NIST-JANAF Thermochemical Tables for the **Iodine Oxides**

Cite as: Journal of Physical and Chemical Reference Data 25, 1297 (1996); https:// doi.org/10.1063/1.555994

Submitted: 25 July 1995 . Published Online: 15 October 2009

M. W. Chase

ARTICLES YOU MAY BE INTERESTED IN

NIST-JANAF Thermochemical Tables for Oxygen Fluorides Journal of Physical and Chemical Reference Data 25, 551 (1996); https:// doi.org/10.1063/1.555992

NIST-JANAF Thermochemical Tables for the Bromine Oxides Journal of Physical and Chemical Reference Data 25, 1069 (1996); https:// doi.org/10.1063/1.555993

JANAF Thermochemical Tables, 1982 Supplement Journal of Physical and Chemical Reference Data 11, 695 (1982); https:// doi.org/10.1063/1.555666

NIST-JANAF Thermochemical Tables for the lodine Oxides

Malcoim W. Chase

Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, Maryland 20879

Received July 25, 1995; revised manuscript received May 1, 1996

The thermodynamic and spectroscopic properties of the iodine oxide species have been reviewed. Recommended NIST-JANAF Thermochemical Tables are given for six gaseous iodine oxides: IO, OIO, IOO, IOI, IIO, and IO3. Sufficient information is not available to generate thermochemical tables for any condensed phase species. Annotated bibliographies (over 400 references) are provided for all neutral iodine oxides which have been reported in the literature. There is a lack of experimental thermodynamic and spectroscopic information for all iodine oxide species, except IO(g) and OIO(g). The recommended thermochemical tables are based on estimates for the structure, vibrational frequencies, and enthalpy of formation based in part on the spectroscopic and thermodynamic data for the other halogen oxides [J. Phys. Chem. Ref. Data 25, 551 (1996); 25, 1061 (1996)]. Although there is a definite lack of information in comparison with the other halides, this information is provided for the iodine oxides for the following reasons: (1) to complete the study of the halogen oxide family and (2) to stress the need for additional experimental measurements. Of all the species mentioned in the literature, many have not been isolated or characterized. In fact, some do not exist. Throughout this paper, uncertainties attached to recommended values correspond to the uncertainty interval, equal to twice the standard deviation of the mean. © 1996 American Institute of Physics and American Chemical Society.

Key words: evaluated/recommended data; iodine oxides; literature survey; spectroscopic properties; thermodynamic properties.

Contents

1.		luction		6.	NIST-JANAF Thermochemical Tables	
	1.1 F	References for Introduction	1299		6.1 IO(g)	
2.	Chem	nical Species Coverage	1300		6.2 OIO(g)	
3.	Histo	rical Perspective of Iodine Oxide Studies	1300		6.3 IOO(g)	
4.	Sumn	nary of the Data for the Iodine Oxide			6.4 IO ₃ (g)	
	Speci	es	1301		6.5 IOI(g)	
	4.1 S	pectroscopic Information	1301		6.6 IIO(g)	1326
	4.2. T	Thermodynamic Information	1301	7.	Conclusions	1327
5.	Discu	ssion of the Literature Data	1302	8.	Acknowledgments	1327
	5.1	IO	1302	9.	References—Annotated Bibliography	1327
	5.2	IO ₂				
	5.3	Iodyl–IO ₂				
	5.4	IOO				
	5.5	IO _{2.24}	1305		List of Tables	
	5.6	IO ₃		1a.	Solid iodine oxide species: Preparation and	
	5.7	104		ıu.	related reactions	1310
	5.8	I ₂ O	1306	1b.	Solid iodine oxide species: Decomposition and	1510
	5.9	$\tilde{l_2}O_2$	1306	10.	related reactions	131
	5.10	I_2O_3		2.	Iodine oxide species: Neutrals, radicals, and ions	131
	5.11	I_2O_4			in solution	1314
	5.12	I ₂ O ₅		3.	Iodine oxide species: Electronic energy levels	
	5.13	I ₂ O ₆		4.	Iodine oxide species (IO): Dissociation energy	151.
	5.14	I_2O_7		•••	(D_0^3)	131
	5.15	I ₂ O ₈		5.	Iodine oxide species: Structures and vibrational	
	5.16	I_4O_9			frequencies	1318
	5.17	I_6O_{13}		6.	Thermodynamic properties of the iodine	
	5.18	$I_{10}O_{19}$			oxides	132
		-10 - 15				

1. Introduction

As a continuation of previous studies which dealt with the thermodynamic properties of the chlorine oxides, oxygen fluorides,² and bromine oxides,³ this study deals with the iodine oxides. We will not discuss the astatine oxides, as there appears to be only an estimated D_0° value reported in the literature for AtO(g). Specifically, this study examines the thermodynamic properties of the neutral oxides, not the gaseous ionic and aqueous ionic species. The main purpose of this article is to generate thermochemical tables for iodine oxide species. In general, there are scant data available for the description of the spectroscopic and thermodynamic data for any of the iodine oxides, except for IO(g) and OIO(g). Although the prime emphasis was on the diatomic and triatomic species, a thorough search of all iodine oxygen species was conducted to decide which species had sufficient data. Of the iodine oxides mentioned in the literature, only five have been isolated and (at least, partially) characterized: IO(g), OIO(g), $I_2O_4(cr)$, $I_2O_5(cr)$, $I_4O_9(cr)$.

For the time period 1907-1994, there are only 354 citations in Chemical Abstract Services (CAS) dealing with the iodine oxides; of these, 196 are for I_2O_5 (with the majority of these dealing with commercial applications, as opposed to providing property data) and 73 references deal with IO. Of the approximately 20 oxides mentioned in the literature, however, some do not exist.

Iodine oxides are also of interest due to their involvement in the transport of iodine in a post-accident nuclear environment, while IO is of interest both because of its similarity to CIO (ozone depletion) and as a tropospheric ozone sink. Spectroscopic studies have shown that the ground and first excited electronic states of the halogen monoxides play an intermediate role in the photochemistry of upper atmosphere (e.g., CIO in stratosphere and IO in ionosphere limit the atmospheric abundance of ozone). I_2O_5 is discussed in many articles dealing with the compound's preparation or reaction. Specifically, I_2O_5 has key applications in detecting CO(g). Despite this relevance of the halogen oxides, basic physical properties, in particular the vibrational frequencies and molecular geometries, are poorly characterized.

The current study is aimed at providing a complete and thorough coverage of the literature for spectroscopic and thermodynamic information. Although it is not the purpose of this article to summarize and critique the chemistry of the iodine oxides, all such references are provided here. The references were obtained primarily by use of commercial abstracting services and all NIST Data Centers. Since the literature survey revealed so few references in total for all iodine oxides, all citations are listed in Sec. 9 (References—Annotated Bibliography), except the approximately fifty patents which are not listed or discussed. It should be noted that

the reading of the individual articles yielded many additional references, most of which are included in the attached bibliography. Not included are those articles or books (textbooks and handbooks) which are simply presenting a summary of properties, with no critical evaluation. Note that the earliest reference for any iodine oxide species was in the 1800s. However, these bibliographies are not complete in their coverage for the 1800s. Even though many of these citations are not relevant to this study, future investigators will not have to search the past literature, but simply concentrate on the publications since 1994.

The current edition (i.e., 1985) of the JANAF Thermochemical Tables⁴ does not include any iodine oxygen species, whereas the Thermodynamic Properties of Individual Substances⁵ only includes IO(g). This latter critical review referred to data from four spectroscopic studies, three ESR studies, one microwave study, and four dissociation energy studies, the latest of all these citations being dated 1975. The NBS tables⁶ gave information for IO(g) at 298.15 K, for C_n , S, H, and the formation properties, but only an enthalpy of formation for I₂O₅(cr). (Information for four iodine oxide aqueous ions is also included.) Similar information was given in Thermal Constants of Substances,7 although these authors additionally include an enthalpy of formation of a pentoxide hydrate. (Information for one iodine oxide aqueous ion is included.) These latter two evaluations were performed in 1964 and 1965, respectively, and were based on the same references.

There are many NASA-JPL publications on chemical kinetics in which enthalpy of formation tables are given. Of all the iodine oxides, only IO(g) is listed by NASA-JPL. ⁸ These data are presented without citation or reference to the original source. Most of the recommendations are based upon data in the IUPAC Evaluation (Atkinson *et al.*, 1989, 1992¹⁰). Some of the values are different from the current IUPAC recommendations, reflecting recent studies that have not yet been accepted and incorporated into that publication. IUPAC cites the origin of their values. All citations given by IUPAC are included in this article.

Iodine and its oxides were reviewed by Roman¹¹ for the Gmelin series. This review covered the literature through 1933 and is an excellent source of information on the oxides for the period of the 1800s. All these references are not included in this article. The Roman review discussed (see pages 432 to 442) the following compounds: I₂O, I₂O₃, I₂O₄ (or IO₂), I₂O₅, I₂O₇, IO₄, I₄O₉, I₁₀O₁₉, and I₆O₁₃. The latter two compounds were stated not to exist. The text discussed the formation and stability of the condensed phase oxides. In general, there were property data presented only for the pentoxide. There was a short mention of the thermodynamic information on the formation of I₂O₅(cr) at the time of this review. There were no experimental studies for the gaseous iodine oxides mentioned.

In a 1963 review article, Schmeisser and Brandle¹² summarized the data pertaining to the properties and chemistry of the halogen-oxygen compounds. Although these authors did not specifically discuss IO, they highlighted the fact that

^aChemical Kinetics Data Center; Chemical Thermodynamics Data Center; Ion Kinetics and Energetics Data Center; Molecular Spectra Data Center; Vibrational and Electronic Energy Levels of Small Polyatomic Transient Molecules: Crystal and Electron Diffraction Data Center.

only I_2O_5 was well defined with only two other oxides having been isolated, but not unequivocally characterized— I_2O_4 and I_4O_9 . A 1968 article by Selte and Kjekshus¹³ stated that two oxides I_2O_4 and I_2O_5 were properly established whereas the rest have a high degree of uncertainty associated with them. In a 1972 review of the halogen oxides, Brisdon¹⁴ discussed seven iodine oxide species: IO, IO_2 , IOO, IO_3 , IO_4 , I_2O_4 , and I_2O_5 . Whereas there was a spectroscopic characterization given for IO, there was only structural information in the condensed phase given for I_2O_4 and I_2O_5 . IO_2 and IO_3 were mentioned only in terms of their presumed formation in iodate solutions. A later review (1980) by Wikjord *et al.*¹⁵ suggested that I_2O_4 , I_2O_5 , and I_4O_9 have been isolated and fully characterized, crystallographically.

In 1977, Clyne and Curran¹⁶ surveyed the kinetics of halogen atoms, excited molecular halogens, and halogen oxide radicals. The authors covered the literature through early 1976. Their discussion provided a summary of the bimolecular reactions of ClO and BrO. The authors stated that so far no systematic kinetic studies of IO had been performed.

(After this article was written and reviewed, we became aware of the existence of another review article by Wayne et al.¹⁷ This article provides discussion on the thermodynamic and spectroscopic data on many bromine oxides. Although not of importance for our purposes, the article also discusses many other topics, including photochemistry and kinetics.)

In reading Sec. 5, the reader will soon learn that the existence of many of the iodine oxide compounds is questionable. The thermal instability of the iodine oxides has led to numerous difficulties in characterizing specific iodine oxides. The syntheses are not always reproducible. The following summarizes our interpretations of the probable existence of the compounds mentioned:

Exist and have been observed: IO; IO₂ Postulated: IOO; IO_{2.24}; IO₃; IO₄; I₂O; I₂O₂; I₂O₈ Hypothetical molecule to describe ternary systems: I₂O₇ Observed as crystalline solid: I₂O₄; I₂O₅; I₂O₆; I₄O₉ No conclusive confirmation as to existence: I₂O₃; I₆O₁₃; I₁₀O₁₉

In the following discussions, analyses and calculations, the 1993 atomic weights of the elements are used: 18 $A_{\rm r}({\rm I}) = 126.904~47 \pm 0.000~03; A_{\rm r}({\rm O}) = 15.9994 \pm 0.0003$ are used. Since the mid-1950s, the relative atomic weight of oxygen has changed by 0.0006 to 15.9994. Similarly for iodine, the relative atomic weight has changed by 0.005 53 to 126.904 47. However, since 1961 the change has been 0.0003. Relatively speaking, these changes are sufficiently small that we will not consider any conversions due to relative atomic weights.

SI units are used for the final recommendations. Since we are dealing only with spectroscopic information, the resulting calculated thermodynamic tables will refer to thermody-

namic temperatures. Thus, no temperature scale conversions are necessary.

In the following discussions, the numeric values (and their uncertainties if given) presented are those reported in the original publication in addition to the SI value. This is to ensure quick confirmation of the extracted results and their uncertainties. These uncertainties (not always based on experimental and mathematical analyses) are the values quoted by the original authors and are often not fully described as to their origins. Our reported uncertainties for S° and $\Delta_{\rm f}H^{\circ}$ are calculated using a propagation of errors approach.

The recommended data presented in the NIST-JANAF Thermochemical Tables are a result of a combined appraisal of results from experimental studies, calculations (e.g., quantum-mechanical treatments) and estimations. All tables are calculated using the full significance of all numeric values. Rounding occurs at the end of the calculations. The uncertainty given represents our best attempt for twice the standard deviation.

The NIST-JANAF Thermodynamic Tables (Sec. 6) are calculated using the current atomic weights and fundamental constants, as well as the thermochemical tables for monatomic and diatomic iodine and oxygen. These latter reference state thermochemical tables, as orginally calculated, were based on the 1973 fundamental constants²⁰ and the 1981 relative atomic weights.²¹ This will cause a slight offset in the formation properties of the order 0.01 kJ mol⁻¹ at most; such an offset is still outside the uncertainty range of the enthalpy of formation of the iodine oxides. Neumann²² has presented an identical thermodynamic table for IO(g); this table was prepared jointly with this author.

1.1 References for Introduction

- ¹S. Abramowitz and M. W. Chasc, "NIST-JANAF Thermochemical Tables for the chlorine oxides," Pure Appl. Chem. 63, 1449 (1991); 63, 1827 (1991).
- ²M. W. Chase, "NIST-JANAF Thermochemical Tables for the oxygen fluorides," J. Phys. Chem. Ref. Data **25**, 551 (1996).
- ³M. W. Chase, "NIST-JANAF Thermochemical Tables for the bromine oxides," J. Phys. Chem. Ref. Data 25, 1069 (1996).
- ⁴ M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. A. Frurip, R. A. McDonald, and A. N. Syverud, "JANAF Thermochemical Tables, Third Edition," J. Phys. Chem. Ref. Data 14, Suppl. No. 1 (1985).
- ⁵L. V. Gurvich, I. V. Veyts, and C. B. Alcock, "Thermodynamic Properties of Individual Substances, Fourth Edition" (Hemisphere Publishing Corp., New York, 1989).
- ⁶ D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, "The NBS Tables of chemical thermodynamic properties. Selected values for inorganic and C₁ and C₂ organic substances in SI units," J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).
- ⁷V. P. Glushko and V. A. Medvedev, *Thermal Constants of Substances* (Academy of Sciences, Moscow, 1965).
- ⁸W. B. De More, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, "Chemical kinetics and photochemical data for use in stratospheric modeling," NASA-JPL Publication 92-20 (1992); this is one of a series of similar publications.
- ⁹R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement III," J. Phys. Chem. Ref. Data 18, 881 (1989).
- ¹⁰R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and

- J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV," J. Phys. Chem. Ref. Data 21, 1125 (1992).
- ¹¹ W. Roman, "Iodine," System No. 8, Gmelins Handbuch der Anorganischen Chemie (Verlag Chemie, GMBH, Berlin, 1933).
- ¹² M. Schmeisser and K. Brandle, "Oxides and oxyfluorides of the halogens," Adv. Inorg. Radiochem. 5, 41 (1963).
- 13 K. Selte and A. Kjekshus, "Iodine oxides. Part II. On the system $H_2O-I_2O_5$," Acta Scand. Chem. **22**, 3309 (1968).
- ¹⁴B. J. Brisdon, "Oxides and oxyacids of the halogens," Int. Rev. Sci.: Inorg. Chem., Ser. One 3, 215 (1972).
- ¹⁵ A. Wikjord, P. Taylor, D. Torgeson, and L. Hachkowski, "Thermal behavior of corona-precipitated iodine oxides," Thermochim. Acta 36, 367 (1980); CA 92 190554d; preparation, thermal decomposition.
- ¹⁶M. A. A. Clyne and A. H. Curran, "Reactions of halogen atoms, free radicals, and excited states," Gas Kinet. Energy Transfer 2, 239 (1977).
- ¹⁷ R. P. Wayne, H. Poulet, P. Briggs, J. P. Burrows, R. A. Cox, P. J. Crutzen, G. D. Hayman, M. E. Jenkin, G. Le bras, G. K. Moortgat, U. Platt, and R. N. Schindler, "Halogen oxides: radicals, sources, and reservoirs in the laboratory and in the atmosphere," Atmos. Env. 29, 2675 (1995).
- ¹⁸IUPAC Commission on Atomic Weights and Isotopic Abundances, "Atomic weights of the elements 1993," J. Phys. Chem. Ref. Data 24, 1561 (1995); Pure Appl. Chem. 66, 2423 (1994).
- ¹⁹ E. R. Cohen and B. N. Taylor, "The 1986 CODATA recommended values of the fundamental physical constants," J. Phys. Chem. Ref. Data 17, 1795 (1988).
- ²⁰ E. R. Cohen and B. N. Taylor, "The 1973 least-squares adjustment of the fundamental constants," J. Phys. Chem. Ref. Data 2, 663 (1973).
- ²¹ N. E. Holden and R. L. Martin, Editors, "Atomic weights of elements—1981," Pure Appl. Chem. 55, 1101 (1983).
- ²² D. B. B. Neumann, "NIST-JANAF Thermochemical Tables, Supplement 1995," J. Chem. Phys. Ref. Data, submitted for publication (1995).

2. Chemical Species Coverage

The following is a list of all iodine oxide species cited in the Chemical Abstracts Services (CAS) Indices (formula and substance). Aqueous ions and positive/negative gaseous ions are not included in this study. The chemical name, formula, and CAS Registry Number (when available) are given. This list is complete through Volume 121 of Chemical Abstracts Services (December, 1994). Numerous citations, covering 1995-1996 are included, but the coverage may not be complete. It is important to note that this listing includes species which now are known not to exist, but they were cited in the early literature. Deleted CAS Registry Numbers are given to assure the reader that all past citations were retrieved. There are difficulties in discussing "a" oxide such as IO2 in which references are made to IO2 and I2O4 as the same compound. Similar problems exist with IO_3/I_2O_6 and IO_4/I_2O_8 . There is not sufficient experimental information to confirm the existence of six of the listed oxides (I₂O, I₂O₂, I₂O₃, I₂O₇, I₆O₁₃, and I₁₀O₁₉). In addition, there are no experimental data on the gaseous radicals IO3 and IO4. Many of the reported species have been proposed in reaction schemes, but not characterized. Also, it is important to note that there is no information available to suggest the existence of asymmetric isomers of the triatomic species IOO and IIO, although the former has been proposed in a kinetic scheme. Such asymmetric isomers exist for the chlorine, fluorine, and bromine oxides.

Iodine oxide species

		Chemical Abstract	s Registry Number
Formula ^a	Name	Deleted No.	Current No.d
IO (IO)	Iodine oxide	50400-00-5	14696-98-1
IO ₂ (OIO)	Iodyl	•••	71132-73-5
IO ₂ (OIO)	Iodine oxide		13494-92-3
$I^{17}O_2$	$Iodyl-^{17}O_2$	•••	116854-14-9
IO ₂ (IOO ^b)	•••	•••	
IO _{2.24}	Iodine oxide	•••	108216-85-9
IO ₃ (pyr.)	Iodine oxide	•••	13870-16-1
IO ₄	Iodine oxide	•••	11074-36-5
I ₂ O	Iodine oxide	•••	39319-71-6
I_2O_2	Iodine oxide	•••	
I_2O_3	Iodine oxide	•••	11085-17-9
I_2O_4	Iodine oxide	12399-08-5°	•••
$I_2O_5 (O_2I-O-IO_2)$	Iodine oxide	7790-35-4	12029-98-0
I_2O_6	Iodine oxide	64052-04-6°	•••
$I_2O_6(IO_2^+IO_4^-)$	Iododioxygen periodate		65355-99-9
$I_2O_6(O_2I^+-OIO_3^=)$	Iodyl periodate	•••	63912-61-8
I_2O_7	Iodine oxide	20270-38-6	12055-74-2
$I_2O_8(O_3I-O_2-IO_3)$	Iodine oxide peroxide	* ***	81756-07-2
$I_4O_9[I(IO_3)_3]$	Iodine iodate	73560-00-6	66523-94-2
I_6O_{13}	Iodine oxide	•••	•••
$I_{10}O_{19}$	Iodine oxide	•••	•••

^aThe second formula is intended to suggest the assigned structure. If there is no secondary formula given, this means that no structure has been determined for this species, but the atomic ratio is known.

3. Historical Perspective of the lodine Oxide Studies

It is informative to briefly summarize the types of studies which have been conducted through the years on the iodine oxides. Specific references are given in Sec. 9. This section is intended to simply highlight developments through the years.

Using the CAS Collective Indices as a backdrop for these introductory comments, the period of 1907 to 1926 (the First and Second Collective Indices) reveals no information as to the thermodynamic and spectroscopic properties of any iodine oxides. For this time period, there are twelve citations (of which nine are for I_2O_5); some of these articles refer to additional work in this time period (although not noted by CAS) as well as earlier work. The retrieved information suggests that the preparation and identification of the various condensed phase oxides were still in their infancy. For example, there are articles which suggest that the earlier identification (pre-1907) of the oxides I_6O_{13} and $I_{10}O_{19}$ was incorrect and that the oxide was in fact I_2O_4 which was (at that time) called, iodine iodate (IO · IO_3). Another article suggested that it was not clear as to whether the molecular spe-

bArticles exist which refer to this species, but there are no definitive data to prove its existence.

In those cases where a deleted CAS Registry Number exists, but no current CAS Registry Number exists, the species has been reassigned to another CAS Registry Number. This is discussed in a later section.

^dIf no CAS Registry Number appears in this column, then the species is assumed NOT to exist or no characterization has been made.

cies was IO_2 or I_2O_4 . In any event, there is information on the preparation, existence (or lack thereof), and reactivity of four iodine oxides (all in the condensed or aqueous phase)— I_2O_4 , I_2O_5 , I_6O_{13} , and $I_{10}O_{19}$ —but not any spectroscopic and thermodynamic data. Of the nine pentoxide articles, four deal with preparative techniques and two with thermal stability.

From 1927 to 1946 (the Third and Fourth Collective Indices), there is continued activity in the preparation of various iodine oxides (only in the condensed or aqueous phase). Three articles involve the preparation of lower oxides (I_2O_3 and I_2O_4) and their relationship to I_2O_5 . The remaining 25 citations deal with the pentoxide. There is considerable effort in reaction schemes involving the preparation and identification of the pentoxide and its hydrates. Articles on density and diamagnetism (structure) are the first citations on the properties of the pentoxide. Thermal decomposition (to the elements) studies suggest that decomposition ''point'' is 275 °C.

For the time period 1947 to 1961 (the Fifth and Sixth Collective Indices), IO(g) has now been detected in flames and preliminary spectroscopic data were recorded yielding dissociation energy and rotation-vibration information. Of the 41 citations in this period, 23 deal with the pentoxide, with most of these involving commercial applications. However, some articles report the IR spectrum and structure of the condensed phase of the tetroxide and pentoxide.

In the time period 1962 to 1971 (the Seventh and Eighth Collective Indices), there are 87 references of which 44 refer to the pentoxide. Additonal information on the spectroscopic properties of IO(g) was published. The first calculational information on the vibrational behavior of $IO_3(g)$ appeared, as well as three articles dealing with the structure and spectra of I_2O_4 in the condensed phase. Although the majority of the pentoxide references deal with reactions and commercial applications, there are four articles which deal with the structure and spectra. No experimental information on the enthalpy of formation has appeared for any of the oxides except IO(g) and some pre-1900 studies of I_2O_5 .

Of the 95 articles which are reported in the literature for the time period 1972 to 1981 (the Ninth and Tenth Collective Indices), the majority of the articles deal with IO(g) and $I_2O_5(cr)$. There are numerous spectroscopic and dissociation energy studies on the monoxide. The pentoxide work was heavy on applications, including many patents, although there was continued examination of the relative stability among condensed phase oxides. There were also calculations and estimations involving IO(g), but no experimental studies.

In the time period 1982 to 1991 (the Eleventh and Twelfth Collective Indices), the literature deals primarily (again) with IO(g) and $I_2O_5(cr)$. The pentoxide studies deal mostly with reactions and applications, with no definitive property characterization. Even the work involving IO(g) was related more to reactions, rather than spectroscopic and thermodynamic determinations.

In summary, there are no heat capacity, enthalpy, or vapor pressure studies for any of the iodine oxides, with the exception of one sublimation study for I_2O_5 . There are many articles which detail the preparation and decomposition temperature of various crystalline oxides. There are some early (pre-1900) enthalpy of formation data for $I_2O_5(cr)$. The spectroscopic properties and dissociation energy for IO(g) have been studied adequately, but the complete spectroscopic determination and enthalpy of formation values for any of the other iodine oxides are lacking. For the iodine oxides, many vibrational frequencies have been determined for the crystalline phase but none for the gas phase except IO_2 . In addition, only IO and IO_2 have been studied in the gas phase. There are some experimental studies in a solution or a matrix.

4. Summary of the Data for the lodine Oxide Species

4.1 Spectroscopic Information

The construction of thermodynamic tables for polyatomic gas phase species requires a knowledge of the spectroscopic constants of the molecule including electronic energy levels and degeneracies, vibrational frequencies and molecular structure (including bond angles and bond lengths). This information is necessary for any low-lying excited electronic states, as well as the ground state. These data are obtained from direct spectroscopic measurements, from theory, or by analogy with other similar chemical compounds. In some cases, theoretical quantum mechanical calculations are used. There is some spectral information available on a limited number of iodine oxides in the condensed phase. However, relying on information from the fluorine, chlorine, and bromine oxides, estimates can be made for the structure and spectroscopic properties of IO₂(g) and I₂O(g), as well as for the asymmetric isomer.

For the diatomic molecules, spectroscopic information on the electronic energy levels and vibrational–rotational structure is necessary. Experimental data of this type are available for IO(g). Similar information on ClO and BrO is available for comparison.

4.2 Thermodynamic Information

The literature survey revealed little or no information on the thermodynamic properties of any of the iodine oxides, except for IO(g), which was derived from spectroscopic data. Although not explicitly cited in Chemical Abstracts, there is a reference for the enthalpy of formation for $IO_3(g)$ and $I_2O_5(cr)$. There are, however, numerous citations as to the thermal stability of the various condensed phase oxides.

There are insufficient data available to permit the calculation of thermodynamic functions for the condensed phase of any of the iodine oxides. No heat capacity or enthalpy data are reported in the literature for any of these oxides. There are also no data for the melting of the various condensed phase. Limited stability information is available which refers to the decomposition of I_2O_4 , I_2O_5 , and I_4O_9 . Melting, if observed, is in combination with decomposition.

For the gas phase species, only IO(g) has dissociation energy information available so that an enthalpy of formation may be calculated. No experimental formation information has been reported in the literature for any of the other iodine oxides.

5. Discussion of Literature Data

The information is discussed in terms of the individual iodine oxide species. All species cited in the Chemical Abstracts formula and substance index are discussed as well as those additional species which are mentioned in the individual articles. This is not to imply that all those species exist or have been isolated and characterized. For example, $\rm I_6O_{13}$ and $\rm I_{10}O_{19}$ do not exist, whereas $\rm I_2O_3$ and $\rm I_2O_7$, although discussed in many articles, have never been isolated. The references for each of the following subsections are found in the corresponding subsection of References—Annotated Bibliography (Sec. 9).

5.1 10

There is a discontinued CA Registry Number 50400-00-5 that presumably referred to an unspecified iodine oxide compound, in which the iodine to oxide ratio was one to one.

The reported references for IO(g) may be arbitrarily categorized as follows:

1. Spectra (see Table 3)

[37VAI], [46BLA/IRE], [48COL/GAY], [50HER], [58DUR/RAM], [60DAS/WAD], [60DUR/LEG], [72YAN], [73KAP], [73SAI], [79HUB/HER], [80LOE/MIL], [83BEK/MEE], [83ENG/TAL], [84BUR/LAW], [91GIL/POL], [92GIL/POL]

2. Preparation/formation/reaction (see Tables 1a, 1b, 2)

[62GUR/KHA], [69HAT/HUS], [60DAS/WAD], [73PAR/HER], [82ANT], [82FUR/NUO], [80BAR/BEC], [85BUX/KIL], [90BRA/DOR], [90BUB/LAR], [90DAY/WYN], [90DAY/WIN2], [90VOH/BAD], [92BUB/LAR], [92DUB/SKU], [92HEL/FOG]

3. Dissociation energy (see Table 4)

[50HER]. [53GAY], [54COT], [58BRE], [61LIP/STE], [61PHI/SUG], [58DUR/RAM]. [62GUR/KHA]. [63SCH], [65SIN/RAI], [66VED/GUR]. [68WAG/EVA]. [69BRE/ROS], [70CLY/CRU], [70DAR], [69HER/HUI], [72TRI/GOH], [72RAI/SHA], [74RAO/RAO], [79ADD/DON], [75RAD/WHI]. [77GLI], [80KER/TRO], [82BAU/COX], [79HUB/HER], [83BUS/SIB]. [88TYK], [89GUR/VEY], [89RED/RAO]. [92MAG/LAV], [94RUS/BER], [95HUI/LAS], [95ZHA/MON], [96GIL/TUR]

4. EPR (see Table 3)

[67CAR/DYE], [67CAR/CUR], [69CAR], [70CAR/DYE], [71BYF/CAR], [71MIL], [72BRO/BYF]

5. Radiolysis/photolysis

[61MCK/NOR], [63BUR/NOR], [70AMI/TRE], [70AMI/TRE2], [73STU/TEZ], [76CAL/MET], [77ANT/BUR], [77CAL/MET], [83COX/COK], [83INO/SUZ], [85BUX/SEL], [92KAR/END]

6. Kinetics

[67MCE/PHI], [69HER/HUI], [70CLY/CRU], [75CLY/WAT], [75RAD/WHI], [75RAD/WHI2], [77CLY/CUR], [79ADD/DON], [79BRU/FIE], [79GOR/NOV], [79GOR/NOV2]. [80KER/TRO]. [81GAR/WAT], [81RAY/WAT], [82BAU/COX], [83BUS/SIB], [83THO/ZAF], [85JEN/COX], [86SAN], [87BAR/BEC], [87ELO/RYN], [87MAR/JOH], [88STI/HYN], [87MAR/JOH2], [88COS/TEN], [91JEN/COX], [90BAR/BAS], [91BAR/BAS], [91MAG/MEL], [92MAG/LAV], [92WHI/SMI], [95TUR/GIL]

7. Other

[67STU/HUS], [69BRE/ROS], [71KAU/KOL], [74DHA/CLE], [74DHA/CLE2], [74SCH], [76REF/FRA], [76REF/FRA2], [77VOG/DRE], [77VOG/MIS], [81GRO/LAU], [81SEH/SUT], [82GAR], [84SAU/TAT], [87KAR], [92GIL/POL], [94SOL/GAR]

Fortunately, there is sufficient information on the spectroscopic properties (including a rotational–vibrational analysis) of IO(g) to characterize the thermodynamic properties of this chemical species. The results are in reasonable agreement with the results of the other halogen monoxides. It is not the intent of this article to discuss the articles dealing with formation, reaction and kinetics.

Durie et al. [60DUR/LEG] photographed the methyl iodide flame bands lying in the region 4100-6300 Å. These bands are attributed to the $A^{2}\Pi - X^{2}\Pi$ transition of the IO molecule. A rotational and vibrational analysis was carried out to provide the molecular constants for the $X^{2}\Pi_{3/2}$ and $A^{2}\Pi_{3/2}$ states. This paper builds on and extends the earlier observations and analyses of [37VAI], [48COL/GAY], and [58DUR/RAM]. Blake and Iredale [46BLA/IRE] published a revised analysis of portions of the [37VAI] data. Coleman et al. [48COL/GAY] stated that this led to an unsatisfactory intensity distribution. Thus, [48COL/GAY] remeasured the bands and extended the system to larger wavelengths. Durie and Ramsay [58DUR/RAM] measured the absorption spectra of IO and derived a vibrational analysis consistent with Coleman et al. [48COL/GAY]. Engleman et al. [83ENG/ PAL] observed an absorption spectrum of I18O which was in agreement with that predicted by [60DUR/LEG]. This spectrum was recorded as part of a high temperature spectra of a quartz cell containing an I2-O2 mixture. The recommended spectroscopic information for the X and A states is very similar to that recommended by Huber and Herzberg [79HUB/ HER]. These authors relied on the experimental data of [48COL/GAY], [58DUR/RAM], and [60DUR/LEG]. The earlier review by Herzberg [50HER] was based on the data of [46BLA/IRE], [48COL/GAY], and [37VAI] and is superseded by [79HUB/HER].

Information published since these reviews provided more definitive vibration and rotation constants [83BEK/MEE].

Using a high resolution laser-rf spectroscopy on the $A^2\Pi_{3/2}$ - $X^2\Pi_{3/2}$ system of iodine oxide, the vibrational and rotational constants for the ground state have been refined from those previously recommended by Durie *et al.* [60DUR/LEG].

The ground state configuration, $X^2\Pi_{3/2}$ (inverted doublet), was confirmed by the EPR measurements of [70CAR/DYE] and [72BRO/BYF]. [70CAR/DYE] determined the fine structure splitting to be $A=-446\pm70~{\rm cm}^{-1}$, although they questioned the validity of this value and felt that independent determinations should be made. Brown *et al.* [72BRO/BYF] also used ESR techniques to determine the spin–orbit coupling constant A and the ground electronic state. The authors derived $A=-2330\pm230~{\rm cm}^{-1}$. Both studies indicated that the value of A was suspect and should be of the order of $1000~{\rm cm}^{-1}$.

Gilles *et al.* [91GIL/POL] used photoelectron spectroscopy to obtain the spectra for $IO(^2\Pi_{3/2}, ^2\Pi_{1/2}; \nu')+e^-\leftarrow IO^-(^1\Sigma^+; \nu'')$. This measurement provided direct structure information on $IO^-(g)$ and reported the first observation of the ground state $^2\Pi_{3/2}-^2\Pi_{1/2}$ spin-orbit splitting for IO. The authors observed two vibrational progressions separated by 2091(40) cm⁻¹ which they attributed to the spin-orbit components of the IO ground state. In their analysis of the data, the authors adopted the r_e , ω_e , $\omega_e x_e$ values from [83BEK/MEE] and derived the values for these three parameters in the X $^2\Pi_{1/2}$ component. This work was continued and further discussed in [92GIL/POL]. We recommend an excited state at 22469.8 cm⁻¹ based on the values from [83BEK/MEE].

The dissociation energy has been calculated by many different techniques. The various studies have not improved the reliability of the dissociation energy. These values are summarized in Table 4. The derived values range from 176 to 249 kJ/mol, as referenced in Table 4. The values may be grouped into two types: (1) derived from a treatment of the observed vibrational energy levels and (2) extracted from kinetic studies. The largest value is derived from the curve fitting approach of [89RED/RAO], using a three-parameter modified Lippencott potential function (based on the spectroscopic data of [83BEK/MEE]).

Coleman et al. [48COL/GAY], from their study of the IO spectrum in flames, used a graphical Birge-Sponer technique to give 1.9±0.2 eV (44 kcal/mol). Durie and Ramsay [58DUR/RAM] stated that since only six bands were observed in their study of the absorption spectrum of IO, it was not possible to obtain an accurate value for the dissociation energy of the ground state. They derived an upper limit from the observed predissociation. Thus, they calculated a value <21 976 cm⁻¹ (62.8 kcal/mol or 2.72 eV). However, Durie and Ramsay felt that a better estimate could be obtained from a Birge-Sponer extrapolation of the first four vibrational levels in the upper state. This led to 10 200 cm⁻¹. However, since the accepted values (at that time, 1958) for ClO and BrO were approximately 10% less than the values calculated by the same procedure, they applied the same correction to IO and calculated $14\,800\pm1800$ cm⁻¹ (42 ± 5 kcal/mol or 1.8 ± 0.2 eV). Subsequent work by Durie, which led to vibrational constants with greater precision, would not lead to any improvement in the calculation of the dissociation energy due to considerable extrapolation.

Using flame photometry, Phillips and Sugden [61PHI/SUG] measured the intensity of the (0,4) band of IO at 5307 Å to determine the temperature dependent (1900–2700 K) equilibrium constant for the dissociation energy of IO. They determined a value of 57 ± 6 kcal/mol at 0 K. This value was calculated from the assumed enthalpy of formation value of 63 kcal/mol at 2000 K. This value is considerably higher than the earlier determined values. Herron and Huie [69HER/HUI], in their study of the rate constants of atomic oxygen with chloroalkanes and bromoalkanes, stated that the bond dissociation of IO (238±24 kJ mol⁻¹), as derived from [61PHI/SUG], is the value which is compatible with their iodine atom abstraction mechanism. The value from the [58DUR/RAM] study was too small.

Singh and Rai [65SIN/RAI] calculated RKRV potential energy curves for the $X^2\Pi$ and $A^2\Pi$ states of IO. The spectroscopic data used as the basis for this calculation were those of Durie *et al.* [60DUR/LEG] and Durie and Ramsay [58DUR/RAM]. Using the three-parameter Lippencott function to calculate the dissociation energy from the potential energy curve, the authors arrived at 20 000 cm⁻¹. This is compared with an earlier reported value of 1.9 ± 0.2 eV, which undoubtedly is the value of Coleman *et al.*

A least-squares fitting of the RKR curve with the Hulburt–Hirshfelder formation gave a dissociation energy value of 1.94 eV [72TRI/GOH]. The authors stated that the three-parameter Lippencott potential function fails to reproduce the experimental potential energy curve in the case of IO.

Rao, Rao, and Rao [74RAO/RAO] estimated the dissociation energy of the upper state of IO, the *A* state, by fitting an empirical potential energy curve from Lippencott's three-parameter function and the Hulburt–Hirshfelder function with the true potential energy curve. They determined the value 1.425 eV for the upper state and confirmed the value of Trivedi and Gohel, that is, 1.94 eV for the ground state. This value was also supported by fitting an electronegativity function suggested by Szoke and Baitz. As mentioned earlier, [89RED/RAO], using a three-parameter modified Lippencott potential function, based on the spectroscopic data of [83BEK/MEE], calculated a dissociation energy of 59.6 kcal/mol. However, recall [72TRI/GOH] claimed this technique was not acceptable as stated earlier.

Baulch *et al.* [82BAU/COX] listed a dissociation value of 184±21 kJ/mol as given by [80KER/TRO].

Maguin *et al.* [92MAG/LAV], in studying the kinetics of the reactions of IO radicals with NO₂ and HO₂, reported three enthalpy of formation values for IO. They referred to $\Delta_f H$ (IO, 298 K)=172 kJ/mol from [90DEM/MOL], 132 kJ/mol from [89GUR/VEY], and 107 kJ/mol from [89RED/RAO]. Although these authors did not recommend a specific value for $\Delta_f H$, they implied that the latter value from [89RED/RAO] was not consistent with their kinetic observations.

Herron and Huie [69HER/HUI] and Huie and Laszlo [95HUI/LAS], in their kinetic studies, have questioned the validity of the spectroscopically derived dissociation energy values. Whereas [69HER/HUI] preferred the results of [61PHI/SUG], Huie and Laszlo [95HUI/LAS] have adopted an enthalpy of formation value of 130 kJ/mol based on the molecular beam studies of [75RAD/WHI] and [83BUS/SIB] (refer to Table 4).

The recommended thermodynamic properties of IO(g) by Wagman et al. [82WAG/EVA] were based on the spectroscopic measurements of Durie and Ramsay [58DUR/RAM] and Durie, Legay, and Ramsay [60DUR/LEG]. The corresponding publication by Glushko and Medvedev [65GLU/ MED] based their recommended thermal function values on the earlier interpretation by Gurvich et al. (1962) and the dissociation energy value on the results of Coleman, Gaydon, and Vaidya (1948), Durie and Ramsay (1958), and Phillips and Sugden (1961). The more recent analysis of Gurvich et al. [62GUR/KHA] relied on the results of Vaidya (1937), Blake and Iredale (1946), Coleman, Gaydon, and Vaidya (1948), Durie and Ramsay (1958), and Durie, Legay, and Ramsay (1960). The recommended spectroscopic information given by Huber and Herzberg [79HUB/HER] was based on the data of Coleman et al. (1948), Durie and Ramsay (1958), and Durie et al. (1960). The thermochemical table of Brewer and Rosenblatt [69BRE/ROS] is based on the earlier vibrational and rotational constants data of Durie et al. (1960) and the energy level values of Durie et al. (1960), Moore (1958), and Herzberg (1950). The recommended dissociation value of 46±7 kcal was based on the results of Coleman et al. (1948), Durie and Ramsay (1958), and Phillips and Sugden (1961).

5.2 IO₂

The articles dealing with IO_2 can be classified as follows. Of prime importance to this article are the spectroscopic and properties studies.

1. Radiolysis/photolysis

[69BAR/GIL], [70AMI/TRE], [70AMI/TRE2], [72BAR/GIL], [73TEN/FAR], [86BYB], [89SAG], [92KAR/END]

2. Reactions

[09MUI], [64GIL/SEN]

3. Intermediates

[61PAV/RAF], [80COO], [82FUR/NOY], [82FUR/NOY2]

4. Spectroscopy/structure

[60DAS/WAD], [60DUV/LEC], [81ELL/WOL], [92GIL/POL]

5. Preparation/formation

[1844.JL], [60DAS/WAD], [80WIK/TAY]

7. Properties

[67STU/HUS], [80WIK/TAY], [81ATH/MOR], [86BYB], [88BYB], [92GIL/POL], [94FJE/KJE]

There is only one reported study involving this oxide in the gas phase [92GIL/POL], but there is no experimental structural or enthalpy of formation information. Most citations deal with the assumed existence in an aqueous or matrix media.

CA Registry Number 116854-14-9 corresponds to the isotope $I^{17}O_2$ (one reference which deals with ESR spectrum [88BYB]). The author measured the ESR spectra of this diodide embedded in KClO₄. From the complicated ¹⁷O hyperfine structure, he determined the hyperfine and quadrupole tensors of ¹⁷O. Byberg [88BYB] stated that the ground state of the free IO₂ molecule belonged to the representation B_1 of the point group C_{2v} . The author assumed the bond angle of OIO to be 118°. The analysis of the ¹⁷O hyperfine patterns of $I^{17}O_2$ supported the earlier conclusion that the electronic properties closely resemble those of ClO₂ and BrO₂.

An EPR study [81ATH/MOR] suggests that IO_2 in a γ -irradiated KIO_2F_2 crystal is a bent symmetric radical, OIO, as are the chlorine and bromine counterparts in comparable studies.

An ESR spectrum of IO_2 was obtained from the selective photolysis at room temperature of IO_4^- embedded in KClO₄ crystals and the subsequent x irradiation at low temperatures [86BYB]. The author's conclusion was that the $C_{2\nu}$ nuclear geometry of IO_2 in KClO₄ resembles that of ClO₂ in the gas phase. Thus, the bond length of IO_2 , 1.815 Å, was taken as that of ClO₂ (1.475 Å), corrected for the difference between the covalent radii of chlorine and iodine (0.34 Å). However, the bond angle of IO_2 in this lattice could be significantly smaller than that of ClO₂, 117.6°.

Gilles *et al.* [92GIL/POL] measured the photoelectron spectra of OIO⁻(g). In addition to deriving the electron affinity of OIO, the authors determined two vibrational frequencies [the symmetric stretch (765 cm⁻¹) and bend (192 cm⁻¹)]. The structure of the molecule was not determined, but was assumed to be of $C_{2\nu}$ symmetry.

Numerous other studies involve the kinetic description of the formation and decay of this transient species in aqueous medium, as well as reactions involving IO₂ as an intermediate.

A confusing aspect for this chemical species involves the condensed phase characterization: is the ''molecule'' IO_2 or I_2O_4 ? The Chemical Abstracts literature references for IO_2 include I_2O_4 references. The early references for the dioxide are in fact for the tetroxide. There are two citations for IO_2 which deal with the crystal structure of I_2O_4 . Indications are that the structure of the species in the condensed phase is perhaps $IO \cdot IO_3$. The most recent reference to this species is a crystal structure study of I_2O_4 in which it was concluded that a chain structure exists: $(\cdots -I-O-IO_2-O-\cdots)$.

5.3 lodyl-IO₂

Iodyl (CA Registry Number 71132-73-5), with a structure OIO, has one reference reported in CA. This reference [79BRU/FIE] does not appear to give any additional structural information other than that which is provided in the other articles dealing with IO₂. Brummer and Field reported

on the oxidation of Fe(II) to Fe(III) by ${\rm IO_3}^-$ in strongly acidic aqueous media. IO and ${\rm IO_2}$ are among the seven proposed reactive intermediates.

5.4 100

There are three references which propose this species as an intermediate in aqueous reaction schemes [70CLY/CRU, 77CLY/CUR, 80COO]. This species has not been isolated or characterized.

The thermodynamic properties of IOO(g) could be estimated in comparison with the properties of FOO and ClOO, both of which were well characterized. Unfortunately, BrOO is not well characterized.

5.5 IO_{2.24}

There is only one reference to this species in which its formation in the reaction of iodine with ozone is discussed [80VIK/TOR].

5.6 IO₃

The articles dealing with IO_3 can be classified as follows. Of prime importance to this article are the spectroscopic and enthalpy of formation studies.

1. Enthalpy of formation [48FAR/KLE]

2. Vibrational frequencies/structure

[56VEN/SUN], [63VEN/RAJ], [64RAO/SAN], [72RAO], [78THI/MOH]

3. Formation/preparation

[1861KAE], [58ODE], [59HAU], [63PAC/HAU], [68SEL/KJE], [77SEI/WEI], [86VIK/TOR]

4. Related spectra

[60DAS/WAD], [77SIE/WEI]

5. Intermediate

[61PAV/RAF], [82NOS/NOS]

6. Photolysis/radiolysis

[69BAR/GIL], [70AMI/TRE], [70AMI/TRE2], [72BAR/GIL], [73TEN/FAR], [81KLA/SEH], [82WAG/STR], [85BUX/SEL]

There is no reported information as to the experimental determination of the enthalpy of formation of this radical. There is a calculated value reported by [48FAR/KLE] of -28 kcal/mol. Although the authors, Farkas and Klein, stated that they calculated the enthalpy of formation of IO_3 , the formula given is IO_3^- .

There are five references of a theoretical nature which deal specifically with the structure and spectroscopic properties of the gaseous trioxide. Unfortunately, there are no experimental studies involving the radical in the gas phase.

The spectroscopic articles for the gas phase radical involve force field calculations of pyramidal XY_3 type molecules [56VEN/SUN, 63VEN/RAJ, 64RAO/SAN, 72RAO, 78THI/MOH]. Contrary to the implications of these five articles, there is no observed structural information nor is there any observed vibrational information. Upon examination of the

earlier literature cited by these authors, vibrational frequency information was found for IO_3^- in a crystalline environment. Two of the four vibrational frequencies matched exactly with those reported for IO_3^- . These articles have assumed a pyramidal structure with a O-I-O angle of 89° (same angle was used for the chlorine, bromine, and iodine trioxides); a bond distance I-O of 1.79 Å (from Badger's rule), and vibrational frequencies (in cm⁻¹) of ν_1 =780 [A_1], ν_2 =357 [A_2], ν_3 =809 [E], and ν_4 =326 [E]. Unfortunately, ν_4 is reported as 326 cm⁻¹ by Venkateswarlu and Sundaram [56VEN/SUN] and as 362 cm⁻¹ by Thirugnanasambandam and Mohan [78THI/MOH]. From an examination of the calculations and the trends in the series of the three halogen trioxides, it is apparent that the frequency should be 326 cm⁻¹.

Many other references deal with (1) the thermal decomposition of orthoperiodic acid [59HAU, 63PAC/HAU] and NH₄IO₃ [61PAV/RAF], (2) the existence of solid I₂O₆ (not IO₃) and its Raman spectra [77SIE/WEI], (3) infrared and visible spectra of IO₃ $^-$ [60DAS/WAD], and (4) numerous articles on the production of the transient radical in an aqueous medium through flash photolysis and pulse radiolysis of aqueous iodate solutions. The emphasis in these latter type articles is the explanation of the chemistry through a kinetic interpretation.

Farkas and Klein [48FAR/KLE] studied the decomposition of bromate ion in aqueous solution. IO_3 was proposed as an intermediate to describe the kinetics of the decomposition process.

There are three flash photolysis studies of periodate solutions by Barat and Gilles [72BAR/GIL], Klaning and Sehested [81KLA/SEH], and Wagner and Strehlow [82WAG/STR]. Barat assumes the radical IO₄ is an intermediate whereas Klaning assumes IO₃ and an unspecified I(VIII) species are intermediates. In Wagner and Strehlow, the increase in the resistance of the solution during the flash was attributed to the reaction

$$IO_4^- + H^+ \leftarrow IO_3 + OH$$
.

Two methods proposed for the elimination of the radical were the dimerization to I_2O_6 and the reaction with ozone to yield IO_4 .

5.7 IO₄

There are no reported studies involving this oxide in the gas phase: i.e, there is no experimental structural, vibrational frequency or enthalpy of formation information. A CA Registry Number exists for IO_4 , but the structure is not determined. The existence of the IO_4 radical had been "established" as a short lived species by Gomberg as early as 1923 [23GOM]. Selte and Kjekshus [68SEL/KJE], in their study of the $H_2O-I_2O_5$ system, questioned the existence of IO_4 .

There are four recent references which discuss the existence of the IO₄ radical. They all involve the existence of this radical in an aqueous medium, not in the gas phase. The studies involve the pulsed radiolysis [71LES/BAR], flash

photolysis [82WAG/STR], laser flash photolysis and pulsed radiolysis [81KLA/SEH], and radiation induced redox [85BUX/SEL] of aqueous periodate solutions. Neither study reports any information as to the structure of the radical, its vibrational frequencies, or its enthalpy of formation. Thermal functions for this radical cannot be reliably estimated since there are no related substantial data for the other halogen oxides $XO_4(g)$.

Lesigne et al. [71LES/BAR] studied the ${\rm IO_4}^{-2}$ aqueous ions and ${\rm IO_4}$ radicals formed by the pulse radiolysis of periodate ion in aqueous medium. The authors state that they also observed this transient species by flash photolysis of deaerated periodate solution.

Ten years later, Wagner and Strehlow [82WAG/STR] studied the flash photolysis of periodate in the pH range 2.44 to 4.99 in which three reactions were observed. In this experimentation, the authors discuss the formation of the IO_4 radical and its dimerization to I_2O_8 and the related kinetics.

Klaning *et al.* [81KLA/SEH] also used flash photolysis to study periodate solutions. They assumed the formation of IO₃ and an unspecified I(VIII) species.

Buxton and Sellers [85BUX/SEL] proposed the formation of IO₄ as an intermediate species in the pulsed radiolysis of aqueous periodate solutions.

5.8 I₂O

There is no thermodynamic or spectroscopic information available for this chemical species. Most of the reported information deals with the reactivity of this oxide as an intermediate in various reactions; [38MAS], [72FOR/GOO], [76CAM/HAY], [82NOS/NOS]. There are two articles from which spectroscopic information might be extracted; [60DUV/LEC], [83BUS/SIB]. [60DUV/LEC] have studied the vibrational frequencies of I₂O₅(cr), including the IOI bridging frequencies. Buss et al. [83BUS/SIB], in their discussion of the triatomic molecules XOX, mentioned that the ground state is a singlet. However, there is no additional information as to the precise structure or vibrational frequencies. There are two additional articles; a patent [84DRA/TRI] and a dissertation [31CHI]. The species has not been isolated as a pure compound. No structure is associated with this CAS Registry Number.

5.9 l₂O₂

There is no information to confirm the existence of this compound, which has been reported in the literature four times; in a 1930 review [30BRA], in 1970 [70AMI/TRE], in 1985 [85BUX/SEL], and in 1992 [92MAG/LAV]; in two cases it is suggested as an intermediate compound in an aqueous reaction scheme; whereas in the latter two cases it is presented as an intermediate in the gas phase self-reaction of IO. [70AMI/TRE] suggested dimerization of IO to describe the decay of IO. Similarly, Cox and Coker [83COX/COK], in studying the rate of IO decay, proposed that the initial stages of the reaction involved the formation of $\rm I_2O_2$.

5.10 l₂O₃

There is no thermodynamic or spectroscopic information reported for this compound. In fact, this compound has not been isolated or characterized as a separate entity. Although citations are given for this oxide, the discussions only deal with adducts with SO_3 or the like. The CAS Registry Number corresponds to composition I_2O_3 but no structure is associated with this formula.

The references include: [1896CHR], [1898CHR], [12KAP], [35BAH/PAR], [36FIC/DIN], [37MAS], [38MAS], [38MAS/ARG], [54WOO], [57SEM], [57SYM], [59LEH/HES], [60DAS/WAD], [62FIA/TAR], [63PAC/HAU], [64DAE/KJE], [68SEL/KJE], [71SEL/KJE], and [89SAG].

5.11 I₂O₄

The CAS Registry Number corresponding to I_2O_4 has been discontinued. This compound is now referred to as IO_2 . The I_2O_4 unit is normally used in reference to the condensed phase, whereas in solution or gas phases, IO_2 is the entity discussed. For this reason, the literature is somewhat confusing for this compound, since in the early studies, the dioxide was mentioned where, in fact, the I_2O_4 species was really being discussed. There is no thermodynamic information reported for this oxide, although there is some data for the thermal stability (refer to Tables 1a and 1b). There are numerous studies which report structural and vibrational frequency information for the crystalline phase (refer to Table 5).

A CAS Registry Number 99690-81-0 corresponds to iodosyl iodate with the inferred structure IO⁺IO₃⁻. There is one reference to this compound [60DAS/WAD]. Dassent and Waddington [60DAS/WAD, 63DAS/WAD] have provided tentative information concerning the crystalline structure on the basis of infrared spectra, whereas [68SEL/KJE] used a combination of x-ray diffraction, density, ir spectra, proton magnetic resonance, DTA and TGA to examine the formation and stability of I₂O₄ (cr). [60DAS/WAD] prepared iodine dioxide by Muir's method [09MUI] and gave frequency assignments for iodine dioxide in terms of I₂O₄. They state that the formation of I₂O₄ as iodosyl iodate was satisfactory if it was remembered that IO was not present as a discrete cation

The numerous citations on I_2O_4 may be arbitrarily classified as follows.

