o
O ©
c
mﬁ
-
@ O
.25
V)
>'L
c9
a o
y— X
O —
— @©
m.g
§E
)
OcC
RIT)

Data on Internal Rarefied Gas Flows

Cite as: Journal of Physical and Chemical Reference Data 27, 657 (1998); https://doi.org/10.1063/1.556019
Submitted: 05 May 1997 . Published Online: 15 October 2009

Felix Sharipov, and Vladimir Seleznev

A
@ S

View Online Export Citation

L

ARTICLES YOU MAY BE INTERESTED IN

Rarefied gas flow through a long rectangular channel
Journal of Vacuum Science & Technology A 17, 3062 (1999); https://doi.org/10.1116/1.582006

Rarefied gas flow through a long tube at any pressure ratio
Journal of Vacuum Science & Technology A 12, 2933 (1994); https://doi.org/10.1116/1.578969

Flow of a Rarefied Gas between Two Parallel Plates
Journal of Applied Physics 34, 3509 (1963); https://doi.org/10.1063/1.1729249

+
Where in the world is AIP Publishing?

Find out where we are exhibiting next

Journal of Physical and Chemical Reference Data 27, 657 (1998); https://doi.org/10.1063/1.556019 27, 657

© 1998 American Institute of Physics and American Chemical Society.


http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/222900553/x01/AIP/HA_WhereisAIP_JPR_PDF_2019/HA_WhereisAIP_JPR_PDF_2019.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.556019
https://doi.org/10.1063/1.556019
https://aip.scitation.org/author/Sharipov%2C+Felix
https://aip.scitation.org/author/Seleznev%2C+Vladimir
https://doi.org/10.1063/1.556019
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.556019
https://aip.scitation.org/doi/10.1116/1.582006
https://doi.org/10.1116/1.582006
https://aip.scitation.org/doi/10.1116/1.578969
https://doi.org/10.1116/1.578969
https://aip.scitation.org/doi/10.1063/1.1729249
https://doi.org/10.1063/1.1729249

Data on Internal Rarefied Gas Flows

Felix Sharipov &
Departamento de Bica, Universidade Federal do Paran81531-990 Curitiba, Brazil

Vladimir Seleznev P
Department of Molecular Physics, Faculty of Physics and Technology, Urals State Polytechnical University,
620002 Yekaterinburg, Russia

Received May 5, 1997; revised manuscript received January 7, 1998

The present review, containing 178 references, is dedicated to one of the largest and
most important branches of the rarefied gas dynamics, namely internal flows. A critical
analysis of the corresponding numerical data and analytical results available in the litera-
ture was made. The most reliable data were selected and tabulated. The review will be
useful as a reference for mathematicians, physicists and aerodynamicists interested in
rarefied gas flows. In this paper the complete ranges of the main parameters, determining
rarefied gas flows through a capillary, are covered. The capillary length varies from zero,
when the capillary degenerates into a thin orifice, to infinity when the end effects can be
neglected. The Knudsen number, characterizing the gas rarefaction, varies from zero
when the gas is considered as a continuous medium to infinity when the intermolecular
collisions can be discounted. The pressure and temperature drops on the capillary ends
vary from the small values when the linear theory is valid to the large values when the
nonlinear equations must be applied. The influence of the gas—surface interaction is
considered. ©1998 American Institute of Physics and American Chemical Society.
[S0047-268808)00103-3
Key words: critical review; data compilation; evaluated recommended data; heat flux; kinetic coefficients;

mass flow rate; mechanocaloric effect; rarefied gases; slip coefficients; thermocreep; thermomolecular pressure
difference; transport.
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1. Introduction

1.1. Scope of the Review

Rarefied gas dynamid®RGD) is an active and fast devel-
oping scientific field. A biennial symposium attracts a large
number of scientists and engineers working in this field. Re-
cently, some monograpHs®’*° describing latest achieve-
ments in the RGD were published. The starting point of the
rarefied gas theory is the kinetic Boltzmann equation. An-
other very important aspect of the theory is the gas—surface
interaction, which serves as a boundary condition for the
kinetic equation. The monographs mentioned above describe
the main properties of the kinetic equation, the properties of

dimensionless gradient of the temperature,its boundary condition, and the principal methods of solution

(3.10

mass density of gas

perturbation of the number densit{2.65
entropy production(2.78

reduced viscous slip coefficien.70
reduced thermal slip coefficien(3.70
tube cross section

perturbation of the temperature2.65

of the Boltzmann equation. So, they provide general infor-
mation about the rarefied gas theory.

The present review is dedicated to one of the largest and
most important branches of the RGD, namely the internal
rarefied gas flows. The knowledge of this branch is appli-
cable in many technologies such as: vacuum equipment,
chemical apparatus, spaceship construction etc. Moreover,
this branch plays a significant role in the development of the

distribution of the temperature along the cap-RGD as a whole. Because of the simplicity of numerical

illary, (1.12)
region of the gas flow

Superscripts

channel with an infinite width
channel with a finite widthb
orifice

slit

tube

Subscripts

left container

right container

small pressure drop/gradient
small temperature drop/gradient
free-molecular regime
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calculations, some types of internal rarefied gas flows serve
as a test problem for new numerical methods. These flows

are very sensitive to the nature of the gas—surface interac-
tion. That is why they are used for indirect measurements of

the gas—surface interaction parameters. To realize this task,
an experimenter needs exact values of the mass flow rates
through a capillary as a function of the gas rarefaction and of

the gas—surface interaction parameters.

Today, much theoretical data on the internal gas flows are
available in the literature. These data have not been widely
applied by experimenters and engineers even though it is
possible. There are three main reasons for this.

(1) The material on the rarefied gas flows is dispersed in
many papers. Each describes only one aspect of the
problem, while the flows depend on many parameters
including the gas rarefaction, the geometrical size of the
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capillary, the nature of the gas—surface interaction, and Longitudinal section of capillary
the nature of the intermolecular interaction.

y

(2) The theoretical results in this field are usually presented P P
in terms of the microparameters such as the molecular T' — T
mean free path and frequency of the intermolecular col- ' — !

lisions. A special terminology was formed in the corre-
sponding papers, which cannot be understood without
the profound knowledge of the kinetic theory of gases.
At the same time, it is not so trivial to relate these mi-
croparameters with the macroparameters measured in
practice such as the pressure, the temperature, and the
viscosity. Some papers contradict others regarding this
guestion.

(3) The theoretical works are performed under suppositions
idealizing the problem: the capillary has an infinite
length, the gas is single, and the gaseous molecules are
monatomic. In practice one deals with a capillary of fi-
nite length and with a gaseous mixture of polyatomic tube channel
gases. Without special knowledge one does not know if
the theoretical results obtained under ideal assumptions
can be applied in some practical situations.

Cross section of capillary

z a v .~

Fic. 1. Sketch of the gas flow through a capillary of arbitrary length.

The present article provides numerical data and analyticaﬁ1 ?Z:;(g?odr']t'0;2:2;;22rgfiomciiiﬁiﬁ';f;f ?J;greess;_;ur:ﬁfe
formulas on the mass flow rate and on the heat flux through. para . .
sions, can easily relate the data presented here with practi-

a capillary. It should be noted that the rarefied gas flows aré " : .
. ) cally measured quantities. Numerical methods applied to cal-
complicated by the so-called cross effects, viz. the mass flow . : . . .
: culate the rarefied gas flows are described briefly in this

caused by temperature gradient and the heat flux caused by _.
ressure gradient. These cross effects are described in thSISCtIOH. For the reader who wants to study one or another
grticle 9 ' method in depth, the corresponding references are given.

Th i f1h . ters determining th In Sec. 3 the gas flow through long capillaries is consid-
€ entire range of the main parameters determining g 4 1 this limit the end effects can be neglected. Moreover,
gas flow is considered. The capillary length varies from in

“the solution to the problem can be split into two stages. First,

f|n|ty when the end effe_}CtS can _be neglectgq to zerowhenthg, o0 jate the flow rates through a given cross section of
capillary degenerates into a thin §I|t or orifice. The pressurey, capillary under the small gradients of the pressure and
and temperature drops on the capillary ends are also assum perature. In the second stage we use an approach elabo-

to be arbitrary. The drops vary from small values when the a4e recently to calculate the flow rates as a function of the
linear theory is valid to large values when the nonlinear

] g aad “'pressures and the temperatures on the capillary ends without
equations must be applied. The principal parameter, whmiany restrictions on their drops.
affects the gas flows, is the gas rarefaction. In the article, the |, sec. 4 the other limit case is considered, viz. the capil-

entire range of this parameter is covered, from the regimeyry with a zero length. This means that the containers are
when the intermolecular collisions can be discounted to th%eparated by a thin partition having a slit or an orifice.

hydrodynamic regime. In Sec. 5 the intermediate values of the capillary length are
Besides the flow rates and the heat fluxes, one more pragagarded.
tically important phenomenon is described, namely, the ef- From the last two sections one concludes that information

fect of the thermomolecular pressure diffel’ence. ThIS effecbn these types Of rareﬁed gas ﬂOWS is Very poor and there is
can serve for indirect pressure measurements and for meg-need for more research in this scientific field.

surements of the gas—surface interaction parameters.

The contents of this article are as follows: In the present
section, the general statement of the problem is described.
The main assumptions outlining the sphere of the applicabil- Consider two reservoirs containing the same gas and
ity of the data presented in the review are given. joined by a capillary of a length as is shown in Fig. 1. Let

In Sec. 2 the main theoretical conceptions of the RGD arg®, and T, be the pressure and the temperature, respectively,
described. The relations between the microparaméiecs  of the gas in the left containeP, and T, are the pressure
lecular mean free path, molecular mass, molecular diaineteand the temperature, respectively, in the right container.
with the macroparameter@pressure, temperature, number There is a temperature distribution,(x) on the capillary
density, viscosity, thermal conductivjtare given. The engi- wall. This distribution can exist independently of the tem-
neers, who need to calculate the mass flow rates in somgeraturesl; andT, . However we will not consider this spe-
equipments, and the experimenters, who need to choose tledic situation and assume that

1.2. General Statement of the Problem

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998
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Tw(X) =T+ (Ty=T)) T(X), (1.1
wherer,,(X) is some given function satisfying the conditions
Tw(—=1/2)=0, 7,(1/2)=1.

Therefore, ifT,=T, thenT,(X)=T,=const.
It is obvious that the pressure and temperature drops

AP=(P,—Py), AT=(T;—-T) (1.2

cause the fluxes of the mass and heat through the capillary.
The flow rate and the heat flux are defined as
N = AM B AE
~at FTar
respectively. HereAM and AE are quantities of mass and
heat, respectively, flowing through a cross section of the cap-
illary per a time intervalAt.
In rarefied gases the flow rate and the heat flux depend on
the drops of both pressure and temperature, i.e.,

M=M(AP,AT), E=E(AP,AT). 1.9

This means that the mass flow can be caused not only by the
pressure drop but also by the temperature drop, and the heat
flux is caused not only by the temperature drop but also by
the pressure drop.

This fact leads to an interesting phenomenon, the so-called
thermomolecular pressure differen€EPD). If we assume
that the system (the capillanthe reservoirs) is closed, the
pressure®,, P, are equal each to other but the temperatures_

(1.3

T,, T, are maintained different, then a gas begins to flow(iV)

from the cold container to the hot one. This will cause a
pressure difference between the reservoirs, and the mass flow
in the opposite direction appears. When the whole mass flow
rate through the capillary is zero the stationary state will be
established. The established pressure Rtid, in this state
can be related to the maintained temperature ratio as

Pr [T ) 7

F)II TII 7
wherev is the exponent of the TPD, which can be related to
the mass flow rate.

(V)

(1.5

1.3. Main Assumptions

We restrict ourselves by the following assumptions:

(i) The volume of the reservoirs are significantly larger
than the volume of the capillary, so that the gas in the
containers is in equilibrium far away from the capil-
lary entrances. This assumption allows us to discount
the form and size of the reservoirs.

F. SHARIPOV AND V. SELEZNEV

Longitudinal section of orifice/slit

P, Fy

T e T Tu

Cross section of orifice/slit

orifice slit

Fic. 2. Sketch of the gas flow through an orifice and slit.

than the molecular diameter. This assumption allows
us to consider only binary intermolecular collisions
and to apply the Boltzmann equation. The molecular
diameter is of the order 13° m, while the mean free
path under normal conditionghe pressure is 1 atm
and the temperature is 0@ about 108 m. This
assumption is violated if the pressure exceeds 10 atm.
The gas molecules are monatomic. This assumption
allows us to neglect the internal degrees of freedom
and to simplify the kinetic equation. In practice, usu-
ally one deals with polyatomic gases and hence, the
natural question arises: are the results obtained for
monatomic gases applicable to polyatomic ones? If
the reply is negative, this article would be totally
meaningless. The question on the applicability must
be considered in every special case: some results are
applicable, while others are not. At the end of every
section, recommendations on the applicability of re-
sults to polyatomic gases are given.

The gas is a single pure species. This assumption also
allows us to simplify the kinetic equation. Since in
practice gaseous mixtures are met more frequently
than a single gas, the same question arises: are the
results obtained for a single gas applicable to a gas-
eous mixture. This question will be discussed at the
end of Sec. 2.13.

1.4. Types of Capillaries

We will consider two types of capillaries: the capillary

(i)  The flow regime is stable, not turbulent. The criterion with the round cross section will be called “tube,” and the
of the stability of the gas flow is the Reynolds num- capillary with the rectangular cross section will be called
ber. The data on the critical Reynolds number can be‘channel,” (see Fig. 1 The word “capillary” will be used
found in many books on hydrodynamics, see e.g.to indicate both “tube” and “channel.” We denote the cap-

Landau and LifshitZ? Chapter III.
(iii )
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In the particular case=0, i.e., the containers are divided (i) The drops of the pressutkP and temperaturéT.

only by an infinitesimally thin partition as is shown in Fig. 2, We also will use the ratios of the pressitg/ P, and
the capillary will be called the “orifice” instead of the of the temperaturd@, /T, .
“tube” and the “slit” instead of the “channel.” (i)  The rarefaction parameter of the gas, which is in-

versely proportional to the Knudsen number. Their
definitions are given in Sec. 2.1.

1.5. Mass Flow Rate and Heat Flux (i) The dimensionless capillary length=1/a.

15.1. Channel (iv) The parameters of the gas—surface interaction. All
data presented here were obtained under the supposi-
The mass flow rate and the heat flux through a channel of tion of the diffuse-specular scattering of the gas mol-
finite width b are calculated as ecules on the surface. This scattering law has a unique
b2 a2 parameter, which is introduced in Sec. 2.3.
M= f f p(r)u,(r)dydz, (1.6
~b/2J —ar2
. b/2 al2 H H :
ECh'b(X)Zf f 0, (1) dycz, 17 2. Basic Conceptions of Rarefied Gas
~bi2J ~ar2 Dynamics
respectively. Here; = (X,y,2) is the position vectorp(r) is 2.1. Knudsen Number and Rarefaction Parameter
the local mass density of the gag(r) is thex component of o _
the hydrodynamidbulk) velocity of the gas, and,(r) is x The principal parameter of the RGD is the Knudsen num-

Component of the heat flow vector in the gas_ The Coordiber, Kn, Wh|Ch Chal’actel’izes the gaS I’al’efaCtiOI’l. The Knud'
natesx,y,z are depicted in Fig. 1. Note that the mass flowsen number is defined as the ratio

rate does not depend on tkeoordinate because of the mass
impenetrability of the capillary walls. Since there are no heat
impenetrable walls, the heat flux through a cross section of
the capillary generally depends on tkeoordinate.

In theoretical calculations, it is usually assumed that thevhere is the molecular mean free path, i.e., the average
width b is essentially larger than the heightand the flow distance traveled by a molecule between collisions, aisl
field has the translational invariance in thdirection. In this  the characteristic scale of the gas flow. For the problem in
case the flow rate and the heat flux are defined per unity ofuestiona is the radius of the tube or the height of the
the width, i.e., as limits channel.

Regarding the value of the Knudsen number, we may dis-
1 . al2 i A )
Z Mch,b) :f p(X,y)u(x,y)dy, (1.8  tinguish three regimes of the gas flow. If the Knudsen num-
—al2 ber is very small (Kr€1l), the mean free path is so small

K—)\ 2.1
n_al (')

M= |im

b—o

1 a2 that the gas can be con_sidered as a con.tinuous medium and
EN(x) = lim (_ Ech,b) :J Qu(X,y)dy. (1.9 the hydrodynam|c e.quatllons can be appheq to the gas flow.
b —al2 That is why the regime is calleldydrodynamic
If the Knudsen number is very large (Krl), the mean
ee path is so large that the collisions of molecules with the
capillary walls occur much more frequently than the colli-
sions between molecules. Under this condition we may dis-
1.5.2. Tube count the intermolecular collisions and consider that every
molecule moves independently of each other. This is the so-
calledfree-molecularegime.
When the Knudsen number has some intermediate value
. a we cannot consider the gas as a continuous medium. At the
M —217[0 pOX T Ux(x,r)redr, (110 same time we cannot discount the intermolecular collisions.
This regime is calledransition
by a This division of the regimes of flow is very important
E (X)_ZWL ax(Xro)rodr,, (11D pecause the methods used for calculation of the gas flows
essentially depend on the regime.
wherer | = \y?+2z2. The coordinates are depicted in Fig. 1.  Usually another guantity characterizing the gas rarefaction
is used instead of the Knudsen number, viz. the rarefaction
parameter, defined as

b0

Further, we will use these definitions of the mass flow ratefr
(1.8 and of the heat flux1.9) through a channel.

The flow rate and the heat flux through a tube are calcu
lated as

1.6. Main Variables

In this article the mass flow ratd and the heat flug are V7 a _ Vr 1

treated as functions of the following variables: T2 N 2 Kn’ 22
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Large values ofé correspond to the hydrodynamic regime temperature
and small values ob appropriate to the free molecular re-
gime. .M (e

To calculate the Knudsen Kn number or the rarefaction Ttn= 3nkg f VEtrvay, 28
parametets one needs to know the microparameter, such as
the mean free patk, which cannot be measured. If one tries
to calculaten directly, one finds that it depends on the mo- m
lecular velocity and the molecular size. So, to obtain the q(t,r)zi f V2V f(t,r,v)dv, (2.9
mean free path one needs knowledge of other nonmeasurable
quantities. Another manner to obtain the mean free path is tqnereV is the peculiar velocity
use its relations with the transport coefficients provided by
the kinetic theory of gases. It has become customary to cal- V=v-—u. (2.10
culate\ via the viscosity coefficient as

heat flow vector

With help of (2.4), (2.6) and (2.8) the state equation is
N (ZkBT)l’2 derived

2P | ™m @3

P(r)=n(r)kgT(r). (2.1)

whereP is the pressurel is the temperaturen is the mo-

lecular mass, andg=1.38065& 10”22 J/K is the Boltz- Note that Eq(2.1]) is valid for any nonequilibrium state of

mann constant. This definition has the advantage that it corihe gas, while Pascal’s law is valid only in equilibrium. In a

tains the easily measurable quantitie® T) and the nonequilibrium state the pressure defined(By) is the av-

quantities f,m) which can be found in Refs. 19 and 69 or erage value over all directions. Further we will pass from the

in handbooks on Physics and Chemistry. Moreover the defivariables ¢,T) to (P,T) and vice versa implying the rela-

nition (2.3 allows us an easier comparison between result§ion (2.11).

referring to different molecular models. In Sec. 2.4.2 the ori- The distribution function obeys the Boltzmann equation

gin of the relation(2.3) will be described. (BE),25727:303957. Ty hich in the absence of external forces
The mean free patk can be also calculated via the ther- reads as

mal conductivity. This method gives slightly different values

of \. To avoid further confusion the mean free path at some ﬂ+v~ ﬂ:Q(ff ) (2.12

given pressurd® and at some given temperatufewill be ot ar *

defined by the relatiof2.3) only. whereQ(ff,) is the collision integral

2.2. Boltzmann Equation Q(ff*):j W(V,V, ;v Vi) (FfL —ff,)dv/dv) dv, .

The state of a monatomic gas is described by the one- (213
particle velocity distribution functioffi(t,r,v), wheret is the
time, r is a vector of spatial coordinates, ands a velocity
of molecules. The distribution function is defined so as th
quantity f(t,r,v)drdv is the number of particles in the phase
volume ddv near the pointi(,v) at the timet.

All macrocharacteristics of the gas flow can be calculate
via the distribution function:

number density

Here, the affixes td correspond to those of their arguments
v.  fr=f(t,r,v), fo=1(t,r,v,). The  quantity
w(v,v, ;v',v,) is the probability density that two molecules
having the velocities’ andv, will have the velocities and
+ » respectively, after a binary collision between them.
The functionw satisfies the two general relatioffsthe
reciprocity property

wW(V,v, V', v ) =w(—V',—v, ;—Vv,—V,), (2.19
n(t,r)=f f(t,r,v)dv, (2.4
and the unitary property

hydrodynamic(bulk) velocity
f w(V,v, ;v',v, )dvdv, =f w(Vv',v, ;Vv,v, )dvdv, .

1
u(t,r)=ﬁ f v f(t,r,v)dv, (2.5 (2.19
pressure Applying these relations the following inequality is easily
m proved, see Cercign&fi (Chap.ll Sec. Y, Ferziger and
P(tn=3 J' V2 f(t,r,v)dv, (2.6)  KapeP’ (Sec. 4.2, Lifshitz and Pitaevskif (Sec. 4
stress tensor J Q(ff,)In fdv=0. (2.19
Pii(t’r):mf ViV f(trvdv, 2.7 Moreover, the collision integral obeys the rules
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whereT,, is the surface temperature. Physically this means
that a particle coming to the surface “forgets” all informa-
tion on its state before the interaction with the surface. Then,
it leaves the surface with the Maxwellian distribution func-
tion. That is why the diffuse scattering is also called the
perfect accommodation.

