Thermodynamic Properties of the Aqueous Ba$^{2+}$ Ion and the Key Compounds of Barium

Cite as: Journal of Physical and Chemical Reference Data 24, 1023 (1995); https://doi.org/10.1063/1.555973
Submitted: 05 January 1995. Published Online: 15 October 2009

V. B. Parker

ARTICLES YOU MAY BE INTERESTED IN

Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation
Journal of Physical and Chemical Reference Data 24, 663 (1995); https://doi.org/10.1063/1.555965

Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C$_{11}$–C$_{192}$
Journal of Physical and Chemical Reference Data 46, 013104 (2017); https://doi.org/10.1063/1.4970519

The Thermodynamic Properties of the f-Elements and Their Compounds. I. The Lanthanide and Actinide Metals
Journal of Physical and Chemical Reference Data 39, 043102 (2010); https://doi.org/10.1063/1.3474238
Thermodynamic Properties of the Aqueous Ba2+ Ion and the Key Compounds of Barium

V. B. Parker

National Institute of Standards and Technology, Chemical Kinetics and Thermodynamics Division, Gaithersburg, MD 20899-0001

Received January 5, 1995; revised manuscript received February 13, 1995

Recommended thermochemical property values, ΔH°, ΔG°, and S° for the aqueous ion of barium, Ba2+, are given at 298.15 K in SI units. The values are: $\Delta H^\circ = -534.64 \pm 1.80$ kJ·mol-1, $\Delta G^\circ = -557.60 \pm 1.81$ kJ·mol-1 and $S^\circ = 8.80 \pm 0.50$ J·K-1·mol-1. They are consistent with the CODATA Key Values for Thermodynamics. The evaluation involves the analysis of the enthalpy changes, Gibbs energy changes, and the entropy measurements for all key substances in the key network. A consistent set of thermochemical property values is given for BaO(cr), BaH\textsubscript{2}(cr), BaCl\textsubscript{2}(cr), BaCl\textsubscript{2}-2H\textsubscript{2}O(cr), Ba(NO\textsubscript{3})\textsubscript{2}(cr), and BaCO\textsubscript{3}(cr, witherite), as well as reconstituted recommended process values with uncertainties for reactions involving these substances. ©1995 American Institute of Physics and American Chemical Society.

Key words: aqueous Ba2+, barium compounds, CODATA, data evaluation, enthalpy, entropy, Gibbs energy, key compounds, key values, thermochemical measurements.

Contents

1. Introduction ... 1024
 1.1. Purpose .. 1024
 1.2. Conventions and Auxiliary Data 1024
 1.2.1. Definitions and Symbols 1024
 1.2.2. Reference States 1024
 1.2.3. Molar Masses 1024
 1.2.4. Units, Fundamental Constants, and
 Thermochernical Property Values for
 Auxiliary Data 1024
 1.2.5. Description of Bibliographic References 1024
 1.2.6. Uncertainties 1025
 1.3. Method of Approach 1025
 1.3.1. General 1025
 1.3.2. The Systematic Analysis 1025
2. The Enthalpy of Formation of BaO(cr) 1025
 2.1. From Direct Combustion 1025
 2.2. From Measurements of the Enthalpies of
 Reaction of Ba(cr) and BaO(cr) in Aqueous
 HCl Solutions 1025
 2.3. The Selected ΔH°(BaO,cr) 1026
3. The Enthalpy of Formation of BaCl\textsubscript{2}(cr) 1026
 3.1. From Measurements of the Enthalpies of
 Reaction of Ba(cr) and BaCl\textsubscript{2}(cr) in Aqueous
 Solutions ... 1026
 3.2. From Measurements of the Enthalpies of
 Solution of BaCl\textsubscript{2}(cr) and BaO(cr) in Aqueous
 HCl Solutions 1026
 3.3. The Relationship Between ΔH°(BaCl\textsubscript{2},cr) and
 ΔH°(BaH\textsubscript{2},cr) 1026
4. The Enthalpy of Formation of Ba(NO\textsubscript{3})\textsubscript{2}(cr) .. 1026
5. The Enthalpy of Formation of BaH\textsubscript{2}(cr) 1027
6. The Enthalpy of Formation of BaCO\textsubscript{3}(cr) from the
 Decomposition to BaO(cr) and CO\textsubscript{2}(g) 1027
 6.1. From Solution Calorimetry 1027
 6.2. From the Vapor Pressure Measurements of
 CO\textsubscript{2}(g) as a Function of T 1027
7. The Thermodynamic Properties of Ba2+(ao) 1028
 7.1. The Enthalpy of Formation 1028
 7.1.1. The Standard Enthalpy of Solution of
 BaCl\textsubscript{2}(cr) 1028
 7.1.2. From the Carbonate System 1029
 7.1.3. The Standard Enthalpy of Solution of
 Ba(NO\textsubscript{3})\textsubscript{2}(cr) 1030
 7.2. The S°(Ba2+,ao) 1031
 7.2.1. From the Solution Properties of
 BaCl\textsubscript{2}-2H\textsubscript{2}O(cr) 1031
 7.2.2. The Solution Properties of BaCO\textsubscript{3}(cr) ... 1032
 7.2.3. The Solution Properties of Ba(NO\textsubscript{3})\textsubscript{2}(cr) 1032
 7.3. Summary of Values Obtained for S°(Ba2+, ao)
 and ΔH°(Ba2+, ao) 1032
8. The Recommended Thermodynamic Property
 Values for Ba2+(ao) and the Key Compounds ... 1032
9. Closing Comments 1034
10. Acknowledgements 1034
11. References .. 1034
List of Tables

1. The $\Delta_{\text{accomp}}H^\circ(BaCO_3, cr)$ at 298.15 K from vapor pressure measurements 1028
2. The $\Delta_{\text{accomp}}H^\circ(BaCl_2, cr)$ in H$_2$O(l) at 298.15 K 1028
3. The measurements of the $\Delta_{\text{accomp}}H(BaCl_2, cr)$ in aqueous HCl .. 1029
4. Recommended $\Delta_{\text{accomp}}H(BaCl_2, cr)$ in aqueous HCl. 1029
5. BaCO$_3$(cr) = BaCO$_3$(ai) ... 1030
6. The $\Delta_{\text{accomp}}H^\circ(Ba(NO_3)_2, cr)$ in H$_2$O at 298.15 K; Ba(NO$_3$)$_2$(cr) = Ba(NO$_3$)$_2$(ai). 1030
7. Accepted Entropies of Solid Phases 1031
8. $\Delta_{\text{accomp}}H^\circ(BaCl_2, 2H_2O, cr)$ at 298.15 K 1031
9. BaCl$_2$·2 H$_2$O(cr) = BaCl$_2$(cr) + 2H$_2$O(l) 1032
10. The thermodynamics for Ba$^{2+}$(ao). The calculated values for ΔH^0 and S^0 for Ba$^{2+}$(ao) from the processes considered 1033
11. Recommended thermodynamic property values of key compounds of Barium at 298.15 K and 0.1 MPa (1 bar) .. 1033
12. Recommended process values for some Ba compounds at 298.15 K and 0.1 MPa (1 bar) 1034
13. The alkaline earth metal ions on the CODATA scale at 298.15 K and 0.1 MPa. 1034

1. Introduction

1.1. Purpose

The present paper is concerned with the evaluation and selection of the thermochemical properties of the aqueous ion Ba$^{2+}$ and with those key compounds that are in the "key network." The properties studied are ΔH^0, ΔG^0, and S^0 at 298.15 K, all in SI units. All values are consistent with the CODATA Key Values [89COX/WAG].

There has been no complete revaluation of the key network of Ba compounds that leads to the above mentioned property values of the Ba$^{2+}$(ao) and the key compounds on the CODATA scale that also incorporates the more recent data.

The property values given in the review by 69PAR, 71PAR/WAG (82WAG/EVA) need to be updated in consideration of the more recent experimental measurements which cast doubt on some of the selected values (e.g., $\Delta_{\text{accomp}}H^0(BaO, cr)$ by 73FIT/HUB differs by more that five kJ·mol$^{-1}$ from the selection in the review) and also cannot easily be used with the CODATA Key Values [89COX/WAG]. The 79MED/BER and 79ROB/HEM evaluations are also not compatible with the CODATA selections although they contain the more current $\Delta_{\text{accomp}}H^0(BaO, cr)$. Also, as pointed out by 86BUS/PLU, some calculated process values, such as for $\Delta_{\text{accomp}}G^0(BaCO_3, cr, undissociated)$ do not agree (within the stated uncertainty) with the more recent experimental values. 86BUS/PLU offer preliminary values for $\Delta_{\text{accomp}}G^0$, $\Delta_{\text{accomp}}H^0$, and S^0 for BaCO$_3$(cr), BaO(cr), and Ba$^{2+}$(ao) on the CODATA scale, but base their $\Delta_{\text{accomp}}H^0(BaCl_2, cr)$ and their $(\Delta_{\text{accomp}}H^0(BaO, cr) - \Delta_{\text{accomp}}H^0(BaCl_2, cr))$

This is a reference code used in the text and in computer-based reaction catalogs. It is keyed to the bibliographic references given in Sec. 11. A description of the reference code is given in Sec. 1.2.5.
The primary source for all thermochemical property values is 89COX/WAG which gives the CODATA Key Values for Thermodynamics; those used here will not be repeated. Citation to readily available literature values consistent with CODATA selections will be made. For example, use is made of the compilation 82WAG/EVA for those processes not defined by CODATA where the processes are independent of the selected property values, such as \(\phi_h \) for HCl(aqueous), HNO\(_3\)(aqueous) (see also 65PAR). Those values not readily available will be given here.

1.2.5. Description of Bibliographic References

In order to use the same reference citation in the text as in a computer based reaction catalog, a reference code is used. The citation is given as follows:

The final two digits of the year (nineteenth century citations carry four digits for the year) precedes the first three letters of the first two author’s last names (separated by a slash) in upper case letters. A number at the end of the code indicated that there is more than one reference having the same first two authors codes and year of publication.

The Bibliography in Sec. 11 is arranged chronologically by this reference code and alphabetically by the first author within each year. A full reference, including all authors, journal volume, page, and year of publication accompanies each reference code. Protocols for the computer format for entering references into the bibliography have been prepared by 83NEU.