1. Preparation/formation

[1884MIL], [1898CHR], [09MUI], [12KAP], [15FIC/KAP], [35BAH/PAR], [39BAH/SIN], [60DAS/WAD], [80WIK/TAY]

2. Reaction

[57SEM], [59LEH/HES], [61VLA/ATI], [62FIA/TAR], [64GIL/SEN], [70KUZ/KOT]

Properties

[50WIL/DHA], [57SYM], [62ARO/MIS], [68SEL/KJE]

4. Spectroscopy/structure

[50WIL/DHA], [60DAS/WAD], [61WIS/HAN], [63ALO], [63DAS/WAD], [68GRU/MUR], [69GRU/LUR], [75JON], [76DAL/CAR], [81ELL/WOL], [87LEH/CHR]

5. Decomposition

[35BAH/PAR], [39BAH/SIN], [68SEL/KJE], [80WIK/TAY]

6. Review

[60GEO], [63SCH/BRA], [64DAE/KJE], [71SEL/KJE]

In the presumed confirmation of an earlier study by Wilmarth and Dharmitti [50WIL/DHA], Wise and Hannan [61WIS/HAN] determined the structure of I_2O_4 as $IO^+IO_3^-$. Whereas the former study used magnetic susceptibility measurements, the latter relied on the ir spectra in KBr pellets. Two strong absorption bands were assigned to IO^+ and IO_3^- , with the latter assignment made by comparison with compounds such as alkali metal iodates, MIO $_3$.

Lehmann et al. [87LEH/CHR] used high resolution synchrotron powder x-ray data and neutron data to solve the structure of I_2O_4 . They determined the dimensions of the unit cell and confirmed the space group was $(P2_1/c)$. Prior to this study, the structure was unknown, and only the probable group $(P2_1/c)$ and the corresponding unit cell were known from an indexed Guinier diagram.

Grushko *et al.* [68GRU/MUR, 69GRU/LUR], using Mössbauer techniques, proposed a structure with two non-equivalent iodine atoms in which the oxide has a polymeric structure composed of IO₃ and IO groups covalently bonded by oxygen bridges. This study confirms the ir evidence given by [60DAS/WAD, 63DAS/WAD].

5.12 I₂O₅

There are numerous studies on the pentoxide. However, the only direct thermodynamically related information is early references to formation data. (See Table 1.) There are no heat capacity or enthalpy data, or melting information. There are numerous references to the fact that this oxide sublimes.

The discontinued CAS Registry Number 7790-35-4 probably referred to $\rm I_2O_5$ before its structure was known. The current CAS Registry Number 12029-98-0 refers to $\rm I_2O_5$ with a structure $\rm O_2I-O-IO_2$.

The numerous citations on $\rm I_2O_5$ may be arbitrarily classified as follows. Note that the distinction between the categories of reaction, detection, and commercial applications is often not clear.

1. Enthalpy of formation

[1870DIT], [1878BER]; [1882THO], [12GUI], [32MOL/PER], [48FAR/KLE], [52ROS/WAG], [60SPE/HEP]

2. Preparation/formation

[1896CHR], [09BEG], [09GUI2], [09GUI3], [09MUI], [20LAM/BRA], [12GUI]. [31BAX/BUT], [31MOL/PER], [32MOL/VIT], [35BAH/PAR], [38EMS], [38EMS2], [38MAS], [38MAS/ARG], [39EMS], [39EMS2], [39VAH/SIN], [40KOM], [53PFL], [55KIK], [58ODE], [58VIL/DRO], [59HAU], [61DUP/LEC], [61PAV/RAF], [62FIA/TAR], [63PAC/HAU], [64DAE/KJE], [66WAL/PHI], [68TOR/KAW], [68BAC], [85VIK/MAC], [95AHM/FJE]

3. Reaction

[1898CHR], [11REI/SCH], [34BAX/HAL], [50EME/WOO]. [35AST/VAP]. [47BAU/BRU]. [52BAT/SIS], [52YAM/ASA], [58YEE], [59LEH/HES]. [62FIA/TAR], [62OPA/KUZ], [620PA/KUZ2], [620RO/MIS], [62SOR/HAR], [63EHR/ENG], [64KAI/SCH], [64KAI/SCH2], [65KEM/ROB]. [66KIR/MUR], [67MUK/END], [70AMB/SAI], [70SAI/AMB], [72RAD/DEV], [74KAW/SAK], [76PET/VOL], [76RON], [77GIL/SPE], [79DRA/URB], [77CAM/CHA], [79TOR/SMI], [80GEB/MCN], [80IVA/IVA], [80IVA/IVA2], [80IVA/IVA3], [81CHI/SAI], [81IVA/IVA], [81SID/NAS], [81VIK/FUR], [83DRA/HAV], [84COH], [84COH/MCN], [84GOR/AND], [84VIK], [85CAB/BAR], [85DRA/HAV], [85MAN/GEO], [87YOS/GOT]. [88MAL/GUP]. [89CHR/WIL]. [89MAN/GEO]. [91LEE/CHA], [94AHM/FJE], [94NUS/WEL], [94REE/BRA]

4. Detection

[29PIR], [31SAH/OZA], [53ADA/SIM], [59ZLO/ZIE], [72IMA/OOS]. [64KAI/SCH3], [66ZIE], [73MAN/BOZ], [76ADA/KAS], [78AGR/KLI], [79POD/DEM], [81FED/KOL], [84DRA/HAV], [84NAG/SUZ], [85UEH/NAK], [86XU/WU], [89HON/HAR], [90SHE/ZAH], [91LE], [94SAT/YAM]

5. Decomposition

[07BER], [08GUI], [09GUI], [11GUI], [31MOL/PER], [32MOL/PER], [32MOL/VIT], [57DUV], [57DUV2], [67STU/HUS], [70SHE/TUR2], [75JAK/SOL], [80WIK/TAY], [85VIK/MAC]

6. Commercial applications

[22KAT/BLO], [39OZH], [44SCH], [48EMB], [54NAI/SIG], [54NAI/SUG2], [55WAC], [56PAC], [58HAL/JAM], [58IMA], [63SEN/KOP], [65KNA], [67MAR/IDE], [77COL/NAG], [79KAN/YOS], [79KOT/TAK], [80HOF/SPI], [81GLU/GRI], [81HOF], [81HOF/SPI], [86MIS/PAT]

7. Properties

[32HUL/BLI], [23LAM/PHI], [30GRA/FAR]. [32MOL/PER], [36MOL/DIL], [36VIL/MOL], [40BAK/KEL], [54SHI/KOS], [38WEB], [60DUV/LEC], [62ARO/MIS], [55KOJ/TSU], [68SEL/KJE], [68VEP/HAU], [66SOB/VAN], [70SEL/KJE], [70SHE/TUR], [73SEM/MOS], [75BAR/BUL], [76DAL/CAR], [76SHE], [770KU/GOT], [78CHR/WIL], [78CER/KO], [78PET/BOG]. [79PET/VOL], [80RUB/SAS], [81ELL/WOL], [84GOR/AND], [85SUN/WRE]

8. Hydrate

[33GAR], [33MOL/PAR]

9. Review

[51ADA/SIM], [54COU], [60GEO], [63SCH/BRA], [71SEL/KJE], [76LEL]

10. Ternary systems

[51RIC/AMR], [52RIC/FRE], [56NIK/BUS]

There has been extensive work on the preparation, crystal structure, Raman spectra, and decomposition. The crystal structure studies suggest that the molecule is of the form IO₂-O-IO₂. TGA and DTA results consistently show that I₂O₅ decomposes in the range 570-730 K to the elements [68SEL/KJE, 85VIK/MAC].

Farkas and Klein [48FAR/KLE] reported an enthalpy of formation for $I_2O_5(cr)$ as -42.0 kcal/mol, but do not give any source for this number. The enthalpy of formation value $(-37.78 \text{ kcal mol}^{-1})$ recommended by Brewer and Rosenblatt is the value recommended by Wagman *et al.* (1968). The value recommended by Glushko and Medvedev is $-43.8 \text{ kcal mol}^{-1}$.

The 1982 republication of Wagman *et al.* recommended an enthalpy of formation for I_2O_5 based on a study by Spencer and Hepler (1960). The evaluation was performed in 1964. The study involved the reaction of $I_2O_5(cr)$ with aqueous KOH. There are no recent calorimetric determinations of $\Delta_t H^\circ$ either through formation from or decomposition to the elements. At the time of the Wagman evaluation, four other solution processes led to formation values within 1.3 kcal mol 1 range.

5.13 I₂O₆

The study of I_2O_6 is confusing since we must examine four different species: (1) iodyl periodate [77SEI/WEI], (2) iododioxygen periodate [77SIE/WEI], (3) iodine oxide, and (4) iodine trioxide (IO₃). Early references were to IO₃ and an unspecified I_2O_6 . It is not clear as to which species truly exists in the condensed phase.

The references for the discontinued CAS Registry Number for I_2O_6 (64052-04-6) are not included under IO_3 references. Via a Chemical Abstract literature search, there is one I_2O_6 reference [77SIE/WEI] referring to iododioxygen periodate with a presumed structure IO_2 ⁺ IO_4 ⁻. However, [77SIE/WEI] referred to I_2O_6 in its study as iodyl periodate which was

given a Registry Number of 63912-61-8 in CAS. No references are listed under this registry number.

The early references for $\mathrm{IO_3}$ in fact discussed $\mathrm{I_2O_6}$. This compound was presumably formed by the decomposition of periodic acid [1861KAE], [58ODE], [63PAC/HAU] and orthoperiodic acid, $\mathrm{H_5IO_6}$ [59HAU]. Only one paper presents evidence in which this species was isolated; Siebert *et al.* [77SIE/WEI] confirmed its existence. The compound was prepared by two techniques and was confirmed as a distinct species by its individual Raman spectra. Diamagnetism studies proved that it is a mixed valence entity; perceived as iodyl periodate, $\mathrm{IO_2}^+\mathrm{IO_4}^-$, as discussed in Table 5. There are no thermodynamically related data.

A recent study [95KRA/JAN] determined the crystal structure of I_2O_6 as a mixed valent oxide, I(V/VII).

Alternatively, Wagner and Strehlow [82WAG/STR] suggest that this species supposedly formed from the dimerization of the IO₃ radical in aqueous periodate solutions as a result of flash photolysis.

5.14 I₂O₇

This condensed phase compound has not been isolated or characterized. It is often cited in terms of being the end member in ternary systems, but the I_2O_7 portion of the triangular diagram has not been studied. There are fourteen references for this compound: six preparations and eight ternary systems $(X\!-\!I_2O_7\!-\!H_2O).~I_2O_7$ is considered the hypothetical anhydride of periodic acid H_5IO_6 .

The current CA Registry Number refers to an iodine-oxygen compound in which the atomic ratio is 2:7 but no structure is given. (There is a discontinued CA Registry Number 20270-38-6.)

The ternary systems are as follows:

[51GYA] Ag₂O-I₂O₇-H₂O

[53HES/SOU] I_2O_7 - Li_2O - H_2O

[64DRA/TER] I₂O₇-CaO-H₂O and BaO-I₂O₇-H₂O

 $[66DRA/KOS] I_2O_7-MgO-H_2O$

[68PAC/BOH] I₂O₇-Cd₃(IO₅)₂-H₂O

[74ODE/HEJ] I₂O₇-N₂O₅-H₂O and I₂O₇-SO₃-H₂O

 $[67BIA/SAB] I_2O_7-K_2O-H_2O$

[07BIA/3AB] 12O7-K2O-H2O

[67SAB/BIA] I₂O₇-Na₂O-H₂O.

The following citations deal with the preparation and subsequent decomposition of I_2O_7 :

- [58ODE] studied the dehydration of H_5IO_6 ;
- [62MIS/SYM] dealt with the formation from the reaction of H₅IO₆ with concentrated sulfuric acid (deduced that the compound was unstable; isolation often resulted in decomposition with explosive violence);
- [63PAC/HAU] dealt with the thermal decomposition of H_5IO_6 and the possible formation of a product of the form $I_2O_7 \cdot I_2O_5$: [68SEL/KJE], whose data was consistent with the results of [63PAC/HAU].
- Wagner and Strehlow [82WAG/STR] suggested a reaction scheme in which ozone oxidized I₂O₆ to I₂O₇.

Chladek and Troenel [93CHL/TRO] established a relationship between the bond length and the bond strength for numerous oxides.

5.15 l₂O₈

This condensed phase compound has not been isolated or characterized. It is postulated to exist in aqueous reaction schemes. The CAS Registry Number corresponds to the structure O₃I-OO-IO₃.

Wagner and Strehlow [82WAG/STR], in the flash photolysis of periodate in the pH range 2.44 to 4.90 using conductometric detection, observed three reactions, one of which was attributed to the hydrolysis of I_2O_8 . The authors stated that ozone oxidized IO_3 to form IO_4 , which in turn dimerized to I_2O_8 . This citation provided no indication of the structure.

5.16 I₄O₉

There are sufficient reliable studies to indicate that this compound does exist in the crystalline phase. The current CAS Registry Number corresponds to a structure $I(IO_3)_3$ and a name, iodine iodate. (A discontinued CAS Registry Number 73560-00-6 also exists, which most likely refers to an I_4O_9 species with an unknown structure.) There are no studies which provide numeric thermodynamic information. That is, there are no studies on the heat capacity, enthalpy, melting, or enthalpy of formation.

The information on I_4O_9 may be arbitrarily classified as follows:

1. Preparation/formation

[09BER], [09FIC/ROH], [15FIC/KAP], [35BAII/PAR], [55KIK], [68SEL/KJE], [80WIK/TAY], [83COX/COK], [85SUN/WRE], [85VIK/MAC]

2. Decomposition

[35BAH/PAR], [55KIK], [80WIK/TAY]

3. Reactions/intermediates

[61VLA/ATI], [62ARO/MIS], [80WIK/TAY]

4. Review

[63SCH/BRA]

5. Iodine transport

[81VIK/FUR], [84VIK], [89SAG]

6. Characterization (crystal)

[85SUN/WRE]

There are many articles which deal with the formation of I_4O_9 and the subsequent decomposition to I_2O_5 . There are

three preferred methods of preparation: (1) the reaction of I_2 with ozone, (2) thermal treatment of iodine with anhydrous HPO₃, and (3) heating iodic acid with orthophosphoric acid. This oxide decomposes above 350 K to yield the pentoxide (I_2O_5). See Table 1b for details. Additional studies include irradiation [61VLA/ATE], a magnetic susceptibility measurement [62ARO/MIS], and Raman spectra [85SUN/WRE].

The experimental studies by Selte and Kjekshus [68SEL/KJE] did not support the results of [15FIC/KAP] and [35BAH/PAR]. By following the procedures of the latter two studies, Selte and Kjekshus could not produce I₄O₉. In addition these results also suggested that the reactions between iodine and ozone took place in CCl₄ solutions rather than in the gas phase, in contrast to [09BER] and [55KIK]. Selte and Kjekshus did not comment on the formation of I 4O₉ as described in [09FIC/ROH].

Sunder et al. [85SUN/WRE] isolated amorphous and crystalline I_4O_9 and determined the Raman spectra. They established conclusively that it was a distinct molecular species and not a mixture of I_2O_5 and I_2O_4 . This study provided tentative vibrational assignments for five types of vibrations (I=O stretch, O-I=O symmetric stretch, I-O stretch, OIO deformation, IOI deformation). The vibrational frequency assignments were made by analogy with I_2O_4 and I_2O_5 .

5.17 I₆O₁₃

The earliest reference dealing with the preparation of this solid compound is by Kaemmerer (1861).

The study by Kappeler [12KAP] questioned the existence of this oxide and indicated that it was most probably I_2O_4 . This conclusion was further supported by [64DAE/KJE]. There are no studies since 1912 which have been able to prepare this species. This compound is assumed not to exist.

5.18 I₁₀O₁₉

The earliest reference dealing with the preparation of this solid compound is by Millon (1844/45).

The study by Kappeler [12KAP] questioned the existence of this oxide and indicated that it was most probably I_2O_4 . This conclusion was further supported by [64DAE/KJE]. There are no studies since 1912 which have been able to prepare this species. This compound is assumed not to exist.

MALCOLM W. CHASE

TABLE 1a. Solid iodine oxide species: Preparation and related reactions

Source	Reaction	Temperature	Comments
IO			
81GRO/LAU	Quadrupole coupling constants for ¹²⁷ I		Comparison of calculated and experimental values
IO ₂ (I ₂ O ₄)	constants for 1		reference to earlier experimental study?
86BYB	Formation of IO ₂ from the	26 K	Observation and calculation of ESR spectra to determine
	photolysis and x -irradiation of IO_4^- embedded		structure
	in KClO ₄		
1844MIL.	$I_2+HNO_3\rightarrow I_2O_4$		
15FIC/KAP	$H_2SO_4 + HIO_3 \rightarrow I_2O_4$ Preparation of $IO \cdot IO_3$		Reference to earlier preparative procedures by
		5	1844 Millon
35BAH/PAR	$H_2SO_4(hot, conc.) + HIO_3 \rightarrow I_2O_4$	[85 °C]	Reaction gives yellow granular nonhygroscopic I ₂ O ₄ which, when heated above 85 °C forms I ₂ O ₅
62FIA/TAR	$I_2O_3 + I_2O_5 - 2(IO)(IO_3)$	138 - 210 °C	I ₂ O ₃ , formed by I ₂ -I ₂ O ₅ radioactive exchange system
64GIL/SEN	HIO +H SO/IO)		reacts with excess I_2O_5 to yield I_2O_4
04GIE/SEIV	$HIO_3 + H_2SO_4 \rightarrow (IO_2)_n$		Cryoscopy used to determine T_{fus} (for information, see Table 1, pp. 973–4) of I_2O_4 in sulfuric acid
			solutions; interpolation; used method of
IO ₃	•		35BAH/PAR
48FAR/KLE	Formation of IO ₃		$\Delta_t H^\circ = -28 \text{ kcal mol}^{-1} \text{ is stated as calculated for}$
I_2O			IO_3 , but the formula given is IO_3^-
38MAS	IO ₂ important as intermediate		Reversibility exists for IO2 due to lack of high
	in the reverse reaction		concentration of acid
	involving $3.5H_2SO_4$, H_2O and I_2O_3 : $SO_3(c)$		
I_2O_2	<u> </u>		
85BUX/SEL	$IO + IO \rightarrow I_2O_2$ $I_2O_2 + H_2O - HOI + IO_2^- + H^+$		Proposed reaction scheme leading to formation of iodate ion in solution
I_2O_3	1202 + 1120 - 1101 + 102 + 11		iodate for in soldion
35BAH/PAR	Preparation apparently		Preparation of I ₂ O ₄ and I ₂ O ₃ in sulfate compounds:
	involves I ₂ O ₃ and H ₂ SO ₄ complex		I_2O_4 , H_2SO_4 and I_2O_3 , H_2SO_4 , respectively
38MAS	$2I_2 + 3I_2O_5 = 5I_2O_3$; shaken yellow		In concentrated sulfuric acid, I2O3, SO3 takes up
	solution $+I_2O_3$, $SO_3(c)$		elementary iodine to form a brown solute; I ₂ O ₃ was not isolated, only the complex with sulfuric acid
62FIA/TAR	$I_2 + I_2O_5 - [I_2O_3] - I_2 + I_2O_5$	138-210 °C	The exchange of iodine in the I ₂ -I ₂ O ₅ systems has
1.0			been studied by use of radioactive isotope ¹³¹ I
I ₂ O ₅ 12GUI2	Examined the exothermic	173 °C	Equilibrium pressure of system was calculated to
	reaction: $I_2(g) + O_2(g) \rightarrow I_2O_5(c)$		173° based on the earlier Berthelot data;
			concluded that direct oxidation of iodine is not a create practical preparation of anhydride;
			refers to two earlier studies of Berthelot and
21DAV/DIE	Formation from delection		Thomsen in which enthalpy of formation is given
31BAX/BUT	Formation from dehydration of HIO ₃		I ₂ O ₅ produced by dehydration of HIO ₃ contains less I (and more O) than corresponds to the
	•	[ng ng]	theoretical formula
35BAH/PAR	$H_2SO_4(hot, conc.) + HIO_3 - I_2O_4$ ozonized $O_2 + I_2(g) - I_4O_9$	[85 °C]	Action of HNO ₃ on I_2 gives hygroscopic I_2O_5 ; I_4O_9 reaction occurs in vapor phase; yellow
	020m20d 03 · 13(g)—1400	•	hygroscopic crystals obtained; decomposition
36VIL/MOL	Formation of 31 ₂ O ₅ · H ₂ O from		between 85 and 120° gives I_2O_5 Formation of I_2O_5 by dehydration of hydrate <i>in</i>
JOVIL/MOL	reaction of $3I_2O_5 \cdot H_2O$ from reaction of hot I_2 with HNO ₃		vacuo over KOH
38MAS	$2I_2+3I_2O_5=5I_2O_3$: shaken yellow		In concentrated sulfuric acid, I ₂ O ₃ · SO ₃ takes
40KOM	solution $+I_2O_3 \cdot SO_3(c)$ Formation by heating HIO_3		up elementary iodine to form a brown solute Directions for production of HIO ₃ and subsequent
	• • •		preparation of I ₂ O ₅
48FAR/KLE	No experimental procedure for formation of I_2O_5		$\Delta_f H^\circ = -42.0 \text{ kcal mol}^{-1}$ enthalpy of formation is stated; no reference given to the source of this
	for formation of 1205		value
57DUV	Step-wise dissociation:	248-410 °C	Infrared absorption spectra observed and compared with earlier studies; rapid dissociation and
	sublimation of HIO ₃ -I ₂ O ₅		with earlier studies, rapid dissociation and

TABLE 1a. (Continued.)

Source	Reaction	Temperature	Comments
57DUV2	Preparation of mixture: 2KIO ₃ +I ₂ O ₅ dissociation: sublimation	180-370 °C [500 °C]	Infrared absorption spectra studies; iodic anhydride disappears at 500 °C with the start of dissociation and sublimation
62FIA/TAR	Reversible redox reaction: $I_2+I_2O_5-[I_2O_3]-I_2+I_2O_5$ energy of activation=10 kcal mol ⁻¹	138–210 °C	The exchange of iodine in the I_2 – I_2O_5 systems has been studied by use of radioactive isotope ¹³¹ I
84VIK	Preparation		Uses uv light; I_2 then reacted with O_3 to form solid I_4O_9 or I_2O_5
I ₂ O ₇ 62MIS/SYM	$H_3IO_6+65\%$ oleum $\rightarrow I_2O_7$		Spectrophotometry; assumed of new solid formation to be I_2O_7 in vacuo
I ₄ O ₉ 15FIC/KAP	Formation of I(IO ₃) ₃		Two references to earlier preparation procedures:
35BAH/PAR	Ozonized $O_2 + I_2(g) \rightarrow I_4O_9$		Reaction occurs in vapor phase; yellow hygroscopic crystals obtained; decomposes at 75 °C
55KIK	$O_3 + I_2(g) \rightarrow I(IO_3)_3$	45–50 °C	Ozone reaction with iodine vapor to form I_4O_9 containing some unoxidized iodine
84VIK	Preparation		Uses uv light; I_2 then reacted with O_3 to form solid I_4O_9 or I_2O_5
85VIK/MAC	Formation: $4I_2(g) + 6O_3 \rightarrow 2I_4O_9(c)$	293-370 K	Stoichiometric composition of I ₄ O ₉ in flow system; kinetic data given
I ₆ O ₁₃ //I ₁₀ O ₁₉ 12KAP	Preparation		Using earlier preparation method, the author suggests that the two oxides were misidentified and should be IO · IO ₃

TABLE 1b. Solid iodine oxide species: Decomposition and related reactions

Source	Reaction	Temperature	Comments
Ю			
67STU/HUS	Decomposition		Mass spectra; no values given; ${\rm IO}^+$ and ${\rm IO_2}^+$ undergo marked fluctuations in intensity; independent
			existence for IO_2 in gases produced by vaporization of I_2O_5
$IO_2/(I_2O_4)$			
09MUI IO ₂ /I ₂ O ₄	Decomposition: I_2+O_2	130 °C	Aqueous compositions/mixtures mostly; molecular weight not determined (IO_2 or I_2O_4); density values given; I_3O_4 is not hygroscopic
35BAH/PAR	Decomposition:	*110,125,	*I ₂ O ₄ decomposes slowly at 85 °C but more rapidly at
	$5I_2O_4 = 4I_2O_5 + I_2$	130 °C	130 °C; decomposition does not proceed as stated by 09MUI; it is not hygroscopic
64DAE/KJE	Decomposition:	100−230 °C	Decomposition in moist air; thermogravimetric
	$5I_2O_4 - 4I_2O_5 + I_2$	20-240 °C	analysis; x-ray diffraction investigation; density
	$5I_2O_4 + 4H_2O - I_2 + 8HIO_3$		values given
68SEL/KJE	Decomposition: $5I_2O_4 = 4I_2O_5 + I_2$	125−250 °C	Differential thermogravimetric (DTG) analysis data (215–260 °C; 300–415 °C); x-ray diffraction data; proton magnetic resonance studies; density measurements included
71SEL/KJE	Decomposition:	125-250 °C	Statement of previous observations
	$3I_2O_4 - 4I_2O_5 + I_2$.13 230 0	Satement of provious observations
80WIK/TAY	Decomposition: $9I_2O_4 - 4I_4O_9 + I_2$ $5I_3O_4 - 4I_3O_5 + I_3$	460 K	Thermogravimetry: x-ray diffraction measurements; differential thermal analysis (DTA)
I_2O_3	2 4 12-9 2		
62FIA/TAR	$I_2O_3+I_2O_5=2(IO)IO_3$	138−210 °C	Reaction with excess I ₂ O ₅
63PAC/HAU	Decomposition of orthoperiodic acid (H ₅ IO ₆) —I ₅ O ₅ :I ₅ O ₇	105–117 °C	Thermogravimetry; possible classification of product as ${\rm IO}_3$
I ₂ O ₅	-1205.1207	1. Decomposition	
1205 1898CHR2	Decomposition/reaction with H ₂ O:3(SO ₃ · 3H ₂ O) +I ₂ O ₅ · H ₂ O-SO ₃ · H ₂ O· I ₂ O ₄ +1/2I ₂ O ₅ · 4I ₂ O ₅ +I ₂ O ₄ +SO ₃ · H ₂ O; 2I ₂ O ₅ +I ₂ O ₄ +SO ₃ · H ₂ O; H ₂ O;	200 °C	Decomposition in contact with humid air, water, or alcohol; preparation of crystallized substance

TABLE 1b. (Continued.)

Source	Reaction	Temperature	Comments
31MOL/PER 32MOL/VIT	Decomposition Decomposition $?\Delta H^{\circ}$ dissociation=-9.2 kcal mol ⁻¹	275 °C 275 °C	Decomposition of pure dry I_2O_5 in dry air Initial temperature of decomposition; ΔH° reactions are deduced
	ΔH° hydration=2.1 kcal mol ⁻¹		
32MOL/VIT2	Initial decomposition: $I_2O_5-I_2+O_2$	275 °C	Decomposition of I_2O_5 at 275 °C is determined by the modified method of Tzentnershver and Andrusov; ΔH solution of I_2O_5 given presumably in water
38MAS/ARG	Decomposition: $I_2O_5 - I_2O_3 + O_2$	215-220 K	Chretien's iodous sulfate; reaction occurring in fuming sulfuric acid; product stabilized as an iodous sulfate
64DAE/KJE	Decomposition: $I_2O_5-O_2+I_2$	330-460 °C	Decomposition; thermogravimetric analysis; x-ray diffraction investigation
67STU/HUS	Decomposition		Mass spectra; no numeric information provided; six ions detected; HIO ₃ dehydrated to I ₂ O ₅ ; sufficient volatization occurred so that mass spectrum could be obtained
68SEL/KJE	Decomposition: $2I_2O_5 = 2I_2 + 5O_2$	>[280 °C] [250 °C]	Differential thermogravimetric analysis data (355–420 °C); x-ray diffraction data;
	sublimation	[230 C]	crystallization from aqueous solutions with degrees of acidity; density measurements included
			Proton magnetic resonance studies; ir studies
78CER/KO	Reaction: $\frac{1}{2}I_2O_5(c) + \frac{1}{2}H_2O(1)$ = $H^+(aq) + IO_3^-(aq)$	25 °C	Calorimetric measurements of enthalpies of both reactions; prime rotational was to determine the enthalpy of ionization of water; enthalpy of
	$ \frac{1}{2}I_{2}O_{5}(c) + OH^{-}(aq) = IO_{3}^{-}(aq) + \frac{1}{2}H_{2}O(1) $		reaction=13.34 kcal mol ⁻¹
80WIK/TAY	Decomposition: $2I_2O_5-2I_2+5O_2$	[600]-710 K	Thermogravimetry; x-ray diffraction measurements; differential thermal analysis
85VIK/MAN	Decomposition: $2I_2O_5(c) - 2I_2(g) + 5O_2(g)$	570-730 K	TGA and DTA study of ${\rm I_2}\Omega_4$
I_2O_5		position Reactions Leading	to I ₂ O ₅
09GUI	Decomposition: $I_2O_3-I_2+O_2$	350-270 K	Reaction of iodine anhydride when exposed to heat; reaction starts at 350 K but gradually reaches 270 K by the end; preparation of substances
09MUI	$I_2O_5+SO_3$	100 °C	Similar to earlier studies by Kammerer and Weber; presumed product is I_2O_5 , $2SO_3$ which differs from
11GUI	Decomposition of anhydride	250 °C	results of other two studies Preparative technique of anhydride; study of decomposition in vacuum
12GUI	Decomposition of I_2O_5 into iodic acid and oxygen	250 °C	Decomposition in vacuum, during 100 hours
32MOL/VIT2	Stepwise dehydration: HIO ₃ -I ₂ O ₅ ·H ₂ O-I ₂ O ₅	70 °C	The systematic thermal dehydration of HIO ₃ yielded $3I_2O_3H_2O$ at 70 °C; at higher temperature, loss of H_2O is very small up to 200 °C where total dehydration
59HAU	Stepwise decomposition:	115–151 °C	gives I_2O_5 Thermal decomposition
61PAV/RAF	$H_5IO_6-I_2O_5$ Decomposition of NH_4IO_3 in vacuum to form I_2O_5	100−170 °C	Decomposition of NH ₄ IO ₃ studied manometrically to form I ₂ O ₅ , but it did not involve HIO ₃ as an
68SEL/KJE	Decomposition of $2HI_3O_8$ $3I_2O_5+H_2O$	190–250 °C	intermediate; I ₂ (g) was also a product Discussion on I ₂ O ₅ sublimation; DTG data (355– 420 °C); x-ray diffraction data; recrystallization from aqueous solutions with degrees of acidity; density measurements included
71SEL/KJE	Decomposition: $3I_2O_4-4I_2O_5+I_2$	125–250 °C	Statement of previous observations

TABLE 1b. (Continued.)

Source	Reaction	Temperature	Comments
I ₄ O ₉			
35BAH/PAR	Decomposition: $4I_4O_9 \rightarrow 6I_2O_5 + 2I_2 + 3O_2$	*85–120 °C	*I ₄ O ₉ begins to decompose at 75 °C but reaches its peak at 85–120 °C; it is very hygroscopic; comments on many reactions of I ₄ O ₉ are also given
80WIK/TAY	Decomposition: $5I_4O_9 \rightarrow 9I_2O_5 + I_2$	415-460 K	Thermogravimetry; x-ray diffraction measurements, differential thermal analysis
83COX/COK	Decomposition: $5I_4O_9 \rightarrow 9I_2O_5 + I_2$	460 K	Authors state that these data from [80WIK/TAY] are consistent with observations in their system
85SUN/WRE	Decomposition: $5I_4O_9 \rightarrow 9I_2O_5 + I_2$		Crystalline compound thermal decomposition—see 85VIK/MAK
85VIK/MAC	I ₄ O ₉ 1 ₂ O ₅ -I ₂		Thermogravimetry and differential thermal analysis of I_4O_9 indicates two transitions, the last one of which appears to be the decomposition of I_2O_5

TABLE 2. Iodine oxide species: Neutrals, radicals, and ions in solution

Source	Compound	Reaction	Temperature	Comments
1896CHR	I ₂ O ₃ I ₂ O ₅	Decomposition: $3l_2O_3+H_2O=2l_2O_5+H_2I_2$ $5l_3O_3=3l_2O_4+2l_3$	250-260 °C	Immediate decomposition in contact with H ₂ O; HI cannot exist in the presence of iodic acid, hence the second reaction
1898CHR2	I ₂ O ₃ I ₂ O ₅	Decomposition: $3I_2O_3+H_2O=2I_2O_5+H_2I_2$ $5I_2O_3=3I_2O_3+2I_2$	250-260 °C	Immediate decomposition in contact with water; HI cannot exist in presence of iodic acid, hence the second reaction
23GOM	IO ₄	$(ClO_4)+I=(IO_4)+Cl;$ equilibrium		Probable formation of IO_4 in ether; IO_4 presumably unstable to I_2 and O_2
30BRA	I_3O_2 I_2O_2	$I_3Q_2^I_2Q_2-H_2I_2Q_3$ $I_2\Omega_2+H_2\Omega-H_2I_2\Omega_2$;	25 °C	I ₂ O ₂ proposed as an intermediate in the reaction between iodate and iodide ions; refers to many previous iodine-oxide ion studies
36FIC/DIN	I_2O_3	*Preparation of I ₂ O ₃ ·SO ₃ ¹ H ₂ O		*Preparation of $I_2O_3 \cdot SO_3 \frac{1}{2}H_2O$ but no data of I_2O_3 itself
48FAR/KLE	103	Formation of IO ₃ from photodecomposition of iodate ion in solution		It appears that the $\Delta_f H^*$ calculated value is for the radical not the ion, as indicated in the article
72FOR/GOO	I ₂ O	Hypoiodate reaction: $HgO + 2I_2 - HgI_2 + I_2O$ $I_2O - I_2 + \frac{1}{2}O_2$	18 °C	Stability and reactivity of mercuricoxide with iodine reagent in solution; these reactions (among others) are proposed to describe the hypoidate reaction
74ODE/DEJ	I_2O_7	Solubility of I ₂ O ₇ in ternary systems	0; 25; 50 °C	Solubility in the I ₂ O ₇ -N ₂ O ₅ -H ₂ O and I ₂ O ₇ -SO ₃ -H ₂ O systems studied; I ₂ O ₇ was never isolated
80COO	IO ₂ IOO	Chloride ion; catalyzed oxydation reaction scheme	25 °C	Kinetic data; chloride ions may influence the production of the free radical iodine dioxide; IO ₂ and IOO are intermediates in the reaction scheme; no thermochemical data present
81KLA/SEH	IO ₃ -	$IO_3^- + O^ IO_4^{2-}$ $(IO_3)_2 IO_3^- + OH - IO_3$	21+2,°C	scheme, the hermoentender data present Radiolysis and flash photolysis of aqueous iodate and periodate solutions; $\Delta_1G^o(1O_3)=190$ kJ/mol, presumably in aqueous solution; spectrum and decay kinetics of the assumed IO_3 are determined
82FUR/NOY	IO IO ₂	Oscillatory Briggs- Rauscher reaction (acidic aqueous solution)	25 °C	Postulates that IO and IO ₂ exist as intermediates in acidic aqueous reactions in the kinetic description of this reaction
82NOS/NOS	I_2O	Oscillatory reactions for ion selective electrodes	24±1°C	Preparation of iodide-free HOI; IO_2 in an intermediate
83WAG/STR	IO ₄ I ₂ O ₈ IO ₃ I ₂ O ₆	Hydrolysis: $I_2O_8 + H_2O - IO_3^- + IO_4^- + 2H + O_2$ $I_2O_6 + H_2O - IO_4^- + IO_3^- + 2H$ Dimerization: $2IO_3 - I_2O_6$ $2IO_4 - I_2O_6$	278–298 K	Flash photolysis of periodate in pH range $2.44-4.90$; IO_3 formed in the photolysis can be further reacted with O_3 to form IO_4 ; both IO_3 and IO_4 can further dimerize; all species used to describe kinetics
85BUX/SEL	IO I ₂ O ₂	*IO+IO~I ₂ O ₂	25 °C	Pulse radiolysis of iodide and iodate solutions; spectrophotometry of IO; equilibria in periodate solutions; *in analogy with Cl and Br systems authors suggest formation of I_2O_2 ; dimerization of IO to I_2O_2 proposed to explain kinetics in alkaline solution
86VIK/TOR	IO _x	Gas phase reaction to form oxides followed by reaction/solution with H ₂ O		explain killetics in arkatine solution $I_2(g)$ reacts with O_3 to form iodine oxides that, on contact with H_2O , would be washed into the aqueous phase as IO_3^-

TABLE. 3. Iodine oxide species: Electronic energy levels

Source	Transition	Energy level (cm ⁻¹)	Comments
IO(g)			
37VAI		21 557	$T_{\rm e}$ value; gas phase study
48COL/GAY	B-X system	$\nu_{\rm e} = 21\ 565$	Flame spectra data; estimated vibrational constants
•			for both states; provides comments on earlier
	2. 2.		studies by Vaidya and by Blake and Iredale
58DUR/RAM	$(^{2}\Pi_{1/2}, ^{2}\Pi_{3/2}) - X$	23 420.3, 22 958.9,	Absorption spectra of IO during flash photolysis of
		22 478.0, 21 981.9,	I ₂ O ₂ mixtures; vibrational analysis consistent with
		21 804.5, 21 481.4	scheme developed by Coleman, Gaydon, and Vaidya
60DAS/WAD			Spectra for IO ⁺ estimated by analogy with the
			oxygen molecule; IO+ is paramagnetic; vibrational
			absorption spectra of about 800 cm ⁻¹ or higher is
			estimated in analogy to TeO frequency of 796 cm ⁻¹ ;
convin a na	42 FF 127FF	04.200 15.070	no electronic energy level info. provided for IO
60DUR/LEG	$A^2 \Pi - X^2 \Pi$	24 390–15 873	Rotational and vibrational analysis for
			methyliodide flame bands; emission spectra for $A^2\Pi - X^2\Pi$
		10.010	transition; $B_e(X^2_{3/2}) = 0.340 \ 26 \ cm^{-1}$; $r_e = 1.8676 \ Å$
61PHI/SUG		18 843	Flame photometry; emission spectra; measured
			intensity of the (0,4) band; dissociation energy
ccanimit	277 252 77	21.555	derived
65SIN/RAI	$^{2}\Pi$ – X^{2} Π	21 565	Using data from 1960 Durey, Legay, and Ramsey, the
			RKRV potential energy curves were calculated for
			the $X^2 \Pi$ and $A^2 \Pi$ states
70AMI/TRE		22 222.2	Flash photolysis of IO ₃ ⁻ and IO ⁻ in aqueous
			solution;
			absorption spectra in decay kinetics studied by
			pulse radiolysis; maximum intensity of absorption band at 450 nm
70AMI/TRE2		21 739.1	Flash photolysis of IO_3^- in boric acid glass;
/UAMII/TRE2		21 739.1	maximum intensity of absorption band at 460 nm
70CLY/CRU	$A^{2}\Pi - X^{2}\Pi$	21 277-23 923	Band absorption spectrophotometry
72BRO/BYF	13 11 A 11	21 277 23 723	Estimated spin orbit coupling; A = 2330 cm ⁻¹
73SAI	2 ₂ +	[30 000]	Estimated value of excited state in comparison with
75571	$A^{2}\Pi - X^{2}\Pi$	[50 000]	ClO radical; energy separation of ${}^{2}\Pi_{1/2}$ and ${}^{2}\Pi_{3/2}$ is
			2330 cm ⁻¹ ; $B_0(^2\Pi_{3/2}) = 10.157.08 \pm 0.18$ MHz; microwave
			spectra; $r_e \approx 1.8677 \pm 0.0028$ Å value is calculated
			from effective rotational constant $B_0(^2\Pi_{2/3})$ combined
			with α_e from $A^2\Pi - X^2\Pi$ transition of 60DUR/LEG;
			comparison of molecular constants given
77CAL/MET	$B^2\Pi - X^2\Pi$	*50 000-55 555.5	Fluorescence absorption spectra; *flash photolysis
	?	[49 615.5;50 403.2;48 959.6]	of I ₂ O ₂ mixtures leads to formation of IO by light
			absorption and optical filters; (?) new system with
			3 bandreads observed in ultraviolet
83BEK/MEE	$A^{2}\Pi_{3/2}-X^{2}\Pi_{3/2}$	22 469.8	High resolution molecular-beam laser excitation
			spectroscopy; microwave optical double resonance;
		4.1	equilibrium rotational constant $B_e = 10083$ MHz
			derived using estimated $A_{De} = 233 \text{ cm}^{-1}$; calculated
			vibrational frequency ω_e of 669.7 and corresponding
			equilibrium internuclear distance $r_e = 0.187 \text{ 84 Å}$;
			spin-orbit coupling constrained to be $A = 2330 \text{ cm}^{-1}$
83COX/COK	$A^2\Pi - X^2\Pi$	21 277-24 096	No direct analysis of the vibrational and
			rotational structure; absorption by molecular
			modulation technique
85BUX/SEL		20 408	Radiolysis spectrophotometry of aqueous HOI;
			spectra of IO obtained by oxidation of IO with O
			in aqueous solution at pH≥13; band maximum
			reported
89RED/RAO	0		Potential energy curves for the ground state
			constructed by Rydberg-Klein-Rees method as
			modified by Vanderslice et al.; no values given;
			dissociation energy provided
IO(matrix)			
80LOE/MIL	$A^{-2}\Pi - X$	21 043±34	Absorption and emission spectra of IO in solid
			argon matrix at 20 K; T _e values; prepared by

TABLE. 3. (Continued.)

Source	Transition	Energy level (cm ⁻¹)	Comments
IO ₂ (cr)			
69BAR/GIL		20 833.3	Absorption spectra; flash photolysis of aqueous
			solutions of iodate ions; maximum absorption band
10 t 1 t t t t t t t t t		[20,411,0]	at 480 nm attributed to IO ₂ radical
OAMI/TRE		[29 411.8]	Flash photolysis of IO ₃ ⁻ and IO ⁻ in aqueous solution;
			absorption spectra in decay kinetics studied by pulse radiolysis; estimated value, maximum
			intensity of band structure at approximately 715 nm
70AMI/TRE2		15 267.2	Flash photolysis of IO ₃ in boric acid glass;
*			maximum intensity absorption band at 655 nm
72BAR/GIL		20 833.3	Pulse radiolysis and flash photolysis of aqueous
			solutions in iodate ions; absorption band maximum
OTENICA D		20,400.2	at 480-490 nm attributed to IO ₂
3TEN/FAR		20 408.2	Transient absorption spectra; maintains that the
			490 nm band is related to IO ₂ rather than IO (as suggested by 70AMI/TRE); pulse radiolysis technique
SLATH/MOR			EPR spectra in γ -irradiated KIOF ₂ crystals,
			reassigns spectra originally thought to be 10_2F to
			$1O_2$
6BYB	$0 (B_1); A_1B_2$		EPR spectra; g shifts and excited state parameters,
			no value given (A_1, B_2) do not necessarily resemble
			real excited states; photolysis; microwave
8BYB I ¹⁷ O ₂			spectroscopy) EPR spectra, electronic properties closely resemble
о в твт О ₂			those of ClO ₂ and BrO ₂
03			those of Croy and Broy
9BAR/GIL		38 461.5-52 631.6	IO3 radical not observed under these experimental
			conditions; absorption spectra; flash photolysis of
			aqueous solutions of iodate ions
0AMI/TRE		26 315.8	Flash photolysis of IO ₃ and IO in aqueous solution:
	· ·		absorption spectra in decay kinetics studied by
			pulse radiolysis; maximum intensity of band structure at 380 nm
OAMI/TRE2		25 316.5	Flash photolysis of IO ₃ ⁻ in boric acid glass;
OF HAID TREEZ		23 3 10 13	maximum intensity of absorption band at 395 nm
2BAR/GIL		27 777.8	Pulse radiolysis and flash photolysis of aqueous
			solutions of iodate ions; absorption band maximum
			at 360 nm attributed to IO ₃
3TEN/FAR		27 777.8	Transient absorption spectra; though spectra are
$O_3(IO_3)_2$			observed for IO ₃ , the author attributes them to
0			(IO ₃) ₂ ; pulse radiolysis technique
O ₄ /ILES/BAR			Absorption spectra; pulse radiolysis periodate
ILES/BAK			aqueous solutions; IO ₄ proposed as reaction
			intermediate
2O4			
7SYM			Absorption of IO+ spectra observed from solutions
			of iodine in concentrated H ₂ SO ₄ ; spectra used as
			evidence that I ₂ O ₄ is ionic having the structure
00.000.00		45.000, 05.000	IO ⁺ IO ₃ ⁻
ODAS/WAD		45 000-85 000	Infrared absorption spectra
IWIS/HAN		11 049.7; 75 188.0	Infrared absorption spectra studies of I ₂ O ₄ in pressed KBr pellets; of the two strong bands,
		$(9.05 \ \mu \text{m}) \ (13.30 \ \mu \text{m})$	13.30 μ m is attributed to IO_3^- and 9.05 μ m, obtained
			from stoichiometry, was identified with IO+
9GRU/MUR			Mössbauer spectrum measured at 80 K treating I ₂ O ₄ as
			absorber; scheme is put forward for the structure
			of L ₂ O ₄ built of IO groups bound covalently to IO ₃ group
0			through the O atom
1 ₂ O ₅			*Study of structure by infrared spectroscopy from
DUR/LEC			2–33 μ m shows existence of I–O–I bridge analogous to
			that of I-O ₅
70SHE/TUR			Mass spectra studies of I_2O_5 ; author believes
			earlier studies' peaks assigned to I ₂ O ₅ to be

TABLE. 3. (Continued.)

Source	Transition	Energy level (cm ⁻¹)	Comments
I ₂ O ₇ 62MIS/SYM			Ultraviolet spectra at 77 K; no values given; uv spectra at room temperature are irreproducible
I ₄ O ₉ (cr) 85SUN/WRE		15 453.6	Raman spectrometry of crystalline and amorphous solids; formed by gas phase reaction of I_2 with O_3
			I_4O_9 is a distinct molecular species (not a mixture of I_2O_5 and $I_2O_4)$

TABLE. 4. Iodine oxide species (IO): Dissociation energy (D_0°)

Source	D_0° (kJ mol ⁻¹)	Temperature	Comments (as reported values)
48COL/GAY	184±21	***************************************	From graphical Birge-Sponer extrapolation for ground
			state $[X^2\Pi (\nu, 0-12)] D_0^{\circ}$; flame spectral data (twelve
			ground state vibrational levels); 44±5 kcal mol ⁻¹
50HER	183.3		No specific source cited; 1.9 eV
53GAY	183.3 ± 19		Value based on 37VAY, 48COL/GAY; LBX(ν , 0-12); this
			is supported by extrapolation of upper state and
			predissociation giving a value of $\leq 1.95 \text{ eV}$; $1.9 \pm 0.2 \text{ eV}$
54COT	183.3 ± 19		Value based on 53GAY; Cottrell stated that this value
			seemed fairly well established; 1.9±0.2 eV
58BRE	184		Value given by Brewer with a "?"; no explanation as to
•			source; 44 kcal mol ⁻¹
58DUR/RAM	176±21		Dissociation energy for ground state is calculated from
			absorption spectra; a linear Birge-Sponer extrapolation
			of four upper state vibrational levels yielded 45
			kcal mol ⁻¹ ; Birge-Sponer extrapolation was decreased by
			10% in analogy with ClO and BrO; 42±5 kcal mol ⁻¹
60DUR/LEG	192±21		Graphical Birge–Sponer extrapolation for $A^2\Pi$ (ν , 0–5,
			perturbed) state; predissociation $\leq 2.72 \text{ eV}$; 46 ± 5
			kcal mol ⁻¹
61LIP/STE	249.9 or 248.0		Calculated from three- and five-parameter potential
			functions; 2.59 eV or 2.57 eV
51PHI/SUG	238 ± 25	0 K	D_0° deduced from the temperature variation of the
			equilibrium constant; flame photometry; 57 ± 6 kcal mol ⁻¹
62GUR/KHA	184 ± 21		Corresponds to an enthalpy of formation of 40.574 ± 5
			kcal mol ⁻¹ value based on data from 48COL/GAY;
			mentions work of 58DUR/RAM; 44 ± 5 kcal mol ⁻¹
63SCH	183.3 ± 19		D_0° deduced from 53GAY; 1.9 ± 0.2 eV
65SIN/RAI	239.3		D_0° calculated from RKRV potential energy curves 120 000 cm ⁻¹
			no uncertainty given;
			57.2 kcal·mol ⁻¹
66VED/GUR	184 ± 21		L.B.S. for the $X^2\Pi$ and $A^2\Pi$ states, assuming that the
	238 ± 25		dissociation limit corresponds to $I(^{2}P_{3/2}) + O(^{1}D)$;
			dissociation equilibria in flames; 44±5 and
			57 ± 6 kcal mol ⁻¹
57CAR/DYE	176±21		
68WAG/EVA	. 177.0	0 K	Based on the spectroscopic measurements of 58DUR/RAM
(0DDE D 00			and 60DUR/LEG; 42.3 kcal mol ⁻¹
69BRE/ROS	192 ± 29		Value based on analysis of 48COL/GAY, 58DUR/RAM, and 61PHL
			SUG; 46±7 kcal mol ⁻¹
69HER/HUI			Suggests that $D_0^{\circ} = 238 \pm 24 \text{ kJ mol}^{-1} [61PHI/SUG]$ is
			compatible with iodine abstraction mechanism but not
70013110011	176 (2)		$D_0^{\circ} = 174 \pm 19 \text{ kJ mol}^{-1} [58\text{DUR/RAM}]$
70CLY/CRU	176 ± 21 ;		D_0° calculated from linear extrapolation of the upper
	$I + O_3 - IO + O_2$;		state $(A^{-2}\Pi)$ vibrational levels; *rapid bimolecular
	formation of $IO(X^{-2}\Pi)$		disproportionation at 293 K occurring through transition
•	radicals;		state [I-O-O-I]; bond angles are 120°; r distances are
	$I(^{2}P_{2/3}) + O_{3} - IO + O_{2} - \Delta_{1}H^{\circ}298 = -70;$		O-O=0.15 nm, I-O=0.22 nm, I-O=0.188 nm; the latter
	*bimolecular disproportionation:		value is from 60DUR/LEG
	$IO+IO-IOO+I-2I+O_2$		

MALCOLM W. CHASE

TABLE. 4. (Continued.)

Source	$D_0^{\circ} \text{ (kJ mol}^{-1})$	Temperature	Comments (as reported values)
70DAR	180±21		Based on 58DUR/RAM, 61PHI/SUG, 62VED/GUR, and 68WAG/EVA: 43±5 kcal mol ⁻¹
72TRI/GOH	183.3±19		Experimental value in agreement with the least-squares fitting of the RKR curve and Hulburt-Hirschfelder value of 44.7; 43.8±4.6 kcal mol ⁻¹
74RAO/RAO	dissociation ($A^{2}\Pi_{3/2}$): 137.5		Dissociation of upper state calculated by fitting an empirical potential energy curve using Lippencott's three-parameter function and Hulburt-Hirschfelder function with; Franck-Condon factors; r centroids of $A^{2}\Pi_{2/3}$ - $X^{2}\Pi_{3/2}$ system; 32.86 kcal mol ⁻¹
75RAD/WHI	222±13	0 K	Reaction in crossed molecular beams of O+ICl led to a measured bond energy value; result based on dissociation energy of ICl; 53±3 kcal mol ⁻¹
79ADD/DON	≥210		Kinetics dissociation energy value is consistent with 75RAD/WHI
79HUB/HER	173.7		Based on extrapolations of the vibrational levels of $A^{2}\Pi_{3/2}$ and the assumption that $A \rightarrow {}^{2}P_{3/2}(Br) + {}^{1}D(0)$ flame photometry [61PHI/SUG] gives 2.4 eV (less likely as it
			is as high as BrO); observed predissociation in A gives $D_0^{\circ} \le 2.72 \text{ eV}$; extrapolation of ground state gives 1.94 eV [72TRI/GOH]; 1.8 eV
82BAU/COX	182±21		Derived heat of formation at 298 K to be 172 kJ mol ⁻¹ ; authors refer to the work of [80KER/TRO] whose results have been taken from other sources
83BUS/SIL	230±8		O+Cl reaction in crossed molecular beams; authors preferred a slightly higher IO bond energy value than that proposed by 75RAD/WHI; 55 ± 2 kcal mol ⁻¹
88TYK	atomization: $\Delta_r H^\circ = 181$	25°C	Calculated from reaction trends in $\log \Delta_r H^\circ$; trends based on data from JANAF Thermochemical Tables (1985 Supplement) and NBS Tables of Chemical Thermodynamic Properties (1982)
89RED/RAO	249.4±1.7		Estimated from the Lippencott three-parameter potential function; author referred to three other values for the D_0° : 2.4 eV from flame photometry, \leq 2.74 eV from absorbed predissociation A state, and 1.94 eV from
92MAG/LAV	$\Delta_i H^\circ = 172$		extrapolation of ground state; $59.6 \pm 0.4 \text{ kcal mol}^{-1}$ Used value reported by 90DEM/MOL, JPL report mentioned in Introduction: $\Delta_t H^\circ = 41.1 \text{ kcal mol}^{-1}$; two values given by 89GUR/VEY and 89RED/RAO are
94RUS/BER	201.2±21		mentioned but not used Roughly the mean of the preferred values of 75RAD/WHI and 68GAY; 50±5 kcal mol ⁻¹
95MON/STI 96GIL/TUR	$226 \\ \Delta_l H^\circ < 120.5$		use of photoionization efficiency spectra Determined rate constants for the reaction $O(^{3}P)$ with alkyl iodides; suggested $\Delta_{f}H^{\circ}$ (IO, 298 K) <28.8 kcal mol ⁻¹

TABLE. 5. Iodine oxide species: Structures and vibrational frequencies

Source	Structure	Bond distance X-Y (Å)	Vibrational frequencies (cm ⁻¹)	Comments
IO 37VAI 80LOE/MIL IO ₂ 60DAS/WAD	IO ₂ (complex iodates) IO ₂ (iodoxy benzenes)			Vibrational analysis; ω_e and $\omega_e x_e$ values given Vibrational analysis; ω_e and $\omega_e x_e$ values given Spectrum interpreted in terms of a network of IO ₃ groups and polymerized ion chains; IO symmetric and antisymmetric stretching frequencies are estimated by trends in man iodine compounds

TABLE. 5. (Continued.)