Calculations of rarefied gas flows based on the diffuse
scattering sometimes give an understated flow rate instead of
Fic. 3. The velocities of incident() and reflectedf) molecules. experimental results. To eliminate this discrepancy
Maxwell” generalized the modé2.22) and considered that
only « part of molecules is reflected diffusely but the reflec-

N

mo tion of the rest part (+ «) is specular. Maxwell's kernel
f PVQ(ff,)av=0, ¢v)=1,mv, ——, reads as
(217 R(V' —V)=(1—a)8(V' —v+2nv,)
that follows from_ the conser\{a_tion of the particles, momen- mu,, mo 2
tum and energy in every collision. +a 27T(kBTW)2eXF{ — 2I<BTW)

(2.23
This model is widely used but it contradicts some experi-
On the boundary surface we need to relate the distributiomental results on the TPD effe@tee Sec. 5.2)5That is why
function of incident particle$™ and the distribution function some other models were proposed. One of them is the Cer-
of molecules leaving the wafl". The relation can be written cignani and Lamp® model, which reads as
in a general form as, see CercigrfitiChap. Il)), Cercignani

2.3. Gas—Surface Interaction

2
et al® (Chap. 8 o m?v,,
H(vn) V=) 2manay(2—ay)(kgTy)?
= T H(—vp)]ug|R(rv' —v) MLo2+ (1 a)o’?] L
N o T e
X (r,v)av’, (2.18 Bl wln a(2—ay)
_ _ 112 _ ’
whereH(x) is the Heaviside step function defined as Mo~ (1- ayv] ] 0( 1 “nmvnvn)
_[1 for x>0, 2kg T, ankgTy
H(x)= 0 for x<0, (219 (0=a;=<2; O=qa,=<1), (2.29

v,=V-n is a normal velocity componem, is the unit vector ~Whereu, is the tangential component of the molecular veloc-
normal to the surfacésee Fig. 3. R(r,v' —V) is a scattering ity, Jo denotes the modified Bessel function of the first kind

kernel satisfying the normalization condition and zero order defined as
2@
f H(v,)R(r,v'—v)dv=1. (2.20 Jo(x)=(277)’1jo expx cos¢g)de, (2.25
Another obvious property of the kernel is that it cannot as-w, has the physical sense of the accommodation coefficient
sume a negative value for the part of the kinetic energy corresponding to the motion
R(r,v/ —V)=0. normal to the wall, andy; is the accommodation coefficient

of the tangential momentum.

If the surface is staying in local equilibrium at a tempera- The definition of the accommodation coefficients will be
ture Ty, the kernel satisfies the reciprocity property, seegiven in Sec. 2.9.

Cercignarfi® (Chap IlI, Sec. 3
12
H(—v,’1)|v5|ext{ L )R(r,vf_w) 2.4. Analytical Solutiong of the Boltzmann
2kgTy Equation
2

mo ing i i
=H(vn)|vn|exp< - e )R(r,—VH—v’). 2.21) Generally speaking if one solves the BE12 with the
B'w

boundary condition$2.18, one knows the distribution func-
gion f(t,r,v). Then, one can calculate all momer&4)—

The most known model of the gas—surface interaction i

the diffuse scattering having the following kernel (2.9) and finally one finds the flow rat®l and the heat flux
) s E. However the complexity of the BE does not allow us to
R(V/ —V) M™un p( mu ) (2.22 perform this task in general. Recently, using powerful com-
V' oV)= ————expg — 50—, . : '
2m(kgTy, 2kgTy puters it became possible to solve numerically the BE only in
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some simple cases. That is why a number of approximate w2
: - ©) B @_ M7
methods of solution of the BE were elaborated. Here, we will a’=1 a7 =0 aj'= P Sij s

consider the main ones.

mZ3)  [m
afil=—05— = - KeT' (2.33

If we multiply both sides of the BE2.12 by HN) and
The moments of the distribution function are defined as integrate over the whole velocity spaggwe obtain

2.4.1. Moment Method

ot

az=1,2,3, p=1...N (2.26  Then, substituting2.29 into the collision integraQ(ff,)
in (2.34) we obtain the system of differential equations for an
/<N) (L r)_f LV, f(trv)dv, infinite set of the coefficienta®™. The left hand side of Eq.
N (2.39) is expressed as a linear combination of the derivatives
ay=1,2,3 p=1..N. (.29 of a™) with respect to the time and the spatial coordinates.
This part of the equation contains the moments of order up to
The M moments of the ordeN may be related with ofZ  (N+1). The right hand side of Eq2.34) is expressed as a

of of
M;“P___QN(t,r):fval...vaNf(t,r,v)dv, f H<N)(—+v —)dv fH(N)Q(ff*)dV- (2.39

moments of the ordeN and lower, and vice versa. linear combination of double products af"). This part of
The macrocharacteristics of the gas may be expressed the equation contains an infinite number of the coefficients
terms of these moments aN).
ntN=M®, nu(t,r=mM®, Py(t,r) = 412)’ It is clear that to solve this system of equations we must

retain only a finite number of the moments. If we retaln
m 3. 3 3 equations, the last one will contain the moment of the
=5 (nt Mgt i) (228 N+1 order. To close the system this moment must be related

o ) to the moments of the order lower thai+ 1. The relation is
The main idea of the method offered by Gl to repre-  pased on a physical rationale.

sent the diStribution funCtion in the fOI‘m Of Sel’ies The boundary Conditions can be derived by the same
method. We multiply both sides dR.18 by the functions
f(t,r,v)=flogl @PHO+al HY + .. HY ., and integrate with respect to, substituting the

approximating functiong2.29 for f(v) and f(v’). As a re-
sults of these derivations we obtain a relation between the
moments on the boundary.

One can see that this method assumes the distribution
function to be continuous in the velocity variables, but it is
32 approximately true only at the small Knudsen numbers.
} Thus, the method gives good results only near the hydrody-

namic regime.

" p{ m{v— u(t,r)]zl (230 Details of the method are given in the literatdfé®2""*

2kgT(t,r)

1
() (N)

wheref . is the local Maxwellian defined as

fla(n, T,u)=n(t,r)

m
27KgT(L,1)

Hﬁfi)' _ _aN(Vl,VZ,V3) are Hermite polynomials in the three

. . . . 2.4.2. Chapman—Enskog Method
independent variables determined by the relation P g

HN (Vy,V,,Va) The distribution function can be expanded into the power
! series with respect to the small parameter such as the Knud-
( 1)N(kBT)N’Z F{ mvz) sen number
=(— —| exp =
m 2kgT f=fO+KnfO+Kkn2f@+. ... (239

The Chapman—Enskog method assumes that the distribution
function depends on the time and the coordinates only via
the five moments being the parameters of the local Maxwell-
Using the orthogonality of the Hermite polynomials, we find jan: the number densitg(t,r), the three components of the
1 bulk velocity u(t,r), and the temperatur&(t,r). Substitut-
al™ (== f f(t,rv)HNY  dv. (232 ing (2.35 into the BE (2.12 and taking into account the
1 ON n 1o aN ; i ! .
assumption mentioned above, we find th&? is the local

The coefficienta™ may be expressed in terms of the mo- Maxwellian ). defined by(2.30. The next approximation
ments f (™ is expressed via the previous oh& 1),

mV2
R

&N
X — .
N Ny, ex"( 2kgT
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On the basis of the first approximatidn® we obtain 2.5. Model Kinetic Equations

Newton'’s law )
The Grad and Chapman—Enskog methods are applied near

Pij=Péj—2un S;, (2.36  the hydrodynamic regime. To describe gas flows at an arbi-
trary rarefaction, it is necessary to develop another approach
to the solution of the BE. The main idea of the method suit-

q=—«VT, (2.37  able at any Knudsen number is to simplify the collision in-
tegral retaining its fundamental properties sucli2za6 and

(2.17). Then, one may apply some exact method of solution

to these approximate equations. The simplified equations are

called the model kinetic equations.

and Fourier’s law

where§;; is the rate of shear tensor

1 an+(9Uj EIJV 53
Si=3 EAr U, (2.38
x is the thermal conductivity. The explicit expressions of the 2.5.1. BGK Equation

transport coefficients and« can be obtained if the intermo- _
lecular interaction law is given. For the hard sphere mol- An €arly model equation was proposed by Bhatnagar,
ecules the coefficients have the form Gross and Krook(BGK) and independently by Weland&?.

They presented the collision integral as
5 mkgT 75k mkgT
S mmieT - e VIMIeT ) 59 Quex(Ff) = E( T~ F(LrV)], (249

=16 wd?z 64m  wd®
) ) o Wheref{‘c’:C is the local Maxwellian(2.30). The local values of
whered is the molecular diameter. Taking into account thati,a number densita(t,r), bulk velocityu(t,r) and tempera-

the molecular mean free pathis given by ture T(t,r) are calculated via the distribution function

1 f(t,r,v) in accordance with the definition®.4), (2.5 and
=— (2.40 (2.9), respectively. The quantity is the collision frequency,
vanmd? which is assumed to be independent of the molecular veloc-
see Bird® (Sec. 1.4, Ferziger and Kapéf (Sec. 2.4, expres-  ity- One can verify that the model collision integral obeys
sions(2.39 turn into both fundamental properti€2.16 and(2.17).

The collision frequency can be chosen by various meth-
ods. One of them is to chooseso that by solving the model
equation by the Chapman—Enskog method the expression of
the viscosityu would be the same as given in the full colli-

_577 \ 1 \
,u—@(v)mn —§<v>mn ,

75mKs 15kg sion inte i i [
_ - gral. Regarding this we obtain
K=—Tog (v)nh 8 (v)nn, (2.4)
P(t,r)
where(v) is the mean thermal velocity v(t,r)= () (2.49
(v)= 8kgT) 2 (2.42 Note thatv is a local quantity, because the pressure is a
m ' ' function oft andr and the viscosity: also depends ohand

r via the temperatur@.

Namely the expressiof2.41) for u has been used if2.3) to Another way to choose is as follows:

relate the mean free path with the macroparameters. From

(2.47) it is easily obtained the relation between the viscosity f r)= 5kg P(t,r) 2 P(t,r) 04
w and the thermal conductivity v(tn=50 <(tr) 3 w(T)’ (2.47
_ 15kg 24 where relation(2.43 has been used. Solving the BGK equa-
K= "am (2.43 tion with this v, one obtains the correct expression of the

heat conductivityk.

A third way to choose is to put the frequency as the ratio
of the mean thermal velocit{2.42 to the mean free path,
aSj l.e.,
axj (2.44 (v)y 4 P(t,r)

v=—""=— )

The Chapman—Enskog method is based on the expansion Ao o)
(2.35 with respect to the small Knudsen numbers. So, likewhere Eqgs.(2.3) and (2.42 have been used. This follows
the moment method, the Chapman—Enskog method also fsom the fact that the mean time between two successive
applicable only for the small Knudsen numbers. Usually, it iscollisions is equal to X/ and on the other hand it is equal to
used to obtain the explicit expressions of the transport coefx/{v). It would seem that this choice of frequency is physi-
ficients in the hydrodynamic equations. cally justified. But mathematically it gives the correct ex-

Details of the method are given in the litera- pression neither for the viscosigy nor for the thermal con-

ture10.26,27,39,57,71 ductivity «.

With the help of Newton’s law2.36) the equation of the

momentum balance gives us the Navier—Stokes equation
duy  dP 3

TR

(2.48
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A shortcoming of this model equation is that the correctplest internal gas flow, viz. the flow between two parallel
expressions for the viscosity and heat conductivity cannot belates. From this comparison the following anticipated rec-
proved simultaneously. As a result, the Prandtl number thabmmendations can be givefi) any isothermal gas flow can
the BGK model gives is unity instead of the correct value ofbe successfully calculated with the help of the BGK model;
2/3. To avoid this shortcoming some modifications were of<(ii) the S model is an ideal equation to describe the linear
fered. nonisothermal gas flowsjii) the ellipsoidal model is not

One modification of this model was introduced by recommended for practical calculations.

Krook.”? He assumed that the frequeneydepends on the
molecular velocityv, because a computation of the collision

frequency for physical model&igid spheres, finite range 2.6. Linearized Boltzmann Equation
potentialy shows thatv varies with the molecular velocity.
All basic properties are retained, but to satigB17) the 2.6.1. Linearization Near the Absolute Maxwellian

moments appearing in the local Maxwellian of the modified . o
model are not the local density, velocity and temperature of If the state of the gas is weakly nonequilibrium, we may
the gas, but some other local parameters_ linearize the BE by the standard manner. The distribution

function can be presented as
f(t,r,o)=fy[1+h(t,r,v)], |hl<1, (2.5

where f} is the absolute Maxwellian with the equilibrium
number densityng and the equilibrium temperatuiig,

m 3/2 va
o o 29

Substituting (2.51) into (2.12 the linearized BE is easily
derived

2.5.2. S-Model

The S model proposed by Shakf#lis also a modifica-
tion of the BGK model giving the correct Prandtl number.
The collision integral of this model is written down as

mV? 5

2m fo =
29V -5
15n(kgT) 2kgT 2

1+

Qs(ff )_ [ loc|

—f(t,r,v). (2.49

dh
This model has another shortcoming: the inequaliyl6 §+Dh Lh=0. (2.53

can be proved only for the linearized S model. In the non-

linear form one can neither prove nor disprove the inequalThe operator® andL are defined as

ity. But the conservation law$2.17) are valid for the S A oh

model in any form. Dh=v.—, (2.54

or
2.5.3. Ellipsoidal Model . "
Lh=Jf (V. )W(V,v, ;v',V.)
Another model”®® with the correct Prandtl number has 0 * *
the collision integral in the following form X (h'+h. —h—h,)dv, dv. dv’ (2.55
* * " N

n Let us introduce the operator of the time reversal
QE|<ff*>=v{?rz(detA>1’2 P

To(rv)=g(r,~Vv) (2.56)
and two scalar products
XGX% Izl A”(U, U)( U)} ], P
(2.50 (¢.4)= f (V)P Vd,  ((0,9))= fﬂw,w)dr,

where (2.57
2KgT 2(1—PNP;; where Q) is the region of the gas flow. Usin@.14 and

A=|A;ll= ’ 1% T mpr S . (2.15 the following relations can be proved
where Pr is the Prandtl number. If we let=Pt, we recover (TLe,)=(TL ¢, 0), (2.58

the BGK model. It is also impossible to prove the inequalit IS Ao
(2.16 for this model. P P e (TLe. ) =((TL.@)). (259
The moments of the distribution function can be expressed

2.5.4. Applicability of the Model Equations via the perturbation functioh and the scalar produ€®.57

as
Conclusions on the applicability of the model equations

can be made from a comparison of numerical data based on B _ m 2y To

them with those obtained from the exact BE. In Sec. 3 this n=not(Lh), T=To+ 7 no(v ) n_o(l’h)'

comparison is carefully performed on the basis of the sim- (2.60
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~ 2w, a= D) - SkaTevh Loh=—2| g+ ML
u= no(V' ) A= Z(U v.h) 2B oV, )(2 61 Ls Mo kBTov'u T 2kgTy, 2
' 2m mv? 5
2.6.2. Linearization Near the Local Maxwellian + 15no(kBTo)2q.v 2kBT0 - E —h ’
In some cases it is more convenient to linearize near the (2.68

local Maxwellian, i.e., to represent the distribution function wherePy=ngkgT, and wo= u(To).
as

f(trv) = fladn TOLL+h ()], (2.62 2.8. Linearized Boundary Conditions

M . .
therTeI'OC IS degned k:jy(z 33 Hered thet molrfnente(tbr)tt o The linearized boundary conditions are easily obtained
andT(1,r) may depend on the coordinates. If we substitute substituting (2.51) into (2.18 combining with (2.20 and

(2.62 into the BE(2.12 we obtain (2.21)
dh 1on mu 3\ 14T T —-To( mv2 5
_ | = — — | — Y +_" — _ W 0 _ -
pr +Dh—Lh=-v o +(2kBT 2) T o’ar} h*=Ah~+h,—Ah,, h,= T (ZkBTO 2).
(2.63 (2.69
One can see that in the cas@,r)=ny, andT(t,r)=T, the  The upper indexes 4" and “ —" in (2.69 mean the per-
last equation takes the forf2.53. turbation function of the reflected and incident molecules,
respectively. The scattering operatbiis defined as
n H(vy)
2.7. Linearized Model Equations Ah |vn|exp[ mo2/(2kgTo)] f H(—vp) vyl
In the case of the weak nonequilibrium the local Maxwell- mo "2
ian (2.30 can be related to the absolute Maxwelli@52) as ><exp( T 2keTo h(v' )R(V'—v)dv'. (2.70
2 .
m my 3 Let us introduce one more scalar product
M _fM — —
floc(N, T,u)=fy|1+0+ kBTOV Ut 7| 5o 2KsT 2”
(2.64 (<P,1/I)B:f Hwnvafy e(rv)g(r,vidv, redQ,
where (271
n—n T-T whered(} is the surface bounding the gas flow.
o= L 0 (2.65 Using the normalizatiori2.20 and the reciprocity of the
Mo To scattering kerne{2.21) one obtains the following relatiéf
Equation(2.64) is valid if (:l'(P_,ALV)B:(?l//_,A(P_)B- 2.72
m
lo|<1, PR <1, |7/<1. 2.9. Accommodation Coefficients
B'O

In some cases it is not necessary to know the scattering

Substituting(2.53) and(2.64) into (2.45 we obtain kernel, it is enough to know only its integral characteristics

m mv?2 3 such as the accommaodation coefficieatsp). For a surface
Qeax(ff ) =vfyl o+ T Veu+ 7 T 5) - } having a temperatur@, the accommodation coefficient is
BYO BTO defined as
(266 fd fd
Then, the linearized collision operator takes the form a()= TH(Zvn) (V) |on/fdv=TH(wn) ¢(W)[vnl MV ,
, JTH(=vn) eW)|va|fadv—=FH(vn) e(V)|vlfgdv
~ _ m mu 3 (273
LBGKh_VO Q k T —V-u+r7 2kBTO_§)_h

wherefg" is defined by(2.52, and¢(v) is some function of
(2.67) the molecular velocity. One can see that the accommodation
Note that here the frequenayhas its value in the equilib- coefficienta(¢) defined by(2.73 depends on the distribu-
rium state, because the consideration of its variation gives ugon function of the impinging molecules. Restricting this
the terms of the second order of the smallness, which argistribution function we obtain a more meaningful definition.
negligible. If we represent as

The analogous procedure with the S mo@e#9 gives us " .

the following collision operator f=fo(1+Ty), (2.74
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then Eq.(2.73 can be written as

Jk:; AnXn, (2.77
L (N Ty s (Ae Ty )g
a(e,h)=1- —"— ol whereX, are independent thermodynamic forc@sare con-
(Te™.4")s (Te™. ¥ )e jugated thermodynamic fluxes antl,, are kinetic coeffi-
Av- To- cients. If the set of the fluxes is chosen so as the entropy
=1— (A‘!/’—‘P)B’ (2.75  Pproduction in the system is expressed as the sum
(T¢7!(//+)B
where Eq.(2.72 has been used. U:; InXn, (278

It is easily verified that in Maxwell's kerngR.23 « is the ] . .
accommodation coefficient of any quantityfor any pertur- the Onsager theoréf establishes the following relations

bation functiond. between the kinetic coefficients
In the Cercignani—Lampis kerné€2.24) «, is the accom- -
. . . . . Akn Ank- (2-79)
modation coefficient of tangential momentum, i.ex
= a(muv,, ) for any ¢. The coefficienta,, is the accommo-  Casimif* generalized these relations regarding forces with

dation coefficient for the part of the kinetic energy corre-a different time parity. However, all thermodynamic forces
sponding to the motion normal to the wall, i.eq,  considered here have the same time parity, which is why we
= a(mv?, ) for any . If one tries to compute other accom- retain the reciprocity relations just in the forf2.79.
modation coefficients using the Cercignani—Lampis model, Onsagel'® proved the relation$2.79 for insulated sys-
one concludes that they depend on the distribution functiotems. De Groot and Maztfr derived them for systems in
. local equilibrium. However, we are going to consider open
Let us take a set of of physically meaningful quantitigs  systems admitting a heat exchange with the surroundings and
and leto=¢;, = ¢;. We obtain a matrix of the accommo- not being in local equilibrium, which is destroyed at a large
dation coefficients rarefaction of the gas. For our purpose the best approach is
based on the BE, which was elaborated by Loyédlkhy
(A To) )8 Boschet al,'®° by Bishaev and Ryko¥? by Freedlendéf
Ee— (2.76  and by Sharipow®?~13%143The explicit expressions for the
(Tei 1¢))s thermodynamic fluxes and the kinetic coefficients in the case
With the help of(2.72 one can prove that the matriy; is of égrefiedhgas flow throug.h a c.apillalry'are given bf.lc?v:'
symmetric. The Seb1=v,, ,=11, ¢3=0p and o= 1> ince the Qngager reciprocity relations are valid for a
leads us to the four accommodation coefficiefsz,;, weak nonequilibrium state, we assume the relative drops of

N - . the pressure and temperature to be small
9= a3, g, anda4= a,q, Which are generally used.
The accommodation coefficient of the tangential momen- ‘p”_ pl‘ T, —
<

aij=

T
tum a,, is most important in the problem of the internal S —| <1, (2.80
rarefied gas flow. The accommodation coefficients are usu- !

ally measured indirectly, e.g., via the mass flow rate throughrurther it is reasonable to assume these drops to be thermo-
a capillary. Data on the coefficients can be found in thedynamic forces

literature® 7122125126155 m these data one can see that for o _p 11

light gases, such as helium and neon, the accommodation Xp= ”P. " Xq= ”T L (2.81)

coefficients may differ significantly from unity, while for

heavy gases, e.g., krypton, xenon, the coefficients are Cloﬁ\ﬁoreover we consider the stationary gas flow.

face 13 closer 1o the difizse scattoring than the interacion, " RelS: 136-138 it was shown that o satis7 the
. ) ) . thermodynamic fluxes must have the following form

with a surface specially treated. A chemical cleaning of the

surface increases the deviation of the accommodation coef-

ficients from the unity. So, if one deals with a sufficiently Jp= _nIL UcdX, (2.82

heavy gas and with an ordinarily contaminated surface, one *

may assume the perfect accommodation of gas on the sur-

1
face. =TT ( = LﬁvanWdE

, (283

where 3 is any cross section of the capillary, is the
cross section bounding the right container and the capillary,
3. is the lateral surface of the capillarg,=(qg-n) is the

If we restrict ourselves by the linear region of physical normal of the heat flow vector, where the unit vectois
laws, all irreversible phenomena can be described in théirected into the capillary, and, is the temperature distri-
quite general form bution (1.1).