1.2.6. Uncertainties

The uncertainties in the values for reactions given in the analysis and used in the text are initial uncertainties assumed by the evaluator, as discussed in 87PAR/EVA and may or may not agree with the experimentalist’s appraisal. In the course of the evaluation and in rationalizing the property values of a substance from the various measurement paths and from replicate measurements of the same path, this initial judgment may prove to be unrealistic. The uncertainties listed in the tables of recommended property values for the substances are the evaluator’s final estimate of the reliability of the predicted value. Use of these uncertainties, however, to calculate the uncertainty of a process value (as the square root of the sum of squares of all the uncertainties in the properties of the substances in the process) may result in too high a value since (1) the assigned uncertainty on the property value incorporates the uncertainties on the process values from which it is derived and (2) the property values of the substances in the process could be highly correlated. In order to avoid this, the recommended reconstituted process values for the processes of interest are tabulated with the evaluator’s estimated uncertainty (assumed to have a level of confidence of 95%).

1.3. Method of Approach

1.3.1. General

The sequential method, as described by 76GAR/PAR and 77GAR/PAR, is used. In this method all of the data on the compounds of interest in the network of the elements are assembled and the properties \(\Delta H^\circ, \Delta G^\circ, \) and \(S^\circ \) are calculated and evaluated compound by compound, starting with the compounds whose properties can be determined independently, that is, they depend only on known auxiliary data (in this case, CODATA Key Values [89COX/WAG] and CODATA compatible values) and not on any other compounds of the same element. Then the properties of other compounds dependent on the first selections are set. If several measurement paths involve the same compound, a confirmation of the choice may be obtained. If the confirmation of the choice (within the stated uncertainty) is not obtained, a reworking of the previous selections may be made and revised values selected in order to receive a reasonable over-all fit. This manual sequential method is iterative. More than one pass is involved in establishing the final values for the key compounds in the key network. In order to show the evolution to the final recommended values in the evaluation I indicate in each section the initial selection, that is, the tentative or working value, and its modification as I proceed in the evaluation to test, rationalize or modify, and finalize the recommendations. So that the user will understand this, I also indicate in each section what the final resolved recommendations will be.

1.3.2. The Systematic Analysis

The major compounds in the key network for the determination of the properties of Ba\(^{+2}\)(ao) are BaO(cr), BaH\(_2\)(cr), BaCl\(_2\)(cr), BaCl\(_2\)2H\(_2\)O(cr), Ba(NO\(_3\))\(_2\)(cr) and BaCO\(_3\)(cr). The various parameters to be considered are:

1. The \(\Delta H^\circ(BaO,cr) \) from direct oxidation of Ba(cr) and also from the \(\Delta_{oxygen}H^\circ(Ba,cr) \) and \(\Delta_{oxygen}H^\circ(Ba,cr) \) in aqueous HCl.
2. The \(\Delta H^\circ(BaCl\(_2\),cr) \) from measurements of \(\Delta_{oxygen}H^\circ(Ba,cr) \) and \(\Delta_{oxygen}H^\circ(BaCl\(_2\),cr) \) in HCl, and from \(\Delta_{oxygen}H^\circ(BaO,cr) \) in aqueous HCl.
3. The \(\Delta H^\circ(BaH\(_2\),cr) \) from measurements of \(\Delta_{oxygen}H^\circ(Ba,cr) \) and \(\Delta_{oxygen}H^\circ(BaH\(_2\),cr) \) in aqueous HCl, and also from the direct enthalpy of hydrogenation of Ba(cr) and the link to \(\Delta H^\circ(BaCl\(_2\),cr) \).
4. The \(\Delta_{oxygen}H^\circ(BaCl\(_2\),cr) \) from measurements in H\(_2\)O and from measurements in aqueous HCl as a function of the concentration of HCl.
5. The \(\Delta H^\circ(BaCO\(_3\),cr) \) from (1) the \(\Delta_{oxygen}H^\circ(BaO,cr) \) and \(\Delta_{oxygen}H^\circ(BaCO\(_3\),cr) \) in HCl and (2) the \(\Delta_{decomp}H^\circ(BaCO\(_3\),cr) \).
6. The \(\Delta_{oxygen}S^\circ \) of BaCl\(_2\)2H\(_2\)O(cr), Ba(NO\(_3\))\(_2\)(cr), and BaCO\(_3\)(cr) calculated from the \(\Delta_{oxygen}H^\circ \) and \(\Delta_{oxygen}G^\circ \) of the above salts. With the measured \(S^\circ \) values of these salts and the CODATA \(S^\circ \) values for Cl\(^-(ao)\), NO\(_3\)(ao), and CO\(_3\)(ao) we calculate \(S^\circ \) for Ba\(^{+2}\)(ao).
7. Values for \(\Delta H^\circ(Ba^{+2},ao) \) are obtained from (1) BaCl\(_2\)(cr), \(\Delta H^\circ \) and \(\Delta_{oxygen}H^\circ \) in H\(_2\)O, (2) the same from BaCO\(_3\)(cr), (3) the same from Ba(NO\(_3\))\(_2\)(cr).

The various values for \(\Delta H^\circ(Ba^{+2},ao) \) and \(S^\circ(Ba^{+2},ao) \) are reconciled and smoothed to obtain final property values for the ion and all substances in the key network.
The recommended values for the various processes are reconstituted from the tabulated property values.

2. The Enthalpy of Formation of BaO(cr)

2.1. From Direct Combustion

63MAH reported the direct enthalpy of combustion of Ba(cr) to BaO(cr) at 303.15 K to be $-581.83 \pm 2.93 \text{kJ} \cdot \text{mol}^{-1}$. Corrected to 298.15 K with essentially a negligible $\Delta_C = +0.004 \text{kJ} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$, we have

$$\text{Ba(cr)} + \frac{1}{2} \text{O}_2(g) = \text{BaO(cr)}; \Delta H^\circ = -581.85 \pm 3.0 \text{kJ} \cdot \text{mol}^{-1}.$$

2.2. From Measurements of the Enthalpies of Reaction of Ba(cr) and BaO(cr) in Aqueous HCl Solutions

63FLIN/KOV combined their measurements of $\Delta_H^o(BaO, cr)$ with the measurements of $\Delta_H^o(Ba, cr)$ by 23GUN/BEN, citing the following corrections to the 23GUN/BEN measurements, $-0.42 \text{kJ} \cdot \text{mol}^{-1}$ for the difference in final concentrations of BaCl$_2$, $-0.71 \text{kJ} \cdot \text{mol}^{-1}$ for the difference in concentration of HCl, and $-1.21 \text{kJ} \cdot \text{mol}^{-1}$ for the temperature difference, to obtain from the combination of the following two reactions:

1. $\text{Ba(cr)} + 2\text{HCl(aq)} = \text{BaCl}_2(aq, in \text{HCI}) + \text{H}_2(g); \Delta H = -539.82 \text{kJ} \cdot \text{mol}^{-1}$;
2. $\text{BaO(cr)} + 2\text{HCl(aq)} = \text{BaCl}_2(aq, in \text{HCl}) + \text{H}_2\text{O(l)}; \Delta H = -272.96 \text{kJ} \cdot \text{mol}^{-1}$.

To yield:

3. $\text{Ba(cr)} + \text{H}_2\text{O(l)} = \text{BaO(cr)} + \text{H}_2(g); \Delta H^\circ = -266.86 \pm 0.84 \text{kJ} \cdot \text{mol}^{-1}$.

This results in $\Delta H^\circ(BaO, cr) = -552.69 \pm 2.0 \text{kJ} \cdot \text{mol}^{-1}$.

More recently 73FIT/HUB measured the $\Delta_H^o(BaO, cr)$ of both Ba(cr) ($-535.34 \pm 1.7 \text{kJ} \cdot \text{mol}^{-1}$) and BaO(cr) ($-273.17 \pm 0.96 \text{kJ} \cdot \text{mol}^{-1}$) in a 1.002 M HCl solution such that

$$\text{Ba(cr)} + \text{H}_2\text{O(aq, in 150HCl+8238 H}_2\text{O)} = \text{BaO(cr)} + \text{H}_2(g); \Delta H = -262.17 \pm 2.0 \text{kJ} \cdot \text{mol}^{-1}.$$

With $\Delta H(H_2O, aq in 150 HCl+8238 H_2O) = -285.836 \pm 0.040 \text{kJ} \cdot \text{mol}^{-1}$, $\Delta_H^o(BaO, cr) = -548.01 \pm 2.0 \text{kJ} \cdot \text{mol}^{-1}$.

90COR/KON repeated the $\Delta_H^o(BaO, cr)$ ($-273.08 \pm 0.24 \text{kJ} \cdot \text{mol}^{-1}$) in a 1.0109 M HCl solution. Minor corrections were made to the exact condition used by 73FIT/HUB ($-0.03 \text{kJ} \cdot \text{mol}^{-1}$) so that $\Delta H = -273.11 \pm 0.25 \text{kJ} \cdot \text{mol}^{-1}$. Combination of this value with 73FIT/HUB’s measurements on Ba(cr) results in $\Delta H^\circ = -262.23 \pm 1.72 \text{kJ} \cdot \text{mol}^{-1}$ and $\Delta H^o(BaO, cr) = -548.07 \pm 1.72 \text{kJ} \cdot \text{mol}^{-1}$, in excellent agreement with 73FIT/HUB.

The measured $\Delta_H^o(Ba, cr)$ in the two studies differ by more than 4 kJ·mol$^{-1}$, far more than the variation of $\Delta_H^o(BaO, cr)$. Sample purity of Ba(cr) may be the problem.

2.3. The Selected $\Delta_H^o(BaO, cr)$

The above measurements for $\Delta_H^o(BaO, cr)$ are: $-581.83 \pm 3.0 \text{kJ} \cdot \text{mol}^{-1}$ from the direct combustion, and from $\Delta_H^o(Ba(cr))$ and $\Delta_H^o(BaO, cr)$ in HCl, $-552.69 \pm 2.0, -548.01 \pm 2.0, -548.07 \pm 1.72 \text{kJ} \cdot \text{mol}^{-1}$. The initial tentative selection is $-548.04 \pm 1.72 \text{kJ} \cdot \text{mol}^{-1}$. It also becomes the final selection.