Source	Structure	Bond distance X-Y (Å)	Vibra	ational free	quencies (cm ⁻¹)	Comments
IO ₃ 60DUV/LEC			ν ₁ (sym.) 745	$ u_2 $ 420	ν ₃ (asym.) 855;		Absorption spectra of I_2O_5 ; the three vibrational frequencies given were assumed to represent the IO_2 fragment of I_2O_5
86BYB 88BYB I ¹⁷ O ₂	C_{2v} point group C_{2v} point group				850		Observation and calculation of EPR spectrum of structure in KCLO ₄ crystal EPR spectra interpreted in terms of bond angle of 118°; no bond distances given
92GIL/POL	group		ν_1	ν ₂			Photoelectron spectroscopy
56VEN/SUN	Pyramidal C_{3v} point group	1.79	765±25 A ₁ (sym.) 357 780	192±35		E(asym.) 326 809	Raman effect data; type <i>E</i> frequencies are doubly degenerate; observed interbond angles and observed frequencies are presumably taken from Landolt–Bornstein Tables 1951 (data could not be found in spublication); X–Y distances calculated by Badger's rule; force
64RAO/SAN	Pyramidal C_{3v} point group						constants given; I $-O-I$ bond angle is 89° Identifies vibrational frequencies: two symmetrical (A_1) and two doubly degenerate E modes but no values given; uses $56VEN/SUN$ values to calculate mean square amplitudes
72RAO	Pyramidal C_{3v} point group						Identifies XY_3 pyramidal type molecule with six vibrations (two symmetric A_1 and two doubly degenerate E modes) but no values given; calculations based on 56VEN/SUN; calculation of centrifugal distortion constants
78THI/MOH	Pyramidal C_{3v} point group		$ \nu_2(A_2) $ 357	$\nu_1(A_1)$ 780	ν ₄ (E) 362	ν ₃ (<i>E</i>) 809	Group theoretical method; force constants given; frequencies and structure presumably taken from Landolt-Bornstein tables; authors cite origin of data in three references which do not deal with IO ₃
I ₂ O 60DUV/LEC	IOI		ν ₁ 597	$ u_2 $ 170	$ u_3 $ 688		Absorption spectra of I_2O_5 ; frequencies given for I_2O but no indication as to origin of these values
I ₂ O ₂ 30BRA	IOOI or OIIO						Established existence as an intermediate in the equilibrium involving $I_3O_2^-$ and $H_2X_2O_3$
I ₂ O ₄ 50WIL/DHA	Nonhygroscopic; (IO ⁺)(IO ₃ ⁻); diamagnetic						Monomeric IO ₂ unit does not occur in solid state; stable compound at room temperature; assumed structure
57SYM	Diamagnetic;						Absorption spectra; structure and diamagnetic attribute
60DAS/WAD	IO ⁺ IO ₃		ν ₁ 622 s 658 m	ν ₂ 408	$ \begin{array}{c} \nu_{3a} \\ 825 \text{ w} \\ 783 \text{ s} \\ \nu_{3b} \\ 745 \text{ s} \end{array} $	I-O-I 578 s	based on 50WIL/DHA observations Ultraviolet absorption spectrum interpreted in terms of a network of IO ₃ groups and polymerized IO chains; spectra estimated in analogy to TeO frequency of 796 cm ⁻¹
61WIS/HAN 63DAS/WAD	IO¯IO₃¯ Diamagnetic						Structure determination from infrared spectra Infrared spectrum in Nujol mulls and structure: critique of earlier work by Wise and Hannan, Dassent and Waddington (1960); I ₂ O ₄ spectrum explained in terms of polymerized I–OI chains and IO ₃ groups
69GRU/MUR							Mössbauer study of the structure of the oxide; conclusions: there are two sterically and chemically inequivalent states of iodine; there is no undeformed IO ₃ ⁻⁷ ion
70GRU/LUR	Nonionic						Mössbauer study of I_2O_4 in MgTeO $_4$ at liquid nitrogen temperature; proposes a new electronic structure for I_2O_4 ; symmetry is close to that of IO_3 in HIO_3 and an IO group
75JON	OIOIO ₂ (IO ⁺ IO ₃ ⁻)						Determination of structure; Mössbauer studies; confirms Grushko's work
76DAL/CAR	OIOIO ₂						Infrared spectra, partial Raman spectra; *vibrational frequency stretching of solid state from 900–550 cm $^{-1}$ but no assignment made; structure of I_2O_4 is similar to I_2O_5

TABLE. 5. (Continued.)

Source	Structure	Bond distance X-Y (Å)	v	ibrational fr	equencies		Comments
I ₂ O ₅	***************************************		-				
81ELL/WOL	Centrosymmetric O–I–O–IO ₂		*				Infrared and Raman spectroscopy of crystal; 5 infrared and 3 Raman bands were observed between 830 and 735 cm ¹ for the I=O stretch, and 9 ir and 6 Raman bands between 670 and 400 cm ⁻¹ are possible for I=O stretch but no assignments are made; discussion of structural
	$(P2_1/c)$ space group						models; partial force constants given Crystal structure determination by pattern decompositon and Rietveld method on synchroton x ray
55KOJ/TSU 57DUV			ν ₁ 804		ν ₃ 755	1160	Nuclear quadrupole data Infrared absorption spectra with rapid dissociation and sublimation at 410°; vibrational frequencies are based
60DUV/LEC	C_{2v} IO_2 -O- IO_2		ν ₁ (sym.) 804;835	ν ₂ (asym.) 355	ν ₃ 758;743	ν ₄ x *712; 632; 561	on earlier interpretations Absorption spectra; redefinition of structure is symmetrical ν_3 is doubly degenerate and ν_4 was not measured; *supplementary bands are due to the existence of the acid function
70SEL/KJE	Two IO ₃ pyramids O ₂ I–O–IO ₂	Intramolecular and interatomic distances and angles given				301	Monoclinic crystal structure studies of crystalline compound; authors disagree with 60DUV/LEC C_{2v} symmetry attributed to I_2O_5
73SEM/MOS	Crystal symmetry of $P2_1/c$ (monoclinic)	angles given					X-ray spectrum of solid I ₂ O ₅
76DAL/CAR	(monocime)	I-O-I *1.77-1.83 *1.92-1.95					Infrared spectra, partial Raman spectra; *bond length—see 70SEL/KJE
	O ₂ -I-O-IO ₂ (quasi- monomeric)	1.72 1.73			*		Infrared and Raman spectroscopy of crystal; *I-O-I stretch vibrations of bands 610-400 cm ⁻¹ , 12 infrared bands observed between 850 and 670 cm ⁻¹ attributed to I=O stretch, four I-O-I bending modes attributed to bands around 100 cm ⁻¹ but no assignment made; discussion of structural models; partial force constants given
I₂O ₆ 77SIE/WEI	IO ₂ ⁺ IO ₄ ⁻						Existence of I_2O_6 is confirmed, according to Raman spectra and vibrational fequencies; diamagnetism proves mixed valence iodine; the compound is described as an iodyl periodate
I ₄ O ₀ 85SUN/WRE	٠,				*	·	*Raman spectra of amorphous solid at room temperature observed and tentative assignments made: strong Raman bands at 800 cm ⁻¹ attributed to I—O stretch, bands in frequency range 400–500 cm ⁻¹ attributed to I—O stretch, and the band at 692 cm ⁻¹ is assigned to O—I=O symmetric stretch; confirms I ₄ O ₉ existence

6. NIST-JANAF Thermochemical Tables

NIST-JANAF Thermochemical Tables for IO(g) (Sec. 6.1), OIO(g) (Sec. 6.2), IOO(g)(Sec. 6.3), $IO_3(g)$ (Sec. 6.4),

IOI(g) (Sec. 6.5), and IIO(g) (Sec. 6.6) are presented on the following pages.

Fatheles Befores Towns T

Electronic Levels and Molecular Constants (1271160), cm ⁻¹										
State	T_{e}	g_{i} .	$\omega_{\rm c}$	$\omega_c x_c$	B_{e}	$\alpha_{\rm c}$	$D_{\rm e} \cdot 10^6$	rÁ		
X^2II_{3O}	0	2	681.6004	4.3699	0,340206	0.0026296	3,6	1.8676		
$X^{2}\Pi_{1/2}$	2091	2	681.6004	4.3699	0.340206	0.0026296	3.6	1.8676		
$A^{2}H_{3/2}$	21557.81	2	514.57	5.52	0.27635	0.00273	[3.2]	2.0723		
$A^{2}II_{1/2}$	[24698]	2	514.57	5.52	0.27635	0.00273	[3.2]	2.0723		

Point Group: Con

Enthalpy of Formation

The dissociation energy has been calculated by many different techniques. The derived values range from 176 to 250 kJ·mol⁻¹. The values may

The vasced and the response of the calculated by many different recliniques. The variety and (2) extracted from kinetic studies. The values may be grouped into two types: (1) derive from a treatment of the observed vibrational energy levels and (2) extracted from kinetic studies. The two existing spectroscopic studies by Coleman et al., and Durie and Ramsay' yield dissociation energy values for IO(g). One should note that the first bound excited state A²II of IO(g) dissociates into $I(^2P_{32}) + O(^1D_2)$. Coleman et al., from their study of the IO spectrum in flames, used a graphica. Birge-Sponer technique to give $I.92 \pm 0.2 \text{ eV}$ ($I83 \pm 19 \text{ kJ} \cdot \text{mol}^{-1}$). Dure and Ramsay' stated that since only six bands were observed in their study of the absorption spectrum of IO, it was not possible to obtain an accurate value for the dissociation of the ground state. They derived an upper limit of <21976 cm⁻¹ (2.72 eV or 262.9 kJ·mol⁻¹) from the observed predissociation. Durie and Ramsay felt that a better estimate could be obtained from a Birge-Sponer extrapolation of the first four vibrational levels in the upper state leading to $D_0^{\sigma} = 10200 \text{ cm}^{-1}$ for the excited state.

obtained from a Birge-Sponer extrapolation of the first four vibrational levels in the upper state leading to $D_0^2 = 10200 \text{ cm}^{-1}$ for the excited state. However, since the accepted values (at that time. 1958) for CIO and BrO were approximately 10% less than the values calculated by the same procedure, they applied the same correction to IO and calculated $14800 \pm 1800 \text{ cn}^{-1}$ ($1.8 \pm 0.2 \text{ eV}$ or $175.7 \pm 21 \text{ kJ·mol}^{-1}$). Using flame photometry, Phillips and Sugden' measured the intensity of the (0.4) band of IO at 5307 to determine the temperature dependent (1900-2700 K) equilibrium constant for the dissociation energy of IO and obtained $D_0^2 = 238.5 \pm 25 \text{ kJ·mol}^{-1}$. This value was calculated from the assumed enthalpy of formation value (relative to the monoatomic gases) of $263.6 \text{ kJ·mol}^{-1}$ at 2000 K and is considerably higher than the earlier determined spectroscopic values. Using current thermal functions and auxiliary data we calculate $D_0^2 = 256 \text{ kJ·mol}^{-1}$ or 21400 cm^{-1} . Herror and Huie' and Laszlo, 'in their kinetic studies, questioned the validity of these spectroscopically derived dissoc ation energy values. The value from the Durie and Ramsay study is too small to be consistent with the kinetic studies. Herron and Huie preferred the results of Phillips and Surgery Huie and Laszlo adopted an enthalpy of formation based on the molecular beam studies of Radlein et al. $D_0^2 = 22 + 13 \text{ kJ·mol}^{-1}$ and

and Suggen, Huie and Laszlo adopted an enthalpy of formation based on the molecular beam studies of Radlein et al., $D_0^2 = 222 \pm 13$ kJ·mol⁻¹, and Buss et d., $D_0^2 = 230 \pm 8$ kJ·mol⁻¹, Ruscic and Berkowitz, in determining experimentally the ethalpy of formation and ionization potential of HOBr, inferred a new value foor the enthalpy of formation of IO; $\Delta_k H^o(IO, 0 \text{ K}) = 145$ kJ·mol⁻¹. This value was a mean of the Radlein et al. and the spectroscopic results. In concurrence with the arguments of Huie, Herron and Laszlo we adopt $D_0^2 = 226$ kJ·mol⁻¹ which leads to $\Delta_i H^0(0 \text{ K}) = 128 \pm 18 \text{ KJ-mol}^{-1}$. Additional data needed for the calculations presented here, e.g. thermal functions for I(g), and I₂(ref), O(g), and O₂(ref), are taken from JANAF Thermochemical Tatles. A recent photoionization study confirms our adopted value.

Heat Capacity and Entropy

The spectroscopic results tabulated above are for the ¹²⁷I¹⁶O isotopomer. Isotopic relationships¹¹ are used to convert the above constants to hose natural abundance species. The latter values are then used in the calculation of the thermal functions. Only the X and A states are included in the calculation; a sum-over-states technique is used. Values of ω_c and $\omega_c x_c$ are from Betooy et al.¹² and Gilles et al.,¹³ but the value of D_c for the excited

calculation; a sum-over-states technique is used. Values of ω_c and $\omega_c = 1$ are from Betooy et al.* and Gilles et al.," but the value of D_c for the excited state is estimated. In the dissociation energy of the A state is estimated to be 12900 cm.

The electronic ground state configuration. $X^2\Pi_{3/2}$ (inverted doublet) was confirmed by the EPR measurements of Carrington et al. An earlier EPR spectra result, 2330 cm., was reported by Brown et al. The recent measured value of Gilles et al., 2091 cm., for the spin-orbit splitting of the ground state is adopted here. For ClO the spin-orbit splitting of the A state was estimated to be 1.5 times the value found for the ground state. Using the same factor of 1.5 the spin-orbit splitting for the A state was estimated to be 1.5 times the value found for the ground state. Vising the same factor of 1.5 the spin-orbit splitting for the A state in 10 is estimated to be 3140 cm., The position of the first excited state, A Thurst was provided by Bekoop et al., Lowenschuss et al., Valdyal and Durite et al. So We along the 21557.81 cm., valdyal of Durite et al. Additional excited states have been mentioned by Callear and Metcalf²¹ and Saito. The higher states were not included in the thermal function calculations.

References

. Chem.

Ref.

E. H. Coleman, A. G. Gaydon and W. M. Vaidya, Nature 162, 108-9 (1948).

L. I., Coleman, A. G., Caydon and W. M., Valdya, Patture 162, 108-9 (1948)
 R. A. Dirie and D. A. Ramsay, Can. J. Phys. 36, 35-53 (1958)
 L. F. Phillips and T. M. Sugden, Trans. Faraday Soc. 57, 914-20 (1961)
 H. Herron and R. E. Huie, J. Phys. Chem. 73(5), 1326-35 (1969)
 E. Huie and B. Laszlo, Adv. Chem. Series, in press (1995)
 St. A. G. Radlein, J. C. Whitehead and R. Grice, Nature 253, 37 (1975)
 B. B. Berson, S. E. Chem. Series, 100-100 (1995)

⁷R. J. Buss, S. J. Sibener and Y. T. Lee, J. Phys. Chem. **87**(24), 4840 (1983). ⁸B. Rusc c and J. Berkowitz, J. Chem. Phys. **101**(9), 7795 (1994).

B. Rusce and J. Detrowniz, J. Chem. Phys. 101(3), 1793 (1974).

JANAF Thermochemical Tables: I(g). June 1982; I₂ref), June 1982; O(g), June 1982; O₂(ref), Jine (1982).

JANAF Thermochemical Tables: I(g). June 1982; O(g), June 1982; O₂(ref), Jine (1982).

Detrowniz, J. Chem., June (1982).

John Street, J. Phys. Chem., (submitted for publication July 1995).

G. Heraberg, Spectra of Diatomic Molecules, D. Van Nostrand Co., New York, p. 107 (1950).

P. Bekooy, W. L. Meerts, and A. Dynamus, J. Mol. Spectrosc. 102(2), 320-443 (1983).
 M. K. Gilles, M. L. Polak and W. C. Lineberger, J. Chem. Phys. 95(6), 4723-4 (1991).

¹⁴A. Carington, P. N. Dyer, and D. H. Levy, J. Chem. Phys. **52**(1), 309–14 (1970). ¹⁵S. Saite, J. Mol. Spectrosc. **48**(3), 530–5 (1973).

¹⁶J. M. Brown, C. R. Byfleet, B. J. Hcward, and D. K. Russell, Mol. Phys. 23(3), 457–68 (1972)

A. Coxon and D. A. Ramsay, CAn. J. Phys. 54, 1034 (1976).
 A. Coxon and D. A. Ramsay, CAn. J. Phys. 54, 1034 (1976).
 A. Loewenschuss, J. C. Miller, and L. Andrews, J. Mol. Spectrosc. 80(2), 351–62 (1980).

19W. M. Vaidya, Proc. Indian Acad. Sci. 6A, 122-8 (1937).

²⁰R. A. Durie, F. Legay, and D. A. Ramsay, Can. J. Phys. **38**, 444–52 (1960). ²¹A. B. Callear and M. P. Metcalf, Chem. Phys. **20**(2), 233–42 (1977).