2.10. Onsager’s Reciprocity Relations
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Because of the smallness of the pressure and temperatul
drops the solution of the linearized BR2.53 or (2.63 can
be decomposed as

h(r,v)=hp(r,v)Xp+ hy(r,v)Xs. (2.84 Yoy

M £ M
Substituting(2.84) into (2.61) one can see that the moments h )—‘T n
of the distribution function are decomposed to z
r

u=upXpturXs, g=0pXptdrXy. (2.89 /
V/

Substituting(2.85) into (2.82 and(2.83 and comparing with
(2.77 we obtain the explicit expressions of the kinetic coef-

ficients Fic. 4. lllustration to the derivation of Clausing’s equation.
App= _”IJE Uxp, (2.89  2.11. Methods of Computation in the Free-Molecular
. Regime
Apr=— n'L UdeE, (2.87) 2.11.1. Clausing’s Equation
1

If the Knudsen number is very large so that every mol-
1 ecule moves without any collisions with others, the collision
Atp=— T ( f ”qxpdz_f candeE , !ntegral |s_equal to zero. To optaln the distribution fun_ct|0n
Bl /X e in this regime we need only to integrate the left hand side of
(2.89  the BE (2.12 taking into account the boundary condition
(2.18. As a result we obtain the integral equation, which has

App=— qudE—f QS | f[he form(2.18 wheref~(r,v’) is replaced by the Maxwell-
(2.89 w P ( m )3/2 F{ mo?2 )
fil=—\|5——=| exp-—5—=|, (293
The physical sense of the coefficients is as followsp KeTi | 27kgT, 2KgT,

describes the Poiseuille flow, i.e., the mass flow rate causear

by the pressure drop\pt describes the thermal creep, i.e., = m |32 mo2

the mass flow rate caused by the temperature dkgp,cor- fh": I <— exp{ — _> (2.92

responds to the mechanocaloric heat flux, i.e., the heat flux keTy | 27KgTy 2kgTy

caused by the pressure drop, afg; is the ordinary heat if a molecule with the velocity’ comes to point from the
flux caused by the temperature drop. left or right container, respectively.” (r,v’) is replaced by
Starting from equalitie$2.59 and (2.72 Sharipov®*™**®  §+(r’ v') if the molecules comes from point being on the
proved the Onsager relatid@.79), i.e., Apt7=A1p, Whichis  capillary surfacgsee Fig. 4 Resolving the derived integral
valid for any gas rarefaction, for any gas—surface interactiorquation we obtain the distribution function and hence the
law, and for any temperature distributioty, along the cap- flow rate and the heat flux.
illary. In the case of the diffuse-specular scatteri@R3 the
De Groot and Maz(it derived the analogous expressionsintegral equation is simplified and takes the following form
assuming that the walls are heat impenetrable. This means

thatg,=0 atreX,. If we assume the same, the kinetic nw(x):fllz TxxX (X)X +.7(x), (2.93
coefficients(2.88 and(2.89 are reduced to 12

wheren,,(x) is number of molecules impinging with the cap-
Avom — 1 f R 1 f o illary wall per time unit and per area unit in the point with
7 KkgT, quXP L quXT : the longitudinal coordinate. The functions %(x,x’) and
(290 .7(x) are determined by the capillary form and its dimen-
sionless length.. Resolving this integral equation we can
coinciding with the expressions by de Groot and Ma&Zur.  find the flow rate and the heat flux.

In the case of infinite capillary the kinetic coefficientsp The derivation of Clausing’s equatid8.93 can be found
and A1 also take the form(2.90, because a local equilib- in Cercignam® (Chap.V, Sec.8.and Kogah® (Sec. 6.3.
rium is established in a capillary element and the normal hedlethods of solution of integral equations are described in
flow vectorq,, disappears. Sec. 2.12.4.
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2.11.2. Test Particle Monte Carlo Method 2.12.2. Variational Method

The test particle Monte Carlo methi8d*implies a simu- To use the variational method we need a variational prin-
lation of the motion of a large number of particles. Sinceciple, which can be formulated in the following form. Let us
there is no interaction between the molecules we may simuconsider a linear equation written in the quite general form
late the motion of every particle separately. First, we gener-
ate a particle on the entrance cross section of the capillary
with the Maxwellian distribution of the velocity and the uni- \pe e & js 4 some linear operator and is a source func-
form distribution over the cross section. Then, we find the. . ~ . .
trajectory of the particle and calculate the point of the collj-1on- !f the linear operato;_% Is self-adjoint W'th respect to a
sion of this particle with the capillary wall. It may happen certain scalar produdt, ), i.e., for any functionsp andy we
that the particle will pass the capillary without any collision have
W|th the wall. In this case we_generate a new patrticle on the (Lo, =( o), (2.96
capillary entrance. If the particle falls on the wall, we simu-
late its scattering according to the gas—surface interactioffien the functional
law and obtain the post-interaction velocity of the particle. — o~ A ~
Then, we find a new point of the interaction with the wall. J(h)=(h,zh)=2(,h) (2.97
The procedure is repeated until the particle goes out the cafs easily shown to satisfy
glggbl'.hen, we generate a new particle on the entrance cross 53=0 (2.98

The particle can go out through the same capillary enif and only if h=h+ sh, whereh is the solution of Eq.
trance where it has been generatee., the particle has not (2.95 and sh is infinitesimal.
passed through the capillargnd through the opposite en-  \ye may represent the functidnin some analytical form
trance (i.e., the particle has passed through the capillary containing some undetermined constants Usually, the
Testing a lot of the particles we may calculate the transmisanalytical form (so-called trial functionsis chosen from

Yh=.7, (2.95

sion probability as some physical reasonings or from the solutions in the hydro-
N dynamic regime. Then, the trial function is inserted into the
W= N’ (2.94 functionalJ(h) andJ becomes a function of the constamt

. setting equal to zero the partial derivatives of this function
whereN,, is the number molecules passed through the capjith respect ter; , we obtain a system which determines the

illary and N is the number of the generated particles. Theyeqt yalues of the; according to the variational principle.
transmission probability is easily related to the mass flow 1he agvantage of this method is that it requires essentially

rate, sleoe Sec. 5.2.1. . less computational effort than a direct numerical method,
Bird™ has reported a program to calculate the transmlssmg_g_, the discrete velocity method, but it gives only an ap-

probability W through a tube for the diffuse scatterit@22  royimate solution. The precision depends on the choice of

on the wall. the trial function. The great shortcoming of the method is
that one cannot estimate the error of the variational solution.
That is why the variation solution should be compared with a

2.12. Methods of Computation in the Transition direct numerical solution for few Knudsen numbers.
Regime Details of the method are given by Cercignhi.
2.12.1. Discrete Velocity Method 2.12.3. Integro-Moment Method
We choose a set of values of the velooityand interpo- Let the gas flow be a steady weak nonequilibrium that is

late the distribution function in terms of its values corre-Possible under the small pressure and temperature drops. If
sponding to the velocities;. The collision integral is ex- the collision integral is replaced by the BGK model or by the
pressed via the valuds(t,r)=f(t,r,v;). Thus, the integro- S model we can reduce the kinetic equation to the system of
differential BE is replaced by a system of differential integral equations having the following form

equations for the functiong(t,r). The differential equations N

can be solved numerically by a finite difference method. Mi(r)=2 Z(rnr )M (r)dr’ +.74(r), 1<i<N,

Then, the distribution function moments are calculated using =1Jo

some quadrature. The method can be optintiZatiwe take (2.99

into account a solution in the hydrodynamic regime. ThiswhereM;(r) is the moments of the distribution functiof),
method gives good results in the entire range of the Knudseis the region of the gas flowj;(r,r') and.”/i(r) are some

number. functions to be defined in every specific problem. In Sec. 3.3
Details of the method are given by Kodan(Sec. 3.13  the expressions of these functions are given for the gas flow
and elsewher&0:140.147 through an infinite capillary.
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The system(2.99 includes those moments that the model K Vi1
collision integral contains. If we apply the BGK equation, M(ynﬂ,z):E M(qu/z)J T (Ynsr12,Y)ay’
the set of the moments isi(r), u(r) and T(r). In one- k=1 Yk
dimensional flows the density and temperature fields are + A Ynr10),s (2.105

known and the systerf2.99 is reduced to the one equation
containing only longitudinal component of the bulk velocity. where I=n<K, yy. 1, is some point betweey, andy,_ ;.
If one applies the S model, the set of the moments is adde8olving this system we find the momeM in the points

by the heat flow vectoq(r). Yi+1/2-
A derivation of the integral equatior{2.99 can be found If the order of the algebraic system is large the iterative
in the literature?3445.71.1%5 method of its solution is applied. Mathematically this means

a numerical construction of the Neumann-Liouville series.
2.12.4. Solution of Integral Equations

The method of solution to the integral equatioi2s93 _
and (2.99 will be demonstrated below for the one- 2.12.5. Method of Elementary Solutions

dimensional equation written as . . :
a The main idea of the method of elementary solutions is to

separate the variables, to construct a complete set of sepa-
rated variable solutiong“elementary solutions’, then to
represent the general solution of the kinetic equation as a
superposition of the elementary solutions, and finally to use
the boundary conditions to determine the coefficients of the
superposition. For simple one-dimensional gas flows this
" b ) method allows us to reduce the model kinetic equation to an
IM=M(y)— Ja%(y’y IM(y")dy". (2.100  integral equation for the perturbation function. Then one has
to apply some numerical procedure to solve this integral
If we apply a model collision operator satisfying the condi- equation.
tion (2.59 and the boundary condition satisfyiri3.72, the Details of the method are given by Cercigrfini
operator ¢ is always self-adjoint with respect to the scalar (Chap.V).

b
M(y)= L%‘(y,y')Mw’)dy'+.7<y>, (2.100

where. 7ZZ(y,y') and.#(y) are some given functions.
Variational method:The equation(2.100 is a particular
case of Eq(2.995 with the operator

product

b

(,9)= Ja e(y)¥(y)dy. (2.102 2.12.6. Direct Simulation Monte Carlo Method

The variational method assumes the mombtty) to be The region of the gas flow is divided into a network of
presented as cells. The dimensions of the cells must be such that the

K change in flow properties across each cell is small. The time

M(y)= 2 cioi(y), (2.103 is advanced in discrete steps of magnitdde such thatAt
i=1 is small compared with the mean time between two succes-

where ¢,(y) is a set of basic functions to be chosen fromSiVe collisions.

some physical reasonings, andare constants to be calcu- The molecular motion and intermolecular collision are un-
lated. Applying the variational principle described in Sec.couPled over the small time intervalt by the repetition of
2.12.2. the system of algebraic equations is obtained fof€ following procedure:

these constants: (i)  The molecules are moved through the distance deter-
K mined by their velocities andt. If the trajectory
> (j;ﬁ‘pi @)Ci=(7¢), 1<j<K. (2.109 passes the boundary a simulation of the gas—surface
=1 interaction is performed according to a given law.

New molecules are generated at boundaries across
which there is an inward flux.

(i) A representative number of collisions appropriate to
At and the number of molecules in the cell is com-
puted. The pre-collision velocities of the molecules
involved in the collision are replaced by the post-
collision values in accordance with a given law of the
intermolecular interaction.

Thus, if one numerically calculates the matrix'@; , ¢;) and
the vector (7, ¢;) one knows the constants and hence the
momentsM (y).

The Bubnov-Galerkin variational method described by
Mikhlin1® and widely applied to the capillary gas flows,
gives the same equation system for the coefficients

Direct numerical methodThe integral equatior{2.100
can be solved directly. The intervigh,b] is divided on seg-

ments [yy,Yk+1], Where k<K, y;=a and yx,,=Db. After a sufficient number of the repetitions we may calcu-
Then, the integral equation is replaced by the following sysdate any moment of the distribution function. Details of the
tem of the algebraic equations method are given by Birdf!
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2.13. Gaseous Mixtures The coordinatesx,y,z) are given in Fig. 1. Near the capil-
lary ends this assumption may be violated, but for the long
capillaries the influence of the end effect can be neglected.
Since the thermal conductivity of the capillary walls is
significantly larger than the thermal conductivity of gases,
N the temperature distribution(x) is determined by the ther-
E Qjj(fifj), 1s<i<N, (2.106 mal properties of the capillary and must be given without a
1= solution to the kinetic equation. The pressure distribution
where Q;; is the integral describing the collisions between P(x) is not knowna priori, but must be found as a solution
speciesi and j. The methods of solution to this equation of the kinetic equation.
system are based on the same ideas as those to solve thdror further derivations we will use the following dimen-
single equatiori2.12. The problem is that the computational sionless coordinates
efforts drastically increase if we pass from a single gas to a
gaseous mixture. Moreover, in a mixture new phenomena
appear, such as the mass and heat fluxes caused by a cbgt us consider a cross sectigrx,, of the capillary being
centration gradient, the diffusion caused by gradients of théar away from the capillary ends. The pressure and the tem-
pressure, temperature and concentration. These phenomeperature near this cross sectio&f§*|~1) can be pre-
complicate treatment of the gaseous mixture. That is whyented as
there are very few papefs*+156.17%n the gaseous mixture

To describe a gaseous mixture haviNgcomponents we
need to considerN distribution functions f;(t,r,v),
1<i=<N, and the system of the Boltzmann equations

af o7f
0t Cor

x=xla, y=yla, z=zla. (3.3

flows. Therefore, it is very attractive to use the single gas P(x)=P(x,)+ d—NP (X—=X,)
results for a gaseous mixture. dx X=%,
It is obvious that the phenomena mentioned in the previ-
i i i 1d? -~ ~
ous paragraph cannot be described in the frame of the single L (X' =%, )2 3.9
gas. Concerning the other phenomena, viz, the mass and heat 2 dx?|- - * '
flux caused by the pressure and temperature gradients, it is s
possible to offer two approaches to describe a gaseous mix- ~ ~ dT ~
ture based on the data obtained for a single gas. TOO=Tx)+ =] (X=X)
X=X
(i) The first approach is that we substitute a gaseous mix- ¥
ture by a single gas having the mean molecular mass. 4 1 dZ_T X =%.)2 3.5
This means ifn; is the number density ana; is the 2 dx2?|~ - * '
molecular mass of specids we consider that the XX

“single” gas has the number density=3n; and the  where|x’ —X, |<[x—X,|. The estimation of the derivations
molecular massn=X;n;m;/n. This approach can be shows that
justified only in the hydrodynamic regime. 1dP P,—P, 1 1 dT T,, T, 1
(i)  The second approach is that we consider the flow of ——~ = ( ) = (—)
every component independently of each other. Apply- P dx Pal T dX Tal L
ing the single gas theory to every component of the 3.6
mixture we calculate the mass and heat flux as asum 1 d’P  P,—P, 1 1T T,-T, 1
of the fluxes in these components. This approach is p 52 ”mf (fz) T dx2 ﬁf_ ([2)
justified only in the free-molecular regime. In the (3.7
transition regime both approaches give approximate

results which can be used for an estimate. Wwhere
P+ Py T,+Ty
av— 2 av— 2 (3.9
3. Gas Flow Through Long Capillaries SincelL>1, the first derivatives are small. The second de-
rivatives have the second order of the smallness and can be
3.1. Remarks omitted in(3.4) and (3.5). Finally we have
In this section we consider long capillaries so that P(X)=P,[1+&(Xx—X,)],
L=I/a>1. What does it mean physically? The pressure and ~ ~ ~
the temperature relax significantly quicker over a cross sec- TOO =Ty [+ &(X=%)], 3.9
tion than in the capillary as a whole. Thus, we may assumevhereP, =P(x, ), T, =T(x,), and
that the pressure and the temperature do not depend upon the 1 dpP 1 dT
diametric coordinates, i.e., bp=— —= , rmE——= (3.10
P* dx ~ ~ T* dx ~ ~
P=P(x), P(=I1/2)=P,, PU/2)=P,, (3.1 X=X X=Xy
T=T(x), T(=1/2=T,, T1/2=T,. (3.2 Thus, we may conclude thdf) near a given sectior, on

a distance of the order of the capillary diamederthe pres-
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sureP, and the temperaturE linearly depend orx; (ii) the  wherevgek is the dimensionless collision frequency for this
gradients of the pressur& and of the temperaturé; are  model. If one applies the S mode.68), the reduced colli-
small, i.e.,| &5/ <1 and| & <1. c

. . ) sion operatol. has the following form:
Equations(3.9) have been obtained without any assump-

tion on the pressure and temperature drops. Even with large 2 - - 4 _ 5

drops, the representati@B.9) remains valid. Such represen- Lsh= VS[ZCX Uy + 15 qXCX( c?— E) - h}

tation of the pressure and temperature distributions allows us

to split the solution of the problem into two stages. In the - P,

first stage we will find the flow rate through the section vs= aﬁ*m, (3.17

X=X, as a function oP, andT, assuming the gradient

and¢; to be small and constant. In the second stage considwvherevg is the dimensionless collision frequency for the S

ering a variation ofép and & along the capillary on a dis- model. Here we have regarded that the bulk velocity and the
tance of the order of the capillary length we will calculate theheat flow vector have the longitudinal component only ex-

mass flow rate and the heat flux through the capillary as aressed via the perturbation function as

function of the pressure®,, P,, and the temperaturdg, T

h il . ~ 1
on the capillary ends UXZFEJ exp( — c?)c,hdc, (3.189
: T 1 2 2 >
3.2. Input Equations qxzpﬁf exp(—c9)cy| ¢ 3 hdc. (3.19

Let us introduce the dimensionless molecular velocity,

. As has been indicated in Sec. 2.5.1. the BGK model ad-
bulk velocities and heat flow vector as

mits several ways to choose the collision frequencyhere-
- ~ B, fore, the expression of the dimensionless collision frequency
C=Bsv, U=B, U Q= Eq’ (3.19 ek depends on the choice of The most preferable choice
is Eq. (2.46), because it provides the correct description of

respectively. Here the mass flow rate caused by the pressure gradient in the

m |12 hydrodynamic regime. So, usin@.46 with (2.11), (2.40),
Bi= (3.12  (2.42 and(3.12 we have
2kgT,
Since in the first stage we assume the pressure and the tem- o :ﬁ a_ s (3.20
perature gradients to be small and constant, we may linearize BGK™ 2 N, 7 '

the kinetic equation with respect to the gradiefgsand &5 . .
Let us perform the linearization near the local MaxwellianWhere\, is the mean free path at the pressérg and the

ff‘é'c(n,T,O) defined by(2.30, where n(?)zP(?)/kBT&). LesrgdperatureT*. Here, the definition ofs (2.2) has been

So, the choice of the collision frequen¢g.46) leads to

the equality betweeEzBGK and the rarefaction parametér
The other expressions af i.e., (2.47) and (2.48, lead to

other relations betweengg, and 8, which we will use only

The pressur@(x) and the temperaturg(x) are determined
by (3.9. So, introducing the perturbation functiom as
(2.62, whereh does not depend on the coordinate, we
reduce Eq(2.63 as follows:

Bh—fhz—cx Ep—C(C2— 9 ér, (3.13 in specific cases. So, presenting the results based on the
BGK model we will imply the relation(3.20 if the other
f)=a/3 ) f:aﬁ i (3.14 relations are not mentioned.
* 1 * ) .

For the S model there is the unique relation between the
whereD is defined by(2.54 andL is defined by(2.55. The  dimensionless frequendy and the rarefaction parametér
derivative with respect to the time has been omitted, becausene can easily verify that they are equal to each other
we consider a steady flow. Sinbedoes not depend on the

coordinate, the reduced differential opera%nrhas the form vs=o. (3.21
- oh = oh oh Since Equation3.13 is linear, its solutiorh can be de-
Dh=c,—, Dh=c¢,—=+c,—= (3.15  composed as
ay ay 9z
h=hpép+hrér. (3.22

for the channel and tube, respectively.
If one gpplies the BGK modéR.45), the reduced collision  grom (3.18 and(3.19 one can see that the bulk velociy

operatorL takes the form and heat flow vectog, are decomposed to
Laokh=7ack(2cUx—h), 7Vgek=aB,v, (3.16 Uy=UypéptUgrér,  Ox=Oxpépt Oyrér. (3.23
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Substituting(3.22 into (3.13 and considering that the gra-
dientsép and & are independent, we obtain two independentp

equations

hp—fhP:_CX, BhT_thT:_CX(CZ_ g)

(3.29

ov

The first of them describes the gas flow caused only by the
pressure gradient and the second one describes the flow

caused only by the temperature gradient.

F. SHARIPOV AND V. SELEZNEV

in the capillary sectiox=Xx, and thelocal gradients of the
ressureép and temperaturé;. They are introduced so as to
be always positive.

The introduced coefficients are related with the thermody-
namic fluxes(2.82 and(2.83 as:

Let us introduce the reduced flow rate and the reduced for tybe

heat flux as:
for channel
o Mmeh f1/2~ _
Gl'=—=2 u,dy,
* aP*B* —-1/2 X
2B,E" 12
P=—ap =2 f o, (3.29
for tube
Mtb 1
th_ _ ~ o~
G*_—wazP*ﬁ* 4J'0 u,r, dr,
2B, E® .
* gzp—* 4 qurler , (326)

wherer, =\y2+z2. If we introduce the following nota-
tions:

for channel
2 2
GihP: _Zf Uypdy, GihTzzf Uy dy,
—-1/2 —-1/2
(3.27
" 2 o 2
Q*Pzzf qudyr *T _Zf qXTdy!
—-1/2 —-1/2
(3.28
for tube

1. . 1. -
Gibpz—4fo Uyl , dT GfT:4fo Uygql  dT
(3.29

i . - -
Q:?P:4JO Oupr . dry, QE?T: _4f0 Oyl dr
(3.30
with the help 0f(3.23, (3.25 and(3.26) we obtaif

G =—Gupépt Gurér, Qu=Qupép— Qurér.
(3.31)

for channel
— an, ch _ an, ch
‘]P_ 23* G* ’ ‘]T_ Zﬁ* % 1 (332
2 2
Tan, Tan,
Jp=— GP, =——2QP. @33
P g, O T & G

In the expressions od; the second term must be omitted
because in a long capillary there is no gas—surface heat ex-
change. The kinetic coefficients take the form

App=AG,p, Apr=—AG,1, Arp=—AQp,
Arr=AQ, T, (3.39
where
an man
AN=_—E A= — 3.3
26, 26, (3:39

for channel and tube, respectively. Based on these relations,
we may use the same terminology that was introduced for
the kinetic coefficientsA,, in Sec. 2.10, i.e.G,p is the
Poiseuille flow,G, 7 is the thermal cree, p is the mecha-
nocaloric heat flux, an@, t is the ordinary heat flux.

From Onsager ’s relatiof2.79 and the relation$3.34)
we have

Gy 1= Qxp- (3.3

This relation is very useful. Sinc&, + andQ, p are calcu-
lated from the two independent equatidBs24), the relation
(3.36 serves as an additional criterion of the numerical pre-
cision. On the other hand, if one is going to calculate only
the flow rate, i.e., only the coefficienG,  andG, 1, one
does not need to solve the second equai®24); computing

Q, p from the first equatiori3.24) one immediately get&, 1
from (3.36).

Below, the flow rate$s, p, G, 1t and the heat fluxe®, p,
Q.. will be presented here as a function of the rarefaction
paramete®. Note thats without a subscript is referred to the
local pressureP, and thelocal temperaturel’, . With the
help of (2.2) and(2.3) the rarefaction parametéris related
toP, andT, as

Jr a _ aP, ( m )1’2
2 Ny IU“(T*) 2kBT* .

