual Refere | nec | | | Literature | - Calculated = R | | Reference | Lite | rature-Cak | culated – Reside | ual Refere | nec | | | Literature | | | | Liquid phase | e | | | | | Gas phase | | – Calculated = R | Residual | Reference | *** | | 56.07 | 0.00 | 71ROC/MCL | | Gas phase $\Delta_t H^\circ =$ | 121.34 | - Calculated = R | Residual | Reference 69STU/WES | Liquid phase | e | | | | | Gas phase $\Delta_t H^\circ = C_0^\circ =$ | 121.34
145.18 | - Calculated = R
120.41
137.15 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase | e | | | | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 121.34 | - Calculated = R 120.41 137.15 385.97 | Residual | Reference 69STU/WES | Liquid phase Δ _t H° – | e
56.07 | | | 71ROC/MCL | | Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ =$ | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase ΔiII° – Ethynylbenz | e 56.07 | 56.07 | 0.00 | 71ROC/MCL
C ₈ H, | | Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 215.38 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase Δ _t II° – Ethynylbenz (1×C _t -(H | e 56.07 | 56.07
-(C _B)) + (1 × C _I | 0.00 | 71ROC/MCL
C ₈ H, | | Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ =$ | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase Δ _t II° – Ethynylbenz (1×C _t -(H | e 56.07 | 56.07
-(C _B)) + (1 × C _I | 0.00 | 71ROC/MCL
C ₈ H, | | Gas
phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 215.38 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase Δ _t II° – Ethynylbenz (1×C _t -(H | e 56.07 H)(1 × C _t + H)(C _B) ₂), σ | 56.07
-(C _B)) + (1 × C _I | 0.00
s-(C _t)(C _B) ₂) + | 71ROC/MCL
C ₈ H, | | Gas phase $\Delta_t H^\circ = C_\theta^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f =$ Liquid phase | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 215.38 - 86.88 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase Δ _t II° – Ethynylbenz (1×C _t -(H | e 56.07 H)(1 × C _t + H)(C _B) ₂), σ | 56.07 $-(C_B)) + (1 \times C_I)$ = 2 | 0.00
s-(C _t)(C _B) ₂) + | 71ROC/MCL
C ₈ H ₆ | | Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Lambda_t G^\circ = \ln K_t = $ Liquid phase $\Delta_t H^\circ =$ | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 215.38 - 86.88 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase ΔμIο – Ethynylbenz (1 × C ₁ -(H (5 × C _B -(H | e 56.07 H)(1 × C _t + H)(C _B) ₂), σ | 56.07 $-(C_B)) + (1 \times C_I)$ = 2 | 0.00
s-(C _t)(C _B) ₂) + | 71ROC/MCL
C ₈ H ₆ | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = $ Liquid phase $\Delta_t H^\circ = C_p^\circ = $ | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 215.38 - 86.88 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase $\Delta_t H^\circ -$ Ethynylbenz (1×C _t -(H (5×C _B -(I | e 56.07 Sene H)) + $(1 \times C_t$ H) $(C_B)_2$), σ Literature | 56.07 $-(C_B)) + (1 \times C_I)$ $= 2$ $= - \text{Calculated} = - \frac{1}{2}$ | 0.00 $g-(C_1)(C_B)_2) +$ Residual | 71ROC/MCL C ₈ H ₄ Reference | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ S^$ | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 215.38 - 86.88 70.81 215.59 260.49 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase $\Delta_t H^\circ -$ Ethynylbenz (1×C _t -(H (5×C _B -(I Gas phase $\Delta_t H^\circ =$ | e 56.07 Sene H))+(1×C ₁ H)(C _B) ₂), σ Literature | 56.07 $-(C_B)) + (1 \times C_I)$ $= 2$ $= -Calculated = 327.48$ | 0.00 $_{3}-(C_{t})(C_{B})_{2})+$ Residual -0.21 | 71ROC/MCL C ₈ H ₄ Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \ln K_t = $ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t $ | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 215.38 - 86.88 70.81 215.59 260.49 - 444.02 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase $\Delta_t H^\circ -$ Ethynylbenz $(1 \times C_t - (H + (5 \times C_B - (H + (1 \times H)^2 H)$ | e 56.07 Eene H))+(1×C ₁ H)(C _B) ₂), σ Literature 327.27 114.89 | 56.07 $-(C_B)) + (1 \times C_B) = 2$ $-(C_B) =$ | 0.00 a-(C _t)(C _B) ₂) + Residual -0.21 0.00 | 71ROC/MCL C ₈ H ₄ Reference 69STU/WES 69STU/WES | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = $ | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 215.38 - 86.88 70.81 215.59 260.49 - 444.02 203.20 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase $\Delta_t H^\circ -$ Ethynylbenz $(1 \times C_t - (H + (5 \times C_B - (H + (1 \times H)^2 + (1 \times H)^2 + (1 \times H)^2)))$ Gas phase $\Delta_t H^\circ =$ $C_t^\circ =$ $S^\circ =$ | e 56.07 Sene H))+(1×C ₁ H)(C _B) ₂), σ Literature | 56.07 $-(C_B)) + (1 \times C_B) = 2$ $-(C_B) (C_B) $-($ | 0.00 $_{3}-(C_{t})(C_{B})_{2})+$ Residual -0.21 | 71ROC/MCL C ₈ H ₄ Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \ln K_t = $ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t $ | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 215.38 - 86.88 70.81 215.59 260.49 - 444.02 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase $\Delta_t II^\circ -$ Ethynylbenz $(1 \times C_t - (H + (5 \times C_B - (H + (1 \times C_t)))))$ Gas phase $\Delta_t H^\circ = C_t^\circ C_$ | e 56.07 Eene H))+(1×C ₁ H)(C _B) ₂), σ Literature 327.27 114.89 | 56.07
-(C _B)) + (1 × C _I
= 2
e - Calculated =
327.48
114.89
321.67
-115.97 | 0.00 a-(C _t)(C _B) ₂) + Residual -0.21 0.00 | 71ROC/MCL C ₈ H ₄ Reference 69STU/WES 69STU/WES | | Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = $ | 121.34
145.18 | - Calculated = R 120.41 137.15 385.97 - 318.54 215.38 - 86.88 70.81 215.59 260.49 - 444.02 203.20 | 0.93
8.03 | Reference 69STU/WES 69STU/WES | Liquid phase $\Delta_t H^\circ -$ Ethynylbenz $(1 \times C_t - (H + (5 \times C_B - (H + (1 \times H)^2 + (1 \times H)^2 + (1 \times H)^2)))$ Gas phase $\Delta_t H^\circ =$ $C_t^\circ =$ $S^\circ =$ | e 56.07 Eene H))+(1×C ₁ H)(C _B) ₂), σ Literature 327.27 114.89 | 56.07 $-(C_B)) + (1 \times C_B) = 2$ $-(C_B) (C_B) $-($ | 0.00 a-(C _t)(C _B) ₂) + Residual -0.21 0.00 | 71ROC/MCL C ₈ H ₄ Reference 69STU/WES 69STU/WES | | TABLE 11. | Aromatic | CH-02 | (80) | - Co | ntinued | |-----------|----------|-------|------|------|---------| | IABLE II. | AIGHIAGC | CH-02 | LOUI | - 0 | munucu | | Table 11. | Aromatic CH-02 | (80) | _ | Continued | |-----------|----------------|------|---|-----------| |-----------|----------------|------|---|-----------| | | | $-(C_B)$) + (1 × C | $C_B - (C_t)(C_B)_2$ | C ₈ H ₆ | | $H_{3}(C)) + (4$ | nethane
$S \times C_B - (C)(C_B)_2$
$(1 \times ortho \text{ corr})$ | | | |---|---------------------------|---|------------------------|--|--
---|--|---------------------------------------|---------------------------------| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid phase
Δ _t H° = | 282.88 | 283.39 | -0.51 | 58FLI/SKI | Gas phase $\Delta_t H^\circ =$ | و المالية الم | 74.09 | - 17 - 18 | | | Diphenylmet
(1×C-(H | $)_2(C_B)_2)+($ | 2×C _B -(C)(C _B
e – Calculated | | $C_{13}H_{12}$ $-(H)(C_B)_2)$ Reference | Liquid pha $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \Delta_t G^\circ = C_p^\circ C_$ | se 24.69 | 23.46
331.21
371.53
-759.14
249.80 | 1.23 | 76GOO/LEE | | Gas phase $\Delta_t H^\circ =$ | 138.95 | 138.95 | 0.00 | 59AIH | $lnK_f =$ | | -100.77 | | | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 89.66
279.91
301.67 | 93.42
279.91
301.67
- 556.38
259.30
- 104.60 | -3.76
0.00
0.00 | 50PAR/MOS2
50KUR
30HUF/PAR | (1×−CH
(10×C _B - | $H_{3}(C)$) + (1
$H_{3}(C)$ | \times C-(H)(C)(C ₁ iary)) + (2 \times C ₂ - lculated = Resid | -(C)(C _B) ₂)+ | C ₁₄ H ₁₄ | | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 71.09
223.84
239.32 | 71.66
223.84
239.35
-618.70
256.12
-103.32 | -0.57
0.00
-0.03 | 30HUF/PAR
30HUF/PAR
30HUF/PAR | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} =$ | 48.66
294.97 | 48.66
294.98
361.12
-633.24
237.46
-95.79 | 0.00
-0.01 | 53COO/MUL
31SMI/AND | | 4-Methyldipi
(1×C-(H
(1×C-(H | (C)) + (3)
(C_B) 2) | $\times C_B - (C)(C_B)_2$ | | C ₁₄ H ₁₄
)(C _B) ₂) + | $(2 \times C_{B}-($ | $(1)_3(C) + (1)_3(C)(C_B)_2 + (1)_3(C)$ | $0 \times C - (H)_2(C)_2$ $(10 \times C_B - (H)(C)$ $ culated = Resid$ | в)2) | | | Gas phase
Δ _i H° = | Literatur | e – Calculated | = Residual | Reference | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | 593.71
684.92 | - 206.46
599.18
684.92
- 1672.55 | -5.47
0.00 | 60KAR/STR2
60KAR/STR2 | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 61.55 | 56.81
303.81
336.60
-657.76
252.92
-102.03 | 4.74 | 76GOO/LEE | $\Delta_f G^\circ = \ln K_f = $ $1,1-Dipheny$ $(1 \times C_d - (1 + 1))$ | | $\begin{array}{c} 292.21 \\ -117.88 \end{array}$ $C_{d} - (C_{B})_{2}) + (2 \times C_{B})_{2} C_{B})_{2}$ | C_{B} – $(C_{d})(C_{B})$ | C ₁₄ H ₁₂ | | | | | | | | Literatur | e – Calculated = | = Residual | Reference | | | | | | | Gas phase $\Delta_f H^\circ =$ | 245.64 | 245.64 | 0.00 | 56HOL/TYR | TABLE 11. Aromatic CH-02 (80) - Continued | (10×C _B -(| | e – Calculated : | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference |
--|---|---|---------------------------------------|---|--|---|--|-----------------------------|--| | | | | | | 0 1 | | | | | | iquid phase
\ _t H° = | e
172.42 | 172.42 | 0.00 | 50COO/HOI | Gas phase $\Delta_t H^\circ =$ | 142.93 | 142.70 | 0.23 | 59AIH | | $C_p^{\circ} =$ | 299.16 | 299.15 | 0.01 | 31SMI/AND | $C_p^{\circ} =$ | 1,2,33 | 206.82 | 0.20 | <i>37</i> 1111 | | | | | | | Liquid phas | e | | | | | s-Stilbene | | | | C ₁₄ H ₁₂ | $\Delta_{\rm f}H^{\circ} =$ | | 70.30 | | | | | | $\times C_B - (C_d)(C_B)$ | $)_2) + (10 \times C_{B}$ | $-(H)(C_B)_2) +$ | $C_p^{\circ} =$ | | 292.80 | | | | (1×cis(ui | nsat) corr) | | | | $S^{\circ} = \Delta_t S^{\circ} =$ | | 344.50
- 649.86 | | | | | Literature | c — Calculated | - Residual | Reference | $\Delta_{i}G^{\circ} =$ | | 264.05 | | | | | | | | | $lnK_f =$ | | -106.52 | | | | Gas phase | | | | | · | | | | | | $\Delta_{\rm f}H^{\circ} =$ | 252.55 | 247.85 | 4.70 | 52BRA/PLE | Solid phase | | | | | | $C_{\rho}^{\circ} =$ | | 193.39 | | | $\Delta_t H^\circ =$ | 51.51 | 48.90 | 2.61 | 66COL/PIL | | | | | | | $C_p^{\circ} =$ | 253.55 | 253.54 | 0.01 | 31SMI/AND | | !!.db | _ | | | | $S^{\circ} = \Delta_{t}S^{\circ} =$ | 270.29 | 270.30 | - 0.01 | 30HUF/PAR | | Liquid phas
Δ _t H° = | e
183.51 | 169.47 | 14.04 | 50COO/HOI | $\Delta_{\mathbf{f}} S^{\circ} = \Delta_{\mathbf{f}} G^{\circ} =$ | | - 724.06
264.78 | | | | $C_p^{\circ} =$ | 103.31 | 309.02 | 14.04 | SUCCOO/HOI | $\ln K_{\rm f} =$ | | - 106.81 | | | | $S^{\circ} =$ | | 297.22 | | | mrt - | | -100.61 | | | | $\Delta_{f}S^{*} =$ | | - 566.57 | | | | | | | | | | | 338.39 | | | | | | | | | Δ _f G = | | 220.27 | | | | | | | | | $\ln K_f =$ | | -136.50 | | | Triphenylmo | | | | C ₁₉ H | | | 1 | | | | | | $3 \times C_B - (C)(C_B)$ | $_2) + (15 \times C_B - ($ | | | $lnK_f =$ | ne | | | CuHu | | $)(C_B)_3)+(3$ | $3 \times C_B - (C)(C_B)$
re – Calculated | | | | $lnK_{f} =$ | | |) ₂)+(10×C _B · | C ₁₄ H ₁₂
-(H)(C _B) ₂) | (1×C-(H | $)(C_B)_3)+(3$ | | | $(H)(C_B)_2)$ | | trans -Stilbe | H)(C_B)) + (2 | - 136.50 | | | | $)(C_B)_3)+(3$ | | | $(H)(C_B)_2)$ | | $lnK_f =$ trans-Stilber $(2 \times C_d - (1))$ | H)(C_B)) + (2 | -136.50
2×C _B -(C _d)(C _B | | -(H)(C _B) ₂) | Gas phase Δ _t H° = | $)(C_B)_3)+(3$ | e – Calculated | | $(H)(C_B)_2)$ | | $lnK_f =$ rans-Stilber $(2 \times C_d - (1))$ Gas phase | H)(C _B)) + (2 | -136.50 $2 \times C_B - (C_d)(C_B$ $e - Calculated$ | | -(H)(C _B) ₂) | Gas phase $\Delta_t H^\circ =$ Solid phase | $)(C_B)_3)+(3$ | e – Calculated | | $(H)(C_B)_2)$ | | $lnK_f =$ | H)(C_B)) + (2 | -136.50
2×C _B -(C _d)(C _B | = Residual | -(H)(C _B) ₂) Reference | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ | $)(C_B)_3)+(3$ | e – Calculated | | $(H)(C_B)_2)$ | | $lnK_f =$ rans-Stilber $(2 \times C_d - (1))$ Gas phase | H)(C _B)) + (2 | -136.50 $2 \times C_{B} - (C_{d})(C_{B}$ $e - Calculated$ 243.00 | = Residual | -(H)(C _B) ₂) Reference | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_t^\circ =$ $S_t^\circ =$ |)(C _B) ₃) + (2 | 271.21
174.13 | = Residual | (H)(C _B) ₂) Reference | | In K_f = rans-Stilbe $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ = C_p^\circ = C_p^\circ = C_p^\circ = C_p^\circ$ | H)(C _B
)) + (2 Literatur 239.70 | -136.50 $2 \times C_{B} - (C_{d})(C_{B}$ $e - Calculated$ 243.00 | = Residual | -(H)(C _B) ₂) Reference | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ |)(C _B) ₃) + (2
Literatur
295.39 | 271.21
174.13
295.81
312.13
-841.50 | = Residual | (H)(C _B) ₂) Reference 31SMI/AND | | In K_f = rans-Stilber $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase | H)(C _B)) + (2 Literatur 239.70 | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 | = Residual | -(H)(C _B) ₂) Reference | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_t^\circ =$ $S_t^\circ =$ $\Delta_t S_t^\circ =$ $\Delta_t G_t^\circ =$ |)(C _B) ₃) + (2
Literatur
295.39 | 271.21
174.13
295.81
312.13
-841.50
425.02 | = Residual | (H)(C _B) ₂) Reference 31SMI/AND | | In K_f = rans-Stilber $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ C_p$ | H)(C _B)) + (2 Literatur 239.70 | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 | = Residual | -(H)(C _B) ₂) Reference | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ |)(C _B) ₃) + (2
Literatur
295.39 | 271.21
174.13
295.81
312.13
-841.50 | = Residual | (H)(C _B) ₂) Reference 31SMI/AND | | In K_f = Trans-Stilber $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ C_$ | H)(C _B)) + (2 Literatur 239.70 | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 | = Residual | -(H)(C _B) ₂) Reference | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_t^\circ =$ $S_t^\circ =$ $\Delta_t S_t^\circ =$ $\Delta_t G_t^\circ =$ |)(C _B) ₃) + (2
Literatur
295.39 | 271.21
174.13
295.81
312.13
-841.50
425.02 | = Residual | (H)(C _B) ₂) Reference 31SMI/AND | | In K_f = rans-Stilbe: $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | H)(C _B)) + (2 Literatur 239.70 | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 297.22 | = Residual | -(H)(C _B) ₂) Reference | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_t^\circ =$ $S_t^\circ =$ $\Delta_t S_t^\circ =$ $\Delta_t G_t^\circ =$ |)(C _B) ₃) + (2
Literatur
295.39 | 271.21
174.13
295.81
312.13
-841.50
425.02 | = Residual | (H)(C _B) ₂) Reference 31SMI/AND | | In K_f = Trans-Stilber (2 × C _d -(1) Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ $S^\circ = \Delta_t S^\circ =$ | H)(C _B)) + (2 Literatur 239.70 | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 297.22 -566.57 | = Residual | -(H)(C _B) ₂) Reference | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $S^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t =$ | 295.39
312.13 | 271.21
174.13
295.81
312.13
-841.50
425.02 | = Residual | Reference 31SMI/AND 30HUF/PAR | | In K_f = rans-Stilbe: $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ =$ $\Delta_t G^\circ =$ | H)(C _B)) + (2 Literatur 239.70 | -136.50 2×C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 297.22 -566.57 333.12 | = Residual | -(H)(C _B) ₂) Reference | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t =$ Tetraphenyl | 295.39
312.13 | 271.21
174.13
295.81
312.13
-841.50
425.02
-171.45 | = Residual
-0.42
0.00 | (H)(C _B) ₂) Reference 31SMI/AND 30HUF/PAR | | In K_f = rans-Stilber $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ $\Delta_t S^\circ =$ | H)(C _B)) + (2 Literatur 239.70 | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 297.22 -566.57 | = Residual | -(H)(C _B) ₂) Reference | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t =$ Tetraphenyl | 295.39
312.13 | 271.21 174.13 295.81 312.13 -841.50 425.02 -171.45 C _B -(C)(C _B) ₂)+ | = Residual - 0.42 0.00 | (H)(C _B) ₂) Reference 31SMI/AND 30HUF/PAR C ₂₅ H | | In K_f = rans-Stilbe: $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ C_p$ | H)(C _B)) + (2
Literatur
239.70 | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 297.22 -566.57 333.12 -134.38 | = Residual | -(H)(C _B) ₂) Reference 72MOR2 | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t =$ Tetraphenyl | 295.39
312.13 | 271.21
174.13
295.81
312.13
-841.50
425.02
-171.45 | = Residual - 0.42 0.00 | (H)(C _B) ₂) Reference 31SMI/AND 30HUF/PAR | | In K_f = rans-Stilber $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ C_p$ | H)(C _B)) + (2 Literatur 239.70 se | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 297.22 -566.57 333.12 -134.38 | = Residual
- 3.30 | Teference 72MOR2 50COO/HOI | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_t^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Tetraphenyl $(1 \times C - (C_t^*)^{-1} \times C - (C_t^*)^{-1}$ | 295.39
312.13 | 271.21 174.13 295.81 312.13 -841.50 425.02 -171.45 C _B -(C)(C _B) ₂)+ | = Residual - 0.42 0.00 | (H)(C _B) ₂) Reference 31SMI/AND 30HUF/PAR C ₂₅ H | | In K_f = rans-Stilbe $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ C_p^$ | H)(C _B)) + (2 Literatur 239.70 See 140.50 232.60 | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 297.22 -566.57 333.12 -134.38 | - 3.30
- 0.40
0.00 | Teference 72MOR2 50COO/HOI 31SMI/AND | Gas phase $\Delta_t H^\circ = {C_r^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = {1 \times C_r^\circ (C_t^\circ = C_t^\circ C_t$ | 295.39
312.13 | 271.21 174.13 295.81 312.13 -841.50 425.02 -171.45 C _B -(C)(C _B) ₂)+ e-Calculated | = Residual - 0.42 0.00 | (H)(C _B) ₂) Reference 31SMI/AND 30HUF/PAR C ₂₅ F | | In K_f = rans-Stilber $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ C_p$ | H)(C _B)) + (2 Literatur 239.70 se | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 297.22 -566.57 333.12 -134.38 140.90 232.60 251.00 | = Residual
- 3.30 | Teference 72MOR2 50COO/HOI | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_t^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Tetraphenyl $(1 \times C - (C_t^*)^{-1} \times C - (C_t^*)^{-1}$ | 295.39
312.13 | 271.21 174.13 295.81 312.13 -841.50 425.02 -171.45 | = Residual - 0.42 0.00 | (H)(C _B) ₂) Reference 31SMI/AND 30HUF/PAR C ₂₅ I | | In K_f = rans-Stilber $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ C_p$ | H)(C _B)) + (2 Literatur 239.70 See 140.50 232.60 | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 297.22 -566.57 333.12 -134.38 140.90 232.60 251.00 -612.79 | - 3.30
- 0.40
0.00 | Teference 72MOR2 50COO/HOI 31SMI/AND | Gas phase $\Delta_t H^\circ = {C_r^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = {1 \times C_r^\circ (C_t^\circ = C_t^\circ C_t$ | 295.39
312.13 | 271.21 174.13 295.81 312.13 -841.50 425.02 -171.45 C _B -(C)(C _B) ₂)+ e-Calculated | = Residual - 0.42 0.00 | (H)(C _B) ₂) Reference 31SMI/AND 30HUF/PAR C ₂₅ I | | In K_f = rans-Stilber $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ = $ $\Delta_t H^\circ = C_p^\circ = $ $\Delta_t S^\circ = \Delta_t S^\circ = $ $\Delta_t H^\circ = C_p^\circ = $ Solid phase $\Delta_t H^\circ = C_p^\circ = $ $S^\circ = \Delta_t S^\circ = $ $\Delta_t S^\circ = \Delta_t S^\circ = $ $\Delta_t S^\circ = $ $\Delta_t S^\circ = $ | H)(C _B)) + (2 Literatur 239.70 See 140.50 232.60 | -136.50 2×C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 297.22 -566.57 333.12 -134.38 140.90 232.60 251.00 -612.79 323.60 | - 3.30
- 0.40
0.00 | Teference 72MOR2 50COO/HOI 31SMI/AND | Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S_p^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t =$ Tetraphenyl $(1 \times C - (C))$ Gas phase $\Delta_t H^\circ =$ | 295.39
312.13 | 271.21 174.13 295.81 312.13 -841.50 425.02 -171.45 C _B -(C)(C _B) ₂)+ e-Calculated | = Residual - 0.42 0.00 | (H)(C _B) ₂) Reference 31SMI/AND 30HUF/PAR C ₂₅ I | | In K_f = rans-Stilber $(2 \times C_d - (1))$ Gas phase $\Delta_t H^\circ = C_p^\circ C_p$ | H)(C _B)) + (2 Literatur 239.70 See 140.50 232.60 | -136.50 2 × C _B -(C _d)(C _B e - Calculated 243.00 201.42 164.20 309.02 297.22 -566.57 333.12 -134.38 140.90 232.60 251.00 -612.79 | - 3.30
- 0.40
0.00 | Teference 72MOR2 50COO/HOI 31SMI/AND | Gas phase $\Delta_t H^\circ = {C_r^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = {1 \times C_r^\circ (C_t^\circ = C_t^\circ C_t$ | 295.39
312.13 | 271.21 174.13 295.81 312.13 -841.50 425.02 -171.45 C _B -(C)(C _B) ₂)+ e-Calculated | = Residual - 0.42 0.00 | (H)(C _B) ₂) Reference 31SMI/AND 30HUF/PAR (C ₂₅ I | | TABLE 11. Aromatic CH-02 (80) — Continued | TABLE 11. | Aromatic | CH-02 (80 |) - | Continued | |---|-----------|----------|-----------|-----|-----------| |---|-----------|----------|-----------|-----|-----------| TABLE 11. Aromatic CH-02 (80) - Continued | $\label{eq:control_loss} \begin{array}{ll} \textbf{1,1,2-Triphenylethane} & C_{20}H_{18} \\ (1\times C-(H)_2(C)(C_B)) + (1\times C-(H)(C)(C_B)_2) + (3\times
C_B-(C)(C_B)_2) + \\ (15\times C_B-(H)(C_B)_2) & \end{array}$ | $(1 \times C - (C_B)_3(C)) + (1 \times C - (H)(C)(C_B)_2) + (5 \times C_B - (C)(C_B)_2) + (25 \times C_B - (H)(C_B)_2)$ | | | | | |---|---|-------------------------------|--|--|--| | Literature-Calculated = Residual Reference | Literature-Calculated = Residual Reference | | | | | | Liquid phase $\Delta_t H^{\circ} = 133.60$ $C_p^{\circ} = 404.90$ $S^{\circ} = 450.07$ | Solid phase $\Delta_t H^\circ = 365.40$ $C_\rho^\circ = 473.63 470.33 3.30 31SMI/AN$ | 1D | | | | | $ \Delta_{i}S^{\circ} = -839.87 $ $ \Delta_{f}G^{\circ} = 384.01 $ $ inK_{f} = -154.91 $ | $\label{eq:continuous} \begin{split} \text{Triphenylethylene} & C \\ & (1 \times C_d - (C_B)_2) + (1 \times C_d - (H)(C_B)) + (3 \times C_B - (C_d)(C_B)_2) + \\ & (15 \times C_B - (H)(C_B)_2) \end{split}$ | H₁ | | | | | Solid phase $\Delta_t H^\circ = 133.95$ | Literature – Calculated = Residual Reference | | | | | | $C_p^{\circ} = 319.66 325.10 -5.44 31SMI/AND$ | Gas phase $\Delta_t H^\circ = 340.82$ | | | | | | $\label{eq:continuous} \begin{array}{ll} \textbf{1,1,1-Triphenylethane} & C_{20}H_{18} \\ (1\times C-(H)_3(C))+(1\times C-(C_B)_3(C))+(1\times -CH_3 \text{ corr (tertiary)})+\\ (3\times C_B-(C)(C_B)_2)+(15\times C_B-(H)(C_B)_2) \\ \\ \text{Literature-Calculated} = Residual & Reference \\ \end{array}$ | Liquid phase $\Delta_l H^{\circ} = 232.77$ $C_p^{\circ} = 425.29$ | | | | | | Solid phase $\Delta_t H^\circ = 206.82$ $C_p^\circ = 316.73$ 339.45 -22.72 31SMI/AND | Solid phase $\Delta_l H^\circ = 233.38$ 226.20 7.18 50COO/HC $C_P^\circ = 309.20$ 310.10 -0.90 31SMI/AN | | | | | | 1,1,1,2-Tetraphenylethane $ \begin{array}{c} C_{26}H_{22} \\ (1\times C-(C_B)_3(C)) + (1\times C-(H)_2(C)(C_B)) + (4\times C_B-(C)(C_B)_2) + \\ (20\times C_B-(H)(C_B)_2) \end{array} $ | Diphenylacetylene $(2 \times C_t - (C_B)) + (2 \times C_B - (C_t)(C_B)_2) + (10 \times C_B - (H)(C_B)_2)$ Literature – Calculated = Residual Reference | 14H 10 | | | | | Literature-Calculated = Residual Reference | Gas phase $\Delta_t H^\circ = 427.96$ | | | | | | Solid phase $\Delta_t H^\circ = 280.35$ $C_p^\circ = 395.39$ 398.77 -3.38 31SMI/AND | $C_p^o =$ 184.68 Liquid phase $\Delta_i H^o =$ 357.84 | | | | | | 1,1,2,2-Tetraphenylethane $ C_{2e}H_{22} $ $ (2 \times C-(H)(C)(C_B)_2) + (4 \times C_B-(C)(C_B)_2) + (20 \times C_B-(H)(C_B)_2) $ $ Literature-Calculated = Residual \qquad Reference $ | Solid phase $\Delta_t H^\circ = 312.40 312.00 0.40 53\text{COO/HC}$ $C_p^\circ = 225.90 225.90 0.00 31\text{SMI/ANI}$ | - | | | | | Liquid phase $\Delta_t H^{\circ} = 196.90$ | Biphenyl $(2 \times C_B - (C_B)_3) + (10 \times C_B - (H)(C_B)_2), \ \sigma = 8$ | ₁₂ H ₁₀ | | | | | $C_p^{\circ} = 517.00$
$S^{\circ} = 555.64$
$\Delta_p S^{\circ} = -1029.88$ | Literature - Calculated = Residual Reference | | | | | | $\Delta_t G^\circ = 503.96$ $\ln K_t = -203.29$ Solid phase $\Delta_t H^\circ = 219.00$ | Gas phase $\Delta_i H^\circ = 182.03$ 181.42 0.61 89CHI/KNI $C_p^\circ = 162.34$ 162.34 0.00 69STU/WE. $S^\circ = 392.67$ 392.67 0.00 69STU/WE. $\Delta_i S^\circ = -329.06$ $\Delta_i G^\circ = 279.53$ | S | | | | | $C_p^{\circ} = 396.64 396.66 -0.02 31\text{SMI/AND}$ | $\ln K_f = 279.33$ $\ln K_f = -112.76$ | | | | | TABLE 11. Aromatic CH-02 (80) - Continued | TABLE 11. | Aromatic | CH-02 (80 |) - | Continued | |-----------|----------|-----------|-----|-----------| |-----------|----------|-----------|-----|-----------| | Biphenyl (Co
(2×C _B –(C | ontinued)
$C_{\rm B})_3) + (10 \times$ | $C_B-(H)(C_B)_2$ | , σ = 8 | $C_{12}H_{10}$ | | 3(C))+(1× | $C_B-(C)(C_B)_2$ | +(1×ortho | C ₁₃ H ₁₂
corr)+ | |--|--|---|--------------|---------------------------------|---|---------------|---|----------------------------|---| | | Literature | - Calculated = | = Residual | Reference | $(2\times C_B-(C_B)$ | в)3) + (9×С | $_{\rm B}$ -(H)(C _B) ₂) | | | | | | | | | | Literature | Calculated - | - Residual | Reference | | Liquid phase | | 444.00 | 2.10 | 006777 | | | | | | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} =$ | 119.12 | 116.02
260.94 | 3.10 | 89CHI/KNI | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | 108.16 | 82.67
288.34 | 25.49 | 35BRU | | Solid phase | | | | | | | | · | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | 100.54 | 99.36 | 1.18 | 66COL/PIL | | | | | | | $C_p^{\circ} =$ | 198.39 | 197.86 | 0.53 | 89CHI/KNI | 3-Methylbiph | | | | C ₁₃ H ₁₂ | | S° = | 209.38 | 215.50 | -6.12 | 89CHI/KNI | $(1 \times C - (H))$ | 3(C))+(1× | C_B – $(C)(C_B)_2)$ | +(1×meta c | orr)+ | | $\Delta_f S^\circ =$ | | -506.23 | | | $(2\times C_B-(C_B)$ | в)3) + (9 × C | $_{\rm B}$ - $(H)(C_{\rm B})_2)$ | | | | $\Delta_f G^\circ = \ln K_f =$ | | 250.29
100.97 | | | | T | 01.1.1 | | D (| | | | 100.57 | | | | Literature | - Calculated = | = Residual | Reference | | | | | | | Gas phase | | | | | | Naphthalen | е | | | $C_{10}H_{8}$ | $\Delta_t H^\circ =$ | | 148.36 | | | | | (C _{BF})(C _B) ₂)
thalene 0 si | $+(8\times C_B-(H)($ | $(C_B)_2) +$ | | $C_p^{\circ} =$ | | 184.92 | | | | (= - : ::=p::: | | e – Calculated : | = Residual | Reference | Timil above | | | | | | | Littiatui | e Calculateu - | - Residuai | Reference | Liquid phase | 05.50 | 70.41 | C 15 | 250011 | | | | | | | $\Delta_{\rm f}H^{\circ} = C_{\rm p}^{\circ} =$ | 85.56 | 79.41
284.84 | 6.15 | 35BRU | | Gas phase | | | | | $C_p =$ | | 204.04 | | | | $\Delta_{\rm f} H^{\circ} =$ | 150.63 | 150.68 | -0.05 | 63MIL | | | | | | | $C_p^{\circ} =$ | 132.55 | 132.54 | 0.01 | 69STU/WES | | | | | | | S° = | 335.64 | 335.63 | 0.01 | 69STU/WES | 4-Methylbiph | envl | | | C13H12 | | $\Delta_f S^{\circ} =$ | | - 244.05 | | | | | $C_B-(C)(C_B)_2$ | $+(2\times C_{B}-(C_{I}))$ | | | $\Delta_t G^{\circ} =$ | | 223.44 | | | (9×C _B -(H | | -5 (-)(-5/2) | (= 1 - 5 (-) | D)3) | | $lnK_f =$ | | - 90.14 | | | | , , ,,,, | Calantatada | Dealdool | D | | | | | | | | Literature - | - Calculated = | = Residuai | Reference | | Liquid phas | | 06.04 | 0.07 | ETN ACCURENT | | | | | | | $\Delta_t H^\circ =$ | 95.97 | 96.94 | -0.97 | 57MCC/FIN | Gas phase | | | | | | $C_{\rho}^{\circ} = S^{\circ} =$ | | 200.48
219.88 | | | $\Delta_t H^\circ =$ | | 148.99 | | | | 3 =
Δ _f S° = | | 359.80 | | | $C_p^{\circ} =$ | | 184.21 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 204.22 | | | *** | | | | | | $\ln K_{\rm f} =$ | | -82.38 | | | T !! 1! | | | | | | maxi — | | 02.50 | | | Liquid phase $\Delta_t H^\circ =$ | | 79.41 | | | | | | | | | $C_p^{\circ} =$ | | 284.84 | | | | Solid phase | | | | | C_p – | | 204.04 | | | | $\Delta_{f}H^{\circ} =$ | 77.74 | 80.44 | -2.70 | 66COL/PIL | | | | | | | $C_p^{\circ} =$ | 165.69 | 165.64 | 0.05 | 57MCC/FIN | Solid phase | | | | | | s° = | 167.40 | 170.00 | -2.60 | 57MCC/FIN | $\Delta_t H^\circ =$ | 55.44 | 59.99 | -4.55 | 35BRU | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -409.68 | | | $C_p^{\circ} =$ | 33.44 | 221.92 | 4.00 | SSERC | | $\Delta_{\rm f}G^{\circ} =$ | | 202.59 | | | $S^a =$ | | 243.94 | | | | $lnK_f =$ | | -81.72 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -614.11 | | | | | | | | | $\Delta_t G^{\circ} =$ | | 243.09 | | | | | | | | | $lnK_f =$ | | - 98.06 | | | | | • | | | | | ··- | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | 2-Methylbir | | | | C ₁₃ H ₁₂ | - | | | | | | | | $\times C_B - (C)(C_B)_2$
$C_B - (H)(C_B)_2$ | + (1×ortho | corr)+ | | | | | | | | | e – Calculated | = Residual | Reference | Gas phase | | | | | | | | | | | Gas phase $\Delta_i H^\circ = C_p^\circ =$ | - Ditorutur | 150.25
190.61 | | | | | | | | | TABLE 11 | Aromatic | CH-02 | (80) - | Continued | |------------|-----------|-------|--------|-----------| | I ABLE I I | . Aromanc | CH-UZ | 1001 | COMMINUC | - Continued TABLE 11. Aromatic CH-02 (80) - Continued | | $(1)_3(C) + (1)$ | < C−(H)(C) ₂ (C
ury)) + (1 × C _B - | | C ₁₅ H ₁₆ | ortho-Terph
(4×C _B -(| • | $< C_B - (H)(C_B)_2$ |) | C ₁₈ H ₁ , |
---|--|---|------------------------|--|--|--|--|------------------------|---| | | corr) + (9× | $C_B-(H)(C_B)_2$
C_B -Calculated | $+(2\times C_B-(C_1)$ | | | Literatur | e – Calculated | = Residual | Reference | | | Literature | | | Reference | Gas phase | | | | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | 98.95
238.79 | | | $\Delta_t H^\circ = C_\rho^\circ =$ | | 279.98
243.02 | | | | Liquid phas | e | 04.00 | | | Liquid phas $ \Delta_t H^\circ = C_p^\circ = $ | e | 183.08
385.80 | | | | $\Delta_t H^\circ = C_p^\circ =$ | 338.49 | 24.88
342.32 | -3.83 | 64VUK/RAS | <u> </u> | | | | , | | | l) ₃ (C))+(1:
thalene 1 su | \times C _B -(C)(C _B) ₂
ub) + (7 \times C _B -(e - Calculated | $H)(C_B)_2), \sigma =$ | | Solid phase $ \Delta_t H^\circ = \\ C_p^\circ = \\ S^\circ - \\ \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \ln K_t = $ | 274.34
298.82 | 159.54
274.94
294.50
722.82
375.05
151.29 | - 0.60
4.32 | 72CHA/BES
72CHA/BES | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 116.86
159.54
377.44 | 118.25
159.53
377.75 | -1.39
0.01
-0.31 | 69STU/WES
69STU/WES
69STU/WES | 1,3,5-Triphe | - | |) | С24Н11 | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -338.25
219.10
-88.38 | | | | Literatur | e – Calculated | = Residual | Reference | | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = A_s $ | 56.19
224.39
254.81 | 60.33
224.38
254.81 | -4.14
0.01
0.00 | 60SPE/ROS
57MCC/FIN
57MCC/FIN | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | 378.54
323.70 | | | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | | -461.18
197.83
-79.80 | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | e | 250.14
510.66 | | | | 4,4'-Dimeth
(2×C-(F
(8×C _B -(| I) ₃ (C)) + (2:
H)(C _B) ₂) | $\times C_B$ -(C)(C_B) ₂ $= - Calculated$ | | C ₁₄ H ₁₄
B)3) +
Reference | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | 358.32
367.36 | 219.72
352.02
373.50
- 939.40
499.80 | 6.30
-6.14 | 36PAR/TOD
36PAR/TOD | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | 116.56
206.08 | | | $lnK_f =$ | | -201.62 | | | | Liquid phas $\Delta_l H^\circ = C_l^\circ =$ | e | 42.80
308.74 | | | 2-Methylnap
(1×C-(H
(2×napht |) ₃ (C))+(1>
halene 1 su | $(C_B-(C)(C_B)_2)$
b) + $(7 \times C_B-(1)$
c - Calculated = | $H)(C_B)_2), \sigma =$ | $C_{11}H_{10}$ C_{BF})(C_{B}) ₂) + C_{BF} 3 Reference | | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 14.14 | 20.62
245.98
272.38
- 721.98
235.88
- 95.15 | -6.48 | 35BRU | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 116.11
159.79
380.03 | 118.25
159.53
377.75
- 338.25
219.10
- 88.38 | -2.14
0.26
2.28 | 69STU/WES
69STU/WES
69STU/WES | TABLE 11. Aromatic CH-02 (80) - Continued | | 3(C))+(1:
nalene 1 si | $\times C_{B}-(C)(C_{B})_{2})$ $ub) + (7 \times C_{B}-(I_{B})$ | $H)(C_B)_2), \sigma =$ | : 3 | $(1 \times C - (I \times C) + (1 \times C))$ | | \times C-(H) ₂ (C)(C
+(2 × naphtha | | | |---|--|--|------------------------|--------------------------------------|---|----------------|--|-------------------------|------------------------| | i | Literatur | e – Calculated = | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Liquid phase | | 60.00 | 2.25 | car rocativi | T111.1 | | | | | | $\Delta_{\rm f}H^{\circ} = C^{\circ} - V^{\circ}$ | 62.58 | 60.33 | 2.25 | 57MCC/FIN | Liquid pha | se | 25 52 | | | | $C_p^\circ = {}^{\circ} \cdot {}^{\circ}$ $S^\circ = {}^{\circ} \cdot {}^{\circ}$ | | 224.38
254.81 | | | $\Delta_t H^\circ = C_p^\circ =$ | | 35.52
247.28 | | | | Δ _f S° = | | -461.18 | | | $S^{\circ} =$ | | 302.21 | | | | ∆್.G° = | | 197.83 | | | $\Delta_f S^\circ =$ | | -550.10 | | | | $\ln K_t =$ | | - 79.80 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 199.53 | | | | | | | | | $\ln K_{\rm f} =$ | | - 80.49 | | | | olid phase | | | | | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | 44.85 | 41.07 | 3.78 | 60SPE/ROS | 1-Propylna | | | | C ₁₃ l | | $C_p^{\circ} =$ | 195.98 | 189.70 | 6.28 | 57MCC/FIN | (1×C-(H | (C) + (1) | \times C-(H) ₂ (C) ₂) | $+(1\times C-(H)_2$ | $(C)(C_B)) +$ | | S° = | 219.99 | 198.44 | 21.55 | 57MCC/FIN | $(1 \times C_{B}-($ | $C)(C_B)_2)+($ | $2 \times C_{BF} - (C_{BF})($ | $(C_B)_2) +$ | | | $\Delta_{\rm r} S^{\circ} =$ | | -517.55 | | | (2×naph | thalene 1 si | $ab) + (7 \times C_B - (1)$ | $H)(C_B)_2), \sigma =$ | = 3 | | $\Delta_{\mathbf{f}}G^{\circ} = $ $\ln K_{\mathbf{f}} =$ | | 195.38
78.81 | | | | Literatur | e – Calculated : | = Residual | Reference | | ······································ | | | | | <u></u> | | | | | | -Ethylnapht | thalene | | | $C_{12}H_{12}$ | Gas phase | | | | | | | | \times C-(H) ₂ (C)(C | | $(C)(C_B)_2) +$ | $\Delta_{\rm f}H^{\circ} =$ | 74.68 | 76.28 | -1.60 | 69STU/WES | | | |) + (2×naphtha | lene 1 sub)+ | | $C_p^{\circ} =$ | 208.11 | 208.03 | 0.08 | 69STU/WES | | $(7 \times C_{B} - (11))$ | I)(С _в) ₂), а | r - 3 | | | S° = | 158.36 | 459.50 | - 1.14 | 69STU/WES | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -529.12 | | | | | Literatui | re – Calculated: | = Residual | Reference | $\Delta_{r}G^{\circ} =$ | | 234.04 | | | | | | | | | $lnK_f =$ | | - 94.41
 | | | | Gas phase
Δ _t H° = | 96.65 | 96.91 | -0.26 | 69STU/WES | Liquid phas | | | | | | $C_p^{\circ} =$ | 184.18 | 185.14 | -0.20 | 69STU/WES | $\Delta_t H^\circ =$ | SC . | 9.79 | | | | $S^{\circ} =$ | 418.15 | 420.34 | - 0.30
- 2.19 | 69STU/WES | $C_p^{\circ} =$ | | 277.70 | | | | $\Delta_{f}S^{\circ} =$ | 410.13 | -431.97 | - 2.19 | 0931 O/ WE3 | $S^{\circ} =$ | | 334.59 | | | | $\Delta_i G^\circ =$ | | 225.70 | | | $\Delta_{f}S^{\circ} =$ | | -654.03 | | | | $\ln K_0 =$ | | -91.05 | | | $\Delta_{\rm f}G^{\circ} =$ | | 204.79 | | | | | | | <u></u> | | $\ln K_{\rm f} =$ | | - 82.61 | | | | iquid phase | e | | | | | | | | | | $\Delta_t H^\circ =$ | | 35.52 | | • | 2-Propylna | | - C /H) /C) \ | /1 × 6 /1* | C ₁₃ F | | $C_p^{\circ} =$ | | 247.28 | | | | | \times C-(H) ₂ (C) ₂) + | |
(C)(C _B))+ | | S° = | | 302.21 | | | | | $2 \times C_{BF}$ (C_{BF}) | | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | -550.10
199.53 | | | (2 × napn | maiche I St | $(1b) + (7 \times C_B - (1$ | $1/(CB/2)$, $\sigma =$ | . 3 | | $\ln K_{\rm f} =$ | | - 80.49 | | | | Literature | e – Calculated = | = Residual | Reference | | | ······································ | | | | <u> </u> | | | | | | 2-Ethylnaph | | VE 611 1011 | · >> - (1 · · · · · | $C_{12}H_{12}$ | Gas phase $\Delta_l H^{\circ}$ – | 73.85 | 76.28 | 2.43 | 69STU/WES | | | | × C-(H) ₂ (C)(C | | (C)(C _B) ₂)+ | $C_p^{\circ} =$ | 208.36 | 208.03 | 0.33 | | | | |) + (2×naphtha | nene i sub)+ | | $S^{\circ} =$ | 460.99 | 459.50 | 1.49 | 69STU/WES
69STU/WES | | $(7 \times C_B - (1 + C_B))$ | 1)(CB)2), C | r = 3 | | | $\Delta_{f}S^{\circ} =$ | 100.77 | -529.12 | 1.77 | 0/31 U/ WES | | | Literatus | re – Calculated | = Residual | Reference | $\Delta_i G^\circ =$ | | 234.04 | | | | | Literatu | | - Residual | Reference | $\ln K_{\rm f} =$ | | -94.41 | | | | Gas phase | | • | | | T::: | | | | | | | 95.90 | 96.91 | -1.01 | 69STU/WES | Liquid phas | ie | 0.70 | | | | $\Delta_{f}H^{\circ} =$ | 184.43 | 185.14 | -0.71 | 69STU/WES | $\Delta_t H^\circ =$ | | 9.79 | | | | $\Delta_t H^\circ = C_p^\circ =$ | | 100.01 | 0.40 | 69STU/WES | $C_p^{\circ} =$ | | 277.70 | | | | $C_p^{\circ} = S^{\circ} =$ | 420.74 | 420.34 | 0.40 | 0931 O/WE3 | oʻ- | | 204 20 | | | | $C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} =$ | | 420.34
-431.97 | 0.40 | 0931 U/WE3 | S° = | | 334.59 | | | | S° = | | | 0.40 | 0931 U/WE3 | $S^{\circ} = \Delta_{f}S^{\circ} - \Delta_{f}G^{\circ} =$ | | 334.59
-654.03
204.79 | | | | $(1 \times C_B - (0))$ | $(1)_3(C) + (2)^2$
$(2)(C_B)_2 + (3)^2$ | $\times C-(H)_2(C)_2)$ $2 \times C_{BF}-(C_{BF})_1$ $1b) + (7 \times C_B-(C_{BF})_1$ | $(C_B)_2) +$ | | 1-Pentyinaphthalene (Continued) $(1 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)(C_B)) + (1 \times C_B - (C)(C_B)_2) + (2 \times C_{BF} - (C_{BF})(C_B)_2) + (2 \times naphthalene 1 sub) + (7 \times C_B - (H)(C_B)_2), \ \sigma = 3$ | | | | | |--|--|--|---|---------------------------------------|---|--|--|----------------------------------|-------------------------------------| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$S^\circ =$
$\Delta_t S^\circ =$
$\Delta_t G^\circ =$
$\ln K_t =$ | 53.05
230.87
497.18 | 55.65
230.92
498.66
-626.27
242.37
-97.77 | -2.60
-0.05
-1.48 | 69STU/WES
69STU/WES
69STU/WES | Liquid pha:
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | se | -41.67
338.54
399.35
-861.89
215.30
-86.85 | | | | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | se · | - 15.94
308.12
366.97
- 757.96
210.05
- 84.73 | | | $(1 \times C_{B} \sim ($ | $(C)(C_B)_2 + (3)_3$
$(C)(C_B)_2 + (3)_3$
$(C)(C_B)_2 + (3)_3$ | \times C-(H) ₂ (C) ₂)
(2 \times C _{BF} -(C _{BF})(
ub) + (7 \times C _B -(
re – Calculated | $(C_B)_2) + H(C_B)_2), \sigma =$ | | | (1×C _B -(| $(C)(C_B)_2 + (C)(C_B)_2 + (C)(C_B)_2 + (C)$ | × C-(H) ₂ (C) ₂)
(2 × C _{BF} -(C _{BF})
(ub) + (7 × C _B -(
e – Calculated | $(C_B)_2$) +
H)(C_B) ₂), $\sigma =$ | . , | Gas phase $ \Delta_t H^\circ = C_p^\circ = C_p^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_f = $ | 31.67
254.01
539.28 | 35.02
253.81
537.82
-723.42
250.71
-101.13 | -3.35
0.20
1.46 | 69STU/WES
69STU/WES
69STU/WES | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t =$ | 52.30
231.12
499.82 | 55.65
230.92
498.66
- 626.27
242.37
- 97.77 | - 3.35
0.20
1.16 | 69STU/WES
69STU/WES
69STU/WES | Liquid phase $\Delta_t H^o = C_p^o = S^o = \Delta_t S^o = \ln K_t = $ | se | -41.67
338.54
399.35
-861.89
215.30
-86.85 | | | | Liquid phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se | -15.94
308.12
366.97
-757.96
210.05
-84.73 | | · · · · · · · · · · · · · · · · · · · | 1,2-Dimethy
(2×C-(F
(2×naph | (C) + (2
thalene 2 s | ne $\times C_{B^{-}}(C)(C_{B})_{2}$ $ub) + (6 \times C_{B^{-}}(I)$ $e - Calculated$ | $H)(C_B)_2), \sigma =$ | : 9 | | $(1 \times C_B - ($ | $(1)_3(C) + (3)_3(C)(C_B)_2 + (3)_3(C)$ | × C-(H) ₂ (C) ₂)
(2 × C _{BF} -(C _{BF})(
ub) + (7 × C _B -(
e – Calculated | $(C_B)_2$) +
H)($C_B)_2$), $\sigma =$ | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 83.55
184.85
406.81 | 85.82
185.58
409.01
-443.29
217.99
-87.94 | -2.27
-0.73
-2.20 | 69STU/WES
69STU/WES
69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 32.43
253.76
536.64 | 35.02
253.81
537.82
-723.42
250.71
-101.13 | -2.59
-0.05
-1.18 | 69STU/WES
69STU/WES
69STU/WES | Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_f =$ | e | 23.72
248.28
289.74
- 562.57
191.45
- 77.23 | | | | | | te
$(C_B-(C)(C_B)_2)$
$(C_B-(C)(C_B)_2)$ | | | (2×C-(H | (C) + (2 | ne (Continued)
$\times C_B - (C)(C_B)_2$
$ub) + (6 \times C_B - (C)$ | $+(2\times C_{BF}-(0))$ | | |--|---|--|--|---|---|------------------|--|------------------------------|------------------------| | | Literature | - Calculated : | = Residual | Reference | | Literatur | e – Calculated
— | = Residual | Reference | | Gas phase | | | | | Liquid phas | e | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | 81.80 | 85.82 | -4.02 | 69STU/WES |
$\Delta_{\rm f}H^{\circ} =$ | | 23.72 | | | | $C_p^{\circ} =$ | 185.10 | 185.58 | -0.48 | 69STU/WES | $C_p^{\circ} =$ | | 248.28 | | | | S° = | 409.45 | 409.01 | 0.44 | 69STU/WES | S° = | | 289.74 | | | | $\Delta_f S^{\circ} =$ | | - 443.29 | | | $\Delta_f S^\circ =$ | | - 562.57 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 217.99 | | | $\Delta_{\rm f}G^{\circ} =$ | | 191.45 | | | | $lnK_f =$ | | – 87.94
–––––– | | | $lnK_f =$ | | | | | | Liquid phas | :e | | | | | | | | | | $\Delta_{i}H^{\circ} =$ | | 23.72 | | | 1,6-Dimethy | | | | C ₁₂ H | | $C_p^{\circ} =$ | | 248.28 | | | (2×C-(H | (C) + (2 | $\times C_B - (C)(C_B)_2$ | $+(2\times C_{BF}-(0))$ | $C_{BF})(C_B)_2) +$ | | <i>S</i> ° = | | 289.74 | | | (2×naph | thalene 2 s | ub)+(6×C _B −(| $H)(C_B)_2), \sigma =$ | = 9 | | $\Delta_r S^{\circ} =$ | | - 562.57 | | | | - • | | | | | $\Delta_f G^\circ = \ln K_f =$ | | 191.45
- 77.23 | | | *** | Literatur | e – Calculated | = Residual | Reference | | | | | | | Gas phase | | | | | | | | | | | $\Delta_{\rm f} H^{\circ} =$ | 82.51 | 85.82 | -3.31 | 69STU/WES | | 1,4-Dimethy | ylnaphthaler | 1e | | $C_{12}H_{12}$ | $C_p^{\circ} =$ | 185.10 | 185.58 | -0.48 | 69STU/WES | | , | | $\times C_{B}$ -(C)(C _B) ₂) | $)+(2\times C_{BF}-(0))$ | | S° = | 409.45 | 409.01 | 0.44 | 69STU/WES | | • | ,- , ,, , | $ab) + (6 \times C_{B} - (1)$ | | /, | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -443.29 | | | | ` . | | • | ,- | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 217.99 | | | | | Literatur | e – Calculated | = Residual | Reference | $lnK_f =$ | | -87.94 | | | | Gas phase | | | | | Liquid phas | Α | | | | | $\Delta_{i}H^{\circ} =$ | 82.51 | 85.82 | -3.31 | 69STU/WES | $\Delta_t H^\circ =$ | | 23.72 | | | | $C_p^{\circ} =$ | 184.85 | 185.58 | -0.73 | 69STU/WES | $C_p^{\circ} =$ | | 248.28 | | | | S° = | 401.08 | 403.25 | -2.17 | 69STU/WES | . S° = | | 289.74 | | | | $\Delta_f S^\circ =$ | .01.00 | -449.06 | | 0,010,1,20 | $\Delta_{f}S^{\circ} =$ | | - 562.57 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 219.71 | | | $\Delta_t G^\circ =$ | | 191.45 | | | | $lnK_f =$ | | -88.63 | | | $lnK_{f} =$ | | -77.23 | | | | Liquid phas | | | | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | | 23.72 | | | 1,7-Dimethy | - | | | C ₁₂ H | | $C_p^{\circ} =$ | | 248.28 | | | | | $\times C_{B}$ -(C)(C _B) ₂ | | | | | | 289.74 | | | (∠× napn | maiene Z SI | $ab) + (6 \times C_{B} - (2)$ | $\Pi_{J}(C_{BJ2J}, \sigma =$ | · y | | S° = | | -562.57 | | | | I itamatu- | e – Calculated | _ Dasidual | Doforces | | $\Delta_f S^{\circ} =$ | | 191.45
77.23 | | | | Literatur | | = Residuai | Reference | | | | | | | Gas phase | | | | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | ¥ | | | | | 05.00 | -4.02 | 69STU/WES | | $\Delta_f S^\circ = \Delta_f G^\circ = InK_f =$ | | Hoper | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | 81.80 | 85.82 | | | | $\Delta_t S^\circ = \Delta_t G^\circ = InK_t = InK_t$ | yinaphthale | | | C ₁₂ H ₁₂ | $C_p^{\circ} =$ | 185.10 | 185.58 | -0.48 | 69STU/WES | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_f = \frac{1,5\text{-Dimeth}}{2 \times C - (I)}$ | $H)_3(C)) + (2)$ | $\times C_{B}$ - $(C)(C_{B})_{2}$ | | $C_{BF})(C_B)_2) +$ | $C_p^\circ = S^\circ =$ | | 185.58
409.01 | | 69STU/WES
69STU/WES | | $\Delta_{\rm f}S^{\circ} = \Delta_{\rm f}G^{\circ} = {\rm in}K_{\rm f} $ | $H)_3(C)) + (2)$ | | | $C_{BF})(C_B)_2) +$ | $C_p^\circ = S^\circ = \Delta_t S^\circ = 0$ | 185.10 | 185.58
409.01
- 443.29 | -0.48 | | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_f = \frac{1,5\text{-Dimeth}}{2 \times C - (I)}$ | H) ₃ (C))+(2)
hthalene 2 st | $\times C_{B}$ -(C)(C _B) ₂
ub) + (6 \times C _B -(| $H)(C_B)_2), \sigma =$ | $(C_{BF})(C_{B})_{2}$ + = 9 | $C_p^\circ = S^\circ =$ | 185.10 | 185.58
409.01
- 443.29
217.99 | -0.48 | | | $\Delta_{\rm f}S^{\circ} = \Delta_{\rm f}G^{\circ} = {\rm in}K_{\rm f} $ | H) ₃ (C))+(2)
hthalene 2 st | $\times C_{B}$ - $(C)(C_{B})_{2}$ | $H)(C_B)_2), \sigma =$ | $C_{BF})(C_B)_2) +$ | $C_p^\circ = S^\circ = \Delta_t S^\circ = 0$ | 185.10 | 185.58
409.01
- 443.29 | -0.48 | | | $\Delta_{\rm f}S^{\circ} = \Delta_{\rm f}G^{\circ} = {\rm in}K_{\rm f} $ | H) ₃ (C))+(2)
hthalene 2 st | $\times C_{B}$ -(C)(C _B) ₂
ub) + (6 \times C _B -(| $H)(C_B)_2), \sigma =$ | $(C_{BF})(C_{B})_{2}$ + = 9 | $C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = 0$ | 185.10
409.45 | 185.58
409.01
- 443.29
217.99 | -0.48 | | | $\Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 1$ 1,5-Dimeth $(2 \times C - (1 \times C + C))$ | H) ₃ (C))+(2)
hthalene 2 st | $\times C_{B}$ -(C)(C _B) ₂
ub) + (6 \times C _B -(| $H)(C_B)_2), \sigma =$ | $(C_{BF})(C_{B})_{2}$ + = 9 | $C_{\rho}^{\circ} = S^{\circ} = S_{f}^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = S_{f}^{\circ}$ | 185.10
409.45 | 185.58
409.01
- 443.29
217.99 | -0.48 | | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 1,5$ -Dimeth (2×C-(I (2×napl | H) ₃ (C)) + (2
hthalene 2 so
Literatur | \times C _B -(C)(C _B) ₂
ub) + (6 \times C _B -(
re – Calculated | $(H)(C_B)_2$, $\sigma =$ = Residual | C _{BF})(C _B) ₂) +
= 9
Reference | $C_{\rho}^{\circ} =$ $S^{\circ} =$ $\Delta_{t}S^{\circ} =$ $\Delta_{t}G^{\circ} =$ $\ln K_{t} =$ Liquid phas $\Delta_{t}H^{\circ} =$ | 185.10
409.45 | 185.58
409.01
- 443.29
217.99
- 87.94 | -0.48 | | | $\Delta_f S^\circ = \Delta_f G^\circ = InK_f $ | H) ₃ (C)) + (2)
hthalene 2 so
Literatur
81.80 | \times C _B -(C)(C _B) ₂
\times C _B -(C)(C _B) ₂
\times C _B -(C)
\times Calculated
85.82 | $(H)(C_B)_2$, $\sigma =$ $= Residual$ -4.02 | C _{BF})(C _B) ₂) +
= 9
Reference
69STU/WES | $C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = $ Liquid phas | 185.10
409.45 | 185.58
409.01
- 443.29
217.99
- 87.94 | -0.48 | | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 1,5$ -Dimeth (2×C-(I (2×napl) Gas phase $\Delta_t H^\circ = C_p^\circ = 1$ | H) ₃ (C)) + (2:
hthalene 2 su
Literatur
81.80
184.85 | \times C _B -(C)(C _B) ₂
\times C _B -(C)(C _B) ₂
\times C _B -(C)
\times Calculated
85.82
185.58 | $(H)(C_B)_2$, $\sigma =$ = Residual -4.02 -0.73 | C _{BF})(C _B) ₂) +
= 9
Reference
69STU/WES
69STU/WES | $C_{\rho}^{\circ} =$ $S^{\circ} =$ $\Delta_{t}S^{\circ} =$ $\Delta_{t}G^{\circ} =$ $\ln K_{t} =$ Liquid phas $\Delta_{t}H^{\circ} =$ $C_{\rho}^{\circ} =$ | 185.10
409.45 | 185.58
409.01
- 443.29
217.99
- 87.94
23.72
248.28 | -0.48 | | | $\Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = InK_{t} = InK_{t} = InK_{t}$ 1,5-Dimeth (2×C-(I) (2×naph Gas phase $\Delta_{t}H^{\circ} = C_{t}^{\circ} = S^{\circ} = InK_{t}G^{\circ} = InK_{t}G^{\circ}$ | H) ₃ (C)) + (2:
hthalene 2 su
Literatur
81.80
184.85 | × C _B -(C)(C _B) ₂
ub) + (6 × C _B -(
e - Calculated
85.82
185.58
409.01 | $(H)(C_B)_2$, $\sigma =$ = Residual -4.02 -0.73 | C _{BF})(C _B) ₂) +
= 9
Reference
69STU/WES
69STU/WES | $C_{p}^{\circ} =$ $S^{\circ} =$ $\Delta_{s}S^{\circ} =$ $\Delta_{t}G^{\circ} =$ $\ln K_{t} =$ Liquid phas $\Delta_{t}H^{\circ} =$ $C_{p}^{\circ} =$ $S^{\circ} =$ | 185.10
409.45 | 185.58
409.01
- 443.29
217.99
- 87.94
23.72
248.28
289.74 | -0.48 | | $C_{12}H_{12}$ TABLE 11. Aromatic CH-02 (80) - Continued TABLE 11. Aromatic CH-02 (80) - Continued #### 1,8-Dimethylnaphthalene $C_{12}H_{12}$ $(2 \times C - (H)_3(C)) + (2 \times C_B - (C)(C_B)_2) + (2 \times C_{BF} - (C_{BF})(C_B)_2) +$ $(2 \times \text{naphthalene } 2 \text{ sub}) + (6 \times C_B - (H)(C_B)_2)$ | | Literatur | e – Calculated | = Residual | Reference | | |----------------------------------|-----------|----------------|------------|--|--| | Gas phase | | | | | | | $\Delta_i H^{\circ} =$ | 108.66 | 85.82 | 22.84 | 74MAN | | | $C_p^{\circ} =$ | | 185.58 | | | | | Liquid pha | se | | e. | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | 41.76 | 23.72 | 18.04 | 74MAN | | | $C_p^{\circ} =$ | | 248.28 | | | | | S° = | | 289.74 | | | | | $\Delta_t S^\circ =$ | | - 562.57 | | | | | $\Delta_f G^\circ =$ | | 191.45 | | | | | $lnK_f =$ | | -77.23 | | ······································ | | | Solid phase | • | | | | | | $\Delta_{\rm f} H^{\circ} =$ | 26.10 | 1.70 | 24.40 | 74MAN | | | $C_p^{\circ} =$ | 242.80 | 213.76 | 29.04 | 77FIN/MES | | | S° = | 224.72 | 226.88 | -2.16 | 77FIN/MES | | | $\Delta_f S^\circ =$ | | - 625.43 | | | | | $\Delta_t G^{\circ} =$ | | 188.17 | | | | | $lnK_f =$ | | - 75.91 | | | | ### 2,3-Dimethylnaphthalene $C_{12}H_{12}$ $(2 \times C - (H)_3(C)) + (2 \times C_B - (C)(C_B)_2) + (2 \times C_{BF} - (C_{BF})(C_B)_2) +$ $(2 \times \text{naphthalene } 2 \text{ sub}) + (6 \times C_B - (H)(C_B)_2), \sigma = 18$ | | Literatu | rc — Calculated | - Residual | Reference | |-----------------------------|----------|-----------------|--|-------------| | Gas phase | | | | | | $\Delta_i H^{\circ} =$ | 83.55 | 85.82 | -2.27 | 69STU/WES | | $C_p^{\circ} =$ | 185.81 | 185.58 | 0.23 | 69STU/WES | | $S^{\circ} =$ | 410.95 | 403.25 | 7.70 | 69STU/WES | | Δ ₁ S° = | 410.23 | - 449.06 | 7.70 | 0701 C/ WED | | $\Delta_f G^{ } =$ | | 219.71 | | | | $\ln K_{\rm f} =$ | | -88.63 | | | | | | | ······································ | | | Liquid pha | se | | | | | $\Delta_t H^\circ =$ | | 23.72 | | | | $C_p^{\circ} =$ | | 248.28 | | | | S° = | | 289.74 | | | | Δ ₆ S° = | | -562.57 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 191.45 | | | | $lnK_f =$ | | -77.23 | | | | - | | | | | | Solid phase | : | | | | | $\Delta_t H^{\circ} =$ | -2.34 | 1.70 | -4.04 | 73GOO2 | | $C_p^{\circ} =$ | | 213.76 | | | | 5° = | | 226.88 | | | | Δ ₀ S° = | | -625.43 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 188.17 | | | | $\ln K_{\rm f} =$ | | - 75.91 | | | | | | 12124 | | | |
2,6-Dimethylnaphthalene | $C_{12}H_{12}$ | |---|----------------| | $(2 \times C - (H)_3(C)) + (2 \times C_B - (C)(C_B)_2) + (2 \times C_{BF} - (C_{BF})(C_B)_2) +$ | | | $(2 \times \text{naphthalene 2 sub}) + (6 \times C_B - (H)(C_B)_2), \sigma = 9$ | | | | Literatur | e – Calculated | lated = Residual Referen | | | |------------------------------|-----------|----------------|--------------------------|-----------|--| | Gas phase | | | | | | | $\Delta_f H^\circ =$ | 82.51 | 85.82 | -3.31 | 69STU/WES | | | $C_p^{\circ} =$ | 187.07 | 185.58 | 1.49 | 69STU/WES | | | S° = | 408.69 | 409.01 | -0.32 | 69STU/WES | | | $\Delta_f S^\circ =$ | | -443.29 | | | | | $\Delta_t G^{\circ} =$ | | 217.99 | | | | | $lnK_f =$ | | -87.94 | | | | | Liquid pha | se | | | | | | $\Delta_t H^\circ =$ | | 23.72 | | | | | $C_p^{\circ} =$ | | 248.28 | | | | | S° = | | 289.74 | | | | | $\Delta_f S^\circ =$ | | -562.57 | | | | | $\Delta_f G^\circ =$ | | 191.45 | | | | | $lnK_f =$ | | -77.23 | | | | | Solid phase | e | | | | | | $\Delta_{\rm f} H^{\circ} =$ | -5.73 | 1.70 | −7.43 | 73GOO2 | | | $C_p^{\circ} =$ | 203.55 | 213.76 | - 10.21 | 77FIN/MES | | | s° = | 227.86 | 226.88 | 0.98 | 77FIN/MES | | | $\Delta_f S^\circ =$ | | -625.43 | | • | | | $\Delta_f G^\circ =$ | | 188.17 | | | | | $lnK_f =$ | | -75.91 | | | | ### 2,7-Dimethylnaphthalene $(2 \times C - (II)_3(C)) + (2 \times C_{B} - (C)(C_B)_2) + (2 \times C_{BF} - (C_{BF})(C_B)_2) +$ $(2 \times \text{naphthalene } 2 \text{ sub}) + (6 \times C_{B} - (H)(C_{B})_{2}), \sigma = 18$ Literature - Calculated = Residual Reference Gas phase $\Delta_t H^\circ =$ 82.51 85.82 -3.3169STU/WES $C_p^{\circ} = S^{\circ} =$ 187.07 185.58 69STU/WES 1.49 408.69 403.25 5.44 69STU/WES $\Delta_f S^\circ =$ -449.06 $\Delta_f G^\circ =$ 219.71 $lnK_f =$ -88.63Liquid phase $\Delta_{\mathbf{f}}H^{\circ} =$ 23.72 $C_{\rho}^{\circ} = S^{\circ} =$ 248.28 289.74 $\Delta_6 S^\circ =$ ~562.57 $\Delta_f G^{\circ} =$ 191.45 $lnK_f =$ -77.23Solid phase $\Delta_f H^\circ =$ -5.441.70 -7.1473GOO2 $C_p^{\circ} = S^{\circ} =$ 204.39 213.76 -9.3777FIN/MES 228.57 226.88 77FIN/MES 1.69 $\Delta_f S^{\circ} =$ -- 625.43 188.17 -75.91 $\Delta_f G^\circ =$ $lnK_f =$ TABLE 11. Aromatic CH-02 (80) - Continued | $(2 \times C_{BF} - ($ | $(1)_3(C) + (1 \times$ | C-(H)2(C)(C
+(2×naphtha | | $C_{13}H_{14}$
(C)(C _B) ₂) + | $(2 \times C_{BF})$ | $(1)_3(C) + (1)_3(C)$ | × C-(H) ₂ (C)(C
+(2×naphtha | | | |--|--|---|------------------------|---|--|---------------------------|---|-----------------------|--| | | Literature | - Calculated | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 65.77
210.46
457.44 | 64.48
211.19
451.60
-537.02
224.59
-90.60 | 1.29
- 0.73
5.84 | 69STU/WES
69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ = C_r^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 61.30
211.71
455.18 | 64.48
211.19
451.60
-537.02
224.59
-90.60 | -3.18
0.52
3.58 | 69STU/WES
69STU/WES
69STU/WES | | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | e | - 1.09
271.18
337.14
- 651.48
193.15
- 77.91 | | | Liquid phas $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | е | -1.09
271.18
337.14
-651.48
193.15
-77.91 | | | | $(2 \times C - (H))$
$(2 \times C_{BF} - (H))$ | $(C_{BF})(C_B)_2$
H) $(C_B)_2$, σ | $< C-(H)_2(C)(C)$
+ $(2 \times naphtha)$
= 9 | lene 2 sub)+ | | Tetraphenyl | $(C_B)_2$) + (4 × | C _B -(C _d)(C _B) ₂)
e – Calculated : | • | C ₂₆ H ₂₈
I)(C _B) ₂)
Reference | | Gas phase | Literature | e – Calculated | = Residual | Reference | Gas phase $\Delta_t H^\circ =$ | | 438.64 | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ - \Delta_t G^\circ = \ln K_t =$ | 61.30
211.71
455.18 | 64.48
211.19
451.60
- 537.02
224.59
- 90.60 | -3.18
0.52
3.58 | 69STU/WES
69STU/WES
69STU/WES | Liquid phas $\Delta_t H^\circ = C_p^\circ -$ | e | 301.34
541.56 | | | | Liquid phas $\Delta_t H^\circ =$ | se | -1.09 | 1 (27) | | Solid phase $\Delta_l H^o - C_p^o =$ | 311.50
387.60 | 311.50
387.60 | 0.00
0.00 | 50COO/HOI
31SMI/AND | | $C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = InK_{f} = InK_{f}$ | | 271.18
337.14
-651.48
193.15
-77.91 | | | Anthracene
(4×C _{BF} | | + (10×C _B -(H)
e – Calculated = | | C₁₄H₁₀
Reference | | Solid phase $ \Delta_t H^\circ = \\ C_p^\circ = \\ S^\circ = \\ \Delta_t S^\circ = $ | • | - 20.40
263.14
253.78
- 734.84 | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 230,96 | 218.50
136.10 | 12.46 | 64KEL/RIC | | $\Delta_t G^\circ = \ln K_t = -$ | | 198.69
- 80.15 | | | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | e
158.57 | 144.92
264.88
266.54
- 466.67
284.06
- 114.59 | 13.65 | 70GOU/GIR | TABLE 11. Aromatic CH-02 (80) - Continued TABLE 11. Aromatic CH-02 (80) - Continued | Anthracene (| | l)
+(10×C _B −(H | $(C_B)_2$ | C ₁₄ H ₁₀ | Triphenylene
(6×C _{BF} -(| |)+(12×C _B -(H | I)(C _B) ₂) | C ₁₈ H | | |--|------------------------------------|---------------------------------------|-----------------------------------|--|--|--|--|--|--|-----------| | (*** 05)** (| Literature - Calculated = Residual | | | | Reference | Literature – Calculated = Residual | | | | Reference | | Calid ahasa | | | | | Gas phase | | | | | | | Solid phase $\Delta_t H^\circ =$ | 129.20 | 121.70 | 7.50 | 66COL/PIL | $\Delta_{\mathbf{f}}H^{\circ} =$ | 269.80 | 261.72 | 8.08 | 58HOY/PEP | | | - | | 210.50 | 0.00 | 70GOU/GIR | | | | | | | | $C_p^{\circ} =$ | 210.50 | | 3.65 | 70GOU/GIR | | | | | | | | S° = | 207.15 | 203.50 | 3.03 | /0000/GIK | Liquid phase | • | | | | | | $\Delta_{f}S^{\circ} =$ | | -529.71 | | | $\Delta_t H^\circ =$ | 176.52 | 166.92 | 9.60 | 71WON/WES | | | $\Delta_t G^\circ =$ | | 279.63 | | | | | | | | | | $lnK_f =$ | | - 112.80 | | | | | | | | | | | | | | | Solid phase | | | | | | | | _ | | | СИ | $\Delta_t H^{\circ} =$ | 151.80 | 150.36 | 1.44 | 78GOO | | | Naphthacen | | | N(C)) | $C_{18}H_{12}$ | $C_p^{\circ} =$ | 259.20 | 276.18 | - 16.98 | 71WON/WES | | | (6 × C _{BF} (| $C_{BF}(C_B)_2$ | $+(12\times C_{B}-(H$ |)(C _B) ₂) | | <i>S</i> ° = | 254.68 | 285.00 | -30.32 | 71WON/WES | | | | | | | | $\Delta_{f}S^{\circ} =$ | | 601.75 | | 7211021,1120 | | | | Literatur | e – Calculated | = Residual | Reference | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 329.77 | | | | | | | | | | $-\ln K_{\rm f} =$ | | - 133.03 | | | | | | | | | | -IIIAf = | | - 133.03 | | | | | Gas phase | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | 283.50 | 286.32 | -2.82 | 67WAK/INO | Chrysene | | | | C ₁₈ H ₁ | | | $C_p^{\circ} =$ | | 163.32 | | | • | Cos)(Co)a) | + (4 × Cps=(C | n)(Cpr)-)+(12 | $\times C_B-(H)(C_B)_2$ | | | | | | | | (Z. OBF (| | e – Calculated | | Reference | | | Liquid phase $\Delta_t H^* =$ | e | 192.90 | | | | | | | | | | - | | 329.28 | | | | | | | | | | $C_p^{\circ} =$ | | | | | Gas phase | | | | | | | S° = | | 313.20 | | | $\Delta_t H^\circ =$ | 276.30 | 269.92 | 6.38 | 80KRU | | | $\Delta_f S^\circ =$ | | -573.55 | | | | | | | | | | $\Delta_f G^\circ =$ | | 363.90 | | | | | | | | | | $\ln K_{\rm f} =$ | | - 146.80 | | | Liquid phase | ; | | | | | | | | | | | $\Delta_f H^\circ =$ | | 175.58 | | | | | Solid phase | | | | | | | | | | | | $\Delta_t H^{\circ} =$ | 158.78 | 162.96 | -4.18 | 51MAG/HAR | Solid phase | | | | | | | $C_p^{\circ} =$ | 236.56 | 255.36 | - 18.80 | 80WON/WES | $\Delta_{\rm f}H^{\circ} =$ | 145.30 | 154.56 | _ 0.26 | 513.4.4.0.0TA | | | S° = | 215.39 | 237.00 | -21.61 | 80WON/WES | | 173.30 | | - 9.26 | 51MAG/HAR | | | $\Delta_{f}S^{\circ} =$ | 22,007 | - 649.75 | 21.01 | 557. G17 11 LB | $C_p^{\circ} =$ | | 269.24 | | | | | $\Delta_{i}G^{\circ} =$ | | 356.68 | | | S° = | | 269.00 | | | | | | | | | | $\Delta_f S^\circ =$ | | -617.75 | | | | | $lnK_f =$ | | - 143.88 | | | $\Delta_f G^{\circ} =$ | | 338.74 | | | | | | | | | • | $lnK_f =$ | | - 136.65 | | | | | Phenanthre | |)+(2×C _{BF} -(C ₂ | B)(CBF)2)+(10 | $C_{14}H_{10}$
$0 \times C_{B}-(H)(C_{B})_{2})$ | Pyrene
(2×C _{BF} -(0 | C _{BF}) ₃)+(4 | $\times C_{BF}$ $(C_{BF})(C_{BF})$ | C _B) ₂)+(10×C _F | C ₁₆ H ₁₆
1-(H)(C _B) ₂) | | | | Literatur | e – Calculated | = Residual | Reference | | | e – Calculated | | Reference | | | | | | | | | <u>.,</u> | | | | | | | | | | | Gas phase | | | | | | | Gas phase | 209.10 | 210.30 | -1.20 | 59AIH | $\Delta_i H^\circ =$ | 225.68 | 225.68 | 0.00 | 80SMI/STE | | | Gas
phase $\Delta_t H^\circ =$ | | | | | 73 | | | | | | | $\Delta_t H^{\circ} =$ | | | | | Liquid phase | 143.13 | 143.12 | 0.01 | 71WON/WES | | | $\Delta_t H^{\circ} =$ | | 136.26 | -3.60 | 77FIN/MES | $\Delta_{\rm f}H^{\circ} =$ | 143.13 | | 0.01 | /1 W O1 V W LS | | | Liquid phase
Δ _t H° = | e | 136.26 | -3.60 | 77FIN/MES | | 143.13 | | 0.01 | 71W017/WED | | | $\Delta_t H^{\circ} =$ Liquid phase $\Delta_t H^{\circ} =$ Solid phase | e
132.66 | | | | Solid phase | ······································ | | | | | | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ | e
132.66
116.20 | 117.50 | -1.30 | 66COL/PIL | Solid phase $\Delta_t H^\circ =$ | 125.48 | 125.58 | -0.10 | 80SMI/STE | | | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ | 132.66
116.20
220.62 | 117.50
217.44 | -1.30
3.18 | 66COL/PIL
77FIN/MES | Solid phase $\Delta_t H^\circ =$ | ······································ | | | 80SMI/STE | | | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ | e
132.66
116.20 | 117.50 | -1.30 | 66COL/PIL | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | 125.48
227.65 | 125.58
226.50 | -0.10
1.15 | 80SMI/STE
71WON/WES | | | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ | 132.66
116.20
220.62 | 117.50
217.44 | -1.30
3.18 | 66COL/PIL
77FIN/MES | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 125.48 | 125.58
226.50
217.50 | -0.10 | 80SMI/STE | | | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_t^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ | 132.66
116.20
220.62 | 117.50
217.44
219.50
-513.71 | -1.30
3.18 | 66COL/PIL
77FIN/MES | Solid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = $ | 125.48
227.65 | 125.58
226.50
217.50
- 527.20 | -0.10
1.15 | 80SMI/STE
71WON/WES | | | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_t^\circ =$ $S^\circ =$ | 132.66
116.20
220.62 | 117.50
217.44
219.50 | -1.30
3.18 | 66COL/PIL
77FIN/MES | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 125.48
227.65 | 125.58
226.50
217.50 | -0.10
1.15 | 80SMI/STE
71WON/WES | | TABLE 11. Aromatic CH-02 (80) - Continued | TABLE 11. | Aromatic | CH-02 | (80) — | Continued | |-----------|-----------|-------|--------|-----------| | TIME II. | 2 HOHatie | CITOL | (00) | Continuou | $C_{20}H_{12}$ 67WES/WON 80WON/WES 80WON/WES $C_{24}H_{12}$ | 1,2-Benzanth
(4×C _{BF} -(| | + (2×C _{BF} -(C | $(C_{BF})_2 + (12)_2$ | $C_{18}H_{12}$
$2 \times C_B - (H)(C_B)_2)$ | | | $\times C_{BF}$ (C_B)(C_B) | $(C_{BF})_2$ + $(2 \times C_B)_2$ | $C_{20}H$
F-(C _{BF})(C _B) ₂)+ | |--|-------------|-------------------------------------|--------------------------------|--|---|--------------------------------------|--|-----------------------------------|--| | | Literatur | e – Calculated | l = Residual | Reference | (12×CB) | (| re – Calculatec | l = Residual | Reference | | Gas phase
Δ _i H° = | 294.14 | 278.12 | 16.02 | 80KRU | Liquid phas $\Delta_t H^\circ =$ | e | 173.78 | | | | Liquid phase
Δ _ε H° = | e
170.83 | 184.24 | -13.41 | 51MAG/HAR | Solid phase $\Delta_t H^\circ =$ | 182.67 | 158.44 | 24.23 | 67WES/WON | | Solid phase | | | | - JF - ' | $C_p^{\circ} = S^{\circ} =$ | 274.93
264.55 | 285.24
283.00 | - 10.31
- 18.45 | 80WON/WES | | $ \Delta_t H^\circ = \\ C_\rho^\circ = \\ S^\circ = $ | | 158.76
262.30
253.00 | | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -615.23
341.87
-137.91 | | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | -633.75
347.71 | | | | | | | | | $lnK_f =$ | | -140.26 | | | Coronene
(6×C _{BF} - | (C _{BF}) ₃)+(6 | 5×C _{BF} −(C _{BF})(| $(C_B)_2 + (12 \times C_B)_2$ | C ₂₄ H
_B -(H)(C _B) ₂) | | Fluoranthen
(1×C _{BF} -(| | $1 \times C_{BF} - (C_{BF})($ | $(C_B)_2$ + $(4 \times C_B)_2$ | $C_{16}H_{10}$
$C_{16}H_{10}$ | | Literatur | re – Calculated | l = Residual | Reference | | (10×C _B - | · / · -/-/ | + (1 × fluoranti
re – Calculated | , | Reference | Gas phase $\Delta_t H^\circ =$ | | 307.86 | | | | Gas phase
Δ _i H° = | 289.00 | 289.00 | 0.00 | 72MOR2 | Liquid phase $\Delta_t H^\circ =$ | e | 187.50 | | | Reference | | Literatur | rature - Calculated = Residual Reference | | | | | |---|---------------------------------|--|----------------------|-------------------------------------|--|--| | Gas phase
Δ _t H° = | 289.00 | 289.00 | 0.00 | 72MOR2 | | | | Liquid pha
Δ _t H° = | se
205.00 | 205.00 | 0.00 | 71WON/WES | | | | Solid phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} =$ | e
189.00
230.25
230.58 | 189.00
230.25
230.58 | 0.00
0.00
0.00 | 67WES/WON
71WON/WES
71WON/WES | | | | $ \Delta_{f}S^{\circ} = \\ \Delta_{f}G^{\circ} = \\ \ln K_{f} = $ | | -514.11
342.28
-138.07 | | | | | | Perylene C ₂₀ | H ₁₂ | |---|-----------------| | $(2 \times C_{BF} - (C_{BF})_3) + (4 \times C_{BF} - (C_B)(C_{BF})_2) + (2 \times C_{BF} - (C_{BF})(C_B)_2) + (2 \times C_{BF} - (C_{BF})_3) (C_{$ | | | $(12 \times C_{B}-(H)(C_{B})_{2})$ | | | Gas phase $\Delta_i H^\circ =$ | 277.10 | | |--------------------------------|--------|--| | | | | Literature - Calculated = Residual | | Literatu | re – Calculated : | - Calculated = Residual Refere | | | | |----------------------------------|----------|-------------------|--------------------------------|-----------|--|--| | Gas phase
Δ _f H° = | | 307.86 | 100 800 800 | | | | | Liquid pha $\Delta_t H^\circ =$ | se | 187.50 | | | | | | Solid phase | • | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | | 174.60 | | | | | | $C_p^{\circ} =$ | 313.76 | 303.36 | 10.40 | 80WON/WES | | | | s° = | 280.87 | 279.00 | 1.87 | 80WON/WES | | | | $\Delta_{f}S^{\circ} =$ | | -642.19 | | | | | | $\Delta_f G^{\circ} =$ | | 366.07 | | | | | | $lnK_f =$ | | - 147.67 | | | | | TABLE 12. Cyclic CH-01 (40) | Cyclopropa
(3 × C=(1 | ine
H}_(C)_) + (1 | × Cyclopropan | a = rsc), $a = t$ | C ₃ H ₆ | Cyclohexa
(6×C-(| | 1 × Cyclohexane | rsc (unsub)) | C_6H |
--|--|---|------------------------------|--|--|--|--|---|---| | (3×C-(1 | | e – Calculated | | Reference | (0 × C-(| | re – Calculated | , ,, | Reference | | | | | | | | | | | | | Gas Phase | | | | | Gas Phase | | | | | | $\Delta_1 H^{\circ} =$ | 53.26 | 53.26 | 0.00 | 49KNO/ROS | $\Delta_t H^{\circ} =$ | - 123.10 | - 123.10 | 0.00 | 47OSB/GIN | | $C_p^{\circ} =$ | 55.94 | 55.94 | 0.00 | 69STU/WES | $C_p^{\circ} =$ | 106.27 | 106.27 | 0.00 | 69STU/WES | | S° = | 237.44 | 237.44 | 0.00 | 69STU/WES | S° = | 298.24 | 298.24 | 0.00 | 69STU/WES | | $\Delta_f S^\circ =$ | | - 171.49 | | | $\Delta_{\mathbf{r}}S^{\circ} =$ | | -519.62 | | | | $\Delta_r G^{\circ} =$ | | 104.39 | | | $\Delta_{\mathbf{r}}G^{\circ} =$ | | 31.83 | | | | $lnK_f =$ | | - 42.11 | | | $lnK_f =$ | | - 12.84 | | | | Liquid Pha | ise | | | | Liquid Ph | ase | | | | | $\Delta_t H^\circ =$ | | 34.39 | | | $\Delta_t H^\circ =$ | -156.15 | - 156.15 | 0.00 | 69GOO/SMI | | $C_p^{\circ} =$ | | 62.73 | | | $C_p^{\circ} =$ | 156.31 | 156.31 | 0.00 | 43RUE/HUF | | υp | | | | | <i>s</i> ° = | 204.35 | 204.35 | 0.00 | 43RUE/HUF | | | | | | | $\Delta_f S^\circ =$ | | -613.52 | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 26.77 | | | | Cyclobutan | 1e | | | C₄H ₈ | $\ln K_{\rm f} =$ | | -10.80 | | | | | | l × Cyclobutane | rsc), $\sigma = 8$ | | | | | | | | | Literatur | e – Calculated: | = Residual | Reference | Cyclohepta | | 1 × Cycloheptan | o === 2 | C7H1 | | Gas Phase | | | | | (/^C-(| 11)2(C)2) + (| 1 × Cyclonepian | $e (sc), \sigma = 2$ | | | $\Delta_c H^\circ =$ | 28.37 | 28.37 | 0.00 | 50COO/KAR | | Literatu | re – Calculated : | = Decidual | Reference | | $C_p^{\circ} =$ | 72.22 | 72.22 | 0.00 | 69STU/WES | Gas Phase | | re - Calculated | - Kesiduai | Reference | | $S^{\circ} =$ |
265.39 | 265.39 | 0.00 | 69STU/WES | 045 7 7450 | | | | | | Δ ₆ S° = | 203.33 | - 279.85 | 0.00 | 0931 C/ WE3 | $\Delta_{\rm f} H^{\circ} =$ | -118.07 | - 118.07 | 0.00 | 56FIN/SCO | | $\Delta_i G^\circ =$ | | 111.81 | | | $C_p^{\circ} =$ | 123.09 | 123.09 | 0.00 | | | Δ ₁ C = | | 111.01 | | | | | | UAA | 69STU/WES | | | | 45 10 | | | | | | | COCTATATATA | | $\ln K_f =$ | | -45.10 | | | S° = | 342.33 | 342.33 | 0.00 | 69STU/WES | | | | -45.10 | | | $S^{\circ} = \Delta_{i}S^{\circ} =$ | | 342.33
-611.85 | | 69STU/WES | | | - <u>-</u> | -45.10 | | · · · · · · · · · · · · · · · · · · · | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = 0$ | | 342.33
-611.85
64.35 | | 69STU/WES | | $\ln K_f =$ | | -45.10 | | | $S^{\circ} = \Delta_{i}S^{\circ} =$ | | 342.33
-611.85 | | 69STU/WES | | $lnK_f =$ Cyclopenta | | | e rsc (unsub) | C_5H_{10} C_5H_{10} | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | 342.33 | 342.33
-611.85
64.35 | | 69STU/WES | | $lnK_f =$ Cyclopenta | | -45.10 | e rsc (unsub) | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = $ Liquid Pha | 342.33 | 342.33
- 611.85
64.35
- 25.96 | 0.00 | | | $lnK_f =$ Cyclopenta | $H)_2(C)_2) + (1$ | | ` , | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{\Delta_{t}H^{\circ}}$ Liquid Pha | 342.33 use - 156.61 | 342.33
-611.85
64.35
-25.96 | 0.00 | 52KAA/COO | | $lnK_f =$ Cyclopenta | $H)_2(C)_2) + (1$ | × Cyclopentan | ` , |), $\sigma = 10$ | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{\Delta_{t}H^{\circ}} = C_{p}^{\circ} = \frac{1}{\Delta_{t}H^{\circ}}$ | 342.33 use - 156.61 180.75 | 342.33
-611.85
64.35
-25.96
-156.61
180.75 | 0.00
0.00
0.00 | 52KAA/COO
56FIN/SCO | | $lnK_f =$ Cyclopenta | $H)_2(C)_2) + (1$ | × Cyclopentan | ` , |), $\sigma = 10$ | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ} = S^{\circ}}{S^{\circ}} = \frac{1}{\Delta_{t}G^{\circ}}$ | 342.33 use - 156.61 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55 | 0.00 | 52KAA/COO | | $lnK_f =$ Cyclopenta | H) ₂ (C) ₂) + (1
Literatur | × Cyclopentan | ` , |), $\sigma = 10$ | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}} = \frac{\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ}}{\Delta_{t}S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}S^{\circ}} \frac{\Delta_{t}$ | 342.33 use - 156.61 180.75 | 342.33
- 611.85
64.35
- 25.96
- 156.61
180.75
242.55
- 711.63 | 0.00
0.00
0.00 | 52KAA/COO
56FIN/SCO | | $\frac{\ln K_f}{\text{Cyclopenta}}$ $(5 \times \text{C-(1)})$ Gas Phase $\Delta_t H^{\circ} =$ | H) ₂ (C) ₂) + (1
Literatur | × Cyclopentan | ` , |), $\sigma = 10$ | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \frac{\Delta_{t}G^{\circ}}{\Delta_{t}G^{\circ}} \frac{\Delta_{t}$ | 342.33 use - 156.61 180.75 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56 | 0.00
0.00
0.00 | 52KAA/COO
56FIN/SCO | | $\frac{\ln K_f = \frac{1}{\sqrt{5 \times C - (1)}}}{Cyclopenta}$ $(5 \times C - (1))$ Gas Phase | H) ₂ (C) ₂) + (1
Literatur | l × Cyclopentan
re – Calculated = | = Residual |), σ = 10
Reference | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}} = \frac{\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ}}{\Delta_{t}S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}S^{\circ}} \frac{\Delta_{t}$ | 342.33 use - 156.61 180.75 | 342.33
- 611.85
64.35
- 25.96
- 156.61
180.75
242.55
- 711.63 | 0.00
0.00
0.00 | 52KAA/COO
56FIN/SCO | | Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^\circ = C_t^\circ = S^\circ = S^\circ = C_t^\circ$ | H) ₂ (C) ₂) + (1
Literatur
– 76.40 | l × Cyclopentan
re – Calculated =
– 76.40 | = Residual | Reference 59MCC/PEN | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \frac{\Delta_{t}G^{\circ}}{\Delta_{t}G^{\circ}} \frac{\Delta_{t}$ | 342.33 use - 156.61 180.75 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56 | 0.00
0.00
0.00 | 52KAA/COO
56FIN/SCO | | Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^\circ = C_t^\circ = S^\circ = S^\circ = C_t^\circ$ | H) ₂ (C) ₂) + (1
Literatur
- 76.40
83.01 | x Cyclopentan e — Calculated = - 76.40 83.01 | = Residual
0.00
0.00 | Reference 59MCC/PEN 69STU/WES | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ}}{\Delta_{t}} \frac{\Delta_{t}G$ | 342.33 ase - 156.61 180.75 242.55 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56 | 0.00
0.00
0.00 | 52KAA/COO
56FIN/SCO
56FIN/SCO | | $\frac{\ln K_f}{\ln (5 \times C - 1)}$ Cyclopenta $(5 \times C - 1)$ Gas Phase $\Delta_t H^{\circ} = C_{\rho}^{\circ} C_{$ | H) ₂ (C) ₂) + (1
Literatur
- 76.40
83.01 | - 76.40
83.01
292.88 | = Residual
0.00
0.00 | Reference 59MCC/PEN 69STU/WES | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid Pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Cyclooctan | 342.33 ase - 156.61 180.75 242.55 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41 | 0.00
0.00
0.00
0.00 | 52KAA/COO
56FIN/SCO | | Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_{\iota} H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{\iota} S^{\circ} = \Delta_{\iota} S^{\circ} = 0$ | H) ₂ (C) ₂) + (1
Literatur
- 76.40
83.01 | - 76.40
83.01
292.88
- 388.68 | = Residual
0.00
0.00 | Reference 59MCC/PEN 69STU/WES | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid Pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Cyclooctan | 342.33 use - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41 | 0.00
0.00
0.00
0.00 | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₆ | | Gas Phase $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = C_t K_t K_t $ | H) ₂ (C) ₂) + (1
Literatur
- 76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48 | = Residual
0.00
0.00 | Reference 59MCC/PEN 69STU/WES | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = C^{\circ}_{t} = \frac{S^{\circ}}{\Delta_{t}G^{\circ}} = \ln K_{t} = \frac{\Delta_{t}G^{\circ}}{(8 \times C - (10 \times 10^{\circ})^{\circ})^{\circ}}$ | 342.33 use - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41 | 0.00
0.00
0.00
0.00 | 52KAA/COO
56FIN/SCO
56FIN/SCO | | Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^{\circ} = C_t^{\circ} = S^{\circ} = \Delta_t S^{\circ} = L_t G^{\circ} = L_t G^{\circ}$ Liquid Pha | H) ₂ (C) ₂) + (1
Literatur
- 76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ} = \ln K_{t}}{(8 \times C - (1))^{3}}$ | 342.33 use - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
 | 0.00
0.00
0.00
0.00
0.00 | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₆
Reference | | Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = InK_{t} = InK_{t}$ Liquid Pha $\Delta_{t}H^{\circ} = InK_{t} = InK_{t}$ | -76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{r}^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t}}{(8 \times C - (1))}$ Gas Phase $\Delta_{t}H^{\circ} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{t}G^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{t}G^{\circ}}{\Delta_{t}G^{\circ}} \frac{C_{t}G^$ | 342.33 use - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
A × Cyclooctane
re - Calculated = | 0.00
0.00
0.00
0.00
rsc), σ = 8
≈ Residual | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₆
Reference | | In $K_t =$ Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_t G^{\circ} = InK_t =$ Liquid Pha $\Delta_t H^{\circ} = C_{\rho}^{\circ} C_{\rho}^{\circ}$ |
-76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES 46JOH/PRO 46DOU/HUF2 | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t}} = \frac{\Delta_{t}G^{\circ} = \ln K_{t}}{(8 \times C - (1))}$ Gas Phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} C_{p}^{\circ$ | 342.33 use - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 139.95 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
A × Cyclooctane
re - Calculated = | 0.00
0.00
0.00
0.00
0.00
rsc), σ = 8
≈ Residual | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₆
Reference
56FIN/SCO
69STU/WES | | In $K_t =$ Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = InK_t =$ Liquid Pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ S$ | -76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t}}{(8 \times C - (1))}$ Gas Phase $\Delta_{t}H^{\circ} = \frac{C_{t}H^{\circ}}{C_{t}H^{\circ}} = \frac{C_{t}H^{\circ}}{C_{t}H^{\circ}} = \frac{C_{t}H^{\circ}}{S^{\circ}} \frac{C_{t}H^{\circ}}{$ | 342.33 use - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
A × Cyclooctane
re - Calculated =
-124.39
139.95
366.77 | 0.00
0.00
0.00
0.00
rsc), σ = 8
≈ Residual | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₆
Reference | | In $K_f =$ Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_f =$ Liquid Pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S$ | -76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES 46JOH/PRO 46DOU/HUF2 | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ} = L_{t}G^{\circ}}{(8 \times C - (1))}$ Gas Phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}S^{\circ}} \frac{\Delta_{t}S^{\circ}$ | 342.33 use - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 139.95 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
A × Cyclooctane
re - Calculated =
-124.39
139.95
366.77
-723.72 | 0.00
0.00
0.00
0.00
0.00
rsc), σ = 8
≈ Residual | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₆
Reference
56FIN/SCO
69STU/WES | | In $K_f =$ Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_f =$ Liquid Pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S$ | -76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93
- 105.81
128.78
204.14
- 477.41
36.53 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES 46JOH/PRO 46DOU/HUF2 | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\ln K_{t}} = \frac{\Delta_{t}G^{\circ}}{(8 \times C - (1))}$ Gas Phase $\Delta_{t}H^{\circ} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} \frac{\Delta_{t}G^{\circ}$ | 342.33 use - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 139.95 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
A × Cyclooctane
re - Calculated =
-124.39
139.95
366.77
-723.72
91.39 | 0.00
0.00
0.00
0.00
0.00
rsc), σ = 8
≈ Residual | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₆
Reference
56FIN/SCO
69STU/WES | | In $K_f =$ Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_f =$ Liquid Pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S$ | -76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES 46JOH/PRO 46DOU/HUF2 | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ} = L_{t}G^{\circ}}{(8 \times C - (1))}$ Gas Phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}S^{\circ}} \frac{\Delta_{t}S^{\circ}$ | 342.33 use - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 139.95 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
A × Cyclooctane
re - Calculated =
-124.39
139.95
366.77
-723.72 | 0.00
0.00
0.00
0.00
0.00
rsc), σ = 8
≈ Residual | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₆
Reference
56FIN/SCO
69STU/WES | | In $K_f =$ Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = InK_f =$ Liquid Pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S$ | -76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93
- 105.81
128.78
204.14
- 477.41
36.53 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES 46JOH/PRO 46DOU/HUF2 | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\ln K_{t}} = \frac{\Delta_{t}G^{\circ}}{(8 \times C - (1))}$ Gas Phase $\Delta_{t}H^{\circ} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\ln K_{t}} K_{t$ | 342.33 ase - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 139.95 366.77 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
A × Cyclooctane
re - Calculated =
-124.39
139.95
366.77
-723.72
91.39
-36.86 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₆
Reference
56FIN/SCO
69STU/WES | | In $K_f =$ Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = InK_f =$ Liquid Pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S$ | -76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93
- 105.81
128.78
204.14
- 477.41
36.53 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES 46JOH/PRO 46DOU/HUF2 | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\ln K_{t}} = \frac{Cyclooctan}{(8 \times C - (1))}$ Gas Phase $\Delta_{t}H^{\circ} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}S^{\circ}}{\ln K_{t}} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{t}G^{\circ}}{\Delta_{t}H^{\circ}} C_$ | 342.33 ase - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 139.95 366.77 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
1 × Cyclooctane
re - Calculated =
-124.39
139.95
366.77
-723.72
91.39
-36.86 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₃₀
Reference
56FIN/SCO
69STU/WES | | In $K_f =$ Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = InK_f =$ Liquid Pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S$ | -76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93
- 105.81
128.78
204.14
- 477.41
36.53 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES 46JOH/PRO 46DOU/HUF2 | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\ln K_{t}} = \frac{Cyclooctan}{(8 \times C - (1))}$ Gas Phase $\Delta_{t}H^{\circ} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\ln K_{t}} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{C_{p}^{\circ}} \frac{C_{p}^{\circ}}{\Delta_{t}H^{\circ}} $ | 342.33 ase - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 139.95 366.77 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
A × Cyclooctane
re - Calculated =
-124.39
139.95
366.77
-723.72
91.39
-36.86 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₀
Reference
56FIN/SCO
69STU/WES
69STU/WES | | In $K_f =$ Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t
H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = InK_f =$ Liquid Pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S$ | -76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93
- 105.81
128.78
204.14
- 477.41
36.53 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES 46JOH/PRO 46DOU/HUF2 | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\ln K_{t}} = \frac{Cyclooctan}{(8 \times C - (1))^{2}}$ Gas Phase $\Delta_{t}H^{\circ} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}S^{\circ}}{\ln K_{t}} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{S^{\circ}}{S^{\circ}} S$ | 342.33 ase - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 139.95 366.77 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
1 × Cyclooctane
re - Calculated =
-124.39
139.95
366.77
-723.72
91.39
-36.86 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₀
Reference
56FIN/SCO
69STU/WES
69STU/WES | | In $K_f =$ Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = InK_f =$ Liquid Pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S$ | -76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93
- 105.81
128.78
204.14
- 477.41
36.53 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES 46JOH/PRO 46DOU/HUF2 | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\ln K_{t}} = \frac{C_{y} \cos \Delta_{t}G^{\circ}}{(8 \times C - (1))} = \frac{C_{y} \cos \Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\ln K_{t}} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\Delta_{t}S^{\circ}} = \frac{C_{p}^{\circ}}{\Delta_{t}S^{\circ}} \frac{C_{p}^{\circ}}{\Delta_{t}$ | 342.33 ase - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 139.95 366.77 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
A × Cyclooctane
re - Calculated =
-124.39
139.95
366.77
-723.72
91.39
-36.86 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₆
Reference
56FIN/SCO
69STU/WES
69STU/WES | | In $K_f =$ Cyclopenta $(5 \times C - (1))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = InK_f =$ Liquid Pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S$ | -76.40
83.01
292.88 | - 76.40
83.01
292.88
- 388.68
39.48
- 15.93
- 105.81
128.78
204.14
- 477.41
36.53 | 0.00
0.00
0.00
0.00 | Reference 59MCC/PEN 69STU/WES 69STU/WES 46JOH/PRO 46DOU/HUF2 | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}G^{\circ}}{\ln K_{t}} = \frac{Cyclooctan}{(8 \times C - (1))^{2}}$ Gas Phase $\Delta_{t}H^{\circ} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}S^{\circ}}{\ln K_{t}} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = \frac{C_{p}^{\circ}}{S^{\circ}} = \frac{S^{\circ}}{S^{\circ}} S$ | 342.33 ase - 156.61 180.75 242.55 e H) ₂ (C) ₂) + (1 Literatur - 124.39 139.95 366.77 | 342.33
-611.85
64.35
-25.96
-156.61
180.75
242.55
-711.63
55.56
-22.41
1 × Cyclooctane
-124.39
139.95
366.77
-723.72
91.39
-36.86
-167.74
215.48
262.00 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 52KAA/COO
56FIN/SCO
56FIN/SCO
C ₈ H ₁₆
Reference
56FIN/SCO
69STU/WES
69STU/WES | TABLE 12. Cyclic CH-01 (40) - Continued | Cyclononan
(9×C-(F | | l × Cyclononane | rsc) | C ₉ H ₁₈ | Cyclotridecane (Continued)
$(13 \times C - (H)_2(C)_2) + (1 \times Cyclotridecane rsc)$ | C ₁₃ H ₂ | |------------------------------------|---|---------------------------------------|------------|---------------------------------|--|----------------------------------| | | | | | Reference | Literature – Calculated = Residual | Reference | | Gas Phase
Δ _t H° = | -132.76 | - 132.76 | 0.00 | 57KAM | Liquid Phase $\Delta_t H^{\circ} = -309.66 -309.66$ 0.00 | 60COO/KAM | | Liquid Phas
Δ _ε H° = | | - 181.17 | 0.00 | 52KAA/COO | Cyclotetradecane $(14 \times C - (H)_2(C)_2) + (1 \times Cyclotetradecane rsc)$ | C ₁₄ H ₂ | | Cyclodecan | | /1 × C1- 1 | | C ₁₀ H ₂₀ | Literature – Calculated = Residual | Reference | | (10×C-(| . , , , , , , , , , , , , , , , , , , , | (1 × Cyclodecane
re – Calculated = | • | Reference | Gas Phase $\Delta_t H^\circ = -239.45 -239.45$ 0.00 | 57KAM | | Gas Phase $\Delta_t H^\circ =$ | -154.31 | - 154.31 | 0.00 | 57KAM | Solid Phase $\Delta_t H^\circ = -374.26 -374.26$ 0.00 | 60COO/KAM | | Liquid Pha
Δ _t H° = | | 206.69 | 0.00 | 60COO/KAM | Cyclopentadecane
$(15 \times C - (H)_2(C)_2) + (1 \times Cyclopentadecane rsc)$ | C ₁₅ H ₃ | | Cyclounded | | (1×Cycloundec | ane rsc) | C ₁₁ H ₂₂ | Literature – Calculated ≈ Residual | Reference | | | ` | re – Calculated = | , | Reference | Gas Phase $\Delta_t H^\circ = -301.42 -301.42$ 0.00 | 57KAM | | Gas Phase $\Delta_t H^\circ =$ | -179.37 | -179.37 | 0.00 | 57KAM | Solid Phase $\Delta_t H^\circ = -376.06 -376.06 0.00$ | 60COO/KAM | | Liquid Pha $\Delta_t H^\circ =$ | | - 235.48 | 0.00 | 60COO/KAM | Cyclohexadecane $(16 \times C - (H)_2(C)_2) + (1 \times Cyclohexadecane rsc)$ | C ₁₆ H ₃ ; | | Cyclododec
(12 × C- | | (1×Cyclododec | ane rsc) | C ₁₂ H ₂₄ | Literature – Calculated = Residual | Reference | | | Literatu | re – Calculated = | = Residual | Reference | Gas Phase $\Delta_t H^\circ = -321.67 - 321.67 0.00$ | 57KAM | | Gas Phase $\Delta_t H^\circ =$ | -230.25 | -230.25 | 0.00 | 57KAM | Solid Phase $\Delta_t H^{\circ} = -403.42 -403.42 0.00$ | 60COO/KAM | | Solid Phase $\Delta_t H^\circ =$ | | -306.65 | 0.00 | 60COO/KAM | Cycloheptadecane
$(17 \times C - (H)_2(C)_2) + (1 \times Cycloheptadecane rsc)$ | C ₁₇ H ₃ , | | Cyclotrideo
(13×C- | | (1×Cyclotrideca | ane rsc) | C ₁₃ H ₂₆ | Literature – Calculated = Residual | Reference | | | | re – Calculated = | • | Reference | Gas Phase $\Delta_t H^\circ = -364.30 -364.30$ 0.00 | 57KAM | | Gas Phase
Δ _f H° = | -246.35 | -246.35 | 0.00 | 57KAM | Solid Phase $\Delta_t H^\circ = -430.41 -430.41 0.00$ | 60COO/KAM | | TABLE 12. | Cyclic CH- | 01 (40) | _ | Continued | |-----------|------------|---------|---|-----------| |-----------|------------|---------|---|-----------| | Cycloproper
(2×C _d -(1 | | < C−(H) ₂ (C _d) ₂) | + (1 × Cyclop | C ₃ H ₄ oropene rsc) | | | $\times C - (H)_2(C)(C)$ | C _d))+(2×C _d - | C ₆ H ₁₀
-(H)(C))+ | |---|--|--|---|--|--|------------------------------------
---|---------------------------------------|--| | | Literature | e – Calculated = | Residual | Reference | (2 6)0 | • | e – Calculated = | = Residual | Reference | | | | 276.98 × C-(H) ₂ (C)(C ₀ , $\sigma = 2$ | 0.00 | 62WIL/BAR C4H6 | Liquid Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | - 38.20
148.36
214.60 | -38.78
148.36
214.60
-472.69
102.15
-41.21 | 0.58
0.00
0.00 | 69GOO/SMI
77HAI/SUG2
77HAI/SUG2 | | Gas Phase | Literatur | e – Calculated = | = Residual | Reference | | | :×C-(H)₂(C)(C | ^l d))+(2×Cd- | C ₇ H ₁₂
-(H)(C))+ | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | 156.69
67.07
263.51 | 156.69
67.07
263.51
- 151.17 | 0.00
0.00
0.00 | 68WIB/FEN
69STU/WES
69STU/WES | | • | e – Calculated = | = Residual | Reference | | $\Delta_f G^\circ = \ln K_f =$ | | 201.76
-81.39 | | | Gas Phase $\Delta_t H^\circ =$ | - 9.20 | -9.20 | 0.00 | 39CON/KIS | | | H) ₂ (C) ₂)+(2
opentene rs | $C \times C_d$ —(H)(C)) + C (unsub)), $\sigma =$ C = | = 2 | C_5H_8 $(C)(C_d)) +$ Reference | | $I)_2(C)_2) + (2)$
soctene rsc) | :× C-(H)2(C)(C
e – Calculated = | | C ₈ H ₁₄
-(H)(C))+
Reference | | Gas Phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} =$ | 34.43
75.10
289.66 | 34.43
75.10
289.66 | 0.00
0.00
0.00 | 50FOR/CAM
69STU/WES
69STU/WES | Gas Phase Δ _t H° = | - 26.99 | - 26.99 | 0.00 | 39CON/KIS | | $\Delta_f S^\circ = \Delta_f G^\circ - \ln K_f =$ | | -261.33
112.34
-45.32 | | | Liquid Phas
Δ _t H° – | e – 74.02 | -74.02 | 0.00 | 71ROG/MCL | | Liquid Pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ | 6.36
122.38
201.25 | 6.36
122.38
201.25
- 349.73 | 0.00
0.00
0.00 | 37DOL/GRE
48HUF/EAT
48HUF/EAT | | H)(C)) (1
yclopentadi | × C-(H) _z (C _d) _z)
ene rsc)
e – Calculated = | | C_sH_{ϵ} $(C_d)) +$ Reference | | $\Delta_f G^\circ = InK_f =$ | | 110.63
- 44.63 | | | Gas Phase $\Delta_t H^\circ =$ | 134.35 | 134.35 | 0.00 | 36KIS/RUE2 | | | | $2 \times C - (H)_2(C)(C)$
$\sigma = 2$ | C _d)) + (2 × C _d - | C_6H_{10} -(H)(C))+ | Liquid Phas $\Delta_t H^\circ =$ | e
105.98 | 105.98 | 0.00 | 65HUL/REI | | | Literatur | e – Calculated = | = Residual | Reference | | $()_2(C)(C_d))$ | + (2 × C₀–(H)(C |))+(2×C _d -(| $C_{\varepsilon}H_{s}$ $(H)(C_{d}))+$ | | Gas Phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$S^\circ =$ | - 4.73
105.02
310.75 | -4.77
105.02
310.75 | 0.04
0.00
0.00 | 50FOR/CAM
69STU/WES
69STU/WES | (1 × 1,3-C | yclohexadie
Literature | ne rsc) e – Calculated = | Residual | Reference | | $\Delta_f S^* = \Delta_f G^* = \ln K_f =$ | | -376.55
107.50
-43.36 | | | Gas Phase $\Delta_t H^\circ =$ | 104.58 | 104.58 | 0.00 | 89STE/CHI | TABLE 12. Cyclic CH-01 (40) - Continued | Liquid Phase $\Delta_H H^2 = 71.41 71.41 0.00 89STE/CHI \Delta_H H^2 = 183.68 183.68 0.00 3000 30000 300000 300000 3000000 30000000 30000000 300000000$ | Reference
39CON/KIS
69STU/WES
69STU/WES | |---|--| | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 69STU/WES | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 69STU/WES | | $S^{\circ} = 197.28 197.28 0.00 76GEI/WOL \qquad S^{\circ} = 315.64 315.64 0.00 64.56$ $\Delta_{A}S^{\circ} = -359.44 \qquad \Delta_{A}S^{\circ} = -246.83$ $\Delta_{A}G^{\circ} = 178.58 \qquad \Delta_{A}G^{\circ} = 257.27 1nK_{I} = -103.78$ $1,3-Cycloheptadiene \qquad C_{I} = 10.0000000000000000000000000000000000$ | • | | $ \Delta_{A}S^{\circ} = -359.44 \qquad \Delta_{A}S^{\circ} = -246.83 \\ \Delta_{A}G^{\circ} = 178.58 \qquad \Delta_{A}G^{\circ} = 257.27 \\ \ln K_{I} = -72.04 \qquad \ln K_{I} = -103.78 $ Liquid Phase $ (1 \times C - (H)_{2}(C)_{2}) + (2 \times C - (H)_{2}(C)_{3}) + (2 \times C_{I} - (H)(C)) + 4 \\ (2 \times C_{I} - (H)(C_{3})) + (1 \times 1,3 - C)_{2} + C)_{2} + C + C \\ (1 \times C - (H)_{2}(C)_{3}) + (2 \times C_{I} - (H)(C)) + 4 \\ (2 \times C_{I} - (H)(C_{3})) + (1 \times 1,3 - C)_{2} + C)_{3} + C \\ (2 \times C_{I} - (H)(C_{3})) + (1 \times 1,3 - C)_{2} + C)_{3} + C \\ (2 \times C_{I} - (H)(C_{3})) + (1 \times 1,3 - C)_{2} + C)_{3} + C \\ (3 \times C_{I} - (H)(C_{3})) + (1 \times 1,3 - C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{2} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4 \times C_{I} - (H)(C_{3})) + (1 \times C)_{3} + C \\ (4$ | 69STU/WES | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | I,3-Cycloheptadiene C,H ₁₀ C C,C C C C C C C C C C C C C C C C | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 56FIN/SCO | | Literature − Calculated = Residual Reference $A_tS^\circ = 214.64 214.64 0.00 50 0.06$ $A_tG^\circ = 248.68 -100.32$ -10$ | 56FIN/SCO | | Literature – Calculated = Residual Reference $A_tG^\circ = -347.82$ $A_tG^\circ = 248.68$ $InK_t = -100.32$ Gas Phase $A_tH^\circ = 94.35$ 94.35 0.00 39CON/KIS Cyclooctatetraene $(8 \times C_{\sigma} - (H)(C_{\sigma})) + (1 \times Cyclooctatetraene rsc), \sigma = 4$ Literature – Calculated = Residual Reference $(8 \times C_{\sigma} - (H)(C_{\sigma})) + (1 \times Cyclooctatetraene rsc)$ Literature – Calculated = Residual Reference $A_tH^\circ = 297.61$
297.61 0.00 4 $C_p^\circ = 122.01$ 122.01 0.00 6 Gas Phase $C_p^\circ = 122.01$ 122.01 0.00 6 | 56FIN/SCO | | $ \Delta_t G^\circ = 248.68 \\ \ln K_t = -100.32 $ Gas Phase $ \Delta_t H^\circ = 94.35 94.35 94.35 0.00 39\text{CON/KIS} $ $ Cyclooctatetraene \\ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctatetraene \text{ rsc}), \sigma = 4 $ $ (8 \times C_{\sigma^-}(H)(C_0)) + (1 \times Cyclooctate$ | | | Gas Phase $\Delta_t H^\circ = 94.35$ 94.35 9.00 39CON/KIS Cyclooctatetraene (8×C _σ -(H)(C _σ)) + (1×Cyclooctatetraene rsc), $\sigma = 4$ 1,4-Cyclohexadiene (4×C _σ -(H)(C)) + (2×C-(H) ₂ (C _σ) ₂) + (1×1,4-Cyclohexadiene rsc) Literature – Calculated = Residual Reference Gas Phase $\Delta_t H^\circ = 297.61 $ | | | $ \Delta_{e}H^{\circ} = 94.35 94.35 0.00 39\text{CON/KIS} $ $ (8 \times C_{\sigma} - (H)(C_{d})) + (1 \times Cyclooctatetraene \text{ rsc}), \ \sigma = 4 $ $ (4 \times C_{\sigma} - (H)(C)) + (2 \times C - (H)_{2}(C_{d})_{2}) + (1 \times 1, 4 - Cyclohexadiene \text{ rsc}) $ $ Literature - Calculated = Residual Reference $ $ Gas \text{ Phase} $ $ C_{\rho}^{\circ} = 122.01 122.01 0.00 400 $ $ C_{\rho}^{\circ} = 122.01 122.01 0.00 600 | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | СП | | 1,4-Cyclohexadiene (4 × C _o -(H)(C)) + (2 × C-(H) ₂ (C _o) ₂) + (1 × 1,4-Cyclohexadiene rsc) Literature – Calculated = Residual Reference Gas Phase $\Delta_t H^\circ = 297.61$ 297.61 0.00 4 C° = 122.01 122.01 0.00 6 $\Delta_t H^\circ = 104.75$ 104.75 0.00 89STE/CHI $\Delta_t G^\circ = 326.77$ 326.77 0.00 6 $\Delta_t H^\circ = 104.75$ 104.75 0.00 89STE/CHI $\Delta_t G^\circ = 369.59$ 10.00 6 Liquid Phase $\Delta_t H^\circ = 69.70$ 69.70 0.00 89STE/CHI $C_\rho^\circ = 145.94$ 145.94 0.00 76GEI/WOL Liquid Phase $S^\circ = 189.37$ 189.37 0.00 76GEI/WOL $\Delta_t H^\circ = 254.51$ 254.51 0.00 5 $\Delta_t G^\circ = 179.23$ 5° 220.29 20.29 0.00 4 $\Delta_t G^\circ = 179.23$ 5° 220.29 20.29 0.00 4 $\Delta_t G^\circ = 358.24$ 10.00 - 10.00 | C ₈ H | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | • | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Reference | | Gas Phase $ \Delta_t H^\circ = 104.75 104.75 0.00 89STE/CHI \qquad \Delta_t S^\circ = 326.77 326.77 0.00 60 0.00 60 0.00 60 0.00 60 0.00 60 0.00 60 0.0$ | | | Gas Phase $S^{\circ} = 326.77 326.77 0.00 6000 80000 800000 800000 800000 800000 800000 800000 800000 8000000 8000000 8000000 8000000 8000000 8000000 800000000$ | 49SCO/GRO | | $ \Delta_t H^\circ = \ 104.75 104.75 0.00 89STE/CHI \qquad \Delta_t S^\circ = -241.43 \\ \Delta_t G^\circ = 369.59 \\ \ln K_t = -149.09 $ Liquid Phase $ \Delta_t H^\circ = 69.70 69.70 0.00 89STE/CHI \\ C^\circ_p = 145.94 145.94 0.00 76GEI/WOL Liquid Phase \\ S^\circ = 189.37 189.37 0.00 76GEI/WOL \Delta_t H^\circ = 254.51 254.51 0.00 5 \\ \Delta_t S^\circ = -367.35 C^\circ_p = 185.18 185.18 0.00 4 \\ \Delta_t G^\circ = 179.23 S^\circ = 220.29 220.29 0.00 4 \\ \Delta_t S^\circ = -347.91 \Delta_t S^\circ = -347.91 \\ \Delta_t G^\circ = 358.24 10K_t = -144.51 $ $ 1,5-Cyclooctadiene \\ (4 \times C_\sigma - (H)(C)) + (4 \times C - (H)_2(C)(C_d)) + \\ (1 \times 1,5-Cyclooctadiene rsc) $ Spiropentane $ (4 \times C - (H)_2(C)_2) + (1 \times C - (C)_4) + (1 \times Spiropentane rsc) $ | 59STU/WES | | Liquid Phase $\Delta_t G^\circ = 369.59$ $\ln K_t = -149.09$ Liquid Phase $\Delta_t H^\circ = 69.70 69.70 0.00 89STE/CHI$ $C_p^\circ = 145.94 145.94 0.00 76GEI/WOL$ $S^\circ = 189.37 189.37 0.00 76GEI/WOL$ $\Delta_t S^\circ = -367.35 C_p^\circ = 185.18 185.18 0.00 4$ $\Delta_t G^\circ = 179.23 S^\circ = 220.29 220.29 0.00 4$ $\Delta_t S^\circ = -72.30 \Delta_t S^\circ = -347.91 \Delta_t S^\circ = 358.24$ $\ln K_t = -144.51$ 1,5-Cyclooctadiene $(4 \times C_\sigma - (H)(C)) + (4 \times C - (H)_2(C)(C_d)) + (1 \times 1,5$ -Cyclooctadiene rsc) Spiropentane $(4 \times C - (H)_2(C)_2) + (1 \times C - (C)_4) + (1 \times Spiropentane rsc)$ | 59STU/WES | | Liquid Phase $\Delta_t H^\circ = 69.70 69.70 0.00 89STE/CHI$ $C_\rho^\circ = 145.94 145.94 0.00 76GEI/WOL$ $\Delta_t S^\circ = 189.37 189.37 0.00 76GEI/WOL$ $\Delta_t G^\circ = 179.23 S^\circ = 220.29 220.29 0.00 4$ $\Delta_t G^\circ = 179.23 \Delta_t S^\circ = -347.91$ $\Delta_t G^\circ = 358.24 10K_t = -144.51$ $1,5$ -Cyclooctadiene $(4 \times C_\sigma - (H)(C)) + (4 \times C - (H)_2(C)(C_d)) + (1 \times 1,5$ -Cyclooctadiene rsc) $(4 \times C_\sigma - (H)_2(C)_2) + (1 \times C - (C)_4) + (1 \times Spiropentane rsc)$ | | | Liquid Phase $ \Delta_t H^\circ = \begin{array}{ccccccccccccccccccccccccccccccccccc$ | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $C_{\rho}^{\circ} = 145.94 145.94 0.00 76GEI/WOL $ Liquid Phase $S^{\circ} = 189.37 189.37 0.00 76GEI/WOL $ $\Delta_{t}S^{\circ} = -367.35 C_{\rho}^{\circ} = 185.18 185.18 0.00 4$ $C_{\rho}^{\circ} = 185.18 185.18 0.00 4$ $S^{\circ} = 220.29 220.29 0.00 4$ $C_{\rho}S^{\circ} = 220.29 220.29 0.00 4$ $C_{\rho}S^{\circ} = -347.91 C_{\rho}S^{\circ} C_{$ | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | TODO GOOT | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | SOPRO/JOH | | $ \frac{\ln K_f = -72.30}{\Delta_t G^\circ = 358.24} $ $ \frac{\ln K_f = -144.51}{\ln K_f = -144.51} $ $ \frac{(4 \times C_d - (H)(C)) + (4 \times C - (H)_2(C)(C_d)) + (1 \times 1,5 - Cyclooctadiene rsc)}{(1 \times 1,5 - Cyclooctadiene rsc)} $ $ \frac{\text{Spiropentane}}{(4 \times C_d - (H)_2(C)_2) + (1 \times C_d - (C)_d) + (1 \times Spiropentane rsc)} $ | 19SCO/GRO | |
$\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 19SCO/GRO | | 1,5-Cyclooctadiene C_8H_{12} | | | 1,5-Cyclooctadiene C_8H_{12} $(4 \times C_d - (H)(C)) + (4 \times C_d - (H)_2(C)(C_d)) + (1 \times 1,5$ -Cyclooctadiene rsc) Spiropentane $(4 \times C_d - (H)_2(C)_2) + (1 \times C_d - (C)_4) + (1 \times Spiropentane rsc)$ | | | $(4 \times C_d - (H)(C)) + (4 \times C - (H)_2(C)(C_d)) + (1 \times 1,5 - Cyclooctadiene rsc)$ $Spiropentane$ $(4 \times C - (H)_2(C)_2) + (1 \times C - (C)_4) + (1 \times Spiropentane rsc)$ | | | $(4 \times C - (H)_2(C)_2) + (1 \times C - (C)_4) + (1 \times Spiropentane rs$ | C ₅ H ₆ | | Literature - Calculated = Residual Reference | | | | Reference | | Gas Phase | | | $\Delta_t H^{\circ} = 101.10$ 101.10 0.00 76KOZ/TIM Gas Phase $\Delta_t H^{\circ} = 185.18$ 185.18 0.00 5 | OSCO/EINO | | | SOSCO/FIN2 | | | SOSTU/WES | | • | 9STU/WES | | | | | | | | $S^{\circ} = 264.35$ 264.35 0.00 75LEB/TSV $\ln K_f = -107.03$ $\Delta_t S^{\circ} = -565.00$ | | | $\Delta_{i}G^{\circ} = -505.00$ $\Delta_{i}G^{\circ} = 226.15$ | | | $\ln K_f = -91.23$ | | | Spiropentan
(4×C-(H | te (Continue
$(C)_2(C)_2$) + $(1)_2(C)_2$ | ed)
×C-(C) ₄)+(1: | × Spiropenta | C_5H_8 ne rsc), $\sigma = 4$ | | | \times C-(H) ₂ (C) ₂) | + (1 × C-(H)(| C ₆ H ₁
(C) ₃) + | |--|---|---|------------------------|---|--|---|--|-----------------------|---| | | Literature | e – Calculated = | = Residual | Reference | (1 × Cych | | re – Calculated | == Residual | Reference | | riid Dhaa | | | | | | | | - Acoldulai | Reference | | Liquid Phas $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{2}$ | 157.65
134.52
193.68 | 157.65
134.52
193.68
- 357.30
264.18
- 106.57 | 0.00
0.00
0.00 | 55FRA/PRO
50SCO/FIN2
50SCO/FIN2 | Liquid Pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | se
58.95 | -48.66
168.86
240.41
-577.46
123.51
-49.82 | - 10.29 | 74GOO/MOO | | | | ×C _d -(H) ₂)+(1 | $1 \times C_d - (C)_2$ | C ₅ H ₈ | Methylcycle | opentane | | | C₅H _{1:} | | | Literature | e – Calculated = | = Residual | Reference | (1×C-(H
(1×-CH | $H_{3}(C)$) + (4)
G_{3} corr (terti | \times C-(H) ₂ (C) ₂)
(ary) + (ary) rsc), $\sigma =$ | | | | Gas Phase $\Delta_l H^\circ = C_p^\bullet =$ | 121.55 | 119.46
85.81 | 2.09 | 74GOO/MOO | | Literatui | re – Calculated | = Residual | Reference | | Liquid Phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | 93.85
131.13
210.20 | 90.36
132.17
204.98
- 346.00
193.52
- 78.07 | 3.49
-1.04
5.22 | 74GOO/MOO
81FIN/MES
81FIN/MES | Gas Phase $ \Delta_{t}H^{\circ} = C_{t}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = $ | - 106.03
109.79
339.91 | - 108.66
109.50
339.62
- 478.25
33.93
- 13.69 | 2.63
0.29
0.29 | 47OSB/GIN
69STU/WES
69STU/WES | | | H) ₃ (C))+(3:
obutane rsc) | × C-(H) ₂ (C) ₂) +
) + (1 × -CH ₃ co
c – Calculated - | orr (tertiary)) | C ₅ H ₁₀
C) ₃)+ | Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
137.74
158.70
247.78 | - 133.89
156.22
245.58
- 572.29
36.74
- 14.82 | -3.85
2.48
2.20 | 69GOO/SMI
46DOU/HUF2
46DOU/HUF2 | | Gas Phase $\Delta_t H^\circ = C_p^\circ =$ | | 3.31
95.14 | | | | H) ₂) + (2 × 0 | C-(H) ₂ (C) ₂)+(| | C_6H_{10} | | Liquid Phase $\Delta_t H^\circ = C_p^\circ =$ | se
-44.48 | -25.11
138.44 | - 19.37 | 50HUM/SPI | | Literatur | e – Calculated | = Residual | Reference | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | | 208.03
- 473.52
116.07
- 46.82 | | | Gas Phase $\Delta_t H^\circ = C_p^\circ =$ | 12.01 | 6.99
95.65 | 5.02 | 75YUR/KAB | | | H) ₃ (C))+(4:
obutane rsc) | × C-(H) ₂ (C) ₂) +
e – Calculated = | | C ₆ H ₁₂
C) ₃)+
Reference | Liquid Phase $\Delta_{i}H^{\circ} = C^{\circ}_{p} = S^{\circ} = \Delta_{i}S^{\circ} = \Delta_{i}G^{\circ} = 0$ | se
20.08 | -18.42
147.69
241.11
-446.18
114.61 | -1.66 | 61LAB/ROS | | Gas Phase $\Delta_l H^\circ = C_p^\circ =$ | -26.32 | - 15.06
118.03 | -11.26 | 74GOO/MOO | $lnK_f =$ | | -46.23 | | | TABLE 12. Cyclic CH-01 (40) - Continued | (2×-CH | corr (quat | \times C-(H) ₂ (C) ₂) - | | C ₇ H ₁₄ + | trans-1,2-I
(2×C-(
(2×-CF
(1×Cyc | + (2 × C-(H)(| С ₇ H ₁₄
H)(С) ₃) + | | | |--|--
--|--------------------------|---|--|-----------------------------|--|--------------------|-------------------------------------| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas Phase | ı | | | | Liquid Ph | ase | | | | | $\Delta_{\rm f}H^{\circ} =$ | -138.24 | -137.41 | -0.83 | 86TRC | $\Delta_{\rm f}H^{\circ} =$ | - 171.21 | -162.72 | - 8.49 | 49JOH/PRO | | $C_p^{\circ} =$ | 133.30 | 131.68 | 1.62 | 69STU/WES | $C_p^o =$ | 187.40 | 183.66 | 3.74 | 53GRO/OLI | | S° = | 359.28 | 356.15 | 3.13 | 69STU/WES | S° = | 269.90 | 272.61 | - 2.71 | 53GRO/OLI | | $\Delta_f S^\circ =$ | | - 598.03 | | 89. | $\Delta_{f}S^{\circ} =$ | | - 681.57 | | | | $\Delta_f G^\circ = \ln K_f =$ | | 40.89
16.50 | | ., | $\Delta_f G^\circ = \ln K_f =$ | | 40.49
16.33 | | | | | | | ***** | | | | · | | ····· | | Liquid Pha | | | | , | | Dimethylcycl | - | | С7Н | | $\Delta_i H^\circ =$ | -172.05 | - 165.34 | -6.71 | 49JOH/PRO | • | | \times C-(H) ₂ (C) ₂) | $+(2\times C-(H)($ | C) ₃) + | | $C_p^{\circ} =$ | 187.36 | 181.56 | 5.80 | 53GRO/OLI | • | H ₃ corr (tert | • // | 40 | | | $S^{\circ} - \Delta_f S^{\circ} =$ | 265.01 | 254.12
- 700.06 | 10.89 | 53GRO/OLI | (1×Cyc | uopentane (| sub) rsc), $\sigma =$ | 15 | | | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} =$ | | - 700.06
43.38 | | | | Literatu | re – Calculated | = Residual | Reference | | $\ln K_{\rm f} =$ | | - 17.50 | | | - | | | - Residuai | | | | , <u></u> | | | | Gas Phase | ; | | | | | cis -1,2-Dim | ethylcyclop | entane | | C7H14 | $\Delta_t H^\circ =$ | - 133.55 | -133.72 | 0.17 | 86TRC | | | | \times C-(H) ₂ (C) ₂) | + (2 × C-(H)(| C) ₃) + | $C_p^{\circ} =$ | 134.47 | 132.42 | 2.05 | 69STU/WES | | | l3 corr (tert | | | | s° - | 366.81 | 359.28 | 7.53 | 69STU/WES | | (1 × Cycl | opentane (| $sub) rsc), \sigma =$ | 18 | | $\Delta_{\rm f}S^{\circ} =$ | | -594.90 | | | | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 43.65 | | | | | Literatu | re – Calculated | = Residual
 | Reference | $lnK_f =$ | | – 17.61 | | | | Gas Phase | | | | | Liquid Ph | ase | | | | | $\Delta_i H^\circ =$ | - 129.49 | -133.72 | 4.23 | 86TRC | $\Delta_{\mathbf{f}}H^{\circ} =$ | -168.07 | -162.72 | -5.35 | 49JOH/PRO | | $C_p^{\circ} =$ | 134.14 | 132.42 | 1.72 | 69STU/WES | $C_p^{\circ} =$ | 189.32 | 183.66 | 5.66 | 53GRO/OLI | | S° = | 366.14 | 359.28 | 6.86 | 69STU/WES | S° = | 271.54 | 272.61 | - 1.07 | 53GRO/OLI | | $\Delta_t S^\circ =$ | | - 594.90 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -681.57 | | | | $\Delta_i G^{\circ} =$ | | 43.65 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 40.49 | | | | lnK _f = | | - 17.61
 | | | lnK _f = | | - 16.33 | | | | Liquid Pha | nse | | | | Ethylcyclo | pentane | | | C ₇ H ₁ | | $\Delta_i H^\circ =$ | -165.27 | - 162.72 | -2.55 | 49JOH/PRO | | - | \times C-(H) ₂ (C) ₂) | + (1 × C-(H)(| | | $C_p^{\circ} =$ | 188.74 | 183.66 | 5.08 | 53GRO/OLI | (1×Cyc | lopentane (s | sub) rsc), $\sigma =$ | 3 | | | S° = | 269.16 | 272.61 | -3.45 | 53GRO/OLI | | | | | | | | | - 681.57 | | | | Literatu | re – Calculated | = Residual | Reference | | $\Delta_t S^\circ =$ | | 40.49 | | | | | | | | | $\Delta_t G^\circ =$ | | - 16.33 | | | G 71 | | | | | | $\Delta_t G^\circ = $ $\ln K_t = $ | | | | | Gas Phase | | 107.00 | 0.00 | OCT DC | | $\Delta_f G^\circ =$ | | | | | $\Delta_t H^{\circ} =$ | - 126.94 | -127.03 | 0.09 | 86TRC
69STU/WES | | $\Delta_{f}G^{\circ} = \frac{\ln K_{f}}{-1}$ | imethylcycl | opentane | | C7H14 | | 12176 | | | | | $\Delta_t G^\circ = \ln K_t = \frac{1}{2}$ | | • | + (2×C-(H)(| C ₇ H ₁₄
C) ₃) + | $C_p^{\circ} =$ | 131.75 | 132.39 | - 0.64
- 0.46 | | | $\Delta_{f}G^{\circ} = \frac{\ln K_{f}}{\ln K_{f}} = \frac{1}{2 \times C - (2 \times C - (2 \times C + C + C + C + C + C + C + C + C + C$ | | $3 \times C - (H)_2(C)_2$ | + (2×C-(H)(| | S° = | 131.75
378.32 | 378.78 | -0.46 | 69STU/WES | | $\Delta_{f}G^{\circ} = \frac{\ln K_{f}}{\ln K_{f}} = \frac{1}{2 \times C - (2 \times -C)}$ | H) ₃ (C)) + (3
I ₃ corr (ter | $3 \times C - (H)_2(C)_2$ | | | $S^{\circ} = \Delta_{f}S^{\circ} =$ | | 378.78
- 575.40 | | | | $\Delta_{l}G^{\circ} = \frac{\ln K_{l}}{\ln K_{l}} = \frac{1}{2 \times C - (2 \times -C)}$ | H) ₃ (C)) + (3
I ₃ corr (ter | $3 \times C - (H)_2(C)_2$
siary)) + | | C) ₃) + | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ}$ | | 378.78
- 575.40
44.53 | | | | $\Delta_{f}G^{\circ} = \frac{\ln K_{f}}{\ln K_{f}} = \frac{1}{2 \times C - (2 \times -C)}$ | H) ₃ (C))+(3
I ₃ corr (teri
lopentane (| $3 \times C - (H)_2(C)_2$
siary)) + | 18 | | $S^{\circ} = \Delta_{f}S^{\circ} =$ | | 378.78
- 575.40 | | | | $\Delta_t G^{\circ} = \frac{1}{\ln K_t} = \frac{1}{2} \text{trans -1,2-E}$ $(2 \times C - (1 \times Cyc)$ | H) ₃ (C)) + (3
I ₃ corr (tert
lopentane (
Literatu | $3 \times C - (H)_2(C)_2$
$(G)_2(C)_2(C)_2(C)_2(C)_2(C)_2(C)_2(C)_2(C$ | 18 | C) ₃) + | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \Delta_{f}G^{\circ} = InK_{f} = -$ Liquid Pha | 378.32 | 378.78
- 575.40
44.53
- 17.96 | - 0.46 |
69STU/WES | | $\Delta_f G^\circ = \frac{1}{\ln K_f} = \frac{1}{2}$ trans -1,2-E (2 × C-() (2 × -CF) (1 × Cyc) | H) ₃ (C))+(3
H ₃ corr (terr
lopentane (
Literatu | $3 \times C - (H)_2(C)_2$
(ary) + (arc) + (arc)
(arc) + (arc) + (arc)
(arc) + (arc) + (arc)
(arc) (| 18
= Residual | C) ₃) + Reference | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = \frac{1}{2}$ Liquid Pha $\Delta_{f}H^{\circ} = \frac{1}{2}$ | 378.32 ase - 163.43 | 378.78
- 575.40
44.53
- 17.96 | - 0.46
- 5.99 | 69STU/WES | | $\Delta_t G^\circ = \ln K_t = \frac{1}{2}$ trans-1,2-E (2×C-(: (2×-CF) (1×Cyc) Gas Phase $\Delta_t H^\circ = \frac{1}{2}$ | H) ₃ (C)) + (3
H ₃ corr (terrilopentane (
Literature)
-136.65 | $3 \times C - (H)_2(C)_2$
(ary) + (b) + (b)
(ary) | 18 = Residual -2.93 | C) ₃) + Reference 86TRC | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = InK_{f} = InK_{f} = InG^{\circ}$ Liquid Pha $\Delta_{f}H^{\circ} = C_{p}^{\circ} = InG^{\circ}$ | 378.32 ase - 163.43 185.31 | 378.78
-575.40
44.53
-17.96
-157.44
186.64 | - 5.99
- 1.33 | 69STU/WES
46JOH/PRO
53GRO/OLI | | $\Delta_t G^\circ = \ln K_t = \frac{1}{\ln K_t}$ $C^\circ = \ln K_t = \frac{1}{\ln K_t}$ $C^\circ = \frac{1}{\ln K_t}$ $C^\circ = \frac{1}{\ln K_t}$ $C^\circ = \frac{1}{\ln K_t}$ $C^\circ = \frac{1}{\ln K_t}$ | H) ₃ (C)) + (:
I ₃ corr (terilopentane (
Literature – 136.65
134.47 | $3 \times C - (H)_2(C)_2$
$(1) $ | 18 = Residual -2.93 2.05 | Reference 86TRC 69STU/WES | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = -\frac{1}{2}$ Liquid Photo $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = -\frac{1}{2}$ | 378.32 ase - 163.43 | 378.78
-575.40
44.53
-17.96
-157.44
186.64
277.96 | - 0.46
- 5.99 | 69STU/WES 46JOH/PRO | | $\Delta_t G^\circ = \ln K_t = \frac{1}{100}$ $\int_{0}^{\infty} \frac{1}{100} \int_{0}^{\infty} 1$ | H) ₃ (C)) + (3
H ₃ corr (terrilopentane (
Literature)
-136.65 | 3×C-(H) ₂ (C) ₂) iary)) + sub) rsc), σ = re - Calculated -133.72 132.42 359.28 | 18 = Residual -2.93 | C) ₃) + Reference 86TRC | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = InK_f InK_$ | 378.32 ase - 163.43 185.31 | 378.78
-575.40
44.53
-17.96
-157.44
186.64
277.96
-676.22 | - 5.99
- 1.33 | 69STU/WES
46JOH/PRO
53GRO/OLI | | $\Delta_t G^{\circ} = \frac{1}{\ln K_t} = \frac{1}{2}$ $trans \cdot 1, 2 \cdot \Gamma$ $(2 \times C - C)$ $(2 \times - C \cdot C)$ $(1 \times Cyc)$ $Gas \ Phase$ $\Delta_t H^{\circ} = C_{\rho}^{\circ} C$ | H) ₃ (C)) + (:
I ₃ corr (terilopentane (
Literature – 136.65
134.47 | $3 \times C - (H)_2(C)_2$
$(1) $ | 18 = Residual -2.93 2.05 | Reference 86TRC 69STU/WES | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = -\frac{1}{2}$ Liquid Photo $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = -\frac{1}{2}$ | 378.32 ase - 163.43 185.31 | 378.78
-575.40
44.53
-17.96
-157.44
186.64
277.96 | - 5.99
- 1.33 | 69STU/WES
46JOH/PRO
53GRO/OLI | C10H20 TABLE 12. Cyclic CH-01 (40) - Continued TABLE 13. Cyclic CH-02 (48) | | Literatur | e – Calculated | = Residual | Reference | |-------------------------|-----------|----------------|------------|------------| | Gas Phase | : | | | | | $\Delta_{f}H^{\circ} =$ | - 147.74 | - 147.66 | -0.08 | 47OSB/GIN | | $C_p^{\circ} =$ | 154.64 | 155.28 | -0.64 | 69STU/WES | | S° = | 417.27 | 417.94 | -0.67 | 69STU/WES | | $\Delta_f S^\circ =$ | | -672.55 | | | | $\Delta_t G^\circ =$ | | 52.86 | | | | $lnK_{f} =$ | | -21.32 | | | | Liquid Ph | ase | | | | | $\Delta_{f}H^{\circ} =$ | - 189.07 | - 183.17 | -5.90 | 46JOH/PRO | | $C_p^{\circ} =$ | 216.27 | 217.06 | -0.79 | 65MES/TOD2 | | S° = | 310.83 | 310.34 | 0.49 | 65MES/TOD2 | | $\Delta_{c}S^{\circ} =$ | | -780.15 | | | | $\Delta_i G^\circ =$ | | 49.43 | | | | | | 19.94 | | | | , | (H)3(C))+(7 | \times C-(H) ₂ (C) ₂)
sub) rsc), $\sigma = 1$ | | C₉H ₁ (C) ₃) + | |----------------------------------|-------------|---|--------|---| | (27.0) | . ` | re – Calculated | | Reference | | Gas Phase | ; | | | | | $\Delta_{\rm f}H^{\circ} =$ | -168.28 | - 168.29 | 0.01 | 69STU/WES | | $C_{\rho}^{\circ} =$ | 177.49 | 178.17 | - 0.68 | 69STU/WES | | s° = | 456.22 | 457.10 | -0.88 | 69STU/WES | | $\Delta_t S^\circ =$ | | - 769.70 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 61.20 | | | | lnK _f = | | - 24.69 | | ··· | | Liquid Ph | ase | | | | | $\Delta_{f}H^{\circ} =$ | | -208.90 | | | | $C_p^{\circ} =$ | 245.35 | 247.48 | -2.13 | 65MES/TOD2 | | S° = | 343.84 | 342.72 | 1.12 | 65MES/TOD2 | | $\Delta_f S^\circ =$ | | - 884.08 | | | | $\Delta_f G^\circ =$ | | 54.69 | | | | $lnK_{\ell} =$ | | -22.06 | | | Pentylcyclopentane $(1 \times C - (H)_3(C)) + (8 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_3) + (1 \times Cyclopentane (sub) rsc), \sigma = 3$ | | Literatur | Reference | | | |-------------------------|-----------|-----------|--------|-----------| | Gas Phase | , | | | | | $\Delta_t H^\circ =$ | -188.91 | -188.92 | 0.01 | 69STU/WES | | $C_p^{\circ} =$ | 200.37 | 201.06 | -0.69 | 69STU/WES | | S° = | 495.18 | 496.26 | - 1.08 | 69STU/WES | | $\Delta_f S^\circ =$ | | -866.85 | | | | $\Delta_f G^\circ =$ | | 69.53 | | | | $lnK_f =$ | | -28.05 | | | | Liquid Ph | ase | | | | | $\Delta_{i}H^{\circ} =$ | | -234.63 | | | | $C_p^{\circ} =$ | | 277.90 | | | | S° = | | 375.10 | | | | $\Delta_f S^\circ =$ | | -988.01 | | | | $\Delta_f G^\circ =$ | | 59.95 | | | | $lnK_f =$ | | -24.18 | | | Hexylcyclopentane $(1 \times C - (H)_3(C)) + (9 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_3) + (1 \times Cyclopentane (sub) rsc), \sigma = 3$ | | Literatu | Literature - Calculated = Residual | | | | |-------------------------|----------|------------------------------------|--------|-----------|--| | Gas Phase | : | | | | | | $\Delta_{f}H^{\circ} =$ | - 209.49 | -209.55 | 0.06 | 69STU/WES | | | $C_p^{\circ} =$ | 223.22 | 223.95 | -0.73 | 69STU/WES | | | S° = | 534.13 | 535.42 | - 1.29 | 69STU/WES | | | $\Delta_f S^\circ =$ | | -964.01 | | | | | $\Delta_t G^{\circ} =$ | | 77.87 | | | | | $\ln K_{\rm f} =$ | | -31.41 | | | | TABLE 13. Cyclic CH-02 (48) - Continued | | pentane (Continued)
$A_3(C) + (9 \times C - (H)_2(C)_2) + (9 \times C - (H)_2(C)_2) + (9 \times C)_2 $ | ×C-(H)(0 | $C_{11}H_{22}$ $C_{)3}) +$ | | -
H)₃(C))+(1 | $2 \times C - (H)_2(C)_2$
sub) rsc), $\sigma =$ | | C ₁₄ H
(C) ₃) + |
---|--|----------------|--|---|---|---|---|---| | | Literature - Calculated = R | esidual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid Pha | se | | | Gas Phase | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -260.36 | | | $\Delta_t H^{\circ} =$ | -271.33 | - 271.44 | 0.11 | 69STU/WES | | $C_p^{\circ} =$ | 308.32 | | |
$C_p^{\circ} =$ | 291.83 | 292.62 | -0.79 | 69STU/WES | | S° = | 407.48 | | | <i>S</i> ° = | 650.95 | 652.90 | - 1.95 | 69STU/WES | | $\Delta_f S^\circ =$ | - 1091.94 | | | $\Delta_{f}S^{\circ} =$ | | - 1255.46 | | | | $\Delta_t G^\circ =$ | 65.20 | | | $\Delta_t G^{\circ} =$ | | 102.87 | | | | $lnK_f =$ | -26.30 | | | $lnK_f =$ | | -41.50 | | | | | | | | Linuid Dha | | | | | | Hants-lawel | nontano | | C H | Liquid Pha
$\Delta_t H^\circ =$ | iac . | _ 227 55 | | | | Heptylcyck | | (1 v C (T) | C ₁₂ H ₂₄ | | | -337.55 | | | | | $(H)_3(C) + (10 \times C - (H)_2(C)_2) (H)_2(C$ | (1 × C-(H) | (C)3) T | $C_p^{\circ} = S^{\circ} =$ | | 399.58 | | | | (1 × Cyc | lopentane (sub) rsc), $\sigma = 3$ | | | | | 504.62 | | | | | There are a control of | | D - f - | $\Delta_t S^\circ =$ | | - 1403.73 | | | | | Literature – Calculated = R | lesidual | Reference | $\Delta_{\rm f}G^{\circ} =$ | | 80.97 | | | | · | | | | $\ln K_{\rm f} =$ | | - 32.66 | | | | Gas Phase $\Delta_t H^\circ =$ | -230.12 -230.18 | 0.06 | 69STU/WES | | | | | | | $C_p^{\circ} =$ | 246.10 246.84 | -0.74 | 69STU/WES | Decylcyclop | nentane | | | СИ | | $S^{\circ} =$ | 573.04 574.58 | -0.74 | 69STU/WES | | | 3×C-(H) ₂ (C) ₂ |) (1×C (H) | C ₁₅ H | | | -1061.16 | -1.54 | 09310/WE3 | | | | | (C)3) T | | $\Delta_f S^\circ =$ | | | | (1 x Cyci | openiane (s | sub) rsc), σ = | 3 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | 86.20 | | | | . | | | | | $lnK_f =$ | -34.77
 | | | | Literatui | re – Calculated | = Kesidual | Reference | | Liquid Pha | ISE | | | Gas Phase | | | | | | $\Delta_i H^\circ =$ | - 286.09 | | | $\Delta_f H^\circ =$ | - 292.33 | - 292.07 | -0.26 | 86TRC | | $C_p^{\circ} =$ | 338.74 | | | C_p° - | 314.72 | 315.51 | - 0.20
- 0.79 | 69STU/WES | | $S^{\circ} =$ | 439.86 | | | $S^{\circ} =$ | 689.90 | 692.06 | -2.16 | 69STU/WES | | $\Delta_f S^\circ =$ | - 1195.87 | | | Δ ₁ S° = | 009.90 | - 1352.61 | -2.10 | 0931 O/ WES | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | | | | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{I}} =$ | 70.46
28.42 | | | $\ln K_{\rm f} -$ | | 111.21
44.86 | | | | | | | | T : . : 1 Pl | | | | | | | | | C 17 | Liquid Pha | | - 363.28 | -4.70 | 55FRA/PRO2 | | Λ-4-1I | | | | | | | -4.70 | JJI KAVI KUL | | | | (1 v C (U) | C ₁₃ H ₂₆ | $\Delta_t H^\circ -$ | - 367.98 | | | | | (1×C-(| $(H)_3(C) + (11 \times C - (H)_2(C)_2) +$ | (1×C-(H) | | $C_p^{\alpha} =$ | - 307.90 | 430.00 | | | | (1×C-(| | (1×C-(H) | | $C_p^{\circ} = S^{\circ} =$ | - 307.96 | 430.00
537.00 | | | | (1×C-(| H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ | | (C)₃)+ | $C_p^\circ = S^\circ = \Delta_t S^\circ =$ | - 307.96 | 430.00
537.00
-1507.66 | | | | (1×C-(| $(H)_3(C) + (11 \times C - (H)_2(C)_2) +$ | | | $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \Delta_t G^{\circ} = \Delta_t G^{\circ} = 0$ | - 367.96 | 430.00
537.00
-1507.66
86.23 | | | | | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ | | (C)₃)+ | $C_p^\circ = S^\circ = \Delta_t S^\circ =$ | - 301.90 | 430.00
537.00
-1507.66 | | | | (1 × C-(
(1 × Cyc | H) ₃ (C)) + $(11 \times C - (H)_2(C)_2)$ + lopentane (sub) rsc), $\sigma = 3$
Literature — Calculated — F | Cosidual | (C) ₃)+ Reference | $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \Delta_t G^{\circ} = \Delta_t G^{\circ} = 0$ | - 301.90 | 430.00
537.00
-1507.66
86.23 | | | | (1×C-(
(1×Cyc
Gas Phase
Δ _t II° - | H) ₃ (C)) + $(11 \times C - (H)_2(C)_2)$ + lopentane (sub) rsc), $\sigma = 3$ Literature – Calculated – F -250.71 –250.81 | 0.10 | (C) ₃) + Reference 69STU/WES | $C_p^o = S^o = S^o = \Delta_f S^o = \Delta_f G^o = \ln K_f =$ | | 430.00
537.00
-1507.66
86.23
-34.78 | *************************************** | | | $(1 \times C - (1 \times Cyc) + Cyc)$ Gas Phase $\Delta_t II^\circ - C_p^\circ =$ | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ Literature – Calculated – F -250.71 –250.81 268.99 269.73 | 0.10
- 0.74 | (C) ₃) + Reference 69STU/WES 69STU/WES | $C_p^o = S^o = S^o = \Delta_f S^o = \Delta_f G^o = \ln K_f =$ | cyclopentane | 430.00
537.00
-1507.66
86.23
-34.78 | | C ₇ H ₁ | | $(1 \times C - (1 \times Cyc))$ Gas Phase $\Delta_t II^\circ - C_t^\circ = S^\circ S$ | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ Literature – Calculated – F -250.71 – 250.81 268.99 269.73 611.99 613.74 | 0.10 | (C) ₃) + Reference 69STU/WES | $C_p^o = S^o = S^o = \Delta_t S^o = \Delta_t G^o \sim \ln K_t =$ Ethylidened | cyclopentan | 430.00
537.00
-1507.66
86.23
-34.78 | | | | Gas Phase $\Delta_t II^{\circ} - C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} =$ | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ Literature – Calculated – F -250.71 –250.81 268.99 269.73 611.99 613.74 –1158.31 | 0.10
- 0.74 | (C) ₃) + Reference 69STU/WES 69STU/WES | $C_p^o = S^o = S^o = \Delta_t S^o = \Delta_t S^o = \Delta_t C^o \sim \ln K_t = \frac{1}{2}$ Ethylidenec | cyclopentano $S(C) + (1 \times 1)$ | 430.00
537.00
-1507.66
86.23
-34.78 | | C ₇ H ₁
(4×C-(H) ₂ (C) ₂) | | $(1 \times C - (1 \times Cyc))$ Gas Phase $\Delta_t II^\circ - C_t^\circ = S^\circ S$ | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ Literature – Calculated – F -250.71 – 250.81 268.99 269.73 611.99 613.74 | 0.10
- 0.74 | (C) ₃) + Reference 69STU/WES 69STU/WES | $C_p^o = S^o = S^o = \Delta_t S^o = \Delta_t S^o = \Delta_t C^o \sim \ln K_t = \frac{1}{2}$ Ethylidenec | cyclopentano $S(C) + (1 \times 1)$ | 430.00
537.00
-1507.66
86.23
-34.78 | | | | Gas Phase $\Delta_t II^\circ - C_p^\circ = S^\circ = \Delta_t S^\circ =$ | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ Literature – Calculated – F -250.71 –250.81 268.99 269.73 611.99 613.74 –1158.31 | 0.10
- 0.74 | (C) ₃) + Reference 69STU/WES 69STU/WES | $C_p^o = S^o = S^o = \Delta_t S^o = \Delta_t S^o = \Delta_t C^o \sim \ln K_t = \frac{1}{2}$ Ethylidenec | cyclopentane
(C)) + (1×0)
+ (1×0) | 430.00
537.00
-1507.66
86.23
-34.78 | b) rsc) | | | Gas Phase $ \Delta_t H^\circ - C_p^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ Literature – Calculated – F - 250.71 – 250.81 268.99 269.73 611.99 613.74 - 1158.31 94.54 - 38.14 | 0.10
- 0.74 | (C) ₃) + Reference 69STU/WES 69STU/WES | $C_p^o = S^o = S^o = \Delta_t S^o = \Delta_t S^o = \Delta_t C^o \sim \ln K_t = \frac{1}{2}$ Ethylidenec | cyclopentane
(C)) + (1×0)
+ (1×0) | 430.00
537.00
-1507.66
86.23
-34.78 | b) rsc) | (4×C-(H) ₂ (C) ₂) | | Gas Phase $\Delta_t II^{\circ} - C_p^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = $ Liquid Pha $\Delta_t H^{\circ} = C_t^{\circ} = C_t^{\circ} = C_t^{\circ}$ | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ Literature – Calculated – F - 250.71 – 250.81 268.99 269.73 611.99 613.74 - 1158.31 94.54 - 38.14 | 0.10
- 0.74 | (C) ₃) + Reference 69STU/WES 69STU/WES | $C_p^o = S^o = S^o = \Delta_t S^o = \Delta_t S^o = \Delta_t C^o \sim \ln K_t = \frac{1}{2}$ Ethylidenec | cyclopentane
(C)) + (1×0)
+ (1×0) | 430.00
537.00
-1507.66
86.23
-34.78 | b) rsc) | (4×C-(H) ₂ (C) ₂) | | Gas Phase $\Delta_{t}H^{\circ} - C_{p}^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = $ Liquid Pha | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ Literature – Calculated – F - 250.71 – 250.81 268.99 269.73 611.99 613.74 - 1158.31 94.54 - 38.14 | 0.10
- 0.74 | (C) ₃) + Reference 69STU/WES 69STU/WES | $C_p^o = S^o = S^o = \Delta_t $ | cyclopentane
(C)) + (1×0)
+ (1×0) | 430.00
537.00
-1507.66
86.23
-34.78 | b) rsc) | (4×C-(H) ₂ (C) ₂) | | Gas Phase $\Delta_t II^{\circ} - C_p^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = $ Liquid Pha $\Delta_t H^{\circ} = C_t^{\circ} = C_t^{\circ} = C_t^{\circ}$ | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ Literature – Calculated – F - 250.71 – 250.81 268.99 269.73 611.99 613.74 - 1158.31 94.54 - 38.14 ase - 311.82 | 0.10
- 0.74 | (C) ₃) + Reference 69STU/WES 69STU/WES | $C_p^o = S^o = S^o = \Delta_t $ | cyclopentane
(C)) + (1×0)
+ (1×0) | 430.00
537.00
-1507.66
86.23
-34.78
C _d -(H)(C))+(1
clopentane (sul | b) rsc) | (4×C-(H) ₂ (C) ₂) | | $(1 \times C - (1 \times Cyc))$ Gas Phase $\Delta_t II^{\circ} - C_p^{\circ} = S_p^{\circ} = \Delta_t S^{\circ} = \ln K_t = 1$ Liquid Pha $\Delta_t H^{\circ} = C_p^{\circ} = 1$ | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ Literature - Calculated - F - 250.71 - 250.81 268.99 269.73 611.99 613.74 - 1158.31 94.54 - 38.14 ase - 311.82 369.16 | 0.10
- 0.74 | (C) ₃) + Reference 69STU/WES 69STU/WES | $C_p^o = S^o = S^o = \Delta_t S^o = \Delta_t S^o = \Delta_t C^o = \ln K_t = \frac{1}{2}$ Ethylidenee (1×C-(H): | cyclopentane
(C)) + (1×0)
+ (1×0) | 430.00
537.00
-1507.66
86.23
-34.78
C _d -(H)(C))+(1
clopentane (sul
re-Calculated | b) rsc) | (4×C-(H) ₂ (C) ₂) | | Gas Phase $\Delta_{f} I^{\circ} - C_{p}^{\circ} = S^{\circ} = \Delta_{f} S^{\circ} = \ln K_{f} = \lim_{K \to \infty} \Delta_{f} H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \lim_{K \to \infty} \Delta_{f} H^{\circ} = G^{\circ} = S^{\circ} = \lim_{K \to \infty} \Delta_{f} H^{\circ} = G^{\circ} = S^{\circ} = \lim_{K \to \infty} \Delta_{f} H^{\circ} = G^{\circ} G^{\circ$ | H) ₃ (C)) + (11 × C-(H) ₂ (C) ₂) + lopentane (sub) rsc), $\sigma = 3$ Literature - Calculated - F -250.71 -250.81 268.99 269.73 611.99 613.74 -1158.31 94.54 -38.14 ase -311.82 369.16 472.24 | 0.10
- 0.74 | (C) ₃) + Reference 69STU/WES 69STU/WES | $C_p^o = S^o = S^o = \Delta_t $ | cyclopentane
(C)) + (1×0)
+ (1×0) |
430.00
537.00
-1507.66
86.23
-34.78
C _d -(H)(C))+(1
clopentane (sul
re-Calculated | b) rsc) | (4×C-(H) ₂ (C) ₂) | | TABLE 13 | . Cyclic | CH-02 | (48) | _ | Continued | |----------|----------|-------|------|---|-----------| |----------|----------|-------|------|---|-----------| TABLE 13. Cyclic CH-02 (48) - Continued | Ethylidenecyclopentan | | C (C)) · | C ₇ H ₁₂ | | $H_{2}(C)_{2}+C$ | 2×C-(H)(C) ₃) | + | C ₁₀ H | |--|--|-----------|--|---|--------------------------|---|-----------------------|-------------------------------| | (1×C-(H)₃(C))+(1×
+ (1×C) | C_d -(H)(C))+(1× α clopentane (sub) 1 | | (4×C-(H) ₂ (C) ₂) | (2×Cycle | opentane (s
Literatur | sub) rsc)
re – Calculated | = Residual | Reference | | Literatu | re – Calculated = R | Residual | Reference | | | | | | | | | | | Gas Phase $\Delta_t H^\circ =$ | | - 128.28 | | | | Liquid Phase $\Delta_t H^\circ = -56.74$ | -56.73 | -0.01 | 61LAB/ROS | $C_{\rho}^{\circ} =$ | | 167.54 | | | | $C_p^{\circ} = 181.17$ | 182.66 | -1.49 | 79FUC/PEA | | | 107.54 | | | | S° = | 268.22 | | | | | | | | | $\Delta_{f}S^{\circ} =$ | -555.39 | | | Liquid Pha | | | | | | $\Delta_t G^\circ =$ | 108.86 | | | $\Delta_{f}H^{\circ} =$ | -179.33 | - 168.20 | -11.13 | 76GOO/LEE | | $lnK_f =$ | -43.91 | | | $C_p^{\circ} =$ | 238.91 | 239.48 | -0.57 | 76GOO/LEE | | | | | | S° = | | 324.56 | | | | | | | | $\Delta_f S^\circ =$ | | -907.98 | | | | Ethenylcyclopentane | | | C ₇ H ₁₂ | $\Delta_f G^\circ = \ln K_f =$ | | 102.51
41.35 | | | | $(1 \times C_d - (H)_2) + (1 \times C_d - (H)_2(C)_2) +$ | | sub) rsc) | (C _d))+ Reference | 1-Methylcyc | clopentene | | | Cel | | | | | | | | $\times C_{d}$ -(C) ₂)+(1+(1×C-(H) ₂) | C/-/+
C/-/+ | | | Gas Phase | | | | | | $\tau(1 \wedge C - (11)_2($ sub) rsc), $\sigma =$ | | | | $\Delta_t H^\circ =$ | -1.96 | | | (17. C)Cit | opontono (d | 130), 0 | - | | | C _p = | 131.30 | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid Phase | | | | Gas Phase | | | | | | $\Delta_t H^\circ = -34.81$ | -31.55 | -3.26 | 61LAB/ROS | $\Delta_t H^\circ =$ | -3.81 | 0.12 | -3.93 | 79FUC/PEA | | $C_p^{\circ} =$ | 181.45 | 5.20 | OILI ID/NOU | $C_p^{\circ} =$ | 100.83 | 99.22 | 1.61 | 69STU/WES | | S° = | 272.87 | | | S° = | 326,35 | 333.07 | -6.72 | 69STU/WES | | $\Delta_f S^\circ =$ | -550.74 | | | $\Delta_{r}S^{\circ} =$ | | - 354.23 | 52 | 0,010,20 | | $\Delta_{f}G^{\circ} =$ | 132.65 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 105.73 | | | | $lnK_f =$ | - 53.51 | | | $lnK_f =$ | | -42.65 | | | | | | | | Liquid Phas | se | | | | | 11-Cyclopentylheneico | | | $C_{26}H_{52}$ | $\Delta_t H^{\circ} =$ | -36.44 | - 34.77 | -1.67 | 69GOO/SMI | | $(2 \times C - (H)_3(C)) + (2 \times C - (H)_3(C))$ | | (2×C-(H) | (C) ₃)+ | $C_p^{\circ} =$ | 153.10 | 157.48 | -4.38 | 79FUC/PEA | | (1×Cyclopentane (| sub) rsc) | | | S° = | | 226.14 | | | | - • | | | ~ . | $\Delta_{\rm f}S^{\circ} =$ | | -461.15 | | | | Literatu | re – Calculated = R | Residual | Reference | $\Delta_t G^{\circ} =$ | | 102.72 | | | | | | | | $lnK_f =$ | | -41.44 | | | | Gas Phase | 501 17 | | | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -521.17 | | | 2 Madeal | | | | ~ | | $C_p^{\circ} =$ | 567.33 | | | 3-Methylcyc | | v С_(II) (С)(С | 1.)) ± (1 × 0 · 0 | C ₆ H ₁ | | | | | | | | ×С-(H)₂(С)(С
×С-(H)(С)₂(С | (C_d)) + (1 × C-(H | 1/2(0/2)+ | | | | | | | corr (terti | | (d)) T | | | Liquid Phase | | - 1.29 | 44KNO/HUF | | | ub) rsc), $\sigma = 0$ | 3 | | | | - 647.23 | | | (20) | L (9 | | - | | | $\Delta_i H^\circ = -648.52$ | - 647.23
761.64 | | | | | | | D . C | | $\Delta_t H^\circ = -648.52$ $C_p^\circ = S^\circ =$ | -647.23
761.64
887.83 | | | | Literatur | e – Calculated | = Residual | Reference | | $\Delta_t H^\circ = -648.52$ $C_p^\circ =$ | 761.64 | | | | Literatur | e – Calculated | = Residual | Keterence | | $\Delta_t H^\circ = -648.52$ $C_p^\circ = S^\circ = \Delta_t S^\circ =$ | 761.64
887.83 | | | | Literatur | e – Calculated | = Residual | Keterence | | $\Delta_{t}H^{\circ} = -648.52$ $C_{p}^{\circ} = S^{\circ} =$ | 761.64
887.83
2656.26 | | | Gas Phase | Literatur | e – Calculated | = Residual
 | Keterence | | $\Delta_{i}H^{\circ} = -648.52$ $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = S^{\circ} =$ | 761.64
887.83
2656.26
144.73 | | | $\Delta_{\ell}H^{\circ} =$ | 7.36 | 9.29 | = Residual
 | 79FUC/PEA | | $\Delta_{i}H^{\circ} = -648.52$ $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = S^{\circ} =$ | 761.64
887.83
2656.26
144.73 | | | $ \Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = $ | | | | | | $\Delta_{s}H^{\circ} = -648.52$ $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = S^{\circ} =$ | 761.64
887.83
2656.26
144.73 | | | $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} =$ | 7.36 | 9.29
109.72
328.38 | - 1.93 | 79FUC/PEA | | $\Delta_{i}H^{\circ} = -648.52$ $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = S^{\circ} =$ | 761.64
887.83
2656.26
144.73 | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | 7.36
100.00 | 9.29
109.72
328.38
-358.92 | - 1.93
- 9.72 | 79FUC/PEA
69STU/WES | | $C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ $ | 761.64
887.83
2656.26
144.73 | | | $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} =$ | 7.36
100.00 | 9.29
109.72
328.38 | - 1.93
- 9.72 | 79FUC/PEA
69STU/WES | TABLE 13. Cyclic CH-02 (48) - Continued | (2×C _d -(I
(1×C-(H | $(1)_3(C) + (1)$ | < C-(H) ₂ (C)(C _d
< C-(H)(C) ₂ (C _d | | C_6H_{10} $H_{12}(C)_2) +$ | | $H_{3}(C)) + (1$ | ×C-(H)(C) ₃) +
l ×Cyclohexane | | | |----------------------------------|--------------------------------|--
--|---|----------------------------------|--------------------|--|------------------|--------------------------------| | | , corr (tertia
ppentene (su | (ry)) + (rsc) , $\sigma = 3$ | | | | Literatu | re – Calculated | = Residual | Reference | | | Literature | - Calculated = | Residual | Reference | | | | | | | | | | | | Gas Phase $\Delta_t H^\circ =$ | 154.70 | 140.00 | 5.40 | 47OCD CIN | | Liquid Phas | se. | | | | $C_p^{\circ} =$ | - 154.72
135.02 | - 149.23
137.44 | - 5.49
- 2.42 | 47OSB/GIN
69STU/WES | | $\Delta_t H^\circ =$ | - 23.68 | -24.35 | 0.67 | 61LAB/ROS | S° = | 343.34 | 344.36 | -1.02 | 69STU/WES | | $C_p^{\circ} =$ | | 159.69 | | | $\Delta_{f}S^{\circ} =$ | | -609.82 | | | | S° = | | 224.81 | | • 1 | $\Delta_{\rm f}G^{\circ} =$ | | 32.59 | | | | $\Delta_f S^\circ =$ | | - 462.48 | | • | $lnK_f =$ | | - 13.15 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 113.54 | | | | | | | | | $\ln K_{\rm f} =$ | | -45.80 | | 1 | Liquid Pha | se. | | | | | | | | ···· | | $\Delta_t H^\circ =$ | - 190.08 | - 185.27 | -4.81 | 46JOH/PRO | | | | | | | $C_p^{\circ} =$ | 184.51 | 183.75 | 0.76 | 46DOU/HUF2 | | 4-Methylcyc | lopentene | | | C ₆ II ₁₀ | S° - | 247.90 | 246.41 | 1.49 | 46DOU/HUF2 | | (2×C _d -(| H)(C))+(2: | \times C-(H) ₂ (C)(C _c | $(1 \times C - (1 \times C - (1 \times C + C) ($ | H) ₃ (C))+ | $\Delta_i S^\circ =$ | | -707.77 | | | | | | ×-CH ₃ corr (te | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 25.75 | | | | (1 × Cycle | | ub) rsc), σ = 3
e – Calculated = | | Reference | $lnK_f =$ | | - 10.39 | | | | | Literatur | Calculated - | residual | | | | | | | | | | | | | | | yclopentyl-1-pro | - | C ₈ H ₁₄ | | Gas Phase | | | | | | | C_d – $(H)(C))+(1$ | | (C _d))+ | | $\Delta_t H^\circ =$ | 14.77 | 9.50 | 5.27 | 69STU/WES | | | × C-(H) ₂ (C) ₂) | + | | | $C_{\rho}^{\circ} = S^{\circ} =$ | 100.00
328.86 | 100.05 | 0.05
4.66 | 69STU/WES | (1 × Cycl | opentane (s | sub) rsc) | | | | $\Delta_{f}S^{\circ} =$ | 320.00 | 324.20
- 363.10 | 4.00 | 69STU/WES | | Litorotus | re – Calculated : | - Decidual | Reference | | $\Delta_{i}G^{\circ} =$ | | 117.76 | | | | Literatur | e – Calculateu | - Residual | Reference | | $lnK_f =$ | | -47.50 | | | | | | | | | | | | | .,, | Gas Phase | | | | | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -19.10 | -22.38 | 3.28 | 79FUC/PEA | | Liquid Pha | | | | | $C_p^{\circ} =$ | | 144.52 | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -17.57 | -24.10 | 6.53 | 61LAB/ROS | | | | | | | $C_p^{\circ} =$ | | 149.82 | | | 7 · · · · · Di | | | | | | S° =
Δ _ι S° = | | 228.28
- 459.01 | | | Liquid Phat $\Delta_t H^* =$ | se
59.50 | -57.03 | - 2.47 | 71ROG/MCL | | $\Delta_{t}G^{\circ} =$ | | 112.76 | | | $C_p^{\circ} =$ | 202.92 | 202.00 | 0.92 | 79FUC/PEA | | $\ln K_{\rm f} =$ | | -45.48 | | | S° = | 202.72 | 308.72 | 0.72 | MOGILA | | mari — | | 45.40 | | | $\Delta_{f}S^{\circ} =$ | | -651.20 | | | | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 137.12 | | | | | | | | | $lnK_f =$ | | -55.32 | | | | 1-Ethylcycl | | | | C_7H_{12} | | | | | | | | | \times C-(H) ₂ (C)(C ₄ | | | | | | | ~ ** | | (1 × C _d -(| (H)(C))+(1 | $\times C_{\mathbf{d}}$ -(C) ₂) + (1 | × Cyclopente | ne (sub) rsc) | Methylenec | • | C_{d} – $(C)_2$)+ $(2\times$ | C-(III)-(C)(C | C ₇ H ₁₂ | | | Literatur | e – Calculated = | = Residual | Reference | | | $1 \times \text{Cyclohexane}$ | | IJ, ⊤ | | | | | | | , , | T 14 | 0-11 | Desident | D . C | | Gas Phase | | | | | | Literatur | e – Calculated : | = Kesidual | Reference | | $\Delta_f H^\circ =$ | 19.75 | - 20.76 | 1.01 | 79FUC/PEA | | | | | | | $C_p^{\circ} =$ | | 119.85 | | | Gas Phase | | | | | | - | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -25.23 | -33.58 | 8.35 | 79FUC/PEA | | Liquid Pha | 150 | | | | $C_p^{\circ} =$ | | 123.59 | | | | $\Delta_i H^\circ =$ | -58.28 | -60.50 | 2.22 | 61LAB/ROS | | | | | | | $C_n^{\circ} =$ | 188.28 | -00.30
186.77 | 1.51 | 79FUC/PEA | Liquid Phas | se | | | | | S° = | 200120 | 257.81 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | $\Delta_f H^\circ =$ | -61.30 | - 69.80 | 8.50 | 63PAS/ALM | | Δ _f S° = | | -565.80 | | | $C_p^{\circ} =$ | 177.40 | 175.22 | 2.18 | 79FUC/PEA | | $\Delta_f G^\circ =$ | | 108.19 | | | S° = | | 241.94 | 0 | | | $lnK_f =$ | | -43.64 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -581.67 | | | | | | | | | $\Delta_t G^{\circ} =$ | | 103.62 | | | | | | | | | _,_ | | 100.02 | | | | 1,1-Dimethy
(2×C-(H
(5×C-(H | $H_{3}(C)+(1$ | ne
×C-(C) ₄) + (2
1 × Cyclohexan | ×-CH ₃ corr (
e (sub) rsc), o | C_aH_{16} (quaternary)) + $r = 9$ | (2×C-(| $(H)_3(C)) + (2)$ | lohexane (Cont
2×C-(H)(C) ₃)
(1×Cyclohexan | + (2×-CH ₃ c | C_8H_{16} orr (tertiary))+ $\sigma = 9$ | |---|--------------------|--|---|-------------------------------------|--|---------------------------------------|--|---------------------------|--| | | Literatu | re – Calculated | = Residual | Reference | | Literatu | ire – Calculated | d = Residual | Reference | | Gas Phase | | | | | Liquid Ph | | | | | | $\Delta_f H^\circ =$ | - 180.87 | 177.98 | -2.89 | 86TRC | $\Delta_{\rm f}H^{\circ} =$ | -215.69 | -214.10 | 1.59 | 47JOH/PRO2 | | $C_p^{\circ} =$ | 154.39 | 159.62 | -5.23 | 69STU/WES | $C_p^{\circ} =$ | 212.84 | 211.19 | 1.65 | 49HUF/TOD | | S° = | 365.01 | 366.65 | -1.64 | 69STU/WES | S° = | 276.27 | 273.44 | 2.83 | 49HUF/TOD | | $\Delta_t S^\circ =$ | | -723.84 | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | -817.05
29.50 | | | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = $ | | 37.83
- 15.26 | | | $\ln K_{\rm f} =$ | | -11.90 | | | | | | | | | | | | | | | Liquid Pha $\Delta_t H^\circ =$ | se
-218.74 | -216.72 | -2.02 | 47JOH/PRO2 | trans_1 4_T | Dimethylcycl | lohevane | | CH | | $\Delta_i H^{\circ} = C_p^{\circ} =$ | 209.24 | 209.09 | 0.15 | 49HUF/TOD | | | | + (2 × -CH, c | C ₈ H ₁₆
orr (tertiary))+ | | $S^{\circ} =$ | 267.23 | 254.95 | 12.28 | 49HUF/TOD | | | 1 × Cyclohexan | | | | $\Delta_f S^\circ =$ | | -835.54 | | | ,,,,, | | | , | | | $\Delta_t G^\circ = \ln K_t =$ | | 32.40
13.07 | | | | Literatu | re – Calculated | l = Residual | Reference | | | | - 13.07 | | | C Ph | | | | | | | | | | | Gas Phase $\Delta_t H^\circ =$ | - 184.51 | - 174.29 | - 10.22 | ATOCD/CIN | | tname .1 2.Th | imethylcycl | ohevene | | C ₈ H ₁₆ | $C_p^{\circ} =$ | 157.74 | 160.36 | - 10.22
- 2.62 | 47OSB/GIN
69STU/WES | | | | C×C-(H)(C)₃) + | + (2 x - CH ₂ co |
| S° = | 364.80 | 364.02 | 0.78 | 69STU/WES | | | | 1 × Cyclohexane | | | $\Delta_f S^\circ =$ | | - 726.47 | 0.70 | 0,010,4123 | | (|)2()2) - (| , | (), | - | $\Delta_{\rm f}G^{\circ} =$ | | 42.31 | | | | | Literatu | re – Calculated | = Residual | Reference | $lnK_t =$ | | -17.07 | | | | | | | | | | | | | | | Gas Phase | 450.0 . | 171.00 | 5.50 | 4500D (CINI | Liquid Pha | | 21.1.10 | 0.00 | | | $\Delta_i H^\circ =$ | - 179.87
158.99 | - 174.29
160.36 | -5.58
-1.37 | 47OSB/GIN
69STU/WES | $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} =$ | - 222.38
210.25 | -214.10 | - 8.28 | 47JOH/PRO2 | | C; =
S° = | 370.91 | 369.78 | 1.13 | 69STU/WES | S° = | 268.03 | 211.19
273.44 | 0.94
5.41 | 49HUF/TOD
47HUF/TOD | | Δ _t S° = | 370.71 | - 720.71 | 1.13 | 0,010,1125 | $\Delta_{f}S^{\circ} =$ | 200.05 | -817.05 | -3.41 | 4/1101/101 | | $\Delta_f G^\circ =$ | | 40.59 | | | $\Delta_{\rm f}G^{\circ} =$ | | 29.50 | | | | $lnK_f =$ | | - 16.37 | | | $lnK_f =$ | | ~11.90 | | | | Liquid Pha | 100 | | | | | | | | | | $\Delta_i H^\circ =$ | - 218.24 | -214.10 | -4.14 | 47JOH/PRO2 | Ethylcyclol | hexane | | | C ₈ H ₁₆ | | $C_p^{\circ} =$ | 209.41 | 211.19 | -1.78 | 49HUF/TOD | | | \times C-(H)(C) ₃) | + (6×C-(H) ₂ (| C)2)+ | | <i>S</i> ° = | 273.22 | 273.44 | -0.22 | 49HUF/TOD | | | ub) rsc), $\sigma = 3$ | | - /2/ | | $\Delta_f S^\circ =$ | | -817.05 | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 29.50 | | | | Literatu | re – Calculated | = Residual | Reference | | $lnK_f =$ | | -11.90 | | | | | | | | | | | | | | Gas Phase $\Delta H^{\circ} =$ | - 171.63 | 167.40 | . 4.02 | 470en/013 | | trans -1.3-D | imethylcycl | ohexane | | C ₈ H ₁₆ | $C_p^{\circ} =$ | 158.82 | 167.60
160.33 | - 4.03
- 1.51 | 47OSB/GIN
69STU/WES | | | | :×C-(H)(C)₃)+ | F(2×−CH₂ co | | S° = | 382.58 | 383.52 | -0.94 | 69STU/WES | | | | 1 × Cyclohexane | | | $\Delta_f S^\circ =$ | 502.50 | - 706.97 | 0.54 | 03310/1123 | | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |)2(-)2) . (| | | • | $\Delta_t G^\circ =$ | | 43.18 | | | | | Literatu | re - Calculated | = Residual | Reference | $lnK_f =$ | | -17.42 | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | Gas Phase | | 48 | | | Liquid Pha | | | _ | | | $\Delta_i H^\circ =$ | - 176.48 | - 174.29 | -2.19 | 47OSB/GIN | $\Delta_{\rm f}H^{\circ} =$ | -212.13 | - 208.82 | -3.31 | 46JOH/PRO2 | | $C_p^{\circ} =$ | 157.32
376.33 | 160.36 | -3.04 | 69STU/WES | $C_p^{\circ} =$ | 211.79 | 214.17 | -2.38 | 49HUF/TOD | | $S^{\circ} = \Delta_{t}S^{\circ} =$ | 376.23 | 369.78
720.71 | 6.45 | 69STU/WES | S° =
Δ _t S° = | 280.91 | 278.79 | 2.12 | 49HUF/TOD | | $\Delta_t G^\circ =$ | | - 720.71
40.59 | | | $\Delta_{\rm f}G^{\circ} =$ | | -811.70
33.19 | | | | $\ln K_{\rm f} =$ | | - 16.37 | | | $\ln K_{\rm f} =$ | | - 13.39 | | | | mart - | | | | | maxt - | | - 13.37 | | | TABLE 13. Cyclic CH-02 (48) - Continued | (1 × Cyclo | | ×C-(H)(C) ₃) +
b) rsc), σ = 3 | | C ₃ H ₁₈
C) ₂)+ | Pentylcyclohexane (Continued) $(1 \times C - (H)_3(C)) + (1 \times C - (H)(C)_3) + (9 \times C - (H)_2(C)_2) + (1 \times Cyclohexane (sub) rsc), \sigma = 3$ | | | | | |---|--|---|--|---|---|--|--|---|--| | | Literatur | e – Calculated | = Residual | Reference | | Literature | e – Calculated | = Residual | Reference | | Gas Phase | | | | • | Liquid Phas | se | | | | | $\Delta_f H^\circ =$ | -192.30 | - 188.23 | -4.07 | 65FIN/MES | $\Delta_f H^\circ =$ | | -286.01 | | | | $C_p^{\circ} =$ | 184.22 | 183.22 | 1.00 | 69STU/WES | $C_p^{\circ} =$ | | 305.43 | | | | S° = | 419.53 | 422.68 | -3.15 | 69STU/WES | S° = | | 375.93 | | | | $\Delta_t S^\circ =$ | | -804.12 | | | $\Delta_{\rm f} S^{\circ} =$ | | -1123.49 | | | | $\Delta_f G^\circ = \ln K_f =$ | | 51.52
- 20.78 | | | $\Delta_f G^\circ = \ln K_f =$ | | 48.96
19.75 | | | | 111VL - | | - 20.76 | | anning that PP a TANK Section 1997 | | | - 19.73 | | | | Liquid Pha | | | | | | | | | | | $\Delta_{\ell}H^{\circ} =$ | -237.40 | -234.55 | -2.85 | 70GOO2 | Dodecylcycl | | | | C ₁₈ H | | $C_p^{\circ} =$ | 242.04 | 244.59 | -2.55 | 65FIN/MES | (1×C-(F | $I)_3(C)) + (1 \times 1)_3(C)$ | < C-(H)(C) ₃) - | + (16 × C-(H) ₂ | ₂ (C) ₂)+ | | S° = | 311.88 | 311.17 | 0.71 | 65FIN/MES | (1 × Cyclo | ohexane (sut | o) rsc) | | | |
$\Delta_{\rm f} S^{\circ} =$ | | -915.63 | | | | T :4 | 0-1-1 | n | D. (| | $\Delta_{\mathbf{f}}G^{\circ} = \ln K_{\mathbf{f}} =$ | | 38.44
15.51 | | | | Literature | - Calculated | = Kesidual | Reference | | | | | | t transcor | Gas Phase | | | | | | | | | | | | - 378.70 | -373.90 | -4.80 | 78FUC/PEA | | Butylcycloh | exane | | | $C_{10}H_{20}$ | $C_p^{\circ} =$ | | 389.23 | | | | | | \times C-(H)(C) ₃)-
b) rsc), $\sigma = 3$ | | C)₂)+ | Liquid Phas | | | | - | | | Literatur | e – Calculated | = Residual | Reference | $\Delta_t H^\circ =$ | 467.56 | -466.12
518.37 | -1.44 | 40MOO/REN | | | | | | | $C_p^\circ = S^\circ =$ | 615.50 | 602.59 | 12.91 | 49PAR/MOO | | Gas Phase | | | | | $\Delta_f S^\circ =$ | | - 1851.01 | | • | | $\Delta_{f}H^{\circ} =$ | -213.10 | -208.86 | -4.24 | 65FIN/MES | $\Delta_t G^{\circ} =$ | | 85.76 | | | | $C_p^{\alpha} =$ | 207.11 | 206.11 | 1.00 | 69STU/WES | $lnK_f =$ | | - 34.59 | | | | S° = | 458.48 | 461.84 | -3.36 | 69STU/WES | | | | | | | $\Delta_f S^\circ =$ | • | -901.27 | | | | | | | | | | | £0.0£ | | | | | | | | | $\Delta_f G^{\circ} =$ | | 59.85 | | | | | | | | | | | 59.85
24.15 | | | 1-Methylcyc
(1×C-(H | | < C _d (C) ₂) + (1 | ×-CH ₃ corr | C ₇ H ₁
(tertiary))+ | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = $ | | | | | (1×C-(H
(1×C _d -(l | I)₃(C))+(1×
H)(C))+(2× | C-(H)2(C)(C | ×-CH ₃ corr (
C _d))+(2×C-(I | (tertiary))+ | | $\Delta_t G^\circ = \ln K_t =$ Liquid Pha | | - 24.15 | -2.81 | 46JOH/PRO2 | (1×C-(H
(1×C _d -(l | (1) ₃ (C))+(1× | C-(H)2(C)(C | | (tertiary))+ | | $\Delta_t G^\circ = \ln K_t = $ Liquid Pha $\Delta_t H^\circ = $ | use
263.09
271.04 | | -2.81
-3.97 | 46JOH/PRO2
65FIN/MES | (1×C-(H
(1×C _d -(l | (1) ₃ (C)) + (1 ×
H)(C)) + (2 ×
hexene rsc) | C-(H)2(C)(C | C _d)) + (2 × C-(1 | (tertiary))+ | | $\Delta_t G^\circ = \ln K_t =$ Liquid Pha | - 263.09 | -24.15
-260.28 | | | (1×C-(H
(1×C _d -(l | (1) ₃ (C)) + (1 ×
H)(C)) + (2 ×
hexene rsc) | C-(H) ₂ (C)(C | C _d)) + (2 × C-(1 | (tertiary)) +
H) ₂ (C) ₂) + | | $\Delta_t G^\circ = \ln K_t = $ Liquid Pha $\Delta_t H^\circ = $ $C_p^\circ = $ | 263.09
271.04 | -24.15
-260.28
275.01 | -3.97 | 65FIN/MES | (1×C-(H
(1×C _d -(l | (1) ₃ (C)) + (1 ×
H)(C)) + (2 ×
hexene rsc) | C-(H) ₂ (C)(C | C _d)) + (2 × C-(1 | (tertiary)) +
H) ₂ (C) ₂) + | | $\Delta_t G^\circ = \ln K_t = 1$ Liquid Pha $\Delta_t H^\circ = C_p^\circ = S^\circ = 1$ | 263.09
271.04 | -24.15
-260.28
275.01
343.55 | -3.97 | 65FIN/MES | (1×C-(H
(1×C _d -(l | (1) ₃ (C)) + (1 ×
H)(C)) + (2 ×
hexene rsc) | C-(H) ₂ (C)(C | C _d)) + (2 × C-(1 | (tertiary)) +
H) ₂ (C) ₂) + | | $\Delta_t G^\circ = \ln K_t = \frac{1}{\ln K_t}$ Liquid Pha $\Delta_t H^\circ = \frac{C_p^\circ = S^\circ = \Delta_t S^\circ = \frac{1}{\ln K_t}}{\Delta_t S^\circ = \frac{1}{\ln K_t}}$ | 263.09
271.04 | -24.15
-260.28
275.01
343.55
-1019.56 | -3.97 | 65FIN/MES | (1 × C-(H
(1 × C _d -(l
(1 × Cyclo | (1) ₃ (C)) + (1 ×
H)(C)) + (2 ×
hexene rsc) | C-(H) ₂ (C)(C | C _d)) + (2 × C-(1 | (tertiary)) +
H) ₂ (C) ₂) + | | $\Delta_t G^\circ = \ln K_t = 1$ Liquid Pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = 1$ | 263.09
271.04 | -24.15 -260.28 275.01 343.55 -1019.56 43.70 | -3.97 | 65FIN/MES | (1 × C-(H
(1 × C _d -(l
(1 × Cyclo | (1) ₃ (C))+(1>
H)(C))+(2>
phexene rsc)
Literature | C-(H) ₂ (C)(C
- Calculated | = Residual | (tertiary)) +
H) ₂ (C) ₂) +
Reference | | $\Delta_{\rm f}G^{\circ} = \ln K_{\rm f} = 1$ Liquid Pha $\Delta_{\rm f}H^{\circ} = C_{\rm p}^{\circ} = S^{\circ} = \Delta_{\rm f}S^{\circ} = 1$ $\Delta_{\rm f}G^{\circ} = 1$ $\ln K_{\rm f} = 1$ | 263.09
271.04
344.97 | -24.15 -260.28 275.01 343.55 -1019.56 43.70 | -3.97 | 65FIN/MES
65FIN/MES | $(1 \times C - (H + C)))))))))))))$ Gas Phase $\Delta_{\ell}H^{o} = C_{\rho}^{o} =$ | (l) ₃ (C)) + (1 >
H)(C)) + (2 >
Shexene rsc)
Literature
-43.26 | C-(H) ₂ (C)(C
- Calculated
-41.47 | = Residual | (tertiary)) +
H) ₂ (C) ₂) +
Reference | | $\Delta_{\rm f}G^{\circ} = \ln K_{\rm f} = 1$ Liquid Pha $\Delta_{\rm f}H^{\circ} = C_{\rm f}^{\circ} = S^{\circ} = \Delta_{\rm f}S^{\circ} = 1$ $\Delta_{\rm f}G^{\circ} = 1$ Pentylcyclo | — 263.09
271.04
344.97 | -24.15 -260.28 275.01 343.55 -1019.56 43.70 -17.63 | -3.97
1.42 | 65FIN/MES
65FIN/MES
C ₁₁ H ₂₂ | $(1 \times C - (H + C)))))))))))))$ Gas Phase $\Delta_t H^o = \{ A_t A_t A_t A_t A_t A_t A_t A_t A_t A_t$ | (l) ₃ (C)) + (1 >
H)(C)) + (2 >
Shexene rsc)
Literature
-43.26 | C-(H) ₂ (C)(C
- Calculated
-41.47 | = Residual | (tertiary)) +
H) ₂ (C) ₂) +
Reference | | $\Delta_{\rm f}G^{\circ}= \ln K_{\rm f}= $ $\ln K_{\rm f}= $ Liquid Pha $\Delta_{\rm f}H^{\circ}= C_{\rm f}^{\circ}= S^{\circ}= $ $\Delta_{\rm f}S^{\circ}= \Delta_{\rm f}G^{\circ}= $ $\ln K_{\rm f}= $ Pentylcyclo $(1\times C-(1\times C))$ | 263.09
271.04
344.97
оhехане
H) ₃ (C)) + (1 | -24.15 -260.28 275.01 343.55 -1019.56 43.70 | -3.97
1.42
+ (9 × C−(H) ₂ (| 65FIN/MES
65FIN/MES
C ₁₁ H ₂₂ | $(1 \times C - (H + C + C) + C)$ $(1 \times C) + C$ $(1 \times C - (H + C) + C)$ $(1 \times C - (H + C) + C)$ $(2 \times C - (H + C) + C)$ $(3 \times C - (H + C) + C)$ $(4 \times C - (H + C) + C)$ $(5 \times C - (H + C) + C)$ $(6 \times C - (H + C) + C)$ $(7 \times C - (H + C) + C)$ $(8 \times C - (H + C) + C)$ $(9 \times C - (H + C) + C)$ $(9 \times C - (H + C) + C)$ $(9 \times C - (H + C) + C)$ $(1 \times C) + C$ C$ | (l) ₃ (C)) + (1 > (1) ₄ (C)) + (2 > (2 > (2 + (2 + (2 + (2 + (2 + (2 | C-(H) ₂ (C)(C
- Calculated
-41.47
127.11 | = Residual
- 1.79 | (tertiary)) + H) ₂ (C) ₂) + Reference 60CAM/ROS | | $\Delta_{\rm f}G^{\circ}= \ln K_{\rm f}= $ $\ln K_{\rm f}= $ Liquid Pha $\Delta_{\rm f}H^{\circ}= C_{\rm f}^{\circ}= S^{\circ}= $ $\Delta_{\rm f}S^{\circ}= \Delta_{\rm f}G^{\circ}= $ $\ln K_{\rm f}= $ Pentylcyclo $(1\times C-(1\times C))$ | 263.09
271.04
344.97
оheхане
H) ₃ (C)) + (1 | -24.15 -260.28 275.01 343.55 -1019.56 43.70 -17.63 × C-(H)(C) ₃)- | -3.97
1.42
+ (9 × C−(H) ₂ (| 65FIN/MES
65FIN/MES
C ₁₁ H ₂₂ | $(1 \times C - (H + C + C) + C + C)$ $(1 \times C) + C + C$ $(1 \times C) + C + C$ $(1 \times C) + C + C$ $C + C $ | (l) ₃ (C)) + (1 > (1) ₄ (C)) + (2 > (2 > (2 + (2 + (2 + (2 + (2 + (2 | -41.47
127.11
-80.46 | = Residual
- 1.79 | (tertiary)) + H) ₂ (C) ₂) + Reference 60CAM/ROS | | $\Delta_{\rm f}G^{\circ}= \ln K_{\rm f}= $ $\ln K_{\rm f}= $ Liquid Pha $\Delta_{\rm f}H^{\circ}= C_{\rm f}^{\circ}= S^{\circ}= $ $\Delta_{\rm f}S^{\circ}= \Delta_{\rm f}G^{\circ}= $ $\ln K_{\rm f}= $ Pentylcyclo $(1\times C-(1\times C))$ | 263.09
271.04
344.97
•• Shexane
H) ₃ (C)) + (1
•• Shexane (su | -24.15 -260.28 275.01 343.55 -1019.56 43.70 -17.63 × C-(H)(C) ₃)- | -3.97
1.42
+ (9 × C−(H) ₂ (c) | 65FIN/MES
65FIN/MES
C ₁₁ H ₂₂ | $(1 \times C - (H + C + C) + C + C)$ $(1 \times C) + C + C + C$ $(1 \times C) + C + C + C + C$ $(1 \times C) + C + C + C + C$ $(1 \times C - (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times C - (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) + C$ $(1 \times (H + C) + C) $ | (l) ₃ (C)) + (1 > (1) ₄ (C)) + (2 > (2 > (2 + (2 + (2 + (2 + (2 + (2 | -41.47
127.11
-80.46
183.46 | = Residual
- 1.79 | (tertiary)) + H) ₂ (C) ₂) + Reference 60CAM/ROS | | $\Delta_{\rm f}G^{\circ}= { m ln}K_{\rm f}= { m ln}K_{\rm f}= { m ln}K_{\rm f}= { m ln}K_{\rm f}= { m c}_{\rm f}G^{\circ}= { m ln}K_{\rm f}= ln}K_{\rm$ | 263.09
271.04
344.97
•• Shexane
H) ₃ (C)) + (1
•• Shexane (su | -24.15 -260.28 275.01 343.55 -1019.56 43.70 -17.63 × C-(H)(C) ₃)- bb) rsc), σ = 3 | -3.97
1.42
+ (9 × C−(H) ₂ (c) | 65FIN/MES
65FIN/MES
C ₁₁
H ₂₂
C) ₂) + | $(1 \times C - (H + C + C) + C + C)$ $(1 \times C) + C + C + C$ $(1 \times C) + C + C + C + C$ $(1 \times C) + C + C + C$ $(1 \times C - (H + C) + C)$ $(1 \times C - (H + C) + C)$ $(1 \times C - (H + C) + C)$ $(2 \times C) + C + C$ $(3 \times C - (H + C) + C)$ $(4 \times C - (H + C) + C)$ $(5 \times C) + C + C$ $(6 \times C) + C + C$ $(7 \times C - (H + C) + C)$ $(1 \times C - (H + C) + C)$ $(1 \times C - (H + C) + C)$ $(2 \times C) + C$ $(3 \times C) + C$ $(4 \times C) + C$ $(5 \times C) + C$ $(6 \times C) + C$ $(7 \times C) + C$ $(8 \times C) + C$ $(9 \times C) + C$ $(1 $(1$ | (l) ₃ (C)) + (1 > (1) ₄ (C)) + (2 > (2 > (2 + (2 + (2 + (2 + (2 + (2 | -41.47
127.11
-80.46
183.46
239.49 | = Residual
- 1.79 | (tertiary)) + H) ₂ (C) ₂) + Reference 60CAM/ROS | | $\Delta_{t}G^{\circ} = \ln K_{t} = 1$ Liquid Pha $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = 1$ Pentylcyclo $(1 \times C - (1 \times C))$ | 263.09
271.04
344.97
Shexane
H) ₃ (C)) + (1
Ohexane (su | -24.15 -260.28 275.01 343.55 -1019.56 43.70 -17.63 × C-(H)(C) ₃)- bb) rsc), σ = 3 | -3.97
1.42
+ (9 × C−(H) ₂ (c) | 65FIN/MES
65FIN/MES
C ₁₁ H ₂₂
C) ₂) + | $(1 \times C - (H + C + C) - (H ($ | (l) ₃ (C)) + (1 > (1) ₄ (C)) + (2 > (2 > (2 + (2 + (2 + (2 + (2 + (2 | -41.47
127.11
-80.46
183.46
239.49
-584.12 | = Residual
- 1.79 | (tertiary)) + H) ₂ (C) ₂) + Reference 60CAM/ROS | | $\Delta_{t}G^{\circ} = \ln K_{t} = 1$ Liquid Pha $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = 1$ Pentylcyclo $(1 \times C - (1 \times C))$ Gas Phase | 263.09
271.04
344.97
Shexane
H) ₃ (C)) + (1
Ohexane (su | -24.15 -260.28 275.01 343.55 -1019.56 43.70 -17.63 × C-(H)(C) ₃)- bb) rsc), σ = 3 | -3.97
1.42
+ (9 × C−(H) ₂ (c) | 65FIN/MES
65FIN/MES
C ₁₁ H ₂₂
C) ₂) + | $(1 \times C - (H + C))))))))))))$ Liquid Phase $\Delta_{I}H^{\circ} = C^{\circ}_{\rho} = C^{\circ}_{\rho} = \Delta_{I}S^{\circ} = \Delta_{I}G^{\circ} = \Delta_{I}G^{\circ} = \Delta_{I}G^{\circ}$ | (l) ₃ (C)) + (1 > (1) ₄ (C)) + (2 > (2 > (2 + (2 + (2 + (2 + (2 + (2 | -41.47
127.11
-80.46
183.46
239.49
-584.12
93.69 | = Residual
- 1.79 | (tertiary)) + H) ₂ (C) ₂) + Reference 60CAM/ROS | | $\Delta_{t}G^{\circ} = \ln K_{t} = 1$ Liquid Pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = 1$ Pentylcyclo $(1 \times C - (1 \times C) + C_{t})$ Gas Phase $\Delta_{t}H^{\circ} = 1$ | 263.09
271.04
344.97
Shexane
H) ₃ (C)) + (1
Ohexane (su | -24.15 -260.28 275.01 343.55 -1019.56 43.70 -17.63 × C-(H)(C) ₃)- bb) rsc), σ = 3 | -3.97
1.42
+ (9 × C−(H) ₂ (c) | 65FIN/MES
65FIN/MES
C ₁₁ H ₂₂
C) ₂) + | $(1 \times C - (H + C))))))))))))$ Liquid Phase $\Delta_{I}H^{\circ} = C^{\circ}_{I} = C^{\circ}_{I} = \Delta_{I}S^{\circ} = \Delta_{I}S^{\circ} = \Delta_{I}G^{\circ} = \Delta_{I}G^{\circ}$ | (l) ₃ (C)) + (1 > (1) ₄ (C)) + (2 > (2 > (2 + (2 + (2 + (2 + (2 + (2 | -41.47
127.11
-80.46
183.46
239.49
-584.12
93.69 | = Residual
- 1.79 | (tertiary)) + H) ₂ (C) ₂) + Reference 60CAM/ROS | | $\Delta_{l}G^{\circ} = \ln K_{l} = 1$ Liquid Pha $\Delta_{l}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{l}S^{\circ} = \ln K_{l} = 1$ Pentylcyclo $(1 \times C - (1 \times C) + C)$ Gas Phase $\Delta_{l}H^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} = 1$ | 263.09
271.04
344.97
Shexane
H) ₃ (C)) + (1
Ohexane (su | -24.15 -260.28 275.01 343.55 -1019.56 43.70 -17.63 × C-(H)(C) ₃)-1b) rsc), σ = 3 re - Calculated | -3.97
1.42
+ (9 × C−(H) ₂ (c) | 65FIN/MES
65FIN/MES
C ₁₁ H ₂₂
C) ₂) + | $(1 \times C - (H + C))))))))))))$ Liquid Phase $\Delta_{I}H^{\circ} = C^{\circ}_{I} = C^{\circ}_{I} = \Delta_{I}S^{\circ} = \Delta_{I}S^{\circ} = \Delta_{I}G^{\circ} = \Delta_{I}G^{\circ}$ | (l) ₃ (C)) + (1 > (1) ₄ (C)) + (2 > (2 > (2 + (2 + (2 + (2 + (2 + (2 | -41.47
127.11
-80.46
183.46
239.49
-584.12
93.69 | = Residual
- 1.79 | (tertiary)) + H) ₂ (C) ₂) + Reference 60CAM/ROS | | $\Delta_l G^\circ = \ln K_f = \frac{1}{2}$ Liquid Pha $\Delta_l H^\circ = \frac{1}{2}$ $S^\circ = \frac{1}{2}$ $\Delta_l S^\circ = \frac{1}{2}$ $\Delta_l G^\circ = \frac{1}{2}$ $\Delta_l G^\circ = \frac{1}{2}$ $\Delta_l G^\circ = \frac{1}{2}$ Gas Phase $\Delta_l H^\circ = \frac{1}{2}$ $C_l^\circ = \frac{1}{2}$ $C_l^\circ = \frac{1}{2}$ $C_l^\circ = \frac{1}{2}$ | 263.09
271.04
344.97
Shexane
H) ₃ (C)) + (1
Ohexane (su | - 24.15 - 260.28 275.01 343.55 - 1019.56 43.70 - 17.63 × C-(H)(C) ₃)- ib) rsc), σ = 3 re - Calculated - 229.49 229.00 501.00 | -3.97
1.42
+ (9 × C-(H) ₂ (1)
= Residual | 65FIN/MES
65FIN/MES
C ₁₁ H ₂₂
C) ₂)+ | $(1 \times C - (H + C))))))))))))$ Liquid Phase $\Delta_{I}H^{\circ} = C^{\circ}_{I} = C^{\circ}_{I} = \Delta_{I}S^{\circ} = \Delta_{I}S^{\circ} = \Delta_{I}G^{\circ} = \Delta_{I}G^{\circ}$ | (l) ₃ (C)) + (1 > (1) ₄ (C)) + (2 > (2 > (2 + (2 + (2 + (2 + (2 + (2 | -41.47
127.11
-80.46
183.46
239.49
-584.12
93.69 | = Residual
- 1.79 | (tertiary)) + H) ₂ (C) ₂) + Reference 60CAM/ROS | | $\Delta_{l}G^{\circ} = \ln K_{l} = 1$ Liquid Pha $\Delta_{l}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{l}S^{\circ} = 1$ $\ln K_{l} = 1$ Pentylcyclo $(1 \times C - (1 \times C) + C)$ Gas Phase $\Delta_{l}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{l}S^{\circ} = 1$ | -263.09
271.04
344.97
Shexane
H) ₃ (C))+(1
lohexane (su
Literatur | - 24.15 - 260.28 275.01 343.55 - 1019.56 43.70 - 17.63 × C-(H)(C) ₃) - ab) rsc), σ = 3 re - Calculated - 229.49 229.00 | -3.97
1.42
+ (9 × C-(H) ₂ (1)
= Residual | 65FIN/MES
65FIN/MES
C ₁₁ H ₂₂
C) ₂) +
Reference | $(1 \times C - (H + C))))))))))))$ Liquid Phase $\Delta_{I}H^{\circ} = C^{\circ}_{I} = C^{\circ}_{I} = \Delta_{I}S^{\circ} = \Delta_{I}S^{\circ} = \Delta_{I}G^{\circ} = \Delta_{I}G^{\circ}$ | (l) ₃ (C)) + (1 > (1) ₄ (C)) + (2 > (2 > (2 + (2 + (2 + (2 + (2 + (2 | -41.47
127.11
-80.46
183.46
239.49
-584.12
93.69 | = Residual
- 1.79 | (tertiary)) + H) ₂ (C) ₂) + Reference 60CAM/ROS | | $\Delta_{l}G^{\circ} = \ln K_{l} = 1$ Liquid Pha $\Delta_{l}H^{\circ} = C_{l}^{\circ} = S^{\circ} = \Delta_{l}S^{\circ} = \ln K_{l} = 1$ Pentylcyclo $(1 \times C - (1 \times C) + C)$ Gas Phase $\Delta_{l}H^{\circ} = C_{l}^{\circ} = S^{\circ} = S^{\circ} = S^{\circ} = S^{\circ} = 1$ | -263.09
271.04
344.97
Shexane
H) ₃ (C))+(1
lohexane (su
Literatur | - 24.15 - 260.28 275.01 343.55 - 1019.56 43.70 - 17.63 × C-(H)(C) ₃)- ib) rsc), σ = 3 re - Calculated - 229.49 229.00 501.00 | -3.97
1.42
+ (9 × C-(H) ₂ (1)
= Residual | 65FIN/MES
65FIN/MES
C ₁₁ H ₂₂
C) ₂) +
Reference | $(1 \times C - (H + C))))))))))))$ Liquid Phase $\Delta_{I}H^{\circ} = C^{\circ}_{I} = C^{\circ}_{I} = \Delta_{I}S^{\circ} = \Delta_{I}S^{\circ} = \Delta_{I}G^{\circ} = \Delta_{I}G^{\circ}$ | (l) ₃ (C)) + (1 > (1) ₄ (C)) + (2 > (2 > (2 + (2 + (2 + (2 + (2 + (2 | -41.47
127.11
-80.46
183.46
239.49
-584.12
93.69 | = Residual
- 1.79 | (tertiary)) + H) ₂ (C) ₂) + Reference 60CAM/ROS | | 1-Ethylcyclo
(1×C-(H
(1×C _d -(I | ohexene
(I) ₃ (C)) + (3 × C-(
H)(C)) + (2 × C-(| H)2(C)(C,
H)2(C)2) - | ı))+(1×C _d -(
+(1×Cyclohe | C_8H_{14}
$C)_2) +$
xene rsc) | | cosane
C)) + $(2 \times C - (H)(C)_3)$ +
xane (sub) rsc) | (22×C-(H) ₂ | C ₂₆ H ₅₂
((C) ₂)+ | |--|---|---|---|---------------------------------------|---|--|------------------------|---| | | Literature – Ca | alculated = | = Residual | Reference | | iterature – Calculated = | = Residual | Reference | | Gas Phase $\Delta_{\epsilon}H^{\circ} = C_{p}^{\circ} =$ | | 60.09
47.74 | -3.34 | 60CAM/ROS | Gas Phase $\Delta_t H^\circ = C_\rho^\circ =$ | -541.11
572.38 | | | | Liquid Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = 1$ $\Delta_t G^\circ = 1$ $\ln K_t = 1$ | -106.69 -1
2
2
-6 | 04.01
12.75
71.16
88.76
01.34
40.88 | -2.68 | 61LAB/ROS | Liquid Phase $\Delta_t H^\circ = -60$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = -60$ | 66.09 -672.88
758.75
856.28
-2687.81
128.49
-51.83 | 6.79 | 44KNO/HUF | | | exane
H) ₂) + (1 × C _d (H
H)(C) ₃) + (5 × C(| | | | | cosane
(C)) + (2 × C-(H)(C) ₃) +
(xane (sub) rsc) | (22×C-(H) ₂ | C ₂₆ H ₅₂
(C) ₂)+ | | | Literature – C | alculated = | = Residual | Reference | L | iterature – Calculated = | = Residual | Reference | | Gas Phase $\Delta_i H^o = C_p^o =$ | | 62.95
72.46 | | | Gas Phase $\Delta_t H^\circ = C_p^\circ =$ | - 541.11
572.38 | | · | | Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | 233.47 - 1 | .08.41
229.53
309.55
786.68
126.14
50.88 | 3.94 | 79FUC/PEA | Liquid Phase $\Delta_{t}H^{\circ} = -6^{\circ}$ $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 0$ | 74.04 - 672.88
758.75
856.28
- 2687.81
128.49
- 51.83 | - 1.16 | 44KNO/HUF | | (1 × C-(I
(2 × C-(I | cyclohexane
H) ₃ (C)) + $(1 \times C_{d}$
H) ₂ (C)(C _d)) + $(3 \times C_{d})$
ohexane (sub) rs | (C-(H) ₂ (| | C ₈ H ₁₄ + | 11-Cyclohexylho
(2×C-(H) ₃ (
(1×Cyclohex
 eneicosane
C))+(2×C-(H)(C) ₃)+
kane (sub) rsc) | (23×C-(H) ₂ | C ₂₇ H ₅₄
(C) ₂)+ | | (2110)0 | Literature – C | | = Residual | Reference | L | iterature – Calculated = | = Residual | Reference | | Gas Phase $\Delta_t H^\circ = C_p^\circ =$ | | 65.84
146.68 | | | Gas Phase $\Delta_l H^\circ = C_p^\circ =$ | -561.74
595.27 | | | | Liquid Pha $ \Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | 203.76 | 108.11
207.93
267.63
592.29
98.30
39.65 | -4.17 | 79FUC/PEA | Liquid Phase $\Delta_t H^\circ = -6t$ $C_\rho^\circ = \\ S^\circ = \\ \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \ln K_t = $ | 89.94 - 698.61
789.17
888.66
- 2791.74
133.75
- 53.95 | 8.67 | 44KNO/HUF | TABLE 13. Cyclic CH-02 (48) - Continued | | $_{3}(C))+(2$ | \times C-(H)(C) ₃)+(| 27×C-(H) ₂ | $C_{31}H_{62}$ (C) ₂)+ | cis-Decalin
(2×C-(H | H)(C) ₃)+(8 | \times C-(H) ₂ (C) ₂) - | + (1 × cis - Dec | C _{ie} H _i
alin rsc) | |-------------------------------------|-------------------------|---|-----------------------|------------------------------------|-------------------------------------|-------------------------|--|------------------|---| | (1 × Cyclo | hexane (su
Literatur | e – Calculated = | Residual | Reference | | Literatu | re – Calculated = | = Residual | Reference | | | | | | | Gas Phase | | | | | | Gas Phase | | | | | $\Delta_t H^\circ =$ | -40.38 | -40.38 | 0.00 | 69STU/WES | | $\Delta_t H^\circ =$ | ' | -644.26 | | | $C_p^{\circ} =$ | 39.84 | 39.84 | 0.00 | 69STU/WES | | $C_p^{\circ} =$ | | 686.83 | | | | | | | | | | | | | - | Liquid Phas | se | | | | | Liquid Phas | | | | 47 | - | - 219.40 | -219.40 | 0.00 | 60SPE/ROS | | $\Delta_{\mathbf{f}}H^{\circ} =$ | - 792.45 | -801.53 | 9.08 | 46PAR/WES | $C_p^{\circ} =$ | 232.00 | 232.00 | 0.00 | 57MCC/FIN | | $C_p^{\circ} =$ | | 910.85 | | | S° = | 265.01 | 265.01 | 0.00 | 57MCC/FIN | | S° = | | 1018.18 | | | $\Delta_{\mathfrak{p}} S^{\circ} =$ | | - 967.53 | | | | $\Delta_f S^\circ =$ | | -3207.46 | | | $\Delta_t G^{\circ} =$ | | 69.07 | | | | $\Delta_f G^\circ = \ln K_f =$ | | 154.77
62.43 | | | $lnK_f =$ | | - 27.86 | | | | is-Hexahyd | Iroindan | | | C ₉ H ₁₆ | trans-Decal | | ×C-(H) ₂ (C) ₂) - | + (1 × trans -D | C ₁₆ H | | (2×C-(H | | \times C-(H) ₂ (C) ₂) + | | | | | re – Calculated = | | Reference | | (1 ~ 65 - 1) | • | · | . | Defense | | | | - Residual | | | | Literatu | re – Calculated = | Residual | Reference | Gas Phase | | | | | | | | | | | $\Delta_t H^\circ =$ | -43.57 | -43.57 | 0.00 | 69STU/WES | | Gas Phase | | | | | $C_p^{\circ} =$ | 40.04 | 40.04 | 0.00 | 69STU/WES | | $\Delta_t H^{\circ} =$ | - 127.24 | - 127.24 | 0.00 | 60BRO/ROS | | | | | | | | | 11 L. L. 21 W. M. | | | Liquid Phas | | | | | | Liquid Pha | | | | | | - 230.60 | -230.60 | 0.00 | 60SPE/ROS | | $\Delta_t H^\circ =$ | - 173.26 | - 173.26 | 0.00 | 60BRO/ROS | $C_p^{\circ} =$ | 228.49 | 228.49 | 0.00 | 57MCC/FIN | | $C_p^{\circ} =$ | 214.18 | 214.18 | 0.00 | 72FIN/MCC | S° = | 264.93 | 264.93 | 0.00 | 57MCC/FIN | | S° = | 265.47 | 265.47 | 0.00 | 72FIN/MCC | $\Delta_f S^\circ =$ | | - 967.61 | | | | $\Delta_f S^\circ =$ | | - 830.76 | | | $\Delta_f G^\circ =$ | | 57.89 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 74.43 | | | $lnK_f =$ | | -23.35 | | | | $lnK_t =$ | | -30.02 | | | | · | | | | | | | | | | Bicyclo[2.2. | 2}octane | | | C₄H₁ | | trans-Hexal | hydroindan | ı | | C ₂ H ₁₆ | | | \times C-(H) ₂ (C) ₂) + | + | | | (2×C-(H | $-1)(C)_3) + (7)_4$ | $7 \times C - (H)_2(C)_2 + (H)_2(C)_2$ | | | (1×Bicyo | clo[2.2.2]oc | tane rsc) | | | | (1×trans | -Hexahydr | oindan rsc) | | | | | | | | | | Literatu | re – Calculated = | Residual | Reference | | Literatu | re – Calculated = | = Residual | Reference | | | | | | | Gas Phase | | | | | | Gas Phase | | | | | $\Delta_{\rm f} H^{\circ} =$ | -99.00 | - 99.00 | 0.00 | 71WON/WES | | $\Delta_t H^\circ =$ | -131.59 | 131.59 | 0.00 | 60BRO/ROS | | | | | | | | | | | | Liquid Phas | se | | | | | Liquid Pha | | | | | $C_p^{\circ} =$ | | 157.69 | | | | $\Delta_t H^{\circ} -$ | -176.36 | 176.36 | 0.00 | 60BRO/ROS | S° = | | 83.05 | | | | $C_p^{\circ} =$ | 209.70 | 209.70 | 0.00 | 72FIN/MCC | $\Delta_f S^\circ =$ | | 876.87 | | | | | 258.86 | 258.86 | 0.00 | 72FIN/MCC | | | | | | | S° = | | 000.00 | | | | | | | | | $S^{\circ} = \Delta_{f}S^{\circ} =$ | | - 837.37 | | | | | | | | | S° = | | - 837.37
73.30 | | | Solid Phase
Δ _t H° = | | | 0.00 | 71WON/WES | | (4 × C-(H) |)(C) ₃)+(6) | | | | $(1 \times 2, 2 - Pa$ | nacyclopiid | | | | |--|--|---|--|--|---
--|--|---|---| | | Literatur | e – Calculated = | Residual | Reference | | Literatur | e – Calculated = | = Residual | Reference | | Gas Phase | | | | | | - No | | | | | $\Delta_{\rm f} H^{\circ} = -$ | - 134.60
 | - 134.60 | 0.00 | 70MAN/RAP | Gas Phase $\Delta_f H^\circ =$ | 244.70 | 244.77 | -0.07 | 80NIS/SAK | | Solid Phase
Δ _t H° = - | - 197.20 | - 197.20 | 0.00 | 70MAN/RAP | Solid Phase | | | | | | | | <u> </u> | | | $\Delta_f H^\circ = C_p^\circ =$ | 146.70
252.34 | 146.70
252.34 | 0.00
0.00 | 80NIS/SAK
70AND/WES | | | | | | | S° = | 265.68 | 265.68 | 0.00 | 70AND/WES | | Bicyclo[3.3.3 | lundecane | | | $C_{11}H_{20}$ | $\Delta_f S^\circ =$ | | -870.73 | 5.55 | , 0, 11, 12, 11, 125, | | | | \times C-(H) ₂ (C) ₂) + | - | | $\Delta_f G^\circ =$ | | 406.31 | | | | | | decane rsc) | | | $lnK_f =$ | | - 163.90 | | | | | Literatur | e – Calculated = | = Residual | Reference | | | | | | | Gas Phase | | | | | 3,3-Paracycle
(8×C _B -(F | | $(4 \times C_B - (C)(C_B))$ |) ₂) + (4 × C-(1 | $C_{18}H_{2}$
H) ₂ (C)(C _B))+ | | $\Delta_f H^\circ =$ | - 88.95 | -88.95 | 0.00 | 75PAR/STE | | | ×3,3-Paracyclo | |)-\ | | Solid Phase | | | | | | Literatur | e – Calculated = | = Residual | Reference | | | - 152.55 | -152.55 | 0.00 | 75PAR/STE | | | | | | | | | | | | Gas Phase | | | | | | | | | | | $\Delta_f H^o =$ | 129.37 | 129.37 | 0.00 | 69SHI/MCN | | | | | | 0.77 | $\Delta_f H^\circ =$ | 129.37 | 129.37 | 0.00 | 69SHI/MCN | | | | (4 × C ₂ (C)(C ₂) | h)+(4×C-(1 | C ₁₆ H ₁₆
H) ₂ (C)(C _B)) + | | 129.37 | 129.37 | 0.00 | 69SHI/MCN | | (8×C _B −(I | $H)(C_B)_2) +$ | (4×C _B –(C)(C _B) | | | $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ | 129.37
26.15 | 26.15 | 0.00 | 69SHI/MCN | | $(8 \times C_B - (1$ | $H)(C_B)_2) + COTT) + (1 > COTT)$ | 2,2-Metacyclop | hane rsc) | $H_{2}(C)(C_{B})$ + | Solid Phase | | | *************************************** | | | (8×C _B −(I | $H)(C_B)_2) + COTT) + (1 > COTT)$ | | hane rsc) | | Solid Phase $\Delta_t H^\circ =$ | 26.15 | 26.15 | 0.00 | 69SHI/MCN | | | H)(C _B) ₂) +
corr) + (1 >
Literatur | 2,2-Metacyclop | ohane rsc)
= Residual | H) ₂ (C)(C _B))+ Reference | Solid Phase $\Delta_t H^\circ = C_\rho^\circ =$ Indane | 26.15
324.26 | 26.15
324.26 | 0.00
0.00 | 69SHI/MCN
69SHI/MCN
C ₂ H ₁ | | (8×C _B -(I | $H)(C_B)_2) + COTT) + (1 > COTT)$ | 2,2-Metacyclop | hane rsc) | $H_{2}(C)(C_{B})$ + | Solid Phase $\Delta_t H^\circ = C_p^\circ =$ Indane $(4 \times C_B - (1 + C_B))$ | 26.15
324.26
H)(C _B) ₂)+(| 26.15
324.26 | 0.00
0.00
C _B) ₂) + (2 × C | 69SHI/MCN
69SHI/MCN
C ₂ H ₁
C-(H) ₂ (C)(C _D)) + | | (8 × C _B -(I
(2 × meta | H)(C _B) ₂) + (1 × corr) + (1 × Literatus | 2,2-Metacyclop | ohane rsc)
= Residual | H) ₂ (C)(C _B))+ Reference | Solid Phase $\Delta_t H^\circ = C_p^\circ =$ Indane $(4 \times C_B - (1 + C_B))$ | 26.15
324.26
F)(C _B) ₂) + (1) ₂ (C) ₂) + (1 | 26.15
324.26
2×C _{BF} -(C _{BF})(| 0.00
0.00
C _D) ₂) + (2 × C
e rsc (unsub) | 69SHI/MCN
69SHI/MCN
C ₂ H ₁
C-(H) ₂ (C)(C _D)) + | | $(8 \times C_8 - (1 \times C_8 - (1 \times C_8 + (2 \times meta))))$ Gas Phase $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ | H)(C _B) ₂) + corr) + (1 > Literatur 170.50 | 2,2-Metacyclor
re — Calculated =
170.50
78.50 | hane rsc) = Residual 0.00 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN | Solid Phase $\Delta_t H^\circ = C_p^\circ =$ Indane $(4 \times C_B - (1 + C_B))$ | 26.15
324.26
F)(C _B) ₂) + (1) ₂ (C) ₂) + (1 | 26.15
324.26
2×C _{BF} -(C _{BF})(
× Cyclopenten | 0.00
0.00
C _D) ₂) + (2 × C
e rsc (unsub) | 69SHI/MCN
69SHI/MCN
C ₅ H ₁
C-(H) ₂ (C)(C _D)) + | | $(8 \times C_8 - (1 \times C_8 - (1 \times C_8 + (2 \times meta))))$ Gas Phase $\Delta_t H^{\circ} =$ Solid Phase | H)(C _B) ₂) + (1 × corr) + (1 × Literatus | 2,2-Metacyclop
re – Calculated =
170.50 | hane rsc)
= Residual
0 00 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN | Solid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Indane $(4 \times C_{B} - (H_{\ell})^{\circ})$ $(1 \times C - (H_{\ell})^{\circ})$ | 26.15
324.26
F)(C _B) ₂) + (1) ₂ (C) ₂) + (1 | 26.15
324.26
2×C _{BF} -(C _{BF})(
× Cyclopenten | 0.00
0.00
C _D) ₂) + (2 × C
e rsc (unsub) | 69SHI/MCN
69SHI/MCN
C ₅ H ₁
C-(H) ₂ (C)(C _D)) + | | $(8 \times C_8 - (1 \times C_8 - (1 \times C_8 + (2 \times meta))))$ Gas Phase $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ | H)(C _B) ₂) + corr) + (1 > Literatur 170.50 | 2,2-Metacyclor
re — Calculated =
170.50
78.50 | hane rsc) = Residual 0.00 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN | Solid Phase $\Delta_t H^o = C_p^o =$ Indane $(4 \times C_B - (+ (1 \times C - (H))))$ Gas Phase | 26.15
324.26
$H(C_B)_2 + (D_2(C)_2) (D_2($ | 26.15
324.26
2×C _{BF} -(C _{BF})(
× Cyclopentence – Calculated = | 0.00
0.00
C _B) ₂) + (2 × C
e rsc (unsub)
= Residual | 69SHI/MCN
69SHI/MCN
C ₃ H ₁
C-(H) ₂ (C)(C _D)) +
)
Reference | | $(8 \times C_8 - (1 \times C_8 - (1 \times C_8 + (2 \times meta))))$ Gas Phase $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ | H)(C _B) ₂) + corr) + (1 > Literatur 170.50 | 2,2-Metacyclor
re — Calculated =
170.50
78.50 | hane rsc) = Residual 0.00 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN 69SHI/MCN 69SCH/MCN | Solid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Indane $(4 \times C_{B} - (H_{\ell})^{\circ})$ $(1 \times C - (H_{\ell})^{\circ})$ | 26.15
324.26
F)(C _B) ₂) + (1) ₂ (C) ₂) + (1 | 26.15
324.26
2×C _{BF} -(C _{BF})(
× Cyclopenten | 0.00
0.00
C _D) ₂) + (2 × C
e rsc (unsub) | 69SHI/MCN
69SHI/MCN
C ₅ H ₁
C-(H) ₂ (C)(C _D)) + | | $(8 \times C_{B}-(1 \times C_{B}-(1 \times C_{B}))^{2})$ Gas Phase $\Delta_{t}H^{o} = $ Solid Phase $\Delta_{t}H^{o} = $ $C_{p}^{o} = $ 2,2-Metapar | H)(C _B) ₂) + corr) + (1 > Literatus 170.50 78.50 240.60 | 78.50
240.60 | 0.00
0.00
0.00 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN 69SHI/MCN 69SCH/MCN C ₁₆ H ₁₆ | Solid Phase $\Delta_t H^\circ = C_p^\circ =$ Indane $(4 \times C_B - (+ (1 \times C - (H))))$ Gas Phase $\Delta_t H^\circ =$ | 26.15
324.26
$H(C_B)_2 + (D_2(C)_2) (D_2($ | 26.15 324.26 $2 \times C_{BF} - (C_{BF})($ $\times \text{Cyclopentene}$ $e - \text{Calculated} =$ 56.31 | 0.00
0.00
C _B) ₂) + (2 × C
e rsc (unsub)
= Residual | 69SHI/MCN
69SHI/MCN
C ₉ H ₁
C-(H) ₂ (C)(C _D)) +
)
Reference | | $(8 \times C_8-(I + C_8-(I + C_8) + C_8-(I + C_8))$ Gas Phase $\Delta_t H^\circ = C_p^\circ C$ | H)(C _B) ₂) + corr) + (1 > Literatur 170.50 78.50 240.60 racyclophar H)(C _B) ₂) + | 78.50
240.60 | 0.00
0.00
0.00
0.00 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN 69SHI/MCN 69SCH/MCN C ₁₆ H ₁₆ H) ₂ (C)(C _B)) + | Solid Phase $\Delta_t H^\circ = C_\rho^\circ =$ Indane $(4 \times C_B - (1 \times C (H)))$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ =$ | 26.15
324.26
H)(C _B) ₂) + (1) ₂ (C) ₂) + (1
Literature
60.90 | 26.15 324.26 $2 \times C_{BF} - (C_{BF})($ $\times \text{Cyclopentene}$ $e - \text{Calculated} =$ 56.31 | 0.00
0.00
C _B) ₂) + (2 × C
e rsc (unsub)
= Residual | 69SHI/MCN
69SHI/MCN
C ₉ H ₁
C-(H) ₂ (C)(C _D)) +
)
Reference | | $(8 \times C_8-(I + C_8-(I + C_8) + C_8-(I + C_8))$ Gas Phase $\Delta_t H^\circ = C_p^\circ C$ | H)(C _B) ₂) + corr) + (1 > Literatur 170.50 78.50 240.60 racyclophar H)(C _B) ₂) + | 78.50
240.60 |
0.00
0.00
0.00
0.00 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN 69SHI/MCN 69SCH/MCN C ₁₆ H ₁₆ H) ₂ (C)(C _B)) + | Solid Phase $\Delta_t H^\circ = C_\rho^\circ =$ Indane $(4 \times C_B - (H + (1 \times C - (H))))$ Gas Phase $\Delta_t H^\circ = C_\rho^\circ =$ Liquid Phase | 26.15
324.26
H)(C _B) ₂) + (1) ₂ (C) ₂) + (1
Literature
60.90 | 26.15
324.26
2.× C _{BF} -(C _{BF})(
× Cyclopentender – Calculated = | 0.00
0.00
C _B) ₂) + (2 × C
e rsc (unsub)
= Residual
4.59 | 69SHI/MCN
69SHI/MCN
C ₃ H ₁
C-(H) ₂ (C)(C _D)) +
)
Reference | | $(8 \times C_8-(I + C_8-(I + C_8) + C_8-(I + C_8))$ Gas Phase $\Delta_t H^\circ = C_p^\circ C$ | H)(C _B) ₂)+
corr)+(1>
Literatur
170.50
78.50
240.60
racyclophar
H)(C _B) ₂)+
corr)+(1> | 78.50
240.60 | 0.00
0.00
0.00
0.00
0.00 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN 69SHI/MCN 69SCH/MCN C ₁₆ H ₁₆ H) ₂ (C)(C _B)) + | Solid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Indane $(4 \times C_{B} - (H_{\ell})^{\circ})$ $(1 \times C - (H_{\ell})^{\circ})$ Gas Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Liquid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ | 26.15
324.26
H)(C _B) ₂) + (1) ₂ (C) ₂) + (1
Literature
60.90 | 26.15 324.26 $2 \times C_{BF} - (C_{BF})($ $\times \text{Cyclopentene}$ $e - \text{Calculated} =$ 56.31 | 0.00
0.00
C _B) ₂) + (2 × C
e rsc (unsub)
= Residual | 69SHI/MCN
69SHI/MCN
C ₃ H ₁
C-(H) ₂ (C)(C _D)) +
)
Reference | | $(8 \times C_8-(I + C_8-(I + C_8) + C_8-(I + C_8))$ Gas Phase $\Delta_t H^\circ = C_p^\circ C$ | H)(C _B) ₂)+
corr)+(1>
Literatur
170.50
78.50
240.60
racyclophar
H)(C _B) ₂)+
corr)+(1> | 78.50
240.60
1e – Calculated = | 0.00
0.00
0.00
0.00
0.00 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN 69SHI/MCN 69SCH/MCN C ₁₆ H ₁₆ H) ₂ (C)(C _B)) + | Solid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Indane $(4 \times C_{B} - (H + (1 \times C - (H))))$ Gas Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Liquid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} =$ | 26.15
324.26
H)(C _B) ₂) + (1) ₂ (C) ₂) + (1
Literature
60.90 | 26.15
324.26
22 × C _{BF} – (C _{BF})(
× Cyclopentender – Calculated = 56.31
102.02 | 0.00
0.00
C _B) ₂) + (2 × C
e rsc (unsub)
= Residual
4.59 | 69SHI/MCN
69SHI/MCN
C ₃ H ₁
C-(H) ₂ (C)(C _D)) +
)
Reference | | $(8 \times C_{B}-(1))$ $(2 \times meta)$ Gas Phase $\Delta_{l}H^{o} =$ $C_{p}^{o} =$ $C_{p}^{o} =$ 2,2-Metapar $(8 \times C_{B}-(1))$ $(1 \times meta)$ | H)(C _B) ₂)+
corr)+(1>
Literatur
170.50
78.50
240.60
racyclophar
H)(C _B) ₂)+
corr)+(1> | 78.50
240.60
1e – Calculated = | 0.00
0.00
0.00
0.00
0.00 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN 69SHI/MCN 69SCH/MCN C ₁₆ H ₁₆ H) ₂ (C)(C _B)) + | Solid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Indane $(4 \times C_{B} - (H))$ $(1 \times C - (H))$ Gas Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Liquid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{\ell}S^{\circ} =$ | 26.15
324.26
H)(C _B) ₂) + (1) ₂ (C) ₂) + (1
Literature
60.90 | 26.15
324.26
22 × C _{BI} – (C _{BI})(
× Cyclopentente – Calculated =
56.31
102.02
10.40
170.16
279.95
– 424.56 | 0.00
0.00
C _B) ₂) + (2 × C
e rsc (unsub)
= Residual
4.59 | 69SHI/MCN
69SHI/MCN
C ₃ H ₁
C-(H) ₂ (C)(C _D)) +
)
Reference | | $(8 \times C_B-(1))^2$ $(2 \times meta)^2$ Gas Phase $\Delta_t H^o =$ Solid Phase $\Delta_t H^o =$ $C_p^o =$ 2,2-Metapar $(8 \times C_B-(1))^2$ $(1 \times meta)^2$ Gas Phase | H)(C _B) ₂) + corr) + (1 > Literatur 170.50 78.50 240.60 racyclophal H)(C _B) ₂) + corr) + (1 > Literatur | 78.50 240.60 170.50 78.50 240.60 18e (4 × C _B -(C)(C _B) (2,2-Metaparac) | 0.00
0.00
0.00
0.00
0.2) + (4 × C-(1)
yclophane rse | H) ₂ (C)(C _B)) + Reference 69SHI/MCN 69SHI/MCN 69SCH/MCN C ₁₆ H ₁₆ H) ₂ (C)(C _B)) + c) Reference | Solid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Indane $(4 \times C_{B} - (\ell + \ell))$ Gas Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Liquid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = \Delta_{\ell}S^{\circ} =$ $\Delta_{\ell}S^{\circ} = \Delta_{\ell}G^{\circ} =$ | 26.15
324.26
H)(C _B) ₂) + (1) ₂ (C) ₂) + (1
Literature
60.90 | 26.15
324.26
22 × C _{BI} – (C _{BI})(
× Cyclopententer – Calculated =
56.31
102.02
10.40
170.16
279.95
– 424.56
136.98 | 0.00
0.00
C _B) ₂) + (2 × C
e rsc (unsub)
= Residual
4.59 | 69SHI/MCN
69SHI/MCN
C ₃ H ₁
C-(H) ₂ (C)(C _D)) +
)
Reference | | $(8 \times C_{B}-(1))$ $(2 \times meta)$ Gas Phase $\Delta_{t}H^{o} =$ Solid Phase $\Delta_{t}H^{o} =$ $C_{p}^{o} =$ 2,2-Metapar $(8 \times C_{B}-(1))$ $(1 \times meta)$ | H)(C _B) ₂)+
corr)+(1>
Literatur
170.50
78.50
240.60
racyclophar
H)(C _B) ₂)+
corr)+(1> | 78.50
240.60
1e – Calculated = | 0.00
0.00
0.00
0.00
0.00 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN 69SHI/MCN 69SCH/MCN C ₁₆ H ₁₆ H) ₂ (C)(C _B)) + | Solid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Indane $(4 \times C_{B} - (H))$ $(1 \times C - (H))$ Gas Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Liquid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{\ell}S^{\circ} =$ | 26.15
324.26
H)(C _B) ₂) + (1) ₂ (C) ₂) + (1
Literature
60.90 | 26.15
324.26
22 × C _{BI} – (C _{BI})(
× Cyclopentente – Calculated =
56.31
102.02
10.40
170.16
279.95
– 424.56 | 0.00
0.00
C _B) ₂) + (2 × C
e rsc (unsub)
= Residual
4.59 | 69SHI/MCN
69SHI/MCN
C ₃ H ₁
C-(H) ₂ (C)(C _D)) +
)
Reference | | $(8 \times C_8 - (1 $ | H)(C _B) ₂)+
corr)+(1>
Literatur
170.50
78.50
240.60
racyclophar
H)(C _B) ₂)+
corr)+(1>
Literatur
218.40 | 78.50
240.60
170.50
78.50
240.60
180.50
240.60
190.50
240.60 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | H) ₂ (C)(C _B)) + Reference 69SHI/MCN 69SHI/MCN 69SCH/MCN C ₁₆ H ₁₆ H) ₂ (C)(C _B)) + c) Reference | Solid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Indane $(4 \times C_{B} - (\ell + \ell))$ Gas Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Liquid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = \Delta_{\ell}S^{\circ} =$ $\Delta_{\ell}S^{\circ} = \Delta_{\ell}G^{\circ} =$ | 26.15
324.26
H)(C _B) ₂) + (1) ₂ (C) ₂) + (1
Literature
60.90 | 26.15
324.26
22 × C _{BI} – (C _{BI})(
× Cyclopententer – Calculated =
56.31
102.02
10.40
170.16
279.95
– 424.56
136.98 | 0.00
0.00
C _B) ₂) + (2 × C
e rsc (unsub)
= Residual
4.59 | 69SHI/MCN
69SHI/MCN
C ₃ H ₁
C-(H) ₂ (C)(C _D)) +
)
Reference | | $(8 \times C_8 - (1 $ | H)(C _B) ₂) + corr) + (1 > Literatur 170.50 78.50 240.60 racyclophar H)(C _B) ₂) + corr) + (1 > Literatur 218.40 | 78.50 240.60 170.50 78.50 240.60 18e (4 × C _B -(C)(C _B) (2,2-Metaparac) | 0.00
0.00
0.00
0.00
0.2) + (4 × C-(1)
yclophane rse | H) ₂ (C)(C _B)) + Reference 69SHI/MCN 69SHI/MCN 69SCH/MCN C ₁₆ H ₁₆ H) ₂ (C)(C _B)) + c) Reference | Solid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Indane $(4 \times C_{B} - (\ell + \ell))$ Gas Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ Liquid Phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = \Delta_{\ell}S^{\circ} =$ $\Delta_{\ell}S^{\circ} = \Delta_{\ell}G^{\circ} =$ | 26.15
324.26
H)(C _B) ₂) + (1) ₂ (C) ₂) + (1
Literature
60.90 | 26.15
324.26
22 × C _{BI} – (C _{BI})(
× Cyclopententer – Calculated =
56.31
102.02
10.40
170.16
279.95
– 424.56
136.98 | 0.00
0.00
C _B) ₂) + (2 × C
e rsc (unsub)
= Residual
4.59 | 69SHI/MCN
69SHI/MCN
C,H,
C-(H) ₂ (C)(C _D)) +
)
Reference | TABLE 13. Cyclic CH-02 (48) - Continued TABLE 14. Cyclic CH-03 (47) | |)(C))+(1 | 2×C _{BF} -(C _{BF})
×C-(H) ₂ (C _d) ₂) | | C_9H_8 C_d – $(H)(C_d))+$ | Bicyclo[1.1.0
(2×C-(H)
(1×Bicycl | $_{2}(C)_{2})+(2$ | \times C-(H)(C) ₃) + ane rsc) | l | C₄H, | |-------------------------------------|----------|---|------------|-------------------------------|--|-------------------|---
---|--| | (1 × 1,5-0) | - | e – Calculated | = Residual | Reference | *** | Literatur | e – Calculated = | = Residual | Reference | | Gas Phase
Δ _t H° = | 163.30 | 165.19 | -1.89 | 37DOL/GRE | Gas Phase $\Delta_f H^\circ =$ | 217.10 | 217.10 | 0.00 | 68WIB/FEN | | Liquid Phase
Δ _t H° = | 110.42 | 117.05 | -6.63 | 61STU/SIN | Liquid Phase $\Delta_t H^\circ =$ | 193.70 | 193.70 | 0.00 | 73SUN/WUL | | | | | | | Bicyclopropy
(4×C-(H) | | × C-(H)(C) ₃) + | + (2 × cyclopro | C ₆ H ₁
opane(sub) rsc) | | | | | | | | Literatur | e – Calculated = | = Residual | Reference | | · | | | | | Gas Phase $\Delta_t H^\circ =$ | 129.40 | 127.04 | 2.36 | 66BEE/LUT | | | | | | | Liquid Phase $\Delta_t H^\circ =$ | 95.90 | 80.70 | 15.20 | 66BEE/LUT | | | | | | | Bicyclo[3.1.0
(4×C-(H)
(1×Bicycl | $_{2}(C)_{2})+(2$ | ×C-(H)(C)₃) | - | C ₆ H ₁₀ | | | | | | | | Literatur | e – Calculated = | = Residual | Reference | | | | | | | Gas Phase $\Delta_t H^\circ =$ | 38.30 | 38.30 | 0.00 | 70CHA/MCN | | | | | | | Liquid Phase $\Delta_t H^\circ =$ | 5.10 | 5.10 | 0.00 | 70CHA/MCN | | | | • | | | $(4 \times C_d - (H$ | (C))+(2 | diene; Norborn
< C-(H)(C)(C _d)
ta-2,5-diene rsc | $(1 \times C - (1 \times C - (1 \times C - (1 \times C + C) + (1 \times C)))))))))))))))))))$ | C7H8
H)2(C)2) + | | | | • | | | | Literature | e – Calculated = | Residual | Reference | | | | | | | Gas Phase $\Delta_f H^\circ =$ | 247.60 | 247.60 | 0.00 | 78STE4 | Liquid Phase $\Delta_l H^\circ =$ 213.80 213.80 0.00 78STE4 | | $(C)_2 + (6)$ | eptane; Quadri
C-(H)(C) ₃) +
'.0 ^{4,6}]heptane rs | | C ₇ H ₈ | | | ×C-(H)(C) ₃)
stane rsc) | + | С₁Н | |---|---|---|--------------|--|--|--|--|---------------------------------|--| | | Literature | - Calculated = | Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas Phase $\Delta_i H^\circ =$ | 339.10 | 339.10 | 0.00 | 78STE4 | Gas Phase
Δ _t H° = | 1.50 | 1.50 | 0.00 | 67BOY/SHI | | Liquid Phase $\Delta_t H^\circ =$ | 302.10 | 302.10 | 0.00 | 78STE4 | Liquid Phas
Δ _t H° = | e
-36.80 | -36.80 | 0.00 | 67BOY/SHI | | |) ₂ (C) ₂) + (4)
clo[2.2.1.0 ^{2,6} | ne
× C-(H)(C) ₃) +
]heptane rsc)
:- Calculated = | | C ₇ H ₁₀ | (1 × Bicyc | () ₃ (C))+(4) | \times C-(H) ₂ (C) ₂)
ane rsc) + (1 \times | | C ₇ H ₁
C) ₃) + | | | | | | <u></u> | | Literature | e – Calculated | = Residual | Reference | | Gas Phase
Δ _t II° – | 82.10 | 82.10 | 0.00 | 78STE4 | Gas Phase $\Delta_t H^\circ =$ | 1.50 | 11.85 | - 10.35 | 71KOZ/TIM | | Liquid Phas
Δ _I H° – | e
43.40 | 43.40 | 0.00 | 78STE4 | Liquid Phas | | | | | | | lo[2.2.1]hep | < C-(H) ₂ (C) ₂) +
t-2-ene rsc)
c – Calculated = | | | cis -1,2-Dieth | | | | C ₇ H | | | | | - Residual | Reference | | | $(C-(H)_2(C)_2)$
$(1 \times ci)$ | + (2 × C-(H)(
s (unsat) corr | C) ₃) + | | Gas Phase
Δ _t H° = | 91.20 | 91.20 | 0.00 | 78STE4 | | propane(sub | | s (unsat) corr | C) ₃) + | | $\Delta_t H^\circ =$ | | | | | | propane(sub | o) $rsc) + (1 \times ci$ | s (unsat) corr | C) ₃) +
·) | | $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ | e | 91.20 | | | (1×cyclop | Propane(sub
Literature | o) rsc)+(1×ci | s (unsat) corr | C) ₃) +
·) | | Liquid Phase $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ Bicyclo [2.2. (5 × C-(H | 53.50 | 91.20
48.95
53.50
Norbornane
× C-(H)(C) ₃) + | 0.00 | 78STE4 | Gas Phase $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ trans-1,2-Dia (2×C-(H | Literature e -79.90 | - 37.95 - 80.10 opane < C-(H) ₂ (C) ₂) | es (unsat) corr | C) ₃) +) Reference 70LUP C ₇ H ₁ | | $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ Bicyclo [2.2. (5 × C-(H) | 53.50
1]heptane; !
1) ₂ (C) ₂) + (2 | 91.20
48.95
53.50
Norbornane
× C-(H)(C) ₃) + | 0.00 | 78STE4 78STE4 | Gas Phase $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ trans-1,2-Dia (2×C-(H | e
e
-79.90
ethylcyclopr
() ₃ (C)) + (3) ₂
propane(sub | - 37.95 - 80.10 opane < C-(H) ₂ (C) ₂) | 0.20
0.20 | C) ₃) +) Reference 70LUP C ₇ H ₁ | | $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ Bicyclo [2.2. (5 × C-(H) (1 × Bicyclo) | 53.50
1]heptane; !