TR. C. S. ~ [G-H(T,)]IT H²-H*(T,) A _H P² A _G G² log K _T 0 0.000 0.000 INFINITE −9.003 127.954 127.954 INFINITE SO 29.104 186.214 337.315 −7.535 128.2001 123.526 −129.046 150 29.653 218.1290 2.00.166 −3.124 128.2001 114.356 −3.99.04 200 30.696 226.937 2.00.29.166 −3.124 126.934 111.0357 −28.830 220 30.696 226.937 2.00.29.166 −3.124 126.934 111.0357 −28.830 220 31.865 233.393 240.172 −1.560 126.934 110.387 −28.830 230 31.298 29.398 39.398 30.306 0.000 126.016 102.465 −17.951 300 31.298 29.398 39 29.8636 0.001 125.999 102.316 −17.815 400 34.700 249.567 −24.951 3.446 117.080 94.84€ −12.385 500 36.155 257.470 2.04.88 6.991 94.997 91.415 −9.550 600 37.433 264.177 246.391 10.672 95.221 90.680 −7.894 700 38.533 270.032 249.359 14.472 95.510 89.901 −6.708 800 39.430 275.239 252.274 18.371 95.851 89.9072 −5.816 900 40.121 79.925 25.5091 22.351 96.233 88.207 −5.119 1000 40.624 284.180 257.790 26.389 96.639 87.292 −4.560 1100 40.968 288.069 26.369 30.470 97.058 86.338 87.297 −4.560 1100 40.968 288.069 26.369 30.470 97.058 86.338 87.297 −4.560 1200 41.187 291.644 26.828 34.579 97.476 85.345 −3.715 1300 41.311 294.946 26.61.73 38.704 97.882 84.317 −3.388 1400 41.1506 298.010 26.410 42.839 98.267 83.255 −3.106 1200 40.980 31.4735 28.05.47 46.976 98.619 82.175 −2.862 2100 40.980 31.4735 28.05.97 77.02 99.984 77.654 −2.2456 1400 41.154 310.624 277.208 63.890 99.894 77.654 −2.2456 1400 40.561 32.0186 28.82.77 39.879 99.797 75.334 −1.198 1400 41.154 310.624 277.208 63.890 99.894 77.764 −2.2456 1400 40.980 31.4735 28.05.99 77.703 99.794 75.334 −1.198 1400 41.154 310.624 277.208 63.890 99.894 77.764 −2.2456 1400 40.980 31.4735 28.05.99 77.703 99.794 75.334 −1.198 1400 41.154 310.624 27.708 63.890 99.894 77.764 −2.2456 1400 40.980 31.4735 28.05.99 77.703 99.794 75.334 −1.198 1400 40.004 40.004 80.	Enthalpy	Reference	Temperature	e = T, = 298.15 K	Standard State Pressure = p° = 0.1 MPa				
0 0,000 0,000 NFNITE	<i>T/</i> K	C;			$H^{\circ}-H^{\circ}(T_{r})$		Δ _i G°	log Kr	
50 29.104 186.2144 337.315 -7.555 128.200 123.52c -129.015 100 29.157 20.594 267.387 -6.599 127.880 118.59c -62.016 200 30.606 22.9577 24.576 -3.124 126.934 110.387 -28.830 250 31.865 233.933 220.172 -1.560 126.465 100.387 -28.830 258.15 32.900 239.636 236.636 .060 126.016 102.465 -17.951 300 32.938 239.839 236.636 .061 117.980 94.844 -12.385 500 36.155 257.470 24.488 6.991 94.997 91.415 -9.550 600 37.433 264.177 24.391 10.672 95.221 90.680 7.894 700 38.533 270.032 22.274 18.371 95.81 89.901 -6.708 800 39.400 275.239 252.274 18.371 95.81	0	.000	.000	INFINITE	-9.003	127 954	127 954		
100 29.157 206.394 267.387 -6.099 127.880 118.956 -62.136 150 29.663 128.790 249.166 -4.631 127.421 114.590 -39.904 200 30.696 226.957 242.576 -3.124 126.934 110.387 -28.830 229.133 240.172 -1.560 126.455 106.305 -22.211 298.15 32.900 239.636 236.36 .000 126.016 102.465 17.951 300 32.938 239.839 239.636 .000 126.016 102.465 17.951 300 32.938 239.839 239.636 .000 126.016 102.465 17.951 300 32.938 239.839 239.636 .061 12.599 102.319 -17.815 300 32.938 239.839 239.636 .061 12.599 102.319 -17.815 300 34.700 249.567 249.51 3.446 117.080 94.844 -12.385 300 33.7433 264.177 245.391 10.672 95.221 90.680 -7.894 300 39.430 275.239 252.274 18.371 95.851 89.075 -5.816 300 40.121 279.925 255.091 22.351 96.233 89.075 -5.816 300 40.121 279.925 255.091 22.351 96.233 89.075 -5.816 300 41.311 294.644 228.828 34.579 97.476 85.345 -3.715 300 41.311 294.946 266.173 38.704 97.882 84.317 -3.388 400 41.366 298.010 267.410 42.839 98.267 83.255 -3.106 1500 41.371 300.644 266.547 46.976 98.619 82.175 -2.282 1600 41.294 306.038 275.542 55.444 92.020 79.944 -2.456 1800 41.294 306.038 275.542 55.444 92.020 79.944 -2.456 1800 41.074 312.733 278.932 67.601 99.694 76.496 -1.998 200 40.048 32.6411 29.9661 30.976 33.970 99.497 78.800 -2.287 1800 41.154 310.624 277.208 63.490 99.584 77.656 -2.135 2000 40.074 312.733 278.932 67.601 99.694 76.496 -1.998 200 40.048 32.6411 29.9661 100.099 99.902 67.272 -1.256 2000 40.088 32.166 32.916 30.735 33.910 99.498 76.496 -1.998 30.030 39.656 329.161 293.137 108.071 39.903 33.30 30.600 31.186 33.333 30.600 30.756 33.916 30.771 39.903 30.300 39.656 32.9161 293.137	50	29.104	186,214	337.315					
150 29.653 218.290 249.166 -4.631 127.421 114.595 -39.904 200 30.696 225.957 242.576 -3.124 126.934 110.387 -28.830 229. 31.865 223.933 240.172 -1.560 126.455 106.305 -22.211 2281.15 32.900 239.636 239.636 0.00 126.016 102.465 -17.951 300 32.938 239.839 239.636 0.61 125.999 102.315 -17.815 400 34.700 249.567 24.951 34.46 17.080 948.44 -12.385 500 36.155 257.470 240.488 6.991 94.997 91.415 -9.550 600 37.433 264.177 24.339 10.672 35.221 0.680 -7.894 600 37.433 264.177 24.339 10.4672 35.21 0.680 -7.894 800 39.430 275.239 532.274 13.471 95.810 89.01 -5.816 900 440.121 279.925 235.091 22.351 98.83 88.07 -5.816 1000 40.6624 284.180 257.790 26.389 96.639 87.297 -4.560 1100 40.968 288.069 20.369 30.470 97.088 80.38 -4.100 1200 41.131 291.644 20.873 34.579 97.486 83.347 -3.718 1400 41.366 298.010 267.410 46.976 98.619 82.175 -2.862 1600 41.234 336.633 27.588 51.112 98.933 81.065 -2.647 1600 41.134 336.633 27.588 51.112 98.933 81.066 -2.647 1600 41.124 336.633 27.588 51.112 98.933 81.066 -2.647 1600 41.154 310.624 27.43 59.304 99.949 73.334 1.874 1600 41.154 310.624 27.43 59.304 99.949 73.334 1.874 1600 41.154 310.624 27.43 59.304 99.949 73.334 1.874 2000 40.068 23.1480 23.2480 99.949 73.334 1.874 2000 40.068 23.1480 29.549 99.949 73.334 1.874 2000 40.068 23.1480 29.559 73.799 73.806 73.799 2000 40.068 23.1480 29.559 73.799 73.806 73.790 2000 40.068 23.4380 23.2480 23.2480 23.2480 23.2480 2000 40.068 23.2480 23.2480 23.2480 23.2480 2000 40.068 23.2480 23.2480 23.2480 23.2480 23.2480 2000 40.068 23.2480 23.2480 23.2480 23.2480 23	100	29.157		267.387	-6,099			-62.136	
200 30.696 226.957 242.576 -3.124 126.934 110.387 -228.30 250 525 31.865 231.933 240.172 -1.560 126.455 106.305 -22.211 228.15 32.900 239.636 236.36 .000 126.016 102.465 -17.951 300 32.938 239.839 236.36 .000 126.016 102.465 -17.951 300 32.938 239.839 236.36 .000 126.016 102.465 -17.951 300 32.938 239.839 236.36 .000 126.016 102.465 -17.951 300 32.938 239.839 236.36 .001 126.016 17.080 94.846 -12.385 500 36.155 257.470 243.488 6.991 94.997 91.415 -9.555 500 36.155 257.470 243.488 6.991 94.997 91.415 -9.555 500 36.155 257.470 243.891 10.672 95.221 80.080 -7.894 80.00 40.121 279.925 253.001 22.315 96.233 88.533 270.032 249.359 14.472 95.510 80.080 -7.894 80.00 39.430 275.239 23.274 18.371 95.851 80.075 -5.816 100 40.624 228.4180 257.790 26.389 96.639 87.292 -4.560 1100 40.624 228.4180 257.790 26.389 96.639 87.292 -4.560 1200 41.187 291.644 228.828 34.579 97.476 85.345 -3.715 81.300 41.311 294.946 265.173 38.704 97.882 83.312 -3.388 1400 41.366 298.010 267.410 42.839 98.267 83.255 -3.106 1500 41.371 300.646 266.547 46.976 98.619 82.175 -2.862 1600 41.344 303.533 271.588 51.112 98.933 81.065 -2.647 1700 41.294 306.038 273.542 55244 99.200 79.944 -2.456 1800 41.294 306.038 273.542 55244 99.200 79.944 -2.456 1800 41.294 306.038 273.542 55244 99.200 79.944 -2.456 1800 41.071 312.733 278.932 67.601 99.694 76.496 -1.998 200 40.882 316.639 282.185 75.977 99.754 74.172 -1.761 200 40.0482 316.639 282.185 75.979 99.754 74.172 -1.761 200 40.0482 316.639 282.185 75.979 99.754 74.172 -1.761 200 40.0483 316.639 282.185 75.979 99.754 74.172 -1.761 200 40.0483 316.639 282.185 75.979 99.754 74.172 -1.761 300 40.0483 316.639 282.185 75.979 99.754 74.172 -1.761 300 40.0483 316.639 282.185 75.979 99.754 74.172 -1.761 300 40.0483 316.639 282.185 75.979 99.754 74.172 -1.761 300 40.0483 316.639 282.185 75.979 99.754 74.172 -1.761 300 40.0483 316.639 282.185 300 39.656 329.161 29.913 10.0099 98.902 67.272 -1.255 60.000 39.899 30.000 39.656 329.161 29.137 10.000 39.656 329.161 29.913 10.0099 98.902 67.272 -1.255 60.000 39.899 30.0000 30.7	150	29.663	218,290		-4.631	127.421			
298.15 32.900 239.636 239.636 20.000 126.016 102.465 -17.951 300 32.938 239.839 239.636 0.061 125.999 102.315 -17.815 500 36.155 257.470 245.488 6.991 94.997 91.415 -9.550 500 36.155 257.470 245.488 6.991 94.997 91.415 -9.550 600 37.433 264.177 245.391 10.672 95.221 90.680 -7.894 600 37.433 270.032 245.391 10.672 95.221 90.680 -7.894 600 37.433 270.032 245.391 10.672 95.221 90.680 -7.894 600 34.121 279.925 235.091 22.351 92.351 89.010 -6.708 600 37.430 275.239 245.391 12.799 25.350 88.207 -5.169 600 34.121 279.925 235.091 22.351 92.33 88.207 -5.169 61000 40.624 284.180 257.790 26.389 96.639 86.239 87.292 -4.560 61100 40.968 288.069 200.369 30.470 97.058 86.338 -4.100 61200 41.187 291.694 22.888 34.579 97.476 85.344 -3.718 61400 41.311 300.864 269.417 42.939 98.207 88.2175 -2.862 61500 41.371 300.864 269.417 42.93 98.207 99.861 82.275 -2.862 61600 41.344 303.533 271.588 51.112 98.933 81.066 -2.647 61700 41.294 306.638 275.542 55.244 99.90.20 79.944 -2.456 6180 41.294 306.638 275.542 55.244 99.90.20 79.944 -2.456 6180 41.154 310.624 277.413 55.244 99.90.20 79.944 -2.456 6180 41.154 310.624 277.413 55.244 99.90.20 79.944 -2.456 6180 41.154 310.624 277.413 55.244 99.90.20 79.944 -2.456 6180 40.980 316.639 282.156 73.799 99.749 73.334 -1.874 6200 40.980 316.639 282.156 73.799 99.749 73.334 -1.874 6200 40.880 316.639 282.156 73.799 99.749 73.334 -1.874 6200 40.880 31.4755 280.590 71.703 99.749 73.334 -1.874 6200 40.880 323.430 280.028 72.754 73.799 99.749 73.334 -1.874 6200 40.880 31.735 280.590 71.703 99.749 73.334 -1.874 6200 40.880 31.735 280.590 71.703 99.749 73.334 -1.874 6200 40.880 31.735 280.590 71.703 99.749 73.334 -1.874 6200 40.880 31.735 280.590 71.703 99.749 73.334 -1.874 6200 40.880 31.735 280.590 71.739 99.749 73.334 -1.874 6200 40.880 31.735 280.590 71.739 99.749 73.334 -1.874 6200 40.880 31.735 280.590 71.739 99.749 73.334 -1.874 6200 40.880 31.735 380.680 99.880 99.880 70.991 70.991 6200 40.880 31.735 380.680 99.880 99.780 70.792 6200 40.880 31.745 380.680 99.780 99.780 70.792 6200 40.880 99.780 99.	200	30.696	226,957	242,576	-3.124	126,934			
300 32.938 239.839 239.636 0.61 125.999 102.319 -17.815	250	31.865	233.933	240.172	-1.560				
300 32.938 239.839 239.636 0.61 125.999 102.319 -17.815	298 15	32.900	239 636	239 636	000				
400 34.700 249.567 240.951 3.446 117.080 94.84C -12.385 500 36.155 257.470 24.888 6.991 94.997 91.415 -9.550 600 37.433 264.177 246.391 10.672 95.221 90.680 -7.894 700 38.533 270.032 249.359 14.472 95.510 89.901 -6.708 800 39.430 275.239 252.274 18.371 95.851 89.075 -5.816 900 40.121 279.925 255.091 22.351 96.830 87.292 -4.560 1000 40.624 284.180 257.790 26.389 96.639 87.292 -4.560 1100 40.968 288.069 26.369 30.470 97.058 86.338 -4.100 1200 41.187 291.644 262.828 34.579 97.476 86.338 -4.100 1200 41.311 294.946 261.73 38.704 97.882 84.317 -3.388 1400 41.366 298.010 267.410 42.839 98.267 32.295 -3.106 1500 41.371 300.864 262.874 46.976 98.619 82.175 -2.862 1600 41.341 303.533 271.588 51.112 98.933 81.065 -2.467 1700 41.294 306.038 273.542 55.244 99.202 79.944 -2.456 1800 41.234 306.038 273.542 55.244 99.202 79.944 -2.456 1800 41.234 310.624 277.208 63.490 99.584 77.654 -2.137 2100 41.071 312.733 278.932 67.601 99.694 76.49€ -1.998 2100 40.880 314.735 283.590 71.703 99.749 75.334 -1.874 2200 40.882 31.66.39 281.186 73.797 99.754 74.172 -1.761 2200 40.380 31.4735 283.590 71.703 99.749 75.334 -1.874 2200 40.380 31.33.30 88.024 92.055 99.322 69.544 1.199 2200 40.380 33.340 88.024 92.055 99.322 69.544 1.191 3200 39.483 30.458 294.320 112.025 98.112 63.922 1.103 3300 39.656 329.161 293.137 108.071 99.90 99.08 3400 40.221 324.951 289.364 96.086 99.125 68.408 -1.323 3500 39.438 330.458 294.320 112.025 98.112 63.922 -1.077 3500 39.656 329.161 293.137 108.071 99.39 99.09 37.305 -1.658 3600 38.452 335.187 299.756 11.132 1.134 3600 37.318 33.909 30.756 13.546 99.559 99.26 37.473 -0.884 3800 37.308 33.909 30.756 13.546 99.125 98.112 63.922 -1.077 3500 39.656 32.916 39.317 108.071 99.39 99.09 37.581 33.990 30.756 13.546 99.559 99.26 3800 37.308 33.909 37.813 39.918 104.095 98.657 66.140 -1.191 3500 39.656 32.916 39.317 108.659 99.02 67.727 -1.255 3500 33.563 33.408 33.408 39.513 171.790 99.884 59.586 -0.889 3500 37.538 33.9290 30.686 30.698 1 19.867 99.5									
500 36,155 257,470 24,488 6,991 94,997 91,415 -9,550 600 37,433 26,4177 243,391 10,672 95,221 90,680 -7,894 800 39,430 275,239 25,2274 18,371 95,511 89,901 -5,816 900 40,121 279,925 255,691 22,351 96,239 87,292 -4,560 1100 40,968 288,069 260,369 30,470 97,058 86,338 -4,100 1200 41,187 291,644 20,2828 34,579 97,476 85,345 -3,715 1300 41,311 294,946 65,173 38,704 97,882 84,317 -3,388 1400 41,366 298,010 267,410 42,839 98,267 83,255 -3,106 1500 41,371 30,084 96,547 4,976 98,619 82,175 -2,267 1600 41,344 303,533 271,588 51,112 99,3933								~17.815	
600 37.433 264.177 245.391 10.672 95.221 90.680 -7.894 800 39.430 275.239 252.274 18.371 95.510 89.901 -6.708 800 39.430 275.239 252.274 18.371 95.851 89.075 -5.816 900 40.121 279.925 255.091 22.351 96.233 88.207 -5.119 1000 40.624 284.180 257.790 26.389 96.639 87.292 -4.560 1100 40.968 288.069 20.369 30.470 97.058 86.338 -4.100 1200 41.187 291.644 26.2828 345.799 97.476 85.345 -3.715 1300 41.311 294.946 265.173 38.704 97.882 84.317 -3.388 1400 41.366 298.010 267.410 42.839 98.267 83.255 -3.106 1500 41.371 300.864 269.547 46.976 98.619 82.175 -2.862 1600 41.344 303.533 271.588 51.112 98.933 81.065 -2.647 1700 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.294 31.4735 280.590 71.703 99.749 75.334 -1.874 2200 40.882 316.639 281.86 75.797 99.754 47.172 -1.761 2230 40.980 314.735 280.590 71.703 99.749 75.334 -1.874 2200 40.882 316.639 281.86 75.797 99.754 47.172 -1.761 2300 40.0882 316.639 281.86 75.797 99.754 47.172 -1.761 2300 40.0882 316.639 281.86 75.979 99.754 47.172 -1.761 2300 40.0882 316.639 281.86 75.979 99.754 47.172 -1.761 2300 40.080 39.586 329.181 29.364 96.086 99.125 84.48 70.695 93.22 69.546 -1.397 2000 40.080 30.956 329.181 299.356 49.956 99.325 69.546 -1.397 3000 39.586 329.181 299.356 49.956 99.382 69.548 -1.397 3000 39.586 329.181 299.356 49.956 99.392 60.392 60.392 30.893 31.706 295.469 115.958 99.125 84.48 50.292 -0.776 30.								~12,383	
700 38.533 270.032 249.359 14.472 95.510 89.901 -6.708 800 39.430 275.239 52.274 83.71 95.510 89.075 -5.816 99.0 40.121 279.925 255.091 22.351 96.233 88.207 -5.119 1000 40.624 284.180 257.790 26.389 96.639 87.292 -4.560 1100 40.968 288.069 263.369 30.470 97.058 86.338 -4.100 1200 41.187 291.644 26.2828 34.579 97.476 85.345 -3.715 31.00 41.311 294.946 65.173 38.704 97.882 84.317 -3.388 1400 41.366 298.010 267.410 42.839 98.267 83.255 -3.106 1500 41.371 300.864 26.547 4.976 98.619 82.175 -2.862 1600 41.371 300.864 26.547 4.976 98.619 82.175 -2.862 1600 41.374 303.533 271.588 51.112 98.933 81.065 -2.647 1700 41.294 306.038 273.542 552.44 99.202 79.944 -2.456 1800 41.229 308.397 275.413 59.370 99.419 78.803 -2.287 1800 41.154 310.624 277.208 63.940 99.584 77.654 -2.135 2000 41.071 312.733 278.932 67.601 99.694 76.496 -1.998 2200 40.882 316.639 282.186 75.797 99.754 77.654 -2.135 2000 40.774 318.454 283.723 79.879 99.759 79.754 71.703 20.00 40.872 31.844 283.639 88.010 99.488 70.695 -1.4672 2200 40.872 31.844 283.639 88.010 99.488 70.695 -1.4672 2200 40.4083 32.340 288.024 92.055 99.322 69.544 -1.397 2200 40.221 324.951 289.364 96.086 99.125 68.408 -1.323 270.00 39.859 37.813 291.918 104.095 98.657 66.147 -1.191 300 39.438 330.458 294.320 112.025 99.161 99.137 180.071 99.592 20.20 99.548 71.852 -1.564 2500 39.859 37.813 291.918 104.095 98.657 66.147 -1.191 3000 39.458 330.458 294.320 112.025 99.112 63.922 -1.077 20.086 33.00 39.656 329.161 99.137 180.071 99.592 20.286 -1.026 3300 39.656 329.161 99.137 180.071 99.592 20.286 -1.026 3300 39.656 329.161 99.137 180.071 99.592 20.286 -1.026 3300 39.656 329.161 99.137 180.071 99.592 20.286 -1.026 3300 39.656 329.161 99.137 180.071 99.593 22 69.544 -1.397 20.00 39.438 330.458 294.320 112.025 99.112 63.922 -1.077 20.00 39.438 330.458 294.320 112.025 99.112 63.922 -1.077 20.00 39.438 330.458 294.320 112.025 99.112 63.922 -1.077 20.00 39.438 330.458 294.320 112.025 99.112 63.922 -1.077 20.00 39.438 330.458 294.320 112.025 99.112 63.922 -1.077 20.00 39.550 33.556 33.450 30.756									
800 39.430 275.239 252.274 18.371 95.851 89.075 -5.816 900 40.121 279.925 25.6901 22.351 96.233 88.207 -5.119 1000 40.624 284.180 257.790 26.389 96.639 87.292 -4.560 1100 40.968 288.069 260.369 30.470 97.058 86.338 -4.100 1201 41.187 291.644 26.828 34.570 97.476 85.345 -3.715 1300 41.311 294.946 265.173 38.704 97.882 84.317 -3.385 1400 41.366 298.010 267.410 42.839 98.267 83.255 -3.100 1500 41.371 300.864 269.547 46.976 98.619 82.175 -2.862 1600 41.344 303.533 271.588 51.112 98.933 81.065 -2.647 1700 41.294 306.038 273.542 55.244 99.202 79.944 -2.456 1800 41.294 306.038 273.542 55.244 99.202 79.944 -2.456 1800 41.294 308.397 275.413 59.370 99.489 77.654 -2.135 2000 41.071 312.733 278.932 67.601 99.694 77.654 -2.135 2000 40.071 312.733 278.932 67.601 99.694 77.654 -2.135 2000 40.071 312.733 278.932 67.601 99.694 77.6496 -1.1998 2100 40.980 314.735 280.590 71.703 99.749 75.334 -1.874 2200 40.882 316.639 281.86 287.27 89.979 99.754 74.172 -1.761 2300 40.744 318.454 283.723 79.879 99.708 73.005 -1.658 25.004 40.554 321.844 286.639 88.010 99.488 70.695 -1.477 2600 40.554 321.844 286.639 88.010 99.488 70.695 -1.477 2600 40.380 23.340 289.046 96.866 99.125 68.406 -1.323 2800 40.040 380 23.340 289.046 96.866 99.125 68.406 -1.323 2800 40.0482 316.639 281.0661 09.99 88.902 67.272 -1.255 2800 40.524 321.844 286.639 88.010 99.488 70.695 -1.477 2600 40.380 323.400 289.0661 299.137 108.071 98.992 69.546 -1.323 2000 39.839 327.813 29.918 104.095 98.802 67.272 -1.255 2000 39.839 327.813 30.056 329.161 299.137 108.071 98.992 69.546 -1.323 300 39.899 327.813 30.056 329.161 299.137 108.071 98.992 65.031 -1.132 3000 39.488 30.458 294.320 112.025 98.126 69.546 -1.323 300 39.208 331.706 295.469 115.988 97.820 62.826 -1.026 300 39.208 331.706 295.469 115.988 97.820 62.826 -1.026 300 39.208 331.706 295.469 115.988 97.820 62.826 -1.026 53.00 39.208 331.706 295.469 115.988 97.820 62.826 -1.026 53.00 39.208 331.706 295.469 115.988 97.820 62.826 -1.026 53.00 39.208 331.706 295.469 115.988 97.820 62.826 -1.026 53.00 30.00 30.656 329.161 29						95.221			
900 40.121 279.925 255.091 22.351 96.233 88.207 -5.119 1000 40.624 28.4180 257.790 25.389 96.639 87.292 -4.560 1100 40.968 288.069 260.369 30.470 97.058 86.338 -4.100 1200 41.187 291.644 262.828 34.579 97.476 85.345 -3.715 1300 41.311 294.946 261.73 38.704 97.882 84.317 -3.388 1400 41.366 298.010 267.410 42.839 98.267 83.255 -3.106 1500 41.371 300.864 269.547 46.976 98.619 82.175 -2.862 1600 41.371 300.864 269.547 46.976 98.619 82.175 -2.862 1600 41.391 300.864 269.547 46.976 99.8619 82.175 -2.862 1600 41.392 308.397 275.413 59.370 99.419 78.803 -2.287 1700 41.294 306.038 273.542 55.244 99.202 79.944 72.456 1800 41.294 306.038 273.542 55.244 99.202 79.944 72.456 1800 41.294 306.038 273.542 55.244 99.202 79.944 72.456 1800 41.294 306.038 273.542 55.244 99.202 79.944 72.456 1800 41.294 308.397 275.413 59.370 99.419 78.803 -2.287 1900 41.154 310.624 277.208 63.490 99.584 77.654 -1.1998 2100 40.980 31.4735 280.590 71.703 99.749 75.334 -1.874 2200 40.882 316.639 282.186 75.797 99.754 74.172 -1.761 2300 40.774 318.454 283.273 79.879 99.708 73.005 -1.658 2400 40.655 320.186 285.207 83.951 99.618 73.005 -1.658 2400 40.652 320.186 285.207 83.951 99.978 73.005 -1.658 2500 40.524 321.844 286.639 88.010 99.888 70.693 -1.477 2600 40.381 323.430 288.024 92.055 99.322 69.546 -1.397 2700 40.221 324.951 289.364 96.086 99.125 68.408 -1.323 3100 39.438 330.458 293.201 112.025 98.112 63.922 -1.077 2400 40.221 324.951 289.364 96.086 99.125 68.408 -1.323 3500 38.966 332.909 295.586 119.867 97.517 61.736 -0.937 3400 38.913 330.458 293.201 112.025 98.112 63.922 -1.077 3400 38.713 334.068 297.55 131.441 96.558 85.57 66.147 -1.191 3800 39.438 330.458 293.201 112.025 98.112 63.922 -1.077 3400 38.432 335.187 28.727 127.609 96.884 59.586 -0.889 3500 38.452 335.187 28.727 127.609 96.884 59.586 -0.889 3600 36.529 342.885 305.396 139.867 97.517 61.736 -0.977 3600 39.656 329.103 300.596 139.857 99.339 99.888 56.437 -0.716 3800 34.963 34.504 34.504 30.513 177.73 21.2554 99.104 48.401 -0.550 3400 35.480 345.304 38.605 31.493 11.772 88.254 99.105						95.510		-6.708	
1000 40,624 284,180 257,790 26,389 96,639 87,292 -4,560 1000 40,968 288,069 26,359 30,470 97,058 86,338 -4,100 1200 41,187 291,644 26,2828 34,579 97,476 85,345 -3,715 1300 41,311 294,946 265,173 38,704 97,882 84,317 -3,388 1400 41,361 294,946 265,173 38,704 97,882 84,317 -3,388 1400 41,371 300,864 269,547 46,976 98,619 82,175 -2,862 1600 41,344 305,533 271,588 51,112 98,933 81,066 -2,647 1700 41,294 306,038 273,542 55,244 99,202 79,944 -2,456 1800 41,229 308,397 275,413 59,370 99,419 78,803 -2,287 1900 41,154 310,624 277,208 63,490 99,584 77,654 -2,135 2000 41,071 312,733 278,932 67,601 99,694 77,646 -1,1998 2000 40,980 314,735 280,590 71,703 99,749 75,334 -1,874 2200 40,980 314,735 280,590 71,703 99,749 75,334 -1,874 2300 40,774 318,454 283,723 79,879 99,708 73,006 -1,658 2500 40,524 321,844 286,639 88,010 99,488 70,695 -1,477 2600 40,380 23,340 289,044 96,086 99,125 68,408 -1,327 2700 40,221 324,951 289,364 96,086 99,125 68,408 -1,327 2700 40,048 231,641 29,1661 00,099 98,902 67,272 -1,255 2800 40,048 236,411 29,1661 00,099 98,902 67,272 -1,255 2900 39,839 327,813 30,468 294,520 115,958 97,820 62,824 -1,097 3400 38,713 334,068 297,671 123,751 97,204 60,655 -0,932 300,83,966 332,909 39,589 327,813 30,408 297,671 123,751 97,204 60,655 -0,932 300,83,966 332,909 39,589 31,196 299,755 31,441 96,558 58,577 -0,889 300,33,406 329,161 293,173 108,071 98,992 68,003 1-1,132 300,33,4068 297,671 123,751 97,204 60,655 -0,932 300,33,4068 297,671 123,751 97,204 60,655 -0,932 300,33,4068 297,671 23,751 97,204 60,655 -0,932 300,33,406 32,909 30,596 31,493 30,596 31,493 30,796 31,493 30,406			279 925						
1100 40,968 288,069 263,369 30,470 97,058 86,338 -4,100 1200 41,187 291,644 20,828 34,579 97,476 85,345 -3,715 300 41,311 294,946 265,173 38,704 97,882 84,317 -3,388 1400 41,366 298,010 207,410 42,839 98,267 83,259 -3,106 300 41,371 30,864 269,547 46,976 98,619 82,175 -2,862 1600 41,374 303,533 271,588 51,112 98,933 81,066 -2,647 1700 41,294 306,038 273,542 55,244 99,202 79,944 -2,456 1800 41,294 306,038 273,542 55,244 99,202 79,944 -7,456 1800 41,294 306,038 273,542 55,244 99,202 79,944 -7,456 1800 41,294 306,038 273,542 55,244 99,202 79,944 -7,456 1800 41,154 310,624 277,208 63,490 99,584 77,654 -1,1998 2000 40,980 31,4735 280,590 71,703 99,419 78,803 -2,287 2200 40,980 31,4735 280,590 71,703 99,749 75,334 -1,874 2200 40,774 318,454 283,723 79,879 99,754 74,172 -1,761 2300 40,774 318,454 285,207 83,951 99,618 71,852 -1,568 2400 40,655 320,186 285,207 83,951 99,488 70,695 -1,477 2600 40,380 323,430 288,024 92,055 99,322 69,546 -1,397 2700 40,221 324,951 289,364 96,086 99,125 68,408 -1,323 2800 40,048 326,411 290,661 100,099 98,902 67,277 -1,255 2900 39,839 327,813 299,198 104,095 98,657 66,147 -1,191 3000 39,438 330,458 293,301 12,025 98,112 63,922 -1,074 200,000 30,656 325,161 293,137 108,071 99,898 56,331 -0,716 3000 39,656 325,161 293,137 108,071 99,898 56,331 -0,716 3000 39,438 330,458 293,300 112,025 98,112 63,922 -1,077 61,736 -0,937 3000 39,438 330,458 293,300 112,025 98,112 63,922 -1,077 61,736 -0,937 3000 39,458 333,166 29,755 31,441 96,558 58,577 61,736 -0,937 3000 39,458 333,306 30,458 293,300 112,025 98,112 63,922 -1,077 61,736 -0,937 3000 39,458 333,30									
1200									
1300	1100								
1400 41,366 298,010 267,410 42,839 98,267 83,255 -3,106 1500 41,371 303,664 295,547 46,976 98,619 82,175 -2,862 1600 41,344 303,533 271,588 51,112 98,933 81,065 -2,647 1700 41,294 306,038 273,542 55,244 99,202 79,944 -2,456 1800 41,129 306,397 275,413 59,370 99,419 78,802 -2,287 1900 41,154 310,624 277,208 63,490 99,584 77,654 -2,135 1900 41,171 31,733 28,392 67,601 99,694 77,654 -2,135 2100 40,980 314,735 28,350 71,703 99,749 75,334 -1,874 2200 40,980 314,735 28,350 71,703 99,749 75,334 -1,874 2300 40,774 318,454 28,723 79,879 99,708 73,006 -1,658 2400 40,655 320,186 28,727 83,951 99,618 71,852 -1,664 2500 40,524 321,844 286,639 88,010 99,488 70,695 -1,477 2600 40,380 323,430 288,024 92,055 99,322 69,548 -1,397 2700 40,221 324,951 289,364 96,086 99,125 68,408 -1,323 2800 40,048 236,411 290,661 00,099 98,902 67,277 -12,55 2900 39,839 327,813 291,918 104,095 98,507 66,147 -1,191 3000 39,438 330,458 294,320 112,025 98,112 63,922 -1,077 3400 38,966 33,908 33,176 295,469 115,988 97,820 62,862 -1,026 300 38,966 33,909 295,866 115,988 97,820 62,862 -1,026 300 38,966 33,909 295,866 115,988 97,820 62,862 -1,026 300 38,963 33,916 295,586 115,988 97,820 62,862 -1,026 300 38,143 33,468 297,671 123,751 97,204 60,655 -0,932 300 39,438 30,458 294,320 112,025 98,112 63,922 -1,077 3400 38,663 33,909 30,586 33,909 30,756 33,83,16 30,731 39,023 58,88 56,432 -0,776 3400 35,933 34,686 297,671 123,751 97,204 60,655 -0,932 3400 34,328 34,428 30,636 299,755 131,441 65,588 56,432 -0,776 3400 34,328 34,432 34,432 34,432 34,432 34,432 34,432 34,432									
1500				267.410					
1600 41,344 303,533 27,588 51,112 98,933 81,069 -2,645 1700 41,294 306,038 273,542 55,244 99,202 79,944 -2,456 1800 41,294 306,397 275,413 59,370 99,419 78,802 -2,287 1900 41,154 310,624 277,208 63,490 99,844 77,654 -2,135 2000 41,071 312,733 28,932 67,601 99,694 76,496 -1,998 2100 40,980 314,735 28,0590 71,703 99,749 75,334 -1,761 2300 40,744 318,654 283,723 78,879 99,708 73,006 -1,658 2400 40,655 320,186 285,207 88,901 99,488 70,695 -1,477 2600 40,380 323,430 28,8024 92,055 99,322 69,548 -1,397 2700 40,221 324,951 299,364 96,086 99,125				269.547					
1700									
1800 41,229 308.397 275.413 59.370 99.419 78.803 -2.287 1900 41,154 310.624 277.208 63.490 99.584 77.634 -2.135 2000 41,071 312,733 278.932 67.601 99.694 76.496 -1.998 2100 40.980 314,735 280.590 71,703 99.749 75.334 -1.874 2200 40.882 316.639 280.186 285.207 83.951 99.708 73.006 -1.658 2200 40.842 311.8454 283.723 79.879 99.708 73.006 -1.658 2500 40.554 321.844 285.639 88.010 99.488 70.695 -1.477 2600 40.380 232.430 288.024 92.055 99.322 69.546 -1.397 2700 40.221 324.951 289.364 96.086 99.125 68.408 -1.323 2800 40.048 326.411 290.661 60.099 98.902 67.272 -1.255 2900 39.839 327.813 299.1918 104.095 98.657 66.147 -1.191 3000 39.438 330.458 293.320 112.025 98.112 63.922 -1.077 3200 39.208 331.706 295.469 115.598 97.820 62.852 -1.026 3300 38.966 332.909 295.586 119.867 97.517 61.736 -0.977 3400 38.713 334.068 297.671 123.751 97.204 60.655 338.316 30.731 339.03 38.863 332.909 295.761 133.751 97.204 59.888 56.432 -0.761 3800 37.635 338.316 300.756 335.246 96.886 59.586 -0.889 36.00 38.482 335.187 298.727 127.609 96.884 59.386 -0.889 36.00 36.833 34.145 36.266 299.755 311.441 96.558 58.527 -0.849 300.376 330.38.396 33.390 34.682 33.5187 298.727 127.609 95.888 56.432 -0.776 68.00 37.912 37.330 30.692 34.695 34.593 34.492 35.499 35.499 35.499 35.246 96.226 57.473 3800 37.635 338.316 300.731 39.023 58.888 56.432 -0.776 68.00 34.936 34.842 33.5187 298.727 127.609 96.884 59.386 -0.889 36.00 36.600 34.484 34.600 36.600 34.484 34.600 36.590 34.893 36.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.600 34.6									
1900									
2000 41,071 312,733 278,932 67,601 99,694 76,496 -1,998 2100 40,980 314,735 280,590 71,703 99,749 75,334 -1,874 2200 40,882 316,639 280,186 75,797 99,754 74,172 -1,761 2300 40,774 318,454 283,723 79,879 99,708 73,005 -1,658 2500 40,524 321,184 285,639 88,010 99,488 70,692 -1,477 2600 40,380 323,430 280,024 92,055 99,322 69,548 -1,397 2700 40,221 324,951 289,364 96,086 99,125 68,408 -1,323 2800 40,048 326,411 290,661 100,999 98,902 67,272 -1,255 2900 39,438 330,458 294,320 112,025 98,112 63,922 -1,077 3100 39,428 330,458 294,320 112,025 9	1900				63.400				
2100 40,980 314,735 280,590 71,703 99,749 75,334 -1,874 2300 40,882 316,639 281,186 75,797 99,758 74,172 -1,761 2300 40,774 318,454 283,723 79,879 99,708 73,005 -1,658 2400 40,655 320,186 285,207 83,951 99,618 71,852 -1,564 2500 40,524 321,844 285,639 88,010 99,488 70,695 -1,477 2600 40,380 322,430 288,024 92,055 99,322 69,546 -1,397 2700 40,221 324,951 289,364 96,086 99,125 68,408 -1,323 2800 40,048 326,411 293,661 100,099 98,090 67,277 -1,255 2900 39,859 327,813 291,918 104,095 98,657 66,147 -1,191 3000 39,656 329,161 293,137 108,071 98,392 65,031 -1,132 320 39,208 331,706 295,469 115,958 97,820 62,826 -1,026 3300 38,966 332,909 295,586 115,958 97,820 62,826 -1,026 3300 38,966 332,909 295,586 119,867 97,517 61,736 -0,977 3400 38,713 334,068 297,671 123,751 97,204 60,655 -0,932 3500 38,482 335,187 287,727 27,609 96,884 59,586 -0,889 3600 38,184 336,266 299,755 31,441 96,558 58,527 -0,889 3600 38,184 337,309 300,756 135,246 96,526 57,473 -0,811 3800 37,538 339,290 306,682 42,773 39,546 53,990 37,083 341,145 304,233 303,609 46,495 95,198 54,371 -0,710 4100 36,803 341,145 304,513 50,189 94,846 53,355 -0,680 400 37,583 339,290 306,828 42,773 93,762 50,355 -0,598 4500 35,734 344,521 307,923 64,695 95,198 54,371 -0,550 4700 35,244 346,664 309,513 177,909 26,633 47,437 -0,557 4000 34,038 344,521 307,923 64,695 95,198 54,371 -0,550 4000 37,680 342,028 342,028 31,035 177,939 91,853 45,528 -0,485 4000 35,493 345,538 346,684 30,513 177,909 26,633 47,437 -0,550 4700 35,234 344,521 307,923 64,695 93,990 34,375 -0,559 34,038 346,664 30,513 177,909 26,633 47,437 -0,550 34,000 34,75									
2200 40.882 316.639 28.186 75.797 99.754 74.172 -1.761 2300 40.774 318.454 283.723 79.879 99.708 73.005 -1.658 2400 40.655 320.186 285.207 83.951 99.618 71.852 -1.564 2500 40.524 321.844 285.639 88.010 99.488 70.695 -1.477 2600 40.380 323.430 288.024 92.055 99.322 69.54E -1.327 2700 40.221 324.951 289.364 96.086 99.125 68.408 -1.327 2800 40.048 326.411 290.661 100.099 98.507 66.147 -1.191 3000 39.656 329.161 293.137 108.071 98.392 65.031 -1.132 3100 39.438 330.458 294.320 112.025 98.112 63.922 -1.076 3200 39.208 331.706 295.469 115.958 9									
2300 40,774 318,454 283,723 79,879 99,708 73,005 -1,654 2400 40,655 320,186 285,207 83,951 99,618 71,852 -1,564 2500 40,524 321,844 286,639 88,010 99,488 70,695 -1,477 2600 40,380 323,430 288,024 92,055 99,322 69,54E -1,397 2700 40,221 324,951 289,361 100,099 98,002 67,272 -1,255 2800 40,848 326,411 290,661 100,099 98,057 66,147 -1,191 3000 39,458 327,161 293,137 108,071 98,392 65,031 -1,132 3100 39,488 30,458 294,320 112,025 98,112 63,922 -1,077 3200 39,208 331,706 295,469 115,958 97,517 61,736 -0,977 3400 38,966 332,209 95,586 118,867									
2400 40.655 320.186 285.207 83.951 99.618 71.832 -1.564 2500 40.524 321.844 285.639 88.910 99.488 70.695 -1.477 2600 40.380 323.430 288.024 92.055 99.322 69.54E -1.397 2700 40.221 324.951 289.364 96.086 99.125 68.408 -1.323 2800 40.048 324.411 29.061 100.099 98.507 66.147 -1.191 3000 39.656 329.161 293.137 108.071 98.392 65.031 -1.132 3100 39.438 330.458 294.320 112.025 98.112 63.922 -1.076 3200 39.208 331.706 295.469 115.958 97.820 62.26 -1.026 3300 38.966 332.909 295.586 119.867 97.517 61.736 -0.932 3500 38.452 335.187 298.727 127.609									
2500 40.524 321.844 285.639 88.010 99.488 70.695 -1.477 2600 40.380 323.430 28.024 92.055 99.322 69.546 -1.397 2700 40.221 324.951 289.064 96.085 99.125 68.408 -1.323 2800 40.048 326.411 290.661 100.099 98.092 67.272 -1.253 2900 39.839 327.813 291.918 108.071 98.392 65.031 -1.132 3100 39.438 330.458 294.320 112.025 98.112 63.922 -1.077 3200 39.208 331.706 295.469 115.958 97.820 62.82c -1.026 3300 38.966 332.909 295.586 115.9687 97.517 61.736 -9.977 3400 38.143 335.187 287.727 127.099 96.884 59.58e -0.932 3500 38.452 335.187 287.727 127.099 <									
2600 40,380 323,430 28,024 92,055 93,322 69,54E -1,327 2700 40,221 324,951 289,364 96,086 99,125 68,408 -1,323 2800 40,048 326,411 290,661 100,099 98,092 67,272 -1,255 2900 39,859 327,813 29,1918 104,095 98,657 66,147 -1,191 3000 39,458 330,458 294,320 112,025 98,112 63,922 -1,076 3100 39,438 330,458 294,320 112,025 98,112 63,922 -1,076 3200 39,208 331,706 295,469 115,958 97,820 60,282 -1,026 3300 38,966 332,909 295,586 119,867 97,517 61,736 -0,972 3400 38,713 334,608 297,671 123,751 98,684 59,586 -0,889 3500 38,184 336,266 299,755 314,414 <								-1.477	
2700 40.221 324.951 289.364 96.086 99.125 68.408 -1.323 2800 40.048 326.411 290.661 100.099 98.902 67.272 -1.255 2900 39.859 327.813 291.918 104.095 98.507 66.147 -1.191 3000 39.656 329.161 293.137 108.071 98.392 65.031 -1.132 3100 39.438 330.458 224.320 112.025 98.112 63.922 -1.076 3200 39.208 331.706 295.586 115.958 97.820 62.82c -1.026 3300 38.966 322.09 295.586 115.958 97.517 61.73c -0.977 3400 38.713 332.099 295.586 113.867 97.517 66.555 -0.932 3500 38.482 335.187 287.727 127.609 96.884 59.586 59.586 57.473 -0.889 3600 38.184 336.266 <t< td=""><td>2600</td><td>40 380</td><td>323 430</td><td>288 024</td><td>92.055</td><td></td><td></td><td></td></t<>	2600	40 380	323 430	288 024	92.055				
2800 40,048 326,411 290,661 100,099 98,902 67,272 -1,255 2900 39,859 327,813 291,918 104,095 98,657 66,147 -1,191 3000 39,656 329,161 293,137 108,071 98,392 65,031 -1,132 3100 39,208 331,706 295,469 115,958 97,820 62,82c -1,026 3300 38,966 332,909 295,586 119,867 97,517 61,736 -0,973 3400 38,713 334,608 297,671 123,751 97,204 60,655 -0,932 3500 38,184 336,266 297,755 131,441 96,558 58,586 -0,849 3700 37,912 337,309 300,756 135,246 96,226 57,473 -0,811 3800 37,635 338,316 301,731 39,023 95,888 56,432 -0,776 3900 37,588 339,290 30c,682 142,773		40.221							
2900 39.859 327.813 291.918 104.095 98.657 66.147 -1.191 3000 39.656 329.161 293.137 108.071 98.392 65.031 -1.132 3100 39.438 330.458 294.320 112.025 98.112 63.922 -1.077 3200 39.208 331.706 295.469 115.958 97.820 62.824 -1.026 3300 38.966 332.909 295.586 119.867 97.517 61.734 -0.977 3400 38.713 334.068 297.671 123.751 97.204 60.655 -0.932 3500 38.452 335.187 298.727 127.609 96.884 59.386 -0.889 3600 38.184 336.266 299.755 131.441 96.558 58.527 -0.849 3700 37.912 337.309 30.756 135.246 96.226 57.473 -0.712 4000 37.083 39.290 302.682 142.773	2800	40,048					67 272		
3000 39.656 329.161 293,137 108.071 98.392 65.031 -1,132 3100 39.438 330.458 294.320 112.025 98.112 63.922 -1.077 3200 39.208 331.706 295.469 115.958 97.820 62.82¢ -1.026 3300 38.966 332.999 295.586 119.867 97.517 61.73¢ -0.977 3400 38.713 334.068 297.671 123.751 97.204 60.655 -0.932 3500 38.452 335.187 298.727 127.609 96.884 59.38¢ -0.889 3700 37.912 337.309 300.756 135.246 96.226 57.473 -0.811 3800 37.635 338.316 301.731 139.023 95.888 56.432 -0.776 3900 37.358 339.290 302.682 142.773 95.546 55.396 -0.776 3900 37.358 339.290 302.682 142.773 95.546 55.396 -0.776 4100 36.803 341.145 304.513 150.189 94.846 53.355 -0.680 4200 36.529 342.028 305.396 133.855 94.889 52.349 -0.651 4400 35.293 342.875 306.258 157.495 94.128 51.348 -0.624 4400 35.734 344.521 307.923 164.693 93.390 49.37¢ -0.573 4600 35.480 345.304 308.727 168.254 93.014 48.401 -0.550 4600 35.480 345.304 308.727 168.254 93.014 48.401 -0.550 4700 35.234 346.064 30.513 17.190 92.633 47.437 -0.527 4800 34.765 347.523 311.772 182.254 91.854 44.58¢ -0.464 5100 34.328 348.223 311.772 182.254 91.854 44.58¢ -0.485 500 34.765 37.523 31.329 131.282 175.301 92.246 46.81 -0.506 5100 34.328 348.203 311.772 182.254 91.854 44.58¢ -0.485 5100 34.328 348.905 312.892 175.301 92.246 46.81 -0.506 5400 34.765 347.523 311.035 178.789 91.853 45.528 -0.485 5500 34.543 348.223 311.772 182.254 91.854 44.58¢ -0.465 5100 34.328 348.905 312.892 175.301 92.246 46.81 -0.506 5400 34.765 347.523 311.035 178.789 91.853 45.528 -0.485 5500 34.238 348.905 312.892 192.523 90.220 41.814 -0.412 5500 34.123 349.569 313.200 189.120 90.638 42.730 -0.429 5500 33.218 352.660 315.528 205.947 88.474 38.219 -0.356 5600 33.218 352.660 315.528 205.947 88.474 38.219 -0.356 5700 33.218 352.660 315.528 205.947 88.474 38.219 -0.356 5700 32.118 353.800 317.773 212.559 87.551 35.401 -0.310	2900			291.918	104,095				
3100 39.438 330.458 294.320 112.025 98.112 63.922 -1.077 3200 39.208 331.706 295.469 115.958 97.820 62.852 -1.026 3300 38.966 332.909 295.586 119.867 97.517 61.725 -0.972 3400 38.713 334.068 297.671 123.751 97.204 60.655 -0.932 3500 38.452 335.187 298.727 127.609 96.884 95.386 -0.889 3600 38.452 335.187 298.727 127.609 96.884 95.386 -0.889 3600 37.912 337.309 300.756 133.246 96.226 57.473 -0.811 3800 37.635 338.316 301.731 139.023 95.888 56.432 -0.776 -0.811 3800 37.635 338.316 301.731 139.023 95.888 56.432 -0.7742 4000 37.080 340.233 303.609 146.495 95.198 54.371 -0.710 4100 36.803 341.145 304.513 150.189 94.846 53.355 -0.680 4200 36.529 342.028 305.396 153.855 94.489 52.349 -0.651 4400 35.293 343.715 307.100 161.107 93.762 50.355 -0.598 4500 35.734 344.521 307.923 164.693 93.390 49.376 -0.573 4600 35.480 345.204 308.727 168.254 93.014 48.401 -0.550 4700 35.234 346.064 309.513 171.790 92.653 47.437 -0.527 4800 34.926 346.803 313.282 175.301 91.853 45.528 -0.486 5100 34.453 348.223 311.772 182.254 91.458 45.858 -0.466 5100 34.348 348.905 312.493 185.698 91.050 43.653 -0.469 5500 34.543 348.223 311.772 182.259 90.638 42.736 -0.466 5100 34.328 348.965 312.493 185.698 91.050 43.653 -0.469 5500 33.543 34.233 31.896 312.893 185.698 91.050 43.653 -0.466 5500 33.534 34.566 313.892 192.523 90.220 41.814 -0.412 5200 34.123 349.569 313.200 189.120 90.638 42.736 -0.466 5500 33.548 33.338 31.326 192.529 90.638 42.736 -0.466 5500 33.548 34.569 313.200 189.120 90.638 42.736 -0.466 5500 33.548 33.338 31.635 31.589 202.617 88.922 39.109 -0.356 5500 33.548 35.366 31.5286 31.5286 20.5261 88.017 37.344 -0.336 5500 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 5500 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 5500 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 5500 32.718 353.800 317.773 212.558 87.551 36.472 -0.323	3000	39.656	329,161	293.137	108.071				
3200 39,208 331,706 295,469 115,958 97,820 62,325 -1,026 3300 38,966 332,909 295,586 119,867 97,517 61,73¢ -0,977 3400 38,713 334,068 297,671 123,751 97,204 60,655 -0,932 3500 38,452 335,187 287,727 127,609 96,884 59,58¢ -0,889 3600 38,184 336,266 299,755 131,441 96,558 58,527 -0,849 3700 37,912 337,309 301,756 13,5246 96,226 57,473 -0,811 3800 37,635 338,316 301,731 139,023 95,888 58,527 -0,849 4000 37,080 340,233 303,609 146,495 95,198 54,371 -0,710 4100 36,803 341,145 304,513 150,189 94,846 53,355 -0,680 4200 36,529 342,028 305,396 153,855 94,489 52,349 -0,651 4300 36,259 342,028 305,396 153,855 94,489 52,349 -0,651 4300 36,259 342,028 305,296 153,855 94,128 51,348 -0,624 4400 35,993 34,715 307,100 161,107 93,762 50,355 40,598 4500 35,734 344,521 307,923 164,693 93,990 49,376 -0,579 4600 35,480 345,304 308,727 168,254 93,014 48,401 -0,550 4700 35,234 346,064 309,513 171,790 92,633 47,437 -0,550 4900 34,765 347,523 311,035 178,789 91,853 45,528 -0,486 5100 34,543 348,223 311,772 182,254 91,454 44,586 -0,465 5100 34,543 348,223 311,772 182,254 91,454 44,586 -0,466 5100 34,543 348,223 311,772 182,254 91,454 44,586 -0,465 5100 34,543 348,223 311,772 182,254 91,454 44,586 -0,465 5100 34,543 348,223 311,772 182,254 91,454 44,586 -0,465 5100 34,543 348,223 311,772 182,254 91,454 44,586 -0,465 5100 34,543 349,569 313,200 189,120 90,638 42,730 -0,429 5300 33,265 352,470 315,286 199,270 89,362 40,001 -0,396 5400 33,736 50,850 314,571 39,5906 89,795 40,901 -0,396 5400 33,736 50,850 314,571 39,5906 89,795 40,901 -0,396 5400 33,736 50,850 314,571 39,5906 89,795 40,901 -0,396 5400 33,736 50,850 314,571 39,5906 89,795 40,901 -0,396 5400 33,736 50,850 314,571 39,5906 89,795 40,901 -0,396 5400 33,736 50,850 314,571 39,5906 89,795 40,901 -0,396 5400 33,736 50,850 314,777 312,259 87,551 36,472 39,109 -0,356 5400 33,736 50,850 314,777 312,259 87,551 36,472 39,109 -0,356 5400 33,736 50,850 314,777 312,259 87,551 36,477 37,544 -0,336 5400 33,736 50,850 314,777 312,259 87,551 36,477 37,544 -0,336 5400 33,736 50,850 314,777 312,259	3100	39,438	330,458		112.025	98.112			
3300 38.966 332.909 295.586 119.867 97.517 61.732 -0.977 3400 38.713 334.068 297.671 123.751 97.204 60.655 -0.932 3500 38.452 335.187 298.727 127.609 96.884 59.586 -0.889 3600 38.184 336.266 299.755 131.441 96.558 58.527 -0.849 3700 37.912 337.309 300.756 135.246 96.226 57.473 -0.811 3800 37.635 338.316 301.731 139.023 95.888 56.432 -0.764 4000 37.880 340.233 303.609 146.495 95.198 54.371 -0.710 4100 36.803 341.145 304.513 150.189 94.846 53.355 -0.680 4200 36.529 342.028 305.396 153.855 94.489 52.349 -0.651 4400 35.993 343.715 307.100 161.107 93.762 50.356 -0.598 4500 35.734 344.521 307.923 164.693 93.390 49.376 -0.624 4400 35.993 343.715 307.100 161.107 93.762 50.356 -0.598 4500 35.734 344.521 307.923 164.693 93.390 49.376 -0.573 4600 35.480 345.304 308.727 168.254 93.014 48.401 -0.550 4600 35.234 46.064 309.513 171.790 92.633 47.437 -0.527 4800 34.966 346.803 313.282 175.301 92.633 47.437 -0.527 4800 34.966 346.803 313.282 175.301 92.633 47.437 -0.527 4800 34.966 346.803 313.282 175.301 92.633 47.437 -0.527 4800 34.966 346.803 313.282 175.301 92.633 47.437 -0.550 5000 34.328 348.905 312.493 185.698 91.050 43.653 -0.446 5100 34.328 348.905 312.493 185.698 91.050 43.653 -0.446 5500 33.736 50.850 314.571 313.892 192.523 90.220 41.814 -0.412 5400 33.333 33.356 35.60 315.286 199.270 89.362 40.001 -0.380 5500 33.318 352.660 315.528 20.5417 88.922 39.109 -0.356 5500 33.318 352.660 315.528 20.5417 88.922 39.109 -0.356 5500 32.768 354.352 318.378 215.843 87.076 35.611 -0.310									
3400 38.713 334.608 297.671 123.751 97.204 60.655 -0.932 3600 38.184 336.266 299.755 131.441 96.558 58.527 -0.849 3600 37.003 7.912 373.309 30.756 135.246 96.226 57.473 -0.811 3800 37.635 338.316 301.731 139.023 95.888 56.432 -0.776 3900 37.038 349.290 302.682 142.773 95.546 55.396 -0.742 4000 37.080 340.233 303.609 146.495 95.198 54.371 -0.710 4100 36.803 341.145 304.513 150.189 94.846 53.355 -0.680 4200 36.529 342.885 305.396 153.855 94.489 52.349 -0.651 4300 36.259 342.885 305.396 153.855 94.128 51.348 -0.624 4400 35.993 34.715 307.923 164.693 93.390 49.376 -0.598 4500 35.734 344.521 307.923 164.693 93.390 49.376 -0.559 4500 35.434 344.521 307.923 164.693 93.990 49.376 -0.550 4700 35.234 346.064 309.513 171.790 92.633 47.437 -0.527 4700 35.234 346.064 309.513 171.790 92.633 47.437 -0.550 4900 34.765 347.523 311.035 178.789 91.853 45.528 -0.486 5100 34.543 348.223 311.772 182.789 91.853 45.528 -0.466 5100 34.543 348.223 311.772 182.789 91.853 45.528 -0.466 5100 34.543 348.223 311.772 182.789 91.853 45.528 -0.465 5100 34.543 348.223 311.772 182.789 91.853 45.528 -0.465 5200 34.123 49.696 36.805 312.493 18.5698 91.050 43.653 -0.447 5200 34.123 49.696 313.200 189.120 90.638 42.73C -0.429 5300 33.736 508.850 312.493 18.5698 91.050 43.653 -0.447 5200 34.123 49.696 313.200 189.120 90.638 42.73C -0.429 5300 33.736 508.850 312.493 18.5698 91.050 43.653 -0.447 5200 34.123 49.5699 313.200 189.120 90.638 42.73C -0.429 5300 33.736 508.850 314.571 195.906 89.795 40.901 -0.380 5600 33.218 352.660 315.528 205.947 88.922 39.109 -0.365 5600 33.218 352.660 315.528 205.947 88.922 39.109 -0.365 5600 32.718 353.800 317.773 212.559 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.559 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.559 87.551 36.472 -0.323	3300	38,966				97.517			
3500 38.492 335.187 298.727 127.609 96.884 59.586 -0.889 3600 38.184 336.266 297.55 131.441 96.558 58.527 -0.849 3700 37.912 337.309 300.756 135.246 96.226 57.473 -0.811 3800 37.635 338.316 301.731 139.023 95.888 56.432 -0.776 3900 37.358 339.290 302.682 142.773 95.546 55.396 -0.742 4000 37.080 340.233 303.669 146.495 95.198 54.371 -0.710 4100 36.803 341.145 304.513 150.189 94.846 53.355 -0.680 4200 36.529 342.028 305.396 1538.55 94.489 52.349 -0.651 4400 35.593 343.715 307.100 161.107 93.762 50.355 -0.598 4400 35.734 344.521 307.923 164.693 93.390 49.376 -0.573 4600 35.480 345.304 308.727 168.254 93.014 48.401 -0.550 4800 34.966 346.803 310.282 175.301 92.633 47.437 -0.527 4800 34.765 347.523 311.035 178.789 91.853 45.528 -0.486 5100 34.765 347.523 311.035 178.789 91.853 45.528 -0.466 5100 34.328 348.905 312.493 185.698 91.050 43.653 -0.445 5100 34.328 348.905 312.493 185.698 91.050 43.653 -0.445 5500 33.536 35.217 313.200 189.120 90.638 42.736 -0.429 5300 33.356 35.217 313.892 192.523 90.220 41.814 -0.412 5400 33.736 50.850 31.528 20.5947 88.922 39.100 -0.380 5500 33.538 352.60 315.289 315.889 20.2617 88.922 39.100 -0.380 5500 33.318 352.660 315.528 20.5947 88.922 39.100 -0.365 5700 33.218 352.660 315.528 20.5947 88.922 39.100 -0.356 5700 32.118 352.660 315.528 20.5947 88.922 39.100 -0.356 5700 33.218 352.660 315.528 20.5947 88.922 39.100 -0.356 5700 32.118 352.660 315.528 20.5947 88.922 39.100 -0.356 5700 33.218 352.660 315.528 20.5947 88.922 39.100 -0.356 5700 32.118 353.800 317.773 212.559 87.551 36.472 -0.336 5700 32.718 353.800 317.773 212.559 87.551 36.472 -0.336			334.068	297.671		97.204			
3700 37,912 337,309 300,756 135,246 96,226 57,473 -0.811 3800 37,635 338,316 301,731 139,023 95,888 56,432 -0.776 3900 37,358 339,290 302,682 142,773 95,546 55,396 -0.742 4000 37,080 340,233 303,669 146,495 95,198 54,371 -0.710 4100 36,803 341,145 304,513 150,189 94,846 53,355 -0.680 4200 36,529 342,028 305,396 153,855 94,489 52,349 -0.651 4400 35,239 342,885 305,258 157,495 94,128 51,348 -0.624 4400 35,933 343,715 307,100 161,107 93,762 50,355 -0.598 4500 35,734 344,521 307,923 164,993 93,390 49,376 -0.573 4600 35,480 345,304 308,727 168,254 93,014 48,401 -0.550 4700 35,234 346,064 309,513 171,790 92,633 47,437 -0.527 4800 34,996 346,803 310,282 175,301 92,246 46,481 -0.564 4900 34,765 347,523 311,035 178,789 91,853 45,528 -0.485 5000 34,543 348,223 311,772 182,254 91,454 44,586 -0.466 5100 34,228 348,905 312,493 185,698 91,050 43,653 -0.447 5200 34,123 349,569 313,200 189,120 90,638 42,730 -0.429 5300 33,255 350,217 313,892 192,523 90,220 41,814 -0.412 5400 33,736 50,885 314,571 399,906 89,795 40,901 -0.386 5700 33,218 352,660 315,528 205,947 88,922 39,109 -0.365 5700 33,218 352,660 315,528 205,947 88,922 39,109 -0.356 5700 32,118 352,660 315,528 205,947 88,912 39,109 -0.356 5700 32,118 352,660 315,528 205,947 88,912 39,109 -0.356 5700 32,118 352,660 315,528 205,947 88,912 39,109 -0.356 5700 32,118 352,660 315,528 205,947 88,912 39,109 -0.356 5700 32,118 353,800 317,773 212,559 87,551 36,472 -0.321	3500	38.452	335.187	298,727	127.609	96.884	59.58€		
3700 37,912 337,309 300,756 135,246 96,226 57,473 -0.811 3800 37,635 338,316 301,731 139,023 95,888 56,432 -0.776 3900 37,358 339,290 302,682 142,773 95,546 55,396 -0.742 4000 37,080 340,233 303,669 146,495 95,198 54,371 -0.710 4100 36,803 341,145 304,513 150,189 94,846 53,355 -0.680 4200 36,529 342,028 305,396 153,855 94,489 52,349 -0.651 4400 35,239 342,885 305,258 157,495 94,128 51,348 -0.624 4400 35,933 343,715 307,100 161,107 93,762 50,355 -0.598 4500 35,734 344,521 307,923 164,993 93,390 49,376 -0.573 4600 35,480 345,304 308,727 168,254 93,014 48,401 -0.550 4700 35,234 346,064 309,513 171,790 92,633 47,437 -0.527 4800 34,996 346,803 310,282 175,301 92,246 46,481 -0.564 4900 34,765 347,523 311,035 178,789 91,853 45,528 -0.485 5000 34,543 348,223 311,772 182,254 91,454 44,586 -0.466 5100 34,228 348,905 312,493 185,698 91,050 43,653 -0.447 5200 34,123 349,569 313,200 189,120 90,638 42,730 -0.429 5300 33,255 350,217 313,892 192,523 90,220 41,814 -0.412 5400 33,736 50,885 314,571 399,906 89,795 40,901 -0.386 5700 33,218 352,660 315,528 205,947 88,922 39,109 -0.365 5700 33,218 352,660 315,528 205,947 88,922 39,109 -0.356 5700 32,118 352,660 315,528 205,947 88,912 39,109 -0.356 5700 32,118 352,660 315,528 205,947 88,912 39,109 -0.356 5700 32,118 352,660 315,528 205,947 88,912 39,109 -0.356 5700 32,118 352,660 315,528 205,947 88,912 39,109 -0.356 5700 32,118 353,800 317,773 212,559 87,551 36,472 -0.321	3600	38,184	336,266	299,755	131,441	96.558	58 527	-0.849	
3800 37,635 338.316 301,731 139,023 95,888 56,432 -0.776 3900 37,358 339,290 302,682 142,773 95,546 55,396 -0.742 4000 37,080 340,233 303,609 146,495 95,198 54,371 -0.710 4100 36,803 341,145 301,513 150,189 94,846 53,355 -0.680 4200 36,529 342,028 305,396 153,855 94,489 52,349 -0.651 4300 36,259 342,885 305,298 157,495 94,128 51,348 -0.624 4400 35,993 343,715 307,100 161,107 93,762 50,355 -0.598 4500 35,734 344,521 307,923 164,693 93,390 49,376 -0.573 4600 35,480 345,304 308,727 168,254 93,014 48,401 -0.550 4700 35,234 346,064 309,513 171,790 92,633 47,437 -0.527 4800 34,996 346,803 313,282 175,301 92,246 46,481 -0.506 4900 34,765 347,523 311,035 178,789 91,853 45,528 -0.485 5000 34,543 348,223 311,772 182,254 91,454 44,586 -0.466 5100 34,328 348,905 312,493 185,698 91,050 43,653 -0.447 5200 34,123 49,569 313,200 189,120 90,638 42,73C -0.429 5300 33,255 350,217 313,892 192,523 90,220 41,814 -0.412 5400 33,736 50,885 314,571 195,906 89,795 40,901 -0.396 5500 33,736 50,885 314,571 195,906 89,795 40,901 -0.396 5500 33,318 352,660 315,289 202,617 88,922 39,109 -0.365 5700 33,218 352,660 315,589 202,617 88,922 39,109 -0.356 5800 33,061 353,236 317,173 212,559 87,551 36,472 -0.323 6000 32,718 353,800 317,773 212,559 87,551 36,472 -0.323 6000 32,718 353,800 317,773 212,559 87,551 36,472 -0.323 6000 32,718 353,800 317,773 212,559 87,551 36,472 -0.323 6000 32,718 353,800 317,773 212,559 87,551 36,472 -0.323	3700	37.912	337,309						
3900 37.358 339.290 302.682 142.773 95.546 55.396 -0.742 4000 37.080 340.233 303.669 146.495 95.198 54.371 -0.710 100 36.803 341.145 304.513 150.189 94.846 53.355 -0.680 4200 36.529 42.028 305.396 153.855 94.489 52.349 -0.651 4300 36.259 342.028 305.396 153.855 94.489 52.349 -0.651 4400 35.993 342.875 306.258 157.495 94.128 51.348 -0.624 4400 35.993 342.875 306.258 157.495 94.128 51.348 -0.624 4400 35.734 344.521 307.923 164.693 93.390 49.376 -0.573 4600 35.480 345.304 308.727 168.254 93.014 48.401 -0.550 4600 35.234 346.064 309.513 171.790 92.633 47.437 -0.527 4800 34.996 346.803 310.282 175.301 92.246 46.481 -0.506 4900 34.765 347.523 311.035 178.789 91.853 45.528 -0.485 5000 34.543 348.223 311.772 182.254 91.454 44.586 -0.465 5100 34.328 348.905 312.493 185.698 91.050 43.653 -0.447 5200 34.123 349.569 313.200 189.120 90.638 42.73C -0.429 5300 33.253 50.217 313.892 192.523 90.220 41.814 -0.412 5400 33.765 500.33.756 500.856 31.4571 375.889 91.050 40.010 -0.380 500 33.218 352.660 31.5286 199.270 89.362 40.001 -0.380 500 33.318 352.660 31.5289 202.617 88.922 39.109 -0.365 500 33.218 352.660 31.5289 202.617 88.922 39.109 -0.350 500 32.911 353.800 317.773 212.559 87.551 36.472 -0.323 500.32.768 354.352 318.378 215.843 87.076 35.611 -0.310		37.635		301.731	139.023				
4000 37,080 340,233 303,609 146,495 95,198 54,371 -0.710 4100 36,803 341,145 303,513 150,189 94,846 53,355 -0.6,680 4200 36,529 342,028 305,396 153,855 94,489 52,449 -0.651 4300 36,529 342,885 305,258 157,495 94,128 51,348 -0.6,24 4400 35,993 343,715 307,100 161,107 93,762 50,355 -0.598 4500 35,734 344,521 307,923 164,593 93,390 49,376 -0.5,73 4600 35,480 345,304 308,727 168,254 93,014 48,401 -0.550 4700 35,234 346,064 309,513 171,790 92,653 47,437 -0.527 4800 34,996 34,680 31),282 175,301 92,246 46,481 -0.506 4900 34,765 347,523 311,035 178,789 91,853 45,528 -0.485 5000 34,543 348,223 311,772 182,254 91,454 44,586 -0.466 5100 34,328 348,905 312,493 185,698 91,050 43,653 -0.447 5200 34,123 349,699 313,200 189,120 90,638 42,73C -0.429 5300 33,925 350,217 313,892 192,523 90,220 41,814 -0.412 5400 33,736 350,850 314,571 195,906 89,795 40,901 -0.386 5500 33,736 50,850 315,260 315,289 202,617 88,922 39,109 -0.365 5600 33,218 352,660 315,588 205,947 88,922 39,109 -0.356 5700 33,218 352,660 315,589 202,617 88,922 39,109 -0.356 5800 33,061 353,326 317,753 215,259 87,551 36,472 -0.350 5800 33,061 353,326 317,753 215,259 87,551 36,472 -0.350 5800 32,911 353,306 317,773 212,559 87,551 36,472 -0.350 5800 32,911 353,306 317,773 212,559 87,551 36,472 -0.350 5800 32,768 354,352 318,378 215,843 87,076 35,611 -0.310					142.773	95.546			
4200 36.529 342.028 305.396 153.855 94.489 52.349 —0.651 4300 36.259 342.885 306.258 157.495 94.128 51.348 —0.624 4400 35.993 343.715 307.100 161.107 93.762 50.356 —0.598 4500 35.734 344.521 307.923 164.693 93.390 49.376 —0.573 4600 35.480 345.304 308.727 168.254 93.014 48.401 —0.550 4700 35.234 346.064 309.513 171.790 92.653 47.437 —0.527 4800 34.996 36.803 311.282 175.301 92.246 46.481 —0.506 4900 34.765 347.523 311.035 178.789 91.853 45.528 —0.486 5100 34.543 348.223 311.772 182.254 91.050 43.653 —0.447 5200 34.123 349.699 313.200 189.120	4000	37.080	340,233	303.609	146,495	95.198	54.371	-0.710	
4200 36.529 342.028 305.396 153.855 94.489 52.346 -0.651 4300 36.259 153.4885 305.258 157.495 94.128 51.348 -0.624 4400 35.993 343.715 307.100 161.107 93.762 50.355 -0.573 4600 35.794 344.521 307.923 164.693 93.390 49.376 -0.573 4600 35.480 345.304 308.727 168.254 93.014 48.401 -0.550 4700 35.234 346.064 309.513 171.790 92.633 47.437 -0.527 4800 34.996 346.803 310.282 175.301 92.246 46.481 -0.506 4900 34.765 347.523 311.035 178.789 91.853 45.528 -0.485 5000 34.543 348.223 311.772 182.254 91.454 44.586 -0.466 5100 34.328 348.905 312.493 185.698 91.050 43.653 -0.467 5200 34.123 349.569 313.200 189.120 90.638 42.73C -0.429 5300 33.925 350.217 313.892 192.523 90.220 41.814 -0.412 5400 33.736 350.856 351.467 315.236 199.270 89.362 40.001 -0.380 5000 33.536 351.467 315.236 199.270 89.362 40.001 -0.380 5000 33.383 352.070 315.889 20.617 88.912 39.109 -0.356 5000 33.218 352.660 315.528 205.417 88.922 39.109 -0.356 5000 32.718 352.660 315.528 205.417 88.922 39.109 -0.356 5000 32.718 353.206 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 353.800 317.773 212.558 87.551 36.472 -0.323 6000 32.718 354.551 36.472 -0.323 6000 32.718 354.551 36.472 -0.323 6000 32.718 354.551 36.472 -0.323 6000 32.718 354.551 36.472 -0.323 6000 32.718 354.551 36.472 -0.323 6000 32.718 354.551 36.472 -0.323 6000 32.718 354.551 36.472 -0.323 6000 32.718 354.551 36.472 -0.323				304.513	150.189	94.846	53,355	-0.680	
4300 36.259 342.885 306.258 157.495 94.128 51.348 -0.624 4400 35.993 43.715 307.100 161.107 93.762 50.355 -0.598 4500 35.734 344.521 307.923 164.693 93.390 49.376 -0.573 4600 35.480 345.204 308.727 168.254 93.014 48.401 -0.550 4600 34.956 346.803 310.282 175.301 92.633 47.437 -0.527 4800 34.956 346.803 310.282 175.301 92.646 46.481 -0.506 4900 34.765 347.523 311.035 178.789 91.853 45.528 -0.485 5000 34.543 348.223 311.772 182.254 91.454 44.586 -0.466 5100 34.238 48.805 312.493 185.698 91.050 43.653 -0.447 5200 34.123 349.569 313.200 189.120 90.638 42.730 -0.429 5300 33.736 350.850 314.571 313.892 192.523 90.220 41.814 -0.412 5400 33.736 350.850 314.571 195.906 89.795 40.901 -0.396 5500 33.356 351.467 315.236 199.270 89.362 40.001 -0.380 5700 33.218 352.660 315.528 205.947 88.972 39.105 -0.365 5700 33.218 352.660 315.528 205.947 88.974 38.219 -0.350 5800 33.218 352.660 315.528 205.947 88.474 38.219 -0.350 5800 33.061 353.236 317.773 212.559 87.551 36.472 -0.323 5600 32.768 354.352 318.378 215.843 87.076 35.611 -0.3310							52,349		
4400 35.993 343.715 307.100 161.107 93.762 50.355 -0.593 4500 35.734 344.521 307.923 164.693 93.390 49.376 -0.573 4600 35.480 345.304 308.727 168.254 93.014 48.401 -0.550 4700 35.234 346.064 309.513 171.790 92.633 47.437 -0.527 4800 34.965 347.523 311.282 175.301 92.246 46.481 -0.550 5000 34.765 347.523 311.035 178.789 91.853 45.528 -0.485 5000 34.533 348.223 311.772 182.254 91.050 43.653 -0.466 5100 34.123 349.569 313.200 189.120 90.638 42.736 -0.472 5300 33.925 350.217 313.892 192.523 90.220 41.814 -0.412 5400 33.736 350.850 314.571 199.906							51.348	-0.624	
4600 35.480 345.304 308.727 168.254 93.014 48.401 -0.550 4700 35.234 346.064 309.513 171.790 92.653 47.437 -0.527 4800 34.996 34.803 313.282 175.301 92.246 46.481 -0.506 4900 34.765 347.523 311.035 178.789 91.853 45.528 -0.485 5000 34.543 348.223 311.772 182.254 91.454 44.58¢ -0.466 5100 34.328 348.905 312.493 185.698 91.050 43.653 -0.447 5200 34.123 349.569 313.200 189.120 90.638 42.73¢ -0.429 5300 33.925 350.217 313.892 192.523 90.220 41.814 -0.412 5400 33.736 350.850 314.571 195.906 89.795 40.901 -0.396 5500 33.536 351.467 315.236 199.270 89.362 40.001 -0.380 5500 33.383 352.070 315.289 202.617 88.922 39.109 -0.365 5700 33.218 352.660 315.528 205.947 88.922 39.109 -0.356 5700 33.218 352.660 315.528 205.947 88.922 39.109 -0.356 5800 33.061 353.326 317.773 212.559 88.7551 36.472 -0.323 6000 32.768 354.352 318.378 215.843 87.076 35.611 -0.310									
4700 35.234 346.064 309.513 171.790 92.633 47.47 -0.527 4800 34.996 34.6803 312.282 175.501 92.246 46.481 -0.506 4900 34.765 347.523 311.075 178.789 91.853 45.528 -0.485 5000 34.323 348.223 311.772 182.254 91.454 44.586 -0.466 5100 34.328 348.905 312.493 185.698 91.050 43.653 -0.447 5200 34.123 349.569 313.200 189.120 90.638 42.730 -0.429 5300 33.925 502.17 313.892 192.523 90.220 41.814 -0.412 5400 33.736 350.850 314.571 195.906 89.795 40.901 -0.396 5500 33.383 352.070 315.889 202.617 88.922 39.109 -0.365 5700 33.218 352.660 315.528 205.947						93.390	49.37€	-0.573	
4800 34.996 346.803 313.282 175.301 92.246 46.481 -0.506 4900 34.765 347.523 311.035 178.789 91.853 45.528 -0.485 5000 34.543 348.223 311.772 182.254 91.454 44.586 -0.466 5100 34.328 348.905 312.493 185.598 91.050 43.653 -0.447 5200 34.123 349.569 313.200 189.120 90.638 42.73C -0.429 5300 33.925 350.217 313.892 192.523 90.220 41.814 -0.412 5400 33.736 350.850 314.571 195.906 89.795 40.901 -0.396 5500 33.556 351.467 315.236 199.270 89.362 40.001 -0.380 5700 33.218 352.660 31.528 205.947 88.922 39.109 -0.350 5700 33.218 352.660 31.528 205.947 88.922 39.109 -0.350 5900 32.911 353.800 317.773 212.559 87.551 36.472 -0.332 6000 32.768 354.352 318.378 215.843 87.076 35.611 -0.310							48.401	-0.550	
4900 34,765 347,523 311,035 178,789 91,853 43,528 -0,485 5000 34,543 348,223 311,772 182,254 91,454 44,586 -0,465 5100 34,328 348,905 312,493 185,698 91,050 43,653 -0,447 5200 34,123 349,569 313,200 189,120 90,638 42,730 -0,429 5300 33,925 550,217 313,892 192,523 90,220 41,814 -0,412 5400 33,736 350,850 314,571 195,906 89,795 40,901 -0,396 5500 33,383 352,070 315,286 199,270 89,362 30,001 -0,365 5700 33,218 352,660 315,528 205,947 88,972 39,109 -0,365 5800 33,061 353,236 317,156 209,261 88,017 37,344 -0,336 5900 32,911 353,800 317,773 212,559					171.790			-0.527	
5000 34,543 348,223 311,772 182,254 91,454 44,586 -0.466 5100 34,328 348,905 312,493 185,698 91,050 43,653 -0.447 5200 34,123 349,569 313,200 189,120 90,638 42,736 -0.429 5300 33,275 350,850 314,571 195,906 89,795 40,901 -0.396 5500 33,376 350,850 314,571 199,270 89,362 40,001 -0.366 5600 33,383 352,070 315,286 199,270 89,362 40,001 -0.365 5700 33,218 352,660 315,528 205,947 88,922 39,109 -0.350 5800 33,061 353,236 317,7156 209,261 88,017 37,344 -0.336 5900 32,911 353,800 317,773 212,559 87,551 36,472 -0.323 6000 32,768 354,352 318,378 215,843					175.301			-0.506	
5100 34.328 348.905 312.493 185.698 91.050 43.653 -0.447 5200 34.123 349.569 313.200 189.120 90.638 42.73C -0.429 5300 33.925 350.217 313.892 192.523 90.220 41.814 -0.412 5400 33.736 350.850 314.571 195.906 89.795 40.901 -0.396 5500 33.556 511.467 315.236 199.270 89.362 40.001 -0.386 5600 33.383 352.070 315.889 202.617 88.922 39.109 -0.365 5700 33.218 352.660 315.528 205.947 88.474 38.219 -0.356 5800 33.061 353.236 317.156 209.261 88.017 37.344 -0.336 5900 32.911 353.800 317.773 212.559 87.551 36.472 -0.323 6000 32.768 354.352 318.378 215.843									
5200 34 123 349 569 313 200 189 120 90.638 42.73c -0.429 5300 33 3925 550217 313 892 192.523 90.220 41.814 -0.412 5400 33.736 550.850 314.571 195.906 89.795 40.901 -0.396 5500 33.356 351.467 315.236 199.270 89.362 40.001 -0.380 5600 33.383 352.070 315.889 202.617 88.922 39.109 -0.365 5700 33.218 352.660 315.528 205.947 88.474 38.219 -0.350 5800 33.061 353.236 317.156 209.261 88.017 37.344 -0.336 5900 32.911 353.800 317.773 212.559 87.551 36.472 -0.323 6000 32.768 354.352 318.378 215.843 87.076 35.611 -0.310							44.586	-0.466	
5300 33.925 350.217 313.892 192.523 90.220 41.814 -0.412 5400 33.736 50.850 314.571 195.906 89.795 40.901 -0.396 5500 33.556 351.467 315.236 199.270 89.362 40.001 -0.365 5600 33.383 352.070 315.286 205.947 88.922 39.109 -0.365 5700 33.218 352.660 315.528 205.947 88.474 38.219 -0.350 5800 33.061 353.236 317.156 209.261 88.017 37.344 -0.336 5900 32.911 353.800 317.773 212.559 87.551 36.472 -0.323 6000 32.768 354.352 318.378 215.843 87.076 35.611 -0.310									
5400 33,736 350,850 314,571 195,906 89,795 40,901 -0,396 5500 33,556 351,467 315,236 199,270 89,362 40,001 -0,386 5600 33,383 352,070 315,889 202,617 88,922 39,109 -0,365 5700 33,218 352,660 315,528 205,947 88,474 38,219 -0,350 5800 33,061 353,236 317,156 209,261 88,017 37,344 -0,336 5900 32,911 353,800 317,773 212,559 87,551 36,472 -0,323 6000 32,768 354,352 318,378 215,843 87,076 35,611 -0,310					189.120				
5500 33.556 351.467 315.236 199.270 89.362 40.001 -0.380 5600 33.383 352.070 315.889 202.617 88.922 39.109 -0.365 5700 33.218 352.660 315.528 205.947 88.474 38.219 -0.350 5800 33.061 353.236 317.156 209.261 88.017 37.344 -0.350 5900 32.911 353.800 317.773 212.559 87.551 36.472 -0.323 6000 32.768 354.352 318.378 215.843 87.076 35.611 -0.310									
5600 33.383 352.070 315.889 202.617 88.922 39.109 -0.365 5700 33.218 352.660 315.528 205.947 88.474 38.219 -0.356 5800 33.061 353.236 317.156 209.261 88.017 37.344 -0.336 5900 32.911 353.800 317.773 212.559 87.551 36.472 -0.323 6000 32.768 354.352 318.378 215.843 87.076 35.611 -0.310					195.906				
5700 33.218 352.660 315.528 205.947 88.474 38.219 -0.350 5800 33.061 353.236 317.156 209.261 88.017 37.344 -0.336 5900 32.911 353.800 317.773 212.559 87.551 36.472 -0.323 6000 32.768 354.352 318.378 215.843 87.076 35.611 -0.310							40.001	-0.380	
5800 33,061 353,236 317,156 209,261 88,017 37,344 -0,336 5900 32,911 353,800 317,773 212,559 87,551 36,472 -0,323 6000 32,768 354,352 318,378 215,843 87,076 35,611 -0,310									
5900 32,911 353,800 317,773 212,559 87,551 36,472 -0.323 6000 32,768 354,352 318,378 215,843 87,076 35,611 -0.310									
6000 32.768 354.352 318.378 215.843 87.076 35.611 -0.310						88.017			
		32.911							
PREVIOUS: CURRENT: March 1996 (1 bar)	GOOD	52.700	334.332	315.378	213.843	87.076	35.611	-0.310	
	PREVIOUS	<u>. </u>				Ct	JRRENT: Mar	ch 1996 (1 bar)	

NIST-JANAF THERMOCHEMICAL TABLES

FOR

THE

IODINE OXIDES

1O2 (g)

 $\Delta_{at}H^{\circ}(0 \text{ K}) = [438 \pm 25] \text{ kJ·mol}^{-1}$ $S^{\circ}(298.15 \text{ K}) = [281.5 \pm 4] \text{ J K}^{-1} \cdot \text{mol}^{-1}$

lodine oxide (OIO)

 $\Delta_t H^{\circ}(0 \text{ K}) = [162.7 \pm 25] \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = [159.3 \pm 25] \text{ kJ·mol}^{-1}$

Electronic	Level and Quanti	um Weight
state	ϵ_i , cm ⁻¹	gi
X^2B_1	0.0	2

Vibrational Frecuencies and Degeneracies

765(1) 192(1) [800](1)

Point Group: $C_{2\nu}$ σ = 2 Bond Distance: I–O = [1.8]Å Bond Angle: O–I–O = [120]* Product of the Moments of Inertia: $I_AI_BI_C$ = 725.5989 \times 10⁻¹¹⁷ g^3 cm⁶

Enthalpy of Formation
For the series OXO(g) [where X = F, Cl, Br, I], there are only reliable experimental data for OCIO(g). Assuming that the values D_0^0 (CIO) and $\Delta_n H^0$ (OCIO,g) are reasonable, we adopt the ratio of the numbers (~1.94) to apply for a similar relationship between IO(g) and OIO(g). Thus, $\Delta_n H^0$ (OIO,g, 0 K) = 1.94 D_0^0 (IO) = 438 kJ·mol⁻¹.

Heat Capacity and Entropy
. Based on the ESR study by Byberg, the ground state of the free IO₂ molecule belongs to the representation B₁ of the point group $C_{2\nu}$. This symmetric, bent molecule is estimated to have an O-I-O angle of [120]° and a bond length of [1.8] Å in analogy with the corresponding fluorine, chlorine, and bromine oxide molecules. The principal moments of inertia in g cm² are: $I_A = 3.4373 \times 10^{-39}$, $I_B = 12.1991 \times 10^{-39}$, and $I_C = 16.3491 \times 10^{-39}$. Two of the three vibrational frequencies have been derived by Gilles *et al.*, who used photoelectron spectroscopic techniques. ν_3 is estimated based on anticipated trends with the OXO(g) family and assuming $\nu_3 > \nu_1$.

References

¹J. R. Byberg, J. Chem. Phys. **88**(4), 2129–34 (1988).

²NIST-JANAF Thermochemical Tables: OFO(g): Sept. 1995; OCO(g): March 1996; OBrO(g): March 1996.