3. The Enthalpy of Formation of BaCl$_2$(cr)

3.1. From Measurements of the Enthalpies of Reaction of Ba(cr) and BaO(cr) in Aqueous HCl Solutions

63EHR/PEI measured $\Delta_H^o(Ba(cr))$ ($-538.48 \pm 1.0 \text{kJ} \cdot \text{mol}^{-1}$) and $\Delta_H^o(BaCl_2(cr))$ ($-12.97 \pm 0.08 \text{kJ} \cdot \text{mol}^{-1}$) in 0.1N HCl such that the final solution contained 2500 mol H$_2$O/mol BaCl$_2$. For:

$$\text{Ba(cr)} + 2\text{HCl(D:555H}_2\text{O)} = \text{BaCl}_2(cr) + \text{H}_2(g); \Delta H = -525.51 \pm 1.70 \text{kJ} \cdot \text{mol}^{-1}.$$

Using $L_H(\text{HCl:555H}_2\text{O}) = 0.812 \text{kJ} \cdot \text{mol}^{-1}$ from 65PAR, $\Delta H^o(BaCl_2, cr) = -858.05 \pm 1.8 \text{kJ} \cdot \text{mol}^{-1}$ is obtained.

3.2. From Enthalpy Measurements of BaCl$_2$(cr) and BaO(cr) in Aqueous HCl

90COR/KON measured the $\Delta_H^o(BaCl_2, cr)$ ($-8.858 \pm 0.084 \text{kJ} \cdot \text{mol}^{-1}$) in a 1.0109 N HCl (HCl:53.8H$_2$O) solution as well as $\Delta_H^o(Ba(cr))$ ($-273.08 \pm 0.24 \text{kJ} \cdot \text{mol}^{-1}$) in a 1.0109 N HCl solution [final concentration (HCl: 54.54 H$_2$O)]. Applying a correction of 0.09 kJ·mol$^{-1}$ for the variation of $\Delta_H^o(Ba(cr))$ with concentration of HCl, I obtain BaO(cr) and $\Delta_H^o(BaCl_2, cr) - \Delta_H^o(BaO, cr) = -306.96 \pm 0.25 \text{kJ} \cdot \text{mol}^{-1}$.

This is consistent with 90COR/KON’s $\Delta_H^o(BaO, cr) = -548.07 \pm 1.72, \Delta_H^o(BaCl_2, cr) = -855.03 \pm 1.72 \text{kJ} \cdot \text{mol}^{-1}$, and is in fair agreement with 63EHR/PEI, considering the overlapping uncertainty intervals.

3.3. The Relationship Between $\Delta_H^o(BaCl_2, cr)$ and $\Delta_H^o(BaH_2O, cr)$

In Sec. 5.3 a value for $\Delta_H^o(BaCl_2, cr) = \Delta_H^o(BaH_2O, cr) = -679.30 \pm 2.1 \text{kJ} \cdot \text{mol}^{-1}$ is obtained from 63EHR/PEI’s measurements. If the direct determination of $\Delta_H^o(BaH_2O, cr)$ (hydrogenation enthalpy of Ba(cr)) = $-190.80 \pm 0.4 \text{kJ} \cdot \text{mol}^{-1}$ from 68VOR/MON is used (Sec. 5.2), $\Delta_H^o(BaCl_2, cr) = -869.47 \pm 2.2 \text{kJ} \cdot \text{mol}^{-1}$.

23GUN/BEN measurements were at 280 K with an aqueous HCl solution of 0.40 mol·kg$^{-1}$.

5L$_H$(HCl:54.2H$_2$O) = 2.75 kJ·mol$^{-1}$ and L_H(H$_2$O) = 0.006 kJ·mol$^{-1}$ from 65PAR.
3.4. The Selected $\Delta_h^\circ(BaCl_2,cr)$

The three above paths lead to widely different values. The initial tentative selection is -855.00 ± 1.93 kJ·mol$^{-1}$. It will also become the final recommendation.

4. The Enthalpy of Formation of Ba(NO$_3$)$_2$(cr)

The Δ_h°([Ba(NO$_3$)$_2$,cr]) is dependent upon the $\Delta_h^\circ(BaCl_2,cr)$ through the measurements of 44YOU on the Δ_h°([BaCl$_2$,cr]) (8.728 ± 0.04 kJ·mol$^{-1}$) and the Δ_h°([Ba(NO$_3$)$_2$,cr]) (41.66 ± 0.07 kJ·mol$^{-1}$) in aqueous 1 N HCl solutions ($m=1.022$ mol·kg$^{-1}$).

1. $\text{BaCl}_2(cr) = (\text{BaCl}_2 + 45.5\text{HCl} + 2474\text{H}_2\text{O})(\text{soln I})$; $\Delta H_1 = -8.728$ ± 0.04 kJ·mol$^{-1}$;

2. $\text{Ba(NO}_3)_2(cr) + 45.5\text{HCl} + 2474\text{H}_2\text{O} = \text{Ba(NO}_3)_2 + 45.5\text{HCl} + 2474\text{H}_2\text{O}(\text{soln II})$; $\Delta H_2 = +41.66 \pm 0.07$ kJ·mol$^{-1}$;

He also measured:

3. $2(\text{HNO}_3 + 26.5\text{H}_2\text{O}) + \text{soln I} = \text{soln III}; \Delta H_3 = +0.481 \pm 0.08$ kJ·mol$^{-1}$; and,

4. $26.5\text{H}_2\text{O}(l) + \text{soln II} = \text{soln III}; \Delta H_4 = -0.473 \pm 0.04$ kJ·mol$^{-1}$.

where soln III is Ba(NO$_3$)$_2$ + 47.5HCl + 2500.5H$_2$O.

The summation $\Delta H_1 - \Delta H_3 + \Delta H_2 - \Delta H_4$ results in

5. $\text{BaCl}_2(cr) + 2\text{HNO}_3(\text{in 26.5H}_2\text{O}) = \text{Ba(NO}_3)_2(cr) + 2\text{HCl(D:58H}_2\text{O} + 53.2\text{H}_2\text{O}); \Delta H_5 = -49.38 \pm 0.12$ kJ·mol$^{-1}$.

The ΔH([HNO$_3$ in 26.5 H$_2$O]) = -205.794 ± 0.40 kJ·mol$^{-1}$; $\Delta H(D:58H_2O + 53.2H_2O) = -164.36 \pm 0.10$ kJ·mol$^{-1}$ so that $\Delta H^\circ([\text{BaCl}_2,cr]) = \Delta H^\circ([\text{Ba(NO}_3)_2,cr]) - 132.25 \pm 0.43$ kJ·mol$^{-1}$. With the tentative $\Delta H^\circ([\text{BaCl}_2,cr]) = -855.00 \pm 1.73$; $\Delta H^\circ([\text{Ba(NO}_3)_2,cr]) = -987.25 \pm 1.80$ kJ·mol$^{-1}$. This tentative value will be modified in the smoothing process to the final $\Delta H^\circ = -988.02 \pm 1.80$ kJ·mol$^{-1}$.

5. The Enthalpy of Formation of BaH$_2$(cr)

5.1. From Measurements of the Enthalpies of Reaction of Ba(cr) and BaH$_2$(cr) in Aqueous HCl

68VOR/MON obtained:

$\text{Ba(cr) + 6.5HCl (240H}_2\text{O)} = \text{BaCl}_2(4.5\text{HCl+1560H}_2\text{O}) + \text{H}_2\text{(g)} + 4.5\text{HCl(347H}_2\text{O); \Delta H(Ba,cr) = -524.80 \pm 0.46}$ kJ·mol$^{-1}$,

and

$\text{BaH}_2(cr) + 6.5\text{HCl (240H}_2\text{O)} = \text{BaCl}_2(4.5\text{HCl+1560H}_2\text{O}) + 2\text{H}_2\text{(g)} + 4.5\text{HCl(347H}_2\text{O); \Delta H = -336.39 \pm 3.77}$ kJ·mol$^{-1}$

so that

$\text{Ba(cr) + H}_2\text{(g)} = \text{BaH}_2(cr); \Delta H^\circ = -188.41 \pm 3.80$ kJ·mol$^{-1}$.

Previously 63EHRIPEI had used an aqueous solution of 0.1 N HCl (HCl:555 H$_2$O) so that the final BaCl$_2$ concentration was 2500 moles H$_2$O/mol BaCl$_2$, obtaining $\Delta H = -538.48 \pm 1.5$ and -359.82 ± 1.5 kJ·mol$^{-1}$, respectively for the above reactions resulting in $\Delta H^\circ(BaH_2,cr) = -178.66 \pm 2.1$ kJ·mol$^{-1}$, in disagreement with the above.

5.2. From the Enthalpy of Hydrogenation of Ba(cr)

68VOR/MON obtained $\Delta H^\circ = -190.08 \pm 0.4$ kJ·mol$^{-1}$ from 6 measurements, supporting their (67VOR/MON) value from measurements in HCl. See Sec. 5.1.

5.3. The Relationship Between $\Delta_h^\circ(BaCl_2,cr)$ and $\Delta_h^\circ(BaH_2,cr)$

Since 63EHRIPEI measured $\Delta_h^\circ(BaCl_2,cr) (-12.97 \pm 0.80$ kJ·mol$^{-1}$) in 0.1N HCl (see Sec. 3.1.) as well as $\Delta_h^\circ(Ba(H_2,cr))$ (see Sec. 5.1.), one can also obtain

$\text{BaH}_2(cr) + 2\text{HCl(D::555H}_2\text{O)} = \text{BaCl}_2(cr) + 2\text{H}_2\text{(g)}; \Delta H = -359.82 \pm 1.5 + 12.97 \pm 0.80$ kJ·mol$^{-1} = -346.85 \pm 2.1$ kJ·mol$^{-1}$ so that $\Delta H^\circ(BaCl_2,cr) - \Delta H^\circ(BaH_2,cr) = -679.39 \pm 2.1$ kJ·mol$^{-1}$ and using the tentative selection for $\Delta H^\circ(BaCl_2,cr) = -855.0 \pm 1.73$ kJ·mol$^{-1}$, $\Delta H^\circ(BaH_2,cr) = -175.6 \pm 2.72$ kJ·mol$^{-1}$.