1) ₂ (C) ₂) + (2 | 91.20
48.95
53.50
Norbornane
× C-(H)(C) ₃) +
tane rsc) | 0.00 | 78STE4 78STE4 C ₇ H ₁₂ | Gas Phase $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ trans-1,2-Dia (2×C-(H | e
e
-79.90
ethylcyclopr
() ₃ (C)) + (3) ₂
propane(sub | - 37.95 - 80.10 opane < C-(H) ₂ (C) ₂) | 0.20
0.20 | C) ₃) +) Reference 70LUP C ₇ H ₁ C) ₃) + | | $\Delta_t H^\circ =$ Liquid Phase $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ Bicyclo[2.2. (5 × C-(H) (1 × Bicyclo) Gas Phase | 53.50 1]heptane; ! 1] ₂ (C) ₂) + (2 2lo[2.2.1]hep Literature -61.60 | 91.20
48.95
53.50
Norbornane
× C-(H)(C) ₃) +
tane rsc)
e - Calculated = | 0.00
0.00 | 78STE4 78STE4 C ₇ H ₁₂ Reference | Gas Phase $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ $trans - 1, 2 - Dir (2 \times C - (H (1 \times cyclo)))$ Gas Phase | e -79.90 ethylcyclopr)3(C))+(3) propane(sub | o) rsc) + (1 × ci
e - Calculated
- 37.95
- 80.10
opane
< C-(H) ₂ (C) ₂)
o) rsc)
e - Calculated | 0.20
0.20 | C) ₃) +) Reference 70LUP C ₇ H ₄ C) ₃) + | | TABLE 14 | Cyclic | CH-03 | (47) | _ | Continued | |------------|--------|-------|------|---|-----------| | I ABLE 14. | L.VCHC | CD-03 | (4/1 | _ | Continueu | | octane rsc | $(C)_3) + (1 >$ | .0 ^{4,7}]octane; C
Pentacyclo[4.2 | ubane
2.0.0 ^{2,5} .0 ^{3,8} .0 ^{4,7} | C ₈ H ₈ | | $H)_2) + (1 \times 0)$ | C _d -(H)(C))+(
.×Cyclohexan | | (C_d) + |
--|--|--
--|---|--|--|---|---------------------------------|---| | W-1.67 | Literature | e – Calculated = | Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas Phase
Δ _t H° = | 665.30 | 665.24 | 0.06 | 89KIR/CHU | Gas Phase $\Delta_t H^\circ = C_p^\circ =$ | -48.90 | -42.53
159.24 | -6.37 | 79FUC/PEA | | Solid Phase $\Delta_t H^\circ =$ | 585.00 | 585.00 | 0.00 | 89KIR/CHU | Liquid Phas $\Delta_l H^{\circ} = C_p^{\circ} =$ | se
- 88.70 | - 82.93
208.98 | - 5.77 | 61LAB/ROS | | | | × C-(H) ₂ (C) ₂) +
2-ene rsc) | - (2×C-(H)(| C_8H_{12} $C)_2(C_d)) +$ | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | | 273.70
- 686.22
121.67
- 49.08 | | | | | Literature | e – Calculated = | = Residual | Reference | | | | | | | Gas Phase
Δ _t H° = | 20.50 | 20.50 | 0.00 | 70WON/WES | | - | $2 \times C - (H)(C)_3$
ane rsc) | + | C ₈ H ₁₄ | | Solid Phase | | ilia de Tre- | | | | Literatur | e – Calculated | = Residual | Reference | | $\Delta_{\rm f}H^{\circ} =$ | -23.30 | - 23.30 | 0.00 | 71WON/WES | Gas Phase $\Delta_l H^\circ =$ | -25.40 | 25.40 | 0.00 | 70CHA/MCN | | | | | | | | | | | | | (1×C-(H | $H)_2)+(1\times C)$ | C_{d} -(C) ₂) + (1 × C
+ (3 × C-(H) ₂ (C | | | Liquid Phas $\Delta_t H^\circ =$ | e
-68.20 | 68.20 | 0.00 | 70CHA/MCN | | (1×C _d -(I
(1×C-(H | $(H)_2) + (1 \times (1)_2) $ | C_{d} -(C) ₂) + (1 × C
+ (3 × C-(H) ₂ (C | $(1 \times C - (1 C)))))))))))))))))))))))))))))))))))$ | 1))+ | $\Delta_t H^\circ =$ | -68.20 | -68.20 | 0.00 | | | (1×C _d -(I
(1×C-(H | $(H)_2) + (1 \times (1)_2) $ | C_d - $(C)_2$) + $(1 \times C_d$
+ $(3 \times C_d$ - $(H)_2$ (Cotane rsc) | $(1 \times C - (1 C)))))))))))))))))))))))))))))))))))$ | (H)(C) ₃)+ | $\Delta_t H^\circ =$ Bicyclo[5.1.6 $(6 \times C - (H))$ | - 68.20
0]octane | :×C−(H)(C)₃) | | 70CHA/MCN
C ₈ H ₁₄ | | $(1 \times C_d - (I \times C_d - (I \times C - (H C)))))))))))))))))$ | H_{2}) + $(1 \times C)$
H_{2}) + $(1 \times C)$
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
$H_$ | C_d -(C) ₂) + (1 × 0
+ (3 × C-(H) ₂ (C)
otane rsc)
e - Calculated = | $(1 \times C - (1 C)))))))))))))))))))))))))))))))))))$ | (H)(C) ₃)+ | $\Delta_t H^\circ =$ Bicyclo[5.1.6 $(6 \times C - (H))$ | -68.20 0] octane 1)2(C)2) + (2 do[5.1.0] oct | :×C−(H)(C)₃) | + | | | (1 × C _d -(I
(1 × C-(H
(1 × Bicyc | H_{2}) + $(1 \times C)$
H_{2}) + $(1 \times
C)$
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
$H_$ | C_d -(C) ₂) + (1 × 0
+ (3 × C-(H) ₂ (C)
otane rsc)
e - Calculated = | $(1 \times C - (1 C)))))))))))))))))))))))))))))))))))$ | (H)(C) ₃)+ | $\Delta_t H^\circ =$ Bicyclo[5.1.6 $(6 \times C - (H))$ | -68.20 0] octane 1)2(C)2) + (2 do[5.1.0] oct | :×C-(H)(C) ₃) ane rsc) | + | C ₈ H ₁₄ | | $(1 \times C_d - (I \times C_d - (I \times C_d - (I \times C_d + (I \times Bicyc}))))$ Gas Phase $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ 2-Methylbic | H_{2}) + (1 × 0
H_{2}) + (1 × 0
H_{2}) (C ₂) (C ₄) · (1
H_{2}) (C ₂ 2.1] hep
Literatur
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2}
H_{2} | $\begin{array}{c} C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_$ | 2) ₂) + (1 × C-(
= Residual
2.31 | (H)(C) ₃) + Reference 69SKU/KOZ C ₈ H ₁₂ | $\Delta_t H^\circ =$ Bicyclo[5.1.4 (6 × C-(H (1 × Bicyc) Gas Phase | -68.20 0] octane 1)2(C)2) + (2 10[5.1.0] oct Literature -16.70 | × C-(H)(C) ₃)
ane rsc)
e – Calculated | +
= Residual | C ₈ H ₁₄
Reference | | $(1 \times C_d - (H + $ | H_{2}) + $(1 \times C_{1})(C)_{2}$ + $(1 \times C_{2})(C)_{2}$ C_{2$ | $C_{d}^{-}(C)_{2}^{-} + (1 \times C_{d}^{-}(C)_{2}^{-}) C_{d}^{-}(C)_{2$ | $(C)_2) + (1 \times C - (C)_2) + (1 \times C - (C)_2) + (1 \times C_d +$ | 69SKU/KOZ C ₈ H ₁₂ -(1×C _d -(H)(C)) | Bicyclo [5.1.1] $(6 \times C - (H)$ $(1 \times Bicyc)$ Gas Phase $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ | -68.20 O]octane ()2(C)2) + (2 do[5.1.0]oct Literature -16.70 e -60.30 | - 16.70 | +
= Residual
0.00 | C ₈ H ₁₄ Reference 70CHA/MCN | | $(1 \times C_d - (H + $ | $H_{12} + (1 \times C_{1})(C_{2}(C_{d})) + (1 \times C_{1})(C_{2}(C_{d})) + (1 \times C_{1})(C_{2}(C_{d})) + (1 \times C_{1})(C_{1}) + (1 \times C_{1})(C_{1}) + (1 \times C_{1})(C_{1})(C_{2}(C_{d}))$ | $\begin{array}{c} C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times
C_{d}^{-}(C)_2) \\ + (3 \times C_{d}^{-}(C)_2) + (1 \times C_{d}^{-}(C)_2) \\ + (3 \times C_$ | $(C)_{2} + (1 \times C - (C)_{2}) + (1 \times C - (C)_{2}) + (1 \times C_{3} - (C)_{2}) + (1 \times C_{3} - (C)_{2}) + (1 \times C_{3} - (C)_{2}) + (2.1] + (2.1) + (2$ | 69SKU/KOZ C ₈ H ₁₂ -(1×C _d -(H)(C)) | Bicyclo [5.1.4] $(6 \times C - (H) + (1 \times Bicyc)$ Gas Phase $\Delta_t H^\circ = -\frac{1}{2}$ Liquid Phas $\Delta_t H^\circ = -\frac{1}{2}$ $cis - Bicyclo [3]$ $(6 \times C - (H) + (1 \times Bicyc)]$ | -68.20 O]octane (1)2(C)2) + (2 fo[5.1.0]oct Literature -16.70 e -60.30 | - 16.70
- 60.30
- X C-(H)(C) ₃) | +
= Residual
0.00 | C ₈ H ₁₄ Reference 70CHA/MCN | | $(1 \times C_d - (H_1)^2)$ $(1 \times C - (H_1)^2)$ Gas Phase $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ $2-Methylbic$ $(1 \times C - (H_1)^3)$ $(2 \times C - (H_2)^3)$ | $H_{12} + (1 \times C_{1})(C_{2}(C_{d})) + (1 \times C_{1})(C_{2}(C_{d})) + (1 \times C_{1})(C_{2}(C_{d})) + (1 \times C_{1})(C_{1}) + (1 \times C_{1})(C_{1}) + (1 \times C_{1})(C_{1})(C_{2}(C_{d}))$ | $C_{d}^{-}(C)_{2}^{-} + (1 \times C_{d}^{-}(C)_{2}^{-}) + (1 \times C_{d}^{-}(C)_{2}^{-}) + (1 \times C_{d}^{-}(C)_{2}^{-}) + (1 \times C_{d}^{-}(C)_{2}^{-}) + (1 \times Bicyclo[2$ | $(C)_{2} + (1 \times C - (C)_{2}) + (1 \times C - (C)_{2}) + (1 \times C_{3} - (C)_{2}) + (1 \times C_{3} - (C)_{2}) + (1 \times C_{3} - (C)_{2}) + (2.1] + (2.1) + (2$ | (1) + (2) | Bicyclo [5.1.4] $(6 \times C - (H) + (1 \times Bicyc)$ Gas Phase $\Delta_t H^\circ = -\frac{1}{2}$ Liquid Phas $\Delta_t H^\circ = -\frac{1}{2}$ $cis - Bicyclo [3]$ $(6 \times C - (H) + (1 \times Bicyc)]$ | -68.20 Oloctane (1)2(C)2) + (2 Io[5.1.0]octa Literature -16.70 e -60.30 3.3.0]octane (2)2(C)2) + (2 (2)2(C)3.3.0] | - 16.70
- 60.30
- X C-(H)(C) ₃) | +
= Residual
0.00
0.00 | C ₈ H ₁₄ Reference 70CHA/MCN | | $(1 \times C_d - (H + $ | H_{2}) + (1 × C
H_{2}) (C) ₂ (C _d)) + (1 × C
H_{2}) (C) ₂ (C _d)) + (1 × C
H_{2})
Literatur
H_{2}
H_{2}
H_{2}
H_{3}
H_{2}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3}
H_{3 | $C_{d}^{-}(C)_{2}^{-} + (1 \times C_{d}^{-}(C)_{2}^{-}) + (1 \times C_{d}^{-}(C)_{2}^{-}) + (1 \times C_{d}^{-}(C)_{2}^{-}) + (1 \times C_{d}^{-}(C)_{2}^{-}) + (1 \times Bicyclo[2$ | $(C)_{2} + (1 \times C - (C)_{2}) + (1 \times C - (C)_{2}) + (1 \times C_{3} - (C)_{2}) + (1 \times C_{3} - (C)_{2}) + (1 \times C_{3} - (C)_{2}) + (2.1] + (2.1) + (2$ | (1) + (2) | Bicyclo [5.1.4] $(6 \times C - (H) + (1 \times Bicyc)$ Gas Phase $\Delta_t H^\circ = -\frac{1}{2}$ Liquid Phas $\Delta_t H^\circ = -\frac{1}{2}$ $cis - Bicyclo [3]$ $(6 \times C - (H) + (1 \times Bicyc)]$ | -68.20 Oloctane (1)2(C)2) + (2 Io[5.1.0]octa Literature -16.70 e -60.30 3.3.0]octane (2)2(C)2) + (2 (2)2(C)3.3.0] | - 16.70 - 60.30 (** C-(H)(C) ₃) | +
= Residual
0.00
0.00 | C ₈ H ₁₄ Reference 70CHA/MCN 70CHA/MCN C ₈ H ₁₄ | | TABLE 14. | Cyclic CH-03 | (47) - | Continued | |-----------|--------------|--------|-----------| |-----------|--------------|--------|-----------| | TABLE 14. Cyclic CH-03 (47) — Continued | TABLE 1 | 14. | Cyclic | CH-03 | (47) | _ | Continued | |---|---------|-----|--------|-------|------|---|-----------| |---|---------|-----|--------|-------|------|---|-----------| | | | | | C 11 | T 1 1 1 TO | | | | |
--|--|--|-----------------------------------|--|--|---|---|---|--------------------------------| | rans -Bicyclo | - | | | C ₈ H ₁₄ | Liquid Phase | | | | | | $(6 \times C - (H))$ | $_{12}(C)_{2})+(2)$ | × C-(H)(C)3) + | + | | $\Delta_{\rm f}H^{\circ} = -195.10$ | | - 8.83 | 71G00 | | | (1×trans-F | Bicyclo[3.3.0 | O]octane) | | | $C_p^{\circ} =$ | 214.08 | | | | | | | | | |
S° = | 304.99 | | | | | | Literature | - Calculated = | ≈ Residual | Reference | $\Delta_{\mathbf{f}}S^{\circ} =$ | - 785.50 | | | | | | | | | | $\Delta_t G^\circ =$ | 47.93 | | | | | | | | | | $lnK_f =$ | - 19.33 | | | | | Gas Phase | | | | | | | | | | | | -66.60 | -66.60 | 0.00 | 70CHA/MCN | | | | | | | p. 2 | | | | | | | | | | | | - | | | | cis-1-Ethyl-3-methy | | | | C ₈ H ₁₆ | | Liquid Phase | : | | | | $(2 \times C - (H)_3(C)) -$ | $+(4\times C-(H)_2(C)_2)$ | +(2×C-(H)(| (C) ₃) + | | | $\Delta_i H^\circ = -$ | | - 109.20 | 0.00 | 70CHA/MCN | | ertiary)) + $(1 \times Cy)$ | Liter | ature – Calculated | = Residual | Reference | : | | 1-Methylbicy | | | | C ₈ H ₁₄ | | | | | | | | | $(C-(C)_4)+(1\times$ | | quaternary))+ | | | | | | | | | $(C-(H)_2(C)_2)+$ | ŀ | | Gas Phase | | | | | | (1 × Bicycle | o[4.1.0]hep | tane rsc) | | | $\Delta_{\rm f}H^{\circ} =$ | - 152.09 | | | | | | | | | | $C_p^{\circ} =$ | 155.31 | | | | | | Literature | - Calculated = | = Residual | Reference | | | | | · | | | | | | | T !! 4 P! | | | | | | | | | | | Liquid Phase | | | | | | Gas Phase | | | | | $\Delta_{\rm f} H^{\rm o} = -194.40$ | | -8.13 | 71GOO | | | $\Delta_{\rm f}H^{\circ} =$ | -20.80 | - 24.95 | 4.15 | 71KOZ/TIM | $C_p^{\circ} =$ | 214.08 | | | | | | | | | | S° = | 304.99 | | | | | | | | | | $\Delta_{i}S^{\circ} =$ | <i>−</i> 785.50 | | | | | Liquid Phase | e | | | | $\Delta_t G^{\circ} =$ | 47.93 | | | | | $\Delta_t H^\circ =$ | -59.90 | - 66.04 | 6.14 | 71KOZ/TIM | $lnK_f =$ | - 19.33 | | | | | cis-1-Ethyl-2
(2×C-(H) |) ₃ (C))+(4> | opentane
< C-(H) ₂ (C) ₂) -
ary)) + (1 × Cyc | | | | $+(4\times C-(H)_2(C)_2)$ | | (C) ₃) + | C ₈ H ₁₆ | | cis -1-Ethyl-2
(2×C-(H) |) ₃ (C))+(4>
corr (tertia | $< C-(H)_2(C)_2 > -$ | lopentane (si | C) ₃)+ | (2×C-(H) ₃ (C)) -
(1×Cyclopentan | | -CH ₃ corr (te | (C) ₃) + | | | cis-1-Ethyl-2
(2×C-(H)
(1×-CH ₃ |) ₃ (C))+(4>
corr (tertia | $(C-(H)_2(C)_2) + (1 \times Cyc)$ | lopentane (si | C) ₃) + ub) rsc) | (2×C-(H) ₃ (C)) -
(1×Cyclopentan | $+ (4 \times C - (H)_2(C)_2)$
e (sub) rsc) + (1 × | -CH ₃ corr (te | C) ₃) +
ertiary)) | | | cis-1-Ethyl-2
(2×C-(H)
(1×-CH ₃ |) ₃ (C))+(4>
corr (tertia | < C-(H) ₂ (C) ₂) -
ary)) + (1 × Cyc
e – Calculated = | lopentane (si | C) ₃) + ub) rsc) | (2 × C-(H) ₃ (C)) -
(1 × Cyclopentan | $+ (4 \times C - (H)_2(C)_2)$
e (sub) rsc) + (1 × | -CH ₃ corr (te | C) ₃) +
ertiary)) | | | cis-1-Ethyl-2
$(2 \times C - (H)$
$(1 \times -CH_3)$
Gas Phase
$\Delta_t H^\circ =$ |) ₃ (C))+(4>
corr (tertia | < C-(H) ₂ (C) ₂) +
ary)) + (1 × Cyci
e – Calculated =
–
– 152.09 | lopentane (si | C) ₃) + ub) rsc) | (2 × C-(H) ₃ (C))-
(1 × Cyclopentan
Litera
Gas Phase | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated | -CH ₃ corr (te | C) ₃) +
ertiary)) | | | cis-1-Ethyl-2
(2×C-(H)
(1×-CH ₃ |) ₃ (C))+(4>
corr (tertia | < C-(H) ₂ (C) ₂) -
ary)) + (1 × Cyc
e – Calculated = | lopentane (si | C) ₃) + ub) rsc) | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ Liter: Gas Phase $\Delta_l H^\circ =$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated
– 152.09 | -CH ₃ corr (te | C) ₃) +
ertiary)) | | | cis -1-Ethyl-2
$(2 \times C - (H)$
$(1 \times -CH_3)$
Gas Phase
$\Delta_t H^\circ =$ |) ₃ (C))+(4>
corr (tertia | < C-(H) ₂ (C) ₂) +
ary)) + (1 × Cyci
e – Calculated =
–
– 152.09 | lopentane (si | C) ₃) + ub) rsc) | (2 × C-(H) ₃ (C))-
(1 × Cyclopentan
Litera
Gas Phase | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated | -CH ₃ corr (te | C) ₃) +
ertiary)) | | | Gas Phase $ \Delta_t H^\circ = C_p^\circ = Liquid Phase $ |) ₃ (C)) + (4>
corr (tertia
Literature | < C-(H) ₂ (C) ₂) +
ary)) + (1 × Cyci
e - Calculated =
-152.09
155.31 | lopentane (si | C) ₃) +
ub) rsc) Reference | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ Liter: $Gas\ Phase$ $\Delta_t H^\circ = C_\rho^\circ =$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated
– 152.09 | -CH ₃ corr (te | C) ₃) +
ertiary)) | | | Gas Phase $ \Delta_t H^\circ = C_p^\circ = $ Liquid Phase $ \Delta_t H^\circ = C_p^\circ = $ |) ₃ (C)) + (4>
corr (tertia
Literature | <pre>CC-(H)₂(C)₂) + Ary)) + (1 × Cycle c - Calculated = -152.09 155.31 -186.27</pre> | lopentane (si | C) ₃) + ub) rsc) | $(2 \times C - (H)_3(C))$ - $(1 \times Cyclopentan)$ Liters Gas Phase $\Delta_t H^\circ = C_\rho^\circ C_\rho^$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated
- 152.09
155.31 | -CH ₃ corr (te | C) ₃) +
ertiary))
Reference | | | Gas Phase $\Delta_t H^\circ = C_p^\circ $ |) ₃ (C)) + (4>
corr (tertia
Literature | CC-(H) ₂ (C) ₂) + (1 × Cyci
ary)) + (1 × Cyci
c - Calculated =
-152.09
155.31
-186.27
214.08 | lopentane (si | C) ₃) +
ub) rsc) Reference | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ $Liters$ $Gas Phase$ $\Delta_l H^\circ = C_l^\circ =$ $Liquid Phase$ $\Delta_l H^\circ = -196.00$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature - Calculated
- 152.09
155.31 | -CH ₃ corr (te | C) ₃) +
ertiary)) | | | Gas Phase $C_{\rho}^{c} = \frac{1 - \text{Ethyl-2}}{(1 \times - \text{CH}_3)}$ Gas Phase $C_{\rho}^{t} = \frac{1 - \text{C}}{(1 \times - \text{CH}_3)}$ Liquid Phase $C_{\rho}^{t} = \frac{1 - \text{C}}{(1 \times - \text{C})^{t}}$ $C_{\rho}^{t} = \frac{1 - \text{C}}{(1 \times - \text{C})^{t}}$ |) ₃ (C)) + (4>
corr (tertia
Literature | CC-(H) ₂ (C) ₂) + (1 × Cyci
ary)) + (1 × Cyci
c - Calculated =
-152.09
155.31
-186.27
214.08
304.99 | lopentane (si | C) ₃) +
ub) rsc) Reference | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ $Liters$ $Gas Phase$ $\Delta_t H^\circ = C_\rho^\circ =$ $Liquid Phase$ $\Delta_t H^\circ = -196.00$ $C_\rho^\circ =$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated
- 152.09
155.31
0 - 186.27
214.08 | -CH ₃ corr (te | C) ₃) +
ertiary))
Reference | | | Gas Phase $ \Delta_t H^\circ = C_p^\circ = $ Liquid Phase $ \Delta_t H^\circ = C_p^\circ = $ |) ₃ (C)) + (4>
corr (tertia
Literature | CC-(H) ₂ (C) ₂) + (1 × Cyci
ary)) + (1 × Cyci
c - Calculated =
-152.09
155.31
-186.27
214.08 | lopentane (si | C) ₃) +
ub) rsc) Reference | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ $Liters$ $Gas Phase$ $\Delta_l H^\circ = C_l^\circ =$ $Liquid Phase$ $\Delta_l H^\circ = -196.00$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature - Calculated
- 152.09
155.31 | -CH ₃ corr (te | C) ₃) +
ertiary))
Reference | | | Gas Phase $C_{\rho}^{c} = \frac{C_{\rho}^{c}}{C_{\rho}^{c}}$ Liquid Phase $C_{\rho}^{c} = \frac{C_{\rho}^{c}}{C_{\rho}^{c}} = \frac{C_{\rho}^{c}}{C_{\rho}^{c}} = \frac{C_{\rho}^{c}}{S_{\rho}^{c}} \frac{C_{\rho}^{c}}{S_{\rho}^{c$ |) ₃ (C)) + (4>
corr (tertia
Literature | CC-(H) ₂ (C) ₂) + (1 × Cyci
ary)) + (1 × Cyci
c - Calculated =
-152.09
155.31
-186.27
214.08
304.99 | lopentane (si | C) ₃) +
ub) rsc) Reference | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ $Liters$ $Gas Phase$ $\Delta_t H^\circ = C_\rho^\circ =$ $Liquid Phase$ $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ =$ $\Delta_t S^\circ =$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated
- 152.09
155.31
0 - 186.27
214.08 | -CH ₃ corr (te | C) ₃) +
ertiary))
Reference | | | Gas Phase $ \Delta_t H^\circ = C_p^\circ = $ Liquid Phase $ \Delta_t H^\circ = C_p^\circ = $ |) ₃ (C)) + (4>
corr (tertia
Literature | CC-(H) ₂ (C) ₂) + (1 × Cyci
ary)) + (1 × Cyci
c - Calculated =
-152.09
155.31
-186.27
214.08
304.99
-785.50 | lopentane (si | C) ₃) +
ub) rsc) Reference | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ $Liters$ $Gas Phase$ $\Delta_l H^\circ = C_l^\circ =$ $Liquid Phase$ $\Delta_l H^\circ = -196.00$ $C_l^\circ = S^\circ =$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated
- 152.09
155.31
0 - 186.27
214.08
304.99 | -CH ₃ corr (te | C) ₃) +
ertiary))
Reference | | | Gas Phase $ \begin{array}{c} C_{p} = C_{p$ |) ₃ (C)) + (4>
corr (tertia
Literature | CC-(H) ₂ (C) ₂) + (1 × Cycle xy)) + (1 × Cycle xy)) + (1 × Cycle xy) | lopentane (si | C) ₃) +
ub) rsc) Reference | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ $Liters$ $Gas Phase$ $\Delta_t H^\circ = C_\rho^\circ =$ $Liquid Phase$ $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ =$ $\Delta_t S^\circ =$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated
- 152.09
155.31
0 - 186.27
214.08
304.99
- 785.50 | -CH ₃ corr (te | C) ₃) +
ertiary))
Reference | | | Gas Phase $\Delta_t H^\circ = C_p^\circ = $ Liquid Phase $\Delta_t H^\circ = C_p^\circ = $ $\Delta_t S^\circ = \Delta_t S^\circ = $ $\ln K_t = $ |) ₃ (C)) + (4>
corr (tertia
Literature | CC-(H) ₂ (C) ₂) + (1 × Cyci
e-Calculated =
-152.09
155.31
-186.27
214.08
304.99
-785.50
47.93
-19.33 | lopentane (si | C) ₃) + µb) rsc) Reference 71GOO | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ $Liters$ $Gas Phase$ $\Delta_t H^\circ = C_\rho^\circ =$ $Liquid Phase$ $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated
- 152.09
155.31
0 - 186.27
214.08
304.99
- 785.50
47.93 | -CH ₃ corr (te | C) ₃) +
ertiary))
Reference | | | Gas Phase $\Delta_t H^\circ = C_p^\circ = $ Liquid Phase $\Delta_t H^\circ = C_p^\circ = $ $\Delta_t S^\circ = \Delta_t S^\circ = $ $\Delta_t G^\circ = $ $\ln K_t = $ $trans - 1 - Ethy$ |) ₃ (C)) + (4>
corr (tertia
Literature
e
- 190.80 | CC-(H) ₂ (C) ₂) + (1 × Cyci
e-Calculated
=
-152.09
155.31
-186.27
214.08
304.99
-785.50
47.93
-19.33 | e Residual | C) ₃) + 1b) rsc) Reference 71GOO | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ $Liters$ $Gas Phase$ $\Delta_t H^\circ = C_\rho^\circ =$ $Liquid Phase$ $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated
- 152.09
155.31
0 - 186.27
214.08
304.99
- 785.50
47.93 | -CH ₃ corr (te | C) ₃) +
ertiary))
Reference | | | Gas Phase $ \Delta_t H^\circ = C_p^\circ = $ Liquid Phase $ \Delta_t H^\circ = C_p^\circ = $ $ \Delta_t S^\circ = \Delta_t S^\circ = $ $ \Delta_t G^\circ = $ $ \ln K_t = $ trans-1-Ethy $ (2 \times C - (H) $ |) ₃ (C)) + (4)
corr (tertia
Literature
e
- 190.80 | CC-(H) ₂ (C) ₂) + (1 × Cyci
e-Calculated = -152.09
155.31
-186.27
214.08
304.99
-785.50
47.93
-19.33
yelopentane
× C-(H) ₂ (C) ₂)- | - 4.53 | C) ₃) + 1b) rsc) Reference 71GOO C ₈ H ₁₆ C) ₃) + | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ $Liters$ $Gas Phase$ $\Delta_t H^\circ = C_\rho^\circ =$ $Liquid Phase$ $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | + (4×C-(H) ₂ (C) ₂)
e (sub) rsc) + (1×
ature – Calculated
- 152.09
155.31
0 - 186.27
214.08
304.99
- 785.50
47.93 | -CH ₃ corr (te | C) ₃) +
ertiary))
Reference | | | Gas Phase $ \Delta_t H^\circ = C_p^\circ = $ Liquid Phase $ \Delta_t H^\circ = C_p^\circ = $ $ \Delta_t S^\circ = \Delta_t S^\circ = $ $ \Delta_t G^\circ = $ $ \ln K_t = $ trans-1-Ethy $ (2 \times C - (H) $ |) ₃ (C)) + (4)
corr (tertia
Literature
e
- 190.80 | CC-(H) ₂ (C) ₂) + (1 × Cyci
e-Calculated =
-152.09
155.31
-186.27
214.08
304.99
-785.50
47.93
-19.33 | - 4.53 | C) ₃) + 1b) rsc) Reference 71GOO C ₈ H ₁₆ C) ₃) + | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentan)$ $Liters$ $Gas Phase$ $\Delta_t H^\circ = C_\rho^\circ =$ $Liquid Phase$ $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | - 152.09
155.31
- 186.27
214.08
304.99
- 785.50
47.93
- 19.33 | -CH ₃ corr (te | C) ₃) + ertiary)) Reference | | | Gas Phase $ \Delta_t H^\circ = C_p^\circ = $ Liquid Phase $ \Delta_t H^\circ = C_p^\circ = $ $ \Delta_t S^\circ = \Delta_t S^\circ = $ $ \Delta_t G^\circ = $ $ \ln K_t = $ trans-1-Ethy $ (2 \times C - (H) $ | e
- 190.80
1-2-methylc
(3)(C)) + (4)
corr (tertia | CC-(H) ₂ (C) ₂) + (1 × Cyc) e - Calculated = -152.09 155.31 -186.27 214.08 304.99 -785.50 47.93 -19.33 yclopentane × C-(H) ₂ (C) ₂) - ary)) + (1 × Cyc) | - 4.53 + (2×C-(H))(lopentane (st | C) ₃) + 1b) rsc) Reference 71GOO C ₃ H ₁₆ C) ₃) + 1b) rsc) | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentam)$ Liter: Gas Phase $\Delta_t H^\circ = C_\rho^\circ =$ Liquid Phase $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ 1-Ethyl-1-methylcyc | - 152.09
155.31
- 186.27
214.08
304.99
- 785.50
47.93
- 19.33 | -CH ₃ corr (te | C) ₃) + ertiary)) Reference | | | Gas Phase $ \Delta_t H^\circ = C_\rho^\circ = $ Liquid Phase $ \Delta_t H^\circ = C_\rho^\circ = $ $ \Delta_t S^\circ = \Delta_t S^\circ = $ $ \Delta_t G^\circ = $ $ \ln K_t = $ trans-1-Ethy $ (2 \times C - (H) $ | e
- 190.80
1-2-methylc
(3)(C)) + (4)
corr (tertia | CC-(H) ₂ (C) ₂) + (1 × Cyci
e-Calculated = -152.09
155.31
-186.27
214.08
304.99
-785.50
47.93
-19.33
yelopentane
× C-(H) ₂ (C) ₂)- | - 4.53 + (2×C-(H))(lopentane (st | C) ₃) + 1b) rsc) Reference 71GOO C ₈ H ₁₆ C) ₃) + | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentam)$ $Liters$ $Gas Phase$ $\Delta_t H^\circ = C_\rho^\circ C_\rho^$ | - 152.09
155.31
- 186.27
214.08
304.99
- 785.50
47.93
- 19.33 | -CH ₃ corr (te
= Residual
-9.73 | C) ₃) + ertiary)) Reference 71GOO | | | Gas Phase $ \Delta_t H^\circ = C_\rho^\circ = $ Liquid Phase $ \Delta_t H^\circ = C_\rho^\circ = $ $ \Delta_t S^\circ = \Delta_t S^\circ = $ $ \Delta_t G^\circ = $ $ \ln K_t = $ trans-1-Ethy $ (2 \times C - (H) $ | e
- 190.80
1-2-methylc
(3)(C)) + (4)
corr (tertia | CC-(H) ₂ (C) ₂) + (1 × Cyc) e - Calculated = -152.09 155.31 -186.27 214.08 304.99 -785.50 47.93 -19.33 yclopentane × C-(H) ₂ (C) ₂) - ary)) + (1 × Cyc) | - 4.53 + (2×C-(H))(lopentane (st | C) ₃) + 1b) rsc) Reference 71GOO C ₃ H ₁₆ C) ₃) + 1b) rsc) | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentam)$ $Liters$ $Gas Phase$ $\Delta_t H^\circ = C_\rho^\circ =$ $Liquid Phase$ $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = S^\circ = A_t S^\circ = A_t G^\circ = InK_t =$ $1-Ethyl-1-methylcyc$ $(2 \times C - (H)_3(C)) + (1 \times -CH_3 corr (C))$ | - 152.09
- 155.31
- 186.27
- 214.08
- 304.99
- 785.50
- 47.93
- 19.33
- 19.33 | -CH ₃ corr (te
= Residual
-9.73
+ (1×C-(C) ₄) | C) ₃) + ertiary)) Reference 71GOO | C ₆ H ₁₆ | | Gas Phase $ \Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid Phase $ \Delta_{t}H^{\circ} = C_{p}^{\circ} = $ $ \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = $ $ \ln K_{t} = $ $ trans-1-Ethy $ $ (2 \times C-(H) $ $ (1 \times -CH_{3}) $ Gas Phase | e
- 190.80
1-2-methylc
(3)(C)) + (4)
corr (tertia | CC-(H) ₂ (C) ₂) + (1 × Cyci
e-Calculated =
-152.09
155.31
-186.27
214.08
304.99
-785.50
47.93
-19.33
yclopentane
× C-(H) ₂ (C) ₂) -
ary)) + (1 × Cyci
e-Calculated = | - 4.53 + (2×C-(H))(lopentane (st | C) ₃) + 1b) rsc) Reference 71GOO C ₃ H ₁₆ C) ₃) + 1b) rsc) | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentam)$ $Liters$ $Gas Phase$ $\Delta_t H^\circ = C_\rho^\circ =$ $Liquid Phase$ $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = S^\circ = A_t S^\circ = A_t G^\circ = InK_t =$ $1-Ethyl-1-methylcyc$ $(2 \times C - (H)_3(C)) + (1 \times -CH_3 corr (C))$ | - 152.09
155.31
- 186.27
214.08
304.99
- 785.50
47.93
- 19.33 | -CH ₃ corr (te
= Residual
-9.73
+ (1×C-(C) ₄) | C) ₃) + ertiary)) Reference 71GOO | C ₄ H ₁₆ | | Gas Phase $ \Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid Phase $ \Delta_{t}H^{\circ} = C_{p}^{\circ} = $ $ \Delta_{t}G^{\circ} = InK_{f} = $ trans-1-Ethy $ (2 \times C - (H_{1} \times CH_{3}) + CH_{3} \times CH_{3}) $ | e
- 190.80
1-2-methylc
(3)(C)) + (4)
corr (tertia | CC-(H) ₂ (C) ₂) + (1 × Cycle - Calculated = -152.09 | - 4.53 + (2×C-(H))(lopentane (st | C) ₃) + 1b) rsc) Reference 71GOO C ₃ H ₁₆ C) ₃) + 1b) rsc) | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentam)$ $Liters$ $Gas Phase$ $\Delta_t H^\circ = C_\rho^\circ =$ $Liquid Phase$ $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = S^\circ = A_t S^\circ = A_t G^\circ = InK_t =$ $1-Ethyl-1-methylcyc$ $(2 \times C - (H)_3(C)) + (1 \times -CH_3 corr (C))$ | - 152.09
- 155.31
- 186.27
- 214.08
- 304.99
- 785.50
- 47.93
- 19.33
- 19.33 | -CH ₃ corr (te
= Residual
-9.73
+ (1×C-(C) ₄) | C) ₃) + ertiary)) Reference 71GOO | C ₄ H ₁₆ | | Gas Phase $ \Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid Phase $ \Delta_{t}H^{\circ} = C_{p}^{\circ} = $ $ \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = $ $ \ln K_{t} = $ $ trans-1-Ethy $ $ (2 \times C-(H) $ $ (1 \times -CH_{3}) $ Gas Phase | e
- 190.80
1-2-methylc
(3)(C)) + (4)
corr (tertia | CC-(H) ₂ (C) ₂) + (1 × Cyci
e-Calculated =
-152.09
155.31
-186.27
214.08
304.99
-785.50
47.93
-19.33
yclopentane
× C-(H) ₂ (C) ₂) -
ary)) + (1 × Cyci
e-Calculated = | - 4.53 + (2×C-(H))(lopentane (st | C) ₃) + 1b) rsc) Reference 71GOO C ₃ H ₁₆ C) ₃) + 1b) rsc) | $(2 \times \text{C-(H)}_{3}(\text{C})) - (1 \times \text{Cyclopentand})$ Liter: Gas Phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} C_{\rho}^$ | - 152.09
- 155.31
- 186.27
- 214.08
- 304.99
- 785.50
- 47.93
- 19.33
- 19.33 | -CH ₃ corr (te
= Residual
-9.73
+ (1×C-(C) ₄) | C) ₃) + ertiary)) Reference 71GOO | C ₄ H ₁₆ | | Gas Phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \frac{\Delta_{t}G^{\circ}}{\ln K_{t}} = \frac{\Delta_{t}G^{\circ}}{\ln X_{t}} \frac{\Delta_{t}G^$ | e - 190.80 T-2-methylc; (3)(C)) + (4) corr (tertial Literature | CC-(H) ₂ (C) ₂) + (1 × Cycle - Calculated = -152.09 | - 4.53 + (2×C-(H))(lopentane (st | C) ₃) + 1b) rsc) Reference 71GOO C ₃ H ₁₆ C) ₃) + 1b) rsc) | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentance)$ Liter: Gas Phase $\Delta_t H^\circ = C_\rho^\circ =$ Liquid Phase $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = 100$ $\Delta_t G^\circ = 100$ $1 - Ethyl-1 - methylcyc(2 \times C - (H)_3(C)) + (1 \times - CH_3 \text{ corr (of Literal Case Phase)})$ Gas Phase | - 152.09
155.31
- 186.27
214.08
304.99
- 785.50
47.93
- 19.33
- 19.33 | -CH ₃ corr (te
= Residual
-9.73
+ (1×C-(C) ₄) | C) ₃) + ertiary)) Reference 71GOO | C ₄ H ₁₆ | | Gas Phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = Liquid Phase$ $\Delta_{t}H^{\circ} = C_{p}^{\circ} = Liquid Phase$ $\Delta_{t}G^{\circ} = Liquid Phase$ | e - 190.80 T-2-methylc; (3)(C)) + (4) corr (tertial Literature | CC-(H) ₂ (C) ₂) + (1 × Cycle - Calculated = -152.09 | - 4.53 + (2×C-(H))(lopentane (st | C) ₃) + 1b) rsc) Reference 71GOO C ₃ H ₁₆ C) ₃) + 1b) rsc) | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentam)$ Liter: Gas Phase $\Delta_t H^\circ = C_\rho^\circ =$ Liquid Phase $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ 1-Ethyl-1-methylcyc $(2 \times C - (H)_3(C)) + (1 \times -CH_3 \text{ corr } (G))$ Liter: Gas Phase $\Delta_t H^\circ =$ | - 152.09
155.31
- 186.27
214.08
304.99
- 785.50
47.93
- 19.33
- 19.33
- 19.33 | -CH ₃ corr (te
= Residual
-9.73
+ (1×C-(C) ₄) | C) ₃) + ertiary)) Reference 71GOO | C ₆ H ₁₆ | | Gas Phase $ \Delta_{t}H^{\circ} =
C_{p}^{\circ} = Liquid Phase $ $ \Delta_{t}H^{\circ} = C_{p}^{\circ} = Liquid Phase $ $ \Delta_{t}G^{\circ} | acorr (tertial Literature Literature e - 190.80 1-2-methylc; (3)(C)) + (4); corr (tertial | CC-(H) ₂ (C) ₂) + (1 × Cyci
e - Calculated =
-152.09
155.31
-186.27
214.08
304.99
-785.50
47.93
-19.33
-19.33
-19.33
-19.33
-19.33
-19.33 | - 4.53 + (2×C-(H))(lopentane (si | C) ₃) + 1b) rsc) Reference 71GOO C ₃ H ₁₆ C) ₃) + 1b) rsc) Reference | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentance)$ Liter: Gas Phase $\Delta_t H^\circ = C_\rho^\circ =$ Liquid Phase $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = 100$ $\Delta_t G^\circ = 100$ $1 - Ethyl-1 - methylcyc(2 \times C - (H)_3(C)) + (1 \times - CH_3 \text{ corr (of Literal Case Phase)})$ Gas Phase | - 152.09
155.31
- 186.27
214.08
304.99
- 785.50
47.93
- 19.33
- 19.33 | -CH ₃ corr (te
= Residual
-9.73
+ (1×C-(C) ₄) | C) ₃) + ertiary)) Reference 71GOO | C ₆ H ₁₆ | | Gas Phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = Liquid Phase$ $\Delta_{t}H^{\circ} = C_{p}^{\circ} = Liquid Phase$ $\Delta_{t}G^{\circ} = Liquid Phase$ | e - 190.80 Literature 1-2-methylc; corr (tertia | CC-(H) ₂ (C) ₂) + (1 × Cycle - Calculated = -152.09 | - 4.53 + (2×C-(H))(lopentane (si | C) ₃) + 1b) rsc) Reference 71GOO C ₃ H ₁₆ C) ₃) + 1b) rsc) Reference | $(2 \times C - (H)_3(C)) - (1 \times Cyclopentam)$ Liter: Gas Phase $\Delta_t H^\circ = C_\rho^\circ =$ Liquid Phase $\Delta_t H^\circ = -196.00$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ 1-Ethyl-1-methylcyc $(2 \times C - (H)_3(C)) + (1 \times -CH_3 \text{ corr } (G))$ Liter: Gas Phase $\Delta_t H^\circ =$ | - 152.09
155.31
- 186.27
214.08
304.99
- 785.50
47.93
- 19.33
- 19.33
- 19.33 | -CH ₃ corr (te
= Residual
-9.73
+ (1×C-(C) ₄) | C) ₃) + ertiary)) Reference 71GOO | C ₆ H ₁₆ | TABLE 14. Cyclic CH-03 (47) - Continued | (2×C-(H) | $_{3}(C))+(5\times$ | ntane (Continu
C-(H) ₂ (C) ₂) +
rnary)) + (1 × 0 | $-(1\times C-(C)_4)$ | | (2×C-(F | • | clo[2.2.1]hepta:
\times C-(H) ₂ (C) ₂)
ptane rsc) | | C ₉ H ₁₀ | |--
---|---|---------------------------------|--|--|---|---|-------------------------|---| | | Literature | - Calculated = | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid Phase $\Delta_t H^\circ = \cdots = C_p^\circ = S^\circ =$ | | -186.68
211.98 | - 7.12 | 71G00 | Gas Phase $\Delta_t H^\circ =$ | - 107.50 | - 107.20 | -0.30 | 70VAR/BEL | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | 286.50
- 803.99
53.03
- 21.39 | | | Liquid Phas $\Delta_t H^\circ =$ | | -146.10 | -4.10 | 71KOZ/TIM | | Phenylcyclo | propane | | | C ₉ H ₁₀ | 7,7-Dimethy | ylbicyclo[2.2 | 2.1]heptane | | C ₂ H ₁₆ | | (2×C-(H | $(C)_2 + (5)$ | $\times C_B$ -(H)(C _B) ₂
-(1 × cycloprop | | $C)(C_B)_2) +$ | (2×-CH | (C) + (4 × corr (quantities) + (1.2.2.1]hep | ternary))+ | 2×C-(H)(C) | s)+(1×C-(C) ₄)+ | | | Literature | - Calculated = | = Residual | Reference | | | re – Calculated | = Residual | Reference | | Gas Phase $\Delta_t H^\circ =$ | 150.50 | 152.86 | -2.36 | 82FUC/HAL | Gas Phase $\Delta_l H^\circ =$ | | -115.41 | | | | Liquid Phas | е | 00.00 | 1.04 | 61KOS/LUK | Liquid Phas | se. | | | | | $\Delta_t H^{\circ} =$ | 100.30 | 99.26 | 1.04 | UIROS/LOR | $\Delta_t H^o =$ | | - 153.08 | | | | $\Delta_i H^\circ =$ $cis-Bicyclo[6]$ $(7 \times C-(H))$ | 5.1.0]nonan | e
× C-(H)(C) ₃) + | | C ₉ H ₁₆ | $\Delta_t H^\circ =$ Solid Phase | | - 153.08
- 162.30 | 14.10 | 75KOZ/BYC | | $\Delta_i H^\circ =$ $cis-Bicyclo[6]$ $(7 \times C-(H))$ | 5.1.0] nonand
() ₂ (C) ₂) + (2
icyclo[6.1.0] | e
× C-(H)(C) ₃) + | + | | $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ Bicyclo[3.3. | - 148.20
1]nonane | - 162.30 | | 75KOZ/BYC
C ₉ H ₁₆ | | $\Delta_t \dot{H}^\circ = {cis - Bicyclo[6]}$ $cis - Bicyclo[6]$ | 5.1.0] nonand
() ₂ (C) ₂) + (2
icyclo[6.1.0] | e
× C-(H)(C) ₃) -
nonane rsc) | + | C ₉ H ₁₆ | $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ Bicyclo[3.3. $(7 \times C - (H^\circ))^{-1}$ | - 148.20
1]nonane | -162.30
2×C-(H)(C)₃)- | | | | $\Delta_t H^\circ =$ cis -Bicyclo[t $(7 \times C - (H (1 \times cis$ -Bi Cis -Bi Cis -Bi Cis -Bi Cis -Bi Cis -Bi | 6.1.0]nonane ()2(C)2) + (2 icyclo[6.1.0]i Literature -31.20 | e
× C-(H)(C) ₃) -
nonane rsc)
- Calculated = | +
= Residual | C ₉ H ₁₆ Reference | $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ Bicyclo[3.3. $(7 \times C - (H^\circ))^{-1}$ | -148.20 1]nonane 1] ₂ (C) ₂) + (2 elo[3.3.1]non | -162.30
2×C-(H)(C)₃)- | + | | | $\Delta_t H^\circ =$ cis -Bicyclo[t $(7 \times C - (H (1 \times cis$ -Bi Gas Phase $\Delta_t H^\circ =$ | 6.1.0]nonane ()2(C)2) + (2 icyclo[6.1.0]i Literature -31.20 | e
× C-(H)(C) ₃) -
nonane rsc)
- Calculated = | +
= Residual | C ₉ H ₁₆ Reference | $\Delta_t H^\circ =$ Solid Phase $\Delta_t H^\circ =$ Bicyclo[3.3. $(7 \times C - (H^\circ))^{-1}$ | - 148.20 1] nonane H) ₂ (C) ₂) + (2 elo[3.3.1] non Literatur | -162.30
2×C-(H)(C) ₃) | + | C ₃ H ₁₆ | | $\Delta_t H^\circ =$ cis -Bicyclo[4 $(7 \times C - (H (1 \times cis$ -Bi Gas Phase $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ $trans - (+)$ -B $(7 \times C - (H (1 \times cis + H (1 \times (1$ | 5.1.0] nonance (2(C) ₂) + (2 (c) ₂ (c) ₁ (c) ₁ (c) ₁ (c) ₁ (c) ₂ | - XC-(H)(C) ₃) + nonane rsc) - Calculated = -31.20 - 80.30 | + Residual 0.00 0.00 | C ₂ H ₁₆ Reference
78COR/PER | Solid Phase $\Delta_t H^\circ =$ Bicyclo[3.3. (7×C-(H (1×Bicyclose)) Gas Phase $\Delta_t H^\circ =$ Solid Phase | - 148.20 1] nonane H) ₂ (C) ₂) + (2 elo[3.3.1] non Literatur - 127.50 | - 162.30 2×C-(H)(C) ₃)- nane rsc) re - Calculated | +
= Residual | C ₉ H ₁₆
Reference | | $\Delta_t H^\circ =$ cis -Bicyclo[4 $(7 \times C - (H (1 \times cis$ -Bi Gas Phase $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ $trans - (+)$ -B $(7 \times C - (H (1 \times cis + H (1 \times (1$ | 5.1.0] nonano
(1)2(C)2) + (2
(2) (2) (6.1.0]
Literature
-31.20
se
-80.30
icyclo[6.1.0]
(1)2(C)2) + (2
-Bicyclo[6.1.0] | - XC-(H)(C) ₃) - nonane rsc) - Calculated = - 31.20 - 80.30 nonane × C-(H)(C) ₃) - | + Residual 0.00 0.00 | C ₂ H ₁₆ Reference 78COR/PER | Solid Phase $\Delta_{t}H^{\circ} = \frac{1}{2}$ Bicyclo[3.3. $(7 \times C - (F + (1 \times Bicyc)))$ Gas Phase $\Delta_{t}H^{\circ} = \frac{1}{2}$ Solid Phase $\Delta_{t}H^{\circ} = \frac{1}{2}$ | - 148.20 1]nonane 1) ₂ (C) ₂) + (2 clo[3.3.1]non Literatur - 127.50 | -162.30 2 × C-(H)(C) ₂)-nane rsc) re - Calculated = -127.50 -178.20 | +
= Residual
0.00 | C ₃ H ₁₆ Reference 77PAR/STE 77PAR/STE | | $\Delta_t H^\circ =$ cis -Bicyclo[4 $(7 \times C - (H (1 \times cis$ -Bi Gas Phase $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ $trans - (+)$ -B $(7 \times C - (H (1 \times cis + H (1 \times (1$ | 5.1.0] nonano
(1)2(C)2) + (2
(2) (2) (6.1.0]
Literature
-31.20
se
-80.30
icyclo[6.1.0]
(1)2(C)2) + (2
-Bicyclo[6.1.0] | - XC-(H)(C) ₃) - nonane rsc) - Calculated = - 31.20 - 80.30 nonane × C-(H)(C) ₃) - 0]nonane rsc) | + Residual 0.00 0.00 | C ₉ H ₁₆ Reference 78COR/PER 78COR/PER | Solid Phase $\Delta_{t}H^{\circ} = \frac{1}{2}$ Bicyclo[3.3. $(7 \times C - (H + 1) \times H) \times (1 \times H)$ Gas Phase $\Delta_{t}H^{\circ} = \frac{1}{2}$ Solid Phase $\Delta_{t}H^{\circ} = \frac{1}{2}$ Cyclopentyle $(9 \times C - (H + 1) \times H) \times (9 \times C - (H + 1) \times H)$ | - 148.20 1]nonane H) ₂ (C) ₂) + (2 elo[3.3.1]non Literatur - 127.50 - 178.20 cyclohexane H) ₂ (C) ₂) + (2 | -162.30 2 × C-(H)(C) ₂)-nane rsc) re - Calculated = -127.50 -178.20 | + Residual 0.00 0.00 | C ₉ H ₁₆ Reference 77PAR/STE 77PAR/STE C ₁₁ H ₂₆ | | $\Delta_t H^\circ =$ cis-Bicyclo[t] $(7 \times C - (H (1 \times cis - Bi)))$ Gas Phase $\Delta_t H^\circ =$ Liquid Phas $\Delta_t H^\circ =$ trans-(+)-B $(7 \times C - (H (1 \times trans)))$ Gas Phase | 6.1.0]nonane ()2(C)2) + (2) (cyclo[6.1.0]) Literature -31.20 (e) -80.30 (icyclo[6.1.0]) (1)2(C)2) + (2 (2) (3) (4) (5) (5) (6.1.0] (7) (7) (8) (9) (9) (9) (1) (1) (1) (2) (2) (2) (3) (4) (4) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7 | e × C-(H)(C) ₃) - nonane rsc) e - Calculated = -31.20 -80.30 nonane × C-(H)(C) ₃) - 0]nonane rsc) e - Calculated = | + Residual 0.00 0.00 + Residual | C ₉ H ₁₆ Reference 78COR/PER 78COR/PER C ₉ H ₁₆ | Solid Phase $\Delta_{t}H^{\circ} = \frac{1}{2}$ Bicyclo[3.3. $(7 \times C - (H + 1) \times H) \times (1 \times H)$ Gas Phase $\Delta_{t}H^{\circ} = \frac{1}{2}$ Solid Phase $\Delta_{t}H^{\circ} = \frac{1}{2}$ Cyclopentyle $(9 \times C - (H + 1) \times H) \times (9 \times C - (H + 1) \times H)$ | - 148.20 1]nonane H) ₂ (C) ₂) + (2 elo[3.3.1]non Literatur - 127.50 - 178.20 cyclohexane t) ₂ (C) ₂) + (2 epentane (s | -162.30 2×C-(H)(C) ₃)- nane rsc) re - Calculated = -127.50 -178.20 | Residual 0.00 0.00 | C ₉ H ₁₆ Reference 77PAR/STE 77PAR/STE C ₁₁ H ₂₆ | | Cyclopentylcyclohexane (Continued)
$(9 \times C - (H)_2(C)_2) + (2 \times C - (H)(C)_3) + (1 \times Cyclopentane (sub) rsc) + (1 \times Cyclohexane Cyclohex$ | C ₁₁ H ₂₀ b) rsc) | Heptylcyclohexane
$(1 \times C - (H)_3(C)) + (11 \times C - (H)_2(C)_2) + (1 (1$ | $C_{13}H_{26}$
$H)(C)_3) +$ | | |--|---|--|---------------------------------|--| | Literature – Calculated = Residual | Reference | Literature – Calculated = Residual | Reference | | | Liquid Phase $\Delta_t H^\circ = -230.20 -219.58 -10.62$ $C_p^\circ = 267.01$ $S^\circ = 325.39$ | 61KOZ/SKU | Gas Phase $\Delta_t H^\circ = -289.20 -270.75 -18.45$ $C_p^\circ = 274.78$ | 78FUC/PEA | | | $\Delta_t S^\circ = -1043.46$ $\Delta_t G^\circ = 91.53$ $\ln K_t = -36.92$ | | Liquid Phase
$\Delta_t H^\circ = -353.00 -337.47 -15.53$
$C_p^\circ = 366.27$ | 40MOO/REN | | | Cyclopentylcycloheptane $ (10 \times C - (H)_2(C)_2) + (2 \times C - (H)(C)_3) + \\ (1 \times Cyclopentane (sub) rsc) + (1 \times Cycloheptane Cycloheptan$ | C ₁₂ H ₂₂ | $S^{\circ} = 440.69$ $\Delta_{f}S^{\circ} = -1331.35$ $\Delta_{f}G^{\circ} = 59.47$ $\ln K_{f} = -23.99$ | | | | Literature - Calculated = Residual Gas Phase | Reference | Bicyclohexyl
$(10 \times C \cdot (H)_2(C)_2) + (2 \times C - (H)(C)_3) + (2 \times Cyclohexane (sub) rsc)$ | C ₁₂ H ₂₂ | | | $\Delta_t H^\circ = -162.75$ $C_p^\circ = 204.05$ | · . | Literature – Calculated = Residual | Reference | | | Liquid Phase $\Delta_t H^\circ = -226.30 -219.75 -6.55$ $C_p^\circ - 291.45$ $S^\circ = 348.56$ | 61KOZ/SKU |
Gas Phase $\Delta_{i}H^{\circ} = -215.70 -209.42 -6.28$ $C_{\rho}^{\circ} - 223.42$ | 78MON/ROS | | | $\Delta_t S^\circ = -1156.60$ $\Delta_t G^\circ = 125.09$ $\ln K_t = -50.46$ | | Liquid Phase
$\Delta_t H^\circ = -273.70 -270.96 -2.74$
$C_p^\circ = 294.54$ | 76GOO/LEE | | | Dicyclopentylmethane
$(9 \times C - (H)_2(C)_2) + (2 \times C - (H)(C)_3) + (2 \times C)_2(C)_2(C)_2(C)_3(C)_3(C)_3(C)_3(C)_3(C)_3(C)_3(C)_3$ | C ₁₁ H ₂₀ | $S^{\circ} = 326.22$ $\Delta_{i}S^{\circ} = -1178.94$ $\Delta_{i}G^{\circ} = 80.54$ $\ln K_{f} = -32.49$ | | | | Literature – Calculated = Residual | Reference | Bicycloheptyl | C ₁₄ H ₂₆ | | | Gas Phase $\Delta_t H^{\circ} = -148.91$ $C_p^{\circ} = 190.43$ | | $(12 \times C - (H)_2(C)_2) + (2 \times C - (H)(C)_3) + (2 \times Cyclobe$ $Literature - Calculated = Residual$ | Reference | | | Liquid Phase $\Delta_t H^{\circ} = -205.10 -193.93 -11.17$ $C_p^{\circ} = 269.90$ | 61KOZ/SKU | Gas Phase $\Delta_{\nu}H^{\circ} = -197.22$ $C_{p}^{\circ} = 240.56$ | | | | $S^{\circ} = 356.94$ $\Delta_t S^{\circ} = -1011.91$ $\Delta_t G^{\circ} = 107.77$ $\ln K_t = -43.47$ | | Liquid Phase
$\Delta_t H^\circ = -285.00 -271.30 -13.70$
$C_p^\circ = 343.42$
$S^\circ = 372.56$ | 61KOZ/SKU | | | | | $\Delta_t S^\circ = -1405.22$ $\Delta_t G^\circ = 147.67$ $\ln K_t = -59.57$ | | | | TARIE ' | 14 | Cyclic | CH-03 | (47) | _ | Continued | |---------|-----|--------|--------|------|---|-----------| | IABLE | 14. | CACHE | C11-03 | (4/) | _ | Continued | | | $H)(C_B)_2$ + | ne
(2×C _B -(C)(C
+(1×cycloproj | | | 9,9'-Bianthr
(18×C _B -(| | $(2 \times C_B - (C_B)(C_B))$ | (B _F) ₂) + (8×0 | $C_{28}H_{16}$
C_{BF} – $(C_{BF})(C_B)_2)$ | |---|----------------|--|------------|---|---|---------------------------------------|---|---|--| | (2 ~ C -(11) | , | e – Calculated : | | Reference | | Literatur | e – Calculated = | Residual | Reference | | Gas Phase | | | | | Gas Phase $\Delta_t H^\circ =$ | 454.30 | 454.30 | 0.00 | 58HOY/PEP | | $\Delta_{\mathfrak{g}}H^{\circ} =$ | | 261.66 | | | | | -11 - 14 | | | | Liquid Phase
Δ _f H° = | 178.80 | 179.13 | -0.33 | 61KOZ/LUK | Solid Phase $\Delta_f H^\circ =$ | 326.20 | 326.20 | 0.00 | 51MAG/HAR | | | $H)(C_B)_2) +$ | pane
(2×C _B -(C)(C
+ (1×cyclopro | | | | (H)(C _B) ₂) + | $(2 \times C_B - (C_B)_2)$ culated = Residu | ,, . | $C_{28}H_{1}$ C_{BF} – $(C_{BF})(C_{B})_2)$ ence | | | Literatur | e – Calculated | = Residual | Reference | Solid Phase $\Delta_t H^{\circ} =$ | 212.80 | 212.80 | 0.00 | 51MAG/HAR | | Gas Phase $\Delta_t H^{\circ} =$ | | 261.66 | | | | | | | | | Liquid Phase
Δ _i H° = | e
166.20 | 179.13 | - 12.93 | 61KOZ/LUK | | $C)(C_B)_2)+($ | 30 × C _B -(H)(C _B | | | | | $I(C_d) + (2$ | yl-1,3-butadien
2×C _d -(H)(C _B) | | C ₁₆ H ₁₄
d)(C _B) ₂) + | Solid Phase $\Delta_t H^\circ =$ | 511.80 | 511.80 | 0.00 | 36BEN/CUT2 | | | Literatur | e – Calculated | = Residual | Reference | 1,1,4,4-Tetra | | | \. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | C ₂₈ H ₂₄ | | Gas Phase | | | | | (20 × C _B -(
(2 × C-(H | | $(2 \times C - (H)_2(C))$ | 2) + (4 × C _B - | (C)(C _B) ₂) + | | $\Delta_t H^\circ = C_p^\circ =$ | | 299.56
238.50 | | | | | culated = Residu | ıal Refere | ence | | Liquid Phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | e | 208.56
372.36
323.82
682.02
411.90
166.16 | | | Liquid Phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \operatorname{In} K_t = S^\circ $ | • | 145.44
577.84
620.40
- 1237.74
514.47
- 207.53 | | | | Solid Phase $\Delta_t H^\circ = C_r^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 178.80 | 175.96
303.90
294.50
-711.34
388.05
-156.53 | 2.84 | 53COO/HO12 | Solid Phase $\Delta_t H^\circ = C_p^\circ =$ | 163.30 | 160.18
440.50 | 3.12 | 53COO/HOI | TABLE 15. Alcohols (69) | $\begin{array}{l} \textbf{1,2'-Dinaphthylmethane} & C_{21}H_{16} \\ (1\times C-(H)_2(C_B)_2) + (2\times C_B-(C)(C_B)_2) + (4\times C_{BF}-(C_{BF})(C_B)_2) + \\ (14\times C_B-(H)(C_B)_2) \end{array}$ | | | | | | | |--|-----------|------------------|-----------|-------|--|--| | | Literatur | e – Calculated = | Reference | | | | | Gas Phase | | | | | | | | $\Delta_i H^\circ =$ | | 274.59 | | | | | | Liquid Phas | se . | | | | | | | $\Delta_{i}H^{\circ} =$ | | 189.38 | | | | | | $C_p^{\circ} =$ | | 408.71 | | | | | | <i>s</i> ° = | | 394.99 | | | | | | $\Delta_f S^\circ =$ | | -770.12 | | | | | | $\Delta_f G^\circ =$ | | 418.99 | | | | | | $lnK_f =$ | | - 169.02 | | | | | | Solid Phase | : | | | | | | | $\Delta_t H^\circ =$ | 162.00 | 154.18 | 7.82 | 78GOO | | | | $C_n^{\circ} =$ | | 313.56 | | | | | | S° = | | 306.35 | | | | | | $\Delta_f S^\circ =$ | | -858.76 | | | | | | $\Delta_t G^\circ =$ | | 410.22 | | | | | | $\ln K_{\rm f} =$ | | - 165.48 | | | | | | | | | | | | | | | Literature | - Calculated - | - Residual | Reference | |----------------------|------------|----------------|------------|-----------| | Gas Phase | ; | | | | | $\Delta_f H^\circ =$ | -201.10 | 201.59 | 0.49 | 32ROS | | $C_0^{\circ} =$ | 43.89 | 43.89 | 0.00 | 69STU/WES | | S° = | 239.70 | 239.69 | 0.01 | 69STU/WES | | $\Delta_f S^\circ =$ | | -129.72 | | | | $\Delta_f G^\circ =$ | | - 162.91 | | | | $lnK_f =$ | | 65.72 | | | | Liquid Ph | asc | | | | | $\Delta_t H^\circ =$ | | -239.11 | 0.61 | 85MAJ/SVO | | $C_p^{\circ} =$ | | 81.12 | 0.01 | 71CAR/WES | | S° = | | 127.19 | 0.00 | 71CAR/WES | | $\Delta_t S^\circ =$ | | -242.21 | | | | $\Delta_f G^\circ =$ | | - 166.89 | | | | $lnK_f =$ | | 67.32 | | | Ethanoi; Ethyl alcohol C_2H_6O $(1 \times C - (H)_3(C)) + (1 \times O - (H)(C)) + (1 \times C - (H)_2(O)(C)), \sigma = 3$ Literature – Calculated = Residual Reference | Gas Phase | e | | | | |---|-------------------|------------------------------|------------------|------------------------|
 $\Delta_t H^\circ =$ | -235.30 | -234.49 | -0.81 | 32ROS | | $C_n^{\circ} = 0$ | 65.44 | 64.22 | 1.22 | 69STU/WES | | <i>S</i> ° = | 282.59 | 283.12 | -0.53 | 69STU/WES | | $\Delta_f S^\circ =$ | | -222.60 | | | | $\Delta_t G^{\circ} =$ | | -168.12 | | | | $lnK_f =$ | | 67.82 | Liquid Ph | ase | | | | | Liquid Ph $\Delta_t H^\circ =$ | ase
277.60 | - 274.91 | - 2.69 | 85MAJ/SVO | | • | | - 274.91
114.76 | - 2.69
- 2.26 | 85MAJ/SVO
77HAI/SUG | | $\Delta_f H^\circ =$ | -277.60 | | | | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} =$ | -277.60
112.50 | 114.76 | -2.26 | 77HAI/SUG | | $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | -277.60
112.50 | 114.76
159.78 | -2.26 | 77HAI/SUG | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} =$ | -277.60
112.50 | 114.76
159.78
- 345.93 | -2.26 | 77HAI/SUG | | | Literatui | re – Calculated | Reference | | |----------------------|-----------|-----------------|-----------|-----------| | Gas Phase | 2 | | | | | $\Delta_t H^\circ =$ | -124.50 | -124.18 | -0.32 | 38DOL/GRE | | $C_p^{\circ} =$ | 76.02 | 76.02 | 0.00 | 69STU/WES | | S° = | 307.57 | 307.56 | 0.01 | 69STU/WES | | $\Delta_t S^\circ =$ | | -203.89 | | | | $\Delta_f G^\circ =$ | | -63.39 | | | | $lnK_f =$ | | 25.57 | | | TABLE 15. Alcohols (69) - Continued # TABLE 15. Alcohols (69) - Continued | $(1 \times C_{d}-($ | | ol (Continued) C _d -(H)(C))+(1 | × C-(H) ₂ (O) | C ₃ H ₆ O
(C _d))+ | (1×C-(I | t-Pentyl alc
H) ₃ (C))+(3
H)(C)), σ = | \times C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ | C ₅ H ₁₂ O
(O)(C)) + | |---|---|--|---------------------------|--|--|---|---|-----------------------------|---| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid Pha $\Delta_t H^\circ = C_p^\circ =$ | -171.10
138.91 | -167.32
138.91 | -3.78
0.00 | 49GEL/SKI
1881REI | Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | -294.70
132.88
402.54 | - 296.38
132.89
400.60
- 514.05 | 1.68
- 0.01
1.94 | 66WAD2
69STU/WES
69STU/WES | | (1×C-(| n-Propyl alo
H) ₃ (C))+(1
H) ₂ (O)(C)), | \times C-(H) ₂ (C) ₂) | + (1 × O-(H)(| C ₃ H ₈ O | $\Delta_f G^\circ = \\ \ln K_f = \\ -$ | | -143.12
57.73 | , | | | Gas Phase | Literatur | re – Calculated | = Residual | Reference | Liquid Pha $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = $ | - 351.60
208.14
258.90 | -352.10
206.02
256.92
-657.73 | 0.50
2.12
1.98 | 75MOS/DEK
68COU/LEE
68COU/LEE | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} =$ | -255.10
87.11
324.80 | -255.12
87.11
322.28
-319.75 | 0.02
0.00
2.52 | 61SNE/SKI
69STU/WES
69STU/WES | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = \\ -$ | | -156.00
62.93 | | | | $\Delta_t G^\circ = \ln K_t = \frac{1}{2}$ | *** | - 159.79
64.46 | | | (1×C-(1 | - Hexyl alco
H) ₃ (C)) + (4
H)(C)), σ = | \times C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ | C ₆ H ₁₄ O
(O)(C))+ | | Liquid Phate $\Delta_t H^\circ = C_t^\circ = S^\circ = C_t^\circ$ | - 302.60
143.80
192.80 | -300.64
145.18
192.16 | -1.96
-1.38
0.64 | 61SNE/SKI
68COU/LEE
68COU/LEE | | Literatu | re – Calculated | = Residual | Reference | | $\Delta_{\rm f}S^{\circ} = \Delta_{\rm f}G^{\circ} = \ln K_{\rm f} = 0$ | | - 449.87
- 166.51
67.17 | | | Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | -315.90
155.77
441.50 | -317.01
155.78
439.76
-611.20 | 1.11
-0.01
1.74 | 66WAD2
69STU/WES
69STU/WES | | (1×C-(| - Butyl alcol
(H) ₃ (C))+(2
(H)(C)), σ = | \times C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ | C ₄ H ₁₀ O | $\Delta_f G^\circ = \ln K_f =$ | | -134.78
-134.37 | | | | Gas Phase | · | re - Calculated | | Reference | Liquid Pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ | se
- 377.50
242.50
287.40 | -377.83
236.44
289.30
-761.66 | 0.33
6.06
-1.90 | 75MOS/DEK
89VES/BAR
29KEL | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | -275.01
110.00
363.17 | - 275.75
110.00
361.44
- 416.90
- 151.45 | 0.74
0.00
1.73 | 66WAD2
69STU/WES
69STU/WES | $\Delta_f G^\circ = \\ \ln K_f = \\ -$ | | -150.74
60.81 | | | | $lnK_f =$ | | 61.09 | | | | | \times C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ (| C ₇ H ₁₆ O
(O)(C))+ | | Liquid Ph $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | - 327.20
177.16
225.70 | - 326.37
175.60
224.54 | -0.83
1.56
1.16 | 69MOS/DEK
65COU/HAL
65COU/HAL | - Amm | Literatur | re – Calculated | = Residual | Reference | | $\Delta_{\rm f}S^{\circ} = \\ \Delta_{\rm f}G^{\circ} = \\ \ln K_{\rm f} = $ | | - 553.80
- 161.26
65.05 | | | Gas Phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0 $ | - 336.50
178.66
480.45 | - 337.64
178.67
478.92
- 708.35
- 126.44
51.01 | 1.14
-0.01
1.53 | 77MAN/SEL
69STU/WES
69STU/WES | TABLE 15. Alcohols (69) - Continued TABLE 15. Alcohols (69) - Continued | (1 × C-(H | | ohol (Continue \times C-(H) ₂ (C) ₂) + 3 | | C ₇ H ₁₆ O
(O)(C))+ | (1×C-(| 1-Decyl alco
H)3(C))+(8
(H)(C)), σ = | $3 \times C - (H)_2(C)_2$ | + (1 × C–(H) ₂ | $C_{10}H_{22}O$
(O)(C))+ | |---|---------------------------------------|---|---|--|---|--|---------------------------|---------------------------|-----------------------------------| | | Literatur | e – Calculated = | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid Phas | se | | | | Gas Phase | ; | | | | | $\Delta_t H^{\circ} =$ | -403.30 |
-403.56 | 0.26 | 75MOS/DEK | $\Delta_{\rm f}H^{\circ} =$ | - 396.60 | - 399.53 | 2.93 | 79SVE | | $C_p^{\circ} =$ | 270.80 | 266.86 | 3.94 | 89VES/BAR | $C_p^{\circ} =$ | 247.32 | 247.34 | -0.02 | 69STU/WES | | S° = | 325.90 | 321.68 | 4.22 | 56PAR/KEN | S° = | 597.31 | 596.40 | 0.91 | 69STU/WES | | $\Delta_{\rm f}S^{\circ} =$ | | - 865.59 | | | $\Delta_f S^\circ =$ | | - 999.81 | | | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = $ | | 145.48
58.69 | | | $\Delta_f G^\circ = \ln K_f =$ | | 101.44
40.92 | | | | | | | | | | | · | | | | | | | | | Liquid Pha | | | | | | | Octyl alcoh | | | C ₈ H ₁₈ O | $\Delta_{\rm f}H^{\circ} =$ | 478.10 | -480.75 | 2.65 | 75MOS/DEK | | , , | | \times C-(H) ₂ (C) ₂) | + (1×C-(H) ₂ | (O)(C))+ | $C_p^{\circ} = S^{\circ} =$ | | 358.12
418.82 | | | | (1×0-(1 | H)(C)), σ = | : 3 | | | Δ ₆ 5° = | | - 1177.38 | | | | | Literatus | re – Calculated | = Residual | Reference | $\Delta_{\rm f}G^{\circ} =$ | | - 129.71 | | | | | | - Culculated | | | $\ln K_f =$ | | 52.33 | | | | Gas Phase | | | | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -355.60 | -358.27 | 2.67 | 77MAN/SEL | | | | | | | $C_p^{\circ} =$ | 201.54 | 201.56 | -0.02 | 69STU/WES | Undecanol | | | | C ₁₁ H ₂₄ O | | S° = | 519.40 | 518.08 | 1.32 | 69STU/WES | | H)3(C))+(9
H)(C)), | $0 \times C - (H)_2(C)_2$ | $+(1\times C-(H)_2)$ | (O)(C))+ | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | - 805.50
- 118.11 | | | (1×0-(| 11)(0)), 0 - | - 3 | | | | $lnK_f =$ | | 47.64 | | | | Literatu | re – Calculated | = Residual | Reference | | | | | | | | | | | | | Liquid Pha | | 100.00 | 0.70 | an toomer | Gas Phase | | 100.16 | 204 | (0.000 t 0.000 | | $\Delta_i H^\circ =$ | -426.50 | -429.29 | 2.79
6.72 | 75MOS/DEK
89VES/BAR | $\Delta_{\rm f}H^{\circ} =$ | - 422.20
270.20 | - 420.16 | - 2.04 | 69STU/WES | | $C_p^{\circ} = S^{\circ} =$ | 304.00 | 297.28
354.06 | 0.72 | 09 V E3/DAK | $C_p^{\circ} = S^{\circ} =$ | 636.30 | 270.23
635.56 | - 0.03
0.74 | 69STU/WES
69STU/WES | | Δ ₁ S° = | | - 969.52 | | | Δ ₆ S° = | 030.30 | - 1096.96 | 0.74 | 09310/WE3 | | $\Delta_t G^\circ =$ | | - 140.23 | | | $\Delta_{\rm f}G^{\circ} =$ | | - 93.10 | | | | $\ln K_{\rm f} =$ | | 56.57 | | | $lnK_f =$ | | 37.56 | | | | | | | | | Liquid Pha | 000 | | | | | Nonanol: n | -Nonyi alco | hol | | C9H20 | $\Delta_{\rm f}H^{\circ} =$ | - 504.80 | -506.48 | 1.68 | 75MOS/DEK | | | | \times C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ | | $C_p^{\circ} =$ | 407.00 | 388.54 | 18.46 | 90ZAB/RUZ | | | H)(C)), σ = | | (, , , , , , , , , , , , , , , , , , , | ()()) | S° = | | 451.20 | | 7 3 7 . 7 . 7 | | • • • | , , ,, | | | | $\Delta_f S^\circ =$ | | - 1281.31 | | | | | Literatu | re – Calculated : | ≈ Residual | Reference | $\Delta_{\mathbf{f}}G^{\circ} =$ | | - 124.46 | | | | | · · · · · · · · · · · · · · · · · · · | | ······ | | $lnK_f =$ | | 50.20 | | | | Gas Phase $\Delta_t H^\circ =$ | - 375.50 | 270 nn | 2 40 | 77M A NI/CEI | | | | | | | $C_{\rho}^{\circ} =$ | - 373.50
224.43 | -378.90
224.45 | 3.40
0.02 | 77MAN/SEL
69STU/WES | Dodecanel | ; n -Dodecyl | alcohol | | C ₁₂ H ₂₆ O | | $S^{\circ} =$ | 558.35 | 557.24 | 1.11 | 69STU/WES | | | $0 \times C - (H)_2(C)_2$ | +(1×C-(H) | | | $\Delta_i S^\circ =$ | 556.05 | - 902.66 | 1.41 | 0202 O/ 17 MO | | H)(C)), σ = | | · (* ^ O-(11) | ヘンハンル・ | | $\Delta_{\rm f}G^{\circ} =$ | | -109.77 | | | (2 | | - | | | | $\ln K_t -$ | | 44.28 | | | | Literatu | re - Calculated | = Residuai | Reference | | Liouid Dt. | | | | - | Con Dha | | | | | | Liquid Pha | - 453.60 | -455 M | 1.42 | 75MOS/DEK | Gas Phase $\Delta_t H^{\circ} =$ | -436.60 | 440 70 | A 10 | 70\$3/P | | | - 7JJ.UU | - 455.02
327.70 | 1.74 | /JMOJ/DEK | $C_{\rho}^{\circ} =$ | 293.09 | 440.79
293.12 | 4.19
0.03 | 79SVE
69STU/WES | | $\Delta_l II^{\circ}$ – | | 321.10 | | | | | | | | | $\Delta_l II^\circ - C_p^\circ =$ | | 386.44 | | | N° = | 675.21 | (174.77 | ().49 | 695111/WHS | | $\Delta_t II^\circ - C_p^\circ = S^\circ =$ | | 386.44
1073.45 | | | $S^{\circ} = \Delta_{6}S^{\circ} =$ | 675.21 | 674.72
1194.11 | 0.49 | 69STU/WES | | $\Delta_l II^\circ - C_p^\circ =$ | | 386.44
1073.45
134.97 | | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = 0$ | 6/5.21 | - 1194.11
- 84.77 | 0.49 | 6951U/WES | TABLE 15. Alcohols (69) - Continued | Liquid Phase $ \Delta_t H^{\circ} = -C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = $ | | e – Calculated : | = Residual | D -f | | | | | | |---|----------------------|--|------------|-----------------------------------|----------------------------------|--------------|---------------------------|--------------|---------------------------------| | $ \Delta_t H^\circ = -C_p^\circ = S^\circ = -C_p^\circ -C$ | | | | Reference | | Literatu | re – Calculated | = Residual | Reference | | $ \Delta_t H^\circ = -C_p^\circ = S^\circ = -C_p^\circ -C$ | : | | | | Liquid Pha | ise | | | | | $C_p^{\circ} = S^{\circ} =$ | - 528.50 | -532.21 | 3.71 | 75MOS/DEK | $\Delta_t H^\circ =$ | - 579.70 | -583.67 | 3.97 | 91STE/CHI | | s° = | 438.30 | 418.96 | 19.34 | 90ZAB/RUZ | $C_p^{\circ} =$ | 575.70 | 479.80 | 5.57 | JIDIL/CIII | | | 430.30 | | 17.54 | JULAD/KUL | $S^{\circ} =$ | | | | | | $\Delta_{f}S^{\circ} =$ | | 483.58 | | | _ | | 548.34 | | | | | | - 1385.24 | | | $\Delta_f S^\circ =$ | | - 1593.11 | | | | $\Delta_{\mathfrak{l}}G^{\circ} =$ | | - 119.20 | | | $\Delta_f G^{\circ} =$ | | - 108.69 | | | | $lnK_f =$ | | 48.08 | | | $lnK_f =$ | | 43.84 | | | | | | | | | Solid Phase | e | | | | | Tridecanol; <i>n</i> | n -Tridecyl | alcohol | | C ₁₃ H ₂₈ O | $\Delta_f H^\circ =$ | -628.18 | -632.32 | 4.14 | 91STE/CHI | | | | \times C-(H) ₂ (C) ₂ |)+(1×C-(H) | | $C_p^{\circ} =$ | 388.00 | 381.66 | 6.34 | 74MOS/MOU | | (1×O-(H) | | | (21) | 2(0)(0)) | $C_p^{\circ} =$ | 426.32 | 381.66 | 44.66 | 91STE/CHI | | (17.0 (11) | //~/// · · · | ~ | | | S° = | .25.02 | 386.16 | . 1.00 |) IO I I OI II | | | T 24 4 - | Colonia 1 | _ D oc!d1 | Dafa | | | | | • | | | Literatur | e – Calculated | = Kesiduai | Reference | $\Delta_{f}S^{\circ} =$ | | - 1755.29 | | | | | | | | | $\Delta_t G^{\circ} =$ | | - 108.98 | | | | | | | | | $lnK_f =$ | | 43.96 | | | | Gas Phase | | | | | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | | - 461.42 | | | | | | | | | $C_p^{\circ} =$ | 315.85 | 316.01 | -0.16 | 69STU/WES | | | | | | | S° = | 711.82 | 713.88 | -2.06 | 69STU/WES | Pentadecar | nol; n-Penta | decyl alcohol | | C ₁₅ H ₃₂ | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 1291.26 | | | | • | $3 \times C - (H)_2(C)_2$ |)+(1×C-(H) | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | -76.43 | | | | H)(C)), σ = | |) (1/10 (11) | 2(0)(0)) ! | | | | | | | (1 × 0-() | 11)(0)), 0 - | - , | | | | $lnK_f =$ | | 30.83 | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid Phase | e | | | | · | | | | | | $\Delta_t H^\circ =$ | | 557.94 | | | Gas Phase | | | | | | $C_p^{\circ} =$ | | 449.38 | | |
$\Delta_t H^\circ =$ | | -502.68 | | | | $S^{\circ} =$ | | 515.96 | | | $C_p^{\circ} =$ | 361.58 | 361.79 | -0.21 | 69STU/WES | | | | | | | | | | | • | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 1489.18 | | | S° = | 790.73 | 792.20 | -1.47 | 69STU/WES | | $\Delta_{\rm f}G^{\circ} =$ | | - 113.94 | | | $\Delta_f S^{\circ} =$ | | - 1485.56 | | | | $lnK_f =$ | | 45.96 | | | $\Delta_f G^\circ = \ln K_f =$ | | -59.76
24.11 | | | | Solid Phase | | | | | | | | | | | $\Delta_t H^\circ = -$ | - 599.40 | - 602.91 | 3.51 | 75MOS/DEK | Liquid Pha | ise | | | | | $C_p^{\circ} =$ | 378.00 | 359.74 | 18.26 | 74MOS/MOU | $\Delta_{\mathbf{f}}H^{\circ} =$ | | -609.40 | | | | S° = | | 363.15 | | | $C_p^{\circ} =$ | | 510.22 | | | | $\Delta_{\epsilon}S^{\circ} =$ | | - 1641.99 | | | $S^{\circ} =$ | | 580.72 | | | | $\Delta_i G^\circ =$ | | | | | $\Delta_f S^\circ =$ | | - 1697.04 | | | | | | -113.35 | | | | | | | | | $lnK_f =$ | | 45.73 | | | $\Delta_{\rm f}G^{\circ} =$ | | - 103.43 | | | | | | | | | $lnK_f =$ | | 41.72 | | | | Tetradecano | ol; <i>n</i> -Tetrac | lecyl alcohol | | C ₁₄ H ₃₀ O | Solid Phase | е | | | | | | | $2 \times C - (H)_2(C)_2$ |)+(1×C-(H) | | $\Delta_f H^\circ =$ | -658.20 | - 661.73 | 3.53 | 75MOS/DEK | | | I)(C)), σ = | | () | | $C_p^{\circ} =$ | 400.00 | 403.58 | -3.58 | 74MOS/MOU | | (2.00 (11 | -,(~,), 0 - | - | | | $S^{\circ} =$ | | 409.17 | 2,20 | , | | | T itamatu | re – Calculated | - Danidus | Deference | | | | | | | | Literatu | e – Calculated | - Vezionsi | Reference | $\Delta_f S^\circ =$ | | - 1868. 5 9 | | | | | | | | | $\Delta_f G^\circ = \ln K_f =$ | | - 104.61
42.20 | | | | Gas Phase | | | | | •••••• | | 12.20 | | | | | - 474.80 | - 482.05 | 7.25 | 91STE/CHI | | | | | | | | 338.74 | 338.90 | -0.16 | | | | | | | | $C_p^{\circ} =$ | | | | 69STU/WES | | | | | | | 60 | 751.78 | 753.04 | - 1.26 | 69STU/WES | | | | | | | S° = | | -1388.41 | | | | | | | | | $\Delta_f S^\circ =$ | | | | | | | | | | | | | - 68.10 | | | | | | | | | |) ₃ (C))+(1 | ecyl alcohol; Co $4 \times C - (H)_2(C)_2$
= 3 | | C ₁₆ H ₃₄ O
₂ (O)(C))+ | | | $6 \times C - (H)_2(C)_2$ | 2)+(1×C-(H | C ₁₈ H ₃₈ C
) ₂ (O)(C)) + | |--|---|---|------------|--
--|---|---|------------------|---| | | Literatu | re – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas Phase | | | | | Gas Phase | | | | | | | -517.00 | -523.31 | 6.31 | 65DAV/KYB | $\Delta_{\rm f}H^{\circ} =$ | | -564.57 | | | | $C_p^o =$ | 384.47 | 384.68 | -0.21 | 69STU/WES | $C_p^{\circ} =$ | 430.20 | 430.46 | -0.26 | 69STU/WES | | S° = | 829.69 | 831.36 | -1.67 | 69STU/WES | S° = | 907.59 | 909.68 | - 2.09 | 69STU/WES | | $\Delta_f S^\circ =$ | 027.07 | - 1582.71 | 2.07 | | $\Delta_f S^\circ =$ | | - 1777.01 | | | | $\Delta_{i}G^{\circ} =$ | | -51.42 | | | $\Delta_{\rm f}G^{\circ} =$ | | -34.75 | | | | $lnK_f =$ | | 20.74 | | | $lnK_f =$ | | 14.02 | | | | | | | | | 7 | *************************************** | | | | | Liquid Phas | е | | | | Liquid Phas | e | 606 5 0 | | | | $\Delta_{\rm f}H^{\circ} =$ | | -635.13 | | | $\Delta_{\rm f}H^{\circ} =$ | | -686.59 | | | | $C_p^{\circ} =$ | | 540.64 | | | $C_p^{\circ} =$ | | 601.48 | | | | S° = | | 613.10 | | | S° = | | 677.86 | | | | $\Delta_f S^\circ =$ | | - 1800.97 | | | $\Delta_f S^\circ =$ | | - 2008.83 | | | | $\Delta_t G^{\circ} =$ | | -98.17 | | | $\Delta_f G^\circ =$ | | -87.66 | | | | $lnK_t =$ | | 39.60 | | | $lnK_f =$ | | 35.36 | | | | Solid Phase | | | | | Solid Phase | | | | | | | - 686.30 | - 691.14 | 4.84 | 75MOS/DEK | $\Delta_t H^\circ =$ | | - 749.96 | | | | $C_p^{\circ} =$ | 422.00 | 425.50 | -3.50 | 74MOS/MOU | $C_p^{\circ} =$ | | 469.34 | | | | $S^{\circ} =$ | 722.00 | 432.18 | 3.30 | 741400/1400 | S° = | | 478.20 | | | | - | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 2208.49 | | | | A C° | | | | | CIT | | | | | | $\Delta_{\rm f}S^{\circ} =$ | | - 1981.89 | | | A C | | _ 01 50 | | | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = $ | - | 100.24
40.44 | | | $\Delta_t G^\circ = \ln K_f = -$ | | -91.50
36.91 | | | | $\Delta_f G^\circ = \ln K_f = \frac{1}{1 \times C - (H)}$ | I) ₃ (C))+(1
I)(C)), σ | -100.24
40.44
adecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3 | | | $ \frac{\ln K_{\rm f} = }{\text{Nonadecano}} $ $ (1 \times C - (H_{\rm f})) = \frac{1}{2} \left(\frac{1}{2} \times \frac{1}{2} \right) \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac$ | $I_{3}(C) + (1^{\circ})_{3}(C), \sigma =$ | 36.91
lecyl alcohol
7 × C-(H) ₂ (C) ₂ | | | | $\Delta_f G^\circ = \ln K_f = \frac{1}{1 \times C - (H)}$ | I) ₃ (C))+(1
I)(C)), σ | -100.24
40.44
adecyl alcohol
15×C-(H) ₂ (C) ₂ | | | $ \frac{\ln K_{\rm f} = }{\text{Nonadecano}} $ $ (1 \times C - (H_{\rm f})) = \frac{1}{2} \left(\frac{1}{2} \times \frac{1}{2} \right) \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac$ | $I_{3}(C) + (1^{\circ})_{3}(C), \sigma =$ | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ | | | | $\Delta_f G^\circ = \ln K_f = \frac{1}{1 \times C - (H)}$ | I) ₃ (C))+(1
I)(C)), σ | -100.24
40.44
adecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3 | | ₂ (O)(C))+ | $ \frac{\ln K_{\rm f} = }{\text{Nonadecano}} $ $ (1 \times C - (H_{\rm f})) = \frac{1}{2} \left(\frac{1}{2} \times \frac{1}{2} \right) \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \left(\frac{1}{2} \times \frac$ | $I_{3}(C) + (1^{\circ})_{3}(C), \sigma =$ | 36.91
lecyl alcohol
7 × C-(H) ₂ (C) ₂ | |) ₂ (O)(C)) + | | $\Delta_t G^\circ = \ln K_f = \frac{1 \times C - (H_f)}{1 \times C - (H_f)}$ | I) ₃ (C))+(1
I)(C)), σ | -100.24
40.44
adecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3 | | ₂ (O)(C))+ | Nonadecano
(1×C-(H
(1×O-(H | $I_{3}(C) + (1^{\circ})_{3}(C), \sigma =$ | 36.91
lecyl alcohol
7 × C-(H) ₂ (C) ₂ | |) ₂ (O)(C))+ | | $\Delta_f G^\circ = \ln K_f = \frac{1}{1}$ Heptadecan (1 × C-(H) (1 × O-(H) Gas Phase $\Delta_t H^\circ = \frac{1}{1}$ | I) ₃ (C))+(1
I)(C)), σ | - 100.24
40.44
tadecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3
ure - Calculated | | ₂ (O)(C))+ | Nonadecand $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_{\ell} H^{\circ} =$ | $I_{3}(C) + (1^{\circ})_{3}(C), \sigma =$ | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ 3 re - Calculated | |) ₂ (O)(C)) + Reference | | $\Delta_t G^\circ = \frac{1}{\ln K_f} = \frac{1}{\ln K_f}$ Heptadecan $(1 \times C - (H_f))$ $(1 \times O - (H_f))$ Gas Phase $\Delta_t H^\circ = C_t^\circ = S^\circ = C_t^\circ = S^\circ = C_t^\circ C_t^\circ$ | () ₃ (C)) + (1
(I)(C)), σ
Literatu | - 100.24
40.44
tadecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94 | = Residual | Reference | Nonadecand $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | () ₃ (C)) + (1
I)(C)), σ =
Literatur | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ 3 re –
Calculated - 585.20 | = Residual |) ₂ (O)(C))+ | | $\Delta_t G^\circ = \frac{1}{\ln K_f} = \frac{1}{\ln K_f}$ Heptadecan $(1 \times C - (H_f))$ $(1 \times O - (H_f))$ Gas Phase $\Delta_t H^\circ = C_t^\circ = S^\circ = C_t^\circ = S^\circ = C_t^\circ C_t^\circ$ | (1) ₃ (C)) + (1
(1)(C)), σ =
Literatu | - 100.24
40.44
40.44
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | (C) ₃ (C)) + (1
I)(C)), σ =
Literatur
453.08 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ = 3 re - Calculated - 585.20 453.35 | = Residual -0.27 |) ₂ (O)(C)) + Reference 69STU/WES | | $\Delta_t G^\circ = \frac{1}{\ln K_t} = \frac{1}{\ln K_t}$ Heptadecan (1 × C-(H) (1 × O-(H) Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \frac{1}{\ln K_t}$ | (1) ₃ (C)) + (1
(1)(C)), σ =
Literatu | - 100.24
40.44
40.44
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = 0$ | (C) ₃ (C)) + (1
I)(C)), σ =
Literatur
453.08 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ = 3 re - Calculated - 585.20 453.35 948.84 | = Residual -0.27 |) ₂ (O)(C)) + Reference 69STU/WES | | $\Delta_t G^\circ = \frac{1}{\ln K_t} = \frac{1}{\ln K_t}$ Heptadecan $(1 \times C - (H_t))$ Gas Phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \frac{1}{\ln K_t}$ | (1) ₃ (C)) + (1
(1)(C)), σ =
Literatu | - 100.24
40.44
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | (C) ₃ (C)) + (1
I)(C)), σ =
Literatur
453.08 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 | = Residual -0.27 | Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_t = \frac{1 \times C(H)}{1 \times C(H)}$ Heptadecan $(1 \times C(H))$ Gas Phase $\Delta_t H^\circ = C_t^\circ = S_t^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 \times C(H)}{1 \times C(H)}$ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | -100.24
40.44
40.44
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
-543.94
407.57
870.52
-1679.86
-43.09 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 - 26.42 | = Residual |) ₂ (O)(C)) + Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_f = \frac{1 \times C(H)}{1 \times C(H)}$ Heptadecan $(1 \times C(H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S_0^\circ = \Delta_t G^\circ = \ln K_f = \frac{1 \times C(H)}{1 \times C(H)}$ Liquid Phas | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
ladecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = Liquid Phase$ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 - 26.42 10.66 | = Residual |) ₂ (O)(C)) + Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_f = \frac{1 \times C(H)}{1 \times C(H)}$ Heptadecan $(1 \times C(H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_f = \frac{1 \times C(H)}{1 \times C(H)}$ Liquid Phas $\Delta_t H^\circ = \frac{1 \times C(H)}{1 \times C(H)}$ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
tadecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t G^\circ}{\Delta_t H^\circ} G^\circ}{\Delta_$ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ = 3 re - Calculated - 585.20 453.35 948.84 -1874.17 - 26.42 10.66 | = Residual |) ₂ (O)(C)) + Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_f = \frac{1}{100}$ Heptadecan (1 × C-(H) (1 × O-(F) Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_f = \frac{1}{100}$ Liquid Phas $\Delta_t H^\circ = C_p^\circ $ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38
- 660.86
571.06 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t H^\circ}{\Delta_t H^\circ} = C_p^\circ =$ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ = 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 - 26.42 10.66 - 712.32 631.90 | = Residual |) ₂ (O)(C)) + Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_t = \frac{1}{1 \times G^\circ}$ Heptadecan (1 × C-(H) (1 × O-(H) Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{1 \times G^\circ}$ Liquid Phas $\Delta_t H^\circ = C_p^\circ = S^\circ $ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38
- 660.86
571.06
645.48 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t G^\circ = \ln K_t}{\Delta_t H^\circ = C_p^\circ = S^\circ = S^\circ = S^\circ = S^\circ = \Delta_t G^\circ = $ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ = 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 - 26.42 10.66 - 712.32 631.90 710.24 | = Residual |) ₂ (O)(C)) + Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_t = \frac{1}{1 \times C(H_t)}$ Heptadecan $(1 \times C(H_t))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{1}{1 \times C_p^\circ}$ Liquid Phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \frac{1}{1 \times C_p^\circ}$ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38
- 660.86
571.06
645.48
- 1904.90 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \Delta_t G^\circ = \ln K_t = K_t^\circ K$ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ = 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 - 26.42 10.66 - 712.32 631.90 710.24 - 2112.76 | = Residual |) ₂ (O)(C)) + Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_t = \frac{1 \times G^\circ}{\ln K_t} = \frac{1 \times G^\circ}{\ln X \cdot G^\circ} = \frac{1 \times G^\circ}{\ln K_t} $ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38
- 660.86
571.06
645.48 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t G^\circ = \ln K_t}{\Delta_t H^\circ = C_p^\circ = S^\circ = S^\circ = S^\circ = S^\circ = \Delta_t G^\circ = $ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ = 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 - 26.42 10.66 - 712.32 631.90 710.24 | = Residual | Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_f = \frac{1}{16}$ Heptadecan $(1 \times C - (H) + (1 \times C - (H))$ Gas Phase $\Delta_t H^\circ = C_t^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{16}$ Liquid Phase $\Delta_t H^\circ = C_t^\circ = \Delta_t G^\circ = \frac{1}{16}$ $\Delta_t H^\circ = C_t^\circ = \frac{1}{16}$ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38
- 660.86
571.06
645.48
- 1904.90
- 92.91 | = Residual | Reference 69STU/WES | In K_f = Nonadecand $(1 \times C - (H) \times C - (H) \times C - (H) \times C - (H) \times C $ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 - 26.42 10.66 - 712.32 631.90 710.24 - 2112.76 - 82.40 | = Residual |) ₂ (O)(C)) + Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_f = \frac{1}{\sqrt{G^\circ}}$ Heptadecan $(1 \times C - (H) + (1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Liquid Phase $\Delta_t H^\circ = C_p^\circ = \Delta_t S^\circ = \Delta_t S^\circ =
\ln K_t = \frac{1}{\sqrt{G^\circ}}$ Solid Phase | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
ladecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38
- 660.86
571.06
645.48
- 1904.90
- 92.91
37.48 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(2 \times C - (H))$ $(3 \times C - (H))$ $(4 \times C - (H))$ $(5 \times C - (H))$ $(5 \times C - (H))$ $(6 \times C - (H))$ $(7 \times C - (H))$ $(7 \times C - (H))$ $(8 \times C - (H))$ $(8 \times C - (H))$ $(9 \times C - (H))$ $(9 \times C - (H))$ $(1 $($ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 - 26.42 10.66 - 712.32 631.90 710.24 - 2112.76 - 82.40 33.24 | = Residual | Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_f = \frac{1}{\sqrt{G^\circ}}$ Heptadecan $(1 \times C - (H) + (1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Solid Phase $\Delta_t H^\circ = \frac{1}{\sqrt{G^\circ}}$ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
ladecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38
- 660.86
571.06
645.48
- 1904.90
- 92.91
37.48 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(2 \times C - (H))$ $(3 \times C - (H))$ $(4 \times C - (H))$ $(5 \times C - (H))$ $(6 \times C - (H))$ $(7 \times C - (H))$ $(7 \times C - (H))$ $(8 \times C - (H))$ $(8 \times C - (H))$ $(9 \times C - (H))$ $(9 \times C - (H))$ $(1 | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 - 26.42 10.66 - 712.32 631.90 710.24 - 2112.76 - 82.40 33.24 - 779.37 | = Residual | Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_f = \frac{1}{\sqrt{G^\circ}}$ Heptadecan $(1 \times C - (H) + (1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_f = \frac{1}{\sqrt{G^\circ}}$ Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_f = \frac{1}{\sqrt{G^\circ}}$ Solid Phase $\Delta_t H^\circ = C_p^\circ C_$ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
ladecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38
- 660.86
571.06
645.48
- 1904.90
- 92.91
37.48 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(2 \times C - (H))$ $(3 \times C - (H))$ $(4 \times C - (H))$ $(5 \times C - (H))$ $(6 \times C - (H))$ $(7 \times C - (H))$ $(7 \times C - (H))$ $(8 \times C - (H))$ $(8 \times C - (H))$ $(9 \times C - (H))$ $(9 \times C - (H))$ $(1 $ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 - 26.42 10.66 - 712.32 631.90 710.24 - 2112.76 - 82.40 33.24 - 779.37 491.26 | = Residual | Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Heptadecan $(1 \times C - (H) + (1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Solid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \frac{1}{\sqrt{G^\circ}}$ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
tadecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38
- 660.86
571.06
645.48
- 1904.90
- 92.91
37.48 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t H^\circ}{\Delta_t H^\circ} = C_t^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t H^\circ = C_t^\circ = S^\circ =$ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ = 3 re - Calculated - 585.20 453.35 948.84 -1874.17 -26.42 10.66 - 712.32 631.90 710.24 -2112.76 -82.40 33.24 - 779.37 491.26 501.21 | = Residual |) ₂ (O)(C)) + Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Heptadecan $(1 \times C - (H) + (1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Solid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \frac{1}{\sqrt{G^\circ}}$ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
ladecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38
- 660.86
571.06
645.48
- 1904.90
- 92.91
37.48 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t H^\circ}{\Delta_t H^\circ} = C_t^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t =$ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ 3 re - Calculated - 585.20 453.35 948.84 - 1874.17 - 26.42 10.66 - 712.32 631.90 710.24 - 2112.76 - 82.40 33.24 - 779.37 491.26 | = Residual | Reference 69STU/WES | | $\Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Heptadecan $(1 \times C - (H) + (1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{\sqrt{G^\circ}}$ Solid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \frac{1}{\sqrt{G^\circ}}$ | (I) ₃ (C)) + (I
I)(C)), σ =
Literatu
407.35
868.64 | - 100.24
40.44
tadecyl alcohol
15 × C-(H) ₂ (C) ₂
= 3
are - Calculated
- 543.94
407.57
870.52
- 1679.86
- 43.09
17.38
- 660.86
571.06
645.48
- 1904.90
- 92.91
37.48 | = Residual | Reference 69STU/WES | Nonadecand $(1 \times C - (H))$ $(1 \times C - (H))$ $(1 \times O - (H))$ Gas Phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t H^\circ}{\Delta_t H^\circ} = C_t^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t H^\circ = C_t^\circ = S^\circ =$ | (l) ₃ (C)) + (1'
I)(C)), σ =
Literatur
453.08
946.55 | 36.91 lecyl alcohol 7 × C-(H) ₂ (C) ₂ = 3 re - Calculated - 585.20 453.35 948.84 -1874.17 -26.42 10.66 - 712.32 631.90 710.24 -2112.76 -82.40 33.24 - 779.37 491.26 501.21 | = Residual |) ₂ (O)(C)) + Reference 69STU/WES | TABLE 15. Alcohols (69) - Continued | | • | $8 \times C - (H)_2(C)_2$ | + (1 × C-(H) | C ₂₀ H ₄₂ O
₂ (O)(C))+ | | $H_{3}(C) + (1$ | ×C-(H) ₂ (C) ₂) | | $C_5H_{12}O$
$C)_3) + (1 \times O - (H)(C))$ | |---|--|---|---------------------------------|--|---|--|---|--|---| | (2.1.0 (2 | ,,,,, | re – Calculated | = Residual | Reference | | , | re – Calculated | . , . , . , | Reference | | Gas Phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ =$ | 475.97
985.50 | - 605.83
476.24
988.00 | - 0.27
- 2.50 | 69STU/WES
69STU/WES | Gas Phase $\Delta_t H^\circ = C_\rho^\circ =$ | -301.20 | -300.81
132.92 | -0.39 | 85MAJ/SVO | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | | - 1971.32
- 18.08
7.29 | | | Liquid Pha $\Delta_t H^\circ = C_p^\circ =$ | se
356.60 | -355.20
203.04 | - 1.40 | 65CHA/ROS | | Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | se | -738.05
662.32
742.62 | | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | | 251.57
663.08
157.50
63.54 | | | | $\Delta_{f}S^{\circ} = \\ \Delta_{f}G^{\circ} = \\ \ln K_{f} = $ | | -2216.69
-77.14
31.12 | | | (2×C-(I | (C) + (1 | oamyl alcohol
×C-(H) ₂ (C) ₂)
iary)) + (1 × C- | + (1 × C-(H)((
(H) ₂ (O)(C)) + | C ₃ H ₁₂ C
C) ₃)
+
(1 × O-(H)(C)) | | Solid Phase $\Delta_t H^\circ = C_p^\circ =$ | | -808.78
513.18 | | | | Literatui | re – Calculated | = Residual | Reference | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | | 524.22
- 2435.09
- 82.76
33.38 | | | Gas Phase $\Delta_t H^\circ = C_r^\circ =$ | - 300.80 | - 303.07
132.92 | 2.27 | 85MAJ/SVO | | (2×C-(I | H) ₃ (C)) + (1
H) ₂ (O)(C)) | Isobutyl alcohol
× C-(H)(C) ₃) -
+ (1 × O-(H)(C)
re – Calculated | + (2×-CH ₃ co
()) | C ₄ H ₁₀ O
orr (tertiary))+ | Liquid Pha $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = $ | se
- 356.40
209.50 | -357.38
203.04
251.57
-663.08 | 0.98
6.46 | 65CHA/ROS
45ZHD | | Gas Phase $\Delta_t H^\circ =$ | - 283.80 | - 282.44 | -1.36 | 66WAD2 | $\Delta_{f}G^{\circ} = \\ \ln K_{f} = $ | | - 159.68
64.42 | | | | C _p = | | 110.03 | | | $(5 \times C_B - ($ | $H)(C_B)_2) +$ | zyl alcohol; Ph
(1×C _B -(C)(C _E | | C ₇ H ₈ O
H)(C))+ | | Liquid Pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ | -334.70
181.00
214.51 | -331.65
172.62
219.19 | -3.05
8.38
-4.68 | 60SKI/SNE
60SKI/SNE
68COU/LEE | (1×C-(I | H) ₂ (O)(C _B))
Literatur | e – Calculated | = Residual | Reference | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | | -559.15
-164.94
66.54 | | | Gas Phase
Δ _I H° = | - 100.42 | -100.40 | -0.02 | 26MAT | | | | | | | Liquid Phas $\Delta_t H^\circ = C_p^\circ =$ | | - 160.71
214.62 | 0.00
1.32 | 54PAR/MAN
75NIC/WAD | TABLE 15. Alcohols (69) - Continued | 2-Ethyl-1-hexanol | C ₈ H ₁₈ O | |---|----------------------------------| | $(2 \times C - (H)_3(C)) + (4 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_3) +$ | | $(2 \times C - (H)_3(C)) + (4 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_3) + (1 \times C - (H)_2(O)(C)) + (1 \times O - (H)(C))$ | | Literature - Calculated = Residual | | | Reference | | | | | |---|------------------------------------|--|-------|-----------|--|--|--|--| | Gas Phase | | | | | | | | | | $\Delta_t H^\circ =$ | | - 360.44 | | | | | | | | $C_p^{\circ} =$ | | 201.59 | | | | | | | | Liquid Phase
$\Delta_t H^\circ = -$
$C_p^\circ = $
$S^\circ = $
$\Delta_t S^\circ = $ | 432.80 | -430.21
294.30
348.71
-974.87 | -2.59 | 60TJE | | | | | # 2-Propanol; Isopropyl alcohol C_3H_8O $(2 \times C_-(H)_5(C)) + (1 \times C_-(H)(O)(C)_2 \text{ (alcohols, peroxides))} + (1 \times O_-(H)(C)) + (2 \times -CH_3 \text{ corr (tertiary)}), <math>\sigma = 18$ | | Literature - Calculated = Residual | | | Reference | | | | |------------------------------|------------------------------------|----------|--------|------------|--|--|--| | Gas Phase | | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -272.80 | - 274.47 | 1.67 | 66WAD2 | | | | | $C_p^{\circ} =$ | 88.74 | 89.58 | -0.84 | 69STU/WES | | | | | S° = | 309.91 | 309.06 | 0.85 | 69STU/WES | | | | | $\Delta_f S^{\circ} =$ | | - 332.97 | | | | | | | $\Delta_f G^\circ =$ | | -175.20 | | | | | | | ln <i>K</i> ₁ = | | 70.67 | | | | | | | Liquid Ph | ase | | | | | | | | $\Delta_t H^{\circ} =$ | - 318.10 | -318.68 | 0.58 | 61SNE/SKI | | | | | $C_p^{\circ} =$ | 154.43 | 167.43 | -13.00 | 63AND/COU2 | | | | | S° = | 180.58 | 180.66 | -0.08 | 63AND/COU2 | | | | | $\Delta_{\rm p} S^{\circ} =$ | | -461.37 | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | - 181.12 | | | | | | | $lnK_f =$ | | 73.06 | | | | | | | | | | | | | | | # 2-Butanol; sec-Butyl alcohol $(2\times C-(H)_3(C)) + (1\times C-(H)_2(C)_2) + \\ (1\times C-(H)(O)(C)_2 \ (alcohols,peroxides)) + (1\times O-(H)(C)) + \\ (1\times -CH_3 \ corr \ (tertiary)), \ \sigma = 9, \ \eta = 2$ | | Literatu | Reference | | | | | | |------------------------|----------|-----------|-------|-----------|--|--|--| | Gas Phase | | | | | | | | | $\Delta_l H^\circ =$ | - 292.70 | - 292.84 | 0.14 | 91STE/CHI | | | | | $C_p^{\circ} =$ | 113.30 | 112.47 | 0.83 | 69STU/WES | | | | | S° = | 359.03 | 359.74 | -0.71 | 69STU/WES | | | | | $\Delta_f S^\circ =$ | | -418.59 | | | | | | | $\Delta_f G^{\circ} =$ | | -168.04 | | | | | | | $lnK_f =$ | | 67.78 | | | | | | | 2-Butanol; sec-Butyl alcohol | C ₄ H ₁₉ O | |--|----------------------------------| | $(2 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) +$ | | | $(1 \times C - (H)(O)(C)_2$ (alcohols, peroxides)) + $(1 \times O - (H)(C))$ + | | | $(1 \times -CH_3 \text{ corr (tertiary)}), \sigma = 9, \eta = 2$ | | | | | | | Literatu | Reference | | | | | |----------------------------------|----------|-----------|------|-----------|--|--| | Liquid Phase | | | | | | | | $\Delta_{\rm f} H^{\circ} =$ | -342.60 | -342.23 | 0.37 | 91STE/CHI | | | | $C_p^{\circ} =$ | 197.40 | 197.85 | 0.45 | 71AND/CON | | | | S° = | 213.10 | 213.04 | 0.06 | 71AND/CON | | | | $\Delta_f S^\circ =$ | | -565.30 | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | - 173.69 | | | | | | $lnK_f =$ | | 70.06 | | | | | | 2-Pentanol | $C_5H_{12}O$ | |--|--------------| | $(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) +$ | | | $(1 \times C - (H)(O)(C)_2$ (alcohols, peroxides)) + $(1 \times O - (H)(C))$ + | | | $(1 \times -CH_3 \text{ corr (tertiary)}), \sigma = 9, \eta = 2$ | | | Literature – Calculated = Residual | | | Reference | | |------------------------------------|-------------------|---|--|--| | | | | | | | - 312.00 | -313.47 | 1.47 | 85MAJ/SVO | | | | 135.36 | | | | | | 398.90 | | | | | | -515.75 | | | | | | - 159.98 | | | | | | 64.42 | | | | | | | | | | | e
366.20 | - 367.96 | 1.76 | 74SAC/PES | | | | -367.96
228.27 | 1.76 | 74SAC/PES | | | | | 1.76 | 74SAC/PES | | | | 228.27 | 1.76 | 74SAC/PES | | | | 228.27
245.42 | 1.76 | 74SAC/PES | | | | | - 312.00 - 313.47
135.36
398.90
- 515.75
- 159.98 | -312.00 -313.47 1.47
135.36
398.90
-515.75
-159.98 | | | -Pentanol | C5H12O | |---|--------| | $(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) +$ | | | $(1 \times C - (H)(O)(C)_2$ (alcohols, peroxides)) + | | | $(1 \times O - (H)(C)), \sigma = 3$ | | | | Literature – Calculated = Residual | | | Reference | | |--------------------------|------------------------------------|---------|--------|-----------|--| | Gas Phase | | | | | | | $\Delta_t H^{\circ} = -$ | 314.60 | -311.21 | - 3.39 | 85MAJ/SVO | | | $C_p^{\circ} =$ | | 135.36 | | | | | S° = | | 402.28 | | | | | $\Delta_f S^\circ =$ | | -512.37 | | * | | | $\Delta_t G^{\circ} =$ | | -158.45 | | | | | $lnK_f =$ | | 63.92 | | · | | | Liquid Phase | | | | | | | $\Delta_f H^\circ = -$ | 368.60 | -365.78 | -2.82 | 74SAC/PES | | | $C_{p}^{\circ} =$ | 240.00 | 228.27 | 11.73 | 76CON/GIN | | | S° = | | 245.42 | | | | | $\Delta_f S^\circ =$ | | -669.23 | | | | | $\Delta_f G^\circ =$ | | -166.25 | | | | | $lnK_f =$ | | 67.06 | | | | TABLE 15. Alcohols (69) - Continued | 2-Hexanol $(2 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)_2) + (1 \times C - (H)(O)(C)_2 \text{ (alcohols, peroxides)}) + (1 \times O - (H)(C)) + (1 \times -CH_3 \text{ corr (tertiary)}), \sigma = 9, \eta = 2$ | H ₁₄ O 4-Methyl-2-pentanol (Continued) $C_6H_{14}O$
$(3 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) +$
$(1 \times C - (H)(O)(C)_2 \text{ (alcohols, peroxides)}) + (1 \times O - (H)(C)) +$
$(1 \times C - (H)(C)_3) + (3 \times - CH_3 \text{ corr (tertiary)}), \sigma = 27, η = 2$ | |---|--| | Literature - Calculated = Residual Reference | Literature – Calculated = Residual Reference | | Gas Phase $ \Delta_{f}H^{\circ} = -329.90 -334.10 4.20 85MAJ/SV $ $ C_{p}^{\circ} = 158.25 $ $ S^{\circ} = 438.06 $ $ \Delta_{f}S^{\circ} = -612.90 $ $ \Delta_{f}G^{\circ} = -151.36 $ $ \ln K_{f} = 61.06 $ | Liquid Phase O $\Delta_t H^\circ = -394.70$ - 398.97 4.27 74SAC/PES $C_p^\circ = 255.71$ $S^\circ = 272.45$ $\Delta_t S^\circ = -778.51$ $\Delta_t G^\circ = -166.86$ $\ln K_t = 67.31$ | | Liquid Phase $\Delta_t H^\circ = -388.40 -393.69 \qquad 5.29 \qquad 74SAC/PE$ $C_\rho^\circ = \qquad 258.69$ $S^\circ = \qquad 277.80$ $\Delta_t S^\circ = \qquad -773.16$ $\Delta_t G^\circ = \qquad -163.17$ $\ln K_t = \qquad 65.82$ | S 2-Methyl-3-pentanol $C_6H_{14}O$
$(3\times C-(H)_3(C))+(1\times C-(H)_2(C)_2)+(1\times C-(H)(C)_3)+$
$(1\times O-(H)(C))+(1\times C-(H)(O)(C)_2 \text{ (alcohols, peroxides)})+$
$(2\times -CH_3 \text{ corr (tertiary)}), \sigma = 27, \eta = 2$
Literature – Calculated = Residual Reference | | | | | $(2 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)_2) + (1 \times O - (H)(C)) + (1 \times C - (H)(O)(C)_2 \text{ (alcohols, peroxides)}), \ \sigma = 9, \ \eta = 2$ | H ₁₄ O Gas Phase
$\Delta_t H^\circ = -338.53$
$C_p^\circ = 158.28$
$S_p^\circ = 424.33$ | | Literature - Calculated = Residual Reference | $\Delta_t G^{\circ} = -151.70$ | | Gas Phase $ \Delta_{t}H^{\circ} = -331.84 $ $ C_{p}^{\circ} = 158.25 $ $ S^{\circ}(J/\text{mol·K}) = 438.06 $ $ \Delta_{t}S^{\circ}(J/\text{mol·K}) =
-612.90 $ $ \Delta_{t}G^{\circ} = -151.36 $ | $\ln K_{\rm f} =$ 61.20 Liquid Phase $\Delta_t H^{\circ} = -396.40 - 396.79 0.39$ 74SAC/PES $C_{\rm f}^{\circ} =$ 255.71 $S^{\circ} =$ 272.45 | | Liquid Phase $\Delta_{i}H^{\circ} = -392.40 -391.51 -0.89 85MAJ/SV$ | $\Delta_{f}S^{\circ} = -778.51$ $\Delta_{f}G^{\circ} = -164.68$ $\ln K_{f} = 66.43$ | | $C_p^{\circ} = 286.00$ 258.69 27.31 76CON/G
$S^{\circ} = 277.80$
$\Delta_t S^{\circ} = -773.16$
$\Delta_t G^{\circ} = -160.99$
$\ln K_t = 64.94$ | 2-Methyl-2-propanol; tert-Butyl alcohol $(3 \times C - (H)_3(C)) + (1 \times C - (O)(C)_3 \text{ (alcohols,peroxides)}) + (1 \times O - (H)(C)) + (3 \times - CH_3 \text{ corr (quaternary)}), \sigma = 81$ | | | Literature - Calculated = Residual Reference | | $(3 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) +$ $(1 \times C - (H)(O)(C)_2 \text{ (alcohols, peroxides)}) + (1 \times O - (H)(C)) +$ $(1 \times C - (H)(C)_3) + (3 \times - CH_3 \text{ corr (tertiary)}), \sigma = 27, \eta = 2$ $\text{Literature} - \text{Calculated} = \text{Residual} \qquad \text{Reference}$ | Gas Phase $\Delta_t H^\circ = -312.60 -313.29 0.69 66WAD2$ $C_c^\circ = 113.39 111.08 2.31 69STU/WES$ $S^\circ = 326.27 322.32 3.95 69STU/WES$ | | Gas Phase $\Delta_{t}H^{\circ} = -340.79$ $C_{p}^{\circ} = 158.28$ $S^{\circ}(J/\text{mol-K}) = 424.33$ $\Delta_{t}S^{\circ}(J/\text{mol-K}) = -626.63$ $\Delta_{t}G^{\circ}(J/\text{mol-K}) = -153.96$ $\ln K_{t} = 62.11$ | $\Delta_{t}S^{\circ} = -456.01$ $\Delta_{t}G^{\circ} = -177.33$ $\ln K_{t} = 71.53$ | | TABLE 15. Alcohols (69) — Continue | ohols (69) - Continue | d | |------------------------------------|-----------------------|---| |------------------------------------|-----------------------|---| | (3×C-(| $(H)_3(C))+(1$ | ert-Butyl alcol
×C-(O)(C) ₃ (
×-CH ₃ corr (c | alcohols,perox | ides))+ | |-----------------------------|----------------|--|----------------|-----------| | | Literatur | re – Calculated | = Residual | Reference | | Liquid Ph | ase | | | | | $\Delta_{\rm f}H^{\circ} =$ | -359.20 | -358.63 | -0.57 | 60SKI/SNE | | | 219.66 | 219.66 | 0.00 | 63OET | | S° = | 171.31 | 171.31 | 0.00 | 63OET | | $\Delta_t S^{\circ} =$ | | -607.03 | | | | $\Delta_{\rm f}G^{\circ} =$ | | - 177.65 | | | | $lnK_f =$ | | 71.66 | | | | Solid Pha | se | | | | | $\Delta_{\rm f}H^{\circ} =$ | - 365.90 | -365.18 | -0.72 | 63OET | | $C_p^{\circ} =$ | 146.11 | 146.12 | -0.01 | 63OET | | s° = | | 183.92 | -13.05 | 63OET | | $\Delta_f S^\circ =$ | | -594.42 | | | | $\Delta_i G^{\circ} =$ | | - 187.95 | | | | $lnK_f =$ | | 75.82 | | | 2-Methyl-2-butanol C₃H₁₂O $(3 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (O)(C)_3 \text{ (alcohols, peroxides)}) + (1 \times O - (H)(C)) +$ $(2 \times -CH_3 \text{ corr (quaternary)}), \sigma = 27$ | | Literatu | Literature – Calculated ≈ Residual | | | | | | |------------------------|----------|------------------------------------|-------|-----------|--|--|--| | Gas Phase | | | | | | | | | $\Delta_f H^\circ =$ | -329.40 | -329.36 | -0.04 | 85MAJ/SVO | | | | | $C_p^{\circ} =$ | 131.67 | 133.97 | -2.30 | 69STU/WES | | | | | s° = | 366.85 | 370.62 | -3.77 | 69STU/WES | | | | | $\Delta_f S^\circ =$ | | - 544.03 | | | | | | | $\Delta_f G^{\circ} =$ | | - 167.16 | | | | | | | $lnK_f =$ | | 67.43 | | | | | | | Liquid Ph | ase | | | | | | | | $\Delta_t H^\circ =$ | -379.50 | -379.97 | 0.47 | 65CHA/ROS | | | | | $C_p^{\circ} =$ | 247.30 | 250.08 | -2.78 | 83DAP/DEL | | | | | S° = | | 203.69 | | | | | | | $\Delta_f S^\circ =$ | | ~710.96 | | | | | | | $\Delta_t G^{\circ} =$ | | - 168.00 | | | | | | | $lnK_f =$ | | 67.77 | | | | | | | | | | | | | | | # $$\label{eq:continuous} \begin{split} & \textbf{Triphenylmethanol; Triphenylcarbinol} & C_{19}H_{16}O\\ & (15\times C_B-(H)(C_B)_2) + (3\times C_B-(C)(C_B)_2) + (1\times O-(H)(C)) + \\ & (1\times C-(O)(C_B)_3) \end{split}$$ | | Literature | e – Calculated | Reference | | |----------------------|------------|----------------|-----------|-----------| | Solid Phase | • | | | | | $\Delta_i H^\circ =$ | -2.51 | 0.45 | -2.96 | 54PAR/MAN | | $C_p^{\circ} =$ | 318.80 | 318.91 | -0.11 | 31SMI/AND | | 1,2-Ethane
(2×C-(| C₂H ₆ O | | | | |-----------------------------|--------------------|-----------------|------------|-----------| | | Literatu | re – Calculated | = Residual | Reference | | Gas Phase | | | | | | $\Delta_t H^\circ =$ | -387.50 | - 384.46 | -3.04 | 29PAR/KEL | | $C_p^{\circ} =$ | 97.07 | 76.98 | 20.09 | 69STU/WES | | S° = | 323.55 | 324.10 | -0.55 | 69STU/WES | | Δ ₆ S° == | | - 284.14 | | | | $\Delta_{\rm f}G^{\circ} =$ | | - 299.74 | | | | $lnK_f =$ | | 120.91 | | | | Liquid Pha | ise | | | | | $\Delta_t H^\circ =$ | -455.30 | -454.60 | -0.70 | 29PAR/KEL | | $C_p^{\circ} =$ | 149.30 | 156.56 | - 7.26 | 79STE/TAM | | S° = | 166.90 | 152.96 | 13.94 | 25PAR/KEL | | $\Delta_f S^\circ =$ | | -455.28 | | | | $\Delta_l G^{\circ} =$ | | - 318.86 | | | | $lnK_f =$ | | 128.63 | | | 1,2-Propanediol; Propylene glycol $C_3H_8O_2$ $(1 \times C - (H)_3(C)) + (2 \times O - (H)(C)) +$ $(1 \times C - (H)(O)(C)_2$ (alcohols, peroxides)) + $(1 \times C - (H)_2(O)(C))$ + (1×-CH₃ corr (tertiary)) | | Literature – Calculated = Residual | | | idual Reference | | |-----------------------------|------------------------------------|------------------|--------|-----------------|--| | Gas Phas | e | | | | | | $\Delta_f H^\circ =$ | - 421.30 | -422.18 | 0.88 | 72GAR/HUS | | | $C_p^{\circ} =$ | | 102.34 | | | | | Liquid Ph | | - 496.19 | 10.49 | 72GAR/HUS | | | $\Delta_i H^\circ =$ | | | | 1200111100 | | | $C_p^o =$ | 188.10 | 209.23 | -21.13 | 85WIL/CHA | | | • | | 209.23
173.84 | -21.13 | | | | $C_p^o =$ | | | -21.13 | | | | $C_p^{\circ} = S^{\circ} =$ | | 173.84 | -21.13 | | | ## 1,3-Propanediol; Trimethylene glycol) Reference C₃H₈O₂ $(1 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(O)(C)) + (2 \times O - (H)(C))$ Literature – Calculated = Residual Reference | Gas Phase $\Delta_t H^\circ = C_p^\circ =$ | - 392.10 | - 405.09
99.87 | 12.99 | 72GAR/HUS | |--|----------|-------------------|-------|-----------| | Liquid Phas | se | | | | | $\Delta_t H^\circ =$ | - 480.80 | -480.33 | -0.47 | 89KNA/SAB | | | | | | | | $C_p^{\circ} =$ | | 186.98 | | | | $C_p^{\circ} = S^{\circ} = 0$ | | 186.98
185.34 | | | | | | | | | | S° = | | 185.34 | | | TABLE 15. Alcohols (69) - Continued | 1,2,3-Propanetriol; Glycerol | C ₃ H ₈ O ₃ | |--|--| | $(2 \times C - (H)_2(O)(C)) + (1 \times C - (H)(O)(C)_2$ (alcoho | ls,peroxides))+ | | $(3\times O-(H)(C))$ | | | | Literature – Calculated = Residual | | | Residual Reference | | |---|------------------------------------|-------------------|-----------------|--------------------|--| | Gas Phase $\Delta_t H^\circ =$ | e
- 577.90 | - 569.89 | -8.01 | 88BAS/NIL | | | $C_p^{\circ} =$ | 377,50 | 115.10 | 0.01 | 002110,1112 | | | | | | | | | | 7 '' 1 Di | | | | | | | Liquid Ph | | 673 70 | A 10 | III/N 2 A G/S | | | $\Delta_i H^o =$ | - 669.60 | -673.70
251.03 | 4.10
- 32.03 | 88BAS/NIL | | | $\Delta_i H^\circ = C_p^\circ =$ | - 669.60
219.00 | 251.03 | -32.03 | 88BAS/NIL | | | $\Delta_{i}H^{\circ} = C_{p}^{\circ} = S^{\circ} =$ | - 669.60 | 251.03
167.02 | | | | | $\Delta_i H^\circ = C_p^\circ =$ | - 669.60
219.00 | 251.03 | -32.03 | 88BAS/NIL | | | 1,2-Butanediol | C ₄ H ₁₀ O ₂ | |--|---| | $(1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(O)(C)) +$ | | | $(1 \times C - (H)(O)(C)_2$ (alcohols, peroxides)) + $(2 \times O - (H)(C))$ | | | | Literatui | re – Calculated
––––– | = Residual | Reference | |---|-----------------|--|------------|-----------| | Gas Phase | | | | | | $\Delta_i H^\circ =$ | | - 440.55 | | | | $C_p^{\circ} =$ | | 125.23 | | | | Liquid Ph
$\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | ase
- 523.60 | - 519.74
239.65
206.22
- 674.64
- 318.60
128.52 | -3.86 | 37MOU/DOD | # $\begin{array}{ll} \textbf{1,3-Butanediol} & C_4H_{10}O_2 \\ (1\times C-(H)_3(C)) + (1\times -CH_3 \ corr \ (tertiary)) + (1\times C-(H)_2(C)_2) + \\ (2\times O-(H)(C)) + (1\times C-(H)_2(O)(C)) + \\ (1\times C-(H)(O)(C)_2 \ (alcohols,peroxides)) \end{array}$ | Literatu | re – Calculated | = Residual | Reference |
---|---|------------|-----------| | Gas Phase | | | | | $\Delta_t H^{\circ} = -433.20$ | -442.81 | 9.61 | 72GAR/HUS | | $C_p^{\circ} =$ | 125.23 | | | | Liquid Phase $\Delta_t H^\circ = -501.00$ $C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t = S^\circ S$ | -521.92
239.65
206.22
-674.64
-320.78
129.40 | 20.92 | 72GAR/HUS | | 1,4-Butanediol | $C_4H_{10}O_2$ | |--|----------------| | $(2 \times O - (H)(C)) + (2 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(O)(C))$ | | | | Literatu | re – Calculated | = Residual | Reference | |--|-------------------|--------------------|-----------------|------------------------| | Gas Phase | e | | | | | $\Delta_{\rm f}H^{\circ} =$ | -426.70 | -425.72 | -0.98 | 72GAR/HUS | | $C_p^{\circ} =$ | | 122.76 | | | | Liquid Ph | | | | * | | Liquid Ph $\Delta_t H^\circ =$ | ase
- 505.30 | - 506.06 | 0.76 | 89KNA/SAB | | $\Delta_{\rm f} H^{\circ} = C_{\rm p}^{\circ} =$ | | - 506.06
217.40 | 0.76
- 17.30 | 89KNA/SAB
84VAS/PET | | $\Delta_t H^\circ = C_p^\circ = S^\circ = S$ | -505.30 | | | | | $\Delta_{\rm f} H^{\circ} = C_{\rm p}^{\circ} =$ | -505.30
200.10 | 217.40 | -17.30 | 84VAS/PET | | $\Delta_t H^\circ = C_p^\circ = S^\circ = S$ | -505.30
200.10 | 217.40
217.72 | -17.30 | 84VAS/PET | 2,3-Butanediol $C_4H_{10}O_2$ $(2\times C-(H)_3(C))+(2\times C-(H)(O)(C)_2$ (alcohols,peroxides))+ $(2\times O-(H)(C))+(2\times -CH_3 \text{ corr (tertiary)})$ | Gas Phas | | re – Calculated | l = Residual | Reference | |---|---------|-------------------|--------------|-----------| | $ \frac{\Delta_{f}H^{\circ} =}{C_{p}^{\circ} =} $ | -482.30 | -459.90
127.70 | - 22.40 | 46KNO/SCH | | Liquid Ph | ase | : | | | | $\Delta_{\rm f} H^{\circ} =$ | -541.50 | ~537.78 | -3.72 | 37MOU/DOD | | $C_p^{\circ} =$ | 213.00 | 261.90 | 48.90 | 36KHO/KAL | | S° = | | 194.72 | | | | $\Delta_f S^\circ =$ | | -686.14 | | | | $\Delta_f G^\circ =$ | | -333.21 | | | | $lnK_f =$ | | 134.41 | | | # $\begin{array}{ll} \textbf{2-Methyl-1,2-propanediol} & \textbf{C_4H_{10}O_2} \\ (2\times O-(H)(C)) + (2\times C-(H)_3(C)) + (2\times -CH_3 \text{ corr (quaternary)}) + \\ (1\times C-(O)(C)_3 \text{ (alcohols,peroxides)}) + (1\times C-(H)_2(O)(C)) \end{array}$ | Gas Phase | Literatur | e – Calculated | = Residual | Reference | |--------------------------------------|-----------|-------------------|------------|-----------| | $\Delta_i H^\circ =$ | | -458.70 | | | | $C_p^{\circ} =$ | | 123.84 | | | | Liquid Phase $\Delta_t H^\circ = -1$ | 539.70 | - 533.93 | - 5.77 | 37MOU/DOD | | $C_p^{\circ} = S^{\circ} = S$ | 339.70 | 261.46
164.49 | -3.77 | 3/MOO/DOD | | $\Delta_{f}S^{\circ} =$ | | -716.37 | | | | $\Delta_t G^\circ = \ln K_t =$ | | -320.34
129.22 | | | | TABLE | 15. | Alcohols | (69) | _ | Continued | |-------|-----|----------|------|---|-----------| |-------|-----|----------|------|---|-----------| | (2,70 (1 | | rythritol
< C-(H) ₂ (O)(C
alcohols,peroxi | | C ₄ H ₁₀ O ₄ | Pentaery | thritol (Co | d)-1,3-propaned
atinued)
\times C-(C) ₄) + (4 | • | C ₅ H ₁₂ O ₅ | |--|--|--|--|--
---|---|--|-------------------------------|---| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -775.20 | -755.32
153.22 | - 19.88 | 50NIT/SEK | Liquid pha $ \Delta_t H^\circ = C_p^\circ = S^\circ = $ | se | 891.21
323.36
207.27 | | | | Liquid pha Δ _ε H° = | se
-887.00 | - 892.80 | 5.80 | 52PAR/MAN | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | - 1014.94
- 588.61
237.44 | ··· | | | $C_p^o = S^o = S^o = \Delta_t S^o = InK_t = InK_t$ | | 345.50
181.08
- 904.82
- 623.03
251.33 | | | Solid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \Delta_t G^\circ = S^\circ S^\circ$ | - 920.60
190.41
198.07 | -918.17
121.05
180.21
-1042.00
-607.50 | 2.43
69.36
17.86 | 54MED/THO
59WES
59WES | | Solid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = $ | - 910.40
170.70
177.80 | - 922.80
170.38
177.84
- 908.06
- 652.06 | 12.40
0.32
0.04 | 46PAR/WES
32SPA/THO
26PAR/AND | 1,6-Hexane | | 245.06
2×C-(H) ₂ (O)(| C))+(2×O-(| C ₆ H ₁₄ O ₂
H)(C)) | | InK _f = | | 263.04 | | | | Literatu | re – Calculated | = Residual | Reference | | 1,5-Pentano
(2×O-() | H)(C))+(3: | × C-(H) ₂ (C) ₂) | + (2×C~(H) ₂ (| C ₅ II ₁₂ O ₂
O)(C)) | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 459.40 | 466.98
168.54 | 7.58 | 91STE/CHI | | | | e - Calculated | = Residual | Reference | C_p – | | 100.54 | | | | Gas phase $\Delta_t H^\circ = C_p^\circ -$ | - 448.99 | - 446.35
145.65 | = Residual
- 2.64 | Reference 72GAR/HUS | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ S^\circ$ | se
- 562.30 | -557.52
278.24
282.48 | - 4.78 | 91STE/CHI | | $\Delta_t H^{\circ} = C_p^{\circ} -$ Liquid pha $\Delta_t H^{\circ} =$ | ~448.99 | -446.35
145.65
-531.79 | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | | -557.52
278.24 | -4.78 | 91STE/CHI | | $\Delta_{t}H^{\circ} = C_{p}^{\circ} -$ Liquid pha | ~448.99 | - 446.35
145.65 | -2.64 | 72GAR/HUS | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ - \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \Delta_t H^\circ = C_\rho^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t \Delta_t$ | - 562.30 | - 557.52
278.24
282.48
- 871.00
- 297.83
120.14
- 582.96
190.02
198.74
- 954,74 | - 4.78
- 0.90
13.21 | 91STE/CHI
91STE/CHI
91STE/CHI | | $\Delta_t H^\circ = C_p^\circ -$ Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_f =$ 2,2'-Bis(hy) | 448.99 sse 531.49 droxymethyl | - 446.35
145.65
- 531.79
247.82
250.10
- 767.07
- 303.09 | -2.64
0.30 | 72GAR/HUS 72GAR/HUS C5H12O4 | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ - \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f = \frac{1}{2}$ Solid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = S^\circ = \frac{1}{2}$ | -562.30
-583.86 | -557.52
278.24
282.48
-871.00
-297.83
120.14
-582.96
190.02
198.74 | - 0.90 | 91STE/CHI | | $\Delta_t H^\circ = C_p^\circ -$ Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t =$ 2,2'-Bis(hy) | - 448.99 ise - 531.49 droxymethyl thritol H)(C)) + (12 | - 446.35
145.65
- 531.79
247.82
250.10
- 767.07
- 303.09
122.26 | -2.64
0.30
liol;
× C-(H) ₂ (O)(0 | 72GAR/HUS 72GAR/HUS C5H12O4 | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t G^\circ}{S^\circ} = \frac{\Delta_t G^\circ}{S^\circ} = \frac{\Delta_t S^\circ}{S^\circ} \Delta_t S^\circ$ | - 562.30 | - 557.52
278.24
282.48
- 871.00
- 297.83
120.14
- 582.96
190.02
198.74
- 954.74
- 298.30 | -0.90
13.21 | 91STE/CHI
91STE/CHI
CLeH22O2 | | $\Delta_t H^\circ = C_p^\circ -$ Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t =$ 2,2'-Bis(hy) | - 448.99 ise - 531.49 droxymethyl thritol H)(C)) + (12 | - 446.35
145.65
- 531.79
247.82
250.10
- 767.07
- 303.09
122.26
× C-(C) ₄) + (4: | -2.64
0.30
liol;
× C-(H) ₂ (O)(0
 72GAR/HUS 72GAR/HUS C5H12O4 | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t G^\circ}{S^\circ} = \frac{\Delta_t G^\circ}{S^\circ} = \frac{\Delta_t S^\circ}{S^\circ} \Delta_t S^\circ$ | - 562.30 - 583.86 203.60 edial H ₂ (C) ₂) + (2 | - 557.52
278.24
282.48
- 871.00
- 297.83
120.14
- 582.96
190.02
198.74
- 954.74
- 298.30
120.33 | -0.90
13.21
+(2×C-(H)₂(| 91STE/CHI
91STE/CHI
CLeH22O2 | TABLE 15. Alcohols (69) - Continued | 1,10-Decanediol (Continued)
$(8 \times C-(H)_2(C)_2) + (2 \times O-(H)(C)) + (2 \times C-(H)_2(C)_2) + (2 \times O-(H)(C)_2) + (2 \times C-(H)_2(C)_2) $ | $C_{10}H_{22}O_2$ (O)(C)) | (1×O-(1 | H)(C)) + (1 | xyl alcohol (Co
×C-(H)(O)(C)
1×Cyclohexano | 2 (alcohols,pe | | |---|----------------------------------|---------------------------------------|---------------------------|--|-----------------|-------------| | Literature - Calculated = Residual | Reference | (0.1.0 (. | .2)2(0)2) . (| 1 / Cyclonoman | (500) 150), 0 | • | | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid phase | | | | | | | | $\Delta_t H^\circ = -660.44$ | | Liquid pha | se | | | | | $C_p^{\circ} = 0.000$ 399.92 | | $\Delta_{\rm f}H^{\circ} =$ | -348.60 | -349.81 | 1.21 | 62RAB/TEL | | $S^{\circ} = 412.00$ | | $C_p^{\circ} =$ | 213.59 | 220.36 | -6.77 | 68ADA/SUG | | $\Delta_{\rm f} S^{\circ} = -1286.72$ | | <i>s</i> ° = | 203.87 | 201.06 | 2.81 | 68ADA/SUG | | $\Delta_{\rm f}G^{\circ} = -276.80$ | | $\Delta_f S^\circ =$ | | - 719.33 | | | | $\ln K_{\rm f} = 111.66$ | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | - 135.34 | | | | | | $lnK_f =$ | | 54.60 | | | | Solid phase | | | | | | | | $\Delta_t H^{\circ} = -693.50 -700.60$ 7.10 | 62PAR/MOS | | | | | | | $C_{P}^{\circ} = 277.70$ | | Cyclohepta | nol; Cycloh | eptyl alcohol | | C7H14C | | $S^{\circ} = 290.78$ | | (1×O-() | H)(C)) + (1 | ×C-(H)(O)(C) | 2 (alcohols, pe | roxides))+ | | $\Delta_{\mathbf{f}}S^{\circ} = -1407.94$ | | | | 1 × Cycloheptar | | ,,, | | $\Delta_{\rm f}G^{\circ} = -280.82$ | | • | | • | • | | | $lnK_f = 113.28$ | | | Literatu | re – Calculated | = Residual | Reference | | | | | | | | | | | | Gas phase | | 202.05 | | | | Cyclopentanol; Cyclopentyl alcohol | C ₅ H ₁₀ O | $\Delta_{\rm f}H^{\circ} =$ | | - 282.87 | | | | $(1 \times O - (H)(C)) + (1 \times C - (H)(O)(C)_2$ (alcohols, pe | eroxides))+ | $C_p^{\circ} =$ | | 138.32 | | | | $(4 \times C - (H)_2(C)_2) + (1 \times Cyclopentane (sub) rsc)$ | | | | | | | | Literature - Calculated = Residual | Reference | Liquid pha $\Delta_t H^\circ =$ | se | 240.00 | | | | | | $C_p^{\circ} =$ | 250.20 | -349.98
244.80 | 5.40 | 72ADA/SUG | | Gas phase | | $S^{\circ} =$ | 241.63 | 224.23 | 17.40 | • | | Gas phase $\Delta_t H^\circ = -242.60 -248.40$ 5.80 | 62SEL/SUN | $\Delta_6 S^\circ =$ | 241.03 | | 17.40 | 72ADA/SUG | | - | 023EL/3UN | $\Delta_{f}S = \Delta_{f}G^{\circ} =$ | | - 832.47 | | | | $C_p^{\circ} = 101.81$ | | $\ln K_{\rm f} =$ | | - 101.78
41.06 | | | | Liquid phase | | | | | | | | $\Delta_t H^{\circ} = -300.00 -298.43 -1.57$ | 62SEL/SUN | 1-Adamant | anol | | | C10H16C | | $C_p^{\circ} = 184.10 192.83 -8.73$ | 56PAR/KEN | | | \times C-(H) ₂ (C) ₂) | ± (1 ∨ Adama | | | $S^{\circ} = 206.30 200.23 6.07$ | 56PAR/KEN | | | phols, peroxides | | | | $\Delta_{\rm f} S^{\circ} = -583.85$ | Jorrhynder | (170 (|)(C)3 (alce | mois,peroxides | ,, 1 (1 / 0 (11 |)(C)) | | $\Delta_f G^\circ = -124.36$ | | | Literatus | re – Calculated | - Decidual | Reference | | $\ln K_{\rm f} = 50.16$ | | | Literatur | | - Acsiduai | | | | | Gan mhana | | | | | | | | Gas phase $\Delta_t H^\circ =$ | -310.90 | -306.26 | - 4.64 | 78ARO/STE | | Cyclohexanol; Cyclohexyl alcohol | C ₆ H ₁₂ O | | | | | | | $(1 \times O-(H)(C)) + (1 \times C-(H)(O)(C)_2$ (alcohols, pe | eroxides)) + | | | | | | | $(5 \times C - (H)_2(C)_2) + (1 \times Cyclohexane (sub) rsc), or$ | r = 1 | Solid phase | : | | | | | | | $\Delta_{f}H^{\circ} =$ | -397.50 | -403.13 | 5.63 | 78ARO/STE | | Literature – Calculated = Residual | Reference | | | | | | | | | 2-Adamant | | | | C10H16O | | Gas phase | | | , . , | \times C-(H) ₂ (C) ₂)· | • | ntane rsc)+ | | $\Delta_{\ell}H^{\circ} = -286.20 -288.97$ 2.77 | 66WAD2 | (1×C-(F | I) ₂ (O)(C)) - | + (1 × O-(H)(C |)) | | | $C_p^{\circ} = 127.24 129.75 -2.51$ | 69STU/WES | | | | | | | $S^{\circ} = 360.04 \qquad 358.22 \qquad 1.82$ | 69STU/WES | | Literatur | re – Calculated : | = Residual | Reference | | $\Delta_{\mathbf{f}}S^{\circ} = -562.17$ | | | | | | | | $\Delta_t G^{\circ} = -121.36$ | | | | | | | | $\ln K_{\rm f} = 48.96$ | | Gas phase | | | | | | | | $\Delta_i H^\circ =$ | -299.20 | -306.20 | 7.00 | 78ARO/STE | | | | | | | | | | | | | | | | | | | | Solid phase $\Delta_t H^\circ =$ | - 38 7.9 0 | -400.45 | 12.55 | 78ARO/STE | | | Literatur | e - Calculated | = Residual | Reference | | | | | |
--|--|---|--|---|---|------------------------------|--|-------------------------------|--| | | | | | | | Literatu | re – Calculated | = Residual | Reference | | as phase | 14 , | | | | | | | | | | $\Lambda_t H^{\circ} =$ | - 96.40 | - 96.00 | -0.40 | 60AND/BID | Gas phase | | | | | | $C_{p}^{\circ} =$ | 103.55 | 102.07 | 1.48 | 69STU/WES | $\Delta_{\rm f}H^{\circ} =$ | -132.30 | - 129.06 | - 3.24 | 60AND/BID | | S° = | 315.60 | 313.57 | 2.03 | 69STU/WES | $C_p^{\circ} =$ | 122.47 | 124.65 | -2.18 | 69STU/WES | | Δ _t S° = | , 515.00 | -215.11 | 2.00 | | S° = | 356.77 | 353.60 | 3.17 | 69STU/WE | | | | | | | Δ _i S° = | 550.77 | -311.39 | 5.17 | 070107112 | | $G^{\circ} =$ | | -31.87 | | * | | | | | | | $\ln K_{\rm f} =$ | | 12.85 | | | $\Delta_f G^\circ = \ln K_f =$ | | - 36,22
14.61 | | | | quid phas | re. | | | | | | | | | | l _l H° = | - 153.86 | - 156.56 | 2.70 | 63AND/COU | Liquid pha | | 40- :- | | ·- · | | $C_p^{\circ} =$ | | 197.75 | | | $\Delta_l H^o =$ | - 194.00 | - 193,17 | - 0.83 | 60AND/BII | | S° = | | 177.65 | | | $C_p^{\circ} =$ | 224.93 | 221.65 | 3.28 | 67AND/CO | | Δ _f S° = | | -351.02 | | | S° = | 212.59 | 212.58 | 0.01 | 67AND/CO | | $_{i}G^{\circ} =$ | | -51.90 | | | $\Delta_f S^\circ =$ | | -452.41 | | | | $\ln K_{\rm f} =$ | | 20.94 | | | $\Delta_f G^\circ =$ | | -58.29 | | | | | | | | | $\ln K_{\rm f} =$ | | 23.51 | | | | olid phase | ; | | | | | | | | | | MH° = | - 165.10 | - 165.60 | 0.50 | 60AND/BID | | | | | | | $C_p^{\circ} =$ | 127.44 | 129.61 | -2.17 | 63AND/COU | 4-Mathylal | henol; p-Cre | eol | | C ₇ 1 | | | | | | | | | | | | | <i>S</i> ° = | 144.01 | 143.96 | 0.05 | 63AND/COU | (1×C-(| $H_{3}(C) + (1$ | \times O-(H)(C _B)) | $+(4\times
C_B-(H)$ | $(C_B)_2$ + | | Δ _f S° = | | - 384.71 | | | (1×C _B − | $(C)(C_B)_2)+c$ | $(1 \times C_B - (O)C_B)$ | $p_{2}, \sigma = 6$ | | | $_{if}G^{\circ} =$ | | - 50.90 | | | | | | | | | $lnK_f =$ | | | | | | | | | To 0 | | -Methylph
(1×C-(1 | | \times O-(H)(C _B)) | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 125.40
124.47 | - 128.43
123.94 | 3.03
0.53 | Reference 60AND/BID 69STU/WES | | -Methylph
(1×C-(l | $(C)(C_{B})_{2}$ | sol | $+(1\times C_{\rm B}-(O))$ | $(C_B)_2) +$ | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = 0$ | -125.40 | - 128.43
123.94
347.83
- 317.15
- 33.87 | 3.03 | 60AND/BID | | -Methylph
(1×C-(I
(1×C _p -(| $(C)(C_{B})_{2}$ | sol
×O-(H)(C _B))
(1×ortho corr) | $+(1\times C_{\rm B}-(O))$ | $(C_B)_2) + ((C_D)_2), \sigma = 3$ | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = C_p^{\circ} C_$ | - 125.40
124.47 | - 128.43
123.94
347.83
- 317.15 | 3.03
0.53 | 60AND/BID
69STU/WES | | -Methylph
$(1 \times C)$ -(1
$(1 \times C)$ -(1
Gas phase
$\Delta_t H^\circ =$ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
 | sol
× O-(H)(C _B))
(1 × ortho corr)
re – Calculated
– 127.17 | $+ (1 \times C_{n} - (O))$ $= Residual$ -1.43 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid pha | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87 | 3.03
0.53 | 60AND/BID
69STU/WES | | -Methylph
(1 × C-(I
(1 × C _p -(| H)3(C)) + (1
(C)(C _D)2) +
Literatu | sol
×O-(H)(C _B))
(1×ortho corr)
re – Calculated | + (1 × C _D -(O)) = Residual | $(C_B)_2$ +
$(C_D)_2$, $\sigma = 3$
Reference | $\Delta_t H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{2}$ | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87 | 3.03
0.53 | 60AND/BID | | -Methylph
$(1 \times C)$ -(1
$(1 \times C)$ -(1
Gas phase
$\Delta_t H^\circ =$ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
 | sol
× O-(H)(C _B))
(1 × ortho corr)
re – Calculated
– 127.17 | $+ (1 \times C_{n} - (O))$ $= Residual$ -1.43 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid pha | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66 | 3.03
0.53 | 60AND/BII
69STU/WES
69STU/WES | | -Methylph
$(1 \times C - (1 \times C_p $ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33 | sol
×O-(H)(C _B))
(1 × ortho corr)
re - Calculated
-127.17
130.34
351.10 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid pha $\Delta_{t}H^{\circ} = \frac{1}{2}$ | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66 | 3.03
0.53
- 0.18 | 60AND/BII
69STU/WES
69STU/WES | | Methylph
$(1 \times C - (1 \times C_n ($ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33 | sol
×O-(H)(C _B))
(1 × onho corr)
re - Calculated
-127.17
130.34
351.10
-313.89 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} - S^{\circ} = \frac{1}{2}$ | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66
- 193.17
221.65
212.58 | 3.03
0.53
- 0.18 | 60AND/BII
69STU/WES
69STU/WES | | Methylph
$(1 \times C - (1 \times C_n ($ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33 | Sol
×O-(H)(C _B))
(1 × ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = S_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid pha $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} - S^{\circ} = \Delta_{t}S^{\circ} = \frac{1}{2}$ | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66
- 193.17
221.65
212.58
- 452.41 | 3.03
0.53
- 0.18 | 60AND/BII
69STU/WE:
69STU/WE: | | Methylph
$(1 \times C - (1 \times C_n ($ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33 | sol
×O-(H)(C _B))
(1 × onho corr)
re - Calculated
-127.17
130.34
351.10
-313.89 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} - S^{\circ} = \frac{1}{2}$ | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66
- 193.17
221.65
212.58 | 3.03
0.53
- 0.18 | 60AND/BII
69STU/WES
69STU/WES | | -Methylph $(1 \times C_n - 1)$ is sphase $C_p^{\alpha} = C_p^{\alpha} = C_p^{\alpha} = C_p^{\alpha} = 1$ in $K_t = C_p^{\alpha}$ in $K_t = C_p^{\alpha}$ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | Sol
×O-(H)(C _B))
(1 × ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} - S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \frac{1}{2}$ | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66
- 193.17
221.65
212.58
- 452.41
- 58.29 | 3.03
0.53
- 0.18 | 60AND/BIE
69STU/WES
69STU/WES | | -Methylph
$(1 \times C - (1 \times C_n $ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | Sol
×O-(H)(C _B))
(1 × ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} - S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \frac{1}{2}$ | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66
- 193.17
221.65
212.58
- 452.41
- 58.29 | 3.03
0.53
- 0.18 | 60AND/BII
69STU/WES
69STU/WES | | -Methylph $(1 \times C_{-1})$ $(1 \times C_{-1})$ is sphase $\lambda_i H^\circ = C_\rho^\circ = S^\circ = \lambda_i G^\circ = \ln K_i = \lim_{\lambda_i \to 0} \lambda_i H^\circ $ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
× O-(H)(C _B))
(1 × ortho corr)
re - Calculated
- 127.17
130.34
351.10
- 313.89
- 33.58
13.55 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Lambda_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} - S^{\circ} = \Delta_{t}S^{\circ} = \Lambda_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Solid phase | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66
- 193.17
221.65
212.58
- 452.41
- 58.29
23.51 | 3.03
0.53
-0.18 | 60AND/BIE
69STU/WES
69STU/WES | | -Methylph $(1 \times C_n - 1)$ ias phase $\lambda_i H^\circ = C_\rho^\circ = S^\circ = \lambda_i G^\circ = \ln K_I = 1$ iquid pha | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
×O-(H)(C _B))
(1×ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58
13.55
-189.91
225.15 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = InK_{t} = InK_{t} = InK_{t} = InK_{t}G^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = InK_{t} = InK_{t}G^{\circ} InK_{t}G^{\circ$ | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66
- 193.17
221.65
212.58
- 452.41
- 58.29
23.51 | 3.03
0.53
-0.18 | 60AND/BIE
69STU/WES
69STU/WES
75NIC/WAI | | -Methylph
$(1 \times C - (1 \times C_n $ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
×O-(H)(C _B))
(1×ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58
13.55
-189.91
225.15
212.58 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = InK_{t} =
InK_{t} = InK_{t} = InK_{t}G^{\circ} InK_{t}G^{\circ}$ | - 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66
- 193.17
221.65
212.58
- 452.41
- 58.29
23.51 | 3.03
0.53
-0.18
0.61 | 60AND/BID
69STU/WES
69STU/WES
75NIC/WAI
60AND/BID
67AND/COI | | -Methylph
$(1 \times C_{-1})$
$(1 \times C_{n-1})$
Gas phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$S_0^\circ =$
$\Delta_t S_0^\circ =$
$\ln K_t =$
iquid pha
$\Delta_t H^\circ =$
$S_0^\circ =$ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
×O-(H)(C _B))
(1×ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58
13.55
-189.91
225.15
212.58
-452.41 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{S^{\circ}} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{1}{S^{\circ}} $ | 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66
- 193.17
221.65
212.58
- 452.41
- 58.29
23.51 | 3.03
0.53
-0.18 | 60AND/BID
69STU/WES | | ias phase $C_p^{\rho} = S^{\circ} = \Delta_t S^{\circ} = \ln K_t = S^{\circ} = \Delta_t S^{\circ$ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
×O-(H)(C _B))
(1×ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58
13.55
-189.91
225.15
212.58
-452.41
-55.03 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{C_{p}^{\circ} - S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ} - C_{p}^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \frac{\Delta_{t}H^{\circ} - C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \frac{\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \frac{\Delta_{t}S^{\circ} = C_{t}G^{\circ} $ | - 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66
- 193.17
221.65
212.58
- 452.41
- 58.29
23.51
- 204.97
153.67
172.40
- 492.59 | 3.03
0.53
-0.18
0.61 | 60AND/BID
69STU/WES
69STU/WES
75NIC/WAI
60AND/BID
67AND/COI | | Methylph
$(1 \times C_{-1})$
$(1 \times C_{n-1})$
$(1 C_{n-1}$ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
×O-(H)(C _B))
(1×ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58
13.55
-189.91
225.15
212.58
-452.41 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} =$ | - 125.40
124.47
347.65 | - 128.43 123.94 347.83 - 317.15 - 33.87 13.66 - 193.17 221.65 212.58 - 452.41 - 58.29 23.51 - 204.97 153.67 172.40 - 492.59 - 58.11 | 3.03
0.53
-0.18
0.61 | 60AND/BID
69STU/WES
69STU/WES
75NIC/WAI
60AND/BID
67AND/COI | | -Methylph
$(1 \times C - (1 \times C_n - 1))$
$(1 \times C_n - 1)$
$(1 1)$ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
×O-(H)(C _B))
(1×ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58
13.55
-189.91
225.15
212.58
-452.41
-55.03 | + $(1 \times C_{n}$ - (O) = Residual - 1.43 - 0.01 | $(C_B)_2$) +
$(C_D)_2$), $\sigma = 3$
Reference
60AND/BID
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{C_{p}^{\circ} - S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ} - C_{p}^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \frac{\Delta_{t}H^{\circ} - C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \frac{\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \frac{\Delta_{t}S^{\circ} = C_{t}G^{\circ} $ | - 125.40
124.47
347.65 | - 128.43
123.94
347.83
- 317.15
- 33.87
13.66
- 193.17
221.65
212.58
- 452.41
- 58.29
23.51
- 204.97
153.67
172.40
- 492.59 | 3.03
0.53
-0.18
0.61 | 60AND/BIE
69STU/WES
69STU/WES
75NIC/WAI
60AND/BIE
67AND/COI | | Methylph
$(1 \times C - (1 \times C_n ($ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
× O-(H)(C _B))
(1 × ortho corr)
re - Calculated
- 127.17
130.34
351.10
- 313.89
- 33.58
13.55
- 189.91
225.15
212.58
- 452.41
- 55.03
22.20 | $+ (1 \times C_{n} - (0))$ = Residual -1.43 -0.01 6.51 | (C _B) ₂) +
(C _D) ₂), σ = 3
Reference
60AND/BID
69STU/WES
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} =$ | - 125.40
124.47
347.65 | - 128.43 123.94 347.83 - 317.15 - 33.87 13.66 - 193.17 221.65 212.58 - 452.41 - 58.29 23.51 - 204.97 153.67 172.40 - 492.59 - 58.11 | 3.03
0.53
-0.18
0.61 | 60AND/BII
69STU/WE:
69STU/WE:
75NIC/WAI
60AND/BIE
67AND/CO | | Methylph
$(1 \times C - (1 \times C_n ($ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
× O-(H)(C _B))
(1 × ortho corr)
re - Calculated
- 127.17
130.34
351.10
- 313.89
- 33.58
13.55
- 189.91
225.15
212.58
- 452.41
- 55.03
22.20 | $+(1 \times C_{n}-(0))$ = Residual -1.43 -0.01 6.51 | (C _B) ₂) +
(C _D) ₂), σ = 3
Reference
60AND/BID
69STU/WES
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} =$ | - 125.40
124.47
347.65 | - 128.43 123.94 347.83 - 317.15 - 33.87 13.66 - 193.17 221.65 212.58 - 452.41 - 58.29 23.51 - 204.97 153.67 172.40 - 492.59 - 58.11 | 3.03
0.53
-0.18
0.61 | 60AND/BII
69STU/WE:
69STU/WE:
75NIC/WAI
60AND/BIE
67AND/CO | | Methylph $(1 \times C - (1 \times C_n (1$ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
×O-(H)(C _B))
(1×ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58
13.55
-189.91
225.15
212.58
-452.41
-55.03
22.20
-199.97
153.67 | + (1 × C _D -(O)
= Residual
- 1.43
- 0.01
6.51 | (C _B) ₂) +
(C _D) ₂), σ = 3
Reference
60AND/BID
69STU/WES
69STU/WES
60AND/BID
67AND/COU | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} =$ | - 125.40
124.47
347.65 | - 128.43 123.94 347.83 - 317.15 - 33.87 13.66 - 193.17 221.65 212.58 - 452.41 - 58.29 23.51 - 204.97 153.67 172.40 - 492.59 - 58.11 | 3.03
0.53
-0.18
0.61 | 60AND/BII
69STU/WE:
69STU/WE:
75NIC/WAI
60AND/BIE
67AND/CO | | Methylph $(1 \times C_{-1})$ ($1 \times C_{-1}$) C_{-1$ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
× O-(H)(C _B))
(1 × ortho corr)
re - Calculated
- 127.17
130.34
351.10
- 313.89
- 33.58
13.55
- 189.91
225.15
212.58
- 452.41
- 55.03
22.20 | $+(1 \times C_{n}-(0))$ = Residual -1.43 -0.01 6.51 | (C _B) ₂) +
(C _D) ₂), σ = 3
Reference
60AND/BID
69STU/WES
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} =
\frac{\Delta_{t}G^{\circ}}{S^{\circ}} =$ | - 125.40
124.47
347.65 | - 128.43 123.94 347.83 - 317.15 - 33.87 13.66 - 193.17 221.65 212.58 - 452.41 - 58.29 23.51 - 204.97 153.67 172.40 - 492.59 - 58.11 | 3.03
0.53
-0.18
0.61 | 60AND/BII
69STU/WE:
69STU/WE:
75NIC/WAI
60AND/BIE
67AND/CO | | Methylph $(1 \times C - (1))$ as phase $v_t H^o = C_p^o = S_p^o = A_p $ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
×O-(H)(C _B))
(1×ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58
13.55
-189.91
225.15
212.58
-452.41
-55.03
22.20
-199.97
153.67 | + (1 × C _D -(O)
= Residual
- 1.43
- 0.01
6.51 | (C _B) ₂) +
(C _D) ₂), σ = 3
Reference
60AND/BID
69STU/WES
69STU/WES
60AND/BID
67AND/COU | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} =$ | - 125.40
124.47
347.65 | - 128.43 123.94 347.83 - 317.15 - 33.87 13.66 - 193.17 221.65 212.58 - 452.41 - 58.29 23.51 - 204.97 153.67 172.40 - 492.59 - 58.11 | 3.03
0.53
-0.18
0.61 | 60AND/BII
69STU/WE
69STU/WE
75NIC/WAI
60AND/BII
67AND/CO | | Methylph $(1 \times C_{-1}(1 \times C_{n-1}(1 C_{$ | H) ₃ (C)) + (1
(C)(C _D) ₂) +
Literatu
- 128.60
130.33
357.61 | sol
×O-(H)(C _B))
(1 × ortho corr)
re - Calculated
-127.17
130.34
351.10
-313.89
-33.58
13.55
-189.91
225.15
212.58
-452.41
-55.03
22.20
-199.97
153.67
172.40 | + (1 × C _D -(O)
= Residual
- 1.43
- 0.01
6.51 | (C _B) ₂) +
(C _D) ₂), σ = 3
Reference
60AND/BID
69STU/WES
69STU/WES
60AND/BID
67AND/COU | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}} =$ | - 125.40
124.47
347.65 | - 128.43 123.94 347.83 - 317.15 - 33.87 13.66 - 193.17 221.65 212.58 - 452.41 - 58.29 23.51 - 204.97 153.67 172.40 - 492.59 - 58.11 | 3.03
0.53
-0.18
0.61 | 60AND/BII
69STU/WE
69STU/WE
75NIC/WA
60AND/BII
67AND/CO | TABLE 15. Alcohols (69) - Continued | 2-Ethylphenol
$(1 \times C - (H)_3(C)) + (4 \times C_B - (H)(C_B)_2)$
$(1 \times ortho \text{ corr})$ | | | | |---|---|------------------------|-----------| | Literat | ure – Calculated = | Residual | Reference | | Gas phase $\Delta_t H^\circ = -145.18$ $C_p^\circ =$ | - 148.51
155.95 | 3.33 | 63BID/HAN | | Liquid phase $ \Delta_t H^\circ = -208.78 $ $ C_p^\circ = S^\circ = \\ \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \ln K_t = $ | -214.72
248.05
259.98
-541.32
-53.33
21.51 | 5.94 | 63BID/HAN | | 3-Ethylphenol
(1×C-(H) ₃ (C)) +
(4×C _B -(H)(C _B) ₂)
(1×meta corr) | |)+(1×C _B (0 | | | | Literatu | Reference | | | |--|----------------|------------------------------|------|-----------| | Gas phase | e | | | | | $\Delta_{f}H^{\circ} =$ | - 146.11 | - 150.40 | 4.29 | 63BID/HAN | | $C_p^{\circ} =$ | | 150.26 | | | | 7 to | | | | | | $C_p^{\circ} =$ | ase
-214.30 | - 217.98
244.55
259.98 | 3.68 | 63BID/HAN | | $\Delta_{\mathbf{f}}H^{\circ} = C_{p}^{\circ} = S^{\circ} =$ | | 244.55
259.98 | 3.68 | 63BID/HAN | | $\Delta_{\mathbf{f}}H^{\circ} = C_{\mathbf{p}}^{\circ} =$ | | 244.55 | 3.68 | 63BID/HAN | | 4-Ethylphenol | C ₈ H ₁₀ O | |--|----------------------------------| | $(1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)(C_B)) + (1 \times C_B - (C)(C_B)_2) +$ | | | $(4 \times C_B - (H)(C_B)_2) + (1 \times O - (H)(C_B)) + (1 \times C_B - (O)(C_B)_2)$ | | | Literatur | Literature – Calculated = Residual | | | | | | | |-------------------------------------|------------------------------------|------|-----------|--|--|--|--| | Gas phase | | | | | | | | | $\Delta_{\rm f}H^{\circ} = -144.10$ | - 149.77 | 5.67 | 63BID/HAN | | | | | | $C_p^{\circ} =$ | 149.55 | | | | | | | | Liquid phase | | | | | | | | | $\Delta_0 H^\circ =$ | -217.98 | | | | | | | | $C_p^{\circ} =$ | 244.55 | | | | | | | | S° = | 259.98 | | | | | | | | $\Delta_{f}S^{\circ} =$ | -541.32 | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | -56.59 | | | | | | | | $lnK_f =$ | 22.83 | | | | | | | | | | | | | | | | | 4-Ethylphenol (Continued) | C ₈ H ₁₀ O | |---|----------------------------------| | $(1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)(C_B)) + (1 \times C_B - (C)(C_B))$ | 2)+ | | $(4 \times C_B - (H)(C_B)_2) + (1 \times O - (H)(C_B)) + (1 \times C_B - (O)(C_B)_2)$ |) | | | | | ; | | | | |----------|----------------|---|---| | - 224.39 | -227.07 | 2.68 | 63BID/HAN | | 206.90 | 203.05 | 3.85 | 75NIC/WAD | | | 199.30 | | | | | -602.00 | | | | | - 47.58 | | | | | 19.20 | | | | | - 224.39 | - 224.39 - 227.07
206.90 203.05
199.30
- 602.00
- 47.58 | -224.39 -227.07 2.68 206.90 203.05 3.85 199.30 -602.00 -47.58 | $\begin{array}{ll} \textbf{2.3-Dimethylphenol} & \textbf{C_{9}H_{10}O} \\ (2 \times \textbf{C}-(\textbf{H})_{3}(\textbf{C})) + (2 \times \textbf{C}_{B}-(\textbf{C})(\textbf{C}_{B})_{2}) + (3 \times \textbf{C}_{B}-(\textbf{H})(\textbf{C}_{B})_{2}) + \\ (1 \times \textbf{O}-(\textbf{H})(\textbf{C}_{B})) + (1 \times \textbf{C}_{B}-(\textbf{O})(\textbf{C}_{B})_{2}) + (2 \times \textit{ortho} \ \textit{corr}) + \\ (1 \times \textit{meta} \ \textit{corr}) \end{array}$ | Literatu | re – Calculated | = Residual | Reference | |------------------------------------|-----------------|------------|-----------| | Gas phase | | | | | $\Delta_t H^\circ = -157.19$ | - 158.97 | 1.78 | 60AND/BID | | $C_p^{\circ} =$ | 159.32 | | | | Liquid phase | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -223.26 | | | | <i>C</i> ^o − | 252.55 | | | | S° = | 247.51 | | | | $\Delta_{i}S^{\circ} =$ | -553.79 | | | | $\Delta_t G^{\circ} =$ | -58.15 | | | | $lnK_f =$ | 23.46 | | | | Solid phase | | | | | $\Delta_{\rm r} H^{\circ}241.21$ | -232.34 | -8.87 | 60AND/BID | | $C_p^{\circ} =$ | 177.73 | | | | S° = | 200.84 | | | | $\Delta_{f}S^{\circ} =$ | 600.46 | | | | $\Delta_{\mathfrak{l}}G^{\circ} =$ | -53.31 | | | | $lnK_f =$ | 21.51 | | | $\begin{array}{ll} \textbf{2,4-Dimethylphenol} & \textbf{C_8H_{10}O} \\ (2 \times C - (H)_3(C)) + (2 \times C_B - (C)(C_B)_2) + (3 \times C_B - (H)(C_B)_2) + \\ (1 \times O - (H)(C_B)) + (1 \times C_B - (O)(C_B)_2) + (1 \times \textit{ortho} \ \textit{corr}) + \\ (1 \times \textit{meta} \ \textit{corr}) \end{array}$ | Literatus | Literature – Calculated = Residual | | | | | | |---|------------------------------------|-------------|--------------|--|--|--| | Gas phase $\Delta_t H^\circ = -162.88$ $C_\rho^\circ =$ | - 160.23
152.92 | -2.65 | 60AND/BID | | | | | Liquid phase $\Delta_t H^\circ = -228.78$ | -226.52 | -2.26 | 60AND/BID | | | | | $C_p^{\circ} = S^{\circ} =$ | 249.05
247.51 | <i>5.40</i> | 007111271212 | | | | | $\Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 0$ | -553.79
-61.41
24.77 | | | | | | | 2,5-Dimethyl
(2×C-(H)
(1×C _B -(C)
(1×meta) | $(C_B)_2 + (2 \times C_B)_2 + (2 \times C_B)_2$ | $\langle C_{B}-(C)(C_{B})_{2}\rangle$
$(3\times C_{B}-(H)(C_{B})_{2})$ | $(1 \times O - (H))$
$(1 \times O - (H))$
$(1 \times O - (H))$ | $C_aH_{10}O$
$ho (C_B)$) +
ho corr) + | | $\frac{1}{3}(C) + (2)$
$\frac{1}{3}(C_B) + (1)$ | $\times C_{B}$ -(C)(C _B) ₂
$\times C_{B}$ -(O)(C _B) | | | |--
--|--|--|--|---|---|---|-------------------|--| | | Literature | e – Calculated | = Residual | Reference | | Literatui | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 161.59 | - 160.23
152.92 | -1.36 | 60AND/BID | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 156.57 | -160.23
152.92 | 3.66 | 60AND/BID | | Liquid phase $ \Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | ee | - 226.52
249.05
247.51
- 553.79
- 61.41
24.77 | | | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = S^\circ =$ | se | - 226.52
249.05
247.51
- 553.79
- 61.41
24.77 | | | | Solid phase $ \Delta_t H^\circ = C_p^\circ - S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = $ | -246.60 | -237.34
177.73
200.84
-600.46 | - 9.26 | 60AND/BID | Solid phase $ \Delta_t H^\circ = C_p^\circ - S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S$ | - 242.30 | -237.34
177.73
200.84
-600.46
-58.31 | -4.96 | 60AND/BID | | $\ln K_f =$ | | -58.31
23.52 | | | $lnK_f =$ | | 23.52 | | | | $\ln K_f =$ 2,6-Dimethy $(2 \times C - (H)^{-1})$ | $H_{3}(C) + (2)$
$H_{3}(C_{B}) + (1)$ | | | | $lnK_f =$ 3,5-Dimethy $(2 \times C - (H))$ | $I_{3}(C) + (2$
$I(C_{B}) + (1$ | $\times C_{B}$ -(C)(C _B) ₂
$\times C_{B}$ -(O)(C _B) | $(3 \times meta)$ | (C _B) ₂)+
corr) | | $\ln K_f =$ 2,6-Dimethy $(2 \times C - (H + (1 \times O - (H + (1 \times O + (H + (1 \times O + (H $ | $H_{3}(C) + (2x)$
$H_{3}(C) $ | 23.52
× C _B -(C)(C _B) ₂ | $+(2 \times ortho$ | $((C_B)_2) +$ | $lnK_f =$ 3,5-Dimethy $(2 \times C - (H))$ | $I_{3}(C) + (2$
$I(C_{B}) + (1$ | × C _B -(C)(C _B) ₂ | $(3 \times meta)$ | $((C_B)_2) +$ | | 2,6-Dimethy (2 × C-(H (1 × O-(H (1 × meta | $H_{3}(C) + (2x)$
$H_{3}(C) $ | 23.52
× C _B -(C)(C _B) ₂
× C _B -(O)(C _B) ₂ | $+(2 \times ortho$ | ()(C _B) ₂)+
corr)+ | $lnK_f = {3,5\text{-Dimethy}}$ $(2 \times C - (H)$ $(1 \times O - (H))$ Gas phase | $I_{3}(C) + (2$
$I(C_{B}) + (1$ | $\times C_{B}$ -(C)(C _B) ₂
$\times C_{B}$ -(O)(C _B) | $(3 \times meta)$ | corr) | | $InK_f =$ 2,6-Dimethy (2×C-(H (1×O-(H (1×meta) Gas phase $\Delta_t H^\circ =$ | H ₃ (C)) + (2:
H)(C _B)) + (1
corr)
Literature
- 161.80 | 23.52 × C _B -(C)(C _B) ₂ × C _B -(O)(C _B); e - Calculated - 158.97 | n) + (2× <i>ortho</i>
= Residual | ()(C _B) ₂) +
corr) +
Reference | $3,5-Dimethy (2 \times C-(H) (1 \times O-(H)))$ Gas phase $\Delta_{\ell}H^{\circ} =$ | I) ₃ (C)) + (2
I)(C _B)) + (1
Literatur
– 161.59 | \times C _B -(C)(C _B) ₂
\times C _B -(O)(C _B)
e – Calculated
– 162.75 | 2)+(3×meta |)(C _B) ₂)+
corr)
Reference | $\Delta_f G^\circ =$ $lnK_f =$ $\Delta_{\rm f} S^{\circ} = \Delta_{\rm f} G^{\circ} =$ $lnK_f =$ Solid phase $\Delta_t H^\circ = -368.00$ $C_\rho^\circ = 139.33$ $S^\circ =$ -258.74 104.38 -368.38 138.44 151.42 -377.25 -255.90 103.23 0.38 0.89 68DES/WIL 50UEB/ORT TABLE 15. Alcohols (69) - Continued #### TABLE 15. Alcohols (69) - Continued | 1,2-Benzenediol; Cated
$(2 \times O-(H)(C_B)) + ($ | | - (4 × C _r (H) | $(C_R)_2$ + | 1,4-Benzene
(2×O-(] | | oquinone
2×C _B -(O)C _B) ₂ | + (4 × C _b -(H) | $\mathbf{C_6H_6O_7}$ | |---|-------------------------------|---------------------------|-------------|---|-------------------------------------|--|---------------------------------------|----------------------------------| | (1×OH-OH ortho | | (*** 05 (**) | (-8/2) | (= 11 0 (= | | re – Calculated | | | | Literatu | re – Calculated = | Residual | Reference | |
Literatu | | = Residual | Reference | | | | | | Gas phase | | | | | | Gas phase $\Delta_t H^\circ = -267.50$
$C_p^\circ =$ | -268.66
128.88 | 1.16 | 84RIB/RIB | $\Delta_t H^\circ = C_p^\circ =$ | -265.30 | - 274.86
122.48 | 9.56 | 56MAG | | | | | | Liquid pha | se | | | | | Liquid phase | | | | $\Delta_{\rm f}H^{\circ} =$ | | -362.08 | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -358.82 | | | $C_p^{\circ} =$ | | 259.42 | | | | $C_p^{\circ} =$ | 262.92 | | | S° = | | 182.08 | | | | S° = | 182.08 | | | $\Delta_f S^\circ =$ | | -449.12 | | | | $\Delta_f S^\circ =$ | -449.12 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | -228.18 | | | | $\Delta_{\rm f}G^{\circ} =$ | -224.92 | | | $lnK_f =$ | | 92.04 | | | | $lnK_f =$ | 90.73 | | | | | | | | | | | | | Solid phase | | | | | | Solid phase | | | | | -364.50 | -370.38 | 5.88 | 56PIL/SUT | | $\Delta_t H^\circ = -354.10$ | -354.38 | 0.28 | 84RIB/RIB | $C_p^{\circ} =$ | 136.40 | 138.44 | -2.04 | 50UEB/ORT | | $C_p^{\circ} = 140.58$ | 138.44 | 2.14 | 50UEB/ORT | S° = | | 151.42 | | | | S° = | 151.42 | | | $\Delta_f S^\circ =$ | | - 479.78 | | | | $\Delta_{r}S^{\circ} =$ | -479.78 | | | $\Delta_t G^\circ =$ | | -227.33 | | | | $\Delta_i G^{\circ} = $ $ln K_i =$ | -211.33
85.25 | | | $lnK_f =$ | | 91.71 | · · · · · · · · · · · · · · · · · · · | | | 1,3-Benzenediol; Reso | rcinol | | C6H6O2 | 1-Naphthol
(7×C _p -(| H)(C _n) ₂)+ | (1×O−(H)(C _B) |))+(1×C₀-((| C ₁₉ H ₈ (| | $(2 \times O - (H)(C_B)) + (1 \times OH - OH meta)$ | $(2 \times C_B - (O)C_B)_2 +$ | $+(4\times C_B-(H)$ | | $(2 \times C_{BF})$ | $(C_{BF})(C_B)_2$ | $+(1 \times naphtha$ | lene 1 sub) | <i>)</i> Св/2 (| | | ure – Calculated = | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | | | | | Gas phase | | | | | | Gas phase | | | | $\Delta_{\rm f}H^{\circ} =$ | -30.80 | -28.18 | - 2.62 | 88RIB/RIB | | $\Delta_t H^\circ = -274.70$ | -274.86 | 0.16 | 68DES/WIL | $C_p^* =$ | | 143.68 | 2.00 | | | $C_p^{\circ} =$ | 123.19 | | | <i></i> | · | | | | | Liquid phase | *** | | | Liquid phas | se | 100 50 | | | | Liquid phase | 262.00 | | | $\Delta_l H^\circ =$ | | -108.58 | | | | $\Delta_t H^\circ =$ | -362.08 | | | $C_p^{\circ} =$ | | 262.15 | | | | $C_p^{\circ} = S^{\circ} =$ | 259.42 | | | S° = | | 224.31 | | | | $\Delta_f S^\circ =$ | 182.08
346.59 | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | ~457.90
27.94 | | | | <u>π</u> ω = | - 540.59 | | | $\Delta_{f}U =$ | | 27.94 | | | $lnK_{f} =$ $\Delta_{f}S^{\circ} =$ $\Delta_t G^\circ =$ $lnK_f =$ -11.27 -124.34 174.47 177.46 26.15 -10.55 -504.75 88RIB/RIB 2.34 | 2-Naphthol
$(7 \times C_B - (F_B))$
$(2 \times C_{BF} - (F_B))$ | $I(C_B)_2 + (C_{BF})(C_B)_2$ | 1×O-(H)(C _B)
+(1×naphtha |)+(1×C _B -(0
lene 1 sub) | $C_{10}H_8O$
$O)(C_B)_2) +$ | $(8 \times C_B - ($ | $(C_{B})_{3}(C) + (2)_{1}(C_{B})_{2} + (2)_{1}(C_{B})_{2}$ | $\times C_B - (C)(C_B)_2$ | $(2 \times C_B - (O))$
(quaternary)) | | |---|--|---|--|---|--|---
--|--|---| | | Literatur | e – Calculated : | = Residual | Reference | | Litera | ture-Calculate | d = Residual | Reference | | Gas phase $\Delta_s H^\circ = C_p^\circ =$ | -29.90 | - 28.18
143.68 | -1.72 | 88RIB/RIB | Solid phase $\Delta_t H^\circ =$ | -368.60 | -365.83 | - 2.77 | 48HUB/KNO | | Liquid phase | e | | | | | | | | | | $\Delta_{f}H^{\circ} =$ | | - 108.58 | | | 1,2-Naphtha | | | | C ₁₉ H ₈ O | | $C_p^{\circ} =$ | | 262.15 | | | $(6 \times C_B - ($ | $H)(C_B)_2) + 0$ | $(2 \times O - (H)(C_B)$ | $(C_B-(C_B))$ | $((C_{B})_{2}) +$ | | s° = | | 224.31 | | | | | +(1×naphtha | | | | $\Delta_{\mathbf{r}}S^{\circ} =$ | | -457.90 | | | | OH(ortho c | | , | | | $\Delta_f G^\circ =$ | | 27.94 | | | • | ` | ,, | | | | $lnK_f =$ | | - 11.27 | | | | Literatur | e – Calculated | = Residual | Reference | | Solid phase | | | | | Gas phase | | | | | | Solid phase | 124.20 | _ 124 24 | 0.14 | 88RIB/RIB | • | - 200.50 | -200.04 | _ 0.42 | 00D1D/D1D | | • | - 124.20 | - 124.34
174.47 | 0.14 | OONID/KID | - | 200.30 | | -0.43 | 88RIB/RIB | | $C_p^{\circ} =$ | | 174.47 | | | $C_p^{\circ} =$ | | 166.18 | | | | S° = | | 177.46 | | | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -504.75 | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 26.15 | | | Liquid phas | ie | | | | | $lnK_f =$ | | - 10.55 | | | $\Delta_{\rm f}H^{\circ} =$ | | -314.10 | | | | | | | | | $C_p^{\circ} =$ | | 323.82 | | | | | | | | | S° = | | 228.74 | | | | | | | | | | | EEE 00 | | | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 555.99 | | | | | | ,3-Dihydroxyna | | $C_{10}H_8O_2$ | $\Delta_{\rm f}G^{\circ} =$ | | - 148.33 | | | | (6×C _B -(I | $H)(C_B)_2) + 0$ | ,3-Dihydroxyna
(2 × O–(H)(C _B)
1+ (1 × naphtha | $(2 \times C_{B}-(0))$ | | | | | ···· | | | (6×C _B -(I | $(C_{BF})(C_{B})_{2}$ | $(2 \times O - (H)(C_B)$ |) + (2 × C _B -(0
lene 2 sub) | | $\Delta_{\rm f}G^{\circ} =$ | | - 148.33 | | | | (6×C _B -(I | $(C_{BF})(C_{B})_{2}$ | $(2 \times O - (H)(C_B)$
+ $(1 \times naphtha$ |) + (2 × C _B -(0
lene 2 sub) | O)(C _B) ₂) + | $\Delta_t G^\circ = \ln K_t = \frac{1 \ln K_t}{1 + \frac{1}{2} \ln K_t}$ Solid phase $\Delta_t H^\circ = \frac{1}{2} \ln K_t$ | - 309.80 | -148.33
59.84
-313.12 | 3.32 | 88RIB/RIB | | (6×C _B -(I | $(C_{BF})(C_{B})_{2}$ | $(2 \times O - (H)(C_B)$
+ $(1 \times naphtha$ |) + (2 × C _B -(0
lene 2 sub) | O)(C _B) ₂) + | $\Delta_t G^{\circ} = \ln K_t = \frac{1 \ln K_t}{1 + \frac{1}{2} \ln K_t}$ Solid phase $\Delta_t H^{\circ} = C_p^{\circ} = \frac{1}{2} \ln K_t$ | | -148.33
59.84 | 3.32 | 88RIB/RIB | | (6×C _B -(I | $(C_{BF})(C_{B})_{2}$ | $(2 \times O - (H)(C_B)$
+ $(1 \times naphtha$ |) + (2 × C _B -(0
lene 2 sub) | O)(C _B) ₂) + | $\Delta_t G^{\circ} = \frac{1}{\ln K_t} = \frac{1}{\ln K_t}$ Solid phase $\Delta_t H^{\circ} = \frac{C_{\rho}^{\circ}}{S^{\circ}} = \frac{1}{\ln K_t}$ | | -148.33
59.84
-313.12 | 3.32 | 88RIB/RIB | | (6 × C _B -(I
(2 × C _{BF} -(| $(C_{BF})(C_{B})_{2}$ | $(2 \times O-(H)(C_B)$
+ $(1 \times naphtha$
e - Calculated
- 207.04 |) + (2 × C _B -(0
lene 2 sub) | O)(C _B) ₂) + | $\Delta_t G^\circ = \frac{1}{\ln K_t} = \frac{1}{\ln K_t}$ Solid phase $\Delta_t H^\circ = \frac{C_t^\circ = S^\circ = \Delta_t S^\circ = \frac{1}{\ln K_t}$ | | -148.33
59.84
-313.12
183.30 | 3.32 | 88RIB/RIB | | (6 × C _B -(I
(2 × C _{BF} -(| $(C_B)_2 + (C_B)_2 + (C_B)_2$ Literatur | (2 × O-(H)(C _B)
+ (1 × naphtha
re – Calculated |) + (2 × C _B -(0
lene 2 sub)
= Residual | O)(C _B) ₂) + Reference | $\Delta_t G^{\circ} = \frac{1}{\ln K_t} = \frac{1}{\ln K_t}$ Solid phase $\Delta_t H^{\circ} = \frac{C_{\rho}^{\circ}}{S^{\circ}} = \frac{1}{\ln K_t}$ | | - 148.33
59.84
- 313.12
183.30
184.92 | 3.32 | 88RIB/RIB | | $(6 \times C_{B}-(1 C_{B$ | $(C_B)_2 + (C_B)_2 + (C_B)_2$ Literatur | $(2 \times O-(H)(C_B)$
+ $(1 \times naphtha$
e - Calculated
- 207.04 |) + (2 × C _B -(0
lene 2 sub)
= Residual | O)(C _B) ₂) + Reference | $\Delta_t G^\circ = \frac{1}{\ln K_t} = \frac{1}{\ln K_t}$ Solid phase $\Delta_t H^\circ = \frac{C_t^\circ = S^\circ = \Delta_t S^\circ = \frac{1}{\ln K_t}$ | | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81 | 3.32 | 88RIB/RIB | | $(6 \times C_{B}-(1 \times C_{BF}-(1 $ | H)(C _B) ₂) + (C _{BF})(C _B) ₂) Literatur - 192.80 | (2 × O-(H)(C _B)
+ (1 × naphtha
e - Calculated
- 207.04
166.18 |) + (2 × C _B -(0
lene 2 sub)
= Residual | O)(C _B) ₂) + Reference | $\Delta_t G^\circ = \frac{1}{\ln K_t} = \frac{1}{\ln K_t}$ Solid phase $\Delta_t H^\circ = \frac{C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \frac{1}{\ln K_t}$ | | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29 | 3.32 | 88RIB/RIB | | $(6 \times C_{BF} - (1))$ $(2 \times C_{BF} - (1))$ Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} = C_{p}^{\circ}$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} C_{p}^{\circ}$ | H)(C _B) ₂) + (C _{BF})(C _B) ₂) Literatur - 192.80 | (2 × O-(H)(C _B)
+ (1 × naphtha
re - Calculated
- 207.04
166.18 |) + (2 × C _B -(0
lene 2 sub)
= Residual | O)(C _B) ₂) + Reference | Solid phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = InK_{t} = InK_{t}$ | - 309.80 | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29 | 3.32 | | | $(6 \times C_{B}-(1 \times C_{BF}-(1 $ | H)(C _B) ₂) + (C _{BF})(C _B) ₂) Literatur - 192.80 | (2 × O-(H)(C _B)
+ (1 × naphtha
re - Calculated
- 207.04
166.18
- 314.10
323.82 |) + (2 × C _B -(0
lene 2 sub)
= Residual | O)(C _B) ₂) + Reference | Solid phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = InK_{t} = InK_{t}$ 1,3-Naphtha | - 309.80 | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17 | | C ₁₈ H ₈ O ₂ | | $(6 \times C_{B}-(1 \times C_{BF}-(1 $ | H)(C _B) ₂) + (C _{BF})(C _B) ₂) Literatur - 192.80 | (2 × O-(H)(C _B)
+ (1 × naphtha
re - Calculated
- 207.04
166.18
- 314.10
323.82
228.74 |) + (2 × C _B -(0
lene 2 sub)
= Residual | O)(C _B) ₂) + Reference | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = $ 1,3-Naphtha $(6 \times C_{B} - (1))$ | -309.80 alenediol H)(C _B) ₂) + (| - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17 |))+(2×C ₈ -(O | C ₁₈ H ₈ O ₂ | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = C_{p}^{\circ} C_$ | H)(C _B) ₂) + (C _{BF})(C _B) ₂) Literatur - 192.80 | (2 × O-(H)(C _B)
+ (1 × naphtha
re - Calculated
- 207.04
166.18
- 314.10
323.82
228.74
- 555.99 |) + (2 × C _B -(0
lene 2 sub)
= Residual | O)(C _B) ₂) + Reference | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{1,3-\text{Naphths}}{(6 \times C_{B}-(1)(2 \times C_{BF}-(1)(2 C_{B$ | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2×O-(H)(C _B
+ (1×naphtha |))+(2×C ₈ -(O | C ₁₈ H ₈ O ₂ | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = C_{p}^{\circ} C_{$ | H)(C _B) ₂) + (C _{BF})(C _B) ₂) Literatur - 192.80 | (2 × O-(H)(C _B)
+ (1 × naphtha
re - Calculated
- 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33 |) + (2 × C _B -(0
lene 2 sub)
= Residual | O)(C _B) ₂) + Reference | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{1,3-\text{Naphths}}{(6 \times C_{B}-(1)(2 \times C_{BF}-(1)(2 C_{B$ | -309.80 alenediol H)(C _B) ₂) + (| - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2×O-(H)(C _B
+ (1×naphtha |))+(2×C ₈ -(O | C ₁₈ H ₈ O ₂ | | Gas phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = C_{\rho}^{\circ} = \Delta_{t}S^{\circ} \Delta_{t}S^{$ | H)(C _B) ₂) + (C _{BF})(C _B) ₂) Literatur - 192.80 | (2 × O-(H)(C _B)
+ (1 × naphtha
re - Calculated
- 207.04
166.18
- 314.10
323.82
228.74
- 555.99 |) + (2 × C _B -(0
lene 2 sub)
= Residual | O)(C _B) ₂) + Reference | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{1,3-\text{Naphths}}{(6 \times C_{B}-(1)(2 \times C_{BF}-(1)(2 C_{B$ | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2×O-(H)(C _B
+ (1×naphtha |)) + (2 × C _B −(O
llene 2 sub) + | C ₁₈ H ₈ O ₂ | | Gas phase $\Delta_{l}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{l}H^{\circ} = C_{p}^{\circ} =$ $\Delta_{l}G^{\circ} = \Delta_{l}G^{\circ} =$ $\ln K_{f} =$ Solid phase | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | (2 × O-(H)(C _B)
+ (1 × naphtha
re - Calculated
- 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | O)(C _B) ₂) + Reference | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{1,3-\text{Naphths}}{(6 \times C_{B}-(1)(2 \times C_{BF}-(1)(2 C_{B$ | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2×O-(H)(C _B +(1×naphthapprr)) |)) +
(2 × C _B −(O
llene 2 sub) + | С ₁₈ Н ₈ О ₂
)(С _В)2) + | | Gas phase $\Delta_{l}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{l}H^{\circ} = C_{p}^{\circ} =$ $\Delta_{l}G^{\circ} = \Delta_{l}G^{\circ} =$ $\ln K_{f} =$ Solid phase | H)(C _B) ₂) + (C _{BF})(C _B) ₂) Literatur - 192.80 | (2 × O-(H)(C _B)
+ (1 × naphtha
re - Calculated
- 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33 |) + (2 × C _B -(0
lene 2 sub)
= Residual | O)(C _B) ₂) + Reference | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{1,3-\text{Naphths}}{(6 \times C_{B}-(1)(2 \times C_{BF}-(1)(2 C_{B$ | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2×O-(H)(C _B +(1×naphthapprr)) |)) + (2 × C _B −(O
llene 2 sub) + | С ₁₈ Н ₈ О ₂
)(С _В)2) + | | Gas phase $\Delta_{l}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{l}H^{\circ} = C_{p}^{\circ} =$ $\Delta_{l}G^{\circ} = \Delta_{l}G^{\circ} =$ $\ln K_{f} =$ Solid phase | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | (2 × O-(H)(C _b)
+ (1 × naphtha
re - Calculated
-207.04
166.18
-314.10
323.82
228.74
-555.99
-148.33
59.84 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | Reference 88RIB/RIB | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = InK_{t} = InK_{t} = InK_{t}$ 1,3-Naphtha $(6 \times C_{B} - (1 \times OH ($ | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2×O-(H)(C _B +(1×naphthapprr)) |)) + (2 × C _B −(O
llene 2 sub) + | С ₁₈ Н ₈ О ₂
)(С _В)2) + | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t G^\circ = \Delta_t G^\circ =$ $\ln K_t =$ Solid phase $\Delta_t H^\circ =$ | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | (2 × O-(H)(C _b)
+ (1 × naphtha
re - Calculated
- 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33
59.84 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | Reference 88RIB/RIB | Solid phase $\Delta_t H^\circ = C_p^\circ = S_0 $ | alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2×O-(H)(C _B)
+ (1×naphthaperr))
e - Calculated |)) + (2 × C _B -(O
llene 2 sub) +
= Residual | $C_{10}H_8O_2$)(C_B) $_2$) + Reference | | $(6 \times C_{B}-(1))$ $(2 \times C_{BF}-(1))$ $C_{A} = C_{A} =$ | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | (2 × O-(H)(C _b)
+ (1 × naphtha
re - Calculated
- 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33
59.84
- 329.12
183.30 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | Reference 88RIB/RIB | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = InK_{t} = InK_{t} = InK_{t}$ 1,3-Naphtha $(6 \times C_{B} - (1 \times OH ($ | alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2×O-(H)(C _B)
+ (1×naphthaperr))
e - Calculated |)) + (2 × C _B -(O
llene 2 sub) +
= Residual | $C_{10}H_8O_2$)(C_B) $_2$) + Reference | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ $\Delta_{t}G^{\circ} = $ $\Delta_{t}G^{\circ} = $ $\ln K_{t} = $ Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ $C_{p}^{\circ} = C_{p}^{\circ} = $ | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | (2 × O-(H)(C _b)
+ (1 × naphtha
re - Calculated
- 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33
59.84
- 329.12
183.30
184.92 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | Reference 88RIB/RIB | Solid phase $\Delta_t H^\circ = C_p^\circ = S_0 $ | alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2×O-(H)(C _B)
+ (1×naphthaperr))
e - Calculated |)) + (2 × C _B -(O
llene 2 sub) +
= Residual | $C_{10}H_8O_2$)(C_B) $_2$) + Reference | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{p}^{\circ} = \Delta_{t}G^{\circ} $ | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | - 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33
59.84
- 329.12
183.30
184.92
- 599.81
- 150.29 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | Reference 88RIB/RIB | Solid phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = InK_{t} = InK_{t} = InK_{t}$ 1,3-Naphtha $(6 \times C_{B} - (1 \times OH - 1))$ Gas phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = InK_{t} = C_{\rho}^{\circ} = InK_{t}$ | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2×O-(H)(C _B)
+ (1×naphthaperr))
e - Calculated |)) + (2 × C _B -(O
llene 2 sub) +
= Residual | $C_{10}H_8O_2$)(C_B) $_2$) + Reference | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{p}^{\circ} = \Delta_{t}G^{\circ} =$ | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | - 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33
59.84
- 329.12
183.30
184.92
- 599.81 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | Reference 88RIB/RIB | Solid phase $\Delta_{t}H^{\circ} = C^{\circ}_{\rho} = S^{\circ} = \Delta_{t}S^{\circ} = InK_{t} = InK_{t}$ 1,3-Naphtha $(6 \times C_{B^{-}}(1 \times OH^{-1}))$ Gas phase $\Delta_{t}H^{\circ} = C^{\circ}_{\rho} = InK_{t} = InK_{t}$ Using the solution of the second se | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2 × O-(H)(C _B , + (1 × naphtha
orr))
e - Calculated
- 207.04
166.18 |)) + (2 × C _B -(O
llene 2 sub) +
= Residual | $C_{10}H_8O_2$)(C_B) $_2$) + Reference | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{p}^{\circ} = \Delta_{t}G^{\circ} $ | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | - 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33
59.84
- 329.12
183.30
184.92
- 599.81
- 150.29 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | Reference 88RIB/RIB | Solid phase $\Delta_{t}H^{\circ} = C^{\circ}_{p} = S^{\circ} = \Delta_{t}S^{\circ} = InK_{t} = InK_{t} = InK_{t}$ 1,3-Naphtha $(6 \times C_{B} - (1 \times OH - 1))$ Gas phase $\Delta_{t}H^{\circ} = C^{\circ}_{p} = InUnit In $ | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2×O-(H)(C _B
+ (1×naphtha
orr))
e - Calculated
- 207.04
166.18 |)) + (2 × C _B -(O
llene 2 sub) +
= Residual | $C_{10}H_8O_2$)(C_B) $_2$) + Reference | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{p}^{\circ} = \Delta_{t}G^{\circ} $ | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | - 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33
59.84
- 329.12
183.30
184.92
- 599.81
- 150.29 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | Reference 88RIB/RIB | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = InK_{t} InK$ | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84
- 313.12
183.30
184.92
- 599.81
- 134.29
54.17
(2 × O-(H)(C _B ,
+ (1 × naphtha
orr))
e - Calculated
- 207.04
166.18
- 314.10
323.82 |)) + (2 × C _B -(O
llene 2 sub) +
= Residual | $C_{10}H_8O_2$)(C_B) $_2$) + Reference | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{p}^{\circ} = \Delta_{t}G^{\circ} $ | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | - 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33
59.84
- 329.12
183.30
184.92
- 599.81
- 150.29 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | Reference 88RIB/RIB | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S_{0}^{\circ} S_{$ | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33 59.84 - 313.12 183.30 184.92 - 599.81 - 134.29 54.17 (2 × O-(H)(C _B , + (1 × naphtha orr)) e - Calculated - 207.04 166.18 - 314.10 323.82 228.74 |)) + (2 × C _B -(O
llene 2 sub) +
= Residual | $C_{10}H_8O_2$)(C_B) $_2$) + Reference | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{p}^{\circ} = \Delta_{t}G^{\circ} $ | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | - 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33
59.84
- 329.12
183.30
184.92
- 599.81
- 150.29 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | Reference 88RIB/RIB | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S_{0}^{\circ}$ $\Delta_{t}G^{\circ} = S_{0}^{\circ} = S_{0}^{\circ} = S_{0}^{\circ}$ $\Delta_{t}G^{\circ} = S_{0}^{\circ} = S_{0}^{\circ}$ $S^{\circ} = S_{0}^{\circ} = S_{0}^{\circ} = S_{0}^{\circ}$ $S^{\circ} = S_{0}^{\circ} = S_{0}^{\circ}$ $S^{\circ} = S_{0}^{\circ} = S_{0}^{\circ} = S_{0}^{\circ} = S_{0}^{\circ} = S_{0}^{\circ}$ | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33
59.84 - 313.12 183.30 184.92 - 599.81 - 134.29 54.17 (2×O-(H)(C _B + (1×naphthaper)) e - Calculated - 207.04 166.18 - 314.10 323.82 228.74 - 555.99 |)) + (2 × C _B -(O
llene 2 sub) +
= Residual | $C_{10}H_8O_2$)(C_B) $_2$) + Reference | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{p}^{\circ} = \Delta_{t}G^{\circ} $ | H)($(C_B)_2$) + ((C_BF) ($(C_B)_2$) Literatur - 192.80 | - 207.04
166.18
- 314.10
323.82
228.74
- 555.99
- 148.33
59.84
- 329.12
183.30
184.92
- 599.81
- 150.29 | 1) + (2 × C _B -(0)
lene 2 sub)
= Residual | Reference 88RIB/RIB | Solid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S_{0}^{\circ} S_{$ | - 309.80 alenediol H)(C _B) ₂) + ((C _{BF})(C _B) ₂) OH(meta co | - 148.33 59.84 - 313.12 183.30 184.92 - 599.81 - 134.29 54.17 (2 × O-(H)(C _B , + (1 × naphtha orr)) e - Calculated - 207.04 166.18 - 314.10 323.82 228.74 |)) + (2 × C _B -(O
llene 2 sub) +
= Residual | $C_{10}H_8O_2$)(C_B) $_2$) + Reference | TABLE 15. Alcohols (69) - Continued #### TABLE 16. Ethers (53) | 1,3-Naphthalenediol (Continued)
$(6 \times C_B - (H)(C_B)_2) + (2 \times O - (H)(C_B)) + (2 \times C_B - (O(B)_2) + (2 \times O(B)_2) O(B$ | $C_{10}H_8O_2$
$(C_B)_2) +$ | Methoxyme
(2×C-(I | | ethyl ether
×O-(C)2), σ : | = 18 | C₂H. | | |--|----------------------------------|---|----------------------------------|---|---|-------------------------------------|--| | $(2 \times C_{BF} - (C_{BF})(C_B)_2) + (1 \times naphthalene \ 2 \ sub) + (1 \times OH - OH(meta \ corr)$ | | | | | = Residual | ual Reference | | | Literature – Calculated = Residual | Reference | Gas phase | | | | *** | | | Folid phase $ \Delta_t H^\circ = -327.20 -327.12 -0.08 $ $ C_t^\circ = 183.30 $ $ S^\circ = 184.92 $ $ \Delta_t S^\circ = -599.81 $ $ \Delta_t G^\circ = -148.29 $ $ \ln K_t = 59.82 $ | 88RIB/RIB | $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{f} =$ | -184.10
65.81
267.06 | - 185.94
70.00
259.94
- 245.78
- 112.66
45.45 | 1.84
-4.19
7.12 | 64PIL/PEL
69STU/WES
69STU/WES | | | | | Ethoxyetha | | | ×C (II) (O)(| C4H16 | | | ,4-Naphthalenediol $(6 \times C_B - (H)(C_B)_2) + (2 \times O - (H)(C_B)) + (2 \times C_B - (O \times C_B)_2) + (1 \times C_B + $ | $C_{16}H_8O_2$
$O((C_B)_2) +$ | | ,, | ×O-(C) ₂)+(2
re – Calculated | | Reference | | | Literature - Calculated = Residual | Reference | Gas phase $\Delta_t H^\circ =$ | - 252.10 | - 251.74 | -0.36 | 63PIL/SKI | | | Gas phase $C_p = -197.00 -207.04$ 10.04 $C_p^{\circ} = 166.18$ | 88RIB/RIB | $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = 0$ | 112.51
342.67 | 110.66
346.80
-431.54
-123.08
49.65 | 1.85
-4.13 | 69STU/WES
69STU/WES | | | iquid phase $\Delta_t H^{\circ} = -314.10$ | | Liquid phas | | | | | | | $C_p^o = 323.82$ $S^o = 228.74$ $\Delta_t S^o = -555.99$ $\Delta_t G^o = -148.33$ $\ln K_t = 59.84$ | | | - 279.40
172.51
253.50 | -277.65
164.51
258.56
-519.78
-122.68
49.49 | - 1.75
8.00
- 5.06 | 71COU/LEE
71COU/LEE
71COU/LEE | | | olid phase
$\Delta_t H^\circ = -317.40 -329.12$ 11.72
$C_p^\circ = 183.30$
$S^\circ = 184.92$
$\Delta_t S^\circ = -599.81$ | 88RIB/RIB | (2×C-(I | | -propyl ether \times O-(C) ₂)+(2 σ = 18 | × C-(H) ₂ (C) ₂) | C ₆ H ₁ . | | | $\Delta_t G^{\circ} = -150.29$
$\ln K_t = 60.62$ | | | Literatu | re – Calculated | = Residual | Reference | | | | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = 0$ | - 293.10
158.28
422.50 | - 293.00
156.44
425.12
- 625.84
- 106.41
42.92 | -0.10
1.84
-2.62 | 80MAJ/WAG
69STU/WES
69STU/WES | | | | | Liquid phas $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0 $ | se
328.82
221.58
323.88 | -329.11
225.35
323.32
-727.64
-112.16
45.25 | 0.29
- 3.77
0.56 | 65COL/PEL
75AND/COU
75AND/COU | | | | | \times C-(H) ₂ (C) ₂) + | (2×C-(H) ₂ | $C_8H_{18}O$ $(O)(C)) +$ | (2×C-(I | | yl butyl ether
2×C-(H) ₂ (C) ₂) · | + (1 × C-(H) ₂ | $C_5H_{12}C_{1}(O)(C)) +$ | |--|---|---|-----------------------|--
--|--|---|---------------------------|--| | | Literatu | re – Calculated = | Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -332.90
204.01
500.41 | -334.26
202.22
503.44
-820.14
-89.73
36.20 | 1.36
1.79
-3.03 | 80MAJ/WAG
69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -258.10 | -260.10
136.11
387.45
-527.20
-102.92
41.52 | 2.00 | 75FEN/HAR | | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | se
-377.90 | -380.57
286.19
388.08
-935.50
-101.65
41.01 | 2.67 | 65COL/PEL | Liquid pha $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
290.60
192.72
295.30 | - 293.31
191.71
290.73
- 623.92
- 107.29
43.28 | 2.71
1.01
4.57 | 75FEN/HAR
75AND/MAR
75AND/MAR | | | | el ethyl ether
×C-(H)2(O)(C) |))+(1×O-(0 | C_3H_8O C_2), $\sigma = 9$ | (2×C-(I | | yl decyl ether
$1 \times C - (H)_2(O)(C)$
= 9 |))+(1×O-((| C ₁₁ H ₂₄ O
C) ₂) + | | | Literatu | re – Calculated = | Residual | Reference | an Kan | Literatu | re – Calculated = | = Residual | Reference | | Gas phase
$\Delta_i H^o =$ $C_p^o =$ $S^o =$ $\Delta_t S^o =$ $\Delta_t G^o =$ $\ln K_t =$ | 216.40
89.75
310.62 | -218.84
90.33
309.13
-332.89
-119.59
48.24 | 2.44
-0.58
1.49 | 64PIL/PEL
69STU/WES
69STU/WES | Gas phase $ \Delta_t H^o = C_p^o = S^o = \Delta_t S^o = \Delta_t G^o = \ln K_t = $ | - 381.12 | - 383.88
273.45
622.41
- 1110.10
- 52.90
21.34 | 2.76 | 75FEN/HAR | | (2×C-(I | $(C)_{3}(C) + (1)_{3}(C)_{2}, \sigma = 9$ | hyl propyl ether \times C-(H) ₂ (C) ₂) + re - Calculated = | . , ,- | C ₄ H ₁₀ O
(O)(C)) +
Reference | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
- 443.42
370.80
490.50 | -447.69
374.23
485.01
-1247.50
-75.75
30.56 | 4.27
-3.43
5.49 | 75FEN/HAR
75AND/MAR
75AND/MAR | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -237.70
112.51
349.45 | - 239.47
113.22
348.29
- 430.05
- 111.25
44.88 | 1.77
-0.71
1.16 | 64PIL/PEL
69STU/WES
69STU/WES | (3×C-(H
(1×C-(H | $H)_3(C)) + (1$
$H)(O)(C)_2$ (
H corr (terti | ethyl isopropyl ε × O-(C) ₂) + ethers,esters)) + iary)), σ = 27 | | C₄H ₁₆ O
Reference | | Liquid phas $ \Delta_t H^\circ = C_t^\circ - S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t - K_t^\circ $ | se
- 265.89
161.90
253.70 | -267.58
161.29
258.35
-519.99
-112.55
45.40 | 1.69
0.61
-4.65 | 80MAJ/WAG
75AND/MAR
75AND/MAR | Gas phase $ \Delta_t H^\circ \sim C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ \sim \ln K_t = S^\circ S$ | - 252.00
111.09
338.32 | -252.18
113.51
331.09
-447.25
-118.83
47.94 | 0.18
- 2.42
7.23 | 64PIL/PEL
69STU/WES
69STU/WES | TABLE 16. Ethers (53) - Continued | (3×C-(1
(1×C-(1 | $H)_3(C)) + (1)$
$H)(O)(C)_2$ | thyl isopropyl $(\times O - (C)_2) + (C)_2$
ethers, esters) $(\times O - (C)_2) + (C)_2$ | | ued) C ₄ H ₁₀ O | (4×C-(I | H) ₃ (C)) + (2
C) ₂) + (4 × - | Diisopropyl eth
2×C-(H)(O)(C
-CH ₃ corr (tert | $(c)_2$ (ethers, esteriory)), $\sigma = 16$ | 2 | |--|--|---|------------------------|---|---|--|---|---|--| | | Literatur | e – Calculated : | = Residual | Reference | | Literatu | re –
Calculated | = Residual | Reference | | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | - 278.70
161.92
253.72 | -279.02
159.27
251.37
-526.97
-121.90
49.18 | 0.32
2.65
2.35 | 80MAJ/WAG
75AND/MAR
75AND/MAR | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f = $ | -319.40
158.28
390.24 | -318.42
157.02
390.71
-660.25
-121.57
49.04 | - 0.98
1.26
- 0.47 | 80MAJ/WAG
69STU/WES
69STU/WES | | butyl etl
(4×C-(| her
(H) ₃ (C)) + (1
H ₃ corr (quat | ropane; Methyl \times C-(O)(C) ₃ (6 iernary)), $\sigma =$ | thers,esters))
243 | $C_3H_{12}O$
+ $(1 \times O - (C)_2)$ +
Reference | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
- 351.50
216.10
304.60 | -351.99
221.31
309.36
-741.60
-130.88
52.80 | 0.49
- 5.21
- 4.76 | 65COL/PEL
74AND/COU
74AND/COU | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 283.50
134.18
352.96 | - 274.64
136.06
351.02
- 563.63
- 106.59
43.00 | -8.86
-1.88
1.94 | 80MAJ/WAG
69STU/WES
69STU/WES | (4×C-(F
(2×C-(F | $H_{3}(C) + (2H_{3}(C)) (2H$ | -sec-butyl ether
$C \times C - (H)_2(C)_2$
(ethers, esters))
iary)), $\sigma = 162$
re - Calculated | +
+ (1 × O-(C) ₂)
} | C ₈ H ₁₈ O
+
Reference | | Liquid phate $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | ase
- 313.60
187.50
265.30 | -313.65
190.65
265.30
-649.35
-120.05
48.43 | 0.05
-3.15
0.00 | 75FEN/HAR
75AND/MAR
75AND/MAR | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 360.70
204.01
462.62 | - 355.16
202.80
469.03
- 854.55
- 100.38
40.49 | - 5.54
1.21
- 6.41 | 80MAJ/SVO
69STU/WES
69STU/WES | | (2×C-(| $(C)_2), \sigma = 9$ | \times C-(H) ₂ (C) ₂) | | C ₅ H ₁₂ O
(O)(C)) + | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | se
401.50 | - 399.09
282.15
374.12
- 949.46 | - 2.41 | 65COL/PEL | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 272.21 | - 272.37
133.55
391.72
- 522.93
- 116.46
46.98 | 0.16 | 75FEN/HAR | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = \\ -$ | · . | - 116.01
46.80 | | | | Liquid ph.