³M. K. Gilles, M. L. Polak, and W. C. Lineberger, J. Chem. Phys. **96**(11), 8012–20 (1992)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Enthalpy R	eference	Temperature	= 7, = 298.15	К .	Standard Sta	ite Pressure =	p° = 0.1 MPa
50 34,278 211,198 414,979 -10,189 162,490 160,395 -167,564 100 37,850 23,6126 19,929 -8,380 161,795 158,563 -82,825 150 40,093 251,918 294,779 -6,429 161,091 157,100 -54,707 200 42,280 263,746 28,560 -4,371 160,427 155,871 -40,709 298,15 46,697 281,468 81,468 .000 159,323 153,882 -26,959 300 46,772 281,1757 281,468 .086 159,304 153,882 -26,959 500 52,444 307,170 287,000 10,085 128,355 155,097 -16,203 600 53,929 316,872 291,191 15,408 128,642 160,419 -13,966 700 54,929 325,265 395,473 20,854 128,950 165,691 -12,364 800 55,626 332,484 396,688 25,384	T/K	C;			$H^{\circ}-H^{\circ}(T_{\tau})$		Δ _r G°	log Kr
100				INFINITE	11.861			
150 40,093 251,918 394,779 -6,429 161,091 157,100 -54,707 250 44,289 273,429 282,225 -2,199 159,828 154,803 -32,344 283,600 -4,371 160,427 155,871 -40,709 250 44,599 273,429 282,225 -2,199 159,828 154,803 -32,344 283,600 -4,772 281,575 281,468 .000 159,323 153,848 -26,879 300 46,772 281,571 283,348 .4945 150,573 152,459 -16,203 600 53,929 316,872 291,191 15,408 128,555 155,697 -16,203 600 53,929 316,872 291,191 15,408 128,642 160,419 -13,664 800 55,626 332,648 399,668 26,384 128,950 165,691 -12,364 800 55,626 332,648 399,668 26,384 128,950 165,691 -12,364 800 55,626 332,648 399,668 26,384 129,253 170,919 -10,221 1000 56,498 345,164 307,539 37,605 129,811 81,269 -9,469 -9,469 1000 56,779 350,562 111,226 43,270 130,059 186,403 -88,52 200 50,997 355,513 147,14 48,959 130,687 201,690 -7,233 400 57,168 360,082 181,030 54,668 130,460 196,669 -7,230 400 57,568 378,479 298,815 77,630 130,647 201,690 -7,230 600 57,518 378,793 327,444 83,392 130,179 206,739 -7,230 600 57,796 384,853 37,386 89,933 30,745 218,821 249,500 -7,518 300,977,799 381,891 34,965 83,160 130,835 220,936 -6,664 80,000 57,796 384,853 37,386 89,933 30,745 220,056 -6,664 30,000 57,796 384,853 37,386 89,933 30,745 220,056 -6,664 40,000 57,993 40,				414.979	-10.189			
200 42,280 263,746 285,600 -4,371 160,427 155,871 -40,709 250 44,599 273,492 82,225 -2,199 159,828 154,803 -32,344 288,115 46,697 281,468 181,468 .000 159,323 153,882 -26,599 300 46,772 281,577 281,468 .086 159,304 153,848 -26,787 400 50,184 -29,5711 281,348 .49,45 150,373 152,450 -19,908 500 52,445 307,170 287,000 10,085 128,355 15,097 -16,203 600 53,929 316,872 395,471 20,854 128,954 166,419 -13,966 600 53,929 316,872 395,478 20,854 128,950 165,691 -12,364 800 55,4929 325,265 395,478 20,854 128,953 165,691 -12,364 800 55,492 335,469 396,685 30,93 129,253 165,691 -12,364 800 55,697 345,164 307,559 37,605 129,811 181,269 -9,469 1100 56,799 350,562 111,226 43,270 180,800 57,168 36,032 11,226 43,270 180,800 57,168 36,032 11,226 43,270 180,800 57,168 36,032 11,226 43,270 180,800 57,168 36,032 11,218 10,164 48,959 130,283 195,155 -83,356 1500 57,141 36,281 124,196 66,128 130,779 205,759 -77,205 1500 57,141 36,281 124,196 66,128 130,779 205,759 -77,205 1500 57,141 36,281 124,196 66,128 130,779 205,759 -77,205 1500 57,168 36,828 11 24,196 66,128 130,719 205,759 -77,205 1500 57,653 378,773 312,444 83,392 130,911 221,935 -6,440 100 57,756 384,853 373,86 94,933 130,745 232,056 -6,661 100 57,795 384,853 373,86 94,933 130,745 232,056 -6,661 100 57,795 384,853 373,86 94,933 130,745 232,056 -6,661 100 57,995 344,905 89,146 202 118,065 129,813 222,399 -5,493 120,00 57,863 39,933 130,361 12,277 30,113 242,204 -5,751 120,00 57,985 40,00 37,985 40,00 37,985 40,00 37,985 40,00 37,985 40,00 37,985 40,00 37,995 446,202 118,065 129,813 222,399 -5,493 120,00 57,995 40,00 37,995 446,202 118,065 129,813 222,395 -6,460 1200 57,995 40,00 37,								
280 44,599 273,429 281,225 -21,99 159,828 154,803 -32,344 281,814,868 2000 159,323 153,882 -26,599 300 46,772 281,468 218,468 4,945 159,304 153,848 -26,787 400 50,184 295,711 283,348 4,945 150,373 152,450 -19,080 50,184 295,711 283,348 4,945 150,373 152,450 -19,080 50,184 295,711 283,348 4,945 150,373 152,450 -19,080 50,184 295,711 283,348 4,945 150,373 152,450 -19,080 50,184 295,711 283,348 4,945 150,373 152,450 -19,080 50,184 295,711 283,348 4,945 150,373 152,450 -19,080 50,184 295,711 283,348 4,945 128,355 155,097 -16,203 600 53,929 316,872 291,191 15,408 128,642 160,419 -13,966 800 55,626 332,648 395,668 263,84 129,233 170,919 -11,160 56,478 345,164 307,539 37,605 129,811 81,269 -9,469 100 56,478 345,164 307,539 37,605 129,811 81,269 -9,469 100 56,479 350,562 111,226 43,270 130,059 186,403 -88,52 1200 56,997 355,513 114,714 48,959 130,283 191,515 -8,336 140 57,1366 364,324 21,187 60,391 130,647 201,680 -7,320 1400 57,366 364,324 21,187 60,391 130,647 201,680 -7,320 1400 57,366 364,324 21,187 60,391 130,647 201,680 -7,320 1600 57,518 37,479 128,815 77,630 130,915 126,879 -6,664 180,00 57,583 378,479 298,815 77,630 130,915 126,879 -6,664 180,00 57,799 381,8191 34,965 89,160 130,835 222,059 -6,240 1900 57,796 384,853 37,386 89,933 130,745 222,056 -6,661 120 57,799 381,8191 34,965 89,160 130,835 222,056 -6,661 120 57,797 387,672 397,714 100,711 130,583 237,125 -5,898 120,00 57,955 402,218 520,54 135,442 128,118 267,780 -5,181 220,00 57,955 402,218 520,054 135,442 128,118 267,780 -5,181 200 57,993 400,00 37,993 440,00 31,995 400,00 31 350,167 129,648 129,109 262,636 -6,661 29,00 57,993 400,00 37,993								
298.15								
300								
400 50,184 295,711 283,348 4,945 150,373 152,450 -19,908 500 52,455 307,170 287,000 10,085 128,355 155,097 1-6,203 600 53,929 316,872 291,191 15,408 128,642 160,419 -13,966 800 55,626 332,648 299,668 26,384 129,253 170,919 -11,160 900 56,427 339,230 30,705 31,973 129,542 176,109 -10,221 1000 56,498 345,164 307,559 37,605 129,811 181,269 -9,469 1000 56,498 345,164 307,559 37,605 129,811 181,269 -9,469 1200 56,779 350,562 11,226 43,270 130,059 186,403 -8,852 1200 56,977 355,513 114,714 48,959 130,283 191,515 -8,336 1200 57,168 360,082 118,030 54,668 130,480 196,669 -7,900 1400 57,306 364,324 121,187 60,391 130,647 201,690 -7,525 1500 57,419 368,281 124,196 66,128 130,779 206,759 -72,00 1600 57,583 375,479 329,815 77,630 130,915 216,879 -6,615 1700 57,588 375,479 329,815 77,630 130,915 216,879 -6,664 1900 57,709 381,893 334,968 89,160 130,851 226,993 -6,240 1200 57,756 384,883 37,386 94,933 130,745 222,056 -6,061 200 57,783 390,361 441,955 106,492 130,174 120,271 130,583 227,125 -8,898 1200 57,936 30,361 441,955 106,492 130,371 247,293 -5,616 200 57,936 400,031 50,167 120,648 129,109 26,2636 -5,276 1200 57,937 397,760 38,217 120,584 123,195 120,195 397,760 38,217 120,585 122,476 25,750 8 -5,380 200 57,972 404,326 53,884 141,29 128,309 27,298 84,000 130,857 37,958 400,218 352,054 135,442 128,718 207,780 -5,181 200 57,975 340,326 33,844 11,29 128,309 27,298 84,000 130,850 44,326 53,884 141,29 128,309 27,298 84,000 130,850 44,326 53,884 141,29 128,309 27,298 84,000 130,800 58,004 410,229 359,056 158,637 127,026 288,500 -48,61 300 58,004 410,229 359,056 188,637 127,026 288,500 -48,61 300 58,004 410,229 359,056 158,637 127,026 288,500 -48,61 300 58,004 410,229 359,056 158,637 127,026 288,500 -48,61 300 58,004 410,229 359,056 158,637 127,026 288,500 -48,61 300 58,004 410,229 359,056 158,637 127,026 288,500 -48,61 300 58,004 410,229 359,056 158,637 127,026 288,500 -48,61 300 58,004 410,209 359,056 158,637 127,026 288,500 -48,61 300 58,004 412,001 35,005 38,005 417,272 365,315 181,851 123,351 309,439 -44,61 300 58,004 410								
500 52.445 307.170 287,000 10.085 128.355 155.097 -16.203 700 54.929 315.265 395.473 20.854 128.950 165.691 -12.364 800 55.626 332.648 396.688 26.884 129.253 170.919 -11.160 900 56.127 339.230 J30.705 31.973 129.542 176.109 -9.469 1100 56.498 345.164 J07.559 37.005 120.8811 181.269 -9.469 1100 56.797 355.513 314.714 43.979 130.059 186.403 -8.852 1200 56.997 355.513 314.714 43.959 130.283 191.515 -8.336 1400 57.168 360.082 118.030 54.668 130.487 201.690 -7.520 1500 57.419 368.281 124.196 66.128 130.779 206.759 -7.200 1700 57.563 381.813 343.965 89.161 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-19.908</td>								-19.908
600 53.929 316.872 291.191 15.408 128.642 160.419 -13.966 700 54.929 332.268 393.648 29.684 129.531 170.919 -11.160 800 55.626 332.648 299.668 26.384 129.532 170.919 -11.160 900 56.127 339.230 Jan.705 31.973 129.542 176.109 -10.221 1000 56.498 345.164 JOT.559 37.605 129.811 181.269 -9.469 1100 56.779 330.562 311.226 43.270 130.089 186.403 -8.852 1200 56.97 355.513 114.714 48.959 30.283 191.515 -8.336 1300 57.168 360.082 118.030 54.668 130.480 196.6699 -7.900 1500 57.314 371.990 127.099 71.875 130.870 211.821 -6.915 1700 57.588 375.479 129.815 77.630					10.085			
700 \$4,929 325,265 995,473 20,854 128,950 165,5691 -12,364 800 \$5,626 332,648 99,668 25,384 129,253 170,919 -11.166 900 \$61,127 339,230 303,705 31,973 129,542 176,109 -10,221 1000 \$6,479 345,164 307,559 37,605 129,811 181,269 -9,469 1100 \$6,779 350,562 311,226 43,270 130,059 186,403 -8,852 1200 \$6,997 355,513 311,4714 48,959 130,283 191,515 -8,336 1300 \$71,68 360,082 318,030 \$4,668 130,480 196,609 -7,902 1500 \$7,306 364,324 121,187 66,391 130,647 201,690 -7,525 1500 \$7,419 368,281 124,196 66,128 130,779 206,759 -7,200 1600 \$7,518 371,990 327,069 71,875 130,870 211,821 -6,915 1700 \$7,583 375,479 329,815 71,630 130,915 216,879 -6,664 1800 \$7,633 378,773 332,444 83,392 130,915 216,879 -6,664 1800 \$7,633 378,773 332,444 83,392 130,915 212,935 -6,440 1900 \$7,756 384,853 337,866 94,933 130,745 222,056 -6,601 2100 \$7,757 387,672 339,714 100,711 130,583 237,125 -5,898 2200 \$7,853 2390,361 341,955 106,492 130,371 242,204 -5,751 2400 \$7,863 392,933 344,116 12,277 130,113 242,204 -5,751 2400 \$7,863 392,933 344,116 12,277 130,113 242,204 -5,751 2400 \$7,863 49,2933 195,149 12,275,285 129,476 227,598 -5,380 2500 \$7,915 397,760 348,217 129,648 129,109 262,636 -5,276 2700 \$7,955 400,2218 512,054 141,239 128,309 272,938 -5,092 300 58,002 408,327 157,382 152,836 127,458 283,297 -4,933 310 \$8,034 412,037 136,844 412,39 128,309 272,938 -5,092 300 \$8,036 412,071 130,684 164,339 126,596 293,715 -4,794 300 \$8,036 412,071 130,684 164,339 126,596 293,715 -4,794 300 \$8,036 412,071 130,684 164,339 126,596 293,715 -4,794 300 \$8,036 412,071 130,684 164,339 126,596 293,715 -4,794 300 \$8,036 412,037 136,841 1193,464 122,551 30,436 22,551 30,43	600							1
800 55,626 332,648 299,668 26,384 129,253 170,919 -11,160 900 56,479 339,230 303,705 31,973 129,542 176,109 -10,221 1000 56,479 350,562 311,226 43,270 130,059 186,403 -8,852 1200 56,977 355,513 114,714 48,959 130,283 191,515 -8,336 1300 57,168 360,082 318,303 46,658 130,480 196,609 -7,900 1400 57,306 364,324 321,187 60,391 130,647 201,690 -7,525 1500 57,419 368,281 324,196 66,128 130,779 206,759 -7,200 1600 57,511 371,990 127,069 71,875 130,870 211,821 -6,915 1700 57,588 375,479 129,815 77,630 130,915 216,879 -6,644 1800 57,709 381,891 334,965 89,160 130,855 226,993 -6,240 1900 57,756 384,855 337,386 89,160 130,855 226,993 -6,240 1200 57,832 390,361 141,955 106,492 130,371 242,204 5-7,515 1300 57,891 397,376 148,105 112,277 130,113 247,293 -5,616 1400 57,891 395,396 144,116 112,277 130,113 247,293 -5,616 1400 57,991 397,360 148,217 123,855 129,476 257,508 -5,380 1500 57,915 397,760 148,217 123,855 129,476 257,508 -5,380 1500 57,915 397,760 148,217 123,855 129,476 257,508 -5,380 1500 57,928 404,326 33,884 14,139 128,399 127,938 -5,092 1500 57,938 400,031 55,167 129,648 129,109 262,636 -5,380 1500 57,915 397,760 148,217 123,855 129,476 257,508 -5,380 1500 57,928 404,326 33,884 14,139 128,399 272,938 -5,092 1500 57,915 397,760 148,217 123,855 129,476 257,508 -5,380 1500 57,928 404,326 33,884 14,139 128,399 272,938 -5,092 1500 57,936 400,031 55,659 147,037 127,887 278,110 -5,099 1500 57,938 406,361 138,573 150,668 1 12,277 130,113 3247,293 -5,616 1500 57,938 406,361 138,573 138,44 14,399 128,399 272,938 -5,380 1500 57,936 402,218 152,054 135,442 128,718 267,780 -5,181 1500 57,935 402,218 152,054 135,442 128,718 267,780 -5,181 1500 57,935 402,218 152,054 135,442 128,718 267,780 -5,181 1500 57,935 402,218 152,054 135,442 128,718 267,780 -5,181 1500 57,935 402,218 152,054 135,442 128,718 267,780 -5,181 1500 57,935 402,218 152,054 135,444 1239 128,399 272,393 144,116 112,277 130,113 247,293 -5,616 1500 58,002 408,327 137,338 141 141,399 128,399 128,399 128		54.929		295,473			165.691	
1000				299.668				
1100 56,779 350,562 311,226 43,270 130,059 186,403 -8,852 1200 56,997 355,513 314,714 48,959 130,283 191,515 -8,336 130 57,168 360,082 118,030 54,668 130,480 196,609 -7,200 1400 57,306 364,324 321,187 60,391 130,647 201,690 -7,200 1500 57,419 368,281 324,196 66,128 130,779 206,759 -7,200 1600 57,511 371,990 327,069 71,875 130,870 211,821 -6,915 1700 57,588 375,479 329,815 77,630 130,915 221,935 -6,644 1800 57,653 378,773 332,444 83,392 130,911 221,935 -6,644 1800 57,653 378,773 332,444 83,392 130,911 221,935 -6,240 2000 57,796 384,853 337,386 94,933 130,745 232,056 -6,061 200 57,797 387,672 339,316 41,955 106,492 130,371 242,204 -5,751 2300 57,863 392,933 344,116 112,277 30,113 242,204 -5,751 2300 57,863 392,933 344,116 112,277 30,113 242,204 -5,751 2300 57,915 397,760 348,217 123,855 129,476 257,508 -5,380 2500 57,972 400,326 335,844 135,447 123,855 129,476 257,508 -5,380 2500 57,972 404,326 335,844 1239 128,809 272,938 -5,189 2900 57,988 406,361 355,659 47,037 127,887 278,110 -5,009 2900 57,988 406,361 355,659 47,037 127,887 278,110 -5,009 2900 57,988 406,361 355,659 47,037 127,887 278,110 -5,009 3000 58,026 412,071 306,084 412,399 126,596 293,715 -4,933 300 58,026 412,071 306,084 412,399 306,084 413,857 362,268 170,242 126,172 299,943 -4,372 400 58,069 425,656 377,368 35,866 413,857 362,268 170,242 126,172 299,943 -4,373 300 58,034 415,590 365,315 818,551 125,351 309,439 -4,618 300 58,034 415,590 365,315 818,551 125,351 309,439 -4,618 300 58,034 415,590 365,315 818,551 122,267 -4,471 400 58,099 427,861 374,883 222,507 124,299 344,607 -4,390 35,000 58,034 415,590 38,034 225,5								
1200 56,997 355,513 314,714 48,959 130,283 191,515 -8,336 1300 57,168 360,082 118,030 54,668 130,480 196,609 -7,900 1400 57,306 364,324 121,187 60,391 130,467 201,690 -7,220 1500 57,419 368,281 124,196 66,128 130,779 206,759 -7,220 1500 57,511 371,990 327,099 71,875 130,870 211,821 -6,915 1700 57,588 375,479 312,444 83,992 130,915 216,879 -6,440 1800 57,633 378,773 332,444 83,992 130,915 216,879 -6,440 1900 57,799 381,891 334,965 89,160 130,855 226,993 -6,240 1200 57,756 384,855 337,386 94,933 130,745 232,056 -6,661 1200 57,787 387,672 339,714 100,711 130,583 237,125 -5,898 1200 57,832 390,361 341,955 106,492 130,371 242,204 -5,751 2300 57,863 392,933 344,116 112,277 130,113 247,293 -5,616 2400 57,891 395,396 346,202 118,065 129,813 225,393 -5,493 2500 57,915 397,760 348,217 123,855 129,476 257,508 -5,380 2600 57,974 400,031 50,167 129,648 129,109 226,536 -5,276 2700 57,975 404,326 135,181 135,492 128,309 272,938 -5,181 2800 57,978 406,361 155,659 147,037 127,887 278,110 -5,009 2900 57,988 406,361 155,659 147,037 127,887 278,110 -5,009 2900 58,002 408,327 157,382 152,336 127,458 283,297 -4,933 3100 58,014 410,229 359,056 158,637 127,926 288,500 -4,861 200 58,036 412,071 360,684 164,439 126,596 293,715 -4,794 400 58,036 412,071 360,684 164,439 126,596 293,715 -4,794 400 58,036 412,071 360,684 164,439 126,596 293,715 -4,794 400 58,036 412,071 360,684 164,439 126,596 293,715 -4,794 400 58,036 412,071 360,684 164,439 126,596 293,715 -4,794 400 58,036 412,071 360,684 164,439 126,596 293,715 -4,794 400 58,036 412,037 368,838 368,838 37,998 37,9				307.559				
1300 \$7,168 360,082 118,030 \$54,668 130,480 196,609 \$-7,902 1500 \$7,419 364,324 121,187 66,128 130,779 206,759 \$-7,205 1500 \$7,419 368,281 124,196 66,128 130,779 206,759 \$-7,205 1600 \$57,511 371,990 327,069 71,875 130,870 211,821 \$-6,915 700 \$57,588 375,479 329,815 77,630 130,915 211,821 \$-6,915 700 \$57,583 378,773 332,444 83,392 130,911 221,935 \$-6,644 1800 \$57,653 378,773 332,444 83,392 130,911 221,935 \$-6,240 2000 \$57,796 384,853 337,386 94,933 130,475 232,056 \$-6,601 2000 \$57,797 387,672 339,361 341,955 106,492 130,371 242,204 \$-5,516 2300 \$57,863 399,361 341,1955 106,492 130,371 242,204 \$-5,516 2400 \$57,891 395,396 346,202 118,065 129,813 253,393 \$-5,493 2500 \$57,915 397,760 348,217 123,855 129,476 257,508 \$-5,380 2600 \$57,936 400,331 50,167 129,648 129,109 262,636 \$-5,276 2700 \$57,955 402,218 352,054 135,442 128,718 267,780 \$-5,181 2800 \$57,972 404,326 353,884 41,239 128,809 272,938 \$-5,092 2900 \$57,988 406,361 355,659 147,037 127,887 278,110 \$-5,009 3000 \$58,002 408,327 357,382 152,836 127,458 283,297 \$-4,933 3100 \$8,014 410,229 159,056 158,637 127,026 288,500 \$-4,861 200 \$8,030 412,971 206,884 412,971 206,884 412,971 206,884 412,971 206,884 412,972 206,884 206,984 206,984 206,984 206,984 206,984 206,984 206,994								
1400 57,306 364,324 321,187 60,391 130,647 201,690 -7,525 1500 57,419 368,281 324,196 66,128 130,779 206,759 -7,200 1600 57,511 371,990 327,099 71,875 130,870 211,821 -6,915 1700 57,588 375,479 329,815 77,630 130,915 21,8379 -6,664 1800 57,653 378,773 332,444 83,392 130,911 221,935 -6,440 1800 57,756 384,853 337,886 94,933 130,745 222,055 -6,061 1900 57,797 387,672 339,714 100,711 130,583 237,125 -5,898 2000 57,832 390,361 341,955 106,492 130,371 242,204 -5,751 2300 57,863 392,933 344,116 112,277 130,113 247,293 -5,616 2400 57,891 397,760 348,217 123,855 129,476 257,508 -5,380 2500 57,915 397,760 348,217 123,855 129,476 257,508 -5,380 2500 57,936 400,031 50,167 129,648 129,109 262,636 -5,380 2500 57,972 404,326 153,844 41,239 128,309 272,938 -5,181 2800 57,978 406,361 155,659 147,037 127,887 278,110 -5,092 2900 57,988 406,361 155,659 147,037 127,887 278,110 -5,092 2900 58,002 408,327 157,382 152,836 127,458 283,297 -4,933 3100 58,014 410,229 359,056 158,637 127,026 288,500 -4,861 200 58,003 418,807 360,811 176,046 125,576 304,186 -4,673 3600 58,003 418,807 36,811 176,046 125,576 304,186 -4,673 3600 58,003 418,908 366,781 187,657 124,959 314,705 -4,794 400 58,089 425,027 372,305 210,888 123,546 335,866 -4,471 3600 58,070 420,499 368,211 34,641 42,581 339,806 -4,618 3600 58,070 420,499 368,211 34,641 42,581 339,806 -4,618 3600 58,070 420,499 368,211 34,641 42,581 339,806 -4,618 3600 58,070 420,499 368,210 42,811 42,811 39,980 -4,618 3600 58,070 420,499 368,210 42,811 42,811 39,980 -4,618 3600 58,070 420,499 368,210 42,814 42,811 39,980 -4								-8.336
1500 57.419 368.281 324.196 66.128 130.779 206.759 -7.200 1600 57.511 371.990 377.069 71.875 130.870 211.821 -6.915 1700 57.583 375.479 329.815 77.630 130.915 216.879 -6.664 1800 57.653 378.773 332.444 83.392 130.911 221.935 -6.440 1900 57.756 384.853 337.866 94.933 130.745 232.056 -6.061 1900 57.756 384.853 337.866 94.933 130.745 232.056 -6.061 1200 57.757 387.672 339.361 341.955 106.492 330.371 242.204 -5.751 2300 57.863 399.361 341.195 106.492 310.371 242.204 -5.751 2400 57.891 395.396 346.202 118.065 129.813 223.393 -5.493 2500 57.915 397.760 348.217 123.855 129.476 227.508 -5.380 2600 57.936 400.031 50.167 129.648 129.109 262.636 -5.276 2700 57.957 404.2218 352.054 315.442 128.718 267.780 -5.181 2800 57.972 404.326 353.884 315.442 128.787 277.110 -5.009 3000 58.002 406.327 357.382 152.836 127.026 288.500 -4.861 2000 58.004 410.229 359.056 58.637 127.026 288.500 -4.861 2000 58.004 410.291 359.056 158.637 127.026 288.500 -4.861 2000 58.004 415.590 63.811 176.046 125.756 304.186 -4.794 3300 58.004 415.590 63.811 176.046 125.756 304.186 -4.794 3400 58.003 418.807 362.268 170.242 126.172 299.943 -4.732 3400 58.003 422.049 368.211 193.644 124.581 319.980 -4.517 3800 58.003 422.049 368.211 193.646 125.756 304.186 -4.794 3400 58.003 43.807 422.049 368.211 193.646 125.756 304.186 -4.794 3400 58.003 43.808 32.608 32.209 33.808 33.806 -4.818 3400 58.003 43.807 422.049 368.211 193.646 125.756 304.186 -4.794 3400 58.003 43.808 43.808 36.678 187.657 122.940 346.497 -4.939 3400 58.003 43.808 36.808 36.808 37.997 32.208 33.808 33.808 33.808 33.808 3								
1600 57.511 371.090 327.069 71.875 130.870 211.821 -6.915 1700 57.588 375.479 329.815 77.630 130.915 216.879 -6.644 1800 57.633 378.773 332.444 83.92 130.915 216.879 -6.644 1800 57.709 381.891 334.965 89.160 130.855 226.993 -6.240 1800 57.709 381.891 334.965 89.160 130.855 226.993 -6.240 180.65 37.775 387.672 339.714 100.711 130.583 237.125 -5.898 2200 57.832 390.361 141.955 106.492 130.371 242.204 -5.751 2300 57.863 392.933 344.116 112.277 130.113 247.293 -5.616 2400 57.891 397.360 344.116 112.277 130.113 247.293 -5.616 2400 57.891 397.360 348.217 123.855 129.476 257.508 -5.380 2500 57.915 397.760 348.217 123.855 129.476 257.508 -5.380 2500 57.936 400.031 50.167 129.648 129.109 262.636 -5.276 2700 57.955 402.218 152.054 135.442 128.718 267.780 -5.181 2800 57.972 404.326 135.384 41.239 127.887 278.110 -5.009 2900 57.988 405.361 155.659 147.037 127.887 278.110 -5.009 2900 57.988 405.361 155.659 147.037 127.887 278.110 -5.009 3000 58.002 408.327 157.382 152.836 127.458 283.927 -4.933 3100 38.026 412.071 360.684 164.439 126.596 293.715 -4.794 300 38.036 412.071 360.684 164.439 126.596 293.715 -4.794 300 38.036 412.877 360.841 187.657 124.959 314.705 -4.618 3600 58.003 418.908 366.781 187.657 124.959 314.705 -4.618 3600 58.003 418.908 366.781 187.657 124.959 314.705 -4.618 3600 58.003 418.908 366.781 187.657 124.959 314.705 -4.618 3600 58.003 415.903 360.683 415.903 360.683 415.903 360.811 47.272 365.315 381.81 125.351 304.499 366.781 366				124 106				
1700 57,588 375,479 129,815 77,630 130,915 216,879 -6,644 1800 57,653 378,773 312,444 83,392 130,911 221,935 -6,644 1900 57,709 381,891 334,965 89,160 130,855 226,993 -6,240 2000 57,756 384,853 337,386 94,933 130,745 232,056 -6,661 2100 57,797 387,672 339,714 100,711 130,583 237,125 -5,898 2200 57,852 390,361 341,955 106,492 130,371 242,204 -5,751 2300 57,863 392,933 344,116 12,277 130,113 242,204 -5,751 2400 57,861 395,396 346,202 118,665 129,813 252,393 -5,491 2500 57,915 400,031 50,167 129,648 129,109 262,636 -5,276 2600 57,936 400,031 50,167 129,648 129,109 262,636 -5,276 2700 57,957 404,326 153,884 141,239 128,309 272,938 -5,092 2900 57,972 404,326 153,884 141,239 128,309 272,938 -5,092 2900 57,980 406,361 155,659 147,037 127,887 278,110 -5,009 3000 58,002 408,327 157,382 152,836 127,458 283,297 -4,933 3100 58,014 410,229 359,056 158,637 127,026 288,500 -4,861 200 58,036 418,857 362,268 170,242 126,172 298,943 -4,732 3400 58,036 415,590 303,811 16,046 125,756 304,186 -4,673 3500 58,036 418,807 366,781 187,657 124,959 314,705 -4,471 3900 58,033 422,048 499,608 192,711 124,219 325,267 -4,471 3900 58,038 418,908 366,781 187,657 123,234 341,178 -4,366 3700 58,070 422,049 368,211 193,464 124,581 319,980 -4,517 3900 58,030 418,807 376,808 216,697 123,234 341,178 -4,374 4000 58,094 426,461 373,608 216,697 123,234 341,178 -4,374 4000 58,108 425,502 372,305 210,888 123,546 335,866 -4,386 4100 58,108 425,027 372,305 210,888 123,546 335,866 -4,376 4000 58,108 436,603 379,724 245,750 121,956 366,493 -4,739 4000 58,108 436,604 377,353 234,128 122,6								
1800 \$7,653 378,773 332,444 83,392 130,911 221,935 -6,240 2000 \$7,756 381,891 334,965 89,160 130,855 226,993 -6,240 2000 \$7,756 384,853 337,386 94,933 130,745 232,056 -6,061 2100 \$7,756 384,853 337,386 94,933 130,745 232,056 -6,061 2100 \$7,756 384,853 337,386 94,933 130,745 232,056 -6,061 2100 \$7,756 384,853 341,955 106,492 130,371 242,204 -5,751 2300 \$7,863 392,933 344,116 112,277 130,113 247,293 -5,616 2400 \$7,891 395,396 346,202 18,065 129,813 225,393 -5,493 2500 \$7,915 397,760 348,217 123,855 129,476 257,508 -5,389 2500 \$7,915 397,760 348,217 123,855 129,476 257,508 -5,326 2700 \$7,936 400,031 50,167 129,648 129,109 262,636 -5,276 2700 \$7,955 402,218 152,054 135,442 128,718 267,780 -5,181 2800 \$7,972 404,326 153,884 41,239 128,309 272,938 -5,092 2900 \$7,988 406,361 155,659 147,037 127,887 278,110 -5,009 3000 58,002 408,327 157,382 152,836 127,458 283,297 -4,933 3100 \$8,014 410,229 159,056 158,637 127,026 288,500 -4,861 200 58,026 415,857 162,268 170,242 126,172 299,943 -4,794 3300 58,036 415,5590 363,811 176,046 125,756 304,186 -4,673 3500 58,036 415,5590 363,811 176,046 125,756 304,186 -4,673 3500 58,036 415,5590 363,811 176,046 125,756 304,186 -4,673 3600 58,070 420,499 368,211 39,467 424,581 319,980 -4,618 3600 58,070 422,048 369,608 199,271 124,219 325,267 -4,471 400 58,084 425,556 370,972 205,079 123,874 330,563 -4,427 400 58,084 425,556 370,972 205,079 123,874 330,563 -4,427 400 58,108 436,567 38,104 420,228 366,307 324,128 122,402 357,155 -4,240 400 58,108 436,567 38,108 430,564 377,353 234,128 122,402 357,155 -4,240 400 58,108 436,607 38,806 436,307 38,104 436,307 38,1								
1900 57.709 381.891 34.965 89.160 130.855 226.993 -6.240							221.935	
2000 57,756 384,853 337,386 94,933 130,745 232,056 -6,061 2100 57,832 390,361 341,955 106,492 130,371 242,204 -5,751 2200 57,832 390,361 341,955 106,492 130,371 242,204 -5,561 2400 57,891 395,396 346,202 118,065 129,813 252,393 -5,493 2500 57,915 397,760 348,217 123,855 129,476 257,508 -5,380 2600 57,956 400,031 150,167 129,648 129,109 262,636 -5,276 2700 57,955 402,218 152,054 135,442 128,1718 267,780 -5,181 2800 57,988 406,361 155,659 147,037 127,887 278,110 -5,092 2900 57,988 406,361 155,659 147,037 127,826 288,500 -4,861 3100 58,014 410,207 160,684 1							226.993	
2200 57.832 390.361 341.955 106.492 130.371 242.204 -5.561 2300 57.863 392.933 444.116 112.277 130.113 247.293 -5.616 2400 57.891 395.396 146.202 118.065 129.813 252.393 -5.493 2500 57.915 397.760 148.217 123.855 129.476 257.508 -5.380 2600 57.936 400.031 150.167 129.648 129.109 262.636 -5.276 2700 57.955 402.218 152.054 135.442 128.178 267.788 -5.082 2900 57.988 405.361 155.659 147.037 127.887 278.110 -5.092 3000 58.002 480.327 157.382 152.836 127.026 288.500 -4.861 3200 58.026 412.071 160.684 164.439 126.596 293.715 -4.794 3300 58.036 413.857 162.268 1	2000	57.756		337.386	94,933	130.745	232.056	-6.061
2300 57.863 392.933 344.116 112.277 130.113 247.293 -5.616 2400 57.891 395.396 446.202 118.065 129.813 247.293 -5.493 2500 57.915 397.760 348.217 123.855 129.476 257.508 -5.380 2600 57.915 397.760 348.217 123.855 129.476 257.508 -5.380 2600 57.936 400.031 350.167 129.648 129.109 262.636 -5.276 2700 57.952 404.326 353.884 141.239 128.099 272.938 -5.092 2900 57.982 406.361 355.659 417.037 127.887 278.110 -5.181 2800 57.972 404.326 353.884 141.239 128.099 272.938 -5.092 2900 57.988 406.361 355.659 417.037 127.887 278.110 -5.093 3000 58.002 408.327 357.382 152.836 127.458 283.297 -4.933 3100 58.014 410.229 359.056 158.637 127.026 288.500 -4.861 2000 58.026 412.071 360.684 164.439 126.596 293.715 -4.794 3300 58.036 412.857 362.268 170.242 126.172 298.943 -4.732 3400 58.036 415.590 363.811 176.046 125.756 304.186 -4.673 3500 58.053 417.272 365.315 181.851 125.351 309.439 -4.618 3600 58.053 417.272 365.315 181.851 125.351 309.439 -4.618 3600 58.070 420.499 368.211 193.464 124.581 319.980 -4.517 3800 58.077 422.048 369.608 199.271 124.219 325.267 -4.471 3900 58.083 423.556 370.972 205.079 123.874 330.563 -4.427 4000 58.089 425.027 372.305 210.888 123.546 335.866 -4.386 4100 58.094 425.861 374.883 212.25.07 122.940 346.497 -4.309 4000 58.089 425.027 372.305 210.888 123.546 335.866 -4.386 4100 58.094 427.861 374.883 212.2507 122.940 346.497 -4.309 4300 58.104 439.364 377.853 222.507 122.940 346.497 -4.309 4400 58.089 425.027 372.305 210.888 123.546 335.866 -4.386 400 58.089 425.027 372.305 210.888 123.546 335.866 -4.386 400 58.104 439.364 377.853 239.399 122.156 362.493 -4.204 400 58.108 439.364 377.853 239.399 122.156 362.493 -4.204 400 58.124 433.1870 378.850 239.939 122.156 362.493 -4.204 400 58.124 434.355 388.4194 268.999 121.132 388.256 -4.067 400 58.124 437.353 388.4194 268.999 122.156 362.493 -4.204 400 58.124 434.879 388.874 251.562 121.099 373.185 -4.147 400 58.124 434.879 388.806 274.812 12.959 394.620 -4.007 400 58.124 437.353 389.341 298.667 120.333 416.107 -3.952 5000 58.124 447.4617 388.866 36.389 120.636	2100	57.797	387.672	339.714	100.711	130,583	237,125	-5.898
2400 57.891 395.396 346.202 118.065 129.813 252.393 -5.493 2500 57.915 397.760 148.217 123.855 129.476 2275.508 -5.380 2600 57.936 400.031 350.167 129.648 129.109 262.636 -5.276 2700 57.955 402.218 352.054 135.442 128.718 267.780 -5.181 2800 57.984 405.326 153.884 414.239 128.309 272.938 -5.092 2900 57.988 406.361 155.659 147.037 127.887 278.110 -5.002 3000 58.002 4405.229 159.056 158.637 127.026 288.500 -4.861 3200 58.026 412.071 360.684 143.917 160.684 164.439 126.596 293.715 -4.794 3300 58.036 413.857 362.268 170.242 126.172 298.943 -4.733 3500 58.054 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
2500 57.915 397.760 148.217 123.855 129.476 257.568 -5.380 2500 57.936 400.031 50.167 129.648 129.109 262.636 -5.276 2700 57.955 402.218 352.054 135.442 128.718 267.780 -5.181 2800 57.972 404.326 353.884 41.239 128.309 272.938 -5.092 2900 57.988 406.361 355.659 147.037 127.887 278.110 -5.099 2900 57.988 406.361 355.659 147.037 127.887 278.110 -5.099 2900 57.988 406.361 355.659 147.037 127.887 278.110 -5.099 2900 58.002 408.327 357.382 152.836 127.458 283.297 -4.933 3100 58.004 410.029 359.056 158.037 127.887 278.110 -5.009 2000 58.005 412.071 360.684 164.439 126.596 293.715 -4.794 2300 58.036 412.071 360.684 164.439 126.596 293.715 -4.794 2300 58.036 412.671 360.684 164.439 125.556 304.186 -4.673 2300 58.036 417.272 365.315 181.851 125.351 304.399 -4.618 2360 58.053 417.272 365.315 181.851 125.351 304.399 -4.618 2360 58.053 417.272 365.315 181.851 125.351 304.399 -4.517 2360 58.070 420.499 368.211 39.364 124.581 319.980 -4.517 2360 58.083 422.596 370.972 205.079 124.599 314.705 -4.566 2400 58.089 425.027 372.305 210.888 123.546 335.866 -4.386 2400 58.089 425.027 372.305 210.888 123.546 335.866 -4.386 2400 58.094 427.861 374.883 222.507 122.940 346.497 -4.394 2400 58.108 430.264 377.353 234.128 122.402 357.155 -4.240 2400 58.108 430.364 377.353 234.128 122.402 357.155 -4.240 2400 58.108 430.364 377.353 234.128 122.402 357.155 -4.240 2400 58.108 430.364 377.353 234.128 122.663 353.866 -4.386 2400 58.108 430.364 377.353 234.128 122.663 353.865 -4.177 2400 58.124 433.147 379.724 425.750 121.926 378.389 -4.027 2400 58.124 435.561 388.200 125.737 2400 58.124 437.994 384.194 485.899 312.133 383.895 -4.092 2400 58.124 447.899 383.108 263.186 121.313 383.895 -4.091 2400 58.124 447.488 388.306 274.812 120.959 394.620 -4.047 2400 58.124 447.488 388.306 274.812 120.959 394.620 -4.007 2400 58.124 447.488 388.306 265.186 121.313 388.955 -4.097 2400 58.124 447.818 387.366 286.499 120.036 405.358 -3.999 2500 58.124 447.617 393.155 321.206 120.036 405.358 -3.999	2300							
2600 57,936 400,031 350,167 129,648 129,109 262,636 -5,276 2700 57,955 402,218 352,054 135,442 128,718 267,780 -5,181 2800 57,972 404,326 353,884 141,239 128,309 272,938 -5,092 2900 57,988 406,361 355,659 147,037 127,887 278,110 -5,009 3000 58,002 408,327 357,382 152,836 127,026 288,500 -4,861 3200 58,026 412,071 360,684 164,439 126,596 293,715 -4,794 3300 58,036 413,857 362,268 170,242 126,172 298,943 -4,732 3400 58,046 415,590 363,381 176,046 125,756 304,186 -4,673 3500 58,053 417,272 365,318 187,657 124,959 314,705 -4,618 3600 58,053 418,908 366,781 1	1400		395.396				252.393	
2700 57,955 402,218 152,054 135,442 128,718 267,780 -5,181 2800 57,978 404,326 153,884 141,239 128,309 272,938 -5,092 2900 57,988 406,361 155,659 147,037 127,887 278,110 -5,092 3000 58,002 408,327 157,382 152,836 127,458 283,297 -4,933 3100 58,014 410,229 359,056 158,637 127,026 288,500 -4,861 3000 58,036 412,8071 360,684 164,439 126,596 293,715 -4,794 3400 58,036 415,599 363,811 176,046 125,575 304,186 -4,673 3500 58,053 417,272 365,515 181,851 125,551 304,186 -4,673 3600 58,070 420,499 366,781 187,657 124,959 314,705 -4,566 3700 58,083 422,595 370,972								
2800 57.972 404.326 153.884 141.239 128.309 272.938 -5.092 2900 57.988 406.361 155.659 147.037 127.887 278.110 -5.009 3000 58.002 408.327 157.382 152.836 127.458 283.297 -4.933 3100 58.014 410.229 159.056 158.637 127.026 288.500 -4.861 200 58.026 412.071 306.084 164.439 126.596 293.715 -4.794 3300 58.036 415.857 362.268 170.242 126.172 298.943 -4.732 3400 58.046 415.590 363.811 70.046 125.756 304.186 -4.673 3500 58.055 417.272 365.315 181.851 125.351 309.439 -4.618 3600 58.053 417.272 365.315 181.851 125.351 309.439 -4.618 3600 58.053 412.272 365.315 181.851 125.351 309.439 -4.618 3600 58.053 412.272 365.315 181.851 125.351 309.439 -4.618 3600 58.053 422.049 368.211 193.644 124.581 319.980 -4.571 3900 58.070 422.049 368.211 193.644 124.581 319.980 -4.517 3900 58.083 422.556 370.972 205.079 123.874 330.563 -4.427 4000 58.094 426.461 373.608 216.697 123.234 341.178 -4.334 400 58.094 426.461 373.608 216.697 123.234 341.178 -4.347 4200 58.099 427.861 374.883 222.507 122.940 346.497 -4.390 4300 58.104 429.228 376.131 228.317 122.663 351.824 -4.274 4400 58.108 430.564 377.853 234.128 122.402 357.155 -4.240 4500 58.112 431.870 378.550 299.999 122.156 362.493 371.856 -4.274 4600 58.126 434.397 380.874 245.550 121.996 367.836 -4.177 4000 58.120 434.397 380.874 251.562 121.709 373.185 -4.240 4500 58.124 434.397 380.874 251.562 121.709 373.185 -4.240 4500 58.124 434.397 380.874 251.562 121.709 373.185 -4.147 4800 58.124 434.397 380.874 251.562 121.709 373.185 -4.147 4800 58.124 434.397 380.874 251.562 121.096 367.836 -4.177 4800 58.124 434.397 380.874 251.562 121.096 379.338 -4.119 380.104 42.681.91 383.108 263.186 121.313 389.955 -4.092 3000 58.124 434.582 398.874 251.562 121.096 379.338 -4.119 300 58.124 434.582 398.874 251.562 121.096 379.338 -4.119 300 58.124 434.583 389.341 286.007 286.606 20.995 399.987 -4.018 3300 58.137 441.381 387.336 286.399 121.132 389.256 -4.067 3100 58.134 444.4882 399.341 298.067 120.333 416.107 -3.995 3900 58.140 444.681 391.315 390.3382 120.036 426.868 -3.912 3900 58.140 444.682 391.315 39								
2900 57,988 406,361 355,659 147,037 127,887 278,110 -5.009 3000 58,002 408,327 157,382 152,836 127,458 283,297 -4,933 3100 58,014 410,229 159,056 158,637 127,026 288,500 -4,861 3200 58,026 412,071 360,684 164,439 126,596 293,715 -4,794 3300 58,036 413,857 362,268 170,242 126,172 299,943 -4,732 3400 58,046 415,590 363,811 176,046 125,756 304,186 -4,673 3500 58,055 417,272 365,315 181,851 125,351 309,439 -4,618 3600 58,053 418,908 366,781 187,657 124,959 314,705 -4,566 3700 58,070 422,099 368,211 193,464 124,581 319,980 -4,517 3800 58,077 422,048 369,608 199,271 124,219 325,267 -4,471 3800 58,083 425,556 370,972 205,079 123,874 330,563 -4,427 4000 58,089 425,027 372,305 210,888 123,546 335,866 -4,386 4000 58,094 427,861 374,883 222,507 122,940 346,497 -4,309 4300 58,104 429,228 376,131 283,171 122,653 351,824 -4,274 4400 58,108 430,564 377,353 234,128 122,402 357,155 -4,240 4500 58,112 431,870 378,550 239,939 122,156 362,493 -4,208 4600 58,112 431,870 378,550 239,939 122,156 362,493 -4,208 4600 58,126 433,477 379,724 245,750 121,926 367,836 -4,177 4700 58,120 434,397 380,374 251,562 121,709 373,185 -4,117 4700 58,120 434,397 380,374 251,562 121,709 373,185 -4,117 4700 58,120 434,397 380,374 251,562 121,709 373,185 -4,117 4700 58,120 437,394 384,194 265,196 211,132 383,895 -4,092 300 58,135 444,248 388,347 29,225 10,338 410,731 -3,993 300 58,144 444,248 388,347 29,225 10,038 410,036 425,868 -3,912 300 58,144 444,248 388,347 29,225 10,038 410,036 426,868 -3,912 300 58,144 444,582 390,318 30,382 120,036 426,868 -3,912 300 58,144 444,582 390,318 30,382 120,036 426,868 -3,912 300 58,144 444,582 390,318 30,382 120,036 426,868 -3,912 300 58,144 444,582 390,318 30,382 120,036 426,868 -3,912 300 58,144 444,582 390,318 30,388 120,036 426,868 -3,912 300 58,144 444,582 390,318 30,388 120,036 426,868 -3,912 300 58,144 444,582 390,318 30,388 120,036 426,868 -3,912 300 58,144 444,582 390,318 30,388 120,036 426,868 -3,912 300 58,144 444,582 390,318 30,388 120,386 426,868 -3,912 300 58,144 444,582 390,318 30,388 120,336 426,388 -			402.216	153 884	141 239			-5.092
3000 \$8,002 408,327 157,382 152,836 127,458 283,297 -4,933 3100 \$8,014 410,229 159,056 158,637 127,026 293,715 -4,794 3200 \$8,026 412,071 360,684 164,439 126,596 293,715 -4,794 3300 \$8,036 413,857 362,268 170,242 126,172 298,943 -4,732 3400 \$8,046 415,590 363,811 176,046 125,756 304,186 -4,673 3500 \$8,053 417,272 365,315 181,851 125,351 309,439 -4,618 3600 \$8,070 420,499 368,211 193,464 124,581 319,980 -4,517 3800 \$8,077 422,048 496,608 199,271 124,219 305,663 -4,471 3900 \$8,083 425,027 377,205 120,888 123,546 335,866 -4,427 4000 \$8,094 426,461 373,608 2			406.361	355.659	147.037			
3200 58,026 412,071 360,684 164,439 126,596 293,715 -4,792 3300 58,036 413,857 362,288 170,242 126,172 298,943 -4,732 3400 58,046 415,590 363,811 176,046 125,756 304,186 -4,673 3500 58,055 417,272 365,315 181,851 125,351 309,439 -4,618 3600 58,070 420,499 368,211 193,464 124,581 319,980 -4,517 3800 58,077 422,048 396,608 199,271 124,219 305,663 -4,217 3900 58,083 425,027 377,205 210,888 123,546 305,663 -4,427 4000 58,094 426,461 373,608 216,697 123,234 341,178 -4,347 4200 58,099 427,861 374,883 222,507 122,940 346,497 -4,349 4300 58,104 429,228 376,131 2	3000	58.002	408.327	157.382	152.836	127.458	283.297	-4.933
3900 \$8,036 413,857 162,268 170,242 126,172 298,943 -4,733 3400 \$8,046 415,590 163,811 176,046 125,756 304,186 -4,673 3500 \$8,055 417,272 165,315 181,851 125,351 304,186 -4,673 3500 \$8,053 418,808 366,781 187,657 124,959 314,705 -4,566 3700 \$8,070 420,499 368,211 193,464 124,581 319,980 -4,516 3800 \$8,077 422,048 369,608 199,271 124,219 325,267 -4,471 3800 \$8,083 425,556 370,972 205,079 123,874 305,653 -4,427 4000 \$8,084 425,556 370,972 205,079 123,874 305,653 -4,427 4000 \$8,094 425,661 374,883 222,507 122,940 346,497 -4,309 4200 \$8,099 427,861 374,883 222,507 122,940 346,497 -4,309 4300 \$8,104 429,228 376,131 222,817 122,663 351,864 42,274 4400 \$8,108 430,564 377,353 234,128 122,402 357,155 -4,240 4500 \$8,112 431,870 378,550 239,939 122,156 362,493 46,497 4700 \$8,120 434,397 380,874 251,562 121,926 367,836 -4,177 4700 \$8,120 434,397 380,874 251,562 121,926 367,836 -4,177 4800 \$8,123 435,621 382,001 257,374 121,505 378,538 -4,147 4800 \$8,123 435,621 382,001 257,374 121,505 378,538 -4,147 4800 \$8,123 435,621 382,001 257,374 121,505 378,538 -4,147 4800 \$8,123 437,994 384,194 268,999 121,132 389,255 -4,067 1100 \$8,132 439,145 385,260 274,812 120,959 394,620 -4,042 2900 \$8,135 440,274 386,307 286,626 120,795 399,987 -4,067 3500 \$8,140 442,468 388,347 292,253 120,483 410,731 -3,973 3500 \$8,140 444,268 388,347 292,253 120,886 410,731 -3,973 3500 \$8,140 444,582 390,318 393,882 120,386 42,886 -3,912 3700 \$8,140 444,582 390,318 303,882 120,386 42,886 -3,912 3700 \$8,140 444,582 390,318 303,882 120,386 42,886 -3,912 3700 \$8,140 444,582 390,318 303,882 120,386 42,886 -3,912 3700 \$8,140 444,582 390,318 303,882 120,386 42,886 -3,912 3700 \$8,140 444,582 390,318 303,882 120,386 42,886 -3,912 3700 \$8,140 444,582 390,318 303,882 120,386 42,886 -3,912 3700 \$8,140 444,582 390,318 303,882 120,386 42,886 -3,912 3700 \$8,140 444,582 390,318 303,882 120,386 42,886 -3,912 3700 \$8,140 444,582 390,318 303,882 120,386 42,886 -3,912 3700 \$8,140 444,582 390,318 303,882 120,386 42,886 -3,912 3700 \$8,144 444,582 390,318 303,882 120,336 42,886	3100	58.014	410,229	359,056	158.637	127,026	288,500	-4.861
3400 58,046 415,590 163,811 176,046 125,756 304,186 -4,673 3500 58,055 417,272 365,315 181,851 125,756 304,386 -4,618 3600 58,063 418,908 366,781 187,657 124,959 314,705 -4,566 3700 58,070 420,049 308,211 193,664 124,581 319,980 -4,517 3800 58,077 422,048 396,608 199,271 124,219 305,663 -4,471 3900 58,083 425,057 370,972 205,079 123,874 330,563 -4,427 4000 58,094 426,641 373,608 216,697 123,234 341,178 -4,386 400 58,099 427,861 374,883 222,507 122,960 351,824 -4,274 400 58,104 429,228 376,131 228,317 122,663 351,824 -4,274 400 58,104 430,564 377,353 234,	3200						293.715	-4.794
3500 \$8,055 417.272 365.315 181.851 125.351 309.439 -4.618 3600 \$8,063 418.908 366.781 187.657 124.959 314.705 -4.566 3700 \$8,070 420.499 368.211 193.644 124.881 319.980 -4.517 3800 \$8,077 422.049 368.211 193.644 124.881 319.980 -4.517 3900 \$8,083 422.056 370.972 205.079 123.874 330.563 -4.427 4000 \$8,089 425.027 372.305 210.888 123.546 335.866 -4.386 4100 \$8,094 425.027 372.305 210.888 123.546 335.866 -4.386 4200 \$8,099 427.861 374.883 222.507 122.940 346.497 -4.399 4300 \$8,104 429.228 376.131 222.507 122.940 346.497 -4.394 4400 \$8,108 430.564 377.353 234.128 122.402 357.155 -4.240 4500 \$8,112 431.870 378.550 239.939 122.156 362.493 362.493 464.97 4700 \$8,120 434.937 380.874 251.562 121.996 367.836 -4.177 4800 \$8,120 434.937 380.874 251.562 121.996 373.185 -4.147 4800 \$8,123 435.621 382.001 257.374 121.505 378.538 -4.197 4900 \$8,126 436.819 383.108 263.186 121.313 383.895 -4.092 5000 \$8,126 436.819 383.108 263.186 121.313 389.256 -4.067 1100 \$8,135 440.274 386.307 286.626 120.995 394.620 -4.067 2200 \$8,135 440.274 386.307 286.626 120.995 399.987 -4.018 3300 \$8,137 441.381 387.336 286.439 120.636 405.358 -3.995 3400 \$8,140 442.468 388.347 292.253 120.483 410.731 -3.973 3500 \$8,140 444.582 390.318 393.882 -3.995 3600 \$8,140 444.682 392.224 315.511 198.86 432.253 3.985 3600 \$8,140 444.582 390.318 393.882 120.866 120.395 399.987 -4.018 3700 \$8,140 444.582 390.318 303.882 120.866 426.868 -3.912 3700 \$8,140 444.582 390.318 303.882 120.866 426.868 -3.912 3700 \$8,140 444.582 390.318 303.882 120.866 426.868 -3.912 3800 \$8,140 444.582 390.318 303.882 120.866 426.868 -3.912 3800 \$8,140 444.582 390.318 303.882 120.866 426.868 -3.912 3800 \$8,140 444.582 390.318 303.882 120.866 426.868 -3.912 3800 \$8,140 444.582 390.318 303.882 120.866 426.868 -3.912 3800 \$8,140 445.682 391.279 309.696 120.036 426.868 -3.912 3800 \$8,140 445.682 391.279 309.696 120.036 426.868 -3.912 3800 \$8,140 445.682 391.279 309.696 120.036 426.868 -3.912 3800 \$8,140 445.682 391.279 309.696 120.036 426.868 -3.912 3800 \$8,140 445.682 391.279 309.696 120.03				362.268			298.943	
\$600			415.590	363.811		125.756		
3700 58.070 420.499 168.211 193.464 124.581 319.980 -4.517 3800 58.077 422.048 499.608 199.271 124.219 325.267 -4.471 3900 58.083 423.556 370.972 205.079 123.874 330.563 -4.427 4000 58.089 425.027 372.305 210.888 123.566 335.866 -4.386 4100 58.094 422.661 373.608 216.697 123.234 341.178 -4.347 4200 58.099 427.861 374.883 222.507 122.940 346.497 -4.309 4300 58.104 430.2564 377.353 234.128 122.402 357.155 -4.240 4500 58.112 431.870 378.550 239.939 122.156 362.493 -4.108 4600 58.126 434.397 180.874 251.562 121.796 367.836 -4.177 4800 58.123 434.581 383.108								
3800 58.077 422.048 169.608 199.271 124.219 325.267 -4.471 3900 58.083 423.556 170.972 205.079 123.874 330.563 -4.427 4000 58.089 425.027 172.305 210.888 123.546 335.866 -4.386 4100 58.099 427.861 373.608 216.697 123.234 341.178 -4.347 4200 58.099 427.861 374.883 222.507 122.963 351.824 -4.274 4400 58.108 430.564 377.153 234.128 122.462 351.824 -4.274 4400 58.108 430.564 377.153 234.128 122.402 357.155 -4.240 4500 58.112 431.870 378.550 239.939 122.156 362.493 -4.204 4600 58.164 435.147 379.724 245.750 121.926 367.836 -4.177 4700 58.120 435.621 382.001 2								
3900 \$8,083 423,556 370,972 205,079 123,874 330,563 -4,427 400 \$8,089 425,027 172,305 210,888 123,546 335,866 -4,386 4100 \$8,094 425,461 373,608 216,697 123,234 341,178 -4,347 4200 \$8,099 427,861 374,883 222,507 122,940 346,497 -4,309 4300 58,104 429,228 376,131 228,317 122,663 351,824 -4,274 4400 \$8,108 430,564 377,353 234,128 122,402 357,155 -4,240 4500 58,112 431,870 378,550 239,939 122,156 362,493 -4,208 4600 \$8,116 433,147 379,724 245,750 121,926 367,836 -4,177 4700 \$8,120 434,397 180,874 251,562 121,709 373,185 -4,147 4800 \$8,123 435,621 382,001 257,374 121,505 378,538 -4,119 4900 \$8,124 436,819 383,108 63,186 121,313 383,895 -4,19 4900 \$8,124 435,531 440,274 386,307 280,626 120,795 399,987 -4,018 3300 \$8,137 441,381 387,336 286,439 120,636 403,558 -3,995 3400 58,140 442,468 388,47 29,2253 120,483 410,731 -3,973 5500 58,144 445,861 39,318 29,607 120,333 416,107 -3,952 5600 58,144 444,582 390,318 129,2253 120,88 410,731 -3,973 5500 58,146 445,662 391,279 309,696 120,036 426,868 -3,912 5800 58,146 445,662 391,279 309,696 120,036 426,868 -3,912 5800 58,148 444,582 390,318 15511 119,886 432,253 -3,895 5900 58,150 447,617 393,155 321,326 119,733 437,639 -3,875 6000 58,151 448,594 394,071 327,141 119,575 443,029 -3,857								
4000 58,089 425,027 372,305 210,888 123,546 335,866 -4,386 4100 58,099 427,861 373,688 123,234 341,178 -4,347 4200 58,099 427,861 374,883 222,507 122,940 346,497 -4,309 4300 58,104 429,228 317,6131 228,317 122,663 351,824 -4,274 4400 58,108 430,564 377,353 234,128 122,402 357,155 -4,240 4500 58,112 431,870 378,550 239,939 122,156 362,493 -4,208 4600 58,120 433,147 379,724 245,750 121,926 367,836 -4,177 4700 58,120 433,5621 382,001 257,374 121,099 373,185 -4,117 4800 58,126 436,819 383,108 263,186 121,313 383,895 -4,092 900 58,126 437,994 384,194 268,999				370.972	205.079			-4.427
4200 58.099 427.861 374.883 222.507 122.940 346.497 -4.309 4300 58.104 429.228 376.131 228.317 122.663 351.824 -4.274 4400 58.108 430.564 377.353 234.128 122.462 357.155 -4.240 4500 58.112 431.870 378.550 239.939 122.156 362.493 -4.208 4600 58.120 433.147 379.724 245.750 121.926 367.836 -4.177 4700 58.123 435.621 382.001 257.374 21.505 378.538 -4.197 4800 58.123 435.621 382.001 257.374 21.505 378.538 -4.119 4900 58.126 436.819 383.108 263.186 121.313 383.895 -4.067 5100 58.129 437.994 384.194 268.999 121.132 389.256 -4.067 1100 58.132 440.274 386.307 280	4000	58.089	425.027		210.888	123.546		
4300 \$8.104 429.228 376.131 228.317 122.663 351.824 -4.274 4400 \$8.108 430.564 377.353 234.128 122.402 357.155 -4.240 4500 \$8.112 431.870 378.550 239.939 122.156 362.493 -4.208 4600 \$8.112 431.870 378.550 239.939 122.156 362.493 -4.208 4600 \$8.120 433.147 379.724 245.750 121.926 367.836 -4.177 4700 \$8.120 434.937 180.874 251.562 121.709 373.185 -4.147 4800 \$8.123 435.621 382.001 257.374 121.505 378.538 -4.119 4900 \$8.126 436.819 383.108 263.186 121.313 383.895 -4.192 5000 \$8.126 439.145 385.260 274.812 120.959 394.620 -4.067 5100 \$8.132 439.145 385.260 274.812 120.959 399.887 -4.018 5200 \$8.135 440.274 386.307 280.626 120.795 399.987 -4.018 5300 \$8.137 441.381 387.336 286.439 120.636 405.358 -3.995 5400 \$8.140 442.468 388.347 292.253 120.833 410.731 -3.973 5500 \$8.144 445.82 390.318 303.882 120.184 410.731 -3.973 5500 \$8.144 445.82 390.318 303.882 120.184 421.487 -3.931 5700 \$8.146 445.623 391.279 309.696 120.036 426.868 -3.912 5800 \$8.148 446.623 391.229 309.696 120.036 426.868 -3.912 5800 \$8.148 446.623 392.224 315.511 119.886 432.253 -3.893 5900 \$8.150 447.617 393.155 321.326 119.733 437.639 -3.875 6000 \$8.151 448.594 394.071 327.141 119.575 443.029 -3.857		58.094	426.461	373,608	216.697	123.234	341.178	-4.347
4400 \$8,108 430,564 377,353 234,128 122,402 357,155 -4,240 4500 \$8,112 431,870 378,550 239,939 122,156 362,493 -4,208 4600 \$8,116 433,147 379,724 245,750 121,926 367,836 -4,177 4700 \$8,120 434,397 380,874 251,562 121,709 373,185 -4,147 4800 \$8,123 435,621 382,001 257,374 121,505 378,538 -4,119 4900 \$8,126 436,819 383,108 263,186 121,313 383,895 -4,092 5000 \$8,122 437,994 384,194 268,999 121,132 389,256 -4,067 1100 \$8,132 439,145 385,260 274,812 120,995 394,620 -4,042 3300 \$8,137 441,381 187,336 286,639 120,636 405,358 -3,995 3500 \$8,140 442,688 388,347 2			427,861	374.883	222,507		346,497	
4500 58.112 431.870 378.550 239.939 122.156 362.493 -4.208 4600 58.16 433.147 379.724 245.750 121.926 367.836 -4.177 4700 58.120 434.397 380.874 251.562 121.709 373.185 -4.147 4800 58.123 435.621 382.001 257.374 121.505 378.538 -4.119 4900 58.126 436.819 383.108 263.186 121.313 388.395 -4.199 5000 58.129 437.994 384.194 268.999 121.132 383.265 -4.092 5000 58.132 439.145 385.260 274.812 120.959 399.887 -4.018 5300 58.137 441.381 387.336 286.439 120.636 405.358 -3.995 5400 58.140 442.468 388.347 292.253 120.483 410.731 -3.973 5500 58.144 444.582 399.318 389.341 120.846 405.358 -3.995 5600 58.144 444.582 390.318 303.882 120.184 421.487 -3.931 5700 58.146 445.612 391.279 309.696 120.036 426.868 -3.912 5800 58.149 445.623 392.224 315.511 119.886 432.253 -3.893 5900 58.150 447.617 393.155 321.326 119.733 437.639 -3.875 6000 58.151 448.594 394.071 327.141 119.575 443.029 -3.857								
4600 58.116 433.147 379.724 245.750 121.926 367.836 -4.177 4700 58.120 434.397 380.874 251.562 121.709 373.185 -4.147 4800 58.123 435.621 382.001 257.374 121.505 378.538 -4.119 4800 58.126 435.619 383.108 263.186 121.313 383.895 -4.092 5000 58.129 437.994 384.194 268.999 121.132 383.895 -4.067 1100 58.132 439.145 385.260 274.812 120.959 394.620 -4.067 2200 58.135 440.274 386.307 280.626 120.795 399.987 -4.018 3300 58.137 441.381 387.336 286.439 120.636 405.358 -3.995 3400 58.140 442.468 388.347 292.253 120.483 410.731 -3.973 3500 58.144 444.582 390.318 393.882 120.333 416.107 -3.952 5600 58.144 444.582 390.318 303.882 120.184 421.487 -3.931 5700 58.146 445.612 391.279 309.696 120.036 426.868 -3.912 5800 58.148 446.623 392.224 315.511 119.886 432.253 -3.893 3900 58.150 447.617 393.155 321.326 119.733 437.639 -3.875 6000 58.151 448.594 394.071 327.141 119.575 443.029 -3.875								
4700 58,120 434.397 380.874 251.562 121.709 373.185 -4,147 4800 58,123 435.621 382.001 257.374 121.505 378.538 -4,119 4900 58,126 436,819 383.108 263.186 121.313 383.895 -4,092 5000 58,129 437.994 384.194 268.999 121.132 389.256 -4,067 7100 58,132 449.143 385.260 274.812 120.959 399.4620 -4,042 3200 58,135 440.274 386.307 280.626 120.959 399.987 -4,018 3300 58,137 441.381 87.336 286.439 120.636 405.358 -3.995 440 58,140 442.468 388.347 292.253 120.483 410.731 -3.973 5500 58,144 444.582 390.318 303.882 120.184 421.487 -3.931 3700 58,146 445.612 391.279 30								
4800 \$8.123 435.621 382.001 2573.74 121.505 378.538 -4.119 4900 \$8.126 436.819 383.108 263.186 121.313 383.895 -4.092 5000 \$8.129 437.994 384.194 268.999 121.132 389.256 -4.067 1100 \$8.132 439.145 385.260 274.812 120.559 394.620 -4.042 1200 \$8.135 440.274 386.307 280.626 120.795 399.987 -4.018 1300 \$8.137 441.381 387.336 286.639 120.636 405.358 -3.995 1400 \$8.140 442.468 388.347 292.253 120.483 410.731 -3.973 1500 \$8.140 442.668 389.341 298.667 120.333 416.107 -3.952 1500 \$8.144 445.82 390.318 303.882 120.184 421.487 -3.931 15700 \$8.146 445.612 391.279 309.696 120.036 426.868 -3.912 1500 \$8.148 446.623 392.224 315.511 119.886 432.253 -3.893 1500 \$8.151 448.594 394.071 327.141 119.575 443.029 -3.857								
4900 58.126 436.819 383.108 263.186 121.313 383.895 -4.092 5000 58.129 437.994 384.194 268.999 121.132 389.256 -4.067 5100 58.135 440.274 386.307 280.626 120.959 399.4620 -4.042 5200 58.135 440.274 386.307 280.626 120.795 399.987 -4.018 3300 58.140 441.381 887.336 286.439 120.636 405.358 -3.995 400 58.140 442.468 388.347 292.253 120.483 410.731 -3.973 5600 58.144 444.582 390.318 303.882 120.184 421.487 -3.931 3700 58.146 445.612 391.279 309.696 120.036 426.868 -3.912 5800 58.148 446.623 392.224 315.511 119.886 432.253 -3.893 5900 58.150 447.617 393.155 3				182 001	257.302	121.709	373.103	-4.147 -4.110
5000 58.129 437.994 384.194 268.999 121.132 389.256 -4.067 5100 58.132 439.145 385.260 274.812 120.959 394.620 -4.042 200 58.135 440.274 386.307 280.626 120.795 399.987 -4.018 3300 58.137 441.381 387.336 286.439 120.636 405.358 -3.995 3400 58.140 442.688 388.47 292.253 120.483 410.731 -3.973 3500 58.142 443.535 389.341 298.067 120.333 416.107 -3.952 5600 58.144 444.582 390.318 303.882 120.184 421.487 -3.931 5700 58.146 445.612 391.279 309.696 120.036 428.686 -3.912 5800 58.148 446.623 392.224 315.511 119.886 432.253 -3.893 5900 58.150 447.617 393.155 321								
3200 58.135 440.274 386.307 280.626 120.795 399.987 -4.018 3300 58.137 441.381 187.336 286.439 120.636 405.358 -3.995 5400 58.140 442.468 388.347 292.253 120.483 410.731 -3.973 5500 58.142 445.535 389.341 298.067 120.333 416.107 -3.952 5600 58.144 444.582 390.318 203.882 120.184 421.487 -3.931 3700 58.146 445.612 391.279 309.696 120.036 426.868 -3.912 2800 58.148 446.623 392.224 315.511 119.886 432.253 -3.893 5900 58.150 447.617 393.155 321.326 119.733 437.639 -3.875 6000 58.151 448.594 394.071 327.141 119.575 443.029 -3.857								
3200 58.135 440.274 386.307 280.626 120.795 399.987 -4.018 3300 58.137 441.381 187.336 286.439 120.636 405.358 -3.995 5400 58.140 442.468 388.347 292.253 120.483 410.731 -3.973 5500 58.142 445.535 389.341 298.067 120.333 416.107 -3.952 5600 58.144 444.582 390.318 203.882 120.184 421.487 -3.931 3700 58.146 445.612 391.279 309.696 120.036 426.868 -3.912 2800 58.148 446.623 392.224 315.511 119.886 432.253 -3.893 5900 58.150 447.617 393.155 321.326 119.733 437.639 -3.875 6000 58.151 448.594 394.071 327.141 119.575 443.029 -3.857			439.145	385.260	274.812	120.959		-4.042
3300 58,137 441,381 387,336 286,439 120,636 405,358 -3,995 3400 58,140 442,468 388,347 292,253 120,483 410,731 -3,973 3500 58,142 443,535 389,341 298,067 120,333 416,107 -3,952 5600 58,144 444,582 390,318 303,882 120,184 421,487 -3,931 5700 58,146 445,612 391,279 309,696 120,036 426,868 -3,912 5800 58,148 446,623 392,224 315,511 119,886 432,253 -3,893 3900 58,150 447,617 393,155 321,326 119,733 437,639 -3,875 6000 58,151 448,594 394,071 327,141 119,575 443,029 -3,875				386.307	280.626	120.795	399.987	-4.018
5500 58.142 443.535 389.341 298.067 120.333 416.107 -3.952 5600 58.144 444.582 390.318 303.882 120.184 421.487 -3.931 5700 58.146 445.612 3191.279 309.696 120.036 421.487 -3.912 5800 58.148 446.623 3192.224 315.511 119.886 432.253 -3.893 5900 58.150 447.617 393.155 321.326 119.733 437.639 -3.875 6000 58.151 448.594 394.071 327.141 119.575 443.029 -3.857					286.439	120.636	405.358	
:600 58.144 444.582 390.318 303.882 120.184 421.487 -3.931 :700 58.146 445.612 391.279 309.696 120.036 426.868 -3.912 :800 58.148 446.623 392.224 415.511 119.886 432.253 -3.893 :900 58.150 447.617 393.155 321.326 119.733 437.639 -3.875 :6000 58.151 448.594 394.071 327.141 119.575 443.029 -3.857						120.483		
5700 S.1.146 445.612 391.279 309.696 120.036 426.868 -3.912 5800 S8.1.48 446.623 392.224 315.511 119.886 432.253 -3.893 5900 58.150 447.617 393.155 321.326 119.733 437.639 -3.875 6000 58.151 448.594 394.071 327.141 119.575 443.029 -3.857								
5800 58.148 446.623 392.224 315.511 119.886 432.253 -3.893 5900 58.150 447.617 393.155 321.326 119.733 437.639 -3.875 6000 58.151 448.594 394.071 327.141 119.575 443.029 -3.857				390.318				-3.931
9900 58,150 447,617 j93,155 321,326 119,733 437,639 -3,875 6000 58,151 448,594 394,071 327,141 119,575 443,029 -3,857								
6000 58,151 448,594 394,071 327,141 119,575 443,029 -3,857								
PREVIOUS: CURRENT: March 1996 (1 bar)								
	PREVIOUS:						URRENT: Mar	ch 1996 (1 bar)