5.4. The Selected Value for $\Delta_h^\circ(BaH_2,cr)$

The results differ widely for $\Delta H^\circ(BaH_2,cr)$. The selected value for $\Delta H^\circ(BaH_2,cr) = -177.0 \pm 4.9$ kJ·mol$^{-1}$ is based on the 63EHRIPEI measurements, since their measurements on $\Delta_h^\circ(BaCl_2,cr)$ and $\Delta_h^\circ(BaCl_2,cr)$ are in better agreement, i.e. more consistent with the values selected here for $\Delta H^\circ(BaCl_2,cr), \Delta H^\circ(BaO,cr)$, and $\Delta H^\circ(BaO,ao)$ than a selection based on 68VOR/MON’s measurements would be.

6. The Enthalpy of Formation of BaCO$_3$(cr) from the Decomposition to BaO(cr) and CO$_2$(g)

6.1. From Solution Calorimetry

The measurements of 66ADA/CON on Δ_h° of BaO(cr)

$\text{Ba(cr) + 6.5HCl (240H}_2\text{O)} = \text{BaCl}_2(4.5\text{HCl+1560H}_2\text{O}) + \text{H}_2\text{(g)} + 4.5\text{HCl(347H}_2\text{O); \Delta H(Ba,cr) = -524.80 \pm 0.46}$ kJ·mol$^{-1}$,

and

$\text{BaH}_2(cr) + 6.5\text{HCl (240H}_2\text{O)} = \text{BaCl}_2(4.5\text{HCl+1560H}_2\text{O}) + 2\text{H}_2\text{(g)} + 4.5\text{HCl(347H}_2\text{O); \Delta H = -336.39 \pm 3.77}$ kJ·mol$^{-1}$

so that

$\text{Ba(cr) + H}_2\text{(g)} = \text{BaH}_2(cr); \Delta H^\circ = -188.41 \pm 3.80$ kJ·mol$^{-1}$.

ΔC_p is negligible, ΔH° for this decomposition is +269.24 ± 1.1 kJ·mol$^{-1}$.

Similarly 66GRE/PAS used HNO$_3$-HF solutions at 323K to obtain $\Delta_h^\circ(BaO,cr) = -265.77 \pm 6.7$ kJ·mol$^{-1}$ and
\(\Delta_{\text{so}}H^\circ(\text{BaCO}_3, \text{cr}) = -21.25 \pm 0.9 \text{ kJ} \cdot \text{mol}^{-1} \) at 323 K. \(\Delta H^\circ \) for the decomposition is 244.5 kJ \cdot \text{mol}^{-1} (the \(\Delta C_p \) correction is considered negligible in the temperature range 323–298 K).

6.2. From the Vapor Pressure Measurements of CO\(_2\)(g) as a Function of \(T \)

81GUR/BER and 82CHA/AHM review and tabulate the available decomposition pressure data. Their calculations differ from each other because of the use of slightly different thermal functions for BaO(cr). The thermal functions accepted here for BaO(cr) from 85CHA/DAV are in agreement with 81GUR/BER. Hence the values tabulated by 81GUR/BER are reported here; additional sources given by 82CHA/AHM are corrected to the thermal functions used here and are included in Table 1.

Also included in it are the calorimetric measurements from 6.1.

Table 1. The \(\Delta_{\text{so}}H^\circ(\text{BaCO}_3, \text{cr}) \) at 298.15 K from vapor pressure measurements

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Temp. range, K</th>
<th>(\Delta H^\circ) (kJ \cdot \text{mol}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>06FIN</td>
<td>1623</td>
<td>254.5 (3rd law)</td>
</tr>
<tr>
<td>51 LAN</td>
<td>1073–1477</td>
<td>287.5 (2nd law)</td>
</tr>
<tr>
<td>69EVS/BUN</td>
<td>1203–1273</td>
<td>272.5 ± 2.3 (3rd law)</td>
</tr>
<tr>
<td>76BAS/SIR</td>
<td>1031–1099</td>
<td>271.5 (3rd law)</td>
</tr>
<tr>
<td></td>
<td>1160–1211</td>
<td>257.5 (2nd law)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>258.5 (3rd law)</td>
</tr>
<tr>
<td>Corrected from 82CHA/AHM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65POT</td>
<td>1270–1470</td>
<td>245.3 ± 8.9 (3rd law)</td>
</tr>
<tr>
<td>16HED</td>
<td>1634</td>
<td>254.8 (3rd law)</td>
</tr>
<tr>
<td>27DUT</td>
<td>1375–1529</td>
<td>262.4 ± 2.7 (3rd law)</td>
</tr>
<tr>
<td>37HAC/WOL</td>
<td>1673</td>
<td>259.4 (3rd law)</td>
</tr>
<tr>
<td>From calorimetric measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66ADA/CON</td>
<td>303.15</td>
<td>269.24 ± 1.1</td>
</tr>
<tr>
<td>66GRE/PAS</td>
<td>323</td>
<td>244.5</td>
</tr>
</tbody>
</table>

The vapor pressure measurements are discordant so that preference is given to the calorimetric measurement of 66ADA/CON, \(\Delta H^\circ = 269.24 \text{ kJ} \cdot \text{mol}^{-1} \), although some weight is given to the 51LAN 3rd law \(\Delta H^\circ = 272.5 \pm 2.3 \text{ kJ} \cdot \text{mol}^{-1} \) which shows a trend with temperature. The initial selection of \(\Delta H^\circ = 269.24 \text{ kJ} \cdot \text{mol}^{-1} \) is the 3rd law which is modified to the final recommended \(\Delta H^\circ = 271.48 \pm 1.0 \text{ kJ} \cdot \text{mol}^{-1} \) and \(\Delta H^\circ(\text{BaCO}_3, \text{cr}) = -1213.03 \pm 2.0 \text{ kJ} \cdot \text{mol}^{-1} \) as a result of the rationalizing process.

7. The Thermodynamic Properties of Ba\(^2\)(ao)

7.1. The Enthalpy of Formation

From measurements in H\(_2\)O

Table 2 lists the \(\Delta_{\text{so}}H^\circ \) (corrected to 298.15 K, where necessary) obtained from the various measurements. A reasonable tentative value for \(\Delta_{\text{so}}H^\circ(\text{BaCl}_2, \text{cr}) = -13.80 \pm 0.10 \text{ kJ} \cdot \text{mol}^{-1} \). The \(\phi_1 \) values used to correct to infinite dilution are from 71PAR/WAG and 82WAG/EVA. These \(\phi_1 \) values are based on the measurements of 31LAN/STR, 29RIC/DOL, 36SCH/COB, 66VOR/MON, 36SHI/TER, and 57TER.

Table 2. The \(\Delta_{\text{so}}H^\circ \) Ba\(^{2+}\)(cr) in H\(_2\)O(l) at 298.15 K

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Conc. (m_\text{, mol} \cdot \text{kg}^{-1})</th>
<th>(\Delta_{\text{so}}H^\circ(m)) kJ \cdot \text{mol}^{-1}</th>
<th>(\Delta_{\text{so}}H^\circ) kJ \cdot \text{mol}^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1875 BER</td>
<td>0.2413</td>
<td>-11.88e</td>
<td>-14.06</td>
</tr>
<tr>
<td>1883 BER/LO</td>
<td>0.2775</td>
<td>-10.95</td>
<td>-13.19</td>
</tr>
<tr>
<td>1888 THO</td>
<td>0.1387</td>
<td>-11.15</td>
<td>-13.08e</td>
</tr>
<tr>
<td>04 BAU</td>
<td>0.125</td>
<td>-9.87e</td>
<td>-12.76</td>
</tr>
<tr>
<td>08 SCH</td>
<td>0.1388</td>
<td>-8.46f</td>
<td>-13.17</td>
</tr>
<tr>
<td>36 SCH/COB</td>
<td>0.1811</td>
<td>-11.18</td>
<td>-13.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to 1.444</td>
<td>to 10.67</td>
</tr>
<tr>
<td>36 SHI/TER</td>
<td>0.0555</td>
<td>-11.90</td>
<td>-13.426</td>
</tr>
<tr>
<td>52 SAM</td>
<td>0.05</td>
<td>-11.88</td>
<td>-13.376</td>
</tr>
<tr>
<td>61CHR/COB</td>
<td>0.0018</td>
<td>-12.71</td>
<td>-13.347 ± 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to 0.01</td>
<td>to -13.01</td>
</tr>
<tr>
<td>66VOR/MON</td>
<td>0.0185</td>
<td>-12.60</td>
<td>-13.655 ± 0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to 0.0555</td>
<td>to -11.36</td>
</tr>
<tr>
<td>68SAM/TSV</td>
<td>0.1110</td>
<td>-11.92</td>
<td>-13.753</td>
</tr>
<tr>
<td>69GRE/SNE</td>
<td>0.0156</td>
<td>-13.230</td>
<td>-13.393 ± 0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to 0.0592</td>
<td>to -13.49</td>
</tr>
<tr>
<td>73SMI/BER</td>
<td>0.0111</td>
<td>e</td>
<td>-13.64 ± 0.13</td>
</tr>
<tr>
<td>77DAD/TAH</td>
<td>0.005</td>
<td>-12.853</td>
<td>-13.517 ± 0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to 0.025</td>
<td>to -12.259</td>
</tr>
<tr>
<td>78PER/THO</td>
<td>0.02</td>
<td>-13.01e</td>
<td>-14.23 ± 0.22</td>
</tr>
<tr>
<td>83MON/ALE</td>
<td>0.003</td>
<td>-14.14</td>
<td>-14.234 ± 0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to 0.019</td>
<td>to -14.29</td>
</tr>
<tr>
<td>85JUI/TIS</td>
<td></td>
<td>-13.5</td>
<td></td>
</tr>
<tr>
<td>90COR/KON</td>
<td>0.0066</td>
<td>-13.069</td>
<td>-13.769 ± 0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 0.060</td>
<td></td>
</tr>
<tr>
<td>90TAN/BAR</td>
<td></td>
<td>-13.50</td>
<td></td>
</tr>
</tbody>
</table>

Selected Value

-13.80 ± 0.10

\(e \) from 283 K, \(\Delta C_p = -335 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \).