Here, it should be noted that to relate the paraméteith

(3.37

Thus,G,p, G,1, Qxp, Q.1 are the dimensionless coeffi- the pressurd®, and temperatur@, we have to indicate the
cients of proportionality between the flow rate/the heat fluxtype of gas, because the relati¢h37) contains two specific
characteristics of gas: the molecular massnd the viscos-

af the superscripts ch and tb are omitted the corresponding expression Y 4. But representing the dimensionless _ﬂOW raidgsp,
valid for both channel and tube. G, 1, Q.p, Q.7 as afunction of the rarefaction parameder
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it is not necessary to specify the gas. These coefficients have For the diffuse-specular scatterirtg.23 the expressions
been introduced so as their relations with the paramgter  of .7Zj; and.”j,, can be found in the literatufg.%1:166
not contain any specific characteristic of gas.

3.3. Application of the Integro-Moment Method 8:3.2. Tube Flow

g From the BGK model we have two analogous integral

In general form the integro-moments method is describe X
quations for the tube flow

in Sec. 2.12.3. Since this method is most applicable to th&
one-dimensional rarefied gas flows, below the integral equa-  _

tions for this case will be written down. Uym(T1) = s TN L ) Ug(r ) +.70(r 1),
1
3.3.1. Channel Flow m=P,T, (3.43
From the BGK model we have two independent equationgyhere 7 o= (y z) is the two-dimensional reduced position
for the channel flow vector and® | is the tube cross section. The heat flow vector

- 2o L is calculated as
uxm(y)=f_llz%n(y,y’)uxm(y’)dy’+V”1m(y),
qu(u)=L TF 1 ¥ ) Ux(FL)AN +.55m(r ),
€L

m=P,T. (3.38
The heat flow vector is calculated via the bulk velocity m=P,T. (3.44
- - 1/2 o _ From the S model we have two independent systems of
Aml(Y)=| /2~%'21(y,y')uxm(y')dy' + 7 om(Y), simultaneous equations
m=P,T. (3.39 (uxmm) f T ) T ,?p)
QT L) S\ Fon(r ) Hofr, )

From the S model we have two independent systems of si-

multaneous equations: ~ o~ e
g (uxm(ri)>d~/ ('/lm(rl)), m=P,T.

(Exm(§)> - fllz Zu(yy") %’12(9.?’)) (T L1
Oxrn(Y)) -2\ Zoan(y.y') HoAYY') (3.45
TV ~ Z1n(Y) The derivation of such types of equations can be found in
x| "2 )d ’+(’( 2 ) m=P,T.  the literaturg?>*>154151
qu(y ) /2m(y)

In the case of the diffuse scatterif@22 the kernels’;;
(3.40 and the free terms”,, take the following form:
The derivation of such types of equations can be found in i 1) )
the literature??28:47,155,166 '%11:—77|'F ey lo, 'r%zlzm(b_'o),
In the case of the diffuse2.22) scattering the kernels;; Lot Lot

and the free terms”;,, have the following form: P P P% 26 (| 2| 5| )
= Ty Hooy= — =21+ 51,
1= 75 22 154(7, 7] 4 27 o0

o ) 1

Tyy=—=I\_q, K :—(| —=l_ ), 3.4

11 I 1 21 P 175l 1 (3.46
/1P__25j 7/11er, /2P—_25f %/ZIer'
2 _ 26 9
.%1221—5.%21! %22=—15\/;(|3_|1+ ZI_]_), 3 7 7 15 ‘ -,
1= 2P, ‘%ZT:_E fz T

1

(3.41
1 (2 - 1 (2 - _ i )
Fp=— == f Hady',  Spm— o= T oydy’, Here, the argumentt of the special functionsl, is
20 26 (3lr,—ril).
The expressions ofZ;; and.”,, for the diffuse-specular
15 (12 ~ ) 125,154
Fir=Topr S = — oy Koy scattering(2.23 can be found in the literatuf@:?>1%
-1/2
Here, |, are the special transcendental functions defined as _ ,
3.3.3. Special Functions 1/,
* t
In=1n(t)= fo c’ ex;{ —c?- 6) de. (3.42 Here, some useful properties of the special functibns
o defined by(3.42 will be given[see Abramovitz (p.1003].
In (3.4 the argument is (8ly—Yy’]). The functions of the different order are related as
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4 _ 3.4 s [ vy dy
a n—1(t), (3.47 12775 s 211y “ay " ay,
21, =(n=1)1,_o(t) +tl,_5(1). 3.4 12 ~
-n( )=(n—1) n-2( )+ thn_3(t) (3.48 fym — ',
The power series representation has the form
- / 1 V2L
=k§=jo(ak In t+by)tk, (3.49 =g~ J_uz"%”y y “dy’dy,
1/2 - _
S = |,
Kk(k—1)(k—2)" —12
—2b,_,—(3K2—6k+2) , V2 o
b= k—2—( ak, =2 .,;%33=1—f_llz.ﬁfzzdy’dy,
k(k—1)(k—2)
1/2 ~ 1/2 .
ap=a;=0, a,=—by, bo=1, b;=—\m, Lrim= S 1may, ./}’2m=J S amy 2dy,
~1/2 -1/2
b,=0.6341754927. o
The asymptotic representationlgft) att— o« is as follows: P3m= f_mf’zm dy,
t)23
(t)~\[3 n/2,02 exp( — v)z 023(5) , for tube
1
(3.50 A :1——f Jydr dr
11 T s, 14 M

1
aO::L, a1:1—2(3n2+3n_1), 1 1 S~
%1225_; EL(%llrl dridl’l,

12(k+2)ay, = — (12k2+36k—3n%>—3n+ 25 a,. ;

1 o
1 A =——J T Ldr i dr
+ 5(n=2K)(2k+3—n)(2k+3+2n)a,. T

1 1 ~ o
/ —_ [©74 1272 !
3.3.4. Trial Functions for the Variational Solution 22 3 fEL}(HH ridridr,,
The above given integral equations can be solved by the
direct numerical method or by the variational method de-
scribed in Sec. 2.12.4. To apply the variational method the
following trial functions are usually used:

1 — o~ o~
Agg=—— | T 2drdr,
23 ,n_J;l 7120 M Y

1 o~
u%ggz 1- ; J %szl’idrl y
~ ~ ~ ~ )
Uxm= C1m‘|'(:2my21 Uym=Cim™ CZmrJz_ , m=PT .
(3.5

for channel and tube, respectively. The trial function for the
heat flow vector is a constant

~ Pam=— f S

Oxm=C3m, mM=P,T. (3.52 S 3 20

Then, according to the method described in Sec. 2.12.4, one The coefficients 7;; and.%;, can be calculated numeri-
obtains from(3.40 or (3.45 (S mode] the following alge- cally for any value of the rarefaction paramet&r Then,

B 1f sdr,, 7 1f r 2dr
PBim=— sAdr . Bom=— Sqrodry,
im T s, 1YL 2m = s, 1t Y

braic equation systems for the constapt,, Com andcsy,: resolving the system§3.53 one knows the bulk velocity
(3.51) and the heat flow vecta3.52 and consequently all
Z 2iCim=Fm,  M=P,T, (3.53 coefficients defined by3.27)—(3.30.
where. 7;; is a symmetric matrix. The elements of this ma- 3.4. Transition Regime
trix and the free termsz,,, have the form 3.4.1. Plane Poiseuille Flow
for channel
Diffuse scatteringAmong all types of flows considered in
1/2 ch

Apy=1— Ty, dy’ dy this article the plane Poiseuille flo®,; under the supposi-
~1/2 ’ tion of the diffuse scatterin@?.22) is the most deeply inves-
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TasLe 1. Reduced flow rat&ST, vs & diffuse scattering, different methods

G2
) a b c d e f g h
0.01 3.0499 3.0489 2.2114 3.0519
0.1 2.0328 2.0314 1.9829 1.8818 2.0861 2.0327 2.0397 1.9318
0.2 1.8083 1.8079 1.8167 1.6994 1.8465  --- 1.7407
0.5 1.6017 1.6017 1.6050 1.5491 1.6166 1.6018 1.6147 1.5607
1.0 1.5379 1.5389 1.5381 1.5116 1.5343 1.5386 1.5541 1.5086
2.0 1.5912 1.5942 1.5950 1.5491 1.5709 15948 - 1.5681
4.0 1.8450 1.8440 1.8459 1.7958 1.8075 1.8459 - aE
5.0 1.9895 1.9883 1.9908 1.9634 1.9485 1.9907 2.0080 1.9637
7.0 2.2904 2.2914 2.2945 2.2782 2.2482 22949 - aE
10.0 2.7558 2.7638 2.7681 2.7536 2.7790 2.7686 2.7863 2.7350

&Cercignani and DanefRef. 28, Eq. (3.38 (BGK), direct numerical method.

bCercignani and PagafiRef. 34, Eq. (3.39 (BGK), variational method.

‘Huanget al. (Ref. 66, Eq. (3.13 with (3.16 (BGK), discrete velocity method.

dLoyalka and LangRef. 99, BE for Maxwell’s molecules, variational method.

®Loyalka and LangRef. 99, Model eq. with variable collision frequency, variational method.
fLoyalkaet al. (Ref. 102, Eq. (3.13 with (3.16 (BGK), method of elementary solutions.
9Chernyaket al. (Ref. 42, Eq. (3.40 (S mode), direct numerical method.

PHickey and LoyalkaRef. 63, Eq. (3.13 with (2.54) (BE), discrete velocity method.

tigated theoretically. The list of papers describing this kindcignani and Pagaffi (third column solved the same integral
of rarefied gas flow is very long. Some estimations of theequation by the variational method, which gives a good
flow rateG<", can be found in the literatur@:1°81%6178These  agreement with the exact numerical solutinHuang
works provide only a qualitative behavior of the coefficient et al% solved Eq.(3.13 with (3.16 (BGK) by the discrete
Gihp. Some results obtained on the basis of the BE by therelocity method. The results are presented in the fourth col-
moment method are presented in the literafiir@119120153  ymn of Table 1. One can see that there is good agreement
An analysis of the plane Poiseuille flow based on the methogvith the previous results in the transition and hydrodynamic
of elementary solutions is given in the literatdfe® regimes. The disagreement at smaélis explained by the

Numerical results obtained from the BGK model numerical grid used by Huangt al®® which was not suffi-
by wvarious methods can be found in the litera-ciently dense.
ture17:20:28:34,47,66,68,79,87,91,99,102, 147148\ ymerical  results Loyalka and Lan@’ solved the BE for Maxwellian mol-
based on the S model are presented by Chermtad*?>  ecules(fifth column) and the model equation with the vari-
Results based on numerical calculation of the BE are available collision frequency appropriate to the rigid spheres
able in the literatur&3°7:116 (sixth column by the variational method. It can be seen that

Thus, due to the simplicity of this type of flow the coeffi- the BE for Maxwellian molecules gives rather understated
cient GSh, was obtained using various kinetic equations and
applying almost all methods elaborated in the RGD. Below,
an analysis of the above mentioned numerical results is
given.

Cercignani and Danéfi solved the integral equation
(3.38 (BGK) by the direct numerical method. Their results <
are presented in the second column of Table 1. Then, Cel

TABLE 2. Reduced flow ratGihp vs § by Ohwadaet al. (Ref. 116: diffuse
scattering, BE

g Gob g Gob
0.0393 2.2958 0.785 1.5148
0.0524 2.1816 0.982 1.5066
0.0785 2.0318 1.31 1.5124
0.0982 1.9556 1.96 1.5602 1.0 01 1 10
0.131 1.8642 2.62 1.6304 ' 5
0.196 1.7498 3.93 1.7998
0.262 1.6796 5.24 1.9876
0.393 1.5982 7.85 2.386 Fic. 5. Reduced flow rateihp vs ¢ at diffuse scattering: solid line—BGK
0524 1.5542 by Cercignani and PagaiiRef. 34, crosses—BE by Ohwadet al. (Ref.

116), circles—BE by Hickey and LoyalkéRef. 63.
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TasLe 3. Reduced flow rat&g; vs 6, complete data by Cercignani &  Ohwadaet al'*® also solved the BE. But they introduced
Pagani(Ref. 34 diffuse scattering, BGK the rarefaction parameter as-2a/(\/w\, ). This definition

s G, s G, of §follows from the BGK model with the frequend§.48).
Therefore, the values afgiven by Ohwadat al1'® must be

8'8; g'g‘l‘g? 12 i'gggg recalculated. Their results are presented separately in Table 2
0.03 25934 17 15674 with the paramete# recalculated in our notations. A com-
0.04 2.3964 1.8 1.5757 parison of these results with those obtained by Hickey and
0.05 2.3016 1.9 1.5847 Loyalke®® is performed in Fig. 5. One can see that the two
0.06 2.2217 2.0 1.5042 numerical solutions of the BE obtained independently are in
0.07 2.1655 25 1.6480 '

0.08 21140 3.0 17002 a good agreement between themselves. The numerical data
0.09 20698 35 17751 by Cercignani and Pagaflibased on the BGK model are
0.1 2.0314 4.0 1.8440 also shown in Fig. 5.

0.2 1.8079 4.5 1.9153 The numerical results based on the BGK model, i.e., Refs.
0.3 1.7092 5.0 1.9883 17, 20, 47, 79, 87, 91, 97, 147, 148, are in a good agreement
04 1.6408 >3 20627 ith the data described above. Th Its of the 54

05 16017 6.0 51381 wi e data described above. The results of the papee

0.6 15761 6.5 22144 erroneous as is pointed out by Loyafka.

0.7 1.5591 7.0 2.2914 Thus, from this analysis we may conclude that the most
0.8 1.5482 7.5 2.3690 simple way to calculate the coefficie@C'}, is to apply the

2'8 1'2‘31{158 g'g igg;g variational method based on the trial functidi3s51) to the

11 15379 90 26048 BGK equatipn. This method gives reliable results with qu-
1.2 1.5394 95 2.6041 est calculation efforts. The complete data on the coefficient
13 15427 10.0 2.7638 G2, obtained by Cercignani and Pag#nising this method

14 1.5473 10.5 2.8438 are presented in Table 3.

Diffuse-specular scattering:The first results for the
diffuse-specular scatterin@.23 were obtained by Chernyak
results, while the variable collision frequency model giveset al.*” based on Eq(3.38 (BGK) solved by the variational
fairly good results. method. Then, Loyalkd solved the same equation by the
Loyalkaet al2%2 solved the BGK model by the method of direct numerical method. In the paper by Loyakaal'*
elementary solutions, which gives good agreement with théhe numerical solution of the BGK equation by the method
integro-moment method in the whole range of the rarefactio®f elementary solutions is given. To perform a comparison
parameters. The results are given in the seventh column ofbetween these results all of them are presented in Table 4.
Table 1. One can see that the variational results by Cherretadl*’
Chernyaket al*? solved the integral equatiof8.40 (S  differ from the exact results by LoyalRa%% At the same
mode) by both variational and direct numerical methods.time, the results of the works'%?obtained by the two quite
They also obtained a perfect agreement between the twdifferent methods are in good agreement between them. So,
methods. In the eighth column of Table 1 their results basewve conclude that the results by Loyaikare reliable. His
on the direct numerical method are presented. One can seemplete data are given in Table 5.
that there is a fine agreement between the solutions based onLoyalka and Hickey’ solved the BE by the discrete ve-
the BGK equation and that based on the S model. locity method. Their results are given in Table 5. Unfortu-
Hickey and Loyalk& (ninth column solved numerically nately, it is impossible to compare the solution based on the
the BE for rigid spheres. One can see that the disagreemeBGK modef* with the BE solutior?’ because they were ob-
between the model equatiolBGK and S modeland the tained for different values of the gas—surface interaction pa-
exact BE is within 2%. rametera.

TaBLE 4. Reduced flow rat&S, vs § and : different methods

G
«=0.88 «=0.80
S a b c a b c
0.05 2.6456 2.7383 2.7383 2.9206 3.0897 3.0897
0.1 2.3261 2.4060 2.4060 2.5605 2.7077 2.7077
1.0 1.7348 1.7921 1.7920 1.8914 2.0019 2.0018
10.0 2.9529 3.0241 3.0177 3.0836 3.2305 3.2241

&Chernyaket al. (Ref. 47, Eq. (3.38 (BGK), variational method.
bLoyalka (Ref. 97), Eq. (3.38 (BGK), direct numerical method.
‘Loyalkaet al. (Ref. 103, Eq. (3.13 with (3.16 (BGK), method of elementary solutions.

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998



INTERNAL RAREFIED GAS FLOWS 681

TasLE 5. Reduced flow rat&S vs 8 and @, complete data

ch
G*P

Loyalka (Ref. 99?2

Loyalka and Hickey(Ref. 97°

o a=0.96 a=0.92 a=0.88 a=0.84 a=0.80 a=0.75 a=0.50

0.001 4.5646 4.8773 5.2149 5.5808 5.9788
0.01 3.2417 3.2417 3.6697 3.9095 4.1695
0.02 2.8770 3.0548 3.2463 3.4530 3.6771
0.03 2.6755 3.0381 3.0131 3.2021 3.4070
0.04 2.5390 2.6915 2.8556 3.0328 3.2249
0.05 2.4373 2.5823 2.7383 2.9069 3.0897
0.07 2.2916 2.4259 2.5706 2.7270 2.8967

0.09 2.1893 2.3163 2.4532 2.6011 2.7618

2.7860 4.3628

0.1 2.1482 2.2723 2.4060 2.5507 2.7077
0.3 1.7945 1.8937 2.0011 2.1176 2.2448 e e
0.5 1.6863 1.7776 1.8766 1.9844 2.1023 2.2128 3.4748
0.7 1.6398 1.7272 1.8220 1.9254 2.0388 e e
0.8 1.6202 1.7052 1.7976 1.8986 2.0092 e B
1.0 1.6163 1.7005 1.7921 1.8921 2.0019 2.1204 3.3270
1.1 e e e .o .o 21171 33192
1.25 16174 1.7001 1.7902 1.8887 1.9969 e e
15 1.6289 1.7107 1.7999 1.8974 2.0046 2.1254 3.3171
2.0 1.6694 1.7503 1.8386 1.9352 2.0414 2.1625 3.3491
25 1.7233 1.8039 1.8918 1.9881 2.0939 e e
3.0 1.7847 1.8653 1.9531 2.0493 2.1551 2.2748 3.4618
35 1.8510 1.9316 2.0196 2.1158 2.2217
4.0 1.9205 2.0013 2.0894 2.1858 2.2918 B e
5.0 2.0661 2.1472 2.2356 2.3324 2.4388 2.5555 3.7496
6.0 2.2173 2.2988 2.3876 2.4848 2.5916 B e
7.0 2.3722 2.4541 2.5433 2.6408 2.7480 2.8625 4.0633
9.0 2.6807 2.7722 2.8620 2.9601 3.0679 e e

10.0 2.8512 2.9340 3.0241 3.1225 3.2305 3.3407 4.5490

gEquation(3.38, (BGK), direct numerical method.

PEquation(3.13 with (2.54 (BE), discrete velocity method.

3.4.2. Cylindrical Poiseuille Flow

Diffuse scattering:Some analytical results on the coeffi-
cient G®, for the diffuse scattering2.22 can be found in

TaBLE 6. Reduced flow rat&®; vs & diffuse scattering, different methods

th
G*P

S a b c d e

0.01 1.4768 1.4801 1.4763 1.4800 1.4681

0.1 1.4043 1.4039 1.4039 1.4101 1.3984
1.0 1.4594 1.4576 1.4582 1.4758 1.4499
10.0 3.5821 3.5573 3.5633 3.5749 3.5608

&Cercignani and Sernagioti®ef. 39, Eq. (3.43 (BGK), direct numerical
method.

bCercignani and PagafiRef. 33, Eq. (3.43 (BGK), variational method.
‘Lo and Loyalka(Ref. 79, Eqg.(3.43 (BGK), optimized numerical method.
9Sharipov (Ref. 141, Eq. (3.13 with (3.17) (S mode), discrete velocity
method.

®Loyalka and HamoodiRef. 99, (3.13 with (2.54 (BE), discrete velocity
method.

Refs. 56, 151, 157, 176, which are restricted by the small
range of the rarefaction parameter. These results will not be
considered here. Let us analyze the results obtained for the
entire range of.

To calculateG™; Cercignani and Sernagioffosolved the
integral equatiori3.43 (BGK) by direct numerical methods.
Their results are presented in the second column of Table 6.
Then, Cercignani and Pagahithird column resolved the
same integral equation by the variational method, which
gives good agreement with the exact solution. Lo and
Loyalka’® (fourth column also solved this integral equation
by the optimized numerical method with great precision.
These results can be considered as a most exact numerical
solution of the BGK model. Sharipdt* (fifth column)
solved the S model, i.e., E43.13 with (3.17), by the dis-
crete velocity method. Loyalka and Hamo®disixth col-
umn) numerically solved the BE for a rigid sphere gas.