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | ase
- 303.59
197.20
295.00 | - 303.38
194.93
290.94
- 623.71
- 117.42
47.37 | - 0.21
2.27
4.06 | 75FEN/HAR
75AND/MAR
75AND/MAR | | | | | | | (1×C-(1 | $H)(O)(C)_2$ | ethers,esters)) | ropyl tert-buty
ethers,esters))
+ (1×O-(C) ₂) | + | | | $\times C_{d-}(H)_2) + ($
$\times C_{d-}(O)(H))$ | 1×C-(H) ₂ (O)(| (C))+ | |---|--|--|---|---|--
--|--|--|---| | (3×-CH | l₃ corr (terti
l₃ corr (quat | ernary)), σ = | 729 | | | Literatu | re – Calculated | = Residual | Reference | | | Literatur | e – Calculated | = Residual | Reference | Complete | | | | | | | | | | - <u> </u> | Gas phase $\Delta_t H^\circ = -$ | 140.16 | -141.85 | 1.69 | 63PIL/SKI | | Gas phase | | | 4404 | ************************************** | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -357.73 | -340.88 | - 16.85 | 70COX/PIL | Timid above | | | | | | $C_p^{\circ} =$ | 181.17 | 179.57 | 1.60 | 69STU/WES | Liquid phase | | - 164.33 | 2 22 | 70COV/DII | | S° = | 417.94 | 416.40 | 1.54 | 69STU/WES | • | 166.65 | - 164.33
174.30 | -2.32 | 70COX/PIL | | $\Delta_f S^\circ =$ | | - 770.87 | | | $C_p^{\circ} =$ | | 174.30 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 111.05 | | | | | | | | | $lnK_f =$ | | 44.80 | | | | | | | | | | | | | | Butoxyethene | ; n-Butyl | vinyl ether | | C ₆ H ₁₂ O | | Liquid pha | ase | | | | $(1 \times C_d - (H))$ | $)_{2})+(1\times$ | C_{d} – $(O)(H))+($ | $1 \times O - (C)(C_d)$ | + | | $\Delta_t H^\circ =$ | -392.88 | -386.62 | -6.26 | 61SMU/BON | $(1 \times C - (H))$ | ₂ (O)(C)) | + (2 × C-(H) ₂ (| $C)_2$) + (1 × C-(F | I)₃(C)) | | $C_p^{\circ} =$ | | 252.69 | | | | | | | | | S° = | | 323.29 | | | | Literatu | re – Calculated | = Residual | Reference | | Δ _f S° = | | - 863.98 | | | | | | · · · · · · · · · · · · · · · · · · · | | | $\Delta_f G^\circ =$ | | - 129.02 | | | | | | | | | $lnK_f =$ | | 52.05 | | | Gas phase $\Delta_t H^\circ = -$ | 184.50 | - 183.11 | - 1.39 | 81TRO/NED | | | | | ···· | | | | 100.11 | | | | (2-Methyl) | propoxy-2-(| 2-methyl)props | ane; Di- | | | | | | | | tert-buty | | | | C ₈ H ₁₈ O | Liquid phase | | | | | | | | | | (ethers,esters)) + | - | 218.80 | -215.79 | -3.01 | 81TRO/NED | | (6×-CI | H ₃ corr (qua | ternary)), σ = | 13122 | | $C_p^{\circ} =$ | 231.79 | 235.14 | - 3.35 | 47SCH/ZOS | | | Literatu | re – Calculated | l = Residual | Reference | | | | | | | | ` | Gas nhase | | | | | Dimethoxyme | | ' × O-(C)-) + (1 | х С - (Н)-(О)-) | | | Gas phase
Δ _t H° = | | -363.34 | 1.34 | 75FEN/HAR | • | | ×O-(C) ₂)+(1 | × C-(H) ₂ (O) ₂) | | | $\Delta_t H^{\circ} =$ | -362.00 | -363.34
202.12 | 1.34
1.89 | 75FEN/HAR
69STU/WES | • | ₃ (C))+(2 | . , , . | | | | $\Delta_t H^{\circ} = C_p^{\circ} =$ | -362.00
204.01 | 202.12 | 1.89 | 69STU/WES | • | ₃ (C))+(2 | :×O-(C) ₂)+(1 | | | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} =$ | -362.00 | 202.12
430.57 | | | • | ₃ (C))+(2 | . , , . | | | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = 0$ | -362.00
204.01 | 202.12 | 1.89 | 69STU/WES | (2×C-(H) | ₃ (C))+(2 | . , , . | | | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} =$ | -362.00
204.01 | 202.12
430.57
-893.01 | 1.89 | 69STU/WES | (2×C-(H)) | ₃ (C))+(2 | . , , . | | | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = S^{\circ} $ | -362.00
204.01 | 202.12
430.57
- 893.01
- 97.09 | 1.89 | 69STU/WES | (2×C-(H)) | Literatur | re – Calculated | = Residual | Reference | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = S^{\circ} $ | - 362.00
204.01
427.27 | 202.12
430.57
- 893.01
- 97.09 | 1.89 | 69STU/WES | (2×C-(H)) | Literatur
- 348.20 | re – Calculated | = Residual | Reference | | $\Delta_t H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{2}$ | - 362.00
204.01
427.27 | 202.12
430.57
- 893.01
- 97.09 | 1.89 | 69STU/WES | $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ = -$ Liquid phase | Literatur
- 348.20 | re – Calculated | = Residual | Reference | | $\Delta_t H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = -$ Liquid ph | -362.00
204.01
427.27 | 202.12
430.57
- 893.01
- 97.09
39.17 | 1.89
-3.30 | 69STU/WES
69STU/WES | $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_t^\circ = -$ | Literatur
- 348.20 | re – Calculated
– 349.58 | = Residual | Reference 69PIL/FLE | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{2}$ Liquid phi $\Delta_t H^{\circ} = \frac{1}{2}$ | -362.00
204.01
427.27
ase
-399.61 | 202.12
430.57
-893.01
-97.09
39.17 | 1.89
-3.30 | 69STU/WES
69STU/WES
75FEN/HAR | $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ | Literatur
- 348.20 | - 349.58
- 379.77 | 1.38 | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL | | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{2}$ Liquid ph. $\Delta_t H^\circ = C_\rho^\circ = \frac{1}{2}$ | -362.00
204.01
427.27
ase
-399.61 | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07 | 1.89
-3.30 | 69STU/WES
69STU/WES
75FEN/HAR | $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_t^\circ = -$ | 3(C)) + (2
Literature
348.20
-378.20
161.42 | - 349.58
- 379.77
161.42 | 1.38 | Reference 69PIL/FLE 70BIR/SKI | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{2}$ Liquid photograph $\Delta_t H^\circ = C_p^\circ = S^\circ = \frac{1}{2}$ | -362.00
204.01
427.27
ase
-399.61 | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22 | 1.89
-3.30 | 69STU/WES
69STU/WES
75FEN/HAR | $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_t^\circ = -$ $S^\circ = -$ | 3(C)) + (2
Literature
348.20
-378.20
161.42 | - 349.58
- 379.77
161.42
244.01 | 1.38 | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{2}$ Liquid phi $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \frac{1}{2}$ | -362.00
204.01
427.27
ase
-399.61 | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36 | 1.89
-3.30 | 69STU/WES
69STU/WES
75FEN/HAR | $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_t^\circ = -$ $S^\circ = -$ $\Delta_t S^\circ = -$ | 3(C)) + (2
Literature
348.20
-378.20
161.42 | - 349.58
- 379.77
161.42
244.01
- 500.54 | 1.38 | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{2}$ Liquid phi $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \frac{1}{2}$ | -362.00
204.01
427.27
ase
-399.61 | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17 | 1.89
-3.30 | 69STU/WES
69STU/WES
75FEN/HAR | $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_t^\circ = -$ $S^\circ = -$ $\Delta_t S^\circ = -$ $\Delta_t G^\circ = -$ | 3(C)) + (2
Literature
348.20
-378.20
161.42 | - 349.58
- 379.77
161.42
244.01
- 500.54
- 230.53 | 1.38 | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1}{2}$ Liquid phi $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \frac{1}{2}$ | -362.00
204.01
427.27
ase
-399.61 | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17 | 1.89
-3.30 | 69STU/WES
69STU/WES
75FEN/HAR | $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_t^\circ = -$ $S^\circ = -$ $\Delta_t S^\circ = -$ $\Delta_t G^\circ = -$ | 3(C))+(2
Literature
348.20
-378.20
161.42
244.01 | - 349.58
- 379.77
161.42
244.01
- 500.54
- 230.53 | 1.38 | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL 64MCE/KIL | | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = S_0^{\circ} = \Delta_t G^{\circ} = InK_t = InK_t = InK_t = S^{\circ} = S^{\circ} = \Delta_t G^{\circ} = InK_t InK_$ | -362.00
204.01
427.27
ase
-399.61
276.10 | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17 | 1.89
-3.30 | 69STU/WES
69STU/WES
75FEN/HAR | Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_p^\circ = S^\circ = $ $\Delta_t S^\circ = $ $\ln K_t = $ Trimethoxym | 348.20
378.20
161.42
244.01 | - 349.58
- 379.77
161.42
244.01
- 500.54
- 230.53
93.00 | 1.38
1.57
0.00
0.00 | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL 64MCE/KIL | | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid ph. $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ 1,1'-Oxybi | - 362.00
204.01
427.27
ase
- 399.61
276.10 | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17
51.30 | 1.89
-3.30
21.64
-7.97 | 69STU/WES
69STU/WES
75FEN/HAR
75FEN/HAR | Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_p^\circ = S^\circ = $ $\Delta_t S^\circ = $ $\ln K_t = $ Trimethoxym | 348.20
378.20
161.42
244.01 | - 349.58
- 379.77
161.42
244.01
- 500.54
- 230.53 | 1.38
1.57
0.00
0.00 | Reference 69PIL/FLE
70BIR/SKI 64MCE/KIL | | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid ph. $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ 1,1'-Oxybi | -362.00
204.01
427.27
ase
-399.61
276.10 | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17
51.30
- 127.17
51.30 | 1.89
-3.30
21.64
-7.97
Divinyl ether | 69STU/WES 69STU/WES 75FEN/HAR 75FEN/HAR C4H60 | Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_p^\circ = S^\circ = $ $\Delta_t S^\circ = $ $\ln K_t = $ Trimethoxym | 348.20
348.20
378.20
161.42
244.01 | - 349.58
- 379.77
161.42
244.01
- 500.54
- 230.53
93.00 | 1.38 1.57 0.00 0.00 × C-(H)(O) ₃) | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL 64MCE/KIL | | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid ph. $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ 1,1'-Oxybi | -362.00
204.01
427.27
ase
-399.61
276.10 | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17
51.30 | 1.89
-3.30
21.64
-7.97
Divinyl ether | 69STU/WES
69STU/WES
75FEN/HAR
75FEN/HAR | Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_p^\circ = S^\circ = $ $\Delta_t S^\circ = $ $\ln K_t = $ Trimethoxym | 348.20
348.20
378.20
161.42
244.01 | - 349.58
- 379.77
161.42
244.01
- 500.54
- 230.53
93.00
× O-(C) ₂) + (1 | 1.38 1.57 0.00 0.00 × C-(H)(O) ₃) | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL 64MCE/KIL | | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid ph. $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ 1,1'-Oxybi | -362.00
204.01
427.27
ase
-399.61
276.10 | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17
51.30
- 127.17
51.30 | 1.89
-3.30
21.64
-7.97
Divinyl ether | 69STU/WES 69STU/WES 75FEN/HAR 75FEN/HAR C4H60 | Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_p^\circ = S^\circ = $ $\Delta_t S^\circ = $ $\ln K_t = $ Trimethoxym | 348.20
348.20
378.20
161.42
244.01 | - 349.58
- 379.77
161.42
244.01
- 500.54
- 230.53
93.00
× O-(C) ₂) + (1 | 1.38 1.57 0.00 0.00 × C-(H)(O) ₃) | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL 64MCE/KIL | | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid ph. $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = $ 1,1'-Oxybi | - 362.00
204.01
427.27
ase
- 399.61
276.10
isethene; Eth
-(H) ₂) + (1 ×
Literatu | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17
51.30
- 127.17
51.30 | 1.89
-3.30
21.64
-7.97
Divinyl ether | 69STU/WES 69STU/WES 75FEN/HAR 75FEN/HAR C4H60 | Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_p^\circ = S^\circ = $ $\Delta_t S^\circ = $ $\Delta_t G^\circ = $ $\ln K_t = $ Trimethoxym $(3 \times C - (H))$ | 348.20
-378.20
161.42
244.01
ethane
3(C)) + (3 | - 349.58
- 379.77
161.42
244.01
- 500.54
- 230.53
93.00
× O-(C) ₂) + (1 | 1.38 1.57 0.00 0.00 × C-(H)(O) ₃) | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL 64MCE/KIL | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1,1'-Oxybi}{2 \times C_0}$ | - 362.00
204.01
427.27
ase
- 399.61
276.10
isethene; Eth
-(H) ₂) + (1 ×
Literatu | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17
51.30
- 127.17
51.30 | 1.89
-3.30
21.64
-7.97
Divinyl ether | 69STU/WES 69STU/WES 75FEN/HAR 75FEN/HAR C4H60 | Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t = $ Trimethoxym $(3 \times C - (H))$ Gas phase | 348.20
-378.20
161.42
244.01
ethane
3(C)) + (3 | - 349.58 - 379.77 161.42 244.01 - 500.54 - 230.53 93.00 × O-(C) ₂) + (1 | 1.38 1.57 0.00 0.00 × C-(H)(O) ₃) = Residual | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL 64MCE/KIL C4H10O3 | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1,1'-Oxybi}{(2 \times C_d^\circ)}$ | - 362.00
204.01
427.27
ase
- 399.61
276.10
sethene; Eth-(H) ₂) + (1 ×
Literatu | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17
51.30
- 127.17
51.30
- 127.17
- 12.25
- 127.17 | 1.89
-3.30
21.64
-7.97
Divinyl ether
< C _d -(O)(H))
i = Residual | 69STU/WES 69STU/WES 75FEN/HAR 75FEN/HAR C4H60 Reference | Gas phase $\Delta_{t}H^{\circ} = -$ Liquid phase $\Delta_{t}H^{\circ} = -$ $C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = $ $\Delta_{t}G^{\circ} = $ $\ln K_{t} = $ Trimethoxym $(3 \times C - (H))$ Gas phase $\Delta_{t}H^{\circ} = -$ | 348.20 348.20 378.20 161.42 244.01 ethane 3(C)) + (3 Literatur 545.00 | - 349.58 - 379.77 161.42 244.01 - 500.54 - 230.53 93.00 × O-(C) ₂) + (1 | 1.38 1.57 0.00 0.00 × C-(H)(O) ₃) = Residual | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL 64MCE/KIL C4H10O3 | | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t = \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t \Delta_$ | -362.00
204.01
427.27
ase
-399.61
276.10
isethene; Eth-(H) ₂) + (1 ×
Literatu | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17
51.30
- 127.17
51.30
- 127.17
- 12.25
- 127.17 | 1.89
-3.30
21.64
-7.97
Divinyl ether
< C _d -(O)(H))
i = Residual | 69STU/WES 69STU/WES 75FEN/HAR 75FEN/HAR C4H60 Reference | Gas phase $\Delta_{t}H^{\circ} = -$ Liquid phase $\Delta_{t}H^{\circ} = -$ $C_{p}^{\circ} = $ $S^{\circ} = $ $\Delta_{t}S^{\circ} = $ $\ln K_{t} = $ Trimethoxym $(3 \times C - (H))$ Gas phase $\Delta_{t}H^{\circ} = -$ Liquid phase | 348.20
-378.20
161.42
244.01
ethane
3(C)) + (3
Literatur | - 349.58 - 379.77 161.42 244.01 - 500.54 - 230.53 93.00 × O-(C) ₂) + (1 re - Calculated | 1.38 1.57 0.00 0.00 × C-(H)(O) ₃) = Residual 0.01 | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL 64MCE/KIL C4H10O3 Reference | | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = $ Liquid ph. $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = $ 1,1'-Oxybi (2 × C _d - Gas phase $\Delta_{t}H^{\circ} = $ Liquid ph. | -362.00
204.01
427.27
ase
-399.61
276.10
isethene; Eth-(H) ₂) + (1 ×
Literatu | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17
51.30
- 127.17
51.30
- 127.17
- 12.25
- 127.17 | 1.89
-3.30
21.64
-7.97
Divinyl ether
< C _d -(O)(H))
d= Residual | 69STU/WES 69STU/WES 75FEN/HAR 75FEN/HAR C4H6O Reference | Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ $C_p^\circ = S^\circ = $ $\Delta_t S^\circ = $ $\Delta_t G^\circ = $ $\ln K_t = $ Trimethoxym $(3 \times C - (H))$ Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ | 348.20 348.20 378.20 161.42 244.01 ethane 3(C)) + (3 Literatur 545.00 | - 349.58 - 379.77 161.42 244.01 - 500.54 - 230.53 93.00 × O-(C) ₂) + (1 re - Calculated - 545.01 | 1.38 1.57 0.00 0.00 × C-(H)(O) ₃) = Residual | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL 64MCE/KIL C4H10O3 | | $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t = \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t
H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \Delta_t H^\circ = \frac{\Delta_t H^\circ = \Delta_t \Delta_$ | -362.00
204.01
427.27
ase
-399.61
276.10
isethene; Eth-(H) ₂) + (1 ×
Literatu | 202.12
430.57
- 893.01
- 97.09
39.17
- 421.25
284.07
337.22
- 986.36
- 127.17
51.30
- 127.17
51.30
- 127.17
- 12.25
- 127.17 | 1.89
-3.30
21.64
-7.97
Divinyl ether
< C _d -(O)(H))
i = Residual | 69STU/WES 69STU/WES 75FEN/HAR 75FEN/HAR C4H60 Reference | Gas phase $\Delta_{t}H^{\circ} = -$ Liquid phase $\Delta_{t}H^{\circ} = -$ $C_{p}^{\circ} = $ $S^{\circ} = $ $\Delta_{t}S^{\circ} = $ $\ln K_{t} = $ Trimethoxym $(3 \times C - (H))$ Gas phase $\Delta_{t}H^{\circ} = -$ Liquid phase | 348.20
-378.20
161.42
244.01
ethane
3(C)) + (3
Literatur | - 349.58 - 379.77 161.42 244.01 - 500.54 - 230.53 93.00 × O-(C) ₂) + (1 re - Calculated | 1.38 1.57 0.00 0.00 × C-(H)(O) ₃) = Residual 0.01 | Reference 69PIL/FLE 70BIR/SKI 64MCE/KIL 64MCE/KIL C4H10O Reference | TABLE 16. Ethers (53) - Continued | | | ×O-(C)₂)+(1: | × C-(H)(O) ₂ (| $C_4H_{10}O_2$ | | • | Tetramethyl o $\times O-(C)_2$ + (1 | rthocarbonate
×C-(O) ₄) | C ₅ H ₁₂ O | |--|---|--|--|--|--|--|---|--|--| | (17, 0223 | • | e – Calculated : | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Das phase $\Delta_t H^\circ = -$ | - 389.70 | - 389.66 | -0.04 | 69PIL/FLE | Gas phase Δ ₁ H° - | 727.18 | 727.18 | 0.00 | 79WIB/SQU | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | e
420.00 | -418.09
170.36 | -1.91 | 70BIR/SĶĪ | Liquid pha $\Delta_t H^\circ =$ | | -767.10 | 0.00 | 79WIB/SQU | | | (C) + (2) | × O-(C) ₂) + (1 | × C-(O) ₂ (C) ₂) | C ₅ H ₁₂ O ₂ | | H) ₃ (C)) + (1
H) ₂ (O)(C)) | ×C-(H)(O) ₂ (0
+(1×-CH ₃ cor | rr (tertiary)) | | | (2×-CH₃ | corr (tertia | | D :: 1 | D 6 | | Literatu | re – Calculated | = Residual | Reference | | Gas phase | Literatur | e – Calculated | = Residuai | Reference | Gas phase $\Delta_t H^{} =$ | -453.59 | - 455.46 | 1.87 | 68РІН/НЕІ | | $\Delta_{\rm f}H^{\circ} = -$ | | - 429.96 | 5.65 | 79WIB/SQU | - | se
-491.41 | -489.69 | - 1.72 | 68РІН/НЕІ | | Liquid phase | e
459.48 | -457.76 | -1.72 | 79WIB/SQU | $C_p^{\circ} =$ | | 237.64 | | | | | | Dioxaheptane | | C ₃ H ₁₂ O ₂ | 1,2-Diethox
(2×C-(1 | | × C-(H) ₂ (O)(C | C))+(2×O-(C | | | Diethoxymet | thane; 3,5-1
() ₃ (C)) + (2
() ₂ (O) ₂) | Dioxaheptane
× O-(C) ₂) + (2
re – Calculated | | | (2×C-(1 | H)₃(C))+(4 | ×C-(H) ₂ (O)(C
re Calculated | | | | Diethoxymei
(2×C-(H
(1×C-(H | thane; 3,5-1
() ₃ (C)) + (2
() ₂ (O) ₂) | \times O-(C) ₂)+(2 | | C))+ | | H)₃(C))+(4 | | |)2) | | Diethoxymet $(2 \times C - (H \times C - (H \times C - (H \times C - (H \times C + C)))))))))))))))$ | thane; 3,5-1
l) ₃ (C)) + (2
l) ₂ (O) ₂)
Literatur
- 414.80 | × O-(C) ₂) + (2
re – Calculated | = Residual | C))+ Reference | $(2 \times C - (1))$ Gas phase $\Delta_t H^\circ =$ | H)₃(C)) + (4
Literatur
-408.19 | re – Calculated
– 418.96 | = Residual | Reference | | Diethoxymet
$(2 \times C - (H + (1 (H + (1 \times C - (H + (H + (1 \times C - (H + (H$ | thane; 3,5-1
1) ₃ (C)) + (2
1) ₂ (O) ₂)
Literatur
- 414.80
se
- 450.41 | × O-(C) ₂) + (2
re - Calculated
- 415.38
- 451.37
228.70
309.19
- 707.98
- 240.29
96.93 | 0.58
0.96 | C))+ Reference 69MAN | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ =$ $\Delta_t S^\circ = \Delta_t G^\circ =$ $\ln K_t =$ 3,5,7-Triox | H) ₃ (C)) + (4 Literatur - 408.19 se - 450.41 anonane H) ₃ (C)) + (2 | - 418.96
169.86
- 460.08
256.06
350.52
- 802.96
- 220.68 | = Residual
10.77
9.67 | Reference 70KUZ/WAD 69MAN | | Diethoxymet
$(2 \times C - (H + (1 \times C - (H + (H$ | thane; 3,5-1
l ₃ (C)) + (2
l) ₂ (O) ₂)
Literatur
- 414.80
se
- 450.41
thoxyethane
I) ₃ (C)) + (3 | × O-(C) ₂) + (2
re - Calculated
-415.38
-451.37
228.70
309.19
-707.98
-240.29
96.93 | = Residual
0.58
0.96
× C-(O)₃(C)) | C))+ Reference 69MAN 69MAN | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ =$ $\Delta_t S^\circ = \Delta_t G^\circ =$ $\ln K_t =$ 3,5,7-Triox $(2 \times C - (1)$ | H) ₃ (C)) + (4 Literatur - 408.19 se - 450.41 anonane H) ₃ (C)) + (2 H) ₂ (O) ₂) | - 418.96
169.86
- 460.08
256.06
350.52
- 802.96
- 220.68
89.02 | = Residual
10.77
9.67 | Reference 70KUZ/WAD 69MAN | | Diethoxymei (2×C-(H) (1×C-(H) (1×C-(H) Gas phase $\Delta_t H^\circ = C_t^\circ = S_t^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t = 1,1,1-Trimet (4×C-(H) Gas phase$ | thane; 3,5-1
l ₃ (C)) + (2
l) ₂ (O) ₂)
Literatur
- 414.80
se
- 450.41
thoxyethane
I) ₃ (C)) + (3 | × O-(C) ₂) + (2
re - Calculated
-415.38
-451.37
228.70
309.19
-707.98
-240.29
96.93
re
× O-(C) ₂) + (1 | = Residual
0.58
0.96
× C-(O)₃(C)) | C))+ Reference 69MAN 69MAN C ₅ H ₁₂ O ₃ | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ =$ $\Delta_t S^\circ = \Delta_t G^\circ =$ $\ln K_t =$ 3,5,7-Triox $(2 \times C - (1)$ | H) ₃ (C)) + (4 Literatur - 408.19 se - 450.41 anonane H) ₃ (C)) + (2 H) ₂ (O) ₂) Literatur | - 418.96
169.86
- 460.08
256.06
350.52
- 802.96
- 220.68
89.02
× C-(H) ₂ (O)(C | = Residual
10.77
9.67 | Reference 70KUZ/WAD 69MAN C ₆ H ₁₄ O) ₂) + | C₆H₁₄O₃ TABLE 16. Ethers (53) - Continued TABLE 16. Ethers (53) - Continued | 3,5,7-Trioxanonane (Continued) | |---| | $(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(O)(C)) + (3 \times O - (C)_2) +$ | | $(2\times C-(H)_2(O)_2)$ | | | Literatu | Reference | | | |-----------------------------|----------|-----------|-------|-------| | Liquid ph | ıase | | | | | $\Delta_t H^\circ =$ | - 625.80 | -625.09 | -0.71 | 69MAN | | $C_p^{\circ} = S^{\circ} =$ | | 292.89 | | | | s° = | | 359.82 | | | | $\Delta_f S^\circ =$ | | -896.18 | | | | $\Delta_f G^\circ =$ | | - 357.89 | | | | $lnK_f =$ | | 144.37 | | | | 1,3-Diethoxypropane | C7H16O2 |
--|---------| | $(2 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (4 \times C - (H)_2(O)(C)) +$ | • | | $(2\times O_{-}(C)_2)$ | | | Literatu | Literature – Calculated = Residual | | | | | |---|------------------------------------|------|-------|--|--| | Gas phase $\Delta_t H^{\circ} = -436.18$ | - 439.59 | 3.41 | 72MAN | | | | $C_p^{\circ} =$ | 192.75 | | | | | | Liquid phase $\Delta_t H^\circ = -482.08$ | -485.81 | 3.73 | 72MAN | | | | $C_p^{\circ} = S^{\circ} = S$ | 286.48
382.90 | | | | | | $\Delta_t S^\circ = \Delta_t G^\circ =$ | - 906.89
- 215.42 | | | | | | $lnK_{\ell} =$ | 86.90 | | | | | #### 2,2-Diethoxypropane $C_7H_{14}O_2$ $(4 \times C-(H)_3(C)) + (2 \times C-(H)_2(O)(C)) + (1 \times C-(O)_2(C)_2) +$ $(2 \times O-(C)_2) + (2 \times -CH_3 \text{ corr (quaternary))}$ | | erature – Calculated | *** | Reference | |---|---------------------------|-------------|------------------| | Gas phase $\Delta_t H^\circ = -506$. | .60 -500.36 | - 6.24 | 62STE/DOR | | Liquid phase $\Delta_t H^\circ = -538$ | .50 -533.78 | -4.72 | 62STE/DOR | | 3,5,7,9-Tetraoxau
(2×C-(H) ₃ (C)
(3×C-(H) ₂ (O) | $+(2\times C-(H)_2(O)(C)$ | C))+(4×O-((| C7H16O4
C)2)+ | | Lite | erature – Calculated | = Residual | Reference | -742.66 1.66 69MAN Gas phase $\Delta_t H^\circ = -741.00$ | 3,5,7,9-Tetraoxaundecane (Continued) | C7H16O4 | |---|---------| | $(2 \times C - (H)_2(C)) + (2 \times C - (H)_2(O)(C)) + (4 \times O - (C)_2) + (3 \times C - (H)_2(O)_2)$ | | | Literature - Calculated = Residual Ref | erence | | | Literatu | Literature - Calculated = Residual | | | | | | |----------------------|-----------------|------------------------------------|------|-------|--|--|--| | Liquid phase | | | | | | | | | $\Delta_t H^\circ =$ | <i> 7</i> 94.60 | -798.81 | 4.21 | 69MAN | | | | | $C_p^{\circ} =$ | | 357.08 | | | | | | | S° = | | 410.45 | | | | | | | $\Delta_f S^\circ =$ | | -1084.38 | | | | | | | $\Delta_f G^\circ =$ | | -475.50 | | | | | | | $lnK_f =$ | | 191.81 | | | | | | #### 2-Methoxyethanol C₃H₈O₂ $(1 \times C - (H)_3(C)) + (1 \times O - (C)_2) + (1 \times O - (H)(C)) + (2 \times C - (H)_2(O)(C))$ | | Literatur | Reference | | | | | | | |----------------------------------|-----------|-----------|--|--|--|--|--|--| | Gas phase | | | | | | | | | | $\Delta_i H^{\circ} =$ | | -368.81 | | | | | | | | $C_p^{\circ} =$ | | 103.09 | | | | | | | | Liquid phas $\Delta_t H^\circ =$ | | -421.54 | | | | | | | ### 2-Ethoxyethanol $C_4H_{10}O_2$ $(1 \times C - (H)_3(C)) + (3 \times C - (H)_2(O)(C)) + (1 \times O - (C)_2) + (1 \times O - (H)(C))$ | | Literatu | Reference | | | |--|----------|--|------|-----------| | Gas phase | | | | | | $\Delta_{\rm f} H^{\circ} =$ | | -401.71 | | | | $C_p^{\circ} =$ | | 123.42 | | | | Liquid pha | | | | | | $\Delta_{\epsilon}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{\epsilon}S^{\circ} =$ | 210.80 | -457.34
206.31
251.74
-629.12 | 4.49 | 73KUS/SUU | | $C_p^{\circ} = S^{\circ} =$ | 210.80 | 206.31
251.74 | 4.49 | 73KUS/SUU | | - | | | /FA\ | _ | | |-------|-----|--------|------|-----|----------| | TABLE | 16. | Ethers | (53) | _ C | ontinued | | Diethylene (2×O-(F | | C–(H)₂(O)(C | C))+(1×O-(C | C ₄ H ₁₀ O ₃ | Triethylene
(2×O-(| | ×C-(H)₂(O)(C | C))+(2×O-(C | C ₆ H ₁₄ O ₆ | |--|--|--|--|---|--|---------------------------------------|--|-----------------------|---| | | Literature - | - Calculated | = Residual | Reference | ce Literature – Calculated = Residual | | | | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 571.20 | -551.68
136.18 | - 19.52 | 37GAL/HIB | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -725.00 | - 718.90
195.38 | -6.10 | 37GAL/HIB | | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ - \Delta_t G^\circ = \ln K_t =$ | se
628.50
243.90 | - 637.03
248.11
244.92
- 738.46
- 416.86
168.16 | 8.53
-4.21 | 37MOU/DOD
82ZAR | Liquid pha
$\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 804.20
333.70 | -819.46
339.66
336.88
-1021.64
-514.86
207.69 | 15.26
5.96 | 37MOU/DOD
82ZAR | | 2-Propoxye
(1×O-(1
(1×C-(1 | | C-(H)2(O)(C
O-(C)2) | C))+(1×C-(H | $C_5H_{12}O_2$
$()_2(C)_2) +$ | Tetraethyle
(2×O-(| H)(C))+(8 | ×C-(H)₂(O)(C | | | | | Literature · | – Calculated | = Residual | Reference | | Literatu
——— | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | -422.34
146.31 | | | Gas phase $\Delta_i H^\circ = C_p^\circ =$ | -883.00 | - 886.12
254.58 | 3.12 | 37GAL/HIB | | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | se
241.60 | -483.07
236.73
284.12
-733.05
-264.51
106.70 | 4.87 | 73KUS/SUU | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | se
- 981.70
428.80 | - 1001.89
431.21
428.84
- 1304.83
- 612.86
247.22 | 20.19
- 2.41 | 37MOU/DOD
82ZAR | | (2×C-(I | H)(C))+(2×0
H) ₃ (C))+ (1× | C-(H)(O)(| C)) + (1 × O–(C
C) ₂ (alcohols,p | C ₅ H ₁₂ O ₂ (2) ₂) + eroxides)) + | | H) ₂ (O)(C))
lene oxide | $+(1 \times O-(C)_2)$ - rsc), $\sigma = 2$ | | C₂H₄O | | (2×-CH | I itaratura | y))
Calculated | - Decidual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_l H^\circ = C_p^\circ =$ | Literature | -441.69
148.78 | - Residual | Reference | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | - 52.60
48.28
242.42 | -52.60
48.28
242.43
-132.72
-13.03
5.26 | 0.00
0.00
-0.01 | 65PEL/PIL
69STU/WES
69STU/WES | | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | 238.80 | -501.11
258.98
272.62
-744.55
-279.12
112.60 | - 20.18 | 73KUS/SUU | Liquid phat $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
77.61 | -77.61
67.65
172.46
-202.68
-19.41
7.83 | 0.00 | 49GIA/GOR | | .60 0.00 | Reference 52GUT/SCO | |------------------------------------|--| | | 52GUT/SCO | | | 52GUT/SCO | | .60 0.00 | | | .60 0.00 | | | .60 0.00 | | | | 52GUT/SCO | | | | | | | | | | | $(C)(C) + (2 \times C - (H)_2(C))$ | C ₄ H ₈ O | | = 2 | 12) . | | | | | ulated = Residual | Reference | | | | | | | | | | | .20 0.00 | 65PEL/PIL | | .25 0.00 | 86CHA/HAL | | .41 0.00 |
86CHA/HAL | | .36 | | | .16 | | | .74 | · . | | | | | | 57SKU/STR | | | 85WIL/CHA | | | 85WIL/CHA | | .02 | | | .01 | | | .89 | | | | | | | | | N | C ₄ H ₈ O ₂ | | | J))+ | | oxane rsc) | | | ulated = Residual | Reference | | | | | | | | | | | .59 -0.01 | 82BYS/MAN | | | | | | | | | | | | 82BYS/MAN | | .90 0.00 | 82BYS/MAN | | | AND I WITH THE | | | | | | 1.25 0.00
1.41 0.00
1.36
1.16
1.74
1.19 0.00
1.90 0.00
1.90 0.00
1.90 0.00
1.90 0.00
1.90 0.00
1.89
1.19 0.00
1.90 0.00
1.90 0.00
1.90 0.00
1.90 0.00
1.90 0.00
1.89
1.10 0.00
1.89 0.00
1.80 0.00
1.8 | | | | (H) ₂ (O)(C))+ | | | (3 × C _B -(| $H)(C_B)_2)$ | | | $(C_B)_2) +$ | |--|--|--|--------------------------|--|--------------------------------|----------------|---------------------------------------|-----------------------------|----------------------------------| | | Literature | - Calculated = | Residual | Reference | | Literatui | e – Calculated | = Residual | Reference | | jas phase | | | | | | | | | | | $\Delta_i H^\circ = -$ | _315 30 | -315.29 | -0.01 | 82BYS/MAN | Liquid phas | ge. | | | | | | | | | | | | 117.07 | 2.47 | TENTAL AD | | $C_p^{\circ} =$ | 94.06 | 94.06 | 0.00 | 69STU/WES | - | -114.80 | -117.27 | 2.47 | 75FEN/HAR | | <i>s</i> ° = | 299.78 | 299.78 | 0.00 | 69STU/WES | $C_p^{\circ} =$ | 199.00 | 197.69 | 1.31 | 75FEN/HAR | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 450.51 | | | | | | | | | $\Delta_t G^\circ =$ | | - 180.97 | | | | | | | | | $lnK_f =$ | | 73.00 | | | | | | | | | 1 | | , , , , , | | | Ethovybenz | ene: Ethyl : | ohenyl ether; P | henetale | C ₈ H ₁₀ | | | | | | | (1×C-(H | (C) + (1 | × C-(H) ₂ (O)(C | C))+(1×O-(0 | | | Liquid phase | | | | | $(1 \times C_{B}-($ | $O((C_B)_2) +$ | $(5 \times C_B - (H)(C_F))$ | 3)2) | | | - | - 355.10 | - 355.10 | 0.00 | 82BYS/MAN | | | | | | | $C_p^{\circ} =$ | 153.60 | 153.60 | 0.00 | 85WIL/CHA | | Literatur | e - Calculated | = Residual | Reference | | S° = | 270.20 | 270.20 | 0.00 | 85WIL/CHA | | - | | | | | $\Delta_{f}S^{\circ} =$ | | - 480.09 | | | | | | | | | Δρ =
Δ _t G° = | | - 480.09
- 212.02 | | | Gas phase | | | | | | - | | | | | • | 101.20 | 100.44 | 1.04 | APTITUTE | | $lnK_f =$ | | 85.53 | | | $\Delta_{\rm f}H^{\circ} =$ | - 101.60 | - 103.41 | 1.81 | 75FEN/HAR | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | Oxane; Tetra | ahydropyrai | n. | | C ₅ H ₁₀ O | Liquid phas | se | | | | | (1×O-(C | $(2)_2$) + $(2 \times C$ - | $-(H)_2(O)(C)) +$ | $(3 \times C - (H)_2)$ | C) ₂) + | $\Delta_{\rm f} H^{\circ} =$ | - 152.60 | -153.07 | 0.47 | 75FEN/HAR | | | ydropyran | | . , ,-, | • • . | $C_{p}^{\circ} =$ | 228.50 | 231.33 | -2.83 | 75FEN/HAR | | (| ·, _F , · | | | | | | | | | | | Literature | - Calculated = | Residual | Reference | | | | | | | | | | | | 1. Mathawy | 3. mathylhar | zene; Methyl t | alul athar | C ₈ H ₁₀ | | C b | | | | | • | • | | • | | | Gas phase | 000.40 | 000.40 | 0.00 | CEDEL DIL | | | \times O-(C)(C _B)) + | | | | $\Delta_i H^\circ = -$ | - 223.40 | - 223.40 | 0.00 | 65PEL/PIL | $(1 \times C_B - ($ | $C)(C_B)_2)+($ | $(4 \times C_B - (H)(C_B))$ | $)_2) + (1 \times meta)$ | corr) | | | | | | | | Literatur | e – Calculated | = Residual | Reference | | Liquid phas | | | | | | | | | | | $\Delta_{f}H^{\circ} = \cdot$ | - 258.30 | -258.30 | 0.00 | 58CAS/FLE2 | | | | | | | $C_p^{\circ} =$ | 140.60 | 140.59 | 0.01 | 76CON/GIN | Gas phase | | | | | | | | | | | $\Delta_t H^{\circ} =$ | - 104.10 | - 103.57 | - 0.53 | 70COX/PIL | | 1,3-Dioxepa | me | | | $C_5H_{10}O_2$ | | | | | | | | | (H)-(O)-) + (2 | ۸ (- (H) (O) | | Liquid phas | | | | | | | | $-(H)_2(O)_2) + (2)_2$ | | (C)) T | | | 150.00 | 1 70 | 41D 4 D | | (2×C-(H | $(1)_2(C)_2 + (1)_2$ | ×1,3-dioxepane | e rsc) | | | - 155.60 | 153.88 | - 1.72 | 41BAD | | | | | | | $C_p^{\circ} =$ | | 221.59 | | | | | Literature | e – Calculated = | Residual | Reference | | | | | | | | | | | | | | | | | | Gas phase | | | | | 1,2-Dimetho | oxybenzene | | | C ₈ H ₁₀ C | | | - 346.60 | -346.60 | 0.00 | 70COX/PIL | • | • | \times O-(C)(C _B)) + | - (2 × C _R -(O)(| | | | | | | | | | (1×ortho corr) | | /•/ | | | | | | | , -5 (| | | | - 4 | | iquid phas | | 007.60 | 0.00 | EGOVI L'OTTO | | Literatur | e – Calculated : | = Kesidual | Reference | | $\Delta_i H^{\circ} =$ | -387.60 | -387.60 | 0.00 | 57SKU/STR | | | | | | | | 167.40 | 167.38 | 0.02 | 76CON/GIN | | | | | | | $C_p^{\circ} =$ | | | · | · · · · · · · · · · · · · · · · · · · | Gas phase | | | | | | C _p = | | | | | $\Delta_{\epsilon}H^{\circ} =$ | - 223.38 | - 222.62 | - 0.76 | 58CAS/FLE3 | | <i>C</i> _p = | * | | | | | | | | | | | | | Amirale | 0110 | | | | | | | Methoxyben | | yl phenyl ether; | | C ₇ H ₈ O | ., | | | | | | Methoxyben | | yl phenyl ether;
×O-(C)(C _B))+ | | | Liquid phas | | | | | | Methoxyben | I)₃(C))+(1 | | | | | se
290.30 | - 280.24 | - 10.06 | 58CAS/FLE3 | | Methoxyben
(1×C-(H | I)₃(C))+(1 | | | | $\Delta_t H^\circ =$ | | 280.24
262.80 | - 10.06 | 58CAS/FLE3 | | Methoxyben
(1×C-(H | $(C_B)_3$ $(C_B)_2$ $(C_B)_2$ | | $(1 \times C_B - (O))$ | | | | | -10.06 | 58CAS/FLE3 | | Methoxyben
(1×C-(H | $(C_B)_3$ $(C_B)_2$ $(C_B)_2$ | × O-(С)(С _в)) + | $(1 \times C_B - (O))$ | $(C_B)_2) +$ | $\Delta_t H^\circ =$ | | | - 10.06 | 58CAS/FLE3 | | Methoxyben
(1 × C-(H
(5 × C _B -(l | $(C_B)_3$ $(C_B)_2$ $(C_B)_2$ | × O-(С)(С _в)) + | $(1 \times C_B - (O))$ | $(C_B)_2) +$ | $\Delta_t H^\circ =$ | | | - 10.06 | 58CAS/FLE3 | | Methoxyben
(1 × C-(H
(5 × C _B -(l | I) ₃ (C))+(12
H)(C _B) ₂)
Literature | \times O-(C)(C _B))+ $=$ - Calculated = | (1×C _B -(O)(| (C _B) ₂) + Reference | $\Delta_t H^\circ =$ | | | - 10.06 | 58CAS/FLE3 | | Methoxyben
(1 × C-(H
(5 × C _B -(l | $(C_B)_3$ $(C_B)_2$ $(C_B)_2$ | × O-(С)(С _в)) + | $(1 \times C_B - (O))$ | $(C_B)_2) +$ | $\Delta_t H^\circ =$ | | | - 10.06 | 58CAS/FLE3 | Table 17. Aldehydes (16) | | TABLE 16. Ethers (53) — Continued | | | TABLE 17. Aldehydes (16) | | | | | | |--|--|---|---------------------------------------|-------------------------------------|---|-----------------------------
---|---------------------------|--| | Diphenyl o | xide | phenyl ether; | ' _B)₂)+(1×O- | C ₁₂ H ₁₀ O | Methanal; | | y de
naldehyde), σ = | = 2 | CH₂C | | (2011.08 (| Literature – Calculated = Residual | | Reference | Literature – Calculated = Residual | | | = Residual | Reference | | | Gas phase
Δ _t H° = | 52.00 | 50.94 | 1.06 | 72MOR2 | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ $ | -108.60
35.40
218.78 | -108.60
35.40
218.78
-20.06
-102.62 | 0.00
0.00
0.00 | 70FLE/PIL
69STU/WES
69STU/WES | | $\Delta_f H^\circ = S^\circ = \Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | -14.90 | -14.89
290.83
-533.43
144.15
-58.15 | -0.01 | 51FUR/GIN | $\ln K_{\ell} = \frac{1}{2}$ Ethanal; Ac | - | 41.40
×CO-(H)(C) | $\alpha = 3$ | C₂H₄0 | | Solid phase | ······································ | | · · · · · · · · · · · · · · · · · · · | | (1 × C (1 | | re – Calculated | | Reference | | $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -32.10
216.56
233.93 | -28.90
216.62
233.82
-590.44
147.14
-59.35 | -3.20
-0.06
0.11 | 51FUR/GIN
51FUR/GIN
51FUR/GIN | Gas phase $\Delta_t H^* = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 166.10
54.64
264.22 | - 166.65
54.73
265.22
- 109.93
- 133.87
54.00 | 0.55
- 0.09
- 1.00 | 38DOL/GRE
69STU/WES
69STU/WES | | | | | | | Liquid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f = $ | 99.05
117.30 | - 190.03
101.58
176.85
- 198.29
- 130.91
52.81 | -1.77
-12.53
-59.55 | 49COL/DEV
88LEB/VAS
88LEB/VAS | | | | | | | Ethanedial;
(2×CO~ | Glyoxal
(H)(CO)) | | | C ₂ H ₂ O ₂ | | | | | | | | Literatur | re – Calculated | = Residual | Reference | | | | | | | Gas phase $\Delta_t H^\circ =$ | - 211.96 | -211.96 | 0.00 | 70FLE/PIL | | | | | | | Propanal; F | | | (C))+(1×CO | C_3H_6O
-(H)(C)), $\sigma = 3$ | | | | | | | | Literatur | e – Calculated | = Residual | Reference | | | | | | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 189.40
78.66
304.72 | - 188.49
79.42
304.80
- 206.66
- 126.87
51.18 | 0.91
0.76
0.08 | 67BUC/COX
69STU/WES
69STU/WES | TABLE 17. Aldehydes (16) - Continued | TABLE 17. | Aldehydes | (16) - | Continued | |-----------|-----------|--------|-----------| |-----------|-----------|--------|-----------| | | | nyde (Continue
× C–(H)2(CO)(| | C_3H_6O
-(H)(C)), $\sigma = 3$ | | | \times C-(H) ₂ (C) ₂ |) + (1 × C-(H) ₂ | C ₅ H ₁₀ (
(CO)(C))+ | |--|---|--|---------------------------------------|---
---|--|--|---|--| | | Literatur | e – Calculated : | = Residual | Reference | (1×00 | | re – Calculatec | l = Residual | Reference | | iquid phas | e | | | | | | | | | | | -215.30 | -214.17 | -1.13 | 67BUC/COX | Gas phase | | | | | | $C_p^{\circ} =$ | 159.10 | 130.87 | 28.23 | 77KOR/VAS | $\Delta_{\mathbf{f}}H^{\circ} =$ | -228.50 | -229.75 | 1.25 | 70CON | | S° = | 212.90 | 216.72 | -3.82 | 77KOR/VAS | $C_p^{\circ} =$ | 125.35 | 125.20 | 0.15 | 69STU/WES | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 294.73 | | | S° = | 382.96 | 383.12 | -0.16 | 69STU/WES | | $\Delta_{\rm f}G^{\circ} =$ | | -126.29 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -400.96 | | | | $lnK_f =$ | | 50.95 | | | $\Delta_f G^\circ =$ | | -110.20 | | | | | | | | | $lnK_f =$ | | 44.46 | | | | rans-2-But | enal; Croto | naldehvde | | C ₄ H ₆ O | Liquid pha | se | | | | | | - | × C _d -(H)(C)) + | - (1 × C _d (H)(| | $\Delta_t H^\circ =$ | -267.30 | -265.63 | -1.67 | 70CON | | (1×CO- | | - \ /\ // | | • | $C_p^{\circ} =$ | 174.39 | 191.71 | -17.32 | 84VAS/PET | | • | | | | | S° = | 273.59 | 281.48 | -7.89 | 84VAS/PET | | | Literatur | e - Calculated | = Residual | Reference | $\Delta_t S^{\circ} =$ | | -502.60 | | | | ···· | | | | | $\Delta_{\rm f}G^{\circ} =$ | | -115.78 | | | | Gas phase | | | | | $lnK_f =$ | | 46.71
 | | | | | 100.60 | - 100.60 | 0.00 | 38DOL/GRE | | | | | | | | | | | | Hexanal; H | exaldehyde | | | C ₆ H ₁₂ C | | Liquid phas
Δ _f H° = | se
144.10 | -143.00 | -1.10 | 60ТЈЕ | (1×C-(I
(1×CO- | H) ₃ (C)) + (3
-(H)(C)), σ | |) + (1 × C-(H) ₂ (| | | | | | | | | | | | | | | | | - | | | Literatu | re – Calculated | l = Residual | Reference | | | ıtyraldehyd | | - | C ₄ H ₈ O | | Literatui | re – Calculated | l = Residual | Reference | | (1 × C-(F | (C) + (1 | \times C-(H) ₂ (C) ₂) | + (1×C-(H) ₂ | | Gas phase | Literatui | | l = Residual | Reference | | (1×C-(F | | \times C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ | | $\Delta_{\rm f}H^{\circ} =$ | 7mm 1 (///m A A PAN) | -250.38 | | | | (1 × C-(F | H) ₃ (C)) + (1
(H)(C)), σ | $\times C - (H)_2(C)_2$ = 3 | | (CO)(C))+ | $\Delta_t H^{\circ} = C_p^{\circ} =$ | 148.24 | -250.38
148.09 | 0.15 | 69STU/WES | | (1 × C-(F | H) ₃ (C)) + (1
(H)(C)), σ | \times C-(H) ₂ (C) ₂) | | | $\Delta_t H^{\circ} = C_{\rho}^{\circ} = S^{\circ} =$ | 7mm 1 (///m A A PAN) | -250.38
148.09
422.28 | | | | (1 × C-(F | H) ₃ (C)) + (1
(H)(C)), σ | $\times C - (H)_2(C)_2$ = 3 | | (CO)(C))+ | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = C_p^{\circ} C_$ | 148.24 | -250.38
148.09
422.28
-498.11 | 0.15 | 69STU/WES | | (1×C-(I
(1×CO- | H) ₃ (C)) + (1
(H)(C)), σ | $\times C - (H)_2(C)_2$ = 3 | | (CO)(C))+ | $\Delta_t H^{\circ} = C_{\rho}^{\circ} = S^{\circ} =$ | 148.24 | -250.38
148.09
422.28 | 0.15 | 69STU/WES | | (1×C-(I
(1×CO- | H) ₃ (C)) + (1
(H)(C)), σ | $\times C-(H)_2(C)_2$ = 3 re - Calculated - 209.12 | | (CO)(C))+ | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = S^{\circ} $ | 148.24 | - 250.38
148.09
422.28
- 498.11
- 101.87 | 0.15 | 69STU/WES | | $(1 \times C - (1 \times CO - 1 $ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
-204.70
102.59 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31 | = Residual
4.42
0.28 | (CO)(C))+ Reference | $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = S^{\circ} $ | 148.24 | - 250.38
148.09
422.28
- 498.11
- 101.87 | 0.15 | 69STU/WES | | $(1 \times C - (I \times CO - I) \times CO - I)$ Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = I$ | $H_{3}(C)$) + (1
(H)(C)), σ
Literatur
-204.70 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96 | = Residual | (CO)(C))+ Reference 79SUN/SVE | $\Delta_{\ell}H^{\circ} =$ $C_{\rho}^{\circ} =$ $S^{\circ} =$ $\Delta_{\ell}S^{\circ} =$ $\Delta_{\ell}G^{\circ} =$ $\ln K_{\ell} =$ Liquid pha | 148.24
422.88 | -250.38
148.09
422.28
-498.11
-101.87
41.09 | 0.15 | 69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
-204.70
102.59 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81 | = Residual
4.42
0.28 | (CO)(C))+ Reference 79SUN/SVE 69STU/WES | $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phat $\Delta_t H^\circ =$ | 148.24
422.88 | -250.38
148.09
422.28
-498.11
-101.87
41.09 | 0.15
0.60 | 69STU/WES
69STU/WES | | $(1 \times C - (1 \times C) - (1 \times C) - (1 \times C)$ Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = C_{p}^{\circ} C_{p$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
-204.70
102.59 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54 | = Residual
4.42
0.28 | (CO)(C))+ Reference 79SUN/SVE 69STU/WES | $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phat $\Delta_t H^\circ =$ $C_p^\circ =$ | 148.24
422.88 | -250.38
148.09
422.28
-498.11
-101.87
41.09 | 0.15
0.60 | 69STU/WES
69STU/WES
91VAS/BYK | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
-204.70
102.59 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81 | = Residual
4.42
0.28 | (CO)(C))+ Reference 79SUN/SVE 69STU/WES | $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phat $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ | 148.24
422.88 | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86 | 0.15
0.60 | 69STU/WES
69STU/WES | | $(1 \times C - (I \times C) - (I \times C) - (I \times C)$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = I$ | H ₃ (C)) + (1
(H)(C)),
σ
Literatur
-204.70
102.59 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54 | = Residual
4.42
0.28 | (CO)(C))+ Reference 79SUN/SVE 69STU/WES | $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid phat $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \frac{1}{2}$ | 148.24
422.88 | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53 | 0.15
0.60 | 69STU/WES
69STU/WES
91VAS/BYK | | $(1 \times C - (I \times CO - I) \times CO - I)$ Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t = InK_t$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54 | = Residual
4.42
0.28 | (CO)(C))+ Reference 79SUN/SVE 69STU/WES | $\Delta_t H^\circ =$ $C^\circ_\rho =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phat $\Delta_t H^\circ =$ $C^\circ_\rho =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | 148.24
422.88 | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52 | 0.15
0.60 | 69STU/WES
69STU/WES
91VAS/BYK | | $(1 \times C - (I \times C) - (1 \times C) - (1 \times C)$ Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = 1$ Liquid phase | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82 | = Residual 4.42 0.28 0.97 | Reference 79SUN/SVE 69STU/WES 69STU/WES | $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Liquid phat $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \frac{1}{2}$ | 148.24
422.88 | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53 | 0.15
0.60 | 69STU/WES
69STU/WES
91VAS/BYK | | $(1 \times C - (H + C) - (1 \times C) - (1 \times C) - (1 \times C)$ Gas phase $\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t G^\circ = InK_t $ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82 | = Residual 4.42 0.28 0.97 | (CO)(C))+ Reference 79SUN/SVE 69STU/WES 69STU/WES | $\Delta_t H^\circ =$ $C^\circ_\rho =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phat $\Delta_t H^\circ =$ $C^\circ_\rho =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | 148.24
422.88 | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52 | 0.15
0.60 | 69STU/WES
69STU/WES
91VAS/BYK | | $(1 \times C - (I \times CO - I) \times CO - I)$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t = InK_t$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82
- 239.90
161.29 | = Residual 4.42 0.28 0.97 0.50 3.41 | Reference 79SUN/SVE 69STU/WES 69STU/WES 79SUN/SVE 89VAS/LEB | $\Delta_t H^\circ =$ $C^\circ_\rho =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phat $\Delta_t H^\circ =$ $C^\circ_\rho =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | 148.24
422.88 | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52 | 0.15
0.60 | 69STU/WES
69STU/WES
91VAS/BYK | | $(1 \times C - (H \cap I) \times CO - I)$ Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = InK_t = I$ Liquid phase $\Delta_t H^\circ = C_p^\circ = InK_t = I$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82 | = Residual 4.42 0.28 0.97 | (CO)(C))+ Reference 79SUN/SVE 69STU/WES 69STU/WES | $\Delta_t H^\circ =$ $C^\circ_\rho =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phat $\Delta_t H^\circ =$ $C^\circ_\rho =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | 148.24
422.88
se
210.40
280.30 | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52
44.58 | 0.15
0.60 | 69STU/WES
69STU/WES
91VAS/BYK | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \ln K_{f} = $ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} $ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82
- 239.90
161.29
249.10 | = Residual 4.42 0.28 0.97 0.50 3.41 | Reference 79SUN/SVE 69STU/WES 69STU/WES 79SUN/SVE 89VAS/LEB | $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid pha: $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | 148.24
422.88
se
210.40
280.30 | -250.38 148.09 422.28 -498.11 -101.87 41.09 -291.36 222.13 313.86 -606.53 -110.52 44.58 | 0.15
0.60 | 69STU/WES
69STU/WES
91VAS/BYK
91VAS/BYK | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \ln K_f = $ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = S_t H^\circ = S^\circ S^$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82
- 239.90
161.29
249.10
- 398.67 | = Residual 4.42 0.28 0.97 0.50 3.41 | Reference 79SUN/SVE 69STU/WES 69STU/WES 79SUN/SVE 89VAS/LEB | $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phat $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t =$ Heptanal; 1 $(1 \times C - (H^\circ)^\circ = S^\circ = L^\circ + +$ | 148.24
422.88
se
210.40
280.30 | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52
44.58 | 0.15
0.60
-11.73
-33.56 | 69STU/WES
69STU/WES
91VAS/BYK
91VAS/BYK | | Gas phase $\Delta_{t}H^{\circ} = C^{\circ}_{t} = S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}_{t}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}_{t}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}_{t}} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}_{t}} = \frac{\Delta_{t}S^{\circ}}{\Delta_{t}G^{\circ}} = \frac{\Delta_{t}S^{\circ}}{S^{\circ}_{t}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}_{t}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}_{t}} = \frac{\Delta_{t}G^{\circ}}{S^{\circ}_{t}} = \frac{\Delta_{t}G^{\circ}_{t}}{S^{\circ}_{t}} $ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82
- 239.90
161.29
249.10
- 398.67
- 121.04 | = Residual 4.42 0.28 0.97 0.50 3.41 | Reference 79SUN/SVE 69STU/WES 69STU/WES 79SUN/SVE 89VAS/LEB | $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phat $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t =$ Heptanal; 1 $(1 \times C - (H^\circ)^\circ = S^\circ = L^\circ + +$ | 148.24
422.88
se
210.40
280.30
Heptaldehyd
H ₃ (C)) + (4
(H)(C)), σ | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52
44.58 | 0.15
0.60
-11.73
-33.56 | 69STU/WES
69STU/WES
91VAS/BYK
91VAS/BYK | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} \Delta_{t}G^{\circ$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82
- 239.90
161.29
249.10
- 398.67
- 121.04 | = Residual 4.42 0.28 0.97 0.50 3.41 | Reference 79SUN/SVE 69STU/WES 69STU/WES 79SUN/SVE 89VAS/LEB | $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phat $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t =$ Heptanal; 1 $(1 \times C - (H^\circ)^\circ = S^\circ = L^\circ + +$ | 148.24
422.88
se
210.40
280.30
Heptaldehyd
H ₃ (C)) + (4
(H)(C)), σ | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52
44.58 | 0.15
0.60
-11.73
-33.56 | 69STU/WES
69STU/WES
91VAS/BYK
91VAS/BYK
C ₇ H ₁₄ C | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = $ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}S^{\circ} \Delta_{t}S^{$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82
- 239.90
161.29
249.10
- 398.67
-
121.04 | = Residual 4.42 0.28 0.97 0.50 3.41 | Reference 79SUN/SVE 69STU/WES 69STU/WES 79SUN/SVE 89VAS/LEB | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \Delta_t H^\circ = C_p^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t G^\circ = \ln K_t = \frac{\Delta_t G^\circ = L^\circ C_t G^\circ = L^\circ C_t G^\circ = L^\circ C_t G^\circ = \frac{L^\circ C_t G^\circ = L^\circ C_t G^\circ = L^\circ C_t G^\circ = \frac{L^\circ C_t G^\circ = L^\circ C_t G^\circ = L^\circ C_t G^\circ = \frac{L^\circ C_t G^\circ = L^\circ C_t G^\circ = L^\circ C_t G^\circ = \frac{L^\circ C_t G^\circ C_t G^\circ G^\circ = L^\circ C_t G^\circ G^\circ = L^\circ C_t G^\circ G^\circ = \frac{L^\circ C_t G^\circ G^\circ G^\circ G^\circ G^\circ G^\circ G^\circ G^\circ G^\circ G^\circ$ | 148.24
422.88
se
210.40
280.30
Heptaldehyd
H ₃ (C)) + (4
(H)(C)), σ | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52
44.58 | 0.15
0.60
-11.73
-33.56 | 69STU/WES
69STU/WES
91VAS/BYK
91VAS/BYK
C ₇ H ₁₄ C | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = $ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}S^{\circ} \Delta_{t}S^{$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82
- 239.90
161.29
249.10
- 398.67
- 121.04 | = Residual 4.42 0.28 0.97 0.50 3.41 | Reference 79SUN/SVE 69STU/WES 69STU/WES 79SUN/SVE 89VAS/LEB | $\Delta_t H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t S^{\circ} = \ln K_t = \frac{\Delta_t H^{\circ}}{C_{\rho}^{\circ}} = \frac{\Delta_t H^{\circ}}{C_{\rho}^{\circ}} = \frac{\Delta_t S^{\circ}}{L_t G^{\circ}} = \ln K_t = \frac{(1 \times C - (1 \times C - C))}{C_t G^{\circ}}$ Gas phase | 148.24 422.88 se 210.40 280.30 Heptaldehyddil) ₃ (C)) + (4 (H)(C)), σ Literatur | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52
44.58 | 0.15
0.60
-11.73
-33.56
+(1×C-(H) ₂ (| 69STU/WES
69STU/WES
91VAS/BYK
91VAS/BYK
(CO)(C)) + | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} \Delta_{t}G^{\circ$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82
- 239.90
161.29
249.10
- 398.67
- 121.04 | = Residual 4.42 0.28 0.97 0.50 3.41 | Reference 79SUN/SVE 69STU/WES 69STU/WES 79SUN/SVE 89VAS/LEB | $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phate $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t =$ Heptanal; I $(1 \times C - (K_t) + (K_t$ | 148.24
422.88
se
210.40
280.30
Heptaldehyd
H ₃ (C)) + (4
(H)(C)), σ
Literatur | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52
44.58 | 0.15
0.60
-11.73
-33.56
+(1×C-(H) ₂ (| 69STU/WES
69STU/WES
91VAS/BYK
91VAS/BYK
(CO)(C)) +
Reference | | $(1 \times C - (I \times C) $ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82
- 239.90
161.29
249.10
- 398.67
- 121.04 | = Residual 4.42 0.28 0.97 0.50 3.41 | Reference 79SUN/SVE 69STU/WES 69STU/WES 79SUN/SVE 89VAS/LEB | $\Delta_{t}H^{\circ} =$ $C_{p}^{\circ} =$ $S^{\circ} =$ $\Delta_{t}S^{\circ} =$ $\Delta_{t}G^{\circ} =$ $\ln K_{t} =$ Liquid phat $\Delta_{t}H^{\circ} =$ $C_{p}^{\circ} =$ $S^{\circ} =$ $\Delta_{t}S^{\circ} =$ $\ln K_{t} =$ Heptanal; I $(1 \times C - (H \times CO - H \times C))$ Gas phase $\Delta_{t}H^{\circ} =$ $C_{p}^{\circ} =$ $S^{\circ} =$ $\Delta_{t}S^{\circ} =$ $\Delta_{t}S^{\circ} =$ $\Delta_{t}S^{\circ} =$ | 148.24 422.88 se 210.40 280.30 Heptaldehyd 1) ₃ (C)) + (4 (H)(C)), σ Literatur - 263.80 171.08 | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52
44.58
 | 0.15
0.60
- 11.73
- 33.56
+ (1 × C-(H) ₂ (| 69STU/WES 69STU/WES 91VAS/BYK 91VAS/BYK 91VAS/BYK C7H14O (CO)(C))+ Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \Delta_t H^\circ = C_p^\circ = \Delta_t G^\circ = \frac{\Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \frac{\Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \frac{\Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \frac{\Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \frac{\Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \frac{\Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \frac{\Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \frac{\Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \frac{\Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \Delta_t G^\circ = \frac{\Delta_t G^\circ = \Delta_t G^\circ = \frac{\Delta_t G^\circ = \Delta_t G^$ | H ₃ (C)) + (1
(H)(C)), σ
Literatur
- 204.70
102.59
344.93 | × C-(H) ₂ (C) ₂)
= 3
re - Calculated
- 209.12
102.31
343.96
- 303.81
- 118.54
47.82
- 239.90
161.29
249.10
- 398.67
- 121.04 | = Residual 4.42 0.28 0.97 0.50 3.41 | Reference 79SUN/SVE 69STU/WES 69STU/WES 79SUN/SVE 89VAS/LEB | $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phate $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t =$ Heptanal; I $(1 \times C - (K_t) + (K_t$ | 148.24 422.88 se 210.40 280.30 Heptaldehyd 1) ₃ (C)) + (4 (H)(C)), σ Literatur - 263.80 171.08 | -250.38
148.09
422.28
-498.11
-101.87
41.09
-291.36
222.13
313.86
-606.53
-110.52
44.58
 | 0.15
0.60
- 11.73
- 33.56
+ (1 × C-(H) ₂ (| 69STU/WES 69STU/WES 91VAS/BYK 91VAS/BYK 91VAS/BYK (CO)(C)) + Reference 70COX/PIL 69STU/WES | TABLE 17. Aldehydes (16) - Continued | (1×C-(H | | e (Continued)
\times C-(H) ₂ (C) ₂) -
= 3 | + (1×C-(H)₂(| C ₇ H ₁₄ O
(CO)(C))+ | | | $ \times C - (H)_2(C)_2 $ $ = 3 $ | + (1 × C-(H) ₂ | C ₁₀ H ₂₀ O
(CO)(C)) + |
---|---------------------------------------|--|----------------------------|--|--|---|--|---------------------------|---| | | Literatur | e – Calculated : | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ - \Delta_t G^\circ = \ln K_t =$ | -311.50
230.15
335.43 | -317.09
252.55
346.24
-710.46
-105.27
42.46 | 5.59
- 22.40
- 10.81 | 60NIC
84VAS/PET
84VAS/PET | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | 239.70
578.56 | - 332.90
239.65
578.92
- 886.72
- 68.53
27.64 | 0.05
0.36 | 69STU/WES
69STU/WES | | | I) ₃ (C))+(5
(H)(C)), σ | $\times C-(H)_2(C)_2)$ = 3 $e - Calculated$ | | C ₈ H ₁₆ O
(CO)(C))+
Reference | Liquid pha $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | 319.67
429.46 | -394.28
343.81
443.38
-1022.25
-89.50
36.10 | - 24.14
- 13.92 | 84VAS/PET
84VAS/PET | | Gas phase
$\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t^\circ =$ | 193.97
500.66 | -291.64
193.87
500.60
-692.41
-85.20
34.37 | 0.10
0.06 | 69STU/WES
69STU/WES | (2×C-(I | $(H)_5(C)$) + (1)
$(G)_3$ corr (terti | butyraldehyde
× C-(H)(CO)(
iary))
re – Calculated | | C₄H₅O
⊢(H)(C)) +
Reference | | Liquid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = S^\circ $ | 259.58
365.45 | -342.82
282.97
378.62
-814.39
-100.01
40.34 | -23.39
-13.17 | 84VAS/PET
84VAS/PET | Gas phase $\Delta_l H^\circ =$ Liquid pha $\Delta_l H^\circ =$ $C_l^\circ =$ | -215.80
se
-247.30 | -213.68
-245.89
155.47 | -2.12
-1.41 | 75CON
75CON | | | • | \times C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ | C ₂ H ₁₈ O
(CO)(C))+ | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} =$ | re | 235.63
-412.14
-123.01
49.62 | | | | | Literatur | re – Calculated | = Residual | Reference | 2-Ethylhex:
(2×C-(I
(1×CO- | $H)_3(C)) + (4$ | × C-(H) ₂ (C) ₂) | + (1 × C-(H)(| C ₈ H ₁₆ O | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 216.81
539.61 | -312.27
216.76
539.76
-789.56
-76.86
31.01 | 0.05
- 0.15 | 69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ =$ | | e – Calculated | = Residual
- 7.94 | Reference 70COX/PIL | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 290.26
396.92 | -368.55
313.39
411.00
-918.32
-94.75
38.22 | -23.13
-14.08 | 84VAS/PET
84VAS/PET | Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | se
348.50 | - 344.45
277.15
365.15
- 827.86
- 97.62
39.38 | 4.05 | 60TJE | TABLE 17. Aldehydes (16) - Continued ### TABLE 18. Ketones (42) | | | (1×C _B -(CO)(C
(1×Furan rsc) | $(C_B)_2$) + $(1 \times O$ | $ C_5H_4O_2 - (C_B)_2) +$ | | | Dimethyl ketono
(1×CO-(C) ₂), | | C ₃ H ₆ (| |------------------------------------|-------------------|--|-----------------------------|--
---|------------------------------------|---|-----------------------------|---| | | | re – Calculated = | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase
Δ _i H° = | - 151.04 | -154.26 | 3.22 | 75KUD/KUD | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | -217.50
74.89
294.93 | -217.19
74.89
294.92 | 0.31
0.00
0.01 | 65BUC/HER
69STU/WES
69STU/WES | | Liquid phas
Δ _t H° = | se
-201.60 | -198.38 | -3.22 | 29LAN/BAY | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -216.54
-152.63
61.57 | | | | Benzaldehy | de | | | C₁H₄O | Liquid pho $\Delta_t H^\circ =$ | se 248.10 | - 247.98 | -0.12 | 57PEN/KOB | | (5×C _B -(| | (1 × C _B -(CO)(C | | $C-(H)(C_B)$, $\sigma = 2$
Reference | $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} $ | 124.68
200.41 | 125.93
200.41
- 311.04
- 155.24 | -1.25
0.00 | 29KEL3
29KEL3 | | Gas phase $\Delta_t H^\circ =$ | -36.80 | - 36.80 | 0.00 | 75AMB/CON | $\ln K_{\rm f} =$ | | 62.62 | | · · · · · · · · · · · · · · · · · · · | | Liquid pha | | 04.00 | | 75.13.4D.(CO.). | Butanone; 1
(2×C-(F | | vi ketone
×CO-(C) ₂)+(| (1×C-(H)₂(C | C_4H_8 O)(C)), $\sigma = 9$ | | $\Delta_t H^\circ = C_p^\circ =$ | - 86.82
172.00 | - 86.82
172.01 | 0.00
-0.01 | 75AMB/CON
75AMB/CON | | Literatu | re – Calculated | = Residual | Reference | | | | | · | | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\ln K_f =$ | -238.90
102.88
338.11 | - 239.03
99.58
340.26
- 307.50
- 147.35
59.44 | 0.13
3.30
-2.15 | 79SUN/SVE
69STU/WES
69STU/WES | | | | | | | Liquid phat $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
- 273.20
158.70
239.00 | - 272.12
155.22
240.28
- 407.49
- 150.63
60.76 | -1.08
3.48
-1.28 | 79SUN/SVE
68AND/COU
68AND/COU | | | | | | | (2×C-(I | | oropyl ketone
×C-(H) ₂ (C) ₂)
18 | + (1 × C-(H) ₂ (| C ₅ H ₁₀ (CO)(C)) + | | | | | | | | Literatu | re – Calculated | = Residual | Reference | | | | | | | Gas phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$S^\circ =$
$\Delta_t S^\circ =$
$\Delta_t G^\circ =$
$\ln K_t =$ | -259.05
120.96
376.18 | - 259.66
122.47
373.66
- 410.42
- 137.29
55.38 | 0.61
-1.51
2.52 | 70HAR/HEA
69STU/WES
69STU/WES | TABLE 18. Ketones (42) - Continued TABLE 18. Ketones (42) - Continued | (2×C-(H | | ropyl ketone (0
× C-(H) ₂ (C) ₂)
18 | | (CO)(C) + | (2×C-(I | e; Ethyl pro
H)3(C))+(1
H)2(C)2), σ | \times CO-(C) ₂)+ | (2×C-(H)₂(C | C ₆ H ₁₂ (
O)(C)) + | |----------------------------------|-----------------------|--|---------------------------|----------------------------------|---|---|--|-------------------------|--| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid phas | sc | | | | Gas phase | | | | | | $\Delta_{f}H^{\circ} =$ | -297.29 | - 297.85 | 0.56 | 70HAR/HEA | $\Delta_t H^\circ =$ | -278.25 | -281.50 | 3.25 | 70HAR/HEA | | $C_p^{\circ} =$ | 184.20 | 185.64 | - 1.44 | 68AND/COU | $C_p^{\circ} =$ | | 147.16 | | | | S° = | 274.10 | 272.66 | 1.44 | 68AND/COU | s° = | | 413.24 | | | | $\Delta_f S^{\circ}$ — | | -511.42 | | | $\Delta_{t}S^{\circ}$ – | | -507.15 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | - 145.37 | | | $\Delta_{\rm f}G^{\circ} =$ | | -130.29 | | | | $lnK_f =$ | | 58.64 | | | $lnK_f =$ | | 52.56 | | ~~ | | | | | | | Liquid pha | | | | | | 3-Pentanon | | | (C)) + (1 × CC | $C_5H_{10}O$ | $\Delta_{\rm f}H^{\circ} =$ | -320.13 | -321.99 | 1.86 | 70HAR/HEA | | (2 X C-(1 | 1)3(C))+(2 | x ((H)₂(CO) | (C))+(1×CC | $(C)_2, \sigma = 18$ | $C_p^{\circ} = S^{\circ} =$ | 216.90
305.31 | 214.93
312.53 | 1.97
-7.22 | 70AND/COU | | | Literatus | e – Calculated | - Decidual | Reference | $\Delta_{f}S^{\circ} =$ | 303.31 | - 607.86 | - 1.22 | 70AND/COU | | | Literatur | Calculated | - Residual | Reference | $\Delta_f G^\circ =$ | | - 140.76 | | | | | | | | | $\ln K_{\rm f} =$ | | 56.78 | | * | | Gas phase $\Delta_i H^\circ =$ | -257.95 | -260.87 | 2.92 | 70HAR/HEA | | | | | | | $C_p^{\circ} =$ | | 124.27 | | | | | | | | | S° = | 370.00 | 374.08 | -4.08 | 65BUC/HER | | e; Methyl ho | | | C ₈ H ₁₆ C | | Δ _t S° - | | 410.00 | | | | | \times C-(II) ₂ (CO) | (C) + $(1 \times CC)$ |)~(C)₂)+ | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | - 138.63 | | | (4×C-(1 | $H)_2(C)_2), \sigma$ | = 18 | | | | $lnK_f =$ | | 55.92 | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid phas | se | | | | | | | | ······································ | | $\Delta_t H^\circ =$ | -296.51 | -296.26 | -0.25 | 70HAR/HEA | Gas phase | | | | | | $C_p^{\circ} =$ | 190.90 | 184.51 | 6.39 | 68AND/COU | $\Delta_t H^{\circ} =$ | | -321.55 | | | | S° = | 266.00 | 280.15 | - 14.15 | 68AND/COU | $C_p^{\circ} =$ | | 191.14 | | | | $\Delta_f S^\circ =$ | | -503.93 | | | S° = | | 491.14 | | | | $\Delta_{\rm f}G^{\circ} =$ | | - 146.01 | | | $\Delta_f S^\circ =$ | | -701.87 | | | | $\ln K_{\rm f} =$ | | 58.90 | | | $\Delta_t G^\circ = $ $\ln K_t =$ | | -112.29
45.30 | | | | | | | | | | | | | | | | e; Methyl b | • | . (1 C. (TT) | C ₆ H ₁₂ O | Liquid phas | se | | | | | | $-(C)_2$, $\sigma =$ | \times C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ | (CO)(C))+ | $\Delta_1 H^{\circ} =$ | 272.26 | - 375.04 | 2.64 | (COTTO | | (1×00- | (C)2), 0° – | 10 | | | $C_p^{\circ} = S^{\circ} =$ | 273.26
373.84 | 276.90 | -3.64 | 65OET | | | Literatus | re – Calculated | = Residual | Reference | $\Delta_{f}S^{\circ} =$ | 3/3.04 | 369.80 | 4.04 | 65OET | | | Literatu | Calculated | - Acsiduai | Reference | $\Delta_{\rm f}G^{\circ} =$ | | -823.21
-129.60 | | | | | | | | | $\ln K_{\rm f} =$ | | 52.28 | | | | Gas phase | | | | | | | 32.20 | | | | $\Delta_f H^{\circ} =$ | - 279.79 | - 280.29 | 0.50 | 70HAR/HEA | | | | | | | $C_p^o =$ | | 145.36 | | | | | | | | | S° = | | 412.82 | | | 5-Nonanone | e; Di-n-buty | l ketone | | C ₉ H ₁₈ O | |
$\Delta_f S^\circ =$ | | - 507.57 | | | (2×C-(F | f(C) + (4 | \times C-(H) ₂ (C) ₂) | $+(2\times C-(H)_2($ | (CO)(C))+ | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | - 128.96 | | | (1×CO- | $(C)_2$, $\sigma =$ | 18 | , ,,,, | . ,, ,, | | lnK _f = | | 52.02 | | | • | Literatur | re – Calculated | = Residual | Reference | | Liquid pha | S A | | | | | | | | | | $\Delta_{\rm r} H^{\circ} =$ | - 322.01 | - 323.58 | 1.57 | 70HAR/HEA | Gas phase | | | | | | $C_p^{\circ} =$ | 213.38 | 216.06 | -2.68 | 70AND/COU | $\Delta_t H^\circ =$ | - 344.94 | -343.39 | - 1.55 | 70U A D /USE A | | | 308.11 | 305.04 | 3.07 | 70AND/COU | $C_p^{\circ} =$ | J77.77 | 215.83 | -1.55 | 70HAR/HEA | | S° = | 200.11 | -615.35 | 5.07 | 10/11/D/COO | S° = | | 530.72 | | | | S° =
Δ ₆ S° = | | | | | | | JJU.12 | | | | $\Delta_f S^{\circ} =$ | | | | | م.ره = | | | | | | | | -140.11
56.52 | | | $\Delta_t S^\circ = \Delta_t G^\circ =$ | | - 798.60
- 105.29 | | | TABLE 18. Ketones (42) - Continued #### TABLE 18. Ketones (42) - Continued | 5-Nonanone; Di-n-butyl ketone (Continued) | C,H18O | |---|--------| | $(2 \times C - (H)_3(C)) + (4 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(CO)(C)) +$ | - | | $(1 \times CO - (C)_2), \sigma = 18$ | | | Literatur | Literature — Calculated — Residual | | | | | | |-------------------------------------|------------------------------------|-------|-----------|--|--|--| | | | | | | | | | Liquid phase | | | | | | | | $\Delta_{\rm f}H^{\circ} = -398.24$ | - 399.18 | 0.94 | 70HAR/HEA | | | | | $C_{p}^{\circ} = 303.59$ | 306.19 | -2.60 | 70AND/COU | | | | | $S^{\circ} = 401.41$ | 409.67 | -8.26 | 70AND/COU | | | | | $\Delta_t S^{\circ} =$ | -919.65 | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | - 124.99 | | | | | | | $lnK_t =$ | 50.42 | | | | | | | | | | | | | | # 6-Undecanone; Di-n-pentyl ketone $C_{11}H_{22}O$ (2 × C-(H)₃(C)) + (6 × C-(H)₂(C)₂) + (2 × C-(H)₂(CO)(C)) + (1 × CO-(C)₂), $\sigma = 18$ | Literatu | re – Calculated | Reference | | | | | | | | |-------------------------------------|-----------------|-----------|--|--|--|--|--|--|--| | Gas phase | | | | | | | | | | | $\Delta_i H^{\circ} = -387.41$ | - 384.65 | -2.76 | 70HAR/HEA | | | | | | | | $C_{p}^{\circ} =$ | 261.61 | | | | | | | | | | S° = | 609.04 | | | | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | - 992.90 | | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | -88.62 | | | | | | | | | | $lnK_f =$ | 35.75 | | | | | | | | | | Liquid phase | | | | | | | | | | | $\Delta_{\rm f}H^{\circ} = -448.13$ | - 450.64 | 2.51 | 70HAR/HEA | | | | | | | | $C_p^{\circ} =$ | 367.03 | | to the second se | | | | | | | | S° = | 474.43 | | | | | | | | | | $\Delta_t S^\circ =$ | - 1127.51 | | | | | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | -114.47 | | | | | | | | | | $lnK_f =$ | 46.18 | | | | | | | | | # 2-Tetradecanone; Methyl *n* -dodecyl ketone $(2 \times C - (H)_3(C)) + (1 \times CO - (C)_2) + (1 \times C - (H)_2(CO)(C)) + (10 \times C - (H)_2(C)_2), \sigma = 18$ | | Literature - Calculated = Residua | l Reference | |----------------------------------|-----------------------------------|-------------| | | | | | Gas phase | | | | $\Delta_t H^{\circ} =$ | - 445.33 | | | $C_p^{\circ} =$ | 328.48 | | | S° = | 726.10 | | | Δ _f S° = | - 1284.78 | | | $\Delta_i G^{\circ} =$ | - 62.27 | | | $lnK_t =$ | 25.12 | | | : . | | | | Liquid phase | | | | $\Delta_t H^{\circ} =$ | -529.42 | | | $C_p^o =$ | 459.42 | | | S° = | 564.08 | | | $\Delta_t S^{\circ} =$ | - 1446.80 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | - 98.06 | | | $lnK_f =$ | 39.56 | | 2-Tetradecanone; Methyl *n*-dodecyl ketone (Continued) $(2 \times C-(H)_3(C)) + (1 \times CO-(C)_2) + (1 \times C-(H)_2(CO)(C)) + (10 \times C-(H)_2(C)_2), \ \sigma = 18$ | | Literature - Calculated - Residual | | | Reference | | |--|------------------------------------|--------------------|------|-----------|--| | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | 415.20 | - 573.43
409.91 | 5.29 | 79SUN/SVE | | 2-Pentadecanone; Methyl *n*-tridecyl ketone $(2 \times C - (H)_3(C)) + (1 \times CO - (C)_2) + (1 \times C - (H)_2(CO)(C)) + (11 \times C - (H)_2(C)_2), \sigma = 18$ | | Literature – Calculated = R | ature - Calculated = Residual | | |---|--|-------------------------------|---------------------------------------| | : | | | | | Gas phase | | | | | $\Delta_t H^{\circ} =$ | -465.96 | | | | $C_{p}^{\circ} =$ | 351.37 | | | | S° = | 765.26 | | | | $\Delta_f S^\circ =$ | - 1381.93 | | | | $\Delta_t G^{\circ} =$ | - 53.94 | | | | $lnK_f =$ | 21.76 | | | | Liquid phase $\Delta_{\ell}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 0$ | -555.15
489.84
596.46
-1550.73
-92.80
37.44 | | | | $m_{K} =$ | 37.44 | | | | | | | | | Solid phase | | | · · · · · · · · · · · · · · · · · · · | | | - 602.84 | | | 3-Methyl-2-butanone; Methyl isopropyl ketone $(3\times C-(H)_3(C))+(1\times C-(H)(CO)(C)_2)+(1\times CO-(C)_2)+\\(2\times -CH_3 \text{ corr (tertiary)})$ | | Literatu | re – Calculated = Residual | | Reference | | |----------------------------------|----------|----------------------------|------|-----------|--| | Gas phase
Δ _t H° = | - 262.57 | - 264.22 | 1.65 | 70HAR/HEA | | | Liquid phas | e | | | | | | $\Delta_{\rm f}H^{\circ} =$ | - 299.47 | -303.84 | 4.37 | 70HAR/HEA | | | $C_{p}^{\circ} =$ | | 179.82 | | | | | S° == | | 259.19 | | | | | $\Delta_{\rm f} S^{\circ} =$ | | - 524.89 | | | | | $\Delta_t G^\circ =$ | | -147.35 | | | | | $lnK_f =$ | | 59.44 | | | | C₆H₁₂O C6H12O C,H18O TABLE 18. Ketones (42) - Continued TABLE 18. Ketones (42) - Continued | 2-Methyl-3-pentanone; Ethyl isopropyl ketone $(3 \times C-(H)_3(C)) + (1 \times C-(H)(CO)(C)_2) + (1 \times CO-(1 \times C-(H)_2(CO)(C)) + (2 \times -CH_3 \text{ corr (tertiary)})$ | -(C) ₂)+ | |--|----------------------| | Literature – Calculated = Residual | Refe | | | | | Literature – Calculated = Residual | | | Reference | | |------------------------------------|---------|----------|-----------|---------------| | Gas phase | | 200.00 | 0.04 | 700E I | | $\Delta_{\rm f}H^{\circ} =$ | -286.10 | - 286.06 | -0.04 | 70SEL | | Liquid ph | asc | | | | | $\Delta_t H^\circ =$ | -325.90 | - 327.98 | 2.08 | 70SEL | | $C_p^{\circ} =$ | | 209.11 | | | | S° = | | 299.06 | | | | $\Delta_f S^\circ =$ | | -621.33 | | | | $\Delta_i G^{\circ} =$ | | -142.73 | | | | $lnK_f =$ | | 57.58 | | | 3,3-Dimethyl-2-butanone; Methyl tert-butyl ketone $(4 \times C - (H)_3(C)) + (1 \times CO - (C)_2) + (1 \times C - (CO)(C)_3) +$ (3×-CH₃ corr (quaternary)) Literature - Calculated = Residual Reference Gas phase $\Delta_t H^\circ =$ -290.67-291.460.79 70HAR/HEA Liquid phase $\Delta_i H^{\circ} =$ -328.54-330.221.68 70HAR/HEA $C_{\rho}^{\circ} = S^{\circ} =$ 206.90 206.88 0.02 70AND/COU 70AND/COU 282.42 281.03 1.39 $\Delta_f S^\circ =$ -639.36 $\Delta_f G^\circ =$ - 139.60 $lnK_f =$ 56.31 2,2-Dimethyl-3-pentanone; Ethyl tert-butyl ketone C7H14O $(4 \times C-(H)_3(C)) + (1 \times C-(CO)(C)_3) + (1 \times CO-(C)_2) +$ $(1 \times C - (H)_2(CO)(C)) + (3 \times - CH_3 \text{ corr (quaternary)})$ | Literature – Calculated = Residual | | | Reference | | |------------------------------------|---------|----------|-----------|-------| | Gas phase
Δ _f H° = | -313.72 | -313.30 | -0.42 | 70SEL | | Liquid pha | ıse | | | | | $\Delta_{\rm f}H^{\circ} =$ | | -354.36 | - 1.74 | 70SEL | | C ^o _P − | | 236.17 | | | | <i>S</i> ° = | | 320.90 | | | | $\Delta_f S^\circ
=$ | | - 735.80 | | | | $\Delta_f G^\circ =$ | | 134.98 | | | | $lnK_c -$ | | 54.45 | | | 2,4-Dimethyl-3-pentanone; Diisopropyl ketone C7H14O $(4 \times C-(H)_3(C)) + (2 \times C-(H)(CO)(C)_2) + (1 \times CO-(C)_2) +$ (4×-CH₃ corr (tertiary)) | | Literature – Calculated = Residual | | Reference | | |------------------------------|------------------------------------|----------|-----------|-----------| | Gas phase | • | | | | | $\Delta_t H^\circ =$ | -311.10 | -311.25 | 0.15 | 70SEL | | Liquid ph | ase | | | | | $\Delta_{\rm f} H^{\circ} =$ | -352.92 | - 359.70 | 6.78 | 70SEL | | $C_p^{\circ} =$ | 233.70 | 233.71 | -0.01 | 70AND/COU | | S° = | 318.00 | 317.97 | 0.03 | 70AND/COU | | $\Delta_t S^\circ =$ | | - 738.73 | | | | $\Delta_f G^\circ =$ | | - 139.45 | | | | $lnK_f =$ | | 56.25 | | | 2,2,4-Trimethyl-3-pentanone; Isopropyl tert- butyl ketone C₈H₁₆O $(5 \times C - (H)_{3}(C)) + (1 \times C - (CO)(C)_{3}) + (1 \times C - (H)(CO)(C)_{2}) +$ $(1 \times CO - (C)_2) + (2 \times - CH_3 \text{ corr (tertiary)}) +$ (3×-CH₃ corr (quaternary)) | | Literatu | ure – Calculated – Residual | | Reference | | |------------------------------------|----------|-----------------------------|------|-----------|--| | Gas phase
Δ _t H° = | -338.30 | - 338.49 | 0.19 | 70SEL | | | Liquid pha | se | | | | | | $\Delta_t H^\circ =$ | -381.60 | -386.08 | 4.48 | 70SEL | | | $C_{p}^{\circ} =$ | | 260.77 | | | | | S° = | | 339.81 | | | | | $\Delta_f S^\circ =$ | | -853.20 | | | | | $\Delta_{\mathfrak{l}}G^{\circ} =$ | | -131.70 | | | | | $lnK_t =$ | | | | | | #### 2,2,4,4-Tetramethyl-3-pentanone; Di-tertbutyl ketone | • | | |--|---| | $(6 \times C-(H)_3(C)) + (2 \times C-(CO)(C)_3) + (1 \times CO-(C)_2) + (1 \times CO-(C)_3) C)_3 C$ | + | | (6×-CH ₃ corr (quat/quat)) | | | Literature – Calculated = Residual | | | Reference | | |------------------------------------|---------|----------|-----------|-------| | Gas phase
Δ _i H° = | | - 342.21 | -3.60 | 70SEL | | Liquid pha | ise | | | | | $\Delta_{\rm f}H^{\circ} =$ | -391.10 | -389.96 | -1.14 | 70SEL | | $C_{P}^{\circ} =$ | | 287.83 | | | | s° - | | 361.65 | | | | $\Delta_f S^\circ =$ | | - 967.67 | | | | $\Delta_f G^{\circ} =$ | | -101.45 | | | | $lnK_f =$ | | 40.92 | | | | TABLE 18. Ketones (42) — Conti | itinued | |--------------------------------|---------| |--------------------------------|---------| ### TABLE 18. Ketones (42) - Continued | | () ₃ (C))+(2 | ne
× C-(H)(C)3) +
+ (1 × CO-(C) | | C9H18O
rr (tertiary))+ | | edione (Cor
H)3(C))+(2 | ntinued)
2 × CO-(C) ₂) + (1 | 1×C-(H)₂(C | C₅H₈O ₇
O) ₂) | |--|-------------------------|---|------------|---|--|--|--|----------------------|--| | (2×C-(H | | e – Calculated : | | Reference | | Literatu | re – Calculated = | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 357.61 | -356.77
215.89 | -0.84 | 70SEL | Liquid pha $\Delta_t H^\circ = C_p^\circ =$ | - 423.80 | 423.80
194.46 | 0.00 | 57NIC | | $C_p^{\circ} = S^{\circ} =$ | se
408.50 | -409.74
300.23
398.97 | 1.24 | 70SEL | | H) ₂ (C) ₂)+(opentanone | * * | | | | $\Delta_f S^\circ = \Delta_f G^\circ = 0$ | | - 930.35
- 132.36 | | | | Literatu | re – Calculated = | = Residual | Reference | | ln <i>K</i> _f = | | 53.39 | | | Gas phase $\Delta_t H^\circ =$ | - 194.76 | - 194.76 | 0.00 | 72WOL | | | (C) + (2 | eptanone
× C-(C) ₄) + (6×
) + (1 × CO-(C) | | C ₁₁ H ₂₂ O
quaternary)) + | Liquid pha
Δ _t H° = | | -237.40 | 0.00 | 72WOL | | | Literatur | e – Calculated | = Residual | Reference | | | | | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -421.20 | - 418.87
260.25 | -2.33 | 71SEL | | | $2 \times C - (H)_2(CO)$
(rsc), $\sigma = 2$ | (C))+(1×C0 | C ₆ H ₁₀ O
O-(C) ₂) + | | | | | | | | Literatu | re – Calculated = | Residual | Reference | | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | se
474.10 | -477.06
350.91
416.05
-1185.89
-123.49
49.81 | 2.96 | 71SEL | Gas phase $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | - 227.74
109.66
322.17 | - 227.74
109.66
322.17
- 467.65
- 88.31
35.62 | 0.00
0.00
0.00 | 72WOL
69STU/WES
69STU/WES | | | | one; Diacetyl
× CO-(C)(CO) |) | C ₄ H ₆ O ₂ | Liquid pha $ \Delta_t H^{\circ} = C_p^{\circ} = $ | | - 272.63
177.20 | 0.00
0.00 | 72WOL
80NAK/SUG | | | Literatui | re – Calculated | = Residual | Reference | $S^{\circ} = \Delta_t S^{\circ} =$ | 221.98 | 221.98
- 567.84 | 0.00 | 80NAK/SUG | | Gas phase $\Delta_f H^\circ =$ | -327.10 | - 327.10 | 0.00 | 54NIC/SZW | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = $ | | -103.33
41.68 | | | | Liquid phase $\Delta_t H^\circ =$ | | - 365.30 | -0.00 | 54NIC/SZW | | | 2 × C(H) ₂ (CO)(
rsc) | (C)) + (1 × CC | C ₇ H ₁₂ O
O-(C) ₂) + | | 2,4-Pentane | edione | | | C ₅ H ₈ O ₂ | | Literatur | re – Calculated = | Residual | Reference | | (2×C-(H | | \times CO–(C) ₂) + (
re – Calculated : | , | O) ₂) Reference | Gas phase $\Delta_t H^\circ =$ | - 248.11 | - 248.11 | 0.00 | 72WOL | | Gas phase
Δ _t H° = | -380.60 | 380.60 | 0.00 | 70IRV/WAD | Liquid phase $\Delta_t H^\circ =$ | | - 297.65 | 0.00 | 72WOL | TABLE 18. Ketones (42) - Continued TABLE 18. Ketones (42) - Continued | Cyclooctanone
$(5 \times C-(H)_2(C)_2) + (2 \times C-(H)_2(CO)(C)) + (1 \times CO)(1 \times C)(CO)(C)$ | C ₈ H ₁₄ O
-(C) ₂) + | Cycloundecanone (Continued)
$(8 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(CO)(C)) + (1 \times CO)(1 \times C)(CO)(C)$ | C ₁₁ H ₂₀ O
-(C) ₂)+ | |--|---
---|--| | Literature - Calculated = Residual | Reference | Literature – Calculated = Residual | Reference | | Gas phase $\Delta_t H^\circ = -272.17 -272.17$ 0.00 | 72WOL | Liquid phase $\Delta_t H^\circ = -386.35 -386.35 0.00$ | 72WOL | | Liquid phase $\Delta_t H^\circ = -320.68 -320.68 0.00$ | 72WOL | Cyclododecanone
$(9 \times C-(H)_2(C)_2) + (2 \times C-(H)_2(CO)(C)) + (1 \times CO)(1 \times Cyclododecanone)$ | C ₁₂ H ₂₂ O
-(C) ₂) + | | Solid phase $\Delta_t H^{\circ} = -323.42 -323.42$ 0.00 | 72WOL | Literature – Calculated = Residual | Reference | | Cyclononanone
$(6 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(CO)(C)) + (1 \times CO)(C)$ | C ₉ H ₁₆ O
-(C) ₂)+ | Gas phase $\Delta_t H^\circ = -349.11 -349.11$ 0.00 | 72WOL | | (1 × cyclononanone) Literature − Calculated ≈ Residual | Reference | Liquid phase $\Delta_t H^\circ = -414.59 -414.59$ 0.00 | 72WOL | | Gas phase $\Delta_{r}H^{\circ} = -279.70 -279.70 0.00$ | 72WOL | Solid phase $\Delta_t H^\circ = -431.33 -431.33 0.00$ | 72WOL | | Liquid phase $\Delta_t H^{\circ} = -332.85 -332.85 0.00$ | 72WOL | Cyclopentadecanone
$(1 \times CO - (C)_2) + (2 \times C - (H)_2(CO)(C)) + (12 (H)_2(CO)(C)(C)) + (12 \times C - (H)_2(CO)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)$ | $C_{15}H_{28}O$
$(C)_2(C)_2) +$ | | Solid phase $\Delta_t H^\circ = -334.94 -334.93 -0.01$ | 72WOL | Literature – Calculated = Residual | Reference | | Cyclodecanone $(7 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(CO)(C)) + (1 \times CO)(C)$ | $C_{10}H_{18}O$ $-(C)_2) +$ | Gas phase $\Delta_t H^\circ = -414.50 -414.50$ 0.00 | 38WOL/WEG | | (1 × cyclodecanone) Literature – Calculated = Residual | Reference | Solid phase $\Delta_t H^\circ = -491.90 -491.90 0.00$ | 33RUZ/SCH | | Gas phase $\Delta_t H^\circ = -305.06 -305.06$ 0.00 | 72WOL | Cycloheptadecanone
$(1 \times CO-(C)_2) + (2 \times C-(H)_2(CO)(C)) + (14 C-(H)_2(CO)(C)(C)) + (14 \times C-(H)_2(CO)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)$ | C ₁₇ H ₃₂ O | | Liquid phase $\Delta_t H^\circ = -363.42 -363.42$ 0.00 | 72WOL | (1 × cycloheptadecanone rsc) Literature – Calculated = Residual | Reference | | Cycloundecanone (8 × C-(H) ₂ (C) ₂) + (2 × C-(H) ₂ (CO)(C)) + (1 × CO) (1 × cycloundecanone) | $C_{11}H_{20}O$ $-(C)_2) +$ | Gas phase $\Delta_t H^\circ = -460.30 -460.30$ 0.00 | 38WOL/WEG | | Literature - Calculated = Residual | Reference | Solid phase $\Delta_t H^{\circ} = -536.00 - 536.00 = 0.00$ | 33RUZ/SCH | | Gas phase $\Delta_t H^\circ = -322.00 -322.00 0.00$ | 72WOL | | | | | TABLE | 18. Ketones (4 | 2) – Contin | ued | |---|-------------------------------------|---|-----------------------------|----------------------------------| | | $I)_3(C)) + (1$ | phenyl ketone
× CO-(C)(C _B) |)+(1×C _B -(C | C_8H_8O $O)(C_B)_2) +$ | | | Literatur | e – Calculated | = Residual | Reference | | Gas phase
Δ _t H° = | | -106.53 | | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | | - 141.53
227.62 | - 0.97
- 0.02 | 61COL/LAT
39PHI | | | CO)(C _B) ₂) | \times C-(H) ₂ (CO)
+ (5 \times C _B -(H)($^{\circ}$ | C _B)₂) | P-(C)(C _B))+ | | | Literatui | e – Calculated | = Residual | Keterence | | Gas phase
Δ _t H° = | | - 128.37 | | | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | | - 165.67
256.91 | -1.53 | 61COL/LAT | | | propanone; | Methyl benzyl | ketone | C ₃ H ₁₀ O | | (1×C-(H | 1)3(CO))+ | $(1 \times CO - (C)_2) - (5 \times C_B - (H)(C_B)$ | + (1 × C-(H) ₂ (| | | | Literatur | re – Calculated | = Residual | Reference | | Gas phase
Δ _t H° = | -98.40 | - 98.44 | 0.04 | 54NIC/SZW | | Benzopheno
(10×C _B - | | yl ketone
- (2×C _B -(CO) | $(C_B)_2$ + $(1 \times C_B)_2$ | $C_{13}H_{16}$
CO-(C _B) ₂) | |--|-------------------------------|---|--------------------------------|--| | | Literatur | e – Calculated | = Residual | Reference | | Gas phase
Δ _t H° = | 60.30 | 59.10 | 1.20 | 83DEK/VAN | | Liquid phas $\Delta_t H^\circ =$ | | - 16.40 | 0.10 | 83DEK/VAN | | Solid phase | | 24.40 | 0.00 | | | $\Delta_{\mathbf{f}}H^{\circ} = C_{p}^{\circ} =$ | -34.40
224.81 | - 34.40
224.85 | 0.00
-0.04 | 59COL/CAM
83DEK/VAN | | (1×C-(H | $(C_B)_2 + (1)_3$ | ; Phenyl p-toly
× C _B -(H)(C _B) ₂
< C _B -(C)(C _B) ₂) |)+(2×C _B -(C | C ₁₄ H ₁₂
CO)(C _B) ₂) + | | | Literatur | e – Calculated | = Residual | Reference | | Gas phase
Δ _t H° = | | 26.67 | | | | Liquid phas
Δ _ι H° = | е | -53.01 | | | | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | 77.80 | - 73.77
248.91 | -4.03 | 59COL/CAM | | | $(C_B)_2 + (C_B)_2 + (1 > 1)$ | (2×C _B -(CO)((
C-(H) ₃ (C))+
e - Calculated | (1×C-(H)₂(C | | | G1 | | | | | | Gas phase $\Delta_t H^\circ =$ | | 5.33 | | | | Liquid phas
Δ _t H° = | e
-64.30 | - 77.82 | 13.52 | 59COL/CAM | | Δ _f Π = | | | | | | Solid phase $\Delta_t H^\circ =$ | | - 95.87 | | | TABLE 18. Ketones (42) - Continued 1-Phenyl-1-butanone; Propyl phenyl ketone Liquid phase $\Delta_i H^\circ = -151.90$ Gas phase $\Delta_i H^{\circ} =$ Liquid phase $\Delta_{\mathbf{f}}H^{\circ} =$ $C_p^{\circ} =$ -188.90 -152.08 $(1 \times C - (H)_2(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) +$ $(1 \times CO - (C)(C_B)) + (1 \times C_B - (CO)(C_B)_2) + (5 \times C_B - (H)(C_B)_2)$ Literature - Calculated = Residual -149.00 -191.40 287.33 0.18 2.50 54NIC/SZW Reference 61COL/LAT $C_{10}H_{12}O$ TABLE 18. Ketones (42) - Continued ### TABLE 19. Acids (89) | Diphenylethanedione; Benzil; Diphenyl diketone $(10 \times C_B-(H)(C_B)_2) + (2 \times C_B-(CO)(C_B)_2) C_B-(C_B)(C_B)_2) + (2 \times C_B-(C_B)(C_B)_2) + (2 \times C_B-(C_B)(C_B)(C_B)_2) + (2 \times C_B-(C_B)(C_B)(C_B)(C_B)_2) + (2 \times C_B-(C_B)(C_B)(C_B)(C_B)(C_B)_2 + (2 \times C_B)(C_B)(C_B)(C_B) + (2 \times C_B)(C_B)(C_B)(C_B)(C_B)(C_B)(C_B)(C_B)($ | $C_{14}H_{10}O_2$
O-(CO)(C _B)) | | acid; Form
H)(CO))+(| ic acid
(1×CO-(H)(O |)), σ = 1 | CH ₂ C | |---|---|---|--
---|--------------------------|-------------------------------------| | Literature - Calculated = Residual | Reference | | Litera | ature-Calculate | ed = Résidual | Reference | | Gas phase $\Delta_t H^{\circ} = -55.50 - 55.50 = 0.00$ | 59AIH | Gas phase $\Delta_r H^\circ = C_p^\circ = S^\circ =$ | -378.70
45.23
248.74 | -378.69
45.23
248.74 | - 0.01
0.00
0.00 | 70KON/WAD
69STU/WES
69STU/WES | | Solid phase $\Delta_t H^{\circ} = -153.90 - 153.90 0.00$ | 62PAR/MOS | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | - 92.61
- 351.08
141.62 | | | | 1,3-Diphenyl-1,3-propanedione; Dibenzoylmethane $(10 \times C_B-(H)(C_B)_2) + (2 \times C_B-(CO)(C_B)_2) + (2 \times C_B-(CO)(C_B)_2)$ | | Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ = A_s G^\circ$ | se
-425.50
99.03
131.84 | -428.06
102.92
132.96 | 2.56
-3.89
-1.12 | 64LEB
41STO/FIS
41STO/FIS | | Literature - Calculated = Residual | Reference | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | | -208.39
-365.93
147.61 | | | | Gas phase $\Delta_t H^\circ = -159.26$ | | | cid; Acetic :
H) ₃ (C))+(1 | | + (1 × O-(H)(| $C_{3}H_{4}O$ $CO)), \sigma = 3$ | | Liquid phase $\Delta_l H^\circ =$ -210.89 $C_p^\circ =$ 397.84 | | <u> </u> | Litera | ature-Calculate | ed = Residual | Reference | | Solid phase $\Delta_i H^\circ = -224.90 -224.90 0.00$ | 65KOZ/SHI | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | -432.80
66.53
282.50 | -433.80
66.52
282.49
-195.18 | 1.00
0.01
0.01 | 70KON/WAD
69STU/WES
69STU/WES | | Cyclobutane-1,3-dione
$(2 \times C-(H)_2(CO)_2) + (2 \times CO-(C)_2) + (1 \times \text{cyclobutane-1,3-dione rsc})$ | C ₄ H ₄ O ₂ | $\Delta_{f}G^{\circ} = \ln K_{f} =$ | | -375.61
151.52 | | | | Literature – Calculated – Residual | Reference | Liquid pha $\Delta_l H^{\circ} = C_p^{\circ} =$ | se
-484.50
123.10 | -482.62
119.28 | -1.88
3.82 | 64LEB
82MAR/AND | | Gas phase $\Delta_t H^\circ = -186.30 - 186.30 0.00$ | 78CHI/SHE | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = -\infty$ | 158.00 | 154.30
-323.36
-386.21
155.79 | 3.70 | 82MAR/AND | | Solid phase $\Delta_t H^{\circ} = -260.00 - 260.00 0.00$ | 78CHI/SHE | | | | (C))+(1×CO- | C₃H₄O
-(C)(O)) + | | | • | | Litera | ture-Calculate | d = Residual | Reference | | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -455.70 | -455.64
91.21 | -0.06 | 70KON/WAD | | | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | 58e
- 508.50
152.80
191.00 | -506.76
148.57
194.17
-419.81
-381.59
153.93 | - 1.74
4.23
- 3.17 | 70KON/WAD
82MAR/AND
82MAR/AND | | | Literature-Calculated | l = Residual | Reference | | Litera | ature-Calculate | ed = Residual | Reference | |---|---|---|--|--|--
---|---|--| | Gas phase | | | | Liquid pha | se | | | | | $\Delta_t H^{\circ} =$ | -468.76 | | | $\Delta_t H^\circ = C_n^\circ =$ | - 558.70
210.33 | - 558.22
209.41 | - 0.48
0.92 | 65ADR/DEK
65MCD/KIL | | | | | | $S^{\circ} =$ | 259.83 | 258.93 | 0.92 | 65MCD/KIL | | Liquid phase | | | | $\Delta_f S^\circ =$ | | -627.67 | | | | $\Delta_i H^\circ =$ | -552.87 | | | $\Delta_{\mathfrak{l}}G^{\circ} =$ | | -371.08 | | | | $C_p^{\circ} =$ | 171.36 | | | $lnK_f =$ | | 149.69 | | | | S° = | 151.48 | | | | | | | | | $\Delta_f S^\circ =$ | -565.02 | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | -384.41 | | | TT | | | G 17 G | | | $lnK_f =$ | 155.07 | | | (1×C-(1 | | × C-(H) ₂ (C) ₂) | C ₆ H ₁₂ O
+ (1 × C–(H) ₂ (| | | Solid phase | | | | (1,700- | くくんひりょく | 1×O-(H)(CO) | " | | | | 694.00 698.88 | 4.88 | 59SAV/GUN | | Litera | ature-Calculate | ed = Residual | Reference | | $C_p^{\circ} =$ | 127.83 | | | | | | | | | <i>s</i> ° = | 147.30 | | | | | | | | | $\Delta_f S^\circ =$ | -569.20 | | | Gas phase | | | | | | | - 529.17 | | | $\Delta_{\rm f}H^{\circ} =$ | - 513.40 | -517.53 | 4.13 | 79KRU/OON | | - | | | | ~~ | | | | | | | 213.47 | + (1 × C-(H)-(| C ₄ H ₆ O ₂ | $C_{\rho}^{\circ} =$ Liquid pha $\Delta_{t}H^{\circ} =$ $C_{r}^{\circ} =$ | se
585.60 | 159.88
- 583.95
239.83 | -1.65 | 64LEB | | Butanoic acid (1×C-(H) ₃ (1×CO-(C | 213.47 |) | | Liquid pha | | | -1.65 | 64LEB | | Butanoic acid (1×C-(H) ₃ (1×CO-(C | 213.47 ; Butyric scid (C)) + (1×C-(H) ₂ (C) ₂) + (1×O-(H)(CO)) |) | CO)(C))+ | Liquid pha
$\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ = S_t G^\circ S_$ | | - 583.95
239.83
291.31
- 731.60
- 365.82 | -1.65 | 64LEB | | $lnK_f =$ Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_3)$ Gas phase | 213.47 ; Butyric acid (C)) + (1 × C-(H) ₂ (C) ₂) + (O)) + (1 × O-(H)(CO)) Literature-Calculated |)
d = Residual | CO)(C)) + Reference | Liquid pha $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = $ Heptanoic $ (1 \times C - (1 + C_t)^2 + C_t)^2 = C_t C_t $ | - 585.60 acid; Enant | - 583.95
239.83
291.31
- 731.60
- 365.82
147.57 | C ₇ H ₁₄ O
+ (1 × C−(H) ₂ (| 2 | | Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_3)$ Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = C_p^{\circ} = C_p^{\circ}$ Liquid phasc | 213.47 ; Butyric acid (C)) + (1 × C-(H) ₂ (C) ₂) + (O)) + (1 × O-(H)(CO)) Literature-Calculated 475.80 - 476.27 114.10 |)
d = Residual
0.47 | CO)(C))+ Reference 70KON/WAD | Liquid pha $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = $ Heptanoic $ (1 \times C - (1 + C_t)^2 + C_t)^2 = C_t C_t $ | acid; Enant
H) ₃ (C))+(4-(C)(O))+(| - 583.95
239.83
291.31
- 731.60
- 365.82
147.57
thylic acid
× C-(H) ₂ (C) ₂) | C ₇ H ₁₄ O
+ (1 × C-(H) ₂ (4 | 2
CO)(C))+ | | Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_1 + (C)_2 + (C)_2 + (C)_3 + (C)_4 + (C)_4 + (C)_5 + (C)_6 (C$ | 213.47 ; Butyric acid (C)) + (1 × C – (H) ₂ (C) ₂) + (O)) + (1 × O – (H)(CO)) Literature-Calculated 475.80 – 476.27 114.10 |)
d = Residual | CO)(C)) + Reference | Liquid pha $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = $ Heptanoic $ (1 \times C - (1 + C_t)^2 + C_t)^2 = C_t C_t $ | acid; Enant
H) ₃ (C))+(4-(C)(O))+(| - 583.95
239.83
291.31
- 731.60
- 365.82
147.57 | C ₇ H ₁₄ O
+ (1 × C-(H) ₂ (4 | 2 | | Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_1 + (C)_2 + (C)_3 + (C)_4 + (C)_4 + (C)_5 + (C)_6 (C$ | 213.47 ; Butyric acid (C)) + (1 × C – (H) ₂ (C) ₂) + (O)) + (1 × O – (H)(CO)) Literature-Calculated 475.80 – 476.27 114.10 533.80 – 532.49 177.70 178.99 225.30 226.55 | 0.47 | CO)(C)) + Reference 70KON/WAD 64LEB | Liquid pha $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = $ Heptanoic $ (1 \times C - (1 + C_t)^2 + C_t)^2 = C_t C_t $ | acid; Enant
H) ₃ (C))+(4-(C)(O))+(| - 583.95
239.83
291.31
- 731.60
- 365.82
147.57
thylic acid
× C-(H) ₂ (C) ₂) | C ₇ H ₁₄ O
+ (1 × C-(H) ₂ (4 | 2
CO)(C))+ | | Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_3)$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phasc $\Delta_t H^\circ = C_p^\circ =$ $S^\circ = \Delta_t S^\circ =$ | 213.47 ; Butyric acid (C)) + (1 × C-(H) ₂ (C) ₂) + (O)) + (1 × O-(H)(CO)) Literature-Calculated 475.80 - 476.27 114.10 533.80 - 532.49 177.70 178.99 225.30 226.55 - 523.74 | 0.47
-1.31
-1.29 | Reference 70KON/WAD 64LEB 82MAR/AND | Liquid pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 \times C_t}{1 \times C_t}$ Heptanoic $(1 \times C_t)(1 \times C_t)$ Gas phase | acid; Enant
H) ₃ (C))+(4-(C)(O))+(
Litera | - 583.95
239.83
291.31
- 731.60
- 365.82
147.57
thylic acid
× C-(H) ₂ (C) ₂)
1× O-(H)(CO) | $C_7H_{14}O$ $+ (1 \times C - (H)_2(0))$ $d = Residual$ | 2
CO)(C))+
Reference | | Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_1 \times CO - (C)_2 \times (C)_2 \times (C)_3 (C)_3$ | 213.47 ; Butyric acid (C)) + (1 × C-(H) ₂ (C) ₂) + (O)) + (1 × O-(H)(CO)) Literature-Calculated 475.80 - 476.27 114.10 533.80 - 532.49 177.70 178.99 225.30 226.55 - 523.74 - 376.34 | 0.47
-1.31
-1.29 | Reference 70KON/WAD 64LEB 82MAR/AND | Liquid pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 \times C_t}{1 \times C_t}$ Heptanoic $(1 \times C_t)(1 \times C_t)$ Gas phase $\Delta_t H^\circ = \frac{1 \times C_t}{1 \times C_t}$ | acid; Enant
H) ₃ (C))+(4-(C)(O))+(| -583.95
239.83
291.31
-731.60
-365.82
147.57
thylic acid
× C-(H) ₂ (C) ₂)
1× O-(H)(CO)
ature-Calculate | C ₇ H ₁₄ O
+ (1 × C-(H) ₂ (4 | 2
CO)(C))+ | | Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_1)$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phasc $\Delta_t H^\circ = C_p^\circ =$ $S^\circ = \Delta_t S^\circ =$ | 213.47 ; Butyric acid (C)) + (1 × C-(H) ₂ (C) ₂) + (O)) + (1 × O-(H)(CO)) Literature-Calculated 475.80 - 476.27 114.10 533.80 - 532.49 177.70 178.99 225.30 226.55 - 523.74 | 0.47
-1.31
-1.29 | Reference 70KON/WAD 64LEB 82MAR/AND | Liquid pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 \times C_t}{1 \times C_t}$ Heptanoic $(1 \times C_t)(1 \times C_t)$ Gas phase | acid; Enant
H) ₃ (C))+(4-(C)(O))+(
Litera | - 583.95
239.83
291.31
- 731.60
- 365.82
147.57
thylic acid
× C-(H) ₂ (C) ₂)
1× O-(H)(CO) | $C_7H_{14}O$ $+ (1 \times C - (H)_2(0))$ $d = Residual$ | CO)(C))+ Reference | | Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_1 \times CO - (C)_2 \times (C)_2 \times (C)_3 (C)_3$ | 213.47 ; Butyric acid (C)) + (1 × C-(H) ₂ (C) ₂) + (O)) + (1 × O-(H)(CO)) Literature-Calculated 475.80 - 476.27 114.10 533.80 - 532.49 177.70 178.99 225.30 226.55 - 523.74 - 376.34 | 0.47
-1.31
-1.29 | Reference 70KON/WAD 64LEB 82MAR/AND | Liquid pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 \times C_t}{1 \times C_t}$ Heptanoic $(1 \times C_t)(1 \times C_t)$ Gas phase $\Delta_t H^\circ = \frac{1 \times C_t}{1 \times C_t}$ | acid; Enant
H) ₃ (C)) + (4
-(C)(O)) + (
Litera
- 539.40 | -583.95
239.83
291.31
-731.60
-365.82
147.57
thylic acid
× C-(H) ₂ (C) ₂)
1× O-(H)(CO)
ature-Calculate | $C_7H_{14}O$ $+ (1 \times C - (H)_2(0))$ $d = Residual$ | CO)(C))+ Reference | | Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_1 \times CO - (C)_2 \times CO - (C)_3 \times CO - (C)_4 \times CO - (C)_5 \times CO - (C)_5 \times CO - (C)_5 \times CO - (C)_6 $ | 213.47 ; Butyric acid (C)) + (1 × C-(H) ₂ (C) ₂) + (O)) + (1 × O-(H)(CO)) Literature-Calculated 475.80 - 476.27 114.10 533.80 - 532.49 177.70 178.99 225.30 226.55 - 523.74 - 376.34 | 0.47
-1.31
-1.29 | Reference 70KON/WAD 64LEB 82MAR/AND | Liquid pha $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{12}$ Heptanoic $(1 \times C - (1 \times C) - (1 \times C) - (1 \times C)$ Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \frac{1}{12}$ | acid; Enant
H) ₃ (C)) + (4
-(C)(O)) + (
Litera
- 539.40 | -583.95
239.83
291.31
-731.60
-365.82
147.57
thylic acid
× C-(H) ₂ (C) ₂)
1× O-(H)(CO)
ature-Calculate | $C_7H_{14}O$ $+ (1 \times C - (H)_2(0))$ $d = Residual$ | 2
CO)(C))+
Reference | | Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_1 \times CO - (C)_2 \times (C)_2 \times (C)_3 \times (C)_4 (C)_4$ | 213.47 ; Butyric acid (C)) + (1 × C-(H) ₂ (C) ₂) + (O)) + (1 × O-(H)(CO)) Literature-Calculated 475.80 - 476.27 114.10 533.80 - 532.49 177.70 178.99 225.30 226.55 - 523.74 - 376.34 151.81 | 0.47
-1.31
-1.29
-1.25 | CO)(C)) + Reference
70KON/WAD 64LEB 82MAR/AND 82MAR/AND | Liquid pha $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Heptanoic $ (1 \times C - (1 \times C) - C) $ Gas phase $ \Delta_t H^\circ = C_p^\circ =$ | acid; Enant
H) ₃ (C)) + (4
-(C)(O)) + (
Litera
- 539.40 | - 583.95
239.83
291.31
- 731.60
- 365.82
147.57
thylic acid
× C-(H) ₂ (C) ₂)
1× O-(H)(CO)
ature-Calculate | $C_7H_{14}O$
+ $(1 \times C - (H)_2)(4$
= $(1 \times C - (H)_2)(4)$
= $(1 \times C - (H)_2)(4)$
= $(1 \times C - (H)_2)(4)$ | 2
CO)(C))+
Reference
79KRU/OON | | In K_f = Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_1$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 213.47 ; Butyric acid (C)) + (1 × C-(H) ₂ (C) ₂) + (O)) + (1 × O-(H)(CO)) Literature-Calculated 475.80 - 476.27 114.10 533.80 - 532.49 177.70 178.99 225.30 226.55 - 523.74 - 376.34 151.81 d; Valeric acid | 0.47
-1.31
-1.29
-1.25 | CO)(C)) + Reference 70KON/WAD 64LEB 82MAR/AND 82MAR/AND | Liquid pha $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \ln K_t = \frac{1}{100}$ Heptanoic $(1 \times C - (1 \times C) - C_p^{\circ} = C_p^{\circ} = \frac{1}{100}$ Liquid pha $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \frac{1}{100}$ | acid; Enant
H) ₃ (C)) + (4
-(C)(O)) + (
Litera
- 539.40
se
- 611.40 | - 583.95
239.83
291.31
- 731.60
- 365.82
147.57
thylic acid
× C-(H) ₂ (C) ₂)
1× O-(H)(CO)
ature-Calculate
- 538.16
182.77 | $C_7H_{14}O$
+ $(1 \times C - (H)_2)(4$
= $(1 \times C - (H)_2)(4)$
= (H)_2)(4)$ | 2
CO)(C))+
Reference
79KRU/OON
64LEB | | In K_f = Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_1$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 213.47 ; Butyric acid (C)) + (1×C-(H) ₂ (C) ₂) + (O)) + (1×O-(H)(CO)) Literature-Calculated 475.80 - 476.27 114.10 533.80 - 532.49 177.70 178.99 225.30 226.55 - 523.74 - 376.34 151.81 d; Valeric acid a(C) + (2×C-(H) ₂ (C) ₂)-C(O) + (1×O-(H)(CO) | 0.47
-1.31
-1.29
-1.25
+(1×C-(H) ₂ (| CO)(C)) + Reference 70KON/WAD 64LEB 82MAR/AND 82MAR/AND | Liquid pha $\Delta_{t}H^{\circ} = C^{\circ}_{\rho} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{1}$ Heptanoic $(1 \times C - (1)(1 \times CO - C) + C)$ Gas phase $\Delta_{t}H^{\circ} = C^{\circ}_{\rho} = \frac{1}{1}$ Liquid pha $\Delta_{t}H^{\circ} = C^{\circ}_{\rho} = \frac{1}{1}$ $C^{\circ}_{\rho} = C^{\circ}_{\rho} C^{\circ}_{\rho}$ | acid; Enant
H) ₃ (C)) + (4
-(C)(O)) + (
Litera
- 539.40
se
- 611.40 | - 583.95
239.83
291.31
- 731.60
- 365.82
147.57
thylic acid
× C-(H) ₂ (C) ₂)
1× O-(H)(CO)
ature-Calculate
- 538.16
182.77
- 609.68
270.25
323.69
- 835.53 | $C_7H_{14}O$
+ $(1 \times C - (H)_2)(4$
= $(1 \times C - (H)_2)(4)$
= (H)_2)(4)$ | 2
CO)(C))+
Reference
79KRU/OON
64LEB | | In K_f = Butanoic acid $(1 \times C - (H)_3)$ $(1 \times CO - (C)_1$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 213.47 ; Butyric acid (C)) + (1×C-(H) ₂ (C) ₂) + (O)) + (1×O-(H)(CO)) Literature-Calculated 475.80 - 476.27 114.10 533.80 - 532.49 177.70 178.99 225.30 226.55 - 523.74 - 376.34 151.81 d; Valeric acid a(C) + (2×C-(H) ₂ (C) ₂)- | 0.47
-1.31
-1.29
-1.25
+(1×C-(H) ₂ (| CO)(C)) + Reference 70KON/WAD 64LEB 82MAR/AND 82MAR/AND | Liquid pha $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \ln K_t = \frac{1}{100}$ Heptanoic $(1 \times C - (1 \times C) - C_p^{\circ} = C_p^{\circ} = \frac{1}{100}$ Liquid pha $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \frac{1}{100}$ | acid; Enant
H) ₃ (C)) + (4
-(C)(O)) + (
Litera
- 539.40
se
- 611.40 | - 583.95
239.83
291.31
- 731.60
- 365.82
147.57
thylic acid
× C-(H) ₂ (C) ₂)
1× O-(H)(CO)
ature-Calculate
- 538.16
182.77 | $C_7H_{14}O$
+ $(1 \times C - (H)_2)(4$
= $(1 \times C - (H)_2)(4)$
= (H)_2)(4)$ | 2
CO)(C))+
Reference
79KRU/OON
64LEB | TABLE 19. Acids (89) - Continued TABLE 19. Acids (89) - Continued $\begin{array}{ll} \textbf{Octanoic acid; Caprylic acid} & C_8H_{16}O_2 \\ (1\times C-(H)_3(C)) + (5\times C-(H)_2(C)_2) + (1\times C-(H)_2(CO)(C)) + \\ (1\times CO-(C)(O)) + (1\times O-(H)(CO)) \end{array}$ | | Literature-Calculated = Residual | | | | | |--|----------------------------------|----------------------------|--------|------------|--| | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | -558.79
205.66 | 4.89 | 79KRU/OON | | | Liquid pha $\Delta_t H^\circ =$ | | - 635.41 | -1.39 | 64LEB | | | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} = 0$ | 297.92 | 300.67
356.07
939.46 | - 2.75 | 82SCH/MIL2 | | | $\Delta_f G^\circ = \ln K_f =$ | | -355.31
143.33 | | | | Nonanoic acid; Pelargonic acid $\begin{array}{c} C_9H_{18}O_2\\ (1\times C-(H)_3(C))+(6\times C-(H)_2(C)_2)+(1\times C-(H)_2(CO)(C))+\\ (1\times CO-(C)(O))+(1\times O-(H)(CO)) \end{array}$ | | Liter | ature-Calculate | Reference | | |--------------------------------|----------|-----------------|-----------|-----------| | Gas phase $\Delta_t H^\circ =$ | - 579.60 | - 579.42 | -0.18 | 68BAC/NOV | | $C_p^{\circ} =$ | •17.00 | 228.55 | | | | Liquid pha | | | | | | Δ _I H° - | - 661.80 | - 661.14 | -0.66 | 64LEB | | $C_{p}^{\circ} =$ | 326.37 | 331.09 | -4.72 | 82SCH/MIL | | S° = | | 388.45 | | | | $\Delta_t S^\circ =$ | | - 1043.39 | | | | $\Delta_r G^\circ =$ | | -350.05 | | | | $lnK_t =$ | | 141.21 | | | $\begin{array}{ll} \textbf{Decanoic acid; Capric acid} & C_{10}H_{20}O_2\\ (1\times C-(H)_3(C)) + (7\times C-(H)_2(C)_2) + (1\times C-(H)_2(CO)(C)) + \\ (1\times CO-(C)(O)) + (1\times O-(H)(CO)) \end{array}$ | | Liter | Reference | | | |---|---------------|--|------|-----------| | Gas phase | | | | | | - | 594.90 | - 600.05 | 5.15 | 68BAC/NOV | | $C_p^{\circ} =$ | | 251.44 | | | | Liquid ph $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = S^\circ =$ | ase
684.30 | -686.87
361.51
420.83
-1147.32
-344.80
139.09 | 2.57 | 65ADR/DEK | $\begin{array}{ll} \textbf{Decanoic acid; Capric acid (Continued)} & C_{10}H_{20}O_2\\ (1\times C-(H)_3(C)) + (7\times C-(H)_2(C)_2) + (1\times C-(H)_2(CO)(C)) + \\ (1\times CO-(C)(O)) + (1\times O-(H)(CO)) \end{array}$ | | Liter | ature-Calculated | Reference | | | |-----------------------------|---------|------------------|-----------
-----------|--| | Solid phas | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -713.70 | -716.26 | 2.56 | 65ADR/DEK | | | $C_p^{\circ} =$ | | 332.39 | | | | | S° = | | 296.40 | | | | | $\Delta_f S^\circ =$ | | - 1271.75 | | | | | $\Delta_{f}G^{\circ} =$ | | -337.09 | | | | | $lnK_f =$ | | 135.98 | | | | $\begin{array}{ll} \mbox{Undecanoic acid; Undecylic acid} & C_{11} \mbox{H}_{22} \mbox{O}_2 \\ (1 \times C - (H)_3(C)) + (8 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) + \\ (1 \times CO - (C)(O)) + (1 \times O - (H)(CO)) \end{array}$ | | Liter | Literature-Calculated = Residual | | | | | | |----------------------------------|----------|----------------------------------|------|-----------|--|--|--| | Gas phase | | | | | | | | | $\Delta_f H^\circ =$ | - 614.60 | -620.68 | 6.08 | 68BAC/NOV | | | | | $C_p^{\circ} =$ | | 274.33 | | | | | | | Liquid ph | ase | | | | | | | | | -710.20 | - 712.60 | 2.40 | 65ADR/DEK | | | | | $C_p^{\circ} =$ | | 391.93 | | | | | | | S° = | | 453.21 | | | | | | | $\Delta_t S^\circ =$ | | - 1251.25 | | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | -339.54 | | | | | | | $lnK_f =$ | | 136.97 | | | | | | | Solid phas | se | | | | | | | | $\Delta_f H^\circ =$ | - 735.90 | - 745.67 | 9.77 | 65ADR/DEK | | | | | C_p° - | | 354.31 | | | | | | | S° = | | 319.41 | | | | | | | $\Delta_f S^\circ =$ | | -1385.05 | | | | | | | $\Delta_t G^{\circ} =$ | | -332.72 | | | | | | | lnK_f - | | 134.22 | | | | | | $\begin{array}{c} \textbf{Dodecanoic acid; Lauric acid} & \textbf{C_{12}H}_{24}\textbf{O}_2\\ (1\times C-(H)_3(C)) + (9\times C-(H)_2(C)_2) + (1\times C-(H)_2(CO)(C)) +\\ (1\times CO-(C)(O)) + (1\times O-(H)(CO)) \end{array}$ | | Literature-Calculated = Residual | | | | | | | | |-------------------------------------|----------------------------------|------------------|--------|-----------|--|--|--|--| | Gas phase | | | | | | | | | | $\Delta_l H^{} = -$ $C_p^{\circ} =$ | 642.00 | 641.31
297.22 | - 0.69 | 68BAC/NOV | | | | | | Liquid phase | | | | | | | | | | $\Delta_t H^\circ = -$ | 737.90 | - 738.33 | 0.43 | 65ADR/DEK | | | | | | $C_p^{\circ} =$ | | 422.35 | | | | | | | | s° = | | 485.59 | | | | | | | | $\Delta_f S^* =$ | | - 1355.18 | | | | | | | | $\Delta_f G^\circ =$ | | -334.28 | | | | | | | | $lnK_f =$ | | 134.85 | | | | | | | TABLE 19. Acids (89) - Continued | | auric acid (Contin
(9 × C-(H) ₂ (C) ₂)
+ (1 × O-(H)(CO) | $+(1\times C-(H)_2(G))$ | C ₁₂ H ₂₄ O ₂ CO)(C))+ | (1×C-(H | $I)_3(C)) + (1$ | iyristic acid (C
1×C-(H) ₂ (C) ₂
1×O-(H)(CO) | $+(1\times C-(H)_2$ | C ₁₄ H ₂₈ O ₂
(CO)(C))+ | |--|--|-------------------------|---|---|---------------------------|--|---------------------|---| | Lit | terature-Calculate | d = Residual | Reference | | Liter | ature-Calculate | d = Residual | Reference | | Solid phase | | | | Solid phase | | | | | | $\Delta_t H^\circ = -774.60$ $C_p^\circ = 404.28$ $S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = -774.60$ | | 0.48
28.05 | 65ADR/DEK
82SCH/MIL2 | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | -833.50
432.00 | -833.90
420.07
388.44
-1724.96
-319.60
128.93 | 0.40
11.93 | 65ADR/DEK
82SCH/MIL2 | | | 'ridecylic acid
+ (10×C-(H) ₂ (C) ₂
+ (1×O-(H)(CO) | | C ₁₃ H ₂₆ O ₂
(CO)(C))+ | (1×C-(F | $I)_3(C)) + (1$ | entadecylic acic
2×C-(H) ₂ (C) ₂
1×O-(H)(CO) | $+(1\times C-(H)_2$ | C ₁₅ H ₃₀ O ₂
(CO)(C))+ | | | terature-Calculate | | Reference | ` | | ature-Calculate | | Reference | | Gas phase $\Delta_t H^\circ = -660.20$ $C_p^\circ =$ | 0 - 661.94
320.11 | 1.74 | 68BAC/NOV | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 699.00 | -703.20
365.89 | 4.20 | 68BAC/NOV | | Liquid phase $ \Delta_t H^\circ = -763.50 $ $ C_p^\circ = \\ S^\circ = \\ \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \ln K_t = $ | 0 -764.06
452.77
517.97
-1459.12
-329.02
132.73 | 0.56 | 65ADR/DEK | Liquid phas $ \Delta_t H^\circ = C_p^\circ - S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
- 811.70 | - 815.52
513.61
582.73
- 1666.98
- 318.51
128.48 | 3.82 | 65ADR/DEK | | Solid phase $ \Delta_t H^{\circ} - 806.6 $ $ C_p^{\circ} = 387.6 $ $ S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = 806.6 $ | | - 2.11
- 10.54 | 65ADR/DEK
82SCH/MIL | Solid phase $\Delta_1 H^\circ = C_p^\circ = S^\circ = \Delta_1 S^\circ = \ln K_f = \ln K_f = $ | 861.70
443.29 | - 863.31
441.99
411.45
- 1838.26
- 315.23
127.16 | 1.61
1.30 | 65ADR/DEK
82SCH/MIL | | | ; Myristic acid
+ (11 × C-(H) ₂ (C) ₂
) + (1 × O-(H)(CO | | C ₁₄ H ₂₈ O ₂
(CO)(C))+ | | I) ₃ (C)) + (1 | almitic acid
3×C-(H) ₂ (C) ₂
1×O-(H)(CO) | | C ₁₆ H ₃₂ O ₂
(CO)(C))+ | | L | iterature-Calculate | d = Residual | Reference | | Litera | ature-Calculate | d = Residual | Reference | | Gas phase $\Delta_l H^\circ = -693.8$ $C_p^\circ =$ | 0 -682.57
343.00 | -11.23 | 61DAV/MAL | Gas phase $\Delta_l H^\circ = C_p^\circ =$ | 737.00 | -723.83
388.78 | - 13.17 | 61DAV/MAL | | Liquid phase $\Delta_t H^\circ = -788.8$ $C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | 60 -789.79
483.19
550.35
-1563.05
-323.77
130.61 | 0.99 | 65ADR/DEK | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
838.10 | - 841.25
544.03
615.11
- 1770.91
- 313.25
126.36 | 3.15 | 65ADR/DEK | TABLE 19. Acids (89) - Continued | Hexadecanoic acid; Palmitic acid (Continued) | $C_{16}H_{32}O_2$ | |---|-------------------| | $(1 \times C - (H)_3(C)) + (13 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO))$ |)(C))+ | | $(1 \times CO - (C)(O)) + (1 \times O - (H)(CO))$ | | Literature-Calculated = Residual Reference Solid phase $\Delta_{\mathbf{f}}H^{\circ} =$ -891.50 -892.721.22 65ADR/DEK $C_p^{\circ} = S^{\circ} =$ -0.5582SCH/MIL2 463.91 463.36 434.46 $\Delta_f S^\circ =$ - 1951.56 $\Delta_{\rm f}G^{\,\circ} =$ -310.86 Octadecanoic acid; Stearic acid (Continued) C18H36O2 $(1 \times C - (H)_3(C)) + (15 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) +$ $(1 \times CO - (C)(O)) + (1 \times O - (H)(CO))$ | | Liter | ature-Calculate | d = Residual | Reference | |-------------------------|----------|-----------------|--------------|------------| | Solid phas | se | | | | | $\Delta_{f}H^{\circ} =$ | - 948.00 | -951.54 | 3.54 | 65ADR/DEK | | $C_p^{\circ} =$ | 501.55 | 507.75 | -6.20 | 82SCH/MIL2 | | S° = | | 480.48 | | | | $\Delta_f S^\circ =$ | | -2178.16 | | | | $\Delta_f G^\circ =$ | | -302.12 | | | | $lnK_f =$ | | 121.87 | | | #### C₁₇H₃₄O₂ Heptadecanoic acid; Margaric acid 125.40 $lnK_f =$ $(1 \times C - (H)_3(C)) + (14 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) +$ $(1 \times CO - (C)(O)) + (1 \times O - (H)(CO))$ | | Liter | ature-Calculate | ed = Residual | Reference | |----------------------------------|-------|-----------------|---------------|-----------| | Gas phase | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | | - 744.46 | | | | C _P = | | 411.67 | | | | Liquid phase | | | | | | $\Delta_i H^\circ = -80$ | 65.60 | - 866.98 | 1.38 | 65ADR/DEK | | $C_p^{\circ} =$ | | 574.45 | | | | S° = | | 647.49 | | | | $\Delta_{c}S^{\circ} =$ | | - 1874.84 | | | | $\Delta_{\rm f}G^{\circ} =$ | | -308.00 | | | | lnK _t - | | 124.24 | | | | Solid phase | | | | | | $\Delta_1 H^{\circ} = -9$ | 24.40 | - 922.13 | -2.27 | 65ADR/DEK | | $C_p^{\circ} = 4$ | 75.72 | 485.83 | - 10.11 | 82SCH/MIL | | S° = | | 457.47 | | | | $\Delta_f S^\circ =$ | | - 2064.86 | | | | $\Delta_t G^\circ -$ | | 306.49 | | | | $lnK_t =$ | | 123.64 | | | Nonadecanoic acid; Nonadecylic acid C19H38O2 $(1 \times C - (H)_3(C)) + (16 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) +$ $(1 \times CO-(C)(O)) + (1 \times O-(H)(CO))$ | | Litera | ture-Calculate | d = Residual | Reference | |-------------------------|--------|----------------|--------------|-----------| | Gas phase | | | | | | $\Delta_t H^\circ = -$ | 785.30 | - 785.72 | 0.42 | 68BAC/NOV | | C _p = | | 457.45 | | | | Liquid phase | | | | | | $\Delta_t H^\circ = -1$ | 916.40 | - 918.44 | 2.04 | 65ADR/DEK | | $C_p^{\circ} =$ | | 635.29 | | | | S° = | | 712.25 | | | | $\Delta_6 S^\circ =$ | | -2082.70 | | | | $\Delta_f G^\circ =$ | | - 297.48 | | | | $lnK_f =$ | | 120.00 | | | | Solid phase | | | | | | • | 984.00 | - 980.95 | -3.05 | 65ADR/DEK | | | 525.34 | 529.67 | -4.33 | 82SCH/MIL | | S° = | | 503.49 | | | | $\Delta_f S^\circ =$ | | -2291.46 | | | | $\Delta_t G^{\circ} =$ | | - 297.75 | | | | $lnK_f =$ | | 120.11 | | | ### $C_{18}H_{36}O_2$ Octadecanoic acid; Stearic acid $(1 \times C - (H)_3(C)) + (15 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) + (1 \times CO - (C)(O)) + (1 \times O - (H)(CO))$ | | Liter | ature-Calculate | ed = Residual | Reference | |--|----------|-------------------|---------------|-----------| | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 781.20 | -765.09
434.56 | - 16.11 | 61DAV/MAL | | Liquid ph | ase | | | | | $\Delta_{f}H^{\circ} =$ | -884.70 | -892.71 | 8.01 | 65ADR/DEK | | $C_p^{\circ} =$ | | 604.87 | | | | S° = | | 679.87 | | | | $\Delta_f S^\circ =$ | | 1978.77 | | | | $\Delta_f G^\circ =$ | | -302.74 | | | | $lnK_f =$ | | 122.12 | | | Eicosanoic acid; Arachidic acid $C_{20}H_{40}O_2$ $(1 \times C -
(H)_3(C)) + (17 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) +$ $(1 \times CO - (C)(O)) + (1 \times O - (H)(CO))$ | | Litera | ture-Calculate | d = Residual | Reference | |-----------------------------------|--------|----------------|--------------|-------------| | Gas phase $\Delta_t H^\circ = -8$ | 312.40 | - 806.35 | -6.05 | 61DAV/MAL | | $C_p^{\circ} =$ | | 480.34 | 3.52 | | | Liquid phase | | | | | | $\Delta_t H^\circ = -9$ | 940.00 | - 944.17 | 4.17 | 65ADR/DEK | | $C_p^{\circ} =$ | | 665.71 | ,,,,, | 00.12142211 | | S° = | | 744.63 | | | | $\Delta_f S^\circ =$ | | - 2186.63 | | | | $\Delta_r G^\circ =$ | | - 292.23 | | | | $lnK_f =$ | | 117.88 | | | | TADIE | 10 | Acide | (80) | Continued | |-------|-----|-------|------|-------------------------------| | LABLE | 19. | Acias | 1891 | Continued | | Eicosanoic acid; Arachidic acid (Continued)
$(1 \times C - (H)_3(C)) + (17 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2)$ | $C_{28}H_{49}O_2$
O)(C)) + | 2,2-Dimethylpropanoic acid; Pivalic acid $C_5H_{10}O_2$
$(1 \times O - (H)(CO)) + (1 \times CO - (C)(O)) + (1 \times C - (CO)(C)_3) + (3 \times C - (H)_3(C)) + (3 \times - CH_3 \text{ corr (quaternary)})$ | |--|-------------------------------|---| | Literature-Calculated = Residual | Reference | Literature – Calculated = Residual Reference | | Solid phase $\Delta_t H^\circ = -1011.90 -1010.36 -1.54$ $C_p^\circ = 545.14 551.59 -6.45$ $\Delta_t S^\circ = -2404.76$ | 65ADR/DEK
82SCH/MIL2 | Gas phase $\Delta_t H^\circ = -491.30 -508.07$ 16.77 79KRU/OON | | $\Delta_f G^\circ = -293.38$ $\ln K_f = 118.35$ | | Liquid phase $\Delta_t H^\circ = -564.50 - 564.86 = 0.36 = 54$ HAN/WAT $C_\rho^\circ = 200.23$ $S^\circ = 234.92$ | | 2-Methylbutanoic acid
(1 × O-(H)(CO)) + (1 × CO-(C)(O)) + (1 × C-(H)(C
(2 × C-(H) ₃ (C)) + (1 × C-(H) ₂ (C) ₂) + (1 × -CH ₃ corr | | $\Delta_{t}S^{\circ} = -651.68$ $\Delta_{t}G^{\circ} = -370.56$ $\ln K_{t} = 149.48$ | | Literature – Calculated = Residual | Reference | Solid phase $\Delta_t H^\circ = -565.00$ $C_p^\circ = 177.82$ 177.83 -0.01 $71KON/WAD$ | | Gas phase $\Delta_t H^\circ = -499.20$ | | | | Liquid phase $ \Delta_t H^\circ = -554.50 -562.03 7.53 $ $ C_p^\circ = 203.59 $ $ S^\circ = 245.46 $ $ \Delta_t S^\circ = -641.14 $ | 54HAN/WAT | 2-Propenoic acid; Acrylic acid $ (1\times O-(H)(CO)) + (1\times CO-(C_d)(O)) + (1\times C_d-(H)(CO)) + (1\times C_d-(H)_2), \ \sigma = 1 $ Literature – Calculated = Residual Reference | | $\Delta_{t}G^{\circ} = -370.87$ $\ln K_{t} = 149.61$ 3-Methylbutanoic acid $(2 \times C - (H)_{3}(C)) + (1 \times C - (H)(C)_{3}) + (1 \times -CH_{3} \text{ corr } (1 \times C - (H)_{2}(CO)(C)) + (1 \times CO - (C)(O)) + (1 \times O - (E)(O)) + (E)(CO)(CO)(CO)(CO)(CO)(CO)(CO)(CO)(CO)(CO$ | | Gas phase $\Delta_t H^\circ = -332.41$ $C_\rho^\circ = 77.78 77.78 0.00 69STU/WES$ $S^\circ = 315.01 315.01 0.00 69STU/WES$ $\Delta_t S^\circ = -168.39$ $\Delta_t G^\circ = -282.20$ $\ln K_t = 113.84$ | | Literature – Calculated = Residual | Reference | Liquid phase | | Gas phase $\Delta_t H^{\circ} = -504.10 -501.33 -2.77$ $C_p^{\circ} = 137.02$ | 79KRU/OON | $\Delta_t H^\circ = -383.88 -392.84 8.96$ 59SKI/SNE $C_p^\circ = 142.47$ | | Liquid phase
$\Delta_t H^\circ = -561.60 - 561.32 - 0.28$
$C_t^\circ = 206.43$
$S^\circ = 253.58$ | 54HAN/WAT | Adamantane-1-carboxylic acid $C_{11}H_{16}O_2$
$(3 \times C - (H)(C)_3) + (6 \times C - (H)_2(C)_2) + (1 \times Adamantane rsc) +$
$(1 \times C - (CO)(C)_3) + (1 \times CO - (C)(O)) + (1 \times O - (H)(CO))$
Literature – Calculated = Residual Reference | | $\Delta_t S^\circ = -633.02$ $\Delta_t G^\circ = -372.59$ $\ln K_t - 150.30$ | | Gas phase $\Delta_t H^\circ = -501.04$ | | | | Solid phase $\Delta_i H^\circ = -643.08 -602.95 -40.13$ 73STE/CAR | | Adamantane-2-carboxylic acid
$(4 \times C-(H)(C)_3) + (5 \times C-(H)_2(C)_2) + (1 \times Adama: (1 \times C-(H)(CO)(C)_2) + (1 \times CO-(C)(O)) + (1 \times O-(C)(O)) O-(C)(O)(O)) + (1 \times O-(C)(O)(O)) + (1 \times O-(C)(O)(O)(O)) + (1 \times $ | $C_{11}H_{16}O_2$
ntane rsc) +
-(H)(CO) | Ethanedioic acid; Oxalic acid $(2 \times CO-(O)(CO)) + (2 \times O-(H)(CO))$ | C₂H₂O | |--|---
--|--| | Literature – Calculated = Residual | Reference | Literature – Calculated = Residual | Reference | | | <u> </u> | Gas phase | | | Gas phase $\Delta_t H^\circ = -505.76$ | | $\Delta_t H^{\circ} = -732.00 -756.10$ 24.10 | 53BRA/COT | | Solid phase $\Delta_t H^\circ = -627.18 -613.37 -13.81$ | 73STE/CAR | Liquid phase $\Delta_t H^{\circ} = -817.88$ $C_p^{\circ} = 156.90$ | | | (Z)-2-Butenedioic acid; Maleic acid $(2\times O-(H)(CO))+(2\times CO-(C_d)(O))+(2\times C_d-(C_d)(O))+(2\times C_d-(C_d)(C_d)(O))+(2\times C_d-(C_d)(C_d)(O))+(2\times C_d-(C_d)(C_d)(C_d)(C_d)+(2\times C_d-(C_d)(C_d)(C_d)+(2\times C_d)+(2\times C_d)+(2\times C$ | C₄ H₄O₄
H)(CO))+ | Solid phase $\Delta_t H^\circ = -829.70 -805.92 -23.78$ | 64WIL/SHI | | Literature – Calculated = Residual | Reference | Propanedioic acid; Malonic acid $(2 \times O-(H)(CO)) + (2 \times CO-(C)(O)) + (1 \times C-(H)_2(O)) $ | C ₃ H ₄ O ₂ | | Gas phase $\Delta_t H^\circ = -679.40 -712.61$ 33.21 | 38WOL/WEG | Literature — Calculated = Residual | Reference | | C _p ° = 104.77 | | Gas phase $\Delta_t H^\circ = -813.80$ | | | Liquid phase $\Delta_t H^\circ = -823.91$ $C_\rho^\circ = 228.20$ | | Liquid phase $\Delta_l H^o = -893.07$ | | | Solid phase $ \Delta_t H^\circ = -789.40 -811.13 21.73 $ $ C_p^\circ = 137.00 139.38 -2.38 $ $ S^\circ = 160.80 164.42 -3.62 $ $ \Delta_t S^\circ = -529.77 $ $ \Delta_t G^\circ = -653.18 $ $ \ln K_f = 263.49 $ | 38HUF/FOX
85WIL/CHA
85WIL/CHA | $C_r^{\circ} =$ 181.16 Solid phase $\Delta_t H^{\circ} = -891.00 -890.60 -0.40$ Butanedioic acid; Succinic acid | 64WIL/SHI | | | | $(2 \times \Omega - (H)(CO)) + (2 \times CO - (C)(O)) + (2 \times C - (H)_2(O))$ | (CO)(C)) | | (E)-2-Butenedioic acid; Fumaric acid $(2 \times O-(H)(CO)) + (2 \times CO-(C_d)(O)) + (2 \times C_d-(C_d)(O)) C_d-(C_d)(C_d)(O)) + (2 \times C_d-(C_d)(C_d)(O)) + (2 \times C_d-(C_d)(C_d)(O)) + (2 \times C_d-(C_d)(C_d)(O)) + (2 \times C_d-(C_d)(C_$ | C ₄ H ₄ O ₄ | Literature – Calculated = Residual | Reference | | Literature – Calculated = Residual | Reference | Gas phase $\Delta_t H^\circ = -823.00 -826.76$ 3.76 $C_p^\circ = 130.96$ | 60DAV/THO | | Gas phase $\Delta_t H^\circ = -675.80 -717.46$ 41.66 $C_p^\circ = 112.80$ | 38WOL/WEG | Liquid phase $\Delta_t H^\circ = -918.30$ $C_p^\circ = 224.18$ | | | Liquid phase $\Delta_t H^{\circ} = -829.18$ $C_p^{\circ} = 228.20$ | | $S^{\circ} = 221.74$ $\Delta_f S^{\circ} = -603.02$ $\Delta_f G^{\circ} = -738.51$ $\ln K_f = 297.91$ | | | Solid phase $ \Delta_t II^\circ = -812.20 -816.86 4.66 $ $ C_p^\circ = 142.00 139.38 2.62 $ $ S^\circ = 168.00 164.42 3.58 $ $ \Delta_t S^\circ = -529.77 $ $ \Delta_t G^\circ = -658.91 $ $ \ln K_t = 265.80 $ | 38HUF/FOX
85WIL/CHA
85WIL/CHA | Solid phase $ \Delta_t H^\circ = -940.40 \qquad 927.30 \qquad -13.10 $ $ C_p^\circ = 223.00 $ $ S^\circ = 157.28 $ $ \Delta_t S^\circ = -667.48 $ $ \Delta_t G^\circ = -728.29 $ $ \ln K_f = 293.79 $ | 72VAN/MAN | TABLE 19. Acids (89) - Continued | $(1 \times C - (H)$ | : acid; Glutaric
)(CO))+(2×C0
) ₂ (C) ₂) | |)+(2×C-(H) | C ₅ H ₈ O ₄
₂ (CO)(C))+ | Heptanedioic acid; P
$(2 \times O-(H)(CO)) +$
$(3 \times C-(H)_2(C)_2)$ | |)+(2×C-(H | C ₇ H ₁₂ C
) ₂ (CO)(C))+ | |---|---|--|------------|--
---|---|------------|--| | | Literature – C | alculated: | = Residual | Reference | Literat | ure – Calculated | = Residual | Reference | | Gas phase | | | | | Gas phase | | | | | $\Delta_f H^{\circ} =$ | -8 | 347.39 | | | $\Delta_{\rm f} H^{\circ} =$ | -888.65 | | | | C _p = | 1 | 153.85 | · | | C _p = | 199.63 | | | | Liquid phase | e | | | | Liquid phase | | | | | $\Delta_i H^\circ =$ | -9 | 944.03 | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | - 995.49 | | | | $C_p^o =$ | 2 | 254.60 | | | $C_p^{\circ} =$ | 315.44 | | | | s° - | 2 | 254.12 | | | s° - | 318.88 | | | | $\Delta_f S^\circ =$ | -7 | 706.95 | | | $\Delta_f S^\circ =$ | -914.81 | | | | $\Delta_t G^{\circ} =$ | | 733.25 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | -722.74 | | | | $lnK_f =$ | | 295.79 | | | $lnK_f =$ | 291.55 | | | | Solid phase | | | | · · · · · · · · · · · · · · · · · · · | Solid phase | | | | | | -959.90 -9 | 956.71 | -3.19 | 64WIL/SHI | $\Delta_t H^\circ = -1009.80$ | - 1015.53 | 5.73 | 26VER/HAR | | C_p° - | | 244.92 | 3.17 | 01111240111 | $C_p^{\circ} =$ | 288.76 | 5.75 | 20 V LIQIDAN | | S° = | | 180.29 | | | S° = | 226,31 | | | | $\Delta_f S^\circ =$ | | 780.78 | | | $\Delta_{f}S^{\circ} =$ | -1007.38 | | | | $\Delta_f G^\circ =$ | | 723.92 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | -715.18 | | | | $\ln K_{\rm f} =$ | | 723.92
292.02 | | | $\ln K_{\rm f} =$ | 288.50 | | | | | | 272.02 | | | | 200.50 | | | | mik _f = | | | | | | | | | | Hexanedioic | : acid; Adipic ac
I)(CO)) + (2 × C
I) ₂ (C) ₂)
Literature – C | O-(C)(O) | | $C_6H_{10}O_4$
$O_2(CO)(C)) +$
Reference | Octanedioic acid; Sul
(2×O-(H)(CO))+
(4×C-(H) ₂ (C) ₂)
Literate | | | $C_8H_{14}O$) ₂ (CO)(C)) + Reference | | Hexanedioic
(2×O-(H
(2×C-(H | $(CO) + (2 \times C)_2$
$(C)_2$ | O-(C)(O) | |) ₂ (CO)(C))+ | (2×O-(H)(CO)) +
(4×C-(H) ₂ (C) ₂)
Literate | -(2×CO-(C)(O) | |) ₂ (CO)(C))+ | | Hexanedioic
(2×O-(H
(2×C-(H | I)(CO)) + (2 × C
I) ₂ (C) ₂)
Literature – C | O-(C)(O) | |) ₂ (CO)(C))+ | (2×O-(H)(CO)) +
(4×C-(H) ₂ (C) ₂)
Literate
Gas phase | -(2×CO-(C)(O) | | Reference | | Hexanedioic
(2×O-(H
(2×C-(H | $I)(CO)) + (2 \times C)$ $I)_2(C)_2)$ Literature – C -865.00 | Calculated | = Residual | Reference | (2×O-(H)(CO)) +
(4×C-(H) ₂ (C) ₂)
Literate | - (2×CO-(C)(O)
ure – Calculated = | = Residual |) ₂ (CO)(C))+ | | Hexanedioic $(2 \times O - (H \times C - (H \times C + C) + (H \times C))))))))))))))))$ | $I)(CO)) + (2 \times CI)_2(C)_2$ $Literature - CI$ $- 865.00$ | CO-(C)(O) Calculated 868.02 | = Residual | Reference | $(2 \times O-(H)(CO)) + (4 \times C-(H)_2(C)_2)$ Literate Gas phase $\Delta_t H^\circ = -894.90$ | - (2×CO-(C)(O)
ure – Calculated =
- 909.28 | = Residual | Reference | | Hexanedioic $(2 \times O - (H \times C - (H \times C + C) + (H \times C)))))))))))))$ | $I)(CO)) + (2 \times CI)_2(C)_2)$ $Literature - CI$ $- 865.00 - II$ | CO-(C)(O) Calculated 868.02 | = Residual | Reference | $(2 \times O-(H)(CO)) + (4 \times C-(H)_2(C)_2)$ Literate Gas phase $\Delta_t H^\circ = -894.90$ $C_\rho^\circ =$ | - (2×CO-(C)(O)
ure – Calculated =
- 909.28 | = Residual | Reference | | Hexanedioic $(2 \times O - (H \times C - (H \times C + C) + (H \times C)))))))))))))$ | $I)(CO)) + (2 \times C)$ $I)_2(C)_2)$ Literature – C $- 865.00 - 665.00$ Let $- 865.00 - 665.00$ | CO-(C)(O) Calculated 868.02 176.74 | = Residual | Reference | $(2 \times O - (H)(CO)) + (4 \times C - (H)_2(C)_2)$ Literate Gas phase $\Delta_l H^\circ = -894.90$ $C_p^\circ =$ Liquid phase $\Delta_l H^\circ =$ | - (2×CO-(C)(O)
ure - Calculated =
- 909.28
222.52 | = Residual | Reference | | Hexanedioic $(2 \times O - (H \times C - (H \times C + (A C) C)$ | $I)(CO)) + (2 \times C)$ $I)_2(C)_2)$ Literature – C $- 865.00 - 665.00$ Let $- 865.00 - 665.00$ | CO-(C)(O) Calculated 868.02 176.74 969.76 285.02 | = Residual | Reference | $(2 \times O - (H)(CO)) + (4 \times C - (H)_2(C)_2)$ Literate Gas phase $\Delta_l H^\circ = -894.90$ $C^\circ_p = -894.90$ Liquid phase $\Delta_l H^\circ = -894.90$ $C^\circ_p = -894.90$ $C^\circ_p = -894.90$ | - (2×CO-(C)(O)
ure - Calculated =
- 909.28
222.52
- 1021.22
345.86 | = Residual | Reference | | Hexanedioic $(2 \times O - (H \times C - (H \times C + (A C) C)$ | $I)(CO)) + (2 \times C)$ $I)_2(C)_2)$ Literature – C $- 865.00 - 6$ See | 868.02
176.74
969.76
285.02
286.50 | = Residual | Reference | $(2 \times O - (H)(CO)) + (4 \times C - (H)_2(C)_2)$ Literate Gas phase $\Delta_t H^\circ = -894.90$ $C^\circ_p = -894.90$ Liquid phase $\Delta_t H^\circ = -894.90$ $C^\circ_p | - (2×CO-(C)(O)
ure - Calculated =
- 909.28
222.52
- 1021.22
345.86
351.26 | = Residual | Reference | | Hexanedioic $(2 \times O - (H \times C - (H \times C - (H \times C + C) + (H \times C))))))))))))$ | $I)(CO)) + (2 \times C)$ $I)_2(C)_2)$ Literature – C -865.00 | 868.02
176.74
969.76
285.02
286.50
810.88 | = Residual | Reference | $(2 \times O - (H)(CO)) + (4 \times C - (H)_2(C)_2)$ Literate Gas phase $\Delta_t H^{\circ} = -894.90$ $C_p^{\circ} = -894.90$ Liquid phase $\Delta_t H^{\circ} = -894.90$ | - (2×CO-(C)(O)
ure - Calculated =
- 909.28
222.52
- 1021.22
345.86 | = Residual | Reference | | Hexanedioic $(2 \times O - (H \times C - (H \times C + (A C) C)$ | $I)(CO)) + (2 \times C)$ $I)_2(C)_2)$ Literature - C $- 865.00 - 6$ See | 868.02
176.74
969.76
285.02
286.50 | = Residual | Reference | $(2 \times O - (H)(CO)) + (4 \times C - (H)_2(C)_2)$ Literate Gas phase $\Delta_t H^\circ = -894.90$ $C^\circ_p = -894.90$ Liquid phase $\Delta_t H^\circ = -894.90$ $C^\circ_p | - (2×CO-(C)(O)
ure - Calculated =
- 909.28
222.52
- 1021.22
345.86
351.26
- 1018.74 | = Residual | Reference | | Hexamedioic $(2 \times O - (H \times C - (H \times C - (H \times C + C) + (H \times C))))))))))))$ | I)(CO)) + (2 × C
I) ₂ (C) ₂)
Literature – C
– 865.00 – | 20–(C)(O) Calculated 868.02 176.74 969.76 285.02 286.50 810.88 728.00 | = Residual | Reference | $(2 \times O - (H)(CO)) + (4 \times C - (H)_2(C)_2)$ Literate Gas phase $\Delta_t H^\circ = -894.90$ $C^\circ_p = -894.90$ Liquid phase $\Delta_t H^\circ = -894.90$ $\Delta_t H^\circ = -894.90$ $\Delta_t H^\circ = -894.90$ $\Delta_t G^\circ = -894.90$ $\Delta_t G^\circ = -894.90$ | - (2×CO-(C)(O)
ure - Calculated =
- 909.28
222.52
- 1021.22
345.86
351.26
- 1018.74
-
717.48 | = Residual | Reference | | Hexamedioic $(2 \times O - (H))$ $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = C_p^\circ =$ $S^\circ = \Delta_t S^\circ =$ $\Delta_t G^\circ = \ln K_t =$ Solid phase | I)(CO)) + (2 × C
I) ₂ (C) ₂)
Literature – C
– 865.00 – | CO-(C)(O) Calculated 868.02 176.74 969.76 285.02 286.50 810.88 728.00 293.67 | = Residual | Reference 60DAV/THO | $(2 \times O - (H)(CO)) + (4 \times C - (H)_2(C)_2)$ Literate Gas phase $\Delta_l H^o = -894.90$ $C_p^o =$ Liquid phase $\Delta_l H^o = C_p^o = S^o = \Delta_l S^o = 1nK_l = S$ Solid phase | - (2×CO-(C)(O)
ure - Calculated =
- 909.28
222.52
- 1021.22
345.86
351.26
- 1018.74
- 717.48
289.43 | = Residual | Reference 60DAV/THO | | Hexamedioic $(2 \times O - (H))$ $(2 \times C - (H))$ Gas phase $\Delta_t H^{\circ} = C_p^{\circ} =$ Liquid phas $\Delta_t H^{\circ} = S_p^{\circ} =$ $\Delta_t S^{\circ} =$ $\Delta_t S^{\circ} =$ $\ln K_t =$ Solid phase $\Delta_t H^{\circ} =$ | I)(CO)) + (2 × Cl) ₂ (C) ₂) Literature - Cl - 865.00 - Cl - 865.00 - Cl - 994.30 - Cl | 20–(C)(O) Calculated 868.02 176.74 969.76 285.02 286.50 810.88 728.00 293.67 | = Residual | Reference | $(2 \times O - (H)(CO)) + (4 \times C - (H)_2(C)_2)$ Literate Gas phase $\Delta_t H^\circ = -894.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ = -1038.00$ | - (2×CO-(C)(O) ure - Calculated = - 909.28 222.52 - 1021.22 345.86 351.26 - 1018.74 - 717.48 289.43 - 1044.94 | = Residual | Reference | | Hexamedioic $(2 \times O - (H))$ $(2 \times C - (H))$ Gas phase $\Delta_t H^{\circ} = C_p^{\circ} =$ Liquid phas $\Delta_t H^{\circ} = C_p^{\circ} =$ $\Delta_t S^{\circ} = \Delta_t S^{\circ} =$ $\ln K_t =$ Solid phase $\Delta_t H^{\circ} = C_p^{\circ} =$ | I)(CO)) + (2 × Cl) ₂ (C) ₂) Literature - Cl - 865.00 - Cl - 865.00 - Cl - 994.30 - Cl | 20–(C)(O) Calculated 868.02 176.74 969.76 285.02 286.50 810.88 728.00 293.67 986.12 266.84 | = Residual | Reference 60DAV/THO | $(2 \times O-(H)(CO)) + (4 \times C-(H)_2(C)_2)$ Literate Gas phase $\Delta_t H^\circ = -894.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ = -1038.00$ $C_p^\circ = G^\circ =$ | - (2×CO-(C)(O) ure - Calculated = - 909.28 222.52 - 1021.22 345.86 351.26 - 1018.74 - 717.48 289.43 - 1044.94 310.68 | = Residual | Reference 60DAV/THO | | Hexanedioic $(2 \times O - (H))$ $(2 \times C - (H))$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = S_p^\circ = \Delta_t G^\circ =$ $\ln K_f =$ Solid phase $\Delta_t H^\circ = C_p^\circ = S_p^\circ =$ $S_p^\circ = S_p^\circ = S_p^\circ =$ | I)(CO)) + (2 × Cl) ₂ (C) ₂) Literature – Cl – 865.00 – | 20–(C)(O) Calculated 868.02 176.74 969.76 285.02 286.50 810.88 728.00 293.67 986.12 266.84 203.30 | = Residual | Reference 60DAV/THO | $(2 \times O-(H)(CO)) + (4 \times C-(H)_2(C)_2)$ Literate Gas phase $\Delta_t H^\circ = -894.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ = -1038.00$ $C_p^\circ = S^\circ =$ | - (2×CO-(C)(O) ure - Calculated = - 909.28 222.52 - 1021.22 345.86 351.26 - 1018.74 - 717.48 289.43 - 1044.94 310.68 249.32 | = Residual | Reference 60DAV/THO | | Hexamedioic $(2 \times O - (H))$ $(2 \times C - (H))$ Gas phase $\Delta_t H^{\circ} = C_p^{\circ} =$ Liquid phas $\Delta_t H^{\circ} = C_p^{\circ} =$ $\Delta_t S^{\circ} = \Delta_t S^{\circ} =$ $\ln K_t =$ Solid phase $\Delta_t H^{\circ} = C_p^{\circ} =$ | I)(CO)) + (2 × Cl) ₂ (C) ₂) Literature – Cl – 865.00 – | 20–(C)(O) Calculated 868.02 176.74 969.76 285.02 286.50 810.88 728.00 293.67 986.12 266.84 | = Residual | Reference 60DAV/THO | $(2 \times O-(H)(CO)) + (4 \times C-(H)_2(C)_2)$ Literate Gas phase $\Delta_t H^\circ = -894.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ = -1038.00$ $C_p^\circ = G^\circ =$ | - (2×CO-(C)(O) ure - Calculated = - 909.28 222.52 - 1021.22 345.86 351.26 - 1018.74 - 717.48 289.43 - 1044.94 310.68 | = Residual | Reference 60DAV/THO | | Nonanedioic acid; Az
(2 × O-(H)(CO)) +
(5 × C-(H) ₂ (C) ₂) | |)+(2×C-(H) | C ₉ H ₁₆ O ₄
O ₂ (CO)(C)) + | Undecanedioic acid
$(2 \times O-(H)(CO)) + (7 \times C-(H)_2(C)_2)$ | +(2×CO-(C)(O) |))+(2×C-(H) | C ₁₁ H ₂₀ O ₂
) ₂ (CO)(C)) + | |---|--|---------------------|--
---|--|-------------|---| | Literati | ure – Calculated : | = Residual | Reference | Literat | ure – Calculated | = Residual | Reference | | Gas phase | | | | Gas phase | | | | | $\Delta_t H^{\circ} =$ | - 929.91 | | | $\Delta_f H^\circ =$ | -971.17 | | | | $C_p^{\circ} =$ | 245.41 | | | <i>C</i> _p ° = | 291.19 | | | | Liquid phase | | | | Liquid phase | | | | | $\Delta_t H^\circ =$ | 1046.95 | | | $\Delta_{f}H^{\circ} =$ | - 1098.41 | | | | $C_p^{\circ} =$ | 376.28 | | | $C_p^{\circ} =$ | 437.12 | | | | S° = | 383.64 | | | S° = | 448.40 | | | | $\Delta_f S^\circ =$ | -1122.67 | | | $\Delta_{\rm f} S^{\circ} =$ | - 1330.54 | | | | $\Delta_{\rm f}G^{\circ} =$ | -712.22 | | | $\Delta_f G^\circ =$ | -701.71 | | | | $lnK_f =$ | 287.31 | | | $lnK_f =$ | 283.07 | | | | Solid phase | | | | Solid phase | | | | | $\Delta_f H^\circ = -1054.30$ | 1074.35 | 20.05 | 26VER/HAR | $\Delta_{\rm f} H^{\circ} = -1099.40$ | - 1133.17 | 33.77 | 26VER/HAR | | $C_p^{\circ} =$ | 332.60 | | | $C_p^{\circ} =$ | 376.44 | | | | S° = | 272.33 | | | S° = | 318.35 | | • | | $\Delta_f S^\circ =$ | - 1233.98 | | | $\Delta_f S^\circ =$ | - 1460.59 | | | | $\Delta_1 G^\circ =$ | - 706.44 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | - 697.70 | | | | | | | | | | | | | $\ln K_{\ell} = \frac{1}{\ln K_{\ell}}$ Decanedioic acid; Se | 284.97 | | C ₁₀ H ₁₈ O ₄ | $lnK_f =$ Dodecanedioic acid | 281.45 | | C ₁₂ H ₂₂ O ₄ | | $lnK_{\ell} = \frac{1}{2}$ Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ | 284.97 bacic acid - (2×CO-(C)(O) | |) ₂ (CO)(C))+ | Dodecanedioic acid
(2×O-(H)(CO))+
(8×C-(H) ₂ (C) ₂) | + (2×CO-(C)(O) | |) ₂ (CO)(C))+ | | $lnK_{\ell} = \frac{1}{2}$ Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ | 284.97 | | | Dodecanedioic acid
(2×O-(H)(CO))+
(8×C-(H) ₂ (C) ₂) | | | C ₁₂ H ₂₂ O ₄
) ₂ (CO)(C))+
Reference | | $\begin{array}{c} \ln K_{\rm f} = \\ \\ \hline \\ \text{Decanedioic acid; Se} \\ (2 \times O - (H)(CO)) + \\ (6 \times C - (H)_2(C)_2) \\ \hline \\ \text{Literat} \\ \\ \hline \\ \text{Gas phase} \end{array}$ | bacic acid - (2×CO-(C)(O) | = Residual | Reference | Dodecanedioic acid (2×O-(H)(CO))+ (8×C-(H) ₂ (C) ₂) Literat Gas phase | + (2×CO-(C)(O)
ure – Calculated | = Residual | Reference | | $\begin{aligned} &\ln K_{\rm f} = \\ &\text{Decanedioic acid; Se} \\ &(2\times O-(H)(CO)) + \\ &(6\times C-(H)_2(C)_2) \end{aligned}$ Literat | 284.97 bacic acid - (2×CO-(C)(O) | |) ₂ (CO)(C))+ | Dodecanedioic acid (2×O-(H)(CO))+ (8×C-(H) ₂ (C) ₂) Literat | + (2×CO-(C)(O) | |) ₂ (CO)(C))+ | | In K_1 = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_1 H^\circ = -921.90$ | bacic acid -(2×CO-(C)(O) ure Calculated | = Residual | Reference | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^o = -976.90$ | + (2×CO–(C)(O) ure – Calculated – 991.80 | = Residual | Reference | | In K_1 = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_i H^{\circ} = -921.90$ $C_p^{\circ} =$ | bacic acid -(2×CO-(C)(O) ure Calculated | = Residual | Reference | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C_p^\circ =$ | + (2×CO–(C)(O) ure – Calculated – 991.80 | = Residual | Reference | | In K_f = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^{\circ} = -921.90$ $C_p^{\circ} =$ Liquid phase $\Delta_t H^{\circ} = -921.90$ | 284.97 bacic acid - (2 × CO–(C)(O) orre – Calculated - 950.54 268.30 | = Residual | Reference | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = -976.90$ | - (2×CO-(C)(O)
ure - Calculated
- 991.80
314.08 | = Residual | Reference | | In K_{ℓ} = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_{2}(C)_{2})$ Literat Gas phase $\Delta_{\ell}H^{\circ} = -921.90$ $C_{p}^{\circ} =$ Liquid phase | 284.97 bacic acid - (2×CO-(C)(O) ure - Calculated - 950.54 268.30 - 1072.68 | = Residual | Reference | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C_p^\circ =$ Liquid phase | - (2×CO-(C)(O)
ure - Calculated
- 991.80
314.08 | = Residual | Reference | | In $K_{\rm f}$ = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^{\circ} = -921.90$ $C_p^{\circ} =$ Liquid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} =$ | 284.97 bacic acid - (2×CO-(C)(O) ure - Calculated - 950.54 268.30 - 1072.68 406.70 | = Residual | Reference | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C^\circ_p =$ Liquid phase $\Delta_t H^\circ = C^\circ_p = S^\circ =$ | - 991.80
314.08
- 1124.14
467.54
480.78 | = Residual | Reference | | In $K_{\rm f}$ = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^{\circ} = -921.90$ $C_p^{\circ} =$ Liquid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} =$ | 284.97 bacic acid - (2×CO-(C)(O) oure - Calculated - 950.54 268.30 - 1072.68 406.70 416.02 - 1226.60 | = Residual | Reference | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C_\rho^\circ =$ Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ =$ | - 991.80
314.08
- 1124.14
467.54
480.78
- 1434.47 | = Residual | Reference | | In $K_{\rm f}$ = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^{\circ} = -921.90$ $C_p^{\circ} =$ Liquid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} =$ | 284.97 bacic acid - (2×CO-(C)(O) oure - Calculated - 950.54 268.30 - 1072.68 406.70 416.02 | = Residual | Reference | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C^\circ_p =$ Liquid phase $\Delta_t H^\circ = C^\circ_p = S^\circ =$ | - 991.80
314.08
- 1124.14
467.54
480.78 | = Residual | Reference | | In $K_{\rm f}$ = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat
Gas phase $\Delta_t H^{\circ} = -921.90$ $C_p^{\circ} =$ Liquid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = inK_{\rm f} = 0$ | 284.97 bacic acid - (2 × CO-(C)(O) oure - Calculated - 950.54 268.30 - 1072.68 406.70 416.02 - 1226.60 - 706.97 | = Residual | Reference | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = InK_t = InK_t$ | - 991.80
314.08
- 1124.14
467.54
480.78
- 1434.47
- 696.45 | = Residual | Reference | | In K_f = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -921.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = 10K_f 10K$ | 284.97 bacic acid -(2×CO-(C)(O) ure - Calculated -950.54 268.30 -1072.68 406.70 416.02 -1226.60 -706.97 285.19 | = Residual
28.64 | Reference 60DAV/THO | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t =$ Solid phase | - 991.80
314.08
- 1124.14
467.54
480.78
- 1434.47
- 696.45
280.94 | = Residual | Reference 60DAV/THO | | In K_f = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -921.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = 10K_f = 10K_f = 1000$ Solid phase $\Delta_t H^\circ = -1082.60$ | 284.97 bacic acid - (2×CO-(C)(O) oure - Calculated - 950.54 268.30 - 1072.68 406.70 416.02 - 1226.60 - 706.97 285.19 - 1103.76 | = Residual | Reference | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ = -1130.00$ | - 991.80
314.08
- 1124.14
467.54
480.78
- 1434.47
- 696.45
280.94 | = Residual | Reference | | In K_f = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -921.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_f =$ Solid phase $\Delta_t H^\circ = -1082.60$ $C_p^\circ =$ | 284.97 bacic acid - (2×CO-(C)(O) oure - Calculated - 950.54 268.30 - 1072.68 406.70 416.02 - 1226.60 - 706.97 285.19 - 1103.76 354.52 | = Residual
28.64 | Reference 60DAV/THO | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t =$ Solid phase $\Delta_t H^\circ = -1130.00$ $C_p^\circ =$ | - 991.80
314.08
- 1124.14
467.54
480.78
- 1434.47
- 696.45
280.94
- 1162.58
398.36 | = Residual | Reference 60DAV/THO | | In K_f = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -921.90$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_f =$ Solid phase $\Delta_t H^\circ = -1082.60$ $C_p^\circ = S^\circ S^\circ$ | 284.97 bacic acid - (2×CO-(C)(O) oure - Calculated - 950.54 268.30 - 1072.68 406.70 416.02 - 1226.60 - 706.97 285.19 - 1103.76 354.52 295.34 | = Residual
28.64 | Reference 60DAV/THO | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C_\rho^\circ = $ Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t = $ Solid phase $\Delta_t H^\circ = -1130.00$ $C_\rho^\circ = S^\circ S^$ | - 991.80
314.08
- 1124.14
467.54
480.78
- 1434.47
- 696.45
280.94
- 1162.58
398.36
341.36 | = Residual | Reference 60DAV/THO | | In $K_{\rm f}$ = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^{\circ} = -921.90$ $C_p^{\circ} =$ Liquid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = 10K_{\rm f} = 1082.60$ $C_p^{\circ} = S^{\circ} = \Delta_t G^{\circ} = 1082.60$ $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = 1082.60$ $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = 1082.60$ | 284.97 bacic acid - (2×CO-(C)(O) oure - Calculated - 950.54 268.30 - 1072.68 406.70 416.02 - 1226.60 - 706.97 285.19 - 1103.76 354.52 295.34 - 1347.29 | = Residual
28.64 | Reference 60DAV/THO | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C_\rho^\circ = $ Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = 10K_t = $ Solid phase $\Delta_t H^\circ = -1130.00$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = 0$ | - 991.80
314.08
- 1124.14
467.54
480.78
- 1434.47
- 696.45
280.94
- 1162.58
398.36
341.36
- 1573.89 | = Residual | Reference 60DAV/THO | | In $K_{\rm f}$ = Decanedioic acid; Se $(2 \times O - (H)(CO)) + (6 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^{\circ} = -921.90$ $C_p^{\circ} =$ Liquid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t S^{\circ} = \ln K_{\rm f} =$ Solid phase $\Delta_t H^{\circ} = -1082.60$ $C_p^{\circ} = S^{\circ} S$ | 284.97 bacic acid - (2×CO-(C)(O) oure - Calculated - 950.54 268.30 - 1072.68 406.70 416.02 - 1226.60 - 706.97 285.19 - 1103.76 354.52 295.34 | = Residual
28.64 | Reference 60DAV/THO | Dodecanedioic acid $(2 \times O - (H)(CO)) + (8 \times C - (H)_2(C)_2)$ Literat Gas phase $\Delta_t H^\circ = -976.90$ $C_\rho^\circ = $ Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t = $ Solid phase $\Delta_t H^\circ = -1130.00$ $C_\rho^\circ = S^\circ S^$ | - 991.80
314.08
- 1124.14
467.54
480.78
- 1434.47
- 696.45
280.94
- 1162.58
398.36
341.36 | = Residual | Reference 60DAV/THO | TABLE 19. Acids (89) - Continued | Gas phase' $A_H^{+} = -1012.43$ $C_r^0 = 336.97$ Gas phase $A_H^{+} = -874.63$ Liquid phase $A_H^{+} = -1149.87$ $C_r^0 = 497.96$ $A_H^{+} = -972.01$ $C_r^0 = 275.84$ $A_S^0 = -1538.40$ $A_S^0 = -1538.40$ $A_S^0 = -834.89$ $A_G^0 = -723.90$ -720.90$ $A_$ | Tridecanedioic acid
$(2 \times O-(H)(CO)) +$
$(9 \times C-(H)_2(C)_2)$ | (2×CO-(C)(O) |)+(2×C-(H _. | $C_{13}H_{24}O_4$
$O_2(CO)(C)) +$ | 2,2-Dime
(2×O-(I | thylsuccinic
H)(CO))+(| 2×CO-(C)(O |))+(1×C-(H | C ₆ H ₁₀ O
) ₂ (CO)(C))+ | |---|--|------------------------------------|------------------------|--------------------------------------
-----------------------------|---------------------------------------|-----------------|---------------|--| | Gas phasés $\Delta H^+ = -1012.43$ $C_r^+ = 336.97$ Gas phase $\Delta H^+ = -1149.87$ -149.87$ H$ | Literati | ire – Calculated : | = Residual | Reference | | | |) + | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Gas phasë | | | | | Literatu | re – Calculated | I = Residual | Reference | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | -1012.43 | | | | | | | | | Liquid phase $\Delta_H H^+ = -1149.87$ $\Delta_H H^- = -1149.87$ $\Delta_S H^- = -972.01$ =$ | • | | | | | | - 874 63 | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | I iquid shaqo | | | | | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | _11/0.97 | | | Liquid abou | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | SC | 072.01 | - | | | | | | Solid phase $A_tH^* = -1148.30 - 1191.99 $ | | | | | | | | | | | Solid phase $\Delta_t H^p = -1148.30 - 1191.99 - 43.69 - 26VER/HAR $ | ma _f = | 210.02 | | | | | | | | | $ \Delta H^{\circ} = -1148.30 - 1191.99 - 43.69 - 26VER/HAR \\ C_{f}^{\circ} - 304.28 \\ \Delta A^{\circ} = 364.37 \\ \Delta A^{\circ} = -1687.19 \\ \Delta A^{\circ} = -688.95 \\ \ln K_{f} = 277.92 $ | | | | | InK _f = | | 291.69 | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 1191.99 | 43.69 | 26VER/HAR | Solid phase | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | * | | 45.05 | 20 V EAVIE IN | • | | - 977 56 | - 10 24 | 33VFD/HAD | | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | | | | | | 307.00 | | - 10.24 | JJ V EN/IIAN | | $\Delta_G^\circ = -688.95 \\ \ln K_t = 277.92$ $\begin{array}{rcl} \text{Methylbutanedioic acid; Methylsuccinic acid} & C_4H_6O_4 \\ (2\times O_{-}(H)(CO)) + (2\times CO_{-}(C)(O)) + (1\times C_{-}(H)_2(CO)(C)) + \\ (1\times C_{-}(H)(CO)) + (2\times CO_{-}(C)(O)) + (1\times C_{-}(H)_2(CO)(C)) + \\ (1\times C_{-}(H)(CO)(C)) + (1\times C_{-}(H)_2(C)) + \\ (1\times C_{-}(H)_2(C)) + (2\times C_{-}(H)_2(C)) + (2\times C_{-}(H)(CO)(C)_2) + \\ (2\times C_{-}(H)_2(C)) + (2\times C_{-}(H)(CO)) + (2\times C_{-}(H)(CO)(C)_2) + \\ (2\times C_{-}(H)_2(C)) + (2\times C_{-}(H)_2(C)) + (2\times C_{-}(H)(CO)(C)_2) + \\ (2\times C_{-}(H)_2(C)) + (2\times C_{-}(H)_2(C)) + (2\times C_{-}(H)(CO)(C)_2) + \\ (2\times C_{-}(H)_2(C)) + (2\times C_{-}(H)_2(C)) + (2\times C_{-}(H)(CO)(C)_2) + \\ (2\times C_{-}(H)_2(C)) + (2\times C_{-}(H)_2(C)) + (2\times C_{-}(H)(CO)(C)_2) + \\ (2\times C_{-}(H)_2(C)) + (2\times C_{-}(C)(C)) + (2\times C_{-}(H)(CO)(C)_2) + \\ (2\times C_{-}(H)_2(C)) + (2\times C_{-}(C)(C)(C)) + (2\times C_{-}(H)(CO)(C)_2) + \\ (2\times C_{-}(H)_2(C)) C_{-}(H)_2(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)($ | | | | | C _p | | 221.00 | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | Gas phase $\Delta_t H^\circ = -849.69$ $\Delta_t H^\circ = -849.69$ Liquid phase $C_p^\circ = 273.38$ $S^\circ - 259.56$ $\Delta_t H^\circ = -947.84$ $\Delta_t S^\circ = -837.82$ $C_p^\circ = 248.78$ $S^\circ = 240.65$ $\Delta_t S^\circ = -727.58$ -727.5$ | $(1 \times C - (H)(CO)(C)$
$(1 \times -CH_3 \text{ corr (te)})$ | $(1 \times C - (H)_3)$
(tiary)) | (C))+ | | | Literatui | e – Calculated | = Residual | Reference | | $ \Delta_{t}H^{\circ} = -849.69 $ Liquid phase $ \Delta_{t}H^{\circ} = -977.38 $ $ C_{\rho}^{\circ} = 273.38 $ $ S^{\circ} = 259.56 $ $ \Delta_{t}H^{\circ} = -947.84 $ $ \Delta_{t}S^{\circ} = -837.82 $ $ \Delta_{t}G^{\circ} = -727.58 $ $ S^{\circ} = 240.65 $ $ \Delta_{t}S^{\circ} = -720.42 $ $ \Delta_{t}G^{\circ} = -733.05 $ $ \ln K_{t} = 295.71 $ Solid phase $ \Delta_{t}H^{\circ} = -977.50 -989.32 $ | Literat | ure – Calculated | = Residual | Reference | | | - 872.62 | | | | $ \Delta_{t}H^{\circ} = -849.69 $ Liquid phase $ \Delta_{t}H^{\circ} = -977.38 $ $ C_{\rho}^{\circ} = 273.38 $ $ S^{\circ} = 259.56 $ $ \Delta_{t}H^{\circ} = -947.84 $ $ \Delta_{t}S^{\circ} = -837.82 $ $ \Delta_{t}G^{\circ} = -727.58 $ $ S^{\circ} = 240.65 $ $ \Delta_{t}S^{\circ} = -720.42 $ $ \Delta_{t}G^{\circ} = -733.05 $ $ \ln K_{t} = 295.71 $ Solid phase $ \Delta_{t}H^{\circ} = -977.50 -989.32 $ | Gas phase | | | | | · · · · · · · · · · · · · · · · · · · | | | | | Liquid phase $C_{p}^{h} = \begin{array}{ccccccccccccccccccccccccccccccccccc$ | | 849.69 | | | Liquid phas | se | | | | | Liquid phase $S^{\circ} = 259.56$ $\Delta_t H^{\circ} = -947.84$ $\Delta_t G^{\circ} = -837.82$ $\Delta_t G^{\circ} = -727.58$ $\Delta_t G^{\circ} = -727.58$ $\Delta_t G^{\circ} = -720.42$ $\Delta_t G^{\circ} = -733.05$ $\Delta_t H^{\circ} = 295.71$ Solid phase $\Delta_t H^{\circ} = -958.20$ -958.31 0.11 33VER/HAR $C_p^{\circ} = 188.02$ Tacemic-2,3-Dimethyl-1,4-butanedioic acid; racemic-2,3-Dimethyl-1,4-butanedioic racemic-2,3-Dimethyl-1,4-Dime | | | | | $\Delta_{\rm f}H^{\circ} =$ | | - 977.38 | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | 273.38 | | | | $C_{\rho}^{\circ} = 248.78 \\ S^{\circ} = 240.65 \\ \Delta_{h}S^{\circ} = -720.42 \\ \Delta_{f}G^{\circ} = -733.05 \\ \ln K_{f} = 295.71$ Solid phase $\Delta_{t}H^{\circ} = -958.20 - 958.31 \\ C_{\rho}^{\circ} = 188.02$ Solid phase $\Delta_{t}H^{\circ} = -958.20 - 958.31 \\ C_{\rho}^{\circ} = 188.02$ $C_{\rho}^{\circ} = 188.02$ $C_{\rho}^{\circ} = 160.11 33VER/HAR$ 30VER/HAR$ $C_{\rho}^{\circ} = 160.11 30VER/HAR$ $C_{\rho}^{\circ} = 160.11 30VER/HAR$ $C_{\rho}^{\circ} = 160.11 30VER/HAR$ C_{ρ}° | | | | | S° = | | | | | | $S^{\circ} = 240.65 \\ \Delta_{t}S^{\circ} = -720.42 \\ \Delta_{t}G^{\circ} = -733.05 \\ \ln K_{t} = 295.71$ Solid phase $\Delta_{t}H^{\circ} = -958.20 - 958.31 \\ C^{\circ}_{p} = 188.02$ Solid phase $C^{\circ}_{p} = 188.02$ Solid phase $C^{\circ}_{p} = 188.02$ $C^{\circ}_{p} = 188.02$ $C^{\circ}_{p} = 188.02$ $C^{\circ}_{p} = 188.02$ racemic-2,3-Dimethyl-1,4-butanedioic acid; racemi | $\Delta_l H^{\circ} =$ | | | | $\Delta_{f}S^{\circ} =$ | | | | | | $\Delta_t S^\circ = -720.42$ $\Delta_t G^\circ = -733.05$ $\ln K_t = 295.71$ Solid phase $\Delta_t H^\circ = -958.20 - 958.31 0.11 33\text{VER/HAR}$ $C_p^\circ = 188.02$ $racemic-2,3-Dimethyl-1,4-butanedioic acid; racemic-2,3-Dimethyl-1,4-butanedioic racemic-2,3-D$ | | | | | | | | | | | $\Delta_{l}G^{\circ} = -733.05$ $\ln K_{l} = 295.71$ Solid phase $\Delta_{l}H^{\circ} = -977.50 - 989.32 11.82 33VER/K$ $C_{p}^{\circ} - 153.04$ Solid phase $C_{p}^{\circ} = 188.02$ $racemic-2,3-Dimethyl-1,4-butanedioic acid; racemic-2,3-Dimethyl-1,4-butanedioic $ | | | | | $\ln K_{\rm f} =$ | | 293.50 | | | | Solid phase $\Delta_{t}H^{\circ} = -977.50 - 989.32 11.82 33VER/H$ Solid phase $\Delta_{t}H^{\circ} = -958.20 - 958.31 0.11 33VER/HAR$ $C_{p}^{\circ} = 188.02$ $racemic-2,3-Dimethyl-1,4-butanedioic acid; racemic-2,3-Dimethyl-1,4-butanedioic race$ | | | | | | | | | | | Solid phase $\Delta_{t}H^{\circ} = -977.50 - 989.32 11.82 33\text{VER/H}$ $C_{p}^{\circ} = 188.02$ $\frac{\Delta_{t}H^{\circ} = -958.20 - 958.31}{C_{p}^{\circ} = 188.02} 0.11 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 33\text{VER/HAR}$ $\frac{\Delta_{t}H^{\circ} = -977.50 - 989.32}{C_{p}^{\circ} = 153.04} 11.82 11.8$ | | | | | | | | | | | Solid phase $\Delta_{t}H^{\circ} = -958.20 - 958.31 0.11 33\text{VER/HAR}$ $C_{p}^{\circ} = 188.02$
$racemic-2,3-Dimethyl-1,4-butanedioic acid; racemic-2,3-Dimethyl-1,4-butanedioic racemic-2,3-Dimethyl-1,4-Dimethyl-1,4-Dimethyl-1,4-Dimethyl-1,4-Dimethyl-1,4-Dimethyl-1,4-Dimethyl-1,4-Dim$ | $lnK_f =$ | 295.71 | | | | | | | | | Solid phase $\Delta_{t}H^{\circ} = -958.20 - 958.31 0.11 33\text{VER/HAR}$ $C_{p}^{\circ} = 188.02$ racemic-2,3-Dimethyl-1,4-butanedioic acid; racemic-2,3-Dimethylsuccinic acid $(2\times O-(H)(CO)) + (2\times CO-(C)(O)) + (2\times C-(H)(CO)(C)_{2}) + (2\times C-(H)_{3}(C)) (2$ | | | | | • | - 977.50 | | 11.82 | 33VER/HAR | | $C_{p}^{\circ} = 188.02$ racemic-2,3-Dimethyl-1,4-butanedioic acid; racemic-2,3-Dimethylsuccinic acid | | | | | | | | | | | racemic-2,3-Dimethyl-1,4-butanedioic acid; racemic-2,3-Dimethylsuccinic acid $(2 \times O - (H)(CO)) + (2 \times C $ | $\Delta_{\rm f} H^{\circ} = -958.20$ | | 0.11 | 33VER/HAR | | | | | | | 2,3-Dimethylsuccinic acid $(2\times O-(H)(CO)) + (2\times CO-(C)(O)) + (2\times C-(H)(CO)(C)_2) + (2\times C-(H)_3(C)) + (2\times -CH_3 \text{ corr (tertiary)})$ $\text{Literature - Calculated = Residual} \qquad \text{Reference}$ | $C_p^{\circ} =$ | 188.02 | | | | | | | | | $(2 \times O - (H)(CO)) + (2 \times CO - (C)(O)) + (2 \times C - (H)(CO)(C)_2) +$ $(2 \times C - (H)_3(C)) + (2 \times - CH_3 \text{ corr (tertiary)})$ $\text{Literature - Calculated = Residual} \qquad \text{Reference}$ | | | | | | | | acid; racemic | - | | Literature – Calculated = Residual Reference | | | | | (2×O-(F | I)(CO))+(| 2×CO-(C)(O | | $C_6H_{10}O_4$
$(CO)(C)_2) +$ | | | | | | | (2/10/(1) | | | | Reference | | Gas phase | | | | | | | - Calculated | | 1/010101100 | | $\Delta_i H^\circ = -872.62$ | | | | | | | | | | | 2,3-Dimethy
(2×O-(H) | vimethyl-1,4-butanedioic acylsuccinic acid (Continued
(CO)) + (2 × CO-(C)(O)) -
(CO) + (2 × -CH ₃ corr (ter | B)
+ (2 × C-(H) | $C_6H_{10}O_4$ | Tetramethylbutanedic
Tetramethylsuccini
(2×O-(H)(CO)) +
(4×C-(H) ₃ (C)) + (| c acid (Continue
(2×CO-(C)(O) |)+(2×C-(C | C ₈ H ₁₄ O.
O)(C) ₃) + | |---|--|---|-------------------|---|----------------------------------|---------------------------------------|---| | | Literature - Calculated = | Residual | Reference | Literati | ure – Calculated | = Residual | Reference | | | | | | Solid phase $\Delta_t H^{\circ} = -1012.40$ | 1027.82 | 15.42 | 33VER/HAR | | Liquid phase | | | | $C_p^{\circ} =$ | 220.76 | 201.2 | | | $\Delta_t H^\circ =$ | -977.38 | | | | | | | | $C_p^{\circ} =$ | 273.38 | | | *************************************** | | | | | S° = | 259.56 | | | | | | | | $\Delta_{\rm f} S^{\circ} =$ | -837.82 | | | Ethylbutanedioic acid | l; Ethylsuccinic | acid | C ₆ H ₁₀ O | | $\Delta_{\mathbf{f}}G^{\circ} =$ | -727.58 | | | $(2\times O-(H)(CO))+$ | $(2 \times CO - (C)(O)$ | $(1 \times C - (H))$ |)(CO)(C) ₂)+ | | $lnK_f =$ | 293.50 | | | $(1 \times C - (H)_2)(CO)(C$ | $(1 \times C - (H)_2)$ | $(C)_2$ + $(1 \times C$ | -(H)₃(C)) | | Solid phase | | | | Literat | ure – Calculated | = Residual | Reference | | | 983.80 - 989.32 | 5.52 | 33VER/HAR | | | | | | $C_r^{\circ} =$ | 153.04 | | | Gas phase | | | | | | | | | $\Delta_t H^\circ =$ | -868.06 | | | | (2×O-(H)
(1×C-(CC | anedioic acid; Trimethylsu
(CO)) + (2×CO-(C)(O))
(O)(C) ₃) + (3×C-(H) ₃ (C)) +
(corr (quaternary)) | + (1 × C-(H)
+ (1 × -CH ₃ c | corr (tertiary))+ | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ =$ | -971.39
279.20
273.03 | | | | | Literature - Calculated = | Residual | Reference | $\Delta_t S^\circ =$ | -824.35 | | | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | -725.61 | | | | | | | | $\ln K_f =$ | 292.71 | | | | Gas phase | | | | muti — | 272.11 | | | | $\Delta_t H^\circ =$ | - 897.56 | | | | | | | | | | | | Solid phase | | | | | | | | | $\Delta_t H^\circ = -989.20$ | -985.38 | -3.82 | 33VER/HAR | | Liquid phase | | | | $C_p^{\circ} =$ | 209.94 | 5.02 | JJ V EJVIII IK | | $\Delta_i H^\circ =$ | - 1001.55 | | | | | | | | $C_p^{\circ} =$ | 300.44 | | | | | | | | S° = | 281.40 | | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | - 952.29 | | | 2,2-Diethyl-1,4-butan | edinic acid: 2.2- | | | | $\Delta_{\rm f}G^{\circ} =$ | -717.62 | | | Diethylsuccinic aci | | | C ₈ H ₁₄ O | | $lnK_t =$ | 289.48 | | | (2×O-(H)(CO))+ | (2×CO-(C)(O) | |) ₂ (CO)(C))+ | | Solid phase | | | | $(1 \times C - (CO)(C)_3) +$ | -(2×C-(H)₂(C)₂ | 2)+(2×C-(H) |) ₃ (C)) | | $\Delta_t H^\circ = -10$ | 000.80 - 1008.57 | 7.77 | 33VER/HAR | Literat | ure – Calculated | = Residual | Reference | | $C_p^{\circ} =$ | 186.90 | **** | 33 V EIGHT IIC | | | | | | | | | | C1 | | | | | | | | | Gas phase $\Delta_t H^\circ =$ | -906.77 | | | | Totus other! | tamadinia asida Tatuamat | hulomosimia | ou'd Cu o | · | | | | | | butanedioic acid; Tetramet | | | | | | | | |)(CO))+(2×CO-(C)(O))
) ₃ (C))+(4×-CH ₃ corr (qu | | J(~)3) 1 | Liquid phase | | | | | (+×C~(n) | /3(C)) ⊤ (¬ ∧ ¬Cn3 corr (qu | aternary)) | | $\Delta_t H^\circ \stackrel{\cdot}{=}$ | - 1014.69 | | | | | Literature - Calculated = | Residual | Reference | $C_p^{\circ} =$ | 336.68 | | | | | | | | S° = | 327.25 | | | | | • | | | $\Delta_{\rm f} S^{\circ} =$ | - 1042.75 | | | | Gas phase | | | | $\Delta_{\rm f}G^{\circ} =$ | - 703.79 | | | | $\Delta_{\rm f}H^{\circ} =$ | - 922.50 | | | $lnK_f =$ | 283.91 | | | | | | · | | Solid phase | | | | | I ionid -b | | | | Solid phase $\Delta_t H^\circ = -1032.70$ | - 1027.68 | -5.02 | 33VER/HAR | | Liquid phase | | | | <i>∆a1</i> | - 1027.00 | - 3.02 | JJ V L:R/MAX | | $\Delta_{\rm f}H^{\circ} =$ | -1025.72 | | | - | 265.72 | | | | $\Delta_{i}H^{\circ} = C_{p}^{\circ} =$ | - 1025.72
327.50 | | | $C_p^{\circ} =$ | 265.72 | | | | $\Delta_{\mathbf{f}}H^{\circ} = \\ C_{p}^{\circ} = \\ S^{\circ} = $ | -1025.72
327.50
303.24 | | | - | 265.72 | · · · · · · · · · · · · · · · · · · · | | | $\Delta_{i}H^{\circ} = C_{p}^{\circ} =$ | - 1025.72
327.50 | | | - | 265.72 | | | TABLE 19. Acids (89) - Continued | meso-2,3-Diethylsu $(2 \times O-(H)(CO)) + (2 \times C-(H)_3(C)) + (3 C-(H)_3$ | -(2×CO-(C)(O)) | + (2×C-(H) | C ₈ H ₁₄ O ₄
)(CO)(C) ₂)+ | Triethylbutanedioic a
(2×O-(H)(CO)) +
(1×C-(CO)(C) ₃) + | (2×CO-(C)(O)
-(3×C-(H) ₂ (C) | $(1 \times C - (H))$
$(1 \times C - (H))$
$(2) + (3 \times C - (H))$ |)(CO)(C) ₂)+
) ₃ (C)) | |---|---|--|---
--|---|--|---| | Literat | ture Calculated = | Residual | Reference | Literate | ure – Calculated
––––– | = Residual | Reference | | | | | | Liquid phase | | | | | Gas phase | | | | $\Delta_{\rm f}H^{\circ} =$ | - 1067.78 | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -909.36 | | | $C_p^{\circ} =$ | 391.70 | | | | | | | | S° = | 378.54 | | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | - 1264.08 | | | | Liquid phase | 1024.49 | | | $\Delta_f G^\circ =$ | - 690.89 | | | | $\Delta_t H^{\circ} =$ | - 1024.48 | | | $lnK_f =$ | 278.70 | | | | $C_p^{\circ} = S^{\circ} =$ | 334.22 | | | | | | | | Δ ₁ S° = | 324.32
1045.68 | | | Calid mbass | | | | | $\Delta_{f}G^{\circ} = $ $\Delta_{f}G^{\circ} = $ | | | | Solid phase $\Delta_t H^\circ = -1066.30$ | 1005 76 | 10.46 | 221/ED #14 D | | $\ln K_{\rm f} =$ | -712.71
287.50 | | | $C_p^{\circ} =$ | - 1085.76
252.66 | 19.46 | 33VER/HAR | | Solid phase $\Delta_t H^\circ = -1019.20$ $C_p^\circ =$ | 1043.46
196.88 | 24.26 | 33VER/HAR | Tetraethylbutanedioid
succinic acid
(2×O-(H)(CO)) +
(4×C-(H) ₂ (C) ₂) + | ·(2×CO-(C)(O) |))+(2×C-(C0 | C ₁₂ H ₂₂ O ₄
O)(C) ₃) + | | racemic-2,3-Diethyl- | | id; racemic- | C ₈ H ₁₄ O ₄ | | ure - Calculated | | Reference | | 2,3-Diethylsuccini
(2×O-(H)(CO)) | | + (2×C-(H | | | | | | | $(2 \times O - (H)(CO))$
$(2 \times C - (H)_2(C)_2) +$ | +(2×CO-(C)(O)) | | | Gas phase $\Delta_t H^\circ =$ | - 986.78 | | | | (2×O-(H)(CO))
(2×C-(H) ₂ (C) ₂)+
Litera | + (2×CO-(C)(O))
+ (2×C-(H) ₃ (C)) | |)(CO)(C) ₂)+ | $\Delta_l H^{\circ} =$ Liquid phase | | | · · · · · · · · · · · · · · · · · · · | | (2×O-(H)(CO))
(2×C-(H) ₂ (C) ₂)+
Litera | + (2 × CO-(C)(O))
+ (2 × C-(H) ₃ (C))
ture – Calculated = | |)(CO)(C) ₂)+ | $\Delta_t H^{\circ} =$ Liquid phase $\Delta_t H^{\circ} =$ | -1111.08 | | | | (2×O-(H)(CO))
(2×C-(H) ₂ (C) ₂)+
Litera | + (2×CO-(C)(O))
+ (2×C-(H) ₃ (C)) | |)(CO)(C) ₂)+ | $\Delta_t H^{\circ} =$ Liquid phase $\Delta_t H^{\circ} =$ $C_{\rho}^{\circ} =$ | - 1111.08
449.18 | | · · · · · · · · · · · · · · · · · · · | | (2×O-(H)(CO))
(2×C-(H) ₂ (C) ₂)+
Litera | + (2 × CO-(C)(O))
+ (2 × C-(H) ₃ (C))
ture – Calculated = | |)(CO)(C) ₂)+ | $\Delta_t H^{\circ} = {}$ Liquid phase $\Delta_t H^{\circ} = {} C_{\rho}^{\circ} = {} S^{\circ} = {}$ | 1111.08
449.18
432.76 | | · · · · · · · · · · · · · · · · · · · | | $(2 \times O - (H)(CO))$ $(2 \times C - (H)_2(C)_2) +$ Litera Gas phase $\Delta_t H^\circ =$ | + (2 × CO-(C)(O))
+ (2 × C-(H) ₃ (C))
ture – Calculated = | |)(CO)(C) ₂)+ | $\Delta_t H^{\circ} =$ Liquid phase $\Delta_t H^{\circ} =$ $C_{\rho}^{\circ} =$ $S^{\circ} =$ $\Delta_t S^{\circ} =$ | 1111.08
449.18
432.76
1482.49 | | · · · · · · · · · · · · · · · · · · · | | $(2 \times O - (H)(CO))$ $(2 \times C - (H)_2(C)_2) +$ Litera Gas phase $\Delta_t H^\circ =$ Liquid phase | + (2×CO-(C)(O))
+ (2×C-(H) ₃ (C))
ture – Calculated =
- 909.36 | |)(CO)(C) ₂)+ | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | 1111.08
449.18
432.76
1482.49
669.08 | | · · · · · · · · · · · · · · · · · · · | | $(2 \times O - (H)(CO))$ $(2 \times C - (H)_2(C)_2) +$ Litera Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ | + (2×CO-(C)(O))
+ (2×C-(H) ₃ (C))
ture - Calculated =
- 909.36 | |)(CO)(C) ₂)+ | $\Delta_t H^{\circ} =$ Liquid phase $\Delta_t H^{\circ} =$ $C_{\rho}^{\circ} =$ $S^{\circ} =$ $\Delta_t S^{\circ} =$ | 1111.08
449.18
432.76
1482.49 | | · · · · · · · · · · · · · · · · · · · | | $(2 \times O - (H)(CO))$ $(2 \times C - (H)_2(C)_2) +$ Litera Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ | + (2 × CO-(C)(O))
+ (2 × C-(H) ₃ (C))
ture - Calculated =
- 909.36
- 1024.48
334.22 | |)(CO)(C) ₂)+ | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | 1111.08
449.18
432.76
1482.49
669.08 | | | | $(2 \times O - (H)(CO))$ $(2 \times C - (H)_2(C)_2) +$ Litera Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ | + (2 × CO-(C)(O))
+ (2 × C-(H) ₃ (C))
ture - Calculated =
- 909.36
- 1024.48
334.22
324.32 | |)(CO)(C) ₂)+ | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | 1111.08
449.18
432.76
1482.49
669.08 | | | | $(2 \times O - (H)(CO))$ $(2 \times C - (H)_2(C)_2) + $ Litera Gas phase $\Delta_t H^\circ = $ Liquid phase $\Delta_t H^\circ = $ $C_t^\circ = $ $S^\circ = $ $\Delta_t S^\circ = $ | + (2 × CO-(C)(O))
+ (2 × C-(H) ₃ (C))
ture - Calculated =
- 909.36
- 1024.48
334.22
324.32
- 1045.68 | |)(CO)(C) ₂)+ | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Solid phase | 1111.08
449.18
432.76
1482.49
669.08
269.90 | 21.54 | 22VED (IA D | | $(2 \times O - (H)(CO))$ $(2 \times C - (H)_2(C)_2) +$ Litera Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ | + (2 × CO-(C)(O))
+ (2 × C-(H) ₃ (C))
ture - Calculated =
- 909.36
- 1024.48
334.22
324.32 | |)(CO)(C) ₂)+ | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | 1111.08
449.18
432.76
1482.49
669.08 | 31.56 | 33VER/HAR | | $(2 \times O - (H)(CO))$ $(2 \times C - (H)_2(C)_2) + $ Litera Gas phase $\Delta_t H^\circ = $ Liquid phase $\Delta_t H^\circ = $ $C_\rho^\circ = $ $S^\circ = $ $\Delta_t S^\circ = $ $\Delta_t G^\circ = $ $\ln K_t = $ Solid phase | + (2 × CO-(C)(O))
+ (2 × C-(H) ₃ (C))
ture - Calculated =
- 909.36
- 1024.48
334.22
324.32
- 1045.68
- 712.71
287.50 | Residual | Reference | $\Delta_t H^{\circ} =$ Liquid phase $\Delta_t H^{\circ} =$ $C^{\circ}_{\rho} =$ $S^{\circ} =$ $\Delta_t S^{\circ} =$ $\Delta_t G^{\circ} =$ $\ln K_t =$ Solid phase $\Delta_t H^{\circ} = -1096.50$ $C^{\circ}_{\rho} =$ | 1111.08
449.18
432.76
1482.49
669.08
269.90 | 31.56 | · | | $(2 \times O
- (H)(CO))$ $(2 \times C - (H)_2(C)_2) + $ Litera Gas phase $\Delta_t H^{\circ} = $ Liquid phase $\Delta_t H^{\circ} = $ $C_t^{\circ} = $ $S^{\circ} = $ $\Delta_t S^{\circ} = $ $\Delta_t G^{\circ} = $ $\ln K_t = $ | + (2 × CO-(C)(O))
+ (2 × C-(H) ₃ (C))
ture - Calculated =
- 909.36
- 1024.48
334.22
324.32
- 1045.68
- 712.71 | |)(CO)(C) ₂)+ | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = Solid phase$ $\Delta_t H^\circ = -1096.50$ | - 1111.08
449.18
432.76
- 1482.49
- 669.08
269.90
- 1128.06
308.44 | | C₁H₄O₂ | | $(2 \times O - (H)(CO))$ $(2 \times C - (H)_2(C)_2) + $ Litera Gas phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Solid phase $\Delta_t H^\circ = -1026.30$ | + (2×CO-(C)(O))
+ (2×C-(H) ₃ (C))
ture - Calculated =
- 909.36
- 1024.48
334.22
324.32
- 1045.68
- 712.71
287.50
- 1043.46
196.88 | Residual | Reference | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = Solid phase$ Solid phase $\Delta_t H^\circ = -1096.50$ $C_\rho^\circ = Solid phase$ Benzoic acid $(5 \times C_B - (H)(C_B)_2) - (1 \times O - (H)(CO))$ | - 1111.08
449.18
432.76
- 1482.49
- 669.08
269.90
- 1128.06
308.44 | C _B) ₂) + (1 × CC | C₁H₄O₂ | | $(2 \times O - (H)(CO))$ $(2 \times C - (H)_2(C)_2) + Litera$ Gas phase $\Delta_t H^\circ =$ $Liquid phase$ $\Delta_t H^\circ =$ $C_t^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Solid phase $\Delta_t H^\circ = -1026.30$ $C_t^\circ =$ $Triethylbutanedioic$ $(2 \times O - (H)(CO))$ | + (2×CO-(C)(O))
+ (2×C-(H) ₃ (C))
ture - Calculated =
- 909.36
- 1024.48
334.22
324.32
- 1045.68
- 712.71
287.50
- 1043.46
196.88 | 17.16 inic acid + (1 × C-(H | 33VER/HAR C ₁₀ H ₁₈ O ₄)(CO)(C) ₂) + | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = Solid phase$ Solid phase $\Delta_t H^\circ = -1096.50$ $C_\rho^\circ = Solid phase$ Benzoic acid $(5 \times C_B - (H)(C_B)_2) - (1 \times O - (H)(CO))$ | -1111.08
449.18
432.76
-1482.49
-669.08
269.90
-1128.06
308.44
+(1×C _B -(CO)(4) | C _B) ₂) + (1 × CC | C ₇ H ₆ O ₂
D-(O)(C _B)) + | | $(2 \times O - (H)(CO))$ $(2 \times C - (H)_2(C)_2) + Litera$ Gas phase $\Delta_t H^\circ =$ $Liquid phase$ $\Delta_t H^\circ =$ $C_t^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Solid phase $\Delta_t H^\circ = -1026.30$ $C_t^\circ =$ $Triethylbutanedioic$ $(2 \times O - (H)(CO))$ $(1 \times C - (CO)(C)_3)$ | + (2×CO-(C)(O))
+ (2×C-(H) ₃ (C))
ture - Calculated =
- 909.36
- 1024.48
334.22
324.32
- 1045.68
- 712.71
287.50
- 1043.46
196.88
acid; Triethylsucci
+ (2×CO-(C)(O)) | 17.16 inic acid + (1 × C-(H) + (3 × C-(H) | 33VER/HAR C ₁₀ H ₁₈ O ₄)(CO)(C) ₂) + | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = Solid phase$ Solid phase $\Delta_t H^\circ = -1096.50$ $C_\rho^\circ = S^\circ $ | -1111.08
449.18
432.76
-1482.49
-669.08
269.90
-1128.06
308.44
+(1×C _B -(CO)(course-Calculated | C _B) ₂) + (1 × CC
= Residual | C ₇ H ₆ O ₂
D-(O)(C _B))+
Reference | | | | ······································ | | | | | | | | |--|---|--|---|-------------------------------------
---|--|--|-------------------------|---| | Benzoic acid
(5 × C _B -(1
(1 × O-(H | H)(C _B) ₂) + (
H)(CO)) | (1×C _B -(CO)(0 | | | , , | ()(CO))+(| 1×CO-(O)(C₁
1×C-(H)₃(C) | | • | | | Literatur | e - Calculated | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Solid phase $\Delta_l H^\circ = C_p^\circ = S^\circ =$ | -385.20
146.79
167.73 | - 386.35
146.11
167.74 | 1.15
0.68
0.01 | 68CHU/ARM
76ARV/FAL
76ARV/FAL | Gas phase $\Delta_t H^\circ =$ | | - 327.18 | | | | $\Delta_f S^\circ - \Delta_f G^\circ = \ln K_f =$ | | - 469.20
- 246.46
99.42 | | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | e | -410.95
227.67 | | | | | H)(CO)) + (
(C)(C _B) ₂) + (
corr) | $1 \times \text{CO-(O)}(\text{C}_{\text{E}}$ $(4 \times \text{C}_{\text{B}}(\text{H})(\text{C}_{\text{E}})$ $(4 \times \text{C}_{\text{B}}(\text{C})(\text{C}))$ | ₃) ₂) + (1 × C–(I | | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | - 429.20
169.03 | - 425.72
170.17
196.18
- 577.07 | -3.48
-1.14 | 61COL/BON
26AND/LYN | | Gos phose | Literatui | re – Calculated | - Residual | Reference | $\Delta_t G^\circ = \ln K_t -$ | | -253.67
102.33 | | | | Gas phase $\Delta_t H^\circ =$ | | -325.92 | | | | | | | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | se | - 407.69
231.17 | | | $(2 \times C_B - (0))$ | (CO) + (CO) + (C) + (CO) (| I × CO-(O)(C ₁
2 × C-(H) ₃ (C)
(meta corr) |)+(3×C _B -(H | $((C_B)_2)$ + | | Solid phase | | | | | | Literatur | e – Calculated | = Residual | Reference | | $\Delta_{i}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{i}S^{\circ} \Delta_{i}S^{\circ$ | -416.50
174.89 | -420.72
170.17
196.18
-577.07 | 4.22
4.72 | 61COL/BON
26AND/LYN | Gas phase $\Delta_i H^\circ =$ | | -357.72 | | | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = \\ -$ | | -248.67
100.31 | | | Liquid phase $\Delta_l H^\circ = C_p^\circ =$ | е | -441.04
258.57 | | | | | $H)(CO)) + (C)(C_B)_2) +$ | (1 × CO-(O)(C ₁
(1 × C-(H)₃(C) | | | - | - 450.40 | -453.09 | 2.69 | 61COL/PER | | | Literatu | re – Calculated | = Residual | Reference | $C_p^\circ = S^\circ = \Delta_p $ | | 194.23
224.62
-684.94 | | | | Gas phase $\Delta_t H^\circ =$ | | - 327.81 | | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = \\ -$ | | -248.88
100.39 | | | | Liquid phase $\Delta_c H^\circ - C_p^\circ =$ | se | - 410.95
227.67 | | | $(2 \times C_B - (C_B (C_$ | (CO) + | cid
l×CO-(O)(C _l
2×C-(H) ₃ (C)
meta corr) | | | | Solid phase
Δ _f H° = | -426.10 | - 423.72 | -2.38 | 61COL/BON | *************************************** | Literatur | c — Calculated | – Residual | Reference | | $C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} =$ | 163.59 | 170.17
196.18
- 577.07
- 251.67 | -6.58 | 26AND/LYN | Gas phase $\Delta_t H^\circ =$ | | -358.98 | | | TABLE 19. Acids (89) - Continued | | Literature - Calculated = Residual | Reference | Lit | erature – Calculated = Residual | Reference | |------------------------------------
--|---|----------------------------------|---|----------------------------------| | Liquid phas | | | 0 !!! ! | | | | $\Delta_t H^\circ =$ | -444.30 | | Solid phase | 70 453.00 10.20 | (1COL PED | | $C_p^{\circ} =$ | 255.07 | | $\Delta_t H^\circ = -440$ | | 61COL/PER | | | | | $C_p^{\circ} =$ | 194.23 | | | _!:d _b | | | S° =
Δ _t S° = | 224.62
684.94 | | | Solid phase
Δ _τ H° = | -458.50 -458.09 -0.41 | 61COL/PER | $\Delta_{f}G^{\circ} =$ | - 084.94
- 248.88 | | | - | 194.23 | UICOLITER | $\ln K_{\rm f} =$ | 100.39 | | | $C_p^{\circ} = S^{\circ} -$ | 194.23
224.62 | | mx _t = | 100.39 | | | $\Delta_{t}S^{\circ} =$ | - 684.94 | | | | | | $\Delta_{\rm f}G^{\circ} =$ | -253.88 | | | | | | $\ln K_{\rm f} =$ | 102.41 | | 3,4-Dimethyl ben | zoic acid | C ₉ H ₁₀ C | | •244.61 | 102.11 | | | $(O) + (1 \times CO - (O)(C_B)) + (1 \times C_B (O)(C_B) (O)(C_B$ | | | | | | | $(1 \times C_{B})$ + | | | | | | | (1) | 1)(CB)2) 1 | | 2.5-Dimethy | yl benzoic acid | C ₉ H ₁₀ O ₂ | (Tyronino con |) i (i //meia coii) | | | | $H(CO) + (1 \times CO - (O)(C_B)) + (1 \times C_B)$ | | Lie | erature - Calculated = Residual | Reference | | | $C(C_B)_2 + (2 \times C - (H)_3(C)) + (3 \times C_B $ | | | | | | | $(1 \times meta \text{ corr})$ | /(// | | | | | (| , . (2 | | Gas phase | | | | | Literature - Calculated = Residual | Reference | $\Delta_t H^\circ =$ | - 358.98 | | | | | | | | | | Gas phase | | | Liquid phase | | | | $\Delta_t H^\circ =$ | - 358.98 | | $\Delta_t H^\circ =$ | - 444.30 | | | | | | $C_p^{\circ} =$ | 255.07 | | | | | | · | | | | Liquid phas | se | | | | | | $\Delta_{f}H^{\circ} =$ | -444.30 | | Solid phase | | | | $C_p^{\circ} =$ | 255.07 | | $\Delta_{\rm f}H^{\circ} = -468$ | | 61COL/PER | | | | | $C_p^{\circ} =$ | 194.23 | | | | | | S° = | 224.62 | | | Solid phase | | | $\Delta_{t}S^{\circ} =$ | - 684.94 | | | $\Delta_{\rm f}H^{\circ} =$ | -456.10 -458.09 1.99 | 61COL/PER | $\Delta_t G^{\circ} =$ | -253.88 | | | $C_p^{\circ} =$ | 194.23 | | $lnK_f =$ | 102.41 | | | S° = | 224.62 | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | - 684.94 | | | | | | $\Delta_f G^\circ =$ | -253.88 | | | | | | $lnK_f =$ | 102.41 | | 3,5-Dimethyl ben | | C,H ₁₀ C | | | | | | $(1 \times CO - (O)(C_B)) + (1 \times C_B (O)(C_B $ | | | | | | | $(3)_2 + (2 \times C - (H)_3(C)) + (3 \times C_B - (H)_3(C))$ | $(C_B)_2$ + | | | | | (3×meta corr) | | | | • | yl benzoic acid | C ₉ H ₁₀ O ₂ | | | D. C | | | $H)(CO) + (1 \times CO - (O)(C_B)) + (1 \times C_B)$ | | Lit | erature – Calculated = Residual | Reference | | | $(C)(C_B)_2 + (2 \times C - (H)_3(C)) + (3 \times C_B - (C))_3 + (2 -$ | 11)(CB)2) T | |
************************************** | | | (2 × onne | $p(corr) + (1 \times meta corr)$ | | Con ahoro | | | | | Litanatura Calaulata d. Davidual | Defenses | Gas phase | 261.50 | | | | Literature - Calculated = Residual | Reference | $\Delta_t H^\circ =$ | -361.50 | | | | | | • • • • • | | | | Gas phase | | | Liquid phase | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | - 357.72 | | $\Delta_{\rm f}H^{\circ} =$ | -447.56 | | | | | | $C_p^{\circ} =$ | 251.57 | | | Liquid pha | se. | | | | | | adaig bijg | 5 | | | | | | $\Delta_t H^{\circ} =$ | - 441.04 | | | | | | (1×O-(H | vi benzoic acid (Continued)
i)(CO)) + $(1 \times CO - (O)(C_B)) + (1 \times C_B - (C)(C_B)_2) + (2 \times C - (H)_3(C)) + (3 \times C_B $ | | | c acid (Continued)
+ $(1 \times CO-(O)(C_B)) + (1 \times CO-(H_3)(C)) + (3 \times C-(H_3)(C)) + (3 \times C-(H_3)(C))$ | | | |---|--|---|--|---|--|---| | | Literature - Calculated ≈ Residual | Reference | Litera | ture – Calculated = Res | sidual | Reference | | Solid phase | | | Solid phase | | | | | | -466.40 -459.09 -7.31 | 61COL/PER | $\Delta_{\rm f} H^{\circ} = -488.70$ | -490.46 | 1.76 | 64COL/TUR | | $C_p^{\circ} =$ | 194.23 | | $C_p^{\circ} =$ | 218.29 | | | | S° = | 224.62 | | s° = | 253.06 | | | | $\Delta_f S^{\circ} =$ | - 684.94 | | $\Delta_{\mathbf{f}}S^{\circ} =$ | - 792.81 | | | | $\Delta_f G^\circ =$ | -254.88 | | $\Delta_{\rm f}G^{\circ} =$ | -254.08 | | | | $\ln K_{\rm f} =$ | 102.82 | | $lnK_f =$ | 102.50 | | | | $(1 \times O - (I ($ | thyl benzoic acid
H)(CO)) + $(1 \times CO - (O)(C_D)) + (1 \times C_D - (O)(C_D)) + (2 (O)($ | | | $+(1 \times CO-(O)(C_B))+(1 \times C-(H)_3(C))+(2 \times C-(H)_3(C))$ | | | | (3 × onno | corr) + (2× <i>meta</i> corr) Literature – Calculated = Residual | Reference | • | (2× <i>meta</i> corr)
ture – Calculated = Res | sidual | Reference | | | | | | | | | | Gas phase $\Delta_t H^\circ =$ | - 389.52 | | Gas
phase $\Delta_t H^\circ =$ | - 389.52 | | | | Liquid phas | se | | Liquid phase | | | | | $\Delta_t H^\circ =$ | -474.39 | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -474.39 | | | | $C_p^{\circ} =$ | 285.97 | | $C_p^{\circ} =$ | 285.97 | | | | | | me announce and execution are execution and execution and execution and execution and execution are are execution are execution are execution are execution are | | | | | | Solid phase | | CACOL CITID | Solid phase | 405 46 | 0.74 | CLOOK TIVE | | • | | 64COL/TUR | $\Delta_t H^\circ = -475.70$ | | 9.76 | 64COL/TUR | | $C_p^{\circ} =$ | 218.29 | | $C_p^{\circ} =$ | 218.29 | | | | S° = | 253.06 | | S° = | 253.06 | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | -792.81 | | $\Delta_{\epsilon}S^{\circ} =$ | - 792.81 | | | | $\Delta_t G^\circ =$ | - 249.08 | | $\Delta_{\mathbf{f}}G^{\circ} =$ | -249.08 | | | | $lnK_f =$ | 100.48 | | $lnK_f =$ | 100.48 | | | | (1 × O-(I
(3 × C _B -(| thyl benzoic acid
H)(CO)) + $(1 \times CO - (O)(C_B)) + (1 \times C_B - (C)(C_B)_2) + (3 \times C - (H)_3(C)) + (2 \times C_B - (H)_2(C)) + (2 \times meta\ corr)$ | | 2,4,5-Trimethyl benz
(1×O-(H)(CO))-
(3×C _B -(C)(C _B) ₂)
(2×ortho corr) + (| $+(1 \times CO-(O)(C_B))+($
$+(3 \times C-(H)_3(C))+(2 \times C-(C_B))$ | 1×C _B −(CO)
×C _B −(H)(C | C ₁₀ H ₁₂ O ₂
))+
B) ₂)+ | | | Literature - Calculated = Residual | Reference | Litera | ture – Calculated = Res | idual | Reference | | Gas phase | | | Gas phase | | | | | $\Delta{\rm f}H^{\circ} =$ | -390.78 | | $\Delta_{\rm f}H^{\circ} =$ | -390.78 | | | | | | | | | | | | Liquid nhas | se | | Liguid phase | | | | | Liquid phas | | | Liquid phase | _ 177 65 | | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | - 477.65
282.47 | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | -477.65
282.47 | | | | TABLE 19 | Acids | (89) — | Continued | |----------|-------|--------|-----------| |----------|-------|--------|-----------| | 2,4,5-Trimethyl benzoic acid (Continued) $ (1 \times O - (H)(CO)) + (1 \times CO - (O)(C_B)) + (1 \times C_{B'} - (O)(C_B)) + (1 \times C_{B'} - (O)(C_B)) + (2 C_{B'$ | | 3,4,5-Trimethyl benzoic acid (Co $(1 \times O - (H)(CO)) + (1 \times CO - (CO)) + (1 \times CO - (CO)) + (1 \times CO - (CO)) + (1 \times CO) ($ | $(C_B) + (1 \times C_{B} - C_{$ | | |--|--------------------------------------|--
---|---| | Literature – Calculated = Residual | Reference | Literature – Calcul | ated = Residual | Reference | | Solid phase | | Solid phase | | | | $\Delta_t H^\circ = -495.70 -490.46 -5.24$ | 64COL/TUR | $\Delta_t H^\circ = -500.90 -492.40$ | 6 8.44 | 64COL/TUR | | $C_p^{\circ} = 218.29$ | | $C_p^{\circ} = 218.29$ | | 0.002,101. | | $S^{\circ} = 253.06$ | | $S^{\circ} = 253.0$ | | | | $\Delta_{b}S^{\circ} = -792.81$ | | $\Delta_t S^\circ = -792.8$ | | | | · · | | = | | | | $\Delta_{\rm f}G^{\circ} = -254.08$ | | - | | | | $\ln K_{\rm f} = 102.50$ | | $\ln K_t = 103.36$ | J | | | 2,4,6-Trimethyl benzoic acid $(1 \times O-(H)(CO)) + (1 \times CO-(O)(C_B)) + (1 \times C_B + (3 \times C_B-(C)(C_B)_2) + (3 \times C-(H)_3(C)) + (2 \times C_B-(2 \times ortho\ corr) + (3 \times meta\ corr)$ | | 2,3,4,5-Tetramethyl benzoic acid
$(1 \times O - (H)(CO)) + (1 \times CO - (CO)(CO) + (1 \times CO) + (1 \times CO)(CO) CO)(CO)(CO) + (1 \times CO)(CO)(CO) + (1 \times CO)(CO)(CO) + (1 \times CO)(CO)(CO) + (1 \times CO)(CO)(CO)(CO) + (1 \times CO)(CO)(CO)(CO) + (1 \times CO)(CO)(CO)(CO)(CO)(CO)(CO)(CO)(CO)(CO)($ | $_3(C)) + (1 \times C_B - (H))$ | | | Literature - Calculated = Residual | Reference | Literature – Calcul | ated = Residual | Reference | | Gas phase | | | | | | $\Delta_t H^{\circ} = -391.41$ | | Gas phase $\Delta_t H^\circ = -421.93$ | 5 | | | Liquid phase | | | | | | $\Delta_t H^{\circ} = -477.65$ | | Liquid phase | | | | $C_p^o = 282.47$ | | $\Delta_t H^\circ = -507.74$ | 1 | | | Cp - 202.47 | | $C_p^{\circ} = 313.33$ | | | | Solid phase | | | | | | $\Delta_i H^{\circ} = -477.90 -488.46 $ 10.56 | 64COL/TUR | Solid phase | | | | $C_p^{\circ} = 218.29$ | | $\Delta_t H^\circ = -514.40 -515.83$ | 3 1.43 | 64COL/PER | | S° = 253.06 | | $C_p^{\circ} = 242.33$ | | 0.002,121 | | $\Delta_{\rm f}S^{\circ} = -792.81$ | | $S^{\circ} = 281.50$ | | | | | | | | | | | | | | | | $\ln K_{\rm f} = 101.69$ | | $\Delta_f G^\circ = -247.29$ $\ln K_f = 99.76$ | | | | 3,4,5-Trimethyl benzoic acid $(1 \times O - (H)(CO)) + (1 \times CO - (O)(C_B)) + (1 \times C_B (O)(C_B$ | (H)(C _B) ₂)+ | 2,3,4,6-Tetramethyl benzoic acid
$(1 \times O - (H)(CO)) + (1 \times CO - (C)(C \times C) + (4 \times C - (H)(C \times C)) + (4 \times C - (H)(C \times C)) + (4 \times C)$ | $_3(C)) + (1 \times C_B - (H$ | C ₁₁ H ₁₄ O
CO)) +
t)(C _B) ₂) + | | Literature – Calculated = Residual | Reference | Literature – Calcula | ated = Residual | Reference | | Gas phase | | | | | | $\Delta_i H^{\circ} = -390.15$ | | Gas phase $\Delta_t H^\circ = -421.99$ | 5 | | | | | | | | | Liquid phase | | | | | | Liquid phase $\Delta H^{\circ} = -477.65$ | | Liquid phase | | | | Liquid phase $\Delta_t H^{\circ} = -477.65$ $C_{\rho}^{\circ} = 282.47$ | | Liquid phase $\Delta_t H^\circ = -507.74$ | 1 | | | $(1 \times O - (H))(CC)$
$(4 \times C_B - (C))(C)$ | hyl benzoic acid (Con
O)) + $(1 \times CO - (O)(C_B + (O)) + (4 \times C - (H)_3(C)) + (4 \times Meta \ COT)$ | $(1) + (1 \times C_B - (1))$ | | | I)(CO))+(
C)(C _B) ₂)+ | cid
(1×CO-(O)(C ₁
(5×C-(H) ₃ (C) | | | |---|--|------------------------------|-----------|--|--|---|-------------------------|---| | ,Li | terature – Calculated | = Residual | Reference | | Literatur | re – Calculated | = Residual | Reference | | Solid phase $\Delta_t H^\circ = -50^\circ$
$C_p^\circ =$ | 7.70 -515.83
242.35 | 8.13 | 64COL/PER | Gas phase $\Delta_t H^\circ =$ | | - 452.49 | | *************************************** | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t =$ | 281.50
900.68
247.29
99.76 | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | se
 | - 537.83
344.27 | | | | $(1 \times O - (H)(C) + (4 \times C_B - (C)(C))$ | thyl benzoic acid
O)) + $(1 \times CO - (O)(C_E)$
$(C_B)_2$) + $(4 \times C - (H)_3(C))$
r) + $(4 \times meta \ corr)$ | | | $C_{r}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = 0$ | -536.10 | -543.20
266.41
309.94
-1008.55 | 7.10 | 64COL/PER | | Li | iterature – Calculated | = Residual | Reference | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = $ | | - 242.50
97.82 | | | | Gas phase $\Delta_t H^\circ =$ Liquid phase | -421.95 | | ·. | (1×O-(I
(1×CO- | $I(C_B) + (1$ | ; Salicylic acid
$1 \times C_B - (O) + (1 \times O - (H)) + (O)$
to corr) | $1 \times C_{B}$ -(CO)) | | | $\Delta_t H^\circ = C_p^\circ =$ | -507.74
313.37 | | | | | re – Calculated | = Residual | Reference | | $C_p^{\circ} =$ | 06.10 - 515.83
242.35 | 9.73 | 64COL/PER | Gas phase $\Delta_t H^\circ =$ | - 494.80 | -493.61 | -1.19 | 54DAV/JON | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | 281.50
- 900.68
- 247.29
99.76 | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | se | - 579.86
265.44 | | | | $(3 \times C_B - (H))(0)$ | oic acid
C)) + $(2 \times C - (H)_2(C)(C \times C_B)_2$) + $(1 \times C_B - (CO))$
CO)) + $(3 \times meta \ corr)$ | | | $C_{\rho}^{\circ} = S^{\circ} =$ | 589.90 | -591.13
154.94
175.20 | 1.23 | 35STI/HUF | | L | iterature - Calculated | = Residual | Reference | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -564.26
-422.90
170.59 | | | | Gas phase $\Delta_t H^\circ = -40$ | 07.80 -404.18 | -3.62 | 74ROU/TUR | (2×O-(I | 1)(CO))+(| lic acid; Phthal
(2×CO-(O)(C ₁
(1×COOH-C | $(2 \times C_B - ($ | | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | -497.18
297.37 | | | | | 'alculated = Res | | | | Solid phase | 11.90 - 503.29
292.99
278.42
- 903.76
- 233.83
94.33 | -8.61 | 74ROU/TUR | Solid phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{\ell}S^{\circ} = \Delta_{\ell}G^{\circ} = \ln K_{\ell} =$ | - 782.07
188.11
207.94 | - 777.74
186.44
207.94
- 639.78
- 586.99
236.79 | -4.33
1.67
0.00 | 61SCH/WAG
36PAR/TOD
36PAR/TOD | Table 19. Acids (89) - Continued | $(4 \times C_B - (H)$ | (CO)) + $(2 \times CC)$
$(C_B)_2$) + $(1 \times CC)$ | | | | $(3\times C_B-(H)(C_B)_2)$ | +(3×00011-0 | OOII (meta cc | orr)) | |--|---|---|----------------------|--
---|--|---------------|---------------------------------------| | | Literature – C | alculated= | Residual | Reference | Literat | ure – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = -$ | 696.30 - 0 | 696.30 | 0.00 | 62KRA/BER | Gas phase $\Delta_t H^\circ =$ | - 1121.79 | | | | Solid phase | | | | | Solid phase | | | | | • | 803.00 - | 798.74 | - 4.26 | 71YUK/BIK | $\Delta_{\rm f}H^{\circ} = -1190.10$ | -1197.99 | 7.89 | 71YUK/BIK | | $C_p^{\circ} =$ | 201.70 | 201.44 | 0.26 | 39SAT/SOG2 | $C_p^{\circ} =$ | 286.77 | | | | S° = | | 198.98 | | | S° = | 230.22 | | | | $\Delta_f S^o =$ | | 648.74 | | | $\Delta_{\rm f} S^{\circ} =$ | -828.28 | | | | $\Delta_f G^\circ =$ | | 605.32 | | | $\Delta_i G^{\circ} =$ | - 951.04 | | | | $lnK_f =$ | | 244.18
 | | | $lnK_f =$ | 383.64 | | T | | (4×C _B -(H | Literature – (| Calculated = | = Residual | Reference | (1×CO-(O)(C _B)) | ure – Calculated | | Reference | | Gas phase $\Delta_t H^\circ = -$ | 717.90 - | 672.36 | - 45.54 | 34HIR | Gas phase $\Delta_t H^\circ = -223.10$ | -226.93 | 3.83 | 74COL/ROU | | $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} - \Delta_{t}G^{\circ}$ | -
-816.18 –
- | 797.64
271.46
811.88
171.44
198.98
648.74
618.46
249.48 | 4.30 | 71YUK/BIK | Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Solid phase $\Delta_{t}H^{\circ} = 333.50$ $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = $ | -326.36
268.17
-345.09
190.97
201.24
-589.23
169.41
68.34 | 11.59 | 74COL/ROU | | $lnK_{\ell} =$ | | - 43 | | a w o | A March divide and A | | | a | | 1,2,3-Benzene
(3×O-(H)
(3×C _B -(H)
(1×COOF | e tricarboxylic
()(CO)) + (3 × C
()(C _B) ₂) + (2 × c
H-COOH (met | CO-(O)(C _B)
COOH-CO
(a corr)) | OOH (onho c | orr))+ | 2-Naphthoic acid
(7 × C _B -(H)(C _B) ₂)·
(1 × CO-(O)(C _B))·
Literate | |))) | $C_{11}H_{g}$ C_{H} C_{H} C_{H} | | 1,2,3-Benzene
(3×O-(H)
(3×C _B -(H)
(1×COOF | $(CO) + (3 \times C)$
$(C_B)_2 + (2 \times C)$ | CO-(O)(C _B)
COOH-CO
(a corr)) | OOH (onho c | CO)(C _B) ₂) +
orr)) + | $(7 \times C_B - (H)(C_B)_2)$ $(1 \times CO - (O)(C_B))$ Literate | + (1×O-(H)(CC |))) | (CO))+ | | 1,2,3-Benzen
(3×O-(H)
(3×C _B -(H)
(1×COOH
Lite: |)(CO)) + (3 × C
f)(C _B) ₂) + (2 ×
H-COOH (met
rature-Calcula | CO-(O)(C _B)
COOH-CO
(a corr))
ted = Reside | OOH (<i>onho</i> co | CO)(C _B) ₂) +
orr)) + | $(7 \times C_B - (H)(C_B)_2) \cdot (1 \times CO - (O)(C_B))$ | + (1×O-(H)(CC |))) | ' _в -(CO)) + | | 1,2,3-Benzen
$(3 \times O - (H))$
$(3 \times C_B - (H))$
$(1 \times COOH)$
Lite:
Solid phase
$\Delta_l H^{\circ} = -11$ | (CO)) + (3 × C
f)(C _B) ₂) + (2 × c
H-COOH (met
rature-Calcula) | CO-(O)(C _B)
COOH-CO
ra corr))
ted = Reside | OOH (onho c | CO)(C _B) ₂) +
orr)) + | $(7 \times C_B - (H)(C_B)_2)$
$(1 \times CO - (O)(C_B))$
Literate | + (1 × O-(H)(CC
ure – Calculated | = Residual | Reference | | 1,2,3-Benzen
(3 × O-(H)
(3 × C _B -(H)
(1 × COOH
Liter
Solid phase
$\Delta_t H^\circ = -11$
$C_\rho^\circ =$ | (CO)) + (3 × C
f)(C _B) ₂) + (2 × c
H-COOH (met
rature-Calcular | CO-(O)(C _B)
COOH-CO
(a corr))
ted = Resident
155.99
256.77 | OOH (<i>onho</i> co | CO)(C _B) ₂) +
orr)) + | $(7 \times C_B - (H)(C_B)_2)$ $(1 \times CO - (O)(C_B))$ Literate Gas phase $\Delta_t H^\circ = -232.50$ | + (1 × O-(H)(CC
ure – Calculated | = Residual | Reference | | 1,2,3-Benzene
$(3 \times O - (H))$
$(3 \times C_B - (H))$
$(1 \times COOH)$
Literative
Solid phase
$\Delta_t H^{\circ} = -11$
$C_{\rho}^{\circ} =$
$S^{\circ} =$ | (CO)) + (3 × C
f)(C _B) ₂) + (2 × c
H-COOH (met
rature-Calcular | CO-(O)(C _B)
COOH-CO
(a corr))
ted = Reside
155.99
256.77
248.14 | OOH (<i>onho</i> co | CO)(C _B) ₂) +
orr)) + | $(7 \times C_B - (H)(C_B)_2)$ $(1 \times CO - (O)(C_B))$ Literate Gas phase $\Delta_t H^\circ = -232.50$ Liquid phase | + (1 × O-(H)(CC) ure – Calculated - 226.93 | = Residual | Reference | | 1,2,3-Benzen
(3 × O-(H)
(3 × C _B -(H)
(1 × COOH
Liter
Solid phase
$\Delta_t H^\circ = -11$
$C_\rho^\circ =$ | (CO)) + (3 × C
(CB) ₂) + (2 × c
H-COOH (men
rature-Calcula
160.30 - 1 | CO-(O)(C _B)
COOH-CO
(a corr))
ted = Resident
155.99
256.77 | OOH (<i>onho</i> co | CO)(C _B) ₂) +
orr)) + | $(7 \times C_B - (H)(C_B)_2)$ $(1 \times CO - (O)(C_B))$ Literate Gas phase $\Delta_t H^\circ = -232.50$ | + (1 × O-(H)(CC
ure – Calculated | = Residual | Reference | | 2-Naphthoic acid (Continued) $C_{11}H_8O_2$ $(7 \times C_B-(H)(C_B)_2) + (2 \times C_{BF}-(C_{BF})(C_B)_2) + (1 \times C_B-(CO)) + (1 \times CO-(O)(C_B)) + (1 \times O-(H)(CO))$ | racemic-2,3-Diphenylbutandedioic acid; racemic-2,3-Diphenylsuccinic acid $(2\times O-(H)(CO)) + (2\times CO-(C)(O)) + (2\times C-(H)(CO)) + (2\times C_B-(C)(C_B)_2) + (10\times C_B-(H)(C_B)_2)$ | C ₁₆ H ₁₄ O ₄
CO)(C)(C _B)) + | |--|---|--| | Literature - Calculated = Residual Reference | Literature-Calculated = Residual | Reference | | Solid phase $\Delta_t H^\circ = -346.10 -345.09 -1.01$ 74COL/ROU $C_p^\circ = 190.97$ | Solid phase $\Delta_t H^\circ = -740.10 -748.78 8.68$ | 33VER/HAR | | $S^{\circ} = 201.24$ $\Delta_{f}S^{\circ} = -589.23$ $\Delta_{f}G^{\circ} = -169.41$ $\ln K_{f} = 68.34$ | $ \begin{array}{l} \textbf{2-Methoxybenzoic acid} \\ (4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (CO)(C_B)_2) -$ | (C _B))+ | | 3-Hydroxy-2-naphthoic scid C ₁₁ H ₈ O ₃ | Literature - Calculated = Residual | Reference | | 3-Hydroxy-2-naphthoic acid $C_{11}H_8O_3$
$(1 \times O - (H)(C_B)) + (1 \times O - (H)(CO)) + (1 \times CO - (O)(C_B)) + (1 \times C_B - (CO)) + (1 \times C_B - (II)(C_B)_2) + (2 \times C_{BF} - (C_{BF})(C_B)_2) + (1 \times OH - COOH (ortho corr))$ | Gas phase $\Delta_t H^\circ = -433.80 -433.12 -0.68$ | 78COL/JIM | | Literature - Calculated = Residual Reference | Solid phase $\Delta_t H^\circ = -538.50 -538.49 -0.01$ | 78COL/JIM | | Gas phase $\Delta_t H^\circ = -425.79$ | | | | Liquid phase $\Delta_t H^\circ = -531.88$ $C_p^\circ - 329.84$ | 3-Methoxybenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (CO)(C_B)_2) + (1 \times C_B - (CO)(C_B)_2) + (1 \times O - (C)(C_B)) + (1 \times O - (H)(CO)) + (1 \times O - (C)(C_B)) + (1 \times C - (H)_3(O)) + (1 \times C + (H)_3 - COOH (meta corr))$ Literature – Calculated = Residual | | | Solid phase $\Delta_t H^\circ = -547.80 -549.87$ 2.07 56YOU/KEI $C_p^\circ = 199.80$ $S^\circ = 208.70$ | Gas phase $\Delta_l H^\circ = -446.10 -443.12 -2.98$ | 78COL/JIM | | $\Delta_t S^\circ = -684.29$ $\Delta_t G^\circ = -345.85$ $\ln K_\ell = 139.51$ | Solid phase $\Delta_t H^\circ = -553.50 -556.49$
2.99 | 78COL/JIM | | $\label{eq:continuous} \begin{split} & \textbf{Phenylbutanedioic acid; Phenylsuccinic acid} & \textbf{C}_{10}\textbf{H}_{10}\textbf{O}_4 \\ & (2\times O-(H)(CO)) + (2\times CO-(C)(O)) + (1\times C-(H)_2(CO)(C)) + \\ & (1\times C-(H)(CO)(C)(C_B)) + (1\times C_B-(C)(C_B)_2) + (5\times C_B-(H)(C_B)_2) \end{split}$ | $ \label{eq:acid} \begin{array}{l} \textbf{4-Methoxybenzoic acid} \\ (4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (CO)(C_B)_2) (CO)(C_B)$ | | | Solid phase $\Delta_t H^\circ = -841.00 - 838.04 - 2.96$ 33VER/HAR | Literature - Calculated = Residual | Reference | | meso-2,3-Diphenylbutanedioic acid; meso- | Gas phase $\Delta_t H^{\circ} = -451.90 -448.12 -3.78$ | 78COL/JIM | | 2,3-Diphenylsuccinic acid $C_{16}H_{14}O_4$
$(2 \times O-(H)(CO)) + (2 \times CO-(C)(O)) + (2 \times C-(H)(CO)(C)(C_B)) +$
$(2 \times C_B-(C)(C_B)_2) + (10 \times C_B-(H)(C_B)_2)$
Literature-Calculated = Residual Reference | Liquid phase $\Delta_t H^\circ = -540.57$ $C_p^\circ = 265.38$ | | | Solid phase $\Delta_t H^{\circ} = -733.50 -748.78$ 15.28 33VER/HAR | Solid phase $\Delta_e H^\circ = -561.70 - 561.49 - 0.21$ | 78COL/JIM | | TABLE 20. Anhydrides (11) | |---------------------------| |---------------------------| TABLE 20. Anhydrides (11) - Continued | (170-(| $H)_3(C)) + (2)$ | tetic anhydride $< CO-(C)(O)$
tic), $\sigma = 18$ | | C ₄ H ₆ O ₃ | (2×C-(H | | | | nued) C ₄ H ₄ O
(CO) ₂ , aliphatic) + | |---|----------------------------------|---|---------------|---|---|---|--|---|---| | | Literatur | e – Calculated | - Residual | Reference | | Literatur | e – Calculated - | - Residual | Reference | | Gas phase $H^{\circ} = C_{p}^{\circ} =$ | - 573.50
99.50 | -573.50
99.50 | 0.00
0.00 | 47STU
69STU/WES | Liquid phase $\Delta_t H^\circ =$ | | -588.60 | 0.00 | 13TAM | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 0$ | 389.95 | 389.95
-332.29
-474.43
191.38 | 0.00 | 69STU/WES | Solid phase $\Delta_t H^\circ =$ | 608.60 | -608.60 | 0.00 | 90YAN/PIL | | Liquid phate $\Delta_t H^\circ = C_p^\circ =$ | ase
- 624.40
168.20 | -624.46
168.20 | 0.06
0.00 | 62WAD
62WAD | | $I_{2}(C)_{2}+(2$ | 2×C-(H)₂(CO)e
atic) + (1×Gluta | | | | | | | | | | Literatu | e – Calculated = | Residual | Reference | | (2×C-(| | Propionic anhy
× C-(H)2(CO)
tic) | | C ₆ H ₁₀ O ₃
O-(C)(O)) + | Gas phase $\Delta_t H^\circ =$ | -532.40 | -532.40 | 0.00 | 90YAN/PIL | | | Literatur | e – Calculated | = Residual | Reference | Solid phase | | | | | | Gas phase $A_tH^\circ = C_p^\circ =$ | - 626.51 | -617.18
148.88 | - 9.33 | 47STU | | -618.50 | - 618.50
 | 0.00 | 90YAN/PIL | | Liquid phate $\Delta_i H^\circ = C_p^\circ =$ | ase
679.10 | - 672.74
226.78 | - 6.36 | 42CON/KIS | (2×CO- | (C)(C) + (1)(C)(C) + (1)(C)(C) + (1)(C)(C) + (1)(C)(C) + (1)(C)(C) + (1)(C)(C)(C) + (1)(C)(C)(C) + (1)(C)(C)(C) + (1)(C)(C)(C) + (1)(C)(C)(C) + (1)(C)(C)(C) + (1)(C)(C)(C)(C) + (1)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C) | × C–(H)(CO)(C
1 × O–(CO) ₂ , ali
ary)) + (1 × Succ | phatic) +
cinic anhydric | le rsc) | | | | | | | | Literatui | e – Calculated = | Residual | Reference | | (6×C-(| $(H)_3(C)) + (6$ | anhydride; Pi
×-CH ₃ corr (o
(2×CO-(C)(O | quaternary))+ | • | Gas phase $\Delta_t H^\circ =$ | makat kat kat kat mayana manan | -550.83 | | | | | Literatur | re – Calculated | = Residual | Reference | Liquid phas $\Delta_t H^\circ =$ | | -618.14 | 0.54 | 42CON/KIS | | | | | | | | | | | | | Gas phase
Δ _t H° = | e | 722.04 | | | Solid phase | -620.00 | -639.61 | 19.61 | 33VER/HAR | | $\Delta_i H^{\circ} =$ | | -722.04
-788.94
330.10 | 8.94 | 42CON/KIS | Solid phase $\Delta_t H^\circ =$ 2,2-Dimethy $(2 \times C - (1 \times C) - (2 \times C) - (2 \times C) - (2 \times C) - (2 \times C)$ | -620.00
ylsuccinic a
H) ₃ (C))+(1
(C)(O))+(** | nhydride
× C-(CO)(C) ₃)·
I × O-(CO) ₂ , ali | + (1 × C-(H) ₂ | C ₆ H ₈ O ₂
(CO)(C))+ | | Liquid ph $\Delta_t H^\circ = C_p^\circ =$ Dihydrofu $(2 \times C - ($ | ase
- 780.00
aran-2,5-dion | -788.94
330.10
e; Succinic ant
+(2×CO-(C) | hydride | 42CON/KIS C ₄ H ₄ O ₃ -(CO) ₂ , aliphatic) + | Solid phase $\Delta_t H^\circ =$ 2,2-Dimethy $(2 \times C - (1 \times C) - (2 \times C) - (2 \times C) - (2 \times C) - (2 \times C)$ | -620.00 ylsuccinic a H) ₃ (C))+(1 (C)(O))+(3 corr (quant | nhydride
× C-(CO)(C) ₃) | + (1 × C-(H) ₂
phatic) +
Succinic anhy | C ₆ H ₈ O
(CO)(C))+ | -527.90 0.00 90YAN/PIL Gas phase $\Delta_i H^\circ = -527.90$ TABLE 20. Anhydrides (11) - Continued TABLE 20. Anhydrides (11) - Continued | 2,2-Dimethylsuccinic anhydride (Continued) | $C_6H_8O_3$ | |--|-------------| | $(2 \times C - (H)_3(C)) + (1 \times C - (CO)(C)_3) + (1 \times C - (H)_2(CO)(C))$ | + | | $(2 \times CO-(C)(O)) + (1 \times O-(CO)_2$, aliphatic) + | | | (2×-CH ₃ corr (quaternary)) + (1×Succinic anhydride rsc) | | | Literatur | Literature – Calculated = Residual | | | | | |---|------------------------------------|-------|-----------|--|--| | Liquid phase $\Delta_t H^{\circ} = -645.50$ | - 642.31 | -3.19 | 42CON/KIS | | | | Solid phase $\Delta_t H^\circ = -651.50$ | - 658.86 | 7.36 | 33VER/HAR | | | ### Tetramethylsuccinic anhydride C₈H₁₂O₃ $(4 \times C-(H)_3(C))+(4 \times -CH_3 \text{ corr (quaternary)})+$ $(2 \times C-(CO)(C)_3)+(2 \times CO-(C)(O))+(1 \times O-(CO)_2, \text{ aliphatic})+$ $(1 \times Succinic \text{ anhydride rsc})$ | Lit | Literature – Calculated = Residual | | | |---------------------------------------|------------------------------------|-------|-----------| | Gas phase
Δ _t H° = | - 623.64 | | | | Liquid phase
Δ _t H° = | - 696.02 | | | | Solid phase $\Delta_t H^\circ = -712$ | 2.80 - 709.12 | -3.68 | 33VER/HAR | # 2,2-Diethylsuccinic anhydride $C_8H_{12}O_3$ $(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) + (1 \times C - (CO)(C)_3) + (1 \times C - (H)_2(CO)(C)) + (2 \times CO - (C)(O)) + (1 \times O - (CO)_2$, aliphatic) + $(1 \times Succinic anhydride rsc)$ | L | Literature – Calculated = Residual | | | | |--------------------------------------|------------------------------------|-------|-----------|--| | Gas phase
Δ _t H° = | - 607.91 | | | | | Liquid phase
Δ _t H° = | - 684.99 | | | | | Solid phase $\Delta_t H^\circ = -68$ | 38.80 - 708.98 | 20.18 | 33VER/HAR | | | Benzoic anhydride | C14H10O3 | |--|-------------| | $(10 \times C_B - (H)(C_B)_2) + (2 \times C_B - (CO)(C_B)_2) + (2 \times CO - (O)(C_B)_2)$ | (C_B)) + | | $(1 \times O - (CO)_2$, aromatic) | | | Literatu | Literature – Calculated = Residual | | | | |---|------------------------------------|--------|-----------|--| | Gas phase $\Delta_t H^\circ = -319.23$ | -319.20 | -0.03 | 71CAR/FIN | | | Liquid phase $\Delta_t H^\circ = -398.32$ | -398.30 | -0.02 | 71CAR/FIN | | | Solid phase $\Delta_t H^\circ = -415.47$ | - 415.40 | - 0.07 | 71CAR/FIN | | # Phthalic anhydride $\begin{array}{l} C_8H_4O_3\\ (4\times C_B-(H)(C_B)_2)+(2\times C_B-(CO)(C_B)_2)+(2\times CO-(O)(C_B))+\\ (1\times O-(CO)_2,\ aromatic)+(1\times Phthalic\ anhydride\ rsc) \end{array}$ | Literatu | re – Calculated = | Reference | | |--|-------------------|-----------|-----------| | Gas phase $\Delta_f H^\circ = -371.40$ | -371.40 | 0.00 | 46CRO/FEE | | Solid phase $\Delta_t H^{\circ} = -460.10$ | - 460.10 | 0.00 | 50PAR/MOS | TABLE 21. Esters (74) | <u>.</u> | Literatur | Literature - Calculated - Residual | | | | | |------------------------|-----------------|------------------------------------|--------|---------------------------------|--|--| | Gas phase | • | | | | | | | $\Delta_t H^{\circ} =$ | -355.50 | -355.52 | 0.02 | 71HAL/BAL | | | | $C_p^{\circ} =$ | 66.53
301.25 | 66.53 | 0.00 | 69STU/WES | | | | S° = | 301.25 | 301.25 | 0.00 | 69STU/WES | | | | $\Delta_f S^{\circ} =$ | | -176.42 | | | | | | $\Delta_f G^{\circ} =$ | | -302.92 | | | | | | $lnK_f =$ | · | 122.20 | | | | | | Liquid ph | ase | | | | | | | | -386.10 | -386.05 | -0.05 | 71HAL/BAL | | | | $C_p^{\circ} =$ | 119.66 | 121.16 | - 1.50 | 79FUC | | | | s° = | | 216.26 | | | | | | $\Delta_f S^\circ =$ | | -261.40 | | | | | | $\Delta_f G^{\circ} =$ | | -308.11 | | | | | | $lnK_f =$ | | 124.29 | - | | | | | | | | | | | | | Methyl et | hanoate; Me | thyl acetate | | C ₃ H ₆ C | | | | | Literatur | Reference | | |
---|-----------|---|-----------------|------------------------| | Gas phase | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -410.00 | -410.63 | 0.63 | 71HAL/BAL | | $C_p^{\circ} =$ | | 87.82 | | | | Liquid photostate $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S$ | | -440.61
137.52
237.60
-376.38
-328.39 | -5.19
-13.67 | 71HAL/BAL
71HAL/BAL | Methyl propanoate; Methyl propionate $C_4H_8O_2\\ (2\times C-(H)_3(C))+(1\times C-(H)_2(CO)(C))+(1\times CO-(C)(O))+\\ (1\times O-(C)(CO))$ | | Literature – Calculated = Residual | | | Reference | | |---|------------------------------------|------------------|------|-----------|--| | Gas phase | | | | | | | $\Delta_t H^{\circ} =$ | | -432.47 | | | | | $C_p^{\circ} =$ | | 112.51 | | | | | T:: | | | | | | | Liquid pha $\Delta_t H^\circ =$ | | -464.75 | | | | | $\Delta_f H^\circ = C_p^\circ =$ | se
174.05 | 166.81 | 7.24 | 79FUC | | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} =$ | | | 7.24 | 79FUC | | | $\Delta_f H^\circ = C_p^\circ =$ | | 166.81 | 7.24 | 79FUC | | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} =$ | | 166.81
277.47 | 7.24 | 79FUC | | | (2×C-(H | Methyl butanoate; Methyl butyrate
$(2 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) - (1 \times CO (C)(O)) + (1 \times O (C)(CO))$ | | | | | |--|--|-----------|--|--|--| | , | Literature – Calculated = Residual | Reference | | | | | Gas phase | | - 1 | | | | | $\Delta_{\mathbf{f}}H^{\hat{\circ}} =$ | -453.10 | | | | | | $C_n^{\circ} =$ | 135.40 | | | | | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} =$ | | -453.10
135.40 | | | |---|--------|-------------------|------|---| | Liquid pha | nea. | | | | | $\Delta_t H^\circ =$ | isc | - 490.48 | | | | $C_p^{\circ} =$ | 200.83 | 197.23 | 3.60 | 79FUC | | S° = | | 309.85 | -, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -576.75 | | | | $\Delta_t G^\circ =$ | | -318.52 | | | | $lnK_f =$ | | 128.49 | | | $\label{eq:condition} \begin{array}{ll} \text{Methyl pentanoate; Methyl valerate} & C_6H_{12}O_2\\ (2\times C-(H)_3(C)) + (2\times C-(H)_2(C)_2) + (1\times C-(H)_2(CO)(C)) + \\ (1\times CO-(C)(O)) + (1\times O-(C)(CO)) \end{array}$ | | Literatui | Reference | | | | |--|-----------|--------------------|------|-----------|--| | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 471.10 | -473.73
158.29 | 2.63 | 77MAN/SEL | | | Liquid ph | | | | | | | $\Delta_{\epsilon}H^{\circ} =$ | -514.20 | -516.21 | 2.01 | 65ADR/DEK | | | | 229.28 | 227.65 | 1.63 | 79FUC | | | $C_n^n =$ | | | | | | | $C_p^{\circ} = S^{\circ} =$ | | 342.23 | | | | | | | 342.23
- 680.68 | | | | | <i>S</i> ° = | | | | | | $\label{eq:condition} \begin{array}{ll} \text{Methyl hexanoate; Methyl caproate} & C_7H_{14}O_2\\ (2\times C-(H)_3(C)) + (3\times C-(H)_2(C)_2) + (1\times C-(H)_2(CO)(C)) + \\ (1\times CO-(C)(O)) + (1\times O-(C)(CO)) \end{array}$ | | Literatu | Reference | | | |--|----------|--------------------|------|-----------| | Gas phase | e | | | | | $\Delta_{\rm f}H^{\circ} =$ | -492.20 | -494.36 | 2.16 | 77MAN/SEL | | $C_r^{\circ} =$ | | 181.18 | | | | | | | | | | Liquid ph $\Delta_t H^\circ =$ | | -541.94 | 1.74 | 65ADR/DEK | | | | - 541.94
258.07 | 1.74 | 65ADR/DEK | | $\Delta_t H^\circ =$ | | | 1.74 | 65ADR/DEK | | $\Delta_t H^\circ = C_p^\circ =$ | | 258.07 | 1.74 | 65ADR/DEK | | $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | | 258.07
374.61 | 1.74 | 65ADR/DEK | TABLE 21. Esters (74) - Continued | (2×C-(H | $(1)_3(C) + (4)$ | ethyl enanthate
× C-(H) ₂ (C) ₂) -
t × O-(C)(CO)) | + (1 × C-(H) ₂ (| C ₈ H ₁₆ O ₂
(CO)(C))+ | (2×C-(I | 1)3(C))+(7 | thyl caprate
'×C-(H) ₂ (C) ₂)-
1×O-(C)(CO) | | C ₁₁ H ₂₂ O
(CO)(C)) + |
---|--------------------------------------|--|-----------------------------|--|---|-------------------------------|--|---------------------------|---| | | Literatur | e – Calculated = | = Residual | Reference | | Literatu | re – Calculated : | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -515.50 | 514.99
204.07 | -0.51 | 77MAN/SEL | Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ | -573.80 | 576.88
272.74 | 3.08 | 77MAN/SEL | | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = S^\circ =$ | se
- 567.10
285.10 | - 567.67
288.49
406.99
- 888.54
- 302.75
122.13 | 0.57
-3.39 | 65ADR/DEK
79FUC | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
- 640.50
382.80 | -644.86
379.75
504.13
-1200.33
-286.98
115.77 | 4.36
3.05 | 65ADR/DEK
79FUC | | (2×C-(F | I) ₃ (C))+(5
(C)(O))+(| hyl caprylate
×C-(H) ₂ (C) ₂)-
1×O-(C)(CO) |) | | (2×C-(F | ·H)₃(C)) + (8
·(C)(O)) + (| Methyl undecyla
× C-(H) ₂ (C) ₂)-
1 × O-(C)(CO))
re – Calculated = | + (1 × C-(H) ₂ | | | | Literatui | re – Calculated :
––––– | = Residual | Reference | | Literatu | re – Calculated = | = Kesiduai | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -533.90 | -535.62
226.96 | 1.72 | 77MAN/SEL | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -593.80 | -597.51
295.63 | 3.71 | 77MAN/SEL | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | se
590.30 | - 593.40
318.91
439.37
- 992.47
- 297.49
120.01 | 3.10 | 65ADR/DEK | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
665.20 | -670.59
410.17
536.51
-1304.27
-281.72
113.65 | 5.39 | 65ADR/DEK | | (2×C-(I | $(H)_3(C)) + (6)$ | ethyl perlargons
i× C-(H) ₂ (C) ₂)
1× O-(C)(CO) | $+(1\times C-(H)_2$ | C ₁₆ H ₂₆ O ₂
(CO)(C)) + | (2×C-(I | f(C) + (9) | Methyl laurate
× C-(H) ₂ (C) ₂) -
1 × O-(C)(CO)) | | C ₁₃ H ₂₆ O ₂
(CO)(C))+ | | | Literatu | re – Calculated | = Residual | Reference | | Literatu | re – Calculated =
 | = Residual | Reference | | Gas phase $\Delta_l H^\circ = C_p^\circ =$ | -554.20 | - 556.25
249.85 | 2.05 | 77MAN/SEL | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 615.90 | -618.14
318.52 | 2.24 | 77MAN/SEL | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
-616.20 | - 619.13
349.33
471.75
- 1096.40
- 292.24
117.89 | 2.93 | 65ADR/DEK | Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
693.00 | - 696.32
440.59
568.89
- 1408.20
- 276.47
111.52 | 3.32 | 65ADR/DEK | TABLE 21. Esters (74) - Continued | (2×C-(H | | \times C-(H) ₂ (C) ₂)
\times O-(C)(CO)) | + (1 × C-(H) | ₂ (CO)(C))+ | | | ×O-(C)(CO)
(1×CO-(C)(| | (CO)(C))+ |
--|---|--|---|--|---|--|---|---|---| | · | Literature | - Calculated = | Residual | Reference | | Literatur | re – Calculated | d = Residual | Reference | | Gas phase '' $\Delta_t H^\circ = C_p^\circ =$ | - 635.30 | -638.77
341.41 | 3.47 | 77MAN/SEL | Gas phase $\Delta_l H^\circ = C_p^\circ =$ | | -700.66
410.08 | | | | Liquid phas | ie | | | i ^{to} P | Liquid pha | se | | | | | $\Delta_i H^\circ =$ | -717.90 | -722.05 | 4.15 | 65ADR/DEK | $\Delta_t H^\circ =$ | | - 799.24 | | | | $C_p^{\circ} =$ | | 471.01 | | | $C_p^{\circ} =$ | | 562.27 | | | | s° - | | 601.27 | | | S° - | | 698.41 | | | | $\Delta_f S^\circ =$ | | -1512.13 | | 1 | $\Delta_{f}S^{\circ} =$ | | -1823.92 | | | | $\Delta_t G^{\circ} =$ | | -271.21 | | | $\Delta_t G^\circ =$ | | -255.44 | | | | $lnK_t =$ | | 109.40 | | | $lnK_f =$ | | 103.04 | | | | | | | | | Solid phase | ; | | | | | Methyl tetra | adecanoate; | Methyl myrista | ate | $C_{15}H_{30}O_2$ | $\Delta_i H^\circ =$ | | -867.91 | | | | (2×C-(I | I)₃(C)) + (11 | \times C-(H) ₂ (C) ₂) | + (1 × C-(H) | ₂ (CO)(C))+ | $C_p^{\circ} =$ | 474.47 | 480.76 | -6.29 | 56WIR/DRO | | (1×CO- | (C)(O))+(1 | ×0-(C)(CO)) | | | S° = | 495.09 | 481.46 | 13.63 | 56WIR/DRO | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 2040.87 | | | | | Literature | e – Calculated = | = Residual | Reference | $\Delta_{l}G^{\circ} =$ | | - 259.42 | | | | | | | | | $lnK_f =$ | | 104.65 | | | | | | | | | | | | | | | Gas phase $\Delta_t H^\circ =$ | - 656.90 | -659.40 | 2.50 | 77MAN/SEL | Ethyl meth | anoate; Eth | yl formate | | C ₃ H ₆ O ₂ | | • | -656.90 | -659.40
364.30 | 2.50 | 77MAN/SEL | | (C) + (1) | | C))+(1×O-(0 | C ₃ H ₆ O ₂ | | $\Delta_t H^{\circ} = C_p^{\circ} =$ Liquid phase | se | 364.30 | | · | (1 × C-(I | 1) ₃ (C)) + (1
(H)(O)) | | | | | $\Delta_t H^\circ = C_p^\circ = $ Liquid phas $\Delta_t H^\circ = $ | se
-743.90 | 364.30
-747.78 | 3.88 | 65ADR/DEK | (1 × C-(I | 1) ₃ (C)) + (1
(H)(O)) | × C-(H) ₂ (O)(| | C)(CO))+ | | $\Delta_t H^\circ = C_p^\circ = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = $ | se | -747.78
501.43 | | · | (1×C-(I
(1×CO- | 1) ₃ (C)) + (1
(H)(O)) | × C-(H) ₂ (O)(| | C)(CO))+ | | $\Delta_t H^{\circ} =
C_p^{\circ} = $ Liquid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = $ | se
-743.90 | -747.78
501.43
633.65 | 3.88 | 65ADR/DEK | (1×C-(I
(1×CO- | 1) ₃ (C)) + (1
(H)(O)) | × C-(H) ₂ (O)(| | C)(CO))+ | | $\Delta_t H^{\circ} = C_p^{\circ} =$ Liquid phas $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} =$ | se
-743.90 | -747.78
501.43
633.65
-1616.06 | 3.88 | 65ADR/DEK | $(1 \times C - (H \times C) - (H \times C) - (H \times C)$ Gas phase $\Delta_t H^\circ = (H \times C)$ | 1) ₃ (C)) + (1
(H)(O)) | × C-(H) ₂ (O)(
re - Calculatec
- 388.42 | | C)(CO))+ | | $\Delta_t H^{\circ} = C_p^{\circ} = $ Liquid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = $ | se
-743.90 | -747.78
501.43
633.65 | 3.88 | 65ADR/DEK | (1×C-(I
(1×CO- | 1) ₃ (C)) + (1
(H)(O)) | × C-(H) ₂ (O)(| | C)(CO))+ | | $\Delta_t H^\circ = C_p^\circ = C_p^\circ = C_p^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = C_p^\circ $ | se
-743.90 | -747.78
501.43
633.65
-1616.06
-265.95 | 3.88 | 65ADR/DEK | $(1 \times C - (H + C) - (1 \times C) - (1 \times C) - (1 \times C)$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 1) ₃ (C)) + (1
(H)(O))
Literatur | × C-(H) ₂ (O)(
re - Calculated
- 388.42
86.86 | | C)(CO))+ | | $\Delta_t H^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = C_L^{\circ} C_$ | se
- 743.90
505.40 | -747.78
501.43
633.65
-1616.06
-265.95
107.28 | 3.88
3.97 | 65ADR/DEK
79FUC | $(1 \times C - (H + C) - (1 \times C) - (1 \times C) - (1 \times C)$ Gas phase $\Delta_t H^\circ = C_p^\circ = - (1 \times C)$ Liquid phase $\Delta_t H^\circ = - (1 \times C)$ | H ₃ (C)) + (1
(H)(O))
Literatur | × C-(H) ₂ (O)(
re - Calculated
- 388.42
86.86
- 421.85 | i = Residual | C)(CO)) + Reference | | $\Delta_t H^{\circ} = C_t^{\circ} = C_t^{\circ} = C_t^{\circ} = C_t^{\circ} = C_t^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = InK_f = Methyl pen$ | se - 743.90
505.40 | -747.78 501.43 633.65 -1616.06 -265.95 107.28 | 3.88
3.97
decylate | 65ADR/DEK
79FUC
C ₁₆ H ₃₂ O ₂ | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ | 1) ₃ (C)) + (1
(H)(O))
Literatur | × C-(H) ₂ (O)(
re - Calculated
- 388.42
86.86
- 421.85
154.80 | | C)(CO))+ | | $\Delta_t H^{\circ} = C_r^{\circ} = $ Liquid phas $\Delta_t H^{\circ} = C_r^{\circ} = S^{\circ} = \Delta_t G^{\circ} = InK_t = $ Methyl pen (2×C-(I | se - 743.90
505.40
stadecanoate | -747.78
501.43
633.65
-1616.06
-265.95
107.28
:; Methyl penta
2×C-(H) ₂ (C) ₂) | 3.88
3.97
decylate
+ (1 × C-(H) | 65ADR/DEK
79FUC
C ₁₆ H ₃₂ O ₂ | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid phas $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ $S^{\circ} = $ | H ₃ (C)) + (1
(H)(O))
Literatur | × C-(H) ₂ (O)(
re - Calculated
- 388.42
86.86
- 421.85
154.80
248.85 | i = Residual | C)(CO)) + Reference | | $\Delta_t H^{\circ} = C_r^{\circ} = $ Liquid phas $\Delta_t H^{\circ} = C_r^{\circ} = S^{\circ} = \Delta_t G^{\circ} = InK_t = $ Methyl pen (2×C-(I | se - 743.90
505.40
stadecanoate | -747.78 501.43 633.65 -1616.06 -265.95 107.28 | 3.88
3.97
decylate
+ (1 × C-(H) | 65ADR/DEK
79FUC
C ₁₆ H ₃₂ O ₂ | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid phas $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ $S^{\circ} = \Delta_{t}S^{\circ} = $ | H ₃ (C)) + (1
(H)(O))
Literatur | - 388.42
86.86
- 421.85
154.80
248.85
- 365.13 | i = Residual | C)(CO)) + Reference | | $\Delta_t H^{\circ} = C_t^{\circ} = C_t^{\circ} = C_t^{\circ} = C_t^{\circ} = C_t^{\circ} = S^{\circ} = \Delta_t G^{\circ} = InK_t = Methyl pen (2 × C - (I$ | se - 743.90
505.40
stadecanoate
H ₃ (C)) + (12
(C)(O)) + (13 | -747.78
501.43
633.65
-1616.06
-265.95
107.28
:; Methyl penta
2×C-(H) ₂ (C) ₂) | 3.88
3.97
decylate
+ (1 × C-(H) | 65ADR/DEK
79FUC
C ₁₆ H ₃₂ O ₂ | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid phas $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ $S^{\circ} = $ | H ₃ (C)) + (1
(H)(O))
Literatur | × C-(H) ₂ (O)(
re - Calculated
- 388.42
86.86
- 421.85
154.80
248.85 | i = Residual | C)(CO)) + Reference | | $\Delta_t H^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = InK_t = Methyl pen (2 \times C - (I \times CO - I))$ | se - 743.90
505.40
stadecanoate
H ₃ (C)) + (12
(C)(O)) + (13 | -747.78 501.43 633.65 -1616.06 -265.95 107.28 c; Methyl penta 2×C-(H) ₂ (C) ₂) 1×O-(C)(CO)) | 3.88
3.97
decylate
+ (1 × C-(H) | 65ADR/DEK
79FUC
C ₁₆ H ₃₂ O ₂
O ₂ (CO)(C)) + | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t G^\circ = \Delta_t G^\circ = \ln K_t =$ | H ₃₃ (C)) + (1
(H)(O))
Literatur
Se
144.35 | - 421.85
154.80
248.85
- 365.13
- 312.99
126.26 | i = Residual | Reference 79FUC | | $\Delta_t H^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = InK_t = Methyl pen (2 \times C - (1 \times CO - C))$ | se
-743.90
505.40
stadecanoate
H ₃ (C))+(12
(C)(O))+(13
Literatur | 364.30 -747.78 501.43 633.65 -1616.06 -265.95 107.28 c; Methyl penta 2 × C-(H) ₂ (C) ₂) 1 × O-(C)(CO)) e - Calculated = | 3.88
3.97
decylate
+ (1 × C-(H) | 65ADR/DEK
79FUC
C ₁₆ H ₃₂ O ₂
O ₂ (CO)(C)) +
Reference | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $\Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} =$ $\ln K_{t} =$ Ethyl ethan | H ₃₃ (C)) + (1
(H)(O))
Literatur
se
144.35 | - 421.85
154.80
248.85
- 365.13
- 312.99
126.26 | 1 = Residual
- 10.45 | C)(CO)) + Reference 79FUC | | $\Delta_t H^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = C_P^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = InK_t = Methyl pen (2 \times C - (I \times CO - I))$ | se - 743.90
505.40
stadecanoate
H ₃ (C)) + (12
(C)(O)) + (13 | -747.78 501.43 633.65 -1616.06 -265.95 107.28 c; Methyl penta 2×C-(H) ₂ (C) ₂) 1×O-(C)(CO)) | 3.88
3.97
decylate
+ (1 × C-(H) | 65ADR/DEK
79FUC
C ₁₆ H ₃₂ O ₂
O ₂ (CO)(C)) + | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ = \ln K_t =$ Ethyl ethan $(2 \times C - (H + L))$ | H ₃₃ (C)) + (1
(H)(O))
Literatur
se
144.35 | - 421.85
154.80
248.85
- 365.13
- 312.99
126.26 | i = Residual | C)(CO)) + Reference 79FUC | | $\Delta_t H^\circ = C_\rho^\circ = C_\rho^\circ = C_\rho^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t $ | se
-743.90
505.40
stadecanoate
H ₃ (C)) + (12
(C)(O)) + (13
Literatur
-677.50 | -747.78 501.43 633.65 -1616.06 -265.95 107.28 c; Methyl penta 2 × C-(H) ₂ (C) ₂) 1 × O-(C)(CO)) ce - Calculated = | 3.88
3.97
decylate
+ (1 × C-(H) | 65ADR/DEK
79FUC
C ₁₆ H ₃₂ O ₂
O ₂ (CO)(C)) +
Reference | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ = \ln K_t =$ Ethyl ethan $(2 \times C - (H + L))$ | H ₃ (C)) + (1
(H)(O))
Literatur
se
144.35
hoate; Ethyl
H ₃ (C)) + (1
(C)(O)), σ | - 421.85
154.80
248.85
- 365.13
- 312.99
126.26 | 1 = Residual
- 10.45
C)) + (1 × O-(0 | C)(CO)) + Reference 79FUC | | $\Delta_t H^{\circ} = C_{\rho}^{\circ} = \frac{1}{C_{\rho}^{\circ}} \frac{1}$ | tadecanoate
H ₃ (C)) + (12
(C)(O)) + (13
Literatur | 364.30 -747.78 501.43 633.65 -1616.06 -265.95 107.28 c; Methyl penta 2 × C-(H) ₂ (C) ₂) 1 × O-(C)(CO)) c - Calculated = -680.03 387.19 | 3.88
3.97
decylate
+ (1 × C-(H))
= Residual | 65ADR/DEK 79FUC C ₁₆ H ₃₂ O ₂ O ₂ (CO)(C)) + Reference | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ = \ln K_t =$ Ethyl ethan $(2 \times C - (H + L))$ | H ₃ (C)) + (1
(H)(O))
Literatur
se
144.35
hoate; Ethyl
H ₃ (C)) + (1
(C)(O)), σ | - 421.85
154.80
248.85
- 365.13
- 312.99
126.26
acetate
× C-(H) ₂ (O)(e | 1 = Residual
- 10.45
C)) + (1 × O-(0 | C)(CO)) + Reference 79FUC C ₄ H ₈ O ₂ C)(CO)) + | | $\Delta_t H^\circ = C_\rho^\circ = $ Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t = $ Methyl pen $(2 \times C - (I (1 \times CO - C_\rho^\circ = $ | se
-743.90
505.40
stadecanoate
H ₃ (C)) + (12
(C)(O)) + (13
Literatur
-677.50 | -747.78 501.43 633.65 -1616.06 -265.95 107.28 c; Methyl penta 2 × C-(H) ₂ (C) ₂) 1 × O-(C)(CO)) c - Calculated = -680.03 387.19 | 3.88
3.97
decylate
+ (1 × C-(H) | 65ADR/DEK
79FUC
C ₁₆ H ₃₂ O ₂
O ₂ (CO)(C)) +
Reference | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ $\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = $ $\ln K_{t} = $ Ethyl ethan $(2 \times C - (F_{t}) + C_{t})$ | H ₃ (C)) + (1
(H)(O))
Literatur
se
144.35
hoate; Ethyl
H ₃ (C)) + (1
(C)(O)), σ | - 421.85
154.80
248.85
- 365.13
- 312.99
126.26
acetate
× C-(H) ₂ (O)(e | 1 = Residual
- 10.45
C)) + (1 × O-(0 | C)(CO)) + Reference 79FUC C4HeO2 | | $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t =$ Methyl pen $(2 \times C - (I) \times CO - I)$ Gas phase $\Delta_t H^\circ = C_p^\circ = I$ Liquid pha $\Delta_t
H^\circ = C_p^\circ = I$ | tadecanoate
H ₃ (C)) + (12
(C)(O)) + (13
Literatur | -747.78 501.43 633.65 -1616.06 -265.95 107.28 c; Methyl penta 2 × C-(H) ₂ (C) ₂) 1 × O-(C)(CO)) ce - Calculated = -680.03 387.19 -773.51 531.85 | 3.88
3.97
decylate
+ (1 × C-(H))
= Residual | 65ADR/DEK 79FUC C ₁₆ H ₃₂ O ₂ O ₂ (CO)(C)) + Reference | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = $ Liquid phas $\Delta_{t}H^{\circ} = S^{\circ} = $ $\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = $ In $K_{t} = $ Ethyl ethan $(2 \times C - (f + 1) \times CO - f = 1)$ Gas phase | H ₃₃ (C)) + (1
(H)(O)) Literatur Se 144.35 noate; Ethyl H ₃ (C)) + (1 (C)(O), \(\sigma\) | - 388.42
86.86
- 421.85
154.80
248.85
- 365.13
- 312.99
126.26
acetate
× C-(H) ₂ (O)(e
= 9 | 1 = Residual - 10.45 C)) + (1 × O-(0) 1 = Residual | Reference 79FUC C ₄ H ₈ O ₂ C)(CO)) + Reference | | $\Delta_t H^{\circ} = C_{\rho}^{\circ} = C_{\rho}^{\circ} = C_{\rho}^{\circ} = C_{\rho}^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = InK_t = C_{\rho}^{\circ} = InK_t = C_{\rho}^{\circ} = C_{\rho}^{\circ} = C_{\rho}^{\circ} = C_{\rho}^{\circ} = C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = C_{\rho}^{\circ} = S^{\circ} = C_{\rho}^{\circ} = C_{\rho}^{\circ} = C_{\rho}^{\circ} = S^{\circ} = C_{\rho}^{\circ} C_{\rho}^{\circ$ | tadecanoate
H ₃ (C)) + (12
(C)(O)) + (13
Literatur | -747.78 501.43 633.65 -1616.06 -265.95 107.28 2:; Methyl penta 2: C-(H) ₂ (C) ₂) 1: O-(C)(CO)) 2: - Calculated = -680.03 387.19 -773.51 531.85 666.03 | 3.88
3.97
decylate
+ (1 × C-(H))
= Residual | 65ADR/DEK 79FUC C ₁₆ H ₃₂ O ₂ O ₂ (CO)(C)) + Reference | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} =$ Ethyl ethan $(2 \times C - (I)(1 \times CO - I) = I)$ Gas phase $\Delta_{t}H^{\circ} = I$ | H ₃₃ (C)) + (1
(H)(O))
Literatur
See
144.35
Hoate; Ethyl
H ₃ (C)) + (1
(C)(O)), \(\sigma\) | - 388.42
- 388.42
- 368.86
- 421.85
154.80
248.85
- 365.13
- 312.99
126.26
acetate
× C-(H) ₂ (O)(e
= 9 | 1 = Residual - 10.45 C)) + (1 × O-(0) 1 = Residual - 0.57 | Reference 79FUC C4H8O2 C(CO)) + Reference | | $\Delta_t H^\circ = C_p^\circ = \frac{1}{C_p^\circ} \frac{1}{C_p^\circ$ | tadecanoate
H ₃ (C)) + (12
(C)(O)) + (13
Literatur | -747.78 501.43 633.65 -1616.06 -265.95 107.28 2: (Methyl pental 2: C-(H) ₂ (C) ₂) 1: O-(C)(CO)) 2: - Calculated = -680.03 387.19 -773.51 531.85 666.03 -1719.99 | 3.88
3.97
decylate
+ (1 × C-(H))
= Residual | 65ADR/DEK 79FUC C ₁₆ H ₃₂ O ₂ O ₂ (CO)(C)) + Reference | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} =$ Ethyl ethan $(2 \times C - (I + C) - I + C)$ Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ | H ₃ (C)) + (1
(H)(O))
Literatur
Se
144.35
Hoate; Ethyl
H ₃ (C)) + (1
(C)(O)), σ
Literatur
-444.10
113.64 | ~ C-(H) ₂ (O)(
re - Calculated
-388.42
86.86
-421.85
154.80
248.85
-365.13
-312.99
126.26
acetate
× C-(H) ₂ (O)(e
= 9 | - 10.45
C)) + (1 × O-(0)
1 = Residual
- 0.57
5.49 | Reference 79FUC C4H ₈ O ₂ C)(CO))+ Reference 66WAD2 69STU/WES | | $\Delta_t H^\circ = C_\rho^\circ = \frac{1}{C_\rho^\circ} \frac{1}{C_\rho^\circ$ | tadecanoate
H ₃ (C)) + (12
(C)(O)) + (13
Literatur | -747.78 501.43 633.65 -1616.06 -265.95 107.28 2:; Methyl penta 2: C-(H) ₂ (C) ₂) 1: O-(C)(CO)) 2: - Calculated = -680.03 387.19 -773.51 531.85 666.03 | 3.88
3.97
decylate
+ (1 × C-(H))
= Residual | 65ADR/DEK 79FUC C ₁₆ H ₃₂ O ₂ O ₂ (CO)(C)) + Reference | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} =$ $\ln K_{t} =$ Ethyl ethan $(2 \times C - (f (1 \times CO - f)) = f (1 \times CO - f)$ Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = f (1 \times CO - f) = f (1 \times CO - f)$ $Gas phase$ $\Delta_{t}H^{\circ} = f (1 \times CO - f) = f (1 \times CO - f)$ $Gas phase$ $\Delta_{t}H^{\circ} = f (1 \times CO - f) = f (1 \times CO - f)$ $Gas phase$ $\Delta_{t}H^{\circ} = f (1 \times CO - f) = f (1 \times CO - f)$ $Gas phase$ $\Delta_{t}H^{\circ} = f (1 \times CO - f) = f (1 \times CO - f)$ | H ₃₃ (C)) + (1
(H)(O))
Literatur
See
144.35
Hoate; Ethyl
H ₃ (C)) + (1
(C)(O)), \(\sigma\) | ~ C-(H) ₂ (O)(
re - Calculated
-388.42
86.86
-421.85
154.80
248.85
-365.13
-312.99
126.26
acetate
× C-(H) ₂ (O)(e
= 9 | 1 = Residual - 10.45 C)) + (1 × O-(0) 1 = Residual - 0.57 | Reference 79FUC C4H8O2 C(CO)) + Reference | | $\Delta_t H^\circ = C_p^\circ C_$ | tadecanoate
H ₃ (C)) + (12
(C)(O)) + (13
Literatur | -747.78 501.43 633.65 -1616.06 -265.95 107.28 2: (Methyl pental 2: C-(H) ₂ (C) ₂) 1: O-(C)(CO)) 2: - Calculated = -680.03 387.19 -773.51 531.85 666.03 -1719.99 | 3.88
3.97
decylate
+ (1 × C-(H))
= Residual | 65ADR/DEK 79FUC C ₁₆ H ₃₂ O ₂ O ₂ (CO)(C)) + Reference | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} =$ Ethyl ethan $(2 \times C - (I + C) - I + C)$ Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ | H ₃ (C)) + (1
(H)(O))
Literatur
Se
144.35
Hoate; Ethyl
H ₃ (C)) + (1
(C)(O)), σ
Literatur
-444.10
113.64 | ~ C-(H) ₂ (O)(
re - Calculated
-388.42
86.86
-421.85
154.80
248.85
-365.13
-312.99
126.26
acetate
× C-(H) ₂ (O)(e
= 9 | - 10.45
C)) + (1 × O-(0)
1 = Residual
- 0.57
5.49 | Reference 79FUC C4H8O2 C)(CO))+ Reference 66WAD2 69STU/WES | | $\Delta_t H^\circ = C_p^\circ = \frac{1}{C_p^\circ} \frac{1}{C_p^\circ$ | tadecanoate
H ₃ (C)) + (12
(C)(O)) + (13
Literatur | -747.78 501.43 633.65 -1616.06 -265.95 107.28 c; Methyl penta 2 × C-(H) ₂ (C) ₂) 1 × O-(C)(CO)) e - Calculated = -680.03 387.19 -773.51 531.85 666.03 -1719.99 -260.70 | 3.88
3.97
decylate
+ (1 × C-(H))
= Residual | 65ADR/DEK 79FUC C ₁₆ H ₃₂ O ₂ O ₂ (CO)(C)) + Reference | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} =$ $\ln K_{f} =$ Ethyl ethan $(2 \times C - (f (1 \times CO - f)) = f (1 \times CO - f)$ Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = f (1 \times CO - f) = f (1 \times CO - f)$ $Gas phase$ $\Delta_{t}H^{\circ} = f (1 \times CO - f) = f (1 \times CO - f)$ $Gas phase$ $\Delta_{t}H^{\circ} = f (1 \times CO - f) = f (1 \times CO - f)$ $Gas phase$ $\Delta_{t}H^{\circ} = f (1 \times CO - f) = f (1 \times CO - f)$ $Gas phase$ $\Delta_{t}H^{\circ} = f (1 \times CO - f) = f (1 \times CO - f)$ | H ₃ (C)) + (1
(H)(O))
Literatur
Se
144.35
Hoate; Ethyl
H ₃ (C)) + (1
(C)(O)), σ
Literatur
-444.10
113.64 | ~ C-(H) ₂ (O)(
re - Calculated
-388.42
86.86
-421.85
154.80
248.85
-365.13
-312.99
126.26
acetate
× C-(H) ₂ (O)(e
= 9 | - 10.45
C)) + (1 × O-(0)
1 = Residual
- 0.57
5.49 | Reference 79FUC C4H8O2 C)(CO))+ Reference 66WAD2 69STU/WES | | TADIE | 21 | Feters | (74) | _ | Continued | |-------|------------|--------|------|---|-----------| | IABLE | 41. | Esters | (74) | _ | Continued | | Ethyl ethanoate; Ethyl acetate (Continued) $C_4H_8O_2$ $(2 \times C(H)_3(C)) + (1 \times C(H)_2(O)(C)) + (1 \times O(C)(CO)) + (1 \times CO(C)(O)), \sigma = 9$ | | | | | 2-Methylpropyl methanoate; Isobutyl formate $(2 \times C - (H)_3(C)) + (1 \times C - (H)(C)_3) + (1 \times C - (H)_2(O)(C)) + (1 \times O - (C)(CO)) + (1 \times CO - (H)(O)) + (2 \times - CH_3 \text{ corr (tertiary)})$ | | | | | |---|----------------------------|--
--|--|--|-------------------------|--|----------------------|---| | | Literature | - Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | $C_p^{\circ} = S^{\circ} =$ | 478.80
169.20
259.41 | -476.41
171.16
270.19 | - 2.39
- 1.96
- 10.78 | 78FEN/HAR
33PAR/HUF
33PAR/HUF | Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ | | -436.37
132.67 | | | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | · · · · · | -480.10
-333.27
134.44 | | | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = $ | se
214.22 | -478.59
212.66
308.26
-578.34 | 1.56 | 36KUR/VOS | | | 3(C))+(1) | yl acetate
< C-(H) ₂ (C) ₂)
× CO-(C)(O) | | (O)(C) + | $\Delta_f G^\circ = \ln K_f =$ | | -306.16
123.50 | | | | | | e – Calculated | | Reference | Butyl ethan | | | | C ₆ H ₁₂ O ₂ | | Gas phase | | | | | (2×C-(H
(1×O-(C | I)₃(C))+(2
C)(CO))+(| \times C-(H) ₂ (C) ₂)
1 \times CO-(C)(O) | $+(1\times C-(H)_2)$ | (O)(C))+ | | $\Delta_t H^\circ = C_p^\circ =$ | | -464.16
131.04 | | | | | re – Calculated | | Reference | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 196.07 | -502.14
201.58
302.57 | -5.51 | 86JIM/ROM | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 485.60 | -484.79
153.93 | -0.81 | 66WAD2 | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | | -584.03
-328.01
132.32 | none de la companya d | | $C_p^{\circ} =$ | e
529.20
228.45 | - 527.87
232.00 | -1.33
-3.55 | 58WAD
79FUC | | (3×C-(H) |) ₃ (C)) + (1: | opropyl acetat
× C–(H)(O)(C
. × CO–(C)(O) |)2 (ethers,este | $C_5H_{10}O_2$ rs)) + corr (tertiary)) | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | | 334.95
- 687.96
- 322.76
130.20 | | | | , , , , | | e – Calculated | | Reference | 2.Methylpro | nyl ethano | ate; Isobutyl a | retate | C₅H ₁₂ O ₂ | | | - 481.70 | -476.87 | -4.83 | 66WAD2 | (3×C-(H
(1×C-(H | $(1)_3(C) + (1)_3(C)$ | ×CO-(C)(O))
+(1×C-(H)(C | +(1×O-(C)(| CO))+ | | C _p = | | 131.33 | | | | Literatur | e – Calculated | = Residual | Reference | | $C_p^{\circ} = S^{\circ} =$ | -518.80
196.65 | -513.58
199.56
295.59 | - 5.22
- 2.91 | 58WAD
79FUC | Gas phase $\Delta_l H^\circ = C_p^\circ =$ | | -491.48
153.96 | | | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = -$ | , | -591.01
-337.37
136.09 | | | Liquid phas $\Delta_t H^o = C_r^o =$ | e
240.20 | -533.15
229.02 | 11.18 | 36KUR/VOS | | | | | | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f = 0$ | | 329.60
-693.31
-326.44
131.68 | | | TABLE 21. Esters (74) - Continued | (4×C-(H | (3)(C) + (1) | anoate; tert-But
× C-(O)(C)3 (et
l × CO-(C)(O)) | hers,esters)) | C ₆ H ₁₂ O ₂
+
corr (quaternary)) | | $_{3}(C))+(3$ | \times C-(H) ₂ (C) ₂ |) + (1 × C-(H) ₂ ;
)) + (1 × C-(H) | | |-------------------------------------|-----------------|--|---------------|--|---|--|--|--|--| | | Literatur | e – Calculated = | Residual | Reference | *************************************** | Literatur | e – Calculated | l = Residual | Reference | | Gas phase | | | | | Gas phase | | | | | | $\Delta_i H^\circ = C_\rho^\circ =$ | | -499.33
153.88 | | | $\Delta_t H^\circ = C_p^\circ =$ | | - 527.26
201.51 | | | | Liquid phas $\Delta_t H^\circ =$ | e | - 548.21 | | | Liquid phase $\Delta_t H^\circ = -$ | 583.00 | 577 74 | 5.26 | 278.CU | | $C_p^{\circ} =$ | 230.96 | 230.94 | 0.02 | 79FUC | $C_p^{\circ} =$ | 363.00 | - 577.74
291.71 | -5.26 | 37SCH | | S° = | 250.70 | 309.52 | 0.02 | 17100 | $S^{\circ} =$ | | 407.20 | | | | $\Delta_t S^\circ =$ | | -713.39 | | | $\Delta_f S^\circ =$ | | -888.33 | | | | $\Delta_{\rm f}G^{\circ} =$ | | -335.51 | | | $\Delta_{\rm f}G^{\circ} =$ | | -312.88 | | | | $lnK_f =$ | | 135.34 | | | $lnK_f =$ | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 126.22 | | | | (2×C-(H | $I_{3}(C) + (1$ | yl propionate
×C-(H) ₂ (O)(C
1×C-(H) ₂ (CO) | | C ₅ H ₁₀ O ₂ | | 3(C))+(4 | \times C-(H) ₂ (C) ₂) |) + (1 × C-(H) ₂ (
)) + (1 × C-(H) | | | | Literatur | re – Calculated = | - Residual | Reference | | Literatur | e – Calculated | l = Residual | Reference | | Gas phase | 450.50 | | 4.55 | | Gas phase | | 5.15.00 | | | | $\Delta_t H^\circ = C_p^\circ =$ | 463.60 | -465.37
132.84 | 1.77 | 72MAN2 | $\Delta_{f}H^{\circ} = C_{p}^{\circ} =$ | | - 547.89
224.40 | | | | Liquid phas | | | | | Liquid phase | | | | | | | -502.70 | - 500.55 | -2.15 | 72MAN2 | • | 613.30 | -603.47 | - 9.83 | 37SCH | | $C_p^{\circ} =$ | 199.58 | 200.45 | -0.87 | 87ZAB/HYN | $C_p^{\circ} =$ | | 322.13 | | | | S° = | | 310.06 | | | S° = | | 439.58 | | | | $\Delta_f S^\circ =$ | | -576.54 | | | $\Delta_f S^\circ =$ | | - 992.26 | | | | $\Delta_t G^\circ = \ln K_t =$ | | - 328.66
132.58 | | | $\Delta_t G^\circ = \ln K_t =$ | | -307.63
124.09 | | | | (2×C-(I | (C)(O))+(| yi valerate
2 × C-(H) ₂ (C) ₂) -
(1 × O-(C)(CO))
re – Calculated = | + (1 × C-(H) | | | (C))+(1
corr (terti | \times C-(H) ₂ (C) ₂) | ı+(1×C-(H)(0
D-(C)(O))+(1 | C ₆ H ₁₂ O ₂
CO)(C) ₂) +
× O-(C)(CO)) + | | | | | | | | Literatur | e – Calculated | l = Residual | Reference | | Gas phase $\Delta_t H^\circ =$ | | -506.63 | | | Gas phase | | | | | | C _p = | | 178.62 | | | • | 492.50 | -476.03 | - 16.47 | 70COX/PIL | | Liquid pha | | 552.01 | 0.00 | 2780U | Liquid phase | 524 20 | 5 20.02 | 14 29 | SALIA NAWA T | | $\Delta_{\rm f}H^{\circ} =$ | - 553.00 | -552.01 | -0.99 | 37SCH | - | 534.30 | - 520.02 | 14.28 | 54HAN/WAT | | $C_p^{\circ} = S^{\circ} =$ | | 261.29
374.82 | | | $C_p^{\circ} = S^{\circ} =$ | | 221.83
328.76 | | | | $\Delta_{\rm f} S^{\circ} =$ | | 374.82
784.40 | | | $\Delta_t S^\circ =$ | | - 694.15 | | | | $\Delta_{l}G^{\circ} =$ | | - 784.40
- 318.14 | | | $\Delta_{f}S = \Delta_{f}G^{\circ} =$ | | - 094.13
- 313.06 | | | | $lnK_f =$ | | 128.34 | | | $lnK_f =$ | | 126.29 | | | | urvt = | | 140.34 | | | mar - | | 140.47 | | | TABLE 21. Esters (74) - Continued | (2×C-(I
(1×C-(I | $\frac{1}{3}$ (C)) + (1
$\frac{1}{2}$ (CO)(C) | oate; Methyl iso
× C-(H)(C) ₃) +
) + (1 × CO-(C) | (2×-CH ₃ co | | $(1 \times C_d - (1 \times C_d))$ | | nyl acetate
d-(O)(H))+(1
×C-(H) ₃ (C)) | × O-(C _d)(CO) | C ₄ H ₆ O ₂ | |---|--|--|--|---|---|-----------------------------------|--|---------------------------|---| | (1×C-(I | , | re – Calculated : | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase
Δ _l H° = | - 497.90 | -
480.42 | -17.48 | 70COX/PIL | Gas phase
Δ _t H° = | -314.90 | - 314.89 | -0.01 | 38DOL/GRE | | $C_p^{\circ} =$ Liquid pha $\Delta_t H^{\circ} =$ | se
538.90 | 158.32
- 521.49 | - 17.41 | 54HAN/WAT | Liquid pha $\Delta_t H^\circ = C_p^\circ =$ | - 349.70
165.40 | - 345.60
154.01 | -4.10
11.39 | 47STU
59BEN/THO | | $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = 0$ | | 224.67
336.88
- 686.03
- 316.95
127.86 | | | $(1 \times C_d -$ | $(H)_2) + (1 \times$ | ethyl acrylate
C _d -(H)(CO)) +
1 × C-(H) ₃ (O) | | C ₄ H ₆ O ₅
(O))+ | | - | | | | | | Literatu | re – Calculated | = Residual | Reference | | (3 × C-(| H) ₃ (C))+(1
C)(CO))+(| opanoate; Meth
× C-(CO)(C) ₃)
3×-CH ₃ corr (
re – Calculated | +(1×CO-(C
quaternary)) | $C_cH_{12}O_2$
C)(O)) +
+ (1 × C-(H) ₃ (O))
Reference | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 333.00 | - 309.24
99.08 | -23.76 | 71HAL/BAL | | Gas phase Δ _t H° = | -494.51 | 484.90 | - 9.61 | 71HAL/BAL | Liquid pha $\Delta_t H^\circ = C_p^\circ =$ | - 362.20
161.50 | - 350.83
160.71 | -11.37
0.79 | 71HAL/BAL
79FUC | | Liquid pha
$\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | se
- 530.00
223.01 | - 522.85
218.47
318.22
- 704.69
- 312.75
126.16 | -7.15
4.54 | 71HAI /BAI.