\(f \) from 291 K, \(\Delta C_p = -356 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \).

\(g \) from 295 K, \(\Delta C_p = -353 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \).

\(h \) from 290 K, \(\Delta C_p = -347 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \).

cites 71PAR/WAG.

dalso measured \(\Delta_{\text{so}}H^\circ \).

From Measurements in Aqueous HCl

Table 3 shows the measurements used to extrapolate to \(\Delta_{\text{so}}H^\circ(\text{BaCl}_2, \text{cr}) \) from measurements in aqueous HCl. A value for \(\Delta_{\text{so}}H^\circ = -13.72 ± 0.50 \text{ kJ} \cdot \text{mol}^{-1} \) is obtained in excellent agreement with the selected value obtained from measurements in H\(_2\)O. I is the ionic strength.
From the Calorimetric Enthalpy of Precipitation

1875BER2 measured the enthalpy of reaction of aqueous BaCl₂ solutions (H₂O/BaCl₂ = 220) with aqueous Na₂CO₃ (H₂O/Na₂CO₃ = 220) and K₂CO₃ (H₂O/K₂CO₃ = 220) to precipitate BaCO₃(cr) at 289K, reporting \(\Delta H = -6.02 \text{kJ·mol}^{-1} \) and \(-7.11 \text{kJ·mol}^{-1} \). Corrected to 298K using \(C_p = +0.125 \text{kJ·K}^{-1}·\text{mol}^{-1} \), the following are obtained:

<table>
<thead>
<tr>
<th>(I)</th>
<th>(\Delta H^\circ)</th>
<th>(\Delta H_{p-H})</th>
<th>(\Delta H_{w-h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-13.80</td>
<td>0.0</td>
<td>-13.80</td>
</tr>
<tr>
<td>0.1</td>
<td>-13.50</td>
<td>-1.26</td>
<td>-12.24</td>
</tr>
<tr>
<td>0.2</td>
<td>-13.29</td>
<td>-1.63</td>
<td>-11.65</td>
</tr>
<tr>
<td>0.5</td>
<td>-19.65</td>
<td>-2.18</td>
<td>-10.47</td>
</tr>
<tr>
<td>1.0</td>
<td>-11.60</td>
<td>-2.62</td>
<td>-8.98</td>
</tr>
<tr>
<td>1.5</td>
<td>-10.52</td>
<td>-2.85</td>
<td>-7.67</td>
</tr>
<tr>
<td>2.0</td>
<td>-9.46</td>
<td>-3.01</td>
<td>-6.45</td>
</tr>
</tbody>
</table>

7.1.2. From the \(\text{BaCO}_3\text{(cr)} \) System

Table 4 shows the final recommended \(\Delta wH^\circ(\text{BaCl}_2,\text{cr}) \) as a function of \(I \) HCl where the concentration of BaCl₂ is very dilute.

Table 4. Recommended \(\Delta wH^\circ(\text{BaCl}_2,\text{cr}) \) in aqueous HCl

<table>
<thead>
<tr>
<th>(I)</th>
<th>(\Delta H^\circ)</th>
<th>(\Delta H_{p-H})</th>
<th>(\Delta H_{w-h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-13.80</td>
<td>0.0</td>
<td>-13.80</td>
</tr>
<tr>
<td>0.1</td>
<td>-13.50</td>
<td>-1.26</td>
<td>-12.24</td>
</tr>
<tr>
<td>0.2</td>
<td>-13.29</td>
<td>-1.63</td>
<td>-11.65</td>
</tr>
<tr>
<td>0.5</td>
<td>-19.65</td>
<td>-2.18</td>
<td>-10.47</td>
</tr>
<tr>
<td>1.0</td>
<td>-11.60</td>
<td>-2.62</td>
<td>-8.98</td>
</tr>
<tr>
<td>1.5</td>
<td>-10.52</td>
<td>-2.85</td>
<td>-7.67</td>
</tr>
<tr>
<td>2.0</td>
<td>-9.46</td>
<td>-3.01</td>
<td>-6.45</td>
</tr>
</tbody>
</table>

From Sec. 3.4, the initial tentative selection for \(\Delta H^\circ(\text{BaCl}_2,\text{cr}) = -855.00 \pm 1.73 \text{kJ·mol}^{-1} \) with the selection for \(\Delta wH = -13.80 \pm 0.10 \text{kJ·mol}^{-1} \) (from 7.11I) results in \(\Delta H^\circ(\text{BaCl}_2,\text{ai}) = -868.80 \pm 1.74 \text{kJ·mol}^{-1} \) and \(\Delta H^\circ(\text{Ba}^{2+},\text{ao}) = -534.64 \pm 1.8 \text{kJ·mol}^{-1} \).

Similarly 1886THO measured the enthalpy of precipitation of \(\text{BaCO}_3\text{(cr)} \), from \(\text{BaCl}_2 \) (H₂O/BaCl₂ = 400) and \(\text{Na}_2\text{CO}_3 \) (H₂O/Na₂CO₃ = 400H₂O) at 291 °K to be \(-5.64 \text{kJ·mol}^{-1} \). With \(C_p = +0.125 \text{kJ·K}^{-1}·\text{mol}^{-1} \), correction to 298 K results in

1a. \(\text{BaCl}_2(220\text{H}_2\text{O}) + \text{Na}_2\text{CO}_3(220\text{H}_2\text{O}) = \text{BaCO}_3(\text{cr}) + +2\text{NaCl}(220\text{H}_2\text{O}), \Delta H = -4.89 \text{kJ·mol}^{-1} \);
From the dissolution of \(\text{BaCO}_3(\text{cr}) \) in aqueous acid solutions

41ROT reported \(\Delta H = -16.82 \text{ kJ} \cdot \text{mol}^{-1} \) at 293K which corrected to 298.15K (with \(\Delta C_p = -0.063 \text{ kJ} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \)) results in:

1a. \(\text{BaCO}_3(\text{cr}) + 11.40(\text{HNO}_3 + 35\text{H}_2\text{O}) = \text{Ba(NO}_3)_2 + 9.40(\text{HNO}_3 + 42.55\text{H}_2\text{O}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O}(\text{aq}) \); \(\Delta H = -17.134 \text{ kJ} \cdot \text{mol}^{-1} \).

Using 82WAG/EVA for the following:

2a. \(2\text{HNO}_3(\text{D}:37\text{HNO}_3) = 2\text{HNO}_3(\text{ai}); \Delta H = -1.087 \text{ kJ} \cdot \text{mol}^{-1} \);
3a. \(\text{Ba(NO}_3)_2 \) in \(\text{HNO}_3(\text{aq}) = \text{Ba(NO}_3)_2(\text{ai}); \Delta H = -0.812 \text{ kJ} \cdot \text{mol}^{-1} \).

results in the following:

4a. \(\text{BaCO}_3(\text{cr}) + 2\text{H}^+(\text{ao}) = \text{Ba}^{2+}(\text{ao}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O}(\text{l}); \Delta H^\circ = -16.86 \text{ kJ} \cdot \text{mol}^{-1} \).

From 89COX/WAG (CODATA Key Values)

5. \(\text{CO}_2(\text{g}) + \text{H}_2\text{O}(\text{l}) = \text{CO}^{2-}(\text{ao}) + 2\text{H}^+(\text{ao}); \Delta H^\circ = -4.11 \text{ kJ} \cdot \text{mol}^{-1} \);

so that

6a. \(\text{BaCO}_3(\text{cr}) = \text{Ba}^{2+}(\text{ao}) + \text{CO}^{2-}(\text{ao}); \Delta H^\circ = -12.75 \text{ kJ} \cdot \text{mol}^{-1} \).

Similarly 54KAP/STA using aqueous HCl (\(n\text{H}_2\text{O}/\text{HCl} = 55 \)) obtained

\(\text{BaCO}_3(\text{cr}) + 2\text{HCl}(\text{D}:57.5\text{H}_2\text{O}) = \text{BaCl}_2[19.8(\text{HCl} + 60.61\text{H}_2\text{O})] + \text{CO}_2(\text{g}) + \text{H}_2\text{O}(\text{ao}); \Delta H = -14.10 \pm 0.46 \text{ kJ} \cdot \text{mol}^{-1} \).

Using

\(\text{BaCl}_2(\text{cr}) = \text{BaCl}_2[19.8(\text{HCl} + 60.61\text{H}_2\text{O})]; \Delta H^\circ = -8.62 \text{ kJ} \cdot \text{mol}^{-1} \)

and

\(\text{BaCl}_2(\text{cr}) = \text{BaCl}_2(\text{ai}); \Delta H = -13.80 \text{ kJ} \cdot \text{mol}^{-1} \).

From Table 4 and

\(2\text{HCl}(\text{D}:57.5\text{H}_2\text{O}) = 2\text{HCl}(\text{ai}); \Delta H = -2.664 \text{ kJ} \cdot \text{mol}^{-1} \)

from 65PAR,

\(\Delta H(4a) = -16.62 \text{ kJ} \cdot \text{mol}^{-1} \) and \(\Delta H(6a) = -12.5 \text{ kJ} \cdot \text{mol}^{-1} \).

From Solubility Measurements as a Function of Temperature

The solubility of \(\text{BaCO}_3(\text{cr}) \) has been measured by 86BUS/PLU from 273.15K to 363.15K at 1 atm. They reported, from \(\log K \) as a function of \(T \), for the solution process at 298.15K \(\Delta H = 2.94 \pm 1.0 \text{ kJ} \cdot \text{mol}^{-1} \).