From Table 6 one can see that there is good agreement
between the results based on the BGK model and those ob-
tained from the S model. The disagreement between the
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TaBLE 7. Reduced flow ratG;bP vs &, complete data: diffuse scattering

oty o

) a b c ) a b c
0.0 1.5045 1.5045 S 1.5 E B 1.5512
0.0001 1.5026 e .o 1.6 1.5753 1.5956
0.001 E 1.4845 1.8 1.6171 1.6373
0.002 1.4962 e e 2.0 1.6608 1.6799 1.6573
0.004 1.4902 e ve 3.0 1.8850 1.9014 1.8795
0.006 1.4852 4.0 2.1188 2.1315
0.008 1.4808 e oo 5.0 2.3578 2.3666 2.3472
0.01 1.4768 1.4800 1.4704 6.0 2.5999 2.6049 S
0.02 1.4608 1.4636 . 7.0 2.8440 2.8455 2.8282
0.04 1.4391 1.4418 8.0 3.0894 3.0878
0.08 1.4131 1.4168 9.0 3.3355 3.3314
0.1 1.4043 1.4101 1.4039 10.0 3.5821 3.5749 3.5623
0.2 1.3820 1.3911 1.3812 20.0 6.0411 6.0492
0.3 1.3767 1.3876 1.3756 30.0 8.5333 8.5392
0.4 1.3796 1.3920 1.3782 40.0 11.0295 11.036
0.5 1.3857 50.0 13.5269 13.459
0.6 1.3982 1.4130 1.3963 60.0 16.0254 S
0.8 1.4261 1.4425 1.4238 70.0 18.5244
1.0 1.4594 1.4758 1.4567 80.0 21.0234
1.2 1.4959 1.5158 90.0 23.5219
1.4 1.5348 1.5550 100.0 26.0214

&Cercignani and Sernagiott®ef. 39 and Lo and LoyalkdRef. 79, BGK.
bSharipov(Ref. 141, S model.
‘Loyalka and HamoodiRef. 95, BE.

model equation solutions and that obtained from the BE iperformed in Table 8. The results by Porodrenal1?° are
within 2%, which can be considered reasonable. not presented because they are very close to the results of the
The numerical data on the coefficieG’, can be also paper‘?*
found in Refs. 46, 81, 84, 91, 104, 123, 125, 160. All these From Table 8 one can see théb: the results by Loyalkd
results are in good agreement with the exact solution by L@are erroneous, since they do not coincide with all the rest of
and Loyalka’® the data, even with the data obtained later by himself with
The complete data on the Coefficie@ﬁfp based on the collaboratorg! (i) there is good agreement between the dif-
BGK equation, S model and BE are presented in Table 7. ferent methods of solution and between the different model
Diffuse-specular scatteringdumerical data on the coeffi- equations. Até=10 the disagreement between the varia-
cientG'; based on the BGK model with the diffuse-speculartional and exact methods is about 2%. But for lagthe
scattering(2.23 are available in Refs. 81, 91, 138irect variational method gives a sufficiently high precision. More-
numerical solution of Eq(3.43] and in Refs. 124, 125 over, the solution of the S modét obtained with great pre-
[variational solution of Eq(3.43]. The numerical solution cision gave good agreement with the variational solution.
obtained from the S model by the discrete velocity method isThus, we may conclude that the variational solution of the
given by Sharipo#*! A comparison between these results isBGK model by Porodnoet al1?41?°and the discrete veloc-

TasLE 8. Reduced flow rat&'; vs § and a: different methods

G
«=0.8 a=0.6
S a b c d e b c d e
0.01 2.1662 2.187 2.187 2.1827 2.1853 3.374 3.374 3.3381 3.3374
0.1 1.9211 1.993 1.992 1.9988 2.0043 2.944 2.950 2.9542 2.9597
1.0 1.6531 1.930 1.937 1.9363 1.9514 2.706 2.689 2.7215 2.7277
10.0 3.5823 4.025 4.092 4.1021 4.0343 4,785 4.878 4,9487 4.7703

3 oyalka (Ref. 91), Eq. (3.43 (BGK), direct numerical method.

bPorodnov and TukhvetofRef. 124, Eq. (3.43 (BGK), variational method.
‘Porodnov and Tukhveto(Ref. 123, Eq. (3.43 (BGK), direct numerical method.
Lo et al. (Ref. 81), Eq. (3.43 (BGK), direct numerical method.

eSharipov(Ref. 141, Eq. (3.13 with (3.17) (S mode), discrete velocity method.
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TaBLE 9. Reduced flow rateibp vs § and a by Porodnowet al. (Refs. 124 and 125BGK

Gl
B @=0.98 @=0.94 @=0.90 @=0.84 @=0.80 a=0.6

0.01 1.534 1.657 1.791 2.026 2.187 3.374
0.02 1516 1.635 1.764 1.983 2.144 3.255
0.04 1.492 1.605 1.728 1.933 2.085 3.137
0.06 1.475 1.585 1.703 1.899 2.045 3.044
0.08 1.462 1.569 1.685 1.873 2.014 e
0.1 1.452 1.556 1.668 1.853 1.992 2.944
0.2 1.426 1.523 1.627 1.806 1.931 e
0.4 1.420 1.510 1.615 1.768 1.888 2.720
0.6 1.437 1.523 1.621 1772 1.888 2.601
0.8 1.464 1.547 1.638 1.791 1.904
1.0 1.496 1578 1.668 1.818 1.930 2.706
2.0 1.693 1.773 1.861 2.007 2.116 2.879
3.0 1914 1.994 2.081 2.227 2.336 3.096
4.0 2.145 2.225 2.312 2.458 2.567 3.327
5.0 2.381 2.461 2.548 2.694 2.803 3.565
6.0 2.620 2.700 2.787 2.934 3.003 e
7.0 2.862 2.942 3.029 3.167 3.285 e
8.0 3.105 3.185 3.272 3.420 3.529 4.293
9.0 3.349 3.430 3517 3.664 3.778 e

10.0 3.595 3.675 3.761 3.910 4.019 4.785

ity solution of the S model by Sharipti are most reliable.
In Table 9 the complete data on the coeffici&f, based

on the variational solution of the BGK modé&t

125

are pre-

method. Then, he solved the same equation by the direct
numerical metho&® In the work® the data obtained from
the BGK model by the method of elementary solutions are

sented. The complete data on this coefficient based on thsresented. In Table 11 a comparison between these three
S-modet*! are given in Table 10.

3.4.3. Plane Thermal Creep Flow

Diffuse scattering:To calculate the thermal cree@C
Loyalka” solved the integral equatiof8.43 (BGK), which
implies the diffuse scatterind2.22, by the variational

TasLe 10. Reduced flow rat&®, vs 6 and « by Sharipov(Ref. 141:

S model
ot =
) a=0.8 a=0.6 ) a=0.8 a=0.6

0.0005 2.2484 3.4875 0.9 1.9373 2.7183
0.001 2.2437 3.4751 1.0 1.9514 2.7277
0.005 2.2131 3.4001 1.2 1.9859 2.7559
0.01 2.1853 3.3374 1.4 2.0214 2.7861
0.02 2.1442 3.2488 1.6 2.0593 2.8201
0.03 2.1141 3.1853 1.8 2.0991 2.8568
0.04 2.0901 3.1355 2.0 2.1402 2.8956
0.05 2.0703 3.0945 3.0 2.3585 3.1074
0.06 2.0534 3.0599 4.0 2.5881 3.3342
0.07 2.0388 3.0299 5.0 2.8233 3.5677
0.08 2.0259 3.0037 6.0 3.0620 3.8050
0.09 2.0145 2.9805 7.0 3.3030 4.0446
0.1 2.0043 2.9597 8.0 3.5455 4.2858
0.2 1.9444 2.8346 9.0 3.7893 4.5281
0.3 1.9169 2.7710 10.0 4.0343 4.7703
0.4 1.9056 2.7367 20.0 6.5086 7.2387
0.5 1.9033 2.7184 30.0 8.9965 9.7105
0.6 1.9069 2.7101 40.0 11.491 12.185
0.7 1.9144 2.7085 50.0 13.972 14.656
0.8 1.9248 2.7117

solutions is performed. One can see that there is good agree-
ment between them.

Chernyaket al*? solved the integral equatiof8.40 (S
mode) by the direct numerical methdfifth column) and by
the variational ondsixth column. These results also coin-
cide perfectly each with other.

The seventh column contains the results by Loyalka and
Hickey®’ based on the BE solved by the discrete velocity
method. The results by Ohwae&al'*® based on the BE are
presented separately in Table 12, wherés recalculated
according to our definition.

A comparison between the results obtained from the dif-
ferent equations is performed also in Fig. 6. From this figure
we may conclude thati) the numerical solutions of the BE
equation obtained by Loyalka and HicRéycircles and by
Ohwadaet al1*® (crossesfor the different values o8 are in
a good agreementii) the solution of the S modésquarg is
closer to the BE solution than the BGK solutisolid line).

From Table 11 and Fig. 6 one can see that unlike the
coefficientGS,, for the thermal creeS"; there is no agree-
ment between the results obtained from the different model
equations. The S model gives the disagreentabhbut 8%
with the BE solution, which can be regarded as reasonable.
The disagreement of the BGK model solution with the BE
solution reaches 30%. This large disagreement is a conse-
quence of the fact that the BGK model does not give the
correct value of the Prandtl number. The dimensionless col-
lision frequencyrggy related with the rarefaction parameter
6 by (3.20 provides the correct values of the Poiseuille flow

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998



684 F. SHARIPOV AND V. SELEZNEV

TaBLE 11. Reduced flow rat&S"; vs & diffuse scattering, different methods

o
) a b c d e f
0.001 1.8394 1.8289 S E
0.01 1.2334 1.2348 e 1.2470 1.2469 e
0.1 0.6948 0.6944 0.6949 0.7328 0.7283 0.7966
1.0 0.2950 0.2948 0.2948 0.3656 0.3653 0.3890
10.0 0.0663 0.06553 0.0660 0.09834 0.09707 0.0898

8 oyalka (Ref. 89, Eq. (3.43 (BGK), direct numerical method.

bLoyalka (Ref. 89, Eq. (3.43 (BGK), variational method.

‘Loyalkaet al. (Ref. 103, Eq. (3.13 with (3.16 (BGK), method of elementary solutions.
dChernyaket al. (Ref. 42, (3.40 (S mode), direct numerical method.

€Chernyaket al. (Ref. 42, (3.40 (S mode), variational method.

fLoyalka and Hickey(Ref. 97, (3.13 with (2.54 (BE) direct numerical method.

G, p. But it cannot provide the correct value of the thermalthe dimensionless collision frequeneycy . The rarefaction

creep. parameter recalculated §8.54) is also given. The complete
The numerical data based on the BGK model can be cordata based on the BEare given in Table 14.
rected using the expression of the frequencin the form Diffuse-specular scatteringThe numerical data on the

(2.47. Then, the relation between the dimensionless colliplane thermal creeS for the diffuse-specular scattering
sion frequencyvggk defined by(3.16 with the rarefaction (2.23 are available in the literatuf&:91:97:102103rhe results

parameters will be as follows obtained by Loyalket al®’ on the basis of the BE are pre-
~ sented in Table 14. The results obtained by Loy#ikased
VBGK= 50 (3.59 on the BGK model with the dimensionless collision fre-

instead 0f(3.20. So, to use the collision frequeneyin the  quency defined by3.54), are given in Table 15. The data of
form (2.47 we have to recalculate the rarefaction parametethe paper®10219 coincide with those obtained by
5. Loyalka®
The dashed line in Fig. 6 corresponds to the dependence of
G on the recalculated. Orle can see that the BGK model 3.4.4. Cylindrical Thermal Creep Flow
with the collision frequencwgck related with § by (3.54)
gives good agreement with the BE solution for the coeffi- Diffuse scatteringNumerical data on the cylindrical ther-
cientGS".. But one must bear in mind that the BGK model mal creepGY; based on the BGK model assuming diffuse
with (3.54 gives an incorrect value of the coefficie®t pin  Scattering2.22 were obtained by Loyalk&,who solved the
the transition and hydrodynamic regimes. integral equatior(3.43 by the direct numerical method. His
The numerical data on the coefficieBt, ; are available results are presented in the second column of Table 16.
also in the literaturé”-8%°11934| these results are in good Chernyaket al*® (third column solved the same equation by
agreement with the data given above. The results of théhe variational method. Valougeorgis and Thotfidgfourth
work®® are erroneous as is pointed out by LoyaiRainfor-
tunately, the data based on the S model, which would be very
useful here, are presented very poorly by Cherngail 2
The complete data based on the BGK m8date given in
Table 13. The coefficien®" is presented as a function of

TABLE 12. Reduced flow ratGi“T vs 8§ by Ohwadaet al. (Ref. 116: diffuse
scattering, BE

s Gor s G
0.0393 0.9968 0.785 0.4240
0.0524 0.9338 0.982 0.3916
0.0785 0.8484 1.31 0.3460 o
0.0982 0.8030 1.96 0.2838 0.1 1 10 ¢
0.131 0.7460 2.62 0.2418
0.196 0.6690 3.93 0.1870
0.262 0.6164 5.24 0.1522 Fic. 6. Reduced flow rathi“T vs ¢ at diffuse scattering: solid line—BGK
0.393 0.5448 7.85 0.1106 by Loyalka (Ref. 89, dashed line—BGK with recalculatef] squares—S
0524 0.4954 model by Chernyalet al. (Ref. 42, circles—BE by Loyalka and Hickey

(Ref. 99, crosses—BE by Ohwadat al. (Ref. 116.
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TasLe 13. Reduced flow rat& vs 6 by Loyalka(Ref. 89: diffuse scat- Diffuse-specular scatteringfhe results of the cylindrical
tering, BGK thermal creep flow for the diffuse-specular scattef2@3
based on the integral equati¢®43 (BGK) are available in

~ P (Tl 5 B Gs

7oK - 8ok - the literatur8-°%1%3 (direct numerical solutionand in the
0.001  0.00067  1.8394 15 1.0 0.2413  work!?® (variational methol The data based on the S model
8-825 8-88263;’ i-g;gi ;‘5) igg? g-igi’i were obtained by Sharipd¥! Since the S model gives more
0.02 0.0133 1.0606 30 20 0.1620 reliable results, the results baseq on the BGK model are not
0.04 0.0267 0.8958 35 233 01464 Ppresented here. We only note th@j: There is a good agree-
0.05 0.0333 0.8450 4.0 2.67 0.1340 ment between the results of the Refs. 81, 125, 1RBthe
0.06 0.04 0.8043 5.0 3.33 0.1145  results of the work in Ref. 91 are erroneous.

8'(1’8 8-86532? g'gg’ig 3-8 :'-87 g-éggg The complete data by Sharipdvon the cylindrical ther-
02 0133 05578 8.0 533 0.0798 mal creepG*T_ obtam_ed from the S mod_el for_ the different
04 0.267 0.4351 9.0 6.0 00725 0as—surface interaction parameterare given in Table 17.
0.5 0.333 0.3986 10.0 6.67 0.0663

0.6 0.4 0.3699 20.0 13.3 0.0361 )

08 0533 03268 300 20.0 0.0249 3.4.5. Mechanocaloric Heat Flux

1.0 0.667 0.2950 40.0 26.7 0.0191

Due to the Onsager relatiai8.36 the reduced mechano-
caloric heat fluxQ, p is equal to the thermal credp, t. So,
there is no point in considering the coeffici€pt p here. We
column solved the BGK equation by the method of elemen-gnly note that. there is a d|ffer§nce In the profileg gnd
tary solutions. One can see that there is good agreement b- Infarzrg(?éllogr; 1003n10m§3 profiles can be found in the
tween all these results. Note that the data of the pApyds0  literatures====n=n s
are presented in Table 16 implying the relati@?20.

Sharipo¥*! solved Eq.(3.13 with (3.17) (S mode) by the 3.4.6. Plane Heat Flux
discrete velocity method. His results are presented in the fifth _. .
column of Table 16. There is no agreement between the D|ffuseCscatterlng:_Results on _the heat flux through a
BGK model solution and that based on the S model. ThisChannele*T for the diffuse scatterin?.22 are available n
disagreement was discussed in Sec. 3.4.3, where it WaE e following papers: Loyal_l?é solved the integral equa;uzon
pointed out that the S model supplies more reliable results: -39 (BGK_) by the var|z_';1t|onal method; Chernyast ‘?'-
Therefore, the complete data based on the BGK model ar%oxeec:iégf;?]f%;arli;iqouna;;oféﬁ?of IT)OSEL Tﬁgg&i‘ag;\iﬁ
not presented here. The complete data based on the %1, (3.39 (BGK) by the direct numerical method: and Loy-

modet*! are presented in Table 17. e : :
The results based on the BGK model and being in goodalka and Hickey’ solved the BE by the discrete velocity

agreement with the data by Loyafacan be found also in method. A comparison between thgse re'sults is performed in
the literaturedl-91:104,125,123 Table 18. One can see that there is a disagreement between

variational(second columhand direct numericalthird col-
umn) solutions of the BGK model. Most probably in the
papef’ the coefficientQ®". was calculated incorrectly. The
TasLE 14. Reduced flow rat&; vs 5 anda by Loyalka and HickeyRef.  exact(forth column and variationalfifth column) solutions
97): BE of the S model are in good agreement.
A comparison of the different solutions is also performed

G
- in Fig. 7. One can see that the solution of the S model

s a=1 a=0.75 =05 (squaresis closer to the BE solutiofcrossesthan the BGK

0.1 0.7966 1.0864 1.5632 model solution(solid ling). As well as for the thermal creep
0.25 0.6243 0.8118 1.0999 G, 1, this disagreement is a consequence of the BGK model
8-35 g-igig g-gigg g-éggi having the incorrect Prandtl number. The BGK model gives

. : . : ch -

0.9 0.4060 0.4752 0.5646 Dwore.reasonable.values o5, |f the collision frequency

1.0 0.3890 0.4505 0.5285 veek IS related with the rarefaction parame#@iby (3.54).

11 0.3737 0.4285 0.4970 The recalculated data are presented by the dashed line in Fig.
1.2 0.3598 0.4089 0.4694 7.

i'i 8'2322 g'ggég 8'3‘2“212 Since the BGK equation gives unreliable results on the
is 0.3248 0.3606 0.4030 coefficientQ{y and the results based on the S métiare

2.0 0.2810 0.3027 0.3274 presented very poorly, we restrict ourselves by the presenta-
3.0 0.2226 0.2307 0.2393 tion of the complete data based on the®BBnly. The data

7.0 0.1212 0.1190 0.1165 ; -
100 0.0398 0.0871 0.0842 Diffuse-specular scatteringThe thermal flux for the

diffuse-specular scatterin¢?.23 is calculated by Lo and

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998



686 F. SHARIPOV AND V. SELEZNEV

TasLE 15. Reduced flow ratéihT vs § and a by Loyalka(Ref. 93): BGK

o

VoK B a=0.96 a=0.92 a=0.88 a=0.84 a=0.80
0.001 0.0007 1.9752 2.1058 2.2465 2.3987 2.5638
0.01 0.0067 1.3074 1.3839 1.4659 1.5539 1.6488
0.02 0.0133 1.1196 1.1813 1.2473 1.3180 1.3940
0.03 0.02 1.0141 1.0677 1.1249 1.1861 1.2517
0.04 0.0267 0.9416 0.9897 1.0409 1.0956 1.1543
0.05 0.0333 0.8867 0.9307 0.9775 1.0275 1.0809
0.07 0.0467 0.8066 0.8447 0.8851 0.9281 0.9740
0.09 0.06 0.7489 0.7828 0.8196 0.8567 0.8973
0.1 0.0667 0.7253 0.7574 0.7914 0.8275 0.8660
0.3 0.2 0.5000 0.5165 0.5338 0.5520 0.5712
0.5 0.3333 0.4089 0.4197 0.4310 0.4428 0.4552
0.7 0.4667 0.3538 0.3615 0.3695 0.3778 0.3864
0.9 0.6 0.3152 0.3209 0.3268 0.3329 0.3392
1.0 0.6667 0.2997 0.3046 0.3098 0.3150 0.3205
1.25 0.8333 0.2681 0.2717 0.2753 0.2790 0.2829
15 1.0 0.2437 0.2462 0.2488 0.2515 0.2543
20 1.3333 0.2075 0.2088 0.2102 0.2115 0.2129
25 1.6667 0.1816 0.1822 0.1828 0.1834 0.1841
3.0 2.0 0.1619 0.1621 0.1622 0.1624 0.1625
35 2.3333 0.1463 0.1461 0.1460 0.1459 0.1457
4.0 2.6667 0.1335 0.1332 0.1329 0.1325 0.1322
5.0 3.3333 0.1138 0.1133 0.1127 0.1122 0.1117
6.0 4.0 0.0992 0.0986 0.0980 0.0974 0.0967
7.0 4.6667 0.0879 0.0873 0.0867 0.0860 0.0854
9.0 6.0 0.0716 0.0710 0.0704 0.0698 0.0691
10.0 6.6667 0.0655 0.0649 0.0643 0.0637 0.0631
Loyalka® on the basis of the BGK equation and by Loyalka 3.5. Free-Molecular Regime

and Hickey’ on the basis of the BE. The results of the last

paper, which are more reliable, are presented in Table 19. N the free-molecular regimes=0) the flow rate and the

heat flux can be calculated analytically. &0 all kernels
in the integral equation&.38—(3.40 and(3.43—(3.49H are
3.4.7. Cylindrical Heat Flux equal to zero and the momentig, q, are equal to the free
terms. But for the channel flow the free terms contain the
The cylinder thermal flux was calculated only by Lo fynction 1,(8]y—Yy’|). From the representatiof8.49 one
et al® on the basis of the integral equatit®43 (BGK) by  can see that a6—0 this function and hence the free terms
the direct numerical method. The results are presented ifend to infinity. As a result the bulk velocity and the heat
Table 20, where the relatiof8.54 has been used. flow vector in the channel also tend to infinity in the free-
molecular regime. This unphysical behavior is explained by
the degenerate geometry: the channel is infinite in two direc-
TasLE 16. Reduced flow rat&®; vs &: diffuse scattering, different methods tions. If we restrict the channel at least in one direction
(length or width the bulk velocity and the heat flow vector
GYr immediately will be finite quantities.
s a b c d So, the expressions of the moments and the flow rates
through the channel given below describe only their

0.0001 0.7515 0.7515 0.7515 asymptotic behavior a— 0. From(3.38), (3.39), (3.43 and
0.001 0.7467 0.7467 0.7466 0.7486 . . .
0.01 07179 07178 07177 0.7243 (3.44) with the free terms for the diffuse-specular scattering
0.1 0.5976 0.5975 0.5968 06210 (2.23 we have
1.0 0.3220 0.3214 0.3217 0.3959
10.0 0.0687 0.0683 0.0686 0.1014
ey M8 (2-a) -, E(r?) (2—a)
3 oyalka (Ref. 84, Eq. (3.43 (BGK), direct numerical solution. Up=—"—=—"""", Ugp(r)=— ——
bChernyaket al. (Ref. 46, Eq. (3.43 (BGK), variational method. 2\/; @ \/; «
“Valougeorgis and ThomagRef. 160, Eq. (3.13 with (3.16 (BGK), (3.55
method of elementary solutions.
dSharipov (Ref. 141, Eq. (3.13 with (3.17) (S mode), discrete velocity - L~ - - - o~
method. Uxr=—73 Uxp, Oxp=Uxt, Our=3Uxp, (3.56
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TaBLE 17. Reduced flow ratsﬁf’T vs é and a by Sharipov(Ref. 141: S model

Glr Glr
B @=10 @=0.8 @=0.6 s @=1.0 @=0.8 a=0.6

0.0005 0.7502 11215 1.7365 0.9 0.4092 0.4567 05140
0.001 0.7486 1.1166 1.7237 1.0 0.3959 0.4372 0.4865
0.005 0.7366 1.0838 1.6452 1.2 0.3721 0.4035 0.4402
0.01 0.7243 1.0530 1.5775 14 0.3514 0.3754 0.4029
0.02 0.7042 1.0070 1.4807 1.6 0.3330 0.3513 0.3718
0.03 0.6884 0.9719 1.4093 1.8 0.3165 0.3303 0.3456
0.04 0.6752 0.9432 1.3512 2.0 0.3016 0.3118 0.3230
0.05 0.6637 0.9186 1.3036 3.0 0.2439 0.2443 0.2445
0.06 0.6536 0.8970 1.2617 4.0 0.2042 0.2009 0.1971
0.07 0.6444 0.8778 1.2247 5.0 0.1752 0.1704 0.1651
0.08 0.6359 0.8603 1.1916 6.0 0.1531 0.1479 0.1420
0.09 0.6281 0.8444 1.1616 7.0 0.1359 0.1305 0.1245
0.1 0.6210 0.8297 1.1341 8.0 0.1220 0.1167 0.1108
0.2 0.5675 0.7244 0.9435 9.0 0.1106 0.1055 0.09979
0.3 0.5303 0.6558 0.8255 10.0 0.1014 0.09620 0.09079
0.4 0.5015 0.6050 0.7415 20.0 0.05426 0.05104 0.04746
05 0.4779 0.5648 0.6769 30.0 0.03685 0.03452 0.03187
0.6 0.4576 05315 0.6250 40.0 0.02785 0.02600 0.02388
0.7 0.4397 0.5031 0.5820 50.0 0.02212 0.02080 0.01874
0.8 0.4237 0.4784 0.5455

where E(x) is the complete elliptic integral of the second

kind defined as

2
E(x)=JO (1—x sir? ¢)Y2d¢.

(3.57

The flow rates and the heat flux€3.27)—(3.30 take the

LN

form
g No2-a)
*P \/; o
G*T:%G*Pl Q*P:G*Tr

The same result can be obtained via the integral equatio

systemg3.40 and(3.45.