71HAL/BAL | (1×C _d -(| $(H)_2) + (1 \times -(C_d)(O)) +$ | noate; Methyl 1
C _d -(C)(CO)) +
(1×O-(C)(CO
 culated = Resid | · (2×C−(H)₃(C | | | Ethyl 2-me | ethylbutano | ate; Ethyl sec-v | ilerate | C ₇ H ₁₄ O ₂ | Liquid pha $C_p^{\circ} =$ | 188.49 | 187.69 | 0.80 | 52ERD/JAG | | (3×C-(
(1×CO | H) ₃ (C)) + (1
-(C)(O)) + (1
H ₃ corr (ter | $1 \times C - (H)_2(O)(C)$
$(1 \times C - (H)(CO))$ | C))+(1×O-((
(C) ₂)+(1×C | C)(CO))+ | Methyl (2×C-(1 | crotonate
H)3(C))+(1 | e; Methyl trans $\times O^{-}(C)(CO))$ $(1 \times C_{d^{-}}(H)(C)$ | +(1×CO-(C ₆ | C ₅ H ₈ O ₂ | | Gas phase $\Delta_t H^\circ =$ | - 522.41 | -508.93 | - 13.48 | 70COX/PIL | | | re – Calculated | • | Reference | | Liquid photon $\Delta_t H^\circ = C_\theta^\circ =$ | nse
- 566.81 | -555.82
255.47 | - 10.99 | 54HAN/WAT | Gas phase $\Delta_l H^\circ = C_p^\circ =$ | - 341.92 | -341.50
122.17 | -0.42 | 70COX/PIL | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | | 361.35
- 797.87
- 317.94
128.25 | | | Liquid pha $\Delta_f H^\circ = C_p^\circ =$ | se
382.90 | - 389.14
193.42 | 6.24 | 36SCH | TABLE 21. Esters (74) - Continued Literature - Calculated = Residual -387.84 -2.28 Gas phase $\Delta_t H^\circ = -390.12$ Reference 70COX/PIL | TABLE 21. Esters (/4) — Continued | TABLE 21. Esters (/4) — Continued | |---|--| | Ethyl (E)-2-butenoate; Ethyl trans-2-butenoate $(2 \times C - (H)_3(C)) + (1 \times C - (H)_2(O)(C)) + (1 \times C_d - (H)(C)) + (1 \times C_d - (H)(C)) + (1 \times C_d - (H)(C))$ | Ethyl (Z)-2-pentenoate; Ethyl cis-2-pentenoate $(2 \times C - (H)_3(C)) + (1 \times C - (H)_2(O)(C)) + (1 \times O - (C)(CO)) + (1 \times CO - (C_d)(O)) + (1 \times C_d - (H)(CO)) + (1 \times C_d - (H)(C)) + (1 \times C - (H)_2(C)(C_d)) + (1 \times cis (unsat) corr)$ | | Literature - Calculated = Residual Reference | Literature - Calculated = Residual Reference | | Gas phase $\Delta_l H^\circ = -375.60 -374.40 -1.20$ 70COX/PIL $C_p^\circ = 142.50$ | Gas phase $\Delta_t H^\circ = -394.72 -390.43 -4.29$ 70COX/PIL $C_p^\circ = 155.10$ | | Liquid phase $\Delta_t H^\circ = -420.00 -424.94$ 4.94 36SCH $C_\rho^\circ =$ 227.06 | Liquid phase $\Delta_t H^\circ = -440.80 -445.40$ 4.60 38SCH2 $C_p^\circ =$ 256.35 | | Ethyl-3-pentynoate $C_7H_{10}O_2$ $(2 \times C(H)_3(C)) + (1 \times C(H)_2(O)(C)) + (1 \times O(C)(CO)) + (1 \times CO(C)(O)) + (1 \times C(H)_2(CO)(C_1)) + (2 \times C_1-(C))$ Literature – Calculated = Residual Reference | $ \begin{array}{ll} \text{Ethyl (E)-2-pentenoate; Ethyl } \textit{trans-2-pentenoate} & C_7H_{12}O_2\\ (2\times C-(H)_3(C)) + (1\times C-(H)_2(O)(C)) + (1\times O-(C)(CO)) + \\ (1\times CO-(C_d)(O)) + (1\times C_d-(H)(CO)) + (1\times C_d-(H)(C)) + \\ (1\times C-(H)_2(C)(C_d)) \end{array} $ | | Gra whose | Literature – Calculated = Residual Reference | | Gas phase $\Delta_t H^\circ = -237.82 -238.81$ 0.99 70COX/PIL | Gas phase | | Liquid phase $\Delta_t H^\circ = -287.60 -288.72$ 1.12 38SCH | $\Delta_t H^\circ = -394.30 -395.28$ 0.98 70COX/PIL $C_p^\circ = 163.13$ | | Ethyl-4-pentynoate $C_7H_{10}O_2$
$(1 \times C - (H)_3(C)) + (1 \times C - (H)_2(O)(C)) + (1 \times O - (C)(CO)) + (1 \times C - (H)_2(C)(C)) (H)_2(C)(C)(C)) + (1 \times C - (H)_2(C)(C)(C)(C)) + (1 \times C - (H)_2(C)(C)(C)(C)(C)(C)(C)(C) + (1 \times C - (H)_2(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)($ | Liquid phase $\Delta_t H^{\circ} = -442.50 - 450.67$ 8.17 38SCH2 $C_{\rho}^{\circ} = 256.35$ | | $(1 \times C_t - (C)) + (1 \times C_t - (H))$ Literature – Calculated = Residual Reference | Ethyl (Z)-3-pentenoate; Ethyl cis-3-pentenoate $C_7H_{12}O_2$ $(2 \times C-(H)_3(C)) + (1 \times C-(H)_2(O)(C)) + (1 \times O-(C)(CO)) + (1 \times CO-(C)(O)) + (1 \times C-(H)_2(CO)(C_d)) + (2 \times C_d-(H)(C)) +$ | | Gas phase $\Delta_t H^{\circ} = -233.22 -214.21 -19.01$ 70COX/PIL $C_p^{\circ} = 163.85$ | $(1 \times cis \text{ (unsat) corr})$ Literature – Calculated = Residual Reference | | Liquid phase $\Delta_t H^{\circ} = -281.71 - 263.45 - 18.26$ 38SCH | Gas phase $\Delta_t H^\circ = -387.61 - 382.99 - 4.62$ 70COX/PIL | | $C_p^{\circ} = 259.91$ $S^{\circ} = 340.94$ $\Delta_t S^{\circ} = -557.14$ $\Delta_t G^{\circ} = -97.34$ $\ln K_t = 39.27$ | Liquid phase $\Delta_t H^\circ = -432.40 - 428.66 - 3.74$ 38SCH2 | | | Ethyl (E)-3-pentenoate; Ethyl trans-3-pentenoate $C_7H_{12}O_2$ $(2 \times C-(H)_3(C)) + (1 \times C-(H)_2(O)(C)) + (1 \times O-(C)(CO)) + (1 \times CO-(C)(O)) + (1 \times C-(H)_2(CO)(C_d)) + (2 \times C_d-(H)(C))$ | $C_7H_{12}O_2$ TABLE 21. Esters (74) - Continued TABLE 21. Esters (74) - Continued | Ethyl (E)-3-pentenoate; Ethyl trans-3-pentenoate (Continued) C7H12O2 | |--| | $(2 \times C - (H)_3(C)) +
(1 \times C - (H)_2(O)(C)) + (1 \times O - (C)(CO)) +$ | | $(1 \times CO - (C)(O)) + (1 \times C - (H)_2(CO)(C_d)) + (2 \times C_d - (H)(C))$ | | | | | Literature – Calculated = Residual | | | | | |--------------------------------|------------------------------------|---------|-------|--------|--| | Liquid ph $\Delta_t H^\circ =$ | ase
-437.00 | -433.93 | -3.07 | 38SCH2 | | # $\begin{array}{ll} \textbf{Propyl (E)-2-butenoate; Propyl } \textit{trans-2-butenoate} & \textbf{C}_{7}\textbf{H}_{12}\textbf{O}_{2} \\ & (2\times C-(H)_{3}(C))+(1\times C-(H)_{2}(C)_{2})+(1\times C-(H)_{2}(O)(C))+\\ & (1\times O-(C)(CO))+(1\times CO-(C_{d})(O))+(1\times C_{d}-(H)(CO))+\\ & (1\times C_{d}-(H)(C)) \end{array}$ | | Literature - Calculated = Residual | | | | | | |---|------------------------------------|--------------------|------|-------|--|--| | Liquid ph $\Delta_{f}H^{\circ} = C_{p}^{\circ} =$ | nase
443.30 | - 450.67
257.48 | 7.37 | 36SCH | | | # $\begin{array}{ll} \textbf{Ethyl 4-pentenoate} & & & & & & \\ (1\times C-(H)_3(C))+(1\times C-(H)_2(O)(C))+(1\times O-(C)(CO))+\\ (1\times CO-(C)(O))+(1\times C-(H)_2(CO)(C))+(1\times C-(H)_2(C)(C_d))+\\ (1\times C_d-(H)(C))+(1\times C_d-(H)_2) \end{array}$ | | Literature – Calculated = Residual | | | Reference | | |--|------------------------------------|------------------------------|-------|-----------|--| | Gas phase | | | | | | | $\Delta_f H^\circ =$ | - 385.51 | - 381.35 | -4.16 | 70COX/PIL | | | $C_p^{\circ} =$ | | 167.86 | | | | | Liquid ph | ase | | | | | | | ase
-431.60 | -425.87
246.23 | -5.73 | 37SCH | | | $\Delta_l H^\circ = C_p^\circ =$ | | 246.23 | -5.73 | 37SCH | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = S$ | | 246.23
373.20 | -5.73 | 37SCH | | | $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} =$ | | 246.23
373.20
- 655.45 | -5.73 | 37SCH | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = S$ | | 246.23
373.20 | -5.73 | 378СН | | #### Isopropyl (E)-2-butenoate; Isopropyl trans-2-butenoate | $(3 \times C - (H)_3(C)) + (1 \times C_d - (H)(C)) + (1 \times C_d - (H)(CO)) +$ | |--| | $(1 \times CO - (C_d)(O)) + (1 \times O - (C)(CO)) +$ | | $(1 \times C - (H)(O)(C)_2$ (ethers, esters)) + | | (2×-CH ₃ corr (tertiary)) | | | Literature – Calculated = Residual | | | | | |--|------------------------------------|--------------------|--------|-----------|--| | Gas phase $\Delta_t H^\circ = -C_p^\circ =$ | 411.10 | - 407.74
165.68 | - 3.36 | 70COX/PIL | | | Liquid phase $\Delta_l H^\circ = -C_p^\circ =$ | | -462.11
255.46 | 5.01 | 36SCH | | # $\begin{array}{c} \textbf{Ethyl-2,4-pentadienoate} & C_7H_{10}O_2\\ (1\times C-(H)_3(C)) + (1\times C-(H)_2(O)(C)) + (1\times O-(C)(CO)) + \end{array}$ $(1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)(C)) + (1 \times C - (H)(C_d)) + (1 \times C_d - (H)(C_d)) + (1 \times C_d - (H)_2)$ | L | Reference | | | |---|--------------------------|-------|-----------| | Gas phase $\Delta_t H^\circ = -2t$ $C_p^\circ =$ | 89.70 — 286.09
156.49 | -3.61 | 70COX/PIL | | Liquid phase $\Delta_t H^\circ = -33$ $C_p^\circ =$ | 38.20 - 336.08
254.51 | -2.12 | 38SCH | # $\begin{array}{ll} \text{Butyl (E)-2-butenoate; Butyl } \textit{trans-2-butenoate} & C_8H_{14}O_2\\ (2\times C-(H)_3(C))+(2\times C-(H)_2(C)_2)+(1\times C-(H)_2(O)(C))+\\ (1\times O-(C)(CO))+(1\times CO-(C_d)(O))+(1\times C_d-(H)(CO))+\\ (1\times C_d-(H)(C)) & \end{array}$ | Literatu | Reference | | | |--|--------------------|--------|-----------| | Gas phase $\Delta_t H^\circ = -415.89$ $C_p^\circ =$ | -415.66
188.28 | - 0.23 | 70COX/PIL | | Liquid phase $\Delta_t H^\circ = -467.80$ $C_\rho^\circ =$ | - 476.40
287.90 | 8.60 | 36SCH | # $\begin{array}{ll} \textbf{Propyl (E)-2-butenoate; Propyl trans-2-butenoate} & C_7H_{12}O_2\\ (2\times C-(H)_3(C))+(1\times C-(H)_2(C)_2)+(1\times C-(H)_2(O)(C))+\\ (1\times O-(C)(CO))+(1\times CO-(C_d)(O))+(1\times C_d-(H)(CO))+\\ (1\times C_d-(H)(C)) & \end{array}$ | | Literatur | Reference | | | |--|-----------|--------------------|------|-----------| | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | - 395.03
165.39 | 0.73 | 70COX/PIL | # $\begin{array}{ll} \textbf{Propyl 2-pentenoate} & \textbf{C}_{\textbf{g}}\textbf{H}_{\textbf{14}}\textbf{O}_{\textbf{2}} \\ & (2 \times \textbf{C} - (\textbf{H})_3(\textbf{C})) + (1 \times \textbf{C} - (\textbf{H})_2(\textbf{C})_2) + (1 \times \textbf{C} - (\textbf{H})_2(\textbf{O})(\textbf{C})) + \\ & (1 \times \textbf{O} - (\textbf{C})(\textbf{CO})) + (1 \times \textbf{CO} - (\textbf{C}_{\textbf{d}})(\textbf{O})) + (1 \times \textbf{C}_{\textbf{d}} - (\textbf{H})(\textbf{CO})) + \\ & (1 \times \textbf{C}_{\textbf{d}} - (\textbf{H})(\textbf{C})) + (1 \times \textbf{C} - (\textbf{H})_2(\textbf{C})(\textbf{C}_{\textbf{d}})) \end{array}$ | | Literatui | Reference | | | |--|-----------|-------------------|------|-----------| | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -413.00 | -415.91
186.02 | 2.91 | 70COX/PIL | $C_8H_{14}O_2$ C₈H₁₄O₂ Reference 37SCH Reference 70COX/PIL $C_8H_{14}O_2$ 37SCH Liquid phase $\Delta_f H^\circ = -$ $C_p^{\circ} =$ Gas phase $\Delta_f H^\circ = -404.22$ Liquid phase $\Delta_f H^{\circ} = -454.40$ Isopropyl 3-pentenoate $(1 \times C - (H)_2(C)(C_d))$ Propyl 3-pentenoate $(2 \times C_{d}-(H)(C))$ Propyl 2-pentenoate (Continued) -464.90 $(1 \times C_a - (H)(C)) + (1 \times C - (H)_2(C)(C_a))$ | TABLE | 21 | Ecters | (74) | Continued | |--------|-----|--------|--------|-----------| | I ABLE | 21. | CSICIS | (/4) - | Continued | $(2 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(O)(C)) + (1 \times O - (C)(CO)) + (1 \times CO - (C_d)(O)) + (1 \times C_d - (H)(CO)) (H)(CO))$ Literature - Calculated = Residual -476.40 286.77 $\begin{array}{l} (2 \times C - (H)_2(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(O)(C)) + \\ (1 \times O - (C)(CO)) + (1 \times CO - (C)(O)) + (1 \times C - (H)_2(CO)(C_d)) + \\ \end{array}$ Literature - Calculated - Residual -408.47 -459.66 $(2 \times C_d - (H)(C)) + (2 \times -CH_3 \text{ corr (tertiary)}) +$ 11.50 4.25 5.26 | Literatur | e – Calculated | | | |-------------------------------|--|--|---| | | | = Residual | Reference | | | | | | | | -671.12
155.40 | | | | | 745.16 | | | | 263.17 | 264.68 | - 1.51 | 30WAS | | ,(C)) + (2:
0)(CO)) | × C-(H) ₂ (O)(C | | C_6H_{10} $C)(CO)) +$ Reference | | 742.00 | - 775.56 | 33.56 | 47STU | | 18-T | | | | | 805.50
260.66 | -805.46
260.66 | - 0.04
0.00 | 66ZIM/ROB
1881REI | | (C))+(2 | | +(2×CO-(C) | C ₇ H ₁₂
(O))+ | | 141 | | | | | . , , , | e – Calculated | = Residual | Reference | | . , , , | | – Residual | Reference | | . , , , | v — Calculated | - Residual | Reference | | . , , , | - 833.26 | Residual | | | 284.93 edioate; D | - 833.26 | 0.01
le
())+(2×O-(C | 33KOL/UDO
C ₈ H ₁₄ | | 284.93 edioate; D (C)) + (2) | - 833.26 - 880.65 284.92 Diethyl
succinal | 0.01
te
(2) + (2 × O-(C)
(C)) | 33KOL/UDC | | 284.93 edioate; D (C)) + (2) | - 833.26 - 880.65 284.92 biethyl succinal < C-(H) ₂ (O)(C | 0.01
te
(2) + (2 × O-(C)
(C)) | 33KOL/UDO
C ₈ H ₁₄ (
C)(CO)) + | | | 742.00 805.50 260.66 | nedioate; Diethyl oxalate
$S(C) + (2 \times C - (H)_2(O)(C))$
$S(C) + (2 \times C - (H)_2(O)(C))$
Literature – Calculated
$S(C) + (2 \times C - (H)_2(O)(C)$
$S(C) (H)_2(O)(C)(C)$
$S(C) + (2 \times C - (H)_2(O)(C)(C)$
$S(C) + (2 \times C - (H)_2(O)(C)(C)(C)$
$S(C) + (2 \times C - (H)_2(O)(C)(C)(C)$
$S(C) + (2 \times C - (H)_2(O)(C)(C)(C)$
$S(C) + (2 \times C - (H)_2(O)(C)(C)(C)(C)$
$S(C) + (2 \times C - (H)_2(O)(C)(C)(C)(C)(C)$
$S(C) (H)_2(O)(C)(C)(C)(C)(C)$ | 263.17 264.68 -1.51 redioate; Diethyl oxalate $s(C) + (2 \times C - (H)_2(O)(C)) + (2 \times O - (C))(CO)$ Literature - Calculated = Residual 742.00 -775.56 33.56 | | | Literature - Calculated = Residual | | | Reference | | |-----------------------------------|------------------------------------|--------------------------------|------------|-----------|--| | Gas phase
Δ _t H° = | - 425.09 | - 442.06 | 16.97 | 70COX/PIL | | | Liquid pha
Δ _ε H° = | | -496.83 | 23.53 | 37SCH | | | | H) ₃ (C))+(2 | ; Dimethyl oxa
× O-(C)(CO)) | +(2×CO-(O | | | | | Literatui | re – Calculated | = Residuai | Reference | | | Gas phase $\Delta_t H^\circ =$ | - 708.90 | 709.76 | 0.86 | 76ANT/CAR | | | Liquid ph | ase
-735.20 | | -1.34 | 76ANT/CAR | | | $C_p^{\circ} =$ | | 193.38 | | | | TABLE 21. Esters (74) - Continued #### Diethyl butanedioate; Diethyl succinate (Continued) C₈H₁₄O₄ $(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(O)(C)) + (2 \times O - (C)(CO)) +$ $(2 \times CO - (C)(O)) + (2 \times C - (H)_2(CO)(C))$ | | Literatu | re – Calculated = | Reference | | |-----------------------------|----------|-------------------|-----------|-------| | Liquid pha | se | · | | | | $\Delta_t H^{\circ} =$ | | - 905.88 | | | | $C_p^{\circ} =$ | 330.54 | 327.94 | 2.60 | 79FUC | | $C_p^{\circ} = S^{\circ} =$ | | 453.52 | | | | $\Delta_t S^\circ =$ | | - 916.48 | | | | $\Delta_t G^{\circ} =$ | | -632.63 | | | | $lnK_f =$ | | 255.20 | | | | - | | | | | ### 2-Oxetanone; 3-Propanolactone; β-Propiolactone C₃H₄O₂ $(1 \times C - (H)_2(CO)(C)) + (1 \times C - (H)_2(O)(C)) + (1 \times O - (C)(CO)) +$ $(1 \times CO-(C)(O)) + (1 \times \beta$ -propiolactone rsc) Literature - Calculated = Residual Reference Gas phase 0.00 66BOR/NAK $\Delta_{f}H^{\circ} =$ -282.90-282.90Liquid phase $\Delta_f H^\circ =$ -329.90-329.900.00 66BOR/NAK $C_p^{\circ} = S^{\circ} =$ 0.00 83LEB/YEV 122.09 122.09 175.31 175.31 0.00 83LEB/YEV $\Delta_{\epsilon}S^{\circ} =$ -308.10 $\Delta_f G^\circ =$ -238.04 $lnK_f =$ 96.02 ### 4-Butanolactone; τ-Butyrolactone C₄H₆O₂ $(1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) + (1 \times C - (H)_2(O)(C)) +$ $(1 \times O - (C)(CO)) + (1 \times CO - (C)(O)) + (1 \times \tau$ -butyrolactone rsc) | | Literatu | Reference | | | |--------------------------------|----------|-----------|-------|-----------| | Gas phase $\Delta_t H^\circ =$ | - 366.50 | -366.50 | 0.00 | 90LEI/PIL | | Liquid ph | ase | | | | | $\Delta_t H^{\circ} =$ | -420.90 | -420.90 | 0.00 | 90LEI/PIL | | $C_p^{\circ} =$ | 141.29 | 141.30 | -0.01 | 83LEB/YEV | | s° = | 197.40 | 197.40 | 0.00 | 83LEB/YEV | | $\Delta_f S^\circ =$ | | -422.32 | | | | $\Delta_f G^\circ =$ | | - 294.99 | | | | $lnK_f =$ | | 119.00 | | | 4-Pentanolactone; τ-Valerolactone C₅H₈O₂ $(1 \times C - (H)_2(C)_2) + (1 \times C - (H)(O)(C)_2 \text{ (ethers, esters)}) +$ $(1 \times C - (H)_3(C)) + (1 \times - CH_3 \text{ corr (tertiary)}) +$ $(1 \times C - (H)_2(CO)(C)) + (1 \times O - (C)(CO)) + (1 \times CO - (C)(O)) +$ (1×τ-Valerolactone rsc) | Literatur | Reference | | | |---|-----------|------|-----------| | Gas phase $\Delta_t H^{\circ} = -406.50$ | - 406.50 | 0.00 | 90LEI/PIL | | Liquid phase $\Delta_t H^\circ = -461.30$ | - 461.30 | 0.00 | 90LEI/PIL | ### 5-Pentanolactone; δ-Valerolactone C5H8O2 $(2 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) + (1 \times C - (H)_2(O)(C)) +$ $(1 \times O - (C)(CO)) + (1 \times CO - (C)(O)) + (1 \times \delta$ -valerolactone rsc) | | Literatur | re – Calculated = | = Residual | Reference | | | |------------------------|-----------|-------------------|------------|-----------|--|--| | Gas phase | Gas phase | | | | | | | $\Delta_f H^\circ =$ | - 379.60 | - 379.60
 | 0.00 | 90LEI/PIL | | | | Liquid ph | iase | | | | | | | $\Delta_t H^\circ =$ | -437.60 | -437.60 | 0.00 | 90LEI/PIL | | | | $C_{r}^{\circ} =$ | 171.59 | 171.59 | 0.00 | 83LEB/YEV | | | | S° = | 218.99 | 218.99 | 0.00 | 83LEB/YEV | | | | $\Delta_f S^\circ =$ | | - 537.04 | | , | | | | $\Delta_t G^{\circ} =$ | | - 277.48 | | | | | | $\ln K_t =$ | | 111.93 | | | | | #### Hexanolactone; Caprolactone $C_6H_{10}O_2$ $(3 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) + (1 \times C - (H)_2(O)(C)) +$ $(1 \times O - (C)(CO)) + (1 \times CO - (C)(O)) + (1 \times caprolactone rsc)$ | | Litera | Literature-Calculated = Residual | | | | |----------------------|--------|----------------------------------|-------|-----------|--| | Liquid pha | ise | | | | | | $C_p^{\circ} =$ | 196.82 | 196.83 | -0.01 | 83LEB/YEV | | | S° = | 235.68 | 235.68 | 0.00 | 83LEB/YEV | | | $\Delta_t S^\circ =$ | | - 656.66 | | | | ### Undecanolactone $C_{11}H_{20}O_2$ $(8 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) + (1 \times C - (H)_2(O)(C)) +$ $(1 \times O - (C)(CO)) + (1 \times CO - (C)(O)) + (1 \times undecanolactone rsc)$ | | Literature-Calculated = Residual | | | Reference | | |----------------------|----------------------------------|-----------|-------|-----------|--| | Liquid pha | se | | | | | | $C_p^{\circ} =$ | 342.71 | 342.73 | -0.02 | 83LEB/YEV | | | S° = | 369.49 | 369.45 | 0.04 | 83LEB/YEV | | | $\Delta s^{\circ} =$ | | - 1204.44 | | | | | TABLE | 21 | Ectore | (74) | - Continued | |-------|-----|--------|--------|-------------| | LABLE | Z1. | ESIEIS | (/4) - | - Conunuea | | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | l = Residual | Reference | |---|---|---|---|--
---|---|---|---|---| | · · · · · · · · · · · · · · · · · · · | | | | | Gos phase | | | | | | Gas phase $\Delta_t H^\circ =$ | -287.90 | -271.58 | - 16.32 | 71KUS/WAD | Gas phase $\Delta_t H^\circ = -$ | - 142.60 | - 143.15 | 0.55 | 71CAR/FIN | | $\begin{array}{l} \text{Liquid phas} \\ \Delta_t H^\circ = \\ C_p^\circ = \end{array}$ | se
-343.50 | -332.33
222.01 | - 11.17 | 71HAL/BAL | Liquid phase $\Delta_t H^\circ =$ | e | - 219.01 | | | | henyl eth: | anoate; Phei | nyl acetate | | C ₈ H ₈ O ₂ | Solid phase $\Delta_t H^\circ = C_0^\circ =$ | - 241.60 | - 240.55
230.95 | -1.05 | 67ADA/FIN | | (1×C-(I | $H_{3}(C) + (1$ | \times CO-(C)(O))
(5 \times C _B -(H)(C | | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ}$ | | 306.62
- 625.90
- 53.94 | | | | | Literatur | e – Calculated | = Residual | Reference | $lnK_f =$ | | 21.76 | | | | Gas phase $\Delta_t H^\circ =$ | -279.70 | - 282.20 | 2.50 | 72LEB/KAT | Dimethyl 1,2
Dimethyl | | ; Dimethyl o-p | ohthalate; | C10H10 | | | | | | | (2 x C-(H | (C) + (2 | ×O-(C)(CO)) | +(2×CO-(C | $O(C_{\rm B})) +$ | | $\Delta_t H^\circ = \frac{1}{2}$ Ethyl benze $(1 \times C - (1)$ | -325.40 oate H) ₃ (C))+(1 | - 327.29
× C-(H) ₂ (O)((1 × C _B -(CO)) | | | $(2 \times C_B - (C_B - C_B))$ Gas phase $\Delta_t H^o =$ | CO)(C _B) ₂) - | + (4 × C _B -(H)(ce - Calculated | | Reference | | $\Delta_t H^\circ =$ Ethyl benze $(1 \times C - (1 \times C))$ | -325.40 oate H) ₃ (C)) + (1 -(O)(C _B)) + (| | C)) + (1 × O-(0
C _B) ₂) + (5 × C _E | C ₉ H ₁₀ O ₂ | (2×C _B -(C | CO)(C _B) ₂) - | e – Calculated | | | | $\Delta_t H^\circ =$ Ethyl benze $(1 \times C - (1 \times CO - 1))$ | -325.40 oate H) ₃ (C)) + (1 -(O)(C _B)) + (| ×C-(H) ₂ (O)((
(1×C _B -(CO)(| C)) + (1 × O-(0
C _B) ₂) + (5 × C _E | C ₉ H ₁₀ O ₂
C)(CO)) +
(H)(C _B) ₂) | $(2 \times C_B - (C_B (C_$ | CO)(C _B) ₂) - | e – Calculated
– 624.76 | | | | Ethyl benz
(1×C-(I
(1×CO- | -325.40 oate H) ₃ (C)) + (1 -(O)(C _B)) + (| × C-(H) ₂ (O)((
(1 × C _B -(CO)(
re – Calculated | C)) + (1 × O-(0
C _B) ₂) + (5 × C _E | C ₉ H ₁₀ O ₂
C)(CO)) +
(H)(C _B) ₂) | $(2 \times C_B - (C_B - C_B))$ Gas phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ Dimethyl 1,3 Dimethyl (2 \times C - (H) | ECO)(C _B) ₂) - Literatur e 309.28 3-phthalate isophthala) ₃ (C)) + (2 | - 624.76 - 710.36 311.44 ; Dimethyl m- | = Residual -2.16 phthalate; +(2×CO-(C) | Reference 78MIL C ₁₀ H ₁₀ (0)(C _B))+ | | $\Delta_t H^\circ =$ Ethyl benza $(1 \times C - (1 \times C) - (1 \times C)$ Gas phase $\Delta_t H^\circ =$ Liquid pha $\Delta_t H^\circ =$ | -325.40 oate H) ₃ (C)) + (1 -(O)(C _B)) + (Literatur | \times C-(H) ₂ (O)((1 \times C _B -(CO)()
re - Calculated
- 304.48 | $C(T) + (1 \times O - (0 \times O)) + (5 \times C_E)$ $C(T) = Residual$ | C ₉ H ₁₀ O ₂ C)(CO)) + -(H)(C _B) ₂) Reference | $(2 \times C_B - (C_B - C_B))$ Gas phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ Dimethyl 1,3 Dimethyl (2 \times C - (H) | Literatur 309.28 -phthalate isophthala)3(C)) + (2 CO)(C _B) ₂) + | - 624.76 - 710.36 311.44 ; Dimethyl m-te × O-(C)(CO)) | = Residual -2.16 phthalate; +(2 × CO-(CC _B) ₂) + (1 × max | 78MIL C ₁₀ H ₁₀ (C ₈))+ | | Ethyl benzz
$(1 \times C - (1 \times C) - (1 \times C)$
Gas phase
$\Delta_t H^\circ = C_p^\circ = C_p^\circ = C_p^\circ = C_p^\circ$ | -325.40 oate H) ₃ (C)) + (1 -(O)(C _B)) + (1 Literatur ase 246.00 henyl ethano H) ₃ (C)) + (1 (O)(C _B) ₂) + (1 | \times C-(H) ₂ (O)((1 \times C _B -(CO)()
re - Calculated
- 304.48 | C)) + (1 × O-(0
C _B) ₂) + (5 × C _E
= Residual
-9.65
chenyl acetate
+ (1 × O-(C _B) | C ₉ H ₁₀ O ₂ C)(CO)) + r(H)(C _B) ₂) Reference 79FUC C ₉ H ₁₀ O ₂ | $(2 \times C_B - (C_B - C_B))$ Gas phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ Dimethyl 1,3 Dimethyl (2 \times C - (H) | Literatur 309.28 -phthalate isophthala)3(C)) + (2 CO)(C _B) ₂) + | - 624.76 - 710.36 311.44 ; Dimethyl m-te ×O-(C)(CO)) + (4×C _B -(H)(6) | = Residual -2.16 phthalate; +(2 × CO-(CC _B) ₂) + (1 × max | Reference 78MIL C ₁₀ H ₁₀ (0)(C _B)) + eta corr) | | Ethyl benzz
$(1 \times C - (1 \times C) - (1 \times C)$
Gas phase
$\Delta_t H^\circ = C_p^\circ = C_p^\circ = C_p^\circ = C_p^\circ$ | -325.40 oate H) ₃ (C)) + (1 -(O)(C _B)) + (1 Literatur ase 246.00 henyl ethano H) ₃ (C)) + (1 (O)(C _B) ₂) + (2 c corr) | × C-(H) ₂ (O)((1 × C _B -(CO)((1 × C _B -(CO)((1 × C _B -(CO)((1 × C _B -(CO)((1 × CO)((1 CO)((| C)) + (1 × O-(0
C_{B})2) + (5 × C_{E}) = Residual -9.65 Chenyl acetate + (1 × O-(C_{B}) B)2) + (1 × C_{B} -1 | C ₉ H ₁₀ O ₂ C)(CO)) + r(H)(C _B) ₂) Reference 79FUC C ₉ H ₁₀ O ₂ | Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_p^\circ =$ Dimethyl 1,3 Dimethyl (2 × C-(H) (2 × C _B -(C) | ECO)(C _B) ₂) - Literatur 309.28 3-phthalate isophthala) ₃ (C)) + (2 CO)(C _B) ₂) + Literatur | - 624.76 - 710.36 311.44 ; Dimethyl m- te × O-(C)(CO)) + (4 × C _B -(H)(0) e - Calculated | = Residual -2.16 phthalate; +(2 × CO-(CC _B) ₂) + (1 × max | Reference 78MIL C ₁₀ H ₁₀ (0)(C _B)) + eta corr) | TABLE 21. Esters (74) - Continued # Dimethyl 1,3-phthalate; Dimethyl m-phthalate; Dimethyl isophthalate (Continued) $C_{10}H_{10}O_4$ $\begin{array}{l} (2\times C-(H)_3(C)) + (2\times O-(C)(CO)) + (2\times CO-(O)(C_B)) + \\ (2\times C_B-(CO)(C_B)_2) + (4\times C_B-(H)(C_B)_2) + (1\times \textit{meta} \ \textit{corr}) \end{array}$ | Literatu | Literature - Calculated = Residual | | | |----------------------------------|------------------------------------|-------|-----------| | Solid phase | | | | | $\Delta_t H^{\circ} = -730.90$ | -760.26 | 29.36 | 72COL/LAY | | $C_p^{\circ} =$ | 205.14 | | | | S° = | 292.98 | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | -827.36 | | | | $\Delta_{\rm f}G^{\circ} =$ | -513.58 | | | | $lnK_f =$ | 207.18 | | | # Dimethyl 1,4-phthalate; Dimethyl p-phthalate; Dimethyl terephthalate CtoHtoO4 $(2 \times C - (H)_3(C)) + (2 \times O - (C)(CO)) + (2 \times C_B - (CO)(C_B)_2) + (4 \times C_B - (H)(C_B)_2) + (2 \times CO - (O)(C_B))$ | | Literatur | Reference | | | | |------------------------------|-----------|--------------|-------|-----------|--| | Gas phase | | | | | | | Δ ₁ H° - | | - 626.02
 | | | | | Liquid pha | ase | | | | | | $\Delta_{i}H^{\circ}$ - | | -713.62 | | | | | C _p = | | 307.94 | | | | | Solid phas | se | | | | | | $\Delta_{\rm f} H^{\circ} =$ | -732.60 | -762.26 | 29.66 | 72COL/LAY | | | $C_p^{\circ} =$ | 261.08 | 205.14 | 55.94 | 68ELL/CHR | | | S° = | | 292.98 | | | | | Δ _f S° - | | 827.36 | | | | | $\Delta_r G^\circ =$ | | -515.58 | | | | | $lnK_{f} =$ | | 207.98 | | | | ### Diethyl 1,2-phthalate; Diethyl o-phthalate; Diethyl phthalate $C_{12}H_{14}O_4$ $\begin{array}{l} (2\times C-(H)_3(C)) + (2\times C-(H)_2(O)(C)) + (2\times O-(C)(CO)) + \\ (2\times CO-(O)(C_B)) + (2\times C_B-(CO)(C_B)_2) + (4\times C_B-(H)(C_B)_2) + \\ (1\times ortho\ corr) \end{array}$ | Literat | Literature — Calculated — Residual | | | | | |---|------------------------------------|---------------|------------------------|--|--| | Gas phase $\Delta_t H^\circ = -688.40$ | - 690.56 | 2.16 | 58НОҮ/РЕР | | | | Liquid phase $\Delta_t H^\circ = -776.60$ $C_\rho^\circ = 366.15$ | - 781.96
378.72 | 5.36
12.57 | 52MED/THO
67CHA/HOR | | | ### Cyclobutane methyl carboxylate C₆H₁₆O₂ $(3 \times C - (H)_2(C)_2) + (1 \times C -
(H)(CO)(C)_2) + (1 \times CO - (C)(O)) + (1 \times O - (C)(CO)) + (1 \times C - (H)_3(O)) +$ (1×Cyclobutane methyl carboxylate rsc) | Literatu | Literature – Calculated = Residual | | | | | |---|------------------------------------|------|-----------|--|--| | Gas phase $\Delta_t H^\circ = -355.30$ | - 355.30 | 0.00 | 71HAL/BAL | | | | Liquid phase $\Delta_t H^{\circ} = -395.00$ | - 395.00 | 0.00 | 71HAL/BAL | | | ### Bicyclobutane methyl carboxylate C₆H₈O₂ $(2 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_3) + (1 \times C - (CO)(C)_3) + (1 \times CO - (C)(O)) + (1 \times O - (C)(CO)) + (1 \times C - (H)_2(O)) C$ (1 × Bicyclobutane methyl carboxylate rsc) | Literatu | Literature – Calculated = Residual | | | |---|------------------------------------|------|-----------| | Gas phase $\Delta_t H^\circ = -164.60$ | - 164.60 | 0.00 | 71HAL/BAL | | Liquid phase $\Delta_t H^\circ = -203.10$ | -203.10 | 0.00 | 71HAL/BAL | ### Cubane 1,4-dimethyldicarboxylate $C_{12}H_{12}O_4$ $(6 \times C - (H)(C)_3) + (2 \times C - (CO)(C)_3) + (2 \times CO - (C)(O)) + (2 \times O - (C)(CO)) + (2 \times C - (H)_3(O)) +$ (1×1,4-Dimethylcubane dicarboxylate) | Literatu | Literature – Calculated – Residual | | | | | |--|------------------------------------|------|-----------|--|--| | Gas phase Δ _f H° 100.10 | - 100.10 | 0.00 | 66KYB/CAR | | | | Solid phase $\Delta_t H^\circ = -218.99$ | - 218.99 | 0.00 | 89KIR/CHU | | | Solid phase $\Delta_t H^\circ = -369.60 -369.40$ -0.20 75CAR/LAY | TABLE 22. Peroxides (7) | | TABLE 22. Peroxides (7) - Continue | ed | | |---|---|---|---|--| | Dimethylperoxide $(2 \times C-(H)_3(C)) + (2 \times O-(C)(O))$ | C₂H₅O₂ | Diacetyl peroxide; Diethanoyl peroxide $(2 \times C - (H)_3(CO)) + (2 \times CO - (C)(O)) + (2 \times O - (CO)(C)(O))$ | | | | Literature – Calculated = Residual | Reference | Literature - Calculated = Residual | Reference | | | Gas phase $\Delta_t H^\circ = v - 125.90 - 126.02$ 0.12 | 65BAK/LIT | Gas phase $\Delta_t H^{\circ} = -535.00$ | | | | Diethylperoxide
(2×C-(H) ₃ (C)) + (2×C-(H) ₂ (O)(C)) + (2×O-(C | C ₄ H ₁₀ O ₂ | Liquid phase $\Delta_t H^\circ = -535.30 -573.96$ 38.66 | 57JAF/PRO | | | Literature – Calculated = Residual | Reference | Dipropionyl peroxide; Dipropanoyl peroxide | C ₆ H ₁₀ O ₄ | | | Gas phase $\Delta_t H^\circ = -192.80 -191.82 -0.98$ | 39BLA/GER | $(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(CO)(C)) + (2 \times CO - (2 \times O - (CO)(O)))$ | | | | · · · · · · · · · · · · · · · · · · · | | Literature – Calculated = Residual | Reference | | | Liquid phase $\Delta_t H^\circ = -223.30 -213.82 -9.48$ | 65BAK/LIT | Gas phase $\Delta_t H^{\circ} = -578.68$ | | | | Di-tert-butyl peroxide
$(6 \times C-(H)_3(C)) + (2 \times O-(C)(O)) +$
$(2 \times C-(O)(C)_3$ (alcohols,peroxides)) +
$(6 \times -CH_3 \text{ corr (quaternary)})$ | C ₈ H ₁₈ O ₂ | Liquid phase $\Delta_f H^o = -620.10 -622.24$ 2.14 | 57JAF/PRO | | | Literature – Calculated = Residual | Reference | Dibutyryl peroxide; Dibutanoyl peroxide
(2×C-(H) ₃ (C))+(4×C-(H) ₂ (CO)(C))+(2×CO-(
(2×O-(CO)(O)) | C ₈ H ₁₄ O ₄
(C)(O))+ | | | Gas phase $\Delta_t H^{\circ} = -349.11 -349.42$ 0.31 | 51EGE/EMT | Literature – Calculated = Residual | Reference | | | Liquid phase $\Delta_t H^{\circ} = -380.91 -381.26$ 0.35 | 65BAK/LIT | Gas phase $\Delta_t H^\circ = -622.36$ | | | | Dibenzoyl peroxide $(10\times C_B-(H)(C_B)_2)+(2\times C_B-(CO)(C_B)_2)+(2\times C_B)$ $(2\times O-(CO)(O))$ | $C_{14}H_{10}O_4$
CO-(O)(C _B)) + | Liquid phase $\Delta_t H^\circ = -673.60 -670.52 -3.08$ | 57JAF/PRO | | | Literature - Calculated = Residual | Reference | | | | | Gas phase $\Delta_t H^{\circ} = -271.70 -256.90 -14.80$ | 75CAR/LAY | | | | | Liquid phase $\Delta_t H^{\circ} = -357.40$ | - | | | | | TABLE | 23. | Hydroperoxides (| (9) | | |-------|-----|------------------|-----|--| | | | | | | TABLE 23. Hydroperoxides (9) - Continued | tert-Butyl hydroperoxide $C_4H_{10}O_2$
$(3 \times C-(H)_3(C)) + (1 \times C-(O)(C)_3 \text{ (alcohols,peroxides))} + (1 \times O-(C)(O)) + (1 \times O-(H)(O)) + (3 \times -CH_3 \text{ corr (quaternary))}$ | <i>n</i> -Hexyl-3-hydroperoxide $C_6H_{14}O_2$
(2×C-(H) ₃ (C)) + (3×C-(H) ₂ (C) ₂) + (1×C-(H)(O)(C) ₂ (alcohols,peroxides)) + (1×O-(C)(O)) + (1×O-(H)(O)) | |---|--| | Literature – Calculated = Residual Reference | Literature - Calculated = Residual Reference | | Gas phase $\Delta_t H^\circ = -245.90 - 246.97$ 1.07 64KOZ/RAB | Gas phase $\Delta_t H^\circ = -265.52$ | | Liquid phase $\Delta_t H^\circ = -293.60 -292.38 -1.22 64KOZ/RAB$ | Liquid phase $\Delta_t H^\circ = -305.10 -325.26$ 20.16 56PRI/MUL | | Solid phase $\Delta_t H^\circ = -301.02$ | Solid phase $\Delta_t H^\circ = -346.29$ | | n-Hexyl-1-hydroperoxide $C_6H_{14}O_2$
$(1 \times O-(H)(O)) + (1 \times O-(C)(O)) + (1 \times C-(H)_2(O)(C)) +$
$(4 \times C-(H)_2(C)_2) + (1 \times C-(H)_3(C))$
Literature – Calculated = Residual Reference | n -Heptyl-1-hydroperoxide $C_7H_{16}O_2$
$(1 \times C - (H)_3(C)) + (5 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(O)(C)) + (1 \times O - (C)(O)) + (1 \times O - (H)(O))$ | | | Literature - Calculated = Residual Reference | | Gas phase $\Delta_t H^\circ = -250.69$ | Gas phase $\Delta_t H^\circ = -271.32$ | | Liquid phase $\Delta_t H^\circ = -299.62 -311.58$ 11.96 56PRI/MUL | Liquid phase $\Delta_t H^\circ = -343.00 -337.31 -5.69$ 56PRI/MUL | | Solid phase $\Delta_t H^\circ = -332.88$ | Solid phase $\Delta_t H^\circ = -362.29$ | | $\begin{array}{c} \textit{n-Hexyl-2-hydroperoxide} & C_6H_{14}O_2\\ (2\times C-(H)_3(C))+(3\times C-(H)_2(C)_2)+\\ (1\times C-(H)(O)(C)_2 \text{ (alcohols,peroxides))}+(1\times O-(C)(O))+\\ (1\times O-(H)(O))+(1\times -CH_3 \text{ corr (tertiary))} \\ \\ \text{Literature}-\text{Calculated}=\text{Residual} \qquad \text{Reference} \end{array}$ | n -Heptyl-2-hydroperoxide $C_7H_{16}O_2$ $(2 \times C - (H)_3(C)) + (4 \times C - (H)_2(C)_2) + (1 \times C - (H)(O)(C)_2 \text{ (alcohols, peroxides)}) + (1 \times O - (C)(O)) + (1 \times O - (H)(O)) + (1 \times -CH_3 \text{ corr (tertiary)})$ | | | Literature - Calculated = Residual Reference | | Gas phase $\Delta_t H^{\circ} = -267.78$ | Gas phase $\Delta_t H^\circ = -288.41$ | | Liquid phase $\Delta_{\rm f} H^{\circ} = -310.12 - 327.44$ 17.32 56PRI/MUL | Liquid phase $\Delta_t H^\circ = -346.20 -353.17$ 6.97 56PRI/MUL | | Solid phase $\Delta_t H^{\circ} = -348.63$ | Solid phase $\Delta_I H^{\circ} = -378.04$ | TABLE 23. Hydroperoxides (9) - Continued # TABLE 24. Peroxyacids (8) | n-Heptyl-3-hydroperoxide $C_7H_{16}O_2$
$(2 \times C - (H)_3(C)) + (4 \times C - (H)_2(C)_2) +$
$(1 \times C - (H)(O)(C)_2 \text{ (alcohols, peroxides)}) + (1 \times O - (C)(O)) +$
$(1 \times O - (H)(O))$ | $\begin{array}{c} \text{Perbenzoic acid} & C_7 H_6 O_3 \\ (1 \times C_B (CO)(C_B)_2) + (1 \times CO (O)(C_B)) + (1 \times O (CO)(O)) + \\ (1 \times O (H)(O)) + (5 \times C_B (H)(C_B)_2) \end{array}$ | |---|--| | Literature - Calculated = Residual Reference | Literature – Calculated = Residual Reference | | Gas phase $\Delta_t H^\circ = -286.15$ | Gas phase $\Delta_t H^{\circ} = -200.71$ | | Liquid phase $\Delta_t H^{\circ} = -346.81 -350.99$ 4.18 56PRI/MUL | Liquid phase $\Delta_t H^{\circ} = -280.45$ | | Solid phase $\Delta_t H^\circ = -375.70$ | Solid phase $\Delta_t H^\circ = -367.00 -290.00 -77.00$ 54BRI/DEC | | n -Heptyl-4-hydroperoxide $C_7H_{16}O_2$
$(2 \times C - (H)_3(C)) + (4 \times C - (H)_2(C)_2) + (1 \times C - (H)(O)(C)_2 \text{ (alcohols, peroxides)}) + (1 \times O - (C)(O)) + (1 \times O - (H)(O))$ | Perdodecanoic acid; Peroxylauric acid $C_{12}H_{24}O_3$
$(1\times C-(H)_3(C))+(9\times C-(H)_2(C)_2)+(1\times C-(H)_2(CO)(C))+$
$(1\times CO-(C)(O))+(1\times O-(CO)(O))+(1\times O-(H)(O))$
Literature – Calculated = Residual Reference | | Literature - Calculated = Residual Reference | Gas phase $\Delta_t H^{\circ} = -547.27$ | | Gas phase $\Delta_t H^\circ = -286.15$ | Liquid phase | | Liquid phase $\Delta_1 H^{\circ} = -333.80 - 350.99$ 17.19 56PRI/MUL | $\Delta_t H^\circ = -644.44$ Solid phase | | Solid phase $\Delta_t H^{\circ} = -375.70$ | $\Delta_t H^\circ = -680.30 -678.73 -1.57$ 64SWA/SIL | | 1-Methyl-1-phenylethyl hydroperoxide; Cumyl hydroperoxide C ₂ H ₁₂ O ₂ | Pertetradecanoic acid; Peroxymyristic acid $C_{14}H_{28}O_3$
$(1 \times C - (H)_3(C)) + (11 \times C - (H)_2(C)_2) + (1 \times C -
(H)_2(CO)(C)) + (1 \times CO - (C)(O)) + (1 \times O - (CO)(O)) + (1 \times O - (H)(O))$ | | (5 × C _B -(H)(C _B) ₂) + (1 × C _B -(C)(C _B) ₂) + (1 × C-(C) ₂ (O)(C _B)) + (2 × C-(H) ₃ (C)) + (2 × -CH ₃ corr (quaternary)) + (1 × O-(C)(O)) + (1 × O-(H)(O)) | Literature - Calculated = Residual Reference | | Literature – Calculated = Residual Reference | Gas phase $\Delta_t H^\circ = -588.53$ | | Gas phase $\Delta_! H^{\circ} = -78.40 - 78.66$ 0.26 64KOZ/RAB | Liquid phase $\Delta_t H^\circ = -695.90$ | | Liquid phase $\Delta_t H^{\circ} = -143.49$ | Solid phase $\Delta_t H^{\circ} = -749.90 -737.55 -12.35$ 64SWA/SIL | | Solid phase $\Delta_t H^{\circ} = -161.80 - 161.83 0.03 64 \text{KOZ/RAB}$ | | $C_{16}H_{32}O_{3}$ C18H36O3 TABLE 24. Peroxyacids (8) - Continued Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ = -688.80$ -594.96 -670.73 -18.07 64SWA/SIL TABLE 24. Peroxyacids (8) - Continued | Perhexadecanoic acid; Peroxypalmitic acid $(1 \times C - (H)_3(C)) + (13 \times C - (H)_2(C)_2) + (1 (1$ | | (4×C-(I
(1×O-(| C)(O))+(1: | × C-(O)(C) ₃ | (ethers,esters)
) + (1 × CO-(0
₁₂ (C) ₂) + | | |---|--|--|---|--------------------------------|---|---------------------| | Literature - Calculated = Residual | leference | | 3 corr (quat | | 2(-)2) | | | Gas phase | | | Literatur | re – Calculateo | d = Residual | Reference | | $\Delta_t H^\circ = -629.79$ | | Gas phase $\Delta_t H^\circ =$ | | - 626.72 | | | | Liquid phase $\Delta_t H^\circ = -747.36$ | | Liquid pha | se | | | | | Solid phase $\Delta_t H^\circ = -801.90 -796.37 -5.53 6$ | 4SWA/SIL | $\Delta_t H^\circ =$ | | -721.40 | - 16.90 | 64SWA/SIL | | Peroctadecanoic acid; Peroxystearic acid | C ₁₈ H ₃₆ O ₃ | (4×C-(I | | \times C-(O)(C) ₃ | (ethers,esters)
) + (1 × CO-(C | | | $(1 \times C - (H)_3(C)) + (15 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)_2) $ |)(C))+ | (1×C-(H | |)+(11×C-(H
ernary)) | () ₂ (C) ₂)+ | | | $(1 \times CO - (C)(O)) + (1 \times O - (CO)(O)) + (1 \times O - (H)(O))$ |)(C))+ | (1×C-(H | H) ₂ (CO)(C))
3 corr (quat | | | Reference | | $(1 \times CO - (C)(O)) + (1 \times O - (CO)(O)) + (1 \times O - (H)(O))$ $Literature - Calculated = Residual$ |)(C))+ | (1×C-(H | H) ₂ (CO)(C))
3 corr (quat | ernary)) | | Reference | | $(1 \times \text{CO-(C)(O)}) + (1 \times \text{O-(CO)(O)}) + (1 \times \text{O-(H)(O)})$ $\text{Literature - Calculated = Residual}$ Gas phase $\Delta_{l}H^{\circ} = -671.05$ |)(C))+ | (1×C-(I
(3×-CH | H) ₂ (CO)(C))
3 corr (quat
Literatur | ernary))
e – Calculated | | Reference 64SWA/SIL | | $(1 \times \text{CO-(C)(O)}) + (1 \times \text{O-(CO)(O)}) + (1 \times \text{O-(H)(O)})$ $\text{Literature - Calculated = Residual} \qquad \text{R}$ Gas phase $\Delta_{\ell} H^{\circ} = \qquad -671.05$ Liquid phase $\Delta_{\ell} H^{\circ} = \qquad -798.82$ Solid phase |)(C))+ | $(1 \times C - (H + (1 \times C - (H + (1 \times C + (H + (1 \times C + (H $ | H) ₂ (CO)(C)) 3 corr (quat Literatur | e – Calculated
– 667.98 | i = Residual | | | $(1 \times \text{CO-(C)(O)}) + (1 \times \text{O-(CO)(O)}) + (1 \times \text{O-(H)(O)})$ $\text{Literature - Calculated = Residual} \qquad \text{R}$ Gas phase $\Delta_{\ell} H^{\circ} = \qquad -671.05$ Liquid phase $\Delta_{\ell} H^{\circ} = \qquad -798.82$ Solid phase | eference | $(1 \times C - (H + (1 \times C - (H + (1 \times C + (H + (1 \times C + (H $ | H) ₂ (CO)(C)) 3 corr (quat Literatur | e – Calculated
– 667.98 | i = Residual | | | $(1 \times \text{CO-(C)(O)}) + (1 \times \text{O-(CO)(O)}) + (1 \times \text{O-(H)(O)})$ $\text{Literature - Calculated = Residual} \qquad \text{R}$ Gas phase $\Delta_t H^\circ = \qquad -671.05$ Liquid phase $\Delta_t H^\circ = \qquad -798.82$ Solid phase $\Delta_t H^\circ = \qquad -857.30 \qquad -855.19 \qquad -2.11 \qquad 6$ | 4SWA/SIL | $(1 \times C - (H + (1 \times C - (H + (1 \times C + (H + (1 \times C + (H $ | H) ₂ (CO)(C)) 3 corr (quat Literatur | e – Calculated
– 667.98 | i = Residual | | | TABLE | 25. | Carbonates | (3) | |-------|-----|------------|-----| |-------|-----|------------|-----| # TABLE 26. Amines (50) | Diethyl carbonate
$(2 \times C - (H)_3(C))$
$(1 \times CO - (O)_2)$ | +(2×0 | C-(H) ₂ (O)(C | C))+(2×O-(C | C ₅ H ₁₀ O ₃
C)(CO))+ | Aminometh
(1×C-(F | | l amine
×N-(H) ₂ (C)), | $\sigma = 3$ | CH ₅ | |---|---------------|--------------------------|-----------------------|---|---|---------------------------|--------------------------------------|----------------------|-------------------------------------| | ()-/ | rature - | - Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = -637.$ | 90 | 639.94 | 2.04 | 72MAN | Gas phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$S^\circ =$ | -23.01
50.08
242.59 | -23.01
50.08
242.59 | 0.00
0.00
0.00 | 37AST/SIL
69STU/WES
69STU/WES | | Liquid phase $\Delta_t H^\circ = -681$ $C_p^\circ = 210$ | - | -680.86
210.86 | - 0.64
0.04 | 72MAN2
34KOL/UDO | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -185.33
32.25
-13.01 | | | | | | | | | Liquid phas | se | | | | | Solid phase | | | | | $\Delta_l H^\circ =$ | -47.27 | - 47.28 | 0.01 | 90CHA/GAD | | $\Delta_t H^\circ =$ | | -703.68 | | | $C_p^{\circ} =$ | 102.09 | 99.07 | 3.02 | 90CHA/GAD | | $C_p^{\circ} =$ | | 170.99 | | | S° = | 150.43 | 155.01 | -4.58 | 90CHA/GAD | | $S^{\circ} = \Delta_{f}S^{\circ} =$ | | 144.10
-845.02 | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | - 272.91
34.09 | | | | $\Delta_{f}G^{\circ} =$ | | - 451.74 | | | $lnK_{f} =$ | | 13.75 | | | | $\ln K_{\rm f} =$ | | 182.23 | | | | | | | | | Diphenyl carbons | ite | | | C ₁₃ H ₁₀ O ₃ | Aminoethai
(1×C-(F | | nine
× N-(H)2(C)) - | + (1 × C−(H)₂(| C_2H_7 $C)(N)), \sigma = 3$ | | $(10 \times C_{B}-(H))(0)$
$(1 \times CO-(O)_{2})$ | $(C_B)_2$ + (| $2 \times C_B - (O)(C$ | $(C_B)_2$) + (2 × O- | $+(C_B)(CO))+$ | | ** | re – Calculated | | Reference | | (200 | (-)2) | | | | | |----------------------------------|------------------------------------|-----------------|-------|-----------|--| | | Literature - Calculated = Residual | | | | | | Gas phase
Δ _t H° = | -311.30 | -317.28 | 5.98 | 71CAR/FIN | | | Liquid pha | ase
-377.70 | -382.62 | 4.92 | 71CAR/FIN | | | Solid phas | se | <u>.</u> | | | | | - | -401.20 | - 395.70 | -5.50 | 58SIN/HIL | | | $C_p^{\circ} =$ | 263.13 | 263.13 | 0.00 | 58SIN/HIL | | | S° = | 278.40 | 278.40 | 0.00 | 58SIN/HIL | | | $\Delta_6 S^\circ =$ | | <i>−756.64</i> | | | | | $\Delta_{r}G^{\circ} =$ | | -170.11 | | | | | $lnK_f =$ | | 68.62 | | | | | | | | | | | | 1,3-Dioxolan-2-one; Ethylene carbonate | C ₃ H ₄ O ₃ | |---|--| | $(2 \times C - (H)_2(O)(C)) + (2 \times O - (C)(CO)) + (1 \times CO - (O)_2) +$ | | | (1 ×
Ethyl carbonate rsc) | | | | Litera | ture-Calculated | Reference | | | |---------------------------------|--------|-----------------|-----------|-------|--| | Solid phas $\Delta_t H^\circ =$ | | - 586.30 | 0.00 | 83CAL | | | | Literatu | Reference | | | |--------------------------------|--------------|-----------|-------|------------| | Gas phase $\Delta_t H^\circ =$ | -
- 47.47 | 51.31 | 3.84 | 90CHA/GAD | | $C_n^{\circ} =$ | 72.63 | 72.76 | -0.13 | 69STU/WES | | S° – | 284.85 | 284.85 | 0.00 | 69STU/WES | | Δ ₆ S° = | 20 | - 279.38 | 0.00 | 0,010,1120 | | $\Delta_i G^\circ =$ | | 31.99 | | | | $lnK_f =$ | | - 12.90 | | | | Liquid pha | ase | | | | | | -74.13 | -78.08 | 3.95 | 90CHA/GAD | | C _p - | | 129.49 | | | | S° = | | 187.39 | | | | $\Delta_f S^\circ =$ | | -376.84 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 34.27 | | | | lnK_t - | | -13.83 | | | | | | | | | | 1-Aminopropane; n -Propyl amine C_3H_9N $(1 \times C(H)_3(C)) + (1 \times C(H)_2(C)_2) + (1 \times C(H)_2(C)(N)) + (1 \times N(H)_2(C)), \sigma = 3$ | | | | | | | | | | | |--|----------------|------------------|-----------|-----------|--|--|--|--|--|--| | | Literatur | e – Calculated = | Reference | | | | | | | | | Gas phase | | | | | | | | | | | | $\Delta_f H^* =$ | - 70.10 | -71.94 | 1.84 | 90CHA/GAD | | | | | | | | $C_p^{\circ} =$ | 95.77 | 95.65 | 0.12 | 69STU/WES | | | | | | | | S° = | 324.18 | 324.01 | 0.17 | 69STU/WES | | | | | | | | $\Delta_f S^\circ =$ | | -376.53 | | | | | | | | | | $\Delta_f G^\circ =$ | | 40.32 | | | | | | | | | | $lnK_f =$ | | -16.27 | Literature | e – Calculated = | = Residual | Reference | | Literature - Calculated = Residual | | Reference | | |---|--|--|--------------------------|---|--|------------------------------------|-----------------------------------|------------|---------------------------------| | Liquid phas | e | | | | Gas phase | | | | | | | - 101.47 | - 103.81 | 2.34 | 90CHA/GAD | $\Delta_i H^{\circ} =$ | | - 133.83 | | | | $C_p^{\circ} =$ | 162.54 | 159.91 | 2.63 | 90CHA/GAD | $C_p^{\circ} =$ | | 164.32 | | | | S° = | 227.44 | 219.77 | 7.67 | 90CHA/GAD | S° = | | 441.49 | | | | $\Delta_f S^\circ =$ | | - 480.77 | | | $\Delta_f S^\circ =$ | | -667.99 | | | | $\ln G^{\circ} = \ln K_{c} =$ | | 39.53
- 15.95 | | | $\Delta_f G^\circ = \ln K_f =$ | | 65.33
- 26.35 | | | | niwt – | | | | | | | | | | | | | | | | Liquid pha | se | | | | | | ane; n -Buty | | | C ₄ H ₁₁ N | $\Delta_t H^\circ =$ | 050.00 | -181.00 | 0.00 | | | | | × C-(H)2(C)2) + | F(I×C-(H) ₂ (| (C)(N))+ | $C_p^{\circ} = S^{\circ} =$ | 252.00 | 251.17 | 0.83 | 71KON/WAD | | (1 × N-(); | $H_{2}(C)$, $\sigma =$ | ٠ ٥ | | | $\Delta_{f}S^{\circ} =$ | | 316.91
- 792.56 | | | | | T itaratus | e – Calculated = | = Residual | Reference | $\Delta_{\mathbf{f}} S^{\circ} = \Delta_{\mathbf{f}} G^{\circ} =$ | | - 792.36
55.30 | | | | | Piteratul | - Calculated = | - Mojuudi | Kelefelle | $\ln K_{\rm f} =$ | | - 22.31 | | | | Sas phase | - 92.00 | - 92.57 | 0.57 | 69WAD | | | | | | | $C_p^{\circ} =$ | 118.53 | 118.54 | -0.01 | 69STU/WES | | | | | | | S° = | 363.00 | 363.17 | -0.17 | 69STU/WES | 2-Methylpr | opyl amine: | Isobutyl amino | 2 | C4H11 | | $\Delta_i S^o =$ | 202.00 | -473.68 | | | | | \times C-(H)(C) ₃)+ | | | | $\Delta_i G^{\circ} =$ | | 48.66 | | | | | $+(1\times N-(H)_2(C))$ | | (,)) | | $lnK_i =$ | | - 19.63 | | | ` ` | /=(/(// | ()2(- | ,, | | | | | | | | | Literatu | re – Calculated : | = Residual | Reference | | iquid phas
Δ _τ Η° = | se
127.70 | - 129.54 | 1.84 | 59EVA/FAI | Gas phase | | | | | | $C_p^{\circ} =$ | 188.00 | 190.33 | -2.33 | 71KON/WAD | $\Delta_t H^\circ =$ | -98.80 | - 99.26 | 0.46 | 69WAD | | S° = | 100.00 | 252.15 | | , | $C_p^{\circ} =$ | 70.00 | 118.57 | 00 | 07111111 | | $\Delta_f S^\circ =$ | | - 584.70 | | | - p | | | | | | Δ ₁ G° = | | 44.79 | | | | | | | | | $lnK_f =$ | | -18.07 | | | Liquid pha | se | | | | | | ······································ | | | | $\Delta_{f}H^{\circ} =$ | - 132.60 | - 134.82 | 2.22 | 70GOO/MOO | | | | | | | $C_{\rho}^{\circ} =$ | 194.00 | 187.35 | 6.65 | 71KON/WAD | | | | | | ~ | S° = | | 246.80 | | | | - | itane; n-Pei | • | | C ₅ H ₁₃ N | $\Delta_f S^\circ =$ | | - 590.05 | | | | | | \times C-(H) ₂ (C) ₂) + | F(1×C-(H) ₂ (| C)(N))+ | $\Delta_{\rm f}G^{\circ} =$ | | 41.10 | | | | (1×N-(F | ·I) ₂ (C)), σ = | = 3 | | | $lnK_f =$ | | - 16.58 | | | | | Literatur | e – Calculated = | = Residual | Reference | | | | | | | Gas phase | | | | | 1,2-Ethanediamine; Ethylenediamine $(2 \times C - (H)_2(C)(N)) + (2 \times N - (H)_2(C)), \sigma = 18$ | | | | C ₂ H ₈ N | | $\Delta_f H^\circ =$ | | 113.20 | | | , - (- | | | | | | 00 | | 141.43 | | | | Literatur | e – Calculated = | = Residual | Reference | | $C_p^{\circ} =$ | | 402.33 | | | | | | | | | S° = | | - 570.84 | | | | | | | | | S° =
Δ _t S° = | | 56.99 | | | Gas phase | | | | | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = 0$ | | 22.99 | | | $\Delta_t H^\circ =$ | -17.60 | -18.10 | 0.50 | 69WAD | | S° = | | | | | $C_p^{\circ} =$ | | 94.06 | | | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = 0$ | | | | | s° = | 321.80 | 309.29 | 12.51 | 75MES/FIN | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = -\infty$ | | | | | | | | | | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = 1$ $\Delta_{t}G^{\circ} | :e | 155.05 | | | $\Delta_{\rm f}S^{\circ} =$ | | -415.98 | | | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{2}$ iquid phas | | -155.27
220.75 | 0.75 | 71VONAVA P | $\Delta_{f}G^{\circ} =$ | | 105.92 | | | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = $ iquid phas $\Delta_t H^{\circ} = C_p^{\circ} = $ | se
218.00 | 220.75 | -2.75 | 71KON/WAD | | | | | | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \ln K_t = \frac{\Delta_t H^{\circ}}{\Delta_t H^{\circ}} = \frac{C_p^{\circ}}{S^{\circ}} = \frac{S^{\circ}}{\Delta_t
H^{\circ}} = \frac{C_p^{\circ}}{\Delta_t H^{\circ}} = \frac{C_p^{\circ}}{S^{\circ}} = \frac{C_p^{\circ}}{\Delta_t H^{\circ}} \frac{C_p^{\circ}}{\Delta$ | | 220.75
284.53 | - 2.75 | 71KON/WAD | $\Delta_{f}G^{\circ} =$ | | 105.92 | | | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = -\frac{1}{2}$ iquid phas $\Delta_t H^{\circ} = C_p^{\circ} = -\frac{1}{2}$ | | 220.75 | -2.75 | 71KON/WAD | $\Delta_{f}G^{\circ} =$ | ····· | 105.92 | | | | TABLE 26. | Amines | (50) - | Continued | |-----------|--------|--------|-----------| |-----------|--------|--------|-----------| | TABLE 26. Amines (50) - Continued | | | TABLE | 26. Amines (5 | 0) – Contin | ued | |---|--|---|--|---|---|---| | 1,2-Ethanediamine; Ethylenediamine (Continued) $(2 \times C - (H)_2(C)(N)) + (2 \times N - (H)_2(C)), \sigma = 18$ | C ₂ H ₈ N ₂ | 2-Aminopro
(1×N-(F
(2×-CH) | | × C-(H) ₃ (C)) | + (1 × C-(H)(0 | C ₃ H ₉ N
C) ₂ (N)) + | | Literature - Calculated = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Liquid phase | | | | | | | | $\Delta_{t}H^{\circ} = -63.00 -60.94 -2.06$ $C_{p}^{\circ} = 172.59 186.02 -13.43$ $S^{\circ} = 202.42 208.18 -5.76$ $\Delta_{t}S^{\circ} = -517.08$ $\Delta_{t}G^{\circ} = 93.23$ | 70GOO/MOO
75MES/FIN
75MES/FIN | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -83.70 | - 86.49
94.43 | 2.79 | 90CHA/GAD | | $\ln K_{\rm f} = -37.61$ | | Liquid phas | se | | | | | 1,2-Propanediamine
$(1 \times C - (H)_2(C)(N)) + (2 \times N - (H)_2(C)) + (1 \times C - (H)_3(C) + (1 \times C - (H)_2(C)) + (1 \times C - (H)_3(C) + (1 \times C - (H)_3(C)) $ | C ₃ H ₁₀ N ₂
(C))+ | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{f} = 0$ | -112.30
163.85
218.32 | -113.90
163.83
218.31
-482.23
29.88
-12.05 | 1.60
0.02
0.01 | 90CHA/GAD
72FIN/MES
72FIN/MES | | Literature – Calculated = Residual | Reference | | | | | | | Gas phase $\Delta_t H^\circ = -53.60 -51.02 -2.58$ | 69WAD | 2-Aminobut
(2×C-(H
(1×-CH ₃ | $I)_3(C)) + (1$ | tyl amine
× C-(H) ₂ (C) ₂)
ary)) + (1 × N- | + (1 × C-(H)(
(H) ₂ (C)), σ = | C ₄ H ₁₁ N
C) ₂ (N)) +
9 | | $C_p^{\circ} = 115.73$ | | | Literatur | e – Calculated | = Residual | Reference | | Liquid phase $\Delta_t H^\circ = -97.80 -94.58 -3.22$ $C_\rho^\circ = 220.36$ $S^\circ = 239.10$ $\Delta_t S^\circ = -622.47$ $\Delta_t G^\circ = 91.01$ $\ln K_t = -36.71$ | 70GOO/MOO | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 104.90
117.11
351.04 | - 104.86
117.32
342.14
- 494.71
42.64
- 17.20 | - 0.04
- 0.21
8.90 | 69WAD
69STU/WES
69STU/WES | | 1,2-Butanediamine
$(2 \times N - (H)_2(C)) + (1 \times C - (H)_2(C)(N)) + (1 \times C - (H)_2(C)(N)) + (1 \times C - (H)_3(C)) + (1 \times C - (H)(C)_2(N))$
Literature — Calculated = Residual | $C_4H_{12}N_2$ $(C)_2) +$ Reference | Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ =$ | e
137.49 | -137.45
194.25
250.69
-586.16 | -0.04 | 59EVA/FAI | | | | $\Delta_f G^\circ = In K_f =$ | | 37.31
-15.05 | | | | Gas phase $\Delta_t H^\circ = -74.00 - 69.39 - 4.61$ $C_c^\circ = 138.62$ | 70GOO/MOO | | | | | ٠ | | Liquid phase $\Delta_t H^o = -120.20 -118.13 -2.07$ | 70GOO/MOO | (3×C-(H | () ₃ (C)) + (1)
corr (quat | nne; tert-Butyl × N-(H) ₂ (C)) + ernary)), $\sigma =$ | + (1 × C−(C)₃(1
81 | | | $C_p^{\circ} = 250.78$
$S^{\circ} = 271.48$
$\Delta_p S^{\circ} = -726.41$ | | | Literatur | e – Calculated | = Residual | Reference | | $ \begin{array}{rcl} \Lambda_t G^{\circ} &=& 98.45 \\ \ln K_t &=& -39.71 \end{array} $ | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_t =$ | - 121.00
119.96
337.10 | - 120.92
119.95
317.23
- 519.62
34.00
- 13.72 | -0.08
0.01
19.87 | 69WAD
69STU/WES
69STU/WES | | (3×C-(H | $(1)_3(C) + (1)_3(C)$ | ne; tert-Butyl $< N-(H)_2(C)$) + ernary)), $\sigma =$ | - (1 × C-(C) ₃ (1 | nued) $C_4H_{11}N$
N))+ | Diethylami
(2×C-(F | H) ₃ (C)) + (2 | 2×C-(H) ₂ (C)(1 | | $C_4H_{11}N$ $H)(C)_2), \sigma = 9$ | |--|---------------------------------------|---|------------------------------|--|--|----------------------------|--|-----------------------------|---| | | | e – Calculated | - | Reference | · · · · · · · · · · · · · · · · · · · | Literatu | re – Calculated | = Residual | Reference | | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | e
-150.60
191.71
233.63 | -150.57
191.69
233.62
-603.23
29.28
-11.81 | -0.03
0.02
0.01 | 67SMI/GOO
72FIN/MES
72FIN/MES | Gas phase $\Delta_{\ell}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \ln K_{\ell} = \ln K_{\ell} = 0$ | -72.50
103.81
352.21 | -73.57
109.10
354.85
-482.00
70.14
-28.29 | 1.07
- 5.29
- 2.64 | 69WAD
69STU/WES
69STU/WES | | | I) ₂ (C))+(1
corr (quat | iamine
× C-(H) ₂ (C)(N
ernary)) + (1 ×
e – Calculated | C-(C)3(N)) | $C_4H_{12}N_2$ $H)_3(C)) +$ Reference | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = 0$ | se
103.70 | - 105.32
193.17
263.45
- 573.40
65.64
- 26.48 | 1.62 | 58JAF | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -90.20 | -83.15
141.25 | -7.05 | 70GOO/MOO | | | $2 \times C - (H)_2(C)_2$ = 9 | + (2 × C-(H) ₂ (| C ₆ H ₁₅ N
(C)(N)) + | | Liquid phas $\Delta_t H^\circ =$ | se
133.90 | - 129.04 | -4.86 | 70GOO/MOO | | Literatu | re – Calculated
––––– | = Residual
 | Reference | | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f = -$ | | 248.22
254.41
-743.48
92.63
-37.37 | | CHN | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -116.10 | - 114.83
154.88
433.17
- 676.30
86.81
- 35.02 | -1.27 | 69WAD | | Dimethylan
(2×C-(I | | \times N-(H)(C) ₂), | $\sigma = 9$ | C ₂ H ₇ N | · · · · · · · · · · · · · · · · · · · | | | | | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ =$ | | - 16.97
63.74
270.33 | | Reference 39AST/EID 69STU/WES 69STU/WES | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | se
156.11 | 156.78
254.01
328.21
781.26
76.15
30.72 | 0.67 | 71LEB/KAT | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | | - 293.90
70.66
- 28.50 | | | | $-1)_3(C))+(2$ | ×C-(H)(C) ₂ (N | | C ₆ H ₁₅ N | | Liquid pha
$\Delta_t H^\circ = C_p^\circ =$ | se
-43.90 | -43.72
132.33 | -0.18 | 58JAF | (4×-CH | | iary)) + (1 × N-
re – Calculated | | Reference | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | | 198.69
- 365.54
65.27
- 26.33 | | | Gas phase $\Delta_f II^\circ = C_p^\circ =$ | 144.00 | 143.93
152.44 | -0.07 | 69WAD | TABLE 26. Amines (50) - Continued | Diisopropylamine C_6H_{12}
$(4 \times C-(H)_3(C)) + (2 \times C-(H)(C)_2(N)) + (4 \times -CH_3 \text{ corr (tertiary)}) + (1 \times N-(H)(C)_2)$ | N n-Butylisobutylamine
$(3 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_3)$
$(2 \times -CH_3 \text{ corr (tertiary)}) + (2 \times C - (H)_2(C)(N)) +$
$(1 \times N - (H)(C)_2)$ | C ₈ H ₁₉ N
+ | |--|---|---------------------------------------| | Literature - Calculated = Residual Reference | _ Literature - Calculated = Residual | Reference | | Liquid phase $\Delta_t H^\circ = -178.50 -176.96 -1.54$ 71LEB/KAT $C_p^\circ = 261.85$ $S^\circ = 325.29$ $\Delta_t S^\circ = -784.18$ $\Delta_t G^\circ = 56.84$ | Gas phase $\Delta_t H^\circ = -171.00 - 162.78 - 8.22$ $C_p^\circ = 200.69$ | 62BED/EDM | | $\begin{aligned} &\ln K_{\rm f} = & -22.93 \\ &\text{Di-n-butylamine} & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & $ | $C_{p}^{\circ} = 311.87$
$S^{\circ} = 387.62$ | 52BED/EDM | | Literature - Calculated = Residual Reference | _ | | | Gas phase $\Delta_t H^{\circ} = -156.61 - 156.09 -0.52$ 69WAD $C_p^{\circ} = 200.66$ | Trimethylamine $(3 \times C-(H)_3(C)) + (1 \times N-(C)_3) + (3 \times -CH_3 \text{ corr (quaternary))}, \sigma = 81$ | C ₃ H ₉ N | | $S^{\circ} = 511.49$ $\Delta_t S^{\circ} = -870.60$ $\Delta_t G^{\circ} = 103.48$ $\ln K_t = -41.74$ | Literature – Calculated = Residual Gas phase | Reference | | Liquid phase $ \Delta_t H^{\circ} = -206.00 -208.24 2.24 71LEB/KAT $ $ C_p^{\circ} = 314.85 $ $ S^{\circ} = 392.97 $ $ \Delta_t S^{\circ} = -989.12 $ | $C_p^{\circ} = 91.76 92.29 -0.53 4$ | I4AST/SAG
I4AST/SAG
I4AST/SAG | | $\Delta_{\rm f}G^{\circ} = 86.67$ $\ln K_{\rm f} = -34.96$ Diisobutylamine $C_{\rm g}H_{\rm f}$ | $C_p^{\circ} = 135.55$
$S^{\circ} = 211.28$ | 8JAF | | $(4 \times C - (H)_3(C)) + (2 \times C - (H)(C)_3) + (4 \times -CH_3 \text{ corr (tertiary)}) + (2 \times C - (H)_2(C)(N)) + (1 \times N - (H)(C)_2)$ | $\Delta_1 G^\circ = 101.87$ $\ln K_1 = -41.09$ | | | Literature – Calculated = Residual Reference | _ | | | Gas phase $\Delta_l H^{\circ} = -179.20 - 169.47 - 9.73$ 71LEB/KAT $C_p^{\circ} = 200.72$ | Triethylamine $(3 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)(N)) + (1 \times N - (C)_3),$ Literature – Calculated = Residual | $C_6H_{15}N$ $\sigma = 81$ Reference | | Liquid phase $ \Delta_{l}H^{\circ} = -218.50 \qquad -218.80 \qquad 0.30 \qquad 71 LEB/KAT $ $ C^{\circ}_{l} = \qquad 308.89 \qquad 0.30 \qquad 71 LEB/KAT $ $ S^{\circ} = \qquad 382.27 \qquad 0.30 $ | $C_p^{\circ} = 160.92 160.33 0.59 6$ | 99WAD
9STU/WES
9STU/WES | | Triethylamine (Continued)
$(3 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)(N)) + (1 \times N - (C)$ | $C_6H_{15}N$ $\sigma = 81$ | Tri-n-hexylamine
$(3 \times C - (H)_3(C)) + (1 \times N - (C)_3), \sigma =$ | $(12 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ | $C_{18}H_{39}N_{2}(C)(N)) +$ |
---|-----------------------------------|---|--|-----------------------------------| | Literature – Calculated = Residual | Reference | , , , , , , | ure – Calculated = Residual | Reference | | Liquid phase | | | | | | Liquid phase $\Delta_t H^\circ = -127.70 -123.23 -4.47$ $C_p^\circ = 226.81$ $S^\circ = 308.42$ | 66LEB | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 342.74
435.01 | | | $\Delta_{t}S^{\circ} = -801.05$ | | S° = | 880.41 | | | $\Delta_t G^{\circ} = 115.60$ | | $\Delta_{\rm f}S^{\circ} =$ | – 1864.79 | | | $\ln K_{\rm f} = -46.63$ | | $\Delta_t G^{\circ} =$ | 213.25 | | | | | $lnK_f =$ | -86.02 | | | Tri a manulamina | C ₉ H ₂₁ N | Liquid phase | | | | Tri-n-propylamine $(3 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ | | $\Delta_t H^\circ = -433.00$ | -431.99 -1.01 | 66LEB | | $(1 \times N - (C)_3), \sigma = 81$ | -)(- ·)) · | $C_p^{\circ} =$ | 591.85 | | | (2000) (2)3), 2 | | S° = | 696.98 | | | Literature - Calculated = Residual | Reference | $\Delta_{f}S^{\circ} =$ | - 2048.22 | | | | | $\Delta_f G^{\circ} =$ | 178.69 | | | Gas phase | | $lnK_f =$ | −72.08 | | | Gas phase $\Delta_t H^{\circ} = -161.00 - 157.07 - 3.93$ | 69WAD | | | | | $C_p^{\circ} = 229.00$ | | material and a | | a | | S° = 527.97 | | Tri-n -octylamine | (19.40 (II) (O)) ((0.40 (II) | C24H51N | | $\Delta_{\rm f} S^{\circ} = -990.43$ | | | $(18 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ | ₂ (C)(N))+ | | $\Delta_t G^{\circ} = 138.23$ $\ln K_t = -55.76$ | | $(1 \times N - (C)_3), \sigma =$ | 01 | | | $\ln K_{\rm f} = -55.76$ | | Literat | ure - Calculated = Residual | Reference | | Liquid phase | | | | | | $\Delta_t H^\circ = -207.11 -200.42 -6.69$ | 66LEB | Gas phase | | | | $C_p^{\circ} = 318.07$ | | $\Delta_{\rm f}H^{\circ} =$ | - 466.52 | | | $S^{\circ} = 405.56$ | | $C_{\rho}^{\circ} =$ | 572.35 | | | $\Delta_t S^\circ = -1112.85$ | | S° = | 1115.37 | | | $\Delta_{\rm f}G^{\circ} = 131.37$ | | $\Delta_{\mathbf{r}} S^{\circ} =$ | -2447.70 | | | $\ln K_{\rm f} = -53.00$ | | $\Delta_f G^{\circ} = \ln K_f =$ | 263.26
106.20 | | | | | musi — | | | | | | | 100.20 | | | Tri-n-butylamine | C ₁₂ H ₂₇ N | Liquid phase | | | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ | | Liquid phase $\Delta_t H^\circ = -585.01$ | - 586.37 1 .3 6 | 66LEB | | • | | Liquid phase $\Delta_t H^{\circ} = -585.01$ $C_p^{\circ} =$ | - 586.37 1.36
774.37 | 66LEB | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_3)$ | C)(N))+ | Liquid phase $\Delta_t H^o = -585.01$ $C_p^o = S^o =$ | - 586.37 1.36
774.37
891.26 | 66LEB | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ | | Liquid phase $\Delta_t H^\circ = -585.01$ $C_p^\circ = S^\circ = \Delta_t S^\circ =$ | - 586.37 1.36
774.37
891.26
- 2671.81 | 66LEB | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_3)$ | C)(N))+ | Liquid phase $ \Delta_t H^\circ = -585.01 $ $ C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = 0 $ | - 586.37 1.36
774.37
891.26
- 2671.81
210.23 | 66LEB | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 +$ | C)(N))+ | Liquid phase $\Delta_t H^\circ = -585.01$ $C_p^\circ = S^\circ = \Delta_t S^\circ =$ | - 586.37 1.36
774.37
891.26
- 2671.81 | 66LEB | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_3)$ | C)(N))+ | Liquid phase $ \Delta_t H^\circ = -585.01 $ $ C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = 0 $ | - 586.37 1.36
774.37
891.26
- 2671.81
210.23 | 66LEB | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ $(1 \times N - (C)_3)$ Literature – Calculated = Residual Gas phase | C)(N))+ | Liquid phase $ \Delta_t H^\circ = -585.01 $ $ C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = 0 $ | - 586.37 1.36
774.37
891.26
- 2671.81
210.23 | 66LEB | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ $(1 \times N - (C)_3)$ Literature – Calculated = Residual Gas phase $\Delta_t H^\circ = -218.96$ | C)(N))+ | Liquid phase $\Delta_t H^\circ = -585.01$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = -585.01$ Tri-n-nonylamine | -586.37 1.36
774.37
891.26
-2671.81
210.23
-84.81 | C ₂₇ H ₅₇ N | | $(3 \times C^{-}(H)_{3}(C)) + (6 \times C^{-}(H)_{2}(C)_{2}) + (3 \times C^{-}(H)_{2}(C)_{2})$ $(1 \times N^{-}(C)_{3})$ Literature – Calculated = Residual Gas phase $\Delta_{t}H^{\circ} = -218.96$ $C_{n}^{\circ} = 297.67$ | C)(N))+ | Liquid phase $\Delta_t H^\circ = -585.01$ $C_\rho^\circ = S^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = InK_f = $ Tri- <i>n</i> -nonylamine $(3 \times C - (H)_3(C)) + 6$ | -586.37 1.36
774.37
891.26
-2671.81
210.23
-84.81 | C ₂₇ H ₅₇ N | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 +$ | Reference | Liquid phase $\Delta_t H^\circ = -585.01$ $C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = -585.01$ Tri-n-nonylamine | -586.37
1.36
774.37
891.26
-2671.81
210.23
-84.81 | C ₂₇ H ₅₇ N | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 +$ | C)(N))+ | Liquid phase $\Delta_{t}H^{\circ} = -585.01$ $C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Tri- <i>n</i> -nonylamine $(3 \times C - (H)_{3}(C)) + (1 \times N - (C)_{3}), \sigma = 0$ | $ \begin{array}{rcl} -586.37 & 1.36 \\ 774.37 & 891.26 \\ -2671.81 & 210.23 \\ -84.81 \end{array} $ $ \begin{array}{rcl} (21 \times C - (H)_2(C)_2) + (3 \times C - (H)_{81}) \end{array} $ | C27H57N
2(C)(N)) + | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 +$ | Reference | Liquid phase $\Delta_{t}H^{\circ} = -585.01$ $C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Tri- <i>n</i> -nonylamine $(3 \times C - (H)_{3}(C)) + (1 \times N - (C)_{3}), \sigma = 0$ | -586.37 1.36
774.37
891.26
-2671.81
210.23
-84.81 | C ₂₇ H ₅₇ N | | $(3 \times C - (H)_{3}(C)) + (6 \times C - (H)_{2}(C)_{2}) + (3 \times C - (H)_{2}(C)_{2}) + (3 \times C - (H)_{2}(C)_{2}) + (3 \times C - (H)_{2}(C)_{2$ | Reference | Liquid phase $\Delta_{t}H^{\circ} = -585.01$ $C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Tri- <i>n</i> -nonylamine $(3 \times C - (H)_{3}(C)) + (1 \times N - (C)_{3}), \sigma = 0$ | $ \begin{array}{rcl} -586.37 & 1.36 \\ 774.37 & 891.26 \\ -2671.81 & 210.23 \\ -84.81 \end{array} $ $ \begin{array}{rcl} (21 \times C - (H)_2(C)_2) + (3 \times C - (H)_{81}) \end{array} $ | C27H57N
2(C)(N)) + | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 +$ | Reference | Liquid phase $\Delta_{f}H^{\circ} = -585.01$ $C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{f}G^{\circ} = InK_{f} = S^{\circ} InK$ | $ \begin{array}{rcl} -586.37 & 1.36 \\ 774.37 & 891.26 \\ -2671.81 & 210.23 \\ -84.81 \end{array} $ $ \begin{array}{rcl} (21 \times C - (H)_2(C)_2) + (3 \times C - (H)_{81}) \end{array} $ | C27H57N
2(C)(N)) + | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 +$ | Reference | Liquid phase $\Delta_{t}H^{\circ} = -585.01$ $C^{\circ}_{\rho} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = $ $Tri-n-nonylamine$ $(3 \times C-(H)_{3}(C)) + (1 \times N-(C)_{3}), \sigma = $ Literat Gas phase | $-586.37 1.36$ 774.37 891.26 -2671.81 210.23 -84.81 $(21 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ 81 $ure - Calculated = Residual$ | C27H57N
2(C)(N)) + | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 +$ | Reference | Liquid phase $\Delta_{t}H^{\circ} = -585.01$ $C^{\circ}_{\rho} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = $ $Tri-n-nonylamine$ $(3 \times C-(H)_{3}(C)) + (1 \times N-(C)_{3}), \sigma = $ $Literat$ $Gas phase$ $\Delta_{t}H^{\circ} = $ | $-586.37 1.36$ 774.37 891.26 -2671.81 210.23 -84.81 $(21 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ $ure - Calculated = Residual$ -528.41 | C27H57N
2(C)(N)) + | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 +$ | Reference | Liquid phase $\Delta_{t}H^{\circ} = -585.01$ $C^{\circ}_{\rho} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{3 \times C - (H)_{3}(C) + (1 \times N - (C)_{3}), \sigma = \frac{Literat}{Gas phase}$ $\Delta_{t}H^{\circ} = C^{\circ}_{\rho} = \frac{C}{\sigma}$ | $-586.37 1.36$ 774.37 891.26 -2671.81 210.23 -84.81 $(21 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ $ure - Calculated = Residual$ -528.41 641.02 | C27H57N
2(C)(N)) + | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 +$ | Reference | Liquid phase $\Delta_{t}H^{\circ} = -585.01$ $C^{\circ}_{\rho} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = 1nK_{f} 1nK_{f}$ | $-586.37 1.36$ 774.37 891.26 -2671.81 210.23 -84.81 $(21 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ $ure - Calculated = Residual$ -528.41 641.02 1232.85 | C27H57N
2(C)(N)) + | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 +$ | Reference | Liquid phase $\Delta_{t}H^{\circ} = -585.01$ $C^{\circ}_{\rho} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \frac{1}{N}$ Tri-n-nonylamine $(3 \times C - (H)_{3}(C)) + (1 \times N - (C)_{3}), \sigma = \frac{1}{N}$ Literat Gas phase $\Delta_{t}H^{\circ} = C^{\circ}_{\rho} = S^{\circ} = \Delta_{t}S^{\circ} = \frac{1}{N}$ | $-586.37 1.36$ 774.37 891.26 -2671.81 210.23 -84.81 $(21 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ $ure - Calculated = Residual$ -528.41 641.02 1232.85 -2739.15 | C27H57N
2(C)(N)) + | | $(3 \times C - (H)_3(C)) + (6 \times C - (H)_2(C)_2) + (3 +$ | Reference | Liquid phase $\Delta_{t}H^{\circ} = -585.01$ $C^{\circ}_{\rho} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = 1nK_{f} 1nK_{f}$ | $-586.37 1.36$ 774.37 891.26 -2671.81 210.23 -84.81 $(21 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2) + (3 \times C - (H)_2(C)_2)$ $ure - Calculated = Residual$ -528.41 641.02 1232.85 | C27H57N
2(C)(N)) + | TABLE 26. Amines (50) - Continued | Tri- <i>n</i> -nonylar
(3 × C-(H);
(1 × N-(C); | 3(C))+(21 | \times C-(H) ₂ (C) ₂) | + (3×C-(H) ₂ (| $C_{27}H_{57}N$ (C)(N)) + | Tribenzylamia
(15 × C _B -(I
(1 × N-(C) | $H)(C_B)_2) +$ | $(3 \times C_B - (C))(C)$ | $(C_B)_2$) + (3 × C- | $C_{21}H_{21}N$
$(H)_2(C_B)(N)) +$ | |--|------------------|--|---|--|---|-------------------|---------------------------------------|-----------------------|---------------------------------------| | | Literature | e – Calculated = | Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | $C_p^{\circ} =$ | :
- 661.62 | -663.56
865.63 | 1.94 | 66LEB | Gas phase $\Delta_t H^\circ =$ | | 322.15 | | | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | | 988.40
2983.60
226.00
91.17 | | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | | 213.61
455.98 | | | | | | 4×C−(H)2(C)2) | + (3×C-(H) ₂ | C ₃₀ H ₆₃ N
(C)(N)) + | Solid phase $\Delta_t H^\circ =$ | 140.70 | 140.72 | -0.02 | 56TAV/LAM | | (1001) | , . , . | e – Calculated = | = Residual | Reference | Cyclopropylar
(2×C-(H);
(1×Cyclop | $_{2}(C)_{2})+(1$ | ×C-(H)(C)₂(I | N))+(1×N-(| C₃H ₇ N
H)₂(C))+ | | Gas phase $\Delta_f H^\circ = C_p^\circ =$ | | -590.30
709.69 | | | | Literature | e – Calculated | = Residual | Reference | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | | 1350.33
-3030.60
313.27
-126.37 | | | Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ | 77.00 | 76.44
76.02 | 0.56 | 71GOO/MOO | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | e
738.02 | -740.75
956.89
1085.54
-3295.40 | 2.73 | 66LEB | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | 45.80 | 45.80
123.18 | 0.00 | 71GOO/MOO | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = $ | | 241.77
- 97.53 | | | Cyclobutylam
(3×C-(H);
(1×Cyclob | $_{2}(C)_{2})+(1$ | ×C-(H)(C)₂(l | N))+(1×N-(| C₄H₃N
H)₂(C))+ | | Triphenylam
(15×C _B -(| | - (3 × C _B (N)) + | · (1 × N-(C _B) ₃) | C ₁₈ H ₁₅ N | · · | Literature | e – Calculated | = Residual | Reference | | | Literatui | re – Calculated : | = Residual | Reference | Gas phase $\Delta_t H^\circ =$ | 41.20 | 51.55 | - 10.35 | 75GOO/MES | | Gas phase $\Delta_t H^\circ =$ | 326.77 | 326.40 | 0.37 | 78STE | $C_p^{\circ} =$ Liquid phase | | 92.30 | | | | Liquid phase $\Delta_t H^\circ =$ | e
247.72 | 248.70 | -0.98 | 78STE | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | 5.60 | 15.13
171.45
200.33
- 505.95 | -9.53 | 75GOO/MES | |
Solid phase $\Delta_t H^\circ = C_p^\circ =$ | 234.72
301.70 | 234.70
301.95 | 0.02
- 0.25 | 78STE
78STE | $\Delta_f G^\circ = \\ \ln K_f = $ | | 165.98
- 66.95 | | | | | | ×C-(H)(C) ₂ (1
ub) rsc) | N))+(1×N-(| $C_5H_{11}N$
$H)_2(C)) +$ | | H)(C_B) ₂) + | (1 × C _B -(C)(C _E
1 × C-(H) ₃ (C)) | | | |---|--|--|--------------------------|--|--|--|---|----------------|------------------------| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -54.90 | - 60.42
106.66 | 5.52 | 75GOO/MES | Gas phase $\Delta_l H^\circ = C_p^\circ =$ | 56.40 | 55.83
136.74 | 0.57 | 90CHA/GAD | | Liquid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
- 95.10
181.21
241.04 | - 93.65
189.23
237.88
- 604.71
86.64
- 34.95 | - 1.45
- 8.02
3.16 | 75GOO/MES
81FIN/MES
81FIN/MES | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = 1 \text{ln} K_t =$ | e
-6.30
211.29 | - 2.05
218.41
226.56
- 496.94
146.11
- 58.94 | -4.25
-7.12 | 90CHA/GAD
1881REI | | | $H_{2}(\mathbf{C})_{2}+(1)_{2}$
ohexane (su | .×C−(H)(C)₂(l
b) rsc)
e − Calculated | | $C_6H_{13}N$ $H)_2(C)) +$ Reference | | $(C_B)_2 + (C_B)_2 + (C_B)_1 + (C_B)_2 + (C_B)_1 + (C_B)_2 (C_B$ | (1 × C _B -(C)(C _B
1 × C-(H) ₃ (C))
re – Calculated | +(1×meta c | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 104.90 | -100.99
134.60 | -3.91 | 79STE | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 54.60 | 53.94
131.05 | 0.66 | 90CHA/GAD | | Liquid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
147.70 | - 145.03
216.76
238.71
- 740.19
75.66
- 30.52 | -2.67 | 79STE | Liquid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | -8.10
216.73 | -5.31
214.91
226.56
-496.94
142.85
-57.63 | - 2.79
1.82 | 90CHA/GAD
34KOL/UDO | | Benzenami
(5 × C _B -(| $(H)(C_B)_2) +$ | (1×N-(H) ₂ (C _B
e – Calculated | | C_6H_7N $N)(C_B)_2), \sigma = 2$ Reference | | $H)(C_B)_2) + H$
$H)(C_B)_2) + H$ | $(1 \times C_B - (C)(C_B (1 \times N - (H)_2(C_B)))$ |)) | | | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ - InK_t = S^\circ S$ | 87.46
108.41
319.16 | 87.00
108.47
319.16
-268.03
166.91
-67.33 | 0.46
-0.06
0.00 | 90CHA/GAD
69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ = C_t^\circ =$ $C_t^\circ =$ Liquid phase $\Delta_t H^\circ =$ | 55.30 | 54.57
130.34 | 0.73 | 90CHA/GAD | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | 31.63
191.92
189.55 | 31.30
191.01
191.63
- 395.56
149.24
- 60.20 | 0.33
0.91
-2.08 | 90CHA/GAD
90CHA/GAD
90CHA/GAD | $ C_{\rho}^{r} = C_{\rho}^{r} = S^{\circ} - \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = $ | | -5.31
214.91
226.56
-496.94
142.85
-57.63 | | | | N-Methylani
(5 × C _B -(F
(1 × C _B -(N | $I)(C_B)_2) + (1$ | 1×C-(H)₃(C))· | + (1 × N-(H) | C_7H_9N
(C)(C _B))+ | | $(C_B)_2$ | Continued)
(1×C _B -(N)(C ₁
×-CH ₃ corr (c | | $C_8H_{11}N$
$C)_2(C_B)) +$ | |---|----------------------|---|------------------------|--|---|-------------------------------------|--|---|--| | | Literature | - Calculated = | Residual | Reference | · | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_i H^\circ =$ | | 84.49 | | ···· | Liquid phase $\Delta_t H^\circ =
C_p^\circ =$ | 47.70
212.00 | 47.70
212.13 | 0.00
-0.13 | 82FUR/SAK
34KOL/UDO | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | 230.10 | 20.94
230.10 | 0.00 | 36KUR/VOS | | $(C_B)_2 + ($ | (1×C _B -(N)(C _I
- (1×C-(H) ₃ (C | | C _B H ₁₁ N
H)(C)(C _B))+ | | Benzylamine
(1 × N-(H | | $\times C_{B}$ $-(H)(C_{B})_{2})$ | +(1×C _B -(C | $(C_B)_2$ + | | Literatur | e – Calculated | = Residual | Reference | | | | e – Calculated = | Residual | Reference | Gas phase $\Delta_i H^\circ =$ | 56.32 | 56.19 | 0.13 | 52VRI/HIL | | Gas phase
Δ _t H° = | 87.80 | 87.80 | 0.00 | 77CAR/LAY | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | 4.02 | - 9.86
260.52 | 13.88 | 52VRI/HIL | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | e
34.20
207.19 | 34.20
205.88 | 0.00
1.31 | 77CAR/LAY
75NIC/WAD | N-Phenylanil
(10×C _B -(1 | | (2×C _B -(N)(C | $(C_B)_2$) + $(1 \times N -$ | C ₁₂ H ₁₁ N
(H)(C _B) ₂) | | 2-Phenyleth | ylamine | | | C ₈ H ₁₁ N | | Literature | e – Calculated | = Residual | Reference | | | $C)(C_B)_2)+($ | \times C-(H) ₂ (C)(N)
5 \times C _B -(H)(C _B)
e – Calculated = | 2) | 1) ₂ (C)(C _B))+ Reference | Gas phase $\Delta_t H^\circ =$ | 219.30 | 219.05 | 0.25 | 53AIH | | Gas phase $\Delta_t H^\circ =$ | | 62.30 | | ###################################### | Liquid phase $\Delta_t H^\circ =$ | | 135.10 | | | | $C_p^* =$ Liquid phas $\Delta_t H^* =$ | e | 4.68 | | | Solid phase $\Delta_l H^\circ = C_p^\circ =$ | 130.00 | 130.20
223.30 | - 0.20 | 55MED | | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f = 0$ | 239.24 | 239.41
276.34
-583.47
178.64
-72.06 | -0.17 | 75NIC/WAD | N-Methyl-N-
(10 × C _B -(1
(1 × N-(C) | H)(C _B) ₂)+ | ine
(2×C _B -(N)(C | C _B) ₂) + (1 × C- | C13H13N
(H)3(C))+ | | | | | | | | Literatur | e – Calculated | = Residual | Reference | | | $H)(C_B)_2) + ($ | (1×C _B -(N)(C _B)
×-CH ₃ corr (qu | | $C_8H_{11}N$
$C)_2(C_B)) +$ | Gas phase $\Delta_t H^\circ =$ | | 213.68 | | | | | Literatur | e – Calculated = | Residual | Reference | Liquid phase | | | | | | Gas phase $\Delta_t H^\circ =$ | 100.50 | 100.51 | -0.01 | 82FUR/SAK | $\Delta_i H^\circ = C_p^\circ =$ | 120.50
301.25 | 134.37
301.27 | -13.87
-0.02 | 56TAV/LAM | | (1 × NH ₂ -1 | | e – Calculated : | = Residual | Reference | | Literature | Calculated | - Residual | Reference | |--|---|---|----------------------------|--
---|--|---|---------------------------------------|---| | | | | | | Gas phase | | | | | | Gas phase | | | | | $\Delta_{\rm f}H^{\circ} =$ | | 91.14 | | | | $\Delta_t H^\circ =$ | | 91.14 | | | $C_p^{\circ} =$ | | 135.28 | | | | $C_p^{\circ} =$ | | 135.28 | | | | | | | | | | | | | | Liquid phase | | | | | | iquid phase | : | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | | 13.64 | | | | $\Delta_{\rm f}H^{\circ} =$ | | 13.64 | | | $C_p^{\circ} =$ | | 245.94 | | | | $C_p^{\circ} =$ | | 245.94 | | | S° = | | 210.04 | | | | S° = | | 210.04 | | | Δ _f S° = | | -538.18 | | | | $\Delta_t S^\circ =$ | | -538.18 | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 174.10 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 174.10 | | | $\ln K_{\rm f} =$ | | -70.23 | | | | $\ln K_{\rm f} =$ | | -70.23 | | | | | 70.23 | | | | | | | | | Solid phase | | | | | | Solid phase | | | | | $\Delta_{\rm f} H^{\circ} =$ | 6.40 | 2.42 | 3.98 | 73KUN/KAR | | $\Delta_{\rm f}H^{\circ} =$ | -0.30 | -0.58 | 0.28 | 73KUN/KAR | $C_p^{\circ} =$ | | 158.52 | | ,02201,222 | | $C_p^{\circ} =$ | 0.50 | 158.52 | 0.20 | 752101 111 | S° = | | 155.86 | | | | $S^{\circ} =$ | | 155.86 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -592.36 | | | | $\Delta_f S^\circ =$ | | -592.36 | | | $\Delta_i G^{\circ} =$ | | 179.03 | | | | | | 176.03 | | | | | - 72.22 | | | | $\Delta_f G^\circ =$ | | 1/0.03 | | | | | | | | | inK _f | | -71.01 | | | lnK _f | | - 16.66 | | | | 1,3-Benzened | | -71.01 | | C ₆ H ₈ N ₂ | 4-Aminobiph | $_{2}(C_{B})) + (1 \times$ | |) ₂)+(9×C _B -(| C ₁₂ H ₁₁ | | I,3-Benzened
(4×C _B -(F | | -71.01
(2×C _B -(N)(C _B |) ₂) + (2×N–(1 | | 4-Aminobiph | $_{2}(C_{B})) + (1 \times$ | |) ₂)+(9×C _B -(| | | I,3-Benzened
(4×C _B -(F | H)(C _B) ₂)+(
NH ₂ meta | -71.01
(2×C _B -(N)(C _B | | | 4-Aminobiph | $(C_B)_3$ + (1 × (C _B) ₃) | | , , , | | | 1,3-Benzened
(4×C _B -(F | H)(C _B) ₂)+(
NH ₂ meta | -71.01 $(2 \times C_{B} - (N)(C_{B} + (N))(C_{B} (N))(C_{$ | | $(C_B) +$ | 4-Aminobiph
(1×N-(H)
+ (2×C _B -(| $(C_B)_3$ + (1 × (C _B) ₃) | < С _в -(N)(С _в) | , , , | H)(C _B) ₂) | | 1,3-Benzenec
(4×C _B -(F
(1×NH ₂) | H)(C _B) ₂)+(
NH ₂ meta | -71.01 $(2 \times C_{B} - (N)(C_{B} + (N))(C_{B} (N))(C_{$ | | $(C_B) +$ | 4-Aminobiph (1 × N-(H) + (2 × C _B -(| $(C_B)_3$ + (1 × (C _B) ₃) | ← C _B −(N)(C _B) | , , , | H)(C _B) ₂) | | 1,3-Benzenec
(4×C _B -(F
(1×NH ₂ -) | H)(C _B) ₂)+(
NH ₂ meta | -71.01 (2×C _B -(N)(C _B corr) e - Calculated | | $(C_B) +$ | 4-Aminobiph $(1 \times N - (H)) + (2 \times C_B - H)$ + (2 \times C_B - H) Gas phase $\Delta_t H^{\circ} =$ | $(C_B)_3$ + (1 × (C _B) ₃) | C _B -(N)(C _B) - Calculated = | , , , | H)(C _B) ₂) | | 1,3-Benzenec
(4×C _B -(F
(1×NH ₂ -) | H)(C _B) ₂)+(
NH ₂ meta | -71.01 $(2 \times C_{B} - (N)(C_{B} + (N))(C_{B} (N))(C_{$ | | $(C_B) +$ | 4-Aminobiph (1 × N-(H) + (2 × C _B -(| $(C_B)_3$ + (1 × (C _B) ₃) | ← C _B −(N)(C _B) | , , , | H)(C _B) ₂) | | 3-Benzeneck
$(4 \times C_B - (F + (1 \times NH_2 - 1 $ | H)(C _B) ₂)+(
NH ₂ meta | -71.01 (2 × C _B -(N)(C _B corr) e - Calculated | | $(C_B) +$ | 4-Aminobiph $(1 \times N - (H)) + (2 \times C_B - H)$ + (2 \times C_B - H) Gas phase $\Delta_t H^{\circ} =$ | $(C_B)_3$ + (1 × (C _B) ₃) | C _B -(N)(C _B) - Calculated = | , , , | H)(C _B) ₂) | | (4 × C _B -(F)
(1 × NH ₂ -1)
Gas phase
$\Delta_t H^\circ = C_\rho^\circ =$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01 (2 × C _B -(N)(C _B corr) e - Calculated | | $(C_B) +$ | 4-Aminobiph
$(1 \times N - (H))$
$+ (2 \times C_B - (H))$
Gas phase
$\Delta_t H^\circ = C_p^\circ = (H)$ | $(C_B)_3$ + (1 × (C _B) ₃) | C _B -(N)(C _B) - Calculated = | , , , | H)(C _B) ₂) | | 1,3-Benzenec
$(4 \times C_B - (1 \times NH_2 - 1 N$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01 (2 × C _B -(N)(C _B corr) e - Calculated | | $(C_B) +$ | 4-Aminobiph $(1 \times N - (H))$ $+ (2 \times C_B - H)$ $+ (2 \times C_B - H)$ Gas phase $\Delta_t H^\circ = C_p^\circ $ | $(C_B)_3$ + (1 × (C _B) ₃) | CC _B -(N)(C _B) - Calculated = 185.56 189.15 | , , , | H)(C _B) ₂) | | Gas phase $C_{\rho}^{\alpha} = C_{\rho}^{\alpha} C_{\rho}^$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01 (2×C _B -(N)(C _B corr) e - Calculated = 91.14 135.28 | | $(C_B) +$ | 4-Aminobiph
$(1 \times N - (H))$
$+ (2 \times C_B - (H))$
Gas phase
$\Delta_t H^\circ = C_p^\circ C_p^$ | $(C_B)_3$ + (1 × (C _B) ₃) | CC _B -(N)(C _B) - Calculated = 185.56 189.15 | , , , | H)(C _B) ₂) | | Gas phase $C_{\rho}^{\alpha} = C_{\rho}^{\alpha} C_{\rho}^$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01
(2×C _B -(N)(C _B corr)
e - Calculated = 91.14
135.28 | | $(C_B) +$ | 4-Aminobiph $(1 \times N - (H))$ $+ (2 \times C_B - H)$ $+ (2 \times C_B - H)$ Gas phase $\Delta_t H^\circ = C_p^\circ $ | $(C_B)_3$ + (1 × (C _B) ₃) | CC _B -(N)(C _B) - Calculated = 185.56 189.15 | , , , | H)(C _B) ₂) | | Gas phase $ \Delta_t H^\circ = C_p^\circ = C_p^\circ = S^\circ = S^\circ = C_p^\circ C_p$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01 (2 × C _B -(N)(C _B corr) e - Calculated 91.14 135.28 13.64 245.94 210.04 | | $(C_B) +$ | 4-Aminobiph $(1 \times N - (H)) + (2 \times C_B - H)$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | $(C_B)_3$ + (1 × (C _B) ₃) | CC _B -(N)(C _B) - Calculated = 185.56 189.15 | , , , | H)(C _B) ₂) | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = S^$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01
(2×C _B -(N)(C _B
corr)
e - Calculated = 91.14
135.28
13.64
245.94
210.04
-538.18 | | $(C_B) +$ | 4-Aminobiph $(1 \times N - (H)) + (2 \times C_B - H)$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ Solid phase | ₂ (C _B)) + (1 ×
(C _B) ₃)
Literature | C _B -(N)(C _B) - Calculated = 185.56 189.15 98.36 315.87 | = Residual | H)(C _B) ₂) Reference | | Gas phase $C_{\rho}^{\rho} = C_{\rho}^{\rho} C_{\rho}^$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01
(2×C _B -(N)(C _B
corr)
e - Calculated = 91.14
135.28
13.64
245.94
210.04
-538.18
174.10 | | $(C_B) +$ | 4-Aminobiph $(1 \times N - (H)) + (2 \times C_B - H)$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = C_p^\circ =$ | $(C_B)_3$ + (1 × (C _B) ₃) | C _B -(N)(C _B) - Calculated = 185.56 189.15 98.36 315.87 | , , , | H)(C _B) ₂) | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = S^$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01 (2 × C
_B -(N)(C _B corr) e - Calculated 91.14 135.28 13.64 245.94 210.04 -538.18 | | $(C_B) +$ | 4-Aminobiph $(1 \times N - (H)) + (2 \times C_B - (H)) + (2 \times C_B - (H)) + (2 \times C_B - (H))$ Gas phase $\Delta_t H^\circ = C_p^\circ $ | ₂ (C _B)) + (1 ×
(C _B) ₃)
Literature | 185.56
189.15
98.36
315.87 | = Residual | H)(C _B) ₂) Reference | | Gas phase $C_{\rho}^{\rho} = C_{\rho}^{\rho} C_{\rho}^$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01
(2×C _B -(N)(C _B
corr)
e - Calculated = 91.14
135.28
13.64
245.94
210.04
-538.18
174.10 | | $(C_B) +$ | 4-Aminobiph $(1 \times N - (H))$ $+ (2 \times C_{B^{-1}})$ Gas phase $\Delta_t H^{\circ} =$ $C_{\rho}^{\circ} =$ Liquid phase $\Delta_t H^{\circ} =$ $C_{\rho}^{\circ} =$ Solid phase $\Delta_t H^{\circ} =$ $C_{\rho}^{\circ} =$ $S^{\circ} =$ | 2(C _B)) + (1 × (C _B) ₃) Literature - | 185.56
189.15
98.36
315.87
80.98
216.73
225.18 | = Residual | H)(C _B) ₂) Reference | | Gas phase $C_{p}^{A} = C_{p}^{A}$ $C_{p}^{A} = C_{p}^{A} = C_{p}^{A}$ $C_{p}^{A} = C_{p}^{A} = C_{p}^{A}$ $C_{p}^{A} C_{p}^$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01
(2×C _B -(N)(C _B
corr)
e - Calculated = 91.14
135.28
13.64
245.94
210.04
-538.18
174.10 | | $(C_B) +$ | 4-Aminobiph
$(1 \times N - (H))$
$+ (2 \times C_{B^{-1}})$
Gas phase
$\Delta_t H^\circ =$
$C_p^\circ =$
Liquid phase
$\Delta_t H^\circ =$
$C_p^\circ =$
Solid phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$\Delta_t S^\circ =$ | 2(C _B)) + (1 × (C _B) ₃) Literature - | 185.56
189.15
98.36
315.87
80.98
216.73
225.18
-657.59 | = Residual | H)(C _B) ₂) Reference | | Gas phase $C_p^{\rho} = C_p^{\rho} C_p^$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01
(2 × C _B -(N)(C _B
corr)
e - Calculated = 91.14
135.28
13.64
245.94
210.04
-538.18
174.10
-70.23 | = Residual | H) ₂ (C _B)) + Reference | 4-Aminobiph $(1 \times N - (H))$ $+ (2 \times C_{B^{-1}})$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | 2(C _B)) + (1 × (C _B) ₃) Literature - | 185.56
189.15
98.36
315.87
80.98
216.73
225.18
-657.59
277.04 | = Residual | H)(C _B) ₂) Reference | | Gas phase $C_{\rho}^{A} = C_{\rho}^{A}$ Gas phase $C_{\rho}^{A} = C_{\rho}^{A} C_{\rho}^{A$ | H)(C _B) ₂) + (NH ₂ meta Literatur | -71.01 (2 × C _B -(N)(C _B corr) e - Calculated: 91.14 135.28 13.64 245.94 210.04 -538.18 174.10 -70.23 | = Residual | H) ₂ (C _B)) + Reference 73KUN/KAR | 4-Aminobiph
$(1 \times N - (H))$
$+ (2 \times C_{B^{-1}})$
Gas phase
$\Delta_t H^\circ =$
$C_p^\circ =$
Liquid phase
$\Delta_t H^\circ =$
$C_p^\circ =$
Solid phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$\Delta_t S^\circ =$ | 2(C _B)) + (1 × (C _B) ₃) Literature - | 185.56
189.15
98.36
315.87
80.98
216.73
225.18
-657.59 | = Residual | H)(C _B) ₂) Reference | | Gas phase $C_{\rho} = C_{\rho} = C_{\rho}$ Gas phase $C_{\rho} = C_{\rho} = C_{\rho}$ Solid phase $C_{\rho} = C_{\rho} = C_{\rho} = C_{\rho} = C_{\rho}$ | H)(C _B) ₂) + (
NH ₂ meta
Literatur | -71.01 (2 × C _B -(N)(C _B corr) e - Calculated: 91.14 135.28 13.64 245.94 210.04 -538.18 174.10 -70.23 -7.58 158.52 | = Residual | H) ₂ (C _B)) + Reference | 4-Aminobiph $(1 \times N - (H))$ $+ (2 \times C_{B^{-1}})$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | 2(C _B)) + (1 × (C _B) ₃) Literature - | 185.56
189.15
98.36
315.87
80.98
216.73
225.18
-657.59
277.04 | = Residual | H)(C _B) ₂) Reference | | Gas phase $ \begin{array}{l} (4 \times C_B - (1 \times NH_2 - 1)) \\ (1 \times NH_2 - 1) \end{array} $ Gas phase $ \begin{array}{l} \Delta_t H^\circ = \\ C_\rho^\circ = \\ \end{array} $ Liquid phase $ \begin{array}{l} \Delta_t H^\circ = \\ C_\rho^\circ = \\ \end{array} $ $ \begin{array}{l} \Delta_t S^\circ = \\ \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \end{array} $ Solid phase $ \begin{array}{l} \Delta_t H^\circ = \\ C_\rho^\circ = \\ S^\circ = \\ \end{array} $ Solid phase $ \begin{array}{l} \Delta_t H^\circ = \\ C_\rho^\circ = \\ S^\circ = \\ \end{array} $ | H)(C _B) ₂) + (NH ₂ meta Literatur | -71.01 (2 × C _B -(N)(C _B corr) e - Calculated = 91.14 135.28 13.64 245.94 210.04 -538.18 174.10 -70.23 -7.58 158.52 155.86 | = Residual | H) ₂ (C _B)) + Reference 73KUN/KAR | 4-Aminobiph $(1 \times N - (H))$ $+ (2 \times C_{B^{-1}})$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | 2(C _B)) + (1 × (C _B) ₃) Literature - | 185.56
189.15
98.36
315.87
80.98
216.73
225.18
-657.59
277.04 | = Residual | H)(C _B) ₂) Reference | | Gas phase $ \begin{array}{l} (4 \times C_B - (F + F)) \\ (1 \times NH_2 - F) \\ (1 \times NH_2 - F) \end{array} $ Gas phase $ \begin{array}{l} \Delta_t H^\circ = \\ C_p^\circ = \\ \end{array} $ Liquid phase $ \begin{array}{l} \Delta_t H^\circ = \\ C_p^\circ = \\ \end{array} $ $ \begin{array}{l} \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \end{array} $ in $K_t = $ Solid phase $ \begin{array}{l} \Delta_t H^\circ = \\ C_p^\circ = \\ S^\circ = \\ \Delta_t S^\circ = \\ \end{array} $ $ \begin{array}{l} \Delta_t S^\circ = \\ \Delta_t S^\circ = \\ \end{array} $ | H)(C _B) ₂) + (NH ₂ meta Literatur | -71.01 (2 × C _B -(N)(C _B corr) e - Calculated 91.14 135.28 13.64 245.94 210.04 -538.18 174.10 -70.23 -7.58 158.52 155.86 -592.36 | = Residual | H) ₂ (C _B)) + Reference 73KUN/KAR | 4-Aminobiph $(1 \times N - (H))$ $+ (2 \times C_{B^{-1}})$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | 2(C _B)) + (1 × (C _B) ₃) Literature - | 185.56
189.15
98.36
315.87
80.98
216.73
225.18
-657.59
277.04 | = Residual | H)(C _B) ₂) Reference | | Gas phase $ \begin{array}{l} (4 \times C_B - (1 \times NH_2 - 1)) \\ (1 \times NH_2 - 1) \end{array} $ Gas phase $ \begin{array}{l} \Delta_t H^\circ = \\ C_\rho^\circ = \\ \end{array} $ Liquid phase $ \begin{array}{l} \Delta_t H^\circ = \\ C_\rho^\circ = \\ \end{array} $ $ \begin{array}{l} \Delta_t S^\circ = \\ \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \end{array} $ Solid phase $ \begin{array}{l} \Delta_t H^\circ = \\ C_\rho^\circ = \\ S^\circ = \\ \end{array} $ Solid phase $ \begin{array}{l} \Delta_t H^\circ = \\ C_\rho^\circ = \\ S^\circ = \\ \end{array} $ | H)(C _B) ₂) + (NH ₂ meta Literatur | -71.01 (2 × C _B -(N)(C _B corr) e - Calculated = 91.14 135.28 13.64 245.94 210.04 -538.18 174.10 -70.23 -7.58 158.52 155.86 | = Residual | H) ₂ (C _B)) + Reference 73KUN/KAR | 4-Aminobiph $(1 \times N - (H)) + (2 \times C_{B^{-1}}) + (2 \times C_{B^{-1}})$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ =$ $\Delta_t G^\circ =$ | 2(C _B)) + (1 × (C _B) ₃) Literature - | 185.56
189.15
98.36
315.87
80.98
216.73
225.18
-657.59
277.04 | = Residual | H)(C _B) ₂) Reference | TABLE 27. Imines (2) ### TABLE 28. Nitriles (27) | | obutyleneim
() ₃ (C)) + (2> | < C-(H)2(C)2) · | | | Ethanenitri
(1×C-(F | H)3(CN), A | cetonitrile), σ | | C ₂ H ₃ I |
---|---|--|--------------------------|--------------------|---|-----------------|---|--|---| | | C))+(1×C _d
corr (tertia | -(H)(C))+(1:
ary)) | < C-(H)(C)₂((| C _d))+ | | Literatur | e – Calculated | = Residual | Reference | | | Literature | e – Calculated | = Residual | Reference | Gas phase | | | | | | | | | | | $\Delta_t H^{\circ} =$ | 74.04 | 74.04 | 0.00 | 83AN/MAN | | | | | | | $C_p^{\circ} =$ | 52.22 | 52.22 | 0.00 | 69STU/WES | | Gas phase | | | | | <i>S</i> ° = | 243.47 | 243.47 | 0.00 | 69STU/WES | | $\Delta_{\rm f}H^{\circ} =$ | | - 84.71 | | | $\Delta_f S^\circ =$ | | - 59.62 | | | | | | | | | $\Delta_f G^\circ =$ | | 91.82 | | | | iouid Phos | | | | | $lnK_f =$ | | -37.04 | | | | Liquid Phas
Δ _ε H° = | – 132.80 | - 129.74 | -3.06 | 62BED/EDM | | | | | | | | | | | | Liquid phas | se | | | | | | | | | | $\Delta_t H^\circ =$ | 40.56 | 40.56 | 0.00 | 83AN/MAN | | | | | | | $C_p^{\circ} =$ | 91.46 | 91.46 | 0.00 | 65PUT/MCE | | N-(Phenylm | ethylene)be | nzenimine; | | | S° = | 149.62 | 149.62 | 0.00 | 65PUT/MCE | | | eneaniline | | | $C_{13}H_{11}N$ | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 153.47 | | | | $(10 \times C_B -$ | $(H)(C_B)_2) +$ | $(1 \times C_B - (N)) +$ | $-(1 \times C_B - (C_d)$ | $(C_B)_2) +$ | $\Delta_l G^{\circ} =$ | | 86.32 | | | | | | $1 \times N_{I} - (C_B)$ | | | $lnK_f =$ | | -34.82 | | | | | Literatur | e – Calculated | = Residual | Reference | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | Can abasa | | | | | Propaneniti | | | NT\\ - 2 | C ₃ H ₅ N | | Gas phase $\Delta_t H^\circ =$ | 252.60 | 258.25 | -4.65 | 48COA/SUT | (1×C-(F | 1)3(C))+(1 | \times C-(H) ₂ (C)(C | $N)), \sigma = 3$ | | | • | 253.60 | 238.23
194.90 | -4.03 | 48COA/SU1 | | T itamatuu | e - Calculated | Daaiduul | Reference | | | | 194.90 | | | | Literatur | e – Calculated | = Residuai | Reference | | $C_p^{\circ} =$ | | | | | | | | | | | | | | | | Gos aboss | | | | | | Liquid Phas | se | 170.00 | | | Gas phase | £1.50 | 50.04 | 0.54 | TOLLOW THE P | | Liquid Phas $\Delta_i H^\circ =$ | se | 178.90 | | | $\Delta_t H^{\circ} =$ | 51.50 | 52.26 | -0.76 | | | Liquid Phas $ \Delta_t H^\circ = C_p^\circ = $ | se | 302.68 | | | $\Delta_t H^\circ = C_p^\circ =$ | 73.05 | 73.59 | -0.54 | 69STU/WES | | Liquid Phas $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | se | 302.68
304.93 | | | $\Delta_l H^\circ = C_p^\circ = S^\circ = C_p^\circ C_p^$ | | 73.59
285.44 | | | | Liquid Phas
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ | se | 302.68
304.93
-583.58 | | | $\Delta_t H^\circ = C_p^\circ = S^\circ - \Delta_t S^\circ =$ | 73.05 | 73.59
285.44
-153.96 | -0.54 | 69STU/WES | | Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S$ | se | 302.68
304.93
-583.58
352.89 | | | $\Delta_t H^\circ = C_p^\circ =
S^\circ - \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 73.05 | 73.59
285.44
-153.96
98.16 | -0.54 | 69STU/WES | | Liquid Phas
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ | se | 302.68
304.93
-583.58 | | | $\Delta_t H^\circ = C_p^\circ = S^\circ - \Delta_t S^\circ =$ | 73.05 | 73.59
285.44
-153.96 | -0.54 | 69STU/WES | | Liquid Phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | | 302.68
304.93
-583.58
352.89 | | | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} - \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{f} = \frac{1}{2}$ | 73.05
286.60 | 73.59
285.44
-153.96
98.16 | -0.54 | 69STU/WES | | Liquid Phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = S$ Solid phase | · | 302.68
304.93
- 583.58
352.89
- 142.36 | _2.05 | 48COA/SUT | $\Delta_t H^\circ = C_p^\circ = S^\circ - \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ Liquid phas | 73.05
286.60 | 73.59
285.44
-153.96
98.16
-39.60 | -0.54
1.16 | 69STU/WES
69STU/WES | | Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S$ | | 302.68
304.93
-583.58
352.89 | - 2.05 | 48COA/SUT | $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ \Delta_t S^\circ =$ $\ln K_f =$ Liquid phas $\Delta_t H^\circ =$ | 73.05
286.60 | 73.59
285.44
-153.96
98.16
-39.60 | -0.54
1.16 | 69STU/WES
69STU/WES
71HAL/BAL | | Liquid Phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = S$ Solid phase | · | 302.68
304.93
- 583.58
352.89
- 142.36 | -2.05 | 48COA/SUT | $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ \Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ -$ | 73.05
286.60 | 73.59
285.44
-153.96
98.16
-39.60
18.46
119.49 | -0.54
1.16
-2.96
0.01 | 69STU/WES
69STU/WES
71HAL/BAL
62WEB/KIL | | Liquid Phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = S$ Solid phase | · | 302.68
304.93
- 583.58
352.89
- 142.36 | -2.05 | 48COA/SUT | $\Delta_t H^\circ =$ $C_\rho^\circ =$ $S^\circ \Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phas $\Delta_t H^\circ =$ $C_\rho^\circ S^\circ =$ | 73.05
286.60 | 73.59
285.44
-153.96
98.16
-39.60
18.46
119.49
189.32 | -0.54
1.16 | 69STU/WES
69STU/WES
71HAL/BAL | | Liquid Phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = S$ Solid phase | · | 302.68
304.93
- 583.58
352.89
- 142.36 | -2.05 | 48COA/SUT | $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ \Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ | 73.05
286.60 | 73.59
285.44
-153.96
98.16
-39.60
18.46
119.49
189.32
-250.08 | -0.54
1.16
-2.96
0.01 | 69STU/WES
69STU/WES
71HAL/BAL
62WEB/KIL | | Liquid Phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = S$ Solid phase | · | 302.68
304.93
- 583.58
352.89
- 142.36 | -2.05 | 48COA/SUT | $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ \Delta_t S^\circ =$ $\ln K_t =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | 73.05
286.60 | 73.59
285.44
-153.96
98.16
-39.60
18.46
119.49
189.32
-250.08
93.02 | -0.54
1.16
-2.96
0.01 | 69STU/WES 71HAL/BAL 62WEB/KIL | | Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ Solid phase | · | 302.68
304.93
- 583.58
352.89
- 142.36 | -2.05 | 48COA/SUT | $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ \Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ | 73.05
286.60 | 73.59
285.44
-153.96
98.16
-39.60
18.46
119.49
189.32
-250.08 | -0.54
1.16
-2.96
0.01 | 69STU/WES
69STU/WES
71HAL/BAL
62WEB/KIL | | Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = S$ Solid phase | · | 302.68
304.93
- 583.58
352.89
- 142.36 | -2.05 | 48COA/SUT | $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ \Delta_t S^\circ =$ $\ln K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t -$ Butanenitrii | 73.05
286.60 | 73.59
285.44
-153.96
98.16
-39.60
-39.60
-18.46
119.49
189.32
-250.08
93.02
-37.52 | -0.54
1.16
-2.96
0.01
0.01 | 69STU/WES
69STU/WES
71HAL/BAL
62WEB/KIL
62WEB/KIL | | Liquid Phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ Solid phase | · | 302.68
304.93
- 583.58
352.89
- 142.36 | -2.05 | 48COA/SUT | $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ \Delta_t S^\circ =$ $\ln K_f =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t -$ Butanenitrii | 73.05
286.60 | 73.59
285.44
-153.96
98.16
-39.60
-39.60
-18.46
119.49
189.32
-250.08
93.02
-37.52 | -0.54
1.16
-2.96
0.01
0.01 | 69STU/WES
69STU/WES
71HAL/BAL
62WEB/KIL
62WEB/KIL | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ $lnK_f =$ 33.60 97.03 325.43 31.63 96.48 324.60 -251.11 106.50 -42.96 70HOW/WAD 69STU/WES 69STU/WES 1.97 0.55 0.83 TABLE 28. Nitriles (27) - Continued TABLE 28. Nitriles (27) - Continued | | [)₃(C))+(1> | $(C-(H)_2(C)_2)$ | sd)
+ (1 × C-(H) ₂ (| $\begin{array}{c} C_4H_7N \\ (C)(CN)), \sigma = 3 \end{array}$ | (1×C-(I | Octanenitrile; Capryonitrile
$(1 \times C - (H)_3(C)) + (5 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2)$ | | | | |---|-------------------
--|---------------------------------------|--|--|---|---|-----------------------------|---| | | Literature | - Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid phas | e | | | | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | - 5.82 | -7.27 | 1.45 | 59EVA/SKI | Gas phase | | | | | | $C_{p}^{\circ} =$ | | 149.91 | | | $\Delta_{\rm f}H^{\circ} =$ | -50.60 | - 50.89 | 0.29 | 77STR/SUN | | s° = | | 221.70 | | | $C_p^{\circ} =$ | | 188.04 | | | | $\Delta_f S^\circ =$ | | -354.01 | | | S° = | | 481.24 | | | | $\Delta_f G^\circ =$ | | 98.28 | | | $\Delta_{6}S^{\circ} =$ | | -639.72 | | | | $\ln K_f =$ | | - 39.64 | | | $\Delta_f G^\circ =$ | | 139.84 | | | | | | | | | $lnK_f =$ | | -56.41 | | | | Pentanenitr | ile; Valeron | itrile | | C5H9N | Liquid pha | Se | | | | | | | | +(1×C-/H) | $(C)(CN)$, $\sigma = 3$ | $\Delta_t H^\circ =$ | - 107.40 | -110.19 | 2.79 | 77STR/SUN | | (1 ^ C-(1) | 1)3(C)) T (2) | · - (11/2(-/2) | · (1 ^ C-(11)2 | | $C_p^{\circ} =$ | 107.70 | 271.59 | 2.17 | MOCATION | | | T :44 | Coloulated | – Davidual | Dafarana | S° = | | | | | | | Literature | - Calculated | = Residuai | Reference | | | 351.22 | | | | | | | | | $\Delta_{l}S^{\circ} =$ | | 769.73 | | | | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 119.31 | | | | Gas phase | | | | | $lnK_f =$ | | -48.13 | | | | $\Delta_{\rm f}H^{\circ} =$ | 10.50 | 11.00 | -0.50 | 70HOW/WAD | | | | | | | $C_p^{\circ} =$ | | 119.37 | | | | | | | | | S° = | | 363.76 | | | | | | | | | $\Delta_f S^{\circ} =$ | | -348.26 | | | Decanenitri | ile; Capr i ni | itrile | | C ₁₀ H ₁₉ N | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 114.83 | | | (1×C-(H | (C) + (7) | ×C-(H) ₂ (C) ₂) | + (1 × C-(H)) | $(C)(CN)), \sigma = 3$ | | $lnK_f =$ | | -46.32 | | | ((- | | re – Calculated | | Reference | | | | | | | | Littiatu | | - Residual | Reference | | Liquid phas | se | | | | | | | | | | $\Delta_f H^o =$ | -33.10 | -33.00 | -0.10 | 69KON/PRO | Gas phase | | | | | | $C_{\rho}^{\circ} =$ | | 180.33 | | | $\Delta_t H^{\circ} =$ | -91.60 | -92.15 | 0.55 | 77STR/SUN | | S° = | | 254.08 | | | $C_{p}^{\circ} =$ | | 233.82 | | | | $\Delta_f S^\circ =$ | | - 457.94 | | | S° = | | 559.56 | | | | $\Delta_{\rm f}G^{\circ} =$ | | 103.53 | | | $\Delta_{f}S^{\circ} =$ | | -834.02 | | | | $lnK_f =$ | | -41.77 | | | $\Delta_{l}G^{\circ} =$ | | 156,51 | | | | | | | · · · · · · · · · · · · · · · · · · · | 1.000,000 | $lnK_t =$ | | -63.14 | | | | Heptaneniti | rile; Enanth | | . (4 . 5 . (7) | C ₇ H ₁₃ N | Liquid phas | | | | | | (1 × C /T | 1)3(C))+(4) | × U-(H)2(U)2) | +(1×C-(H)2 | $(C)(CN)), \sigma = 3$ | $\Delta_t H^\circ =$ | - 158.40 | - 161.65 | 3.25 | 77STR/SUN | | $(1 \times C - (H$ | , , , , , | · /- · /-/ | | | 1 2 | | | | | | (1×C-(H | | | | | $C_p^{\circ} =$ | | 332.43 | | | | (1×C-(F | | e – Calculated | = Residual | Reference | S° = | | 415.98 | | | | (1 × C-(F | | | = Residual | Reference | $S^{\circ} = \Delta_{f}S^{\circ} =$ | | 415.98
977.59 | | | | | | | = Residual | Reference | $S^{\circ} = \Delta_{i}S^{\circ} = \Delta_{i}G^{\circ} = \Delta_{i}G^{\circ} = 0$ | | 415.98 | | | | (1 × C-(F | Literatur | | = Residual | Reference | $S^{\circ} = \Delta_{f}S^{\circ} =$ | | 415.98
977.59 | | | | Gas phase $\Delta_t H^\circ =$ | | | = Residual
-0.74 | Reference 73LEB/KAT | $S^{\circ} = \Delta_{i}S^{\circ} = \Delta_{i}G^{\circ} = \Delta_{i}G^{\circ} = 0$ | | 415.98
977.59
129.82 | | | | Gas phase | Literatur | e - Calculated | | | $S^{\circ} = \Delta_{i}S^{\circ} = \Delta_{i}G^{\circ} = \Delta_{i}G^{\circ} = 0$ | | 415.98
977.59
129.82 | | | | Gas phase $\Delta_t H^\circ =$ | Literatur | e – Calculated
– 30.26 | | | $S^{\circ} = \Delta_{i}S^{\circ} = \Delta_{i}G^{\circ} = \Delta_{i}G^{\circ} = 0$ | | 415.98
977.59
129.82 | | | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | Literatur | - 30.26
165.15
442.08 | | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = -\infty$ | itrile: Unde | 415.98
- 977.59
129.82
- 52.37 | | CHN | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | Literatur | - 30.26
165.15
442.08
- 542.57 | | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{2}$ Undecaneni | | 415.98
- 977.59
129.82
- 52.37 | + (1 × C-\H)·(| C ₁₁ H ₂₁ N | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | Literatur | - 30.26
165.15
442.08
- 542.57
131.51 | | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{2}$ Undecaneni | | 415.98
- 977.59
129.82
- 52.37 | + (1 × C-(H) ₂ (| $C_{11}H_{21}N$ $C)(CN)), \sigma = 3$ | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | Literatur | - 30.26
165.15
442.08
- 542.57 | | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{2}$ Undecaneni | I) ₃ (C)) + (8 | 415.98
- 977.59
129.82
- 52.37 | | $C_{11}H_{21}N$ $C)(CN)), \sigma = 3$ Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | Literatur | - 30.26
165.15
442.08
- 542.57
131.51 | | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{2}$ Undecaneni | I) ₃ (C)) + (8 | 415.98
- 977.59
129.82
- 52.37
ccylnitrile
× C-(H) ₂ (C) ₂) | | $C)(CN)), \sigma = 3$ | | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f = $ | Literatur | - 30.26
165.15
442.08
- 542.57
131.51 | | 73LEB/KAT | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{2}$ Undecaneni | I) ₃ (C)) + (8 | 415.98
- 977.59
129.82
- 52.37
ccylnitrile
× C-(H) ₂ (C) ₂) | | $C)(CN)), \sigma = 3$ | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ =$ | Literatur – 31.00 | - 30.26
165.15
442.08
- 542.57
131.51
- 53.05 | -0.74 | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{1 \times C - (F)}$ Undecaneni (1 × C - (F) | I) ₃ (C)) + (8
Literatur | 415.98
- 977.59
129.82
- 52.37
ccylnitrile
× C-(H) ₂ (C) ₂)- | = Residual | C)(CN)), σ = 3 Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \ln K_t^\circ = Liquid phas \Delta_t H^\circ = C_p^\circ = 0$ | Literatur – 31.00 | -30.26
165.15
442.08
-542.57
131.51
-53.05 | -0.74 | 73LEB/KAT | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{1 \times C - (F)}$ Undecaneni (1 × C - (F) Gas phase $\Delta_{t}H^{\circ} = \frac{1}{1 \times C - (F)}$ | I) ₃ (C)) + (8 | 415.98
- 977.59
129.82
- 52.37
ccylnitrile
× C-(H) ₂ (C) ₂)-
re - Calculated | | $C)(CN)), \sigma = 3$ | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = S^\circ = $ | Literatur – 31.00 | -30.26
165.15
442.08
-542.57
131.51
-53.05
-84.46
241.17
318.84 | -0.74 | 73LEB/KAT | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{1 \times C - (H)}$ Undecaneni (1 × C - (H)) Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = \frac{1}{1 \times C}$ | I) ₃ (C)) + (8
Literatur | 415.98
- 977.59
129.82
- 52.37
ecylnitrile
× C-(H) ₂ (C) ₂)
re - Calculated
- 112.78
256.71 | = Residual | C)(CN)), σ = 3 Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t \Delta_t$ | Literatur – 31.00 | -30.26
165.15
442.08
-542.57
131.51
-53.05
-84.46
241.17
318.84
-665.80 | -0.74 | 73LEB/KAT | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{1 \times C - (H)}$ Undecaneni (1 × C - (H) Gas phase $\Delta_{t}H^{\circ} = C_{r}^{\circ} = S^{\circ} = \frac{1}{1 \times C - (H)}$ | I) ₃ (C)) + (8
Literatur | 415.98
- 977.59
129.82
- 52.37
ccylnitrile
× C-(H) ₂ (C) ₂)
re - Calculated
-112.78
256.71
598.72 | = Residual | C)(CN)), σ = 3 Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t \Delta_t$ | Literatur – 31.00 | -30.26
165.15
442.08
-542.57
131.51
-53.05
-84.46
241.17
318.84
-665.80
114.05 | -0.74 | 73LEB/KAT | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{1}$ Undecaneni (1 × C-(H) Gas phase $\Delta_{t}H^{\circ} = C_{r}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \frac{1}{1}$ | I) ₃ (C)) + (8
Literatur | 415.98
- 977.59
129.82
- 52.37
cylnitrile
× C-(H) ₂ (C) ₂)
re - Calculated
- 112.78
256.71
598.72
- 931.17 | = Residual | C)(CN)), σ = 3 Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t \Delta_t$ | Literatur – 31.00 |
-30.26
165.15
442.08
-542.57
131.51
-53.05
-84.46
241.17
318.84
-665.80 | -0.74 | 73LEB/KAT | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{1}{1 \times C - (H)}$ Undecaneni (1 × C - (H) Gas phase $\Delta_{t}H^{\circ} = C_{r}^{\circ} = S^{\circ} = \frac{1}{1 \times C - (H)}$ | I) ₃ (C)) + (8
Literatur | 415.98
- 977.59
129.82
- 52.37
ccylnitrile
× C-(H) ₂ (C) ₂)
re - Calculated
-112.78
256.71
598.72 | = Residual | C)(CN)), σ = 3 Reference | | TABLE 28. | Nitriles | (27) – | Continued | |-----------|----------|--------|-----------| |-----------|----------|--------|-----------| | TABLE 2 | 28. Nii | triles (| (27) | - (| Continued | |---------|---------|----------|------|-----|-----------| |---------|---------|----------|------|-----|-----------| | | Literatur | e – Calculated = | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | |---|--|---|-----------------------------|---|---
---|--|------------------------|---| | Liquid phas | e
e | | | | *** | | | | | | $\Delta_{i}H^{\circ} =$ | | -187.38 | 2.88 | 77STR/SUN | Gas phase | | | | | | $C_p^{\circ} =$ | ' | 362.85 | | | $\Delta_i H^{\circ} =$ | 140.71 | 140.71 | 0.00 | 73KON | | S° = | | 448.36 | | | $C_p^o =$ | | 86.85 | **** | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | $\Delta_i S^\circ =$ | | - 1081.53 | | | ~ <i>p</i> | | 00.00 | | | | $\Delta_{f}G^{\circ} =$ | | 135.08 | | | | | | | | | $\ln K_{\rm f} =$ | | - 54.49 | | | Liquid phas | e | | | * | | IIIV! | | -34.43 | | | $\Delta_{\rm f}H^{\circ} =$ | 100.71 | 100.72 | -0.01 | 60VON/DDO | | | | | | | $C_p^{\circ} =$ | 100.71 | 141.50 | -0.01 | 69KON/PRO | | | | | | | $S^{\circ} =$ | | 204.60 | | | | T-4 3 | idadlaa D#s | | | CHN | $\Delta_{t}S^{\circ} =$ | | | | | | | | ristonitrile | | C ₁₄ H ₂₇ N | | | - 240.54 | | | | (1×C-(F | 1)₃(C))+(1 | $1 \times C - (H)_2(C)_2$ |)+(1×C-(H) | $_2(C)(CN)), \sigma = 3$ | $\Delta_t G^{\circ} =$ | | 172.44 | | | | | T itamatu | re – Calculated: | – Doridual | Reference | $lnK_f =$ | | -69.56 | | | | | Lateratu | re – Calculateu | = Kesiduai | Reference | | | | | | | Gas phase | | | | | cis -2-Butene | nitrile | | | C ₄ H ₅ N | | $\Delta_t H^{\circ} =$ | -174.80 | -174.67 | -0.13 | 77STR/SUN | (1×C-(H | () ₃ (C)) + (1 | $\times C_d$ -(H)(C)) | $+(1\times C_{d}-(H)($ | CN))+ | | $C_p^{\circ} =$ | | 325.38 | | | $(1 \times cis)$ | nsat) corr) | | | | | S° = | | 716.20 | | | | | | | | | $\Delta_f S^{\circ} =$ | | -1222.62 | | | | Literatur | e – Calculated | = Residual | Reference | | $\Delta_l G^{\circ} -$ | | 189.86 | | | | | | | | | $lnK_{f} =$ | | - 76.59 | | | | | | | | | • | | | | | Gas phase | | | | | | | | | | | $\Delta_f H^{\circ} =$ | 134.10 | 145.56 | - 11.46 | 73KON | | Liquid pha | se | | | | $C_p^{\circ} =$ | | 78.82 | | | | $\Delta_t H^\circ =$ | - 260.10 | -264.57 | 4.47 | 77STR/SUN | | | | | | | $C_p^{\circ} =$ | 200.10 | 454.11 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | $S^{\circ} =$ | | 545.50 | | | Liquid phas | e | | | | | $\Delta_{\rm f}S^{\circ} =$ | | - 1393.32 | | | $\Delta_{\rm f}H^{\circ} =$ | 95.10 | 105.99 | - 10.89 | 69KON/PRO | | | | 150.85 | | | | 25.10 | 141.50 | - 10.07 | OJKONI KO | | $\Delta_f G^{\circ} =$ | | | | | $C_p^{\circ} = S^{\circ} =$ | | | | | | $lnK_{f} =$ | | - 60.85 | | | | | 204.60 | | | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -240.54 | | | | | | | | | $\Delta_i G^{\circ} -$ | | 177.71 | | | | | | | | C ₃ H ₃ N | $lnK_f =$ | | -71.69 | | | | | | | | I HAN | | | | | | | | | nitrile
C _d -(H)(CN)), o | r = 1 | Callan | | | | | | | | $(H)_2) + (1 \times$ | | | Reference | 2-Methylpro | panenitrile | ; Isobutryonit | rile | C₄H ₇ N | | | $(H)_2) + (1 \times$ | C _d -(H)(CN)), o | | | (2×C-(H | () ₃ (C))+(1 | \times C-(H)(C) ₂ (0 | | C₄H ₇ N | | | (H) ₂) + (1 × | C _d -(H)(CN)), o | | | (2×C-(H | | \times C-(H)(C) ₂ (0 | | C₄H ₇ N | | (1×C _d -(| (H) ₂) + (1 × | C _d -(H)(CN)), o | = Residual | | (2×C-(H | i) ₃ (C)) + (1:
corr (tertia | \times C-(H)(C) ₂ (0 | CN))+ | C₄H ₇ N
Reference | | $(1 \times C_{d} - (1 $ | (H) ₂) + (1 × Literatu | C _d -(H)(CN)), our e - Calculated | = Residual | Reference | (2×C-(H | i) ₃ (C)) + (1:
corr (tertia | × C-(H)(C) ₂ (C
ary)) | CN))+ | | | $(1 \times C_{d} - (1 $ | (H) ₂) + (1 × Literatu 183.68 64.18 | C _d -(H)(CN)), our e - Calculated 172.97 63.76 | = Residual
10.71
0.42 | Reference 72FIN/MES 72FIN/MES | (2×C-(H | i) ₃ (C)) + (1:
corr (tertia | × C-(H)(C) ₂ (C
ary)) | CN))+ | | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | (H) ₂) + (1 × Literatu | C _d -(H)(CN)), our e - Calculated 172.97 63.76 273.93 | = Residual | Reference 72FIN/MES | (2×C-(H
(2×-CH₃ | i) ₃ (C)) + (1:
corr (tertia | × C-(H)(C) ₂ (C
ary)) | CN))+ | | | Gas phase $ \Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = S^\circ$ | (H) ₂) + (1 × Literatu 183.68 64.18 | C _d -(H)(CN)), our e - Calculated 172.97 63.76 273.93 - 34.90 | = Residual
10.71
0.42 | Reference 72FIN/MES 72FIN/MES | (2×C-(H
(2×-CH ₃ | Literatur | × C-(H)(C) ₂ (C
ary))
e – Calculated | CN)) +
= Residual | Reference | | Gas phase $\Delta_i H^\circ = C_p^\circ = S^\circ =$ | (H) ₂) + (1 × Literatu 183.68 64.18 | C _d -(H)(CN)), our e - Calculated 172.97 63.76 273.93 | = Residual
10.71
0.42 | Reference 72FIN/MES 72FIN/MES | (2×C-(H
(2×-CH₃ | i) ₃ (C)) + (1:
corr (tertia | × C-(H)(C) ₂ (C
ary)) | CN))+ | , , | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \ln K_f = \frac{1}{2}$ | 183.68
64.18
275.31 | 172.97
63.76
273.93
- 34.90
183.37 | = Residual
10.71
0.42 | Reference 72FIN/MES 72FIN/MES | $(2 \times C - (H_3))$ $(2 \times -CH_3)$ $Cas phase$ $\Delta_l H^o = C_p^o =$ | (2) ₃ (C)) + (1) ₃ (C)) + (1) ₃ (C) + (1) ₄ | × C-(H)(C) ₂ ((ary)) e - Calculated 24.46 | CN)) +
= Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_f = $ Liquid pha | 183.68
64.18
275.31 | 172.97
63.76
273.93
- 34.90
183.37
- 73.97 | 10.71
0.42
1.38 | 72FIN/MES
72FIN/MES
72FIN/MES | $(2 \times C - (H + (2 \times -CH_3))^2 + (2 \times -CH_3)^2$ Gas phase $\Delta_t H^\circ = C_p^\circ C$ | (2)(C)) + (1)(C)) + (1)(C)
Corr (tertial
Literatur
23.30 | × C-(H)(C)₂(Cary)) e - Calculated 24.46 96.40 | = Residual
= 1.16 | Reference 70HOW/WAD | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = -\frac{\Delta_t H^\circ}{\Delta_t H^\circ} = \frac{\Delta_t \Delta_t H$ | 183.68
64.18
275.31 | 172.97
63.76
273.93
- 34.90
183.37
- 73.97 | 10.71
0.42
1.38 | Reference 72FIN/MES 72FIN/MES 72FIN/MES | $(2 \times C - (H + (2 \times -CH_3)))$ $Cas phase$ $\Delta_l H^\circ = C_p^\circ $ | 23.30
e
- 13.80 | × C-(H)(C) ₂ (Gary)) e - Calculated
24.46 96.40 - 18.08 | = Residual
-1.16 | Reference 70HOW/WAD 71HAL/BAL | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t H^\circ}{\Delta_t H^\circ} = C_p^\circ = C_p^\circ = C_p^\circ = \frac{\Delta_t H^\circ}{\Delta_t H^\circ} H^\circ}{\Delta_t$ | 183.68
64.18
275.31 | 172.97
63.76
273.93
- 34.90
183.37
- 73.97 | 10.71
0.42
1.38 | 72FIN/MES
72FIN/MES
72FIN/MES | $(2 \times C - (H + (2 \times -CH_3))^2 + (2 \times -CH_3)^2$ Gas phase $\Delta_t H^\circ = C_p^\circ C$ | (2)(C)) + (1)(C)) + (1)(C)
Corr (tertial
Literatur
23.30 | × C-(H)(C)₂(Cary)) e - Calculated 24.46 96.40 | = Residual
= 1.16 | Reference 70HOW/WAD | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \frac{\Delta_{t}H^{\circ}}{\Delta_{t}H^{\circ}} = C_{p}^{\circ} = S^{\circ} = S^{\circ} = \frac{\Delta_{t}H^{\circ}}{S^{\circ}} \frac{\Delta_{t}H^{\circ}}$ | 183.68
64.18
275.31 | 172.97
63.76
273.93
- 34.90
183.37
- 73.97 | 10.71
0.42
1.38 | Reference 72FIN/MES 72FIN/MES 72FIN/MES | $(2 \times C - (H + (2 \times -CH_3)))$ $Cas phase$ $\Delta_l H^\circ = C_p^\circ $ | 23.30
e
- 13.80 | × C-(H)(C) ₂ (Gary)) e - Calculated 24.46 96.40 - 18.08 | = Residual
-1.16 | Reference 70HOW/WAD 71HAL/BAL | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \frac{\Delta_t H^\circ}{\Delta_t H^\circ} = C_p^\circ = C_p^\circ = C_p^\circ = \frac{\Delta_t H^\circ}{\Delta_t H^\circ} H^\circ}{\Delta_t$ | 183.68
64.18
275.31 | 172.97
63.76
273.93
- 34.90
183.37
- 73.97 | 10.71
0.42
1.38 | Reference 72FIN/MES 72FIN/MES 72FIN/MES 72FIN/MES 72FIN/MES | $(2 \times C - (H + (2 \times -CH_3)))$ $Cas phase$ $\Delta_l H^\circ = C_p^\circ $ | 23.30
e
- 13.80 | × C-(H)(C) ₂ (Gary)) e - Calculated 24.46 96.40 - 18.08 | = Residual
-1.16 | Reference 70HOW/WAD 71HAL/BAL | | Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \ln K_f = \frac{\Delta_t H^{\circ}}{\Delta_t H^{\circ}} = \frac{\Delta_t H^{\circ}}{\Delta_t H^{\circ}} = \frac{\Delta_t H^{\circ}}{S^{\circ}} H^{\circ}}{S^{\circ}$ | 183.68
64.18
275.31 | 172.97 63.76 273.93 - 34.90 183.37 - 73.97 | 10.71
0.42
1.38 | Reference 72FIN/MES 72FIN/MES 72FIN/MES 72FIN/MES 72FIN/MES | $(2 \times C - (H + (2 \times -CH_3)))$ $Cas phase$ $\Delta_l H^\circ = C_p^\circ $ | 23.30
e
- 13.80 | × C-(H)(C) ₂ (Gary)) e - Calculated 24.46 96.40 - 18.08 | = Residual
-1.16 | Reference 70HOW/WAD 71HAL/BAL | TABLE 28. Nitriles (27) - Continued TABLE 28. Nitriles (27) - Continued | trans - 2 - Pento
(1 × C - (H)
(1 × C _d - (H) |) ₃ (C))+(1> | < C-(H) ₂ (C)(C _c | i)) + (1 × C _d -(| C_5H_7N $(H)(C)) +$ | | | ×C-(H)(C)2(C
ile rsc) | CN))+ | C ₄ H ₅ N | |---|----------------------------|---|------------------------------|-------------------------------------|--|---|---|--------------|---------------------------------| | | Literature | e – Calculated = | = Residual | Reference | * W## * * * * * * * * * * * * * * * * * | Literatur | e – Calculated = | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 119.79 | 119.83
107.48 | -0.04 | 73KON | Gas phase
Δ _I H° = | 182.80 | 182.80 | 0.00 | 82FUC/HAL | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | e
74.89 | 74.99
170.79
236.27 | -0.10 | 69KON/PRO | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | 140.80
115.40 | 140.80
115.40 | 0.00 | 71HAL/BAL
71HAL/BAL | | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = -1$ | | -345.18
177.90
-71.77 | | | | | × C-(H)(C) ₂ (C
e rsc) | CN))+ | C ₅ H ₇ N | | trans -3-Pent | enenitrile | | | C₅H₂N | | Literatur | e – Calculated = | = Residual | Reference | | | | × C _d -(H)(C)) + | $(1 \times C - (H)_2)$ | | a | | | | | | | Literatur | e – Calculated = | = Residual | Reference | Gas phase $\Delta_t H^\circ =$ | 143.00 | 143.00 | 0.00 | 71HAL/BAL | | Gas phase $\Delta_t H^\circ =$ | 125.69 | 125.69 | 0.00 | 73KON | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | e
103.00
146.00 | 103.00
146.00 | 0.00 | 71HAL/BAL
71HAL/BAL | | Liquid phas $\Delta_t H^\circ =$ | 80.88 | 80.89 | -0.01 | 69KON/PRO | Cyclopentar | nenitrile | | | C ₆ H ₉ N | | | | \times C-(C) ₃ (CN)) | + | C₅H ₉ N | | pentanenitr | × C-(H)(C)z(C
ile rsc)
e - Calculated = | | Reference | | | Literatur | e – Calculated | = Residual | Reference | Gas phase $\Delta_t H^\circ =$ | 41.80 | 41.80 | 0.00 | 71HAL/BAL | | Gas phase $\Delta_t H^\circ =$ | - 2.50 | -2.50 | 0.00 | 70HOW/WAD | Liquid phas | | | | | | Liquid phas | | | | | $\Delta_l H^0 = C_p^\circ =$ | 0.70
167.50 | 0.70
167.50 | 0.00 | 71HAL/BAL
71HAL/BAL | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ $ | -39.80
179.37
232.00 | - 39.80
179.35
231.99
- 480.03
103.32 | 0.00
0.02
0.01 | 71HAL/BAL
67WES/RIB
67WFS/RIB | | enitrile
l) ₂ (C) ₂) + (1
hexanenitril | ×C-(H)(C)2(C
e rsc) | :N))+ | C7H11N | | $lnK_f =$ | | -41.68 | | · | | Literatur | e – Calculated - | - Residual | Reference | | | | | | | Gas phase $\Delta_t H^\circ =$ | 4.80 | 4.80 | 0.00 | 71HAL/BAL | | | | | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | e
-47.20
177.90 | -47.20
177.90 | 0.00
0.00 | 71HAL/BAL
71HAL/BAL | TABLE 28. Nitriles (27) - Continued TABLE 27. Nitriles (27) - Continued | Benzonitrile
(5×C _B -(H | $)(C_B)_2)+($ | 1×C _B -(CN)(C | $(C_{\rm B})_2$), $\sigma = 2$ | C ₇ H ₅ N | 1,5-Pentane
(1×C-(H | | lutaronitrile
!×C-(H) ₂ (C)(| CN)) | C ₅ H ₆ N ₂ | | |---|----------------------------|---
--|--|---|------------------|--|--------------|--|--| | | Literature | - Calculated | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 218.82
109.08
321.04 | 220.05
109.14
321.04 | -1.23
-0.06
0.00 | 59EVA/SKI
69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | 168.41
118.61 | | | | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | <u>.</u> | -141.32
262.18
-105.76 | and the state of t | | Liquid phase $\Delta_l H^\circ = C_p^\circ =$ | e
186.26 | 106.41
196.44 | - 10.18 | 65CLE/WUL | | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 163.18
165.20
209.10 | 163.18
165.20
209.10 | 0.00
0.00
0.00 | 59EVA/SKI
84LEB/BYK
84LEB/BYK | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = -\infty$ | 239.45 | 244.42
-367.49
215.98
-87.12 | - 4.97
 | 65CLE/WUL | | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | - 253.26
238.69
- 96.29 | | | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 102.90 | 110.29
167.52
215.31 | -7.39 | 1889BER/PE | | | 2-Butyne-1,4
(2×C₁–(C | | | | C ₄ N ₂ | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | - 396.60
228.54
- 92.19 | | | | | | Literatur | e – Calculated | = Residual | Reference | | | | | • | | | Gas phase
Δ _t H° = | 529.28 | 529.20 | 0.08 | 57SAG | | | × C-(C)₂(CN); | 2)+ | C₅H₄N | | | Liquid phase
Δ _t H° = | 500.41 | 500.40 | 0.01 | 63ARM/MAR | | erature-Cal | culated = Resid | dual Refere | nce | | | 1,4-Butaned | initrile; Su
)2(C)(CN) | | | C ₄ H ₄ N ₂ | Solid phase $C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} =$ | 179.49
187.95 | 179.50
187.95
-423.96 | 0.01
0.00 | 67RIB/WES
67RIB/WES | | | | , , | re – Calculated | = Residual | Reference | 1,6-Hexaned | | • | | C₅H₅N | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 209.70 | 189.04
95.72 | 20.66 | 71RAP/WES | (2×C-(H | | e – Calculated | ** | Reference | | | Liquid phase $\Delta_l H^\circ = C_p^\circ =$ | e | 132.14
166.02 | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 149.50 | 147.78
141.50 | 1.72 | 73LEB/KAT | | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | | 212.04
- 263.56
210.72
- 85.00 | | | Liquid phase $ \Delta_t H^\circ = \\ C_\rho^\circ = \\ S^\circ = $ | e
85.10 | 80.68
226.86
276.80 | 4.42 | 73LEB/KAT | | | Solid phase $\Delta_l H^\circ = C_p^\circ = S^\circ =$ | 139.70
145.60
191.59 | 139.70
145.60
192.30 | 0.00
0.00
- 0.71 | 71RAP/WES
63WUL/WES
63WUL/WES | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = -\frac{1}{2}$ | | - 471.42
221.24
- 89.24 | | | | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -283.30
224.17
-90.43 | 2 | | | | | | | | TABLE 28. Nitriles (27) - Continued | TABLE 29. Hydrazi | nes (| 6) | |-------------------|-------|----| |-------------------|-------|----| | | TABLE | 28. Nitriles (2 | 7) – Continu | ied | | | FABLE 29. Hydi | razines (6) | | |--|----------|--|--------------|--|--|-------------------------------------|--|-------------------------|---| | | | Dicyanobenzen
(2×C _B -(CN)(| | C ₈ H ₄ N ₂ | Hydrazine
(2×N-(H | | N₂H₄ | | | | | Literatu | re – Calculated | = Residual | Reference | | Literature - Calculated = Residual | | | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 358.30 | 357.24
136.62 | 1.06 | 92ACR/TUC | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = 0$ | 95.19
52.71
238.36 | 95.40
52.72
238.60 | -0.21
-0.01
-0.24 | 49SCO/OLI
49SCO/OLI
49SCO/OLI | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | e | 277.40
194.32 | | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -214.05
159.22
-64.23 | | | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{2}$ Solid phase $\Delta_t H^{\circ} = \frac{1}{2}$ | 268.50 | 244.98
- 253.58
353.01
- 142.40
268.52 | -0.02 | 92ACR/TUC | Liquid phase $\Delta_t H^\circ = C_\theta^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 50.42
98.83
121.21 | 50.60
98.82
121.16
-331.48
149.43
-60.28 | -0.18
0.01
0.05 | 39HUG/COR
49SCO/OLI
49SCO/OLI | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = -\frac{1}{2}$ | | 191.90
- 306.66
359.95
- 145.20 | | | Methylhydra
(1×C-(H | | ×N-(H)(C)(N) |))+(1×N-(H | CH ₆ N ₂ | | | | | | | | Literatur | e – Calculated = | = Residual | Reference | | | | | | | Gas phase $\Delta_t H^\circ =$ | 94.60 | 94.60 | 0.00 | 51AST/FIN | | | | | | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 54.20
134.93
165.94 | 52.69
134.93
165.93
- 423.02
178.81
- 72.13 | 1.51
0.00
0.01 | 51AST/ROC
51AST/FIN
51AST/FIN | | | · | | | | 1,1-Dimethyl
(2×C-(H) | hydrazine
) ₃ (N))+(1 | × N-(C)2(N))+ | (1×N−(H) ₂ (| C ₂ H ₈ N ₂
N)) | | | | | | | | Literatur | e – Calculated = | = Residual | Reference | | | | | | | Gas phase $\Delta_t H^\circ =$ | 83.89 | 83.89 | 0.00 | 53AST/WOO | | | | | | | Liquid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | 49.30
164.05
200.25 | 49.08
164.04
200.24
- 525.02
205.62
- 82.94 | 0.22
0.01
0.01 | 60DON/SHO
53AST/WOO
53AST/WOO | $C_2H_8N_2\\$ Reference 51AST/JAN 52AST/ROC Reference 72LEB/KAT 72LEB/KAT 11LOU/DUP Reference 51COL/GIL $C_{12}H_{12}N_2$ $C_6H_8N_2$ 1,2-Dimethylhydrazine Gas phase Liquid phase $\Delta_{i}H^{\circ} = C_{p}^{\circ} = S^{\circ} =$ $\Delta_f S^\circ =$ $\Delta_{\rm f}G^{\circ} =$ $lnK_f =$ Gas phase $\Delta_i H^\circ =$ Liquid phase Solid phase Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_i H^\circ =$ Solid phase $\Delta_t H^{\circ} =$ $\Delta_{\rm f}H^{\circ} =$ $\Delta_{\rm f}H^{\circ} =$ Phenylhydrazine $(1 \times N - (H)_2(N))$ 202.90 141.00 124.60 221.30 1,2-Diphenylhydrazine; Hydrazobenzene $\Delta_t H^\circ =$ $(2 \times C - (H)_3(N)) + (2 \times N - (H)(C)(N))$ 92.01 52.70 | TABLE | 29. | Hydrazines | (6) | _ | Continued | |-------|-----|------------|-----|---|-----------| |-------|-----|------------|-----|---|-----------| Literature - Calculated = Residual 93.80 54.78 171.04 210.70 -514.56 208.20 -83.99 $(5 \times C_B - (H)(C_B)_2) + (1 \times C_B - (N)(C_B)_2) + (1 \times N - (H)(C_B)(N)) +$ Literature-Calculated=Residual 202.95 141.00 128.27 $(10 \times C_B - (H)(C_B)_2) + (2 \times C_B - (N)(C_B)_2) + (2 \times N - (H)(C_B)(N))$ Literature-Calculated=Residual 310.50 231.40 218.60 -1.79 -2.08 -0.05 0.00 -3.67 2.70 | Dimethyldiaz
(2×C-(H) | | ethane
2×N _A –(C)) | | C ₂ H ₆ l | |--|---|---|---
---| | | Literatur | e – Calculated | = Residual | Reference | | Gas phase
Δ _i H° = | 134.47 | 134.48 | - 0.01 | 76ROS | | | $_{3}(C)) + (13)$ | ethyl azoethan
× C-(H) ₂ (C)(A | | C ₃ H ₈ l
-(C)) + | | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_l H^\circ =$ | 113.85 | 113.78 | 0.07. | 76ROS | | Diethyldiazei
(2×C-(H) | | ane
× C–(H) ₂ (C)(Λ | / _A))+(2× <i>N</i> _A - | C4H101
(C)) | | | Literature | e – Calculated | = Residual | Reference | | Gas phase
Δ _I H° = | 93.26 | 93.08 | 0.18 | 76ROS | | | | | | | | Di-n-propyld
(2×C-(H)
(2×N _A -(C | 3(C))+(2) | opropane
< C-(H) ₂ (C) ₂) | + (2×C-(H) ₂ (| | | (2×C-(H) | (2)
(2)
(3)
(3)
(4) | | | | | (2×C-(H) | (2)
(2)
(3)
(3)
(4) | C-(H) ₂ (C) ₂ | | C)(N _A)) + Reference | | (2×C-(H)
(2×N _A -(C) | (3(C)) + (2×2))
Literature
51.34 | C-(H) ₂ (C) ₂ | = Residual | C)(N _A)) + Reference | | $(2 \times C - (H))$ $(2 \times N_A - (C))$ Gas phase $\Delta_t H^{\circ} =$ Liquid phase $\Delta_t H^{\circ} =$ Methyl-n-but $(1 \times C - (H))$ | (2) (2) (2) (2) (3) (2) (3) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | C-(H) ₂ (C) ₂ = - Calculated 51.82 | = Residual
-0.48 | C)(N _A)) + Reference 76ENG/MEL 76ENG/MEL C ₈ H ₁₂ I | | $(2 \times C - (H))$ $(2 \times N_A - (C))$ Gas phase $\Delta_t H^{\circ} =$ Liquid phase $\Delta_t H^{\circ} =$ Methyl-n-but $(1 \times C - (H))$ | (2) + (2)
(2))
Literature
51.34
11.50
(y)diazene
(3)(C)) + (2)
(2)) + (1 × C | 51.82
11.62 | = Residual
-0.48
-0.12
+ (1 × C-(H) ₂ (| C)(N _A)) + Reference 76ENG/MEL 76ENG/MEL C ₈ H ₁₂ I | | $(2 \times C - (H))$ $(2 \times N_A - (C))$ Gas phase $\Delta_t H^{\circ} =$ Liquid phase $\Delta_t H^{\circ} =$ Methyl-n-but $(1 \times C - (H))$ | (2) + (2)
(2))
Literature
51.34
11.50
(y)diazene
(3)(C)) + (2)
(2)) + (1 × C | 51.82
11.62
CC-(H) ₂ (C) ₂)
(C-(H) ₂ (C) ₂)
(H) ₃ (N _A)) | = Residual
-0.48
-0.12
+ (1 × C-(H) ₂ (| Reference 76ENG/MEL 76ENG/MEL C ₅ H ₁₂ N C)(N _A)) + | | TABLE 30. | Diazenes | (14) - | Continued | |-----------|----------|--------|-----------| |-----------|----------|--------|-----------| TABLE 30. Diazenes (14) - Continued | (4×C-(H |) ₃ (C)) + (4 | oisopropane
×-CH ₃ corr (to
+(2×N _A -(C)) | ertiary))+ | C ₆ H ₁₄ N ₂ | (10×C- | $(H)_3(C)) + ($ | butyl)diazene
2×N _A -(C))+(:
at/quat))+(2× | | $C_{16}H_{34}N_2$
$(2 \times C - (C)_4) +$ | |---|--------------------------|---|---------------------------------------|--|--|--------------------------------------|--|--------------------------------|--| | | Literatur | e – Calculated : | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase
Δ _t H° = | 35.60 | 35.60 | 0.00 | 76ENG/MEL | Gas phase
Δ _t H° = | - 196.80 | -189.86 | - 6.94 | 76ENG/MEL | | Liquid phase
Δ _t H° = | e
-0.30 | -0.30 | 0.00 | 76ENG/MEL | Liquid pha $\Delta_t H^\circ =$ | ase
- 263.30 | -257.28 | - 6.02 | 76ENG/MEL | | Di-n -butyldi
(2×C–(H
(2×N _A –(|) ₃ (C)) + (4 | butane
× C–(H)2(C)2) - | + (2×C−(H) ₂ (| $C_8H_{18}N_2$ $(C)(N_A)) +$ | Tetrame | thyl-1-pyraz | | | C7H14N2 | | | Literatur | e – Calculated : | = Residual | Reference | (4×-CH | +
I ₃ corr (quai | !/quat))+ | 2× <i>N</i> _A (C))+ | $(2 \times C - (C)_3(N_A))$ | | Gas phase
Δ _f H° = | 9.20 | 10.56 | -1.36 | 78ENG/MON | (1 × Cyc | • | nediazene rsc)
re – Calculated: | = Residual | Reference | | Liquid phas
Δ _t H° = | e
-40.10 | - 39.84 | -0.26 | 78ENG/MON | Gas phase
Δ _t H° = | 39.30 | 39.30 | 0.00 | 76ENG/MEL | | (6×C-(H | (3)(C) + (2) | zo-tert-butane
\times C-(C) ₃ (N_A))
ternary)) + (2 \times | | C ₈ H ₁₈ N ₂ | Solid phase $\Delta_t H^\circ =$ | e
-22.30 | - 22.30 | 0.00 | 76ENG/MEL | | (011-011) | `• | re – Calculated | | Reference | | | otetramethylen
etramethyl-pyric | | , | | Gas phase
Δ _t H° = | -35.61 | -38.92 | 3.31 | 76ENG/MEL | $(4 \times C - (1 \times N_A $ | H) ₃ (C))+(4
(C))+(2×0 | | uat/quat))+(| $C_8H_{16}N_2$
2×C-(H) ₂ (C) ₂)+ | | Liquid phas | | 71.20 | 2.40 | TCENCA (EL | • | Literatui | e – Calculated = | = Residual | Reference | | Δ _f H° = | 74.70
 | -71.30 | -3.40 | 76ENG/MEL | Gas phase $\Delta_t H^\circ =$ | 42.00 | 42.00 | 0.00 | 76ENG/MEL | | (8×C-(H
(3×-CH ₃ | $()_3(C)) + (2$ | $(2 \times (2 \times$ | × C-(H) ₂ (C) ₂ | $C_{12}H_{26}N_2$
+ (1 × C-(C) ₄) + | Liquid pha $\Delta_t H^\circ =$ | se
-8.10 | -8.10 | 0.00 | 76ENG/MEL | | | Literatur | e – Calculated : | = Residual | Reference | trans-Azob | enzene | | | C ₁₂ H ₁₀ N ₂ | | Gas phase
Δ _t H° = | - 119.30 | -114.39 | -4.91 | 76ENG/MEL | (10×C _p . | | - (2 × C _B –(N _A)(0
e – Calculated = | | | | Liquid phas $\Delta_t H^\circ =$ | e
172.90 | - 164.29 | -8.61 | 76ENG/MEL | Gas phase $\Delta_l H^\circ =$ | 402.20 | 402.20 | 0.00 | 92DIA/MIN | TABLE 30. Diazenes (14) - Continued ### TABLE 31. Azides (6) | trans-Azoben
(10×C _B -(I | | tinued)
(2×C _B -(N _A)(| $(C_B)_2$ + $(2 \times N)_2$ | $C_{12}H_{10}N_2$
A-(C _B)) | 2-Azidoethan
(1×C-(H) | | + (1 × C-(H) ₂ (C | 0)(C))+(1×0 | C ₂ H ₅ N ₃ O
O-(H)(C)) | |--|----------------|--|------------------------------|---|---|--------------------------------------|--|--------------------|---| | | Literature | e – Calculated | = Residual | Reference | | Litera | ture-Calculated | l = Residual | Reference | | Liquid phase $\Delta_t H^\circ =$ | 331.45 | 331.46 | -0.01 | 77SCH/PET | Liquid phase
Δ _t H° = | 94.40 | 94.40 | 0.00 | 53FAG/KLE | | Solid phase
Δ _t H° = | 308.60 | 308.60 | 0.00 | 92DIA/MIN | Azidocyclope
(4 × C-(H)
(1 × azidoc | $_{2}(C)_{2})+(1$ | ×C-(H)(C) ₂ (N | J ₃))+ | C5H9N3 | | cis-Azobenze
(10 × C _B -(1
(1 × cis-azo | $H)(C_B)_2) +$ | -(2×C _B -(N _A)(| $(C_B)_2) + (2 \times N)$ | $C_{12}H_{10}N_2$
$A-(C_B))+$ | | | e — Calculated = | - Residual | Reference | | (1 ~ 66 - 420 | | e – Calculated | – Residual | Reference | Gas phase
Δ _I H° - | 220.90 | 220.90 | 0.00 | 54FAG/MYE | | Gas phase
Δ _t H° = | 450.60 | 450.60 | 0.00 | 92DIA/MIN | Liquid phase $\Delta_l H^\circ =$ | 179.10 | 179.10 | 0.00 | 54FAG/MYE | | Solid phase
Δ _t H° = | 357.70 | 357.70 | 0.00 | 92DIA/MIN |
Azidocyclohe
(5 × C-(H)
(1 × azidoc | $_{2}(C)_{2})+(1$ | × C-(H)(C) ₂ (N
: rsc) | (₃))+ | C₅H₁1N₃ | | | | | | | | Literature | e – Calculated = | - Residual | Reference | | | | | | | Gas phase $\Delta_i H^\circ =$ | 154.40 | 154.40 | 0.00 | 54FAG/MYE | | | | | | | Liquid phase
Δ _f H° = | 108.40 | 108.40 | 0.00 | 54FAG/MYE | | | | | | | Azidobenzeno
(5 × C _B -(H | | tide
1 × C _B -(N ₃)) | | C ₆ H ₅ N ₃ | | | | | | | ***** | Literature | e – Calculated = | Residual | Reference | | | | | | | Gas phase $\Delta_t H^\circ =$ | 389.10 | 389.05 | 0.05 | 74PEP/ERL | | | | | | | Liquid phase $\Delta_t H^\circ =$ | 344.30 | 344.30 | 0.00 | 29ROT/MUL | | | | | | | Benzylazide
(5×C _B -(H | ()(C _B) ₂)+(| 1×С-(H) ₂ (С _в) | (N ₃)) | C ₇ H ₇ N ₃ | | | | | | | _ | Literature | e – Calculated = | Residual | Reference | | | | | | | Gas phase $\Delta_t H^\circ =$ | 416.10 | 416.05 | 0.05 | 74PEP/ERL | TABLE 31. Azides (6) - Continued TABLE 32. Cyclic CHN (32) | Benzylazide
(5×C _B -(F | | $1 \times C - (H)_2(C_B)$ | (N ₃)) | C ₇ H ₇ N ₃ | | | + (1 × N-(H)(C) |)2)+ | C ₂ H ₅ N | |--------------------------------------|------------|---|--------------------|--|--|---------------------------------|---|----------------------|---| | | Literature | e – Calculated = | = Residual | Reference | (=, | | re – Calculated | = Residual | Reference | | Liquid phase $\Delta_t H^\circ =$ | 368.20 | 368.20 | 0.00 | 74PEP/ERL | Gas phase $\Delta_t H^\circ =$ | 126.48 | 126.48 | 0.00 | 56BUR/GOO | | | | ; Triphenylmet
(3×C _B -(C)(C ₁ | | $C_{19}H_{15}\stackrel{\sim}{N}_3$ (C_{B}) ₃ (N_3)) | $C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | 52.51
250.62 | 52.51
250.62
-183.04
181.05
-73.04 | 0.00
0.00 | 69STU/WES
69STU/WES | | | Literature | e – Calculated = | = Residual | Reference | mx _f = | | - 73.0 4 | | | | Gas phase $\Delta_t H^\circ =$ | 606.70 | 606.67 | 0.03 | 74PEP/ERL | Liquid phas $\Delta_t H^\circ =$ | 91.88 | 91.88 | 0.00 | 52NEL/JES | | Solid phase $\Delta_t H^\circ =$ | 486.20 | 486.15 | 0.05 | 74PEP/ERL | | | $2 \times C - (H)_2(C)(N)$ $\sigma = 2$ | ∛))+(1×N-(| C ₄ H ₉ N
H)(C) ₂) + | | | | | | | | Literatui | e – Calculated = | = Residual | Reference | | | | | | | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | -3.60
81.13
309.49 | -3.60
81.13
309.49
-396.37
115.90
-46.75 | 0.00
0.00
0.00 | 59MCC/DOU
59MCC/DOU
59MCC/DOU | | | | | | | Liquid phas $\Delta_t H^\circ = C_r^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | e
-41.20
156.57
204.01 | -41.20
156.57
204.01
-502.27
108.55
-43.79 | 0.00
0.00
0.00 | 59MCC/DOU
59MCC/DOU
59MCC/DOU | | | | | | | Pyridine
(5×C _B -(1 | | 1×N _I -(C _B)), σ | | C₃H₃N | | | | | | | - | Literatur | e – Calculated = | Residual | Reference | | | · | | | | Gas phase $\Delta_f H^\circ = C_r^\circ = S^\circ = \Delta_f S^\circ =$ | 140.20
78.12
282.80 | 138.05
78.12
282.80
- 168.08 | 2.15
0.00
0.00 | 57MCC/DOU
57MCC/DOU
57MCC/DOU | TABLE 32. Cyclic CHN (32) - Continued | TABLE 32. | Cyclic CHN | (32) - | Continued | |-----------|--------------|--------|-----------| | TABLE JE. | Cyclic CIII1 | (34) - | Continuca | | | $(C_B)_2$ + (1 | i×N ₁ -(C _B)), σ | | C ₅ H ₅ N | | $H)(C_B)_2)+($ | 2×C _B -(C)(C _B
×pyrrole rsc) | | C ₆ H ₉ ?
H) ₃ (C))+ | |---|----------------------------|--|----------------------------|---|--|--|--|--------------------------------------|---| | | Literature | - Calculated - | - Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | $C_{\rho}^{\circ} = S^{\circ} =$ | 100.20
132.72
177.90 | 95.30
133.15
180.75 | 4.90
- 0.43
- 2.85 | 61HUB/FRO
57MCC/DOU
57MCC/DOU | Gas phase $\Delta_t H^\circ =$ | 39.80 | 43.45 | -3.65 | 72GOO | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -270.13
175.84
-70.93 | | | Liquid phas $\Delta_t H^\circ =$ | e
-16.70 | 10.11 | -6.59 | 72GOO | | 1,3,5-Triazine
(3 × C _B –(H | $)(N_{\rm I})_2)+(3$ | 3×N₁–(C _B))
e – Calculated = | = Residual | C ₃ H ₃ N ₃ Reference | (2×N-(C | $(C_B)_2(N) + (C_B)_2(N) + (C_B)_2(N)$ | 4×C _B -(C)(C _B
2×pyrrole rsc) | | | | Gas phase
Δ _i H° = | 225.90 | 225.90 | 0.00 | 82BYS | Solid phase $\Delta_t H^\circ =$ | 132.30 | ulated = Residu | al Referer - 1.48 | 66COL/SKI | | Solid phase
Δ _t H° = | 171.75 | 171.75 | 0.00 | 82BYS | Piperidine | | | | C _s H ₁₁ N | | Pyrrole
(4×C _B –(H | | (1×N-(H)(C _B);
e Calculated = | | C₄H₅N
ole rsc)
Reference | (3×C-(H
(1×piper | idine rsc) | × C-(H) ₂ (C)(l
e – Calculated | | H)(C) ₂) + Reference | | Gas phase Δ _t H° = | 108.31 | 108.31 | 0.00 | 67SCO/BER | Gas phase $\Delta_t H^\circ =$ | -47.20 | -47.80 | 0.60 | 63BED/BEE | | Liquid phase $\Delta_i H^\circ =$ | | 63.11 | 0.00 | 67SCO/BER | Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | e
86.40
179.86
209.97 | - 88.38
181.68
209.97
- 632.62
100.24 | 1.98
-1.82
0.00 | 72GOO
88MES/TOD
88MES/TOD | | N-Methylpyr
(4×C _B -(H
(1×pyrrol | $(C_B)_2 + ($ | (1×N-(C)(C _B): | ₂) + (1 × C-(H | C ₅ H ₇ N
I) ₃ (N)) + | $\ln K_{\rm f} =$ | | -40.43 | | | | (1 × pyrror | • | e – Calculated = | = Residual | Reference | Pyridazine $(4 \times C_B - (1 \times C_B))$ | H)(C _B) ₂)+(| $2 \times N_{I}$ –(C_B)) + | (1×N _I -N _I (0 | C ₄ H ₄ N ₂
rtho corr)) | | Gas phase
Δ _t H° = | 103.14 | 102.94 | 0.20 | 72GOO | Managara and a second | Literatur | e – Calculated : | = Residual | Reference | | Liquid phase $\Delta_t H^\circ =$ | | 62.38 | 0.00 | 72GOO | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 278.30 | 278.30
74.58 | 0.00 | 62TJE2 | | | | | | |
Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | e
224.80 | 224.80
130.22
188.28
- 287.32
310.47 | 0.00 | 62TJE2 | | TABLE 32. | Cyclic | CHN | (32) | | Continued | |-----------|--------|-----|------|--|-----------| |-----------|--------|-----|------|--|-----------| | Pyrimidine
(4×C _B -(H | $I(C_B)_2 + ($ | $2 \times N_{\Gamma}(C_B)$ | | C ₄ H ₄ N ₂ | Quinoline (4) | | (2×C _{BF} -(C _{BF}) | $(C_B)_2) + (1 \times N$ | C ₂ H ₇ N
N ₁ (C _B)) | |--|----------------------------|--|-------------|--|---|----------------------------|---|----------------------------|--| | | Literature | e – Calculated = | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 195.80 | 193.24
74.58 | 2.56 | 77NAB/SAB | Liquid phas $ \Delta_t H^\circ = \\ C_p^\circ = \\ S^\circ = $ | 141.22
194.89
219.72 | 143.28
197.55
227.41 | - 2.06
- 2.66
- 7.69 | 88STE/ARC
88STE/ARC
88STE/ARC | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | e
143.80 | 141.64
130.22
188.28 | 2.16 | 77NAB/SAB | $\Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \ln K_t = $ | | -377.00
255.68
-103.14 | | | | $\Delta_{\rm f}S^{\circ} = \Delta_{\rm f}G^{\circ} = \ln K_{\rm f} =$ | | -287.32
227.31
-91.69 | | | | $I_{2}(C)_{2} + (2$ | 2×C-(H)2(C)(1
×pyrrolidine r | | C5H11N
C)3)+ | | Pyrazine | | | | C ₄ H ₄ N ₂ | | Literatui | e – Calculated | = Residual | Reference | | • | $H)(C_B)_2) + ($ | $(2 \times N_{\Gamma}(C_B))$ | | | | | | | | | | Literatur | e – Calculated : | = Residual | Reference | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | 4.41
109.68 | | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 196.10 | 193.24
74.58 | 2.86 | 62TJE | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | e
161.10 | - 28.42
161.09 | 0.01 | 76CON/GIN | | Liquid phase $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} =$ | e
139.80 | 141.64
130.22
188.28
-287.32 | -1.84 | 62ТЈЕ | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = -\infty$ | | 216.60
-625.99
158.22
-63.82 | ·· | | | $\Delta_f G^\circ = In K_f =$ | | 227.31
- 91.69 | | | N-Methylpip
(3×C-(H
(1×N-(C | $()_2(C)_2) + (2)_2$ | 2×C-(H) ₂ (C)(Niperidine rsc) | √))+(1×C-(I | C ₆ H ₁₃ N
H) ₃ (N)) + | | | $(2)_2(C)_2 + (2)_2$ | 2×C-(H)₂(C)(l | N))+(1×N-(1 | $C_6H_{13}N$
$H)(C)_2) +$ | | | e – Calculated : | = Residual | Reference | | • | nethylenein
erature-Cal | nine rsc)
culated = Resid | ual Refere | ence | Gas phase $\Delta_t H^\circ =$ | | -41.11 | | | | Liquid phase $C_p^{\circ} =$ | e
205.00 | 205.03 | -0.03 | 76CON/GIN | Liquid phase $\Delta_t H^\circ = C^\circ = C^\circ$ | | -75.49
184.00 | 0.02 | Z/CON/GIN | | Quinoline
(7 × C _B -(1 | | (2×C _{BF} -(C _{BF})(re – Calculated = | | C_9H_7N $N_{I^{-}}(C_B))$ Reference | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1}{2}$ | 184.93 | 184.90
222.56
- 756.34
150.01
- 60.51 | 0.03 | 76CON/GIN | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 200.52 | 205.87
105.34 | -5.35 | 88STE/ARC | | | | | | $C_6H_{13}N$ C₆H₁₃N C₆H₇N TABLE 32. Cyclic CHN (32) - Continued TABLE 32. Cyclic CHN (32) - Continued ### 2-Methylpiperidine $(3 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)(N)) + (1 \times C - (H)(C)_2(N)) +$ $(1 \times -CH_3 \text{ corr (tertiary)}) + (1 \times C - (H)_3(C)) + (1 \times N - (H)(C)_2) +$ (1 × piperidine rsc) | | Literature - Calculated = Residual | | | | | |----------------------------------|------------------------------------|----------------|--------|-----------|--| | Gas phase
Δ _t H° = | -84.40 | -80.72 | -3.68 | 72GOO | | | Liquid pha | ise | | | AV. | | | $\Delta_t H^\circ =$ | | -122.02 | -2.88 | 72GOO | | | $C_p^{\circ} =$ | 205.02 | 216.02 | -11.00 | 76CON/GIN | | | S° = | | 240.89 | | | | | $\Delta_f S^\circ =$ | | -738.01 | | 1 | | | $\Delta_{\rm f}G^{\circ} =$ | | 98.02 | | | | | $lnK_{t} =$ | | - 39.54 | | | | | | | | | | | #### 4-Methylpiperidine $(1 \times C - (H)_3(C)) + (1 \times C - (H)(C)_2(N)) +$ $(1 \times -CH_3 \text{ corr (tertiary)}) + (1 \times C - (H)_2(C)(N)) +$ $(3 \times C - (H)_2(C)_2) + (1 \times N - (H)(C)_2) + (1 \times piperidine rsc)$ | | Literature - Calculated = Residual | | | | | |--------------------------------|------------------------------------|----------|-------|-----------|--| | Gas phase $\Delta_t H^\circ =$ | | -80.72 | | | | | Liquid pha | se | | | | | | $\Delta_t H^\circ =$ | | - 122.02 | | | | | $C_p^{\circ} =$ | 209.00 | 216.02 | -7.02 | 76CON/GIN | | | <i>s</i> ° = | | 240.89 | | | | | $\Delta_f S^\circ =$ | | - 738.01 | | | | | $\Delta_f G^{\circ} =$ | | 98.02 | | | | | $lnK_f =$ | | - 39.54 | | | | ### 2-Methylpyridine; 2-Picoline $(4 \times C_B - (H)(C_B)_2) + (1 \times C - (H)_3(C)) + (1 \times C_B - (C)(C_B)_2) +$ $(1 \times N_r - (C_B)) + (1 \times N_r - CH_3 (ortho corr)), \sigma = 3$ Literature - Calculated = Residual Reference Gas phase $\Delta_i H^{\circ} =$ 99.20 99.32 -0.1263SCO/HUB $C_p^{\circ} =$ 100.00 99.99 0.01 69STU/WES S° = 325.01 322.83 2.18 69STU/WES $\Delta_f S^\circ =$ -264.36 $\Delta_f G^\circ =$ 178.14 $lnK_f =$ -71.86 Liquid phase $\Delta_i H^{\circ} =$ 56.70 54.69 2.01 63SCO/HUB $C_p^{\circ} = S^{\circ} =$ 158.41 157.05 1.36 63SCO/HUB 217.86 215.68 63SCO/HUB 2.18 $\Delta_f S^\circ =$ -371.51 $\Delta_f G^\circ =$ 165.46 $lnK_f =$ -66.74 ### 3-Methylpyridine; 3-Picoline C₆H₇N $(4 \times C_B - (H)(C_B)_2) + (1 \times C - (H)_3(C)) + (1 \times C_B - (C)(C_B)_2) +$ $(1 \times N_{I}-(C_B)), \sigma = 3$ | | Literatur | Reference | | | |------------------------|-----------|---------------|-------|-----------| | Gas phase | | | | | | $\Delta_f H^{\circ} =$ | 106.40 | 105.62 | 0.78 | 63SCO/HUB | | $C_p^{\circ} =$ | 99.58 | 99.99 | -0.41 | 69STU/WES | | <i>S</i> ° = | 324.97 | 322.83 | 2.14 | 69STU/WES | | $\Delta_f S^\circ =$ | | -264.36 | | | | $\Delta_f G^\circ =$ | | 184.44 | | | | $lnK_f =$ | | -74.40 | | | | Liquid pha | ise | | | | | $\Delta_f H^\circ =$ | 61.90 | 58.69 | 3.21 | 63SCO/GOO | | $C_{p}^{\circ} =$ | 158.70 | 157.05 | 1.65 | 63SCO/GOO | | <i>S</i> ° = | 216.31 | 215.68 | 0.63 | 63SCO/GOO | | $\Delta_f S^\circ =$ | | -371.51 | | | | $\Delta_f G^{\circ} =$ | | 169.46 | | | | $lnK_f =$ | | -68.36 | | | ### 4-Methylpyridine; 4-Picoline C₆H₇N $(4 \times C_B - (H)(C_B)_2) + (1 \times C - (H)_3(C)) + (1 \times C_B - (C)(C_B)_2) +$ $(1 \times N_{\Gamma} - (C_B))$ | | Literatur | Reference | | | |------------------------------------|-------------|-----------|--------|-------| | Gas phase $\Delta_t H^\circ =$ | 104.10 | 105.62 | - 1.52 | 72GOO | | $C_p^{\circ} =$ | 104.10 | 99.99 | -1.32 | 72000 | | T:::J | | | | | | Liquid phas $\Delta_t H^\circ =$ | se
59.20 | 58.69 | 0.51 | 72GOO | | $C_p^{\circ} =$ | 57.20 | 157.05 | 0.51 | 72000 | | S° = | | 215.68 | | | | $\Lambda_{\mathbf{f}} S^{\circ} =$ | | -371.51 | | | | | | 169.46 | | | | $\Delta_t G^\circ =$ | | 109.40 | | | ### 2,3-Dimethylpyridine; 2,3-Lutidine C₂H₉N $(2 \times C - (H)_3(C)) + (2 \times C_B - (C)(C_B)_2) + (3 \times C_B - (H)(C_B)_2) +$ $(1 \times N_{I}-(C_B)) + (1 \times ortho corr, hydrocarbons) +$ $(1 \times N_1$ -CH₃ (ortho corr)) | Literature - Calculated = Residual | | | | Reference | | |------------------------------------|-------|-------|-------|-----------|--| | Gas phase $\Delta_t H^\circ =$ | 68.30 | 68.15 | 0.15 | 60COX | | | Liquid phase $\Delta_t H^\circ =$ | 19.40 | 21.34 | -1.94 | 58COX/GUN | | TABLE 32. Cyclic CHN (32) - Continued TABLE 32. Cyclic CHN (32) - Continued | | $(C_B)_2) + (2_B)_3) + (1 \times m)_4$ | $2 \times C - (H)_3(C)$
eta corr, hydr | | C ₇ H ₉ N
((C _B) ₂)+ | 3,4-Dimethylj
$(3 \times C_B-(H \times N_F-(C_B))$ | $(C_B)_2 + ($ | $2 \times C - (H)_3(C)$ |)+(2×C _B -(C | С ₇Н₉N
)(С _В) ₂) + | |--|---|---|------------|---
---|------------------------------------|--|---------------------------|---| | (IXIII CII | • | Calculated | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_f H^\circ =$ | 63.90 | 66.26 | -2.36 | 60COX | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ =$ | 18.28 | 25.34
184.45
250.61 | - 7.06 | 58COX/GUN | | Liquid phase $\Delta_t H^\circ =$ | 16.20 | 18.08 | -1.88 | 58COX/GUN | $\Delta_f S^\circ = \\ \Delta_f G^\circ = \\ \ln K_f = $ | | -472.89
166.33
-67.10 | | | | • • • | $((C_B)_2) + (1 \times N_B) + (1 \times N_B)$ | ,5-Lutidine
2×C-(H) ₃ (C)
₁ -CH ₃ (ortho | corr)) | C_7H_9N $(C_B)_2) +$ Reference | 3,5-Dimethylj
$(3 \times C_B - (H \times N_I - (C_I \times N_I + C_I \times N_I + (C_I \times N_I + C_I \times N_I + C_I \times N_I + (C_I + (C_I \times N_I + C_I + C_I + (C_I \times N_I + C_I + C_I + (C_I \times N_I + C_I + (C_I \times N_I + C_I $ | $((C_B)_2) + (B_B) + (1 \times n)$ | $2 \times C - (H)_3(C)$ | | C ₇ H ₉ N
)(C _B) ₂) +
Reference | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | Reference | | Gas phase
Δ _i H° = | 66.50 | 66.89 | -0.39 | 60COX | Gas phase $\Delta_i H^\circ = C_p^\circ =$ | 72.80 | 72.56
122.57 | 0.24 | 60COX | | Liquid phase $\Delta_t H^\circ =$ | 18.70 | 18.08 | 0.62 | 58COX/GUN | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | 22.50 | 22.08
180.95 | 0.42 | 58COX/GUN | | | $((C_B)_2) + (B_B) + (1 \times m)$ | 2×C-(H)3(C)
teta corr, hydr | | C_7H_9N
$C_7(C_B)_2$ | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = -\infty$ | | 250.61
-472.89
163.07
-65.78 | | | | | Literature | e – Calculated | = Residual | Reference | Octahydroazo | wine | | | C7H15N | | Gas phase Δ _t H° = | 58.70 | 59.96 | -1.26 | 60COX | | $_{2}(C)_{2})+(2$ | × C-(H) ₂ (C)(N
: rsc) | N))+(1×N-(I | $H)(C)_2) +$ | | | | | | | | Literat | ure-Calculated | d = Residual | Reference | | Liquid phase $\Delta_t H^\circ =$ | 12.72 | 14.08 | -1.36 | 58COX/GUN | Liquid phase $C_p^{\circ} =$ | 230.00 | 230.00 | 0.00 | 76CON/GIN | | 3,4-Dimethyl
(3×C _B -(H
(1×N _I -(C | $(C_B)_2 + (C_B)_1 + (1 \times a)_2$ | 2×C-(H)₃(C)
rtho corr) | | | | $_{2}(C)_{2})+(1$ | ×C-(H) ₃ (C))+
peridine rsc) | + (3×C−(H) ₂ (| C ₈ H ₁₇ N
C)(N)) + | | | Literature | e – Calculated | = Residual | Reference | | Literature | - Calculated = | = Residual | Reference | | Gas phase $\Delta_l H^\circ = C_p^\circ =$ | 70.08 | 74.45
128.26 | -4.37 | 60COX | Gas phase $\Delta_t H^\circ =$ | | - 90.04 | | | TABLE 32. Cyclic CHN (32) - Continued ### TABLE 33. Amides (28) | TABLE 32. Cyclic CFIN (32) — Continued | TABLE 33. Annues (20) | |---|--| | N-Propylpiperidine (Continued) $C_8H_{17}N$ $(4 \times C-(H)_2(C)_2) + (1 \times C-(H)_3(C)) + (3 \times C-(H)_2(C)(N)) + (1 \times N-(C)_3) + (1 \times piperidine rsc)$ | Methanamide; Formamide CH ₃ NC (1×CO-(H)(N))+(1×N-(H) ₂ (CO)) | | Literature – Calculated = Residual Reference | Literature - Calculated = Residual Reference | | Liquid phase $\Delta_t H^\circ = -147.00 - 132.02 - 14.98$ 70PRO/KRE $C_p^\circ = 245.74$ | Gas phase $\Delta_t H^\circ = -186.19 - 187.39$ 1.20 58BAU/GUN $C_p^\circ = 46.00$ | | $S^{\circ} = 287.32$ $\Delta_t S^{\circ} = -964.20$ $\Delta_t G^{\circ} = 155.46$ $\ln K_t = -62.71$ | Liquid phase $\Delta_t H^\circ = -251.00 -251.90 0.90 58BAU/GUN$ $C_p^\circ = 108.11 108.11 0.00 77VOR/PRI$ | | Pyrrolizidine; 1-Azabicyclo[3.3.0]octane $C_7H_{13}N$
$(4 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(C)(N)) + (1 \times C - (H)(C)_2(N)) +$
$(1 \times Pyrrolizidine rsc) + (1 \times N - (C)_3)$ | Ethanamide; Acetamide C_2H_3NC
$(1 \times C - (H)_3(C)) + (1 \times CO - (C)(N)) +$
$(1 \times N - (H)_2(CO))$ (amides, ureas)), $\sigma = 3$ | | Literature - Calculated = Residual Reference | Literature – Calculated = Residual Reference | | Gas phase $\Delta_t H^{\circ} = -3.90 -3.90 0.00 81 \text{KOZ/TIM}$ | Gas phase $\Delta_t H^\circ = -238.30 -238.52$ 0.22 75BAR/PIL | | Liquid phase $\Delta_t H^{\circ} = -48.30 - 48.30 0.00 81KOZ/TIM$ | $C_r^o = 63.22$ 65.23 -2.01 67PUR/SIR
$S^o = 272.21$ 263.14 9.07 67PUR/SIR
$\Delta_t S^o = -273.04$
$\Delta_t
G^o = -157.11$
$\ln K_t = 63.38$ | | (cis -3,7a-H)-(cis -5,7a-H)-3,5-Dimethylpyrrolizidine $(4 \times C-(H)_2(C)_2) + (3 \times C-(H)(C)_2(N)) + (1 \times N-(C)_3) + (2 \times C-(H)_3(C)) + (2 \times -CH_3 \text{ corr (tertiary)}) + (1 \times 3,5-Dimethylpyrrolizidine rsc)$ | Liquid phase $\Delta_t H^\circ = -296.51$ $C_\rho^\circ = 128.65$ | | Literature – Calculated – Residual Reference | Solid phase | | Gas phase $\Delta_t H^{\circ} = -66.70 - 66.70 = 0.00$ 81KOZ/TIM | $\Delta_t H^\circ = -317.00 -306.59 -10.41$ 75BAR/PIL
$C_p^\circ = 91.30$ 90.95 0.35 84NUR/BER
$S^\circ = 115.00$ 114.69 0.31 84NUR/BER
$\Delta_t S^\circ421.49$
$\Delta_t G^\circ = -180.92$
$\ln K_f = 72.98$ | | Liquid phase $\Delta_t H^\circ = -114.40 - 114.40 0.00 81KOZ/TIM$ | | | | Propanamide; Propionamide $C_3H_7NO_1$
(1×C-(H) ₂ (C)) + (1×C-(H) ₂ (CO)(C)) + (1×CO-(C)(N)) + (1×N-(II) ₂ (CO)) | | | Literature - Calculated = Residual Reference | | | Gas phase $\Delta_t H^\circ = -258.99 -260.36$ 1.37 75BAR/PIL $C_p^\circ = 89.92$ | | | Liquid phase $\Delta_t H^{\circ} = -320.65$ $C_p^{\circ} = 157.94$ | TABLE 33. Amides (28) - Continued | Propanamide; Propionamide (Continued) C_3H_7NO $(1 \times C-(H)_3(C)) + (1 \times C-(H)_2(CO)(C)) + (1 \times CO-(C)(N)) + (1 \times N-(H)_2(CO))$ | Butanamide; Butyramide $(1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) +$ | | |---|---|--| | Literature - Calculated = Residual Reference | Literature – Calculated = Residual | Reference | | Solid phase $\Delta_t H^\circ = -338.20 -334.49 -3.71$ 75BAR/PIL $C_p^\circ = 112.87$ $S^\circ = 139.42$ $\Delta_t S^\circ = -533.07$ | Gas phase $\Delta_0 H^{\circ} = -279.20 -280.99$ 1.79 $C_p^{\circ} = 112.81$ | 75BAR/PIL | | $\Delta_f G^{\circ} = -175.56$ $\ln K_f = 70.82$ | Liquid phase $\Delta_t H^{\circ} = -346.38$ $C_p^{\circ} = 188.36$ | | | 2-Methylpropanamide C ₄ H ₉ NO | Galida Laca | | | $(2 \times C-(H)_3(C)) + (2 \times -CH_3 \text{ corr (tertiary)}) + (1 \times C-(H)(CO)(C)_2) + (1 \times CO-(C)(N)) + (1 \times N-(H)_2(CO))$ | Solid phase $\Delta_t H^\circ = -365.53 -363.90 -1.63$
$C_p^\circ = 134.79$ | 75BAR/PIL | | Literature - Calculated = Residual Reference | $S^{\circ} = 162.43$
$\Delta_i S^{\circ} = -646.37$
$\Delta_i G^{\circ} = -171.18$ | | | Gas phase $\Delta_t H^\circ = -282.60 -285.55$ 2.95 89ABB/JIM | $\ln K_t = 69.05$ | | | Liquid phase $\Delta_t H^\circ = -352.37$ $C_p^\circ = 182.54$ | Pentanamide $ (1 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) + (1 $ | C ₅ H ₁₁ NO
CO)(C)) + | | Solid phase | Literature – Calculated = Residual | Reference | | $\Delta_t H^\circ = -368.60 - 367.84 - 0.76$ 89ABB/JIM $C_\rho^\circ = 77.89$ | Gas phase $\Delta_t H^\circ = -290.20 -301.62$ 11.42 $C_p^\circ = 135.70$ | 59DAV/JON | | 2,2-Dimethylpropanamide $(3 \times C-(H)_1(C)) + (3 \times -CH_1 \text{ corr (quaternary)}) + (1 \times C-(CO)(C)_3) + (1 \times CO-(C)(N)) + (1 \times N-(H)_2(CO))$ | Liquid phase $\Delta_t H^\circ = -372.11$ | | | Literature - Calculated = Residual Reference | $C_{\rho}^{\circ} = 218.78$ | | | Gas phase $\Delta_t H^\circ = -313.10 -312.79 -0.31$ 88ABB/JIM | Solid phase $\Delta_t H^\circ = -379.49 -393.31$ 13.82 $C_p^\circ = 156.71$ $S^\circ = 185.44$ | 56YOU/KEI | | Liquid phase $\Delta_t H^\circ = -378.75$ $C_r^\circ = 209.60$ | $\Delta_{f}S^{\circ} = -759.67$ $\Delta_{f}G^{\circ} = -166.81$ $\ln K_{f} = 67.29$ | | | Solid phase $\Delta_t H^\circ = -399.70 -389.10 -10.60$ 89ABB/JIM $C_p^\circ = 111.75$ | Hexanamide
$(1 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2)$ | C ₆ H ₁₃ NO
CO)(C))+ | | | Literature – Calculated = Residual | Reference | | | Gas phase $\Delta_t H^{\circ} = -324.20 -322.25 -1.95$
$C_p^{\circ} - 158.59$ | 73LEB/KAT2 | | TABLE 33 | . Amides | (28) — | Continued | |----------|----------|--------|-----------| |----------|----------|--------|-----------| | | | • | | | | | |---|-----------------------------------|--|-------------|---|----------------|-----------------------------------| | Hexanamide (Continued)
$(1 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2)$
$(1 \times CO - (C)(N)) + (1 \times N - (H)_2(CO))$ | CO)(C))+ | (2×C-(H | • | mide; N,N-Dim
×CO-(H)(N))
ternary)) | • | | | Literature – Calculated = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid phase $\Delta_b H^{\circ} = -397.90 -397.84 -0.06$ $C_p^{\circ} = 249.20$ | 73LEB/KAT2 | Gas phase $\Delta_t H^\circ =$ | 191.70
 | -173.03 | - 18.67 | 61GEL | | Solid whose | IS F | Liquid
phas $\Delta_t H^\circ =$ | e
239.20 | - 230.00 | - 9.20 | 72VAS/ZHI | | Solid phase $\Delta_t H^\circ = -423.42 -422.72 -0.70$ $C_p^\circ = 178.63$ $S^\circ = 208.45$ | 73LEB/KAT2 | $C_{\rho}^{\circ} =$ | 152.00 | 151.99 | 0.01 | 74VIS/SOM | | $\Delta_{t}S^{\circ} = -872.97$ $\Delta_{t}G^{\circ} = -162.44$ $\ln K_{f} = 65.53$ | | | I)3(C))+(1 | -Ethylacetamid
×C-(H) ₂ (C)(N | | C4H4NO
()(C)(CO)) + | | Octanamide | C ₈ H ₁₇ NO | | Literatu | re – Calculated | = Residual | Reference | | $(1 \times C - (H)_3(C)) + (5 \times C - (H)_2(C)_2) + (1 +$ | | Gas phase
Δ _t H° = | | -262.36 | | | | Literature - Calculated = Residual | Reference | | | 202.50 | | | | Gas phase | | Liquid phas $\Delta_f H^\circ =$ | e | -328.12 | | | | $\Delta_l H^{\circ} = -362.80 - 363.51 0.71$ $C_p^{\circ} = 204.37$ | 59DAV/JON | $C_p^{\circ} =$ | 179.91 | 176.05 | 3.86 | 71KON/WAD | | Liquid phase $\Delta_t H^{\circ} = -449.30$ $C_{\rho}^{\circ} = 310.04$ | | (2×C-(H | 1)3(C))+(1 | N-Propylacetam
× C-(H) ₂ (C) ₂)
1 × C-(H) ₂ (C)(1 | + (1 × N-(H)(0 | C5H11NO
C)(CO)) + | | Solid phase | | | Literatu | re – Calculated | = Residual | Reference | | $\Delta_{i}H^{\circ} = -473.10 -481.54 8.44$ $C_{p}^{\circ} = 222.47$ $S^{\circ} = 254.47$ $\Delta_{i}S^{\circ} = -1099.57$ | 56YOU/KEI | Gas phase $\Delta_t H^\circ =$ | | - 282.99 | | | | $\Delta_t G^{\circ} = -153.70$ $\ln K_t = 62.00$ | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | e
207.11 | -353.85
206.47 | 0.64 | 71KON/WAD | | N-Methylmethanamide; N-Methylformamide | C₂H₅NO | • | | | | | | $(1 \times C - (H)_3(C)) + (1 \times N - (H)(C)(CO)) + (1 \times CO - (H)_3(C)) $ | (H)(N)) Reference | | | ; N-Isopropylac
×C-(H)(C) ₂ (N | | C ₅ H ₁₁ NO | | | | (2×-CH₃
(1×CO-(| | iary)) + (1 × N-(| (H)(C)(CO))+ | | | Gas phase $\Delta_t H^\circ = -182.93$ | | | Literatu | re – Calculated | = Residual | Reference | | Liquid phase $\Delta_{r}H^{\circ} = -252.71$ $C_{p}^{\circ} = 125.10$ 125.09 0.01 | 79VIS/SOM | Gas phase $\Delta_t H^\circ =$ | | - 297.54 | | | | | | Liquid phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} =$ | e
210.90 | -363.94
210.39 | 0.51 | 71KON/WAD | TABLE 33. Amides (28) - Continued | | 1)(C)(CO)) | +(1×CO-(C) | (N)) | | (17.11 (0 |)2(00)) 1 (| 2 X -CH3 COH | (quaternary)) | | |--|--------------------------|--|----------------|--|--|---|---|--|--| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase
Δ _i H° = | - 304.80 | -303.62 | -1.18 | 65WAD | Gas phase $\Delta_i H^\circ =$ | | - 246.00 | | - | | Liquid phase $\Delta_t H^\circ = C_\rho^\circ =$ | se
- 380.90
236.00 | -379.58
236.89 | -1.32
-0.89 | 62WAD
71KON/WAD | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | 209.20 | - 298.75
201.82 | 7.38 | 71KON/WAD | | Butylace | tamide | ethanamide; N-
×C-(C)3(N)) + | | C ₆ H ₁₃ NO
rr (quaternary))+ | |) ₃ (C))+(2 | × C-(H)2(C)2)
1 × N-(H)(C)(C | | C ₆ H ₁₃ N(
(CO)(C))+ | | (1×N-(1 | H)(C)(CO)) | +(1×CO-(C) | (N)) | | | Literatui | e – Calculated: | = Residual | Reference | | | Literatur | re – Calculated | = Residual | Reference | Gas phase $\Delta_t H^\circ =$ | | -297.16 | | | | Gas phase $\Delta_t H^\circ =$ | | -331.97 | | | Liquid phase | e | | | | | Liquid pha $\Delta_t H^\circ = C_p^\circ =$ | se | -400.61
238.25 | | | $\Delta_{\mathfrak{l}}H^{\circ} = C_{\mathfrak{p}}^{\circ} =$ | 228.90 | -372.92
235.76 | - 6.86 | 71KON/WAD | | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | 189.95 | -403.41
188.66 | 1.29 | 71KON/WAD | |) ₃ (C))+(4
)(C)(CO)) | $ \times C - (H)_2(C)_2 $ $ + (1 \times CO - (C))_2 C)_2 | (N))+(1×C- | | | (2×C-(| | ; N-Methylpro ₁
×C-(H) ₂ (CO) | | C ₄ H ₉ NO
(C)(N))+ | Gas phase $\Delta_t H^\circ =$ | | - 366.72 | | | | (20,11) | 11)(0)(00) | | = Residual | Reference | Liquid phase $\Delta_t H^\circ =$ | e | -455.18 | | | | | Literatu | re - Calculated | - Kesiduai | | $C_p^{\circ} =$ | | 327.02 | | | | Gas phase
Δ _t H° = | Literatu | - 255.90 | - Nesidual | | $C_p^{\circ} =$ Solid phase $\Delta_t H^{\circ} =$ | - 465.10 | -477.42 | 12.32 | 66SKU/BON | | Gas phase $\Delta_t H^\circ =$ Liquid pha $\Delta_t H^\circ =$ $C_p^\circ =$ | | | 4.16 | 71KON/WAD | $C_p^{\circ} =$ Solid phase $\Delta_t H^{\circ} =$ $C_p^{\circ} =$ | | -477.42
269.42 | | | | $\Delta_t H^{\circ} =$ Liquid pha $\Delta_t H^{\circ} =$ | se | - 255.90
- 321.46 | | | $C_{\rho}^{\circ} =$ Solid phase $\Delta_t H^{\circ} =$ $C_{\rho}^{\circ} =$ N-Butyldiace $(3 \times C - (H^{\circ}))$ | etamide; N
) ₃ (C)) + (2 | -477.42 | mine
+ (1 × C-(H) ₂ (| C _s H ₁₅ NO ₂ | | $\Delta_t H^{\circ} =$ Liquid pha $\Delta_t H^{\circ} =$ | se | - 255.90
- 321.46 | | | $C_{\rho}^{\circ} =$ Solid phase $\Delta_t H^{\circ} =$ $C_{\rho}^{\circ} =$ N-Butyldiace $(3 \times C - (H^{\circ}))$ | etamide; N
) ₃ (C)) + (2
C)(N)) + (1 | - 477.42
269.42
-Butyldiacetyla
× C-(H) ₂ (C) ₂)- | mine
+ (1 × C–(H) ₂ (
) | C ₈ H ₁₅ NO ₂ | | $\Delta_t H^{\circ} =$ Liquid pha $\Delta_t H^{\circ} =$ | se | - 255.90
- 321.46 | | | Solid phase $\Delta_t H^\circ = C_\rho^\circ =$ N-Butyldiace $(3 \times C - (H)$ $(2 \times CO - (G))$ Gas phase | etamide; N
) ₃ (C)) + (2
C)(N)) + (1 | -477.42
269.42
-Butyldiacetylai
× C-(H) ₂ (C) ₂)-
l × N-(C)(CO) ₂ | mine
+ (1 × C–(H) ₂ (
) | C ₈ H ₁₅ NO ₂
C)(N)) + | TABLE 33. Amides (28) - Continued | Acetanilide; N-Phenylethanamide; N-Phenylacetamide | C ₈ H ₉ NO | |--|----------------------------------| | $(1 \times C - (H)_3(C)) + (1 \times CO - (C)(N)) + (1 \times N - (H)(C_B)(CO))$ | + | | $(1 \times C_{n-1}(N)(C_{n})_{n}) + (5 \times C_{n-1}(H)(C_{n})_{n})$ | | | 128.90 – | 128.61 – | 0.29 | 55AIH | |----------|----------|-------------------|----------------------| | | | | 62WAD
86NIL/WAD | | | 209.60 – | 209.60 – 202.44 – | 209.60 -202.44 -7.46 | # Butanediamide; Succinamide $C_4H_8N_2O_2\\ (2\times N-(H)_2(CO))+(2\times CO-(C)(N))+(2\times C-(H)_2(CO)(C))$ | | Literature – Calculated | = Residual
 | Reference | |-----------------------------|-------------------------|----------------|-----------| | Gas phase | | | | | $\Delta_{\ell}H^{\circ} =$ | -436.20 | | | | C _P = | 128.38 | | | | Liquid phase | e | | | | $\Delta_i H^\circ =$ | - 546.08 | | | | C _p = | 242.92 | | | | Solid phase | | | | | $\Delta_t H^{\circ} = -$ | -581.20 -575.50 | -5.70 | 57TAM/LAM | | $C_n^{\circ} =$ | 90.84 | | | | S° = | 165.46 | | | | $\Delta_f S^\circ =$ | -776.33 | | | | $\Delta_{\rm f}G^{\circ} =$ | -344.04 | | | | $lnK_f =$ | 138.78 | | | # Propanediamide; Malonamide $C_3H_6N_2O_2$ $(2 \times N-(H)_2(CO)) + (2 \times CO-(C)(N)) + (1 \times C-(H)_2(CO)_2)$ | Literatu | re – Calculated = | - Residual | Reference | |-------------------------------------|-------------------|------------|-----------| | Gas phase
Δ _i H° = | -423.24 | | | | Liquid phase |
| | | | $\Delta_{\rm f}H^{\circ} =$ | - 520.85 | | | | C _p = | 199.90 | | | | Solid phase | | | | | $\Delta_{\rm f}H^{\circ} = -546.10$ | -538.80 | -7.30 | 55TAV/LAM | N,N-Dimethylethanamide; N,N-Dimethylacetamide $(2 \times C - (H)_3(N)) + (1 \times C - (H)_3(CO)) + (1 \times CO - (C)(N)) + (1 \times N - (C)_2(CO)) + (2 \times - CH_3 \text{ corr (quaternary)})$ | Literatu | re – Calculated | = Residual | Reference | |---|-------------------|------------|-----------| | Oas phase $\Delta_t H^\circ = -232.60$ | - 224.16 | - 8.44 | 74GUT | | Liquid phase $\Delta_t H^\circ = -278.30$ $C_p^\circ =$ | -274.61
172.53 | -3.69 | 72VAS/ZHI | # $\begin{array}{ll} N\text{-}Acetyl-N\text{-}butylacetamide} & C_8H_{15}NO_2\\ (2\times C-(H)_3(CO)) + (2\times CO-(C)(N)) + (1\times N-(C)(CO)_2) + \\ (1\times C-(H)_2(C)(N)) + (2\times C-(H)_2(C)_2) + (1\times C-(H)_3(C)) \end{array}$ | Gas phase $\Delta_t H^\circ = -474.50 \qquad -474.50 \qquad 0.00 \qquad 65 \text{WAD}$ Liquid phase |
Literature – Calculated = Residual | | | Reference | | |---|--|------------------|-------|-----------|--| | | | -474.50 | 0.00 | 65WAD | | | $\Delta_t H^\circ = -538.90 -538.89 -0.01$ 65WAD | | - <i>5</i> 38.89 | -0.01 | 65WAD | | # $\begin{tabular}{lll} \textbf{Benzamide} & & & & & & & & \\ & (5 \times C_B-(H)(C_B)_2) + (1 \times C_B-(CO)) + (1 \times CO-(C_B)(N)) + \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$ | L | Literature-Calculated = Residual | | Referei | nce | |------------------------------|----------------------------------|----------|---------|-----------| | Solid phas | se | | | | | $\Delta_{\rm f} H^{\circ} =$ | -202.14 | - 202.20 | 0.06 | 90STE/CHI | | $C_p^{\circ} =$ | 153.82 | 153.86 | -0.04 | 90STE/CHI | ## 1-Adamantyl carboxamide; Tricyclo[3.3.1.1^{3,7}]decane- $\begin{array}{l} \textbf{1-carboxamide} & \textbf{C}_{11}\textbf{H}_{17}\textbf{NO} \\ (4 \times \textbf{C}-(\textbf{H})(\textbf{C})_3) + (5 \times \textbf{C}-(\textbf{H})_2(\textbf{C})_2) + (1 \times \textbf{C}-(\textbf{H})(\textbf{CO})(\textbf{C})_2) + \\ (1 \times \textbf{CO}-(\textbf{C})(\textbf{N})) + (1 \times \textbf{N}-(\textbf{H})_2(\textbf{CO})) + (1 \times \textbf{Adamantane rsc}) \end{array}$ | Literatu | Literature – Calculated = Residual | | | | | |--|------------------------------------|-------|-----------|--|--| | Gas phase $\Delta_t H^\circ = -319.00$ | -310.48 | -8.52 | 89ABB/JIM | | | | Solid phase $\Delta_t H^\circ = -427.20$ | -437.47 | 10.27 | 89ABB/JIM | | | ## ESTIMATION OF THERMODYNAMIC PROPERTIES OF ORGANIC COMPOUNDS TABLE 34. Ureas (24) TABLE 34. Ureas (24) - Continued | Urea
(2×N-(I | H)2(CO) (an | nides, ureas))⊣ | · (1×CO-(N) | CH_4N_2O 2), $\sigma = 2$ | Trimethylurea
$(3 \times C-(H)_3(N)) + (1$
$(1 \times CO-(N)_2) + (1 \times CO-(N)_2)$ | | | | |--|---------------------------------|---|------------------------|---|--|---|-------------|--| | | Literatur | e – Calculated | = Residual | Reference | | re – Calculated = | | Reference | | Gas phase | | | | | | | | | | $\Delta_{\epsilon}H^{\circ} = C_{p}^{\circ} = S^{\circ} =$ | -235.51
66.40
266.98 | -237.00
66.40
266.74 | 1.49
0.00
0.24 | 90KAB/MIR
83FRE/GUS
83FRE/GUS | Gas phase $\Delta_t H^\circ =$ | -218.18 | | | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | - 294.17
- 149.29
60.22 | | | Liquid phase $\Delta_l H^\circ =$ | - 297.21 | | | | Liquid pha $\Delta_t H^\circ =$ | se
-320.20 | -318.30 | 1.90 | 72ZOR/HUR | Solid phase $\Delta_t H^\circ = -330.50$ | -306.82 -2 | 23.68 56TA\ | //LAM | | Solid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | e
-333.59
93.08
104.93 | - 333.60
93.00
105.00
- 455.90
- 197.67 | 0.01
0.08
- 0.07 | 90KAB/MIR
86KOZ/DAL
86KOZ/DAL | Tetramethylurea (4×C-(H) ₃ (N))+(2 (4×-CH ₃ corr (qual | 2×N−(C)2(CO))
ternary))
re − Calculated = | | $C_5H_{12}N_2O$ $N)_2) +$ Reference | | | H)2(CO) (as | 79.74 mides,
ureas))- | | | Gas phase $\Delta_t H^\circ = -205.57$ | - 208.28 | 2.71 | 90KAB/MIR | | (1×N-(| ,,,,, | (amides, ureas
re – Calculated | | () ₃ (N))
Reference | Liquid phase $\Delta_1 H^\circ = -262.17$ | - 274.50 | 12.33 | 87SIM/KAB | | Gas phase
Δ _i H° = | -233.48 | - 232.54 | - 0.94 | 90KAB/MIR | Solid phase $\Delta_t H^\circ = -276.27$ | - 297.46 | 21.19 | 72ZOR/HUR | | Liquid pha Δ _t H° = | | -319.11 | 0.30 | 72ZOR/HUR | Ethylurea $(1 \times C - (H)_3(C)) + (1$ | ×C-(H) ₂ (C)(N |))+ | C ₃ H ₈ N ₂ O | | Solid phas $\Delta_t H^\circ = C_p^\circ =$ | e - 332.78 | -324.89
139.95 | - 7.89 | 87SIM/KAB | $(1 \times N-(H)(C)(CO)$
$(1 \times N-(H)_2(CO))$ (and Literatus) | | , , , | N) ₂) + Reference | | N,N-Dimet
(2×C-(
(1×N-(| $(H)_3(N)) + (1)_2(CO)$ (a) | ×N-(C)₂(CO) | | C ₃ H ₈ N ₂ O
N) ₂) + | Gas phase $\Delta_t H^\circ = -257.46$ | - 260.84 | 3.38 | 90KAB/MIR | | (2x-CF | H₃ corr (qua
Literatu | ternary))
re – Calculated | = Residual | Reference | Liquid phase $\Delta_t H^\circ =$ | - 349.91 | | | | Gas phase
Δ _t H° = | -219.96 | - 222.64 | 2.68 | 90KAB/MIR | Solid phase $\Delta_t H^{\circ} = -357.76$ $C_p^{\circ} =$ | -358.89
161.87 | 1.13 | 87SIM/KAB | | Liquid pha $\Delta_t H^\circ =$ | ase
296.09 | - 296.40 | 0.31 | 72ZOR/HUR | | | | | | Solid phas $\Delta_t H^\circ =$ | e
-319.06 | -315.53 | -3.53 | 87SIM/KAB | | | | | | TARIF | 34 | Hreas | (24) |
Continued | |-------|-----|-------|------|---------------| | INDLE | JT. | Oicas | (47) |
Commune | | TABLE 34. Ureas (24) — Continue | ed | TABLE 34. Ureas (24) — Continued | | | | | | |--|---|--|--|--|--|--|--| | N,N-Diethylurea
$(2 \times C-(H)_3(C)) + (2 \times C-(H)_2(C)(N)) + (1 \times N-(C)(1 \times CO-(N)_2) + (1 \times N-(H)_2(CO))$ (amides, ureas) |) | N-n-Butylurea
(1×C-(H) ₃ (C))+(2×
(1×N-(H)(C)(CO) (
(1×N-(H) ₂ (CO) (am | amides, ureas))+(1> | | | | | | Literature – Calculated = Residual | Reference | Literature | e – Calculated = Resid | lual Reference | | | | | Gas phase $\Delta_t H^{\circ} = -272.31 -270.12 -2.19$ | 90KAB/MIR | Gas phase $\Delta_t H^\circ = -313.58$ | -302.10 -11 | .48 90KAB/MIR | | | | | Liquid phase $\Delta_t H^\circ = -349.22$ | | Liquid phase
Δ _t H° = | -401.37 | | | | | | Solid phase $\Delta_t H^\circ = -372.21 -374.83$ 2.62 | 87SIM/KAB | Solid phase $\Delta_t H^\circ = -419.48$ $C_p^\circ =$ | -417.71 -1
205.71 | .77 87SIM/KAB | | | | | Tetraethylurea $(4 \times C - (H)_3(C)) + (4 \times C - (H)_2(C)(N)) + (2 \times N - (C)(1 \times CO - (N)_2))$ $Literature - Calculated = Residual$ | C ₃ H ₂₆ N ₂ O (2) ₂ (CO)) + Reference | N-sec-Butylurea
$(2 \times C - (H)_3(C)) + (1 \times C - (H)(C)(C)$
$(1 \times C - (H)_3) = (1 \times C - (H)(C)(C)$
$(1 \times C - (H)_2) = (1 \times C - (H)(C)(C)$ | amides, ureas)) +
ary)) + $(1 \times CO - (N)_2)$ | | | | | | Gas phase $\Delta_i H^\circ = -316.43 -303.24 -13.19$ | 90KOZ/SIM | | e – Calculated = Resid | lual Reference | | | | | Liquid phase $\Delta_l H^\circ = -380.04 -380.14 0.10$ | 90KOZ/SIM | Gas phase $\Delta_t H^\circ = -307.03$ | -314.39 7 | .36 90KAB/MIR | | | | | Solid phase $\Delta_t H^\circ = -403.04 -416.06$ 13.02 | 90KOZ/SIM | Liquid phase $\Delta_t H^\circ =$ | - 409.28 | | | | | | N-Isopropylurea
$(2 \times C - (H)_3(C)) + (1 \times C - (H)(C)_2(N)) + (2 \times - CH_3 \text{ corr (tertiary)}) +$ | C ₄ H ₁₀ N ₂ O | Solid phase $\Delta_t H^{\circ} = -413.06$ | -417.28 4 | .22 87SIM/KAB | | | | | (1×N-(H)(C)(CO) (amides, ureas))+(1×CO-(1
(1×N-(H) ₂ (CO) (amides, ureas)) Literature - Calculated = Residual | N) ₂) + Reference | N-tert - Butylurea
(3 × C-(H) ₃ (C)) + (1 ×
(1 × N-(H)(C)(CO) (
(1 × N-(H) ₂ (CO) (am | amides, ureas))+(1> | $C_3H_{12}N_2O$
CH ₃ corr (quaternary)) + $(CO-(N)_2)$ + | | | | | Gas phase $\Delta_0 H^\circ = -289.79 -296.02$ 6.23 | 90KAB/MIR | Literature | e – Calculated = Resid | lual Reference | | | | | Liquid phase $\Delta_0 H^\circ = -385.73$ | | Gas phase $\Delta_t H^\circ = -314.03$ | -330.45 16 | .42 90KAB/MIR | | | | | Solid phase $\Delta_t H^\circ = -389.49 -390.21$ 0.72 | 87SIM/KAB | Liquid phase $\Delta_t H^\circ =$ | -422.40 | | | | | | | | Solid phase $\Delta_t H^\circ = -414.73$ $C_\rho^\circ -$ | -430.42 15. | .69 87SIM/KAB | | | | TABLE 34. Ureas (24) - Continued TABLE 34. Ureas (24) - Continued | | Literatur | e – Calculated = | = Residual | Reference | | |--|---|---|---|--|--| | | Literatur | Calculated | | | Literature-Calculated = Residual Reference | | Gas phase $\Delta_t H^\circ =$ | - 404.21 | -400.38 | -3.83 | 90KAB/MIR | Solid phase $\Delta_t H^\circ = -106.80 - 113.99$ 7.19 52MED/T | | Liquid pha $\Delta_t H^\circ =$ | se | -504.00 | | | N,N'-Dimethyl-N,N'-diphenylurea C ₁₅ H ₁ | | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | e
499.81 | - 514.58
288.42 | 14.77 | 87SIM/KAB | $(2 \times C - (H)_3(N)) + (10 \times C_B - (H)(C_B)_2) + (2 \times C_B - (N)) + (1 \times CO - (N)) + (2 \times N - (C)(C_B)(CO))$ | | | | | | | Literature-Calculated = Residual Reference | | | $(H)(C_B)_2) + \epsilon$ | (1 × C _B -(N)(C _B)
N-(H) ₂ (CO) (a | | | Solid phase $\Delta_t H^\circ = -73.20 - 67.78 - 5.42$ 52MED/T | | | Literatur | e – Calculated = | = Residual | Reference | | | Gas phase
Δ _t H° = | | - 127.09 | | | $\label{eq:continuous} N'\text{-Ethyl-N,N-diphenylurea} \\ (10 \times C_B-(H)(C_B)_2) + (2 \times C_B-(N)(C_B)_2) + (1 \times N-(C_B)_2(CO)) + \\ (1 \times CO-(N)_2) + (1 \times N-(H)(C)(CO) \text{ (amides, ureas))} + \\ (1 \times C-(H)_2(C)(N)) + (1 \times C-(H)_3(C)) \\$ | | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | e
-231.50 | -229.45
181.15 | -2.05 | 87KUL/KIP | Literature-Calculated = Residual Reference | | | | | | | Solid phase $\Delta_t H^{\circ} = -152.60 - 147.99 - 4.61$ 52MED/T | | | | | | | | | N,N'-Diphe
(10×C _{B'}
(1×CO- | -(H)(C _B) ₂) +
-(N) ₂) | - (2 × C _B –(N)(C
re – Calculated = | | $C_{13}H_{12}N_2O$ (H)(C _B)(CO))+ Reference | N,N'-Diethyl-N,N'-diphenylurea $C_{17}H_2$
$(10 \times C_B-(H)(C_B)_2) + (2 \times C_B-(N)) + (2 \times C-(H)_3(C)) + (2 \times C-(H)_2(C)(N)) + (1 \times CO-(N)_2) + (2 \times N-(C)(C_B)(CO))$ | | (10×C _B
(1×CO- | -(H)(C _B) ₂) +
-(N) ₂) | | | $(H)(C_B)(CO))+$ | | | $(10 \times C_B)$ | -(H)(C _B) ₂) +
-(N) ₂) | | | $(H)(C_B)(CO))+$ | $(10 \times C_{B}-(H)(C_{B})_{2}) + (2 \times C_{B}-(N)) + (2 \times C-(H)_{3}(C)) + (2 \times C-(H)_{2}(C)(N)) + (1 \times CO-(N)_{2}) + (2 \times N-(C)(C_{B})(CO))$ | | (10×C _B)
(1×CO- | –(H)(C _B) ₂) +
-(N) ₂)
Literatur | e – Calculated = | | $(H)(C_B)(CO))+$ | $(10 \times C_B - (H)(C_B)_2) + (2 \times C_B - (N)) + (2 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)(N)) + (1 \times CO - (N)_2) + (2 \times N - (C)(C_B)(CO))$ $Literature-Calculated = Residual \qquad Reference$ $Solid phase$ $\Delta_t H^\circ = -132.30 -135.78 \qquad 3.48 \qquad 43PRO/GI$ | | $(10 \times C_B)$ $(1 \times CO$ Gas phase $\Delta_t H^\circ =$ Solid phase $\Delta_t H^\circ =$ $C_p^\circ =$ N,N-Diphe $(10 \times C_B)$ | e
-(H)(C _B) ₂) +
-(N) ₂)
Literatur
e
-116.83 | - 17.18
- 125.30 | = Residual
8.47
8.9 ₂) + (1 × N-(| (H)(C _B)(CO)) + Reference 87SIM/KAB C ₁₃ H ₁₂ N ₂ O (C _B) ₂ (CO)) + | $(10 \times C_B - (H)(C_B)_2) + (2 \times C_B - (N)) + (2 \times C - (H)_3(C)) +$ $(2 \times C - (H)_2(C)(N)) + (1 \times CO - (N)_2) + (2 \times N - (C)(C_B)(CO))$ $Literature-Calculated = Residual \qquad Reference$ Solid phase | ### E. S. DOMALSKI AND E. D. HEARING | Table 34. Ureas (24) — Continued | TABLE 3 | 34. L | Jreas | (24) | - (| Continued | |----------------------------------|---------|-------|-------|------|-----|-----------| |----------------------------------|---------|-------|-------|------|-----|-----------| TABLE 35. Amino acids (38) | $ \begin{array}{c} \textbf{Tetraphenylurea} & \textbf{C}_{25}\textbf{H}_{20}\textbf{N}_{2}\textbf{O} \\ (20 \times \textbf{C}_{B} - (\textbf{H})(\textbf{C}_{B})_{2}) + (4 \times \textbf{C}_{B} - (\textbf{N})) + (2 \times \textbf{N} - (\textbf{C}_{B})_{2}(\textbf{CO})) + \\ (1 \times \textbf{CO} - (\textbf{N})_{2}) \end{array} $ | | | | C ₂₅ H ₂₀ N ₂ O
(CO))+ | $(1 \times N - (H$ | Aminoethanoic acid; Glycine $(1 \times N-(H)_2(C)) + (1 \times C-(H)_2(CO)(N)) + (1 \times C-(H)_2(CO)(N)) + (1 \times C-(H)(CO)) + (1 \times C-(H)(CO)) + (1 \times C-(H)(CO)(N)) \times$ | | | | |
---|--|---|----------------|--|---|---|--|---|--|--| | Lite | erature-Calc | ulated = Resid | ual Refere | nce | *** | Literatu | re – Calculated | = Residual | Reference | | | Solid phase
Δ _t H° = | 168.00 | 88.20 | 79.80 | 1897HAU | Gas phase $\Delta_t H^\circ =$ | 375.30
 | - 375.39 | 0.09 | 77NGA/SAB | | | | $(N)_2)+(1\times 1)$ | 1 × CO-(C)(N)
N-(H) ₂ (CO) (a
c - Calculated : | amides, ureas) | | Solid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 528.10
99.20
103.51 | - 528.10
99.00
103.51
- 535.19
- 368.53
148.66 | 0.00
0.20
0.00 | 37HUF/FOX
60HUT/COL
60HUT/COL | | | Gas phase $\Delta_i H^\circ =$ | -441.16 | -440.52 | -0.64 | 88IMA/MUR | DI -2-Amino | propanoic | acid; DL-Alani | ne | C ₃ H ₇ NO ₂ | | | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | -544.21 | -540.49
127.98 | -3.72 | 88IMA/MUR | (1×C-(H
(1×CO-(
(1×Zwitt | () ₃ (C))+(1
(C)(O))+(| \times N-(H) ₂ (C)) +
1 \times O-(H)(CO)
gy; aliphatic) + | (1×C-(H)(C | | | | | | | | | | Literatu | re – Calculated = | = Residual | Reference | | | (4×C-(F
(2×N-(C | $C)_2(CO)) + (2$ | nethylurea)
×-CH ₃ corr (q
2×CO-(N) ₂) +
amides, ureas) | • | C ₇ H ₁₆ N ₄ O ₂ | Gas phase $\Delta_l H^\circ =$ | , | -435.51 | | | | | | Literatur | e – Calculated | = Residual | Reference | Solid phase | 560.50 | 665 DO | | | | | Gas phase
Δ _i H" = | | -381.84 | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | 563.58
121.71
132.21 | - 557.88
121.68
132.20
- 642.81
- 366.23 | -5.70
0.03
0.01 | 37HUF/FOX
37HUF/ELL
37HUF/ELL | | | Solid phase
Δ _i H° = | | -546.16 | - 1.54 | 90KAR/GUT | $\ln K_{\rm f} =$ | | 147.73 | *************************************** | | | | (3×CO- | socyanurate
(N) ₂) + (3 ×
ethyl cyanur | $C-(H)_3(N))+($ | 3×N-(C)(CC | C ₆ H ₉ N ₃ O ₃ | (1×CO-(| () ₃ (C)) + (1
C)(O)) + (| osine
×N-(H)(C) ₂) +
1×O-(H)(CO))
gy; aliphatic) | | C ₃ H ₇ NO ₂
CO)(N)) + | | | (1 ~ mm | | e – Calculated: | = Residual | Reference | | Literatur | re – Calculated = | Residual | Reference | | | Gas phase $\Delta_t H^\circ =$ | -589.70 | - 589.70 | 0.00 | 88IMA/MUR | Gas phase $\Delta_l H^\circ = -$ | - 367.30 | - 369.35 | 2.05 | 78SAB/LAF | | | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | Solid phase $\Delta_t H^\circ = -$ | | | | 77SAB/LAF | | TABLE 35. Amino acids (38) - Continued TABLE 35. Amino acids (38) - Continued | $(1 \times N - (H)_2)$
$(1 \times C - (H)_2)$ | oic acid
(C)) + $(1 \times C - (H)_2(C)(N)$
(CO)(C)) + $(1 \times CO - (C))$
ion energy; aliphatic) | (I))+(1×C-(F
(O))+(1×O | $C_4H_9NO_2$
$I)_2(C)_2) +$
-(H)(CO)) + | 7-Aminoheptanoic acid $C_7H_{15}NO$
$(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(C)(N)) + (4 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)) + (1 \times CO - (C)(O)) + (1 \times O - (H)(CO)) + (1 \times Zwitterion energy; aliphatic)$ | | | | | |
--|---|---------------------------|---
---|--|---------------|---|--|--| | | Literature – Calculated | = Residual | Reference | Literatu | re – Calculated = | = Residual | Reference | | | | Gas phase | | | | Gas phase | | | | | | | $\Delta_t H^\circ =$ | -443.06 | | | $\Delta_t H^\circ =$ | - 504.95 | | | | | | C _p = | 135.40 | | | $C_p^{\circ} =$ | 204.07 | | | | | | Liquid phase | | | | Liquid phase | | | | | | | $\Delta_l H^{\circ} =$ | -515.35 | | | $\Delta_{\rm f}H^{\circ} =$ | - 592.54 | | | | | | $C_p^{\circ} =$ | 235.52 | | | $C_p^{\circ} =$ | 326.78 | | | | | | S° = | 247.34 | | | S° =
Δ _ι S° = | 344.48
975.78 | | | | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | - 663.98
- 317.38 | | | $\Delta_{\rm f}G^{\circ} =$ | - 301.61 | | | | | | $lnK_f =$ | 128.03 | | | $lnK_f =$ | 121.67 | | | | | | 0-1:4 | | | | Solid phase | | ···· | | | | | Solid phase $\Delta_t H^\circ = -$ | 577.90 - 588.46 | 10.56 | 55STR/SKU2 | Solid phase $\Delta_t H^\circ = -667.40$ | -676.69 | 9.29 | 66SKU/BON | | | | $C_p^{\circ} =$ | 142.84 | 10.50 | 33511,5XO2 | $C_p^{\circ} =$ | 208.60 | 7.25 | 005RO/DON | | | | $S^{\circ} =$ | 150.26 | | | S° = | 219.29 | | | | | | $\Delta_t S^\circ =$ | -761.06 | | | $\Delta_{i}S^{\circ} =$ | - 1100.97 | | | | | | $\Delta_l G^\circ =$ | -361.55 | | | $\Delta_t G^{\circ} =$ | -348.44 | | | | | | | 145.85 | | | $lnK_f =$ | 140.56 | | | | | | $InK_f = \frac{1}{(1 \times N - (H))}$ 5-Aminopenta $\frac{(1 \times N - (H))}{(1 \times C - (H))}$ | nnoic acid
2(C)) + (1 × C-(H)2(C)(N | V)) + (2×C-(I | C ₅ H ₁₁ NO ₂
H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid (1×N-(H) ₂ (C))+(1 | i
1 × C−(H) ₂ (C)(N |)) + (6×C-(F | $(C)_2 +$ | | | | 5-Aminopenta
(1×N-(H):
(1×C-(H):
(1×Zwitter | nnoic acid
2(C)) + (1 × C-(H)2(C)(N
2(CO)(C)) + (1 × CO-(C)
rion energy; aliphatic) |)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid
(1×N-(H) ₂ (C))+(1
(1×C-(H) ₂ (CO)(C)
(1×Zwitterion energy) | 1
1×C-(H) ₂ (C)(N)
))+(1×CO-(C)(
rgy; aliphatic) | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta
(1 × N-(H);
(1 × C-(H);
(1 × Zwitter | nnoic acid
2(C)) + (1 × C-(H)2(C)(N
2(CO)(C)) + (1 × CO-(C) |)(O))+(1×O | $(C)_2 +$ | 9-Aminononanoic acid
(1×N-(H) ₂ (C))+(1
(1×C-(H) ₂ (CO)(C)
(1×Zwitterion energy) | 1
1 × C-(H) ₂ (C)(N)
)) + (1 × CO-(C)(| (O))+(1×O | C ₉ H ₁₉ NO
H) ₂ (C) ₂) +
-(H)(CO)) +
Reference | | | | 5-Aminopenta
(1 × N-(H);
(1 × C-(H);
(1 × Zwitter | nnoic acid
2(C)) + (1 × C-(H)2(C)(N
2(CO)(C)) + (1 × CO-(C)
rion energy; aliphatic) |)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid
(1×N-(H) ₂ (C))+(1
(1×C-(H) ₂ (CO)(C)
(1×Zwitterion energy) | 1
1×C-(H) ₂ (C)(N)
))+(1×CO-(C)(
rgy; aliphatic) | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta
(1 × N-(H);
(1 × C-(H);
(1 × Zwitter | nnoic acid
2(C)) + (1 × C-(H) ₂ (C)(N
2(CO)(C)) + (1 × CO-(C)
2(CO)(C)) + (1 × CO-(C)
2(CO)(C) CO-(C)
2(C)(C) + (1 × C)
2(C)(C)(C) + (1 × C)
2(C)(C)(C)(C) + (1 × C)
2(C)(C)(C)(C) + (1 × C)
2(C)(C)(C)(C)(C) + (1 × C)
2(C)(C)(C)(C)(C)(C) + (1 × C)
2(C)(C)(C)(C)(C)(C)(C)(C)
2(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(|)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid
$(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C)$
$(1 \times Zwitterion eneronal distribution of the content $ | 1
1×C-(H) ₂ (C)(N)
))+(1×CO-(C)(
rgy; aliphatic) | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta
(1×N-(H)):
(1×C-(H)):
(1×Zwitter | nnoic acid
2(C))+(1×C-(H)2(C)(N
2(CO)(C))+(1×CO-(C)
rion energy; aliphatic)
Literature – Calculated |)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid (1×N-(H) ₂ (C))+(i (1×C-(H) ₂ (CO)(C) (1×Zwitterion ener Literatu Gas phase | 1
1 × C-(H) ₂ (C)(N)
)) + (1 × CO-(C)(
rgy; aliphatic)
rre - Calculated = | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta $(1 \times N - (H))$ $(1 \times C - (H)_2$ $(1 \times Zwitter)$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase | nnoic acid 2(C)) + (1 × C-(H) ₂ (C)(N 2(CO)(C)) + (1 × CO-(C) rion energy; aliphatic) Literature – Calculated - 463.69 |)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid
$(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C)$
$(1 \times Zwitterion eneronal distribution of the content $ | 1
1 × C-(H) ₂ (C)(N)
1) + (1 × CO-(C)(0)
1 rgy; aliphatic)
1 re - Calculated =
- 546.21 | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta $(1 \times N - (H))$ $(1 \times C - (H))$ $(1 \times Z \text{witten})$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ =$ | nnoic acid
2(C)) + (1 × C-(H) ₂ (C)(N)
2(CO)(C)) + (1 × CO-(C)
1 CO-(C) |)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid $(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C))$ $(1 \times Z \text{witterion energy}$ $Literatu$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ $Liquid phase$ $\Delta_t H^\circ =$ | 1 1 × C-(H) ₂ (C)(N) 1) + (1 × CO-(C)(rgy; aliphatic) are - Calculated = - 546.21 249.85 | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta
$(1 \times N - (H))$:
$(1 \times C - (H))$:
$(1 \times Z$ witter
$(1 \times Z)$ witter
Gas phase
$\Delta_t H^\circ = C_p^\circ =$
Liquid phase
$\Delta_t H^\circ = C_p^\circ =$ | nnoic acid
2(C)) + (1 × C-(H) ₂ (C)(N ₂ (CO)(C)) + (1 × CO-(C)(C)) + (1 × CO-(C)(C)(C)) + (1 × CO-(C)(C)(C)) + (1 × CO-(C)(C)(C) + (1 × C)(C)(C) + (1 × C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C |)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid $(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C)$ $(1 \times Z \text{witterion energy})$ Literatu Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | 1
1 × C-(H) ₂ (C)(N)
1) + (1 × CO-(C)(0)
1 rgy; aliphatic)
1 re - Calculated =
-546.21
249.85
-644.00
387.62 | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta
$(1 \times N - (H))$:
$(1 \times C - (H))$:
$(1 \times Z$ witter
$(1 \times Z)$ witter
Gas phase
$\Delta_t H^\circ = C_\rho^\circ =$
Liquid phase
$\Delta_t H^\circ = C_\rho^\circ =$
$C_\rho^\circ =$ | nnoic
acid
2(C))+(1×C-(H) ₂ (C)(N)
2(CO)(C))+(1×CO-(C)
rion energy; aliphatic)
Literature – Calculated
- 463.69
158.29
- 541.08
265.94
279.72 |)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid $(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C)$ $(1 \times Z \text{witterion energy})$ Literatu Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ C_p^\circ$ | 1
1 × C-(H) ₂ (C)(N)
1) + (1 × CO-(C)(0)
1 rgy; aliphatic)
1 re - Calculated =
- 546.21
249.85
- 644.00
387.62
409.24 | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta
$(1 \times N - (H))$:
$(1 \times C - (H))$:
$(1 \times Z$ witter
$(1 \times Z)$ witter
Gas phase
$\Delta_t H^\circ = C_p^\circ =$
Liquid phase
$\Delta_t H^\circ = C_p^\circ =$
$\Delta_t H^\circ = C_p^\circ =$
$\Delta_t S^\circ =$ | nnoic acid
2(C))+(1×C-(H) ₂ (C)(N)
2(CO)(C))+(1×CO-(C)
rion energy; aliphatic)
Literature – Calculated
- 463.69
158.29
- 541.08
265.94
279.72
- 767.91 |)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid $(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C)$ $(1 \times Z \text{witterion energy})$ Literatu Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ $S^\circ = S^\circ = \Delta_t S^\circ =$ | 1
1 × C-(H) ₂ (C)(N)
1) + (1 × CO-(C)(0)
1 rgy; aliphatic)
1 re - Calculated =
- 546.21
249.85
- 644.00
387.62
409.24
- 1183.64 | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta
$(1 \times N - (H))$
$(1 \times C - (H))$
$(1 \times Z)$
$(1 \times Z)$
Gas phase
$\Delta_t H^\circ = C_p^\circ = $
Liquid phase
$\Delta_t H^\circ = C_p^\circ = $
$\Delta_t G^\circ = $ | nnoic acid
2(C)) + (1 × C-(H) ₂ (C)(N)
2(CO)(C)) + (1 × CO-(C)
rion energy; aliphatic)
Literature – Calculated
- 463.69
158.29
- 541.08
265.94
279.72
- 767.91
- 312.13 |)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid
$(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C)$
$(1 \times Zwitterion energy)$
Literaturanois Base
$\Delta_t H^\circ = C_p^\circ $ | 1
1 × C-(H) ₂ (C)(N)
1) + (1 × CO-(C)(0)
1 rgy; aliphatic)
1 re - Calculated =
- 546.21
249.85
- 644.00
387.62
409.24
- 1183.64
- 291.10 | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta
$(1 \times N - (H))$:
$(1 \times C - (H))$:
$(1 \times Z$ witter
$(1 \times Z)$ witter
Gas phase
$\Delta_t H^\circ = C_p^\circ =$
Liquid phase
$\Delta_t H^\circ = C_p^\circ =$
$\Delta_t H^\circ = C_p^\circ =$
$\Delta_t S^\circ =$ | nnoic acid
2(C))+(1×C-(H) ₂ (C)(N)
2(CO)(C))+(1×CO-(C)
rion energy; aliphatic)
Literature – Calculated
- 463.69
158.29
- 541.08
265.94
279.72
- 767.91 |)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid $(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C)$ $(1 \times Z \text{witterion energy})$ Literatu Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ $S^\circ = S^\circ = \Delta_t S^\circ =$ | 1
1 × C-(H) ₂ (C)(N)
1) + (1 × CO-(C)(0)
1 rgy; aliphatic)
1 re - Calculated =
- 546.21
249.85
- 644.00
387.62
409.24
- 1183.64 | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta $(1 \times N - (H))$ $(1 \times C - (H))$ $(1 \times Z \text{ witten})$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ $Liquid phase$ $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t G^\circ = Lightarrow Light$ | - 463.69
- 541.08
- 265.94
- 267.91
- 312.13
- 312.59 |)(O)) + (1 × O | H ₂ (C) ₂) +
-(H)(CO)) +
Reference | 9-Aminononanoic acide $(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C))$ $(1 \times Zwitterion energy)$ Literatur Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ = InK_t =$ Solid phase | 1
1 × C-(H) ₂ (C)(N)
1) + (1 × CO-(C)(rgy; aliphatic)
10 | (O)) + (1 × O | H ₂ (C) ₂) +
-(H)(CO)) +
Reference | | | | 5-Aminopenta $(1 \times N - (H))$ $(1 \times C - (H))$ $(1 \times Z \text{ witten})$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ = -$ | - 463.69
- 541.08
- 265.94
- 279.72
- 767.91
- 312.13
- 312.13
- 312.87 |)(O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | 9-Aminononanoic acid $(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C))$ $(1 \times Zwitterion energy)$ Literatu Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ = InK_t =$ Solid phase $\Delta_t H^\circ = -727.80$ | 1
1 × C-(H) ₂ (C)(N)
1) + (1 × CO-(C)(rgy; aliphatic)
10 | (O))+(1×O | H) ₂ (C) ₂) +
-(H)(CO)) + | | | | 5-Aminopenta $(1 \times N - (H))$ $(1 \times C - (H))$ $(1 \times Z \text{witter})$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ = -C_p^\circ = C_p^\circ C_p$ | - 463.69
- 541.08
- 265.94
- 279.72
- 767.91
- 604.10
- 617.87
- 15 × C-(H) ₂ (C)(N) |)(O)) + (1 × O | H ₂ (C) ₂) +
-(H)(CO)) +
Reference | 9-Aminononanoic acid $(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(C)) + (1 \times C - (H)_2(C)) + (1 \times C) $ | 1 1×C-(H) ₂ (C)(N) 1)+(1×CO-(C)(rgy; aliphatic) 10 - Calculated = -546.21 249.85 -644.00 387.62 409.24 -1183.64 -291.10 117.43 | (O)) + (1 × O | H ₂ (C) ₂) +
-(H)(CO)) +
Reference | | | | 5-Aminopenta
$(1 \times N - (H))$:
$(1 \times C - (H))$:
$(1 \times Z$ witter
$(1 \times Z$ witter
$(1 \times Z)$ witter
Gas phase
$\Delta_t H^\circ =$
$C_t^\circ =$
$\Delta_t G^\circ =$ | - 463.69
- 541.08
- 265.94
- 279.72
- 767.91
- 312.13
- 312.13
- 312.73
- 312.73 |)(O)) + (1 × O | H ₂ (C) ₂) +
-(H)(CO)) +
Reference | 9-Aminononanoic acid $(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C)$ $(1 \times Z \text{witterion energy})$ Literatu Gas phase $\Delta_t H^\circ = C_\rho^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = 1 \text{n} K_t = S^\circ =$ | 1 1×C-(H) ₂ (C)(N) 1)+(1×CO-(C)(rgy; aliphatic) 1 re - Calculated = -546.21 249.85 -644.00 387.62 409.24 -1183.64 -291.10 117.43 -735.51 252.44 265.31 | (O)) + (1 × O | H ₂ (C) ₂) +
-(H)(CO)) +
Reference | | | | 5-Aminopenta $(1 \times N - (H))$ $(1 \times C - (H))$ $(1 \times Z \text{witter})$ Gas phase $\Delta_t H^{\circ} = C_p^{\circ} =$ Liquid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = InK_t =$ Solid phase $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = InK_t = S^{\circ} = \Delta_t S^{\circ} = S^$ | - 463.69
- 541.08
- 265.94
- 279.72
- 767.91
- 312.13
- 312. |)(O)) + (1 × O | H ₂ (C) ₂) +
-(H)(CO)) +
Reference | 9-Aminononanoic acid $(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C)$ $(1 \times Z \text{witterion energy})$ Literatu Gas phase $\Delta_t H^\circ = C_\rho^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = 1 \text{n} K_t = S^\circ S^\circ$ | 1 1×C-(H) ₂ (C)(N) 1)+(1×CO-(C)(rgy; aliphatic) 1 | (O)) + (1 × O | H ₂ (C) ₂) +
-(H)(CO)) +
Reference | | | | 5-Aminopenta
$(1 \times N - (H))$:
$(1 \times C - (H))$:
$(1 \times Z \text{witter})$
$(1 \times Z \text{witter})$
Gas phase
$\Delta_t H^\circ =$
$C_t^\circ =$
$\Delta_t H^\circ =$
$C_t^\circ =$
$\Delta_t S^\circ =$ | - 463.69
- 541.08
- 265.94
- 279.72
- 767.91
- 312.13
- 312.13
- 312.73
- 312.73 |)(O)) + (1 × O | H ₂ (C) ₂) +
-(H)(CO)) +
Reference | 9-Aminononanoic acid $(1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C)$ $(1 \times Z \text{witterion energy})$ Literatu Gas phase $\Delta_t H^\circ = C_\rho^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = 1 \text{n} K_t = S^\circ =$ | 1 1×C-(H) ₂ (C)(N) 1)+(1×CO-(C)(rgy; aliphatic) 1 re - Calculated = -546.21 249.85 -644.00 387.62 409.24 -1183.64 -291.10 117.43 -735.51 252.44 265.31 | (O)) + (1 × O | H ₂ (C) ₂) +
-(H)(CO)) +
Reference | | | L-Valine C₅H₁₁NO₂ | TABLE 35. | Amino | acids | (38) | _ | Continued | |-----------|-------|-------|------|---|-----------| | | | | | | | ### TABLE 35. Amino acids (38) - Continued 2-Aminohexanoic acid; Norleucine C₆H₁₃NO₂ $(1 \times C-(H)_3(C)) + (3 \times C-(H)_2(C)_2) + (1 \times C-(H)(C)(CO)(N)) +$ $(1 \times N - (H)_2(C)) + (1 \times CO - (C)(O)) + (1 \times O - (H)(CO)) +$ (1×Zwitterion energy; aliphatic) Literature - Calculated = Residual Reference Gas phase $\Delta_f H^\circ =$ -495.14Solid phase $\Delta_t H^{\circ} =$ -639.10-643.774.67 55STR/SKU2 $C_p^{\circ} = S^{\circ} =$ 187.44 210.81 $\Delta_f S^{\circ} =$ -982.71 $\Delta_f G^{\circ} =$ -350.87 $lnK_f =$ 141.50 4-Aminohexanoic acid C₆H₁₃NO₂ $(1 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_2(N)) +$ $(1 \times C - (H)_2(CO)(C)) + (1 \times CO - (C)(O)) + (1 \times O - (H)(CO)) +$ $(1 \times N - (H)_2(C)) + (1 \times Zwitterion energy; aliphatic)$ Literature - Calculated = Residual Reference Gas phase $\Delta_{\rm f} H^{\circ} =$ -494.35 $C_p^{\circ} =$ 179.96 Liquid phase $\Delta_{f}H^{\circ} =$ -572.54 $C_p^{\circ} =$ 300.28 *s*° = 310.64 $\Delta_f S^o =$ -873.30 $\Delta_t G^{\circ} =$ -312.16 $lnK_f =$ 125.92 Solid phase $\Delta_{\rm f}H^{\circ} =$ -646.18 -644.51-1.6755STR/SKU2 5-Aminohexanoic acid C₆H₁₃NO₂ $(1 \times C - (H)_{3}(C)) + (1 \times C - (H)(C)_{2}(N)) +$ $(1 \times -\text{CH}_3 \text{ corr (tertiary)}) + (1 \times \text{N} - (\text{H})_2(\text{C})) + (2 \times \text{C} -
(\text{H})_2(\text{C})_2) + (1 \times \text{C} - (\text{H})_2(\text{CO})(\text{C})) + (1 \times \text{CO} - (\text{C})(\text{O})) + (1 \times \text{O} - (\text{H})(\text{CO})) (\text{H})(\text{CO$ Reference Literature - Calculated = Residual -496.61 179.96 (1×Zwitterion energy; aliphatic) Gas phase $\Delta_f H^\circ =$ $C_p^{\circ} =$ | | Literatur | e – Calculated = | = Residual | Reference | |--|--|--|---------------------------------|-------------------------------------| | Gas phase | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | | -481.20 | | | | Salid akas | | | | | | Solid phas
Δ _ε H° = | e
-617.90 | -612.94 | - 4.96 | 57TSU/HUN | | $C_{\rho}^{\circ} =$ | 168.82 | 140.32 | 28.50 | 63HUT/COL | | S° = | 178.87 | 172.00 | 8.87 | 63HUT/COL | | $\Delta_f S^{\circ} =$ | _,_, | -875.63 | | | | $\Delta_f G^\circ =$ | | -351.87 | | | | $lnK_f =$ | | 141.94 | | | | (1×C-(
(1×CO | $(H)_3(C) + (1)_3(C)_2 + (1)_2(C)_2 + (1)_2(C)(O) + (1)_3(C)_3 (1)_$ | ×C-(H)(C) ₃)+
1×C-(H)(C)(C
1×O-(H)(CO)
gy; aliphatic) | O)(N))+(1×
)+ | N−(H) ₂ (C))+ | | | Literatui | re – Calculated | = Residuai | Reference | | Gas phase | | | | | | $\Delta_i H^{\circ} =$ | | - 501.83 | | | | Solid phas
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | - 640.60
194.30
207.10 | -642.35
162.24
195.01
-988.93
-347.50
140.18 | 1.75
32.06
12.09 | 37HUF/FOX
37HUF/ELL
37HUF/ELL | | $lnK_f =$ | | | | | | DL-Isoleu
(1 × O-(
(1 × N-(
(1 × C-(| $(H)(CO) + (H)_2(C) + (I)_2(C)_2 (I)_2(C)$ | $(1 \times CO - (C)(O))$
$\times C - (H)(C)_3) + (2 \times C - (H)_3(C))$
$(2 \times C)_3 = (1)$ | + (1 × -CH ₃ co
+ | | | DL-Isoleu
(1 × O-(
(1 × N-(
(1 × C-(| $(H)(CO) + (H)_2(C) + (I)_2(C)_2 (I)_2(C)$ | \times C-(H)(C) ₃) $+$
2 \times C-(H) ₃ (C))
gy; aliphatic) | + (1 × -CH ₃ co
+ | (C)(CO)(N))+ | | DL-Isoleu
(1 × O-(
(1 × N-(
(1 × C-(| (H)(CO)) + (1
(H) ₂ (C)) + (1
(H) ₂ (C) ₂) + (2
itterion ener | \times C-(H)(C) ₃) $+$
2 \times C-(H) ₃ (C))
gy; aliphatic) | + (1 × -CH ₃ co
+ | (C)(CO)(N))+
rr (tertiary))+ | # **ESTIMATION OF THERMODYNAMIC PROPERTIES OF ORGANIC COMPOUNDS** TABLE 35. Amino acids (38) - Continued TABLE 35. Amino acids (38) - Continued | 5-Aminohexanoic acid (Continued) C_6H
$(1 \times C - (H)_3(C)) + (1 \times C - (H)(C)_2(N)) +$
$(1 \times - CH_3 \text{ corr (tertiary)}) + (1 \times N - (H)_2(C)) + (2 \times C - (H)_2(C)_2(1 \times C - (H)_2(CO)(C)) + (1 \times CO - (C)(O)) + (1 \times O - (H)(CO)) +$
$(1 \times Z \text{ witterion energy; aliphatic})$ | 13NO ₂ DL-Ornithine $C_5H_{12}N_2O_2$
$(1 \times N - (H)_2(C) \text{ (second, amino acids)}) + (1 \times C - (H)_2(C)(N)) +$
$(2 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)(CO)(N)) + (1 \times N - (H)_2(C)) +$
$(1 \times CO - (C)(O)) + (1 \times O - (H)(CO)) +$
$(1 \times Z\text{witterion energy; aliphatic)}$ | |--|--| | Literature - Calculated = Residual Reference | e Literature – Calculated = Residual Reference | | Liquid phase $\Delta_t H^\circ =
-574.72$ $C_s^\circ = 300.28$ | Gas phase $\Delta_t H^\circ = -441.30$ | | $C_p^{\circ} = 300.28$
$S^{\circ} = 310.64$
$\Delta_k S^{\circ} = -873.30$ | Solid phase | | $\Delta_t G^\circ = -314.34$ $\ln K_t - 126.80$ | $\Delta_t H^\circ = -652.60 -647.62 -4.98$ 60PON/MIG $C_p^\circ = 191.33 191.26 0.07$ 40HUF/FOX $S^\circ = 193.30 193.29 0.01$ 40HUF/FOX $\Delta_t S^\circ = -1015.38$ | | Solid phase
Δ _t H° = -643.29 -646.85 3.56 55STR/S | $\Delta_t G^{\circ} = -344.88$ | | DL-Serine; 3-Hydroxy-2-aminopropanoic acid (1×O-(H)(CO))+(1×CO-(C)(O))+(1×C-(H)(C)(CO)(N) (1×N-(H) ₂ (C))+(1×C-(H) ₂ (O)(C))+(1×O-(H)(C))+ (1×Zwitterion energy; aliphatic) | H ₇ NO ₅ DL-Lysine $C_6H_{14}N_2O_2$
)+ $(1 \times O - (H)(CO)) + (1 \times CO - (C)(O)) + (1 \times N - (H)_2(C)) +$
$(1 \times C - (H)(C)(CO)(N)) + (3 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)(N)) +$
$(1 \times N - (H)_2(C) \text{ (second, amino acids)}) +$
$(1 \times Z\text{witterion energy; aliphatic)}$ | | Literature - Calculated = Residual Reference | | | Gas phase $\Delta_t H^\circ = -583.22$ | Gas phase $\Delta_t H^\circ = -461.93$ | | Solid phase $ \Delta_t H^\circ = -732.70 -737.96 \qquad 5.26 \qquad 78SAB/L \\ C_\rho^\circ = 132.21 \qquad 105.40 \qquad 26.81 \qquad 75SPI/W. \\ S^\circ = \qquad \qquad 128.86 \\ \Delta_t S^\circ = \qquad \qquad -748.67 \\ \Delta_t G^\circ = \qquad \qquad -514.74 \\ \ln K_\ell = \qquad 207.64 $ | • | | 3-Hydroxy-2-aminobutanoic acid; DL-Threonine C_4 $(1 \times C-(H)_3(C)) + (1 \times C-(H)(O)(C)_2 \text{ (alcohols, peroxides)}) + (1 \times -CH_3 \text{ corr (tertiary)}) + (1 \times O-(H)(C)) + (1 \times C-(H)(C)(CO)(N)) + (1 \times N-(H)_2(C)) + (1 \times CO-(C)(O)) + (1 \times O-(H)(CO)) + (1 \times Z\text{witterion energy; aliphatic})$ | H ₂ NO ₃ L-Aspartic acid $(2 \times O - (H)(CO)) + (2 \times CO - (C)(O)) + (1 \times C - (H)(C)(CO)(N)) + (1 \times N - (H)_2(C)) + (1 \times C - (H)_2(CO)(C)) + (1 \times Zwitterion energy; aliphatic)$ | | Literature - Calculated = Residual Reference | e Literature – Calculated = Residual Reference | | Gas phase $\Delta_i H^{\circ} = -620.94$ | Gas phase $\Delta_t H^\circ = -804.37$ | | Solid phase $\Delta_t H^\circ = -758.80 -786.62$ 27.82 60POM/S $C_p^\circ = 155.70$ $S^\circ = 167.77$ $\Delta_t S^\circ = -846.07$ $\Delta_t G^\circ = -534.36$ $\ln K_t = 215.56$ | Solid phase $\Delta_{\rm f}H^{\circ} = -973.28 -972.45 -0.83 36 {\rm HUF/ELL}$ $C_{\rho}^{\circ} = 155.18 165.73 -10.55 63 {\rm HUT/COL2}$ $S^{\circ} = 170.12 154.15 15.97 63 {\rm HUT/COL2}$ $\Delta_{\rm f}S^{\circ} = -831.64$ $\Delta_{\rm f}G^{\circ} = -724.50$ $\ln K_{\rm f} = 292.26$ | ### E. S. DOMALSKI AND E. D. HEARING TABLE 35. Amino acids (38) - Continued | TABLE 35. | Amino | acids (38 | 3) — | Continued | |-----------|-------|-----------|------|-----------| |-----------|-------|-----------|------|-----------| | (1×C-(H | acid
I)(CO))+(2×CO-(C)(O))-
()(C)(CO)(N))+(1×N-(H):
erion energy; aliphatic)+(1 | ₂ (C))+ | | (1×C-(H | H)(C _B) ₂)+
I)(C)(CO)(| (1×C _B -(C)(C _E
N))+(1×N-(I
1×Zwitterion | $H)_2(C)) + (1 \times$ | CO-(C)(O))+ | |---|--|--------------------------|---------------------------------------|---|---|--|---------------------------------------|-------------------------------------| | | Literature - Calculated = | Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase
Δ _t H° = | -825.00 | · | | Gas phase
Δ _t H° = | | -319.64 | | | | Solid phase $\Delta_t H^\circ = -1$ $C_t^\circ = S^\circ = $ $\Delta_t S^\circ = $ $\Delta_t G^\circ = $ $\ln K_t = $ | | -7.84
-12.59
11.04 | 52TSU/HUN
63HUT/COL2
63HUT/COL2 | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 459.80
203.01
213.64 | -461.25
205.00
211.06
-859.53
-203.98
82.28 | 1.45
- 1.99
2.58 | 52BRE/DER
63COL/HUT
63COL/HUT | | (1 × C-(H
(1 × N-(H | ne
H)(CO)) + (1 × CO-(C)(O))
H) ₂ (CO)(C)) + (1 × CO-(C)(1
H) ₂ (CO) (amino acids)) + (1
terion energy; aliphatic) | N))+ | | $(1 \times C_{B} - (C_{B} (C_{B}$ | $C)(C_B)_2) + (I)_2(C)) + (1$ | \times C _B -(O)(C _B):
$1 \times$ C-(H) ₂ (C)(
\times CO-(C)(O))
gy, aromatic I) | (C_B)) + (1 × C-
+ (1 × O-(H)) | (H)(C)(CO)(N)) + | | | Literature - Calculated = | Residual | Reference | | Literatui | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ =$ | - 609.09 | | | Gas phase
Δ _l H° = | | - 498.50 | | | | Solid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 7788.70 — 791.05
159.80 161.03
174.50 173.27
— 843.62
— 539.53
217.64 | 2.35
-1.23
1.23 | 36HUF/ELL
32HUF/BOR
32HUF/BOR | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 685.10
216.44
214.01 | 666.03
213.83
218.52
954.59
381.42
153.86 | ~ 19.07
2.61
- 4.51 | 37HUF/FOX
63COL/HUT
63COL/HUT | | (1 × C-(1
(1 × N-(1 | ne
H)(CO)) + (1 × CO-(C)(O))
H) ₂ (CO)(C)) + (1 × C-(H) ₂ (C
H) ₂ (CO) (amino acids)) + (1
tterion energy; aliphatic) | $(1 \times C)_2$ | O-(C)(N))+ | (1 × O-(H
(1 × Zwitt | H)(C _B) ₂) +
I)(CO)) + (| $(1 \times N - (H)_{2}(C_{E}) \times CO - (O)(C_{E})$ $(1 \times CO - (O)(C_{E}) \times (O)$ $(1 \times N - (O)(C_{E}))$ | $(1 \times C_{B} - (1 \times C_{B}))$ | | | | Literature - Calculated = | Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_i H^{\circ} =$ | - 629.72 | | | Gas phase $\Delta_t H^\circ =$ | - 296.00 | 290.61 | -5.39 | 74SAB/CHA | | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ - \Delta_t G^\circ =$ | -825.50 -820.46
184.18 182.98
195.06 196.28
-956.92
-535.15 | -5.04
1.20
-1.22 | 57TSU/HUN
63HUT/COL2
63HUT/COL2 | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | e
380.40 | -380.00
258.70 | - 0.40 | 71LEB/GUT | TABLE 35. Amino acids (38) - Continued TABLE 35. Amino acids (38) - Continued | $ \begin{array}{ll} \textbf{2-Aminobenzoic acid (Continued)} & C_7H_7NO_2\\ (4\times C_B-(H)(C_B)_2)+(1\times N-(H)_2(C_B))+(1\times C_B-(N)(C_B)_2)+\\ (1\times O-(H)(CO))+(1\times CO-(O)(C_B))+(1\times C_B-(CO)(C_B)_2)+\\ (1\times Zwitterion energy, aromatic II)+\\ (1\times NH_2-COOH\ (ortho\ corr)) \end{array} $ | $ \begin{array}{ll} \textbf{2-Aminobenzoic acid (Continued)} & \textbf{C}_7H_7NO_2\\ (4 \times C_{B^-}(H)(C_B)_2) + (1 \times N(H)_2(C_B)) + (1 \times C_{B^-}(N)(C_B)_2) + \\ (1 \times O(H)(CO)) + (1 \times CO(O)(C_B)) + (1 \times C_{B^-}(CO)(C_B)_2) + \\ (1 \times Zwitterion energy, aromatic II) + \\ (1 \times NH_2\text{-COOH (ortho corr))} \end{array} $ | |---|---|
| Literature - Calculated = Residual Reference | Literature - Calculated = Residual Reference | | Solid phase $\Delta_t H^\circ = -400.90 -401.73 0.83 71 LEB/GUT$ $C_\rho^\circ = 165.27 165.27 0.00 26 AND/LYN$ $S^\circ = 168.42$ $\Delta_t S^\circ = -629.55$ $\Delta_t G^\circ = -214.03$ $\ln K_f = 86.34$ | Solid phase $\Delta_{t}H^{\circ} = -412.80 -415.73 2.93 77NAB/SAB$ $C^{\circ}_{\rho} = 177.82 169.98 7.84 26AND/LYN$ $S^{\circ} = 168.42$ $\Delta_{t}S^{\circ} = -629.55$ $\Delta_{t}G^{\circ} = -228.03$ $\ln K_{t} 91.99$ | | 3-Aminobenzoic acid $C_7H_7NO_2$ $(4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (N)(C_B)_2) + (1 \times N - (H)_2(C_B)) + (1 \times C_B - (CO)(C_B)_2) + (1 \times CO - (O)(C_B)) + (1 \times O - (H)(CO)) + (1 \times Zwitterion energy, aromatic II) + (1 \times NH_2 - COOH (meta~corr))$ | N-Phenylglycine $(5\times C_B-(H)(C_B)_2)+(1\times C_B-(N)(C_B)_2)+(1\times N-(H)(C)(C_B))+\\ (1\times C-(H)_2(CO)(N))+(1\times CO-(C)(O))+(1\times O-(H)(CO))+\\ (1\times Zwitterion\ energy,\ aromatic\ II)$ Literature – Calculated = Residual Reference | | Literature - Calculated = Residual Reference | · · · · · · · · · · · · · · · · · · · | | Gas phase $\Delta_t H^\circ = -283.60 -290.61$ 7.01 74SAB/CHA | Gas phase $\Delta_t H^\circ = -267.89$ | | Liquid phase $\Delta_t H^\circ = -389.80 -390.00$ 0.20 71LEB/GUT $C_p^\circ = 258.70$ | Solid phase $\Delta_t H^\circ = -402.50 -398.75 -3.75$ 04FIS/WRE $C_p^\circ = 176.60$ 180.15 -3.55 80SAB/SKO | | Solid phase $ \Delta_t H^\circ = -410.70 \qquad -411.73 \qquad 1.03 \qquad 71 LEB/GUT $ $ C_p^\circ = 162.76 \qquad 162.76 \qquad 0.00 \qquad 26 AND/LYN $ $ S^\circ = \qquad 168.42 \qquad \qquad$ | Hippuric acid; N-Benzoylglycine $C_9H_9NO_2$
$(5 \times C_B - (H)(C_B)_2) + (1 \times C_B - (CO)(C_B)_2) + (1 \times CO - (C_B)(N)) +$
$(1 \times N - (H)(C)(CO) \text{ (amino acids)}) + (1 \times C - (H)_2(CO)(N)) +$
$(1 \times CO - (C)(O)) + (1 \times O - (H)(CO)) +$
$(1 \times Z \text{ witterion energy, aromatic II)}$
Literature-Calculated = Residual Reference | | | Solid phase $\Delta_t H^\circ = -608.90 -609.15 0.25$ 61HUB/FRO $C_p^\circ = 214.35$ 214.56 -0.21 41HUF | | Literature - Calculated = Residual Reference | Glycylglycine $C_4H_8N_2O_3$
$(1 \times N - (H)_2(C)) + (2 \times C - (H)_2(CO)(N)) + (1 \times CO - (C)(N)) +$ | | Gas phase $\Delta_t H^{\circ} = -296.70 - 290.61 - 6.09$ 74SAB/CHA | $(1 \times N - (H)(C)(CO) \text{ (amino acids)}) + (1 \times CO - (C)(O)) + (1 \times O - (H)(CO)) + (1 \times Zwitterion energy; aliphatic)$ Literature – Calculated = Residual Reference | | Liquid phase $\Delta_t H^\circ = -391.90 -392.00$ 0.10 71LEB/GUT $C_\rho^\circ = 258.70$ | Gas phase $\Delta_t H^\circ = -528.03$ | | | Solid phase $\Delta_t H^\circ = -747.68 -748.15$ 0.17 92DIA/DOM $C_p^\circ = 163.97$ 163.22 0.75 69HUT/COL2 | ### E. S. DOMALSKI AND E. D. HEARING | TABLE 35. Amino acids (38) — Continued | TABLE 35. Amino acids (38) — Continued | | | | | | |---|--|--|--|--|--|--| | DL-Alanylglycine $C_5H_{10}N_2O_3$
$(1 \times N-(H)_2(C)) + (1 \times C-(H)(C)(CO)(N)) + (1 \times C-(H)_3(C)) +$
$(1 \times -CH_3 \text{ corr (tertiary)}) + (1 \times CO-(C)(N)) +$
$(1 \times N-(H)(C)(CO) \text{ (amino acids)}) + (1 \times C-(H)_2(CO)(N)) +$
$(1 \times CO-(C)(O)) + (1 \times O-(H)(CO)) +$
$(1 \times Z\text{witterion energy; aliphatic)}$ | N-Glycyl-DL-valine ${}^{7}H_{14}N_{2}C$
$(1 \times N - (H)_{2}(C)) + (1 \times C - (H)_{2}(CO)(N)) + (1 \times CO - (C)(N + (1 \times N - (H)(C)(CO) + (1 \times C - (H)(C)(CO) + (1 \times C - (H)(C)(CO)) + (1 \times C - (H)(C)(CO)) + (1 \times C - (H)_{3}(C)) + (2 $ | | | | | | | Literature - Calculated = Residual Reference | Literature - Calculated = Residual Ref :nce | | | | | | | Gas phase $\Delta_t H^\circ = -588.15$ | Gas phase $\Delta_t H^\circ = -633.84$ | | | | | | | Solid phase $\Delta_t H^\circ = -777.80 -777.93 0.13 42 \text{HUF}$ $C_p^\circ = 182.83 185.90 -3.07 41 \text{HUF}$ | Solid phase $\Delta_t H^\circ = -835.00 -832.99 -2.01$ 62Pt J/ALE $C_p^\circ = 204.54$ | | | | | | | $\begin{array}{ll} \textbf{DL-Alanyl-DL-alanine} & C_6H_{12}N_2O_3 \\ (1\times N-(H)_2(C)) + (2\times C-(H)_3(C)) + (2\times -CH_3 \text{ corr (tertiary)}) + \\ (2\times C-(H)(C)(CO)(N)) + (1\times CO-(C)(N)) + \\ (1\times N-(H)(C)(CO) \text{ (amino acids)}) + (1\times CO-(C)(O)) + \\ (1\times O-(H)(CO)) + (1\times Z \text{witterion energy; aliphatic)} \end{array}$ | $ \begin{array}{lll} \mbox{Hippurylglycine} & (-B_{12}N_2O) \\ (5 \times C_B - (H)(C_B)_2) + (1 \times C_B - (CO)(C_B)_2) + (1 \times CO - (C_B)(1 - 1) + \\ (2 \times N - (H)(C)(CO) & (amino acids)) + (2 \times C - (H)_2(CO)(N - 1) + \\ (1 \times CO - (C)(N)) + (1 \times CO - (C)(O)) + (1 \times O - (H)(CO)) + \\ (1 \times Zwitterion energy, aromatic II) \end{array} $ | | | | | | | Literature - Calculated = Residual Reference | Literature-Calculated = Residual Reference | | | | | | | Gas phase $\Delta_t H^\circ = -648.27$ | Solid phase $\Delta_t H^\circ = -832.00 -829.20 -2.80$ 42HUF $C_p^\circ = 278.00$ 278.78 -0.78 41HUF | | | | | | | Solid phase $\Delta_l H^\circ = -807.32 - 807.71 0.39$ 92DIA/DOM $C_p^\circ = 208.58$ | Glycylphenylalanine $C_{11}H_{14}N_2O$ $(1\times N-(H)_2(C))+(1\times C-(H)_2(CO)(N))+(1\times CO-(C)(N))+$ | | | | | | | $\begin{array}{ll} \textbf{DL-Leucylglycine} & C_{8}H_{16}N_{2}O_{3} \\ (2\times C-(H)_{3}(C)) + (1\times C-(H)(C)_{3}) + (1\times -CH_{3} \text{ corr (tertiary)}) + \\ (1\times C-(H)_{2}(C)_{2}) + (1\times N-(H)_{2}(C)) + (1\times C-(H)(C)(CO)(N)) + \\ (1\times CO-(C)(N)) + (1\times N-(H)(C)(CO) \text{ (amino acids)}) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times CO-(C)(O)) + (1\times O-(H)(CO)) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times CO-(C)(O)) + (1\times O-(H)(CO)) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times CO-(C)(O)) + (1\times O-(H)(CO)) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times CO-(C)(O)) + (1\times O-(H)(CO)) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times C-(H)(CO)(N)) + (1\times C-(H)(CO)(N)) + \\ (1\times
C-(H)_{2}(CO)(N)) + (1\times C-(H)(C)(O)(N)) + (1\times C-(H)(CO)(N)) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times C-(H)(C)(O)(N)) + (1\times C-(H)(C)(O)(N)) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times C-(H)(C)(O)(N)) + (1\times C-(H)(C)(O)(N)) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times C-(H)(C)(O)(N)) + (1\times C-(H)(C)(O)(N)) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times C-(H)(C)(O)(N)) + (1\times C-(H)(C)(O)(N)) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times C-(H)(C)(O)(N)) + (1\times C-(H)(C)(O)(N)) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times C-(H)(C)(O)(N)) + (1\times C-(H)(C)(O)(N)) + (1\times C-(H)(C)(O)(N)) + \\ (1\times C-(H)_{2}(CO)(N)) + (1\times C-(H)(C)(O)(N)(N) + (1\times C-(H)(C)(O)(N)(N)) + (1\times C-(H)(C)(O)(N)(N)(N)(N)(N)(N)(N)(N)(N)(N)(N)(N)(N)$ | $(1\times N-(H)(C)(CO) \text{ (amino acids)}) + (1\times C-(H)(C)(CO)(N)) + \\ (1\times C-(H)_2(C)(C_B)) + (5\times C_B-(H)(C_B)_2) + (1\times C_B-(C)(C_B)_2) + \\ (1\times CO-(C)(O)) + (1\times O-(H)(CO)) + \\ (1\times Zwitterion energy, aromatic I)$ $Literature - Calculated = Residual \qquad Reference$ | | | | | | | (1 × Zwitterion energy; aliphatic) Literature – Calculated = Residual Reference | Gas phase $\Delta_t H^\circ = -472.28$ | | | | | | | Gas phase $\Delta_t H^\circ = -652.21$ | Solid phase $\Delta_t H^\circ = -684.50 -681.30 -3.20$ 62PON/ALE $C^\circ_\rho = 269.22$ | | | | | | | Solid phase $\Delta_i H^\circ = -859.80 - 860.06$ 0.26 42HUF $C_p^\circ = 256.34$ 226.46 29.88 41HUF | | | | | | | TABLE 35. Amino acids (38) - Continued TABLE 36. Nitroso (9) | $(1 \times -CH_3)$ $(1 \times N - (H))$ $(5 \times C_B - (H))$ | lalanine
$(2)(C) + (2 \times C - (H)(C)(CO)(N)) + (1 \times CO - (C)(N)) + (1 \times CO - (C)(N)) + (1 \times CO - (C)(N)) + (1 \times C - (H)(C_B)_2) + (1 \times C_B - (C)(C_B)_2) + (1 \times CO)(CO)) + (1 \times Zwitterion energy, arongonical contents)$ |) ₂ (C)(C _B)) +
O-(C)(O)) + | Dimethylnitrosoamine $C_2H_6N_2$ ($2 \times C - (H)_3(N)) + (2 \times -CH_3 \text{ corr (quaternary)}) + (1 \times N - (C)_2(NO))$ Literature – Calculated = Residual Reference | |--|--|---|--| | | Literature – Calculated = Residual | Reference | Gas phase $\Delta_t H^\circ = -3.30 -3.64 0.34 67 \text{KOR/PEP}$ | | Gas phase $\Delta_t H^\circ =$ | -532.40 | | Liquid phase $\Delta_t H^{\circ} = -44.80 - 45.00 0.20 67 \text{KOR/PEP}$ | | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | -710.40 -711.08 0.68
291.90 | 62PON/ALE | Nitrosobenzene $C_6N_5N_6$
(5 × C_B -(H)(C_B) ₂) + (1 × C_B -(NO)(C_B) ₂) | | | | | Literature - Calculated = Residual Reference | | (1×N-(H
(2×N-(H
(1×C-(H
(1×O-(H | phenylalanine
) ₂ (C)) + $(1 \times C - (H)_2(CO)(N)) + (2 \times C)(C)(CO)$ (amino acids)) + $(2 \times C - (H)_3(C)) + (1 \times - CH_3 \text{ corr (tertiary)}) + (1 \times C - (H)_2(C)(C_B)) + (5 \times C)(C_B)$ | $(C)(CO)(N)) + 1 \times CO - (C)(O)) + C_B - (H)(C_B)_2) +$ | Gas phase $\Delta_t H^\circ = 90.55$ | | (1×C _B −(€ | $C(C_B)_2 + (1 \times Zwitterion energy, aro$ $Literature - Calculated = Residual$ | Reference | Solid phase $\Delta_t H^{\circ} = -30.00$ 55.65 -85.65 30DRU/FLA | | Gas phase
Δ _t H° = | -685.04 | | N-Nitrosopiperidine $C_5H_{10}N_2C_3$
$(3\times C-(H)_2(C)_2)+(2\times C-(H)_2(C)(N))+(1\times N-(C)_2(NO))+(1\times N-Nitrosopiperidine rsc)$ | | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | - 926.80 - 931.13 4.33
356.12 | 62PON/ALE | Literature – Calculated = Residual Reference | | Valylphenyl | alanine | C ₁₄ H ₂₀ N ₂ O ₃ | Gas phase $\Delta_t H^{\circ} = 16.60$ 16.71 -0.11 74GOL/PEP | | $(1 \times C - (H + C))))))))))))))))))$ | $(1)_2(C)$) + $(2 \times C - (H)(C)(CO)(N))$ + $(2 \times C - (H)(C)(CO)(N))$ + $(2 \times C)$ + $(1 \times - CH_3 \text{ corr (tertiary)})$ + $(1 \times C)$ $ | 1 × CO-(C)(N)) +
) ₂ (C)(C _B)) +
O-(C)(O)) + | Liquid phase $\Delta_t H^\circ = -31.10$ -31.09 -0.01 74GOL/PEP | | | Literature – Calculated = Residual | Reference | 4-Nitroso-1-naphthol $C_{10}H_7NO_1$
$(6 \times C_B-(H)(C_B)_2) + (2 \times C_BF-(C_BF)(C_B)_2) + (1 \times C_B-(O)) +$ | | Gas phase $\Delta_l H^\circ =$ | - 575.83 | | $(1 \times \text{naphthalene 2 sub}) + (1 \times O - (H)(C_B)) + (1 \times C_B - (NO))$ Literature - Calculated = Residual Reference | | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | -766.10 -763.80 -2.30
310.54 | 63PON/ALE | Gas phase $\Delta_t H^{\circ} = -20.50 -20.49 -0.01$ 68HAM/FAG | | | · · · · · · · · · · · · · · · · · · · | | Solid phase $\Delta_t H^\circ = -107.90 -107.87 -0.03$ 68HAM/FAG | | | | | | TABLE 36. Nitroso (9) - Continued TABLE 37. Nitro compounds (50) | | | trinitrosamine;
×N-(C) ₂ (NO) | | C ₃ H ₆ N ₆ O ₆ rsc) | Nitrometha
(1×C-(H | | Nitromethane), | $\sigma = 3$ | CH₃NO | |--|--|--|---------------|---|---|---|---|----------------------|--| | | Literat | ture-Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | 1,5-Dinitroso
3,7-Dinitroso
(5 × C-(H) | -1,3,5,7-tet
$p_2(N)_2) + (2$ | 282.30 ylenetetramine raazabicyclo[3. × N-(C) ₃) + (2 | 3.1]nonane | 49MED/THO C ₅ H ₁₀ N ₆ O ₂ | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | -74.86
57.32
275.01 | -74.86
57.32
275.01
-227.38
-7.07
2.85 | 0.00
0.00
0.00 | 54MCC/SCO
69STU/WES
69STU/WES | | (1×DINO | | ture-Calculated | = Residual | Reference | $C_p^{\circ} =$ | -112.60
105.98 | -112.60
105.98 | 0.00
0.00 | 73LEB/RYA
47JON/GIA | | Solid phase
Δ _t H° = | 228.70 | 228.70 | 0.00 | 56MED/THO | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | 171.75 |
171.75
-330.64
-14.02
5.66 | 0.00 | 47JON/GIA | | |)₃(C))+(2:
C))+(1× <i>N</i> | exide
\times C-(H) ₂ (C) ₂) +
\times (oxide)(C))
\times - Calculated = | | $C_4H_{14}N_2O$ $C)(N_A)) +$ Reference | Dinitrometh
(1×C-(H | I) ₂ (NO ₂) ₂ , | Dinitromethane | , | CH ₂ N ₂ O.