 $\Delta_{\rm f} H^{\circ}(0 \text{ K}) = [119 \pm 40] \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{\rm f} H^{\circ}(298.15 \text{ K}) = [116.5 \pm 40] \text{ kJ} \cdot \text{mol}^{-1}$ $S^{\circ}(298.15 \text{ K}) = [296.4 \pm 4] \text{ J K}^{-1} \cdot \text{mol}^{-1}$ Electronic Level and Quantum Weight €,, cm X[2A"] 0.0 [2]

Ideal Gas

Vibrational Frequencies and Degeneracies

[1500](1) [150](1) [275](1)

Point Group: C, $\sigma = 1$ Bond Distances: I-O = [2.4] Å; $O-O = \{1.25] \text{Å}$ Bond Angle: $I-O-O = [120]^\circ$ Product of the Moments of Inertia: $I_{A}I_{B}I_{C} = [1314.2931 \times 10^{-117}] \text{ g}^3\text{cm}^6$

Enthalpy of Formation

Following trends¹ in the reaction $XOO(g) \to X(g) + 2O(g)$, a reasonable estimate for the icdine reaction would be 470 kJ-mol which yields $\Delta_i H^0(0 K) = -91.25 \text{ kl} \cdot \text{mol}^{-1}$. However, looking at the trends in the reaction $XOO(g) \to XO(g) + O(g)$, a reasonable estimate for the icdine reaction would be 260 kJ-mol⁻¹ which leads to a $\Delta_i H^0(0 K) = 119 \text{ kJ-mol}^{-1}$. This large discrepancy in estimates is a result of the estimates and uncertainties in all XOO enthalpies of formation. We adopt the value based on the reaction involving an X–O bond breakage.

Heat Capacity and Entropy

The vibrational frequencies and structure are estimated based on the existing data for FOO(g), CIOO(g), and BrOO(g). The principal moments of inertia in g cm² are: $I_A = 1.1391 \times 10^{-39}$, $I_B = 33.4021 \times 10^{-39}$, and $I_C = 34.5412 \times 10^{-39}$.

References

NIST-JANAF Thermochemical Tables: FOO(g): Sept. 1995; ClOO(g): March 1996; BrOO(g): March 1996.

Eı	ithalpy	Reference '	Temper		= T _r = 298.15 I	ζ.	Standard State Pressure = p° = 0.1 MPa			
	T/K	C°,	S°		$G^{\circ}-H^{\circ}(T_{r})]/T$	$H^{\circ}-H^{\circ}(T_{t})$	Δ _t H°	$\Delta_l G^\circ$	log Kr	
	0	.000		.000	INFINITE	-12.806	119.000	119,000	INFINITE	
	50 100	35.573 41.565	219	.838	442.181 338.245	-11.117 -9.181	118,7 62 118.195	116,235 113,932	-121.430 -59.512	
	150	45.076		.029	310.732	-7.005	117.715	111.907	-38.970	
	200	46.892		.272	300,780	-4.702	117,297	110.035	-28.738	
	250	47.962	287	.859	297.172	-2.328	116,899	108,266	-22.621	
	298.15	48.727	296	.374	296.374	.000	116.523	106,638	- 18.682	
	300	48,754		.676	295.375	.090	116.509	106.576	-18.557	
	400	50.151	310	.895	298.305	5.036	107.664	103,667	-13.538	
	500	51.463	322	.229	301.993	10.118	85.589	104.801	-10.948	
	600	52.620		.717	306.178	15.323	85.758	108.628	-9.457	
	700 800	53.581 54.355	339	.903 .110	310.424 314.568	20.635 26,033	85.931	112,426 116,199	-8.389 -7.587	
	900	54.973	357	.549	318.548	31.501	86.1C3 86.270	119.950	-6.962	
	1000	55.467		.368	322,344	37.024	86,430	123.684	-6.461	
	1100	55.863	364	.674	325.954	42.591	86,580	127,402	-6,050	
	1200	56.184	369	.548	329,387	48.194	86.718	131.107	-5.707	
	1300	56.446	374	.056	332.652	53.826	86.839	134.801	-5.416	
	1400 1500	56.662 56.842		.248	335.761 338.725	59.482 65.157	86.938 87.009	138.487 142.166	-5.167 -4.951	
	1600	56,993		.837	341,556	70.849	87.045	145.842	-4.761	
	1700	57,121		.837	341,263	76.555	87.043 87.041	143.842	-4.761 -4.594	
	1800	57,230		564	346.857	82,273	86.992	153,192	-4.446	
	1500	57.324	395	.661	349.345	88.001	86.895	156.873	-4.313	
	2000	57.405		.603	351.735	93.737	86.749	160.559	-4.193	
	2100	57.475	401	.406	354.034	99.481	86.554	164.254	-4.086	
	2200	57.537		.081	356.248	105.232	86.311	167.961	-3.988	
	2300 2400	57.591 57.639		.640 .092	358,384 360,446	110.988 116.750	86.024 85.698	171.678 175.408	-3.899 -3.818	
	2500	57.681		.446	362.439	122.516	85.337	179.154	-3.743	
	2600	57.719		.709	364,368	128,286	84.948	182,914	-3.675	
	2700	57.753	415	.888	366.236	134.059	84.536	186.690	-3.612	
	2800	57,784		.988	368.047	139.836	84.107	190.481	-3.553	
	2500 3000	57.812 57.836		.017	369.804 371.511	145.616 151.399	83.667 83.220	194.288	-3.499	
								198.110	-3.449	
	3100 3200	57.859 57.880		.874 .711	373.170 374.783	157.183 162.970	82.773 82.328	201.948 205.798	-3.403 -3.359	
	3300	57.899	427	492	376.353	168,759	81.889	209,663	-3.319	
	3400	57.916	429	.221	377.883	174.550	81.460	213,542	-3.281	
	3500	57.932	430	.900	379,374	180.342	81.042	217.433	~3.245	
	3600	57.946		.532	380.828	186.136	80.638	221.336	~3.211	
	3700 3800	57.960 57,972		.120 .666	382.247 383.632	191.932 197.728	80.249	225.249	-3.180	
	3900	57.983		.172	384.986	203,526	79.876 79.521	229.174 233.108	-3.150 -3.122	
	4000	57.994		.640	386.309	209.325	79.183	237.049	-3.096	
	4100	58.004		.072	387.603	215.125	78.862	241,000	-3.070	
	4200	58.013	441	.470	388.869	220.926	78.559	244.958	-3.047	
	4300	58.022		.835	390.108	226.727	78.274	248.924	-3.024	
	4400 4500	58.030 58.037		.169 .474	391,322 392,511	232.530 238.333	78.004 77.751	252.895	-3.002 -2.982	
	4600	58.044		.749	393,676			256.873		
	4700	58.051		.998	393.676 394.819	244.137 249.942	77.513 77.290	260.855 264.844	-2.962 -2.943	
	4800	58.057		.220	395.939	255.747	77.079	268.837	-2.926	
	4900	58.063	450	.417	397.039	261.553	76.880	272.834	-2.908	
	5000	58.068		.590	398.118	267.360	76.693	276.835	-2.892	
	5100	58.073		.740	399.178	273.167	76.514	280.840	-2.876	
	5200 5300	58.078 58.083		.868 .974	400.219	278.974	76.344	284.847	-2.861	
	5400	58.083		,060	401.242 402.247	284.783 290.591	76.180 76.011	288.859 292.873	-2.847 -2.833	
	5:00	58.091		.126	403.235	296.400	75.866	296.890	-2.833 -2.820	
	5600	58,095		.172	404.207	302,209	75.712	300.911	-2.807	
	5700	58.099		.201	4(5.162	308,019	75.559	304.933	-2.794	
	5100	58.102		.211	406.103	313.829	75.405	308.959	-2.782	
	5900	58.105		.204	407.028	319.639	75.247	312.986	-2.771	
	6000	58.109	462	.181	407.939	325.450	75.085	317.018	-2.760	
ppi	EVIOUS						_	TIDDENT	1 1004 (1.1.	
7 10	- 11003							UKKENI: Mar	ch 1996 (1 bar)	

1O3 (g)

Standard State Pressure = p° = 0.1 MPa

 $\Delta_t H^{\circ}(0 \text{ K}) = [248 \pm 50] \text{ kJ·mol}^{-}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = [241.9 \pm 50] \text{ kJ·mol}^{-}$

Enthalpy Reference Temperature = T_r = 298.15 K

 $S^{\circ}(298.15 \text{ K}) = [293.0 \pm 4] \text{ J K}^{-1} \cdot \text{mol}^{-1}$

lodine oxide (IO₃)

Electronic Level and Quantum Weight state €,, cm $[^2A_1]$ [2]

Vibrational Frequencies and Degeneracies [780](1) [357](1) [809](2) [326](2)

Point Group: C_{3v} Bond Distance: I-O = [1.79|Å $\sigma=3$ Bond Angle: O-I-O = [89]° Product of the Moments of Inertia: $I_A I_B I_C = 3642.3539 \times 10^{-117} \text{ g}^3 \text{cm}^6$

Enthalpy of Formation

We adopt an enthalpy of formation value which is based on an assumed relationship of $\Delta_n H^o(IO_3g)3=0.9D_0^o(IO)$. An enthalpy of formation value has been reported by Farkas and Klein. This value, $-28 \text{ kcal} \cdot \text{mol}^{-1}(-117 \text{ kJ} \cdot \text{mol}^{-1})$, is derived from absorption spectra measurements of iodate ions in solutions. There is considerable uncertainty in this value, both in terms of the experimental measurements and the fact that the authors have interchanged IO₃ and IO₃. This corresponds to an average bond energy of 241.9 kJ·mol⁻¹. Since this value is greater than $D_0^{\circ}(IO)$, it is suspect.

Heat Capacity and Entropy

The structure of this molecule is estimated to be pyramidal with aO-I-O angle of [89]° and a bond length of 1.79Å in analogy with the corresponding chlorine and bromine oxide molecules. Venkateswarlu and Sundaram, Venkateswarlu and Rajalakshmi, Rao and Santhamma, Rao, and Thirugnanasambandam and Mohan° assumed the same structure and bord angle for CO₃, BrO₃ and IO₃. Using Badger's rule, the authors examined the relationship between the vibrational frequencies and force constants for the three pyramidal molecules – CIO₃, BrO₃, and IO₃, Although these authors refer to early measurements of the vibrational frequencies, the values appear to be in part those of the ion IO₃. Their reported values are adopted here although we treat them as estimated values. The vibrational frequencies are derived from the force constants which describe the other halogen oxide molecules. The principal moments of inertia in g cm² are: $I_A = 14.7650 \times 10^{-39}$, $I_B = 14.7650 \times 10^{-39}$, and $I_C = 16.7280 \times 10^{-39}$.

Hererences

L. Farkas and F. S. Klein, J. Chem. Phys. 16(9), 886–93 (1948).

K. Venkateswarlu and S. Sundaram, Proc. Phys. Soc. (London) A69, 180–3 (1956).

K. Venkateswarlu and K. V. Rajalakshmi, Indian J. Pure Appl. Phys. 1, 380–2 (1963).

C. G. R. Rao and C. Santhamma, Current Sci. 33/22), 677–8 (1964).

C. G. R. Rao, Sci. Cult. 38(12), 522 (1972).

P. Thirugnanasambandam and S. Mohan, Indian J. Phys. 52B, 173–8 (1978).

синанру к	cierence i	_J·K ⁻¹ mol ⁻¹	-1, - 270.13	. , ,	_kJ·mol ⁻¹	te i ressure ~ [2 0.1 Wil a
T/K	C;		°-H°(T,)]/T	H°-H°(T _r)	$\Delta_t H^\circ$	Δ _f G°	log Kr
0	.000	.000	INFINITE	-13,505	248,000	248.000	INFINITE
50	33.412	215.531	452.355	-11.841	247.013	248.530	-259.637
100	38.019	239.747	340.560	-10.081	245.542	250.613	-130.907
150	45.140	256.517	309.858	-8.001	244.239	253.441	-88.256
200 250	51.557	270.403	298.303	-5.580	243.210	256.671	-67.036
298.15	57.096 61.560	282.519 292.970	293.959 292.970	-2.860 .000	242.430 241.881	260.131 263.593	-54.351 -46.180
300	61.714	292.970	292.970	.114	241.863	263.727	-45.919
400	68,430	312.098	295,481	6.647	233.120	271.416	-35,443
500	72.681	327.860	300.424	13.718	211.505	283.075	-29.573
600	75,418	341.371	306.149	21.133	212.303	297.316	-25.884
700	77.245	353,143	312.040	28.772	213,176	311,416	-23,238
900	78.511	363,545	317.841	36,563	214.073	325.389	-21,246
1000	79.417 80.086	372.847 381.251	323.445 328.812	44.462 52.439	214.968 215.851	339,249 353,011	19.690 18.439
1100	80.592	388,909	333.933	60.474	216.715	366.685	-17.412
1200	80.984	395.939	338.811	68.553	217.555	380.282	-16.553
1300	81.293	402.434	343,458	76.668	218.367	393.809	-15.823
1400	81.541	408.467	347.889	84.810	219.145	407.275	-15.196
1500	81.742	414.100	352.117	92.975	219.884	420.687	-14.650
1600	81.908	419.381	356,158	101.157	220.578	434.051	-14.170
1700 1800	82.047 82.163	424.351 429.044	360.025	109.355 117.566	221.220 221.806	447.373 460.658	-13,746 -13,368
1900	82.163	433,489	363.730 367.286	125,787	222,334	473.913	-13.029
2000	82,347	437.711	370.702	134.018	222.800	487.142	-12.723
2100	82.420	441.731	373.989	142,256	223,207	500.349	-12.446
2200	82.484	445.566	377.156	150.502	223.554	513.539	-12.193
2300	82.540	449.234	380.211	158.753	223.847	526.712	-11.962
2400 2500	82.589 82.632	452.748 456.120	383.161 386.012	167.010 175.271	224.089 224.286	539.8 7 5 553.028	~11.750 ~11.555
2600	82,670	459,362	388.771			566,175	
2700	82,704	459.362	391,444	183,536 191,804	224.443 224.568	579.316	-11.375 -11.208
2800	82.735	465.491	394.035	200.076	224.665	592.454	-11.052
2900	82.763	468,395	396,550	208,351	224,742	605,586	-10.908
3000	82.788	471.201	398.991	216,629	224.802	618.718	-10.773
3100	82.810	473.916	401.365	224.909	224.852	631.849	-10.647
3200 3300	82.831 82.849	476.545 479.095	403.673	233.191	224.895	644.976	-10.528
3400	82.866	481.568	405.920 408.109	241.475 249.761	224.936 224.977	658.103 671.229	-10.417 -10.312
3500	82.882	483.970	410.242	258.048	225.023	684.353	-10.213
3600	82.896	486,306	412,323	266,337	225.074	697.476	-10.120
3700	82.910	488.577	414,353	274,627	225,133	710.597	-10.032
3800	82.922	490.788	416.336	282.919	225.201	723.718	-9.948
3900 4000	82.933 82.943	492.942 495.042	418.273 420.166	291.212 299.506	225.280 225.369	736.836 749.951	-9.869 -9.793
4100	82.953	497,090	422.017	307,800	225.469	763.065	-9.722
4200	82.962	499.089	423.828	316,096	225,580	776,175	-9.653
4300	82.971	501.042	425.601	324.393	225.703	789.284	-9.588
4400 4500	82.978 82.986	502.949 504.814	427.338 429.039	332.690	225.835	802.388	-9.526
4600				340.988	225.978	815.489	-9.466
4700	82.993 82.999	506.638 508.423	430.706 432.341	349.287 357,587	226.130 226.290	828.587 841.683	-9.409 -9.354
4800	83.005	510.170	433.944	365.887	226.456	854.775	-9.302
4900	83.011	511.882	435.517	374.188	226.629	867.864	-9.252
5000	83,016	513.559	437.061	382.489	226.805	880.949	-9.203
5100 5200	83.021 83.026	515.203 516.815	438.577 440.066	390.791	226.984	894.031	-9.157
5300	83.030	518,397	440.066	399.093 407.396	227.165 227.344	907.107 920.182	9.112 9.069
5400	83.034	519.949	442.967	415.699	227,521	933.252	-9.027
5500	83.038	521.472	444.381	424,003	227.693	946.319	-8.987
5600	83.042	522.969	445.771	432.307	227.859	959.385	-8.949
5700 5800	83.046 83.049	524.439 525.883	447.138 448.484	440.611 448.916	228.016 228.162	972.445 985,505	-8.911
5900	83.052	527.303	448.484 449.807	448.916	228.162	985.505 998.559	-8.875 -8.841
6000	83.055	528.698	451.111	465.527	228.414	1011.615	-8.807
REIVOUS:					CI	JRRENT: Mar	ch 1996 (1 bar)

 $\Delta_{al}H^{\circ}(0 \text{ K}) = 348 \pm 25 \text{ kJ} \cdot \text{mol}^{-1}$ $S^{\circ}(298.15 \text{ K}) = [308.1 \pm 4] \text{ J K}^{-1} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(0 \text{ K}) = [124 \pm 25] \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = [119.5 \pm 25] \text{ kJ·mol}^{-1}$ Electronic Level and Quantum Weight state €,, cm⁻ XΙΑ 0.0 Vibrational Frequencies and Degeneracies [475](1) [100](1) [525](1)

> Point Group: C_{2v} Bond Distance: I-O = [2.0]Å $\sigma = 2$ Bond Angle: I-O-I = [115]° Product of the Moments of Inertia: $I_A I_B I_C = 42498.6720 \times 10^{-117} \text{ g}^3 \text{cm}^6$

Enthalpy of Formation

For the series XOX(g) (where X = F, Cl, Br, I], there are only reliable experimental data for ClOCl(g). Assuming that the values $D_0^0(ClO)$ and $\Delta_u H^0(ClOCl,g)$ are reasonable, we adopt the ratio of the numbers (1.52) to apply for a similar relationship between IO(g) and IOI(g). The ratio for the corresponding bromine oxides is approximately 1.6.

The structure of this molecule is estimated to be bent with a 1-O-I angle of [115]° and a bond length of [2.0]Å in analogy with the corresponding fluorine, chlorine, and bromnine oxide molecules. The principal moments of inertia in g cm² are $I_A = 2.8860 \times 10^{-39}$, $I_B = 119.9153 \times 10^{-39}$, and $I_C = 122.8013 \times 10^{-39}$.

The vibrational frequencies are estimated from known frequencies of FOF(g), ClOCl(g), and BrOBr(g)1 and expected trends in this halogen oxide family.

References

¹NIST-JANAF Thermochemical Tables: FOF(g): Sept. 1995; ClOCl(g): March 1996; BrOBr(g): March 1996.

Enthalpy R	eference T	emperature	= T, = 298.15	К	Standard State Pressure = p° = 0.1 MPa kJ·mol ⁻¹			
<i>T /</i> K	C;		°-H'(T _r)]/T	$H^{\circ}-H^{\circ}(T_{\tau})$	$\Delta_t H^\circ$	$\Delta_{l}G^{\circ}$	log Kr	
0	.000	,000	INFINITE	-13.025	124.000	124.000	INFINITE	
50	37.610	230.650	455.463	-11.291	124.056	117.968	-123.241	
100	40.943	257.873	351.050	-9.318	123.205	112.182	-58.598	
150	44.204	275.070	323.013	-7.192	122.204	106,886	-37.221	
200 250	47.472 50.053	288,246 299,131	312,734	- 4.898	121.237	101.928	-26.621	
			308.955	-2.456	120.322	97.207	-20.310	
298.15	51.874	308,111	308.111	.000	119.485	92.832	- 16.264	
300	51.933	308,432	308.112	.096	119.453	92.667	-16.135	
400 500	54.269 55.547	323,727	313.181	5.418	101.652	84.560	-11.042	
		335,988	314.157	10.915	57.423	84.562	-8.834	
600 700	56.302 56.780	346.187 354,905	318.670	16.511	57.684	89.965	-7.832	
800	57,100	362,509	323.239 327.682	22.166	57.945 58.193	95.325	-7.113	
. 900	57.324	369.248	331.933	27.861 33.583	58.422	100,648 105,941	-6.572 -6.149	
1000	57.487	375.297	335.972	39.324	58,630	111.209	-5.809	
1 100	57.608	380,782	339.801	45,079	58.815	116.458	-5.530	
1200	57.701	385.799	343.428	50.845	58.973	121.691	-5.297	
1300	57,774	390,420	346,867	56.619	59.100	126,912	-5.099	
1400	57.832	394,704	350.133	62.399	59.187	132.125	-4.930	
1500	57.879	398.695	353,239	68.185	59.224	137.333	-4.782	
1600	57.918	402.432	355,198	73,975	59,204	142,541	-4.653	
1700	57.950	405.944	359.022	79.768	59.115	147.752	-4.540	
1800	57.977	409.258	361.722	85,565	58.953	152.970	-4,439	
1900	58.000	412.393	364,307	91.364	58.712	158.199	-4.349	
2000	58.019	415.368	366.786	97.165	58.351	163.444	-4.269	
2100	58.036	418.200	369.167	102,967	57.953	168,706	-4.196	
2200	58,051	420,900	371.458	108,772	57.523	173.989	-4.131	
2300	58,064	423.481	373.664	114.578	56.918	179.294	-4.072	
2400 2500	58,075	425.952	375.792	120.384	56.359	184.624	-4.018	
	58,085	428.323	377.846	126.192	55.765	189.980	-3.969	
2600 2700	58.094	430.601	379.831	132.001	55.160	195.361	-3.925	
2800	58.101 58.108	432.794 434.907	381.753	137.811	54.414	200,769	-3.884	
2900	58.115	434.907	383.613 385.418	143.622 149.433	53.720 53.027	206.203	-3.847	
3000	58.120	438,916	387.168	155.245	52.3 <i>4</i> 7	211.660 217.142	-3.812 -3.781	
3100	58,125	440,822	388.868	161.057	51.688	222.646		
3200	58,130	442.668	390.521	166.870	51.038	228.171	-3.752 -3.725	
3300	58.134	444,457	392.128	172.683	50,462	233.715	-3.699	
3400	58.138	446,192	393.693	178.496	49.907	239.277	-3.676	
3500	58.142	447.877	395.217	184.311	49.397	244.854	-3.654	
3600	58.145	449,515	396,703	190.125	48,934	250,445	-3.634	
3700	58.148	451,109	398.152	195.940	48,512	256.048	-3.615	
3800	58.151	452.659	399.566	201.754	48.161	261.663	-3.597	
3900	58.153	454.170	400.947	207.570	47.853	267.285	-3.580	
4000	58.156	455.642	402.296	213.385	47.598	272.915	-3.564	
4100	58.158	457.078	403.615	219.201	47.395	278.550	-3.549	
4200 4300	58.160 58.162	458,480 459,848	404.904	225.017	47.245	284.190	-3.534	
4400	58.164	461.185	406.166 407.401	230.833	47.147	289.833	~3.521	
4500	58.165	462,493	408.611	236.649 242.466	47.099 47.099	295.477 301.122	-3.508 3.495	
4600	58,167	463,771	409,797	248.282				
4700	58.168	465,022	410.958	254.099	47.147 47.241	306.766 312.410	-3.483 -3.472	
4800	58.170	466.247	412.097	259.916	47.241	318.050	-3.472 -3.461	
4900	58,171	467.446	413.215	265,733	47.518	323,688	-3,451	
5(00	58.172	468,621	414.311	271.550	47,717	329.321	-3.440	
5100	58.173	469.773	415.387	277.367	48,015	334,950	-3.431	
5200	58.174	470,903	416.444	283,185	48.329	340,572	-3.421	
5300	58.175	472.011	417.482	289.002	48.658	346,189	-3.412	
5400	58.176	473.098	418.502	294.820	49.0.8	351.799	-3.403	
5500	58.177	474.166	419.504	300.638	49.409	357.403	-3.394	
5600	58.178	475.214	420.490	306.455	49.828	363,000	-3.386	
5700	58.179	476.244	421.459	312.273	50.214	368.588	-3.378	
5100	58.180	477.256	422.412	318.091	50.744	374.168	-3.370	
5900 6000	58.181	478.250	423.350	323,909	51.237	379.740	-3.362	
OUU	58.181	479.228	424,274	329.727	51.751	385.304	-3,354	
EVIOUS:								
E V1003:					CI	UKRENT: Mar	ch 1996 (1 bar)	

NIST-JANAF THERMOCHEMICAL TABLES FOR THE IODINE OXIDES

I₂O(g)

Ideal Gas lodine oxide (IIO)

 $M_r = 269.80834$ lodine oxide (IIO)

 $\Delta_t H^{\circ}(0 \text{ K}) = [110.5 \pm 40] \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = [106.7 \pm 40] \text{ kJ·mol}^{-1}$ $S^{o}(298.15 \text{ K}) = [330.6 \pm 4] \text{ J K}^{-1} \cdot \text{mol}^{-1}$

> Electronic Level and Quantum Weight €,, cm [3A"] 0.0 [3]

Vibrational Frequencies and Degeneracies ν , cm⁻¹ [750](1) [100](1) [170](1)

Point Group: C_x Bond Distances: $I-O = \{1.9\}\text{Å}$; I-I = [3.0]ÅBond Angle: $I-O-I = [125]^c$ Product of the Moments of Inertia: $I_A I_B I_C = 67538.6868 \times 10^{-117} \text{ g}^3 \text{cm}^6$

Enthalpy of Formation

For the four halogen oxide species, XXO(g) where X = F, Cl, Er, I, there are no experimental data related to the enthalpy of formation. Thus the enthalpy of formation is estimated based on assumption that the X–X bond in XXO(g) is $0.6 D_0^o(X_2)$. This leads to a $\Delta dP^o(IIO,g,0 \text{ K}) = 110.5 \text{ kJ-mol}^{-1}$.

Heat Capacity and Entropy

The structure of this molecule is estimated to be bent with a I-I-O angle of [.25]° and bond distances r(I-I) = [3.0]Å and r(I-O) = [1.9]Å. This structure is estimated in anlogy with the corresponding chlorine and bromine molecules. The vibrational frequencies are estimated from the known frequencies of CICIO and BrBrO. The principal moments of inertia in g cm² are: $I_A = 5.1010 \times 10^{-39}$, $I_B = 112.5438 \times 10^{-39}$, and $I_C = 117.6448 \times 10^{-39}$.

¹NIST-JANAF Thermochemical Tables: ClClO(g): March 1996; BrBrO(g): March 1996.

Enthalpy R	eference T		= T _r = 298.15	К :		te Pressure = /	o° = 0.1 MPa
7/K	C;	_J·K~¹mot^1 S° -[G'	$^{\circ}-H^{\circ}(T_{t})]/T$	H°~H°(T,)	_kJ·mol⁻¹ ∆₁H°	$\Delta_l G^{\circ}$	log K _f
0	.000	.000	INFINITE	-13.691	110.500	110.500	INFINITE
50 100	39.124 45.462	247.843 277.274	486.678 375.278	-11.942 -9.800	110.572 109.889	103.624 96.926	- 108.255 - 50.629
150	43.462 47.981	296.239	345.956	-7.458	109.104	90,920	-31.554
200	49.683	310.283	335.356	-5.015	108,286	84.570	-22.087
250	51.153	321.531	331.503	-2.493	107.452	78.737	-16.451
198.15	52.359	330.647	330.647	.000	106,652	73.279	-12.838
300	52.401	330.971	330.648	.097	106.621	73.072	-12.723
400 500	54,230 55,386	346.316 358.551	332.728 336.710	5.435 10.920	88.835 44.594	62.708 60.452	-8.189 -6.315
600	56,127	368.719		16.499	44.839	63.601	-5.537
700	56.620	377.411	341.221 345.786	22.138	45,083	66.708	-4.978
800	56,961	384.995	350,223	27.818	45.315	69.782	-4.556
900	57.205	391.719	354.467	33.527	45.531	72.827	-4.227
1000	57.384	397.756	358.499	39.257	45,728	75.849	-3.962
1100 1200	57.520 57.625	403,232 408,241	362,321 365,942	45.002 50.759	45.904 46.054	78.852 81.841	-3.744 -3.562
1300	57.707	412.857	369.375	56.526	46.174	84,818	-3,408
1400	57,773	417,136	372,636	62.300	46.254	87.787	-3.275
1500	57.827	421.124	375.737	68.080	46.286	90.753	-3.160
1600 1700	57.872	424.857	378.692	73.866	46.261	93.718	-3.060
1800	57.909 57.940	428.367 431.678	381.511 384.207	79.655 85.447	46.168 46.002	96.686 99.662	-2.971 -2.892
1900	57.966	434.811	386.789	91.242	45.757	102.649	-2.822
2000	57.989	437.785	389.265	97,040	45.433	105.652	-2.759
2100	58,008	440.615	391.643	102.840	45.032	108.672	-2.703
2200	58.025	443.314	393.931	108.642	44.559	111.714	-2.652
2300 2400	58.040 58.053	445.894 448,364	396.135 398.260	114.445 120.250	44.022 43.430	114.778 117.867	-2.607 -2.565
2500	58.065	450.734	400.312	126.056	42.795	120.981	-2.528
2600	58.075	453.012	402.295	131.863	42.127	124.122	-2.494
2700	58.084	455.204	404.214	137.671	41.440	127.289	-2.463
2800 2900	58.092 58.100	457.316 459.355	406.073 407.876	143.479 149.289	40.744 40.050	130.481 133.698	-2.434 -2.408
3000	58,106	461.325	409.625	155.099	39.369	136.939	-2.384
3100	58.112	463,230	411.323	160.910	38,708	140,202	-2.362
3200	58,118	465.075	412.974	166,722	38.076	143.486	-2.342
3300 3400	58.123 58.127	466,863 468,599	414.581 416.144	172.534 178.346	37.480 36.924	146.789 150.110	-2.323 -2.306
3500	58.131	470.284	417,667	184.159	36,412	153,447	-2.290
3600	58.135	471.921	419.151	189,973	35,948	156,797	-2.275
3700	58.139	473.514	420.599	195.786	35.535	160,160	-2.261
3800 3900	58.142	475.065	422.012	201.600	35.173	163.534	-2.248
4000	58.145 58.148	476.575 478.047	423.392 424.740	207.415 213.229	34.864 34.608	166.916 170.305	-2.236 -2.224
4100	58.150	479,483	426.058	219.044	34.405	173,700	-2.213
4200	58.153	480.884	427.346	224.859	34.255	177.099	-2.203
4300	58.155	482.253	428.607	230.675	34.155	180.502	-2.193
4400 4500	58.157 58.159	483.590 484.897	429.842 431.051	236.490 242.306	34.106 34.106	183.906 187.310	-2.183 -2.174
4600	58.161	486.175	432.235	248.122	34.154	190,714	-2.166
4700	58.163	487,426	433,396	253.938	34.247	194.117	-2.157
4800	58.164	488,650	434.535	259.755	34.384	197.517	-2.149
4900 5000	58.166 58.167	489.850 491.025	435.652 436.747	265.571	34.563	200.914	-2.142
5100	58.168	491.025	436,747	271,388 277,205	34.782	204.307 207.695	-2.134
5200	58,170	492.177	437.823	283.022	35.039 35.333	207.695	-2.127 -2.120
5300	58,171	494.414	439.916	288.839	35,660	214.454	-2.114
5400	58.172	495,502	440.936	294.656	36.020	217.824	-2.107
5500 5600	58.173	496,569	441.938	300.473	36.411	221.187	-2.101
5600 5700	58.174 58.175	497.617 498.647	442.923 443.891	306.290 312.108	36.830 37.275	224.544 227.891	-2.094 -2.088
5800	58,176	499.659	444.844	317.925	37.745	231.232	-2.082
5900	58,177	500.653	445.782	323.743	38.238	234.563	-2.077
6000	58.178	501.631	446.704	329.561	38.751	237.886	-2.071
REVIOUS:					CI	IDDENT: Man	ch 1996 (1 bar)
						VICTORIAL: INIAN	LIL 1770 (1 Dar)

1845MIL

7. Conclusions

Of the iodine oxides mentioned in the literature, only five have been isolated and (at least, partially) characterized: IO(g), OIO(g), $I_2O_4(cr)$, $I_2O_5(cr)$, $I_4O_9(cr)$. Only early studies mention I_6O_{13} and $I_{10}O_{19}$; it would appear that these species do not exist. IO_3 and IO_4 are proposed as intermediates in solutions or crystalline environments, with only an absorption maximum as a characterization. The other species are proposed to exist but there are no definitive studies as to their isolation and characterization.

In Table 6, a summary of the recommended thermodynamic properties at ambient conditions for six gaseous iodine oxides (IO, OIO, IOO, IO3, IOI, IIO) are given. Even though there is a severe lack of experimental or calculational data for these six iodine oxides, tables are being generated for these species to match the corresponding fluorine, chlorine, and bromine oxides. The brackets indicate estimated values. The recommended values contain significant uncertainties. In all cases, experimental enthalpy of formation data are needed. However, the prime effort should be directed at confirming the dissociation energy of IO(g) and determining the enthalpy of formation of OIO(g). Further efforts should be directed towards establishing the enthalpy of formation for the remaining four gaseous species. For any of the polyatomic gaseous species (except OIO), spectroscopic measurements for the geometry and vibrational frequencies would greatly reduce the uncertainties in the resulting thermal functions. For OIO(g), two of the three vibrational frequencies have been observed experimentally.

TABLE. 6. Thermodynamic properties of the iodine oxides

	0 K	298.15 K			
	$\Delta_f H^\circ$	$\Delta_f H^\circ$	$\Delta_f G^\circ$	$C_{\mathfrak{p}}^{\circ}$. S°
Compound	kJ n	iol ⁻¹		J K ⁻¹ ⋅mo)I_1
IO(g)	130.0±13	128±13	106.5	32.9	239.6±1
OIO(g)	[162.7±25]	$[159.3\pm25]$	[153.9]	[46.7]	[281.5±4]
IOO(g)	[119±40]	[116.5±40]	[106.6]	[48.7]	[296.4±4]
$IO_3(g)$	[248±50]	[241.9±50]	[263.6]	[61.6]	[293.0±4]
IOI(g)	[124±25]	$[119.5\pm25]$	[92.8]	[51.9]	$[308.1 \pm 4]$
IIO(g)	[110.5±40]	[106.7±40]	[73.3]	[52.4]	[330.6±4]

The main thrust in this study of the iodine oxygen system is to verify the existence of the various iodine oxygen species and to obtain spectroscopic data for them. Additional confirmation is needed as to the existence of the condensed phases, although this is a much lower priority. There seems to be little demand for heat capacity and enthalpy measurements at this time.

Note added. After this article was accepted for publication, two additional references on the dissociation energy of IO(g) were brought to our attention:

• $D_0^{\circ}(IO) = 234 \pm 5 \text{ kJ mol}^{-1}$. $\Delta_t H^{\circ} = 120 \pm 5 \text{ kJ mol}^{-1}$ an ab initio calculation by P. H. Hassanzadeh, K. K. Ira-

kura and R. D. Johnson III, private communication.

D₀^o(IO)=219±4 kJ mol⁻¹, \(\Delta_f H^o = 135±4 \) kJ mol⁻¹ a quantum mechanical calculation by M. P. McGrath and F. S. Rowland, J. Phys. Chem. 100, 4815 (1996).

8. Acknowledgments

This work was undertaken as part of a larger study to provide JANAF Thermochemical Tables for as many halogen oxide species as possible. This particular study for the iodine oxides was supported by the Standard Reference Data Program at the U.S. National Institute of Standards and Technology.

The author is particularly grateful for the help of Sabina Crisen, who confirmed the completeness of the annotated bibliographies, created the numerous tables which summarize the reported experimental studies, and obtained copies of the pertinent articles. The contribution of Stanley Abramowitz in discussions on the spectroscopic properties of the triatomic molecules is greatly appreciated; appreciation is also extended to R. B. Klemm (Brookhaven National Laboratory) and A. R. Ravishankara (NOAA) for information pertaining to the enthalpy of formation of IO. Appreciation is also ex-tended to Karl Irikura (NIST) for providing us with a calculated value for the dissociation energy of IO and providing comments on the text. The IO thermal function calculations were performed by David Neumann.

9. References—Annotated Bibliography

The following articles are a combination of all references dealing with the iodine oxides. Where possible, we have tried to include all authors, title, journal, a citation to Chemical Abstracts, and an annotation indicating the type of study. In general, dissertations (especially non-U.S.) have not been obtained and read.

M. E. Millon, "Action of sulfuric acid on iodic acid and the compounds that result," Ann. Chim, Phys. 12.

	345 and 353 (1844); J. Prakt. Chem. 34, 321 and 337
	(1845); preparation (partial hydrolysis of iodine nitrate or iodine sulfate).
1861KAE	H. Kaemmerer, "Research on some iodine compounds," J. Prakt. Chem. 83, 65 (1861); preparation, reaction and general reference.
1870DIT	A. Ditte, C. R. Acad. Sci. 70, 1935 (1870); heat of formation.
1878BER	M. Berthelot, "Research on iodic acid," Ann. Chim. Phys. [5] 13, 20 (1878); heat of formation.
1882THO	J. Thomsen, Thermochemische Untersuchungen Barth. Leipzig (1882–1886); heat of formation.
1896CHR	P. Chretien, "Action of sulfuric acid and iodine on iodic acid," C. R. Acad. Sci. 123 , 814 (1896); hemihydrate of sulfate.
1898CHR	P. Chretien, "Study of action that exerts some acids, on iodic acid and iodates," Ann. Chim. Phys. [7] 15, 358 (1898); refers to earlier works, formation of hydrates not confirmed later by Moles and Vittorio.
1898CHR2	P. Chretien. "Action of sulfuric acid on iodic acid and the iodates," Ann. Chim. Phys. 15 , 367 (1898); refers to earlier studies.
07BER	M. Berthelot, "On the chemical action of radium," Ann. 351 , 504 (1907); CA 1 2214(6); decomposition by radium.

08GUI	M. Guichard, "Action of heat on iodine pentoxide,"	31BAX/BUT	G. P. Baxter and A. A. Butler, "The atomic weight of
	Compt. R. 147, 1306 (1908); CA 3 1256(1);		iodine. The analysis of iodine pentoxide," J. Am.
09BEG	decomposition, no references. M. Beger, "On the oxidation of indine by ozone,"		Chem. Soc. 53, 968 (1931); CA 25 2066(6); preparation by dehydration of HIO ₃ .
UPBEO	Chem. Ztg. 33, 1232 (1909); formation, oxidation of	31CHI	YT. Chia, thesis, UCRL-8311 (1931); equilibrium
	dry iodine with ozone.	Jicin	constants.
09FIC/ROH	F. Fichter and F. Rohner, "On the oxidation of iodine	31MQL/PER	E. Moles and A. Perez-Vitoria, "Iodine pentoxide and
	by ozone," Berichte 42, 4093 (1909); CA 4 879;	JIII QUILLI	its hydrates," Z. Phys. Chem. (Bodenstein-Festhand),
	formation (oxidation of iodine in chloroform with		583 (1931); CA 26 390(4); preparation by dehydration
	ozone).		of HIO ₃ , thermal decomposition.
09GUI	M. Guichard, "Action of heat on iodine pentoxide,"	31SHA/OZA	M. Shah and T. M. Oza, "The interaction between
	Bull. Soc. Chim. 5, 86 (1909); CA 3 1256(1); same as		iodine pentoxide and nitric oxide," J. Chem. Soc. 32
	C R article, decomposition, no references.		(1931); CA 25 1753(2); reaction with NO(g).
09GUI2	M. Guichard, "Preparation of pure iodine pentoxide,"	32HUL/BLI	O. Hulsmann and W. Blitz, "Molecular and atomic
	C. R. 148, 923 (1909); CA 3 1503(5); preparation,		volumes. XLIII. Low temperature densities of
09GUI3	same as Bull. Soc. Chim. article.		crystalline nitric acid, sulfuric acid, phosphorus acid
090013	M. Guichard, "Preparation of pure iodic anhydride,"		and related substances," Z. Anorg. Allgem. Chem.
	Bull. Soc. Chim. 5, 722 (1909); CA 3 2544(1); preparation.		207 , 377 (1932); CA 26 5800(5); density.
09MUI	M. M. P. Muir, "Iodine dioxide," J. Chem. Soc. 95,	32MOL/PER	E. Moles and A. Perez-Vitoria, "I ₂ O ₅ and its hydrates,
OMICI	656 (1909); CA 3 1848(9); preparation, IO ₂ or I ₂ O ₄ (?),		their pyrolysis, densities, heats of solution and
	reference to 1844 Millon, reaction with SO ₃ .		hydration," Anales Soc. Espan. Fis. Quim. 30, 99
11GUI	M. Guichard, "Formation and decomposition of		(1932); CA 26 3161(9); preparation by dehydration of
	anhydrides," C. R. 153, 1226 (1911); CA 6 721;		HIO ₃ , thermal decomposition, enthalpy of formation, vapor pressure.
	thermal decomposition.	32MOL/PER2	
11REI/SCH	S. Reich and Schapiro, "Action of iodine pentoxide on	32WOLH ER2	E. Moles and A. P. Vitoria, "Physicochemical study of the system: I ₂ O ₅ -H ₂ O ₅ " Rev. Acad. Cienc. Madrid 28,
	acetic anhydride," Chem. Ztg. 35, 409 (1911); CA 6		573 (1932); CA 26 5821(9); preparation by
	2910(9); reaction, no initials for Schapiro.		dehydration of HIO ₃ , thermal decomposition of the
12GUI	M. Guichard, "Formation and decomposition of		H ₂ O-I ₂ O ₅ system.
	anhydrides. Case of iodine pentoxide," Bull. Chim.	33GAR	J. Garrido, "The crystalline form of 3I ₂ O ₅ H ₂ O ₅ "
	Soc. 11, 428 (1912); CA 6 3233(9); formation		Anal. Soc. Espan. Fis. Quim. 31, 616 (1933); CA 28
	unsuccessful, use existing method, same as C. R.		17(5); crystal form of hydrate.
LOCULO	article.	33MOL/PAR	E. Moles and A. Parto, "Iodine pentoxide and its
12GUI2	M. Guichard, "Combination of iodine and oxygen," Bull. Soc. Chim. 11, 431 (1912): CA 6 3233(9):		hydrates. II," Anales Soc. Espan. Fis. Quim. 31, 618
	dissociation review, refers to earlier enthalpy		(1933); CA 28 61(1); hydrate formation,
	measurements of Berthelot and Thomsen.		decomposition.
12KAP	H. Kappeler, "Iodine oxides, I ₆ O ₁₃ , and	34BAX/HAL	G. P. Baxter and A. H. Hale, "The atomic weights of
-	I ₁₀ O ₁₉ , and iodine nitrate," Ber. 44, 3496 (1912); CA		iodine, carbon, and sodium. The ratio of iodine
	6 967(9); existence questioned, said to be 1 ₂ O ₄ (IO · IO		pentoxide to sodium carbonate," J. Am. Chem. Soc.
	3), extensive reference to earlier works.		56, 615 (1934); CA 28 2229(1); reaction with
15FIC/KAP	F. Fichter and H. Kappeler, "Recent observations on	35AST/VAP	Na ₂ CO ₃ . Astapenya, Vapnik, and Zelkin, "The effect of the
	iodic salts," Z. Anorg. Allgem. Chem. 91, 134 (1915);	JJAJII (AI	surface of the oxidizing agent (iodine pentoxide) on the
	CA 9 1587; preparation of (IO · IO ₃), reference to		rate of oxidation of carbon monoxide," J. Gen. Chem.
	earlier studies.		(USSR) 3 , 839 (1935); CA 28 2979(8); reaction with
20LAM/BRA	A. B. Lamb, W. C. Bray, and W. J. Geldard,	·-*	CO.
	"Preparation of iodic acid and its anhydride," J. Am.	35BAH/PAR	R. K. Bahl and J. R. Partington, "Lower oxides and
	Chem. Soc. 42, 1636 (1920); CA 14 2767(7);		sulfates of iodine," J. Chem. Soc. 1258 (1935); CA 30
22KAT/BLO	preparation. S. H. Katz and J. J. Bloomfield, "Tests of an iodine		37(4); preparation, thermal decomposition (results
ZZKATIDLO	pentoxide indicator for carbon monoxide," J. Ind. Eng.		differ from those of Muir), refers to earlier studies.
	Chem. 14, 304 (1922); CA 16 1548(1); CO indicator.	36FIC/DIN	F. Fichter and A. Dinger, "Iodine sulfate," Helv.
23GOM	M. Gomberg, "Reaction between silver perchlorate		Chim. Acta 19, 607 (1936); CA 30 4777(6); formation
200011	and iodine. Chlorine tetraoxide," J. Am. Chem. Soc.		of sulfate hydrate.
	45, 407 (1923); CA 17 1193: established existence in	36MOL/VIL	E. Moles and P. Villan, "I ₂ O ₅ and its hydrates. III,"
	ether solutions.		Anal. Soc. Espan. Fis. Quim. 34, 787 (1936); CA 31
23LAM/PHI	A. B. Lamb and A. W. Phillips, "Solubility of iodine	36VIL/MOL	6832(4); density.
	pentoxide in sulfuric acid," J. Am. Chem. Soc. 45, 108	30 VIL/MOL	P. Villan and E. Moles, "Iodine pentoxide and its hydrates," Bol. Acad. Cienc. (Madrid) 2(8), 5 (1936);
	(1923); CA 17 912(7); solubility in H ₂ SO ₄ .		CA 30 6513(9); formation of hydrates, dehydration to
29PIR	L. R. Pire, "The Ditte reaction," Anal. Soc. Espan.		form I_2O_5 , molecular volume of I_2O_5 .
	Fis. Quim. 27, 192 (1929); CA 23 3417(1); reaction	37MAS	I. Masson, "Organic and inorganic chemistry of iodine
	with CO(g).	- 1 AT 87 BW	oxides," Nature 139, 150 (1937); CA 31 2540(8);
30BRA	W. K. Bray, "An oxide of iodine. An intermediate		I_2O_3 sulfate.
	compound," J. Am. Chem. Soc. 52, 3580 (1930); CA	37VAI	W. M. Vaidya, "Flame spectra of some aliphatic
	24 5654(2); proposed I ₂ O ₂ existence as an		halides. I. Methyl iodide," Proc. Indian Acad. Sci. 6A,
20CD A /E A D	intermediate.		122 (1937); CA 32 50(8); spectra.
30GRA/FAR	F. W. Gray and J. Farquharson, "Diamagnetism and	38EMS	G. Emschwiller, "Photochemical oxidation of
	submolecular structure," Philos. Mag. [7] 10, 191 (1930); CA 24 5613(3); structure, diamagnetism.		methylene iodide: production of iodic anhydride," C.
	(1950), Or 24 5015(0), structure, diamagnetism.		R. 206, 746 (1938); CA 32 3697(6); preparation.
			• • • • • •

38EMS2	G. Emschwiller, "Production of iodic anhydride by photo-oxidation of organic iodides; photo-oxidation of iodoform and carbon tetraiodide," C. R. 207, 1201 (1938); CA 33 1597(8); formation.	50EME/WOO	H. J. Emelius and A. A. Woolf, "The reaction of bromine trifluoride with oxides and oxyacid salts," J. Chem. Soc. 164 (1950); CA 44 5750e; reaction with BrF ₃ .
38MAS	J. Masson, "Hypoiodous cations and their action upon an organic reagent," J. Chem. Soc. 1708 (1938); CA 33 1199(4); preparation in solution, I ₂ O proposed as reagent of I ₂ O ₃ sulfate.	50WIL/DHA	 W. K. Wilmarth and S. S. Dharmatti, "The magnetic susceptibility of iodine dioxide," J. Am. Chem. Soc. 72, 5789 (1950); CA 45 3212a; magnetic susceptibility, diamagnetic structure (monomeric IO₂
38MAS/ARGO	I. Masson and C. Argument, "Iodous sulfates," J. Chem. Soc. 1702 (1938); CA 33 935(1); preparation of sulfate in solution.	51ADA/SIM	does not exist in solid state). E. G. Adams and N. T. Simmons, "Determination of carbon monoxide by means of iodine pentoxide," J. Applied Chem. (London) 1, Suppl. 1, S20 (1951); CA
38WEB	K. R. Webb, "Solubility of iodine pentoxide in anhydrous hydrogen fluoride and the possible existence of hydrofluorates on iodine pentoxide," Proc. Leeds	51GYA	46 4426c; review (preparation, reactivity, stability, 22 references).B. P. Gyani, "Periodic acid and periodates. II. The
	Philos. Lit. Soc., Sci. Sect. 3, Pt. VIII, 477 (1938); CA 32 7800(5); solubility in HF.		system silver oxide-periodic acid-water at 25 °C, J. Phys. Colloid Chem. 55 , 1111 (1951); CA 46 11001d;
39BAII/SIN	R. K. Bahl and S. Singh, "Action of fuming nitric acid on iodine," J. Indian Chem. Soc. 16 , 247 (1939); CA 33 7685(5); preparation, decomposition to I ₂ O ₅ .	51RIC/AMR	ternary system Ag ₂ O-I ₂ O ₇ -II ₂ O. J. E. Ricci and J. Amron, "Some aqueous ternary systems involving univalent iodates," J. Am. Chem.
39EMS	G. Emschwiller, "Formation of iodic anhydride by the photo-oxidation of organic iodides. I. Photo-oxidation of methylene iodide," Bull. Soc. Chim. 6, 551 (1939);	52BAT/SIS	Soc. 73, 3613 (1951); CA 45 8866e; ternary system, AgIO ₃ -H ₂ O-I ₂ O ₅ . H. H. Batey and H. H. Sisler, "Some inorganic
39EMS2	CA 33 5742(8); formation. G. Emschwiller, "Formation of iodic anhydride by the photo-oxidation of organic iodides. II. The general	52RIC/FRE	reactions of nitryl chloride," J. Am. Chem. Soc. 74 , 3408 (1952); CA 47 7358g; reaction with NO ₂ Cl. J. E. Ricci and A. J. Freedman, "Some aqueous ternary
	phenomenon. Photo-oxidation of iodoform and of solid carbon tetraiodide," Bull. Soc. Chim. 6 , 561 (1939); CA 33 5743(2); formation.	JZKICH KL	systems involving barium salts," J. Am. Chem. Soc. 74 , 1769073 (1952); CA 46 6982e; ternary system, Ba(IO ₃) ₂ -H ₂ O-I ₂ O ₅ .
39OZH	I. N. Ozhiganov, "An apparatus for preventing losses of I_2O_5 in analysis for carbon monoxide," Lab. Prakt. (USSR) 14 (9-10), 21(1939); CA 34 1882(7); in CO(g) analysis.	52ROS/WAG	F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, and I. Jaffe, "I. Selected values of chemical thermodynamic properties," NBS Circ. 500 (1952); CA 46 5417f; enthalpy of formation.
40BAX/KEL	G. P. Baxter and W. M. Kelley, "The specific gravity of iodine pentoxide and the atomic weight of iodine," J. Am. Chem. Soc. 62 , 1824 (1940); CA 34 5710(4); specific gravity.	52SHR/LEA	W. W. Shreeve, F. Leaver, and I. Siegel, "Specific conversion of iodoform to carbon dioxide," J. Am. Chem. Soc. 74 , 2404 (1952); CA 48 7533h; reaction with CO, H ₂ SO ₄ .
40KOM	N. P. Komar, "The preparation of I_2O_5 ," Materialy NauchIssledovatel. Raboty Ukrain. Inst. Sovet. Torgovli za 1939-1940 , 3 (1940); CA 37 4979(9); preparation by dehydration of HIO ₃ .	52YAM/ASA	S. Yamamoto and T. Asaba, "Thermal decomposition of potassium chlorate. II. The effect of inert substances," J. Ind. Explosives Soc. Jpn. 13, 235 (1952); CA 49 6761d; effect on KClO ₃ decomposition.
44SCH	M. Schultze, "A new oxidant for quantitative conversion of carbon monoxide to carbon dioxide. A contribution to the chemistry of iodine pentoxide," Ber. 77B, 484 (1944); CA 40 4858(2); CO(g)	53ADA/SIM	E. G. Adams and N. T. Simmons, "Influence of some impurities, notably potassium, upon the reactivity of iodine pentoxide towards carbon monoxide," Nature 172, 1104 (1953); CA 48 4350i; reaction with CO.
46BLA/IRE	conversion. R. C. Blake and T. Iredale, "Methyl iodide flame bands," Nature 157, 229 (1946); CA 40 3056(9); flame	53GAY	A. G. Gaydon, <i>Dissociation Energies and Spectra of Diatomic Molecules</i> , 2nd ed. (Chapman and Hall, London, 1953); dissociation energy.
47BAU/BRU	P. Baumgarten and W. Bruns, "Behavior of boron fluoride toward some inorganic substances and its	53HES/SOU	A. Hessaby and P. Souchay, "The periodates and tellurates of lithium," Bull. Soc. Chim. 606 (1953); CA 47 11870h; ternary system I ₂ O ₇ -Li ₂ O-H ₂ O.
	addition product with phosphorus trichloride," Chem. Ber. 80 , 517 (1947); CA 42 8691g; reaction with BF ₂ .	53PFL	A. Pflugmacher, "Bromine oxides. IV. Trinitrobromine dioxide," Z. Anorg. Allgem. Chem. 273, 41 (1953); CA 48 489g; preparation.
48EMB	G. N. Emby, "Iodine and some of its applications," African Ind. Chemist 2 , 66, 92 (1948); CA 45 8677b; gas mask indicator for CO from H ₂ SO ₄ and I ₂ O ₅ .	54COT	T. L. Cottrell, <i>The Strengths of Chemical Bonds</i> (Butterworths, London, 1954), pp. 221–281; estimated bond dissociation energy.
48COL/GAY	E. H. Coleman, A. G. Gaydon, and W. M. Vaidya, "Spectrum of iodine oxide (IO) in flames" Nature 162, 108 (1948); CA 42 8084i; spectrum (in flames);	54COU	J. P. Coughlin, "XII. Heats and free energies of formation of inorganic oxides," Bur. Mines Bull No. 542 (1954); review.
48FAR/KLE	vibrational analysis. L. Farkas and F. S. Klein, "On the photochemistry of some ions in solution," J. Chem. Phys. 16 , 886 (1948); CA 50 16345h; refers to an enthalpy of formation.	54NAI/SUG	W. Naito and K. Sugawara, "A method of analysis of so-called silver iodide smoke used to produce artificial rainfall," Jpn. Analyst 3, 211 (1954); CA 49 4454e; detection of I oxides.
50HER	G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand, Princeton, New Jersey, 1950); spectroscopy.		GOOGLOT OF LOADOS.