TasLE 18. Reduced heat flugS’y vs &: diffuse scattering, different methods

8 (2—a)

9
Q*T:ZG*P-

(3.58

(3.59

ch
*T

S a b c d e

0.01 5.4225 6.6742 6.7343 6.7343 e
0.1 3.3008 3.8460 4.0553 4.0500 3.8669
1.0 1.3180 1.4182 1.7543 1.7535 1.7846
10.0 0.1742 0.2334 0.3407 0.3402 0.3467

3 oyalka (Ref. 87, Eq. (3.389 (BGK), direct numerical method.
bLo and Loyalka(Ref. 80, Eq. (3.39 (BGK), variational method.
‘Chernyaket al. (Ref. 42, Eq. (3.43 (S mode), direct numerical method.
dChernyaket al. (Ref. 42, Eq. (3.43 (S mode), variational method.
fLoyalka and Hickey(Ref. 97, Eq. (3.13 with (2.54 BE, discrete velocity

method.

3.6. Near Free-Molecular Regime

One of the methods to obtain the analytical expressions of
the flow rate and heat flux for the small values of the rar-
efaction parameteb is as follows. We use the expansion
(3.49 retaining a finite number of the terms. With the help of
this expansion we can obtain analytical expressions of the
coefficients. 7; and .%;, of the algebraic systeni3.53.
Then, this algebraic system can be resolved analytically.
Having the analytical expressions of the coefficieots,,

Com» C3m ONe easily obtains the bulk velocit@.51) and the
heat flow vector(3.52. Then, the flow rates and the heat
fluxes are calculated b§8.27)—(3.30.

For the tube flow this task was done by Chernygalal*3
Under the supposition of the diffuse scatteri(®y22 they
obtained the flow rates and the heat fluxes up to the terms of
prder 5%

GP,=1.5045+ § In 5—0.38425—0.8024, (3.60

Gr=QWp=0.7523+ 6 In §+0.1158— 1.20365?,
(3.61)

Q,=3.3851+2.55 In 5—0.46045— 2.607857.
(3.62

Since these expressions have a small number of the terms,
they give good precision in the very small range&fBut
applying the method described here, one can obtain the
asymptotic formulas of the flow rates and the heat fluxes up
to any order ofé.

Note, the algebraic syste3.53 and hence the expres-
sions(3.60—(3.62 are based on the S model.
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Fic. 7. Reduced heat fluQ" vs & at diffuse scattering: solid line—BGK
by Lo and Loyalka(Ref. 80, dashed line—BGK with recalculated,
squares—S model by Chernyak al. (Ref. 42, crosses—BE by Loyalka
and Hickey(Ref. 97.

3.7. Hydrodynamic Regime

In the hydrodynamic regime&—o) the mass flow rate
can be found from the Navier—Stokes equati@4). Its
solution with the stickiness boundary conditiore., the bulk
velocity is equal to zero on the walflor an infinite capillary

F. SHARIPOV AND V. SELEZNEV

TasLE 20. Reduced heat flu®®™; vs 5 anda by Lo et al. (Ref. 81: BGK

th
*T

VBGK S a=1.0 «=0.8 a=0.6
0.01 0.0067 3.2700 4.7987 7.2535
0.02 0.0133 3.1883 4.6135 6.8518
0.04 0.0267 3.0569 4.3294 6.2629
0.06 0.04 2.9485 4.1056 5.8195
0.1 0.0667 2.7703 3.7555 5.1579
0.4 0.2667 2.0146 2.4648 3.0152
0.6 0.4 1.7290 2.0428 2.4059
1.0 0.6667 1.3560 1.5356 1.7285
2.0 1.333 0.8849 0.9554 1.0227
3.0 2.0 0.6563 0.6939 0.7271
4.0 2.667 0.5210 0.5445 0.5640
5.0 3.333 0.4318 0.4478 0.4605
8.0 5.333 0.2867 0.2918 0.2969
10.0 6.667 0.2335 0.2367 0.2400

~ ~ o~ 6 -
—yZ), Up(r)=—7(1-r?),

Y

-~ o
U%(V)Z‘z(

zjTZ 0
For the reduced flow ratg8.27) and(3.29 we have

(3.69

is well known, see e.g., Refs. 12, 73, 149. The dimensional ch O w O _
velocity profile has the form Cir=g Gup=70 Gur=0 (3.69

e . 1 dPlla 2 ) The heat flux can be easily found from Fourier's law

Uy (y)=— 2udx |2 AL (2.37), which for the capillary flow takes the form
_odr

W)= 7 g @) (3.63 =K (3.66
for the channel and tube, respectively. Here= \y?+z>. With the help 0f(2.41), (3.11) and(3.23 we have
From (3.63 with the help of(2.41), (3.11) and (3.23 we ~ ~ 15

=0, Oyr=-— 85’ (3.67)

obtain the expression for the dimensionless velocities:

TaBLE 19. Reduced heat quQihT vs § anda by Loyalka and HickeyRef.
97): BE

QS
B a=1.0 a=0.75 a=0.5
0.1 3.8669 5.3371 7.7430
0.25 3.0187 3.9702 5.4179
0.5 2.3918 2.9969 3.8420
0.75 2.0333 2.4635 3.0290
0.9 1.8750 2.2355 2.6959
1.0 1.7846 2.1077 2.5136
1.1 1.7036 1.9948 2.3552
1.2 1.6305 1.8942 2.2161
1.3 1.5639 1.8038 2.0930
1.4 1.5030 1.7220 1.9832
1.5 1.4470 1.6476 1.8845
2.0 1.2217 1.3568 1.5103
3.0 0.9331 1.0044 1.0821
5.0 0.6319 0.6602 0.6903
7.0 0.4761 0.4909 0.5064
10.0 0.3467 0.3540 0.3616

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998

for both channel and tube. For the reduced heat flUIexd
and(3.30 we obtain

3.75
Q. p=0, Q*T:T- (3.68

3.8. Slip Regime of the Gas Flow

3.8.1. Definition of the Slip Coefficients

In the previous section we have obtained the flow rates
assuming the stickiness boundary condition. However, the
bulk velocity is not equal to zero on the wall because there is
a slip of the gas. The tangential velocity of the gas near
the wall is proportional to its normal gradient and to the
longitudinal temperature gradient, i.e.,

JT
¢’

au,
Xq

Ut:Ap +AT (369
wherex; is the coordinate tangential to the surfaggjs the

normal coordinate, anfy and A are coefficients to be ob-
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tained with the help of the kinetic equation. Here, it is more TaBLE 21. Viscous slip coefficiensp vs a
convenient to introduce the dimensionless slip coefficients as
a
follows: P
a a b c
J 1 amT\¥2
op=ﬁAp, o=y | 2 Ar. (3.70 0.1 17.1031 17.0058 17.2332
B 0.2 8.2249 8.1524 8.2721
Taking into account the slip boundary conditit®69 we 93 52551 51928 52770
have the following velocity profiles: 04 3.7626 3.7069 3.7734
9 yp - 05 2.8612 2.8107 2.8664
1 dP[/a\2 oT 0.6 2.2554 2.2093 2.2576
ch_ 2
uh=—_— || 2] —y2+aAs|+A—, (3.70 0.7 1.8187 1.7766 1.8194
x ouax |l2) 7Y P TATG 0.8 1.4877 1.4494 1.4877
1 dp o 0.9 1.2272 1.1925 1.2270
1.0 1.0162 0.9849 1.0160
ub=— " ——(a?-r?+aAp)+tA;—. (3.72
4p dx dx 3 oyalkaet al. (Ref. 103, BGK.

bWakabayashet al. (Ref. 163, BE.

From (3.72) and (3.72 with the help of(3.11), (3.23 and *Equation(3.80.

(3.70 we obtain

~ ch 6(1 “‘2) 9p  ~cn_OT

Ue="5 |37V "5 Uasyy B3
S o o i.e., it is only slightly model dependent.
ub=——(1-r2%)- —Poge__T (3.79 The direct numerical solution of the BE for rigid spheres
P4 L2 TXT2s : - 115
obtained by Loyalka and Hické&yand by Ohwadat al:
Then, the reduced flow rates take the form give the following value’
ch _ o ch _ 97 _ _
=g +op, GJT= 5 (3.79 op=0.9845 and op=0.9849, (3.79
th _ ¢_$ o _ 9T respectively. One can see that agreement between these re-
G, p=7top, Gr=—+. (3.76 . :
4 o sults is perfect. So, the valug,=0.985 can be considered as
the most reliable one for perfect accommodation.
3.8.2. Viscous Slip Coefficient Diffuse-specular scattering:Applying the variational

method to the BE of Maxwellian molecules and assuming

To obtain the viscous slip coefficient, one has to con-  the diffuse scattering2.23 Loyalka obtained the following
sider a stationary rarefied gas flow in the semi-infinite spacexpression for the slip coefficient:

X,=0 over an infinite plate having a constant temperaiure

and fixed atx,=0. The behavior of the gas is described by o

the linearized kinetic equation. At the surface,€0) the op(a)= —a[op(l)—0.12111—a)]. (3.80

perturbation functionh satisfies the boundary condition a

(2.18. At infinity (x,—) it is assumed that the perturba-

tion function coincides with the Chapman—Enskog solutionThe same results were obtained by him in the p2pesing

with the tangential bulk velocity having a small normal gra- an approximate method. The same express®B80 was

dient. also obtained by Suetin and Cherny&kfrom the S model
The detailed technique of solution of this problem andequation. Zhdanov and Zazndb%obtained this expression

numerical data on the coefficientp can be found in the from the BE by the moment method.

literature®23.29:34.70.86,88,90,96,98,100,115.155.167.170 ffare e Exact numerical calculations of the slip coefficiemp

consider the main rigorous results. based on the BGK equation over the whole range ofere

Diffuse scattering:Albertoni et al® applying the method carried out by Loyalkaet gJ ot Wakabayashkit all63 per-
of elementary solutions to the BGK model and assuming th¢ormed a numerical calculation of the BE by the discrete

diffuse scatterind2.22, obtained velocity method. In Table 21 these results and«) calcu-
op=1.016. (3.77) lated by (3.80 vyith op(1)=1.016 are presented. It can be

seen that there is good agreement betweer{ 80 and the

This can be considered as the most exact results based on thg@merical data based on the BGK modf&iThe values ofrp

BGK model. . _ o obtained from the BE? differ very slightly from the BGK
Loyalka and Ferzigéf® and Cercignanet al*® calculated  solution. Thus, Eq(3.80 can be successfully used in prac-

the coefficientop using other kinetic models. They found tjcal calculations.

that the slip coefficient varies in the range

0.9624< 0p<1.0185, (3.78 bThe value given by Ohwadet al. (Ref. 119 must be multiplied bym/4.

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998



690 F. SHARIPOV AND V. SELEZNEV

3.8.3. Thermal Slip Coefficient TaBLE 22. Thermal slip coefficientr; vs a
To obtain the thermal slip coefficiemt; one has to con- or
sider a stationary rarefied gas flow in the semi-infinite space, a b c d e
X,=0 over an infinite plate fixed at,=0 and having a 57500 07500 07758 07500 57500
linear temperature distribution 01 0.7925 0.7925 0.7899 0.7875
To(X)=To(1+ EurX,), 38 0.2 0.8344 0.8344 0.8286 0.8299 0.8250
wlX) =To(1+ &urx) 38) o3 0.8758 0.8757 0.8698 0.8625
whereé,,t is a given constant. This temperature distribution 0.4 0.9165 0.9164 0.8789 0.9097 0.9000
is established in the gas over the whole space occupied b§/5 0.9567 0.9565 0.9497 0.9375
him 6 0.9963 0.9961 0.9266 0.9896 0.9750
: . . - 0.7 1.0354 1.0352 1.0295 1.0125
At the surface 1@”.=. 0) the pertl_Jrl?a.tmn functioh satisfies ;g 1.0739 10737 0.9720 10694 1.0500
the boundary conditiof2.18. At infinity (x,—) the func- o9 1.1119 1.1118 1.1094 1.0875
tion h tends to the Chapman—Enskog solution, correspondz.o 1.1495 1.1493 1.0152 1.1493 1.1250
Ing t9 the heat transfer in the gas by a constant temperatug@oyalkaet al. (Ref. 103, Integral equation based on BGK, direct numeri-
gradient. cal solution.
Two points should be noted here. POnishi (Ref. 117, Integral equation based on BGK, variational method.

“Wakabayashet al. (Ref. 163, BE, discrete velocity method.
(i) First, sometimes in the literature the temperature jumpEquation(3.86.

coefficient is called “the temperature slip coefficient” ‘Equation(3.87).
(see, e.g., Refs. 70, 83This could cause confusion,
because one may think that “the temperature slip co-
efficient” is the same as the thermal slip coefficient. o :§ 0.6725-1.009 and o _T 0.646=1.015
Here, we will not consider the temperature jump co- T2 U 2 T
efficient. We only point out that to obtain it one has to (3.89

consider a temperature gradient, whicmisrmalto  regpectively. One can see that there is a fine agreement be-
_ the surface. tween these two results. So, the vahse=1.01 can be con-
(i)  Second, since the BGK model has the Prandtl numbegigered as the most reliable one for the diffuse scattering.
equal to unity rather than 2/3, to compute we must Diffuse-specular scatteringBased on the BGK equation
be careful in the choice of the collision frequenein ity the diffuse-specular scatterin@.23 Loyalka and

(2.49. The appropriate choice is that which leads tocipolla®* applying the method of elementary solutions ob-
the correct heat conduction coefficient, i.e., the eX-ained the expression

pression(2.47). Thus, all results based on the BGK

model presented below will imply this choice of the or=0.75+0.3993. (3.86
frequencyv; even an original work uses the expres- The variational method applied to the BGK and S
sion (2.46). model§8°41%5gives the following expression:

The detailed calculation af; and numerical data can be o1=0.75+0.375x. (3.8

found in the Iiteraturé4’85'88'92‘94'101'115*117'150'155*169'172'173
The same expression was obtained by Zhdanov and

76
Diffuse scattering: An accurate numerical calculations Zaznoba™ from the BE by the moment method.

based on the BGK model with the diffuse scatteri@R?2 Loyalka et al 1% solvgd the BGK m_odel by the integro-
were performed by Sorf€® Williams *° Loyalka®*1%! and moment method. The integral equation was solved by the

exact numerical method. Onighi also obtained the integral
equation based on the BGK model. Then, the equation was

Let us analyze the main rigorous results.

Onishi!!’ All of them obtained the same result, namely

or=730.766=1.149. (3.82  solved by the variational method. Wakabayasial 13

The variational method applied to both the BGK Solved the BE by the discrete velocity method.ln 163
modef>®82and the S mod&fS gave the following value: In Table 22 numerical results of the wotRs!"1®3gre
presented and compared with the expressitt 86 and
o7=9/8=1.125. (3.83  (3.87. It can be seen that the expressith86 describes

The same value has been obtained in the {iidrom the BE  finely the numerical results based on the BGK mddét*!

for Maxwellian molecules. But the model equation with a The disagreement between the BE solution and that based on

collision frequency appropriate to rigid sphere molecifies the BGK model varies from 3% for=0 to 12% fora
gives the value =1

o1=0.9876. (3.84)

The direct numerical solution of the BE for rigid spheres
obtained by Loyalk& and by Ohwadat al!'® gave the fol- In the two previous sections we obtained the expansions of
lowing values in our notations the flow rates and heat fluxes for the large rarefaction param-

3.9. Near Hydrodynamic Regime

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998
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eter 8. The approach based on the Navier—Stokes equation
with the slip boundary condition allows us to obtain the
terms of the orde©(8) andO(1) for G, p and the terms of
the orderO(1/6) for G, 1. But using the approach described

in Sec. 3.6 we may find more terms in the expansion. The |n this section, we realize the second stage of the problem
unique difference from the approach for the smais that:  formulated in Sec. 3.1, viz. we obtain the mass flow rate as a
the expansiori3.50 of the special functionk, is used. With  fynction of the pressureB, and P, and the temperatureg

the help of this expansion we obtain the analytical expresandT, . For this purpose it is better to introduce two rarefac-
sions of the coefficientsZ;; and. %, of the system3.53.  tjon parameters:

Then, we do the same as in Sec. 3.6 up to the analytical
expressions for the flow rates and for the heat fluxes.

The method of elementary solutions based on the BGK
model also allows us to obtain the analytical expressions of
the flow rates and the heat fluxes. The following asymptotic s :ﬁ a_ aby ( m
formula (5—) of the plane Poiseuille flowaS, for the T2 M w(Ty) | 2kgTy,

diffuse scattering2.22 was obtained by William€® where), and\, are the mean free paths in the left and right
containers, respectively. Here, £g8.3) has been used. These
rarefaction parameters can be related each with other if the
intermolecular interaction law is given. Assuming the mol-
ecules to be hard spheres, frof®.40 we obtain\o1/n
«T/P. Then, it is easily obtained

3.10. Arbitrary Drops of the Pressure and
Temperature

3.10.1. Main Relations

\/;a_ aP,

:7 )\_I— w(T))

g

m 1/2
2KgT,

12
) , (3.99

o O 1.0653 2.1354
G*PZ 6 + 10162+ T - 52

(3.88

Loyalka and Hicke$? using the BE obtained the coeffi-

cientsGS,, G, Q%L and Q') for the diffuse scattering:

*T7
5= P Ty S
g 0 0.7089 1.0872 =P, T, (3.97
G*P=€+O.9790‘|‘T——62—, (389) I I
Under the supposition of the small drops,
N , 0.9924 1.3284 AP/P <1, ATIT|<1, (3.98
Gir=Qp=—— = (3.90 . . .
3 6 the variation of the rarefaction paramet#@along the capil-
lary is negligible small and we may assume
o 3.7839 3.5508
B -t (3.9 8=6,=246. (3.99

. _ ~In this case the mass flow rates and the heat fluxes are
They also provide the asymptotic formulas of these coeffieasily calculated via the coefficien®, andQ, using their
cients for the diffuse-specular scatteringaat 0.5 and 0.1.  representation£3.31).
Comparing(3.88 and(3.89 one can see that the coefficients  Under the condition3.99 the TPD exponenty can be
of the asymptotic formulas essentially depend on the kinetigalculated assuming, =0 in (3.31), where the gradients
model equation. are calculated as
The asymptotic formula §&— ) of the cylindrical Poi-

seuille flow G, for the diffuse scattering2.22 was ob- gP:(P”_P'), T:(T“_T') (3.100
tained by Lang and LoyalKk& applying the BGK equation LP, LT,
Then, the coefficieny is easily obtained
Gt 6+ 10162+ 0.5490 0.607 (3.92 G
p— 1 L s T T2 - :
o4 6 6 y=21 (3.101)
G*P

Chernyaket al*® applying the S model obtained the fol-

If the differencesAP/P, and AT/T, are large, the values

'OYDV'”Q expressions of the .coc?fﬂmerﬁfp, GY'r. Qe and of 8, and 5, may be different so significantly that the regime
Q. for the diffuse scattering: of the gas flow can vary from the hydrodynamic to free-
S 0.6712 0.8657 molecular one along the capillary. In this case the rarefaction
GfP: Z+ 1.0073+ T T Z (3.93 parameters varies along the capillary from the valug to
the valued, . A priori we do not know the functiod(x ).
Below a differential equation for this function will be ob-
G;bT:QfP: 1;25— 1';287 0'2204— 2":;12{ tained. Since numerical data are available only for the tube
flow we will not consider the channel flow here.
(3.94 Let us introduce the new reduced flow rate as
o 375 3.8085 1.8518 2.3593 o L (2kegT)\ V2.
I - + 53 T 54 (3.95 G 7a%p, | "m M*™, (3.102
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TABLE 24. Reduced flow rat€®; vs 6, anda at T, /T,=3.8 by SharipovRef. 141

= ok
] a=1 a=0.8 a=0.6 8 a=1 a=0.8 a=0.6
0.01 0.9489 1.392 2.107 0.8 0.6054 0.7244 0.8813
0.02 0.9299 1.347 2.008 0.9 0.5877 0.6963 0.8381
0.03 0.9139 1.310 1.932 1.0 0.5716 0.6712 0.8001
0.04 0.9001 1.280 1.869 2.0 0.4582 0.5070 0.5662
0.05 0.8878 1.253 1.816 3.0 0.3884 0.4158 0.4476
0.06 0.8768 1.229 1.769 4.0 0.3389 0.3549 0.3728
0.07 0.8667 1.208 1.727 5.0 0.3013 0.3104 0.3204
0.08 0.8573 1.188 1.689 6.0 0.2714 0.2763 0.2814
0.09 0.8487 1.170 1.654 7.0 0.2471 0.2492 0.2511
0.1 0.8405 1.153 1.622 8.0 0.2268 0.2270 0.2268
0.2 0.7788 1.031 1.395 9.0 0.2096 0.2084 0.2067
0.3 0.7351 0.9480 1.249 10.0 0.1948 0.1926 0.1899
0.4 0.7006 0.8854 1.142 20.0 0.1139 0.1096 0.1048
0.5 0.6717 0.8348 1.058 30.0 0.08022 0.07637 0.07217
0.6 0.6468 0.7923 0.9885 40.0 0.06181 0.05852 0.05495
0.7 0.6249 0.7560 0.9307 50.0 0.05017 0.04735 0.04423

Note that unIikeGSf’, this flow rateG® does not vary along tribution is determined by the thermal property of the capil-

the capillary, but it is constant. If we exprelgd® from (3.2  lary and must be calculated independently of the gas flow

and substitute it intd3.102, we obtain problem. Below some particular temperature distributions
will be considered.