Reference | | Gas phase $\Delta_t H^\circ =$ | -31.00 | - 16.88 | - 14.12 | 81BYS | Gas phase $\Delta_t H^\circ =$ | - 58.90 | - 58.90 | 0.00 | 71KNO/MIR | | Liquid phase
Δ _t H° = | - 82.70 | - 70.58 | - 12.12 | 81BYS | Liquid phas $\Delta_l H^\circ =$ | e
- 104.90 | - 104.90 | 0.00 | 71KNO/MIR | | |) ₃ (C)) + (2
oxide)(C)) - | oxide
× C-(C)3(N _A))
+ (6×-CH3 cor
e Calculated = | r (quaternary | | Trinitromet | I)(NO ₂) ₃ , 7 | Frinitromethane | • | CHN ₃ O ₄ | | Gas phase $\Delta_t H^\circ = -$ | - 107.60 | -107.62 | 0.02 | 81BYS | Gas phase
Δ _t H° = | -0.30 | - 0.30 | 0.00 | 67MIR/LEB | | Liquid phase $\Delta_t H^\circ = -$ | | -153.50 | 0.00 | 81BYS | Liquid phas $\Delta_t H^\circ =$ | e
-32.80 | -32.80 | 0.00 | 67MIR/LEB | | N-oxide | · | 1,4-Dicyanoben (2×C _B -(CNO)) | | C ₈ H ₄ N ₂ O ₂ | Solid phase $\Delta_t H^{\circ} =$ | -48.00 | -48.00 | 0.00 | 67MIR/LEB | | | Literatur | e - Calculated = | = Residual | Reference | Tetranitrom
(1×C-(N | | anitromethane) | | CN₄O₀ | | Gas phase
Δ _t H° = | 410.50 | 410.50 | 0.00 | 92ACR/TUC | | Literatu | re – Calculated = | = Residual | Reference | | Solid phase
Δ _t H° = | 337.50 | 337.50 | 0.00 | 92ACR/TUC | Gas phase $\Delta_t H^\circ =$ | 82.30 | 82.30 | 0.00 | 75LEB/MIR | # **ESTIMATION OF THERMODYNAMIC PROPERTIES OF ORGANIC COMPOUNDS** TABLE 37. Nitro compounds (50) - Continued | | ABLE 37. I | itro compound | is (30) — Co | | | TABLE 57. | ==== | IS (30) — CI | | |---|------------------------------|---|-----------------------------|---|--|------------------------------|---|---------------------------|--| | Fetranitrom
(1 × C-(N | | ntinued)
mitromethane) | | CN ₄ O ₈ | | ane (Contin
H)3(C))+(2 | | + (1 × C-(H) ₂ | $C_4H_9NO_2$ (C)(NO ₂)), $\sigma = 6$ | | | Literatur | e – Calculated = | = Residual | Reference | | Literatu | re – Calculated : | = Residual | Reference | | Liquid phas
Δ _t H° = | e
38.30 | 38.30 | 0.00 | 75LEB/MIR | Liquid pha $ \Delta_t H^\circ = C_\rho^\circ = $ | nse – 192.51 | - 192.57
195.06 | 0.06 | 49HOL/DOR | | Nitroethane
(1×C-(H | | ×C-(H)₂(C)(N | O_2)), $\sigma = 6$ | C ₂ H ₅ NO ₂ | 1-Nitropen
(1×C-(1 | | ×C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ | $C_5H_{11}NO_2$ (C)(NO ₂)), $\sigma = 6$ | | | Literatur | e – Calculated = | = Residual | Reference | | Literatu | re – Calculated : | = Residual | Reference | | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | - 102.30
78.20
315.43 | -102.76
78.87
316.02
-322.68
-6.55
2.64 | 0.46
- 0.67
- 0.59 | 49HOL/DOR
69STU/WES
69STU/WES | Gas phase $ \Delta_t H^\circ = C_r^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | | - 164.65
147.54
433.50
- 614.13
18.45
- 7.44 | | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | se
143.90
134.22 | -141.11
134.22 | -2.79
0.00 | 73LEB/RYA
66LIU/ZIE | Liquid pha $\Delta_t H^\circ = C_p^\circ =$ | | -218.30
225.48 | 2.90 | 73LEB/RYA | | 1-Nitroprop
(1×C-(F | | × C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ (| $C_3H_7NO_2$ $(C)(NO_2)), \sigma = 6$ | | $H)_3(C)) + (1$ | \times C-(H)(C) ₂ (N iary)), $\sigma = 18$ | O ₂))+ | C ₃ H ₇ NO ₃ | | | Literatu | re – Calculated | = Residual | Reference | | Literatu | re – Calculated = | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f =$ | - 123.80
102.13
355.64 | - 123.39
101.76
355.18
- 419.83
1.78
- 0.72 | -0.41
0.37
0.46 | 49HOL/DOR
69STU/WES
69STU/WES | Gas phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$S^\circ =$
$\Delta_t S^\circ =$
$\Delta_t G^\circ =$
$\ln K_t =$ | - 139.00
101.50
347.69 | - 142.04
101.04
345.93
- 429.08
- 14.11
5.69 | 3.04
0.46
1.76 | 49HOL/DOR
69STU/WES
69STU/WES | | Liquid phas $ \Delta_t H^\circ = C_p^\circ = $ | se
167.20 | -166.84
164.64 | -0.36 | 73LEB/RYA | Liquid pha $\Delta_t H^\circ =$ | se
-180.30 | - 182.08 | 1.78 | 58CAS/FLE | | 1-Nitrobuta
(1×C-(F | | ×C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ (| $C_4H_9NO_2$ (C)(NO ₂)), $\sigma = 6$ | | $H)_2(C)_2) + (2$ | $2 \times C - (H)_3(C)$ Hary)), $\sigma = 18$ | + (1 × C-(H)((| C4H•NO2
C)2(NO2))+ | | | Literatu | re – Calculated | = Residual | Reference | | Literatu | re – Calculated = | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_f = $ | -143.90
124.89
394.47 | - 144.02
124.65
394.34
- 516.98
10.12
- 4.08 | 0.12
0.24
0.13 | 49HOL/DOR
69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_f =$ | -163.60
123.47
383.34 | - 160.41
123.93
385.09
- 526.23
- 3.51
1.42 | -3.19
-0.46
-1.75 | 49HOL/DOR
69STU/WES
69STU/WES | # E. S. DOMALSKI AND E. D. HEARING | TABLE 37. Nitro compounds (50) - | - Continued | |----------------------------------|-------------| |----------------------------------|-------------| | 1,1-Dinitrop
(1 × C–(H | entane
I)3(C))+(3 | × C-(H) ₂ (C) ₂) | + (1×C-(H)(| C ₅ H ₁₀ N ₂ O ₂
C)(NO ₂) ₂) | |--|----------------------|---|--------------------|---| | | Literatur | re – Calculated | = Residual | Reference | | Gas phase
Δ ₁ H° – | | 140.95 | | | | Liquid phas $\Delta_t H^\circ =$ | | -213.60 | -3.30 | 68LEB/RYA2 | | 1,2-Dinitroe
(2×C-(H | |))+(1×NO _z -1 | NO2 (corr, ali | C₂H₄N₂O ,
oh, adjacent)) | | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_l H^\circ = C_p =$ | | -101.00
106.28 | | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | | 167.00
195.48 | 1.80 | 68LEB/RYA2 | | Solid phase
Δ _i H° = | | - 178.00 | -0.80 | 68LEB/RYA2 | | 1,3-Dinitrop
(1 × C-(H | | 2×C-(H)₂(C)(l | NO ₂)) | C ₃ H ₆ N ₂ O ₄ | | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | - 141.63
129.17 | | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | e
215.50 | -212.73
225.90 | - 2.77 | 71LEB/GUT | | 1,4-Dinitrob | | 2×C-(H)₂(C)(1 | NO ₂)) | C ₄ H ₈ N ₂ O ₄ | | , (| | e – Calculated | | Reference | | 2-Nitrobutane (Continued) $(1 \times C - (H)_2(C)_2) + (2 \times C - (H)_3(C)) + (1 \times C - (H))(1 \times - CH_3) = 18$ | C ₄ H ₉ NO ₂
(C) ₂ (NO ₂)) + | 1,1-Dinitropentane
$(1 \times C - (H)_3(C)) + (3 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_2(C)_2)$ | |--|---|--| | Literature – Calculated = Residual | Reference | Literature – Calculated = Residual | | Liquid phase $\Delta_t H^\circ = -207.50 -205.63 -1.87$ | 49HOL/DOR | Gas phase Δ ₁ H° – 140.95 | | 2-Methyl-2-nitropropane
(3×C-(H) ₃ (C))+(1×C-(C) ₃ (NO ₂))+
(3×-CH ₃ corr (quaternary)) | C ₄ H ₉ NO ₂ | Liquid phase $\Delta_t H^{\circ} = -216.90 -213.60 -3.30$ | | Literature - Calculated = Residual | Reference | 1,2-Dinitroethane $(2 \times C - (H)_2(C)(NO_2)) + (1 \times NO_2 - NO_2 \text{ (corr, aliph,})$ | | Gas phase | | Literature – Calculated = Residual | | $\Delta_t H^{\circ} = -177.10 -177.11$ 0.01 Liquid phase $\Delta_t H^{\circ} = -217.20 -217.20$ 0.00 | 70KNO/MIR
 | Gas phase $\Delta_l H^{\circ} = -101.00$ $C_{\hat{p}} = 106.28$ | | Solid phase $\Delta_l H^{\circ} = -229.80 -229.82$ 0.02 | 70KNO/MIR | Liquid phase $\Delta_l H^\circ = -165.20 - 167.00$ 1.80 $C_p^\circ = 195.48$ | | 1,1-Dinitroethane $(1 \times C - (H)_3(C)) + (1 \times C - (H)(C)(NO_2)_2) + (1 \times -CH_3 \text{ corr (tertiary)})$ | C ₂ H ₄ N ₂ O ₄ | Solid phase $\Delta_t H^\circ = -178.80 -178.00 -0.80$ | | Literature – Calculated = Residual | Reference | 1,3-Dinitropropane
$(1 \times C-(H)_2(C)_2) + (2 \times C-(H)_2(C)(NO_2))$ | | Gas phase $\Delta_t H^\circ = -81.32$ | | Literature – Calculated = Residual | | Liquid phase $\Delta_t H^{\circ} = -148.20 -138.59 -9.61$ | 68LEB/RYA2 | Gas phase $\Delta_{l}H^{\circ} = -141.63$ $C_{p}^{\circ} = 129.17$ | | 1,1-Dinitropropane
$(1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2)$ | C ₃ H ₆ N ₂ O ₄
(C)(NO ₂) ₂) | Liquid phase $\Delta_t H^\circ = -215.50 -212.73 -2.77$ $C_p^\circ = 225.90$ | | Literature – Calculated = Residual | Keterence | | | Gas phase $\Delta_t H^\circ = -100.70 -99.69 -1.01$ | 49HOL/DOR | 1,4-Dinitrobutane
$(2 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(C)(NO_2))$
Literature — Calculated = Residual | | Liquid phase $\Delta_t H^\circ = -163.20 -162.14 -1.06$ | 68LEB/RYA2 | Gas phase $\Delta_t H^\circ = -162.26$ $C_p^\circ = 152.06$ | | TABLE 37. | Nitro | compounds | (50) | - | Continued | |-----------|-------|-----------|------|---|-----------| |-----------|-------
-----------|------|---|-----------| | 1,4-Dinitrobu
(2×C-(H) | ntane (Cont
2(C)2)+(2 | tinued)
×C-(H) ₂ (C)(N | IO ₂)) | C ₄ H ₈ N ₂ O ₄ | 1,2-Dinitrobenzene (Continue)
$(4 \times C_B - (H)(C_B)_2) + (2 (H$ | | | $+(2\times C_B-(NO_2)(C_B)_2)+$ | | | |---|---------------------------------|---|----------------------|---|---|---------------------------|--|---------------------------------|---------------------------------|--| | | Literature | e – Calculated = | = Residual | Reference | (211102) | • | e – Calculated | = Residual | Reference | | | Liquid phase $\Delta_t H^\circ = -C_p^\circ =$ | -237.50 | -238.46
256.32 | 0.96 | 68LEB/RYA2 | Liquid phase $\Delta_t H^\circ =$ | 21.21 | 21.29 | -0.08 | 71LEB/RYA | | | Solid phase $\Delta_t H^\circ = -$ | - 249.20 | -256.82 | 7.62 | 68LEB/RYA2 | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | - 1.80
186.20 | 1.72
186.20 | -3.52
0.00 | 71LEB/RYA
26AND | | | | | × C(C)2(NO2)
ernary)) | 2)+ | C ₃ H ₆ N ₂ O ₄ | 1,3-Dinitrobe | enzene | (2×C _B -(NO ₂)(| | C₄H₄N₂O₄ | | | | Literatur | e – Calculated | = Residual | Reference | $(1 \times NO_2 - I)$ | | | (CB)2) · | | | | Gas phase | | | | | | Literatur | e – Calculated | = Residual | Reference | | | $\Delta_t H^{\circ} =$ | | - 122.14 | | | Gas phase $\Delta_t H^\circ =$ | 53.80 | 63.34 | - 9.54 | 50NIT/SEK2 | | | Liquid phase $\Delta_t H^\circ = -$ | e
- 181.20
 | -181.20 | 0.00 | 68LEB/RYA2 | Liquid phase | | | | | | | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | - 192.50
206.27 | -192.48
206.28 | -0.02
-0.01 | 68LEB/RYA2
58BIL/NOL | $\Delta_t H^\circ = {}$ Solid phase $\Delta_t H^\circ = {C_p^\circ} = {}$ | -6.90
-27.40
188.28 | -10.46
-25.38
188.28 | - 2.02
0.00 | 71LEB/RYA
71LEB/RYA
26AND | | | Nitrobenzen
(5 × C _B -(I | H)(C_B) ₂)+(| (1×C _B -(NO ₂)(| | C ₆ H ₅ NO ₂ | 1,4-Dinitrobe | | 2. G. (NO.) | (6.) | C6H4N2O | | | | Literatur | re – Calculated | = Kesiduai | Reference | (4 × C _B −(H | | (2×C _B -(NO ₂)(
e – Calculated | | Reference | | | Gas phase $\Delta_t H^\circ =$ | 67.50 | 67.60 | -0.10 | 71KUS/WAD | Gas phase | | | | | | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | e
12.50
186.70
224.30 | 12.50
186.70
224.30
-437.36
142.90
-57.64 | 0.00
0.00
0.00 | 71LEB/KAT2
36PAR/TOD
36PAR/TOD | $C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \Delta_{f}G^{\circ} = S^{\circ}$ | -14.40 | 52.34
-23.96
237.32
275.38
-621.79
161.43 | 9.56 | 26AND/LYN | | | | $H)(C_B)_2) + O(C_B)_2$ | (2×C _B -(NO ₂)(
corr))
re – Calculated | | C₄H₄N₂O₄
Reference | $C_{\rho}^{\circ} = S^{\circ} =$ | -38.70
192.00 | - 65.12
- 38.88
182.44
311.92 | 0.18
9.56 | 71LEB/RYA
26AND/LYN | | | Gas phase Δ _i H° = | | 96.34 | | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f = -$ | | - 585.25
135.61
- 54.70 | | | | | TABLE | 37. | Nitro | compounds | (50) | _ | Continued | |-------|-----|-------|-----------|------|---|-----------| | | | | | | | | | T. | ABLE 37. N | itro compound | ls (50) — Co | ontinued | TABLE 37. Nitro compounds (50) — Continued | | | | | |---|--|---|--|---|--|-------------------------|---|--|------------------------------| | | | 3×C _B -(NO ₂)(0
corr)) | C _B)₂)+ | C ₆ H ₃ N ₃ O ₆ | $(1 \times C - (H))$ |)3(C))+(4× | | ene
2)+(1×C _B -(C)
H ₃ (ortho corr) | | | | Literature | e – Calculated = | = Residual | Reference | Literature - Calculated = Residual Reference | | | | Reference | | Gas phase
Δ _i H° = | 70.10 | 70.08 | 0.02 | 78CUN/PAL | Solid phase $\Delta_t H^\circ =$ | | -35.22 | | | | Liquid phase $\Delta_t H^\circ =$ | - 20.50 | -19.92 | -0.58 | 71LEB/RYA | (1×C-(H |) ₃ (C))+(4× | | ene
2) + (1 × C _B -(C)
H ₃ (meta corr) | | | Solid phase $\Delta_f H^\circ = C_p^\circ =$ | -37.20 | -37.41
230.79 | 0.21 | 71LEB/RYA | | Literat | ure – Calcula | ted = Residual | Reference | | | | | $(C_B)_2) + (1 \times C_B)_2$ | $C_{10}H_7NO_2$
C_{B} - $(NO_2)(C_B)_2) +$ | Liquid phase
Δ _t H° = | -31.50 | -28.11 | -3.39 | 71LEN/VEL | | | | e – Calculated = | = Residual | Reference | - |) ₃ (C))+(4× | e; 4-Nitrotolu
(C _B –(H)(C _B); | ene
$(1 \times C_B - (C))$ | $C_7H_7NO_2$
$(C_B)_2) +$ | | Gas phase $\Delta_t H^\circ =$ | 149.70 | 135.42 | 14.28 | 50NIT/SEK2 | | Literature | - Calculated | = Residual | Reference | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f =$ | e | 60.48
251.10
270.96
-544.23
222.74
-89.85 | | | Gas phase $\Delta_{l}H^{\circ} = {}$ Liquid phase $\Delta_{l}H^{\circ} = {}$ $C_{p}^{\circ} = $ $S^{\circ} = {}$ | 31.00 | - 24.11
210.60
259.23 | -4.17 | 70LEN/VEL | | Solid phase $\Delta_t H^\circ =$ | 42.60 | 41.41 | 1.19 | 37BAD | $\Delta_{r}S^{\circ} = \Delta_{f}G^{\circ} = InK_{f} = InK_{f}$ | | 538.74
136.52
55.07 | | | | $C_p^{\circ} - S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | | 196.47
257.71
-557.48
207.62
-83.75 | | | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | -48.12
172.38 | -39.22
175.67
252.65
-545.32 | -8.90
-3.29 | 71LEN/VEL
79RIC/SAV | | (1×C-(H | I) ₃ (C))+(4
NO ₂)(C _B) ₂) | ie; 2-Nitrotolue
$\times C_B$ -(H)(C _B) ₂
+ (1 × NO ₂ -CH | $+ (1 \times C_{B} - (C_{B}) + (1 \times C_{B})$ |)) | $\Delta_t G^\circ = InK_t = InK_t$ Nitromethylk | | 123.37
- 49.77
enylnitrometh | | C₁H₁NO₂ | | | Literatur | e – Calculated : | - Mesiduai | Reference | (3 × CB-(F | | - Calculated | s) ₂) + (1 × C–(H
= Residual | Reference | | Gas phase $\Delta_i H^\circ =$ | | 37.17 | | | Gas phase | | | | | Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ = -22.80$ 30.70 30.69 -22.80 0.01 0.00 69PEP/LEB 69PEP/LEB Liquid phase $\Delta_t H^\circ =$ - 9.70 - 22.11 12.41 71LEN/VEL | TABLE 3 | 7 Nitro | compounds | (50) | _ | Continued | |---------|---------|-----------|------|---|-----------| | | | | | | | | | Literature - Calculated = Residual | Reference | $(3 \times C_B-(NO_2)(C_B)_2) + (3 \times NO_2-NO_2 \text{ (meta corr)}) + (2 \times NO_2-CH_3 \text{ (ortho corr)})$ | |---
---|--|--| | | | | Literature – Calculated = Residual Reference | | Solid phase $\Delta_t H^\circ =$ | - 34.45 | <u> </u> | Liquid phase $\Delta_t H^\circ = -52.53$ | | $(2 \times C_{B} - ($ | toluene
H) ₃ (C)) + $(3 \times C_B - (H)(C_B)_2) + (1 \times C_B - (C) + (1 \times NO_2)(C_B)_2) + (1 \times NO_2 - CH_3 (ortho corr))$
-NO ₂ (meta corr)) | | Solid phase $\Delta_t H^{\circ} = -66.90 - 68.78$ 1.88 39BUR/THO | | | Literature – Calculated = Residual | Reference | 2-Nitrophenol; o-Nitrophenol C_6H_5NO $(4 \times C_B-(H)(C_B)_2) + (1 \times C_B-(O)(C_B)_2) + (1 \times C_B-(NO_2)(C_B)_2) + (1 \times O-(H)(C_B)) + (1 \times NO_2-OH (ortho corr))$ | | Gas phase $\Delta_t H^\circ =$ | 30.00 32.91 -2.91 | 77PEL | Literature - Calculated = Residual Reference | | Liquid pha
Δ _ι H° = | se - 45.07 | | Gas phase $\Delta_i H^{\circ} = -129.00 -101.26 -27.74$ 92RIB/REI | | Solid phase
Δ _t H° = | -65.80 -60.75 -5.05 | 43PRO/GIL | Liquid phase $\Delta_t H^\circ = -177.02$ | | | toluene
$H_{3}(C) + (3 \times C_{B}-(H)(C_{B})_{2}) + (1 \times C_{B}-(C)(C_{B})_{2}) + (2 \times NO_{2}-CH_{3} \text{ (ontho corr)})$ | | Solid phase $\Delta_t H^{\circ} = -202.40 - 191.63 - 10.77$ 92RIB/REI | | (1×NO ₂ | -NO ₂ (meta corr)) Literature - Calculated = Residual | | 4.27 | | | Enterature - Calculated = Residual | Reference | 3-Nitrophenol; m-Nitrophenol $(4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (O)(C_B)_2) + (1 \times C_B - (NO_2)(C_B)_2) + (1 \times O - (H)(C_B)) + (1 \times NO_2 - OH (meta corr))$ | | Gas phase
Δ _t H° = | 51.90 34.91 16.99 | Reference 77PEL | $(4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (O)(C_B)_2) + (1 \times C_B - (NO_2)(C_B)_2) +$ | | $\Delta_t H^{\circ} =$ | 51.90 34.91 16.99 | | $(4 \times C_B-(H)(C_B)_2) + (1 \times C_B-(O)(C_B)_2) + (1 \times C_B-(NO_2)(C_B)_2) + (1 \times O-(H)(C_B)) + (1 \times NO_2-OH (meta corr))$ | | Liquid pha | 51.90 34.91 16.99
se -43.07 | | $(4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (O)(C_B)_2) + (1 \times C_B - (NO_2)(C_B)_2) + (1 \times O - (H)(C_B)) + (1 \times NO_2 - OH \ (meta \ corr))$ $Literature - Calculated = Residual \qquad Reference$ Gas phase | | $\Delta_t H^{\circ} =$ Liquid pha $\Delta_t H^{\circ} =$ Solid phase $\Delta_t H^{\circ} =$ 2,4,6-Trinit $(1 \times C - (I \times C_{B^{-1}}))$ | 51.90 34.91 16.99 se -43.07 -46.40 -56.75 10.35 | 77PEL 49MED/THO C ₇ H ₅ N ₃ O ₆ (C _B) ₂) + | $(4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (O)(C_B)_2) + (1 \times C_B - (NO_2)(C_B)_2) + (1 \times O - (H)(C_B)) + (1 \times NO_2 - OH \ (meta \ corr))$ Literature – Calculated = Residual Reference Gas phase $\Delta_t H^\circ = -105.50 - 105.26 - 0.24 92RIB/REI$ Solid phase $\Delta_t H^\circ = -205.70 - 204.63 - 1.07 92RIB/REI$ | | $\Delta_t H^{\circ} =$ Liquid pha $\Delta_t H^{\circ} =$ Solid phase $\Delta_t H^{\circ} =$ 2,4,6-Trinit $(1 \times C - (I \times C_{B^{-1}}))$ | 51.90 34.91 16.99 se -43.07 -46.40 -56.75 10.35 rotoluene H ₃ (C)) + (2 × C _B -(H)(C _B) ₂) + (1 × C _B -(C)(NO ₂)(C _B) ₂) + (3 × NO ₂ -NO ₂ (meta corr)) | 77PEL 49MED/THO C ₇ H ₅ N ₃ O ₆ (C _B) ₂) + | $(4 \times C_B-(H)(C_B)_2) + (1 \times C_B-(O)(C_B)_2) + (1 \times C_B-(NO_2)(C_B)_2) + (1 \times O-(H)(C_B)) + (1 \times NO_2-OH \ (meta \ corr))$ $Literature - Calculated = Residual \qquad Reference$ $Gas \ phase \\ \Delta_t H^\circ = -105.50 \qquad -105.26 \qquad -0.24 \qquad 92RIB/REI$ $Solid \ phase \\ \Delta_t H^\circ = -205.70 \qquad -204.63 \qquad -1.07 \qquad 92RIB/REI$ $4-Nitrophenol; \ p-Nitrophenol \qquad C_4H_5NO_3 \\ (4 \times C_B-(H)(C_B)_2) + (1 \times C_B-(O)(C_B)_2) + (1 \times C_B-(NO_2)(C_B)_2) + (1 \times O-(H)(C_B))$ | | TABLE | 27 | Nitro | compounds | (50) | _ | Continued | |-------|-------|-------|-----------|------|---|-----------| | LABLE | .) /. | NILLO | compounds | LOUL | _ | Continued | | 4-Nitrophenol; p-N
$(4 \times C_B-(H)(C_B);$
$(1 \times O-(H)(C_B))$ | $(1 \times C_B - (O))(C_E)$ | | $C_6H_5NO_3$
(NO_2)(C_B) ₂) + | 2,4,6-Trinit
$(2 \times C_{B} - (1 \times O - (1 \times O - (1 \times O $ | |--|--|------------|--|---| | Liter | ature - Calculated | = Residual | Reference | | | I iquid abose | | | | | | Liquid phase $\Delta_t H^\circ =$ | - 193.02 | | | Gae phaca | | | - 193.02
248.37 | | | Gas phase | | $C_p^{\circ} =$ | | | | $\Delta_{\rm f}H^{\circ} =$ | | S° = | 228.73 | | | | | $\Delta_f S^\circ =$ | -535.45 | | | | | $\Delta_t G^\circ =$ | -33.37 | | | Liquid pha | | $lnK_f =$ | 13.46 | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | | Solid phase | | | | Solid phase | | $\Delta_t H^\circ = -212.4$ | 10 - 204.63 | -7.77 | 92RIB/REI | $\Delta_{\rm f}H^{\circ} =$ | | $C_p^{\circ} =$ | 160.44 | | /21X1D/1X151 | - H | | S° = | 231.67 | | | | | Δ ₆ S° = | -532.51 | | | | | $\Delta_{i}G^{\circ} =$ | -352.51
-45.86 | | | 2 Nitroanil | | $\ln K_t =$ | 18.50 | | | 2-Nitroanil | | ink _t = | 18.50 | | | (4×С _в (
(1×N(1 | | | $(2) + (2 \times C_B - (NO_2))$
$(2) + (1 \times NO_2 - NO_2)$
(2) + (2) + (2) + (2)
(3) + (2) + (2)
(4) | | .в-(О)(Св <i>)2)</i> т | Gas phase $\Delta_t H^\circ =$ | | Lite | rature – Calculated | = Residual | Reference | Liquid pha | | Gas phase $\Delta_t H^\circ = -128.1$ | 10 -105.52 | - 22.58 | 58HOY/PEP | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} =$ | | Liquid phase
Δ _f H° = | - 199.98 | | | $\Delta_{f}G^{\circ} = \ln K_{t} -$ | | Solid phase $\Delta_t H^\circ = -235.6$ | 80 -217.16 | -18.64 | 42BAD | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | | |) ₂) + (2 × C _B -(NO ₂)
) + (1 × NO ₂ -NO ₂ (
ortho corr)) | | C ₆ H ₄ N ₂ O ₄
C _B -(O)(C _B) ₂) + | $\Delta_f S^\circ = \\ \Delta_f G^\circ = \\ \ln K_f = $ | | | rature – Calculated | = Residual | Reference | 3-Nitroanili
(4×C _B -(| | | ··· <u>·</u> | | | $(1 \times C_{B}-($ | | Gas phase $\Delta_t H^\circ = -97.5$ | 80 -95.52 | -2.28 | 58HOY/PEP | | | Liquid phase $\Delta_t H^\circ =$ | - 183.98 | | | Gas phase $\Delta_l H^\circ =$ | | | | | | | Solid phase $\Delta_t H^\circ = -209.90$ -204.16 -5.74 42BAD | | Literatur | e – Calculated | = Residual | Reference |
---|--------------------|---|--------------------------|--| | Gas phase | | | | | | $\Delta_f H^\circ =$ | | - 88.78 | | · · · · · · · · · · · · · · · · · · · | | Liquid phas | se | | | | | $\Delta_t H^\circ =$ | | - 193.44 | | | | Solid phase | ; | | | | | $\Delta_{\rm f}H^{\circ} =$ | -213.97 | -216.19 | 2.22 | 60VOR/PRI | | | | | | | | 2-Nitroanili | | $(1 \times C_{B} - (NO_{2}))$ | (C).)±(1×C | C ₆ H ₆ N ₂ | | | | $1 \times NH_2-NO_2$ | | B-(14)(CB)2)+ | | (1 > 14-(1 | 1)2(CB)) T (| | | | | (1 ^ 1 ^ (1 | , , ,, , | e – Calculated | | Reference | | | , , ,, , | | | Reference | | | , , ,, , | | | | | Gas phase $\Delta_t H^\circ =$ | Literatur
63.80 | re – Calculated | = Residual | Reference 58HOY/PEF | | Gas phase $\Delta_t H^\circ =$ Liquid phas | Literatur
63.80 | e – Calculated | = Residual | 58НОУ/РЕР | | Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ | Literatur
63.80 | re – Calculated | = Residual | | | Gas phase $\Delta_t H^\circ =$ Liquid phas $\Delta_t H^\circ =$ $C_\rho^\circ =$ | Literatur
63.80 | 67.74
-9.16 | = Residual | 58НОУ/РЕР | | Gas phase $\Delta_t H^\circ =$ Liquid phas $\Delta_t H^\circ =$ | Literatur
63.80 | 67.74
- 9.16
241.63 | = Residual | 58НОУ/РЕР | | Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ | Literatur
63.80 | 67.74
- 9.16
241.63
242.71 | = Residual | 58НОУ/РЕР | | Gas phase $\Delta_t H^\circ =$ Liquid phas $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ | Literatur
63.80 | 67.74
- 9.16
241.63
242.71
- 579.99 | = Residual | 58НОУ/РЕР | | Gas phase $\Delta_t H^\circ =$ Liquid phas $\Delta_t H^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | 63.80
se -9.40 | 67.74
- 9.16
241.63
242.71
- 579.99
163.76 | = Residual | 58НОУ/РЕР | | Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t -$ Solid phase $\Delta_t H^\circ =$ | 63.80
se -9.40 | 67.74
- 9.16
241.63
242.71
- 579.99
163.76 | = Residual | 58НОУ/РЕР | | Gas phase $\Delta_t H^\circ =$ Liquid phas $\Delta_t H^\circ =$ $C_t^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ Solid phase | 63.80
se -9.40 | -9.16
241.63
242.71
-579.99
163.76
-66.06 | = Residual - 3.94 - 0.24 | 58HOY/PEF
71LEB/GUT | | Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t -$ Solid phase $\Delta_t H^\circ =$ | 63.80
se -9.40 | -9.16
241.63
242.71
-579.99
163.76
-66.06 | - 3.94
- 0.24 | 58HOY/PEP
71LEB/GUT
71LEB/GUT | | Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\ln K_t =$ Solid phase $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $S^\circ | 63.80
se -9.40 | -9.16
241.63
242.71
-579.99
163.76
-66.06 | - 3.94
- 0.24 | 58HOY/PEP
71LEB/GUT
71LEB/GUT | | Gas phase $\Delta_t H^\circ =$ Liquid phase $C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t -$ Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 63.80
se -9.40 | - 9.16
241.63
242.71
- 579.99
163.76
- 66.06 | - 3.94
- 0.24 | 58HOY/PEP
71LEB/GUT
71LEB/GUT | Literature - Calculated = Residual 61.74 -3.34 58.40 Reference 73MAL/GIG2 TABLE 37. Nitro compounds (50) - Continued | | $H)(C_B)_2) + ($ | ed)
1×C _B -(NO ₂)(
1×NH ₂ -NO ₂ | | $C_6H_6N_2O_2$
$I-(H)_2(C_B)) +$ | 2. 2,3-Dinitroaniline (Continued) $C_6H_5N_3$
$(3 \times C_B-(H)(C_B)_2) + (2 \times C_B-(NO_2)(C_B)_2) + (1 \times N-(H)_2(C_B)) +$
$(1 \times C_B-(N)(C_B)_2) + (1 \times NO_2-NO_2 \ (ortho \ corr)) +$
$(1 \times NH_2-NO_2 \ (ortho \ corr)) + (1 \times NH_2-NO_2 \ (meta \ corr))$ | | | | |
---|---|--|---|---|--|---|-------------|--|--| | | Literature | e – Calculated | = Residual | Reference | • | rature – Calculated | , | Reference | | | Liquid phas | | | | | | | | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | – 14.40 | - 15.16
241.63
242.71 | 0.76 | 71LEB/GUT | Liquid phase $\Delta_t H^\circ =$ | -10.37 | | | | | Δ _t S° = | | - 579.99 | | | | | | | | | $\Delta_f G^\circ = \ln K_f =$ | | 157.76
- 63.64 | | | Solid phase $\Delta_t H^\circ = -11.7$ $C_p^\circ =$ | 0 -30.66
205.07 | 18.96 | 62ZAK/ALE | | | Solid phase | | | | | | | | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | -38.30
168.20 | -28.23
170.48
233.89
-588.81
147.32 | -10.07
-2.28 | 71LEB/GUT
26AND/LYN | | | | $C_6H_5N_3O_6$ $I-(H)_2(C_B)) +$ $NO_2 (meta corr)) +$ | | | lnK _f | -59.43 | | | | Liter | ature – Calculated | = Residual | Reference | | | 4-Nitroanili
(4×C _B -(
(1×N-(F | H)(C _B) ₂)+(| (1 × C ₂₂ –(NO ₂) | (C _B) ₂) + (1 × C | $C_6H_6N_2O_2$
$C_B=(N)(C_B)_2) +$ | Gas phase
Δ _t H° = | 81.76 | | | | | | Literatur | e – Calculated | = Residual | Reference | Liquid phase $\Delta_t H^\circ =$ | -13.42 | | | | | Gas phase $\Delta_t H^\circ =$ | 58.80 | 71.74 | -12.94 | 73MAL/GIG2 | Solid phase $\Delta_t H^\circ = -65.66$ | 0 –26.19 | - 39.41 | 62ZAK/ALE | | | Liquid phas | | | | | | | | | | | $\Delta_t H^\circ = C_r^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | -20.70 | -5.16
241.63
242.71
-579.99
167.76 | - 15.54 | 71LEB/GUT | | $(2) + (2 \times C_B - (NO_2))$
+ (1 \times NH_2 - NO_2) | | | | | $lnK_f =$ | | -67.67 | | | | ature – Calculated | = Residual | Reference | | | Solid phase | | | | | | | | | | | $\Delta_{\ell}H^{\circ} = C_{p}^{\circ} = S^{\circ} = A^{\circ}S^{\circ} A^{\circ}S^{\circ$ | -42.90
169.03 | - 18.23
170.48
233.89 | -24.67
-1.45 | 71LEB/GUT
26AND/LYN | Gas phase
Δ _t H° = | 42.48 | · | | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | -588.81
157.32 | | | Liquid phase | | | | | | $\ln K_{\rm f} =$ | -63.46 | 20,102 | | | $\Delta_{\rm f}H^{\circ} =$ | -55.62 | | | | | | | | | | $C_p^{\circ} =$ | 292.25 | | | | | | | | | | S° =
Δ _ι S° = | 293.79
764.41 | | | | | 2,3-Dinitro | niline | | | C ₆ H ₅ N ₃ O ₄ | $\Delta_i G^\circ =$ | 172.29 | | | | | $(3 \times C_B - (1 $ | $H)(C_B)_2) + (N)(C_B)_2) + (N)(C_B)_2$ | $(2 \times C_B - (NO_2))$
$(1 \times NO_2 - NO_2)$
$(1 \times NO_2 + (1 \times NO_2))$ | (ortho corr))- | I−(H) ₂ (C _B)) +
+ | $lnK_f =$ | -69.50 | | | | | (1 × INF12* | -14C) (OLNO | . ani))+(1 X [| M12™NU2 (ME | ш сантуу | Solid phase | | | | | | | Literatur | e – Calculated | = Residual | Reference | $\Delta_t H^\circ = -44.30$ $C_p^\circ =$ | 0 - 71.26
201.31 | 26.96 | 62ZAK/ALE | | | | | | | | $S^{\circ} =$ | 321.60 | | | | | | | | | | $\Delta_{f}S^{\circ} =$ | -731.60 | | | | | (tas phace | | | | | $\Delta_t G^{\circ} =$ | 148.36 | | | | | Gas phase $\Delta_t H^\circ =$ | | 86.48 | | | $\ln K_{\rm f} = -59.85$ | | | | | | TABLE 37. Nitro compounds (50) — Continue | TABLE 37 | . Nitro | compounds | (50) |) — | Continue | |---|----------|---------|-----------|------|-----|----------| |---|----------|---------|-----------|------|-----|----------| | 2,6-Dinitroaniline $C_6H_5N_3O_4$ $(3 \times C_B-(H)(C_B)_2) + (2 \times C_B-(NO_2)(C_B)_2) + (1 \times C_B-(N)(C_B)_2) + (1 \times N-(H)_2(C_B)) + (1 \times NO_2-NO_2 \ (\textit{meta} \ \textit{corr})) + (2 \times NH_2-NO_2 \ (\textit{ortho} \ \textit{corr}))$ | 2,4,6-Trinitroaniline; Picramide $C_4H_4N_4C_2 + C_8-(H)(C_B)_2 + (1 \times C_B-(N)(C_B)_2) + (3 \times C_B-(NO_2)(C_B)_2) + (1 \times N-(H)_2(C_B)) + (3 \times NO_2-NO_2 \ (meta \ corr)) + (2 \times NH_2-NO_2 \ (ortho \ corr))$ | | | | | | |--|--|--|--|--|--|--| | Literature - Calculated = Residual Reference | Literature – Calculated = Residual Reference | | | | | | | Gas phase $\Delta_i H^\circ = 59.48$ | Gas phase $\Delta_t H^\circ = 41.70$ 66.22 -24.52 78CUN/PAL | | | | | | | Liquid phase $\Delta_t H^{\circ} = -36.12$ | Liquid phase $\Delta_t H^\circ = -45.58$ | | | | | | | Solid phase $\Delta_t H^\circ = -50.60 -51.76$ 1.16 62ZAK/ALE $C_\rho^\circ = 207.15$ | Solid phase $\Delta_t H^\circ = -83.60 -63.79 -19.81$ 49MED/TOM $C_p^\circ = 249.66$ | | | | | | | $ \begin{array}{ll} \textbf{3,4-Dinitroaniline} & C_6H_5N_3O_4\\ (3\times C_{B^-}(H)(C_B)_2) + (2\times C_{B^-}(NO_2)(C_B)_2) + (1\times N-(H)_2(C_B)) + \\ (1\times C_{B^-}(N)(C_B)_2) + (1\times NH_2-NO_2\ (\textit{meta}\ corr)) + \\ (1\times NO_2-NO_2\ (\textit{meta}\ corr)) \end{array} $ | $ \begin{array}{ll} \textbf{2-Nitrobenzoic acid} & \textbf{C}_7\textbf{H}_5\textbf{NO}_4\\ (4\times\textbf{C}_B-(\textbf{H})(\textbf{C}_B)_2) + (1\times\textbf{C}_B-(\textbf{NO}_2)(\textbf{C}_B)_2) + (1\times\textbf{C}_B-(\textbf{CO})(\textbf{C}_B)_2) + \\ (1\times\textbf{CO}-(\textbf{O})(\textbf{C}_B)) + (1\times\textbf{O}-(\textbf{H})(\textbf{CO})) + (1\times\textbf{NO}_2-\textbf{COOH}\\ (\textit{ortho}~\textit{corr})) \end{array} $ | | | | | | | Literature -
Calculated = Residual Reference | Literature - Calculated = Residual Reference | | | | | | | Gas Phas $\Delta_t H^{\circ} = 57.48$ | Gas phase $\Delta_l H^\circ = -285.01$ | | | | | | | Liquid phase $\Delta_t H^\circ = -38.12$ | Liquid phase $\Delta_t H^\circ = -378.80 - 380.80$ 2.00 71LEB/RYA $C_\rho^\circ = 254.39$ | | | | | | | Solid phase $\Delta_t H^\circ = -32.60 -53.76$ 21.16 62ZAK/ALE $C_p^\circ = 207.15$ | Solid phase $\Delta_t H^\circ = -398.48 -400.38$ 1.90 71LEB/RYA $C_\rho^\circ = 191.63$ 176.94 14.69 26AND/LYN $S^\circ = 255.45$ | | | | | | | 3,5-Dinitroaniline $C_6H_5N_3O_4$
$(3 \times C_B-(H)(C_B)_2) + (2 \times C_B-(NO_2)(C_B)_2) + (1 \times C_B-(N)(C_B)_2) + (1 \times N-(H)_2(C_B)) + (1 \times NO_2-NO_2 \ (meta\ corr)) + (2 \times NH_2-NO_2 \ (meta\ corr))$ | $\Delta_{\ell}S^{\circ} = -616.99$ $\Delta_{\ell}G^{\circ} = -216.42$ $\ln K_{\ell} = 87.30$ | | | | | | | Literature - Calculated = Residual Reference | 3-Nitrobenzoic acid $C_6H_5NO_4$ $(4 \times C_B-(H)(C_B)_2) + (1 \times C_B-(NO_2)(C_B)_2) + (1 \times C_B-(CO)(C_B)_2) + (1 \times CO-(O)(C_B)) + (1 \times O-(H)(CO)) + (1 \times NO_2-COOH$ | | | | | | | Gas phase $\Delta_t H^\circ = 47.48$ | (meta corr)) Literature – Calculated = Residual Reference | | | | | | | Liquid phase $\Delta_t H^\circ = -48.12$ | Gas phase $\Delta_t H^{\circ} = -296.01$ | | | | | | | Solid phase $\Delta_t H^\circ = -38.90 -63.76$ 24.86 62ZAK/ALE $C_p^\circ -$ 207.15 | Liquid phase $\Delta_t H^\circ = -394.70 -394.80 0.10$ 71LEB/RYA $C_p^\circ = 254.39$ | | | | | | TABLE 37. Nitro compounds (50) - Continued TABLE 38. Nitrites (3) | | $H)(C_B)_2) +$ | | | $C_6H_5NO_4$
$C_B-(CO)(C_B)_2) +$ | Methyl nitr
(1×C-(I | | ×O-(C)(NO) |), $\sigma = 3$ | CH₃ONO | |--|----------------|---|--|---|--|------------|--|-----------------------------|--| | | -COOH (m | | ,, | | | Literatui | re – Calculated | = Residual | Reference | | | Literatu | re – Calculated | = Residual | Reference | | | | | | | | | | | | Gas phase | CE 40 | 66.40 | 1.00 | (0D 411/0DD | | | | | | | $\Delta_f H^\circ =$ | -65.40 | -66.49 | 1.09 | 62RAY/GER | | Solid phase | | 444.20 | 0.62 | 711 ED/D3/4 | $C_p^{\circ} =$ | 63.22 | 63.22 | 0.00 | 69STU/WES | | | -414.01 | -411.38 | -2.63 | 71LEB/RYA | S° = | 284.30 | 284.30 | 0.00 | 69STU/WES | | $C_p^{\circ} =$ | 173.22 | 176.94 | -3.72 | 26AND/LYN | $\Delta_f S^\circ =$ | | - 115.57 | | | | s° = | | 255.45 | | | $\Delta_{\rm f}G^{\circ} =$ | | - 32.03 | | | | $\Delta_f S^\circ =$ | | -611.25 | | | $lnK_f =$ | | 12.92 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | -229.13 | | | | | | | | | $lnK_f =$ | | 92.43 | | | | | | | | | | | ······························ | | - Paragraphic | Ethyl nitrit
(1×C-(F | | × C-(H) ₂ (O)(0 | C))+(1×O-(0 | C₂H₅ONO | | | $H)(C_B)_2) +$ | (1×C _B -(NO ₂)(
(1×O-(H)(CO | | $C_7H_5NO_4$
$C_8-(CO)(C_B)_2) +$ | | Literatur | e – Calculated | = Residual | Reference | | Gas phase | Literatu | re – Calculated | = Residual | Reference | Gas phase $\Delta_t H^a = C_p^a =$ | - 101.25 | - 99.39
83.55 | -1.86 | 56GRA | | $\Delta_t H^\circ =$ | | -310.01 | | | Liquid phas | se | | | | | | | | | | $\Delta_i H^\circ =$ | -127.60 | - 129.91 | 2.31 | 59GRA/WIL | | iquid phas | | | | | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} = C_{p}^{\circ} =$ | - 392.20 | -410.80
254.39 | 18.60 | 71LEB/RYA | | | | | | | Solid phase
Δ _e H° = | -426.90 | -425.38 | 1.52 | 71LEB/RYA | <i>n-</i> Propyl ni
(1×C-(F
(1×O-(C | H)3(C))+(1 | \times C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ (| C₃H₇ONO
O)(C)) + | | - | | 176.94 | 3.39 | | | T itomotum | o Coloulated | Donishuni | D = 6 | | $C_p^{\circ} = S^{\circ} =$ | 180.33 | 255.45 | 3.39 | 26AND/LYN | | Literatur | e – Calculated | = Kesiduai | Reference | | - | | | | | | | | | | | $\Delta_{\rm f}S^{\circ} =$ | | -616.99 | | | . | | | | | | $\Lambda_i G^{\circ} =$ | | - 241.42
07.20 | | | Gas phase | 105.04 | 100.00 | 5.00 | 50.00 t #15- | | $lnK_f =$ | | 97.39 | ······································ | | $\Delta_t H^\circ = C_p^\circ =$ | - 125.94 | -120.02
106.44 | -5.92 | 59GRA/WIL | | | | | | | ************************************* | | | | | | Table 39. Nitrates (6) | |------------------------| |------------------------| | <u> </u> | | TABLE 39. Ni | trates (6) | | | TABLE | 39. Nitrates (| 6) – Continu | ued |
---|-----------------------------------|--|----------------------------|--|--|---|--|----------------------------|---| | Methyl nit
(1×C-(| | × O-(C)(NO ₂) |), σ = 6 | CH ₃ ONO ₂ | (1×C-(1 | itrate (Cont
H) ₃ (C)) + (1
C)(NO ₂)), o | \times C-(H) ₂ (C) ₂) | + (1×C-(H) ₂ | C ₃ H ₇ ONO ₂
(O)(C)) + | | · | Literatu | re – Calculated | = Residual | Reference | ((| //- | re – Calculated | = Residual | Reference | | Gas phase | . | | | | | | | | | | $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | -123.00
76.48
301.88 | -121.97
77.19
304.34
-198.05
-62.92
25.38 | - 1.03
- 0.71
- 2.46 | 58RAY/OGG2
69STU/WES
69STU/WES | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | se
-214.51 | -218.10
196.94
275.77
-499.24
-69.25
27.94 | 3.59 | 57FAI/SKI | | Liquid ph | ase | | | | | | | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | -157.10
157.19
216.98 | - 156.57
132.88
210.80
- 291.59
- 69.63
28.09 | -0.53
24.31
6.18 | 58RAY/OGG2
53GRA/SMI
53GRA/SMI | | H) ₃ (C))+(1
C)(NO ₂))+ | ×C-(H)(O)(C
(2×-CH ₃ corr
re – Calculated | (tertiary)), σ | | | | | | | | | | | | | | Ethyl nitr
(1×C- | | ×C-(H)2(O)(0 | C))+(1×O-(0 | $C_2H_5ONO_2$
C)(NO ₂)), $\sigma = 6$ | Gas phase $ \Delta_i H^\circ = C_p^\circ = S^\circ = $ | -191.00
120.67
373.21 | -188.21
120.70
369.73 | -2.79
-0.03
3.48 | 57GRA/PRA
69STU/WES
69STU/WES | | | Literatu | re – Calculated | = Residual | Reference | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 0,0181 | -405.28
-67.37
27.18 | | 0,010,1120 | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 154.10
97.36
348.32 | -154.87
97.52
347.77
-290.93
-68.13
27.48 | 0.77
- 0.16
0.55 | 57GRA/PRA
69STU/WES
69STU/WES | Liquid pha $ \Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ $ | se
229.70
191.10
263.20 | - 229.54
194.92
268.79
- 506.22
- 78.61
31.71 | - 0.16
- 3.82
- 5.59 | 57FAI/SKI
88LUS/RUB
88LUS/RUB | | Liquid ph | | | | | $lnK_f =$ | | 31./1 | | | | $\Delta_t
H^\circ = C_r^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | - 190.41
170.30
247.20 | -192.37
166.52
243.39
-395.31
-74.51 | 1.96
3.78
3.81 | 57FAI/SKI
54GRA/SMI
54GRA/SMI | (2×C-(1 | | te; EGDN
+ (2×O-(C)(N
2) (aliphatic co | | C ₂ H ₄ N ₂ O ₆ | | $lnK_t =$ | | 30.06 | | | | Literatuı | re – Calculated | = Residual | Reference | | | | $1 \times C - (H)_2(C)_2$ $\sigma = 6$ | +(1×C-(H) ₂ | C ₃ H ₇ ONO ₂
(O)(C))+ | Gas phase $\Delta_t H^\circ =$ | -189.30 | 195.02 | 5.72 | 77PEL | | | Literatu | re – Calculated | = Residual | Reference | Liquid pha
Δ _I H° = | se
255.80 | -257.72 | 1.92 | 34TOM/TAK | | Gas phas $\Delta_t H^\circ - C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ - \ln K_f =$ | e
- 173.89
121.29
385.35 | - 175.50
120.41
386.93
- 388.08
- 59.79
24.12 | 1.61
0.88
-1.58 | 57GRA/PRA
69STU/WES
69STU/WES | | | | | | TABLE 39. Nitrates (6) - Continued TABLE 40. Nitramines (10) | | TABLE | 39. Nitrates (| 6) – Continu | ed | Table 40. Nitramines (10) | | | | | |----------------------------------|--|--|--------------|---|---|-----------------|--------------------------|---|---| | (1 × C-(H |) ₂ (O)(C)) -
)(O)(C) ₂ (| roglycerine
+ (3 × O-(C)(N
ethers,esters))
2) (aliphatic co | + | C ₃ H ₅ N ₃ O ₉ | Nitrourea
(1×N-(H)
(1×N-(H) | | mides, ureas))+ | (1×CO-(N) ₂) | CH₃N₃O₃
+ | | (3×(ONC | | e – Calculated | | Reference | | Literat | ure-Calculated = | = Residual | Reference | | Gas phase $\Delta_l H^\circ =$ | | -279.09 | -0.61 | 88MIR/KOR | Solid phase $\Delta_t H^\circ = -$ | - 282.30 | -282.35 | 0.05 | 49MED/THO | | Liquid phas $\Delta_t H^\circ =$ | | - 371.78 | 0.08 | 88MIR/KOR | Methyldinitro
(1×C-(H)
(1×N-(C) | (3(N)) + (1 | ×-CH₃ corr (q | uaternary))+ | CH₃N₃O₄ | | | | | | | | Literatu | re – Calculated = | = Residual | Reference | | | | | | | Gas phase $\Delta_t H^\circ =$ | 53.50 | 53.48 | 0.02 | 87MIR/KOR | | | | | | | Liquid phase
Δ _f H° = | 1.50 | 1.50 | 0.00 | 87MIR/KOR | | | | | | | Methylenedia
(1×C-(H) | | MEDINA
2×N-(H)(C)(N | O ₂)) | CH ₄ N ₄ O ₄ | | | | | | | | Literat | ure-Calculated = | = Residual | Reference | | | | | | | Solid phase $\Delta_t H^\circ =$ | - 57.90 | - 59.00 | 1.10 | 54MUR/GOL | | | | | | | Dimethylnitr
(2×C-(H)
(1×N-(C) | $_{3}(N)) + (2$ | ×-CH₃ corr (qı | uaternary))+ | C ₂ H ₆ N ₂ O ₂ | | | | | | | | Literatu | re – Calculated = | Residual | Reference | | | | | | | Gas phase $\Delta_t H^\circ =$ | -5.00 | - 5.64 | 0.64 | 71MAT/V'Y | | | | | | | Liquid phase $\Delta_t H^\circ =$ | , | - 54.00 | 1 - Table 1 - 2 - Table 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | | | | | | | Solid phase $\Delta_t H^\circ =$ | - 74.90 | - 62.18 | - 12.72 | 71MAT/V'Y | | | | | | | Ethylenedini
(2×C-(H) | | Haleite
+ (2×N-(H)(C) | (NO ₂)) | C₂H₄N₄O₄ | | | | | | | | Literat | ure-Calculated = | Residual | Reference | | | | | | | Solid phase $\Delta_t H^\circ = -C_p^\circ =$ | - 104.60 | - 101.00
175.30 | -3.60 | 73KRI/LIC | | TARIF 4 | 40. | Nitrramines | (10) | _ | Continued | |---------|-----|--------------------|------|---|-----------| | | | | | | | | TABLE 40. | Nitramines (10) | Continued | |-----------|-----------------|-------------------------------| | | | | | Diethylnitr
(2×C-() |)+(1×N-(C | $C_4H_{10}N_2O$
$C)_2(NO_2))$ | | | |---|---------------|----------------------------------|------|-----------| | *************************************** | Reference | | | | | Gas phase $\Delta_t H^\circ =$ | -53.10 | -53.12 | 0.02 | 58CAS/FLE | | Liquid pha $\Delta_t H^\circ =$ | ase
106.20 | -106.82 | 0.62 | 58CAS/FLE | N-Nitropiperidine $C_5II_{10}N_2O_2$ $(3 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(C)(N)) + (1 \times N - (C)_2(NO_2)) +$ (1×N-Nitropiperidine rsc) | Literatur | Reference | | | |--|-----------|------|-----------| | Gas phase $\Delta_t H^\circ = -44.40$ | - 44.40 | 0.00 | 71MAT/V'Y | | Liquid phase $\Delta_f H^\circ = -92.90$ | - 92.90 | 0.00 | 71MAT/V'Y | | Solid phase $\Delta_t H^{\circ} = -107.75$ | - 107.75 | 0.00 | 87MES/TOD | #### 1,3,5-Cyclotrimethylenetrinitramine; Hexogen; RDX $C_3H_6N_6O_6$ $(3 \times C - (H)_2(N)_2) + (3 \times N - (C)_2(NO_2)) + (1 \times RDX \text{ rsc})$ | | Literature | - Calculated | Reference | | | |----------------------------------|------------|--------------|-----------|-----------|--| | Gas phase $\Delta_t H^\circ =$ | 205.30 | 206.00 | -0.70 | 78CUN/PAL | | | Solid phase $\Delta_t H^\circ =$ | 71.00 | 72.00 | -1.00 | 73KRI/LIC | | | 1,3,5,7-Cyclotetramethy | lenetetranitramine; | |-------------------------|---------------------| | Octogen: HMY | | C₄H₈N₈O₈ $(4 \times C - (H)_2(N)_2) + (4 \times N - (C)_2(NO_2)) + (1 \times HMX \text{ rsc})$ | | Literature | e – Calculated | alated = Residual Reference | | | | |----------------------------------|------------|----------------|-----------------------------|-----------|--|--| | Gas phase $\Delta_t H^\circ =$ | 248.90 | 249.00 | -0.10 | 78CUN/PAL | | | | Solid phase $\Delta_t H^\circ =$ | 87.90 | 88.00 | -0.10 | 73KRI/LIC | | | ### N-Methyl-N-nitro-(2,4,6-trinitro)aniline; Tetryl; Tetralite C7H5N5O8 $(2 \times C_{B}-(H)(C_{B})_{2}) + (1 \times C_{B}-(N)(C_{B})_{2}) + (3 \times C_{B}-(NO_{2})(C_{B})_{2}) + (1 \times N-(C)(C_{B})(NO_{2})) + (1 \times C-(H)_{3}(N))$ | | Literature | - Calculated | Reference | | | |----------------------------------|-------------|--------------|-----------|-----------|--| | Gas phase $\Delta_t H^\circ =$ | 162.80 | 162.71 | 0.09 | 78CUN/PAL | | | Liquid phas $\Delta_t H^\circ =$ | se
52.00 | 52.31 | -0.31 | 73KRI/LIC | | | Solid phase $\Delta_f H^\circ =$ | 29.00 | 29.07 | - 0.07 | 73KRI/LIC | | TABLE 41. Cyclic CHNO (3) | TABLE 42 | 2. Thiols | (31) | |----------|-----------|------| |----------|-----------|------| | Succinimide $(2 \times C - (H)_2(CO)(C)) + (2 \times (1 \times \text{succinimide rsc})$ | ×CO-(C)(N))+(1 | $C_4H_5NO_2$
1 × N-(H)(CO) ₂)+ | Methanethi
(1×C–(F | | ×S-(C)(H)), | r = 3 | CH ₄ ! | |--|---------------------|---|--|-----------------------------------|---|--------------------------|--| | Literature — C | Calculated = Residu | al Reference | | Literatu | re – Calculated | l = Residual | Reference | | | 375.50 0.0 | 0 90MEN/PIL | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = 0$ | - 22.97
50.25
255.06 | -23.62
51.49
255.86
-43.08 | 0.65
- 1.24
- 0.80 | 61GOO/LAC
69STU/WES
69STU/WES | | Solid phase $\Delta_t H^\circ = -459.10 -$ | 459.10 0.0 | 0 66COL/SKI | $\Delta_t G^{\circ} = \ln K_f =$ | | - 10.78
4.35 | | | | Glutarimide
(2×C-(H) ₂ (CO)(C))+(1
(1×N-(H)(CO) ₂)+(1× ₁
Literature - C | | | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
46.70 | - 47.55
87.82
169.25
- 129.69
- 8.88
3.58 | 0.85 | 61GOO/LAC | | Gas phase $\Delta_t H^\circ = -393.60$ - | 393.60 0.0 | 0 90MEN/PIL | Ethanethiol | I | | | C2HeS | | Solid phase $\Delta_t H^\circ = -487.70$ - | 487.64 -0.0 | 6 90MEN/PIL | (1×C-(F | | ×C-(H)2(C)(S
re – Calculated | | (H)), σ = 3
Reference | | N,N-Bisuccinimide
(4×C-(H) ₂ (C)(CO))+(4)
(2×succinimide rsc)
Literature | 4×CO-(C)(N))+(2 | | Gas phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$S^\circ =$
$\Delta_t S^\circ =$
$\Delta_t G^\circ =$
$\ln K_t =$ | -46.11
72.68
296.10 | -46.79
72.39
297.73
-137.52
-5.79
2.33 | 0.68
0.29
~1.63 | 52MCC/SCO
69STU/WES
69SYU/WES | | Solid phase $\Delta_t H^\circ = -709.36$ — | 709.36 0.0 | 0 66COL/SKI | Liquid phas $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | se
- 73.60
117.86
207.02 | -74.32
112.00
210.34
-224.91
-7.26
2.93 | 0.72
5.86
3.32 | 57MCC/HUB
52MCC/SCO
52MCC/SCO | | | | | 1-Propaneth
(1×C-(H
(1×S-(C | $I_{3}(C) + (1)(H), \sigma =$ | \times C-(H) ₂ (C) ₂)
3
e – Calculated | | | | | | | Gas phase $\Delta_t H^\circ = C_{t'}^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | -67.86
94.77
336.39 | -67.42
95.28
336.89
-234.67
2.55
-1.03 | -0.44
-0.51
-0.50 | Reference 56PEN/SCO 69STU/WES 69STU/WES | TABLE 42. Thiols (31) - Continued TABLE 42. Thiols (31) - Continued | (1×C-(H | niol (Contin
$I_{3}(C)$) + (1:
$I_{3}(C)$), $\sigma =$ | \times C-(H) ₂ (C) ₂) + | · (1 × C−(H)₂(| C_3H_8S (C)(S))+ | | | \times C-(H) ₂ (C) ₂)
= 3 | + (1 × C-(H) ₂ | (C)(S) + | |---|--|--|----------------------|----------------------------------|---|--------------------|---|---------------------------|--| | | Literatur | e – Calculated = | Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid
phas | ie | | | | Gas phase | | | | | | $\Delta_{i}H^{\circ} =$ | - 99.90 | -100.05 | 0.15 | 54HUB/WAD | $\Delta_{\rm f}H^{\circ} =$ | - 128.99 | - 129.31 | 0.32 | 66OSB/DOU | | $C_p^{\circ} =$ | 144.56 | 142.42 | 2.14 | 56PEN/SCO | $C_p^{\circ} =$ | 164.05 | 163.95 | 0.10 | 69STU/WES | | S° = | 242.50 | 242.72 | -0.22 | 56PEN/SCO | S° = | 454.30 | 454.37 | -0.07 | 69STU/WES | | $\Delta_f S^{\circ} =$ | | -328.84 | | n.P | $\Delta_f S^\circ =$ | | - 526.13 | | | | $\Delta_{\rm f}G^{\circ} =$ | | - 2.01 | | | $\Delta_t G^{\circ} =$ | | 27.55 | | | | $lnK_f =$ | | 0.81 | | | $lnK_f =$ | | -11.12 | | | | | | | | | Liquid pha | ase | | | | | 1-Butaneth | iol | | | C4H10S | $\Delta_t H^{\circ} =$ | -175.70 | - 177.24 | 1.54 | 66GOO/DEP | | (1×C-(H | (C) + (2 | \times C-(H) ₂ (C) ₂) + | $+(1\times C-(H)_2)$ | | $C_p^{\circ} =$ | 230.71 | 233.68 | -2.97 | 70FIN/MCC | | | $C)(H)), \sigma =$ | | . , /- | | S° - | 343.21 | 339.86 | 3.35 | 70FIN/MCC | | | | | | | $\Delta_f S^\circ =$ | | - 640.63 | | | | | Literatur | re – Calculated = | = Residual | Reference | $\Delta_i G^{\circ} =$ | | 13.76 | | | | | | | | | $lnK_f =$ | | -5.55 | | | | Gas phase $\Delta_t H^\circ =$ | - 88.07 | - 88.05 | -0.02 | 57SCO/FIN | | | | | | | $C_p^{\circ} =$ | 118.16 | 118.17 | -0.02 | 69STU/WES | 1-Heptane | thiol | | | C7H165 | | $S^{\circ} =$ | 375.22 | 376.05 | -0.83 | 69STU/WES | - | | \times C-(H) ₂ (C) ₂) | + (1 × C-(H)- | | | $\Delta_f S^\circ =$ | 373.22 | -331.82 | 0.05 | 0,010,1120 | | $C)(H), \sigma =$ | | (1 × C=(11)2) | (0)(0)) 1 | | $\Delta_f G^\circ =$ | | 10.88 | | , | (1110 (| 0)(11)), 0 | 2 | | | | $lnK_f =$ | | -4.39 | | | | Literatu | re – Calculated | = Residual | Reference | | | | | - | | - | | | | | | Liquid pha | | 105 50 | 4.00 | #0111 ID/GOO | Gas phase | | 440.04 | 0.04 | ((ODD D OI) | | $\Delta_{\rm f}H^{\circ} =$ | -124.70 | - 125.78 | 1.08 | 58HUB/GOO | $\Delta_t H^\circ =$ | - 150.00 | - 149.94 | -0.06 | 66OSB/DOU | | $C_p^{\circ} =$ | 172.30 | 172.84 | -0.54 | 57SCO/FIN | $C_p^{\circ} = S^{\circ} =$ | 186.94 | 186.84 | 0.10 | 69STU/WES | | S° =
Δ _t S° = | 275.98 | 275.10
- 432.77 | 0.88 | 57SCO/FIN | $\Delta_{i}S^{\circ} =$ | 493.25 | 493.53
623.28 | -0.28 | 69STU/WES | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 3.25 | | | $\Delta_{\rm f}G^{\circ} =$ | | 35.89 | | | | $lnK_f =$ | | -1.31 | | | $\ln K_{\rm f} =$ | | - 14.48 | | | | | | | | | Tiouid abo | | | | | | 1-Pentanet | hiol | | | C ₅ H ₁₂ S | Liquid pha $\Delta_t H^\circ =$ | 200.50 | -202.97 | 2.47 | 66GOO/DEP | | | | \times C-(H) ₂ (C) ₂) | + (1 × C-(H)- | | $C_p^{\circ} =$ | 259.32 | 264.10 | - 4.78 | 70FIN/MCC | | | $C)(H)), \sigma =$ | | · (1 × © (11)2 | (0)(0)) | $S^{\circ} =$ | 375.35 | 372.24 | 3.11 | 70FIN/MCC | | (1/10/(| ٥,(٠٠,), ٥ | • | | | $\Delta_f S^\circ =$ | 570.55 | - 744.56 | 3.11 | 701 11 711100 | | | Literatu | re – Calculated: | = Kesidual | Reference | $\Delta_i G^{\circ} =$ | | 19.02 | | | | | 25.70 | | | | $lnK_f =$ | | -7.67 | | | | Gas phase | 110 10 | 100 60 | 1.40 | (SEIN/JIOC | | | | | | | $\Delta_{\rm f}H^{\circ} = C_{\rm p}^{\circ} =$ | - 110.10
141.21 | 108.68
141.06 | -1.42
0.15 | 65FIN/HOS
69STU/WES | 1-Octaneth | vial | | | C ₈ H ₁₈ S | | $S^{\circ} =$ | 415.29 | 415.21 | 0.13 | 69STU/WES | | | \times C-(H) ₂ (C) ₂) | + (1 × C-(U).(| | | $\Delta_{\rm f}S^{\circ} =$ | 713.67 | - 428.97 | 0.00 | 07010/4120 | | $C)(H), \sigma =$ | | . (1 ^ 0=(11)2(| ~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | $\Delta_{\rm f}G^{\circ} =$ | | 19.22 | | | (2.00 (| ~/(*^//) | • | | | | $lnK_f =$ | | -7.75 | | | | Literatur | re – Calculated | = Residual | Reference | | | | | | | Gen -1 | | | | | | T (m. / 4) | | 151 51 | 0.50 | SALITID/CAT | Gas phase | | 170 57 | 0.26 | COCTITUTE | | Liquid pha | -152.10 | -151.51
203.26 | -0.59
-2.09 | 54HUB/CAT
52FINSCO | $\Delta_{\rm f}H^{\circ} =$ | - 170.21
209.79 | - 170.57
209.73 | 0.36
0.06 | 69STU/WES
69STU/WES | | $\Delta_{\rm f}H^{\circ} =$ | 201 17 | 203.20 | | | $C_p^{\circ} =$ | | | | | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} =$ | 201.17
310.37 | 307 48 | 7 80 | 52FIN/SCO | , , , , , , , , , , , , , , , , , , , | 532.20 | | | 600111/0/40 | | $\Delta_t H^\circ = C_p^\circ = S^\circ = S$ | 201.17
310.37 | 307.48
536.70 | 2.89 | 52FIN/SCO | S° =
Λ ₆ S° = | 532.20 | 532.69
720.43 | -0.49 | 69STU/WES | | $\Delta_f H^\circ = C_p^\circ =$ | | 307.48
536.70
8.51 | 2.89 | 52FIN/SCO | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \Delta_{f}G^{\circ} = 0$ | 532.20 | - 720.43
44.23 | - 0.49 | 69STU/WES | TABLE 42. Thiols (31) - Continued TABLE 42. Thiols (31) - Continued | | iol (Continued)
$H_{3}(C)$) + $(6 \times C - (H)_{2}(C)_{2})$ + $(1 \times C - (H)_{2}(C)_{2})$
(H) , $\sigma = 3$ | $C_8H_{18}S$ $(C)(S)) +$ | | | $4 \times C - (H)_2(C)_2$ | e) + (1 × C-(H) | $C_{16}H_{34}S_{2}(C)(S)) +$ | |---|---|---|--|---------------------------------------|--|-----------------|-----------------------------------| | | Literature - Calculated = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid pha | se | | | | | | | | $\Delta_i H^\circ =$ | - 228.70 | | Gas phase | | | | | | $C_p^{\circ} =$ | 294.52 | | $\Delta_{\rm f}H^{\circ} =$ | -335.10 | -335.61 | 0.51 | 69STU/WES | | S° = | 404.62 | | $C_p^{\circ} =$ | 392.75 | 392.85 | -0.10 | 69STU/WES | | $\Delta_{f}S^{\circ} =$ | - 848.49 | | S° = | 843.79 | 845.97 | -2.18 | 69STU/WES | | $\Delta_f G^\circ =$ | 24.28 | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 1497.64 | | | | $lnK_f =$ | - 9.79 | | $\Delta_f G^\circ = \ln K_f =$ | | 110.91
44.74 | | | | | | a ** a | | | | | | | 1-Nonanetl | | C ₉ H ₂₀ S | Liquid pha | se | 124.54 | | | | | $(H)_3(C) + (7 \times C - (H)_2(C)_2) + (1 \times C - (H)_2)$ | (し)(3))+ | $\Delta_{f}H^{\circ} =$ | | - 434.54 | | | | (1 × S-(0 | $C(H)$, $\alpha = 3$ | | $C_{r}^{\circ} = S^{\circ} =$ | | 537.88
663.66 | | | | | Literature - Calculated = Residual | Reference | $\Delta_{f}S^{\circ} =$ | | - 1679.94 | | | | | Literature - Calculated = Residual | Reference | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 66.33 | | | | | | | $\ln K_{\rm f} =$ | | -
26.76 | | | | Gas phase | | | unt - | | 20.70 | | | | $\Delta_t H^\circ =$ | - 190.83 - 191.20 0.37 | 69STU/WES | | | | | | | $C_p^{\circ} =$ | 232.67 232.62 0.05 | 69STU/WES | | | | | | | S° = | 571.16 571.85 -0.69 | 69STU/WES | 1-Eicosane | thiol | | | C ₂₈ H ₄₂ S | | $\Delta_f S^\circ =$ | ~817.58 | 0,010, | | | $8 \times C - (H)_2(C)_2$ |)+(1×C-(H) | | | $\Delta_t G^\circ =$ | 52.56 | | | $C)(H)), \sigma =$ | | , . (| 2(0)(0)) . | | $lnK_f =$ | -21.20 | | (===== | ,,(,),, - | | | | | • | | | | Literatui | re – Calculated | = Residual | Reference | | Liquid pha | | | | | | | | | $\Delta_t H^\circ =$ | -254.43 | | Gas phase | | | | | | $C_{\rho}^{\circ} =$ | 324.94 | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -417.56 | -418.13 | 0.57 | 69STU/WES | | S° = | 437.00 | | $C_p^{\circ} =$ | 484.26 | 484.41 | - 0.15 | 69STU/WES | | $\Delta_{t}S^{\circ} =$ | -952.42 | | S° = | 999.60 | 1002.61 | - 3.01 | 69STU/WES | | $\Delta_!G^\circ =$ | 29.54 | | $\Delta_f S^\circ =$ | | - 1886.24 | | | | $lnK_f =$ | -11.91 | | $\Delta_{f}G^{\circ} =$ | | 144.25 | | | | | | | $\ln K_{\rm f} =$ | | -58.19 | | | | 1-Decaneth | aiol | CuaHaaS | | se | - 58.19
 | | | | 1-Decaneth | | $C_{10}H_{22}S$ | Liquid pha | se | | | | | (1×C-(1 | $(H)_3(C) + (8 \times C - (H)_2(C)_2) + (1 \times C - (H)_2)$ | | Liquid phate $\Delta_t H^\circ =$ | se | - 537.46 | | | | (1×C-(1 | | | Liquid pha | se | - 537.46
659.56 | | | | (1×C-(1 | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$ | (C)(S))+ | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ =$ | se | - 537.46
659.56
793.18 | | | | (1×C-(1 | $(H)_3(C) + (8 \times C - (H)_2(C)_2) + (1 \times C - (H)_2)$ | | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = 0$ | se | -537.46
659.56
793.18
-2095.67 | | | | (1×C-(1 | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$ | (C)(S))+ | Liquid pha:
$\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = 0$ | se | - 537.46
659.56
793.18
- 2095.67
87.36 | | | | (1 × C-(1)
(1 × S-(0) | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$ | (C)(S))+ | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = 0$ | se | -537.46
659.56
793.18
-2095.67 | | | | $(1 \times C - (1 \times S - (0 \times S - (0 \times S + (0 \times S - (0 \times S + (0 \times S - ($ | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$ | (C)(S))+ | Liquid pha:
$\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = 0$ | se | - 537.46
659.56
793.18
- 2095.67
87.36 | | | | (1 × C-(1)
(1 × S-(0) | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$
Literature - Calculated = Residual | (C)(S))+ Reference | Liquid pha:
$\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \Delta_{t}G^{\circ} = 0$ | se | - 537.46
659.56
793.18
- 2095.67
87.36 | | | | $(1 \times C - (1 \times S ($ | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$
Literature - Calculated = Residual
-211.46 -211.83 0.37
255.56 255.51 0.05
610.11 611.01 -0.90 | (C)(S)) + Reference 69STU/WES | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f =$ 1,2-Ethanee | lithiol | - 537.46
659.56
793.18
- 2095.67
87.36
- 35.24 | | C₂H₄S₂ | | $(1 \times C - (1 \times S ($ | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$
Literature - Calculated = Residual
-211.46 -211.83 0.37
255.56 255.51 0.05 | (C)(S)) + Reference 69STU/WES 69STU/WES | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f =$ 1,2-Ethanee | lithiol | - 537.46
659.56
793.18
- 2095.67
87.36 |) | C₂H₄S₂ | | $(1 \times C - (1 \times S - (0 ($ | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$
Literature - Calculated = Residual
-211.46 -211.83 0.37
255.56 255.51 0.05
610.11 611.01 -0.90 | (C)(S)) + Reference 69STU/WES 69STU/WES | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f =$ 1,2-Ethanee | lithiol | - 537.46
659.56
793.18
- 2095.67
87.36
- 35.24 |) | C₂H₄S₂ | | $(1 \times C - (1 \times S ($ | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$
Literature - Calculated = Residual
-211.46 -211.83 0.37
255.56 255.51 0.05
610.11 611.01 -0.90
-914.73 | (C)(S)) + Reference 69STU/WES 69STU/WES | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_f =$ 1,2-Ethanee | lithiol
()(H)) + (2 × | - 537.46
659.56
793.18
- 2095.67
87.36
- 35.24 | | C₂H ₆ S₂
Reference | | $(1 \times C - (1 \times S ($ | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$
Literature – Calculated = Residual
-211.46 -211.83 0.37
255.56 255.51 0.05
610.11 611.01 -0.90
-914.73
60.90
-24.57 | (C)(S)) + Reference 69STU/WES 69STU/WES | Liquid pha:
$\Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1,2-Ethanee}{2 \times S-(C)}$ | lithiol
()(H)) + (2 × | - 537.46
659.56
793.18
- 2095.67
87.36
- 35.24 | | | | $(1 \times C - (1 \times S ($ | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$
Literature - Calculated = Residual
-211.46 -211.83 0.37
255.56 255.51 0.05
610.11 611.01 -0.90
-914.73
60.90
-24.57 | (C)(S)) + Reference 69STU/WES 69STU/WES 69STU/WES | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ 1,2-Ethanee $(2 \times S - (C_0)^2)$ Gas phase | lithiol
()(H)) + (2 ×
Literatur | - 537.46
659.56
793.18
- 2095.67
87.36
- 35.24
CC-(H) ₂ (C)(S) | = Residual | Reference | | $(1 \times C - (1 \times S ($ | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$
Literature - Calculated = Residual
-211.46 -211.83 0.37
255.56 255.51 0.05
610.11 611.01 -0.90
-914.73
60.90
-24.57 | (C)(S)) + Reference 69STU/WES 69STU/WES | Liquid phat $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ 1,2-Ethanee $(2 \times S - C)$ Gas phase $\Delta_t H^\circ = C_t = C$ | lithiol
()(H)) + (2 × | -537.46
659.56
793.18
-2095.67
87.36
-35.24
c C-(H) ₂ (C)(S)
re - Calculated | | | | $(1 \times C - (1 \times S ($ | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$
Literature - Calculated = Residual
-211.46 -211.83 0.37
255.56 255.51 0.05
610.11 611.01 -0.90
-914.73
60.90
-24.57
se
-276.50 -280.16 3.66
355.36 | (C)(S)) + Reference 69STU/WES 69STU/WES 69STU/WES | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ 1,2-Ethanee $(2 \times S - (C_0)^2)$ Gas phase | lithiol
()(H)) + (2 ×
Literatur | - 537.46
659.56
793.18
- 2095.67
87.36
- 35.24
CC-(H) ₂ (C)(S) | = Residual | Reference | | $(1 \times C - (1 \times S ($ | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$
Literature - Calculated = Residual
- 211.46 - 211.83 0.37
255.56 255.51 0.05
610.11 611.01 - 0.90
- 914.73
60.90
- 24.57
se
- 276.50 - 280.16 3.66
355.36
469.38 | (C)(S)) + Reference 69STU/WES 69STU/WES 69STU/WES | Liquid phat $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ 1,2-Ethanee $(2 \times S - C)$ Gas phase $\Delta_t H^\circ = C_t = C$ | lithiol
()(H)) + (2 ×
Literatur | -537.46
659.56
793.18
-2095.67
87.36
-35.24
c C-(H) ₂ (C)(S)
re - Calculated | = Residual | Reference | | $(1 \times C - (1 \times S ($ | H) ₃ (C)) + (8 × C-(H) ₂ (C) ₂) + (1 × C-(H) ₂
C)(H)), $\sigma = 3$
Literature - Calculated = Residual
-211.46 -211.83 0.37
255.56 255.51 0.05
610.11 611.01 -0.90
-914.73
60.90
-24.57
se
-276.50 -280.16 3.66
355.36 | (C)(S)) + Reference 69STU/WES 69STU/WES 69STU/WES | Liquid phat $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ 1,2-Ethanee $(2 \times S - C)$ Gas phase $\Delta_t H^\circ = C_t = C$ | lithiol
()(H)) + (2 ×
Literatur | -537.46
659.56
793.18
-2095.67
87.36
-35.24
c C-(H) ₂ (C)(S)
re - Calculated | = Residual | Reference | Gas phase $\Delta_l H^\circ = C_p^\circ =$ - 70.95 161.99 | TABLE 42. TI | niols (31) — Continu | ed | | Table | E 42. Thiols (3) | 1) – Continu | ied
 | |---|---|---|---|------------------------------------|--|-----------------------------|--| | 1,2-Ethanedithiol (Continued)
$(2 \times S-(C)(H)) + (2 \times C-(H))$ | | C ₂ H ₆ S ₂ | | edithiol (Co
C)(H))+(3> | ontinued)
× C–(H) ₂ (C) ₂) + | + (2 × C-(H) ₂ (| C ₅ H ₁₂ ; | | Literature – Cal | culated = Residual | Reference | | | re – Calculated | | Reference | | Liquid phase | 3000 | | | | | | | | $C_p^{\circ} =$ 15
$S^{\circ} =$ 25
$\Delta_t S^{\circ} =$ -21
$\Delta_t G^{\circ} =$ 1 | 3.42 -0.98
11.04
14.08
3.22
0.15
4.10 | 62MAN/SUN
| Liquid pha $ \Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{\ell}S^{\circ} = \Delta_{\ell}G^{\circ} = \ln K_{\ell} = 0 $ | se
130.30 | - 130.61
242.30
351.22
- 525.01
25.92
- 10.46 | 0.31 | 62MAN/SUN | | 1,3-Propanedithiol
(2×S-(C)(H))+(1×C-(H)
Literature – Ca |) ₂ (C) ₂) + (2 × C~(H) ₂ (
 culated = Residual | C ₃ H ₈ S ₂ C)(S)) Reference | | C)(H))+(2> | < C-(H) ₃ (C)) +
iary)), σ = 9 | (1×C-(H)(C) | C ₃ H ₈ | | | | | | Literatur | re – Calculated | = Residual | Reference | | | 29.69 -0.01
16.21 | 62MAN/SUN | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -76.23
95.98 | - 76.28
97.51 | 0.05
- 1.53 | 54MCC/FIN2
69STU/WES | | $C_p^{\circ} = 18$ $S^{\circ} = 28$ | 79.15 - 0.25
81.46
86.46
17.15 | 62MAN/SUN | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f = -\infty$ | 324.30 | 326.68
- 244.88
- 3.27
1.32 | -2.38 | 69STU/WES | | $\ln K_{\rm f} =$ | 15.41
6.22 | CHS | Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ =$ | se
- 105.90
145.35
233.55 | - 105.59
142.08
235.94
- 335.62 | -0.31
3.27
-2.39 | 54HUB/WAD
54MCC/FIN2
54MCC/FIN2 | | 1,4-Butanedithiol
$(2 \times S-(C)(H)) + (2 \times C-(H))$ | $(2)_2(C)_2 + (2 \times C - (H)_2)_2$ | $C_4H_{10}S_2$ $C)(S))$ | $\Delta_f G^\circ = \ln K_f =$ | | -5.53
2.23 | | | | Literature – Ca | lculated = Residual | Reference | | | | | | | | 50.32 -0.08
39.10 | 62MAN/SUN | | C)(H))+(2× | < C-(H)₃(C)) +
- (1 × -CH₃ corr | | | | | | | | Literatui | re – Calculated | = Residual | Reference | | $C_p^{\circ} =$ 2:
$S^{\circ} =$ 3:
$\Delta_t S^{\circ} =$ -4:
$\Delta_t G^{\circ} =$ 2: | 04.88 -0.82
11.88
18.84
21.08
20.67
-8.34 | 62MAN/SUN | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | - 96.90
119.29
366.73 | -94.65
120.40
365.84
-342.03
7.33
-2.96 | -2.25
-1.11
0.89 | 58MCC/FIN
69STU/WES
69STU/WES | | 1,5-Pentanedithiol |) (O) \ | C ₅ H ₁₂ S ₂ | | | 2.70 | | ······································ | | (2×S-(C)(H)) + (3×C-(H
Literature - Ca | $\frac{1}{2}(C)_{2} + (2 \times C - (H)_{2})$ $\frac{1}{2}(C)_{2} + (2 \times C - (H)_{2})$ $\frac{1}{2}(C)_{2} + (2 \times C - (H)_{2})$ | Reference | $C_p^{\circ} = S^{\circ} =$ | e - 131.00
171.21
266.35 | -129.14
172.50
268.32 | -1.86
-1.29
-1.97 | 58HUB/GOO
58MCC/FIN
58MCC/FIN | | | 70.95 - 0.05
61.99 | 62MAN/SUN | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -439.55
1.91
-0.77 | | | TABLE 42. Thiols (31) - Continued TABLE 42. Thiols (31) - Continued | | $(H) + (1 \times$ | ы
: C-(H)2(C)(S)]
ary)) + (2 × C-(| | | (3×C-(I | $H_{3}(C)) + (1$ | ol (Continued)
l × C-(H)2(C)2)
× -CH3 corr (q | | | |--|----------------------------------|--|-------------------------|-------------------------------------|--|--|--|---------------------------|---| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ - C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ - \ln K_t =$ | 97.24
118.32
362.88 | -94.74
118.20
362.31
-345.56
8.29
-3.34 | - 2.50
0.12
0.57 | 58HUB/GOO
69STU/WES
69STU/WES | Liquid pha $ \Delta_t H^\circ - C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ - \ln K_t = $ | se
162.80
198.95
295.60 | - 160.59
200.08
281.37
- 562.81
7.21
- 2.91 | - 2.21
- 1.13
14.23 | 62SCO/DOU
74MES/FIN
74MES/FIN | | $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = 0$ | ee
132.00
171.88
266.35 | -131.06
169.86
269.75
-438.12
-0.43 | -0.94
2.02
-3.40 | 58SCO/MCC
58SCO/MCC
58SCO/MCC | | C)(H))+(2:
H) ₂ (C) ₂)+(| l
× C-(H) ₃ (C)) +
1 × C-(H)(C) ₃)
re – Calculated | +(2×-CH ₃ c | | | | (H))+(3× | (C-(H) ₃ (C))+ | | C₄H ₁₀ S | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 114.90 | -115.37
141.09 | 0.47 | 72GOO2 | | (3×-CH | | re – Calculated | | Reference | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ =$ | se
- 154.30
200.33
298.49 | -156.79
200.28
302.13 | 2.49
0.05
-3.64 | 72GOO2
74MES/FIN
74MES/FIN | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | -109.60
120.96
338.02 | -108.30
119.97
337.71
-370.16 | -1.30
0.99
0.31 | 53MCC/SCO
69STU/WES
69STU/WES | $\Delta_{f}S^{\circ} = \\ \Delta_{f}G^{\circ} = \\ \ln K_{f} = $ | | -542.05
4.82
-1.95 | | | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = \\ -$ | | 2.06
- 0.83 | | | | (1)(H))+(1 | \times C-(H)(C) ₂ (S);
sub) rsc), $\sigma = 1$ | | C ₅ H ₁₀ S
₂ (C) ₂) + | | Liquid phase $\Delta_t H^\circ = C_{t'} = C_{t'}$ | -140.50
175.06 | -139.25
169.66 | -1.25
5.40 | 58HUB/GOO
53MCC/SCO | | • | re – Calculated | | Reference | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | 246.44 | 248.99
-458.88
-2.44
0.98 | - 2.55 | 53MCC/SCO | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | -47.91
107.91
361.41 | - 50.21
109.74
365.34 | 2.30
- 1.83
- 3.93 | 61BER/SCO
69STU/WES
69STU/WES | | (3×C-(I | /- \ // \ | \times C-(H) ₂ (C) ₂) | , , , , , | " | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -348.27
53.63
-21.63 | | | | (1×C-(0 | | ×-CH ₃ corr (q | • 77. | Reference | Liquid phas $ \Delta_t H^\circ - C_\rho^\circ = $ | se
- 89.50
165.23 | - 85.34
167.48 | 4.16
2.25 | 61BER/SCO
61BER/SCO | | Gas phase $\Delta_r H^\circ = C_\rho^\circ = S^\circ =$ | -127.03
143.51
386.94 | - 124.37
142.86
376.87 | - 2.66
0.65
10.07 | 62SCO/DOU
69STU/WES
69STU/WES | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = -\infty$ | 256.86 | 255.51
- 458.10
51.24
- 20.67 | 1.35 | 61BER/SCO | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -467.31
14.96
-6.03 | | | | | | | · | TABLE 42. Thiols (31) - Continued TABLE 42. Thiols (31) - Continued | | Literature | - Calculated | = Residual
 | Reference | Literat | ure – Calculated = Residua | al Reference | |---
--|--|-----------------|--|--|--|---------------------------------------| | as phase | | | | | Gas phase | | | | Δ _t H° = | -96.10 | - 90.78 | -5.32 | 72GOO2 | $\Delta_{\rm f}H^{\rm o}=-115.10$ | -113.11 -1.99 | 72GOO2 | | C _p = | | 137.68 | | | C _p = | 141.09 | | | iquid phas | se | | | | Liquid phase | | | | | - 140.70 | - 136.72 | -3.98 | 72GOO2 | $\Delta_t H^\circ = -154.40$ | -154.61 0.21 | 72GOO2 | | $C_p^{\circ} =$ | 192.63 | 195.01 | -2.38 | 67MES/TOD | $C_p^{\circ} =$ | 200.28 | | | S* = | 258.57 | 256.34 | 2.23 | 67MES/TOD | <i>S</i> * = | 302.13 | | | $\Delta_f S^\circ =$ | | -593.58 | | | $\Delta_f S^\circ =$ | -542.05 | | | $\Delta_t G^\circ =$ | | 40.26 | | | $\Delta_i G^{\circ} =$ | 7.00 | | | $lnK_f =$ | | -16.24 | | | $lnK_f =$ | -2.82 | | | | | | | | | | | | (3×C-(I | | | | C ₅ H ₁₂ S
rr (tertiary)) +
corr (tertiary)) | | ethiol
(1 × C-(H)(C) ₃) + (2 × -CH
1 × C-(C) ₃ (S)) + (1 × -CH ₃ | | | (| , , ,, | - Calculated | | Reference | | ure – Calculated = Residua | | | Gas phase | | | | | Gas phase | | | | $\Delta_i H^\circ =$ | - 121.30 | - 121.97 | 0.67 | 72GOO2 | $\Delta_t H^\circ = -147.90$ | -144.37 -3.53 | 72GOO2 | | $C_p^{\circ} =$ | -121.50 | 143.32 | 0.07 | 720002 | $C_p^o =$ | 165.78 | 720002 | | Liquid pha | | | | | Liquid phase | | | | aquia pila
Δ _i H° = | 158.80 | - 160.15 | 1.35 | 72GOO2 | $\Delta_t H^\circ = -187.20$ | -184.59 -2.61 | 72GOO2 | | $C_p^{\circ} =$ | 150.00 | 199.94 | | | $C_p^{\circ} =$ | 227.52 | | | S° = | | 295.35 | | | S° = | 308.40 | | | Δ _f S° = | | -548.83 | | | $\Delta_{f}S^{\circ} =$ | - 672.09 | | | $\Delta_{\rm f} G^{\circ} =$ | | 3.48 | | | $\Delta_t G^{\circ} =$ | 15.79 | | | $lnK_f =$ | | -1.41 | | | $lnK_f =$ | - 6.37 | · · · · · · · · · · · · · · · · · · · | | | | | | | 2-Methyl-2-pentaneth | | Cal | | (3×C-(1 | hyl-1-propane
H) ₃ (C)) + (1:
H) ₂ (C)(S)) + | | ×-CH3 corr (| C₅H ₁₂ S
quaternary))+ | $(3 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) +$ | $(1 \times C - (C)_3(S)) + (2 \times -CH_3)$ | - | | (3×C-(1 | H) ₃ (C))+(1:
H) ₂ (C)(S))+ | \times C-(C) ₄) + (3 |) | | $(2 \times C - (H)_2(C)_2) +$ | $(1 \times C - (C)_3(S)) + (2 \times -CH_3)$ | corr (quaternary)) | | (3×C-(1)
(1×C-(1) | $(H)_3(C) + (1:H)_2(C)(S) + (1:H)_2(C)(S)$ | × C-(C) ₄) + (3
(1 × S-(C)(H)
e – Calculated |)
= Residual | quaternary)) + Reference | (2×C-(H) ₂ (C) ₂)+ Literate Gas phase | $(1 \times C - (C)_3(S)) + (2 \times -CH_3)$ $(1 \times S - (C)(H))$ ure - Calculated = Residua | corr (quaternary) | | $(3 \times C - (1 \times C + ($ | H)₃(C)) + (1:
H)₂(C)(S)) +
Literatur | × C-(C) ₄) + (3
(1 × S-(C)(H)
e - Calculated
- 125.79 |) | quaternary))+ | $(2 \times C - (H)_2(C)_2) +$ Literate Gas phase $\Delta_t H^\circ = -148.30$ | $(1 \times C - (C)_3(S)) + (2 \times -CH_3)$
$(1 \times S - (C)(H))$
ure - Calculated = Residua
-145.00 - 3.30 | corr (quaternary) | | (3×C-(1)
(1×C-(1) | $(H)_3(C) + (1:H)_2(C)(S) + (1:H)_2(C)(S)$ | × C-(C) ₄) + (3
(1 × S-(C)(H)
e – Calculated |)
= Residual | quaternary)) + Reference | (2×C-(H) ₂ (C) ₂)+ Literate Gas phase | $(1 \times C - (C)_3(S)) + (2 \times -CH_3)$ $(1 \times S - (C)(H))$ ure - Calculated = Residua | corr (quaternary) | | $(3 \times C - (1 C))))))))))))))))))))$ | H) ₃ (C)) + (1:
H) ₂ (C)(S)) +
Literatur
- 129.00 | × C-(C) ₄) + (3
(1 × S-(C)(H)
e - Calculated
- 125.79 |)
= Residual | quaternary)) + Reference | $(2 \times C - (H)_2(C)_2) +$ Literate Gas phase $\Delta_t H^\circ = -148.30$ | $(1 \times C - (C)_3(S)) + (2 \times -CH_3)$
$(1 \times S - (C)(H))$
ure - Calculated = Residua
-145.00 - 3.30 | corr (quaternary) Reference | | $(3 \times C - (1 C)))))))))))))))))))$ | H) ₃ (C)) + (1:
H) ₂ (C)(S)) +
Literatur
- 129.00 | × C-(C) ₄) + (3
(1 × S-(C)(H)
e - Calculated
- 125.79 |)
= Residual | quaternary)) + Reference | $(2 \times C - (H)_2(C)_2) +$ Literate Gas phase $\Delta_t H^{\circ} = -148.30$ $C_p^{\circ} =$ | $(1 \times C - (C)_3(S)) + (2 \times -CH_3)$
$(1 \times S - (C)(H))$
ure - Calculated = Residua
-145.00 - 3.30 | Reference | | $(3 \times C - (1 \times C + ($ | H) ₃ (C)) + (1:
H) ₂ (C)(S)) +
Literatur
- 129.00 | ×C-(C) ₄) + (3
(1×S-(C)(H))
e - Calculated
-125.79
140.38 | -3.21 | quaternary)) + Reference 72GOO2 | $(2 \times C - (H)_2(C)_2) +$ Literate Gas phase $\Delta_t H^\circ = -148.30$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = -188.30$ | $(1 \times C - (C)_3(S)) + (2 \times -CH_3)$
$(1 \times S - (C)(H))$
ure - Calculated = Residua
- 145.00 - 3.30
165.75 186.32 - 1.98 | I Reference 72GOO2 | | $(3 \times C - (1 C)))))))))))))))))))$ | H) ₃ (C)) + (1:
H) ₂ (C)(S)) +
Literatur
- 129.00 | ×C-(C) ₄) + (3
(1×S-(C)(H))
e - Calculated
-125.79
140.38
-164.72
195.20 | -3.21 | quaternary)) + Reference 72GOO2 | $(2 \times C - (H)_2(C)_2) +$ Literate Gas phase $\Delta_t H^\circ = -148.30$ $C_p^\circ =$ Liquid phase | $(1 \times C - (C)_3(S)) + (2 \times -CH_3)$
$(1 \times S - (C)(H))$
ure - Calculated = Residua
- 145.00 - 3.30
165.75 186.32 - 1.98
230.50 | I Reference 72GOO2 | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid pha $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | H) ₃ (C)) + (1:
H) ₂ (C)(S)) +
Literatur
- 129.00 | ×C-(C) ₄) + (3
(1×S-(C)(H))
e - Calculated
- 125.79
140.38
- 164.72
195.20
278.29 | -3.21 | quaternary)) + Reference 72GOO2 | $(2 \times C - (H)_2(C)_2) +$ Literate Gas phase $\Delta_t H^\circ = -148.30$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = -188.30$ $C_p^\circ =$ $S^\circ =$ | $(1 \times C - (C)_3(S)) + (2 \times -CH_3)$
$(1 \times S - (C)(H))$
ure - Calculated = Residua
- 145.00 - 3.30
165.75 186.32 - 1.98
230.50
313.75 | Reference | | $(3 \times C - (1 C))))))))))))))))))$ | H) ₃ (C)) + (1:
H) ₂ (C)(S)) +
Literatur
- 129.00 | ×C-(C) ₄) + (3
(1×S-(C)(H))
e - Calculated
-125.79
140.38
-164.72
195.20 | -3.21 | quaternary)) + Reference 72GOO2 | $(2 \times C - (H)_2(C)_2) +$ Literate Gas phase $\Delta_t H^\circ = -148.30$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = -188.30$ $C_p^\circ =$ | $(1 \times C - (C)_3(S)) + (2 \times -CH_3)$
$(1 \times S - (C)(H))$
ure - Calculated = Residua
- 145.00 - 3.30
165.75 186.32 - 1.98
230.50 | Reference 72GOO2 | TABLE 42. Thiols (31) - Continued TABLE 43. Sulfides (32) | Benzenethio
(1 × S–(C | | < C _B -(S)) + (5× | $C_B-(H)(C_B)$ | C_6H_6S ₂), $\sigma = 2$ | Dimethyl so
(2×C-(I | | ×S-(C) ₂), σ = | : 18 | C₂H ₆ | |---|---|--|----------------------|--|---|-----------------------------------|---|-----------------------|--| | | Literature | e – Calculated = | Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase
$\Delta_t H^\circ =$
$C_p^\circ =$
$S^\circ =$
$\Delta_t S^\circ =$
$\Delta_t G^\circ =$ | 112.40
104.89
336.85 | 112.40
104.89
336.85
- 121.36
148.58 | 0.00
0.00
0.00 | 56SCO/MCC
69STU/WES
69STU/WES | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | -37.53
74.10
285.80 | -37.53
74.10
285.80
-149.45
7.03 | 0.00
0.00
0.00 | 57MCC/HUB
69STU/WES
69STU/WES | | $lnK_f =$ | | - 59.94 | | | $lnK_f =$ | | - 2.84 | | | | Liquid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | 63.70
173.22
222.80 | 63.70
173.22
222.80
- 235.41
133.89
- 54.01 | 0.00
0.00
0.00 | 56SCO/MCC
56SCO/MCC
56SCO/MCC | Liquid phas $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | se
-65.40
118.11
196.40 | -65.40
118.11
196.40
-238.85
5.81
-2.34 | 0.00
0.00
0.00 | 57MCC/HUB
42OSB/DOE
42OSB/DOE | | | C)(H))+(1×
(H)(C _B) ₂) | $C-(H)_2(C_B)(S)$
e – Calculated = | | C_7H_8S $C)(C_B)_2) +$ Reference | Ethyl methy
(1×C-(F
(1×S-(C | $(1)_3(C) + (1)_2$, $\sigma = 9$ | × C-(H)3(S)) +
re – Calculated | | C ₃ H _e
C)(S)) +
Reference | | Gas phase $\Delta_t H^\circ =$ | 92.80 | 92.80 | 0.00 | 72GOO2 | Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ | -59.62
95.10 | - 60.70
95.00 | 1.08
0.10 | 51SCO/FIN
69STU/WES | | Liquid pha
Δ _f H° = | se
36.20 | 36.20 | 0.00 | 72GOO2 | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} =$ | 333.10 | 333.43
-238.13
10.30
-4.15 | -0.33 | 69STU/WES | | | | | | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
91.60
144.64
239.00 | -92.17
142.29
237.49
-334.07
7.43
-3.00 | 0.57
2.35
1.51 | 54HUB/WAD
51SCO/FIN
51SCO/FIN | | | | | | | Diethyl sulf
(2×C-(H | fide
1)3(C))+(2 | × C-(H)2(C)(S |
))+(1×S-(C) | $C_4H_{10}S_{2}$, $\sigma = 18$ | | | | | | | | Literatur | e – Calculated | = Residual | Reference | | | | | | | Gas phase $ \Delta_t H^\circ = C_\rho^\circ = S^\circ - \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0 $ | - 83.74
117.03
368.00 | -83.87
115.90
369.54
-338.33
17.00
-6.86 | 0.13
1.13
-1.54 | 52SCO/FIN2
69STU/WES
69STU/WES | | TABLE 43. | Sulfides | (32) - | Continued | |-----------|----------|--------|-----------| |-----------|----------|--------|-----------| | TABLE 43. | Sulfides | (32) - | Continued | |-----------|----------|--------|-----------| |-----------|----------|--------|-----------| | (2×C-(H | ide (Contina
() ₃ (C)) + (2 > | 1 ed)
< C-(H)2(C)(S) |))+(1×S-(C) | $C_4H_{10}S$ $\rho_2), \sigma = 18$ | | $H)_3(C)) + (2$ | $\times C - (H)_2(C)_2$
+ $(1 \times S - (C)_2)$, | | C ₅ H ₁₂
(S)) + | |--|---|--|----------------------------|---------------------------------------|---|------------------------------|---|-----------------------------|---| | | Literature | e – Calculated | = Residual | Reference | (11.0) | | re – Calculated | | Reference | | Liquid phas | 20 | | | | | | | | | | | 119.40
171.42
269.28 | 118.94
166.47
278.58 | -0.46
4.95
-9.30 | 58HUB/GOO
52SCO/FIN2
52SCO/FIN2 | Gas phase $\Delta_f H^\circ = C_p^\circ =$ | - 102.17
140.75 | - 101.96
140.78 | -0.21
-0.03 | 61MCC/FIN
69STU/WES | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -429.29
9.05
-3.65 | | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | 411.80 | 411.75
-432.43
26.97
-10.88 | 0.05 | 69STU/WES | | sopropyl n | nethyl sulfid | e | | C ₄ H ₁₀ S | Liquid pha | ise | | | | | | | × C-(H)3(S))+
CH3 corr (tertia | | | $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | - 142.90
200.92
307.48 | -143.63
203.13
302.25 | 0.73
-2.21
5.23 | 61MCC/FIN
61MCC/FIN
61MCC/FIN | | | Literatur | e – Calculated | = Residual | Reference | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -541.93
17.95
-7.24 | | | | Gas phase $\Delta_t H^\circ =$ | -90.42 | - 90.19 | -0.23 | 55MCC/FIN | | | | · | | | $C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ $ | 117.15
359.30 | 120.12
362.39
-345.48
12.82 | 2.97
3.09 | 69STU/WES
69STU/WES | | | × C-(H) ₂ (C) ₂) | + (2×C-(H) ₂ | C ₅ H ₁₂
(C)(S)) + | | $lnK_f =$ | <u> </u> | -5.17 | | | | Literatur | re – Calculated | = Residual | Reference | | Liquid pha $ \Delta_t H^\circ = C_p^\circ = $ | se
- 124.70
172.38 | - 123.44
172.37 | - 1.26
0.01 | 58HUB/GOO
55MCC/FIN | Gas phase $\Delta_t H^\circ =$ | - 104.60 | - 104.50 | -0.10 | 61MCC/FIN | | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 0$ | 263.09 | 263.09
- 444.78
9.17
- 3.70 | 0.00 | 55MCC/FIN | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = 0$ | 139.12
414.10 | 138.79
414.46
-429.72
23.62 | 0.33
-0.36 | 69STU/WES
69STU/WES | | | ppyl sulfide
H) ₃ (C))+(1 | × C-(H)3(S)) + | - (1×C-(H) ₂ (| C ₄ H ₁₆ S | $lnK_f =$ Liquid pha $\Delta_t H^\circ =$ | use
- 144.80 | - 9.53
- 144.67 | -0.13 | 61MCC/FIN | | | H) ₂ (C)(S)) + | $(1 \times S - (C)_2)$, o | r = 9 | | $C_p^{\circ} = S^{\circ} =$ | 198.41
309.53 | 196.89
310.96 | 1.52
-1.43 | 61MCC/FIN
61MCC/FIN | | | Literatu | e – Calculated | = Residual | Reference | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | | -533.22
14.31
-5.77 | | | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \Delta_t G^\circ = S^\circ $ | -81.76
117.36
371.70 | -81.33
117.89
372.59
-335.28
18.63 | - 0.43
- 0.53
- 0.89 | 57SCO/FIN
69STU/WES
69STU/WES | Butyl ethyl | | × C-(H) ₂ (C) ₂) | + (2 × C-(H) ₂ (| C ₆ H ₁₄ (C)(S)) + | | $lnK_f =$ | | -7.52 | | | | Literatur | re – Calculated | = Residual | Reference | | Liquid phate $\Delta_{i}H^{\circ} =$ | nse
- 118.50 | 117.90 | - 0.60 | 58HUB/GOO | Gas phase | | | | | | $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = 0$ | 171.63
272.54 | 172.71
269.87
- 438.00
12.69 | - 1.08
2.67 | 57SCO/FIN
57SCO/FIN | $\Delta_t H^\circ = C_p^\circ = S^\circ - \Delta_t S^\circ =$ | - 125.19
161.96
453.00 | -125.13
161.68
453.62
-526.87 | - 0.06
0.28
- 0.62 | 62MAC/MAY
69STU/WES
69STU/WES | | | sulfide (Cos
(C_3)) + (2
(C_2)), $\sigma = 9$ | ntinued) \times C-(H) ₂ (C) ₂) | + (2×C-(H) ₂ (| $C_6H_{14}S$ $(C)(S)) +$ | | | $X \times C - (H)_2(C)_2$ | + (2 × C-(H) ₂ (| (C)(S) + | |--|---|---|---------------------------|----------------------------------|----------------------------------|------------------------|--|--|--------------| | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid phas | e | | | | Gas phase | | | | | | | - 172.30 | - 170.40 | - 1.90 | 62MAC/MAY | $\Delta_c H^{\circ} =$ | - 125.35 | - 125.13 | -0.22 | 61MCC/FIN | | $C_p^{\circ} =$ | | 227.31 | • | | $C_p^{\circ} =$ | 161.21 | 161.68 | -0.47 | 69STU/WES | | S° = | | 343.34 | | | S° == | 448.36 | 447.86 | 0.50 | 69STU/WES | | $\Delta_f S^\circ =$ | | -637.15 | | | $\Delta_f S^\circ =$ | | -532.63 | | | | $\Delta_{\mathbf{f}}G^{\circ} - \\ \ln K_{\mathbf{f}} =$ | | 19.57
- 7.89 | | | $\Delta_t G^\circ = \ln K_t =$ | | 33.67
13.58 | | | | | | | | | | | | ······································ | | | | | | | | Liquid pha | | | | | | Diisopropyl | | | | $C_6H_{14}S$ | $\Delta_t H^\circ =$ | -169.90 | - 170.40 | 0.50 | 61MCC/FIN | | | | \times C-(H)(C) ₂ (S | | | $C_p^{\circ} =$ | 225.48 | 227.31 | -1.83 | 61MCC/FIN | | (4×-CH | corr (terti | ary))+(1×S-(| $(C)_2$, $\sigma = 162$ | 4 | S° = | 338.28 | 343.34 | ~ 5.06 | 61MCC/FIN | | | T 14 . | | _ D!d! | D of ones: | $\Delta_f S^\circ =$ | | -637.15 | | | | | Literatui | e – Calculated | = Residuai | Reference | $\Delta_t G^\circ = \ln K_t =$ | |
19.57
7.89 | | | | Gas phase | | | | | | | | | | | $\Delta_t H^\circ =$ | - 141.25 | - 142.85 | 1.60 | 62MAC/MAY | | | | | | | $C_p^{\circ} =$ | 169.24 | 166.14 | 3.10 | 69STU/WES | Butyl propy | yl sulfide | | | C7H16 | | S° = | 415.47 | 427.45 | - 11.98 | 69STU/WES | | | \times C-(H) ₂ (C) ₂) | + (2 × C-(H)) | | | Δ _r S° - | | -553.04 | | , | | $(2)_2$, $\sigma = 9$ | - (/2(-/2) | (| -/(-// | | $\Delta_f G^\circ =$ | | 22.04 | | | | - / | | | | | $lnK_f =$ | | -8.89 | | | | Literatu | re – Calculated | = Residual | Reference | | | | | | | | | | | | | Liquid phas | | 101 40 | 0.12 | 62MAC/MAY | Gas phase $\Delta_t H^\circ =$ | 145.04 | 145 76 | 0.10 | COCTI INVICE | | $\Delta_t H^\circ =$ | -181.60
232.00 | -181.48
226.63 | -0.12
5.37 | 62MAC/MAY
67MES/TOD | - | - 145.94
184.05 | - 145.76
184.57 | -0.18 | 69STU/WES | | $C_p^{\circ} = S^{\circ} =$ | 313.05 | 329.78 | - 16.73 | 67MES/TOD | $C_p^{\circ} = S^{\circ} =$ | 493.95 | 492.78 | -0.52
1.17 | 69STU/WES | | $\Delta_f S^\circ =$ | 313.03 | -650.71 | 10.75 | O/MEG/10D | $\Delta_t S^\circ =$ | 475.75 | - 624.02 | 1.17 | 69STU/WES | | $\Delta_f G^\circ =$ | | 12.53 | | | $\Delta_{\rm f}G^{\circ} =$ | | 40.29 | | | | $lnK_f =$ | | -5.05 | | | $\ln K_{\rm f} =$ | | -16.25 | | | | | | | | | | | | | | | Methyl pen | tul multida | | | C ₆ H ₁₄ S | Liquid phas $\Delta_t H^\circ =$ | se | -196.13 | | | | | • | \times C-(H) ₂ (C) ₂) | + (1 × C-(H)-) | | $C_{\rho}^{\circ} =$ | | 257.73 | | | | | | $(1 \times S - (C)_2)$ | | 3))+ | S° = | | 375.72 | | | | (1 > C (1 | 1/2(0)(0)) | (1 ~ 0 (0)2), (| , , | | $\Delta_{f}S^{\circ} =$ | | -741.08 | | | | | Literatu | e – Calculated | = Residual | Reference | $\Delta_t G^{\circ} =$ | | 24.82 | | | | | | | | | $lnK_f =$ | | - 10.01 | | | | Gas phase | | | | | | | | | | | $\Delta_{\rm f} H^{\circ} =$ | - 122.76 | -122.59 | -0.17 | 62MAC/MAY | | | | | | | $C_p^{\circ} =$ | 163.59 | 163.67 | -0.08 | 69STU/WES | Ethyl penty | l sulfide | | | C7H16S | | S° = | 450.74 | 450.91 | -0.17 | 69STU/WES | (2×C-(I | $H_{3}(C) + (3$ | \times C-(H) ₂ (C) ₂) | $+(2\times C-(H)_2($ | | | $\Delta_f S^\circ =$ | | - 529.58 | | | (1×S-(C | $(2)_2$, $\sigma = 9$ | | | | | $\Delta_f G^\circ =$ | | 35.30 | | | | | | | • | | lnK _t = | | - 14.24 | | | | Literatus | re – Calculated | - Residual | Reference | | | | | | | · | | | | | | Liquid pha | | 460.00 | | (0) (1) (0) (1) | Gas phase | 4.45.00 | | | | | $\Delta_t H^\circ -$ | -167.10 | - 169.36 | 2.26 | 62MAC/MAY | $\Delta_{\rm r}H^{\circ}$ – | - 145.81 | - 145.76 | - 0.05 | 69STU/WES | | $C_p^{\circ} =$ | | 233.55 | | | $C_p^{\circ} =$ | 184.84 | 184.57 | 0.27 | 69STU/WES | | | | 334.63 | | | S° = | 491.95 | 492.78 | -0.83 | 69STU/WES | | S° = | | 645.86 | | | $\Delta_f S^\circ =$ | | - 624.02 | | | | $\Delta_f S^\circ =$ | | | | | . ~ - | | | | | | | | 23.20
- 9.36 | | | $\Delta_t G^\circ = \ln K_t =$ | | 40.29
- 16.25 | | | TABLE 43. Sulfides (32) - Continued | | $(1)_3(C) + (3 \times C - (H)_2(G)_2), \ \sigma = 9$ | C)2) + (2 × C (11)2 | (0)(0)) ! | | 5-(C) ₂) | | x = (C)3(O)) 1 | (or cris co. | rr (quat/quat))+ | |----------------------------------|--|----------------------------------|----------------------------------|------------------------------|----------------------|---------------|--|----------------------|----------------------------------| | | Literature – Calcul | ated = Residual | Reference | | | Literatu | re – Calculated | = Residual | Reference | | Liquid phas | se . | | | Gas ph | ase | | | | | | $\Delta_t H^{\circ} =$ | - 196.1 | 3 | | $\Delta_f H^\circ =$ | | 188.90 | - 183.37 | -5.53 | 62MAC/MAY | | $C_p^{\circ} =$ | 257.7 | 3 | | $C_p^o =$ | = | | 211.06 | | | | s° = | 375.7 | 2 | | | | | | | | | $\Delta_f S^\circ =$ | -741.0 | 8 | | | | | | | | | $\Delta_f G^\circ =$ | 24.8 | | | Liquid | phase | | | | | | $lnK_f =$ | -10.0 | 1 | | $\Delta_f H^\circ =$ | | 232.60 | -226.30 | -6.30 | 62MAC/MAY | | | | | | $C_p^{\circ} =$ | | | 281.79 | | | | | | | | S° = | | | 355.88 | | | | | | 4 | | Δ _f S° = | | | -897.23 | | | | Diisobutyl s | sulfide | | C ₈ H ₁₈ S | $\Delta_f G^\circ =$ | | | 41.21 | | | | (4 × C(F | $H_{3}(C) + (2 \times C - (H))(4)$
$H_{2}(C)(S) + (1 \times S - (C))$ | | | lnK _f = | | | -16.62 | | ··· | | | Literature – Calcu | lated = Residual | Reference | ** | | .e | | | a w . | | | | | | Hexyl n | • | | C (II) (C)) | . (1) (7 (7) | C ₇ H ₁₆ S | | C | | | | (1 × 0 | ~(n) ₃ | (0))+(4 | \times C-(H) ₂ (C) ₂ | + (1 × C-(H)2 | (C)(3))+ | | Gas phase | 170.50 170.5 | | COMACIMAN | (1 X S | 5-(C) ₂) |)+(1×C | $-(H)_3(S)), \sigma =$ | 9 | | | | -179.50 -179.7 | | 62MAC/MAY | | | T | 01111 | n | D (| | $C_p^{\circ} =$ | 207.5 | | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid phas | | | | Gas ph | | | • | | | | • | -229.20 -232.4 | | 62MAC/MAY | $\Delta_{\rm f}H^{\circ} =$ | | 145.27 | -143.22 | - 2.05 | 62MAC/MAY | | $C_p^{\circ} =$ | 282.1 | 9 | | $C_p^{\circ} =$ | | 186.48 | 186.56 | - 0.08 | 69STU/WES | | S° = | 397.4 | Ю | | S° = | | 489.70 | 490.07 | - 0.37 | 69STU/WES | | $\Delta_{\mathbf{f}}S^{\circ} =$ | -855.7 | ' 1 | | $\Delta_{\rm f} S^{\circ} =$ | | | - 626.73 | | | | $\Delta_l G^\circ =$ | 22.7 | 71 | | $\Delta_i G^\circ =$ | = | | 43.64 | | | | $lnK_f =$ | 9,1 | | | $lnK_f =$ | - | | - 17.60 | | | | | | | | Liquid ; | | | | | | | Diisopentyl | | | $C_{10}H_{22}S$ | $\Delta_{\rm f}H^{\circ}$ = | | 190.46 | - 195.09 | 4.63 | 62MAC/MAY | | | H)₃(C))+(2×C–(H)(| | | C_p° = | | | 263.97 | | | | (2×C-(I | $H_{2}(C)_{2} + (2 \times C - (H))_{2}$ | $_{2}(C)(S))+(1\times S-(C)(S))$ | $\mathbb{C})_2)$ | S° = | | | 367.01 | | | | | | | | Δ _f S° = | | | - 749.79 | | | | | Literature – Calcu | lated≔ Residual | Reference | $\Delta_t G^{\circ} =$ | = | | 28.46 | | | | | | | | $lnK_f =$ | | | -11.48 | | | | Gas phase | | | | | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -221.50 -221.0 | | 62MAC/MAY | | | | | | | | $C_p^{\circ} =$ | 253.3 | 30 | | Dibutyl | sulfid | e | | | C ₈ H ₁₈ S | | | | | | (2×0 | C-(H)3 | (C))+(4 | \times C-(H) ₂ (C) ₂) | $+(2\times C-(H)_2)$ | (C)(S))+ | | | | | | (1×5 | S-(C) ₂) | $\sigma = 18$ | 3 | | | | Liquid pha | | | | | | | | | | | $\Delta_t H^\circ =$ | -281.80 -283.8 | 38 2.08 | 62MAC/MAY | | | Literatu | re – Calculated | = Residual | Reference | | $C_p^{\circ} =$ | 343.0 | | | | | | | | <u> </u> | | S° = | 462.1 | | | | | | | | | | $\Delta_f S^\circ =$ | - 1063. | | | Gas ph | | | | | | | $\Delta_f G^{\circ} =$ | 33.1 | 22 | | $\Delta_{\rm f}H^{\circ}$ = | | 167.32 | -166.39 | ~ 0.93 | 61MCC/FIN | | $lnK_f =$ | - 13.4 | 1 0 | | $C_p^{\circ} =$ | = : | 206.94 | 207.46 | -0.52 | 69STU/WES | | | | | | S° = | = . | 526.52 | 526.18 | 0.34 | 69STU/WES | | | | | | $\Delta_f S^\circ =$ | | | - 726.93 | | | | | | | | $\Delta_f G^\circ =$ | | | 50.35 | | | | | | | | $lnK_f =$ | | | -20.31 | | | | | | | | nus; - | | | 20.31 | | | TABLE 43. Sulfides (32) - Continued | (2×C-(F | fide (Contin
$f(C)$) + (4 $f(C)$), $\sigma = 18$ | \times C-(H) ₂ (C) ₂) + | -(2×C-(H) ₂ | $C_8H_{18}S$ (C)(S))+ | | | 5×C-(H) ₂ (C) ₂) | + (2×C-(H) ₂ | $C_{10}H_{22}S$
(C)(S)) + | |---|---|--|------------------------|--|---|----------------------|--|-----------------------------|-----------------------------------| | | Literatur | e – Calculated = | Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid phas | se | | | | Gas phase | | | | | | $\Delta_t H^\circ =$ | -220.70 | -221.86 | 1.16 | 61MCC/FIN | $\Delta_f H^\circ =$ | - 208.53 | -207.65 | -0.88 | 62MAC/MAY | | $C_p^{\circ} =$ | 284.34 | 288.15 | -3.81 | 61MCC/FIN | $C_p^{\circ} =$ | 252.67 | 253.24 | -0.57 | 69STU/WES | | S° = | 405.09 | 408.10 | -3.01 | 61MCC/FIN | S° = | 604.38 | 604.50 | -0.12 | 69STU/WES | | $\Delta_f S^\circ =$ | | - 845.01 | | | $\Delta_{\rm f}S^{\circ} = 0$ | | -921.24 | | | | $\Delta_f G^\circ = \ln K_f =$ | | 30.08
12.13 | | | $\Delta_t G^\circ = \ln K_t =$ | | 67.02
27.03 | | | | | | | | | | | | | | | | | | | | Liquid pha | se | | | | | Ethyl hexyl | sulfide | | | $C_8H_{18}S$ | $\Delta_f H^\circ =$ | -266.40 | -273.32 | 6.92 | 62MAC/MAY | | | | \times C-(H) ₂ (C) ₂)+ | $-(2\times C-(H)_2$ | (C)(S))+ | $C_p^{\circ} =$ | | 348.99 | | | | | $C)_2), \sigma = 9$ | | . , | | S° = | | 472.86 | | | | , , | | | | | $\Delta_{f}S^{\circ} =$ | | - 1052.88 | | | | | Literatur | e – Calculated = | = Residual | Reference | $\Delta_t G^\circ =$ | | 40.59 | | | | | | | | | $lnK_f =$ | | - 16.38 | | | | Gas phase | 466.10 | 466.00 | 0.04 | COCTILATIO | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -166.40 | - 166.39 | -0.01 | 69STU/WES | mark 3 to 1 | 116" ? | | | | | $C_p^{\circ} \approx$ | 207.69 | 207.46 | 0.23 | 69STU/WES | Butyl hepty | | 1a (II) (0) \ | | C ₁₁ H ₂₄ S | | S° = | 530.91 | 531.94 | -1.03 | 69STU/WES | | | $V \times C - (H)_2(C)_2$ | $+(2\times C-(H)_2)$ | (C)(S))+ | | $\Delta_{t}S^{n} =$ | | -721.17 | | | (1×5-(C | $C)_2), \sigma = 9$ | | | | | $\Delta_i G^\circ =$ | | 48.63 | | | | Y !4 | 0-11-41 | D | D 0 | | $lnK_f =$ | | - 19.62 | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid pha | ise | | | | Gas phase | | | | | | $\Delta_t H^\circ =$ | | - 221.86 | | | $\Delta_t H^\circ =$ | -229.16 | -228.28 | - 0.88 | 69STU/WES | | $C_p^{\circ} =$ | | 288.15 | | | $C_p^{\circ} =$ | 275.56 | 276.13 | - 0.57 | 69STU/WES | | S° = | | 408.10 | | | S° = | 649.11 | 649.42 | -0.31 |
69STU/WES | | $\Delta_f S^\circ =$ | | - 845.01 | | | $\Delta_{f}S^{\circ} =$ | | - 1012.62 | 0.01 | 0,010,1120 | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 30.08 | | | $\Delta_{\mathfrak{l}}G^{\circ} =$ | | 73.63 | | | | $lnK_f =$ | | - 12.13 | | | $lnK_f =$ | | -29.70 | | | | | | | | · 1879 1879 1879 1879 1879 1879 1879 1879 1879 1879 1879 1879 1879 187 | | | ···· | | | | | | | | | Liquid phas | se | | | | | | thyl sulfide | | (46. (11) | C ₈ H ₁₈ S | $\Delta_f H^\circ =$ | | - 299.05 | | | | (1×C-(1 | H) ₃ (C)) + (5 | × C-(H) ₂ (C) ₂) + | F(1×C-(H)2 | (C)(S))+ | $C_p^{\circ} =$ | | 379.41 | | | | (1×5-(0 | $C)_2)+(1\times C)_2$ | $-(H)_3(S)), \sigma =$ | y | | S° = | | .505.24 | | | | | | 0.111 | Deside of | D - C | $\Delta_{\rm f} S^{\circ} =$ | | - 1156.81 | | | | | Literatui | re – Calculated = | = Residual | Reference | $\Delta_{\mathbf{f}}G^{\circ} = \ln K_{\mathbf{f}} =$ | | 45.85
18.50 | | | | 0 - 1 | | | | | | <u>-</u> | | | | | Gas phase | | 162 05 | _0.12 | COSTILATES | | | | | | | $\Delta_t H^\circ =$ | -163.97 | - 163.85 | -0.12 | 69STU/WES | Dit. | es. | | | | | $C_p^{\circ} =$ | 209.33 | 209.45 | -0.12 | 69STU/WES | Dihexyl sul | | ~ (B) (O) \ | 1040 m | C ₁₂ H ₂₆ S | | S° = | 528.65 | 529.23
- 723.88 | -0.58 | 69STU/WES | | | \times C-(H) ₂ (C) ₂) | + (∠ × U~(H) ₂ (| (C)(3))+ | | $\Delta_{\rm f}S^{\circ} =$ | | | | | (1 × 2-(C | $C)_2), \sigma = 18$ | 3 | | | | $\Delta_l G^{\circ} =$ | | 51.98 | | | | T | 0.1 1 | ъ | 5 .0 | | $lnK_f =$ | | - 20.97 | | | | Literatu | re — Calculated | - Residual | Reference | | | ase. | - | | | Gas phase | | | | | | Liquid aka | 200 | - 220.82 | • | | $\Delta_r H^\circ =$ | - 249.74 | - 248.91 | - 0.83 | 69STU/WES | | Liquid pha | | - 220.02 | | | $C_p^{\circ} =$ | 298.40 | - 248.91
299.02 | -0.83
-0.62 | 69STU/WES | | $\Delta_1 H^{\circ} =$ | | 204 30 | | | Up - | 47U.TU | 477.04 | - 0.02 | U731U/WE3 | | $\Delta_r H^\circ = C_p^\circ =$ | | 294,39
300 30 | | | | 682.28 | 682 83 | D 54 | | | $\Delta_{r}H^{\circ} = C_{p}^{\circ} = S^{\circ} =$ | | 399.39 | | • | S° = | 682.28 | 682.82 | -0.54 | 69STU/WES | | $\Delta_{r}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = C_{p}^{\circ}$ | | 399.39
-853.72 | | | $S^{\circ} = \Delta_{f}S^{\circ} =$ | 682.28 | - 1115.54 | -0.54 | | | $\Delta_r H^\circ = C_p^\circ = S^\circ =$ | | 399.39 | | | S° = | 682.28 | | - 0.54 | | TABLE 43. Sulfides (32) - Continued | TABLE 43. | Sulfides (32) | Continued | |-----------|---------------|-------------------------------| | | e (Continued)
(C)) + $(8 \times C - (H)_2(C)_2) + (2 $ | $(H)_2(C)(S)$ + | | (C) + (1 | | | C ₅ H ₁₂ :
+ (1 × C-(C) ₃ (S)) + | |--|--|--
---|--|---|---------------------------------|--| | | Literature – Calculated = Residua | al Reference | (3×-cn | | ernary)), $\sigma =$ | | Reference | | Liquid phase | | | | | | | | | $\Delta_t H^\circ =$ | -324.78 | | Gas phase | | | | | | $C_p^{\circ} =$ | 409.83 | | $\Delta_{\rm f}H^{\circ} =$ | - 121.04 | - 122.21 | 1.17 | 62SCO/GOO | | $S^{\circ} =$ | 537.62 | | $C_p^{\circ} =$ | 145.02 | 142.58 | 2.44 | 69STU/WES | | $\Delta_f S^\circ =$ | - 1260.74 | | $S^{\circ} =$ | 373.25 | 373.42 | -0.17 | | | | | | | 313.43 | -470.76 | -0.17 | 69STU/WES | | $\Delta_{\rm f}G^{\circ} =$ | 51.11 | | $\Delta_f S^\circ =$ | | | | | | $lnK_f =$ | - 20.62 | | $\Delta_{\rm f}G^{\circ} =$ | | 18.15 | | | | | | | $lnK_f =$ | | -7.32 | | | | | | | | | | | | | Butyl nonyl s | ulfide | $C_{13}H_{28}S$ | Liquid phas | se | | | | | (2×C-(H) | $_{0}(C)) + (9 \times C - (H)_{2}(C)_{2}) + (2 \times C - (H)_{2}(C)_{2})$ | $(H)_2(C)(S)) +$ | $\Delta_{\rm f}H^{\circ} =$ | - 157.10 | - 157.10 | 0.00 | 62SCO/GOO | | $(1 \times S - (C)_2)$ | | | $C_p^{\circ} =$ | 199.95 | 199.95 | 0.00 | 62SCO/GOO | | ` | | | s° = | 276.14 | 276.14 | 0.00 | 62SCO/GOO | | | Literature - Calculated = Residua | al Reference | $\Delta_f S^\circ =$ | | - 568.04 | | | | | | | $\Delta_t G^\circ =$ | | 12.26 | | | | | | | $\ln K_{\rm f} =$ | | - 4.95 | | | | Gas phase | | | mari — | | 4.23 | | | | • | 270.37 - 269.54 - 0.83 | 3 69STU/WES | | | | | | | $C_p^{\circ} =$ | 321.29 321.91 -0.62 | | | | | | | | | 727.01 727.74 -0.03 | · · · · · · · · · · · · · · · · · · · | 3.Fthyl.1.n | ronene culfi | de; 4-Thia-1-h | ovono | си с | | $\Delta_f S^\circ =$ | -1206.93 |) 09310/WE3 | | | | | C ₅ H ₁₀ S | | | | | | | × C-(H) ₂ (C)(S | | | | $\Delta_{\rm f}G^{\circ} =$ | 90.31 | | (1×C-(F | $1)_{2}(C_{d})(S))$ | $+(1\times C_d-(H)(0))$ | J))+(1×Ca-(| H)2) | | $lnK_f =$ | - 36.43 | | | T itomotum | e Calculated | Bosiduol | Dafanamaa | | | | | - | Literatur | c Calculated | - Residuai | Reference | | Liquid phase | | | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -350.51 | | Gas phase | | | | | | $C_p^{\circ} =$ | 440.25 | | $\Delta_t H^{\circ} =$ | 17.80 | 18.27 | -0.47 | 62MAC/MAY2 | | S° = | 570.00 | | | | | | | | $\Delta_{c}S^{\circ} =$ | -1364.67 | | | | | | | | $\Delta_f G^\circ =$ | 56.37 | | Liquid phas | se. | | | | | $\ln K_{\rm f} =$ | - 22.74 | | $\Delta_t H^\circ =$ | -21.50 | -24.20 | 2.70 | 62MAC/MAY2 | Butyl pentad
(2×C-(H)
(1×S-(C) ₂ | $_{3}(C)) + (15 \times C - (H)_{2}(C)_{2}) + (2 \times C$ | $C_{19}H_{40}S$
-(H) ₂ (C)(S)) + | | $I)_3(C))+(1$ | × C-(H) ₂ (C)(S
(2×-CH ₃ corr | | | | (2×C-(H) | $_{3}(C)) + (15 \times C - (H)_{2}(C)_{2}) + (2 \times C$ | -(H) ₂ (C)(S))+ | (3×C-(F | $H_{3}(C) + (1 + (1)(C)_{2}(S)) +$ | | r (tertiary)) | C _s H ₁₂ S
) ₂) +
Reference | | (2×C-(H)
(1×S-(C) ₂ | $_{3}(C)$) + $(15 \times C - (H)_{2}(C)_{2})$ + $(2 \times C)_{3}$
, $\sigma = 9$ | -(H) ₂ (C)(S))+ | (3×C-(F
(1×C-(F | $H_{3}(C) + (1 + (1)(C)_{2}(S)) +$ | (2×-CH ₃ corr | r (tertiary)) |)2)+ | | (2×C-(H)
(1×S-(C) ₂ | $(3(C)) + (15 \times C - (H)_2(C)_2) + (2 \times C)_1$, $\sigma = 9$
Literature – Calculated = Residua | al Reference | (3×C-(F
(1×C-(F | $H_{3}(C) + (1 + (1 + (1 + (1 + (1 + (1 + (1 + ($ | e – Calculated | r (tertiary))
= Residual | Reference | | $(2 \times C - (H))$ $(1 \times S - (C)_2$ Gas phase $\Delta_t H^\circ = -$ | $(3(C)) + (15 \times C - (H)_2(C)_2) + (2 \times C)_2$
$(3(C)) + (15 \times C - (H)_2(C)_2) + (2 \times C)_2$
$(3(C)) + (15 \times C - (H)_2(C)_2) + (2 \times C)_2$
Literature – Calculated = Residual | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES | $(3 \times C - (H + (1 \times C - (H + (1 \times C - (H + (1 \times C - (H + (H$ | $H_{3}(C) + (1 + (1)(C)_{2}(S)) +$ | e - Calculated | r (tertiary)) |)2)+ | | $(2 \times C - (H))$ $(1 \times S - (C)_2)$ Gas phase $\Delta_t H^\circ = -C_t^\circ =$ | $(3C) + (15 \times C - (H)_2(C)_2) + (2 \times C)_1$, $\sigma = 9$
Literature – Calculated = Residual Resi | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | (3×C-(F
(1×C-(F | $H_{3}(C) + (1 + (1 + (1 + (1 + (1 + (1 + (1 + ($ | e – Calculated | r (tertiary))
= Residual | Reference | | $(2 \times C - (H))$ $(1 \times S - (C)_2)$ Gas phase $\Delta_t H^\circ = -C_t^\circ = S^\circ =$ | $^{3}(C)$) + $(15 \times C - (H)_{2}(C)_{2})$ + $(2 \times C)$
$^{3}(C)$), $\sigma = 9$
Literature – Calculated = Residual
$^{3}(C)$ = $^{3}(C)$ $^$ | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | $(3 \times C - (H + (1 \times C - (H + (1 \times C - (H + (1 \times C - (H + (H$ | $H_{3}(C) + (1 + (1 + (1 + (1 + (1 + (1 + (1 + ($ | e - Calculated | r (tertiary))
= Residual | Reference | | $(2 \times C - (H))$ $(1 \times S - (C))$ Gas phase $\Delta_t H^\circ = -C_t^\circ = S^\circ = \Delta_t S^\circ =$ | $^{3}(C)$) + $(15 \times C - (H)_{2}(C)_{2})$ + $(2 | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | Gas phase $\Delta_t H^{\circ} = C_p^{\circ} =$ | H ₃ (C)) + (1
H)(C) ₂ (S)) +
Literatur
- 117.20 | e - Calculated | r (tertiary))
= Residual | Reference | | $(2 \times C - (H))$ $(1 \times S - (C))$ Gas phase $\Delta_t H^\circ = -C_{P_t}^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | $(3C) + (15 \times C - (H)_2(C)_2) + (2 \times C)_3$, $\sigma = 9$ Literature – Calculated = Residual Resi | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | $(3 \times C - (H + (1 \times C - (H + (1 \times C - (H + (1 \times C - (H + (H$ | H ₃ (C)) + (1
H)(C) ₂ (S)) +
Literatur
- 117.20 | e – Calculated - 113.36 141.02 | r (tertiary)) = Residual - 3.84 | Reference 62MAC/MAY | | $(2 \times C - (H))$ $(1 \times S - (C))$ Gas phase $\Delta_t H^\circ = -C_t^\circ = S^\circ = \Delta_t S^\circ =$ | $^{3}(C)$) + $(15 \times C - (H)_{2}(C)_{2})$ + $(2 | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | $(3 \times C - (H + (1 (H + (1 \times C - C))))))))))))))))))))$ Liquid phas $\Delta_t H^\circ = (A_t + A_t $ | H ₃ (C)) + (1
H)(C) ₂ (S)) +
Literatur
- 117.20 | e - Calculated - 113.36 141.02 | r (tertiary))
= Residual | Reference | | $(2 \times C - (H))$ $(1 \times S - (C))$ Gas phase $\Delta_t H^\circ = -C_{P_0}^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = 0$ | $(3C) + (15 \times C
- (H)_2(C)_2) + (2 \times C)_3$, $\sigma = 9$ Literature – Calculated = Residual Resi | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1}{C_p^\circ}$ Liquid phas $\Delta_t H^\circ = C_p^\circ = \frac{1}{C_p^\circ}$ | H ₃ (C)) + (1
H)(C) ₂ (S)) +
Literatur
- 117.20 | e - Calculated - 113.36 141.02 - 150.21 196.55 | r (tertiary)) = Residual - 3.84 | Reference 62MAC/MAY | | $(2 \times C - (H))$ $(1 \times S - (C))$ Gas phase $\Delta_t H^\circ = -C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | $(3C)$) + $(15 \times C - (H)_2(C)_2)$ + $(2 \times C)$
$(3C)$), $\sigma = 9$
Literature – Calculated = Residual R | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = $ $S^\circ = $ | H ₃ (C)) + (1
H)(C) ₂ (S)) +
Literatur
- 117.20 | - 113.36
141.02
- 150.21
196.55
304.18 | r (tertiary)) = Residual - 3.84 | Reference 62MAC/MAY | | $(2 \times C - (H))$ $(1 \times S - (C))$ Gas phase $\Delta_t H^{\circ} = -C_{\rho}^{\circ} = S^{\circ} = \Delta_t S^{\circ} = L_{r} G^{\circ} G^{\circ}$ | $(3C)$) + $(15 \times C - (H)_2(C)_2)$ + $(2 \times C)$
$(3C)$), $\sigma = 9$
Literature – Calculated = Residual R | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = $ $\Delta_t G^\circ = \Delta_t G^\circ = $ | H ₃ (C)) + (1
H)(C) ₂ (S)) +
Literatur
- 117.20 | - 113.36
141.02
- 150.21
196.55
304.18
- 540.00 | r (tertiary)) = Residual - 3.84 | Reference 62MAC/MAY | | $(2 \times C - (H))$ $(1 \times S - (C)_2)$ Gas phase $\Delta_t H^{\circ} = -C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \ln K_t = \ln K_t = -1$ Liquid phase $\Delta_t H^{\circ} = -1$ | $(3C)$) + $(15 \times C - (H)_2(C)_2)$ + $(2 \times C)$
$(3C)$), $\sigma = 9$
Literature – Calculated = Residual
(394.05 - 393.32 - 0.7)
(458.48 + 459.25 0.7) | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ $ | H ₃ (C)) + (1
H)(C) ₂ (S)) +
Literatur
- 117.20 | - 113.36
141.02
- 150.21
196.55
304.18
- 540.00
10.79 | r (tertiary)) = Residual - 3.84 | Reference 62MAC/MAY | | Gas phase $\Delta_t H^\circ = -C_p^\circ = \Delta_t G^\circ = \ln K_t = -Liquid phase$ $\Delta_t H^\circ = -C_p^\circ = C_p^\circ = C_p^\circ = -Liquid phase$ $\Delta_t H^\circ = -C_p^\circ = C_p^\circ = -C_p^\circ -C_p$ | $^{3}(C)$) + $(15 \times C - (H)_{2}(C)_{2})$ + $(2 \times C)$
$^{3}(C)$), $\sigma = 9$
Literature – Calculated = Residual
$^{3}(C)$ = $^{3}(C)$ $^$ | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = $ $\Delta_t G^\circ = \Delta_t G^\circ = $ | H ₃ (C)) + (1
H)(C) ₂ (S)) +
Literatur
- 117.20 | - 113.36
141.02
- 150.21
196.55
304.18
- 540.00 | r (tertiary)) = Residual - 3.84 | Reference 62MAC/MAY | | Gas phase $\Delta_t H^\circ = -C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = \Delta_t H^\circ = -C_p^\circ = S^\circ = S_t H^\circ = S^\circ $ | $(3C) + (15 \times C - (H)_2(C)_2) + (2 \times C)_3$, $\sigma = 9$ Literature – Calculated = Residual Resi | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ $ | H ₃ (C)) + (1
H)(C) ₂ (S)) +
Literatur
- 117.20 | - 113.36
141.02
- 150.21
196.55
304.18
- 540.00
10.79 | r (tertiary)) = Residual - 3.84 | Reference 62MAC/MAY | | Gas phase $\Delta_t H^\circ = -C_p^\circ = S^\circ = \Delta_t G^\circ = \ln K_t = \Delta_t H^\circ = -C_p^\circ = S^\circ = \Delta_t H^\circ = C_p^\circ = \Delta_t H^\circ = C_p^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \frac{\Delta_t S^\circ = \Delta_t $ | $^{3}(C)$) + $(15 \times C - (H)_{2}(C)_{2})$ + $(2 \times C)$
$^{3}(C)$), $\sigma = 9$
Literature – Calculated = Residual
$^{3}(C)$ = $^{3}(C)$ $^$ | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ $ | H ₃ (C)) + (1
H)(C) ₂ (S)) +
Literatur
- 117.20 | - 113.36
141.02
- 150.21
196.55
304.18
- 540.00
10.79 | r (tertiary)) = Residual - 3.84 | Reference 62MAC/MAY | | Gas phase $\Delta_t H^{\circ} = -C_p^{\circ} = S^{\circ} = \Delta_t G^{\circ} = InK_t = InK_t = C_p^{\circ} = S^{\circ} S^{\circ}$ | $(3C) + (15 \times C - (H)_2(C)_2) + (2 \times C)_3$, $\sigma = 9$ Literature – Calculated = Residual Resi | -(H) ₂ (C)(S)) + al Reference 3 69STU/WES 7 69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ $ | H ₃ (C)) + (1
H)(C) ₂ (S)) +
Literatur
- 117.20 | - 113.36
141.02
- 150.21
196.55
304.18
- 540.00
10.79 | r (tertiary)) = Residual - 3.84 | Reference 62MAC/MAY | TABLE 43. Sulfides (32) - Continued | (4×C-(H | | × C-(H)2(C)(S)
×-CH3 corr (qu | | C ₆ H ₁₄ (
) ₂) + | |-------------------------------------|----------------------------|--|-----------------------------|---| | ···· | Literature | e – Calculated | = Residual | Reference | | Gas phase | | | | | | | - 148.00 | - 145.38 | -2.62 | 62MAC/MAY | | C _p = | | 163.48 | | 100 to | | Liquid phas | se | | | | | | - 187.30 | 183.87 | -3.43 | 62MAC/MAY | | $C_p^{\circ} =$ | | 224.13 | | | | S° = | | 317.23 | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 663.26 | | | | $\Delta_f G^\circ =$ | | 13.88 | | | | $lnK_f =$ | | -5.60 | | | | (3×C-(I | | | | C_7H_{14}
or (quaternary)) +
$(1 \times C_d - (H)(C)$ | | | Literatur | e – Calculated | = Residual | Reference | | Gas phase
Δ _t H° = | -46.70 | -43.24 | -3.46 | 62MAC/MAY | | Liquid pha
Δ _t H° = | | -89.13 | -1.87 | 62MAC/MAY | | Diphenyl so
(2×C _B -(| | C _B ~(H)(C _B) ₂)+ | $(1 \times S - (C_B)_2)$ | C ₁₂ H ₁₀ : | | | Literatur | e – Calculated | = Residual | Reference | | Gas phase | | | | | | $\Delta_t H^\circ =$ | 231.20 | 231.20 | 0.00 | 62MAC/MAY | | $C_p^{\circ} =$ | | 187.86 | | | | Liquid pha | | | | | | $\Delta_t H^\circ =$ | 163.40 | 163.40 | 0.00 | 62MAC/MAY | | C _p = | 271.12 | 271.12 | 0.00 | 31SMI/AND2 | | | | | | | | | nyl sulfide
H)3(S))+(1> | < S-(C _B)(C))+ | (1 × C _B -(S)) + | С ₇ H ₈ !