The Selected \(\Delta_{solv}H^\circ(\text{BaCO}_3,\text{cr}) \) and \(\Delta_{solv}H^\circ(\text{Ba}^{2+},\text{ao}) \)

Table 5 summarizes the values obtained for \(\Delta_{solv}H^\circ \):

<table>
<thead>
<tr>
<th>Investigator</th>
<th>(\Delta_{solv}H^\circ), \text{kJ} \cdot \text{mol}^{-1}</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1875BER2</td>
<td>+3.02</td>
<td>from ppm.,Na_2CO_3</td>
</tr>
<tr>
<td>1886THO</td>
<td>+3.22</td>
<td>from pptn.,K_2CO_3</td>
</tr>
<tr>
<td>41ROT</td>
<td>+1.35</td>
<td>from ppm.,Na_2CO_3</td>
</tr>
<tr>
<td>54KAP/STA</td>
<td>-12.75</td>
<td>soln with HNO_3</td>
</tr>
<tr>
<td>86BUS/PLU</td>
<td>-12.5</td>
<td>soln with HCl</td>
</tr>
<tr>
<td>Initial selected value</td>
<td>+2.94</td>
<td>log_{sox}K</td>
</tr>
</tbody>
</table>

Using this value, the initial selection for \(\Delta_{solv}H^\circ(\text{BaCO}_3,\text{cr}) \) = -1210.79 \pm 2.0 \text{ kJ} \cdot \text{mol}^{-1} \) and with auxiliary information from 89COX/WAG for \(\Delta_{solv}H^\circ(\text{CO}_2^{2-},\text{ao}) \), \(\Delta_{solv}H^\circ(\text{Ba}^{2+},\text{ao}) \) = -532.62 \pm 2.2 \text{ kJ} \cdot \text{mol}^{-1} \).

7.1.3. The Standard Enthalpy of Solution of \(\text{Ba(NO}_3)_2(\text{cr}) \)

Table 6 summarizes the available calorimetric determinations and their \(\Delta_{solv}H^\circ \) values. Values for \(\phi_i(\text{Ba(NO}_3)_2) \) were obtained from 82WAG/EVA from the measurements of 31LAN/STR, 37BIR/LAN, 18PRA and 08BIS.

<table>
<thead>
<tr>
<th>Investigator</th>
<th>(\Delta_{solv}H^\circ(\text{Ba(NO}_3)_2,\text{cr})) in (\text{H}_2\text{O}) at 298.15 K; (\text{Ba(NO}_3)_2(\text{cr}) = \text{Ba(NO}_3)_2(\text{ai}))</th>
<th>(\Delta_{solv}H^\circ), \text{kJ} \cdot \text{mol}^{-1}</th>
<th>(n\text{H}_2\text{O})</th>
<th>(T/K)</th>
<th>(\phi_i), \text{kJ} \cdot \text{mol}^{-1}</th>
<th>(\Delta_{solv}H^\circ), \text{kJ} \cdot \text{mol}^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1875BER2</td>
<td>35.02</td>
<td>1000</td>
<td>285.15^a</td>
<td>-0.414</td>
<td>35.44</td>
<td></td>
</tr>
<tr>
<td>1886THO</td>
<td>39.35</td>
<td>400</td>
<td>289.15^a</td>
<td>-1.61</td>
<td>39.74</td>
<td></td>
</tr>
<tr>
<td>41ROT</td>
<td>41.98</td>
<td>1000</td>
<td>293.4^a</td>
<td>-0.414</td>
<td>39.68</td>
<td></td>
</tr>
<tr>
<td>37BRO/SMI</td>
<td>43.51</td>
<td>614</td>
<td>298.15</td>
<td>-3.573</td>
<td>40.73</td>
<td></td>
</tr>
<tr>
<td>64VAS</td>
<td>38.685</td>
<td>1000^c</td>
<td>298.15</td>
<td>-1.00</td>
<td>39.68</td>
<td></td>
</tr>
</tbody>
</table>

Initial Selection

\(\Delta C_p = -293 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \).
(assuming.)
Using $\Delta H^\circ = 39.68 \pm 0.3 \text{kJ} \cdot \text{mol}^{-1}$ and auxiliary data from 89COX/WAG, our selection for $\Delta H^\circ(\text{Ba(NO}_3\text{)}_2\text{(cr)}) = -987.25 \pm 1.8 \text{kJ} \cdot \text{mol}^{-1}$, $\Delta H^\circ(\text{Ba}^{3+},\text{ao}) = -533.88 \pm 1.82 \text{kJ} \cdot \text{mol}^{-1}$.

7.2. The $S^\circ(\text{Ba}^{3+},\text{ao})$

The values for $S^\circ(\text{Ba}^{3+},\text{ao})$ are derived from the $\Delta_m S^\circ$ from the solution properties of BaCl$_2$·2H$_2$O(cr), BaCO$_3$(cr) and Ba(NO$_3$)$_2$(cr). The entropies used for these compounds and Ba(cr) and for other compounds of interest in this evaluation are tabulated.

Table 7. Accepted Entropies of Solid Phases

<table>
<thead>
<tr>
<th>Compound</th>
<th>$S^\circ(298.15 \text{K}), \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba(cr)</td>
<td>62.475 ± 0.8</td>
<td>85CHA/DAV</td>
</tr>
<tr>
<td>BaO(cr)</td>
<td>72.069 ± 0.38</td>
<td>85CHA/DAV</td>
</tr>
<tr>
<td>BaH$_2$(cr)</td>
<td>63.00 ± 6</td>
<td>81GUR/BER</td>
</tr>
<tr>
<td>BaCl$_2$(cr)</td>
<td>123.666 ± 0.13</td>
<td>85CHA/DAV</td>
</tr>
<tr>
<td>BaCl$_2$·2H$_2$O(cr)</td>
<td>202.97 ± 0.84</td>
<td>61KEUKIN</td>
</tr>
<tr>
<td>Ba(NO$_3$)$_2$(cr)</td>
<td>213.97 ± 0.84</td>
<td>61KEUKIN</td>
</tr>
<tr>
<td>BaCO$_3$(cr)</td>
<td>112.10 ± 2.0</td>
<td>81GUR/BER</td>
</tr>
</tbody>
</table>

7.2.1. From the Solution Properties of BaCl$_2$·2H$_2$O(cr)

The Enthalpy of Solution and the Enthalpy of Dehydration

Table 8 shows the various calorimetric measurements and the $\Delta_m H^\circ$ obtained using ϕ from 82WAG/EVA.

For the enthalpy of dehydration to BaCl$_2$(cr):

The vapor pressure measurements of L. Trip were reported by 29HUT/SLO. For:

<table>
<thead>
<tr>
<th>Investigator</th>
<th>ΔH kJ·mol$^{-1}$</th>
<th>conc</th>
<th>n H$_2$O/BaCl$_2$</th>
<th>ϕ</th>
<th>ΔH° kJ·mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1875BER</td>
<td>17.76a</td>
<td>280</td>
<td></td>
<td></td>
<td>2.105</td>
</tr>
<tr>
<td>1886THO</td>
<td>18.63b</td>
<td>400</td>
<td></td>
<td>1.933</td>
<td>16.71</td>
</tr>
<tr>
<td>08SCH</td>
<td>18.38c</td>
<td>400</td>
<td></td>
<td>1.933</td>
<td>16.31</td>
</tr>
<tr>
<td>65LES/AVE</td>
<td>17.45 ± 0.10</td>
<td>1000</td>
<td></td>
<td>1.523</td>
<td>15.92</td>
</tr>
<tr>
<td>36BRO/SMI</td>
<td>18.49</td>
<td>402</td>
<td></td>
<td>1.933</td>
<td>16.56</td>
</tr>
<tr>
<td>36SHIFTER</td>
<td>18.27</td>
<td>1000</td>
<td></td>
<td>1.523</td>
<td>16.75</td>
</tr>
<tr>
<td>29PER</td>
<td>18.06d</td>
<td>430</td>
<td></td>
<td>1.900</td>
<td>16.16</td>
</tr>
<tr>
<td>37FED/SIL</td>
<td>19.12e</td>
<td>400</td>
<td></td>
<td>1.933</td>
<td>17.17</td>
</tr>
<tr>
<td>19.90d</td>
<td>200</td>
<td>2.246</td>
<td></td>
<td>17.55</td>
<td></td>
</tr>
<tr>
<td>20.17d</td>
<td>100</td>
<td>2.500</td>
<td></td>
<td>17.67</td>
<td></td>
</tr>
<tr>
<td>73SM/BER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.29</td>
</tr>
</tbody>
</table>

Initial Selected Value

16.50 ± 0.50

1. From 283 K, $\Delta H = 21.84 \text{kJ} \cdot \text{mol}^{-1}$, $\Delta C_p = -272 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.
2. From 291 K, $\Delta H = 20.63 \text{kJ} \cdot \text{mol}^{-1}$, $\Delta C_p = -276 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.
3. From 290 K, $\Delta H = 20.585 \text{kJ} \cdot \text{mol}^{-1}$, $\Delta C_p = -276 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.
4. From 283 K, $\Delta H = 21.76 \text{kJ} \cdot \text{mol}^{-1}$, $\Delta C_p = -285 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.
5. $\Delta H = 20.87 \text{kJ} \cdot \text{mol}^{-1}$, $\Delta C_p = -289 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ (400 H$_2$O).

$\Delta H^\circ = 69.83 \pm 3.0 \text{kJ} \cdot \text{mol}^{-1}$

$\Delta G^\circ = 14.43 \text{kJ} \cdot \text{mol}^{-1}$

$\Delta S^\circ = 185.7 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Measurements in the range 351 K to 386 K for (2) result in

$\Delta H^\circ = 79.9 \text{kJ} \cdot \text{mol}^{-1}$

$\Delta G^\circ = 18.8 \text{kJ} \cdot \text{mol}^{-1}$

$\Delta S^\circ = 205.0 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

$\Delta H^\circ = 0.222 \text{kJ} \cdot \text{mol}^{-1}$ at a mean $T = 330 \text{K}$, $\Delta C_p = -6.3 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.
so that \(\Delta H^\circ(5) = 61.73 \text{ kJ} \). These measurements are rejected. In addition, since many of the investigators measured the \(\Delta mH \) of both the hydrate and the anhydrous salt, one can obtain \(\Delta \mu mH^\circ \) from \(\Delta(\Delta \mu mH^\circ) \).

Table 9 shows the values obtained, as well as that from 29HUT/SLO.