LY e~ PO T(X)
th:ﬂei(ﬁ(X)), f(X)—TI, L/(X)_T.
(3.103

3.10.2. Isothermal Flow

In Sec. 3.1. it was shown that under the condition1 the

pressure and temperature gradients are small at any ratiosFirst, let us consider the isothermal flow, i.€,=T and
P,/P, and T,/T,. So, Gf can be split into two parts as .;7‘(§<)=1. In this case Eq(3.109 is reduced to

(3.31). Taking into account3.3), (3.10 and the definitions

of  and.7 (3.103 we have thp( 5)do=— —G‘bdx (3.107
th L7 GIb (5) - g_ th (5) 1d ])
T *T T dx P dx which is easily integrated
(3.104 ”
~ t_ _ — th
With the help of(2.39 and(3.37 we may relates(x) with G"= 5 LI Gp(9)do. (3.108
7 and.7” as
Sharipov and Selezn&? performed this integration using
5(X)=4 AX) (3.105 the data of Table 17. Their results are presented in Table 23
l,/(x) ' where the following coefficient is introduced
This implies the use of the hard sphere model for the mol- b P,G®
ecules. Using this relation the differential equation is easily Gap(6,01)=— EE (3.109
obtained for the functiom(x)
b which satisfies the condition
ds  [G,(d) 1d7  § G!
& AG.Hd |7 dx L7™GPs) lim  Ga(6,61)=Giel(5). (3.110
(3.106 Ao
with the boundary condition agi(—L/2)= ;. In this equa- Analyzing the data of Table 23 we conclude that the for-
tion G is a parameter and we have to@t so asswould ~ Mula
be equal tos, atx=L/2. 5
To solve the differential equatiai3.106 we need to know Ghy(5,8)=GP ( 5 ) (3.111

the temperature distributios’(x) along the capillary. Since
the thermal conductivity of the capillary wall is significantly can be successfully used to calculate the mass flowGHte
larger than the conductivity of the gas, the temperature disat any pressure difference if and onlyTif=T, .
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TaBLE 25. TPD exponenty vs &, and« at T, /T,=3.8 by Sharipo\Ref. 141

Y Y
8 a=1 a=0.8 a=0.6 S a=1 a=0.8 a=0.6

0.01 0.4921 0.4862 0.4789 0.8 0.3381 0.2967 0.2525

0.02 0.4857 0.4764 0.4653 0.9 0.3276 0.2860 0.2416

0.03 0.4802 0.4684 0.4544 1.0 0.3179 0.2761 0.2317

0.04 0.4754 0.4615 0.4452 2.0 0.2454 0.2067 0.1664

0.05 0.4710 0.4554 0.4371 3.0 0.1986 0.1650 0.1301

0.06 0.4670 0.4498 0.4298 4.0 0.1652 0.1362 0.1063

0.07 0.4633 0.4447 0.4232 5.0 0.1401 0.1151 0.08927

0.08 0.4598 0.4399 0.4171 6.0 0.1205 0.09892 0.07649

0.09 0.4564 0.4355 0.4114 7.0 0.1050 0.08612 0.06653

0.1 0.4532 0.4312 0.4061 8.0 0.09225 0.07573 0.05852

0.2 0.4273 0.3981 0.3653 9.0 0.08173 0.06716 0.05194

0.3 0.4071 0.3734 0.3362 10.0 0.07295 0.06003 0.04649

0.4 0.3899 0.3533 0.3133 20.0 0.03039 0.02551 0.02023

0.5 0.3749 0.3364 0.2945 30.0 0.01653 0.01411 0.01145

0.6 0.3615 0.3216 0.2786 40.0 0.01035 0.008950 0.007383

0.7 0.3493 0.3085 0.2648 50.0 0.007066 0.006176 0.005162

3.10.3. Isobaric Flow 3.10.4. Thermomolecular Pressure Difference
Let us consider the isobaric flow, i.e., whBp=P,,. The To calculate the TPD exponemtwe assume that the mass

gas flow is caused only by the temperature drop. In this casow rate through the tube vanishes, i€°=0. Then from
the differential equation (3.106 cannot be reduced. (3.109 for every cross section we have

Sharipov*! solved the differential equatia3.106 using the 1 47 1d7

data of Tables 7, 10 and 17. The temperature ratio was taken Gibp( 0) = — :GfT 8 ——. (3.116
as T, /T,=293/77.2=3.8. These values usually are met in 7 dx 7 dx

practice and correspond to the room temperature and to thgiih the help 0f(3.105 the last equation is reduced to
temperature of liquid nitrogen, respectively.

. . . 7 7 b Dl G
The calculations were carried out with two temperature 47 7Gr(8,717) (3117
T ~ Iy e ————— .
distribution.7(x). It was found that the mass flo@® es- d7  7GY(8,71.7)

sentially depends on this distribution. This means that Edr, opiain the TPD exponent we have to solve this differ-
(3.106 must be solved anew for every given functiof{x).  ential equation considering’ as a function of7 with the
If the thermal conductivity does not vary along the capillary, boundary condition:’=1 at.7=1. When the function

the temperature distribution is linear, i.e., A7) is known, the pressure ratio, which is established in
T % the stationary state, is calculated &%/P,=AT,/T)).
TX)=1+ %-1) L (3.112  Then the exponeny is found from(1.5) as
|
_In(Py/P))

The numerical data for this distribution are presented in Y=
Table 24 where the coefficie® is introduced: In(Ty /Ty)

T,Gb It should be noted that the functio??(,ﬂ is not determined
(3.113 by the temperature distributios(x) along the tube. There-

(3.118

tb _

AT T T
(Tu=T) fore, the exponeny depends only on the temperature ratio
which satisfies the condition and on the rarefaction parameir.
i th _Gt (s, 11 Equation(3.117 was solved by Sharipd{* using the data
(SHIT&, Car(8,81)=C,+(4) @119 ¢ Tables 7, 10 and 17 for the temperature rafip/T,

=3.8. The numerical results are given in Table 25. Here it is
also impossible to offer some simple formula likg&117).

(3.113. The exponenty must be calculated anew for every given
It should be note that one cannot calculate the mass ﬂo"?’atio T,/T,.

rate G® as the linear combination @, and G';

Here, it is impossible to offer some simple formula like

P,—P, T,—T, 3.11. Applicability to Polyatomic Gases

5 +GR = (3.119

! ' Numerical results on the capillary flow of polyatomic
This is valid only at the small pressure and temperaturgases can be found in the literatdPé8%1931%4Comparing
drops. these results with the data presented here we conclude that

tb_ _ ~tb
Gb=-G¥,
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only the Poiseuille flow, i.e., the coefficie@, p is very 4.2.1. Outflow to Vacuum
slightly affected by the internal structure of molecules. All
other coefficient$z, 1, Q, p andQ, 1 for polyatomic gases . )
essentially differ from those for monatomic gas. So, the nuonsider that there is only the gas flow from the left con-

merical data presented in Tables 1—10, 21, and 23 can gainer to the right one. The bulk velocity in the orifice/slit

successfully applied to any gas including a polyatomic oneS€Ction can be calculated directly (8.5). Regarding that in

The data given in Tables 11-20, 22, 24, and 25 can be aéhe o.rificglslit sectionrw]:m/z and forv,<<0 the distribution
plied to monatomic gases only. unction is zero, we have

If the pressure ratio is very large, i.€,/P;—~, we may

1
— M
ux_(nllz) Jux>0f (nI’TI,O)UXdV

4. Gas Flow Through Slits and Orifices

4.1. Remarks 2 m 3/7 mo” d
In the present section we consider the gas flow through a
capillary with the length equal to zerbs= 0. This means that _ /2kBTI: E(v) @.1)
the containers are separated by an infinitesimally thin parti- mm 2\ '

tion having a slit or an orifice. The sketch of the flow and the
coordinates are given in Fig. 2. This type of rarefied ga:
flows is very difficult for numerical calculations. According
to the general statement of the problem the containers are

very large, therefore a numerical grid must cover a suffi- g N 1 2
ciently large region in the containers. An estimate shows that ~ Mm=7 M a U=7n m &Qv)=aP, M) ;

to reach a reasonable precision of the calculations, the region (4.2
size must be many timdabout 40 larger than the mean free

where(v), is the mean thermal molecular velocit®.42 in
S’the left container. The mass flow rate takes the form
for slit

path, while the increment of the numerical grid must be for orifice

smaller than the mean free path. Thus, unlike the one- ] n, 1 vz
dimensional flow considered in the previous section, the nu- M?rL:Em?TaZUx:an m 7'f<'=12<v>|:""2'3' 2k T) '
merical scheme for the slit/orifice flows always has a large e 4.3

number of grid points. That is why there are very few rigor-
ous results on the gas flow through slits and orifices.
Unfortunately, the majority of papélfs’> 7713116116
this topic present the experimental and theoretical results |f the pressure in the right container is not so small as to
only in figures. This form of the result presentation givespeglect it, we may consider that there are two contrary flows
only a qualitative behavior of the flow rates, which is usually of gas which do not interact each with other. So, the total

known. mass flow rate can be calculated as the difference of the two
A number of papers?82111129.15217%¢tared asymptotic contrary ones:

formulas for the mass flow rate near the free-molecular re- fgy gjit
gime (6<1). But there is no agreement between them.

4.2.2. Arbitrary Drop of the Pressure

Moreover, these formulas work for very small values of the - m \¥[ P P,

rarefaction parameter. Therefore, they also give only quali- Min=a 27k Nl ; (4.4
. . . . TKg \/?, \/T—II

tative behavior of the flow rate and are useless in practice.
Here we consider only papers providing the tabulated nu- for orifice

merical data on the slit/orifice gas flow in the large range of "

the Knudsen number. The mass flow rate will be given as a MO = 52 W_m) PPy 4.5

function of the two rarefaction parametefsand &, defined fm 2Kkg VT, VT '

by (3.96. The heat flux will not be considered here. The

reader interested in the heat flux through a slit can find thdn the case of small pressure and temperature drops

corresponding data in Ref. 142. AP ) AT . e
Fl< , ?l< ) (4.6)
4.2. Free-Molecular Regime we have
1/2
In the free-molecular regimed(=¢5,=0) the mass flow MS = —ap m ) (A_P_ 1 A_T) 4.7)
rate can be easily calculated because the distribution function m "\ 27kgT, Po 2T/ '
is Maxwellian(2.30 with the different number densities and 12/ Ap 1 AT
temperatures in the two velocity semi-spaceg<0 and MO = — 52p AL I e (4.9
v, >0. fm ! 2KkgT, P 2T/ '
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TasLE 26. Reduced flow rate&’S vs 6, and a

<3
a b c
S a=0 a=0.5 a=1 a=0.5 a=1 a=1
0.01 1.009 1.009 1.009
0.02 1.017 1.017 1.017
0.04 1.029 1.030 1.030 1.036 1.036
0.08 1.052 1.054 1.055 1.061 1.062
0.1 1.061 1.064 1.066 1.072 1.074 e
0.25 1.126 1.134 1.138 1.1370
0.4 1.183 1.196 1.203 1.212 1.219
0.5 1.220 1.237 1.244 e e 1.2474
0.8 1.328 1.351 1.361 1.371 1.383
1.0 1.398 1.426 1.438 1.449 1.462 1.4396
2.0 1.753 1.786 1.801 1.811 1.831 1.8002
4.0 2.445 2.484 2.500 2.504 2.533 2.4814
8.0 3.819 3.858 3.872 3.7827
10.0 4.506 4.546 4.556 4.556 4.590 e
15.0 6.218 6.248 6.255
20.0 7.934 7.950 7.955 7.957 7.988
30.0 11.31 11.31 11.30 =
40.0 14.65 14.66 14.66
aSharipov(Ref. 140, BGK, discrete velocity method.
bSharipov(Ref. 142, S model, discrete velocity method.
‘Hasegawa and Sor(Ref. 61, BGK, integro-moment method.
4.3. Transition Regime Hasegawa and Sofié.They applied the integro-moment

method to the linearized BGK mod&.67) and assumed the

diffuse scattering2.22 on the surface. Sharip&t?14?cal-
Numerical data on the slit/orifice flow in the transition culated the same coefficiefffﬁ,' applying the optimized dis-

regime will be presented in terms of the reduced flow ratecrete velocity method to the linearized BGK mod@l67)

4.3.1. Reduced Flow Rates

defined as and to the linearized S mod€2.68 assuming the diffuse-
-l 2 - or 72 speculan2.23 gas—surface interaction.

ysI:M_ ZWkBT') Gor— M 2kBT'> The data from the papérst4®142are presented in Table 26

aP m ’ a’P | mm where the coefficienffﬁ' is given as a function of the pa-

(4.9 rameterd,. The values of the other paramet&f are not
for slit and orifice, respectively. In the case of the smallindicated, because under the conditiod®/P;<1 and
pressure and temperature differer@ef) the reduced flow Ty=T, we haveg,=4. One can see that at=1 (diffuse
rate ¥ can be decomposed‘as scattering there is good agreement between the results ob-
tained from the different equations and by the different meth-
o= _g/PA_PJr ;Tﬂ (4.10 ods. A comparison of the flow rate far=1 with that for
P 2T, a=0 shows that the difference ¢f% does not exceed 3%.
From (4.7—(4.9) one can see that in the free molecular re-Regarding that in practice the coefficiemts close .to unity
gime (8=4,=0) the introduced coefficientsy and <7 are ~ and rarely Vre?ches the value 0.5, we may consider that the
equal to unity. It should be noted that these coefficients havgeefficient.s"s does not depend oa. _
been introduced so as their relation with the rarefaction pa- The following formulas interpolating the numerical data
rameterss, and 8, does not contain any specific character-ON  p were offered by Sharipo¥!
istic of gas. So, representing theoretical datasgrand <7 it ,;ﬁﬁ,':l—(o.2439lga|—0.38335,
is not necessary to specify the gas. —(0.03381g5,—0.0555% 5,<8,

4.3.2. Isothermal Flow Through a Slit (4.1D
- : , o m? 4.449-25.17Ig6,
Numerical calculations of the isothermal (=T,) gas .E¢§=l—65|— 5
flow through a slit caused by the small pressure drop !
(AP/P<1), i.e., the coefficientsS, was carried out by 138.7-238.3Ig4,
+ 2 , 6,=8. (4.12
[

°If the superscripts sl and or are omitted the corresponding expression

; . oy "¥he formulas cover the entire range of the rarefaction
valid for both slit and orifice.

parameters, and can be used for any.
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4.3.3. Isothermal Flow Through an Orifice TasLE 27. Reduced flow rat&’$' vs 6, and a by Sharipov(Ref. 142

There is no theoretical data on the coefficienp' in the 73
transition regime. Below its empirical formulas are given.

Small pressure dropBorisov et al!® carried out a set of X ®=05 a-1
experiments with various gaséde, Ne, Ar, Kr, Xe, H and 0.04 0.9940 0.9968
N,) measuring the flow rate caused by the small pressure 0.08 0.9819 0.9883
drop (AP/P,<1 andT,=T,). As is known the light gases 8;; g:gzgg 8:3?2;
such as He and Ne have the gas—surface interaction param- 4 0.8976 0.9309
eter« less than unity even for a contaminated surface, while 0.8 0.8238 0.8756
the heavy gases such as Kr and Xe are perfectly accommo- 1.0 0.8011 0.8586
dated on the surface. However, the difference between the 20 0.6991 0.7728
flow rates of these gases was within 0.3%. This is one more 4.0 0.5727 0.6535

i : S 10.0 0.3914 0.4621
confirmation that the mass flow rate through a slit/orifice 20.0 0.2814 0.3384

caused by the pressure drop does not depend on the gas—
surface interaction law.
By the least-square method Borisevall® obtained the
following empirical formula: Since in the free-molecular regime both coefficiefits
or and <5 are equal to unity, the exponeny=1/2 at
“p=1+0.3425,, (4.13 8= 6,=0. This is the well known result of the kinetic theory
which is valid for §<50. In the ranges,>50 the results of gases.
based on the Stokes equati@ee Sec. 4.4)Ican be used.
Large pressure dropEujimoto and Usam? measured the

mass flow rate through a short tube at the large pressure drop 4.4. Hydrodynamic Regime

(P,>Py)). Under this condition we assume th&{=0. The

gas used by them was air. The length-to-radius ratio varied in 4.4.1. Small Pressure Drop

the range from 0.05 to 25.4. If we extrapolate the empirical

formula offered by them to the zero length, we obtain A rigorous analytical solution in the hydrodynamic regime

0.4733+0.6005A/§| (6>1 and §,>1) is available only for the isothermal

GOr—14 - (4.14) gas flow (I,=T,) caused by the small pressure drop
1+4.5596,+3.0946] (AP/P,<1). Under these suppositions the inertial terms in
This formula is valid in the rangé,<11. the Navier—Stokes equatiof2.44 can be omitted. More-
over, the gas can be considered as incompressible. Finally,
4.3.4. Nonisothermal Flow Through a Slit we obtain the so-called Stokes equations
pAu=VP, V.u=0. (4.16

The gas flow caused by the small temperature drop
(AT/T,<1 andP,=P)), i.e., the coefficients$, was cal-  This equation system was solved by Rosédéor the flow
culated by Sharipo¥? using the S mode(2.68), which was  through an elliptic aperture. Then, the solution was repeated
solved by the discrete velocity method. The results are preby Hasimoto®
sented in Table 27 where the coefficie&ﬁﬁ' is given as a Slit flow: For the slit flow the solution of the syste#.16)
function of §,. Since at the small temperature difference wereads
have §,,= §,, the values of the second paramefigrare not

AP a| £V(1-79°)°
indicated. One can see that unliked, the coefﬁmentfs' U= _( a) ¢ (2 772) , (4.17)
depends on the gas—surface interaction parameter 8u &—n
. Pa) 7y(£-1 (1 7°)
4.3.5. Thermomolecular Pressure Difference y= SIgf(X)SIgr(y) P
If a small temperature difference between the containers is (4-18)
maintained, a small pressure difference will be established. §\/—
In this case the TPD exponefican be expressed in terms of P=P+— 5 1+ sign(x) 27| (4.19

the coefficientssép and £ . Assuming the total mass flog’
in Eq. (4.10 is equal to zero and regarding the smallness ofwhere the curvilinear coordinatésg, ) are related with the

the pressure and temperature drops we obtain Cartesian X,y) as
‘/C//T X2 y2 a2 X2 y2 2
=2,1///P (415 ngl_F?:Z’ ﬁ'ﬁ‘?:z, 0$77$1$§
Thus, with the help of Tables 26 and 27 one can easily cal- (4.20
culate the exponent. The mass flow rateM® is easily obtained
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MSI|5—>w:n|mf Ux(o,y)dy:_
—al2

flow rate '3 is obtained as
3/2
(;;S|:

P16

5|: 03485| .

mnma’AP

(4.21
With the help of(3.96, (4.9) and (4.10 the dimensionless

(4.22

F. SHARIPOV AND V. SELEZNEV

where( is the ratio of the specific heats aAds a coefficient
to be obtained from an experiment. In Table 28 the depen-
dence ofA and £ on ¢ is presented.

4.5. Applicability to Polyatomic Gases

The conclusions on the applicability of the data presented
in this section can be based on the experimental data by
Borisov et al® They measured the mass flow rate through
an orifice under the small pressure drop for both monatomic

Orifice flow: For the stationary axisymmetric gas flow the and polyatomic gases. As it was pointed out in Sec. 4.3.3 the
solution of the systen4.16) reads

B (APa J(1—7%%)°
= | TE—
L (APa n(1—n?)VE—1

U, = —sign(x) S P

P=P,+AP

coordinates X,r) as

2

N

X 2

e-1

-

X
+ =a2, 2
n°—

e
N

The mass flow rat " is easily obtained

a

M”Ia.%:mmf Uy(X,r)rdr=—

0

With the help of(3.96, (4.9) and (4.10 the dimensionless

flow rate Z'3' is obtained as

(;;or_ 2
3 P -

37

1 79

2

2

-

+-—>=a

N

3u

4.4.2. Large Pressure Drop

2

nma’AP

8,=0.3765, .

(4.23
(4.29
; + sign(x) % (gf—_; +arctan/&2— 1) } :

(4.295

Here, the curvilinear coordinatdg, ) are related with the

O=s=yp=<1=<¢.
(4.26

(4.27

(4.28

difference of the flow rate for different gases was within
0.3%. There are no analogous data on the slit flow, but the
conclusion will very likely be the same. So, the results given
in the present section on the coefficient, i.e., the data
presented in Table 26 and Eq4.11)—(4.13), (4.22, (4.28

can be successfully applied to any gas including a poly-
atomic one.

Since the thermal creep through a long capillary is very
affected by the internal structure of molecules, it would be
logical to conclude that the coefficiest; for a polyatomic
gas differs significantly from that for a monatomic one. So,
the data presented in Table 27 can be applied to monatomic
gases only.

In the case of the large pressure drop the free molecular
mass flow(4.4) and (4.5 does not depend on the internal
structure of molecules, while the hydrodynamic flow rate
(4.29 depends on the ratio of the specific heats and hence,
on the molecular structure. The variation6f" for different
gases is within 6%see Table 28

It is obvious that with the decreasing rarefaction parameter
8, the influence of the internal molecular structure will de-
crease. It will vanish at,=0 for any pressure drop. From
Sec. 4.3.3 one can see that this influence vanishes at the
small pressure drop for any rarefaction parameter. So, we
may conclude that the influence of the internal molecular
structure on the isothermal mass flow rate is largest in the
hydrodynamic regime §,>1) at the large pressure drop
(P;>P,). From Table 28 one can see that for gases with the
specific heat ratio being in the range £.8<1.66 the influ-
ence of the internal structure on the mass flow rate does not
exceed 6%.

The mass flow through an orifice caused by a large pres-

sure drop P,>P,,) in the hydrodynamic regimés>1 and
5,>1) was estimated by LiepmariR.Considering the ori-

5. Gas Flow Through Capillaries

fice as a nozzle, to which one can apply the Euler equation, of Finite Length

Liepmann obtained

Cr=AV27¢

[+1

2 )(§+1>/2(§1>

(4.29

TaBLE 28. Dependence ok and < ° on ¢ by Liepmann(Ref. 79

Gas 14 A GO

Ar 1.66 0.812 1.476

N, 1.40 0.824 1414

Co, 1.30 0.830 1.388
J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998

5.1. Remarks

In this section, we consider the gas flow through a capil-
lary with a finite length-to-diameter ratio. The sketch of
the gas flow and the coordinates are given in Fig. 1. Like
the slit/orifice flow here the main difficulty is the calculation
of the flow field in the containers near the capillary
entrances. To overcome this difficulty, usually it is
assume*2113114127.17h 5t the molecules come to the cap-
illary with the Maxwellian distribution function, i.e., there is
no variation of the distribution function in the containers.
This supposition can be justified only in the free-molecular



INTERNAL RAREFIED GAS FLOWS 699

regime_ However, in the transition and hydrodynamic re- TaBLE 29. Transmission probabilityv vs L: diffuse scattering
gimes the distribution function of the molecules entering into

ch

the capillary from the containers significantly differs from W
the Maxwellian. That is why the above mentioned supposi- L a b c
tion gives a great error in the calculation. 01 0.9525 09525

Here we consider only papers providing numerical dataon g2 0.9096 0.9096
the mass flow rate without this supposition. The definitions 0.4 0.8362 0.8362
of the rarefaction parametess and 8, (3.96) will be used in 0.5 0.8047 0.8048 0.8047
this section. Since the heat flux through finite capillaries is ;'8 8'22‘2“1‘ 8'22‘11? 8'22‘2“1‘
investigated very poorly, it will not be considered here. The ;| 0.3992 0.3999 N
reader interested in the heat flux can find the corresponding s 0.3565 0.3582 0.3565
data in Refs. 144, 146. 10.0 0.2408 0.2457

aEquation(5.8).
bClausing(Ref. 49.