- (5 × С _в (H)(С _в) ₂ | Gas phase $\Delta_t H^\circ =$ 97.30 98.25 -0.95 72GOO2 | | Literatur | e – Calculated | = Residual | Reference |
---|---|---|------------|-----------| | Liquid pha | ise | | | | | $\Delta_t H^\circ =$ | 43.00 | 45.78 | -2.78 | 72GOO2 | | $C_p^{\circ} =$ | 206.02 | 206.02 | 0.00 | 74MES/FIN | | s° = | 252.50 | 252.50 | 0.00 | 74MES/FIN | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -342.02 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 147.75 | | | | $lnK_f =$ | | -59.60 | | | | (1×C-(| H) ₃ (C))+(1
(S))+(5×C ₁ | . , , , -,-, | | | | | H) ₃ (C))+(1
(S))+(5×C ₁ | | | | | (1×C-(| H) ₃ (C))+(1
(S))+(5×C ₁ | $_{B}$ -(H)(C _B) ₂) | | 3)(C))+ | | (1×C-(1
(1×C _B - | H) ₃ (C))+(1
(S))+(5×C ₁ | $_{B}$ -(H)(C _B) ₂) | | Reference | | $(1 \times C - (1 \times C_B - 1 $ | H) ₃ (C)) + (1
(S)) + (5 × C ₁
Literatur
77.00 | e — Calculated | - Residual | Reference | | (1×C-(1
(1×C _B - | H) ₃ (C)) + (1
(S)) + (5 × C ₁
Literatur
77.00 | g-(H)(C _B) ₂)
e Calculated | - Residual | Reference | | $(1 \times C - (1 \times C_B - 1 $ | H) ₃ (C)) + (1
(S)) + (5 × C ₁
Literatur
77.00 | 75.08 | Residual | Reference | | $(1 \times C_{-}(1 \times C_{B} - 1 C$ | H) ₃ (C)) + (1
(S)) + (5 × C ₁
Literatur
77.00 | 75.08 | Residual | Reference | | $(1 \times C - (1 \times C_B - 1 $ | H) ₃ (C)) + (1
(S)) + (5 × C ₁
Literatur
77.00 | 75.08
19.01
230.20 | Residual | Reference | | $(1 \times C - (1 \times C_B - 1 $ | H) ₃ (C)) + (1
(S)) + (5 × C ₁
Literatur
77.00 | 75.08
19.01
230.20
293.59 | Residual | 3)(C))+ | TABLE 44. Disulfides (8) # TABLE 44. Disulfides (8) - Continued | Dimethyl di
(2×C-(H | | ×S-(C)(S)), σ | $C)(S)), \sigma = 18$ | | Dipropyl disulfide (Continued)
$(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) (H)_$ | | | | $C_{\epsilon}H_{1\epsilon}S_{\epsilon}$
$O_{2}(C)(S)) +$ | | |----------------------------------|--------------------|---|---------------------------|--------------------------|--|--------------------|---------------------------|-----------------------------|---|--| | | Literatur | e – Calculated | = Decidual | Reference | (2×S-(| $C)(S)), \sigma =$ | 18 | | | | | | Literatur | | | | | Literatu | re – Calculated | = Residual | Reference | | | Gas Phase | | | | | | | | | | | | $\Delta_t H^\circ = $ | -24.41 | -29.28 | 4.87 | 58HUB/DOU | Liquid Ph | ase | | | | | | $C_p^{\circ} =$ | 94.31 | 97.96 | -3.65 | 69STU/WES | $\Delta_{\rm f}H^{\circ} =$ | -171.50 | - 171.50 | 0.00 | 58HUB/DOU | | | S° = | 336.64 | 331.61 | 5.03 | 69STU/WES | $C_p^{\circ} =$ | 262.46 | 263.58 | -1.12 | 58HUB/DOU | | | $\Delta_f S^\circ =$ | | - 135.69 | | | <i>S</i> ° = | 373.55 | 375.22 | - 1.67 | 58HUB/DOU | | | $\Delta_{\rm f}G^{\circ} =$ | | 11.18 | | | $\Delta_i S^\circ =$ | | -637.33 | | | | | $lnK_f =$ | | -4.51 | | | $\Delta_t G^{\circ} =$ | | 18,52 | | | | | | | | | | $lnK_f =$ | | -7.47 | | | | | Liquid Pha | se | | | | | | | | | | | $\Delta_t H^\circ =$ | -62.60 | -66.50 | 3.90 | 58HUB/DOU | | | | | | | | $C_n^{\circ} =$ | 146.11 | 154.38 | -8.27 | 50SCO/FIN | Dibutyl dis | sulfide | | | C ₈ H ₁₈ S | | | S° = | 235.29 | 228.28 | 7.01 | 50SCO/FIN | (2×C-(| $H_{3}(C)) + (4$ | $\times C-(H)_2(C)_2$ | $+(2\times C-(H)_{2})$ | | | | $\Delta_f S^{\circ} =$ | | -239.02 | | | | $C)(S)), \sigma =$ | | (3-1-)2 | (-)(-)) | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 4.76 | | | ((| -)(-)), - | | | | | | $\ln K_{\rm f} =$ | | -1.92 | | | | Literatu | re – Calculated | = Residual | Reference | | | | | | | | Gas Phase | | | | | | | Diethyl dis | ulfida | | | C4H10S2 | $\Delta_t H^\circ =$ | - 158.41 | - 158.14 | -0.27 | 64MAC/MCC | | | | | ~ C (II) (C)(S |)) | | - | 231.08 | 231.32 | | , | | | (2 X C-(1 | 1)3(C))+(2 | \times C-(H) ₂ (C)(S |))+(2×3-(C | $J(S)J, \sigma = 10$ | $C_p^{\circ} =$ | | | -0.24 | 69STU/WES | | | | | | D -11 -1 | Defe | S° = | 572.83 | 571.99 | 0.84 | 69STU/WES | | | | Literatu | re – Calculated | = Residual | Reference | $\Delta_{f}S^{\circ} =$ | | -713.18 | | | | | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 54.49 | | | | | Gas Phase | | | | | $lnK_f =$ | | -21.98 | | | | | $\Delta_i H^\circ =$ | -74.64 | - 75.62 | 0.98 | 58HUB/DOU | | | | | | | | $C_{\rho}^{\circ} =$ | 141.34 | 139.76 | 1.58 | 69STU/WES | Liquid Pha | ase | | | | | | S° = | 414.51 |
415.35 | -0.84 | 69STU/WES | $\Delta_t H^\circ =$ | - 222.90 | - 222.96 | 0.06 | 64MAC/MCC | | | Δ _f S° – | 111.01 | - 324.58 | 0.0 . | 0,010,1120 | $C_p^{\alpha} =$ | 222.70 | 324,42 | 0.00 | 0 11111 10/11100 | | | $\Delta_t G^{\circ} =$ | | 21.15 | | | S° = | | 439.98 | | | | | $lnK_f =$ | | -8.53 | | | $\Delta_{f}S^{\circ} =$ | | -845.19 | | | | | umzi | | - 0.55 | | | $\Delta_i G^\circ =$ | | 29.03 | | | | | | | | | | $\ln K_{\rm f} =$ | | -11.71 | | | | | Liquid Pha
AH° = | | - 120.04 | -0.06 | 58HUB/DOU | | | | | ., | | | | -120.10 | | | | | | | | | | | $C_p^{\circ} = S^{\circ} =$ | 204.01 | 202.74 | 1.27 | 52SCO/FIN | D!4-1-1 | | | | ~ ** C | | | | 305.01 | 310.46 | -5.45 | 52SCO/FIN | Dipentyl d | | | . (00 (77) | C ₁₀ H ₂₂ S | | | $\Delta_f S^\circ =$ | | -429.46 | | | | | $6 \times C - (H)_2(C)_2$ | + (2 × C−(H) ₂ (| (C)(S))+ | | | $\Delta_{\rm f}G^{\circ} =$ | | 8.00 | | | (2×S-(0 | $C)(S)), \sigma =$ | 18 | | | | | $\ln K_f =$ | | - 3.23 | | | | Literatu | re – Calculated | = Residual | Reference | | | | | | | | - Carren | | | | | | | Dipropyl d | | 2×C-(H) ₂ (C) ₂) | + (2 × C-(H) ₂ | $C_6H_{14}S_2$ (C)(S)) + | Gas Phase $\Delta_t H^* =$ | - 199.62 | 199.40 | -0.22 | 69STU/WES | | | | $C)(S)), \sigma =$ | | (= -72 | V - 7 V - 7 / - | $C_p^{\circ} =$ | 276.81 | 277.10 | -0.29 | 69STU/WES | | | (= u (| -/(-//, - | | | | S° = | 650.74 | 650.31 | 0.43 | 69STU/WES | | | | Literatu | re – Calculated | = Residual | Reference | $\Delta_{r}S^{\circ} =$ | 000117 | - 907.48 | J.1J | 0,0 L O/ 11 LO | | | | Literatu | Carculated | 1.00,000 | | $\Delta_f G^\circ =$ | | 71.17 | | | | | | | | | | $\ln K_{\rm f} =$ | | -28.71 | | | | | Gas Phase $\Delta_t H^\circ =$ | | _ 116 99 | _0.21 | SSHITE/DOTT | | | | | | | | | -117.19 | -116.88 | -0.31 | 58HUB/DOU | Liquid DL | 200 | | | | | | $C_p^{\circ} =$ | 185.35 | 185.54 | -0.19 | 69STU/WES | Liquid Pha | 180 | 074.40 | | | | | S° = | 494.97 | 493.67 | 1.30 | 69STU/WES | $\Delta_{\rm f}H^{\circ} =$ | | -274.42 | | | | | $\Delta_f S^\circ =$ | | -518.88 | | | $C_p^{\circ} =$ | | 385.26 | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 37.82 | | | <i>S</i> ° = | | 504.74 | | | | | $lnK_f =$ | | - 15.26 | | | $\Delta_f S^\circ =$ | | - 1053.05 | | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 39.55 | | | | | | | | | | $lnK_f =$ | | -15.95 | | | | | | | | | | | | | | | | | TABLE 44. | Disulfides | (8) $-$ | Continued | |-----------|------------|---------|-----------| |-----------|------------|---------|-----------| TABLE 45. Sulfoxides (6) | Dihexyl disulfide $(2 \times C - (H)_3(C)) + (8 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(C)_2)$ $(2 \times 2 + (C)(S)) = 18$ | (S))+ | Dimethyl so
(2×C-(H | | (1×SO-(C) ₂), o | $\sigma = 18$ | C ₂ H ₆ Os | |--|---|---|------------------------------------|---|-----------------------------|---| | $(2 \times S-(C)(S))$, $\sigma = 18$ Literature – Calculated = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas Phase $\Delta_t H^\circ = -240.83 - 240.66 -0.17$ $C_p^\circ = 322.54 322.88 -0.34$ $S^\circ = 728.64 728.63 0.01$ $\Delta_t S^\circ = -1101.78$ $\Delta_t G^\circ = 87.84$ $\ln K_t = -35.43$ | 69STU/WES
69STU/WES
69STU/WES | Gas phase $ \Delta_t H^\circ = C_p^\circ - S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | -151.30
88.95
306.27 | - 151.30
88.61
306.34
- 231.43
- 82.30
33.20 | 0.00
0.34
- 0.07 | 48DOU
62MAC/OHA
62MAC/OHA | | Liquid Phase $ \Delta_t H^\circ = -325.88 $ $ C_\rho^\circ = 446.10 $ $ S^\circ = 569.50 $ $ \Delta_t S^\circ = -1260.91 $ $ \Delta_t G^\circ = 50.06 $ $ \ln K_t = -20.19 $ | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | se
- 204.20
153.18
188.78 | - 204.20
153.18
188.78
- 348.99
- 100.15
40.40 | 0.00
0.00
0.00 | 46DOU
70CLE/WES
70CLE/WES | | Didecyl disulfide
$(2 \times C - (H)_3(C)) + (16 \times C - (H)_2(C)_2) + (2 (2$ | C ₂₀ H ₄₂ S ₂ | Diethyl sul
(2×C-(F | (C) + (2 | × C-(H)2(C)(S | | C ₄ H ₁₀ OS
-(C) ₂)
Reference | | Literature – Calculated = Residual | Reference | Gas phase $\Delta_t H^{\circ} =$ | -205.60 | - 209.62 | 4.02 | 61MAC/OHA4 | | Gas Phase $ \Delta_t H^\circ = -405.72 -405.70 -0.02 $ $ C_p^\circ = 505.51 506.00 -0.49 $ $ S^\circ = 1040.23 1041.91 -1.68 $ $ \Delta_t S^\circ = -1878.99 $ $ \Delta_t G^\circ = 154.52 $ | 69STU/WES
69STU/WES
69STU/WES | Liquid phas Δ _t H° - | se
268.00 | 277.96 | 9.96 | 61MAC/OIIA4 | | $lnK_f = -62.33$ Liquid Phase $\Delta_t H^o = -531.72$ $C_p^o = 689.46$ | · | | $(1)_3(C) + (1)_3(C_d)(SO)$ | \times C-(H) ₂ (C)(S
1) + (1 \times C _d -(H)
re – Calculated: | (C)) + $(1 \times C_{d}$ | | | $S^{\circ} = 828.54$ $\Delta_t S^{\circ} = -2092.36$ $\Delta_t G^{\circ} = 92.12$ $\ln K_t = -37.16$ | | Gas phase $\Delta_t H^\circ =$ | -103.70 | - 103.12 | - 0.58 | 61MAC/OHA4 | | Diphenyl disulfide $(10 \times C_B - (H)(C_B)_2) + (2 \times C_B - (S)) + (2 \times S - (C_B)(S))$ | C ₁₂ II ₁₀ S ₂ | Liquid phas
ΔμΙ° – | se
-173.30 | - 173.30 | 0.00 | 61MAC/OHA4 | | Literature - Calculated = Residual | Reference | Dipropyl su | | | | C6H14OS | | Gas Phase $\Delta_t H^\circ = 243.50$ 243.50 0.00 | 62MAC/MAY2 | (2×C-(F
(1×SO- | (C) ₂) | \times C-(H) ₂ (C) ₂) - $e - Calculated = Calculated$ | | C)(SO))+ Reference | | Solid Phase $\Delta_t H^{\circ} = 148.50$ 148.50 0.00 | 62MAC/MAY2 | Gas phase $\Delta_l H^\circ =$ | - 254.90 | - 250.88 | -4.02 | 61MAC/OHA4 | TABLE 46. Sulfones (38) | TABLE 45. | Sulfoxides | (6) — | Continued | |-----------|------------|-------|-----------| |-----------|------------|-------|-----------| | | | < C-(H) ₂ (C) ₂) + | (2×C-(H) ₂ | C ₆ H ₁₄ OS
(C)(SO))+ | Dimethyl so
(2×C-(I | | $(1 \times SO_2 - (C)_2),$ | $\sigma = 18$ | C ₂ H ₆ O ₂ S | |-------------------------------------|--|--|---|--|---|--|--|--|--| | (1/30/(| | e – Calculated = | Residual | Reference | | Literatu | re – Calculated = | = Residual | Reference | | | | | | | Gas phase | | | | | | Liquid phase | e | | | | $\Delta_f H^\circ =$ | -373.10 | -373.10 | 0.00 | 70MAC/STE | | | - 329.40 | -329.42 | 0.02 | 61MAC/OHA4 | $C_p^{\circ} =$ | 100.00 | 100.00 | 0.00 | 62MAC/OHA | | <u> </u> | | | | | s° = | 317.98 | 317.98 | 0.00 | 62MAC/OHA | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -322.31 | | | | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | -277.00 | | | | ert-Butyl et | hyl sulfoxid | le | | C ₆ H ₁₄ OS | $lnK_f =$ | | 111.74 | | | | (4×C-(H | $()_3(C)) + (1)$ | \times C-(H) ₂ (C)(SC | D))+(1×SO- | -(C) ₂) + | | | | | | | | |
3×-CH ₃ corr (c | | · /-/ | | | | | | | | ,- | - ` | • | | Liquid pha | se | | | | | | Literatur | e – Calculated = | Residual | Reference | $\Delta_t H^\circ =$ | | -436.36 | 0.00 | Gas phase | | | | | Solid phase | • | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | - 274.10 | -274.10 | 0.00 | 61MAC/OHA4 | $\Delta_{\rm f}H^{\circ} =$ | -450.10 | -450.10 | 0.00 | 61BUS/MAC | | | | | | | $C_p^{\circ} =$ | 125.35 | 125.35 | 0.00 | 70CLE/WES | | | | | | | S° = | 145.48 | 145.48 | 0.00 | 70CLE/WES | | Liquid phas | e | | | | $\Delta_f S^\circ =$ | | - 494.81 | | | | $\Delta_t H^\circ = -$ | | -348.50 | 0.00 | 61MAC/OHA4 | $\Delta_{\rm f}G^{\circ} =$ | | -302.57 | | | | | | - 1-1- | | | $\ln K_{\rm f} =$ | | 122.06 | | | | | | -(2×C _B -(SO)) | +(1×SO-(C | C ₁₂ H ₁₀ OS | Ethyl meth | | ~C.(H) (SO.)) |) + (1 × C (H) | | | | (H)(C _B) ₂)+ | - (2×C _B -(SO))
- e – Calculated = | , | | | $H_{3}(C)+(1$ | × C-(H) ₃ (SO ₂)) |)+(1×C-(H) | | | Diphenyl su
(10×C _B - | (H)(C _B) ₂)+ | | , | (B) ₂) | (1×C-(I | $(C)_{3} + (1)_{3} + (1)_{3} + (1)_{2}$ | \times C-(H) ₃ (SO ₂))
re Calculated = | | $C_3H_8O_2S_2(C)(SO_2)) +$ Reference | | (10 × C _B − | (H)(C _B) ₂)+ | | , | (B) ₂) | (1×C-(I
(1×SO ₂ - | $(C)_{3} + (1)_{3} + (1)_{3} + (1)_{2}$ | | | $_{2}(C)(SO_{2})) +$ | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | (1×C-(I
(1×SO ₂ - | H) ₃ (C))+(1
-(C) ₂)
Literatur | re Calculated = | = Residual | Reference | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | (1×C-(I
(1×SO ₂ - | $(C)_{3} + (1)_{3} + (1)_{3} + (1)_{2}$ | | | $_{2}(C)(SO_{2})) +$ | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | $(1 \times C - (1 \times SO_2)^2)$ $(1 \times SO_2)^2$ $Gas phase$ $\Delta_t H^\circ =$ | H ₃ (C)) + (1
-(C) ₂)
Literatur
- 408.36 | re Calculated = | = Residual | Reference | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | $(1 \times C - (I \times SO_2)^2)$ $Gas phase$ $\Delta_t H^\circ =$ $Liquid phase$ | H ₃ (C)) + (1
-(C) ₂)
Literatur
- 408.36 | - 400.13 | = Residual | Reference | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | $(1 \times C - (1 \times SO_2)^2)$ $(1 \times SO_2)^2$ $Gas phase$ $\Delta_t H^\circ =$ | H ₃ (C)) + (1
-(C) ₂)
Literatur
- 408.36 | re Calculated = | = Residual | Reference | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | $(1 \times C - (I \times SO_2)^2)$ $Gas phase$ $\Delta_t H^\circ =$ $Liquid phase$ | H ₃ (C)) + (1
-(C) ₂)
Literatur
- 408.36 | - 400.13 | = Residual | Reference | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | $(1 \times C - (I \times SO_2)^2)$ $Gas phase$ $\Delta_t H^\circ =$ $Liquid phase$ | H ₃ (C)) + (1
-(C) ₂)
Literatur
- 408.36 | - 400.13 | = Residual | Reference | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | $(1 \times C - (H + C + C))^{-1}$ Gas phase $\Delta_t H^{\circ} =$ Liquid phase $\Delta_t H^{\circ} =$ | H ₃ (C)) + (1
-(C) ₂)
Literatur
- 408.36 | - 400.13 | = Residual | Reference | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | $(1 \times C - (1 \times SO_2)^2)$ Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ Solid phase | H ₃ (C)) + (1
-(C) ₂)
Literatur
- 408.36 | - 400.13
- 470.12 | = Residual - 8.23 | Reference 70MAC/STE | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | $(1 \times C - (1 \times SO_2)^2)$ Gas phase $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ Solid phase | H ₃ (C)) + (1
-(C) ₂)
Literatur
- 408.36 | - 400.13
- 470.12 | = Residual - 8.23 | Reference 70MAC/STE | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | $(1 \times C - (H + C + C))^{-1}$ Gas phase $\Delta_t H^\circ = $ | H ₃ (C)) + (1
-(C) ₂)
Literatur
- 408.36
se
- 486.06 | - 400.13
- 470.12 | - 8.23
0.00 | Reference 70MAC/STE 61BUS/MAC | | (10×C _B - | (H)(C _B) ₂) +
Literatur | e – Calculated = | = Residual | Reference | $(1 \times C - (H + C + C))^{-1}$ Gas phase $\Delta_t H^\circ = $ | $H_{3}(C) + (1 - (C)_{2})$ Literatus -408.36 se -486.06 fone $H_{12} + (2 \times 6)$ | - 400.13
- 470.12
- 486.06 | -8.23 0.00 (1 × SO ₂ -(C _d | Reference 70MAC/STE 61BUS/MAC | $\Delta_t H^{\circ} = -150.90$ - 150.90 0.00 69MAC/MCN | Allyl methyl sulfone $(1 \times C_{d}-(H)_2) + (1 \times C_{d}-(H)(C)) + (1 \times C_{-}(H)_2(C_d)(S_{-}(1 \times SO_2-(C)_2) + (1 \times C_{-}(H)_3(SO_2))$ | C ₄ H ₈ O ₂ S
SO ₂))+ | Butyl methyl sulfone $C_5H_{12}O_2S$
$(1 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)(SO_2)) + (1 \times SO_2 - (C)_2) + (1 \times C - (H)_3(SO_2))$ | |--|---|---| | Literature – Calculated = Residual | Reference | Literature – Calculated = Residual Reference | | Gas phase $\Delta_t H^\circ = -305.60 -297.69 -7.91$ | 70MAC/STE | Gas phase $\Delta_t H^{\circ} = -459.40 -441.39 -18.01$ 70MAC/STE | | Liquid phase $\Delta_t H^\circ = -384.70 -385.00 0.30$ | 70MAC/STE | Liquid phase $\Delta_t H^\circ = -535.55 -521.58 -13.97$ 61MAC/OHA | | Diethyl sulfone $(2 \times C-(H)_3(C)) + (2 \times C-(H)_2(C)(SO_2)) + (1 \times SO_2)$ | | tert-Butyl methyl sulfone $(1 \times C - (H)_3(SO_2)) + (1 \times SO_2 - (C)_2) + (1 \times C - (C)_3(SO_2)) + (3 \times C - (H)_3(C)) + (3 \times - CH_3 \text{ corr (quaternary))}$ | | Literature – Calculated = Residual | Reference | Literature - Calculated = Residual Reference | | Gas phase $\Delta_t H^{\circ} = -428.86 -427.16 -1.70$ | 70MAC/STE | Gas phase $\Delta_t H^\circ = -473.20 - 469.78 - 3.42$ 70MAC/STE | | Liquid phase $\Delta_t H^\circ = -503.88$ | | Solid phase $\Delta_t H^\circ = -555.68 -552.85 -2.83$ 61BUS/MAC | | Solid phase $\Delta_t H^\circ = -515.20 -522.02$ 6.82 | 61MAC/OHA | tert-Butyl ethyl sulfone $C_4H_{14}O_2S$
$(4\times C-(H)_3(C))+(1\times C-(H)_2(C)(SO_2))+(1\times SO_2-(C)_2)+$ | | Isopropyl methyl sulfone $(1 \times C - (H)_3(SO_2)) + (1 \times SO_2 - (C)_2) + (1 \times C - (H)(C)_2 + (2 \times -CH_3) + (2 \times C - (H)_3(C))$ | $C_4H_{10}O_2S$
$O_2(SO_2)) +$ | $(1 \times C - (C)_3(SO_2)) + (3 \times -CH_3 \text{ corr (quaternary)})$ $\text{Literature - Calculated = Residual} \qquad \text{Reference}$ | | Literature - Calculated = Residual | Reference | Gas phase $\Delta_i H^\circ = -491.40 -496.81$ 5.41 61MAC/OHA | | Gas phase $\Delta_t H^\circ = -434.00 -433.88 -0.12$ | 61BUS/MAC | Liquid phase $\Delta_t H^{\circ} = -578.00 -578.51$ 0.51 61MAC/OHA | | Allyl ethyl sulfone $ (1 \times C_{d^{-}}(H)_2) + (1 \times C_{d^{-}}(H)(C)) + (1 \times C - (H)_2(C_d)(S_{d^{-}}(1 \times SO_2 - (C)_2) + (1 \times C - (H)_2(C)(SO_2)) $ | | Di-tert-butyl sulfone $(6 \times C - (H)_3(C)) + (1 \times SO_2 - (C)_2) + (2 \times C - (C)_3(SO_2)) + (6 \times -CH_3 \text{ corr } (quat/quat))$ | | | | Literature – Calculated = Residual Reference | | Gas phase $\Delta_1 H^\circ =
-322.17 - 324.72$ 2.55 | 70MAC/STE | Gas phase $\Delta_t H^\circ = -546.00 - 542.94 - 3.06$ 70MAC/STE | | Liquid phase $\Delta_t H^\circ = -405.64 -418.76$ 13.12 | 61MAC/OHA | Solid phase $\Delta_t H^{\circ} = -640.07 - 642.94$ 2.87 61MAC/OHA | | Dipropyl sulfone $(2 \times C-(H)_3(C)) + (2 \times C-(H)_2(C)_2) + (2 \times C-(H)_2(C)_2) + (2 \times C-(H)_2(C)_2)$ $(1 \times SO_2-(C)_2)$ | $C_6H_{14}O_2S$
$S(SO_2)$ + | | $H)_2)+(1\times$ | C_d -(H)(SO ₂)) +
+ (5 × C_B -(H)(| | $C_8H_8O_2S$
$(C_B)) +$ | |--|---|----------------------------------|------------------|--|------------|---| | Literature – Calculated = Residual | Reference | | Literatu | e – Calculated | = Residual | Reference | | Gas phase $\Delta_0 H^{\circ} = -467.77 - 468.42 = 0.65$ | 70MAC/STE | Gas phase Δ ₁ II° - | - 129.00 | - 129.12 | 0.12 | 69MAC/MCN | | Liquid phase $\Delta_t H^\circ = -547.85 - 555.34$ 7.49 | 61MAC/OHA | | (C) + (1) | × C _B -(C)(C _B) ₂)
+ (1 × SO ₂ -(C) | | | | Dibutyl sulfone
(2 × C-(H) ₃ (C)) + (4 × C-(H) ₂ (C) ₂) + (2 × C-(H) ₂ (C)
(1 × SO ₂ -(C) ₂) | C ₈ H ₁₈ O ₂ S
)(SO ₂)) + | | Literatur | e – Calculated | = Residual | Reference | | Literature – Calculated = Residual | Reference | Gas phase $\Delta_t H^\circ =$ | - 273.10 | - 279.26 | 6.16 | 61МАС/ОНА | | Gas phase $\Delta_t H^\circ = -509.60 -509.68$ 0.08 | 70MAC/STE | | H)3(SO2))+ | (1×SO ₂ -(C) ₂)
(5×C _B -(H)(C _B | | C ₈ H ₁₉ O ₂ ;
(C _B)(SO ₂)) + | | Liquid phase $\Delta_t H^\circ = -606.80$ | | (1×08 (| | e – Calculated | | Reference | | Solid phase $\Delta_t H^\circ = -609.86 - 639.66$ 29.80 | 61BUS/MAC | Gas phase
Δ _t H° = | - 272.10 | - 267.95 | - 4.15 | 61BUS/MAC | | Diisobutyl sulfone
$(4 \times C-(H)_3(C)) + (2 \times C-(H)(C)_3) + (4 \times -CH_3 \text{ corr}$
$(2 \times C-(H)_2(C)(SO_2)) + (1 \times SO_2-(C)_2)$ | C ₈ H ₁₈ O ₂ S
(tertiary))+ | | $I_{3}(C) + (1$ | nzene
× C ₁ -(C)) + (1 ×
(1 × C _B -(SO ₂)(| | C ₉ H ₈ O ₂ S
_B –(H)(C _B) ₂) | | Literature - Calculated = Residual | Reference | · . | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^{\circ} = -535.15 -523.06 -12.09$ | 70MAC/STE | Gas phase $\Delta_t H^\circ =$ | 43.20 | 38.17 | 5.03 | 69MAC/STE3 | | Liquid phase $\Delta_t H^\circ = -624.84 - 617.36 - 7.48$ | 61МАС/ОНА | , , | H))+(1×C | nzene
,-(C)) + (1 × C-
(1 × C _B -(SO ₂)(| · /-· // - | ,, | | Methyl phenyl sulfone
$(1 \times C - (H)_3(SO_2)) + (1 \times SO_2 - (C)(C_B)) + (1 \times C_B - (S)(C_B))$ | $C_7H_8O_2S$
$O_2)(C_B)_2) +$ | | | e – Calculated = | | Reference | | $(5 \times C_B - (H)(C_B)_2)$ Literature - Calculated = Residual | Reference | Gas phase $\Delta_t H^\circ =$ | 36.20 | 40.39 | -4.19 | 69MAC/STE3 | | Gas phase $\Delta_t H^{\circ} = -253.40 -246.83 -6.57$ | 61MAC/OHA2 | | | | | | | Allenyl phenyl sulfone $C_9H_8O_2S$
$(1 \times C_d-(H)_2) + (1 \times C_a) + (1 \times C_d-(H)(SO_2)) +$
$(1 \times SO_2-(C_d)(C_B)) + (1 \times C_B-(SO_2)(C_B)_2) + (5 \times C_B-(H)(C_B)_2)$
Literature – Calculated = Residual Reference | $ \begin{array}{ll} \textbf{(E)-1-Methyl-4-(1-propenylsulfonyl)benzene} & \textbf{C_{10}H$_{12}$O}_2$S\\ \textbf{(1}\times C-(H)_3(C)) + \textbf{(1}\times C_B-(C)(C_B)_2) + \textbf{(4}\times C_B-(H)(C_B)_2) + \\ \textbf{(1}\times C_B-(SO_2)(C_B)_2) + \textbf{(1}\times SO_2-(C_d)(C_B)) + \textbf{(1}\times C_d-(H)(SO_2)) + \\ \textbf{(1}\times C_d-(H)(C)) + \textbf{(1}\times C-(H)_3(C)) \end{array} $ | |--|---| | Literature - Calculated - Residual Reference | Literature – Calculated = Residual Reference | | Gas phase $\Delta_t H^{\circ} = 1.80$ 13.55 -11.75 70MAC/STE | Gas phase $\Delta_t H^\circ = -208.90 -193.81 -15.09$ 69MAC/MCN | | $ \begin{array}{c} \text{p-Tolyl vinyl sulfone} & C_9H_{10}O_2S \\ (1\times C-(H)_3(C)) + (1\times C_B-(C)(C_B)_2) + (4\times C_B-(H)(C_B)_2) + \\ (1\times C_B-(SO_2)(C_B)_2) + (1\times SO_2-(C_d)(C_B)) + (1\times C_d-(H)(SO_2)) + \\ (1\times C_d-(H)_2) & \\ \\ \text{Literature} - \text{Calculated} = \text{Residual} & \text{Reference} \end{array} $ | $ \begin{array}{ll} \mbox{1-Methyl-4-(2-propenylsulfonyl)benzene} & C_{10}H_{12}O_2S \\ (1\times C-(H)_3(C)) + (1\times C_B-(C)(C_B)_2) + (4\times C_B-(H)(C_B)_2) + \\ (1\times C_B-(SO_2)(C_B)_2) + (1\times SO_2-(C)(C_B)) + (1\times C-(H)_2(C_d)(SO_2)) + \\ (1\times C_d-(H)(C)) + (1\times C_d-(H)_2) \\ \\ \mbox{Literature} - Calculated = Residual & Reference \\ \end{array} $ | | Gas phase $\Delta_t H^{\circ} = -162.30 - 161.55 - 0.75$ 69MAC/MCN | Gas phase $\Delta_t H^{\circ} = -203.30 -203.85$ 0.55 69MAC/MCN | | $ \begin{array}{ll} \mbox{1-Methyl-4-(1-propynylsulfonyl)benzene} & C_{10}H_{10}O_2S \\ (1\times C-(H)_3(C)) + (1\times C_B-(C)(C_B)_2) + (4\times C_B-(H)(C_B)_2) + \\ (1\times C_B-(SO_2)(C_B)_2) + (1\times SO_2-(C_1)(C_B)) + (1\times C_t-(SO_2)) + \\ (1\times C_t-(C)) + (1\times C-(H)_3(C)) \\ \\ \mbox{Literature} - Calculated = Residual & Reference \\ \end{array} $ | $ \begin{array}{ll} \hbox{\bf 1-Methyl-4-(1-methylethenylsulfonyl)benzene} & C_{10}H_{12}O_2S\\ (1\times C-(H)_3(C))+(1\times C_B-(C)(C_B)_2)+(4\times C_B-(H)(C_B)_2)+\\ (1\times C_B-(SO_2)(C_B)_2)+(1\times SO_2-(C_d)(C_B))+(1\times C_d-(C)(SO_2))+\\ (1\times C_d-(H)_2)+(1\times C-(H)_3(C))\\ \\ \hbox{Literature-Calculated=Residual} & Reference \\ \end{array} $ | | Gas phase $\Delta_t H^\circ = 10.10$ 5.74 4.36 69MAC/STE3 | Gas phase $\Delta_i H^o = -196.70 -191.38 -5.32$ 69MAC/MCN | | $ \begin{array}{ll} \mbox{1-Methyl-4-(2-propynylsulfonyl)benzene} & C_{10}H_{10}O_2S \\ (1\times C-(H)_3(C)) + (1\times C_{B^-}(C)(C_B)_2) + (4\times C_{B^-}(H)(C_B)_2) + \\ (1\times C_{B^-}(SO_2)(C_B)_2) + (1\times SO_2-(C)(C_B)) + (1\times C-(H)_2(C_i)(SO_2)) + \\ (1\times C_{r^-}(C)) + (1\times C_{r^-}(H)) \\ \\ \mbox{Literature} - Calculated = Residual & Reference \\ \end{array} $ | $ \begin{array}{ll} \text{1-Methyl-4-(3-butenylsulfonyl)benzene} & C_{11}H_{14}O_2S\\ (1\times C-(H)_3(C)) + (1\times C_{B^-}(C)(C_B)_2) + (4\times C_{B^-}(II)(C_B)_2) + \\ (1\times C_{B^-}(SO_2)(C_B)_2) + (1\times SO_2-(C)(C_B)) + (1\times C-(H)_2(C)(SO_2)) + \\ (1\times C-(H)_2(C)(C_d)) + (1\times C_{d^-}(H)(C)) + (1\times C_{d^-}(H)_2) \\ \\ \text{Literature} - \text{Calculated} = \text{Residual} & \text{Reference} \end{array} $ | | Gas phase $\Delta_t H^{\circ} = 0.70$ 7.96 -7.26 69MAC/STE3 | Gas phase $\Delta_t H^{\circ} = -226.00 -222.27 -3.73$ 69MAC/MCN | | $ \begin{array}{ll} \hbox{\bf 1-Methyl-4-(1,2-propadienylsulfonyl)benzene} & C_{10}H_{10}O_2S \\ \hbox{\bf (1\times C-(H)_3(C))+(1\times C_{B^-}(C)(C_B)_2)+(4\times C_{B^-}(H)(C_D)_2)+} \\ \hbox{\bf (1\times C_{B^-}(SO_2)(C_B)_2)+(1\times SO_2-(C_d)(C_B))+(1\times C_d-(H)(SO_2))+} \\ \hbox{\bf (1\times C_a)+(1\times C_{d^-}(H)_2)} \\ \\ \hbox{\bf Literature-Calculated=Residual} & \hbox{\bf Reference} \\ \end{array} $ | $ \begin{array}{ll} \mbox{1-Methyl-4-(2-butenylsulfonyl)benzene} & C_{11}H_{14}O_2S \\ (1\times C-(H)_3(C)) + (1\times C_B-(C)(C_B)_2) + (4\times C_B-(H)(C_B)_2) + \\ (1\times C_B-(SO_2)(C_B)_2) + (1\times SO_2-(C)(C_B)) + (1\times C-(H)_2(C_d)(SO_2)) + \\ (2\times C_d-(H)(C)) + (1\times C-(H)_3(C)) \\ \\ \mbox{Literature} - \mbox{Calculated} = \mbox{Residual} & \mbox{Reference} \end{array} $ | | Gas phase $\Delta_t H^\circ = -32.60 - 18.88 - 13.72$ 69MAC/STE3 | Gas phase $\Delta_t H^{\circ} = -240.80 -236.11 -4.69$ 69MAC/MCN | | $ \begin{array}{l} \textbf{1-Methyl-4-(1-butenylsulfonyl)benzene} \\ (1 \times C-(H)_3(C)) + (1 \times C_B-(C)(C_B)_2) + (4 \times C_B-(H)_3(C)) + (1 \times C_B-(C_d)(C_B)_2) + (1 \times SO_2-(C_d)(C_B)_3) + (1 \times C_d-(H)(C)) + (1 \times C_d-(H)_3(C)(C_d)) C_d-(H)_3(C)(C)(C_d)) + (1 \times C_d-(H)_3(C)(C)(C_d)) + (1 \times C_d-($ | C_d -(H)(SO ₂))+ | (1×C-(
(1×C _B - | $-(SO_2)(C_B)_2$ | $\times C_B - (C)(C_B)_2$ | (C_B) + $(1 \times$ | C_d - $(H)(SO_2)) +$ |
--|--|---------------------------------|------------------|---|----------------------------|--| | Literature - Calculated = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | 0 | | Can about | | | | | | Gas phase $\Delta_t H^\circ = -229.80 -214.69 -15.11$ | 69MAC/MCN | Gas phase $\Delta_t H^\circ =$ | - 60.00 | -61.52 | 1.52 | 69MAC/MCN | | | nv · | | | | | | | $\begin{aligned} &\textbf{1-Methyl-4-(2-methyl-2-propenylsulfonyl)benzene} \\ &(1 \times C - (H)_3(C)) + (1 \times C_B - (C)(C_B)_2) + (4 \times C_B - (H)_3(C)) + (1 \times C_B - (C)(C_B)_2) + (1 \times C_B - (C)(C_B)) C_$ | | (1×С-(
(1×С _в - | $-(C)(C_B)_2)+$ | sulfone
$0 \times C_{B}$ — $(H)(C_{B})_{2}$
$(1 \times SO_{2}$ — $(C_{d})(C_{B})$
$(1 \times C_{B}$ — $(C_{d})(C_{B})$ | (C_B) + $(1 \times C_C)$ | | | Literature – Calculated = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = -241.50 -238.29 -3.21$ | 69MAC/MCN | Gas phase $\Delta_t H^\circ =$ | - 69.60 | -66.37 | -3.23 | 69MAC/MCN | | Diphenyl sulfone $(10\times C_B-(H)(C_B)_2)+(2\times C_B-(SO_2)(C_B)_2)+(1\times S_B-(SO_2)(C_B)_2)+(1\times S$ | $C_{12}H_{10}O_{2}S$ GO_{2} – $(C_{B})_{2})$ | Diphenyl (| | + (2×C _B -(SO ₂) | $(C_B)_2) + (2 \times$ | C ₁₂ H ₁₀ O ₄ S ₂
SO ₂ -(SO ₂)(C _B)) | | Literature – Calculated = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = -118.70 - 118.70$ 0.00 | 70COX/PIL | Gas phase $\Delta_t H^\circ =$ | -481.30 | -481.30 | 0.00 | 64МАС/ОНА | | Solid phase $\Delta_t H^{\circ} = -225.00 -225.00 0.00$ | 61MAC/OHA2 | Solid phas $\Delta_t H^\circ =$ | e
- 643.10 | -643.10 | 0.00 | 64MAC/OHA | | trans-Phenyl β -styryl sulfone $ (10 \times C_B - (H)(C_B)_2) + (1 \times C_B - (SO_2)(C_B)_2) + (1 \times C_d - (H)(C_B)) + (1 \times C_B (1$ | | | | | | | | Literature – Calculated = Residual | Reference | | | | | | | Gas phase $\Delta_t H^{\circ} = -35.00 - 33.94 - 1.06$ | 69MAC/MCN | | | | | | | Dibenzyl sulfone $ (10 \times C_B - (H)(C_B)_2) + (2 \times C_B - (C)(C_B)_2) $ | $C_{14}H_{14}O_2S$ $(H)_2(C_B)(SO_2)) +$ Reference | | | | | | | Gas phase $\Delta_t H^{\circ} = -157.10 -162.80$ 5.70 | 61MAC/OHA | | | | | | TABLE 47. Sulfites (5) TABLE 48. Sulfates (4) | Dimethyl sulfite $(2 \times C-(H)_3(C))+(2 \times O-(C)(SO))+(1 \times SO-(O)_2)$ | C ₂ H ₆ O ₃ S | Dimethyl so
(2×C-(I | | × O-(C)(SO ₂) |)+(1×SO ₂ -(0 | C₂H₄O₄S
O)2) | |--|--|---|--|--|--------------------------|--| | Literature – Calculated = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = -483.40 -482.72 -0.68$ | 69MAC/STE | Gas phase $\Delta_t H^\circ =$ | - 687.00 | -684.62 | -2.38 | 69MAC/STE | | Ethyl methyl sulfite $(2 \times C - (H)_3(C)) + (2 \times O - (C)(SO)) + (1 \times SO - (O)_2) (1 \times C - (H)_2(O)(C))$ | C ₃ H ₈ O ₃ S
+ | Diethyl suli
(2×C-(I
(1×SO ₂ - | $H_{3}(C) + (2$ | × C-(H)2(O)((| C))+(2× O- ((| C ₄ H ₁₀ O ₄ S
C)(SO ₂)) + | | Literature – Calculated = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = -524.00 -515.62 -8.38$ | 69MAC/STE | Gas phase $\Delta_t H^\circ =$ | -756.30 | -750.42 | -5.88 | 69MAC/STE | | Diethyl sulfite
$(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(O)(C)) + (2 \times O - (C)(C)(C)) + (2 \times O - (C)(C)(C)) + (2 \times O - (C)(C)(C)(C)) + (2 \times O - (C)(C)(C)(C)(C) + (2 \times O - (C)(C)(C)(C)) + (2 \times O - (C)(C)(C)(C)(C)(C) + (2 \times O - (C)(C)(C)(C)(C)(C)(C)(C) + (2 \times O - (C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)($ | | 1. | H) ₃ (C)) + (2
C)(SO ₂)) + (| × C-(H) ₂ (C) ₂)
1 × SO ₂ -(O) ₂) | , , , , , , , , , | . , , ,, | | Literature - Calculated = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = -552.20 -548.52 -3.68$ | 69MAC/STE | Gas phase $\Delta_t H^\circ =$ | - 792.00 | - 791.68 | -0.32 | 69MAC/STE | | Dipropyl sulfite $(2 \times C - (H)_2(C)) + (2 \times C - (H)_2(C)) + (2 \times C - (H)_2(C)) + (2 \times C - (H)_2(C))$
$(2 \times O - (C)(SO)) + (1 \times SO - (O)_2)$ | C ₆ H ₁₄ O ₃ S
)(C)) + | | I) ₅ (C))+(4 | × C-(H) ₂ (C) ₂)
1 × SO ₂ -(O) ₂) | + (2×C-(H)₂(| C ₈ H ₁₈ O ₄ S
(O)(C)) + | | Literature - Calculated = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = -588.30 -589.78$ 1.48 | 69MAC/STE | Gas phase $\Delta_t H^\circ =$ | - 828.90 | - 832.94 | 4.04 | 69MAC/STE | | Dibutyl sulfite $(2 \times C-(H)_3(C)) + (4 \times C-(H)_2(C)_2) + (2 \times C-(H)_2(O)_2) + (2 \times O-(C)(SO)) + (1 \times SO-(O)_2)$ | C ₈ H ₁₈ O ₃ S
)(C))+ | | | | | | | Literature - Calculated = Residual | Reference | | | | | | | | | | | | | | TABLE 49. Cyclic CHS (13) TABLE 49. Cyclic CHS (13) - Continued | 82.22
53.68
55.27
51.60 | 82.22
53.68
255.27
-49.41
96.95
-39.11
51.60
× C-(H) ₂ (C)(S)
rsc), σ = 2
- Calculated =
61.00
69.33
285.22
-155.77
107.44
-43.34 | 0.00
0.00
0.00
0.00 | S2GUT/SCO2 69STU/WES 69STU/WES 69STU/WES C3H6S C)2) + Reference 53SCO/FIN 69STU/WES 69STU/WES | |
140.16
207.82
140.16
207.82
140.16
207.82
140.16
207.82
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.16
140.1 | -73.10 140.16 207.82 -369.48 37.06 -14.95 2×C-(H) ₂ (C)(See rsc), σ = 1 re - Calculated = -63.26 108.20 323.26 -390.35 53.12 -21.43 | 0.00
0.00
0.00 | S4HUB/KAT 52HUB/FIN 52HUB/FIN 52HUB/FIN C ₅ H ₁₀ C) ₂) + Reference 54MCC/FIN 69STU/WES 69STU/WES | |--|---|--|--|---
---|---|--|--| | 53.68
55.27
51.60
61.00
69.33 | 53.68
255.27
- 49.41
96.95
- 39.11
51.60
× C-(H) ₂ (C)(S)
rsc), σ = 2
2 - Calculated = 61.00
69.33
285.22
- 155.77
107.44 | 0.00
0.00
0.00
0.00
= Residual | 69STU/WES 69STU/WES 69STU/WES 63SUN C ₃ H ₆ S C) ₂) + Reference 53SCO/FIN 69STU/WES | $\Delta_f H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_f S^\circ =$ $\Delta_f G^\circ =$ $\ln K_f =$ Thiacycloh $(3 \times C - (1 \times This))$ Gas phase $\Delta_f H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_f S^\circ \Delta_f G^\circ =$ $\ln K_f =$ | -73.10
140.16
207.82
mexane
H) ₂ (C) ₂) + (2
acyclohexane
Literatur
-63.26
108.20
323.26 | 140.16
207.82
- 369.48
37.06
- 14.95
$2 \times C - (H)_2(C)(S$ ersc), $\sigma = 1$
re - Calculated = -63.26
108.20
323.26
- 390.35
53.12 | 0.00
0.00
0.00
0.00
= Residual | 52HUB/FIN
52HUB/FIN
C ₅ H ₁₀
C) ₂) +
Reference
54MCC/FIN
69STU/WES | | 53.68
55.27
51.60
61.00
69.33 | 53.68
255.27
- 49.41
96.95
- 39.11
51.60
× C-(H) ₂ (C)(S)
rsc), σ = 2
2 - Calculated = 61.00
69.33
285.22
- 155.77
107.44 | 0.00
0.00
0.00
0.00
= Residual | 69STU/WES 69STU/WES 69STU/WES 63SUN C ₃ H ₆ S C) ₂) + Reference 53SCO/FIN 69STU/WES | $C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = \frac{1}{3}$ Thiacycloh (3 × C-((1 × This section of the context th | 140.16
207.82
nexane
H) ₂ (C) ₂) + (2
acyclohexane
Literatur
-63.26
108.20
323.26 | 140.16
207.82
- 369.48
37.06
- 14.95
$2 \times C - (H)_2(C)(S$ ersc), $\sigma = 1$
re - Calculated = -63.26
108.20
323.26
- 390.35
53.12 | 0.00
0.00
0.00
0.00
= Residual | 52HUB/FIN
52HUB/FIN
C ₅ H ₁₀
C) ₂) +
Reference
54MCC/FIN
69STU/WES | | 51.60
51.60
C() ₂) + (2
obutane
Literature
61.00
69.33 | 255.27
-49.41
96.95
-39.11
51.60
\times C-(H) ₂ (C)(S)
rsc), σ = 2
σ - Calculated = 61.00
69.33
285.22
-155.77
107.44 | 0.00
0.00
0.00
= Residual | 69STU/WES 63SUN C ₃ H ₆ S C) ₂) + Reference 53SCO/FIN 69STU/WES | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f = \frac{1}{3 \times C - (1 \times This)}$ Gas phase $\Delta_f H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_f G^{\circ} = \ln K_f = \frac{1}{3 \times C}$ | 207.82 nexane H) ₂ (C) ₂) + (2 acyclohexane Literatur -63.26 108.20 323.26 | 207.82
-369.48
37.06
-14.95
$2 \times C - (H)_2(C)(S$
e rsc), $\sigma = 1$
re - Calculated =
-63.26
108.20
323.26
-390.35
53.12 | 0.00
(1) + (1 × S-(C)
= Residual
0.00
0.00 | C₅H₁₀ C)₂) + Reference 54MCC/FIN 69STU/WES | | 51.60 C()2) + (2) obutane Literature 61.00 69.33 | -49.41 96.95 -39.11 51.60 \times C-(H) ₂ (C)(S) σ = 2 σ - Calculated = 61.00 69.33 285.22 -155.77 107.44 | 0.00
)) + (1 × S-(C
= Residual
0.00
0.00 | 63SUN C ₃ H ₆ S C) ₂) + Reference 53SCO/FIN 69STU/WES | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f = \frac{1}{3 \times C - (1 \times This}$ Gas phase $\Delta_f H^\circ = C_\rho^\circ = S^\circ = \Delta_f S^\circ - \Delta_f G^\circ = \ln K_f = \frac{1}{3 \times C}$ | H) ₂ (C) ₂) + (2
acyclohexane
Literatur
- 63.26
108.20
323.26 | -369.48 37.06 -14.95 $2 \times C - (H)_2(C)(S)$ $e rsc), \sigma = 1$ $re - Calculated = $ -63.26 108.20 323.26 -390.35 53.12 | 0.00
0.00 | C ₅ H ₁₆ C) ₂) + Reference 54MCC/FIN 69STU/WES | | c) + (2 c) + (2 c) cobutance Literature 61.00 69.33 | 96.95
- 39.11
51.60
× C-(H) ₂ (C)(S
rsc), σ = 2
a - Calculated =
61.00
69.33
285.22
- 155.77
107.44 | 0.00
0.00 | C ₃ H ₆ S
C) ₂) +
Reference
53SCO/FIN
69STU/WES | $\Delta_f G^\circ = \ln K_f = \frac{1}{100}$ Thiacycloh (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh) (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh) (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh)
(1×Thiacycloh) (3×C-(1×Thiacycloh) (1×Thiacycloh) (3×C-(1×Thiacycloh) (3×C-(1× | H) ₂ (C) ₂) + (2
acyclohexane
Literatur
-63.26
108.20
323.26 | 37.06
-14.95
$2 \times C - (H)_2(C)(S)$
$e r sc)$, $\sigma = 1$
re - Calculated =
-63.26
108.20
323.26
-390.35
53.12 | = Residual
0.00
0.00 | Reference 54MCC/FIN 69STU/WES | | c) + (2 c) + (2 c) cobutance Literature 61.00 69.33 | -39.11 51.60 $\times C-(H)_2(C)(S)$ $rsc), \sigma = 2$ $- Calculated =$ 61.00 69.33 285.22 -155.77 107.44 | 0.00
0.00 | C ₃ H ₆ S
C) ₂) +
Reference
53SCO/FIN
69STU/WES | In $K_f =$ Thiacycloh $(3 \times C - (1 \times This))$ Gas phase $\Delta_f H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_f S^\circ \Delta_f G^\circ =$ $\ln K_f =$ | H) ₂ (C) ₂) + (2
acyclohexane
Literatur
-63.26
108.20
323.26 | -14.95
$2 \times C - (H)_2(C)(S)$
$e rsc), \sigma = 1$
re - Calculated =
-63.26
108.20
323.26
-390.35
53.12 | = Residual
0.00
0.00 | Reference 54MCC/FIN 69STU/WES | | c) + (2 c) + (2 c) cobutance Literature 61.00 69.33 | 51.60
× C-(H) ₂ (C)(S)
rsc), σ = 2
- Calculated = 61.00
69.33
285.22
- 155.77
107.44 | 0.00
0.00 | C ₃ H ₆ S
C) ₂) +
Reference
53SCO/FIN
69STU/WES | Thiacycloh $(3 \times C - (1 \times This))$ Gas phase $\Delta_f H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} - \Delta_f G^{\circ} = InK_f = InK_f$ | H) ₂ (C) ₂) + (2
acyclohexane
Literatur
-63.26
108.20
323.26 | $2 \times \text{C-(H)}_2(\text{C})(\text{S} = \text{rsc}), \sigma = 1$
re – Calculated =
-63.26
108.20
323.26
-390.35
53.12 | = Residual
0.00
0.00 | Reference 54MCC/FIN 69STU/WES | | c) + (2 c) + (2 c) cobutance Literature 61.00 69.33 | \times C-(H) ₂ (C)(S) rsc), $\sigma = 2$
\times - Calculated = 61.00
69.33
285.22
-155.77
107.44 | 0.00
0.00 | C ₃ H ₆ S
C) ₂) +
Reference
53SCO/FIN
69STU/WES | $(3 \times C - (1 \times This))$ Gas phase $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} - \Delta_{f}G^{\circ} = InK_{f} = 0$ | H) ₂ (C) ₂) + (2
acyclohexane
Literatur
-63.26
108.20
323.26 | -63.26
108.20
323.26
-390.35
53.12 | = Residual
0.00
0.00 | Reference 54MCC/FIN 69STU/WES | | c) + (2 c) + (2 c) cobutance Literature 61.00 69.33 | \times C-(H) ₂ (C)(S) rsc), $\sigma = 2$
\times - Calculated = 61.00
69.33
285.22
-155.77
107.44 | 0.00
0.00 | C ₃ H ₆ S
C) ₂) +
Reference
53SCO/FIN
69STU/WES | $(3 \times C - (1 \times This))$ Gas phase $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} - \Delta_{f}G^{\circ} = InK_{f} = 0$ | H) ₂ (C) ₂) + (2
acyclohexane
Literatur
-63.26
108.20
323.26 | -63.26
108.20
323.26
-390.35
53.12 | = Residual
0.00
0.00 | Reference 54MCC/FIN 69STU/WES | | C) ₂) + (2
lobutane
Literature
61.00
69.33 | 61.00
69.33
285.22
-155.77
107.44 | = Residual
0.00
0.00 | Reference 53SCO/FIN 69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} - \Delta_{t}G^{\circ} = InK_{t} =$ | -63.26
108.20
323.26 | -63.26
108.20
323.26
-390.35
53.12 | 0.00 | 54MCC/FIN
69STU/WES | | 61.00
69.33 | 61.00
69.33
285.22
155.77
107.44 | 0.00 | 53SCO/FIN
69STU/WES | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} - \Delta_{t}G^{\circ} = InK_{t} =$ | - 63.26
108.20
323.26 | 108.20
323.26
-390.35
53.12 | 0.00 | 69STU/WES | | 61.00
69.33 | 61.00
69.33
285.22
155.77
107.44 | 0.00 | 53SCO/FIN
69STU/WES | $C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} - \Delta_{f}G^{\circ} = \ln K_{f} =$ | 108.20
323.26 | 108.20
323.26
-390.35
53.12 | 0.00 | 69STU/WES | | 69.33 | 69.33
285.22
155.77
107.44 | 0.00 | 69STU/WES | $S^{\circ} = \Delta_{f}S^{\circ} - \Delta_{f}G^{\circ} = \ln K_{f} =$ | 323.26 | 323.26
- 390.35
53.12 | | | | 69.33 | 69.33
285.22
155.77
107.44 | 0.00 | 69STU/WES | $\Delta_f S^\circ - \Delta_f G^\circ = \ln K_f =$ | | -390.35
53.12 | 0.00 | 69STU/WE | | 69.33 | 69.33
285.22
155.77
107.44 | 0.00 | 69STU/WES | $\Delta_f G^\circ = In K_f =$ | | 53.12 | | | | 69.33 | 69.33
285.22
155.77
107.44 | 0.00 | 69STU/WES | $lnK_f =$ | | | | | | | 285.22
155.77
107.44 | | | | | -21.43 | | · · · · · · · · · · · · · · · · · · · | | 85.22 | 155.77
107.44 | 0.00 | 69STU/WES | Liquid pha | | | | <u> </u> | | | 107.44 | | | Liquid pha | | | | | | | | | | Liquid pha | | | | | | | -43.34 | | | | ise | | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -106.00 | - 106.00 | 0.00 | 54MCC/FIN | | | | | | $C_p^{\circ} =$ | 163.30 | 163.30 | 0.00 | 54MCC/FIN | | | | | | S° = | 218.24 | 218.24 | 0.00 | 54MCC/FIN | | | | | | $\Delta_{f}S^{\circ} =$ | | - 495.37 | | | | 25.10 | 25.10 | 0.00 | 54HUB/KAT | $\Delta_t G^\circ =$ | | 41.69 | | | | 13.39 | 113.39 | 0.00 | 53SCO/FIN | $lnK_f =$ | | -16.82 | | | | 84.93 | 184.93 | 0.00 | 53SCO/FIN | | | | | | | | - 256.06 | | | | | | | | | | 101.44 | | | | | | | | | | - 40.92 | | | Thiacycloh | • | | | C6H12S | | | | | | | | $2 \times C - (H)_2(C)(S)$
ne rsc), $\sigma = 1$ |))+(1× 5- (C | ·)2)+ | | | | S))+(1×S-(C | C ₄ H ₈ S | | Literatur | re – Calculated = | Residual | Reference | | lopentan | e rsc), $\sigma = 2$ | | | Gas phase | | | | | | Literatur | e – Calculated = | = Residual | Reference | $\Delta_{\rm f}H^{\circ} =$ | -61.34 | -61.34 | 0.00 | 69STU/WES | | | | | | $C_p^{\circ} =$ | 124.60 | 124.60 | 0.00 | 69STU/WES | | | | | | S° = | 361.92 | 361.92 | 0.00 | 69STU/WES | | | | | | $\Delta_f S^\circ =$ | | - 488.00 | | | | 34.20 | -34.20 | 0.00 | 52HUB/FIN | $\Delta_t G^\circ =$ | | 84.16 | | | | 90.88 | 90.88 | 0.00 | 69STU/WES | $\ln K_{\rm f} =$ | | -33.95 | | | | 309.36 | 309.36 | 0.00 | 69STU/WES | - | | | | | | | -267.94 | | | | | | | | | | 45.69 | | | T 1 . 1 4 . 1 . 1 | | | | | | | | | | Liquid bha | ise | | | 69STU/WES | | Clo
Li
-3
9 | (1) ₂) + (2
pentand
terature
4.20
0.88 | (2) ₂) + (2 × C-(H) ₂ (C)(S)
pentane rsc), σ = 2
terature – Calculated =
4.20 – 34.20
0.88 90.88
9.36 309.36
– 267.94 | $(2)_2 + (2 \times C - (H)_2(C)(S)) + (1 \times S - (G)_2(C)(S)) G)_2(C)(S) G)_2(C)(C)(S) + (1 \times G)_2(C)(C)(S) + (1 \times G)_2(C)(C)(S) + (1 \times G)_2(C)(C)(C)(S) + (1 \times G)_2(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)($ | $(2)_2 + (2 \times C - (H)_2(C)(S)) + (1 \times S - (C)_2) (C)_2$ | $C(x) + (2 \times C - (H)_2(C)(S)) + (1 \times S - (C)_2) + C(x)_2 + C(x)_3 + C(x)_4 + C(x)_5 C(x)_$ | $\begin{array}{c} (C_{1})_{2} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{1})_{2} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{3} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{4} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (1 \times S - (C)_{2}) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (2 \times C - (H)_{2}(C)(S) + (2 \times C - (H)_{2}(C)(S)) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (2 \times C - (H)_{2}(C)(S) + (2 \times C - (H)_{2}(C)(S)) + \\ (C_{2})_{5} + (2 \times C - (H)_{2}(C)(S)) + (2 \times C - (H)_{2}(C)(S) + (2 \times (H)_{2}(C)(S)) + \\ (C_{2})_{5} + (2 \times (H)_{2}(C)(S)) + (2 \times (H)_{2}(C)(S) + (2 \times (H)_{2}(C)(S)) + (2 \times (H)_{2}(C)(S) + (2 \times (H)_{2}(C)(S)) + \\ (C_{2})_{5} + (2 \times (H)_{2}(C)(S)) + (2 \times (H)_{2}(C)(S) + (2 \times (H)_{2}(C)(S)) (H$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | TABLE 49. Cyclic CHS (13) - Continued TABLE 49. Cyclic CHS (13) - Continued | Thiophene | C ₄ H ₄ S | |---|---------------------------------| | $(4 \times C_B - (H)(C_B)_2) + (1 \times S - (C_B)_2) + (1 \times Thiophene rsc), \sigma =$ | 2 | | | Literatur | Reference | | | | | | | |----------------------|-----------|-----------|------|-----------|--|--|--|--| | Gas phase | | | | | | | | | | $\Delta_f H^\circ =$ | 114.30 | 114.30 | 0.00 | 49WAD/KNO | | | | | | Cp - | 72.89 | 72.89 | 0.00 | 69STU/WES | | | | | | S°= | 278.86 | 278.86 | 0.00 | 69STU/WES | | | | | | Δ ₆ S° = | | -37.30 | | | | | | | | $\Delta_r G^\circ =$ | | 125.42 | | | | | | | | lnK_f - | | - 50.59 | | | | | | | # 2-Methylthiophene $C_sH_6S \\ (3\times C_B-(H)(C_B)_2)+(1\times C_B-(C)(C_B)_2)+(1\times C-(H)_3(C))+\\ (1\times S-(C_B)_2)+(1\times Thiophene \ rsc), \ \sigma=3$ | | Literatur | Reference | | | |-------------------------|-----------|-----------|------|-----------| | Gas phase | | | | | | Δ _r H° ~ | 83.68 | 81.87 | 1.81 | 69STU/WES | | $C_{\rho}^{\circ} =$ | 95.40 | 94.76 | 0.64 | 69STU/WES | | s° = | 320.58 | 318.89 | 1.69 | 69STU/WES | | $\Delta_t S^\circ =$ | | - 133.58 | | | | $\Delta_{c}G^{\circ} =$ | | 121.70 | | | | $lnK_f =$ | | - 49.09 | | | ### | | Literatur | Reference | | | |----------------------|-----------|-----------|------|-----------| | Gas phase | | | | | | $\Delta_f H^\circ =$ | 82.80 | 81.87 | 0.93 | 69STU/WES | | $C_p^{\circ} =$ | 94.85 | 94.76 | 0.09 | 69STU/WES | | S° = | 321.29 | 318.89 | 2.40 | 69STU/WES | |
$\Delta_t S^\circ =$ | | - 133.58 | | | | $\Delta_t G^\circ =$ | | 121.70 | | | | $lnK_f =$ | | -49.09 | | | | | | | | | # 2-Methyl thiolane $\begin{array}{c} C_5H_{10}S \\ (2\times C-(H)_2(C)_2) + (1\times C-(H)_2(C)(S)) + (1\times C-(H)(C)_2(S)) + \\ (1\times C-(H)_3(C)) + (1\times S-(C)_2) + (1\times Thiacyclopentane\ rsc) \end{array}$ | | Literatur | Reference | | | |---|-----------|-------------------|-------|--------| | Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ | - 64.20 | - 59.17
116.00 | -5.03 | 72GOO2 | | 2-Methyl thiolane (Continued) | C5H10S | |---|--------| | $(2 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)(S)) + (1 \times C - (H)(C)_2(S)) - (1 \times C - (H)_2(C)_2(S)) + (H)_2(C)_2(S)_2(S)) + (1 \times C - (H)_2(C)_2(S)_2(S)_2(S)_2(S)_2(S)_2(S)_2(S)_2(S$ | + | | $(1 \times C - (H)_3(C)) + (1 \times S - (C)_2) + (1 \times Thiacyclopentane rsc)$ | | | | Literatu | Reference | | | |----------------------|----------|-----------|---------------|-----------| | Liquid ph | | | | | | $\Delta_r H^o -$ | -105.40 | -100.01 | - 5.39 | 72GOO2 | | $C_p^{\circ} =$ | 171.80 | 170.24 | 1.56 | 74MES/FIN | | S° = | 245.31 | 233.42 | 11.89 | 74MES/FIN | | $\Delta_f S^\circ =$ | | - 480.19 | | | | $\Delta_t G^\circ$ – | | 43.16 | | | | $lnK_{f} =$ | | - 17.41 | | | # 3-Methyl thiolane $\begin{array}{c} C_5H_{10}S \\ (1\times C-(H)_2(C)_2) + (1\times C-(H)_3(C)) + (1\times C-(H)(C)_3) + \\ (2\times C-(H)_2(C)(S)) + (1\times S-(C)_2) + (1\times Thiacyclopentane\ rsc) \end{array}$ | | Literature – Calculated = Residual | | | | | | | |--|------------------------------------|---------------------------------------|----------------|---------------------|--|--|--| | Gas phase | 1 | | | | | | | | $\Delta_f H^\circ =$ | -60.50 | -57.00 | -3.50 | 72GOO2 | | | | | $C_p^{\circ} =$ | | 113.80 | | | | | | | Liquid pha | ase | · · · · · · · · · · · · · · · · · · · | | | | | | | Liquid pha
Δ _t H° = | ase
- 102.70 | -99.75 | - 2.95 | 72GOO2 | | | | | | | - 99.75
167.60 | - 2.95
4.20 | 72GOO2
74MES/FIN | | | | | $\Delta_f H^\circ =$ | -102.70 | | | | | | | | $\Delta_f H^\circ = C_p^\circ =$ | - 102.70
171.80 | 167.60 | 4.20 | 74MES/FIN | | | | | $\Delta_{\rm f} H^{\circ} = C_{\rm p}^{\circ} = S^{\circ} =$ | - 102.70
171.80 | 167.60
234.85 | 4.20 | 74MES/FIN | | | | | Cyclopentyl methyl sulfide | C ₆ H ₁₂ S | |--|----------------------------------| | $(1 \times C - (H)_3(S)) + (1 \times S - (C)_2) + (4 \times C - (H)_2(C)_2) +$ | | | $(1 \times C - (H)(C)_2(S)) + (1 \times Cyclopentane (sub) rsc)$ | | | | Literatu | Reference | | | |--|----------------------------|--|------------------------|----------------------------------| | Gas phase
Δ _f H° = | e
-64.70 | -64.12 | -0.58 | 72GOO2 | | $C_p^a =$ | | 132.35 | | | | Liquid ph
$\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | 109.80
192.92
285.47 | - 103.19
197.77
282.66
- 567.26 | -6.61
-4.85
2.81 | 72GOO2
74MES/TOD
74MES/TOD | | $\Delta_i G^{\circ} \sim$ | | 65.94 | | | TABLE 49. Cyclic CHS (13) - Continued # TABLE 50. Fluorides (46) | (1×C-(H) | C_d) + (1 × $_2$ (C)(C_d)) + | C_{d} -(H)(S)) + (
(1 × C-(H) ₂ (C | | C ₄ H ₆ S | Fluoromethane; Methyl fluoride
$(1 \times C - (H)_3(F), \text{ methyl fluoride}), \sigma = 3$
Literature – Calculated = Residual | | | CH ₃ I
Reference | | |--|-------------------------------------|--|-------------------------|---------------------------------|---|--|------------------------|---|--| | (1×2,3-Dil | • | hene rsc)
: Calculated= | : Recidual | Reference | Literatui | re – Calculated : | = Kesidual | Reference | | | Gas phase $\Delta_f H^\circ =$ | 90.70 | 90.70 | 0.00 | 62DAV/SUN | Gas phase $\Delta_t H^\circ = -247.00$ $C_\rho^\circ = 37.49$ $S^\circ = 222.80$ $\Delta_t S^\circ = \Delta_t G^\circ =$ | -247.00
37.49
222.80
-80.14 | 0.00
0.00
0.00 | 85LIA/KAR
69STU/WES
69STU/WES | | | 2,5-Dihydroth
(1×S-(C) ₂
(1×2,5-Dil |)+(2×C- | (H) ₂ (C _d)(S)) + | (2×C _d -(H)(| C₄H ₆ S | $\ln K_{\rm f} =$ | -223.11
90.00 | | | | | (17,2,5,2,2) | • | - Calculated = | = Residual | Reference | Fluoroethane $(1 \times C - (H)_3(C)) + (1$ | × C-(H) ₂ (C)(F) |)), σ = 3 | C ₂ H ₅ I | | | Gas phase | | | ***** | | Literatur | e – Calculated = | - Residual | Reference | | | $\Delta_t H^\circ =$ Liquid phase $\Delta_t H^\circ =$ | 86.90
47.00 | 47.00 | 0.00 | 62DAV/SUN 62DAV/SUN | Gas phase $\Delta_t H^\circ = -261.50$
$C_p^\circ = 59.04$
$S^\circ = 264.93$
$\Delta_t S^\circ = \Delta_t G^\circ = 10K_f = 100$ | - 263.38
59.39
264.99
- 174.26
- 211.42
85.29 | 1.88
-0.35
-0.06 | 69STU/WES
69STU/WES
69STU/WES | | | | | | | 3 | 1-Fluoropropane
(1×C-(H) ₃ (C))+(1
Literatur | × C-(H) ₂ (C) ₂) +
re – Calculated = | | $C_3H_{7}I$ (C)(F)), $\sigma = 3$ Reference | | | | | | | | Gas phase
$\Delta_t H^{\circ} = -285.90$
$C_p^{\circ} = 82.63$
$S^{\circ} = 304.22$
$\Delta_t S^{\circ} = \Delta_t G^{\circ} = 10K_f = 100$ | - 284.01
82.28
304.15
- 271.41
- 203.09
81.92 | - 1.89
0.35
0.07 | 56LAC/KIA2
69STU/WES
69STU/WES | | | | | | | | 2-Fluoropropane
(2×C-(H) ₃ (C))+(1
(2×-CH ₃ corr (terti | ary)) | | C ₃ H ₇ F | | | | | | | | Gas phase $\Delta_t H^\circ = -293.50$ $C_p^\circ = 82.01$ | - 293.50
82.01 | 0.00
0.00 | S6LAC/KIA2
69STU/WES | | | 1,1-Diffuoroethane
$(1 \times C - (H)_3(C)) + (1 \times C - (H)(C)(F)_2), \sigma = 3$ | | $C_2H_4F_2$ | Hexadecaflu
(2×C-(C | | e
× C-(C) ₂ (F) ₂) | | C7F16 | | | |---|------------------------------------|--|-------------------------|--|--|--------------------------------------|---|----------------------|--| | | Literature | e – Calculated | = Residual | Reference | | Literatui | e – Calculated | l = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | - 497.00
67.95
282.51 | 497.00
67.95
282.51 | 0.00
0.00
0.00 | 68KOL/SHT
69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ = -C_p^\circ =$ | - 3383.60 | - 3404.57
313.08 | 20.97 | 510LI/GRI | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -192.80
-439.52
177.30 | | | Liquid phas $\Delta_t H^{\circ} = -$ | | - 3419.99 | - 0.01 | 59GOO/DOU | | 1,1,1-Trifluo
(1 × C–(H | | × C-(C)(F)3), | $\sigma = 9$ | C ₂ H ₃ F ₃ | Tetrafluoro | ethylene
F) ₂), σ = 4 | | | C₂F. | | | Literatur | e – Calculated | = Residual | Reference | | Literatui | e – Calculated | = Residual | Reference | | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | 744.60
78.45
287.27 | -716.07
78.72
287.27
-224.09
-649.26
261.91 | -28.53
-0.27
0.00 | 65KOL/MAR
69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 659.80
80.50
299.95 | - 659.80
78.86
299.73
- 117.11
- 624.88
252.07 | 0.00
1.64
0.22 | 56SCO/GOO
69STU/WES
69STU/WES | | 1,1,2-Trifluo
(1 × C-(H | (C)(F) ₂)+ | - (1 × C-(H) ₂ (C | | C ₂ H ₃ F ₃ | Fluoroethyle
(1×C _d -(1 | H)(F))+(1 | × C _d -(H) ₂)
e – Calculated | = Residual | C₂H₃F
Reference | | | | | | | | | | - Nosiduii | | | $C_{\rho}^{\circ} = S^{\circ} =$ | – 730.70 | -675.86
75.88
311.12 | - 54.84 | 56LAC/KIA | Gas phase $\Delta_t H^\circ = C_t^\circ =$ | - 138.80 | - 138.80
49.83 | 0.00 | 70KOL/PAP | | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -200.24
-616.16
248.55 | | | 1,1-Difluoro
(1×C _d -(1 | | C_d - $(F)_2$), $\sigma =$ | 2 | C ₂ H ₂ F ₂ | | Hexafluoroe | thane
()(F) ₃), σ = | - 1 8 | | C ₂ F ₆ | - | Literatur | e – Calculated | = Residual | Reference | | | ,,,,, | re – Calculated | = Residual | Reference | $C_p^{\circ} =$ | -334.00
59.16 | -303.58
60.81 | -30.42
-1.65 |
56NEU/MAR
69STU/WES | | Gas phase $\Delta_t H^\circ = -\frac{C_t^\circ - S^\circ}{S^\circ} = \frac{1}{2}$ | -1343.10
106.40
322.08 | -1347.62
105.98
332.41 | 4.52
0.42
-10.33 | 66SIN
69STU/WES
69STU/WES | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} -$ | 265.18 | 265.39
- 79.35
- 279.92
112.92 | -0.21 | 69STU/WES | | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} -$ | | - 287.12
- 1262.02
509.09 | | | | | | | | TABLE 50. Fluorides (46) - Continued | Frifluoroet
(1×C _d -(| | $\times C_{\mathfrak{a}}-(F)_2), \sigma =$ | = 1 | C ₂ HF ₃ | | $-(F)(C_B)_2)-$ | $+(2\times C_B-(C_B)_3)$ |)+(8× <i>ortho</i> c | $C_{12}F_1$
orr- $(F)(F)$) + | |---|--|--|-------------------------|--|---|----------------------------------|---|-----------------------------------|-------------------------------------| | | Literatur | e – Calculated | = Residual | Reference | (2×ortho | corr-(F)(l | (')) | | | | | | | | · · · · · · · · · · · · · · · · · · · | | Literatu | re – Calculated | = Residual | Reference | | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ | 490.40
69.20
292.62 | 495.02
67.88
292.87
87.92
468.81 | 4.62
1.32
-0.25 | 62KOL/MAR
69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 1263.20 | - 1586.08
287.24 | 322.88 | 79PRI/SAP2 | | $\ln K_f =$ | | 189.11 | | | Liquid pha | se | | | | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} = C_{\mathbf{p}}^{\circ} =$ | | - 1661.58
405.04 | | | | 3.3.3-Triflu | oropropene | | | C ₃ H ₃ F ₃ | | | | | | | | | C_{d} -(H)(C))+(| $1 \times C - (C)(F)_3$ | | Solid phase $\Delta_t H^\circ = -$ | | - 1685.94 | 337.84 | 79PRI/SAP2 | | | Literatu | re – Calculated | = Residual | Reference | $C_p^{\circ} = S^{\circ} =$ | 1540.10 | 317.06
385.90 | 337.04 | /91 KI/3AI 2 | | | | | | | $\Delta_{\rm r} S^{\circ} =$ | | -696.39 | | | | Gas phase $\Delta_i H^\circ = C_p^\circ =$ | -614.20 | -611.17
93.11 | -3.03 | 67KOL/MAR | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = $ | | - 1478.31
596.34 | | | | ****** | | | | | Fluorobenz | | | | C₄H₅I | | Hexafluore | | (6× <i>ortho</i> corr- | $(F)(F), \sigma = 1$ | C ₆ F ₆ | $(1 \times C_B - ($ | $(F)(C_B)_2) +$ | $(5 \times C_B - (H)(C_E)$ | $(\alpha_1)_2$), $\sigma = 2$ | | | (| | re – Calculated | | Reference | | Literatu | re – Calculated | = Residual | Reference | | | | - Culturated | | | <u> </u> | , | | | | | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | - 955.60
156.61
383.21 | - 962.16
156.60
384.46
- 258.03
- 885.23
357.10 | 6.56
0.01
-1.25 | 65COU/GRE
69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = L_t G^\circ = L_t K_t = L_t K_t = L_t K_t K_t K_t K_t K_t K_t K_t K_t K_t K$ | -116.00
94.43
302.63 | -112.21
94.15
303.31
-158.90
-64.83
26.15 | - 3.79
0.28
- 0.68 | 56SCO/MCC
69STU/WES
69STU/WES | | Liquid pha | ase | | | | Liquid pha
Δ _t H° = | - 150.60 | - 150.40 | - 0.20 | 56SCO/GOO | | $ \Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} - InK_{f} = S^{\circ} $ | - 991.30
221.58
280.79 | - 997.20
222.54
325.14
- 317.35
- 902.58
364.10 | 5.90
0.96
44.35 | 69COX/GUN
65COU/GRE
65COU/GRE | $C_p^o = S^o = S_t^o = \Delta_t G^o = InK_t = S_t^o S_t^$ | 146.36
205.94 | 150.49
198.54
- 263.67
- 71.79
28.96 | - 4.13
7.40 | 56SCO/MCC
56SCO/MCC | | $(5 \times C_{B}$ | (F)(C _B) ₂)+
o corr-(F)(C | nethyl)benzene
$(1 \times C_B - (C)(C_B + (C_B + C_B)) + (4 \times orthogonal)$ | o corr-(F)(F) | | $(1 \times C_{B} - ($ | $(F)(C_B)_2) + H_{3}(C), \sigma$ | tene; p-Fluoroto
$(4 \times C_B - (H)(C_B = 6)$
re - Calculated | $(1)_2$ + $(1 \times C_{B}$ - $($ | C_7II_7F $C)(C_B)_2) +$ Reference | | | Literatu | re – Calculated | = Kesidual | Reference | - | | | | | | Gas phase $\Delta_l H^\circ = C_p^\circ =$ | - 1268.60 | - 1268.85
192.55 | 0.25 | 73KRE/PRI | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | -147.50
116.15
339.53 | - 144.64
116.02
337.57
- 260.95 | -2.86
0.13
1.96 | 62SCO/MES
69STU/WES
69STU/WES | | Liquid ph | | 4000 === | 0.50 | #ATT | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} = $ | | - 66.84
26.96 | | | | $\Delta_t H^\circ =$ | - 1310.20 | - 1309.50 | -0.70 | 73KRE/PRI | -• | | | | | | $(1 \times C_B - (1 \times C_B))$ | methylbenze
$F(C_B)_2 + (\sigma + \sigma)_3(C)$ | ne; p -Fluoroto
4 × C _B -(H)(C _B) | oluene (Contii
$(C_B - (1 \times C_B - (1 \times C_B)))$ | aued) C_7H_7F
$C)(C_B)_2) +$ | 1,4-Difluor
($4 \times C_{B}$ - | | $(2 \times C_B - (F)(C_E)$ | $(s)_2), \sigma = 2$ | C ₆ H ₄ F ₂ | |---|--|---|---|--|---|------------------|----------------------------|---|--| | (1×C-(n | | e – Calculated : | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | | | | | | C 1 | | | | | | Liquid phas | se. | | | | Gas phase $\Delta_t H^\circ =$ | - 306.70 | -307.28 | 0.58 | 62GOO/LAC | | | 186.90 | - 187.01 | 0.11 | 62GOO/LAC | $C_n^{\circ} =$ | 106.90 | 106.64 | 0.26 | 69STU/WES | | $C_p^{\circ} =$ | | 174.39 | | | S° = | 315.60 | 322.52 | -6.92 | 69STU/WES | | S° = | | 233.47 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 175.75 | | | | $\Delta_{\rm f} S^{\circ} =$ | | -365.05 | | | $\Delta_i G^{\circ} =$ | | -254.88 | | | | $\Delta_t G^{\circ} =$ | | -78.17 | | | $lnK_f =$ | | 102.82 | | | | $lnK_f =$ | | 31.53 | | | | | | | | | | | | | | Liquid pha | | | | | | | | | | | $\Delta_i H^\circ =$ | - 342.42 | - 349.76 | 7.34 | 62GOO/LAC | | 1,2-Difluore | | | | C ₆ H ₄ F ₂ | $C_p^o =$ | 160.70 | 164.90 | -4.20 | 50UEB/ORT | | | | $(2 \times C_B - (F)(C_B)$ | 1)2)+ | | S° = | | 223.86 | | | | (1×ortho | corr-(F)(F |)), $\sigma = 2$ | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -274.40 | | | | | | | | | $\Delta_f G^\circ =$ | | - 267.95 | | | | | Literatur | e – Calculated | = Residual | Reference | $lnK_f =$ | | 108.09 | | | | Gas phase | | | | | | | | | | | $\Delta_f H^\circ =$ | - 293.80 | 286.38 | -7.42 | 63SCO/MES | 2.2'-Diffue | orobiphenyl | | | $C_{12}H_8F_2$ | | $C_p^{\circ} =$ | 106.52 | 106.64 | -0.12 | 69STU/WES | | | $(2 \times C_B - (F)(C_B)$ | () ₂) + (2 × C ₂ −4 | | | S° = | 320.03 | 322.52 | -2.49 | 69STU/WES | | io corr-(F)(I | | (2) · (2 · · OB · | (- B)3) . | | $\Delta_e S^\circ =$ | 520.05 | - 175.75 | 2 | 0,010,1120 | (27.07 | (1)(1 | " | | | | $\Delta_f G^\circ =$ | | - 233.98 | | | | Literatu | re - Calculated | = Residual | Reference | | $lnK_f =$ | | 94.39 | | | | | | | | | | | | | | Gas phase | ; | | | | | Liquid pha | ise | | | | $\Delta_{\rm f} H^{\circ} =$ | -200.80 | -200.72 | -0.08 | 64SMI/GOR | | $\Delta_{\rm f}H^{\circ} =$ | -330.16 | - 324.76 | -5.40 | 62GOO/LAC | $C_p^{\circ} =$ | | 187.32 | | | | $C_p^{\circ} =$ | 159.03 | 164.90 | -5.87 | 63SCO/MES | | | | | | | S° = | 222.59 | 223.86 | -1.27 | 63SCO/MES | | | | | |
 $\Delta_t S^\circ =$ | | -274.40 | | | Liquid pha | ase | | | | | $\Delta_t G^\circ =$ | | -242.95 | | | $\Delta_t H^\circ =$ | | ~274.70 | | | | $lnK_f =$ | | 98.00 | | | $C_p^{\circ} =$ | | 289.76 | | | | | | | | | Solid phas | 20 | | | | | 1,3-Diffuor | whenzene | | | C ₆ H ₄ F ₂ | $\Delta_t H^\circ =$ | - 295.80 | -293.70 | -2.10 | 64SMI/GOR | | • | | $(2 \times C_R - (F)(C_B)$ | 7-7-1 | C61141 2 | $C_p^{\circ} =$ | 275.00 | 221.70 | 2.10 | 045MI/OOK | | | corr-(F)(F | | 3,72,7 . | | S° = | | 249.58 | | | | (| | ,,, - | | | $\Delta_{\rm f} S^{\circ} =$ | | - 544.27 | | | | | Literatu | re - Calculated | = Residual | Reference | $\Delta_t G^{\circ} =$ | | -131.43 | | | | | | | | | $lnK_f =$ | | 53.02 | | | | Gas phase | | | | | | | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -309.20 | -307.28 | -1.92 | 62GOO/LAC | | | | | | | $C_p^{\circ} =$ | 106.27 | 106.64 | -0.37 | 69STU/WES | | probiphenyl | | | $C_{12}H_8F_2$ | | S° = | 320.37 | 322.52 | -2.15 | 69STU/WES | $(8 \times C_B -$ | $-(H)(C_B)_2) +$ | $(2 \times C_B - (F)(C_B$ | $(2) + (2 \times C_{B} - (2 \times C_{B}))$ | | | $\Delta_{\rm f} S^{\circ} =$ | | - 175.75 | | | | | _ | | | | $\Delta_t G^\circ =$ | | -254.88 | | | | Literatu | re – Calculated | = Residual | Reference | | $\ln K_{\ell} =$ | | 102.82 | | | | | | | | | Liquid pha | | | | | Gas phase | | 200 72 | 2.40 | CARNATIONE | | LAGUIGI DISA | | 242 76 | 0.27 | GCOOT AC | $\Delta_{\rm f}H^{\circ} =$ | -205.30 | -208.72 | 3.42 | 64SMI/GOR | | | -344.13
159.12 | 343.76
164.90 | 0.37
5.78 | 62GOO/LAC | $C_r^{\circ} =$ | | 187.32 | | | | $\Delta_t H^\circ =$ | 137.14 | 223.86 | -5.78
-0.02 | 70MES/FIN | | | | | · · · · · · · · · · · · · · · · · · · | | $\Delta_t H^\circ = C_p^\circ =$ | 222 04 | 443.00 | - 0.02 | 70MES/FIN | | | | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 223.84 | | | | Liquid -L. | ana | | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | 223.84 | -274.40 | | | Liquid pha | ase | 202 70 | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 223.84 | | | | Liquid phate $\Delta_t H^\circ = C_p^\circ =$ | ase | -282.70
289.76 | | | | TABLE | 50. | Fluorides | (46) - | Continued | |-------|-----|-----------|--------|-----------| | | | | | | | (8×C _B −(H |)(C _B) ₂)+(| $2 \times C_B - (F)(C_B)$ |) ₂) + (2 × C _B -(| C _B) ₃) | (8×C _B (| H)(C _B) ₂)+ | $(2 \times C_B - (F)(C_1)$ | $_{3})_{2}) + (2 \times C_{B} - ($ | (C _B) ₃) | |---|--|---|---|--|---|---|---
--|---| | | Literature | e – Calculated = | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Solid phase | 206 50 | _ 301 70 | 5.20 | 64SML/GOD | Liquid phas $\Delta_t H^\circ =$ | se | _ 673 48 | | | | $\Delta_i H^\circ = -C_p^\circ =$ | . 290.30 | -301.70
221.70 | 3.20 | 64SMI/GOR | $C_p^{\circ} =$ | 189.91 | - 673.48
193.72 | -3.81 | 73AND/MAR | | $S^{\circ} =$ | | 249.58 | | | S° = | 256.10 | 274.50 | - 18.40 | 73AND/MAR | | $\Delta_f S^\circ =$ | | -544.27 | | | $\Delta_{f}S^{\circ} =$ | | -295.88 | 100 | /U. I. \D/\\II \I | | $\Delta_{\rm f}G^{\circ} =$ | | -139.43 | | | $\Delta_{\mathfrak{l}}G^{\circ} =$ | | -585.26 | | | | lnK _f = | | 56.24 | | n#+ | $lnK_f =$ | | 236.09 | | | | · • | | | | | | | | | | | (Trifluorome
($5 \times C_B$ –(H | • | ne
$(1 \times C_B - (C)(C_B)$ |) ₂) + (1 × C-(0 | $C_7H_5F_3$ $C_B)(F)_3)$ | | | $(4 \times C_B - (F)(C_F)$ | 3)2)+(2×ortho | C_6H_2F corr-(F)(F)) + | | | Literatur | e – Calculated = | = Residual | Reference | .` | | e – Calculated | = Residual | Reference | | Gas phase | 500 TA | 50W 10 | 0.00 | 509C (A/D/A) I | Constant | | | | | | $\Delta_{\mathbf{f}}H^{\circ} = -$ $C_{p}^{\circ} =$ | - 599.10 | 599.10
130.10 | 0.00 | 59SCO/DOU | Gas phase $\Delta_t H^\circ =$ | | -655.62 | | | | C _p = | | 130.10 | | | $C_p^{\circ} =$ | | 131.62 | | | | | | | | | | | | | | | Liquid phase $\Delta_t H^\circ = -$ | :
- 636.70 | -636.70 | 0.00 | 64GOO/LAC | Liquid phas $\Delta_t H^\circ =$ | se | 696.49 | | | | | | | | | $\Delta \epsilon H^{-} =$ | | - 686.48 | | | | | | | | | - | 100.20 | 103 72 | _ 3.43 | 73 A NID /M A D | | | | | | | $C_p^{\circ} =$ | 190.29
257.32 | 193.72
274.50 | - 3.43
- 17.18 | 73AND/MAR
73AND/MAR | | 1,2,4,5-Tetra | fluorobenz | ene | | C ₆ H ₂ F ₄ | $C_p^{\circ} = S^{\circ} =$ | 190.29
257.32 | 193.72
274.50
- 295.88 | -3.43
-17.18 | 73AND/MAR
73AND/MAR | | | | |)2)+(2×ortho | $C_6H_2F_4$ $C_6F_7(F)$ | $C_p^{\circ} =$ | | 274.50 | | | | $(2 \times C_{B}-(1$ | | $(4 \times C_B - (F)(C_B)$ |) ₂)+(2× <i>ortho</i> | | $C_p^{\circ} = S^{\circ} = \Delta_f S^{\circ} =$ | | 274.50
-295.88 | | • | | | I)(C _B) ₂)+(
corr-(F)(F) | $(4 \times C_B - (F)(C_B)$ | | | $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = 0$ | | 274.50
- 295.88
- 598.26 | | • | | (2×C _B -(F
(2×meta | I)(C _B) ₂)+(
corr-(F)(F) | $(4 \times C_B - (F)(C_B))$ | | corr-(F)(F))+ | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = 1$ 1-Fluoro-3-(| 257.32 | 274.50
- 295.88
- 598.26
241.34 | - 17.18 | 73AND/MAR
C₁H₄F | | (2×C _B -(F)
(2×meta o | I)(C _B) ₂)+(
corr-(F)(F) | (4×C _B -(F)(C _B)
))
e - Calculated = | | corr-(F)(F))+ | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = 1$ 1-Fluoro-3-($(4 \times C_B - (1 + C_b)^2)$ | 257.32
(trifluorome
H)(C _B) ₂)+ | 274.50
- 295.88
- 598.26
241.34
 | - 17.18 | 73AND/MAR
C₁H₄F | | (2×C _B -(F)
(2×meta c | I)(C _B) ₂)+(
corr-(F)(F) | $(4 \times C_B - (F)(C_B))$ | | corr-(F)(F))+ | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = 1$ 1-Fluoro-3-($(4 \times C_B - (1 + C_b)^2)$ | 257.32 (trifluorome H)(C_B) ₂) + (1 | 274.50
- 295.88
- 598.26
241.34
ethyl)benzene
(1 × C _B -(F)(C _B
× meta corr-(F) | -17.18 -17.18 -17.18 -17.18 -17.18 -17.18 | 73AND/MAR $C_7H_4F_1$ $C)(C_B)_2) +$ | | $(2 \times C_B - (F_C)^2)$ $(2 \times meta)$ Gas phase $\Delta_t H^\circ =$ | I)(C _B) ₂)+(
corr-(F)(F) | (4×C _B -(F)(C _B)) e - Calculated = -655.62 | | corr-(F)(F))+ | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1-\text{Fluoro-3-}(4 \times C_B - C_t)}{4 \times C_B - C_t}$ | 257.32 (trifluorome H)(C_B) ₂) + (1 | 274.50
- 295.88
- 598.26
241.34
 | -17.18 -17.18 -17.18 -17.18 -17.18 -17.18 | 73AND/MAR
C7H4F | | $(2 \times C_B - (F + F))$ $(2 \times meta + G + F)$ $C_P = C_P = C_P$ Liquid phase | I)(C _B) ₂) + (corr-(F)(F) Literatur | (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 | = Residual | Reference | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1-\text{Fluoro-3-}(4 \times C_B - C_t)}{4 \times C_B - C_t}$ | 257.32 (trifluorome H)(C_B) ₂) + (1 | 274.50
- 295.88
- 598.26
241.34
ethyl)benzene
(1 × C _B -(F)(C _B
× meta corr-(F) | -17.18 -17.18 -17.18 -17.18 -17.18 -17.18 | 73AND/MAR C ₇ H ₄ F C)(C _B) ₂) + | | $(2 \times C_B - (H + (2 \times meta)))$ $Gas phase$ $\Delta_t H^\circ = C_p^\circ =$ | H)(C _B) ₂) + (corr-(F)(F) Literatur | (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 | = Residual | Reference 78HAR/HEA | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1-\text{Fluoro-3-}(4 \times C_B - C)}{(1 \times C - C)}$ | 257.32 (trifluorome H)(C_B) ₂) + (1 C_B) ₃) + (1 | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _E × meta corr-(F) | -17.18 $(a)_{2} + (1 \times C_{B} - (CF3))$ = Residual | 73AND/MAR C_7H_4F $C)(C_B)_2) +$ Reference | | Gas phase $C_{p}^{\mu} = C_{p}^{\mu} = C_{p}^{\mu}$ Liquid phase $C_{p}^{\mu} = C_{p}^{\mu} = C_{p}^{\mu}$ | H)(C _B) ₂) + (corr-(F)(F) Literatur | (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 | 2.78
-1.51 | Reference 78HAR/HEA 73AND/MAR | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1-\text{Fluoro-3-}}{(1 \times \text{C-}(C))}$ Gas phase $\Delta_t H^{\circ} = \frac{1}{2} \frac{1}{2}$ | 257.32 (trifluorome H)(C_B) ₂) + (1 | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _E × meta corr-(F) e - Calculated | -17.18 -17.18 -17.18 -17.18 -17.18 -17.18 | 73AND/MAR C7H4F C)(C _B) ₂) + | | $(2 \times C_B - (F + F)^2)$ $(2 \times meta + G + F)$ $(2 \times meta + G + F)$ $C_P^o = C_P^o = C_P^o = C_P^o = S_P^o S_$ | H)(C _B) ₂) + (corr-(F)(F) Literatur | (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 | = Residual | Reference 78HAR/HEA | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1-\text{Fluoro-3-}(4 \times C_B - C)}{(1 \times C - C)}$ | 257.32 (trifluorome H)(C_B) ₂) + (1 C_B) ₃) + (1 | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _E × meta corr-(F) | -17.18 $(a)_{2} + (1 \times C_{B} - (CF3))$ = Residual | 73AND/MAR C_7H_4F $C)(C_B)_2) +$ Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ $C_p^\circ = S^\circ = \Delta_t S^\circ =$ | H)(C _B) ₂) + (corr-(F)(F) Literatur | (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 -295.88 | 2.78
-1.51 | Reference 78HAR/HEA 73AND/MAR | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = \frac{1-\text{Fluoro-3-}}{(1 \times \text{C-}(C))}$ Gas phase $\Delta_t H^{\circ} = \frac{1}{2} \frac{1}{2}$ | 257.32 (trifluorome H)(C_B) ₂) + (1 C_B) ₃) + (1 | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _E × meta corr-(F) e - Calculated | -17.18 $(a)_{2} + (1 \times C_{B} - (CF3))$ = Residual | 73AND/MAR C_7H_4F $C)(C_B)_2) +$ Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ =$ | H)(C _B) ₂) + (corr-(F)(F) Literatur | (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 -295.88 -598.26 | 2.78
-1.51 | Reference 78HAR/HEA 73AND/MAR | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t =
1$ 1-Fluoro-3-(4×C _B -((1×C-(C))) Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = \frac{1}{2}$ | 257.32 (trifluorome H)(C _B) ₂) + (1 B)(F) ₃) + (1 Literatur - 792.20 | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _E × meta corr-(F) e - Calculated | -17.18 $(a)_{2} + (1 \times C_{B} - (CF3))$ = Residual | 73AND/MAR C_7H_4F $C)(C_B)_2) +$ Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ $C_p^\circ = S^\circ = \Delta_t S^\circ =$ | H)(C _B) ₂) + (corr-(F)(F) Literatur | (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 -295.88 | 2.78
-1.51 | Reference 78HAR/HEA 73AND/MAR | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t S^{\circ} = \ln K_t = 1$ 1-Fluoro-3-(4×C _B -(C)) Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = 1$ Liquid phas | 257.32 (trifluorome H)(C _B) ₂) + (1 B)(F) ₃) + (1 Literatur - 792.20 | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _E × meta corr-(F) e - Calculated | -17.18 $(a)_{2} + (1 \times C_{B} - (CF3))$ = Residual | 73AND/MAR C_7H_4F $C)(C_B)_2) +$ Reference | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} =$ $\Delta_{t}G^{\circ} =$ | H)(C _B) ₂) + (corr-(F)(F) Literatur | (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 -295.88 -598.26 | 2.78
-1.51 | Reference 78HAR/HEA 73AND/MAR | $C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \ln K_{t} = \frac{1 - \text{Fluoro-} 3 - (4 \times C_{B} - C)}{(1 \times C - C)}$ Gas phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = \frac{1 - \text{Fluoro-} 3 - (4 \times C_{B} - C)}{(1 \times C - C)}$ Liquid phas | 257.32 (trifluorome H)(C _B) ₂) + (1 B)(F) ₃) + (1 Literatur - 792.20 | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _B × meta corr-(F) e - Calculated - 792.17 142.59 | - 17.18
(a) ₂) + (1 × C _B -(F)(CF3))
= Residual
- 0.03 | 73AND/MAR C ₇ H ₄ F C)(C _B) ₂) + Reference 59GOO/DOU | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} =$ $\ln K_{t} =$ | H)(C _B) ₂) + (corr-(F)(F) Literatur - 683.70 192.21 250.41 | (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 -295.88 -598.26 241.34 | 2.78
-1.51 | 78HAR/HEA
73AND/MAR | $C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = \ln K_{t} = \frac{1 - \text{Fluoro-} 3 - (4 \times C_{B} - C)}{(1 \times C - C)}$ Gas phase $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = \frac{1 - \text{Fluoro-} 3 - (4 \times C_{B} - C)}{(1 \times C - C)}$ Liquid phas | 257.32 (trifluorome H)(C _B) ₂) + (1 B)(F) ₃) + (1 Literatur - 792.20 | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _B × meta corr-(F) e - Calculated - 792.17 142.59 | - 17.18
(a) ₂) + (1 × C _B -(F)(CF3))
= Residual
- 0.03 | 73AND/MAR C7H4F C)(CB)2) + Reference 59GOO/DOU | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $C_{p}^{\circ} = G_{p}^{\circ} =$ $\Delta_{t}G^{\circ} = G_{p}^{\circ} =$ $\ln K_{t} =$ 1,2,3,4-Tetra | H)(C _B) ₂) + (corr-(F)(F) Literatur - 683.70 192.21 250.41 | (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 -295.88 -598.26 241.34 | 2.78
-1.51
-24.09 | 78HAR/HEA
73AND/MAR
73AND/MAR | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = 1$ 1-Fluoro-3-(4×C _B -(1) (1×C-(C) Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = 1$ Liquid phas $\Delta_t H^{\circ} = 1$ | (trifluorome
H)(C _B) ₂) + (1
E)(F) ₃) + (1
Literatur
- 792.20 | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _B × meta corr-(F) e - Calculated - 792.17 142.59 | - 17.18
(a) ₂) + (1 × C _B -(F)(CF3))
= Residual
- 0.03 | 73AND/MAR C ₇ H ₄ F C)(C _B) ₂) + Reference 59GOO/DOU | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t G^\circ = C_p^\circ = C_p^\circ =$ $\Delta_t G^\circ = C_p^\circ = C_p^\circ =$ $1,2,3,4\text{-Tetra}$ | H)(C _B) ₂) + (corr-(F)(F) Literatur - 683.70 192.21 250.41 | (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 -295.88 -598.26 241.34 | 2.78
-1.51
-24.09 | 78HAR/HEA
73AND/MAR
73AND/MAR | $C_p^{\circ} = S^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t = 1$ 1-Fluoro-3-($(4 \times C_B - C_t)$) (1 \times C - C_t) Gas phase $\Delta_t H^{\circ} = C_p^{\circ} = 1$ Liquid phas $\Delta_t H^{\circ} = 1$ | (trifluorome
H)(C _B) ₂) + (1
E _B)(F) ₃) + (1
Literatur
- 792.20
e
- 830.20 | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _E × meta corr-(F) e - Calculated - 792.17 142.59 - 830.06 | - 17.18 (a) ₂) + (1 × C _B -(F)(CF3)) = Residual - 0.03 | 73AND/MAR C7H4F C)(CB)2) + Reference 59GOO/DOU C6HF2 | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t G^\circ = C_p^\circ = C_p^\circ =$ $\Delta_t G^\circ = C_p^\circ = C_p^\circ =$ $1,2,3,4\text{-Tetra}$ | H)(C _B) ₂) + (corr-(F)(F) Literatur -683.70 192.21 250.41 fluorobenz H)(C _B) ₂) + (| (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 -295.88 -598.26 241.34 | 2.78
-1.51
-24.09 | 78HAR/HEA
73AND/MAR
73AND/MAR | $C_p^\circ = S^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 - \text{Fluoro-} 3 - (4 \times C_B - (1 \times C - (C)))}{(1 \times C - (C))}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1 - (C + C)}{(1 \times C_B - (1 \times C_B - (C)))}$ Pentafluoroi $(1 \times C_B - (C + C))$ | (trifluorome
H)(C _B) ₂) + (1
E _B)(F) ₃) + (1
Literatur
- 792.20
e
- 830.20 | 274.50 - 295.88 - 598.26 241.34 ethyl) benzene (1 × C _B -(F)(C _E × meta corr-(F) e - Calculated - 792.17 142.59 - 830.06 | - 17.18 (a) ₂) + (1 × C _B -(F)(CF3)) = Residual - 0.03 | 73AND/MAR C ₇ H ₄ F C)(C _B) ₂) + Reference 59GOO/DOU | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ $\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ $\ln K_t =$ 1,2,3,4-Tetra $(2 \times C_B - (1 + 1)^2)$ | H)(C _B) ₂) + (corr-(F)(F) Literatur -683.70 192.21 250.41 fluorobenz H)(C _B) ₂) + (| (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 -295.88 -598.26 241.34 ene (4×C _B -(F)(C _B) | 2.78
-1.51
-24.09 | 78HAR/HEA 73AND/MAR 73AND/MAR C ₆ H ₂ F ₄ | $C_p^\circ = S^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 - \text{Fluoro-} 3 - (4 \times C_B - (1 \times C - (C)))}{(1 \times C - (C))}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1 - (C + C)}{(1 \times C_B - (1 \times C_B - (C)))}$ Pentafluoroi $(1 \times C_B - (C + C))$ | (trifluorome
H)(C _B) ₂) + (1
Literatur
- 792.20
e - 830.20
benzene
H)(C _B) ₂) + (1
corr-(F)(F) | 274.50 - 295.88 - 598.26 241.34 ethyl) benzene (1 × C _B -(F)(C _E × meta corr-(F) e - Calculated - 792.17 142.59 - 830.06 | -17.18 $-$ | 73AND/MAR C7H4F C)(CB)2) + Reference 59GOO/DOU C6HF | | Gas phase $\Delta_t H^\circ = C_p^\circ = $ Liquid phase $\Delta_t H^\circ = C_p^\circ = $ $\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = $ $\ln K_t = $ 1,2,3,4-Tetra (2 × C _B -(F | H)(C _B) ₂) + (corr-(F)(F) Literatur -683.70 192.21 250.41 fluorobenz H)(C _B) ₂) + (| (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 -295.88 -598.26 241.34 ene (4×C _B -(F)(C _B) | 2.78
-1.51
-24.09 | 78HAR/HEA 73AND/MAR 73AND/MAR C ₆ H ₂ F ₄ | $C_p^\circ = S^\circ = S^\circ =
\Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 - \text{Fluoro-} 3 - (4 \times C_B - (1 \times C - (C)))}{(1 \times C - (C))}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1 - (C + C)}{(1 \times C_B - (1 \times C_B - (C)))}$ Pentafluoroi $(1 \times C_B - (C + C))$ | (trifluorome
H)(C _B) ₂) + (1
Literatur
- 792.20
e - 830.20
benzene
H)(C _B) ₂) + (1
corr-(F)(F) | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _B × meta corr-(F) e - Calculated - 792.17 142.59 - 830.06 | -17.18 $-$ | 73AND/MAR C7H4F C)(CB)2) + Reference 59GOO/DOU 59GOO/DOU C4HF corr-(F)(F)) + | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} =$ 1,2,3,4-Tetra $(2 \times C_{B} - (H^{\circ}))$ Gas phase | H)(C _B) ₂) + (corr-(F)(F) Literatur -683.70 192.21 250.41 fluorobenz H)(C _B) ₂) + (| (4×C _B -(F)(C _B)) e - Calculated = -655.62 131.62 -686.48 193.72 274.50 -295.88 -598.26 241.34 ene (4×C _B -(F)(C _B) | 2.78
-1.51
-24.09 | 78HAR/HEA 73AND/MAR 73AND/MAR C ₆ H ₂ F ₄ | $C_p^\circ = S^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 - \text{Fluoro-} 3 - (4 \times C_B - (1 \times C - (C)))}{(1 \times C - (C))}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1 - (C + C)}{(1 \times C_B - (1 \times C_B - (C)))}$ Pentafluoroi $(1 \times C_B - (C + C))$ | (trifluorome
H)(C _B) ₂) + (1
Literatur
- 792.20
e - 830.20
benzene
H)(C _B) ₂) + (1
corr-(F)(F) | 274.50 - 295.88 - 598.26 241.34 ethyl)benzene (1 × C _B -(F)(C _B × meta corr-(F) e - Calculated - 792.17 142.59 - 830.06 | -17.18 $-$ | 73AND/MAR C7H4F C)(CB)2) + Reference 59GOO/DOU 59GOO/DOU C4HF corr-(F)(F)) + | | TABLE | 50. | Fluorides | (46) | – | Continued | |-------|-----|-----------|------|----------|-----------| |-------|-----|-----------|------|----------|-----------| | Pentafluorobenzene (Continued)
$(1 \times C_B-(H)(C_B)_2) + (5 \times C_B-(F)(C_B)_2) + (4 \times ortho \ c$
$(1 \times meta \ corr-(F)(F))$ | C_6HF_5 orr- $(F)(F)$ + | Acetyl fluoride $(1 \times C - (H)_3(CO)) + (1 \times CO - (C)(F))$ | |---|--------------------------------|---| | Literature - Calculated = Residual | Reference | Literature – Calculated – Residual Reference | | Liquid phase $\Delta_0 H^\circ = -841.80 - 841.84 0.04$ | 69COX/GUN | Gas phase $\Delta_t H^o = -422.10 -422.10$ 0.00 70COX/PIL | | $C_{\rho}^{\circ} = 204.68$ 208.13 -3.45
$S^{\circ} = 275.89$ 299.82 -23.93
$\Delta_{\epsilon}S^{\circ} = -306.61$
$\Delta_{f}G^{\circ} = -750.42$
$\ln K_{f} = 302.72$ | 68COU/HAL
68COU/HAL | Liquid phase $\Delta_t H^\circ = -467.20 -467.20 0.00 49CAR/SKI$ | | 2,3,4,5,6-Pentafluorotoluene | C7H3F5 | 2,2,2-Trifluoroethanol $(1 \times C - (C)(F)_3) + (1 \times C - (H)_2(O)(C)) + (1 \times O - (H)(C))$ Literature Coloulated - Residuel | | $(1 \times C_{-}(H)_{3}(C)) + (1 \times C_{B-}(C)(C_{B})_{2}) + (5 \times C_{B-}(F)(C_{B})_{2}) + (5 \times C_{B-}(F)(C_{B})_{2}) + (2 \times ortho \ corr-(alk)(X))$ | -BJ2J + | Literature - Calculated = Residual Reference | | Literature – Calculated = Residual | Reference | Gas phase $\Delta_t H^\circ = -888.40 -866.04 -22.36$ 73ROC/SYM $C_b^\circ = 91.48$ | | Gas phase
$\Delta_l H^\circ = -842.90 - 836.30 - 6.60$
$C_\rho^\circ = 165.98$ | 69COX/GUN | Liquid phase | | Liquid phase $ \Delta_{t}H^{\circ} = -883.80 -871.85 -11.95 $ $ C_{\rho}^{\circ} = 232.03 $ $ S^{\circ} = 334.75 $ $ \Delta_{t}S^{\circ} = -407.99 $ $ \Delta_{t}G^{\circ} = -750.21 $ $ \ln
K_{t} = 302.63 $ | 69COX/GUN | $\Delta_t H^\circ = -932.40 -936.37$ 3.97 71KOL/IVA $C_p^\circ = 151.46$ $S^\circ = 212.04$ $\Delta_t S^\circ = -401.84$ $\Delta_t G^\circ = -816.56$ $\ln K_t = 329.40$ | | 102.05 | | $\begin{array}{ll} \textbf{3,3,3-Trifluoro-1-propanol} & \textbf{C_3H_5F_3O} \\ (1\times O-(H)(C)) + (1\times C-(H)_2(O)(C)) + (1\times C-(H)_2(C)_2) + \\ (1\times C-(C)(F)_3) & \end{array}$ | | Dodecasiuorocyclohexane $(6 \times C - (C)_2(F)_2) + (1 \times Cyclohexane (sub) rsc)$ | C ₆ F ₁₂ | Literature - Calculated = Residual Reference | | Literature - Calculated = Residual | Reference | Gas phase | | Gas phase $\Delta_{\mu}H^{\circ} = -2370.40 -2468.73$ 98.33 $C_{\rho}^{\circ} = 225.70$ | 79PRI/SAP | $\Delta_l H^\circ = -886.67$ $C_p^\circ = 114.37$ | | Liquid phase $\Delta_t H^\circ = -2406.30 -2404.28 -2.02$ | 79PRI/SAP | Liquid phase $\Delta_t H^\circ = -969.60 -962.10 -7.50$ 69KOL/IVA $C_\rho^\circ = 181.88$ $S^\circ = 244.42$ $\Delta_t S^\circ = -505.77$ | | Solid phase $\Delta_t H^\circ = -2562.32$ | | $\Delta_{t}G^{\circ} = -811.30$ $\ln K_{t} = 327.27$ | TABLE 50. Fluorides (46) - Continued | | +(1×C-(H | C ₃ H ₄ F ₄
I) ₂ (O)(C)) + | 2,2,3,3,4,4,4-Heptafiuoro-1-butanol C_4H_3F
(1×O-(H)(C))+(1×C-(H) ₂ (O)(C))+(2×C-(C) ₂ (F) ₂)+ | |--|---------------------------|---|---| | (1×O-(H)(C)) | | <i>7</i> - <i>x 7x 7y</i> | $(1\times C-(C)(F)_3)$ | | Literature - Calculated = | Residual | Reference | Literature - Calculated = Residual Reference | | Gas phase $\Delta_t H^\circ = -1061.30 -1058.36$ $C_p^\circ = 122.13$ | - 2.94 | 73ROC/SYM | Gas phase $\Delta_t H^\circ = -1688.82$ $C_\rho^\circ = 174.32$ | | Liquid phase $\Delta_t H^{\circ} = -1114.90 -1114.90$ | 0.00 | 69KOL/IVA | Liquid phase $\Delta_t H^\circ = -1781.90 -1737.11 -44.79$ 71KOL/IVA2 | | 2,2,3,3,3-Pentafluoro-1-propanol
(1 × O-(H)(C)) + (1 × C-(H) ₂ (O)(C))
(1 × C-(C)(F) ₃) | +(1×C-(C | C₃H₃F₅O
()2(F)2) + | 2,2,3,3,4,4,5,5-Octafluoro-1,6-hexanediol $(2 \times O - (H)(C)) + (2 \times C - (H)_2(O)(C)) + (4 \times C - (C)_2(F)_2)$ | | Literature – Calculated = | Residual | Reference | Literature – Calculated = Residual Reference | | Gas phase $\Delta_t H^\circ = -1310.30 -1277.43$ $C_p^\circ = 132.90$ | -32.87 | 73ROC/SYM | Gas phase $\Delta_t H^\circ = -2084.20 -2030.02 -54.18$ 74KOL/SLA $C_p^\circ = 242.66$ | | Liquid phase $\Delta_t H^\circ = -1354.70 -1336.74$ | -17.96 | 69KOL/IVA | Liquid phase $\Delta_t H^\circ = -2056.08$ | | | | | Solid phase | | Pentafluorophenol $(1 \times O-(H)(C_B)) + (1 \times C_B-(O)(C_B)_2)$ $(4 \times ortho \text{ corr-}(F)(F))$ | + (5 × C _B -(I | C_6HF_5O
F)(C _B) ₂)+ | $\Delta_t H^\circ = -2173.40 - 2180.40$ 7.00 74KOL/SLA | | | | | Pentafluorobenzoic acid C_7HF_5 ($(1 \times O-(H)(CO)) + (1 \times CO-(O)(C_B)) + (5 \times C_B-(F)(C_B)_2) + (4 \times ortho \ corr-(F)(F)) + (1 \times C_B-(CO)(C_B)_2) +$ | | $(1 \times O - (H)(C_B)) + (1 \times C_B - (O)(C_B)_2)$ $(4 \times ortho \text{ corr-}(F)(F))$ $Literature - Calculated =$ $Gas phase$ $\Delta_t H^\circ = -956.80 - 987.75$ | | F)(C _B) ₂)+ | Pentafluorobenzoic acid C_7HF_5
$(1 \times O-(H)(CO)) + (1 \times CO-(O)(C_B)) + (5 \times C_B-(F)(C_B)_2) +$ | | $(1 \times O - (H)(C_B)) + (1 \times C_B - (O)(C_B)_2)$ $(4 \times ortho \text{ corr-}(F)(F))$ $Literature - Calculated =$ $\Delta_t H^\circ = -956.80 - 987.75$ $C_p^\circ = 164.52$ $Liquid phase$ $\Delta_t H^\circ = -1007.70 - 1053.36$ | Residual | Reference | Pentafluorobenzoic acid C_7HF_5 ($(1 \times O-(H)(CO)) + (1 \times CO-(O)(C_B)) + (5 \times C_B-(F)(C_B)_2) + (4 \times ortho \ corr-(F)(F)) + (1 \times C_B-(CO)(C_B)_2) + (2 \times ortho \ corr-(F)(COOH))$ | | $(1 \times O-(H)(C_B)) + (1 \times C_B-(O)(C_B)_2)$ $(4 \times ortho \text{ corr-}(F)(F))$ $Literature - Calculated =$ $Gas phase$ $\Delta_t H^\circ = -956.80 -987.75$ $C_p^\circ = 164.52$ $Liquid phase$ | Residual 30.95 | F)(C _B) ₂) + Reference 69COX/GUN | Pentafluorobenzoic acid C_7HF_5
$(1 \times O - (H)(CO)) + (1 \times CO - (O)(C_B)) + (5 \times C_B - (F)(C_B)_2) + (4 \times ortho \text{ corr-}(F)(F)) + (1 \times C_B - (CO)(C_B)_2) + (2 \times ortho \text{ corr-}(F)(COOH))$ Literature – Calculated = Residual Reference | | (1×CO-(| $F(C_B)_2 + (4 \times C_{B} - (H)(C_B)_2) + (1 \times C_{B} - (CO)(C_B)_2) (CO)($ | C ₇ H ₅ FO ₂
O-(H)(CO)) + | 4-Fluorobenzoic acid $(4 \times C_B-(H)(C_B)_2) + (1 \times CO-(O)(C_B)) + (1 \times CO-(O)(C_B))$ | $(1 \times C_B - (F)(C_B)_2$ | | С 7HsF0 ;
H)(CO))+ | |--|---|---|--|------------------------------|------------|--| | (1×onno | corr-(F)(COOH)) Literature – Calculated = Residual | Reference | Literatu | re – Calculated = | Residual | Reference | | | | | Solid phase | | | | | Gas phase $\Delta_t H^\circ =$ | 469.82 | | $ \Delta_t H^\circ = -568.60 $ $ C_p^\circ = S^\circ = $ | -586.88
158.03
184.78 | 18.28 | 56SCO/GOO | | | | | $\Delta_{f}S^{\circ} =$ | - 488.21 | | | | Liquid phase $\Delta_t H^\circ =$ | e
573.70 | | $\Delta_t G^{\circ} = \ln K_t =$ | - 441.32
178.03 | | | | $C_p^{\circ} =$ | 218.18 | | | 176.03 | | | | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | - 567.60 - 566.88 - 0.72
158.03
184.78 | 56SCO/GOO | Bis-(3,3,3-trifluoropro
(2 × C-(C)(F) ₃) + (2
(1 × O-(C) ₂) | | (2×C-(H)₂(| C ₆ H ₈ F ₆ O
(O)(C))+ | | $\Delta_{\mathbf{f}}S^{\circ} =$ | -488.21 | | Literatu | re - Calculated = | Residual | Reference | | $\Delta_i G^{\circ} =$ | -421.32 | | | | | | | lnK _f = | 169.96 | | Gas phase
$\Delta_l H^\circ = -1604.30$
$C_p^\circ =$ | - 1556.10
210.96 | -48.20 | 74SLA/KOL | | 3-Fluoroben | | C ₇ H ₅ FO ₂ | | | | | | | $H_1(C_B)_2 + (1 \times C_{B^{-1}}(F)(C_B)_2) + (1 \times C_{B^{-1}}(F)(C_B)_2)$
$H_1(C_B)_2 + (1 \times C_{B^{-1}}(CO)(C_B)_2)$ |)-(H)(CO))+ | Liquid phase | | | | | (1207 | Literature – Calculated = Residual | Reference | $\Delta_t H^\circ = -1645.30$ $C_\rho^\circ =$ | - 1652.03
298.75 | 6.73 | 74SLA/KOL | | | | | $S^{\circ} = \Delta_{\epsilon}S^{\circ} =$ | 427.84
839.45 | | | | Gas phase $\Delta_t H^\circ =$ | - 489.82 | | $\Delta_f G^\circ = \\ \ln K_f =$ | - 1401.75
565.46 | | | | Liquid phas | | | | _ | | | | $\Delta_t H^\circ = C_r^\circ =$ | - 573.70
218.18 | | Octafluoropropane; Po $(2 \times C - (C)(F)_3) + (1$ | | | C ₃ F ₈ | | Solid phase | | | Literatu | re – Calculated = 1 | Residual | Reference | | $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = 0$ | - 582.00 - 586.88 4.88
158.03
184.78
- 488.21 | 56SCO/GOO | Gas phase
$\Delta_t H^\circ = -1760.12$
$C_p^\circ =$ | 1759.01
147.40 | -1.11 | 67KOL/TAL | | $\Delta_f G^\circ = \ln K_f =$ | -441.32
178.03 | | | | | | | | zoic acid
H)(C_B) ₂) + (1 ×
C_B -(F)(C_B) ₂) + (1 × C_B -(CO)(C_B) ₂)
Literature – Calculated = Residual | | | | | | | Gas phase Δ _i H° = | 494.50 489.82 4.68 | 69COX/GUN | | | | | | Liquid phas $\Delta_t H^\circ =$ | -573.70 | | | | | | | $C_p^{\circ} =$ | 218.18 | | | | | | E. S. DOMALSKI AND E. D. HEARING | | T | ABLE 51. Chlo | rides (116) | | | TABLE 5 | 1. Chlorides (| 116) — Conti | inued | |---|--|--|-----------------------|---------------------------------------|----------------------------------|-----------------|--|---------------------------|---| | | nane; Methy
H) ₃ (Cl), met | l chloride
hyl chloride), c | $\sigma = 3$ | CH₃Cl | 1-Chlorobu
(1×C-(1 | | × C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ | C_4H_9C (C)(Cl)), $\sigma = 3$ | | | Literatur | e – Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase | | | | | Gas phase | | | | | | $\Delta_t H^{\circ} =$ | ~81.90 | -81.90 | 0.00 | 71FLE/PIL | $\Delta_{\epsilon}H^{\circ} =$ | -154.60 | -152.97 | -1.63 | 68WAD | | $C_p^{\circ} =$ | 40.75 | 40.75 | 0.00 | 69STU/WES | $C_p^{\circ} =$ | 107.57 | 109.04 | -1.47 | 69STU/WES | | S° = | 234.37 | 234.47 | -0.10 | 69STU/WES | S° = | 358.07 | 355.75 | 2.32 | 69STU/WES | | $\Delta_f S^\circ =$ | | -78.62 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -366.27 | | | | $\Delta_{\rm f}G^{\circ} =$ | | - 58.46 | | | $\Delta_t G^\circ =$ | | -43.77 | | | | $lnK_f =$ | | 23.58 | | <u> </u> | $lnK_f =$ | | 17.66 | · | - · · · · · · · · · · · · · · · · · · · | | | | | | | Liquid pha | | | | | | Chloroetha | | | | C ₂ H ₅ Cl | $\Delta_{\rm f}H^{\circ} =$ | - 188.10 | - 185.97 | -2.13 | 75STR/SUN | | (1 × C-(1 | H) ₃ (C)) + (1 | \times C-(H) ₂ (C)(C | (1)), $\sigma = 3$ | | $C_p^{\circ} =$ | 159.64 | 161.08 | - 1.44 | 85LAI/WIL | | | 7. | 0.1.1.1 | D | D. f. | S° = | | 252.33 | | | | | Literatur | e – Calculated | = Kesidual | Reference | $\Delta_f S^\circ =$ | * | -469.69 | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | -45.93 | | | | Gas phase | | | | | $lnK_f =$ | | 18.53 | | | | $\Delta_t H^\circ =$ | - 112.26 | - 111.71 | -0.55 | 71FLE/PIL | | | | | | | $C_p^{\circ} =$ | 62.72 | 63.26 | -0.54 | 69STU/WES | 1-Chlorope | entane | | | C ₅ H ₁₁ C | | S° = | 275.85 | 277.43 | -1.58 | 69STU/WES | (1×C-(I | $H)_3(C)) + (3$ | \times C-(H) ₂ (C) ₂) | $+(1\times C-(H)_2)$ | $(C)(Cl)), \sigma = 3$ | | $\Delta_f S^\circ =$ | | - 171.97 | | | | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | - 60.44 | | | | Literatu | re – Calculated | = Residual | Reference | | $lnK_f =$ | | 24.38 | | | | | | · | | | | | | | | Gas phase | | | | | | Liquid pha | is e | | | | $\Delta_{\mathbf{f}}H^{\circ}$ – | -175.20 | -173.60 | -1.60 | 68WAD | | $\Delta_{\rm f}H^{\circ} =$ | - 136.90 | - 134.51 | -2.39 | 48GOR/GIA | $C_p^{\circ} =$ | 130.46 | 131.93 | -1.47 | 69STU/WES | | $C_p^{\circ} =$ | 103.30 | 100.24 | 3.06 | 48GOR/GIA | S° = | 397.02 | 394.91 | 2.11 | 69STU/WES | | S° = | 186.27 | 187.57 | -1.30 | 48GOR/GIA | $\Delta_f S^\circ =$ | | -463.42 | | | | $\Delta_f S^\circ =$ | | -261.82 | | | $\Delta_{\rm f}G^{\circ} =$ | | -35.43 | | | | $\Delta_f G^\circ = \ln K_f =$ | | - 56.45
22.77 | | | $lnK_f =$ | | 14.29 | . <u></u> | | | | | | | · | Liquid pha | 50 | | | | | | | | | | $\Delta_f H^\circ =$ | - 213.44 | -211.70 | - 1.74 | 75STR/SUN | | 1-Chloropi | ropane | | | C ₃ H ₇ Cl | $C_p^{\circ} =$ | | 191.50 | | | | • | • | \times C-(H) ₂ (C) ₂) | $+(1\times C-(H)_2$ | $(C)(CI)), \sigma = 3$ | S° = | | 284.71 | | | | ` ` | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | . , , , , , , , | ` ` ` ?- | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -573.62 | | | | | Literatu | re – Calculated | = Residual | Reference | $\Delta_f G^\circ =$ | | -40.68 | | | | | | | | | $lnK_f =$ | | 16.41 | | | | Gas phase | | | | | | | | | * . | | $\Delta_{\rm f}H^{\circ} =$ | -132.51 | -132.34 | -0.17 | 71FLE/PIL | 1-Chlorooc | tane | | | C ₈ H ₁₇ C | | $C_p^{\circ} =$ | 84.68 | 86.15 | - 1.47 | 69STU/WES | (1×C-(I | $H)_3(C)) + (6$ | \times C-(H) ₂ (C) ₂) | $+(1\times C-(H)_{2})$ | (C)(Cl)) | | S° = | 319.11 | 316.59 | 2.52 | 69STU/WES | | | | | _ 1 | | $\Delta_f S^{\circ} -$ | | - 269.12 | | | | Literatur | c – Calculated | - Residual | Reference | | $\Delta_f G^\circ =$ | | -52.10 | | | | | | | | | $lnK_f =$ | | 21.02 | | | Gos phose | | | | | | | | | | | Gas phase $\Delta_t H^\circ =$ | -238.88 | -235.49 | -3.39 | 68WAD | | Liquid pha | ase | | | | $C_p^{\circ} =$ | 20.00 | 200.60 | 3.33 | , WHAD | | $\Delta_i H^\circ =$ | ~ 160.40 | -160.24 | -0.16 | 77MAN/SEL | О р | | | - | | | $C_p^{\circ} =$ | 131.38 | 130.66 | 0.72 | 1881REI | | | | | | | S° = | | 219.95 | · - | · · · · · · · · · · · · · · · · · · · | Liquid pha | se | | | | | | | -365.75 | | | $\Delta_i H^\circ =$ | -291.30 | -288.89 | -2.41 | 75STR/SUN | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -51.19 | | | $C_p^{\circ} =$ | | 282.76 | | | | | | | | | | | 201.05 | | | | $\Delta_f S^\circ =$ | | 20.65 | | | S° = | | 381.85 | | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | 20.65 | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -885.41 | | | | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | 20.65 | | | | | | | | | TABLE 51. | Chlorides (| (116) - | Continued | |-----------|-------------|---------|-----------| |-----------|-------------|---------|-----------| TABLE 51. Chlorides (116) - Continued | 1-Chlorododecane $(1 \times C - (H)_3(C)) + (10 \times C - (H)_2(C)_2) + (1 \times$ | C ₁₂ H ₂₅ Cl | 1-Chloro-2-methylpropane C_4H_5C
$(2\times C-(H)_3(C))+(1\times C-(H)(C)_3)+(2\times -CH_3 \text{ corr (tertiary)})+$
$(1\times C-(H)_2(C)(Cl)), \sigma=9$ | |---|-------------------------------------|--| | Literature – Calculated = Residual | Reference | $Literature - Calculated = Residual \qquad Reference$ | | Gas phase $\Delta_t H^\circ = -321.98 -318.01 -3.97$ $C_p^\circ = 292.16$ Liquid phase $\Delta_t H^\circ = -392.31 -391.81 -0.50$ | 75STR/SUN | Gas phase $\Delta_t H^\circ = -159.40 -159.66 0.26 68WAD$ $C_p^\circ = 108.49 109.07 -0.58 69STU/WES$ $S^\circ = 353.80 342.01 11.79 69STU/WES$ $\Delta_t S^\circ = -380.00$ $\Delta_t G^\circ = -46.36$ | | $C_p^{\circ} = 404.44$ $S^{\circ} = 511.37$ $\Delta_t S^{\circ} = -1301.13$ $\Delta_t G^{\circ} = -3.88$ $\ln K_t = 1.56$ | | $\ln K_{\rm f} = 18.70$ Liquid phase $\Delta_{\rm f} H^{\circ} = -191.10 -191.25$ 0.15 53SMI/BJE $C_{\rm p}^{\circ} = 158.57$ 158.10 0.47 48KUR | | 1-Chlorooctadecane
$(1 \times C-(H)_3(C)) + (16 \times C-(H)_2(C)_2) + (1 \times C-(H)_2(C)_2)$ | | $S^{\circ} = 246.98$ $\Delta_{f}S^{\circ} = -475.04$ $\Delta_{f}G^{\circ} = -49.62$ $\ln K_{f} = 20.02$ | | Literature – Calculated = Residual Gas phase | Reference | 2-Chloropropane C_3H_7C
(2×C-(H) ₃ (C)) + (1×C-(H)(C) ₂ (Cl)) + | | $\Delta_t H^{\circ} = -446.04 -441.79 -4.25$ $C_p^{\circ} = 429.50$ | 75STR/SUN | (2×-CH ₃
corr (tertiary)), σ = 9 Literature – Calculated = Residual Reference | | Liquid phase $\Delta_{t}H^{\circ} = -544.20 \qquad -546.19 \qquad 1.99$ $C^{\circ}_{\rho} = \qquad 586.96$ $S^{\circ} = \qquad 705.65$ $\Delta_{t}S^{\circ} = \qquad -1924.72$ $\Delta_{t}G^{\circ} = \qquad 27.67$ $\ln K_{t} = \qquad -11.16$ | 75STR/SUN | Gas phase $ \Delta_t H^\circ = -144.90 \qquad -144.65 \qquad -0.25 \qquad 71 \text{FLE/PIL} $ $ C_p^\circ = 87.32 \qquad 86.46 \qquad 0.86 \qquad 69 \text{STU/WES} $ $ S^\circ = 304.18 \qquad 307.71 \qquad -3.53 \qquad 69 \text{STU/WES} $ $ \Delta_t S^\circ = \qquad -277.99 \qquad $ | | 1-Chloro-3-methylbutane $(2\times C-(H)_3(C)) + (1\times C-(H)_2(C)_2) + (1\times C-(H)(C)_2(C)_2) + (1\times C-(H)(C)_2(C)(C)_2), \ \sigma$ (2×-CH ₃ corr (tertiary)) + (1×C-(H) ₂ (C)(Cl)), \ \sigma | | Liquid phase $\Delta_c H^{\circ} = -172.10 -170.75 -1.35$ 31MAT/FEH $C_p^{\circ} = 138.98$ | | Literature - Calculated = Residual | Reference | 2-Chlorobutane C ₄ H ₂ C | | Gas phase $\Delta_l H^\circ = -180.33 - 180.29 -0.04$ $C_p^\circ = 133.89 131.96 1.93$ $S^\circ = 399.82 381.17 18.65$ $\Delta_l S^\circ = -477.16$ | 69STU/WES
69STU/WES
69STU/WES | $(2 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)_2(Cl)), \sigma = 9$ Literature – Calculated = Residual Reference | | $\Delta_{i}G^{\circ} = -38.03$ $\ln K_{\rm f} = 15.34$ Liquid phase $\Delta_{i}H^{\circ} = -216.98 -216.98 0.00$ $C_{\rho}^{\circ} = 179.50 188.52 -9.02$ | 69STU/WES
48KUR | Gas phase $\Delta_t H^\circ = -161.20 - 160.76 - 0.44$ 68WAD $C_p^\circ = 108.49$ 109.35 -0.86 69STU/WES $S^\circ = 350.41$ 346.87 3.54 69STU/WES $\Delta_t S^\circ = -375.14$ $\Delta_t G^\circ = -48.91$ $\ln K_t = 19.73$ | | $S^{\circ} = 279.36$ $\Delta_t S^{\circ} = -578.97$ $\Delta_t G^{\circ} = -44.36$ $\ln K_t = 17.89$ | | Liquid phase $\Delta_{\rho}H^{\circ} = -192.80 - 192.12 - 0.68$ 53SMI/BJE $C_{\rho}^{\circ} = 169.40$ | TABLE 51. Chlorides (116) - Continued TABLE 51. Chlorides (116) - Continued | 2-Chlorohex
(2×C-(H | | \times C-(H) ₂ (C) ₂) | - (1×C-(H)(| $C_6H_{13}CI$
$C)_2(CI))$ | $(3 \times C - (1 \times C - (1 \times C + C)))$ | | nne
 × C-(H)2(C)2)
 ternary)) + (1 × | | $C_sH_{ii}C$ $\sigma = 27$ | |---|------------------------------|--|------------------------|-------------------------------------|---|-------------------------------------|---|------------------------|-------------------------------------| | | Literatur | e – Calculated = | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 203.30 | -202.02
155.13 | -1.28 | 68WAD | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 202.20
131.59 | - 200.23
129.71 | -1.97
1.88 | 31MAT/FEH
69STU/WES | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | e
246.10 | - 243.58
230.24 | - 2.52 | 56KIR | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | 368,44 | 369.46
- 488.87
- 54.47
21.97 | -1.02 | 69STU/WES | | | | ne
× C-(H)(C) ₃) + | (2×−CH ₃ co | C5H11Cl
orr (tertiary))+ | Liquid pha $\Delta_t H^\circ =$ | ese
- 235.70 | -234.12 | -1.58 | 53SMI/BJE | | | Literatui | e – Calculated | = Residual | Reference | 1,2-Dichlor
(2×C-(1 | oethane
H) ₂ (C)(Cl)) | $\sigma = 2$ | | C₂H₄C | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 185.10 | - 188.08
132.27 | 2.98 | 68WAD | | Literatu | re – Calculated | = Residual | Reference | | Liquid phase $\Delta_t H^\circ = C_r^\circ =$ | se
226.60 | - 223.13
196.84 | -3.47 | 73ESI/KAB | Gas phase $ \Delta_{f}H^{\circ} = \\ C_{p}^{\circ} = \\ S^{\circ} = \\ \Delta_{f}S^{\circ} = \\ \Delta_{f}G^{\circ} = \\ \ln K_{f} = $ | -129.10
78.66
308.19 | -138.90
75.06
312.72
-182.88
-84.38
34.04 | 9.80
3.60
- 4.53 | 58SIN/STU
69STU/WES
69STU/WES | | (3×C-(I | C) ₃ (Cl)), σ | ×-CH ₃ corr (q | • | C₄H₃Cl
Reference | Liquid pha $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = $ | se
- 164.50
128.87
208.53 | -173.80
127.52
208.54
-287.05
-88.21 | 9.30
1.35
- 0.01 | 58SIN/STU
40PIT
40PIT | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t = 1$ | - 182.40
114.22
322.17 | - 184.16
106.82
321.16
400.85
64.65
26.08 | 1.76
7.40
1.01 | 64LEV/AND
69STU/WES
69STU/WES | | | 35.59
+ (1×C-(H) ₃ (0, σ = 3 | C))+ | C₃H₅Cl | | Liquid pha | se | | | | | Literatu | re – Calculated | = Residual | Reference | | $\Delta_t H^{\circ} =$ | | - 212.78 | 1.38 | 68WAD | Gas phase
$\Delta_t H^\circ =$
$C_\rho^\circ -$
$S^\circ =$
$\Delta_t S^\circ =$
$\Delta_t G^\circ =$
$\ln K_t =$ | - 162.80
98.20
351.46 | - 167.32
98.26
348.77
- 283.14
- 82.90
33.44 | 4.52
- 0.06
2.69 | 49DRE/MAR
69STU/WES
69STU/WES | | | | | | | Liquid pha | se
- 198.80 | -205.68
166.26 | 6.88 | 49DRE/MAR | $C_p^{\circ} =$ 166.26 TABLE 51. Chlorides (116) - Continued Table 51. Chlorides (116) - Continued | , 3-Dichlor
(1×C–(H | opropane
I) ₂ (C) ₂) + (2 | ×C~(H)2(C)(C | CI)), $\sigma = 2$ | C₃H₅Ĉl₂ | | l)₃(C))+(1 | Continued)
\times C-(C) ₂ (Cl) ₂)
ternary)), $\sigma \approx$ | | C₃H₄C | |--|---|--|------------------------|---|---|---------------------------------|--|-------------------------|-------------------------------------| | | Literatur | e – Calculated : | = Residual | Reference | Literature - Calculated = Residual | | | Reference | | | C _p ° =
S° =
Δ _p S° = | - 159.20
99.62
351.08 | -159,53
97,95
351,88
-280,03 | 0.33
1.67
-0.80 | 68WAD
69STU/WES
69STU/WES | Liquid phas $\Delta_t H^\circ = C_t^\circ =$ | e
205.80 | - 205.80
147.20 | 0.00 | 53SMI/BJE | | $\Delta_t G^\circ = \ln K_t =$ | · · · · · · · · · · · · · · · · · · · | - 76.04
30.67 | |
| 1,1,1-Trichle | | | | C₂H₃C | | Liquid phas | Se | | | | (1×C-(H | l)₃(C))+(1 | × C-(C)(Cl) ₃) | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | - 200.00 | -199.53
157.94
240.92 | -0.47 | 53SMI/BJE | | Literatur | e – Calculated | = Residual | Reference | | $\Delta_i S^\circ = \Delta_i G^\circ = \ln K_i =$ | | -390.98
-82.96
33.46 | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 145.00 | - 124.24
93.91 | - 20.76 | 71MAN/RIN | | 1,1-Dichlor
(1 × C-(I | | × C-(H)(C)(C | $(i)_2), \sigma = 3$ | C ₂ H ₄ Cl ₂ | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = $ | e
174.50
144.39
226.69 | 160.54
138.68
229.21 | -13.96
5.71
-2.52 | 71MAN/RIN
73AND/COU
73AND/COU | | | Literatui | re - Calculated | = Residual | Reference | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | | -312.58
-67.34
27.17 | | | | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | -127.60
76.23
304.97 | - 121.36
76.42
301.47
- 194.13
- 63.48
25.61 | -6.24
-0.19
3.50 | 67LAC/AMA
69STU/WES
69STU/WES | 1,1,2-Trichle | I)(C)(Cl) ₂) | + (1 × C-(H) ₂ (e | | C₂H₃Cl
Reference | | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | se
158.40
126.27
211.75 | - 150.21
121.50
211.75
- 283.84
- 65.58
26.46 | -8.19
4.77
0.00 | 56LI/PIT
56LI/PIT
56LI/PIT | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = S^\circ S$ | - 151.20
88.99
337.10 | -148.55
88.22
342.52
-199.27
-89.14
35.96 | -2.65
0.77
-5.42 | 72LAY/WAD
69STU/WES
69STU/WES | | | H)3(C))+(1
I3 corr (qua | $\times C - (C)_2(Cl)_2$ ternary)), $\sigma =$ | 18 | C ₃ H ₆ Cl ₂ | $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} =$ | e
191.50 | - 189.50
148.78
232.72
- 309.07 | -2.00 | 56KIR | | Gas phase | Literatu | re – Calculated | = Kesidual | Reference | $\Delta_t G^\circ = \ln K_t =$ | | -97.35
39.27 | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 105.86
326.02 | -173.20
105.86
326.02
-305.89
-82.00
33.08 | 0.00
0.00 | 69STU/WES
69STU/WES | | | | | | TABLE 51. Chlorides (116) — Continued TABLE 51. Chlorides (116) - Continued | (= : :) | 12(C)(CI))+ | · (1×C-(H)(C) | $_2(Cl)), \sigma = 2$ | | (1×C-(H | $H_{2}(C)_{2}+($ | $1 \times C - (C)(CI)_3$ | $+(1\times C-(H)_2$ | (C)(Cl)) | |---|---------------------------|--|-----------------------|---|---|--|--------------------------|-------------------------|------------------------| | | Literatur | e – Calculated | = Residual | Reference | Literature – Calculated – Residual | | - Residual | Reference | | | Gas phase | | | | | Gas phase | | 480.00 | | | | $\Delta_{f}H^{\circ} = C_{p}^{\circ} =$ | 112.21 | - 194.51
110.06 | 2.15 | 69STU/WES | $\Delta_t H^\circ = C_p^\circ =$ | | - 172.06
128.60 | | | | $S^{\circ} =$ | 382.92 | 384.06 | - 1.14 | 69STU/WES | | | | | | | $\Delta_f S^\circ =$ | | -294.05 | | | | | | | | | $\Delta_t G^\circ = \ln K_t =$ | | - 106.84
43.10 | | | Liquid pha $\Delta_t H^\circ =$ | se
208.70 | -225.56 | 16.86 | 70KOL/TOM | | mrt – | | 45.10 | | | $C_{\rho}^{\circ} =$ | 196.40 | 196.38 | 0.02 | 74KOL/VOR | | | | | | | S° = | 284.30 | 282.56 | 1.74 | 74KOL/VOR | | Liquid phas | | 244.07 | 14.37 | 54BJE/SMI | $\Delta_{\mathbf{f}}S^{\circ} = \Delta_{\mathbf{f}}G^{\circ} =$ | | 441.75
93.85 | | | | $\Delta_t H^\circ = C_p^\circ =$ | - 230.60
183.68 | -244.97
193.54 | - 9.86 | 41NEL/NEW | $\ln K_{\rm f} =$ | | - 93.85
37.86 | | | | <i>p</i> | | | | | | | | | | | | achloroeths | | | C ₂ H ₂ Cl ₄ | Pentachlor
(1×C-(0 | | i × C–(H)(C)(C | $(1)_2$), $\sigma = 3$ | C ₂ HC | | (2×C-(I | I)(C)(Cl) ₂), | $\sigma = 2$ | | | Literature – Calculated = Residual | | = Residual | Reference | | | | Literatu | re – Calculated | = Residual | Reference | A | | | | | | G 1 | | | | | Gas phase | 142.00 | 161.00 | 10.00 | ECVID. | | Gas phase $\Delta_t H^\circ =$ | - 148.80 | - 158.20 | 9.40 | 72LAY/WAD | $\Delta_i H^{\circ} = C_{\rho}^{\circ} =$ | - 142.00
117.74 | - 161.08
118.87 | 19.08
1.13 | 56KIR
69STU/WES | | $C_p^{\alpha} =$ | 100.79 | 101.38 | -0.59 | 69STU/WES | S° = | 380.53 | 376.29 | 4.24 | 69STU/WES | | S° = | 362.71 | 360.80 | 1.91 | 69STU/WES | $\Delta_f S^\circ =$ | | -257.91 | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -227.20 | | | $\Delta_t G^{\circ} =$ | | -84.18 | | | | $\Delta_f G^\circ = \ln K_f =$ | | 90.46
36.49 | | | $lnK_f =$ | | 33.96 | | | | | | | | | Liquid pha | se | | | | | Liquid pha | | | | | $\Delta_l H^{\circ} =$ | - 189.90 | -215.53 | 25.63 | 56KIR | | $\Delta_i H^\circ =$ | -194.60 | - 205.20 | 10.60 | 53SMI/BJE | $C_p^{\circ} =$ | 196.23 | 187.22 | 9.01 | 48KUR | | $C_{\rho}^{\circ} = S^{\circ} =$ | 165.27 | 170.04
256.90 | -4.77 | 48KUR | $S^{\circ} = \Delta_{f}S^{\circ} =$ | | 274.36
- 359.84 | | | | $\Delta_f S^\circ =$ | | -331.10 | | | $\Delta_{\rm f}G^{\circ} =$ | | - 108.25 | | | | $\Delta_f G^\circ =$ | | - 106.48 | | | $\ln K_{\rm f} =$ | | 43.67 | | | | $lnK_f =$ | | 42.95 | **** | | | —————————————————————————————————————— | | | | | | | | | | Hexachloro
(2×C-(0 | ethane
C)(Cl) ₃), σ | = 2 | | C₂Cl | | | achloropro | | | C3H4Cl4 | , , | | | | | | (2×C-(1 | H)₂(C)(Cl)) | $+(1\times C-(C)_2(C)_2(C)_2(C)_2(C)_2(C)_2(C)_2(C)_2$ | Cl) ₂) | | | Literatu | re – Calculated
–––– | = Residual | Reference | | | Literatu | re – Calculated | = Residual | Reference | Gas phase | | | | | | Gas phase | | | | | $\Delta_t H^{\circ} = C_{\rho} =$ | - 143.50
136.36 | - 163.96
136.36 | 20.46
0.00 | 63PUY/BAL
69STU/WES | | Gas phase $\Delta_t H^\circ =$ | | - 218.46 | | | $C_p = S^\circ =$ | 396.52 | 398.52 | - 2.00 | 69STU/WES | | $C_p^{\circ} =$ | | 129.46 | | | $\Delta_{\epsilon}S^{\circ} =$ | 0,000 | -281.88 | 2100 | 0,010,1110 | | • | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | - 79.92 | | | | Liquid pha | se | | | | $lnK_f =$ | | 32.24 | | | | $\Delta_i H^\circ =$ | -251.80 | -275.60 | 23.80 | 69HU/SIN | | | | | | | $C_p^{\circ} =$ | | 201.76 | | -, | Liquid phas | se | | | | | | | | | | $\Delta_i H^\circ =$ | | -225.86 | | | | | | | | | $C_p^{\circ} =$ | 198.24 | 204.40 | -6.16 | 75RAK/GUT | | | | | | | $S^{\circ} = \Delta_{f}S^{\circ} =$ | 237.32 | 291.82
388.58 | 54.50 | 75RAK/GUT | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | - 110.01 | | | | | | | | | | | | | | TABLE 51. Chlorides (116) - Continued | Tetrachloroe | ethylene
Cl) ₂), σ = 4 | 1 | | C ₂ Cl ₄ | 1,1-Dichlor
(1×C _d -(| | C _d -(Cl) ₂), σ = | 2 | C ₂ H ₂ Cl | |--|---------------------------------------|---|-----------------------|---
--|-----------------------------------|--|----------------------------|-------------------------------------| | (27.08 (0 | | e – Calculated | = Residual | Reference | (= == (| ,, , | re – Calculated | | Reference | | Gas phase $ \Delta_t H^\circ = \\ C_t^\circ - \\ S^\circ = \\ \Delta_t S^\circ = \\ \Delta_t G^\circ = \\ \ln K_t = $ | - 10.80
94.93
340.83 | -23.02
93.72
339.29
-118.13
12.20
-4.92 | 12.22
1.21
1.54 | 26MAT
69STU/WES
69STU/WES | Gas phase $ \Delta_t H^\circ = C_p^\circ - S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | 2.60
67.03
288.07 | 14.81
68.24
285.17
- 79.86
38.62
- 15.58 | - 12.21
1.21
2.90 | 59HIL/MCD
69STU/WES
69STU/WES | | Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t C^\circ - \ln K_t =$ | -50.60
146.48 | -64.16
152.94
230.70
-226.72
3.44
-1.39 | 13.56
6.46 | 53SMI/BJE
82GRO/ING | Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ - \ln K_t =$ | se
- 24.10
111.29
201.54 | -10.33
104.84
201.54
-163.48
38.41
-15.50 | - 13.77
6.45
0.00 | 71MAN/RIN
59HIL/MCD
59HIL/MCD | | Chloroethyle
(1×C _d -(1 | | C _d -(H)(Cl)), σ | = 1 | C₂H₃Cl | 1,2-Dichlor
(2×C _d -(| | Ľ)
 ×cis corr−(X] | (X) , $\sigma = 2$ | C₂H₂CI | | | Literatur | e – Calculated | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 35.30
53.72
263.93 | 30.69
54.13
263.37
- 55.45
47.22
- 19.05 | 4.61
-0.41
0.56 | 62LAC/GOT
69STU/WES
69STU/WES | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t C^\circ =$ $\ln K_t =$ | 4.60
65.05
289.53 | 4.74
65.50
289.94
- 75.09
27.13
- 10.94 | - 0.14
- 0.45
- 0.41 | 47KET/VAN
69STU/WES
69STU/WES | | 2-Chloro-1-
(1 × C _d -(0 | C)(Cl))+(1 | × C-(H) ₃ (C)) | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | se
- 26.40
113.80 | - 25.34
113.24 | - 1.06
0.56 | 53SMI/BJE
34MEH2 | | Gas phase Δ _t H° = | -21.00 | e – Calculated | 0.00 | Reference 70SHE/ROZ | 1,2-Dichloro
(2×C _d -(| H)(Cl)), σ | = 2 | | C₂H₂Cl₁ | | | | | | | | Literatur | e – Calculated | = Residual | Reference | | 3-Chlore-1-
(1×C _d -(1 | $H)_2)+(1\times$ | C _d -(H)(C))+(1 | | C_3H_3CI $CI)), \sigma = 1$ Reference | Gas phase $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ - \Delta_t G^\circ = \ln K_t = K_t^\circ K_t^\circ$ | 5.00
66.65
289.90 | 8.74
65.50
289.94
- 75.09
31.13
- 12.56 | -3.74
1.15
-0.04 | 47KET/VAN
69STU/WES
69STU/WES | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 75.35
306.64 | -6.81
77.65
307.81
-147.32
37.11
-14.97 | -2.30
-1.17 | 69STU/WES
69STU/WES | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | se
-24.30
112.97 | - 25.34
113.24 | 1.04
- 0.27 | 53SMI/BJE
34MEH2 | # E. S. DOMALSKI AND E. D. HEARING TABLE 51. Chlorides (116) - Continued TABLE 51. Chlorides (116) - Continued | Trichloroethy
(1×C _d -(H) | rlene
)(Cl)) + (1 × 0 | C _d -(Cl) ₂), σ | = 1 | C ₂ HCl ₃ | Hexachlorok
(6×C _B -(0 | | ontinued)
(6× <i>ortho</i> corr | -(Cl)(Cl)), σ | C_6Cl | |---|--|--|--|---
--|---|--|------------------------------|-------------------------------------| | | Literature – | · Calculated = | = Residual | Reference | Literature – Calculated = Residual | | Reference | | | | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | -8.00
80.21
324.80 | -7.14
79.61
323.26
-87.96
19.09
-7.70 | -0.86
0.60
1.54 | 44MCD
69STU/WES
69STU/WES | Liquid phas $ \Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = InK_{f} = $ | e
111.45 | -109.20
211.62
332.82
-370.54
1.28
-0.51 | - 2.25 | 69PLA/GLA | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | - 44.40
124.68 | -44.75
133.09 | 0.35
-8.41 | 53SMI/BJE
33TRE/WAT | Solid phase $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S$ | 141.77
201.29
260.24 | - 141.00
201.30
260.22
- 443.14
- 8.88 | - 0.77
- 0.01
0.02 | 83PLA/SIM
58HIL/KRA
58HIL/KRA | | 1, 2,3-Trichlo
(1 × C–(H) |) ₂ (C)(Cl))+(| 1×C _d -(C)(C | Cl)) + (1 × C _d
= Residual | C ₃ H ₃ Cl ₃ (H)(Cl)) Reference | $lnK_f =$ Chlorobenze | Pne Pne | 3.58 | | C₄H₅C | | Gas phase
Δ _f H° = | | - 70.14 | | | | CI)(C _B) ₂) + | · (5×C _B -(H)(C | | Reference | | Liquid phase $\Delta_t H^\circ = -\frac{1}{1-\text{Chloropro}}$ $(1 \times \text{C-}(\text{H})$ | - 101.80
 | -101.80
C ₁ -(C))+(1 | 0.00
× C ₁ -(Cl)), σ | 69HU/SIN C ₃ H ₃ Cl = 3 | Gas phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | 50.90
98.03
313.46 | 52.02
97.38
312.87
- 159.49
99.57
- 40.17 | -1.12
0.65
0.59 | 68WAD
69STU/WES
69STU/WES | | | | – Calculated | | Reference | Liquid phas | | | | | | Gas phase $C_p^{\circ} = S^{\circ} = \Delta_p S^{\circ} = -1$ | 71.96
284.51 | 71.96
284.51
40.06 | 0.00
0.00 | 69STU/WES
69STU/WES | $\Delta_{t}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 0$ | 10.50
150.08
197.48 | 8.60
148.67
199.82
-272.53
89.86
-36.25 | 1.90
1.41
-2.34 | 54HUB/KNO
37STU
37STU | | Hexachlorol
(6 × C _B -(0 | Cl)(C _B) ₂)+(6 | 5× <i>ortho</i> corr
− Calculated | :-(Cl)(Cl)), σ
l = Residual | C ₆ Cl ₆ = 12 Reference | | Cl)(C _B) ₂) +
I) ₃ (C)) | zene; p-Chlorot
· (4×C _B (H)(C | $(B)_2) + (1 \times C_{B} -$ | | | Gas phase
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | -44.70
175.31
441.20 | -45.18
175.98
441.82
-261.54
32.80
-13.23 | 0.48
-0.67
-0.62 | 83PLA/SIM
69STU/WES
69STU/WES | Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ | Literatu | 19.59
119.25 | = Residual | Reference | $\ln K_{\rm f} =$ - 13.23 C₈H₉Cl Reference TABLE 51. Chlorides (116) - Continued | 1-Chloro-4-methylbenzene; p-Chlorotoluene (Continued) | C ₇ H ₇ C | |--|---------------------------------| | $(1 \times C_B - (Cl)(C_B)_2) + (4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (C)(C_B)_2) C_B)_2 ($ | ۲ | | $(1\times C-(H)_3(C))$ | | | | Literature – Calculated = Residual | | | | | | | |-----------------------------|------------------------------------|----------|------|-----------|--|--|--| | Liquid pha | ase | | | | | | | | $\Delta_t H^\circ =$ | 19.90 | -28.01 | 8.11 | 53SMI/BJE | | | | | $C_p^{\circ} = S^{\circ} =$ | | 172.57 | | | | | | | s° = | | 234.75 | | | | | | | $\Delta_t S^\circ =$ | | - 373.91 | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 83.47 | | | | | | | $lnK_f =$ | | -33.67 | | | | | | #### 1-Chloro-4-ethylbenzene (Continued) C₈H₉Cl $(1 \times C_B - (Cl)(C_B)_2) + (4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (C)(C_B)_2) +$ $(1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)(C_B))$ | | Literatuı | Reference | | | |-----------------------------|-----------|-----------
------|-----------| | Liquid pha | ase | | | | | $\Delta_{\rm f}H^{\circ} =$ | -51.76 | -52.82 | 1.06 | 54HUB/KNO | | $C_p^{\circ} =$ | | 195.47 | | | | S° = | | 282.15 | | | | $\Delta_f S^\circ =$ | | -462.83 | | | | $\Delta_f G^{\circ} =$ | | 85.17 | | | | $lnK_f =$ | | -34.36 | | | $(5 \times C_B - (H)(C_B)_2) + (1 \times C_B - (C)(C_B)_2) + (1 \times C - (H)_2(C)(C_B)) +$ Literature - Calculated = Residual #### C7H7Cl Benzyl chloride $(5 \times C_B - (H)(C_B)_2) + (1 \times C_B - (C)(C_B)_2) + (1 \times C - (H)_2(C_B)(Cl))$ | Literature – Calculated = Residual | | | | | | |------------------------------------|---------|------|-----------|--|--| | 10.00 | 40.00 | 0.00 | TO COVEN | | | | 18.90 | 18.90 | 0.00 | 70COX/PIL | | | | e | | | | | | | - 32.60 | - 32.60 | 0.00 | 56KIR | | | | | | e | B | | | (1-Chloroethyl)benzene $(1\times C-(H)_2(C)(Cl))$ | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | 1.90
140.94 | | | |---|---------|----------------|--------|----------| | Liquid pha | | £1 75 | C 45 | COLLICIA | | | - 38.20 | | -0.45 | 69HU/SIN | | | | | | | | $\Delta_{f}S^{\circ} =$ | | - 468.46 | | | | $\Delta_f G^\circ =$ | | 87.92 | | | | $lnK_f =$ | | -35.47 | | | | $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^$ | - 58.20 | 87.92 | - 6.45 | 69HU/SIN | #### 1-Chloro-2-ethylbenzene CaH₂Ci $(1 \times C_B - (Cl)(C_B)_2) + (1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)(C_B)) +$ $(1 \times C_B - (C)(C_B)_2) + (4 \times C_B - (H)(C_B)_2) +$ $(1 \times ortho \ corr-(alk)(X))$ | | Literature – Calculated = Residual | | | | | | |--|------------------------------------|----------------|--------------|-----------|--|--| | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 6.70 | 0.76
144.86 | - 7.46 | 49DRE/MAR | | | | Liquid pha | ise | | | | | | | $\Delta_{i}H^{\circ} =$ | -54.10 | - 46.52 | −7.58 | 54HUB/KNO | | | | $C_p^{\circ} =$ | | 195.47 | | | | | | S° = | | 282.15 | | | | | | $\Delta \epsilon S^{\circ} =$ | | -462.83 | | | | | ### 1-Chloronaphthalene C₁₀H₇Cl $(1 \times C_B - (Cl)(C_B)_2) + (7 \times C_B - (H)(C_B)_2) + (2 \times C_{BF} - (C_{BF})(C_B)_2)$ | | Literatur | Reference | | | | | | | | |--|-------------|--|-------|-----------|--|--|--|--|--| | Gas phase | | | | | | | | | | | $\Delta_{f}H^{\circ} =$ | 119.60 | 119.84 | -0.24 | 70COX/PIL | | | | | | | $C_p^{\circ} =$ | | 124.60 | | | | | | | | | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | se
54.40 | 56.58
213.07
246.48
- 379.40
169.70
- 68.46 | -2.18 | 56SMI | | | | | | #### C₈H₉Cl 1-Chloro-4-ethylbenzene $(1 \times C_B - (CI)(C_B)_2) + (4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (C)(C_B)_2) +$ $(1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)(C_B))$ 91.47 -36.90 $\Delta_{\rm f}G^{\circ} =$ $lnK_f =$ | | Literature | – Calculated | Reference | | |---|------------|-----------------|-----------|-----------| | Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ | -3.64 | -1.75
144.86 | - 1.89 | 49DRE/MAR | TABLE 51. Chlorides (116) - Continued | Tr 61 | O1 1 . 1 1 | (110) | 0 4 1 | |-----------|-------------|---------|-----------| | I ABLE 31 | . Chlorides | (110) - | Continuea | | 2-Chloronap
(1×C _B -(C | | $7 \times C_B - (H)(C_B$ | $(2 \times C_{BF})$ | $C_{10}H_7CI$
- $(C_{BF})(C_B)_2)$ | | $H)(C_B)_2) +$ | $(2 \times C_B - (Cl)(Cl))$, $\sigma = 2$ | _B) ₂) + | C ₆ H ₄ Cl ₂ | |---|-----------------|---|---------------------|---------------------------------------|--|----------------------------|--|---------------------------------|---| | | Literature | - Calculated = | Residual | Reference | ` | | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 137.20 | 119.84
124.60 | 17.36 | 70COX/PIL | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 25.50
113.80 | 16.18
113.10 | 9.32
0.70 | 49DRE/MAR
69STU/WES | | Liquid phase $\Delta_l H^\circ = C_p^\circ = S^\circ =$ | e | 56.58
213.07
246.48 | | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | 343.46 | 341.64
176.92
68.93
27.81 | 1.82 | 69STU/WES | | $\Delta_{f}S^{\circ} = \\ \Delta_{f}G^{\circ} = \\ \ln K_{f} = $ | | - 379.40
169.70
- 68.46 | | | Liquid phas $ \Delta_t H^\circ = C_p^\circ = S^\circ = $ | e – 20.90 | - 21.76
161.26
226.42 | 0.86 | 54HUB/KNO | | Solid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ =$ | 55.20 | 41.91
179.06
190.62
– 435.26 | 13.29 | 56SMI | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -292.13
65.34
-26.36 | | | | $\Delta_{\rm f}G^{\circ} = \\ \ln K_{\rm f} = \\ -$ | | 171.68
- 69.26 | | | 1,4-Dichloro | | (2×C _B -(Cl)(C | $_{\rm B})_2),\sigma=2$ | C ₄ H ₄ Cl ₂ | | 1,2-Dichlore | obenzene | | | Ċ₅H₄Cl₂ | | Literatu | re – Calculated | = Residual | Reference | | | corr-(Cl)(| $(2 \times C_B - (Cl)(C_l))$, $\sigma = 2$
e - Calculated | | Reference | Gas phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | 22.18
113.89
336.69 | 21.18
113.10
341.64 | 1.00
0.79
- 4.95 | 61WAL/SMI
69STU/WES
69STU/WES | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 29.63
113.47 | 30.68
113.10 | -1.05
0.37 | 49DRE/MAR
69STU/WES | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = \frac{1}{2}$ | 330.09 | - 176.92
- 73.93
- 29.82 | -4.93 | 09310/WE3 | | $S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t =$ | 341.46 | 341.64
-176.92
83.43
-33.65 | -0.18 | 69STU/WES | Liquid phas $ \Delta_t H^\circ = C_\rho^\circ = S^\circ = $ | ee | - 31.76
161.26
226.42 | | | | Liquid phase $\Delta_t H^\circ - C_p^\circ =$ | se
- 18.07 | - 17.76
161.26 | -0.31 | 54HUB/KNO | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -292.13
55.34
-22.32 | | Page 14 (1976) | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = -\infty$ | | 226.42
-
292.13
69.34
- 27.97 | | | Solid phase $ \Delta_{\ell}H^{\circ} = \\ C_{p}^{\circ} = \\ S^{\circ} = \\ \Delta_{\ell}S^{\circ} = \\ \Delta_{f}G^{\circ} = $ | -42.84
147.76
175.41 | - 37.88
147.62
177.74
- 340.81
63.73 | 4.96
0.14
2.33 | 54HUB/KNO
76DWO/FIG
76DWO/FIG | $lnK_f =$ C₁₂H₈Cl₂ C₆HCl₅ TABLE 51. Chlorides (116) - Continued 4,4'-Dichlorobiphenyl (Continued) | 2,5-Dichlorostyrene | C ₈ H ₆ Cl ₂ | |--|---| | $(1 \times C_{d} - (H)_{2}) + (1 \times C_{d} - (H)(C_{B})) + (1 \times C_{B} - (C_{d})(C_{B})_{2}) +$ | | | $(3 \times C_{B}-(H)(C_{B})_{2}) + (2 \times C_{B}-(Cl)(C_{B})_{2}) +$ | | | $(2 \times ortho \ corr-(alk)(X))$ | | | | Literatur | Literature - Calculated = Residual | | | | | | | | |----------------------------------|-------------|------------------------------------|------|-----------|--|--|--|--|--| | Gas phase | | | | | | | | | | | $\Delta_t H^\circ =$ | | 91.16 | | | | | | | | | $C_{\rho}^{\circ} =$ | | 153.53 | | ut | | | | | | | Liquid phas $\Delta_t H^\circ =$ | se
35.90 | 35.73 | 0.17 | 58SIN/STU | | | | | | | $C_p^{\circ} =$ | | 208.06 | | | | | | | | | S° = | | 288.00 | | | | | | | | | $\Delta_f S^\circ =$ | | -372.60 | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 146.82 | | | | | | | | | $lnK_f =$ | | - 59.23 | | | | | | | | | | | | | | | | | | | # $\begin{array}{c} \textbf{2.2'-Dichlorobiphenyl} & \textbf{C}_{12}\textbf{H}_{8}\textbf{Cl}_{2} \\ (8 \times \textbf{C}_{B} - (\textbf{H})(\textbf{C}_{B})_{2}) + (2 \times \textbf{C}_{B} - (\textbf{Cl})(\textbf{C}_{B})_{2}) + (2 \times \textbf{C}_{B} - (\textbf{C}_{B})_{3}) + \\ (1 \times \textit{ortho} \ \textit{corr} - (\textbf{Cl})(\textbf{Cl'})) \end{array}$ | | Literature | Literature - Calculated = Residual Refere | | | | |------------------------------|------------|---|------|-----------|--| | Gas phase | | | | | | | $\Delta_{\rm f} H^{\circ} =$ | 127.90 | 127.74 | 0.16 | 64SMI/GOR | | | C _p ° = | | 193.78 | | | | | Liquid phas | se | | | | | | $\Delta_{i}H^{\circ} =$ | | 43.30 | | | | | C _p ° = | | 286.12 | | | | | Solid phase | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | 31.70 | 30.30 | 1.40 | 64SMI/GOR | | | $C_n^{\circ} =$ | | 224.70 | | | | | S° = | | 256.74 | | | | | Δ _r S° - | | 557.40 | | | | | $\Delta_f G^\circ =$ | | 196.49 | | | | | $lnK_f =$ | | - 79.26 | | | | # $\begin{array}{ll} \textbf{4,4'-Dichlorobiphenyl} & C_{12}H_8Cl_2 \\ (8\times C_B-(H)(C_B)_2) + (2\times C_B-(Cl)(C_B)_2) + (2\times C_B-(C_B)_3) \end{array}$ | | Literature | Literature - Calculated = Residual | | | | |--|------------|------------------------------------|------|-----------|--| | Gas phase | | | | | | | $\Delta_t H^\circ =$ | 121.10 | 119.74 | 1.36 | 64SMI/GOR | | | $C_p^{\circ} =$ | | 193.78 | | | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | se | 35.30
286.12 | | | | | $(8 \times C_{B}-(F$ | | | $_{\rm B})_2)+(2\times C_{\rm B}-$ | $(C_B)_3)$ | |----------------------------------|------------|--------------|------------------------------------|------------| | | Literature | - Calculated | = Residual | Reference | | Solid phase | 17.20 | 22.20 | £ 00 | (40) #JGOD | | $\Delta_{\rm f}H^{\rm o} =$ | 17.30 | 22.30 | -5.00 | 64SMI/GOR | | C_p° – | | 224.70 | | | | S° = | | 256.74 | | | | $\Delta_f S^\circ =$ | | -557.40 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 188.49 | | | # $\begin{array}{ll} \textbf{1.2.4.5-Tetrachloro-3.6-dimethylbenzene} & \textbf{C_8H_6Cl_4} \\ (2 \times C - (H)_3(C)) + (2 \times C_B - (C)(C_B)_2) + (4 \times C_B - (Cl)(C_B)_2) + \\ (2 \times \textit{ortho} \ \textit{corr} - (Cl)(Cl)) + (4 \times \textit{ortho} \ \textit{corr} - (alk)(X)) \end{array}$ -76.03 | Literat | ture – Calculated = | Residual | Reference | |-------------------------------------|---------------------|----------|-----------| | Gas phase | | | | | $\Delta_l H^{\hat{\alpha}} =$ | -76.32 | | | | $C_p^{\circ} =$ | 188.28 | | | | Liquid phase | | | | | $\Delta_{\rm f}H^{\circ} =$ | - 132.50 | | | | $C_p^{\circ} =$ | 234.24 | | | | S° = | 349.48 | | | | $\Delta_f S^{\circ} =$ | -534.10 | | | | $\Delta_{\rm f}G^{\circ} =$ | 26.74 | | | | $lnK_f =$ | - 10.79 | | | | Solid phase | | | | | $\Delta_{\rm f}H^{\circ} = -173.90$ | -176.68 | 2.78 | 69HU/SIN | | $C_{\rho}^{\circ} =$ | 222.58 | | | | S° - | 275.86 | | | | $\Delta_f S^o =$ | -607.72 | | | | $\Delta_{f}G^{\circ} =$ | 4.51 | | | | $lnK_f =$ | - 1.82 | | | Pentachlorobenzene $(1\times C_B-(H)(C_B)_2)+(5\times C_B-(Cl)(C_B)_2)+\\ (4\times ortho\ corr-(Cl)(Cl))+(1\times meta\ corr-(Cl)(Cl))$ | | Literatui | e – Calculated | = Residual | Reference | |-------------------------|---------------------------------------|-------------------|------------|-----------| | Gas phase | | | | | | $\Delta_i H^{\circ} =$ | -40.00 | -38.34 | -1.66 | 85PLA/SIM | | C_p^{α} - | | 160.26 | | | | | · · · · · · · · · · · · · · · · · · · | | | | | Liquid phas | se | | | | | $\Delta_t H^{} =$ | | 8б.84 | | | | $C_{p}^{\circ} =$ | | 199.03 | | | | S° = | | 306.22 | | | | $\Delta_t S^\circ =$ | | -350.94 | | | | $\Delta_{r}G^{\circ} =$ | | 17.79 | | | | $lnK_f =$ | | -7.18 | | | TABLE 51. Chlorides (116) - Continued | | $I)(C_B)_2)+($ | ontinued)
5 × C _B –(Cl)(C _B
Cl)) + (1 × meta | | C₄HCl₅ | 4-Chloroph
$(4 \times C_B - (1 \times O - (1 \times O + $ | $(H)(C_B)_2) +$ | (1×C _B -(Cl)(C | $_{\rm B})_2)+(1\times {\rm C_{B^{-1}}}$ | C_6H_5ClO
(O)(C_B) ₂) + | |---|----------------|--|------------|--
--|---------------------------|---|--|---| | | Literature | e – Calculated = | = Residual | Reference | _ | Literatu | re – Calculated | = Residual | Reference | | Solid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = C_p^\circ = C_p^\circ = C_p^\circ $ | - 120.40 | -115.47
187.88
239.60
-417.56 | -4.93 | 85PLA/SIM | Gas phase $\Delta_f H^\circ = C_\rho^\circ =$ | - 145.80 | - 126.84
117.79 | -18.96 | 38WOL/WEG | | $\Delta_f G^\circ = \ln K_f =$ | | 9.02
- 3.64 | | | $C_p^{\circ} =$ | se
-181.30 | - 196.92
210.34 | 15.62 | 53SMI/BJE | | | | ×C-(H)(C) ₂ (0
b) rsc) | CI))+ | C ₆ H ₁₁ Cl | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | | 204.25
- 370.62
- 86.42
34.86 | | | | | Literatur | e – Calculated | = Residual | Reference | Solid phase $\Delta_t H^\circ =$ | | - 204.13 | 6.42 | 52CMI/DIE | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 163.70 | - 159.15
126.63 | -4.55 | 70COX/PIL | $\Delta_{f}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | - 197.70 | -204.13
143.03
164.58
-410.30
-81.80
33.00 | 6.43 | 53SMI/BJE | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | se
207.20 | - 201.88
191.91 | -5.32 | 56KIR | | ,3-propaned
H)(C))+(2 | iiol
× C-(H)2(O)(C | '))+(1×C-(H | C ₃ H ₇ ClO ₂
)(C) ₂ (Cl)) | | 3-Chlorophe | enol | | | C₅H₅ClO | | Literatur | re – Calculated | = Residual | Reference | | $(4 \times C_B - (1 \times O -$ | $H)(C_B))$ | (1 × C _B -(Cl)(C | | (O)(C _B) ₂)+ Reference | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | - 440.07
111.98 | | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -153.30 | 126.84
117.79 | - 26.46 | 38WOL/WEG | Liquid pha $\Delta_t H^\circ = C_p^\circ =$ | se
- 517.50 | - 525.77
222.58 | 8.27 | 54BJE/SMI | | Liquid phas $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} =$ | se
189.30 | - 196.92
210.34
204.25
- 370.62 | 7.62 | 53SMI/BJE | (1×C-(1 | H) ₂ (O)(C)) · | + (1 × C–(H)(C
+ (2 × O–(H)(C |)) | | | $\Delta_f G^\circ = \ln K_f =$ | | -86.42
34.86 | | | ****** | Literatui | re Calculated | = Residual | Reference | | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | - 206.40 | -204.13
143.03 | -2.27 | 53SMI/BJE | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | -447.11
114.14 | | | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | | 164.58
-410.30
-81.80
33.00 | | | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ | se
- 525.30 | -533.30
236.51
194.81
-595.94 | 8.00 | 54BJE/SMI | | | | | | | $\Delta_{\rm f}G^{\circ} = \ln K_{\rm f} =$ | | -355.62
143.46 | | | TABLE 51. Chlorides (116) - Continued | $(2 \times C - (H)_2)(1 \times O - (H))(0$ | | | | | | | | | |--|--|--|--|---
--|--|---------------------------|---| | I | Literature - | - Calculated = | = Residual | Reference | Liter | ature – Calculated | = Residual | Reference | | | | | | | | · ···· | | | | Sas phase | | | | #4.00YI PYY | Gas phase | | | | | • | 318.40 | - 324.33 | 5.93 | 70COX/PIL | $\Delta_t H^{\circ} =$ | -336.54 | | | | $C_p^{\circ} =$ | | 113.18 | | | $C_p^{\circ} =$ | 153.92 | <u> </u> | | | iquid phase | | | | | Liquid phase | | | | | | 385.30 | -392.90 | 7.60 | 54BJE/SMI | $\Delta_i H^\circ =$ | -442.80 | | | | $C_{p}^{\circ} =$ | | 221.99 | | | $C_n^{\circ} =$ | 284.60 | | | | S° = | | 222.60 | | | S° = | 235.28 | | | | $\Delta_f S^\circ =$ | | -511.83 | | | Δ ₆ S° = | -488.32 | | | | $\Delta_f G^\circ =$ | | -240.30 | | | $\Delta_f G^\circ =$ | -297.21 | | | | $\ln K_{\rm f} =$ | | 96.93 | | | $\ln K_{\rm f} =$ | 119.89 | | | | 2 DI II 1 | | | | CHOLO | Call at an | | | | | ,3-Dichloro-1- | | (1 2 0 (11)/0) | ((1)) (4:: | C ₃ H ₆ Cl ₂ O | Solid phase | 0 447.44 | 00.14 | 5201 ST 10-10- | | | | $(1 \times C - (H)(C)$ | ₁₂ (C1))+(1× | C-(H) ₂ (O)(C))+ | $\Delta_t H^\circ = -427.3$ | | 20.14 | 53SMI/BJE | | $(1 \times O - (H))$ | (C)) | | | | $C_p^{\circ} =$ | 165.28 | | | | | ~ 1. | | | 5 . c | S° - | 192.66 | | | | ı | Literature - | Calculated = | = Residual | Reference | $\Delta_{r}S^{\circ} =$ | - 530.94 | | | | | | | | | $\Delta_{\rm f}G^{\circ} =$ | - 289.14 | | | | | | | | | $lnK_f =$ | 116.64 | | | | Gas phase | | | | | | | | | | $\Delta_i H^\circ = -3$ | 316.30 | -317.29 | 0.99 | 70COX/PIL | | | | | | $C_p^{\circ} =$ | | 111.02 | | | | | | | | * | | | | | | | | | | | | | | | 2.6-Dichloro-1.4-be | nzenediol | | CHCL | | | | | | | 2,6-Dichloro-1,4-be | | u)2) + (2 × Co- | C ₆ H ₄ Cl ₂ | | iquid phase | | | , | | $(2\times C_B-(H)(C_B)$ | $(2 \times C_{B} - (Cl)) (C_l)$ | | $C_6H_4Cl_2$
$C_6(O)(C_B)_2) +$ | | | 381 50 | 395 37 | 3 27 | SARIE/SMI | $(2\times C_B-(H)(C_B)$ | | | $C_6H_4Cl_2$
$C_8(O)(C_B)_2) +$ | | $\Delta_i H^\circ = -3$ | 381.50 | -385.37
208.06 | 3.87 | 54BJE/SMI | $(2 \times C_B - (H)(C_B))$
$(2 \times O - (H)(C_B))$ |) + (2×C _B -(Cl)(C _l
+ (1× <i>meta</i> corr-(C | CI)(CI)) | -(O)(C _B) ₂)+ | | | 381.50 | -385.37
208.06 | 3.87 | 54BJE/SMI | $(2 \times C_B - (H)(C_B))$
$(2 \times O - (H)(C_B))$ | $(2 \times C_{B} - (Cl)) (C_l)$ | CI)(CI)) | C ₆ H ₄ Cl ₂
(O)(C _B) ₂) +
Reference | | $\Delta_t H^\circ = -3$ $C_p^\circ = -3$ | | 208.06 | 3.87 | 54BJE/SMI
C₀H₄Cl₂O₂ | $(2 \times C_B - (H)(C_B))$
$(2 \times O - (H)(C_B))$ |) + (2×C _B -(Cl)(C _l
+ (1× <i>meta</i> corr-(C | CI)(CI)) | | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} = -3$ 2,3-Dichloro-1, | ,4-benzene | 208.06
diol | | C ₆ H ₄ Cl ₂ O ₂ | (2×C _B -(H)(C _B)
(2×O-(H)(C _B))
Liter |) + (2×C _B -(Cl)(C _l
+ (1× <i>meta</i> corr-(Cature – Calculated | CI)(CI)) | (O)(C _B) ₂)+ Reference | | $\Delta_t H^\circ = -3$ $C_p^\circ = -3$ 2,3-Dichloro-1, $(2 \times C_B - (H))$ | ,4-benzene
(C _B) ₂) + (2 | 208.06 $diol \times C_B-(Cl)(C_B$ | a) ₂)+(2×C _B - | C ₆ H ₄ Cl ₂ O ₂ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ | $\begin{array}{l} (2 \times C_B - (CI)(C_I) + (1 \times meta \text{ corr} $ | CI)(CI))
= Residual | -(O)(C _B) ₂)+ | | $\Delta_{i}H^{\circ} = -3$ $C_{\rho}^{\circ} = -3$ $C_{\rho}^{\circ} = -3$ 2,3-Dichloro-1, $(2 \times C_{B} - (H))(3 \times C_{B} - (H))(4 \times$ |
,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | (2×C _B -(H)(C _B)) (2×O-(H)(C _B)) Liter Gas phase |) + (2×C _B -(Cl)(C _l
+ (1× <i>meta</i> corr-(Cature – Calculated | CI)(CI))
= Residual | (O)(C _B) ₂)+ Reference | | $\Delta_i H^\circ = -3$ $C_p^\circ =$ 2,3-Dichloro-1, $(2 \times C_B - (H))(0)$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 $diol \times C_B-(Cl)(C_B$ | s) ₂) + (2 × C _B -
Cl)(Cl)) | C ₆ H ₄ Cl ₂ O ₂ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter $Gas phase$ $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ | $\begin{array}{l} (2 \times C_B - (CI)(C_I) + (1 \times meta \text{ corr} $ | CI)(CI))
= Residual | (O)(C _B) ₂) + Reference | | $\Delta_i H^\circ = -3$ $C_p^\circ =$ 2,3-Dichloro-1, $(2 \times C_B - (H))(0)$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_l H^\circ = -331.5$ $C_p^\circ =$ Liquid phase |) + (2×C _B -(Cl)(C _I +(1×meta corr-(Cature - Calculated at the corr-(Cature - Calculated at the corr-(Cature - Cature | CI)(CI))
= Residual | (O)(C _B) ₂) + Reference | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} = -3$ 2,3-Dichloro-1, $(2 \times C_{B}-(H))$ $(2 \times O-(H))$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ =$ |) + (2×C _B -(Cl)(C _I +(1×meta corr-(Cature - Calculated and 153.92 | CI)(CI))
= Residual | (O)(C _B) ₂) + Reference | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} = -3$ 2,3-Dichloro-1, $(2 \times C_{B}-(H))(2 \times O-(H))(3 \times O-(H))$ Gas phase | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | diol × C _B -(Cl)(C _B ortho corr-(C | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ |)-1 (2×C _B -(Cl)(C _I +(1×meta corr-(Cl)) ature - Calculated 1 - 341.54 153.92 - 432.80 284.60 | CI)(CI))
= Residual | (O)(C _B) ₂) + Reference | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_{B}-(H))$ $(2 \times O-(H))$ Gas phase $\Delta_{i}H^{\circ} =$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ |) + (2×C _B -(Cl)(C _I +(1×meta corr-(Cl)) ature - Calculated 1 - 341.54 153.92 - 432.80 284.60 235.28 | CI)(CI))
= Residual | (O)(C _B) ₂) + Reference | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} = -3$ 2,3-Dichloro-1, $(2 \times C_{B}-(H))$ $(2 \times O-(H))$ Gas phase | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | diol × C _B -(Cl)(C _B ortho corr-(C | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_{B^{-}}(H)(C_{B}))$ $(2 \times O^{-}(H)(C_{B}))$ Liter Gas phase $\Delta_{t}H^{\circ} = -331.5$ $C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $S^{\circ} = \Delta_{t}S^{\circ} =$ | -432.80 284.60 235.28 -488.32 | CI)(CI))
= Residual | (O)(C _B) ₂) + Reference | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_{B}-(H))$ $(2 \times O-(H))$ Gas phase $\Delta_{i}H^{\circ} =$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | - 432.80
- 235.28
- 488.32
- 24 (CI)(C _I +(1×meta corr-(C))
- 341.54
153.92 | CI)(CI))
= Residual | (O)(C _B) ₂) + Reference | | $\Delta_{i}H^{\circ} = -3$ $C_{\rho}^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_{B} - (H))(2 \times O - (H))(3 \times O - (H))(4 \times O - (H))(4 \times O - (H))(5 \times O - (H))(6 (H))(7 (H))(7$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_{B^{-}}(H)(C_{B}))$ $(2 \times O^{-}(H)(C_{B}))$ Liter Gas phase $\Delta_{t}H^{\circ} = -331.5$ $C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $S^{\circ} = \Delta_{t}S^{\circ} =$ | -432.80 284.60 235.28 -488.32 | CI)(CI))
= Residual | (O)(C _B) ₂) + Reference | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} = -3$ $C_{p}^{\circ} = -3$ 2,3-Dichloro-1, $(2 \times C_{B} - (H))$ $(2 \times O - (H))$ Gas phase $\Delta_{i}H^{\circ} = C_{p}^{\circ} = -3$ Liquid phase | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | - 432.80
- 235.28
- 488.32
- 24 (CI)(C _I +(1×meta corr-(C))
- 341.54
153.92 | CI)(CI))
= Residual | (O)(C _B) ₂) + Reference | | $\Delta_i H^\circ = -3$ $C_p^\circ =$ 2,3-Dichloro-1, $(2 \times C_B - (H))$ $(2 \times O - (H))$ Gas phase $\Delta_i H^\circ = C_p^\circ =$ Liquid phase | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | - 432.80
- 235.28
- 488.32
- 24 (CI)(C _I +(1×meta corr-(C))
- 341.54
153.92 | CI)(CI))
= Residual | (O)(C _B) ₂) + Reference | | $\Delta_i H^\circ = -3$ $C_\rho^\circ =$ 2,3-Dichloro-1, $(2 \times C_B - (H))$ $(2 \times O - (H))$ Gas phase $\Delta_i H^\circ = C_\rho^\circ =$ Liquid phase | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | - 432.80
- 235.28
- 488.32
- 24 (CI)(C _I +(1×meta corr-(C))
- 341.54
153.92 | CI)(CI))
= Residual | (O)(C _B) ₂) + Reference | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_{B}-(H))$ $(2 \times O-(H))$ Gas phase $\Delta_{i}H^{\circ} =$ $C_{p}^{\circ} =$ Liquid phase $\Delta_{i}H^{\circ} =$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ Solid phase | -432.80
235.28
-488.32
-287.21
115.86 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $C_p^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_B - (H))(2 \times O - (H))(3 \times O - (H))(4 \times O - (H))(5 \times O - (H))(6 (H)$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ = -423.5$ | - 432.80
- 235.28
- 48.32
- 287.21
- 243.44 | CI)(CI))
= Residual | (O)(C _B) ₂)+ Reference | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_{B}-(H))(2 \times O_{P}-(H))(3 \times O_{P}-(H))(4 \times O_{P}-(H))(5 \times O_{P}-(H))(6 O_{P}-(H))$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ = -423.5$ $C_p^\circ = $ | - 432.80
- 287.21
- 287.21
- 432.80
- 284.60
- 235.28
- 488.32
- 287.21
- 115.86 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2.3-Dichloro-1, $(2 \times C_{B} - (H))(2 \times O - (H))(3 \times O - (H))(4 \times O - (H))(5 \times O - (H))(6 (H))(6$ | ,4-benzene
(C _B) ₂) + (2
(C
_B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 - 283.21 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = 1nK_t =$ Solid phase $\Delta_t H^\circ = -423.5$ $C_p^\circ = S^\circ $ | - 432.80
- 284.60
- 235.28
- 488.32
- 287.21
- 243.44
- 165.28
- 192.66 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_\rho^\circ =$ Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = A_t S^\circ$ | - 432.80
- 284.60
- 235.28
- 488.32
- 287.21
115.86 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 1.3-Dichloro-1, $(2 \times C_{B} - (H))(2 \times O - (H))(3 \times O - (H))(4 \times O - (H))(5 \times O - (H))(6 (H))(6$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 - 283.21 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ$ | 2)+1 (2×C _B -(Cl)(C _I +(1×meta corr-(Cl))+(1×meta corr-(Cl)) ature - Calculated (1) 3) -341.54 153.92 -432.80 284.60 235.28 -488.32 -287.21 115.86 3) -443.44 165.28 192.66 -530.94 -285.14 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $\Delta_{l}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2.3-Dichloro-1, $(2 \times C_{B} - (H))(2 \times O - (H))(3 \times O - (H))(4 \times O - (H))(5 \times O - (H))(6 (H))(6$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 - 283.21 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_\rho^\circ =$ Liquid phase $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = A_t S^\circ$ | - 432.80
- 235.28
- 488.32
- 287.21
- 215.86
- 235.28
- 488.32
- 287.21
- 432.46
- 235.28
- 488.32
- 287.21
- 432.46
- 235.28
- 488.32
- 287.21
- 287. | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $C_p^{\alpha} = -3$ $C_p^$ | ,4-benzene
(C _B)2) + (2
C _B)) + (1 ×
Literature | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 - 283.21 114.24 | a) ₂) + (2 × C _B -
I)(CI))
= Residual | C ₆ H ₄ Cl ₂ O ₂
-(O)(C _B) ₂) +
Reference | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ$ | 2)+1 (2×C _B -(Cl)(C _I +(1×meta corr-(Cl))+(1×meta corr-(Cl)) ature - Calculated (1) 3) -341.54 153.92 -432.80 284.60 235.28 -488.32 -287.21 115.86 3) -443.44 165.28 192.66 -530.94 -285.14 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_{B} - (H))(2 \times C_{B} - (H))(3 \times C_{B} + (H))(4 C$ | ,4-benzene
(C _B) ₂) + (2
(C _B)) + (1 × | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 - 283.21 114.24 - 438.94 | s) ₂) + (2 × C _B -
Cl)(Cl)) | $C_6H_4Cl_2O_2$
-(O)(C_B) ₂)+ | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ$ | 2)+1 (2×C _B -(Cl)(C _I +(1×meta corr-(Cl))+(1×meta corr-(Cl)) ature - Calculated (1) 3) -341.54 153.92 -432.80 284.60 235.28 -488.32 -287.21 115.86 3) -443.44 165.28 192.66 -530.94 -285.14 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_{B} - (H))(2 \times C_{B} - (H))(3 \times C_{p}^{\circ})$ Gas phase $\Delta_{i}H^{\circ} = C_{p}^{\circ} =$ $\Delta_{i}G^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} =$ Solid phase $\Delta_{i}H^{\circ} = C_{p}^{\circ} C_{$ | ,4-benzene
(C _B)2) + (2
C _B)) + (1 ×
Literature | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 - 283.21 114.24 - 438.94 165.28 | a) ₂) + (2 × C _B -
I)(CI))
= Residual | C ₆ H ₄ Cl ₂ O ₂
-(O)(C _B) ₂) +
Reference | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ$ | 2)+1 (2×C _B -(Cl)(C _I +(1×meta corr-(Cl))+(1×meta corr-(Cl)) ature - Calculated (1) 3) -341.54 153.92 -432.80 284.60 235.28 -488.32 -287.21 115.86 3) -443.44 165.28 192.66 -530.94 -285.14 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_{B}-(H))(2 \times O_{P}-(H))(3 \times O_{P}-(H))(4 \times O_{P}-(H))(5 \times O_{P}-(H))(5 \times O_{P}-(H))(6 O_{P}-(H))$ | ,4-benzene
(C _B)2) + (2
C _B)) + (1 ×
Literature | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 - 283.21 114.24 - 438.94 | a) ₂) + (2 × C _B -
I)(CI))
= Residual | C ₆ H ₄ Cl ₂ O ₂
-(O)(C _B) ₂) +
Reference | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ$ | 2)+1 (2×C _B -(Cl)(C _I +(1×meta corr-(Cl))+(1×meta corr-(Cl)) ature - Calculated (1) 3) -341.54 153.92 -432.80 284.60 235.28 -488.32 -287.21 115.86 3) -443.44 165.28 192.66 -530.94 -285.14 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_{B}-(H))(2 \times C_{B}-(H))(3 \times C_{B})$ Gas phase $\Delta_{i}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{i}H^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} = C_{B}^{\circ} C_$ | ,4-benzene
(C _B)2) + (2
C _B)) + (1 ×
Literature | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 - 283.21 114.24 - 438.94 165.28 | a) ₂) + (2 × C _B -
I)(CI))
= Residual | C ₆ H ₄ Cl ₂ O ₂
-(O)(C _B) ₂) +
Reference | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ$ | 2)+1 (2×C _B -(Cl)(C _I +(1×meta corr-(Cl))+(1×meta corr-(Cl)) ature - Calculated (1) 3) -341.54 153.92 -432.80 284.60 235.28 -488.32 -287.21 115.86 3) -443.44 165.28 192.66 -530.94 -285.14 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_{B}-(H))(2 \times O_{-}(H))(3 \times O_{-}(H))(4 \times O_{-}(H))(5 \times O_{-}(H))(6 O$ | ,4-benzene
(C _B)2) + (2
C _B)) + (1 ×
Literature | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 - 283.21 114.24 - 438.94 165.28 192.66 - 530.94 | a) ₂) + (2 × C _B -
I)(CI))
= Residual | C ₆ H ₄ Cl ₂ O ₂
-(O)(C _B) ₂) +
Reference | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ$ | 2)+1 (2×C _B -(Cl)(C _I +(1×meta corr-(Cl))+(1×meta corr-(Cl)) ature - Calculated (1) 3) -341.54 153.92 -432.80 284.60 235.28 -488.32 -287.21 115.86 3) -443.44 165.28 192.66 -530.94 -285.14 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | | $\Delta_{i}H^{\circ} = -3$ $C_{p}^{\circ} =$ 2,3-Dichloro-1, $(2 \times C_{B}-(H))(2 \times O_{-}(H))(3 \times O_{-}(H))(4 \times O_{-}(H))(5 \times O_{-}(H))(6 O$ | ,4-benzene
(C _B)2) + (2
C _B)) + (1 ×
Literature | 208.06 diol × C _B -(Cl)(C _B ortho corr-(C - Calculated = - 327.04 153.92 - 428.80 284.60 235.28 - 488.32 - 283.21 114.24 - 438.94 165.28 192.66 | a) ₂) + (2 × C _B -
I)(CI))
= Residual | C ₆ H ₄ Cl ₂ O ₂
-(O)(C _B) ₂) +
Reference | $(2 \times C_B - (H)(C_B))$ $(2 \times O - (H)(C_B))$ Liter Gas phase $\Delta_t H^\circ = -331.5$ $C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ$ | 2)+1 (2×C _B -(Cl)(C _I +(1×meta corr-(Cl))+(1×meta corr-(Cl)) ature - Calculated (1) 3) -341.54 153.92 -432.80 284.60 235.28 -488.32 -287.21 115.86 3) -443.44 165.28 192.66 -530.94 -285.14 | Cl)(Cl)) = Residual 10.04 | (O)(C _B) ₂) + Reference 27COO/COO | TABLE 51. Chlorides (116) - Continued | 2,3,5-Trichloro-1,4-benzenediol | C ₆ H ₃ Cl ₃ O ₂ | |--|--| | $(1 \times C_B - (H)(C_B)_2) + (3 \times C_B - (Cl)(C_B)_2) + (2 \times O - (H)(C_B)_2)$ |)+ | | $(2 \times C_{B}-(O)(C_{B})_{2}) + (1 \times ortho \text{ corr}-(Cl)(Cl)) +$ | | | $(1 \times meta \text{ corr-}(Cl)(Cl))$ | |
| Literatu | re – Calculated = | = Residual | Reference | |-------------------------------------|-------------------|------------|-----------| | Gas phase | | | | | $\Delta_t H^{\circ} = -339.40$ | -362.88 | 23.48 | 27COO/COO | | $C_p^{\circ} =$ | 169.64 | | | | Liquid phase | | | | | $\Delta_t H^\circ =$ | -459.16 | | | | $C_p^{\circ} =$ | 297.19 | | | | <i>S</i> ° = | 261.88 | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | -507.92 | | | | $\Delta_{\rm f}G^{\circ} =$ | -307.72 | | | | $lnK_f =$ | 124.13 | | | | Solid phase | | | | | $\Delta_{\rm f}H^{\circ} = -440.70$ | -473.47 | 32.77 | 53SMI/BJE | | $C_p^{\circ} =$ | 178.70 | | | | S° = | 213.28 | | | | $\Delta_f S^\circ =$ | -556.52 | | | | $\Delta_{\rm f}G^{\circ} =$ | -307.54 | | | | $lnK_f =$ | 124.06 | | | $\label{eq:pentachlorophenol} \begin{array}{c} \textbf{C_6HCl_5O} \\ (1 \times O - (H)(C_B)) + (1 \times C_{B} - (O)(C_B)_2) + (5 \times C_{B} - (Cl)(C_B)_2) + \\ (4 \times \textit{ortho} \ \textit{corr} - (Cl)(Cl)) \end{array}$ | Literatur | re – Calculated | = Residual | Reference | |--------------------------------------|-----------------|------------|-----------| | Gas phase | | | | | $\Delta_{\rm f}H^{\circ} = -225.10$ | -212.20 | -12.90 | 70COX/PIL | | $C_p^{\circ} =$ | 180.67 | | | | Liquid phase | | | | | $\Delta_t H^\circ =$ | -302.36 | | | | $C_p^{\circ} =$ | 260.70 | | | | S° = | 310.65 | | | | $\Delta_{f}S^{\circ} =$ | -449.03 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | -168.48 | | | | $lnK_f =$ | 67.96 | | | | Solid phase | | | | | $\Delta_{\rm f} H^{\circ} = -292.50$ | -324.25 | 31.75 | 58SIN/STU | | $C_p^{\circ} =$ | 196.71 | | | | S° = | 247.06 | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | -512.62 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | -171.41 | | | | $lnK_f =$ | 69.15 | | | $\begin{array}{ll} \textbf{2,3,5,6-Tetrachloro-1,4-benzenediol} & C_{\textbf{6}}H_{2}Cl_{\textbf{4}}O_{\textbf{2}} \\ (4 \times C_{\textbf{B}}-(Cl)(C_{\textbf{B}})_{2}) + (2 \times O-(H)(C_{\textbf{B}})) + (2 \times C_{\textbf{B}}-(O)(C_{\textbf{B}})_{2}) + \\ (2 \times \textit{ontho} \ \textit{corr}-(Cl)(Cl)) + (2 \times \textit{meta} \ \textit{corr}-(Cl)(Cl)) \end{array}$ | · | Literatur | e — Calculated = | Residual | Reference | |----------------------------------|-----------|------------------|----------|-----------| | Gas phase | | | | | | $\Delta_t H^{\circ} =$ | | -389.22 | | | | $C_p^{\circ} =$ | | 185.36 | | | | Liquid phas | ie | | | | | $\Delta_{i}H^{\circ} =$ | | -475.52 | | | | $C_{p}^{\circ} =$ | | 309.78 | | | | s° = | | 288.48 | | | | $\Delta_f S^\circ =$ | | - 527.52 | | | | $\Delta_t G^\circ =$ | | -318.24 | | | | $lnK_f =$ | | 128.38 | | | | Solid phase | ı | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -453.60 | 499.50 | 45.90 | 53SMI/BJE | | $C_p^{\circ} =$ | | 192.12 | | | | S° = | | 233.90 | | | | $\Delta_{\rm f} S^{\circ} =$ | | -582.10 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | -325.95 | | | | $lnK_f =$ | | 131.48 | | | $\begin{array}{l} \textbf{2-Chloro-1,4-benzenediol} & \textbf{C_6H_5ClO_2} \\ (3 \times C_B-(H)(C_B)_2) + (1 \times C_B-(Cl)(C_B)_2) + (2 \times O-(H)(C_B)) + \\ (2 \times C_B-(O)(C_B)_2) \end{array}$ | Literatu | re – Calculated | = Residual | Reference | |--------------------------------------|-----------------|------------|-----------| | Gas phase | | | | | $\Delta_{\rm f} H^{\circ} = -314.00$ | -305.70 | -8.30 | 27COO/COO | | $C_{\rho}^{\circ} =$ | 138.20 | | | | Liquid phase | | | | | $\Delta_t H^\circ =$ | -402.44 | | | | $C_p^{\circ} =$ | 272.01 | | | | S° = | 208.68 | | | | $\Delta_f S^{\circ} =$ | -468.72 | | | | $\Delta_{t}G^{\circ} =$ | -262.69 | | | | $lnK_f =$ | 105.97 | | | | Solid phase | | | | | $\Delta_t H^{\circ} = -383.00$ | -408.91 | 25.91 | 53SMI/BJE | | $C_p^{\circ} =$ | 151.86 | | | | <i>S</i> ° = | 172.04 | | | | $\Delta_f S^\circ =$ | - 505.36 | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | -258.24 | | | | $lnK_f =$ | 104.17 | | | | TABLE 51. | Chlorides (| (116) - | Continued | |-----------|-------------|---------|-----------| |-----------|-------------|---------|-----------| | Chloroacetic acid $C_2H_3ClO_2$
$(1 \times C - (H)_2(CO)(Cl)) + (1 \times CO - (C)(O)) + (1 \times O - (H)(CO))$ | 2-Chlorobutanoic acid C_4H_7CIO
$(1 \times O - (H)(CO)) + (1 \times CO - (C)(O)) + (1 \times C - (H)_2(CO)(Cl)) +$
$(1 \times C - (H)_2(C)_2) + (1 \times C - (H)_3(C))$ | |--|--| | Literature - Calculated = Residual Reference | Literature – Calculated = Residual Reference | | Gas phase $\Delta_t H^\circ = -435.20 -435.80 0.60 49SRE/MAR$ | Gas phase $\Delta_t H^{\alpha} = -498.69$ | | Liquid phase $\Delta_i H^\circ = -493.42$ | Liquid phase $\Delta_t H^\circ = -575.50 - 566.76 - 8.74$ 53SMI/BJE | | Solid phase $\Delta_i H^\circ = -510.50 -510.50$ 0.00 53SMI/BJE | Solid phase $\Delta_t H^\circ = -586.65$ | | 2-Chloropropanoic acid $C_3H_5ClO_2$
$(1 \times O-(H)(CO)) + (1 \times CO-(C)(O)) + (1 \times C-(H)_3(C)) +$
$(1 \times C-(H)(C)(CO)(Cl))$
Literature — Calculated = Residual Reference | 3-Chlorobutanoic acid $ (1 \times O - (H)(CO)) + (1 \times CO - (C)(O)) + (1 \times C - (H)_2(CO)(C)) + (1 \times C - (H)(C)_2(CI)) + (1 \times C - (H)_3(C)) $ Literature – Calculated = Residual Reference | | Gas phase $\Delta_t H^\circ = -473.68$ | Gas phase $\Delta_t H^{\circ} = -511.25$ $C_P^{\circ} = 126.21$ | | Liquid phase $\Delta_{\rm p}H^{\circ} = -522.50 - 518.08 -4.42$ 53SMI/BJE $C_p^{\circ} = 168.73$ | Liquid phase $\Delta_t H^\circ = -556.30 -577.93$ 21.63 53SMI/BJE $C_p^\circ = 214.59$ | | 3-Chloropropanoic acid $C_3H_5ClO_2$
$(1\times O-(H)(CO))+(1\times CO-(C)(O))+(1\times C-(H)_2(CO)(C))+$
$(1\times C-(H)_2(C)(Cl))$
Literature – Calculated – Residual Reference | 4-Chlorobutanoic acid $C_4H_7ClO_2$
$(1 \times O - (H)(CO)) + (1 \times CO - (C)(O)) + (1 \times C - (H)_2(CO)(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)(Cl))$ | | Gas phase $\Delta_l II^{\circ}482.83$ $C_{\rho}^{\circ} = 103.01$ | Literature - Calculated = Residual Reference Gas phase | | Liquid phase $\Delta_t H^o = -546.05$ | $\Delta_{i}H^{\circ} = -503.46$ $C_{P}^{\circ} = 125.90$ | | $C_{\rho}^{\alpha} = 175.85$ $S^{\alpha} = 215.14$ $\Delta_{f}S^{\alpha} = -445.04$ $\Delta_{f}G^{\alpha} = -413.36$ $\ln K_{f} = 166.75$ | Liquid phase $\Delta_t H^\circ = -566.30 -571.78$ 5.48 53SMI/BJE $C_p^\circ = 206.27$ $S^\circ = 247.52$ $\Delta_t S^\circ = -548.97$ | | Solid phase $\Delta_t H^\circ = -549.30 - 549.30 0.00 53SMI/BJE$ | $\Delta_{\ell}G^{\circ} = -408.11$ $\ln K_{\ell} = 164.63$ | Reference 53SMI/BJE Dichloroacetic acid Gas phase $\Delta_{\rm f}H^{\circ} =$ Liquid phase $\Delta_{i}H^{\circ} = -496.30$ 2-Chlorobenzoic acid TABLE 51. Chlorides (116) - Continued $(1 \times O-(H)(CO)) + (1 \times CO-(C)(O)) + (1 \times C-(H)(CO)(CI)_2)$ Literature - Calculated = Residual -431.94 -490.12 $(4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (Cl)(C_B)_2) + (1 \times O - (H)(CO)) +$ $(1 \times CO-(O)(C_B)) + (1 \times C_B-(CO)(C_B)_2) +$ (1×ortho corr-(Cl)(COOH)) -6.18 ### TABLE 51. Chlorides (116) - Continued C₂H₂Cl₂O₂ 4-Chlorobenzoic acid C7H5ClO2 $(4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (Cl)(C_B)_2) + (1 \times O - (H)(CO)) +$ $(1 \times CO-(O)(C_B)) + (1 \times C_B-(CO)(C_B)_2)$ Literature - Calculated = Residual Reference Gas phase $\Delta_t H^{\circ} = -341.00$ -325.59-15.4138WOL/WEG Liquid phase $\Delta_t H^\circ =$ -414.70 $C_p^{\circ} =$ 216.36 C7H5ClO2 Solid phase $\Delta_{\rm f}H^{\circ} =$ -428.16-424.88 -3.2874JOH/PRO $C_p^{\circ} = S^{\circ} =$ 159.53 188.36 $\Delta_f S^{\circ} =$ -494.78 $\Delta_t G^{\circ} =$ -277.36 $lnK_f =$ 111.89 2-Chlorobenzaldehyde C7H5ClO $(4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (CO)(C_B)_2) + (1 \times C_B - (CI)(C_B)_2) +$ $(1 \times CO-(H)(C_B)) + (1 \times ortho corr-(Cl)(CHO))$ Literature - Calculated = Residual Reference Gas phase $\Delta_f H^{\circ} =$ -62.70-74.3911.69 49DRE/MAR Liquid phase $\Delta_{\rm f} H^{\circ} =$ 53SMI/BJE -118.40-118.680.28 $C_p^{\circ} =$ 184.60 3-Chlorobenzaldehyde C7H5ClO $(4 \times C_{B}-(H)(C_{B})_{2}) + (1 \times C_{B}-(CI)(C_{B})_{2}) + (1 \times C_{B}-(CO)(C_{B})_{2}) +$ $(1 \times CO-(H)(C_B))$ Literature - Calculated = Residual Reference Gas phase $\Delta_f H^\circ =$ -67.64Liquid phase $\Delta_i H^\circ =$ -125.90-127.181.28 53SMI/BJE $C_p^{\circ} =$ 184.60 | Literatu | re – Calculated | = Residual | Reference | |---|--|--|--| | Gas phase | | | | | $\Delta_i H^{\circ} = -325.00$ | - 325.59 | 0.59 | 38WOL/WEC | | Liquid phase | | | | | $\Delta dH^{\circ} =$ | - 414.70 | | | | $C_p^{\circ} =$ | 216.36 | | | | Solid phase | | | | | $\Delta_t H^\circ = -404.83$ | - 404.88 | 0.05 | 74JOH/PRO | | $C_p^{\circ} =$ | 159.53 | 2.00 | | | S° = | 188.36 | | | | $\Delta_{i}S^{\circ} =$ | - 494.78 | | | | $\Delta_{\rm f}G^{\circ} =$ | -257.36 | | | | $\ln K_{\rm f} =$ | 103.82 | | | | 3-Chlorobenzoic acid
(4×C _B -(H)(C _B) ₂)+
(1×CO-(O)(C _B))+ | | | C ₇ H ₅ Cl ⁶
(H)(CO))+ | | 3-Chlorobenzoic acid
(4×C _B -(H)(C _B) ₂)+
(1×CO-(O)(C _B))+ | | $(C_B)_2$ | | | 3-Chlorobenzoic acid (4×C _B -(H)(C _B) ₂)+ (1×CO-(O)(C _B))+ Literate | $+(1\times C_{B}-(CO))$ | $(C_B)_2$ | (H)(CO))+ | |
3-Chlorobenzoic acid
(4×C _B -(H)(C _B) ₂)+
(1×CO-(O)(C _B))+ | $+(1\times C_{B}-(CO))$ | $(C_B)_2$ | (H)(CO))+ | | 3-Chlorobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + Literatu$ Gas phase $\Delta_t H^\circ = -342.30$ | + (1 × C _B -(CO)(
ure – Calculated | C _B) ₂) = Residual | (H)(CO))+ Reference | | 3-Chlorobenzoic acid (4×C _B -(H)(C _B) ₂)+ (1×CO-(O)(C _B))+ Literate Gas phase | + (1 × C _B -(CO)(
ure – Calculated | C _B) ₂) = Residual | (H)(CO))+ Reference | | 3-Chlorobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + Literatu$ Gas phase $\Delta_t H^\circ = -342.30$ Liquid phase | + (1 × C _B -(CO)(
ure – Calculated
– 325.59 | C _B) ₂) = Residual | (H)(CO))+ Reference | | 3-Chlorobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + Literatu$ Gas phase $\Delta_t H^\circ = -342.30$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | + (1 × C _B -(CO))
ure - Calculated
- 325.59
- 414.70 | C _B) ₂) = Residual | (H)(CO))+ Reference | | 3-Chlorobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + Literatu$ Cas phase $\Delta_t H^\circ = -342.30$ Liquid phase $\Delta_t H^\circ = -442.30$ | + (1 × C _B -(CO))
ure - Calculated
- 325.59
- 414.70 | C _B) ₂) = Residual | (H)(CO))+ Reference | | 3-Chlorobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + Literatu$ Cas phase $\Delta_t H^\circ = -342.30$ Liquid phase $\Delta_t H^\circ = C_p^\circ = -342.30$ Solid phase $\Delta_t H^\circ = -424.59$ | - 325.59
- 414.70
216.36 | C _B) ₂)
= Residual
- 16.71 | (H)(CO)) + Reference 38WOI /WEC | | 3-Chlorobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + Literatu$ Gas phase $\Delta_t H^\circ = -342.30$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ Solid phase | - 325.59
- 414.70
216.36 | C _B) ₂)
= Residual
- 16.71 | (H)(CO)) + Reference 38WOI /WEC | | 3-Chlorobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + Literatu$ Cas phase $\Delta_t H^\circ = -342.30$ Liquid phase $\Delta_t H^\circ = C_\rho^\circ = -342.30$ Solid phase $\Delta_t H^\circ = -424.59$ $C_\rho^\circ = -424.59$ $C_\rho^\circ = -424.59$ | - 325.59 - 414.70 216.36 - 424.88 159.53 | C _B) ₂)
= Residual
- 16.71 | (H)(CO)) + Reference 38WOI /WEC | | 3-Chlorobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + Literatu$ Gas phase $\Delta_t H^\circ = -342.30$ Liquid phase $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -424.59$ $C_p^\circ = S^\circ =$ | - 325.59 - 414.70 216.36 - 424.88 159.53 188.36 | C _B) ₂)
= Residual
- 16.71 | (H)(CO)) + Reference 38WOI /WEC | | Literature - Calculated | | | | | | | |--|--------------|--|--|---|--------------|--| | | l = Residual | Reference | Liter | rature – Calculated | l = Residual | Reference | | Sas phase
Δ _t H° = -67.64 | | | Liquid phase $ \Delta_t H^\circ = -335.6 $ $ C_\rho^\circ = S^\circ = $ | 0 – 316.94
191.79
279.53 | - 18.66 | 67FAI/STI | | Liquid phase $\Delta_t H^\circ = -127.18$ $C_p^\circ = 184.60$ | | | $\Delta_t S^\circ = \Delta_t G^\circ = In K_t =$ | - 545.01
- 154.45
62.30 | | | | Solid phase $\Delta_p H^\circ = -146.40 - 157.91$ | 11.51 | 53SMI/BJE | | te
+ (1 × C-(H) ₂ (C) ₂)
) + (1 × CO-(C)(O | | | | ,2,3-Trichlorobutanal
(1×C-(H) ₃ (C))+(1×C-(H)(C) ₂ (
(1×CO-(H)(C)) | Cl))+(1×C-(0 | C ₄ H ₅ Cl ₃ O
C) ₂ (Cl) ₂) + | | rature – Calculated | | Reference | | Literature – Calculate | d = Residual | Reference | Gas phase $\Delta_t H^\circ = -467.0$ | 0 -466.16 | -0.84 | 70COX/PIL | | Gas phase $\Delta_t H^\circ = -301.82$ $C_p^\circ = 144.13$ | | | Liquid phase $\Delta_t H^\circ = -515.6$ | 0 -512.94 | -2.66 | 54BJE/SMI | | Liquid phase $\Delta_t H^\circ = -363.00$ $C_p^\circ = 241.84$ 241.84 | 0.00 | 1881REI
 | $(1 \times O - (C)(CO))$ | + (2 × C-(H) ₂ (C) ₂)
) + (1 × CO-(C)(O) |))+(1×C-(H) | ₂ (CO)(CI)) | | C-Chloroethyl vinyl ether
$(1 \times C - (H)_2(C)(C1)) + (1 \times C - (H)_2(1 \times C_d - (D)(H)) + (1 \times C_d - (H)_2)$ | (O)(C))+(1×0 | C ₄ H ₇ ClO
)-(C)(C _d))+ | Gas phase $\Delta_t H^{\circ} = -487.4$ | ature - Calculated | -0.61 | Reference 70COX/PIL | | Literature Calculate | d = Residual | Reference | Liquid phase | | | | | Gas phase | -1.06 | 81TRO/NED | $\Delta_t H^\circ = -538.4$ | 0 -538.67 | 0.27 | 54BJE/SMI | | $\Delta_t H^{\circ} = -170.10 - 169.04$ | | | Ethyl 2-chloroprop | anoate | 10)(0)) . (1 | C ₅ H ₉ Clo
CO-(C)(O))+ | | Liquid phase $\Delta_t H^\circ = -208.20 -203.62$ | -4.58 | 81TRO/NED | $(2 \times C - (H)_3(C))$ $(1 \times O - (C)(CO))$ | $+ (1 \times C - (H)(C)(C) + (1 \times C - (H)_2(O))$ | (C)) | | | Liquid phase | -4.58 | 81TRO/NED | (1×0-(C)(CO) | + (1 × C-(H)(C)(C | (C)) | Reference | | iquid phase $\Delta_t H^{\circ} = -208.20 -203.62$ | | C,H,CIO | (1×0-(C)(CO) | + (1 × C-(H)(C)(C
) + (1 × C-(H) ₂ (O) | (C)) | | TABLE 51. Chlorides (116) - Continued | Propyl 3-chloropropanoate $ (1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)_2(C)_2) + (1 \times C - (H)_2(C)_2(C)_2(C)_2) + (1 \times C - (H)_2(C)_2(C)_2(C)_2) + (1 \times C - (H)_2(C)_2(C)_2(C)_2(C)_2(C)_2(C)_2(C)_2(C$ | | | H ₁₃ ClO ₂
)))+ | |--|---
--|--| | Literature – Calculated = Residual | Reference | Literature - Calculated = Residual Referen | ice | | Gas phase $\Delta_t H^\circ = -485.70 -513.19$ 27.49 $C_p^\circ = 167.53$ | 70COX/PIL | Gas phase $\Delta_t H^\circ = -502.30 -533.82$ 31.52 70COX/ $C_\rho^\circ = 190.42$ | /PIL | | Liquid phase $ \Delta_t H^\circ = -537.60 -565.57 27.97 $ $ C_0^\circ - 258.15 $ $ S^\circ = 363.41 $ $ \Delta_t S^\circ = -705.70 $ $ \Delta_t G^\circ = -355.17 $ $ \ln K_t = 143.27 $ | 53SMI/BJE | Liquid phase $ \Delta_t H^\circ = -557.90 -591.30 33.40 53SMI/I $ $ C^\rho_{\rho} = 288.57 $ $ S^\circ = 395.79 $ $ \Delta_t S^\circ = -809.63 $ $ \Delta_t G^\circ = -349.91 $ $ \ln K_f = 141.15 $ | вје | | Ethyl 4-chlorobutanoate $(1 \times C - (H)_2(C)(C1)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (1 \times C) - (C)(C)) + (1 \times C) $ | | Propyl 2-chlorobutanoate C_{7} I $(2 \times C - (H)_3(C)) + (2 \times C - (H)_2(C)_2) + (1 \times C - (H)(C)(CO)(CI)_2) + (1 \times CO - (C)(O)) + (1 \times O - (C)(CO)) + (1 \times C - (H)_2(O)(C))$ Literature – Calculated = Residual Referen | | | Gas phase $\Delta_t H^\circ = -513.80 -513.19 -0.61$ $C_p^\circ = 167.53$ | 70COX/PIL | Gas phase $\Delta_t H^\circ = -578.40 -524.67 -53.73 70COX/$ | PIL | | Liquid phase $\Delta_t H^\circ = -566.50565.57 - 0.93$ | 53SMI/BJE | Liquid phase $\Delta_t H^{\circ} = -630.70 -563.33 -67.37$ 53SMI/E $C_p^{\circ} = 281.45$ | 3JE | | $C_p^{\circ} = 258.15$ $S^{\circ} = 363.41$ $\Delta_f S^{\circ} = -705.70$ $\Delta_f G^{\circ} = -355.17$ $\ln K_f = 143.27$ | | Propyl 4-chlorobutanoate C_7H
$(1 \times C - (H)_2(C)(Cl)) + (2 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(CO)(C)_2) + (1 \times C - (H)_2(O)(C)) + (1 \times C - (H)_2(O)(C)) + (1 \times C - (H)_2(C))(C) (H)_2(C$ | H ₁₃ ClO ₂
)) + | | Butyl 2-chloropropanoate | C ₇ H ₁₃ ClO ₂ | Literature – Calculated = Residual Referen | ce | | $(1 \times C - (H)(C)(CO)(CI)) + (2 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)(CO)) + (1 \times C - (H)_2(C)(C)) + (2 (H)_2(C)(C)(C)) + (2 \times C - (H)_2(C)(C)(C)) + (2 \times C - (H)_2(C)(C)(C)) + (2 \times C - (H)_2(C)(C)(C)(C)) + (2 \times C - (H)_2(C)(C)(C)(C)(C)) + (2 \times C - (H)_2(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)($ | | Gas phase $\Delta_i H^\circ = -537.90 -533.82 -4.08 70 \text{COX/}$ $C_p^\circ = 190.42$ | PIL | | Gas phase $\Delta_t H^\circ = -517.40 -524.67$ 7.27 | 70COX/PIL | Liquid phase $\Delta_t H^\circ = -591.40 -591.30 -0.10$ 53SMI/E $C_p^\circ = 288.57$ | вјЕ | | Liquid phase $\Delta_i H^{\circ} = -571.70 -563.33 -8.37$ $C_p^{\circ} = 281.45$ | 53SMI/BJE | $S^{\circ} = 395.79$ $\Delta_{t}S^{\circ} = -809.63$ $\Delta_{t}G^{\circ} = -349.91$ $\ln K_{t} = 141.15$ | | TABLE 51. Chlorides (116) - Continued | | | | (CO)(Cl))+
(C))+(1×C-(| (1 × CO−(C)(O)) +
H)₃(C)) | | | | + (1 × C-(H)(
)) + (1 × C-(H) | C)(CO)(CI))+
₂ (O)(C)) | |---|---|---
---|---|---|--|---|--|---| | | Literature | - Calculated | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase
Δ _t H° = | | -510.60 | | | Liquid phase $\Delta_t H^\circ = -C_p^\circ =$ | :
- 655.30 | - 589.06
311.87 | - 66.24 | 53SMI/BJE | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | 248.95 | -551.16
247.89 | 1.06 | 53SMI/BJE | | (CO)(Cl) ₂ | | C)(O))+(1×C
C) ₂)+(1×C-(| | | 3-Methylbuty
(3×C-(H) | | | O)(CI))+(1× | C ₈ H ₁₅ ClO ₂
CO–(C)(O))+ | | Literatur | e – Calculated | = Residual | Reference | | |)(C) ₃)+(2× | × C-(H) ₂ (O)(
CH ₃ corr (t
Calculated | • | H) ₂ (C) ₂) + Reference | Gas phase $\Delta_t H^\circ = -$ | - 497.80 | -482.93 | - 14.87 | 70COX/PIL | | Gas phase
Δ _ℓ H° = - | - 575.00 | -551.99 | -23.01 | 70COX/PIL | Liquid phase $\Delta_t H^\circ = -$ | | -535.37 | -14.73 | 53SMI/BJE | | • | e
627.30 | - 594.34
308.89 | - 32.96 | 53SMI/BJE | 2-Methylprop
(1×C-(H) | (CO)(CI) ₂ |)+(1×CO-(0 | C)(O))+(1×C
C) ₃)+(2×C-(F | C ₆ H ₁₀ Cl ₂ O
>-(C)(CO)) +
{}\ ₂ (C)) + | | C _p = | | | | | (2×-CH₃ | | | 73) 1 (21.0 (1 | -/3(-// | | 3-Methylbuty | yl 3-chlorop | | | C ₈ H ₁₅ ClO ₂ | | corr (tertia | | | Reference | | 3-Methylbuty
(1 × C-(H)
(1 × O-(C) |) ₂ (C)(Cl))+
()(CO))+(1 | ropanoate
(1×C-(H) ₂ (0)
×C-(H) ₂ (O)(| CO)(C))+(1×
C))+(1×C-(
+(2×-CH ₃ co | (CO-(C)(O))+
H) ₂ (C) ₂)+ | (2×-CH ₃ | corr (tertia | ary)) | | | | 3-Methylbuty
(1 × C-(H)
(1 × O-(C) |) ₂ (C)(Cl))+
()(CO))+(1
()(C) ₃)+(2× | ropanoate
(1×C-(H) ₂ (0)
×C-(H) ₂ (O)(| (C)) + $(1 \times C - (C)$
+ $(2 \times - CH_3)$ co | (CO-(C)(O))+
H) ₂ (C) ₂)+ | $(2 \times \text{-CH}_3)$ Gas phase $\Delta_1 H^\circ = -$ Liquid phase | Literatur | ary))
e – Calculated | = Residual | Reference | | 3-Methylbuty
(1 × C-(H)
(1 × O-(C)
(1 × C-(H)) |) ₂ (C)(Cl))+
()(CO))+(1
()(C) ₃)+(2× | ropanoate
· (1 × C-(H) ₂ (0)
× C-(H) ₃ (C)) - | (C)) + $(1 \times C - (C)$
+ $(2 \times - CH_3)$ co | $(CO-(C)(O)) + H)_2(C)_2) + $ or (tertiary)) | $(2 \times \text{-CH}_3)$ Gas phase $\Delta_t H^\circ = -$ | Literatur | ary))
e – Calculated | = Residual | Reference | | 3-Methylbuty $(1 \times C - (H))$ $(1 \times C - (H))$ $(1 \times C - (H))$ Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ Liquid phase $\Delta_t H^\circ = C_\rho^\circ C_$ |) ₂ (C)(Cl)) + (1
c)(CO)) + (1
c)(C) ₂) + (2 ×
Literature
- 539.40 | ropanoate
(1 × C-(H) ₂ (O)(
× C-(H) ₃ (C)) -
- Calculated
-561.14
213.34
-622.31 | $\begin{array}{l} (C)) + (1 \times C - (1 \times C - (1 \times C - C)) \\ + (2 \times - CH_3) \\ = \text{Residual} \end{array}$ | CCO-(C)(O)) +
H) ₂ (C) ₂) +
or (tertiary))
Reference | Gas phase $\Delta_{l}H^{\circ} = -$ Liquid phase $\Delta_{l}H^{\circ} = -$ 3-Methylbuty $(1 \times C - (H))$ $(1 \times C - (H))$ | Literature - 501.50 - 553.80 - I dichloros (CO)(Cl) ₂ ₂ (O)(C)) + | e – Calculated
– 489.62
– 540.65
acetate
) + (1 × CO-(0 | = Residual -11.88 -13.15 C)(O)) + (1 × O)(C) ₂) + (1 × C-(1)(C) ₂) | Reference 70COX/PIL 53SMI/BJE C ₇ H ₁₂ Cl ₂ O ₅ (C)(CO)) + | | 3-Methylbuty $(1 \times C - (H))$ $(1 \times C - (H))$ $(1 \times C - (H))$ Gas phase $\Delta_t H^{\circ} = -C_{\rho}^{\circ} =$ Liquid phase $\Delta_t H^{\circ} = -C_{\rho}^{\circ} -C_{\rho}^{\circ}$ |) ₂ (C)(Cl)) + (1
c)(CO)) + (1
c)(C) ₂) + (2 ×
Literature
- 539.40 | ropanoate
(1 × C-(H) ₂ (O)(
× C-(H) ₃ (C)) -
- Calculated
- 561.14
213.34
- 622.31
316.01
422.82 | (C)) + $(1 \times C - (1 \times C - (1 \times C - CH_3 \cos \cos$ | CCO-(C)(O)) +
H) ₂ (C) ₂) +
orr (tertiary))
Reference | Gas phase $\Delta_{l}H^{\circ} = -$ Liquid phase $\Delta_{l}H^{\circ} = -$ 3-Methylbuty $(1 \times C - (H))$ $(1 \times C - (H))$ | Literature - 501.50 - 553.80 I dichloros (CO)(Cl) ₂ ₂ (O)(C)) + (23) | e – Calculated
- 489.62
- 540.65
acetate
) + (1 × CO – (0 – (1 × C – (H) ₂ (0 | = Residual - 11.88 - 13.15 C)(O)) + (1 × O C) ₂) + (1 × C-(1) ertiary)) | Reference 70COX/PIL 53SMI/BJE C ₇ H ₁₂ Cl ₂ O ₅ (C)(CO)) + | | 3-Methylbuty $(1 \times C - (H))$ $(1 \times C - (H))$ $(1 \times C - (H))$ Gas phase $\Delta_t H^{\circ} = -C_p^{\circ} =$ Liquid phase $\Delta_t H^{\circ} = -C_p^{\circ} $ |) ₂ (C)(Cl)) + (1
c)(CO)) + (1
c)(C) ₂) + (2 ×
Literature
- 539.40 | ropanoate
(1×C-(H) ₂ (O)(
×C-(H) ₃ (C)) -
- Calculated
-561.14
213.34
-622.31
316.01 | (C)) + $(1 \times C - (1 \times C - (1 \times C - CH_3 \cos \cos$ | CCO-(C)(O)) +
H) ₂ (C) ₂) +
orr (tertiary))
Reference | Gas phase $\Delta_t H^\circ = -$ Liquid phase $\Delta_t H^\circ = -$ 3-Methylbuty $(1 \times C - (H))$ $(1 \times C - (H))$ $(2 \times C - (H))$ Gas phase | Literature - 501.50 - 553.80 I dichloros (CO)(Cl) ₂ ₂ (O)(C)) + (23) | = - Calculated
- 489.62
- 540.65
acetate
) + (1 × CO-(C-(1 × C-(H) ₂)(C-(X - CH ₃ corr (6) | = Residual - 11.88 - 13.15 C)(O)) + (1 × O C) ₂) + (1 × C-(1) ertiary)) | Reference 70COX/PIL 53SMI/BJE C ₇ H ₁₂ Cl ₂ O ₂ (-(C)(CO)) + H)(C) ₃) + | | 3-Methylbuty $(1 \times C - (H))$ $(1 \times C - (H))$ $(1 \times C - (H))$ Gas phase $\Delta_t H^\circ = -C_\rho^\circ =$ $Liquid phase$ $\Delta_t H^\circ = -C_\rho^\circ =$ $S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = inK_t =$ Butyl 2-chlor $(2 \times C - (H))$ | - 539.40 cobutanoate - (3) cobutanoate - (3) cobutanoate - (3) | ropanoate
(1 × C-(H) ₂ (O) ₀
× C-(H) ₃ (O))-
- Calculated
- 561.14
213.34
- 622.31
316.01
422.82
- 918.91
- 348.34
140.52 | (C)) + (1 × C-(
+ (2 × -CH ₃ co
= Residual
21.74
28.91 | CCO-(C)(O)) + H) ₂ (C) ₂) + orr (tertiary)) Reference 70COX/PIL 53SMI/BJE C ₈ H ₁₅ ClO ₂ C)(CO)(Cl)) + | Gas phase $\Delta_{t}H^{\circ} = -$ Liquid phase $\Delta_{t}H^{\circ} = -$ 3-Methylbuty $(1 \times C - (H))$ $(1 \times C - (H))$ $(2 \times C - (H))$ Gas phase $\Delta_{t}H^{\circ} = -$ Liquid phase | Literature - 501.50 - 553.80 - 1 dichloros (CO)(Cl) ₂ ₂ (O)(C)) + (2) Literature | ary)) e - Calculated - 489.62 - 540.65 acetate)+(1 × CO-(C (1 × C-(H) ₂ (C × -CH ₃
corr (t) e - Calculated | = Residual -11.88 -13.15 $C(O) + (1 \times O)$ $C(C)_2 + (1 \times C - O)$ ertiary) | Reference 70COX/PIL 53SMI/BJE C ₇ H ₁₂ Cl ₂ O ₂ (C)(CO)) + H)(C) ₃) + Reference | | 3-Methylbuty $(1 \times C - (H))$ $(1 \times C - (H))$ $(1 \times C - (H))$ Gas phase $\Delta_t H^\circ = -C_\rho^\circ =$ $Liquid phase$ $\Delta_t H^\circ = -C_\rho^\circ =$ $S^\circ = \Delta_t S^\circ = \Delta_t S^\circ = inK_t =$ Butyl 2-chlor $(2 \times C - (H))$ | - 539.40 robutanoate 3(C)(C)()) + (1)(C)(1) + (2) 4(2)(C)(1) + (2)(2) 539.40 539.40 6 | ropanoate
(1 × C-(H) ₂ (O) ₀
× C-(H) ₃ (O))-
- Calculated
- 561.14
213.34
- 622.31
316.01
422.82
- 918.91
- 348.34
140.52 | $(C) + (1 \times C - (C)) + (1 \times C - (C)) + (1 \times C - (C)) + (2 \times - CH_3) + (21.74)$ 21.74 28.91 $+ (1 \times C - (H)(C)) + (1 \times C - (H)(C)) + (1 \times C - (H)(C))$ | CCO-(C)(O)) + H) ₂ (C) ₂) + orr (tertiary)) Reference 70COX/PIL 53SMI/BJE C ₈ H ₁₅ ClO ₂ C)(CO)(Cl)) + | Gas phase $\Delta_{t}H^{\circ} = -$ Liquid phase $\Delta_{t}H^{\circ} = -$ 3-Methylbuty $(1 \times C - (H))$ $(1 \times C - (H))$ $(2 \times C - (H))$ Gas phase $\Delta_{t}H^{\circ} = -$ Liquid phase | Literature - 501.50 - 553.80 - 1 dichloros (CO)(Cl) ₂ ₂ (O)(C)) + (2) Literature | ary)) e - Calculated - 489.62 - 540.65 acetate) + (1 × CO-(C) - (1 × C-(H) ₂ (C) × - CH ₃ corr (t) e - Calculated | = Residual - 11.88 - 13.15 C)(O)) + (1 × O(C) ₂) + (1 × C-(1) ertiary)) = Residual - 9.15 | Reference 70COX/PIL 53SMI/BJE C ₇ H ₁₂ Cl ₂ O ₂ (CO)(CO)) + H)(C) ₃) + Reference | | TABLE 51. Chlorides (1 | 116) — | Continued | |------------------------|--------|-----------| |------------------------|--------|-----------| | | | 1. Chlorides (1 | -0, Will | | |--|-------------|--|----------------------------|---| | Pentanoyl c | | WC (II) (C)) | . (1 × C (II) / | C ₅ H ₉ ClO | | (1×C-(F | | \times C-(H) ₂ (C) ₂) - | +(1 × C−(H) ₂ (| (CO)(C))+ | | | Literatu | re – Calculated : | = Residual | Reference | | Gas phase | | | | | | $\Delta_{\mathbf{f}}H^{\circ} = C_{p}^{\circ} =$ | | -305.90
138.29 | | | | Liquid phas | se | | | | | $\Delta_l H^\circ = C_p^\circ =$ | 197 96 | -348.50 | 10.42 | 1001DET | | | 187.86 | 207.28 | - 19.42
 | 1881REI | | 2-Methylpro | opanoyl chi | loride | | C ₄ H ₇ Cl0 | | (2×C-(I | | ×C-(H)(CO)(| C) ₂)+(1×CO | | | | Literatu | re – Calculated = | = Residual | Reference | | Gas phase | | | | | | $\Delta_{\rm f}H^{\circ} =$ | | - 289.83 | | | | Liquid phas | se | | | | | $\Delta_t H^\circ = C_\rho^\circ =$ | 131.80 | - 328.76
171.04 | - 39.24 | 1881REI | | —————————————————————————————————————— | | 171.04 | | | | Benzoyl chl | | | | C7H5(| | (5 × C _B ~(| | (1×C _B -(CO)(C | | | | | Literatu | re – Calculated = | = Kisiduai | Reference | | Liquid phas $\Delta_t H^\circ =$ | se | - 165.37 | | | | $C_p^{\circ} =$ | 187.00 | 187.00 | 0.00 | 1881REI | | | | | | | | Chioroacety
(1×CO- | | (1×C-(H) ₂ (CO) |)(Cl)) | C ₂ H ₂ Cl ₂ (| | | Literatu | re – Calculated = | = Residual | Reference | | Gas phase | | | | | | $\Delta_t H^{\circ} =$ | -244.80 | -244.80 | 0.00 | 70COX/PIL | | | | | | | | Liquid phas | | -283.70 | 0.00 | 50PRI/SKI | | cetyl chlori
(1×C-(H | | 1×CO-(C)(Cl) |), $\sigma = 3$ | C₂H₃ClO | |--|---|---|---|---| | | Literatur | Reference | | | | Gas phase | | | | | | - | - 242.70 | -242.80 | 0.10 | 31MAT/FEH | | | 67.82 | 67.82 | 0.00 | 69STU/WES | | S° = | 294.85 | 294.85 | 0.00 | 69STU/WES | | $\Delta_f S^\circ =$ | 27 | - 126.50 | 0.00 | 5.51.5, <u>-</u> 2. | | $\Delta_{\rm f}G^{\circ} =$ | | - 205.08 | | | | $\ln K_f =$ | | 82.73 | | | | | | | | | | Liquid phas | | 272.00 | 0.10 | ADC A D /CIZI | | $\Delta_i H^\circ = C_p^\circ =$ | -2/2.80
117.15 | -272.90 | 0.10 | 49CAR/SKI | | C _p = | 117.15 | 117.15 | 0.00 | 1881REI | | | etyl chlorid | | | C₂HCl₃C | | (1×C-(I | 1)(CO)(Cl) | 2)+(1×CO-(C) |)(Cl)) | | | | Literatu | re – Calculated = | = Residual | Reference | | Gas phase | | | | | | - | -241.00 | - 240.94 | -0.06 | 70COX/PIL | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | Liquid phas $\Delta_t H^\circ =$ Propanoyl | - 280.40
chloride | -280.40 | 0.00 | | | $\Delta_i H^\circ =$ Propancyl | -280.40
chloride
H) ₃ (C))+(1 | × C-(H)₂(CO)(| (C))+(1×CO | C₃H₅ClO
⊢(C)(Cl)) | | Δ _i H° = | -280.40
chloride
H) ₃ (C))+(1 | | (C))+(1×CO | C ₃ H ₅ ClO | | Δ _t H° = Propancyl (1×C-(I | -280.40
chloride
H) ₃ (C))+(1 | × C-(H)₂(CO)(| (C))+(1×CO | C₃H₅Cl(
⊢(C)(Cl)) | | $\Delta_t H^\circ =$ Propancyl (1×C-(F)) Gas phase | -280.40
chloride
H) ₃ (C))+(1 | ×C-(H) ₂ (CO)(
re – Calculated | (C))+(1×CO | C₃H₅Cl(
⊢(C)(Cl)) | | Δ _t H° = Propancyl (1×C-(I | -280.40
chloride
H) ₃ (C))+(1 | × C-(H)₂(CO)(| (C))+(1×CO | C₃H₅Cl(
⊢(C)(Cl)) | | $\Delta_t H^\circ =$ Propancy (1 × C-(1) Gas phase $\Delta_t H^\circ =$ | -280.40
chloride
H) ₃ (C))+(1 | × C-(H) ₂ (CO)(re - Calculated = - 264.64 | (C))+(1×CO | C₃H₅Cl(
⊢(C)(Cl)) | | $\Delta_t H^\circ =$ Propancy! $(1 \times C - (I \times C - (I \times C - (I \times C + C) + (I \times C))))))))))))$ | -280.40 chloride H) ₃ (C))+(1 Literatu | × C-(H) ₂ (CO)(
re – Calculated :
– 264.64
92.51 | (C))+(1×CO | C₃H₅Cl(
⊢(C)(Cl)) | | $\Delta_t H^\circ =$ Propanoyi $(1 \times C - (I \times C - (I \times C - (I \times C + C) + (I \times C) + (I \times C) + (I \times C + (I \times C) $ | -280.40 chloride H) ₃ (C))+(1 Literatu | × C-(H) ₂ (CO)(re - Calculated = - 264.64 | (C))+(1×CO | C₃H₅Cl(
⊢(C)(Cl)) | | $\Delta_t H^\circ =$ Propanoyi $(1 \times C - (I C)))))))))))))))))$ | -280.40 chloride H) ₃ (C))+(1 Literatu | × C-(H) ₂ (CO)(
re – Calculated :
– 264.64
92.51 | (C))+(1×CO | C₃H₅Cl(
⊢(C)(Cl)) | | $\Delta_t H^\circ =$ Propanoyi $(1 \times C - (I \times C - (I \times C - (I \times C + C) + (I \times C) + (I \times C) + (I \times C + (I \times C) $ | -280.40 chloride H) ₃ (C))+(1 Literatu | × C-(H) ₂ (CO)(re - Calculated = -264.64 92.51 | (C)) + (1 × CO
= Residual | C₃H₅CIC
⊢(C)(CI))
Reference | | Propanoyi (1×C-(H) Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ Liquid pha $\Delta_t H^\circ = C_\rho^\circ =$ Butanoyi ci | 280.40 chloride H) ₃ (C)) + (1
Literatu se 147.28 | × C-(H) ₂ (CO)(re - Calculated 264.64 92.51 - 297.04 146.44 | (C)) + (1 × CO
= Residual
0.84 | C ₃ H ₅ CIC
⊢(C)(CI)) Reference 1881REI | | $\Delta_t H^\circ =$ Propanoyi $(1 \times C - (I \times C - (I \times C - (I \times C + C$ | 280.40 chloride H) ₃ (C)) + (1 Literatu se 147.28 | × C-(H) ₂ (CO)(re - Calculated = -264.64 92.51 | (C)) + (1 × CO
= Residual
0.84 | C ₃ H ₅ CIC
⊢(C)(CI)) Reference 1881REI | | $\Delta_t H^\circ =$ Propanoyi $(1 \times C - (I \times C - (I \times C - (I \times C + C$ | 280.40 chloride H) ₃ (C)) + (1 Literatu see 147.28 hloride H) ₃ (C)) + (1 -(C)(Cl)) | × C-(H) ₂ (CO)(re - Calculated 264.64 92.51 - 297.04 146.44 | (C)) + (1 × CO
= Residual
0.84
+ (1 × C-(H) ₂) | C ₃ H ₅ CIC
⊢(C)(CI)) Reference 1881REI | | $\Delta_t H^\circ =$ Propancy: $(1 \times C - (I \times C - (I \times C - (I \times C + C)))$ Gas phase $\Delta_t H^\circ = C_p^\circ =$ Liquid pha $\Delta_t H^\circ = C_p^\circ =$ Butancy: $(1 \times C - (I \times C - (I \times C)))$ | 280.40 chloride H) ₃ (C)) + (1 Literatu see 147.28 hloride H) ₃ (C)) + (1 -(C)(Cl)) | × C-(H) ₂ (CO)(re - Calculated = -264.64 92.51 -297.04 146.44 | (C)) + (1 × CO
= Residual
0.84
+ (1 × C-(H) ₂) | C ₃ H ₅ CIO
(C)(CI)) Reference 1881REI C ₄ H ₇ CIO (CO)(C)) + | | $\Delta_t H^\circ =$ Propancy: $(1 \times C - (I C))))))))))))))))$ | 280.40 chloride H) ₃ (C)) + (1 Literatu see 147.28 hloride H) ₃ (C)) + (1 -(C)(Cl)) | × C-(H) ₂ (CO)(re - Calculated - 264.64 92.51 - 297.04 146.44 l × C-(H) ₂ (C) ₂) are - Calculated | (C)) + (1 × CO
= Residual
0.84
+ (1 × C-(H) ₂) | C ₃ H ₅ CIO
(C)(CI)) Reference 1881REI C ₄ H ₇ CIO (CO)(C)) + | | $\Delta_t H^\circ =$ Propancyl (1×C-(H Gas phase $\Delta_t H^\circ =$ $C_\rho^\circ =$ Liquid pha $\Delta_t H^\circ =$ $C_\rho^\circ =$ Butancyl ci (1×C-(I (1×CO-Gas phase $\Delta_t H^\circ =$ | 280.40 chloride H) ₃ (C)) + (1 Literatu see 147.28 hloride H) ₃ (C)) + (1 -(C)(Cl)) | × C-(H) ₂ (CO)(re - Calculated - 264.64 92.51 - 297.04 146.44 l × C-(H) ₂ (C) ₂) are - Calculated - 285.27 | (C)) + (1 × CO
= Residual
0.84
+ (1 × C-(H) ₂) | C ₃ H ₅ CIO
(CO)(CI)) Reference 1881REI C ₄ H ₇ CIO(CO)(C)) + | | $\Delta_t H^\circ =$ Propancy: $(1 \times C - (I C))))))))))))))))$ | 280.40 chloride H) ₃ (C)) + (1 Literatu see 147.28 hloride H) ₃ (C)) + (1 -(C)(Cl)) | × C-(H) ₂ (CO)(re - Calculated - 264.64 92.51 - 297.04 146.44 l × C-(H) ₂ (C) ₂) are - Calculated | (C)) + (1 × CO
= Residual
0.84
+ (1 × C-(H) ₂) | C ₃ H ₅ CIO
(CO)(CI)) Reference 1881REI C ₄ H ₇ CIO(CO)(C)) + | | $\Delta_t H^\circ =$ Propancyl (1×C-(H Gas phase $\Delta_t H^\circ =$ $C_p^\circ =$ Liquid pha $\Delta_t H^\circ =$ $C_p^\circ =$ Butancyl cl (1×C-(I (1×CO-Gas phase $\Delta_t H^\circ =$ $C_p^\circ =$ | 280.40 chloride H) ₃ (C)) + (1 Literatu see 147.28 hloride H) ₃ (C)) + (1 -(C)(Cl)) Literatu | × C-(H) ₂ (CO)(re - Calculated - 264.64 92.51 - 297.04 146.44 l × C-(H) ₂ (C) ₂) are - Calculated - 285.27 | (C)) + (1 × CO
= Residual
0.84
+ (1 × C-(H) ₂) | C ₃ H ₅ CIO
(C)(CI)) Reference 1881REI C ₄ H ₇ CIO (CO)(C)) + | | $\Delta_t H^\circ =$ Propancyl (1×C-(H Gas phase $\Delta_t H^\circ =$ $C_p^\circ =$ Liquid pha $\Delta_t H^\circ =$ $C_p^\circ =$ Butancyl cl (1×C-(I) (1×CO-Gas phase $\Delta_t H^\circ =$ $C_p^\circ =$ Liquid pha | 280.40 chloride H) ₃ (C)) + (1 Literatu see 147.28 hloride H) ₃ (C)) + (1 -(C)(Cl)) Literatu | × C-(H) ₂ (CO)(re - Calculated - 264.64 92.51 - 297.04 146.44 1 × C-(H) ₂ (C) ₂) are - Calculated - 285.27 115.40 | (C)) + (1 × CO
= Residual
0.84
+ (1 × C-(H) ₂) | C ₃ H ₅ CIO
(C)(CI)) Reference 1881REI C ₄ H ₇ CIO (CO)(C)) + | | $\Delta_t H^\circ =$ Propancyl (1×C-(H Gas phase $\Delta_t H^\circ =$ $C_p^\circ =$ Liquid pha $\Delta_t H^\circ =$ $C_p^\circ =$ Butancyl cl (1×C-(I (1×CO-Gas phase $\Delta_t H^\circ =$ $C_p^\circ =$ | 280.40 chloride H) ₃ (C)) + (1 Literatu see 147.28 hloride H) ₃ (C)) + (1 -(C)(Cl)) Literatu | × C-(H) ₂ (CO)(re - Calculated - 264.64 92.51 - 297.04 146.44 l × C-(H) ₂ (C) ₂) are - Calculated - 285.27 | (C)) + (1 × CO
= Residual
0.84
+ (1 × C-(H) ₂) | C ₃ H ₅ CIO
(CO)(CI)) Reference 1881REI C ₄ H ₇ CIO(CO)(C)) + | C₈H₄Cl₂O₂ 73SAP/MOC C₈H₄Cl₂O₂ 73SAP/MOC $C_p^{\circ} =$ 248.50 248.50 0.00 1881REI # TABLE 51. Chlorides (116) - Continued | 2-Chlorobenzoyl chloride $(4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (Cl)(C_B)_2) + (1 \times C_{B^{-1}}(Cl)(COCl)) + (1 \times COC - (C_B)(Cl)) + (1 \times OCC)(COCl))$ | $C_7H_4Cl_2O$
(CO)(C _B) ₂) + | | $-1)(C_B)_2) +$ | (2×C _B -(CO)(
Cl)(COCl)) | $(C_B)_2$ + $(2 \times C_B)_2$ | C ₈ H ₄ Cl
O-(C _B)(Cl))+ | |--|---|--|-----------------|--|---|---| | Literature Calculated = Residual | Reference | • | Literatu | re – Calculated | = Residual | Reference | | Liquid phase $\Delta_t H^{\circ} = -171.30 -171.30 0.00$ $C_p^{\circ} = 199.59$ | 75MOS/PRI | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | e | -379.70
237.92 | | | | 3-Chlorobenzoyl chloride $(4\times C_B-(H)(C_B)_2)+(1\times C_B-(Cl)(C_B)_2)+(1\times C_{B-(Cl)}(Cl))$ $(1\times CO-(C_B)(Cl))$ | $C_7H_4Cl_2O$ (CO)(C _B) ₂)+ | Solid phase $\Delta_t H^\circ = -$ | - 367.50 | -367.50 | 0.00 | 73SAP/MOO | | Literature – Calculated = Residual | Reference | 1,4-Phthaloy
(4×C _B -(H | | (2×C _B -(CO)(| C _B) ₂) + (2 × C0 | C ₈ H ₄ Cl ₂
D-(C _B)(Cl)) | | Liquid phase
$\Delta_t H^\circ = -189.70 -205.73$ 16.03
$C_p^\circ = 199.59$ | 75MOS/PRI | | Literatui | e – Calculated | = Residual | Reference | | 4-Chlorobenzoyl chloride $(4 \times C_R - (H)(C_R)_2) + (1 \times C_R - (Cl)(C_R)_2) (Cl)(C_$ | C ₇ H ₄ Cl ₂ O
(CO)(C _B) ₂) + | Liquid phase $\Delta_l H^\circ = C_p^\circ = $ Solid phase | | -379.70
237.92 | | | | Literature – Calculated = Residual | Reference | $\Delta_t H^{\circ} = -$ | -384.60 | -383.56 | -1.04 | 73SAP/MOC | | Liquid phase $\Delta_i H^\circ = -191.70 -205.73 $ 14.03 $C_p^\circ = 199.59$ | 75MOS/PRI | | | | | | | 1,2-Phthaloyl chloride
$(4 \times C_B - (H)(C_B)_2) + (2 \times C_B - (CO)(C_B)_2) + (2 \times CO)(1 \times ortho \text{ corr} - (COCl)(COCl))$ | $C_8H_4Cl_2O_2$ $\vdash(C_B)(Cl)) +$ | | | | | | | Literature – Calculated = Residual | Reference | | | | | | | TABLE 52. Bromides (39) — Continue | TABLE | 52. | Bromides | (39) - | Continue | |------------------------------------|-------|-----|-----------------|--------|------------------------------| |------------------------------------|-------|-----|-----------------|--------|------------------------------| | | I)₃(Br), metl | hyl bromide), o | r = 3 | | (1×C-(| H)₃(C))+(2 | $2 \times C - (H)_2(C)_2$ | $+(1\times C-(H)_2$ | $(C)(Br)), \sigma = 3$ |
---|--|--|---------------------------|----------------------------------|--|------------------|--|----------------------|-------------------------------| | | Literature | e – Calculated = | = Residual | Reference | Literature Calculated = Residual | | l = Residual | Reference | | | Gas phase | | | | | Gas phase | | | | | | $\Delta_t H^{\circ} = $ | -37.66 | -37.66 | 0.00 | 38EGA/KEM | $\Delta_{\rm f}H^{\circ} =$ | - 107.10 | -105.30 | -1.80 | 66WAD2 | | $C_p^o =$ | 42.43 | 42.43 | 0.00 | 69STU/WES | $C_p^{\circ} =$ | 109.33 | 109.33 | 0.00 | 69STU/WE | | S° = | 245.81 | 245.81 | 0.00 | 69STU/WES | а = | 369.82 | 369.82 | 0.00 | 69STU/WE | | Δ _t S° = | | -31.90 | | | $\Delta_{\rm f} S^{\circ} =$ | | -316.82 | | 0,010, | | $_{i}G^{\circ} =$ | | -28.15 | | | $\Delta_f G^\circ =$ | | - 10.84 | | | | $nK_f =$ | | 11.36 | | | $lnK_f =$ | | 4.37 | | | | iquid pha | se | | | | Liquid pha | ase | | | | | idaic biiα
VH°= | -61.10 | -61.10 | 0.00 | 66ADA/CAR | $\Delta_t H^\circ =$ | - 143.80 | - 141.72 | -2.08 | 61BJE2 | | ·la • | 01.10 | 01.10 | 0.00 | oor idea of the | $C_p^{\circ} =$ | 152.21 | 163.32 | - 11.11 | 31DEE | | | | | | | S° = | 132.21 | 261.06 | 11.11 | JIDEE | | | | | | | $\Delta_f S^\circ =$ | | -425.57 | | | | romoetha | 200 | | | C ₂ H ₅ Br | $\Delta_{i}G^{\circ} =$ | | -14.83 | | | | | | × C-(H)2(C)(B | r)) ~ - 3 | C2115DF | - | | | | | | (1×C-(1 | <i>/(</i> | ()-(). | *** | 5 . | $lnK_f =$ | | 5.98 | | | | | Literatur | e – Calculated | = Residual
 | Reference | 1-Bromope | entane | | | C ₅ H ₁ | | es mb ess | | | | | (1×C-(| $H)_3(C)) + (3$ | \times C-(H) ₂ (C) ₂) | $+(1\times C-(H)_2)$ | $(C)(Br)), \sigma = 3$ | | ias phase
\aH° = | - 64.02 | - 64.04 | 0.02 | 69STU/WES | | I itamatuu | ra - Calaulat - 4 | - Dooldsol | Dafanana- | | • | | | | | | Literatui | re – Calculated | = Residual | Reference | | $C_p^{\circ} =$ | 64.64 | 63.55 | 1.09 | 69STU/WES | | | | | | | <i>s</i> ° = | 287.48 | 291.50 | -4.02 | 69STU/WES | | | | | | | Δ _t S° = | | - 122.52 | | | Gas phase | | | | | | $\Lambda_{\rm f}G^{\circ} =$ | | - 27.51 | | | $\Delta_t H^{\circ} =$ | - 129.10 | - 125.93 | -3.17 | 66WAD2 | | $lnK_f =$ | | 11.10 | | | $C_p^{\circ} =$ | 132.21 | 132.22 | -0.01 | 69STU/WE | | | | | | | S° = | 408.78 | 408.98 | -0.20 | 69STU/WE | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -413.97 | | | | iquid pha | ise | | | | $\Delta_f G^{\circ} =$ | | -2.50 | | | | $\Delta_t H^{\circ} =$ | -91.51 | - 90.26 | - 1.25 | 69STU/WES | $lnK_f =$ | | 1.01 | | | | $C_p^{\circ} =$ | 100.80 | 102,48 | - 1.68 | 48KUR | | | | | | | S° = | | 196.30 | | | | | | | | | $\Delta_f S^\circ =$ | | -217.71 | | | Liquid pha | ase | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | -25.35 | | | $\Delta_{\rm f}H^{\circ} =$ | - 170.20 | - 167.45 | -2.75 | 61BJE2 | | $lnK_f =$ | | 10.23 | | | $C_p^{\circ} =$ | 171.59 | 193.74 | -22.15 | 31DEE | | | | 10.20 | | | S° = | 1,1,0, | 293.44 | 22.10 | 51225 | | | | | | | $\Delta_t S^\circ =$ | | -529.51 | | | | -Bromopi | ronone | | | C ₃ H ₂ Br | $\Delta_t G^\circ =$ | | -9.58 | | | | | | \times C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ | $(C)(Br)), \sigma = 3$ | $\ln K_{\rm f} =$ | | 3.86 | | | | | Literatu | re – Calculated | = Residual | Reference | - | | | | | | | | | | | 1-Bromoho | | \times C-(H) ₂ (C) ₂) | + (1 × C-(H)- | C ₆ H ₁ | | Gas phase
Δ _I H° = | -87.86 | - 84.67 | -3.19 | 69STU/WES | (3) | | re – Calculated | , , , | Reference | | $C_p^{\circ} =$ | - 87.80
86.44 | - 84.07
86.44 | 0.00 | 69STU/WES | | Liciatul | c – Calculated | - Vesignai | Reference | | $S^{\circ} =$ | | | | | | | | | | | - | 330.87 | 330.66 | 0.21 | 69STU/WES | C ! | | | | | | $\Delta_f S^\circ =$ | | -219.67 | | | Gas phase | | | 4 | ***** | | $\Delta_t G^\circ =$ | | - 19.18 | | | $\Delta_t H^\circ =$ | - 148.10 | - 146.56 | - 1.54 | 68WAD | | | | 7.74 | | | $C_p^{\circ} =$ | | 155.11 | | | | $lnK_f =$ | | | | | Liquid pha | ase | | | | | lnK _f = | ase | | | GGWADO | $\Delta_t H^\circ =$ | - 194.20 | - 193.18 | -1.02 | 61BJE2 | | $lnK_{f} =$ Liquid pha | ase
119.76 | - 115.99 | -3.77 | 00WADZ | | | | | | | $lnK_f =$ $Liquid pha$ $\Delta_f H^\circ =$ | -119.76 | | | 66WAD2
1881REI | | 203.55 | 224 16 | - 20.61 | 31DEE | | $lnK_f =$ Liquid pha $\Delta_t H^\circ =$ $C_p^\circ =$ | | 132.90 | -3.77
-2.40 | 1881REI | $C_p^{\circ} =$ | 203.55
452.92 | 224.16
325.82 | - 20.61
127.10 | 31DEE
31DEE | | $lnK_f =$ Liquid pha $\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ | -119.76 | 132.90
228.68 | | | $C_p^{\circ} = S^{\circ} =$ | 203.55
452.92 | 325.82 | - 20.61
127.10 | 31DEE
31DEE | | $lnK_f =$ Liquid pha $\Delta_f H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_f S^\circ =$ | -119.76 | 132.90
228.68
-321.64 | | | $C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = 0$ | | 325.82
-633.44 | | | | $lnK_f =$ $\begin{array}{ccc} & & & \\ &$ | -119.76 | 132.90
228.68 | | | $C_p^{\circ} = S^{\circ} =$ | | 325.82 | | | TABLE 52. Bromides (39) - Continued | 1-Bromohe
(1 × C-(1 | | × C-(H) ₂ (C) ₂) - | + (1×C-(H) ₂ | $C_7H_{15}Br$ (C)(Br)) | 1-Bromohexadecane
(1×C-(H) ₃ (C))+ | e
- (14 × C-(H) ₂ (C) ₂) |)+(1×C-(H) | $C_{16}H_{33}B_{2}(C)(Br))$ | |--|--------------------------
---|-------------------------|---|---|---|--------------------------|----------------------------------| | | Literatur | e – Calculated = | = Residual | Reference | Litera | nture – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 167.70 | - 167.19
178.00 | -0.51 | 68WAD | Gas phase $\Delta_t H^\circ = -350.10$ $C_p^\circ =$ | - 352.86
384.01 | 2.76 | 76STR3 | | Liquid pha $\Delta_t H^\circ = C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | ase
- 218.40 | -218.91
254.58
358.20
-737.37
0.94 | 0.51 | 61BJE2 | Liquid phase $ \Delta_t H^\circ = -444.50 $ $ C_\rho^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \Delta_t G^\circ = 0 $ | 528.36
649.62
- 1672.75
48.25 | 5.98 | 76STR3 | | $lnK_f =$ 1-Bromood | | -0.38 | 1 (1 × C (B) | C ₈ H ₁₇ Br | $\ln K_{\rm f} = \frac{1 - \text{Bromo-3-methylbr}}{(2 \times C/V)/(C)}$ | | 1 (1 × C (II)) | C ₅ H ₁₁ I | | (1×C-(| | × C-(H) ₂ (C) ₂) -
e – Calculated =
 | | Reference | (2×-CH₃ corr (to | · (1 × C-(H) ₂ (C) ₂) -
ertiary)) + (1 × C-(
ture – Calculated = | H) ₂ (C)(Br)) | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | - 189.30 | -187.82
200.89 | -1.48 | 77MAN/SEL | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | -132.62
132.25 | | | | Liquid pha
$\Delta_t H^\circ =$ $C_p^\circ =$ $S^\circ =$ $\Delta_t S^\circ =$ $\Delta_t G^\circ =$ $\ln K_t =$ | ase
- 245.10 | -244.64
285.00
390.58
-841.30
6.19
-2.50 | -0.46 | 61BJE2 | Liquid phase $ \Delta_t H^\circ = C_p^\circ = 187.00 $ $ S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | - 172.73
190.76
288.09
- 534.86
- 13.26
5.35 | -3.76 | 48KUR | | 1-Bromodo
(1 × C-(| H) ₃ (C))+(10 |) × C-(H) ₂ (C) ₂)
e – Calculated = | , , , | $C_{12}H_{25}Br$ $_{2}(C)(Br))$ Reference | 1-Bromo-2-methylpr
(2×C-(H) ₃ (C)) +
(1×C-(H) ₂ (C)(B) | $(1 \times C - (H)(C)_3) +$ | (2×-CH₃ co | C4H9B
rr (tertiary)) + | | Gas phase $\Delta_i H^\circ = C_p^\circ =$ | - 269.90 | 270.34
292.45 | 0.44 | 76STR3 | Gas phase | ture – Calculated = | = Residual | Reference | | Liquid pha | | 247.56 | 256 | 7/CTD? | $\Delta_t H^{\circ} = C_{\rho}^{\circ} =$ | -111.99
109.36 | | | | $\Delta_{i}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{i}S^{\circ} = \Delta_{i}G^{\circ} =$ | -344.70 | -347.56
406.68
520.10
-1257.02
27.22 | 2.86 | 76STR3 | Liquid phase $\Delta_t H^\circ = C_p^\circ = 154.39$
$S^\circ =$ | - 147.00
160.34
255.71 | - 5.95 | 48KUR | | TADIE | 52 | Bromidee | (30) _ | Continued | |-------|-----|----------|---------|-----------| | IAHIF | 7Z. | bromides | 1.371 - | Continued | | | pane
l) ₃ (C))+(1×
corr (tertian | $C-(H)(C)_2(B)$ | r))+ | C ₃ H ₇ Br | 1,2-Dibromo
(2×C-(H | pethane
I) ₂ (C)(Br)) | , σ = 2 | | C₂H₄Bı | |---|---|---------------------------------------|---------------|----------------------------------|---|-------------------------------------|---|-----------------------------|--| | (ZX OII) | | – Calculated : | = Residual | Reference | | Literatui | re – Calculated | = Residual | Reference | | | | | | | Gas phase | | | | | | Gas phase | | | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -37.50 | -43.56 | 6.06 | 38CON/KIS | | $\Delta_{\rm f}H^{\circ} =$ | -97.10 | - 99.79 | 2.69 | 62ROZ/AND | $C_p^{\circ} =$ | 85.35 | 75.64 | 9.71 | 69STU/WES | | $C_p^{\circ} =$ | 88.99 | 88.23 | 0.76 | 69STU/WES | S° = | 329.74 | 340.86 | - 11.12 | 69STU/WES | | S° = | 316.02 | 321.06 | -5.04 | 69STU/WES | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -83.98 | | | | $\Delta_f S^\circ =$ | | -229.26 | | | $\Delta_t G^{\circ} =$ | | - 18.52 | | | | $\Delta_{\mathbf{f}}G^{\circ} = $ $\ln K_{\mathbf{f}} = $ | | -31.44
12.68 | | | $lnK_f =$ | <u> </u> | 7.47 | | | | | | | | | Liquid phas | | | | | | Liquid phas | | | | | $\Delta_{\rm f}H^{\circ} =$ | -79.20 | -85.30 | 6.10 | 68WAD | | | - 127.30 | - 126.89 | -0.41 | 66WAD2 | $C_p^{\circ} =$ | 135.98 | 132.00 | 3.98 | 40PIT | | $C_p^{\circ} =$ | 132.20 | 132.20 | 0.00 | 1881REI | $S^{\circ} = \Delta_{f}S^{\circ} =$ | 223.30 | 226.00 | -2.70 | 40PIT | | | | | | | | | - 198.83 | | | | | | | | | $\Delta_f G^\circ = \ln K_f =$ | | -26.02
10.50 | | | | 2-Bromobu | tone | | | C ₄ H ₉ Br | IIIKf = | | 10.50 | | | | | | C-(H) ₂ (C) ₂) | + (1 × C-(H)(| $C)_2(Br)), \sigma = 9$ | | | | | | | | | | | | | | | | | | | Literature | - Calculated | = Residual | Reference | 1,2-Dibromopropane
$(1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)(Br)) + (1 \times C - (H)(C)_2(Br)), \sigma = 3$ | | | 3r))+ | C ₃ H ₆ B ₁ | | Gas phase | | | | | (1 > C-(1) | 1)(C)2(D1)); | , 0 – 3 | | | | $\Delta_t H^\circ =$ | - 120.60 | - 115.90 | -4.70 | 68WAD | | Literatur | e - Calculated | = Residual | Reference | | $C_p^{\circ} =$ | 110.79 | 111.12 | -0.33 | 69STU/WES | | Littiatui | c – Calculated | - Kesiduai | Reference | | $S^{\circ} =$ | 370.28 | 360.22 | 10.06 | 69STU/WES | | J | | | | | $\Delta_f S^\circ =$ | | -326.41 | | | Gas phase | | | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | - 18.58 | | | $\Delta_t H^\circ =$ | -71.50 | - 74.79 | 3.29 | 38CON/KIS | | $lnK_f =$ | | 7.49 | | | $C_p^{\circ} =$ | 102.80 | 100.32 | 2.48 | 69STU/WES | | | | | | | S° = | 376.14 | 376.19 | -0.05 | 69STU/WES | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 184.96 | | | | Liquid pha | ise | | | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | - 19.64 | | | | $\Delta_{\rm f}H^{\circ} =$ | -155.10 | -148.26 | -6.84 | 61BJE | $lnK_f =$ | | 7.92 | | | | $C_p^{\circ} =$ | 154.40 | 162.62 | -8.22 | 48KUR | | | | | | | | | | | | Liquid phas | e | 117.67 | | | | 2 Prome 2 | -methylpropa | | | CUD- | $\Delta_{\mathbf{f}}H^{\circ} =$ | 172 90 | -117.57 | 11.00 | AOVIID | | $(3 \times C - (1 \times C + C))$ | | <-CH₃ corr (c | uaternary))+ | C₄H ₉ Br | $C_p^{\circ} =$ | 172.80 | 161.72 | 11.08 | 48KUR | | | Literature | e – Calculated | = Residual | Reference | | $(1)_3(C) + (1$ | × C-(H) ₂ (C) ₂) | + (1 × C-(H) ₂ (| C ₄ H ₈ Br | | Gas phase | | | | | (1×C-(H | I)(C) ₂ (Br)), | $\sigma = J$ | | | | $\Delta_{\rm f}H^{\circ} =$ | - 131.60 | -133.20 | 1.60 | 68WAD | | Literatur | e - Calculated | = Residual | Reference | | $C_p^{\circ} =$ | 116.52 | 116.52 | 0.00 | 69STU/WES | | | | | | | S° = | 331.96 | 331.96 | 0.00 | 69STU/WES | | | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | -354.67 | | | Gas phase | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | -27.45 | | | $\Delta_{\mathbf{f}}H^{\circ} =$ | -92.20 | -95.42 | 3.22 | 38CON/KIS | | $lnK_f =$ | | 11.07 | | | $C_p^{\circ} =$ | 127.11 | 123.21 | 3.90 | 69STU/WES | | | ····· | | | | S° = | 408.78 | 415.35 | -6.57 | 69STU/WES | | T | | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 282.11 | | | | Liquid pha $\Delta_t H^\circ =$ | ase
163.40 | - 163.40 | 0.00 | 51BRY/HOW | $\Delta_f G^\circ = \ln K_f =$ | | -11.31
4.56 | | | | | | - 102,40 | U.UU | JIDA I/IIUW | | | 4.30 | | | | | | | | | Liquid phas | e | | | | | | | | | | | | 142.20 | 2.60 | 61BJE | | | | | | | $\Delta m = 1$ | - 146.90 | - 143.30 | 3.60 | nioir. | | TABLE | 52 | Bromides | (30) - | Continued | |-------|-----|----------|--------|-----------| | IARIH | JZ. | promucs | 1371 - | Continucu | | 1,2-Dibromoheptane
$(1 \times C-(H)_3(C)) + (4 \times C-(H)_2(C)_2) + (1 \times C-(H)_2(C)(C)_2(1 \times C-(H)(C)_2(Br))$ | C ₇ H ₁₄ Br ₂
(Br))+ | 1,4-Dibromobutane $(2 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(C)(Br))$ | |--|--|---| | | Reference | Literature - Calculated = Residual Reference | | Gas phase $C_p^{o} = -157.90 -157.31 -0.59$ $C_p^{o} = 191.88$ | 41LIS | Gas phase $\Delta_l H^\circ = -87.00 -84.82 -2.18$ 68WAD $C_p^\circ = 121.42$ | | Liquid phase $\Delta_p H^\circ = -212.30 -220.49 8.19$ $C_p^\circ = 283.40$ | 41LIS | Liquid phase $\Delta_t H^\circ = -140.10 - 136.76 - 3.34$ 72ROZ/NES $C_p^\circ = 192.84$ $S^\circ = 290.76$ $\Delta_t S^\circ = -406.69$ | | ,3-Dibromopropane
$(1 \times C - (H)_2(C)_2) + (2 \times C - (H)_2(C)(Br))$ | C₃H₄Br₂ | $\Delta_f G^\circ = -15.50$ $\ln K_f = 6.25$ 1,3-Dibromobutane $C_4 H_8 B$ | | Literature Calculated = Residual | Reference | $(1 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)_2) + (1 \times C - (H)_2(C)(Br)) + (1 \times C - (H)(C)_2(Br))$ | | Gas phase $\Delta_t H^\circ = -64.19$ $C_p^\circ = 98.53$ | | Literature - Calculated = Residual Reference | | Liquid phase $\Delta_t H^\circ = -111.03$ $C_r^\circ = 158.99$ 162.42 -3.43 $S^\circ = 258.38$ $\Delta_t S^\circ = -302.76$ $\Delta_t G^\circ = -20.76$ $\ln K_t = 8.37$ | 48KUR | Gas phase $\Delta_t H^\circ = -95.42$ $C_p^\circ = 123.21$ Liquid phase $\Delta_t H^\circ = -147.80 -143.30 -4.50$ 72ROZ/NES $C_p^\circ = 192.14$ | | 2,3-Dibromobutane
$(2\times C-(H)_3(C)) + (2\times C-(H)(C)_2(Br)), \sigma = 18$ | C ₄ H ₈ Br ₂ | 1,2-Dibromo-2-methylpropane $(2 \times C - (H)_3(C)) + (2 \times -CH_3 \text{ corr (quaternary)}) + (1 \times C - (C)_3(Br)) + (1
\times C - (H)_2(C)(Br))$ | | Literature - Calculated = Residual | Reference | Literature – Calculated = Residual Reference | | • | 38CON/KIS
69STU/WES | Gas phase $\Delta_t H^\circ = -113.30 - 108.16 - 5.14$ 74SUN/WUL $C_p^\circ = 128.61$ | | | 69STU/WES | Liquid phase $\Delta_t H^\circ = -156.60 -154.05 -2.55$ 74SUN/WUL | | | 36TRI | 2,3-Dibromo-2-methylbutane $C_5H_{10}B_1$
(3×C-(H) ₃ (C))+(1×C-(H)(C) ₂ (Br))+(1×C-(C) ₃ (Br))+
(2×-CH ₃ corr (quaternary)), $\sigma = 27$ | | C _p = 191.44 | | Literature - Calculated = Residual Reference | | | | Gas phase $\Delta_t H^\circ = -138.00 -139.39 \ C_\rho^\circ = 148.57 \ 153.29 -4.72 \ 69STU/WES \ S^\circ = 412.54 \ 425.79 -13.25 \ 69STU/WES \ \Delta_t S^\circ = -407.98 \ \Delta_t G^\circ = -17.75 \ \ln K_\ell = 7.16$ | | TABLE 52. | Bromides | (39) — | Continued | |-----------|----------|--------|-----------| |-----------|----------|--------|-----------| | (3×C-(H) | ₃ (C))+(1× | tane (Continus C-(H)(C) ₂ (Burnary)), $\sigma = 2$ | ·))+(1×C-(0 | $C_5H_{10}Br_2$ $C)_3(Br)) +$ | 3-Bromo-1-p.