1330

54NAI/SUG2	W. Naito and K. Sugawara, "Method of analysis of so-called silver iodide smoke used to produce artificial rainfall," Rep. Rain-Making Jpn. 1, 77 (1954); CA 44	58ODE	M. Odehnal, "Formation of higher iodine oxides by dehydration of periodic acid," Publs. Fac. Sci. Univ. Masaryk No. 390, 19 (1958); CA 53 3959i; formation.
	13021b; detection of I oxides.	58VIL/DRO	S. S. Vil'borg and V. A. Drozdov, "Determination of
54SHI/KOS	K. Shimomura, T. Koshida, N. Inoue, and Y. Imaeda,		iodates, chromates, and ferricyanides by titration with
	"Pure quadrupole spectra of solid bromine and iodine		complexons," Nauch. Doklady Vysshei Shkoly Khim. Khim. Tekhnol. 721 (1958); CA 53 6906a;
	compounds," J. Chem. Phys. 22, 350 (1954); CA 48		determination.
	5644b; I ₂ O ₅ .	58YEE	T. B. Yee, "Effect of inhibitors in fuming nitric acid
54WOO	A. A. Woolf, "Polysulfates of some group V and VI		on corrosion and oxidation," Corrosion 14, 82t (1958);
	oxy-cations," Chemistry & Industry 1320 (1954); CA		CA 52 4451i; corrosion inhibitor.
	49 2927b; compounds with SO ₃ .	59HAU	Z. Hauptman, "Properties of ortho-periodic acid. III.
55KIK	T. Kikindai, "Oxidation of iodine by ozone," C. R.		Thermal decomposition of ortho-periodic acid," Coll.
	240, 1102 (1955); CA 49 12171f; preparation, decomposition in water.		Czech. Chem. Comm. 24, 2798 (1959); CA 54 146h;
55KOJ/TSU	•		formation of I ₂ O ₅ via stepwise decomposition of
33KO3/130	S. Kojima, K. Tsukada, S. Ogawa, and A. Shimauchi, "Nuclear quarupole resonances in solid iodine	59LEH/HES	H ₅ IO ₆ . H. A. Lehmann and H. Hesselbarth, "Chemistry of
	compounds," J. Chem. Phys. 23, 1963 (1955); CA 50	SALEMINES	sulfur trioxide. XI. SO ₃ compounds of I ₂ O ₅ and
	672g; NQR.		I ₂ O ₄ , '' Z. Anorg. Allgem. Chem. 299 , 51 (1959); CA
55WAC	A. L. Wachal, "Exhaust gas analysis: application of an		53 8908f.
	iodine pentoxide method in gasoline engine research,"	59ZLO/ZIE	I. Zlotowski and M. Zielinski, "Some relations
	Automobile Eng. 45, 295 (1955); CA 49 15628i; in gas		between the mechanism of the reaction CO(g)-
	(exhaust) analysis.		I_2O_5 - $CO_2(g)$ and the kinetic isotope effect for C(14),"
56NIK/BUS	N. S. Nikolaev and Yu. A. Buslaev, "Solubility in the	CODACANAD	Nuklionika 4, 599 (1959); CA 58 956e; reaction.
	systemn HF-I ₂ O ₅ -H ₂ O (0 degree isotherm)," Z	60DAS/WAD	W. Dasent and T. C. Waddington, "Iodine-oxygen compounds. II. Iodosyl and related compounds," J.
	Neorg. Khim. 1, 1672 (1956); CA 51 2443b; ternary		Chem. Soc. 3350 (1960); CA 55 2329d; spectrum,
	system: $HF-H_2O-I_2O_5$; solubility.		preparation.
56PIC	M. Picon, "The extreme sensitivity of the	60DUR/LEG	R. A. Durie, F. Legay, and D. A. Ramsay, "An
	determination of carbon monoxide, ethylene, and		emission system of the IO molecule," Can. J. Phys. 38,
	acetylene by iodic anhydride," Bull. Soc. Chim. 370		444 (1960); CA 54 10503i; spectrum, electronic
	(1956); CA 50 7664a; in analysis for C_2H_2 , CO, C_2H_4 .		transitions, rotational vibrational analysis.
56VEN/SUN	K. Venkateswarlu and S. Sundaram, "Evaluation of	60DUV/LEC	C. Duval and J. Lecomte, "Determination of the
	force constants from Raman effect data: molecules,		structure of I ₂ O ₅ by infrared spectrography," Rev. Trav. Chim. 79 , 523 (1960); CA 54 24076d; spectrum,
	radicals, and groups of pyramidal XY ₃ type," Proc.		structure.
	Phys. Soc. (London) A 69, 180 (1956); CA 50 16345h;	60GEO	J. W. George, "Halides and oxyhalides of the elements
	vibrational frequencies and structure.		of groups Vb and VIb," Prog. Inorg. Chem. 2, 33
57DUV	C. Duval, "On the thermal stability of standard		(1960); CA 57 10507c; review.
	analytics. IV," Anal. Chim. Acta 16, 221 (1957); CA 52 15324d; thermal analysis, dissociation and	60SPE/HEP	J. G. Spencer and L. G. Hepler, "Heats of solution of
	sublimation.		ammonium, potassium, and sodium iodates and of
57DUV2	C. Duval, "On the thermal stability of standard		sodium bromate: heat of reaction of iodine pentoxide
	analytics. V," Anal. Chim. Acta 16, 545 (1957); CA		with aqueous hydroxide," J. Phys. Chem. 64 , 499 (1960); CA 54 17028h; reaction with OH ⁻ , enthalpy of
	52 15324d; thermal analysis, dissociation and		formation.
	sublimation.	61DUP/LEC	T. Dupuis and J. Lecomte, "A study of (HIO ₃)[n] and
57SEM	V. A. Semin'ko, "Iodinizing activity and the		its dehydration products, particularly HI ₃ O ₈ , by
	composition of I ₂ compounds with HIO ₃ and		infrared spectrography," 252, 26 (1961), CA 55
	H ₂ SO ₄ ," Trudy Khar'kov Farm. Inst. 1 , 160 (1957); CA 54 24077e.		11163g; dehydration of HIO ₃ .
57SYM	M. C. R. Symons, "The formation of iodine cations.	61LIP/STE	E. R. Lippencott, D. Steele, and P. Caldwell, "General
	Part II. Spectroscopic evidence." J. Chem. Soc. 2186		relation between potential energy and internuclear distance for diatomic molecules. III. Excited states," J.
	(1957); CA 51 12648c; diamagnetism.		Chem. Phys. 35 , 123 (1961); CA 55 26663f;
58BRE	L. Brewer, "Dissociation energies of gaseous oxides,"		dissociation and excitation energy.
	UCRL Rep. 8356 (1958); critical evaluation of	61MCK/NOR	J. C. McKellar and R. G. W. Norrish, "The
500110/0.114	dissociation energy.		combustion of gaseous methyl iodide studied by flash
58DUR/RAM	R. A. Durie and D. A. Ramsay, "Absorption spectra of		photolysis and kinetic spectroscopy," Proc. R. Soc.
	the halogen monoxides," Can. J. Phys. 36 , 35 (1958); CA 52 4315b; dissociation energy, spectrum, rotational		(London) A 263 , 51 (1961); CA 56 982g; formation
	and vibrational analysis.	CIDAN/DAE	and reaction of, in CH ₃ I combustion.
58HAL/JAN	A. Halan, A. Janosi, and K. Labdy, "Manufacture,	61PAV/RAF	M. M. Pavlyuchenko and N. G. Rafal'skii, "Kinetics of the thermal decompositon of ammonium iodate,"
	dehydration, and types of iodic acid," Veszprime		Geterogennye Khim. Reakstii, 108 (1961); CA 57
	Vigyipari Egyetem Kozlemenyei 4, 159 (1958); CA 55		2894h; intermediate.
5077.4	14837g; manufacture.	61PHI/SUG	L. F. Phillips and T. M. Sugden, "Determination of
58IMA	K. Imaeda, "Organic microanalysis. XVII. An		dissociation constants and heats of formation of
	improved determining process of carbon monoxide for		molecules by flame photometry. VII. Flame
	the Schutze method in direct oxygen analysis," Yakugaku Zasshi 78, 386 (1958); CA 52 11653c; in		photometric study of the IO molecule," Trans. Faraday
	oxygen analysis.		Soc. 57 , 914 (1961); CA 56 73d; dissociation energy,
	20 ··		enthalpy of formation.

61VLA/ATI	M. Vlatkovic and A. H. W. Jr. Atin, "Szilard-Chalmers processes in iodine oxides," Chem. Effect Nucl. Transform. Proc. Symp. Prague 1960, 551 (1961); CA 57 4210i; Szilard-Chalmers reaction.	63PAC/HAU	L. Pacesova and Z. Hauptman, "Thermal decomposition of periodic acid," Z. Anorg. Allgem. Chem. 325, 325 (1963), CA 60 2537a; formation in thermal decomposition of H ₅ IO ₆ .
61WIS/HAN 62ARO/MIS	J. H. Wise and H. H. Hannan, "Structure of iodine dioxide from the infrared spectrum," J. Inorg. Nucl. Chem. 23, 31 (1961); CA 57 4053b; structure (IO ⁺ IO ₃ ⁻ , iodyl iodate), IR spectra (KBr pellets). J. Arotsky, H. C. Mishra, and M. C. R. Symons,	63SCH	C. J. Schexnayder, Jr., "Tabulated values of bond dissociation energies, ionization potentials and electron affinities for some molecules found in high-temperature chemical reactions," NASA Tech.
OLI III O	"Unstable intermediates. XII. Interactions between strong acids and various compounds containing iodine," J. Chem. Soc. 2582 (1962); CA 57 6678e; solutions in oleum and sulfuric acid, magnetic	63SCH/BRA	Note D-1791 62 (1963); dissociation energies. M. Schmeisser and K. Brandle, "Oxides and oxyfluorides of the halogens," Adv. Inorg. Chem. Radiochem. 5, 41 (1963); CA 60 76576; review.
62FIA/TAR	susceptibility. Yu. Ya. Fialkov and Yu. A. Taransenko, "Iodine exchange in the I ₂ –I ₂ O ₅ system," Zh. Noerg. Khim. 7, 1132 (1962); CA 57 6863b; proposed mechanism for	63SEM/KOP	V. A. Semin'ko and M. N. Kopylova, "Method of mineralization for blood and other tissues using potassium iodate," Lab. Delo 9 (12), 17 (1963); CA 60 9575g.
62GUR/KHA	formation of I-O compounds of intermediate oxidation states. L. V. Gurvich, G. A. Khachkuruzov, V. A. Medvedev, I. V. Veits, G. A. Bergman, V. S. Yungman, N. P.	63VEN/RAJ	K. Venkateswarlu and K. V. Rajalakshmi, "Urey-Bradley force field and thermodynamic properties: pyramidal XY ₃ type molecules," Indian J. Pure Appl. Phys. 1, 380 (1963); CA 60 4823e; vibrations.
	Rtishcheva, L. F. Kuratova, G. M. Yurkov, A. A. Kane, B. F. Yudin, B. I. Brounshtein, V. F. Baibuz, V. A. Kvlividze, E. A. Prozorovskii, and B. A. Vorob'ev, <i>Thermodynamic Properties of Individual Substances</i> (Academy of Sciences, USSR, Moscow, 1962);	64DЛЕ/КЈЕ	G. Daehlie and A. Kjekshus. "Iodine oxides. I. $I_2O_3 \cdot SO_3$, $I_2O_3 \cdot 4SO_3 \cdot H_2O$, $I_2O_3 \cdot SeO_3$, and I_2O_4 ," Acta Chem. Scand. 18 , 144 (1964); CA 60 15405c; compounds with SO_3 , formation and decomposition, review of earlier studies (restates evidence that I_2O_4 does not exist).
62MIS/SYM	thermodynamic functions of IO. H. C. Mishra and M. C. R. Symons, "Oxides and oxy-ions of the non-metals. I. Iodine heptoxide," J. Chem. Soc. 1194 (1962); CA 57 1844b; preparation	64DRA/TER 64GIL/SEN	 M. Dratovsky and S. Ternbach, "The salts of periodic acid. VIII. Calcium and barium salts," Chem. Zesti 18, 241 (1964); CA 61 6609b; ternary system. R. J. Gillespie and J. B. Senior, "Cations and
62OPA/KUZ	(not isolated). A. A. Opalovskii and Z. M. Kuznetsova, "Physicochemical study of the reaction of iodine pentoxide and ammonium fluoride." Izv. Sibersk. Otd. Akad. Nauk SSSR (3), 64 (1962); CA 57 7972a; reaction.	64KAI/SCH	oxycations of iodine. II. Solutions of iodosyl sulfate, iodine dioxide, and iodic acid-iodine mixtures in sulfuric acid and dilute oleum," Inorg. Chem. 3, 972 (1964); CA 61 5011a; reactions with sulfuric acid. G. Kainz and F. Scheidl, "Activity of anhydrous iodic
62OPA/KUZ2	A. A. Opalovskii, Z. M. Kuznetsova, and L. A. Luk'yanova, "Physicochemical study of the reaction of iodine pentoxide with the fluorides of sodium and	64KAI/SCH2	acid and iodine pentoxide preparations. I. Determination of oxygen in organic compounds," Z. Anal. Chem. 202 , 349 (1964); CA 61 3693b. G. Kainz and T. Scheidl, "Oxidation of various
62ORO/MIS	potassium," Izv. Sibirsk. Otd., Akad. Nauk SSSR (6), 54 (1962); CA 57 14490a; ternary system. J. Orotsky, H. C. Mishra, and M. C. R. Symons, "Unstable intermediates. XII. Interaction between		pyrolized products by iodine pentoxide and anhyroiodic acid. II. Events in the determination of oxygen in organic substances," Z. Anal. Chem. 204 , 8 (1964); CA 61 10046c.
	strong acids and various compounds containing iodine," J. Chem. Soc. 2582 (1962); CA 57 6678c.	64KAI/SCH3	G. Kainz and F. Scheidl, "Oxidation of carbon monoxide with iodine pentoxide. Influence of layer
62SOR/HAR	A Sorbsby and R. Harding, "Experimental degeneration of the retina. X. The retinotoxic action of sodium periodate and iodine pentoxide and the inefficacy of other oxidizing agents," Vision Res. 2,		length and stream velocity. III. Estimation of oxygen in organic substances," Mikrochim. Ichnoanal. Acta (2–4), 539 (1964); CA 61 4954c; CO(g) oxidation.
63ALO	327 (1962); CA 62 3220c; eye retina damage. N. W. Alood, thesis, University of Cambridge (1963); unit cell dimensions.	64RAO/SAN	C. G. R. Rao and C. Santhamma, "The mean square amplitudes of vibration in BrO ₃ , IO ₃ , and SiBr ₃ ," Current Sci. 33(22), 677 (1964); CA 62 6001e; amplitudes of vibrations, refers to earlier studies for
63BUR/NOR	G. Burns and R. G. W. Norrish, "Mechanism of the formation of halogen monoxides during flash photolysis of halogen+oxygen mixtures," Proc. R. Soc. (London) A 271, 289 (1963); CA 58 4076e; formation from Lond O by Rosh photolysis.	65KEM/ROB	vibrational frequencies and structure. G. Kempe and D. Robus, "Chemistry of selenium trioxide. II. Iodo oxyselenates," Z. Chem. 5(10), 394 (1965); CA 64 7646g; reaction.
63DAS/WAD	formation from I and O by flash photolysis. W. E. Dasent and T. C. Waddington, "The infrared spectrum and structure of 1 ₂ O ₄ ," J. Inorg. Nucl. Chem. 25. 132 (1963); CA 58 12085a; ir spectrum (KBr	65KNA	H. R. Knapp, "High energy electrochemical batteries," Proc. Ann. Power Sources Conf. 19, 94 (1965); CA 64 3011f.
63EHR/ENG	pellet), structure is not IO *IO ₃ . P. Ehrlich and W. Engel, "Reactions of oxides with liquid chlorides," Z. Anorg. Allgem. Chem. 322 , 271	65SIN/RAI	R. B. Singh and D. K. Rai, "Internuclear potential curves for BO, IO, and ClO," J. Quant. Spectrosc. Radiat. Transfer 5, 723 (1965); CA 63 15580e; potential energy curve, dissociation energy.
	(1963); CA 59 6022c; reaction.	66AKH/MAR	 M. Akhtar and S. Marsh, "Synthesis of a medium-size ring via alkoxy radical decomposition," J. Chem. Soc. C 1966, 937; CA 64 19719d; proposed intermediate.
			, and , and a second se

66NERAMON M. Dataovsky and J. Koulerowa, "The salts of periodic acid. XII. Nagressian perioduse," Collection Czech. Chem. Commun. 31, 4375 (1966); CA 65 1776/h; ceremary system. 1. S. Kirin, A. Martin, V. D. Nefesov, Y. K. Guswa, and G. G. Schillow, "Formation of XCO, during break-decay of "I' in BIO, and EQ.," Radiokhimiyal, 8, 16650B/NAN C. Sobotova and L. Pandiokhimiyal, 8, 16850B/NAN C. Pandiok				
and G. G. Selbkov, "Formation of XaO, during beta-decay of "Ili in HiO, and Lop", "Radiothimys 8, 104 (1966); CA 64 15273a. 66SOB/NAN C. Sobotova and J. Vanek, "Velocity of longitudinal waves in multicomponent gels." Shadia Geophys. Geodack. Cask. Acid. Vacl. 103, 28 (1966); CA 65 (1601). 66VED/GUR V. I. Vedensyev, L. V. Gurvich, N. N. Kondral yev, V. A. Medvedev, and Ye. L. Frankevich, Rond Energies, Comission of Portentials, and Electronic Affinities (Arnold, London, 1966), p. 33; dissociation, review. D. L. Walton and L. F. Phillips, "Received of oxygen atoms with iodine," J. Phys. Chem. 70, 1317 (1966); CA 65 4991; Gromation. 66WAL/PHI D. L. Walton and L. F. Phillips, "Received of oxygen atoms with iodine," J. Phys. Chem. 70, 1317 (1966); CA 65 4991; Gromation. 66WAL/PHI D. L. Walton and L. F. Phillips, "Velocity of the principle of the products of binding of the principle of the products of binding of the principle of	66DRA/KOS	acid. XII. Magnesium periodate," Collection Czech. Chem. Commun. 31, 4375 (1966); CA 65 17764h;	68GRU/MUR	Motornyi, "Quadrupole splitting of the iodine-129 Mossbauer level in iodine dioxide," Fiz. Tverd. Tela
beta-decay of 311 in HO ₂ and I ₂ O ₃ . "Radioaliminy as, 104 (1965); CA of 15173a. C. Sobchova and J. Vanke, "Velocity of longitudinal waves in multicomponent gets." Studia Goophys. Geodact, Cesk. Akad. Vct. 10 (3), 281 (1966); CA of 516101f. Geovernment of the Composition of Compo	66KIR/MUR			· · · · · · · · · · · · · · · · · · ·
waves in multicomponent gels, "Studia Geophys, Gendeat, Cack Akad Ved 10 (3), 281 (1966); CA 65 16101f. 66VED/GUR 66VED/GUR 7. I. Vedeneyev, L. V. Gurvick, V. N. Kondraryev, V. A. Medvedev, and Vr. L. Frankevich, Rond Energies, Individual Partentials, and Electronic Affinities (Armold, London, 1966), p. 33; dissociation, review. D. I. Walton and I. F. Phillips, "Reaction of soven atoms with iodine," J. Phys. Chem. 70, 1317 (1966); CA 65 4991s; formation. 66WAL/PHI 66WAL/PHI 66WAL/PHI 60WAL/PHI		beta-decay of ¹³¹ I in IHO ₃ and I ₂ O ₅ ," Radiokhimiya 8,	68PAC/BOH	
A Medivedex, and Ye. L. Frankevich, Bond Energies, Invitation Potentials, and Electronic Affinities (Armold, London, 1966); p. 33 (sloscaidon, review, Schrold, London, 1966); p. 33 (sloscaidon, review, Schrold, London, 1966); p. 33 (sloscaidon, review, Schrold, 1966); CA 63 (sloska); Gascaidon, review, Schrold, 1966); CA 65 (sloska); Gascaidon, review, Schrold, 1966); CA 65 (sloska); CA 67 (slos	66SOB/VAN	waves in multicomponent gels," Studia Geophys. Geodaet., Cesk. Akad. Ved. 10 (3), 281 (1966); CA 65	68SEL/KJE	K. Selte and A. Kjekshus, "Iodine oxides. Part II. On the system H ₂ O-I ₂ O ₅ ," Acta Chem. Scand. 22 , 3309 (1968); CA 70 71493u; x-ray analysis, density,
 D. I. Walton and L. F. Phillips, "Reaction of oxygen atoms with iodine." J. Phys. Chem. 70, 1317 (1966); CA 65 4991e; formation. M. Zielenski, "Kinetic isotope effects accompanying oxidation of CO. H.; and CH₄." Nicel. Appl. 2, 51 (1966); CA 66 98565d, oxidation of CO(g). 67BIA/SAB P. Bianco, A. R. Sabbah, and G. Perinet, "Preparation, thermal behavior, and x-ray identification of potassium periodates sobtaned in an augusus medium," Bull. Soc. Chim. (9), 3437 (1967); CA 68 8836b; ternary system. A. Carrington, G. N. Currie, P. N. Dyer, D. H. Lovy, and T. A. Miller, "Gas phase electron spin resonance of SF, SeF, SeO (2³ and 1³ and 10." Chem. Commun. (13), 641 (1967); CA 67 59384c; gas phase ESR. 67CAR/DYE A. N. Carrington, P. N. Dyer, and D. H. Levy, "Gas phase electron resonance spectrum of chlorine oxide." J. Chem. Phys. 47, 1756 (1967); CA 67 86380s; EPR. V. Maruyama and K. Idenwaw, "Production of lodine-128 by small research reactor." J. Nucl. Sci. Technol. 4, 555 (1967); CA 68 55551x; production of lodine-128 by small research reactor." J. Nucl. Sci. Technol. 4, 555 (1967); CA 68 55551x; production of lodine-128 by small research reactor." J. Nucl. Sci. Technol. 4, 555 (1967); CA 68 55551x; production of lodine-128 by small research reactor. The Nucl. Sci. Technol. 4, 555 (1967); CA 68 55551x; production of lodine-128 by small research reactor. J. Nucl. Sci. Technol. 4, 555 (1967); CA 68 55551x; production of lodine-128 by small research reactor. J. Nucl. Sci. Technol. 4, 555 (1967); CA 68 1016 by small research reactor. J. Nucl. Sci. Technol. 4, 555 (1967); CA 68 1016 by small research reactor. J. Nucl. Sci. Technol. 4, 555 (1967); CA 68 1016 by small research reactor. J. Nucl. Sci. Technol. 4, 555 (1967); CA 68 1016 by small research reactor. J. Nucl. Sci. Technol. 4, 555 (1967); CA 68 1016 by small research reactor. J. Nucl. Sci. Technol. 4, 555 (1967); CA 68 1016 by small research reactor. J. Nucl. Sci. Technol. 4, 555 (1967); CA 68 1016 by smal	66VED/GUR	A. Medvedev, and Ye. L. Frankevich, Bond Energies, Ionization Potentials, and Electronic Affinities		E. Torikai, Y. Kawami, and N. Miyamoto, "Dehydration products of iodic acid," Bunseki Kagaku 17, 213 (1968); CA 68 101388s; formation.
 M. Zielenski, "Kinetic isotope effects accompanying oxidation of CO, H₂, and CH₄." Nucl. Appl. 2, 51 (1966); CA 66 98656d; oxidation of CO(g). F. Bianco, R. Sabbah, and G. Perinet, "Preparation, thermal behavior, and x-ray identification of potassium periodates obtained in an autocus medium," Bull. Soc. Chim. (9), 3437 (1967); CA 68 8836b; termary system. A. Carrington, G. N. Currie, P. N. Dyer, D. H. Levy, and T. A. Miller, "Gas phase electron prisonance of SF, SeF, SeO ("2" and "a) and 10." Chem. Commun. (13), 641 (1967); CA 67 59384; gas phase ESR. A. N. Carrington, P. N. Dyer, and D. H. Levy, "Gas phase electron resonance spectrum of chlorine oxide," Commun. (13), 641 (1967); CA 67 59384; gas phase ESR. COMAR/IDE M. J. McEwan and K. Idenawa, "Production of iodin-128 by small research reactor," J. Nucl. Sci. Technol. 4, 565 (1967); CA 68 58561x; production of 12³⁴. M. J. McEwan and L. F. Phillips, "Radical concentrations and decays in learn hydrogen introgen-oxygen flames," Combustion and Flames 11, 63 (1967). G7MUK/END T. Mikajayama and T. Endo, "The oxidations of thiols and their lead salts," Bull. Chem. Soc. Jpn. 40, 2388 (1967); CA 68 12615w; reactions. G6SCAR A. Carrington, Electron resonance of description. In an apueous medium," Bull. Soc. Chim. (10), 3864 (1967); CA 66 80392x; mass spectra, "J. Phys. Chem. 71, 457 (1967); CA 66 80392x; mass spectra, "J. Phys. Chem. 71, 457 (1967); CA 66 80392x; mass spectra, "J. Phys. Chem. 71, 457 (1967); CA 66 80392x; mass spectra, "J. Phys. Chem. 71, 457 (1967); CA 66 80392x; mass spectra, "J. Phys. Chem. 71, 457 (1967); CA 76 86 80362x; formation in molecules Magnetic and electric interactions in "In states," Proc. Colloq. AMPERE (At Mol. Etud. Radio Elec.) [1968) [5. CA 67 130594; ESR. A. G. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968). Fodayaman and Hall, London	66WAL/PHI	D. I. Walton and L. F. Phillips, "Reaction of oxygen atoms with iodine," J. Phys. Chem. 70, 1317 (1966);	68VEP/HAU	pentoxide in an oxygen plasma," Z. Anorg. Allg. Chem. 359, 313 (1968); CA 69 47156v; transport
thermal behavior, and x-ray identification of potassium periodates obtained in an aqueous medium," Bull. Soc. Chim. (9), 3437 (1967); CA 68 8836b; ternary system. A. Carrington, G. N. Currie, P. N. Dyer, D. H. Levy, and T. A. Miller, "Gas phase electron spin resonance of SF, SeF, SeO (*2 and *1a) and IO," Chem. Commun. (13), 641 (1967); CA 67 59384q; gas phase EBR. 67CAR/DYE 67CAR/DYE A. N. Carrington, P. N. Dyer, and D. H. Levy, "Gas phase electron resonance spectrum of chlorine oxide," J. Chem. Phys. 47, 1756 (1967); CA 67 86380s; EPR. 67MAR/IDE Y. Maruyama and K. Idenawa. "Production of iodine-128 by small research reactor," J. Nucl. Sci. Technol. 4, 656 (1967); CA 68 85561x; production of 19tl. 67MCE/PHI M. J. McEwan and L. F. Phillips, "Radical concentrations and decays in lean hydrogen-nitrogen-oxygen flames," Combustion and Flames 11, 65 (1967). 67MUK/END T. Mukkaiyama and T. Endo, "The oxidations of thiols and their lead salts," Bull. Chem. Soc. Jpn. 40, 2388 (1967); CA 68 12615w; reactions. 67SAB/BIA R. Sabbah, P. Bianco, and G. Perinet, "Preparation, thermal behavior, and x-ray identification of sodium periodates obtained in an aqueous medium," Bull. Soc. Chim. (10), 3864 (1967); CA 68 12615w; reactions. 68BAC R. O. Back, "Direct preparation of iodic acid and its salts," U.S. Patent No. 3,378,337 (1968); CA 78 18670; CA 78 4877b; formation in phonolysis of aqueous solutions of halate ions," 1, 17 (1969); CA 72 49474h; ESR. 70CAR/DYE 70AMI/TRE2 68GAY A. C. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968).	66ZIE	oxidation of CO, H ₂ , and CH ₄ ," Nucl. Appl. 2, 51	68WAG/EVA	D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, and S. M. Bailey, "Selected values
A Carrington, G. N. Currie, P. N. Dyer, D. H. Levy, and T. A. Miller, "Gas phase electron spin resonance of SF, SeF, SeO (*2 and ¹a) and IO," Chem. Commun. (13), 641 (1967); CA 67 59384q; gas phase ESR. 67CAR/DYE A. N. Carrington, P. N. Dyer, and D. H. Levy, "Gas phase electron resonance spectrum of chlorine oxide," J. Chem. Phys. 47, 1756 (1967); CA 67 86380s; EPR. Y. Maruyama and K. Idenawa. "Production of iodine-128 by small research reactor," J. Nucl. Sci. Technol. 4, 565 (1967); CA 68 855651x; production of 128 (1967); CA 68 855651x; production of 129 (1969); CA 71 130684c; formation in flash photolysis of aqueous solutions of halate ions," J. Chem. Soc. 1969; CA 72 6336x; formation in flash photolysis of aqueous solutions of halate ions," J. Chem. Soc. 1921, Carrington, P. N. Dyer, and J. D. H. Levy, "Gas phase electron resonance spectrum of chlorine oxide," J. L. Brewer and G. M. Rosenblatt, "Dissociation energies and free energy functions of gaseous monoxides," Adv. High Temp. Chem. 2, 1 (1969); GA 71 130684c; formation in flash photolysis of aqueous solutions of halate ions," J. Chem. Soc. 1921, Chem	67BIA/SAB	thermal behavior, and x-ray identification of potassium		arrangement," NBS-TN-270-3, 31 (1968); enthalpy of
Commun. (13), 641 (1967); CA 67 59384q; gas phase ESR. 67CAR/DYE A. N. Carrington, P. N. Dyer, and D. H. Levy, "Gas phase electron resonance spectrum of chlorine oxide," J. Chem. Phys. 47, 1756 (1967); CA 68 6380s; EPR. 67MAR/IDE 67MAR/IDE 7 Maruyama and K. Idenawa, "Production of iodine-128 by small research reactor," J. Nucl. Sci. Technol. 4, 565 (1967); CA 68 55651x; production of iodine-128 by small research reactor," J. Nucl. Sci. Technol. 4, 565 (1967); CA 68 55651x; production of iodine-128 by small research reactor," J. Nucl. Sci. Technol. 4, 565 (1967); CA 68 55651x; production of iodine-128 by small research reactor," J. Nucl. Sci. Technol. 4, 565 (1967); CA 68 55651x; production of iodine-128 by small research reactor, and the production of iodine-128 by small research reactor, and the production of iodine-128 by small research reactor, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and production of iodine-128 by small research reactors, and production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-128 by small research reactors, and the production of iodine-12	67CAR/CUR	A. Carrington, G. N. Currie, P. N. Dyer, D. H. Levy, and T. A. Miller, "Gas phase electron spin resonance	69BAR/GIL	photolysis of aqueous solutions of halate ions," J. Chem. Soc. D (24), 1485 (1969); CA 72 61336x;
A. N. Carrington, P. N. Dyer, and D. H. Levy, "Gas phase electron resonance spectrum of chlorine oxide," J. Chem. Phys. 47, 1756 (1967); CA 67 86380s; EPR. Y. Maruyama and K. Idenawa, "Production of iodine-128 by small research reactor," J. Nucl. Sci. Technol. 4, 565 (1967); CA 68 55651x; production of iodine-128 by small research reactor," J. Nucl. Sci. Technol. 4, 565 (1967); CA 68 55651x; production of iodine-128 by small research reactor," J. Nucl. Sci. Technol. 4, 565 (1967); CA 68 55651x; production of iodine-128 by small research reaction iodine-128 by small research reaction iodine-128 by small research reaction-128 by small research reaction-128 by small research reaction-128 by small research reaction-128 by small-		Commun. (13), 641 (1967); CA 67 59384q; gas phase	69BRE/ROS	L. Brewer and G. M. Rosenblatt, "Dissociation
Formaryama and K. Idenawa, "Production of iodine-128 by small research reactor," J. Nucl. Sci. Technol. 4, 565 (1967); CA 68 55651x; production of 128 I. M. J. McEwan and L. F. Phillips, "Radical concentrations and decays in lean hydrogen-nitrogen-oxygen flames," Combustion and Flames II, 63 (1967). T. Mukaiyama and T. Endo, "The oxidations of thiols and their lead salts," Bull. Chem. Soc. Jpn. 40, 2388 (1967); CA 68 12615w; reactions. Formal behavior, and x-ray identification of sodium periodates obtained in an aqueous medium," Bull. Soc. Chim. (10), 3864 (1967); CA 68 63124t; ternary system. Formal behavior, and x-ray identification of sodium periodates obtained in an aqueous oxides and oxyacids of iodine and xenon mass spectra," J. Phys. Chem. 71, 457 (1967); CA 68 63124t; ternary system. Formal behavior, and x-ray identification of sodium periodates obtained in an aqueous oxides and oxyacids of iodine and xenon mass spectra," J. Phys. Chem. 71, 457 (1967); CA 68 63124t; ternary system. Formal behavior, and x-ray identification of sodium periodates obtained in an aqueous oxides and oxyacids of iodine and xenon mass spectra," J. Phys. Chem. 71, 457 (1967); CA 68 63124t; ternary system. Formal behavior, and x-ray identification of sodium periodates obtained in an aqueous oxides and oxyacids of iodine and xenon mass spectra, "J. Phys. Chem. 71, 457 (1967); CA 68 63124t; ternary system. Formal behavior, and x-ray identification of sodium periodates obtained in an aqueous oxides and oxyacids of iodine and xenon mass spectra, "J. Phys. Chem. 71, 457 (1967); CA 68 63124t; ternary system. Formal behavior, and x-ray identification of sodium periodates obtained in an aqueous oxides and oxyacids of iodine and xenon mass spectra, "J. Phys. Chem. 71, 457 (1967); CA 68 63124t; ternary system. Formal behavior, and x-ray identification of sodium periodates obtained in an aqueous medium," Bull. Soc. A 72 72035v; formation in photolysis of iodate. O. A 73 72035v; formation and decay in photolysis of iodate boric gla	67CAR/DYE	phase electron resonance spectrum of chlorine oxide,"	COLLA TIGUES	monoxides," Adv. High Temp. Chem. 2 , 1 (1969); dissociation energies.
67MCE/PHI M. J. McEwan and L. F. Phillips, "Radical concentrations and decays in lean hydrogen-nitrogen-oxygen flames," Combustion and Flames 11, 63 (1967). 67MUK/END T. Mukaiyama and T. Endo, "The oxidations of thiols and their lead salts," Bull. Chem. Soc. Jpn. 40, 2388 (1967); CA 68 12615w; reactions. R. Sabbah, P. Bianco, and G. Perinet, "Preparation, thermal behavior, and x-ray identification of sodium periodates obtained in an aqueous medium," Bull. Soc. Chim. (10), 3864 (1967); CA 68 63124t; ternary system. 67STU/HUS M. H. Studier and J. L. Huston, "Gaseous oxides and oxyacids of iodine and xenon mass spectra," J. Phys. Chem. 71, 457 (1967); CA 66 80392e; mass spectra. 68BAC R. O. Back, "Direct preparation of iodic acid and its salts," U.S. Patent No. 3,378,337 (1968); CA 68 116060c; preparation. 68CAR A. Carrington, "Electron resonance of gaseous diatomic molecules. Magnetic and electric interactions in in 3T1 states," Proc. Colloq, AMPERE (At. Mol. Etud. Radio Elec.) [1968] 15. 23 (pub. 1969); CA 71 130594y; ESR. 68GAY A. G. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968). 70DAR atomic oxygen (O ³ P). Experimental method and results for some C ₁ and C ₂ chloroalkanes, and bromoalkanes, in 2 J. Phys. Chem. 73, 1326 (1969); CA 71 29826a; kinetics, discussion of dissociation energy of IO. 70AMB/SAI 70AMB/SAI 70AMI/TRE 81	67MAR/IDE	Y. Maruyama and K. Idenawa, "Production of iodine-128 by small research reactor," J. Nucl. Sci. Technol. 4, 565 (1967); CA 68 55651x; production of		electronically excited iodine atoms I(5 $^{2}P_{1/2}$), with halides and oxides," Trans. Faraday Soc. 65 , 2678 (1969); CA 71 130684c; formation by pyrolysis.
 T. Mukaiyama and T. Endo, "The oxidations of thiols and their lead salts," Bull. Chem. Soc. Jpn. 40, 2388 (1967); CA 68 12615w; reactions. R. Sabbah, P. Bianco, and G. Perinet, "Preparation, thermal behavior, and x-ray identification of sodium periodates obtained in an aqueous medium," Bull. Soc. Chim. (10), 3864 (1967); CA 68 63124t; ternary system. M. H. Studier and J. L. Huston, "Gaseous oxides and oxyacids of iodine and xenon mass spectra," J. Phys. Chem. 71, 457 (1967); CA 66 80392e; mass spectra. R. O. Back, "Direct preparation of iodic acid and its salts," U.S. Patent No. 3,378,337 (1968); CA 68 116060c; preparation. A. Carrington, "Electron resonance of gaseous diatomic molecules. Magnetic and electric interactions in "IT states," Proc. Colloq. AMPERE (At. Mol. Etud. Radio Elec.) [1968] 15. 23 (pub. 1969); CA 71 130594y; ESR. A. G. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968). T. Mukaiyama and T. Endo, "The oxidations of thiols and their lead salts," Bull. Chem. Soc. Jpn. 40, 2388 (1967); CA 68 12615w; reactions. The mybe and N. Saito, "Chemical effects of neutron-induced nuclear reactions in halates and related compounds. II. The (n, γ) and (n, 2n) reactions in iodates," Radiochim Acta 13, 105 (1970); CA 73 50833b; Szilard-Chalmers reaction. TOAMI/TRE TOAMI/TRE	67МСЕ/РНІ	M. J. McEwan and L. F. Phillips, "Radical concentrations and decays in lean hydrogen-nitrogen-oxygen flames," Combustion and Flames 11,	OPHEK/HUI	atomic oxygen (O³P). Experimental method and results for some C ₁ and C ₅ chloroalkanes and bromoalkanes, '' J. Phys. Chem. 73 , 1326 (1969); CA 71 29826a;
R. Saban, P. Bianco, and G. Perniet, Preparation, thermal behavior, and x-ray identification of sodium periodates obtained in an aqueous medium," Bull. Soc. Chim. (10), 3864 (1967); CA 68 63124t; ternary system. 67STU/HUS M. H. Studier and J. L. Huston, "Gaseous oxides and oxyacids of iodine and xenon mass spectra," J. Phys. Chem. 71, 457 (1967); CA 66 80392e; mass spectra. 68BAC R. O. Back, "Direct preparation of iodic acid and its salts," U.S. Patent No. 3,378,337 (1968); CA 68 116060c; preparation. 68CAR A. Carrington, "Electron resonance of gaseous diatomic molecules. Magnetic and electric interactions in 'IT states," Proc. Colloq. AMPERE (At. Mol. Etud. Radio Elec.) [1968] 15. 23 (pub. 1969); CA 71 130594y; ESR. 68GAY A. G. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968). A. G. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968).	67MUK/END	T. Mukaiyama and T. Endo, "The oxidations of thiols and their lead salts," Bull. Chem. Soc. Jpn. 40, 2388		neutron-induced nuclear reactions in halates and related compounds. II. The (n, γ) and $(n, 2n)$
system. 67STU/HUS M. H. Studier and J. L. Huston, "Gaseous oxides and oxyacids of iodine and xenon mass spectra," J. Phys. Chem. 71, 457 (1967); CA 66 80392e; mass spectra. R. O. Back, "Direct preparation of iodic acid and its salts," U.S. Patent No. 3,378,337 (1968); CA 68 116060c; preparation. 68CAR A. Carrington, "Electron resonance of gaseous diatomic molecules. Magnetic and electric interactions in 2 states," Proc. Colloq. AMPERE (At. Mol. Etud. Radio Elec.) [1968] 15. 23 (pub. 1969); CA 71 130594y; ESR. 68GAY A. G. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968). 68GAY A. G. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968). 70AMI/TRE2 70AMI/TRE2 O. Amichai and A. Treinin, "Oxyiodine radicals trapped in boric acid glass," J. Chem. Phys. 53, 444 (1970); CA 73 72035v; formation and decay in photolysis of iodate boric glass. 70CAR/DYE A. Carrington, P. N. Dyer, and D. H. Levy, "Gas phase electron resonance spectra of bromosyl and iodosyl," J. Chem. Phys. 52, 309 (1970); CA 72 49474h; ESR. 70CLY/CRU M. A. A. Clyne and H. W. Cruse, "Rates of elementary reactions involving the BrO (X 2 II) and IO (X 2 II) radicals. Part 2. Reactions of the BrO and IO radicals," Trans. Faraday Soc. 66, 2227 (1970); CA 73 70239r; kinetics of formation and disproportionation. enthalpy of formation. 70DAR 8. de B. Darwent, "Bond dissociation energies in simple molecules," NSRDS-NBS 31, 1 (1970); CA 72	67SAB/BIA	thermal behavior, and x-ray identification of sodium periodates obtained in an aqueous medium," Bull. Soc.	70AMI/TRE	CA 73 50833b; Szilard-Chalmers reaction. O. Amichai and A. Treinin, "Oxylodine radicals in
oxyacids of iodine and xenon mass spectra, "J. Phys. Chem. 71, 457 (1967); CA 66 80392e; mass spectra. R. O. Back, "Direct preparation of iodic acid and its salts," U.S. Patent No. 3,378,337 (1968); CA 68 116060c; preparation. A. Carrington, "Electron resonance of gaseous diatomic molecules. Magnetic and electric interactions in 2 states," Proc. Colloq. AMPERE (At. Mol. Etud. Radio Elec.) [1968] 15. 23 (pub. 1969); CA 71 130594y; ESR. 68GAY A. G. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968). Trapped in boric acid glass," J. Chem. Phys. 53, 444 (1970); CA 73 72035v; formation and decay in photolysis of iodate boric glass. A. Carrington, P. N. Dyer, and D. H. Levy, "Gas phase electron resonance spectra of bromosyl and iodosyl," J. Chem. Phys. 52, 309 (1970); CA 72 49474h; ESR. M. A. A. Clyne and H. W. Cruse, "Rates of elementary reactions involving the BrO (X 2 II) and IO (X 2 II) radicals. Part 2. Reactions of the BrO and IO radicals," Trans. Faraday Soc. 66, 2227 (1970); CA 73 70239r; kinetics of formation and disproportionation. enthalpy of formation. B. de B. Darwent, "Bond dissociation energies in simple molecules," NSRDS-NBS 31, 1 (1970); CA 72		· · · · · · · · · · · · · · · · · · ·	6 0.11(7,500.00	CA 72 84872h; formation in photolysis of iodate.
A. Carrington, P. N. Dyer, and D. H. Levy, "Gas phase electron resonance spectra of bromosyl and iodosyl," J. Chem. Phys. 52, 309 (1970); CA 72 49474h; ESR. A. Carrington, "Electron resonance of gaseous diatomic molecules. Magnetic and electric interactions in ² IT states," Proc. Colloq. AMPERE (At. Mol. Etud. Radio Elec.) [1968] 15. 23 (pub. 1969); CA 71 130594y; ESR. A. G. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968). A. Carrington, P. N. Dyer, and D. H. Levy, "Gas phase electron resonance spectra of bromosyl and iodosyl," J. Chem. Phys. 52, 309 (1970); CA 72 49474h; ESR. M. A. A. Clyne and H. W. Cruse, "Rates of elementary reactions involving the BrO (X ² II) and IO (X ² II) radicals. Part 2. Reactions of the BrO and IO radicals," Trans. Faraday Soc. 66, 2227 (1970); CA 73 70239r; kinetics of formation and disproportionation, enthalpy of formation. B. de B. Darwent, "Bond dissociation energies in simple molecules," NSRDS-NBS 31, 1 (1970); CA 72	67STU/HUS	oxyacids of iodine and xenon mass spectra," J. Phys.	/0AMI/TRE2	trapped in boric acid glass," J. Chem. Phys. 53, 444 (1970); CA 73 72035v; formation and decay in
A. Carrington, "Electron resonance of gaseous diatomic molecules. Magnetic and electric interactions in ² II states," Proc. Colloq. AMPERE (At. Mol. Etud. Radio Elec.) [1968] 15. 23 (pub. 1969); CA 71 130594y; ESR. 68GAY A. G. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968). 70CLY/CRU M. A. A. Clyne and H. W. Cruse, "Rates of elementary reactions involving the BrO (X ² II) and IO (X ² II) radicals. Part 2. Reactions of the BrO and IO radicals," Trans. Faraday Soc. 66, 2227 (1970); CA 73 70239r; kinetics of formation and disproportionation, enthalpy of formation. 8 de B. Darwent, "Bond dissociation energies in simple molecules," NSRDS-NBS 31, 1 (1970); CA 72	68BAC	salts," U.S. Patent No. 3,378,337 (1968); CA 68	70CAR/DYE	A. Carrington, P. N. Dyer, and D. H. Levy, "Gas phase electron resonance spectra of bromosyl and iodosyl,"
A. G. Gaydon, Dissociation Energies, 3rd ed. (Chapman and Hall, London, 1968). 70DAR 8. de B. Darwent, "Bond dissociation energies in simple molecules," NSRDS-NBS 31, 1 (1970); CA 72	68CAR	diatomic molecules. Magnetic and electric interactions in ² Π states," Proc. Colloq. AMPERE (At. Mol. Etud. Radio Elec.) [1968] 15 . 23 (pub. 1969); CA 71	70CLY/CRU	M. A. A. Clyne and H. W. Cruse, "Rates of elementary reactions involving the BrO ($X^2\Pi$) and IO ($X^2\Pi$) radicals. Part 2. Reactions of the BrO and IO radicals," Trans. Faraday Soc. 66 , 2227 (1970); CA 73
	68GAY	•	70DAR	enthalpy of formation. B. de B. Darwent, "Bond dissociation energies in simple molecules," NSRDS-NBS 31, 1 (1970); CA 72

70GRU/LUR	Yu. S. Grushko, B. G. Lur'e, and A. N. Murin, "Mossbauer study of iodine dioxide," Fiz. Tverd. Tela 11, 2144 (1969); Eng. transl., Sov. Phys. Solid State 11, 1733 (1970); CA 71 96681n; structure (2 nonequivalent iodine atoms).	72IMA/OOS	K. Imaeda, K. Oosawa, and K. Kanao, "Low temperature oxidation of carbon monoxide with iodine pentoxide-silica complexes," Hoski Yakka Dacqaku Keyo (14), 36 (1972); CA 78 131831e; oxidation of CO(g).
70KUZ/KOT	R. A. Kuznetsov and Yu. S. Kotel'nikov, "Photoactivation determination of oxygen in compounds containing iodine," Radiokhimiya 12. 531 (1970); CA 73 137066c; oxygen determination in.	72RAD/DEV	P. V. Radheshwar, R. Dev, and G. H. Cady, "Preparation of trifluoroacelates by the reaction of trifluoroacetic anhydride with certain oxides or oxo salts," J. Inorg. Nucl. Chem. 34, 3913 (1972); CA 78 29181f; reaction.
70SAI/AMB	N. Saito and F. Ambe, "Oxidation state of iodine-126 arising from the $(n, 2n)$ reaction in inorganic iodine compounds," Rull. Chem. Soc. Jpn. 43, 282 (1970); CA 72 73401c; reaction.	72RAI/SHA	S. B. Rai, V. N. Sharma, and D. K. Rai, "Validity of Teitz potential functions for diatomic molecules," Can. J. Phys. 50, 428 (1972); CA 76 131653g; dissociation energy.
70SEL/KJE	K. Selte and A. Kjekshus, "Iodine oxides. III. Crystal structure of (di)iodine pentoxide," Acta Chem. Scand. 24 , 1912 (1970); CA 74 7502b; crystal structure (monoclinic).	72RAO	C. G. R. Rao, "Centrifugal distortion constants in bromine trioxide (BrO ₃), iodine trioxide (IO ₃), and silicon tribromide (SiBr ₃)," Sci. Cult. 38 , 522 (1972); CA 78 166312f; vibrational frequencies, molecular
70SHE/TUR	P. M. A. Sherwood and J. J. Turner, "Vibrational spectra of compounds in the iodine pentoxide—water system and sodium iodate," Spectrochim. Acta, Part A 26, 1975 (1970); CA 73 125257c; mass spectrum, structure.	72TRI/GOH	centrifugal distortion constants, pyramidal structure assumed. V. M. Triveldi and V. B. Gohel, "Dissociation energy of the IO molecule," J. Phys. B 5, L38 (1972); CA 76
70SHE/TUR2	P. M. A. Sherwood and J. J. Turner, "Mass spectrum of iodine pentoxide and a novel reaction with copper," J. Chem. Soc. A (14), 2349 (1970); CA 73 92643v; mass spectrum.	72YAN	117756m; dissociation energy (estimation). V. M. Yanishevskii, "Principles of the fundamental valence vibration frequency change of diatomic molecules," Opt. Spektrosk. 33, 636 (1972); CA 78
71BYF/CAR	C. R. Byfleet, A. Carrington, and D. K. Russell, "Electric dipole moments of open-shell diatomic molecules," Mol. Phys. 20 , 271 (1971); CA 74 147751g; dipole moment, EPR.	73KAP	64392x; molecular vibrations, properties. J. Kapounova, "Properties of high frequency plasma in iodine vapors," Sb. Ved. Pr. Vys. Sk. Banske Ostrave, Rada HornGeol. 18, 87 (1973); CA 79 109337x; spectral lines in plasma.
71GRU/LUR	Yu. S. Grushko, B. G. Lur'e, and A. N. Murin, "Investigation of I ₂ O ₄ by the Mössbauer effect," Proc. Conf. Appl. Mössbauer Eff. [1969], 681 (pub. 1971); CA 74 148875n; structure (IOIO ₃).	73MAN/BOZ	T. G. Manova, G. P. Boznyakova, L. K. Raginskaya, S. F. Azizova, and I. P. Belikova, "Determination of impurities in iodine(V) oxide," Metody Anal. Khim. Reakt. Prep. No. 21, 72 (1973); Ref. Zh., Khim. Abstr.
71KAU/KOL	M. Kaufman and C. E. Kolb, "Molecular beam analyzer for identifying intermediates in gaseous reactions," Chem. Instrum. 3, 175 (1971); CA 76 76557b; detection by molecular beam analysis.	73PAR/HER	No. 2G141 (1974); CA 81 145290b; title only translated. D. D. Parrish and D. R. Herschbach, "Molecular beam
71LES/BAR	B. Lesigne, F. Barat, L. Gilles, and B. Hickel, "Transient species in the pulsed radioloysis of periodate ion in neutral aqueous solution," J. Chem.	73SAI	chemistry. Persistent collision complex in reaction of oxygen atoms with bromine molecules," J. Am. Chem. Soc. 95, 6133 (1973); CA 79 129458r; formation. S. Saito, "Microwave spectrum of the iodine
71MIL	Soc. D (15), 847 (1971); CA 75 92968w; formation and spectrum, from radiolysis of periodate aqueous solutions. T. Miller, "Alternative explanation for anomalous	#2077149.40G	monoxide radical," J. Mol. Spectrosc. 48, 530 (1973); CA 80 21077x; molecular constants, structure, microwave spectra, splitting of ground state.
71SEL/KJE	parameters from electron resonance experiments," J. Chem. Phys. 54 , 3156 (1971); CA 74 118155k; ESR. K. Selte and A. Kjekshus, "Iodine oxides. IV. Solid	73SEM/MOS	G. K. Semin, A. K. Moscalev, V. I. Pakhamov, E. M. Mikjaelova, E. E. Vinogradov, and I. A. Azarova. "NQR spectra of some iodates and their conformity to x-ray diffraction data," Dokl. Akad. Nauk SSSR 211,
73D 4 D/CH	compounds formed in the systems $H_2O-SO_3-I_2O(n)$ [$n=3,4,5$]," Acta Chem. Scand. 25 . 751 (1971); CA 75 29484v; review, formation, decomposition.	73STU/TEZ	148 (1973); CA 79 110038g; NQR, structure. D. Yu. Stupin, V. N. Tezikov, and O. M. Kaplii, "Kinetics of the disappearance of the iodine monoxide
72BAR/GIL	F. Barat, L. Gilles, B. Hickel, and B. Lesigne, "Pulsed radiolysis and flash photolysis of iodate in aqueous solution," J. Phys. Chem. 76 , 302 (1972); CA 76 79285x; formation and decay in photolysis and	73TEN/FAR	radical studied by a pulse photolysis method," Khim. Vys. Energ. 7, 327 (1973); CA 79 110251w; formation and dissociation in photolysis. Y. Tendler and M. Faraggi, "Formation spectra and
72BRO/BYF	radiolysis. J. M. Brown, C. R. Byfleet, B. J. Howard, and D. K. Russell, "Electron resonance spectra of bromine monoxide, iodine monoxide, and selenium monofluoride in 1–5/2 rotational layels." Mol. Phys.		some chemical properties of oxylodine radicals in aqueous solutions," J. Chem. Phys. 58 , 848 (1973); CA 78 104415r; formation and decay in pulsed radiolysis.
72FOR/GOO	monofluoride in J=5/2 rotational levels," Mol. Phys. 23, 457 (1972); CA 77 107377v; EPR. C. P. Forbes, A. Goosen, and H. A. H. Laue, "Hypoiodate reaction. Stability and reactivity of mercuric oxide–iodine reagent," J. S. Afr. Chem. Inst. 25, 328 (1972); CA 78 151989r; thermal and photochemical stability, proposed intermediate.	74CLY/WAT	M. A. A. Clyne and R. T. Watson, "Kinetic studies of diatomic free radicals using mass spectrometry. Part 1. System description and applications to F atoms and FO radicals," J. Chem. Soc. Faraday Trans. 1 70, 1109 (1974); CA 81 96784e.