. fYamamoto and AsaiRef. 174.
5.2. Free-Molecular Regime

5.2.2. Diffuse Scattering
5.2.1. Transmission Probability

_ o _ In the case of the perfect accommodation of the gas on the
Let us consider the collisionless regimé € 6,=0). In  surface, i.e., the diffuse scatterirg.22, the transmission
this case the mass flow rate can be calculated in terms of t"tﬂobabilities satisfy Eq(5.5) and can be calculated by two
transmission probability. LeW, ;; be a probability that a methods: using Clausing’s equatiéh93 or by the test par-
particle entering into capillary from the left container will go tjcle Monte Carlo(MC) method described in Sec. 2.11.2.
out to the right one. The quantity,_,, is called the trans-  Clausing® was the first to derive the integral equation
mission probability. LeWV, ., be a transmission probability (2.93 and solve it. De Marcus and Hopp&r® performed a
from the right container to the left one. Then, the mass flowmore accurate solution of the integral equation by the varia-

rate can be calculated as tional method. Bermdhoffered the following analytical ex-
for channel pressions foW based on the variational solution
‘rch_yach yasl h sl for channel
M?m_wfﬂllMfsm,l_WflﬂleSm,II’ (5'1)
1
for tube WCh:§[1+(1+ L2)1/2_L]
VICEERYY Y th |\
Mim=W" Mg — Wi Mg, (5.2 3
. . T 2 1212
whereMg,, | andMy,, | are mass flows into the capillary from 2{L In[L+(L2+1)%]}
the left and right container, respectively. Calculating them - L3+3L2+4— (L2+4)(1+ LD (5.9
with the help of(4.2) and (4.3 we have
1/2
Méh—a - ( n, FL_pen P ) (5.3
m— 1—11 11—l ’ .
21k \/?I \/T_II TasLE 30. Transmission probabilit® vs L: diffuse scattering
112
M =52 W_m) (Wtb P P ) (5.4) we
- 1—11 -l . .
"\ 2kg VT, VT L a b c d
In the case of isotropic capillary when 0.1 0.9524 0.9524 0.9535
0.2 0.9092 0.9092 e 0.9109
Wi_i=W =W, (5.5 0.4 0.8341 0.8341 . 0.8332
0.5 0.8013 0.8013 e 0.8007
we have 1.0 0.6720 0.6720 0.6716
12 2.0 0.5142 0.5136 0.5142 0.5135
MS =g m ch i_ Pu (5.6) 4.0 0.3566 0.3589 0.3548
m= =\ 27kg T ' 5.0 0.3105 0.3146 0.3090
: . 10.0 0.1910 0.1973 0.1919
172 20.0 0.1094 0.1135 0.1093 0.1098
Tm P P
M = g2 2 o 1 1l (5.7) 40.0 0.05949 0.0613 0.05946 0.05977
fm 2Kkg \/f \/T—,, ' ' 80.0 0.03127 0.0319 0.03125 0.03119

. " . #Equation(5.9).
Thus, if one knows the transmission probability, one bClausing(Ref. 49.

easjly calculates the mass flow rate in the free moleculadeygachiret al. (Ref. 112.
regime. 9MC method.
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TaBLE 31. Transmission probabiliy'® vs L anda by de MarcugRef. 53:  with the results of the work? and with the data obtained by
variational method the MC method. The results by Clausing are overstated for

Wi largelL.
L a=0.4 @=0.6 a=0.8 5.2.3. Diffuse-Specular Scattering

2 0.74693 0.65890 0.58247

0.054743 0.036744 The Clausing equatiof2.93 for the diffuse-specular gas—

surface interactior{2.23 was solved by De Marct$ only
for the tube. The results are presented in Table 31.
To apply the MC method to the diffuse-specular scattering
for tube a small modification of the program by Biftiis necessary.
) In Table 32 the results obtained with the help of the modified
W—=1 + '—_ B E(L2+4)1’2 program are presented. One can see that the results based on
4 the variational methad and the MC results are in good
agreement.
_ [(8-LA(L2+4) ™+ L —16]° No data onW°" are available in the literature for the
72L(L*+4)Y2—288 I L/2+(L%/4+1)"7] diffuse-specular reflection. But it can be easily obtained by
(5.9  the test particle MC method described by Bifd.

A direct numerical solution of the Clausing equation
(2.93 for the channel was obtained by Yamamoto and
Asail’In Table 29 the values of the transmission probabil- The influence of the wall roughness on the transmission
ity WE" calculated with the help of Eq5.8) (second col-  probability was investigated by Davét al>® and by Porod-
umn), the results by Clausifg (third column and data by nov et al}?* The roughness can be characterized by two
Yamamoto and Asai* (fourth column are presented. One quantities: the ratio of the roughness height to the capillary
can see that at the larger valuesLothe results by Clausing diameterh/a; and the angle of the roughness inclination.
are slightly overstated. There is an excellent agreerftent Generally it is necessary to define the distribution function of
four significant figures between the direct numerical both quantities. It is difficult to give some quantitative de-
solution™* and Eq.(5.9). pendence of the transmission probability on the roughness.

Neudachiret al'2 obtained the variational solution of the From the results of Refs. 50, 121 we can say only tfiathe
integral equation(2.93 for the tube. In the book by Bifd  influence approaches its maximum value if the capillary di-
the simple program to calculate the transmission probabilitameter is comparable with its own length provided that the
W® by the test particle MC method is given. Using this pro-roughness has a “saw” form with an inclination of about
gram one can easily calculate the transmission probability#5°. In this case the decrease of the transmission probability
W™ for anyL. In Table 30 the values o\ calculated with  exceed 10% even fdn/a=0.05. It should be noted that a
the help of Eq.(5.9 (second colump the results of nonsymmetric “saw” can make the capillary nonisotropic,
Clausing® (third column, the data by Neudachiet al'*?> i.e., the condition(5.5) can be violated.

(fourth column and the results obtained with the help of the
program by Bird® (fifth column) are presented. Here, we 5.2.5. Thermomolecular Pressure Difference
may also conclude that E@5.9) is in excellent agreement

5.2.4. Surface Roughness

To relate the TPD exponentwith the transmission prob-
ability we assume that the total mass flow through a tube is

zero. Then, from5.3) or (5.4 we have
TasLE 32. Transmission probabilit® vs L and «: MC method

o P Py
W W|_>||_\/?:W||_>|_\/T—- (5.10
L a=0.4 a=0.6 =08 ! . _
If one rewrites this equation in the for(d.5 one obtains
0.1 0.9808 0.9707 0.9626 the following expression for the exponent
0.2 0.9625 0.9440 0.9263 9 exp P
0.4 0.9274 0.8971 0.8641 1 In(W_y /W, _)
05 0.9136 0.8732 0.8357 ym=———— (5.11)
1.0 0.8485 0.7847 0.7280 2 In(T,/Ty)
421'8 8'2%? g'gggg 8'22}12 It can be seen that under the conditi@n5) the exponent
50 05728 0.4634 0.3796 y=1/2 for both channel and tube. Thus, the diffuse-specular
10.0 0.4240 0.3212 0.2476 gas—surface interaction always gives=1/2 in the free-
20.0 0.2880 0.2040 0.1485 molecular regime.
gg-g g-iggg g'éég%o g-gggﬁ Experimental data on the exponeptare available in the
. . . . ; 55,64 ; ;
1000 008722 008457 ooaces | lterature®>®* The experiment with a smooth Pyrex tdbe

gave y=0.4. This means that the transmission probability

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998
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from the “hot” container to the “cold” oneW, ., is larger TasLE 33. Reduced flow rat&%" vs L in the hydrodynamic regime
than the transmission probability in the opposite direction s
W, _,. Since the diffuse-specular scattering leadyt01/2 P
at any value of the parametes it cannot correctly describe L a b
this experimental result. It would be more correct to use 1 0.0908 0.0901
another gas—surface interaction law, i.e., the Cercignani— 5 0.1427 0.1425
Lampis kernel2.24). 10 0.1538 0.1536

The experiments with a leached Pyrex tube, which pro- 30 0.1622 0.1621
vides the diffuse scattering, gavye=1/2 as the theory pre- 2Akinshinet al. (Ref. 5.
dicts. PEquation(5.18.

5.3. Reduced Flow Rates The additional lengtiAL™ for the tube flow was calcu-

lated by Weissber§* based on the solution of the Navier—
To present the mass flow rates through a tube we will us&tokes equation by the variational method. It was found that
the notation(3.102. Let us introduce an analogous notation the upper limit as:AL®<3.47x7/8. If one calculatesAL®

for the channel flow as from the hydrodynamic solution of the orifice flo.28
o L (2KgT, l,ZM . 512 taking into account the relatlo:
“ap |\ T m : : Gt T 0
abiom 7= \mlim —* = g LD (5.19
If the pressure and the temperature drops are small, i.e., L—0
AP/P;<1 andAT/T <1, both flow rate&>*" andG® canbe e obtainsAL®=3/8, which is close to the upper limit.
decomposed as Thus, we may assume that the formula
G G AP+G AT (5.13 b Ol L
==6p5TOr—. . b_
Py Ti CP= 2 (L3709 (.19
One must not confuse the coefficier@ p and G, 1 intro-  ig yajid for any tube length in the hydrodynamic regime.

duced in Sec. 3.2. with those introduced her_e. The matter is The same formula can be obtained for the channel flow.
thatG, p and G, 1 are used only for long capillaries but for Taking into account the relation

any pressure and temperature drops, wkileand G are o

used only for small pressure and temperature drops but for T G_P: ﬁ d 51

any capillary length. The coefficients coincide if the capillary s Nmim 6 AL (.17

is long and at the same time the pressure and temperature

drops are small. Note that the coefficie@s and G, have ~and the hydrodynamic solution(4.22, we obtain
been introduced so as their relation with the rarefaction padL"=8/(3m). For the mass flow rate through a channel we
rameterss, and 8, does not contain any specific character-have

i_st@c of gas. So, representing theoretical data on these coef- o O L

ficients it is not necessary to specify the gas. Gp= 5 m (5.18

which gives the correct value of the mass flow rate in both
5.4. Hydrodynamic Regime limits L=0 andL —oo.

L—0

The mass flow rate through a capillary of finite length first
was obtained in the hydrodynamic regime under the suppoFasLe 34. Reduced flow rat&% vs L and &, by Sharipov(Ref. 132:
sition of the small pressure drapP/P,<1. Under this con- diffuse scattering
dition we may considep,= §,,. The capillary can be con-

. . . . G
sidered as a resistor to the gas flow: when the capillary is P
longer, the mass flow rate is smaller at the same pressure 9 L=1 L=5 L=10 L=30
difference. So, the capillary resistance is proportional to the ¢ 0.386 1.00 135 197
capillary length. Since the capillary ends create an additional 0.02 0.391 1.00 1.35 1.88
resistance for the flow, the idea was to substitute the real 0.04 0.396 1.00 1.34 181
length by some effective length. Mathematically this means 01 0.406 1.01 132 1.68
0.2 0.421 1.02 1.28 1.57
cn O L w O L (5.14 0.4 0.447 1.03 1.26 1.49
Gp==— Gp=>—w% 61 1.0 0.512 1.10 1.27 1.43
6 L+Al 4 L+AL 2.0 0.601 1.19 1.36 1.50
The additional lengths\L would not depend on the real ;‘-8 (1"332 i-gg ;f?l’ ;37,2
capillary lengthL. This representation o6y provides the 100 118 518 a4 ppen

expression$3.65 in the limit of the infinite length.
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TasLE 35. Additional lengthAL®" vs &, : diffuse scattering was very complicated. An analysis of the formula shows
that: (i) the empirical coefficient&€ and C (notations of
Lund and Bermanare close to unity; the coefficient is
close to 1.6, and the coefficieAt is close to 1.1. Here, we
give the simplified formula assuming=C=1, oc=1.6,

: . ) A*=1.1 for all f th d for all t f th
Exact numerical calculations of the Stokes equati6) capillary or all types of the gas and for all types of the

for the viscous flow through a finite channel was carried out
by Akinshin et al® The results of the calculations are pre-
sented in Table 33. The comparison of these numerical re-
sults with the formula(5.18 shows that there is perfect
agreement between them.

Thus, the formulag5.16 and (5.18 can be successfully 1.50 0.054%,L(0.7935,—1)/(1+0.044.)
used in the hydrodynamic regime for a capillary of arbitrarde: 1+1.145, { 1+ 17.76|+4.645|2+ 5_025? }
length if the pressure drop is smdlP/P,<1.

] 0.2 0.4 1.0 2.0 4.0 8.0 100
AL 352 267 202 163 143 1.44 133 0.84

GoGy

tb__
Cp=Cat 5 1G,

(5.21

where

2.535,+2.67TWP—L]?
5.5. Transition Regime X1t (1+1.615)L ' (5.22
5.5.1. Isothermal Flow Through a Channel 26L [ 1.35 }
Go= 1+ , (5.23
Exact numerical results of the gas flow through a channel ° 3w 1+0.557%,
caused by the small pressure dropR/P,<1) were ob-
: (132,144,146 : - 4 3.79
tained by Sharipo\#?44146 applying the integro-moment Gt:Z +m. (5.29
method to the BGK model and to the S model. The results ' !

based on the BGK model are presented in Table 34. Th&his formula can be serve for an estimate of the mass flow
values of the coefficienﬂ‘sﬁ,h obtained from the S model co- rate through a tube of arbitrary length.
incide with those obtained from the BGK model. Large pressure dropfujimoto and Usani? performed

An analysis of the data shows that in the transition regimexperiments on the gas flow through a short tube
we also may utilize the idea of the effective length, i.e, the(0.05<L<25.2) at different pressure ratié5/P, . For the
flow rate through the finite chann@,%h can be related with large pressure droB,/P,,>100(it is practically outflow into
the flow rate through the infinite chanr@[,ihP as vacuum, 5, =0) they offered the following empirical for-

mula for the coefficienG® defined by(3.102

L
ch _ ch
Gr(L,d)= Tz rerCxrlo), (5.19 oo L Wi 0.4733+0.90N1/( 5,7 } 5.25
where the additional lengthL" depends only on the rar- N 1+10.M87)+16.U 87 )% '

efaction paramete$, . Unfortunately, for an intermediat&
we cannot apply Eq5.19 in the whole range of the length
L. The range of the application depends on the precision that )

one needs. If the precision is 2% the application of (Gdl9 Z& \/_;
is restricted by the following condition

where

(12Wh—11.2)2
2

wt40.125 ex%—

5,L=20. (5.20 +0.18 exp— 14.7Vth)—0.08] , (5.26

In Table 35 the quantitAL" as a function ofs, is pre-

sented. These data and those given in Table 3 can be used¥$’ is the transmission probability. It is implied that the gas—
calculate the flow rat&" if the dimensionless length satis- Surface interaction is diffuse and the data &/ can be

fies the condition(5.20). calculated by(5.9). This formula is valid for5 <11 and
L<25.2.
5.5.2. Isothermal Flow Through a Tube

. ) 5.5.3. Nonisothermal Flow Through a Channel
There are not any rigorous theoretical data for the gas flow

through a tube of finite length. Below, some empirical for- The nonisothermal gas flow through a capillary of finite

mulas are given. length is the least investigated problem considered in the
Small pressure dropiund and Bermal?® obtained a review. To our knowledge, only numerical results on the gas

semiempirical formula for the coefficiet®Y, which coin-  flow through a channel at the small pressure and temperature

cides with all limit solutions known by 1966i) L=0 and  drops obtained by Sharipat al1*214414€gre available. The

8—, (ii) L—o and §,— o, (iii) L is arbitrary ands,=0. linearized S mode{2.68 was applied as an input equation,

A lot of empirical coefficients were introduced which dependwhich was solved by the integro-moment method. Two tem-

on the type of the gas, type of capillary material and theperature distribution$l.1) were considered:

length-to-radius ratid/a. Finally, the semiempirical formula (i) linear distribution

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998



INTERNAL RAREFIED GAS FLOWS 703

TaBLE 36. Reduced flow rate@%h vs L and é, by Sharipov and Seleznev 6. Concluding Remarks
(Ref. 144: diffuse scattering
Ge Numerical and analytical results on the rarefied gas flows
distr. (5.27 distr. (5.29 thr(_)ugh capillaries Qf different length are analyzed in the
review. The numerical data and analytical formulas pre-
%) L=1 L=5 L=1 L=5 sented here can be used to calculate the mass flow rate and
0.02 0.192 0.491 0.191 0.491 the heat flux caused by both pressure and temperature drops
0.04 0.190 0.480 0.190 0.480 on the capillary ends.
0.1 0.186 0.452 0.186 0.453 In Sec. 1 geometrical parameters of capillaries and main
g'i 8'128 g'gés g'igg 8;2; assumptions on the gas flow were described. Two types of
10 0146 0285 0146 0.280 the (_:aplllary Cross section were considered: the round cross
20 0.118 0217 0.118 0.211 section(tube and the cross section composed by two infinite

planes(channe). The first type of the capillary is very im-
portant in practical calculations. The second type is an ex-
ample of the degenerated geometry, which is not met in prac-
tice but it is very important for theoretical investigations and

Tw(X) = %Jr E (5.27 s:erves to test new numerical methods and new kinetic mod-
els.
(ii) step distribution In Sec. 2 three regimes of the gas flows were regar@gd:
_ the free-molecular regime, when every molecule moves
~ 0 for —L/2sx=<0, without collision with each other(ii) the transition regime,
Tw(X) = 1 for 0<x<L/2. (528 \when the molecular mean free path has the same order as the

capillary diameterf{iii) the hydrodynamic regime, when the
In Table 36 the reduced flow rat&" are presented as the mean free path is so small that the gas can be considered as
function of 8 andL. One can see that the coefficie®§”  continuous medium. The main methods of calculation of rar-
very slightly depends on the temperature distributigix).  efied gas flows in every regime were given.
In Sec. 3 long capillaries were considered. This means that
the capillary length is so large that the end effects can be
5.5.4. Thermomolecular Pressure Difference neglected. This supposition significantly simplifies numerical
calculations because the gas flow becomes one dimensional.
Using the data om;%h (Table 36 and G‘F’,h (Table 34 one  That is why there is a lot of calculation data on this type of
can easily calculate the TPD exponenfor the small tem- flow. The numerical results on the flow rate and the heat flux

perature drop. To find/ one has to assum@&=0 in (5.13. in the transition regime were tabulated. Analytical formulas

Using the smallness afP andAT one obtains were offered for the near free-molecular and near hydrody-
ch namic regimes.

_ G_T (5.29 It is obvious that the most reliable results should be ob-

Y chh' ' tained applying the Boltzmann equation or using the direct

simulation Monte Carlo method. However, to reduce the
5.6. Applicability to Polyatomic Gases computational e_fforts two recomm_endations, based on the
data presented in Sec. 3, can be given:

Since in the free-molecular regime there is no influence of (i) The BGK model can be successfully applied for nu-
the molecular structure to the mass flow all results on themerical calculations of isothermal rarefied gas flows. It is
transmission probability, i.e., the data given in Tables 29—-3%alid for both monatomic and polyatomic gases;
can be applied to any gas including a polyatomic one. (i) Since the BGK model gives the incorrect Prandtl num-

There are no theoretical data on the polyatomic gas flowber, the S model is recommended for calculations of non-
through a capillary of finite length in the transition regime. isothermal flows of monatomic gases. In the case of noniso-
Regarding that the coefficie@p is intermediate between the thermal flows of polyatomic gases some special model equa-
coefficientsG, p and ¥, we may conclude thabp is very  tions should be applied.
slightly dependent on the molecular structure. So the data In Sec. 4 the rarefied gas flows through an infinitesimal slit
given in Tables 34, 35 and Eq&.16), (5.18), (5.19, (5.2 and orifice were analyzed. Because of the complexity for
can be applied to any gas including a polyatomic one. numerical calculations there is little information on this type

Since the thermal creep through a long capill&y; es-  of two-dimensional gas flows. Analytical solutions of the gas
sentially depends on the molecular structure, it is logical tdflow through a slit and orifice are available only in the free-
conclude that the coefficie@ for a polyatomic gas differs molecular and hydrodynamic regimes. The reliable numeri-
significantly from that for a monatomic one. This means thatcal data on the mass flow rate in the transition regime are
the data given in Table 36 are applied to monatomic gaseavailable only for the slit flow caused by the small pressure
only. and temperature drops. There are some empirical formulas
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for the flow rate through an orifice in the transition regime. of b, which would be sufficient to neglect by the effect of the
But even from this poor information the following impor- lateral walls.
tant conclusion can be made: the mass flow rate caused by (iii) There is a lack of numerical data on the rarefied gas
the pressure drop is very weakly affected by the gas—surfaddow through slits and orifices. The direct simulation Monte
interaction law. So, further calculations of the mass flow rateCarlo method, which is widely applied today, is an ideal tool
can be performed only for the diffuse scattering of moleculego investigate such a type of gas flow. Moreover, the gas flow
on the surface without regard to the real gas—surface intethrough an orifice and slit has the following feature: the mass
action law. flow rate caused by the pressure drop is not affected by the
In Sec. 5 the rarefied gas flows through a capillary of finitegas—interaction law. Since the flow rate depends only on the
length were analyzed. In spite of the fact that this type ofintermolecular interaction law, this feature can be employed
flow has great importance in practice, it is investigated veryto test new molecular models.
poorly. Numerical calculations in the entire range of the
Knudsen number were performed only for the isothermal gas

flow through a channel. For the flow through a tube an em- §na of the author$F. Sh) wrote this article while with

pirical formula was offered. the Department of Physics of the Federal University of
~ Some numerical data on the free-molecular flow through garana(Brazil) as a Visiting Professor. The CAPES and
finite capillary were given in Sec. 5. Using these data Wec\pq of Brazil are gratefully acknowledged for their sup-
concluded that in this regime of gas flow the TPD exponeniyort during his stay. It is a pleasure to thank Professor G. M.

vy is equal to 1/2 for any capillary, if the diffuse-specular kyemer, who invited F. Sh. to Brazil and who supported his
scattering of molecules on the walls is assumed. That is, thgq k.

TPD exponent does not depend on the capillary fdtube

or channel, on the capillary length, and on the gas—surface 8. References
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