(1×C _d -(H | | ntinued)
C _d (H)(C))+(3 | $1 \times C - (H)_2(C)$ | $(Br), \sigma = 1$ | |---|--------------------------|---|--------------------------|---|---|-----------------|--|-------------------------|------------------------| | , , , , , | | - Calculated = | | Reference | | Literature | - Calculated | = Residual | Reference | | Liquid phase $\Delta_t H^\circ =$ | | -186.32 | | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ =$ | 12.20 | 10.15
118.97
227.77
191.98
67.39 | 2.05 | 49GEL/SKI | | 1 ,2,3-Tribro r
(2×C–(H) | | +(1×C-(H)(C |) ₂ (Br)) | C ₃ H ₅ Br ₃ | $lnK_f =$ | | -27.18 | | | | | Literature | e — Calculated : | = Residual | Reference | 1-Bromo-1-p | | < C _d -(H)(C)) + | + (1 × C,(H)(| C3H5B1 | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | 54.31
112.41 | | | | rr-(alk)(X) | | | Reference | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | e
166.52 | - 112.61
191.24 | - 24.72 | 48KUR | Gas phase $\Delta_t H^\circ = C_\rho^\circ =$ | 40.80 | 41.00
78.57 | - 0.20 | 73ALF/GOL | | Bromoethyle
(1 × C _a -(F | | C _a (H)(Br)), σ | - 1 | C ₂ H ₃ Br | Liquid phase $C_p^{\alpha} =$ | e | 140.21 | | | | | Literatur | e – Calculated | = Residual | Reference | 1-Bromo-1-p
(1 × C-(H | | < C _d (H)(C)) + | - (1 × C(H)(| C₃H₅Br
Br)) | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 79.20
55.48 | 77.26
55.48 | 1.94
0.00 | 57LAC/KIA2
69STU/WES | | | e – Calculated | | Reference | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | 275.43 | 275.43
-8.01
79.65
-32.13 | 0.00 | 69STU/WES | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 43.90 | 45.00
78.57 | - 1.10 | 73ALF/GOL | | Liquid phas $C_p^{\circ} =$ | se
107.50 | 107.50 | 0.00 | 34MEH2 | Liquid phase $C_p^{\circ} =$ | • | 140.21 | | | | 3-Bromo-1-1
(1 × C _d -(1 | | C _d (H)(C))+(| l × C−(H)₂(C) | (Br) , $\sigma = 1$ | 1-Bromoprop | | < C _t -(C)) + (1) | < C₁−(Βι)), σ : | C₃H₃Br
= 3 | | | Literatur | e – Calculated | = Residual | Reference | | Literature | e – Calculated | = Residual | Reference | | Gas phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S^\circ$ | 49.37
77.66
317.15 | 40.86
77.94
321.88
- 97.87
70.04 | 8.51
- 0.28
- 4.73 | 69STU/WES
69STU/WES
69STU/WES | Gas phase $C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} =$ | 73.64
295.81 | 73.64
295.81
6.62 | 0.00
0.00 | 69STU/WES
69STU/WES | | Table 52. Bromides (39) - Continue | TARIE | 52 | Bromides | (39) - | Continue | |------------------------------------|-------|----|-----------------|--------|------------------------------| |------------------------------------|-------|----|-----------------|--------|------------------------------| | Bromobenzer
(1×C _B -(B | | $(5 \times C_B - (H)(C_B))$ | $(\alpha)_2$), $\sigma = 2$ | C ₆ H ₅ Br | 1,2-Dibromocyclohexane
$(4 \times C-(H)_2(C)_2) + (2 \times C-(H)(C)_2(Br)) + (1 \times Cyclohexane (sub) rsc)$ | C ₆ H ₁₀ Br |
---|--|--|------------------------------|---|--|---| | | Literature - Calculated = Residual Reference | | | Reference | Literature – Calculated = Residual | Reference | | Gas phase $ \Delta_t H^\circ = \\ C_p^\circ = \\ S^\circ = \\ \Delta_t S^\circ = $ | 105.40
97.70
324.39 | 105.40
97.70
324.39
-112.59 | 0.00
0.00
0.00 | 68WAD
69STU/WES
69STU/WES | Gas phase $\Delta_t H^{\circ} = -114.80 -104.41 -10.39$ $C_{\rho}^{\circ} = 142.28$ | 41LIS | | $\Delta_f G^\circ = \ln K_f =$ | | 138.97
-56.06 | | | Liquid phase $\Delta_t H^\circ = -162.80 -159.60 -3.20$ $C_p^\circ = 213.95$ | 41LIS | | Liquid phase $ \Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = S^\circ $ | 60.70
154.31
219.20 | 60.70
154.31
219.20
-217.77
125.63
-50.68 | 0.00
0.00
0.00 | 56CHE/SKI
75MAS/SCO
75MAS/SCO | 1,2-Dibromocycloheptane
$(5 \times C - (H)_2(C)_2) + (2 \times C - (H)(C)_2(Br)) + (1 \times Cyclored)$
Literature – Calculated = Residual | C ₇ H ₁₂ Br
oheptane rsc) | | Benzyl bron | | (1×C _B −(C)(C _B) | ₁₂)+(1×C-(1 | C_7H_7Br $H)_2(C_B)(Br))$ | Gas phase $\Delta_t H^\circ = -105.60 -98.31 -7.29$ $C_p^\circ = 150.85$ | 41LIS | | Gas phase $\Delta_t H^\circ =$ | Literatur | e – Calculated = | Residual | Reference 57BEN/BUS | Liquid phase $\Delta_t H^{\circ} = -157.70 -159.77$ 2.07 $C_p^{\circ} = 238.39$ | 41LIS | | Liquid phas $\Delta_t H^\circ =$ | se
15.90 | 15.90 | 0.00 | 63ASH/CAR | 1,2-Dibromocyclooctane
$(6 \times C - (H)_2(C)_2) + (2 \times C - (H)(C)_2(Br)) + (1 \times Cycl$
Literature – Calculated = Residual | C ₈ H ₁₄ B ₁ coctane rsc) Reference | | (3×C-(I | opentane (s | $2 \times C - (H)(C)_2(B)$ | | C ₅ H ₈ Br ₂ | Gas phase $\Delta_t H^\circ = -118.70 -104.63 -14.07$ $C_p^\circ = 167.71$ | 41LIS | | Gas phase $\Delta_l H^\circ = C_p^\circ =$ | - 54.90 | - 63.84
114.34 | 8.94 | 41LIS | Liquid phase $\Delta_t H^\circ = -173.30 -170.90 -2.40$ $C_p^\circ = 273.12$ | 41LIS | | Liquid phat $\Delta_t H^{\circ} = C_p^{\circ} =$ | se
- 102.70 | -108.22
186.42 | 5.52 | 41LIS | 4-Bromobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times C_B - (Br)(C_B)_2) + (1 \times O - (H)(C_B)_2) + (1 \times C_B - (CO)(C_B)_2)$ | C7H4BrO
H)(CO))+ | | | | | | | Literature – Calculated = Residual | Reference | | | | | | | Gas phase $\Delta_l H^{\circ} = -272.00 -272.21$ 0.21 | 87FER/PIL | | | | | | | Liquid phase $\Delta_t H^\circ = -362.60$ $C_p^\circ = 222.00$ | | TABLE 52. Bromides (39) - Continued ### TABLE 53. Iodides (39) | TABLE 32. Bromides (39) — Cont. | | | | TABLE 33, 100 | ilues (39) | | |--|--|----------------------------------|-----------------------|---|---------------------------|-------------------------------| | 4-Bromobenzoic acid (Continued)
(4 × C _B -(H)(C _B) ₂) + (1 × C _B -(Br)(C _B) ₂) + (1 × O-
(1 × CO-(O)(C _B)) + (1 × C _B -(CO)(C _B) ₂) | C ₇ H ₅ BrO ₂
-(H)(CO))+ | Iodomethan
(1×C-(F | | odide
yl iodide), σ = | · 3 | СН3 | | Literature – Calculated = Residual | Reference | • | Literatur | e – Calculated | = Residual | Reference | | | | Gas phase | | | | | | Solid phase | | $\Delta_t H^\circ =$ | 14.30 | 14.30 | 0.00 | 65GOL/WAL | | $\Delta_t H^{\circ} = -379.60 -379.38 -0.22$ | 87FER/PIL | $C_p^{\circ} =$ | 44.14 | 44.14 | 0.00 | 69STU/WES | | $S^{\circ} = 199.44$ | | S° = | 254.01 | 254.01 | 0.00 | 69STU/WES | | $\Delta_t S^{\circ} = -448.32$ | | $\Delta_f S^\circ =$ | | -5.66 | | | | $\Delta_{\rm f}G^{\circ} = -245.71$ | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | 15.99 | | | | $\ln K_{\rm f} = 99.12$ | | $lnK_f =$ | | - 6.45
 | | | | | | Liquid phas | se | | | | | Acetyl bromide | C ₂ H ₃ BrO | $\Delta_{\rm f}H^{\circ} =$ | -11.70 | -11.70 | 0.00 | 61CAR/CAR | | $(1 \times C - (H)_3(CO)) + (1 \times CO - (C)(Br))$ | | C _p = | 82.76 | 82.76 | 0.00 | 62LOW/MOE | | Literature – Calculated = Residual | Reference | | | | | | | | | Iodoethane | | | | C ₂ H ₅ | | Gas phase | | (1 × C-(F | $(1)_3(C) + (1)_3(C)$ | \times C-(H) ₂ (C)(I) |), $\sigma = 3$ | | | $\Delta_t H^{\circ} = -190.80 -190.80 0.00$ | 26MAT | | Literatur | e – Calculated | = Residual | Reference | | Liquid phase | | | | | | | | $\Delta_t H^\circ = -223.90 -223.10 -0.80$ | 49CAR/SKI | Gas phase | | | | | | | | $\Delta_{\rm f}H^{\circ} =$ | -7.50 | -8.72 | 1.22 | 68WAD | | | • | $C_{\rho}^{\circ} =$ | 65.94 | 66.67 | -0.73 | 69STU/WES | | | | <i>S°</i> = | 296.31 | 295.97 | 0.34 | 69STU/WES | | | | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 100.01 | | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 21.10 | | | | | | $lnK_f =$ | | -8.51 | | | | | | Liquid phas | | | | | | | | $\Delta_t H^{\circ} =$ | - 39.50 | -43.47 | 3.97 | 65ASH/CAR | | | | <i>C</i> _p = | 115.10 | 101.84 | 13.26 | 48KUR | | | | 1-Iodopropa | | × C-(H)2(C)2) | + (1 × C=/H) _* | C_3H_7 | | | | (277.0 (2 | | e – Calculated | | Reference | | | | Gas phase | ··········· | 271 11 11 11 11 11 11 11 11 11 11 11 11 1 | | | | | | $\Delta_i H^\circ =$ | - 30.84 | -29.35 | -1.49 | 69FUR/GOL | | | | $C_p^{\circ} =$ | 89.87 | 89.56 | 0.31 | 69STU/WES | | | | S° = | 336.06 | 335.13 | 0.93 | 69STU/WES | | | | $\Delta_{f}S^{\circ} =$ | | - 197.16 | - · · · - | | | | | $\Delta_{\rm f}G^{\circ} =$ | | 29.43 | | | | | | $lnK_f =$ | | -11.87 | | | | | | Liquid phas | se | | | | | | | $\Delta_i H^\circ =$ | - 67.04 | -69.20 | 2.16 | 68WAD | | | | $C_{P}^{\circ} =$ | 126.80 | 132.26 | -5.46 | 1881REI | | | | | | | | | | TABLE | 53. | Iodides | (39) |) — | Continued | |-------|-----|---------|------|-----|-----------| |-------|-----|---------|------|-----|-----------| TABLE 53. Iodides (39) | 1-Iodo-3-methylbutane
$(2 \times C - (H)_3(C)) + (1 \times C - (H)_2(C)$
$(2 \times - CH_3 \text{ corr (tertiary)}) + (1 \times C)$ | | C₅H₁₁I
C) ₃) + | | | ×-CH ₃ corr (| quaternary))+ |
С4Н, | |---|------------------------------------|--|--|----------------------------|--|----------------------|--------------------------------------| | Literature – Calculat | ed = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = -77.30$ $C_p^\circ = 135.37$ | | | Gas phase $\Delta_i H^\circ = C_p^\circ = S^\circ =$ | -72.00
118.28
342.21 | -72.00
118.28
342.21 | 0.00
0.00
0.00 | 62BEN/AMA2
69STU/WES
69STU/WES | | Liquid phase $\Delta_t H^\circ = -125.94$ $C_p^\circ = 178.70$ 190.12 | -11.42 | 48KUR | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f =$ | | -326.39
25.31
-10.21 | | | | | | | Liquid phas $\Delta_t H^\circ =$ | e
107.40 | - 107.40 | 0.00 | 68WAD | | 1-Iodo-2-methylpropane
$(2 \times C-(H)_3(C)) + (1 \times C-(H)(C)$
$(1 \times C-(H)_2(C)(1))$ | 3)+(2×-CH ₃ co | C4H9I
orr (tertiary))+ | 1,2-Diiodoet | hane | | | CHI | | Literature – Calculat | Literature - Calculated = Residual | | | I) ₂ (C)(I)), | $\sigma = 2$ | | C ₂ H ₄ I | | Gas phase | | | | Literatui | re – Calculated | = Residual | Reference | | $\Delta_{p}H^{\circ} = -56.67$ $C_{p}^{\circ} = 112.48$ | | | Gas phase $\Delta_t H^\circ =$ | 66.80 | 67.08 | -0.28 | 54ABR/DAV | | Liquid phase $\Delta_l H^\circ = -100.21$ $C_p^\circ = 163.32$ 159.70 | 3.62 | 48KUR | $C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | 82.30
348.53 | 81.88
349.80
- 38.97
78.70
- 31.75 | 0.42
1.27 | 69STU/WES
69STU/WES | | 2-Iodopropane
$(2 \times C-(H)_3(C)) + (1 \times C-(H)(C)$
$(2 \times -CH_3 \text{ corr (tertiary)}), \sigma = 0$ | | C ₃ H ₉ I | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | e
1.10 | 8.28
130.72 | -7.18 | 54ABR/DAV | | Literature - Calculat | ed = Residual | Reference | | | | | | | Gas phase $\Delta H^{\circ} = -39.50 -40.30$ | 0,80 | 69FUR/GOL | 1,2-Diiodop:
(1 × C-(H | | × C-(H) ₂ (C)(I |))+(1×C-(H)(| $C_3H_6I_2$ $C)_2(I)), \sigma = 3$ | | $C_p^{\circ} = 90.08$ 90.08
$S^{\circ} = 324.47$ 324.47 | 0.00
0.00 | 69STU/WES
69STU/WES | | Literatur | e – Calculated | = Residual | Reference | | $\Delta_t S^\circ = -338.39$ $\Delta_t G^\circ = 60.59$ $\ln K_t = -24.44$ | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 35.60
103.64 | 40.02
105.29 | 4.42
1.65 | 62BEN/AMA
69STU/WES | | Liquid phase $\Delta_t H^\circ = -73.60 -74.80$ | 1.20 | 68WAD | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} = 0$ | 395.81 | 384.07
-141.01
82.06
-33.10 | 11.74 | 69STU/WES | | | | | Liquid phas $\Delta_t H^\circ =$ | e | - 18.69 | | | | Table 53. Iodides (39) — Continu | |----------------------------------| |----------------------------------| | C₂H₂I |)), σ = 2 | cis corr-(X)(X | hylene (Z)
H)(I)) + (1 \times | (2 × Cd-(1 | C)(I))+ | - (1 × C-(H) ₂ (| | | | |---|--|---|--|--|--|---
--|--|--| | Reference | = Residual | - Calculated = | Literature | | Reference | = Residual | – Calculated : | | (1×0-(11) | | | | | | | | | | | <u> </u> | | 68FUR/GOL | 6.68 | 200.72 | 207.40 | Gas phase $\Delta_t H^\circ =$ | | | | | Gas phase | | 001 010 002 | 0.00 | 73.64 | 207.10 | $C_p^{\circ} =$ | 37CLI/KIS | -7.09 | 19.39 | 12.30 | $\Delta_t H^\circ =$ | | | | 333.14 | | S° = | 69STU/WES | -0.23 | 128.18 | 127.95 | $C_p^{\circ} =$ | | | | 74.95 | | $\Delta_{\mathbf{f}}S^{\circ} =$ | 69STU/WES | 2.70 | 423.23 | 425.93 | S° = | | | | 178.37 | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | | -238.16 | | $\Delta_f S^\circ =$ | | | | - 71.96 | | $lnK_f =$ | | | 90.40 | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | | ······································ | | | | | | - 36.47 | <u> </u> | $lnK_f =$ | | C ₂ H ₂ I | | | hylene (E) | 1,2-Diiodoet | | | | | Liquid phase | | C21121 | | 2 | $H(I)$, $\sigma =$ | • | | | - 44.42 | | $\Delta_{\rm f}H^{\circ} =$ | | Reference | Residual | - Calculated = | Literature | | | | | | | | | | | | - | C ₃ H ₅ I | | And the state of t | | 3-Iodo-1-pro | | COET IN CO. | 2.00 | 204.72 | 207.40 | Gas phase | $(1)), \sigma = 1$ | \times C-(H) ₂ (C)(| (H)(C))+(1 | $(1)_2$) + $(1 \times C_0$ | $(1 \times C_{d}-(H$ | | 68FUR/GOL | 2.68 | 204.72
73.64 | 207.40 | $\Delta_t H^\circ =$ | Reference | – Dosidual | - Calculated | T itamatuma | | | | | 333.14 | | $C_p^{\circ} = S^{\circ} =$ | Reference | = Residuai | - Calculated | Literature | | | | | 74.95 | | $\Delta_{\rm f}S^{\circ} =$ | | · . | | | | | | | 182.37 | | $\Delta_{\mathbf{f}}G^{\circ} =$ | | | | | Gas phase | | | | -73.57 | | $\ln K_{\rm f} =$ | 66ROD/GOL | -3.08 | 96.18 | 93.10 | $\Delta_t H^\circ =$ | | | | , , , , | | | 69STU/WES | 1.57 | 81.06 | 82.63 | $C_p^{\circ} =$ | | | | | | | | | | | | | | | | | | 69STU/WES | -6.44 | 326.35 | 319.91 | S° = | | <u></u> | | | | | · | -6.44 | 326.35
75.37 | 319.91 | - | | С ₃ Н ₃ | | | ne | 1-Iodopropy | · | -6.44 | | 319.91 | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} =$ | | | $C_{r}-(I)), \sigma =$ | : C _r -(C)) + (1 × | | | · | -6.44 | -75.37 | 319.91 | $\Delta_f S^{\circ} =$ | | | | : C _t -(C)) + (1 ×
- Calculated = | (1)₃(C))+(1× | | · | -6.44 | - 75.37
118.65 | 319.91 | $\Delta_f S^\circ = \Delta_f G^\circ =$ | | 3 | | | (1)₃(C))+(1× | | 69STU/WES | | -75.37
118.65
-47.86 | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phase | | 3 | | | (1)₃(C))+(1× | (1×C-(H | · | -6.44
-1.71 | -75.37
118.65
-47.86 | | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phase $\Delta_t H^\circ = $ | | Reference | - Residual | - Calculated = | ()₃(C))+(1×
Literature | (1×C-(H | 69STU/WES | | -75.37
118.65
-47.86 | e | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f = $ Liquid phase | | Reference 69STU/WES | Residual | Calculated = | () ₃ (C)) + (1 ×
Literature | $(1 \times C - (H$ Gas phase $C_p^{\circ} =$ | 69STU/WES | | -75.37
118.65
-47.86 | e | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phase $\Delta_t H^\circ = $ | | Reference | - Residual | 74.48
302.92 | ()₃(C))+(1×
Literature | $(1 \times C - (H + C)))))))))))))))$ | 69STU/WES | | -75.37
118.65
-47.86 | e | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phase $\Delta_t H^\circ = $ | | Reference 69STU/WES | Residual | Calculated = | () ₃ (C)) + (1 ×
Literature | $(1 \times C - (H$ Gas phase $C_p^{\circ} =$ | 69STU/WES 49GEL/SKI | | -75.37
118.65
-47.86 | 55.23 | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phase $\Delta_t H^\circ = C_p^\circ = $ | | Reference 69STU/WES | Residual | 74.48
302.92 | () ₃ (C)) + (1 ×
Literature | $(1 \times C - (H + C)))))))))))))))$ | 69STU/WES 49GEL/SKI C3H4I | | -75.37
118.65
-47.86
56.94
118.33 | 55.23
55.23
Spene (Z)
) ₃ (C))+(1× | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-(H)}}$ | | Reference 69STU/WES 69STU/WES | Residual | 74.48
302.92 | () ₃ (C)) + (1 ×
Literature
74.48
302.92 | Gas phase $C_p^o = S^o = \Delta_t S^o =$ | 69STU/WES 49GEL/SKI C3H4I | -1.71 | -75.37
118.65
-47.86
56.94
118.33 | 55.23 | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-(H)}}$ | | Reference 69STU/WES | 0.00
0.00 | 74.48
302.92 | () ₃ (C)) + (1 ×
Literature
74.48
302.92 | $(1 \times C - (H C))))))))))))))))))))$ | 69STU/WES 49GEL/SKI C3H4I | – 1.71
- (1×C₄–(H)(I | -75.37
118.65
-47.86
56.94
118.33 | e 55.23 ppene (Z) ₃ (C))+(1× rr-(alk)(X)) | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-(H)}}$ | | Reference 69STU/WES 69STU/WES | 0.00
0.00
0.00 | 74.48
302.92
31.77 | $(1)_3(C)$) + $(1 \times 1)_3(C)$ \times$ | $(1 \times C - (H C))))))))))))))))))))$ | 69STU/WES 49GEL/SKI C ₃ H ₆ I | – 1.71
- (1×C₄–(H)(I | -75.37
118.65
-47.86
56.94
118.33 | e 55.23 ppene (Z) ₃ (C))+(1× rr-(alk)(X)) | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_\rho^\circ =
\frac{1-\text{Iodo-1-pro}}{1 \times \text{C-(H)}}$ | | Reference 69STU/WES 69STU/WES C ₆ H ₅ I | 0.00
0.00
0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂ | $(1)_3(C) + (1 \times 1)_3(C) 1)_$ | $(1 \times C - (H C))))))))))))))))))))$ | 69STU/WES 49GEL/SKI C ₃ H ₅ I I)) + Reference | −1.71
- (1 × C _d −(H)(l
= Residual | -75.37
118.65
-47.86
56.94
118.33 | 55.23 Spene (Z)) ₃ (C)) + (1 × rr-(alk)(X)) Literature | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-}(\text{H})}$ | | Reference 69STU/WES 69STU/WES C ₆ H ₅ I | 0.00
0.00
0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂ | $(1)_3(C) + (1 \times 1)_3(C) 1)_$ | $(1 \times C - (H C))))))))))))))))))))$ | 69STU/WES 49GEL/SKI C ₃ H ₆ I | – 1.71
- (1×C₄–(H)(I | -75.37
118.65
-47.86
56.94
118.33 | e 55.23 ppene (Z) ₃ (C))+(1× rr-(alk)(X)) | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_\rho^\circ = \frac{1-\text{Iodo-1-pro}}{(1 \times \text{C-(H})(1 \times \text{cis co}))}$ | | Reference 69STU/WES 69STU/WES C ₆ H ₅ I | 0.00
0.00
0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂ | $(1)_3(C) + (1 \times 1)_3(C) 1)_$ | Gas phase $C_{\rho}^{\rho} = S^{\circ} = \Delta_{f}S^{\circ} = \frac{1}{1 \times C_{B}-(I)}$ Iodobenzene $(1 \times C_{B}-(I))$ | 69STU/WES 49GEL/SKI C ₃ H ₅ I I)) + Reference | −1.71
- (1 × C _d −(H)(l
= Residual | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C))+ | 55.23 Spene (Z)) ₃ (C)) + (1 × rr-(alk)(X)) Literature | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-}(\text{H})}$ | | Reference 69STU/WES 69STU/WES C ₆ H ₅ I | 0.00
0.00
0.00
0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂ | () ₃ (C)) + (1 ×
Literature
74.48
302.92
()(C _B) ₂) + (5
Literature | Gas phase $C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \frac{1}{1 \times C_{B}-(1)}$ Gas phase $A_{f}H^{\circ} = C_{\rho}^{\circ} = \frac{1}{1 \times C_{B}-(1)}$ | 69STU/WES 49GEL/SKI C ₃ H ₅ I I)) + Reference | −1.71
- (1 × C _d −(H)(l
= Residual | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C))+ | 55.23 Spene (Z)) ₃ (C)) + (1 × rr-(alk)(X)) Literature | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_\rho^\circ = \frac{1-\text{Iodo-1-pro}}{(1 \times \text{C-(H})(1 \times \text{cis co}))}$ | | Reference 69STU/WES 69STU/WES C6H31 Reference | Residual 0.00 0.00 0.00 0.00 0.00 0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂
- Calculated = | 74.48
302.92
(I)(C _B) ₂) + (5
Literature | Gas phase $C_{\rho}^{\circ} = S^{\circ} = \Delta_{\ell}S^{\circ} = \frac{1}{1 \times C_{B}-(1)}$ Gas phase $\Delta_{\ell}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \frac{1}{1 \times C_{B}}$ | 49GEL/SKI C ₃ H ₅ I I))+ Reference 73ALF/GOL | −1.71
- (1 × C _d −(H)(l
= Residual | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C))+ | pene (Z)) ₃ (C))+(1× rr-(alk)(X)) Literature 86.40 | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times C_t + C_t}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times C_t + C_t}$ | | Reference 69STU/WES 69STU/WES C6H31 Reference 70COX/PIL 69STU/WES | 0.00
0.00
0.00
0.00
0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂
- Calculated = 163.55
100.75
334.05
- 84.89 | 74.48
302.92
2
1)(C _R) ₂) + (5
Literature | Gas phase $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \frac{1}{1}$ Iodobenzene $(1 \times C_{B} - (1))$ Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \frac{1}{1}$ | 69STU/WES 49GEL/SKI C ₃ H ₅ I I))+ Reference 73ALF/GOL C ₃ H ₅ I | -1.71 $-(1 \times C_d - (H)(I)$ = Residual -6.02 | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C))+
Calculated
92.42
81.29 | pene (Z)) ₃ (C))+(1× rr-(alk)(X)) Literature 86.40 | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-}(H)}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-}(H)}$ | | Reference 69STU/WES 69STU/WES C6H31 Reference 70COX/PIL 69STU/WES | 0.00
0.00
0.00
0.00
0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂
- Calculated = 163.55
100.75
334.05
- 84.89
188.86 | 74.48
302.92
2
1)(C _R) ₂) + (5
Literature | Gas phase $C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \frac{1}{1}$ Iodobenzene $(1 \times C_{B} - (1))$ Gas phase $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \frac{1}{1}$ | 69STU/WES 49GEL/SKI C ₃ H ₅ I I))+ Reference 73ALF/GOL C ₃ H ₅ I | −1.71
- (1 × C _d −(H)(l
= Residual | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C))+
Calculated
92.42
81.29 | pene (Z)) ₃ (C))+(1× rr-(alk)(X)) Literature 86.40 | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-}(H)}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-}(H)}$ | | Reference 69STU/WES 69STU/WES C6H31 Reference 70COX/PIL 69STU/WES | 0.00
0.00
0.00
0.00
0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂
- Calculated = 163.55
100.75
334.05
- 84.89 | 74.48
302.92
2
1)(C _R) ₂) + (5
Literature | Gas phase $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \frac{1}{1}$ Iodobenzene $(1 \times C_{B} - (1))$ Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \frac{1}{1}$ | 69STU/WES 49GEL/SKI C ₃ H ₅ I I))+ Reference 73ALF/GOL C ₃ H ₅ I | -1.71 $-(1 \times C_d - (H)(I)$ $= Residual$ -6.02 $-(1 \times C_d - (H)(I)$ | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C))+
Calculated
92.42
81.29 | Spene (Z) 3(C))+(1× rr-(alk)(X)) Literature 86.40 Spene (E) (3(C))+(1× | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-}(H)}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-}(H)}$ | | Reference 69STU/WES 69STU/WES C6H31 Reference 70COX/PIL 69STU/WES | 0.00
0.00
0.00
0.00
0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂
- Calculated = 163.55
100.75
334.05
- 84.89
188.86 | () ₃ (C)) + (1 ×
Literature
74.48
302.92
()(C _B) ₂) + (5
Literature
164.85
100.75
334.05 | Gas phase $C_{\rho}^{\rho} = S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}S^{\circ} = 1$ Iodobenzene $(1 \times C_{B} - (I))$ Gas phase $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = 1$ $\Delta_{f}S^{\circ} = 1$ $\ln K_{f} = 1$ | 69STU/WES 49GEL/SKI C ₃ H ₅ I I)) + Reference 73ALF/GOL C ₃ H ₅ I I)) | -1.71 $-(1 \times C_d - (H)(I)$ $= Residual$ -6.02 $-(1 \times C_d - (H)(I)$ | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C)) +
- Calculated
92.42
81.29 | Spene (Z) 3(C))+(1× rr-(alk)(X)) Literature 86.40 Spene (E) (3(C))+(1× | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-}(H)}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-}(H)}$ | | Reference 69STU/WES 69STU/WES C6H51 Reference 70COX/PIL 69STU/WES 69STU/WES | 0.00
0.00
0.00
0.00
0.00
1.30
0.00
0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂
- Calculated = 163.55
100.75
334.05
- 84.89
188.86
- 76.18 | () ₃ (C)) + (1 ×
Literature
74.48
302.92
()(C _B) ₂) + (5
Literature
164.85
100.75
334.05 | Gas phase $C_{\rho}^{o} = S^{\circ} = \Delta_{f}S^{\circ} =$ | 69STU/WES 49GEL/SKI C ₃ H ₅ I I)) + Reference 73ALF/GOL C ₃ H ₅ I I)) | -1.71 $-(1 \times C_d - (H)(I)$ $= Residual$ -6.02 $-(1 \times C_d - (H)(I)$ | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C)) +
- Calculated
92.42
81.29 | Spene (Z) 3(C))+(1× rr-(alk)(X)) Literature 86.40 Spene (E) (3(C))+(1× | $\Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = \ln K_{t} = \ln K_{t} = \frac{1 - \text{Iodo-1-pro}}{(1 \times \text{C-(H (1 \times \text{cis co})})^{2} + \text{C}^{\circ}_{p}} = \frac{1 - \text{Iodo-1-pro}}{(1 \times \text{C-(H (1 C))})})})))})}}}}}}}$ | | Reference 69STU/WES 69STU/WES C6H5I Reference 70COX/PIL 69STU/WES 69STU/WES | 0.00
0.00
0.00
0.00
0.00
1.30
0.00
0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂
- Calculated = 163.55
100.75
334.05
- 84.89
188.86
- 76.18 | () ₃ (C)) + (1 ×
Literature
74.48
302.92
e
()(C _B) ₂) + (5
Literature
164.85
100.75
334.05 | Gas phase $C_{\rho}^{o} = S^{o} = \Delta_{f}S^{o} = \Delta_{f}S^{o} = 1$ Iodobenzene $(1 \times C_{B} - (I))$ Gas phase $\Delta_{t}H^{o} = C_{\rho}^{o} = S^{o} = \Delta_{t}G^{o} = 1$ $Liquid phase \Delta_{t}H^{o} = S^{o} S$ | 49GEL/SKI C ₃ H ₆ I I)) + Reference 73ALF/GOL C ₃ H ₅ I I)) Reference | -1.71 $-(1 \times C_d - (H)(I)$ $= Residual$ -6.02 $-(1 \times C_d - (H)(I)$ $= Residual$ | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C)) +
- Calculated
92.42
81.29
CC _d -(H)(C)) +
- Calculated | Spene (Z)) ₃ (C)) + (1 × rr-(alk)(X)) Literature 86.40 Spene (E)) ₃ (C)) + (1 × Literature | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t $ | | Reference 69STU/WES 69STU/WES C6H3I Reference 70COX/PIL 69STU/WES 69STU/WES 56SMI 37STU | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 |
74.48
302.92
31.77
× C _B -(H)(C _B) ₂
- Calculated = 163.55
100.75
334.05
- 84.89
188.86
- 76.18 | () ₃ (C)) + (1 ×
Literature
74.48
302.92
()(C _B) ₂) + (5
Literature
164.85
100.75
334.05 | Gas phase $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = 1$ Iodobenzene $(1 \times C_{B} - (1 C_{B$ | 69STU/WES 49GEL/SKI C ₃ H ₅ I I)) + Reference 73ALF/GOL C ₃ H ₅ I I)) | -1.71 $-(1 \times C_d - (H)(I)$ $= Residual$ -6.02 $-(1 \times C_d - (H)(I)$ | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C)) +
- Calculated
92.42
81.29
CC _d -(H)(C)) +
- Calculated | Spene (Z) 3(C))+(1× rr-(alk)(X)) Literature 86.40 Spene (E) (3(C))+(1× | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ Liquid phase $\Delta_t H^\circ = C_p^\circ = $ 1-Iodo-1-pro $(1 \times C - (H (1 \times C) + C))$ Gas phase $\Delta_t H^\circ = C_p^\circ = $ 1-Iodo-1-pro $(1 \times C - (H (1 \times C) + C))$ Gas phase $\Delta_t H^\circ = C_p^\circ = $ | | Reference 69STU/WES 69STU/WES C6H5I Reference 70COX/PIL 69STU/WES 69STU/WES | 0.00
0.00
0.00
0.00
0.00
1.30
0.00
0.00 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂
- Calculated = 163.55
100.75
334.05 - 84.89
188.86 - 76.18 | () ₃ (C)) + (1 ×
Literature
74.48
302.92
e
()(C _B) ₂) + (5
Literature
164.85
100.75
334.05 | Gas phase $C_{\rho}^{\circ} = S^{\circ} = \Delta_{f}S^{\circ} = \frac{1}{1}$ Iodobenzene $(1 \times C_{B} - (1))$ Gas phase $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \frac{1}{1}$ Liquid phase $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = \frac{1}{1}$ $\Delta_{f}H^{\circ} = C_{\rho}^{\circ} = S^{\circ} = S^{\circ} = \frac{1}{1}$ | 49GEL/SKI C ₃ H ₆ I I)) + Reference 73ALF/GOL C ₃ H ₅ I I)) Reference | -1.71 $-(1 \times C_d - (H)(I)$ $= Residual$ -6.02 $-(1 \times C_d - (H)(I)$ $= Residual$ | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C)) +
- Calculated
92.42
81.29
CC _d -(H)(C)) +
- Calculated | Spene (Z)) ₃ (C)) + (1 × rr-(alk)(X)) Literature 86.40 Spene (E)) ₃ (C)) + (1 × Literature | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-(H)}}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1-\text{Iodo-1-pro}}{1 \times \text{C-(H)}}$ Gas phase | | Reference 69STU/WES 69STU/WES C6H3I Reference 70COX/PIL 69STU/WES 69STU/WES 56SMI 37STU | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 74.48
302.92
31.77
× C _B -(H)(C _B) ₂
- Calculated = 163.55
100.75
334.05
- 84.89
188.86
- 76.18 | () ₃ (C)) + (1 ×
Literature
74.48
302.92
()(C _B) ₂) + (5
Literature
164.85
100.75
334.05 | Gas phase $C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = 1$ Iodobenzene $(1 \times C_{B} - (1 C_{B$ | 49GEL/SKI C ₃ H ₆ I I)) + Reference 73ALF/GOL C ₃ H ₅ I I)) Reference | -1.71 $-(1 \times C_d - (H)(I)$ $= Residual$ -6.02 $-(1 \times C_d - (H)(I)$ $= Residual$ | -75.37
118.65
-47.86
56.94
118.33
CC _d -(H)(C)) +
- Calculated
92.42
81.29
CC _d -(H)(C)) +
- Calculated | Spene (Z)) ₃ (C)) + (1 × rr-(alk)(X)) Literature 86.40 Spene (E)) ₃ (C)) + (1 × Literature | $\Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = \frac{1 - \text{Iodo-1-pro}}{1 - \text{Iodo-1-pro}}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1 - \text{Iodo-1-pro}}{1 \times C_p^\circ = 1 - \text{Iodo-1-pro}}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1 - \text{Iodo-1-pro}}{1 \times C_p^\circ = 1 - \text{Iodo-1-pro}}$ Gas phase $\Delta_t H^\circ = C_p^\circ = \frac{1 - \text{Iodo-1-pro}}{1 \times C_p^\circ = 1 - \text{Iodo-1-pro}}$ | | Benzyl iodide
(5×C _B -(H | :
()(C _B) ₂)+(1 | $\times C_B - (C)(C_B)$ |) ₂) + (1 × C-(I | C_7H_7I $H)_2(C_B)(I))$ | | $(C_B)_2$) + (4 | e (Continued)
$4 \times C_B - (H)(C_B)$ | $)_2) + (1 \times C_B - ($ | C_7H_7I
$C)(C_B)_2) +$ | |---|--|---|------------------------------|------------------------------------|---|------------------|--|----------------------------|--| | | Literature | - Calculated | = Residual | Reference | | Literatur | e – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ =$ | 100.00 | 100.00 | 0.00 | 57BEN/BUS | Liquid phase $\Delta_t II^\circ = C_p^\circ =$ | 67.50 | 77.89
182.47 | - 10.39 | 56SMI | | Liquid phase $\Delta_t H^\circ =$ | 52.72 | 52.72 | 0.00 | 63ASH/CAR | $S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 0$ | | 240.36
-314.89
171.77
-69.29 | | | | | $(C_B)_2) + (4$ | ×C _B -(H)(C _B) | | C_7H_7I
$C)(C_B)_2) +$ | | | | | | | | Literature | e – Calculated | = Residual | Reference | 1-Iodonaphtl
(1×C _B -(I) | | $7 \times C_B - (H)(C_B)$ | $(2 \times C_{BF})$ | $(C_{BF})(C_B)_2$ | | Gas phase | | | 0.00 | gogov my | | Literatur | e – Calculated | = Residual | Reference | | $\Delta_t H^\circ = C_p^\circ =$ | 132.80 | 133.63
122.62 | -0.83 | 70COX/PIL | Gas phase $\Delta_t H^\circ - C_p^\circ =$ | 233.90 | 231.37
127.97 | 2.53 | 70COX/PIL | | Liquid phase $ \Delta_t H^\circ = C_t^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = $ | 78.40 | 84.19
182.47
240.36
-314.89
178.07
-71.83 | -5.79 | 56SMI | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = S^\circ S$ | 161.50 | 162.48
222.97
252.09
- 320.38
258.00 | - 0.98 | 56SMI | | 1-Iodo-3-me
(1 × C _B -(1
(1 × C-(H | $((C_B)_2) + (4)_3(C)$ | e
l×C _B -(H)(C _B)
e – Calculated | | C_7H_7 $C)(C_B)_2) +$ Reference | $ \frac{\ln K_{\rm f}}{=} $ Solid phase $ \Delta_{\rm f} H^{\circ} = C_{\rm p}^{\circ} = $ | | - 104.08
144.31
185.59 | | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 133.60 | 131.12
122.62 | 2.48 | 70COX/PIL | 2-Iodonaphti
(1×C _B -(I) | | 7×С _в -(H)(Св) |)2) + (2 × C _{BF} | C ₁₆ H ₇ l
(C _{BF})(C _B) ₂) | | Liquid phas | е | | | | | Literatur | e – Calculated | = Residual | Reference | | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}G^{\circ} = \ln K_{t} = 0$ | 79.20 |
77.89
182.47
240.36
-314.89
171.77
-69.29 | 1.31 | 56SMI | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 235.15 | 231.37
127.97 | 3.78 | 70COX/PIL | | 1-Iodo-4-me | $I(C_B)_2 + (4_{13}(C))$ | | | C_7H_7I $C)(C_B)_2) +$ Reference | Liquid phase $\Delta_t H^\circ = C_b^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t = 0$ | | 162.48
222.97
252.09
- 320.38
258.00
- 104.08 | | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 121.90 | 131.12
122.62 | -9.22 | 70COX/PIL | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | 144.35 | 144.31
185.59 | 0.04 | 56SMI | ## E. S. DOMALSKI AND E. D. HEARING TABLE 53. Iodides (39) - Continued | | enzene
H)(C_B) ₂) + (
corr-(I)(I)) | $(2 \times C_B - (I)(C_B))$ $\sigma = 2$ | 2)+ | C ₆ H ₄ I ₂ | 1,4-Diiodobe $(4 \times C_B - (1 \times C_B))$ | $I)(C_B)_2) +$ | (2×C _B -(I)(C _B | | C ₆ H ₄ I ₂ | |--|--|---|------------|--|---|---|---|---------------------------------------|---| | | Literatur | e – Calculated = | = Residual | Reference | | Literatur | c Calculated | - Residual | Reference | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | 251.88 | 251.80
119.84 | 0.08 | 70COX/PIL | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | · · · · · · · · · · · · · · · · · · · | 244.24
119.84 | | | | $S^{\circ} = \Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} = \ln K_{f} =$ | | 384.00
- 27.73
260.07
- 104.91 | | | Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ =$ | • | 180.04
181.06
237.64 | | | | Liquid phas $\Delta_t H^\circ = C_p^\circ =$ | se
187.00 | 187.00
181.06 | 0.00 | 56SMI2 | $\Delta_f S^\circ = \Delta_f G^\circ = \ln K_f = -1$ | ······································ | -174.08
231.94
-93.56 | | | | $S^{\circ} = \Delta_f S^{\circ} = \Delta_f G^{\circ} = \ln K_f =$ | | 237.64
- 174.08
238.90
- 96.37 | | | Solid phase $\Delta_t H^\circ = C_p^\circ =$ | 160.70 | 166.92
160.68 | -6.22 | 56SMI | | Solid phase $\Delta_l H^\circ = C_p^\circ =$ | 172.40 | 172.42
160.68 | -0.02 | 56SMI | Iodocyclohex
(5×C-(H
(1×Cyclo | | I × C-(H)(C) ₂ (I
b) rsc) | I))+ | C₅H₁₁I | | | | | | | ` ' | • | , , | | | | 1,3-Diiodob | | (0×0 (1)(C) | \ . /1 \ | C ₆ H ₄ I ₂ | | Literatur | e – Calculated | = Residual | Reference | | • | $(H)(C_B)_2) +$ | (2×C _B -(I)(C _B) | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | Literatur | e – Calculated
– 54.80
130.25 | = Residual | Reference 56BRE/UBB | | • | $(H)(C_B)_2) +$ | | | corr-(I)(I)) | $\Delta_t H^\circ = C_p^\circ =$ Liquid phase | -50.00 | -54.80 | · · · · · · · · · · · · · · · · · · · | | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phat $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ | (H)(C _B) ₂) + Literatur | 244.24
119.84
180.04
181.06 | | corr-(I)(I)) | $\Delta_l H^\circ = C_p^\circ = $ Liquid phase $\Delta_l H^\circ = $ 1,3-Diiodocy | 50.00
97.20 | - 54.80
130.25
- 105.93 | 4.80 | 56BRE/UBB 56SMI C4H6I2 | | Gas phase $\Delta_t H^\circ = C_p^\circ = $ Liquid phase $\Delta_t H^\circ = C_p^\circ $ | (H)(C _B) ₂) + Literatur | 244.24
119.84 | | corr-(I)(I)) | $\Delta_l H^\circ = C_p^\circ = $ Liquid phase $\Delta_l H^\circ = $ 1,3-Diiodocy | -50.00
-97.20
clobutane(a)2(C)2) + (2 | - 54.80
130.25
- 105.93 | 4.80
8.73 | 56BRE/UBB 56SMI C ₄ H ₆ I ₂ | | Gas phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phat $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $C_{p}^{\circ} = \Delta_{t}S^{\circ} =$ $\Delta_{t}G^{\circ} =$ | (H)(C _B) ₂) + Literatur | 244.24
119.84
180.04
181.06
237.64
-174.08
231.94 | | corr-(I)(I)) | $\Delta_l H^\circ = C_p^\circ = $ Liquid phase $\Delta_l H^\circ = $ 1,3-Diiodocy | -50.00
-97.20
clobutane(a)2(C)2) + (2 | -54.80
130.25
-105.93
cis/trans) | 4.80
8.73 | 56SMI C ₄ H ₆ I ₂ butane rsc) | | 2-Iodophenol
$(4 \times C_{B}-(H))$
$(1 \times O-(H))$ | $I(C_B)_2 + (1$ | $\times C_B - (I)(C_B)_2$ | $(1 \times C_B - (1 \times C_B))$ | C_6H_5IO $O)(C_B)_2) +$ | 4-Iodophenol (Contin
$(4 \times C_B-(H)(C_B)_2)$ -
$(1 \times O-(H)(C_B))$ | | ₂) + (1 × C _B -(| C ₆ H ₅ IO
O)(C _B) ₂) + |
---|---|---|---------------------------------------|---|--|--|---|--| | | Literature | – Calculated = | = Residual | Reference | Literati | ure – Calculated = | Residual | Reference | | Gas phase | | | | | Liquid phase | | | | | $\Delta_t H^{\circ} =$ | | - 15.31 | | | $\Delta_t H^\circ =$ | -91.02 | | | | $C_{\rho}^{\circ} =$ | | 121.16 | | | $C_p^{\circ} =$ | 220.24 | | | | | | | | | S° = | 209.86 | | | | | | | | | $\Delta_{\rm f} S^{\circ} :=$ | -311.60 | | | | Liquid phase | e | | | | $\Delta_{\rm f}G^{\circ} =$ | 1.88 | | | | $\Delta_t H^\circ =$ | | -91.02 | | | $lnK_f =$ | -0.76 | | | | $C_p^{\circ} =$ | | 220.24 | | | | | | | | S° = | | 209.86 | | | | | | | | $\Delta_f S^\circ =$ | | -311.60 | | | Solid phase | | | | | $\Delta_t G^\circ =$ | | 1.88 | | | $\Delta_t H^{\circ} = -95.40$ | - 101.73 | 6.33 | 56SMI | | $lnK_f =$ | | -0.76 | | | $C_p^{\circ} =$ | 149.56 | | | | | | | | | | | | | | Solid phase | | | | | | | | | | $\Delta_t H^\circ = C_p^\circ =$ | -95.80 | -101.73
149.56 | 5.93 | 56SMI | 3-Iodopropanoic acid
$(1 \times O-(H)(CO)) +$
$(1 \times C-(H)_2(C)(I))$ | | + (1 × C-(H) | C3H5IO2
)2(CO)(C)) + | | | | | | | Literati | ure ~ Calculated = | Residual | Reference | | 3-Iodopheno | oli | | | C4H4IO | | | | | | | | $1 \times C_B - (I)(C_B)$ | $_2) + (1 \times C_{B} - ($ | O)(C _B) ₂) ! | | | | | | (1×O-(H | | | 2) (| /(-/-/ | Gas phase $\Delta_t H^\circ =$ | 270.94 | | | | | Literature | - Calculated = | = Residual | Reference | $C_{\rho}^{\circ} =$ | - 379.84
106.42 | | | | · | | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | | | | | | | | | | | | | | | | | | Gas phase | | | | | Liquid phase | | | | | Gas phase $\Delta_t H^\circ =$ | | - 15.31 | | | Liquid phase $\Delta_t H^\circ =$ | - 455.01 | | | | Gas phase $\Delta_t H^\circ = C_p^\circ =$ | | -15.31
121.16 | | | | - 455.01
177.45 | | | | $\Delta_t H^\circ = C_p^\circ = -$ | | | | | $\Delta_i H^\circ = C_p^\circ =$ | | | · · · · · · · · · · · · · · · · · · · | | $\Delta_t H^\circ = C_p^\circ = $ Liquid phas | e | 121.16 | | | $\Delta_t H^\circ = C_p^\circ = $ Solid phase | 177.45 | 0.00 | 44POT | | $\Delta_t H^\circ = C_p^\circ = $ Liquid phas $\Delta_t H^\circ = $ | | 121.16
-91.02 | - 4 - 14 - 17 - 17 - 1 7 | | $\Delta_i H^\circ = C_p^\circ =$ | | 0.00 | 44ROT | | $\Delta_t H^\circ = C_p^\circ = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = $ | e | 121.16
- 91.02
220.24 | | | $\Delta_t H^\circ = C_p^\circ = $ Solid phase | 177.45 | 0.00 | 44ROT | | $\Delta_t H^\circ = C_p^\circ = $ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = $ | e · | - 91.02
220.24
209.86 | | | $\Delta_t H^\circ = C_p^\circ = $ Solid phase | 177.45 | 0.00 | 44ROT | | $\Delta_t H^\circ = C_p^\circ = C_p^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = S^$ | e | -91.02
220.24
209.86
-311.60 | | | $\Delta_t H^\circ = C_p^\circ =$ $C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ | 177.45 | 0.00 | | | $\Delta_t H^\circ = C_p^\circ = C_p^\circ = C_p^\circ = C_p^\circ = S_p^\circ = \Delta_t S_p^\circ =
\Delta_t G_p^\circ = C_p^\circ C_$ | æ | -91.02
220.24
209.86
-311.60
1.88 | | | $\Delta_t H^\circ = C_\rho^\circ = $ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid | 177.45
- 460.00 | | C7HsIO2 | | $\Delta_t H^\circ = C_p^\circ = C_p^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = S^$ | e | -91.02
220.24
209.86
-311.60 | | | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (4.5)$ | 177.45 - 460.00 + (1×C _B -(I)(C _B) ₂ |)+(1×O-(F | C7HsIO2 | | $\Delta_t H^\circ = C_p^\circ = C_p^\circ = C_p^\circ = C_p^\circ = S_p^\circ = \Delta_t S_p^\circ = \Delta_t G_p^\circ = C_p^\circ C_$ | e | -91.02
220.24
209.86
-311.60
1.88 | | · · · · · · · · · · · · · · · · · · · | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) (O$ | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(C |)+(1×O-(F | C7HsIO2 | | $\Delta_t H^{\circ} = C_p^{\circ} =$ Liquid phas $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \Delta_t G^{\circ} = \ln K_t =$ | e | -91.02
220.24
209.86
-311.60
1.88 | | · · · · · · · · · · · · · · · · · · · | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (4.5)$ | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(C |)+(1×O-(F | C7HsIO2 | | $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t =$ Solid phase | | -91.02
220.24
209.86
-311.60
1.88
-0.76 | 7.12 | 54CMI | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + (1 \times ortho \text{ corr-}(I)(C_B)_2) corr-}(I$ | 177.45 -460.00 + (1×C _B -(I)(C _B) ₂ + (1×C _B -(CO)(CCOOH)) |) + (1 × O–(F
B)2) + | C ₇ H ₅ IO ₂
H)(CO)) + | | $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ | - 94.50 | -91.02
220.24
209.86
-311.60
1.88 | 7.23 | 56SMI | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + (1 \times ortho \text{ corr-}(I)(C_B)_2) corr-}(I$ | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(C |) + (1 × O–(F
B)2) + | C7HsIO2 | | $\Delta_t H^{\circ} = C_p^{\circ} =$ Liquid phas $\Delta_t H^{\circ} = C_p^{\circ} = S^{\circ} = \Delta_t S^{\circ} = \ln K_t =$ Solid phase $\Delta_t H^{\circ} = \infty$ | | -91.02
220.24
209.86
-311.60
1.88
-0.76 | 7.23 | 56SMI | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) - (1 \times CO - (O)(C_B)) + (1 \times ortho \text{ corr-}(I)(C_B)_2)$ Literatu | 177.45 -460.00 + (1×C _B -(I)(C _B) ₂ + (1×C _B -(CO)(CCOOH)) |) + (1 × O–(F
B)2) + | C ₇ H ₅ IO ₂
H)(CO)) + | | $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ =$ | | -91.02
220.24
209.86
-311.60
1.88
-0.76 | 7.23 | 56SMI | Solid phase $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) - (1 \times CO - (O)(C_B)) - (1 \times ortho \text{ corr-}(I)(C_B))$ Literatu | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(CCOOH)) |) + (1 × O–(F
B)2) + | C ₇ H ₅ IO ₂
H)(CO)) + | | $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = \Delta_t G^\circ = \ln K_t =$ Solid phase $\Delta_t H^\circ = C_p^\circ = \Delta_t H^\circ = C_p^\circ = \Delta_t H^\circ H^\circ$ | – 94.50
ol | -91.02
220.24
209.86
-311.60
1.88
-0.76 | · · · · · · · · · · · · · · · · · · · | C¢H₃IO | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) - (1 \times CO - (O)(C_B)) + (1 \times ortho \text{ corr-}(I)(C_B)_2)$ Literatu | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(COOH)) ure - Calculated = |) + (1 × O–(F
B)2) + | C ₇ H ₅ IO ₂
H)(CO)) + | | $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = 1$ $\Delta_t G^\circ = 1$ $\Delta_t H^\circ = C_p^\circ = 1$ Solid phase $\Delta_t H^\circ = C_p^\circ = 1$ | – 94.50
ol | -91.02
220.24
209.86
-311.60
1.88
-0.76 | · · · · · · · · · · · · · · · · · · · | C¢H4IO | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) - (1 \times CO - (O)(C_B)) + (1 \times ortho \text{ corr-}(I)(C_B)_2)$ Literatu | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(COOH)) ure - Calculated = |) + (1 × O–(F
B)2) + | C ₇ H ₅ IO ₂
H)(CO)) + | | $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phase $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $S^{\circ} = \Delta_{t}S^{\circ} =$ $\Delta_{t}G^{\circ} =$ $\ln K_{f} =$ Solid phase $\Delta_{t}H^{\circ} =$ $C_{p}^{\circ} =$ | – 94.50
ol
H)(С _в) ₂) + (| -91.02
220.24
209.86
-311.60
1.88
-0.76 | · · · · · · · · · · · · · · · · · · · | C¢H4IO | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + (1 \times ortho \text{ corr-}(I)(C_B)_2) corr-}$ | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(COOH)) ure - Calculated = |) + (1 × O–(F
B)2) + | C ₇ H ₅ IO ₂
H)(CO)) + | | $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = 10 \text{ m/s}^\circ m/s}^$ | – 94.50
ol
H)(С _в) ₂) + (| -91.02
220.24
209.86
-311.60
1.88
-0.76 | · · · · · · · · · · · · · · · · · · · | C¢H4IO | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + (1 \times ortho \text{ corr-}(I)(C_B)_2) corr-}$ | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(COOH)) ure - Calculated = |) + (1 × O–(F
B)2) + | C ₇ H ₅ IO ₂
H)(CO)) + | | $\Delta_t H^\circ = C_p^\circ =$ Liquid phase $\Delta_t H^\circ = C_p^\circ = S^\circ = \Delta_t S^\circ = 10 \text{ m/s}^\circ m/s}^$ | - 94.50 ol H)(C _B) ₂)+(| -91.02
220.24
209.86
-311.60
1.88
-0.76 | ₂)+(1×C _B -(| C¢H4IO | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) + (1 \times ortho \text{ corr-}(I)(C_B)_2) corr-}$ | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(CCOOH)) are - Calculated = -214.06 |) + (1 × O–(F
B)2) + | C ₇ H ₅ IO ₂
H)(CO)) + | | $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ Liquid phas $\Delta_{t}H^{\circ} = C_{p}^{\circ} =$ $S^{\circ} = \Delta_{t}S^{\circ} =$ $\Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} =$ $\Delta_{t}H^{\circ} =$ Solid phase $\Delta_{t}H^{\circ} =$ $C_{p}^{\circ} =$ 4-lodophene $(4 \times C_{B} - (1 \times O_{T}) + (1 \times O_{T}))$ | - 94.50 ol H)(C _B) ₂)+(| 121.16 -91.02 220.24 209.86 -311.60 1.88 -0.76 -101.73 149.56 | ₂)+(1×C _B -(| C ₆ H ₅ IO
O)(C _B) ₂)+ | $\Delta_t H^\circ = C_\rho^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) - (1 \times CO - (O)(C_B)) + (1 \times ortho \text{ corr-}(I)(C_B)_2) - corr-}$ | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(CCOOH)) are - Calculated = -214.06 -308.80 |) + (1 × O–(F
B)2) + | C ₇ H ₅ IO ₂
I)(CO)) + | | $\Delta_t H^\circ = C_p^\circ =$ Liquid phas $\Delta_t H^\circ = S_p^\circ $ | - 94.50 ol H)(C _B) ₂)+(| 121.16 -91.02 220.24 209.86 -311.60 1.88 -0.76 -101.73 149.56 1 × C _B -(I)(C _B) | ₂)+(1×C _B -(| C ₆ H ₅ IO
O)(C _B) ₂)+ | $\Delta_t H^\circ = C_p^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) - (1 \times CO - (O)(C_B)) + (1 \times ortho \text{ corr-}(I)(C_B)_2) - corr-}$ | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(CCOOH)) are - Calculated = -214.06 -308.80 226.26 |) + (1 × O–(F
B)2) +
• Residual | C7H5IO2
I)(CO)) +
Reference | | $\Delta_{t}H^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} = C_{p}^{\circ} = S^{\circ} = \Delta_{t}S^{\circ} = \Delta_{t}S^{\circ} = \ln K_{t} = C_{p}^{\circ} = \ln K_{t} = C_{p}^{\circ} C_{p}^{\circ}$ | - 94.50 ol H)(C _B) ₂)+(| 121.16 -91.02 220.24 209.86 -311.60 1.88 -0.76 -101.73 149.56 | ₂)+(1×C _B -(| C ₆ H ₅ IO
O)(C _B) ₂)+ | $\Delta_t H^\circ = C_\rho^\circ =$ Solid phase $\Delta_t H^\circ = -460.00$ 2-Iodobenzoic acid $(4 \times C_B - (H)(C_B)_2) - (1 \times CO - (O)(C_B)) + (1 \times ortho \text{ corr-}(I)(C_B)_2) - corr-}$ | 177.45 -460.00 +(1×C _B -(I)(C _B) ₂ +(1×C _B -(CO)(CCOOH)) are - Calculated = -214.06 -308.80 |) + (1 × O–(F
B)2) + | C ₇ H ₅ IO ₂
H)(CO)) + | | TABLE 53. Iodides (39) — Continued | TARIF | 53 | Indides | (39) - | Continued | |------------------------------------|-------|----|---------|--------|-----------| |------------------------------------|-------|----|---------|--------|-----------| | | $(1 \times C_B - (I)(C_B) + (1 \times C_B - (I)(C_B)) + (1 \times C_B - (CO)(C_B))$ | | C ₇ H ₅ IO ₂
H)(CO)) + | Methyl 3-iodobenzoad
$(4 \times C_B - (H)(C_B)_2) - (1 \times CO - (O)(C_B))$ | $+(1\times C_B-(I)(C_B)$ | | | |--
---|--|--|--|---|------------|---------------------| | Liter | ature – Calculated | = Residual | Reference | Literati | ure – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ =$ | -214.06 | | | Gas phase $\Delta_t H^\circ =$ | - 190.89 | | | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | - 308.80
226.26 | | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | - 266.79
244.50 | | | | Solid phase $\Delta_t H^{\circ} = -316.9$ $C_p^{\circ} =$ | 00 -322.48
166.06 | 5.58 | 56SMI | Solid phase $\Delta_t H^\circ = -278.30$ $C_p^\circ =$ | - 297.67
182.91 | 19.37 | 56SMI | | $(1 \times CO - (O)(C_B)$ | $(1 \times C_{B} - (1)(C_{B}) + (1 \times C_{B} - (1)(C_{B})) + (1 \times C_{B} - (CO)(1))$ | $(C_B)_2$ | | Methyl 4-iodobenzoat
$(4 \times C_B - (H)(C_B)_2) + (1 \times CO - (O)(C_B)) (O)(C_B$ | $+(1\times C_B-(I)(C_B)$
$+(1\times O-(C)(CO)$ |))+(1×C-(H | I)₃(O)) | | Lite | rature – Calculated | = Residual | Reference | Literati | ure – Calculated | = Residual | Reference | | Gas phase $\Delta_t H^\circ = -228.2$ | 20 –214.06 | - 14.14 | 70COX/PIL | Gas phase $\Delta_t H^\circ =$ | - 190.89 | | | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | -308.80
226.26 | | | Liquid phase $\Delta_t H^\circ = C_p^\circ =$ | - 266.79
244.50 | | | | Solid phase $\Delta_t H^{\circ} = -316.5$ $C_p^{\circ} =$ | 10 -322.48
166.06 | 6.38 | 56SMI | Solid phase $\Delta_t H^\circ = -286.60$ $C_p^\circ =$ | 297.67
182.91 | 11.07 | 56SMI | | Methyl 2-iodobenz
(4×C _B -(H)(C _B)
(1×CO-(O)(C _E | coate
$(1) + (1 \times C_B - (1)(C_B + (1) (1)(C_$ | () ₂) + (1 × C _B -(
())) + (1 × C-(F | C ₈ H ₇ IO ₂
CO)(C _B) ₂) +
I) ₃ (O)) | Acetyl iodide
(1×C-(H) ₃ (CO))+ | · (1 × CO-(C)(I)) | | C₂H₃IO
Reference | | Lite | rature – Calculated | = Residual | Reference | | | - 1000000 | | | Gas phase $\Delta_t H^\circ =$ | - 190.89 | | | Gas phase $\Delta_l H^{\circ} = -126.20$ | - 126.20 | 0.00 | 70COX/PIL | | | | | | Liquid phase | | | | | TABLE 54. | Mixed | Halogen | Compounds | (18) |) | |-----------|-------|---------|-----------|------|---| |-----------|-------|---------|-----------|------|---| TABLE 54. Mixed Halogen Compounds (18) - Continued | 1-Chloro-1-fluoroethane
$(1 \times C - (H)_3(C)) + (1 \times C - (H)(C)(Cl)(F))$ | C ₂ H ₄ CIF | 1-Chloro-1,1,3,3,3-pentafluoropropane $(1\times C-(C)(Cl)(F)_2) + (1\times C-(H)_2(C)_2) + (1\times C-(G)_2(C)_2) C-(G)_2(C)_2(C)_2) + (1\times C-(G)_2(C)_2(C)_2(C)_2(C)_2(C)_2(C)_2(C)_2(C$ | C ₃ H ₂ CIF ₅
(C)(F) ₃) Reference | |
---|---|---|--|--| | Literature - Calculated = Residual | Reference | Literature – Calculated = Residual | | | | Gas phase $\Delta_t H^{\circ} = -313.40 - 313.40 = 0.00$ 1,1,1-Trifluoro-2-iodoethane | 73KOL/PAP
C ₂ H ₂ F ₃ I | Liquid phase $\Delta_t H^\circ = -1180.90 - 1200.80 \qquad 19.90$ $C_P^\circ = 196.48 \qquad 187.24 \qquad 9.24$ $S^\circ = 311.62 \qquad 306.25 \qquad 5.37$ $\Delta_t S^\circ = \qquad -459.73$ $\Delta_t G^\circ = \qquad -1063.73$ $\ln K_f = \qquad 429.10$ | 73SLA/KOL
74VOR/KOL
74VOR/KOL | | | $(1 \times C - (C)(F)_3) + (1 \times C - (H)_2(C)(I))$ | | $\ln K_{\rm f} = 429.10$ | | | | Literature – Calculated = Residual | Reference | 1270 | a= = | | | Gas phase $\Delta_t H^\circ = -644.50 -640.27 -4.23$ $C_p^\circ = 93.93$ | 74WU/ROD | 1,2-Dibromotetrafluoroethane (2×C-(C)(Br)(F) ₂) Literature – Calculated = Residual | C ₂ Br ₂ F. | | | 1,2-Dibromo-1,2-dichloroethane
(2×C-(H)(C)(Br)(Cl)) | C ₂ H ₂ Br ₂ Cl ₂ | Gas phase $\Delta_t H^\circ = -789.10 -789.10$ 0.00 | 56LAC/CAS | | | Literature - Calculated = Residual Gas phase | Reference | Liquid phase $C_{\rho}^{\circ} = 170.79 170.80 -0.01$ $S^{\circ} - 299.41 299.40 0.01$ $\Delta_{\rho}S^{\circ} = -269.65$ | 82KOS/ZHO
82KOS/ZHO | | | $C_p^{\text{Hos}} = -36.90 - 36.90 0.00$ $C_p^{\text{o}} = 103.76$ | 39MUL/SCH | 12 Phillipset of Ground | 9.01.7 | | | 3,3-Dichloro-1,1,1-trifluoropropane $(1\times C-(C)(F)_3)+(1\times C-(II)_2(C)_2)+(1\times C-(II)_3(C)_3)$ | C ₃ H ₃ Cl ₂ F ₃ | 1,2-Dichlorotetrafluoroethane (2×C-(C)(Cl)(F) ₂) Literature – Calculated – Residual | C ₂ Cl ₂ F. | | | Literature – Calculated = Residual | Reference | Gas phase | | | | Gas phase $\Delta_t H^\circ = -803.50 -773.54 -29.96$ | 72KOL/SLA3 | $\Delta_t H^\circ = -925.40 -925.40$ 0.00 $C_p^\circ = 114.64$ | 82PAP/KOL | | | $C_p^{\circ} =$ 126.57 Liquid phase $\Delta_t H^{\circ} = -837.40 -837.40 0.00$ $C_p^{\circ} = 191.29 188.62 2.67$ $S^{\circ} = 295.06 296.39 -1.33$ $\Delta_t S^{\circ} = -443.68$ $\Delta_t G^{\circ} = -705.12$ $\ln K_t = 284.44$ | 72KOL/SLA3
72KOL/VOR
72KOL/VOR | Liquid phase $\Delta_t H^\circ = -939.70 -932.00 -7.70$ $C_p^\circ = 164.01 167.28 -3.27$ $S^\circ = 282.00 276.62 5.38$ $\Delta_t S^\circ = -363.20$ $\Delta_t G^\circ = -823.71$ $\ln K_f = 332.28$ | 37PER
81KOL/KOS
81KOL/KOS | | | I-Chloro-1,1,3,3,3-pentafluoropropane | C ₃ H ₂ ClF ₅ | 1,1,2-Trichloro-1,2,2-trifluoroethane $(1\times C-(C)(Cl)_2(F))+(1\times C-(C)(Cl)(F)_2)$ | C ₂ Cl ₃ F ₃ | | | $(1 \times C - (C)(C1)(F)_2) + (1 \times C - (H)_2(C)_2) (H)_2(C)_$ | | Literature – Calculated = Residual | Reference | | | Literature – Calculated = Residual | Reference | Gas phase $\Delta_t H^\circ = -777.30 -785.24$ 7.94 | 68KOL/TAL | | | Gas phase $\Delta_t H^\circ = -1154.00 -1157.14$ 3.14 $C_\rho^\circ = 133.20$ | 73SLA/KOL | 1,1,00 100,07 1,27 | | | | TABLE 54. Mixed halogen comp | oounds (18) - | - Continued | TABL | E 54. Mixe | d halogen com | pounds (18) | - Continued | |---|---------------|--|--|---------------|--|------------------------------|----------------------| | 1,1,2-Trichloro-1,2,2-trifluoroethane ($(1 \times C - (C)(C))_2(F)$) + $(1 \times C - (C)(C)$ | | C ₂ Cl ₃ F ₃ | | | ne (Continued)
+ (1 × C-(H) ₂ (C | | C₂H₄Br(| | Literature – Calculated = | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Liquid phase | | | Liquid phas | se | | | | | $\Delta_t H^\circ = -805.80 -809.87$ | 4.07 | 63HIR/HIL | $\Delta_{\rm f}H^{\circ} =$ | | - 129.55 | | | | $C_p^{\circ} = 172.80 172.93$ | -0.13 | 81KOL/KOS | $C_{\rho}^{\circ} =$ | 130.12 | 129.76 | 0.36 | 39RAI | | $S^{\circ} = 289.53 280.02$ | 9.51 | 81KOL/KOS | S° = | | 217.27 | | | | $\Delta_{\rm f} S^{\circ} = -369.94$ | | | $\Delta_f S^\circ =$ | | - 242.94 | | | | $\Delta_{\rm f}G^{\circ} = -699.57$ | | | $\Delta_{\rm f}G^{\circ} =$ | | -57.12 | | | | $\ln K_{\rm f} = 282.20$ | | | $lnK_f =$ | | 23.04 | | | | 1-Chloro-1,1-difluoroethane | | C ₂ H ₃ ClF ₂ | 1 1 1 Trich | laro-3 3 3-tr | ifluoropropane | | C₃H₂Cl₃F | | $(1 \times C - (H)_3(C)) + (1 \times C - (C)(Cl)(F)$ |)2) | C2113C112 | | | $1 \times C - (C)(Cl)_3$ | | | | Literature Calculated | = Residual | Reference | | Literatu | re – Calculated | = Residual | Reference | | Gas phase | | | Gas phase | | | | | | $\Delta_{\rm f}H^{\circ} = -504.96$ | | | $\Delta_{\rm f}H^{\circ} =$ | | <i>−776.42</i> | | | | $C_p^{\circ} = 83.05$ | | | $C_{\rho}^{\circ} =$ | | 144.06 | | | | Liquid phase | | | Liquid phas | se | | | | | $\Delta_t H^{\circ} = -513.61$ | | | $\Delta_{\rm f}H^{\circ} =$ | | 847.73 | | | | $C_p^{\circ} = 131.40$ 120.12
$S^{\circ} = 221.61$ | 11.28 | 42REI | $C_p^{\circ} =$ | 199.91 | 205.80 | -5.89 | 71KOL/VOR | | $S^{\circ} = 221.61$
$\Delta_f S^{\circ} = -299.89$ | | | S° = | 311.42 | 313.85 | -2.43 | 71KOL/VOR | | $\Delta_{f}G^{\circ} = -299.89$ $\Delta_{f}G^{\circ} = -424.20$ | | | $\Delta_{f}S^{\circ} = \Delta_{f}G^{\circ} =$ | | - 472.42
- 706.88 | | | | $\ln K_{\rm f} = 171.12$ | | | $\ln K_{\rm f} =$ | | 285.15 | | | | 1,2-Diffuorotetrachloroethane (2×C-(C)(Cl) ₂ (F)) | | C ₂ Cl ₄ F ₂ | 1-Chloro-3,
(1×C-(F | | opropane '
+ (1 × C-(H) ₂ (| C) ₂) + (1 × C-(| C3H4CIF3
(C)(F)3) | | Literature - Calculated | = Residual | Reference | | | e – Calculated | | Reference | | Gas phase | | | Gas phase | | | | | | $\Delta_t H^\circ = -645.08$ | | | $\Delta_{\rm f} H^{\circ} =$ | | - 763.89 | | | | | | | $C_p^{\circ} =$ | | 113.41 | | | | Liquid phase $\Delta_t H^\circ = -687.74$ | | | Liquid phas | se | | | | | $C_p^{\circ} = 178.57$ 178.58 | -0.01 | 78KIS/SUG | $\Delta_t H^{\circ} =$ | | -821.70 | | | | $S^{\circ} = 283.42 283.42$ | 0.00 | 78KIS/SUG | C_p° - | 171.08 | 167.36 | 3.72 | 74KOL/VOR | | $\Delta_t S^\circ = -376.69$ | | | S° = | 271.67 | 272.21 | -0.54 | 74KOL/VOR | | $\Delta_t G^{\circ} = -575.43$ | | | $\Delta_{\rm f}S^{\circ} =$ | | -421.66 | | | | $\ln K_{\rm f} = 232.12$ | | | $\Delta_{\mathbf{f}}G^{\circ} = \\ \ln K_{\mathbf{f}} =$ | | -695.98
280.75 | | | | 1 Pours 2 allower | | C 11 12 C | · · · · · · · · · · · · · · · · · · · | | | | | | 1-Bromo-2-chloroethane $(1 \times C-(H)_2(C)(Cl)) + (1 \times C-(H)_2(C)(Cl))$ | C)(Br)) | C₂H₄BrCl | | | | | | | Literature – Calculated | = Residual | Reference | | | | | | | Gos abose | | | | | | | | | Gas phase $\Delta_t H^\circ = -91.23$ | | | | | | | | | $C_p^{\circ} = 75.35$ | | | | | | | | | - 15.33 | | | | | | | | TABLE 54. Mixed halogen compounds (18) - Continued # TABLE 54. Mixed halogen compounds (18) - Continued | | noroethylene
F) ₂) + (1 × C | e
C _d -(Cl)(F)), σ = | = 3 | C ₂ ClF ₃ | $(1 \times C_B -$ |
iuorobenzei
$(I)(C_B)_2) + (O_B)_2$
$(I)(C_B)_2$ | $(5 \times C_B - (F)(C_B)$ | ₂)+(4×ortho | C ₆ IF
corr-(F)(F))+ | |---------------------------------|--|------------------------------------|--------------------------|-----------------------------------|----------------------------------|--|-----------------------------|-------------------------|------------------------------------| | | Literatur | e – Calculated = | = Residual | Reference | (4.7.2.11.1 | ` ` ` ` ` ` ` | re – Calculated | = Residual | Reference | | Gas phase | | | | | | | | | | | • | -565.00 | -565.00 | 0.00 | 63KOL/ZEN | Gas phase | | | | | | $C_p^{\circ} =$ | 83.93 | 83.93 | 0.00 | 53MAN/ACQ | $\Delta_{\rm f}H^{\circ} =$ | -557.30 | -557.40 | 0.10 | 74KRE/PRI | | S° = | 322.11 | 322.11 | 0.00 | 53MAN/ACQ | $C_p^{\circ} =$ | | 163.20 | | | | $\Delta_f S^\circ =$ | | -104.88 | | | | | | | | | $\Delta_t G^{\circ} =$ | | -533.73 | | | I iauid abo | | | | | | $lnK_f =$ | | 215.30 | | | Liquid pha $\Delta_t H^\circ =$ | – 615.20 | -615.20 | 0.00 | 74VDE ODI | | | | | | | $C_p^{\circ} =$ | - 013.20 | 230.62 | 0.00 | 74KRE/PRI | | | | | | | $S^{\circ} =$ | | 332.03 | | | | Chloropont | afluorobenz | one | | C ₆ ClF ₅ | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 267.19 | | | | | | | $(4 \times orth)$ | $o \operatorname{corr-}(F)(F)) +$ | $\Delta_{\rm f}G^{\circ} =$ | | -535.54 | | | | | corr-(F)(C | |)2) ((+ / 0/11/ | 0 (011-(1)(1)) 1 | $\ln K_{\rm f} =$ | | 216.03 | | | | (2 \ 01110 | , con-(1)(c | 4)) | | | | | 210.05 | | | | | Literatu | re — Calculated = | - Residual | Reference | | | | | | | | | | | | 1,3,5-Trich | loro-2,4,6-tı | rifluorobenzene | | C ₆ Cl ₃ F | | Gas phase | | | | | | | | $(b) + (3 \times met)$ | a corr-(F)(F)) + | | $\Delta_t H^\circ =$ | ~810.00 | -812.73 | 2.73 | 69COX/GUN | (3×meta | corr-(Cl)(| $(C1)$ + $(6 \times ortho)$ | corr-(F)(Cl) |) | | $C_p^{\circ} =$ | | 159.83 | | | ` | ` /\ | ,, , | ()() | • | | | | | | | | Literatu | re – Calculated | = Residual | Reference | | Liquid pha | se | | | | | | | | **** | | $\Delta_t H^\circ =$ | -850.77 | -851.20 | 0.43 | 69COX/GUN | Gas phase | | | | | | $C_p^{\circ} =$ | 221.42 | 220.72 | 0.70 | 68AND/COU2 | $\Delta_{\rm f} H^{\circ} =$ | | - 528.87 | | | | <i>s</i> ° = | 300.70 | 326.42 | -25.72 | 68AND/COU2 | $C_p^{\circ} =$ | | 166.29 | | | | $\Delta_{r}S^{\circ} =$ | | -326.21 | | | <u> </u> | | | | | | $\Delta_f G^\circ =$ | | -753.94 | | ' | | | | | | | $lnK_{\ell} =$ | | 304.13 | | | Liquid pha | se | | | | | | | | | | $\Delta_t H^\circ =$ | | -511.20 | | | | | | | | | $C_p^{\circ} =$ | | 217.08 | | | | | | | | | S° = | | 328.98 | | | | | afluorobenz | | | C ₆ BrF ₅ | $\Delta_{\mathbf{f}}S^{\circ} =$ | | - 343.94 | | | | | | | $)_2) + (4 \times orth)$ | o corr-(F)(F))+ | $\Delta_i G^\circ =$ | | - 408.65 | | | | (2×ortho | o corr-(F)(E | 3r)) | ē | | $lnK_f =$ | | 164.85 | | | | | Literatu | re – Calculated = | = Residual | Reference | | | | | · | | | | | | | Solid phase | • | | | | | | | | | | $\Delta_f H^\circ =$ | | - 523.50 | | | | Gas phase | B44 C0 | #14 OF | 0.25 | AND POST | $C_p^{\circ} =$ | 197.95 | 196.80 | 1.15 | 73AND/MAR2 | | $\Delta_t H^\circ =$ | -711.60 | -711.85 | 0.25 | 77KRE/PRI | S° = | 245.35 | 249.48 | -4.13 | 73AND/MAR2 | | $C_p^o =$ | | 160.15 | | | $\Delta_{f}S^{\circ} =$ | | - 423.44 | | | | | | | | | $\Delta_f G^\circ =$ | | -397.25 | | | | Liquid sha | | | | | $lnK_f =$ | | 160.25 | | | | Liquid pha $\Delta_t H^\circ =$ | – 754.65 | - 754.90 | 0.25 | 77KRE/PRI | | | | | | | • | - 134.03 | | 0.25 | //ANE/PKI | | | | | | | C; =
S° = | | 226.36
345.80 | | | | | | | | | $\Delta_t S^\circ =$ | | - 271.45 | $\Delta_i G^{\circ} =$ | | -673.97 | | | | | | | | | $\ln K_{\rm f} = -$ | | 271.87 | | | | | | | | TABLE 55. Summary of residuals for C-H-N-O-S-Halogen families This table provides information on how well agreement was achieved between literature and estimated values for values of $\Delta_l H^{\circ}$ (in kJ/mol), C_p° , and S° (in J/mol·K). Residuals having $< \pm 4$ indicate good agreement, those between $> \pm 4$ and $< \pm 8$ indicate agreement in the range from fair to just acceptable, and those $> \pm 8$ suggest problems such as poor experimental data, a poor choice of group value, an unaccounted for molecular interaction, or combinations of these problems. The distribution of residuals between gas to condensed phase is about half and half. Compounds which include a ring strain correction, rsc, (such as, "cyclohexane rsc") in their molecular description and compounds which are identified by a single group, such as, methane, formaldehyde, acetonitrile, methyl bromide, etc., are excluded from this tabulation because they have zero residuals. Also excluded are compounds containing a group value in their structural group representation which was derived from a single source of thermodynamic data because such compounds will produce zero residuals. The summary of residuals is divided among the various organic families, and then summed for CH, CHO, CHN, CHNO, CHS, and organic halogen compounds as well as for all families of compounds. Family & residual range **Properties** s° $\Delta_{\rm f}H^{\circ}$ C_p° CH Compounds n-Alkanes $< \pm 4$ 41 35 35 $> \pm 4$ to $< \pm 8$ 0 0 1 $> \pm 8$ 0 5 5 42 40 40 total t-Alkanes 35 46 34 $< \pm 4$ $> \pm 4$ to $< \pm 8$ 5 2 9 2 5 1 $> \pm 8$ 42 49 48 total q-Alkanes 27 13 22 $< \pm 4$ 3 4 9 $> \pm 4$ to $< \pm 8$ 2 $> \pm 8$ 0 0 30 24 total 26 n-Alkenes 45 34 35 $< \pm 4$ $> \pm 4$ to $< \pm 8$ 3 2 1 0 $> \pm 8$ 0 0 total 48 36 36 s-Alkenes $< \pm 4$ 36 17 20 7 5 $> \pm 4$ to $< \pm 8$ 16 $> \pm 8$ 13 2 1 65 26 26 total Alkynes 22 14 13 $< \pm 4$ $> \pm 4$ to 3 0 0 0 0 0 $> \pm 8$ 25 13 total 14 TABLE 55. Summary of residuals for C-H-N-O-S-Halogen families — Continued | Family & residual range | | Properties | | |---|---------------------------------------|------------------|-----| | · · · · · · · · · · · · · · · · · · · | $\Delta_{\mathrm{f}}H^{\circ}$ | C° | S | | СН | Compounds (C | ontinued) | | | Alkynes | | | | | < ±4 | 22 | 14 | 1 | | $> \pm 4$ to | 3 | 0 | | | > ±8 | 0 | 0 | | | otal | 25 | 14 | 1 | | Aromat CH-01 | | | | | < ±4 | 54 | 41 | 3 | | > ±4 to < ±8 | 6 | 3 | 1 | | > ±8 | 5 | 2 | | | otal | 65 | 46 | . 4 | | Aromat CH 02 | | | | | < ±4 | 56 | 54 | 4 | | $> \pm 4$ to $< \pm 8$ | 15 | 7 | 1 | | > ±8 | 16 | 10 | | | otal | 87 | 71 | 6 | | Cyclic CH-01 | | | | | < ± 4 | 11 | 12 | 1 | | $> \pm 4$ to $< \pm 8$ | 6 . | 2 | | | > ±8 | 4 | 3 | | | otal | 21 | 17 | 1 | | Cyclic CH-02 | | | | | < ±4 | 33 | 32 | 2 | | $> \pm 4 \text{ to } < \pm 8$ | 14 | 3 | | | > ±8 | 7 | 1 | | | otal | 54 | 36 | 2 | | Cyclic CH-03 | | | | | < ±4 | 15 | 0 | | | $> \pm 4$ to $< \pm 8$ | 18 | 0 | 1 | | > ±8 | 20 | . 0 | | | otal . | 53 | 0 | | | Total CH cpds | $\Delta_{ m f} H^{\circ}$ | C _p ° | S | | < ±4 | 375 | 307 | 25 | | $> \pm 4$ to $< \pm 8$ | 90 | 30 | 5 | | > ±8 | 67 | 24 | 2 | | otal | 532 | 361 | 33 | | | СНО Сотрог | ınds | | | Alcohols | · · · · · · · · · · · · · · · · · · · | | | | < ±4 | 94 | 56 | 4: | | $\Rightarrow \pm 4 \text{ to } < \pm 8$ | 30 | 5 | | | > ±8 | 19 | 13 | | | otal | 143 | 74 | 5 | | Ethers | | | | | < ±4 | 56 | 25 | 14 | | $\Rightarrow \pm 4 \text{ to } < \pm 8$ | 10 | 8 | 11 | | | | 1 | . (| | > ±8 | 11 | | | TABLE 55. Summary of Residuals for C-H-N-O-S-Halogen Families — Continued TABLE 55. Summary of Residuals for C-H-N-O-S-Halogen Families - Continued | Family & residual range | Pr | operties | | Family & residual range | Pro | perties | * ** | |-------------------------|----------------------------|------------------|--|-------------------------|---------------------------------------|------------------|------| | | $\Delta_{\rm f} H^{\circ}$ | C _P ° | S° | | $\Delta_t H^\circ$ | C _p ° | S° | | СНО С | ompounds (C | ontinued) | - | | CHN Compoun | ds | | | Aldehydes | | | | Amines | | | | | < ±4 | 12 | 10 | 10 | < ±4 | 67 | 26 | 11 | | $> \pm 4$ to $< \pm 8$ | 5 | 0 | 2 | > ±4 to < ±8 | 6 | 3 | 5 | | > ±8 | 0 | 7 | . 5 | > ±8 | 6 | 3 | 3 | | total | 17 | 17 | 17 | total | 79 | 32 | 19 | | Ketones | | | | Imines | _ | | | | < ±4 | 43 | 14 | 9 | < ±4 | 2 | 0 | 0 | | $> \pm$ to $< \pm 8$ | 4 | 3 | 3 | $> \pm 4$ to $< \pm 8$ | 1 | 0 | 0 | | > ±8 | 1 | 0 | 2 | > ±8 | 0 | 0 | 0 | | total | 48 | . 17 | 14 | total | 3 | 0 | 0 | | Acids | | | | Nitriles | | | | | < ±4 | 68 | 16 | 11 | < ± 4 | 31 | 11 | 8 | | $> \pm 4$ to $< \pm 8$ | 25 | 9 | 0 | < ±8 | 4 | 0 | 1 | | > ±8 | 43 | 3 | 0 | $> \pm 4$ to $> \pm 8$ | 5 | 1 | 0 | | total | 136 | 28 | 11 | total | 40 | 12 | 9 | | Anhydrides | | | | Hydrazines | | | | | < ±4 | 11 | 2 | 1 | < ± 4 | 12 | 4 | 4 | | $> \pm 4$ to $< \pm 8$ | 3 | 0 | 0 | $> \pm 4$ to $< \pm 8$ | 0 | 0 | . 0 | | > ±8 | 4 | 0 | 0 | > ±8 | 0 | 0 | 0 | | total | 15 | 2 | 1 | total | 12 | 4 | 4 | | Esters | | | | Diazenes | | | | | < ±4 | 53 | 21 | 1 | < ±4 | 14 | 0 | 0 | | $> \pm 4$ to $< \pm 8$ | 21 | 6 | 0 | $> \pm 4$ to $< \pm 8$ | 5 | 0 | 0 | | > ±8 | 26 | 3 | 3 | > ±8 | 1 | 0 | . 0 | | total | 100 | 30 | 4 | total | 20 | 0 | 0 | | Peroxides | | | | Azides | | | | | < ±4 | 7 | 0 | 0 | < ±4 | 9 | 0 | 0 | | $> \pm 4$ to $< \pm 8$ | 0 | 0 | 0 | $> \pm 4$ to $< \pm 8$ | 0 | 0 | 0 | | > ±8 | 3 | 0 | 0 | > ±8 | 0 | 0 | 0 | | total | 10 | 0 | 0 | total | 9 | 0 | 0 | | Hydroperoxides | | | | Cyclic CHN | · · · · · · · · · · · · · · · · · · · | | | | < ±4 | 4 | 0 | 0 | < ±4 | 32 | . 9 | 7 | | > ±4 to < ±8 | 3 | 0 | . 0 | > ±4 to < ±8 | 3 | 1 | Ü | | > ±8 | 4 | 0 | 0 | > ±8 | 1 | 1 | . 0 | | total | 11 | 0 | 0 | total | 36 | 11 | 7 | | Peroxyacids | | <u> </u> | ······································ | Total CHN cpds | $\Delta_{\rm f} H^{\circ}$ | C _p ° | s° | |
< ± 4 | 2 | 0 | 0 | | | - μ | | | $> \pm 4$ to $< \pm 8$ | - 1 | · 0 | 0 | < ±4 | 167 | 50 | 30 | | > ±8 | 5 | 0 | 0 | $> \pm 4$ to $< \pm 8$ | 19 | 4 | 6 | | total | 8 | 0 | 0 | > ±8 | 13 | 5 | 3 | | Carbonates | | | | total | 199 | 59 | 39 | | < ± 4 | 2 | 1 | 1 | | CHNO Compou | nds | , | | > ±4 to < ±8 | 3 | Ô | 0 | | | | | | > ±8 | Õ | Ö | Ö | Amides | | | | | total | 5 | 1 | 1 | < ± 4 | 22 | 12 | . 1 | | | | | | $> \pm 4$ to $< \pm 8$ | 3 | 3 | Ō | | Total CHO cpds | $\Delta_{\rm f} H^{\circ}$ | C _p ° | s° | > ±8 | 11 | Ū- | 1 | | | | | | total | 36 | 15 | 2 | | < ±4 | 349 | 145 | 92 | | | - | | | $> \pm 4$ to $< \pm 8$ | 105 | 31 | 21 | | | | | | > ±8 | 116
570 | 27
203 | 15
128 | | | | | | total | | | | | | | | ## E. S. DOMALSKI AND E. D. HEARING TABLE 55. Summary of Residuals for C-H-N-O-S-Halogen Families — Continued TABLE 55. Summary of Residuals for C-H-N-O-S-Halogen Families - Continued | CHNO Compounds (Continued) Family & residual range Properties CHNO Compounds (Continued) ΔμF Cc c Ureas Sulfides < ± 4 23 2 2 44 52 31 > ± 8 6 0 0 >±4 to ≤±8 3 2 >±8 > ± 8 15 0 0 >±4 to ≤±8 3 0 <th>Family & residual range</th> <th colspan="3">Properties</th> <th colspan="5">CHS Compounds (Continued)</th> | Family & residual range | Properties | | | CHS Compounds (Continued) | | | | | |---|---------------------------------------|-------------------|------------------|-----------------------|---------------------------|--------------------------------|---------------------------------------|---------|--| | Ucas | | Δ _f H° | C_p° | S° | Family & residual ran | nge | Properties | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | CHNC | Compounds (C | ontinued) | | | $\Delta_{ m f} H^{\circ}$ | C _p ° | S° | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Ureas | | | | Sulfides | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 23 | 2 | 2 | < ± 4 | 52 | 31 | 28 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | $> \pm 4$ to $< \pm 8$ | | | 1 | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | | | 3 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | 32 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Amino Acids | | | 10)1 | Disulfides | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | < ±4 | 28 | 16 | 5 | < ±4 | 13 | 10 | 8 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $> \pm 4$ to $< \pm 8$ | 13 | 0 | 1 | $> \pm 4$ to $< \pm 8$ | 1 | 0 | 3 | | | Nitroso Sulfoxides Sulfo | > ±8 | 5 | 6 | 5 | > ±8 | 0 | 1 | 0 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | total | 46 | 22 | . 11 | total | .14 | 11 | 11 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | 2 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $> \pm 4$ to $< \pm 8$ | - | | | $> \pm 4$ to $< \pm 8$ | | 0 | 0 | | | Nitro | > ±8 | | | | > ±8 | 1 | 0 | 0 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | total | 8 | 0 | . 0 | total | . 8 | 2 | 2 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Nitro | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | < ±4 | 65 | 15 | 6 | < ± 4 | 27 | 2 | 2 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | < ±8 | 5 | | 0 | $> \pm 4$ to $< \pm 8$ | 15 | 0 | 0 | | | Nitrites and nitrates Sulfites and sulfates sulfites Sulfites and sulfites Sulfites and sulfites Sulfites and sulfites Sulfites and sulfites Sul | > ±8 | 23 | 2 | 0 | > ±8 | 10 | 0 | 0 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | total | 93 | 18 | 6 | total | 52 | 2 | 2 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Nitrites and nitrates | | | | | | · · · · · · · · · · · · · · · · · · · | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | < ±4 | | | | | | 0 | 0 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $> \pm 4$ to $< \pm 8$ | 2 | 0 | 2 | $> \pm 4$ to $< \pm 8$ | 3 | . 0 | 0 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | > ±8 | | | | > ±8 | | 0 | 0 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | total | 17 | 8 | _. 8 | total | 9 | 0 | 0 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | < ±4 | | 0 | | < ± 4 | | | 3 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | 1 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | > ±8 | | _ | | > ±8 | | | 1 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | total | 14 | . 0 | 0 | total | 8 | 5 | 5 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | Total CHS | $\Delta_{\mathrm{f}}H^{\circ}$ | C_p° | s° | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | _ | - | | 4 | 4.50 | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | - | 0 | | | | | 73 | | | Total CHNO cpds $\Delta_t H^o$ C_ρ^o S^o total 198 84 $< \pm 4$ 174 52 20 Halogens $> \pm 4$ to $< \pm 8$ 29 4 3 $> \pm 8$ 53 9 6 Fluorides total 256 65 29 $< \pm 4$ 30 19 $> \pm 4$ to $< \pm 8$ 15 5 $> \pm 8$ 17 0 total 62 24 Thiols $< \pm 4$ 50 29 30 Chlorides $> \pm 4$ to $< \pm 8$ 2 2 0 $< \pm 4$ 90 49 $> \pm 8$ 0 0 2 $> \pm 4$ to $< \pm 8$ 23 7 | Total | 0 | 0 | . 0 | | | | 6 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Total CHNO cpds | Δ _ε H° | C _n ° | s°. | | | | 5
84 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | · · · · · · · · · · · · · · · · · · · | | | | | | | ***** | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | Halogens | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | *** · 1 | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | total | 256 | 65 | 29 | | | | 14 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | CTIC C | • | | | | | 2 | | | Thiols $<\pm 4$ 50 29 30 Chlorides $>\pm 4$ to $<\pm 8$ 2 2 0 $<\pm 4$ 90 49 $>\pm 8$ 0 0 2 $>\pm 4$ to $<\pm 8$ 23 7 | | CHS Compour | ads | | | | | 6
22 | | | $> \pm 4$ to $< \pm 8$ 2 2 0 $< \pm 4$ 90 49
> ± 8 0 0 2 > ± 4 to $< \pm 8$ 23 7 | | | | | | | | | | | $> \pm 8$ 0 0 2 $> \pm 4$ to $< \pm 8$ 23 7 | | | | | | | ** | | | | | | | | | | | | 34 | | | total 52 31 32 $>+8$ 72 5 | | | | | | | | 4 | | | | total | 52 | 31 | 32 | > ± 8 | 72 | 5 | 3
41 | | TABLE 55. Summary of Residuals for C-H-N-O-S-Halogen Families — Continued Halogens (Continued) **Bromides** 9 < ±4 > ±4 to < ±8 > ±8 total Iodides < ±4 $> \pm 4$ to $< \pm 8$ $> \pm 8$ total Mixed halogens < ±4 $> \pm 4$ to $< \pm 8$ > ±8 total Total halogens $\Delta_i H^\circ$ C_p° s° $< \pm 4$ $> \pm 4$ to $< \pm 8$ > ±8 total TABLE 55. Summary of Residuals for C-H-N-O-S-Halogen Families — Continued | All compounds | $\Delta_{\rm f} H^{\circ}$ | (%) | C_p° | (%) | S° | (%) | |---------------|----------------------------|-------|---------------|-------|-----|-------| | < ±4 | 1423 | (67) | 738 | (80) | 540 | (76) | | > ±4 to < ±8 | 335 | (16) | 91 | (10) | 105 | (14) | | > ±8 | 366 | (17) | 84 | (10) | 70 | (10) | | Grand total | 2124 | (100) | 913 | (100) | 715 | (100) | TABLE 56. Name and Formula Index | Name | Formula | CAS Registry No. | Family | Page | |---------------------------------------|---|------------------|---|-----------| | A | , , , , , , , , , ,
, , , , , , , , , , | | *************************************** | | | Acetaldehyde | C₂H₄O | 75–07–0 | Aldehyde | 935 | | Acetamide | C₂H₅NO | 60–35–5 | Amides | 1006 | | Acetanilide | C ₈ H ₉ NO | 103-84-4 | Amides | 1010 | | Acetic acid | C ₂ H ₄ O ₂ | 64–19–7 | Acids | 945 | | Acetic anhydride | C ₄ H ₆ O ₃ | 108–24–7 | Anhydrides | 964 | | Acetone | C₃H ₆ O | 67–64–1 | Ketones | 938 | | Acetonitrile' | C ₂ H ₃ N | 75–05–8 | Nitriles | 992 | | Acetophenone | C_8H_8O | 98–86–2 | Ketones | 944 | | Acetyl bromide | C ₂ H ₃ BrO | 506–96–7 | Bromide | 1092 | | N-Acetyl-N-butylacetamide | $C_8H_{15}NO_2$ | 1563-86-6 | Amides | 1010 | | Acetyl chloride | C₂H₃ClO | 75–36–5 | Chloride | 1084 | | Acetylene | C_2H_2 | 74–86–2 | Alkynes | 858 | | Acetyl fluoride | C ₂ H ₃ FO | 557-99-3 | Fluoride | 1063 | | Acetyl iodide | C ₂ H ₃ IO | 507-02-8 | Iodide | 1098 | | Acetylurea | $C_3H_6N_2O_2$ | 591–07–1 | Ureas | 1014 | | Acrylic acid | $C_3H_4O_2$ | 79–10–7 | Acids | 950 | | Acrylonitrile | C_3H_3N' | 107–13–1 | Nitriles | 994 | | Adamantane | $C_{10}H_{16}$ | 281–23–2 | Cyclic02 | 901 | | Adamantane-1-carboxylic acid | $C_{11}H_{16}O_2$ | 828-51-3 | Acids | 950 | | Adamantane-2-carboxylic acid | $C_{11}H_{16}O_2$ | 15897–81–1 | Acids | 951 | | 1-Adamantanol | $C_{10}H_{16}O$ | 768-95-6 | Alcohols | 920 | | 2-Adamantanol | $C_{10}H_{16}O$ | 700–57–2 | Alcohols | 920 | | 1-Adamantyl carboxamide | $C_{11}H_{17}NO$ | 5511-18-2 | Amides | 1010 | | Adipic acid | $C_6H_{10}O_4$ | 124-04-9 | Acids | 952 | | Adiponitrile | $C_6H_8N_2$ | 111-69-3 | Nitriles | 996 | | DL-Alanine | C ₁ H ₂ NO ₂ | 302-72-7 | Amino acids | 1014 | | DL-Alanyl-DL-alanine | $C_6H_{12}N_2O_3$ | 2867–20–1 | Amino acids | 1020 | | DL-Alanylgiycine | $C_5H_{10}N_2O_3$ | 1188-01-8 | Amino acids | 1020 | | Alanylphenylalanine | $C_{12}H_{16}N_2O_3$ | 3061-90-3 | Amino acids | 1021 | | Allene | C₃H₄ | 463-49-0 | n-Alkenes | 851 | | Allenyl phenyl sulfone | C ₉ H ₈ O ₂ S | 2525-42-0 | Sulfones | 1053 | | Allyl alcohol | C₃H ₆ O | 107-18-6 | Alcohols | 909, 910 | | Allyl tert-butyl sulfide | C ₇ H ₁₄ S | 37850-75-2 | Sulfides | 1047 | | Allylcyclohexane | C ₉ H ₁₆ | 2114-42-3 | Cyclic02 | 899 | | Allylcyclopentane | C_8H_{14} | 3524-75-2 | Cyclic02 | 896 | | Allyl ethyl sulfone | C ₅ H ₁₀ O ₂ S | 34008918 | Sulfones | 1051 | | Allyl ethyl sulfoxide | C ₅ H ₁₀ OS | 34757-40-9 | Sulfoxides | 1049 | | Allyl methyl sulfone | $C_4H_8O_2S$ | 16215-14-8 | Sulfones | 1051 | | 2-Aminobenzoic acid | $C_7H_7NO_2$ | 118-92-3 | Amino acids | 1018,1019 | | 3-Aminobenzoic acid | $C_7H_7NO_2$ | 99-05-8 | Amino acids | 1019 | | 4-Aminobenzoic acid | $C_7H_7NO_2$ | 150-13-0 | Amino acids | 1019 | | 4-Aminohiphenyl | $C_{12}H_{11}N$ | 92-67-1 | Amines | 991 | | 1-Aminobutane | $C_4H_{11}N$ | 109-73-9 | Amines | 983 | | 2-Aminobutane | $C_4H_{11}N$ | 13952-84-6 | Amines | 984 | | 4-Aminobutanoic acid | $C_4H_9NO_2$ | 56-12-2 | Amino acids | 1015 | | Aminoethane | C ₂ H ₇ N | 75-04-7 | Amines | 982 | | Aminoethanoic acid | $C_2H_5NO_2$ | 56-40-6 | Amino acids | 1014 | | 7-Aminoheptanoic acid | $C_7H_{15}NO_2$ | 929-17-9 | Amino acids | 1015 | | 1-Aminohexane | $C_6H_{15}N$ | 111–26–2 | Amines | 983 | | 2-Aminohexanoic acid | $C_6H_{13}NO_2$ | 616–06–8 | Amino acids | 1016 | | 4-Aminohexanoic acid | $C_6H_{13}NO_2$ | 5415-99-6 | Amino acids | 1016 | | 5-Aminohexanoic acid | $C_6H_{13}NO_2$ | 628-47-7 | Amino acids | 1016,1017 | | Aminomethane | CH ₅ N | 74–89–5 | Amines | 982 | | 2-Amino-2-methylpropane | C ₄ H ₁₁ N | 75–64–9 | Amines | 984,985 | | 9-Aminononanoic acid | C ₉ H ₁₉ NO ₂ | 1120-12-3 | Amino acids | 1015 | | 1-Aminopentane | C ₅ H ₁₃ N | 1120-12-3 | Amines | 983 | | 5-Aminopentane 5-Aminopentanoic acid | C ₅ H ₁₁ NO ₂ | 660-88-8 | Amino acids | 1015 | | | C ₃ H ₁₁ NO ₂
C ₃ H ₉ N | 107-10-8 | Amines | 982,983 | | 1-Aminopropane | | | | • | | 2-Aminopropane | C₁H₀N | 75–31–0 | Amines | 984 | | DL-2-aminopropanoic Acid | C ₃ H ₇ NO ₂ | 302-72-7 | Amino acids | 1014 | | Aniline | C₀H ₇ N | 62–53–3 | Amines | 989 | | Anisole | C ₇ II ₈ O | 100-66-3 | Ethers | 934 | | Anthracene | $C_{14}H_{10} \ C_{20}H_{40}O_2$ | 120-12-7 | Aromat02 | 884,885 | | Arachidic acid | | 506-30-9 | Acids | 949, 950 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--|--|------------------|----------------------|-----------| | L-Asparagine | C ₄ H ₈ N ₂ O ₃ | 70-47-3 | Amino acids | 1018 | | L-Aspartic acid | $C_4H_7NO_4$ | 56-84-8 | Amino acids | 101 | | 1-Azabicyclo[3.3.0]octane | $C_7H_{13}N$ | 643-20-9 | CyclCHN | 1000 | | Azelaic acid | $C_9H_{16}O_4$ | 123-99-9 | Acids | 953 | | Azidobenzene | $C_6H_5N_3$ | 622-37-7 | Azides | 1000 | | Azidocyclohexane | $C_6H_{11}N_3$ | 19573-22-9 | Azides | 1000 | | Azidocyclopentane | $C_5H_9N_3$ | 33670-50-7 | Azides | 1000 | | 2-Azidoethanol | $C_2H_5N_3O$ | 1517-05-1 | Azides | 1000 | | Aziridine | C ₂ H ₅ N | 151564 | CyclCHN | 1001 | | cis-Azobenzene | $C_{12}H_{10}N_2$ | 17082-12-1 | Diazene | 1000 | | trans-Azobenzene | $C_{12}H_{10}N_2$ | 1080166 | Diazene | 999,1000 | | Azobutane | $C_8H_{18}N_2$ | 2159-75-3 | Diazene | 999 | | Azo-tert-butane | $C_8H_{18}N_2$ | 927-83-3 | Diazene | 999 | | Azoethane | C ₄ H ₁₀ N ₂ | 821-14-7 | Diazene | 998 | | Azoisopropane | $C_6H_{14}N_2$ | 3880-49-7 | Diazene | 999 | | Azomethane | $C_2H_6N_2$ | 503-28-6 | Diazene | 998 | | Azopropane | $C_6H_{14}N_2$ | 821-67-0 | Diazene | 998 | | | | | | | | В | | | | | | Benzaldehyde | C_7H_6O | 100-52-7 | Aldehyde | 938 | | Benzamide | C_7H_7NO | 55-21-0 | Amides | 1010 | | 1,2-Benzanthracene | $C_{18}H_{12}$ | 56553 | Aromat02 | 886 | | Benzenamine | C_6H_7N | 62-53-3 | Amines | 989 | | Benzene | C ₆ H ₆ | 71-43-2 | Aromat01 | 863 | | 1,2-Benzenediamine | $C_6H_8N_2$ | 95-54-5 | Amines | 991 | | 1,3-Benzenediamine | $C_0H_8N_2$ | 108-45-2 | Amines | 991 | | 1,4-Benzenediamine | $C_6H_8N_2$ | 106-50-3 | Amines | 991 | | 1,2-Benzene dicarboxylic acid | C ₈ H ₆ O ₄ | 88-99-3 | Acids | 961 | | 1,3-Benzene dicarboxylic acid | $C_8H_6O_4$ | 121-91-5 | Acids | 962 | | 1,4-Benzene dicarboxylic acid | C ₈ H ₆ O ₄ | 100-21-0 | Acids | 962 | | 1.2-Benzenediol | C ₆ H ₆ O ₂ | 120-80-9 | Alcohols | 924 | | 1,3-Benzenediol | $C_6H_6O_2$ | 108-46-3 | Alcohols | 924 | | 1,4-Benzenediol | $C_6H_6O_2$ | 123-31-9 | Alcohols | 924 | | Benzenemethanol | C_7H_8O | 100-51-6 | Alcohols | 914 | | Benzenethiol | C6H6S | 108-98-5 | Thiols | 1041 | | 1,2,3-Benzene tricarboxylic acid | C ₂ H ₆ O ₆ | 528-44-9 | Acids | 962 | | 1,3,5-Benzene tricarboxylic acid | C ₆ H ₆ O ₆ | 554-95-0 | Acids | 962 | | Benzil | $C_{14}H_{10}O_{2}$ | 134-81-6 | Ketones | 945 | | 1,4-Benzodinitrile | C ₈ H ₄ N ₂ | 632-26-7 | Nitriles | 997 | | Benzoic acid | C ₇ H ₆ O ₂ | 65-85-0 | Acids | 956, 957 | | Benzoic anhydride | $C_{14}H_{10}O_3$ | 93-97-0 | Anhydrides | | | Benzonitrile | C ₇ H ₆ N | 100-47-0 | Nitriles | 965 | | | • • | | | 996 | | Benzophenone | $C_{i3}H_{10}O$ | 119-61-9 | Ketones | 944 | | Benzoyl chloride | C ₇ H ₅ ClO | 98-88-4 | Chloride | 1084 | | N-Benzoylglycine | C ₉ H ₉ NO ₃ | 495-69-2 | Amino acids | 1019 | | Benzyl alcohol | C ₇ H ₈ O | 100-51-6 | Alcohols | 914 | | Benzylamine | C ₇ H ₉ N | 100-46-9 | Amines | 990 | | Benzylazide | C ₂ H ₂ N ₃ | 622-79-7 | Azides | 1000,1001 | | Benzyl bromide | C ₇ H ₇ Br | 100-39-0 | Bromide | 1091 | | Benzyl chloride | C ₇ H ₇ Cl | 100-44-7 | Chloride | 1073 | | Benzylideneaniline | $C_{i3}H_{ii}N$ | 538-51-2 | Imines | 992 | | Benzyl iodide | C_7H_7I | 620-05-3 | Iodide | 1095 | | Benzyl mercaptan | C_7H_8S | 100-53-8 | Thiols | 1041 | | Benzyl methyl sulfone | $C_8H_{10}O_2S$ | 3112-90-1 | Sulfones | 1052 | | Biacetyl | $C_4H_6O_2$ | 431-03-8 | Ketones | 942 | | 9,9'-Bianthracene | $C_{28}H_{18}$ | 1055-23-8 | Cyclic03 | 908 | | Bibenzyl | $C_{14}H_{14}$ | 103-29-7 | Aromat02 | 876 | | Bicyclo[1.1.0]butane | C₄H ₆ | 157-33-5 | Cyclic03 | 902 | | Bicyclobutane methyl carboxylate | $C_6H_8O_2$ | 4935-01-7 | Esters | 977 | | Bicyclo[2,2,1]hepta-2,5-diene | C_7H_8 | 121-46-0 | Cyclic03 | 902 | | Bicyclo[2,2,1]heptane | C_7H_{12} | 279-23-2 | Cyclic03 | 903 | | Bicyclo[4.1.0]heptane | C ₇ H ₁₂
C ₇ H ₁₂ | 286-08-8 | Cyclic03 | 903 | | Bicyclo[4.1.0]heptane Bicyclo[2,2.1]hept-2-ene | | 498-66-8 | Cyclic03
Cyclic03 | 903 | | | C ₇ H ₁₀ | | | | | Bicycloheptyl | $C_{14}H_{26}$ | 23183-11-1 | Cyclic03 | 907 | | Bicyclo[3,1.0]hexane | C_oH_{1o} | 285_58_5 | Cyclic03 | 902 | | | | | | | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |---|---|------------------|-----------|-----------| | Bicyclohexyl | $C_{12}H_{22}$ | 92–51–3 | Cyclic03 | 907 | | Bicyclo[3.3.1]nonane | C_9H_{16} | 280–65–9 | Cyclic03 | 900 | | cis-Bicyclo[6.1.0]nonane | C_9H_{16} | 13757-43-2 | Cyclic03 | 906 | | trans-(+)-Bicyclo[6.1.0]nonane | C_9H_{16} | 39124–79–3 | Cyclic03 | 906 | | Bicyclo[2.2.2]octane | C_8H_{14} | 280-33-1 | Cyclic02 | 900 | | cis-Bicyclo[3.3.0]octane | C_8H_{14} | 1755-05-1 | Cyclic03 | 904 | | trans-Bicyclo[3.3.0]octane | C_8H_{14} | 5597–89–7 | Cyclic03 | 905 | | Bicyclo[4.2.0]octane | C ₈ H ₁₄ | 278–30–8 | Cyclic03 | 904 | | Bicyclo[5.1.0]octane | C_8H_{14} | 286-43-1 | Cyclic03 | 904 | | Bicyclo[2.2.2]oct-2-ene | C_8H_{12} | 931–64–6 | Cyclic03 | 904 | | Bicyclopentyl | $C_{10}H_{18}$ | 1636-39-1 | Cyclic02 | 895 | | Bicyclopropyl | C_6H_{10} | 5685-46-1 | Cyclic03 | 902 | | Bicyclo[3.3.3]undecane | $C_{11}H_{20}$ | 29415-95-0 | Cyclic02 | 901 | | 9,9'-Biphenanthrene | $C_{28}H_{18}$ | 20532-03-0 | Cyclic03 | 908 | | Biphenyl | $C_{12}H_{10}$ | 92-52-4 | Aromat02 | 877,878 | | 2,2'-Bis(hydroxymethyl)-1,3-propanediol | $C_5H_{12}O_4$ | 115-77-5 | Alcohol | 919 | | 2,2-Bis(4-hydroxyphenyl)-propane |
$C_{15}H_{16}O_2$ | 80-05-7 | Alcohols | 925 | | Bis-(3,3,3-trifluoropropyl)ether | C ₆ H ₈ F ₆ O | 674-65-7 | Fluoride | 1065 | | N,N-Bisuccinimide | $C_8H_8N_2O_4$ | 500005-58-3 | CyclCHNO | 1035 | | Bromobenzene | C ₆ H ₅ Br | 108-86-1 | Bromide | 1091 | | 4-Bromobenzoic acid | C ₇ H ₅ BrO ₂ | 586–76–5 | Bromide | 1091,1092 | | 1-Bromobutane | C₄H₀Br | 109-65-9 | Bromide | 1051,1052 | | 2-Bromobutane | C ₄ H ₉ Br | 78-76-2 | Bromide | 1088 | | 1-Bromo-2-chloroethane | C₄H₄BrCl | 107-04-0 | Mixed | 1100 | | 1-Bromododecane | C ₁₂ H ₂₅ Br | 143-15-7 | Bromide | 1087 | | Bromoethane | C_1 2 H_5 Br | 74–96–4 | Bromide | 1087 | | Bromoethylene | C ₂ H ₃ Br | 593-60-2 | Bromide | 1090 | | | $C_7H_{15}Br$ | 629-04-9 | Bromide | 1090 | | 1-Bromoheptane | | | | | | 1-Bromohexadecane | C ₁₆ H ₃₃ Br | 112-82-3 | Bromide | 1087 | | 1-Bromohexane | C ₆ H ₁₃ Br | 111-25-1 | Bromide | 1086 | | Bromomethane | CH₃Br | 74–83–9 | Bromide | 1086 | | 1-Bromo-3-methylbutane | C ₅ H ₁₁ Br | 107–82–4 | Bromide | 1087 | | 1-Bromo-2-methylpropane | C ₄ H ₉ Br | 78–77–3 | Bromide | 1087 | | 2-Bromo-2-methylpropane | C ₄ H ₉ Br | 507–19–7 | Bromide | 1088 | | 1-Bromooctane | C ₈ H ₁₇ Br | 111-83-1 | Bromide | 1087 | | Bromopentafluorobenzene | C ₆ BrF ₅ | 344-04-7 | Mixed | 1101 | | 1-Bromopentane | C₅H ₁₁ Br | 110-53-2 | Bromide | 1086 | | 1-Bromopropane | C_3H_7Br | 106-94-5 | Bromide | 1086 | | 2-Bromopropane | C_3H_7Br | 75–26–3 | Bromide | 1088 | | 1-Bromo-1-propene (E) | C₃H₅Br | 590–15–8 | Bromide | 1090 | | 1-Bromo-1-propene (Z) | C ₃ H ₅ Br | 590-13-6 | Bromide | 1090 | | 3-Bromo-1-propene | C ₃ H ₅ Br | 106–95–6 | Bromide | 1090 | | 1-Bromopropyne | C_3H_3Br | 2003-82-9 | Bromide | 1090 | | 1,2-Butadiene | C_4H_6 | 590-19-2 | n-Alkenes | 850 | | 1,3-Butadiene | C_4H_6 | 106–99–0 | n-Alkenes | 850 | | Butadiync | C ₄ H ₂ | 460 12 8 | Alkynes | 861 | | Butanal | C_4H_8O | 123-72-8 | Aldehyde | 936 | | Butanamide | C ₄ H ₉ NO | 541-35-5 | Amides | 1007 | | Butane | C_4H_{10} | 106–97–8 | n-Alkanes | 830 | | Butanediamide | C ₄ H ₈ N ₂ O ₂ | 110–14–5 | Amides | 1010 | | 1.2-Butanediamine | $C_4H_{12}N_2$ | 4426–48–6 | Amines | 984 | | 1,4-Butanedinitrile | C ₄ H ₄ N ₂ | 110-61-2 | Nitriles | 996 | | Butanedioic acid | C ₄ H ₆ O ₄ | 110-15-6 | Acids | 951 | | 1,2-Butanediol | $C_4H_{10}O_2$ | 584-03-2 | Alcohols | 918 | | • | | | | 918 | | 1,3-Butanediol | $C_4H_{10}O_2$ | 107-88-0 | Alcohols | | | 1,4-Butanediol | $C_4H_{10}O_2$ | 110-63-4 | Alcohols | 918 | | 2,3-Butanediol | $C_4H_{10}O_2$ | 513-85-9 | Alcohols | 918 | | 2,3-Butanedione | $C_4H_6O_2$ | 431–03–8 | Ketones | 942 | | 1,4-Butanedithiol | $C_4H_{10}S_2$ | 1191088 | Thiols | 1038 | | Butanenitrile | C_4H_7N | 109–74–0 | Nitriles | 992,993 | | 1,2,3,4-Butanetetrol | $C_4H_{10}O_4$ | 149–32–6 | Alcohols | 919 | | 1-Butanethiol | $C_4H_{10}S$ | 109-79-5 | Thiols | 1036 | | 2-Butanethiol | $C_4H_{10}S$ | 513-53-1 | Thiols | 1038 | | Butanoic acid | $C_4H_8O_2$ | 107-92-6 | Acids | 946 | | Butanol | $C_4H_{10}O$ | 71–36–3 | Alcohols | 910 | | | | | | | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--|--|--------------------------|----------------------|-----------| | 4-Butanolactone | C₄H ₆ O ₂ | 96-48-0 | Esters | 97: | | Butanone | C₄H ₈ O | 78–93–3 | Ketones | 938 | | Butanoyl chloride | C₄H₁ClO | 141-75-3 | Chloride | 1084 | | trans-2-Butenal | C4H6O | 4170-30-3 | Aldehyde | 930 | | 1-Butene | C₄H ₈ | 106-98-9 | n-Alkenes | 846 | | cis-2-Butene | C_4H_8 | 590-18-1 | n-Alkenes | 847 | | trans-2-Butene | C_4H_8 | 624-64-6 | n-Alkenes | 848 | | (E)-2-Butenedioic acid | C ₄ H ₄ O ₄ | 110-17-8 | Acids | 951 | | (Z)-2-Butenedioic acid | C ₄ H ₄ O ₄ | 110-16-6 | Acids | 951 | | cis-2-Butenenitrile | C ₄ H ₅ N | 1190-76-7 | Nitriles | 994 | | trans-2-Butenenitrile | C ₄ H ₅ N | 627-26-9 | Nitriles | 994 | | 1-Buten-3-yne | C ₄ H ₄ | 689-97-4 | Alkynes | 861 | | Butoxybutane | C ₈ H ₁₈ O | 142–96–1 | Ethers | 927 | | 2-Butoxy-2-butane | C ₈ H ₁₈ O | 6863–58–7 | Ethers | 928 | | Butoxyethene | C₀H₁₂O | 111-34-2 | Ethers | 929 | | N-Butylacetamide | C ₆ H ₁₃ NO | 1119-49-9 | Amides | 1009 | | N-tert-Butylacetamide | C₀H₁₃NO | 762-84-5 | Amides | 1009 | | Butyl acetate | $C_6H_{12}O_2$ | 123-86-4 | Esters | 969 | | tert-Butyl acetate | C ₆ H ₁₂ O ₂ | 540–88–5 | Esters | 970 | | n-Butyl alcohol | CH10O | 71-36-3 | Alcohols | 910 | | sec-Butyl alcohol | C₄H ₁₀ O | 78-92-2 | Alcohols | 915 | | tert-Butyl alcohol | C ₄ H ₁₀ O | 75-65-0 | Alcohols | 916 | | n-Butyl amine | C ₄ H ₁₁ N | 109-73-9 | Amines | 983 | | sec-Butyl amine | C ₄ H ₁₁ N | 13952-84-6 | Amines | 984 | | tert-Butyl amine | C ₄ H ₁₁ N | 75-64-9 | Amines | 984,985 | | Butylbenzene | C ₁₀ H ₁₄ | 104-51-8 | Aromat01 | 866 | | sec-Butylbenzene | C ₁₀ H ₁₄
C ₁₀ H ₁₄ | 135-98-8 | Aromat02 | 872 | | tert-Butylbenzene | | 98-06-6 | Aromat02 | 873 | | Butyl (E)-2-butenoate | C ₈ H ₁₄ O ₂ | 7299-91-4 | Esters | 973 | | Butyl trans-2-butenoate Butyl chloroacetate | C ₈ H ₁₄ O ₂ | 7299-91-4 | Esters | 973 | | Butyl 2-chlorobutanoate | C ₆ H ₁₁ ClO ₂
C ₈ H ₁₅ ClO ₂ | 590-02-3
62108-74-1 | Chloride | 1081 | | Butyl 2-chloropropanoate | | 54819-86-2 | Chloride | 1083 | | Butyl 3-chloropropanoate | C ₇ H ₁₃ ClO ₂ | | Chloride | 1082 | | Butylcyclohexane | C ₇ H ₁₃ ClO ₂
C ₁₀ H ₂₀ | 27387-79-7
1678-93-9 | Chloride | 1082 | | Butylcyclonexane | C ₁₀ H ₁₈ | | Cyclic02 | 898 | | N-Butyldiacetamide | C ₈ H ₁₅ NO ₂ | 2040-95-1
1563-86-6 | Cyclic02 | 893 | | N-Butyldiacetylamine | C ₈ H ₁₅ NO ₂ | 1563-86-6 | Amides | 1009 | | Butyl dichloroacetate | | | Amides | 1009 | | N-Butylethanamide | C ₆ H ₁₀ Cl ₂ O ₂
C ₆ H ₁₃ NO | 29003-73-4
1119-49-9 | Chloride
Amides | 1083 | | Butyl ethanoate | C ₆ H ₁₂ O ₂ | 123-86-4 | Esters | 1009 | | Butyl ethyl sulfide | C ₆ H ₁₄ S | 638-46-0 | | 969 | | tert-Butyl ethyl sulfide | C ₆ H ₁₄ S | 14290-92-7 | Sulfides
Sulfides | 1042,1043 | | tert-Butyl ethyl sulfone | C ₆ H ₁₄ O ₂ S | 34008-94-1 | Sulfones | 1047 | | tert-Butyl ethyl sulfoxide | C ₆ H ₁₄ OS | 25432-20-6 | Sulfoxides | 1051 | | Butyl heptyl sulfide | C ₁₁ H ₂₄ S | 40813-84-1 | | 1050 | | tert-Butyl hydroperoxide | C ₄ H ₁₀ O ₂ | 75-91-2 | Sulfides | 1045 | | n-Butylisobutylamine | C ₈ H ₁₉ N | 20810-06-4 | Hydroperoxides | 979 | | N-Butylisobutyleneimine | C ₈ H ₁₇ N | 6898-75-5 | Amines | 986 | | Butyl methyl sulfide | C ₅ H ₁₂ S | 628-29-5 | Imines | 992 | | tert-Butyl methyl sulfide | C ₅ H ₁₂ S | | Sulfides | 1042 | | Butyl methyl sulfone | C ₅ H ₁₂ O ₂ S | 6163-64-0
7560-59-0 | Sulfides | 1046 | | tert-Butyl methyl sulfone | C ₃ H ₁₂ O ₂ S | 14094-12-3 | Sulfones | 1051 | | 1-Butyinaphthalene | C ₁₄ H ₁₆ | 1634-09-9 | Sultones
A | 1051 | | 2-Butylnaphthalene | C ₁₄ H ₁₆ | 1134-62-9 | Aromat02 | 881 | | Butyl nonyl sulfide | C ₁₃ H ₂₈ S | | Aromat02 | 881 | | Butyl pentadecyl sulfide | C ₁₉ H ₄₀ S | 66577-32-0
66359-42-0 | Sulfides | 1046 | | N-Butylpentanamide | C ₁ 9H ₄₀ S
C ₉ H ₁₉ NO | 66359~42~0 | Sulfides | 1046 | | Butyl pentanoate | | 2763-67-9 | Amides | 1009 | | Butyl pentanoate
tert-Butyl perdecanoate | C ₉ H ₁₈ O ₂ | 591-68-4 | Esters | 970 | | | C ₁₄ H ₂₈ O ₃ | 16474-36-5 | Peroxyacids | 981 | | tert-Butyl perdodecanoate | C ₁₆ H ₃₂ O ₃ | 2123-88-8 | Peroxyacids | 981 | | tert-Butyl pertetradecanoate | C ₁₈ H ₃₆ O ₃ | 59710-71-3 | Peroxyacids | 981 | | Butyl propyl sulfide | C ₇ H ₁₆ S | 1613-46-3 | Sulfides | 1043 | | tert-Butyl-(1,1,3,3-tetramethylbutyl)diazene | $C_{12}H_{26}N_2$ | 57905-89-2 | Diazene | 999 | | N-n-Butylurea
N-sec-Butylurea | $C_5H_{12}N_2O$
$C_2H_{12}N_2O$ | 592-31-4 | Ureas | 1012 | | | | 689-11-2 | Ureas | 1012 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |---------------------------------------|---|------------------|----------|-----------| | N-tert-Butylurea | C ₅ H ₁₂ N ₂ O | 1118–12–3 | Ureas | 1012 | | Butyl valerate | $C_9H_{18}O_2$ | 591684 | Esters | 970 | | n-Butyl vinyl ether | $C_6H_{12}O$ | 111-34-2 | Ethers | 929 | | 1-Butyne | C_4H_6 | 107006 | Alkynes | 858 | | 2-Butyne | C_4H_6 | 503–17–3 | Alkynes | 860 | | 2-Butyne-1,4-dinitrile | C_4N_2 | 1071–98–3 | Nitriles | 996 | | Butyraldehyde | C₄H ₈ O | 123-72-8 | Aldehyde | 936 | | Butyramide | C ₄ H ₉ NO | 541-35-5 | Amides | 1007 | | Butyric acid | $C_4H_8O_2$ | 107–92–6 | Acids | 946 | | τ-Butyrolactone | $C_4H_6O_2$ | 96-48-0 | Esters | 975 | | Butyronitrile | C ₄ H ₇ N | 109–74–0 | Nitriles | 992,993 | | С | | | | | | Capric acid | $C_{10}H_{20}O_2$ | 334–48–5 | Acids | 947 | | Caprinitrile | $C_{10}H_{19}N$ | 1975–78–6 | Nitriles | 993 | | Caproic acid | $C_6H_{12}O_2$ | 142-62-1 | Acids | 946 | | Caprolactone | $C_6H_{10}O_2$ | 502-44-3 | Esters | 975 | | Caprylic acid | $C_8H_{16}O_2$ | 124-07-2 | Acids | 947 | | Capryonitrile | $C_8H_{15}N$ | 124–12–9 | Nitriles | 993 | | Catechol | $C_6H_6O_2$ | 120-80-9 | Alcohols | 924 | | Cetyl alcohol | $C_{16}H_{34}O$ | 36653-82-4 | Alcohois | 913 | | Chloroacetic acid | $C_2H_3ClO_2$ | 79–11–8 | Chloride | 1079 | | Chloroacetyl chloride | $C_2H_2Cl_2O$ | 79-04-9 | Chloride | 1084 | | 2-Chlorobenzaldehyde | C ₇ H₅ClO | 89-98-5 | Chloride | 1080 | | 3-Chlorobenzaldehyde | C ₇ H ₅ ClO | 587-04-2 | Chloride | 1080 | | 4-Chlorobenzaldehyde | C ₇ H₅ClO | 104-88-1 | Chloride | 1081 | | Chlorobenzene | C ₆ H ₅ Cl | 108–90–7 | Chloride | 1072 | | 2-Chloro-1,4-benzenediol | $C_6H_5ClO_2$ | 615–67–8 | Chloride | 1078 | | 2-Chlorobenzoic acid | C ₇ H ₅ ClO ₂ | 118-91-2 | Chloride | 1080 | | 3-Chlorobenzoic acid | C ₇ H ₅ ClO ₂ | 535-80-8 | Chloride | 1080 | | 4-Chlorobenzoic acid | C7H5ClO2 | 74-11-3 | Chloride | 1080 | | 2-Chlorobenzoyl chloride | C ₇ H₄Cl ₂ O | 609–65–4 | Chloride | 1085 | | 3-Chlorobenzoyl chloride | C₂H₄Cl₂O |
618-46-2 | Chloride | 1085 | | 4-Chlorobenzoyl chloride | C ₇ H ₄ Cl ₂ O | 122-01-0 | Chloride | 1085 | | 1-Chlorobutane | C ₄ H ₉ Cl | 109-69-3 | Chloride | 1066 | | 2-Chlorobutane | C₄H ₉ Cl | 78864 | Chloride | 1067 | | 2-Chlorobutanoic acid | C ₄ H ₇ ClO ₂ | 4170–24–5 | Chloride | 1079 | | 3-Chlorobutanoic acid | C ₄ H ₇ ClO ₂ | 1951–12–8 | Chloride | 1079 | | 4-Chlorobutanoic acid | C ₄ H ₇ ClO ₂ | 627-00-9 | Chloride | 1079 | | Chlorocyclohexane | C₀H₁₁Cl | 542–18–7 | Chloride | 1076 | | 1-Chloro-1,1-difluoroethane | $C_2H_3ClF_2$ | 75-68-3 | Mixed | 1100 | | 1-Chlorododecane | $C_{12}H_{25}CI$ | 112–52–7 | Chloride | 1067 | | Chloroethane | C₂H₅Cl | 75003 | Chloride | 1066 | | 1-Chloro-2-ethoxyethane | C ₄ H ₉ ClO | 628-34-2 | Chloride | 1081 | | (1-Chloroethyl)benzene | C ₈ H ₉ Cl | 672-65-1 | Chloride | 1073 | | 1-Chloro-2-ethylbenzene | C ₈ H ₉ Cl | 89-96-3 | Chloride | 1073 | | 1-Chloro-4-ethylbenzene | C₅H₀Cl | 622–98–0 | Chloride | 1073 | | Chloroethylene | C₂H₃Cl | 75-01-4 | Chloride | 1071 | | 2-Chloroethyl vinyl ether | C₄H₁ClO | 110-75-8 | Chloride | 1081 | | 1-Chloro-1-fluoroethane | C₂H₄CIF | 1615-75-4 | Mixed | 1099 | | 2-Chlorohexane | C ₆ H ₁₃ Cl | 638-28-8 | Chloride | 1068 | | Chloromethane | CH₃Cl | 74-87-3 | Chloride | 1066 | | 1-Chloro-4-methylbenzene | C ₇ H ₇ Cl | 106-43-4 | Chloride | 1072,1073 | | 1-Chloro-3-methylbutane | C ₅ H ₁₁ Cl | 107-84-6 | Chloride | 1067 | | 2-Chloro-2-methylbutane | C₅H ₁₁ Cl | 594-36-5 | Chloride | 1068 | | 2-Chloro-3-methylbutane | C ₅ H ₁₁ Cl | 631-65-2 | Chloride | 1068 | | 1-Chloro-2-methylpropane | C ₄ H ₉ Cl | 513-36-0 | Chloride | 1067 | | 2-Chloro-2-methylpropane | C ₄ H ₉ Cl | 507-20-0 | Chloride | 1068 | | 1-Chloronaphthalene | C ₁₀ H ₇ Cl | 90-13-1 | Chloride | 1073 | | 2-Chloronaphthalene | $C_{10}H_7Cl$ | 91–58–7 | Chloride | 1074 | | 1-Chlorooctadecane | $C_{18}H_{37}Cl$ | 3386–33–2 | Chloride | 1067 | | 1-Chlorooctane | C ₈ H ₁₇ Cl | 111-85-3 | Chloride | 1066 | | Chloropentafluorobenzene | C ₆ CIF ₅ | 344-07-0 | Mixed | 1101 | | 1-Chloro-1,1,3,3,3-pentafluoropropane | C ₃ H ₂ ClF ₅ | 460-92-4 | Mixed | 1099 | | | | TUU-74-T | DOVITE | 1077 | | 1-Chloropentane | C₅H ₁₁ Cl | 543-59-9 | Chloride | 1066 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |----------------------------------|--|------------------|----------------------|-----------| | 3-Chlorophenol | C ₆ H₅ClO | 108-43-0 | Chloride | 1076 | | 4-Chlorophenol | C ₆ H ₅ ClO | 106-48-9 | Chloride | 1076 | | 1-Chloropropane | C_3H_7Cl | 540-54-5 | Chloride | 1066 | | 2-Chloropropane | C₃H ₇ Cl | 75–29–6 | Chloride | 1067 | | 3-Chloro-1,2-propanediol | $C_3H_7ClO_2$ | 96-24-2 | Chloride | 1076 | | 2-Chloro-1,3-propanediol | C₃H7ClO2 | 497-04-1 | Chloride | 1076 | | 2-Chloropropanoic acid | $C_3H_5ClO_2$ | 598-78-7 | Chloride | 1079 | | 3-Chloropropanoic acid | C₃H₅ClO₂ | 107-94-8 | Chloride | 1079 | | 2-Chloro-1-propene | C₃H₅Cl | 557-98-2 | Chloride | 1071 | | 3-Chloro-1-propene | C₃H₅Cl | 107-05-1 | Chloride | 1071 | | 1-Chloropropyne | C ₃ H ₃ Cl | 7747-84-4 | Chloride | 1072 | | p-Chlorotoluene | C ₂ H ₂ Cl | 106-43-4 | Chloride | 1072,1073 | | Chlorotrifluoroethylene | C ₂ ClF ₃ | 79-38-9 | Mixed | 1101 | | 1-Chloro-3,3,3-trifluoropropane | C ₃ H ₄ ClF ₃ | 460-35-5 | Mixed | 1100 | | Chrysene | $C_{18}H_{12}$ | 218-01-9 | Aromat02 | 885 | | Coronene | $C_{24}H_{12}$ | 191-07-1 | Aromat02 | 886 | | m-Cresol | C ₇ H ₈ O | 108-39-4 | Alcohols | 921 | | o-Cresol | C ₇ H ₈ O | 95–48–7 | Alcohols | 921 | | | C ₇ H ₈ O | 106-44-5 | Alcohols | 921 | | p-Cresol | C₁H ₆ O | 4170–30–3 | | | | Crotonaldehyde | | 277-10-1 | Aldehyde | 936 | | Cubane | C_8H_8 | | Cyclic03 | 904 | | Cubane 1,4-dimethyldicarboxylate | $C_{12}H_{12}O_4$ | 29412–62–2 | Esters | 977 | | Cumene | C ₉ H ₁₂ | 92–82–8 | Aromat02 | 872 | | Cumyl hydroperoxide | $C_0H_{12}O_2$ | 80-15-9 | Hydroperoxides | 980 | | Cyclobutane | C₄H ₈ | 287-23-0 | Cyclic01 | 887 | | Cyclobutane-1,3-dione | C ₄ H ₄ O ₂ | 15506–53–3 | Ketones | 945 | | Cyclobutane Methyl Carboxylate | $C_6H_{10}O_2$ | 765–85–5 | Esters | 977 | | Cyclobutanenitrile | C _s H ₂ N | 4426-11-3 | Nitriles | 995 | | Cyclobutene | C_4H_6 | 822-35-5 | Cyclic01 | 889 | | Cyclobutylamine | C_4H_9N | 2516-34-9 | Amines | 988 | | Cyclodecane | $C_{10}H_{20}$ | 293-96-9 | Cyclic01 | 888 | | Cyclodecanone | $C_{10}H_{18}O$ | 1502063 | Ketones | 943 | | Cyclododecane | $C_{12}H_{24}$ | 294-62-2 | Cyclic01 | 888 | | Cyclododecanone | $C_{12}H_{22}O$ | 830–13–7 | Ketones | 943 | | Cycloheptadecane | $C_{17}H_{34}$ | 295-97-6 | Cyclic01 | 888 | | Cycloheptadecanone | $C_{17}H_{32}O$ | 3661-77-6 | Ketones | 943 | | 1,3-Cycloheptadiene | C_7H_{10} | 4054-38-0 | Cyclic01 | 890 | | Cycloheptane | C ₇ H ₁₄ | 291-64-5 | Cyclic01 | 887 | | Cycloheptanol | $C_7H_{14}O$ | 502-41-0 | Alcohols | 920 | | Cycloheptanone | $C_7H_{12}O$ | 502-42-1 | Ketones | 942 | | 1,3,5-Cycloheptatriene | C_7H_8 | 544-25-2 | Cyclic01 | 890 | | Cycloheptene | C_7H_{12} | 628-92-2 | Cyclic01 | 889 | | Cycloheptyl alcohol | C ₇ H ₁₄ O | 502-41-0 | Alcohols | 920 | | Cyclohexadecane | C ₁₆ H ₃₂ | 295-65-8 | Cyclic01 | 888 | | 1,3-Cyclohexadiene | C_6H_8 | 592–57–4 | Cyclic01 | 889,890 | | 1,4-Cyclohexadiene | C ₆ H ₈ | 628-41-1 | | - | | Cyclohexane | C ₆ H ₁₂ | 110-82-7 | Cyclic01
Cyclic01 | 890 | | - | $C_7H_{11}N$ | | - | 887 | | Cyclohexanenitrile | | 766-05-2 | Nitriles | 995 | | Cyclohexanethiol | C ₆ H ₁₂ S | 1569-69-3 | Thiols | 1040 | | Cyclohexanol | C₄H ₁₂ O | 108-93-0 | Alcohols | 920 | | Cyclohexanone | C₅H ₁₀ O | 108-94-1 | Ketones | 942 | | Cyclohexene | C ₆ H ₁₀ | 110-83-8 | Cyclic01 | 889 | | Cyclohexyl alcohol | $C_6H_{12}O$ | 108–93–0 | Alcohols | 920 | | Cyclohexylamine | $C_6H_{13}N$ | 108-91-8 | Amines | 989 | | 3-Cyclohexyleicosane | $C_{26}H_{52}$ | 4443–57–6 | Cyclic02 | 899 | | 9-Cyclohexyleicosane | $C_{26}H_{52}$ | 4443-61-2 | Cyclic02 | 899 | | 11-Cyclohexylheneicosane | $C_{27}H_{54}$ | 6703-99-7 | Cyclic02 | 899 | | 13-Cyclohexylpentacosane | $C_{31}H_{62}$ | 6697–15–0 | Cyclic02 | 900 | | Cyclononane | C ₉ H ₁₈ | 293-55-0 | Cyclic01 | 888 | | Cyclononanone | C ₀ H ₁₆ O | 3350-30-9 | Ketones | 943 | | 1,5-Cyclooctadiene | C_8H_{12} | 111-78-4 | Cyclic01 | 890 | | Cyclooctane | C ₈ H ₁₆ | 292-64-8 | Cyclic01 | 887 | | Cyclooctane | C ₈ H ₁₄ O | 502-49-8 | Ketones | 943 | | Cyclooctatetraene | | | | | | | C_8H_8 | 629-20-9 | Cyclic01 | 890 | | Cyclooctene | C ₈ H ₁₄ | 931-88-4 | Cyclic01 | 889 | | Cyclopentadecane | $C_{15}H_{30}$ | 295-48-7 | Cyclic01 | 888 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--|--|------------------|------------|-------------| | Cyclopentadecanone | C ₁₅ H ₂₈ O | 502-72-7 | Ketones | 943 | | ,3-Cyclopentadiene | C₅H ₆ | 542-92-7 | Cyclic01 | 889 | | Cyclopentane | C_5H_{10} | 287-92-3 | Cyclic01 | 887 | | Cyclopentanenitrile | C₀H₀N | 4254-02-8 | Nitriles | 995 | | Cyclopentanethiol | C₅H ₁₀ S | 1679-07-8 | Thiols | 1039 | | Cyclopentanol | C₅H ₁₀ O | 96-41-3 | Alcohols | 920 | | yclopentanone | C₅H ₈ O | 120-92-3 | Ketones | 942 | | Cyclopentene | C ₅ H ₈ | 142–29–0 | Cyclic01 | 889 | | Cyclopentyl alcohol | $C_5H_{10}O$ | 96-41-3 | Alcohols | 920 | | Cyclopentyl anconor
Cyclopentylamine | $C_5H_{11}N$ | 1003-03-8 | Amines | 989 | | Cyclopentylcycloheptane | $C_{12}H_{22}$ | 42347-48-8 | Cyclic03 | 907 | | Cyclopentylcyclohexane | $C_{12}H_{22}$ $C_{11}H_{20}$ | 1606-08-2 | • | | | | | | Cyclic03 | 906,907 | | 1-Cyclopentylheneicosane | $C_{26}H_{52}$ | 6703–81–7 | Cyclic02 | 895 | | Cyclopentyl methyl sulfide | C ₆ H ₁₂ S | 7133–36–0 | CyclCHS | 1057 | | -Cyclopentyl-1-propene | C ₈ H ₁₄ | 3524-75-2 | Cyclic02 | 896 | | Cyclopropane | C_3H_6 | 75–19–4 | Cyclic01 | 887 | | Cyclopropanenitrile | C₄H₅N | 5500-21-0 | Nitriles | 995 | | Cyclopropene | C₃H₄ | 2781-85-3 | Cyclic01 | 889 | | Cyclopropylamine | C_3H_7N | 765–30–0 | Amines | 988 | | Cyclotetradecane | $C_{14}H_{28}$ | 295-17-0 | Cyclic01 | 888 | | ,3,5,7-Cyclotetramethylenetetranitramine | $C_4H_8N_8O_8$ | 2691-41-0 | Nitramines | 1034 | | Cyclotridecane | $C_{13}H_{26}$ | 295-02-3 | Cyclic01 | 888 | | 1,3,5-Cyclotrimethylenetrinitramine | C ₃ H ₆ N ₆ O ₆ | 121-82-4 | Nitramines | 1034 | | 1,3,5-Cyclotrimethylenetrinitrosamine | $C_3H_6N_6O_3$ | 13980-04-6 | Nitroso | 1022 | | Cycloundecane | $C_{11}H_{22}$ | 294–41–7 | Cyclic01 | 888 | | Cycloundecanone | $C_{11}H_{20}O$ | 878–13–7 | Ketones | 943 | | D | C111120C | 070-137 | Retories | <i>3</i> 43 | | | | 404.00.0 | | | | Decafluorobiphenyl | $C_{12}F_{10}$ | 434–90–2 | Fluoride | 1060 | | Decaldehyde | $C_{10}H_{20}O$ | 112–31–2 | Aldehyde | 937 | | is-Decalin | $C_{10}H_{18}$ | 493-01-6 | Cyclic02 | 900 | | rans-Decalin | $C_{10}H_{18}$ | 493–02–7 | Cyclic02 | 900 | | Decanal | $C_{10}H_{20}O$ | 112-31-2 | Aldehyde | 937 | | Decane | $C_{10}II_{22}$ | 124-18-5 | n-Alkanes | 831 | | Decanedioic acid | $C_{10}H_{18}O_4$ | 111–20–6 | Acids | 953 | | 1,10-Decanediol | $C_{10}H_{22}O_2$ | 112-47-0 | Alcohols | 919,920 | | Decanenitrile | $C_{10}H_{19}N$ | 1975–78–6 | Nitriles | 993 | | 1-Decanethiol | C ₁₀ H ₂₂ S | 143-10-2 | Thiols | 1037 | | Decanoic acid | $C_{10}H_{20}O_2$ | 334-48-5 | Acids | 947 | | Decanol | $C_{10}H_{22}O$ | 112-30-1 | Alcohols | 911 | | 1-Decene | $C_{10}H_{20}$ | 872-05-9 | n-Alkenes | 847 | | cis-3-Decen-1-yne | C ₁₀ H ₁₆ | 61827–88–1 | Alkynes | 861 | | trans-3-Decen-1-yne | $C_{10}H_{16}$ | 2807-10-5 | Alkynes | 861 | | n-Decyl alcohol | C ₁₀ H ₁₆
C ₁₀ H ₂₂ O | 112-30-1 | Alcohols | 911 | | | | 104-72-3 | | | | Decylbenzene | $C_{16}H_{26}$ $C_{15}H_{30}$ | | Aromat01 | 867
894 | | Decylcyclopentane | | 1795-21-7 | Cyclic02 | | | 1-Decyne | $C_{10}H_{18}$ | 764–93–2 | Alkynes | 859,860 | | Diacetyl | $C_4H_6O_2$ |
431–03–8 | Ketones | 942 | | Diacetyl peroxide | $C_4H_6O_4$ | 110–22–5 | Peroxide | 978 | | Dibenzoylmethane | $C_{15}H_{12}O_2$ | 120-46-7 | Ketones | 945 | | Dibenzoyl peroxide | $C_{14}H_{10}O_4$ | 94-36-0 | Peroxide | 978 | | Dibenzyl sulfone | $C_{14}H_{14}O_2S$ | 620-32-6 | Sulfones | 1054 | | 1,2-Dibromobutane | $C_4H_8Br_2$ | 533-98-2 | Bromide | 1088 | | 1,3-Dibromobutane | C ₄ H ₈ Br ₂ | 107-80-2 | Bromide | 1089 | | 1,4-Dibromobutane | $C_4H_8Br_2$ | 110-52-1 | Bromide | 1089 | | 2,3-Dibromobutane | $C_4H_8Br_2$ | 5408-86-6 | Bromide | 1089 | | 1,2-Dibromocycloheptane | $C_7H_{12}Br_2$ | 29974-68-3 | Bromide | 1091 | | 1,2-Dibromocyclohexane | $C_6H_{10}Br_2$ | 5401-62-7 | Bromide | 1091 | | | | | | | | 1,2-Dibromocyclooctane | C ₈ H ₁₄ Br ₂ | 29974-69-4 | Bromide | 1091 | | 1,2-Dibromocyclopentane | C ₅ H ₈ Br ₂ | 10230-26-9 | Bromide | 1091 | | 1,2-Dibromo-1,2-dichloroethane | $C_2H_2Br_2Cl_2$ | 683-68-1 | Mixed | 1099 | | 1,2-Dibromoethane | $C_2H_4Br_2$ | 106–93–4 | Bromide | 1088 | | 1,2-Dibromoheptane | $C_7H_{14}Br_2$ | 42474-21-5 | Bromide | 1089 | | 2,3-Dibromo-2-methylbutane | $C_5H_{10}Br_2$ | 594–51–4 | Bromide | 1089,1090 | | 1,2-Dibromo-2-methylpropane | | | Bromide | | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--|--|------------------------|----------------------|--------------| | 1,2-Dibromopropane | C₃H ₆ Br ₂ | 78–75–1 | Bromide | 1088 | | 1,3-Dibromopropane | $C_3H_6Br_2$ | 109-64-8 | Bromide | 1089 | | 1,2-Dibromotetrafluoroethane | C ₂ Br ₂ F ₄ | 124-73-2 | Mixed | 1099 | | Dibutanoyl peroxide | C ₈ H ₁₄ O ₄ | 2697-95-2 | Peroxide | 978 | | Di-n-butylamine | C ₈ H ₁₉ N | 111-92-2 | Amines | 986 | | Di-n-butyldiazene | $C_8H_{18}N_2$ | 2159-75-3 | Diazene | 999 | | Di-tert-hutyldiazene | C ₈ H ₁₈ N ₂ | 927-83-3
87339-11-5 | Diazene
Nitroso | 999 | | Di-tert-butyldiazene N-oxide (E) | $C_8H_{18}N_2O$
$C_8H_{18}S_2$ | 629-45-8 | Disulfides | 1022
1048 | | Di-n-butyl disulfide | C ₈ H ₁₈ O ₂
C ₈ H ₁₈ O | 142-96-1 | Ethers | 927 | | Di-n-butyl ether Di-sec-butyl ether | $C_8H_{18}O$ | 6863-58-7 | Ethers | 927 | | Di-tert-butyl ether | $C_8H_{18}O$ | 6163-66-2 | Ethers | 929 | | Di-n-butyl ketone | C ₈ H ₁₈ O | 502–56–7 | Ketones | 939,940 | | Di-tert-butyl ketone | C ₉ H ₁₈ O | 815–24–7 | Ketones | 941 | | Di-tert-butyl peroxide | $C_8H_{18}O_2$ | 110-05-4 | Peroxide | 978 | | Di-n-butyl sulfate | $C_8H_{18}O_4S$ | 625-22-9 | Sulfates | 1055 | | Di-n-butyl sulfide | $C_8H_{18}S$ | 544-40-1 | Sulfides | 1044,1045 | | Di-tert-butyl sulfide | $C_8H_{18}S$ | 107-47-1 | Sulfides | 1044 | | Di-n-butyl sulfite | C ₈ H ₁₈ O ₂ S | 626-85-7 | Sulfites | 1055 | | Di-tert-butyl sulfone | $C_8H_{18}O_2S$ | 1886–75–5 | Sulfones | 1051 | | Di-n-butyl sulfone | $C_8H_{18}O_2S$ | 598-04-9 | Sulfones | 1052 | | N,N'-(Di-tert-butyl)urea | $C_9H_{20}N_2O$ | 5336-24-3 | Ureas | 1013 | | Dibutyryl peroxide | C _R H ₁₄ O ₄ | 2697-95-2 | Peroxide | 978 | | Dichloroacetic acid | $C_2H_2Cl_2O_2$ | 79-43-6 | Chloride | 1080 | | Dichloroacetyl chloride | C ₂ HCl ₃ O | 79–36–7 | Chloride | 1084 | | 1,2-Dichlorobenzene | $C_6H_4Cl_2$ | 95-50-1 | Chloride | 1074 | | 1,3-Dichlorobenzene | $C_6H_4Cl_2$ | 541-73-1 | Chloride | 1074 | | 1,4-Dichlorobenzene | $C_6H_4Cl_2$ | 106-46-7 | Chloride | 1074 | | 2,3-Dichloro-1,4-benzenediol | C ₆ H ₄ Cl ₂ O ₂ | 608-44-6 | Chloride | 1077 | | 2,5-Dichloro-1,4-benzenediol | C ₆ H ₄ Cl ₂ O ₂ | 824-69-1 | Chloride | 1077 | | 2,6-Dichloro-1,4-benzenediol | C ₆ H ₄ Cl ₂ O ₂ | 20103-10-0 | Chloride | 1077 | | 2,2'-Dichlorobiphenyl | C ₁₂ H ₈ Cl ₂ | 13029-08-8 | Chloride | 1075 | | 4,4'-Dichlorobiphenyl | C ₁₂ H ₈ Cl ₂ | 2050–68–2 | Chloride | 1075 | | 1,1-Dichloroethane | C ₂ H ₄ Cl ₂
C ₂ H ₄ Cl ₂ | 75–34–3 | Chloride | 1069 | | 1,2-Dichloroethane 1,1-Dichloroethylene | $C_2H_2Cl_2$ | 107062
75354 | Chloride
Chloride | 1068
1071 | | 1,2-Dichloroethylene (E) | $C_2H_2Cl_2$ $C_2H_2Cl_2$ | 156-59-2 | Chloride | 1071 | | 1,2-Dichloroethylene (Z) | C ₂ H ₂ Cl ₂ | 156-60-5 | Chloride | 1071 | | 1,2-Dichloropropane | C ₃ H ₆ Cl ₂ | 78–87–5 | Chloride | 1068 | | 1,3-Dichloropropane | C ₃ H ₆ Cl ₂ | 142-28-9 | Chloride | 1069 | | 2,2-Dichloropropane | C ₃ H ₆ Cl ₂ | 594-20-7 | Chloride | 1069 | | 1,3-Dichloro-2-propanol | C ₃ H ₆ Cl ₂ O | 96-23-1 | Chloride | 1077 | | 2,3-Dichloro-1-propanol | C ₃ H ₆ Cl ₂ O | 616-23-9 | Chloride | 1077 | | 2,5-Dichlorostyrene | C ₈ H ₆ Cl ₂ | 1123-84-8 | Chloride | 1075 | | 1,2-Dichlorotetrafluoroethane | $C_2Cl_2F_4$ | 76-14-2 | Mixed | 1099 | | 3,3-Dichloro-1,1,1-trifluoropropane | $C_3H_3Cl_2F_3$ | 460-69-5 | Mixed | 1099 | | 1,4-Dicyanatobenzene | $C_8H_4N_2O_2$ | 3729-34-8 | Nitroso | 1022 | | 1,4-Dicyanobenzene | $C_8H_4N_2$ | 623-26-7 | Nitriles | 997 | | 1,4-Dicyanobenzene di-N-oxide | $C_8H_4N_2O_2$ | 3729-34-8 | Nitroso | 1022 | | Dicyclopentylmethane | $C_{11}H_{20}$ | 2619-34-3 | Cyclic03 | 907 | | Di-n-decyl disulfide | $C_{20}H_{42}S_2$ | 10496-18-1 | Disulfides | 1049 | | 1,1-Diethoxyethane | $C_6H_{14}O_2$ | 105-57-7 | Ethers | 930 | | 1,2-Diethoxyethane | $C_6H_{14}O_2$ | 629-14-1 | Ethers | 930 | | Diethoxymethane | $C_5H_{12}O_2$ | 462-95-3 | Ethers | 930 | | 1,3-Diethoxypropane | $C_7H_{16}O_2$ | 3459-83-4 | Ethers | 931 | | 2,2-Diethoxypropane | $C_7H_{16}O_2$ | 126-84-1 | Ethers | 931 | | Diethylamine | $C_4H_{11}N$ | 109-89-7 | Amines | 985 | | 1,2-Diethylbenzene | $C_{10}H_{14}$ | 135-01-3 | Aromat01 | 870 | | 1,3-Diethylbenzene | $C_{10}H_{14}$ | 141–93–5 | Aromat01 | 871 | | 1,4-Diethylbenzene | $C_{10}H_{14}$ | 105-05-5 | Aromat01 | 871 | | 3,5-Diethylbenzoic acid | $C_{11}H_{14}O_2$ | 3854–90–5 | Acids | 961 | | Diethyl butanedioate | C ₈ H ₁₄ O ₄ | 123-25-1 | Esters | 974,975 | | 2,2-Diethyl-1,4-butanedioic acid | C ₈ H ₁₄ O ₄ | 5692–97–7 | Acids | 955 | | meso-2,3-Diethyl-1,4-butanedioic acid | C ₈ H ₁₄ O ₄ | 35392-80-4 | Acids | 954 | | racemic-2,3-Diethyl-1,4-butanedioic acid | C ₈ H ₁₄ O ₄ | 35392-77-9 | Acids | 954,955 | | Diethyl carbonate | $C_5H_{10}O_3$ | 105-58-8 | Carbonates | 982 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--|--|------------------|------------|-----------| | cis-1,2-Diethylcyclopropane | C ₇ H ₁₄ | 1192-18-3 | Cyclic03 | 90 | | rans-1,2-Diethylcyclopropane | C7H14 | 822-50-4 | Cyclic03 | 90 | | Diethyldiazene | $C_4H_{10}N_2$ | 821-14-7 | Diazene | 99 | | Diethyl disulfide | $C_4H_{10}S_2$ | 110-81-6 | Disulfides | 104 | | V,N'-Diethyl-N,N'-diphenylurea | C ₁₇ H ₂₀ N ₂ O | 85-98-3 | Ureas | 101 | | Diethylene glycol | $C_4H_{10}O_3$ | 111-46-6 | Ethers | 93 | | Diethyl ethanedioate | $C_6H_{10}O_4$ | 95-92-1 | Esters | 97 | | Diethyl ether | C ₄ H ₁₀ O | 60-29-7 | Ethers | 92 | | Diethyl ketone | C ₅ H ₁₀ O | 9622-0 | Ketones | 93 | | Diethyl malonate | $C_7H_{12}O_4$ | 105-53-3 | Esters | 97- | | Diethylnitramine | $C_4H_{10}N_2O_2$ | 7119–92–8 | Nitramines | 103 | | Diethyl oxalate | $C_6H_{10}O_4$ | 95-92-1 | Esters | 97 | | | | 1067-20-5 | | | | 3,3-Diethylpentane | C ₉ H ₂₀ . | | q-Alkanes | 84 | | Diethylperoxide | $C_4H_{10}O_2$ | 628-37-5 | Peroxide | 97 | | Diethyl phthalate | $C_{12}H_{14}O_4$ | 84-66-2 | Esters | 97 | | Diethyl o-phthalate | $C_{12}H_{14}O_4$ | 84-66-2 | Esters | 97 | | Diethyl 1,2-phthalate | $C_{12}H_{14}O_4$ | 84-66-2 | Esters | 97 | | Diethyl propanedioate | $C_7H_{12}O_4$ | 105–53–3 | Esters | 97- | | Diethyl succinate | $C_8H_{14}O_4$ | 123-25-1 | Esters | 974,975 | | 2,2-Diethylsuccinic acid | C ₈ H ₁₄ O ₄ | 5692-97-7 | Acids | 95 | | meso-2,3-Diethylsuccinic acid | $C_8H_{14}O_4$ | 35392-80-4 | Acids | 95 | | racemic-2,3-Diethylsuccinic acid | $C_8H_{14}O_4$ | 35392-77-9 | Acids | 954,95 | | 2,2-Diethylsuccinic anhydride | C ₈ 11 ₁₂ O ₃ | 2840-69-9 | Anhydrides | 96. | | Diethyl sulfate | $C_4H_{10}O_4S$ | 64-67-5 | Sulfates | 1055 | | Diethyl sulfide | $C_4H_{10}S$ | 352-93-2 | Sulfides | 1041,1042 | | Diethyl sulfite | $C_4H_{10}O_3S$ | 623-81-4 | Sulfites | 105 | | | C ₄ H ₁₀ O ₃ S
C ₄ H ₁₀ O ₂ S | 597353 | | | | Diethyl sulfone | | | Sulfones | 1051 | | Diethyl sulfoxide | $C_4H_{10}OS$ | 70-29-1 | Sulfoxides | 1049 | | Diethanoyl peroxide | $C_4H_6O_4$ | 110-22-5 | Peroxide | 978 | | N,N-Diethylurea | $C_5H_{12}N_2O$ | 634-95-7 | Ureas | 1012 | | 1.2-Difluorobenzene | $C_6H_4F_2$ | 367-11-3 | Fluoride | 106 | | 1,3-Difluorobenzene | $C_6H_4F_2$ | 372-18-9 | Fluoride | 1061 | | 1,4-Difluorobenzene | $C_6H_4F_2$ | 540-36-3 | Fluoride | 1061 | | 2,2'-Difluorobiphenyl | $C_{12}H_8F_2$ | 388-82-9 | Fluoride | 1061 | | 4,4'-Difluorobiphenyl | $C_{12}H_8F_2$ | 398-23-2 | Fluoride | 1061,1062 | | 1,1-Difluoroethane | $C_2H_4F_2$ | 75-37-6 | Fluoride | 1059 | | 1,1-Difluoroethylene | $C_2H_2F_2$ | 75~38~7 | Fluoride | 1059,1060 | | 1,2-Difluorotetrachloroethane | $C_2Cl_4F_2$ | 76-12-0 | Mixed | 1100 | | Di-n-hexyl disulfide | C ₁₂ H ₂₆ S ₂ | 10496-15-8 | Disulfides | 1049 | | | C ₁₂ H ₂₆ S | 6294-31-1 | Sulfides | 1045,1046 | | Di-n-hexyl sulfide | | | | • | | Dihyrofuran-2,5-dione | C ₄ H ₄ O ₃ | 108-30-5 | Anhydrides | 964 | | 2,3-Dihydrothiophene | C₄H ₆ S | 1120–59–8 | CyclCHS | 1058 | | 2,5-Dihydrothiophene | C₄H ₆ S | 1708–32–3 | CyclCHS | 1058 | | 2,3-Dihydroxynaphthalene | $C_{10}H_8O_2$ | 92-44-4 | Alcohols | 925 | | 1,2-Diiodobenzene | $C_6H_4I_2$ | 615-42-9 | Iodide | 1096 | | 1,3-Diiodobenzene | $C_6H_4I_2$ | 626-00-6 | Iodide | 1096 | | 1,4-Diiodobenzene | $C_6H_4I_2$ | 624-38-4 | Iodide | 1090 | | 1,2-Diiodobutane | $C_4H_8I_2$ | 53161-72-1 | Iodide | 1094 | | 1,3-Diiodocyclobutane(cis/trans) | $C_4H_6I_2$ | not available | Iodide | 1090 | | 1,3-Diiodocyclobutane (Z) | $C_4H_6I_2$ | 4934–57-0 | Iodide | | | 1,3-Diiodocyclobutane (E) |
$C_4H_6I_2$ | 4943–56–9 | Iodide | | | 1.2-Diiodocyclobutane (E) | C ₂ H ₄ I ₂ | 624-73-7 | Iodide | 1093 | | -, | | 590-27-2 | Iodide | 1094 | | 1,2-Diiodoethylene (E) | $C_2H_2I_2$ | | | | | 1,2-Diiodoethylene (Z) | $C_2H_2I_2$ | 590-26-1 | Iodide | 1094 | | 1,2-Diiodopropane | $C_3H_6I_2$ | 598-29-8 | Iodide | 109: | | Diisobutylamine | $C_8H_{19}N$ | 110-96-3 | Amines | 980 | | Diisobutyl sulfide | $C_8H_{18}S$ | 592654 | Sulfides | 1044 | | Diisobutyl sulfone | $C_8H_{18}O_2S$ | 10495-45-1 | Sulfones | 1052 | | Diisopentyl sulfide | C ₁₀ H ₂₂ S | 544-02-5 | Sulfides | 1044 | | Diisopropylamine | $C_6H_{15}N$ | 108-18-9 | Amines | 986 | | Disopropyldiazene | C ₆ H ₁₄ N ₂ | 3880-49-7 | Diazene | 99: | | Disopropyl ether | C ₆ H ₁₄ O | 108-20-3 | Ethers | 928 | | | C ₂ H ₁₄ O | 565-80-0 | Ketones | 941 | | Diisopropyl ketone | | | | | | Diisopropyl sulfide | C ₆ H ₁₄ S | 625-80-9 | Sulfides | 1043 | | | $C_8H_{10}O_2$ | 91-16-7 | Ethers | 934 | | 1,2-Dimethoxybenzene 1,1-Dimethoxyethane | $C_4H_{10}O_2$ | 25154-53-4 | Ethers | 930 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--|---|----------------------|------------------------|----------------| | Dimethoxymethane | C ₃ H ₈ O ₂ | 109–87–5 | Ethers | 929 | | 2,2-Dimethoxypropane | $C_5H_{12}O_2$ | 77–76–9 | Ethers | 930 | | N,N-Dimethylacetamide | C ₄ H ₉ NO | 127-19-5 | Amides | 1010 | | Dimethylamine | C₂H ₇ N | 124-40-3 | Amines | 985 | | N,N-Dimethylaniline | C ₈ H ₁₁ N | 121–69–7
95–47–6 | Amines | 990 | | 1,2-Dimethylbenzene | $C_8H_{10} \\ C_8H_{10}$ | 95-47-6
108-38-3 | Aromat01
Aromat01 | 863 | | 1,3-Dimethylbenzene
1,4-Dimethylbenzene | C ₈ H ₁₀ | 106-42-3 | Aromat01 | 863 | | 2,3-Dimethyl benzoic acid | C ₉ H ₁₀ O ₂ | 603-79-2 | Acids | 863,864
957 | | 2,4-Dimethyl benzoic acid | C ₉ H ₁₀ O ₂ | 611–01–8 | Acids | 957,958 | | 2,5-Dimethyl benzoic acid | C ₉ H ₁₀ O ₂ | 610-72-0 | Acids | 958 | | 2,6-Dimethyl benzoic acid | $C_9H_{10}O_2$ | 632-46-2 | Acids | 958 | | 3,4-Dimethyl benzoic acid | $C_9H_{10}O_2$ | 619-04-5 | Acids | 958 | | 3,5-Dimethyl benzoic acid | $C_9H_{10}O_2$ | 499-06-9 | Acids | 958,959 | | trans-2,3-Dimethylbicyclo[2.2.1]heptane | C9H16 | 20558-16-1 | Cyclic03 | 906 | | 7,7-Dimethylbicyclo[2.2.1]heptane | C9H16 | 2034-53-9 | Cyclic03 | 906 | | 4,4'-Dimethylbiphenyl | $C_{14}H_{14}$ | 613-33-2 | Aromat02 | 879 | | 2,3-Dimethyl-1,3-butadiene | C_6H_{10} | 513-81-5 | s-Alkenes | 858 | | 2,2-Dimethylbutane | C_6H_{14} | 75–83–2 | q-Alkanes | 842 | | 2,3-Dimethylbutane | C ₆ H ₁₄ | 79–29–8 | t-Alkanes | 841 | | 2,2-Dimethyl-1,4-butanedioic acid | $C_6H_{10}O_4$ | 597–43–3 | Acids | 954 | | meso-2,3-Dimethyl-1,4-butanedioic acid | $C_6H_{10}O_4$ | 608-40-2 | Acids | 954 | | racemic-2,3-Dimethyl-1,4-butanedioic acid | $C_6H_{10}O_4$ | 608–39–9 | Acids | 954,955 | | 2,3-Dimethyl-2-butanethiol | C ₆ H ₁₄ S | 1639016 | Thiols | 1040 | | 3,3-Dimethyl-2-butanone | C ₆ H ₁₂ O | 75-97-8 | Ketones | 941 | | 2,3-Dimethyl-1-butene
2,3-Dimethyl-2-butene | C ₆ H ₁₂ | 563-78-0 | s-Alkenes | 855 | | 3,3-Dimethyl-1-butene | C_6H_{12} C_6H_{12} | 563-79-1
558-37-2 | s-Alkenes
s-Alkenes | 855 | | Dimethyl (Z)-2-butenedioate | C ₆ H ₈ O ₄ | 624-48-6 | Esters | 856 | | 3,3-Dimethyl-1-butyne | C ₆ H ₁₀ | 693-02-7 | Alkynes | 974
862 | | 1,1-Dimethylcyclohexane | C ₈ H ₁₆ | 590-66-9 | Cyclic02 | 897 | | trans-1,2-Dimethylcyclohexane | C ₈ H ₁₆ | 6876–23–9 | Cyclic02 | 897 | | trans-1,3-Dimethylcyclohexane | C_8H_{16} | 2207036 | Cyclic02 | 897 | | trans-1,4-Dimethylcyclohexane | C_8H_{16} | 2207-04-7 | Cyclic02 | 897 | | 1,1-Dimethylcyclopentane | C7H14 | 1638-26-2 | Cyclic01 | 892 | | cis-1,2-Dimethylcyclopentane | C_7H_{14} | 1192–18–3 | Cyclic01 | 892 | | trans-1,2-Dimethylcyclopentane | C_7H_{14} | 822-50-4 | Cyclic01 | 892 | | trans-1,3-Dimethylcyclopentane | C7H14 | 1759–58–6 | Cyclic01 | 892 | | Dimethyldiazene | $C_2H_6N_2$ | 503-28-6 | Diazene | 998 | | 2,5-Dimethyldiphenylmethane | $C_{15}H_{16}$ | 13540-50-6 | Aromat02 | 875 | | N,N'-Dimethyl-N,N'-diphenylurea | $C_{15}H_{16}N_2O$ | 611-92-7 | Ureas | 1013 | | Dimethyl disulfide | C ₂ H ₆ S ₂ | 624-92-0 | Disulfides | 1048 | | N,N-Dimethylethanamide | C₄H ₉ NO | 127-19-5 | Amides | 1010 | | Dimethyl ethanedioate Dimethyl ether | C₄H ₆ O₄
C₂H ₆ O | 553-90-2 | Esters | 974 | | N,N-Dimethylformamide | C₃H₁NO | 115-10-6
68-12-2 | Ethers | 926 | | 2,6-Dimethyl-4-heptanone | C ₉ H ₁₈ O | 108-83-8 | Amides
Ketones | 1008 | | 2,2-Dimethylhexane | C_8H_{18} | 590-73-8 | q-Alkanes | 942
843 | | 2,3-Dimethylhexane | C ₈ H ₁₈ | 584–94–1 | t-Alkanes | 841 | | 2,4-Dimethylhexane | C ₈ H ₁₈ | 589–43–5 | t-Alkanes | 840 | | 2,5-Dimethylhexane | C ₈ H ₁₈ | 592-13-2 | t-Alkanes | 840 | | 3,3-Dimethylhexane | C ₈ H ₁₈ | 563-16-6 | q-Alkanes | 843 | | 3,4-Dimethylhexane | C_8H_{18} | 583-48-2 | t-Alkanes | 841 | | cis-2,2-Dimethyl-3-hexene | C_8H_{16} | 690926 | s-Alkenes | 854,855 | | trans-2,2-Dimethyl-3-hexene | C_8H_{16} | 690-93-7 | s-Alkenes | 855 | | cis-2,5-Dimethyl-3-hexene | C_8H_{16} | 10557-44-5 | s-Alkenes | 856 | | trans-2,5-Dimethyl-3-hexene | C_8H_{16} | 692-70-6 | s-Alkenes | 857 | | 1,1-Dimethylhydrazine | $C_2H_8N_2$ | 57-14-7 | Hydrazines | 997 | | 1,2-Dimethylhydrazine | $C_2H_8N_2$ | 540-73-8 | Hydrazines | 998 | | Dimethyl isophthalate | $C_{10}H_{10}O_4$ | 1459–93–4 | Esters | 976,977 | | Dimethyl ketone | C ₃ H ₆ O | 67-64-1 | Ketones | 938 | | Dimethyl maleate | $C_6H_8O_4$ | 624-48-6 | Esters | 974 | | N,N-Dimethylmethanamide | C ₃ H ₇ NO | 68–12–2 | Amides | 1008 | | 1,2-Dimethylnaphthalene | $C_{12}H_{12}$ | 573-98-8 | Aromat02 | 881 | | 1,3-Dimethylnaphthalene | C ₁₂ H ₁₂ | 575-41-7 | Aromat02 | 882 | | 1,4-Dimethylnaphthalene | $C_{12}H_{12}$ | 571584 | Aromat02 | 882 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--|--|------------------|------------|---------| | 1,5-Dimethylnaphthalene | C ₁₂ H ₁₂ | 571-61-9 | Aromat02 | 882 | | 1,6-Dimethylnaphthalene | $C_{12}H_{12}$ | 575-43-9 | Aromat02 | 882 | | 1,7-Dimethylnaphthalene | $C_{12}H_{12}$ | 575–37–1 | Aromat02 | 882 | | 1,8-Dimethylnaphthalene | $C_{12}H_{12}$ | 569-41-5 | Aromat02 | 883 | | 2,3-Dimethylnaphthalene | $C_{12}H_{12}$ | 581-40-8 | Aromat02 | 883 | | 2,6-Dimethylnaphthalene | $C_{12}H_{12}$ | 581-42-0 | Aromat02 | 883 | | 2,7-Dimethylnaphthalene | $C_{12}H_{12}$ | 582-16-1 | Aromat02 | 883 | | Dimethylnitramine | C ₂ H ₆ N ₂ O ₂ | 4164287 | Nitramines | 1033 | | Dimethylnitrosoamine | $C_2H_6N_2O$ | 62-75-9 | Nitroso | 1021 | | 2,7-Dimethyloctane | $C_{10}H_{22}$ | 1072–16–8 | t-Alkanes | 842 | | Dimethyl oxalate | C ₄ H ₆ O ₄ | 553-90-2 | Esters | 974 | | 3,3-Dimethylpenta-1,4-diyne | C_7H_8 | 62496-43-9 | Alkynes | 862 | | 2,2-Dimethylpentane | C ₇ H ₁₆ | 590-35-2 | q-Alkanes | | | • | C ₇ H ₁₆
C ₇ H ₁₆ | 565-59-3 | - | 842,843 | | 2,3-Dimethylpentane | | | t-Alkanes | 841 | | 2,4-Dimethylpentane | C ₇ H ₁₆ | 108-08-7 | t-Alkancs | 840 | | 3,3-Dimethylpentane | C ₇ H ₁₆ | 562–49–2 | q-Alkanes | 843 | | 2,2-Dimethyl-3-pentanone | $C_7H_{14}O$ | 564-04-5 | Ketones | 941 | | 2,4-Dimethyl-3-pentanone | $C_7H_{14}O$ | 565-80-0 | Ketones | 941 | | 2,4-Dimethyl-1-pentene | C_7H_{14} | 2213-32-3 | s-Alkenes | 855 | | 2,4-Dimethyl-2-pentene | C_7H_{14} | 625-65-0 | s-Alkenes | 855 | | cis-4,4-Dimethyl-2-pentene | C_7H_{14} | 762-63-0 | s-Alkenes | 856 | | trans-4,4-Dimethyl-2-pentene | C ₇ H ₁₄ | 690-08-4 | s-Alkenes | 856 | | Dimethylperoxide | C ₂ H ₆ O ₂ | 690–028 | Peroxide | 978 | | 2,3-Dimethylphenol | C ₈ H ₁₀ O | 526-75-0 | Alcohols | 922 | | 2,4-Dimethylphenol | C8H10O | 105-67-9 | Alcohols | 922 | | • | | 95–87–4 | | | | 2,5-Dimethylphenol | C ₈ H ₁₀ O | | Alcohols | 923 | | 2,6-Dimethylphenol | C ₈ H ₁₀ O | 576–26–1 | Alcohols | 923 | | 3,4-Dimethylphenol | $C_8H_{10}O$ | 95–65–8 | Alcohols | 923 | | 3,5-Dimethylphenol | $C_8H_{10}O$ | 108–68–9 | Alcohols | 923 | | Dimethyl phthalate | $C_{10}H_{10}O_4$ | 131–11–3 | Esters | 976 | | Dimethyl m-phthalate | $C_{10}H_{10}O_4$ | 1459–93–4 | Esters | 976,977 | | Dimethyl o-phthalate | $C_{10}H_{10}O_4$ | 131-11-3 | Esters | 976 | | Dimethyl p-phthalate | $C_{10}H_{10}O_4$ | 120-61-6 | Esters | 977 | | Dimethyl 1,2-phthalate | $C_{10}H_{10}O_4$ | 131-11-3 | Esters | 976 | | Dimethyl 1,3-phthalate | $C_{10}H_{10}O_4$ | 1459-93-4 | Esters | 976,977 | | Dimethyl 1,4-phthalate | $C_{10}H_{10}O_4$ | 120-61-6 | Esters | 977 | | 2,2-Dimethylpropanamide | C ₅ H ₁₁ NO | 754–10–9 | Amides | 1007 | | N,N-Dimethylpropanamide | C ₅ H ₁₁ NO | 758-96-3 | Amides | 1007 | | | | | | | | 2,2-Dimethylpropane | C₅H ₁₂ | 463-82-1 | q-Alkanes | 842 | | 2,2-Dimethylpropane-1,3-dinitrile | C ₅ H ₆ N ₂ | 7321–55–3 | Nitriles | 996 | | 2,2-Dimethyl-1-propanethiol | C ₅ H ₁₂ S | 1679–08–9 | Thiols | 1040 | | 2,2-Dimethylpropanenitrile | C₅H ₉ N | 630-18+2 | Nitriles | 995 | | 2,2-Dimethylpropanoic acid | $C_5H_{10}O_2$ | 75-98-9 | Acids | 950 | | 2,2-Dimethylpropanoic anhydride | $C_{10}H_{18}O_3$ | 1538-75-6 | Anhydrides | 964 | | N,N-Dimethylpropionamide | C ₅ H ₁₁ NO | 758–96–3 | Amides | 1009 | | 2.2-Dimethylpropyl ethanoate | $C_6H_{12}O_2$ | 540-88-5 | Esters | 970 | | 2,3-Dimethylpyridine | C ₇ H ₉ N | 583-61-9 | CyclCHN | 1004 | | 2,4-Dimethylpyridine | C ₇ H ₉ N | 108-47-4 | CyclCHN | 1005 | | 2,5-Dimethylpyridine | C ₇ H ₉ N | 589–93–5 | CyclCHN | 1005 | | 2,6-Dimethylpyridine | C7H9N | 108-48-5 | CyclCHN | 1005 | | | | | CyclCHN | | | 3,4-Dimethylpyridine | C ₇ H ₉ N | 583–58–4 | • | 1005 | | 3,5-Dimethylpyridine | C ₇ H ₉ N | 591-22-0 | CyclCHN | 1005 | | 2,5-Dimethylpyrrole | C ₆ H ₉ N | 625-84-3 | CyclCHN | 1002 | | (cis-3,7a-H)-(cis-5,7a-H)-3,5-Dimethyl-pyrrolizidine | $C_9H_{17}N$ |
56160-71-5 | CyclCHN | 1006 | | 2,2-Dimethylsuccinic acid | $C_6H_{10}O_4$ | 597-43-3 | Acids | 954 | | 2,2-Dimethylsuccinic anhydride | $C_6H_8O_3$ | 17347614 | Anhydrides | 964,965 | | meso-2,3-Dimethylsuccinic acid | $C_6H_{10}O_4$ | 608-40-2 | Acids | 954 | | racemic-2,3-Dimethylsuccinic acid | C ₆ H ₁₀ O ₄ | 608-39-9 | Acids | 954,955 | | Dimethyl sulfate | C ₂ H ₆ O ₄ S | 77–78–1 | Sulfates | 1055 | | Dimethyl sulfide | C ₂ H ₆ S | 75–18–3 | Sulfides | 1033 | | • | | | | 1055 | | Dimethyl sulfite | C ₂ H ₆ O ₃ S | 616-42-2 | Sulfites | | | Dimethyl sulfone | C ₂ H ₆ O ₂ S | 67-71-0 | Sulfones | 1050 | | Dimethyl sulfoxide | C₂H ₆ OS | 67–68–5 | Sulfoxides | 1049 | | Dimethyl terephthalate | $C_{10}H_{10}O_4$ | 120–61–6 | Esters | 977 | | N,N-Dimethylurea | $C_3H_8N_2O$ | 598-94-7 | Ureas | 1011 | | | | | | | TABLE 56. Name and Formula Index - Continued | 2.4-Distrocasiline | Name | Formula | CAS Registry No. | Family | Page | |---|-----------------------------------|----------------------|------------------|------------|------------| | 2.5 Dintroaniline | 2,3-Dinitroaniline | | | | 1029 | | 2.45 Distributionalities | , | | | | 1029 | | 3.4 Dinitronalline | · · | | | | 1029 | | 33-Dinitronathine | · · | | | | 1030 | | 1.2.Dinitrobenzene | • | | | | 1030 | | 1.3-Dinitrobenzene | • | | | | 1030 | | 1.4-Dinitrobenzene | | | | | 1025 | | JDinitrobutane | - - | | | | 1025 | | 1.1-Dinitrochane | · · | | | | 1025 | | 1.2-Dinitroentame | | | | | 1024,1025 | | Districtor CH ₃ N ₂ O ₂ 625-76-3 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 51-28-5 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 51-28-5 Nitros 10 1,1-Districtorphenol C,H ₄ N ₂ O ₂ 51-28-5 Nitros 10 1,1-Districtorphenol C,H ₄ N ₂ O ₂ 6125-21-9 Nitros 10 1,1-Districtorphenol C,H ₄ N ₂ O ₂ 6125-21-9 Nitros 10 1,1-Districtorphenol C,H ₄ N ₂ O ₂ 6125-21-9 Nitros 10 1,1-Districtorphenol C,H ₄ N ₂ O ₂ 595-49-3 Nitros 10 2,2-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 3,7-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 3,7-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 3,7-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 101-25-7 Nitros 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 102-25-6 Ethers 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 102-25-6 Ethers 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 102-20-2 Ethers 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 102-20-2 Ethers 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 102-20-1 Ethers 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 102-20-1 Ethers 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 102-20-1 Ethers 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ 102-20-1 Ethers 10 2,4-Districtorphenol C,H ₄ N ₂ O ₂ | • | | | | 1024 | | 1.1-Dinitropentane | • | | | | 1024 | | 2.4-Disitrophenol | | | | | 1022 | | 2.6-Dinitrophenol | • | | | | 1024 | | 1.1-Dinitropropane | • | | | | 1028 | | 1.3-Dinitropropane | | | | | 1028 | | 2,2-Dinitropropane C,H _A N _O ; 95-49-3 Nitros 10 3,7-Dinitrosopatamethylenetetramine C,H _A N _O ; 101-25-7 Nitros 10 3,7-Dinitrosopatamethylenetetramine C,H _A N _O ; 101-25-7 Nitros 10 2,4-Dinitrotoluene C,H _A N _O ; 101-25-7 Nitros 10 2,5-Dinitrotoluene C,H _A N _O ; 101-25-7 Nitros 10 3,5-Dioxaleprane C,H _A O; 402-25-3 Ethers 10 3,5-Dioxaleprane C,H _A O; 123-91-1 Ethers 9 1,4-Dioxane C,H _A O; 123-91-1 Ethers 9 1,4-Dioxane C,H _A O; 305-65-7 Ethers 9 1,3-Dioxolane C,H _A O; 466-06-0 Ethers 9 1,3-Dioxolane-2-one C,H _A O; 404-06-0 Ethers 9 Di-n-pentyl sulfide C,H _A D; 927-49-1 Ketones 9 Di-n-pentyl sulfide C,H _A D; 327-10-6 Sulfides 10 Di-n-pentyl sulfide <t< td=""><td>• •</td><td></td><td></td><td></td><td>1024</td></t<> | • • | | | | 1024 | | 1,5-Dintrosopentamethylenetetramine C,H ₀ N ₀ C ₂ 101-25-7 Nitroso 10 2,4-Dintrotoluene C,H ₀ N ₀ C ₃ 101-25-7 Nitroso 10 2,4-Dintrotoluene C,H ₀ N ₀ C ₄ 121-14-2 Nitros 10 2,4-Dintrotoluene C,H ₀ N ₀ C ₄ 121-14-2 Nitros 10 10 125-10 10 10 10 10 10 10 10 | | | | | 1024 | | 3,7-Dinitroso-1,3,5,7-tetraza-bicyclo[3,3,1]nonane | | | | | 1025 | | 2.4 Dinitrotoluene ChLN-O ₄ 121-14-2 Nitros 10 2.6 Dinitrotoluene ChLN-O ₄ 66-20-2 Nitros 10 3.5 Dioxaheptane ChLi-O ₂ 462-95-3 Ethers 9 1.3 Dioxane ChLi-O ₂ 505-22-6 Ethers 9 1.3 Dioxane ChLi-O ₂ 505-65-7 Ethers 9 1.3 Dioxolane ChLi-O ₂ 606-06-0 Ethers 9 1.3 Dioxolan-2-one ChLO ₃ 96-49-1 Carbonates 9 1.3 Dioxolan-2-one ChLO ₃ 96-49-1 Carbonates 9 1.3 Dioxolan-2-one ChLO ₃ 96-49-1 Carbonates 9 1.3 Dioxolan-2-one ChLO ₃ 927-49-1 Ketones 9 1.3 Dioxolan-2-one ChLO ₄ 927-49-1 Ketones 9 1.3 Dioxolan-2-one ChLI-O ₄ 927-49-1 Ketones 9 1.3 Dioxolan-2-one ChLI-O ₄ 927-49-1 Ketones 9 1.4 Diphenylethenylethene ChLI-O ₄ 927-49 | | | | | 1022 | | 2,6-Dinitrotoluene | | | | | 1022 | | 3.5-Dickaseptane | • | | | | 1027 | | 1,3-Dioxane C,H _O 2 505-22-6 Ethers 9 1,3-Dioxane C,H _O 2 123-91-1 Ethers 9 1,3-Dioxosane C,H _O 2 505-65-7 Ethers 9 1,3-Dioxosane C,H _O 2 646-06-0 Ethers 9 1,3-Dioxosane-2-one G,H _O 2 646-06-0 Ethers 9 3,3-Dioxosane-2-one C,H _O 2 967-49-1 Carbonates 9 18-n-pentyl kletone C ₁ H ₂ O 927-49-1 Ketones 9 18-n-pentyl kletone C ₁ H ₂ O 927-49-1 Ketones 9 18-n-pentyl kletone C ₁ H ₁ O 951-65-5 Aromatic 10 Diphenylacetylene C ₁ H ₁ O 123-13-4 Acids 9 18-n-pentyl kletone C ₁ H ₁ O 1225-13-4 Acids 9 18-n-pentyl kletone C ₁ H ₁ O 1225-13-4 Acids 9 18-n-pentyl kletone C ₁ H ₁ O 1229-0 Cardonates 9 19-phenylethanedidio acid C ₁ H ₁ O 192-9-0< | • | | | | 1027 | | 1,4-Dioxepane 1,3-Dioxepane 1 | • | | | | 930 | | 1,3-Dioxopane 1,3-Dioxolane | * | | | | 933 | | 1,3-Dioxolane C3H ₄ O ₂ 64-00-0 Ethers 9 Ji-3-Dioxolan-2-one C3H ₄ O ₅ 96-49-1 Carbonates 9 Ji-π-pentyl disulfide C1H ₂ O ₅ 112-51-6 Disulfides 10 Di-π-pentyl sulfide C1H ₂ O ₅ 27-49-1 Ketones 9 Di-n-pentyl sulfide C1H ₁₀ O 927-49-1 Ketones 9 Di-n-pentyl sulfide C1H ₁₀ O 927-49-1 Ketones 9 Diphenylacetylene C4H ₁₀ O 91-5-5 Aromat02 8 meso-2,3-Diphenylbutanedioic acid C1H ₁ O ₄ 1225-13-4 Acids 9 meso-2,3-Diphenylbutanedioic acid C1 ₁ H ₁₀ O ₄ 41915-64-4 Acids 9 piphenyl-cylopropane C1 ₂ H ₁₀ O ₄ 1138-43-3 Cyclic03 9 vis-Diphenylbeyclopropane C1 ₂ H ₁₀ O ₄ 1138-47-2 Cyclic03 9 Diphenyl disulfide C1 ₂ H ₁₀ O ₂ 134-81-6 Ketones 9 Diphenyl disulfide C1 ₂ H ₁₀ O ₂ 104-9-0 Sulfides 10 | • | | | | 934 | | 1,3-Dioxolan-2-one C ₁ H ₄ O ₃ 96-49-1 Carbonates 99 Di -n -pentyl disulfide C ₁₀ H ₂ S ₂ 112-51-6 Disulfides 100 Di -n -pentyl sulfide C ₁₀ H ₂ S ₂ 112-51-6 Disulfides 100 Di -n -pentyl sulfide C ₁₀ H ₂ S ₃ 872-10-6 Sulfides 100
Diphenylacetylene C ₁₄ H ₁₀ 501-65-5 Aromat02 88 aras, Janus 1,4-Diphenyl-1,3-butadiene C ₁₆ H ₁₄ 538-81-8 Cyclic03 99 aras, Janus 1,4-Diphenyl-1,3-butadiene C ₁₆ H ₁₄ 538-81-8 Cyclic03 99 arasemic-2,3-Diphenylbutanedioic acid C ₁₆ H ₁₄ O ₄ 41915-64-4 Acids 99 order of the color t | | | | | 934
933 | | Di-n-pentyl disulfide CnHs2S2 112-51-6 Disulfides 10 Di-n-pentyl ketone CnHs2O 927-49-1 Ketones 9 Di-n-pentyl sulfide CnHs2S 872-10-6 Sulfides 10 Diphenylacetylene CnHs1 501-65-5 Aromat02 8 trass pans -1,4-Diphenyl-1,3-butadiene CnHs1 501-65-5 Aromat02 8 meso-2,3-Diphenylbutanedioic acid CnHs1-04 1225-13-4 Acids 9 meso-2,3-Diphenylbutanedioic acid CnHs1-04 41915-64-4 Acids 9 Diphenyl carbonate CnHs1-04 41915-64-4 Acids 9 cis-Diphenylbeyclopropane CnHs1-4 1138-48-3 Cyclic03 9 trass-Diphenylbeyclopropane CnHs1-4 1138-48-3 Cyclic03 9 Diphenyl disetone CnHs1-4 1138-48-3 Cyclic03 9 Diphenyl disetone CnHs1-4 1138-48-3 Cyclic03 9 Diphenyl disetone CnHs1-6 Ketones 9 Diphenylbudais | · · | | | | 982 | | Di-n-pentyl ketone C ₁ H ₂ O 927-49-1 Ketones 9 Di-n-pentyl sulfide C ₁₀ H ₂₈ S 872-10-6 Sulfides 10 Di-n-pentyl sulfide C ₁₀ H ₁₀ 501-65-5 Aromat02 8° brans Janus - 1,4-Diphenyl-1,3-butadiene C ₁₀ H ₁₀ 538-81-8 Cyclic03 9 meso-2,3-Diphenylbutandedioic acid C ₁₀ H ₁₀ O 1225-13-4 Acids 9 Diphenyl carbonate C ₁₀ H ₁₀ O 192-09-0 Carbonates 9 6z-Diphenylcyclopropane C ₁₅ H ₁₄ 1138-48-3 Cyclic03 9 biphenyl disculfore C ₁₅ H ₁₀ 134-81-6 Ketones 9 Diphenyl disulfide C ₁₂ H ₁₀ S ₂ 82-33-7 Disulfides 10 Diphenyl disulfone C ₁₂ H ₁₀ O ₈ S ₂ 10409-06-0 Sulfones 10 1,1-Diphenylcylodecane C ₂ H ₁₀ O ₈ S ₂ 10409-06-0 Sulfones 10 1,1-Diphenylethane C ₁₄ H ₁₄ 612-00-0 Aromat02 8 1,1-Diphenylethane C ₁₄ H ₁₄ 103-29-7 Aro | | | | | 1048 | | Di-π-penyl sulfide C ₁₀ H ₃ S 872-10-6 Sulfides 10 Diphenylacetylene C ₁₄ H ₁₀ 501-65-5 Aromat02 8 trans trans 1,4-Diphenyl-1,3-butadiene C ₁₆ H ₁₀ A 1225-13-4 Acids 9 meso-2,3-Diphenylbutanedioic acid C ₁₆ H ₁₀ O ₄ 41915-64-4 Acids 9 racemic-2,3-Diphenylbutanedioic acid C ₁₈ H ₁₀ O ₃ 102-09-0 Carbonates 9 cis-Diphenyl carbonate C ₁₈ H ₁₄ 1138-48-3 Cyclic03 9 cis-Diphenyl carbonate C ₁₈ H ₁₄ 1138-48-3 Cyclic03 9 cis-Diphenylcyclopropane C ₁₈ H ₁₄ 1138-47-2 Cyclic03 9 Diphenyl dikteune C ₁₄ H ₁₀ O ₂ 134-81-6 Ketones 9 Diphenyl distuffore C ₁₂ H ₁₀ O ₈ S ₂ 10409-06-0 Sulfones 10 Diphenyl distuffore C ₁₂ H ₁₀ O ₈ S ₂ 10409-06-0 Sulfones 10 1,1-Diphenylethane C ₁₄ H ₁₄ 612-00-0 Aromat02 8 1,1-Diphenylethane C ₁₄ H ₁₄ 612-0 | | | | | 940 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - · | | | | 1045 | | wans, rams-1, d-Diphenyl-1,3-butadiene C ₁₆ H ₁₄ O ₄ 1225-13-4 Acids 90 meso-2,3-Diphenylbutanedioic acid C ₁₆ H ₁₄ O ₄ 1225-13-4 Acids 90 acemic-2,3-Diphenylbutandedioic acid C ₁₆ H ₁₄ O ₄ 41915-64-4 Acids 90 Diphenyl carbonate C ₁₅ H ₁₄ 1138-48-3 Cyclic03 90 biphenylcyclopropane C ₁₅ H ₁₄ 1138-47-2 Cyclic03 90 Diphenyl disulfide C ₁₆ H ₁₆ O ₂ 134-81-6 Ketones 99 Diphenyl disulfide C ₁₂ H ₁₆ O ₂ 882-33-7 Disulfides 10 Diphenyl disulfone C ₁₂ H ₁₆ O ₂ S ₂ 882-33-7 Disulfides 10 1,1-Diphenylethane C ₁₄ H ₁₄ 610-0-0 Aromat02 88 1,2-Diphenylethane C ₁₄ H ₁₄ 103-29-7 Aromat02 88 1,2-Diphenylethane C ₁₄ H ₁₄ 103-29-7 Aromat02 88 1,2-Diphenylethane C ₁₄ H ₁₀ O ₂ 134-81-6 Ketones 99 Diphenylethane C ₁₄ H ₁₀ O ₂ 134-81-6 <td>- · ·</td> <td></td> <td></td> <td></td> <td>877</td> | - · · | | | | 877 | | meso-2,3-Diphemylbutanedioic acid $C_{10}H_{14}O_4$ $1225-13-4$ Acids 90 racemic-2,3-Diphenylbutanedeioic acid $C_{11}H_{14}O_4$ $41915-64-4$ Acids 90 piphenyl carbonate $C_{11}H_{14}O_3$ $102-09-0$ Carbonates 90 cis-Diphenylcyclopropane $C_{11}H_{14}$ $1138-48-3$ Cyclic03 90 piphenyl diketone $C_{11}H_{10}O_2$ $134-81-6$ Ketones 99 Diphenyl disulfide $C_{12}H_{10}O_2$ $882-33-7$ Disulfides 10 Diphenyl disulfone $C_{12}H_{10}O_2$ $10409-06-0$ Sulfones 10 $1,1-Diphenyl dodecane C_{21}H_{10}O_3 10409-06-0 Sulfones 10 1,1-Diphenyl dodecane C_{21}H_{10}O_3 10409-06-0 Aromat02 88 1,1-Diphenyl dodecane C_{21}H_{10}O_3 10409-06-0 Aromat02 88 1,1-Diphenyl dodecane C_{11}H_{11} 612-00-0 Aromat02 88 1,1-Diphenyl dodecane C_{11}H_{10}O_3 134-81-6 Ketones 90 $ | | | | | 908 | | racemic-2,3-Diphenylbutandedioic acid $C_{18}H_{10}O_3$ $102-09-0$ Carbonates 90 $C_{18}H_{10}O_3$ $102-09-0$ Carbonates 90 $C_{18}Dliphenylcyclopropane C_{18}H_{14} 1138-48-3 Cyclic03 90 C_{18}Dliphenylcyclopropane C_{18}H_{10}O_2 134-81-0 Ketones 90 Diphenyl disulfide C_{18}H_{10}O_2 134-81-0 Ketones 90 Diphenyl disulfide C_{18}H_{10}O_2 1049-06-0 Sulfones 100 Diphenyl disulfide C_{18}H_{10}O_4S_2 10409-06-0 Sulfones 100 1,1-Diphenyldedecane C_{28}H_{34} 1603-53-8 Aromat02 88 1,1-Diphenylethane C_{18}H_{10} 103-29-7 Aromat02 88 1,2-Diphenylethane C_{18}H_{10} 134-81-6 Ketones 90 Diphenylethane C_{18}H_{10} 134-81-6 Ketones 90 Diphenylethane C_{18}H_{10} 134-81-6 Ketones 90 Diphenylethane C$ | | | | | 963 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | 963 | | cts -Diphenylcyclopropane $C_{15}H_{14}$ $1138-48-3$ Cyclic03 90 trans -Diphenylcyclopropane $C_{15}H_{14}$ $1138-47-2$ Cyclic03 90 piphenyl disulfide $C_{12}H_{10}O_2$ $18-41-6$ Ketones 90 Diphenyl disulfide $C_{12}H_{10}O_3$ $882-33-7$ Disulfides 10 Diphenyl disulfide $C_{12}H_{10}O_3$ $10409-06-0$ Sulfones 10 Diphenyl disulfide $C_{12}H_{10}O_3$ $10409-06-0$ Sulfones 10 1,1-Diphenyldodecane $C_{14}H_{14}$ $1603-53-8$ Aromat02 8 1,2-Diphenylethane $C_{14}H_{14}$ $103-29-7$ Aromat02 8 1,2-Diphenylethane $C_{14}H_{14}$ $103-29-7$ Aromat02 8 Diphenylether $C_{14}H_{10}O_2$ $134-81-6$ Ketones 9 1,1-Diphenylethyler $C_{14}H_{12}$ $530-48-3$ Aromat02 8 1,2-Diphenylhydrazine $C_{12}H_{10}O$ $101-84-8$ Ethers 9 1,2-Diphenylhydrazine C | | | | | 982 | | trans-Diphenylcyclopropane $C_{13}H_{14}$ $1138-47-2$ $Cyclic03$ 90 Diphenyl diketone $C_{14}H_{10}O_2$ $134-81-6$ Ketones 99 Diphenyl disulfide $C_{12}H_{10}O_3$ $10409-06-0$ Disulfides 10 Diphenyl disulfone $C_{12}H_{10}O_4S_2$ $10409-06-0$ Sulfones 10 1,1-Diphenyledodecane $C_{24}H_{34}$ $1603-53-8$ Aromat02 88 1,2-Diphenylethane $C_{14}H_{14}$ $612-00-0$ Aromat02 88 1,2-Diphenylethane $C_{14}H_{14}$ $612-00-0$ Aromat02 88 1,2-Diphenylethane $C_{14}H_{14}$ $612-00-0$ Aromat02 88 Diphenyl ether $C_{14}H_{10}O_2$ $134-81-6$ Ketones 99 Diphenyl ether $C_{12}H_{10}O$ $101-84-8$ Ethers 90 1,2-Diphenylethylene $C_{14}H_{12}$ $530-48-3$ Aromat02 $875,873$ 1,2-Diphenylethylene $C_{13}H_{10}O$ $119-61-9$ Ketones 99 Diphenyl exidone $C_{13}H_{10}O$ <td></td> <td></td> <td></td> <td></td> <td>908</td> | | | | | 908 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | • • • • | | | • | 908 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | 945 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Diphenyl disulfide | $C_{12}H_{10}S_2$ | 882-33-7 | Disulfides | 1049 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Diphenyl disulfone | $C_{12}H_{10}O_4S_2$ | 10409060 | Sulfones | 1054 | | 1,1-Diphenylethane $C_{14}H_{14}$ $612-00-0$ Aromat02 87 1,2-Diphenylethane $C_{14}H_{14}$ $103-29-7$ Aromat02 87 Diphenylethanedione $C_{14}H_{10}O_2$ $134-81-6$ Ketones 94 Diphenyl ether $C_{12}H_{10}O$ $101-84-8$ Ethers 95 1,1-Diphenylethylene $C_{14}H_{12}$ $530-48-3$ Aromat02 875,83 1,2-Diphenylhydrazine $C_{12}H_{12}N_2$ $122-66-7$ Hydrazines 95 1,2-Diphenylhydrazine $C_{13}H_{10}O$ $119-61-9$ Ketones 94 Diphenyl ketone $C_{13}H_{10}O$ $119-61-9$ Ketones 94 Diphenyl suifore $C_{13}H_{10}O$ $101-81-8$ Ethers 93 Jabersylvatione $C_{12}H_{10}O$ $101-81-8$ | 1,1-Diphenyldodecane | $C_{24}H_{34}$ | 1603-53-8 | | 875 | | 1,2-Diphenylethane $C_{14}H_{14}$ 103-29-7 Aromat02 87 Diphenylethanedione $C_{14}H_{10}O_2$ 134-81-6 Ketones 96 Diphenyl ether $C_{12}H_{10}O$ 101-84-8 Ethers 92 1,1-Diphenylethylene $C_{14}H_{12}$ 530-48-3 Aromat02 875,87 1,2-Diphenylhydrazine $C_{12}H_{12}N_2$ 122-66-7 Hydrazines 96 Diphenyl ketone $C_{13}H_{10}O$ 119-61-9 Ketones 94 Diphenyl ketone $C_{13}H_{10}O$ 119-61-9 Ketones 94 Diphenyl ketone $C_{13}H_{10}O$ 101-81-5 Aromat02 87 Diphenyl ketone $C_{13}H_{10}O$ 101-84-8 Ethers 93 Diphenyl sulf $C_{12}H_{10}O$ 101-84-8 Ethers 93 Diphenyl-1,3-propanedione $C_{13}H_{12}O$ 120-46-7 Ketones 94 meso-2,3-Diphenylsuccinic acid $C_{14}H_{14}O$ 1225-13-4 Acids 96 racemic-2,3-Diphenylsuccinic acid $C_{14}H_{14}O$ 7584-72-7 Acids 96 Diphenyl sulffoxe $C_{12}H_{10}O$ S </td <td>1,1-Diphenylethane</td> <td></td> <td>612000</td> <td></td> <td>875</td> | 1,1-Diphenylethane | | 612000 | | 875 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1,2-Diphenylethane | $C_{14}H_{14}$ | 103-29-7 | Aromat02 | 876 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Diphenylethanedione | $C_{14}H_{10}O_2$ | 134-81-6 | Ketones | 945 | | 1,1-Diphenylethylene $C_{14}H_{12}$ 530-48-3 Aromat02 875,87 1,2-Diphenylhydrazine $C_{12}H_{12}N_2$ 122-66-7 Hydrazines 99 Diphenyl ketone $C_{13}H_{10}O$ 119-61-9 Ketones 94 Diphenyl ketone $C_{13}H_{12}$ 101-81-5 Aromat02 87 Diphenyl oxide $C_{12}H_{10}O$ 101-84-8 Ethers 93 1,3-Diphenyl-1,3-propanedione $C_{15}H_{12}O_2$ 120-46-7 Ketones 94 meso-2,3-Diphenylsuccinic acid $C_{15}H_{14}O_4$ 1225-13-4 Acids 96 racemic-2,3-Diphenylsuccinic acid $C_{16}H_{14}O_4$ 7584-72-7 Acids 96 Diphenyl sulfide $C_{12}H_{10}O_5$ 139-66-2 Sulfides 104 Diphenyl sulfone $C_{12}H_{10}O_5$ 127-63-9 Sulfones 105 Diphenylurea $C_{12}H_{10}O_5$ 945-51-7 Sulfoxides 105 N,N'-Diphenylurea $C_{13}H_{12}N_{2}O$ 603-54-3 Ureas 101 Dipropanoyl peroxide $C_{6}H_{10}O_4$ 3248-28-0 Peroxide 97 Dipropionyl peroxide | Diphenyl ether | $C_{12}H_{10}O$ | 101-84-8 | Ethers | 935 | | 1,2-Diphenylhydrazine $C_{12}H_{12}N_2$ 122 -66-7 Hydrazines 99 Diphenyl ketone $C_{13}H_{10}O$ 119 -61-9 Ketones 94 Diphenylmethane $C_{13}H_{12}$ 101 -81-5 Aromat02 87 Diphenyl oxide $C_{12}H_{10}O$ 101 -84-8 Ethers 93 1,3-Diphenyl-1,3-propanedione $C_{15}H_{12}O_2$ 120 -46-7 Ketones 94 neso-2,3-Diphenylsuccinic acid $C_{16}H_{14}O_4$ 1225 -13-4 Acids 96
racemic-2,3-Diphenylsuccinic acid $C_{16}H_{14}O_4$ 7584 -72-7 Acids 96 Diphenyl sulfide $C_{12}H_{10}O_5$ 139 -66-2 Sulfides 104 Diphenyl sulfone $C_{12}H_{10}O_5$ 127 -63-9 Sulfones 105 Diphenyl sulfoxide $C_{12}H_{10}O_5$ 945 -51-7 Sulfoxides 105 N,N-Diphenylurea $C_{13}H_{12}N_{2}O$ 603 -54-3 Ureas 101 N,N'-Diphenylurea $C_{13}H_{12}N_{2}O$ 102 -07-8 Ureas 101 Dipropanoyl peroxide $C_{6}H_{10}O_4$ 3248 -28-0 Peroxide 97 | 1,1-Diphenylethylene | $C_{14}H_{12}$ | 530-48-3 | Aromat02 | 875,876 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1,2-Diphenylhydrazine | $C_{12}H_{12}N_2$ | 122-66-7 | Hydrazines | 998 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Diphenyl ketone | $C_{13}H_{10}O$ | 119-61-9 | Ketones | 944 | | 1,3-Diphenyl-1,3-propanedione $C_{15}H_{12}O_2$ $120-46-7$ Ketones 96 meso-2,3-Diphenylsuccinic acid $C_{16}H_{14}O_4$ $1225-13-4$ Acids 96 racemic-2,3-Diphenylsuccinic acid $C_{16}H_{14}O_4$ $7584-72-7$ Acids 96 Diphenyl sulfide $C_{12}H_{10}S$ $139-66-2$ Sulfides 104 Diphenyl sulfone $C_{12}H_{10}O_2S$ $127-63-9$ Sulfones 105 Diphenyl sulfoxide $C_{12}H_{10}OS$ $945-51-7$ Sulfoxides 105 N,N-Diphenylurea $C_{12}H_{10}OS$ $945-51-7$ Sulfoxides 105 N,N-Diphenylurea $C_{13}H_{12}N_{2}O$ $603-54-3$ Ureas 101 Dipropanoyl peroxide $C_{13}H_{12}N_{2}O$ $102-07-8$ Ureas 101 Dipropionyl peroxide $C_{6}H_{10}O_4$ $3248-28-0$ Peroxide 97 Di-n-propylamine $C_{6}H_{15}N$ $142-84-7$ Amines 98 Di-n-propyldiazene $C_{6}H_{14}N_{2}O$ $87339-10-4$ Nitroso 102 | Diphenylmethane | $C_{13}H_{12}$ | 101-81-5 | Aromat02 | 875 | | meso-2,3-Diphenylsuccinic acid $C_{16}H_{14}O_{4}$ 1225-13-4 Acids 96 racemic-2,3-Diphenylsuccinic acid $C_{16}H_{14}O_{4}$ 7584-72-7 Acids 96 Diphenyl sulfide $C_{12}H_{10}S$ 139-66-2 Sulfides 104 Diphenyl sulfone $C_{12}H_{10}O_{2}S$ 127-63-9 Sulfones 105 Diphenyl sulfoxide $C_{12}H_{10}O_{2}S$ 945-51-7 Sulfoxides 105 N,N-Diphenylurea $C_{12}H_{10}O_{2}S$ 945-51-7 Sulfoxides 105 N,N'-Diphenylurea $C_{13}H_{12}N_{2}O$ 603-54-3 Ureas 101 N,N'-Diphenylurea $C_{13}H_{12}N_{2}O$ 102-07-8 Ureas 101 Dipropanoyl peroxide $C_{6}H_{10}O_{4}$ 3248-28-0 Peroxide 97 Dipropionyl peroxide $C_{6}H_{10}O_{4}$ 3248-28-0 Peroxide 97 Di-n-propyldiazene $C_{6}H_{14}N_{2}$ 821-67-0 Diazene 99 Di-n-propyldiazene $C_{6}H_{14}N_{2}O$ 87339-10-4 Nitroso 102 | Diphenyl oxide | $C_{12}H_{10}O$ | 101-84-8 | Ethers | 935 | | racemic-2,3-Diphenylsuccinic acid $C_{16}H_{14}O_{4}$ 7584-72-7 Acids 96 Diphenyl sulfide $C_{12}H_{10}S$ 139-66-2 Sulfides 104 Diphenyl sulfone $C_{12}H_{10}O_{2}S$ 127-63-9 Sulfones 105 Diphenyl sulfoxide $C_{12}H_{10}OS$ 945-51-7 Sulfoxides 105 N,N-Diphenylurea $C_{13}H_{12}N_{2}O$ 603-54-3 Ureas 101 N,N'-Diphenylurea $C_{13}H_{12}N_{2}O$ 102-07-8 Ureas 101 Dipropanoyl peroxide $C_{6}H_{10}O_{4}$ 3248-28-0 Peroxide 97 Dipropionyl peroxide $C_{6}H_{10}O_{4}$ 3248-28-0 Peroxide 97 Di-n-propylamine $C_{6}H_{14}N_{2}$ 821-67-0 Diazene 99 Di-n-propyldiazene $C_{6}H_{14}N_{2}O$ 87339-10-4 Nitroso 102 | 1,3-Diphenyl-1,3-propanedione | $C_{15}H_{12}O_2$ | 120-467 | Ketones | 945 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | meso-2,3-Diphenylsuccinic acid | $C_{16}H_{14}O_{4}$ | 1225-13-4 | Acids | 963 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | racemic-2,3-Diphenylsuccinic acid | $C_{16}H_{14}O_{4}$ | 7584-72-7 | Acids | 963 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Diphenyl sulfide | $C_{12}H_{10}S$ | 139-66-2 | | 1047 | | N,N-Diphenylurea $C_{13}H_{12}N_2O$ $603-54-3$ Ureas 101 N,N'-Diphenylurea $C_{13}H_{12}N_2O$ $102-07-8$ Ureas 101 Dipropanoyl peroxide $C_6H_{10}O_4$ $3248-28-0$ Peroxide 97 Dipropionyl peroxide $C_6H_{10}O_4$ $3248-28-0$ Peroxide 97 Di-n-propylamine $C_6H_{15}N$ $142-84-7$ Amines 98 Di-n-propyldiazene $C_6H_{14}N_2$ $821-67-0$ Diazene 99 Di-n-propyldiazene N-oxide (E) $C_6H_{14}N_2O$ $87339-10-4$ Nitroso 102 | | | 127-63-9 | Sulfones | 1054 | | N,N-Diphenylurea $C_{13}H_{12}N_2O$ 603-54-3 Ureas 101 N,N'-Diphenylurea $C_{13}H_{12}N_2O$ 102-07-8 Ureas 101 Dipropanoyl peroxide $C_6H_{10}O_4$ 3248-28-0 Peroxide 97 Dipropionyl peroxide $C_6H_{10}O_4$ 3248-28-0 Peroxide 97 Di-n-propylamine $C_6H_{15}N$ 142-84-7 Amines 98 Di-n-propyldiazene $C_6H_{14}N_2$ 821-67-0 Diazene 99 Di-n-propyldiazene N-oxide (E) $C_6H_{14}N_2O$ 87339-10-4 Nitroso 102 | | $C_{12}H_{10}OS$ | 945-51-7 | Sulfoxides | 1050 | | Dipropanoyl peroxide $C_6H_{10}O_4$ 3248–28–0 Peroxide 97 Dipropionyl peroxide $C_6H_{10}O_4$ 3248–28–0 Peroxide 97 Di-n-propylamine $C_6H_{15}N$ 142–84–7 Amines 98 Di-n-propyldiazene $C_6H_{14}N_2$ 821–67–0 Diazene 99 Di-n-propyldiazene N-oxide (E) $C_6H_{14}N_2O$ 87339–10–4 Nitroso 102 | | $C_{13}H_{12}N_2O$ | 603-54-3 | Ureas | 1013 | | Dipropionyl peroxide $C_6H_{10}O_4$ 3248–28–0 Peroxide 97 Di-n-propylamine $C_6H_{15}N$ 142–84–7 Amines 98 Di-n-propyldiazene $C_6H_{14}N_2$ 821–67–0 Diazene 99 Di-n-propyldiazene N-oxide (E) $C_6H_{14}N_2O$ 87339–10–4 Nitroso 102 | | $C_{13}H_{12}N_2O$ | 102-07-8 | Ureas | 1013 | | Dipropionyl peroxide $C_6H_{10}O_4$ 3248–28–0 Peroxide 97 Di-n-propylamine $C_6H_{15}N$ 142–84–7 Amines 98 Di-n-propyldiazene $C_6H_{14}N_2$ 821–67–0 Diazene 99 Di-n-propyldiazene N-oxide (E) $C_6H_{14}N_2O$ 87339–10–4 Nitroso 102 | Dipropanoyl peroxide | $C_6H_{10}O_4$ | 3248-28-0 | Peroxide | 978 | | Di-n-propylamine $C_6H_{15}N$ 142-84-7 Amines 98 Di-n-propyldiazene $C_6H_{14}N_2$ 821-67-0 Diazene 99 Di-n-propyldiazene N-oxide (E) $C_6H_{14}N_2O$ 87339-10-4 Nitroso 102 | Dipropionyl peroxide | $C_6H_{10}O_4$ | 3248-28-0 | Peroxide | 978 | | Di-n-propyldiazene $C_6H_{14}N_2$ 821-67-0 Diazene 99 Di-n-propyldiazene N-oxide (E) $C_6H_{14}N_2$ O 87339-10-4 Nitroso 102 | | | 142-84-7 | | 985 | | Di-n-propyldiazene N-oxide (E) $C_6H_{14}N_2O$ 87339–10-4 Nitroso 102 | Di-n-propyldiazene | | 821670 | | 998 | | • •• | | | | | 1022 | | 2.11 p. 2p. 1000 | Di-n-propyl disulfide | $C_6H_{14}S_2$ | 629-19-6 | Disulfides | 1048 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--------------------------------------|--|------------------|------------|-----------| | Di-n-propyl ether | C ₆ H ₁₄ O | 111-43-3 | Ethers | 926 | | Di-n-propyl sulfate | $C_6H_{14}O_4S$ | 598-05-0 | Sulfates | 1055 | | Di-n-propyl sulfide | $C_6H_{14}S$ | 111–47–7 | Sulfides | 1043 | | Di-n-propyl sulfite | $C_6H_{14}O_3S$ | 623-98-3 | Sulfites | 1055 | | Di-n-propyl sulfone | $C_6H_{14}O_2S$ | 598-03-8 | Sulfones | 1052 | | Di-n-propyl sulfoxide | $C_6H_{14}OS$ | 4253–91–2 | Sulfoxides | 1049,1050 | | Di-(1,1,3,3-tetramethylbutyl)diazene | $C_{16}H_{34}N_2$ | 39198-34-0 | Diazene | 999 | | Divinyl ether | C₄H ₆ O | 109–93–3 | Ethers | 929 | | Divinyl sulfone | $C_4H_6O_2S$ | 77–77–0 | Sulfones | 1050 | | 3,9-Dodecadiyne | $C_{12}H_{18}$ | 61827–89–2 | Alkynes | 862 | | 5,7-Dodecadiyne | $C_{12}H_{18}$ | 1120-29-2 | Alkynes | 862 | | Dodecafluorocyclohexane | C ₆ F ₁₂ | 355–68–0 | Fluoride | 1063 | | Dodecane | $C_{12}H_{26}$ | 112–40–3 | n-Alkanes | 831,832 | | Dodecanedioic acid | $C_{12}H_{22}O_4$ | 693–23–2 | Acids | 953 | | Dodecanoic acid | $C_{12}H_{24}O_2$ | 143-07-7 | Acids | 947 | | Dodecanol | $C_{12}H_{26}O$ | 112–53–8 | Alcohols | 911,912 | | n-Dodecyl alcohol | $C_{12}H_{26}O$ | 112–53–8 | Alcohols | 911,912 | | Dodecylbenzene | $C_{18}H_{30}$ | 123-01-3 | Aromat01 | 868 | | Dodecylcyclohexane | C ₁₈ H ₃₆ | 1795–17–1 | Cyclic02 | 898 | | Dotriacontane | $C_{32}H_{66}$ | 544–85–4 | n-Alkanes | 834 | | E | | | | | | EGDN | $C_2H_4N_2O_6$ | 628-96-6 | Nitrates | 1032 | | Eicosane | $C_{20}H_{42}$ | 112–95–8 | n-Alkanes | 833 | | 1-Eicosanethiol | $C_{20}H_{42}S$ | 13373-97-2 | Thiols | 1037 | | Eicosanoic acid | $C_{20}H_{40}O_2$ | 506–30–9 | Acids | 949,950 | | Eicosanol | $C_{20}H_{42}O$ | 629–96–9 | Alcohols | 914 | | n-Eicosanyl alcohol | $C_{20}H_{42}O$ | 629–96–9 | Alcohols | 914 | | Enanthonitrile | $C_7H_{13}N$ | 629-08-3 | Nitriles | 993 | | Enanthylic acid | $C_7H_{14}O_2$ | 111–14–8 | Acids | 946 | | Erythritol | $C_4H_{10}O_4$ | 149326 | Alcohols | 919 | | Ethanal | C₂H₄O | 75–07–0 | Aldehyde | 935 | | Ethanamide | C₂H₅NO | 60-35-5 | Amides | 1006 | | Ethane | C_2H_6 | 74840 | n-Alkanes | 830 | | Ethanedial | $C_2H_2O_2$ | 107–22–2 | Aldehyde | 935 | | 1,2-Ethanediamine | $C_2H_8N_2$ | 107–15–3 | Amines | 983,984 | | Ethanedioic acid | $C_2H_2O_4$ | 144–62–7 | Acids | 951 | | 1,2-Ethanediol | C ₂ H ₄ O ₂ | 107-21-1 | Alcohols | 917 | | 1,2-Ethanedithiol | $C_2H_6S_2$ | 540-63-6 | Thiols | 1037,1038 | | Ethanenitrile | C ₂ H ₃ N | 75–05–8 | Nitriles | 992 | | Ethanethiol | C_2H_6S | 75081 | Thiols | 1035 | | Ethanoic acid | C₂H₄O₂ | 64–19–7 | Acids | 945 | | Ethanoic anhydride | $C_4H_6O_3$ | 108-24-7 | Anhydrides | 964 | | Ethanol | C ₂ H ₆ O | 64–17–5 | Alcohols | 909 | | Ethenoxyethene | C₄H ₆ O | 109-93-3 | Ethers | 929 | | Ethenylcyclopentane | C ₇ H ₁₂ | 3742–34–5 | Cyclic02 | 895 | | Ethenyl ethanoate | $C_4H_6O_2$ | 108-05-4 | Esters | 971 | | Ethoxybenzene | $C_8H_{10}O$ | 103-73-1 | Ethers | 934 | | Ethoxyethane | $C_4H_{10}O$ | 60–29–7 | Ethers | 926 | | 2-Ethoxyethanol | $C_4H_{10}O_2$ | 110–80–5 | Ethers | 931 | | Ethoxyethene | C_4H_8O | 109-92-2 | Ethers | 929 | | Ethoxypropane | $C_5H_{12}O$ | 628-32-0 | Ethers | 928 | | N-Ethylacetamide | C ₄ H ₉ NO | 625-50-3 | Amides | 1008 | | Ethyl acctate | $C_4H_8O_2$ | 141-78-6 | Esters | 968,969 | | Ethyl alcohol | C₂H ₆ O | 64–17–5 | Alcohols | 909 | | Ethyl amine | C_2H_7N | 75–04–7 | Amines | 982 | | N-Ethylaniline | $C_8H_{11}N$ | 103–69–5 | Amines | 990 | | Ethylbenzene | C_8H_{10} | 100-41-4 | Aromat01 | 866 | | Ethyl benzoate | $C_9H_{10}O_2$ | 93–89–0 | Esters | 976 | | 4-Ethyl benzophenone | $C_{15}H_{14}O$ | 18220-90-1 | Ketones | 944 | | Ethylbutanedioic acid | $C_6H_{10}O_4$ | 636-48-6 | Acids | 955 | | 2-Ethyl-1-butene | C_6H_{12} | 760–21–4 | s-Alkenes | 852,853 | | Ethyl (E)-2-butenoate |
$C_6H_{10}O_2$ | 623-70-1 | Esters | 972 | | Ethyl trans-2-butenoate | $C_6H_{10}O_2$ | 623–70–1 | Esters | 972 | | Ethyl tert-butyl ketone | $C_7H_{14}O$ | 564045 | Ketones | 941 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--------------------------------------|--|------------------------|------------------|----------------| | Ethyl 4-chlorobutanoate | C ₆ H ₁₁ ClO ₂ | 3153-36-4 | Chloride | 1082 | | Ethyl 2-chloropropanoate | $C_5H_9ClO_2$ | 535-13-7 | Chloride | 1081 | | Ethylcyclobutane | C_6H_{12} | 4806–61–5 | Cyclic01 | 891 | | Ethylcyclohexane | C ₈ H ₁₆ | 1678–91–7 | Cyclic02 | 897 | | 1-Ethylcyclohexene | C ₈ H ₁₄ | 1453–24–3 | Cyclic02 | 899 | | Ethylcyclopentane | C ₇ H ₁₄ | 1640–89–7 | Cyclic01 | 892 | | 1-Ethylcyclopentene | C ₇ H ₁₂ | 2146–38–5 | Cyclic02 | 896 | | Ethyl 2,3-dichloropropanoate | C ₅ H ₈ Cl ₂ O ₂ | 6628–21–3 | Chloride | 1083 | | 2-Ethyl-1,4-dimethylbenzene | $C_{10}H_{14}$ | 1758–88–9 | Aromat01 | 870 | | 2-Ethyl-1,3-dimethylbenzene | $C_{10}H_{14}$ | 2870-04-4 | Aromat01 | 870 | | 3-Ethyl-1,2-dimethylbenzene | $C_{10}H_{14}$ | 933-98-2 | Aromat01 | 869 | | 4-ethyl-1,2-dimethylbenzene | C ₁₀ h ₁₄ | 934–80–5 | Aromat01 | 870 | | 4-Ethyl-1,3-dimethylbenzene | $C_{10}H_{14}$ | 874-41-9 | Aromat01 | 870 | | 5-Ethyl-1,3-dimethylbenzene | C ₁₀ H ₁₄ | 934-74-7 | Aromat01 | 870 | | N'-Ethyl-N,N-diphenylurea | C ₁₅ H ₁₆ N ₂ O | 18168-01-9 | Ureas | 1013 | | Ethylene Ethylene explanate | C₂H₄ | 74-85-1 | n-Alkenes | 846 | | Ethylene carbonate | C ₃ H ₄ O ₃ | 96-49-1 | Carbonates | 982 | | Ethylenediamine | C ₂ H ₈ N ₂
C ₂ H ₆ N₄O₄ | 107-15-3
26958-29-2 | Amines | 983,984 | | Ethylene dinitramine Ethylene glycol | | 26938-29-2
107-21-1 | Nitramines | 1033 | | Ethylene glycol dinitrate | C ₂ H ₆ O ₂ | 628-96-6 | Alcohols | 917 | | | $C_2H_4N_2O_6$ | | Nitrates | 1032 | | Ethyleneimine | C₂H₅N
C₂H₄O | 151-56-4
75-21-8 | CyclCHN | 1001 | | Ethylene oxide N-Ethylethanamide | C ₄ H ₉ NO | 627-45-2 | Ethers | 932 | | Ethyl ethanoate | C ₄ H ₈ O ₂ | 141-78-6 | Amides
Esters | 1008 | | Ethyl formate | C ₃ H ₆ O ₂ | 109-94-4 | Esters | 968,969 | | 3-Ethylheptane | C ₃ H ₂₀ | 15869-80-4 | t-Alkanes | 968 | | 4-Ethylheptane | C ₉ H ₂₀ | 2216-32-2 | t-Alkanes | 839 | | 2-Ethylhexanal | C ₈ H ₁₆ O | 123-05-7 | Aldehyde | 839 | | 3-Ethylhexane | C ₈ H ₁₈ | 619-99-8 | t-Alkanes | 937 | | 2-Ethyl-1-hexanol | C*H18O | 104-76-7 | Alcohols | 839
915 | | Ethyl hexyl sulfide | C ₈ H ₁₈ S | 7309-44-6 | Sulfides | 1045 | | Ethylidenecyclohexane | C ₈ H ₁₄ | 1003-64-1 | Cyclic02 | 899 | | Ethylidenecyclopentane | C_7H_{12} | 2146-37-4 | Cyclic02 | 894,895 | | Ethyl isopropyl ketone | C ₆ H ₁₂ O | 565-69-5 | Ketones | 941 | | Ethyl methanoate | $C_3H_6O_2$ | 109-94-4 | Esters | 968 | | Ethyl 2-methylbutanoate | $C_7H_{14}O_2$ | 7452-79-1 | Esters | 908
971 | | 1-Ethyl-1-methylcyclopentane | C ₈ H ₁₆ | 16747–50–5 | Cyclic03 | | | cis-1-Ethyl-2-methylcyclopentane | C ₈ H ₁₆ | 930-89-2 | Cyclic03 | 905,906
905 | | trans-1-Ethyl-2-methylcyclopentane | C ₈ H ₁₆ | 930–90–5 | Cyclic03 | 905 | | cis-1-Ethyl-3-methylcyclopentane | C ₈ H ₁₆ | 2613-66-3 | Cyclic03 | 905 | | trans-1-Ethyl-3-methylcyclopentane | C ₈ H ₁₆ | 2613-65-2 | Cyclic03 | 905 | | 2-Ethyl-3-methylnaphthalene | C ₁₃ H ₁₄ | 31032-94-7 | Aromat02 | 903
884 | | 2-Ethyl-6-methylnaphthalene | C ₁₃ H ₁₄ | 7372–86–3 | Aromat02 | 884 | | 2-Ethyl-7-methylnaphthalene | C ₁₃ H ₁₄ | 17059-55-1 | Aromat02 | 884 | | 3-Ethyl-2-methylpentane | C ₈ H ₁₈ | 609–26–7 | t-Alkanes | 841 | | 3-Ethyl-3-methylpentane | C_8H_{18} | 1067-08-9 | q-Alkanes | 845 | | Ethyl methyl sulfide | C₃H ₈ S | 624-89-5 | Sulfides | 1041 | | Ethyl methyl sulfite | C ₃ H ₈ O ₃ S | 10315-59-0 | Sulfites | 1055 | | Ethyl methyl sulfone | $C_3H_8O_2S$ | 594-43-4 | Sulfones | 1050 | | 1-Ethylnaphthalene | $C_{12}H_{12}$ | 1127–76–0 | Aromat02 | 880 | | 2-Ethylnaphthalene | $C_{12}H_{12}$ | 939–27–5 | Aromat02 | 880 | | Ethyl nitrate | C ₂ H ₅ NO ₃ | 625-58-1 | Nitrates | 1032 | | Ethyl nitrite | $C_2H_5NO_2$ | 109-95-5 | Nitrites | 1031 | | 3-Ethyloctane | $C_{10}H_{22}$ | 5881-17-4 | t-Alkanes | 839 | | 4-Ethyloctane | $C_{10}H_{22}$ | 15869-86-0 | t-Alkanes | 839 | | Ethyl-2,4-pentadienoate | $C_7H_{10}O_2$ | 13038-12-5 | Esters | 973 | | 3-Ethylpentane | C ₇ H ₁₆ | 617–78–7 | t-Alkanes | 838 | | Ethyl pentanoate | $C_7H_{14}O_2$ | 539-82-2 | Esters | 970 | | Ethyl cis-2-pentenoate | $C_7H_{12}O_2$ | 27805-84-1 | Esters | 972 | | Ethyl trans-2-pentenoate | $C_7H_{12}O_2$ | 24410-84-2 | Esters | 972 | | Ethyl (E)-2-pentenoate | $C_7H_{12}O_2$ | 24410-84-2 | Esters | 972 | | Ethyl cis-3-pentenoate | $C_7H_{12}O_2$ | 27829-70-5 | Esters | 972
972 | | Ethyl trans-3-pentenoate | $C_7H_{12}O_2$ | 3724-66-1 | Esters | 972,973 | | | | 212T-00-1 | Library 19 | 717.713 | | Ethyl (E)-3-pentenoate | $C_7H_{12}O_2$ | 3724-66-1 | Esters | 972,973 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |-------------------------------------|---|------------------|-------------|-----------| | Ethyl (Z)-3-pentenoate | C ₇ H ₁₂ O ₂ | 27829-70-5 | Esters | 972 | | Ethyl 4-pentenoate | $C_7H_{12}O_2$ | 1968-40-7 | Esters | 973 | | Ethyl pentyl sulfide | $C_7H_{16}S$ | 26158-99-6 | Sulfides | 1043,1044 | | Ethyl-3-pentynoate | $C_7H_{10}O_2$ | 52750-56-8 | Esters | 972 | | Ethyl-4-pentynoate | $C_7H_{10}O_2$ | 63093-41-4 | Esters | 972 | | 2-Ethylphenol | $C_8H_{10}O$ | 90006 | Alcohols | 922 | | 3-Ethylphenol | $C_8H_{10}O$ | 620–17–7 | Alcohols | 922 | | 4-Ethylphenol | $C_8H_{10}O$ | 123-07-9 | Alcohols | 922 | | Ethyl phenyl ether | $C_8H_{10}O$ | 103-73-1 | Ethers | 934 | | Ethyl phenyl ketone | $C_9H_{10}O$ | 93550 | Ketones | 944 | | Ethyl phenyl sulfide | $C_8H_{10}S$ | 622-38-8 | Sulfides | 1047 | | Ethyl propanoate | $C_5H_{10}O_2$ | 105-37-3 | Esters | 970 | | 3-Ethyl-1-propene sulfide | C ₅ H ₁₀ S | 5296-62-8 | Sulfides | 1046 | | Ethyl propionate | $C_5H_{10}O_2$ | 105-37-3 | Esters | 970 | | | $C_5H_{10}O_2$
$C_5H_{12}O$ | 628-32-0 | Ethers | | | Ethyl propyl ether | | | | 928 | | Ethyl propyl ketone | $C_6H_{12}O$ | 589-38-8 | Ketones | 939 | | Ethyl propyl sulfide | $C_5H_{12}S$ | 4110–50–3 | Sulfides | 1042 | | Ethylsuccinic acid | $C_6H_{10}O_4$ | 636–48–6 | Acids | 955 | | Ethylurea | $C_3H_8N_2O$ | 625-52-5 | Ureas | 1011 | | Ethyl valerate | $C_7H_{14}O_2$ | 539-82-2 | Esters | 970 | | Ethyl sec-valerate | $C_7H_{14}O_2$ | 7452-79-1 | Esters | 971 | | Ethyl vinyl ether | C_4H_8O | 109-92-2 | Ethers | 929 | | Ethynylbenzene | C_8H_6 | 536-74-3 | Aromat02 | 874,875 | | F | | | | | | Fluoranthrene | $C_{16}H_{10}$ | 206-44-0 | Aromat02 | 886 | | Fluorobenzene | C ₆ H ₅ F | 462066 | Fluoride | 1060 | | 2-Fluorobenzoic acid | C ₇ H ₅ FO ₂ | 445-29-4 | Fluoride | 1065 | | 3-Fluorobenzoic acid | $C_7H_5FO_2$ | 455-38-9 | Fluoride | 1065 | | 4-Fluorobenzoic acid | C ₇ H ₅ FO ₂ | 456-22-4 | Fluoride | 1065 | | Fluoroethane | C ₂ H ₅ F | 353-36-6 | Fluoride | 1058 | | Fluoroethylene | C ₂ H ₃ F | 75-02-5 | Fluoride | 1059 | | Fluoromethane | CH₃F | 593-53-3 | Fluoride | 1058 | | 1-Fluoro-4-methylbenzene | C ₇ H ₇ F | 352–32–9 | Fluoride | 1060,1061 | | 1-Fluoropropane | C₃H₁F | 460–13–9 | Fluoride | 1058 | | 2-Fluoropropane | C_3H_7F | 420-26-8 | Fluoride | 1058 | | p-Fluorotoluene | C ₇ H ₇ F | 352-32-9 | Fluoride | 1060,1061 | | | | 401-80-9 | Fluoride | • | | 1-Fluoro-3-(trifluoromethyl)benzene | C ₇ H ₄ F ₄ | | | 1062 | | Formaldehyde | CH ₂ O | 50-00-0 | Aldehyde | 935 | | Formamide | CH₃NO | 75–12–7 | Amides | 1006 | | Formic acid | CH_2O_2 | 64–18–6 | Acids | 945 | | Fumaric acid | C ₄ H ₄ O ₄ | 110–17–8 | Acids | 951 | | Furan | C₄H₄O | 110-00-9 | Ethers | 933 | | Furfural | $C_5H_4O_2$ | 98–01–1 | Aldehyde | 938 | | G | | | | | | L-Glutamic acid | C5H9NO4 | 56–86-0 | Amino acids | 1018 | | L-Glutamine | $C_5H_{10}N_2O_3$ | 56-85-9 | Amino acids | 1018 | | Glutaric acid | C₅H ₈ O ₄ | 110–94–1 | Acids | 952 | | Glutaric anhydride | $C_5H_6O_3$ | 108-55-4 | Anhydrides | 964 | | Glutarimide | C ₅ H ₇ NO ₂ | 1121-89-7 | CyclCHNO | 1035 | | Glutaronitrile | $C_5H_6N_2$ | 544-13-8 | Nitriles | 996 | | Glycerol | C ₃ H ₈ O ₃ | 56-81-5 | Alcohols | 918 | | Glycerol Glyceryl trinitrate | C ₃ H ₅ N ₃ O ₉ | 55-63-0 | Nitrates | 1033 | | | | 56-40-6 | | 1014 | | Glycine | C ₂ H ₅ NO ₂ | | Amino acids | | | Glycylalanylphenylalanine | C ₁₄ H ₁₉ N ₃ O ₄ | 17922-87-1 | Amino acids | 1021 | | Glycylglycine | $C_4H_8N_2O_3$ | 556–50–3 | Amino acids | 1019 | | Glycylphenylalanine | $C_{11}H_{14}N_2O_3$ | 3321-03-7 | Amino acids | 1020 | | N-Glycyl-DL-valine | $C_7H_{14}N_2O_3$ | 2325-17-9 | Amino acids | 1020 | | Glyoxal | $C_2H_2O_2$ | 107–22–2 | Aldehyde | 935 | | н | | | | | | Haleite | $C_2H_4N_4O_4$ | 26958–29–2 | Nitramines | 1033 | | | | | | | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--|--|-------------------------|----------------|----------| | leptadecane | C ₁₇ H ₃₆ | 629-78-7 | n-Alkanes | 8: | | Ieptadecanoic acid | $C_{17}H_{34}O_2$ | 506-12-7 | Acids | 94 | | Ieptadecanol | C ₁₇ H ₃₆ O | 123-24-0 | Alcohols | 9 | | -Heptadecyl alcohol | C ₁₇ H ₃₆ O | 123-24-0 | Alcohols | 91 | | 2,2,3,3,4,4,4-Heptafluoro-1-butanol | C ₄ H ₃ F ₇ O | 375-01-9 | Fluoride | 100 | | leptaldehyde . | $C_7H_{14}O$ | 111-71-7 | Aldehyde | 936,93 | | Teptanal | C7H14O | 111-71-7 | Aldehyde | 936,93 | | Heptane | C7H16 | 142-82-5 | n-Alkanes | 830,83 | | Heptanedioic acid | C ₇ H ₁₂ O ₄ | 111-16-0 | Acids | 9 | | 1-Heptanethiol | $C_7H_{16}S$ | 1639-09-4 | Thiols | 103 | | Heptanenitrile | $C_7H_{13}N$ | 629-08-3 | Nitriles | 99 | | Teptanoic acid | C ₂ H ₁₄ O ₂ | 111-14-8 | Acids |
94 | | Heptanol | C ₂ H ₁₆ O | 111-70-6 | Alcohols | 910,91 | | -Heptene | C ₇ H ₁₄ | 592-76-7 | n-Alkenes | 84 | | is-2-Heptene | C ₇ H ₁₄ | 6443-92-1 | n-Alkenes | 84 | | rans-2-Heptene | C ₇ H ₁₄ | 14686-13-6
7642-10-6 | n-Alkenes | 84 | | is-3-Heptene | C ₇ H ₁₄ | | n-Alkenes | 85 | | rans-3-Heptene | C ₇ H ₁₄ | 14686-14-7 | n-Alkenes | 85 | | -Heptyl alcohol | C ₇ H ₁₆ O | 111-70-6 | Alcohols | 910,91 | | Heptylbenzene | C13H20 | 1078-71-3
5617-41-4 | Aromat01 | 80 | | Heptylcyclohexane | C ₁₃ H ₂₆ | 5617-42-5 | Cyclic03 | 90 | | leptylcyclopentane | C ₁₂ H ₂₄ | | Cyclic02 | 89 | | -Heptyl-1-hydroperoxide | C ₇ H ₁₆ O ₂ | 764-81-8 | Hydroperoxides | 97 | | -Heptyl-2-hydroperoxide | $C_7H_{16}O_2$ | 762-46-9
761-70-6 | Hydroperoxides | 97 | | -Heptyl-3-hydroperoxide | C ₇ H ₁₆ O ₂ | | Hydroperoxides | 98 | | -Heptyl-4-hydroperoxide | C ₇ H ₁₆ O ₂ | 761-40-0 | Hydroperoxides | 98 | | leptyl methyl sulfide | C ₈ H ₁₈ S | 20291-61-6 | Sulfides | 10- | | -Heptyne | C ₇ H ₁₂
C ₆ Cl ₆ | 628-71-7 | Alkynes | 8. | | lexachlorobenzene | | 118-74-1 | Chloride | 107 | | Texachloroethane | C ₂ Cl ₆ | 67-72-1
630-01-3 | Chloride | 107 | | Hexacosane | C26H54
C7F10 | | n-Alkanes | 83 | | Hexadecafluoroheptane
Hexadecane | C ₁₆ H ₃₄ | 335-57-9
544-76-3 | Fluoride | 105 | | -Hexadecanethiol | C ₁₆ H ₃₄ S | | n-Alkanes | 83 | | -riexadecaneitmoi
Hexadecanoic acid | | 2917-26-2
57-10-3 | Thiols | 103 | | | C ₁₆ H ₃₂ O ₂ | | Acids | 948,94 | | Hexadeconol
-Hexadecone | C16H34O | 36653824
629732 | Alcohois | 91 | | -Hexadecyl alcohol | C10H32
C16H34O | | n-Alkenes | 64 | | -Hexadecyne | | 36653-82-4
629-74-3 | Alcohols | 91 | | | C ₁₆ H ₃₀ | | Alkynes | 86 | | ,S-Hexadiyne | C ₆ H ₆ | 628-16-0 | Alkynes | 86 | | łexaethylbenzene
łexafluorobenzene | C ₁₈ H ₃₀ | 604-88-6 | Aromat02 | 87 | | texanuorobenzene
Lexafluoroethane | C ₆ F ₆ | 392-56-3 | Fluoride | 106 | | | C₂F ₆ | 76–16–4 | Fluoride | 105 | | is-Hexahydroindan | C ₃ H ₁₆ | 4551-51-3 | Cyclic02 | 90 | | uns-Hexahydroindan | C ₄ H ₁₆ | 3296-50-2 | Cyclic02 | 90 | | lexaldehyde | C ₆ H ₁₂ O | 66-25-1 | Aldehyde | 93 | | Iexamethylbenzene | C ₁₂ H ₁₈ | 87-85-4 | Aromat01 | 86 | | lexamethyleneimine | C ₆ H ₁₃ N | 111-49-9 | CyclCHN | 100 | | lexanal | C ₆ H ₁₂ O | 66-25-1 | Aldehyde | 93 | | lexanamide | C ₆ H ₁₃ NO | 628-02-4 | Amides | 1007,100 | | lexane | C_6H_{14} | 110-54-3 | n-Alkanes | 83 | | 6-Hexanedinitrile | C ₆ H ₈ N ₂ | 111-69-3 | Nitriles | 99 | | lexanedioic acid | C,H10O4 | 124-04-9 | Acids | 9: | | 6-Hexanediol | $C_6H_{14}O_2$ | 629-11-8 | Alcohols | 9 | | Hexanethiol | C ₆ H ₁₄ S | 111-31-9 | Thiols | 10 | | lexanoic acid | C ₆ H ₁₂ O ₂ | 142-62-1 | Acids | 9 | | lexanol | C4H14O | 111-27-3 | Alcohols | 9 | | -Hexanol | C ₆ H ₁₄ O | 626-93-7 | Alcohols | 9: | | Hexanol | $C_6H_{14}O$ | 623-37-0 | Alcohols | 9: | | lexanolactone | $C_6H_{10}O_2$ | 502-44-3 | Esters | 9 | | Hexanone | $C_6H_{12}O$ | 591786 | Ketones | 92 | | Hexanone | $C_6H_{12}O$ | 589-38-8 | Ketones | 93 | | lexaphenylethane | C38H30 | 17854-07-8 | Cyclic03 | 90 | | -Hexene | C ₆ H ₁₂ | 592-41-6 | n-Alkenes | 84 | | | | | | | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--|---|------------------|---|---------| | trans-2-Hexene | C ₆ H ₁₂ | 4050–45–7 | n-Alkenes | 848 | | cis-3-Hexene | C_6H_{12} | 7642-09-3 | n-Alkenes | 848,849 | | trans-3-Hexene | C_6H_{12} | 13269-52-8 | n-Alkenes | 849 | | Hexogen | C ₃ H ₆ N ₆ O ₆ | 121-82-4 | Nitramin | 1034 | | n-Hexyl alcohol | $C_6H_{14}O$ | 111–27–3 | Alcohols | 910 | | n-Hexyl amine | $C_6H_{15}N$ | 111-26-2 | Amines | 983 | | Hexylbenzene | $C_{12}H_{18}$ | 1077–16–3 | Aromat01 | 866 | | Hexylcyclopentane | C ₁₁ H ₂₂ | 4457–00–5 | Cyclic02 | 893,894 | | n-Hexyl-1-hydroperoxide | C ₆ H ₁₄ O ₂ | 4312–76–9 | Hydroperoxides | 979 | | n-Hexyl-2-hydroperoxide | $C_6H_{14}O_2$ | 24254–55–5 | Hydroperoxides | 979 | | n-Hexyl-3-hydroperoxide | $C_6H_{14}O_2$ | 24256-56-6 | | | | | | | Hydroperoxides | 979 | | Hexyl methyl sulfide | C ₇ H ₁₆ S | 20291-60-5 | Sulfides | 1044 | | 1-Hexyne | C_6H_{10} | 693-02-7 | Alkynes | 859 | | Hippuric acid | C ₉ H ₉ NO ₃ | 495–69–2 | Amino acids | 1019 | | Hippurylglycine | $C_{11}H_{12}N_2O_4$ | 1145-32-0 | Amino acids | 1020 | | HMX | $C_4H_8N_8O_8$ | 2691–41–0 | Nitramines | 1034 | | Hydrazine | N_2H_4 | 302-01-2 | Hydrazines | 997 | | Hydrazobenzene | $C_{12}H_{12}N_2$ | 122–66–7 | Hydrazines | 998 | | Hydroquinonc | $C_6H_6O_2$ | 123-31-9 | Alcohols | 924 | | DL-3-Hydroxy-2-aminobutanoic acid | C ₄ H ₉ NO ₃ | 80682 | Amino acids | 1017 | | DL-3-Hydroxy-2-aminopropanoic acid | C ₃ H ₇ NO ₃ | 302-84-1 | Amino acids | 1017 | | 2-Hydroxybenzoic acid | $C_7H_6O_3$ | 69–72–7 | Acids | 961 | | 3-Hydroxy-2-naphthoic acid | $C_{11}II_8O_3$ | 7584–72–7 | Acids | 963 | | L-2-Hydroxypropanoic acid | $C_3H_6O_3$ | 79-33-4 | Acids | 946 | | I | | | | | | Indane | C ₂ H ₁₀ | 496–11–7 | Cyclic02 | 901 | | Indene | | | - · · · · · · · · · · · · · · · · · · · | | | | C₃H ₈ | 95-13-6 | Cyclic02 | 902 | | Iodobenzene | C ₆ H ₅ I | 591–50–4 | Iodide | 1094 | | 2-Iodobenzoic acid | C ₇ H ₅ IO ₂ | 88–67–5 | Iodide | 1097 | | 3-Iodobenzoic acid | C ₇ H ₅ IO ₂ | 618–51–9 | Iodide | 1098 | | 4-Iodobenzoic acid | $C_7H_5IO_2$ | 619-58-9 | Iodide | 1098 | | Iodocyclohexane | $C_6H_{11}I$ | 626-62-0 | Iodide | 1096 | | Iodoethane | C₂H ₅ I | 75-03-6 | Iodide | 1092 | | Iodomethane | CH₃I | 74-88-4 | Iodide | 1092 | | 1-Iodo-2-methylbenzene | C ₇ H ₇ I | 615-37-2 | Iodide | 1095 | | 1-Iodo-3-methylbenzene | C ₇ H ₇ I | 625-95-6 | Iodide | 1095 | | 1-Iodo-3-methylbutane | $C_5H_{11}I$ | 541-28-6 | Iodide | 1093 | | 1-Iodo-4-methylbenzene | C ₇ H ₇ I | 624–31–7 | Iodide | 1095 | | 1-Iodo-2-methylpropane | C ₄ H ₉ I | 513-38-2 | Iodide | 1093 | | 2-Iodo-2-methylpropane | C ₄ H ₉ I | 558-17-8 | Iodide | 1093 | | 1-Iodonaphthalene | C ₁₀ H ₇ I | 90-14-2 | Iodide | 1095 | | 2-Iodonaphthalene | C ₁₀ H ₇ I | 612–55–5 | Iodide | 1095 | | | | | | | | Iodopentafluorobenzene | C ₆ F ₅ I | 827–15–6 | Mixed | 1101 | | 2-Iodophenol | C₀H₅IO | 533-58-4 | Iodide | 1097 | | 3-Iodophenol | C ₆ H ₅ IO | 626028 | Iodide | 1097 | | 4-Iodophenol | C ₆ H ₅ IO | 540–38–5 | Iodide | 1097 | | 1-Iodopropane | C_3H_7I | 107-08-4 | Iodide | 1092 | | 2-Iodopropane | C ₃ H ₇ I | 75–30–9 | Iodide | 1093 | | 3-Iodopropanoic acid | C ₃ H ₅ IO ₂ | 141-76-4 | Iodide | 1097 | | 1-Iodo-1-propene (E) | C ₃ H ₅ I | 7796–54–5 | Iodide | 1094 | | 1-Iodo-1-propene (Z) | C ₃ H ₅ I | 7796–36–3 | Iodide | 1094 | | 3-Iodo-1-propene | C ₃ H ₅ I | 556-56-9 | Iodide | 1094 | | 1-Iodopropyne | C ₃ H ₃ I | 624–66–8 | Iodide | 1094 | | Isoamyl alcohol | C ₅ H ₁₂ O | 123-51-3 | Alcohols | 914 | | Isobutyl acetate | | | | | | • | $C_6H_{12}O_2$ | 110–19–0 | Esters | 969 | | Isobutyl alcohol | C ₄ H ₁₀ O | 78–83–1 | Alcohols | 914 | | Isobutyl amine | C ₄ H ₁₁ N | 78-81-9 | Amines | 983 | | Isobutylbenzene | $C_{10}H_{14}$ | 538-93-2 | Aromat02 | 873 | | Isobutyl formate | $C_5H_{10}O_2$ | 542-55-2 | Esters | 969 | | Isobutyraldehyde | C_4H_8O | 78-84-2 | Aldehyde | 937 | | Isobutyronitrile | C_4H_7N | 78-82-0 | Nitriles | 994 | | DL-Isoleucine | $C_6H_{13}NO_2$ | 443–79–8 | Amino acids | 1016 | | ······································ | | | | | | Isophthalic acid | $C_8H_6O_4$ | 121-91-5 | Acids | 962 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |-----------------------------|--|-----------------------------|--------------------|---------| | 2-Isopropoxyethanol | C ₅ H ₁₂ O ₂ | 109-59-1 | Ethers | 932 | | N-Isopropylacetamide | C₅H ₁₁ NO | 1118 -69-0 | Amides | 1008 | | Isopropyl acetate | $C_5H_{10}O_2$ | 108-21-4 | Esters | 969 | | Isopropyl alcohol | C₃H ₈ O | 67-63-0 | Alcohols | 915 | | Isopropyl amine | C ₃ H ₉ N | 75-31-0 | Amines | 984 | | Isopropylbenzene | C ₉ H ₁₂ | 98-82-8 | Aromat02 | 872 | | Isopropylbiphenyl | C ₁₅ H ₁₆ | 7116-95-2 | Aromat02 | 879 | | Isopropyl (E)-2-butenoate | $C_7H_{12}O_2$ | 18060-77-0 | Esters | 973 | | Isopropyl trans-2-butenoate | $C_7H_{12}O_2$ | 18060-77-0 | Esters | 973 | | Isopropyl tert-butyl ether | C ₇ H ₁₆ O | 17348-59-3 | Ethers | 929 | | Isopropyl tert-butyl ketone | C ₈ H ₁₆ O | 5857 - 36 - 3 | Ketones | 941 | | Isopropyl ethanoate | $C_5H_{10}O_2$ | 108-21-4 | Esters | 969 | | Isopropyl ethyl sulfide | C ₅ H ₁₂ S | 5145-99-3 | Sulfides | 1046 | | 4-Isopropylheptane | $C_{10}H_{22}$ | 52896-87-4 | t-Alkanes | 840 | | Isopropyl methyl sulfide | C ₄ H ₁₀ S | 1551-21-9 | Sulfides | 1042 | | Isopropyl methyl sulfone | $C_4H_{10}O_2S$ | 4853-74-1 | Sulfones | 1051 | | Isopropyl nitrate | $C_3H_7NO_3$ | 1712-64-7 | Nitrates | | | | | 62030-41-5 | Esters | 1032 | | Isopropyl 3-pentenoate | $C_8H_{14}O_2$ | | | 974 | | N-Isopropylurea | $C_4H_{10}N_2O$ | 691–60–1 | Ureas | 1012 | | J,K,L | | | | | | L-Lactic acid | C ₃ H ₆ O ₃ | 79-33-4 | Acids | 946 | | Lauric acid | $C_{12}H_{24}O_2$ | 143-07-7 | Acids | 947,948 | | DL-Leucine | $C_6H_{13}NO_2$ | 328-39-2 | Amino acids | 1016 | | DL-Leucylglycine | $C_8H_{16}N_2O_3$ | 615-82-7 | Amino acids | 1020 | | 2,3-Lutidine | C7H9N | 583-61-9 | CyclCHN | 1004 | | 2,4-Lutidine | C ₇ H ₉ N | 108-47-4 | CyclCHN | 1005 | | 2,5-Lutidine | C ₇ H ₉ N | 589-93-5 | CyclCHN | 1005 | | 2,6-Lutidine | C ₇ H ₉ N | 108-48-5 | CyclCHN | 1005 | | 3,4-Lutidine | C ₇ H ₉ N | 583-58-4 | CyclCHN | 1005 | | 3,5-Lutidine | C ₂ H ₉ N | 591-22-0 | CyclCHN | 1005 | | DL-Lysine | $C_6H_{14}N_2O_2$ | 70-54-2 | Amino acids | 1017 | | M | | | | | | Maleic acid | C₄H₄O₄ | 110–16–7 | Acids | 951 | | Malonamide | $C_3H_6N_2O_2$ | 108-13-4 | Amides | 1010 | | Malonic acid | C ₃ H ₄ O ₄ | 141-82-2 | Acids | 951 | | Margaric acid | C ₁₇ H ₂₄ O ₂ | 506-12-7 | Acids |
949 | | MEDINA | CH ₄ N ₄ O ₄ | 14168-44-6 | Nitramines | 1033 | | 2,2-Metacyclophane | C ₁₆ H ₁₆ | 2319–97–3 | Cyclic02 | 901 | | 2,2-Metaparacyclophane | C ₁₆ H ₁₆ | 5385-36-4 | Cyclic02 | | | Methanal | CH ₂ O | 50-00-0 | • | 901 | | Methanamide | CH ₄ NO | 75-12-7 | Aldehyde
Amides | 935 | | Methane | CH ₄ | 74-82-8 | | 1006 | | Methanethiol | <u>-</u> | 74-62-6
74-93-1 | n-Alkanes | 830 | | | CH₄S | | Thiols | 1035 | | Methanoic acid | CH ₂ O ₂ | 64–18–6 | Acids | 945 | | Methanol | CH₄O | 67–56–1 | Alcohols | 909 | | Methoxybenzene | C_7H_8O | 100-66-3 | Ethers | 934 | | 2-Methoxybenzoic acid | $C_8H_8O_3$ | 579-75-9 | Acids | 963 | | 3-Methoxybenzoic acid | $C_8H_8O_3$ | 586-38-9 | Acids | 963 | | 4-Methoxybenzoic acid | C ₈ H ₈ O ₃ | 100-09-4 | Acids | 963 | | Methoxybutane | $C_5H_{12}O$ | 628-28-4 | Ethers | 927 | | Methoxydecane | C ₁₁ H ₂₄ O | 7289-52-3 | Ethers | 927 | | Methoxyethane | C₃H ₈ O | 540-67-0 | Ethers | 927 | | 2-Methoxyethanol | $C_3H_8O_2$ | 109-86-4 | Ethers | 931 | | Methoxymethane | C ₂ H ₆ O | 115-10-6 | Ethers | 926 | | 1-Methoxy-3-methylbenzene | C ₈ H ₁₀ O | 100-84-5 | Ethers | | | 2-Methoxy-(2-methyl)propane | C ₅ H ₁₂ O | 1634-04-4 | | 934 | | Mcthoxyropane | C₃H₁υO | | Ethers | 928 | | | | 557–17–5
500 52 0 | Ethers | 927 | | 2-Methoxypropane | C₄H ₁₀ O | 598-53-8 | Ethers | 927,928 | | Methyl acetate | C ₃ H ₆ O ₂ | 79–20–9 | Esters | 966 | | Methyl acrylate | $C_4H_6O_2$ | 96–33–3 | Esters | 971 | | | | | | | | Methyl alcohol Methyl amine | CH₄O
CH₅N | 67-56-1
74-89-5 | Alcohols
Amines | 909 | # E. S. DOMALSKI AND E. D. HEARING TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Pag | |-------------------------------------|---|----------------------------|-----------|-------| | Methylaniline | C7H9N | 95–53–4 | Amines | 9 | | Methylaniline | C7H9N | 108-44-1 | Amines | 9 | | Methylaniline | C_7H_9N | 106-49-0 | Amines | 9 | | -Methylaniline | C ₇ H ₉ N | 100–61–8 | Amines | 9 | | lethyl azoethane | $C_3H_8N_2$ | 3880-48-6 | Diazene | 9 | | lethyl benzoate | $C_8H_8O_2$ | 93–58–3 | Esters | 9 | | Methyl benzoic acid | $C_8H_8O_2$ | 118-90-1 | Acids | 9. | | Methyl benzoic acid | $C_8H_8O_2$ | 99-04-7 | Acids | 9: | | Methyl benzoic acid | $C_8H_8O_2$ | 99-94-5 | Acids | 9: | | Methylbenzophenone | $C_{14}H_{12}O$ | 134-84-9 | Ketones | 94 | | lethyl benzyl ketone | C ₉ H ₁₀ O | 103–79–7 | Ketones | 9. | | -Methylbicyclo[4.1.0]heptane | C ₈ H ₁₄ | 2439-79-4 | Cyclic03 | 9 | | Methylbicyclo[2.2.1]hept-2-ene | C ₈ H ₁₂ | 694–92–8 | Cyclic03 | 9 | | Methylbicyclo[3.1.0]hexane | C ₇ H ₁₂ | 4625-24-5 | Cyclic03 | 9 | | Methylbiphenyl | $C_{13}H_{12}$ | 643–58–3 | Aromat02 | 8 | | Methylbiphenyl | $C_{13}H_{12}$ | 643-93-6 | Aromat02 | 8 | | Methylbiphenyl | $C_{13}H_{12}$ | 644-08-6 | Aromat02 | 8 | | lethyl bromide | CH ₃ Br | 74–83–9 | Bromide | 10 | | Methyl-1,3-butadiene | C₅H ₈ | 78–79–5 | s-Alkenes | 8 | | Methyl-1,2-butadiene | C ₅ H ₈ | 598 – 25 – 4 | s-Alkenes | 8 | | Methylbutane | C ₅ H ₁₂ | 78-78-4 | t-Alkanes | - 8 | | • | | 498-21-5 | Acids | | | lethylbutanedioic acid | C₃H ₈ O₄ | | | 9 | | Methyl-1-butanethiol | C ₅ H ₁₂ S | 1878-18-8 | Thiols | 10 | | Methyl-2-butanethiol | C ₅ H ₁₂ S | 1679-09-0 | Thiols | 10 | | Methyl-1-butanethiol | C ₅ H ₁₂ S | 541–31–1 | Thiols | 10 | | Methyl-2-butanethiol | C ₅ H ₁₂ S | 2084–18–6 | Thiols | 10 | | ethyl butanoate | $C_5H_{10}O_2$ | 623-42-7 | Esters | 9 | | Methylbutanoic acid | $C_5H_{10}O_2$ | 116-53-0 | Acids | 9 | | Methylbutanoic acid | $C_5H_{10}O_2$ | 503-74-2 | Acids | 9 | | Mcthyl-1-butanol | C ₅ II ₁₂ O | 137–32–6 | Alcohols | 9 | | Methyl-1-butanol | C ₅ H ₁₂ O | 123–51–3 | Alcohols | 9 | | Methyl-2-butanol | $C_5H_{12}O$ | 75–85–4 | Alcohols | 9 | | Methyl-2-butanone | $C_5H_{10}O$ | 563-80-4 | Ketones | 9 | | Methyl-1-butene | C_5H_{10} | 563-46-2 | s-Alkenes | . 8 | | Methyl-2-butene | C_5H_{10} | 513-35-9 | s-Alkenes | . 8 | | Methyl-1-butene | C5H10 | 563-45-1 | s-Alkenes | 8 | | ethyl (E)-2-butenoate | C ₅ H ₈ O ₂ | 623-43-8 | Esters | 9 | | lethyl trans-2-butenoate | C ₅ H ₈ O ₂ | 623-43-8 | Esters | 9 | | Methyl-4-(1-butenylsulfonyl)benzene | $C_{11}H_{14}O_2S$ | 111895-49-9 | Sulfones | 10 | | Methyl-4-(2-butenylsulfonyl)benzene | $C_{11}H_{14}O_2S$ | 24931-66-6 | Sulfones | 10 | | Methyl-4-(3-butenylsulfonyl)benzene | C ₁₁ H ₁₄ O ₂ S | 17482-19-8 | Sulfones | 10 | | Methylbutyl 2-chloropropanoate | C ₈ H ₁₅ ClO ₂ | 62108-69-4 | Chloride | 10 | | Methylbutyl 3-chloropropanoate | C ₈ H ₁₅ ClO ₂ | 62108-70-7 | Chloride | 10 | | ethyl-n-butyldiazene | $C_5H_{12}N_2$ | 4426-46-4 | Diazene | ç | | Methylbutyl dichloroacetate | C ₇ H ₁₂ Cl ₂ O ₂ | 37587-83-0 | Chloride | 10 | | ethyl butyl ether | C ₅ H ₁₂ O | 628-28-4 | Ethers | 9 | | ethyl tert-butyl ether | C ₅ H ₁₂ O | 1634-04-4 | Ethers | 9 | | ethyl butyl ketone | | 591-78-6 | Ketones | 9 | | | C ₆ H ₁₂ O | | | | | ethyl tert-butyl ketone | C ₆ H ₁₂ O | 75-97-8 | Ketones | 9 | | Methyl-1-butyne | C₃H ₈ | 598-23-2 | Alkynes | . 8 | | ethyl butyrate | C ₅ H ₁₀ O ₂ | 623-42-7 | Esters | 9 | | ethyl caprate | $C_{11}H_{22}O_2$ | 1623-43-8 | Esters | 9 | | ethyl caproate | $C_7H_{14}O_2$ | 106–70–7 | Esters | 9 | | ethyl caprylate | $C_9H_{18}O_2$ | 111–11–5 | Esters | 9 | | ethyl chloride | CH₃Cl | 74–87–3 | Chloride | 10 | | ethyl crotonate | $C_5H_8O_2$ | 623-43-8 | Esters | ç | | ethylcyclobutane | C_5H_{10} | 598618 | Cyclic01 | 8 | | ethylcyclohexane | C_7H_{14} | 108–87–2 | Cyclic02 | . 8 | | Methylcyclohexene | C_7H_{12} | 591-49-1 | Cyclic02 | 8 | | ethylcyclopentane | C_6H_{12} | 96–37–7 | Cyclic01 | | | Methylcyclopentene | C ₆ H ₁₀ | 693-89-0 | Cyclic02 | 8 | | Methylcyclopentene | C_6H_{10} | 1120-62-3 | Cyclic02 | 895,8 | | Methylcyclopentene | C ₆ H ₁₀ | 1759-81-5 | Cyclic02 | 8 | | Methyldecane | $C_{11}H_{24}$ | 6975–98–0 | t-Alkanes | . 8 | | ethyl decanoate | $C_{11}H_{22}O_2$ | 110-42-9 | Esters | 9 | | CLIITI UCCAIIUAIC | しロコンソ | 110~4ん~ブ | TSIC12 | , | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |---|--|----------------------------|-------------|---------| | Methyl 2,2-dimethylpropanoate | C ₆ H ₁₂ O ₂ | 598-98-1 | Esters | 971 | | Methyldinitramine | CH ₃ N ₃ O ₄ | 25346-05-8 | Nitramines | 1033 | | 4-Methyldiphenylmethane | $C_{14}H_{14}$ | 620-83-7 | Aromat02 | 875 | | N'-Methyl-N,N-diphenylurea | $C_{14}H_{14}N_2O$ | 13114-72-2 | Ureas | 1013 | | Methyl dodecanoate | $C_{13}H_{26}O_2$ | 111-82-0 | Esters | 967 | | Methyl n-dodecyl ketone | $C_{14}H_{28}O$ | 2345–27–9 | Ketones | 940 | | Methyl enanthate | $C_8H_{16}O_2$ | 106-73-0 | Esters | 967 | | 2-Methylenebicyclo[2.2.1]heptane | C_8H_{12} | 497-35-8 | Cyclic03 | 904 | | N,N'-Methylene-bis- $(N,N'$ -dimethylurea) | $C_7H_{16}N_4O_2$ | 60913-23-7 | Ureas | 1014 | | Methylenecyclobutane | C_5H_8 | 1120-56-5 | Cyclic01 | 891 | | Methylenecyclohexane | C_7H_{12} | 1192-37-6 | Cyclic02 | 896 | | Methylenecyclopentane | C_6H_{10} | 1528-30-9 | Cyclic01 | 891 | | Methylenedinitramine | CH ₄ N ₄ O ₄ | 14168-44-6 | Nitramines | 1033 | | Methyl ethanoate | $C_3H_6O_2$ | 79–20–9 | Esters | 966 | | 1-Methyl-2-ethylbenzene | C ₉ H ₁₂ | 611–14–3 | Aromat01 | 868 | | 1-Methyl-3-ethylbenzene | C ₉ H ₁₂ | 620-14-4 | Aromat01 | 868 | | 1-Methyl-4-ethylbenzene | C ₉ H ₁₂ | 622-96-8 | Aromat01 | 868 | | 3-Methyl-2-ethyl-1-butene | C ₇ H ₁₄ | 7357–93–9 | s-Alkenes | | | • • | | | Diazene | 857 | | Methylethyldiazene | $C_3H_8N_2$ | 3880-48-6 | | 998 | | Methyl ethyl ether | C₃H₅O | 540 <u>-</u> 67 <u>-</u> 0 | Ethers | 927 | | Methyl ethyl ketone | C₄H ₈ O | 78-93-3 | Ketones | 938 | | 2-Methyl-3-ethyl-1-pentene | C ₈ H ₁₆ | 19780-66-6 | s-Alkenes | 857 | | Methyl fluoride | CH₃F | 593-53-3 | Fluoride | 1058 | | N-Methylformamide | C₂H₅NO | 123-39-7 | Amides | 1008 | | Methyl formate | $C_2H_4O_2$ | 107–31–3 | Esters | 966 | | N-Methylglycine | C ₃ H ₇ NO ₂ | 107–97–1 | Amino acids | 1014 | | 2-Methylheptane | C ₈ H ₁₈ | 592-27-8 | t-Alkanes | 836 | | 3-Methylheptane | C_8H_{18} | 111002-96-1 | t-Alkanes | 837 | | 4-Methylheptane | C_8H_{18} | 589–53–7 | t-Alkanes | 838 | | Methyl heptanoate | $C_8H_{16}O_2$ | 106730 | Esters | 967 | | Methyl hexadecanoate | $C_{17}H_{34}O_2$ | 112-39-0 | Esters | 968 | | 2-Methylhexane | C ₇ H ₁₆ | 591–76–4 | t-Alkanes | 836 | | 3-Methylhexane | C ₇ H ₁₆ | 589-34-4 | t-Alkanes | 837 | | Methyl hexanoate | $C_7H_{14}O_2$ | 106-70-7 | Esters | 966 | | 3-Methyl-cis-3-hexene | C_7H_{14} | 4914-89-0 | s-Alkenes | 853,854 | | 3-Methyl-trans-3-hexene | C_7H_{14} | 3899-36-3 | s-Alkenes | 851 | | Methyl hexyl ketone | $C_8H_{16}O$ | 111-13-7 | Ketones | 939 | | Methylhydrazine | CH ₆ N ₂ | 60-34-4 | Hydrazines | 997 | | Methyl iodide | CH ₃ I | 74-88-4 | Iodide | 1092 | | Methyl 2-iodobenzoate | C ₈ H ₇ IO ₂ | 610–97–9 | Iodide | 1092 | | Methyl 3-iodobenzoate | C ₈ H ₇ IO ₂ | 618-91-7 | Iodide | 1098 | | Methyl 4-iodobenzoate | C ₈ H ₇ IO ₂ | 619-44-3 | Iodide | 1098 | | 1-Methyl-2-isopropylbenzene | C ₁₀ H ₁₄ | 527-84-4 | Aromat01 | | | 1-Methyl-3-isopropylbenzene | C ₁₀ H ₁₄
C ₁₀ H ₁₄ | 535-77-3 | | 869 | | 1-Methyl-4-isopropylbenzene | | | Aromat01 | 869 | | | $C_{10}H_{14}$ | 99-87-6 | Aromat01 | 869 | | Methyl isopropyl ether | C ₄ H ₁₀ O | 598-53-8 | Ethers | 927,928 | | Methyl isopropyl ketone | C ₅ H ₁₀ O | 563-80-4 | Ketones | 940 | | Methyl isovalerate | $C_6H_{12}O_2$ | 556-24-1 | Esters | 971 | | Methyl laurate | $C_{13}H_{26}O_2$ | 111-82-0 | Esters | 967 | | Methyl methacrylate | $C_5H_8O_2$ | 80-62-6 | Esters | 971 | | N-Methylmethanamide | C_2H_5NO | 123–39–7 | Amides | 1008 | | Methyl methanoate | $C_2H_4O_2$ | 107_31_3 | Esters | 966 | | Methyl 2-methylbutanoate | $C_6H_{12}O_2$ | 868–57–5 | Esters | 970 | | Methyl
3-methylbutanoate | $C_6H_{12}O_2$ | 556–24–1 | Esters | 971 | | 1-Methyl-4-(1-methylethenylsulfonyl)benzene | $C_{10}H_{12}O_2S$ | 67605-02-1 | Sulfones | 1053 | | Methyl 2-methylpropenoate | $C_5H_6O_2$ | 80626 | Esters | 971 | | 1-Methyl-4-(2-methyl-2-propenylsulfonyl)benzene | $C_{11}H_{14}O_2S$ | 16192-04-4 | Sulfones | 1054 | | Methyl myristate | $C_{15}H_{30}O_2$ | 124-10-7 | Esters | 968 | | 1-Methylnaphthalene | $C_{11}H_{10}$ | 90-12-0 | Aromat02 | 879 | | 2-Methylnaphthalene | $C_{11}H_{10}$ | 91-57-6 | Aromat02 | 879,880 | | Methyl nitrate | CH ₃ NO ₃ | 598-58-3 | Nitrates | • | | Methyl nitrite | CH ₃ NO ₂ | | | 1032 | | mony muno | | 624–91–9 | Nitrites | 1031 | | 1 Mathyl 2 nitrohanzana | $C \square N \cap$ | | | | | 1-Methyl-2-nitrobenzene | C ₇ H ₇ NO ₂ | 88-72-2 | Nitros | 1026 | | 1-Methyl-3-nitrobenzene | C ₇ H ₇ NO ₂ | 99-08-1 | Nitros | 1026 | | | | | | | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |---|---|------------------|----------------|---------| | N-Methyl-N-nitro-(2,4,6-trinitro)aniline | C ₇ H ₅ N ₅ O ₈ | 479-45-8 | Nitramines | 1034 | | 2-Methylnonane | $C_{10}H_{22}$ | 871–83–0 | t-Alkanes | 836 | | 3-Methylnonane | $C_{10}H_{22}$ | 5911-04-6 | t-Alkanes | 837 | | 4-Methylnonane | $C_{10}H_{22}$ | 17301–94–9 | t-Alkanes | 838 | | 5-Methylnonane | $C_{10}H_{22}$ | 15869-85-9 | t-Alkanes | 838 | | Methyl nonanoate | $C_{10}H_{20}O_2$ | 1731-84-6 | Esters | 967 | | 2-Methyloctane | C_9H_{20} | 3221–61–2 | t-Alkanes | 836 | | 3-Methyloctane | C_9H_{20} | 2216-33-3 | t-Alkanes | 837 | | 4-Methyloctane | C_9H_{20} | 2216–34–4 | t-Alkanes | 838 | | Methyl octanoate | $C_9H_{18}O_2$ | 111–11–5 | Esters | 967 | | 2-Methyloxirane | C₃H ₆ O | 75–56–9 | Ethers | 933 | | Methyl palmitate | $C_{17}H_{34}O_2$ | 112-39-0 | Esters | 968 | | Methyl pentadecanoate | $C_{16}H_{32}O_2$ | 7132-64-1 | Esters | 968 | | Methyl pentadecylate | $C_{16}H_{32}O_2$ | 7132-64-1 | Esters | 968 | | N-Methylpentanamide | C ₆ H ₁₃ NO | 6225-10-1 | Amides | 1009 | | Methyl pentanoate | $C_6H_{12}O_2$ | 624–24–8 | Esters | 966 | | 2-Methylpentane | C_6H_{14} | 107-83-5 | t-Alkanes | 835 | | 3-Methylpentane | C_6H_{14} | 96–14–0 | t-Alkanes | 837 | | 2-Methyl-2-pentanethiol | $C_6H_{14}S$ | 1633–97–2 | Thiols | 1040 | | 2-Methyl-3-pentanol | $C_6H_{14}O$ | 565673 | Alcohols | 916 | | 4-Methyl-2-pentanol | $C_6H_{14}O$ | 108-11-2 | Alcohols | 916 | | 2-Methyl-3-pentanone | $C_6H_{12}O$ | 565-69-5 | Ketones | 941 | | 3-Methyl-1-pentene | C_6H_{12} | 29564689 | s-Alkenes | 853 | | 2-Methyl-1-pentene | C_6H_{12} | 763-29-1 | s-Alkenes | 852 | | 2-Methyl-2-pentene | C_6H_{12} | 625-27-4 | s-Alkenes | 852 | | cis-3-Methyl-2-pentene | C_6H_{12} | 922-61-2 | s-Alkenes | 853 | | trans-3-Methyl-2-pentene | C ₆ H ₁₂ | 616-12-6 | s-Alkenes | 853 | | 4-Methyl-1-pentene | C ₆ H ₁₂ | 691–37–2 | s-Alkenes | 854 | | cis-4-Methyl-2-pentene | C ₆ H ₁₂ | 691–38–3 | s-Alkenes | 854 | | trans-4-Methyl-2-pentene | C ₆ H ₁₂ | 674-76-0 | s-Alkenes | 854 | | Methyl pentyl sulfide | C ₆ H ₁₄ S | 1741-83-9 | Sulfides | 1043 | | Methyl perlargonate | $C_{10}H_{20}O_2$ | 1731-84-6 | Esters | 967 | | 2-Methylphenol | C ₇ H ₈ O | 95-48-7 | Alcohols | 921 | | 3-Methylphenol | C ₇ H ₈ O | 108-39-4 | Alcohols | 921 | | 4-Methylphenol | C ₇ H ₈ O | 106-44-5 | Alcohols | 921 | | 3-Methylphenyl acetate | $C_9H_{10}O_2$ | 122-46-3 | Esters | 976 | | N-Methyl-N-phenylaniline | $C_{13}H_{13}N$ | 552-82-9 | Amines | 990 | | 3-Methylphenyl ethanoate | $C_9H_{10}O_2$ | 122-46-3 | Esters | 976 | | Methyl phenyl ether | C ₇ H ₈ O | 100-66-3 | Ethers | 934 | | 1-Methyl-1-phenylethyl hydroperoxide | $C_9H_{12}O_2$ | 80–15–9 | Hydroperoxides | 980 | | Methyl phenyl ketone | C ₈ H ₈ O | 98–86–2 | Ketones | 944 | | Methyl phenyl sulfide | C ₇ H ₈ S | 100-68-5 | Sulfides | 1047 | | Methyl phenyl sulfone | C ₇ H ₈ O ₂ S | 3112-85-4 | Sulfones | 1057 | | N-Methylpiperidine | C ₆ H ₁₃ N | 626-67-5 | CyclCHN | 1003 | | 2-Methylpiperidine | $C_6H_{13}N$ | 109057 | CyclCHN | 1003 | | 4-Methylpiperidine | C ₆ H ₁₃ N | 626-58-4 | CyclCHN | 1004 | | Methyl pivalate | C ₆ H ₁₂ O ₂ | 598-98-1 | Esters | 971 | | 1-Methyl-4-(1,2-propadienylsulfonyl)benzene | $C_{10}H_{10}O_2S$ | 16192-08-8 | Sulfones | 1053 | | 2-Methylpropanal | C ₁₀ H ₁₀ O ₂ S
C ₄ H ₈ O | 78-84-2 | | | | 7 1 1 | | | Aldehyde | 937 | | N-Methylpropanamide | C4H ₉ NO | 1187–58–2 | Amides | 1009 | | 2-Methylpropanamide | C₄H₀NO | 563-83-7 | Amides | 1007 | | 2-Methylpropane | C4H ₁₀ | 75–28–5 | t-Alkanes | 835 | | 2-Methylpropanenitrile | C₄H ₇ N | 78–82–0 | Nitriles | 994 | | 2-Methyl-1-propanethiol | $C_4H_{10}S$ | 513-44-0 | Thiols | 1039 | | 2-Methyl-2-propanethiol | C ₄ H ₁₀ S | 75–66–1 | Thiols | 1039 | | Methyl propanoate | C ₄ H ₈ O ₂ | 554-12-1 | Esters | 966 | | 2-Methyl-1-propanol | C ₄ H ₁₀ O | 78–83–1 | Alcohols | 914 | | 2-Methyl-2-propanol | C ₄ H ₁₀ O | 75-65-0 | Alcohols | у16,917 | | 2-Methyl-1,2-propanediamine | $C_4H_{12}N_2$ | 811–93–8 | Amines | 985 | | 2-Methyl-1,2-propanediol | $C_4H_{10}O_2$ | 558-43-0 | Alcohols | 918 | | 2-Methylpropanoyl chloride | C ₄ H ₇ ClO | 79–30–1 | Chloride | 1084 | | 2-Methylpropene | C_4H_8 | 115–11–7 | s-Alkenes | 852 | | Methyl propenoate | $C_4H_6O_2$ | 96 33 3 | Esters | 971 | | 1-Methyl-2-propenylbenzene | $C_{10}H_{12}$ | 934–10–1 | Aromat02 | 874 | | 1-Methyl-4-(2-propenylsulfonyl)benzene | $C_{10}H_{12}O_2S$ | 3112-87-6 | Sulfones | 1053 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |---|--|-----------------------|------------------|--------------| | (E)-1-Methyl-4-(1-propenylsulfonyl)benzene | $C_{10}H_{12}O_2S$ | 32228-15-2 | Sulfones | 1053 | | N-Methylpropionamide | C ₄ H ₉ NO | 1187–58–2 | Amides | 1009 | | Methyl propionate | C ₄ H ₈ O ₂ | 554-12-1 | Esters | 966 | | (2-Methyl)propoxy-2-(2-methyl)propane | C ₈ H ₁₈ O | 6163-66-2 | Ethers | 929 | | 2-Methylpropyl amine | C ₄ H ₁₁ N | 78-81-9 | Amines | 983 | | (1-Methylpropyl)benzene | C ₁₀ H ₁₄ | 135-98-8 | Aromat02 | 872 | | (2-Methylpropyl)benzene | C ₁₀ H ₁₄ | 538-93-2 | Aromat02 | 873 | | 1-Methyl-2-propylbenzene | C ₁₀ H ₁₄ | 1074–17–5 | Aromat01 | 868 | | 1-Methyl-3-propylbenzene | $C_{10}H_{14}$ | 1074-43-7 | Aromat01 | 869 | | 1-Methyl-4-propylbenzene | C ₁₀ H ₁₄ | 1074-55-1 | Aromat01 | 869 | | 2-Methylpropyl dichloroacetate | C ₆ H ₁₀ Cl ₂ O ₂ | 37079-08-6 | Chloride | 1083 | | N-(2-Methyl-2-propyl)ethanamide | C ₆ H ₁₃ NO | 762-84-5 | Amides | 1009 | | 2-Methylpropyl ethanoate | $C_6H_{12}O_2$ | 110-19-0 | Esters | 969 | | Methyl propyl ether | C ₄ H ₁₀ O
C ₈ H ₁₇ N | 557-17-5
6898-75-5 | Ethers
Imines | 927 | | N-(2-Methylpropylidene)butylamine | $C_{5}H_{10}O$ | 107-87-9 | Ketones | 992 | | Methyl propyl ketone | $C_5H_{10}O_2$ | 542-55-2 | Esters | 938,939 | | 2-Methylpropyl methanoate Methyl propyl sulfide | C ₅ H ₁₀ O ₂
C ₄ H ₁₀ S | 3877-15-4 | Sulfides | 969 | | 1-Methyl-4-(1-propynylsulfonyl)benzene | $C_{10}H_{10}O_2S$ | 14027–53–3 | Sulfones | 1042 | | 1-Metnyl-4-(1-propynylsulfonyl)benzene | $C_{10}H_{10}O_2S$
$C_{10}H_{10}O_2S$ | 16192-07-7 | Sulfones | 1053 | | 2-Methylpyridine | C ₁₀ 11 ₁₀ O ₂ 3
C ₆ H ₇ N | 10192-07-7 | CyclCHN | 1053
1004 | | 3-Methylpyridine | C ₆ H ₇ N | 108-99-6 | CyclCHN | 1004 | | 4-Methylpyridine | C ₆ H ₇ N | 108-89-4 | CyclCHN | 1004 | | N-Methylpyrrole | C₅H₁N
C₅H₁N | 96–54–8 | CyclCHN | 1004 | | N-Methylpyrrolidine | C ₅ H ₁₁ N | 120-94-5 | CyclCHN | 1002 | | meta -Methylstyrene | C ₂ H ₁₀ | 100-80-1 | Aromat02 | 873 | | onho - Methylstyrene | C ₂ H ₁₀ | 611 15 4 | Aromat02 | 873
873 | | para-Methylstyrene | C ₉ H ₁₀ | 622-97-9 | Aromat02 | 873,874 | | α-Methylstyrene | C ₉ H ₁₀ | 98-83-9 | Aromat02 | 874 | | cis-β-Methylstyrene | C ₉ H ₁₀ | 766–90–5 | Aromat02 | 874 | | trans-β-Methylstyrene | C ₉ H ₁₀ | 873–66–5 | Aromat02 | 874 | | Methylsuccinic acid | C ₅ H ₈ O ₄ | 498–21–5 | Acids | 954 | | Methylsuccinic anhydride | C₅H ₆ O₃ | 4100-80-5 | Anhydrides | 964 | | Methyl tetradecanoate | $C_{15}H_{30}O_2$ | 124-10-7 | Esters | 968 | | 2-Methyl thiolane | C ₅ H ₁₀ S | 1795-09-1 | CyclCHS | 1057 | | 3-Methyl thiolane | $C_5H_{10}S$ | 4740-00-5 | CyclCHS | 1057 | | 2-Methylthiophene | C₅H ₆ S | 554-14-3 | CyclCHS | 1057 | | 3-Methylthiophene | C5H6S | 616-44-4 | CyclCHS | 1057 | | Methyl tolyl ether | $C^6H^{10}O$ | 100-84-5 | Ethers | 934 | | Methyl p-tolyl sulfone | $C_8H_{10}O_2S$ | 3185-99-7 | Sulfones | 1052 | | Methyl tridecanoate | $C_{14}H_{28}O_2$ | 1731–88–0 | Esters | 968 | | Methyl tridecylate | $C_{14}H_{28}O_2$ | 1731–88–0 | Esters | 968 | | Methyl <i>n</i> -tridecyl ketone | $C_{15}H_{30}O$ | 2345-28-0 | Ketones | 940 | | Methyl undecanoate | $C_{12}H_{24}O_2$ | 1731-86-8 | Esters | 967 | | Methyl undecylate | $C_{12}H_{24}O_2$ | 1731868 | Esters | 967 | | Methylurea | $C_2H_6N_2O$ | 598-50-5 | Ureas | 1011 | | Methyl valerate | $C_6H_{12}O_2$ | 624-24-8 | Esters | 966 | | Myristic acid | $C_{14}H_{28}O_2$ | 544638 | Acids | 948 | | Myristonitrile | $C_{14}H_{27}N$ | 629–63–0 | Nitriles | 994 | | N | | | | | | Naphthacene | C ₁₈ H ₁₂ | 92-24-0 | Aromat02 | 885 | | Naphthalene | $C_{10}H_8$ | 91-20-3 | Aromat02 | 878 | | 1,2-Naphthalenediol | $C_{10}H_8O_2$ | 574-00-5 | Alcohols | 925 | | 1,3-Naphthalenediol | $C_{10}H_8O_2$ | 132-86-5 | Alcohols | 925,926 | | 1,4-Naphthalenediol | $C_{10}H_8O_2$ | 571608 | Alcohols | 926 | | 2,3-Naphthalenediol | $C_{10}H_8O_2$ | 92-44-4 | Alcohols | 925 | | 1-Naphthoic acid | $C_{11}H_8O_2$ | 86-55-5 | Acids | 962 | | 2-Naphthoic acid | $C_{11}H_8O_2$ | 93-09-4 | Acids | 962,963 | | 1-Naphthol | $C_{10}H_8O$ | 90–15–3 | Alcohols | 924 | | 2-Naphthol | $C_{10}H_8O$ | 135–19–3 | Alcohols |
925 | | | 0.11.11.0 | 60202 02 5 | Ureas | 1013 | | N'-(1-Naphthyl)-N,N-diphenylurea | $C_{23}H_{18}N_2O$ | 60302-02-5 | Oreas | 101.5 | | 2-Nitroaniline | $C_6H_6N_2O_2$ | 88-74-4 | Nitros | 1028 | | | | | | | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |---|---|------------------|-------------|-----------| | Nitrobenzene | C ₆ H ₅ NO ₂ | 98-95-3 | Nitros | 102: | | 2-Nitrobenzoic acid | C7H5NO4 | 552-16-9 | Nitros | 1030 | | 3-Nitrobenzoic acid | $C_7H_5NO_4$ | 121-92-6 | Nitros | 1030,103 | | 4-Nitrobenzoic acid | $C_7H_5NO_4$ | 62-23-7 | Nitros | 103 | | 1-Nitrobutane | $C_4H_9NO_2$ | 627-05-4 | Nitros | 102: | | 2-Nitrobutane | C ₄ H ₉ NO ₂ | 600–24–8 | Nitros | 1023,102 | | Nitroethane | C ₂ H ₅ NO ₂ | 79–24–3 | Nitros | 1025,102 | | Nitroglycerine | C ₃ H ₅ N ₃ O ₉ | 55-63-0 | Nitrates | 103: | | Nitromethane | CH ₃ NO ₂ | 75–52–5 | Nitros | 1022 | | Nitromethylbenzene | $C_7H_7NO_2$ | 622-42-4 | Nitros | 1026,102 | | 1-Nitronaphthalene | $C_{10}H_7NO_2$ | 86-57-7 | Nitros | 1020,102 | | 1-Nitropentane | $C_{5}H_{11}NO_{2}$ | 628-05-7 | Nitros | | | | | 554–84–7 | | 1023 | | m-Nitrophenol | C ₆ H ₅ NO ₃ | | Nitros | 102 | | o-Nitrophenol | C ₆ H ₅ NO ₃ | 88–75–5 | Nitros | 102 | | p-Nitrophenol | C ₆ H ₅ NO ₃ | 100-02-7 | Nitros | 1027,102 | | 2-Nitrophenol | C ₆ H ₅ NO ₃ | 88–75–5 | Nitros | 102 | | 3-Nitrophenol | C ₆ H ₅ NO ₃ | 554-84-7 | Nitros | 102 | | 4-Nitrophenol | $C_6H_5NO_3$ | 100-02-7 | Nitros | 1027,1028 | | N-Nitropiperidine | $C_5H_{10}N_2O_2$ | 7119-94-0 | Nitramines | 1034 | | 1-Nitropropane | $C_3H_7NO_2$ | 108-03-2 | Nitros | 1023 | | 2-Nitropropane | $C_3H_7NO_2$ | 79-46-9 | Nitros | 1023 | | Nitrosobenzene | C ₆ H ₅ NO | 586-96-9 | Nitroso | 1021 | | 4-Nitroso-1-naphthol | $C_{10}H_7NO_2$ | 605–60–7 | Nitroso | 1021 | | N-Nitrosopiperidine | $C_{5}H_{10}N_{2}O$ | 100-75-4 | Nitroso | 1021 | | • • | | 88-72-2 | | | | 2-Nitrotoluene | C ₇ H ₇ NO ₂ | | Nitros | 1026 | | 3-Nitrotoluene | C ₇ H ₇ NO ₂ | 99-08-1 | Nitros | 1026 | | 4-Nitrotoluene | $C_7H_7NO_2$ | 99–99–0 | Nitros | 1026 | | Nitrourea | $CH_3N_3O_3$ | 556–89–8 | Nitramines | 1033 | | Nonadecane | $C_{19}H_{40}$ | 629–92–5 | n-Alkanes | 833 | | Nonadecanoic acid | $C_{19}H_{38}O_2$ | 646–30–0 | Acids | 949 | | Nonadecanol | $C_{19}H_{40}O$ | 1454–84–8 | Alcohols | 913 | | n-Nonadecyl alcohol | $C_{19}H_{40}O$ | 1454-84-8 | Alcohols | 913 | | Nonadecylic acid | $C_{19}H_{38}O_2$ | 646-30-0 | Acids | 949 | | Nonaldehyde | C ₂ H ₁₈ O | 124-19-6 | Aldehyde | 937 | | Nonanal | C ₉ H ₁₈ O | 124–19–6 | Aldehyde | 937 | | Nonane | C ₉ H ₂₀ | 111-84-2 | • | | | | | | n-Alkanes | 831 | | Nonanedioic acid | C ₉ H ₁₆ O ₄ | 123–99–9 | Acids | 953 | | 1-Nonanethiol | C ₉ H ₂₀ S | 1455–21–6 | Thiols | 1037 | | Nonanoic acid | $C_9H_{18}O_2$ | 112-05-0 | Acids | 947 | | Nonanol | $C_9H_{20}O$ | 143-08-8 | Alcohols | 911 | | 5-Nonanone | C ₉ H ₁₈ O | 502–56–7 | Ketones | 939,940 | | 1-Nonene | C_9H_{18} | 124-11-8 | n-Alkenes | 847 | | n-Nonyl alcohol | $C_9H_{20}O$ | 143-08-8 | Alcohols | 911 | | Nonylbenzene | C ₁₅ H ₂₄ | 1081-77-2 | Aromat01 | 867 | | Nonylcyclopentane | $C_{14}H_{28}$ | 2882-98-6 | Cyclic02 | 894 | | 1-Nonyne | C ₉ H ₁₆ | 3452-09-3 | Alkynes | 859 | | Norbornadiene | C ₇ H ₈ | 121-46-0 | Cyclic03 | 902 | | Norbornane | C ₇ H ₁₂ | 279–23–2 | Cyclic03 | 903 | | | | | • | | | Norbornene | C ₇ H ₁₀ | 498–66–8 | Cyclic03 | 903 | | Norleucine | $C_6H_{13}NO_2$ | 616–06–8 | Amino acids | 1016 | | 0 | | | | | | | _ | | | | | Octadecane | $C_{18}H_{38}$ | 593-45-3 | n-Alkanes | 833 | | Octadecanoic acid | $C_{18}H_{36}O_2$ | 57–11–4 | Acids | 949 | | Octadecanol | $C_{18}H_{38}O$ | 112-92-5 | Alcohols | 913 | | n-Octadecyl alcohol | $C_{18}H_{38}O$ | 112-92-5 | Alcohols | 913 | | 1,7-Octadiyne | C ₈ H ₁₀ | 871–84–1 | Alkynes | 862 | | 2,2,3,3,4,4,5,5-Octafluoro-1,6-hexanediol | $C_6H_6F_8O_2$ | 355-74-8 | Fluoride | 1064 | | | | | | | | Octafluoropropane | C_3F_8 | 76–19–7 | Fluoride | 1065 | | Octahydroazocine | C ₇ H ₁₅ N | 1121-92-2 | CyclCHN | 1005 | | Octaldehyde | C ₆ H ₁₆ O | 124-13-0 | Aldehyde | 937 | | Octanal | $C_8H_{16}O$ | 124–13–0 | Aldehyde | 937 | | Octanamide | $C_8H_{17}NO$ | 629–01–6 | Amides | 1008 | | Octane | C_8H_{18} | 111-65-9 | n-Alkanes | 831 | | | | | | | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |---|--|-------------------|-------------|-----------| | Octanenitrile | C ₈ H ₁₅ N | 124-12-9 | Nitriles | 993 | | 1-Octanethiol | $C_8H_{18}S$ | 111-88-6 | Thiols | 1036,1037 | | Octanoic acid | $C_8H_{16}O_2$ | 124-07-2 | Acids | 947 | | Octanol | $C_8H_{18}O$ | 111-87-5 | Alcohols | 911 | | 2-Octanone | $C_8H_{16}O$ | 111–13–7 | Ketones | 939 | | 1-Octene | C_8H_{16} | 111660 | n-Alkenes | 847 | | cis-2-Octene | C_8H_{16} | 7642-04-8 | n-Alkenes | 849 | | trans-2-Octene | C_8H_{16} | 13389-42-9 | n-Alkenes | 849 | | 1-Octen-3-yne | C_8H_{12} | 17679-92-4 | Alkynes | 861 | | Octogen | $C_4H_8N_8O_8$ | 2691-41-0 | Nitramines | 1034 | | n-Octyl alcohol | $C_8H_{18}O$ | 111-87-5 | Alcohols | 911 | | Octylbenzene | $C_{14}H_{22}$ | 2189-60-8 | Aromat01 | 867 | | Octylcyclopentane | $C_{13}H_{26}$ | 1795-20-6 | Cyclic02 | 894 | | 1-Octyne | C ₈ H ₁₄ | 629-05-0 | Alkynes | 859 | | DL-Ornithine | $C_5H_{12}N_2O_2$ | 616-07-9 | Amino acids | 1017 | | Oxalic acid | $C_2H_2O_4$ | 144-62-7 | Acids | | | | | | | 951 | | Oxane | C ₅ H ₁₀ O | 142687 | Ethers | 934 | | Oxetane | C₃H ₆ O | 503300 | Ethers | 933 | | 2-Oxetanone | C ₃ H ₄ O ₂ | 57–57–8 | Esters | 975 | | Oxirane | C₂H₄O | 75–21–8 | Ethers | 932 | | Oxolane | C_4H_8O | 109999 | Ethers | 933 | | 1,1'-Oxybisbenzene | $C_{12}H_{10}O$ | 101-84-8 | Ethers | 935 | | 1,1'-Oxybisethene | C₄H ₆ O | 109-93-3 | Ethers | 929 | | P | | | | | | Palmitic acid | $C_{16}H_{32}O_2$ | 57-10-3 | Acids | 948,949 | | 2,2-Paracyclophane | $C_{16}H_{16}$ | 1633223 | Cyclic02 | 901 | | 3,3-Paracyclophane | $C_{18}H_{20}$ | 2913-24-8 | Cyclic02 | 901 | | Pelargonic acid | $C_9H_{18}O_2$ | 112-05-0 | Acids | 947 | | Pentachlorobenzene | C ₆ HCl ₅ | 608-93-5 | Chloride | 1075,1076 | | Pentachloroethane | C ₂ HCl ₅ | 76-01-7 | Chloride | 1070 | | Pentachlorophenol | C₀HCl₅O | 87-86-5 | Chloride | 1078 | | Pentacosane | $C_{25}H_{52}$ | 629-99-2 | n-Alkanes | 834 | | Pentacyclo[4.2.0.0 ² ,5.0 ³ ,8.0 ⁴ ,7]octane | C ₈ H ₈ | 277-10-1 | Cyclic03 | 904 | | Pentadecane | $C_{15}H_{32}$ | 629-62-9 | n-Alkanes | 832 | | Pentadecanoic acid | $C_{15}H_{30}O_2$ | 1002-84-2 | Acids | | | Pentadecanol | C ₁₅ H ₃₂ O | 629-76-5 | | 948 | | | | | Alcohols | 912 | | 2-Pentadecanone | $C_{15}H_{30}O$ | 2345–28–0 | Ketones | 940 | | n-Pentadecyl alcohol | $C_{15}H_{32}O$ | 629-76-5 | Alcohols | 912 | | Pentadecylic acid | $C_{15}H_{30}O_2$ | 1002–84–2 | Acids | 948 | | 1,2-Pentadiene | C ₅ H ₈ | 591–95–7 | n-Alkenes | 850 | | cis-1,3-Pentadiene | C_5H_8 | 1574-41-0 | n-Alkenes | 850 | | trans-1,3-Pentadiene | C_5H_8 | 2004–70–8 | n-Alkenes | 851 | | 1,4-Pentadiene | C_5H_8 | 591–93–5 | n-Alkenes | 851 | | 2,3-Pentadiene | C_5H_8 | 591–96–8 | n-Alkenes | 851 | | Pentaerythritol | $C_5H_{12}O_4$ | 115 –77– 5 | Alcohols | 919 | | Pentaethylbenzene | $C_{16}H_{26}$ | 605-01-6 | Aromat02 | 872 | | Pentafluorobenzene | C ₆ HF ₅ | 363-72-4 | Fluoride | 1062,1063 | | Pentafluorobenzoic acid | C7HF5O2 | 602–94–8 | Fluoride | 1064 | | Pentafluorophenol | C₄HF₅O | 771-61-9 | Fluoride | 1064 | | 2,2,3,3,3-Pentafluoro-1-propanol | C ₃ H ₃ F ₅ O | 422-05-9 | Fluoride | | | 2,3,4,5,6-Pentafluorotoluene | C ₇ H ₃ F ₅ | | | 1064 | | | | 771–56–2 | Fluoride | 1063 | | Pentafluoro(trifluoromethyl)benzene | C_7F_8 | 434-64-0 | Fluoride | 1060 | | Pentaldehyde | C ₁ H ₁₀ O | 110–62–3 | Aldehyde | 936 | | Pentamethyl benzoic acid | $C_{12}H_{16}O_2$ | 2243–32–5 | Acids | 961 | | Pentamethylbenzene | $C_{11}H_{16}$ | 700–12–9 | Aromat01 | 865 | | Pentanal | $C_5H_{10}O$ | 110-62-3 | Aldehyde | 936 | | Pentanamide | C ₅ H ₁₁ NO | 626-97-1 | Amides | 1007 | | Pentane | C_5H_{12} | 109660 | n-Alkanes | 830 | | 1,5-Pentanedinitrile | $C_5H_6N_2$ | 544-13-8 | Nitriles | 996 | | Pentanedioic acid | C₅H ₈ O ₄ | 110-94-1 | Acids | 952 | | 1,5-Pentanediol | C ₅ H ₁₂ O ₂ | 111-29-5 | Alcohols | 919 | | 2,4-Pentanedione | C ₅ H ₈ O ₂ | 123-54-6 | Ketones | 942 | | 1,5-Pentanedithiol | $C_5H_{12}S_2$ | 928-98-3 | Thiols | 1038 | | | | 240 70- .1 | LIHOIS | 10.58 | | Pentanenitrile | C ₅ H ₉ N | 110-59-8 | Nitriles | 993 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--------------------------------|--
--|-------------|-----------| | 1-Pentanethiol | C₅H₁2S | 110–66–7 | Thiols | 1036 | | Pentanoic acid | $C_5H_{10}O_2$ | 109-52-4 | Acids | 946 | | Pentanol | C ₅ H ₁₂ O | 71-41-0 | Alcohols | 910 | | 2-Pentanol | C₅H ₁₂ O | 6032–29–7 | Alcohols | 915 | | 3-Pentanol | C ₅ H ₁₂ O | 584-02-1 | Alcohols | 915 | | 4-Pentanolactone | $C_5H_8O_2$ | 108-29-2 | Esters | 975 | | 5-Pentanolactone | $C_5H_8O_2$ | 542-28-9 | Esters | 975 | | 2-Pentanone | $C_5H_{10}O$ | 107–87–9 | Ketones | 938,939 | | 3-Pentanone | C ₅ H ₁₀ O | 96–22–0 | Ketones | 939 | | Pentanoyl chloride | C₅H₀ClO | 638–29–9 | Chloride | 1084 | | Pentaphenylethane | C ₃₂ H ₂₆ | 19112–42–6 | Aromat02 | 877 | | 1-Pentene | C ₅ H ₁₀ | 109-67-1 | n-Alkenes | 846 | | cis-2-Pentene | C₅H ₁₀ | 627–20–3 | n-Alkenes | 848 | | trans-2-Pentene | C ₅ H ₁₀ | 646-04-8 | n-Alkenes | 848 | | trans-2-Pentenenitrile | C ₅ H ₇ N | 26294-98-4 | Nitriles | 995 | | trans-3-Pentenenitrile | C ₅ H ₇ N | 16529-66-1 | Nitriles | 995 | | cis-3-Penten-1-yne | C₅H ₆ | 1574-40-9 | Alkynes | 861 | | trans-3-Penten-1-yne | C₅H ₆ | 2004–69–5 | Alkynes | 861 | | 2,2,3,4,4-Pentmethylpentane | $C_{10}H_{22}$ | 16747-45-8 | q-Alkanes | 845 | | n-Pentyl alcohol | C ₅ H ₁₂ O | 71-41-0 | Alcohols | 910 | | n-Pentyl amine | C ₅ H ₁₃ N | 110–58–7 | Amines | 983 | | Pentylbenzene | C11H16 | 700_12_9 | Aromat01 | 866 | | Pentylcyclohexane | $C_{11}H_{22}$ | 4292–92–6 | Cyclic02 | 898 | | Pentylcyclopentane | $C_{10}H_{20}$ | 3741-00-2 | Cyclic02 | 893 | | 1-Pentylnaphthalene | $C_{15}H_{18}$ | 86–89–5 | Aromat02 | 881 | | 2-Pentylnaphthalene | C ₁₅ H ₁₈ | 93-22-1 | Aromat02 | 881 | | 1-Pentyne | C ₅ H ₈ | 627-19-0 | Alkynes | 858,859 | | 2-Pentyne | C_5H_8 | 627–21–4 | Alkynes | 860 | | Perbenzoic acid | $C_7H_6O_3$ | 93-59-4 | Peroxyacids | 980 | | Perdodecanoic acid | $C_{12}H_{24}O_3$ | 2388-12-7 | Peroxyacids | 980 | | Perfluoropropane | C ₃ F ₈ | 76–19–7 | Fluorides | 1065 | | Perhexadecanoic acid | $C_{16}H_{32}O_3$ | 7311–29–7 | Peroxyacids | 981 | | Peroctadecanoic acid | $C_{18}H_{36}O_3$ | 5796–86–1 | Peroxyacids | 981 | | Peroxylauric acid | $C_{12}H_{24}O_3$ | 2388–12–7 | Peroxyacids | 980 | | Peroxymyristic acid | $C_{14}H_{28}O_3$ | 19816-73-0 | Peroxyacids | 980 | | Peroxypalmitic acid | $C_{16}H_{32}O_3$ | 7311–29–7 | Peroxyacids | 981 | | Peroxystearic acid | $C_{18}H_{36}O_3$ | 5796–86–1 | Peroxyacids | 981 | | Pertetradecanoic acid | $C_{14}H_{28}O_3$ | 19816730 | Peroxyacids | 980 | | Perylene | $C_{20}H_{12}$ | 198–55–0 | Aromat02 | 886 | | Phenanthrene | $C_{14}H_{10}$ | 85-01-8 | Aromat02 | 885 | | Phenetole | $C_8H_{10}O$ | 103-73-1 | Ethers | 934 | | Phenol | C ₆ H ₆ O | 108-95-2 | Alcohols | 921 | | N-Phenylacetamide | C ₈ H ₉ NO | 103-84-4 | Amides | 1010 | | Phenyl acetate | $C_8H_8O_2$ | 122–79–2 | Esters | 976 | | DL-Phenylalanine | $C_9H_{11}NO_2$ | 150–30–1 | Amino acids | 1018 | | N-Phenylaniline | $C_{12}H_{11}N$ | 122-39-4 | Amines | 990 | | Phenylazide | $C_6H_5N_3$ | 622–37–7 | Azides | 1000 | | Phenyl benzoate | $C_{13}H_{10}O_2$ | 93-99-2 | Esters | 976 | | Phenylbutanedioic acid | $C_{10}H_{10}O_4$ | 635-51-8 | Acids | 963 | | 1-Phenyl-1-butanone | $C_{10}H_{12}O$ | 495-40-9 | Ketones | 944 | | Phenylcarbinol | C_7H_8O | 100–51–6 | Alcohols | 914 | | Phenylcyclopropane | C ₉ H ₁₀ | 873-49-4 | Cyclic03 | 906 | | N-Phenylethanamide | C ₈ H ₉ NO | 103-84-4 | Amides | 1010 | | Phenyl ethanoate | $C_8H_8O_2$ | 122-79-2 | Esters | 976 | | 2-Phenylethylamine | $C_8H_{11}N$ | 64040 | Amines | 990 | | N-Phenylglycine | $C_8H_9NO_2$ | 103-01-5 | Amino acids | 1019 | | Phenylhydrazine | $C_6H_8N_2$ | 100-63-0 | Hydrazines | 998 | | N-(Phenylmethylene)benzenimine | $C_{13}H_{11}N$ | 538-51-2 | Imines | 992 | | Phenylnitromethane | $C_7H_7NO_2$ | 622-42-4 | Nitros | 1026,1027 | | 1-Phenyl-1-propanone | $C_9H_{10}O$ | 93-55-0 | Ketones | 944 | | 1-Phenyl-2-propanone | $C_9H_{10}O$ | 103-79-7 | Ketones | 944 | | trans-Phenyl β-styryl sulfone | $C_{14}H_{12}O_2S$ | 16212069 | Sulfones | 1054 | | Phenylsuccinic acid | $C_{10}H_{10}O_4$ | 635-51-8 | Acids | 963 | | Phenyl p-tolyl ketone | C ₁₄ H ₁₂ O | 134-84-9 | Ketones | 944 | | Phenylurea | C ₇ H ₈ N ₂ O | 64–10–8 | Ureas | 1013 | | | | The state of s | | | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |-------------------------------------|---|------------------|------------|-----------| | Phthalic acid | C ₈ H ₆ O ₄ | 88-99-3 | Acids | 961 | | Phthalic anhydride | $C_8H_4O_3$ | 85-44-9 | Anhydrides | 965 | | 1,2-Phthaloyl chloride | $C_8H_4Cl_2O_2$ | 88-95-9 | Chloride | 1085 | | 1,3-Phthaloyl chloride | C ₈ H ₄ Cl ₂ O ₂ | 100-20-9 | Chloride | 1085 | | 1.4-Phthaloyl chloride | C ₈ H ₄ Cl ₂ O ₂ | 99638 | Chloride | 1085 | | 2-Picoline | C_6H_7N | 109068 | CyclCHN | 1004 | | 3-Picoline | C_6H_7N | 108-99-6 | CyclCHN | 1004 | | 4-Picoline | C₀H ₇ N | 108-89-4 | CyclCHN | 1004 | | Picramide | C ₆ H ₄ N ₄ O ₆ | 489–98–5 | Nitros | 1030 | | Picric acid | C ₆ H ₃ N ₃ O ₇ | 29663-11-4 | Nitros | 1028 | | Pimelic acid | C ₇ H ₁₂ O ₄ | 111-16-0 | Acids | 952 | | Piperidine | C ₃ H ₁₂ O ₄
C ₃ H ₁₁ N | 110-89-4 | | | | 2 | | | CyclCHN | 1002 | | Pivalic acid | $C_5H_{10}O_2$ | 75-98-9 | Acids | 950 | | Pivalic anhydride | C ₁₀ H ₁₈ O ₃ | 1538-75-6 | Anhydrides | 964 | | Propanal | C₃H₄O | 123-38-6 | Aldehyde | 935,936 | | Propanamide | C ₃ H ₇ NO | 79050 | Amides | 1006,1007 | | Propane | C_3H_8 | 74-98-6 | n-Alkanes | 830 | | Propanediamide | $C_3H_6N_2O_2$ | 108-13-4 | Amides | 1010 | | 1,2-Propanediamine | $C_3H_{10}N_2$ | 78-90-0 | Amines | 984 | | Propanedioic acid | $C_3H_4O_4$ | 141-82-2 | Acids | 951 | | 1,2-Propanediol | $C_3H_8O_2$ | 57–55–6 | Alcohols | 917 | | 1,3-Propanediol | C ₂ H ₈ O ₂ | 504-63-2 | Alcohols | 917 | | 1,3-Propanedithiol | C ₃ H ₈ S ₂ | 109-80-8 | Thiols | 1038 | | Propanenitrile | C_3H_5N | 107-12-0 | Nitriles | 992 | | • | C ₃ H ₈ S | | | | | 1-Propanethiol | | 107-03-1 | Thiols | 1035,1036 | | 2-Propanethiol | C₃H ₈ S | 75–33–2 | Thiols | 1038 | | 1,2,3-Propanetriol | $C_3H_8O_3$ | 56-81-5 | Alcohols | 918 | | Propanoic acid | $C_3H_6O_2$ | 79094 | Acids | 945 | | Propanoic anhydride | $C_6H_{10}O_3$ | 123-62-6 | Anhydrides | 964 | | Propanol | C₃H ₈ O | 71–23–8 | Alcohols | 910 | | 2-Propanol | C₃H ₈ O | 67630 | Alcohols | 915 | | 3-Propanolactone | $C_3H_4O_2$ | 57-57-8 | Esters | 975 | | Propanone | C₃H₄O | 67-64-1 | Ketones | 938 | | Propanoyl chloride | C₃H₅ClO | 79-03-8 | Chloride | 1084 | | Proponenitrile | C ₃ H ₃ N | 107-13-1 | Nitriles | 994 | | 2-Propenoic acid | $C_3H_4O_2$ | 79-10-7 | Acids | 950 | | 2-Propenol | C ₃ H ₆ O | 107–18–6 | Alcohols | | | 2-Propenylbenzene | C₀H₁0 | 300-57-2 | | 909,910 | | cis-1-Propenylbenzene | | | Aromat02 | 874 | | | C ₂ H ₁₀ | 766–90–5 | Aromat02 | 874 | | rans-1-Propenylbenzene | C ₉ H ₁₀ | 873–66–5 | Aromat02 | 874 | | B-Propiolactone | C ₃ H ₄ O ₂ | 57-57-8 | Esters | 975 | | Propionaldehyde | C_3H_6O | 123-38-6 | Aldehyde | 935,936 | | Propionamide | C₃H ₇ NO | 79050 | Amides | 1006,1007 | | Propionic acid | $C_3H_6O_2$ | 79094 | Acids | 945 | | Propionic anhydride | $C_6H_{10}O_3$ | 123-62-6 | Anhydrides | 964 | | Propionitrile | C ₃ H ₅ N | 107-12-0 | Nitriles | 992 | | 2-Propoxyethanol | $C_5H_{12}O_2$ | 2807-30-9 | Ethers | 932 | | 2-Propoxy-2-(2-methyl)propane | C ₇ H ₁₆ O | 17348-59-3 | Ethers | 929 | | Ргорохургорапе | $C_6H_{14}O$ | 111-43-3 | Ethers | | | 2-Propoxy-2-propane | C6H14O | | | 926 | | | | 108-20-3 | Ethers | 928 | | V-Propylacetamide | C ₅ H ₁₁ NO | 5331-48-6 | Amides | 1008 | | Propyl acctate | C ₅ H ₁₀ O ₂ | 109-60-4 | Esters | 969 | | -Propyl alcohol | C₃H ₈ O | 71–23–8 | Alcohols | 910 | | -Propyl amine | C ₃ H ₉ N | 107-10-8 | Amines | 982,983 | | Propylbenzene | C_9H_{12} | 103-65-1 | Aromat01 | 866 | | Propyl (E)-2-butenoate | $C_7H_{12}O_2$ |
10352-87-1 | Esters | 973 | | Propyl trans-2-butenoate | $C_7H_{12}O_2$ | 10352-87-1 | Esters | 973 | | Propyl chloroacetate | C ₅ H ₉ ClO ₂ | 5396-24-7 | Chloride | 1081 | | Propyl 2-chlorobutanoate | C ₇ H ₁₃ ClO ₂ | 62108-71-8 | Chloride | 1082 | | Propyl 4-chlorobutanoate | C ₇ H ₁₃ ClO ₂ C ₇ H ₁₃ ClO ₂ | 3153-35-3 | Chloride | | | Propyl 3-chloropropanoate | C ₆ H ₁₁ ClO ₂ | | | 1082 | | Propylcyclohexane | | 1487-41-8 | Chloride | 1082 | | | C ₂ H ₁₈ | 1678-92-8 | Cyclic02 | 898 | | Propylcyclopentane | C_8H_{16} | 2040-96-2 | Cyclic01 | 893 | | Propylene | C₃H ₆ | 115-07-1 | n-Alkenes | 846 | | | | | | | | Propylene glycol
Propylene oxide | $C_3H_8O_2$ | 57-55-6 | Alcohols | 917 | # E. S. DOMALSKI AND E. D. HEARING TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |---|--|---------------------|----------------------|--------------| | N-Propylethanamide | C₅H ₁₁ NO | 5331–48–6 | Amides | 100 | | N-2-Propylethanamide | C ₅ H ₁₁ NO | 1118-69-0 | Amides | 100 | | Propyl ethanoate | $C_5H_{10}O_2$ | 109-60-4 | Esters | 969 | | 4-Propylheptane | $C_{10}H_{22}$ | 3178-29-8 | t-Alkanes | 840 | | 1-Propylnaphthalene | $C_{13}H_{14}$ | 2765-18-6 | Aromat02 | 886 | | | | | | | | 2-Propylnaphthalene | $C_{13}H_{14}$ | 2027–19–2 | Aromat02 | 880 | | Propyl 2-pentenoate | $C_8H_{14}O_2$ | 62030-39-1 | Esters | 973,974 | | Propyl 3-pentenoate | $C_8H_{14}O_2$ | 62030-40-4 | Esters | 974 | | N-Propylpiperidine | $C_8H_{17}N$ | 5470-02-0 | CyclCHN | 1005,1006 | | n-Propyl nitrate | C ₃ H ₇ NO ₃ | 627-13-4 | Nitrates | 1032 | | n-Propyl nitrite | C ₃ H ₇ NO ₂ | 543-67-9 | Nitrites | 1031 | | Propyl pentanoate | $C_8H_{16}O_2$ | 141–06–0 | Esters | 970 | | ** * | | | | | | Propyl phenyl ketone | $C_{10}H_{12}O$ | 495–40–9 | Ketones | 944 | | Propyl valerate | $C_8H_{16}O_2$ | 141-06-0 | Esters | 970 | | Propyne | C_3H_4 | 74997 | Alkynes | 858 | | 1-(Propynylsulfonyl)benzene | C ₉ H ₈ O ₂ S | 2525-41-9 | Sulfones | 1052 | | 2-(Propynylsulfonyl)benzene | C ₉ H ₈ O ₂ S | 2525408 | Sulfones | 1052 | | Pyrazine | $C_4H_4N_2$ | 290–37–9 | | | | | | | CyclCHN | 1003 | | Pyrene | $C_{16}H_{10}$ | 129-00-0 | Aromat02 | 885 | | Pyridazine | $C_4H_4N_2$ | 289–80–5 | CyclCHN | 1002 | | Pyridine | C ₅ H ₅ N | 110-86-1 | CyclCHN | 1001,1002 | | Pyrimidine | $C_4H_4N_2$ | 289-95-2 | CyclCHN | 1003 | | Pyrrole | C ₄ H ₅ N | 109-97-7 | CyclCHN | 1003 | | Pyrrolidine | C ₄ H ₉ N | 123–75–1 | | | | • | | | CyclCHN | 1001 | | Pyrrolizidine | $C_7H_{13}N$ | 643–20–9 | CyclCHN | 1006 | | Q | | | | | | Quadricyclane | C_7H_8 | 278-06-8 | Cyclic03 | 903 | | Quinoline | C ₉ H ₇ N | 91–22–5 | CyclCHN | 1003 | | R | | | | | | RDX | $C_3H_6N_6O_6$ | 121–82–4 | Nitramines | 1034 | | Resorcinol | $C_6H_6O_2$ | 108-46-3 | Alcohols | 924 | | R-salt | $C_3H_6N_6O_3$ | 13980-04-6 | Nitroso | 1022 | | S | | | | | | Salicylic acid | $C_7H_6O_3$ | 69–72–7 | Acids | 961 | | Sarcosine | $C_3H_7NO_2$ | 107-97-1 | Amino acids | 1014 | | Sebacic acid | $C_{10}H_{18}O_{4}$ | 111–20–6 | Acids | 953 | | DL-Serine | C ₃ H ₇ NO ₃ | 302-84-1 | Amino acids | 1017 | | | | 157-40-4 | | | | Spiropentane | C₅H ₈ | | Cyclic01 | 890,891 | | Stearic acid | $C_{18}H_{36}O_2$ | 57–11–4 | Acids | 949 | | cis-Stilbene | $C_{14}H_{12}$ | 645_49_8 | Aromat02 | 876 | | trans-Stilbene | $C_{14}H_{12}$ | 103300 | Aromat02 | 876 | | Styrene | C_8H_8 | 100-42-5 | Aromat02 | 873 | | cis-β-Styryl p-tolyl sulfone | $C_{15}H_{14}O_2S$ | 54897-33-5 | Sulfones | 1054 | | | | | | | | trans-β-Styryl p-tolyl sulfone | C ₁₅ H ₁₄ O ₂ S | 16212-08-1 | Sulfones | 1054 | | Suberic acid | $C_8H_{14}O_4$ | 505-48-6 | Acids | 952 | | Succinamide | $C_4H_8N_2O_2$ | 110–14–5 | Amides | 1010 | | Succinic acid | $C_4H_6O_4$ | 110-15-6 | Acids | 951 | | Succinic anhydride | C ₄ H ₄ O ₃ | 108–30–5 | Anhydrides | 964 | | Succinimide | | | | | | | C ₄ H ₅ NO ₂ | 123-56-8 | CyclCHNO | 1035 | | Succinonitrile | C ₄ H ₄ N ₂ | 110–61–2 | Nitriles | 996 | | T | | | | | | Terephthalic acid | C ₈ H ₆ O ₄ | 100-21-0 | Acids | 962 | | • | $C_{18}H_{14}$ | 84-15-1 | Aromat02 | 879 | | ortho-Terphenyl | C181 114 | | | | | ortho-Terphenyl | | 87–87–6 | Chloride | 1078 | | ortho-Terphenyl 2,3,5,6-Tetrachloro-1,4-benzenediol | $C_6H_2Cl_4O_2$ | | | | | ortho-Terphenyl 2,3,5,6-Tetrachloro-1,4-benzenediol 1,2,4,5-Tetrachloro-3,6-dimethylbenzene | $C_6H_2Cl_4O_2$
$C_8H_6Cl_4$ | 877–10–1 | Chloride | 1075 | | ortho-Terphenyl 2,3,5,6-Tetrachloro-1,4-benzenediol 1,2,4,5-Tetrachloro-3,6-dimethylbenzene 1,1,2,2-Tetrachloroethane | C ₆ H ₂ Cl ₄ O ₂
C ₈ H ₆ Cl ₄
C ₂ H ₂ Cl ₄ | 877-10-1
79-34-5 | Chloride
Chloride | 1075
1070 | | ortho-Terphenyl 2,3,5,6-Tetrachloro-1,4-benzenediol 1,2,4,5-Tetrachloro-3,6-dimethylbenzene | $C_6H_2Cl_4O_2$
$C_8H_6Cl_4$ | 877–10–1 | Chloride | 1075 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |--|--|-----------------------|-----------------|--------------| | 1,2,2,3-Tetrachioropropane | C ₃ H ₄ Cl ₄ | 13116–53–5 | Chloride | 1070 | | Tetracosane | $C_{24}H_{50}$ | 646-31-1 | n-Alkanes | 834 | | Tetracyclo[3.2.0 ^{2,7} .0 ^{4,6}]heptane | C_7H_8 | 278-06-8 | Cyclic03 | 903 | | Tetradecane | C ₁₄ H ₃₀ | 629–59–4 | n-Alkanes | 832 | | Tetradecanenitrile | C ₁₄ H ₂₇ N | 629-63-0 | Nitriles | 994 | | Tetradecanoic acid | $C_{14}H_{28}O_2$ | 544-63-8 | Acids | 948 | | Tetradecanol | C14H30O | 112-72-1 | Alcohols | 912 | | 2-Tetradecanone | C ₁₄ H ₂₈ O | 2345-27-9 | Ketones | 940 | | n-Tetradecyl alcohol | C ₁₄ H ₃₀ O | 112-72-1 | Alcohols | 912 | | Tetraethylbutanedioic acid | $C_{12}H_{22}O_4$ | 4111-60-8 | Acids | 956 | | Tetraethyleneglycol | $C_8H_{18}O_5$
$C_{12}H_{22}O_4$ | 112-60-7
4111-60-8 | Ethers
Acids | 932 | | Tetraethylsuccinic acid | $C_{12}H_{22}O_4$
$C_9H_{20}N_2O$ | 1187-03-7 | Ureas | 956 | | Tetraethylurea | C ₆ H ₂ F ₄ | 2367–82–0 | Fluoride | 1012 | | 1,2,3,5-Tetrafluorobenzene | C ₆ H ₂ F ₄ | 2307-82-0
327-54-8 | Fluoride | 1062 | | 1,2,4,5-Tetrafluorobenzene
1,2,3,4-Tetrafluorobenzene | C ₆ H ₂ F ₄
C ₆ H ₂ F ₄ | 551-62-2 | Fluoride | 1062 | | | C ₂ F ₄ | 116-14-3 | Fluoride | 1062 | | Tetrafluoroethylene | C₂F4
C₃H4F4O | 76-37-9 | Fluoride | 1059
1064 | | 2,2,3,3-Tetrafluoro-1-propanol | C₃H₄P₄O
C₄H ₈ O | 109-99-9 | Ethers | 933 | | Tetrahydronyran | C ₅ H ₁₀ O | 142-68-7 | Ethers | 933 | | Tetrahydropyran 3,4,5,6-Tetrahydro-3,3,6,6-tetramethylpyridazine | $C_8H_{16}N_2$ | 19403248 | Diazene | 934 | | Tetralite | $C_7H_5N_5O_8$ | 479-45-8 | Nitramines | 1034 | | Tetramethoxymethane | C ₃ H ₁₂ O ₄ | 1850-14-2 | Ethers | 930 | | 1,2,3,4-tetramethylbenzene | C ₁₀ H ₁₄ | 488-23-3 | Aromat01 | 864 | | 1,2,3,5-Tetramethylbenzene | $C_{10}H_{14}$ | 527-53-7 | Aromat01 | 864,865 | | 1,2,4,5-Tetramethylbenzene | C ₁₀ H ₁₄ | 95–93–2 | Aromat01 | 865 | | 2,3,4,5-Tetramethyl benzoic acid | $C_{11}H_{14}O_2$ | 2408-38-0 | Acids | 960 | | 2,3,4,6-Tetramethyl benzoic acid | $C_{11}H_{14}O_2$ | 2604–45–7 | Acids | 960,961 | | 2,3,5,6-Tetramethyl benzoic acid | $C_{11}H_{14}O_2$ | 3854-90-8 | Acids | 961 | | 2,2,3,3-Tetramethylbutane | C ₈ H ₁₈ | 594-82-1 | g-Alkanes | 844 | | Tetramethylbutanedioic acid | C ₈ H ₁₄ O ₄ | 630-51-3 | Acids | 955 | | 1,1,4,4-Tetramethylcyclotetramethylenediazene | $C_8H_{16}N_2$ | 19403-24-8 | Diazene | 999 | | 1,1,3,3-Tetramethylcyclotrimethylenediazene | $C_7H_{14}N_2$ | 2721-31-5 | Diazene | 999 | | 2,2',5,5'-Tetramethyl-N,N-dipyrryl | $C_{12}H_{16}N_2$ | 10507-71-8 | CyclCHN | 1002 | | 2,2,7,7-Tetramethylocta-3,5-diyne | $C_{12}H_{18}$ | 6130-98-9 | Alkynes | 862 | | 2,2,6,6-Tetramethyl-4-heptanone | $C_{11}H_{22}O$ | 4436-99-1 | Ketones | 942 | | 3,3,6,6,-Tetramethylocta-1,7-diyne | $C_{12}H_{18}$ | 64020560 | Alkynes | 862 | | Tetramethyl orthocarbonate | $C_5H_{12}O_2$ | 1850-14-2 | Ethers | 930 | | 2,2,3,3-Tetramethylpentane | C_9H_{20} | 7154–79–2 | q-Alkanes | 844,845 | | 2,2,4,4-Tetramethylpentane | C ₉ H ₂₀ | 1070-87-7 | q-Alkanes | 845 | | 2,2,4,4-Tetramethyl-3-pentanone | $C_9H_{18}O$ | 815–24–7 | Ketones | 941 | | 3,3,5,5-Tetramethyl-1-pyrazoline | $C_7H_{14}N_2$ | 2721-31-5 | Diazene | 999 | | Tetramethylsuccinic acid | C _R H ₁₄ O ₄ | 630–51–3 | Acids | 955 | | Tetramethylsuccinic anhydride | C ₈ H ₁₂ O ₃ | 35046685 | Anhydrides | 965 | | Tetramethylurea | $C_5H_{12}N_2O$ | 632–22–4 | Ureas | 1011 | | Tetranitromethane | CN₄O ₈ | 509-14-8 | Nitros | 1022,1023 | | 3,5,7,9-Tetraoxaundecane | C ₇ H ₁₆ O ₄ | 4431–82–7 | Ethers | 931 | | 1,1,4,4-Tetraphenylbutane | C ₂₈ H ₂₆ | 1483-64-3 | Cyclic03 | 908 | | 1,1,1,2-Tetraphenylethane | $C_{26}H_{22}$ | 2294-94-2 | Aromat02 | 877 | | 1,1,2,2-Tetraphenylethane | $C_{26}H_{22}$ | 632–50–8 | Aromat02 | 877 | | Tetraphenylethylene | $C_{26}H_{20}$ | 632-51-9 | Aromat02 | 884 | | Tetraphenylmethane | C ₂₅ H ₂₀ | 630-76-2 | Aromat02 | 876 | | Tetraphenylurea | C ₂₅ H ₂₀ N ₂ O | 632–89–3 | Ureas | 1014 | | Tetryl | C ₇ H ₅ N ₅ O ₈ | 479-45-8 | Nitramines | 1034 | | Thiacyclobutane | C₃H₄S | 287-27-4 | CyclCHS | 1056 | | Thiacycloheptane | C ₆ H ₁₂ S | 4753-80-4 | CyclCHS | 1056 | | Thiacyclohexane Thiacyclonexane | C₅H₁₀S | 1613-51-0 | CyclCHS | 1056 | | Thiacyclopentane Thiacyclopentane | C ₄ H ₈ S | 110-01-0 | CyclCHS | 1056 | | Thiacyclopropane | C₂H₄S
C₂H₄S | 420–12–2
5206–62–8 | CyclCHS | 1056 | | 4-Thia-1-hexene | C ₅ H ₁₀ S | 5296-62-8 | Sulfides | 1046 | | Thiophene | C4H4S | 110-02-1 | CyclCHS | 1057 | | DL-Threonine | C₄H ₉ NO ₃ | 80–68–2 | Amino acids | 1017 | | Toluene | C ₇ H ₈ | 108-88-3 | Aromat01 | 863 | |
p-Tolyl vinyl sulfone | C ₉ H ₁₀ O ₂ S | 5535-52-4 | Sulfones | 1053 | | 1,3,5-Triazine | C ₃ H ₃ N ₃ | 290-87-9 | CyclCHN | 1002 | | Tribenzylamine | $C_{21}H_{21}N$ | 620-40-6 | Amines | 988 | # E. S. DOMALSKI AND E. D. HEARING TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | |---|---|-------------------|-----------|-----------| | 1,2,3-Tribromopropane | C ₃ H ₅ Br ₃ | 96–11–7 | Bromide | 1090 | | Γri-n-butylamine | $C_{12}H_{27}N$ | 102-82-9 | Amines | 98' | | 2,3,5-Trichloro-1,4-benzenediol | $C_6H_3Cl_3O_2$ | 608-94-6 | Chloride | 1078 | | 2,2,3-Trichlorobutanal | C ₄ H ₅ Cl ₃ O | 76–36–8 | Chloride | 1081 | | 1,1,1-Trichloroethane | $C_2H_3Cl_3$ | 71-55-6 | Chloride | 1069 | | 1,1,2-Trichloroethane | C ₂ H ₃ Cl ₃ | 79-00 5 | Chloride | 1069 | | Trichloroethylene | C₂HCl₃ | 79–01–6 | Chloride | 1072 | | 1,2,3-Trichloropropane | C ₃ H ₅ Cl ₃ | 96-18-4 | Chloride | 1070 | | 1,2,3-Trichloropropene | C ₃ H ₃ Cl ₃ | 96–19–5 | Chloride | 1072 | | 1,3,5-Trichloro-2,4,6-trifluorobenzene | $C_6Cl_3F_3$ | 319–88–0 | Mixed | 1101 | | 1,1,1-Trichloro-3,3,3-trifluoropropane | $C_3H_2Cl_3F_3$ | 7125–83–9 | Mixed | 1100 | | 1,1,2-Trichloro-1,2,2-trifluoroethane | $C_2Cl_3F_3$ | 76–13–1 | Mixed | 1099,1100 | | Tricyclo[2.2.1.0 ^{2,6}]heptane | C_7H_{10} | 279–19–6 | Cyclic03 | 903 | | Tricyclo[3.3.1.1 ^{3,7}]dccanc | $C_{10}H_{16}$ | 281-23-2 | Cyclic02 | 901 | | Tricyclo[3.3.1.1 ^{3,7}]decane-1-carboxamide | $C_{11}H_{17}NO$ | 5511–18–2 | Amides | 1010 | | Tridecane | $C_{13}H_{28}$ | 629–50–5 | n-Alkanes | 832 | | Tridecanedioic acid | $C_{13}H_{24}O_4$ | 505-52-2 | Acids | 954 | | Tridecanoic acid | $C_{13}H_{26}O_2$ | 638-53-9 | Acids | 948 | | Tridecanol | $C_{13}H_{28}O$ | 112 –7 0–9 | Alcohols | 912 | | n-Tridecyl alcohol | $C_{13}H_{28}O$ | 112-70-9 | Alcohols | 912 | | Tri-n-decylamine | $C_{30}H_{63}N$ | 1070-01-5 | Amines | 988 | | Tridecylic acid | $C_{13}H_{26}O_2$ | 638-53-9 | Acids | 948 | | Triethylamine | $C_6H_{15}N$ | 121-44-8 | Amines | 986,987 | | 1,2,3-Triethylbenzene | $C_{12}H_{18}$ | 42205-08-3 | Aromat02 | 871 | | 1,2,4-Triethylbenzene | $C_{12}H_{18}$ | 877-44-1 | Aromat02 | 871 | | 1,3,5-Triethylbenzene | $C_{12}H_{18}$ | 102-25-0 | Aromat02 | 871,872 | | Triethylbutanedioic acid | $C_{10}H_{18}O_4$ | 2103-18-6 | Acids | 956 | | Triethyleneglycol | $C_6H_{14}O_4$ | 112-27-6 | Ethers | 932 | | Triethylsuccinic acid | $C_{10}H_{18}O_4$ | 2103-18-6 | Acids | 956 | | 1,1,1-Trifluorocthane | $C_2H_3F_3$ | 420-46-2 | Fluoride | 1059 | | 1,1,2-Trifluoroethane | $C_2H_3F_3$ | 430-66-0 | Fluoride | 1059 | | 2,2,2-Trifluoroethanol | C ₂ H ₃ F ₃ O | 75–89–8 | Fluoride | 1063 | | Trifluoroethylene | C_2HF_3 | 359-11-5 | Fluoride | 1060 | | 1,1,1-Trifluoro-2-iodoethane | $C_2H_2F_3I$ | 353-83-3 | Mixed | 1099 | | (Trifluoromethyl)benzene | $C_7H_5F_3$ | 98-08-8 | Fluoride | 1062 | | 3,3,3-Trifluoro-1-propanol | $C_3H_5F_3O$ | 2240-88-2 | Fluoride | 1063 | | 3,3,3-Trifluoropropene | $C_3H_3F_3$ | 677–21–4 | Fluoride | 1060 | | Tri-n-hexylamine | $C_{18}H_{39}N$ | 102-86-3 | Amines | 987 | | 1,1,1-Trimethoxyethane | $C_5H_{12}O_3$ | 1445–45–0 | Ethers | 930 | | Trimethoxymethane | $C_4H_{10}O_3$ | 149–73–5 | Ethers | 929 | | Trimethylamine | C ₃ H ₉ N | 75–50–3 | Amines | 986 | | 1,2,3-Trimethylbenzene | C_9H_{12} | 526-73-8 | Aromat01 | 864 | | 1,2,4-Trimethylbenzene | C ₉ H ₁₂ | 95-63-6 | Aromat01 | 864 | | 1,3,5-Trimethylbenzene | C_9H_{12} | 108-67-8 | Aromat01 | 864 | | 2,3,4-Trimethyl benzoic acid | $C_{10}H_{12}O_2$ | 1076–47–7 | Acids | 959 | | 2,3,5-Trimethyl benzoic acid | $C_{10}H_{12}O_2$ | 2437–66–3 | Acids | 959 | | 2,3,6-Trimethyl benzoic acid | $C_{10}H_{12}O_2$ | 2529–39–7 | Acids | 959 | | 2,4,5-Trimethyl benzoic acid | $C_{10}H_{12}O_2$ | 528–90–5 | Acids | 959,960 | | 2,4,6-Trimetnyl benzoic acid | $C_{10}H_{12}O_2$ | 480-63-7 | Acids | 960 | | 3,4,5-Trimethyl benzoic acid | $C_{10}H_{12}O_2$ | 1076-88-6 | Acids | 960 | | 2,2,3-Trimethylbutane | C_7H_{16} | 464-06-2 | q-Alkanes | 843 | | Trimethylbutanedioic acid | $C_7H_{12}O_4$ | 2103-16-4 | Acids | 955 | | 2,3,3-Trimethyl-1-butene | C_7H_{14} | 594-56-9 | s-Alkenes | 856 | | Trimethylene glycol | $C_3H_8O_2$ | 504-63-2 | Alcohols | 917 | | Trimethylene oxide | C₃H ₆ O | 503300 | Ethers | 933 | | Trimethyl isocyanurate | $C_6H_9N_3O_3$ | 827167 | CyclCHN | 1014 | | 2,2,3-Trimethylpentane | C ₈ H ₁₈ | 564-02-3 | q-Alkanes | 843,844 | | 2,2,4-Trimethylpentane | C_8H_{18} | 540-84-1 | q-Alkanes | 844 | | 2,3,3-Trimethylpentane | C ₈ H ₁₈ | 560-21-4 | q-Alkanes | 844 | | 2,3,4-Trimethylpentane | C ₈ H ₁₈ | 565-75-3 | t-Alkanes | 842 | | 2,2,4-Trimethyl-3-pentanone | C ₈ H ₁₆ O | 5857–36–3 | Ketones | 941 | | 2,4,4-Trimethyl-1-pentene | C ₈ H ₁₆ | 107–39–1 | s-Alkenes | 857 | | 2,4,4-Trimethyl-2-pentene | C ₈ H ₁₆ | 107-40-4 | s-Alkenes | 857 | | Trimethylsuccinic acid | C ₇ H ₁₂ O ₄ | 2103–16–4 | Acids | 955 | | Trimethylurea | C ₄ H ₁₀ N ₂ O | 632-14-4 | Ureas | 1011 | | 2,4,6-Trinitroaniline | C ₆ H ₄ N ₄ O ₆ | 489-98-5 | Nitros | 1030 | TABLE 56. Name and Formula Index - Continued | Name | Formula | CAS Registry No. | Family | Page | | |------------------------|---|------------------|-------------|---------|--| | 1,3,5-Trinitrobenzene | robenzene C ₆ H ₃ N ₃ O ₆ 99-35-4 | | Nitros | 1026 | | | Trinitromethane | CHN ₃ O ₆ | 517-25-9 | Nitros | 1022 | | | 2,4,6-Trinitrophenol | $C_6H_3N_3O_7$ | 29663-11-4 | Nitros | 1028 | | | 2,4,6-Trinitrotoluene | $C_7H_5N_3O_6$ | 118-96-7 | Nitros | 1027 | | | Tri-n-nonylamine | C ₂₇ H ₅₇ N | 2044-22-6 | Amines | 987.988 | | | Tri-n-octylamine | $C_{24}H_{51}N$ | 1116-76-3 | Amines | 987 | | | 3,5,7-Trioxanonane | $C_6H_{14}O_3$ | 111-96-6 | Ethers | 930,931 | | | Triphenylamine | $C_{18}H_{15}N$ | 603-34-9 | Amines | 988 | | | Triphenylazidomethane | $C_{19}H_{15}N_3$ | 14309-25-2 | Azides | 1001 | | | 1,3,5-Triphenylbenzene | $C_{24}H_{18}$ | 612-71-5 | Aromat02 | 879 | | | Triphenylcarbinol | $C_{19}H_{16}O$ | 76–84–6 | Alcohols | 917 | | | Triphenylene | $C_{18}H_{12}$ | 217-59-4 | Aromat02 | 885 | | | 1,1,1-Triphenylethane | $C_{20}H_{18}$ | 5271-39-6 | Aromat02 | 877 | | | 1,1,2-Triphenylethane | $C_{20}H_{18}$ | 1520-42-9 | Aromat02 | 877 | | | Triphenylethylene | $C_{20}H_{16}$ | 58-72-0 | Aromat02 | 877 | | | Triphenylmethane | $C_{19}H_{16}$ | 519-73-3 | Aromat02 | 876 | | | Triphenylmethanol | $C_{19}H_{16}O$ | 76-84-6 | Alcohols | 917 | | | Triphenylmethylazide | $C_{19}H_{15}N_3$ | 14309-25-2 | Azides | 1001 | | | Tri-n-propylamine | $C_9H_{21}N$ | 102-69-2 | Amines | 987 | | | Tritriacontane | $C_{33}H_{68}$ | 630-05-7 | n-Alkanes | 835 | | | L-Tyrosine | C ₉ H ₁₁ NO ₃ | 60–18–4 | Amino acids | 1018 | | | U | | | | | | | Undecane | C ₁₁ H ₂₄ | 1120-21-4 | n-Alkanes | 831 | | | Undecanedioic acid | $C_{11}H_{20}O_4$ | 1852-04-6 | Acids | 953 | | | Undecanenitrile | $C_{11}H_{21}N$ | 2244-07-7 | Nitriles | 993,994 | | | Undecanoic acid | $C_{11}H_{22}O_2$ | 112-37-8 | Acids | 947 | | | Undecanol | $C_{11}H_{24}O$ | 112-42-5 | Alcohols | 911 | | | Undecanolactone | $C_{11}H_{20}O_2$ | 710-04-3 | Esters | 975 | | | 6-Undecanone | $C_{11}H_{22}O$ | 927-49-1 | Ketones | 940 | | | Undecylbenzene | $C_{17}H_{28}$ | 6742-54-7 | Aromat01 | 867 | | | Undecylic acid | $C_{11}H_{22}O_2$ | 112-37-8 | Acids | 947 | | | Undecylnitrile | $C_{11}H_{21}N$ | 2244-07-7 | Nitriles | 993,994 | | | Urea | CH₄N ₂ O | 57–13–6 | Ureas | 1011 | | | v | | | | | | | Valeric acid | $C_5H_{10}O_2$ | 109-52-4 | Acids | 946 | | | γ-Valerolactone | $C_5H_8O_2$ | 108-29-2 | Esters | 975 | | | δ-Valerolactone | $C_5H_8O_2$ | 542289 | Esters | 975 | | | Valeronitrile | C₅H ₉ N | 110-59-8 | Nitriles | 993 | | | L-Valine | $C_5H_{11}NO_2$ | 72-18-4 | Amino acids | 1016 | | | Valylphenylalanine | $C_{14}H_{20}N_2O_3$ | 3918-92-1 | Amino acids | 1021 | | | Vinyl acetate | C₄H ₆ O ₂ | 108-05-4 | Esters | 971 | | | Vinylcyclohexane | C ₈ H ₁₄ | 695-12-5 | Cyclic03 | 904 | | W,X,Y,Z 31DEE (1931). #### 4. Acknowledgements The authors thank the NIST Standard Reference Data Program for financial assistance and Mr. Barry Jacobs for his technical assistance in the early stages of this research project. The authors also thank Constance L. Seymour, Judith T. Calabrese, and L. Diane Decker for their help in the computer transfer and manipulation of this manuscript for the Journal. | | 5. References | | | | | | |------------------------|--|--|--|--|--|--| | 1881REI
1887STO/ROD | von Reis, M.A., Ann. Physik [3] 13, 447-464 (1881). Stohmann, F., Rodatz, P., and Herzberg, W., J. Prakt. Chem. [2] 36, 1-16 (1887). | | | | | | | 1889BER/PET | Berthelot, M.P.E., and Petit, P., Ann. Chim. Phys. [6] 18 , 107–140 (1889). | | | | | | | 1897STO/HAU | Stohmann, F., and Haussmann, E., J. Prakt. Chem. [2] 55 , 263–284 (1897). | | | | | | | 04FIS/WRE | Fischer, E., and Wrede, F., Sitzber. Preuss. Akad. Wiss. MathPhys. Kl. 687-715 (1904). | | | | | | | 11LOU/DUP | Louguinine, W., and Dupont, G., Bull. Soc. Chim. France [4] 9, 219-224 (1911). | | | | | | | 13HIB/FUL | Hibbert, H., and Fuller, G.P., J. Am. Chem. Soc. 35, 978–989 (1913). | | | | | | | 13TAM | Tammann, G., Nachr. Gesell. Wissen. Gottingen,
Gesell. Mitteil. MathPhys. Klasse, 335 (1913); cited
in Internat. Crit. Tables, Vol. V, p.132 (McGraw-Hill
Book Co.,Inc., New York, 1929). | | | | | | | 14SWA | Swarts, F., Rec. Trav. Chim. 33, 281-298 (1914). | | | | | | | 21GAR/ABE | Garner, W.E., Abernethy, C.L., Proc. Roy. Soc. (London) A99, 213-235 (1921). | | | | | | | 23GIB/GIA | Gibson, G.E., and Giauque, W.F., J. Am. Chem. Soc.