•			
74DHA/CLE	A. Dhar and F. F. Cleveland, "Bond strengths and other constants for diatomic molecules. IV. Calculated values of the energies at zero Kelvin, energies equilibrionic and constants in the exponential part of the Morse potential energy function, for bonds of the	76ADA/KAS	J. Adamczyk and S. Kasprowski, "ANKO-3 laboratory analyzer for determination of trace amounts of carbon dioxide, carbon monoxide, and methane in gases," Chemik 29 , 130 (1976); CA 87 41624w; CO detection.
74DHA/CLE2	types B-C, B-D, and B-E," Spectrosc. Mol. 23 (269), 42 (1974); CA 82 7815w; equilibrionic and zero-point energy, potential function constants. A. Dhar and F. F. Cleveland, "Bond strengths and other constants for diatomic molecules. V. Calculated	76CAL/MET	A. B. Callear and M. P. Metcalfe, "Fluorescence and quenching of the 3400 Å bands of iodine," Chem. Phys. Lett. 43, 197 (1976); CA 86 10368r; formation, flash photolysis, kinetics of formation.
	values of the bond strengths and of the quantitites C _f (force constant ratio) and C _w (bond energy ratio), for molecules of several bond types," Spectrosc. Mol. 23 (269), 48 (1974); CA 82 7814v; bond energy, force constant ratio.	76CAM/HAY	R. C. Cambie, R. C. Hayward, B. G. Lindsay, A. I. T. Phan, P. S. Rutledge, and P. D. Woodgates, "Reactions of iodine oxide with alkenes," J. Chem. Soc., Perkin Trans. I (18), 1961 (1976); CA 86 54528x; preparation, proposed intermediate.
74FOR/FOO	C. P. Forbes, A. Goosen, and H. A. H. Laue, "Hypoiodite reaction: mechanism of the reaction or mercury (II) oxide-iodine with olefins," J. Chem. Soc. Perkin Trans. 1, 2346 (1974); CA 82 124450j; reaction	76DAL/CAR	J. R. Dalziel, H. A. Carter, and F. Aubke, "Iodine—oxygen compounds. 2. Iodosyl and iodyl fluorosulfates and trifluoromethane sulfates," Inorg. Chem. 15, 1247 (1976); CA 85 13213b; vibrational frequencies.
74KAW/SAK	intermediate. W. Kawamata, K. Sakai, H. Furuya, and M. Koizumi, "Uranium dioxide-cladding compatability," Tokai Jigyo-sho, Doryoku-do, Kku-nanryo Kaihatsu	76LEL	J. Leleu, "Dangerous chemicals reactions. 39. Inorganic oxides," Cah. Notes Doc. 83, 281 (1976); CA 88 26947f; review.
74ODE/HEJ	Jigyo-dan, Rept. PNCT831-74-01, 51 (1974); CA 82 65775n; reaction. M. Odehnal and J. Hejna, "Orthoperiodic acid—	76PET/VOL	A. M. Petrosyan, A. F. Volkov, and Yu. N. Venevtsev, "Search for and study of piezoelectrics displaying electroacoustic echo," Dokl. Akad. Nauk SSSR 229,
74RAO/RAO	nitrogen pentoxide-water and orthoperiodic acid-sulfur trioxide-water systems," Scr. Fac. Sci. Nat. Univ. Purhynianae Brun. 4, 25 (1974); CA 83 184319d; ternary system. M. L. P. Rao, D. V. K. Rao, and P. T. Rao,	76REF/FRA	 142 (1976); CA 85 115387d; reaction K. M. A. Refaey and J. L. Franklin, "Endoergic ion-molecule-collision processes of negative ions. I. Collisions of atomic iodine (-) ion on sulfur dioxide," J. Chem. Phys. 65, 1994 (1976); CA 85 166858r; electron affinity.
74SCH	"Dissociation energies, r-centroids, and Franck-Condon factors of iodine monoxide molecule," Phys. Lett. A 50 , 341 (1974); CA 82 161959c; dissociation energy, r centroid, Franck-Condon factor, potential energy curve. J. Schneider, "Internal partition function of two atom	76REF/FRA2	K. M. A. Refaey and J. L. Franklin, "Endoergic ion-molecule-collision processes of negative ions. III. Collisions of iodine (-) on molecular oxygen, carbon monoxide, and carbon dioxide," Int. J. Mass Spectrom. Ion Phys. 20, 19 (1976); CA 85 99308w;
75BAR/BUL	molecules in a polynomial representation," Z. Phys. Chem. (Leipzig) 255, 986 (1974); CA 82 145259u; coefficients, partition function. T. N. Barkova, G. P. Bulgakova, G. V. Dmetreeva, T. G. Myasoedova, and P. A. Zagorets, "Radiolysis of iodine solutions in air saturated carbon tetrachloride,"	76RON	electron affinity. C. S. Rondestvedt, Jr., "New syntheses of aromatic acid chlorides from trichloromethhylarenes. 2. Reactions with sulfur trioxide, phosphorus pentoxide, and other nonmetal oxides," J. Org. Chem. 41, 3574 (1976); CA 85 177021p; reaction.
75JAK/SOL	Khim. Vys. Energ. 9, 183 (1975); CA 83 88629j; Gibbs energy of reaction. K. Jaky and F. Solymosi, "Thermal decomposition of	76SHE	P. M. A. Sherwood, "X-ray photoelectron spectroscopic studies of some iodine compounds," J.
737AMSOL	iodic acid, periodic acid and iodine pentoxide," Therm. Anal., Proc. Int. Conf., 4th, 1, 433 (1975, Meeting Date 1974); CA 87 29664b; decomposition.	77ANT/BUR	Chem. Soc., Faraday Trans. 2 72, 1805 (1976); CA 86 36117h; spectroscopic properties. R. E. Antrim, G. Burns, and J. K. K. Ip, "Recombination of iodine atoms by flash photolysis
75JON	C. H. W. Jones, "Iodine-129 Mössbauer studies of iodine in the +1 and +3 oxidation states," J. Chem. Phys. 62 , 4343 (1975); CA 83 68631a; Mössbauer effect, structure.	77CAL/MET	over a wide temperature range. VIII. Molecular iodine in molecular oxygen," Can. J. Chem. 55 , 749 (1977); CA 87 144023d; photolysis of iodine/oxygen mixtures. A. B. Callear and M. P. Metcalf, "Reactions of I ₂ D
75RAD/WHI	D. St. A. G. Radlein, J. C. Whitehead, and R. Grice, "Bond energy of the iodosyl radical from molecular beam reactor scattering measurements," Nature 253 (5486), 37 (1975); CA 82 145393h; bond energy.		$^{1}\Sigma_{\mu}^{+}$ and $I_{2}^{-}3\Pi_{2g}$. The mechanism of formation of iodine monoxide in the flash photolysis of molecular iodine and molecular oxygen mixtures," Chem. Phys. 20 , 233 (1977); CA 86 163055m; production in
75RAD/WHI2	D. St. A. G. Radlein, J. C. Whitehead, and R. Grice, "Reactive scattering of oxygen atoms. Oxygen + diiodine, iodine chloride, dibromide," Mol. Phys. 29, 1813 (1975); CA 83 103946f; angular and velocity distribution.	77САМ/СНА	iodine-oxygen reactions. R. C. Cambie, D. Chambers, P. S. Rutledge, and P. D. Woodgate, "Reactions of iodine triacetate, iodine trichloride, and iodine pentoxide with alkenes," J. Chem. Soc., Perkin Trans. 1 (20), 2231 (1977); CA 88 190161r; reaction.
75RAD/WHI3	D. St. A. G. Radlein, J. C. Whitehead, and R. Grice, "Reactive scattering of oxygen atoms," C. R. Symp. Int. Jets. Mol. 5th, paper No. D1 (1975); CA 87 106862u; reactive scattering.	77CLY/CUR	M. A. A. Clyne and A. H. Curran, "Reactions of halogen atoms, free radicals, and excited states," Gas Kinet. Energy Transfer 2, 239 (1977); review of kinetics.

77COL/NAG	J. R. Coleman and G. D. Nagy, "Lithium battery systems: examination of the iodine pentoxide cathode," U.S. NTIS, AD Rep., AD-AO41739, (1977); Gov. Rep. Announce. Index (U.S.) 77 (20),	79GOR/NOV	P. A. Gorry, C. V. Novikov, and R. Grice, "Reactive scattering of a supersonic oxygen atom beam: trifluoroiodomethane+oxygen," Mol. Phys. 38, 1485 (1979); CA 92 153470c; kinetics.
77GIL/SPE	151 (1977); CA 87 191100m; battery application. R. J. Gillespie and P. H. Spekkens, "Bromyl fluoride and bromosyl trifluoride: preparation and chemical and spectroscopic properties," J. Chem. Soc., Dalton	79GOR/NOV2	P. A. Gorry, C. V. Novikov, and R. Grice, "Molecular beam study of iodine atom abstraction by oxygen atoms," Chem. Phys. Lett. 55 , 24 (1979); CA 88 197887r; kinetics.
77GLI	Tians. (16), 1539 (1977); CA 88 44330d; reaction. C. Glidewell, "Bond energy terms in oxides and oxo-anions," Inorg. Chim. Acta 24, 149 (1977); CA 87 157428q; bond and dissociation energies.	79HUB/HER	K. P. Huber and G. Herzberg, <i>Molecular Spectra and Molecular Structure</i> (Van Nostrand Reinhold, New York, 1979), Vol. 4, pp 110–111; CA 90 B195497f; review, spectra.
77OKU/GOT	T. Okuda, H. Gotou, Y. Nishiyama, and A. Shimauchi, "Nuclear quadrupole resonance frequencies of iodine-127 in iodic acid (HI ₃ O ₈) and iodine oxide (I ₂ O ₅)," Sci. Light (Tokyo) 26 , 183 (1977); CA 89 14393e; NQR.	79KAN/YOS	H. Kaneko, N. Yoshiki, H. Takeda, and T. Hoshino, "Removal of iodine species with concentrated acid. (III). Fundamental experiment of iodine concentration," Tokai Works Semi-Annu. Prog. Rep.,
77SIE/WEI	H. Siebert, M. Weise, and U. Woerner, "On the iodine (V,VII) oxide, I ₂ O ₆ ," Z. Anorg. Allg. Chem. 432 , 136 (1977); CA 87 94756x; Raman spectra, preparation, structure.	79KOT/TAK	PNC1831-79-01, 78 (1979); CA 92 118170h; reaction. T. Kotsuki, Z. Takenhara, and S. Yoshizawa, "Comparison of the performance of various oxides as cathode active material for lithium batteries," Denchi
77VOG/DRE	D. Vogt, W. Dreves, and J. Mischke, "Energy dependence of differential cross sections in endoergic ion-molecule collision processes of negative ions," Int.	79PET/VOL	Toronkai [Koen Yoshishu], 18th, 61 (1979); CA 93 139837s; battery application. A. M. Petrosyan, A. F. Volkov, Yu. S. Bogachev, and
77VOG/MIS	J. Mass Spectrom. Ion Phys. 24, 285 (1977); electron affinities, dissociation energy. D. Vogt and J. Mischke, "Endoergic ion-molecule	791 E17 VOL	Yu. N. Venevtsev, "Iodine-127 nuclear quadrupole resonance in the iodic acic-iodine pentoxide system,"
/ / VOG/WIS	collision processes of negative ions in collisions of iodide ion on carbon monoxide," Phys. Lett. A 60A ,	79POD/DEM	 Zh. Strukt. Khim. 20, 267 (1979); CA 91 46872t; NQR. B. L. Podol'skaya and L. A. Demina, "Determination
78AGR/KLI	19 (1977); CA 86 161846w; electron affinity. Kh. I. Agranov, A. S. Klimentov, and L. V. Reiman, "Determination of microconcentrations of nitric oxide in gases," Zh. Anal. Khim. 33, 726 (1978); CA 89	, yr obiblin	of 2×10 ⁻³ % sulfur in oxygen compounds of iodine," Khim. Prom-st., Ser.: Reakt. Osobo Chist. Veshchestva (5), 18 (1979); CA 93 87878j; reaction.
78CER/KO	$99083b$; reaction. P. J. Cerutti, H. C. Ko, K. G. McCurdy, and L. G. Hepler, "The standard enthalpy of ionization of H_2O at	79TOR/SMI	D. F. Torgerson and I. M. Smith, "AECL iodine scrubbing project," Proc. DOE Nucl. Air Clean. Conf. 15, 437 (1979, Volume date 1978); CA 91 130780u; reaction.
78CHR/WIL	298K from calorimetric measurements on iodine pentoxide," Can. J. Chem. 56, 3084 (1978); CA 90 128407p; enthalpy of reaction with water. K. O. Christe, R. D. Wilson, E. C. Curtis, W. Kuhlmann, and W. Sawadny, "Vibrational spectra and force fields of the tetrafluoroxohalate (V) anions:	80COO	D. O. Cooke, "On the effect of copper (II) and chloride ions on iodate-hydrogen peroxide reaction in the presence and absence of manganese (II)," Int. J. Chem. Kinet. 12, 671 (1980); CA 93 210920w;
	tetrafluoroxochlorate, tetrafluoroxobromate (v) anions. tetrafluoroxochlorate, tetrafluoroxobromate, and tetrafluoroxochlorate, 'Inorg. Chem. 17, 533 (1978); CA 88 96846w; vibrational spectrum.	80GEB/MCN	reaction, IOO an intermediate. G. Gebeyehu and E. McNelis, "Oxidation of diphenylacetylene by 17 ⁺ and 15 ⁺ compounds," J. Org. Chem. 45 , 4280 (1980); CA 94 30305m; reaction.
78PET/BOG	A. M. Petrosyan, Yu. S. Bogachev, V. A. Shishkin, A. F. Volkov, and Yu. N. Nenevtsev, "NQR structure of an iodate group," Fiz. i Khimiya Tverd. Tela, M., 57 (1978); CA 93 34407y; NQR.	80HOF/SPI	P. Hofmann and J. Spino, "Influence of simulated fission products on the ductility and time-to-time failure of Zircaloy-4 tubes in LWR transients,"
78ТНІ/МОН	P. Thirugnanasambandam and S. Mohan, "A new look at molecular vibrations. Part II," Indian J. Phys. 52B ,	80IVA/IVA	Kernforschungszent. Karlsruhe, [Ber.] KFK, KfK 3054 (1980); CA 94 21858s; reaction. V. G. Ivanov, G. V. Ivanov, and P. V. Lapin, "Features
	173 (1978); CA 90 44151j; molecular vibrations (values quoted from earlier publication), force constants.		of the combustion of mixtures of aluminum with iodine pentoxide," Fiz. Goreniya Vzryva 16 , 101 (1980); CA 95 9423j; reaction.
79ADD/DON	M. C. Addison, R. J. Donovan, and J. Garraway, "Reactions of $(2^{1}D_{2})$ and $O(2^{3}P_{j})$ with halogenomethanes," Faraday Discuss. Chem. Soc., 186 (1979); kinetics, D_{0} of IO.	80IVA/IVA2	V. G. Ivanov, G. V. Ivanov, and P. V. Lapin, "Thermographic studies of the self-ignition by binary mixtures of sulfur with oxidizing agents," Fiz.
79BRU/FIE	J. G. Brummer and R. J. Field, "Kinetics and mechanism of the oxidation of ferrous ion by iodate ion in a strong perchloric acid, aqueous media," J. Phys. Chem. 83, 2328 (1979); CA 91 129545q; kinetics.	80IVA/IVA3	Goreniya Vzryva 16, 129 (1980); CA 93 116708m; reaction. V. G. Ivanov, G. V. Ivanov, and P. V. Lapin, "Oxidation of a mixture of sulfur with potassium chlorate, potassium perchlorate, and iodine
79DRA/URB	M. Dratovsky and I. Urban, "Formation of heteropolyanions as a result of acid-base reactions in nitrate melts," Chem. Zvesti 33, 335 (1979); CA 91 199802v; reaction.	80KER/TRO	pentoxide," Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 23, 663 (1980); CA 94 86592v; reaction. J. A. Kerr and A. F. Trotman-Dickenson, "Strengths of chemical bonds," in <i>CRC Handbook of Chemistry and Physics</i> , 61st ed. (CRC Press, Boca Raton, FL, 1980); F-220-F-241; kinetics.

		-,	
80LOE/MIL	A. Loewenschuss, J. C. Miller, and L. Andrews, "Argon matrix absorption spectra of chlorine oxide, bromine oxide, iodine oxide, and the emission spectra of iodine oxide," J. Mol. Spectrosc. 80, 351 (1980); CA 93 16053a; absorption and emission spectra in argon matrix, vibrational analysis.	81KLA/SEH	U. K. Klaning, K. Sehested, and T. Wolff, "Laser flash photolysis and pulse radiolysis of iodate and periodate in aqueous solution. Properties of iodine (VI)," J. Chem. Soc., Faraday Trans. I 77, 1707 (1981); CA 95 141891q; formation and reaction in radiolysis of aqueous solution.
80RUB/SAL	J. C. Rubim and O. Sala, "Raman spectra of chemisorbed bromine and iodine in zeolites," J. Raman Spectrosc. 9, 155 (1980); CA 93 122939d; Raman spectra.	81RAY/WAT	G. W. Ray and R. T. Watson, "Kinetic study of the reactions of NO with FO, ClO, BrO and IO at 298 K," I. Phys Chem. 85 , 2955 (1981); CA 95 139403p; kinetics.
80WIK/TAY	A. Wikjord, P. Taylor, D. Torgeson, and L. Hachkowski, "Thermal behavior of corona-precipitated iodine oxides," Thermochim. Acta 36, 367 (1980); CA 92 190554d; preparation, thermal	81SEH/SUT	C. Sehgal, R. G. Sutherland, and R. E. Verrall, "Sonoluminescence from aqueous solutions of bromine and iodine," J. Phys. Chem. 85 , 315 (1981); CA 94 111776t; sonoluminescence.
81ATH/MOR	decomposition. N. M. Atherton, J. R. Morton, K. F. Preston, and S. J. Strach, "Statistical treatment of ERS data: the spectrum of iodine dioxide in KIO ₂ F ₂ single crystals," J. Chem. Phys. 74 , 5521 (1981); CA 95 15581a; EPR.	81SID/ANS	Z. A. Siddiqi, N. A. Ansari, M. Aslam, Lutfullah, and S. A. A. Zaidi, "Conductometric and spectrophotometric studies on the ionization of iodine and its compounds in chlorosulfuric acid," Indian J. Chem. 20A, 30 (1981); CA 94 145694e; reaction.
81CHI/SAR	N. S. Chikovani, Yu. S. Sarkisov, and A. S. Artish, "Study of monomineral binders based on oxides, hydroxides, solid acids and salts," SPSTL 604 Khp-D81, (1981); CA 98 94619g; reaction.	81VIK/FUR	A. K. Vikis and D. A. Furst, "Photochemical abatement of radioactive iodine," C. R. Congr. Annu.—Soc. Nucl. Can. 2nd, 386091 (1981); CA 96 93534x; formation and deposition in removal of iodine instance.
81ELL/WOL	O. H. Ellestad, T. Woldbeck, A. Kjekshus, P. Klaeboe, and K. Selte, "Infrared and Raman studies of crystalline iodine oxides (I ₂ O ₅ and I ₂ O ₄), iodosyl sulfate, and iodosyl selenate," Acta Chem. Scand., Ser. A 35, 155 (1981); CA 95 88393a; vibrational spectrum and structure of the crystal.	82ANT	isotopes. S. Antonik, "Oxidation and combustion of methyl iodide between 350 and 500 °C," Bull. Soc. Chim. (3-4, Pt. 1), 128 (1982); CA 97 109371a; lack of hydrogen abstraction.
81FED/KOL	V. I. Fedoseenko and T. M. Kolodko, "Automatic monitoring of the content of nitrogen oxides in nitrous gases," Khim. Prom-st. (Moscow) (9), 559 (1981); CA 96 39996m; detection of gases.	82BAU/COX	D. L. Baulch, R. A. Cox, P. J. Crutzen, R. E. Hampson, J. A. Kerr, J. Troe, and R. T. Watson, "Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement 1. CODATA Task Group on Chemical Kinetics," J. Phys. Chem. Ref. Data 11, 327
81GAR/WAT 81GLU/GRI	G. W. Gary and R. T. Watson, "Kinetics study of the reactions of nitric oxide with oxygen fluoride, chlorine oxide, bromine oxide, and iodine oxide at 298 K," J. Phys. Chem. 85 , 2955 (1981); CA 95 139403p; kinetics. Yu. V. Glushko, S. A. Grigor'yan, Ya. A. Kitaev, and	82FUR/NOY	(1982); CA 97 185536y; review of the kinetics of reaction involving IO. S. D. Furrow and R. M. Noyes, "The oscillatory Briggs—Rauscher reaction," J. Am. Chem. Soc. 104, 38 (1982); CA 96 34271m; redox reactions, kinetics, machinism arroad of intermediate.
81GRO/LAU	E. Kh. Tukhin, "Boron nitride in gray cast iron," Liteinoe Proizvod. (4), 4 (1981); CA 95 46944a; in cast iron. M. Grodzicki, S. Lauer, A. X. Trautwien, and A. Vera,	82FUR/NOY2	mechanism, proposed as intermediate. S. D. Furrow and R. M. Noyes, "The oscillatory Briggs-Rauscher reaction. 2. Effects of substitutions and additions," J. Am. Chem. Soc. 193, 42 (1982); CA
oluko/Lau	"Application of molecular orbital calculations to Mössbauer and NMR spectroscopy of halogen-containing compounds," Adv. Chem. Ser. 194 [Moessbauer Spectrosc. Chem. Appl.], 3 (1981); CA 96 43242e; MO calculations of quadrupole coupling constants.	82GAR	96 34270k; intermediate species, no data provided. F. Garisto, "Thermodynamics of iodine, cesium and tellurium in the primary heat-transport system under accident conditions," At. Energy Can. Ltd. Rep. AECL-7782, (1982); CA 98 80069r; thermodynamics and formation in CANDU primary heat transfer
81HOF	P. Hofmann, "Corrosion-induced failure of internally pressurized Zircaloy tubes at high temperatures," Comm. Eur. Communities, [Rep.] EUR, EUR 6984, Corros. Mech. Stress High Temp., 135 (1981); CA 96 170658v; reaction.	82NOS/NOS	system. Z. Noszticzius, E. Noszticzius, and Z. A. Schelly, "Use of ion-selective electrons for monitoring oscillatory reaction. I. Potential response of the silver halide membrane electrodes to hypohalous acid," J. App. (Pop. Soc. 104, 6194, (1983)); S. 9.7. 193/4378; in
81HOF/SPI	P. Hofmann and J. Spino, "Influence of simulated fission products on the ductility and time-to-time failure of Zircaloy-4 tubes in LWR transients," Saf. Aspects Fuel Beh. Off-Norm. Accid. Cond., Proc. CSNI Spec. Meet., 3rd, 159 (1981, Meeting data 1980); CA 97 117039p; reaction.	82WAG/STR	Am. Chem. Soc. 104, 6194 (1982); CA 97 192432q; in preparation of iodine free hypoiodous acid. I. Wagner and H. Strehlow, "Flash photolysis in aqueous periodate solutions," Ber. Bunsenges. Phys. Chem. 86, 297 (1982); CA 96 208245y; formation in flash photolysis of aqueous periodate solutions.
81IVA/IVA	V. G. Ivanov, G. V. Ivanov, P. V. Lapin, and V. P. Kuznetsov, "Role of iodination reactions in the combustion of mixtures of metals with iodine pentoxide," Fiz. Goreniya Vzryva 17(6), 28 (1981); CA 96 41644p; reaction.	83BEK/MEE	J. P. Bekooy, W. L. Meerts, and A. Dymanus, "High resolution laser-rf spectroscopy on the A $\Pi_{3/2}$ –X $^2\Pi_{3/2}$ system of iodine oxide (IO)," J. Mol. Spectrosc. 102 , 320 (1983); CA 100 42249b; laser excitation spectrum, splitting of ground state.

83BUS/SIB	R. J. Buss, S. J. Sibener, and Y. T. Lee, "Reactive scattering of O(³ P) + CF ₃ I," J. Phys. Chem. 87 , 4840 (1983); CA 99 212087c; formation, kinetics, D _o of IO, ground state assumed by analogy with other halogen oxides.	85BUX/SEL	G. V. Buxton and R. M. Sellers, "Radiation-induced redox reactions of iodine species in aqueous solutions. Formation and characterization of iodine (II), -(IV), -(VI), and (VIII), the stability of hypoiodous acid, and the chemistry of the interconversion of iodine and
83COX/COK	R. A. Cox and G. B. Coker, "Absorption cross section and kinetics of iodine monoxide (IO) in the photolysis of methyl iodide in the presence of ozone," J. Phys.	0.5.5.17.77.17	iodate," J. Chem. Soc., Faraday Soc. I 81, 449 (1985); CA 102 140599b; formation in pulse radiolysis of iodate.
83DRA/HAV	Chem. 87, 4478 (1983); CA 99 163246t; formation and decay. M. Dratovsky and D. Havlicek, "A mixture of nitrogen	85CAB/BAR	C. I. Cabello and E. J. Baran, "Spectroscopic and thermal behavior of K_4H_2 [$S_2I_2O_{14}$]," Monatsh. Chem. 116 , 591 (1985); CA 103 29456j; reaction.
,	dioxide and oxygen as a Lux acid in nitrate melts," Electrochim. Acta 28, 1761 (1983); CA 100 164134f; reaction.	85DRA/HAV	M. Dratovsky and D. Havlicek, "Formation of salts of heteropoly acids in nitrate melts," Collect. Czech. Chem. Commun. 50, 317 (1985); CA 102 230804u;
83ENG/PAL	 R. Jr. Engleman, B. A. Palmer, and S. J. Davis, "Transition probability collision broadening of the 1.3 μm transition of atomic iodine," J. Opt. Soc. Am. 73, 1585 (1983); CA 99 202768m; absorption spectrum. 	85JEN	reaction. M. E. Jenkin, "The photochemistry of iodine-containing compounds in the marine boundary layer," AEA Environment and Energy Report
83INO/SUZ	G. Inoue, M. Suzuki, and N. Washida, "Laser induced fluorescence of iodine oxide (IO) radicals and rate constant for the reaction of iodine oxide (IO)+nitric oxide," I. Chem. Phys. 79, 4730 (1983); CA 99	85JEN/COX	AEA-EE-0405, UK (1985). M. E. Jenkin and R. A. Cox, "Kinetics study of the reactions IO+NO ₂ →IONO ₂ +M, IO+IO→products,
	221618d; fluorescence from photolysis of various mixtures.		and atomic iodine+ozone—iodine oxide (IO)+molecular oxygen," J. Phys. Chem. 89, 192 (1985); CA 102 50222u; reaction with IO and NO ₂ .
83THO/ZAF	A. M. Thompson and O. C. Zafiriou, "Air-sea fluxes of transient atmospheric species," J. Geophys. Res. 88 (C11), 6696 (1983); CA 99 108485v; in atmosphere, air to sea flux.	85JEN/COX2	M. E. Jenkin, R. A. Cox, and D. E. Candelhand, "Photochemical aspects of tropospheric iodine behavior," J. Atmos. Chem. 2, 359 (1985); CA 103 164003z.
84BUR/LAW	J. K. Burdett, N. J. Lawrence, and J. J. Turner, "Oxygen fluorides, non-metal halides, van der Waals molecules, and related species: a linking theoretical thread," Inorg. Chem. 23, 2419 (1984); CA 101	85MAN/GEO	M. Maneva and M. Georgiev, "Thermal and calorimetric investigation on crystalline hydrates of beryllium iodates," Therm. Anal., Proc. ICTA, 8th, 1, 627 (1985); CA 107 88537s; reaction.
84СОН	60416d; review, only gives a force constant. M. J. Cohen, "Iodine—iodine pentoxide: a useful oxidizing and electrophilic reagent," Ph.D. Dissertation, New York University (1984); Univ. Microfilms Int., Order No. DA8421499; Diss. Abstr.	85SUN/WRE	S. Sunder, J. C. Wren, and A. C. Vikis, "Raman spectra of iodine oxide (I ₄ O ₉) formed by the reaction of iodine with ozone," J. Raman Spectrosc. 16 , 424 (1985); CA 104 78020s; Raman spectra from reaction of iodine and ozone.
84COH/MCN	Int. B 45 , 1777 (1984); CA 102 77978g; reaction. M. J. Cohen amd E. McNelis, "Oxidative decarboxylation of propiolic acids," J. Org. Chem. 49 , 515 (1984); CA 100 67944n; reaction.	85UEH/NAK	Y. Uehara and T. Nakajima, "Proposal of a new test method for the classification of oxidizing substances," J. Hazard. Mater. 10, 89 (1985); CA 103 10735c; reaction.
84DRA/HAV	M. Dratovsky and D. Havlicek, "The acid-base reactions of mixtures of nitrogen dioxide and oxygen with polyacid lux bases," Electrochim. Acta 29, 1695	85VIK/MAC	A. C. Vikis and R. MacFarlane, "Reaction of iodine with ozone in the gas phase," J. Phys. Chem. 89, 812 (1985); formation and decomposition.
84GOR/AND	(1984); CA 102 85067z; reaction. A. K. Gorbachev, F. K. Andryshchenko, and S. P. Lugovoi, "Thermodynamics of a molecular iodine—water system at high temperatures," Zh. Fiz. Khim. 58, 1618 (1984); CA 101 138236s; thermodynamic	86BUX/KIL	G. V. Buxton, C. Kilner, and R. M. Sellers, "Formation and stability of hypoiodous acid in irradiated iodide solution," AERE-R-11974 [Proc. Spec. Workshop Iodine Chem., 1985], 151 (1986); CA 106 109630p; formation in irradiated iodide solution.
84NAG/SUZ	properties in aqueous solutions. K. Nagashima and S. Suzuki, "Solid-state electrochemical detector for carbon monoxide at	86BYB	J. R. Byberg, "ESR spectrum of iodine dioxide (IO 2)," J. Chem. Phys. 85 , 4790 (1986); CA 105 237148d; EPR, formation, photolysis of IO ₄ in KClO ₄ crystals.
84SAU/TAT	sub-ppm concentrations," Anal. Chim. Acta 162 , 153 (1984); CA 102 11517z; CO(g) detection. A. J. Sauval and J. B. Tatum, "A set of partition functions and equilibrium constants for 300 diatomic	86MIS/PAT	S. P. Mishra and A. Patnaik, "Recoil iodine-128 atoms in iodine pentoxide under (n, γ) process," J. Radioanal. Nucl. Chem. 103 , 63 (1986); CA 104 97325m; redioactivity.
	molecules of astrophysical interest," Astrophys. J., Suppl. Ser. 56 , 193 (1984); CA 101 200866c; equilbrium constants, partition functions.	86SAN	radioactivity. S. P. Sander, "Kinetics and mechanism of the iodine monoxide+iodine monoxide reaction," J. Phys. Chem. 90, 2194 (1986); CA 104 194017v; kinetics of
84VIK	A. C. Vikis, "The photochemical method for radioiodine abatement," At. Energy Can. Ltd. Rep. AECL-7819 (1984); CA 102 86246u; formation in photochemical removal of radio iodine.	86VIK/TOR	bimolecular reaction. A. C. Vikis and D. F. Torgeson, "Gas phase radiation chemistry of iodine in post-accident environments," U. K. At. Energy Res. Establ. AERE-R 11974 [Proc. Spec. Workshop Iodine Chem. 1985], 185 (1986); CA 106 203581v; formation in reaction of iodine with ozone.

86XU/WU	J. Xu, Z. Wu, C. Le, and Q. Li, "X-ray fluorescence determination of thirty major and trace elements in silicate-samples by fusion method," Yankuang Ceshi 5, 201 (1986); CA 109 103789n; detection.	88TYK	R. J. Tykodi, "Estimated thermochemical properties of some noble gas monoxides and difluorides," J. Chem. Educ. 65, 981 (1988); CA 110 220036w; enthalpy of atomization.
87BAR/BEC	I. Barnes, K. H. Becker, P. Carlier, and G. Mouvier, 'Fourier transform IR study of the dimethyl sulfide/ nitrogen dioxide/iodine/nitrogen photolysis system: reaction of iodosyl radicals with dimethyl sulfide,' Int. J. Chem. Kin. 19, 489 (1987); CA 107 235841s; kinetics, mechanism.	89BAR/BEC	I. Barnes, K. H. Becker, D. Martin, P. Carlier, G. Mouvier, J. L. Jourdain, G. Laverdet, and G. Le Bras, "Impact of halogen oxides on dimethyl sulfide oxidation in the marine atmosphere," ACS Symp. Ser. 393 [Biog. Sulfur Environ.] 464 (1989); CA 112 238441a; reaction.
87BAS/GAV 87ELO/RYN	N. G. Basov, V. F. Gravilov, S. A. Pozdneev, and V. A. Shcheglov, "Possible expansion of the spectral emission range of electronic-transition chemical lasers," Sov. J. Quantum Electron. 17, 1139 (1987).	89CHR/WIL	K. O. Christe, W. W. Wilson, and R. D. Wilson, "Fluorine-oxygen exchange reactions in iodine pentafluoride, iodine heptafluoride, and iodine pentafluoride oxide," Inorg. Chem. 28, 904 (1989); CA 110 107098e; reaction.
o/ELU/KIN	A. Elofson, K. Rynefors, and L. Holmlid, "Monte Carlo simulation of RRKM unimolecular decomposition in molecular beam experiments. V. Product oxygen halide (OX) angular and energy distributions from atomic oxygen (³ P)+X ₂ (X=bromine, iodine)," Chem. Phys. 118, 1 (1987);	89HON/YAN	H. Honma, H. Yanashima, M. Yoshida, and K. Suzuki, "Determination of oxygen in organic compounds by hydrogen addition-differential thermal conductivity method," Bunseki Kagaku 38, 272 (1989); CA 112 90971a; detection.
87KAR	CA 108 44232e; unimolecular decomposition. G. V. Karachevtsev, "Semiempirical calculation of the electron affinities of diatomic molecules of the p-elements," Zh. Fiz. Khim. 61, 2070 (1987); CA 107 205522w; electron affinity.	89MAN/GEO	M. Maneva and M. Georgiev, "Synthesis and properties of beryllium iodates. IV. Thermal and calorimetric investigations Be(IO ₃) $_2 \cdot$ 2HIO $_3 \cdot$ 6H ₂ O," J. Therm. Anal. 35 , 867 (1989); CA 112 126546g; complex Be(IO ₃) $_2 \cdot$ I ₂ O ₅ as an intermediate.
87LEH/CHR	M. S. Lehmann, A. N. Christensen, H. Fjellvag, R. Feidenhans'l, and M. Nielsen, "Structure Determination by use of pattern decomposition and the Rietveld method on synchrotron x-ray and neutron powder data; the structures of Al ₂ Y ₄ O ₉ and I ₂ O ₄ ," Appl. Cryst. 20 , 123 (1987); CA 106 205637s;	89RED/RAO	R. R. Reddy, T. V. R. Rao, and A. S. R. Reddy, "Curve fitting approach: On the dissociation energies of chlorine oxide and iodine oxide (ClO and IO)," Indian J. Pure Appl Phys. 27, 243 (1989); CA 111 219740k; dissociation energy, potential energy curve.
87MAR/JOU	pt. Cyst. 125 (125); Crivical Society, Structure determination of the crystal. D. Martin, J. L. Jourdain, G. Laverdet, and G. Le Bras, "Kinetic study of the reaction of iodosyl radical with dimethyl sulfide," Int. J. Chem. Kinet. 19, 503 (1987);	89SAG	N. H. Sagert, "Radiolysis of iodine in moist air: a computer study," At. Energy Can. Ltd. Rep. AECL-9923 [Proc. Workshop Iodine Chem. React. Saf. 2nd, 1988], 235 (1989); CA 111 162567c; formation.
87MAR/JOU2	CA 108 130741b; kinetics. D. Martin, J. L. Jourdain, G. Laverdet, and G. Le Bras, "Kinetic studies of oxidation reactions of sulfur compounds: reaction sulfur dioxide+hydroxyl in the	90BAR/BAS	I. Barnes, V. Bastian, and K. H. Becker, "Reactions of IO radicals with sulfur containing compounds," PhysChem. Behav. Atmos. Pollut. [Proc. Eur. Symp.] 5th, 166 (1990); CA 115 117951v; reactions, kinetics.
87YOS/GOT	presence of oxygen and reaction iodine oxide (IO)+DMS," EUR-10832 [PhysChem. Behav. Atmos. Pollut.], 212 (1987); CA 107 182505b; dimethyl sulfide oxidation.	90BRA/DOR	T. Brauers, H. P. Dorn, and U. Platt, "Spectroscopic measurements of nitrogen dioxide, ozone, sulfur dioxide, iodine oxide (IO), and nitrate radical in maritime air," PhysChem. Behav. Atmos. Pollut.,
8/105/001	K. Yoshida, J. Goto, and Y. Ban, "Oxidation of cycloalkan[b]indoles with iodine pentoxide (I ₂ O ₅)," Chem. Pharm. Bull 35 , 4700 (1987); CA 111 194504w; reaction.	90BUB/LAR	[Proc. Eur. Symp.] 5th, 237 (1990); CA 114 232278x: reactions.S. N. Buben, I. K. Larin, N. A. Messineva, and E. M.
88BYB	J. R. Byberg, "ESR spectrum of iodine oxide (I ¹⁷ O ₂): asymmetric hyperfine tensor of oxygen-17," J. Chem. Phys. 88 , 2129 (1988) (Eng.); CA 109 162090a; ESR of I ¹⁷ O ₂ (CA Registry No. 116854-14-9).		Trofimova, "Processes involving atomic iodine. Determination of the rate constant for the reaction of atomic iodine with ozone at temperatures 231-337 K," Khim. Fiz. 9, 116 (1990): CA 113 121468u; formation, decomposition on quartz surface.
88COS/TEN	R. C. Costin, G. M. Tennille, and J. S. Levine, "Cloud pumping in a one dimensional photochemical model," J. Geophys. Res. D: Atmos. 93 (D12), 15 941 (1988); CA 110 158021g; modelling.	90DAY/WIN	E. P. Daykin and P. H. Wine, "Kinetics of the reactions of iodine monoxide radicals with nitric oxide and nitrogen dioxide," J. Phys. Chem. 94 , 4528 (1990); CA 112 241111y; reaction.
88MAL/GUP	S. P. Mallela, O. D. Gupta, and J. M. Shreeve, "Carbonyl difluoride: a fluorinating agent for inorganic oxides," Inorg. Chem. 27, 209 (1988); CA 108 48189u; reaction.	90DAY/WIN2	E. P. Daykin and P. H. Wine, "Rate of reaction of IO radicals with dimethyl sulfide," J. Geophys. Res. (Atmos.) 95 (D11), 18 547 (1990) CA 114 250999n; reaction.
88STI/HYN	R. E. Stickel, A. J. Hynes, J. D. Bradshaw, W. Chameides, and D. D. Davis, "Absorption cross sections and kinetic considerations of the hypoiodite radical as determined by laser flash photolysis/laser absorption spectroscopy," J. Phys. Chem. 92 , 1862 (1988); CA 108 158856s; absorption cross sections, kinetics, formation.	90SHE/ZHA	J. Shen, G. Zhang, and Y. Tang, "Determination of oxygen in a mixture of selenium, germanium and arsenic, "Lihua Jianyan, Huaxue Fence 26 , 171 (1990); CA 114 177443v; reaction.

kinetics, formation.

90VOH/BAD	C. M. De Vohringer, R. G. Badini, G. A. Arguello, and E. H. Staricco, "Quenching of iodine atoms ($^2P_{1/2}$) by ozone," Ber. Bunsen-Ges. Phys. Chem. 94 , 1387 (1990); CA 114 91736f; formation.	92MAG/LAV	F. Maguin, G. Laverdet, G. Le Brasm, and G. Poulet, "Kinetic study of the reactions iodine monoxide+hydroperoxo and iodine monoxide+nitrogen dioxide at 298 K," J. Phys. Chem.
91BAR/BAS	I. Barnes, V. Bastian, K. H. Becker, and R. D. Overath, "Kinetic studies of the reactions of iodine oxide, bromine oxide, and chlorine oxide with dimethyl sulfide," Int. J. Chem. Kinet. 23, 579 (1991); CA 115 113868a; reaction, kinetics.	92WHI/SMI	96, 1775 (1992); CA 116 92353g; kinetics, dissociation energy. R. W. P. White, D. J. Smith, and R. Grice "Reactive scattering of oxygen [O(³ P)] atoms with alkyl and allyl iodide molecules," Chem. Dep., Univ. Manchester, Manchester, W. Manchester, Manchester, Phys. Lett. 103, 260.
91GIL/POL	M. K. Gilles, M. L. Polak, and W. C. Lineberger, "Photoelectron spectroscopy of IO-," J. Chem. Phys. 95, 4723 (1991); spectroscopy, ground state of IO.	ORGINI EDDO	Manchester, UK M13 9PL [Chem. Phys. Lett. 193, 269 (1992) (Engl.)]; CA 117 89793r; formation and angular distribution.
91JEN/COX	M. E. Jenkins, R. A. Cox, and G. D. Hayman, "Kinetics of the reaction of iodine monoxide radicals with hydroperoxo radicals at 298 K," Chem. Phys. Lett. 177, 272 (1991); CA 114 151407m; reaction,	93CHL/TRO	S. Chladek and M. Troenel, "Bond length-bond strength relationships for oxides of the 4p, 5p and 6p elements," Z. Kristallogr. 204, 107 (1993); CA 119 256920e; recalculation of relationships of single oxidation states.
91LE	kinetics. Q. Le, "X-ray fluorescence spectroscopic determination of 15 rare earth elements in rare earth oxide mixtures," Lihua Jianyan, Huaxue Fence 27,	9/AHM/FJE	M. A. K. Ahmed, H. Fjellvaag, and A. Kjehshus, "Different routes in the synthesis of (IO) ₂ (SO ₄) _{1-x} (SeO ₄) _x ," Acta Chem. Scand. 48, 537 (1994); CA 121 220241m; reaction.
91LEE/CHA	207 (1991); CA 116 75156c; reaction. J. G. Lee, H. T. Cha, U. C. Yoon, Y. S. Suh, K. C. Kim, and I. S. Park, "Sodium halates-Halotrimethylsilanes. New reagents for aromatic halogenation reactions," Bull. Korean Chem. Soc. 12,	94FJE/KJE	A. Fjellvaag and A. Kjekshus. "The crystal structure of I ₂ O ₄ and its relations to other iodine-oxygen-containing compounds," Acta Chem. Scand. 48 , 815 (1994); CA 122 119580s; crystal structure of I ₂ O ₄ ("I-O-IO ₂ -O-" chains), decomposition in
91MAG/MEL	4 (1991); CA 114 246879f; reaction. F. Maguin, A. Mellouki, G. Laverdet, G. Poulet, and G. Le Bras, "Kinetics of the reactions of the IO radical with dimethyl sulfide, methanethiol, ethylene, and	94HUI	I ₂ O ₅ . R. E. Huie, "Atmospheric chemistry of iodine compounds," Prep. Pap.—Am. Chem. Soc., Div. Environ. Chem. 34 , 736 (1994).
92BUB/LAR	propylene," Int. J. Chem. Kinet. 23, 237 (1991); CA 114 206341t; kinetics, mechanism. S. N. Buben, I. K. Larin, N. A. Messineva, and E. M. Trofimova, "Atmospheric reactions of regeneration of	94NUS/WEL	D. Nusshaer, F. Weller, and K. Dehnicke, "Phosphoraneiminato complexes of iodine. Syntheses and crystal structures of Ph ₃ PNIO ₂ and Ph ₃ PNSiMe ₃ · I ₂ ," Z. Anorg. Allg. Chem. 620 , 329 (1994); CA 121 57576p; reaction.
92DUB/SKU	iodine atoms from IO radicals," Issled. Atmos. Ozona, 112 (1992); CA 121 209564y; atmospheric reactions. S. N. Dubtsov, G. I. Skubnevskaya, and K. P. Kutsenogii, "Participation of ozone in photochemical	94REE/BRA	R. Reed, V. L. Brady, and J. M. Hitner, "Recent advances in fire extinguishing pyrotechnics," Proc. Int. Pyrotech. Semin. 20th, 815 (1994); CA 122 85000k;
	aerosol formation of halodibenzenes in the air," Inst. Chem. Kinet. Combust., Novosibirsk, Russia 630090 [J. Aerosol Sci. (Eng.) 23, 181 (1992)]; CA 117 197316w; halobenzene aerosol photochemical formation in presence of ozone.	94RUS/BER	reaction. B. Ruscic and J. Berkowitz, "Experimental determination of Δ _H (HOBr) and ionization potentials (HOBr): implications for corresponding HOI," J. Chem. Phys. 101 , 7795 (1994); CA 121 308799k; enthalpy of formation.
92GIL/POL	M. K. Gilles, M. L. Polak, and W. C. Lineberger, "Photoelectron spectroscopy of the halogen oxide anions oxygen fluoride ion (1-), oxygen chloride ion	94SAT/YAM	M. Sato and Y. Yamaoka, "Simple detection of benzene, toluene, and xylenes in environmental
	(1), oxygen bromide ion (1-), oxygen iodide ion (1-), chlorine dioxide ion (1-), and iodine dioxide ion (1-)," J. Chem. Phys. 96 , 8012 (1992); CA 117 79197k; electron affinity.	94SOL/BUR	samples by detector tube method," Mizu Shori Gijutsu 35, 549 (1994); CA 122 114420e; reaction. S. Solomon, J. B. Burkholder, A. R. Ravishankara, and R. R. Garcia, J. Geophys. Res. 99, 20 929 (1994).
92HEL/FOG	M. Hellstroem. B. Fogelberg, L. Jacobsson, L. Spanier, and G. Rudstam, "Some studies of molecular ions obtained from a U+C target at >2100 °C," Dept.	94SOL/GAR	S. Solomon, R. R. Garcia, and A. R. Ravishankara, "On the role of iodine in ozone depletion," J. Geophys. Res. 99 (D10), 20 491 (1994); discussion of group depletion (no payed data on 10).
	Neutron Res., Uppsala Univ., S-61182 Nykoeping, Swed. [Nucl. Instrum. Methods Phys. Res., Sect. B (Eng.), b70, 142 (1992)]; CA 117 200202p; molecular ions formation in uranium—carbon target at OSIRIS isotope separator.	95AHM/FJE	ozone depletion (no new data on IO). M. A. K. Ahmed, H. Fjellvaag, and A. Kjekshus, "Thermal decomposition of $(IO)_2(SO_4)_{1-x}(SeO_4)_x$," Acta Chem. Scand. 49 , 457 (1995); CA 123 131184u; formation.
92KAR/END	H. Karasawa, M. Endo, H. Tagawa, M. Takahashi, and E. Ibe, "Effect of boiling upon radiolysis of iodide solution," Nippon Genshiryoku Kenkyusho Rep.	95HUI/LAS	R. Huie and B. Laszlo, "Atmospheric chemistry of iodine compounds," Adv. Chem. Series, in press (1995); dissociation energy.
	JAERI-M 92-012 [Proc. CSNI Workshop Iodine Chem. React. Saf., 3rd, 1991], 137 (1992); CA 117 36324g; radiolysis of aqueous iodide solutions.	95KRA/JAN	T. Kraft and M. Jansen, "Synthesis and crystal structure of diiodide (V/VII) hexaoxide: an intermediate between molecular and polymer solid," J. Am. Chem. Soc. 117 , 6795 (1995); CA 123 46719c; structure of IO ₃ , preparation, I ₂ O ₆ as mixed valent I(V/VII) oxide.

VII) oxide.

MALCOLM W. CHASE

95MON/STI P. S. Monks, L. J. Stief, D. C. Tardy, J. F. Liebman, Z. Zhang, S.-C. Kuo, and R. B. Klemm, "Experimental

determination of the ionization energy of $IO(^2X \Pi_{3/2})$ and estimations of the heat of formation of IO+ and the proton affinity of IO," J. Phys. Chem. (submitted July 1995).

95TUR/GIL

A. A. Turnipseed, M. K. Gilles, J. B. Burkholder, and A. R. Ravishankara, "LIF detection of IO and the rate coefficients of I+O3 and IO+NO reactions," Chem. Phys. Lett. **242**, 427 (1995); CA 123 180325z;

reaction, detection of IO.

95ZHA/MON

Z. Zhang, P. S. Monks, L. J. Stief, J. F. Liebman, R. E. Huie, S.-C. Kuo, and R. B. Klemm, "Experimental determination of the ionization energy of IO(X ${}^{2}\Pi_{3/2}$) and estimations of the heat of formation of IO+ and the proton affinity of IO," J. Phys. Chem. (submitted August 11, 1995).

96GIL/TUR

M. K. Gilles, A. A. Turnipseed, Y. Rudich, R. K. Talukdar, P. Villalta, L. G. Huey, J. B. Burkholder, and A. R. Ravishankara, "Reactions of O(3P) with alkyl iodides in rate coefficients and reaction products," submitted for publication (1996).