Table 9. \(\text{BaCl}_2 \cdot 2 \text{H}_2 \text{O(cr)} = \text{BaCl}_2(\text{cr}) + 2\text{H}_2 \text{O(l)} \)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>(\Delta H), kJ·mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1875BER</td>
<td>29.77</td>
</tr>
<tr>
<td>1886THO</td>
<td>29.78</td>
</tr>
<tr>
<td>08SCH</td>
<td>29.61</td>
</tr>
<tr>
<td>25KOL</td>
<td>31.23</td>
</tr>
<tr>
<td>38KHO</td>
<td>27.53</td>
</tr>
<tr>
<td>73SM/BER</td>
<td>29.92</td>
</tr>
<tr>
<td>29HUT/SLO</td>
<td>28.6</td>
</tr>
</tbody>
</table>

From initial \(\Delta \mu mH^\circ \)s:

\[30.30 \pm 0.31 \]

BaCl\(_2\)·2H\(_2\)O(cr) = 16.5 ± 0.30 kJ·mol\(^{-1} \)
and

\[\text{BaCl}_2(\text{cr}) = -13.80 \pm 0.10 \text{ kJ·mol}^{-1} \]

The \(\Delta \mu mG^\circ \) and \(\Delta \mu mS^\circ(\text{BaCl}_2 \cdot 2\text{H}_2 \text{O,cr}) \)

The saturated solution of aqueous BaCl\(_2\) contains 1.785 moles BaCl\(_2\)/kg H\(_2\)O as given by 58 LIN. 78GOL/NUT evaluate the activity coefficient and osmotic coefficient measurements and recommend \(\gamma_\infty \) and \(\eta_\infty \) to be 0.4417 and 0.9028 respectively. These values result in \(\Delta \mu mG^\circ = -1.16 \pm 0.20 \text{ kJ·mol}^{-1} \) for

\[\text{BaCl}_2 \cdot 2\text{H}_2 \text{O(cr)} = \text{BaCl}_2(\text{ai})+2\text{H}_2 \text{O(l)}. \]

Using the initial selection of \(\Delta \mu mH^\circ = 16.5 \pm 0.30 \text{ kJ·mol}^{-1} \), \(\Delta \mu mS^\circ = 59.23 \pm 1.21 \text{ J·K}^{-1} \cdot \text{mol}^{-1} \) and \(S^\circ(\text{Ba}^{2+}, \text{ao}) = 9.10 \pm 1.47 \text{ J·mol}^{-1} \cdot \text{K}^{-1} \)

7.2.2. The Solution Properties of BaCO\(_3\)(cr)

86BUS/PLU measured the solubility of BaCO\(_3\)(cr, wetherite) from 273.15K to 363.15K at 1 atm. They represent their results for:

\[\text{BaCO}_3(\text{cr, wetherite}) = \text{Ba}^{2+}(\text{ao}) + \text{CO}_3^{2-}(\text{ao}); \]

\[\log K = 607.642 + 0.121078T - 2001.125T - 236.4948 \log T \]
so that

\[\log K \text{ (298.15K) } = -8.562 \]
\[\Delta H^\circ = 2.94 \pm 1.0 \text{ kJ·mol}^{-1} \]
\[\Delta G^\circ = 48.87 \pm 0.08 \text{ kJ·mol}^{-1} \]
\[\Delta S^\circ = -154.0 \pm 3.4 \text{ J·K}^{-1} \cdot \text{mol}^{-1} . \]

Then \(S^\circ \)(Ba\(^{2+}, \text{ao}) = 8.10 \pm 3.9 \text{ J·K}^{-1} \cdot \text{mol}^{-1} . \)

They also review and cite the earlier measurement. Some of those in agreement for \(\Delta G^\circ \) are:

84MIL/MIL 48.86 kJ·mol\(^{-1} \)
11McCo/SAL 48.97 kJ·mol\(^{-1} \)

Some others, in fair agreement, are:

39HOG/JOH from (37TOW/WHI) 49.62 kJ·mol\(^{-1} \) (50.23 kJ·mol\(^{-1} \)) and 60GAR/THO 49.5 kJ·mol\(^{-1} \). In addition 62JAK/JAN from cell measurements obtained \(E^\circ = 0.524 \) volts and \(E^\circ = 0.532 \) volts for respectively for

\[\text{Pb(cr)} + \text{BaCO}_3(\text{cr}) + \text{Hg}_2\text{Cl}_2(\text{cr}) = \text{PbCO}_3(\text{cr}) + 2\text{Hg(l)} + \text{BaCl}_2(\text{ai}) \]
and

\[\text{Pb(cr)} + \text{CaCO}_3(\text{cr}) + \text{Hg}_2\text{Cl}_2(\text{cr}) = \text{PbCO}_3(\text{cr}) + 2\text{Hg(l)} + \text{CaCl}_2(\text{ai}) . \]

This results in \(\Delta G^\circ = 1.54 \text{ kJ·mol}^{-1} \) for

\[\text{BaCO}_3(\text{cr}) + \text{Ca}^{2+}(\text{ao}) = \text{CaCO}_3(\text{cr}) + \text{Ba}^{2+}(\text{ao}). \]

Since

\[\text{CaCO}_3(\text{cr}) = \text{Ca}^{2+}(\text{ao})+\text{CO}_3^{2-}(\text{ao}); \]

\[\Delta G^\circ = +48.37 \pm 0.20 \text{ kJ·mol}^{-1} \text{ from } 87GAR/PAR. \]

\[\text{BaCO}_3(\text{cr}) = \text{Ba}^{2+}(\text{ao})+\text{CO}_3^{2-}(\text{ao}); \]

\[\Delta G^\circ = 49.91 \text{ kJ·mol}^{-1} . \]

The measurements of 86BUS/PLU are preferred.

7.2.3. The Solution Properties of Ba(NO\(_3\))\(_2\)(cr)

The \(\Delta mG^\circ = 13.374 \pm 0.20 \text{ kJ·mol}^{-1} \) is obtained from the solubility from 58LIN \((m=0.3909 \text{ mol·kg}^{-1} \) and \(\gamma_\infty = 0.267 \) from 69WU/HAM.

The resultant \(\Delta mS^\circ \) from \(\Delta mG^\circ \) and \(\Delta mH^\circ \) (39.68 ± 0.30 kJ·mol\(^{-1} \)) is 88.23 ± 1.21 J·K\(^{-1} \)·mol\(^{-1} \) and \(S^\circ(\text{Ba}^{2+}, \text{ao}) = 8.80 \pm 1.47 \text{ J·K}^{-1} \cdot \text{mol}^{-1} . \)

7.3. Summary of Values Obtained for \(S^\circ(\text{Ba}^{2+}, \text{ao}) \) and \(\Delta H^\circ(\text{Ba}^{2+}, \text{ao}) \)

The values obtained for \(S^\circ(\text{Ba}^{2+}, \text{ao}) \) and \(\Delta H^\circ(\text{Ba}^{2+}, \text{ao}) \) are tabulated.

8. The Recommended Thermodynamic Property Values for \(\text{Ba}^{2+}(\text{ao}) \) and the Key Compounds

Table 10 shows the derived values for \(\text{Ba}^{2+}(\text{ao}) \) and the selected values. They are:

\[\Delta H^\circ(\text{Ba}^{2+}, \text{ao}) = -534.64 \pm 1.8 \text{ kJ·mol}^{-1} ; \]
\[S^\circ(\text{Ba}^{2+}, \text{ao}) = 8.80 \pm 0.50 \text{ J·K}^{-1} \cdot \text{mol}^{-1} ; \]
\[\Delta G^\circ(\text{Ba}^{2+}, \text{ao}, 0.1\text{MPa}) = -557.60 \pm 1.81 \text{ kJ·mol}^{-1} . \]

The derived values in Table 10 for \(\Delta H^\circ \) and \(S^\circ \) from the three systems are in good agreement with each other, lending support to the selections made for the various components. This is particularly true for the \(S^\circ(\text{Ba}^{2+}, \text{ao}) \), resulting from
three independent paths. For $\Delta H^\circ\text{Ba}^{2+}{(ao)}$, however, the two values ultimately trace back to the $\Delta_{\text{mol}}H\text{(Ba,cr)}$ in aqueous HCl from 73FIT/HUB. All ΔH° hang from this. There is no independent path that confirms the $\Delta H^\circ\text{Ba}_2\text{O}_3\text{(cr)}$ and $\Delta H^\circ\text{BaO}_2\text{(cr)}$ and $\Delta H^\circ\text{BaO}_3\text{(cr)}$ are dependent upon them. As is indicated in Sec. 2.1, the direct combustion value for $\Delta H^\circ\text{BaO}_2\text{(cr)}$ is incompatible with 73FIT/HUB’s value from AsoIH(Ba,cr) and AsoJl(BaO,cr) in aqueous HCl. The independent measurements of 90COR/KON confirm the $\Delta H^\circ\text{Ba}_2\text{O}_3\text{(cr)}$. The independent measurements of 63EHR/PEII on $\Delta H^\circ\text{BaCl}_2\text{(cr)}$ from $\Delta_{\text{mol}}H\text{Ba(cr)}$ and $\Delta_{\text{mol}}H\text{BaCl}_2\text{(cr)}$ in HCl are farther off from the 90COR/KON to be considered good confirmation. The only other independent path, the direct $\Delta H^\circ\text{BaH}_2\text{(cr)}$ from the enthalpy of hydrogenation from 68VOR/3MON, which confirms the indirect $\Delta H^\circ\text{BaH}_2\text{(cr)}$ from 67VOR/3MON (see Chapter 5), is also incompatible with $\Delta H^\circ\text{BaCl}_2\text{(cr)}$ (see Chapter 3).

Further work is needed to confirm the above selections. Specifically, the $\Delta_{\text{mol}}H\text{Ba(cr)}$, $\Delta_{\text{mol}}H\text{BaO}_2\text{(cr)}$, $\Delta_{\text{mol}}H\text{BaCl}_2\text{(cr)}$ and $\Delta_{\text{mol}}H\text{BaCO}_3\text{(cr)}$ in HCl should be remeasured and the $\Delta_{\text{mol}}H\text{Ba(cr)}$ redetermined and the $\Delta_{\text{mol}}H\text{BaO}_2\text{(cr)}$ of this well-characterized sample measured.

Table 11 shows the final recommended property values for the key compounds.

Table 12 shows the reconstituted recommended process values and their uncertainties for processes considered here.