45, 93-104 (1923). | | | | | | | 26AND | Andrews, D.H., J.Am. Chem. Soc. 48, 1287-1298 (1926). | | | | | | | 26AND/LYN | Andrews, D.H., Lynn, G., and Johnston, J., J. Am. Chem. Soc. 48, 1274–1287 (1926). | | | | | | | 26MAT
26RIN | Mathews, J.H., J. Am. Chem. Soc. 48, 562-576 (1926).
Rinkenbach, W.H., Ind. Eng. Chem. 18, 1195-1197 (1926). | | | | | | | 26VER/HAR | Verkade, P.E., Hartman, H., and Coops, J., Jr., Rec. Trav. Chim. 45, 373–393 (1926). | | | | | | | 27COO/COO | Coolidge, A.S., and Coolidge, M.S., J. Am. Chem. Soc. 49, 100-104 (1927). | | | | | | | 29LAN/BAY | Landrieu, P., Baylocq, F., and Johnson, J.R., Bull. Soc. Chim. France 45, 36–49 (1929). | | | | | | | 29KEL | Kelley, K.K., J. Am. Chem. Soc. 51, 779-786 (1929). | | | | | | | 29KEL2 | Kelley, K.K., J. Am. Chem. Soc. 51, 1400–1406 (1929). | | | | | | | 29KEL3 | Kelley, K.K., J. Am. Chem. Soc. 51, 1145–1150 (1929). | | | | | | | 30DRU/FLA | Drucker, C., and Flade, Th., Z. Wiss. Phot. 29, 29–42 (1930); see also Drucker, C., unpublished data in Landolt-Bornstein, Aufl. 5, Ergb. II, p. 1650 (1931). | | | | | | | 30HUF/PAR | Huffman, H.M., Parks, G.S., and Daniels, A.C., J. Am. Chem. Soc. 52, 1547-1558 (1930). | | | | | | | 30HUF/PAR2 | Huffman, H.M., Parks, G.S., and Thomas, S.B., J. Am. Chem. Soc. 3241–3251 (1930). | | | | | | | 30PAR/HUF | Parks, G.S., Huffman, H.M., and Thomas, S.B., J. AmChem. Soc. 52, 1032-1041 (1930). | | | | | | | 30PAR/HUF2 | Parks, G.S., and Huffman, H.M., J. Am. Chem. Soc. 52, 4381–4391 (1930). | | | | | | | 30WAS | Wassermann, A., Z. Physik. Chem. A151, 113-128 (1930). | | | | | | | 31BEC | Beckers, M., Bull. Soc. Chim. Belges 40, 518–570 (1931). | | | | | | ``` 31HUF/PAR Huffman, H.M., Parks, G.S., and Barmore, M., J. Am. Chem. Soc. 53, 3876-3888 (1931). 31MAT/FEH Mathews, J.H., and Fehlandt, P.R., J. Am. Chem. Soc. 53, 3212-3217 (1931). 31SMI/AND Smith, R.H., and Andrews, D.H., J. Am. Chem. Soc. 53, 3644-3660 (1953). 31SMI/AND2 Smith, R.H., and Andrews, D.H., J. Am. Chem. Soc. 53, 3661-3667 (1953). 32HUF/BOR Huffman, H.M., and Borsook, H., J. Am. Chem. Soc. 54, 4297-4301 (1932). 32ROS Rossini, F.D., J. Research Nat. Bur. Stds. 8, 119-139 (1932). 32SPA/THO Spaght, M.E., Thomas, S.B., and Parks, G.S., J. Phys. Chem. 36, 882-888 (1932). 33FER/THO Ferry, J.D., and Thomas, S.B., J. Phys. Chem. 37, 253- 255 (1933). 33KOL/UDO de Kolossowsky, N.A., and Udowenko, W.W., Compt. rend, 197, 519-520 (1933). 33PAR/HUF Parks, G.S., Huffman, H.M., and Barmore, M., J. Am. Chem. Soc. 55, 2733-2740 (1933). 33RUZ/SCH Ruzicka, L., and Schlapfer, P., Helv. Chim. Acta 16, 162-168 (1933). Verkade, P.E., and Hartman, H., Rec. Trav. Chim. 52, 33VER/HAR 945-968 (1933). 34HIR Hirsbrunner, Helv. Chim. Acta 17, 477-504 (1934). 34JAC/PAR Jacobs, C.J., and Parks, G.S., J. Am. Chem. Soc. 56, 1513-1517 (1934). 34KOL/UDO Kolosovskii, N.A., and Udovenko, W.W., Zhur. Ob- shch. Khim. 4, 1027-1033 (1934). 34MEH Mehl, W., Z. Physik. Chem. A169, 312-313 (1934). 34MEH2 Mehl, W., Z. ges. Kalte-Ind. 41, 152-153 (1934). Schmidt, A., Z. Ges. Schiess. u. Sprengstoffw., 29, 34SCH 259-266 (1934). 34TOM/TAK Tamioka, K., and Takahashi, H., Rep. Res. Dept. Nav. Bur. B 122, (1934). 35BRU Brull. L., Gazz. Chim. Ital. 65, 19-28 (1935) 35MIL Miller, P., Iowa State Coll. J. Sci., 10, 91-93 (1935). 35STI/HUF Stiehler, R.D., and Huffman, H.M., J. Am. Chem. Soc. 57, 1734-1740 (1935). 36BEK/WOO Bekkedahl, N., Wood, L.A., and Wojciechowski, M., J. Res. Nat. Bur. Standards 17, 883-894 (1936). 36BEN/CUT Bent, H.E., Cuthbertson, G.R., Dorfman, M., and Leary, R.E., J. Am. Chem. Soc. 58, 165-170 (1936). 36BEN/CUT2 Bent, H.E., and Cuthbertson, G.R., J. Am. Chem. Soc. 58, 170-173 (1936). 36HUF/ELL Huffman, H.M, Ellis, E.L., and Fox, S.W., J. Am. Chem. Soc. 58, 1728-1733 (1936). 36KIS/RUH Kistiahowsky, G.B., Ruhoff, J.R., Smith, H.A., and Vaughan, W.E., J. Am. Chem. Soc. 58, 137-145 (1936). 36KIS/RUH2 Kistiakowsky, G.B., Ruhoff, J.R., Smith, H.A., and Vaughan, W.E., J. Am. Chem. Soc. 58, 146-153 (1936). 36KUR/VOS Kurnakov, N.S., and Voskresenskaya, N.K., Izv. Akad. Nauk SSSR, Otdel. Mat. i Estestv. Nauk, Ser. Khim. 439-461 (1936). 36PAR/TOD Parks, G.S., Todd, S.S., and Moore, W.A., J. Am. Chem. Soc. 58, 398-401 (1936). 36KHO/KAL Khokhlovkin, M.A., and Kalacheva, A.V., Sintet. Kauchuk 5, (1), 25-27 (1936). 36KUR/VOS Kurnakov, N.S., and Voskresenskaya, N.K., Izv. Akad. Nauk SSSR, Otdel. Mat. i Estestv. Nauk, Ser. Khim. 439-461 (1936). 36PAR/TOD Parks, G.S., Todd, S.S., and Moore, W.A., J. Am. Chem. Soc. 58, 398-401 (1936). 36PAR/TOD2 Parks, G.S., Todd, S.S., and Shomate, C.H., J. Am. Chem. Soc. 58, 2505-2508 (1936). ``` Deese, R.F., Jr., J. Am. Chem. Soc. 53, 3673-3683 (1931). Beckers, M., Bull. Soc. Chim. Belges 40, 571-610 31BEC2 | 36SCH | Schjanberg, E., Z. Physik. Chem. A175, 342-346 (1936). | 40AST/KEN | Aston, J.G., Kennedy, R.M., and Schumann, S.C., J. Am. Chem. Soc. 62 , 2059–2063 (1940). | |--------------------|--|------------------------|--| | 36TRI | Trieschmann, H.G., Z. Physik. Chem. B33 , 283-289 (1936). | 40AST/MES | Aston, J.G., and Messerly, G.H., J. Am. Chem. Soc. 62, 1917-1923 (1940). | | 37AST/SIL | Aston, J.G., Siller, C.W., and Messerly, G.H., J. Am. Chem. Soc. 59 , 1743–1751 (1937). | 40HUF/FOX | Huffman, H.M., and Fox, S.W., J. Am. Chem. Soc. 62, 3464–3465 (1940). | | 37BAD | Badoche, M., Bull. Soc. Chim. France [5] 4, 549–558 (1937). | 40MOO/REN | Moore, G.E., Renquist, M.L., and Parks, G.S., J. Am. Chem. Soc. 62, 1505–1507 (1940). | | 37CLI/KIS | Cline, J.E., and Kistiakowsky, G.B., J. Chem. Phys. 5, 990 (1937). | 40PIT
40PIT2 | Pitzer, K.S., J. Am. Chem. Soc. 62, 331–335 (1940).
Pitzer, K.S., J. Am. Chem. Soc. 62, 1224–1227 (1940). | | 37DOL/GRE | Dolliver, M.A., Gresham, T.L., Kistiakowsky, G.B., and Vaughan, W.E., J. Am. Chem. Soc. 59, 831-841 | 41BAD | Badoche, M., Bull. Soc. Chim. France [5] 8, 212-220 (1941). | | 37GAL/HIB | (1937). Gallaugher, A.F., and Hibbert, H., J. Am. Chem. Soc. | 41HUF | Huffman, H.M., J. Am. Chem. Soc. 63 , 688–689 (1941). | | | 59, 2521–2525 (1937).
Huffman, H.M., and Ellis, E.L., J. Am. Chem. Soc. 59, | 41LIS
41NEL/NEW | Lister, M.W., J. Am. Chem. Soc. 63, 143–149 (1941).
Nelson, E.W., and Newton, R.F., J. Am. Chem. Soc. | | 37HUF/ELL | 2150–2152 (1937). | | 63 , 2178–2182 (1941). | | 37HUF/FOX | Huffman, H.M., Fox, S.W., and Ellis, E.L., J. Am. Chem. Soc. 59 , 2144–2150 (1937). | 41PAR/WES | Parks, G.S., West, T.J., and Moore, G.E., J. Am. Chem. Soc. 1133–1135 (1941). | | 37MOU/DOD | [5] 4, 637–647 (1937). | 41PIT/SCO | Pitzer, K.S., and Scott, D.W., J. Am. Chem. Soc. 63, 2419–2422 (1941). | | 37PER
37ROS/KNO | Perlick, A., Bull. Int. Inst. Refrig. 18, A1-A9 (1937). Rossini, F.D., and Knowlton, J.W., J. Res. Nat. Bur. | 41PRO/ROS | Prosen, E.J., and Rossini, F.D., J. Res. Nat. Bur. Standards, 27, 289–310 (1941). | | 37SCH | Standards 19 , 249–262 (1937).
Schjanberg, E., Z. Physik. Chem. A178 , 274–281 | 41PRO/ROS2 | Prosen, E.J., and Rossini, F.D., J. Res. Nat. Bur. Standards 27, 519-528 (1941). | | 37STU | (1937).
Stull, D.R., J. Am. Chem. Soc. 59 , 2726–2733 (1937). | 41STO/FIS | Stout, J.W., and Fisher, L.H., J. Chem. Phys. 9, 163-168 (1941). | | 38CON/KIS | Conn, J.B., Kistiakowsky, G.B., and Smith, E.A., J. Am. Chem. Soc. 60 , 2764–2771 (1938). | 42BAD
42CON/KIS | Badoche, M., Bull. Soc. Chim. France 9, 86-95 (1942).
Conn, J.B., Kistiakowsky, G.B., Roberts, R.M., and | | 38DOL/GRE | Dolliver, M.A., Gresham, T.L., Kistiakowsky, G.B., Smith, E.A., and Vaughan, W.E., J. Am. Chem. Soc. | 42HUF | Smith E.A., J. Am. Chem. Soc. 64, 1747-1752 (1942).
Huffman, H.M., J. Phys. Chem. 46, 885-891 (1942). | | | 60, 440–450 (1938). | 42MCE | McEwan, W.S., Ph.D. Thesis, Harvard Univ., (1942). | | 38EGA/KEM | Egan, C.J., and Kemp, J.D., J. Am. Chem. Soc. 60, 2097-2101 (1938). | 42OSB/DOE | Osborne, D.W., Doescher, R.N., and Yost, D.M., J. Am. Chem. Soc. 64, 169–172 (1942). | | 38HUF/FOX | Huffman, H.M.,, and Fox, S.W., J. Am. Chem. Soc. 60, 1400-1403 (1938). | 42RIE | Riedel, L., Bull. Int. Inst. Refrig. Annex 23, No. 2, 1-5 (1942). | | 38KEM/EGA | Kemp. J.D., and Egan, C.J., J. Am. Chem. Soc. 60, 1521-1525 (1938). | 42WIL | Williams, R.B., J. Am. Chem. Soc. 64, 1395-1404 (1942). | | 38KEN/SHO | Kennedy, W.D., Shomate, C.H., and Parks, G.S., J. Am. Chem. Soc. 60, 1507 1509 (1938). | 43PIT/SCO | Pitzer, K.S., and Scott, D.W., J. Am. Chem. Soc. 65, 803-829 (1943). | | 38SCH | Schjanberg, E., Z. Physik. Chem. A181, 430-440 (1938). | 43PRO/GIL | Prosen, E.J., and Gilmont, R., NBS Report for the Nat. Defense Res. Committee, (NBS V-9), May 31, | | 38SCH2 | Schjanberg, E., Svensk. Kem. Tidr. 50, 102-106 (1938). | 43RUE/HUF | 1943.
Ruehrwein, R.A., and Huffman, H.M., J. Am. Chem. | | 38WOL/WEG | Wolf, K.L., and Weghofer, H., Z. Physik. Chem. B39 , 194-208 (1938). | 44AST/SAG | Soc. 65, 1620-1625 (1943). Aston, J.G., Sagenkahn, M.L., Szasz, G.J., Moessen, | | 39AST/EID | Aston, J.G., Eidinoff, M.L., and Forster, W.S., J. Am. Chem. Soc. 61, 1539 1543 (1939). | 1.1.2.1,0.10 | G.W., and Zuhr, H.F., J. Am. Chem. Soc. 66, 1171–1177 (1944). | | 39BLA/GER | Blat, E.I., Gerber, M.I., and Neumann, M.B., Acta
Physicochim. URSS 10, 273-296 (1939). | 44EIB | Eibert, J., Thesis, Washington, University, St. Louis, MO, (1944). | | 39BUR | Burlot, E., Mem. poudres 29, 226–260 (1939). | 44GUT/SPI | Guthrie, G.B., Spitzer, R.W., and Huffman, H.M., J. | | 39BUR/THO | Burlot, E., Thomas, M., and Badoche, M., Mem. poudres 29, 226–260 (1939). | 44KNO/HUF | Am. Chem. Soc. 66, 2120-2121 (1944).
Knowlton, J.W., and Huffman, H.M, J. Am. Chem. | | 39CON/KIS | Conn, J.B., Kistiakowsky, G.B., and Smith, E.A., J. Am. Chem. Soc. 61, 1868–1876
(1939). | 44MCD | Soc. 66, 1492-1494 (1944).
McDonald, H.J., J. Phys. Chem. 48, 47-50 (1944). | | 39HUG/COR | * * * | 44PRO/ROS | Prosen, E.J., and Rossini, F.D., J. Res. Nat. Bur. Standards 33, 255–272 (1944). | | 39MUL/SCH | Muller, K.L., and Schumacher, H.J., Z. Physik. Chem. B42 , 327–345 (1936). | 44PRO/ROS2 | Prosen, E.J., and Rossini, F.D., J. Res. Nat. Bur. Standards 33, 439-446 (1944). | | 39PIII | Phillip, N.M., Proc. Indian Acad. Sci. A 9, 109-120 (1939). | 44ROT
44SCO/FER | Roth, W.A., Chem. Ber. 77, 537-539 (1944).
Scott, R.B., Ferguson, W.J., and Brickwedde, F.G., J. | | 39RAI | Railing, W.E., J. Am. Chem. Soc. 61, 3349-3353 (1939). | 45DAV/WIE | Res. Nat. Bur. Standards 33, 1-20 (1944). Davis, H.S., and Wiedeman, O.F., Ind. Eng. Chem. 37, | | 39RIC/PAR | Richardson, J.W., and Parks, G.S., J. Am. Chem. Soc. 61 , 3543–3546 (1939). | 45GUT/PIT | 482–485 (1945). Guttman, L., and Pitzer, K.S., J. Am. Chem. Soc. 67, | | 39SAT/SOG | Satoh, S. and Sogabe, T., Sci. Pap. Inst. Phys. Chem. Res. (Tokyo) 36, 97–105 (1939). | | 2075–2079 (1945). | | 39SAT/SOG2 | Satoh, S., and Sogabe, T., Sci. Pap. Inst. Phys. Chem. | 45JOH/PRO
45PRO/GIL | Johnson, W.H., Prosen, E.J., and Rossini, F.D., J. Res. Nat. Bur. Standards 35, 141–146 (1945). | | | Res. (Tokyo) 36, 449–457 (1939). | 4JF NO/GIL | Prosen, E.J., Gilmont, R., and Rossini, F.D., J. Res. Nat. Bur. Standards 34, 65-71 (1945). | | 45PRO/ROS | Prosen, E.J., and Rossini, F.D., J. Res. Nat Bur. Standards 34, 163-174 (1945). | 49COL/DEV | Coleman, C.F., and De Vries, T., J. Am. Chem. Soc. 71, 2839-2841 (1949). | |--------------------|--|------------------------|---| | 45PRO/ROS2 | Prosen, E.J., and Rossini, F.D., J. Res. Nat. Bur. Standards 34, 263–269 (1945). | 49DRE/MAR | Dreisbach, R.R., and Martin, R.A., Ind. Eng. Chem. 41, 2875–2878 (1949). | | 45SCO/MEY | Scott, R.B., Meyers, C.H., Rands, R.D., Jr., Brickwedde, F.G., and Bekkedahl, N., J. Res. Nat. Bur. | 49GEL/SKI | Gellner, O.H., and Skinner, H.A., J. Chem. Soc. 1145–1148 (1949). | | 45ZHD | Standards 35, 39-85 (1945).
Zhdanov, A.K., Zhur. Obshch. Khim. 15, 895-902 | 49GIA/GOR | Giauque, W.F., and Gordon, J., J. Am. Chem. Soc. 71, 2176–2181 (1949). | | 46COO/MUL | (1945).
Coops, J., Mulder, D., Dienske, J.W., and Smitten- | 49HOL/DOR | Holcomb, D.E., and Dorsey, C.L., Ind. Eng. Chem. 41, 2788–2792 (1949). | | 46CRO/FEE | berg, J., Rev. Trav. Chim. 65, 128 (1946).
Crooks, D.A., and Feetham, F.M., J. Chem. Soc. 899– | 49HUF/TOD | Huffman, H.M., Todd, S.S., and Oliver, G.D., J. Am. Chem. Soc. 71, 584-592 (1949). | | 46DOU | 901 (1946). Douglas, T.B., J. Am. Chem. Soc. 68, 1072–1076 | 49JOH/PRO | Johnson, W.H., Prosen, E.J., and Rossini, F.D., J. Res. Nat. Bur. Standards 42, 251-255 (1949). | | 46DOU/HUF | (1946).
Douslin, D.R., and Huffman, H.M., J. Am. Chem. | 49KIB/HUN | Kibler, G.M., and Hunt, H., J. Phys. Chem. 53, 955-956 (1949). | | 46DOU/HUF2 | Soc. 68, 1704-1708 (1946).
Douslin, D.R., and Huffman, H.M., J. Am. Chem. | 49KNO/ROS | Knowlton, J.W., and Rossini, F.D., J. Res. Nat. Bur. Standards 43, 155-159 (1949). | | 46JOH/PRO | Soc. 68, 173-176 (1946). Johnson, W.H., Prosen, E.J., and Rossini, F.D., J. | 49MED/THO | Medard, L., and Thomas, M., Mem. poudres 31, 173-196 (1949). | | 46KNO/SCH | Res. Nat. Bur. Standards 36, 463–468 (1946).
Knowlton, J.W., Schieltz, N.C., and MacMillan, D., J. | 49PAR/HAT | Parks, G.S., and Hatton, J.A., J. Am. Chem. Soc. 71, 2773-2775 (1949). | | 46PAR/WES | Am. Chem. Soc. 68 , 208–210 (1946).
Parks, G.S., West, T.H., Naylor, B.F., Fujii, P.S., and | 49PAR/MOO | Parks, G.S., Moore, G.E., Renquist, M.L., Naylor, B.F., McClaine, L.A., Fujii, P.S., and Hatton, J.A., J. | | 1011114 1120 | McClaine, L.A., J. Am. Chem. Soc. 68, 2524-2527 (1946). | 49PRO/MAR | Am. chem. Soc. 71, 3386-3389 (1949). Prosen, E.J., Maron, F.W., and Rossini, F.D., J. Res. | | 46PIT/GUT | Pitzer, K.S., Guttman, L., and Westrum, E.F., Jr., J. Am. Chem. Soc. 68, 2209–2212 (1946). | 49SCO/GRO | Nat. Bur. Standards 42, 269-277 (1949).
Scott, D.W., Gross, M.E., Oliver, G.D., and Huff- | | 46PRO/JOH | Prosen, E.J., Johnson, W.H., and Rossini, F.D., J. Res. Nat. Bur. Standards 36, 455-461 (1946). | 49SCO/OLI | man, H.M., J. Am. Chem. Soc. 71, 1634-1636 (1949).
Scott, D.W., Oliver, G.D., Gross, M.E., Hubbard, | | 47AST/SZA | Aston, J.G., and Szasz, G.J., J. Am. Chem. Soc. 69, 3108-3114 (1947). | | W.N., and Huffman, H.M., J. Am. Chem. Soc. 71, 2293-2297 (1949). | | 47BAL
47COO/VAN | Balson, E.W., Trans. Faraday Soc. 43, 54-60 (1947).
Coops, J., Van Nes, K., Kentie, A., and Dienske, J.W., | 49SCO/WAD | Scott, D.W., Waddington, G., Smith, J.C., and Huff-man, H.M., J. Am. Chem. Soc. 71, 2767-2773 (1949). | | 47JOH/PRO | Rec. Trav. Chim. 66, 113–130 (1947). Johnson, W.H., Prosen, E.J., and Rossini, F.D., J. | 49SEA/HOP | Sears, G.W., and Hopke, E.R., J. Am. Chem. Soc. 71, 1632–1634 (1949). | | 47JOH/PRO2 | Res. Nat. Bur. Standards 38, 419–422 (1947). Johnson, W.H., Prosen, E.J., and Rossini, F.D., J. | 49SUN | Sunner, S., Thesis, University of Lund, Sweden, (1949). | | 47JON/GIA | Res. Nat. Bur. Standards 39, 49–52 (1947). Jones, W.M., and Giauque, W.F., J. Am. Chem. Soc. | 49WAD/KNO | Waddington, G., Knowlton, J.W., Scott, D.W., Oliver, G.D., Todd, S.S., Hubbard, W.N., Smith, J.C., and | | 47KET/VAN | 69, 983-987 (1947).
Ketelaar, J.A.A., Van Velden, P.F., and Zalm, P., | | Huffman, H.M., J. Am. Chem. Soc. 71, 797-808 (1949). | | 47OSB/GIN | Rec. Trav. Chim. 66, 721–732 (1947). Osborne, N.S., and Ginnings, D.C., J. Res. Nat. Bur. | 49WAD/SMI | Waddington, G., Smith, J.C., Scott, D.W., and Huffman, H.M., J. Am. Chem. Soc. 71, 3902-3906 (1949). | | | Standards 39, 453-477 (1947). | 49WIN/KUL | Winstrom, L.O., and Kulp, L., Ind. Eng. Chem. 41, 2584–2586 (1949). | | 47SCH/ZOS
47STU | Schildknecht, C.E., Zoss, A.O., and McKinley, C., Ind. Eng. Chem. 39, 180–186 (1947). Stull, D.R., Ind. Eng. Chem. 39, 517 (1947). | 50AST/MAS | Aston, J.G., Mastrangelo, S.V.R., and Moessen, G.W., J. Am. Chem. Soc. 72, 5287–5291 (1950). | | 47TAY/HAL | Taylor, J. and Hall, C.R.L., J. Phys. & Coll. Chem. 51, | 50COO/HOI | Coops, J., and Hoijtink, G.J., Rec. Trav. Chim. 72, 358–367 (1950). | | 47TOD/OLI | 593-611 (1947). Todd, S.S., Oliver, G.D., and Huffman, H.M., J. Am. | 50COO/KAA | Coops, J. and Kaarsemaker, S., Rec. Trav. Chim. 69, 1364 (1950). | | 47WHE/WHI | Chem. Soc. 69 , 1519–1525 (1947).
Wheeler, W.H., Whittaker, H., and Pike, H.H.M., J.
Inst. Fuel 20 , 137–156 (1947). | 50SCO/FIN | Scott, D.W., Finke, H.L., Gross, M.E., Guthrie, G.B., and Huffman, H.M., J. Am. Chem. Soc. 72, 2424–2430 | | 48COA/SUT | Coates, G.E., and Sutton, L.E., J. Chem. Soc. 1187–1196 (1948). | 50SCO/FIN2 | (1950).
Scott, D.W., Finke, H.L., Hubbard, W.N., McCul- | | 48DOU | Douglas, T.B., J. Am. Chem. Soc. 70, 2001–2002 (1948). | 303CO/11142 | lough, J.P., Gross, M.E., Williamson, K.D., Waddington, G., and Huffman, H.M., J. Am. Chem. Soc. 72, | | 48GOR/GIA | Gordon, J. and Giauque, W.F., J. Am. Chem. Soc. 70, | SOFOR/CAM | 4664–4668 (1950). | | 48HUB/KNO | 1506–1510 (1948).
Hubbard, W.N., Knowlton, J.W., and Huffman, H.M.,
J. Am. Chem. Soc., 70 , 3259–3261 (1948). | 50FOR/CAM
50HUM/SPI | Forziati, A.F., Camin, D.L., and Rossini, F.D., J. Res. Nat. Bur. Standards 45, 406–410 (1950). Humphrey, G.L., and Spitzer, R., J. Chem. Phys. 18, | | 48HUF/EAT | Huffman, H.M., Eaton, M., and Oliver, G.D., J. Am. Chem. Soc. 70, 2911–2914 (1948). | 50KUR | 902 (1950).
Kurbatov, V.Ya., Zhur. Obshch. Khim. 20, 1139–1144 | | 48KUR | Kurbatov, V.Ya., Zhur. Obshch. Khim. 18, 372-389 | | (1950). | | 48OLI/EAT | (1948). Oliver, G.D., Eaton, M., and Huffman, H.M., J. Am. | 50NIT/SEK | Nitta, I., Seki, S., Momotani, M., Suzuki, K., and Nakagawa, S., Proc. Japan Acad. 26, (10), 11-18 (1950). | | 49CAR/SKI | Chem. Soc. 70 , 1502–1505 (1948).
Carson, A.S., and Skinner, H.A., J. Chem. Soc. 936– | 50NIT/SEK2 | Nitta, I., Seki, S., Momtani, M., and Sato, K., J. Chem. Soc. Japan 71, 378–382 (1950). | | | 939 (1949). | | | | | The state of s | 503 500/000 | MCH LID C DW PL III C | |------------
--|--------------------------|---| | 50PAR/MOS | Parks, G.S., Mosley, J.R., and Petersen, P.V., J. Chem. Phys. 18, 152-153 (1950). | 52MCC/SCO | McCullough, J.P., Scott, D.W., Finke, H.L, Gross, M.E., Williamson, K.D., Pennington, R.E., Wadding- | | 50PAR/MOS2 | Parks, G.S., and Mosley, J.R., J. Am. Chem. Soc. 72, 1850 (1950). | | ton, G., and Huffman, H.M., J. Am. Chem. Soc. 74, 2801-2804 (1952). | | 50PRI/SKI | Pritchard, H.O., and Skinner, H.A., J. Chem. Soc. 272-276 (1950). | 52MED/THO | Medard, L., and Thomas, M., Mem. poudres 34, 421–442 (1952). | | 50PRI/SKI2 | Pritchard, H.O., and Skinner, H.A., J. Chem. Soc. 1928-1931 (1950). | 52MOR/PRI | Mortimer, C.T., Pritchard, H.O., and Skinner, H.A., Trans. Faraday Soc. 48, 220-228 (1952). | | 50PRO/JOH | Prosen, E.J., Johnson, W.H., and Rossini, F.D., J. Am, Chem. Soc. 72, 626–627 (1950). | 52NEL/JES | Nelson, R.A., and Jessup, R.S., J. Research NBS 48, 206–208 (1952). | | 50SCO/FIN | Scott, D.W., Finke, H.L., Gross, M.E., Guthrie, G.B., and Huffman, H.M., J. Am. Chem. Soc. 72, 2424–2430 | 52PAR/MAN | Parks, G.S., and Manchester, K.E., J. Am. Chem. Soc. 74, 3435–3436 (1952). | | 50SCO/FIN2 | (1950).
Scott, D.W., Finke, H.L., Hubbard, W.N., McCullough, J.P., Gross, M.E., Williamson, K.D., Wadding- | 52SCO/DOU | Scott, D.W., Douslin, D.R., Gross, M.E., Oliver, G.D., and Huffman, H.M., J. Am. Chem. Soc. 74, 883–887 (1952). | | | ton, G., and Huffman, H.M., J.Am. Chem. Soc. 72, 4664-4668 (1950). | 52SCO/FIN | Scott, D.W., Finke, H.L., McCullough, J.P., Gross, M.E., Pennington, R.E., and Waddington, G., J. Am. | | 51AST/FIN | Aston, J.G., Fink, H.L., Janz, G.J., and Russel, K.E., J. Am. Chem. Soc. 73, 1939–1943 (1951). | 52SCO/FIN2 | Chem. Soc. 74, 2478–2483 (1952).
Scott, D.W., Finke, H.L., Hubbard, W.N., McCul- | | 51AST/JAN | Aston, J.G., Janz, G.J., and Russell, K.E., J. Am. Chem. Soc. 73, 1943–1945 (1951). | | lough, J.P., Oliver, G.D., Gross, M.E., Katz, C., Williamson, K.D., Waddington, G., and Huffman, | | 51BRY/HOW | Bryce-Smith, D., and Howlett, J. Chem. Soc. 1141–1142 (1951). | 52SPE/TAM | H.M., J. Am. Chem. Soc. 74, 4656–4662 (1952).
Spengler, H.T., and Tamplin, W.S., Anal. Chem. 24, | | 51COL/GIL | Cole, L.G., and Gilbert, E.C., J. Am. Chem. Soc. 73, 5423–5427 (1951). | 52VRI/HIL | 941-944 (1950).
Vriens, G.N., and Hill, A.G., Ind. Eng. Chem. 44, | | 51EGE/EMT | Egerton, A.C., Emte, W., Minkoff, G.J., Diss. Faraday Soc. 10, 278–282 (1951). | 53AIH | 2732–2735 (1952).
Aihara, A., J. Chem. Soc. Japan 74, 437–441 (1953). | | 51FUR/GIN | Furukawa, G.T., Ginnings, D.C., McCoskey, R.E., and Nelson, R.A., J. Res. Nat. Bur. Standards 46, 195- | 53AST/WOO | Aston, J.G., Wood, J.L., and Zolki, T.P., J. Am. Chem. Soc. 75, 6202–6204 (1953). | | 51FUR/MCC | 206 (1951).
Furukawa, G.T., McCoskey, R.E., and King, G.J., J. | 53BRA/CAR | Bradley, R.S., and Care, A.D., J. Chem. Soc. 1688–1690 (1953). | | 51MAG/HAR | Res. Nat. Bur. Standards 47, 256–261 (1951). Magnus, A., Hartmann, H., and Becker F., Z. Physik. | 53BRA/CLE | Bradley, R.S., and Cleasby, T.G., J. Chem. Soc. 1681–1684 (1953). | | 51OLI/GRI | Chem. 197, 75–91 (1951).
Oliver, G.D., and Grisard, J.W., J. Am. Chem. Soc. 73, | 53BRA/CLE2 | Bradley, R.S., and Cleasby, T.G., J. Chem. Soc. 1690-1692 (1953). | | 51PRO/MAR | 1688-1690 (1951). Prosen, E.J., Maron, F.W., and Rossini, F.D., J. Res. | 53BRA/COT | Bradley, R.S., and Cotson, S., J. Chem. Soc. 1684–1688 (1953). | | 51ROB/JES | Nat. Bur. Standards 46, 106–112 (1951). Roberts, D.E., and Jessup, R.S., J. Res. Nat. Bur. Standards 46, 11, 17 (1951). | 53COO/HOI | Coops, J., Hoijtink, G.J., Kramer, T.J.E., and Faber, A.C., Rec. Trav. Chim. 72, 793–797 (1953). | | 51SCO/FIN | Standards 46, 11-17 (1951). Scott, D.W., Finke, H.L., McCullough, J.P., Gross, M.E., Williamson, K.D., Waddington, G., and Huff- | 53COO/HOI2
53COO/HOI3 | Coops, J., Hoijtink, G.J., Kramer. T.J.E., and Faber, A.C., Rec. Trav. Chim. 72, 765–773 (1953). Coops, J., Hoijtink, G.J., and Kramer, T.J.E., Rec. | | 52AST/ROC | man, H.M., J. Am. Chem. Soc. 75, 261–265 (1951).
Aston, J.G., Rock, E.J., and Isserow, S., J. Am. Chem. | 53COO/MUL | Trav. Chim. 72, 781-784 (1953).
Coops, J., Mulder, D., Dienske, J.W., and Smitten- | | 52BRA/COT | Soc. 74, 2484–2486 (1952).
Bradley, R.S., Cotson, S., and, Cox, E.G., J. Chem. | 53GRA/SMI | berg, J., Rec. Trav. Chim. 72, 785–792 (1953).
Gray, P., and Smith, P.L., J. Chem. Soc. 2380–2385 | | | Soc. 740 (1952). | | (1953). | | 52BRA/PLE | Brackman, D.S., and Plesch, P.H., J. Chem. Soc. 2188 (1952). | 53GRO/OLI | Gross, M.E., Oliver, G.D., and Huffman, H.M., J. Am. Chem. Soc. 75, 2801–2804 (1953). | | 52BRE/DER | Breitenbach, J.W., Derkosch, J., and Wessely, F., Monatsh. Chem. 83, 591-598 (1952). | 53HRO/PIM | Hrostowski, H.J., and Pimentel, G.C., J. Am. Chem. Soc. 75, 539-542 (1953). | | 52ERD/JAG | Erdos, E., Jager, L., and Pouchly, J., Chem. Listy 46, 770 (1952). | 53MAN/ACQ | Mann, D.E., Acquista, N., and Plyler, E.K., J. Chem. Phys. 21, 1949-1953 (1953). | | 52FIN/SCO | Finke, H.L., Scott, D.W., Gross, M.E., Waddington, G., and Huffman, H.M., J. Am. Chem. Soc. 74, 2804–2806 (1952). | 53MCC/SCO | McCullough, J.P., Scott, D.W., Finke, H.L., Hubbard, W.N., Gross, M.E., Katz, C., Pennington, R.E., Messerly, J.F., and Waddington, G., J. Am. Chem. | | 52GUT/SCO | Guthrie, G.B., Jr., Scott, D.W., Hubbard, W.N., Katz, C., McCullough, J.P., Gross, M.E., Williamson, K.D., | 53MED/THO | Soc. 75, 1818–1824 (1953). Medard, L., and Thomas, M., Mem. poudres 35, 155– | | | and Waddington, G., J. Am. Chem. Soc. 74, 4662–4669 (1952). | 53PER/PIM | 173 (1955). Person, W.B., and Pimentel, G.C., J. Am. Chem. Soc. | | 52GUT/SCO2 | Guthrie, G.B., Scott, D.W., and Waddington, G., J. Am. Chem. Soc. 74, 2795–2800 (1952). | 53RAT/GWI | 75, 532–538 (1953).
Rathjens, G.W., Jr., and Gwinn, W.D., J. Am. Chem. | | 52HUB/FIN | Hubbard, W.N., Finke, H.L., Scott, D.W., McCullough, J.P., Katz, C., Gross, M.E., Messerly, J.F., Pen- | 53SCO/FIN | Soc. 75, 5629–5633 (1953).
Scott, D.W., Finke, H.L., Hubbard, W.N., McCul- | | | nington, R.E., and Waddington, G., J. Am. Chem. Soc. 74, 6025–6030 (1952). | 33300/1111 | lough, J.P., Katz, C., Gross, M.E., Messerly, J.F., Pennington, R.E., and Waddington, G., J. Am. Chem. | | 52KAA/COO | Kaarsemaker, S., and Coops, J., Rec. Trav. Chim. 71, 261–276 (1952). | 53SKU | Soc. 75, 2795–2800 (1953). Skuratov, S.M., Doctorial Thesis, Moscow State Univ., 1953, cited in Ponomarev, V.V., Zhur. Fiz. Khim. 36, 1472–1476 (1962). | | | | | | | 53SMI/BJE | Smith, L., Bjellerup, L., Krook, S., and Westermark, H., Acta Chem. Scand. 7, 65-86 (1953). | 55SCO/FIN | Scott, D.W., Finke, H.L., McCullough, J.P., Gross, M.E., Pennington, R.E., and Waddington, G., J. Am. | |--------------------|---|--------------------|--| | 54ABR/DAV | Abrams, A., and Davis, T.W., J. Am. Chem. Soc. 76, 5993–5995 (1954). | 55STR/SKU | Chem. Soc. 77, 4993–4998 (1955).
Strepikheev, A.A., Skuratov, S.M., Kachinskaya, | | 54BJE/SMI | Bjellerup, L., and Smith, L., Kgl. Fysiograf. Sallskap. Lund, Forh. 24, 1–13 (1954). | 3331 N3NO | O.N., Muromova, R.S., Brykina, E.P., and Shtekher, S.M., Doklady Akad. Nauk SSSR 102, 105–108 (1955). | | 54BRA/CLE | Bradley, R.S., and Cleasby, T.G., J. Chem. Soc. 1681–1689 (1954). | 55STR/SKU2 | Strepikheev, A.A., Skuratov, S.M., Shtekher, S.M., Muromova, R.S., Brykina, E.P., and Kachinskaya, | | 54BRA/CLE2 | Bradley, R.S., and Cleasby, T.G., J. Chem. Soc. 1690–1692 (1954). | | O.N., Doklady Akad. Nauk SSSR 102, 543-545 (1955). | | 54BRI/DEC | Briner,
E., and DeChastonay, P., Helv. Chim. Acta, 37, 626-635 (1954). | 55TAV/LAM | Tavernier, P., and Lamouroux, M., Mem. poudres 37, 197–206 (1955). | | 54BRI/DEC2 | Briner, E., and DeChastonay, P., Helv. Chim. Acta 37, 1904–1907 (1954). | 55TAY/JOH | Taylor, R.D., Johnson, B.H., and Kilpatrick, J.E., J. Chem. Phys. 23, 1225-1231 (1955). | | 54DAV/JON | Davies, M., and Jones, J.I., Trans. Faraday Soc. 50, 1042-1047 (1954). | 55TAY/KIL | Taylor, R.D., and Kilpatrick, J.E., J.Chem. Phys. 23, 1232–1235 (1955). | | 54FIN/GRO | Finke, H.L., Gross, M.E., Messerly, J.F., and Waddington, G., J. Am. Chem. Soc. 76, 333-341 (1954). | 56BRE/UBB | Brennan, D., and Ubbelohde, A.R., J. Chem. Soc. 3011-3016 (1956). | | 54FIN/GRO2 | Finke, H.L., Gross, M.E., Waddington, G., and Huffman, H.M., J. Am. Chem. Soc. 76, 333–341 (1954). | 56BUR/GOO | Burg, A.B., and Good, C.D., J. Inorg. Nucl. Chem. 2, 237–245 (1956). | | 54GRA/SMI | Gray, P., and Smith, P.L., J. Chem. Soc. 769–773 (1954). | 56CAM/ROS | Camin, D.L., and Rossini, F.D., J. Phys. Chem. 60 ,1446–1451 (1955). | | 54HAN/WAT | Hancock, C.K., Watson, G.M., and Gilby, R.F., J. Phys. Chem. 58 , 127–129 (1954). | 56CHE/SKI | Chernick, C.L, Skinner, H.A., and Wadso, I., Trans. Faraday Soc. 52, 1088–1093 (1956). | | 54HUB/KAT | Hubbard, W.N., Katz, C., and Waddington, G., J. Phys. Chem. 58 , 142-152 (1954). | 56FIN/SCO | Finke, H.L., Scott, D.W., Gross, M.E., Messerly, J.F. and Waddington, G., J. Am. Chem. Soc. 78, 5469 | | 54HUB/KNO | Hubbard, W.N., Knowlton, J.W., and Huffman, H.M.,
J. Phys. Chem. 396–402 (1954). | 56GRA | 5476 (1956).
Gray, P., Trans. Faraday Soc. 52 , 344–353 (1956). | | 54HUB/WAD | Hubbard, W.N., and Waddington, G., Rec. Trav. Chim. 73, 910-923 (1954). | 56HOL/TYR | Holmes, W.S., and Tyrrall, E., Chem. & Ind. (London) 685–686 (1956). | | 54JOR | Jordan, T.E., "Vapor Pressure of Organic Compounds", (Interscience Publishers, New York, 1954). | 56KIR
56LAC/CAS | Kirkbride, F.W., J. Appl. Chem. 6, 11-21 (1956).
Lacher, J.R., Casali, L., and Park, J.D., J. Phys. Chem. | | 54MCC/FIN | McCullough, J.P., Finke, H.L., Hubbard, W.N., Good, W.D., Pennington, R.E., Messerly, J.F., and Wadding- | 56LAC/KIA | 60, 608-610 (1956).
Lacher, J.R., Kianpour, A., Oetting, F., and Park, | | 54MCC/FIN2 | ton, G., J. Am. Chem. Soc. 76, 2661–2669 (1954).
McCullough, J.P., Finke, H.L., Scott, D.W., Gross, | 56LAC/KIA2 | J.D., Trans. Fararady Soc. 52, 1500-1508 (1956).
Lacher, J.R., Kianpour, A., and Park, J.D., J. Phys. | | | M.E., Messerly, J.F., Pennington, R.E., and Waddington, G., J. Am. Chem. Soc. 76, 4796–4802 (1954). | 56LI/PIT | Chem. 60 , 1454–1455 (1956).
Li, J.C.M., and Pitzer, K.S., J. Am. Chem. Soc. 78 , | | 54MCC/SCO | McCullough, J.P., Scott, D.W., Pennington, R.E.,
Hossenlopp, I.A., and Waddington, G., J. Am. Chem. | 56MAG | 1077-1080 (1956).
Magnus, A., Z. Physik. Chem. [N.F.] 9, 141-161 | | 54MED/THO | Soc. 76, 4791–4796 (1947).
Medard, L., and Thomas, M., Mem. poudres 36, 97– | 56MED/THO | (1956).
Medard, L. and Thomas, M., Mem. poudres 38, 45–63 | | 54MUR/GOL | 127 (1954). Murrin, J., and Goldhaven, S., NPF Memo Report 88, | 56NEU/MAR | (1956).
Neugebauer, C.A. and Margrave, J.L., J. Phys. Chem. | | 54NIC/SZW | November 1954; (AD-49349).
Nicholson, G.R., Szwarc, M., and Taylor, J.W., J. | 56PAR/KEN | 60, 1318-1321 (1956).
Park, G.S., Kennedy, W.D., Gates, R.R., Mosley, J.R., | | 54PAR/MAN | Chem. Soc. 2767-2769 (1954). Parks, G.S., Manchester, K.E., and Vaughan, L.M., J. | | Moore, G.E., and Renquist, M.L., J. Am. Chem. Soc. 78, 56-59 (1956). | | 55AIH | Chem. Phys. 22, 2089–2090 (1954).
Aihara, A., J. Chem. Soc. Japan 76, 492–494 (1955). | 56PEN/SCO | Pennington, R.E., Scott, D.W., Finke, H.L., McCullough, J.P., Messerly, J.F., Hossenlopp, I.A., and | | 55CAM/ROS | Camin, D.L., and Rossini, F.D., J. Phys. Chem. 59, 1173-1179 (1955). | | Waddington, G., J. Am. Chem. Soc. 78, 3266-3272 (1956). | | 55CUM/MCL | Cummings, G.A.M., and McLaughlin, E., J. Chem. Soc. 1391-1392 (1955). | 56PIL/SUT | Pilcher, G., and Sutton, L.E., J. Chem. Soc. 2695–2700 (1956). | | 55DRE | Dreisbach, R.R., "Physical Properties of Chemical Compounds", Advances in Chemistry Series No. 15 | 56PRI/MUL | Pritzkow, W., and Muller, K.A., Chem. Ber. 89, 2318-2321 (1956). | | 55FRA/PRO | (Am. Chem. Soc., Wash., D.C., June 1955).
Fraser, F.M., and Prosen, E.J., J. Res. Nat. Bur. Stan- | 56ROS | Rossini, F.D., Editor, Experimental Thermochemistry, (Interscience Publishers, Ic., New York, 1956). | | 55FRA/PRO2 | dards 54, 143-148 (1955).
Fraser, F.M., and Prosen, E.J., J. Res. Nat. Bur. Stan- | 56SCO/GOO | Scott, D.W., Good, W.D., and Waddington, J. Phys. Chem. 60, 1080-1089 (1956). | | 55HUB/SCO | dards 55, 329-333 (1954).
Hubbard, W.N. Scott, D.W., Frow, F.R., and Wad- | 56SCO/MCC | Scott, D.W., McCullough, J.P., Good, W.D., Messerly, J.F., Pennington, R.E., Kincheloe, T.C., Hossenlopp, | | 55MCC/FIN | dington, G., J. Am. Chem. Soc. 77, 5855-5857 (1955).
McCullough, J.P., Finke, H.L., Messerly, J.F., Pen- | | I.A., Douslin, D.R., and Waddington, J. Am. Chem. Soc. 78, 5457-5463 (1956). | | | nington, R.E., Hossenlopp, I.A., and Waddington, G.,
J. Am. Chem. Soc. 77, 6119-6125 (1955). | 56SCO/MCC2 | Scott, D.W., McCullough, J.P., Hubbard, W.N., Messerly, J.F., Hossenlopp, I.A., Frow, F.R., and | | 55MED
55MED/THO | Medard, L., J. Chim. Phys. 52 , 467–472 (1955).
Medard, L., and Thomas, M., Mem. poudres 37 , 129– | | Waddington, G., J. Am. Chem. Soc. 78, 5463-5468 (1956). | | | 138 (1955). | 56SMI | Smith, L. Acta Chem. Scand. 10, 884-886 (1956). | - 56SUZ/ONI Suzuki, K., Onishi, S., Koide, T., and Seki, S., Bull. Chem. Soc. Japan 29, 127-131 (1956). Tayernier, P., and Lamouroux, M., Mem. poudres 38, 56TAV/LAM 65-88 (1956). 56WIR/DRO Wirth, H.E., Droege, J.W., and Wood, J.H., J. Phys. Chem. 60, 917-919 (1956). 56YOU/KEI Young, J.A., Keith, J.E., Stehle, P., Dzombak, W.C., and Hunt, H., Ind. Eng. Chem. 48, 1375-1378 (1956). 57AND/COX Andon, R.J.L., Cox, J.D., Herington, E.F.G., Martin, J.F., Trans. Faraday Soc. 53, 1074-1082 (1957). 57BEN/BUS Benson, S.W., and Buss, J.H., J. Phys. Chem. 61, 104-109 (1957). Fairbrother, D.M., Skinner, H.A., and Evans, F.W., 57FAI/SKI Trans. Faraday Soc. 53, 779-783 (1957). Flitcroft, T.L., Skinner, H.A., and Whiting, M.C., 57FLI/SKI Trans. Faraday Soc. 53, 784-790 (1957). Gray, P., and Pratt, M.W.T., J. Chem. Soc. 2163-2168 57GRA/PRA (1957)Jaffe, I., Prosen, E.J., and Szwarc, M., J. Chem. Phys. 57JAF/PRO 27, 416-420 (157). 57KAM van Kamp, A., Dissertation, Free University of Amsterdam, (1957). 57LAC/KIA Lacher, J.R., Kianpour, A., and Park, J.D., J. Phys. Chem. 61, 1124 (1957). Lacher, J.R., Kianpour, A., Montgomery, P., Knedler, 57LAC/KIA2 - H., and Park, J.D., J. Phys. Chem. 61, 1125-1126 (1957). 57MCC/DOU McCullough, J.P., Douslin, D.R., Messerly, J.F., Hossenlopp, I.A., Kincheloe, T.C., and Waddington, - G., J. Am. Chem. Soc. 79, 4289-4295 (1957). 57MCC/FIN McCullough, J.P, Finke, H.L., Messerly, Kincheloe, T.C., and Waddington, G., J. Phys. Chem. 61, 1105-1116 (1957). - 57MCC/FIN2 McCullough, J.P., Finke, H.L., Gross, M.E., Messerly, J.F., and Waddington, G., J. Phys. Chem. 61, 289-301 (1957). - 57MCC/HUB McCullough, J.P., Hubbard, W.N., Frow, F.R., Hossenlopp, I.A., Kincheloe, T.C., and Waddington, G., J. Am. Chem. Soc. 79, 561-566 (1957). - 57MED/THO Medard, L., and Thomas, M., Mem. poudres **39**, 195-208 (1957). - 57NIC Nicholson, G.R., J. Chem. Soc. 2431–2432 (1957). 57PEN/KOB Pennington, R.E., and Kobe, K.A., J. Am. Chem. Soc. 79, 300–305 (1957). - 57PUT/KIL Putnam, W.E., and Kilpatrick, J.E., J. Chem. Phys. 27, 1075-1080 (1957). - Saggiomo, A.J., J. Org. Chem. 22, 1171–1175 (1957). SCOLT, D.W., Finke, H.L., McCullough, J.P., Messerly, J.F., Pennington, R.E., Hossenlopp, I.A., and Waddington, G., J. Am. Chem. Soc. 79, 1062–1068 (1957). - 57SKU/STR Skuratov, S.M., Strepikheev, A.A., and Kozina, M.P., Doklady Akad. Nauk SSSR 117, 452-454 (1957). - 57SUN Sunner, S., Acta Chem. Scand. 11, 1766–17XX (1957). 57TAV/LAM Tavernier, P., and Lamouroux, M., Mem. poudres 39, 335–356 (1957). - 57TSU/HUN Tsuzuki, T., and Hunt, H., J. Phys. Chem. **61**, 1668 (1957). - 58BAU/GUN Bauder, A., and Gunthard, Hs.H., Helv. Chim. Acta 41, 670-673 (1958). - 58BEN/BUS Benson, S.W., and Buss, J.H., J. Chem. Phys. 29, 546–572 (1958). - 58BIL/NOL Billings, J.J., and Nolle, J.Chem. Phys. 29, 214–220 (1958). - 58CAS/FLE Cass, R.C., Fletcher, S.E., Mortimer, C.T., Quincey, P.G., and Springall, H.D., J. Chem. Soc. 958–963 - 58CAS/FLE2 Cass, R.C., Fletcher, S.E., Mortimer, C.T., Quincey, P.G., and Springall, H.D., J. Chem. Soc. 1406-1410 (1958). - 58CAS/FLE3 Cass, R.C., Fletcher, S.E., Mortimer, C.T., Quincey, P.G., and Springall, H.D., J. Chem. Soc. 2595-2597 (1958) - 58COX/GUN Cox, J.D., and Gundry, H.A., J. Chem. Soc. 1019-1022 (1958). - 58FLI/SKI Flitcroft, T.L., and Skinner, H.A., Trans. Faraday Soc. 54, 47-53 (1958). - 58HIL/KRA Hildenbrand, D.L., Kramer, W.R., and Stull, D.R., J. Phys. Chem. **62**, 958–959 (1958). - 58HOY/PEP Hoyer, H., and Peperle, W., Z. Électrochem. **62**, 61–66 (1958). - Hubbard, W.N., Douslin, D.R., McCullough, J.P., Scott, D.W., Todd, S.S., Messerly, J.F., Hossenlopp, I.A., George, A., and Waddington, G., J. Am. Chem. Soc. 80, 3547-3554 (1958). - 58HUB/GOO Hubbard, W.N., Good, W.D., and Waddington, G., J. Phys. Chem. **62**, 614-617 (1958). - 58JAF Jaffe, I., M.S. Thesis, University of Maryland, 1958. 58RAY/OGG Ray, J.D., and Ogg, R.A., Jr., J. Chem. Phys. 31, 168- - 58RAY/OGG2 Ray, J.D., and Ogg, R.A., Jr., J. Phys. Chem. **63**, 1522–1523 (1958). - 58SIN/HIL Sinke, G.C., Hildenbrand, D.L., McDonald, R.A., Kramer, W.R., and Stull, D.R., J. Phys. Chem. 62, 1461-1462 (1958). - 58MCC/FIN McCullough, J.P., Finke, H.L., Scott, D.W., Pennington, R.E., Gross, M.E., Messerly, J.F., and Waddington, G., J. Am. Chem. Soc. 80, 4786-4793 (1958). - 58MCD
McDonald, R.A., Dow Chemical Company, Midland, MI, private communication, 1958; see also 69STU/WES. - 58SCO/MCC Scott, D.W., McCullough, J.P., Messerly, J.F., Pennington, R.E., Hossenlopp, I.A., Finke, H.L., and Waddington, G., J. Am. Chem. Soc. 80, 55-59 (1958). - 58SIN/STU Sinke, G.C., and Stull, D.R., J. Phys. Chem. **62**, 397–401 (1958). - 58SKU/SHT Skuratov, S.M., and Shtekher, S.M., Khim. Nauka i Prom. 3, 688 (1958); C.A. 53, 4883c (1959). 58WAD Wadso, I., Acta Chem. Scand. 12, 630-634 (1958). - 58WAD2 Wadso, I., Acta Chem. Scand. 12, 635-640 (1958). 59AIH Aihara, A., Bull. Chem. Soc. Japan 32, 1242-1248 (1959). - 59BEN/THO Bengough, W.I., and Thomson, R.A.M., Trans. Faraday Soc. 55, 268-271 (1959). - 59COL/CAM Colomina, M., Cambiero, M., Perez-Ossorio, R., and Latorre, C., Anales real soc. espan. fis. y quim. 55B, 509-514 (1959). - 59DAV/JON Davies, M., Jones, A.H., and Thomas, G.H., Trans. Faraday Soc. 55, 1100-1108 (1959). - 59EVA/FAI Evans, F.W., Fairbrother, D.M., and Skinner, H.A., Trans. Faraday Soc. 55, 399-403 (1959). - 59EVA/SKI Evans, F.W., and Skinner, H.A., Trans. Faraday Soc. 55, 255-259 (1959). - 59EVA/SKI2 Evans, F.W., and Skinner, H.A., Trans. Faraday Soc. 55, 260-261 (1959). - 59FLE/MOR Fletcher, S.E., Mortimer, C.T., and Springall, H.D., J. Chem. Soc. 580-584 (1959). - 59GOO/DOU Good, W.D., Douslin, D.R., Scott, D.W., George, A., Lacina, J.L., Dawson, J.P., and Waddington, G., J. Phys. Chem. 63, 1133-1138 (1959). - 59GRA/WIL Gray, P., and Williams, A., Chem. Rev. **59**, 239-328 (1959). - 59HIL/MCD Hildenbrand, D.L., McDonald, R.A., Kramer, W.R., and Stull, D.R., J. Chem. Phys. 30, 930-934 (1959). - 59HIL/MCD2 Hildenbrand, D.L., and McDonald, R.A., J. Phys. Chem. 63, 1521-1522 (1950). - 59MCC/DOU McCullough, J.P., Douslin, D.R., Hubbard, W.N., Toss, S.S., Messerly, J.F., Hossenlopp, I.A., Frow, F.R., Dawson, J.P., and Waddington, G., J. Am. Chem. Soc. 81, 5884-5890 (1959). | 59MCC/PEN | McCullough, J.P., Pennington, R.E., Smith, J.C.,
Hossenlopp, I.A., and Waddington, G., J. Am. Chem. | 61COL/LAT | Colomina, M., Latorre, C., and Perez-Ossorio, R., Pure Appl. Chem. 2, 133-135 (1961). | |--|--|--------------------|---| | 59MCD/SHR | Soc. 81, 5880-5883 (1959).
McDonald, R.A., Shrader, S.A., and Stull, D.R., J. | 61COL/PER | Colomina, M., Perez-Ossorio, R., Boned Corral, M.L., Panea, M., and Turrion, C., Anales Real Soc. Espan. | | 59SAV/GUN | Chem. Eng. Data 4, 311–313 (1959).
Saville, G., and Gundry, H.A., Trans. Faraday Soc. 55, | 61DAV/MAL | Fis. Quim. B57 , 665–672 (1961). Davies, M. and Malpass, V.E., J. Chem. Soc. 1048– | | ************************************** | 2036–2038 (1959). | (1077 | 1055 (1961). | | 59SCO/DOU | Scott, D.W., Douslin, D.R., Messerly, J.F., Todd, S.S., Hossenlopp, I.A., Kincheloe, T.C., and McCullough, | 61GEL
61GOO/LAC | Geller, B.E., Zhur. Fiz. Khim. 35, 1105–1113 (1961). Good, W.D., Lacina, J.L., and McCullough, J.P., J. | | 59SKI/SNE | J.P., J. Am. Chem. Soc. 81, 1015–1020 (1959).
Skinner, H.A., and Snelson, A., Trans. Faraday Soc. | 61GOO/LAC2 | Phys. Chem. 65, 860–862 (1961). Good, W.D., Lacina, J.L., and McCullough, J.P., J. Phys. Chem. 65, 2220, 2221 (1961). | | 59SKI/SNE | 56, 1776–1783 (1959).
Skinner, H.A., and Snelson, A., Trans. Faraday Soc.
55, 404–407 (1959). | 61GRE/WIN | Phys. Chem. 65, 2229-2231 (1961).
Greenstein, J.P., and Winitz, M., Chemistry of the
Amino Acids, Volume 1, Chapter 4, Amino Acids as | | 59TAK/CHI | Takagi, S., Chihara, H., and Seki, S., Bull. Chem. Soc. Japan 32, 84–88 (1959). | | Dipolar Ions, pp. 435–522, (J. Wiley & Sons, Inc., New York, 1961). | | 59WES | Westrum, E.F., Jr., Symposium Thermodynam. | 61HUB/FRO | Hubbard, W.N., Frow, F.R., and Waddington, G., J. | | 60AND/BID | Fritzens-Wattens, Tirol, No. 36, 11pp., (1959).
Andon, R.J.L., Biddiscombe, D.P., Cox, J.D., Hand- | 61HUF/GRO | Phys. Chem. 65, 1326-1328 (1961).
Huffman, H.M., Gross, M.E., Scott, D.W., and Mc- | | | ley, R., Harrop, D., Herington, E.F.G., and Martin, | (11/07/11) | Cullough, J.P., J. Phys. Chem. 65, 495-503 (1961). | | 60BAR/ROS | J.F., J. Chem. Soc. 5246-5254 (1960).
Bartolo, H.F., and Rossini, F.D., J. Phys. Chem. 64, 1686-1689 (1960). | 61KOZ/LUK | Kozina, M.P., Lukina, M.Yu., Zubareva, N.D., Safonova, I.L., Skuratov, S.M., and Kazanskii, B.A., Dokłady Akad. Nauk SSSR, 138, 843-845 (1961). | | 60BRO/ROS | Browne, C.C., and Rossini, F.D., J. Phys. Chem. 64, | 61KOZ/SKU | Kozina, M.P., Skuratov, S.M., Stekher, S.M., Sosnina, | | 60CAM/ROS | 927-931 (1960).
Camin, D.L, and Rossini, F.D., J. Chem. Eng. Data 5, | | I.E., and Turova-Polyak, M.B., Zhur. Fiz. Khim. 35, 2316-2321 (1961). | | (0000 m +) 4 | 368–372 (1960). | 61LAB/GRE | Labbauf, A., Greenshields, J.B., and Rossini, F.D., J. | | 60COO/KAM | Coops, J., Van Kamp, A., Lambregts, W.A., Visser, B.J., and Dekker, H., Rec. Trav. Chim. 79, 1226–1234 (1960). | 61LAB/ROS | Chem. Eng. Data 6, 261–263 (1961).
Labbauf, A., and Rossini, F.D., J. Phys. Chem. 65, 476–480 (1961). | | 60COX | Cox, J.D., Trans. Faraday Soc. 56, 959 964(1960). | 61MAC/OHA | Mackle, H., and O'Hare, P.A.G., Trans. Faraday Soc. | | 60DAV/THO | Davies, M., and Thomas, G.H., Trans. Faraday Soc., | | 57 , 1070–1074 (1961). | | 60DON/SHO | 56, 185–192 (1960).
Donovan, T.M., Shomate, C.H., and McBride, W.R., | 61MAC/OHA2 | Mackle, H., and O'Hare, P.A.G., Trans. Faraday Soc. 57, 1521–1526 (1961). | | | J. Phys. Chem. 64, 281-282 (1960). | 61MAC/OHA3 | | | 60HUT/COI | Hutchens, J.O., Cole, A.G., and Stout, J.W., J. Am. Chem. Soc. 82, 4813–4815 (1960). | 61MAC/OHA4 | 57, 1873–1876 (1961).
Mackle, H., and O'Hare, P.A.G., Trans. Faraday Soc. | | 60KAR/STR | Karasharli, K.A., and Strelkov, P.G., Zhur. Fiz. Khim. | olmac/olla- | 57, 2119–2124 (1961). | | COTA D /CTDO | 34, 693–695 (1960). | 61MCC/FIN | McCulluogh, J.P., Finke, H.L., Hubbard, W.N., Todd, | | 60KAR/STR2 | Karsharli, K.A., and Strelkov, P.G., Dokl. Akad. Nauk
Azerb. SSR 16, 249–257 (1960). | | S.S., Messerly, J.F., Douslin, D.R., and Waddington, G., J. Phys. Chem. 65 , 784–791 (1961). | | 60KAR/STR3 | Karasharli, K.A., and Strelkov, P.G., Dokl. Akad.
Nauk Azerb. SSR 16, 341-344 (1960). | 61MCC/GOO | McCullough, J.P., and Good, W.D., J. Phys. Chem. 65, 1430-1432 (1961). | | 60NIC | Nicholson, G.R., J. Chem. Soc. 2377-2378 (1960). | 61POP | Pope, A.E., M.S. Thesis, Univ, of Manchester, (1961). | | 60PON/MIG | Ponomarev, V.V., and Migarskaya, L.B., Zhur. Fiz. Khim. 34, 2506–2508 (1960). | 61ROC/ROS | Rockenfeller, J.D., and Rossini, F.D., J. Phys. Chem. 65, 267–272 (1961). | | 60SKI/SNE | Skinner, H.A., and Snelson, A. Trans. Faraday Soc. 56 , 1776–1783 (1960). | 61SCH/WAG | Schwabe, K., and Wagner, W., Z. Elektrochem. 65, 812–814 (1961). | | 60SPE/ROS | Speros, D.M., and Rossini, F.D., J. Phys. Chem. 36, 1723-1727 (1960). | 61SMU/BON | Smutny, E.J., and Bondi, A., J. Phys. Chem. 65, 546-550 (1965). | | 60TJE | Tjebbes, J., Acta Chem. Scand. 14, 180–188 (1960). | 61SNE/SKI | Snelson, A., and Skinner, H.A., Trans. Faraday Soc. | | 60VOR/PRI | Vorob'eb, A.F., Privalova, N.M., Storozhenko, and | | 57 , 2125–2131 (1961). | | | Skuratov, Doklady Akad. Nauk SSSR 135, 1131-1132 (1960). | 61STU/SIN | Stull, D.R., Sinke, G.C., and McDonald, R.A., Pure Appl. Chem. 2, 315–322 (1961). | | 60WOO/MUR | Woodman, A.L., Murbach, W.L., and Kaufman, M.H., J.Phys. Chem. 64 , 658–660 (1960). | 61WAL/SMI | Walsh, P.N., and Smith, N.O., J. Chem. Eng. Data 6, 33–35 (1961). | | 61BER/SCO | Berg, W.T., Scott, D.W., Hubbard, W.N., Todd, S.S., | 62BED/EDM | Bedford, A.F., Edmondson, P.B., and Mortimer, C.T., | | | Messerly, J.F., Hossenlopp, I.A., Osborn, A., Douslin, D.R., and McCullough, J.P., J. Phys. Chem. 65, 1425–1430 (1961) | 62BEN/AMA | J. Chem. Soc. 2927–2931 (1962).
Benson, S.W., and Amano, A., J. Chem. Phys. 36, | | 61 BJE | 1430 (1961).
Bjellerup, L., Acta Chem. Scand. 15, 121–140 (1961). | 62BEN/AMA2 | 3464–3471 (1962).
Benson, S.W., and Amano, A., J. Chem. Phys. 37, 197– | | 61BJE2 | Bjellerup, L., Acta Chem. Scand. 15, 231–241 (1961). | | 198 (1962). | | 61BUS/MAC | Busfield, W.K., Mackle, H., and O'Hare, P.A.G.,
Trans. Faraday Soc. 57, 1054-1057 (1961). | 62BIT/KAU | Bittrich, H.J., Kauer, E., Kraft, M., Schoeppe, G., Soell, W., and Ullrich, A., J. Prakt. Chem. 17, [4], 250- | | 61CAR/CAR | Carson, A.S., Carter, W., and Pedley, J.B., Proc. Roy. | | 262 (1962). | | 61COL/BON | Soc. London, A260, 550-557 (1961).
Colomina, M., Boned Corral, M.L., and Turrion, | 62DAV/SUN | Davies, J.V., and Sunner, S., Acta Chem. Scand. 16, 1870–1876 (1962). | | | C., Anales Real Soc. Espan. Fis. Quim. B57, 655-664 | 62GOO/LAC | Good, W.D., Lacina, J.L., Scott, D.W., and McCul- | | | (1961). | | lough, J.P., J. Phys. Chem. 65, 1529-1532 (1962). | | | | 4 | | |------------|--|----------------|--| | 62HAT/HIL | Hatton, W.E., Hildenbrand, D.L., Sinke, G.C., and Stull, D.R., J. Chem. Eng. Data 7, 229–231 (1962). | 63BED/BEE2 | Bedford, A.F., Beezer, A.E., Mortimer, C.T., and Springall, H.D., J. Chem. Soc. 3823–3828 (1963). | | 62KOL/MAR | Kolesov, V.P., Martynov, A.M., Shtekher, S.M., and Skuratov, S.M., Zhur. Fiz. Khim. 36, 2078–2081 (1962). | 63BID/HAN | Biddiscombe, D.P., Handley, R., Harrop, D., Head, A.J., Lewis, G.B., Martin, J.F., and Sprake, C.H.S., J. Chem. Soc. 5764-6768 (1963). | | 62LAC/GOT | Lacher, J.R., Gottlieb, H.B., and
Park, J.D., Trans. Faraday Soc. 58, 2348–2351 (1962). | 63COL/HUT | Cole, A.G., Hutchens, J.O., and Stout, J.W., J. Phys. Chem. 67, 1852–1855 (1963). | | 62MAC/MAY | Mackle, H., and Mayrick, R.G., Trans. Faraday Soc. 58 , 230–237 (1962). | 63COL/HUT2 | Cole, A.G., Hutchens, J.O., and Stout, J.W., J. Phys. Chem. 67, 2245–2247 (1963). | | 62MAC/MAY2 | Mackle, H., and Mayrick, R.G., Trans. Faraday Soc. 58, 238-243 (1962). | 63HIR/HIL | Hiraoka, H., and Hildebrand, J.H., J. Phys. Chem. 67, 916–918 (1963). | | 62MAC/MAY3 | Mackle, H., and Mayrick, R.G., Trans. Faraday Soc. 58, 33-39 (1962). | 63HUT/COL | Hutchens, J.O., Cole, A.G., and Stout, J.W., J. Phys. Chem. 67, 1128-1130 (1963). | | 62MAC/OHA | Mackle, H., and O'Hare, P.A.G., Trans. Faraday Soc. 58, 1912-1915 (1962). | 63HUT/COL2 | Hutchens, J.O., Cole, A.G., and Stout, J.W., J. Biol. Chem. 238, 2407-2412 (1963). | | 62MAC/ZAK | Macharacek, K., Zakharov, A.I., and Aleshina, L.A., Chem. Prumsyl. 12, 23-24 (1962). | 63KOL/ZEN | Kolesov, V.P., Zenkov, I.D., and Skuratov, S.M., Zhur. Fiz. Khim. 37, 224–225 (1963). | | 62MAN/SUN | Mansson, M., and Sunner, S., Acta Chem. Scand. 16, 1863–1869 (1962). | 63MAN/SUN | Mansson, M., and Sunner, S., Acta Chem. Scand. 17, 723-727 (1963). | | 62OME | Omel'chenko, F.S., Izv. Vyssh. Ucheb. Zaved. Pishch. Tekhnol. No.2, 151-152 (1962). | 63MIL
63OET | Miller, G.A., J. Chem. Eng. Data 8, 69-72 (1963).
Oetting, F.L., J. Phys. Chem. 67, 2757-2761 (1963). | | 62PAR/MOS | Parks, G.S., and Mosher, H.P., J. Chem. Phys. 37, 919-920 (1962). | 63PAS/ALM | Pascual, O.S., and Almeda, E., Philippine Atomic Energy Comm. Report PAEC(D) CH-634 (1963); C.A. | | 62PON/ALE | Ponomarev, V.V., Alekseeva, T.A., and Akimova, L.N., Zhur. Fiz. Khim. 36, 872–873 (1962). | 63PIL/SKI | 60, 10521g (1964).
Pilcher, G., Skinner, H.A., Pell, A.S. and Pope, A.E., | | 62RAB/TEL | Rabinovich, I.B., Tel'noi, V.I., Terman, L. M., Kirillova, A.S., and Razuvaev, G.A., Doklady Akad. | 63PON/ALE | Trans. Faraday Soc. 59, 316-330 (1963).
Ponomarev, V.V., Alekseeva, T.A., and Akimova, | | 62RAY/GER | Nauk SSSR 143, 133-136 (1962).
Ray, J.D., and Gershon, A.A., J. Phys. Chem. 66, | 63PUY/BAL | L.N., Zhur. Fiz. Khim. 37, 227-228 (1963).
Puyo, J., Balesdent, D., Niclause, M., and Dzierzynski, | | 62ROZ/AND | 1750-1752 (1962).
Rozhnov, A.M., and Andreevskii, D.N., Doklady | 63SCO/GOO | M., Compt. Rend. 256 , 3471–3473 (1963).
Scott, D.W., Good, W.D., Guthrie, G.B., Todd, S.S., | | 62SCO/DOU | Akad. Nauk SSSR 147, 388–391 (1962).
Scott, D.W., Douslin, D.R., Finke, H.L., Hubbard, | (ARGÒ TUT) | Hossenlopp, I.A., Osborn, A.G., and McCullogh, J.P., J. Phys. Chem. 67 , 685–689 (1963). | | (2500)(200 | W.N., Messerly, J.F., Hossenlopp, I.A., and McCullough, J.P., J. Phys. Chem. 66, 1334–1341 (1962). | 63SCO/HUB | Scott, D.W., Hubbard, W.N., Messerly, J.F., Todd, S.S., Hossenlopp, I.A., Good, W.D., Douslin, D.R., | | 62SCO/GOO | Scott, D.W., Good, W.D., Todd, S.S., Messerly, J.F., Berg, W.T., Hossenlopp, I.A., Lacina, J.L., Osborn, | 6201 INI | and McCullough, J.P., J. Phys. Chem. 67, 680-685 (1963). | | | A., and McCullough, J.P., J. Chem. Phys. 36, 406–412 (1962). | 63SUN
63TJE | Sunner, S., Acta Chem. Scand. 17, 728–730 (1963).
Tjebbes, J., Acta Chem. Scand. 16, 916–921 (1962). | | 62SCO/GUT | Scott, D.W., Guthrie, G.B., Messerly, J.F., Todd, S.S., | 63TJE2 | Tjebbes, J., Acta Chem. Scand. 16, 953-957 (1962). | | | Berg, W.T., Hossenlopp, A.I., and McCullough, J.P., J. Phys. Chem. 66 , 911–914 (1962). | 64ADR/DEK | Adriaanse, N., Dekker, H., and Coops, J., Rec. Trav. Chim. 83, 557–572 (1964). | | 62SCO/MES | Scott, D.W., Messerly, J.F., Todd, S.S., Hossenlopp, I.A., Douslin, D.R., and McCullough, J.P., J. Chem. Phys. 37, 867–873 (1962). | 64BON/COL | Boned Corral, M.L., Colomina, M., Perez-Ossorio, R., and Turrion, C., Anales Real Soc. Espan. Fis. Quim. B60 , 459–468 (1964). | | 62SEL/SUN | Sellers, P., and Sunner, S., Acta Chem. Scand. 16, 46-52 (1962). | 64COL/PER | Colomina, M., Perez-Ossorio, R., Turrion, C., Boned
Corral, M.L., and Pedraja, B., Anales Real Soc. Es- | | 62SIN/HIL | Sinke, G.C., and Hildenbrand, D.L., J. Chem. Eng. | 64COL/TUR | pan. Fis. Quim. B60, 627-638 (1964). | | 62SKI | Data 7, 74 (1962).
Skinner, H.A., Editor, Experimental Thermochemistry, Volume 2, (Interscience Publishers, Inc., New | 04COL/TOR | Colomina, M. Turrion, C., Boned Corral, M.L., and Panea, M., Anales Real Soc. Espan. Fis. Quim. B60 , 619–626 (1964). | | 62STE/DOR | York, 1962).
Stern, J.H., and Dorer, F.H., J. Phys. Chem. 66, 97-99 | 64CHA/RAO | Charlu, T.V., and Rao, M.R.A., Proc. Indian Acad.
Sci. A60, 31-35 (1964). | | 62WAD | (1962).
Wadso, I., Acta Chem. Scand. 16, 471–478 (1962). | 64GOO/LAC | Good, W.D., Lacina, J.L, DePrater, B.L., and McCullough, J.P., J. Phys. Chem. 68, 579-586 (1964). | | 62WEB/KIL | Weber, L.A., and Kilpatrick, J.E., J. Chem. Phys. 36, 829–834 (1962). | 64KEL/RIC | Kelley, J.D., and Rice, F.O., J. Phys. Chem. 68 , 3794–3796 (1964). | | 62WIB/BAR | Wiberg, K.B., Bartley, W.J., and Lossing, F.P., J. Am. Chem. Soc. 84, 3980–3981 (1962). | 64KOZ/RAB | Kozlov, N.A., and Rabinovich, I.B., Trudy Khim. Khim. Tekhnol. p.189 (1964); C.A. 63, 6387 (1964). | | 63AND/COU | Andon, R.J.L., Counsell, J.F., Herington, E.F.G., and Martin, J.F., Trans. Faraday Soc. 59, 830–835 (1963). | 64LEB | Lebedeva, N.D., Zhur. Fiz. Khim. 38, 2648-2651 (1964). | | 63AND/COU2 | | 64LEV/AND | Levanova, S.V., and Andreevskii, D.N., Neftekhimiya 4, 477–480 (1964). | | 63ARM/MAR | | 64MAC/MCC | Mackle, H., and McClean, R.T.B., Trans. Faraday Soc. 60, 669-672 (1964). | | 63ASH/CAR | Ashcroft, S.J., Carson, A.S., and Pedley, J.B., Trans. Faraday Soc. 59 , 2713–2717 (1963). | 64MAC/OHA | Mackle, H., and O'Hare, P.A.G., Trans. Faraday Soc. 60, 505-509 (1964). | | 63BED/BEE | Bedford, A.F., Beczer, A.E., and Mortimer, C.T., J. Chem. Soc. 2039–2043 (1963). | 64MCE/KIL | McEachern, D.M., and Kilpatrick, J.E., J. Chem.
Phys. 41, 3127-3131 (1964). | | | | 64NEL | Nelander, L., Acta Chem. Scand. 18, 973-984 (1964). | | 64OET | Oetting, F.L., J. Chem. Phys. 41, 149-153 (1964). | 66FED/SHE | Federoff, B.T., and Sheffield, O.E., Encyclopedia of | |---------------|---|------------------|--| | 64PIL/PEL | Pilcher, G., Pell, A.S., and Coleman, D.J., Trans. | | Explosives and Related Items, Picatinny Arsenal | | | Faraday Soc. 60, 499–505 (1964). | | Technical Report (PATR) 2700, Volume 3, (Picatinny | | 64SMI/GOR | Smith, N.K., Gorin, G., Good, W.D., and McCul- | 66COO/DED | Arsenal, Dover, NJ, 1966). | | CACWA ICH | lough, J.P., J. Phys. Chem. 68, 940–946 (1964). | 66GOO/DEP | Good, W.D., and DePrater, B.L., J. Phys. Chem. 70, | | 64SWA/SIL | Swain, H.A., Silbert, L.S., and Miller, J.G., J. Am. Chem. Soc. 86 , 2562–2566 (1964). | 66KYB/CAR | 3606–3609 (1966).
Kybett, B.D., Carroll, S., Natalis, P., Bonnell, D.W., | | 64VUK/RAS | Vukalovich, M.P., Rasskazov, D.S., Popov, V.N., and | OOK I D/CAK | Margrave, J.L., and Franklin, J.L., J. Am. Chem. Soc. | | 04 V OR/RAS | Babikov, Yu.M., Teploenergetika 11, (6), 56-58 | | 88, 626 (1966). | | | (1964). | 66LEB | Lebedeva, N.D., Zhur. Fiz. Khim. 40, 2725-2728 | | 64WIL/SHI | Wilhoit, R.C., and Shiao, D., I. Chem. Eng. Data 9, | | (1966). | | | 595-599 (1964). | 66LIU/ZIE | Lui, K.F., and Ziegler, W.T., J. Chem. Eng. Data 11, | | 65ADR/DEK | Adriaanse, N., Dekker, H., and Coops, J., Rec. Trav. | | 187–189 (1966). | | | Chim. 84, 393-407 (1965). | 66OSB/DOU | Osborn, A.G., and Douslin, D.R., J. Chem. eng. Data | | 65ASH/CAR | Ashcroft, S.J., Carson, A.S., Carter, W., and Laye, | | 11, 502–509 (1966). | | | P.G., Trans. Faraday Soc. 61, 225–2XX (1965). | 66ROD/GOL | Rodgers, A.S., Golden, D.M., and Benson, S.W., J. | | 65BAK/LIT | Baker, G. Littlefair, J.H., Shaw, R., and Thynne, | | Am. Chem. Soc. 88, 3194–3196 (1966). | | | J.C.J., J. Chem. Soc. 6970 (1965). | 66SIN | Sinke, G.C., J. Phys. Chem. 70, 1326-1327 (1966). | | 65BUC/HER | Buckley, E., and Herington, E.F.G., Trans. Faraday | 66SKU/BON | Skuratov, S.M., and Bonetskaya, A.K., Vysokomol. | | 65CU A /D OS | Soc. 61, 1618–1625 (1965). | 66WAD | Soedin. 8, 1591–1593 (1966).
Wadso, I., Acta Chem. Scand. 20, 536–543 (1966). | | 65CHA/ROS | Chao, J., and Rossini, F.D., J.Chem. Eng. Data 10, 374–379 (1965). | 66WAD
66WAD2 | Wadso, I., Acta Chem. Scand. 20, 536–543 (1966). | | 65CLE/WUL | Clever, H.L., Wulff, C.A., and Westrum, E.F., Jr., J. | 66ZIM/ROB | Zimmer, M.F., Robb, R.A., Baroody, E.E., and Car- | | OSCELJ WOL | Phys. Chem. 69 , 1983–1988 (1965). | 00ZIM/ROD | penter, G.A., J. Chem. Eng. Data 11, 577–579 (1966). | | 65COL/PEL | Colomina, M., Pell, A.S., Skinner, H.A., and Cole- | 67ADA/FIN | Adams, G.P., Fine, D.H., Gray, P., and Laye, P.G., J. | | 00004122 | man, D.J., Trans. Faraday Soc. 61, 2641–2645 (1965). | 0,, 12, 14, 1, 1 | Chem. Soc. (B) 720–722 (1967). | | 65COU/GRE | Counsell, J.F., Green, J.H.S., Hales, J.L., and Martin, | 67AND/COU | Andon, R.J.L., Counsell, J.F., Lees, E.B., Martin, J.F., | | | J.F., Trans. Faraday Soc. 61, 212-218 (1965). | | and Mash, C.J., Trans. Faraday Soc. 63, 1115-1121 | | 65COU/HAL | Counsell, J.F., Hales, J.L., and Martin, J.F., Trans. | | (1967). | | | Faraday Soc. 61, 1869–1875 (1965). | 67BOY/SHI | Boyd. R.H., Shieh, C., and Chang, S., and McNally, | | 65DAV/KYB | Davies, M., and Kybett, B., Trans. Faraday Soc. 61, | | D., Thermodynamik-Symposium, paper II 7, Heidel- | | | 1608–1617 (1965). | | berg (1967). | | 65FIN/HOS | Finke, H.L, Hossenlopp, I.A., and Berg, W.T., J. Phys. | 67BUC/COX | Buckley, E., and Cox, J.D., Trans. Faraday Soc. 63, | | CETTAIN CEO | Chem. 69, 3030-3031 (1965). | (ZOLLA RIOD | 895–901 (1967). | | 65FIN/MES | Finke, H.L,
Messerly, J.F., and Todd, S.S., J. Phys. Chem. 69 , 2094–2100 (1965). | 67CHA/HOR | Chang, S.S., Horman, J.A., and Bestul, A.B., J. Res.
Nat. Bur. Standards 71A, 293–305 (1967). | | 65FRA/AST | Frankosky, M., and Aston, J.G., J. Phys. Chem. 69, | 67FAI/STI | Failes, R.L., and Stimson, V.R., Austral. J. Chem. 20, | | 03114141151 | 3126–3132 (1965). | 0/1111/011 | 1553–1560 (1967). | | 65GOL/WAL | Golden, D.M., Walsh, R., and Benson, S.W., J. Am. | 67KOL/MAR | Kolesov, V.P., Martynov, A.M., and Skuratov, S.M., | | | Chem. Soc. 87, 4053-4057 (1965). | | Zhur. Fiz. Khim. 41, 913-916 (1967). | | 65HUL/REI | Hull, H.S., Reid, A.F., and Turnbull, A.G., Austral. J. | 67KOL/TAL | Kolesov, V.P., Talakin, O.G., and Skuratov, S.M., | | | Chem. 18, 249–252 (1965). | | Vestnik Moscow Univ., Khim. 22, (5), 60-66 (1967). | | 65KOL/MAR | Kolesov, V.P., and Martynov, A.M, and Skuratov, | 67KOR/PEP | Korunskii, B.L., Pepckin, V.I., Lebedev, Yu.A., and | | (FIXOTHOLIA | S.M., Zhur. Fiz. Khim. 39, 435–437 (1965). | | Apin, A.Ya., Izvest. Akad. Nauk SSSR, Ser. Khim., | | 65KOZ/SHI | Kozina, M.P., Shigorin, D.N., Skoldinov, A.P., and | CT ACIANA | (3), 525–528 (1967). | | | Skuratov, S.M., Doklady Akad. Nauk SSSR, Fiz. Khim., 160, 1114–1116 (1965). | 67LAC/AMA | Lacher, J.R., Amador, A., and Park, J.D., Trans. Fara- | | 65MCD/KIL | McDougall, L.A., and Kilpatrick, J.E., J. Chem. Phys. | 67MES/GUT | day Soc. 63, 1608–1611 (1967). Messerly, J.F., Guthrie, G.B., Todd, S.S., and Finke, | | OSMICD/INIL | 42, 2307–2310 (1965). | O/MLS/GO1 | H.L., J. Chem. Eng. Data 12, 338–346 (1967). | | 65MES/TOD | Messerly, J.F., Todd, S.S., and Finke, H.L., J. Phys. | 67MES/TOD | Messerly, J.F., Todd, S.S., and Guthrie, G.B., Jr., J. | | | Chem. 69 , 4304–4311 (1965). | | Chem. Eng. Data 12, 426–429 (1967). | | 65MES/TOD2 | Messerly, J.F., Todd, S.S., and Finke, H.L., J. Phys. | 67MIR/LEB | Miroshnichenko, E.A., Lebedev, Yu.A., Shevelev, | | | Chem. 69, 353-359 (1965). | | S.A., Gulevskaya, V.I., Fainzil'berg, A.A., Apin, | | 65OET | Oetting, F.L., J. Chem. Eng. Data 10, 122-125 (165). | | A.Ya., Zhur. Fiz. Khim. 41, 1477 (1967). | | 65PEL/PIL | Pell, A.S., and Pilcher, G., Trans. Faraday Soc. 61, 71- | 67PUR/SIR | Puranik, P.G., and Sirdeshmukh, L., Ind. J. Pure | | CEDI VIDA COD | 77 (1965). | (#CCO PED | Appl. Phys. 5, 334–338 (1967). | | 65PUT/MCE | Putnum, W.E., McEachern, D.M., Jr., and Kilpatrick, | 67SCO/BER | Scott, D.W., Berg, W.T., Hossenlopp, I.A., Hubbard, | | 65WAD | J.E., J. Chem. Phys. 42, 749–755 (1965). | | W.N., Messerly, J.F., Todd, S.S., Doulsin, D.R., Mc- | | | Wadso, I., Acta Chem. Scand. 19, 1079–1087 (1965). | | Cullough, J.P., and Waddington, G., J. Phys. Chem. | | 66ADA/CAR | Adams, G.P., Carson, A.S., and Laye, P.G., Trans. Faraday Soc. 62, 1447–1449 (1966). | 67SMI/GOO | 71, 2263–2270 (1967).
Smith, N.K., and Good, W.D., J. Chem. Eng. Data 12, | | 66BEE/LUT | Beezer, A.E., Luttke, W., De Meijere, A., and Mor- | 0/3/11/000 | 572–574 (1967). | | | timer, C.T., J. Chem. Soc. (B) 648–649 (1966). | 67WES/RIB | Westrum, E.F., Jr., and Ribner, A., J. Phys. Chem. 71, | | 66BOR/NAK | Borjesson, B., Nakase, Y., and Sunner, S., Acta Chem. | | 1216–1224 (1967). | | | Scand. 20, 803-810 (1966). | 67WES/WON | Westrum, E.F., Jr., and Wong, Shaio-wen, Thermody- | | 66COL/PIL | Coleman, D.J., and Pilcher, G., Trans. Faraday Soc. | | namik-Symposium, Schafer, K.L., Editor, Werbund | | | 62 , 821–827 (1966). | | and Weber Press, Heidelberg, Sec. II, Paper No. 10, | | 66COL/SKI | Coleman, D.J., and Skinner, H.A., Trans. Faraday | | 6pp., (Sept. 1967). | | | Soc. 62 , 2057–2062 (1966). | | | | | | | | Wakayama, N., and Inokuchi, H., Bull. Chem. Soc. 69MAC/STE2 Mackle, H. and Steele, W.V., Trans. Faraday Soc. 65, 67WAK/INO Japan 40, 2267-2271 (1967). 2069-2972 (1969). Adachi, K., Suga, H., and Seki, S., Bull. Chem. Soc. 69MAC/STE3 Mackle, H., and Steele, W.V., Trans. Faraday Soc. 65, 68ADA/SUG 2073-2077 (1969). Japan 41, 1073-1087 (1968). Andon, R.J.L., Counsell, J.F., and Martin, J.F., J. 69MAN Mansson, M., J. Chem. Thermodynam. 1, 141-151 68AND/COU Chem. Soc. A, 1894-1897 (1968). (1969).69MOS/DEK Mosselman, C., and Dekker, H., Rec. Trav. Chim. 88, 68AND/COU2 Andon, R.J.L., Counsell, J.F., Hales, J.L., Lees, E.B., and Martin, J.F., J. Chem. Soc. A 2357-2361 (1968). 161-176 (1969). 69PEP/LEB Pepekin, V.I., Lebedev, Yu.A., Fainzil'berg, A.A., Ro-68BAC/NOV Baccanari, D.P., Novinski, J.A., Pan, Y-C., Yevitz, zantsev, G.G., and Apin, A.Ya., Zhur. Fiz. Khim. 43, M.M., and Swain, H.A., Trans. Faraday Soc. 64, 1201-2597-2598 (1969). 1205 (1968). Benson, S.W., "Thermochemical Kinetics", (J. Wiley 69PEP/LEB2 Pepekin, V.I., Lebedev, Yu.A., Rozantsev, G.G., 68BEN Fainzel'berg, A.A., and Apin, A.Ya., Izvest. Akad. & Sons, Inc., New York, 1968). Churney, K.L., and Armstrong, G.T., J. Res. Nat. Bur. Nauk SSSR, Ser. Khim. (2), 452-453 (1969). 68CHU/ARM Pihlaja, K., and Heikkila, J., Acta Chem. Scand. 23, 69PIH/HEI Standards 72A, 453-465 (1968). 1053-1055 (1969). Counsell, J.F., Hales, J.L., and Martin, J.F., J. Chem. 68COU/HAL Pihlaja, K., and Kankare, J., Acta Chem. Scand. 23, 69PIH/KAN Soc. 2042-2044 (1968). Counsell, J.F., Hales, J.L., Lees, E.B., and Martin, 1745-1751 (1969). 68COU/HAL2 Pilcher, G., and Fletcher, R.A., Trans. Faraday Soc. 69PIL/FLE J.F., J. Chem. Soc. A, 2994-2996 (1968). 68COU/LEE Counsell, J.F., Lees, E.B., and Martin, J.F., J. Chem. 65, 2326-2330 (1969). 69PLA/GLA Plato, C., and Glasgow, A.R., Jr., Anal. Chem. 41, Soc. C, A, 1819-1823 (1968). Desai, P.D., Wilhoit, R.C., and Zwolinski, B.J., J. 68DES/WIL 330-336 (1969). Shaw, R., J. Chem. Eng. Data 14, 461-465 (1969). Chem. Eng. Data 13, 334-335 (1968). 69SHA Elliott, J.H., and Chris, M.D., J. Chem. Eng. Data 13, 69SHI/MCN Shieh, C.-F., McNally, D., and Boyd, R.H., Tetrahe-68ELL/CHR 475-479 (1968). dron 25, 3653-3665 (1969). 69SKU/KOZ Skuratov, S.M., Kozina, M.P., Timofeeva, L.P., Be-68FUR/GOL Furuyama, S., Golden, D.M., and Benson, S.W., J. Phys. Chem. 72, 3204-3208 (1968). likova, N.A., and Plate, A.F., Doklady Akad. Nauk SSSR 187, 343-346 (1969). 68HAM/FAG Hamilton, J.V., and Fagley, T.F., J. Chem. Eng. Data 69STU/WES Stull, D.R., Westrum, E.F., Jr., and Sinke, G.C., "The 13, 523-527 (1968). Kolesov, V.P., Shtekher, S.N., Martynov, A.M., and Chemical Thermodynamics of Organic Compounds", 68KOL/SHT Skuratov, S.M., Zhur. Fiz. Khim. 42, 1847-1849 (J. Wiley & Sons, Inc., New York, 1969). 69STU/WES2 Stull, D.R., Westrum, E.F., Jr., and Sinke, G.C., "The Kolesov, V.P., Talakin, O.G., and Skuratov, S.M., Chemical Thermodynamics of Organic Compounds", 68KOL/TAL Zhur, Fiz. Khim. 42, 2307-2309 (1968). (J. Wiley & Sons, Inc., New York, 1969) (1987 reprint-Lebedeva, N.D., Ryadnenko, V.L., and Kuznetsova, ing with corrections by R.E. Krieger Publishing Co., 68LEB/RYA I.N., Zhur. Fiz. Khim. 42, 1827-1830 (1968). Inc., P.O. Box 9542, Melbourne, FL 32902-9542, 68LEB/RYA2 Lebedeva, N.D., and Ryadnenko, V.L., Zhur. Fiz. through arrangement with J. Wiley & Sons, Inc.). Khim. 42, 2318-2320 (1968). 69WAD Wadso, I., Acta Chem. Scand. 23, 2061-2064 (1969). Pihlaja, K., Acta Chem. Scand. 22, 716-717 (1968). 70AND/COU Andon, R.J.L., Counsell, J.F., Lees, E.B., and Martin, **68PIH** Pihlaja, K., and Heikkila, J., Acta Chem. Scand. 22, J.F., J. Chem. Soc. A, 833-837 (1970). 68PIH/HEI2 2731-2732 (1968). 70BIR/SKI Birley. G.I., and Skinner, H.A., Trans. Faraday Soc. 68PIH/LUO Pihlaja, K., and Luoma, S., Acta Chem. Scand. 23, 66, 791-793 (1970). Chang, S-J., McNally, D., Shary-Tehrany, S., Hickey, 2401-2414 (1968). 70CHA/MCN 68WAD Wadso, I., Acta Chem. Scand. 22, 2438-2444 (1968). M.J., and Boyd, R.H., J. Am. Chem. Soc. 92, 3109-68WIB/FEN Wiberg, K.B., and Fenoglio, R.A., J. Am. Chem. Soc. 3118 (1970). 90, 3395-3397 (1968). 70CLE/WES Clever, H.L., and Westrum, E.F., Jr., J. Phys. Chem. Benson, S.W. Cruickshank, F.R., Golden, D.M., Hau-74, 1309-1317 (1970). 69BEN/CRU gen, G.R., O'Neal, H.E., Rodgers, A.S., Shaw, R., and 70CON Connett, J.E., J. Chem. Soc. (A) 1284-1286 (1970). Walsh, R., Chem. Rev. 69, 269-324 (1969). Cox, J.D., and Pilcher, G., "Thermochemistry of Or-70COX/PIL 69COX/GUN Cox, J.D., Gundry, H.A., Harrop, D., and Head, A.J., ganic and Organometallic Compounds", (Academic J. Chem. Thermodynam. 1, 77-87 (1969). Press, London, 1970). 69FUR/GOL Furuyama, S., Golden, D.M., and Benson, S.W., J. 70FIN/MCC Finke, H.L., McCullough, J.P., Messerly, J.F., Chem. Thermodynam. 1, 363-375 (1969). Guthrie, G.B., and Doulsin, D.R., J. Chem. Thermo-69GOO Good, W.D., J. Chem. Eng. Data 14, 231-235 (1969). dynam. 2, 27-41 (1970). 69GOO2 Good, W.D., J. Chem. Eng. Data 14, 480-481 (1969). 70FLE/PIL Fletcher, R.A., and Pilcher, G., Trans. Faraday Soc. 69GOO3 Good, W.D., J. Chem. Thermodynam. 2, 237-244 66, 794-799 (1970). 70FUR/GOL Furuyama, S., Golden, D.M., and Benson, S.W., J. 69GOO/SMI Good, W.D., and Smith, N.K., J. Chem. Eng. Data 14, Chem. Thermodynam. 2, 161-169 (1970). 102-106 (1969). 70GOO Good, W.D., J. Chem. Thermodynam. 2, 237-244 69HU/SIN Hu, A.T., and Sinke, G.C., J. Chem. Thermodynam. 1, (1970).Good, W.D., J. Chem. Thermodynam. 2, 399-405 507-513 (1969). 70GOO2 69KOL/IVA Kolesov, V.P., Ivanov, L.S., and Skuratov, S.M., Dok-(1970).Good, W.D., and Moore, R.T., J. Chem. Eng. Data 15, lady Akad. Nauk SSSR 184, 857-859 (1969). 70GOO/MOO 69KON/PRO Konicek, J., Prochazka, M., Krestanova, V., and 150-154 (1950). Smisek, Coll. Czech. Chem. Comm. 34, 2249-2257 70GOU/GIR Goursot, P., Girdhar, H.L., and Westrum, E.F., Jr., J. Phys. Chem. 74, 2538-2541 (1970). 69MAC/MCN Mackle, H., McNally, D.V., and Steele, W.V., Trans. 70HAR/HEA Harrop, D., Head, A.J., and Lewis, G.B., J. Chem. Faraday Soc. 65, 2060-2068 (1969). Thermodynam. 2, 203-210 (1970). 69MAC/STE Mackle, H., and Steele, W.V., Trans. Faraday Soc. 65, 2053-2059 (1969). | 70HOW/WAD | Howard, P.B., and Wadso, I., Acta Chem. Scand. 24, 145-149 (1970). | 71KOL/IVA2 | Kolesov, V.P., Ivanov, L.S., and Shtekher, S.M., Zhur. Fiz. Khim.
45, 988-989 (1971). | |-----------|---|------------------|--| | 70IRV/WAD | Irving, R.J., and Wadso, I., Acta Chem. Scand. 24, 589-592 (1970). | 71KOL/VOR | Kolesov, V.P., and Vorob'ev, V.N., Zhur. Fiz. Khim. 45, 1293-1294 (1971). | | 70KNO/MIR | Knobel, Yu.K., Miroshnichenko, E.A., and Lebedev,
Yu.A., Doklady Akad. Nauk SSSR 190, 348-350 | 71KON/WAD | Konicek, J., and Wadso, I., Acta Chem. Scand. 25, 1541-1551 (1971). | | 70KOL/PAP | (1970).
Kolesov, V.P., and Papina, T.S., Zhur. Fiz. Khim. 44,
1101–1103 (1970). | 71KOZ/TIM | Kozina, M.P., Timofeeva, L.P., Skuratov, S.M., Belikova, N.A., Milvitskaya, E.M, and Plate, A.F., J. Chem. Thermodynam. 3, 563-570 (1971). | | 70KOL/TOM | Kolesov, V.P., Tomareva, E.M., and Skuratov, S.M.,
Zhur. Fiz. Khim. 44, 2776–2778 (1970). | 71KUS/WAD | Kusano, K., and Wadso, I., Bull. Chem. Soc. Japan 44, 1705–1707 (1971). | | 70KON/WAD | Konicek, J., and Wadso, I., Acta Chem. Scand. 24, 2612-2616 (1970). | 71LEB/GUT | Lebedeva, N.D., Gutner, N.M., Ryadnenko, V.L., Zhur. Fiz. Khim. 45, 999-1000 (1971). | | 70KUZ/WAS | Kusano, K. and Wadso, I., Acta Chem. Scand. 24, 2037-2042 (1970). | 71LEB/KAT | Lebedeva, N.D., Katin, Yu.A., and Akhmedova, G.Ya., Zhur. Fiz. Khim. 45, 1357-1359 (1971). | | 70LEN/VEL | Lenchitz, C., and Velicky, R.W., J. Chem. Eng. Data 15, 401-403 (1970). | 71LEB/KAT2 | Lebedeva, N.D., Katin, Yu.A., and Akhmedova, G.Ya., Zhur. Fiz. Khim. 45, 2103 (1971). | | 70LUP | Lupton, E.C., Jr., Diss. Abst. 31, 1174-B-1175-B (1970). | 71LEB/OLE | Lebedeva, N.D., and Oleinikova, T.P., Zhur. Fiz. Khim. 45, 2103-2104 (1971). | | 70MAC/STE | Mackle, H., Steele, W.V., and McNally, D.V., private communication cited in 70COX/PIL. | 71LEB/RYA | Lebedeva, N.D., Ryadnenko, V.L., and Kuznetsova, I.N., Zhur. Fiz. Khim. 45, 980-981 (1971). | | 70MAN/RAP | Mansson, M., Rapport, N., and Westrum, E.F. Jr., J. Am. Chem. Soc. 92, 7296–7299 (1970). | 71LEN/VEL | Lenchitz, C., Velicky, R.W., Silvestro, G., and Schlosberg, L.P., J. Chem. Thermodynam. 3, 689–692 (1971). | | 70MES/TOD | Messerly, J.F., Todd, S.S., and Guthrie, G.B., J. Chem. Eng. Data 15, 227-232 (1970). | 71MAN/RIN | Mansson, M., Ringner, B., and Sunner, S., J. Chem.
Thermodynam. 3, 547-551 (1971). | | 70PRO/KRE | Prochazka, M., Krestanova, V., Palecek, M., and Smisek, M., Coll. Czech. Chem. Comm. 35, 727-732 (1970). | 71MAT/V'Y | Matyushin, Yu.N., V'yunova, I.B., Pepekin, V.I., and Apin, A.Ya., Izvest. Akad. Nauk SSSR, Ser. Khim., (11) 2443-2447 (1971). | | 70SEL | Sellers, P., J. Chem. Thermodynam. 2, 211-219 (1970). | 71PIH/TOU | Pihlaja, K., and Tuomi, M.L., Acta Chem. Scand. 25, 465–469 (1971). | | 70SEL2 | Sellers, P., Acta Chem. Scand. 24, 2453-2458 (1970). | 71RAP/WES | Rapport, N.J., Westrum, E.F., Jr., and Andrews, | | 70SHE/ROZ | Shevtsova, L.A., Rozhnov, and Andreevskii, D.N., | | J.T.S., J. Am. Chem. Soc. 93, 4363-4365 (1971). | | 70VAR/BEL | Zhur. Fiz. Khim. 44, 1529-1533 (1970).
Varushchenko, R.M., Belikova, N.A., Skuratov, S.M., | 71ROG/MCL | Rogers, D.W., and McLafferty, F.J., Tetrahedron 27, 3765-3775 (1971). | | | and Plate, A.F., Zhur. Fiz. Khim. 44, 3022-3025 | 71SEL | Sellers, P., Acta Chem. Scand. 25, 2099-2102 (1971). | | | (1970). | 71SEL2 | Sellers, P., Acta Chem. Scand. 25, 2189-2193 (1971). | | 70WON/WES | Wong, WK., and Westrum, E.F., Jr., J. Phys. Chem. 74, 1303-1308 (1970). | 71SEL3
71SEL4 | Sellers, P., Acta Chem. Scand. 25, 2194–2198 (1971). Sellers, P., Acta Chem. Scand. 25, 2291–2294 (1971). | | 71AND/CON | Andon, R.J.L., Connett, J.E., Counsell, J.F., Lees, | 71SHA | Shaw, R., J. Phys. Chem. 75, 4047-4049 (1971). | | • | E.B., and Martin, J.F., J. Chem. Soc. A 661-664 (1971). | 71WON/WES | Wong, WK., and Westrum, E.F., Jr., J. Chem. Thermodynam. 3, 105-124 (1971). | | 71BOY/SAN | Boyd, R.H., Sanwal, S.N., Shary-Tehrany, S, and Mc-
Nally, D., J. Phys. Chem. 75, 1264–1271 (1961). | 71YUK/BIR | Yukhno, G.F., and Bikkulov, A.Z., Zhur. Fiz. Khim. 45, 1632-1634 (1971). | | 71CAR/FIN | Carson, A.S., Fine, D.H., Gray, P., and Laye, P.G., J. Chem. Soc. 1611–1615 (1971). | 71ZWO/WIL | Zwolinski, B.J., and Wilhoit, R.C., Handbook of Va-
por Pressures and Heat of Vaporization of Hydrocar- | | 71CAR/WES | Carlson, H.G., and Westrum, E.F., Jr., J. Chem. Phys. 54 , 1464–1471 (1971). | | bons and Related Compounds, Publication No. 101, 329 pp., Thermodynamics Research Center, Texas A | | 71CON/WAD | Konicek, J., and Wadso, I., Acta Chem. Scand. 25, 1541-1551 (1971). | 72ADA/SUG | & M University, College Station, TX 77843, 1971.
Adachi, K., Suga, H., and Seki, S., Bull. Chem. Soc. | | 71COU/LEE | Counsell, J.F., Lee, D.A., and Martin, J.F., J. Chem. Soc. A 313-316 (1971). | 72CHA/BES | Japan 45, 1960-1972 (1972).
Chang, S.S., and Bestul, A.B., J. Chem. Phys. 56, 503 | | 71DOM | Domalski, E.S., J. Chem. Documentation 11, 234–238 (1971). | 72COL/LAY | 518 (1972).
Colomina, M., Laynez, J.L., Perez-Ossorio, R., and | | 71FLE/PIL | Fletcher, R.A., and Pilcher, G., Trans. Faraday Soc. 67, 3191–3201 (1971). | | Turrion, C., J. Chem. Thermodynam. 4, 499-506 (1972). | | 71G00 | Good, W.D., J. Chem. Thermodynam. 3, 97-103 (1971). | 72DOM | Domalski, E.S., J. Phys. & Chem. Ref. Data 1, 221-277 (1972). | | 71GOO2 | Good, W.D., J. Chem Thermodynam. 3, 539-546 (1971). | 72GAR/HUS | Gardner, P.J., and Hussain, K.S., J. Chem. Thermodynam. 4, 819-827 (1972). | | 71GOO3 | Good, W.D., J. Chem. Thermodynam. 3, 711-717 (1971). | 72GOO
72GOO2 | Good, W.D., J. Chem. Eng. Data 17, 28-31 (1972).
Good, W.D. J. Chem. Eng. Data 17, 158-162 (1972). | | 71GOO/MOO | Good, W.D., and Moore, R.T., J. Chem. Thermody-
uam. 3, 701-705 (1971). | 72GOO3 | Good, W.D., J. Chem. Thermodynam. 4, 709-714 (1972). | | 71HAL/BAL | Hall, H.K, Jr., and Baldt, J.H., J. Am. Chem. Soc. 93, 140-145 (1971). | 72FIN/MES | Finke, H.L., Messerly, J.F., and Todd, S.S., J. Chem. Thermodynam. 4, 359–374 (1972). | | 71KNO/MIR | Knobel, Yu.K., Miroshnichenko, E.A., and Lebedev, Yu.A., Izvest. Akad. Nauk SSSR, Ser. Khim. (3), 485–489 (1971). | 72FIN/MCC | Finke, H.L., McCullough, J.P., Messerly, J.F., Osborn, A., and Douslin, D.R., J. Chem. Thermodynam. 4, 477–494 (1972). | | 71KOL/IVA | Kolesov, V.P., Ivanov, L.S., and Skuratov, S.M., Zhur. Fiz. Khim. 45 , 547–551 (1971). | 72KAN | Kana'an, A.S., J. Chem. Thermodynam. 4, 893–901 (1972). | - **ESTIMATION OF THERMODYNAMIC PROPERTIES OF ORGANIC COMPOUNDS** Kolesov, V.P., Slavutskaya, G.M., Aleshin, S.P., and 73LEB/KAT2 72KOL/SLA Skuratov, S.M., Zhur. Fiz. Khim. 46, 2138-2141 Khim. 46, 2009-2011 (1973). 73LEB/RYA Kolesov, V.P., Slavutskaya, G.M., and Papina, T.S., Khim. 47, 2442 (1973). 72KOL/SLA2 Zhur. Fiz. Khim. 46, 815 (1972). 73MAL/GIG Kolesov, V.P., Slavutskaya, G.M., and Stel'nikova, 59, 387-394 (1973). 72KOL/SLA3 L.N., Zhur. Fiz. Khim. 46, 805 (1972). 73MAL/GIG2 Kolesov, V.P., and Vorob'ev, V.N., Doklady Akad. J. Chem. Thermodynam. 5, 699-706 (1973). 72KOL/VOR 73MAT/PEP Nauk SSSR 203, 116-119 (1972). Laynez, J., and Wadso, I., Acta Chem. Scand. 26, 72LAY/WAD 3148-3152 (1972). Lebedeva, N.D., and Katin, Yu.A., Zhur. Fiz. Khim. 842-846 (1973). 72LEB/KAT 73PEP/GAF 46, 1888-1889 (1972). Mansson, M., Acta Chem. Scand. 26, 1707-1708 72MAN (1972).72MAN2 Mansson, M., J. Chem. Thermodynam. 4, 865-871 73ROC/SYM (1972).72MOR Morawetz, E., J. Chem. Thermodynam. 4, 139-144 Faraday Trans. I, 69, 1267-1273 (1973). 73SAP/MOC (1972).Morawetz, E., J. Chem. Thermodynam. 4, 455-460 72MOR2 (1972)73SLA/KOL 72PIT/PIL Pittam, D.A., and Pilcher, G., J. Chem. Soc., Faraday Trans. I 68, 2224-2229 (1972). Zhur. Fiz. Khim. 47, 2723-2724 (1973). 72ROG Rogers, F.E., J. Phys. Chem. 76, 106-109 (1972). 73STE/CAR 72ROZ/NES Rozhnov, A.M., Nesterova, T.N., and Kovaleva, T.V., (1973). Zhur. Org. Khim. 8, 1560-1564 (1972). 72VAN/MAN Vanderzee, C.E., and Mansson, M., J. Chem. Thermo-73SUN/WUL dynam. 4, 533-540 (1972). 315-318 (1973) 72VAN/MAN2 Vanderzee, C.E., Mansson, M., Wadso, I., and Sun-73YAT/MCD ner, S., J. Chem. Thermodynam. 4, 541-550 (1972). 2465-2478 (1973). 72VAS/ZHI Vasil'eva, T.F., Zhil'tsova, E.N., and Vvedenskii, 74COL/ROU Colomina, M., Roux, M.V., and Turrion, C., J. Chem. A.A., Zhur. Fiz. Khim. 46, 541 (1972). Thermodynam. 6, 149-155 (1974). 72WOL Wolf, G., Helv. Chim. Acta 55, 1446-1459 (1972). 74COL/ROU2 Colomina, M., Roux, M.V., and Turrion, C., J. Chem. 72ZOR/HUR Zordan, T.A., Hurkot, D.G., Peterson, M., and Hep-Thermodynam. 6, 571-576 (1974). ler, L.G., Thermochim. Acta 5, 21-24 (1972). 74GOL/PEP 73ALF/GOL Alfassi, Z.B., Golden, D.M., and Benson, S.W., J. Chem. Thermodynam. 5, 411-420 (1973). Andon, R.J.L., Counsell, J.F., Lee, D.A., and Martin, 73AND/COU (1974).J.F., J. Chem. Soc., Faraday Trans. I 69, 761-770 74GOO/MOO (1973).(1974). 73AND/MAR Andon, R.J.L., and Martin, J.F., J. Chem. Soc. Faraday Trans. I, 69, 761-770 (1973). 74GUT 73AND/MAR2 Andon, R.J.L, and Martin, J.F., J. Chem. Soc., Fara-(1974).Hine, J., and Klueppel, A.W., J. Am. Chem. Soc. 96, day Trans. I, 69, 871-875 (1973). 74HIN/KLU 73CHA/WIL Chao, J., Wilhoit, R.C., and Zwolinski, B.J., J. Phys. & 2924-2929 (1974). Johnson, W.A., and Prosen, E.J., J. Res. Nat. Bur. Chem. Ref. Data 2, 427-438 (1973). 74JOH/PRO 73EIG/GOL Eigenmann, H.K., Golden, D.M., and Benson, Standards 78A, 683-689 (1974). S.W., J. Phys. Chem. 77, 1687-1691 (1973). 74KOL/SLA 73ESI/KAB Esipenok, G.E., Kabo, G.Ya., and Andreevskii, D.N., Zhur. Fiz. Khim. 47, 739-740 (1973). 48, 790-791 (1974). 73GOO Good, W.D., J. Chem. Thermodynam. 5, 707-714 74KOL/VOR (1973).73GOO2 Good, W.D., J. Chem. Thermodynam. 5, 715-720 dynam. 6, 613-628 (1974). 74KRE/PRI (1973).Chem. 52, 2673-2678 (1974). 73KIS/SUG Kishimoto, K., Suga, H., and Syuzo, S., Bull. Chem. Soc. Japan 46, 3020-3031 (1973). 74MAN 73KOL/PEP Kolesov,
V.P., and Papina, T.S., Zhur. Fiz. Khim. 47, 74MAN2 2951-2952 (1973). (1974). - **73KON** - Konicek, J., Acta Chem. Scand. 27, 1496-1502 (1973). - Krech, M.J., Price, S.J.W., and Yared, W.F., Canad. J. 73KRE/PRI Chem. 51, 3662-3664 (1973). - 73KRI/LIC Krien, G., Licht, H.H., and Zierath, J., Thermochim. Acta 6, 465-472 (1973). - 73KUN/KAR Kunyavskaya, S.G., Karyakin, N.V., Krylova, G.P., Chernova, V.I., and Rabinovich, I.B., Trudy Khim. Khim. Tekhnol. (1), 58-59 (1973). - 73KUS/SUU Kusano, K., Suurkuusk, J., and Wadso, I., J. Chem. Thermodynam. 5, 757-767 (1973). - 73LEB/KAT Lebedeva, N.D., and Katin, Yu.A., Zhur. Fiz. Khim. 47, 1620-1621 (1973). - Lebedeva, N.D., and Katin, Yu.A., Zhur. Priklad. - Lebedeva, N.D., and Ryadnenko, V.L., Zhur. Fiz. - Malaspina, L., Gigli, R., and Bardi, G., J. Chem. Phys. - Malaspina, L., Gigli, R., Bardi, G., and De Maria, G., - Matyushin, Yu.N., Pepekin, V.I., Nikolaeva, A.D., Lyapin, V.I., Nikolaeva, L.V., Artyushin, N.M., and Apin, A.Ya., Izv. Akad. Nauk SSSR, Ser. Khim., (4), - Pepekin, V.I., Gafurov, R.G., Lebedev, Yu.A., Eremenko, L.T., Sogomonyan, E.M., and Apin, A.Ya., Izv. Akad. Nauk SSSR, Ser. Khim., (2), 318-322 - Rochester, C.H., and Symonds, J.R., J. Chem. Soc., - Sapozhnikov, V.N., Mochalov, A.N., Karyakin, N.V., Kunyavskaya, S.G., Chernova, V.I., and Rabinovich, I.B., Trudy Khim. Khim. Tekhnol. (1), 55-57 (1973). - Slavutskaya, G.M., Kolesov, V.P., and Durkina, G.S., - Steele, W.V., Carson, A.S., Laye, P.G., and Rosser, C.A., J. Chem. Soc., Faraday Trans. I, 69, 1257-1260 - Sunner, S. and Wulff, C.A., Acta Chem. Scand. 27, - Yates, K., and McDonald, R.S., J. Org. Chem. 38, - Golovanova, O.F., Pepekin, V.I., Korsunskii, B.L., Gafurov, R.G., Eremenko, L.T., and Dubovitskii, F.I., Izvest. Akad. Nauk SSSR, Ser. Khim., (7), 1495-1497 - Good, W.D., Moore, R.T., Osborn, A.G., and Douslin, D.R., J. Chem. Thermodynam. 6, 303-310 - Guthrie, J.P., J. Am. Chem. Soc. 96, 3608-3615 - Kolesov, V.P., Slavutskaya, G.M., Aleksandrov, Yu.I., Vartanov, V.P., and Novikov, G.A., Zhur. Fiz. Khim. - Kolesov, V.P., Vorob'ev, V.N., Sarzhina, E.A., Pentin, Yu.A., and Timoshenkova, Yu.D., J. Chem. Thermo- - Krech, M.J., Price, S.J.W., and Yared, W.F., Canad. J. - Mansson, M., Acta Chem. Scand. 28B, 677-680 (174). Mansson, M., Acta Chem. Scand. 28B, 895-899 - 74MAN3 Mansson, M., Acta Chem. Scand. 28B, 905-908 (1974). - 74MES/FIN Messerly, J.F., Finke, H.L., and Todd, S.S., J. Chem. Thermodynam. 6, 635-637 (1974). - 74MOS/MOU Mosselman, C., Mourik, J., and Dekker, H., J. Chem. Thermodynam. 6, 477-487 (1974). - 74ROU/TUR Roux, M.V., Turrion, C., Colomina, M., and Perez-Ossorio, R., Anales Real Soc. Espan. Fis. Quim. (Madrid) 70, 201-207 (1974). - 74SAB/CHA Sabbah, R., Chastel, R., and Laffitte, M., Canad. J. Chem. 52, 2201-2205 (1974). | 74SAC/PES | Sachek, A.I., Peshchenko, A.D., and Andreevskii, D.N., Zhur. Fiz. Khim. 48, 1057 (1974). | 75SHA | Shaw, R., Chapter 3, Thermochemistry of hydrazo, azo, and azoxy groups, pp. 53-68, in The Chemistry of | |------------|--|------------------|---| | 74SEA/FRE | Seaton, W.H., Freedman, E., and Treweek, D.N., ASTM Data Series Publication DS 51, "CHETAH - | | Hydrazo, Azo, and Azoxy Groups, S. Patai, editor, Part 1, (J. Wiley and Sons, 1975). | | | The ASTM Chemical Thermodynamic and Energy Release Evaluation Program" (ASTM, 1916 Race St., | 75SPI/WAD | Spink, C.H., and Wadso, I., J. Chem. Thermodynam. 7, 561-572 (1975). | | | Philadelphia, PA 19103, 1974). | 75STR/SUN | Stridh, G., and Sunner, S., J. Chem. Thermodynam. 7, | | 74SLA/KOL | Slavutskaya, G.M., Kolesov, V.P., and Borisov, S.B., Zhur. Fiz. Khim. 48, 785 (1974). | 75YUR/KAB | 161–168 (1975).
Yursha, I.A., and Kabo, G.Ya., Zhur. Fiz. Khim. 49, | | 74SUN/WUL | Sunner, S., and Wulff, C.A., J. Chem. Thermodynam. 6, 287–292 (1974). | 76AND/MAR | 1302–1303 (1975).
Andon, R.J.L., and Martin, J.F., J. Chem. Thermody- | | 74VOR/KOL | Vorob'ev, V.N., Kolesov, V.P., Sarzhina, E.A., Kuramshina, G.M., and Pentin, Yu.A., Zhur. Fiz. | 76ANT/CAR | nam. 8, 1159-1166 (1976).
Anthoney, M.E., Carson, A.S., Laye, P.G., and | | | Khim. 48, 239 (1974). | 70AN I/CAN | Yurelki, M., J. Chem. Thermodynam. 8, 1009-1010 | | 74WU/ROD | Wu, EC., and Rodgers, A.S., J. Phys. Chem. 78, 2315–2317 (1974). | 76ANT/CAR2 | (1976).
Anthoney, M.E., Carson, A.S., and Laye, P.G., J. | | 75AMB/COM | Ambrose, D., Connett, J.E., Green, J.H.S., Hales, J.L., Head, A.J., and Martin, J.F., J. Chem. Thermo- | 76ARV/FAL | Chem. Soc., Perkin II, 1032–1036 (1976).
Arvidsson, K., Falk, B., and Sunner, S., Chem. Scr. 10, | | 75AND/COU | dynam. 7, 1143–1157 (1975). Andon, R.J.L., Counsell, J.F., Lee, D.A., and Martin, | 76BEN | 193-200 (1976). Benson, S.W., "Thermochemical Kinetics", Second | | 75AND/MAR | J.F., J. Chem. Thermodynam. 7, 587-592 (1975).
Andon, R.J.L., and Martin, J.F., J. Chem. Thermody- | 76COL/ROU | Edition, (J. Wiley & Sons, Inc., New York, 1976).
Colomina, M., Roux, M.W., and Turrion, C., J. Chem. | | | nam. 7, 593-606 (1975). | 76CON/GIN | Thermodynam. 8, 869-872 (1976). | | 75BAR/PIL | Barnes, D.S., and Pilcher, G., J. Chem. Thermodynam. 7, 377–382 (1975). | | Conte, G., Gianni, P., Matteoli, E., Mengeri, M., Chim. Ind. (Milan) 58, 225 (1976). | | 75CAR/LAY | Carson, A.S., Laye, P.G., and Morris, H., J. Chem. Thermodynam. 7, 993-996 (1975). | 76ENG/MEL | Engel, P.S., Melaugh, R.A., Mansson, M., Timberlake, J.W., Garner, A.W., and Rossini, F.D., J. Chem. | | 75CHE/WIL | Chen, S.S., Wilhoit, R.C., and Zwolinski, B.J., J. Phys. & Chem. Ref. Data 4, 859-869 (1975). | 76FIN/MES | Thermodynam. 8, 607-621 (1976).
Finke, H.L., Messerly, J.F., and Douslin, D.R., J. | | 75CHA/ZWO | Chao, J., and Zwolinski, B.J., J. Phys. & Chem. Ref. Data 4, 251-261 (1975). | 76GEI/WOL | Chem. Thermodynam. 8, 411–423 (1976).
Geipel, G., and Wolf, G., Z. Physik. Chem. 257, 587– | | 75CON | Connett, J.E., J. Chem. Thermodynam. 7, 1159-1162 | | 593 (1976). | | 75FEN/HAR | (1975). Fenwick, J.O., Harrop, D., and Head, A.J., J. Chem. | 76GOO | Good, W.D., J. Chem. Thermodynam. 8 , 67–71 (1976). | | 75GOO | Thermodynam. 7, 943–954 (1975).
Good, W.D., J. Chem. Thermodynam. 7, 49–59 | 76GOO/LEE | Good, W.D., and Lee, S.H., J. Chem. Thermodynam. 8 , 643–650 (1976). | | 75GOO/MES | (1975).
Good, W.D., Messerly, J.F., Osborn, A.G., and | 76KOZ/TIM | Kozina, M.P., Timofeeva, L.P., Gal'chenko, G.L., Gvozdeva, E.A., and Cherednichenko, V.M., Ter- | | /5000/INES | Douslin, D.R., J. Chem. Thermodynam. 7, 285-291 | 7/DEI | modin. Org. Soedin. (5), 9-11 (1976). | | 75KOZ/BYC | (1975).
Kozina, M.P., Bychikhina, L.V., Gal'chenko, G.L., Or- | 76PEL
76ROS | Pella, P.A., Anal. Chem. 48 , 1634–1637 (1976). Rossini, F.D., J. Chem. Thermodynam. 8 , 651–655 | | | dubadi, M., Belikova, N.A., and Plate, A.F., Zhur. Fiz. Khim. 49, 242–244 (1975). | 76STR | (1976).
Stridh, G., J. Chem. Thermodynam. 8 , 193–194 (1976). | | 75KUD/KUD | Kudchadker, S.A., and Kudchadker, A.P., Thermochim. Acta 12, 432-437 (1975). | 76STR2
76STR3 | Stridh, G., J. Chem. Thermodynam. 8 , 895–899 (1976). Stridh, G., J. Chem. Thermodynam. 8 , 901–906 (1976). | | 75LEB/MIR | Lebedev, V.P., Miroshnichenko, E.A., Matyushin, | 77CAR/LAY | Carson, A.S., Laye, P.G., and Yurekli, M., J. Chem. | | | Yu.N., Larionov, V.P., Romanov, V.S., Bukolov, Yu.E., Denisov, G.M., Balepin, A.A., and Lebedev, | 77FIN/MES | Thermodynam. 9, 827–829 (1977). Finke, H.L., Messerly, J.F., Lee, S.H., Osborn, A.G., | | 75LEB/TSV | Yu.A., Zhur. Fiz. Khim. 49, 1928–1932 (1975).
Lebedev, B.V., Tsvetkova, L.Ya., Kiparisova, E.G., | | and Douslin, D.R., J. Chem. Thermodynam. 9, 937–956 (1977). | | 75MAS/SCO | and Lebedev, N.K., Zhur. Fiz. Khim. 49, 2152 (1975).
Masi, J.F., and Scott, R.B., J. Res. Nat. Bur. Stan- | 77HAI/SUG | Haida, O., Suga, H., and Seki, S., J. Chem. Thermodynam. 9, 1133–1148 (1977). | | | dards 79A, 619-628 (1975). | 77HAI/SUG2 | Haida, O., Suga, H., and Seki, S., Bull. Chem. Soc. | | 75MES/FIN | Messerly, J.F., Finke, H.L., Osborn, A.G., and Douslin, D.R., J. Chem. Thermodynam. 7, 1029–1046 (1975). | 77KOR/VAS | Japan 50, 802–809 (1977).
Korkhov, A.D., and Vasil'ev, I.A., Termodin. Org.
Soedin. (6), 34–37 (1977). | | 75MOS/DEK | Mosselman, C., and Dekker, H., J. Chem. Soc., Faraday Trans. I, 71, 417-424 (1975). | 77KRE/PRI | Krech, M.J., Price, S.J.W., and Sapiano, H.J., Canad. J. Chem. 55, 4222–4226 (1977). | | 75MOS/PRI | Moselhy, G.M., and Pritchard, H.O., J. Chem. Thermodynam. 7, 977–982 (1975). | 77KUP/SHI | Kupreev, A.I., and Shimonaev, G.S., Zhur. Fiz. Khim. 51, 1403–1405 (1977). | | 75NIC/WAD | Nichols, N., and Wadso, I., J. Chem. Thermodynam. 7, 329–336 (1975). | 77LUR/BEN | Luria, M., and Benson, S.W., J. Chem. Eng. Data 22, 90-100 (1977). | | 75PAR/STE | Parker, W., Steele, W.V., Stirling, W., and Watt, I., J. | 77MAN/SEL | Mansson, M., Sellers, P., Stridh, G., and Sunner, S., J. | | 75PEP/LEB | Chem. Thermodynam. 7, 795–802 (1975).
Pepekin, V.I., Lebedev, V.P., Balepin, A.A., and | 77NAB/SAB | Chem. Thermodynam. 9, 91–97 (1977). Nabivian, M., Sabbah, R., Chastel, R., Laffitte, M., J. | | | Lebedev, Yu.A., Doklady Akad. Nauk SSSR 221, 1118–1121 (1975). | 77NGA/SAB | Chim. Phys. Phys. Chim. Biol. 74, 115–126 (1977).
Ngauv, S.N., and Sabbah, R., Thermochim. Acta 20, | | 75RAK/GUT | Rakhmenkulov, S.S., Gutov, S.A., and Paukov, I.E., | | 371–380 (1977). | Zhur. Fiz. Khim. 49, 2722 (1975). | 77PED/RYL | Pedley, J.B., and Rylance, J., "Sussex - Computer
Analysed Thermochemical Data: Organic and | 78STE2 | Steele, W.V., J. Chem. Thermodynam. 10, 445-452 (1978). | |--------------------
---|------------|--| | | Organometallic Compounds", (University of Sussex, School of Molecular Sciences, Falmer, Brighton, U.K., | 78STE3 | Steele, W.V., J. Chem. Thermodynam. 10, 585-590 (1978). | | 77PEL | 1977). Pella, P.A., J. Chem. Thermodynam. 9, 301-305 | 78STE4 | Steele, W.V., J. Chem. Thermodynam. 10, 919-927 (1978). | | 77SAB/LAF | (1977).
Sabbah, R., and Laffitte, M., J. Chem. Thermodynam. | 79FUC | Fuchs, R., J. Chem. Thermodynam. 11, 959-961 (1979). | | 77SCH/PET | 9, 1107-1108 (1977).
Schulze, FW., Petrick, HJ., and Cammenga, H.K., | 79FUC/PEA | Fuchs, R., and Peacock, L.A., Canad. J. Chem. 57, 2302-2304 (1979). | | | Z. Physik. Chem. [NF] 107, 1-19 (1977).
Shaw, R., Golden, D.M., and Benson, S.W., J. Phys. | 79GOO/SMI | Good, W.D., and Smith, N.K., J. Chem. Thermodynam. 11, 111-118 (1979). | | 77SHA/GOL | Chem. 81, 1716–1729 (1977). Stein, S.E., Golden, D.M., and Benson, S.W., J. Phys. | 79KRU/OON | de Kruif, C.F., and Oonk, H.A.J., J. Chem. Thermodynam. 11, 287–290 (1979). | | 77STE/GOL | Chem. 81, 314–317 (1977). Stridh, G., Sunner, S., and Svensson, Ch., J. Chem. | 79NIS/BAB | Nistratov, V.P., Babinkov, A.G., Shvetsova, K.G., and Lapteva, S.A., Termodin. Org. Soedin. (8), 33–36 | | 77STR/SUN | Thermodynam. 9, 1005–1010 (1977). Varushchenko, R.M., Gal'chenko, G.L., and | 79PRI/SAP | (1979). Price, S.J.W., and Sapiano, H.J., Canad. J. Chem. 57, | | 77VAR/GAL | Medvedev, V.A., Zhur. Fiz. Khim. 51, 992-996 (1977). | | 685–688 (1979). | | 77VOR/PRI | Vorob'ev, A.F., Privalova, N.M., and Rekharskii, M.V., Zhur. Fiz. Khim. 51, 5894-5900 (1977). | 79PRI/SAP2 | Price, S.J.W., and Sapiano, H.J., Canad. J. Chem. 57, 1468–1470 (1979). | | 78ARO/STE | Arora, M., and Steele, W.V., J. Chem. Thermodynam. 10, 403–407 (1978). | 79RIC/SAV | Richardson, M.J., and Savill, N.G., Thermochim. Acta 30, 327–337 (1979). | | 78BEN
78CHI/SHE | Benson, S.W., Chem. Rev. 78, 23–35 (1978).
Chickos, J.S., Sherwood, D.E., Jr., and Jug, K., J. Org. | 79ROG/DAG | Rogers, D.W., Dagdagan, O.A., and Allinger, N.L., J. Am. Chem. Soc. 101, 671-676 (1979). | | 78COD/REC | Chem. 43, 1146-1150 (1978). CODATA Recommended Values for Thermodynam- | 79SAB | Sabbah, R., Bull. Soc. Chim. France Pt. 1, (9–10), I-434–I-437 (1979). | | 78COL/JIM | ics 1977, J. Chem. Thermodynam. 10, 903–906 (1978). Colomina, M., Jimenez, P., Roux, M.V., and Turrion, | 79STE | Steele, W.V., J. Chem. Thermodynam. 11, 1185–1188 (1979). | | 78COR/PER | C., J. Chem. Thermodynam. 10, 661-665 (1978).
Corbally, R.P., Perkins, M.J., Carson, A.S., Laye, | 79SUN/MAN | Sunner, S., and Mansson, M., Editors, Combustion Calorimetry, Volume 1 (Pergamon Press, Oxford, | | | P.G., and Steele, W.V., J. Chem. Soc., Chem. Commun. 18, 778-779 (1978). | 79SUN/SVE | New York, Toronto, Sydney, Paris, Frankfurt, 1979). Sunner, S., Svensson, C., and Zelepuga, A.S., J. Chem. | | 78CUN/PAL | Cundall, R.B., Palmer, T.F., and Wood, C.E.C., Trans. J. Chem. Soc., Faraday Trans. I, 74, 1339–1345 | 79SVE | Thermodynam. 11, 491–495 (1979).
Svensson, C., J. Chem. Thermodynam. 11, 593–596 | | 78ENG/MON | (1978).
Engel, P.S., Montgomery, R.L., Mansson, M., Leck- | 79VIS/SOM | (1979). de Visser, C., and Somsen, G., J. Solution Chem. 8, | | | onby, R.A., Foyt, H.L., and Rossini, F.D., J. Chem. Thermodynam. 10, 205-211 (1978). | 79WIB/SQU | 593-600 (1979). Wiberg, K.B., and Squires, R.R., J. Am. Chem. Soc. | | 78FEN/HAR | Fenwick, J.O., Harrop, D., and Head, A.J., J. Chem. Thermodynam. 10, 687-690 (1978). | 80DEK/SUG | 101, 5512-5515 (1979).
Nakamura, N., Suga, H., and Seki, S., Bull. Chem. | | 78FUC/PEA | Fuchs, R., and Peabody, L.A., Canad. J. Chem. 56, 2493–2498 (1978). | 80KRU | Soc. Japan 53, 2755–2761 (1980).
De Kruif, C.G., J. Chem. Thermodynam. 12, 243–248 | | 78GOO | Good, W.D., J. Chem. Thermodynam. 10, 553-558 (1978). | 80MAJ/WAG | (1980).
Majer, V., Wagner, Z., Svoboda, V., and Cadek, V., J. | | 78HAR/HEA | Harrop, D. and Head, A.J., J. Chem. Thermodynam. 10 , 705-706 (1978). | 80NIS/SAK | Chem. Thermodynam. 12, 387-391 (1980).
Nishiyama, Sakiyama, N., Seki, S., Horita, H., Otsubo, | | 78KIS/SUG | Kishimoto, K., Suga, H., and Seki, S., Bull. Chem. Soc. Japan 51, 1691–1696 (1978). | | T., and Misumi, S., Bull. Chem. Soc. Japan 53, 869-877 (1980). | | 78LEB/RAB | Lebedev, B.V., Rabinovich, I.B., Milov, V.I., and Litagov, V.Ya., J. Chem. Thermodynam. 10, 321-329 | 80SAB/SKO | Sabbah, R., and Skoulika, S., Thermochim. Acta 36, 179–187 (1980). | | 78MIL | (1978).
Mills, K.C., Thermochim. Acta 23, 390–392 (1978). | 80SMI/STE | Smith, N.K., Stewart, R.C., Jr., Osborn, A.G., and Scott, D.W., J. Chem. Thermodynam. 12, 919-926 | | 78MON/ENG | Montgomery, R.L., Engel, P.S., Leckonby, R.A., and Rossini, F.D., J. Chem. Eng. Data 23, 129-133 (178). | 80WON/WES | (1980).
Wong, WK., and Westrum, E.F., Jr., Mol. Cryst. Liq. | | 78MON/ROS | Montgomery, R.L., and Rossini, F.D., J. Chem. Eng. Data 23, 125-129 (1978). | 81BYS | Cryst. 61, 207-228 (1980).
Bystrom, K., J. Chem. Thermodynam. 13, 139-145 | | 78SAB/LAF | Sabbah, R., and Laffitte, M., J. Chem. Thermodynam.
10, 101-102 (1978). | 81FIN/MES | (1981).
Finke, H.L., Messerly, J.F., and Lee-Bechtold, S.H., J. | | 78SAB/LAF2 | Sabbah, R., and Laffitte, M., Thermochim. Acta 23, 192–195 (1978). | 81KOL/KOS | Chem. Thermodynam. 13, 245-355 (1981).
Kolesov, V.P., Kosarukina, E.A., Zhogin, D.Yu., | | 78SAB/LAF3 | Sabbah, R., and Laffitte, M. Thermochim. Acta 23, 196-198 (1978). | | Poloznikova, M.E., and Pentin, Yu.A., J. Chem. Thermodynam. 13, 115–129 (1981). | | 78SHA | Shaw, R., Chapter 3, pp. 69–73, Thermochemistry of Acetylenes, in The Chemistry of the Carbon-Carbon | 81KOZ/TIM | Kozina, M.P., Timofeeva, L.P., Gal'chenko, G.L., Skvortsov, I.M., and Antipova, I.V., Zhur. Obshch. | | | Triple Bond, S. Patai, Editor, Part 1, (J. Wiley and Sons, 1978). | 81PLA/SIM | Khim. 51, 451–457 (1981). Platonov, V.A., Simulin, Yu.A., and Dzhagatspanyan, | | 78STE | Steele, W.V., J. Chem. Thermodynam. 10, 441-444 (1978). | OII DAGINI | R.V., Zhur. Fiz. Khim. 55, 2132–2134 (1981). | | | | | | | 81TRO/NED | Trofimov, B.A., Nedolya, N.A., Lebedev, N.D., Ryadnenko, V.L., Masalitinova, T.N., Dobychin, S.I., | | Izv. Akad. Nauk SSSR, Ser. Khim., (4), 779-787 (1984). | |--------------|---|---------------|--| | | Zacheslavskaya, R.Kh., and Petrov, G.N., Izvest. Akad. Nauk SSSR, Ser. Khim. (4), 751-753 (1981). | 84RIB/RIB | Ribeiro Da Silva, M.D.M.C., and Ribeiro Da Silva, M.A.V., J. Chem. Thermodynam. 16, 1149-1155 | | 82BYS | Bystrom, K., J. Chem. Thermodynam. 14, 865-870 | 9437 A C /DET | (1984). | | 82DYA/VAS | (1982).
D'yakova, G.N., and Vasil'ev, I.A., Termodin. Org. | 84VAS/PET | Vasil'ev, I.A., and Petrov, V.M., "Thermodynamic Properties of Oxygen-Containing Organic Com- | | 82FUC/HAL | Soedin. 91–93 (1982).
Fuchs, R., Hallman, J.H., and Perlman, M.O., Canad. | | pounds", Handbook, Leningrad, (Khimiya Leningrad-
skoe Soedinenii), 240pp., (1984). | | 82FUR/SAK | J. Chem. 60 , 1832–1835 (1982).
Furukawa, J., Sakiyama, M., Seki, S., Saito, Y., and | 85LIA/KAR | Lias, S.G., Karpas, Z., and Liebman, J.F., J. Am. Chem. Soc. 107, 6089-6096 (1985). | | 021 OK/SAK | Kusano, K., Bull. Chem. Soc. Japan 55, 3329-3330 | 85LIA/WIL | Lianez, A., Wilhelm, E., Roux-Desgranges, G., and | | 82GRO/ING | (1982).
Grolier, JP.E., Inglese, A., and Wilhelm, E., J. | | Grolier, JP.E., J. Chem. Thermodynam. 17, 1153–1161 (1961). | | 82KOS/ZHO | Chem. Thermodynam. 14, 523-529 (1982).
Kosarukina, E.A., Zhogin, D.Yu., Kolesov, V.P., | 85MAJ/SVO | Majer, V., and Svoboda, V., Enthalpies of Vaporization of Organic Compounds", 300pp., (Blackwell Sci- | | | Kuramshina, G.M., Pentin, Yu.A., Izmest'ev, I.V., and Danilov, A.V., Zhur. Fiz. Khim. 56, 1892–1896 (1982). | 85PLA/SIM | entific Publishers, Oxford, 1985). Platonov, V.A., Simulin, Yu.N., and Rozenberg, | | 82MAR/AND | Martin, J.F., and Andon, R.J.L., J. Chem. Thermody- | | M.M., Zhur. Fiz. Khim. 59, 1378-1383 (1985). | | 82PAP/KOL | nam. 14, 679–688 (1982).
Papina, T.S., and Kolesov, V.P., Zhur. Fiz. Khim. 56, | 85WIL/CHA | Wilhoit, R.C., Chao, J., and Hall, K.R., J. Phys. & Chem. Ref. Data 14, 1–175 (1985). | | 82POE/FAN | 1108 (1982). Poeti, G., Fanelli, E., and Braghetti, M., J. Therm. | 86CHA/HAL | Chao, J., Hall, K.R., Marsh, K.N., and Wilhoit, R.C., J. Phys. & Chem. Ref. Data 15, 1369–1436 (1986). | | | Anal. 24, 77–84 (1982). | 86EMO/NAU | Emons, H.H., Naumann, R., and Jahn, K., Ther- | | 82SCH/MIL | Schaake, R.C.F., van Miltenburg, J.C., and de Kruif, C.G., J. Chem. Thermodynam. 14, 763–769 (1982). | 86JIM/ROM | mochim. Acta 104, 127–137 (1986).
Jimenez, E., Romani, L., Paz Andrade, M.I., Roux- | | 82SCH/MIL2 | Schaake, R.C.F., van Miltenburg, J.C., and de Kruif, C.G., J. Chem. Thermodynam. 14, 771–778 (1982). | | Desgranges, G., and Grolier, JP. E., J. Solution Chem. 15, 879–890 (1986). | | 82SUR/SAI | Suradi, S., El Saiad, N., Pilcher, G., and Skinner, H.A., J. Chem. Thermodynam. 14, 45-50 (1982). | 86KIR/ACR | Kirchner, J.J., Acree, W.A., Jr., Pilcher, G., and Li
Shaofeng, J. Chem. Thermodynam. 18, 793-799 | | 82WAG/EVA | Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, | 96V07/DAI | (1986). | | | R.H., Halow, I., Bailey, S.M., Churney, K.L., and Nuttall, R.L., J. Phys. & Chem. Ref. Data 11, Supplement | 86KOZ/DAL | Kozyro, A.A., Dalidovich, S.V., and Krasulin, A.P., Zhur. Prikad. Khim. 59, 1456–1459 (1986). | | 82ZAR | No. 2, 392 pp., (1982). Zaripov, Z.I., Teplomassoobmen Teplofiz. Svoistva | 86NIL/WAD | Nilsson, SO., and Wadso, I., J.
Chem. Thermodynam. 18, 1125–1133 (1986). | | 83AN/MAN | Veshchestv 73–78 (1982).
An, Xu-wu, and Mansson, M., J. Chem. Thermody- | 86PED/NAY | Pedley, J.B., Naylor, R.D., and Kirby, S.P., "Thermochemical Data of Organic Compounds", Second Edi- | | | nam. 15, 287–293 (1983). | | tion, (Chapman and Hall, London and New York, | | 83BYS | Bystrom, K., J. Computational Chem. 4, 308-312 (1983). | 86TRC | 1986). Thermodynamics Research Center (TRC) Thermody- | | 83CAL | Calhoun, W.C., J. Chem. Eng. Data 28, 146-148 (1983). | | namic Tables, Hydrocarbons, K.N. Marsh, Director (TEES, Texas A & M University System, College Sta- | | 83CHA/HAL | Chao, J., Hall, K.R., and Yao, J.M., Thermochim. Acta 64, 285-284 (1983). | 86TRC2 | tion, TX, 1986), Volumes I-XI. Thermodynamics Research Center (TRC) Thermody- | | 83DAP/DEL | D'Aprano, A., DeLisa, R., and Donato, D.I., J. Solu- | 501RC2 | namic Tables, Non-Hydrocarbons, K.N. Marsh, Direc- | | 83DEK/VAN | tion Chem. 12, 383–400 (1983).
DeKruif, C.G., Van Miltenburg, J.C., and Blok, J.G., | | tor, (TEES, Texas A & M University System, College Station, TX, 1986), Volumes I-VIII. | | 83DEW/DEK | J. Chem. Thermodynam. 15, 129–136 (1983).
DeWit, H.G.M., DeKruif, C.G., and Van Miltenburg, | 87FER/PIL | Ferrao, M.L.C.C.H., and Pilcher, G., J. Chem. Thermodynam. 19, 543-548 (1987). | | • | J.C., J. Chem. Thermodynam. 15, 891-902 (1983).
D'yakova, G.N., Abstr. from Diss., Leningrad State | 87JIM/ROU | Jimenez, P., Roux, M.V., Turrion, C., and Gomis, F., | | 83DYA | University, p.16, (1983). | 87KUL/KIP | J. Chem. Thermodynam. 19, 985–992 (1987).
Kulagina, T.G., and Kiparisova, E.G., Zhur. Fiz. | | 83FRE/GUS | Frenkel', M.L., Gusev, E.A., and Kabo, G. Ya., Zhur. Priklad. Khim. 56 , 212–214 (1983). | 87MES/TOD | Khim. 61, 506–508 (1987).
Messerly, J.F., Todd, S.S., Finke, H.L., and Gammon, | | 83LEB/YEV | Lebedev, B.V., and Yevstropov, A.A., J. Chem. Ther-
modynam. 15, 115-128 (1983). | 87MIR/KOR | B.E., NIPER Report 83, 37pp. (1987).
Miroshnichenko, E.A., Korchatova, L.I., Korsunskii, | | 83PLA/SIM | Platonov, V.A., and Simulin, Yu.N., Zhur. Fiz. Khim. | 0,,,,,,,,,, | B.L., Fedorov, B.S., Orlov, Yu. D., Eremenko, L.T., | | 84DOM/EVA | 57 , 1387–1391 (1983). Domalski, E.S., Evans, W.H., and Hearing, E.D., J. | | Lebedev, Yu. A., and Dubovitskii, F.I., Doklady Akad. Nauk SSSR 295, 419–423 (1987). | | | Phys. & Chem. Ref. Data 13, Supplement No. 1, 286 pp. (1984). | 87SAB/ANT | Sabbah, R., Antipine, I., Coten, M., and Davy, L., Thermochim. Acta 115, 153-165 (1987). | | 84LEB/BYK | Lebedev, B.V., Bykova, T.A., Kiparisova, E.G.,
Pankratov, V.A., Korshak, V.V., Laktionov, V.M., | 87SIM/KAB | Simirsky, V.V., Kabo, G.J., and Frenkel, M.L., J. Chem. Thermodynam, 19, 1121-1127 (1987). | | 0411110 0000 | Zhur. Obshch. Khim. 54, 417-424 (1984). | 87ZAB/HYN | Zabransky, M., Hynek, V., Finkeova-Hastabova, J., | | 84NUR/BER | Nurakhmetov, N.N., Beremzhanov, B.A., Abramova, G.V., and Lebedev, B.V., Probl. Kalorim. Khim. Ter- | | and Vesely, F., Coll. Czech. Chem. Comm. 52 , 251–256 (1987). | | 84RAB/KAR | modin. Dokl. Vses. Konf. 10th, 2, 460-642 (1984).
Rabinovich, I.B., Karyakin, N.V., Dzharimova, E.S., | 88BAS/NIL | Bastos, M., Nilson, SO., Ribeiro Da Silva, M.M.C., Ribeiro Da Silva, M.A.V., and Wadso, I., J. Chem. | | | Siling, S.A., Ponomarev, I.I., and Vinogradova, S.V., | | Thermodynam. 20, 1353–1359 (1988). | | | | | | drocarbon Compounds, Version 1.0 (NIST Standard Domalski, E.S., and Hearing, E.D., J. Phys. & Chem. 88DOM/HEA Reference Database 18, NIST/SRDP, June 1990). Ref. Data 17, 1637-1678 (1988). Kabo, G.Ya., Miroshnichenko, E.A., Frenkel', M.L., Imamura, A., Murata, S., and Sakiyama, M., J. Chem. 90KAB/MIR 88IMA/MUR Kozyro, A.A., Simirskii, V.V., Krasulin, A.P., Thermodynam. 20, 389-396 (1988). Vorob'eva, V.P., and Lebedev, Yu.A., Izvest. Akad. Kabo, G.J., Yursha, I.A., Frenkel, M.L., Poleshchuk, 88KAB/YUR P.A., Fedoseenko, V.I., and Ladutko, A.I., J. Chem. Nauk SSSR, Ser. Khim. (4), 750-755 (1990). Thermodynam. 20, 429-437 (1988). 90KAR/GUT Karpenko, N.A., Gutner, N.M., and Ryadnenko, V.L., Lebedev. B.V., and Vasil'ev, V.G., Zhur. Fiz. Khim. and Timofeeva, V.I., Zhur. Priklad. Khim. 63, 220-222 88LEB/VAS 62, 3099-3102 (1988). Knauth, P., and Sabbah, R., J. Chem. Thermodynam. Li, S. and Pilcher, G., J. Chem. Thermodynam. 20, 90KNA/SAB 88LI/PIL 463-465 (1988). 21, 203-210 (1990). 90KOZ/SIM Kozyro, A.A., Simirskii, V.V., Kabo, G.Ya., Frenkel', Lushnikov, V.N., Rubstov, Yu.I., Eremenko, L.T., and 88LUS/RUB M.L., Krasulin, A.P., Sevruk, V.M., and Sokolov, Korolev, A.M., Zhur. Fiz. Khim. 62, 1209-1214 N.N., Zhur. Fiz. Khim. 64, 2360-2365 (1990). 88MES/TOD Messerly, J.F., Todd, S.S. Finke, H.L., Good, W.D., 90LEI/PIL Leitao, M.L.P., Pilcher, G., and Yang Meng-Yan, J. Chem. Thermodynam. 22, 885-891 (1990). and Gammon, B.E., J. Chem. Thermodynam. 20, 209-224 (1988). 90LEI/PIL2 Leitao, M.L.P., Pilcher, G., Acree, W.E., Jr., Miroshnichenko, E.A., Korchatova, L.I., Shelaputina, Zvaigzne, A.I., Tucker, S.A., and Ribeiro Da Silva, 88MIR/KOR V.P., Zyuz'kevich, S.A., and Lebedev, Yu. A., Izvest. M.D.M.C., J. Chem. Thermodynam. 22, 923-928 Akad. Nauk SSSR Ser. Khim. (9), 1988-1992 (1988). Ribeiro Da Silva, M.A.V., Ribeiro Da Silva, 90MEN/PIL Yang Meng-yan and Pilcher, G., J. Chem. Thermody-88RIB/RIB M.D.M.C., and Pilcher, G., J. Chem. Thermodynam. nam. 22, 893-898 (1990). 90MES/TOD Messerly, J.F., Todd, S.S., Finke, H.L., Lee-Bechtold, 20, 969-974 (1988). Rogers, D.W., and Dejroogruang, K., J. Chem. Ther-S.H., Guthrie, G.B., Steele, W.V., and Chirico, R.D., 88ROG/DEJ modynam. 20, 675-680 (1988). J. Chem. Thermodynam. 22, 1107-1128 (1990). Steele, W.V., Archer, D.G., Chirico, R.D., Collier, 90RIB/MAT Ribeiro Da Silva, M.A.V., Matos, M.A.R., and Monte, 88STE/ARC W.B., Hossenlopp, I.A., Nguyen, A., Smith, N.K., and M.J.S., J. Chem. Thermodynam. 22, 609-616 (1990). Steele, W.V., Chirico, R.D., Nguyen, A., Hossenlopp, Gammon, B.E., J. Chem. Thermodynam. 20, 1233-90STE/CHI 1264 (1988). I.A., and Smith, N.K., AIChE Symposium Series 86, 89ABB/JIM Abboud, J.-L.M., Jimenez, P., Roux, M.V., Turrion, (279), 138-154 (1990). C., and Lopez-Mardomingo, C., J. Chem. Thermody-90STE/JON Steele, W.V., and Jones, D.K., AIChE Symposium Series 86, (275), 64-72 (1990). nam, 21, 859-865 (1989). 89ACR/KIR Acree, W.E., Jr., Kirchner, J.J., and Tucker, S.A., J. 90ZAB/RUZ Zabransky, M., Ruzicka, V., Jr., and Majer, V., J. Chem. Thermodynam. 21, 443-448 (1989). Phys. & Chem. Ref. Data 19, 719-762 (1990). 89CHI/KNI Chirico, R.D., Knipmeyer, S.E., Nguyen, A., and 91CHI/KNI Chirico, R.D., Knipmeyer, S.E., Nguyen, A., and Steele, W.V., J. Chem. Thermodynam. 21, 1307-1331 Steele, W.V., J. Chem. Thermodynam. 23, 759-779 (1991).89COL/JIM Colomina, M., Jimenez, P., Roux, M.V., and Turrion, 91DEL/HEU DeLaeter, J.R., and Heumann, K.G., J. Phys. & C., J. Chem. Thermodynam. 21, 275-281 (1989). Chem. Ref. Data 20, 1313-1325 (1991). Cox, J.D., Wagman, D.D., and Medvedev, V.A., CO-91FRI/ING Friend, D.G., Ingham, H., and Ely, J.F., J. Phys. & 89COX/WAG DATA Key Values for Thermodynamics (Hemisphere Chem. Ref. Data 20, 275-347 (1991). Publ. Corp., New York, Washington, Philadelphia, 91RUZ/ZAB Ruzicka, V., Jr., Zabransky, M., and Majer, V., J. London, 1989). Phys. & Chem. Ref. Data 20, 405-444 (1991). Steele, W.V., Chirico, R.D., Nguyen, A., Hossenlopp, 89FRI/ELY Friend, D.G., Ely, J.F., and Ingham, H., J. Phys. & 91STE/CHI Chem. Ref. Data 18, 583-638 (1989). I.A., and Smith, N.K., DIPPR Data Series No. 1, 103-89KIR/CHU Kirklin, D.R., Churney, K.L., and Domalski, E.S., J. 134 (1991). Chem. Thermodynam. 21, 1105-1113 (1989). 91VAS/BOR Vasil'ev, V.P., Borodin, V.A., and Kopnishev, S.B., 89KNA/SAB Knauth, P., amd Sabbah, R., J. Chem. Thermodynam. Zhur. Fiz. Khim. 65, 1943-1945 (1991). 21, 203-210 (1989). 91VAS/BYK Vasil'ev, V.G., Bykova, T.A., and Lebedev, B.V., 89KNA/SAB2 Knauth, P., and Sabbah, R., J. Chem. Thermodynam. Zhur. Fiz. Khim. 65, 51-54 (1991). 21, 779-784 (1989). 92ACR/TUC Acree, W.E., Jr., Tucker, S.A., and Pilcher, G., J. 89ROG/DEJ Rogers, D.W., and Dejroongruang, K., J. Chem. Ther-Chem. Thermodynam. 24, 213-216 (1992). modynam. 21, 1115-1120 (1989). 92COH/BEN Cohen, N., and Benson, S.W., "The Thermochemistry 89STE/CHI Steele, W.V., Chirico, R.D., Nguyen, A., Hossenlopp, of alkanes and cycloalkanes", pages 215-287, Chem. I.A., and Smith, N.K., AIChE Symposium Series 85, Alkanes Cycloalkanes, edited by Patai, S., and Rappo-(271), 140-162 (1989). port, Zvi, (Wiley: Chichester, UK, 1992). 89VAS/LEB Vasil'ev, V.G., and Lebedev, B.V., Zhur. Obshch. 92DIA/DOM Diaz, E.L., Domalski, E.S., and Colbert, J.C., J. Chem. Khim. 59, 2415-2420 (1989). Thermodynam. 24, 1311-1318 (1992). 89VES/BAR Vesely, F., Barcal, P., Zabransky, M., and Svoboda, 92DIA/MIN Dias, A.R., Minas Da Piedade, M.E., Martinho V., Coll. Czech. Chem. Commun. 54, 602-607 (1989). Simoes, J.A., Simoni, J.A., Teixeira, C., Diogo, H.P., 90CHA/GAD Chao, J., Gadella, N.A.M., Gammon, B.E., Marsh, Yang, Meng-yan, and Pilcher, G., J. Chem. Thermo-K.N., Rodgers, A.S., Somayajulu, G.R., and Wilhoit, dynam. 24, 439-447 (1992). R.C., J. Phys. & Chem. Ref Data 19, 1547-1615 92RIB/REI Ribeiro Da Silva, Reis, A.M.M.V., Monte, M.J.S., (1990).Bartolo, M.M.S.S.F., and Rodrigues, J.A.R.G.O., J. 90DOM/HEA Domalski, E.S., and Hearing, E.D., J. Phys. & Chem. Chem. Thermodynam. 24, 653-659 (1992). Ref. Data 19, 881-1047 (1990). 90DOM/HEA2 Domalski, E.S., and Hearing, E.D., NIST Estimation of the Chemical Thermodynamic Properties for Organic Compound at 298.15 K Database. Part I. Hy- # Appendix 1. Groups Derived from Thermodynamic Data for a Single Compound as Its Source Groups which have emerged from a thermodynamic value for single compound and which are not cyclic structures are characterized by having residuals equal to zero and are listed below in Table 1–1. Cyclic compound which requires a ring strain correction and result in having zero residuals
are excuded from this list but can be found in Table 2. Also excluded from this list are any molecular corrections, such as the *cis* correction, *ortho*, *meta*, and *para* corrections, and corrections for functional groups on adjacent carbon atoms. Compounds which can be described by a single group and cannot be estimated by group additivity, such as methane, formaldehyde, acetonitrile, nitromethane, methyl chloride, etc., are also found in Table 2. TABLE 1-1. Groups derived from data on a single compound | Group | Source compound | |---|-----------------------------------| | C-(H)(C) ₂ (C _t) | 3-Methyl-1-butyne | | $C - (C)_2(C_1)_2$ | 3,3-Dimethylpenta-1,4-diyne | | C_d – $(C)(C_B)$ | α-Methylstyrene | | $C-(H)_2(C_d)(C_B)$ | 2-Propenylbenzene | | $C-(H)(C)(C_d)(C_B)$ | 1-Methyl-2-propenyl-benzene | | C-(O) ₃ (C) | 1,1,1-Trimethoxyethane | | CO-(H)(CO) | Glyoxal | | CO-(H)(C _d) | trans-2-Butenal | | $CO-(H)(C_B)$ | Benzaldehyde | | $CO-(C_p)(CO)$ | Benzil | | CO-(C)(CO) | Biacetyl | | $C-(C)_2(CN)_2$ | 2,2-Dimethylpropane-1,3-dinitrile | | $C-(C)_3(CN)$ | 2,2-Dimethylpropanenitrile | | $C-(C_B)_3(N_3)$ | Triphenylmethyl azide | | $C-(H)(C)_2(N_A)$ | Diisopropyldiazene | | C _B -(CNO) | 1,4-Benzodinitrile N-oxide | | $C-(H)_2(C_B)(NO_2)$ | Nitromethylbenzene | | $S-(H)(C_B)$ | Benzenethiol | | $C-(H)_2(C_B)(S)$ | Benzyl mercaptan | | $S-(C_B)_2$ | Diphenyl sulfide | | $S-(C_B)(S)$ | Diphenyl disulfide | | C-(C) ₃ (SO) | tert-Butyl ethyl sulfoxide | | SO_2 - $(C_d)_2$ | Divinyl sulfone | | SO_2 - $(C_B)_2$ | Diphenyl sulfone | | SO_2 - $(C_B)(SO_2)$ | Diphenyl disulfone | | CO-(C)(F) | Acctyl fluoridc | | C_{t} –(Cl) | 1-Chloropropyne | | $C-(H)_2(C_B)(Cl)$ | Benzyl chloride | | CO-(C)(Cl) | Acetyl chloride | | $CO-(C_B)(CI)$ | Benzoyl chloride | | C _t -(Br) | 1-Bromopropyne | | $C-(H)_2(C_B)(Br)$ | Benzyl bromide | | CO-(C)(Br) | Acetyl bromide | | C-(C) ₃ (I) | 2-Iodo-2-methylpropane | | C_{t} – (I) | 1-Iodopropyne | | $C-(H)_2(C_B)(I)$ | Benzyl iodide | | CO-(C)(I) | Acetyl Iodide | | C-(H)(C)(Cl)(F) | 1-Chloro-1-fluoroethane | | C-(H)(C)(Br)(Cl) | 1,2-Dibromo-1,2-dichloro-ethane | | $C-(C)(Br)(F)_2$ | 1,2-Dibromotetrafluoro-ethane | | C_d -(Cl)(F) | Chlorotrifluoroethylene | Appendix 2. Comparison of Literature Data for Enthalples and Entropies of Fusion and Enthalpies of Vaporization with the Estimated Differences for $[\Delta_i H^{\circ}(\text{liq}) - \Delta_i H^{\circ}(\text{g})], [\Delta_i H^{\circ}(\text{solid}) - \Delta_i H^{\circ}(\text{liq})], \text{ and } [S^{\circ}(\text{solid}) - S^{\circ}(\text{liq})], \text{ at 298.15 K}$ We have shown that internal consistency exists when comparisons are made between literature data for enthalpies and entropies of fusion and vaporization and the estimated differences for $[\Delta_i H^{\circ}(\text{liq}) - \Delta_i H^{\circ}(g)], [\Delta_i H^{\circ}(\text{solid}) - \Delta_i H^{\circ}(\text{liq})], \text{ and } [S^{\circ}(\text{solid}) - S^{\circ}(\text{liq})], \text{ at 298.15 K.}$ Tables 2-1, 2-2, and 2-3 compare recommended values for the standard enthalpy of vaporization at 298.15 K from 85MAJ/SVO, and differences between $[\Delta_t H^{\circ}(\text{liq}) - \Delta_t H^{\circ}(g)]$ from 86TRC and 69STU/WES with our estimated difference for $[\Delta_t H^{\circ}(\text{liq}) - \Delta_t H^{\circ}(g)]$ for *n*-alkanes, thiols, and alkyl sulfides. General agreement is observed, usually within less than 1.0 kJ mol⁻¹, and shows that $\Delta_{\text{vap}}H^{\circ} = [\Delta_t H^{\circ}(\text{liq}) - \Delta_t H^{\circ}(g)]$ provides a measure of internal consistency for group additivity as applied to these homologous series. Tables 2-4 and 2-5 compare literature data for 25 organic compounds with their enthalpies and entropies of fusion, corrected to 298.15 K, with our estimated differences for $[\Delta_t H^{\circ}(\text{solid}) - \Delta_t H^{\circ}(\text{liq})]$ and $[S^{\circ}(\text{solid}) - S^{\circ}(\text{liq})]$. Equations used to correct $\Delta_{\text{fus}}H^{\circ}$ and $\Delta_{\text{fus}}S^{\circ}$ from the melting temperature (T_{m}) to 298.15 K are: $$\Delta_{\text{fus}}H^{\circ}$$ at 298.15 K = $\Delta_{\text{fus}}H^{\circ}$ at $T_{\text{m}} + (\Delta C_{p})(298.15 - T_{\text{m}})$ $$\Delta_{\text{fus}}S^{\circ}$$ at 298.15 K = $\Delta_{\text{fus}}S^{\circ}$ at $T_{\text{m}} + (\Delta C_{p})\ln(298.15/T_{\text{m}})$, where ΔC_p is the difference between $C_p(\text{liq})$ and $C_p(\text{solid})$ over the temperature range from T_m to 298.15 K. Comparison of $\Delta_{\text{fus}}H^{\circ}$ corrected to 298.15 K with our estimated difference of $[\Delta_{\text{f}}H^{\circ}(\text{solid}) - \Delta_{\text{f}}H^{\circ}(\text{liq})]$ from the two columns on the right in Table 2–4 results in an average deviation of $\pm 2.7 \text{ kJ·mol}^{-1}$. A similar comparison of $\Delta_{\text{fus}}S^{\circ}$ corrected to 298.15 K with our estimated dif- ference of $[S^{\circ}(\text{solid}) - S^{\circ}(\text{liq})]$ from the two columns on the right in Table 2-5 results in an average deviation of $\pm 4.7 \text{ J·mol}^{-1} \cdot \text{K}^{-1}$. Table 2–6 gives a comparison of literature values for $\Delta_{\rm vap}H^{\circ}$ corrected to 298.15 K with our estimated difference of $[\Delta_i H^{\circ}({\rm liq}) \ \Delta_i H^{\circ}({\rm g})]$; the two columns on the right of Table 2–6 should be compared, which result in an average deviation of $\pm 1.6 \ {\rm kJ \cdot mol^{-1}}$. The equation used to correct data on $\Delta_{\rm vap}H^{\circ}$ at the boiling temperature $(T_{\rm b})$ to 298.15 K is: $$\Delta_{\text{vap}}H^{\circ}$$ at 298.15 K = $\Delta_{\text{vap}}H^{\circ}$ at $T_{\text{b}} + (\Delta C_{p})(298.15 - T_{\text{b}})$, where ΔC_p is the difference between C_p (liq) and C_p (g) over the temperature range from T_b to 298.15 K. Please note that our estimated $[S^{\circ}(g) - S^{\circ}(liq)]$ at 298.15 is not comparable to the entropy of vaporization corrected to 298.15 K because the former also contains conributions for the entropy of compression, $R \ln P$, and for the difference between the ideal and real gas entropies at 298.15 K. Although the heat capacity in the gas, liquid, and solid phases appears to have a linear character within a given phase at 298.15 K, the experimental heat capacity difference between the liquid/solid phases does not correlate well with the estimated $[C_p(\text{liq}) - C_p(\text{solid})]$ at 298.15 K for several reasons, such as: (1) the inexactness of extrapolation of ΔC_p at the melting or boiling temperatures to 298.15 K, especially if T_m or T_b is significantly far from 298.15 K, (2) premelting phenomena in the region before reaching T_m , (3) solid/solid phase or lambda transitions near T_m , (4) the non-linearity of heat capacity with temperature in the condensed phase, and (5) minima or maxima in the heat capacity between T_m and T_b for some organic liquids. Table 2-1. Comparison of literature data for $[\Delta_t H^{\circ}(\text{liq}) - \Delta_t H^{\circ}(g)]$ at 298.15 K and enthalpies of vaporization corrected to 298.15 K with estimated $[\Delta_t H^{\circ}(\text{liq}) - \Delta_t H^{\circ}(g)]$ for n-alkanes | n-Alkane | $\Delta_{\text{vap}}H^{\circ}$ (85MAJ/SVO) kJ·mol ⁻¹ | $\Delta_t H^{\circ} (1-g)^a$ (86TRC) kJ·mol ⁻¹ | $\Delta_{r}H^{\circ}(1-g)^{a}$
(69STU/WES)
kJ·mol ⁻¹ | $\Delta_l H^{\circ}(1-g)^a$
(this work)
kJ·mol ⁻¹ | |-------------|---|---|---|--| | Butane | 19.99 | 21.74 | 21.46 | 20.90 | | Pentane | 26.75 | 26.73 | 26.78 | 26.00 | | Hexane | 31.73 | 31.74 | 31.63 | 31.10 | | Heptane | 36.66 | 36.57 | 36.61 | 36.20 | | Octane | 41.53 | 41.51 | 41.51 | 41.30 | | Nonane | 46.43 | 46.44 | 46.44 | 46.40 | | Decane | 51.39 | 51.37 | 51.38 | 51.50 | | Undecane | 56.43 | 56.35 | 56.27 | 56.60 | | Dodecane | 61.51 | 61.30 | 60.67 | 61.70 | | Tridecane | 66.43 | 66.36 | 66.19 | 66.80 | | Tetradecane | 71.30 | 71.09 | 71.13 | 71.90 | | Pentadecane | 76.11 | 76.19 | 76.15 | 77.00 | | Hexadecane | 81.38 | 81.38 | 83.01 | 82.10 | | Heptadecane | 86.02 | 86.02 | 85.94 | 87.20 | | Octadecane | <u> </u> | 91.07 | 93.97 | 92.30 | $^{^{}a}\Delta_{f}H^{\circ}(1-g) = [\Delta_{f}H^{\circ}(1iq) - \Delta_{f}H^{\circ}(g)]$ Table 2-2. Comparison of literature data for $[\Delta_t H^{\circ}(\text{liq}) - \Delta_t H^{\circ}(g)]$ at 298.15 K and enthalpies of vaporization corrected to 298.15 K with estimated $[\Delta_t H^{\circ}(\text{liq}) - \Delta_t H^{\circ}(g)]$ for *n*-alkanethiols | Thiol | Δ _{vap} H°
(85MAJ/SVO)
kJ·mol ⁻¹ | $\begin{array}{c} \Delta_t H^{\circ}(1-g)^a \\ (86TRC) \\ kJ \cdot mol^{-1} \end{array}$ | $\Delta_l H^{\circ}(l-g)^a$
(69STU/WES)
kJ·mol ⁻¹ | $\Delta_t H^{\circ}(1-g)^a$
(this work)
kJ·mol ⁻¹ | |--------------|--|--|--|--| | Methanethiol | - | 23.80 | 23.81 | 23.93 | | Ethanethiol | 27.52 | 27.30 | 27.53 | 27.53 | | Propanethiol | 32.05 | 32.00 | 32.00 | 32.63 | | Butanethiol | 37.70 | 36.50 | 36.57 | 36.73 | | Pentanethiol | 41.26 | 42.00 | 41.13 | 42.83 | | Hexanethiol | · — | 45.80 | 46.61 | 47.93 | | Decanethiol | 65.48 | 65.50 | 65.10 | 68.33 | $^{^{}a}\Delta_{f}H^{\circ}(l-g) = [\Delta_{f}H^{\circ}(liq) - \Delta_{f}H^{\circ}(g)]$ TABLE 2-3. Comparison of literature data for $[\Delta_t H^*(\text{liq}) - \Delta_t H^*(g)]$ at 298.15 K and enthalples of vaporization corrected to 298.15 K with estimated $[\Delta_t H^*(\text{liq})
- \Delta_t H^*(g)]$ for alkyl sulfides | Sulfide | $\Delta_{\text{vap}}H^{\circ}$ (85MAJ/SVO) kJ·mol ⁻¹ | $\Delta_t H^{\circ}(I-g)$ (86TRC) kJ·mol ⁻¹ | $\Delta_t H^{\circ}(1-g)$
(69STU/WES)
kJ·mol ⁻¹ | $\Delta_t H^{\circ}(l-g)$
(this work)
$kJ \cdot mol^{-1}$ | |-------------------|---|--|--|---| | Dimethyl | 27.99 | 27.90 | 27.87 | 27.87 | | Methyl ethyl | 31.99 | 31.90 | 31.97 | 31.47 | | Methyl propyl | 36.31 | 36.30 | 36.28 | 36.57 | | Methyl n-butyl | 41.50 | 40.70 | 40.71 | 40.67 | | Methyl tert-butyl | 35.90 | 35.90 | 35.82 | 34.89 | | Methyl pentyl | 45.25 | 45.00 | 45.19 | 46.77 | | Diethyl | 35.88 | 35.90 | 35.86 | 35.07 | | Ethyl propyl | 40.01 | 40.10 | 40.08 | 40.17 | | Ethyl n-butyl | 45.25 | 45.20 | 45.10 | 45.27 | | Ethyl tert-butyl | _ | 39.90 | 39.33 | 38.48 | $^{^{}a}\Delta_{f}H^{\circ}(1-g) = [\Delta_{f}H^{\circ}(1-g) - \Delta_{f}H^{\circ}(g)]$ TABLE 2-4. Comparison of literature data for enthalpies of fusion with estimated $[\Delta_t H^{\circ}(\text{solid}) - \Delta_t H^{\circ}(\text{liq})]$ at 298.15 K | Compound | $\Delta_{ m fus} H^{ m o}$ at $T_{ m m}$ | Reference | $(\Delta C_p)(\Delta T)$ correction | Δ _{fus} Η°
298.15 K | $\Delta_t H^{\circ}(s-1)^a$
298.15 K | | |-------------------------|--|------------|-------------------------------------|---------------------------------|---|--| | | kJ·mol ⁻¹ | | kJ•mol ^{−1} | kJ·mol ⁻¹ | (this work)
kJ·mol ⁻¹ | | | Hexane | 13.08 | 46DOU/HUF | 5.15 | 18.23 | 12.98 | | | Heptane | 14.04 | 61HUF/GRO | 6.52 | 20.56 | 16.66 | | | 2,2,4-Trimethyl-pentane | 9.21 | 40PIT | 3.95 | 13.16 | 10.71 | | | Hexadecane | 53.36 | 54FIN/GRO | 0.50 | 53.86 | 49.78 | | | Octadecane | 60.48 | 57MES/GUT | -0.23 | 60.25 | 57.14 | | | Benzene | 9.87 | 48OLI/EAT | 0.06 | 9.93 | 9.78 | | | Toluene | 6.64 | 62SCO/GUT | 5.50 | 12.14 | 12.16 | | | Naphthalene | 18.23 | 57MCC/FIN | - 0.47 | 17.76 | 16.50 | | | Butanol | 9.37 | 65COU/HAL | 4.32 | 13.69 | 11.85 | | | Hexanol | 15.38 | 29KEL2 | 3.08 | 18.46 | 19.21 | | | Tetradecanol | 49.40 | 91STE/CHI | -0.77 | 48.63 | 48.65 | | | 1.6-Hexanediol | 22.60 | 91STE/CHI | -1.00 | 21.60 | 25.44 | | | Phenol | 11.51 | 63AND/COU | -1.03 | 10.48 | 9.04 | | | Diphenyl ether | 17.22 | 51FUR/GIN | -0.11 | 17.11 | 14.01 | | | Benzophenone | 18.19 | 83DEK/VAN | - 1.66 | 16.53 | 18.00 | | | Acetic acid | 11.72 | 82MAR/AND | 0.30 | 12.02 | -0.13 | | | Propionic acid | 10.66 | 82MAR/AND | 1.21 | 11.87 | 3.63 | | | Tetradecanoic acid | 45.10 | 82SCH/MIL2 | -0.67 | 44.43 | 44.11 | | | Hexadecanoic acid | 53.71 | 82SCH/MIL2 | - 0.86 | 52.85 | 51.47 | | | Benzoic acid | 18.00 | 51FUR/MCC | -5.64 | 12.36 | 12.01 | | | Aniline | 10.54 | 62HAT/HIL | 1.70 | 12.24 | 10.50 | | | Benzonitrile | 10.98 | 84LEB/BYK | 0.73 | 11.71 | 9.33 | | | Methyl phenyl sulfide | 14.84 | 74MES/FIN | 2.18 | 17.02 | 16.87 | | | Chlorobenzene | 9.56 | 375 TU | 1.28 | 10.84 | 7.95 | | | Bromobenzene | 10.70 | 75MAS/SCO | 1.76 | 12.46 | 10.80 | | ^a $\Delta_t H^{\circ}(s-1) = [\Delta_t H^{\circ}(solid) - \Delta_t H^{\circ}(liq)]$ TABLE 2-5. Comparison of literature data for entropies of fusion with estimated [S°(solid) S°(liq)] at 298.15 K | Compound | $\Delta_{\mathrm{fus}} S^{\circ}$ at T_{m} | Reference | $(\Delta C_p) \ln(T/T_{\rm m})$ | Δ _{fus} ς°
298.15 K | S°(s-l) _a
298.15 K | | |-------------------------|---|------------|---------------------------------|--------------------------------------|---|--| | | J·mol ⁻¹ ·K ⁻¹ | | J·mol-1·K-1 | J·mol ⁻¹ ·K ⁻¹ | (this work)
J·mol ⁻¹ ·K ⁻¹ | | | Hexane | 73.55 | 46DOU/HUF | 21.97 | 95.52 | 90.70 | | | Heptane | 76.90 | 61HUF/GRO | 27.64 | 104.54 | 100.07 | | | 2,2,4-Trimethyl-pentane | 55.56 | 40PIT | 17.51 | 73.07 | 69.96 | | | Hexadecane | 183.15 | 54FIN/GRO | 1.70 | 184.85 | 184.40 | | | Octadecane | 204.60 | 57MES/GUT | - 0.77 | 203.83 | 203.14 | | | Benzene | 35.40 | 48OLI/EAT | 0.21 | 35.61 | 36.72 | | | Toluene | 37.25 | 62SCO/GUT | 23.62 | 60.87 | 63.31 | | | Naphthalene | 51.57 | 57MCC/FIN | - 1.45 | 50.12 | 49.88 | | | Butanol | 50.79 | 65COU/HAL | 18.25 | 69.04 | 68.48 | | | Hexanol | 68.11 | 29KEL2 | 11.81 | 79.92 | 87.22 | | | Tetradecanol | 158.84 | 91STE/CHI | -2.52 | 156.32 | 162.18 | | | 1,6-Hexanediol | 71.75 | 91STE/CHI | -3.26 | 68.49 | 71.78 | | | Phenol | 36.66 | 63AND/COU | -3.36 | 33.30 | 33.69 | | | Diphenyl ether | 57.38 | 51FUR/GIN | -0.32 | 57.06 | 57.01 | | | Benzophenone | 56.67 | 83DEK/VAN | -4.11 | 52.56 | | | | Acetic acid | 40.46 | 82MAR/AND | 1.03 | 41.49 | 43.70 | | | Propionic acid | 42.19 | 82MAR/AND | 4.42 | 46.61 | 58.84 | | | Tetradecanoic acid | 137.79 | 82SCH/MIL2 | -2.15 | 135.64 | 161.91 | | | Hexadecanoic acid | 160.02 | 82SCH/MIL2 | - 2.71 | 157.31 | 180.65 | | | Benzoic acid | 45.51 | 51FUR/MCC | -16.36 | 29.15 | · — | | | Aniline | 39.46 | 62HAT/HIL | 6.02 | 45.48 | 45.45 | | | Benzonitrile | 42.16 | 84LEB/BYK | 2.62 | 44.78 | 44.90 | | | Methyl phenyl sulfide | 57.85 | 74MES/FIN | 7.88 | 65.73 | - | | | Chlorobenzene | 41.93 | 37STU | 4.90 | 46.83 | 42.70 | | | Bromobenzene | 44.15 | 75MAS/SCO | 6.54 | 50.69 | 51.00 | | $^{{}^{}a}S^{o}(s-1) = [S^{o}(solid) - S^{o}(liq)]$ # E. S. DOMALSKI AND E. D. HEARING TABLE 2-6. Comparison of literature data for enthalpies of vaporization with estimated $[\Delta_t H^o(\text{liq}) - \Delta_t H^o(g)]$ at 298.15 K | Compound | $\Delta_{ ext{vap}}H^{\circ}$ at $T_{ ext{b}}$ | Reference | $(\Delta C_p)(\Delta T)$ | Δ _{vap} H°
at 298 K | $\Delta_f H^\circ (1-g)^a$ at 298 K | | |---------------------------|--|------------|--------------------------|---------------------------------|-------------------------------------|--| | | kJ·mol ^{−1} | | kJ·mol⁻¹ | kJ·mol ⁻¹ | (this work)
kJ·mol ⁻¹ | | | Hexane | _ | 47OSB/GIN | <u> </u> | 31.54 | 31.10 | | | Heptane | · | 47OSB/GIN | <u> </u> | 36.54 | 36.20 | | | 2,2,4-Trimethyl-pentane | 31.00 | 40PIT | 4.24 | 35.24 | 36.26 | | | Hexadecane | _ | 72MOR | · | 81.38 | 82.10 | | | Octadecane | _ | 45PRO/ROS2 | _ | 90.88 | 92.30 | | | Benzene | - | 47OSB/GIN | <u> </u> | 33.84 | 33.90 | | | Toluene | . <u>-</u> | 45PRO/ROS2 | <u> </u> | 37.99 | 38.08 | | | Naphthalene ^b | _ | 63MIL | <u> </u> | 72.42 | 70.24 | | | Butanol | utana) | 66WAD2 | <u> </u> | 52.30 | 50.62 | | | Hexanol | | 66WAD2 | _ | 61.63 | 60.82 | | | Tetradecanol ^b | | 91STE/CHI | <u> </u> | 104.90 | 101.62 | | | 1,6-Hexanediol | | 91STE/CHI | - | 102.90 | 90.54 | | | Phenol ^b | 45.69 | 60AND/BID | 22.97 | 68.66 | 69.60 | | | Diphenyl ether | | 72MOR2 | _ | 65.98 | 65.83 | | | Benzophenone | _ | 83DEK/VAN | · | 76.68 | 75.50 | | | Acetic acid | 23.70 | 85MAJ/SVO | 27.90 | 51.60 | 48.82 | | | Propionic acid | | 85MAJ/SVO | - ' | 55.00 | 51.00 | | | Tetradecanoic acidb | 141.00 | 61DAV/MAL | · - | | 151.33 | | | Hexadecanoic acidb | 153.55 | 61DAV/MAL | - | - | 168.89 | | | Benzoic acid ^b | <u> </u> | 72MOR2 | - . | 89.50 | 91.60 | | | Aniline | 42.44 | 85MAJ/SVO | 13.39 | 55.83 | 55.70 | | | Benzonitrile | | 59EVA/SKI | · | 55.48 | 56.87 | | | Methyl phenyl sulfide | . , - | 72GOO2 | | 54.31 | 52.47 | | | Chlorobenzene | 35.19 | 85MAJ/SVO | 5.81 | 41.00 | 43.42 | | | Bromobenzene | _ | 85MAJ/SVO | | 41.31 | 44.70 | | $^{^{}a}\Delta_{t}H^{\circ}(s-1) = [\Delta_{t}H^{\circ}(solid) - \Delta_{t}H^{\circ}(liq)]$ $^{b}Sublimation (c/g)$ # Appendix 3. Comparison between Second-Order Group Additivity Approach (Benson) and the Extended Second-Order Group Additivity Approach (Pedley) A group-additivity scheme has been developed for the estimation of enthalpies of formation in the gas phase at 298.15 K and 101.325 kPa by J. B. Pedley, R. D. Naylor, and S. P. Kirby (86PED/NAY, Chapters 2, 3, and 4) which extends the molecular parameterization of an organic compound in contrast to the limited parameterization used by Benson (76BEN). The more comprehensive account of nearest- and next-to-nearest-neighbor interactions by 86PED/NAY is expected to lead to smaller differences between experimental and estimated values. Because of a higher degree of parameterization and specificity, the scheme becomes more complex. An example of the more comprehensive parameterization can be shown in an examination of the -CH₂- increment in hydrocarbons. The second-order approach of developed by Benson (76BEN) uses the notation: $C-(H)_2(C)_2$, which means that a carbon atom with two hydrogen atoms is also bonded to two other carbon atoms. No restriction is placed upon the kind of carbon atoms the -CH₂- is bonded to in the Benson scheme's notation and there is only one assigned value for a given property for the gas phase. For example, a value of -20.63 kJ/mol has been used for $\Delta_t H^\circ$ in the gas phase for C-(H)₂(C)₂ by 76BEN and also in this work. The group additivity estimation scheme developed by (86PED/NAY) allows one to specify the nearest and next-to-nearest neighbors in an explicit manner and, hence, has the quality of an extended second-order or third-order approach. The codes used by (86PED/NAY) are different than those used by Benson and are shown in Table 3–1. In Table 3–2, one observes that groups other than -CH₂- also have a significant number of extended parameters for their molecular description. Using the -CH₂- increment as an example, one finds that 86PED/ NAY uses the notation: 2(1 1) for -CH₂- and has assigned 20 possible choices to it for hydrocarbons for estimating the enthalpy of formation in the gas phase. The 20 choices specify discrete carbon
groups attached to the -CH₂- group and are shown in Table 3-3. Each of the discrete values for the -CH₂- has the intrinsic quality of accommodating the interactions between two- and threecentre groups, thus, accounting for their differences. Table 3-4 compares estimated values for the enthalpy of formation of 20 hydrocarbons consisting of some alkanes. alkenes, and alkynes in the gas phase, using the Pedley estimation scheme and using the one in this work developed by Benson and co-workers, with experimentally determined values. Also, provided are selected enthalpies of formation from the tables of thermodynamic properties of hydrocarbons and related compounds compiled in the Thermodynamics Research Center (TRC) at Texas A&M University (86TRC) for comparison with the experimental values used in this work. The difference between the $\Delta_t H^{\circ}$ expt'l and $\Delta_t H^\circ$ est'd from (86PED/NAY) and this work shows average deviations of 0.6 and 0.5 kJ/mol, respectively. We feel that a different set of 20 or more hydrocarbons would give about the same kind of average deviations. We conclude from Table 3-4 that the Pedley approach with extended parameterization of groups and group values shows about the same overall differences in the estimated enthalpies of formation when compared to those calculated in this work. Table 3–5 is similar to Table 3–4 except that alcohols, ethers, ketones, and acids form the basis of the comparison. In Table 3–5, the difference between the $\Delta_t H^\circ$ expt'l and $\Delta_t H^\circ$ est'd from 86PED/NAY and this work gives average deviations of 1.8 and 1.2 kJ/mol, respectively. Here again, in Table 3–5 the differences reflected in the average deviations suggest that about the same kind of general agreement between experimental and estimated $\Delta_t H^\circ$'s are found as a result of extended parameterization of groups and group values. The estimation method developed by (86PED/NAY) is clearly described, very systematic, and very scrupulous in its accounting of groups and group interactions. However, from the limited testing and comparisons which we have carried out, we do not see any significant improvement in the differences between experimental and estimated values for the enthalpies of formation in the gas phase. There are differences in the common base of comparison with respect to experimental values as listed in Tables 3–4 and 3–5, however, these tend to be generally small. We have retained any bias in the choice of experimental values used by 86PED/NAY and those used in this work. The selected values for $\Delta_t H^{\circ \circ}$ s from TRC (86TRC, 86TRC2) makes for another interesting comparison with both experimental and estimated values. Table 3-1. Group and group codes for aliphatic hydrocarbons and aliphatic oxygen compounds (86PED/NAY) | Group name | Group | Pedley code | |---------------------|-------------------|-------------| | methyl | - CH ₃ | 1 | | methylene | > CH ₂ | 2 | | tertiary C | > CH- | 3 | | quaternary C | >C< | 4 | | ethenic C | $=CH_2$ | 5 | | subst. ethenic C | = CH- | 6 | | acetylenic C | ≡CH | 7 | | subst. acetylenic C | ≡ C- | 8 | | allenic | = C = | 9 | | hydroxyl OH | - OH | O 1 | | ether O | >0 | O2 | | ketone CO | >CO | K2 | | acid COOH | - COOH | O1(K2) | Table 3-2. Group comparisons for aliphatic hydrocarbons and aliphatic organic oxygen compounds | Group | No. of g | | | | |--------------------|-------------|--------|-----------|--| | - | Benson | Pedley | This work | | | -CH ₃ | 1 | 1 | 1 | | | -CH ₂ - | 1 | 24 | 1 | | | -CH < | 1 | 19 | 1 | | | >C< | 1 | 14 | 1 | | | primary -OH | 1 | 4 | 1 | | | secondary -OH | 1 | 4 | 1 | | | tertiary -OH | 1 | 2 | 1 | | | ether O | 1 | 12 | 1 | | | ketone CO | 1 | 10 | 1 | | | acid -COOH | 2 | 4 | 2 | | | Corrections for: | | | | | | Alkane gauche | 1 | 0 | 0 | | | Alkene gauche | 1 | 0 | 0 | | | 1,4 repulsion | 0 | 0 | 1 | | | 1,5 repulsion | 1 | 0 | 1 | | | methyl group | | | | | | repulsion | 0 | 0 | 4 | | | alkene cis | 1 | 0 | 1 | | TABLE 3-3. Group specificity and values for bonding of -CH₂- to two carbon atoms in aliphatic hydrocarbons (86PED/NAY) | | | | |--|--|-------------------------| | Pedley
notation
for -CH ₂ - | specific group
equivalent | group value
(kJ/mol) | | 2(1 1) ^a | CH ₃ -CH ₂ -CH ₃ | - 20.90 | | 2(2 1) | -CH ₂ -CH ₂ -CH ₃ | - 20.80 | | 2(2 2) | -CH ₂ -CH ₂ -CH ₂ - | -20.80 | | 2(3 1) | > CH-CH ₂ -CH ₃ | -20.20 | | 2(3 2)b | > CH-CH ₂ -CH ₂ - | -20.10 | | 2(3 3) | > CH-CH ₂ -CH < | - 18.70 | | 2(4 1) | > C-CH₂-CH₃ | - 19.60 | | 2(4 2) | \rightarrow C-CH ₂ -CH ₂ - | -16.80 | | 2(4 3) | \Rightarrow C-CH ₂ -CH < | −7.50 | | 2(4 4) | > C-CH2-C ← | 4.00 | | 2(6 1) | = CH-CH ₂ -CH ₃ | -20.40 | | 2(6 2) | = CH-CH ₂ -CH ₂ - | -21.00 | | 2(6 3) | = CH-CH ₂ -CH < | -22.10 | | 2(6 4)° | = CH-CH ₂ -C ← | - 19.10 | | 2(6 6) | = CH-CH ₂ -CH $=$ | - 19.20 | | 2(7 1) | $= C - CH_2 - CH_3$ | - 19.60 | | 2(7 2) | $= C-CH_2-CH_2-$ | - 23.00 | | 2(7 3) | = C-CH ₂ -CH < | - 18.50 | | 2(7 4) | $= C - CH_2 - C \leftarrow$ | - 12.00 | | 2(9 1) | ≡ CCH ₂ CH ₃ | -20.30 | ^{*2(1 1)} means a methylene group (2) bonded to two methyl (1) groups. This group identifies propane explicitly. b2(3 2) means a methylene group (2) bonded to a tertiary carbon atom (3) and another methylene group (2), as in 2-methylpentane. ^{°2(6 4)} means a methylene group (2) bonded to a substituted ethenic group (6) and a quaternary carbon atom (4), as in 4,4-dimethylpentene-1. TABLE 3-4. Comparison of enthalpies of formation in the gas phase at 298.15 K (in kJ/mol) (alkanes, alkenes, alkynes) | Compound | $\Delta_t H^\circ \text{expt'l}$ (86PED/NAY) | $\Delta_i H^{\circ}$ expt'l (this work) | Δ _t H°selected (86TRC) | $\Delta_t H^\circ$ est'd (86PED/NAY) | $\Delta_t H^\circ$ est'd (this work) | |------------------------------|--|---|-----------------------------------|--------------------------------------|--------------------------------------| | ethane | -83.8 | -83.85 | -83.82 | -83.8 | - 84.52 | | pentane | - 146.9 | -146.82 | -146.76 | - 146.2 | - 146.41 | | 2-methylpentane | -174.8 | -174.77 | -174.55 | -174.4 | -173.73 | | 3-methylpentane | -172.1 | -172.09 | -171.97 | - 171.6 | - 171.47 | | 2,2-dimethyl-pentane | - 205.9 | -205.85 | -205.81 | -204.4 | -204.78 | | octane | - 208.6 | - 208.27 | - 208.75 | -208.6 | -208.30 | | 2-methylheptane | -215.4 | -215.35 | -215.35 | -216.0 | -214.99 | | decane | -249.5 | -249.66 | -249.46 | -250.2 | -249.56 | | dodecane | -289.7 | - 290.87 | -290.72 | -291.8 | - 290.82 | | hexadecane | -374.8 | -374.76 | -374.17 | -375.0 | -374.34 | | 1-butene | 0.1 | -0.54 | -0.54 | 0.1 | -0.50 | | 1-hexene | -43.5 | -41.51 | -41.5 | - 42.1 | - 41.76 | | trans-3-hexene | -54.4 | -53.89 | -52.3 | - 53.8 | - 53.39 | | trans-4,4-dimethyl-2-pentene | -88.8 | -88.78 | -90.2 | -87.9 | - 87.95 | | 1-octene | -81.4 | -82.93 | -83.6 | -83.7 | - 83.02 | | 2-methyl-3-ethyl-1-pentene | - 100.3 | -100.29 | - 100.7 | -100.3 | - 101.47 | | 1-decene | - 123.4 | - 123.34 | - 124.7 | - 125.3 | -124.28 | | 1-hexadecene | -248.5 | -249.16 | -248.6 | -250.1 | -248.06 | | 1-butyne | 165.2 | 165.23 | 165.23 | 165.2 | 166.64 | | 2-butyne | 145.7 | 145.14 | 145.9 | 145.6 | 145.68 | | average deviation | 0.55 | 0.47 | • | | | Table 3-5. Comparison of enthalpies of formation in the gas phase at 298.15 K (in kJ/mol) (alcohols, ethers, ketones, acids) | Compound | $\Delta_t H^{\circ} \text{expt'l}$ (86PED/NAY) | $\Delta_t H^\circ \text{expt'l}$ (this work) | $\Delta_t H^{\circ}$ selected (86TRC2) | $\Delta_t H^{\circ}$ est'd (86PED/NAY) | $\Delta_t H^{\circ}$ est'd (this work) | |----------------------|--|--|--|--|--| | 1-butanol | - 275.0 | - 275.01 | - 274.60 | - 275.0 | - 275.75 | | 2-butanol | - 292.9 | -292.90 | -292.88 | - 292.9 | -292.84 | | 1-pentanol | - 294.7 | -294.70 | -295.58 | -295.8 | -296.38 | | 1-hexanol | -315.8 | -315.90 | -316.80 | -316.6 | -317.01 | | 1-octanol | -355.5 | -355.60 | -357.00 | - 358.2 | - 358.27 | | 1-decanol | -396.4 | -396.60 | -397.40 | - 399.8 | - 399.53 | | diethyl ether | -252.1 | -252.10 | -252.0 | -252.1 | - 251.74 | | dipropyl ether | - 292.9 | -293.10 | -293.1 | - 294.9 | -293.00 | | diisopropyl ether | -319.2 | -319.40 | -319.4 | -318.9 | -318.42 | | di-tert-butyl ether | -362.0 | -362.00 | -362.0 | -362.0 | - 363.34 | | 2-pentanone | -259.0 | -259.05 | - 258.9 | -259.1 | -259.66 | | 2-hexanone | -279.8 | -279.79 | -279.0 | - 279.9 | -280.29 | | 2-methyl-3-pentanone | -286.1 | -286.10 | -286.1 | - 286.1 | -286.06 | | 5-nonanone | - 344.9 | -344.94 | -344,9 | - 340.1 | -343.39 | | 5-undecanone | -387.4 | -387.41 | -385.1 | - 381.7 | - 384.65 | | propanoic acid | - 453.5 | -455.70 | -452.8 | -451.7 | -455.64 | | butanoic acid | - 475.8 | -475.80 | -473.6 | -472.0 | -476.27 | | pentanoic acid | - 491.9 | -496.30 | −497. | - 492.8 | -496.90 | | octanoic acid | -554.3 | -553.90 | −553 . | -555.2 | -558.79 | | dodecanoic acid | -642.0 | -642.00 | −640. | -638.4 | -641.31 | | average deviation | 1.84 | 1.21 | | | |