Table 10. The thermodynamics for Ba$^{2+}$ (ao). The calculated values for ΔH° and S° for Ba$^{2+}$ (ao) from the processes considered

<table>
<thead>
<tr>
<th>Process</th>
<th>ΔH° kJ mol$^{-1}$</th>
<th>ΔG° kJ mol$^{-1}$</th>
<th>ΔS° J K$^{-1}$ mol$^{-1}$</th>
<th>ΔH° kJ mol$^{-1}$</th>
<th>S° J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaCl$_2$(cr) = BaCl$_2$(al) and ΔH°(BaCl$_2$) = 855.00 ± 1.73 kJ mol$^{-1}$</td>
<td>-13.80</td>
<td>-</td>
<td>-534.64</td>
<td>±1.0</td>
<td>±1.8</td>
</tr>
<tr>
<td>BaCl$_2$(H$_2$O)(cr) = BaCl$_2$(al) + 2H$_2$O(l)</td>
<td>+16.5</td>
<td>-1.16</td>
<td>59.23</td>
<td>9.10</td>
<td>±1.47</td>
</tr>
<tr>
<td>BaCO$_3$(cr) = BaCO$_3$(al) and ΔH°(BaCO$_3$) = -1210.79 ± 2.0 kJ mol$^{-1}$</td>
<td>2.94</td>
<td>48.87</td>
<td>-154.0</td>
<td>-532.62</td>
<td>8.10</td>
</tr>
<tr>
<td>Ba(NO$_3$)$_2$(cr) = Ba(NO$_3$)$_2$(al) and ΔH°(Ba(NO$_3$)$_2$) = -987.25 ± 1.8 kJ mol$^{-1}$</td>
<td>39.68</td>
<td>13.37</td>
<td>88.23</td>
<td>-533.88</td>
<td>8.80</td>
</tr>
<tr>
<td>Selected Values</td>
<td>-534.64</td>
<td>0.80</td>
<td>8.80</td>
<td>±0.50</td>
<td>±0.50</td>
</tr>
</tbody>
</table>

Table 11. Recommended thermodynamic property values of key compounds of Barium at 298.15 K and 0.1 MPa (1 bar)

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\Delta H^\circ(0)$ kJ mol$^{-1}$</th>
<th>$\Delta H^\circ(298.15\text{ K})$ kJ mol$^{-1}$</th>
<th>$\Delta G^\circ(298.15\text{ K})$ kJ mol$^{-1}$</th>
<th>$H - H(0)$ kJ mol$^{-1}$</th>
<th>S° J K$^{-1}$ mol$^{-1}$</th>
<th>C° J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba(cr)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>6.912</td>
<td>62.47</td>
<td>28.096</td>
</tr>
<tr>
<td>Ba$^{2+}$(ao)</td>
<td>-534.64</td>
<td>-557.60</td>
<td>-</td>
<td>8.80</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BaO(cr)</td>
<td>-546.771</td>
<td>-548.04</td>
<td>-520.32</td>
<td>9.983</td>
<td>72.069</td>
<td>47.279</td>
</tr>
<tr>
<td>BaH$_2$(cr)</td>
<td>-170.72</td>
<td>-177.0</td>
<td>-138.2</td>
<td>9.10</td>
<td>63.0</td>
<td>46.0</td>
</tr>
<tr>
<td>BaCl$_2$(cr)</td>
<td>-855.614</td>
<td>-855.00</td>
<td>-806.73</td>
<td>16.707</td>
<td>123.666</td>
<td>75.140</td>
</tr>
<tr>
<td>BaCl$_2$(al)</td>
<td>-868.80</td>
<td>-820.04</td>
<td>-</td>
<td>122.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BaCl$_2$(H$_2$O)(cr)</td>
<td>-1456.86</td>
<td>-1293.16</td>
<td>-</td>
<td>202.97</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ba(NO$_3$)$_2$(cr)</td>
<td>-988.02</td>
<td>-792.562</td>
<td>-</td>
<td>213.97</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ba(NO$_3$)$_2$(al)</td>
<td>-948.34</td>
<td>-779.188</td>
<td>-</td>
<td>302.20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BaCO$_3$(cr)</td>
<td>-1208.558</td>
<td>-1213.03</td>
<td>-1134.37</td>
<td>16.510</td>
<td>112.10</td>
<td>85.983</td>
</tr>
<tr>
<td>BaCO$_3$(al)</td>
<td>-1209.87</td>
<td>-1085.50</td>
<td>-</td>
<td>41.20</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 12. Recommended process values for some Ba compounds at 298.15 K and 0.1 MPa (1 bar)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>ΔH° kJ·mol$^{-1}$</th>
<th>ΔG° kJ·mol$^{-1}$</th>
<th>ΔS° J·K$^{-1}$·mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ba(cr) + 2$H^+(ao) = Ba^{2+}(ao) + H_2(g)$</td>
<td>-534.64 ± 1.80</td>
<td>-557.60 ± 1.61</td>
<td>77.01 ± 0.94</td>
</tr>
<tr>
<td>2. BaO(cr) + 2$H^+(ao) = Ba^{2+}(ao) + H_2O(l)$</td>
<td>-272.43 ± 0.28</td>
<td>-274.42 ± 0.34</td>
<td>6.68 ± 0.63</td>
</tr>
<tr>
<td>3. BaH$_2$(cr) + 2$H^+(ao) = Ba^{2+}(ao) + 2H_2(g)$</td>
<td>-357.64 ± 4.00</td>
<td>-419.4 ± 4.5</td>
<td>207.2 ± 6.1</td>
</tr>
<tr>
<td>4. BaO(cr) + 2HCl(ai) = BaCl$_2$(cr) + H$_2$O(l)</td>
<td>-258.63 ± 0.30</td>
<td>-261.11 ± 0.40</td>
<td>8.35 ± 0.57</td>
</tr>
<tr>
<td>5. BaCl$_2$(cr) = BaCl$_2$(ai)</td>
<td>-13.80</td>
<td>-13.31</td>
<td>-1.67 ± 0.65</td>
</tr>
<tr>
<td>6. BaCl$_2$·2H$_2$O(cr) = BaCl$_2$(ai) + 2H$_2$O(l)</td>
<td>16.40 ± 0.10</td>
<td>-1.16 ± 0.22</td>
<td>58.90 ± 1.1</td>
</tr>
<tr>
<td>7. BaCl$_2$(cr) + 2HNO$_3$(ai) = Ba(NO$_3$)$_2$(cr) + 2HCl(ai)</td>
<td>167.48 ± 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Ba(NO$_3$)$_2$(cr) = Ba(NO$_3$)$_2$(ai)</td>
<td>39.68 ± 0.30</td>
<td>13.37 ± 0.20</td>
<td>88.2 ± 1.2</td>
</tr>
<tr>
<td>9. BaCO$_3$(cr) = BaO(cr) + CO$_2$(g)</td>
<td>271.48 ± 1.00</td>
<td>219.68 ± 1.2</td>
<td>173.75 ± 2.1</td>
</tr>
<tr>
<td>10. BaCO$_3$(cr) = Ba$^{2+}$(ao) + CO$_3^{2-}$(ao)</td>
<td>3.16 ± 0.7</td>
<td>38.87 ± 0.8</td>
<td>-153.30 ± 2.3</td>
</tr>
</tbody>
</table>

Table 13. The alkaline earth metal ions on the CODATA scale at 298.15 K and 0.1 MPa

<table>
<thead>
<tr>
<th>Reaction</th>
<th>ΔH° kJ·mol$^{-1}$</th>
<th>ΔG° kJ·mol$^{-1}$</th>
<th>S° J·K$^{-1}$·mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg$^{2+}$(ao)</td>
<td>-467.0 ± 0.6</td>
<td>-455.38 ± 1.4</td>
<td>-137 ± 4</td>
</tr>
<tr>
<td>Ca$^{2+}$(ao)</td>
<td>-543.0 ± 1.0</td>
<td>-552.81 ± 1.1</td>
<td>-56.2 ± 1.0</td>
</tr>
<tr>
<td>Sr$^{2+}$(ao)</td>
<td>-550.90 ± 0.5</td>
<td>-563.86 ± 0.8</td>
<td>-31.5 ± 2.0</td>
</tr>
<tr>
<td>Ba$^{2+}$(ao)</td>
<td>-534.64 ± 1.8</td>
<td>-557.60 ± 1.81</td>
<td>8.80 ± 0.5</td>
</tr>
</tbody>
</table>

9. Closing Comments

Table 12 shows the thermochemical property values for the alkaline earth metal ions on the CODATA scale, including the values presented here for Ba$^{2+}$(ao), those of 86BUS/PLU on Sr$^{2+}$(ao), and the others from the recommendations of 89COX/WAG. It is interesting to note that the values for ΔG° for the alkaline earth ions become more negative with increasing atomic number, as is the case for the comparable alkali metal ions, except for Ba$^{2+}$(ao) which reverses directions and is more positive than Sr$^{2+}$(ao), in keeping with the trends of other aqueous ions within a group of the periodic chart. An estimate for ΔG°(Ra$^{2+}$(ao)) based on this would be $-550 ± 5$ K·J·mol$^{-1}$.

10. Acknowledgements

I wish to thank the Chemical Kinetics and Thermodynamics Division for their financial support and M. W. Chase and his staff in the Standard Reference Data Program for their editorial assistance.

Note added in proof:

After the network solution was completed the results of Cordefunke et al., J. Phys. Chem. Solids 55, 77 (1994) on the S°(BaO,cr) became available. The S°=70.01±0.10 J·K$^{-1}$·mol$^{-1}$ differs from that recommended here by 2.06 J·K$^{-1}$·mol$^{-1}$. This would lower all third law $\Delta_{	ext{decomp}}H^\circ$(BaCO$_3$,cr) from vapor pressure measurements listed in Table 1 by ~2 kJ. It would not appreciably affect the final recommendation within the assigned uncertainties.

11. References

1875BER M. Berthelot, Ann. chim. et phys. 5, 4, 74 (1875).
1875BER2 M. Berthelot, Ann. chim. et phys. 5, 4, 160 (1875).
1875BER3 M. Berthelot, Ann. chim. et phys. 5, 4, 209 (1875).
1875BER4 M. Berthelot, Ann. chim. et phys. 5, 4, 531 (1875).
1880BER M. Berthelot, Ann. chim. et phys. 5, 21, 153 (1880).
1896TAS E. Tassilly, Compt. rend. 122, 812 (1896).